Btrfs: kill trans_mutex
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
39279cc3
CM
54
55struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58};
59
6e1d5dcc
AD
60static const struct inode_operations btrfs_dir_inode_operations;
61static const struct inode_operations btrfs_symlink_inode_operations;
62static const struct inode_operations btrfs_dir_ro_inode_operations;
63static const struct inode_operations btrfs_special_inode_operations;
64static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
65static const struct address_space_operations btrfs_aops;
66static const struct address_space_operations btrfs_symlink_aops;
828c0950 67static const struct file_operations btrfs_dir_file_operations;
d1310b2e 68static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
69
70static struct kmem_cache *btrfs_inode_cachep;
71struct kmem_cache *btrfs_trans_handle_cachep;
72struct kmem_cache *btrfs_transaction_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
77static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
a41ad394
JB
87static int btrfs_setsize(struct inode *inode, loff_t newsize);
88static int btrfs_truncate(struct inode *inode);
c8b97818 89static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
7b128766 94
f34f57a3 95static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
96 struct inode *inode, struct inode *dir,
97 const struct qstr *qstr)
0279b4cd
JO
98{
99 int err;
100
f34f57a3 101 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 102 if (!err)
2a7dba39 103 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
104 return err;
105}
106
c8b97818
CM
107/*
108 * this does all the hard work for inserting an inline extent into
109 * the btree. The caller should have done a btrfs_drop_extents so that
110 * no overlapping inline items exist in the btree
111 */
d397712b 112static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
113 struct btrfs_root *root, struct inode *inode,
114 u64 start, size_t size, size_t compressed_size,
fe3f566c 115 int compress_type,
c8b97818
CM
116 struct page **compressed_pages)
117{
118 struct btrfs_key key;
119 struct btrfs_path *path;
120 struct extent_buffer *leaf;
121 struct page *page = NULL;
122 char *kaddr;
123 unsigned long ptr;
124 struct btrfs_file_extent_item *ei;
125 int err = 0;
126 int ret;
127 size_t cur_size = size;
128 size_t datasize;
129 unsigned long offset;
c8b97818 130
fe3f566c 131 if (compressed_size && compressed_pages)
c8b97818 132 cur_size = compressed_size;
c8b97818 133
d397712b
CM
134 path = btrfs_alloc_path();
135 if (!path)
c8b97818
CM
136 return -ENOMEM;
137
b9473439 138 path->leave_spinning = 1;
c8b97818
CM
139 btrfs_set_trans_block_group(trans, inode);
140
141 key.objectid = inode->i_ino;
142 key.offset = start;
143 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
144 datasize = btrfs_file_extent_calc_inline_size(cur_size);
145
146 inode_add_bytes(inode, size);
147 ret = btrfs_insert_empty_item(trans, root, path, &key,
148 datasize);
149 BUG_ON(ret);
150 if (ret) {
151 err = ret;
c8b97818
CM
152 goto fail;
153 }
154 leaf = path->nodes[0];
155 ei = btrfs_item_ptr(leaf, path->slots[0],
156 struct btrfs_file_extent_item);
157 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
158 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
159 btrfs_set_file_extent_encryption(leaf, ei, 0);
160 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
161 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
162 ptr = btrfs_file_extent_inline_start(ei);
163
261507a0 164 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
165 struct page *cpage;
166 int i = 0;
d397712b 167 while (compressed_size > 0) {
c8b97818 168 cpage = compressed_pages[i];
5b050f04 169 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
170 PAGE_CACHE_SIZE);
171
b9473439 172 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 173 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 174 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
175
176 i++;
177 ptr += cur_size;
178 compressed_size -= cur_size;
179 }
180 btrfs_set_file_extent_compression(leaf, ei,
261507a0 181 compress_type);
c8b97818
CM
182 } else {
183 page = find_get_page(inode->i_mapping,
184 start >> PAGE_CACHE_SHIFT);
185 btrfs_set_file_extent_compression(leaf, ei, 0);
186 kaddr = kmap_atomic(page, KM_USER0);
187 offset = start & (PAGE_CACHE_SIZE - 1);
188 write_extent_buffer(leaf, kaddr + offset, ptr, size);
189 kunmap_atomic(kaddr, KM_USER0);
190 page_cache_release(page);
191 }
192 btrfs_mark_buffer_dirty(leaf);
193 btrfs_free_path(path);
194
c2167754
YZ
195 /*
196 * we're an inline extent, so nobody can
197 * extend the file past i_size without locking
198 * a page we already have locked.
199 *
200 * We must do any isize and inode updates
201 * before we unlock the pages. Otherwise we
202 * could end up racing with unlink.
203 */
c8b97818
CM
204 BTRFS_I(inode)->disk_i_size = inode->i_size;
205 btrfs_update_inode(trans, root, inode);
c2167754 206
c8b97818
CM
207 return 0;
208fail:
209 btrfs_free_path(path);
210 return err;
211}
212
213
214/*
215 * conditionally insert an inline extent into the file. This
216 * does the checks required to make sure the data is small enough
217 * to fit as an inline extent.
218 */
7f366cfe 219static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
220 struct btrfs_root *root,
221 struct inode *inode, u64 start, u64 end,
fe3f566c 222 size_t compressed_size, int compress_type,
c8b97818
CM
223 struct page **compressed_pages)
224{
225 u64 isize = i_size_read(inode);
226 u64 actual_end = min(end + 1, isize);
227 u64 inline_len = actual_end - start;
228 u64 aligned_end = (end + root->sectorsize - 1) &
229 ~((u64)root->sectorsize - 1);
230 u64 hint_byte;
231 u64 data_len = inline_len;
232 int ret;
233
234 if (compressed_size)
235 data_len = compressed_size;
236
237 if (start > 0 ||
70b99e69 238 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
239 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
240 (!compressed_size &&
241 (actual_end & (root->sectorsize - 1)) == 0) ||
242 end + 1 < isize ||
243 data_len > root->fs_info->max_inline) {
244 return 1;
245 }
246
920bbbfb 247 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 248 &hint_byte, 1);
c8b97818
CM
249 BUG_ON(ret);
250
251 if (isize > actual_end)
252 inline_len = min_t(u64, isize, actual_end);
253 ret = insert_inline_extent(trans, root, inode, start,
254 inline_len, compressed_size,
fe3f566c 255 compress_type, compressed_pages);
c8b97818 256 BUG_ON(ret);
0ca1f7ce 257 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 258 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
259 return 0;
260}
261
771ed689
CM
262struct async_extent {
263 u64 start;
264 u64 ram_size;
265 u64 compressed_size;
266 struct page **pages;
267 unsigned long nr_pages;
261507a0 268 int compress_type;
771ed689
CM
269 struct list_head list;
270};
271
272struct async_cow {
273 struct inode *inode;
274 struct btrfs_root *root;
275 struct page *locked_page;
276 u64 start;
277 u64 end;
278 struct list_head extents;
279 struct btrfs_work work;
280};
281
282static noinline int add_async_extent(struct async_cow *cow,
283 u64 start, u64 ram_size,
284 u64 compressed_size,
285 struct page **pages,
261507a0
LZ
286 unsigned long nr_pages,
287 int compress_type)
771ed689
CM
288{
289 struct async_extent *async_extent;
290
291 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 292 BUG_ON(!async_extent);
771ed689
CM
293 async_extent->start = start;
294 async_extent->ram_size = ram_size;
295 async_extent->compressed_size = compressed_size;
296 async_extent->pages = pages;
297 async_extent->nr_pages = nr_pages;
261507a0 298 async_extent->compress_type = compress_type;
771ed689
CM
299 list_add_tail(&async_extent->list, &cow->extents);
300 return 0;
301}
302
d352ac68 303/*
771ed689
CM
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
c8b97818 307 *
771ed689
CM
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
c8b97818 313 *
771ed689
CM
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
d352ac68 318 */
771ed689
CM
319static noinline int compress_file_range(struct inode *inode,
320 struct page *locked_page,
321 u64 start, u64 end,
322 struct async_cow *async_cow,
323 int *num_added)
b888db2b
CM
324{
325 struct btrfs_root *root = BTRFS_I(inode)->root;
326 struct btrfs_trans_handle *trans;
db94535d 327 u64 num_bytes;
db94535d 328 u64 blocksize = root->sectorsize;
c8b97818 329 u64 actual_end;
42dc7bab 330 u64 isize = i_size_read(inode);
e6dcd2dc 331 int ret = 0;
c8b97818
CM
332 struct page **pages = NULL;
333 unsigned long nr_pages;
334 unsigned long nr_pages_ret = 0;
335 unsigned long total_compressed = 0;
336 unsigned long total_in = 0;
337 unsigned long max_compressed = 128 * 1024;
771ed689 338 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
339 int i;
340 int will_compress;
261507a0 341 int compress_type = root->fs_info->compress_type;
b888db2b 342
42dc7bab 343 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
344again:
345 will_compress = 0;
346 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 348
f03d9301
CM
349 /*
350 * we don't want to send crud past the end of i_size through
351 * compression, that's just a waste of CPU time. So, if the
352 * end of the file is before the start of our current
353 * requested range of bytes, we bail out to the uncompressed
354 * cleanup code that can deal with all of this.
355 *
356 * It isn't really the fastest way to fix things, but this is a
357 * very uncommon corner.
358 */
359 if (actual_end <= start)
360 goto cleanup_and_bail_uncompressed;
361
c8b97818
CM
362 total_compressed = actual_end - start;
363
364 /* we want to make sure that amount of ram required to uncompress
365 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
366 * of a compressed extent to 128k. This is a crucial number
367 * because it also controls how easily we can spread reads across
368 * cpus for decompression.
369 *
370 * We also want to make sure the amount of IO required to do
371 * a random read is reasonably small, so we limit the size of
372 * a compressed extent to 128k.
c8b97818
CM
373 */
374 total_compressed = min(total_compressed, max_uncompressed);
db94535d 375 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 376 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
377 total_in = 0;
378 ret = 0;
db94535d 379
771ed689
CM
380 /*
381 * we do compression for mount -o compress and when the
382 * inode has not been flagged as nocompress. This flag can
383 * change at any time if we discover bad compression ratios.
c8b97818 384 */
6cbff00f 385 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 386 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
387 (BTRFS_I(inode)->force_compress) ||
388 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 389 WARN_ON(pages);
cfbc246e 390 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 391 BUG_ON(!pages);
c8b97818 392
261507a0
LZ
393 if (BTRFS_I(inode)->force_compress)
394 compress_type = BTRFS_I(inode)->force_compress;
395
396 ret = btrfs_compress_pages(compress_type,
397 inode->i_mapping, start,
398 total_compressed, pages,
399 nr_pages, &nr_pages_ret,
400 &total_in,
401 &total_compressed,
402 max_compressed);
c8b97818
CM
403
404 if (!ret) {
405 unsigned long offset = total_compressed &
406 (PAGE_CACHE_SIZE - 1);
407 struct page *page = pages[nr_pages_ret - 1];
408 char *kaddr;
409
410 /* zero the tail end of the last page, we might be
411 * sending it down to disk
412 */
413 if (offset) {
414 kaddr = kmap_atomic(page, KM_USER0);
415 memset(kaddr + offset, 0,
416 PAGE_CACHE_SIZE - offset);
417 kunmap_atomic(kaddr, KM_USER0);
418 }
419 will_compress = 1;
420 }
421 }
422 if (start == 0) {
7a7eaa40 423 trans = btrfs_join_transaction(root);
3612b495 424 BUG_ON(IS_ERR(trans));
771ed689 425 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 426 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 427
c8b97818 428 /* lets try to make an inline extent */
771ed689 429 if (ret || total_in < (actual_end - start)) {
c8b97818 430 /* we didn't compress the entire range, try
771ed689 431 * to make an uncompressed inline extent.
c8b97818
CM
432 */
433 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 434 start, end, 0, 0, NULL);
c8b97818 435 } else {
771ed689 436 /* try making a compressed inline extent */
c8b97818
CM
437 ret = cow_file_range_inline(trans, root, inode,
438 start, end,
fe3f566c
LZ
439 total_compressed,
440 compress_type, pages);
c8b97818
CM
441 }
442 if (ret == 0) {
771ed689
CM
443 /*
444 * inline extent creation worked, we don't need
445 * to create any more async work items. Unlock
446 * and free up our temp pages.
447 */
c8b97818 448 extent_clear_unlock_delalloc(inode,
a791e35e
CM
449 &BTRFS_I(inode)->io_tree,
450 start, end, NULL,
451 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 452 EXTENT_CLEAR_DELALLOC |
a791e35e 453 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
454
455 btrfs_end_transaction(trans, root);
c8b97818
CM
456 goto free_pages_out;
457 }
c2167754 458 btrfs_end_transaction(trans, root);
c8b97818
CM
459 }
460
461 if (will_compress) {
462 /*
463 * we aren't doing an inline extent round the compressed size
464 * up to a block size boundary so the allocator does sane
465 * things
466 */
467 total_compressed = (total_compressed + blocksize - 1) &
468 ~(blocksize - 1);
469
470 /*
471 * one last check to make sure the compression is really a
472 * win, compare the page count read with the blocks on disk
473 */
474 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475 ~(PAGE_CACHE_SIZE - 1);
476 if (total_compressed >= total_in) {
477 will_compress = 0;
478 } else {
c8b97818
CM
479 num_bytes = total_in;
480 }
481 }
482 if (!will_compress && pages) {
483 /*
484 * the compression code ran but failed to make things smaller,
485 * free any pages it allocated and our page pointer array
486 */
487 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 488 WARN_ON(pages[i]->mapping);
c8b97818
CM
489 page_cache_release(pages[i]);
490 }
491 kfree(pages);
492 pages = NULL;
493 total_compressed = 0;
494 nr_pages_ret = 0;
495
496 /* flag the file so we don't compress in the future */
1e701a32
CM
497 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498 !(BTRFS_I(inode)->force_compress)) {
a555f810 499 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 500 }
c8b97818 501 }
771ed689
CM
502 if (will_compress) {
503 *num_added += 1;
c8b97818 504
771ed689
CM
505 /* the async work queues will take care of doing actual
506 * allocation on disk for these compressed pages,
507 * and will submit them to the elevator.
508 */
509 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
510 total_compressed, pages, nr_pages_ret,
511 compress_type);
179e29e4 512
24ae6365 513 if (start + num_bytes < end) {
771ed689
CM
514 start += num_bytes;
515 pages = NULL;
516 cond_resched();
517 goto again;
518 }
519 } else {
f03d9301 520cleanup_and_bail_uncompressed:
771ed689
CM
521 /*
522 * No compression, but we still need to write the pages in
523 * the file we've been given so far. redirty the locked
524 * page if it corresponds to our extent and set things up
525 * for the async work queue to run cow_file_range to do
526 * the normal delalloc dance
527 */
528 if (page_offset(locked_page) >= start &&
529 page_offset(locked_page) <= end) {
530 __set_page_dirty_nobuffers(locked_page);
531 /* unlocked later on in the async handlers */
532 }
261507a0
LZ
533 add_async_extent(async_cow, start, end - start + 1,
534 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
535 *num_added += 1;
536 }
3b951516 537
771ed689
CM
538out:
539 return 0;
540
541free_pages_out:
542 for (i = 0; i < nr_pages_ret; i++) {
543 WARN_ON(pages[i]->mapping);
544 page_cache_release(pages[i]);
545 }
d397712b 546 kfree(pages);
771ed689
CM
547
548 goto out;
549}
550
551/*
552 * phase two of compressed writeback. This is the ordered portion
553 * of the code, which only gets called in the order the work was
554 * queued. We walk all the async extents created by compress_file_range
555 * and send them down to the disk.
556 */
557static noinline int submit_compressed_extents(struct inode *inode,
558 struct async_cow *async_cow)
559{
560 struct async_extent *async_extent;
561 u64 alloc_hint = 0;
562 struct btrfs_trans_handle *trans;
563 struct btrfs_key ins;
564 struct extent_map *em;
565 struct btrfs_root *root = BTRFS_I(inode)->root;
566 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567 struct extent_io_tree *io_tree;
f5a84ee3 568 int ret = 0;
771ed689
CM
569
570 if (list_empty(&async_cow->extents))
571 return 0;
572
771ed689 573
d397712b 574 while (!list_empty(&async_cow->extents)) {
771ed689
CM
575 async_extent = list_entry(async_cow->extents.next,
576 struct async_extent, list);
577 list_del(&async_extent->list);
c8b97818 578
771ed689
CM
579 io_tree = &BTRFS_I(inode)->io_tree;
580
f5a84ee3 581retry:
771ed689
CM
582 /* did the compression code fall back to uncompressed IO? */
583 if (!async_extent->pages) {
584 int page_started = 0;
585 unsigned long nr_written = 0;
586
587 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
588 async_extent->start +
589 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
590
591 /* allocate blocks */
f5a84ee3
JB
592 ret = cow_file_range(inode, async_cow->locked_page,
593 async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1,
596 &page_started, &nr_written, 0);
771ed689
CM
597
598 /*
599 * if page_started, cow_file_range inserted an
600 * inline extent and took care of all the unlocking
601 * and IO for us. Otherwise, we need to submit
602 * all those pages down to the drive.
603 */
f5a84ee3 604 if (!page_started && !ret)
771ed689
CM
605 extent_write_locked_range(io_tree,
606 inode, async_extent->start,
d397712b 607 async_extent->start +
771ed689
CM
608 async_extent->ram_size - 1,
609 btrfs_get_extent,
610 WB_SYNC_ALL);
611 kfree(async_extent);
612 cond_resched();
613 continue;
614 }
615
616 lock_extent(io_tree, async_extent->start,
617 async_extent->start + async_extent->ram_size - 1,
618 GFP_NOFS);
771ed689 619
7a7eaa40 620 trans = btrfs_join_transaction(root);
3612b495 621 BUG_ON(IS_ERR(trans));
74b21075 622 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
623 ret = btrfs_reserve_extent(trans, root,
624 async_extent->compressed_size,
625 async_extent->compressed_size,
626 0, alloc_hint,
627 (u64)-1, &ins, 1);
c2167754
YZ
628 btrfs_end_transaction(trans, root);
629
f5a84ee3
JB
630 if (ret) {
631 int i;
632 for (i = 0; i < async_extent->nr_pages; i++) {
633 WARN_ON(async_extent->pages[i]->mapping);
634 page_cache_release(async_extent->pages[i]);
635 }
636 kfree(async_extent->pages);
637 async_extent->nr_pages = 0;
638 async_extent->pages = NULL;
639 unlock_extent(io_tree, async_extent->start,
640 async_extent->start +
641 async_extent->ram_size - 1, GFP_NOFS);
642 goto retry;
643 }
644
c2167754
YZ
645 /*
646 * here we're doing allocation and writeback of the
647 * compressed pages
648 */
649 btrfs_drop_extent_cache(inode, async_extent->start,
650 async_extent->start +
651 async_extent->ram_size - 1, 0);
652
771ed689 653 em = alloc_extent_map(GFP_NOFS);
c26a9203 654 BUG_ON(!em);
771ed689
CM
655 em->start = async_extent->start;
656 em->len = async_extent->ram_size;
445a6944 657 em->orig_start = em->start;
c8b97818 658
771ed689
CM
659 em->block_start = ins.objectid;
660 em->block_len = ins.offset;
661 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 662 em->compress_type = async_extent->compress_type;
771ed689
CM
663 set_bit(EXTENT_FLAG_PINNED, &em->flags);
664 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
665
d397712b 666 while (1) {
890871be 667 write_lock(&em_tree->lock);
771ed689 668 ret = add_extent_mapping(em_tree, em);
890871be 669 write_unlock(&em_tree->lock);
771ed689
CM
670 if (ret != -EEXIST) {
671 free_extent_map(em);
672 break;
673 }
674 btrfs_drop_extent_cache(inode, async_extent->start,
675 async_extent->start +
676 async_extent->ram_size - 1, 0);
677 }
678
261507a0
LZ
679 ret = btrfs_add_ordered_extent_compress(inode,
680 async_extent->start,
681 ins.objectid,
682 async_extent->ram_size,
683 ins.offset,
684 BTRFS_ORDERED_COMPRESSED,
685 async_extent->compress_type);
771ed689
CM
686 BUG_ON(ret);
687
771ed689
CM
688 /*
689 * clear dirty, set writeback and unlock the pages.
690 */
691 extent_clear_unlock_delalloc(inode,
a791e35e
CM
692 &BTRFS_I(inode)->io_tree,
693 async_extent->start,
694 async_extent->start +
695 async_extent->ram_size - 1,
696 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
697 EXTENT_CLEAR_UNLOCK |
a3429ab7 698 EXTENT_CLEAR_DELALLOC |
a791e35e 699 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
700
701 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
702 async_extent->start,
703 async_extent->ram_size,
704 ins.objectid,
705 ins.offset, async_extent->pages,
706 async_extent->nr_pages);
771ed689
CM
707
708 BUG_ON(ret);
771ed689
CM
709 alloc_hint = ins.objectid + ins.offset;
710 kfree(async_extent);
711 cond_resched();
712 }
713
771ed689
CM
714 return 0;
715}
716
4b46fce2
JB
717static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
718 u64 num_bytes)
719{
720 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
721 struct extent_map *em;
722 u64 alloc_hint = 0;
723
724 read_lock(&em_tree->lock);
725 em = search_extent_mapping(em_tree, start, num_bytes);
726 if (em) {
727 /*
728 * if block start isn't an actual block number then find the
729 * first block in this inode and use that as a hint. If that
730 * block is also bogus then just don't worry about it.
731 */
732 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
733 free_extent_map(em);
734 em = search_extent_mapping(em_tree, 0, 0);
735 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
736 alloc_hint = em->block_start;
737 if (em)
738 free_extent_map(em);
739 } else {
740 alloc_hint = em->block_start;
741 free_extent_map(em);
742 }
743 }
744 read_unlock(&em_tree->lock);
745
746 return alloc_hint;
747}
748
771ed689
CM
749/*
750 * when extent_io.c finds a delayed allocation range in the file,
751 * the call backs end up in this code. The basic idea is to
752 * allocate extents on disk for the range, and create ordered data structs
753 * in ram to track those extents.
754 *
755 * locked_page is the page that writepage had locked already. We use
756 * it to make sure we don't do extra locks or unlocks.
757 *
758 * *page_started is set to one if we unlock locked_page and do everything
759 * required to start IO on it. It may be clean and already done with
760 * IO when we return.
761 */
762static noinline int cow_file_range(struct inode *inode,
763 struct page *locked_page,
764 u64 start, u64 end, int *page_started,
765 unsigned long *nr_written,
766 int unlock)
767{
768 struct btrfs_root *root = BTRFS_I(inode)->root;
769 struct btrfs_trans_handle *trans;
770 u64 alloc_hint = 0;
771 u64 num_bytes;
772 unsigned long ram_size;
773 u64 disk_num_bytes;
774 u64 cur_alloc_size;
775 u64 blocksize = root->sectorsize;
771ed689
CM
776 struct btrfs_key ins;
777 struct extent_map *em;
778 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
779 int ret = 0;
780
0cb59c99 781 BUG_ON(root == root->fs_info->tree_root);
7a7eaa40 782 trans = btrfs_join_transaction(root);
3612b495 783 BUG_ON(IS_ERR(trans));
771ed689 784 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 785 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 786
771ed689
CM
787 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
788 num_bytes = max(blocksize, num_bytes);
789 disk_num_bytes = num_bytes;
790 ret = 0;
791
792 if (start == 0) {
793 /* lets try to make an inline extent */
794 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 795 start, end, 0, 0, NULL);
771ed689
CM
796 if (ret == 0) {
797 extent_clear_unlock_delalloc(inode,
a791e35e
CM
798 &BTRFS_I(inode)->io_tree,
799 start, end, NULL,
800 EXTENT_CLEAR_UNLOCK_PAGE |
801 EXTENT_CLEAR_UNLOCK |
802 EXTENT_CLEAR_DELALLOC |
803 EXTENT_CLEAR_DIRTY |
804 EXTENT_SET_WRITEBACK |
805 EXTENT_END_WRITEBACK);
c2167754 806
771ed689
CM
807 *nr_written = *nr_written +
808 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
809 *page_started = 1;
810 ret = 0;
811 goto out;
812 }
813 }
814
815 BUG_ON(disk_num_bytes >
816 btrfs_super_total_bytes(&root->fs_info->super_copy));
817
4b46fce2 818 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
819 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
820
d397712b 821 while (disk_num_bytes > 0) {
a791e35e
CM
822 unsigned long op;
823
287a0ab9 824 cur_alloc_size = disk_num_bytes;
e6dcd2dc 825 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 826 root->sectorsize, 0, alloc_hint,
e6dcd2dc 827 (u64)-1, &ins, 1);
d397712b
CM
828 BUG_ON(ret);
829
e6dcd2dc 830 em = alloc_extent_map(GFP_NOFS);
c26a9203 831 BUG_ON(!em);
e6dcd2dc 832 em->start = start;
445a6944 833 em->orig_start = em->start;
771ed689
CM
834 ram_size = ins.offset;
835 em->len = ins.offset;
c8b97818 836
e6dcd2dc 837 em->block_start = ins.objectid;
c8b97818 838 em->block_len = ins.offset;
e6dcd2dc 839 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 840 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 841
d397712b 842 while (1) {
890871be 843 write_lock(&em_tree->lock);
e6dcd2dc 844 ret = add_extent_mapping(em_tree, em);
890871be 845 write_unlock(&em_tree->lock);
e6dcd2dc
CM
846 if (ret != -EEXIST) {
847 free_extent_map(em);
848 break;
849 }
850 btrfs_drop_extent_cache(inode, start,
c8b97818 851 start + ram_size - 1, 0);
e6dcd2dc
CM
852 }
853
98d20f67 854 cur_alloc_size = ins.offset;
e6dcd2dc 855 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 856 ram_size, cur_alloc_size, 0);
e6dcd2dc 857 BUG_ON(ret);
c8b97818 858
17d217fe
YZ
859 if (root->root_key.objectid ==
860 BTRFS_DATA_RELOC_TREE_OBJECTID) {
861 ret = btrfs_reloc_clone_csums(inode, start,
862 cur_alloc_size);
863 BUG_ON(ret);
864 }
865
d397712b 866 if (disk_num_bytes < cur_alloc_size)
3b951516 867 break;
d397712b 868
c8b97818
CM
869 /* we're not doing compressed IO, don't unlock the first
870 * page (which the caller expects to stay locked), don't
871 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
872 *
873 * Do set the Private2 bit so we know this page was properly
874 * setup for writepage
c8b97818 875 */
a791e35e
CM
876 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
877 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
878 EXTENT_SET_PRIVATE2;
879
c8b97818
CM
880 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
881 start, start + ram_size - 1,
a791e35e 882 locked_page, op);
c8b97818 883 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
884 num_bytes -= cur_alloc_size;
885 alloc_hint = ins.objectid + ins.offset;
886 start += cur_alloc_size;
b888db2b 887 }
b888db2b 888out:
771ed689 889 ret = 0;
b888db2b 890 btrfs_end_transaction(trans, root);
c8b97818 891
be20aa9d 892 return ret;
771ed689 893}
c8b97818 894
771ed689
CM
895/*
896 * work queue call back to started compression on a file and pages
897 */
898static noinline void async_cow_start(struct btrfs_work *work)
899{
900 struct async_cow *async_cow;
901 int num_added = 0;
902 async_cow = container_of(work, struct async_cow, work);
903
904 compress_file_range(async_cow->inode, async_cow->locked_page,
905 async_cow->start, async_cow->end, async_cow,
906 &num_added);
907 if (num_added == 0)
908 async_cow->inode = NULL;
909}
910
911/*
912 * work queue call back to submit previously compressed pages
913 */
914static noinline void async_cow_submit(struct btrfs_work *work)
915{
916 struct async_cow *async_cow;
917 struct btrfs_root *root;
918 unsigned long nr_pages;
919
920 async_cow = container_of(work, struct async_cow, work);
921
922 root = async_cow->root;
923 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
924 PAGE_CACHE_SHIFT;
925
926 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
927
928 if (atomic_read(&root->fs_info->async_delalloc_pages) <
929 5 * 1042 * 1024 &&
930 waitqueue_active(&root->fs_info->async_submit_wait))
931 wake_up(&root->fs_info->async_submit_wait);
932
d397712b 933 if (async_cow->inode)
771ed689 934 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 935}
c8b97818 936
771ed689
CM
937static noinline void async_cow_free(struct btrfs_work *work)
938{
939 struct async_cow *async_cow;
940 async_cow = container_of(work, struct async_cow, work);
941 kfree(async_cow);
942}
943
944static int cow_file_range_async(struct inode *inode, struct page *locked_page,
945 u64 start, u64 end, int *page_started,
946 unsigned long *nr_written)
947{
948 struct async_cow *async_cow;
949 struct btrfs_root *root = BTRFS_I(inode)->root;
950 unsigned long nr_pages;
951 u64 cur_end;
952 int limit = 10 * 1024 * 1042;
953
a3429ab7
CM
954 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
955 1, 0, NULL, GFP_NOFS);
d397712b 956 while (start < end) {
771ed689 957 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 958 BUG_ON(!async_cow);
771ed689
CM
959 async_cow->inode = inode;
960 async_cow->root = root;
961 async_cow->locked_page = locked_page;
962 async_cow->start = start;
963
6cbff00f 964 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
965 cur_end = end;
966 else
967 cur_end = min(end, start + 512 * 1024 - 1);
968
969 async_cow->end = cur_end;
970 INIT_LIST_HEAD(&async_cow->extents);
971
972 async_cow->work.func = async_cow_start;
973 async_cow->work.ordered_func = async_cow_submit;
974 async_cow->work.ordered_free = async_cow_free;
975 async_cow->work.flags = 0;
976
771ed689
CM
977 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
978 PAGE_CACHE_SHIFT;
979 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
980
981 btrfs_queue_worker(&root->fs_info->delalloc_workers,
982 &async_cow->work);
983
984 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
985 wait_event(root->fs_info->async_submit_wait,
986 (atomic_read(&root->fs_info->async_delalloc_pages) <
987 limit));
988 }
989
d397712b 990 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
991 atomic_read(&root->fs_info->async_delalloc_pages)) {
992 wait_event(root->fs_info->async_submit_wait,
993 (atomic_read(&root->fs_info->async_delalloc_pages) ==
994 0));
995 }
996
997 *nr_written += nr_pages;
998 start = cur_end + 1;
999 }
1000 *page_started = 1;
1001 return 0;
be20aa9d
CM
1002}
1003
d397712b 1004static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1005 u64 bytenr, u64 num_bytes)
1006{
1007 int ret;
1008 struct btrfs_ordered_sum *sums;
1009 LIST_HEAD(list);
1010
07d400a6
YZ
1011 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1012 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1013 if (ret == 0 && list_empty(&list))
1014 return 0;
1015
1016 while (!list_empty(&list)) {
1017 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1018 list_del(&sums->list);
1019 kfree(sums);
1020 }
1021 return 1;
1022}
1023
d352ac68
CM
1024/*
1025 * when nowcow writeback call back. This checks for snapshots or COW copies
1026 * of the extents that exist in the file, and COWs the file as required.
1027 *
1028 * If no cow copies or snapshots exist, we write directly to the existing
1029 * blocks on disk
1030 */
7f366cfe
CM
1031static noinline int run_delalloc_nocow(struct inode *inode,
1032 struct page *locked_page,
771ed689
CM
1033 u64 start, u64 end, int *page_started, int force,
1034 unsigned long *nr_written)
be20aa9d 1035{
be20aa9d 1036 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1037 struct btrfs_trans_handle *trans;
be20aa9d 1038 struct extent_buffer *leaf;
be20aa9d 1039 struct btrfs_path *path;
80ff3856 1040 struct btrfs_file_extent_item *fi;
be20aa9d 1041 struct btrfs_key found_key;
80ff3856
YZ
1042 u64 cow_start;
1043 u64 cur_offset;
1044 u64 extent_end;
5d4f98a2 1045 u64 extent_offset;
80ff3856
YZ
1046 u64 disk_bytenr;
1047 u64 num_bytes;
1048 int extent_type;
1049 int ret;
d899e052 1050 int type;
80ff3856
YZ
1051 int nocow;
1052 int check_prev = 1;
0cb59c99 1053 bool nolock = false;
be20aa9d
CM
1054
1055 path = btrfs_alloc_path();
1056 BUG_ON(!path);
0cb59c99
JB
1057 if (root == root->fs_info->tree_root) {
1058 nolock = true;
7a7eaa40 1059 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1060 } else {
7a7eaa40 1061 trans = btrfs_join_transaction(root);
0cb59c99 1062 }
3612b495 1063 BUG_ON(IS_ERR(trans));
74b21075 1064 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1065
80ff3856
YZ
1066 cow_start = (u64)-1;
1067 cur_offset = start;
1068 while (1) {
1069 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1070 cur_offset, 0);
1071 BUG_ON(ret < 0);
1072 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1073 leaf = path->nodes[0];
1074 btrfs_item_key_to_cpu(leaf, &found_key,
1075 path->slots[0] - 1);
1076 if (found_key.objectid == inode->i_ino &&
1077 found_key.type == BTRFS_EXTENT_DATA_KEY)
1078 path->slots[0]--;
1079 }
1080 check_prev = 0;
1081next_slot:
1082 leaf = path->nodes[0];
1083 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1084 ret = btrfs_next_leaf(root, path);
1085 if (ret < 0)
1086 BUG_ON(1);
1087 if (ret > 0)
1088 break;
1089 leaf = path->nodes[0];
1090 }
be20aa9d 1091
80ff3856
YZ
1092 nocow = 0;
1093 disk_bytenr = 0;
17d217fe 1094 num_bytes = 0;
80ff3856
YZ
1095 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1096
1097 if (found_key.objectid > inode->i_ino ||
1098 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1099 found_key.offset > end)
1100 break;
1101
1102 if (found_key.offset > cur_offset) {
1103 extent_end = found_key.offset;
e9061e21 1104 extent_type = 0;
80ff3856
YZ
1105 goto out_check;
1106 }
1107
1108 fi = btrfs_item_ptr(leaf, path->slots[0],
1109 struct btrfs_file_extent_item);
1110 extent_type = btrfs_file_extent_type(leaf, fi);
1111
d899e052
YZ
1112 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1113 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1114 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1115 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1116 extent_end = found_key.offset +
1117 btrfs_file_extent_num_bytes(leaf, fi);
1118 if (extent_end <= start) {
1119 path->slots[0]++;
1120 goto next_slot;
1121 }
17d217fe
YZ
1122 if (disk_bytenr == 0)
1123 goto out_check;
80ff3856
YZ
1124 if (btrfs_file_extent_compression(leaf, fi) ||
1125 btrfs_file_extent_encryption(leaf, fi) ||
1126 btrfs_file_extent_other_encoding(leaf, fi))
1127 goto out_check;
d899e052
YZ
1128 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1129 goto out_check;
d2fb3437 1130 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1131 goto out_check;
17d217fe 1132 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1133 found_key.offset -
1134 extent_offset, disk_bytenr))
17d217fe 1135 goto out_check;
5d4f98a2 1136 disk_bytenr += extent_offset;
17d217fe
YZ
1137 disk_bytenr += cur_offset - found_key.offset;
1138 num_bytes = min(end + 1, extent_end) - cur_offset;
1139 /*
1140 * force cow if csum exists in the range.
1141 * this ensure that csum for a given extent are
1142 * either valid or do not exist.
1143 */
1144 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1145 goto out_check;
80ff3856
YZ
1146 nocow = 1;
1147 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1148 extent_end = found_key.offset +
1149 btrfs_file_extent_inline_len(leaf, fi);
1150 extent_end = ALIGN(extent_end, root->sectorsize);
1151 } else {
1152 BUG_ON(1);
1153 }
1154out_check:
1155 if (extent_end <= start) {
1156 path->slots[0]++;
1157 goto next_slot;
1158 }
1159 if (!nocow) {
1160 if (cow_start == (u64)-1)
1161 cow_start = cur_offset;
1162 cur_offset = extent_end;
1163 if (cur_offset > end)
1164 break;
1165 path->slots[0]++;
1166 goto next_slot;
7ea394f1
YZ
1167 }
1168
1169 btrfs_release_path(root, path);
80ff3856
YZ
1170 if (cow_start != (u64)-1) {
1171 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1172 found_key.offset - 1, page_started,
1173 nr_written, 1);
80ff3856
YZ
1174 BUG_ON(ret);
1175 cow_start = (u64)-1;
7ea394f1 1176 }
80ff3856 1177
d899e052
YZ
1178 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1179 struct extent_map *em;
1180 struct extent_map_tree *em_tree;
1181 em_tree = &BTRFS_I(inode)->extent_tree;
1182 em = alloc_extent_map(GFP_NOFS);
c26a9203 1183 BUG_ON(!em);
d899e052 1184 em->start = cur_offset;
445a6944 1185 em->orig_start = em->start;
d899e052
YZ
1186 em->len = num_bytes;
1187 em->block_len = num_bytes;
1188 em->block_start = disk_bytenr;
1189 em->bdev = root->fs_info->fs_devices->latest_bdev;
1190 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1191 while (1) {
890871be 1192 write_lock(&em_tree->lock);
d899e052 1193 ret = add_extent_mapping(em_tree, em);
890871be 1194 write_unlock(&em_tree->lock);
d899e052
YZ
1195 if (ret != -EEXIST) {
1196 free_extent_map(em);
1197 break;
1198 }
1199 btrfs_drop_extent_cache(inode, em->start,
1200 em->start + em->len - 1, 0);
1201 }
1202 type = BTRFS_ORDERED_PREALLOC;
1203 } else {
1204 type = BTRFS_ORDERED_NOCOW;
1205 }
80ff3856
YZ
1206
1207 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1208 num_bytes, num_bytes, type);
1209 BUG_ON(ret);
771ed689 1210
efa56464
YZ
1211 if (root->root_key.objectid ==
1212 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1213 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1214 num_bytes);
1215 BUG_ON(ret);
1216 }
1217
d899e052 1218 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1219 cur_offset, cur_offset + num_bytes - 1,
1220 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1221 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1222 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1223 cur_offset = extent_end;
1224 if (cur_offset > end)
1225 break;
be20aa9d 1226 }
80ff3856
YZ
1227 btrfs_release_path(root, path);
1228
1229 if (cur_offset <= end && cow_start == (u64)-1)
1230 cow_start = cur_offset;
1231 if (cow_start != (u64)-1) {
1232 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1233 page_started, nr_written, 1);
80ff3856
YZ
1234 BUG_ON(ret);
1235 }
1236
0cb59c99
JB
1237 if (nolock) {
1238 ret = btrfs_end_transaction_nolock(trans, root);
1239 BUG_ON(ret);
1240 } else {
1241 ret = btrfs_end_transaction(trans, root);
1242 BUG_ON(ret);
1243 }
7ea394f1 1244 btrfs_free_path(path);
80ff3856 1245 return 0;
be20aa9d
CM
1246}
1247
d352ac68
CM
1248/*
1249 * extent_io.c call back to do delayed allocation processing
1250 */
c8b97818 1251static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1252 u64 start, u64 end, int *page_started,
1253 unsigned long *nr_written)
be20aa9d 1254{
be20aa9d 1255 int ret;
7f366cfe 1256 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1257
6cbff00f 1258 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1259 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1260 page_started, 1, nr_written);
6cbff00f 1261 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1262 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1263 page_started, 0, nr_written);
1e701a32 1264 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1265 !(BTRFS_I(inode)->force_compress) &&
1266 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1267 ret = cow_file_range(inode, locked_page, start, end,
1268 page_started, nr_written, 1);
be20aa9d 1269 else
771ed689 1270 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1271 page_started, nr_written);
b888db2b
CM
1272 return ret;
1273}
1274
9ed74f2d 1275static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1276 struct extent_state *orig, u64 split)
9ed74f2d 1277{
0ca1f7ce 1278 /* not delalloc, ignore it */
9ed74f2d
JB
1279 if (!(orig->state & EXTENT_DELALLOC))
1280 return 0;
1281
0ca1f7ce 1282 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1283 return 0;
1284}
1285
1286/*
1287 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1288 * extents so we can keep track of new extents that are just merged onto old
1289 * extents, such as when we are doing sequential writes, so we can properly
1290 * account for the metadata space we'll need.
1291 */
1292static int btrfs_merge_extent_hook(struct inode *inode,
1293 struct extent_state *new,
1294 struct extent_state *other)
1295{
9ed74f2d
JB
1296 /* not delalloc, ignore it */
1297 if (!(other->state & EXTENT_DELALLOC))
1298 return 0;
1299
0ca1f7ce 1300 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1301 return 0;
1302}
1303
d352ac68
CM
1304/*
1305 * extent_io.c set_bit_hook, used to track delayed allocation
1306 * bytes in this file, and to maintain the list of inodes that
1307 * have pending delalloc work to be done.
1308 */
0ca1f7ce
YZ
1309static int btrfs_set_bit_hook(struct inode *inode,
1310 struct extent_state *state, int *bits)
291d673e 1311{
9ed74f2d 1312
75eff68e
CM
1313 /*
1314 * set_bit and clear bit hooks normally require _irqsave/restore
1315 * but in this case, we are only testeing for the DELALLOC
1316 * bit, which is only set or cleared with irqs on
1317 */
0ca1f7ce 1318 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1319 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1320 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1321 int do_list = (root->root_key.objectid !=
1322 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1323
0ca1f7ce
YZ
1324 if (*bits & EXTENT_FIRST_DELALLOC)
1325 *bits &= ~EXTENT_FIRST_DELALLOC;
1326 else
1327 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1328
75eff68e 1329 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1330 BTRFS_I(inode)->delalloc_bytes += len;
1331 root->fs_info->delalloc_bytes += len;
0cb59c99 1332 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1333 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1334 &root->fs_info->delalloc_inodes);
1335 }
75eff68e 1336 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1337 }
1338 return 0;
1339}
1340
d352ac68
CM
1341/*
1342 * extent_io.c clear_bit_hook, see set_bit_hook for why
1343 */
9ed74f2d 1344static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1345 struct extent_state *state, int *bits)
291d673e 1346{
75eff68e
CM
1347 /*
1348 * set_bit and clear bit hooks normally require _irqsave/restore
1349 * but in this case, we are only testeing for the DELALLOC
1350 * bit, which is only set or cleared with irqs on
1351 */
0ca1f7ce 1352 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1353 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1354 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1355 int do_list = (root->root_key.objectid !=
1356 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1357
0ca1f7ce
YZ
1358 if (*bits & EXTENT_FIRST_DELALLOC)
1359 *bits &= ~EXTENT_FIRST_DELALLOC;
1360 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1361 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1362
1363 if (*bits & EXTENT_DO_ACCOUNTING)
1364 btrfs_delalloc_release_metadata(inode, len);
1365
0cb59c99
JB
1366 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1367 && do_list)
0ca1f7ce 1368 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1369
75eff68e 1370 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1371 root->fs_info->delalloc_bytes -= len;
1372 BTRFS_I(inode)->delalloc_bytes -= len;
1373
0cb59c99 1374 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1375 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1376 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1377 }
75eff68e 1378 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1379 }
1380 return 0;
1381}
1382
d352ac68
CM
1383/*
1384 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1385 * we don't create bios that span stripes or chunks
1386 */
239b14b3 1387int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1388 size_t size, struct bio *bio,
1389 unsigned long bio_flags)
239b14b3
CM
1390{
1391 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1392 struct btrfs_mapping_tree *map_tree;
a62b9401 1393 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1394 u64 length = 0;
1395 u64 map_length;
239b14b3
CM
1396 int ret;
1397
771ed689
CM
1398 if (bio_flags & EXTENT_BIO_COMPRESSED)
1399 return 0;
1400
f2d8d74d 1401 length = bio->bi_size;
239b14b3
CM
1402 map_tree = &root->fs_info->mapping_tree;
1403 map_length = length;
cea9e445 1404 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1405 &map_length, NULL, 0);
cea9e445 1406
d397712b 1407 if (map_length < length + size)
239b14b3 1408 return 1;
411fc6bc 1409 return ret;
239b14b3
CM
1410}
1411
d352ac68
CM
1412/*
1413 * in order to insert checksums into the metadata in large chunks,
1414 * we wait until bio submission time. All the pages in the bio are
1415 * checksummed and sums are attached onto the ordered extent record.
1416 *
1417 * At IO completion time the cums attached on the ordered extent record
1418 * are inserted into the btree
1419 */
d397712b
CM
1420static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1421 struct bio *bio, int mirror_num,
eaf25d93
CM
1422 unsigned long bio_flags,
1423 u64 bio_offset)
065631f6 1424{
065631f6 1425 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1426 int ret = 0;
e015640f 1427
d20f7043 1428 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1429 BUG_ON(ret);
4a69a410
CM
1430 return 0;
1431}
e015640f 1432
4a69a410
CM
1433/*
1434 * in order to insert checksums into the metadata in large chunks,
1435 * we wait until bio submission time. All the pages in the bio are
1436 * checksummed and sums are attached onto the ordered extent record.
1437 *
1438 * At IO completion time the cums attached on the ordered extent record
1439 * are inserted into the btree
1440 */
b2950863 1441static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1442 int mirror_num, unsigned long bio_flags,
1443 u64 bio_offset)
4a69a410
CM
1444{
1445 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1446 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1447}
1448
d352ac68 1449/*
cad321ad
CM
1450 * extent_io.c submission hook. This does the right thing for csum calculation
1451 * on write, or reading the csums from the tree before a read
d352ac68 1452 */
b2950863 1453static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1454 int mirror_num, unsigned long bio_flags,
1455 u64 bio_offset)
44b8bd7e
CM
1456{
1457 struct btrfs_root *root = BTRFS_I(inode)->root;
1458 int ret = 0;
19b9bdb0 1459 int skip_sum;
44b8bd7e 1460
6cbff00f 1461 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1462
0cb59c99
JB
1463 if (root == root->fs_info->tree_root)
1464 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1465 else
1466 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1467 BUG_ON(ret);
065631f6 1468
7b6d91da 1469 if (!(rw & REQ_WRITE)) {
d20f7043 1470 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1471 return btrfs_submit_compressed_read(inode, bio,
1472 mirror_num, bio_flags);
c2db1073
TI
1473 } else if (!skip_sum) {
1474 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1475 if (ret)
1476 return ret;
1477 }
4d1b5fb4 1478 goto mapit;
19b9bdb0 1479 } else if (!skip_sum) {
17d217fe
YZ
1480 /* csum items have already been cloned */
1481 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1482 goto mapit;
19b9bdb0
CM
1483 /* we're doing a write, do the async checksumming */
1484 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1485 inode, rw, bio, mirror_num,
eaf25d93
CM
1486 bio_flags, bio_offset,
1487 __btrfs_submit_bio_start,
4a69a410 1488 __btrfs_submit_bio_done);
19b9bdb0
CM
1489 }
1490
0b86a832 1491mapit:
8b712842 1492 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1493}
6885f308 1494
d352ac68
CM
1495/*
1496 * given a list of ordered sums record them in the inode. This happens
1497 * at IO completion time based on sums calculated at bio submission time.
1498 */
ba1da2f4 1499static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1500 struct inode *inode, u64 file_offset,
1501 struct list_head *list)
1502{
e6dcd2dc
CM
1503 struct btrfs_ordered_sum *sum;
1504
1505 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1506
1507 list_for_each_entry(sum, list, list) {
d20f7043
CM
1508 btrfs_csum_file_blocks(trans,
1509 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1510 }
1511 return 0;
1512}
1513
2ac55d41
JB
1514int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1515 struct extent_state **cached_state)
ea8c2819 1516{
d397712b 1517 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1518 WARN_ON(1);
ea8c2819 1519 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1520 cached_state, GFP_NOFS);
ea8c2819
CM
1521}
1522
d352ac68 1523/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1524struct btrfs_writepage_fixup {
1525 struct page *page;
1526 struct btrfs_work work;
1527};
1528
b2950863 1529static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1530{
1531 struct btrfs_writepage_fixup *fixup;
1532 struct btrfs_ordered_extent *ordered;
2ac55d41 1533 struct extent_state *cached_state = NULL;
247e743c
CM
1534 struct page *page;
1535 struct inode *inode;
1536 u64 page_start;
1537 u64 page_end;
1538
1539 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1540 page = fixup->page;
4a096752 1541again:
247e743c
CM
1542 lock_page(page);
1543 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1544 ClearPageChecked(page);
1545 goto out_page;
1546 }
1547
1548 inode = page->mapping->host;
1549 page_start = page_offset(page);
1550 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1551
2ac55d41
JB
1552 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1553 &cached_state, GFP_NOFS);
4a096752
CM
1554
1555 /* already ordered? We're done */
8b62b72b 1556 if (PagePrivate2(page))
247e743c 1557 goto out;
4a096752
CM
1558
1559 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1560 if (ordered) {
2ac55d41
JB
1561 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1562 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1563 unlock_page(page);
1564 btrfs_start_ordered_extent(inode, ordered, 1);
1565 goto again;
1566 }
247e743c 1567
0ca1f7ce 1568 BUG();
2ac55d41 1569 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1570 ClearPageChecked(page);
1571out:
2ac55d41
JB
1572 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1573 &cached_state, GFP_NOFS);
247e743c
CM
1574out_page:
1575 unlock_page(page);
1576 page_cache_release(page);
b897abec 1577 kfree(fixup);
247e743c
CM
1578}
1579
1580/*
1581 * There are a few paths in the higher layers of the kernel that directly
1582 * set the page dirty bit without asking the filesystem if it is a
1583 * good idea. This causes problems because we want to make sure COW
1584 * properly happens and the data=ordered rules are followed.
1585 *
c8b97818 1586 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1587 * hasn't been properly setup for IO. We kick off an async process
1588 * to fix it up. The async helper will wait for ordered extents, set
1589 * the delalloc bit and make it safe to write the page.
1590 */
b2950863 1591static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1592{
1593 struct inode *inode = page->mapping->host;
1594 struct btrfs_writepage_fixup *fixup;
1595 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1596
8b62b72b
CM
1597 /* this page is properly in the ordered list */
1598 if (TestClearPagePrivate2(page))
247e743c
CM
1599 return 0;
1600
1601 if (PageChecked(page))
1602 return -EAGAIN;
1603
1604 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1605 if (!fixup)
1606 return -EAGAIN;
f421950f 1607
247e743c
CM
1608 SetPageChecked(page);
1609 page_cache_get(page);
1610 fixup->work.func = btrfs_writepage_fixup_worker;
1611 fixup->page = page;
1612 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1613 return -EAGAIN;
1614}
1615
d899e052
YZ
1616static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1617 struct inode *inode, u64 file_pos,
1618 u64 disk_bytenr, u64 disk_num_bytes,
1619 u64 num_bytes, u64 ram_bytes,
1620 u8 compression, u8 encryption,
1621 u16 other_encoding, int extent_type)
1622{
1623 struct btrfs_root *root = BTRFS_I(inode)->root;
1624 struct btrfs_file_extent_item *fi;
1625 struct btrfs_path *path;
1626 struct extent_buffer *leaf;
1627 struct btrfs_key ins;
1628 u64 hint;
1629 int ret;
1630
1631 path = btrfs_alloc_path();
1632 BUG_ON(!path);
1633
b9473439 1634 path->leave_spinning = 1;
a1ed835e
CM
1635
1636 /*
1637 * we may be replacing one extent in the tree with another.
1638 * The new extent is pinned in the extent map, and we don't want
1639 * to drop it from the cache until it is completely in the btree.
1640 *
1641 * So, tell btrfs_drop_extents to leave this extent in the cache.
1642 * the caller is expected to unpin it and allow it to be merged
1643 * with the others.
1644 */
920bbbfb
YZ
1645 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1646 &hint, 0);
d899e052
YZ
1647 BUG_ON(ret);
1648
1649 ins.objectid = inode->i_ino;
1650 ins.offset = file_pos;
1651 ins.type = BTRFS_EXTENT_DATA_KEY;
1652 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1653 BUG_ON(ret);
1654 leaf = path->nodes[0];
1655 fi = btrfs_item_ptr(leaf, path->slots[0],
1656 struct btrfs_file_extent_item);
1657 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1658 btrfs_set_file_extent_type(leaf, fi, extent_type);
1659 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1660 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1661 btrfs_set_file_extent_offset(leaf, fi, 0);
1662 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1663 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1664 btrfs_set_file_extent_compression(leaf, fi, compression);
1665 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1666 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1667
1668 btrfs_unlock_up_safe(path, 1);
1669 btrfs_set_lock_blocking(leaf);
1670
d899e052
YZ
1671 btrfs_mark_buffer_dirty(leaf);
1672
1673 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1674
1675 ins.objectid = disk_bytenr;
1676 ins.offset = disk_num_bytes;
1677 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1678 ret = btrfs_alloc_reserved_file_extent(trans, root,
1679 root->root_key.objectid,
1680 inode->i_ino, file_pos, &ins);
d899e052 1681 BUG_ON(ret);
d899e052 1682 btrfs_free_path(path);
b9473439 1683
d899e052
YZ
1684 return 0;
1685}
1686
5d13a98f
CM
1687/*
1688 * helper function for btrfs_finish_ordered_io, this
1689 * just reads in some of the csum leaves to prime them into ram
1690 * before we start the transaction. It limits the amount of btree
1691 * reads required while inside the transaction.
1692 */
d352ac68
CM
1693/* as ordered data IO finishes, this gets called so we can finish
1694 * an ordered extent if the range of bytes in the file it covers are
1695 * fully written.
1696 */
211f90e6 1697static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1698{
e6dcd2dc 1699 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1700 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1701 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1702 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1703 struct extent_state *cached_state = NULL;
261507a0 1704 int compress_type = 0;
e6dcd2dc 1705 int ret;
0cb59c99 1706 bool nolock = false;
e6dcd2dc 1707
5a1a3df1
JB
1708 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1709 end - start + 1);
ba1da2f4 1710 if (!ret)
e6dcd2dc 1711 return 0;
e6dcd2dc 1712 BUG_ON(!ordered_extent);
efd049fb 1713
0cb59c99
JB
1714 nolock = (root == root->fs_info->tree_root);
1715
c2167754
YZ
1716 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1717 BUG_ON(!list_empty(&ordered_extent->list));
1718 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1719 if (!ret) {
0cb59c99 1720 if (nolock)
7a7eaa40 1721 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1722 else
7a7eaa40 1723 trans = btrfs_join_transaction(root);
3612b495 1724 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1725 btrfs_set_trans_block_group(trans, inode);
1726 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1727 ret = btrfs_update_inode(trans, root, inode);
1728 BUG_ON(ret);
c2167754
YZ
1729 }
1730 goto out;
1731 }
e6dcd2dc 1732
2ac55d41
JB
1733 lock_extent_bits(io_tree, ordered_extent->file_offset,
1734 ordered_extent->file_offset + ordered_extent->len - 1,
1735 0, &cached_state, GFP_NOFS);
e6dcd2dc 1736
0cb59c99 1737 if (nolock)
7a7eaa40 1738 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1739 else
7a7eaa40 1740 trans = btrfs_join_transaction(root);
3612b495 1741 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1742 btrfs_set_trans_block_group(trans, inode);
1743 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1744
c8b97818 1745 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1746 compress_type = ordered_extent->compress_type;
d899e052 1747 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1748 BUG_ON(compress_type);
920bbbfb 1749 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1750 ordered_extent->file_offset,
1751 ordered_extent->file_offset +
1752 ordered_extent->len);
1753 BUG_ON(ret);
1754 } else {
0af3d00b 1755 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1756 ret = insert_reserved_file_extent(trans, inode,
1757 ordered_extent->file_offset,
1758 ordered_extent->start,
1759 ordered_extent->disk_len,
1760 ordered_extent->len,
1761 ordered_extent->len,
261507a0 1762 compress_type, 0, 0,
d899e052 1763 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1764 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1765 ordered_extent->file_offset,
1766 ordered_extent->len);
d899e052
YZ
1767 BUG_ON(ret);
1768 }
2ac55d41
JB
1769 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1770 ordered_extent->file_offset +
1771 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1772
e6dcd2dc
CM
1773 add_pending_csums(trans, inode, ordered_extent->file_offset,
1774 &ordered_extent->list);
1775
1ef30be1
JB
1776 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1777 if (!ret) {
1778 ret = btrfs_update_inode(trans, root, inode);
1779 BUG_ON(ret);
1780 }
1781 ret = 0;
c2167754 1782out:
0cb59c99
JB
1783 if (nolock) {
1784 if (trans)
1785 btrfs_end_transaction_nolock(trans, root);
1786 } else {
1787 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1788 if (trans)
1789 btrfs_end_transaction(trans, root);
1790 }
1791
e6dcd2dc
CM
1792 /* once for us */
1793 btrfs_put_ordered_extent(ordered_extent);
1794 /* once for the tree */
1795 btrfs_put_ordered_extent(ordered_extent);
1796
e6dcd2dc
CM
1797 return 0;
1798}
1799
b2950863 1800static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1801 struct extent_state *state, int uptodate)
1802{
1abe9b8a 1803 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1804
8b62b72b 1805 ClearPagePrivate2(page);
211f90e6
CM
1806 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1807}
1808
d352ac68
CM
1809/*
1810 * When IO fails, either with EIO or csum verification fails, we
1811 * try other mirrors that might have a good copy of the data. This
1812 * io_failure_record is used to record state as we go through all the
1813 * mirrors. If another mirror has good data, the page is set up to date
1814 * and things continue. If a good mirror can't be found, the original
1815 * bio end_io callback is called to indicate things have failed.
1816 */
7e38326f
CM
1817struct io_failure_record {
1818 struct page *page;
1819 u64 start;
1820 u64 len;
1821 u64 logical;
d20f7043 1822 unsigned long bio_flags;
7e38326f
CM
1823 int last_mirror;
1824};
1825
b2950863 1826static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1827 struct page *page, u64 start, u64 end,
1828 struct extent_state *state)
7e38326f
CM
1829{
1830 struct io_failure_record *failrec = NULL;
1831 u64 private;
1832 struct extent_map *em;
1833 struct inode *inode = page->mapping->host;
1834 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1835 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1836 struct bio *bio;
1837 int num_copies;
1838 int ret;
1259ab75 1839 int rw;
7e38326f
CM
1840 u64 logical;
1841
1842 ret = get_state_private(failure_tree, start, &private);
1843 if (ret) {
7e38326f
CM
1844 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1845 if (!failrec)
1846 return -ENOMEM;
1847 failrec->start = start;
1848 failrec->len = end - start + 1;
1849 failrec->last_mirror = 0;
d20f7043 1850 failrec->bio_flags = 0;
7e38326f 1851
890871be 1852 read_lock(&em_tree->lock);
3b951516
CM
1853 em = lookup_extent_mapping(em_tree, start, failrec->len);
1854 if (em->start > start || em->start + em->len < start) {
1855 free_extent_map(em);
1856 em = NULL;
1857 }
890871be 1858 read_unlock(&em_tree->lock);
7e38326f
CM
1859
1860 if (!em || IS_ERR(em)) {
1861 kfree(failrec);
1862 return -EIO;
1863 }
1864 logical = start - em->start;
1865 logical = em->block_start + logical;
d20f7043
CM
1866 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1867 logical = em->block_start;
1868 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1869 extent_set_compress_type(&failrec->bio_flags,
1870 em->compress_type);
d20f7043 1871 }
7e38326f
CM
1872 failrec->logical = logical;
1873 free_extent_map(em);
1874 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1875 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1876 set_state_private(failure_tree, start,
1877 (u64)(unsigned long)failrec);
7e38326f 1878 } else {
587f7704 1879 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1880 }
1881 num_copies = btrfs_num_copies(
1882 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1883 failrec->logical, failrec->len);
1884 failrec->last_mirror++;
1885 if (!state) {
cad321ad 1886 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1887 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1888 failrec->start,
1889 EXTENT_LOCKED);
1890 if (state && state->start != failrec->start)
1891 state = NULL;
cad321ad 1892 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1893 }
1894 if (!state || failrec->last_mirror > num_copies) {
1895 set_state_private(failure_tree, failrec->start, 0);
1896 clear_extent_bits(failure_tree, failrec->start,
1897 failrec->start + failrec->len - 1,
1898 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1899 kfree(failrec);
1900 return -EIO;
1901 }
1902 bio = bio_alloc(GFP_NOFS, 1);
1903 bio->bi_private = state;
1904 bio->bi_end_io = failed_bio->bi_end_io;
1905 bio->bi_sector = failrec->logical >> 9;
1906 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1907 bio->bi_size = 0;
d20f7043 1908
7e38326f 1909 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1910 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1911 rw = WRITE;
1912 else
1913 rw = READ;
1914
c2db1073 1915 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1916 failrec->last_mirror,
eaf25d93 1917 failrec->bio_flags, 0);
c2db1073 1918 return ret;
1259ab75
CM
1919}
1920
d352ac68
CM
1921/*
1922 * each time an IO finishes, we do a fast check in the IO failure tree
1923 * to see if we need to process or clean up an io_failure_record
1924 */
b2950863 1925static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1926{
1927 u64 private;
1928 u64 private_failure;
1929 struct io_failure_record *failure;
1930 int ret;
1931
1932 private = 0;
1933 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1934 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1935 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1936 start, &private_failure);
1937 if (ret == 0) {
1938 failure = (struct io_failure_record *)(unsigned long)
1939 private_failure;
1940 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1941 failure->start, 0);
1942 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1943 failure->start,
1944 failure->start + failure->len - 1,
1945 EXTENT_DIRTY | EXTENT_LOCKED,
1946 GFP_NOFS);
1947 kfree(failure);
1948 }
1949 }
7e38326f
CM
1950 return 0;
1951}
1952
d352ac68
CM
1953/*
1954 * when reads are done, we need to check csums to verify the data is correct
1955 * if there's a match, we allow the bio to finish. If not, we go through
1956 * the io_failure_record routines to find good copies
1957 */
b2950863 1958static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1959 struct extent_state *state)
07157aac 1960{
35ebb934 1961 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1962 struct inode *inode = page->mapping->host;
d1310b2e 1963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1964 char *kaddr;
aadfeb6e 1965 u64 private = ~(u32)0;
07157aac 1966 int ret;
ff79f819
CM
1967 struct btrfs_root *root = BTRFS_I(inode)->root;
1968 u32 csum = ~(u32)0;
d1310b2e 1969
d20f7043
CM
1970 if (PageChecked(page)) {
1971 ClearPageChecked(page);
1972 goto good;
1973 }
6cbff00f
CH
1974
1975 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1976 return 0;
1977
1978 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1979 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1980 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1981 GFP_NOFS);
b6cda9bc 1982 return 0;
17d217fe 1983 }
d20f7043 1984
c2e639f0 1985 if (state && state->start == start) {
70dec807
CM
1986 private = state->private;
1987 ret = 0;
1988 } else {
1989 ret = get_state_private(io_tree, start, &private);
1990 }
9ab86c8e 1991 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1992 if (ret)
07157aac 1993 goto zeroit;
d397712b 1994
ff79f819
CM
1995 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1996 btrfs_csum_final(csum, (char *)&csum);
d397712b 1997 if (csum != private)
07157aac 1998 goto zeroit;
d397712b 1999
9ab86c8e 2000 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2001good:
7e38326f
CM
2002 /* if the io failure tree for this inode is non-empty,
2003 * check to see if we've recovered from a failed IO
2004 */
1259ab75 2005 btrfs_clean_io_failures(inode, start);
07157aac
CM
2006 return 0;
2007
2008zeroit:
193f284d
CM
2009 if (printk_ratelimit()) {
2010 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2011 "private %llu\n", page->mapping->host->i_ino,
2012 (unsigned long long)start, csum,
2013 (unsigned long long)private);
2014 }
db94535d
CM
2015 memset(kaddr + offset, 1, end - start + 1);
2016 flush_dcache_page(page);
9ab86c8e 2017 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2018 if (private == 0)
2019 return 0;
7e38326f 2020 return -EIO;
07157aac 2021}
b888db2b 2022
24bbcf04
YZ
2023struct delayed_iput {
2024 struct list_head list;
2025 struct inode *inode;
2026};
2027
2028void btrfs_add_delayed_iput(struct inode *inode)
2029{
2030 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2031 struct delayed_iput *delayed;
2032
2033 if (atomic_add_unless(&inode->i_count, -1, 1))
2034 return;
2035
2036 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2037 delayed->inode = inode;
2038
2039 spin_lock(&fs_info->delayed_iput_lock);
2040 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2041 spin_unlock(&fs_info->delayed_iput_lock);
2042}
2043
2044void btrfs_run_delayed_iputs(struct btrfs_root *root)
2045{
2046 LIST_HEAD(list);
2047 struct btrfs_fs_info *fs_info = root->fs_info;
2048 struct delayed_iput *delayed;
2049 int empty;
2050
2051 spin_lock(&fs_info->delayed_iput_lock);
2052 empty = list_empty(&fs_info->delayed_iputs);
2053 spin_unlock(&fs_info->delayed_iput_lock);
2054 if (empty)
2055 return;
2056
2057 down_read(&root->fs_info->cleanup_work_sem);
2058 spin_lock(&fs_info->delayed_iput_lock);
2059 list_splice_init(&fs_info->delayed_iputs, &list);
2060 spin_unlock(&fs_info->delayed_iput_lock);
2061
2062 while (!list_empty(&list)) {
2063 delayed = list_entry(list.next, struct delayed_iput, list);
2064 list_del(&delayed->list);
2065 iput(delayed->inode);
2066 kfree(delayed);
2067 }
2068 up_read(&root->fs_info->cleanup_work_sem);
2069}
2070
d68fc57b
YZ
2071/*
2072 * calculate extra metadata reservation when snapshotting a subvolume
2073 * contains orphan files.
2074 */
2075void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2076 struct btrfs_pending_snapshot *pending,
2077 u64 *bytes_to_reserve)
2078{
2079 struct btrfs_root *root;
2080 struct btrfs_block_rsv *block_rsv;
2081 u64 num_bytes;
2082 int index;
2083
2084 root = pending->root;
2085 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2086 return;
2087
2088 block_rsv = root->orphan_block_rsv;
2089
2090 /* orphan block reservation for the snapshot */
2091 num_bytes = block_rsv->size;
2092
2093 /*
2094 * after the snapshot is created, COWing tree blocks may use more
2095 * space than it frees. So we should make sure there is enough
2096 * reserved space.
2097 */
2098 index = trans->transid & 0x1;
2099 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2100 num_bytes += block_rsv->size -
2101 (block_rsv->reserved + block_rsv->freed[index]);
2102 }
2103
2104 *bytes_to_reserve += num_bytes;
2105}
2106
2107void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2108 struct btrfs_pending_snapshot *pending)
2109{
2110 struct btrfs_root *root = pending->root;
2111 struct btrfs_root *snap = pending->snap;
2112 struct btrfs_block_rsv *block_rsv;
2113 u64 num_bytes;
2114 int index;
2115 int ret;
2116
2117 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2118 return;
2119
2120 /* refill source subvolume's orphan block reservation */
2121 block_rsv = root->orphan_block_rsv;
2122 index = trans->transid & 0x1;
2123 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2124 num_bytes = block_rsv->size -
2125 (block_rsv->reserved + block_rsv->freed[index]);
2126 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2127 root->orphan_block_rsv,
2128 num_bytes);
2129 BUG_ON(ret);
2130 }
2131
2132 /* setup orphan block reservation for the snapshot */
2133 block_rsv = btrfs_alloc_block_rsv(snap);
2134 BUG_ON(!block_rsv);
2135
2136 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2137 snap->orphan_block_rsv = block_rsv;
2138
2139 num_bytes = root->orphan_block_rsv->size;
2140 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2141 block_rsv, num_bytes);
2142 BUG_ON(ret);
2143
2144#if 0
2145 /* insert orphan item for the snapshot */
2146 WARN_ON(!root->orphan_item_inserted);
2147 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2148 snap->root_key.objectid);
2149 BUG_ON(ret);
2150 snap->orphan_item_inserted = 1;
2151#endif
2152}
2153
2154enum btrfs_orphan_cleanup_state {
2155 ORPHAN_CLEANUP_STARTED = 1,
2156 ORPHAN_CLEANUP_DONE = 2,
2157};
2158
2159/*
2160 * This is called in transaction commmit time. If there are no orphan
2161 * files in the subvolume, it removes orphan item and frees block_rsv
2162 * structure.
2163 */
2164void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root)
2166{
2167 int ret;
2168
2169 if (!list_empty(&root->orphan_list) ||
2170 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2171 return;
2172
2173 if (root->orphan_item_inserted &&
2174 btrfs_root_refs(&root->root_item) > 0) {
2175 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2176 root->root_key.objectid);
2177 BUG_ON(ret);
2178 root->orphan_item_inserted = 0;
2179 }
2180
2181 if (root->orphan_block_rsv) {
2182 WARN_ON(root->orphan_block_rsv->size > 0);
2183 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2184 root->orphan_block_rsv = NULL;
2185 }
2186}
2187
7b128766
JB
2188/*
2189 * This creates an orphan entry for the given inode in case something goes
2190 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2191 *
2192 * NOTE: caller of this function should reserve 5 units of metadata for
2193 * this function.
7b128766
JB
2194 */
2195int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2196{
2197 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2198 struct btrfs_block_rsv *block_rsv = NULL;
2199 int reserve = 0;
2200 int insert = 0;
2201 int ret;
7b128766 2202
d68fc57b
YZ
2203 if (!root->orphan_block_rsv) {
2204 block_rsv = btrfs_alloc_block_rsv(root);
2205 BUG_ON(!block_rsv);
2206 }
7b128766 2207
d68fc57b
YZ
2208 spin_lock(&root->orphan_lock);
2209 if (!root->orphan_block_rsv) {
2210 root->orphan_block_rsv = block_rsv;
2211 } else if (block_rsv) {
2212 btrfs_free_block_rsv(root, block_rsv);
2213 block_rsv = NULL;
7b128766 2214 }
7b128766 2215
d68fc57b
YZ
2216 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2217 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2218#if 0
2219 /*
2220 * For proper ENOSPC handling, we should do orphan
2221 * cleanup when mounting. But this introduces backward
2222 * compatibility issue.
2223 */
2224 if (!xchg(&root->orphan_item_inserted, 1))
2225 insert = 2;
2226 else
2227 insert = 1;
2228#endif
2229 insert = 1;
7b128766
JB
2230 }
2231
d68fc57b
YZ
2232 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2233 BTRFS_I(inode)->orphan_meta_reserved = 1;
2234 reserve = 1;
2235 }
2236 spin_unlock(&root->orphan_lock);
7b128766 2237
d68fc57b
YZ
2238 if (block_rsv)
2239 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2240
d68fc57b
YZ
2241 /* grab metadata reservation from transaction handle */
2242 if (reserve) {
2243 ret = btrfs_orphan_reserve_metadata(trans, inode);
2244 BUG_ON(ret);
2245 }
7b128766 2246
d68fc57b
YZ
2247 /* insert an orphan item to track this unlinked/truncated file */
2248 if (insert >= 1) {
2249 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2250 BUG_ON(ret);
2251 }
2252
2253 /* insert an orphan item to track subvolume contains orphan files */
2254 if (insert >= 2) {
2255 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2256 root->root_key.objectid);
2257 BUG_ON(ret);
2258 }
2259 return 0;
7b128766
JB
2260}
2261
2262/*
2263 * We have done the truncate/delete so we can go ahead and remove the orphan
2264 * item for this particular inode.
2265 */
2266int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2267{
2268 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2269 int delete_item = 0;
2270 int release_rsv = 0;
7b128766
JB
2271 int ret = 0;
2272
d68fc57b
YZ
2273 spin_lock(&root->orphan_lock);
2274 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2275 list_del_init(&BTRFS_I(inode)->i_orphan);
2276 delete_item = 1;
7b128766
JB
2277 }
2278
d68fc57b
YZ
2279 if (BTRFS_I(inode)->orphan_meta_reserved) {
2280 BTRFS_I(inode)->orphan_meta_reserved = 0;
2281 release_rsv = 1;
7b128766 2282 }
d68fc57b 2283 spin_unlock(&root->orphan_lock);
7b128766 2284
d68fc57b
YZ
2285 if (trans && delete_item) {
2286 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2287 BUG_ON(ret);
2288 }
7b128766 2289
d68fc57b
YZ
2290 if (release_rsv)
2291 btrfs_orphan_release_metadata(inode);
7b128766 2292
d68fc57b 2293 return 0;
7b128766
JB
2294}
2295
2296/*
2297 * this cleans up any orphans that may be left on the list from the last use
2298 * of this root.
2299 */
66b4ffd1 2300int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2301{
2302 struct btrfs_path *path;
2303 struct extent_buffer *leaf;
7b128766
JB
2304 struct btrfs_key key, found_key;
2305 struct btrfs_trans_handle *trans;
2306 struct inode *inode;
2307 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2308
d68fc57b 2309 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2310 return 0;
c71bf099
YZ
2311
2312 path = btrfs_alloc_path();
66b4ffd1
JB
2313 if (!path) {
2314 ret = -ENOMEM;
2315 goto out;
2316 }
7b128766
JB
2317 path->reada = -1;
2318
2319 key.objectid = BTRFS_ORPHAN_OBJECTID;
2320 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2321 key.offset = (u64)-1;
2322
7b128766
JB
2323 while (1) {
2324 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2325 if (ret < 0)
2326 goto out;
7b128766
JB
2327
2328 /*
2329 * if ret == 0 means we found what we were searching for, which
25985edc 2330 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2331 * find the key and see if we have stuff that matches
2332 */
2333 if (ret > 0) {
66b4ffd1 2334 ret = 0;
7b128766
JB
2335 if (path->slots[0] == 0)
2336 break;
2337 path->slots[0]--;
2338 }
2339
2340 /* pull out the item */
2341 leaf = path->nodes[0];
7b128766
JB
2342 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2343
2344 /* make sure the item matches what we want */
2345 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2346 break;
2347 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2348 break;
2349
2350 /* release the path since we're done with it */
2351 btrfs_release_path(root, path);
2352
2353 /*
2354 * this is where we are basically btrfs_lookup, without the
2355 * crossing root thing. we store the inode number in the
2356 * offset of the orphan item.
2357 */
5d4f98a2
YZ
2358 found_key.objectid = found_key.offset;
2359 found_key.type = BTRFS_INODE_ITEM_KEY;
2360 found_key.offset = 0;
73f73415 2361 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2362 if (IS_ERR(inode)) {
2363 ret = PTR_ERR(inode);
2364 goto out;
2365 }
7b128766 2366
7b128766
JB
2367 /*
2368 * add this inode to the orphan list so btrfs_orphan_del does
2369 * the proper thing when we hit it
2370 */
d68fc57b 2371 spin_lock(&root->orphan_lock);
7b128766 2372 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2373 spin_unlock(&root->orphan_lock);
7b128766
JB
2374
2375 /*
2376 * if this is a bad inode, means we actually succeeded in
2377 * removing the inode, but not the orphan record, which means
2378 * we need to manually delete the orphan since iput will just
2379 * do a destroy_inode
2380 */
2381 if (is_bad_inode(inode)) {
a22285a6 2382 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2383 if (IS_ERR(trans)) {
2384 ret = PTR_ERR(trans);
2385 goto out;
2386 }
7b128766 2387 btrfs_orphan_del(trans, inode);
5b21f2ed 2388 btrfs_end_transaction(trans, root);
7b128766
JB
2389 iput(inode);
2390 continue;
2391 }
2392
2393 /* if we have links, this was a truncate, lets do that */
2394 if (inode->i_nlink) {
a41ad394
JB
2395 if (!S_ISREG(inode->i_mode)) {
2396 WARN_ON(1);
2397 iput(inode);
2398 continue;
2399 }
7b128766 2400 nr_truncate++;
66b4ffd1 2401 ret = btrfs_truncate(inode);
7b128766
JB
2402 } else {
2403 nr_unlink++;
2404 }
2405
2406 /* this will do delete_inode and everything for us */
2407 iput(inode);
66b4ffd1
JB
2408 if (ret)
2409 goto out;
7b128766 2410 }
d68fc57b
YZ
2411 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2412
2413 if (root->orphan_block_rsv)
2414 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2415 (u64)-1);
2416
2417 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2418 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2419 if (!IS_ERR(trans))
2420 btrfs_end_transaction(trans, root);
d68fc57b 2421 }
7b128766
JB
2422
2423 if (nr_unlink)
2424 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2425 if (nr_truncate)
2426 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2427
2428out:
2429 if (ret)
2430 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2431 btrfs_free_path(path);
2432 return ret;
7b128766
JB
2433}
2434
46a53cca
CM
2435/*
2436 * very simple check to peek ahead in the leaf looking for xattrs. If we
2437 * don't find any xattrs, we know there can't be any acls.
2438 *
2439 * slot is the slot the inode is in, objectid is the objectid of the inode
2440 */
2441static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2442 int slot, u64 objectid)
2443{
2444 u32 nritems = btrfs_header_nritems(leaf);
2445 struct btrfs_key found_key;
2446 int scanned = 0;
2447
2448 slot++;
2449 while (slot < nritems) {
2450 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2451
2452 /* we found a different objectid, there must not be acls */
2453 if (found_key.objectid != objectid)
2454 return 0;
2455
2456 /* we found an xattr, assume we've got an acl */
2457 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2458 return 1;
2459
2460 /*
2461 * we found a key greater than an xattr key, there can't
2462 * be any acls later on
2463 */
2464 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2465 return 0;
2466
2467 slot++;
2468 scanned++;
2469
2470 /*
2471 * it goes inode, inode backrefs, xattrs, extents,
2472 * so if there are a ton of hard links to an inode there can
2473 * be a lot of backrefs. Don't waste time searching too hard,
2474 * this is just an optimization
2475 */
2476 if (scanned >= 8)
2477 break;
2478 }
2479 /* we hit the end of the leaf before we found an xattr or
2480 * something larger than an xattr. We have to assume the inode
2481 * has acls
2482 */
2483 return 1;
2484}
2485
d352ac68
CM
2486/*
2487 * read an inode from the btree into the in-memory inode
2488 */
5d4f98a2 2489static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2490{
2491 struct btrfs_path *path;
5f39d397 2492 struct extent_buffer *leaf;
39279cc3 2493 struct btrfs_inode_item *inode_item;
0b86a832 2494 struct btrfs_timespec *tspec;
39279cc3
CM
2495 struct btrfs_root *root = BTRFS_I(inode)->root;
2496 struct btrfs_key location;
46a53cca 2497 int maybe_acls;
39279cc3 2498 u64 alloc_group_block;
618e21d5 2499 u32 rdev;
39279cc3
CM
2500 int ret;
2501
2502 path = btrfs_alloc_path();
2503 BUG_ON(!path);
39279cc3 2504 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2505
39279cc3 2506 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2507 if (ret)
39279cc3 2508 goto make_bad;
39279cc3 2509
5f39d397
CM
2510 leaf = path->nodes[0];
2511 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2512 struct btrfs_inode_item);
2513
2514 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2515 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2516 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2517 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2518 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2519
2520 tspec = btrfs_inode_atime(inode_item);
2521 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2522 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2523
2524 tspec = btrfs_inode_mtime(inode_item);
2525 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2526 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2527
2528 tspec = btrfs_inode_ctime(inode_item);
2529 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2530 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2531
a76a3cd4 2532 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2533 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2534 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2535 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2536 inode->i_rdev = 0;
5f39d397
CM
2537 rdev = btrfs_inode_rdev(leaf, inode_item);
2538
aec7477b 2539 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2540 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2541
5f39d397 2542 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2543
46a53cca
CM
2544 /*
2545 * try to precache a NULL acl entry for files that don't have
2546 * any xattrs or acls
2547 */
2548 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2549 if (!maybe_acls)
2550 cache_no_acl(inode);
46a53cca 2551
d2fb3437
YZ
2552 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2553 alloc_group_block, 0);
39279cc3
CM
2554 btrfs_free_path(path);
2555 inode_item = NULL;
2556
39279cc3 2557 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2558 case S_IFREG:
2559 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2560 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2561 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2562 inode->i_fop = &btrfs_file_operations;
2563 inode->i_op = &btrfs_file_inode_operations;
2564 break;
2565 case S_IFDIR:
2566 inode->i_fop = &btrfs_dir_file_operations;
2567 if (root == root->fs_info->tree_root)
2568 inode->i_op = &btrfs_dir_ro_inode_operations;
2569 else
2570 inode->i_op = &btrfs_dir_inode_operations;
2571 break;
2572 case S_IFLNK:
2573 inode->i_op = &btrfs_symlink_inode_operations;
2574 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2575 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2576 break;
618e21d5 2577 default:
0279b4cd 2578 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2579 init_special_inode(inode, inode->i_mode, rdev);
2580 break;
39279cc3 2581 }
6cbff00f
CH
2582
2583 btrfs_update_iflags(inode);
39279cc3
CM
2584 return;
2585
2586make_bad:
39279cc3 2587 btrfs_free_path(path);
39279cc3
CM
2588 make_bad_inode(inode);
2589}
2590
d352ac68
CM
2591/*
2592 * given a leaf and an inode, copy the inode fields into the leaf
2593 */
e02119d5
CM
2594static void fill_inode_item(struct btrfs_trans_handle *trans,
2595 struct extent_buffer *leaf,
5f39d397 2596 struct btrfs_inode_item *item,
39279cc3
CM
2597 struct inode *inode)
2598{
12ddb96c
JB
2599 if (!leaf->map_token)
2600 map_private_extent_buffer(leaf, (unsigned long)item,
2601 sizeof(struct btrfs_inode_item),
2602 &leaf->map_token, &leaf->kaddr,
2603 &leaf->map_start, &leaf->map_len,
2604 KM_USER1);
2605
5f39d397
CM
2606 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2607 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2608 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2609 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2610 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2611
2612 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2613 inode->i_atime.tv_sec);
2614 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2615 inode->i_atime.tv_nsec);
2616
2617 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2618 inode->i_mtime.tv_sec);
2619 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2620 inode->i_mtime.tv_nsec);
2621
2622 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2623 inode->i_ctime.tv_sec);
2624 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2625 inode->i_ctime.tv_nsec);
2626
a76a3cd4 2627 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2628 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2629 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2630 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2631 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2632 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2633 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
12ddb96c
JB
2634
2635 if (leaf->map_token) {
2636 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2637 leaf->map_token = NULL;
2638 }
39279cc3
CM
2639}
2640
d352ac68
CM
2641/*
2642 * copy everything in the in-memory inode into the btree.
2643 */
d397712b
CM
2644noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2645 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2646{
2647 struct btrfs_inode_item *inode_item;
2648 struct btrfs_path *path;
5f39d397 2649 struct extent_buffer *leaf;
39279cc3
CM
2650 int ret;
2651
2652 path = btrfs_alloc_path();
2653 BUG_ON(!path);
b9473439 2654 path->leave_spinning = 1;
39279cc3
CM
2655 ret = btrfs_lookup_inode(trans, root, path,
2656 &BTRFS_I(inode)->location, 1);
2657 if (ret) {
2658 if (ret > 0)
2659 ret = -ENOENT;
2660 goto failed;
2661 }
2662
b4ce94de 2663 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2664 leaf = path->nodes[0];
2665 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2666 struct btrfs_inode_item);
2667
e02119d5 2668 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2669 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2670 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2671 ret = 0;
2672failed:
39279cc3
CM
2673 btrfs_free_path(path);
2674 return ret;
2675}
2676
2677
d352ac68
CM
2678/*
2679 * unlink helper that gets used here in inode.c and in the tree logging
2680 * recovery code. It remove a link in a directory with a given name, and
2681 * also drops the back refs in the inode to the directory
2682 */
92986796
AV
2683static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2684 struct btrfs_root *root,
2685 struct inode *dir, struct inode *inode,
2686 const char *name, int name_len)
39279cc3
CM
2687{
2688 struct btrfs_path *path;
39279cc3 2689 int ret = 0;
5f39d397 2690 struct extent_buffer *leaf;
39279cc3 2691 struct btrfs_dir_item *di;
5f39d397 2692 struct btrfs_key key;
aec7477b 2693 u64 index;
39279cc3
CM
2694
2695 path = btrfs_alloc_path();
54aa1f4d
CM
2696 if (!path) {
2697 ret = -ENOMEM;
554233a6 2698 goto out;
54aa1f4d
CM
2699 }
2700
b9473439 2701 path->leave_spinning = 1;
39279cc3
CM
2702 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2703 name, name_len, -1);
2704 if (IS_ERR(di)) {
2705 ret = PTR_ERR(di);
2706 goto err;
2707 }
2708 if (!di) {
2709 ret = -ENOENT;
2710 goto err;
2711 }
5f39d397
CM
2712 leaf = path->nodes[0];
2713 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2714 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2715 if (ret)
2716 goto err;
39279cc3
CM
2717 btrfs_release_path(root, path);
2718
aec7477b 2719 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2720 inode->i_ino,
2721 dir->i_ino, &index);
aec7477b 2722 if (ret) {
d397712b 2723 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2724 "inode %lu parent %lu\n", name_len, name,
e02119d5 2725 inode->i_ino, dir->i_ino);
aec7477b
JB
2726 goto err;
2727 }
2728
39279cc3 2729 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2730 index, name, name_len, -1);
39279cc3
CM
2731 if (IS_ERR(di)) {
2732 ret = PTR_ERR(di);
2733 goto err;
2734 }
2735 if (!di) {
2736 ret = -ENOENT;
2737 goto err;
2738 }
2739 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2740 btrfs_release_path(root, path);
39279cc3 2741
e02119d5
CM
2742 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2743 inode, dir->i_ino);
49eb7e46 2744 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2745
2746 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2747 dir, index);
6418c961
CM
2748 if (ret == -ENOENT)
2749 ret = 0;
39279cc3
CM
2750err:
2751 btrfs_free_path(path);
e02119d5
CM
2752 if (ret)
2753 goto out;
2754
2755 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2756 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2757 btrfs_update_inode(trans, root, dir);
e02119d5 2758out:
39279cc3
CM
2759 return ret;
2760}
2761
92986796
AV
2762int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2763 struct btrfs_root *root,
2764 struct inode *dir, struct inode *inode,
2765 const char *name, int name_len)
2766{
2767 int ret;
2768 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2769 if (!ret) {
2770 btrfs_drop_nlink(inode);
2771 ret = btrfs_update_inode(trans, root, inode);
2772 }
2773 return ret;
2774}
2775
2776
a22285a6
YZ
2777/* helper to check if there is any shared block in the path */
2778static int check_path_shared(struct btrfs_root *root,
2779 struct btrfs_path *path)
39279cc3 2780{
a22285a6
YZ
2781 struct extent_buffer *eb;
2782 int level;
0e4dcbef 2783 u64 refs = 1;
5df6a9f6 2784
a22285a6 2785 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2786 int ret;
2787
a22285a6
YZ
2788 if (!path->nodes[level])
2789 break;
2790 eb = path->nodes[level];
2791 if (!btrfs_block_can_be_shared(root, eb))
2792 continue;
2793 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2794 &refs, NULL);
2795 if (refs > 1)
2796 return 1;
5df6a9f6 2797 }
dedefd72 2798 return 0;
39279cc3
CM
2799}
2800
a22285a6
YZ
2801/*
2802 * helper to start transaction for unlink and rmdir.
2803 *
2804 * unlink and rmdir are special in btrfs, they do not always free space.
2805 * so in enospc case, we should make sure they will free space before
2806 * allowing them to use the global metadata reservation.
2807 */
2808static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2809 struct dentry *dentry)
4df27c4d 2810{
39279cc3 2811 struct btrfs_trans_handle *trans;
a22285a6 2812 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2813 struct btrfs_path *path;
a22285a6 2814 struct btrfs_inode_ref *ref;
4df27c4d 2815 struct btrfs_dir_item *di;
7b128766 2816 struct inode *inode = dentry->d_inode;
4df27c4d 2817 u64 index;
a22285a6
YZ
2818 int check_link = 1;
2819 int err = -ENOSPC;
4df27c4d
YZ
2820 int ret;
2821
a22285a6
YZ
2822 trans = btrfs_start_transaction(root, 10);
2823 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2824 return trans;
4df27c4d 2825
a22285a6
YZ
2826 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2827 return ERR_PTR(-ENOSPC);
4df27c4d 2828
a22285a6
YZ
2829 /* check if there is someone else holds reference */
2830 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2831 return ERR_PTR(-ENOSPC);
4df27c4d 2832
a22285a6
YZ
2833 if (atomic_read(&inode->i_count) > 2)
2834 return ERR_PTR(-ENOSPC);
4df27c4d 2835
a22285a6
YZ
2836 if (xchg(&root->fs_info->enospc_unlink, 1))
2837 return ERR_PTR(-ENOSPC);
2838
2839 path = btrfs_alloc_path();
2840 if (!path) {
2841 root->fs_info->enospc_unlink = 0;
2842 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2843 }
2844
a22285a6 2845 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2846 if (IS_ERR(trans)) {
a22285a6
YZ
2847 btrfs_free_path(path);
2848 root->fs_info->enospc_unlink = 0;
2849 return trans;
2850 }
4df27c4d 2851
a22285a6
YZ
2852 path->skip_locking = 1;
2853 path->search_commit_root = 1;
4df27c4d 2854
a22285a6
YZ
2855 ret = btrfs_lookup_inode(trans, root, path,
2856 &BTRFS_I(dir)->location, 0);
2857 if (ret < 0) {
2858 err = ret;
2859 goto out;
2860 }
2861 if (ret == 0) {
2862 if (check_path_shared(root, path))
2863 goto out;
2864 } else {
2865 check_link = 0;
5df6a9f6 2866 }
a22285a6
YZ
2867 btrfs_release_path(root, path);
2868
2869 ret = btrfs_lookup_inode(trans, root, path,
2870 &BTRFS_I(inode)->location, 0);
2871 if (ret < 0) {
2872 err = ret;
2873 goto out;
2874 }
2875 if (ret == 0) {
2876 if (check_path_shared(root, path))
2877 goto out;
2878 } else {
2879 check_link = 0;
2880 }
2881 btrfs_release_path(root, path);
2882
2883 if (ret == 0 && S_ISREG(inode->i_mode)) {
2884 ret = btrfs_lookup_file_extent(trans, root, path,
2885 inode->i_ino, (u64)-1, 0);
2886 if (ret < 0) {
2887 err = ret;
2888 goto out;
2889 }
2890 BUG_ON(ret == 0);
2891 if (check_path_shared(root, path))
2892 goto out;
2893 btrfs_release_path(root, path);
2894 }
2895
2896 if (!check_link) {
2897 err = 0;
2898 goto out;
2899 }
2900
2901 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2902 dentry->d_name.name, dentry->d_name.len, 0);
2903 if (IS_ERR(di)) {
2904 err = PTR_ERR(di);
2905 goto out;
2906 }
2907 if (di) {
2908 if (check_path_shared(root, path))
2909 goto out;
2910 } else {
2911 err = 0;
2912 goto out;
2913 }
2914 btrfs_release_path(root, path);
2915
2916 ref = btrfs_lookup_inode_ref(trans, root, path,
2917 dentry->d_name.name, dentry->d_name.len,
2918 inode->i_ino, dir->i_ino, 0);
2919 if (IS_ERR(ref)) {
2920 err = PTR_ERR(ref);
2921 goto out;
2922 }
2923 BUG_ON(!ref);
2924 if (check_path_shared(root, path))
2925 goto out;
2926 index = btrfs_inode_ref_index(path->nodes[0], ref);
2927 btrfs_release_path(root, path);
2928
2929 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2930 dentry->d_name.name, dentry->d_name.len, 0);
2931 if (IS_ERR(di)) {
2932 err = PTR_ERR(di);
2933 goto out;
2934 }
2935 BUG_ON(ret == -ENOENT);
2936 if (check_path_shared(root, path))
2937 goto out;
2938
2939 err = 0;
2940out:
2941 btrfs_free_path(path);
2942 if (err) {
2943 btrfs_end_transaction(trans, root);
2944 root->fs_info->enospc_unlink = 0;
2945 return ERR_PTR(err);
2946 }
2947
2948 trans->block_rsv = &root->fs_info->global_block_rsv;
2949 return trans;
2950}
2951
2952static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2953 struct btrfs_root *root)
2954{
2955 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2956 BUG_ON(!root->fs_info->enospc_unlink);
2957 root->fs_info->enospc_unlink = 0;
2958 }
2959 btrfs_end_transaction_throttle(trans, root);
2960}
2961
2962static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2963{
2964 struct btrfs_root *root = BTRFS_I(dir)->root;
2965 struct btrfs_trans_handle *trans;
2966 struct inode *inode = dentry->d_inode;
2967 int ret;
2968 unsigned long nr = 0;
2969
2970 trans = __unlink_start_trans(dir, dentry);
2971 if (IS_ERR(trans))
2972 return PTR_ERR(trans);
5f39d397 2973
39279cc3 2974 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2975
2976 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2977
e02119d5
CM
2978 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2979 dentry->d_name.name, dentry->d_name.len);
a22285a6 2980 BUG_ON(ret);
7b128766 2981
a22285a6 2982 if (inode->i_nlink == 0) {
7b128766 2983 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2984 BUG_ON(ret);
2985 }
7b128766 2986
d3c2fdcf 2987 nr = trans->blocks_used;
a22285a6 2988 __unlink_end_trans(trans, root);
d3c2fdcf 2989 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2990 return ret;
2991}
2992
4df27c4d
YZ
2993int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2994 struct btrfs_root *root,
2995 struct inode *dir, u64 objectid,
2996 const char *name, int name_len)
2997{
2998 struct btrfs_path *path;
2999 struct extent_buffer *leaf;
3000 struct btrfs_dir_item *di;
3001 struct btrfs_key key;
3002 u64 index;
3003 int ret;
3004
3005 path = btrfs_alloc_path();
3006 if (!path)
3007 return -ENOMEM;
3008
3009 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
3010 name, name_len, -1);
3011 BUG_ON(!di || IS_ERR(di));
3012
3013 leaf = path->nodes[0];
3014 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3015 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3016 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3017 BUG_ON(ret);
3018 btrfs_release_path(root, path);
3019
3020 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3021 objectid, root->root_key.objectid,
3022 dir->i_ino, &index, name, name_len);
3023 if (ret < 0) {
3024 BUG_ON(ret != -ENOENT);
3025 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3026 name, name_len);
3027 BUG_ON(!di || IS_ERR(di));
3028
3029 leaf = path->nodes[0];
3030 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3031 btrfs_release_path(root, path);
3032 index = key.offset;
3033 }
3034
3035 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3036 index, name, name_len, -1);
3037 BUG_ON(!di || IS_ERR(di));
3038
3039 leaf = path->nodes[0];
3040 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3041 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3042 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3043 BUG_ON(ret);
3044 btrfs_release_path(root, path);
3045
3046 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3047 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3048 ret = btrfs_update_inode(trans, root, dir);
3049 BUG_ON(ret);
4df27c4d
YZ
3050
3051 btrfs_free_path(path);
3052 return 0;
3053}
3054
39279cc3
CM
3055static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3056{
3057 struct inode *inode = dentry->d_inode;
1832a6d5 3058 int err = 0;
39279cc3 3059 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3060 struct btrfs_trans_handle *trans;
1832a6d5 3061 unsigned long nr = 0;
39279cc3 3062
3394e160 3063 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 3064 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3065 return -ENOTEMPTY;
3066
a22285a6
YZ
3067 trans = __unlink_start_trans(dir, dentry);
3068 if (IS_ERR(trans))
5df6a9f6 3069 return PTR_ERR(trans);
5df6a9f6 3070
39279cc3 3071 btrfs_set_trans_block_group(trans, dir);
39279cc3 3072
4df27c4d
YZ
3073 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3074 err = btrfs_unlink_subvol(trans, root, dir,
3075 BTRFS_I(inode)->location.objectid,
3076 dentry->d_name.name,
3077 dentry->d_name.len);
3078 goto out;
3079 }
3080
7b128766
JB
3081 err = btrfs_orphan_add(trans, inode);
3082 if (err)
4df27c4d 3083 goto out;
7b128766 3084
39279cc3 3085 /* now the directory is empty */
e02119d5
CM
3086 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3087 dentry->d_name.name, dentry->d_name.len);
d397712b 3088 if (!err)
dbe674a9 3089 btrfs_i_size_write(inode, 0);
4df27c4d 3090out:
d3c2fdcf 3091 nr = trans->blocks_used;
a22285a6 3092 __unlink_end_trans(trans, root);
d3c2fdcf 3093 btrfs_btree_balance_dirty(root, nr);
3954401f 3094
39279cc3
CM
3095 return err;
3096}
3097
d20f7043 3098#if 0
323ac95b
CM
3099/*
3100 * when truncating bytes in a file, it is possible to avoid reading
3101 * the leaves that contain only checksum items. This can be the
3102 * majority of the IO required to delete a large file, but it must
3103 * be done carefully.
3104 *
3105 * The keys in the level just above the leaves are checked to make sure
3106 * the lowest key in a given leaf is a csum key, and starts at an offset
3107 * after the new size.
3108 *
3109 * Then the key for the next leaf is checked to make sure it also has
3110 * a checksum item for the same file. If it does, we know our target leaf
3111 * contains only checksum items, and it can be safely freed without reading
3112 * it.
3113 *
3114 * This is just an optimization targeted at large files. It may do
3115 * nothing. It will return 0 unless things went badly.
3116 */
3117static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3118 struct btrfs_root *root,
3119 struct btrfs_path *path,
3120 struct inode *inode, u64 new_size)
3121{
3122 struct btrfs_key key;
3123 int ret;
3124 int nritems;
3125 struct btrfs_key found_key;
3126 struct btrfs_key other_key;
5b84e8d6
YZ
3127 struct btrfs_leaf_ref *ref;
3128 u64 leaf_gen;
3129 u64 leaf_start;
323ac95b
CM
3130
3131 path->lowest_level = 1;
3132 key.objectid = inode->i_ino;
3133 key.type = BTRFS_CSUM_ITEM_KEY;
3134 key.offset = new_size;
3135again:
3136 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3137 if (ret < 0)
3138 goto out;
3139
3140 if (path->nodes[1] == NULL) {
3141 ret = 0;
3142 goto out;
3143 }
3144 ret = 0;
3145 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3146 nritems = btrfs_header_nritems(path->nodes[1]);
3147
3148 if (!nritems)
3149 goto out;
3150
3151 if (path->slots[1] >= nritems)
3152 goto next_node;
3153
3154 /* did we find a key greater than anything we want to delete? */
3155 if (found_key.objectid > inode->i_ino ||
3156 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3157 goto out;
3158
3159 /* we check the next key in the node to make sure the leave contains
3160 * only checksum items. This comparison doesn't work if our
3161 * leaf is the last one in the node
3162 */
3163 if (path->slots[1] + 1 >= nritems) {
3164next_node:
3165 /* search forward from the last key in the node, this
3166 * will bring us into the next node in the tree
3167 */
3168 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3169
3170 /* unlikely, but we inc below, so check to be safe */
3171 if (found_key.offset == (u64)-1)
3172 goto out;
3173
3174 /* search_forward needs a path with locks held, do the
3175 * search again for the original key. It is possible
3176 * this will race with a balance and return a path that
3177 * we could modify, but this drop is just an optimization
3178 * and is allowed to miss some leaves.
3179 */
3180 btrfs_release_path(root, path);
3181 found_key.offset++;
3182
3183 /* setup a max key for search_forward */
3184 other_key.offset = (u64)-1;
3185 other_key.type = key.type;
3186 other_key.objectid = key.objectid;
3187
3188 path->keep_locks = 1;
3189 ret = btrfs_search_forward(root, &found_key, &other_key,
3190 path, 0, 0);
3191 path->keep_locks = 0;
3192 if (ret || found_key.objectid != key.objectid ||
3193 found_key.type != key.type) {
3194 ret = 0;
3195 goto out;
3196 }
3197
3198 key.offset = found_key.offset;
3199 btrfs_release_path(root, path);
3200 cond_resched();
3201 goto again;
3202 }
3203
3204 /* we know there's one more slot after us in the tree,
3205 * read that key so we can verify it is also a checksum item
3206 */
3207 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3208
3209 if (found_key.objectid < inode->i_ino)
3210 goto next_key;
3211
3212 if (found_key.type != key.type || found_key.offset < new_size)
3213 goto next_key;
3214
3215 /*
3216 * if the key for the next leaf isn't a csum key from this objectid,
3217 * we can't be sure there aren't good items inside this leaf.
3218 * Bail out
3219 */
3220 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3221 goto out;
3222
5b84e8d6
YZ
3223 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3224 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3225 /*
3226 * it is safe to delete this leaf, it contains only
3227 * csum items from this inode at an offset >= new_size
3228 */
5b84e8d6 3229 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3230 BUG_ON(ret);
3231
5b84e8d6
YZ
3232 if (root->ref_cows && leaf_gen < trans->transid) {
3233 ref = btrfs_alloc_leaf_ref(root, 0);
3234 if (ref) {
3235 ref->root_gen = root->root_key.offset;
3236 ref->bytenr = leaf_start;
3237 ref->owner = 0;
3238 ref->generation = leaf_gen;
3239 ref->nritems = 0;
3240
bd56b302
CM
3241 btrfs_sort_leaf_ref(ref);
3242
5b84e8d6
YZ
3243 ret = btrfs_add_leaf_ref(root, ref, 0);
3244 WARN_ON(ret);
3245 btrfs_free_leaf_ref(root, ref);
3246 } else {
3247 WARN_ON(1);
3248 }
3249 }
323ac95b
CM
3250next_key:
3251 btrfs_release_path(root, path);
3252
3253 if (other_key.objectid == inode->i_ino &&
3254 other_key.type == key.type && other_key.offset > key.offset) {
3255 key.offset = other_key.offset;
3256 cond_resched();
3257 goto again;
3258 }
3259 ret = 0;
3260out:
3261 /* fixup any changes we've made to the path */
3262 path->lowest_level = 0;
3263 path->keep_locks = 0;
3264 btrfs_release_path(root, path);
3265 return ret;
3266}
3267
d20f7043
CM
3268#endif
3269
39279cc3
CM
3270/*
3271 * this can truncate away extent items, csum items and directory items.
3272 * It starts at a high offset and removes keys until it can't find
d352ac68 3273 * any higher than new_size
39279cc3
CM
3274 *
3275 * csum items that cross the new i_size are truncated to the new size
3276 * as well.
7b128766
JB
3277 *
3278 * min_type is the minimum key type to truncate down to. If set to 0, this
3279 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3280 */
8082510e
YZ
3281int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3282 struct btrfs_root *root,
3283 struct inode *inode,
3284 u64 new_size, u32 min_type)
39279cc3 3285{
39279cc3 3286 struct btrfs_path *path;
5f39d397 3287 struct extent_buffer *leaf;
39279cc3 3288 struct btrfs_file_extent_item *fi;
8082510e
YZ
3289 struct btrfs_key key;
3290 struct btrfs_key found_key;
39279cc3 3291 u64 extent_start = 0;
db94535d 3292 u64 extent_num_bytes = 0;
5d4f98a2 3293 u64 extent_offset = 0;
39279cc3 3294 u64 item_end = 0;
8082510e
YZ
3295 u64 mask = root->sectorsize - 1;
3296 u32 found_type = (u8)-1;
39279cc3
CM
3297 int found_extent;
3298 int del_item;
85e21bac
CM
3299 int pending_del_nr = 0;
3300 int pending_del_slot = 0;
179e29e4 3301 int extent_type = -1;
771ed689 3302 int encoding;
8082510e
YZ
3303 int ret;
3304 int err = 0;
3305
3306 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3307
0af3d00b 3308 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3309 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3310
39279cc3
CM
3311 path = btrfs_alloc_path();
3312 BUG_ON(!path);
33c17ad5 3313 path->reada = -1;
5f39d397 3314
39279cc3
CM
3315 key.objectid = inode->i_ino;
3316 key.offset = (u64)-1;
5f39d397
CM
3317 key.type = (u8)-1;
3318
85e21bac 3319search_again:
b9473439 3320 path->leave_spinning = 1;
85e21bac 3321 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3322 if (ret < 0) {
3323 err = ret;
3324 goto out;
3325 }
d397712b 3326
85e21bac 3327 if (ret > 0) {
e02119d5
CM
3328 /* there are no items in the tree for us to truncate, we're
3329 * done
3330 */
8082510e
YZ
3331 if (path->slots[0] == 0)
3332 goto out;
85e21bac
CM
3333 path->slots[0]--;
3334 }
3335
d397712b 3336 while (1) {
39279cc3 3337 fi = NULL;
5f39d397
CM
3338 leaf = path->nodes[0];
3339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3340 found_type = btrfs_key_type(&found_key);
771ed689 3341 encoding = 0;
39279cc3 3342
5f39d397 3343 if (found_key.objectid != inode->i_ino)
39279cc3 3344 break;
5f39d397 3345
85e21bac 3346 if (found_type < min_type)
39279cc3
CM
3347 break;
3348
5f39d397 3349 item_end = found_key.offset;
39279cc3 3350 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3351 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3352 struct btrfs_file_extent_item);
179e29e4 3353 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3354 encoding = btrfs_file_extent_compression(leaf, fi);
3355 encoding |= btrfs_file_extent_encryption(leaf, fi);
3356 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3357
179e29e4 3358 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3359 item_end +=
db94535d 3360 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3361 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3362 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3363 fi);
39279cc3 3364 }
008630c1 3365 item_end--;
39279cc3 3366 }
8082510e
YZ
3367 if (found_type > min_type) {
3368 del_item = 1;
3369 } else {
3370 if (item_end < new_size)
b888db2b 3371 break;
8082510e
YZ
3372 if (found_key.offset >= new_size)
3373 del_item = 1;
3374 else
3375 del_item = 0;
39279cc3 3376 }
39279cc3 3377 found_extent = 0;
39279cc3 3378 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3379 if (found_type != BTRFS_EXTENT_DATA_KEY)
3380 goto delete;
3381
3382 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3383 u64 num_dec;
db94535d 3384 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3385 if (!del_item && !encoding) {
db94535d
CM
3386 u64 orig_num_bytes =
3387 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3388 extent_num_bytes = new_size -
5f39d397 3389 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3390 extent_num_bytes = extent_num_bytes &
3391 ~((u64)root->sectorsize - 1);
db94535d
CM
3392 btrfs_set_file_extent_num_bytes(leaf, fi,
3393 extent_num_bytes);
3394 num_dec = (orig_num_bytes -
9069218d 3395 extent_num_bytes);
e02119d5 3396 if (root->ref_cows && extent_start != 0)
a76a3cd4 3397 inode_sub_bytes(inode, num_dec);
5f39d397 3398 btrfs_mark_buffer_dirty(leaf);
39279cc3 3399 } else {
db94535d
CM
3400 extent_num_bytes =
3401 btrfs_file_extent_disk_num_bytes(leaf,
3402 fi);
5d4f98a2
YZ
3403 extent_offset = found_key.offset -
3404 btrfs_file_extent_offset(leaf, fi);
3405
39279cc3 3406 /* FIXME blocksize != 4096 */
9069218d 3407 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3408 if (extent_start != 0) {
3409 found_extent = 1;
e02119d5 3410 if (root->ref_cows)
a76a3cd4 3411 inode_sub_bytes(inode, num_dec);
e02119d5 3412 }
39279cc3 3413 }
9069218d 3414 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3415 /*
3416 * we can't truncate inline items that have had
3417 * special encodings
3418 */
3419 if (!del_item &&
3420 btrfs_file_extent_compression(leaf, fi) == 0 &&
3421 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3422 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3423 u32 size = new_size - found_key.offset;
3424
3425 if (root->ref_cows) {
a76a3cd4
YZ
3426 inode_sub_bytes(inode, item_end + 1 -
3427 new_size);
e02119d5
CM
3428 }
3429 size =
3430 btrfs_file_extent_calc_inline_size(size);
9069218d 3431 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3432 size, 1);
9069218d 3433 BUG_ON(ret);
e02119d5 3434 } else if (root->ref_cows) {
a76a3cd4
YZ
3435 inode_sub_bytes(inode, item_end + 1 -
3436 found_key.offset);
9069218d 3437 }
39279cc3 3438 }
179e29e4 3439delete:
39279cc3 3440 if (del_item) {
85e21bac
CM
3441 if (!pending_del_nr) {
3442 /* no pending yet, add ourselves */
3443 pending_del_slot = path->slots[0];
3444 pending_del_nr = 1;
3445 } else if (pending_del_nr &&
3446 path->slots[0] + 1 == pending_del_slot) {
3447 /* hop on the pending chunk */
3448 pending_del_nr++;
3449 pending_del_slot = path->slots[0];
3450 } else {
d397712b 3451 BUG();
85e21bac 3452 }
39279cc3
CM
3453 } else {
3454 break;
3455 }
0af3d00b
JB
3456 if (found_extent && (root->ref_cows ||
3457 root == root->fs_info->tree_root)) {
b9473439 3458 btrfs_set_path_blocking(path);
39279cc3 3459 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3460 extent_num_bytes, 0,
3461 btrfs_header_owner(leaf),
3462 inode->i_ino, extent_offset);
39279cc3
CM
3463 BUG_ON(ret);
3464 }
85e21bac 3465
8082510e
YZ
3466 if (found_type == BTRFS_INODE_ITEM_KEY)
3467 break;
3468
3469 if (path->slots[0] == 0 ||
3470 path->slots[0] != pending_del_slot) {
3471 if (root->ref_cows) {
3472 err = -EAGAIN;
3473 goto out;
3474 }
3475 if (pending_del_nr) {
3476 ret = btrfs_del_items(trans, root, path,
3477 pending_del_slot,
3478 pending_del_nr);
3479 BUG_ON(ret);
3480 pending_del_nr = 0;
3481 }
85e21bac
CM
3482 btrfs_release_path(root, path);
3483 goto search_again;
8082510e
YZ
3484 } else {
3485 path->slots[0]--;
85e21bac 3486 }
39279cc3 3487 }
8082510e 3488out:
85e21bac
CM
3489 if (pending_del_nr) {
3490 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3491 pending_del_nr);
d68fc57b 3492 BUG_ON(ret);
85e21bac 3493 }
39279cc3 3494 btrfs_free_path(path);
8082510e 3495 return err;
39279cc3
CM
3496}
3497
3498/*
3499 * taken from block_truncate_page, but does cow as it zeros out
3500 * any bytes left in the last page in the file.
3501 */
3502static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3503{
3504 struct inode *inode = mapping->host;
db94535d 3505 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3506 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3507 struct btrfs_ordered_extent *ordered;
2ac55d41 3508 struct extent_state *cached_state = NULL;
e6dcd2dc 3509 char *kaddr;
db94535d 3510 u32 blocksize = root->sectorsize;
39279cc3
CM
3511 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3512 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3513 struct page *page;
39279cc3 3514 int ret = 0;
a52d9a80 3515 u64 page_start;
e6dcd2dc 3516 u64 page_end;
39279cc3
CM
3517
3518 if ((offset & (blocksize - 1)) == 0)
3519 goto out;
0ca1f7ce 3520 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3521 if (ret)
3522 goto out;
39279cc3
CM
3523
3524 ret = -ENOMEM;
211c17f5 3525again:
39279cc3 3526 page = grab_cache_page(mapping, index);
5d5e103a 3527 if (!page) {
0ca1f7ce 3528 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3529 goto out;
5d5e103a 3530 }
e6dcd2dc
CM
3531
3532 page_start = page_offset(page);
3533 page_end = page_start + PAGE_CACHE_SIZE - 1;
3534
39279cc3 3535 if (!PageUptodate(page)) {
9ebefb18 3536 ret = btrfs_readpage(NULL, page);
39279cc3 3537 lock_page(page);
211c17f5
CM
3538 if (page->mapping != mapping) {
3539 unlock_page(page);
3540 page_cache_release(page);
3541 goto again;
3542 }
39279cc3
CM
3543 if (!PageUptodate(page)) {
3544 ret = -EIO;
89642229 3545 goto out_unlock;
39279cc3
CM
3546 }
3547 }
211c17f5 3548 wait_on_page_writeback(page);
e6dcd2dc 3549
2ac55d41
JB
3550 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3551 GFP_NOFS);
e6dcd2dc
CM
3552 set_page_extent_mapped(page);
3553
3554 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3555 if (ordered) {
2ac55d41
JB
3556 unlock_extent_cached(io_tree, page_start, page_end,
3557 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3558 unlock_page(page);
3559 page_cache_release(page);
eb84ae03 3560 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3561 btrfs_put_ordered_extent(ordered);
3562 goto again;
3563 }
3564
2ac55d41 3565 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3566 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3567 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3568
2ac55d41
JB
3569 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3570 &cached_state);
9ed74f2d 3571 if (ret) {
2ac55d41
JB
3572 unlock_extent_cached(io_tree, page_start, page_end,
3573 &cached_state, GFP_NOFS);
9ed74f2d
JB
3574 goto out_unlock;
3575 }
3576
e6dcd2dc
CM
3577 ret = 0;
3578 if (offset != PAGE_CACHE_SIZE) {
3579 kaddr = kmap(page);
3580 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3581 flush_dcache_page(page);
3582 kunmap(page);
3583 }
247e743c 3584 ClearPageChecked(page);
e6dcd2dc 3585 set_page_dirty(page);
2ac55d41
JB
3586 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3587 GFP_NOFS);
39279cc3 3588
89642229 3589out_unlock:
5d5e103a 3590 if (ret)
0ca1f7ce 3591 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3592 unlock_page(page);
3593 page_cache_release(page);
3594out:
3595 return ret;
3596}
3597
695a0d0d
JB
3598/*
3599 * This function puts in dummy file extents for the area we're creating a hole
3600 * for. So if we are truncating this file to a larger size we need to insert
3601 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3602 * the range between oldsize and size
3603 */
a41ad394 3604int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3605{
9036c102
YZ
3606 struct btrfs_trans_handle *trans;
3607 struct btrfs_root *root = BTRFS_I(inode)->root;
3608 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3609 struct extent_map *em = NULL;
2ac55d41 3610 struct extent_state *cached_state = NULL;
9036c102 3611 u64 mask = root->sectorsize - 1;
a41ad394 3612 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3613 u64 block_end = (size + mask) & ~mask;
3614 u64 last_byte;
3615 u64 cur_offset;
3616 u64 hole_size;
9ed74f2d 3617 int err = 0;
39279cc3 3618
9036c102
YZ
3619 if (size <= hole_start)
3620 return 0;
3621
9036c102
YZ
3622 while (1) {
3623 struct btrfs_ordered_extent *ordered;
3624 btrfs_wait_ordered_range(inode, hole_start,
3625 block_end - hole_start);
2ac55d41
JB
3626 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3627 &cached_state, GFP_NOFS);
9036c102
YZ
3628 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3629 if (!ordered)
3630 break;
2ac55d41
JB
3631 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3632 &cached_state, GFP_NOFS);
9036c102
YZ
3633 btrfs_put_ordered_extent(ordered);
3634 }
39279cc3 3635
9036c102
YZ
3636 cur_offset = hole_start;
3637 while (1) {
3638 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3639 block_end - cur_offset, 0);
3640 BUG_ON(IS_ERR(em) || !em);
3641 last_byte = min(extent_map_end(em), block_end);
3642 last_byte = (last_byte + mask) & ~mask;
8082510e 3643 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3644 u64 hint_byte = 0;
9036c102 3645 hole_size = last_byte - cur_offset;
9ed74f2d 3646
a22285a6
YZ
3647 trans = btrfs_start_transaction(root, 2);
3648 if (IS_ERR(trans)) {
3649 err = PTR_ERR(trans);
9ed74f2d 3650 break;
a22285a6 3651 }
8082510e
YZ
3652 btrfs_set_trans_block_group(trans, inode);
3653
3654 err = btrfs_drop_extents(trans, inode, cur_offset,
3655 cur_offset + hole_size,
3656 &hint_byte, 1);
3893e33b
JB
3657 if (err)
3658 break;
8082510e 3659
9036c102
YZ
3660 err = btrfs_insert_file_extent(trans, root,
3661 inode->i_ino, cur_offset, 0,
3662 0, hole_size, 0, hole_size,
3663 0, 0, 0);
3893e33b
JB
3664 if (err)
3665 break;
8082510e 3666
9036c102
YZ
3667 btrfs_drop_extent_cache(inode, hole_start,
3668 last_byte - 1, 0);
8082510e
YZ
3669
3670 btrfs_end_transaction(trans, root);
9036c102
YZ
3671 }
3672 free_extent_map(em);
a22285a6 3673 em = NULL;
9036c102 3674 cur_offset = last_byte;
8082510e 3675 if (cur_offset >= block_end)
9036c102
YZ
3676 break;
3677 }
1832a6d5 3678
a22285a6 3679 free_extent_map(em);
2ac55d41
JB
3680 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3681 GFP_NOFS);
9036c102
YZ
3682 return err;
3683}
39279cc3 3684
a41ad394 3685static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3686{
a41ad394 3687 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3688 int ret;
3689
a41ad394 3690 if (newsize == oldsize)
8082510e
YZ
3691 return 0;
3692
a41ad394
JB
3693 if (newsize > oldsize) {
3694 i_size_write(inode, newsize);
3695 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3696 truncate_pagecache(inode, oldsize, newsize);
3697 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3698 if (ret) {
a41ad394 3699 btrfs_setsize(inode, oldsize);
8082510e
YZ
3700 return ret;
3701 }
3702
930f028a 3703 mark_inode_dirty(inode);
a41ad394 3704 } else {
8082510e 3705
a41ad394
JB
3706 /*
3707 * We're truncating a file that used to have good data down to
3708 * zero. Make sure it gets into the ordered flush list so that
3709 * any new writes get down to disk quickly.
3710 */
3711 if (newsize == 0)
3712 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3713
a41ad394
JB
3714 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3715 truncate_setsize(inode, newsize);
3716 ret = btrfs_truncate(inode);
8082510e
YZ
3717 }
3718
a41ad394 3719 return ret;
8082510e
YZ
3720}
3721
9036c102
YZ
3722static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3723{
3724 struct inode *inode = dentry->d_inode;
b83cc969 3725 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3726 int err;
39279cc3 3727
b83cc969
LZ
3728 if (btrfs_root_readonly(root))
3729 return -EROFS;
3730
9036c102
YZ
3731 err = inode_change_ok(inode, attr);
3732 if (err)
3733 return err;
2bf5a725 3734
5a3f23d5 3735 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3736 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3737 if (err)
3738 return err;
39279cc3 3739 }
9036c102 3740
1025774c
CH
3741 if (attr->ia_valid) {
3742 setattr_copy(inode, attr);
3743 mark_inode_dirty(inode);
3744
3745 if (attr->ia_valid & ATTR_MODE)
3746 err = btrfs_acl_chmod(inode);
3747 }
33268eaf 3748
39279cc3
CM
3749 return err;
3750}
61295eb8 3751
bd555975 3752void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3753{
3754 struct btrfs_trans_handle *trans;
3755 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3756 unsigned long nr;
39279cc3
CM
3757 int ret;
3758
1abe9b8a 3759 trace_btrfs_inode_evict(inode);
3760
39279cc3 3761 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3762 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3763 root == root->fs_info->tree_root))
bd555975
AV
3764 goto no_delete;
3765
39279cc3 3766 if (is_bad_inode(inode)) {
7b128766 3767 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3768 goto no_delete;
3769 }
bd555975 3770 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3771 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3772
c71bf099
YZ
3773 if (root->fs_info->log_root_recovering) {
3774 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3775 goto no_delete;
3776 }
3777
76dda93c
YZ
3778 if (inode->i_nlink > 0) {
3779 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3780 goto no_delete;
3781 }
3782
dbe674a9 3783 btrfs_i_size_write(inode, 0);
5f39d397 3784
8082510e 3785 while (1) {
d68fc57b
YZ
3786 trans = btrfs_start_transaction(root, 0);
3787 BUG_ON(IS_ERR(trans));
8082510e 3788 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3789 trans->block_rsv = root->orphan_block_rsv;
3790
3791 ret = btrfs_block_rsv_check(trans, root,
3792 root->orphan_block_rsv, 0, 5);
3793 if (ret) {
3794 BUG_ON(ret != -EAGAIN);
3795 ret = btrfs_commit_transaction(trans, root);
3796 BUG_ON(ret);
3797 continue;
3798 }
7b128766 3799
d68fc57b 3800 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3801 if (ret != -EAGAIN)
3802 break;
85e21bac 3803
8082510e
YZ
3804 nr = trans->blocks_used;
3805 btrfs_end_transaction(trans, root);
3806 trans = NULL;
3807 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3808
8082510e 3809 }
5f39d397 3810
8082510e
YZ
3811 if (ret == 0) {
3812 ret = btrfs_orphan_del(trans, inode);
3813 BUG_ON(ret);
3814 }
54aa1f4d 3815
d3c2fdcf 3816 nr = trans->blocks_used;
54aa1f4d 3817 btrfs_end_transaction(trans, root);
d3c2fdcf 3818 btrfs_btree_balance_dirty(root, nr);
39279cc3 3819no_delete:
bd555975 3820 end_writeback(inode);
8082510e 3821 return;
39279cc3
CM
3822}
3823
3824/*
3825 * this returns the key found in the dir entry in the location pointer.
3826 * If no dir entries were found, location->objectid is 0.
3827 */
3828static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3829 struct btrfs_key *location)
3830{
3831 const char *name = dentry->d_name.name;
3832 int namelen = dentry->d_name.len;
3833 struct btrfs_dir_item *di;
3834 struct btrfs_path *path;
3835 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3836 int ret = 0;
39279cc3
CM
3837
3838 path = btrfs_alloc_path();
3839 BUG_ON(!path);
3954401f 3840
39279cc3
CM
3841 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3842 namelen, 0);
0d9f7f3e
Y
3843 if (IS_ERR(di))
3844 ret = PTR_ERR(di);
d397712b
CM
3845
3846 if (!di || IS_ERR(di))
3954401f 3847 goto out_err;
d397712b 3848
5f39d397 3849 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3850out:
39279cc3
CM
3851 btrfs_free_path(path);
3852 return ret;
3954401f
CM
3853out_err:
3854 location->objectid = 0;
3855 goto out;
39279cc3
CM
3856}
3857
3858/*
3859 * when we hit a tree root in a directory, the btrfs part of the inode
3860 * needs to be changed to reflect the root directory of the tree root. This
3861 * is kind of like crossing a mount point.
3862 */
3863static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3864 struct inode *dir,
3865 struct dentry *dentry,
3866 struct btrfs_key *location,
3867 struct btrfs_root **sub_root)
39279cc3 3868{
4df27c4d
YZ
3869 struct btrfs_path *path;
3870 struct btrfs_root *new_root;
3871 struct btrfs_root_ref *ref;
3872 struct extent_buffer *leaf;
3873 int ret;
3874 int err = 0;
39279cc3 3875
4df27c4d
YZ
3876 path = btrfs_alloc_path();
3877 if (!path) {
3878 err = -ENOMEM;
3879 goto out;
3880 }
39279cc3 3881
4df27c4d
YZ
3882 err = -ENOENT;
3883 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3884 BTRFS_I(dir)->root->root_key.objectid,
3885 location->objectid);
3886 if (ret) {
3887 if (ret < 0)
3888 err = ret;
3889 goto out;
3890 }
39279cc3 3891
4df27c4d
YZ
3892 leaf = path->nodes[0];
3893 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3894 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3895 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3896 goto out;
39279cc3 3897
4df27c4d
YZ
3898 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3899 (unsigned long)(ref + 1),
3900 dentry->d_name.len);
3901 if (ret)
3902 goto out;
3903
3904 btrfs_release_path(root->fs_info->tree_root, path);
3905
3906 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3907 if (IS_ERR(new_root)) {
3908 err = PTR_ERR(new_root);
3909 goto out;
3910 }
3911
3912 if (btrfs_root_refs(&new_root->root_item) == 0) {
3913 err = -ENOENT;
3914 goto out;
3915 }
3916
3917 *sub_root = new_root;
3918 location->objectid = btrfs_root_dirid(&new_root->root_item);
3919 location->type = BTRFS_INODE_ITEM_KEY;
3920 location->offset = 0;
3921 err = 0;
3922out:
3923 btrfs_free_path(path);
3924 return err;
39279cc3
CM
3925}
3926
5d4f98a2
YZ
3927static void inode_tree_add(struct inode *inode)
3928{
3929 struct btrfs_root *root = BTRFS_I(inode)->root;
3930 struct btrfs_inode *entry;
03e860bd
FNP
3931 struct rb_node **p;
3932 struct rb_node *parent;
03e860bd
FNP
3933again:
3934 p = &root->inode_tree.rb_node;
3935 parent = NULL;
5d4f98a2 3936
1d3382cb 3937 if (inode_unhashed(inode))
76dda93c
YZ
3938 return;
3939
5d4f98a2
YZ
3940 spin_lock(&root->inode_lock);
3941 while (*p) {
3942 parent = *p;
3943 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3944
3945 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3946 p = &parent->rb_left;
5d4f98a2 3947 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3948 p = &parent->rb_right;
5d4f98a2
YZ
3949 else {
3950 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3951 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3952 rb_erase(parent, &root->inode_tree);
3953 RB_CLEAR_NODE(parent);
3954 spin_unlock(&root->inode_lock);
3955 goto again;
5d4f98a2
YZ
3956 }
3957 }
3958 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3959 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3960 spin_unlock(&root->inode_lock);
3961}
3962
3963static void inode_tree_del(struct inode *inode)
3964{
3965 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3966 int empty = 0;
5d4f98a2 3967
03e860bd 3968 spin_lock(&root->inode_lock);
5d4f98a2 3969 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3970 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3971 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3972 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3973 }
03e860bd 3974 spin_unlock(&root->inode_lock);
76dda93c 3975
0af3d00b
JB
3976 /*
3977 * Free space cache has inodes in the tree root, but the tree root has a
3978 * root_refs of 0, so this could end up dropping the tree root as a
3979 * snapshot, so we need the extra !root->fs_info->tree_root check to
3980 * make sure we don't drop it.
3981 */
3982 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3983 root != root->fs_info->tree_root) {
76dda93c
YZ
3984 synchronize_srcu(&root->fs_info->subvol_srcu);
3985 spin_lock(&root->inode_lock);
3986 empty = RB_EMPTY_ROOT(&root->inode_tree);
3987 spin_unlock(&root->inode_lock);
3988 if (empty)
3989 btrfs_add_dead_root(root);
3990 }
3991}
3992
3993int btrfs_invalidate_inodes(struct btrfs_root *root)
3994{
3995 struct rb_node *node;
3996 struct rb_node *prev;
3997 struct btrfs_inode *entry;
3998 struct inode *inode;
3999 u64 objectid = 0;
4000
4001 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4002
4003 spin_lock(&root->inode_lock);
4004again:
4005 node = root->inode_tree.rb_node;
4006 prev = NULL;
4007 while (node) {
4008 prev = node;
4009 entry = rb_entry(node, struct btrfs_inode, rb_node);
4010
4011 if (objectid < entry->vfs_inode.i_ino)
4012 node = node->rb_left;
4013 else if (objectid > entry->vfs_inode.i_ino)
4014 node = node->rb_right;
4015 else
4016 break;
4017 }
4018 if (!node) {
4019 while (prev) {
4020 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4021 if (objectid <= entry->vfs_inode.i_ino) {
4022 node = prev;
4023 break;
4024 }
4025 prev = rb_next(prev);
4026 }
4027 }
4028 while (node) {
4029 entry = rb_entry(node, struct btrfs_inode, rb_node);
4030 objectid = entry->vfs_inode.i_ino + 1;
4031 inode = igrab(&entry->vfs_inode);
4032 if (inode) {
4033 spin_unlock(&root->inode_lock);
4034 if (atomic_read(&inode->i_count) > 1)
4035 d_prune_aliases(inode);
4036 /*
45321ac5 4037 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4038 * the inode cache when its usage count
4039 * hits zero.
4040 */
4041 iput(inode);
4042 cond_resched();
4043 spin_lock(&root->inode_lock);
4044 goto again;
4045 }
4046
4047 if (cond_resched_lock(&root->inode_lock))
4048 goto again;
4049
4050 node = rb_next(node);
4051 }
4052 spin_unlock(&root->inode_lock);
4053 return 0;
5d4f98a2
YZ
4054}
4055
e02119d5
CM
4056static int btrfs_init_locked_inode(struct inode *inode, void *p)
4057{
4058 struct btrfs_iget_args *args = p;
4059 inode->i_ino = args->ino;
e02119d5 4060 BTRFS_I(inode)->root = args->root;
6a63209f 4061 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4062 return 0;
4063}
4064
4065static int btrfs_find_actor(struct inode *inode, void *opaque)
4066{
4067 struct btrfs_iget_args *args = opaque;
d397712b
CM
4068 return args->ino == inode->i_ino &&
4069 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4070}
4071
5d4f98a2
YZ
4072static struct inode *btrfs_iget_locked(struct super_block *s,
4073 u64 objectid,
4074 struct btrfs_root *root)
39279cc3
CM
4075{
4076 struct inode *inode;
4077 struct btrfs_iget_args args;
4078 args.ino = objectid;
4079 args.root = root;
4080
4081 inode = iget5_locked(s, objectid, btrfs_find_actor,
4082 btrfs_init_locked_inode,
4083 (void *)&args);
4084 return inode;
4085}
4086
1a54ef8c
BR
4087/* Get an inode object given its location and corresponding root.
4088 * Returns in *is_new if the inode was read from disk
4089 */
4090struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4091 struct btrfs_root *root, int *new)
1a54ef8c
BR
4092{
4093 struct inode *inode;
4094
4095 inode = btrfs_iget_locked(s, location->objectid, root);
4096 if (!inode)
5d4f98a2 4097 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4098
4099 if (inode->i_state & I_NEW) {
4100 BTRFS_I(inode)->root = root;
4101 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4102 btrfs_read_locked_inode(inode);
5d4f98a2 4103 inode_tree_add(inode);
1a54ef8c 4104 unlock_new_inode(inode);
73f73415
JB
4105 if (new)
4106 *new = 1;
1a54ef8c
BR
4107 }
4108
4109 return inode;
4110}
4111
4df27c4d
YZ
4112static struct inode *new_simple_dir(struct super_block *s,
4113 struct btrfs_key *key,
4114 struct btrfs_root *root)
4115{
4116 struct inode *inode = new_inode(s);
4117
4118 if (!inode)
4119 return ERR_PTR(-ENOMEM);
4120
4df27c4d
YZ
4121 BTRFS_I(inode)->root = root;
4122 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4123 BTRFS_I(inode)->dummy_inode = 1;
4124
4125 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4126 inode->i_op = &simple_dir_inode_operations;
4127 inode->i_fop = &simple_dir_operations;
4128 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4129 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4130
4131 return inode;
4132}
4133
3de4586c 4134struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4135{
d397712b 4136 struct inode *inode;
4df27c4d 4137 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4138 struct btrfs_root *sub_root = root;
4139 struct btrfs_key location;
76dda93c 4140 int index;
5d4f98a2 4141 int ret;
39279cc3
CM
4142
4143 if (dentry->d_name.len > BTRFS_NAME_LEN)
4144 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4145
39279cc3 4146 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4147
39279cc3
CM
4148 if (ret < 0)
4149 return ERR_PTR(ret);
5f39d397 4150
4df27c4d
YZ
4151 if (location.objectid == 0)
4152 return NULL;
4153
4154 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4155 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4156 return inode;
4157 }
4158
4159 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4160
76dda93c 4161 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4162 ret = fixup_tree_root_location(root, dir, dentry,
4163 &location, &sub_root);
4164 if (ret < 0) {
4165 if (ret != -ENOENT)
4166 inode = ERR_PTR(ret);
4167 else
4168 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4169 } else {
73f73415 4170 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4171 }
76dda93c
YZ
4172 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4173
34d19bad 4174 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4175 down_read(&root->fs_info->cleanup_work_sem);
4176 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4177 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4178 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4179 if (ret)
4180 inode = ERR_PTR(ret);
c71bf099
YZ
4181 }
4182
3de4586c
CM
4183 return inode;
4184}
4185
fe15ce44 4186static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4187{
4188 struct btrfs_root *root;
4189
efefb143
YZ
4190 if (!dentry->d_inode && !IS_ROOT(dentry))
4191 dentry = dentry->d_parent;
76dda93c 4192
efefb143
YZ
4193 if (dentry->d_inode) {
4194 root = BTRFS_I(dentry->d_inode)->root;
4195 if (btrfs_root_refs(&root->root_item) == 0)
4196 return 1;
4197 }
76dda93c
YZ
4198 return 0;
4199}
4200
3de4586c
CM
4201static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4202 struct nameidata *nd)
4203{
4204 struct inode *inode;
4205
3de4586c
CM
4206 inode = btrfs_lookup_dentry(dir, dentry);
4207 if (IS_ERR(inode))
4208 return ERR_CAST(inode);
7b128766 4209
39279cc3
CM
4210 return d_splice_alias(inode, dentry);
4211}
4212
39279cc3
CM
4213static unsigned char btrfs_filetype_table[] = {
4214 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4215};
4216
cbdf5a24
DW
4217static int btrfs_real_readdir(struct file *filp, void *dirent,
4218 filldir_t filldir)
39279cc3 4219{
6da6abae 4220 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4221 struct btrfs_root *root = BTRFS_I(inode)->root;
4222 struct btrfs_item *item;
4223 struct btrfs_dir_item *di;
4224 struct btrfs_key key;
5f39d397 4225 struct btrfs_key found_key;
39279cc3
CM
4226 struct btrfs_path *path;
4227 int ret;
5f39d397 4228 struct extent_buffer *leaf;
39279cc3 4229 int slot;
39279cc3
CM
4230 unsigned char d_type;
4231 int over = 0;
4232 u32 di_cur;
4233 u32 di_total;
4234 u32 di_len;
4235 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4236 char tmp_name[32];
4237 char *name_ptr;
4238 int name_len;
39279cc3
CM
4239
4240 /* FIXME, use a real flag for deciding about the key type */
4241 if (root->fs_info->tree_root == root)
4242 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4243
3954401f
CM
4244 /* special case for "." */
4245 if (filp->f_pos == 0) {
4246 over = filldir(dirent, ".", 1,
4247 1, inode->i_ino,
4248 DT_DIR);
4249 if (over)
4250 return 0;
4251 filp->f_pos = 1;
4252 }
3954401f
CM
4253 /* special case for .., just use the back ref */
4254 if (filp->f_pos == 1) {
5ecc7e5d 4255 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4256 over = filldir(dirent, "..", 2,
5ecc7e5d 4257 2, pino, DT_DIR);
3954401f 4258 if (over)
49593bfa 4259 return 0;
3954401f
CM
4260 filp->f_pos = 2;
4261 }
49593bfa
DW
4262 path = btrfs_alloc_path();
4263 path->reada = 2;
4264
39279cc3
CM
4265 btrfs_set_key_type(&key, key_type);
4266 key.offset = filp->f_pos;
49593bfa 4267 key.objectid = inode->i_ino;
5f39d397 4268
39279cc3
CM
4269 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4270 if (ret < 0)
4271 goto err;
49593bfa
DW
4272
4273 while (1) {
5f39d397 4274 leaf = path->nodes[0];
39279cc3 4275 slot = path->slots[0];
b9e03af0
LZ
4276 if (slot >= btrfs_header_nritems(leaf)) {
4277 ret = btrfs_next_leaf(root, path);
4278 if (ret < 0)
4279 goto err;
4280 else if (ret > 0)
4281 break;
4282 continue;
39279cc3 4283 }
3de4586c 4284
5f39d397
CM
4285 item = btrfs_item_nr(leaf, slot);
4286 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4287
4288 if (found_key.objectid != key.objectid)
39279cc3 4289 break;
5f39d397 4290 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4291 break;
5f39d397 4292 if (found_key.offset < filp->f_pos)
b9e03af0 4293 goto next;
5f39d397
CM
4294
4295 filp->f_pos = found_key.offset;
49593bfa 4296
39279cc3
CM
4297 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4298 di_cur = 0;
5f39d397 4299 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4300
4301 while (di_cur < di_total) {
5f39d397
CM
4302 struct btrfs_key location;
4303
22a94d44
JB
4304 if (verify_dir_item(root, leaf, di))
4305 break;
4306
5f39d397 4307 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4308 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4309 name_ptr = tmp_name;
4310 } else {
4311 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4312 if (!name_ptr) {
4313 ret = -ENOMEM;
4314 goto err;
4315 }
5f39d397
CM
4316 }
4317 read_extent_buffer(leaf, name_ptr,
4318 (unsigned long)(di + 1), name_len);
4319
4320 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4321 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4322
4323 /* is this a reference to our own snapshot? If so
4324 * skip it
4325 */
4326 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4327 location.objectid == root->root_key.objectid) {
4328 over = 0;
4329 goto skip;
4330 }
5f39d397 4331 over = filldir(dirent, name_ptr, name_len,
49593bfa 4332 found_key.offset, location.objectid,
39279cc3 4333 d_type);
5f39d397 4334
3de4586c 4335skip:
5f39d397
CM
4336 if (name_ptr != tmp_name)
4337 kfree(name_ptr);
4338
39279cc3
CM
4339 if (over)
4340 goto nopos;
5103e947 4341 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4342 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4343 di_cur += di_len;
4344 di = (struct btrfs_dir_item *)((char *)di + di_len);
4345 }
b9e03af0
LZ
4346next:
4347 path->slots[0]++;
39279cc3 4348 }
49593bfa
DW
4349
4350 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4351 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4352 /*
4353 * 32-bit glibc will use getdents64, but then strtol -
4354 * so the last number we can serve is this.
4355 */
4356 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4357 else
4358 filp->f_pos++;
39279cc3
CM
4359nopos:
4360 ret = 0;
4361err:
39279cc3 4362 btrfs_free_path(path);
39279cc3
CM
4363 return ret;
4364}
4365
a9185b41 4366int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4367{
4368 struct btrfs_root *root = BTRFS_I(inode)->root;
4369 struct btrfs_trans_handle *trans;
4370 int ret = 0;
0af3d00b 4371 bool nolock = false;
39279cc3 4372
8929ecfa 4373 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4374 return 0;
4375
0af3d00b
JB
4376 smp_mb();
4377 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4378
a9185b41 4379 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4380 if (nolock)
7a7eaa40 4381 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4382 else
7a7eaa40 4383 trans = btrfs_join_transaction(root);
3612b495
TI
4384 if (IS_ERR(trans))
4385 return PTR_ERR(trans);
39279cc3 4386 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4387 if (nolock)
4388 ret = btrfs_end_transaction_nolock(trans, root);
4389 else
4390 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4391 }
4392 return ret;
4393}
4394
4395/*
54aa1f4d 4396 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4397 * inode changes. But, it is most likely to find the inode in cache.
4398 * FIXME, needs more benchmarking...there are no reasons other than performance
4399 * to keep or drop this code.
4400 */
4401void btrfs_dirty_inode(struct inode *inode)
4402{
4403 struct btrfs_root *root = BTRFS_I(inode)->root;
4404 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4405 int ret;
4406
4407 if (BTRFS_I(inode)->dummy_inode)
4408 return;
39279cc3 4409
7a7eaa40 4410 trans = btrfs_join_transaction(root);
3612b495 4411 BUG_ON(IS_ERR(trans));
39279cc3 4412 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4413
4414 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4415 if (ret && ret == -ENOSPC) {
4416 /* whoops, lets try again with the full transaction */
4417 btrfs_end_transaction(trans, root);
4418 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4419 if (IS_ERR(trans)) {
4420 if (printk_ratelimit()) {
4421 printk(KERN_ERR "btrfs: fail to "
4422 "dirty inode %lu error %ld\n",
4423 inode->i_ino, PTR_ERR(trans));
4424 }
4425 return;
4426 }
94b60442 4427 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4428
94b60442
CM
4429 ret = btrfs_update_inode(trans, root, inode);
4430 if (ret) {
9aeead73
CM
4431 if (printk_ratelimit()) {
4432 printk(KERN_ERR "btrfs: fail to "
4433 "dirty inode %lu error %d\n",
4434 inode->i_ino, ret);
4435 }
94b60442
CM
4436 }
4437 }
39279cc3 4438 btrfs_end_transaction(trans, root);
39279cc3
CM
4439}
4440
d352ac68
CM
4441/*
4442 * find the highest existing sequence number in a directory
4443 * and then set the in-memory index_cnt variable to reflect
4444 * free sequence numbers
4445 */
aec7477b
JB
4446static int btrfs_set_inode_index_count(struct inode *inode)
4447{
4448 struct btrfs_root *root = BTRFS_I(inode)->root;
4449 struct btrfs_key key, found_key;
4450 struct btrfs_path *path;
4451 struct extent_buffer *leaf;
4452 int ret;
4453
4454 key.objectid = inode->i_ino;
4455 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4456 key.offset = (u64)-1;
4457
4458 path = btrfs_alloc_path();
4459 if (!path)
4460 return -ENOMEM;
4461
4462 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4463 if (ret < 0)
4464 goto out;
4465 /* FIXME: we should be able to handle this */
4466 if (ret == 0)
4467 goto out;
4468 ret = 0;
4469
4470 /*
4471 * MAGIC NUMBER EXPLANATION:
4472 * since we search a directory based on f_pos we have to start at 2
4473 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4474 * else has to start at 2
4475 */
4476 if (path->slots[0] == 0) {
4477 BTRFS_I(inode)->index_cnt = 2;
4478 goto out;
4479 }
4480
4481 path->slots[0]--;
4482
4483 leaf = path->nodes[0];
4484 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4485
4486 if (found_key.objectid != inode->i_ino ||
4487 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4488 BTRFS_I(inode)->index_cnt = 2;
4489 goto out;
4490 }
4491
4492 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4493out:
4494 btrfs_free_path(path);
4495 return ret;
4496}
4497
d352ac68
CM
4498/*
4499 * helper to find a free sequence number in a given directory. This current
4500 * code is very simple, later versions will do smarter things in the btree
4501 */
3de4586c 4502int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4503{
4504 int ret = 0;
4505
4506 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4507 ret = btrfs_set_inode_index_count(dir);
d397712b 4508 if (ret)
aec7477b
JB
4509 return ret;
4510 }
4511
00e4e6b3 4512 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4513 BTRFS_I(dir)->index_cnt++;
4514
4515 return ret;
4516}
4517
39279cc3
CM
4518static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4519 struct btrfs_root *root,
aec7477b 4520 struct inode *dir,
9c58309d 4521 const char *name, int name_len,
d2fb3437
YZ
4522 u64 ref_objectid, u64 objectid,
4523 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4524{
4525 struct inode *inode;
5f39d397 4526 struct btrfs_inode_item *inode_item;
39279cc3 4527 struct btrfs_key *location;
5f39d397 4528 struct btrfs_path *path;
9c58309d
CM
4529 struct btrfs_inode_ref *ref;
4530 struct btrfs_key key[2];
4531 u32 sizes[2];
4532 unsigned long ptr;
39279cc3
CM
4533 int ret;
4534 int owner;
4535
5f39d397
CM
4536 path = btrfs_alloc_path();
4537 BUG_ON(!path);
4538
39279cc3 4539 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4540 if (!inode) {
4541 btrfs_free_path(path);
39279cc3 4542 return ERR_PTR(-ENOMEM);
8fb27640 4543 }
39279cc3 4544
aec7477b 4545 if (dir) {
1abe9b8a 4546 trace_btrfs_inode_request(dir);
4547
3de4586c 4548 ret = btrfs_set_inode_index(dir, index);
09771430 4549 if (ret) {
8fb27640 4550 btrfs_free_path(path);
09771430 4551 iput(inode);
aec7477b 4552 return ERR_PTR(ret);
09771430 4553 }
aec7477b
JB
4554 }
4555 /*
4556 * index_cnt is ignored for everything but a dir,
4557 * btrfs_get_inode_index_count has an explanation for the magic
4558 * number
4559 */
4560 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4561 BTRFS_I(inode)->root = root;
e02119d5 4562 BTRFS_I(inode)->generation = trans->transid;
76195853 4563 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4564 btrfs_set_inode_space_info(root, inode);
b888db2b 4565
39279cc3
CM
4566 if (mode & S_IFDIR)
4567 owner = 0;
4568 else
4569 owner = 1;
d2fb3437
YZ
4570 BTRFS_I(inode)->block_group =
4571 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4572
4573 key[0].objectid = objectid;
4574 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4575 key[0].offset = 0;
4576
4577 key[1].objectid = objectid;
4578 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4579 key[1].offset = ref_objectid;
4580
4581 sizes[0] = sizeof(struct btrfs_inode_item);
4582 sizes[1] = name_len + sizeof(*ref);
4583
b9473439 4584 path->leave_spinning = 1;
9c58309d
CM
4585 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4586 if (ret != 0)
5f39d397
CM
4587 goto fail;
4588
ecc11fab 4589 inode_init_owner(inode, dir, mode);
39279cc3 4590 inode->i_ino = objectid;
a76a3cd4 4591 inode_set_bytes(inode, 0);
39279cc3 4592 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4593 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4594 struct btrfs_inode_item);
e02119d5 4595 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4596
4597 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4598 struct btrfs_inode_ref);
4599 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4600 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4601 ptr = (unsigned long)(ref + 1);
4602 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4603
5f39d397
CM
4604 btrfs_mark_buffer_dirty(path->nodes[0]);
4605 btrfs_free_path(path);
4606
39279cc3
CM
4607 location = &BTRFS_I(inode)->location;
4608 location->objectid = objectid;
39279cc3
CM
4609 location->offset = 0;
4610 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4611
6cbff00f
CH
4612 btrfs_inherit_iflags(inode, dir);
4613
94272164
CM
4614 if ((mode & S_IFREG)) {
4615 if (btrfs_test_opt(root, NODATASUM))
4616 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4617 if (btrfs_test_opt(root, NODATACOW) ||
4618 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4619 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4620 }
4621
39279cc3 4622 insert_inode_hash(inode);
5d4f98a2 4623 inode_tree_add(inode);
1abe9b8a 4624
4625 trace_btrfs_inode_new(inode);
4626
39279cc3 4627 return inode;
5f39d397 4628fail:
aec7477b
JB
4629 if (dir)
4630 BTRFS_I(dir)->index_cnt--;
5f39d397 4631 btrfs_free_path(path);
09771430 4632 iput(inode);
5f39d397 4633 return ERR_PTR(ret);
39279cc3
CM
4634}
4635
4636static inline u8 btrfs_inode_type(struct inode *inode)
4637{
4638 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4639}
4640
d352ac68
CM
4641/*
4642 * utility function to add 'inode' into 'parent_inode' with
4643 * a give name and a given sequence number.
4644 * if 'add_backref' is true, also insert a backref from the
4645 * inode to the parent directory.
4646 */
e02119d5
CM
4647int btrfs_add_link(struct btrfs_trans_handle *trans,
4648 struct inode *parent_inode, struct inode *inode,
4649 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4650{
4df27c4d 4651 int ret = 0;
39279cc3 4652 struct btrfs_key key;
e02119d5 4653 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4654
4df27c4d
YZ
4655 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4656 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4657 } else {
4658 key.objectid = inode->i_ino;
4659 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4660 key.offset = 0;
4661 }
4662
4663 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4664 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4665 key.objectid, root->root_key.objectid,
4666 parent_inode->i_ino,
4667 index, name, name_len);
4668 } else if (add_backref) {
4669 ret = btrfs_insert_inode_ref(trans, root,
4670 name, name_len, inode->i_ino,
4671 parent_inode->i_ino, index);
4672 }
39279cc3 4673
39279cc3 4674 if (ret == 0) {
4df27c4d
YZ
4675 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4676 parent_inode->i_ino, &key,
4677 btrfs_inode_type(inode), index);
4678 BUG_ON(ret);
4679
dbe674a9 4680 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4681 name_len * 2);
79c44584 4682 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4683 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4684 }
4685 return ret;
4686}
4687
4688static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4689 struct inode *dir, struct dentry *dentry,
4690 struct inode *inode, int backref, u64 index)
39279cc3 4691{
a1b075d2
JB
4692 int err = btrfs_add_link(trans, dir, inode,
4693 dentry->d_name.name, dentry->d_name.len,
4694 backref, index);
39279cc3
CM
4695 if (!err) {
4696 d_instantiate(dentry, inode);
4697 return 0;
4698 }
4699 if (err > 0)
4700 err = -EEXIST;
4701 return err;
4702}
4703
618e21d5
JB
4704static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4705 int mode, dev_t rdev)
4706{
4707 struct btrfs_trans_handle *trans;
4708 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4709 struct inode *inode = NULL;
618e21d5
JB
4710 int err;
4711 int drop_inode = 0;
4712 u64 objectid;
1832a6d5 4713 unsigned long nr = 0;
00e4e6b3 4714 u64 index = 0;
618e21d5
JB
4715
4716 if (!new_valid_dev(rdev))
4717 return -EINVAL;
4718
a22285a6
YZ
4719 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4720 if (err)
4721 return err;
4722
9ed74f2d
JB
4723 /*
4724 * 2 for inode item and ref
4725 * 2 for dir items
4726 * 1 for xattr if selinux is on
4727 */
a22285a6
YZ
4728 trans = btrfs_start_transaction(root, 5);
4729 if (IS_ERR(trans))
4730 return PTR_ERR(trans);
1832a6d5 4731
618e21d5
JB
4732 btrfs_set_trans_block_group(trans, dir);
4733
aec7477b 4734 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4735 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4736 BTRFS_I(dir)->block_group, mode, &index);
7cf96da3
TI
4737 if (IS_ERR(inode)) {
4738 err = PTR_ERR(inode);
618e21d5 4739 goto out_unlock;
7cf96da3 4740 }
618e21d5 4741
2a7dba39 4742 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4743 if (err) {
4744 drop_inode = 1;
4745 goto out_unlock;
4746 }
4747
618e21d5 4748 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4749 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4750 if (err)
4751 drop_inode = 1;
4752 else {
4753 inode->i_op = &btrfs_special_inode_operations;
4754 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4755 btrfs_update_inode(trans, root, inode);
618e21d5 4756 }
618e21d5
JB
4757 btrfs_update_inode_block_group(trans, inode);
4758 btrfs_update_inode_block_group(trans, dir);
4759out_unlock:
d3c2fdcf 4760 nr = trans->blocks_used;
89ce8a63 4761 btrfs_end_transaction_throttle(trans, root);
a22285a6 4762 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4763 if (drop_inode) {
4764 inode_dec_link_count(inode);
4765 iput(inode);
4766 }
618e21d5
JB
4767 return err;
4768}
4769
39279cc3
CM
4770static int btrfs_create(struct inode *dir, struct dentry *dentry,
4771 int mode, struct nameidata *nd)
4772{
4773 struct btrfs_trans_handle *trans;
4774 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4775 struct inode *inode = NULL;
39279cc3 4776 int drop_inode = 0;
a22285a6 4777 int err;
1832a6d5 4778 unsigned long nr = 0;
39279cc3 4779 u64 objectid;
00e4e6b3 4780 u64 index = 0;
39279cc3 4781
a22285a6
YZ
4782 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4783 if (err)
4784 return err;
9ed74f2d
JB
4785 /*
4786 * 2 for inode item and ref
4787 * 2 for dir items
4788 * 1 for xattr if selinux is on
4789 */
a22285a6
YZ
4790 trans = btrfs_start_transaction(root, 5);
4791 if (IS_ERR(trans))
4792 return PTR_ERR(trans);
9ed74f2d 4793
39279cc3
CM
4794 btrfs_set_trans_block_group(trans, dir);
4795
aec7477b 4796 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4797 dentry->d_name.len, dir->i_ino, objectid,
4798 BTRFS_I(dir)->block_group, mode, &index);
7cf96da3
TI
4799 if (IS_ERR(inode)) {
4800 err = PTR_ERR(inode);
39279cc3 4801 goto out_unlock;
7cf96da3 4802 }
39279cc3 4803
2a7dba39 4804 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4805 if (err) {
4806 drop_inode = 1;
4807 goto out_unlock;
4808 }
4809
39279cc3 4810 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4811 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4812 if (err)
4813 drop_inode = 1;
4814 else {
4815 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4816 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4817 inode->i_fop = &btrfs_file_operations;
4818 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4819 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4820 }
39279cc3
CM
4821 btrfs_update_inode_block_group(trans, inode);
4822 btrfs_update_inode_block_group(trans, dir);
4823out_unlock:
d3c2fdcf 4824 nr = trans->blocks_used;
ab78c84d 4825 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4826 if (drop_inode) {
4827 inode_dec_link_count(inode);
4828 iput(inode);
4829 }
d3c2fdcf 4830 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4831 return err;
4832}
4833
4834static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4835 struct dentry *dentry)
4836{
4837 struct btrfs_trans_handle *trans;
4838 struct btrfs_root *root = BTRFS_I(dir)->root;
4839 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4840 u64 index;
1832a6d5 4841 unsigned long nr = 0;
39279cc3
CM
4842 int err;
4843 int drop_inode = 0;
4844
4a8be425
TH
4845 /* do not allow sys_link's with other subvols of the same device */
4846 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4847 return -EXDEV;
4a8be425 4848
c055e99e
AV
4849 if (inode->i_nlink == ~0U)
4850 return -EMLINK;
4a8be425 4851
3de4586c 4852 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4853 if (err)
4854 goto fail;
4855
a22285a6 4856 /*
7e6b6465 4857 * 2 items for inode and inode ref
a22285a6 4858 * 2 items for dir items
7e6b6465 4859 * 1 item for parent inode
a22285a6 4860 */
7e6b6465 4861 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4862 if (IS_ERR(trans)) {
4863 err = PTR_ERR(trans);
4864 goto fail;
4865 }
5f39d397 4866
3153495d
MX
4867 btrfs_inc_nlink(inode);
4868 inode->i_ctime = CURRENT_TIME;
4869
39279cc3 4870 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4871 ihold(inode);
aec7477b 4872
a1b075d2 4873 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4874
a5719521 4875 if (err) {
54aa1f4d 4876 drop_inode = 1;
a5719521 4877 } else {
6a912213 4878 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4879 btrfs_update_inode_block_group(trans, dir);
4880 err = btrfs_update_inode(trans, root, inode);
4881 BUG_ON(err);
6a912213
JB
4882 btrfs_log_new_name(trans, inode, NULL, parent);
4883 dput(parent);
a5719521 4884 }
39279cc3 4885
d3c2fdcf 4886 nr = trans->blocks_used;
ab78c84d 4887 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4888fail:
39279cc3
CM
4889 if (drop_inode) {
4890 inode_dec_link_count(inode);
4891 iput(inode);
4892 }
d3c2fdcf 4893 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4894 return err;
4895}
4896
39279cc3
CM
4897static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4898{
b9d86667 4899 struct inode *inode = NULL;
39279cc3
CM
4900 struct btrfs_trans_handle *trans;
4901 struct btrfs_root *root = BTRFS_I(dir)->root;
4902 int err = 0;
4903 int drop_on_err = 0;
b9d86667 4904 u64 objectid = 0;
00e4e6b3 4905 u64 index = 0;
d3c2fdcf 4906 unsigned long nr = 1;
39279cc3 4907
a22285a6
YZ
4908 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4909 if (err)
4910 return err;
4911
9ed74f2d
JB
4912 /*
4913 * 2 items for inode and ref
4914 * 2 items for dir items
4915 * 1 for xattr if selinux is on
4916 */
a22285a6
YZ
4917 trans = btrfs_start_transaction(root, 5);
4918 if (IS_ERR(trans))
4919 return PTR_ERR(trans);
9ed74f2d 4920 btrfs_set_trans_block_group(trans, dir);
39279cc3 4921
aec7477b 4922 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4923 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4924 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4925 &index);
39279cc3
CM
4926 if (IS_ERR(inode)) {
4927 err = PTR_ERR(inode);
4928 goto out_fail;
4929 }
5f39d397 4930
39279cc3 4931 drop_on_err = 1;
33268eaf 4932
2a7dba39 4933 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4934 if (err)
4935 goto out_fail;
4936
39279cc3
CM
4937 inode->i_op = &btrfs_dir_inode_operations;
4938 inode->i_fop = &btrfs_dir_file_operations;
4939 btrfs_set_trans_block_group(trans, inode);
4940
dbe674a9 4941 btrfs_i_size_write(inode, 0);
39279cc3
CM
4942 err = btrfs_update_inode(trans, root, inode);
4943 if (err)
4944 goto out_fail;
5f39d397 4945
a1b075d2
JB
4946 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4947 dentry->d_name.len, 0, index);
39279cc3
CM
4948 if (err)
4949 goto out_fail;
5f39d397 4950
39279cc3
CM
4951 d_instantiate(dentry, inode);
4952 drop_on_err = 0;
39279cc3
CM
4953 btrfs_update_inode_block_group(trans, inode);
4954 btrfs_update_inode_block_group(trans, dir);
4955
4956out_fail:
d3c2fdcf 4957 nr = trans->blocks_used;
ab78c84d 4958 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4959 if (drop_on_err)
4960 iput(inode);
d3c2fdcf 4961 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4962 return err;
4963}
4964
d352ac68
CM
4965/* helper for btfs_get_extent. Given an existing extent in the tree,
4966 * and an extent that you want to insert, deal with overlap and insert
4967 * the new extent into the tree.
4968 */
3b951516
CM
4969static int merge_extent_mapping(struct extent_map_tree *em_tree,
4970 struct extent_map *existing,
e6dcd2dc
CM
4971 struct extent_map *em,
4972 u64 map_start, u64 map_len)
3b951516
CM
4973{
4974 u64 start_diff;
3b951516 4975
e6dcd2dc
CM
4976 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4977 start_diff = map_start - em->start;
4978 em->start = map_start;
4979 em->len = map_len;
c8b97818
CM
4980 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4981 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4982 em->block_start += start_diff;
c8b97818
CM
4983 em->block_len -= start_diff;
4984 }
e6dcd2dc 4985 return add_extent_mapping(em_tree, em);
3b951516
CM
4986}
4987
c8b97818
CM
4988static noinline int uncompress_inline(struct btrfs_path *path,
4989 struct inode *inode, struct page *page,
4990 size_t pg_offset, u64 extent_offset,
4991 struct btrfs_file_extent_item *item)
4992{
4993 int ret;
4994 struct extent_buffer *leaf = path->nodes[0];
4995 char *tmp;
4996 size_t max_size;
4997 unsigned long inline_size;
4998 unsigned long ptr;
261507a0 4999 int compress_type;
c8b97818
CM
5000
5001 WARN_ON(pg_offset != 0);
261507a0 5002 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5003 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5004 inline_size = btrfs_file_extent_inline_item_len(leaf,
5005 btrfs_item_nr(leaf, path->slots[0]));
5006 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5007 if (!tmp)
5008 return -ENOMEM;
c8b97818
CM
5009 ptr = btrfs_file_extent_inline_start(item);
5010
5011 read_extent_buffer(leaf, tmp, ptr, inline_size);
5012
5b050f04 5013 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5014 ret = btrfs_decompress(compress_type, tmp, page,
5015 extent_offset, inline_size, max_size);
c8b97818
CM
5016 if (ret) {
5017 char *kaddr = kmap_atomic(page, KM_USER0);
5018 unsigned long copy_size = min_t(u64,
5019 PAGE_CACHE_SIZE - pg_offset,
5020 max_size - extent_offset);
5021 memset(kaddr + pg_offset, 0, copy_size);
5022 kunmap_atomic(kaddr, KM_USER0);
5023 }
5024 kfree(tmp);
5025 return 0;
5026}
5027
d352ac68
CM
5028/*
5029 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5030 * the ugly parts come from merging extents from the disk with the in-ram
5031 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5032 * where the in-ram extents might be locked pending data=ordered completion.
5033 *
5034 * This also copies inline extents directly into the page.
5035 */
d397712b 5036
a52d9a80 5037struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5038 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5039 int create)
5040{
5041 int ret;
5042 int err = 0;
db94535d 5043 u64 bytenr;
a52d9a80
CM
5044 u64 extent_start = 0;
5045 u64 extent_end = 0;
5046 u64 objectid = inode->i_ino;
5047 u32 found_type;
f421950f 5048 struct btrfs_path *path = NULL;
a52d9a80
CM
5049 struct btrfs_root *root = BTRFS_I(inode)->root;
5050 struct btrfs_file_extent_item *item;
5f39d397
CM
5051 struct extent_buffer *leaf;
5052 struct btrfs_key found_key;
a52d9a80
CM
5053 struct extent_map *em = NULL;
5054 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5055 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5056 struct btrfs_trans_handle *trans = NULL;
261507a0 5057 int compress_type;
a52d9a80 5058
a52d9a80 5059again:
890871be 5060 read_lock(&em_tree->lock);
d1310b2e 5061 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5062 if (em)
5063 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5064 read_unlock(&em_tree->lock);
d1310b2e 5065
a52d9a80 5066 if (em) {
e1c4b745
CM
5067 if (em->start > start || em->start + em->len <= start)
5068 free_extent_map(em);
5069 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5070 free_extent_map(em);
5071 else
5072 goto out;
a52d9a80 5073 }
d1310b2e 5074 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5075 if (!em) {
d1310b2e
CM
5076 err = -ENOMEM;
5077 goto out;
a52d9a80 5078 }
e6dcd2dc 5079 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5080 em->start = EXTENT_MAP_HOLE;
445a6944 5081 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5082 em->len = (u64)-1;
c8b97818 5083 em->block_len = (u64)-1;
f421950f
CM
5084
5085 if (!path) {
5086 path = btrfs_alloc_path();
5087 BUG_ON(!path);
5088 }
5089
179e29e4
CM
5090 ret = btrfs_lookup_file_extent(trans, root, path,
5091 objectid, start, trans != NULL);
a52d9a80
CM
5092 if (ret < 0) {
5093 err = ret;
5094 goto out;
5095 }
5096
5097 if (ret != 0) {
5098 if (path->slots[0] == 0)
5099 goto not_found;
5100 path->slots[0]--;
5101 }
5102
5f39d397
CM
5103 leaf = path->nodes[0];
5104 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5105 struct btrfs_file_extent_item);
a52d9a80 5106 /* are we inside the extent that was found? */
5f39d397
CM
5107 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5108 found_type = btrfs_key_type(&found_key);
5109 if (found_key.objectid != objectid ||
a52d9a80
CM
5110 found_type != BTRFS_EXTENT_DATA_KEY) {
5111 goto not_found;
5112 }
5113
5f39d397
CM
5114 found_type = btrfs_file_extent_type(leaf, item);
5115 extent_start = found_key.offset;
261507a0 5116 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5117 if (found_type == BTRFS_FILE_EXTENT_REG ||
5118 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5119 extent_end = extent_start +
db94535d 5120 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5121 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5122 size_t size;
5123 size = btrfs_file_extent_inline_len(leaf, item);
5124 extent_end = (extent_start + size + root->sectorsize - 1) &
5125 ~((u64)root->sectorsize - 1);
5126 }
5127
5128 if (start >= extent_end) {
5129 path->slots[0]++;
5130 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5131 ret = btrfs_next_leaf(root, path);
5132 if (ret < 0) {
5133 err = ret;
5134 goto out;
a52d9a80 5135 }
9036c102
YZ
5136 if (ret > 0)
5137 goto not_found;
5138 leaf = path->nodes[0];
a52d9a80 5139 }
9036c102
YZ
5140 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5141 if (found_key.objectid != objectid ||
5142 found_key.type != BTRFS_EXTENT_DATA_KEY)
5143 goto not_found;
5144 if (start + len <= found_key.offset)
5145 goto not_found;
5146 em->start = start;
5147 em->len = found_key.offset - start;
5148 goto not_found_em;
5149 }
5150
d899e052
YZ
5151 if (found_type == BTRFS_FILE_EXTENT_REG ||
5152 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5153 em->start = extent_start;
5154 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5155 em->orig_start = extent_start -
5156 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5157 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5158 if (bytenr == 0) {
5f39d397 5159 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5160 goto insert;
5161 }
261507a0 5162 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5163 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5164 em->compress_type = compress_type;
c8b97818
CM
5165 em->block_start = bytenr;
5166 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5167 item);
5168 } else {
5169 bytenr += btrfs_file_extent_offset(leaf, item);
5170 em->block_start = bytenr;
5171 em->block_len = em->len;
d899e052
YZ
5172 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5173 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5174 }
a52d9a80
CM
5175 goto insert;
5176 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5177 unsigned long ptr;
a52d9a80 5178 char *map;
3326d1b0
CM
5179 size_t size;
5180 size_t extent_offset;
5181 size_t copy_size;
a52d9a80 5182
689f9346 5183 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5184 if (!page || create) {
689f9346 5185 em->start = extent_start;
9036c102 5186 em->len = extent_end - extent_start;
689f9346
Y
5187 goto out;
5188 }
5f39d397 5189
9036c102
YZ
5190 size = btrfs_file_extent_inline_len(leaf, item);
5191 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5192 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5193 size - extent_offset);
3326d1b0 5194 em->start = extent_start + extent_offset;
70dec807
CM
5195 em->len = (copy_size + root->sectorsize - 1) &
5196 ~((u64)root->sectorsize - 1);
ff5b7ee3 5197 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5198 if (compress_type) {
c8b97818 5199 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5200 em->compress_type = compress_type;
5201 }
689f9346 5202 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5203 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5204 if (btrfs_file_extent_compression(leaf, item) !=
5205 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5206 ret = uncompress_inline(path, inode, page,
5207 pg_offset,
5208 extent_offset, item);
5209 BUG_ON(ret);
5210 } else {
5211 map = kmap(page);
5212 read_extent_buffer(leaf, map + pg_offset, ptr,
5213 copy_size);
93c82d57
CM
5214 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5215 memset(map + pg_offset + copy_size, 0,
5216 PAGE_CACHE_SIZE - pg_offset -
5217 copy_size);
5218 }
c8b97818
CM
5219 kunmap(page);
5220 }
179e29e4
CM
5221 flush_dcache_page(page);
5222 } else if (create && PageUptodate(page)) {
0ca1f7ce 5223 WARN_ON(1);
179e29e4
CM
5224 if (!trans) {
5225 kunmap(page);
5226 free_extent_map(em);
5227 em = NULL;
5228 btrfs_release_path(root, path);
7a7eaa40 5229 trans = btrfs_join_transaction(root);
3612b495
TI
5230 if (IS_ERR(trans))
5231 return ERR_CAST(trans);
179e29e4
CM
5232 goto again;
5233 }
c8b97818 5234 map = kmap(page);
70dec807 5235 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5236 copy_size);
c8b97818 5237 kunmap(page);
179e29e4 5238 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5239 }
d1310b2e 5240 set_extent_uptodate(io_tree, em->start,
507903b8 5241 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5242 goto insert;
5243 } else {
d397712b 5244 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5245 WARN_ON(1);
5246 }
5247not_found:
5248 em->start = start;
d1310b2e 5249 em->len = len;
a52d9a80 5250not_found_em:
5f39d397 5251 em->block_start = EXTENT_MAP_HOLE;
9036c102 5252 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5253insert:
5254 btrfs_release_path(root, path);
d1310b2e 5255 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5256 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5257 "[%llu %llu]\n", (unsigned long long)em->start,
5258 (unsigned long long)em->len,
5259 (unsigned long long)start,
5260 (unsigned long long)len);
a52d9a80
CM
5261 err = -EIO;
5262 goto out;
5263 }
d1310b2e
CM
5264
5265 err = 0;
890871be 5266 write_lock(&em_tree->lock);
a52d9a80 5267 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5268 /* it is possible that someone inserted the extent into the tree
5269 * while we had the lock dropped. It is also possible that
5270 * an overlapping map exists in the tree
5271 */
a52d9a80 5272 if (ret == -EEXIST) {
3b951516 5273 struct extent_map *existing;
e6dcd2dc
CM
5274
5275 ret = 0;
5276
3b951516 5277 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5278 if (existing && (existing->start > start ||
5279 existing->start + existing->len <= start)) {
5280 free_extent_map(existing);
5281 existing = NULL;
5282 }
3b951516
CM
5283 if (!existing) {
5284 existing = lookup_extent_mapping(em_tree, em->start,
5285 em->len);
5286 if (existing) {
5287 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5288 em, start,
5289 root->sectorsize);
3b951516
CM
5290 free_extent_map(existing);
5291 if (err) {
5292 free_extent_map(em);
5293 em = NULL;
5294 }
5295 } else {
5296 err = -EIO;
3b951516
CM
5297 free_extent_map(em);
5298 em = NULL;
5299 }
5300 } else {
5301 free_extent_map(em);
5302 em = existing;
e6dcd2dc 5303 err = 0;
a52d9a80 5304 }
a52d9a80 5305 }
890871be 5306 write_unlock(&em_tree->lock);
a52d9a80 5307out:
1abe9b8a 5308
5309 trace_btrfs_get_extent(root, em);
5310
f421950f
CM
5311 if (path)
5312 btrfs_free_path(path);
a52d9a80
CM
5313 if (trans) {
5314 ret = btrfs_end_transaction(trans, root);
d397712b 5315 if (!err)
a52d9a80
CM
5316 err = ret;
5317 }
a52d9a80
CM
5318 if (err) {
5319 free_extent_map(em);
a52d9a80
CM
5320 return ERR_PTR(err);
5321 }
5322 return em;
5323}
5324
ec29ed5b
CM
5325struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5326 size_t pg_offset, u64 start, u64 len,
5327 int create)
5328{
5329 struct extent_map *em;
5330 struct extent_map *hole_em = NULL;
5331 u64 range_start = start;
5332 u64 end;
5333 u64 found;
5334 u64 found_end;
5335 int err = 0;
5336
5337 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5338 if (IS_ERR(em))
5339 return em;
5340 if (em) {
5341 /*
5342 * if our em maps to a hole, there might
5343 * actually be delalloc bytes behind it
5344 */
5345 if (em->block_start != EXTENT_MAP_HOLE)
5346 return em;
5347 else
5348 hole_em = em;
5349 }
5350
5351 /* check to see if we've wrapped (len == -1 or similar) */
5352 end = start + len;
5353 if (end < start)
5354 end = (u64)-1;
5355 else
5356 end -= 1;
5357
5358 em = NULL;
5359
5360 /* ok, we didn't find anything, lets look for delalloc */
5361 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5362 end, len, EXTENT_DELALLOC, 1);
5363 found_end = range_start + found;
5364 if (found_end < range_start)
5365 found_end = (u64)-1;
5366
5367 /*
5368 * we didn't find anything useful, return
5369 * the original results from get_extent()
5370 */
5371 if (range_start > end || found_end <= start) {
5372 em = hole_em;
5373 hole_em = NULL;
5374 goto out;
5375 }
5376
5377 /* adjust the range_start to make sure it doesn't
5378 * go backwards from the start they passed in
5379 */
5380 range_start = max(start,range_start);
5381 found = found_end - range_start;
5382
5383 if (found > 0) {
5384 u64 hole_start = start;
5385 u64 hole_len = len;
5386
5387 em = alloc_extent_map(GFP_NOFS);
5388 if (!em) {
5389 err = -ENOMEM;
5390 goto out;
5391 }
5392 /*
5393 * when btrfs_get_extent can't find anything it
5394 * returns one huge hole
5395 *
5396 * make sure what it found really fits our range, and
5397 * adjust to make sure it is based on the start from
5398 * the caller
5399 */
5400 if (hole_em) {
5401 u64 calc_end = extent_map_end(hole_em);
5402
5403 if (calc_end <= start || (hole_em->start > end)) {
5404 free_extent_map(hole_em);
5405 hole_em = NULL;
5406 } else {
5407 hole_start = max(hole_em->start, start);
5408 hole_len = calc_end - hole_start;
5409 }
5410 }
5411 em->bdev = NULL;
5412 if (hole_em && range_start > hole_start) {
5413 /* our hole starts before our delalloc, so we
5414 * have to return just the parts of the hole
5415 * that go until the delalloc starts
5416 */
5417 em->len = min(hole_len,
5418 range_start - hole_start);
5419 em->start = hole_start;
5420 em->orig_start = hole_start;
5421 /*
5422 * don't adjust block start at all,
5423 * it is fixed at EXTENT_MAP_HOLE
5424 */
5425 em->block_start = hole_em->block_start;
5426 em->block_len = hole_len;
5427 } else {
5428 em->start = range_start;
5429 em->len = found;
5430 em->orig_start = range_start;
5431 em->block_start = EXTENT_MAP_DELALLOC;
5432 em->block_len = found;
5433 }
5434 } else if (hole_em) {
5435 return hole_em;
5436 }
5437out:
5438
5439 free_extent_map(hole_em);
5440 if (err) {
5441 free_extent_map(em);
5442 return ERR_PTR(err);
5443 }
5444 return em;
5445}
5446
4b46fce2 5447static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5448 struct extent_map *em,
4b46fce2
JB
5449 u64 start, u64 len)
5450{
5451 struct btrfs_root *root = BTRFS_I(inode)->root;
5452 struct btrfs_trans_handle *trans;
4b46fce2
JB
5453 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5454 struct btrfs_key ins;
5455 u64 alloc_hint;
5456 int ret;
16d299ac 5457 bool insert = false;
4b46fce2 5458
16d299ac
JB
5459 /*
5460 * Ok if the extent map we looked up is a hole and is for the exact
5461 * range we want, there is no reason to allocate a new one, however if
5462 * it is not right then we need to free this one and drop the cache for
5463 * our range.
5464 */
5465 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5466 em->len != len) {
5467 free_extent_map(em);
5468 em = NULL;
5469 insert = true;
5470 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5471 }
4b46fce2 5472
7a7eaa40 5473 trans = btrfs_join_transaction(root);
3612b495
TI
5474 if (IS_ERR(trans))
5475 return ERR_CAST(trans);
4b46fce2
JB
5476
5477 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5478
5479 alloc_hint = get_extent_allocation_hint(inode, start, len);
5480 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5481 alloc_hint, (u64)-1, &ins, 1);
5482 if (ret) {
5483 em = ERR_PTR(ret);
5484 goto out;
5485 }
5486
4b46fce2 5487 if (!em) {
16d299ac
JB
5488 em = alloc_extent_map(GFP_NOFS);
5489 if (!em) {
5490 em = ERR_PTR(-ENOMEM);
5491 goto out;
5492 }
4b46fce2
JB
5493 }
5494
5495 em->start = start;
5496 em->orig_start = em->start;
5497 em->len = ins.offset;
5498
5499 em->block_start = ins.objectid;
5500 em->block_len = ins.offset;
5501 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5502
5503 /*
5504 * We need to do this because if we're using the original em we searched
5505 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5506 */
5507 em->flags = 0;
4b46fce2
JB
5508 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5509
16d299ac 5510 while (insert) {
4b46fce2
JB
5511 write_lock(&em_tree->lock);
5512 ret = add_extent_mapping(em_tree, em);
5513 write_unlock(&em_tree->lock);
5514 if (ret != -EEXIST)
5515 break;
5516 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5517 }
5518
5519 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5520 ins.offset, ins.offset, 0);
5521 if (ret) {
5522 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5523 em = ERR_PTR(ret);
5524 }
5525out:
5526 btrfs_end_transaction(trans, root);
5527 return em;
5528}
5529
46bfbb5c
CM
5530/*
5531 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5532 * block must be cow'd
5533 */
5534static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5535 struct inode *inode, u64 offset, u64 len)
5536{
5537 struct btrfs_path *path;
5538 int ret;
5539 struct extent_buffer *leaf;
5540 struct btrfs_root *root = BTRFS_I(inode)->root;
5541 struct btrfs_file_extent_item *fi;
5542 struct btrfs_key key;
5543 u64 disk_bytenr;
5544 u64 backref_offset;
5545 u64 extent_end;
5546 u64 num_bytes;
5547 int slot;
5548 int found_type;
5549
5550 path = btrfs_alloc_path();
5551 if (!path)
5552 return -ENOMEM;
5553
5554 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5555 offset, 0);
5556 if (ret < 0)
5557 goto out;
5558
5559 slot = path->slots[0];
5560 if (ret == 1) {
5561 if (slot == 0) {
5562 /* can't find the item, must cow */
5563 ret = 0;
5564 goto out;
5565 }
5566 slot--;
5567 }
5568 ret = 0;
5569 leaf = path->nodes[0];
5570 btrfs_item_key_to_cpu(leaf, &key, slot);
5571 if (key.objectid != inode->i_ino ||
5572 key.type != BTRFS_EXTENT_DATA_KEY) {
5573 /* not our file or wrong item type, must cow */
5574 goto out;
5575 }
5576
5577 if (key.offset > offset) {
5578 /* Wrong offset, must cow */
5579 goto out;
5580 }
5581
5582 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5583 found_type = btrfs_file_extent_type(leaf, fi);
5584 if (found_type != BTRFS_FILE_EXTENT_REG &&
5585 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5586 /* not a regular extent, must cow */
5587 goto out;
5588 }
5589 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5590 backref_offset = btrfs_file_extent_offset(leaf, fi);
5591
5592 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5593 if (extent_end < offset + len) {
5594 /* extent doesn't include our full range, must cow */
5595 goto out;
5596 }
5597
5598 if (btrfs_extent_readonly(root, disk_bytenr))
5599 goto out;
5600
5601 /*
5602 * look for other files referencing this extent, if we
5603 * find any we must cow
5604 */
5605 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5606 key.offset - backref_offset, disk_bytenr))
5607 goto out;
5608
5609 /*
5610 * adjust disk_bytenr and num_bytes to cover just the bytes
5611 * in this extent we are about to write. If there
5612 * are any csums in that range we have to cow in order
5613 * to keep the csums correct
5614 */
5615 disk_bytenr += backref_offset;
5616 disk_bytenr += offset - key.offset;
5617 num_bytes = min(offset + len, extent_end) - offset;
5618 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5619 goto out;
5620 /*
5621 * all of the above have passed, it is safe to overwrite this extent
5622 * without cow
5623 */
5624 ret = 1;
5625out:
5626 btrfs_free_path(path);
5627 return ret;
5628}
5629
4b46fce2
JB
5630static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5631 struct buffer_head *bh_result, int create)
5632{
5633 struct extent_map *em;
5634 struct btrfs_root *root = BTRFS_I(inode)->root;
5635 u64 start = iblock << inode->i_blkbits;
5636 u64 len = bh_result->b_size;
46bfbb5c 5637 struct btrfs_trans_handle *trans;
4b46fce2
JB
5638
5639 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5640 if (IS_ERR(em))
5641 return PTR_ERR(em);
5642
5643 /*
5644 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5645 * io. INLINE is special, and we could probably kludge it in here, but
5646 * it's still buffered so for safety lets just fall back to the generic
5647 * buffered path.
5648 *
5649 * For COMPRESSED we _have_ to read the entire extent in so we can
5650 * decompress it, so there will be buffering required no matter what we
5651 * do, so go ahead and fallback to buffered.
5652 *
5653 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5654 * to buffered IO. Don't blame me, this is the price we pay for using
5655 * the generic code.
5656 */
5657 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5658 em->block_start == EXTENT_MAP_INLINE) {
5659 free_extent_map(em);
5660 return -ENOTBLK;
5661 }
5662
5663 /* Just a good old fashioned hole, return */
5664 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5665 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5666 free_extent_map(em);
5667 /* DIO will do one hole at a time, so just unlock a sector */
5668 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5669 start + root->sectorsize - 1, GFP_NOFS);
5670 return 0;
5671 }
5672
5673 /*
5674 * We don't allocate a new extent in the following cases
5675 *
5676 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5677 * existing extent.
5678 * 2) The extent is marked as PREALLOC. We're good to go here and can
5679 * just use the extent.
5680 *
5681 */
46bfbb5c
CM
5682 if (!create) {
5683 len = em->len - (start - em->start);
4b46fce2 5684 goto map;
46bfbb5c 5685 }
4b46fce2
JB
5686
5687 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5688 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5689 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5690 int type;
5691 int ret;
46bfbb5c 5692 u64 block_start;
4b46fce2
JB
5693
5694 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5695 type = BTRFS_ORDERED_PREALLOC;
5696 else
5697 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5698 len = min(len, em->len - (start - em->start));
4b46fce2 5699 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5700
5701 /*
5702 * we're not going to log anything, but we do need
5703 * to make sure the current transaction stays open
5704 * while we look for nocow cross refs
5705 */
7a7eaa40 5706 trans = btrfs_join_transaction(root);
3612b495 5707 if (IS_ERR(trans))
46bfbb5c
CM
5708 goto must_cow;
5709
5710 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5711 ret = btrfs_add_ordered_extent_dio(inode, start,
5712 block_start, len, len, type);
5713 btrfs_end_transaction(trans, root);
5714 if (ret) {
5715 free_extent_map(em);
5716 return ret;
5717 }
5718 goto unlock;
4b46fce2 5719 }
46bfbb5c 5720 btrfs_end_transaction(trans, root);
4b46fce2 5721 }
46bfbb5c
CM
5722must_cow:
5723 /*
5724 * this will cow the extent, reset the len in case we changed
5725 * it above
5726 */
5727 len = bh_result->b_size;
16d299ac 5728 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5729 if (IS_ERR(em))
5730 return PTR_ERR(em);
5731 len = min(len, em->len - (start - em->start));
5732unlock:
4845e44f
CM
5733 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5734 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5735 0, NULL, GFP_NOFS);
4b46fce2
JB
5736map:
5737 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5738 inode->i_blkbits;
46bfbb5c 5739 bh_result->b_size = len;
4b46fce2
JB
5740 bh_result->b_bdev = em->bdev;
5741 set_buffer_mapped(bh_result);
5742 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5743 set_buffer_new(bh_result);
5744
5745 free_extent_map(em);
5746
5747 return 0;
5748}
5749
5750struct btrfs_dio_private {
5751 struct inode *inode;
5752 u64 logical_offset;
5753 u64 disk_bytenr;
5754 u64 bytes;
5755 u32 *csums;
5756 void *private;
e65e1535
MX
5757
5758 /* number of bios pending for this dio */
5759 atomic_t pending_bios;
5760
5761 /* IO errors */
5762 int errors;
5763
5764 struct bio *orig_bio;
4b46fce2
JB
5765};
5766
5767static void btrfs_endio_direct_read(struct bio *bio, int err)
5768{
e65e1535 5769 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5770 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5771 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5772 struct inode *inode = dip->inode;
5773 struct btrfs_root *root = BTRFS_I(inode)->root;
5774 u64 start;
5775 u32 *private = dip->csums;
5776
5777 start = dip->logical_offset;
5778 do {
5779 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5780 struct page *page = bvec->bv_page;
5781 char *kaddr;
5782 u32 csum = ~(u32)0;
5783 unsigned long flags;
5784
5785 local_irq_save(flags);
5786 kaddr = kmap_atomic(page, KM_IRQ0);
5787 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5788 csum, bvec->bv_len);
5789 btrfs_csum_final(csum, (char *)&csum);
5790 kunmap_atomic(kaddr, KM_IRQ0);
5791 local_irq_restore(flags);
5792
5793 flush_dcache_page(bvec->bv_page);
5794 if (csum != *private) {
5795 printk(KERN_ERR "btrfs csum failed ino %lu off"
5796 " %llu csum %u private %u\n",
5797 inode->i_ino, (unsigned long long)start,
5798 csum, *private);
5799 err = -EIO;
5800 }
5801 }
5802
5803 start += bvec->bv_len;
5804 private++;
5805 bvec++;
5806 } while (bvec <= bvec_end);
5807
5808 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5809 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5810 bio->bi_private = dip->private;
5811
5812 kfree(dip->csums);
5813 kfree(dip);
c0da7aa1
JB
5814
5815 /* If we had a csum failure make sure to clear the uptodate flag */
5816 if (err)
5817 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5818 dio_end_io(bio, err);
5819}
5820
5821static void btrfs_endio_direct_write(struct bio *bio, int err)
5822{
5823 struct btrfs_dio_private *dip = bio->bi_private;
5824 struct inode *inode = dip->inode;
5825 struct btrfs_root *root = BTRFS_I(inode)->root;
5826 struct btrfs_trans_handle *trans;
5827 struct btrfs_ordered_extent *ordered = NULL;
5828 struct extent_state *cached_state = NULL;
163cf09c
CM
5829 u64 ordered_offset = dip->logical_offset;
5830 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5831 int ret;
5832
5833 if (err)
5834 goto out_done;
163cf09c
CM
5835again:
5836 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5837 &ordered_offset,
5838 ordered_bytes);
4b46fce2 5839 if (!ret)
163cf09c 5840 goto out_test;
4b46fce2
JB
5841
5842 BUG_ON(!ordered);
5843
7a7eaa40 5844 trans = btrfs_join_transaction(root);
3612b495 5845 if (IS_ERR(trans)) {
4b46fce2
JB
5846 err = -ENOMEM;
5847 goto out;
5848 }
5849 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5850
5851 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5852 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5853 if (!ret)
5854 ret = btrfs_update_inode(trans, root, inode);
5855 err = ret;
5856 goto out;
5857 }
5858
5859 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5860 ordered->file_offset + ordered->len - 1, 0,
5861 &cached_state, GFP_NOFS);
5862
5863 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5864 ret = btrfs_mark_extent_written(trans, inode,
5865 ordered->file_offset,
5866 ordered->file_offset +
5867 ordered->len);
5868 if (ret) {
5869 err = ret;
5870 goto out_unlock;
5871 }
5872 } else {
5873 ret = insert_reserved_file_extent(trans, inode,
5874 ordered->file_offset,
5875 ordered->start,
5876 ordered->disk_len,
5877 ordered->len,
5878 ordered->len,
5879 0, 0, 0,
5880 BTRFS_FILE_EXTENT_REG);
5881 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5882 ordered->file_offset, ordered->len);
5883 if (ret) {
5884 err = ret;
5885 WARN_ON(1);
5886 goto out_unlock;
5887 }
5888 }
5889
5890 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1
JB
5891 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5892 if (!ret)
5893 btrfs_update_inode(trans, root, inode);
5894 ret = 0;
4b46fce2
JB
5895out_unlock:
5896 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5897 ordered->file_offset + ordered->len - 1,
5898 &cached_state, GFP_NOFS);
5899out:
5900 btrfs_delalloc_release_metadata(inode, ordered->len);
5901 btrfs_end_transaction(trans, root);
163cf09c 5902 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5903 btrfs_put_ordered_extent(ordered);
5904 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5905
5906out_test:
5907 /*
5908 * our bio might span multiple ordered extents. If we haven't
5909 * completed the accounting for the whole dio, go back and try again
5910 */
5911 if (ordered_offset < dip->logical_offset + dip->bytes) {
5912 ordered_bytes = dip->logical_offset + dip->bytes -
5913 ordered_offset;
5914 goto again;
5915 }
4b46fce2
JB
5916out_done:
5917 bio->bi_private = dip->private;
5918
5919 kfree(dip->csums);
5920 kfree(dip);
c0da7aa1
JB
5921
5922 /* If we had an error make sure to clear the uptodate flag */
5923 if (err)
5924 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5925 dio_end_io(bio, err);
5926}
5927
eaf25d93
CM
5928static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5929 struct bio *bio, int mirror_num,
5930 unsigned long bio_flags, u64 offset)
5931{
5932 int ret;
5933 struct btrfs_root *root = BTRFS_I(inode)->root;
5934 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5935 BUG_ON(ret);
5936 return 0;
5937}
5938
e65e1535
MX
5939static void btrfs_end_dio_bio(struct bio *bio, int err)
5940{
5941 struct btrfs_dio_private *dip = bio->bi_private;
5942
5943 if (err) {
5944 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5945 "sector %#Lx len %u err no %d\n",
5946 dip->inode->i_ino, bio->bi_rw,
5947 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5948 dip->errors = 1;
5949
5950 /*
5951 * before atomic variable goto zero, we must make sure
5952 * dip->errors is perceived to be set.
5953 */
5954 smp_mb__before_atomic_dec();
5955 }
5956
5957 /* if there are more bios still pending for this dio, just exit */
5958 if (!atomic_dec_and_test(&dip->pending_bios))
5959 goto out;
5960
5961 if (dip->errors)
5962 bio_io_error(dip->orig_bio);
5963 else {
5964 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5965 bio_endio(dip->orig_bio, 0);
5966 }
5967out:
5968 bio_put(bio);
5969}
5970
5971static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5972 u64 first_sector, gfp_t gfp_flags)
5973{
5974 int nr_vecs = bio_get_nr_vecs(bdev);
5975 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5976}
5977
5978static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5979 int rw, u64 file_offset, int skip_sum,
1ae39938 5980 u32 *csums, int async_submit)
e65e1535
MX
5981{
5982 int write = rw & REQ_WRITE;
5983 struct btrfs_root *root = BTRFS_I(inode)->root;
5984 int ret;
5985
5986 bio_get(bio);
5987 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5988 if (ret)
5989 goto err;
5990
1ae39938
JB
5991 if (skip_sum)
5992 goto map;
5993
5994 if (write && async_submit) {
e65e1535
MX
5995 ret = btrfs_wq_submit_bio(root->fs_info,
5996 inode, rw, bio, 0, 0,
5997 file_offset,
5998 __btrfs_submit_bio_start_direct_io,
5999 __btrfs_submit_bio_done);
6000 goto err;
1ae39938
JB
6001 } else if (write) {
6002 /*
6003 * If we aren't doing async submit, calculate the csum of the
6004 * bio now.
6005 */
6006 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6007 if (ret)
6008 goto err;
c2db1073
TI
6009 } else if (!skip_sum) {
6010 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 6011 file_offset, csums);
c2db1073
TI
6012 if (ret)
6013 goto err;
6014 }
e65e1535 6015
1ae39938
JB
6016map:
6017 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6018err:
6019 bio_put(bio);
6020 return ret;
6021}
6022
6023static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6024 int skip_sum)
6025{
6026 struct inode *inode = dip->inode;
6027 struct btrfs_root *root = BTRFS_I(inode)->root;
6028 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6029 struct bio *bio;
6030 struct bio *orig_bio = dip->orig_bio;
6031 struct bio_vec *bvec = orig_bio->bi_io_vec;
6032 u64 start_sector = orig_bio->bi_sector;
6033 u64 file_offset = dip->logical_offset;
6034 u64 submit_len = 0;
6035 u64 map_length;
6036 int nr_pages = 0;
6037 u32 *csums = dip->csums;
6038 int ret = 0;
1ae39938 6039 int async_submit = 0;
98bc3149 6040 int write = rw & REQ_WRITE;
e65e1535 6041
e65e1535
MX
6042 map_length = orig_bio->bi_size;
6043 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6044 &map_length, NULL, 0);
6045 if (ret) {
64728bbb 6046 bio_put(orig_bio);
e65e1535
MX
6047 return -EIO;
6048 }
6049
02f57c7a
JB
6050 if (map_length >= orig_bio->bi_size) {
6051 bio = orig_bio;
6052 goto submit;
6053 }
6054
1ae39938 6055 async_submit = 1;
02f57c7a
JB
6056 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6057 if (!bio)
6058 return -ENOMEM;
6059 bio->bi_private = dip;
6060 bio->bi_end_io = btrfs_end_dio_bio;
6061 atomic_inc(&dip->pending_bios);
6062
e65e1535
MX
6063 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6064 if (unlikely(map_length < submit_len + bvec->bv_len ||
6065 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6066 bvec->bv_offset) < bvec->bv_len)) {
6067 /*
6068 * inc the count before we submit the bio so
6069 * we know the end IO handler won't happen before
6070 * we inc the count. Otherwise, the dip might get freed
6071 * before we're done setting it up
6072 */
6073 atomic_inc(&dip->pending_bios);
6074 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6075 file_offset, skip_sum,
1ae39938 6076 csums, async_submit);
e65e1535
MX
6077 if (ret) {
6078 bio_put(bio);
6079 atomic_dec(&dip->pending_bios);
6080 goto out_err;
6081 }
6082
98bc3149
JB
6083 /* Write's use the ordered csums */
6084 if (!write && !skip_sum)
e65e1535
MX
6085 csums = csums + nr_pages;
6086 start_sector += submit_len >> 9;
6087 file_offset += submit_len;
6088
6089 submit_len = 0;
6090 nr_pages = 0;
6091
6092 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6093 start_sector, GFP_NOFS);
6094 if (!bio)
6095 goto out_err;
6096 bio->bi_private = dip;
6097 bio->bi_end_io = btrfs_end_dio_bio;
6098
6099 map_length = orig_bio->bi_size;
6100 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6101 &map_length, NULL, 0);
6102 if (ret) {
6103 bio_put(bio);
6104 goto out_err;
6105 }
6106 } else {
6107 submit_len += bvec->bv_len;
6108 nr_pages ++;
6109 bvec++;
6110 }
6111 }
6112
02f57c7a 6113submit:
e65e1535 6114 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6115 csums, async_submit);
e65e1535
MX
6116 if (!ret)
6117 return 0;
6118
6119 bio_put(bio);
6120out_err:
6121 dip->errors = 1;
6122 /*
6123 * before atomic variable goto zero, we must
6124 * make sure dip->errors is perceived to be set.
6125 */
6126 smp_mb__before_atomic_dec();
6127 if (atomic_dec_and_test(&dip->pending_bios))
6128 bio_io_error(dip->orig_bio);
6129
6130 /* bio_end_io() will handle error, so we needn't return it */
6131 return 0;
6132}
6133
4b46fce2
JB
6134static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6135 loff_t file_offset)
6136{
6137 struct btrfs_root *root = BTRFS_I(inode)->root;
6138 struct btrfs_dio_private *dip;
6139 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6140 int skip_sum;
7b6d91da 6141 int write = rw & REQ_WRITE;
4b46fce2
JB
6142 int ret = 0;
6143
6144 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6145
6146 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6147 if (!dip) {
6148 ret = -ENOMEM;
6149 goto free_ordered;
6150 }
6151 dip->csums = NULL;
6152
98bc3149
JB
6153 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6154 if (!write && !skip_sum) {
4b46fce2
JB
6155 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6156 if (!dip->csums) {
b4966b77 6157 kfree(dip);
4b46fce2
JB
6158 ret = -ENOMEM;
6159 goto free_ordered;
6160 }
6161 }
6162
6163 dip->private = bio->bi_private;
6164 dip->inode = inode;
6165 dip->logical_offset = file_offset;
6166
4b46fce2
JB
6167 dip->bytes = 0;
6168 do {
6169 dip->bytes += bvec->bv_len;
6170 bvec++;
6171 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6172
46bfbb5c 6173 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6174 bio->bi_private = dip;
e65e1535
MX
6175 dip->errors = 0;
6176 dip->orig_bio = bio;
6177 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6178
6179 if (write)
6180 bio->bi_end_io = btrfs_endio_direct_write;
6181 else
6182 bio->bi_end_io = btrfs_endio_direct_read;
6183
e65e1535
MX
6184 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6185 if (!ret)
eaf25d93 6186 return;
4b46fce2
JB
6187free_ordered:
6188 /*
6189 * If this is a write, we need to clean up the reserved space and kill
6190 * the ordered extent.
6191 */
6192 if (write) {
6193 struct btrfs_ordered_extent *ordered;
955256f2 6194 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6195 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6196 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6197 btrfs_free_reserved_extent(root, ordered->start,
6198 ordered->disk_len);
6199 btrfs_put_ordered_extent(ordered);
6200 btrfs_put_ordered_extent(ordered);
6201 }
6202 bio_endio(bio, ret);
6203}
6204
5a5f79b5
CM
6205static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6206 const struct iovec *iov, loff_t offset,
6207 unsigned long nr_segs)
6208{
6209 int seg;
a1b75f7d 6210 int i;
5a5f79b5
CM
6211 size_t size;
6212 unsigned long addr;
6213 unsigned blocksize_mask = root->sectorsize - 1;
6214 ssize_t retval = -EINVAL;
6215 loff_t end = offset;
6216
6217 if (offset & blocksize_mask)
6218 goto out;
6219
6220 /* Check the memory alignment. Blocks cannot straddle pages */
6221 for (seg = 0; seg < nr_segs; seg++) {
6222 addr = (unsigned long)iov[seg].iov_base;
6223 size = iov[seg].iov_len;
6224 end += size;
a1b75f7d 6225 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6226 goto out;
a1b75f7d
JB
6227
6228 /* If this is a write we don't need to check anymore */
6229 if (rw & WRITE)
6230 continue;
6231
6232 /*
6233 * Check to make sure we don't have duplicate iov_base's in this
6234 * iovec, if so return EINVAL, otherwise we'll get csum errors
6235 * when reading back.
6236 */
6237 for (i = seg + 1; i < nr_segs; i++) {
6238 if (iov[seg].iov_base == iov[i].iov_base)
6239 goto out;
6240 }
5a5f79b5
CM
6241 }
6242 retval = 0;
6243out:
6244 return retval;
6245}
16432985
CM
6246static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6247 const struct iovec *iov, loff_t offset,
6248 unsigned long nr_segs)
6249{
4b46fce2
JB
6250 struct file *file = iocb->ki_filp;
6251 struct inode *inode = file->f_mapping->host;
6252 struct btrfs_ordered_extent *ordered;
4845e44f 6253 struct extent_state *cached_state = NULL;
4b46fce2
JB
6254 u64 lockstart, lockend;
6255 ssize_t ret;
4845e44f
CM
6256 int writing = rw & WRITE;
6257 int write_bits = 0;
3f7c579c 6258 size_t count = iov_length(iov, nr_segs);
4b46fce2 6259
5a5f79b5
CM
6260 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6261 offset, nr_segs)) {
6262 return 0;
6263 }
6264
4b46fce2 6265 lockstart = offset;
3f7c579c
CM
6266 lockend = offset + count - 1;
6267
6268 if (writing) {
6269 ret = btrfs_delalloc_reserve_space(inode, count);
6270 if (ret)
6271 goto out;
6272 }
4845e44f 6273
4b46fce2 6274 while (1) {
4845e44f
CM
6275 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6276 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6277 /*
6278 * We're concerned with the entire range that we're going to be
6279 * doing DIO to, so we need to make sure theres no ordered
6280 * extents in this range.
6281 */
6282 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6283 lockend - lockstart + 1);
6284 if (!ordered)
6285 break;
4845e44f
CM
6286 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6287 &cached_state, GFP_NOFS);
4b46fce2
JB
6288 btrfs_start_ordered_extent(inode, ordered, 1);
6289 btrfs_put_ordered_extent(ordered);
6290 cond_resched();
6291 }
6292
4845e44f
CM
6293 /*
6294 * we don't use btrfs_set_extent_delalloc because we don't want
6295 * the dirty or uptodate bits
6296 */
6297 if (writing) {
6298 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6299 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6300 EXTENT_DELALLOC, 0, NULL, &cached_state,
6301 GFP_NOFS);
6302 if (ret) {
6303 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6304 lockend, EXTENT_LOCKED | write_bits,
6305 1, 0, &cached_state, GFP_NOFS);
6306 goto out;
6307 }
6308 }
6309
6310 free_extent_state(cached_state);
6311 cached_state = NULL;
6312
5a5f79b5
CM
6313 ret = __blockdev_direct_IO(rw, iocb, inode,
6314 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6315 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6316 btrfs_submit_direct, 0);
4b46fce2
JB
6317
6318 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6319 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6320 offset + iov_length(iov, nr_segs) - 1,
6321 EXTENT_LOCKED | write_bits, 1, 0,
6322 &cached_state, GFP_NOFS);
4b46fce2
JB
6323 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6324 /*
6325 * We're falling back to buffered, unlock the section we didn't
6326 * do IO on.
6327 */
4845e44f
CM
6328 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6329 offset + iov_length(iov, nr_segs) - 1,
6330 EXTENT_LOCKED | write_bits, 1, 0,
6331 &cached_state, GFP_NOFS);
4b46fce2 6332 }
4845e44f
CM
6333out:
6334 free_extent_state(cached_state);
4b46fce2 6335 return ret;
16432985
CM
6336}
6337
1506fcc8
YS
6338static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6339 __u64 start, __u64 len)
6340{
ec29ed5b 6341 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6342}
6343
a52d9a80 6344int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6345{
d1310b2e
CM
6346 struct extent_io_tree *tree;
6347 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6348 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6349}
1832a6d5 6350
a52d9a80 6351static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6352{
d1310b2e 6353 struct extent_io_tree *tree;
b888db2b
CM
6354
6355
6356 if (current->flags & PF_MEMALLOC) {
6357 redirty_page_for_writepage(wbc, page);
6358 unlock_page(page);
6359 return 0;
6360 }
d1310b2e 6361 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6362 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6363}
6364
f421950f
CM
6365int btrfs_writepages(struct address_space *mapping,
6366 struct writeback_control *wbc)
b293f02e 6367{
d1310b2e 6368 struct extent_io_tree *tree;
771ed689 6369
d1310b2e 6370 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6371 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6372}
6373
3ab2fb5a
CM
6374static int
6375btrfs_readpages(struct file *file, struct address_space *mapping,
6376 struct list_head *pages, unsigned nr_pages)
6377{
d1310b2e
CM
6378 struct extent_io_tree *tree;
6379 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6380 return extent_readpages(tree, mapping, pages, nr_pages,
6381 btrfs_get_extent);
6382}
e6dcd2dc 6383static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6384{
d1310b2e
CM
6385 struct extent_io_tree *tree;
6386 struct extent_map_tree *map;
a52d9a80 6387 int ret;
8c2383c3 6388
d1310b2e
CM
6389 tree = &BTRFS_I(page->mapping->host)->io_tree;
6390 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6391 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6392 if (ret == 1) {
6393 ClearPagePrivate(page);
6394 set_page_private(page, 0);
6395 page_cache_release(page);
39279cc3 6396 }
a52d9a80 6397 return ret;
39279cc3
CM
6398}
6399
e6dcd2dc
CM
6400static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6401{
98509cfc
CM
6402 if (PageWriteback(page) || PageDirty(page))
6403 return 0;
b335b003 6404 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6405}
6406
a52d9a80 6407static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6408{
d1310b2e 6409 struct extent_io_tree *tree;
e6dcd2dc 6410 struct btrfs_ordered_extent *ordered;
2ac55d41 6411 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6412 u64 page_start = page_offset(page);
6413 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6414
8b62b72b
CM
6415
6416 /*
6417 * we have the page locked, so new writeback can't start,
6418 * and the dirty bit won't be cleared while we are here.
6419 *
6420 * Wait for IO on this page so that we can safely clear
6421 * the PagePrivate2 bit and do ordered accounting
6422 */
e6dcd2dc 6423 wait_on_page_writeback(page);
8b62b72b 6424
d1310b2e 6425 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6426 if (offset) {
6427 btrfs_releasepage(page, GFP_NOFS);
6428 return;
6429 }
2ac55d41
JB
6430 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6431 GFP_NOFS);
e6dcd2dc
CM
6432 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6433 page_offset(page));
6434 if (ordered) {
eb84ae03
CM
6435 /*
6436 * IO on this page will never be started, so we need
6437 * to account for any ordered extents now
6438 */
e6dcd2dc
CM
6439 clear_extent_bit(tree, page_start, page_end,
6440 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6441 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6442 &cached_state, GFP_NOFS);
8b62b72b
CM
6443 /*
6444 * whoever cleared the private bit is responsible
6445 * for the finish_ordered_io
6446 */
6447 if (TestClearPagePrivate2(page)) {
6448 btrfs_finish_ordered_io(page->mapping->host,
6449 page_start, page_end);
6450 }
e6dcd2dc 6451 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6452 cached_state = NULL;
6453 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6454 GFP_NOFS);
e6dcd2dc
CM
6455 }
6456 clear_extent_bit(tree, page_start, page_end,
32c00aff 6457 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6458 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6459 __btrfs_releasepage(page, GFP_NOFS);
6460
4a096752 6461 ClearPageChecked(page);
9ad6b7bc 6462 if (PagePrivate(page)) {
9ad6b7bc
CM
6463 ClearPagePrivate(page);
6464 set_page_private(page, 0);
6465 page_cache_release(page);
6466 }
39279cc3
CM
6467}
6468
9ebefb18
CM
6469/*
6470 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6471 * called from a page fault handler when a page is first dirtied. Hence we must
6472 * be careful to check for EOF conditions here. We set the page up correctly
6473 * for a written page which means we get ENOSPC checking when writing into
6474 * holes and correct delalloc and unwritten extent mapping on filesystems that
6475 * support these features.
6476 *
6477 * We are not allowed to take the i_mutex here so we have to play games to
6478 * protect against truncate races as the page could now be beyond EOF. Because
6479 * vmtruncate() writes the inode size before removing pages, once we have the
6480 * page lock we can determine safely if the page is beyond EOF. If it is not
6481 * beyond EOF, then the page is guaranteed safe against truncation until we
6482 * unlock the page.
6483 */
c2ec175c 6484int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6485{
c2ec175c 6486 struct page *page = vmf->page;
6da6abae 6487 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6488 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6489 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6490 struct btrfs_ordered_extent *ordered;
2ac55d41 6491 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6492 char *kaddr;
6493 unsigned long zero_start;
9ebefb18 6494 loff_t size;
1832a6d5 6495 int ret;
a52d9a80 6496 u64 page_start;
e6dcd2dc 6497 u64 page_end;
9ebefb18 6498
0ca1f7ce 6499 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6500 if (ret) {
6501 if (ret == -ENOMEM)
6502 ret = VM_FAULT_OOM;
6503 else /* -ENOSPC, -EIO, etc */
6504 ret = VM_FAULT_SIGBUS;
1832a6d5 6505 goto out;
56a76f82 6506 }
1832a6d5 6507
56a76f82 6508 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6509again:
9ebefb18 6510 lock_page(page);
9ebefb18 6511 size = i_size_read(inode);
e6dcd2dc
CM
6512 page_start = page_offset(page);
6513 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6514
9ebefb18 6515 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6516 (page_start >= size)) {
9ebefb18
CM
6517 /* page got truncated out from underneath us */
6518 goto out_unlock;
6519 }
e6dcd2dc
CM
6520 wait_on_page_writeback(page);
6521
2ac55d41
JB
6522 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6523 GFP_NOFS);
e6dcd2dc
CM
6524 set_page_extent_mapped(page);
6525
eb84ae03
CM
6526 /*
6527 * we can't set the delalloc bits if there are pending ordered
6528 * extents. Drop our locks and wait for them to finish
6529 */
e6dcd2dc
CM
6530 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6531 if (ordered) {
2ac55d41
JB
6532 unlock_extent_cached(io_tree, page_start, page_end,
6533 &cached_state, GFP_NOFS);
e6dcd2dc 6534 unlock_page(page);
eb84ae03 6535 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6536 btrfs_put_ordered_extent(ordered);
6537 goto again;
6538 }
6539
fbf19087
JB
6540 /*
6541 * XXX - page_mkwrite gets called every time the page is dirtied, even
6542 * if it was already dirty, so for space accounting reasons we need to
6543 * clear any delalloc bits for the range we are fixing to save. There
6544 * is probably a better way to do this, but for now keep consistent with
6545 * prepare_pages in the normal write path.
6546 */
2ac55d41 6547 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6548 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6549 0, 0, &cached_state, GFP_NOFS);
fbf19087 6550
2ac55d41
JB
6551 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6552 &cached_state);
9ed74f2d 6553 if (ret) {
2ac55d41
JB
6554 unlock_extent_cached(io_tree, page_start, page_end,
6555 &cached_state, GFP_NOFS);
9ed74f2d
JB
6556 ret = VM_FAULT_SIGBUS;
6557 goto out_unlock;
6558 }
e6dcd2dc 6559 ret = 0;
9ebefb18
CM
6560
6561 /* page is wholly or partially inside EOF */
a52d9a80 6562 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6563 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6564 else
e6dcd2dc 6565 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6566
e6dcd2dc
CM
6567 if (zero_start != PAGE_CACHE_SIZE) {
6568 kaddr = kmap(page);
6569 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6570 flush_dcache_page(page);
6571 kunmap(page);
6572 }
247e743c 6573 ClearPageChecked(page);
e6dcd2dc 6574 set_page_dirty(page);
50a9b214 6575 SetPageUptodate(page);
5a3f23d5 6576
257c62e1
CM
6577 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6578 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6579
2ac55d41 6580 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6581
6582out_unlock:
50a9b214
CM
6583 if (!ret)
6584 return VM_FAULT_LOCKED;
9ebefb18 6585 unlock_page(page);
0ca1f7ce 6586 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6587out:
9ebefb18
CM
6588 return ret;
6589}
6590
a41ad394 6591static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6592{
6593 struct btrfs_root *root = BTRFS_I(inode)->root;
6594 int ret;
3893e33b 6595 int err = 0;
39279cc3 6596 struct btrfs_trans_handle *trans;
d3c2fdcf 6597 unsigned long nr;
dbe674a9 6598 u64 mask = root->sectorsize - 1;
39279cc3 6599
5d5e103a
JB
6600 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6601 if (ret)
a41ad394 6602 return ret;
8082510e 6603
4a096752 6604 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6605 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6606
f0cd846e
JB
6607 trans = btrfs_start_transaction(root, 5);
6608 if (IS_ERR(trans))
6609 return PTR_ERR(trans);
6610
6611 btrfs_set_trans_block_group(trans, inode);
6612
6613 ret = btrfs_orphan_add(trans, inode);
6614 if (ret) {
6615 btrfs_end_transaction(trans, root);
6616 return ret;
6617 }
6618
6619 nr = trans->blocks_used;
6620 btrfs_end_transaction(trans, root);
6621 btrfs_btree_balance_dirty(root, nr);
6622
6623 /* Now start a transaction for the truncate */
d68fc57b 6624 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6625 if (IS_ERR(trans))
6626 return PTR_ERR(trans);
8082510e 6627 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6628 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6629
6630 /*
6631 * setattr is responsible for setting the ordered_data_close flag,
6632 * but that is only tested during the last file release. That
6633 * could happen well after the next commit, leaving a great big
6634 * window where new writes may get lost if someone chooses to write
6635 * to this file after truncating to zero
6636 *
6637 * The inode doesn't have any dirty data here, and so if we commit
6638 * this is a noop. If someone immediately starts writing to the inode
6639 * it is very likely we'll catch some of their writes in this
6640 * transaction, and the commit will find this file on the ordered
6641 * data list with good things to send down.
6642 *
6643 * This is a best effort solution, there is still a window where
6644 * using truncate to replace the contents of the file will
6645 * end up with a zero length file after a crash.
6646 */
6647 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6648 btrfs_add_ordered_operation(trans, root, inode);
6649
8082510e 6650 while (1) {
d68fc57b
YZ
6651 if (!trans) {
6652 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6653 if (IS_ERR(trans))
6654 return PTR_ERR(trans);
d68fc57b
YZ
6655 btrfs_set_trans_block_group(trans, inode);
6656 trans->block_rsv = root->orphan_block_rsv;
6657 }
6658
6659 ret = btrfs_block_rsv_check(trans, root,
6660 root->orphan_block_rsv, 0, 5);
3893e33b 6661 if (ret == -EAGAIN) {
d68fc57b 6662 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6663 if (ret)
6664 return ret;
d68fc57b
YZ
6665 trans = NULL;
6666 continue;
3893e33b
JB
6667 } else if (ret) {
6668 err = ret;
6669 break;
d68fc57b
YZ
6670 }
6671
8082510e
YZ
6672 ret = btrfs_truncate_inode_items(trans, root, inode,
6673 inode->i_size,
6674 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6675 if (ret != -EAGAIN) {
6676 err = ret;
8082510e 6677 break;
3893e33b 6678 }
39279cc3 6679
8082510e 6680 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6681 if (ret) {
6682 err = ret;
6683 break;
6684 }
5f39d397 6685
8082510e
YZ
6686 nr = trans->blocks_used;
6687 btrfs_end_transaction(trans, root);
d68fc57b 6688 trans = NULL;
8082510e 6689 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6690 }
6691
6692 if (ret == 0 && inode->i_nlink > 0) {
6693 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6694 if (ret)
6695 err = ret;
ded5db9d
JB
6696 } else if (ret && inode->i_nlink > 0) {
6697 /*
6698 * Failed to do the truncate, remove us from the in memory
6699 * orphan list.
6700 */
6701 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6702 }
6703
6704 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6705 if (ret && !err)
6706 err = ret;
7b128766 6707
7b128766 6708 nr = trans->blocks_used;
89ce8a63 6709 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6710 if (ret && !err)
6711 err = ret;
d3c2fdcf 6712 btrfs_btree_balance_dirty(root, nr);
a41ad394 6713
3893e33b 6714 return err;
39279cc3
CM
6715}
6716
d352ac68
CM
6717/*
6718 * create a new subvolume directory/inode (helper for the ioctl).
6719 */
d2fb3437 6720int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6721 struct btrfs_root *new_root,
d2fb3437 6722 u64 new_dirid, u64 alloc_hint)
39279cc3 6723{
39279cc3 6724 struct inode *inode;
76dda93c 6725 int err;
00e4e6b3 6726 u64 index = 0;
39279cc3 6727
aec7477b 6728 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6729 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6730 if (IS_ERR(inode))
f46b5a66 6731 return PTR_ERR(inode);
39279cc3
CM
6732 inode->i_op = &btrfs_dir_inode_operations;
6733 inode->i_fop = &btrfs_dir_file_operations;
6734
39279cc3 6735 inode->i_nlink = 1;
dbe674a9 6736 btrfs_i_size_write(inode, 0);
3b96362c 6737
76dda93c
YZ
6738 err = btrfs_update_inode(trans, new_root, inode);
6739 BUG_ON(err);
cb8e7090 6740
76dda93c 6741 iput(inode);
cb8e7090 6742 return 0;
39279cc3
CM
6743}
6744
d352ac68
CM
6745/* helper function for file defrag and space balancing. This
6746 * forces readahead on a given range of bytes in an inode
6747 */
edbd8d4e 6748unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6749 struct file_ra_state *ra, struct file *file,
6750 pgoff_t offset, pgoff_t last_index)
6751{
8e7bf94f 6752 pgoff_t req_size = last_index - offset + 1;
86479a04 6753
86479a04
CM
6754 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6755 return offset + req_size;
86479a04
CM
6756}
6757
39279cc3
CM
6758struct inode *btrfs_alloc_inode(struct super_block *sb)
6759{
6760 struct btrfs_inode *ei;
2ead6ae7 6761 struct inode *inode;
39279cc3
CM
6762
6763 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6764 if (!ei)
6765 return NULL;
2ead6ae7
YZ
6766
6767 ei->root = NULL;
6768 ei->space_info = NULL;
6769 ei->generation = 0;
6770 ei->sequence = 0;
15ee9bc7 6771 ei->last_trans = 0;
257c62e1 6772 ei->last_sub_trans = 0;
e02119d5 6773 ei->logged_trans = 0;
2ead6ae7
YZ
6774 ei->delalloc_bytes = 0;
6775 ei->reserved_bytes = 0;
6776 ei->disk_i_size = 0;
6777 ei->flags = 0;
6778 ei->index_cnt = (u64)-1;
6779 ei->last_unlink_trans = 0;
6780
0ca1f7ce 6781 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6782 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6783
6784 ei->ordered_data_close = 0;
d68fc57b 6785 ei->orphan_meta_reserved = 0;
2ead6ae7 6786 ei->dummy_inode = 0;
261507a0 6787 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7
YZ
6788
6789 inode = &ei->vfs_inode;
6790 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6791 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6792 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6793 mutex_init(&ei->log_mutex);
e6dcd2dc 6794 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6795 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6796 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6797 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6798 RB_CLEAR_NODE(&ei->rb_node);
6799
6800 return inode;
39279cc3
CM
6801}
6802
fa0d7e3d
NP
6803static void btrfs_i_callback(struct rcu_head *head)
6804{
6805 struct inode *inode = container_of(head, struct inode, i_rcu);
6806 INIT_LIST_HEAD(&inode->i_dentry);
6807 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6808}
6809
39279cc3
CM
6810void btrfs_destroy_inode(struct inode *inode)
6811{
e6dcd2dc 6812 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6813 struct btrfs_root *root = BTRFS_I(inode)->root;
6814
39279cc3
CM
6815 WARN_ON(!list_empty(&inode->i_dentry));
6816 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6817 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6818 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6819
a6dbd429
JB
6820 /*
6821 * This can happen where we create an inode, but somebody else also
6822 * created the same inode and we need to destroy the one we already
6823 * created.
6824 */
6825 if (!root)
6826 goto free;
6827
5a3f23d5
CM
6828 /*
6829 * Make sure we're properly removed from the ordered operation
6830 * lists.
6831 */
6832 smp_mb();
6833 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6834 spin_lock(&root->fs_info->ordered_extent_lock);
6835 list_del_init(&BTRFS_I(inode)->ordered_operations);
6836 spin_unlock(&root->fs_info->ordered_extent_lock);
6837 }
6838
0af3d00b
JB
6839 if (root == root->fs_info->tree_root) {
6840 struct btrfs_block_group_cache *block_group;
6841
6842 block_group = btrfs_lookup_block_group(root->fs_info,
6843 BTRFS_I(inode)->block_group);
6844 if (block_group && block_group->inode == inode) {
6845 spin_lock(&block_group->lock);
6846 block_group->inode = NULL;
6847 spin_unlock(&block_group->lock);
6848 btrfs_put_block_group(block_group);
6849 } else if (block_group) {
6850 btrfs_put_block_group(block_group);
6851 }
6852 }
6853
d68fc57b 6854 spin_lock(&root->orphan_lock);
7b128766 6855 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6856 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6857 inode->i_ino);
6858 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6859 }
d68fc57b 6860 spin_unlock(&root->orphan_lock);
7b128766 6861
d397712b 6862 while (1) {
e6dcd2dc
CM
6863 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6864 if (!ordered)
6865 break;
6866 else {
d397712b
CM
6867 printk(KERN_ERR "btrfs found ordered "
6868 "extent %llu %llu on inode cleanup\n",
6869 (unsigned long long)ordered->file_offset,
6870 (unsigned long long)ordered->len);
e6dcd2dc
CM
6871 btrfs_remove_ordered_extent(inode, ordered);
6872 btrfs_put_ordered_extent(ordered);
6873 btrfs_put_ordered_extent(ordered);
6874 }
6875 }
5d4f98a2 6876 inode_tree_del(inode);
5b21f2ed 6877 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6878free:
fa0d7e3d 6879 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6880}
6881
45321ac5 6882int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6883{
6884 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6885
0af3d00b
JB
6886 if (btrfs_root_refs(&root->root_item) == 0 &&
6887 root != root->fs_info->tree_root)
45321ac5 6888 return 1;
76dda93c 6889 else
45321ac5 6890 return generic_drop_inode(inode);
76dda93c
YZ
6891}
6892
0ee0fda0 6893static void init_once(void *foo)
39279cc3
CM
6894{
6895 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6896
6897 inode_init_once(&ei->vfs_inode);
6898}
6899
6900void btrfs_destroy_cachep(void)
6901{
6902 if (btrfs_inode_cachep)
6903 kmem_cache_destroy(btrfs_inode_cachep);
6904 if (btrfs_trans_handle_cachep)
6905 kmem_cache_destroy(btrfs_trans_handle_cachep);
6906 if (btrfs_transaction_cachep)
6907 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6908 if (btrfs_path_cachep)
6909 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6910 if (btrfs_free_space_cachep)
6911 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6912}
6913
6914int btrfs_init_cachep(void)
6915{
9601e3f6
CH
6916 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6917 sizeof(struct btrfs_inode), 0,
6918 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6919 if (!btrfs_inode_cachep)
6920 goto fail;
9601e3f6
CH
6921
6922 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6923 sizeof(struct btrfs_trans_handle), 0,
6924 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6925 if (!btrfs_trans_handle_cachep)
6926 goto fail;
9601e3f6
CH
6927
6928 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6929 sizeof(struct btrfs_transaction), 0,
6930 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6931 if (!btrfs_transaction_cachep)
6932 goto fail;
9601e3f6
CH
6933
6934 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6935 sizeof(struct btrfs_path), 0,
6936 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6937 if (!btrfs_path_cachep)
6938 goto fail;
9601e3f6 6939
dc89e982
JB
6940 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6941 sizeof(struct btrfs_free_space), 0,
6942 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6943 if (!btrfs_free_space_cachep)
6944 goto fail;
6945
39279cc3
CM
6946 return 0;
6947fail:
6948 btrfs_destroy_cachep();
6949 return -ENOMEM;
6950}
6951
6952static int btrfs_getattr(struct vfsmount *mnt,
6953 struct dentry *dentry, struct kstat *stat)
6954{
6955 struct inode *inode = dentry->d_inode;
6956 generic_fillattr(inode, stat);
3394e160 6957 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6958 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6959 stat->blocks = (inode_get_bytes(inode) +
6960 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6961 return 0;
6962}
6963
75e7cb7f
LB
6964/*
6965 * If a file is moved, it will inherit the cow and compression flags of the new
6966 * directory.
6967 */
6968static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6969{
6970 struct btrfs_inode *b_dir = BTRFS_I(dir);
6971 struct btrfs_inode *b_inode = BTRFS_I(inode);
6972
6973 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6974 b_inode->flags |= BTRFS_INODE_NODATACOW;
6975 else
6976 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6977
6978 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6979 b_inode->flags |= BTRFS_INODE_COMPRESS;
6980 else
6981 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6982}
6983
d397712b
CM
6984static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6985 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6986{
6987 struct btrfs_trans_handle *trans;
6988 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6989 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6990 struct inode *new_inode = new_dentry->d_inode;
6991 struct inode *old_inode = old_dentry->d_inode;
6992 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6993 u64 index = 0;
4df27c4d 6994 u64 root_objectid;
39279cc3
CM
6995 int ret;
6996
f679a840
YZ
6997 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6998 return -EPERM;
6999
4df27c4d
YZ
7000 /* we only allow rename subvolume link between subvolumes */
7001 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7002 return -EXDEV;
7003
4df27c4d
YZ
7004 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7005 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7006 return -ENOTEMPTY;
5f39d397 7007
4df27c4d
YZ
7008 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7009 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7010 return -ENOTEMPTY;
5a3f23d5
CM
7011 /*
7012 * we're using rename to replace one file with another.
7013 * and the replacement file is large. Start IO on it now so
7014 * we don't add too much work to the end of the transaction
7015 */
4baf8c92 7016 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7017 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7018 filemap_flush(old_inode->i_mapping);
7019
76dda93c
YZ
7020 /* close the racy window with snapshot create/destroy ioctl */
7021 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7022 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7023 /*
7024 * We want to reserve the absolute worst case amount of items. So if
7025 * both inodes are subvols and we need to unlink them then that would
7026 * require 4 item modifications, but if they are both normal inodes it
7027 * would require 5 item modifications, so we'll assume their normal
7028 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7029 * should cover the worst case number of items we'll modify.
7030 */
7031 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7032 if (IS_ERR(trans)) {
7033 ret = PTR_ERR(trans);
7034 goto out_notrans;
7035 }
76dda93c 7036
a5719521 7037 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 7038
4df27c4d
YZ
7039 if (dest != root)
7040 btrfs_record_root_in_trans(trans, dest);
5f39d397 7041
a5719521
YZ
7042 ret = btrfs_set_inode_index(new_dir, &index);
7043 if (ret)
7044 goto out_fail;
5a3f23d5 7045
a5719521 7046 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7047 /* force full log commit if subvolume involved. */
7048 root->fs_info->last_trans_log_full_commit = trans->transid;
7049 } else {
a5719521
YZ
7050 ret = btrfs_insert_inode_ref(trans, dest,
7051 new_dentry->d_name.name,
7052 new_dentry->d_name.len,
7053 old_inode->i_ino,
7054 new_dir->i_ino, index);
7055 if (ret)
7056 goto out_fail;
4df27c4d
YZ
7057 /*
7058 * this is an ugly little race, but the rename is required
7059 * to make sure that if we crash, the inode is either at the
7060 * old name or the new one. pinning the log transaction lets
7061 * us make sure we don't allow a log commit to come in after
7062 * we unlink the name but before we add the new name back in.
7063 */
7064 btrfs_pin_log_trans(root);
7065 }
5a3f23d5
CM
7066 /*
7067 * make sure the inode gets flushed if it is replacing
7068 * something.
7069 */
7070 if (new_inode && new_inode->i_size &&
7071 old_inode && S_ISREG(old_inode->i_mode)) {
7072 btrfs_add_ordered_operation(trans, root, old_inode);
7073 }
7074
39279cc3
CM
7075 old_dir->i_ctime = old_dir->i_mtime = ctime;
7076 new_dir->i_ctime = new_dir->i_mtime = ctime;
7077 old_inode->i_ctime = ctime;
5f39d397 7078
12fcfd22
CM
7079 if (old_dentry->d_parent != new_dentry->d_parent)
7080 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7081
4df27c4d
YZ
7082 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7083 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7084 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7085 old_dentry->d_name.name,
7086 old_dentry->d_name.len);
7087 } else {
92986796
AV
7088 ret = __btrfs_unlink_inode(trans, root, old_dir,
7089 old_dentry->d_inode,
7090 old_dentry->d_name.name,
7091 old_dentry->d_name.len);
7092 if (!ret)
7093 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7094 }
7095 BUG_ON(ret);
39279cc3
CM
7096
7097 if (new_inode) {
7098 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
7099 if (unlikely(new_inode->i_ino ==
7100 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7101 root_objectid = BTRFS_I(new_inode)->location.objectid;
7102 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7103 root_objectid,
7104 new_dentry->d_name.name,
7105 new_dentry->d_name.len);
7106 BUG_ON(new_inode->i_nlink == 0);
7107 } else {
7108 ret = btrfs_unlink_inode(trans, dest, new_dir,
7109 new_dentry->d_inode,
7110 new_dentry->d_name.name,
7111 new_dentry->d_name.len);
7112 }
7113 BUG_ON(ret);
7b128766 7114 if (new_inode->i_nlink == 0) {
e02119d5 7115 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7116 BUG_ON(ret);
7b128766 7117 }
39279cc3 7118 }
aec7477b 7119
75e7cb7f
LB
7120 fixup_inode_flags(new_dir, old_inode);
7121
4df27c4d
YZ
7122 ret = btrfs_add_link(trans, new_dir, old_inode,
7123 new_dentry->d_name.name,
a5719521 7124 new_dentry->d_name.len, 0, index);
4df27c4d 7125 BUG_ON(ret);
39279cc3 7126
4df27c4d 7127 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7128 struct dentry *parent = dget_parent(new_dentry);
7129 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7130 dput(parent);
4df27c4d
YZ
7131 btrfs_end_log_trans(root);
7132 }
39279cc3 7133out_fail:
ab78c84d 7134 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7135out_notrans:
76dda93c
YZ
7136 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7137 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7138
39279cc3
CM
7139 return ret;
7140}
7141
d352ac68
CM
7142/*
7143 * some fairly slow code that needs optimization. This walks the list
7144 * of all the inodes with pending delalloc and forces them to disk.
7145 */
24bbcf04 7146int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7147{
7148 struct list_head *head = &root->fs_info->delalloc_inodes;
7149 struct btrfs_inode *binode;
5b21f2ed 7150 struct inode *inode;
ea8c2819 7151
c146afad
YZ
7152 if (root->fs_info->sb->s_flags & MS_RDONLY)
7153 return -EROFS;
7154
75eff68e 7155 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7156 while (!list_empty(head)) {
ea8c2819
CM
7157 binode = list_entry(head->next, struct btrfs_inode,
7158 delalloc_inodes);
5b21f2ed
ZY
7159 inode = igrab(&binode->vfs_inode);
7160 if (!inode)
7161 list_del_init(&binode->delalloc_inodes);
75eff68e 7162 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7163 if (inode) {
8c8bee1d 7164 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7165 if (delay_iput)
7166 btrfs_add_delayed_iput(inode);
7167 else
7168 iput(inode);
5b21f2ed
ZY
7169 }
7170 cond_resched();
75eff68e 7171 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7172 }
75eff68e 7173 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7174
7175 /* the filemap_flush will queue IO into the worker threads, but
7176 * we have to make sure the IO is actually started and that
7177 * ordered extents get created before we return
7178 */
7179 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7180 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7181 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7182 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7183 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7184 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7185 }
7186 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7187 return 0;
7188}
7189
0019f10d
JB
7190int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7191 int sync)
5da9d01b
YZ
7192{
7193 struct btrfs_inode *binode;
7194 struct inode *inode = NULL;
7195
7196 spin_lock(&root->fs_info->delalloc_lock);
7197 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7198 binode = list_entry(root->fs_info->delalloc_inodes.next,
7199 struct btrfs_inode, delalloc_inodes);
7200 inode = igrab(&binode->vfs_inode);
7201 if (inode) {
7202 list_move_tail(&binode->delalloc_inodes,
7203 &root->fs_info->delalloc_inodes);
7204 break;
7205 }
7206
7207 list_del_init(&binode->delalloc_inodes);
7208 cond_resched_lock(&root->fs_info->delalloc_lock);
7209 }
7210 spin_unlock(&root->fs_info->delalloc_lock);
7211
7212 if (inode) {
0019f10d
JB
7213 if (sync) {
7214 filemap_write_and_wait(inode->i_mapping);
7215 /*
7216 * We have to do this because compression doesn't
7217 * actually set PG_writeback until it submits the pages
7218 * for IO, which happens in an async thread, so we could
7219 * race and not actually wait for any writeback pages
7220 * because they've not been submitted yet. Technically
7221 * this could still be the case for the ordered stuff
7222 * since the async thread may not have started to do its
7223 * work yet. If this becomes the case then we need to
7224 * figure out a way to make sure that in writepage we
7225 * wait for any async pages to be submitted before
7226 * returning so that fdatawait does what its supposed to
7227 * do.
7228 */
7229 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7230 } else {
7231 filemap_flush(inode->i_mapping);
7232 }
5da9d01b
YZ
7233 if (delay_iput)
7234 btrfs_add_delayed_iput(inode);
7235 else
7236 iput(inode);
7237 return 1;
7238 }
7239 return 0;
7240}
7241
39279cc3
CM
7242static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7243 const char *symname)
7244{
7245 struct btrfs_trans_handle *trans;
7246 struct btrfs_root *root = BTRFS_I(dir)->root;
7247 struct btrfs_path *path;
7248 struct btrfs_key key;
1832a6d5 7249 struct inode *inode = NULL;
39279cc3
CM
7250 int err;
7251 int drop_inode = 0;
7252 u64 objectid;
00e4e6b3 7253 u64 index = 0 ;
39279cc3
CM
7254 int name_len;
7255 int datasize;
5f39d397 7256 unsigned long ptr;
39279cc3 7257 struct btrfs_file_extent_item *ei;
5f39d397 7258 struct extent_buffer *leaf;
1832a6d5 7259 unsigned long nr = 0;
39279cc3
CM
7260
7261 name_len = strlen(symname) + 1;
7262 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7263 return -ENAMETOOLONG;
1832a6d5 7264
a22285a6
YZ
7265 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7266 if (err)
7267 return err;
9ed74f2d
JB
7268 /*
7269 * 2 items for inode item and ref
7270 * 2 items for dir items
7271 * 1 item for xattr if selinux is on
7272 */
a22285a6
YZ
7273 trans = btrfs_start_transaction(root, 5);
7274 if (IS_ERR(trans))
7275 return PTR_ERR(trans);
1832a6d5 7276
39279cc3
CM
7277 btrfs_set_trans_block_group(trans, dir);
7278
aec7477b 7279 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 7280 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
7281 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7282 &index);
7cf96da3
TI
7283 if (IS_ERR(inode)) {
7284 err = PTR_ERR(inode);
39279cc3 7285 goto out_unlock;
7cf96da3 7286 }
39279cc3 7287
2a7dba39 7288 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7289 if (err) {
7290 drop_inode = 1;
7291 goto out_unlock;
7292 }
7293
39279cc3 7294 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7295 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7296 if (err)
7297 drop_inode = 1;
7298 else {
7299 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7300 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7301 inode->i_fop = &btrfs_file_operations;
7302 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7303 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7304 }
39279cc3
CM
7305 btrfs_update_inode_block_group(trans, inode);
7306 btrfs_update_inode_block_group(trans, dir);
7307 if (drop_inode)
7308 goto out_unlock;
7309
7310 path = btrfs_alloc_path();
7311 BUG_ON(!path);
7312 key.objectid = inode->i_ino;
7313 key.offset = 0;
39279cc3
CM
7314 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7315 datasize = btrfs_file_extent_calc_inline_size(name_len);
7316 err = btrfs_insert_empty_item(trans, root, path, &key,
7317 datasize);
54aa1f4d
CM
7318 if (err) {
7319 drop_inode = 1;
7320 goto out_unlock;
7321 }
5f39d397
CM
7322 leaf = path->nodes[0];
7323 ei = btrfs_item_ptr(leaf, path->slots[0],
7324 struct btrfs_file_extent_item);
7325 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7326 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7327 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7328 btrfs_set_file_extent_encryption(leaf, ei, 0);
7329 btrfs_set_file_extent_compression(leaf, ei, 0);
7330 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7331 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7332
39279cc3 7333 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7334 write_extent_buffer(leaf, symname, ptr, name_len);
7335 btrfs_mark_buffer_dirty(leaf);
39279cc3 7336 btrfs_free_path(path);
5f39d397 7337
39279cc3
CM
7338 inode->i_op = &btrfs_symlink_inode_operations;
7339 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7340 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7341 inode_set_bytes(inode, name_len);
dbe674a9 7342 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7343 err = btrfs_update_inode(trans, root, inode);
7344 if (err)
7345 drop_inode = 1;
39279cc3
CM
7346
7347out_unlock:
d3c2fdcf 7348 nr = trans->blocks_used;
ab78c84d 7349 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7350 if (drop_inode) {
7351 inode_dec_link_count(inode);
7352 iput(inode);
7353 }
d3c2fdcf 7354 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7355 return err;
7356}
16432985 7357
0af3d00b
JB
7358static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7359 u64 start, u64 num_bytes, u64 min_size,
7360 loff_t actual_len, u64 *alloc_hint,
7361 struct btrfs_trans_handle *trans)
d899e052 7362{
d899e052
YZ
7363 struct btrfs_root *root = BTRFS_I(inode)->root;
7364 struct btrfs_key ins;
d899e052 7365 u64 cur_offset = start;
55a61d1d 7366 u64 i_size;
d899e052 7367 int ret = 0;
0af3d00b 7368 bool own_trans = true;
d899e052 7369
0af3d00b
JB
7370 if (trans)
7371 own_trans = false;
d899e052 7372 while (num_bytes > 0) {
0af3d00b
JB
7373 if (own_trans) {
7374 trans = btrfs_start_transaction(root, 3);
7375 if (IS_ERR(trans)) {
7376 ret = PTR_ERR(trans);
7377 break;
7378 }
5a303d5d
YZ
7379 }
7380
efa56464
YZ
7381 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7382 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7383 if (ret) {
0af3d00b
JB
7384 if (own_trans)
7385 btrfs_end_transaction(trans, root);
a22285a6 7386 break;
d899e052 7387 }
5a303d5d 7388
d899e052
YZ
7389 ret = insert_reserved_file_extent(trans, inode,
7390 cur_offset, ins.objectid,
7391 ins.offset, ins.offset,
920bbbfb 7392 ins.offset, 0, 0, 0,
d899e052
YZ
7393 BTRFS_FILE_EXTENT_PREALLOC);
7394 BUG_ON(ret);
a1ed835e
CM
7395 btrfs_drop_extent_cache(inode, cur_offset,
7396 cur_offset + ins.offset -1, 0);
5a303d5d 7397
d899e052
YZ
7398 num_bytes -= ins.offset;
7399 cur_offset += ins.offset;
efa56464 7400 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7401
d899e052 7402 inode->i_ctime = CURRENT_TIME;
6cbff00f 7403 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7404 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7405 (actual_len > inode->i_size) &&
7406 (cur_offset > inode->i_size)) {
d1ea6a61 7407 if (cur_offset > actual_len)
55a61d1d 7408 i_size = actual_len;
d1ea6a61 7409 else
55a61d1d
JB
7410 i_size = cur_offset;
7411 i_size_write(inode, i_size);
7412 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7413 }
7414
d899e052
YZ
7415 ret = btrfs_update_inode(trans, root, inode);
7416 BUG_ON(ret);
d899e052 7417
0af3d00b
JB
7418 if (own_trans)
7419 btrfs_end_transaction(trans, root);
5a303d5d 7420 }
d899e052
YZ
7421 return ret;
7422}
7423
0af3d00b
JB
7424int btrfs_prealloc_file_range(struct inode *inode, int mode,
7425 u64 start, u64 num_bytes, u64 min_size,
7426 loff_t actual_len, u64 *alloc_hint)
7427{
7428 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7429 min_size, actual_len, alloc_hint,
7430 NULL);
7431}
7432
7433int btrfs_prealloc_file_range_trans(struct inode *inode,
7434 struct btrfs_trans_handle *trans, int mode,
7435 u64 start, u64 num_bytes, u64 min_size,
7436 loff_t actual_len, u64 *alloc_hint)
7437{
7438 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7439 min_size, actual_len, alloc_hint, trans);
7440}
7441
e6dcd2dc
CM
7442static int btrfs_set_page_dirty(struct page *page)
7443{
e6dcd2dc
CM
7444 return __set_page_dirty_nobuffers(page);
7445}
7446
b74c79e9 7447static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7448{
b83cc969
LZ
7449 struct btrfs_root *root = BTRFS_I(inode)->root;
7450
7451 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7452 return -EROFS;
6cbff00f 7453 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7454 return -EACCES;
b74c79e9 7455 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7456}
39279cc3 7457
6e1d5dcc 7458static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7459 .getattr = btrfs_getattr,
39279cc3
CM
7460 .lookup = btrfs_lookup,
7461 .create = btrfs_create,
7462 .unlink = btrfs_unlink,
7463 .link = btrfs_link,
7464 .mkdir = btrfs_mkdir,
7465 .rmdir = btrfs_rmdir,
7466 .rename = btrfs_rename,
7467 .symlink = btrfs_symlink,
7468 .setattr = btrfs_setattr,
618e21d5 7469 .mknod = btrfs_mknod,
95819c05
CH
7470 .setxattr = btrfs_setxattr,
7471 .getxattr = btrfs_getxattr,
5103e947 7472 .listxattr = btrfs_listxattr,
95819c05 7473 .removexattr = btrfs_removexattr,
fdebe2bd 7474 .permission = btrfs_permission,
39279cc3 7475};
6e1d5dcc 7476static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7477 .lookup = btrfs_lookup,
fdebe2bd 7478 .permission = btrfs_permission,
39279cc3 7479};
76dda93c 7480
828c0950 7481static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7482 .llseek = generic_file_llseek,
7483 .read = generic_read_dir,
cbdf5a24 7484 .readdir = btrfs_real_readdir,
34287aa3 7485 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7486#ifdef CONFIG_COMPAT
34287aa3 7487 .compat_ioctl = btrfs_ioctl,
39279cc3 7488#endif
6bf13c0c 7489 .release = btrfs_release_file,
e02119d5 7490 .fsync = btrfs_sync_file,
39279cc3
CM
7491};
7492
d1310b2e 7493static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7494 .fill_delalloc = run_delalloc_range,
065631f6 7495 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7496 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7497 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7498 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7499 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7500 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7501 .set_bit_hook = btrfs_set_bit_hook,
7502 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7503 .merge_extent_hook = btrfs_merge_extent_hook,
7504 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7505};
7506
35054394
CM
7507/*
7508 * btrfs doesn't support the bmap operation because swapfiles
7509 * use bmap to make a mapping of extents in the file. They assume
7510 * these extents won't change over the life of the file and they
7511 * use the bmap result to do IO directly to the drive.
7512 *
7513 * the btrfs bmap call would return logical addresses that aren't
7514 * suitable for IO and they also will change frequently as COW
7515 * operations happen. So, swapfile + btrfs == corruption.
7516 *
7517 * For now we're avoiding this by dropping bmap.
7518 */
7f09410b 7519static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7520 .readpage = btrfs_readpage,
7521 .writepage = btrfs_writepage,
b293f02e 7522 .writepages = btrfs_writepages,
3ab2fb5a 7523 .readpages = btrfs_readpages,
16432985 7524 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7525 .invalidatepage = btrfs_invalidatepage,
7526 .releasepage = btrfs_releasepage,
e6dcd2dc 7527 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7528 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7529};
7530
7f09410b 7531static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7532 .readpage = btrfs_readpage,
7533 .writepage = btrfs_writepage,
2bf5a725
CM
7534 .invalidatepage = btrfs_invalidatepage,
7535 .releasepage = btrfs_releasepage,
39279cc3
CM
7536};
7537
6e1d5dcc 7538static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7539 .getattr = btrfs_getattr,
7540 .setattr = btrfs_setattr,
95819c05
CH
7541 .setxattr = btrfs_setxattr,
7542 .getxattr = btrfs_getxattr,
5103e947 7543 .listxattr = btrfs_listxattr,
95819c05 7544 .removexattr = btrfs_removexattr,
fdebe2bd 7545 .permission = btrfs_permission,
1506fcc8 7546 .fiemap = btrfs_fiemap,
39279cc3 7547};
6e1d5dcc 7548static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7549 .getattr = btrfs_getattr,
7550 .setattr = btrfs_setattr,
fdebe2bd 7551 .permission = btrfs_permission,
95819c05
CH
7552 .setxattr = btrfs_setxattr,
7553 .getxattr = btrfs_getxattr,
33268eaf 7554 .listxattr = btrfs_listxattr,
95819c05 7555 .removexattr = btrfs_removexattr,
618e21d5 7556};
6e1d5dcc 7557static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7558 .readlink = generic_readlink,
7559 .follow_link = page_follow_link_light,
7560 .put_link = page_put_link,
f209561a 7561 .getattr = btrfs_getattr,
fdebe2bd 7562 .permission = btrfs_permission,
0279b4cd
JO
7563 .setxattr = btrfs_setxattr,
7564 .getxattr = btrfs_getxattr,
7565 .listxattr = btrfs_listxattr,
7566 .removexattr = btrfs_removexattr,
39279cc3 7567};
76dda93c 7568
82d339d9 7569const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7570 .d_delete = btrfs_dentry_delete,
7571};