btrfs: Replace fs_info->flush_workers with btrfs_workqueue.
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
39279cc3
CM
62
63struct btrfs_iget_args {
90d3e592 64 struct btrfs_key *location;
39279cc3
CM
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
d397712b 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 129 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
fe3f566c 132 int compress_type,
c8b97818
CM
133 struct page **compressed_pages)
134{
c8b97818
CM
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
c8b97818 143 unsigned long offset;
c8b97818 144
fe3f566c 145 if (compressed_size && compressed_pages)
c8b97818 146 cur_size = compressed_size;
c8b97818 147
1acae57b 148 inode_add_bytes(inode, size);
c8b97818 149
1acae57b
FDBM
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
c8b97818 153
1acae57b
FDBM
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818 157
1acae57b
FDBM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
c8b97818
CM
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
1acae57b 206 btrfs_release_path(path);
c8b97818 207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818 221fail:
c8b97818
CM
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
00361589
JB
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
c8b97818 236{
00361589 237 struct btrfs_trans_handle *trans;
c8b97818
CM
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
fda2832f 241 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
242 u64 data_len = inline_len;
243 int ret;
1acae57b
FDBM
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
c8b97818
CM
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
70b99e69 252 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
1acae57b
FDBM
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
00361589 265 trans = btrfs_join_transaction(root);
1acae57b
FDBM
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
00361589 268 return PTR_ERR(trans);
1acae57b 269 }
00361589
JB
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
1acae57b
FDBM
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
00361589
JB
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
c8b97818
CM
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
c8b97818 291 inline_len, compressed_size,
fe3f566c 292 compress_type, compressed_pages);
2adcac1a 293 if (ret && ret != -ENOSPC) {
79787eaa 294 btrfs_abort_transaction(trans, root, ret);
00361589 295 goto out;
2adcac1a 296 } else if (ret == -ENOSPC) {
00361589
JB
297 ret = 1;
298 goto out;
79787eaa 299 }
2adcac1a 300
bdc20e67 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 304out:
1acae57b 305 btrfs_free_path(path);
00361589
JB
306 btrfs_end_transaction(trans, root);
307 return ret;
c8b97818
CM
308}
309
771ed689
CM
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
261507a0 316 int compress_type;
771ed689
CM
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
afe3d242 327 struct btrfs_work_struct work;
771ed689
CM
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
261507a0
LZ
334 unsigned long nr_pages,
335 int compress_type)
771ed689
CM
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 340 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
261507a0 346 async_extent->compress_type = compress_type;
771ed689
CM
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
d352ac68 351/*
771ed689
CM
352 * we create compressed extents in two phases. The first
353 * phase compresses a range of pages that have already been
354 * locked (both pages and state bits are locked).
c8b97818 355 *
771ed689
CM
356 * This is done inside an ordered work queue, and the compression
357 * is spread across many cpus. The actual IO submission is step
358 * two, and the ordered work queue takes care of making sure that
359 * happens in the same order things were put onto the queue by
360 * writepages and friends.
c8b97818 361 *
771ed689
CM
362 * If this code finds it can't get good compression, it puts an
363 * entry onto the work queue to write the uncompressed bytes. This
364 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
365 * are written in the same order that the flusher thread sent them
366 * down.
d352ac68 367 */
771ed689
CM
368static noinline int compress_file_range(struct inode *inode,
369 struct page *locked_page,
370 u64 start, u64 end,
371 struct async_cow *async_cow,
372 int *num_added)
b888db2b
CM
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 375 u64 num_bytes;
db94535d 376 u64 blocksize = root->sectorsize;
c8b97818 377 u64 actual_end;
42dc7bab 378 u64 isize = i_size_read(inode);
e6dcd2dc 379 int ret = 0;
c8b97818
CM
380 struct page **pages = NULL;
381 unsigned long nr_pages;
382 unsigned long nr_pages_ret = 0;
383 unsigned long total_compressed = 0;
384 unsigned long total_in = 0;
385 unsigned long max_compressed = 128 * 1024;
771ed689 386 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
387 int i;
388 int will_compress;
261507a0 389 int compress_type = root->fs_info->compress_type;
4adaa611 390 int redirty = 0;
b888db2b 391
4cb13e5d
LB
392 /* if this is a small write inside eof, kick off a defrag */
393 if ((end - start + 1) < 16 * 1024 &&
394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
395 btrfs_add_inode_defrag(NULL, inode);
396
42dc7bab 397 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
398again:
399 will_compress = 0;
400 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
401 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 402
f03d9301
CM
403 /*
404 * we don't want to send crud past the end of i_size through
405 * compression, that's just a waste of CPU time. So, if the
406 * end of the file is before the start of our current
407 * requested range of bytes, we bail out to the uncompressed
408 * cleanup code that can deal with all of this.
409 *
410 * It isn't really the fastest way to fix things, but this is a
411 * very uncommon corner.
412 */
413 if (actual_end <= start)
414 goto cleanup_and_bail_uncompressed;
415
c8b97818
CM
416 total_compressed = actual_end - start;
417
418 /* we want to make sure that amount of ram required to uncompress
419 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
420 * of a compressed extent to 128k. This is a crucial number
421 * because it also controls how easily we can spread reads across
422 * cpus for decompression.
423 *
424 * We also want to make sure the amount of IO required to do
425 * a random read is reasonably small, so we limit the size of
426 * a compressed extent to 128k.
c8b97818
CM
427 */
428 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 429 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 430 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
431 total_in = 0;
432 ret = 0;
db94535d 433
771ed689
CM
434 /*
435 * we do compression for mount -o compress and when the
436 * inode has not been flagged as nocompress. This flag can
437 * change at any time if we discover bad compression ratios.
c8b97818 438 */
6cbff00f 439 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 440 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
441 (BTRFS_I(inode)->force_compress) ||
442 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 443 WARN_ON(pages);
cfbc246e 444 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
445 if (!pages) {
446 /* just bail out to the uncompressed code */
447 goto cont;
448 }
c8b97818 449
261507a0
LZ
450 if (BTRFS_I(inode)->force_compress)
451 compress_type = BTRFS_I(inode)->force_compress;
452
4adaa611
CM
453 /*
454 * we need to call clear_page_dirty_for_io on each
455 * page in the range. Otherwise applications with the file
456 * mmap'd can wander in and change the page contents while
457 * we are compressing them.
458 *
459 * If the compression fails for any reason, we set the pages
460 * dirty again later on.
461 */
462 extent_range_clear_dirty_for_io(inode, start, end);
463 redirty = 1;
261507a0
LZ
464 ret = btrfs_compress_pages(compress_type,
465 inode->i_mapping, start,
466 total_compressed, pages,
467 nr_pages, &nr_pages_ret,
468 &total_in,
469 &total_compressed,
470 max_compressed);
c8b97818
CM
471
472 if (!ret) {
473 unsigned long offset = total_compressed &
474 (PAGE_CACHE_SIZE - 1);
475 struct page *page = pages[nr_pages_ret - 1];
476 char *kaddr;
477
478 /* zero the tail end of the last page, we might be
479 * sending it down to disk
480 */
481 if (offset) {
7ac687d9 482 kaddr = kmap_atomic(page);
c8b97818
CM
483 memset(kaddr + offset, 0,
484 PAGE_CACHE_SIZE - offset);
7ac687d9 485 kunmap_atomic(kaddr);
c8b97818
CM
486 }
487 will_compress = 1;
488 }
489 }
560f7d75 490cont:
c8b97818
CM
491 if (start == 0) {
492 /* lets try to make an inline extent */
771ed689 493 if (ret || total_in < (actual_end - start)) {
c8b97818 494 /* we didn't compress the entire range, try
771ed689 495 * to make an uncompressed inline extent.
c8b97818 496 */
00361589
JB
497 ret = cow_file_range_inline(root, inode, start, end,
498 0, 0, NULL);
c8b97818 499 } else {
771ed689 500 /* try making a compressed inline extent */
00361589 501 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
502 total_compressed,
503 compress_type, pages);
c8b97818 504 }
79787eaa 505 if (ret <= 0) {
151a41bc
JB
506 unsigned long clear_flags = EXTENT_DELALLOC |
507 EXTENT_DEFRAG;
508 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
509
771ed689 510 /*
79787eaa
JM
511 * inline extent creation worked or returned error,
512 * we don't need to create any more async work items.
513 * Unlock and free up our temp pages.
771ed689 514 */
c2790a2e 515 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 516 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
517 PAGE_CLEAR_DIRTY |
518 PAGE_SET_WRITEBACK |
519 PAGE_END_WRITEBACK);
c8b97818
CM
520 goto free_pages_out;
521 }
522 }
523
524 if (will_compress) {
525 /*
526 * we aren't doing an inline extent round the compressed size
527 * up to a block size boundary so the allocator does sane
528 * things
529 */
fda2832f 530 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
531
532 /*
533 * one last check to make sure the compression is really a
534 * win, compare the page count read with the blocks on disk
535 */
fda2832f 536 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
537 if (total_compressed >= total_in) {
538 will_compress = 0;
539 } else {
c8b97818
CM
540 num_bytes = total_in;
541 }
542 }
543 if (!will_compress && pages) {
544 /*
545 * the compression code ran but failed to make things smaller,
546 * free any pages it allocated and our page pointer array
547 */
548 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 549 WARN_ON(pages[i]->mapping);
c8b97818
CM
550 page_cache_release(pages[i]);
551 }
552 kfree(pages);
553 pages = NULL;
554 total_compressed = 0;
555 nr_pages_ret = 0;
556
557 /* flag the file so we don't compress in the future */
1e701a32
CM
558 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
559 !(BTRFS_I(inode)->force_compress)) {
a555f810 560 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 561 }
c8b97818 562 }
771ed689
CM
563 if (will_compress) {
564 *num_added += 1;
c8b97818 565
771ed689
CM
566 /* the async work queues will take care of doing actual
567 * allocation on disk for these compressed pages,
568 * and will submit them to the elevator.
569 */
570 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
571 total_compressed, pages, nr_pages_ret,
572 compress_type);
179e29e4 573
24ae6365 574 if (start + num_bytes < end) {
771ed689
CM
575 start += num_bytes;
576 pages = NULL;
577 cond_resched();
578 goto again;
579 }
580 } else {
f03d9301 581cleanup_and_bail_uncompressed:
771ed689
CM
582 /*
583 * No compression, but we still need to write the pages in
584 * the file we've been given so far. redirty the locked
585 * page if it corresponds to our extent and set things up
586 * for the async work queue to run cow_file_range to do
587 * the normal delalloc dance
588 */
589 if (page_offset(locked_page) >= start &&
590 page_offset(locked_page) <= end) {
591 __set_page_dirty_nobuffers(locked_page);
592 /* unlocked later on in the async handlers */
593 }
4adaa611
CM
594 if (redirty)
595 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
596 add_async_extent(async_cow, start, end - start + 1,
597 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
598 *num_added += 1;
599 }
3b951516 600
771ed689 601out:
79787eaa 602 return ret;
771ed689
CM
603
604free_pages_out:
605 for (i = 0; i < nr_pages_ret; i++) {
606 WARN_ON(pages[i]->mapping);
607 page_cache_release(pages[i]);
608 }
d397712b 609 kfree(pages);
771ed689
CM
610
611 goto out;
612}
613
614/*
615 * phase two of compressed writeback. This is the ordered portion
616 * of the code, which only gets called in the order the work was
617 * queued. We walk all the async extents created by compress_file_range
618 * and send them down to the disk.
619 */
620static noinline int submit_compressed_extents(struct inode *inode,
621 struct async_cow *async_cow)
622{
623 struct async_extent *async_extent;
624 u64 alloc_hint = 0;
771ed689
CM
625 struct btrfs_key ins;
626 struct extent_map *em;
627 struct btrfs_root *root = BTRFS_I(inode)->root;
628 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
629 struct extent_io_tree *io_tree;
f5a84ee3 630 int ret = 0;
771ed689
CM
631
632 if (list_empty(&async_cow->extents))
633 return 0;
634
3e04e7f1 635again:
d397712b 636 while (!list_empty(&async_cow->extents)) {
771ed689
CM
637 async_extent = list_entry(async_cow->extents.next,
638 struct async_extent, list);
639 list_del(&async_extent->list);
c8b97818 640
771ed689
CM
641 io_tree = &BTRFS_I(inode)->io_tree;
642
f5a84ee3 643retry:
771ed689
CM
644 /* did the compression code fall back to uncompressed IO? */
645 if (!async_extent->pages) {
646 int page_started = 0;
647 unsigned long nr_written = 0;
648
649 lock_extent(io_tree, async_extent->start,
2ac55d41 650 async_extent->start +
d0082371 651 async_extent->ram_size - 1);
771ed689
CM
652
653 /* allocate blocks */
f5a84ee3
JB
654 ret = cow_file_range(inode, async_cow->locked_page,
655 async_extent->start,
656 async_extent->start +
657 async_extent->ram_size - 1,
658 &page_started, &nr_written, 0);
771ed689 659
79787eaa
JM
660 /* JDM XXX */
661
771ed689
CM
662 /*
663 * if page_started, cow_file_range inserted an
664 * inline extent and took care of all the unlocking
665 * and IO for us. Otherwise, we need to submit
666 * all those pages down to the drive.
667 */
f5a84ee3 668 if (!page_started && !ret)
771ed689
CM
669 extent_write_locked_range(io_tree,
670 inode, async_extent->start,
d397712b 671 async_extent->start +
771ed689
CM
672 async_extent->ram_size - 1,
673 btrfs_get_extent,
674 WB_SYNC_ALL);
3e04e7f1
JB
675 else if (ret)
676 unlock_page(async_cow->locked_page);
771ed689
CM
677 kfree(async_extent);
678 cond_resched();
679 continue;
680 }
681
682 lock_extent(io_tree, async_extent->start,
d0082371 683 async_extent->start + async_extent->ram_size - 1);
771ed689 684
00361589 685 ret = btrfs_reserve_extent(root,
771ed689
CM
686 async_extent->compressed_size,
687 async_extent->compressed_size,
81c9ad23 688 0, alloc_hint, &ins, 1);
f5a84ee3
JB
689 if (ret) {
690 int i;
3e04e7f1 691
f5a84ee3
JB
692 for (i = 0; i < async_extent->nr_pages; i++) {
693 WARN_ON(async_extent->pages[i]->mapping);
694 page_cache_release(async_extent->pages[i]);
695 }
696 kfree(async_extent->pages);
697 async_extent->nr_pages = 0;
698 async_extent->pages = NULL;
3e04e7f1 699
fdf8e2ea
JB
700 if (ret == -ENOSPC) {
701 unlock_extent(io_tree, async_extent->start,
702 async_extent->start +
703 async_extent->ram_size - 1);
79787eaa 704 goto retry;
fdf8e2ea 705 }
3e04e7f1 706 goto out_free;
f5a84ee3
JB
707 }
708
c2167754
YZ
709 /*
710 * here we're doing allocation and writeback of the
711 * compressed pages
712 */
713 btrfs_drop_extent_cache(inode, async_extent->start,
714 async_extent->start +
715 async_extent->ram_size - 1, 0);
716
172ddd60 717 em = alloc_extent_map();
b9aa55be
LB
718 if (!em) {
719 ret = -ENOMEM;
3e04e7f1 720 goto out_free_reserve;
b9aa55be 721 }
771ed689
CM
722 em->start = async_extent->start;
723 em->len = async_extent->ram_size;
445a6944 724 em->orig_start = em->start;
2ab28f32
JB
725 em->mod_start = em->start;
726 em->mod_len = em->len;
c8b97818 727
771ed689
CM
728 em->block_start = ins.objectid;
729 em->block_len = ins.offset;
b4939680 730 em->orig_block_len = ins.offset;
cc95bef6 731 em->ram_bytes = async_extent->ram_size;
771ed689 732 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 733 em->compress_type = async_extent->compress_type;
771ed689
CM
734 set_bit(EXTENT_FLAG_PINNED, &em->flags);
735 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 736 em->generation = -1;
771ed689 737
d397712b 738 while (1) {
890871be 739 write_lock(&em_tree->lock);
09a2a8f9 740 ret = add_extent_mapping(em_tree, em, 1);
890871be 741 write_unlock(&em_tree->lock);
771ed689
CM
742 if (ret != -EEXIST) {
743 free_extent_map(em);
744 break;
745 }
746 btrfs_drop_extent_cache(inode, async_extent->start,
747 async_extent->start +
748 async_extent->ram_size - 1, 0);
749 }
750
3e04e7f1
JB
751 if (ret)
752 goto out_free_reserve;
753
261507a0
LZ
754 ret = btrfs_add_ordered_extent_compress(inode,
755 async_extent->start,
756 ins.objectid,
757 async_extent->ram_size,
758 ins.offset,
759 BTRFS_ORDERED_COMPRESSED,
760 async_extent->compress_type);
3e04e7f1
JB
761 if (ret)
762 goto out_free_reserve;
771ed689 763
771ed689
CM
764 /*
765 * clear dirty, set writeback and unlock the pages.
766 */
c2790a2e 767 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
768 async_extent->start +
769 async_extent->ram_size - 1,
151a41bc
JB
770 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
771 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 772 PAGE_SET_WRITEBACK);
771ed689 773 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
774 async_extent->start,
775 async_extent->ram_size,
776 ins.objectid,
777 ins.offset, async_extent->pages,
778 async_extent->nr_pages);
771ed689
CM
779 alloc_hint = ins.objectid + ins.offset;
780 kfree(async_extent);
3e04e7f1
JB
781 if (ret)
782 goto out;
771ed689
CM
783 cond_resched();
784 }
79787eaa
JM
785 ret = 0;
786out:
787 return ret;
3e04e7f1
JB
788out_free_reserve:
789 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 790out_free:
c2790a2e 791 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
792 async_extent->start +
793 async_extent->ram_size - 1,
c2790a2e 794 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
795 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
796 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
797 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 798 kfree(async_extent);
3e04e7f1 799 goto again;
771ed689
CM
800}
801
4b46fce2
JB
802static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
803 u64 num_bytes)
804{
805 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
806 struct extent_map *em;
807 u64 alloc_hint = 0;
808
809 read_lock(&em_tree->lock);
810 em = search_extent_mapping(em_tree, start, num_bytes);
811 if (em) {
812 /*
813 * if block start isn't an actual block number then find the
814 * first block in this inode and use that as a hint. If that
815 * block is also bogus then just don't worry about it.
816 */
817 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
818 free_extent_map(em);
819 em = search_extent_mapping(em_tree, 0, 0);
820 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
821 alloc_hint = em->block_start;
822 if (em)
823 free_extent_map(em);
824 } else {
825 alloc_hint = em->block_start;
826 free_extent_map(em);
827 }
828 }
829 read_unlock(&em_tree->lock);
830
831 return alloc_hint;
832}
833
771ed689
CM
834/*
835 * when extent_io.c finds a delayed allocation range in the file,
836 * the call backs end up in this code. The basic idea is to
837 * allocate extents on disk for the range, and create ordered data structs
838 * in ram to track those extents.
839 *
840 * locked_page is the page that writepage had locked already. We use
841 * it to make sure we don't do extra locks or unlocks.
842 *
843 * *page_started is set to one if we unlock locked_page and do everything
844 * required to start IO on it. It may be clean and already done with
845 * IO when we return.
846 */
00361589
JB
847static noinline int cow_file_range(struct inode *inode,
848 struct page *locked_page,
849 u64 start, u64 end, int *page_started,
850 unsigned long *nr_written,
851 int unlock)
771ed689 852{
00361589 853 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
854 u64 alloc_hint = 0;
855 u64 num_bytes;
856 unsigned long ram_size;
857 u64 disk_num_bytes;
858 u64 cur_alloc_size;
859 u64 blocksize = root->sectorsize;
771ed689
CM
860 struct btrfs_key ins;
861 struct extent_map *em;
862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
863 int ret = 0;
864
02ecd2c2
JB
865 if (btrfs_is_free_space_inode(inode)) {
866 WARN_ON_ONCE(1);
29bce2f3
JB
867 ret = -EINVAL;
868 goto out_unlock;
02ecd2c2 869 }
771ed689 870
fda2832f 871 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
872 num_bytes = max(blocksize, num_bytes);
873 disk_num_bytes = num_bytes;
771ed689 874
4cb5300b 875 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
876 if (num_bytes < 64 * 1024 &&
877 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 878 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 879
771ed689
CM
880 if (start == 0) {
881 /* lets try to make an inline extent */
00361589
JB
882 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
883 NULL);
771ed689 884 if (ret == 0) {
c2790a2e
JB
885 extent_clear_unlock_delalloc(inode, start, end, NULL,
886 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 887 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
888 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
889 PAGE_END_WRITEBACK);
c2167754 890
771ed689
CM
891 *nr_written = *nr_written +
892 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
893 *page_started = 1;
771ed689 894 goto out;
79787eaa 895 } else if (ret < 0) {
79787eaa 896 goto out_unlock;
771ed689
CM
897 }
898 }
899
900 BUG_ON(disk_num_bytes >
6c41761f 901 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 902
4b46fce2 903 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
904 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
905
d397712b 906 while (disk_num_bytes > 0) {
a791e35e
CM
907 unsigned long op;
908
287a0ab9 909 cur_alloc_size = disk_num_bytes;
00361589 910 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 911 root->sectorsize, 0, alloc_hint,
81c9ad23 912 &ins, 1);
00361589 913 if (ret < 0)
79787eaa 914 goto out_unlock;
d397712b 915
172ddd60 916 em = alloc_extent_map();
b9aa55be
LB
917 if (!em) {
918 ret = -ENOMEM;
ace68bac 919 goto out_reserve;
b9aa55be 920 }
e6dcd2dc 921 em->start = start;
445a6944 922 em->orig_start = em->start;
771ed689
CM
923 ram_size = ins.offset;
924 em->len = ins.offset;
2ab28f32
JB
925 em->mod_start = em->start;
926 em->mod_len = em->len;
c8b97818 927
e6dcd2dc 928 em->block_start = ins.objectid;
c8b97818 929 em->block_len = ins.offset;
b4939680 930 em->orig_block_len = ins.offset;
cc95bef6 931 em->ram_bytes = ram_size;
e6dcd2dc 932 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 933 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 934 em->generation = -1;
c8b97818 935
d397712b 936 while (1) {
890871be 937 write_lock(&em_tree->lock);
09a2a8f9 938 ret = add_extent_mapping(em_tree, em, 1);
890871be 939 write_unlock(&em_tree->lock);
e6dcd2dc
CM
940 if (ret != -EEXIST) {
941 free_extent_map(em);
942 break;
943 }
944 btrfs_drop_extent_cache(inode, start,
c8b97818 945 start + ram_size - 1, 0);
e6dcd2dc 946 }
ace68bac
LB
947 if (ret)
948 goto out_reserve;
e6dcd2dc 949
98d20f67 950 cur_alloc_size = ins.offset;
e6dcd2dc 951 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 952 ram_size, cur_alloc_size, 0);
ace68bac
LB
953 if (ret)
954 goto out_reserve;
c8b97818 955
17d217fe
YZ
956 if (root->root_key.objectid ==
957 BTRFS_DATA_RELOC_TREE_OBJECTID) {
958 ret = btrfs_reloc_clone_csums(inode, start,
959 cur_alloc_size);
00361589 960 if (ret)
ace68bac 961 goto out_reserve;
17d217fe
YZ
962 }
963
d397712b 964 if (disk_num_bytes < cur_alloc_size)
3b951516 965 break;
d397712b 966
c8b97818
CM
967 /* we're not doing compressed IO, don't unlock the first
968 * page (which the caller expects to stay locked), don't
969 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
970 *
971 * Do set the Private2 bit so we know this page was properly
972 * setup for writepage
c8b97818 973 */
c2790a2e
JB
974 op = unlock ? PAGE_UNLOCK : 0;
975 op |= PAGE_SET_PRIVATE2;
a791e35e 976
c2790a2e
JB
977 extent_clear_unlock_delalloc(inode, start,
978 start + ram_size - 1, locked_page,
979 EXTENT_LOCKED | EXTENT_DELALLOC,
980 op);
c8b97818 981 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
982 num_bytes -= cur_alloc_size;
983 alloc_hint = ins.objectid + ins.offset;
984 start += cur_alloc_size;
b888db2b 985 }
79787eaa 986out:
be20aa9d 987 return ret;
b7d5b0a8 988
ace68bac
LB
989out_reserve:
990 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 991out_unlock:
c2790a2e 992 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
993 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
994 EXTENT_DELALLOC | EXTENT_DEFRAG,
995 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
996 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 997 goto out;
771ed689 998}
c8b97818 999
771ed689
CM
1000/*
1001 * work queue call back to started compression on a file and pages
1002 */
afe3d242 1003static noinline void async_cow_start(struct btrfs_work_struct *work)
771ed689
CM
1004{
1005 struct async_cow *async_cow;
1006 int num_added = 0;
1007 async_cow = container_of(work, struct async_cow, work);
1008
1009 compress_file_range(async_cow->inode, async_cow->locked_page,
1010 async_cow->start, async_cow->end, async_cow,
1011 &num_added);
8180ef88 1012 if (num_added == 0) {
cb77fcd8 1013 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1014 async_cow->inode = NULL;
8180ef88 1015 }
771ed689
CM
1016}
1017
1018/*
1019 * work queue call back to submit previously compressed pages
1020 */
afe3d242 1021static noinline void async_cow_submit(struct btrfs_work_struct *work)
771ed689
CM
1022{
1023 struct async_cow *async_cow;
1024 struct btrfs_root *root;
1025 unsigned long nr_pages;
1026
1027 async_cow = container_of(work, struct async_cow, work);
1028
1029 root = async_cow->root;
1030 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1031 PAGE_CACHE_SHIFT;
1032
66657b31 1033 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1034 5 * 1024 * 1024 &&
771ed689
CM
1035 waitqueue_active(&root->fs_info->async_submit_wait))
1036 wake_up(&root->fs_info->async_submit_wait);
1037
d397712b 1038 if (async_cow->inode)
771ed689 1039 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1040}
c8b97818 1041
afe3d242 1042static noinline void async_cow_free(struct btrfs_work_struct *work)
771ed689
CM
1043{
1044 struct async_cow *async_cow;
1045 async_cow = container_of(work, struct async_cow, work);
8180ef88 1046 if (async_cow->inode)
cb77fcd8 1047 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1048 kfree(async_cow);
1049}
1050
1051static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1052 u64 start, u64 end, int *page_started,
1053 unsigned long *nr_written)
1054{
1055 struct async_cow *async_cow;
1056 struct btrfs_root *root = BTRFS_I(inode)->root;
1057 unsigned long nr_pages;
1058 u64 cur_end;
287082b0 1059 int limit = 10 * 1024 * 1024;
771ed689 1060
a3429ab7
CM
1061 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1062 1, 0, NULL, GFP_NOFS);
d397712b 1063 while (start < end) {
771ed689 1064 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1065 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1066 async_cow->inode = igrab(inode);
771ed689
CM
1067 async_cow->root = root;
1068 async_cow->locked_page = locked_page;
1069 async_cow->start = start;
1070
6cbff00f 1071 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1072 cur_end = end;
1073 else
1074 cur_end = min(end, start + 512 * 1024 - 1);
1075
1076 async_cow->end = cur_end;
1077 INIT_LIST_HEAD(&async_cow->extents);
1078
afe3d242
QW
1079 btrfs_init_work(&async_cow->work, async_cow_start,
1080 async_cow_submit, async_cow_free);
771ed689 1081
771ed689
CM
1082 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1083 PAGE_CACHE_SHIFT;
1084 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1085
afe3d242
QW
1086 btrfs_queue_work(root->fs_info->delalloc_workers,
1087 &async_cow->work);
771ed689
CM
1088
1089 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1090 wait_event(root->fs_info->async_submit_wait,
1091 (atomic_read(&root->fs_info->async_delalloc_pages) <
1092 limit));
1093 }
1094
d397712b 1095 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1096 atomic_read(&root->fs_info->async_delalloc_pages)) {
1097 wait_event(root->fs_info->async_submit_wait,
1098 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1099 0));
1100 }
1101
1102 *nr_written += nr_pages;
1103 start = cur_end + 1;
1104 }
1105 *page_started = 1;
1106 return 0;
be20aa9d
CM
1107}
1108
d397712b 1109static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1110 u64 bytenr, u64 num_bytes)
1111{
1112 int ret;
1113 struct btrfs_ordered_sum *sums;
1114 LIST_HEAD(list);
1115
07d400a6 1116 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1117 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1118 if (ret == 0 && list_empty(&list))
1119 return 0;
1120
1121 while (!list_empty(&list)) {
1122 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1123 list_del(&sums->list);
1124 kfree(sums);
1125 }
1126 return 1;
1127}
1128
d352ac68
CM
1129/*
1130 * when nowcow writeback call back. This checks for snapshots or COW copies
1131 * of the extents that exist in the file, and COWs the file as required.
1132 *
1133 * If no cow copies or snapshots exist, we write directly to the existing
1134 * blocks on disk
1135 */
7f366cfe
CM
1136static noinline int run_delalloc_nocow(struct inode *inode,
1137 struct page *locked_page,
771ed689
CM
1138 u64 start, u64 end, int *page_started, int force,
1139 unsigned long *nr_written)
be20aa9d 1140{
be20aa9d 1141 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1142 struct btrfs_trans_handle *trans;
be20aa9d 1143 struct extent_buffer *leaf;
be20aa9d 1144 struct btrfs_path *path;
80ff3856 1145 struct btrfs_file_extent_item *fi;
be20aa9d 1146 struct btrfs_key found_key;
80ff3856
YZ
1147 u64 cow_start;
1148 u64 cur_offset;
1149 u64 extent_end;
5d4f98a2 1150 u64 extent_offset;
80ff3856
YZ
1151 u64 disk_bytenr;
1152 u64 num_bytes;
b4939680 1153 u64 disk_num_bytes;
cc95bef6 1154 u64 ram_bytes;
80ff3856 1155 int extent_type;
79787eaa 1156 int ret, err;
d899e052 1157 int type;
80ff3856
YZ
1158 int nocow;
1159 int check_prev = 1;
82d5902d 1160 bool nolock;
33345d01 1161 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1162
1163 path = btrfs_alloc_path();
17ca04af 1164 if (!path) {
c2790a2e
JB
1165 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1166 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1167 EXTENT_DO_ACCOUNTING |
1168 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1169 PAGE_CLEAR_DIRTY |
1170 PAGE_SET_WRITEBACK |
1171 PAGE_END_WRITEBACK);
d8926bb3 1172 return -ENOMEM;
17ca04af 1173 }
82d5902d 1174
83eea1f1 1175 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1176
1177 if (nolock)
7a7eaa40 1178 trans = btrfs_join_transaction_nolock(root);
82d5902d 1179 else
7a7eaa40 1180 trans = btrfs_join_transaction(root);
ff5714cc 1181
79787eaa 1182 if (IS_ERR(trans)) {
c2790a2e
JB
1183 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1184 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1185 EXTENT_DO_ACCOUNTING |
1186 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1187 PAGE_CLEAR_DIRTY |
1188 PAGE_SET_WRITEBACK |
1189 PAGE_END_WRITEBACK);
79787eaa
JM
1190 btrfs_free_path(path);
1191 return PTR_ERR(trans);
1192 }
1193
74b21075 1194 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1195
80ff3856
YZ
1196 cow_start = (u64)-1;
1197 cur_offset = start;
1198 while (1) {
33345d01 1199 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1200 cur_offset, 0);
d788a349 1201 if (ret < 0)
79787eaa 1202 goto error;
80ff3856
YZ
1203 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1204 leaf = path->nodes[0];
1205 btrfs_item_key_to_cpu(leaf, &found_key,
1206 path->slots[0] - 1);
33345d01 1207 if (found_key.objectid == ino &&
80ff3856
YZ
1208 found_key.type == BTRFS_EXTENT_DATA_KEY)
1209 path->slots[0]--;
1210 }
1211 check_prev = 0;
1212next_slot:
1213 leaf = path->nodes[0];
1214 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1215 ret = btrfs_next_leaf(root, path);
d788a349 1216 if (ret < 0)
79787eaa 1217 goto error;
80ff3856
YZ
1218 if (ret > 0)
1219 break;
1220 leaf = path->nodes[0];
1221 }
be20aa9d 1222
80ff3856
YZ
1223 nocow = 0;
1224 disk_bytenr = 0;
17d217fe 1225 num_bytes = 0;
80ff3856
YZ
1226 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1227
33345d01 1228 if (found_key.objectid > ino ||
80ff3856
YZ
1229 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1230 found_key.offset > end)
1231 break;
1232
1233 if (found_key.offset > cur_offset) {
1234 extent_end = found_key.offset;
e9061e21 1235 extent_type = 0;
80ff3856
YZ
1236 goto out_check;
1237 }
1238
1239 fi = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_file_extent_item);
1241 extent_type = btrfs_file_extent_type(leaf, fi);
1242
cc95bef6 1243 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1244 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1245 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1246 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1247 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1248 extent_end = found_key.offset +
1249 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1250 disk_num_bytes =
1251 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1252 if (extent_end <= start) {
1253 path->slots[0]++;
1254 goto next_slot;
1255 }
17d217fe
YZ
1256 if (disk_bytenr == 0)
1257 goto out_check;
80ff3856
YZ
1258 if (btrfs_file_extent_compression(leaf, fi) ||
1259 btrfs_file_extent_encryption(leaf, fi) ||
1260 btrfs_file_extent_other_encoding(leaf, fi))
1261 goto out_check;
d899e052
YZ
1262 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1263 goto out_check;
d2fb3437 1264 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1265 goto out_check;
33345d01 1266 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1267 found_key.offset -
1268 extent_offset, disk_bytenr))
17d217fe 1269 goto out_check;
5d4f98a2 1270 disk_bytenr += extent_offset;
17d217fe
YZ
1271 disk_bytenr += cur_offset - found_key.offset;
1272 num_bytes = min(end + 1, extent_end) - cur_offset;
1273 /*
1274 * force cow if csum exists in the range.
1275 * this ensure that csum for a given extent are
1276 * either valid or do not exist.
1277 */
1278 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1279 goto out_check;
80ff3856
YZ
1280 nocow = 1;
1281 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1282 extent_end = found_key.offset +
514ac8ad
CM
1283 btrfs_file_extent_inline_len(leaf,
1284 path->slots[0], fi);
80ff3856
YZ
1285 extent_end = ALIGN(extent_end, root->sectorsize);
1286 } else {
1287 BUG_ON(1);
1288 }
1289out_check:
1290 if (extent_end <= start) {
1291 path->slots[0]++;
1292 goto next_slot;
1293 }
1294 if (!nocow) {
1295 if (cow_start == (u64)-1)
1296 cow_start = cur_offset;
1297 cur_offset = extent_end;
1298 if (cur_offset > end)
1299 break;
1300 path->slots[0]++;
1301 goto next_slot;
7ea394f1
YZ
1302 }
1303
b3b4aa74 1304 btrfs_release_path(path);
80ff3856 1305 if (cow_start != (u64)-1) {
00361589
JB
1306 ret = cow_file_range(inode, locked_page,
1307 cow_start, found_key.offset - 1,
1308 page_started, nr_written, 1);
d788a349 1309 if (ret)
79787eaa 1310 goto error;
80ff3856 1311 cow_start = (u64)-1;
7ea394f1 1312 }
80ff3856 1313
d899e052
YZ
1314 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1315 struct extent_map *em;
1316 struct extent_map_tree *em_tree;
1317 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1318 em = alloc_extent_map();
79787eaa 1319 BUG_ON(!em); /* -ENOMEM */
d899e052 1320 em->start = cur_offset;
70c8a91c 1321 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1322 em->len = num_bytes;
1323 em->block_len = num_bytes;
1324 em->block_start = disk_bytenr;
b4939680 1325 em->orig_block_len = disk_num_bytes;
cc95bef6 1326 em->ram_bytes = ram_bytes;
d899e052 1327 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1328 em->mod_start = em->start;
1329 em->mod_len = em->len;
d899e052 1330 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1331 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1332 em->generation = -1;
d899e052 1333 while (1) {
890871be 1334 write_lock(&em_tree->lock);
09a2a8f9 1335 ret = add_extent_mapping(em_tree, em, 1);
890871be 1336 write_unlock(&em_tree->lock);
d899e052
YZ
1337 if (ret != -EEXIST) {
1338 free_extent_map(em);
1339 break;
1340 }
1341 btrfs_drop_extent_cache(inode, em->start,
1342 em->start + em->len - 1, 0);
1343 }
1344 type = BTRFS_ORDERED_PREALLOC;
1345 } else {
1346 type = BTRFS_ORDERED_NOCOW;
1347 }
80ff3856
YZ
1348
1349 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1350 num_bytes, num_bytes, type);
79787eaa 1351 BUG_ON(ret); /* -ENOMEM */
771ed689 1352
efa56464
YZ
1353 if (root->root_key.objectid ==
1354 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1355 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1356 num_bytes);
d788a349 1357 if (ret)
79787eaa 1358 goto error;
efa56464
YZ
1359 }
1360
c2790a2e
JB
1361 extent_clear_unlock_delalloc(inode, cur_offset,
1362 cur_offset + num_bytes - 1,
1363 locked_page, EXTENT_LOCKED |
1364 EXTENT_DELALLOC, PAGE_UNLOCK |
1365 PAGE_SET_PRIVATE2);
80ff3856
YZ
1366 cur_offset = extent_end;
1367 if (cur_offset > end)
1368 break;
be20aa9d 1369 }
b3b4aa74 1370 btrfs_release_path(path);
80ff3856 1371
17ca04af 1372 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1373 cow_start = cur_offset;
17ca04af
JB
1374 cur_offset = end;
1375 }
1376
80ff3856 1377 if (cow_start != (u64)-1) {
00361589
JB
1378 ret = cow_file_range(inode, locked_page, cow_start, end,
1379 page_started, nr_written, 1);
d788a349 1380 if (ret)
79787eaa 1381 goto error;
80ff3856
YZ
1382 }
1383
79787eaa 1384error:
a698d075 1385 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1386 if (!ret)
1387 ret = err;
1388
17ca04af 1389 if (ret && cur_offset < end)
c2790a2e
JB
1390 extent_clear_unlock_delalloc(inode, cur_offset, end,
1391 locked_page, EXTENT_LOCKED |
151a41bc
JB
1392 EXTENT_DELALLOC | EXTENT_DEFRAG |
1393 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1394 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1395 PAGE_SET_WRITEBACK |
1396 PAGE_END_WRITEBACK);
7ea394f1 1397 btrfs_free_path(path);
79787eaa 1398 return ret;
be20aa9d
CM
1399}
1400
d352ac68
CM
1401/*
1402 * extent_io.c call back to do delayed allocation processing
1403 */
c8b97818 1404static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1405 u64 start, u64 end, int *page_started,
1406 unsigned long *nr_written)
be20aa9d 1407{
be20aa9d 1408 int ret;
7f366cfe 1409 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1410
7ddf5a42 1411 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1412 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1413 page_started, 1, nr_written);
7ddf5a42 1414 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1415 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1416 page_started, 0, nr_written);
7ddf5a42
JB
1417 } else if (!btrfs_test_opt(root, COMPRESS) &&
1418 !(BTRFS_I(inode)->force_compress) &&
1419 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1420 ret = cow_file_range(inode, locked_page, start, end,
1421 page_started, nr_written, 1);
7ddf5a42
JB
1422 } else {
1423 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1424 &BTRFS_I(inode)->runtime_flags);
771ed689 1425 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1426 page_started, nr_written);
7ddf5a42 1427 }
b888db2b
CM
1428 return ret;
1429}
1430
1bf85046
JM
1431static void btrfs_split_extent_hook(struct inode *inode,
1432 struct extent_state *orig, u64 split)
9ed74f2d 1433{
0ca1f7ce 1434 /* not delalloc, ignore it */
9ed74f2d 1435 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1436 return;
9ed74f2d 1437
9e0baf60
JB
1438 spin_lock(&BTRFS_I(inode)->lock);
1439 BTRFS_I(inode)->outstanding_extents++;
1440 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1441}
1442
1443/*
1444 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1445 * extents so we can keep track of new extents that are just merged onto old
1446 * extents, such as when we are doing sequential writes, so we can properly
1447 * account for the metadata space we'll need.
1448 */
1bf85046
JM
1449static void btrfs_merge_extent_hook(struct inode *inode,
1450 struct extent_state *new,
1451 struct extent_state *other)
9ed74f2d 1452{
9ed74f2d
JB
1453 /* not delalloc, ignore it */
1454 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1455 return;
9ed74f2d 1456
9e0baf60
JB
1457 spin_lock(&BTRFS_I(inode)->lock);
1458 BTRFS_I(inode)->outstanding_extents--;
1459 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1460}
1461
eb73c1b7
MX
1462static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1463 struct inode *inode)
1464{
1465 spin_lock(&root->delalloc_lock);
1466 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1467 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1468 &root->delalloc_inodes);
1469 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1470 &BTRFS_I(inode)->runtime_flags);
1471 root->nr_delalloc_inodes++;
1472 if (root->nr_delalloc_inodes == 1) {
1473 spin_lock(&root->fs_info->delalloc_root_lock);
1474 BUG_ON(!list_empty(&root->delalloc_root));
1475 list_add_tail(&root->delalloc_root,
1476 &root->fs_info->delalloc_roots);
1477 spin_unlock(&root->fs_info->delalloc_root_lock);
1478 }
1479 }
1480 spin_unlock(&root->delalloc_lock);
1481}
1482
1483static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1484 struct inode *inode)
1485{
1486 spin_lock(&root->delalloc_lock);
1487 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1488 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1489 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1490 &BTRFS_I(inode)->runtime_flags);
1491 root->nr_delalloc_inodes--;
1492 if (!root->nr_delalloc_inodes) {
1493 spin_lock(&root->fs_info->delalloc_root_lock);
1494 BUG_ON(list_empty(&root->delalloc_root));
1495 list_del_init(&root->delalloc_root);
1496 spin_unlock(&root->fs_info->delalloc_root_lock);
1497 }
1498 }
1499 spin_unlock(&root->delalloc_lock);
1500}
1501
d352ac68
CM
1502/*
1503 * extent_io.c set_bit_hook, used to track delayed allocation
1504 * bytes in this file, and to maintain the list of inodes that
1505 * have pending delalloc work to be done.
1506 */
1bf85046 1507static void btrfs_set_bit_hook(struct inode *inode,
41074888 1508 struct extent_state *state, unsigned long *bits)
291d673e 1509{
9ed74f2d 1510
75eff68e
CM
1511 /*
1512 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1513 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1514 * bit, which is only set or cleared with irqs on
1515 */
0ca1f7ce 1516 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1517 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1518 u64 len = state->end + 1 - state->start;
83eea1f1 1519 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1520
9e0baf60 1521 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1522 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1523 } else {
1524 spin_lock(&BTRFS_I(inode)->lock);
1525 BTRFS_I(inode)->outstanding_extents++;
1526 spin_unlock(&BTRFS_I(inode)->lock);
1527 }
287a0ab9 1528
963d678b
MX
1529 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1530 root->fs_info->delalloc_batch);
df0af1a5 1531 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1532 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1533 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1534 &BTRFS_I(inode)->runtime_flags))
1535 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1536 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1537 }
291d673e
CM
1538}
1539
d352ac68
CM
1540/*
1541 * extent_io.c clear_bit_hook, see set_bit_hook for why
1542 */
1bf85046 1543static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1544 struct extent_state *state,
1545 unsigned long *bits)
291d673e 1546{
75eff68e
CM
1547 /*
1548 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1549 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1550 * bit, which is only set or cleared with irqs on
1551 */
0ca1f7ce 1552 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1553 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1554 u64 len = state->end + 1 - state->start;
83eea1f1 1555 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1556
9e0baf60 1557 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1558 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1559 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1560 spin_lock(&BTRFS_I(inode)->lock);
1561 BTRFS_I(inode)->outstanding_extents--;
1562 spin_unlock(&BTRFS_I(inode)->lock);
1563 }
0ca1f7ce 1564
b6d08f06
JB
1565 /*
1566 * We don't reserve metadata space for space cache inodes so we
1567 * don't need to call dellalloc_release_metadata if there is an
1568 * error.
1569 */
1570 if (*bits & EXTENT_DO_ACCOUNTING &&
1571 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1572 btrfs_delalloc_release_metadata(inode, len);
1573
0cb59c99 1574 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1575 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1576 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1577
963d678b
MX
1578 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1579 root->fs_info->delalloc_batch);
df0af1a5 1580 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1581 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1582 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1583 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1584 &BTRFS_I(inode)->runtime_flags))
1585 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1586 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1587 }
291d673e
CM
1588}
1589
d352ac68
CM
1590/*
1591 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1592 * we don't create bios that span stripes or chunks
1593 */
64a16701 1594int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1595 size_t size, struct bio *bio,
1596 unsigned long bio_flags)
239b14b3
CM
1597{
1598 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1599 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1600 u64 length = 0;
1601 u64 map_length;
239b14b3
CM
1602 int ret;
1603
771ed689
CM
1604 if (bio_flags & EXTENT_BIO_COMPRESSED)
1605 return 0;
1606
f2d8d74d 1607 length = bio->bi_size;
239b14b3 1608 map_length = length;
64a16701 1609 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1610 &map_length, NULL, 0);
3ec706c8 1611 /* Will always return 0 with map_multi == NULL */
3444a972 1612 BUG_ON(ret < 0);
d397712b 1613 if (map_length < length + size)
239b14b3 1614 return 1;
3444a972 1615 return 0;
239b14b3
CM
1616}
1617
d352ac68
CM
1618/*
1619 * in order to insert checksums into the metadata in large chunks,
1620 * we wait until bio submission time. All the pages in the bio are
1621 * checksummed and sums are attached onto the ordered extent record.
1622 *
1623 * At IO completion time the cums attached on the ordered extent record
1624 * are inserted into the btree
1625 */
d397712b
CM
1626static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1627 struct bio *bio, int mirror_num,
eaf25d93
CM
1628 unsigned long bio_flags,
1629 u64 bio_offset)
065631f6 1630{
065631f6 1631 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1632 int ret = 0;
e015640f 1633
d20f7043 1634 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1635 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1636 return 0;
1637}
e015640f 1638
4a69a410
CM
1639/*
1640 * in order to insert checksums into the metadata in large chunks,
1641 * we wait until bio submission time. All the pages in the bio are
1642 * checksummed and sums are attached onto the ordered extent record.
1643 *
1644 * At IO completion time the cums attached on the ordered extent record
1645 * are inserted into the btree
1646 */
b2950863 1647static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1648 int mirror_num, unsigned long bio_flags,
1649 u64 bio_offset)
4a69a410
CM
1650{
1651 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1652 int ret;
1653
1654 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1655 if (ret)
1656 bio_endio(bio, ret);
1657 return ret;
44b8bd7e
CM
1658}
1659
d352ac68 1660/*
cad321ad
CM
1661 * extent_io.c submission hook. This does the right thing for csum calculation
1662 * on write, or reading the csums from the tree before a read
d352ac68 1663 */
b2950863 1664static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1665 int mirror_num, unsigned long bio_flags,
1666 u64 bio_offset)
44b8bd7e
CM
1667{
1668 struct btrfs_root *root = BTRFS_I(inode)->root;
1669 int ret = 0;
19b9bdb0 1670 int skip_sum;
0417341e 1671 int metadata = 0;
b812ce28 1672 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1673
6cbff00f 1674 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1675
83eea1f1 1676 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1677 metadata = 2;
1678
7b6d91da 1679 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1680 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1681 if (ret)
61891923 1682 goto out;
5fd02043 1683
d20f7043 1684 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1685 ret = btrfs_submit_compressed_read(inode, bio,
1686 mirror_num,
1687 bio_flags);
1688 goto out;
c2db1073
TI
1689 } else if (!skip_sum) {
1690 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1691 if (ret)
61891923 1692 goto out;
c2db1073 1693 }
4d1b5fb4 1694 goto mapit;
b812ce28 1695 } else if (async && !skip_sum) {
17d217fe
YZ
1696 /* csum items have already been cloned */
1697 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1698 goto mapit;
19b9bdb0 1699 /* we're doing a write, do the async checksumming */
61891923 1700 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1701 inode, rw, bio, mirror_num,
eaf25d93
CM
1702 bio_flags, bio_offset,
1703 __btrfs_submit_bio_start,
4a69a410 1704 __btrfs_submit_bio_done);
61891923 1705 goto out;
b812ce28
JB
1706 } else if (!skip_sum) {
1707 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1708 if (ret)
1709 goto out;
19b9bdb0
CM
1710 }
1711
0b86a832 1712mapit:
61891923
SB
1713 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1714
1715out:
1716 if (ret < 0)
1717 bio_endio(bio, ret);
1718 return ret;
065631f6 1719}
6885f308 1720
d352ac68
CM
1721/*
1722 * given a list of ordered sums record them in the inode. This happens
1723 * at IO completion time based on sums calculated at bio submission time.
1724 */
ba1da2f4 1725static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1726 struct inode *inode, u64 file_offset,
1727 struct list_head *list)
1728{
e6dcd2dc
CM
1729 struct btrfs_ordered_sum *sum;
1730
c6e30871 1731 list_for_each_entry(sum, list, list) {
39847c4d 1732 trans->adding_csums = 1;
d20f7043
CM
1733 btrfs_csum_file_blocks(trans,
1734 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1735 trans->adding_csums = 0;
e6dcd2dc
CM
1736 }
1737 return 0;
1738}
1739
2ac55d41
JB
1740int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1741 struct extent_state **cached_state)
ea8c2819 1742{
6c1500f2 1743 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1744 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1745 cached_state, GFP_NOFS);
ea8c2819
CM
1746}
1747
d352ac68 1748/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1749struct btrfs_writepage_fixup {
1750 struct page *page;
1751 struct btrfs_work work;
1752};
1753
b2950863 1754static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1755{
1756 struct btrfs_writepage_fixup *fixup;
1757 struct btrfs_ordered_extent *ordered;
2ac55d41 1758 struct extent_state *cached_state = NULL;
247e743c
CM
1759 struct page *page;
1760 struct inode *inode;
1761 u64 page_start;
1762 u64 page_end;
87826df0 1763 int ret;
247e743c
CM
1764
1765 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1766 page = fixup->page;
4a096752 1767again:
247e743c
CM
1768 lock_page(page);
1769 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1770 ClearPageChecked(page);
1771 goto out_page;
1772 }
1773
1774 inode = page->mapping->host;
1775 page_start = page_offset(page);
1776 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1777
2ac55d41 1778 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1779 &cached_state);
4a096752
CM
1780
1781 /* already ordered? We're done */
8b62b72b 1782 if (PagePrivate2(page))
247e743c 1783 goto out;
4a096752
CM
1784
1785 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1786 if (ordered) {
2ac55d41
JB
1787 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1788 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1789 unlock_page(page);
1790 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1791 btrfs_put_ordered_extent(ordered);
4a096752
CM
1792 goto again;
1793 }
247e743c 1794
87826df0
JM
1795 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1796 if (ret) {
1797 mapping_set_error(page->mapping, ret);
1798 end_extent_writepage(page, ret, page_start, page_end);
1799 ClearPageChecked(page);
1800 goto out;
1801 }
1802
2ac55d41 1803 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1804 ClearPageChecked(page);
87826df0 1805 set_page_dirty(page);
247e743c 1806out:
2ac55d41
JB
1807 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1808 &cached_state, GFP_NOFS);
247e743c
CM
1809out_page:
1810 unlock_page(page);
1811 page_cache_release(page);
b897abec 1812 kfree(fixup);
247e743c
CM
1813}
1814
1815/*
1816 * There are a few paths in the higher layers of the kernel that directly
1817 * set the page dirty bit without asking the filesystem if it is a
1818 * good idea. This causes problems because we want to make sure COW
1819 * properly happens and the data=ordered rules are followed.
1820 *
c8b97818 1821 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1822 * hasn't been properly setup for IO. We kick off an async process
1823 * to fix it up. The async helper will wait for ordered extents, set
1824 * the delalloc bit and make it safe to write the page.
1825 */
b2950863 1826static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1827{
1828 struct inode *inode = page->mapping->host;
1829 struct btrfs_writepage_fixup *fixup;
1830 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1831
8b62b72b
CM
1832 /* this page is properly in the ordered list */
1833 if (TestClearPagePrivate2(page))
247e743c
CM
1834 return 0;
1835
1836 if (PageChecked(page))
1837 return -EAGAIN;
1838
1839 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1840 if (!fixup)
1841 return -EAGAIN;
f421950f 1842
247e743c
CM
1843 SetPageChecked(page);
1844 page_cache_get(page);
1845 fixup->work.func = btrfs_writepage_fixup_worker;
1846 fixup->page = page;
1847 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1848 return -EBUSY;
247e743c
CM
1849}
1850
d899e052
YZ
1851static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1852 struct inode *inode, u64 file_pos,
1853 u64 disk_bytenr, u64 disk_num_bytes,
1854 u64 num_bytes, u64 ram_bytes,
1855 u8 compression, u8 encryption,
1856 u16 other_encoding, int extent_type)
1857{
1858 struct btrfs_root *root = BTRFS_I(inode)->root;
1859 struct btrfs_file_extent_item *fi;
1860 struct btrfs_path *path;
1861 struct extent_buffer *leaf;
1862 struct btrfs_key ins;
1acae57b 1863 int extent_inserted = 0;
d899e052
YZ
1864 int ret;
1865
1866 path = btrfs_alloc_path();
d8926bb3
MF
1867 if (!path)
1868 return -ENOMEM;
d899e052 1869
a1ed835e
CM
1870 /*
1871 * we may be replacing one extent in the tree with another.
1872 * The new extent is pinned in the extent map, and we don't want
1873 * to drop it from the cache until it is completely in the btree.
1874 *
1875 * So, tell btrfs_drop_extents to leave this extent in the cache.
1876 * the caller is expected to unpin it and allow it to be merged
1877 * with the others.
1878 */
1acae57b
FDBM
1879 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1880 file_pos + num_bytes, NULL, 0,
1881 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
1882 if (ret)
1883 goto out;
d899e052 1884
1acae57b
FDBM
1885 if (!extent_inserted) {
1886 ins.objectid = btrfs_ino(inode);
1887 ins.offset = file_pos;
1888 ins.type = BTRFS_EXTENT_DATA_KEY;
1889
1890 path->leave_spinning = 1;
1891 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1892 sizeof(*fi));
1893 if (ret)
1894 goto out;
1895 }
d899e052
YZ
1896 leaf = path->nodes[0];
1897 fi = btrfs_item_ptr(leaf, path->slots[0],
1898 struct btrfs_file_extent_item);
1899 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1900 btrfs_set_file_extent_type(leaf, fi, extent_type);
1901 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1902 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1903 btrfs_set_file_extent_offset(leaf, fi, 0);
1904 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1905 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1906 btrfs_set_file_extent_compression(leaf, fi, compression);
1907 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1908 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1909
d899e052 1910 btrfs_mark_buffer_dirty(leaf);
ce195332 1911 btrfs_release_path(path);
d899e052
YZ
1912
1913 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1914
1915 ins.objectid = disk_bytenr;
1916 ins.offset = disk_num_bytes;
1917 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1918 ret = btrfs_alloc_reserved_file_extent(trans, root,
1919 root->root_key.objectid,
33345d01 1920 btrfs_ino(inode), file_pos, &ins);
79787eaa 1921out:
d899e052 1922 btrfs_free_path(path);
b9473439 1923
79787eaa 1924 return ret;
d899e052
YZ
1925}
1926
38c227d8
LB
1927/* snapshot-aware defrag */
1928struct sa_defrag_extent_backref {
1929 struct rb_node node;
1930 struct old_sa_defrag_extent *old;
1931 u64 root_id;
1932 u64 inum;
1933 u64 file_pos;
1934 u64 extent_offset;
1935 u64 num_bytes;
1936 u64 generation;
1937};
1938
1939struct old_sa_defrag_extent {
1940 struct list_head list;
1941 struct new_sa_defrag_extent *new;
1942
1943 u64 extent_offset;
1944 u64 bytenr;
1945 u64 offset;
1946 u64 len;
1947 int count;
1948};
1949
1950struct new_sa_defrag_extent {
1951 struct rb_root root;
1952 struct list_head head;
1953 struct btrfs_path *path;
1954 struct inode *inode;
1955 u64 file_pos;
1956 u64 len;
1957 u64 bytenr;
1958 u64 disk_len;
1959 u8 compress_type;
1960};
1961
1962static int backref_comp(struct sa_defrag_extent_backref *b1,
1963 struct sa_defrag_extent_backref *b2)
1964{
1965 if (b1->root_id < b2->root_id)
1966 return -1;
1967 else if (b1->root_id > b2->root_id)
1968 return 1;
1969
1970 if (b1->inum < b2->inum)
1971 return -1;
1972 else if (b1->inum > b2->inum)
1973 return 1;
1974
1975 if (b1->file_pos < b2->file_pos)
1976 return -1;
1977 else if (b1->file_pos > b2->file_pos)
1978 return 1;
1979
1980 /*
1981 * [------------------------------] ===> (a range of space)
1982 * |<--->| |<---->| =============> (fs/file tree A)
1983 * |<---------------------------->| ===> (fs/file tree B)
1984 *
1985 * A range of space can refer to two file extents in one tree while
1986 * refer to only one file extent in another tree.
1987 *
1988 * So we may process a disk offset more than one time(two extents in A)
1989 * and locate at the same extent(one extent in B), then insert two same
1990 * backrefs(both refer to the extent in B).
1991 */
1992 return 0;
1993}
1994
1995static void backref_insert(struct rb_root *root,
1996 struct sa_defrag_extent_backref *backref)
1997{
1998 struct rb_node **p = &root->rb_node;
1999 struct rb_node *parent = NULL;
2000 struct sa_defrag_extent_backref *entry;
2001 int ret;
2002
2003 while (*p) {
2004 parent = *p;
2005 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2006
2007 ret = backref_comp(backref, entry);
2008 if (ret < 0)
2009 p = &(*p)->rb_left;
2010 else
2011 p = &(*p)->rb_right;
2012 }
2013
2014 rb_link_node(&backref->node, parent, p);
2015 rb_insert_color(&backref->node, root);
2016}
2017
2018/*
2019 * Note the backref might has changed, and in this case we just return 0.
2020 */
2021static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2022 void *ctx)
2023{
2024 struct btrfs_file_extent_item *extent;
2025 struct btrfs_fs_info *fs_info;
2026 struct old_sa_defrag_extent *old = ctx;
2027 struct new_sa_defrag_extent *new = old->new;
2028 struct btrfs_path *path = new->path;
2029 struct btrfs_key key;
2030 struct btrfs_root *root;
2031 struct sa_defrag_extent_backref *backref;
2032 struct extent_buffer *leaf;
2033 struct inode *inode = new->inode;
2034 int slot;
2035 int ret;
2036 u64 extent_offset;
2037 u64 num_bytes;
2038
2039 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2040 inum == btrfs_ino(inode))
2041 return 0;
2042
2043 key.objectid = root_id;
2044 key.type = BTRFS_ROOT_ITEM_KEY;
2045 key.offset = (u64)-1;
2046
2047 fs_info = BTRFS_I(inode)->root->fs_info;
2048 root = btrfs_read_fs_root_no_name(fs_info, &key);
2049 if (IS_ERR(root)) {
2050 if (PTR_ERR(root) == -ENOENT)
2051 return 0;
2052 WARN_ON(1);
2053 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2054 inum, offset, root_id);
2055 return PTR_ERR(root);
2056 }
2057
2058 key.objectid = inum;
2059 key.type = BTRFS_EXTENT_DATA_KEY;
2060 if (offset > (u64)-1 << 32)
2061 key.offset = 0;
2062 else
2063 key.offset = offset;
2064
2065 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2066 if (WARN_ON(ret < 0))
38c227d8 2067 return ret;
50f1319c 2068 ret = 0;
38c227d8
LB
2069
2070 while (1) {
2071 cond_resched();
2072
2073 leaf = path->nodes[0];
2074 slot = path->slots[0];
2075
2076 if (slot >= btrfs_header_nritems(leaf)) {
2077 ret = btrfs_next_leaf(root, path);
2078 if (ret < 0) {
2079 goto out;
2080 } else if (ret > 0) {
2081 ret = 0;
2082 goto out;
2083 }
2084 continue;
2085 }
2086
2087 path->slots[0]++;
2088
2089 btrfs_item_key_to_cpu(leaf, &key, slot);
2090
2091 if (key.objectid > inum)
2092 goto out;
2093
2094 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2095 continue;
2096
2097 extent = btrfs_item_ptr(leaf, slot,
2098 struct btrfs_file_extent_item);
2099
2100 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2101 continue;
2102
e68afa49
LB
2103 /*
2104 * 'offset' refers to the exact key.offset,
2105 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2106 * (key.offset - extent_offset).
2107 */
2108 if (key.offset != offset)
38c227d8
LB
2109 continue;
2110
e68afa49 2111 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2112 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2113
38c227d8
LB
2114 if (extent_offset >= old->extent_offset + old->offset +
2115 old->len || extent_offset + num_bytes <=
2116 old->extent_offset + old->offset)
2117 continue;
38c227d8
LB
2118 break;
2119 }
2120
2121 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2122 if (!backref) {
2123 ret = -ENOENT;
2124 goto out;
2125 }
2126
2127 backref->root_id = root_id;
2128 backref->inum = inum;
e68afa49 2129 backref->file_pos = offset;
38c227d8
LB
2130 backref->num_bytes = num_bytes;
2131 backref->extent_offset = extent_offset;
2132 backref->generation = btrfs_file_extent_generation(leaf, extent);
2133 backref->old = old;
2134 backref_insert(&new->root, backref);
2135 old->count++;
2136out:
2137 btrfs_release_path(path);
2138 WARN_ON(ret);
2139 return ret;
2140}
2141
2142static noinline bool record_extent_backrefs(struct btrfs_path *path,
2143 struct new_sa_defrag_extent *new)
2144{
2145 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2146 struct old_sa_defrag_extent *old, *tmp;
2147 int ret;
2148
2149 new->path = path;
2150
2151 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2152 ret = iterate_inodes_from_logical(old->bytenr +
2153 old->extent_offset, fs_info,
38c227d8
LB
2154 path, record_one_backref,
2155 old);
4724b106
JB
2156 if (ret < 0 && ret != -ENOENT)
2157 return false;
38c227d8
LB
2158
2159 /* no backref to be processed for this extent */
2160 if (!old->count) {
2161 list_del(&old->list);
2162 kfree(old);
2163 }
2164 }
2165
2166 if (list_empty(&new->head))
2167 return false;
2168
2169 return true;
2170}
2171
2172static int relink_is_mergable(struct extent_buffer *leaf,
2173 struct btrfs_file_extent_item *fi,
116e0024 2174 struct new_sa_defrag_extent *new)
38c227d8 2175{
116e0024 2176 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2177 return 0;
2178
2179 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2180 return 0;
2181
116e0024
LB
2182 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2183 return 0;
2184
2185 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2186 btrfs_file_extent_other_encoding(leaf, fi))
2187 return 0;
2188
2189 return 1;
2190}
2191
2192/*
2193 * Note the backref might has changed, and in this case we just return 0.
2194 */
2195static noinline int relink_extent_backref(struct btrfs_path *path,
2196 struct sa_defrag_extent_backref *prev,
2197 struct sa_defrag_extent_backref *backref)
2198{
2199 struct btrfs_file_extent_item *extent;
2200 struct btrfs_file_extent_item *item;
2201 struct btrfs_ordered_extent *ordered;
2202 struct btrfs_trans_handle *trans;
2203 struct btrfs_fs_info *fs_info;
2204 struct btrfs_root *root;
2205 struct btrfs_key key;
2206 struct extent_buffer *leaf;
2207 struct old_sa_defrag_extent *old = backref->old;
2208 struct new_sa_defrag_extent *new = old->new;
2209 struct inode *src_inode = new->inode;
2210 struct inode *inode;
2211 struct extent_state *cached = NULL;
2212 int ret = 0;
2213 u64 start;
2214 u64 len;
2215 u64 lock_start;
2216 u64 lock_end;
2217 bool merge = false;
2218 int index;
2219
2220 if (prev && prev->root_id == backref->root_id &&
2221 prev->inum == backref->inum &&
2222 prev->file_pos + prev->num_bytes == backref->file_pos)
2223 merge = true;
2224
2225 /* step 1: get root */
2226 key.objectid = backref->root_id;
2227 key.type = BTRFS_ROOT_ITEM_KEY;
2228 key.offset = (u64)-1;
2229
2230 fs_info = BTRFS_I(src_inode)->root->fs_info;
2231 index = srcu_read_lock(&fs_info->subvol_srcu);
2232
2233 root = btrfs_read_fs_root_no_name(fs_info, &key);
2234 if (IS_ERR(root)) {
2235 srcu_read_unlock(&fs_info->subvol_srcu, index);
2236 if (PTR_ERR(root) == -ENOENT)
2237 return 0;
2238 return PTR_ERR(root);
2239 }
38c227d8 2240
bcbba5e6
WS
2241 if (btrfs_root_readonly(root)) {
2242 srcu_read_unlock(&fs_info->subvol_srcu, index);
2243 return 0;
2244 }
2245
38c227d8
LB
2246 /* step 2: get inode */
2247 key.objectid = backref->inum;
2248 key.type = BTRFS_INODE_ITEM_KEY;
2249 key.offset = 0;
2250
2251 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2252 if (IS_ERR(inode)) {
2253 srcu_read_unlock(&fs_info->subvol_srcu, index);
2254 return 0;
2255 }
2256
2257 srcu_read_unlock(&fs_info->subvol_srcu, index);
2258
2259 /* step 3: relink backref */
2260 lock_start = backref->file_pos;
2261 lock_end = backref->file_pos + backref->num_bytes - 1;
2262 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2263 0, &cached);
2264
2265 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2266 if (ordered) {
2267 btrfs_put_ordered_extent(ordered);
2268 goto out_unlock;
2269 }
2270
2271 trans = btrfs_join_transaction(root);
2272 if (IS_ERR(trans)) {
2273 ret = PTR_ERR(trans);
2274 goto out_unlock;
2275 }
2276
2277 key.objectid = backref->inum;
2278 key.type = BTRFS_EXTENT_DATA_KEY;
2279 key.offset = backref->file_pos;
2280
2281 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2282 if (ret < 0) {
2283 goto out_free_path;
2284 } else if (ret > 0) {
2285 ret = 0;
2286 goto out_free_path;
2287 }
2288
2289 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2290 struct btrfs_file_extent_item);
2291
2292 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2293 backref->generation)
2294 goto out_free_path;
2295
2296 btrfs_release_path(path);
2297
2298 start = backref->file_pos;
2299 if (backref->extent_offset < old->extent_offset + old->offset)
2300 start += old->extent_offset + old->offset -
2301 backref->extent_offset;
2302
2303 len = min(backref->extent_offset + backref->num_bytes,
2304 old->extent_offset + old->offset + old->len);
2305 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2306
2307 ret = btrfs_drop_extents(trans, root, inode, start,
2308 start + len, 1);
2309 if (ret)
2310 goto out_free_path;
2311again:
2312 key.objectid = btrfs_ino(inode);
2313 key.type = BTRFS_EXTENT_DATA_KEY;
2314 key.offset = start;
2315
a09a0a70 2316 path->leave_spinning = 1;
38c227d8
LB
2317 if (merge) {
2318 struct btrfs_file_extent_item *fi;
2319 u64 extent_len;
2320 struct btrfs_key found_key;
2321
3c9665df 2322 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2323 if (ret < 0)
2324 goto out_free_path;
2325
2326 path->slots[0]--;
2327 leaf = path->nodes[0];
2328 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2329
2330 fi = btrfs_item_ptr(leaf, path->slots[0],
2331 struct btrfs_file_extent_item);
2332 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2333
116e0024
LB
2334 if (extent_len + found_key.offset == start &&
2335 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2336 btrfs_set_file_extent_num_bytes(leaf, fi,
2337 extent_len + len);
2338 btrfs_mark_buffer_dirty(leaf);
2339 inode_add_bytes(inode, len);
2340
2341 ret = 1;
2342 goto out_free_path;
2343 } else {
2344 merge = false;
2345 btrfs_release_path(path);
2346 goto again;
2347 }
2348 }
2349
2350 ret = btrfs_insert_empty_item(trans, root, path, &key,
2351 sizeof(*extent));
2352 if (ret) {
2353 btrfs_abort_transaction(trans, root, ret);
2354 goto out_free_path;
2355 }
2356
2357 leaf = path->nodes[0];
2358 item = btrfs_item_ptr(leaf, path->slots[0],
2359 struct btrfs_file_extent_item);
2360 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2361 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2362 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2363 btrfs_set_file_extent_num_bytes(leaf, item, len);
2364 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2365 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2366 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2367 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2368 btrfs_set_file_extent_encryption(leaf, item, 0);
2369 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2370
2371 btrfs_mark_buffer_dirty(leaf);
2372 inode_add_bytes(inode, len);
a09a0a70 2373 btrfs_release_path(path);
38c227d8
LB
2374
2375 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2376 new->disk_len, 0,
2377 backref->root_id, backref->inum,
2378 new->file_pos, 0); /* start - extent_offset */
2379 if (ret) {
2380 btrfs_abort_transaction(trans, root, ret);
2381 goto out_free_path;
2382 }
2383
2384 ret = 1;
2385out_free_path:
2386 btrfs_release_path(path);
a09a0a70 2387 path->leave_spinning = 0;
38c227d8
LB
2388 btrfs_end_transaction(trans, root);
2389out_unlock:
2390 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2391 &cached, GFP_NOFS);
2392 iput(inode);
2393 return ret;
2394}
2395
6f519564
LB
2396static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2397{
2398 struct old_sa_defrag_extent *old, *tmp;
2399
2400 if (!new)
2401 return;
2402
2403 list_for_each_entry_safe(old, tmp, &new->head, list) {
2404 list_del(&old->list);
2405 kfree(old);
2406 }
2407 kfree(new);
2408}
2409
38c227d8
LB
2410static void relink_file_extents(struct new_sa_defrag_extent *new)
2411{
2412 struct btrfs_path *path;
38c227d8
LB
2413 struct sa_defrag_extent_backref *backref;
2414 struct sa_defrag_extent_backref *prev = NULL;
2415 struct inode *inode;
2416 struct btrfs_root *root;
2417 struct rb_node *node;
2418 int ret;
2419
2420 inode = new->inode;
2421 root = BTRFS_I(inode)->root;
2422
2423 path = btrfs_alloc_path();
2424 if (!path)
2425 return;
2426
2427 if (!record_extent_backrefs(path, new)) {
2428 btrfs_free_path(path);
2429 goto out;
2430 }
2431 btrfs_release_path(path);
2432
2433 while (1) {
2434 node = rb_first(&new->root);
2435 if (!node)
2436 break;
2437 rb_erase(node, &new->root);
2438
2439 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2440
2441 ret = relink_extent_backref(path, prev, backref);
2442 WARN_ON(ret < 0);
2443
2444 kfree(prev);
2445
2446 if (ret == 1)
2447 prev = backref;
2448 else
2449 prev = NULL;
2450 cond_resched();
2451 }
2452 kfree(prev);
2453
2454 btrfs_free_path(path);
38c227d8 2455out:
6f519564
LB
2456 free_sa_defrag_extent(new);
2457
38c227d8
LB
2458 atomic_dec(&root->fs_info->defrag_running);
2459 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2460}
2461
2462static struct new_sa_defrag_extent *
2463record_old_file_extents(struct inode *inode,
2464 struct btrfs_ordered_extent *ordered)
2465{
2466 struct btrfs_root *root = BTRFS_I(inode)->root;
2467 struct btrfs_path *path;
2468 struct btrfs_key key;
6f519564 2469 struct old_sa_defrag_extent *old;
38c227d8
LB
2470 struct new_sa_defrag_extent *new;
2471 int ret;
2472
2473 new = kmalloc(sizeof(*new), GFP_NOFS);
2474 if (!new)
2475 return NULL;
2476
2477 new->inode = inode;
2478 new->file_pos = ordered->file_offset;
2479 new->len = ordered->len;
2480 new->bytenr = ordered->start;
2481 new->disk_len = ordered->disk_len;
2482 new->compress_type = ordered->compress_type;
2483 new->root = RB_ROOT;
2484 INIT_LIST_HEAD(&new->head);
2485
2486 path = btrfs_alloc_path();
2487 if (!path)
2488 goto out_kfree;
2489
2490 key.objectid = btrfs_ino(inode);
2491 key.type = BTRFS_EXTENT_DATA_KEY;
2492 key.offset = new->file_pos;
2493
2494 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2495 if (ret < 0)
2496 goto out_free_path;
2497 if (ret > 0 && path->slots[0] > 0)
2498 path->slots[0]--;
2499
2500 /* find out all the old extents for the file range */
2501 while (1) {
2502 struct btrfs_file_extent_item *extent;
2503 struct extent_buffer *l;
2504 int slot;
2505 u64 num_bytes;
2506 u64 offset;
2507 u64 end;
2508 u64 disk_bytenr;
2509 u64 extent_offset;
2510
2511 l = path->nodes[0];
2512 slot = path->slots[0];
2513
2514 if (slot >= btrfs_header_nritems(l)) {
2515 ret = btrfs_next_leaf(root, path);
2516 if (ret < 0)
6f519564 2517 goto out_free_path;
38c227d8
LB
2518 else if (ret > 0)
2519 break;
2520 continue;
2521 }
2522
2523 btrfs_item_key_to_cpu(l, &key, slot);
2524
2525 if (key.objectid != btrfs_ino(inode))
2526 break;
2527 if (key.type != BTRFS_EXTENT_DATA_KEY)
2528 break;
2529 if (key.offset >= new->file_pos + new->len)
2530 break;
2531
2532 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2533
2534 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2535 if (key.offset + num_bytes < new->file_pos)
2536 goto next;
2537
2538 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2539 if (!disk_bytenr)
2540 goto next;
2541
2542 extent_offset = btrfs_file_extent_offset(l, extent);
2543
2544 old = kmalloc(sizeof(*old), GFP_NOFS);
2545 if (!old)
6f519564 2546 goto out_free_path;
38c227d8
LB
2547
2548 offset = max(new->file_pos, key.offset);
2549 end = min(new->file_pos + new->len, key.offset + num_bytes);
2550
2551 old->bytenr = disk_bytenr;
2552 old->extent_offset = extent_offset;
2553 old->offset = offset - key.offset;
2554 old->len = end - offset;
2555 old->new = new;
2556 old->count = 0;
2557 list_add_tail(&old->list, &new->head);
2558next:
2559 path->slots[0]++;
2560 cond_resched();
2561 }
2562
2563 btrfs_free_path(path);
2564 atomic_inc(&root->fs_info->defrag_running);
2565
2566 return new;
2567
38c227d8
LB
2568out_free_path:
2569 btrfs_free_path(path);
2570out_kfree:
6f519564 2571 free_sa_defrag_extent(new);
38c227d8
LB
2572 return NULL;
2573}
2574
d352ac68
CM
2575/* as ordered data IO finishes, this gets called so we can finish
2576 * an ordered extent if the range of bytes in the file it covers are
2577 * fully written.
2578 */
5fd02043 2579static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2580{
5fd02043 2581 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2582 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2583 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2584 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2585 struct extent_state *cached_state = NULL;
38c227d8 2586 struct new_sa_defrag_extent *new = NULL;
261507a0 2587 int compress_type = 0;
77cef2ec
JB
2588 int ret = 0;
2589 u64 logical_len = ordered_extent->len;
82d5902d 2590 bool nolock;
77cef2ec 2591 bool truncated = false;
e6dcd2dc 2592
83eea1f1 2593 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2594
5fd02043
JB
2595 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2596 ret = -EIO;
2597 goto out;
2598 }
2599
77cef2ec
JB
2600 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2601 truncated = true;
2602 logical_len = ordered_extent->truncated_len;
2603 /* Truncated the entire extent, don't bother adding */
2604 if (!logical_len)
2605 goto out;
2606 }
2607
c2167754 2608 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2609 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2610 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2611 if (nolock)
2612 trans = btrfs_join_transaction_nolock(root);
2613 else
2614 trans = btrfs_join_transaction(root);
2615 if (IS_ERR(trans)) {
2616 ret = PTR_ERR(trans);
2617 trans = NULL;
2618 goto out;
c2167754 2619 }
6c760c07
JB
2620 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2621 ret = btrfs_update_inode_fallback(trans, root, inode);
2622 if (ret) /* -ENOMEM or corruption */
2623 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2624 goto out;
2625 }
e6dcd2dc 2626
2ac55d41
JB
2627 lock_extent_bits(io_tree, ordered_extent->file_offset,
2628 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2629 0, &cached_state);
e6dcd2dc 2630
38c227d8
LB
2631 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2632 ordered_extent->file_offset + ordered_extent->len - 1,
2633 EXTENT_DEFRAG, 1, cached_state);
2634 if (ret) {
2635 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2636 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2637 /* the inode is shared */
2638 new = record_old_file_extents(inode, ordered_extent);
2639
2640 clear_extent_bit(io_tree, ordered_extent->file_offset,
2641 ordered_extent->file_offset + ordered_extent->len - 1,
2642 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2643 }
2644
0cb59c99 2645 if (nolock)
7a7eaa40 2646 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2647 else
7a7eaa40 2648 trans = btrfs_join_transaction(root);
79787eaa
JM
2649 if (IS_ERR(trans)) {
2650 ret = PTR_ERR(trans);
2651 trans = NULL;
2652 goto out_unlock;
2653 }
0ca1f7ce 2654 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2655
c8b97818 2656 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2657 compress_type = ordered_extent->compress_type;
d899e052 2658 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2659 BUG_ON(compress_type);
920bbbfb 2660 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2661 ordered_extent->file_offset,
2662 ordered_extent->file_offset +
77cef2ec 2663 logical_len);
d899e052 2664 } else {
0af3d00b 2665 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2666 ret = insert_reserved_file_extent(trans, inode,
2667 ordered_extent->file_offset,
2668 ordered_extent->start,
2669 ordered_extent->disk_len,
77cef2ec 2670 logical_len, logical_len,
261507a0 2671 compress_type, 0, 0,
d899e052 2672 BTRFS_FILE_EXTENT_REG);
d899e052 2673 }
5dc562c5
JB
2674 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2675 ordered_extent->file_offset, ordered_extent->len,
2676 trans->transid);
79787eaa
JM
2677 if (ret < 0) {
2678 btrfs_abort_transaction(trans, root, ret);
5fd02043 2679 goto out_unlock;
79787eaa 2680 }
2ac55d41 2681
e6dcd2dc
CM
2682 add_pending_csums(trans, inode, ordered_extent->file_offset,
2683 &ordered_extent->list);
2684
6c760c07
JB
2685 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2686 ret = btrfs_update_inode_fallback(trans, root, inode);
2687 if (ret) { /* -ENOMEM or corruption */
2688 btrfs_abort_transaction(trans, root, ret);
2689 goto out_unlock;
1ef30be1
JB
2690 }
2691 ret = 0;
5fd02043
JB
2692out_unlock:
2693 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2694 ordered_extent->file_offset +
2695 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2696out:
5b0e95bf 2697 if (root != root->fs_info->tree_root)
0cb59c99 2698 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2699 if (trans)
2700 btrfs_end_transaction(trans, root);
0cb59c99 2701
77cef2ec
JB
2702 if (ret || truncated) {
2703 u64 start, end;
2704
2705 if (truncated)
2706 start = ordered_extent->file_offset + logical_len;
2707 else
2708 start = ordered_extent->file_offset;
2709 end = ordered_extent->file_offset + ordered_extent->len - 1;
2710 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2711
2712 /* Drop the cache for the part of the extent we didn't write. */
2713 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2714
0bec9ef5
JB
2715 /*
2716 * If the ordered extent had an IOERR or something else went
2717 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2718 * back to the allocator. We only free the extent in the
2719 * truncated case if we didn't write out the extent at all.
0bec9ef5 2720 */
77cef2ec
JB
2721 if ((ret || !logical_len) &&
2722 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2723 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2724 btrfs_free_reserved_extent(root, ordered_extent->start,
2725 ordered_extent->disk_len);
2726 }
2727
2728
5fd02043 2729 /*
8bad3c02
LB
2730 * This needs to be done to make sure anybody waiting knows we are done
2731 * updating everything for this ordered extent.
5fd02043
JB
2732 */
2733 btrfs_remove_ordered_extent(inode, ordered_extent);
2734
38c227d8 2735 /* for snapshot-aware defrag */
6f519564
LB
2736 if (new) {
2737 if (ret) {
2738 free_sa_defrag_extent(new);
2739 atomic_dec(&root->fs_info->defrag_running);
2740 } else {
2741 relink_file_extents(new);
2742 }
2743 }
38c227d8 2744
e6dcd2dc
CM
2745 /* once for us */
2746 btrfs_put_ordered_extent(ordered_extent);
2747 /* once for the tree */
2748 btrfs_put_ordered_extent(ordered_extent);
2749
5fd02043
JB
2750 return ret;
2751}
2752
2753static void finish_ordered_fn(struct btrfs_work *work)
2754{
2755 struct btrfs_ordered_extent *ordered_extent;
2756 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2757 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2758}
2759
b2950863 2760static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2761 struct extent_state *state, int uptodate)
2762{
5fd02043
JB
2763 struct inode *inode = page->mapping->host;
2764 struct btrfs_root *root = BTRFS_I(inode)->root;
2765 struct btrfs_ordered_extent *ordered_extent = NULL;
2766 struct btrfs_workers *workers;
2767
1abe9b8a 2768 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2769
8b62b72b 2770 ClearPagePrivate2(page);
5fd02043
JB
2771 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2772 end - start + 1, uptodate))
2773 return 0;
2774
2775 ordered_extent->work.func = finish_ordered_fn;
2776 ordered_extent->work.flags = 0;
2777
83eea1f1 2778 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2779 workers = &root->fs_info->endio_freespace_worker;
2780 else
2781 workers = &root->fs_info->endio_write_workers;
2782 btrfs_queue_worker(workers, &ordered_extent->work);
2783
2784 return 0;
211f90e6
CM
2785}
2786
d352ac68
CM
2787/*
2788 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2789 * if there's a match, we allow the bio to finish. If not, the code in
2790 * extent_io.c will try to find good copies for us.
d352ac68 2791 */
facc8a22
MX
2792static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2793 u64 phy_offset, struct page *page,
2794 u64 start, u64 end, int mirror)
07157aac 2795{
4eee4fa4 2796 size_t offset = start - page_offset(page);
07157aac 2797 struct inode *inode = page->mapping->host;
d1310b2e 2798 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2799 char *kaddr;
ff79f819 2800 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2801 u32 csum_expected;
ff79f819 2802 u32 csum = ~(u32)0;
c2cf52eb
SK
2803 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2804 DEFAULT_RATELIMIT_BURST);
d1310b2e 2805
d20f7043
CM
2806 if (PageChecked(page)) {
2807 ClearPageChecked(page);
2808 goto good;
2809 }
6cbff00f
CH
2810
2811 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2812 goto good;
17d217fe
YZ
2813
2814 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2815 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2816 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2817 GFP_NOFS);
b6cda9bc 2818 return 0;
17d217fe 2819 }
d20f7043 2820
facc8a22
MX
2821 phy_offset >>= inode->i_sb->s_blocksize_bits;
2822 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2823
facc8a22 2824 kaddr = kmap_atomic(page);
b0496686 2825 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2826 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2827 if (csum != csum_expected)
07157aac 2828 goto zeroit;
d397712b 2829
7ac687d9 2830 kunmap_atomic(kaddr);
d20f7043 2831good:
07157aac
CM
2832 return 0;
2833
2834zeroit:
c2cf52eb 2835 if (__ratelimit(&_rs))
facc8a22 2836 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2837 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2838 memset(kaddr + offset, 1, end - start + 1);
2839 flush_dcache_page(page);
7ac687d9 2840 kunmap_atomic(kaddr);
facc8a22 2841 if (csum_expected == 0)
3b951516 2842 return 0;
7e38326f 2843 return -EIO;
07157aac 2844}
b888db2b 2845
24bbcf04
YZ
2846struct delayed_iput {
2847 struct list_head list;
2848 struct inode *inode;
2849};
2850
79787eaa
JM
2851/* JDM: If this is fs-wide, why can't we add a pointer to
2852 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2853void btrfs_add_delayed_iput(struct inode *inode)
2854{
2855 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2856 struct delayed_iput *delayed;
2857
2858 if (atomic_add_unless(&inode->i_count, -1, 1))
2859 return;
2860
2861 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2862 delayed->inode = inode;
2863
2864 spin_lock(&fs_info->delayed_iput_lock);
2865 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2866 spin_unlock(&fs_info->delayed_iput_lock);
2867}
2868
2869void btrfs_run_delayed_iputs(struct btrfs_root *root)
2870{
2871 LIST_HEAD(list);
2872 struct btrfs_fs_info *fs_info = root->fs_info;
2873 struct delayed_iput *delayed;
2874 int empty;
2875
2876 spin_lock(&fs_info->delayed_iput_lock);
2877 empty = list_empty(&fs_info->delayed_iputs);
2878 spin_unlock(&fs_info->delayed_iput_lock);
2879 if (empty)
2880 return;
2881
24bbcf04
YZ
2882 spin_lock(&fs_info->delayed_iput_lock);
2883 list_splice_init(&fs_info->delayed_iputs, &list);
2884 spin_unlock(&fs_info->delayed_iput_lock);
2885
2886 while (!list_empty(&list)) {
2887 delayed = list_entry(list.next, struct delayed_iput, list);
2888 list_del(&delayed->list);
2889 iput(delayed->inode);
2890 kfree(delayed);
2891 }
24bbcf04
YZ
2892}
2893
d68fc57b 2894/*
42b2aa86 2895 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2896 * files in the subvolume, it removes orphan item and frees block_rsv
2897 * structure.
2898 */
2899void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root)
2901{
90290e19 2902 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2903 int ret;
2904
8a35d95f 2905 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2906 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2907 return;
2908
90290e19 2909 spin_lock(&root->orphan_lock);
8a35d95f 2910 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2911 spin_unlock(&root->orphan_lock);
2912 return;
2913 }
2914
2915 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2916 spin_unlock(&root->orphan_lock);
2917 return;
2918 }
2919
2920 block_rsv = root->orphan_block_rsv;
2921 root->orphan_block_rsv = NULL;
2922 spin_unlock(&root->orphan_lock);
2923
d68fc57b
YZ
2924 if (root->orphan_item_inserted &&
2925 btrfs_root_refs(&root->root_item) > 0) {
2926 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2927 root->root_key.objectid);
4ef31a45
JB
2928 if (ret)
2929 btrfs_abort_transaction(trans, root, ret);
2930 else
2931 root->orphan_item_inserted = 0;
d68fc57b
YZ
2932 }
2933
90290e19
JB
2934 if (block_rsv) {
2935 WARN_ON(block_rsv->size > 0);
2936 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2937 }
2938}
2939
7b128766
JB
2940/*
2941 * This creates an orphan entry for the given inode in case something goes
2942 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2943 *
2944 * NOTE: caller of this function should reserve 5 units of metadata for
2945 * this function.
7b128766
JB
2946 */
2947int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2948{
2949 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2950 struct btrfs_block_rsv *block_rsv = NULL;
2951 int reserve = 0;
2952 int insert = 0;
2953 int ret;
7b128766 2954
d68fc57b 2955 if (!root->orphan_block_rsv) {
66d8f3dd 2956 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2957 if (!block_rsv)
2958 return -ENOMEM;
d68fc57b 2959 }
7b128766 2960
d68fc57b
YZ
2961 spin_lock(&root->orphan_lock);
2962 if (!root->orphan_block_rsv) {
2963 root->orphan_block_rsv = block_rsv;
2964 } else if (block_rsv) {
2965 btrfs_free_block_rsv(root, block_rsv);
2966 block_rsv = NULL;
7b128766 2967 }
7b128766 2968
8a35d95f
JB
2969 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2970 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2971#if 0
2972 /*
2973 * For proper ENOSPC handling, we should do orphan
2974 * cleanup when mounting. But this introduces backward
2975 * compatibility issue.
2976 */
2977 if (!xchg(&root->orphan_item_inserted, 1))
2978 insert = 2;
2979 else
2980 insert = 1;
2981#endif
2982 insert = 1;
321f0e70 2983 atomic_inc(&root->orphan_inodes);
7b128766
JB
2984 }
2985
72ac3c0d
JB
2986 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2987 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2988 reserve = 1;
d68fc57b 2989 spin_unlock(&root->orphan_lock);
7b128766 2990
d68fc57b
YZ
2991 /* grab metadata reservation from transaction handle */
2992 if (reserve) {
2993 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2994 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2995 }
7b128766 2996
d68fc57b
YZ
2997 /* insert an orphan item to track this unlinked/truncated file */
2998 if (insert >= 1) {
33345d01 2999 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3000 if (ret) {
703c88e0 3001 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3002 if (reserve) {
3003 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3004 &BTRFS_I(inode)->runtime_flags);
3005 btrfs_orphan_release_metadata(inode);
3006 }
3007 if (ret != -EEXIST) {
e8e7cff6
JB
3008 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3009 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3010 btrfs_abort_transaction(trans, root, ret);
3011 return ret;
3012 }
79787eaa
JM
3013 }
3014 ret = 0;
d68fc57b
YZ
3015 }
3016
3017 /* insert an orphan item to track subvolume contains orphan files */
3018 if (insert >= 2) {
3019 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3020 root->root_key.objectid);
79787eaa
JM
3021 if (ret && ret != -EEXIST) {
3022 btrfs_abort_transaction(trans, root, ret);
3023 return ret;
3024 }
d68fc57b
YZ
3025 }
3026 return 0;
7b128766
JB
3027}
3028
3029/*
3030 * We have done the truncate/delete so we can go ahead and remove the orphan
3031 * item for this particular inode.
3032 */
48a3b636
ES
3033static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3034 struct inode *inode)
7b128766
JB
3035{
3036 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3037 int delete_item = 0;
3038 int release_rsv = 0;
7b128766
JB
3039 int ret = 0;
3040
d68fc57b 3041 spin_lock(&root->orphan_lock);
8a35d95f
JB
3042 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3043 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3044 delete_item = 1;
7b128766 3045
72ac3c0d
JB
3046 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3047 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3048 release_rsv = 1;
d68fc57b 3049 spin_unlock(&root->orphan_lock);
7b128766 3050
703c88e0 3051 if (delete_item) {
8a35d95f 3052 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3053 if (trans)
3054 ret = btrfs_del_orphan_item(trans, root,
3055 btrfs_ino(inode));
8a35d95f 3056 }
7b128766 3057
703c88e0
FDBM
3058 if (release_rsv)
3059 btrfs_orphan_release_metadata(inode);
3060
4ef31a45 3061 return ret;
7b128766
JB
3062}
3063
3064/*
3065 * this cleans up any orphans that may be left on the list from the last use
3066 * of this root.
3067 */
66b4ffd1 3068int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3069{
3070 struct btrfs_path *path;
3071 struct extent_buffer *leaf;
7b128766
JB
3072 struct btrfs_key key, found_key;
3073 struct btrfs_trans_handle *trans;
3074 struct inode *inode;
8f6d7f4f 3075 u64 last_objectid = 0;
7b128766
JB
3076 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3077
d68fc57b 3078 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3079 return 0;
c71bf099
YZ
3080
3081 path = btrfs_alloc_path();
66b4ffd1
JB
3082 if (!path) {
3083 ret = -ENOMEM;
3084 goto out;
3085 }
7b128766
JB
3086 path->reada = -1;
3087
3088 key.objectid = BTRFS_ORPHAN_OBJECTID;
3089 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3090 key.offset = (u64)-1;
3091
7b128766
JB
3092 while (1) {
3093 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3094 if (ret < 0)
3095 goto out;
7b128766
JB
3096
3097 /*
3098 * if ret == 0 means we found what we were searching for, which
25985edc 3099 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3100 * find the key and see if we have stuff that matches
3101 */
3102 if (ret > 0) {
66b4ffd1 3103 ret = 0;
7b128766
JB
3104 if (path->slots[0] == 0)
3105 break;
3106 path->slots[0]--;
3107 }
3108
3109 /* pull out the item */
3110 leaf = path->nodes[0];
7b128766
JB
3111 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3112
3113 /* make sure the item matches what we want */
3114 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3115 break;
3116 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3117 break;
3118
3119 /* release the path since we're done with it */
b3b4aa74 3120 btrfs_release_path(path);
7b128766
JB
3121
3122 /*
3123 * this is where we are basically btrfs_lookup, without the
3124 * crossing root thing. we store the inode number in the
3125 * offset of the orphan item.
3126 */
8f6d7f4f
JB
3127
3128 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3129 btrfs_err(root->fs_info,
3130 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3131 ret = -EINVAL;
3132 goto out;
3133 }
3134
3135 last_objectid = found_key.offset;
3136
5d4f98a2
YZ
3137 found_key.objectid = found_key.offset;
3138 found_key.type = BTRFS_INODE_ITEM_KEY;
3139 found_key.offset = 0;
73f73415 3140 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3141 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3142 if (ret && ret != -ESTALE)
66b4ffd1 3143 goto out;
7b128766 3144
f8e9e0b0
AJ
3145 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3146 struct btrfs_root *dead_root;
3147 struct btrfs_fs_info *fs_info = root->fs_info;
3148 int is_dead_root = 0;
3149
3150 /*
3151 * this is an orphan in the tree root. Currently these
3152 * could come from 2 sources:
3153 * a) a snapshot deletion in progress
3154 * b) a free space cache inode
3155 * We need to distinguish those two, as the snapshot
3156 * orphan must not get deleted.
3157 * find_dead_roots already ran before us, so if this
3158 * is a snapshot deletion, we should find the root
3159 * in the dead_roots list
3160 */
3161 spin_lock(&fs_info->trans_lock);
3162 list_for_each_entry(dead_root, &fs_info->dead_roots,
3163 root_list) {
3164 if (dead_root->root_key.objectid ==
3165 found_key.objectid) {
3166 is_dead_root = 1;
3167 break;
3168 }
3169 }
3170 spin_unlock(&fs_info->trans_lock);
3171 if (is_dead_root) {
3172 /* prevent this orphan from being found again */
3173 key.offset = found_key.objectid - 1;
3174 continue;
3175 }
3176 }
7b128766 3177 /*
a8c9e576
JB
3178 * Inode is already gone but the orphan item is still there,
3179 * kill the orphan item.
7b128766 3180 */
a8c9e576
JB
3181 if (ret == -ESTALE) {
3182 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3183 if (IS_ERR(trans)) {
3184 ret = PTR_ERR(trans);
3185 goto out;
3186 }
c2cf52eb
SK
3187 btrfs_debug(root->fs_info, "auto deleting %Lu",
3188 found_key.objectid);
a8c9e576
JB
3189 ret = btrfs_del_orphan_item(trans, root,
3190 found_key.objectid);
5b21f2ed 3191 btrfs_end_transaction(trans, root);
4ef31a45
JB
3192 if (ret)
3193 goto out;
7b128766
JB
3194 continue;
3195 }
3196
a8c9e576
JB
3197 /*
3198 * add this inode to the orphan list so btrfs_orphan_del does
3199 * the proper thing when we hit it
3200 */
8a35d95f
JB
3201 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3202 &BTRFS_I(inode)->runtime_flags);
925396ec 3203 atomic_inc(&root->orphan_inodes);
a8c9e576 3204
7b128766
JB
3205 /* if we have links, this was a truncate, lets do that */
3206 if (inode->i_nlink) {
fae7f21c 3207 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3208 iput(inode);
3209 continue;
3210 }
7b128766 3211 nr_truncate++;
f3fe820c
JB
3212
3213 /* 1 for the orphan item deletion. */
3214 trans = btrfs_start_transaction(root, 1);
3215 if (IS_ERR(trans)) {
c69b26b0 3216 iput(inode);
f3fe820c
JB
3217 ret = PTR_ERR(trans);
3218 goto out;
3219 }
3220 ret = btrfs_orphan_add(trans, inode);
3221 btrfs_end_transaction(trans, root);
c69b26b0
JB
3222 if (ret) {
3223 iput(inode);
f3fe820c 3224 goto out;
c69b26b0 3225 }
f3fe820c 3226
66b4ffd1 3227 ret = btrfs_truncate(inode);
4a7d0f68
JB
3228 if (ret)
3229 btrfs_orphan_del(NULL, inode);
7b128766
JB
3230 } else {
3231 nr_unlink++;
3232 }
3233
3234 /* this will do delete_inode and everything for us */
3235 iput(inode);
66b4ffd1
JB
3236 if (ret)
3237 goto out;
7b128766 3238 }
3254c876
MX
3239 /* release the path since we're done with it */
3240 btrfs_release_path(path);
3241
d68fc57b
YZ
3242 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3243
3244 if (root->orphan_block_rsv)
3245 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3246 (u64)-1);
3247
3248 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3249 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3250 if (!IS_ERR(trans))
3251 btrfs_end_transaction(trans, root);
d68fc57b 3252 }
7b128766
JB
3253
3254 if (nr_unlink)
4884b476 3255 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3256 if (nr_truncate)
4884b476 3257 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3258
3259out:
3260 if (ret)
c2cf52eb
SK
3261 btrfs_crit(root->fs_info,
3262 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3263 btrfs_free_path(path);
3264 return ret;
7b128766
JB
3265}
3266
46a53cca
CM
3267/*
3268 * very simple check to peek ahead in the leaf looking for xattrs. If we
3269 * don't find any xattrs, we know there can't be any acls.
3270 *
3271 * slot is the slot the inode is in, objectid is the objectid of the inode
3272 */
3273static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3274 int slot, u64 objectid,
3275 int *first_xattr_slot)
46a53cca
CM
3276{
3277 u32 nritems = btrfs_header_nritems(leaf);
3278 struct btrfs_key found_key;
f23b5a59
JB
3279 static u64 xattr_access = 0;
3280 static u64 xattr_default = 0;
46a53cca
CM
3281 int scanned = 0;
3282
f23b5a59
JB
3283 if (!xattr_access) {
3284 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3285 strlen(POSIX_ACL_XATTR_ACCESS));
3286 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3287 strlen(POSIX_ACL_XATTR_DEFAULT));
3288 }
3289
46a53cca 3290 slot++;
63541927 3291 *first_xattr_slot = -1;
46a53cca
CM
3292 while (slot < nritems) {
3293 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3294
3295 /* we found a different objectid, there must not be acls */
3296 if (found_key.objectid != objectid)
3297 return 0;
3298
3299 /* we found an xattr, assume we've got an acl */
f23b5a59 3300 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3301 if (*first_xattr_slot == -1)
3302 *first_xattr_slot = slot;
f23b5a59
JB
3303 if (found_key.offset == xattr_access ||
3304 found_key.offset == xattr_default)
3305 return 1;
3306 }
46a53cca
CM
3307
3308 /*
3309 * we found a key greater than an xattr key, there can't
3310 * be any acls later on
3311 */
3312 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3313 return 0;
3314
3315 slot++;
3316 scanned++;
3317
3318 /*
3319 * it goes inode, inode backrefs, xattrs, extents,
3320 * so if there are a ton of hard links to an inode there can
3321 * be a lot of backrefs. Don't waste time searching too hard,
3322 * this is just an optimization
3323 */
3324 if (scanned >= 8)
3325 break;
3326 }
3327 /* we hit the end of the leaf before we found an xattr or
3328 * something larger than an xattr. We have to assume the inode
3329 * has acls
3330 */
63541927
FDBM
3331 if (*first_xattr_slot == -1)
3332 *first_xattr_slot = slot;
46a53cca
CM
3333 return 1;
3334}
3335
d352ac68
CM
3336/*
3337 * read an inode from the btree into the in-memory inode
3338 */
5d4f98a2 3339static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3340{
3341 struct btrfs_path *path;
5f39d397 3342 struct extent_buffer *leaf;
39279cc3 3343 struct btrfs_inode_item *inode_item;
0b86a832 3344 struct btrfs_timespec *tspec;
39279cc3
CM
3345 struct btrfs_root *root = BTRFS_I(inode)->root;
3346 struct btrfs_key location;
67de1176 3347 unsigned long ptr;
46a53cca 3348 int maybe_acls;
618e21d5 3349 u32 rdev;
39279cc3 3350 int ret;
2f7e33d4 3351 bool filled = false;
63541927 3352 int first_xattr_slot;
2f7e33d4
MX
3353
3354 ret = btrfs_fill_inode(inode, &rdev);
3355 if (!ret)
3356 filled = true;
39279cc3
CM
3357
3358 path = btrfs_alloc_path();
1748f843
MF
3359 if (!path)
3360 goto make_bad;
3361
39279cc3 3362 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3363
39279cc3 3364 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3365 if (ret)
39279cc3 3366 goto make_bad;
39279cc3 3367
5f39d397 3368 leaf = path->nodes[0];
2f7e33d4
MX
3369
3370 if (filled)
67de1176 3371 goto cache_index;
2f7e33d4 3372
5f39d397
CM
3373 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3374 struct btrfs_inode_item);
5f39d397 3375 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3376 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3377 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3378 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3379 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3380
3381 tspec = btrfs_inode_atime(inode_item);
3382 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3383 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3384
3385 tspec = btrfs_inode_mtime(inode_item);
3386 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3387 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3388
3389 tspec = btrfs_inode_ctime(inode_item);
3390 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3391 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3392
a76a3cd4 3393 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3394 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3395 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3396
3397 /*
3398 * If we were modified in the current generation and evicted from memory
3399 * and then re-read we need to do a full sync since we don't have any
3400 * idea about which extents were modified before we were evicted from
3401 * cache.
3402 */
3403 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3404 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3405 &BTRFS_I(inode)->runtime_flags);
3406
0c4d2d95 3407 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3408 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3409 inode->i_rdev = 0;
5f39d397
CM
3410 rdev = btrfs_inode_rdev(leaf, inode_item);
3411
aec7477b 3412 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3413 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3414
3415cache_index:
3416 path->slots[0]++;
3417 if (inode->i_nlink != 1 ||
3418 path->slots[0] >= btrfs_header_nritems(leaf))
3419 goto cache_acl;
3420
3421 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3422 if (location.objectid != btrfs_ino(inode))
3423 goto cache_acl;
3424
3425 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3426 if (location.type == BTRFS_INODE_REF_KEY) {
3427 struct btrfs_inode_ref *ref;
3428
3429 ref = (struct btrfs_inode_ref *)ptr;
3430 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3431 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3432 struct btrfs_inode_extref *extref;
3433
3434 extref = (struct btrfs_inode_extref *)ptr;
3435 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3436 extref);
3437 }
2f7e33d4 3438cache_acl:
46a53cca
CM
3439 /*
3440 * try to precache a NULL acl entry for files that don't have
3441 * any xattrs or acls
3442 */
33345d01 3443 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3444 btrfs_ino(inode), &first_xattr_slot);
3445 if (first_xattr_slot != -1) {
3446 path->slots[0] = first_xattr_slot;
3447 ret = btrfs_load_inode_props(inode, path);
3448 if (ret)
3449 btrfs_err(root->fs_info,
3450 "error loading props for ino %llu (root %llu): %d\n",
3451 btrfs_ino(inode),
3452 root->root_key.objectid, ret);
3453 }
3454 btrfs_free_path(path);
3455
72c04902
AV
3456 if (!maybe_acls)
3457 cache_no_acl(inode);
46a53cca 3458
39279cc3 3459 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3460 case S_IFREG:
3461 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3462 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3463 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3464 inode->i_fop = &btrfs_file_operations;
3465 inode->i_op = &btrfs_file_inode_operations;
3466 break;
3467 case S_IFDIR:
3468 inode->i_fop = &btrfs_dir_file_operations;
3469 if (root == root->fs_info->tree_root)
3470 inode->i_op = &btrfs_dir_ro_inode_operations;
3471 else
3472 inode->i_op = &btrfs_dir_inode_operations;
3473 break;
3474 case S_IFLNK:
3475 inode->i_op = &btrfs_symlink_inode_operations;
3476 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3477 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3478 break;
618e21d5 3479 default:
0279b4cd 3480 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3481 init_special_inode(inode, inode->i_mode, rdev);
3482 break;
39279cc3 3483 }
6cbff00f
CH
3484
3485 btrfs_update_iflags(inode);
39279cc3
CM
3486 return;
3487
3488make_bad:
39279cc3 3489 btrfs_free_path(path);
39279cc3
CM
3490 make_bad_inode(inode);
3491}
3492
d352ac68
CM
3493/*
3494 * given a leaf and an inode, copy the inode fields into the leaf
3495 */
e02119d5
CM
3496static void fill_inode_item(struct btrfs_trans_handle *trans,
3497 struct extent_buffer *leaf,
5f39d397 3498 struct btrfs_inode_item *item,
39279cc3
CM
3499 struct inode *inode)
3500{
51fab693
LB
3501 struct btrfs_map_token token;
3502
3503 btrfs_init_map_token(&token);
5f39d397 3504
51fab693
LB
3505 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3506 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3507 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3508 &token);
3509 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3510 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3511
51fab693
LB
3512 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3513 inode->i_atime.tv_sec, &token);
3514 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3515 inode->i_atime.tv_nsec, &token);
5f39d397 3516
51fab693
LB
3517 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3518 inode->i_mtime.tv_sec, &token);
3519 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3520 inode->i_mtime.tv_nsec, &token);
5f39d397 3521
51fab693
LB
3522 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3523 inode->i_ctime.tv_sec, &token);
3524 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3525 inode->i_ctime.tv_nsec, &token);
5f39d397 3526
51fab693
LB
3527 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3528 &token);
3529 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3530 &token);
3531 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3532 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3533 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3534 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3535 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3536}
3537
d352ac68
CM
3538/*
3539 * copy everything in the in-memory inode into the btree.
3540 */
2115133f 3541static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3542 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3543{
3544 struct btrfs_inode_item *inode_item;
3545 struct btrfs_path *path;
5f39d397 3546 struct extent_buffer *leaf;
39279cc3
CM
3547 int ret;
3548
3549 path = btrfs_alloc_path();
16cdcec7
MX
3550 if (!path)
3551 return -ENOMEM;
3552
b9473439 3553 path->leave_spinning = 1;
16cdcec7
MX
3554 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3555 1);
39279cc3
CM
3556 if (ret) {
3557 if (ret > 0)
3558 ret = -ENOENT;
3559 goto failed;
3560 }
3561
5f39d397
CM
3562 leaf = path->nodes[0];
3563 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3564 struct btrfs_inode_item);
39279cc3 3565
e02119d5 3566 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3567 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3568 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3569 ret = 0;
3570failed:
39279cc3
CM
3571 btrfs_free_path(path);
3572 return ret;
3573}
3574
2115133f
CM
3575/*
3576 * copy everything in the in-memory inode into the btree.
3577 */
3578noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3579 struct btrfs_root *root, struct inode *inode)
3580{
3581 int ret;
3582
3583 /*
3584 * If the inode is a free space inode, we can deadlock during commit
3585 * if we put it into the delayed code.
3586 *
3587 * The data relocation inode should also be directly updated
3588 * without delay
3589 */
83eea1f1 3590 if (!btrfs_is_free_space_inode(inode)
2115133f 3591 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3592 btrfs_update_root_times(trans, root);
3593
2115133f
CM
3594 ret = btrfs_delayed_update_inode(trans, root, inode);
3595 if (!ret)
3596 btrfs_set_inode_last_trans(trans, inode);
3597 return ret;
3598 }
3599
3600 return btrfs_update_inode_item(trans, root, inode);
3601}
3602
be6aef60
JB
3603noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3604 struct btrfs_root *root,
3605 struct inode *inode)
2115133f
CM
3606{
3607 int ret;
3608
3609 ret = btrfs_update_inode(trans, root, inode);
3610 if (ret == -ENOSPC)
3611 return btrfs_update_inode_item(trans, root, inode);
3612 return ret;
3613}
3614
d352ac68
CM
3615/*
3616 * unlink helper that gets used here in inode.c and in the tree logging
3617 * recovery code. It remove a link in a directory with a given name, and
3618 * also drops the back refs in the inode to the directory
3619 */
92986796
AV
3620static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3621 struct btrfs_root *root,
3622 struct inode *dir, struct inode *inode,
3623 const char *name, int name_len)
39279cc3
CM
3624{
3625 struct btrfs_path *path;
39279cc3 3626 int ret = 0;
5f39d397 3627 struct extent_buffer *leaf;
39279cc3 3628 struct btrfs_dir_item *di;
5f39d397 3629 struct btrfs_key key;
aec7477b 3630 u64 index;
33345d01
LZ
3631 u64 ino = btrfs_ino(inode);
3632 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3633
3634 path = btrfs_alloc_path();
54aa1f4d
CM
3635 if (!path) {
3636 ret = -ENOMEM;
554233a6 3637 goto out;
54aa1f4d
CM
3638 }
3639
b9473439 3640 path->leave_spinning = 1;
33345d01 3641 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3642 name, name_len, -1);
3643 if (IS_ERR(di)) {
3644 ret = PTR_ERR(di);
3645 goto err;
3646 }
3647 if (!di) {
3648 ret = -ENOENT;
3649 goto err;
3650 }
5f39d397
CM
3651 leaf = path->nodes[0];
3652 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3653 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3654 if (ret)
3655 goto err;
b3b4aa74 3656 btrfs_release_path(path);
39279cc3 3657
67de1176
MX
3658 /*
3659 * If we don't have dir index, we have to get it by looking up
3660 * the inode ref, since we get the inode ref, remove it directly,
3661 * it is unnecessary to do delayed deletion.
3662 *
3663 * But if we have dir index, needn't search inode ref to get it.
3664 * Since the inode ref is close to the inode item, it is better
3665 * that we delay to delete it, and just do this deletion when
3666 * we update the inode item.
3667 */
3668 if (BTRFS_I(inode)->dir_index) {
3669 ret = btrfs_delayed_delete_inode_ref(inode);
3670 if (!ret) {
3671 index = BTRFS_I(inode)->dir_index;
3672 goto skip_backref;
3673 }
3674 }
3675
33345d01
LZ
3676 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3677 dir_ino, &index);
aec7477b 3678 if (ret) {
c2cf52eb
SK
3679 btrfs_info(root->fs_info,
3680 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3681 name_len, name, ino, dir_ino);
79787eaa 3682 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3683 goto err;
3684 }
67de1176 3685skip_backref:
16cdcec7 3686 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3687 if (ret) {
3688 btrfs_abort_transaction(trans, root, ret);
39279cc3 3689 goto err;
79787eaa 3690 }
39279cc3 3691
e02119d5 3692 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3693 inode, dir_ino);
79787eaa
JM
3694 if (ret != 0 && ret != -ENOENT) {
3695 btrfs_abort_transaction(trans, root, ret);
3696 goto err;
3697 }
e02119d5
CM
3698
3699 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3700 dir, index);
6418c961
CM
3701 if (ret == -ENOENT)
3702 ret = 0;
d4e3991b
ZB
3703 else if (ret)
3704 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3705err:
3706 btrfs_free_path(path);
e02119d5
CM
3707 if (ret)
3708 goto out;
3709
3710 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3711 inode_inc_iversion(inode);
3712 inode_inc_iversion(dir);
e02119d5 3713 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3714 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3715out:
39279cc3
CM
3716 return ret;
3717}
3718
92986796
AV
3719int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3720 struct btrfs_root *root,
3721 struct inode *dir, struct inode *inode,
3722 const char *name, int name_len)
3723{
3724 int ret;
3725 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3726 if (!ret) {
8b558c5f 3727 drop_nlink(inode);
92986796
AV
3728 ret = btrfs_update_inode(trans, root, inode);
3729 }
3730 return ret;
3731}
39279cc3 3732
a22285a6
YZ
3733/*
3734 * helper to start transaction for unlink and rmdir.
3735 *
d52be818
JB
3736 * unlink and rmdir are special in btrfs, they do not always free space, so
3737 * if we cannot make our reservations the normal way try and see if there is
3738 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3739 * allow the unlink to occur.
a22285a6 3740 */
d52be818 3741static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3742{
39279cc3 3743 struct btrfs_trans_handle *trans;
a22285a6 3744 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3745 int ret;
3746
e70bea5f
JB
3747 /*
3748 * 1 for the possible orphan item
3749 * 1 for the dir item
3750 * 1 for the dir index
3751 * 1 for the inode ref
e70bea5f
JB
3752 * 1 for the inode
3753 */
6e137ed3 3754 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3755 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3756 return trans;
4df27c4d 3757
d52be818
JB
3758 if (PTR_ERR(trans) == -ENOSPC) {
3759 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3760
d52be818
JB
3761 trans = btrfs_start_transaction(root, 0);
3762 if (IS_ERR(trans))
3763 return trans;
3764 ret = btrfs_cond_migrate_bytes(root->fs_info,
3765 &root->fs_info->trans_block_rsv,
3766 num_bytes, 5);
3767 if (ret) {
3768 btrfs_end_transaction(trans, root);
3769 return ERR_PTR(ret);
a22285a6 3770 }
5a77d76c 3771 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3772 trans->bytes_reserved = num_bytes;
a22285a6 3773 }
d52be818 3774 return trans;
a22285a6
YZ
3775}
3776
3777static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3778{
3779 struct btrfs_root *root = BTRFS_I(dir)->root;
3780 struct btrfs_trans_handle *trans;
3781 struct inode *inode = dentry->d_inode;
3782 int ret;
a22285a6 3783
d52be818 3784 trans = __unlink_start_trans(dir);
a22285a6
YZ
3785 if (IS_ERR(trans))
3786 return PTR_ERR(trans);
5f39d397 3787
12fcfd22
CM
3788 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3789
e02119d5
CM
3790 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3791 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3792 if (ret)
3793 goto out;
7b128766 3794
a22285a6 3795 if (inode->i_nlink == 0) {
7b128766 3796 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3797 if (ret)
3798 goto out;
a22285a6 3799 }
7b128766 3800
b532402e 3801out:
d52be818 3802 btrfs_end_transaction(trans, root);
b53d3f5d 3803 btrfs_btree_balance_dirty(root);
39279cc3
CM
3804 return ret;
3805}
3806
4df27c4d
YZ
3807int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3808 struct btrfs_root *root,
3809 struct inode *dir, u64 objectid,
3810 const char *name, int name_len)
3811{
3812 struct btrfs_path *path;
3813 struct extent_buffer *leaf;
3814 struct btrfs_dir_item *di;
3815 struct btrfs_key key;
3816 u64 index;
3817 int ret;
33345d01 3818 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3819
3820 path = btrfs_alloc_path();
3821 if (!path)
3822 return -ENOMEM;
3823
33345d01 3824 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3825 name, name_len, -1);
79787eaa
JM
3826 if (IS_ERR_OR_NULL(di)) {
3827 if (!di)
3828 ret = -ENOENT;
3829 else
3830 ret = PTR_ERR(di);
3831 goto out;
3832 }
4df27c4d
YZ
3833
3834 leaf = path->nodes[0];
3835 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3836 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3837 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3838 if (ret) {
3839 btrfs_abort_transaction(trans, root, ret);
3840 goto out;
3841 }
b3b4aa74 3842 btrfs_release_path(path);
4df27c4d
YZ
3843
3844 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3845 objectid, root->root_key.objectid,
33345d01 3846 dir_ino, &index, name, name_len);
4df27c4d 3847 if (ret < 0) {
79787eaa
JM
3848 if (ret != -ENOENT) {
3849 btrfs_abort_transaction(trans, root, ret);
3850 goto out;
3851 }
33345d01 3852 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3853 name, name_len);
79787eaa
JM
3854 if (IS_ERR_OR_NULL(di)) {
3855 if (!di)
3856 ret = -ENOENT;
3857 else
3858 ret = PTR_ERR(di);
3859 btrfs_abort_transaction(trans, root, ret);
3860 goto out;
3861 }
4df27c4d
YZ
3862
3863 leaf = path->nodes[0];
3864 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3865 btrfs_release_path(path);
4df27c4d
YZ
3866 index = key.offset;
3867 }
945d8962 3868 btrfs_release_path(path);
4df27c4d 3869
16cdcec7 3870 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3871 if (ret) {
3872 btrfs_abort_transaction(trans, root, ret);
3873 goto out;
3874 }
4df27c4d
YZ
3875
3876 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3877 inode_inc_iversion(dir);
4df27c4d 3878 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3879 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3880 if (ret)
3881 btrfs_abort_transaction(trans, root, ret);
3882out:
71d7aed0 3883 btrfs_free_path(path);
79787eaa 3884 return ret;
4df27c4d
YZ
3885}
3886
39279cc3
CM
3887static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3888{
3889 struct inode *inode = dentry->d_inode;
1832a6d5 3890 int err = 0;
39279cc3 3891 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3892 struct btrfs_trans_handle *trans;
39279cc3 3893
b3ae244e 3894 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3895 return -ENOTEMPTY;
b3ae244e
DS
3896 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3897 return -EPERM;
134d4512 3898
d52be818 3899 trans = __unlink_start_trans(dir);
a22285a6 3900 if (IS_ERR(trans))
5df6a9f6 3901 return PTR_ERR(trans);
5df6a9f6 3902
33345d01 3903 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3904 err = btrfs_unlink_subvol(trans, root, dir,
3905 BTRFS_I(inode)->location.objectid,
3906 dentry->d_name.name,
3907 dentry->d_name.len);
3908 goto out;
3909 }
3910
7b128766
JB
3911 err = btrfs_orphan_add(trans, inode);
3912 if (err)
4df27c4d 3913 goto out;
7b128766 3914
39279cc3 3915 /* now the directory is empty */
e02119d5
CM
3916 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3917 dentry->d_name.name, dentry->d_name.len);
d397712b 3918 if (!err)
dbe674a9 3919 btrfs_i_size_write(inode, 0);
4df27c4d 3920out:
d52be818 3921 btrfs_end_transaction(trans, root);
b53d3f5d 3922 btrfs_btree_balance_dirty(root);
3954401f 3923
39279cc3
CM
3924 return err;
3925}
3926
39279cc3
CM
3927/*
3928 * this can truncate away extent items, csum items and directory items.
3929 * It starts at a high offset and removes keys until it can't find
d352ac68 3930 * any higher than new_size
39279cc3
CM
3931 *
3932 * csum items that cross the new i_size are truncated to the new size
3933 * as well.
7b128766
JB
3934 *
3935 * min_type is the minimum key type to truncate down to. If set to 0, this
3936 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3937 */
8082510e
YZ
3938int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3939 struct btrfs_root *root,
3940 struct inode *inode,
3941 u64 new_size, u32 min_type)
39279cc3 3942{
39279cc3 3943 struct btrfs_path *path;
5f39d397 3944 struct extent_buffer *leaf;
39279cc3 3945 struct btrfs_file_extent_item *fi;
8082510e
YZ
3946 struct btrfs_key key;
3947 struct btrfs_key found_key;
39279cc3 3948 u64 extent_start = 0;
db94535d 3949 u64 extent_num_bytes = 0;
5d4f98a2 3950 u64 extent_offset = 0;
39279cc3 3951 u64 item_end = 0;
7f4f6e0a 3952 u64 last_size = (u64)-1;
8082510e 3953 u32 found_type = (u8)-1;
39279cc3
CM
3954 int found_extent;
3955 int del_item;
85e21bac
CM
3956 int pending_del_nr = 0;
3957 int pending_del_slot = 0;
179e29e4 3958 int extent_type = -1;
8082510e
YZ
3959 int ret;
3960 int err = 0;
33345d01 3961 u64 ino = btrfs_ino(inode);
8082510e
YZ
3962
3963 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3964
0eb0e19c
MF
3965 path = btrfs_alloc_path();
3966 if (!path)
3967 return -ENOMEM;
3968 path->reada = -1;
3969
5dc562c5
JB
3970 /*
3971 * We want to drop from the next block forward in case this new size is
3972 * not block aligned since we will be keeping the last block of the
3973 * extent just the way it is.
3974 */
0af3d00b 3975 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3976 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3977 root->sectorsize), (u64)-1, 0);
8082510e 3978
16cdcec7
MX
3979 /*
3980 * This function is also used to drop the items in the log tree before
3981 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3982 * it is used to drop the loged items. So we shouldn't kill the delayed
3983 * items.
3984 */
3985 if (min_type == 0 && root == BTRFS_I(inode)->root)
3986 btrfs_kill_delayed_inode_items(inode);
3987
33345d01 3988 key.objectid = ino;
39279cc3 3989 key.offset = (u64)-1;
5f39d397
CM
3990 key.type = (u8)-1;
3991
85e21bac 3992search_again:
b9473439 3993 path->leave_spinning = 1;
85e21bac 3994 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3995 if (ret < 0) {
3996 err = ret;
3997 goto out;
3998 }
d397712b 3999
85e21bac 4000 if (ret > 0) {
e02119d5
CM
4001 /* there are no items in the tree for us to truncate, we're
4002 * done
4003 */
8082510e
YZ
4004 if (path->slots[0] == 0)
4005 goto out;
85e21bac
CM
4006 path->slots[0]--;
4007 }
4008
d397712b 4009 while (1) {
39279cc3 4010 fi = NULL;
5f39d397
CM
4011 leaf = path->nodes[0];
4012 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4013 found_type = btrfs_key_type(&found_key);
39279cc3 4014
33345d01 4015 if (found_key.objectid != ino)
39279cc3 4016 break;
5f39d397 4017
85e21bac 4018 if (found_type < min_type)
39279cc3
CM
4019 break;
4020
5f39d397 4021 item_end = found_key.offset;
39279cc3 4022 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4023 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4024 struct btrfs_file_extent_item);
179e29e4
CM
4025 extent_type = btrfs_file_extent_type(leaf, fi);
4026 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4027 item_end +=
db94535d 4028 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4029 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4030 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4031 path->slots[0], fi);
39279cc3 4032 }
008630c1 4033 item_end--;
39279cc3 4034 }
8082510e
YZ
4035 if (found_type > min_type) {
4036 del_item = 1;
4037 } else {
4038 if (item_end < new_size)
b888db2b 4039 break;
8082510e
YZ
4040 if (found_key.offset >= new_size)
4041 del_item = 1;
4042 else
4043 del_item = 0;
39279cc3 4044 }
39279cc3 4045 found_extent = 0;
39279cc3 4046 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4047 if (found_type != BTRFS_EXTENT_DATA_KEY)
4048 goto delete;
4049
7f4f6e0a
JB
4050 if (del_item)
4051 last_size = found_key.offset;
4052 else
4053 last_size = new_size;
4054
179e29e4 4055 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4056 u64 num_dec;
db94535d 4057 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4058 if (!del_item) {
db94535d
CM
4059 u64 orig_num_bytes =
4060 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4061 extent_num_bytes = ALIGN(new_size -
4062 found_key.offset,
4063 root->sectorsize);
db94535d
CM
4064 btrfs_set_file_extent_num_bytes(leaf, fi,
4065 extent_num_bytes);
4066 num_dec = (orig_num_bytes -
9069218d 4067 extent_num_bytes);
e02119d5 4068 if (root->ref_cows && extent_start != 0)
a76a3cd4 4069 inode_sub_bytes(inode, num_dec);
5f39d397 4070 btrfs_mark_buffer_dirty(leaf);
39279cc3 4071 } else {
db94535d
CM
4072 extent_num_bytes =
4073 btrfs_file_extent_disk_num_bytes(leaf,
4074 fi);
5d4f98a2
YZ
4075 extent_offset = found_key.offset -
4076 btrfs_file_extent_offset(leaf, fi);
4077
39279cc3 4078 /* FIXME blocksize != 4096 */
9069218d 4079 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4080 if (extent_start != 0) {
4081 found_extent = 1;
e02119d5 4082 if (root->ref_cows)
a76a3cd4 4083 inode_sub_bytes(inode, num_dec);
e02119d5 4084 }
39279cc3 4085 }
9069218d 4086 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4087 /*
4088 * we can't truncate inline items that have had
4089 * special encodings
4090 */
4091 if (!del_item &&
4092 btrfs_file_extent_compression(leaf, fi) == 0 &&
4093 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4094 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4095 u32 size = new_size - found_key.offset;
4096
4097 if (root->ref_cows) {
a76a3cd4
YZ
4098 inode_sub_bytes(inode, item_end + 1 -
4099 new_size);
e02119d5 4100 }
514ac8ad
CM
4101
4102 /*
4103 * update the ram bytes to properly reflect
4104 * the new size of our item
4105 */
4106 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4107 size =
4108 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4109 btrfs_truncate_item(root, path, size, 1);
e02119d5 4110 } else if (root->ref_cows) {
a76a3cd4
YZ
4111 inode_sub_bytes(inode, item_end + 1 -
4112 found_key.offset);
9069218d 4113 }
39279cc3 4114 }
179e29e4 4115delete:
39279cc3 4116 if (del_item) {
85e21bac
CM
4117 if (!pending_del_nr) {
4118 /* no pending yet, add ourselves */
4119 pending_del_slot = path->slots[0];
4120 pending_del_nr = 1;
4121 } else if (pending_del_nr &&
4122 path->slots[0] + 1 == pending_del_slot) {
4123 /* hop on the pending chunk */
4124 pending_del_nr++;
4125 pending_del_slot = path->slots[0];
4126 } else {
d397712b 4127 BUG();
85e21bac 4128 }
39279cc3
CM
4129 } else {
4130 break;
4131 }
0af3d00b
JB
4132 if (found_extent && (root->ref_cows ||
4133 root == root->fs_info->tree_root)) {
b9473439 4134 btrfs_set_path_blocking(path);
39279cc3 4135 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4136 extent_num_bytes, 0,
4137 btrfs_header_owner(leaf),
66d7e7f0 4138 ino, extent_offset, 0);
39279cc3
CM
4139 BUG_ON(ret);
4140 }
85e21bac 4141
8082510e
YZ
4142 if (found_type == BTRFS_INODE_ITEM_KEY)
4143 break;
4144
4145 if (path->slots[0] == 0 ||
4146 path->slots[0] != pending_del_slot) {
8082510e
YZ
4147 if (pending_del_nr) {
4148 ret = btrfs_del_items(trans, root, path,
4149 pending_del_slot,
4150 pending_del_nr);
79787eaa
JM
4151 if (ret) {
4152 btrfs_abort_transaction(trans,
4153 root, ret);
4154 goto error;
4155 }
8082510e
YZ
4156 pending_del_nr = 0;
4157 }
b3b4aa74 4158 btrfs_release_path(path);
85e21bac 4159 goto search_again;
8082510e
YZ
4160 } else {
4161 path->slots[0]--;
85e21bac 4162 }
39279cc3 4163 }
8082510e 4164out:
85e21bac
CM
4165 if (pending_del_nr) {
4166 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4167 pending_del_nr);
79787eaa
JM
4168 if (ret)
4169 btrfs_abort_transaction(trans, root, ret);
85e21bac 4170 }
79787eaa 4171error:
7f4f6e0a
JB
4172 if (last_size != (u64)-1)
4173 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4174 btrfs_free_path(path);
8082510e 4175 return err;
39279cc3
CM
4176}
4177
4178/*
2aaa6655
JB
4179 * btrfs_truncate_page - read, zero a chunk and write a page
4180 * @inode - inode that we're zeroing
4181 * @from - the offset to start zeroing
4182 * @len - the length to zero, 0 to zero the entire range respective to the
4183 * offset
4184 * @front - zero up to the offset instead of from the offset on
4185 *
4186 * This will find the page for the "from" offset and cow the page and zero the
4187 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4188 */
2aaa6655
JB
4189int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4190 int front)
39279cc3 4191{
2aaa6655 4192 struct address_space *mapping = inode->i_mapping;
db94535d 4193 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4194 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4195 struct btrfs_ordered_extent *ordered;
2ac55d41 4196 struct extent_state *cached_state = NULL;
e6dcd2dc 4197 char *kaddr;
db94535d 4198 u32 blocksize = root->sectorsize;
39279cc3
CM
4199 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4200 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4201 struct page *page;
3b16a4e3 4202 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4203 int ret = 0;
a52d9a80 4204 u64 page_start;
e6dcd2dc 4205 u64 page_end;
39279cc3 4206
2aaa6655
JB
4207 if ((offset & (blocksize - 1)) == 0 &&
4208 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4209 goto out;
0ca1f7ce 4210 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4211 if (ret)
4212 goto out;
39279cc3 4213
211c17f5 4214again:
3b16a4e3 4215 page = find_or_create_page(mapping, index, mask);
5d5e103a 4216 if (!page) {
0ca1f7ce 4217 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4218 ret = -ENOMEM;
39279cc3 4219 goto out;
5d5e103a 4220 }
e6dcd2dc
CM
4221
4222 page_start = page_offset(page);
4223 page_end = page_start + PAGE_CACHE_SIZE - 1;
4224
39279cc3 4225 if (!PageUptodate(page)) {
9ebefb18 4226 ret = btrfs_readpage(NULL, page);
39279cc3 4227 lock_page(page);
211c17f5
CM
4228 if (page->mapping != mapping) {
4229 unlock_page(page);
4230 page_cache_release(page);
4231 goto again;
4232 }
39279cc3
CM
4233 if (!PageUptodate(page)) {
4234 ret = -EIO;
89642229 4235 goto out_unlock;
39279cc3
CM
4236 }
4237 }
211c17f5 4238 wait_on_page_writeback(page);
e6dcd2dc 4239
d0082371 4240 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4241 set_page_extent_mapped(page);
4242
4243 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4244 if (ordered) {
2ac55d41
JB
4245 unlock_extent_cached(io_tree, page_start, page_end,
4246 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4247 unlock_page(page);
4248 page_cache_release(page);
eb84ae03 4249 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4250 btrfs_put_ordered_extent(ordered);
4251 goto again;
4252 }
4253
2ac55d41 4254 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4255 EXTENT_DIRTY | EXTENT_DELALLOC |
4256 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4257 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4258
2ac55d41
JB
4259 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4260 &cached_state);
9ed74f2d 4261 if (ret) {
2ac55d41
JB
4262 unlock_extent_cached(io_tree, page_start, page_end,
4263 &cached_state, GFP_NOFS);
9ed74f2d
JB
4264 goto out_unlock;
4265 }
4266
e6dcd2dc 4267 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4268 if (!len)
4269 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4270 kaddr = kmap(page);
2aaa6655
JB
4271 if (front)
4272 memset(kaddr, 0, offset);
4273 else
4274 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4275 flush_dcache_page(page);
4276 kunmap(page);
4277 }
247e743c 4278 ClearPageChecked(page);
e6dcd2dc 4279 set_page_dirty(page);
2ac55d41
JB
4280 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4281 GFP_NOFS);
39279cc3 4282
89642229 4283out_unlock:
5d5e103a 4284 if (ret)
0ca1f7ce 4285 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4286 unlock_page(page);
4287 page_cache_release(page);
4288out:
4289 return ret;
4290}
4291
16e7549f
JB
4292static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4293 u64 offset, u64 len)
4294{
4295 struct btrfs_trans_handle *trans;
4296 int ret;
4297
4298 /*
4299 * Still need to make sure the inode looks like it's been updated so
4300 * that any holes get logged if we fsync.
4301 */
4302 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4303 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4304 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4305 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4306 return 0;
4307 }
4308
4309 /*
4310 * 1 - for the one we're dropping
4311 * 1 - for the one we're adding
4312 * 1 - for updating the inode.
4313 */
4314 trans = btrfs_start_transaction(root, 3);
4315 if (IS_ERR(trans))
4316 return PTR_ERR(trans);
4317
4318 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4319 if (ret) {
4320 btrfs_abort_transaction(trans, root, ret);
4321 btrfs_end_transaction(trans, root);
4322 return ret;
4323 }
4324
4325 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4326 0, 0, len, 0, len, 0, 0, 0);
4327 if (ret)
4328 btrfs_abort_transaction(trans, root, ret);
4329 else
4330 btrfs_update_inode(trans, root, inode);
4331 btrfs_end_transaction(trans, root);
4332 return ret;
4333}
4334
695a0d0d
JB
4335/*
4336 * This function puts in dummy file extents for the area we're creating a hole
4337 * for. So if we are truncating this file to a larger size we need to insert
4338 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4339 * the range between oldsize and size
4340 */
a41ad394 4341int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4342{
9036c102
YZ
4343 struct btrfs_root *root = BTRFS_I(inode)->root;
4344 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4345 struct extent_map *em = NULL;
2ac55d41 4346 struct extent_state *cached_state = NULL;
5dc562c5 4347 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4348 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4349 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4350 u64 last_byte;
4351 u64 cur_offset;
4352 u64 hole_size;
9ed74f2d 4353 int err = 0;
39279cc3 4354
a71754fc
JB
4355 /*
4356 * If our size started in the middle of a page we need to zero out the
4357 * rest of the page before we expand the i_size, otherwise we could
4358 * expose stale data.
4359 */
4360 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4361 if (err)
4362 return err;
4363
9036c102
YZ
4364 if (size <= hole_start)
4365 return 0;
4366
9036c102
YZ
4367 while (1) {
4368 struct btrfs_ordered_extent *ordered;
fa7c1494 4369
2ac55d41 4370 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4371 &cached_state);
fa7c1494
MX
4372 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4373 block_end - hole_start);
9036c102
YZ
4374 if (!ordered)
4375 break;
2ac55d41
JB
4376 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4377 &cached_state, GFP_NOFS);
fa7c1494 4378 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4379 btrfs_put_ordered_extent(ordered);
4380 }
39279cc3 4381
9036c102
YZ
4382 cur_offset = hole_start;
4383 while (1) {
4384 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4385 block_end - cur_offset, 0);
79787eaa
JM
4386 if (IS_ERR(em)) {
4387 err = PTR_ERR(em);
f2767956 4388 em = NULL;
79787eaa
JM
4389 break;
4390 }
9036c102 4391 last_byte = min(extent_map_end(em), block_end);
fda2832f 4392 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4393 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4394 struct extent_map *hole_em;
9036c102 4395 hole_size = last_byte - cur_offset;
9ed74f2d 4396
16e7549f
JB
4397 err = maybe_insert_hole(root, inode, cur_offset,
4398 hole_size);
4399 if (err)
3893e33b 4400 break;
5dc562c5
JB
4401 btrfs_drop_extent_cache(inode, cur_offset,
4402 cur_offset + hole_size - 1, 0);
4403 hole_em = alloc_extent_map();
4404 if (!hole_em) {
4405 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4406 &BTRFS_I(inode)->runtime_flags);
4407 goto next;
4408 }
4409 hole_em->start = cur_offset;
4410 hole_em->len = hole_size;
4411 hole_em->orig_start = cur_offset;
8082510e 4412
5dc562c5
JB
4413 hole_em->block_start = EXTENT_MAP_HOLE;
4414 hole_em->block_len = 0;
b4939680 4415 hole_em->orig_block_len = 0;
cc95bef6 4416 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4417 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4418 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4419 hole_em->generation = root->fs_info->generation;
8082510e 4420
5dc562c5
JB
4421 while (1) {
4422 write_lock(&em_tree->lock);
09a2a8f9 4423 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4424 write_unlock(&em_tree->lock);
4425 if (err != -EEXIST)
4426 break;
4427 btrfs_drop_extent_cache(inode, cur_offset,
4428 cur_offset +
4429 hole_size - 1, 0);
4430 }
4431 free_extent_map(hole_em);
9036c102 4432 }
16e7549f 4433next:
9036c102 4434 free_extent_map(em);
a22285a6 4435 em = NULL;
9036c102 4436 cur_offset = last_byte;
8082510e 4437 if (cur_offset >= block_end)
9036c102
YZ
4438 break;
4439 }
a22285a6 4440 free_extent_map(em);
2ac55d41
JB
4441 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4442 GFP_NOFS);
9036c102
YZ
4443 return err;
4444}
39279cc3 4445
3972f260 4446static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4447{
f4a2f4c5
MX
4448 struct btrfs_root *root = BTRFS_I(inode)->root;
4449 struct btrfs_trans_handle *trans;
a41ad394 4450 loff_t oldsize = i_size_read(inode);
3972f260
ES
4451 loff_t newsize = attr->ia_size;
4452 int mask = attr->ia_valid;
8082510e
YZ
4453 int ret;
4454
3972f260
ES
4455 /*
4456 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4457 * special case where we need to update the times despite not having
4458 * these flags set. For all other operations the VFS set these flags
4459 * explicitly if it wants a timestamp update.
4460 */
4461 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4462 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4463
a41ad394 4464 if (newsize > oldsize) {
7caef267 4465 truncate_pagecache(inode, newsize);
a41ad394 4466 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4467 if (ret)
8082510e 4468 return ret;
8082510e 4469
f4a2f4c5
MX
4470 trans = btrfs_start_transaction(root, 1);
4471 if (IS_ERR(trans))
4472 return PTR_ERR(trans);
4473
4474 i_size_write(inode, newsize);
4475 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4476 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4477 btrfs_end_transaction(trans, root);
a41ad394 4478 } else {
8082510e 4479
a41ad394
JB
4480 /*
4481 * We're truncating a file that used to have good data down to
4482 * zero. Make sure it gets into the ordered flush list so that
4483 * any new writes get down to disk quickly.
4484 */
4485 if (newsize == 0)
72ac3c0d
JB
4486 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4487 &BTRFS_I(inode)->runtime_flags);
8082510e 4488
f3fe820c
JB
4489 /*
4490 * 1 for the orphan item we're going to add
4491 * 1 for the orphan item deletion.
4492 */
4493 trans = btrfs_start_transaction(root, 2);
4494 if (IS_ERR(trans))
4495 return PTR_ERR(trans);
4496
4497 /*
4498 * We need to do this in case we fail at _any_ point during the
4499 * actual truncate. Once we do the truncate_setsize we could
4500 * invalidate pages which forces any outstanding ordered io to
4501 * be instantly completed which will give us extents that need
4502 * to be truncated. If we fail to get an orphan inode down we
4503 * could have left over extents that were never meant to live,
4504 * so we need to garuntee from this point on that everything
4505 * will be consistent.
4506 */
4507 ret = btrfs_orphan_add(trans, inode);
4508 btrfs_end_transaction(trans, root);
4509 if (ret)
4510 return ret;
4511
a41ad394
JB
4512 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4513 truncate_setsize(inode, newsize);
2e60a51e
MX
4514
4515 /* Disable nonlocked read DIO to avoid the end less truncate */
4516 btrfs_inode_block_unlocked_dio(inode);
4517 inode_dio_wait(inode);
4518 btrfs_inode_resume_unlocked_dio(inode);
4519
a41ad394 4520 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4521 if (ret && inode->i_nlink) {
4522 int err;
4523
4524 /*
4525 * failed to truncate, disk_i_size is only adjusted down
4526 * as we remove extents, so it should represent the true
4527 * size of the inode, so reset the in memory size and
4528 * delete our orphan entry.
4529 */
4530 trans = btrfs_join_transaction(root);
4531 if (IS_ERR(trans)) {
4532 btrfs_orphan_del(NULL, inode);
4533 return ret;
4534 }
4535 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4536 err = btrfs_orphan_del(trans, inode);
4537 if (err)
4538 btrfs_abort_transaction(trans, root, err);
4539 btrfs_end_transaction(trans, root);
4540 }
8082510e
YZ
4541 }
4542
a41ad394 4543 return ret;
8082510e
YZ
4544}
4545
9036c102
YZ
4546static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4547{
4548 struct inode *inode = dentry->d_inode;
b83cc969 4549 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4550 int err;
39279cc3 4551
b83cc969
LZ
4552 if (btrfs_root_readonly(root))
4553 return -EROFS;
4554
9036c102
YZ
4555 err = inode_change_ok(inode, attr);
4556 if (err)
4557 return err;
2bf5a725 4558
5a3f23d5 4559 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4560 err = btrfs_setsize(inode, attr);
8082510e
YZ
4561 if (err)
4562 return err;
39279cc3 4563 }
9036c102 4564
1025774c
CH
4565 if (attr->ia_valid) {
4566 setattr_copy(inode, attr);
0c4d2d95 4567 inode_inc_iversion(inode);
22c44fe6 4568 err = btrfs_dirty_inode(inode);
1025774c 4569
22c44fe6 4570 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4571 err = btrfs_acl_chmod(inode);
4572 }
33268eaf 4573
39279cc3
CM
4574 return err;
4575}
61295eb8 4576
131e404a
FDBM
4577/*
4578 * While truncating the inode pages during eviction, we get the VFS calling
4579 * btrfs_invalidatepage() against each page of the inode. This is slow because
4580 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4581 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4582 * extent_state structures over and over, wasting lots of time.
4583 *
4584 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4585 * those expensive operations on a per page basis and do only the ordered io
4586 * finishing, while we release here the extent_map and extent_state structures,
4587 * without the excessive merging and splitting.
4588 */
4589static void evict_inode_truncate_pages(struct inode *inode)
4590{
4591 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4592 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4593 struct rb_node *node;
4594
4595 ASSERT(inode->i_state & I_FREEING);
4596 truncate_inode_pages(&inode->i_data, 0);
4597
4598 write_lock(&map_tree->lock);
4599 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4600 struct extent_map *em;
4601
4602 node = rb_first(&map_tree->map);
4603 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4604 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4605 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4606 remove_extent_mapping(map_tree, em);
4607 free_extent_map(em);
4608 }
4609 write_unlock(&map_tree->lock);
4610
4611 spin_lock(&io_tree->lock);
4612 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4613 struct extent_state *state;
4614 struct extent_state *cached_state = NULL;
4615
4616 node = rb_first(&io_tree->state);
4617 state = rb_entry(node, struct extent_state, rb_node);
4618 atomic_inc(&state->refs);
4619 spin_unlock(&io_tree->lock);
4620
4621 lock_extent_bits(io_tree, state->start, state->end,
4622 0, &cached_state);
4623 clear_extent_bit(io_tree, state->start, state->end,
4624 EXTENT_LOCKED | EXTENT_DIRTY |
4625 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4626 EXTENT_DEFRAG, 1, 1,
4627 &cached_state, GFP_NOFS);
4628 free_extent_state(state);
4629
4630 spin_lock(&io_tree->lock);
4631 }
4632 spin_unlock(&io_tree->lock);
4633}
4634
bd555975 4635void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4636{
4637 struct btrfs_trans_handle *trans;
4638 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4639 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4640 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4641 int ret;
4642
1abe9b8a 4643 trace_btrfs_inode_evict(inode);
4644
131e404a
FDBM
4645 evict_inode_truncate_pages(inode);
4646
69e9c6c6
SB
4647 if (inode->i_nlink &&
4648 ((btrfs_root_refs(&root->root_item) != 0 &&
4649 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4650 btrfs_is_free_space_inode(inode)))
bd555975
AV
4651 goto no_delete;
4652
39279cc3 4653 if (is_bad_inode(inode)) {
7b128766 4654 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4655 goto no_delete;
4656 }
bd555975 4657 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4658 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4659
c71bf099 4660 if (root->fs_info->log_root_recovering) {
6bf02314 4661 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4662 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4663 goto no_delete;
4664 }
4665
76dda93c 4666 if (inode->i_nlink > 0) {
69e9c6c6
SB
4667 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4668 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4669 goto no_delete;
4670 }
4671
0e8c36a9
MX
4672 ret = btrfs_commit_inode_delayed_inode(inode);
4673 if (ret) {
4674 btrfs_orphan_del(NULL, inode);
4675 goto no_delete;
4676 }
4677
66d8f3dd 4678 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4679 if (!rsv) {
4680 btrfs_orphan_del(NULL, inode);
4681 goto no_delete;
4682 }
4a338542 4683 rsv->size = min_size;
ca7e70f5 4684 rsv->failfast = 1;
726c35fa 4685 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4686
dbe674a9 4687 btrfs_i_size_write(inode, 0);
5f39d397 4688
4289a667 4689 /*
8407aa46
MX
4690 * This is a bit simpler than btrfs_truncate since we've already
4691 * reserved our space for our orphan item in the unlink, so we just
4692 * need to reserve some slack space in case we add bytes and update
4693 * inode item when doing the truncate.
4289a667 4694 */
8082510e 4695 while (1) {
08e007d2
MX
4696 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4697 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4698
4699 /*
4700 * Try and steal from the global reserve since we will
4701 * likely not use this space anyway, we want to try as
4702 * hard as possible to get this to work.
4703 */
4704 if (ret)
4705 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4706
d68fc57b 4707 if (ret) {
c2cf52eb
SK
4708 btrfs_warn(root->fs_info,
4709 "Could not get space for a delete, will truncate on mount %d",
4710 ret);
4289a667
JB
4711 btrfs_orphan_del(NULL, inode);
4712 btrfs_free_block_rsv(root, rsv);
4713 goto no_delete;
d68fc57b 4714 }
7b128766 4715
0e8c36a9 4716 trans = btrfs_join_transaction(root);
4289a667
JB
4717 if (IS_ERR(trans)) {
4718 btrfs_orphan_del(NULL, inode);
4719 btrfs_free_block_rsv(root, rsv);
4720 goto no_delete;
d68fc57b 4721 }
7b128766 4722
4289a667
JB
4723 trans->block_rsv = rsv;
4724
d68fc57b 4725 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4726 if (ret != -ENOSPC)
8082510e 4727 break;
85e21bac 4728
8407aa46 4729 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4730 btrfs_end_transaction(trans, root);
4731 trans = NULL;
b53d3f5d 4732 btrfs_btree_balance_dirty(root);
8082510e 4733 }
5f39d397 4734
4289a667
JB
4735 btrfs_free_block_rsv(root, rsv);
4736
4ef31a45
JB
4737 /*
4738 * Errors here aren't a big deal, it just means we leave orphan items
4739 * in the tree. They will be cleaned up on the next mount.
4740 */
8082510e 4741 if (ret == 0) {
4289a667 4742 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4743 btrfs_orphan_del(trans, inode);
4744 } else {
4745 btrfs_orphan_del(NULL, inode);
8082510e 4746 }
54aa1f4d 4747
4289a667 4748 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4749 if (!(root == root->fs_info->tree_root ||
4750 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4751 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4752
54aa1f4d 4753 btrfs_end_transaction(trans, root);
b53d3f5d 4754 btrfs_btree_balance_dirty(root);
39279cc3 4755no_delete:
89042e5a 4756 btrfs_remove_delayed_node(inode);
dbd5768f 4757 clear_inode(inode);
8082510e 4758 return;
39279cc3
CM
4759}
4760
4761/*
4762 * this returns the key found in the dir entry in the location pointer.
4763 * If no dir entries were found, location->objectid is 0.
4764 */
4765static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4766 struct btrfs_key *location)
4767{
4768 const char *name = dentry->d_name.name;
4769 int namelen = dentry->d_name.len;
4770 struct btrfs_dir_item *di;
4771 struct btrfs_path *path;
4772 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4773 int ret = 0;
39279cc3
CM
4774
4775 path = btrfs_alloc_path();
d8926bb3
MF
4776 if (!path)
4777 return -ENOMEM;
3954401f 4778
33345d01 4779 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4780 namelen, 0);
0d9f7f3e
Y
4781 if (IS_ERR(di))
4782 ret = PTR_ERR(di);
d397712b 4783
c704005d 4784 if (IS_ERR_OR_NULL(di))
3954401f 4785 goto out_err;
d397712b 4786
5f39d397 4787 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4788out:
39279cc3
CM
4789 btrfs_free_path(path);
4790 return ret;
3954401f
CM
4791out_err:
4792 location->objectid = 0;
4793 goto out;
39279cc3
CM
4794}
4795
4796/*
4797 * when we hit a tree root in a directory, the btrfs part of the inode
4798 * needs to be changed to reflect the root directory of the tree root. This
4799 * is kind of like crossing a mount point.
4800 */
4801static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4802 struct inode *dir,
4803 struct dentry *dentry,
4804 struct btrfs_key *location,
4805 struct btrfs_root **sub_root)
39279cc3 4806{
4df27c4d
YZ
4807 struct btrfs_path *path;
4808 struct btrfs_root *new_root;
4809 struct btrfs_root_ref *ref;
4810 struct extent_buffer *leaf;
4811 int ret;
4812 int err = 0;
39279cc3 4813
4df27c4d
YZ
4814 path = btrfs_alloc_path();
4815 if (!path) {
4816 err = -ENOMEM;
4817 goto out;
4818 }
39279cc3 4819
4df27c4d 4820 err = -ENOENT;
75ac2dd9
KN
4821 ret = btrfs_find_item(root->fs_info->tree_root, path,
4822 BTRFS_I(dir)->root->root_key.objectid,
4823 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4df27c4d
YZ
4824 if (ret) {
4825 if (ret < 0)
4826 err = ret;
4827 goto out;
4828 }
39279cc3 4829
4df27c4d
YZ
4830 leaf = path->nodes[0];
4831 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4832 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4833 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4834 goto out;
39279cc3 4835
4df27c4d
YZ
4836 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4837 (unsigned long)(ref + 1),
4838 dentry->d_name.len);
4839 if (ret)
4840 goto out;
4841
b3b4aa74 4842 btrfs_release_path(path);
4df27c4d
YZ
4843
4844 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4845 if (IS_ERR(new_root)) {
4846 err = PTR_ERR(new_root);
4847 goto out;
4848 }
4849
4df27c4d
YZ
4850 *sub_root = new_root;
4851 location->objectid = btrfs_root_dirid(&new_root->root_item);
4852 location->type = BTRFS_INODE_ITEM_KEY;
4853 location->offset = 0;
4854 err = 0;
4855out:
4856 btrfs_free_path(path);
4857 return err;
39279cc3
CM
4858}
4859
5d4f98a2
YZ
4860static void inode_tree_add(struct inode *inode)
4861{
4862 struct btrfs_root *root = BTRFS_I(inode)->root;
4863 struct btrfs_inode *entry;
03e860bd
FNP
4864 struct rb_node **p;
4865 struct rb_node *parent;
cef21937 4866 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 4867 u64 ino = btrfs_ino(inode);
5d4f98a2 4868
1d3382cb 4869 if (inode_unhashed(inode))
76dda93c 4870 return;
e1409cef 4871 parent = NULL;
5d4f98a2 4872 spin_lock(&root->inode_lock);
e1409cef 4873 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4874 while (*p) {
4875 parent = *p;
4876 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4877
33345d01 4878 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4879 p = &parent->rb_left;
33345d01 4880 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4881 p = &parent->rb_right;
5d4f98a2
YZ
4882 else {
4883 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4884 (I_WILL_FREE | I_FREEING)));
cef21937 4885 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
4886 RB_CLEAR_NODE(parent);
4887 spin_unlock(&root->inode_lock);
cef21937 4888 return;
5d4f98a2
YZ
4889 }
4890 }
cef21937
FDBM
4891 rb_link_node(new, parent, p);
4892 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
4893 spin_unlock(&root->inode_lock);
4894}
4895
4896static void inode_tree_del(struct inode *inode)
4897{
4898 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4899 int empty = 0;
5d4f98a2 4900
03e860bd 4901 spin_lock(&root->inode_lock);
5d4f98a2 4902 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4903 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4904 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4905 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4906 }
03e860bd 4907 spin_unlock(&root->inode_lock);
76dda93c 4908
69e9c6c6 4909 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
4910 synchronize_srcu(&root->fs_info->subvol_srcu);
4911 spin_lock(&root->inode_lock);
4912 empty = RB_EMPTY_ROOT(&root->inode_tree);
4913 spin_unlock(&root->inode_lock);
4914 if (empty)
4915 btrfs_add_dead_root(root);
4916 }
4917}
4918
143bede5 4919void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4920{
4921 struct rb_node *node;
4922 struct rb_node *prev;
4923 struct btrfs_inode *entry;
4924 struct inode *inode;
4925 u64 objectid = 0;
4926
7813b3db
LB
4927 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
4928 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
4929
4930 spin_lock(&root->inode_lock);
4931again:
4932 node = root->inode_tree.rb_node;
4933 prev = NULL;
4934 while (node) {
4935 prev = node;
4936 entry = rb_entry(node, struct btrfs_inode, rb_node);
4937
33345d01 4938 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4939 node = node->rb_left;
33345d01 4940 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4941 node = node->rb_right;
4942 else
4943 break;
4944 }
4945 if (!node) {
4946 while (prev) {
4947 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4948 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4949 node = prev;
4950 break;
4951 }
4952 prev = rb_next(prev);
4953 }
4954 }
4955 while (node) {
4956 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4957 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4958 inode = igrab(&entry->vfs_inode);
4959 if (inode) {
4960 spin_unlock(&root->inode_lock);
4961 if (atomic_read(&inode->i_count) > 1)
4962 d_prune_aliases(inode);
4963 /*
45321ac5 4964 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4965 * the inode cache when its usage count
4966 * hits zero.
4967 */
4968 iput(inode);
4969 cond_resched();
4970 spin_lock(&root->inode_lock);
4971 goto again;
4972 }
4973
4974 if (cond_resched_lock(&root->inode_lock))
4975 goto again;
4976
4977 node = rb_next(node);
4978 }
4979 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4980}
4981
e02119d5
CM
4982static int btrfs_init_locked_inode(struct inode *inode, void *p)
4983{
4984 struct btrfs_iget_args *args = p;
90d3e592
CM
4985 inode->i_ino = args->location->objectid;
4986 memcpy(&BTRFS_I(inode)->location, args->location,
4987 sizeof(*args->location));
e02119d5 4988 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4989 return 0;
4990}
4991
4992static int btrfs_find_actor(struct inode *inode, void *opaque)
4993{
4994 struct btrfs_iget_args *args = opaque;
90d3e592 4995 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 4996 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4997}
4998
5d4f98a2 4999static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5000 struct btrfs_key *location,
5d4f98a2 5001 struct btrfs_root *root)
39279cc3
CM
5002{
5003 struct inode *inode;
5004 struct btrfs_iget_args args;
90d3e592 5005 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5006
90d3e592 5007 args.location = location;
39279cc3
CM
5008 args.root = root;
5009
778ba82b 5010 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5011 btrfs_init_locked_inode,
5012 (void *)&args);
5013 return inode;
5014}
5015
1a54ef8c
BR
5016/* Get an inode object given its location and corresponding root.
5017 * Returns in *is_new if the inode was read from disk
5018 */
5019struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5020 struct btrfs_root *root, int *new)
1a54ef8c
BR
5021{
5022 struct inode *inode;
5023
90d3e592 5024 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5025 if (!inode)
5d4f98a2 5026 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5027
5028 if (inode->i_state & I_NEW) {
1a54ef8c 5029 btrfs_read_locked_inode(inode);
1748f843
MF
5030 if (!is_bad_inode(inode)) {
5031 inode_tree_add(inode);
5032 unlock_new_inode(inode);
5033 if (new)
5034 *new = 1;
5035 } else {
e0b6d65b
ST
5036 unlock_new_inode(inode);
5037 iput(inode);
5038 inode = ERR_PTR(-ESTALE);
1748f843
MF
5039 }
5040 }
5041
1a54ef8c
BR
5042 return inode;
5043}
5044
4df27c4d
YZ
5045static struct inode *new_simple_dir(struct super_block *s,
5046 struct btrfs_key *key,
5047 struct btrfs_root *root)
5048{
5049 struct inode *inode = new_inode(s);
5050
5051 if (!inode)
5052 return ERR_PTR(-ENOMEM);
5053
4df27c4d
YZ
5054 BTRFS_I(inode)->root = root;
5055 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5056 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5057
5058 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5059 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5060 inode->i_fop = &simple_dir_operations;
5061 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5062 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5063
5064 return inode;
5065}
5066
3de4586c 5067struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5068{
d397712b 5069 struct inode *inode;
4df27c4d 5070 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5071 struct btrfs_root *sub_root = root;
5072 struct btrfs_key location;
76dda93c 5073 int index;
b4aff1f8 5074 int ret = 0;
39279cc3
CM
5075
5076 if (dentry->d_name.len > BTRFS_NAME_LEN)
5077 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5078
39e3c955 5079 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5080 if (ret < 0)
5081 return ERR_PTR(ret);
5f39d397 5082
4df27c4d 5083 if (location.objectid == 0)
5662344b 5084 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5085
5086 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5087 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5088 return inode;
5089 }
5090
5091 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5092
76dda93c 5093 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5094 ret = fixup_tree_root_location(root, dir, dentry,
5095 &location, &sub_root);
5096 if (ret < 0) {
5097 if (ret != -ENOENT)
5098 inode = ERR_PTR(ret);
5099 else
5100 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5101 } else {
73f73415 5102 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5103 }
76dda93c
YZ
5104 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5105
34d19bad 5106 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5107 down_read(&root->fs_info->cleanup_work_sem);
5108 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5109 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5110 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5111 if (ret) {
5112 iput(inode);
66b4ffd1 5113 inode = ERR_PTR(ret);
01cd3367 5114 }
c71bf099
YZ
5115 }
5116
3de4586c
CM
5117 return inode;
5118}
5119
fe15ce44 5120static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5121{
5122 struct btrfs_root *root;
848cce0d 5123 struct inode *inode = dentry->d_inode;
76dda93c 5124
848cce0d
LZ
5125 if (!inode && !IS_ROOT(dentry))
5126 inode = dentry->d_parent->d_inode;
76dda93c 5127
848cce0d
LZ
5128 if (inode) {
5129 root = BTRFS_I(inode)->root;
efefb143
YZ
5130 if (btrfs_root_refs(&root->root_item) == 0)
5131 return 1;
848cce0d
LZ
5132
5133 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5134 return 1;
efefb143 5135 }
76dda93c
YZ
5136 return 0;
5137}
5138
b4aff1f8
JB
5139static void btrfs_dentry_release(struct dentry *dentry)
5140{
5141 if (dentry->d_fsdata)
5142 kfree(dentry->d_fsdata);
5143}
5144
3de4586c 5145static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5146 unsigned int flags)
3de4586c 5147{
5662344b 5148 struct inode *inode;
a66e7cc6 5149
5662344b
TI
5150 inode = btrfs_lookup_dentry(dir, dentry);
5151 if (IS_ERR(inode)) {
5152 if (PTR_ERR(inode) == -ENOENT)
5153 inode = NULL;
5154 else
5155 return ERR_CAST(inode);
5156 }
5157
3a0dfa6a 5158 return d_materialise_unique(dentry, inode);
39279cc3
CM
5159}
5160
16cdcec7 5161unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5162 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5163};
5164
9cdda8d3 5165static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5166{
9cdda8d3 5167 struct inode *inode = file_inode(file);
39279cc3
CM
5168 struct btrfs_root *root = BTRFS_I(inode)->root;
5169 struct btrfs_item *item;
5170 struct btrfs_dir_item *di;
5171 struct btrfs_key key;
5f39d397 5172 struct btrfs_key found_key;
39279cc3 5173 struct btrfs_path *path;
16cdcec7
MX
5174 struct list_head ins_list;
5175 struct list_head del_list;
39279cc3 5176 int ret;
5f39d397 5177 struct extent_buffer *leaf;
39279cc3 5178 int slot;
39279cc3
CM
5179 unsigned char d_type;
5180 int over = 0;
5181 u32 di_cur;
5182 u32 di_total;
5183 u32 di_len;
5184 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5185 char tmp_name[32];
5186 char *name_ptr;
5187 int name_len;
9cdda8d3 5188 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5189
5190 /* FIXME, use a real flag for deciding about the key type */
5191 if (root->fs_info->tree_root == root)
5192 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5193
9cdda8d3
AV
5194 if (!dir_emit_dots(file, ctx))
5195 return 0;
5196
49593bfa 5197 path = btrfs_alloc_path();
16cdcec7
MX
5198 if (!path)
5199 return -ENOMEM;
ff5714cc 5200
026fd317 5201 path->reada = 1;
49593bfa 5202
16cdcec7
MX
5203 if (key_type == BTRFS_DIR_INDEX_KEY) {
5204 INIT_LIST_HEAD(&ins_list);
5205 INIT_LIST_HEAD(&del_list);
5206 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5207 }
5208
39279cc3 5209 btrfs_set_key_type(&key, key_type);
9cdda8d3 5210 key.offset = ctx->pos;
33345d01 5211 key.objectid = btrfs_ino(inode);
5f39d397 5212
39279cc3
CM
5213 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5214 if (ret < 0)
5215 goto err;
49593bfa
DW
5216
5217 while (1) {
5f39d397 5218 leaf = path->nodes[0];
39279cc3 5219 slot = path->slots[0];
b9e03af0
LZ
5220 if (slot >= btrfs_header_nritems(leaf)) {
5221 ret = btrfs_next_leaf(root, path);
5222 if (ret < 0)
5223 goto err;
5224 else if (ret > 0)
5225 break;
5226 continue;
39279cc3 5227 }
3de4586c 5228
dd3cc16b 5229 item = btrfs_item_nr(slot);
5f39d397
CM
5230 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5231
5232 if (found_key.objectid != key.objectid)
39279cc3 5233 break;
5f39d397 5234 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5235 break;
9cdda8d3 5236 if (found_key.offset < ctx->pos)
b9e03af0 5237 goto next;
16cdcec7
MX
5238 if (key_type == BTRFS_DIR_INDEX_KEY &&
5239 btrfs_should_delete_dir_index(&del_list,
5240 found_key.offset))
5241 goto next;
5f39d397 5242
9cdda8d3 5243 ctx->pos = found_key.offset;
16cdcec7 5244 is_curr = 1;
49593bfa 5245
39279cc3
CM
5246 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5247 di_cur = 0;
5f39d397 5248 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5249
5250 while (di_cur < di_total) {
5f39d397
CM
5251 struct btrfs_key location;
5252
22a94d44
JB
5253 if (verify_dir_item(root, leaf, di))
5254 break;
5255
5f39d397 5256 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5257 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5258 name_ptr = tmp_name;
5259 } else {
5260 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5261 if (!name_ptr) {
5262 ret = -ENOMEM;
5263 goto err;
5264 }
5f39d397
CM
5265 }
5266 read_extent_buffer(leaf, name_ptr,
5267 (unsigned long)(di + 1), name_len);
5268
5269 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5270 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5271
fede766f 5272
3de4586c 5273 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5274 * skip it.
5275 *
5276 * In contrast to old kernels, we insert the snapshot's
5277 * dir item and dir index after it has been created, so
5278 * we won't find a reference to our own snapshot. We
5279 * still keep the following code for backward
5280 * compatibility.
3de4586c
CM
5281 */
5282 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5283 location.objectid == root->root_key.objectid) {
5284 over = 0;
5285 goto skip;
5286 }
9cdda8d3
AV
5287 over = !dir_emit(ctx, name_ptr, name_len,
5288 location.objectid, d_type);
5f39d397 5289
3de4586c 5290skip:
5f39d397
CM
5291 if (name_ptr != tmp_name)
5292 kfree(name_ptr);
5293
39279cc3
CM
5294 if (over)
5295 goto nopos;
5103e947 5296 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5297 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5298 di_cur += di_len;
5299 di = (struct btrfs_dir_item *)((char *)di + di_len);
5300 }
b9e03af0
LZ
5301next:
5302 path->slots[0]++;
39279cc3 5303 }
49593bfa 5304
16cdcec7
MX
5305 if (key_type == BTRFS_DIR_INDEX_KEY) {
5306 if (is_curr)
9cdda8d3
AV
5307 ctx->pos++;
5308 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5309 if (ret)
5310 goto nopos;
5311 }
5312
49593bfa 5313 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5314 ctx->pos++;
5315
5316 /*
5317 * Stop new entries from being returned after we return the last
5318 * entry.
5319 *
5320 * New directory entries are assigned a strictly increasing
5321 * offset. This means that new entries created during readdir
5322 * are *guaranteed* to be seen in the future by that readdir.
5323 * This has broken buggy programs which operate on names as
5324 * they're returned by readdir. Until we re-use freed offsets
5325 * we have this hack to stop new entries from being returned
5326 * under the assumption that they'll never reach this huge
5327 * offset.
5328 *
5329 * This is being careful not to overflow 32bit loff_t unless the
5330 * last entry requires it because doing so has broken 32bit apps
5331 * in the past.
5332 */
5333 if (key_type == BTRFS_DIR_INDEX_KEY) {
5334 if (ctx->pos >= INT_MAX)
5335 ctx->pos = LLONG_MAX;
5336 else
5337 ctx->pos = INT_MAX;
5338 }
39279cc3
CM
5339nopos:
5340 ret = 0;
5341err:
16cdcec7
MX
5342 if (key_type == BTRFS_DIR_INDEX_KEY)
5343 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5344 btrfs_free_path(path);
39279cc3
CM
5345 return ret;
5346}
5347
a9185b41 5348int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5349{
5350 struct btrfs_root *root = BTRFS_I(inode)->root;
5351 struct btrfs_trans_handle *trans;
5352 int ret = 0;
0af3d00b 5353 bool nolock = false;
39279cc3 5354
72ac3c0d 5355 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5356 return 0;
5357
83eea1f1 5358 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5359 nolock = true;
0af3d00b 5360
a9185b41 5361 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5362 if (nolock)
7a7eaa40 5363 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5364 else
7a7eaa40 5365 trans = btrfs_join_transaction(root);
3612b495
TI
5366 if (IS_ERR(trans))
5367 return PTR_ERR(trans);
a698d075 5368 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5369 }
5370 return ret;
5371}
5372
5373/*
54aa1f4d 5374 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5375 * inode changes. But, it is most likely to find the inode in cache.
5376 * FIXME, needs more benchmarking...there are no reasons other than performance
5377 * to keep or drop this code.
5378 */
48a3b636 5379static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5380{
5381 struct btrfs_root *root = BTRFS_I(inode)->root;
5382 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5383 int ret;
5384
72ac3c0d 5385 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5386 return 0;
39279cc3 5387
7a7eaa40 5388 trans = btrfs_join_transaction(root);
22c44fe6
JB
5389 if (IS_ERR(trans))
5390 return PTR_ERR(trans);
8929ecfa
YZ
5391
5392 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5393 if (ret && ret == -ENOSPC) {
5394 /* whoops, lets try again with the full transaction */
5395 btrfs_end_transaction(trans, root);
5396 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5397 if (IS_ERR(trans))
5398 return PTR_ERR(trans);
8929ecfa 5399
94b60442 5400 ret = btrfs_update_inode(trans, root, inode);
94b60442 5401 }
39279cc3 5402 btrfs_end_transaction(trans, root);
16cdcec7
MX
5403 if (BTRFS_I(inode)->delayed_node)
5404 btrfs_balance_delayed_items(root);
22c44fe6
JB
5405
5406 return ret;
5407}
5408
5409/*
5410 * This is a copy of file_update_time. We need this so we can return error on
5411 * ENOSPC for updating the inode in the case of file write and mmap writes.
5412 */
e41f941a
JB
5413static int btrfs_update_time(struct inode *inode, struct timespec *now,
5414 int flags)
22c44fe6 5415{
2bc55652
AB
5416 struct btrfs_root *root = BTRFS_I(inode)->root;
5417
5418 if (btrfs_root_readonly(root))
5419 return -EROFS;
5420
e41f941a 5421 if (flags & S_VERSION)
22c44fe6 5422 inode_inc_iversion(inode);
e41f941a
JB
5423 if (flags & S_CTIME)
5424 inode->i_ctime = *now;
5425 if (flags & S_MTIME)
5426 inode->i_mtime = *now;
5427 if (flags & S_ATIME)
5428 inode->i_atime = *now;
5429 return btrfs_dirty_inode(inode);
39279cc3
CM
5430}
5431
d352ac68
CM
5432/*
5433 * find the highest existing sequence number in a directory
5434 * and then set the in-memory index_cnt variable to reflect
5435 * free sequence numbers
5436 */
aec7477b
JB
5437static int btrfs_set_inode_index_count(struct inode *inode)
5438{
5439 struct btrfs_root *root = BTRFS_I(inode)->root;
5440 struct btrfs_key key, found_key;
5441 struct btrfs_path *path;
5442 struct extent_buffer *leaf;
5443 int ret;
5444
33345d01 5445 key.objectid = btrfs_ino(inode);
aec7477b
JB
5446 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5447 key.offset = (u64)-1;
5448
5449 path = btrfs_alloc_path();
5450 if (!path)
5451 return -ENOMEM;
5452
5453 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5454 if (ret < 0)
5455 goto out;
5456 /* FIXME: we should be able to handle this */
5457 if (ret == 0)
5458 goto out;
5459 ret = 0;
5460
5461 /*
5462 * MAGIC NUMBER EXPLANATION:
5463 * since we search a directory based on f_pos we have to start at 2
5464 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5465 * else has to start at 2
5466 */
5467 if (path->slots[0] == 0) {
5468 BTRFS_I(inode)->index_cnt = 2;
5469 goto out;
5470 }
5471
5472 path->slots[0]--;
5473
5474 leaf = path->nodes[0];
5475 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5476
33345d01 5477 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5478 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5479 BTRFS_I(inode)->index_cnt = 2;
5480 goto out;
5481 }
5482
5483 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5484out:
5485 btrfs_free_path(path);
5486 return ret;
5487}
5488
d352ac68
CM
5489/*
5490 * helper to find a free sequence number in a given directory. This current
5491 * code is very simple, later versions will do smarter things in the btree
5492 */
3de4586c 5493int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5494{
5495 int ret = 0;
5496
5497 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5498 ret = btrfs_inode_delayed_dir_index_count(dir);
5499 if (ret) {
5500 ret = btrfs_set_inode_index_count(dir);
5501 if (ret)
5502 return ret;
5503 }
aec7477b
JB
5504 }
5505
00e4e6b3 5506 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5507 BTRFS_I(dir)->index_cnt++;
5508
5509 return ret;
5510}
5511
39279cc3
CM
5512static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5513 struct btrfs_root *root,
aec7477b 5514 struct inode *dir,
9c58309d 5515 const char *name, int name_len,
175a4eb7
AV
5516 u64 ref_objectid, u64 objectid,
5517 umode_t mode, u64 *index)
39279cc3
CM
5518{
5519 struct inode *inode;
5f39d397 5520 struct btrfs_inode_item *inode_item;
39279cc3 5521 struct btrfs_key *location;
5f39d397 5522 struct btrfs_path *path;
9c58309d
CM
5523 struct btrfs_inode_ref *ref;
5524 struct btrfs_key key[2];
5525 u32 sizes[2];
5526 unsigned long ptr;
39279cc3 5527 int ret;
39279cc3 5528
5f39d397 5529 path = btrfs_alloc_path();
d8926bb3
MF
5530 if (!path)
5531 return ERR_PTR(-ENOMEM);
5f39d397 5532
39279cc3 5533 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5534 if (!inode) {
5535 btrfs_free_path(path);
39279cc3 5536 return ERR_PTR(-ENOMEM);
8fb27640 5537 }
39279cc3 5538
581bb050
LZ
5539 /*
5540 * we have to initialize this early, so we can reclaim the inode
5541 * number if we fail afterwards in this function.
5542 */
5543 inode->i_ino = objectid;
5544
aec7477b 5545 if (dir) {
1abe9b8a 5546 trace_btrfs_inode_request(dir);
5547
3de4586c 5548 ret = btrfs_set_inode_index(dir, index);
09771430 5549 if (ret) {
8fb27640 5550 btrfs_free_path(path);
09771430 5551 iput(inode);
aec7477b 5552 return ERR_PTR(ret);
09771430 5553 }
aec7477b
JB
5554 }
5555 /*
5556 * index_cnt is ignored for everything but a dir,
5557 * btrfs_get_inode_index_count has an explanation for the magic
5558 * number
5559 */
5560 BTRFS_I(inode)->index_cnt = 2;
67de1176 5561 BTRFS_I(inode)->dir_index = *index;
39279cc3 5562 BTRFS_I(inode)->root = root;
e02119d5 5563 BTRFS_I(inode)->generation = trans->transid;
76195853 5564 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5565
5dc562c5
JB
5566 /*
5567 * We could have gotten an inode number from somebody who was fsynced
5568 * and then removed in this same transaction, so let's just set full
5569 * sync since it will be a full sync anyway and this will blow away the
5570 * old info in the log.
5571 */
5572 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5573
9c58309d
CM
5574 key[0].objectid = objectid;
5575 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5576 key[0].offset = 0;
5577
f186373f
MF
5578 /*
5579 * Start new inodes with an inode_ref. This is slightly more
5580 * efficient for small numbers of hard links since they will
5581 * be packed into one item. Extended refs will kick in if we
5582 * add more hard links than can fit in the ref item.
5583 */
9c58309d
CM
5584 key[1].objectid = objectid;
5585 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5586 key[1].offset = ref_objectid;
5587
5588 sizes[0] = sizeof(struct btrfs_inode_item);
5589 sizes[1] = name_len + sizeof(*ref);
5590
b9473439 5591 path->leave_spinning = 1;
9c58309d
CM
5592 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5593 if (ret != 0)
5f39d397
CM
5594 goto fail;
5595
ecc11fab 5596 inode_init_owner(inode, dir, mode);
a76a3cd4 5597 inode_set_bytes(inode, 0);
39279cc3 5598 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5599 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5600 struct btrfs_inode_item);
293f7e07
LZ
5601 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5602 sizeof(*inode_item));
e02119d5 5603 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5604
5605 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5606 struct btrfs_inode_ref);
5607 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5608 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5609 ptr = (unsigned long)(ref + 1);
5610 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5611
5f39d397
CM
5612 btrfs_mark_buffer_dirty(path->nodes[0]);
5613 btrfs_free_path(path);
5614
39279cc3
CM
5615 location = &BTRFS_I(inode)->location;
5616 location->objectid = objectid;
39279cc3
CM
5617 location->offset = 0;
5618 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5619
6cbff00f
CH
5620 btrfs_inherit_iflags(inode, dir);
5621
569254b0 5622 if (S_ISREG(mode)) {
94272164
CM
5623 if (btrfs_test_opt(root, NODATASUM))
5624 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5625 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5626 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5627 BTRFS_INODE_NODATASUM;
94272164
CM
5628 }
5629
778ba82b 5630 btrfs_insert_inode_hash(inode);
5d4f98a2 5631 inode_tree_add(inode);
1abe9b8a 5632
5633 trace_btrfs_inode_new(inode);
1973f0fa 5634 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5635
8ea05e3a
AB
5636 btrfs_update_root_times(trans, root);
5637
63541927
FDBM
5638 ret = btrfs_inode_inherit_props(trans, inode, dir);
5639 if (ret)
5640 btrfs_err(root->fs_info,
5641 "error inheriting props for ino %llu (root %llu): %d",
5642 btrfs_ino(inode), root->root_key.objectid, ret);
5643
39279cc3 5644 return inode;
5f39d397 5645fail:
aec7477b
JB
5646 if (dir)
5647 BTRFS_I(dir)->index_cnt--;
5f39d397 5648 btrfs_free_path(path);
09771430 5649 iput(inode);
5f39d397 5650 return ERR_PTR(ret);
39279cc3
CM
5651}
5652
5653static inline u8 btrfs_inode_type(struct inode *inode)
5654{
5655 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5656}
5657
d352ac68
CM
5658/*
5659 * utility function to add 'inode' into 'parent_inode' with
5660 * a give name and a given sequence number.
5661 * if 'add_backref' is true, also insert a backref from the
5662 * inode to the parent directory.
5663 */
e02119d5
CM
5664int btrfs_add_link(struct btrfs_trans_handle *trans,
5665 struct inode *parent_inode, struct inode *inode,
5666 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5667{
4df27c4d 5668 int ret = 0;
39279cc3 5669 struct btrfs_key key;
e02119d5 5670 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5671 u64 ino = btrfs_ino(inode);
5672 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5673
33345d01 5674 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5675 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5676 } else {
33345d01 5677 key.objectid = ino;
4df27c4d
YZ
5678 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5679 key.offset = 0;
5680 }
5681
33345d01 5682 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5683 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5684 key.objectid, root->root_key.objectid,
33345d01 5685 parent_ino, index, name, name_len);
4df27c4d 5686 } else if (add_backref) {
33345d01
LZ
5687 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5688 parent_ino, index);
4df27c4d 5689 }
39279cc3 5690
79787eaa
JM
5691 /* Nothing to clean up yet */
5692 if (ret)
5693 return ret;
4df27c4d 5694
79787eaa
JM
5695 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5696 parent_inode, &key,
5697 btrfs_inode_type(inode), index);
9c52057c 5698 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5699 goto fail_dir_item;
5700 else if (ret) {
5701 btrfs_abort_transaction(trans, root, ret);
5702 return ret;
39279cc3 5703 }
79787eaa
JM
5704
5705 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5706 name_len * 2);
0c4d2d95 5707 inode_inc_iversion(parent_inode);
79787eaa
JM
5708 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5709 ret = btrfs_update_inode(trans, root, parent_inode);
5710 if (ret)
5711 btrfs_abort_transaction(trans, root, ret);
39279cc3 5712 return ret;
fe66a05a
CM
5713
5714fail_dir_item:
5715 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5716 u64 local_index;
5717 int err;
5718 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5719 key.objectid, root->root_key.objectid,
5720 parent_ino, &local_index, name, name_len);
5721
5722 } else if (add_backref) {
5723 u64 local_index;
5724 int err;
5725
5726 err = btrfs_del_inode_ref(trans, root, name, name_len,
5727 ino, parent_ino, &local_index);
5728 }
5729 return ret;
39279cc3
CM
5730}
5731
5732static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5733 struct inode *dir, struct dentry *dentry,
5734 struct inode *inode, int backref, u64 index)
39279cc3 5735{
a1b075d2
JB
5736 int err = btrfs_add_link(trans, dir, inode,
5737 dentry->d_name.name, dentry->d_name.len,
5738 backref, index);
39279cc3
CM
5739 if (err > 0)
5740 err = -EEXIST;
5741 return err;
5742}
5743
618e21d5 5744static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5745 umode_t mode, dev_t rdev)
618e21d5
JB
5746{
5747 struct btrfs_trans_handle *trans;
5748 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5749 struct inode *inode = NULL;
618e21d5
JB
5750 int err;
5751 int drop_inode = 0;
5752 u64 objectid;
00e4e6b3 5753 u64 index = 0;
618e21d5
JB
5754
5755 if (!new_valid_dev(rdev))
5756 return -EINVAL;
5757
9ed74f2d
JB
5758 /*
5759 * 2 for inode item and ref
5760 * 2 for dir items
5761 * 1 for xattr if selinux is on
5762 */
a22285a6
YZ
5763 trans = btrfs_start_transaction(root, 5);
5764 if (IS_ERR(trans))
5765 return PTR_ERR(trans);
1832a6d5 5766
581bb050
LZ
5767 err = btrfs_find_free_ino(root, &objectid);
5768 if (err)
5769 goto out_unlock;
5770
aec7477b 5771 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5772 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5773 mode, &index);
7cf96da3
TI
5774 if (IS_ERR(inode)) {
5775 err = PTR_ERR(inode);
618e21d5 5776 goto out_unlock;
7cf96da3 5777 }
618e21d5 5778
2a7dba39 5779 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5780 if (err) {
5781 drop_inode = 1;
5782 goto out_unlock;
5783 }
5784
ad19db71
CS
5785 /*
5786 * If the active LSM wants to access the inode during
5787 * d_instantiate it needs these. Smack checks to see
5788 * if the filesystem supports xattrs by looking at the
5789 * ops vector.
5790 */
5791
5792 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5793 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5794 if (err)
5795 drop_inode = 1;
5796 else {
618e21d5 5797 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5798 btrfs_update_inode(trans, root, inode);
08c422c2 5799 d_instantiate(dentry, inode);
618e21d5 5800 }
618e21d5 5801out_unlock:
7ad85bb7 5802 btrfs_end_transaction(trans, root);
c581afc8 5803 btrfs_balance_delayed_items(root);
b53d3f5d 5804 btrfs_btree_balance_dirty(root);
618e21d5
JB
5805 if (drop_inode) {
5806 inode_dec_link_count(inode);
5807 iput(inode);
5808 }
618e21d5
JB
5809 return err;
5810}
5811
39279cc3 5812static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5813 umode_t mode, bool excl)
39279cc3
CM
5814{
5815 struct btrfs_trans_handle *trans;
5816 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5817 struct inode *inode = NULL;
43baa579 5818 int drop_inode_on_err = 0;
a22285a6 5819 int err;
39279cc3 5820 u64 objectid;
00e4e6b3 5821 u64 index = 0;
39279cc3 5822
9ed74f2d
JB
5823 /*
5824 * 2 for inode item and ref
5825 * 2 for dir items
5826 * 1 for xattr if selinux is on
5827 */
a22285a6
YZ
5828 trans = btrfs_start_transaction(root, 5);
5829 if (IS_ERR(trans))
5830 return PTR_ERR(trans);
9ed74f2d 5831
581bb050
LZ
5832 err = btrfs_find_free_ino(root, &objectid);
5833 if (err)
5834 goto out_unlock;
5835
aec7477b 5836 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5837 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5838 mode, &index);
7cf96da3
TI
5839 if (IS_ERR(inode)) {
5840 err = PTR_ERR(inode);
39279cc3 5841 goto out_unlock;
7cf96da3 5842 }
43baa579 5843 drop_inode_on_err = 1;
39279cc3 5844
2a7dba39 5845 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5846 if (err)
33268eaf 5847 goto out_unlock;
33268eaf 5848
9185aa58
FB
5849 err = btrfs_update_inode(trans, root, inode);
5850 if (err)
5851 goto out_unlock;
5852
ad19db71
CS
5853 /*
5854 * If the active LSM wants to access the inode during
5855 * d_instantiate it needs these. Smack checks to see
5856 * if the filesystem supports xattrs by looking at the
5857 * ops vector.
5858 */
5859 inode->i_fop = &btrfs_file_operations;
5860 inode->i_op = &btrfs_file_inode_operations;
5861
a1b075d2 5862 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5863 if (err)
43baa579
FB
5864 goto out_unlock;
5865
5866 inode->i_mapping->a_ops = &btrfs_aops;
5867 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5868 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5869 d_instantiate(dentry, inode);
5870
39279cc3 5871out_unlock:
7ad85bb7 5872 btrfs_end_transaction(trans, root);
43baa579 5873 if (err && drop_inode_on_err) {
39279cc3
CM
5874 inode_dec_link_count(inode);
5875 iput(inode);
5876 }
c581afc8 5877 btrfs_balance_delayed_items(root);
b53d3f5d 5878 btrfs_btree_balance_dirty(root);
39279cc3
CM
5879 return err;
5880}
5881
5882static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5883 struct dentry *dentry)
5884{
5885 struct btrfs_trans_handle *trans;
5886 struct btrfs_root *root = BTRFS_I(dir)->root;
5887 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5888 u64 index;
39279cc3
CM
5889 int err;
5890 int drop_inode = 0;
5891
4a8be425
TH
5892 /* do not allow sys_link's with other subvols of the same device */
5893 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5894 return -EXDEV;
4a8be425 5895
f186373f 5896 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5897 return -EMLINK;
4a8be425 5898
3de4586c 5899 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5900 if (err)
5901 goto fail;
5902
a22285a6 5903 /*
7e6b6465 5904 * 2 items for inode and inode ref
a22285a6 5905 * 2 items for dir items
7e6b6465 5906 * 1 item for parent inode
a22285a6 5907 */
7e6b6465 5908 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5909 if (IS_ERR(trans)) {
5910 err = PTR_ERR(trans);
5911 goto fail;
5912 }
5f39d397 5913
67de1176
MX
5914 /* There are several dir indexes for this inode, clear the cache. */
5915 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 5916 inc_nlink(inode);
0c4d2d95 5917 inode_inc_iversion(inode);
3153495d 5918 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5919 ihold(inode);
e9976151 5920 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5921
a1b075d2 5922 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5923
a5719521 5924 if (err) {
54aa1f4d 5925 drop_inode = 1;
a5719521 5926 } else {
10d9f309 5927 struct dentry *parent = dentry->d_parent;
a5719521 5928 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5929 if (err)
5930 goto fail;
08c422c2 5931 d_instantiate(dentry, inode);
6a912213 5932 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5933 }
39279cc3 5934
7ad85bb7 5935 btrfs_end_transaction(trans, root);
c581afc8 5936 btrfs_balance_delayed_items(root);
1832a6d5 5937fail:
39279cc3
CM
5938 if (drop_inode) {
5939 inode_dec_link_count(inode);
5940 iput(inode);
5941 }
b53d3f5d 5942 btrfs_btree_balance_dirty(root);
39279cc3
CM
5943 return err;
5944}
5945
18bb1db3 5946static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5947{
b9d86667 5948 struct inode *inode = NULL;
39279cc3
CM
5949 struct btrfs_trans_handle *trans;
5950 struct btrfs_root *root = BTRFS_I(dir)->root;
5951 int err = 0;
5952 int drop_on_err = 0;
b9d86667 5953 u64 objectid = 0;
00e4e6b3 5954 u64 index = 0;
39279cc3 5955
9ed74f2d
JB
5956 /*
5957 * 2 items for inode and ref
5958 * 2 items for dir items
5959 * 1 for xattr if selinux is on
5960 */
a22285a6
YZ
5961 trans = btrfs_start_transaction(root, 5);
5962 if (IS_ERR(trans))
5963 return PTR_ERR(trans);
39279cc3 5964
581bb050
LZ
5965 err = btrfs_find_free_ino(root, &objectid);
5966 if (err)
5967 goto out_fail;
5968
aec7477b 5969 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5970 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5971 S_IFDIR | mode, &index);
39279cc3
CM
5972 if (IS_ERR(inode)) {
5973 err = PTR_ERR(inode);
5974 goto out_fail;
5975 }
5f39d397 5976
39279cc3 5977 drop_on_err = 1;
33268eaf 5978
2a7dba39 5979 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5980 if (err)
5981 goto out_fail;
5982
39279cc3
CM
5983 inode->i_op = &btrfs_dir_inode_operations;
5984 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5985
dbe674a9 5986 btrfs_i_size_write(inode, 0);
39279cc3
CM
5987 err = btrfs_update_inode(trans, root, inode);
5988 if (err)
5989 goto out_fail;
5f39d397 5990
a1b075d2
JB
5991 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5992 dentry->d_name.len, 0, index);
39279cc3
CM
5993 if (err)
5994 goto out_fail;
5f39d397 5995
39279cc3
CM
5996 d_instantiate(dentry, inode);
5997 drop_on_err = 0;
39279cc3
CM
5998
5999out_fail:
7ad85bb7 6000 btrfs_end_transaction(trans, root);
39279cc3
CM
6001 if (drop_on_err)
6002 iput(inode);
c581afc8 6003 btrfs_balance_delayed_items(root);
b53d3f5d 6004 btrfs_btree_balance_dirty(root);
39279cc3
CM
6005 return err;
6006}
6007
d352ac68
CM
6008/* helper for btfs_get_extent. Given an existing extent in the tree,
6009 * and an extent that you want to insert, deal with overlap and insert
6010 * the new extent into the tree.
6011 */
3b951516
CM
6012static int merge_extent_mapping(struct extent_map_tree *em_tree,
6013 struct extent_map *existing,
e6dcd2dc
CM
6014 struct extent_map *em,
6015 u64 map_start, u64 map_len)
3b951516
CM
6016{
6017 u64 start_diff;
3b951516 6018
e6dcd2dc
CM
6019 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6020 start_diff = map_start - em->start;
6021 em->start = map_start;
6022 em->len = map_len;
c8b97818
CM
6023 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6024 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6025 em->block_start += start_diff;
c8b97818
CM
6026 em->block_len -= start_diff;
6027 }
09a2a8f9 6028 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6029}
6030
c8b97818
CM
6031static noinline int uncompress_inline(struct btrfs_path *path,
6032 struct inode *inode, struct page *page,
6033 size_t pg_offset, u64 extent_offset,
6034 struct btrfs_file_extent_item *item)
6035{
6036 int ret;
6037 struct extent_buffer *leaf = path->nodes[0];
6038 char *tmp;
6039 size_t max_size;
6040 unsigned long inline_size;
6041 unsigned long ptr;
261507a0 6042 int compress_type;
c8b97818
CM
6043
6044 WARN_ON(pg_offset != 0);
261507a0 6045 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6046 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6047 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6048 btrfs_item_nr(path->slots[0]));
c8b97818 6049 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6050 if (!tmp)
6051 return -ENOMEM;
c8b97818
CM
6052 ptr = btrfs_file_extent_inline_start(item);
6053
6054 read_extent_buffer(leaf, tmp, ptr, inline_size);
6055
5b050f04 6056 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6057 ret = btrfs_decompress(compress_type, tmp, page,
6058 extent_offset, inline_size, max_size);
c8b97818 6059 if (ret) {
7ac687d9 6060 char *kaddr = kmap_atomic(page);
c8b97818
CM
6061 unsigned long copy_size = min_t(u64,
6062 PAGE_CACHE_SIZE - pg_offset,
6063 max_size - extent_offset);
6064 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 6065 kunmap_atomic(kaddr);
c8b97818
CM
6066 }
6067 kfree(tmp);
6068 return 0;
6069}
6070
d352ac68
CM
6071/*
6072 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6073 * the ugly parts come from merging extents from the disk with the in-ram
6074 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6075 * where the in-ram extents might be locked pending data=ordered completion.
6076 *
6077 * This also copies inline extents directly into the page.
6078 */
d397712b 6079
a52d9a80 6080struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6081 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6082 int create)
6083{
6084 int ret;
6085 int err = 0;
db94535d 6086 u64 bytenr;
a52d9a80
CM
6087 u64 extent_start = 0;
6088 u64 extent_end = 0;
33345d01 6089 u64 objectid = btrfs_ino(inode);
a52d9a80 6090 u32 found_type;
f421950f 6091 struct btrfs_path *path = NULL;
a52d9a80
CM
6092 struct btrfs_root *root = BTRFS_I(inode)->root;
6093 struct btrfs_file_extent_item *item;
5f39d397
CM
6094 struct extent_buffer *leaf;
6095 struct btrfs_key found_key;
a52d9a80
CM
6096 struct extent_map *em = NULL;
6097 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6098 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6099 struct btrfs_trans_handle *trans = NULL;
261507a0 6100 int compress_type;
a52d9a80 6101
a52d9a80 6102again:
890871be 6103 read_lock(&em_tree->lock);
d1310b2e 6104 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6105 if (em)
6106 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6107 read_unlock(&em_tree->lock);
d1310b2e 6108
a52d9a80 6109 if (em) {
e1c4b745
CM
6110 if (em->start > start || em->start + em->len <= start)
6111 free_extent_map(em);
6112 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6113 free_extent_map(em);
6114 else
6115 goto out;
a52d9a80 6116 }
172ddd60 6117 em = alloc_extent_map();
a52d9a80 6118 if (!em) {
d1310b2e
CM
6119 err = -ENOMEM;
6120 goto out;
a52d9a80 6121 }
e6dcd2dc 6122 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6123 em->start = EXTENT_MAP_HOLE;
445a6944 6124 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6125 em->len = (u64)-1;
c8b97818 6126 em->block_len = (u64)-1;
f421950f
CM
6127
6128 if (!path) {
6129 path = btrfs_alloc_path();
026fd317
JB
6130 if (!path) {
6131 err = -ENOMEM;
6132 goto out;
6133 }
6134 /*
6135 * Chances are we'll be called again, so go ahead and do
6136 * readahead
6137 */
6138 path->reada = 1;
f421950f
CM
6139 }
6140
179e29e4
CM
6141 ret = btrfs_lookup_file_extent(trans, root, path,
6142 objectid, start, trans != NULL);
a52d9a80
CM
6143 if (ret < 0) {
6144 err = ret;
6145 goto out;
6146 }
6147
6148 if (ret != 0) {
6149 if (path->slots[0] == 0)
6150 goto not_found;
6151 path->slots[0]--;
6152 }
6153
5f39d397
CM
6154 leaf = path->nodes[0];
6155 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6156 struct btrfs_file_extent_item);
a52d9a80 6157 /* are we inside the extent that was found? */
5f39d397
CM
6158 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6159 found_type = btrfs_key_type(&found_key);
6160 if (found_key.objectid != objectid ||
a52d9a80 6161 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6162 /*
6163 * If we backup past the first extent we want to move forward
6164 * and see if there is an extent in front of us, otherwise we'll
6165 * say there is a hole for our whole search range which can
6166 * cause problems.
6167 */
6168 extent_end = start;
6169 goto next;
a52d9a80
CM
6170 }
6171
5f39d397
CM
6172 found_type = btrfs_file_extent_type(leaf, item);
6173 extent_start = found_key.offset;
261507a0 6174 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
6175 if (found_type == BTRFS_FILE_EXTENT_REG ||
6176 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6177 extent_end = extent_start +
db94535d 6178 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6179 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6180 size_t size;
514ac8ad 6181 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6182 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6183 }
25a50341 6184next:
9036c102
YZ
6185 if (start >= extent_end) {
6186 path->slots[0]++;
6187 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6188 ret = btrfs_next_leaf(root, path);
6189 if (ret < 0) {
6190 err = ret;
6191 goto out;
a52d9a80 6192 }
9036c102
YZ
6193 if (ret > 0)
6194 goto not_found;
6195 leaf = path->nodes[0];
a52d9a80 6196 }
9036c102
YZ
6197 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6198 if (found_key.objectid != objectid ||
6199 found_key.type != BTRFS_EXTENT_DATA_KEY)
6200 goto not_found;
6201 if (start + len <= found_key.offset)
6202 goto not_found;
6203 em->start = start;
70c8a91c 6204 em->orig_start = start;
9036c102
YZ
6205 em->len = found_key.offset - start;
6206 goto not_found_em;
6207 }
6208
cc95bef6 6209 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6210 if (found_type == BTRFS_FILE_EXTENT_REG ||
6211 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6212 em->start = extent_start;
6213 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6214 em->orig_start = extent_start -
6215 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6216 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6217 item);
db94535d
CM
6218 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6219 if (bytenr == 0) {
5f39d397 6220 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6221 goto insert;
6222 }
261507a0 6223 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6224 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6225 em->compress_type = compress_type;
c8b97818 6226 em->block_start = bytenr;
b4939680 6227 em->block_len = em->orig_block_len;
c8b97818
CM
6228 } else {
6229 bytenr += btrfs_file_extent_offset(leaf, item);
6230 em->block_start = bytenr;
6231 em->block_len = em->len;
d899e052
YZ
6232 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6233 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6234 }
a52d9a80
CM
6235 goto insert;
6236 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6237 unsigned long ptr;
a52d9a80 6238 char *map;
3326d1b0
CM
6239 size_t size;
6240 size_t extent_offset;
6241 size_t copy_size;
a52d9a80 6242
689f9346 6243 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6244 if (!page || create) {
689f9346 6245 em->start = extent_start;
9036c102 6246 em->len = extent_end - extent_start;
689f9346
Y
6247 goto out;
6248 }
5f39d397 6249
514ac8ad 6250 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6251 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6252 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6253 size - extent_offset);
3326d1b0 6254 em->start = extent_start + extent_offset;
fda2832f 6255 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6256 em->orig_block_len = em->len;
70c8a91c 6257 em->orig_start = em->start;
261507a0 6258 if (compress_type) {
c8b97818 6259 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6260 em->compress_type = compress_type;
6261 }
689f9346 6262 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6263 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6264 if (btrfs_file_extent_compression(leaf, item) !=
6265 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6266 ret = uncompress_inline(path, inode, page,
6267 pg_offset,
6268 extent_offset, item);
79787eaa 6269 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6270 } else {
6271 map = kmap(page);
6272 read_extent_buffer(leaf, map + pg_offset, ptr,
6273 copy_size);
93c82d57
CM
6274 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6275 memset(map + pg_offset + copy_size, 0,
6276 PAGE_CACHE_SIZE - pg_offset -
6277 copy_size);
6278 }
c8b97818
CM
6279 kunmap(page);
6280 }
179e29e4
CM
6281 flush_dcache_page(page);
6282 } else if (create && PageUptodate(page)) {
6bf7e080 6283 BUG();
179e29e4
CM
6284 if (!trans) {
6285 kunmap(page);
6286 free_extent_map(em);
6287 em = NULL;
ff5714cc 6288
b3b4aa74 6289 btrfs_release_path(path);
7a7eaa40 6290 trans = btrfs_join_transaction(root);
ff5714cc 6291
3612b495
TI
6292 if (IS_ERR(trans))
6293 return ERR_CAST(trans);
179e29e4
CM
6294 goto again;
6295 }
c8b97818 6296 map = kmap(page);
70dec807 6297 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6298 copy_size);
c8b97818 6299 kunmap(page);
179e29e4 6300 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6301 }
d1310b2e 6302 set_extent_uptodate(io_tree, em->start,
507903b8 6303 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6304 goto insert;
6305 } else {
31b1a2bd 6306 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6307 }
6308not_found:
6309 em->start = start;
70c8a91c 6310 em->orig_start = start;
d1310b2e 6311 em->len = len;
a52d9a80 6312not_found_em:
5f39d397 6313 em->block_start = EXTENT_MAP_HOLE;
9036c102 6314 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6315insert:
b3b4aa74 6316 btrfs_release_path(path);
d1310b2e 6317 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6318 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6319 em->start, em->len, start, len);
a52d9a80
CM
6320 err = -EIO;
6321 goto out;
6322 }
d1310b2e
CM
6323
6324 err = 0;
890871be 6325 write_lock(&em_tree->lock);
09a2a8f9 6326 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6327 /* it is possible that someone inserted the extent into the tree
6328 * while we had the lock dropped. It is also possible that
6329 * an overlapping map exists in the tree
6330 */
a52d9a80 6331 if (ret == -EEXIST) {
3b951516 6332 struct extent_map *existing;
e6dcd2dc
CM
6333
6334 ret = 0;
6335
3b951516 6336 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6337 if (existing && (existing->start > start ||
6338 existing->start + existing->len <= start)) {
6339 free_extent_map(existing);
6340 existing = NULL;
6341 }
3b951516
CM
6342 if (!existing) {
6343 existing = lookup_extent_mapping(em_tree, em->start,
6344 em->len);
6345 if (existing) {
6346 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6347 em, start,
6348 root->sectorsize);
3b951516
CM
6349 free_extent_map(existing);
6350 if (err) {
6351 free_extent_map(em);
6352 em = NULL;
6353 }
6354 } else {
6355 err = -EIO;
3b951516
CM
6356 free_extent_map(em);
6357 em = NULL;
6358 }
6359 } else {
6360 free_extent_map(em);
6361 em = existing;
e6dcd2dc 6362 err = 0;
a52d9a80 6363 }
a52d9a80 6364 }
890871be 6365 write_unlock(&em_tree->lock);
a52d9a80 6366out:
1abe9b8a 6367
4cd8587c 6368 trace_btrfs_get_extent(root, em);
1abe9b8a 6369
f421950f
CM
6370 if (path)
6371 btrfs_free_path(path);
a52d9a80
CM
6372 if (trans) {
6373 ret = btrfs_end_transaction(trans, root);
d397712b 6374 if (!err)
a52d9a80
CM
6375 err = ret;
6376 }
a52d9a80
CM
6377 if (err) {
6378 free_extent_map(em);
a52d9a80
CM
6379 return ERR_PTR(err);
6380 }
79787eaa 6381 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6382 return em;
6383}
6384
ec29ed5b
CM
6385struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6386 size_t pg_offset, u64 start, u64 len,
6387 int create)
6388{
6389 struct extent_map *em;
6390 struct extent_map *hole_em = NULL;
6391 u64 range_start = start;
6392 u64 end;
6393 u64 found;
6394 u64 found_end;
6395 int err = 0;
6396
6397 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6398 if (IS_ERR(em))
6399 return em;
6400 if (em) {
6401 /*
f9e4fb53
LB
6402 * if our em maps to
6403 * - a hole or
6404 * - a pre-alloc extent,
6405 * there might actually be delalloc bytes behind it.
ec29ed5b 6406 */
f9e4fb53
LB
6407 if (em->block_start != EXTENT_MAP_HOLE &&
6408 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6409 return em;
6410 else
6411 hole_em = em;
6412 }
6413
6414 /* check to see if we've wrapped (len == -1 or similar) */
6415 end = start + len;
6416 if (end < start)
6417 end = (u64)-1;
6418 else
6419 end -= 1;
6420
6421 em = NULL;
6422
6423 /* ok, we didn't find anything, lets look for delalloc */
6424 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6425 end, len, EXTENT_DELALLOC, 1);
6426 found_end = range_start + found;
6427 if (found_end < range_start)
6428 found_end = (u64)-1;
6429
6430 /*
6431 * we didn't find anything useful, return
6432 * the original results from get_extent()
6433 */
6434 if (range_start > end || found_end <= start) {
6435 em = hole_em;
6436 hole_em = NULL;
6437 goto out;
6438 }
6439
6440 /* adjust the range_start to make sure it doesn't
6441 * go backwards from the start they passed in
6442 */
67871254 6443 range_start = max(start, range_start);
ec29ed5b
CM
6444 found = found_end - range_start;
6445
6446 if (found > 0) {
6447 u64 hole_start = start;
6448 u64 hole_len = len;
6449
172ddd60 6450 em = alloc_extent_map();
ec29ed5b
CM
6451 if (!em) {
6452 err = -ENOMEM;
6453 goto out;
6454 }
6455 /*
6456 * when btrfs_get_extent can't find anything it
6457 * returns one huge hole
6458 *
6459 * make sure what it found really fits our range, and
6460 * adjust to make sure it is based on the start from
6461 * the caller
6462 */
6463 if (hole_em) {
6464 u64 calc_end = extent_map_end(hole_em);
6465
6466 if (calc_end <= start || (hole_em->start > end)) {
6467 free_extent_map(hole_em);
6468 hole_em = NULL;
6469 } else {
6470 hole_start = max(hole_em->start, start);
6471 hole_len = calc_end - hole_start;
6472 }
6473 }
6474 em->bdev = NULL;
6475 if (hole_em && range_start > hole_start) {
6476 /* our hole starts before our delalloc, so we
6477 * have to return just the parts of the hole
6478 * that go until the delalloc starts
6479 */
6480 em->len = min(hole_len,
6481 range_start - hole_start);
6482 em->start = hole_start;
6483 em->orig_start = hole_start;
6484 /*
6485 * don't adjust block start at all,
6486 * it is fixed at EXTENT_MAP_HOLE
6487 */
6488 em->block_start = hole_em->block_start;
6489 em->block_len = hole_len;
f9e4fb53
LB
6490 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6491 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6492 } else {
6493 em->start = range_start;
6494 em->len = found;
6495 em->orig_start = range_start;
6496 em->block_start = EXTENT_MAP_DELALLOC;
6497 em->block_len = found;
6498 }
6499 } else if (hole_em) {
6500 return hole_em;
6501 }
6502out:
6503
6504 free_extent_map(hole_em);
6505 if (err) {
6506 free_extent_map(em);
6507 return ERR_PTR(err);
6508 }
6509 return em;
6510}
6511
4b46fce2
JB
6512static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6513 u64 start, u64 len)
6514{
6515 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6516 struct extent_map *em;
4b46fce2
JB
6517 struct btrfs_key ins;
6518 u64 alloc_hint;
6519 int ret;
4b46fce2 6520
4b46fce2 6521 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6522 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
81c9ad23 6523 alloc_hint, &ins, 1);
00361589
JB
6524 if (ret)
6525 return ERR_PTR(ret);
4b46fce2 6526
70c8a91c 6527 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6528 ins.offset, ins.offset, ins.offset, 0);
00361589
JB
6529 if (IS_ERR(em)) {
6530 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6531 return em;
6532 }
4b46fce2
JB
6533
6534 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6535 ins.offset, ins.offset, 0);
6536 if (ret) {
6537 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
00361589
JB
6538 free_extent_map(em);
6539 return ERR_PTR(ret);
4b46fce2 6540 }
00361589 6541
4b46fce2
JB
6542 return em;
6543}
6544
46bfbb5c
CM
6545/*
6546 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6547 * block must be cow'd
6548 */
00361589 6549noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6550 u64 *orig_start, u64 *orig_block_len,
6551 u64 *ram_bytes)
46bfbb5c 6552{
00361589 6553 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6554 struct btrfs_path *path;
6555 int ret;
6556 struct extent_buffer *leaf;
6557 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6558 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6559 struct btrfs_file_extent_item *fi;
6560 struct btrfs_key key;
6561 u64 disk_bytenr;
6562 u64 backref_offset;
6563 u64 extent_end;
6564 u64 num_bytes;
6565 int slot;
6566 int found_type;
7ee9e440 6567 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6568
46bfbb5c
CM
6569 path = btrfs_alloc_path();
6570 if (!path)
6571 return -ENOMEM;
6572
00361589 6573 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6574 offset, 0);
6575 if (ret < 0)
6576 goto out;
6577
6578 slot = path->slots[0];
6579 if (ret == 1) {
6580 if (slot == 0) {
6581 /* can't find the item, must cow */
6582 ret = 0;
6583 goto out;
6584 }
6585 slot--;
6586 }
6587 ret = 0;
6588 leaf = path->nodes[0];
6589 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6590 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6591 key.type != BTRFS_EXTENT_DATA_KEY) {
6592 /* not our file or wrong item type, must cow */
6593 goto out;
6594 }
6595
6596 if (key.offset > offset) {
6597 /* Wrong offset, must cow */
6598 goto out;
6599 }
6600
6601 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6602 found_type = btrfs_file_extent_type(leaf, fi);
6603 if (found_type != BTRFS_FILE_EXTENT_REG &&
6604 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6605 /* not a regular extent, must cow */
6606 goto out;
6607 }
7ee9e440
JB
6608
6609 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6610 goto out;
6611
e77751aa
MX
6612 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6613 if (extent_end <= offset)
6614 goto out;
6615
46bfbb5c 6616 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6617 if (disk_bytenr == 0)
6618 goto out;
6619
6620 if (btrfs_file_extent_compression(leaf, fi) ||
6621 btrfs_file_extent_encryption(leaf, fi) ||
6622 btrfs_file_extent_other_encoding(leaf, fi))
6623 goto out;
6624
46bfbb5c
CM
6625 backref_offset = btrfs_file_extent_offset(leaf, fi);
6626
7ee9e440
JB
6627 if (orig_start) {
6628 *orig_start = key.offset - backref_offset;
6629 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6630 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6631 }
eb384b55 6632
46bfbb5c
CM
6633 if (btrfs_extent_readonly(root, disk_bytenr))
6634 goto out;
7b2b7085
MX
6635
6636 num_bytes = min(offset + *len, extent_end) - offset;
6637 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6638 u64 range_end;
6639
6640 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6641 ret = test_range_bit(io_tree, offset, range_end,
6642 EXTENT_DELALLOC, 0, NULL);
6643 if (ret) {
6644 ret = -EAGAIN;
6645 goto out;
6646 }
6647 }
6648
1bda19eb 6649 btrfs_release_path(path);
46bfbb5c
CM
6650
6651 /*
6652 * look for other files referencing this extent, if we
6653 * find any we must cow
6654 */
00361589
JB
6655 trans = btrfs_join_transaction(root);
6656 if (IS_ERR(trans)) {
6657 ret = 0;
46bfbb5c 6658 goto out;
00361589
JB
6659 }
6660
6661 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6662 key.offset - backref_offset, disk_bytenr);
6663 btrfs_end_transaction(trans, root);
6664 if (ret) {
6665 ret = 0;
6666 goto out;
6667 }
46bfbb5c
CM
6668
6669 /*
6670 * adjust disk_bytenr and num_bytes to cover just the bytes
6671 * in this extent we are about to write. If there
6672 * are any csums in that range we have to cow in order
6673 * to keep the csums correct
6674 */
6675 disk_bytenr += backref_offset;
6676 disk_bytenr += offset - key.offset;
46bfbb5c
CM
6677 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6678 goto out;
6679 /*
6680 * all of the above have passed, it is safe to overwrite this extent
6681 * without cow
6682 */
eb384b55 6683 *len = num_bytes;
46bfbb5c
CM
6684 ret = 1;
6685out:
6686 btrfs_free_path(path);
6687 return ret;
6688}
6689
eb838e73
JB
6690static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6691 struct extent_state **cached_state, int writing)
6692{
6693 struct btrfs_ordered_extent *ordered;
6694 int ret = 0;
6695
6696 while (1) {
6697 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6698 0, cached_state);
6699 /*
6700 * We're concerned with the entire range that we're going to be
6701 * doing DIO to, so we need to make sure theres no ordered
6702 * extents in this range.
6703 */
6704 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6705 lockend - lockstart + 1);
6706
6707 /*
6708 * We need to make sure there are no buffered pages in this
6709 * range either, we could have raced between the invalidate in
6710 * generic_file_direct_write and locking the extent. The
6711 * invalidate needs to happen so that reads after a write do not
6712 * get stale data.
6713 */
6714 if (!ordered && (!writing ||
6715 !test_range_bit(&BTRFS_I(inode)->io_tree,
6716 lockstart, lockend, EXTENT_UPTODATE, 0,
6717 *cached_state)))
6718 break;
6719
6720 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6721 cached_state, GFP_NOFS);
6722
6723 if (ordered) {
6724 btrfs_start_ordered_extent(inode, ordered, 1);
6725 btrfs_put_ordered_extent(ordered);
6726 } else {
6727 /* Screw you mmap */
6728 ret = filemap_write_and_wait_range(inode->i_mapping,
6729 lockstart,
6730 lockend);
6731 if (ret)
6732 break;
6733
6734 /*
6735 * If we found a page that couldn't be invalidated just
6736 * fall back to buffered.
6737 */
6738 ret = invalidate_inode_pages2_range(inode->i_mapping,
6739 lockstart >> PAGE_CACHE_SHIFT,
6740 lockend >> PAGE_CACHE_SHIFT);
6741 if (ret)
6742 break;
6743 }
6744
6745 cond_resched();
6746 }
6747
6748 return ret;
6749}
6750
69ffb543
JB
6751static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6752 u64 len, u64 orig_start,
6753 u64 block_start, u64 block_len,
cc95bef6
JB
6754 u64 orig_block_len, u64 ram_bytes,
6755 int type)
69ffb543
JB
6756{
6757 struct extent_map_tree *em_tree;
6758 struct extent_map *em;
6759 struct btrfs_root *root = BTRFS_I(inode)->root;
6760 int ret;
6761
6762 em_tree = &BTRFS_I(inode)->extent_tree;
6763 em = alloc_extent_map();
6764 if (!em)
6765 return ERR_PTR(-ENOMEM);
6766
6767 em->start = start;
6768 em->orig_start = orig_start;
2ab28f32
JB
6769 em->mod_start = start;
6770 em->mod_len = len;
69ffb543
JB
6771 em->len = len;
6772 em->block_len = block_len;
6773 em->block_start = block_start;
6774 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6775 em->orig_block_len = orig_block_len;
cc95bef6 6776 em->ram_bytes = ram_bytes;
70c8a91c 6777 em->generation = -1;
69ffb543
JB
6778 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6779 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6780 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6781
6782 do {
6783 btrfs_drop_extent_cache(inode, em->start,
6784 em->start + em->len - 1, 0);
6785 write_lock(&em_tree->lock);
09a2a8f9 6786 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6787 write_unlock(&em_tree->lock);
6788 } while (ret == -EEXIST);
6789
6790 if (ret) {
6791 free_extent_map(em);
6792 return ERR_PTR(ret);
6793 }
6794
6795 return em;
6796}
6797
6798
4b46fce2
JB
6799static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6800 struct buffer_head *bh_result, int create)
6801{
6802 struct extent_map *em;
6803 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6804 struct extent_state *cached_state = NULL;
4b46fce2 6805 u64 start = iblock << inode->i_blkbits;
eb838e73 6806 u64 lockstart, lockend;
4b46fce2 6807 u64 len = bh_result->b_size;
eb838e73 6808 int unlock_bits = EXTENT_LOCKED;
0934856d 6809 int ret = 0;
eb838e73 6810
172a5049 6811 if (create)
eb838e73 6812 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6813 else
c329861d 6814 len = min_t(u64, len, root->sectorsize);
eb838e73 6815
c329861d
JB
6816 lockstart = start;
6817 lockend = start + len - 1;
6818
eb838e73
JB
6819 /*
6820 * If this errors out it's because we couldn't invalidate pagecache for
6821 * this range and we need to fallback to buffered.
6822 */
6823 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6824 return -ENOTBLK;
6825
4b46fce2 6826 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6827 if (IS_ERR(em)) {
6828 ret = PTR_ERR(em);
6829 goto unlock_err;
6830 }
4b46fce2
JB
6831
6832 /*
6833 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6834 * io. INLINE is special, and we could probably kludge it in here, but
6835 * it's still buffered so for safety lets just fall back to the generic
6836 * buffered path.
6837 *
6838 * For COMPRESSED we _have_ to read the entire extent in so we can
6839 * decompress it, so there will be buffering required no matter what we
6840 * do, so go ahead and fallback to buffered.
6841 *
6842 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6843 * to buffered IO. Don't blame me, this is the price we pay for using
6844 * the generic code.
6845 */
6846 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6847 em->block_start == EXTENT_MAP_INLINE) {
6848 free_extent_map(em);
eb838e73
JB
6849 ret = -ENOTBLK;
6850 goto unlock_err;
4b46fce2
JB
6851 }
6852
6853 /* Just a good old fashioned hole, return */
6854 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6855 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6856 free_extent_map(em);
eb838e73 6857 goto unlock_err;
4b46fce2
JB
6858 }
6859
6860 /*
6861 * We don't allocate a new extent in the following cases
6862 *
6863 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6864 * existing extent.
6865 * 2) The extent is marked as PREALLOC. We're good to go here and can
6866 * just use the extent.
6867 *
6868 */
46bfbb5c 6869 if (!create) {
eb838e73
JB
6870 len = min(len, em->len - (start - em->start));
6871 lockstart = start + len;
6872 goto unlock;
46bfbb5c 6873 }
4b46fce2
JB
6874
6875 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6876 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6877 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6878 int type;
6879 int ret;
eb384b55 6880 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6881
6882 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6883 type = BTRFS_ORDERED_PREALLOC;
6884 else
6885 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6886 len = min(len, em->len - (start - em->start));
4b46fce2 6887 block_start = em->block_start + (start - em->start);
46bfbb5c 6888
00361589 6889 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 6890 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6891 if (type == BTRFS_ORDERED_PREALLOC) {
6892 free_extent_map(em);
6893 em = create_pinned_em(inode, start, len,
6894 orig_start,
b4939680 6895 block_start, len,
cc95bef6
JB
6896 orig_block_len,
6897 ram_bytes, type);
00361589 6898 if (IS_ERR(em))
69ffb543 6899 goto unlock_err;
69ffb543
JB
6900 }
6901
46bfbb5c
CM
6902 ret = btrfs_add_ordered_extent_dio(inode, start,
6903 block_start, len, len, type);
46bfbb5c
CM
6904 if (ret) {
6905 free_extent_map(em);
eb838e73 6906 goto unlock_err;
46bfbb5c
CM
6907 }
6908 goto unlock;
4b46fce2 6909 }
4b46fce2 6910 }
00361589 6911
46bfbb5c
CM
6912 /*
6913 * this will cow the extent, reset the len in case we changed
6914 * it above
6915 */
6916 len = bh_result->b_size;
70c8a91c
JB
6917 free_extent_map(em);
6918 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6919 if (IS_ERR(em)) {
6920 ret = PTR_ERR(em);
6921 goto unlock_err;
6922 }
46bfbb5c
CM
6923 len = min(len, em->len - (start - em->start));
6924unlock:
4b46fce2
JB
6925 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6926 inode->i_blkbits;
46bfbb5c 6927 bh_result->b_size = len;
4b46fce2
JB
6928 bh_result->b_bdev = em->bdev;
6929 set_buffer_mapped(bh_result);
c3473e83
JB
6930 if (create) {
6931 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6932 set_buffer_new(bh_result);
6933
6934 /*
6935 * Need to update the i_size under the extent lock so buffered
6936 * readers will get the updated i_size when we unlock.
6937 */
6938 if (start + len > i_size_read(inode))
6939 i_size_write(inode, start + len);
0934856d 6940
172a5049
MX
6941 spin_lock(&BTRFS_I(inode)->lock);
6942 BTRFS_I(inode)->outstanding_extents++;
6943 spin_unlock(&BTRFS_I(inode)->lock);
6944
0934856d
MX
6945 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6946 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6947 &cached_state, GFP_NOFS);
6948 BUG_ON(ret);
c3473e83 6949 }
4b46fce2 6950
eb838e73
JB
6951 /*
6952 * In the case of write we need to clear and unlock the entire range,
6953 * in the case of read we need to unlock only the end area that we
6954 * aren't using if there is any left over space.
6955 */
24c03fa5 6956 if (lockstart < lockend) {
0934856d
MX
6957 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6958 lockend, unlock_bits, 1, 0,
6959 &cached_state, GFP_NOFS);
24c03fa5 6960 } else {
eb838e73 6961 free_extent_state(cached_state);
24c03fa5 6962 }
eb838e73 6963
4b46fce2
JB
6964 free_extent_map(em);
6965
6966 return 0;
eb838e73
JB
6967
6968unlock_err:
eb838e73
JB
6969 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6970 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6971 return ret;
4b46fce2
JB
6972}
6973
4b46fce2
JB
6974static void btrfs_endio_direct_read(struct bio *bio, int err)
6975{
e65e1535 6976 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6977 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6978 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6979 struct inode *inode = dip->inode;
6980 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6981 struct bio *dio_bio;
facc8a22
MX
6982 u32 *csums = (u32 *)dip->csum;
6983 int index = 0;
4b46fce2 6984 u64 start;
4b46fce2
JB
6985
6986 start = dip->logical_offset;
6987 do {
6988 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6989 struct page *page = bvec->bv_page;
6990 char *kaddr;
6991 u32 csum = ~(u32)0;
6992 unsigned long flags;
6993
6994 local_irq_save(flags);
7ac687d9 6995 kaddr = kmap_atomic(page);
b0496686 6996 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6997 csum, bvec->bv_len);
6998 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6999 kunmap_atomic(kaddr);
4b46fce2
JB
7000 local_irq_restore(flags);
7001
7002 flush_dcache_page(bvec->bv_page);
facc8a22
MX
7003 if (csum != csums[index]) {
7004 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c
GU
7005 btrfs_ino(inode), start, csum,
7006 csums[index]);
4b46fce2
JB
7007 err = -EIO;
7008 }
7009 }
7010
7011 start += bvec->bv_len;
4b46fce2 7012 bvec++;
facc8a22 7013 index++;
4b46fce2
JB
7014 } while (bvec <= bvec_end);
7015
7016 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7017 dip->logical_offset + dip->bytes - 1);
9be3395b 7018 dio_bio = dip->dio_bio;
4b46fce2 7019
4b46fce2 7020 kfree(dip);
c0da7aa1
JB
7021
7022 /* If we had a csum failure make sure to clear the uptodate flag */
7023 if (err)
9be3395b
CM
7024 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7025 dio_end_io(dio_bio, err);
7026 bio_put(bio);
4b46fce2
JB
7027}
7028
7029static void btrfs_endio_direct_write(struct bio *bio, int err)
7030{
7031 struct btrfs_dio_private *dip = bio->bi_private;
7032 struct inode *inode = dip->inode;
7033 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7034 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7035 u64 ordered_offset = dip->logical_offset;
7036 u64 ordered_bytes = dip->bytes;
9be3395b 7037 struct bio *dio_bio;
4b46fce2
JB
7038 int ret;
7039
7040 if (err)
7041 goto out_done;
163cf09c
CM
7042again:
7043 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7044 &ordered_offset,
5fd02043 7045 ordered_bytes, !err);
4b46fce2 7046 if (!ret)
163cf09c 7047 goto out_test;
4b46fce2 7048
5fd02043
JB
7049 ordered->work.func = finish_ordered_fn;
7050 ordered->work.flags = 0;
7051 btrfs_queue_worker(&root->fs_info->endio_write_workers,
7052 &ordered->work);
163cf09c
CM
7053out_test:
7054 /*
7055 * our bio might span multiple ordered extents. If we haven't
7056 * completed the accounting for the whole dio, go back and try again
7057 */
7058 if (ordered_offset < dip->logical_offset + dip->bytes) {
7059 ordered_bytes = dip->logical_offset + dip->bytes -
7060 ordered_offset;
5fd02043 7061 ordered = NULL;
163cf09c
CM
7062 goto again;
7063 }
4b46fce2 7064out_done:
9be3395b 7065 dio_bio = dip->dio_bio;
4b46fce2 7066
4b46fce2 7067 kfree(dip);
c0da7aa1
JB
7068
7069 /* If we had an error make sure to clear the uptodate flag */
7070 if (err)
9be3395b
CM
7071 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7072 dio_end_io(dio_bio, err);
7073 bio_put(bio);
4b46fce2
JB
7074}
7075
eaf25d93
CM
7076static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7077 struct bio *bio, int mirror_num,
7078 unsigned long bio_flags, u64 offset)
7079{
7080 int ret;
7081 struct btrfs_root *root = BTRFS_I(inode)->root;
7082 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7083 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7084 return 0;
7085}
7086
e65e1535
MX
7087static void btrfs_end_dio_bio(struct bio *bio, int err)
7088{
7089 struct btrfs_dio_private *dip = bio->bi_private;
7090
7091 if (err) {
efe120a0
FH
7092 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7093 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
c1c9ff7c 7094 btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 7095 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
7096 dip->errors = 1;
7097
7098 /*
7099 * before atomic variable goto zero, we must make sure
7100 * dip->errors is perceived to be set.
7101 */
7102 smp_mb__before_atomic_dec();
7103 }
7104
7105 /* if there are more bios still pending for this dio, just exit */
7106 if (!atomic_dec_and_test(&dip->pending_bios))
7107 goto out;
7108
9be3395b 7109 if (dip->errors) {
e65e1535 7110 bio_io_error(dip->orig_bio);
9be3395b
CM
7111 } else {
7112 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7113 bio_endio(dip->orig_bio, 0);
7114 }
7115out:
7116 bio_put(bio);
7117}
7118
7119static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7120 u64 first_sector, gfp_t gfp_flags)
7121{
7122 int nr_vecs = bio_get_nr_vecs(bdev);
7123 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7124}
7125
7126static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7127 int rw, u64 file_offset, int skip_sum,
c329861d 7128 int async_submit)
e65e1535 7129{
facc8a22 7130 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7131 int write = rw & REQ_WRITE;
7132 struct btrfs_root *root = BTRFS_I(inode)->root;
7133 int ret;
7134
b812ce28
JB
7135 if (async_submit)
7136 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7137
e65e1535 7138 bio_get(bio);
5fd02043
JB
7139
7140 if (!write) {
7141 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7142 if (ret)
7143 goto err;
7144 }
e65e1535 7145
1ae39938
JB
7146 if (skip_sum)
7147 goto map;
7148
7149 if (write && async_submit) {
e65e1535
MX
7150 ret = btrfs_wq_submit_bio(root->fs_info,
7151 inode, rw, bio, 0, 0,
7152 file_offset,
7153 __btrfs_submit_bio_start_direct_io,
7154 __btrfs_submit_bio_done);
7155 goto err;
1ae39938
JB
7156 } else if (write) {
7157 /*
7158 * If we aren't doing async submit, calculate the csum of the
7159 * bio now.
7160 */
7161 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7162 if (ret)
7163 goto err;
c2db1073 7164 } else if (!skip_sum) {
facc8a22
MX
7165 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7166 file_offset);
c2db1073
TI
7167 if (ret)
7168 goto err;
7169 }
e65e1535 7170
1ae39938
JB
7171map:
7172 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7173err:
7174 bio_put(bio);
7175 return ret;
7176}
7177
7178static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7179 int skip_sum)
7180{
7181 struct inode *inode = dip->inode;
7182 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7183 struct bio *bio;
7184 struct bio *orig_bio = dip->orig_bio;
7185 struct bio_vec *bvec = orig_bio->bi_io_vec;
7186 u64 start_sector = orig_bio->bi_sector;
7187 u64 file_offset = dip->logical_offset;
7188 u64 submit_len = 0;
7189 u64 map_length;
7190 int nr_pages = 0;
e65e1535 7191 int ret = 0;
1ae39938 7192 int async_submit = 0;
e65e1535 7193
e65e1535 7194 map_length = orig_bio->bi_size;
53b381b3 7195 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7196 &map_length, NULL, 0);
7197 if (ret) {
64728bbb 7198 bio_put(orig_bio);
e65e1535
MX
7199 return -EIO;
7200 }
facc8a22 7201
02f57c7a
JB
7202 if (map_length >= orig_bio->bi_size) {
7203 bio = orig_bio;
7204 goto submit;
7205 }
7206
53b381b3
DW
7207 /* async crcs make it difficult to collect full stripe writes. */
7208 if (btrfs_get_alloc_profile(root, 1) &
7209 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7210 async_submit = 0;
7211 else
7212 async_submit = 1;
7213
02f57c7a
JB
7214 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7215 if (!bio)
7216 return -ENOMEM;
7217 bio->bi_private = dip;
7218 bio->bi_end_io = btrfs_end_dio_bio;
7219 atomic_inc(&dip->pending_bios);
7220
e65e1535
MX
7221 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7222 if (unlikely(map_length < submit_len + bvec->bv_len ||
7223 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7224 bvec->bv_offset) < bvec->bv_len)) {
7225 /*
7226 * inc the count before we submit the bio so
7227 * we know the end IO handler won't happen before
7228 * we inc the count. Otherwise, the dip might get freed
7229 * before we're done setting it up
7230 */
7231 atomic_inc(&dip->pending_bios);
7232 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7233 file_offset, skip_sum,
c329861d 7234 async_submit);
e65e1535
MX
7235 if (ret) {
7236 bio_put(bio);
7237 atomic_dec(&dip->pending_bios);
7238 goto out_err;
7239 }
7240
e65e1535
MX
7241 start_sector += submit_len >> 9;
7242 file_offset += submit_len;
7243
7244 submit_len = 0;
7245 nr_pages = 0;
7246
7247 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7248 start_sector, GFP_NOFS);
7249 if (!bio)
7250 goto out_err;
7251 bio->bi_private = dip;
7252 bio->bi_end_io = btrfs_end_dio_bio;
7253
7254 map_length = orig_bio->bi_size;
53b381b3 7255 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7256 start_sector << 9,
e65e1535
MX
7257 &map_length, NULL, 0);
7258 if (ret) {
7259 bio_put(bio);
7260 goto out_err;
7261 }
7262 } else {
7263 submit_len += bvec->bv_len;
67871254 7264 nr_pages++;
e65e1535
MX
7265 bvec++;
7266 }
7267 }
7268
02f57c7a 7269submit:
e65e1535 7270 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7271 async_submit);
e65e1535
MX
7272 if (!ret)
7273 return 0;
7274
7275 bio_put(bio);
7276out_err:
7277 dip->errors = 1;
7278 /*
7279 * before atomic variable goto zero, we must
7280 * make sure dip->errors is perceived to be set.
7281 */
7282 smp_mb__before_atomic_dec();
7283 if (atomic_dec_and_test(&dip->pending_bios))
7284 bio_io_error(dip->orig_bio);
7285
7286 /* bio_end_io() will handle error, so we needn't return it */
7287 return 0;
7288}
7289
9be3395b
CM
7290static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7291 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7292{
7293 struct btrfs_root *root = BTRFS_I(inode)->root;
7294 struct btrfs_dio_private *dip;
9be3395b 7295 struct bio *io_bio;
4b46fce2 7296 int skip_sum;
facc8a22 7297 int sum_len;
7b6d91da 7298 int write = rw & REQ_WRITE;
4b46fce2 7299 int ret = 0;
facc8a22 7300 u16 csum_size;
4b46fce2
JB
7301
7302 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7303
9be3395b 7304 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7305 if (!io_bio) {
7306 ret = -ENOMEM;
7307 goto free_ordered;
7308 }
7309
facc8a22
MX
7310 if (!skip_sum && !write) {
7311 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7312 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7313 sum_len *= csum_size;
7314 } else {
7315 sum_len = 0;
7316 }
7317
7318 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7319 if (!dip) {
7320 ret = -ENOMEM;
9be3395b 7321 goto free_io_bio;
4b46fce2 7322 }
4b46fce2 7323
9be3395b 7324 dip->private = dio_bio->bi_private;
4b46fce2
JB
7325 dip->inode = inode;
7326 dip->logical_offset = file_offset;
e6da5d2e 7327 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7328 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7329 io_bio->bi_private = dip;
e65e1535 7330 dip->errors = 0;
9be3395b
CM
7331 dip->orig_bio = io_bio;
7332 dip->dio_bio = dio_bio;
e65e1535 7333 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7334
7335 if (write)
9be3395b 7336 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7337 else
9be3395b 7338 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7339
e65e1535
MX
7340 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7341 if (!ret)
eaf25d93 7342 return;
9be3395b
CM
7343
7344free_io_bio:
7345 bio_put(io_bio);
7346
4b46fce2
JB
7347free_ordered:
7348 /*
7349 * If this is a write, we need to clean up the reserved space and kill
7350 * the ordered extent.
7351 */
7352 if (write) {
7353 struct btrfs_ordered_extent *ordered;
955256f2 7354 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7355 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7356 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7357 btrfs_free_reserved_extent(root, ordered->start,
7358 ordered->disk_len);
7359 btrfs_put_ordered_extent(ordered);
7360 btrfs_put_ordered_extent(ordered);
7361 }
9be3395b 7362 bio_endio(dio_bio, ret);
4b46fce2
JB
7363}
7364
5a5f79b5
CM
7365static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7366 const struct iovec *iov, loff_t offset,
7367 unsigned long nr_segs)
7368{
7369 int seg;
a1b75f7d 7370 int i;
5a5f79b5
CM
7371 size_t size;
7372 unsigned long addr;
7373 unsigned blocksize_mask = root->sectorsize - 1;
7374 ssize_t retval = -EINVAL;
7375 loff_t end = offset;
7376
7377 if (offset & blocksize_mask)
7378 goto out;
7379
7380 /* Check the memory alignment. Blocks cannot straddle pages */
7381 for (seg = 0; seg < nr_segs; seg++) {
7382 addr = (unsigned long)iov[seg].iov_base;
7383 size = iov[seg].iov_len;
7384 end += size;
a1b75f7d 7385 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7386 goto out;
a1b75f7d
JB
7387
7388 /* If this is a write we don't need to check anymore */
7389 if (rw & WRITE)
7390 continue;
7391
7392 /*
7393 * Check to make sure we don't have duplicate iov_base's in this
7394 * iovec, if so return EINVAL, otherwise we'll get csum errors
7395 * when reading back.
7396 */
7397 for (i = seg + 1; i < nr_segs; i++) {
7398 if (iov[seg].iov_base == iov[i].iov_base)
7399 goto out;
7400 }
5a5f79b5
CM
7401 }
7402 retval = 0;
7403out:
7404 return retval;
7405}
eb838e73 7406
16432985
CM
7407static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7408 const struct iovec *iov, loff_t offset,
7409 unsigned long nr_segs)
7410{
4b46fce2
JB
7411 struct file *file = iocb->ki_filp;
7412 struct inode *inode = file->f_mapping->host;
0934856d 7413 size_t count = 0;
2e60a51e 7414 int flags = 0;
38851cc1
MX
7415 bool wakeup = true;
7416 bool relock = false;
0934856d 7417 ssize_t ret;
4b46fce2 7418
5a5f79b5 7419 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7420 offset, nr_segs))
5a5f79b5 7421 return 0;
3f7c579c 7422
38851cc1
MX
7423 atomic_inc(&inode->i_dio_count);
7424 smp_mb__after_atomic_inc();
7425
0e267c44
JB
7426 /*
7427 * The generic stuff only does filemap_write_and_wait_range, which isn't
7428 * enough if we've written compressed pages to this area, so we need to
7429 * call btrfs_wait_ordered_range to make absolutely sure that any
7430 * outstanding dirty pages are on disk.
7431 */
7432 count = iov_length(iov, nr_segs);
0ef8b726
JB
7433 ret = btrfs_wait_ordered_range(inode, offset, count);
7434 if (ret)
7435 return ret;
0e267c44 7436
0934856d 7437 if (rw & WRITE) {
38851cc1
MX
7438 /*
7439 * If the write DIO is beyond the EOF, we need update
7440 * the isize, but it is protected by i_mutex. So we can
7441 * not unlock the i_mutex at this case.
7442 */
7443 if (offset + count <= inode->i_size) {
7444 mutex_unlock(&inode->i_mutex);
7445 relock = true;
7446 }
0934856d
MX
7447 ret = btrfs_delalloc_reserve_space(inode, count);
7448 if (ret)
38851cc1
MX
7449 goto out;
7450 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7451 &BTRFS_I(inode)->runtime_flags))) {
7452 inode_dio_done(inode);
7453 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7454 wakeup = false;
0934856d
MX
7455 }
7456
7457 ret = __blockdev_direct_IO(rw, iocb, inode,
7458 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7459 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7460 btrfs_submit_direct, flags);
0934856d
MX
7461 if (rw & WRITE) {
7462 if (ret < 0 && ret != -EIOCBQUEUED)
7463 btrfs_delalloc_release_space(inode, count);
172a5049 7464 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7465 btrfs_delalloc_release_space(inode,
7466 count - (size_t)ret);
172a5049
MX
7467 else
7468 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7469 }
38851cc1 7470out:
2e60a51e
MX
7471 if (wakeup)
7472 inode_dio_done(inode);
38851cc1
MX
7473 if (relock)
7474 mutex_lock(&inode->i_mutex);
0934856d
MX
7475
7476 return ret;
16432985
CM
7477}
7478
05dadc09
TI
7479#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7480
1506fcc8
YS
7481static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7482 __u64 start, __u64 len)
7483{
05dadc09
TI
7484 int ret;
7485
7486 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7487 if (ret)
7488 return ret;
7489
ec29ed5b 7490 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7491}
7492
a52d9a80 7493int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7494{
d1310b2e
CM
7495 struct extent_io_tree *tree;
7496 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7497 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7498}
1832a6d5 7499
a52d9a80 7500static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7501{
d1310b2e 7502 struct extent_io_tree *tree;
b888db2b
CM
7503
7504
7505 if (current->flags & PF_MEMALLOC) {
7506 redirty_page_for_writepage(wbc, page);
7507 unlock_page(page);
7508 return 0;
7509 }
d1310b2e 7510 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7511 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7512}
7513
48a3b636
ES
7514static int btrfs_writepages(struct address_space *mapping,
7515 struct writeback_control *wbc)
b293f02e 7516{
d1310b2e 7517 struct extent_io_tree *tree;
771ed689 7518
d1310b2e 7519 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7520 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7521}
7522
3ab2fb5a
CM
7523static int
7524btrfs_readpages(struct file *file, struct address_space *mapping,
7525 struct list_head *pages, unsigned nr_pages)
7526{
d1310b2e
CM
7527 struct extent_io_tree *tree;
7528 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7529 return extent_readpages(tree, mapping, pages, nr_pages,
7530 btrfs_get_extent);
7531}
e6dcd2dc 7532static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7533{
d1310b2e
CM
7534 struct extent_io_tree *tree;
7535 struct extent_map_tree *map;
a52d9a80 7536 int ret;
8c2383c3 7537
d1310b2e
CM
7538 tree = &BTRFS_I(page->mapping->host)->io_tree;
7539 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7540 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7541 if (ret == 1) {
7542 ClearPagePrivate(page);
7543 set_page_private(page, 0);
7544 page_cache_release(page);
39279cc3 7545 }
a52d9a80 7546 return ret;
39279cc3
CM
7547}
7548
e6dcd2dc
CM
7549static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7550{
98509cfc
CM
7551 if (PageWriteback(page) || PageDirty(page))
7552 return 0;
b335b003 7553 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7554}
7555
d47992f8
LC
7556static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7557 unsigned int length)
39279cc3 7558{
5fd02043 7559 struct inode *inode = page->mapping->host;
d1310b2e 7560 struct extent_io_tree *tree;
e6dcd2dc 7561 struct btrfs_ordered_extent *ordered;
2ac55d41 7562 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7563 u64 page_start = page_offset(page);
7564 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 7565 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 7566
8b62b72b
CM
7567 /*
7568 * we have the page locked, so new writeback can't start,
7569 * and the dirty bit won't be cleared while we are here.
7570 *
7571 * Wait for IO on this page so that we can safely clear
7572 * the PagePrivate2 bit and do ordered accounting
7573 */
e6dcd2dc 7574 wait_on_page_writeback(page);
8b62b72b 7575
5fd02043 7576 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7577 if (offset) {
7578 btrfs_releasepage(page, GFP_NOFS);
7579 return;
7580 }
131e404a
FDBM
7581
7582 if (!inode_evicting)
7583 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7584 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 7585 if (ordered) {
eb84ae03
CM
7586 /*
7587 * IO on this page will never be started, so we need
7588 * to account for any ordered extents now
7589 */
131e404a
FDBM
7590 if (!inode_evicting)
7591 clear_extent_bit(tree, page_start, page_end,
7592 EXTENT_DIRTY | EXTENT_DELALLOC |
7593 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7594 EXTENT_DEFRAG, 1, 0, &cached_state,
7595 GFP_NOFS);
8b62b72b
CM
7596 /*
7597 * whoever cleared the private bit is responsible
7598 * for the finish_ordered_io
7599 */
77cef2ec
JB
7600 if (TestClearPagePrivate2(page)) {
7601 struct btrfs_ordered_inode_tree *tree;
7602 u64 new_len;
7603
7604 tree = &BTRFS_I(inode)->ordered_tree;
7605
7606 spin_lock_irq(&tree->lock);
7607 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7608 new_len = page_start - ordered->file_offset;
7609 if (new_len < ordered->truncated_len)
7610 ordered->truncated_len = new_len;
7611 spin_unlock_irq(&tree->lock);
7612
7613 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7614 page_start,
7615 PAGE_CACHE_SIZE, 1))
7616 btrfs_finish_ordered_io(ordered);
8b62b72b 7617 }
e6dcd2dc 7618 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
7619 if (!inode_evicting) {
7620 cached_state = NULL;
7621 lock_extent_bits(tree, page_start, page_end, 0,
7622 &cached_state);
7623 }
7624 }
7625
7626 if (!inode_evicting) {
7627 clear_extent_bit(tree, page_start, page_end,
7628 EXTENT_LOCKED | EXTENT_DIRTY |
7629 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7630 EXTENT_DEFRAG, 1, 1,
7631 &cached_state, GFP_NOFS);
7632
7633 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 7634 }
e6dcd2dc 7635
4a096752 7636 ClearPageChecked(page);
9ad6b7bc 7637 if (PagePrivate(page)) {
9ad6b7bc
CM
7638 ClearPagePrivate(page);
7639 set_page_private(page, 0);
7640 page_cache_release(page);
7641 }
39279cc3
CM
7642}
7643
9ebefb18
CM
7644/*
7645 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7646 * called from a page fault handler when a page is first dirtied. Hence we must
7647 * be careful to check for EOF conditions here. We set the page up correctly
7648 * for a written page which means we get ENOSPC checking when writing into
7649 * holes and correct delalloc and unwritten extent mapping on filesystems that
7650 * support these features.
7651 *
7652 * We are not allowed to take the i_mutex here so we have to play games to
7653 * protect against truncate races as the page could now be beyond EOF. Because
7654 * vmtruncate() writes the inode size before removing pages, once we have the
7655 * page lock we can determine safely if the page is beyond EOF. If it is not
7656 * beyond EOF, then the page is guaranteed safe against truncation until we
7657 * unlock the page.
7658 */
c2ec175c 7659int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7660{
c2ec175c 7661 struct page *page = vmf->page;
496ad9aa 7662 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7663 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7664 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7665 struct btrfs_ordered_extent *ordered;
2ac55d41 7666 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7667 char *kaddr;
7668 unsigned long zero_start;
9ebefb18 7669 loff_t size;
1832a6d5 7670 int ret;
9998eb70 7671 int reserved = 0;
a52d9a80 7672 u64 page_start;
e6dcd2dc 7673 u64 page_end;
9ebefb18 7674
b2b5ef5c 7675 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7676 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7677 if (!ret) {
e41f941a 7678 ret = file_update_time(vma->vm_file);
9998eb70
CM
7679 reserved = 1;
7680 }
56a76f82
NP
7681 if (ret) {
7682 if (ret == -ENOMEM)
7683 ret = VM_FAULT_OOM;
7684 else /* -ENOSPC, -EIO, etc */
7685 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7686 if (reserved)
7687 goto out;
7688 goto out_noreserve;
56a76f82 7689 }
1832a6d5 7690
56a76f82 7691 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7692again:
9ebefb18 7693 lock_page(page);
9ebefb18 7694 size = i_size_read(inode);
e6dcd2dc
CM
7695 page_start = page_offset(page);
7696 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7697
9ebefb18 7698 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7699 (page_start >= size)) {
9ebefb18
CM
7700 /* page got truncated out from underneath us */
7701 goto out_unlock;
7702 }
e6dcd2dc
CM
7703 wait_on_page_writeback(page);
7704
d0082371 7705 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7706 set_page_extent_mapped(page);
7707
eb84ae03
CM
7708 /*
7709 * we can't set the delalloc bits if there are pending ordered
7710 * extents. Drop our locks and wait for them to finish
7711 */
e6dcd2dc
CM
7712 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7713 if (ordered) {
2ac55d41
JB
7714 unlock_extent_cached(io_tree, page_start, page_end,
7715 &cached_state, GFP_NOFS);
e6dcd2dc 7716 unlock_page(page);
eb84ae03 7717 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7718 btrfs_put_ordered_extent(ordered);
7719 goto again;
7720 }
7721
fbf19087
JB
7722 /*
7723 * XXX - page_mkwrite gets called every time the page is dirtied, even
7724 * if it was already dirty, so for space accounting reasons we need to
7725 * clear any delalloc bits for the range we are fixing to save. There
7726 * is probably a better way to do this, but for now keep consistent with
7727 * prepare_pages in the normal write path.
7728 */
2ac55d41 7729 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7730 EXTENT_DIRTY | EXTENT_DELALLOC |
7731 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7732 0, 0, &cached_state, GFP_NOFS);
fbf19087 7733
2ac55d41
JB
7734 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7735 &cached_state);
9ed74f2d 7736 if (ret) {
2ac55d41
JB
7737 unlock_extent_cached(io_tree, page_start, page_end,
7738 &cached_state, GFP_NOFS);
9ed74f2d
JB
7739 ret = VM_FAULT_SIGBUS;
7740 goto out_unlock;
7741 }
e6dcd2dc 7742 ret = 0;
9ebefb18
CM
7743
7744 /* page is wholly or partially inside EOF */
a52d9a80 7745 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7746 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7747 else
e6dcd2dc 7748 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7749
e6dcd2dc
CM
7750 if (zero_start != PAGE_CACHE_SIZE) {
7751 kaddr = kmap(page);
7752 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7753 flush_dcache_page(page);
7754 kunmap(page);
7755 }
247e743c 7756 ClearPageChecked(page);
e6dcd2dc 7757 set_page_dirty(page);
50a9b214 7758 SetPageUptodate(page);
5a3f23d5 7759
257c62e1
CM
7760 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7761 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7762 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7763
2ac55d41 7764 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7765
7766out_unlock:
b2b5ef5c
JK
7767 if (!ret) {
7768 sb_end_pagefault(inode->i_sb);
50a9b214 7769 return VM_FAULT_LOCKED;
b2b5ef5c 7770 }
9ebefb18 7771 unlock_page(page);
1832a6d5 7772out:
ec39e180 7773 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7774out_noreserve:
b2b5ef5c 7775 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7776 return ret;
7777}
7778
a41ad394 7779static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7780{
7781 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7782 struct btrfs_block_rsv *rsv;
a71754fc 7783 int ret = 0;
3893e33b 7784 int err = 0;
39279cc3 7785 struct btrfs_trans_handle *trans;
dbe674a9 7786 u64 mask = root->sectorsize - 1;
07127184 7787 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7788
0ef8b726
JB
7789 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7790 (u64)-1);
7791 if (ret)
7792 return ret;
39279cc3 7793
fcb80c2a
JB
7794 /*
7795 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7796 * 3 things going on here
7797 *
7798 * 1) We need to reserve space for our orphan item and the space to
7799 * delete our orphan item. Lord knows we don't want to have a dangling
7800 * orphan item because we didn't reserve space to remove it.
7801 *
7802 * 2) We need to reserve space to update our inode.
7803 *
7804 * 3) We need to have something to cache all the space that is going to
7805 * be free'd up by the truncate operation, but also have some slack
7806 * space reserved in case it uses space during the truncate (thank you
7807 * very much snapshotting).
7808 *
7809 * And we need these to all be seperate. The fact is we can use alot of
7810 * space doing the truncate, and we have no earthly idea how much space
7811 * we will use, so we need the truncate reservation to be seperate so it
7812 * doesn't end up using space reserved for updating the inode or
7813 * removing the orphan item. We also need to be able to stop the
7814 * transaction and start a new one, which means we need to be able to
7815 * update the inode several times, and we have no idea of knowing how
7816 * many times that will be, so we can't just reserve 1 item for the
7817 * entirety of the opration, so that has to be done seperately as well.
7818 * Then there is the orphan item, which does indeed need to be held on
7819 * to for the whole operation, and we need nobody to touch this reserved
7820 * space except the orphan code.
7821 *
7822 * So that leaves us with
7823 *
7824 * 1) root->orphan_block_rsv - for the orphan deletion.
7825 * 2) rsv - for the truncate reservation, which we will steal from the
7826 * transaction reservation.
7827 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7828 * updating the inode.
7829 */
66d8f3dd 7830 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7831 if (!rsv)
7832 return -ENOMEM;
4a338542 7833 rsv->size = min_size;
ca7e70f5 7834 rsv->failfast = 1;
f0cd846e 7835
907cbceb 7836 /*
07127184 7837 * 1 for the truncate slack space
907cbceb
JB
7838 * 1 for updating the inode.
7839 */
f3fe820c 7840 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7841 if (IS_ERR(trans)) {
7842 err = PTR_ERR(trans);
7843 goto out;
7844 }
f0cd846e 7845
907cbceb
JB
7846 /* Migrate the slack space for the truncate to our reserve */
7847 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7848 min_size);
fcb80c2a 7849 BUG_ON(ret);
f0cd846e 7850
5a3f23d5
CM
7851 /*
7852 * setattr is responsible for setting the ordered_data_close flag,
7853 * but that is only tested during the last file release. That
7854 * could happen well after the next commit, leaving a great big
7855 * window where new writes may get lost if someone chooses to write
7856 * to this file after truncating to zero
7857 *
7858 * The inode doesn't have any dirty data here, and so if we commit
7859 * this is a noop. If someone immediately starts writing to the inode
7860 * it is very likely we'll catch some of their writes in this
7861 * transaction, and the commit will find this file on the ordered
7862 * data list with good things to send down.
7863 *
7864 * This is a best effort solution, there is still a window where
7865 * using truncate to replace the contents of the file will
7866 * end up with a zero length file after a crash.
7867 */
72ac3c0d
JB
7868 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7869 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7870 btrfs_add_ordered_operation(trans, root, inode);
7871
5dc562c5
JB
7872 /*
7873 * So if we truncate and then write and fsync we normally would just
7874 * write the extents that changed, which is a problem if we need to
7875 * first truncate that entire inode. So set this flag so we write out
7876 * all of the extents in the inode to the sync log so we're completely
7877 * safe.
7878 */
7879 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7880 trans->block_rsv = rsv;
907cbceb 7881
8082510e
YZ
7882 while (1) {
7883 ret = btrfs_truncate_inode_items(trans, root, inode,
7884 inode->i_size,
7885 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7886 if (ret != -ENOSPC) {
3893e33b 7887 err = ret;
8082510e 7888 break;
3893e33b 7889 }
39279cc3 7890
fcb80c2a 7891 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7892 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7893 if (ret) {
7894 err = ret;
7895 break;
7896 }
ca7e70f5 7897
8082510e 7898 btrfs_end_transaction(trans, root);
b53d3f5d 7899 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7900
7901 trans = btrfs_start_transaction(root, 2);
7902 if (IS_ERR(trans)) {
7903 ret = err = PTR_ERR(trans);
7904 trans = NULL;
7905 break;
7906 }
7907
7908 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7909 rsv, min_size);
7910 BUG_ON(ret); /* shouldn't happen */
7911 trans->block_rsv = rsv;
8082510e
YZ
7912 }
7913
7914 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7915 trans->block_rsv = root->orphan_block_rsv;
8082510e 7916 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7917 if (ret)
7918 err = ret;
8082510e
YZ
7919 }
7920
917c16b2
CM
7921 if (trans) {
7922 trans->block_rsv = &root->fs_info->trans_block_rsv;
7923 ret = btrfs_update_inode(trans, root, inode);
7924 if (ret && !err)
7925 err = ret;
7b128766 7926
7ad85bb7 7927 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7928 btrfs_btree_balance_dirty(root);
917c16b2 7929 }
fcb80c2a
JB
7930
7931out:
7932 btrfs_free_block_rsv(root, rsv);
7933
3893e33b
JB
7934 if (ret && !err)
7935 err = ret;
a41ad394 7936
3893e33b 7937 return err;
39279cc3
CM
7938}
7939
d352ac68
CM
7940/*
7941 * create a new subvolume directory/inode (helper for the ioctl).
7942 */
d2fb3437 7943int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
7944 struct btrfs_root *new_root,
7945 struct btrfs_root *parent_root,
7946 u64 new_dirid)
39279cc3 7947{
39279cc3 7948 struct inode *inode;
76dda93c 7949 int err;
00e4e6b3 7950 u64 index = 0;
39279cc3 7951
12fc9d09
FA
7952 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7953 new_dirid, new_dirid,
7954 S_IFDIR | (~current_umask() & S_IRWXUGO),
7955 &index);
54aa1f4d 7956 if (IS_ERR(inode))
f46b5a66 7957 return PTR_ERR(inode);
39279cc3
CM
7958 inode->i_op = &btrfs_dir_inode_operations;
7959 inode->i_fop = &btrfs_dir_file_operations;
7960
bfe86848 7961 set_nlink(inode, 1);
dbe674a9 7962 btrfs_i_size_write(inode, 0);
3b96362c 7963
63541927
FDBM
7964 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
7965 if (err)
7966 btrfs_err(new_root->fs_info,
7967 "error inheriting subvolume %llu properties: %d\n",
7968 new_root->root_key.objectid, err);
7969
76dda93c 7970 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7971
76dda93c 7972 iput(inode);
ce598979 7973 return err;
39279cc3
CM
7974}
7975
39279cc3
CM
7976struct inode *btrfs_alloc_inode(struct super_block *sb)
7977{
7978 struct btrfs_inode *ei;
2ead6ae7 7979 struct inode *inode;
39279cc3
CM
7980
7981 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7982 if (!ei)
7983 return NULL;
2ead6ae7
YZ
7984
7985 ei->root = NULL;
2ead6ae7 7986 ei->generation = 0;
15ee9bc7 7987 ei->last_trans = 0;
257c62e1 7988 ei->last_sub_trans = 0;
e02119d5 7989 ei->logged_trans = 0;
2ead6ae7 7990 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7991 ei->disk_i_size = 0;
7992 ei->flags = 0;
7709cde3 7993 ei->csum_bytes = 0;
2ead6ae7 7994 ei->index_cnt = (u64)-1;
67de1176 7995 ei->dir_index = 0;
2ead6ae7 7996 ei->last_unlink_trans = 0;
46d8bc34 7997 ei->last_log_commit = 0;
2ead6ae7 7998
9e0baf60
JB
7999 spin_lock_init(&ei->lock);
8000 ei->outstanding_extents = 0;
8001 ei->reserved_extents = 0;
2ead6ae7 8002
72ac3c0d 8003 ei->runtime_flags = 0;
261507a0 8004 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8005
16cdcec7
MX
8006 ei->delayed_node = NULL;
8007
2ead6ae7 8008 inode = &ei->vfs_inode;
a8067e02 8009 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8010 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8011 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8012 ei->io_tree.track_uptodate = 1;
8013 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8014 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8015 mutex_init(&ei->log_mutex);
f248679e 8016 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8017 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8018 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 8019 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
8020 RB_CLEAR_NODE(&ei->rb_node);
8021
8022 return inode;
39279cc3
CM
8023}
8024
aaedb55b
JB
8025#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8026void btrfs_test_destroy_inode(struct inode *inode)
8027{
8028 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8029 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8030}
8031#endif
8032
fa0d7e3d
NP
8033static void btrfs_i_callback(struct rcu_head *head)
8034{
8035 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8036 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8037}
8038
39279cc3
CM
8039void btrfs_destroy_inode(struct inode *inode)
8040{
e6dcd2dc 8041 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8042 struct btrfs_root *root = BTRFS_I(inode)->root;
8043
b3d9b7a3 8044 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8045 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8046 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8047 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8048 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8049 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 8050
a6dbd429
JB
8051 /*
8052 * This can happen where we create an inode, but somebody else also
8053 * created the same inode and we need to destroy the one we already
8054 * created.
8055 */
8056 if (!root)
8057 goto free;
8058
5a3f23d5
CM
8059 /*
8060 * Make sure we're properly removed from the ordered operation
8061 * lists.
8062 */
8063 smp_mb();
8064 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 8065 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 8066 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 8067 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
8068 }
8069
8a35d95f
JB
8070 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8071 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8072 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8073 btrfs_ino(inode));
8a35d95f 8074 atomic_dec(&root->orphan_inodes);
7b128766 8075 }
7b128766 8076
d397712b 8077 while (1) {
e6dcd2dc
CM
8078 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8079 if (!ordered)
8080 break;
8081 else {
c2cf52eb 8082 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8083 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8084 btrfs_remove_ordered_extent(inode, ordered);
8085 btrfs_put_ordered_extent(ordered);
8086 btrfs_put_ordered_extent(ordered);
8087 }
8088 }
5d4f98a2 8089 inode_tree_del(inode);
5b21f2ed 8090 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8091free:
fa0d7e3d 8092 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8093}
8094
45321ac5 8095int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8096{
8097 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8098
6379ef9f
NA
8099 if (root == NULL)
8100 return 1;
8101
fa6ac876 8102 /* the snap/subvol tree is on deleting */
69e9c6c6 8103 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8104 return 1;
76dda93c 8105 else
45321ac5 8106 return generic_drop_inode(inode);
76dda93c
YZ
8107}
8108
0ee0fda0 8109static void init_once(void *foo)
39279cc3
CM
8110{
8111 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8112
8113 inode_init_once(&ei->vfs_inode);
8114}
8115
8116void btrfs_destroy_cachep(void)
8117{
8c0a8537
KS
8118 /*
8119 * Make sure all delayed rcu free inodes are flushed before we
8120 * destroy cache.
8121 */
8122 rcu_barrier();
39279cc3
CM
8123 if (btrfs_inode_cachep)
8124 kmem_cache_destroy(btrfs_inode_cachep);
8125 if (btrfs_trans_handle_cachep)
8126 kmem_cache_destroy(btrfs_trans_handle_cachep);
8127 if (btrfs_transaction_cachep)
8128 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8129 if (btrfs_path_cachep)
8130 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8131 if (btrfs_free_space_cachep)
8132 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8133 if (btrfs_delalloc_work_cachep)
8134 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8135}
8136
8137int btrfs_init_cachep(void)
8138{
837e1972 8139 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8140 sizeof(struct btrfs_inode), 0,
8141 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8142 if (!btrfs_inode_cachep)
8143 goto fail;
9601e3f6 8144
837e1972 8145 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8146 sizeof(struct btrfs_trans_handle), 0,
8147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8148 if (!btrfs_trans_handle_cachep)
8149 goto fail;
9601e3f6 8150
837e1972 8151 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8152 sizeof(struct btrfs_transaction), 0,
8153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8154 if (!btrfs_transaction_cachep)
8155 goto fail;
9601e3f6 8156
837e1972 8157 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8158 sizeof(struct btrfs_path), 0,
8159 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8160 if (!btrfs_path_cachep)
8161 goto fail;
9601e3f6 8162
837e1972 8163 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8164 sizeof(struct btrfs_free_space), 0,
8165 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8166 if (!btrfs_free_space_cachep)
8167 goto fail;
8168
8ccf6f19
MX
8169 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8170 sizeof(struct btrfs_delalloc_work), 0,
8171 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8172 NULL);
8173 if (!btrfs_delalloc_work_cachep)
8174 goto fail;
8175
39279cc3
CM
8176 return 0;
8177fail:
8178 btrfs_destroy_cachep();
8179 return -ENOMEM;
8180}
8181
8182static int btrfs_getattr(struct vfsmount *mnt,
8183 struct dentry *dentry, struct kstat *stat)
8184{
df0af1a5 8185 u64 delalloc_bytes;
39279cc3 8186 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8187 u32 blocksize = inode->i_sb->s_blocksize;
8188
39279cc3 8189 generic_fillattr(inode, stat);
0ee5dc67 8190 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8191 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8192
8193 spin_lock(&BTRFS_I(inode)->lock);
8194 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8195 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8196 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8197 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8198 return 0;
8199}
8200
d397712b
CM
8201static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8202 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8203{
8204 struct btrfs_trans_handle *trans;
8205 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8206 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8207 struct inode *new_inode = new_dentry->d_inode;
8208 struct inode *old_inode = old_dentry->d_inode;
8209 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8210 u64 index = 0;
4df27c4d 8211 u64 root_objectid;
39279cc3 8212 int ret;
33345d01 8213 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8214
33345d01 8215 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8216 return -EPERM;
8217
4df27c4d 8218 /* we only allow rename subvolume link between subvolumes */
33345d01 8219 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8220 return -EXDEV;
8221
33345d01
LZ
8222 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8223 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8224 return -ENOTEMPTY;
5f39d397 8225
4df27c4d
YZ
8226 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8227 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8228 return -ENOTEMPTY;
9c52057c
CM
8229
8230
8231 /* check for collisions, even if the name isn't there */
4871c158 8232 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8233 new_dentry->d_name.name,
8234 new_dentry->d_name.len);
8235
8236 if (ret) {
8237 if (ret == -EEXIST) {
8238 /* we shouldn't get
8239 * eexist without a new_inode */
fae7f21c 8240 if (WARN_ON(!new_inode)) {
9c52057c
CM
8241 return ret;
8242 }
8243 } else {
8244 /* maybe -EOVERFLOW */
8245 return ret;
8246 }
8247 }
8248 ret = 0;
8249
5a3f23d5
CM
8250 /*
8251 * we're using rename to replace one file with another.
8252 * and the replacement file is large. Start IO on it now so
8253 * we don't add too much work to the end of the transaction
8254 */
4baf8c92 8255 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8256 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8257 filemap_flush(old_inode->i_mapping);
8258
76dda93c 8259 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8260 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8261 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8262 /*
8263 * We want to reserve the absolute worst case amount of items. So if
8264 * both inodes are subvols and we need to unlink them then that would
8265 * require 4 item modifications, but if they are both normal inodes it
8266 * would require 5 item modifications, so we'll assume their normal
8267 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8268 * should cover the worst case number of items we'll modify.
8269 */
6e137ed3 8270 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8271 if (IS_ERR(trans)) {
8272 ret = PTR_ERR(trans);
8273 goto out_notrans;
8274 }
76dda93c 8275
4df27c4d
YZ
8276 if (dest != root)
8277 btrfs_record_root_in_trans(trans, dest);
5f39d397 8278
a5719521
YZ
8279 ret = btrfs_set_inode_index(new_dir, &index);
8280 if (ret)
8281 goto out_fail;
5a3f23d5 8282
67de1176 8283 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8284 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8285 /* force full log commit if subvolume involved. */
8286 root->fs_info->last_trans_log_full_commit = trans->transid;
8287 } else {
a5719521
YZ
8288 ret = btrfs_insert_inode_ref(trans, dest,
8289 new_dentry->d_name.name,
8290 new_dentry->d_name.len,
33345d01
LZ
8291 old_ino,
8292 btrfs_ino(new_dir), index);
a5719521
YZ
8293 if (ret)
8294 goto out_fail;
4df27c4d
YZ
8295 /*
8296 * this is an ugly little race, but the rename is required
8297 * to make sure that if we crash, the inode is either at the
8298 * old name or the new one. pinning the log transaction lets
8299 * us make sure we don't allow a log commit to come in after
8300 * we unlink the name but before we add the new name back in.
8301 */
8302 btrfs_pin_log_trans(root);
8303 }
5a3f23d5
CM
8304 /*
8305 * make sure the inode gets flushed if it is replacing
8306 * something.
8307 */
33345d01 8308 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8309 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8310
0c4d2d95
JB
8311 inode_inc_iversion(old_dir);
8312 inode_inc_iversion(new_dir);
8313 inode_inc_iversion(old_inode);
39279cc3
CM
8314 old_dir->i_ctime = old_dir->i_mtime = ctime;
8315 new_dir->i_ctime = new_dir->i_mtime = ctime;
8316 old_inode->i_ctime = ctime;
5f39d397 8317
12fcfd22
CM
8318 if (old_dentry->d_parent != new_dentry->d_parent)
8319 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8320
33345d01 8321 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8322 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8323 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8324 old_dentry->d_name.name,
8325 old_dentry->d_name.len);
8326 } else {
92986796
AV
8327 ret = __btrfs_unlink_inode(trans, root, old_dir,
8328 old_dentry->d_inode,
8329 old_dentry->d_name.name,
8330 old_dentry->d_name.len);
8331 if (!ret)
8332 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8333 }
79787eaa
JM
8334 if (ret) {
8335 btrfs_abort_transaction(trans, root, ret);
8336 goto out_fail;
8337 }
39279cc3
CM
8338
8339 if (new_inode) {
0c4d2d95 8340 inode_inc_iversion(new_inode);
39279cc3 8341 new_inode->i_ctime = CURRENT_TIME;
33345d01 8342 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8343 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8344 root_objectid = BTRFS_I(new_inode)->location.objectid;
8345 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8346 root_objectid,
8347 new_dentry->d_name.name,
8348 new_dentry->d_name.len);
8349 BUG_ON(new_inode->i_nlink == 0);
8350 } else {
8351 ret = btrfs_unlink_inode(trans, dest, new_dir,
8352 new_dentry->d_inode,
8353 new_dentry->d_name.name,
8354 new_dentry->d_name.len);
8355 }
4ef31a45 8356 if (!ret && new_inode->i_nlink == 0)
e02119d5 8357 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8358 if (ret) {
8359 btrfs_abort_transaction(trans, root, ret);
8360 goto out_fail;
8361 }
39279cc3 8362 }
aec7477b 8363
4df27c4d
YZ
8364 ret = btrfs_add_link(trans, new_dir, old_inode,
8365 new_dentry->d_name.name,
a5719521 8366 new_dentry->d_name.len, 0, index);
79787eaa
JM
8367 if (ret) {
8368 btrfs_abort_transaction(trans, root, ret);
8369 goto out_fail;
8370 }
39279cc3 8371
67de1176
MX
8372 if (old_inode->i_nlink == 1)
8373 BTRFS_I(old_inode)->dir_index = index;
8374
33345d01 8375 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8376 struct dentry *parent = new_dentry->d_parent;
6a912213 8377 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8378 btrfs_end_log_trans(root);
8379 }
39279cc3 8380out_fail:
7ad85bb7 8381 btrfs_end_transaction(trans, root);
b44c59a8 8382out_notrans:
33345d01 8383 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8384 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8385
39279cc3
CM
8386 return ret;
8387}
8388
a44903ab 8389static void btrfs_run_delalloc_work(struct btrfs_work_struct *work)
8ccf6f19
MX
8390{
8391 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8392 struct inode *inode;
8ccf6f19
MX
8393
8394 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8395 work);
9f23e289
JB
8396 inode = delalloc_work->inode;
8397 if (delalloc_work->wait) {
8398 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8399 } else {
8400 filemap_flush(inode->i_mapping);
8401 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8402 &BTRFS_I(inode)->runtime_flags))
8403 filemap_flush(inode->i_mapping);
8404 }
8ccf6f19
MX
8405
8406 if (delalloc_work->delay_iput)
9f23e289 8407 btrfs_add_delayed_iput(inode);
8ccf6f19 8408 else
9f23e289 8409 iput(inode);
8ccf6f19
MX
8410 complete(&delalloc_work->completion);
8411}
8412
8413struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8414 int wait, int delay_iput)
8415{
8416 struct btrfs_delalloc_work *work;
8417
8418 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8419 if (!work)
8420 return NULL;
8421
8422 init_completion(&work->completion);
8423 INIT_LIST_HEAD(&work->list);
8424 work->inode = inode;
8425 work->wait = wait;
8426 work->delay_iput = delay_iput;
a44903ab 8427 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
8428
8429 return work;
8430}
8431
8432void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8433{
8434 wait_for_completion(&work->completion);
8435 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8436}
8437
d352ac68
CM
8438/*
8439 * some fairly slow code that needs optimization. This walks the list
8440 * of all the inodes with pending delalloc and forces them to disk.
8441 */
eb73c1b7 8442static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8443{
ea8c2819 8444 struct btrfs_inode *binode;
5b21f2ed 8445 struct inode *inode;
8ccf6f19
MX
8446 struct btrfs_delalloc_work *work, *next;
8447 struct list_head works;
1eafa6c7 8448 struct list_head splice;
8ccf6f19 8449 int ret = 0;
ea8c2819 8450
8ccf6f19 8451 INIT_LIST_HEAD(&works);
1eafa6c7 8452 INIT_LIST_HEAD(&splice);
63607cc8 8453
eb73c1b7
MX
8454 spin_lock(&root->delalloc_lock);
8455 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8456 while (!list_empty(&splice)) {
8457 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8458 delalloc_inodes);
1eafa6c7 8459
eb73c1b7
MX
8460 list_move_tail(&binode->delalloc_inodes,
8461 &root->delalloc_inodes);
5b21f2ed 8462 inode = igrab(&binode->vfs_inode);
df0af1a5 8463 if (!inode) {
eb73c1b7 8464 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8465 continue;
df0af1a5 8466 }
eb73c1b7 8467 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8468
8469 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8470 if (unlikely(!work)) {
f4ab9ea7
JB
8471 if (delay_iput)
8472 btrfs_add_delayed_iput(inode);
8473 else
8474 iput(inode);
1eafa6c7
MX
8475 ret = -ENOMEM;
8476 goto out;
5b21f2ed 8477 }
1eafa6c7 8478 list_add_tail(&work->list, &works);
a44903ab
QW
8479 btrfs_queue_work(root->fs_info->flush_workers,
8480 &work->work);
1eafa6c7 8481
5b21f2ed 8482 cond_resched();
eb73c1b7 8483 spin_lock(&root->delalloc_lock);
ea8c2819 8484 }
eb73c1b7 8485 spin_unlock(&root->delalloc_lock);
8c8bee1d 8486
1eafa6c7
MX
8487 list_for_each_entry_safe(work, next, &works, list) {
8488 list_del_init(&work->list);
8489 btrfs_wait_and_free_delalloc_work(work);
8490 }
eb73c1b7
MX
8491 return 0;
8492out:
8493 list_for_each_entry_safe(work, next, &works, list) {
8494 list_del_init(&work->list);
8495 btrfs_wait_and_free_delalloc_work(work);
8496 }
8497
8498 if (!list_empty_careful(&splice)) {
8499 spin_lock(&root->delalloc_lock);
8500 list_splice_tail(&splice, &root->delalloc_inodes);
8501 spin_unlock(&root->delalloc_lock);
8502 }
8503 return ret;
8504}
1eafa6c7 8505
eb73c1b7
MX
8506int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8507{
8508 int ret;
1eafa6c7 8509
2c21b4d7 8510 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
8511 return -EROFS;
8512
8513 ret = __start_delalloc_inodes(root, delay_iput);
8514 /*
8515 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8516 * we have to make sure the IO is actually started and that
8517 * ordered extents get created before we return
8518 */
8519 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8520 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8521 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8522 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8523 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8524 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8525 }
8526 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8527 return ret;
8528}
8529
91aef86f 8530int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput)
eb73c1b7
MX
8531{
8532 struct btrfs_root *root;
8533 struct list_head splice;
8534 int ret;
8535
2c21b4d7 8536 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
8537 return -EROFS;
8538
8539 INIT_LIST_HEAD(&splice);
8540
8541 spin_lock(&fs_info->delalloc_root_lock);
8542 list_splice_init(&fs_info->delalloc_roots, &splice);
8543 while (!list_empty(&splice)) {
8544 root = list_first_entry(&splice, struct btrfs_root,
8545 delalloc_root);
8546 root = btrfs_grab_fs_root(root);
8547 BUG_ON(!root);
8548 list_move_tail(&root->delalloc_root,
8549 &fs_info->delalloc_roots);
8550 spin_unlock(&fs_info->delalloc_root_lock);
8551
8552 ret = __start_delalloc_inodes(root, delay_iput);
8553 btrfs_put_fs_root(root);
8554 if (ret)
8555 goto out;
8556
8557 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8558 }
eb73c1b7 8559 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8560
eb73c1b7
MX
8561 atomic_inc(&fs_info->async_submit_draining);
8562 while (atomic_read(&fs_info->nr_async_submits) ||
8563 atomic_read(&fs_info->async_delalloc_pages)) {
8564 wait_event(fs_info->async_submit_wait,
8565 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8566 atomic_read(&fs_info->async_delalloc_pages) == 0));
8567 }
8568 atomic_dec(&fs_info->async_submit_draining);
8569 return 0;
8570out:
1eafa6c7 8571 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8572 spin_lock(&fs_info->delalloc_root_lock);
8573 list_splice_tail(&splice, &fs_info->delalloc_roots);
8574 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8575 }
8ccf6f19 8576 return ret;
ea8c2819
CM
8577}
8578
39279cc3
CM
8579static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8580 const char *symname)
8581{
8582 struct btrfs_trans_handle *trans;
8583 struct btrfs_root *root = BTRFS_I(dir)->root;
8584 struct btrfs_path *path;
8585 struct btrfs_key key;
1832a6d5 8586 struct inode *inode = NULL;
39279cc3
CM
8587 int err;
8588 int drop_inode = 0;
8589 u64 objectid;
67871254 8590 u64 index = 0;
39279cc3
CM
8591 int name_len;
8592 int datasize;
5f39d397 8593 unsigned long ptr;
39279cc3 8594 struct btrfs_file_extent_item *ei;
5f39d397 8595 struct extent_buffer *leaf;
39279cc3 8596
f06becc4 8597 name_len = strlen(symname);
39279cc3
CM
8598 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8599 return -ENAMETOOLONG;
1832a6d5 8600
9ed74f2d
JB
8601 /*
8602 * 2 items for inode item and ref
8603 * 2 items for dir items
8604 * 1 item for xattr if selinux is on
8605 */
a22285a6
YZ
8606 trans = btrfs_start_transaction(root, 5);
8607 if (IS_ERR(trans))
8608 return PTR_ERR(trans);
1832a6d5 8609
581bb050
LZ
8610 err = btrfs_find_free_ino(root, &objectid);
8611 if (err)
8612 goto out_unlock;
8613
aec7477b 8614 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8615 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8616 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8617 if (IS_ERR(inode)) {
8618 err = PTR_ERR(inode);
39279cc3 8619 goto out_unlock;
7cf96da3 8620 }
39279cc3 8621
2a7dba39 8622 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8623 if (err) {
8624 drop_inode = 1;
8625 goto out_unlock;
8626 }
8627
ad19db71
CS
8628 /*
8629 * If the active LSM wants to access the inode during
8630 * d_instantiate it needs these. Smack checks to see
8631 * if the filesystem supports xattrs by looking at the
8632 * ops vector.
8633 */
8634 inode->i_fop = &btrfs_file_operations;
8635 inode->i_op = &btrfs_file_inode_operations;
8636
a1b075d2 8637 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8638 if (err)
8639 drop_inode = 1;
8640 else {
8641 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8642 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8643 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8644 }
39279cc3
CM
8645 if (drop_inode)
8646 goto out_unlock;
8647
8648 path = btrfs_alloc_path();
d8926bb3
MF
8649 if (!path) {
8650 err = -ENOMEM;
8651 drop_inode = 1;
8652 goto out_unlock;
8653 }
33345d01 8654 key.objectid = btrfs_ino(inode);
39279cc3 8655 key.offset = 0;
39279cc3
CM
8656 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8657 datasize = btrfs_file_extent_calc_inline_size(name_len);
8658 err = btrfs_insert_empty_item(trans, root, path, &key,
8659 datasize);
54aa1f4d
CM
8660 if (err) {
8661 drop_inode = 1;
b0839166 8662 btrfs_free_path(path);
54aa1f4d
CM
8663 goto out_unlock;
8664 }
5f39d397
CM
8665 leaf = path->nodes[0];
8666 ei = btrfs_item_ptr(leaf, path->slots[0],
8667 struct btrfs_file_extent_item);
8668 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8669 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8670 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8671 btrfs_set_file_extent_encryption(leaf, ei, 0);
8672 btrfs_set_file_extent_compression(leaf, ei, 0);
8673 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8674 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8675
39279cc3 8676 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8677 write_extent_buffer(leaf, symname, ptr, name_len);
8678 btrfs_mark_buffer_dirty(leaf);
39279cc3 8679 btrfs_free_path(path);
5f39d397 8680
39279cc3
CM
8681 inode->i_op = &btrfs_symlink_inode_operations;
8682 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8683 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8684 inode_set_bytes(inode, name_len);
f06becc4 8685 btrfs_i_size_write(inode, name_len);
54aa1f4d
CM
8686 err = btrfs_update_inode(trans, root, inode);
8687 if (err)
8688 drop_inode = 1;
39279cc3
CM
8689
8690out_unlock:
08c422c2
AV
8691 if (!err)
8692 d_instantiate(dentry, inode);
7ad85bb7 8693 btrfs_end_transaction(trans, root);
39279cc3
CM
8694 if (drop_inode) {
8695 inode_dec_link_count(inode);
8696 iput(inode);
8697 }
b53d3f5d 8698 btrfs_btree_balance_dirty(root);
39279cc3
CM
8699 return err;
8700}
16432985 8701
0af3d00b
JB
8702static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8703 u64 start, u64 num_bytes, u64 min_size,
8704 loff_t actual_len, u64 *alloc_hint,
8705 struct btrfs_trans_handle *trans)
d899e052 8706{
5dc562c5
JB
8707 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8708 struct extent_map *em;
d899e052
YZ
8709 struct btrfs_root *root = BTRFS_I(inode)->root;
8710 struct btrfs_key ins;
d899e052 8711 u64 cur_offset = start;
55a61d1d 8712 u64 i_size;
154ea289 8713 u64 cur_bytes;
d899e052 8714 int ret = 0;
0af3d00b 8715 bool own_trans = true;
d899e052 8716
0af3d00b
JB
8717 if (trans)
8718 own_trans = false;
d899e052 8719 while (num_bytes > 0) {
0af3d00b
JB
8720 if (own_trans) {
8721 trans = btrfs_start_transaction(root, 3);
8722 if (IS_ERR(trans)) {
8723 ret = PTR_ERR(trans);
8724 break;
8725 }
5a303d5d
YZ
8726 }
8727
154ea289
CM
8728 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8729 cur_bytes = max(cur_bytes, min_size);
00361589
JB
8730 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8731 *alloc_hint, &ins, 1);
5a303d5d 8732 if (ret) {
0af3d00b
JB
8733 if (own_trans)
8734 btrfs_end_transaction(trans, root);
a22285a6 8735 break;
d899e052 8736 }
5a303d5d 8737
d899e052
YZ
8738 ret = insert_reserved_file_extent(trans, inode,
8739 cur_offset, ins.objectid,
8740 ins.offset, ins.offset,
920bbbfb 8741 ins.offset, 0, 0, 0,
d899e052 8742 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 8743 if (ret) {
857cc2fc
JB
8744 btrfs_free_reserved_extent(root, ins.objectid,
8745 ins.offset);
79787eaa
JM
8746 btrfs_abort_transaction(trans, root, ret);
8747 if (own_trans)
8748 btrfs_end_transaction(trans, root);
8749 break;
8750 }
a1ed835e
CM
8751 btrfs_drop_extent_cache(inode, cur_offset,
8752 cur_offset + ins.offset -1, 0);
5a303d5d 8753
5dc562c5
JB
8754 em = alloc_extent_map();
8755 if (!em) {
8756 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8757 &BTRFS_I(inode)->runtime_flags);
8758 goto next;
8759 }
8760
8761 em->start = cur_offset;
8762 em->orig_start = cur_offset;
8763 em->len = ins.offset;
8764 em->block_start = ins.objectid;
8765 em->block_len = ins.offset;
b4939680 8766 em->orig_block_len = ins.offset;
cc95bef6 8767 em->ram_bytes = ins.offset;
5dc562c5
JB
8768 em->bdev = root->fs_info->fs_devices->latest_bdev;
8769 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8770 em->generation = trans->transid;
8771
8772 while (1) {
8773 write_lock(&em_tree->lock);
09a2a8f9 8774 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8775 write_unlock(&em_tree->lock);
8776 if (ret != -EEXIST)
8777 break;
8778 btrfs_drop_extent_cache(inode, cur_offset,
8779 cur_offset + ins.offset - 1,
8780 0);
8781 }
8782 free_extent_map(em);
8783next:
d899e052
YZ
8784 num_bytes -= ins.offset;
8785 cur_offset += ins.offset;
efa56464 8786 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8787
0c4d2d95 8788 inode_inc_iversion(inode);
d899e052 8789 inode->i_ctime = CURRENT_TIME;
6cbff00f 8790 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8791 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8792 (actual_len > inode->i_size) &&
8793 (cur_offset > inode->i_size)) {
d1ea6a61 8794 if (cur_offset > actual_len)
55a61d1d 8795 i_size = actual_len;
d1ea6a61 8796 else
55a61d1d
JB
8797 i_size = cur_offset;
8798 i_size_write(inode, i_size);
8799 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8800 }
8801
d899e052 8802 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8803
8804 if (ret) {
8805 btrfs_abort_transaction(trans, root, ret);
8806 if (own_trans)
8807 btrfs_end_transaction(trans, root);
8808 break;
8809 }
d899e052 8810
0af3d00b
JB
8811 if (own_trans)
8812 btrfs_end_transaction(trans, root);
5a303d5d 8813 }
d899e052
YZ
8814 return ret;
8815}
8816
0af3d00b
JB
8817int btrfs_prealloc_file_range(struct inode *inode, int mode,
8818 u64 start, u64 num_bytes, u64 min_size,
8819 loff_t actual_len, u64 *alloc_hint)
8820{
8821 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8822 min_size, actual_len, alloc_hint,
8823 NULL);
8824}
8825
8826int btrfs_prealloc_file_range_trans(struct inode *inode,
8827 struct btrfs_trans_handle *trans, int mode,
8828 u64 start, u64 num_bytes, u64 min_size,
8829 loff_t actual_len, u64 *alloc_hint)
8830{
8831 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8832 min_size, actual_len, alloc_hint, trans);
8833}
8834
e6dcd2dc
CM
8835static int btrfs_set_page_dirty(struct page *page)
8836{
e6dcd2dc
CM
8837 return __set_page_dirty_nobuffers(page);
8838}
8839
10556cb2 8840static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8841{
b83cc969 8842 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8843 umode_t mode = inode->i_mode;
b83cc969 8844
cb6db4e5
JM
8845 if (mask & MAY_WRITE &&
8846 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8847 if (btrfs_root_readonly(root))
8848 return -EROFS;
8849 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8850 return -EACCES;
8851 }
2830ba7f 8852 return generic_permission(inode, mask);
fdebe2bd 8853}
39279cc3 8854
6e1d5dcc 8855static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8856 .getattr = btrfs_getattr,
39279cc3
CM
8857 .lookup = btrfs_lookup,
8858 .create = btrfs_create,
8859 .unlink = btrfs_unlink,
8860 .link = btrfs_link,
8861 .mkdir = btrfs_mkdir,
8862 .rmdir = btrfs_rmdir,
8863 .rename = btrfs_rename,
8864 .symlink = btrfs_symlink,
8865 .setattr = btrfs_setattr,
618e21d5 8866 .mknod = btrfs_mknod,
95819c05
CH
8867 .setxattr = btrfs_setxattr,
8868 .getxattr = btrfs_getxattr,
5103e947 8869 .listxattr = btrfs_listxattr,
95819c05 8870 .removexattr = btrfs_removexattr,
fdebe2bd 8871 .permission = btrfs_permission,
4e34e719 8872 .get_acl = btrfs_get_acl,
93fd63c2 8873 .update_time = btrfs_update_time,
39279cc3 8874};
6e1d5dcc 8875static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8876 .lookup = btrfs_lookup,
fdebe2bd 8877 .permission = btrfs_permission,
4e34e719 8878 .get_acl = btrfs_get_acl,
93fd63c2 8879 .update_time = btrfs_update_time,
39279cc3 8880};
76dda93c 8881
828c0950 8882static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8883 .llseek = generic_file_llseek,
8884 .read = generic_read_dir,
9cdda8d3 8885 .iterate = btrfs_real_readdir,
34287aa3 8886 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8887#ifdef CONFIG_COMPAT
34287aa3 8888 .compat_ioctl = btrfs_ioctl,
39279cc3 8889#endif
6bf13c0c 8890 .release = btrfs_release_file,
e02119d5 8891 .fsync = btrfs_sync_file,
39279cc3
CM
8892};
8893
d1310b2e 8894static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8895 .fill_delalloc = run_delalloc_range,
065631f6 8896 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8897 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8898 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8899 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8900 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8901 .set_bit_hook = btrfs_set_bit_hook,
8902 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8903 .merge_extent_hook = btrfs_merge_extent_hook,
8904 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8905};
8906
35054394
CM
8907/*
8908 * btrfs doesn't support the bmap operation because swapfiles
8909 * use bmap to make a mapping of extents in the file. They assume
8910 * these extents won't change over the life of the file and they
8911 * use the bmap result to do IO directly to the drive.
8912 *
8913 * the btrfs bmap call would return logical addresses that aren't
8914 * suitable for IO and they also will change frequently as COW
8915 * operations happen. So, swapfile + btrfs == corruption.
8916 *
8917 * For now we're avoiding this by dropping bmap.
8918 */
7f09410b 8919static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8920 .readpage = btrfs_readpage,
8921 .writepage = btrfs_writepage,
b293f02e 8922 .writepages = btrfs_writepages,
3ab2fb5a 8923 .readpages = btrfs_readpages,
16432985 8924 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8925 .invalidatepage = btrfs_invalidatepage,
8926 .releasepage = btrfs_releasepage,
e6dcd2dc 8927 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8928 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8929};
8930
7f09410b 8931static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8932 .readpage = btrfs_readpage,
8933 .writepage = btrfs_writepage,
2bf5a725
CM
8934 .invalidatepage = btrfs_invalidatepage,
8935 .releasepage = btrfs_releasepage,
39279cc3
CM
8936};
8937
6e1d5dcc 8938static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8939 .getattr = btrfs_getattr,
8940 .setattr = btrfs_setattr,
95819c05
CH
8941 .setxattr = btrfs_setxattr,
8942 .getxattr = btrfs_getxattr,
5103e947 8943 .listxattr = btrfs_listxattr,
95819c05 8944 .removexattr = btrfs_removexattr,
fdebe2bd 8945 .permission = btrfs_permission,
1506fcc8 8946 .fiemap = btrfs_fiemap,
4e34e719 8947 .get_acl = btrfs_get_acl,
e41f941a 8948 .update_time = btrfs_update_time,
39279cc3 8949};
6e1d5dcc 8950static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8951 .getattr = btrfs_getattr,
8952 .setattr = btrfs_setattr,
fdebe2bd 8953 .permission = btrfs_permission,
95819c05
CH
8954 .setxattr = btrfs_setxattr,
8955 .getxattr = btrfs_getxattr,
33268eaf 8956 .listxattr = btrfs_listxattr,
95819c05 8957 .removexattr = btrfs_removexattr,
4e34e719 8958 .get_acl = btrfs_get_acl,
e41f941a 8959 .update_time = btrfs_update_time,
618e21d5 8960};
6e1d5dcc 8961static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8962 .readlink = generic_readlink,
8963 .follow_link = page_follow_link_light,
8964 .put_link = page_put_link,
f209561a 8965 .getattr = btrfs_getattr,
22c44fe6 8966 .setattr = btrfs_setattr,
fdebe2bd 8967 .permission = btrfs_permission,
0279b4cd
JO
8968 .setxattr = btrfs_setxattr,
8969 .getxattr = btrfs_getxattr,
8970 .listxattr = btrfs_listxattr,
8971 .removexattr = btrfs_removexattr,
4e34e719 8972 .get_acl = btrfs_get_acl,
e41f941a 8973 .update_time = btrfs_update_time,
39279cc3 8974};
76dda93c 8975
82d339d9 8976const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8977 .d_delete = btrfs_dentry_delete,
b4aff1f8 8978 .d_release = btrfs_dentry_release,
76dda93c 8979};