Btrfs: cleanup extent_clear_unlock_delalloc flags
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
4b4e25f2 39#include "compat.h"
39279cc3
CM
40#include "ctree.h"
41#include "disk-io.h"
42#include "transaction.h"
43#include "btrfs_inode.h"
44#include "ioctl.h"
45#include "print-tree.h"
0b86a832 46#include "volumes.h"
e6dcd2dc 47#include "ordered-data.h"
95819c05 48#include "xattr.h"
e02119d5 49#include "tree-log.h"
c8b97818 50#include "compression.h"
b4ce94de 51#include "locking.h"
39279cc3
CM
52
53struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56};
57
58static struct inode_operations btrfs_dir_inode_operations;
59static struct inode_operations btrfs_symlink_inode_operations;
60static struct inode_operations btrfs_dir_ro_inode_operations;
618e21d5 61static struct inode_operations btrfs_special_inode_operations;
39279cc3
CM
62static struct inode_operations btrfs_file_inode_operations;
63static struct address_space_operations btrfs_aops;
64static struct address_space_operations btrfs_symlink_aops;
65static struct file_operations btrfs_dir_file_operations;
d1310b2e 66static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
67
68static struct kmem_cache *btrfs_inode_cachep;
69struct kmem_cache *btrfs_trans_handle_cachep;
70struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
71struct kmem_cache *btrfs_path_cachep;
72
73#define S_SHIFT 12
74static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82};
83
7b128766 84static void btrfs_truncate(struct inode *inode);
c8b97818 85static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
86static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
7b128766 90
0279b4cd
JO
91static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
92{
93 int err;
94
95 err = btrfs_init_acl(inode, dir);
96 if (!err)
97 err = btrfs_xattr_security_init(inode, dir);
98 return err;
99}
100
c8b97818
CM
101/*
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
105 */
d397712b 106static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
110{
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
115 char *kaddr;
116 unsigned long ptr;
117 struct btrfs_file_extent_item *ei;
118 int err = 0;
119 int ret;
120 size_t cur_size = size;
121 size_t datasize;
122 unsigned long offset;
123 int use_compress = 0;
124
125 if (compressed_size && compressed_pages) {
126 use_compress = 1;
127 cur_size = compressed_size;
128 }
129
d397712b
CM
130 path = btrfs_alloc_path();
131 if (!path)
c8b97818
CM
132 return -ENOMEM;
133
b9473439 134 path->leave_spinning = 1;
c8b97818
CM
135 btrfs_set_trans_block_group(trans, inode);
136
137 key.objectid = inode->i_ino;
138 key.offset = start;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
144 datasize);
145 BUG_ON(ret);
146 if (ret) {
147 err = ret;
c8b97818
CM
148 goto fail;
149 }
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
159
160 if (use_compress) {
161 struct page *cpage;
162 int i = 0;
d397712b 163 while (compressed_size > 0) {
c8b97818 164 cpage = compressed_pages[i];
5b050f04 165 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
166 PAGE_CACHE_SIZE);
167
b9473439 168 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 170 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
171
172 i++;
173 ptr += cur_size;
174 compressed_size -= cur_size;
175 }
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
178 } else {
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
187 }
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
190
191 BTRFS_I(inode)->disk_i_size = inode->i_size;
192 btrfs_update_inode(trans, root, inode);
193 return 0;
194fail:
195 btrfs_free_path(path);
196 return err;
197}
198
199
200/*
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
204 */
7f366cfe 205static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
206 struct btrfs_root *root,
207 struct inode *inode, u64 start, u64 end,
208 size_t compressed_size,
209 struct page **compressed_pages)
210{
211 u64 isize = i_size_read(inode);
212 u64 actual_end = min(end + 1, isize);
213 u64 inline_len = actual_end - start;
214 u64 aligned_end = (end + root->sectorsize - 1) &
215 ~((u64)root->sectorsize - 1);
216 u64 hint_byte;
217 u64 data_len = inline_len;
218 int ret;
219
220 if (compressed_size)
221 data_len = compressed_size;
222
223 if (start > 0 ||
70b99e69 224 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 (!compressed_size &&
227 (actual_end & (root->sectorsize - 1)) == 0) ||
228 end + 1 < isize ||
229 data_len > root->fs_info->max_inline) {
230 return 1;
231 }
232
c8b97818 233 ret = btrfs_drop_extents(trans, root, inode, start,
a1ed835e
CM
234 aligned_end, aligned_end, start,
235 &hint_byte, 1);
c8b97818
CM
236 BUG_ON(ret);
237
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
242 compressed_pages);
243 BUG_ON(ret);
a1ed835e 244 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
245 return 0;
246}
247
771ed689
CM
248struct async_extent {
249 u64 start;
250 u64 ram_size;
251 u64 compressed_size;
252 struct page **pages;
253 unsigned long nr_pages;
254 struct list_head list;
255};
256
257struct async_cow {
258 struct inode *inode;
259 struct btrfs_root *root;
260 struct page *locked_page;
261 u64 start;
262 u64 end;
263 struct list_head extents;
264 struct btrfs_work work;
265};
266
267static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
269 u64 compressed_size,
270 struct page **pages,
271 unsigned long nr_pages)
272{
273 struct async_extent *async_extent;
274
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
282 return 0;
283}
284
d352ac68 285/*
771ed689
CM
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
c8b97818 289 *
771ed689
CM
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
c8b97818 295 *
771ed689
CM
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
d352ac68 300 */
771ed689
CM
301static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
303 u64 start, u64 end,
304 struct async_cow *async_cow,
305 int *num_added)
b888db2b
CM
306{
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
db94535d 309 u64 num_bytes;
c8b97818
CM
310 u64 orig_start;
311 u64 disk_num_bytes;
db94535d 312 u64 blocksize = root->sectorsize;
c8b97818 313 u64 actual_end;
42dc7bab 314 u64 isize = i_size_read(inode);
e6dcd2dc 315 int ret = 0;
c8b97818
CM
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
771ed689 322 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
323 int i;
324 int will_compress;
b888db2b 325
c8b97818
CM
326 orig_start = start;
327
42dc7bab 328 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
329again:
330 will_compress = 0;
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 333
f03d9301
CM
334 /*
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
340 *
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
343 */
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
346
c8b97818
CM
347 total_compressed = actual_end - start;
348
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
354 *
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
c8b97818
CM
358 */
359 total_compressed = min(total_compressed, max_uncompressed);
db94535d 360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 361 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
362 disk_num_bytes = num_bytes;
363 total_in = 0;
364 ret = 0;
db94535d 365
771ed689
CM
366 /*
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
c8b97818 370 */
6cbff00f 371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
c8b97818
CM
372 btrfs_test_opt(root, COMPRESS)) {
373 WARN_ON(pages);
cfbc246e 374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 375
c8b97818
CM
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
379 &total_in,
380 &total_compressed,
381 max_compressed);
382
383 if (!ret) {
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
387 char *kaddr;
388
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
391 */
392 if (offset) {
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
397 }
398 will_compress = 1;
399 }
400 }
401 if (start == 0) {
771ed689
CM
402 trans = btrfs_join_transaction(root, 1);
403 BUG_ON(!trans);
404 btrfs_set_trans_block_group(trans, inode);
405
c8b97818 406 /* lets try to make an inline extent */
771ed689 407 if (ret || total_in < (actual_end - start)) {
c8b97818 408 /* we didn't compress the entire range, try
771ed689 409 * to make an uncompressed inline extent.
c8b97818
CM
410 */
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
413 } else {
771ed689 414 /* try making a compressed inline extent */
c8b97818
CM
415 ret = cow_file_range_inline(trans, root, inode,
416 start, end,
417 total_compressed, pages);
418 }
771ed689 419 btrfs_end_transaction(trans, root);
c8b97818 420 if (ret == 0) {
771ed689
CM
421 /*
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
425 */
c8b97818 426 extent_clear_unlock_delalloc(inode,
a791e35e
CM
427 &BTRFS_I(inode)->io_tree,
428 start, end, NULL,
429 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
430 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c8b97818
CM
431 ret = 0;
432 goto free_pages_out;
433 }
434 }
435
436 if (will_compress) {
437 /*
438 * we aren't doing an inline extent round the compressed size
439 * up to a block size boundary so the allocator does sane
440 * things
441 */
442 total_compressed = (total_compressed + blocksize - 1) &
443 ~(blocksize - 1);
444
445 /*
446 * one last check to make sure the compression is really a
447 * win, compare the page count read with the blocks on disk
448 */
449 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
450 ~(PAGE_CACHE_SIZE - 1);
451 if (total_compressed >= total_in) {
452 will_compress = 0;
453 } else {
454 disk_num_bytes = total_compressed;
455 num_bytes = total_in;
456 }
457 }
458 if (!will_compress && pages) {
459 /*
460 * the compression code ran but failed to make things smaller,
461 * free any pages it allocated and our page pointer array
462 */
463 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 464 WARN_ON(pages[i]->mapping);
c8b97818
CM
465 page_cache_release(pages[i]);
466 }
467 kfree(pages);
468 pages = NULL;
469 total_compressed = 0;
470 nr_pages_ret = 0;
471
472 /* flag the file so we don't compress in the future */
6cbff00f 473 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
c8b97818 474 }
771ed689
CM
475 if (will_compress) {
476 *num_added += 1;
c8b97818 477
771ed689
CM
478 /* the async work queues will take care of doing actual
479 * allocation on disk for these compressed pages,
480 * and will submit them to the elevator.
481 */
482 add_async_extent(async_cow, start, num_bytes,
483 total_compressed, pages, nr_pages_ret);
179e29e4 484
42dc7bab 485 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
486 start += num_bytes;
487 pages = NULL;
488 cond_resched();
489 goto again;
490 }
491 } else {
f03d9301 492cleanup_and_bail_uncompressed:
771ed689
CM
493 /*
494 * No compression, but we still need to write the pages in
495 * the file we've been given so far. redirty the locked
496 * page if it corresponds to our extent and set things up
497 * for the async work queue to run cow_file_range to do
498 * the normal delalloc dance
499 */
500 if (page_offset(locked_page) >= start &&
501 page_offset(locked_page) <= end) {
502 __set_page_dirty_nobuffers(locked_page);
503 /* unlocked later on in the async handlers */
504 }
505 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
506 *num_added += 1;
507 }
3b951516 508
771ed689
CM
509out:
510 return 0;
511
512free_pages_out:
513 for (i = 0; i < nr_pages_ret; i++) {
514 WARN_ON(pages[i]->mapping);
515 page_cache_release(pages[i]);
516 }
d397712b 517 kfree(pages);
771ed689
CM
518
519 goto out;
520}
521
522/*
523 * phase two of compressed writeback. This is the ordered portion
524 * of the code, which only gets called in the order the work was
525 * queued. We walk all the async extents created by compress_file_range
526 * and send them down to the disk.
527 */
528static noinline int submit_compressed_extents(struct inode *inode,
529 struct async_cow *async_cow)
530{
531 struct async_extent *async_extent;
532 u64 alloc_hint = 0;
533 struct btrfs_trans_handle *trans;
534 struct btrfs_key ins;
535 struct extent_map *em;
536 struct btrfs_root *root = BTRFS_I(inode)->root;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 struct extent_io_tree *io_tree;
539 int ret;
540
541 if (list_empty(&async_cow->extents))
542 return 0;
543
544 trans = btrfs_join_transaction(root, 1);
545
d397712b 546 while (!list_empty(&async_cow->extents)) {
771ed689
CM
547 async_extent = list_entry(async_cow->extents.next,
548 struct async_extent, list);
549 list_del(&async_extent->list);
c8b97818 550
771ed689
CM
551 io_tree = &BTRFS_I(inode)->io_tree;
552
553 /* did the compression code fall back to uncompressed IO? */
554 if (!async_extent->pages) {
555 int page_started = 0;
556 unsigned long nr_written = 0;
557
558 lock_extent(io_tree, async_extent->start,
d397712b
CM
559 async_extent->start +
560 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
561
562 /* allocate blocks */
563 cow_file_range(inode, async_cow->locked_page,
564 async_extent->start,
565 async_extent->start +
566 async_extent->ram_size - 1,
567 &page_started, &nr_written, 0);
568
569 /*
570 * if page_started, cow_file_range inserted an
571 * inline extent and took care of all the unlocking
572 * and IO for us. Otherwise, we need to submit
573 * all those pages down to the drive.
574 */
575 if (!page_started)
576 extent_write_locked_range(io_tree,
577 inode, async_extent->start,
d397712b 578 async_extent->start +
771ed689
CM
579 async_extent->ram_size - 1,
580 btrfs_get_extent,
581 WB_SYNC_ALL);
582 kfree(async_extent);
583 cond_resched();
584 continue;
585 }
586
587 lock_extent(io_tree, async_extent->start,
588 async_extent->start + async_extent->ram_size - 1,
589 GFP_NOFS);
c8b97818 590 /*
771ed689
CM
591 * here we're doing allocation and writeback of the
592 * compressed pages
c8b97818 593 */
771ed689
CM
594 btrfs_drop_extent_cache(inode, async_extent->start,
595 async_extent->start +
596 async_extent->ram_size - 1, 0);
597
598 ret = btrfs_reserve_extent(trans, root,
599 async_extent->compressed_size,
600 async_extent->compressed_size,
601 0, alloc_hint,
602 (u64)-1, &ins, 1);
603 BUG_ON(ret);
604 em = alloc_extent_map(GFP_NOFS);
605 em->start = async_extent->start;
606 em->len = async_extent->ram_size;
445a6944 607 em->orig_start = em->start;
c8b97818 608
771ed689
CM
609 em->block_start = ins.objectid;
610 em->block_len = ins.offset;
611 em->bdev = root->fs_info->fs_devices->latest_bdev;
612 set_bit(EXTENT_FLAG_PINNED, &em->flags);
613 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
614
d397712b 615 while (1) {
890871be 616 write_lock(&em_tree->lock);
771ed689 617 ret = add_extent_mapping(em_tree, em);
890871be 618 write_unlock(&em_tree->lock);
771ed689
CM
619 if (ret != -EEXIST) {
620 free_extent_map(em);
621 break;
622 }
623 btrfs_drop_extent_cache(inode, async_extent->start,
624 async_extent->start +
625 async_extent->ram_size - 1, 0);
626 }
627
628 ret = btrfs_add_ordered_extent(inode, async_extent->start,
629 ins.objectid,
630 async_extent->ram_size,
631 ins.offset,
632 BTRFS_ORDERED_COMPRESSED);
633 BUG_ON(ret);
634
635 btrfs_end_transaction(trans, root);
636
637 /*
638 * clear dirty, set writeback and unlock the pages.
639 */
640 extent_clear_unlock_delalloc(inode,
a791e35e
CM
641 &BTRFS_I(inode)->io_tree,
642 async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1,
645 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
646 EXTENT_CLEAR_UNLOCK |
647 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
648
649 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
650 async_extent->start,
651 async_extent->ram_size,
652 ins.objectid,
653 ins.offset, async_extent->pages,
654 async_extent->nr_pages);
771ed689
CM
655
656 BUG_ON(ret);
657 trans = btrfs_join_transaction(root, 1);
658 alloc_hint = ins.objectid + ins.offset;
659 kfree(async_extent);
660 cond_resched();
661 }
662
663 btrfs_end_transaction(trans, root);
664 return 0;
665}
666
667/*
668 * when extent_io.c finds a delayed allocation range in the file,
669 * the call backs end up in this code. The basic idea is to
670 * allocate extents on disk for the range, and create ordered data structs
671 * in ram to track those extents.
672 *
673 * locked_page is the page that writepage had locked already. We use
674 * it to make sure we don't do extra locks or unlocks.
675 *
676 * *page_started is set to one if we unlock locked_page and do everything
677 * required to start IO on it. It may be clean and already done with
678 * IO when we return.
679 */
680static noinline int cow_file_range(struct inode *inode,
681 struct page *locked_page,
682 u64 start, u64 end, int *page_started,
683 unsigned long *nr_written,
684 int unlock)
685{
686 struct btrfs_root *root = BTRFS_I(inode)->root;
687 struct btrfs_trans_handle *trans;
688 u64 alloc_hint = 0;
689 u64 num_bytes;
690 unsigned long ram_size;
691 u64 disk_num_bytes;
692 u64 cur_alloc_size;
693 u64 blocksize = root->sectorsize;
694 u64 actual_end;
42dc7bab 695 u64 isize = i_size_read(inode);
771ed689
CM
696 struct btrfs_key ins;
697 struct extent_map *em;
698 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
699 int ret = 0;
700
701 trans = btrfs_join_transaction(root, 1);
702 BUG_ON(!trans);
703 btrfs_set_trans_block_group(trans, inode);
704
42dc7bab 705 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
706
707 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
708 num_bytes = max(blocksize, num_bytes);
709 disk_num_bytes = num_bytes;
710 ret = 0;
711
712 if (start == 0) {
713 /* lets try to make an inline extent */
714 ret = cow_file_range_inline(trans, root, inode,
715 start, end, 0, NULL);
716 if (ret == 0) {
717 extent_clear_unlock_delalloc(inode,
a791e35e
CM
718 &BTRFS_I(inode)->io_tree,
719 start, end, NULL,
720 EXTENT_CLEAR_UNLOCK_PAGE |
721 EXTENT_CLEAR_UNLOCK |
722 EXTENT_CLEAR_DELALLOC |
723 EXTENT_CLEAR_DIRTY |
724 EXTENT_SET_WRITEBACK |
725 EXTENT_END_WRITEBACK);
771ed689
CM
726 *nr_written = *nr_written +
727 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
728 *page_started = 1;
729 ret = 0;
730 goto out;
731 }
732 }
733
734 BUG_ON(disk_num_bytes >
735 btrfs_super_total_bytes(&root->fs_info->super_copy));
736
b917b7c3
CM
737
738 read_lock(&BTRFS_I(inode)->extent_tree.lock);
739 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
740 start, num_bytes);
741 if (em) {
742 alloc_hint = em->block_start;
743 free_extent_map(em);
744 }
745 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
771ed689
CM
746 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
747
d397712b 748 while (disk_num_bytes > 0) {
a791e35e
CM
749 unsigned long op;
750
c8b97818 751 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 752 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 753 root->sectorsize, 0, alloc_hint,
e6dcd2dc 754 (u64)-1, &ins, 1);
d397712b
CM
755 BUG_ON(ret);
756
e6dcd2dc
CM
757 em = alloc_extent_map(GFP_NOFS);
758 em->start = start;
445a6944 759 em->orig_start = em->start;
771ed689
CM
760 ram_size = ins.offset;
761 em->len = ins.offset;
c8b97818 762
e6dcd2dc 763 em->block_start = ins.objectid;
c8b97818 764 em->block_len = ins.offset;
e6dcd2dc 765 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 766 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 767
d397712b 768 while (1) {
890871be 769 write_lock(&em_tree->lock);
e6dcd2dc 770 ret = add_extent_mapping(em_tree, em);
890871be 771 write_unlock(&em_tree->lock);
e6dcd2dc
CM
772 if (ret != -EEXIST) {
773 free_extent_map(em);
774 break;
775 }
776 btrfs_drop_extent_cache(inode, start,
c8b97818 777 start + ram_size - 1, 0);
e6dcd2dc
CM
778 }
779
98d20f67 780 cur_alloc_size = ins.offset;
e6dcd2dc 781 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 782 ram_size, cur_alloc_size, 0);
e6dcd2dc 783 BUG_ON(ret);
c8b97818 784
17d217fe
YZ
785 if (root->root_key.objectid ==
786 BTRFS_DATA_RELOC_TREE_OBJECTID) {
787 ret = btrfs_reloc_clone_csums(inode, start,
788 cur_alloc_size);
789 BUG_ON(ret);
790 }
791
d397712b 792 if (disk_num_bytes < cur_alloc_size)
3b951516 793 break;
d397712b 794
c8b97818
CM
795 /* we're not doing compressed IO, don't unlock the first
796 * page (which the caller expects to stay locked), don't
797 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
798 *
799 * Do set the Private2 bit so we know this page was properly
800 * setup for writepage
c8b97818 801 */
a791e35e
CM
802 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
803 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
804 EXTENT_SET_PRIVATE2;
805
c8b97818
CM
806 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
807 start, start + ram_size - 1,
a791e35e 808 locked_page, op);
c8b97818 809 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
810 num_bytes -= cur_alloc_size;
811 alloc_hint = ins.objectid + ins.offset;
812 start += cur_alloc_size;
b888db2b 813 }
b888db2b 814out:
771ed689 815 ret = 0;
b888db2b 816 btrfs_end_transaction(trans, root);
c8b97818 817
be20aa9d 818 return ret;
771ed689 819}
c8b97818 820
771ed689
CM
821/*
822 * work queue call back to started compression on a file and pages
823 */
824static noinline void async_cow_start(struct btrfs_work *work)
825{
826 struct async_cow *async_cow;
827 int num_added = 0;
828 async_cow = container_of(work, struct async_cow, work);
829
830 compress_file_range(async_cow->inode, async_cow->locked_page,
831 async_cow->start, async_cow->end, async_cow,
832 &num_added);
833 if (num_added == 0)
834 async_cow->inode = NULL;
835}
836
837/*
838 * work queue call back to submit previously compressed pages
839 */
840static noinline void async_cow_submit(struct btrfs_work *work)
841{
842 struct async_cow *async_cow;
843 struct btrfs_root *root;
844 unsigned long nr_pages;
845
846 async_cow = container_of(work, struct async_cow, work);
847
848 root = async_cow->root;
849 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
850 PAGE_CACHE_SHIFT;
851
852 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
853
854 if (atomic_read(&root->fs_info->async_delalloc_pages) <
855 5 * 1042 * 1024 &&
856 waitqueue_active(&root->fs_info->async_submit_wait))
857 wake_up(&root->fs_info->async_submit_wait);
858
d397712b 859 if (async_cow->inode)
771ed689 860 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 861}
c8b97818 862
771ed689
CM
863static noinline void async_cow_free(struct btrfs_work *work)
864{
865 struct async_cow *async_cow;
866 async_cow = container_of(work, struct async_cow, work);
867 kfree(async_cow);
868}
869
870static int cow_file_range_async(struct inode *inode, struct page *locked_page,
871 u64 start, u64 end, int *page_started,
872 unsigned long *nr_written)
873{
874 struct async_cow *async_cow;
875 struct btrfs_root *root = BTRFS_I(inode)->root;
876 unsigned long nr_pages;
877 u64 cur_end;
878 int limit = 10 * 1024 * 1042;
879
771ed689 880 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
2c64c53d 881 EXTENT_DELALLOC, 1, 0, NULL, GFP_NOFS);
d397712b 882 while (start < end) {
771ed689
CM
883 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
884 async_cow->inode = inode;
885 async_cow->root = root;
886 async_cow->locked_page = locked_page;
887 async_cow->start = start;
888
6cbff00f 889 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
890 cur_end = end;
891 else
892 cur_end = min(end, start + 512 * 1024 - 1);
893
894 async_cow->end = cur_end;
895 INIT_LIST_HEAD(&async_cow->extents);
896
897 async_cow->work.func = async_cow_start;
898 async_cow->work.ordered_func = async_cow_submit;
899 async_cow->work.ordered_free = async_cow_free;
900 async_cow->work.flags = 0;
901
771ed689
CM
902 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
903 PAGE_CACHE_SHIFT;
904 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
905
906 btrfs_queue_worker(&root->fs_info->delalloc_workers,
907 &async_cow->work);
908
909 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
910 wait_event(root->fs_info->async_submit_wait,
911 (atomic_read(&root->fs_info->async_delalloc_pages) <
912 limit));
913 }
914
d397712b 915 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
916 atomic_read(&root->fs_info->async_delalloc_pages)) {
917 wait_event(root->fs_info->async_submit_wait,
918 (atomic_read(&root->fs_info->async_delalloc_pages) ==
919 0));
920 }
921
922 *nr_written += nr_pages;
923 start = cur_end + 1;
924 }
925 *page_started = 1;
926 return 0;
be20aa9d
CM
927}
928
d397712b 929static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
930 u64 bytenr, u64 num_bytes)
931{
932 int ret;
933 struct btrfs_ordered_sum *sums;
934 LIST_HEAD(list);
935
07d400a6
YZ
936 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
937 bytenr + num_bytes - 1, &list);
17d217fe
YZ
938 if (ret == 0 && list_empty(&list))
939 return 0;
940
941 while (!list_empty(&list)) {
942 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
943 list_del(&sums->list);
944 kfree(sums);
945 }
946 return 1;
947}
948
d352ac68
CM
949/*
950 * when nowcow writeback call back. This checks for snapshots or COW copies
951 * of the extents that exist in the file, and COWs the file as required.
952 *
953 * If no cow copies or snapshots exist, we write directly to the existing
954 * blocks on disk
955 */
7f366cfe
CM
956static noinline int run_delalloc_nocow(struct inode *inode,
957 struct page *locked_page,
771ed689
CM
958 u64 start, u64 end, int *page_started, int force,
959 unsigned long *nr_written)
be20aa9d 960{
be20aa9d 961 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 962 struct btrfs_trans_handle *trans;
be20aa9d 963 struct extent_buffer *leaf;
be20aa9d 964 struct btrfs_path *path;
80ff3856 965 struct btrfs_file_extent_item *fi;
be20aa9d 966 struct btrfs_key found_key;
80ff3856
YZ
967 u64 cow_start;
968 u64 cur_offset;
969 u64 extent_end;
5d4f98a2 970 u64 extent_offset;
80ff3856
YZ
971 u64 disk_bytenr;
972 u64 num_bytes;
973 int extent_type;
974 int ret;
d899e052 975 int type;
80ff3856
YZ
976 int nocow;
977 int check_prev = 1;
be20aa9d
CM
978
979 path = btrfs_alloc_path();
980 BUG_ON(!path);
7ea394f1
YZ
981 trans = btrfs_join_transaction(root, 1);
982 BUG_ON(!trans);
be20aa9d 983
80ff3856
YZ
984 cow_start = (u64)-1;
985 cur_offset = start;
986 while (1) {
987 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
988 cur_offset, 0);
989 BUG_ON(ret < 0);
990 if (ret > 0 && path->slots[0] > 0 && check_prev) {
991 leaf = path->nodes[0];
992 btrfs_item_key_to_cpu(leaf, &found_key,
993 path->slots[0] - 1);
994 if (found_key.objectid == inode->i_ino &&
995 found_key.type == BTRFS_EXTENT_DATA_KEY)
996 path->slots[0]--;
997 }
998 check_prev = 0;
999next_slot:
1000 leaf = path->nodes[0];
1001 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1002 ret = btrfs_next_leaf(root, path);
1003 if (ret < 0)
1004 BUG_ON(1);
1005 if (ret > 0)
1006 break;
1007 leaf = path->nodes[0];
1008 }
be20aa9d 1009
80ff3856
YZ
1010 nocow = 0;
1011 disk_bytenr = 0;
17d217fe 1012 num_bytes = 0;
80ff3856
YZ
1013 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1014
1015 if (found_key.objectid > inode->i_ino ||
1016 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1017 found_key.offset > end)
1018 break;
1019
1020 if (found_key.offset > cur_offset) {
1021 extent_end = found_key.offset;
1022 goto out_check;
1023 }
1024
1025 fi = btrfs_item_ptr(leaf, path->slots[0],
1026 struct btrfs_file_extent_item);
1027 extent_type = btrfs_file_extent_type(leaf, fi);
1028
d899e052
YZ
1029 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1030 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1031 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1032 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1033 extent_end = found_key.offset +
1034 btrfs_file_extent_num_bytes(leaf, fi);
1035 if (extent_end <= start) {
1036 path->slots[0]++;
1037 goto next_slot;
1038 }
17d217fe
YZ
1039 if (disk_bytenr == 0)
1040 goto out_check;
80ff3856
YZ
1041 if (btrfs_file_extent_compression(leaf, fi) ||
1042 btrfs_file_extent_encryption(leaf, fi) ||
1043 btrfs_file_extent_other_encoding(leaf, fi))
1044 goto out_check;
d899e052
YZ
1045 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1046 goto out_check;
d2fb3437 1047 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1048 goto out_check;
17d217fe 1049 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1050 found_key.offset -
1051 extent_offset, disk_bytenr))
17d217fe 1052 goto out_check;
5d4f98a2 1053 disk_bytenr += extent_offset;
17d217fe
YZ
1054 disk_bytenr += cur_offset - found_key.offset;
1055 num_bytes = min(end + 1, extent_end) - cur_offset;
1056 /*
1057 * force cow if csum exists in the range.
1058 * this ensure that csum for a given extent are
1059 * either valid or do not exist.
1060 */
1061 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1062 goto out_check;
80ff3856
YZ
1063 nocow = 1;
1064 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1065 extent_end = found_key.offset +
1066 btrfs_file_extent_inline_len(leaf, fi);
1067 extent_end = ALIGN(extent_end, root->sectorsize);
1068 } else {
1069 BUG_ON(1);
1070 }
1071out_check:
1072 if (extent_end <= start) {
1073 path->slots[0]++;
1074 goto next_slot;
1075 }
1076 if (!nocow) {
1077 if (cow_start == (u64)-1)
1078 cow_start = cur_offset;
1079 cur_offset = extent_end;
1080 if (cur_offset > end)
1081 break;
1082 path->slots[0]++;
1083 goto next_slot;
7ea394f1
YZ
1084 }
1085
1086 btrfs_release_path(root, path);
80ff3856
YZ
1087 if (cow_start != (u64)-1) {
1088 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1089 found_key.offset - 1, page_started,
1090 nr_written, 1);
80ff3856
YZ
1091 BUG_ON(ret);
1092 cow_start = (u64)-1;
7ea394f1 1093 }
80ff3856 1094
d899e052
YZ
1095 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1096 struct extent_map *em;
1097 struct extent_map_tree *em_tree;
1098 em_tree = &BTRFS_I(inode)->extent_tree;
1099 em = alloc_extent_map(GFP_NOFS);
1100 em->start = cur_offset;
445a6944 1101 em->orig_start = em->start;
d899e052
YZ
1102 em->len = num_bytes;
1103 em->block_len = num_bytes;
1104 em->block_start = disk_bytenr;
1105 em->bdev = root->fs_info->fs_devices->latest_bdev;
1106 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1107 while (1) {
890871be 1108 write_lock(&em_tree->lock);
d899e052 1109 ret = add_extent_mapping(em_tree, em);
890871be 1110 write_unlock(&em_tree->lock);
d899e052
YZ
1111 if (ret != -EEXIST) {
1112 free_extent_map(em);
1113 break;
1114 }
1115 btrfs_drop_extent_cache(inode, em->start,
1116 em->start + em->len - 1, 0);
1117 }
1118 type = BTRFS_ORDERED_PREALLOC;
1119 } else {
1120 type = BTRFS_ORDERED_NOCOW;
1121 }
80ff3856
YZ
1122
1123 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1124 num_bytes, num_bytes, type);
1125 BUG_ON(ret);
771ed689 1126
d899e052 1127 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1128 cur_offset, cur_offset + num_bytes - 1,
1129 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1130 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1131 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1132 cur_offset = extent_end;
1133 if (cur_offset > end)
1134 break;
be20aa9d 1135 }
80ff3856
YZ
1136 btrfs_release_path(root, path);
1137
1138 if (cur_offset <= end && cow_start == (u64)-1)
1139 cow_start = cur_offset;
1140 if (cow_start != (u64)-1) {
1141 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1142 page_started, nr_written, 1);
80ff3856
YZ
1143 BUG_ON(ret);
1144 }
1145
1146 ret = btrfs_end_transaction(trans, root);
1147 BUG_ON(ret);
7ea394f1 1148 btrfs_free_path(path);
80ff3856 1149 return 0;
be20aa9d
CM
1150}
1151
d352ac68
CM
1152/*
1153 * extent_io.c call back to do delayed allocation processing
1154 */
c8b97818 1155static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1156 u64 start, u64 end, int *page_started,
1157 unsigned long *nr_written)
be20aa9d 1158{
be20aa9d 1159 int ret;
7f366cfe 1160 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1161
6cbff00f 1162 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1163 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1164 page_started, 1, nr_written);
6cbff00f 1165 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1166 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1167 page_started, 0, nr_written);
7f366cfe
CM
1168 else if (!btrfs_test_opt(root, COMPRESS))
1169 ret = cow_file_range(inode, locked_page, start, end,
1170 page_started, nr_written, 1);
be20aa9d 1171 else
771ed689 1172 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1173 page_started, nr_written);
b888db2b
CM
1174 return ret;
1175}
1176
9ed74f2d
JB
1177static int btrfs_split_extent_hook(struct inode *inode,
1178 struct extent_state *orig, u64 split)
1179{
1180 struct btrfs_root *root = BTRFS_I(inode)->root;
1181 u64 size;
1182
1183 if (!(orig->state & EXTENT_DELALLOC))
1184 return 0;
1185
1186 size = orig->end - orig->start + 1;
1187 if (size > root->fs_info->max_extent) {
1188 u64 num_extents;
1189 u64 new_size;
1190
1191 new_size = orig->end - split + 1;
1192 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1193 root->fs_info->max_extent);
1194
1195 /*
1196 * if we break a large extent up then leave delalloc_extents be,
1197 * since we've already accounted for the large extent.
1198 */
1199 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1200 root->fs_info->max_extent) < num_extents)
1201 return 0;
1202 }
1203
1204 BTRFS_I(inode)->delalloc_extents++;
1205
1206 return 0;
1207}
1208
1209/*
1210 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1211 * extents so we can keep track of new extents that are just merged onto old
1212 * extents, such as when we are doing sequential writes, so we can properly
1213 * account for the metadata space we'll need.
1214 */
1215static int btrfs_merge_extent_hook(struct inode *inode,
1216 struct extent_state *new,
1217 struct extent_state *other)
1218{
1219 struct btrfs_root *root = BTRFS_I(inode)->root;
1220 u64 new_size, old_size;
1221 u64 num_extents;
1222
1223 /* not delalloc, ignore it */
1224 if (!(other->state & EXTENT_DELALLOC))
1225 return 0;
1226
1227 old_size = other->end - other->start + 1;
1228 if (new->start < other->start)
1229 new_size = other->end - new->start + 1;
1230 else
1231 new_size = new->end - other->start + 1;
1232
1233 /* we're not bigger than the max, unreserve the space and go */
1234 if (new_size <= root->fs_info->max_extent) {
1235 BTRFS_I(inode)->delalloc_extents--;
1236 return 0;
1237 }
1238
1239 /*
1240 * If we grew by another max_extent, just return, we want to keep that
1241 * reserved amount.
1242 */
1243 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1244 root->fs_info->max_extent);
1245 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1246 root->fs_info->max_extent) > num_extents)
1247 return 0;
1248
1249 BTRFS_I(inode)->delalloc_extents--;
1250
1251 return 0;
1252}
1253
d352ac68
CM
1254/*
1255 * extent_io.c set_bit_hook, used to track delayed allocation
1256 * bytes in this file, and to maintain the list of inodes that
1257 * have pending delalloc work to be done.
1258 */
b2950863 1259static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1260 unsigned long old, unsigned long bits)
291d673e 1261{
9ed74f2d 1262
75eff68e
CM
1263 /*
1264 * set_bit and clear bit hooks normally require _irqsave/restore
1265 * but in this case, we are only testeing for the DELALLOC
1266 * bit, which is only set or cleared with irqs on
1267 */
b0c68f8b 1268 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1269 struct btrfs_root *root = BTRFS_I(inode)->root;
9ed74f2d
JB
1270
1271 BTRFS_I(inode)->delalloc_extents++;
6a63209f 1272 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1273 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1274 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1275 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1276 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1277 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1278 &root->fs_info->delalloc_inodes);
1279 }
75eff68e 1280 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1281 }
1282 return 0;
1283}
1284
d352ac68
CM
1285/*
1286 * extent_io.c clear_bit_hook, see set_bit_hook for why
1287 */
9ed74f2d
JB
1288static int btrfs_clear_bit_hook(struct inode *inode,
1289 struct extent_state *state, unsigned long bits)
291d673e 1290{
75eff68e
CM
1291 /*
1292 * set_bit and clear bit hooks normally require _irqsave/restore
1293 * but in this case, we are only testeing for the DELALLOC
1294 * bit, which is only set or cleared with irqs on
1295 */
9ed74f2d 1296 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1297 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1298
9ed74f2d
JB
1299 BTRFS_I(inode)->delalloc_extents--;
1300 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1301
75eff68e 1302 spin_lock(&root->fs_info->delalloc_lock);
9ed74f2d
JB
1303 if (state->end - state->start + 1 >
1304 root->fs_info->delalloc_bytes) {
d397712b
CM
1305 printk(KERN_INFO "btrfs warning: delalloc account "
1306 "%llu %llu\n",
9ed74f2d
JB
1307 (unsigned long long)
1308 state->end - state->start + 1,
d397712b
CM
1309 (unsigned long long)
1310 root->fs_info->delalloc_bytes);
6a63209f 1311 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1312 root->fs_info->delalloc_bytes = 0;
9069218d 1313 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1314 } else {
6a63209f 1315 btrfs_delalloc_free_space(root, inode,
9ed74f2d
JB
1316 state->end -
1317 state->start + 1);
1318 root->fs_info->delalloc_bytes -= state->end -
1319 state->start + 1;
1320 BTRFS_I(inode)->delalloc_bytes -= state->end -
1321 state->start + 1;
b0c68f8b 1322 }
ea8c2819
CM
1323 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1324 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1325 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1326 }
75eff68e 1327 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1328 }
1329 return 0;
1330}
1331
d352ac68
CM
1332/*
1333 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1334 * we don't create bios that span stripes or chunks
1335 */
239b14b3 1336int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1337 size_t size, struct bio *bio,
1338 unsigned long bio_flags)
239b14b3
CM
1339{
1340 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1341 struct btrfs_mapping_tree *map_tree;
a62b9401 1342 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1343 u64 length = 0;
1344 u64 map_length;
239b14b3
CM
1345 int ret;
1346
771ed689
CM
1347 if (bio_flags & EXTENT_BIO_COMPRESSED)
1348 return 0;
1349
f2d8d74d 1350 length = bio->bi_size;
239b14b3
CM
1351 map_tree = &root->fs_info->mapping_tree;
1352 map_length = length;
cea9e445 1353 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1354 &map_length, NULL, 0);
cea9e445 1355
d397712b 1356 if (map_length < length + size)
239b14b3 1357 return 1;
239b14b3
CM
1358 return 0;
1359}
1360
d352ac68
CM
1361/*
1362 * in order to insert checksums into the metadata in large chunks,
1363 * we wait until bio submission time. All the pages in the bio are
1364 * checksummed and sums are attached onto the ordered extent record.
1365 *
1366 * At IO completion time the cums attached on the ordered extent record
1367 * are inserted into the btree
1368 */
d397712b
CM
1369static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1370 struct bio *bio, int mirror_num,
1371 unsigned long bio_flags)
065631f6 1372{
065631f6 1373 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1374 int ret = 0;
e015640f 1375
d20f7043 1376 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1377 BUG_ON(ret);
4a69a410
CM
1378 return 0;
1379}
e015640f 1380
4a69a410
CM
1381/*
1382 * in order to insert checksums into the metadata in large chunks,
1383 * we wait until bio submission time. All the pages in the bio are
1384 * checksummed and sums are attached onto the ordered extent record.
1385 *
1386 * At IO completion time the cums attached on the ordered extent record
1387 * are inserted into the btree
1388 */
b2950863 1389static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1390 int mirror_num, unsigned long bio_flags)
1391{
1392 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1393 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1394}
1395
d352ac68 1396/*
cad321ad
CM
1397 * extent_io.c submission hook. This does the right thing for csum calculation
1398 * on write, or reading the csums from the tree before a read
d352ac68 1399 */
b2950863 1400static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1401 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1402{
1403 struct btrfs_root *root = BTRFS_I(inode)->root;
1404 int ret = 0;
19b9bdb0 1405 int skip_sum;
44b8bd7e 1406
6cbff00f 1407 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1408
e6dcd2dc
CM
1409 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1410 BUG_ON(ret);
065631f6 1411
4d1b5fb4 1412 if (!(rw & (1 << BIO_RW))) {
d20f7043 1413 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1414 return btrfs_submit_compressed_read(inode, bio,
1415 mirror_num, bio_flags);
d20f7043
CM
1416 } else if (!skip_sum)
1417 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1418 goto mapit;
19b9bdb0 1419 } else if (!skip_sum) {
17d217fe
YZ
1420 /* csum items have already been cloned */
1421 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1422 goto mapit;
19b9bdb0
CM
1423 /* we're doing a write, do the async checksumming */
1424 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1425 inode, rw, bio, mirror_num,
4a69a410
CM
1426 bio_flags, __btrfs_submit_bio_start,
1427 __btrfs_submit_bio_done);
19b9bdb0
CM
1428 }
1429
0b86a832 1430mapit:
8b712842 1431 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1432}
6885f308 1433
d352ac68
CM
1434/*
1435 * given a list of ordered sums record them in the inode. This happens
1436 * at IO completion time based on sums calculated at bio submission time.
1437 */
ba1da2f4 1438static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1439 struct inode *inode, u64 file_offset,
1440 struct list_head *list)
1441{
e6dcd2dc
CM
1442 struct btrfs_ordered_sum *sum;
1443
1444 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1445
1446 list_for_each_entry(sum, list, list) {
d20f7043
CM
1447 btrfs_csum_file_blocks(trans,
1448 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1449 }
1450 return 0;
1451}
1452
ea8c2819
CM
1453int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1454{
d397712b 1455 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1456 WARN_ON(1);
ea8c2819
CM
1457 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1458 GFP_NOFS);
1459}
1460
d352ac68 1461/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1462struct btrfs_writepage_fixup {
1463 struct page *page;
1464 struct btrfs_work work;
1465};
1466
b2950863 1467static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1468{
1469 struct btrfs_writepage_fixup *fixup;
1470 struct btrfs_ordered_extent *ordered;
1471 struct page *page;
1472 struct inode *inode;
1473 u64 page_start;
1474 u64 page_end;
1475
1476 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1477 page = fixup->page;
4a096752 1478again:
247e743c
CM
1479 lock_page(page);
1480 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1481 ClearPageChecked(page);
1482 goto out_page;
1483 }
1484
1485 inode = page->mapping->host;
1486 page_start = page_offset(page);
1487 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1488
1489 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1490
1491 /* already ordered? We're done */
8b62b72b 1492 if (PagePrivate2(page))
247e743c 1493 goto out;
4a096752
CM
1494
1495 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1496 if (ordered) {
1497 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1498 page_end, GFP_NOFS);
1499 unlock_page(page);
1500 btrfs_start_ordered_extent(inode, ordered, 1);
1501 goto again;
1502 }
247e743c 1503
ea8c2819 1504 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1505 ClearPageChecked(page);
1506out:
1507 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1508out_page:
1509 unlock_page(page);
1510 page_cache_release(page);
1511}
1512
1513/*
1514 * There are a few paths in the higher layers of the kernel that directly
1515 * set the page dirty bit without asking the filesystem if it is a
1516 * good idea. This causes problems because we want to make sure COW
1517 * properly happens and the data=ordered rules are followed.
1518 *
c8b97818 1519 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1520 * hasn't been properly setup for IO. We kick off an async process
1521 * to fix it up. The async helper will wait for ordered extents, set
1522 * the delalloc bit and make it safe to write the page.
1523 */
b2950863 1524static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1525{
1526 struct inode *inode = page->mapping->host;
1527 struct btrfs_writepage_fixup *fixup;
1528 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1529
8b62b72b
CM
1530 /* this page is properly in the ordered list */
1531 if (TestClearPagePrivate2(page))
247e743c
CM
1532 return 0;
1533
1534 if (PageChecked(page))
1535 return -EAGAIN;
1536
1537 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1538 if (!fixup)
1539 return -EAGAIN;
f421950f 1540
247e743c
CM
1541 SetPageChecked(page);
1542 page_cache_get(page);
1543 fixup->work.func = btrfs_writepage_fixup_worker;
1544 fixup->page = page;
1545 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1546 return -EAGAIN;
1547}
1548
d899e052
YZ
1549static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1550 struct inode *inode, u64 file_pos,
1551 u64 disk_bytenr, u64 disk_num_bytes,
1552 u64 num_bytes, u64 ram_bytes,
e980b50c 1553 u64 locked_end,
d899e052
YZ
1554 u8 compression, u8 encryption,
1555 u16 other_encoding, int extent_type)
1556{
1557 struct btrfs_root *root = BTRFS_I(inode)->root;
1558 struct btrfs_file_extent_item *fi;
1559 struct btrfs_path *path;
1560 struct extent_buffer *leaf;
1561 struct btrfs_key ins;
1562 u64 hint;
1563 int ret;
1564
1565 path = btrfs_alloc_path();
1566 BUG_ON(!path);
1567
b9473439 1568 path->leave_spinning = 1;
a1ed835e
CM
1569
1570 /*
1571 * we may be replacing one extent in the tree with another.
1572 * The new extent is pinned in the extent map, and we don't want
1573 * to drop it from the cache until it is completely in the btree.
1574 *
1575 * So, tell btrfs_drop_extents to leave this extent in the cache.
1576 * the caller is expected to unpin it and allow it to be merged
1577 * with the others.
1578 */
d899e052 1579 ret = btrfs_drop_extents(trans, root, inode, file_pos,
e980b50c 1580 file_pos + num_bytes, locked_end,
a1ed835e 1581 file_pos, &hint, 0);
d899e052
YZ
1582 BUG_ON(ret);
1583
1584 ins.objectid = inode->i_ino;
1585 ins.offset = file_pos;
1586 ins.type = BTRFS_EXTENT_DATA_KEY;
1587 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1588 BUG_ON(ret);
1589 leaf = path->nodes[0];
1590 fi = btrfs_item_ptr(leaf, path->slots[0],
1591 struct btrfs_file_extent_item);
1592 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1593 btrfs_set_file_extent_type(leaf, fi, extent_type);
1594 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1595 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1596 btrfs_set_file_extent_offset(leaf, fi, 0);
1597 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1598 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1599 btrfs_set_file_extent_compression(leaf, fi, compression);
1600 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1601 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1602
1603 btrfs_unlock_up_safe(path, 1);
1604 btrfs_set_lock_blocking(leaf);
1605
d899e052
YZ
1606 btrfs_mark_buffer_dirty(leaf);
1607
1608 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1609
1610 ins.objectid = disk_bytenr;
1611 ins.offset = disk_num_bytes;
1612 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1613 ret = btrfs_alloc_reserved_file_extent(trans, root,
1614 root->root_key.objectid,
1615 inode->i_ino, file_pos, &ins);
d899e052 1616 BUG_ON(ret);
d899e052 1617 btrfs_free_path(path);
b9473439 1618
d899e052
YZ
1619 return 0;
1620}
1621
5d13a98f
CM
1622/*
1623 * helper function for btrfs_finish_ordered_io, this
1624 * just reads in some of the csum leaves to prime them into ram
1625 * before we start the transaction. It limits the amount of btree
1626 * reads required while inside the transaction.
1627 */
1628static noinline void reada_csum(struct btrfs_root *root,
1629 struct btrfs_path *path,
1630 struct btrfs_ordered_extent *ordered_extent)
1631{
1632 struct btrfs_ordered_sum *sum;
1633 u64 bytenr;
1634
1635 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1636 list);
1637 bytenr = sum->sums[0].bytenr;
1638
1639 /*
1640 * we don't care about the results, the point of this search is
1641 * just to get the btree leaves into ram
1642 */
1643 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1644}
1645
d352ac68
CM
1646/* as ordered data IO finishes, this gets called so we can finish
1647 * an ordered extent if the range of bytes in the file it covers are
1648 * fully written.
1649 */
211f90e6 1650static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1651{
e6dcd2dc
CM
1652 struct btrfs_root *root = BTRFS_I(inode)->root;
1653 struct btrfs_trans_handle *trans;
5d13a98f 1654 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1655 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1656 struct btrfs_path *path;
d899e052 1657 int compressed = 0;
e6dcd2dc
CM
1658 int ret;
1659
1660 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1661 if (!ret)
e6dcd2dc 1662 return 0;
e6dcd2dc 1663
b7ec40d7
CM
1664 /*
1665 * before we join the transaction, try to do some of our IO.
1666 * This will limit the amount of IO that we have to do with
1667 * the transaction running. We're unlikely to need to do any
1668 * IO if the file extents are new, the disk_i_size checks
1669 * covers the most common case.
1670 */
1671 if (start < BTRFS_I(inode)->disk_i_size) {
1672 path = btrfs_alloc_path();
1673 if (path) {
1674 ret = btrfs_lookup_file_extent(NULL, root, path,
1675 inode->i_ino,
1676 start, 0);
5d13a98f
CM
1677 ordered_extent = btrfs_lookup_ordered_extent(inode,
1678 start);
1679 if (!list_empty(&ordered_extent->list)) {
1680 btrfs_release_path(root, path);
1681 reada_csum(root, path, ordered_extent);
1682 }
b7ec40d7
CM
1683 btrfs_free_path(path);
1684 }
1685 }
1686
f9295749 1687 trans = btrfs_join_transaction(root, 1);
e6dcd2dc 1688
5d13a98f
CM
1689 if (!ordered_extent)
1690 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1691 BUG_ON(!ordered_extent);
7ea394f1
YZ
1692 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1693 goto nocow;
e6dcd2dc
CM
1694
1695 lock_extent(io_tree, ordered_extent->file_offset,
1696 ordered_extent->file_offset + ordered_extent->len - 1,
1697 GFP_NOFS);
1698
c8b97818 1699 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1700 compressed = 1;
1701 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1702 BUG_ON(compressed);
1703 ret = btrfs_mark_extent_written(trans, root, inode,
1704 ordered_extent->file_offset,
1705 ordered_extent->file_offset +
1706 ordered_extent->len);
1707 BUG_ON(ret);
1708 } else {
1709 ret = insert_reserved_file_extent(trans, inode,
1710 ordered_extent->file_offset,
1711 ordered_extent->start,
1712 ordered_extent->disk_len,
1713 ordered_extent->len,
1714 ordered_extent->len,
e980b50c
CM
1715 ordered_extent->file_offset +
1716 ordered_extent->len,
d899e052
YZ
1717 compressed, 0, 0,
1718 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1719 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1720 ordered_extent->file_offset,
1721 ordered_extent->len);
d899e052
YZ
1722 BUG_ON(ret);
1723 }
e6dcd2dc
CM
1724 unlock_extent(io_tree, ordered_extent->file_offset,
1725 ordered_extent->file_offset + ordered_extent->len - 1,
1726 GFP_NOFS);
7ea394f1 1727nocow:
e6dcd2dc
CM
1728 add_pending_csums(trans, inode, ordered_extent->file_offset,
1729 &ordered_extent->list);
1730
34353029 1731 mutex_lock(&BTRFS_I(inode)->extent_mutex);
dbe674a9 1732 btrfs_ordered_update_i_size(inode, ordered_extent);
e02119d5 1733 btrfs_update_inode(trans, root, inode);
e6dcd2dc 1734 btrfs_remove_ordered_extent(inode, ordered_extent);
34353029 1735 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
7f3c74fb 1736
e6dcd2dc
CM
1737 /* once for us */
1738 btrfs_put_ordered_extent(ordered_extent);
1739 /* once for the tree */
1740 btrfs_put_ordered_extent(ordered_extent);
1741
e6dcd2dc
CM
1742 btrfs_end_transaction(trans, root);
1743 return 0;
1744}
1745
b2950863 1746static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1747 struct extent_state *state, int uptodate)
1748{
8b62b72b 1749 ClearPagePrivate2(page);
211f90e6
CM
1750 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1751}
1752
d352ac68
CM
1753/*
1754 * When IO fails, either with EIO or csum verification fails, we
1755 * try other mirrors that might have a good copy of the data. This
1756 * io_failure_record is used to record state as we go through all the
1757 * mirrors. If another mirror has good data, the page is set up to date
1758 * and things continue. If a good mirror can't be found, the original
1759 * bio end_io callback is called to indicate things have failed.
1760 */
7e38326f
CM
1761struct io_failure_record {
1762 struct page *page;
1763 u64 start;
1764 u64 len;
1765 u64 logical;
d20f7043 1766 unsigned long bio_flags;
7e38326f
CM
1767 int last_mirror;
1768};
1769
b2950863 1770static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1771 struct page *page, u64 start, u64 end,
1772 struct extent_state *state)
7e38326f
CM
1773{
1774 struct io_failure_record *failrec = NULL;
1775 u64 private;
1776 struct extent_map *em;
1777 struct inode *inode = page->mapping->host;
1778 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1779 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1780 struct bio *bio;
1781 int num_copies;
1782 int ret;
1259ab75 1783 int rw;
7e38326f
CM
1784 u64 logical;
1785
1786 ret = get_state_private(failure_tree, start, &private);
1787 if (ret) {
7e38326f
CM
1788 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1789 if (!failrec)
1790 return -ENOMEM;
1791 failrec->start = start;
1792 failrec->len = end - start + 1;
1793 failrec->last_mirror = 0;
d20f7043 1794 failrec->bio_flags = 0;
7e38326f 1795
890871be 1796 read_lock(&em_tree->lock);
3b951516
CM
1797 em = lookup_extent_mapping(em_tree, start, failrec->len);
1798 if (em->start > start || em->start + em->len < start) {
1799 free_extent_map(em);
1800 em = NULL;
1801 }
890871be 1802 read_unlock(&em_tree->lock);
7e38326f
CM
1803
1804 if (!em || IS_ERR(em)) {
1805 kfree(failrec);
1806 return -EIO;
1807 }
1808 logical = start - em->start;
1809 logical = em->block_start + logical;
d20f7043
CM
1810 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1811 logical = em->block_start;
1812 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1813 }
7e38326f
CM
1814 failrec->logical = logical;
1815 free_extent_map(em);
1816 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1817 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1818 set_state_private(failure_tree, start,
1819 (u64)(unsigned long)failrec);
7e38326f 1820 } else {
587f7704 1821 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1822 }
1823 num_copies = btrfs_num_copies(
1824 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1825 failrec->logical, failrec->len);
1826 failrec->last_mirror++;
1827 if (!state) {
cad321ad 1828 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1829 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1830 failrec->start,
1831 EXTENT_LOCKED);
1832 if (state && state->start != failrec->start)
1833 state = NULL;
cad321ad 1834 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1835 }
1836 if (!state || failrec->last_mirror > num_copies) {
1837 set_state_private(failure_tree, failrec->start, 0);
1838 clear_extent_bits(failure_tree, failrec->start,
1839 failrec->start + failrec->len - 1,
1840 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1841 kfree(failrec);
1842 return -EIO;
1843 }
1844 bio = bio_alloc(GFP_NOFS, 1);
1845 bio->bi_private = state;
1846 bio->bi_end_io = failed_bio->bi_end_io;
1847 bio->bi_sector = failrec->logical >> 9;
1848 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1849 bio->bi_size = 0;
d20f7043 1850
7e38326f 1851 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1852 if (failed_bio->bi_rw & (1 << BIO_RW))
1853 rw = WRITE;
1854 else
1855 rw = READ;
1856
1857 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1858 failrec->last_mirror,
d20f7043 1859 failrec->bio_flags);
1259ab75
CM
1860 return 0;
1861}
1862
d352ac68
CM
1863/*
1864 * each time an IO finishes, we do a fast check in the IO failure tree
1865 * to see if we need to process or clean up an io_failure_record
1866 */
b2950863 1867static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1868{
1869 u64 private;
1870 u64 private_failure;
1871 struct io_failure_record *failure;
1872 int ret;
1873
1874 private = 0;
1875 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1876 (u64)-1, 1, EXTENT_DIRTY)) {
1877 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1878 start, &private_failure);
1879 if (ret == 0) {
1880 failure = (struct io_failure_record *)(unsigned long)
1881 private_failure;
1882 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1883 failure->start, 0);
1884 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1885 failure->start,
1886 failure->start + failure->len - 1,
1887 EXTENT_DIRTY | EXTENT_LOCKED,
1888 GFP_NOFS);
1889 kfree(failure);
1890 }
1891 }
7e38326f
CM
1892 return 0;
1893}
1894
d352ac68
CM
1895/*
1896 * when reads are done, we need to check csums to verify the data is correct
1897 * if there's a match, we allow the bio to finish. If not, we go through
1898 * the io_failure_record routines to find good copies
1899 */
b2950863 1900static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1901 struct extent_state *state)
07157aac 1902{
35ebb934 1903 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1904 struct inode *inode = page->mapping->host;
d1310b2e 1905 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1906 char *kaddr;
aadfeb6e 1907 u64 private = ~(u32)0;
07157aac 1908 int ret;
ff79f819
CM
1909 struct btrfs_root *root = BTRFS_I(inode)->root;
1910 u32 csum = ~(u32)0;
d1310b2e 1911
d20f7043
CM
1912 if (PageChecked(page)) {
1913 ClearPageChecked(page);
1914 goto good;
1915 }
6cbff00f
CH
1916
1917 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1918 return 0;
1919
1920 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1921 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1922 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1923 GFP_NOFS);
b6cda9bc 1924 return 0;
17d217fe 1925 }
d20f7043 1926
c2e639f0 1927 if (state && state->start == start) {
70dec807
CM
1928 private = state->private;
1929 ret = 0;
1930 } else {
1931 ret = get_state_private(io_tree, start, &private);
1932 }
9ab86c8e 1933 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1934 if (ret)
07157aac 1935 goto zeroit;
d397712b 1936
ff79f819
CM
1937 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1938 btrfs_csum_final(csum, (char *)&csum);
d397712b 1939 if (csum != private)
07157aac 1940 goto zeroit;
d397712b 1941
9ab86c8e 1942 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1943good:
7e38326f
CM
1944 /* if the io failure tree for this inode is non-empty,
1945 * check to see if we've recovered from a failed IO
1946 */
1259ab75 1947 btrfs_clean_io_failures(inode, start);
07157aac
CM
1948 return 0;
1949
1950zeroit:
193f284d
CM
1951 if (printk_ratelimit()) {
1952 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1953 "private %llu\n", page->mapping->host->i_ino,
1954 (unsigned long long)start, csum,
1955 (unsigned long long)private);
1956 }
db94535d
CM
1957 memset(kaddr + offset, 1, end - start + 1);
1958 flush_dcache_page(page);
9ab86c8e 1959 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1960 if (private == 0)
1961 return 0;
7e38326f 1962 return -EIO;
07157aac 1963}
b888db2b 1964
7b128766
JB
1965/*
1966 * This creates an orphan entry for the given inode in case something goes
1967 * wrong in the middle of an unlink/truncate.
1968 */
1969int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1970{
1971 struct btrfs_root *root = BTRFS_I(inode)->root;
1972 int ret = 0;
1973
bcc63abb 1974 spin_lock(&root->list_lock);
7b128766
JB
1975
1976 /* already on the orphan list, we're good */
1977 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1978 spin_unlock(&root->list_lock);
7b128766
JB
1979 return 0;
1980 }
1981
1982 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1983
bcc63abb 1984 spin_unlock(&root->list_lock);
7b128766
JB
1985
1986 /*
1987 * insert an orphan item to track this unlinked/truncated file
1988 */
1989 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1990
1991 return ret;
1992}
1993
1994/*
1995 * We have done the truncate/delete so we can go ahead and remove the orphan
1996 * item for this particular inode.
1997 */
1998int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1999{
2000 struct btrfs_root *root = BTRFS_I(inode)->root;
2001 int ret = 0;
2002
bcc63abb 2003 spin_lock(&root->list_lock);
7b128766
JB
2004
2005 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2006 spin_unlock(&root->list_lock);
7b128766
JB
2007 return 0;
2008 }
2009
2010 list_del_init(&BTRFS_I(inode)->i_orphan);
2011 if (!trans) {
bcc63abb 2012 spin_unlock(&root->list_lock);
7b128766
JB
2013 return 0;
2014 }
2015
bcc63abb 2016 spin_unlock(&root->list_lock);
7b128766
JB
2017
2018 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2019
2020 return ret;
2021}
2022
2023/*
2024 * this cleans up any orphans that may be left on the list from the last use
2025 * of this root.
2026 */
2027void btrfs_orphan_cleanup(struct btrfs_root *root)
2028{
2029 struct btrfs_path *path;
2030 struct extent_buffer *leaf;
2031 struct btrfs_item *item;
2032 struct btrfs_key key, found_key;
2033 struct btrfs_trans_handle *trans;
2034 struct inode *inode;
2035 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2036
7b128766
JB
2037 path = btrfs_alloc_path();
2038 if (!path)
2039 return;
2040 path->reada = -1;
2041
2042 key.objectid = BTRFS_ORPHAN_OBJECTID;
2043 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2044 key.offset = (u64)-1;
2045
7b128766
JB
2046
2047 while (1) {
2048 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2049 if (ret < 0) {
2050 printk(KERN_ERR "Error searching slot for orphan: %d"
2051 "\n", ret);
2052 break;
2053 }
2054
2055 /*
2056 * if ret == 0 means we found what we were searching for, which
2057 * is weird, but possible, so only screw with path if we didnt
2058 * find the key and see if we have stuff that matches
2059 */
2060 if (ret > 0) {
2061 if (path->slots[0] == 0)
2062 break;
2063 path->slots[0]--;
2064 }
2065
2066 /* pull out the item */
2067 leaf = path->nodes[0];
2068 item = btrfs_item_nr(leaf, path->slots[0]);
2069 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2070
2071 /* make sure the item matches what we want */
2072 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2073 break;
2074 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2075 break;
2076
2077 /* release the path since we're done with it */
2078 btrfs_release_path(root, path);
2079
2080 /*
2081 * this is where we are basically btrfs_lookup, without the
2082 * crossing root thing. we store the inode number in the
2083 * offset of the orphan item.
2084 */
5d4f98a2
YZ
2085 found_key.objectid = found_key.offset;
2086 found_key.type = BTRFS_INODE_ITEM_KEY;
2087 found_key.offset = 0;
2088 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2089 if (IS_ERR(inode))
7b128766
JB
2090 break;
2091
7b128766
JB
2092 /*
2093 * add this inode to the orphan list so btrfs_orphan_del does
2094 * the proper thing when we hit it
2095 */
bcc63abb 2096 spin_lock(&root->list_lock);
7b128766 2097 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 2098 spin_unlock(&root->list_lock);
7b128766
JB
2099
2100 /*
2101 * if this is a bad inode, means we actually succeeded in
2102 * removing the inode, but not the orphan record, which means
2103 * we need to manually delete the orphan since iput will just
2104 * do a destroy_inode
2105 */
2106 if (is_bad_inode(inode)) {
5b21f2ed 2107 trans = btrfs_start_transaction(root, 1);
7b128766 2108 btrfs_orphan_del(trans, inode);
5b21f2ed 2109 btrfs_end_transaction(trans, root);
7b128766
JB
2110 iput(inode);
2111 continue;
2112 }
2113
2114 /* if we have links, this was a truncate, lets do that */
2115 if (inode->i_nlink) {
2116 nr_truncate++;
2117 btrfs_truncate(inode);
2118 } else {
2119 nr_unlink++;
2120 }
2121
2122 /* this will do delete_inode and everything for us */
2123 iput(inode);
2124 }
2125
2126 if (nr_unlink)
2127 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2128 if (nr_truncate)
2129 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2130
2131 btrfs_free_path(path);
7b128766
JB
2132}
2133
46a53cca
CM
2134/*
2135 * very simple check to peek ahead in the leaf looking for xattrs. If we
2136 * don't find any xattrs, we know there can't be any acls.
2137 *
2138 * slot is the slot the inode is in, objectid is the objectid of the inode
2139 */
2140static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2141 int slot, u64 objectid)
2142{
2143 u32 nritems = btrfs_header_nritems(leaf);
2144 struct btrfs_key found_key;
2145 int scanned = 0;
2146
2147 slot++;
2148 while (slot < nritems) {
2149 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2150
2151 /* we found a different objectid, there must not be acls */
2152 if (found_key.objectid != objectid)
2153 return 0;
2154
2155 /* we found an xattr, assume we've got an acl */
2156 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2157 return 1;
2158
2159 /*
2160 * we found a key greater than an xattr key, there can't
2161 * be any acls later on
2162 */
2163 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2164 return 0;
2165
2166 slot++;
2167 scanned++;
2168
2169 /*
2170 * it goes inode, inode backrefs, xattrs, extents,
2171 * so if there are a ton of hard links to an inode there can
2172 * be a lot of backrefs. Don't waste time searching too hard,
2173 * this is just an optimization
2174 */
2175 if (scanned >= 8)
2176 break;
2177 }
2178 /* we hit the end of the leaf before we found an xattr or
2179 * something larger than an xattr. We have to assume the inode
2180 * has acls
2181 */
2182 return 1;
2183}
2184
d352ac68
CM
2185/*
2186 * read an inode from the btree into the in-memory inode
2187 */
5d4f98a2 2188static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2189{
2190 struct btrfs_path *path;
5f39d397 2191 struct extent_buffer *leaf;
39279cc3 2192 struct btrfs_inode_item *inode_item;
0b86a832 2193 struct btrfs_timespec *tspec;
39279cc3
CM
2194 struct btrfs_root *root = BTRFS_I(inode)->root;
2195 struct btrfs_key location;
46a53cca 2196 int maybe_acls;
39279cc3 2197 u64 alloc_group_block;
618e21d5 2198 u32 rdev;
39279cc3
CM
2199 int ret;
2200
2201 path = btrfs_alloc_path();
2202 BUG_ON(!path);
39279cc3 2203 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2204
39279cc3 2205 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2206 if (ret)
39279cc3 2207 goto make_bad;
39279cc3 2208
5f39d397
CM
2209 leaf = path->nodes[0];
2210 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2211 struct btrfs_inode_item);
2212
2213 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2214 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2215 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2216 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2217 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2218
2219 tspec = btrfs_inode_atime(inode_item);
2220 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2221 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2222
2223 tspec = btrfs_inode_mtime(inode_item);
2224 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2225 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2226
2227 tspec = btrfs_inode_ctime(inode_item);
2228 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2229 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2230
a76a3cd4 2231 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2232 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2233 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2234 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2235 inode->i_rdev = 0;
5f39d397
CM
2236 rdev = btrfs_inode_rdev(leaf, inode_item);
2237
aec7477b 2238 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2239 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2240
5f39d397 2241 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2242
46a53cca
CM
2243 /*
2244 * try to precache a NULL acl entry for files that don't have
2245 * any xattrs or acls
2246 */
2247 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2248 if (!maybe_acls)
2249 cache_no_acl(inode);
46a53cca 2250
d2fb3437
YZ
2251 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2252 alloc_group_block, 0);
39279cc3
CM
2253 btrfs_free_path(path);
2254 inode_item = NULL;
2255
39279cc3 2256 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2257 case S_IFREG:
2258 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2259 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2260 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2261 inode->i_fop = &btrfs_file_operations;
2262 inode->i_op = &btrfs_file_inode_operations;
2263 break;
2264 case S_IFDIR:
2265 inode->i_fop = &btrfs_dir_file_operations;
2266 if (root == root->fs_info->tree_root)
2267 inode->i_op = &btrfs_dir_ro_inode_operations;
2268 else
2269 inode->i_op = &btrfs_dir_inode_operations;
2270 break;
2271 case S_IFLNK:
2272 inode->i_op = &btrfs_symlink_inode_operations;
2273 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2274 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2275 break;
618e21d5 2276 default:
0279b4cd 2277 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2278 init_special_inode(inode, inode->i_mode, rdev);
2279 break;
39279cc3 2280 }
6cbff00f
CH
2281
2282 btrfs_update_iflags(inode);
39279cc3
CM
2283 return;
2284
2285make_bad:
39279cc3 2286 btrfs_free_path(path);
39279cc3
CM
2287 make_bad_inode(inode);
2288}
2289
d352ac68
CM
2290/*
2291 * given a leaf and an inode, copy the inode fields into the leaf
2292 */
e02119d5
CM
2293static void fill_inode_item(struct btrfs_trans_handle *trans,
2294 struct extent_buffer *leaf,
5f39d397 2295 struct btrfs_inode_item *item,
39279cc3
CM
2296 struct inode *inode)
2297{
5f39d397
CM
2298 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2299 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2300 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2301 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2302 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2303
2304 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2305 inode->i_atime.tv_sec);
2306 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2307 inode->i_atime.tv_nsec);
2308
2309 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2310 inode->i_mtime.tv_sec);
2311 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2312 inode->i_mtime.tv_nsec);
2313
2314 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2315 inode->i_ctime.tv_sec);
2316 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2317 inode->i_ctime.tv_nsec);
2318
a76a3cd4 2319 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2320 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2321 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2322 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2323 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2324 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2325 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2326}
2327
d352ac68
CM
2328/*
2329 * copy everything in the in-memory inode into the btree.
2330 */
d397712b
CM
2331noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2332 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2333{
2334 struct btrfs_inode_item *inode_item;
2335 struct btrfs_path *path;
5f39d397 2336 struct extent_buffer *leaf;
39279cc3
CM
2337 int ret;
2338
2339 path = btrfs_alloc_path();
2340 BUG_ON(!path);
b9473439 2341 path->leave_spinning = 1;
39279cc3
CM
2342 ret = btrfs_lookup_inode(trans, root, path,
2343 &BTRFS_I(inode)->location, 1);
2344 if (ret) {
2345 if (ret > 0)
2346 ret = -ENOENT;
2347 goto failed;
2348 }
2349
b4ce94de 2350 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2351 leaf = path->nodes[0];
2352 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2353 struct btrfs_inode_item);
2354
e02119d5 2355 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2356 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2357 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2358 ret = 0;
2359failed:
39279cc3
CM
2360 btrfs_free_path(path);
2361 return ret;
2362}
2363
2364
d352ac68
CM
2365/*
2366 * unlink helper that gets used here in inode.c and in the tree logging
2367 * recovery code. It remove a link in a directory with a given name, and
2368 * also drops the back refs in the inode to the directory
2369 */
e02119d5
CM
2370int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2371 struct btrfs_root *root,
2372 struct inode *dir, struct inode *inode,
2373 const char *name, int name_len)
39279cc3
CM
2374{
2375 struct btrfs_path *path;
39279cc3 2376 int ret = 0;
5f39d397 2377 struct extent_buffer *leaf;
39279cc3 2378 struct btrfs_dir_item *di;
5f39d397 2379 struct btrfs_key key;
aec7477b 2380 u64 index;
39279cc3
CM
2381
2382 path = btrfs_alloc_path();
54aa1f4d
CM
2383 if (!path) {
2384 ret = -ENOMEM;
2385 goto err;
2386 }
2387
b9473439 2388 path->leave_spinning = 1;
39279cc3
CM
2389 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2390 name, name_len, -1);
2391 if (IS_ERR(di)) {
2392 ret = PTR_ERR(di);
2393 goto err;
2394 }
2395 if (!di) {
2396 ret = -ENOENT;
2397 goto err;
2398 }
5f39d397
CM
2399 leaf = path->nodes[0];
2400 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2401 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2402 if (ret)
2403 goto err;
39279cc3
CM
2404 btrfs_release_path(root, path);
2405
aec7477b 2406 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2407 inode->i_ino,
2408 dir->i_ino, &index);
aec7477b 2409 if (ret) {
d397712b 2410 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2411 "inode %lu parent %lu\n", name_len, name,
e02119d5 2412 inode->i_ino, dir->i_ino);
aec7477b
JB
2413 goto err;
2414 }
2415
39279cc3 2416 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2417 index, name, name_len, -1);
39279cc3
CM
2418 if (IS_ERR(di)) {
2419 ret = PTR_ERR(di);
2420 goto err;
2421 }
2422 if (!di) {
2423 ret = -ENOENT;
2424 goto err;
2425 }
2426 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2427 btrfs_release_path(root, path);
39279cc3 2428
e02119d5
CM
2429 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2430 inode, dir->i_ino);
49eb7e46 2431 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2432
2433 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2434 dir, index);
2435 BUG_ON(ret);
39279cc3
CM
2436err:
2437 btrfs_free_path(path);
e02119d5
CM
2438 if (ret)
2439 goto out;
2440
2441 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2442 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2443 btrfs_update_inode(trans, root, dir);
2444 btrfs_drop_nlink(inode);
2445 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2446out:
39279cc3
CM
2447 return ret;
2448}
2449
2450static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2451{
2452 struct btrfs_root *root;
2453 struct btrfs_trans_handle *trans;
7b128766 2454 struct inode *inode = dentry->d_inode;
39279cc3 2455 int ret;
1832a6d5 2456 unsigned long nr = 0;
39279cc3
CM
2457
2458 root = BTRFS_I(dir)->root;
1832a6d5 2459
39279cc3 2460 trans = btrfs_start_transaction(root, 1);
5f39d397 2461
39279cc3 2462 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2463
2464 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2465
e02119d5
CM
2466 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2467 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2468
2469 if (inode->i_nlink == 0)
2470 ret = btrfs_orphan_add(trans, inode);
2471
d3c2fdcf 2472 nr = trans->blocks_used;
5f39d397 2473
89ce8a63 2474 btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2475 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2476 return ret;
2477}
2478
4df27c4d
YZ
2479int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2480 struct btrfs_root *root,
2481 struct inode *dir, u64 objectid,
2482 const char *name, int name_len)
2483{
2484 struct btrfs_path *path;
2485 struct extent_buffer *leaf;
2486 struct btrfs_dir_item *di;
2487 struct btrfs_key key;
2488 u64 index;
2489 int ret;
2490
2491 path = btrfs_alloc_path();
2492 if (!path)
2493 return -ENOMEM;
2494
2495 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2496 name, name_len, -1);
2497 BUG_ON(!di || IS_ERR(di));
2498
2499 leaf = path->nodes[0];
2500 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2501 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2502 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2503 BUG_ON(ret);
2504 btrfs_release_path(root, path);
2505
2506 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2507 objectid, root->root_key.objectid,
2508 dir->i_ino, &index, name, name_len);
2509 if (ret < 0) {
2510 BUG_ON(ret != -ENOENT);
2511 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2512 name, name_len);
2513 BUG_ON(!di || IS_ERR(di));
2514
2515 leaf = path->nodes[0];
2516 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2517 btrfs_release_path(root, path);
2518 index = key.offset;
2519 }
2520
2521 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2522 index, name, name_len, -1);
2523 BUG_ON(!di || IS_ERR(di));
2524
2525 leaf = path->nodes[0];
2526 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2527 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2528 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2529 BUG_ON(ret);
2530 btrfs_release_path(root, path);
2531
2532 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2533 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2534 ret = btrfs_update_inode(trans, root, dir);
2535 BUG_ON(ret);
2536 dir->i_sb->s_dirt = 1;
2537
2538 btrfs_free_path(path);
2539 return 0;
2540}
2541
39279cc3
CM
2542static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2543{
2544 struct inode *inode = dentry->d_inode;
1832a6d5 2545 int err = 0;
39279cc3
CM
2546 int ret;
2547 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2548 struct btrfs_trans_handle *trans;
1832a6d5 2549 unsigned long nr = 0;
39279cc3 2550
3394e160 2551 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2552 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2553 return -ENOTEMPTY;
2554
39279cc3
CM
2555 trans = btrfs_start_transaction(root, 1);
2556 btrfs_set_trans_block_group(trans, dir);
39279cc3 2557
4df27c4d
YZ
2558 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2559 err = btrfs_unlink_subvol(trans, root, dir,
2560 BTRFS_I(inode)->location.objectid,
2561 dentry->d_name.name,
2562 dentry->d_name.len);
2563 goto out;
2564 }
2565
7b128766
JB
2566 err = btrfs_orphan_add(trans, inode);
2567 if (err)
4df27c4d 2568 goto out;
7b128766 2569
39279cc3 2570 /* now the directory is empty */
e02119d5
CM
2571 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2572 dentry->d_name.name, dentry->d_name.len);
d397712b 2573 if (!err)
dbe674a9 2574 btrfs_i_size_write(inode, 0);
4df27c4d 2575out:
d3c2fdcf 2576 nr = trans->blocks_used;
89ce8a63 2577 ret = btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2578 btrfs_btree_balance_dirty(root, nr);
3954401f 2579
39279cc3
CM
2580 if (ret && !err)
2581 err = ret;
2582 return err;
2583}
2584
d20f7043 2585#if 0
323ac95b
CM
2586/*
2587 * when truncating bytes in a file, it is possible to avoid reading
2588 * the leaves that contain only checksum items. This can be the
2589 * majority of the IO required to delete a large file, but it must
2590 * be done carefully.
2591 *
2592 * The keys in the level just above the leaves are checked to make sure
2593 * the lowest key in a given leaf is a csum key, and starts at an offset
2594 * after the new size.
2595 *
2596 * Then the key for the next leaf is checked to make sure it also has
2597 * a checksum item for the same file. If it does, we know our target leaf
2598 * contains only checksum items, and it can be safely freed without reading
2599 * it.
2600 *
2601 * This is just an optimization targeted at large files. It may do
2602 * nothing. It will return 0 unless things went badly.
2603 */
2604static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2605 struct btrfs_root *root,
2606 struct btrfs_path *path,
2607 struct inode *inode, u64 new_size)
2608{
2609 struct btrfs_key key;
2610 int ret;
2611 int nritems;
2612 struct btrfs_key found_key;
2613 struct btrfs_key other_key;
5b84e8d6
YZ
2614 struct btrfs_leaf_ref *ref;
2615 u64 leaf_gen;
2616 u64 leaf_start;
323ac95b
CM
2617
2618 path->lowest_level = 1;
2619 key.objectid = inode->i_ino;
2620 key.type = BTRFS_CSUM_ITEM_KEY;
2621 key.offset = new_size;
2622again:
2623 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2624 if (ret < 0)
2625 goto out;
2626
2627 if (path->nodes[1] == NULL) {
2628 ret = 0;
2629 goto out;
2630 }
2631 ret = 0;
2632 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2633 nritems = btrfs_header_nritems(path->nodes[1]);
2634
2635 if (!nritems)
2636 goto out;
2637
2638 if (path->slots[1] >= nritems)
2639 goto next_node;
2640
2641 /* did we find a key greater than anything we want to delete? */
2642 if (found_key.objectid > inode->i_ino ||
2643 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2644 goto out;
2645
2646 /* we check the next key in the node to make sure the leave contains
2647 * only checksum items. This comparison doesn't work if our
2648 * leaf is the last one in the node
2649 */
2650 if (path->slots[1] + 1 >= nritems) {
2651next_node:
2652 /* search forward from the last key in the node, this
2653 * will bring us into the next node in the tree
2654 */
2655 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2656
2657 /* unlikely, but we inc below, so check to be safe */
2658 if (found_key.offset == (u64)-1)
2659 goto out;
2660
2661 /* search_forward needs a path with locks held, do the
2662 * search again for the original key. It is possible
2663 * this will race with a balance and return a path that
2664 * we could modify, but this drop is just an optimization
2665 * and is allowed to miss some leaves.
2666 */
2667 btrfs_release_path(root, path);
2668 found_key.offset++;
2669
2670 /* setup a max key for search_forward */
2671 other_key.offset = (u64)-1;
2672 other_key.type = key.type;
2673 other_key.objectid = key.objectid;
2674
2675 path->keep_locks = 1;
2676 ret = btrfs_search_forward(root, &found_key, &other_key,
2677 path, 0, 0);
2678 path->keep_locks = 0;
2679 if (ret || found_key.objectid != key.objectid ||
2680 found_key.type != key.type) {
2681 ret = 0;
2682 goto out;
2683 }
2684
2685 key.offset = found_key.offset;
2686 btrfs_release_path(root, path);
2687 cond_resched();
2688 goto again;
2689 }
2690
2691 /* we know there's one more slot after us in the tree,
2692 * read that key so we can verify it is also a checksum item
2693 */
2694 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2695
2696 if (found_key.objectid < inode->i_ino)
2697 goto next_key;
2698
2699 if (found_key.type != key.type || found_key.offset < new_size)
2700 goto next_key;
2701
2702 /*
2703 * if the key for the next leaf isn't a csum key from this objectid,
2704 * we can't be sure there aren't good items inside this leaf.
2705 * Bail out
2706 */
2707 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2708 goto out;
2709
5b84e8d6
YZ
2710 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2711 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2712 /*
2713 * it is safe to delete this leaf, it contains only
2714 * csum items from this inode at an offset >= new_size
2715 */
5b84e8d6 2716 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2717 BUG_ON(ret);
2718
5b84e8d6
YZ
2719 if (root->ref_cows && leaf_gen < trans->transid) {
2720 ref = btrfs_alloc_leaf_ref(root, 0);
2721 if (ref) {
2722 ref->root_gen = root->root_key.offset;
2723 ref->bytenr = leaf_start;
2724 ref->owner = 0;
2725 ref->generation = leaf_gen;
2726 ref->nritems = 0;
2727
bd56b302
CM
2728 btrfs_sort_leaf_ref(ref);
2729
5b84e8d6
YZ
2730 ret = btrfs_add_leaf_ref(root, ref, 0);
2731 WARN_ON(ret);
2732 btrfs_free_leaf_ref(root, ref);
2733 } else {
2734 WARN_ON(1);
2735 }
2736 }
323ac95b
CM
2737next_key:
2738 btrfs_release_path(root, path);
2739
2740 if (other_key.objectid == inode->i_ino &&
2741 other_key.type == key.type && other_key.offset > key.offset) {
2742 key.offset = other_key.offset;
2743 cond_resched();
2744 goto again;
2745 }
2746 ret = 0;
2747out:
2748 /* fixup any changes we've made to the path */
2749 path->lowest_level = 0;
2750 path->keep_locks = 0;
2751 btrfs_release_path(root, path);
2752 return ret;
2753}
2754
d20f7043
CM
2755#endif
2756
39279cc3
CM
2757/*
2758 * this can truncate away extent items, csum items and directory items.
2759 * It starts at a high offset and removes keys until it can't find
d352ac68 2760 * any higher than new_size
39279cc3
CM
2761 *
2762 * csum items that cross the new i_size are truncated to the new size
2763 * as well.
7b128766
JB
2764 *
2765 * min_type is the minimum key type to truncate down to. If set to 0, this
2766 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2767 */
e02119d5
CM
2768noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2769 struct btrfs_root *root,
2770 struct inode *inode,
2771 u64 new_size, u32 min_type)
39279cc3
CM
2772{
2773 int ret;
2774 struct btrfs_path *path;
2775 struct btrfs_key key;
5f39d397 2776 struct btrfs_key found_key;
06d9a8d7 2777 u32 found_type = (u8)-1;
5f39d397 2778 struct extent_buffer *leaf;
39279cc3
CM
2779 struct btrfs_file_extent_item *fi;
2780 u64 extent_start = 0;
db94535d 2781 u64 extent_num_bytes = 0;
5d4f98a2 2782 u64 extent_offset = 0;
39279cc3
CM
2783 u64 item_end = 0;
2784 int found_extent;
2785 int del_item;
85e21bac
CM
2786 int pending_del_nr = 0;
2787 int pending_del_slot = 0;
179e29e4 2788 int extent_type = -1;
771ed689 2789 int encoding;
3b951516 2790 u64 mask = root->sectorsize - 1;
39279cc3 2791
e02119d5 2792 if (root->ref_cows)
5b21f2ed 2793 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
39279cc3
CM
2794 path = btrfs_alloc_path();
2795 BUG_ON(!path);
33c17ad5 2796 path->reada = -1;
5f39d397 2797
39279cc3
CM
2798 /* FIXME, add redo link to tree so we don't leak on crash */
2799 key.objectid = inode->i_ino;
2800 key.offset = (u64)-1;
5f39d397
CM
2801 key.type = (u8)-1;
2802
85e21bac 2803search_again:
b9473439 2804 path->leave_spinning = 1;
85e21bac 2805 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
d397712b 2806 if (ret < 0)
85e21bac 2807 goto error;
d397712b 2808
85e21bac 2809 if (ret > 0) {
e02119d5
CM
2810 /* there are no items in the tree for us to truncate, we're
2811 * done
2812 */
2813 if (path->slots[0] == 0) {
2814 ret = 0;
2815 goto error;
2816 }
85e21bac
CM
2817 path->slots[0]--;
2818 }
2819
d397712b 2820 while (1) {
39279cc3 2821 fi = NULL;
5f39d397
CM
2822 leaf = path->nodes[0];
2823 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2824 found_type = btrfs_key_type(&found_key);
771ed689 2825 encoding = 0;
39279cc3 2826
5f39d397 2827 if (found_key.objectid != inode->i_ino)
39279cc3 2828 break;
5f39d397 2829
85e21bac 2830 if (found_type < min_type)
39279cc3
CM
2831 break;
2832
5f39d397 2833 item_end = found_key.offset;
39279cc3 2834 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2835 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2836 struct btrfs_file_extent_item);
179e29e4 2837 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2838 encoding = btrfs_file_extent_compression(leaf, fi);
2839 encoding |= btrfs_file_extent_encryption(leaf, fi);
2840 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2841
179e29e4 2842 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2843 item_end +=
db94535d 2844 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2845 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2846 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2847 fi);
39279cc3 2848 }
008630c1 2849 item_end--;
39279cc3 2850 }
e02119d5 2851 if (item_end < new_size) {
d397712b 2852 if (found_type == BTRFS_DIR_ITEM_KEY)
b888db2b 2853 found_type = BTRFS_INODE_ITEM_KEY;
d397712b 2854 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
d20f7043 2855 found_type = BTRFS_EXTENT_DATA_KEY;
d397712b 2856 else if (found_type == BTRFS_EXTENT_DATA_KEY)
85e21bac 2857 found_type = BTRFS_XATTR_ITEM_KEY;
d397712b 2858 else if (found_type == BTRFS_XATTR_ITEM_KEY)
85e21bac 2859 found_type = BTRFS_INODE_REF_KEY;
d397712b 2860 else if (found_type)
b888db2b 2861 found_type--;
d397712b 2862 else
b888db2b 2863 break;
a61721d5 2864 btrfs_set_key_type(&key, found_type);
85e21bac 2865 goto next;
39279cc3 2866 }
e02119d5 2867 if (found_key.offset >= new_size)
39279cc3
CM
2868 del_item = 1;
2869 else
2870 del_item = 0;
2871 found_extent = 0;
2872
2873 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2874 if (found_type != BTRFS_EXTENT_DATA_KEY)
2875 goto delete;
2876
2877 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2878 u64 num_dec;
db94535d 2879 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2880 if (!del_item && !encoding) {
db94535d
CM
2881 u64 orig_num_bytes =
2882 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2883 extent_num_bytes = new_size -
5f39d397 2884 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2885 extent_num_bytes = extent_num_bytes &
2886 ~((u64)root->sectorsize - 1);
db94535d
CM
2887 btrfs_set_file_extent_num_bytes(leaf, fi,
2888 extent_num_bytes);
2889 num_dec = (orig_num_bytes -
9069218d 2890 extent_num_bytes);
e02119d5 2891 if (root->ref_cows && extent_start != 0)
a76a3cd4 2892 inode_sub_bytes(inode, num_dec);
5f39d397 2893 btrfs_mark_buffer_dirty(leaf);
39279cc3 2894 } else {
db94535d
CM
2895 extent_num_bytes =
2896 btrfs_file_extent_disk_num_bytes(leaf,
2897 fi);
5d4f98a2
YZ
2898 extent_offset = found_key.offset -
2899 btrfs_file_extent_offset(leaf, fi);
2900
39279cc3 2901 /* FIXME blocksize != 4096 */
9069218d 2902 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2903 if (extent_start != 0) {
2904 found_extent = 1;
e02119d5 2905 if (root->ref_cows)
a76a3cd4 2906 inode_sub_bytes(inode, num_dec);
e02119d5 2907 }
39279cc3 2908 }
9069218d 2909 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
2910 /*
2911 * we can't truncate inline items that have had
2912 * special encodings
2913 */
2914 if (!del_item &&
2915 btrfs_file_extent_compression(leaf, fi) == 0 &&
2916 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2917 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
2918 u32 size = new_size - found_key.offset;
2919
2920 if (root->ref_cows) {
a76a3cd4
YZ
2921 inode_sub_bytes(inode, item_end + 1 -
2922 new_size);
e02119d5
CM
2923 }
2924 size =
2925 btrfs_file_extent_calc_inline_size(size);
9069218d 2926 ret = btrfs_truncate_item(trans, root, path,
e02119d5 2927 size, 1);
9069218d 2928 BUG_ON(ret);
e02119d5 2929 } else if (root->ref_cows) {
a76a3cd4
YZ
2930 inode_sub_bytes(inode, item_end + 1 -
2931 found_key.offset);
9069218d 2932 }
39279cc3 2933 }
179e29e4 2934delete:
39279cc3 2935 if (del_item) {
85e21bac
CM
2936 if (!pending_del_nr) {
2937 /* no pending yet, add ourselves */
2938 pending_del_slot = path->slots[0];
2939 pending_del_nr = 1;
2940 } else if (pending_del_nr &&
2941 path->slots[0] + 1 == pending_del_slot) {
2942 /* hop on the pending chunk */
2943 pending_del_nr++;
2944 pending_del_slot = path->slots[0];
2945 } else {
d397712b 2946 BUG();
85e21bac 2947 }
39279cc3
CM
2948 } else {
2949 break;
2950 }
5d4f98a2 2951 if (found_extent && root->ref_cows) {
b9473439 2952 btrfs_set_path_blocking(path);
39279cc3 2953 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
2954 extent_num_bytes, 0,
2955 btrfs_header_owner(leaf),
2956 inode->i_ino, extent_offset);
39279cc3
CM
2957 BUG_ON(ret);
2958 }
85e21bac
CM
2959next:
2960 if (path->slots[0] == 0) {
2961 if (pending_del_nr)
2962 goto del_pending;
2963 btrfs_release_path(root, path);
06d9a8d7
CM
2964 if (found_type == BTRFS_INODE_ITEM_KEY)
2965 break;
85e21bac
CM
2966 goto search_again;
2967 }
2968
2969 path->slots[0]--;
2970 if (pending_del_nr &&
2971 path->slots[0] + 1 != pending_del_slot) {
2972 struct btrfs_key debug;
2973del_pending:
2974 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2975 pending_del_slot);
2976 ret = btrfs_del_items(trans, root, path,
2977 pending_del_slot,
2978 pending_del_nr);
2979 BUG_ON(ret);
2980 pending_del_nr = 0;
2981 btrfs_release_path(root, path);
06d9a8d7
CM
2982 if (found_type == BTRFS_INODE_ITEM_KEY)
2983 break;
85e21bac
CM
2984 goto search_again;
2985 }
39279cc3
CM
2986 }
2987 ret = 0;
2988error:
85e21bac
CM
2989 if (pending_del_nr) {
2990 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2991 pending_del_nr);
2992 }
39279cc3 2993 btrfs_free_path(path);
39279cc3
CM
2994 return ret;
2995}
2996
2997/*
2998 * taken from block_truncate_page, but does cow as it zeros out
2999 * any bytes left in the last page in the file.
3000 */
3001static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3002{
3003 struct inode *inode = mapping->host;
db94535d 3004 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3005 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3006 struct btrfs_ordered_extent *ordered;
3007 char *kaddr;
db94535d 3008 u32 blocksize = root->sectorsize;
39279cc3
CM
3009 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3010 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3011 struct page *page;
39279cc3 3012 int ret = 0;
a52d9a80 3013 u64 page_start;
e6dcd2dc 3014 u64 page_end;
39279cc3
CM
3015
3016 if ((offset & (blocksize - 1)) == 0)
3017 goto out;
3018
3019 ret = -ENOMEM;
211c17f5 3020again:
39279cc3
CM
3021 page = grab_cache_page(mapping, index);
3022 if (!page)
3023 goto out;
e6dcd2dc
CM
3024
3025 page_start = page_offset(page);
3026 page_end = page_start + PAGE_CACHE_SIZE - 1;
3027
39279cc3 3028 if (!PageUptodate(page)) {
9ebefb18 3029 ret = btrfs_readpage(NULL, page);
39279cc3 3030 lock_page(page);
211c17f5
CM
3031 if (page->mapping != mapping) {
3032 unlock_page(page);
3033 page_cache_release(page);
3034 goto again;
3035 }
39279cc3
CM
3036 if (!PageUptodate(page)) {
3037 ret = -EIO;
89642229 3038 goto out_unlock;
39279cc3
CM
3039 }
3040 }
211c17f5 3041 wait_on_page_writeback(page);
e6dcd2dc
CM
3042
3043 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3044 set_page_extent_mapped(page);
3045
3046 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3047 if (ordered) {
3048 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3049 unlock_page(page);
3050 page_cache_release(page);
eb84ae03 3051 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3052 btrfs_put_ordered_extent(ordered);
3053 goto again;
3054 }
3055
9ed74f2d
JB
3056 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3057 if (ret) {
3058 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3059 goto out_unlock;
3060 }
3061
e6dcd2dc
CM
3062 ret = 0;
3063 if (offset != PAGE_CACHE_SIZE) {
3064 kaddr = kmap(page);
3065 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3066 flush_dcache_page(page);
3067 kunmap(page);
3068 }
247e743c 3069 ClearPageChecked(page);
e6dcd2dc
CM
3070 set_page_dirty(page);
3071 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 3072
89642229 3073out_unlock:
39279cc3
CM
3074 unlock_page(page);
3075 page_cache_release(page);
3076out:
3077 return ret;
3078}
3079
9036c102 3080int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3081{
9036c102
YZ
3082 struct btrfs_trans_handle *trans;
3083 struct btrfs_root *root = BTRFS_I(inode)->root;
3084 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3085 struct extent_map *em;
3086 u64 mask = root->sectorsize - 1;
3087 u64 hole_start = (inode->i_size + mask) & ~mask;
3088 u64 block_end = (size + mask) & ~mask;
3089 u64 last_byte;
3090 u64 cur_offset;
3091 u64 hole_size;
9ed74f2d 3092 int err = 0;
39279cc3 3093
9036c102
YZ
3094 if (size <= hole_start)
3095 return 0;
3096
9036c102 3097 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2bf5a725 3098
9036c102
YZ
3099 while (1) {
3100 struct btrfs_ordered_extent *ordered;
3101 btrfs_wait_ordered_range(inode, hole_start,
3102 block_end - hole_start);
3103 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3104 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3105 if (!ordered)
3106 break;
3107 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3108 btrfs_put_ordered_extent(ordered);
3109 }
39279cc3 3110
9036c102
YZ
3111 trans = btrfs_start_transaction(root, 1);
3112 btrfs_set_trans_block_group(trans, inode);
39279cc3 3113
9036c102
YZ
3114 cur_offset = hole_start;
3115 while (1) {
3116 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3117 block_end - cur_offset, 0);
3118 BUG_ON(IS_ERR(em) || !em);
3119 last_byte = min(extent_map_end(em), block_end);
3120 last_byte = (last_byte + mask) & ~mask;
3121 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
771ed689 3122 u64 hint_byte = 0;
9036c102 3123 hole_size = last_byte - cur_offset;
771ed689
CM
3124 err = btrfs_drop_extents(trans, root, inode,
3125 cur_offset,
3126 cur_offset + hole_size,
e980b50c 3127 block_end,
a1ed835e 3128 cur_offset, &hint_byte, 1);
771ed689
CM
3129 if (err)
3130 break;
9ed74f2d
JB
3131
3132 err = btrfs_reserve_metadata_space(root, 1);
3133 if (err)
3134 break;
3135
9036c102
YZ
3136 err = btrfs_insert_file_extent(trans, root,
3137 inode->i_ino, cur_offset, 0,
3138 0, hole_size, 0, hole_size,
3139 0, 0, 0);
3140 btrfs_drop_extent_cache(inode, hole_start,
3141 last_byte - 1, 0);
9ed74f2d 3142 btrfs_unreserve_metadata_space(root, 1);
9036c102
YZ
3143 }
3144 free_extent_map(em);
3145 cur_offset = last_byte;
3146 if (err || cur_offset >= block_end)
3147 break;
3148 }
1832a6d5 3149
9036c102
YZ
3150 btrfs_end_transaction(trans, root);
3151 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3152 return err;
3153}
39279cc3 3154
9036c102
YZ
3155static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3156{
3157 struct inode *inode = dentry->d_inode;
3158 int err;
39279cc3 3159
9036c102
YZ
3160 err = inode_change_ok(inode, attr);
3161 if (err)
3162 return err;
2bf5a725 3163
5a3f23d5
CM
3164 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3165 if (attr->ia_size > inode->i_size) {
3166 err = btrfs_cont_expand(inode, attr->ia_size);
3167 if (err)
3168 return err;
3169 } else if (inode->i_size > 0 &&
3170 attr->ia_size == 0) {
3171
3172 /* we're truncating a file that used to have good
3173 * data down to zero. Make sure it gets into
3174 * the ordered flush list so that any new writes
3175 * get down to disk quickly.
3176 */
3177 BTRFS_I(inode)->ordered_data_close = 1;
3178 }
39279cc3 3179 }
9036c102 3180
39279cc3 3181 err = inode_setattr(inode, attr);
33268eaf
JB
3182
3183 if (!err && ((attr->ia_valid & ATTR_MODE)))
3184 err = btrfs_acl_chmod(inode);
39279cc3
CM
3185 return err;
3186}
61295eb8 3187
39279cc3
CM
3188void btrfs_delete_inode(struct inode *inode)
3189{
3190 struct btrfs_trans_handle *trans;
3191 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3192 unsigned long nr;
39279cc3
CM
3193 int ret;
3194
3195 truncate_inode_pages(&inode->i_data, 0);
3196 if (is_bad_inode(inode)) {
7b128766 3197 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3198 goto no_delete;
3199 }
4a096752 3200 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3201
76dda93c
YZ
3202 if (inode->i_nlink > 0) {
3203 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3204 goto no_delete;
3205 }
3206
dbe674a9 3207 btrfs_i_size_write(inode, 0);
180591bc 3208 trans = btrfs_join_transaction(root, 1);
5f39d397 3209
39279cc3 3210 btrfs_set_trans_block_group(trans, inode);
e02119d5 3211 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
7b128766
JB
3212 if (ret) {
3213 btrfs_orphan_del(NULL, inode);
54aa1f4d 3214 goto no_delete_lock;
7b128766
JB
3215 }
3216
3217 btrfs_orphan_del(trans, inode);
85e21bac 3218
d3c2fdcf 3219 nr = trans->blocks_used;
85e21bac 3220 clear_inode(inode);
5f39d397 3221
39279cc3 3222 btrfs_end_transaction(trans, root);
d3c2fdcf 3223 btrfs_btree_balance_dirty(root, nr);
39279cc3 3224 return;
54aa1f4d
CM
3225
3226no_delete_lock:
d3c2fdcf 3227 nr = trans->blocks_used;
54aa1f4d 3228 btrfs_end_transaction(trans, root);
d3c2fdcf 3229 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3230no_delete:
3231 clear_inode(inode);
3232}
3233
3234/*
3235 * this returns the key found in the dir entry in the location pointer.
3236 * If no dir entries were found, location->objectid is 0.
3237 */
3238static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3239 struct btrfs_key *location)
3240{
3241 const char *name = dentry->d_name.name;
3242 int namelen = dentry->d_name.len;
3243 struct btrfs_dir_item *di;
3244 struct btrfs_path *path;
3245 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3246 int ret = 0;
39279cc3
CM
3247
3248 path = btrfs_alloc_path();
3249 BUG_ON(!path);
3954401f 3250
39279cc3
CM
3251 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3252 namelen, 0);
0d9f7f3e
Y
3253 if (IS_ERR(di))
3254 ret = PTR_ERR(di);
d397712b
CM
3255
3256 if (!di || IS_ERR(di))
3954401f 3257 goto out_err;
d397712b 3258
5f39d397 3259 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3260out:
39279cc3
CM
3261 btrfs_free_path(path);
3262 return ret;
3954401f
CM
3263out_err:
3264 location->objectid = 0;
3265 goto out;
39279cc3
CM
3266}
3267
3268/*
3269 * when we hit a tree root in a directory, the btrfs part of the inode
3270 * needs to be changed to reflect the root directory of the tree root. This
3271 * is kind of like crossing a mount point.
3272 */
3273static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3274 struct inode *dir,
3275 struct dentry *dentry,
3276 struct btrfs_key *location,
3277 struct btrfs_root **sub_root)
39279cc3 3278{
4df27c4d
YZ
3279 struct btrfs_path *path;
3280 struct btrfs_root *new_root;
3281 struct btrfs_root_ref *ref;
3282 struct extent_buffer *leaf;
3283 int ret;
3284 int err = 0;
39279cc3 3285
4df27c4d
YZ
3286 path = btrfs_alloc_path();
3287 if (!path) {
3288 err = -ENOMEM;
3289 goto out;
3290 }
39279cc3 3291
4df27c4d
YZ
3292 err = -ENOENT;
3293 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3294 BTRFS_I(dir)->root->root_key.objectid,
3295 location->objectid);
3296 if (ret) {
3297 if (ret < 0)
3298 err = ret;
3299 goto out;
3300 }
39279cc3 3301
4df27c4d
YZ
3302 leaf = path->nodes[0];
3303 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3304 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3305 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3306 goto out;
39279cc3 3307
4df27c4d
YZ
3308 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3309 (unsigned long)(ref + 1),
3310 dentry->d_name.len);
3311 if (ret)
3312 goto out;
3313
3314 btrfs_release_path(root->fs_info->tree_root, path);
3315
3316 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3317 if (IS_ERR(new_root)) {
3318 err = PTR_ERR(new_root);
3319 goto out;
3320 }
3321
3322 if (btrfs_root_refs(&new_root->root_item) == 0) {
3323 err = -ENOENT;
3324 goto out;
3325 }
3326
3327 *sub_root = new_root;
3328 location->objectid = btrfs_root_dirid(&new_root->root_item);
3329 location->type = BTRFS_INODE_ITEM_KEY;
3330 location->offset = 0;
3331 err = 0;
3332out:
3333 btrfs_free_path(path);
3334 return err;
39279cc3
CM
3335}
3336
5d4f98a2
YZ
3337static void inode_tree_add(struct inode *inode)
3338{
3339 struct btrfs_root *root = BTRFS_I(inode)->root;
3340 struct btrfs_inode *entry;
03e860bd
FNP
3341 struct rb_node **p;
3342 struct rb_node *parent;
03e860bd
FNP
3343again:
3344 p = &root->inode_tree.rb_node;
3345 parent = NULL;
5d4f98a2 3346
76dda93c
YZ
3347 if (hlist_unhashed(&inode->i_hash))
3348 return;
3349
5d4f98a2
YZ
3350 spin_lock(&root->inode_lock);
3351 while (*p) {
3352 parent = *p;
3353 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3354
3355 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3356 p = &parent->rb_left;
5d4f98a2 3357 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3358 p = &parent->rb_right;
5d4f98a2
YZ
3359 else {
3360 WARN_ON(!(entry->vfs_inode.i_state &
3361 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3362 rb_erase(parent, &root->inode_tree);
3363 RB_CLEAR_NODE(parent);
3364 spin_unlock(&root->inode_lock);
3365 goto again;
5d4f98a2
YZ
3366 }
3367 }
3368 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3369 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3370 spin_unlock(&root->inode_lock);
3371}
3372
3373static void inode_tree_del(struct inode *inode)
3374{
3375 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3376 int empty = 0;
5d4f98a2 3377
03e860bd 3378 spin_lock(&root->inode_lock);
5d4f98a2 3379 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3380 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3381 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3382 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3383 }
03e860bd 3384 spin_unlock(&root->inode_lock);
76dda93c
YZ
3385
3386 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3387 synchronize_srcu(&root->fs_info->subvol_srcu);
3388 spin_lock(&root->inode_lock);
3389 empty = RB_EMPTY_ROOT(&root->inode_tree);
3390 spin_unlock(&root->inode_lock);
3391 if (empty)
3392 btrfs_add_dead_root(root);
3393 }
3394}
3395
3396int btrfs_invalidate_inodes(struct btrfs_root *root)
3397{
3398 struct rb_node *node;
3399 struct rb_node *prev;
3400 struct btrfs_inode *entry;
3401 struct inode *inode;
3402 u64 objectid = 0;
3403
3404 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3405
3406 spin_lock(&root->inode_lock);
3407again:
3408 node = root->inode_tree.rb_node;
3409 prev = NULL;
3410 while (node) {
3411 prev = node;
3412 entry = rb_entry(node, struct btrfs_inode, rb_node);
3413
3414 if (objectid < entry->vfs_inode.i_ino)
3415 node = node->rb_left;
3416 else if (objectid > entry->vfs_inode.i_ino)
3417 node = node->rb_right;
3418 else
3419 break;
3420 }
3421 if (!node) {
3422 while (prev) {
3423 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3424 if (objectid <= entry->vfs_inode.i_ino) {
3425 node = prev;
3426 break;
3427 }
3428 prev = rb_next(prev);
3429 }
3430 }
3431 while (node) {
3432 entry = rb_entry(node, struct btrfs_inode, rb_node);
3433 objectid = entry->vfs_inode.i_ino + 1;
3434 inode = igrab(&entry->vfs_inode);
3435 if (inode) {
3436 spin_unlock(&root->inode_lock);
3437 if (atomic_read(&inode->i_count) > 1)
3438 d_prune_aliases(inode);
3439 /*
3440 * btrfs_drop_inode will remove it from
3441 * the inode cache when its usage count
3442 * hits zero.
3443 */
3444 iput(inode);
3445 cond_resched();
3446 spin_lock(&root->inode_lock);
3447 goto again;
3448 }
3449
3450 if (cond_resched_lock(&root->inode_lock))
3451 goto again;
3452
3453 node = rb_next(node);
3454 }
3455 spin_unlock(&root->inode_lock);
3456 return 0;
5d4f98a2
YZ
3457}
3458
e02119d5 3459static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3460{
e02119d5
CM
3461 struct btrfs_inode *bi = BTRFS_I(inode);
3462
e02119d5 3463 bi->generation = 0;
c3027eb5 3464 bi->sequence = 0;
e02119d5
CM
3465 bi->last_trans = 0;
3466 bi->logged_trans = 0;
3467 bi->delalloc_bytes = 0;
6a63209f 3468 bi->reserved_bytes = 0;
e02119d5
CM
3469 bi->disk_i_size = 0;
3470 bi->flags = 0;
3471 bi->index_cnt = (u64)-1;
12fcfd22 3472 bi->last_unlink_trans = 0;
2757495c 3473 bi->ordered_data_close = 0;
d1310b2e
CM
3474 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3475 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3476 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3477 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3478 inode->i_mapping, GFP_NOFS);
ea8c2819 3479 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3480 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3481 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3482 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
ee6e6504 3483 mutex_init(&BTRFS_I(inode)->extent_mutex);
e02119d5
CM
3484 mutex_init(&BTRFS_I(inode)->log_mutex);
3485}
3486
3487static int btrfs_init_locked_inode(struct inode *inode, void *p)
3488{
3489 struct btrfs_iget_args *args = p;
3490 inode->i_ino = args->ino;
3491 init_btrfs_i(inode);
3492 BTRFS_I(inode)->root = args->root;
6a63209f 3493 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3494 return 0;
3495}
3496
3497static int btrfs_find_actor(struct inode *inode, void *opaque)
3498{
3499 struct btrfs_iget_args *args = opaque;
d397712b
CM
3500 return args->ino == inode->i_ino &&
3501 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3502}
3503
5d4f98a2
YZ
3504static struct inode *btrfs_iget_locked(struct super_block *s,
3505 u64 objectid,
3506 struct btrfs_root *root)
39279cc3
CM
3507{
3508 struct inode *inode;
3509 struct btrfs_iget_args args;
3510 args.ino = objectid;
3511 args.root = root;
3512
3513 inode = iget5_locked(s, objectid, btrfs_find_actor,
3514 btrfs_init_locked_inode,
3515 (void *)&args);
3516 return inode;
3517}
3518
1a54ef8c
BR
3519/* Get an inode object given its location and corresponding root.
3520 * Returns in *is_new if the inode was read from disk
3521 */
3522struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3523 struct btrfs_root *root)
1a54ef8c
BR
3524{
3525 struct inode *inode;
3526
3527 inode = btrfs_iget_locked(s, location->objectid, root);
3528 if (!inode)
5d4f98a2 3529 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3530
3531 if (inode->i_state & I_NEW) {
3532 BTRFS_I(inode)->root = root;
3533 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3534 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3535
3536 inode_tree_add(inode);
1a54ef8c 3537 unlock_new_inode(inode);
1a54ef8c
BR
3538 }
3539
3540 return inode;
3541}
3542
4df27c4d
YZ
3543static struct inode *new_simple_dir(struct super_block *s,
3544 struct btrfs_key *key,
3545 struct btrfs_root *root)
3546{
3547 struct inode *inode = new_inode(s);
3548
3549 if (!inode)
3550 return ERR_PTR(-ENOMEM);
3551
3552 init_btrfs_i(inode);
3553
3554 BTRFS_I(inode)->root = root;
3555 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3556 BTRFS_I(inode)->dummy_inode = 1;
3557
3558 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3559 inode->i_op = &simple_dir_inode_operations;
3560 inode->i_fop = &simple_dir_operations;
3561 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3562 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3563
3564 return inode;
3565}
3566
3de4586c 3567struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3568{
d397712b 3569 struct inode *inode;
4df27c4d 3570 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3571 struct btrfs_root *sub_root = root;
3572 struct btrfs_key location;
76dda93c 3573 int index;
5d4f98a2 3574 int ret;
39279cc3 3575
76dda93c
YZ
3576 dentry->d_op = &btrfs_dentry_operations;
3577
39279cc3
CM
3578 if (dentry->d_name.len > BTRFS_NAME_LEN)
3579 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3580
39279cc3 3581 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3582
39279cc3
CM
3583 if (ret < 0)
3584 return ERR_PTR(ret);
5f39d397 3585
4df27c4d
YZ
3586 if (location.objectid == 0)
3587 return NULL;
3588
3589 if (location.type == BTRFS_INODE_ITEM_KEY) {
3590 inode = btrfs_iget(dir->i_sb, &location, root);
3591 return inode;
3592 }
3593
3594 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3595
76dda93c 3596 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3597 ret = fixup_tree_root_location(root, dir, dentry,
3598 &location, &sub_root);
3599 if (ret < 0) {
3600 if (ret != -ENOENT)
3601 inode = ERR_PTR(ret);
3602 else
3603 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3604 } else {
5d4f98a2 3605 inode = btrfs_iget(dir->i_sb, &location, sub_root);
39279cc3 3606 }
76dda93c
YZ
3607 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3608
3de4586c
CM
3609 return inode;
3610}
3611
76dda93c
YZ
3612static int btrfs_dentry_delete(struct dentry *dentry)
3613{
3614 struct btrfs_root *root;
3615
3616 if (!dentry->d_inode)
3617 return 0;
3618
3619 root = BTRFS_I(dentry->d_inode)->root;
3620 if (btrfs_root_refs(&root->root_item) == 0)
3621 return 1;
3622 return 0;
3623}
3624
3de4586c
CM
3625static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3626 struct nameidata *nd)
3627{
3628 struct inode *inode;
3629
3de4586c
CM
3630 inode = btrfs_lookup_dentry(dir, dentry);
3631 if (IS_ERR(inode))
3632 return ERR_CAST(inode);
7b128766 3633
39279cc3
CM
3634 return d_splice_alias(inode, dentry);
3635}
3636
39279cc3
CM
3637static unsigned char btrfs_filetype_table[] = {
3638 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3639};
3640
cbdf5a24
DW
3641static int btrfs_real_readdir(struct file *filp, void *dirent,
3642 filldir_t filldir)
39279cc3 3643{
6da6abae 3644 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3645 struct btrfs_root *root = BTRFS_I(inode)->root;
3646 struct btrfs_item *item;
3647 struct btrfs_dir_item *di;
3648 struct btrfs_key key;
5f39d397 3649 struct btrfs_key found_key;
39279cc3
CM
3650 struct btrfs_path *path;
3651 int ret;
3652 u32 nritems;
5f39d397 3653 struct extent_buffer *leaf;
39279cc3
CM
3654 int slot;
3655 int advance;
3656 unsigned char d_type;
3657 int over = 0;
3658 u32 di_cur;
3659 u32 di_total;
3660 u32 di_len;
3661 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3662 char tmp_name[32];
3663 char *name_ptr;
3664 int name_len;
39279cc3
CM
3665
3666 /* FIXME, use a real flag for deciding about the key type */
3667 if (root->fs_info->tree_root == root)
3668 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3669
3954401f
CM
3670 /* special case for "." */
3671 if (filp->f_pos == 0) {
3672 over = filldir(dirent, ".", 1,
3673 1, inode->i_ino,
3674 DT_DIR);
3675 if (over)
3676 return 0;
3677 filp->f_pos = 1;
3678 }
3954401f
CM
3679 /* special case for .., just use the back ref */
3680 if (filp->f_pos == 1) {
5ecc7e5d 3681 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3682 over = filldir(dirent, "..", 2,
5ecc7e5d 3683 2, pino, DT_DIR);
3954401f 3684 if (over)
49593bfa 3685 return 0;
3954401f
CM
3686 filp->f_pos = 2;
3687 }
49593bfa
DW
3688 path = btrfs_alloc_path();
3689 path->reada = 2;
3690
39279cc3
CM
3691 btrfs_set_key_type(&key, key_type);
3692 key.offset = filp->f_pos;
49593bfa 3693 key.objectid = inode->i_ino;
5f39d397 3694
39279cc3
CM
3695 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3696 if (ret < 0)
3697 goto err;
3698 advance = 0;
49593bfa
DW
3699
3700 while (1) {
5f39d397
CM
3701 leaf = path->nodes[0];
3702 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3703 slot = path->slots[0];
3704 if (advance || slot >= nritems) {
49593bfa 3705 if (slot >= nritems - 1) {
39279cc3
CM
3706 ret = btrfs_next_leaf(root, path);
3707 if (ret)
3708 break;
5f39d397
CM
3709 leaf = path->nodes[0];
3710 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3711 slot = path->slots[0];
3712 } else {
3713 slot++;
3714 path->slots[0]++;
3715 }
3716 }
3de4586c 3717
39279cc3 3718 advance = 1;
5f39d397
CM
3719 item = btrfs_item_nr(leaf, slot);
3720 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3721
3722 if (found_key.objectid != key.objectid)
39279cc3 3723 break;
5f39d397 3724 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3725 break;
5f39d397 3726 if (found_key.offset < filp->f_pos)
39279cc3 3727 continue;
5f39d397
CM
3728
3729 filp->f_pos = found_key.offset;
49593bfa 3730
39279cc3
CM
3731 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3732 di_cur = 0;
5f39d397 3733 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3734
3735 while (di_cur < di_total) {
5f39d397
CM
3736 struct btrfs_key location;
3737
3738 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3739 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3740 name_ptr = tmp_name;
3741 } else {
3742 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3743 if (!name_ptr) {
3744 ret = -ENOMEM;
3745 goto err;
3746 }
5f39d397
CM
3747 }
3748 read_extent_buffer(leaf, name_ptr,
3749 (unsigned long)(di + 1), name_len);
3750
3751 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3752 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3753
3754 /* is this a reference to our own snapshot? If so
3755 * skip it
3756 */
3757 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3758 location.objectid == root->root_key.objectid) {
3759 over = 0;
3760 goto skip;
3761 }
5f39d397 3762 over = filldir(dirent, name_ptr, name_len,
49593bfa 3763 found_key.offset, location.objectid,
39279cc3 3764 d_type);
5f39d397 3765
3de4586c 3766skip:
5f39d397
CM
3767 if (name_ptr != tmp_name)
3768 kfree(name_ptr);
3769
39279cc3
CM
3770 if (over)
3771 goto nopos;
5103e947 3772 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3773 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3774 di_cur += di_len;
3775 di = (struct btrfs_dir_item *)((char *)di + di_len);
3776 }
3777 }
49593bfa
DW
3778
3779 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3780 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3781 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3782 else
3783 filp->f_pos++;
39279cc3
CM
3784nopos:
3785 ret = 0;
3786err:
39279cc3 3787 btrfs_free_path(path);
39279cc3
CM
3788 return ret;
3789}
3790
3791int btrfs_write_inode(struct inode *inode, int wait)
3792{
3793 struct btrfs_root *root = BTRFS_I(inode)->root;
3794 struct btrfs_trans_handle *trans;
3795 int ret = 0;
3796
c146afad 3797 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
3798 return 0;
3799
39279cc3 3800 if (wait) {
f9295749 3801 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3802 btrfs_set_trans_block_group(trans, inode);
3803 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
3804 }
3805 return ret;
3806}
3807
3808/*
54aa1f4d 3809 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
3810 * inode changes. But, it is most likely to find the inode in cache.
3811 * FIXME, needs more benchmarking...there are no reasons other than performance
3812 * to keep or drop this code.
3813 */
3814void btrfs_dirty_inode(struct inode *inode)
3815{
3816 struct btrfs_root *root = BTRFS_I(inode)->root;
3817 struct btrfs_trans_handle *trans;
3818
f9295749 3819 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3820 btrfs_set_trans_block_group(trans, inode);
3821 btrfs_update_inode(trans, root, inode);
3822 btrfs_end_transaction(trans, root);
39279cc3
CM
3823}
3824
d352ac68
CM
3825/*
3826 * find the highest existing sequence number in a directory
3827 * and then set the in-memory index_cnt variable to reflect
3828 * free sequence numbers
3829 */
aec7477b
JB
3830static int btrfs_set_inode_index_count(struct inode *inode)
3831{
3832 struct btrfs_root *root = BTRFS_I(inode)->root;
3833 struct btrfs_key key, found_key;
3834 struct btrfs_path *path;
3835 struct extent_buffer *leaf;
3836 int ret;
3837
3838 key.objectid = inode->i_ino;
3839 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3840 key.offset = (u64)-1;
3841
3842 path = btrfs_alloc_path();
3843 if (!path)
3844 return -ENOMEM;
3845
3846 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3847 if (ret < 0)
3848 goto out;
3849 /* FIXME: we should be able to handle this */
3850 if (ret == 0)
3851 goto out;
3852 ret = 0;
3853
3854 /*
3855 * MAGIC NUMBER EXPLANATION:
3856 * since we search a directory based on f_pos we have to start at 2
3857 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3858 * else has to start at 2
3859 */
3860 if (path->slots[0] == 0) {
3861 BTRFS_I(inode)->index_cnt = 2;
3862 goto out;
3863 }
3864
3865 path->slots[0]--;
3866
3867 leaf = path->nodes[0];
3868 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3869
3870 if (found_key.objectid != inode->i_ino ||
3871 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3872 BTRFS_I(inode)->index_cnt = 2;
3873 goto out;
3874 }
3875
3876 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3877out:
3878 btrfs_free_path(path);
3879 return ret;
3880}
3881
d352ac68
CM
3882/*
3883 * helper to find a free sequence number in a given directory. This current
3884 * code is very simple, later versions will do smarter things in the btree
3885 */
3de4586c 3886int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
3887{
3888 int ret = 0;
3889
3890 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3891 ret = btrfs_set_inode_index_count(dir);
d397712b 3892 if (ret)
aec7477b
JB
3893 return ret;
3894 }
3895
00e4e6b3 3896 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
3897 BTRFS_I(dir)->index_cnt++;
3898
3899 return ret;
3900}
3901
39279cc3
CM
3902static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3903 struct btrfs_root *root,
aec7477b 3904 struct inode *dir,
9c58309d 3905 const char *name, int name_len,
d2fb3437
YZ
3906 u64 ref_objectid, u64 objectid,
3907 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
3908{
3909 struct inode *inode;
5f39d397 3910 struct btrfs_inode_item *inode_item;
39279cc3 3911 struct btrfs_key *location;
5f39d397 3912 struct btrfs_path *path;
9c58309d
CM
3913 struct btrfs_inode_ref *ref;
3914 struct btrfs_key key[2];
3915 u32 sizes[2];
3916 unsigned long ptr;
39279cc3
CM
3917 int ret;
3918 int owner;
3919
5f39d397
CM
3920 path = btrfs_alloc_path();
3921 BUG_ON(!path);
3922
39279cc3
CM
3923 inode = new_inode(root->fs_info->sb);
3924 if (!inode)
3925 return ERR_PTR(-ENOMEM);
3926
aec7477b 3927 if (dir) {
3de4586c 3928 ret = btrfs_set_inode_index(dir, index);
09771430
SF
3929 if (ret) {
3930 iput(inode);
aec7477b 3931 return ERR_PTR(ret);
09771430 3932 }
aec7477b
JB
3933 }
3934 /*
3935 * index_cnt is ignored for everything but a dir,
3936 * btrfs_get_inode_index_count has an explanation for the magic
3937 * number
3938 */
e02119d5 3939 init_btrfs_i(inode);
aec7477b 3940 BTRFS_I(inode)->index_cnt = 2;
39279cc3 3941 BTRFS_I(inode)->root = root;
e02119d5 3942 BTRFS_I(inode)->generation = trans->transid;
6a63209f 3943 btrfs_set_inode_space_info(root, inode);
b888db2b 3944
39279cc3
CM
3945 if (mode & S_IFDIR)
3946 owner = 0;
3947 else
3948 owner = 1;
d2fb3437
YZ
3949 BTRFS_I(inode)->block_group =
3950 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
3951
3952 key[0].objectid = objectid;
3953 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3954 key[0].offset = 0;
3955
3956 key[1].objectid = objectid;
3957 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3958 key[1].offset = ref_objectid;
3959
3960 sizes[0] = sizeof(struct btrfs_inode_item);
3961 sizes[1] = name_len + sizeof(*ref);
3962
b9473439 3963 path->leave_spinning = 1;
9c58309d
CM
3964 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3965 if (ret != 0)
5f39d397
CM
3966 goto fail;
3967
79683f2d 3968 inode->i_uid = current_fsuid();
8c087b51 3969
42f15d77 3970 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
3971 inode->i_gid = dir->i_gid;
3972 if (S_ISDIR(mode))
3973 mode |= S_ISGID;
3974 } else
3975 inode->i_gid = current_fsgid();
3976
39279cc3
CM
3977 inode->i_mode = mode;
3978 inode->i_ino = objectid;
a76a3cd4 3979 inode_set_bytes(inode, 0);
39279cc3 3980 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
3981 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3982 struct btrfs_inode_item);
e02119d5 3983 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
3984
3985 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3986 struct btrfs_inode_ref);
3987 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 3988 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
3989 ptr = (unsigned long)(ref + 1);
3990 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3991
5f39d397
CM
3992 btrfs_mark_buffer_dirty(path->nodes[0]);
3993 btrfs_free_path(path);
3994
39279cc3
CM
3995 location = &BTRFS_I(inode)->location;
3996 location->objectid = objectid;
39279cc3
CM
3997 location->offset = 0;
3998 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3999
6cbff00f
CH
4000 btrfs_inherit_iflags(inode, dir);
4001
94272164
CM
4002 if ((mode & S_IFREG)) {
4003 if (btrfs_test_opt(root, NODATASUM))
4004 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4005 if (btrfs_test_opt(root, NODATACOW))
4006 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4007 }
4008
39279cc3 4009 insert_inode_hash(inode);
5d4f98a2 4010 inode_tree_add(inode);
39279cc3 4011 return inode;
5f39d397 4012fail:
aec7477b
JB
4013 if (dir)
4014 BTRFS_I(dir)->index_cnt--;
5f39d397 4015 btrfs_free_path(path);
09771430 4016 iput(inode);
5f39d397 4017 return ERR_PTR(ret);
39279cc3
CM
4018}
4019
4020static inline u8 btrfs_inode_type(struct inode *inode)
4021{
4022 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4023}
4024
d352ac68
CM
4025/*
4026 * utility function to add 'inode' into 'parent_inode' with
4027 * a give name and a given sequence number.
4028 * if 'add_backref' is true, also insert a backref from the
4029 * inode to the parent directory.
4030 */
e02119d5
CM
4031int btrfs_add_link(struct btrfs_trans_handle *trans,
4032 struct inode *parent_inode, struct inode *inode,
4033 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4034{
4df27c4d 4035 int ret = 0;
39279cc3 4036 struct btrfs_key key;
e02119d5 4037 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4038
4df27c4d
YZ
4039 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4040 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4041 } else {
4042 key.objectid = inode->i_ino;
4043 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4044 key.offset = 0;
4045 }
4046
4047 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4048 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4049 key.objectid, root->root_key.objectid,
4050 parent_inode->i_ino,
4051 index, name, name_len);
4052 } else if (add_backref) {
4053 ret = btrfs_insert_inode_ref(trans, root,
4054 name, name_len, inode->i_ino,
4055 parent_inode->i_ino, index);
4056 }
39279cc3 4057
39279cc3 4058 if (ret == 0) {
4df27c4d
YZ
4059 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4060 parent_inode->i_ino, &key,
4061 btrfs_inode_type(inode), index);
4062 BUG_ON(ret);
4063
dbe674a9 4064 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4065 name_len * 2);
79c44584 4066 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4067 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4068 }
4069 return ret;
4070}
4071
4072static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4073 struct dentry *dentry, struct inode *inode,
00e4e6b3 4074 int backref, u64 index)
39279cc3 4075{
e02119d5
CM
4076 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4077 inode, dentry->d_name.name,
4078 dentry->d_name.len, backref, index);
39279cc3
CM
4079 if (!err) {
4080 d_instantiate(dentry, inode);
4081 return 0;
4082 }
4083 if (err > 0)
4084 err = -EEXIST;
4085 return err;
4086}
4087
618e21d5
JB
4088static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4089 int mode, dev_t rdev)
4090{
4091 struct btrfs_trans_handle *trans;
4092 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4093 struct inode *inode = NULL;
618e21d5
JB
4094 int err;
4095 int drop_inode = 0;
4096 u64 objectid;
1832a6d5 4097 unsigned long nr = 0;
00e4e6b3 4098 u64 index = 0;
618e21d5
JB
4099
4100 if (!new_valid_dev(rdev))
4101 return -EINVAL;
4102
9ed74f2d
JB
4103 /*
4104 * 2 for inode item and ref
4105 * 2 for dir items
4106 * 1 for xattr if selinux is on
4107 */
4108 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4109 if (err)
9ed74f2d 4110 return err;
1832a6d5 4111
618e21d5 4112 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4113 if (!trans)
4114 goto fail;
618e21d5
JB
4115 btrfs_set_trans_block_group(trans, dir);
4116
4117 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4118 if (err) {
4119 err = -ENOSPC;
4120 goto out_unlock;
4121 }
4122
aec7477b 4123 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4124 dentry->d_name.len,
4125 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4126 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4127 err = PTR_ERR(inode);
4128 if (IS_ERR(inode))
4129 goto out_unlock;
4130
0279b4cd 4131 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4132 if (err) {
4133 drop_inode = 1;
4134 goto out_unlock;
4135 }
4136
618e21d5 4137 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4138 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4139 if (err)
4140 drop_inode = 1;
4141 else {
4142 inode->i_op = &btrfs_special_inode_operations;
4143 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4144 btrfs_update_inode(trans, root, inode);
618e21d5 4145 }
618e21d5
JB
4146 btrfs_update_inode_block_group(trans, inode);
4147 btrfs_update_inode_block_group(trans, dir);
4148out_unlock:
d3c2fdcf 4149 nr = trans->blocks_used;
89ce8a63 4150 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4151fail:
9ed74f2d 4152 btrfs_unreserve_metadata_space(root, 5);
618e21d5
JB
4153 if (drop_inode) {
4154 inode_dec_link_count(inode);
4155 iput(inode);
4156 }
d3c2fdcf 4157 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4158 return err;
4159}
4160
39279cc3
CM
4161static int btrfs_create(struct inode *dir, struct dentry *dentry,
4162 int mode, struct nameidata *nd)
4163{
4164 struct btrfs_trans_handle *trans;
4165 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4166 struct inode *inode = NULL;
39279cc3
CM
4167 int err;
4168 int drop_inode = 0;
1832a6d5 4169 unsigned long nr = 0;
39279cc3 4170 u64 objectid;
00e4e6b3 4171 u64 index = 0;
39279cc3 4172
9ed74f2d
JB
4173 /*
4174 * 2 for inode item and ref
4175 * 2 for dir items
4176 * 1 for xattr if selinux is on
4177 */
4178 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4179 if (err)
9ed74f2d
JB
4180 return err;
4181
39279cc3 4182 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4183 if (!trans)
4184 goto fail;
39279cc3
CM
4185 btrfs_set_trans_block_group(trans, dir);
4186
4187 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4188 if (err) {
4189 err = -ENOSPC;
4190 goto out_unlock;
4191 }
4192
aec7477b 4193 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4194 dentry->d_name.len,
4195 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4196 objectid, BTRFS_I(dir)->block_group, mode,
4197 &index);
39279cc3
CM
4198 err = PTR_ERR(inode);
4199 if (IS_ERR(inode))
4200 goto out_unlock;
4201
0279b4cd 4202 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4203 if (err) {
4204 drop_inode = 1;
4205 goto out_unlock;
4206 }
4207
39279cc3 4208 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4209 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4210 if (err)
4211 drop_inode = 1;
4212 else {
4213 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4214 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4215 inode->i_fop = &btrfs_file_operations;
4216 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4217 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4218 }
39279cc3
CM
4219 btrfs_update_inode_block_group(trans, inode);
4220 btrfs_update_inode_block_group(trans, dir);
4221out_unlock:
d3c2fdcf 4222 nr = trans->blocks_used;
ab78c84d 4223 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4224fail:
9ed74f2d 4225 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4226 if (drop_inode) {
4227 inode_dec_link_count(inode);
4228 iput(inode);
4229 }
d3c2fdcf 4230 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4231 return err;
4232}
4233
4234static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4235 struct dentry *dentry)
4236{
4237 struct btrfs_trans_handle *trans;
4238 struct btrfs_root *root = BTRFS_I(dir)->root;
4239 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4240 u64 index;
1832a6d5 4241 unsigned long nr = 0;
39279cc3
CM
4242 int err;
4243 int drop_inode = 0;
4244
4245 if (inode->i_nlink == 0)
4246 return -ENOENT;
4247
9ed74f2d
JB
4248 /*
4249 * 1 item for inode ref
4250 * 2 items for dir items
4251 */
4252 err = btrfs_reserve_metadata_space(root, 3);
1832a6d5 4253 if (err)
9ed74f2d
JB
4254 return err;
4255
4256 btrfs_inc_nlink(inode);
4257
3de4586c 4258 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4259 if (err)
4260 goto fail;
4261
39279cc3 4262 trans = btrfs_start_transaction(root, 1);
5f39d397 4263
39279cc3
CM
4264 btrfs_set_trans_block_group(trans, dir);
4265 atomic_inc(&inode->i_count);
aec7477b 4266
00e4e6b3 4267 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4268
a5719521 4269 if (err) {
54aa1f4d 4270 drop_inode = 1;
a5719521
YZ
4271 } else {
4272 btrfs_update_inode_block_group(trans, dir);
4273 err = btrfs_update_inode(trans, root, inode);
4274 BUG_ON(err);
4275 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4276 }
39279cc3 4277
d3c2fdcf 4278 nr = trans->blocks_used;
ab78c84d 4279 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4280fail:
9ed74f2d 4281 btrfs_unreserve_metadata_space(root, 3);
39279cc3
CM
4282 if (drop_inode) {
4283 inode_dec_link_count(inode);
4284 iput(inode);
4285 }
d3c2fdcf 4286 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4287 return err;
4288}
4289
39279cc3
CM
4290static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4291{
b9d86667 4292 struct inode *inode = NULL;
39279cc3
CM
4293 struct btrfs_trans_handle *trans;
4294 struct btrfs_root *root = BTRFS_I(dir)->root;
4295 int err = 0;
4296 int drop_on_err = 0;
b9d86667 4297 u64 objectid = 0;
00e4e6b3 4298 u64 index = 0;
d3c2fdcf 4299 unsigned long nr = 1;
39279cc3 4300
9ed74f2d
JB
4301 /*
4302 * 2 items for inode and ref
4303 * 2 items for dir items
4304 * 1 for xattr if selinux is on
4305 */
4306 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4307 if (err)
9ed74f2d 4308 return err;
1832a6d5 4309
39279cc3 4310 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4311 if (!trans) {
4312 err = -ENOMEM;
39279cc3
CM
4313 goto out_unlock;
4314 }
9ed74f2d 4315 btrfs_set_trans_block_group(trans, dir);
39279cc3
CM
4316
4317 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4318 if (err) {
4319 err = -ENOSPC;
4320 goto out_unlock;
4321 }
4322
aec7477b 4323 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4324 dentry->d_name.len,
4325 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4326 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4327 &index);
39279cc3
CM
4328 if (IS_ERR(inode)) {
4329 err = PTR_ERR(inode);
4330 goto out_fail;
4331 }
5f39d397 4332
39279cc3 4333 drop_on_err = 1;
33268eaf 4334
0279b4cd 4335 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4336 if (err)
4337 goto out_fail;
4338
39279cc3
CM
4339 inode->i_op = &btrfs_dir_inode_operations;
4340 inode->i_fop = &btrfs_dir_file_operations;
4341 btrfs_set_trans_block_group(trans, inode);
4342
dbe674a9 4343 btrfs_i_size_write(inode, 0);
39279cc3
CM
4344 err = btrfs_update_inode(trans, root, inode);
4345 if (err)
4346 goto out_fail;
5f39d397 4347
e02119d5
CM
4348 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4349 inode, dentry->d_name.name,
4350 dentry->d_name.len, 0, index);
39279cc3
CM
4351 if (err)
4352 goto out_fail;
5f39d397 4353
39279cc3
CM
4354 d_instantiate(dentry, inode);
4355 drop_on_err = 0;
39279cc3
CM
4356 btrfs_update_inode_block_group(trans, inode);
4357 btrfs_update_inode_block_group(trans, dir);
4358
4359out_fail:
d3c2fdcf 4360 nr = trans->blocks_used;
ab78c84d 4361 btrfs_end_transaction_throttle(trans, root);
5f39d397 4362
39279cc3 4363out_unlock:
9ed74f2d 4364 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4365 if (drop_on_err)
4366 iput(inode);
d3c2fdcf 4367 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4368 return err;
4369}
4370
d352ac68
CM
4371/* helper for btfs_get_extent. Given an existing extent in the tree,
4372 * and an extent that you want to insert, deal with overlap and insert
4373 * the new extent into the tree.
4374 */
3b951516
CM
4375static int merge_extent_mapping(struct extent_map_tree *em_tree,
4376 struct extent_map *existing,
e6dcd2dc
CM
4377 struct extent_map *em,
4378 u64 map_start, u64 map_len)
3b951516
CM
4379{
4380 u64 start_diff;
3b951516 4381
e6dcd2dc
CM
4382 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4383 start_diff = map_start - em->start;
4384 em->start = map_start;
4385 em->len = map_len;
c8b97818
CM
4386 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4387 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4388 em->block_start += start_diff;
c8b97818
CM
4389 em->block_len -= start_diff;
4390 }
e6dcd2dc 4391 return add_extent_mapping(em_tree, em);
3b951516
CM
4392}
4393
c8b97818
CM
4394static noinline int uncompress_inline(struct btrfs_path *path,
4395 struct inode *inode, struct page *page,
4396 size_t pg_offset, u64 extent_offset,
4397 struct btrfs_file_extent_item *item)
4398{
4399 int ret;
4400 struct extent_buffer *leaf = path->nodes[0];
4401 char *tmp;
4402 size_t max_size;
4403 unsigned long inline_size;
4404 unsigned long ptr;
4405
4406 WARN_ON(pg_offset != 0);
4407 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4408 inline_size = btrfs_file_extent_inline_item_len(leaf,
4409 btrfs_item_nr(leaf, path->slots[0]));
4410 tmp = kmalloc(inline_size, GFP_NOFS);
4411 ptr = btrfs_file_extent_inline_start(item);
4412
4413 read_extent_buffer(leaf, tmp, ptr, inline_size);
4414
5b050f04 4415 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4416 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4417 inline_size, max_size);
4418 if (ret) {
4419 char *kaddr = kmap_atomic(page, KM_USER0);
4420 unsigned long copy_size = min_t(u64,
4421 PAGE_CACHE_SIZE - pg_offset,
4422 max_size - extent_offset);
4423 memset(kaddr + pg_offset, 0, copy_size);
4424 kunmap_atomic(kaddr, KM_USER0);
4425 }
4426 kfree(tmp);
4427 return 0;
4428}
4429
d352ac68
CM
4430/*
4431 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4432 * the ugly parts come from merging extents from the disk with the in-ram
4433 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4434 * where the in-ram extents might be locked pending data=ordered completion.
4435 *
4436 * This also copies inline extents directly into the page.
4437 */
d397712b 4438
a52d9a80 4439struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4440 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4441 int create)
4442{
4443 int ret;
4444 int err = 0;
db94535d 4445 u64 bytenr;
a52d9a80
CM
4446 u64 extent_start = 0;
4447 u64 extent_end = 0;
4448 u64 objectid = inode->i_ino;
4449 u32 found_type;
f421950f 4450 struct btrfs_path *path = NULL;
a52d9a80
CM
4451 struct btrfs_root *root = BTRFS_I(inode)->root;
4452 struct btrfs_file_extent_item *item;
5f39d397
CM
4453 struct extent_buffer *leaf;
4454 struct btrfs_key found_key;
a52d9a80
CM
4455 struct extent_map *em = NULL;
4456 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4457 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4458 struct btrfs_trans_handle *trans = NULL;
c8b97818 4459 int compressed;
a52d9a80 4460
a52d9a80 4461again:
890871be 4462 read_lock(&em_tree->lock);
d1310b2e 4463 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4464 if (em)
4465 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4466 read_unlock(&em_tree->lock);
d1310b2e 4467
a52d9a80 4468 if (em) {
e1c4b745
CM
4469 if (em->start > start || em->start + em->len <= start)
4470 free_extent_map(em);
4471 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4472 free_extent_map(em);
4473 else
4474 goto out;
a52d9a80 4475 }
d1310b2e 4476 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4477 if (!em) {
d1310b2e
CM
4478 err = -ENOMEM;
4479 goto out;
a52d9a80 4480 }
e6dcd2dc 4481 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4482 em->start = EXTENT_MAP_HOLE;
445a6944 4483 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4484 em->len = (u64)-1;
c8b97818 4485 em->block_len = (u64)-1;
f421950f
CM
4486
4487 if (!path) {
4488 path = btrfs_alloc_path();
4489 BUG_ON(!path);
4490 }
4491
179e29e4
CM
4492 ret = btrfs_lookup_file_extent(trans, root, path,
4493 objectid, start, trans != NULL);
a52d9a80
CM
4494 if (ret < 0) {
4495 err = ret;
4496 goto out;
4497 }
4498
4499 if (ret != 0) {
4500 if (path->slots[0] == 0)
4501 goto not_found;
4502 path->slots[0]--;
4503 }
4504
5f39d397
CM
4505 leaf = path->nodes[0];
4506 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4507 struct btrfs_file_extent_item);
a52d9a80 4508 /* are we inside the extent that was found? */
5f39d397
CM
4509 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4510 found_type = btrfs_key_type(&found_key);
4511 if (found_key.objectid != objectid ||
a52d9a80
CM
4512 found_type != BTRFS_EXTENT_DATA_KEY) {
4513 goto not_found;
4514 }
4515
5f39d397
CM
4516 found_type = btrfs_file_extent_type(leaf, item);
4517 extent_start = found_key.offset;
c8b97818 4518 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4519 if (found_type == BTRFS_FILE_EXTENT_REG ||
4520 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4521 extent_end = extent_start +
db94535d 4522 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4523 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4524 size_t size;
4525 size = btrfs_file_extent_inline_len(leaf, item);
4526 extent_end = (extent_start + size + root->sectorsize - 1) &
4527 ~((u64)root->sectorsize - 1);
4528 }
4529
4530 if (start >= extent_end) {
4531 path->slots[0]++;
4532 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4533 ret = btrfs_next_leaf(root, path);
4534 if (ret < 0) {
4535 err = ret;
4536 goto out;
a52d9a80 4537 }
9036c102
YZ
4538 if (ret > 0)
4539 goto not_found;
4540 leaf = path->nodes[0];
a52d9a80 4541 }
9036c102
YZ
4542 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4543 if (found_key.objectid != objectid ||
4544 found_key.type != BTRFS_EXTENT_DATA_KEY)
4545 goto not_found;
4546 if (start + len <= found_key.offset)
4547 goto not_found;
4548 em->start = start;
4549 em->len = found_key.offset - start;
4550 goto not_found_em;
4551 }
4552
d899e052
YZ
4553 if (found_type == BTRFS_FILE_EXTENT_REG ||
4554 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4555 em->start = extent_start;
4556 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4557 em->orig_start = extent_start -
4558 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4559 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4560 if (bytenr == 0) {
5f39d397 4561 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4562 goto insert;
4563 }
c8b97818
CM
4564 if (compressed) {
4565 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4566 em->block_start = bytenr;
4567 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4568 item);
4569 } else {
4570 bytenr += btrfs_file_extent_offset(leaf, item);
4571 em->block_start = bytenr;
4572 em->block_len = em->len;
d899e052
YZ
4573 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4574 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4575 }
a52d9a80
CM
4576 goto insert;
4577 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4578 unsigned long ptr;
a52d9a80 4579 char *map;
3326d1b0
CM
4580 size_t size;
4581 size_t extent_offset;
4582 size_t copy_size;
a52d9a80 4583
689f9346 4584 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4585 if (!page || create) {
689f9346 4586 em->start = extent_start;
9036c102 4587 em->len = extent_end - extent_start;
689f9346
Y
4588 goto out;
4589 }
5f39d397 4590
9036c102
YZ
4591 size = btrfs_file_extent_inline_len(leaf, item);
4592 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4593 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4594 size - extent_offset);
3326d1b0 4595 em->start = extent_start + extent_offset;
70dec807
CM
4596 em->len = (copy_size + root->sectorsize - 1) &
4597 ~((u64)root->sectorsize - 1);
ff5b7ee3 4598 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4599 if (compressed)
4600 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4601 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4602 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4603 if (btrfs_file_extent_compression(leaf, item) ==
4604 BTRFS_COMPRESS_ZLIB) {
4605 ret = uncompress_inline(path, inode, page,
4606 pg_offset,
4607 extent_offset, item);
4608 BUG_ON(ret);
4609 } else {
4610 map = kmap(page);
4611 read_extent_buffer(leaf, map + pg_offset, ptr,
4612 copy_size);
93c82d57
CM
4613 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4614 memset(map + pg_offset + copy_size, 0,
4615 PAGE_CACHE_SIZE - pg_offset -
4616 copy_size);
4617 }
c8b97818
CM
4618 kunmap(page);
4619 }
179e29e4
CM
4620 flush_dcache_page(page);
4621 } else if (create && PageUptodate(page)) {
4622 if (!trans) {
4623 kunmap(page);
4624 free_extent_map(em);
4625 em = NULL;
4626 btrfs_release_path(root, path);
f9295749 4627 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4628 goto again;
4629 }
c8b97818 4630 map = kmap(page);
70dec807 4631 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4632 copy_size);
c8b97818 4633 kunmap(page);
179e29e4 4634 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4635 }
d1310b2e
CM
4636 set_extent_uptodate(io_tree, em->start,
4637 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4638 goto insert;
4639 } else {
d397712b 4640 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4641 WARN_ON(1);
4642 }
4643not_found:
4644 em->start = start;
d1310b2e 4645 em->len = len;
a52d9a80 4646not_found_em:
5f39d397 4647 em->block_start = EXTENT_MAP_HOLE;
9036c102 4648 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4649insert:
4650 btrfs_release_path(root, path);
d1310b2e 4651 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4652 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4653 "[%llu %llu]\n", (unsigned long long)em->start,
4654 (unsigned long long)em->len,
4655 (unsigned long long)start,
4656 (unsigned long long)len);
a52d9a80
CM
4657 err = -EIO;
4658 goto out;
4659 }
d1310b2e
CM
4660
4661 err = 0;
890871be 4662 write_lock(&em_tree->lock);
a52d9a80 4663 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4664 /* it is possible that someone inserted the extent into the tree
4665 * while we had the lock dropped. It is also possible that
4666 * an overlapping map exists in the tree
4667 */
a52d9a80 4668 if (ret == -EEXIST) {
3b951516 4669 struct extent_map *existing;
e6dcd2dc
CM
4670
4671 ret = 0;
4672
3b951516 4673 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4674 if (existing && (existing->start > start ||
4675 existing->start + existing->len <= start)) {
4676 free_extent_map(existing);
4677 existing = NULL;
4678 }
3b951516
CM
4679 if (!existing) {
4680 existing = lookup_extent_mapping(em_tree, em->start,
4681 em->len);
4682 if (existing) {
4683 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4684 em, start,
4685 root->sectorsize);
3b951516
CM
4686 free_extent_map(existing);
4687 if (err) {
4688 free_extent_map(em);
4689 em = NULL;
4690 }
4691 } else {
4692 err = -EIO;
3b951516
CM
4693 free_extent_map(em);
4694 em = NULL;
4695 }
4696 } else {
4697 free_extent_map(em);
4698 em = existing;
e6dcd2dc 4699 err = 0;
a52d9a80 4700 }
a52d9a80 4701 }
890871be 4702 write_unlock(&em_tree->lock);
a52d9a80 4703out:
f421950f
CM
4704 if (path)
4705 btrfs_free_path(path);
a52d9a80
CM
4706 if (trans) {
4707 ret = btrfs_end_transaction(trans, root);
d397712b 4708 if (!err)
a52d9a80
CM
4709 err = ret;
4710 }
a52d9a80
CM
4711 if (err) {
4712 free_extent_map(em);
a52d9a80
CM
4713 return ERR_PTR(err);
4714 }
4715 return em;
4716}
4717
16432985
CM
4718static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4719 const struct iovec *iov, loff_t offset,
4720 unsigned long nr_segs)
4721{
e1c4b745 4722 return -EINVAL;
16432985
CM
4723}
4724
1506fcc8
YS
4725static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4726 __u64 start, __u64 len)
4727{
4728 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4729}
4730
a52d9a80 4731int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4732{
d1310b2e
CM
4733 struct extent_io_tree *tree;
4734 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4735 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4736}
1832a6d5 4737
a52d9a80 4738static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4739{
d1310b2e 4740 struct extent_io_tree *tree;
b888db2b
CM
4741
4742
4743 if (current->flags & PF_MEMALLOC) {
4744 redirty_page_for_writepage(wbc, page);
4745 unlock_page(page);
4746 return 0;
4747 }
d1310b2e 4748 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4749 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4750}
4751
f421950f
CM
4752int btrfs_writepages(struct address_space *mapping,
4753 struct writeback_control *wbc)
b293f02e 4754{
d1310b2e 4755 struct extent_io_tree *tree;
771ed689 4756
d1310b2e 4757 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4758 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4759}
4760
3ab2fb5a
CM
4761static int
4762btrfs_readpages(struct file *file, struct address_space *mapping,
4763 struct list_head *pages, unsigned nr_pages)
4764{
d1310b2e
CM
4765 struct extent_io_tree *tree;
4766 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4767 return extent_readpages(tree, mapping, pages, nr_pages,
4768 btrfs_get_extent);
4769}
e6dcd2dc 4770static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4771{
d1310b2e
CM
4772 struct extent_io_tree *tree;
4773 struct extent_map_tree *map;
a52d9a80 4774 int ret;
8c2383c3 4775
d1310b2e
CM
4776 tree = &BTRFS_I(page->mapping->host)->io_tree;
4777 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4778 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4779 if (ret == 1) {
4780 ClearPagePrivate(page);
4781 set_page_private(page, 0);
4782 page_cache_release(page);
39279cc3 4783 }
a52d9a80 4784 return ret;
39279cc3
CM
4785}
4786
e6dcd2dc
CM
4787static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4788{
98509cfc
CM
4789 if (PageWriteback(page) || PageDirty(page))
4790 return 0;
b335b003 4791 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4792}
4793
a52d9a80 4794static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 4795{
d1310b2e 4796 struct extent_io_tree *tree;
e6dcd2dc
CM
4797 struct btrfs_ordered_extent *ordered;
4798 u64 page_start = page_offset(page);
4799 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 4800
8b62b72b
CM
4801
4802 /*
4803 * we have the page locked, so new writeback can't start,
4804 * and the dirty bit won't be cleared while we are here.
4805 *
4806 * Wait for IO on this page so that we can safely clear
4807 * the PagePrivate2 bit and do ordered accounting
4808 */
e6dcd2dc 4809 wait_on_page_writeback(page);
8b62b72b 4810
d1310b2e 4811 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
4812 if (offset) {
4813 btrfs_releasepage(page, GFP_NOFS);
4814 return;
4815 }
e6dcd2dc
CM
4816 lock_extent(tree, page_start, page_end, GFP_NOFS);
4817 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4818 page_offset(page));
4819 if (ordered) {
eb84ae03
CM
4820 /*
4821 * IO on this page will never be started, so we need
4822 * to account for any ordered extents now
4823 */
e6dcd2dc
CM
4824 clear_extent_bit(tree, page_start, page_end,
4825 EXTENT_DIRTY | EXTENT_DELALLOC |
2c64c53d 4826 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
8b62b72b
CM
4827 /*
4828 * whoever cleared the private bit is responsible
4829 * for the finish_ordered_io
4830 */
4831 if (TestClearPagePrivate2(page)) {
4832 btrfs_finish_ordered_io(page->mapping->host,
4833 page_start, page_end);
4834 }
e6dcd2dc
CM
4835 btrfs_put_ordered_extent(ordered);
4836 lock_extent(tree, page_start, page_end, GFP_NOFS);
4837 }
4838 clear_extent_bit(tree, page_start, page_end,
8b62b72b 4839 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2c64c53d 4840 1, 1, NULL, GFP_NOFS);
e6dcd2dc
CM
4841 __btrfs_releasepage(page, GFP_NOFS);
4842
4a096752 4843 ClearPageChecked(page);
9ad6b7bc 4844 if (PagePrivate(page)) {
9ad6b7bc
CM
4845 ClearPagePrivate(page);
4846 set_page_private(page, 0);
4847 page_cache_release(page);
4848 }
39279cc3
CM
4849}
4850
9ebefb18
CM
4851/*
4852 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4853 * called from a page fault handler when a page is first dirtied. Hence we must
4854 * be careful to check for EOF conditions here. We set the page up correctly
4855 * for a written page which means we get ENOSPC checking when writing into
4856 * holes and correct delalloc and unwritten extent mapping on filesystems that
4857 * support these features.
4858 *
4859 * We are not allowed to take the i_mutex here so we have to play games to
4860 * protect against truncate races as the page could now be beyond EOF. Because
4861 * vmtruncate() writes the inode size before removing pages, once we have the
4862 * page lock we can determine safely if the page is beyond EOF. If it is not
4863 * beyond EOF, then the page is guaranteed safe against truncation until we
4864 * unlock the page.
4865 */
c2ec175c 4866int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 4867{
c2ec175c 4868 struct page *page = vmf->page;
6da6abae 4869 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 4870 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4871 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4872 struct btrfs_ordered_extent *ordered;
4873 char *kaddr;
4874 unsigned long zero_start;
9ebefb18 4875 loff_t size;
1832a6d5 4876 int ret;
a52d9a80 4877 u64 page_start;
e6dcd2dc 4878 u64 page_end;
9ebefb18 4879
6a63209f 4880 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
4881 if (ret) {
4882 if (ret == -ENOMEM)
4883 ret = VM_FAULT_OOM;
4884 else /* -ENOSPC, -EIO, etc */
4885 ret = VM_FAULT_SIGBUS;
1832a6d5 4886 goto out;
56a76f82 4887 }
1832a6d5 4888
9ed74f2d
JB
4889 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4890 if (ret) {
4891 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4892 ret = VM_FAULT_SIGBUS;
4893 goto out;
4894 }
4895
56a76f82 4896 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 4897again:
9ebefb18 4898 lock_page(page);
9ebefb18 4899 size = i_size_read(inode);
e6dcd2dc
CM
4900 page_start = page_offset(page);
4901 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 4902
9ebefb18 4903 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 4904 (page_start >= size)) {
6a63209f 4905 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
4906 /* page got truncated out from underneath us */
4907 goto out_unlock;
4908 }
e6dcd2dc
CM
4909 wait_on_page_writeback(page);
4910
4911 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4912 set_page_extent_mapped(page);
4913
eb84ae03
CM
4914 /*
4915 * we can't set the delalloc bits if there are pending ordered
4916 * extents. Drop our locks and wait for them to finish
4917 */
e6dcd2dc
CM
4918 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4919 if (ordered) {
4920 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4921 unlock_page(page);
eb84ae03 4922 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4923 btrfs_put_ordered_extent(ordered);
4924 goto again;
4925 }
4926
fbf19087
JB
4927 /*
4928 * XXX - page_mkwrite gets called every time the page is dirtied, even
4929 * if it was already dirty, so for space accounting reasons we need to
4930 * clear any delalloc bits for the range we are fixing to save. There
4931 * is probably a better way to do this, but for now keep consistent with
4932 * prepare_pages in the normal write path.
4933 */
4934 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
4935 EXTENT_DIRTY | EXTENT_DELALLOC, GFP_NOFS);
4936
9ed74f2d
JB
4937 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
4938 if (ret) {
4939 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4940 ret = VM_FAULT_SIGBUS;
fbf19087 4941 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ed74f2d
JB
4942 goto out_unlock;
4943 }
e6dcd2dc 4944 ret = 0;
9ebefb18
CM
4945
4946 /* page is wholly or partially inside EOF */
a52d9a80 4947 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 4948 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 4949 else
e6dcd2dc 4950 zero_start = PAGE_CACHE_SIZE;
9ebefb18 4951
e6dcd2dc
CM
4952 if (zero_start != PAGE_CACHE_SIZE) {
4953 kaddr = kmap(page);
4954 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4955 flush_dcache_page(page);
4956 kunmap(page);
4957 }
247e743c 4958 ClearPageChecked(page);
e6dcd2dc 4959 set_page_dirty(page);
50a9b214 4960 SetPageUptodate(page);
5a3f23d5
CM
4961
4962 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
e6dcd2dc 4963 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
4964
4965out_unlock:
9ed74f2d 4966 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
50a9b214
CM
4967 if (!ret)
4968 return VM_FAULT_LOCKED;
9ebefb18 4969 unlock_page(page);
1832a6d5 4970out:
9ebefb18
CM
4971 return ret;
4972}
4973
39279cc3
CM
4974static void btrfs_truncate(struct inode *inode)
4975{
4976 struct btrfs_root *root = BTRFS_I(inode)->root;
4977 int ret;
4978 struct btrfs_trans_handle *trans;
d3c2fdcf 4979 unsigned long nr;
dbe674a9 4980 u64 mask = root->sectorsize - 1;
39279cc3
CM
4981
4982 if (!S_ISREG(inode->i_mode))
4983 return;
4984 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4985 return;
4986
4987 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4a096752 4988 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 4989
39279cc3 4990 trans = btrfs_start_transaction(root, 1);
5a3f23d5
CM
4991
4992 /*
4993 * setattr is responsible for setting the ordered_data_close flag,
4994 * but that is only tested during the last file release. That
4995 * could happen well after the next commit, leaving a great big
4996 * window where new writes may get lost if someone chooses to write
4997 * to this file after truncating to zero
4998 *
4999 * The inode doesn't have any dirty data here, and so if we commit
5000 * this is a noop. If someone immediately starts writing to the inode
5001 * it is very likely we'll catch some of their writes in this
5002 * transaction, and the commit will find this file on the ordered
5003 * data list with good things to send down.
5004 *
5005 * This is a best effort solution, there is still a window where
5006 * using truncate to replace the contents of the file will
5007 * end up with a zero length file after a crash.
5008 */
5009 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5010 btrfs_add_ordered_operation(trans, root, inode);
5011
39279cc3 5012 btrfs_set_trans_block_group(trans, inode);
dbe674a9 5013 btrfs_i_size_write(inode, inode->i_size);
39279cc3 5014
7b128766
JB
5015 ret = btrfs_orphan_add(trans, inode);
5016 if (ret)
5017 goto out;
39279cc3 5018 /* FIXME, add redo link to tree so we don't leak on crash */
e02119d5 5019 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
85e21bac 5020 BTRFS_EXTENT_DATA_KEY);
39279cc3 5021 btrfs_update_inode(trans, root, inode);
5f39d397 5022
7b128766
JB
5023 ret = btrfs_orphan_del(trans, inode);
5024 BUG_ON(ret);
5025
5026out:
5027 nr = trans->blocks_used;
89ce8a63 5028 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 5029 BUG_ON(ret);
d3c2fdcf 5030 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5031}
5032
d352ac68
CM
5033/*
5034 * create a new subvolume directory/inode (helper for the ioctl).
5035 */
d2fb3437 5036int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 5037 struct btrfs_root *new_root,
d2fb3437 5038 u64 new_dirid, u64 alloc_hint)
39279cc3 5039{
39279cc3 5040 struct inode *inode;
76dda93c 5041 int err;
00e4e6b3 5042 u64 index = 0;
39279cc3 5043
aec7477b 5044 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 5045 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 5046 if (IS_ERR(inode))
f46b5a66 5047 return PTR_ERR(inode);
39279cc3
CM
5048 inode->i_op = &btrfs_dir_inode_operations;
5049 inode->i_fop = &btrfs_dir_file_operations;
5050
39279cc3 5051 inode->i_nlink = 1;
dbe674a9 5052 btrfs_i_size_write(inode, 0);
3b96362c 5053
76dda93c
YZ
5054 err = btrfs_update_inode(trans, new_root, inode);
5055 BUG_ON(err);
cb8e7090 5056
76dda93c 5057 iput(inode);
cb8e7090 5058 return 0;
39279cc3
CM
5059}
5060
d352ac68
CM
5061/* helper function for file defrag and space balancing. This
5062 * forces readahead on a given range of bytes in an inode
5063 */
edbd8d4e 5064unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
5065 struct file_ra_state *ra, struct file *file,
5066 pgoff_t offset, pgoff_t last_index)
5067{
8e7bf94f 5068 pgoff_t req_size = last_index - offset + 1;
86479a04 5069
86479a04
CM
5070 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5071 return offset + req_size;
86479a04
CM
5072}
5073
39279cc3
CM
5074struct inode *btrfs_alloc_inode(struct super_block *sb)
5075{
5076 struct btrfs_inode *ei;
5077
5078 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5079 if (!ei)
5080 return NULL;
15ee9bc7 5081 ei->last_trans = 0;
e02119d5 5082 ei->logged_trans = 0;
9ed74f2d
JB
5083 ei->delalloc_extents = 0;
5084 ei->delalloc_reserved_extents = 0;
e6dcd2dc 5085 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 5086 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 5087 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
5088 return &ei->vfs_inode;
5089}
5090
5091void btrfs_destroy_inode(struct inode *inode)
5092{
e6dcd2dc 5093 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
5094 struct btrfs_root *root = BTRFS_I(inode)->root;
5095
39279cc3
CM
5096 WARN_ON(!list_empty(&inode->i_dentry));
5097 WARN_ON(inode->i_data.nrpages);
5098
5a3f23d5
CM
5099 /*
5100 * Make sure we're properly removed from the ordered operation
5101 * lists.
5102 */
5103 smp_mb();
5104 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5105 spin_lock(&root->fs_info->ordered_extent_lock);
5106 list_del_init(&BTRFS_I(inode)->ordered_operations);
5107 spin_unlock(&root->fs_info->ordered_extent_lock);
5108 }
5109
5110 spin_lock(&root->list_lock);
7b128766
JB
5111 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5112 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5113 " list\n", inode->i_ino);
5114 dump_stack();
5115 }
5a3f23d5 5116 spin_unlock(&root->list_lock);
7b128766 5117
d397712b 5118 while (1) {
e6dcd2dc
CM
5119 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5120 if (!ordered)
5121 break;
5122 else {
d397712b
CM
5123 printk(KERN_ERR "btrfs found ordered "
5124 "extent %llu %llu on inode cleanup\n",
5125 (unsigned long long)ordered->file_offset,
5126 (unsigned long long)ordered->len);
e6dcd2dc
CM
5127 btrfs_remove_ordered_extent(inode, ordered);
5128 btrfs_put_ordered_extent(ordered);
5129 btrfs_put_ordered_extent(ordered);
5130 }
5131 }
5d4f98a2 5132 inode_tree_del(inode);
5b21f2ed 5133 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
39279cc3
CM
5134 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5135}
5136
76dda93c
YZ
5137void btrfs_drop_inode(struct inode *inode)
5138{
5139 struct btrfs_root *root = BTRFS_I(inode)->root;
5140
5141 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5142 generic_delete_inode(inode);
5143 else
5144 generic_drop_inode(inode);
5145}
5146
0ee0fda0 5147static void init_once(void *foo)
39279cc3
CM
5148{
5149 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5150
5151 inode_init_once(&ei->vfs_inode);
5152}
5153
5154void btrfs_destroy_cachep(void)
5155{
5156 if (btrfs_inode_cachep)
5157 kmem_cache_destroy(btrfs_inode_cachep);
5158 if (btrfs_trans_handle_cachep)
5159 kmem_cache_destroy(btrfs_trans_handle_cachep);
5160 if (btrfs_transaction_cachep)
5161 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
5162 if (btrfs_path_cachep)
5163 kmem_cache_destroy(btrfs_path_cachep);
5164}
5165
5166int btrfs_init_cachep(void)
5167{
9601e3f6
CH
5168 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5169 sizeof(struct btrfs_inode), 0,
5170 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
5171 if (!btrfs_inode_cachep)
5172 goto fail;
9601e3f6
CH
5173
5174 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5175 sizeof(struct btrfs_trans_handle), 0,
5176 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5177 if (!btrfs_trans_handle_cachep)
5178 goto fail;
9601e3f6
CH
5179
5180 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5181 sizeof(struct btrfs_transaction), 0,
5182 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5183 if (!btrfs_transaction_cachep)
5184 goto fail;
9601e3f6
CH
5185
5186 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5187 sizeof(struct btrfs_path), 0,
5188 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5189 if (!btrfs_path_cachep)
5190 goto fail;
9601e3f6 5191
39279cc3
CM
5192 return 0;
5193fail:
5194 btrfs_destroy_cachep();
5195 return -ENOMEM;
5196}
5197
5198static int btrfs_getattr(struct vfsmount *mnt,
5199 struct dentry *dentry, struct kstat *stat)
5200{
5201 struct inode *inode = dentry->d_inode;
5202 generic_fillattr(inode, stat);
3394e160 5203 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 5204 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
5205 stat->blocks = (inode_get_bytes(inode) +
5206 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
5207 return 0;
5208}
5209
d397712b
CM
5210static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5211 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
5212{
5213 struct btrfs_trans_handle *trans;
5214 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 5215 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
5216 struct inode *new_inode = new_dentry->d_inode;
5217 struct inode *old_inode = old_dentry->d_inode;
5218 struct timespec ctime = CURRENT_TIME;
00e4e6b3 5219 u64 index = 0;
4df27c4d 5220 u64 root_objectid;
39279cc3
CM
5221 int ret;
5222
f679a840
YZ
5223 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5224 return -EPERM;
5225
4df27c4d
YZ
5226 /* we only allow rename subvolume link between subvolumes */
5227 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
5228 return -EXDEV;
5229
4df27c4d
YZ
5230 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5231 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 5232 return -ENOTEMPTY;
5f39d397 5233
4df27c4d
YZ
5234 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5235 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5236 return -ENOTEMPTY;
0660b5af 5237
9ed74f2d
JB
5238 /*
5239 * 2 items for dir items
5240 * 1 item for orphan entry
5241 * 1 item for ref
5242 */
5243 ret = btrfs_reserve_metadata_space(root, 4);
1832a6d5 5244 if (ret)
4df27c4d 5245 return ret;
1832a6d5 5246
5a3f23d5
CM
5247 /*
5248 * we're using rename to replace one file with another.
5249 * and the replacement file is large. Start IO on it now so
5250 * we don't add too much work to the end of the transaction
5251 */
4baf8c92 5252 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
5253 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5254 filemap_flush(old_inode->i_mapping);
5255
76dda93c
YZ
5256 /* close the racy window with snapshot create/destroy ioctl */
5257 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5258 down_read(&root->fs_info->subvol_sem);
5259
39279cc3 5260 trans = btrfs_start_transaction(root, 1);
a5719521 5261 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 5262
4df27c4d
YZ
5263 if (dest != root)
5264 btrfs_record_root_in_trans(trans, dest);
5265
a5719521
YZ
5266 ret = btrfs_set_inode_index(new_dir, &index);
5267 if (ret)
5268 goto out_fail;
5a3f23d5 5269
a5719521 5270 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5271 /* force full log commit if subvolume involved. */
5272 root->fs_info->last_trans_log_full_commit = trans->transid;
5273 } else {
a5719521
YZ
5274 ret = btrfs_insert_inode_ref(trans, dest,
5275 new_dentry->d_name.name,
5276 new_dentry->d_name.len,
5277 old_inode->i_ino,
5278 new_dir->i_ino, index);
5279 if (ret)
5280 goto out_fail;
4df27c4d
YZ
5281 /*
5282 * this is an ugly little race, but the rename is required
5283 * to make sure that if we crash, the inode is either at the
5284 * old name or the new one. pinning the log transaction lets
5285 * us make sure we don't allow a log commit to come in after
5286 * we unlink the name but before we add the new name back in.
5287 */
5288 btrfs_pin_log_trans(root);
5289 }
a5719521
YZ
5290 /*
5291 * make sure the inode gets flushed if it is replacing
5292 * something.
5293 */
5294 if (new_inode && new_inode->i_size &&
5295 old_inode && S_ISREG(old_inode->i_mode)) {
5296 btrfs_add_ordered_operation(trans, root, old_inode);
5297 }
39279cc3 5298
39279cc3
CM
5299 old_dir->i_ctime = old_dir->i_mtime = ctime;
5300 new_dir->i_ctime = new_dir->i_mtime = ctime;
5301 old_inode->i_ctime = ctime;
5f39d397 5302
12fcfd22
CM
5303 if (old_dentry->d_parent != new_dentry->d_parent)
5304 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5305
4df27c4d
YZ
5306 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5307 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5308 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5309 old_dentry->d_name.name,
5310 old_dentry->d_name.len);
5311 } else {
5312 btrfs_inc_nlink(old_dentry->d_inode);
5313 ret = btrfs_unlink_inode(trans, root, old_dir,
5314 old_dentry->d_inode,
5315 old_dentry->d_name.name,
5316 old_dentry->d_name.len);
5317 }
5318 BUG_ON(ret);
39279cc3
CM
5319
5320 if (new_inode) {
5321 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
5322 if (unlikely(new_inode->i_ino ==
5323 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5324 root_objectid = BTRFS_I(new_inode)->location.objectid;
5325 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5326 root_objectid,
5327 new_dentry->d_name.name,
5328 new_dentry->d_name.len);
5329 BUG_ON(new_inode->i_nlink == 0);
5330 } else {
5331 ret = btrfs_unlink_inode(trans, dest, new_dir,
5332 new_dentry->d_inode,
5333 new_dentry->d_name.name,
5334 new_dentry->d_name.len);
5335 }
5336 BUG_ON(ret);
7b128766 5337 if (new_inode->i_nlink == 0) {
e02119d5 5338 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 5339 BUG_ON(ret);
7b128766 5340 }
39279cc3 5341 }
aec7477b 5342
4df27c4d
YZ
5343 ret = btrfs_add_link(trans, new_dir, old_inode,
5344 new_dentry->d_name.name,
a5719521 5345 new_dentry->d_name.len, 0, index);
4df27c4d 5346 BUG_ON(ret);
39279cc3 5347
4df27c4d
YZ
5348 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5349 btrfs_log_new_name(trans, old_inode, old_dir,
5350 new_dentry->d_parent);
5351 btrfs_end_log_trans(root);
5352 }
a5719521 5353out_fail:
ab78c84d 5354 btrfs_end_transaction_throttle(trans, root);
4df27c4d 5355
76dda93c
YZ
5356 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5357 up_read(&root->fs_info->subvol_sem);
9ed74f2d
JB
5358
5359 btrfs_unreserve_metadata_space(root, 4);
39279cc3
CM
5360 return ret;
5361}
5362
d352ac68
CM
5363/*
5364 * some fairly slow code that needs optimization. This walks the list
5365 * of all the inodes with pending delalloc and forces them to disk.
5366 */
ea8c2819
CM
5367int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5368{
5369 struct list_head *head = &root->fs_info->delalloc_inodes;
5370 struct btrfs_inode *binode;
5b21f2ed 5371 struct inode *inode;
ea8c2819 5372
c146afad
YZ
5373 if (root->fs_info->sb->s_flags & MS_RDONLY)
5374 return -EROFS;
5375
75eff68e 5376 spin_lock(&root->fs_info->delalloc_lock);
d397712b 5377 while (!list_empty(head)) {
ea8c2819
CM
5378 binode = list_entry(head->next, struct btrfs_inode,
5379 delalloc_inodes);
5b21f2ed
ZY
5380 inode = igrab(&binode->vfs_inode);
5381 if (!inode)
5382 list_del_init(&binode->delalloc_inodes);
75eff68e 5383 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 5384 if (inode) {
8c8bee1d 5385 filemap_flush(inode->i_mapping);
5b21f2ed
ZY
5386 iput(inode);
5387 }
5388 cond_resched();
75eff68e 5389 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 5390 }
75eff68e 5391 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
5392
5393 /* the filemap_flush will queue IO into the worker threads, but
5394 * we have to make sure the IO is actually started and that
5395 * ordered extents get created before we return
5396 */
5397 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 5398 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 5399 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 5400 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
5401 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5402 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
5403 }
5404 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
5405 return 0;
5406}
5407
39279cc3
CM
5408static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5409 const char *symname)
5410{
5411 struct btrfs_trans_handle *trans;
5412 struct btrfs_root *root = BTRFS_I(dir)->root;
5413 struct btrfs_path *path;
5414 struct btrfs_key key;
1832a6d5 5415 struct inode *inode = NULL;
39279cc3
CM
5416 int err;
5417 int drop_inode = 0;
5418 u64 objectid;
00e4e6b3 5419 u64 index = 0 ;
39279cc3
CM
5420 int name_len;
5421 int datasize;
5f39d397 5422 unsigned long ptr;
39279cc3 5423 struct btrfs_file_extent_item *ei;
5f39d397 5424 struct extent_buffer *leaf;
1832a6d5 5425 unsigned long nr = 0;
39279cc3
CM
5426
5427 name_len = strlen(symname) + 1;
5428 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5429 return -ENAMETOOLONG;
1832a6d5 5430
9ed74f2d
JB
5431 /*
5432 * 2 items for inode item and ref
5433 * 2 items for dir items
5434 * 1 item for xattr if selinux is on
5435 */
5436 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 5437 if (err)
9ed74f2d 5438 return err;
1832a6d5 5439
39279cc3 5440 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
5441 if (!trans)
5442 goto out_fail;
39279cc3
CM
5443 btrfs_set_trans_block_group(trans, dir);
5444
5445 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5446 if (err) {
5447 err = -ENOSPC;
5448 goto out_unlock;
5449 }
5450
aec7477b 5451 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
5452 dentry->d_name.len,
5453 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5454 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5455 &index);
39279cc3
CM
5456 err = PTR_ERR(inode);
5457 if (IS_ERR(inode))
5458 goto out_unlock;
5459
0279b4cd 5460 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
5461 if (err) {
5462 drop_inode = 1;
5463 goto out_unlock;
5464 }
5465
39279cc3 5466 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5467 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5468 if (err)
5469 drop_inode = 1;
5470 else {
5471 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5472 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5473 inode->i_fop = &btrfs_file_operations;
5474 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5475 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5476 }
39279cc3
CM
5477 btrfs_update_inode_block_group(trans, inode);
5478 btrfs_update_inode_block_group(trans, dir);
5479 if (drop_inode)
5480 goto out_unlock;
5481
5482 path = btrfs_alloc_path();
5483 BUG_ON(!path);
5484 key.objectid = inode->i_ino;
5485 key.offset = 0;
39279cc3
CM
5486 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5487 datasize = btrfs_file_extent_calc_inline_size(name_len);
5488 err = btrfs_insert_empty_item(trans, root, path, &key,
5489 datasize);
54aa1f4d
CM
5490 if (err) {
5491 drop_inode = 1;
5492 goto out_unlock;
5493 }
5f39d397
CM
5494 leaf = path->nodes[0];
5495 ei = btrfs_item_ptr(leaf, path->slots[0],
5496 struct btrfs_file_extent_item);
5497 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5498 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5499 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5500 btrfs_set_file_extent_encryption(leaf, ei, 0);
5501 btrfs_set_file_extent_compression(leaf, ei, 0);
5502 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5503 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5504
39279cc3 5505 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5506 write_extent_buffer(leaf, symname, ptr, name_len);
5507 btrfs_mark_buffer_dirty(leaf);
39279cc3 5508 btrfs_free_path(path);
5f39d397 5509
39279cc3
CM
5510 inode->i_op = &btrfs_symlink_inode_operations;
5511 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5512 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5513 inode_set_bytes(inode, name_len);
dbe674a9 5514 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5515 err = btrfs_update_inode(trans, root, inode);
5516 if (err)
5517 drop_inode = 1;
39279cc3
CM
5518
5519out_unlock:
d3c2fdcf 5520 nr = trans->blocks_used;
ab78c84d 5521 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5522out_fail:
9ed74f2d 5523 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
5524 if (drop_inode) {
5525 inode_dec_link_count(inode);
5526 iput(inode);
5527 }
d3c2fdcf 5528 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5529 return err;
5530}
16432985 5531
546888da
CM
5532static int prealloc_file_range(struct btrfs_trans_handle *trans,
5533 struct inode *inode, u64 start, u64 end,
e980b50c 5534 u64 locked_end, u64 alloc_hint, int mode)
d899e052 5535{
d899e052
YZ
5536 struct btrfs_root *root = BTRFS_I(inode)->root;
5537 struct btrfs_key ins;
5538 u64 alloc_size;
5539 u64 cur_offset = start;
5540 u64 num_bytes = end - start;
5541 int ret = 0;
5542
d899e052
YZ
5543 while (num_bytes > 0) {
5544 alloc_size = min(num_bytes, root->fs_info->max_extent);
9ed74f2d
JB
5545
5546 ret = btrfs_reserve_metadata_space(root, 1);
5547 if (ret)
5548 goto out;
5549
d899e052
YZ
5550 ret = btrfs_reserve_extent(trans, root, alloc_size,
5551 root->sectorsize, 0, alloc_hint,
5552 (u64)-1, &ins, 1);
5553 if (ret) {
5554 WARN_ON(1);
5555 goto out;
5556 }
5557 ret = insert_reserved_file_extent(trans, inode,
5558 cur_offset, ins.objectid,
5559 ins.offset, ins.offset,
e980b50c
CM
5560 ins.offset, locked_end,
5561 0, 0, 0,
d899e052
YZ
5562 BTRFS_FILE_EXTENT_PREALLOC);
5563 BUG_ON(ret);
a1ed835e
CM
5564 btrfs_drop_extent_cache(inode, cur_offset,
5565 cur_offset + ins.offset -1, 0);
d899e052
YZ
5566 num_bytes -= ins.offset;
5567 cur_offset += ins.offset;
5568 alloc_hint = ins.objectid + ins.offset;
9ed74f2d 5569 btrfs_unreserve_metadata_space(root, 1);
d899e052
YZ
5570 }
5571out:
5572 if (cur_offset > start) {
5573 inode->i_ctime = CURRENT_TIME;
6cbff00f 5574 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052
YZ
5575 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5576 cur_offset > i_size_read(inode))
5577 btrfs_i_size_write(inode, cur_offset);
5578 ret = btrfs_update_inode(trans, root, inode);
5579 BUG_ON(ret);
5580 }
5581
d899e052
YZ
5582 return ret;
5583}
5584
5585static long btrfs_fallocate(struct inode *inode, int mode,
5586 loff_t offset, loff_t len)
5587{
5588 u64 cur_offset;
5589 u64 last_byte;
5590 u64 alloc_start;
5591 u64 alloc_end;
5592 u64 alloc_hint = 0;
e980b50c 5593 u64 locked_end;
d899e052
YZ
5594 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5595 struct extent_map *em;
546888da 5596 struct btrfs_trans_handle *trans;
a970b0a1 5597 struct btrfs_root *root;
d899e052
YZ
5598 int ret;
5599
5600 alloc_start = offset & ~mask;
5601 alloc_end = (offset + len + mask) & ~mask;
5602
546888da
CM
5603 /*
5604 * wait for ordered IO before we have any locks. We'll loop again
5605 * below with the locks held.
5606 */
5607 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5608
d899e052
YZ
5609 mutex_lock(&inode->i_mutex);
5610 if (alloc_start > inode->i_size) {
5611 ret = btrfs_cont_expand(inode, alloc_start);
5612 if (ret)
5613 goto out;
5614 }
5615
a970b0a1
JB
5616 root = BTRFS_I(inode)->root;
5617
5618 ret = btrfs_check_data_free_space(root, inode,
5619 alloc_end - alloc_start);
5620 if (ret)
5621 goto out;
5622
e980b50c 5623 locked_end = alloc_end - 1;
d899e052
YZ
5624 while (1) {
5625 struct btrfs_ordered_extent *ordered;
546888da
CM
5626
5627 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5628 if (!trans) {
5629 ret = -EIO;
a970b0a1 5630 goto out_free;
546888da
CM
5631 }
5632
5633 /* the extent lock is ordered inside the running
5634 * transaction
5635 */
e980b50c
CM
5636 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5637 GFP_NOFS);
d899e052
YZ
5638 ordered = btrfs_lookup_first_ordered_extent(inode,
5639 alloc_end - 1);
5640 if (ordered &&
5641 ordered->file_offset + ordered->len > alloc_start &&
5642 ordered->file_offset < alloc_end) {
5643 btrfs_put_ordered_extent(ordered);
5644 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5645 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5646 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5647
5648 /*
5649 * we can't wait on the range with the transaction
5650 * running or with the extent lock held
5651 */
d899e052
YZ
5652 btrfs_wait_ordered_range(inode, alloc_start,
5653 alloc_end - alloc_start);
5654 } else {
5655 if (ordered)
5656 btrfs_put_ordered_extent(ordered);
5657 break;
5658 }
5659 }
5660
5661 cur_offset = alloc_start;
5662 while (1) {
5663 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5664 alloc_end - cur_offset, 0);
5665 BUG_ON(IS_ERR(em) || !em);
5666 last_byte = min(extent_map_end(em), alloc_end);
5667 last_byte = (last_byte + mask) & ~mask;
5668 if (em->block_start == EXTENT_MAP_HOLE) {
546888da 5669 ret = prealloc_file_range(trans, inode, cur_offset,
e980b50c
CM
5670 last_byte, locked_end + 1,
5671 alloc_hint, mode);
d899e052
YZ
5672 if (ret < 0) {
5673 free_extent_map(em);
5674 break;
5675 }
5676 }
5677 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5678 alloc_hint = em->block_start;
5679 free_extent_map(em);
5680
5681 cur_offset = last_byte;
5682 if (cur_offset >= alloc_end) {
5683 ret = 0;
5684 break;
5685 }
5686 }
e980b50c 5687 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5688 GFP_NOFS);
546888da
CM
5689
5690 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
a970b0a1
JB
5691out_free:
5692 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
d899e052
YZ
5693out:
5694 mutex_unlock(&inode->i_mutex);
5695 return ret;
5696}
5697
e6dcd2dc
CM
5698static int btrfs_set_page_dirty(struct page *page)
5699{
e6dcd2dc
CM
5700 return __set_page_dirty_nobuffers(page);
5701}
5702
0ee0fda0 5703static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5704{
6cbff00f 5705 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5706 return -EACCES;
33268eaf 5707 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5708}
39279cc3
CM
5709
5710static struct inode_operations btrfs_dir_inode_operations = {
3394e160 5711 .getattr = btrfs_getattr,
39279cc3
CM
5712 .lookup = btrfs_lookup,
5713 .create = btrfs_create,
5714 .unlink = btrfs_unlink,
5715 .link = btrfs_link,
5716 .mkdir = btrfs_mkdir,
5717 .rmdir = btrfs_rmdir,
5718 .rename = btrfs_rename,
5719 .symlink = btrfs_symlink,
5720 .setattr = btrfs_setattr,
618e21d5 5721 .mknod = btrfs_mknod,
95819c05
CH
5722 .setxattr = btrfs_setxattr,
5723 .getxattr = btrfs_getxattr,
5103e947 5724 .listxattr = btrfs_listxattr,
95819c05 5725 .removexattr = btrfs_removexattr,
fdebe2bd 5726 .permission = btrfs_permission,
39279cc3 5727};
39279cc3
CM
5728static struct inode_operations btrfs_dir_ro_inode_operations = {
5729 .lookup = btrfs_lookup,
fdebe2bd 5730 .permission = btrfs_permission,
39279cc3 5731};
76dda93c 5732
39279cc3
CM
5733static struct file_operations btrfs_dir_file_operations = {
5734 .llseek = generic_file_llseek,
5735 .read = generic_read_dir,
cbdf5a24 5736 .readdir = btrfs_real_readdir,
34287aa3 5737 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5738#ifdef CONFIG_COMPAT
34287aa3 5739 .compat_ioctl = btrfs_ioctl,
39279cc3 5740#endif
6bf13c0c 5741 .release = btrfs_release_file,
e02119d5 5742 .fsync = btrfs_sync_file,
39279cc3
CM
5743};
5744
d1310b2e 5745static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5746 .fill_delalloc = run_delalloc_range,
065631f6 5747 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 5748 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 5749 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 5750 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 5751 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 5752 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
5753 .set_bit_hook = btrfs_set_bit_hook,
5754 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
5755 .merge_extent_hook = btrfs_merge_extent_hook,
5756 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
5757};
5758
35054394
CM
5759/*
5760 * btrfs doesn't support the bmap operation because swapfiles
5761 * use bmap to make a mapping of extents in the file. They assume
5762 * these extents won't change over the life of the file and they
5763 * use the bmap result to do IO directly to the drive.
5764 *
5765 * the btrfs bmap call would return logical addresses that aren't
5766 * suitable for IO and they also will change frequently as COW
5767 * operations happen. So, swapfile + btrfs == corruption.
5768 *
5769 * For now we're avoiding this by dropping bmap.
5770 */
39279cc3
CM
5771static struct address_space_operations btrfs_aops = {
5772 .readpage = btrfs_readpage,
5773 .writepage = btrfs_writepage,
b293f02e 5774 .writepages = btrfs_writepages,
3ab2fb5a 5775 .readpages = btrfs_readpages,
39279cc3 5776 .sync_page = block_sync_page,
16432985 5777 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
5778 .invalidatepage = btrfs_invalidatepage,
5779 .releasepage = btrfs_releasepage,
e6dcd2dc 5780 .set_page_dirty = btrfs_set_page_dirty,
39279cc3
CM
5781};
5782
5783static struct address_space_operations btrfs_symlink_aops = {
5784 .readpage = btrfs_readpage,
5785 .writepage = btrfs_writepage,
2bf5a725
CM
5786 .invalidatepage = btrfs_invalidatepage,
5787 .releasepage = btrfs_releasepage,
39279cc3
CM
5788};
5789
5790static struct inode_operations btrfs_file_inode_operations = {
5791 .truncate = btrfs_truncate,
5792 .getattr = btrfs_getattr,
5793 .setattr = btrfs_setattr,
95819c05
CH
5794 .setxattr = btrfs_setxattr,
5795 .getxattr = btrfs_getxattr,
5103e947 5796 .listxattr = btrfs_listxattr,
95819c05 5797 .removexattr = btrfs_removexattr,
fdebe2bd 5798 .permission = btrfs_permission,
d899e052 5799 .fallocate = btrfs_fallocate,
1506fcc8 5800 .fiemap = btrfs_fiemap,
39279cc3 5801};
618e21d5
JB
5802static struct inode_operations btrfs_special_inode_operations = {
5803 .getattr = btrfs_getattr,
5804 .setattr = btrfs_setattr,
fdebe2bd 5805 .permission = btrfs_permission,
95819c05
CH
5806 .setxattr = btrfs_setxattr,
5807 .getxattr = btrfs_getxattr,
33268eaf 5808 .listxattr = btrfs_listxattr,
95819c05 5809 .removexattr = btrfs_removexattr,
618e21d5 5810};
39279cc3
CM
5811static struct inode_operations btrfs_symlink_inode_operations = {
5812 .readlink = generic_readlink,
5813 .follow_link = page_follow_link_light,
5814 .put_link = page_put_link,
fdebe2bd 5815 .permission = btrfs_permission,
0279b4cd
JO
5816 .setxattr = btrfs_setxattr,
5817 .getxattr = btrfs_getxattr,
5818 .listxattr = btrfs_listxattr,
5819 .removexattr = btrfs_removexattr,
39279cc3 5820};
76dda93c
YZ
5821
5822struct dentry_operations btrfs_dentry_operations = {
5823 .d_delete = btrfs_dentry_delete,
5824};