Btrfs: remove unused mutex from struct 'btrfs_fs_info'
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
6e1d5dcc
AD
69static const struct inode_operations btrfs_dir_inode_operations;
70static const struct inode_operations btrfs_symlink_inode_operations;
71static const struct inode_operations btrfs_dir_ro_inode_operations;
72static const struct inode_operations btrfs_special_inode_operations;
73static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
74static const struct address_space_operations btrfs_aops;
75static const struct address_space_operations btrfs_symlink_aops;
828c0950 76static const struct file_operations btrfs_dir_file_operations;
d1310b2e 77static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
78
79static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 80static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
81struct kmem_cache *btrfs_trans_handle_cachep;
82struct kmem_cache *btrfs_transaction_cachep;
39279cc3 83struct kmem_cache *btrfs_path_cachep;
dc89e982 84struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
85
86#define S_SHIFT 12
87static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95};
96
3972f260 97static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 98static int btrfs_truncate(struct inode *inode);
5fd02043 99static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
100static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
70c8a91c
JB
104static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
cc95bef6
JB
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
7b128766 109
48a3b636 110static int btrfs_dirty_inode(struct inode *inode);
7b128766 111
6a3891c5
JB
112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113void btrfs_test_inode_set_ops(struct inode *inode)
114{
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116}
117#endif
118
f34f57a3 119static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
0279b4cd
JO
122{
123 int err;
124
f34f57a3 125 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 126 if (!err)
2a7dba39 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
128 return err;
129}
130
c8b97818
CM
131/*
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
40f76580 136static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 137 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
fe3f566c 140 int compress_type,
c8b97818
CM
141 struct page **compressed_pages)
142{
c8b97818
CM
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
c8b97818 151 unsigned long offset;
c8b97818 152
fe3f566c 153 if (compressed_size && compressed_pages)
c8b97818 154 cur_size = compressed_size;
c8b97818 155
1acae57b 156 inode_add_bytes(inode, size);
c8b97818 157
1acae57b
FDBM
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
c8b97818 161
1acae57b
FDBM
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
962a298f 164 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 165
1acae57b
FDBM
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
173 }
c8b97818
CM
174 }
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
184
261507a0 185 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
186 struct page *cpage;
187 int i = 0;
d397712b 188 while (compressed_size > 0) {
c8b97818 189 cpage = compressed_pages[i];
5b050f04 190 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
191 PAGE_CACHE_SIZE);
192
7ac687d9 193 kaddr = kmap_atomic(cpage);
c8b97818 194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
200 }
201 btrfs_set_file_extent_compression(leaf, ei,
261507a0 202 compress_type);
c8b97818
CM
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 207 kaddr = kmap_atomic(page);
c8b97818
CM
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 210 kunmap_atomic(kaddr);
c8b97818
CM
211 page_cache_release(page);
212 }
213 btrfs_mark_buffer_dirty(leaf);
1acae57b 214 btrfs_release_path(path);
c8b97818 215
c2167754
YZ
216 /*
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
220 *
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
224 */
c8b97818 225 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 226 ret = btrfs_update_inode(trans, root, inode);
c2167754 227
79787eaa 228 return ret;
c8b97818 229fail:
c8b97818
CM
230 return err;
231}
232
233
234/*
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
00361589
JB
239static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
c8b97818 244{
00361589 245 struct btrfs_trans_handle *trans;
c8b97818
CM
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
fda2832f 249 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
250 u64 data_len = inline_len;
251 int ret;
1acae57b
FDBM
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
c8b97818
CM
255
256 if (compressed_size)
257 data_len = compressed_size;
258
259 if (start > 0 ||
354877be
WS
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
267 }
268
1acae57b
FDBM
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272
00361589 273 trans = btrfs_join_transaction(root);
1acae57b
FDBM
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
00361589 276 return PTR_ERR(trans);
1acae57b 277 }
00361589
JB
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
1acae57b
FDBM
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
286
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
00361589
JB
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
293 }
c8b97818
CM
294
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
c8b97818 299 inline_len, compressed_size,
fe3f566c 300 compress_type, compressed_pages);
2adcac1a 301 if (ret && ret != -ENOSPC) {
79787eaa 302 btrfs_abort_transaction(trans, root, ret);
00361589 303 goto out;
2adcac1a 304 } else if (ret == -ENOSPC) {
00361589
JB
305 ret = 1;
306 goto out;
79787eaa 307 }
2adcac1a 308
bdc20e67 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 312out:
1acae57b 313 btrfs_free_path(path);
00361589
JB
314 btrfs_end_transaction(trans, root);
315 return ret;
c8b97818
CM
316}
317
771ed689
CM
318struct async_extent {
319 u64 start;
320 u64 ram_size;
321 u64 compressed_size;
322 struct page **pages;
323 unsigned long nr_pages;
261507a0 324 int compress_type;
771ed689
CM
325 struct list_head list;
326};
327
328struct async_cow {
329 struct inode *inode;
330 struct btrfs_root *root;
331 struct page *locked_page;
332 u64 start;
333 u64 end;
334 struct list_head extents;
335 struct btrfs_work work;
336};
337
338static noinline int add_async_extent(struct async_cow *cow,
339 u64 start, u64 ram_size,
340 u64 compressed_size,
341 struct page **pages,
261507a0
LZ
342 unsigned long nr_pages,
343 int compress_type)
771ed689
CM
344{
345 struct async_extent *async_extent;
346
347 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 348 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
349 async_extent->start = start;
350 async_extent->ram_size = ram_size;
351 async_extent->compressed_size = compressed_size;
352 async_extent->pages = pages;
353 async_extent->nr_pages = nr_pages;
261507a0 354 async_extent->compress_type = compress_type;
771ed689
CM
355 list_add_tail(&async_extent->list, &cow->extents);
356 return 0;
357}
358
f79707b0
WS
359static inline int inode_need_compress(struct inode *inode)
360{
361 struct btrfs_root *root = BTRFS_I(inode)->root;
362
363 /* force compress */
364 if (btrfs_test_opt(root, FORCE_COMPRESS))
365 return 1;
366 /* bad compression ratios */
367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
368 return 0;
369 if (btrfs_test_opt(root, COMPRESS) ||
370 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
371 BTRFS_I(inode)->force_compress)
372 return 1;
373 return 0;
374}
375
d352ac68 376/*
771ed689
CM
377 * we create compressed extents in two phases. The first
378 * phase compresses a range of pages that have already been
379 * locked (both pages and state bits are locked).
c8b97818 380 *
771ed689
CM
381 * This is done inside an ordered work queue, and the compression
382 * is spread across many cpus. The actual IO submission is step
383 * two, and the ordered work queue takes care of making sure that
384 * happens in the same order things were put onto the queue by
385 * writepages and friends.
c8b97818 386 *
771ed689
CM
387 * If this code finds it can't get good compression, it puts an
388 * entry onto the work queue to write the uncompressed bytes. This
389 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
390 * are written in the same order that the flusher thread sent them
391 * down.
d352ac68 392 */
c44f649e 393static noinline void compress_file_range(struct inode *inode,
771ed689
CM
394 struct page *locked_page,
395 u64 start, u64 end,
396 struct async_cow *async_cow,
397 int *num_added)
b888db2b
CM
398{
399 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 400 u64 num_bytes;
db94535d 401 u64 blocksize = root->sectorsize;
c8b97818 402 u64 actual_end;
42dc7bab 403 u64 isize = i_size_read(inode);
e6dcd2dc 404 int ret = 0;
c8b97818
CM
405 struct page **pages = NULL;
406 unsigned long nr_pages;
407 unsigned long nr_pages_ret = 0;
408 unsigned long total_compressed = 0;
409 unsigned long total_in = 0;
410 unsigned long max_compressed = 128 * 1024;
771ed689 411 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
412 int i;
413 int will_compress;
261507a0 414 int compress_type = root->fs_info->compress_type;
4adaa611 415 int redirty = 0;
b888db2b 416
4cb13e5d
LB
417 /* if this is a small write inside eof, kick off a defrag */
418 if ((end - start + 1) < 16 * 1024 &&
419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
420 btrfs_add_inode_defrag(NULL, inode);
421
42dc7bab 422 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
423again:
424 will_compress = 0;
425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 427
f03d9301
CM
428 /*
429 * we don't want to send crud past the end of i_size through
430 * compression, that's just a waste of CPU time. So, if the
431 * end of the file is before the start of our current
432 * requested range of bytes, we bail out to the uncompressed
433 * cleanup code that can deal with all of this.
434 *
435 * It isn't really the fastest way to fix things, but this is a
436 * very uncommon corner.
437 */
438 if (actual_end <= start)
439 goto cleanup_and_bail_uncompressed;
440
c8b97818
CM
441 total_compressed = actual_end - start;
442
4bcbb332
SW
443 /*
444 * skip compression for a small file range(<=blocksize) that
445 * isn't an inline extent, since it dosen't save disk space at all.
446 */
447 if (total_compressed <= blocksize &&
448 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
449 goto cleanup_and_bail_uncompressed;
450
c8b97818
CM
451 /* we want to make sure that amount of ram required to uncompress
452 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
453 * of a compressed extent to 128k. This is a crucial number
454 * because it also controls how easily we can spread reads across
455 * cpus for decompression.
456 *
457 * We also want to make sure the amount of IO required to do
458 * a random read is reasonably small, so we limit the size of
459 * a compressed extent to 128k.
c8b97818
CM
460 */
461 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 462 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 463 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
464 total_in = 0;
465 ret = 0;
db94535d 466
771ed689
CM
467 /*
468 * we do compression for mount -o compress and when the
469 * inode has not been flagged as nocompress. This flag can
470 * change at any time if we discover bad compression ratios.
c8b97818 471 */
f79707b0 472 if (inode_need_compress(inode)) {
c8b97818 473 WARN_ON(pages);
31e818fe 474 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
475 if (!pages) {
476 /* just bail out to the uncompressed code */
477 goto cont;
478 }
c8b97818 479
261507a0
LZ
480 if (BTRFS_I(inode)->force_compress)
481 compress_type = BTRFS_I(inode)->force_compress;
482
4adaa611
CM
483 /*
484 * we need to call clear_page_dirty_for_io on each
485 * page in the range. Otherwise applications with the file
486 * mmap'd can wander in and change the page contents while
487 * we are compressing them.
488 *
489 * If the compression fails for any reason, we set the pages
490 * dirty again later on.
491 */
492 extent_range_clear_dirty_for_io(inode, start, end);
493 redirty = 1;
261507a0
LZ
494 ret = btrfs_compress_pages(compress_type,
495 inode->i_mapping, start,
496 total_compressed, pages,
497 nr_pages, &nr_pages_ret,
498 &total_in,
499 &total_compressed,
500 max_compressed);
c8b97818
CM
501
502 if (!ret) {
503 unsigned long offset = total_compressed &
504 (PAGE_CACHE_SIZE - 1);
505 struct page *page = pages[nr_pages_ret - 1];
506 char *kaddr;
507
508 /* zero the tail end of the last page, we might be
509 * sending it down to disk
510 */
511 if (offset) {
7ac687d9 512 kaddr = kmap_atomic(page);
c8b97818
CM
513 memset(kaddr + offset, 0,
514 PAGE_CACHE_SIZE - offset);
7ac687d9 515 kunmap_atomic(kaddr);
c8b97818
CM
516 }
517 will_compress = 1;
518 }
519 }
560f7d75 520cont:
c8b97818
CM
521 if (start == 0) {
522 /* lets try to make an inline extent */
771ed689 523 if (ret || total_in < (actual_end - start)) {
c8b97818 524 /* we didn't compress the entire range, try
771ed689 525 * to make an uncompressed inline extent.
c8b97818 526 */
00361589
JB
527 ret = cow_file_range_inline(root, inode, start, end,
528 0, 0, NULL);
c8b97818 529 } else {
771ed689 530 /* try making a compressed inline extent */
00361589 531 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
532 total_compressed,
533 compress_type, pages);
c8b97818 534 }
79787eaa 535 if (ret <= 0) {
151a41bc
JB
536 unsigned long clear_flags = EXTENT_DELALLOC |
537 EXTENT_DEFRAG;
e6eb4314
FM
538 unsigned long page_error_op;
539
151a41bc 540 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 541 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 542
771ed689 543 /*
79787eaa
JM
544 * inline extent creation worked or returned error,
545 * we don't need to create any more async work items.
546 * Unlock and free up our temp pages.
771ed689 547 */
c2790a2e 548 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 549 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
550 PAGE_CLEAR_DIRTY |
551 PAGE_SET_WRITEBACK |
e6eb4314 552 page_error_op |
c2790a2e 553 PAGE_END_WRITEBACK);
c8b97818
CM
554 goto free_pages_out;
555 }
556 }
557
558 if (will_compress) {
559 /*
560 * we aren't doing an inline extent round the compressed size
561 * up to a block size boundary so the allocator does sane
562 * things
563 */
fda2832f 564 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
565
566 /*
567 * one last check to make sure the compression is really a
568 * win, compare the page count read with the blocks on disk
569 */
fda2832f 570 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
571 if (total_compressed >= total_in) {
572 will_compress = 0;
573 } else {
c8b97818
CM
574 num_bytes = total_in;
575 }
576 }
577 if (!will_compress && pages) {
578 /*
579 * the compression code ran but failed to make things smaller,
580 * free any pages it allocated and our page pointer array
581 */
582 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 583 WARN_ON(pages[i]->mapping);
c8b97818
CM
584 page_cache_release(pages[i]);
585 }
586 kfree(pages);
587 pages = NULL;
588 total_compressed = 0;
589 nr_pages_ret = 0;
590
591 /* flag the file so we don't compress in the future */
1e701a32
CM
592 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
593 !(BTRFS_I(inode)->force_compress)) {
a555f810 594 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 595 }
c8b97818 596 }
771ed689
CM
597 if (will_compress) {
598 *num_added += 1;
c8b97818 599
771ed689
CM
600 /* the async work queues will take care of doing actual
601 * allocation on disk for these compressed pages,
602 * and will submit them to the elevator.
603 */
604 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
605 total_compressed, pages, nr_pages_ret,
606 compress_type);
179e29e4 607
24ae6365 608 if (start + num_bytes < end) {
771ed689
CM
609 start += num_bytes;
610 pages = NULL;
611 cond_resched();
612 goto again;
613 }
614 } else {
f03d9301 615cleanup_and_bail_uncompressed:
771ed689
CM
616 /*
617 * No compression, but we still need to write the pages in
618 * the file we've been given so far. redirty the locked
619 * page if it corresponds to our extent and set things up
620 * for the async work queue to run cow_file_range to do
621 * the normal delalloc dance
622 */
623 if (page_offset(locked_page) >= start &&
624 page_offset(locked_page) <= end) {
625 __set_page_dirty_nobuffers(locked_page);
626 /* unlocked later on in the async handlers */
627 }
4adaa611
CM
628 if (redirty)
629 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
630 add_async_extent(async_cow, start, end - start + 1,
631 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
632 *num_added += 1;
633 }
3b951516 634
c44f649e 635 return;
771ed689
CM
636
637free_pages_out:
638 for (i = 0; i < nr_pages_ret; i++) {
639 WARN_ON(pages[i]->mapping);
640 page_cache_release(pages[i]);
641 }
d397712b 642 kfree(pages);
771ed689 643}
771ed689 644
40ae837b
FM
645static void free_async_extent_pages(struct async_extent *async_extent)
646{
647 int i;
648
649 if (!async_extent->pages)
650 return;
651
652 for (i = 0; i < async_extent->nr_pages; i++) {
653 WARN_ON(async_extent->pages[i]->mapping);
654 page_cache_release(async_extent->pages[i]);
655 }
656 kfree(async_extent->pages);
657 async_extent->nr_pages = 0;
658 async_extent->pages = NULL;
771ed689
CM
659}
660
661/*
662 * phase two of compressed writeback. This is the ordered portion
663 * of the code, which only gets called in the order the work was
664 * queued. We walk all the async extents created by compress_file_range
665 * and send them down to the disk.
666 */
dec8f175 667static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
668 struct async_cow *async_cow)
669{
670 struct async_extent *async_extent;
671 u64 alloc_hint = 0;
771ed689
CM
672 struct btrfs_key ins;
673 struct extent_map *em;
674 struct btrfs_root *root = BTRFS_I(inode)->root;
675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
676 struct extent_io_tree *io_tree;
f5a84ee3 677 int ret = 0;
771ed689 678
3e04e7f1 679again:
d397712b 680 while (!list_empty(&async_cow->extents)) {
771ed689
CM
681 async_extent = list_entry(async_cow->extents.next,
682 struct async_extent, list);
683 list_del(&async_extent->list);
c8b97818 684
771ed689
CM
685 io_tree = &BTRFS_I(inode)->io_tree;
686
f5a84ee3 687retry:
771ed689
CM
688 /* did the compression code fall back to uncompressed IO? */
689 if (!async_extent->pages) {
690 int page_started = 0;
691 unsigned long nr_written = 0;
692
693 lock_extent(io_tree, async_extent->start,
2ac55d41 694 async_extent->start +
d0082371 695 async_extent->ram_size - 1);
771ed689
CM
696
697 /* allocate blocks */
f5a84ee3
JB
698 ret = cow_file_range(inode, async_cow->locked_page,
699 async_extent->start,
700 async_extent->start +
701 async_extent->ram_size - 1,
702 &page_started, &nr_written, 0);
771ed689 703
79787eaa
JM
704 /* JDM XXX */
705
771ed689
CM
706 /*
707 * if page_started, cow_file_range inserted an
708 * inline extent and took care of all the unlocking
709 * and IO for us. Otherwise, we need to submit
710 * all those pages down to the drive.
711 */
f5a84ee3 712 if (!page_started && !ret)
771ed689
CM
713 extent_write_locked_range(io_tree,
714 inode, async_extent->start,
d397712b 715 async_extent->start +
771ed689
CM
716 async_extent->ram_size - 1,
717 btrfs_get_extent,
718 WB_SYNC_ALL);
3e04e7f1
JB
719 else if (ret)
720 unlock_page(async_cow->locked_page);
771ed689
CM
721 kfree(async_extent);
722 cond_resched();
723 continue;
724 }
725
726 lock_extent(io_tree, async_extent->start,
d0082371 727 async_extent->start + async_extent->ram_size - 1);
771ed689 728
00361589 729 ret = btrfs_reserve_extent(root,
771ed689
CM
730 async_extent->compressed_size,
731 async_extent->compressed_size,
e570fd27 732 0, alloc_hint, &ins, 1, 1);
f5a84ee3 733 if (ret) {
40ae837b 734 free_async_extent_pages(async_extent);
3e04e7f1 735
fdf8e2ea
JB
736 if (ret == -ENOSPC) {
737 unlock_extent(io_tree, async_extent->start,
738 async_extent->start +
739 async_extent->ram_size - 1);
ce62003f
LB
740
741 /*
742 * we need to redirty the pages if we decide to
743 * fallback to uncompressed IO, otherwise we
744 * will not submit these pages down to lower
745 * layers.
746 */
747 extent_range_redirty_for_io(inode,
748 async_extent->start,
749 async_extent->start +
750 async_extent->ram_size - 1);
751
79787eaa 752 goto retry;
fdf8e2ea 753 }
3e04e7f1 754 goto out_free;
f5a84ee3 755 }
c2167754
YZ
756 /*
757 * here we're doing allocation and writeback of the
758 * compressed pages
759 */
760 btrfs_drop_extent_cache(inode, async_extent->start,
761 async_extent->start +
762 async_extent->ram_size - 1, 0);
763
172ddd60 764 em = alloc_extent_map();
b9aa55be
LB
765 if (!em) {
766 ret = -ENOMEM;
3e04e7f1 767 goto out_free_reserve;
b9aa55be 768 }
771ed689
CM
769 em->start = async_extent->start;
770 em->len = async_extent->ram_size;
445a6944 771 em->orig_start = em->start;
2ab28f32
JB
772 em->mod_start = em->start;
773 em->mod_len = em->len;
c8b97818 774
771ed689
CM
775 em->block_start = ins.objectid;
776 em->block_len = ins.offset;
b4939680 777 em->orig_block_len = ins.offset;
cc95bef6 778 em->ram_bytes = async_extent->ram_size;
771ed689 779 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 780 em->compress_type = async_extent->compress_type;
771ed689
CM
781 set_bit(EXTENT_FLAG_PINNED, &em->flags);
782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 783 em->generation = -1;
771ed689 784
d397712b 785 while (1) {
890871be 786 write_lock(&em_tree->lock);
09a2a8f9 787 ret = add_extent_mapping(em_tree, em, 1);
890871be 788 write_unlock(&em_tree->lock);
771ed689
CM
789 if (ret != -EEXIST) {
790 free_extent_map(em);
791 break;
792 }
793 btrfs_drop_extent_cache(inode, async_extent->start,
794 async_extent->start +
795 async_extent->ram_size - 1, 0);
796 }
797
3e04e7f1
JB
798 if (ret)
799 goto out_free_reserve;
800
261507a0
LZ
801 ret = btrfs_add_ordered_extent_compress(inode,
802 async_extent->start,
803 ins.objectid,
804 async_extent->ram_size,
805 ins.offset,
806 BTRFS_ORDERED_COMPRESSED,
807 async_extent->compress_type);
d9f85963
FM
808 if (ret) {
809 btrfs_drop_extent_cache(inode, async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1, 0);
3e04e7f1 812 goto out_free_reserve;
d9f85963 813 }
771ed689 814
771ed689
CM
815 /*
816 * clear dirty, set writeback and unlock the pages.
817 */
c2790a2e 818 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
819 async_extent->start +
820 async_extent->ram_size - 1,
151a41bc
JB
821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 823 PAGE_SET_WRITEBACK);
771ed689 824 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
825 async_extent->start,
826 async_extent->ram_size,
827 ins.objectid,
828 ins.offset, async_extent->pages,
829 async_extent->nr_pages);
fce2a4e6
FM
830 if (ret) {
831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
832 struct page *p = async_extent->pages[0];
833 const u64 start = async_extent->start;
834 const u64 end = start + async_extent->ram_size - 1;
835
836 p->mapping = inode->i_mapping;
837 tree->ops->writepage_end_io_hook(p, start, end,
838 NULL, 0);
839 p->mapping = NULL;
840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
841 PAGE_END_WRITEBACK |
842 PAGE_SET_ERROR);
40ae837b 843 free_async_extent_pages(async_extent);
fce2a4e6 844 }
771ed689
CM
845 alloc_hint = ins.objectid + ins.offset;
846 kfree(async_extent);
847 cond_resched();
848 }
dec8f175 849 return;
3e04e7f1 850out_free_reserve:
e570fd27 851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 852out_free:
c2790a2e 853 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
854 async_extent->start +
855 async_extent->ram_size - 1,
c2790a2e 856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
860 PAGE_SET_ERROR);
40ae837b 861 free_async_extent_pages(async_extent);
79787eaa 862 kfree(async_extent);
3e04e7f1 863 goto again;
771ed689
CM
864}
865
4b46fce2
JB
866static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
867 u64 num_bytes)
868{
869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 struct extent_map *em;
871 u64 alloc_hint = 0;
872
873 read_lock(&em_tree->lock);
874 em = search_extent_mapping(em_tree, start, num_bytes);
875 if (em) {
876 /*
877 * if block start isn't an actual block number then find the
878 * first block in this inode and use that as a hint. If that
879 * block is also bogus then just don't worry about it.
880 */
881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
882 free_extent_map(em);
883 em = search_extent_mapping(em_tree, 0, 0);
884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
885 alloc_hint = em->block_start;
886 if (em)
887 free_extent_map(em);
888 } else {
889 alloc_hint = em->block_start;
890 free_extent_map(em);
891 }
892 }
893 read_unlock(&em_tree->lock);
894
895 return alloc_hint;
896}
897
771ed689
CM
898/*
899 * when extent_io.c finds a delayed allocation range in the file,
900 * the call backs end up in this code. The basic idea is to
901 * allocate extents on disk for the range, and create ordered data structs
902 * in ram to track those extents.
903 *
904 * locked_page is the page that writepage had locked already. We use
905 * it to make sure we don't do extra locks or unlocks.
906 *
907 * *page_started is set to one if we unlock locked_page and do everything
908 * required to start IO on it. It may be clean and already done with
909 * IO when we return.
910 */
00361589
JB
911static noinline int cow_file_range(struct inode *inode,
912 struct page *locked_page,
913 u64 start, u64 end, int *page_started,
914 unsigned long *nr_written,
915 int unlock)
771ed689 916{
00361589 917 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
918 u64 alloc_hint = 0;
919 u64 num_bytes;
920 unsigned long ram_size;
921 u64 disk_num_bytes;
922 u64 cur_alloc_size;
923 u64 blocksize = root->sectorsize;
771ed689
CM
924 struct btrfs_key ins;
925 struct extent_map *em;
926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 int ret = 0;
928
02ecd2c2
JB
929 if (btrfs_is_free_space_inode(inode)) {
930 WARN_ON_ONCE(1);
29bce2f3
JB
931 ret = -EINVAL;
932 goto out_unlock;
02ecd2c2 933 }
771ed689 934
fda2832f 935 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
936 num_bytes = max(blocksize, num_bytes);
937 disk_num_bytes = num_bytes;
771ed689 938
4cb5300b 939 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
940 if (num_bytes < 64 * 1024 &&
941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 942 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 943
771ed689
CM
944 if (start == 0) {
945 /* lets try to make an inline extent */
00361589
JB
946 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
947 NULL);
771ed689 948 if (ret == 0) {
c2790a2e
JB
949 extent_clear_unlock_delalloc(inode, start, end, NULL,
950 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 951 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
953 PAGE_END_WRITEBACK);
c2167754 954
771ed689
CM
955 *nr_written = *nr_written +
956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
957 *page_started = 1;
771ed689 958 goto out;
79787eaa 959 } else if (ret < 0) {
79787eaa 960 goto out_unlock;
771ed689
CM
961 }
962 }
963
964 BUG_ON(disk_num_bytes >
6c41761f 965 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 966
4b46fce2 967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
969
d397712b 970 while (disk_num_bytes > 0) {
a791e35e
CM
971 unsigned long op;
972
287a0ab9 973 cur_alloc_size = disk_num_bytes;
00361589 974 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 975 root->sectorsize, 0, alloc_hint,
e570fd27 976 &ins, 1, 1);
00361589 977 if (ret < 0)
79787eaa 978 goto out_unlock;
d397712b 979
172ddd60 980 em = alloc_extent_map();
b9aa55be
LB
981 if (!em) {
982 ret = -ENOMEM;
ace68bac 983 goto out_reserve;
b9aa55be 984 }
e6dcd2dc 985 em->start = start;
445a6944 986 em->orig_start = em->start;
771ed689
CM
987 ram_size = ins.offset;
988 em->len = ins.offset;
2ab28f32
JB
989 em->mod_start = em->start;
990 em->mod_len = em->len;
c8b97818 991
e6dcd2dc 992 em->block_start = ins.objectid;
c8b97818 993 em->block_len = ins.offset;
b4939680 994 em->orig_block_len = ins.offset;
cc95bef6 995 em->ram_bytes = ram_size;
e6dcd2dc 996 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 997 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 998 em->generation = -1;
c8b97818 999
d397712b 1000 while (1) {
890871be 1001 write_lock(&em_tree->lock);
09a2a8f9 1002 ret = add_extent_mapping(em_tree, em, 1);
890871be 1003 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1004 if (ret != -EEXIST) {
1005 free_extent_map(em);
1006 break;
1007 }
1008 btrfs_drop_extent_cache(inode, start,
c8b97818 1009 start + ram_size - 1, 0);
e6dcd2dc 1010 }
ace68bac
LB
1011 if (ret)
1012 goto out_reserve;
e6dcd2dc 1013
98d20f67 1014 cur_alloc_size = ins.offset;
e6dcd2dc 1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1016 ram_size, cur_alloc_size, 0);
ace68bac 1017 if (ret)
d9f85963 1018 goto out_drop_extent_cache;
c8b97818 1019
17d217fe
YZ
1020 if (root->root_key.objectid ==
1021 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022 ret = btrfs_reloc_clone_csums(inode, start,
1023 cur_alloc_size);
00361589 1024 if (ret)
d9f85963 1025 goto out_drop_extent_cache;
17d217fe
YZ
1026 }
1027
d397712b 1028 if (disk_num_bytes < cur_alloc_size)
3b951516 1029 break;
d397712b 1030
c8b97818
CM
1031 /* we're not doing compressed IO, don't unlock the first
1032 * page (which the caller expects to stay locked), don't
1033 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1034 *
1035 * Do set the Private2 bit so we know this page was properly
1036 * setup for writepage
c8b97818 1037 */
c2790a2e
JB
1038 op = unlock ? PAGE_UNLOCK : 0;
1039 op |= PAGE_SET_PRIVATE2;
a791e35e 1040
c2790a2e
JB
1041 extent_clear_unlock_delalloc(inode, start,
1042 start + ram_size - 1, locked_page,
1043 EXTENT_LOCKED | EXTENT_DELALLOC,
1044 op);
c8b97818 1045 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1046 num_bytes -= cur_alloc_size;
1047 alloc_hint = ins.objectid + ins.offset;
1048 start += cur_alloc_size;
b888db2b 1049 }
79787eaa 1050out:
be20aa9d 1051 return ret;
b7d5b0a8 1052
d9f85963
FM
1053out_drop_extent_cache:
1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1055out_reserve:
e570fd27 1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1057out_unlock:
c2790a2e 1058 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060 EXTENT_DELALLOC | EXTENT_DEFRAG,
1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1063 goto out;
771ed689 1064}
c8b97818 1065
771ed689
CM
1066/*
1067 * work queue call back to started compression on a file and pages
1068 */
1069static noinline void async_cow_start(struct btrfs_work *work)
1070{
1071 struct async_cow *async_cow;
1072 int num_added = 0;
1073 async_cow = container_of(work, struct async_cow, work);
1074
1075 compress_file_range(async_cow->inode, async_cow->locked_page,
1076 async_cow->start, async_cow->end, async_cow,
1077 &num_added);
8180ef88 1078 if (num_added == 0) {
cb77fcd8 1079 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1080 async_cow->inode = NULL;
8180ef88 1081 }
771ed689
CM
1082}
1083
1084/*
1085 * work queue call back to submit previously compressed pages
1086 */
1087static noinline void async_cow_submit(struct btrfs_work *work)
1088{
1089 struct async_cow *async_cow;
1090 struct btrfs_root *root;
1091 unsigned long nr_pages;
1092
1093 async_cow = container_of(work, struct async_cow, work);
1094
1095 root = async_cow->root;
1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1097 PAGE_CACHE_SHIFT;
1098
66657b31 1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1100 5 * 1024 * 1024 &&
771ed689
CM
1101 waitqueue_active(&root->fs_info->async_submit_wait))
1102 wake_up(&root->fs_info->async_submit_wait);
1103
d397712b 1104 if (async_cow->inode)
771ed689 1105 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1106}
c8b97818 1107
771ed689
CM
1108static noinline void async_cow_free(struct btrfs_work *work)
1109{
1110 struct async_cow *async_cow;
1111 async_cow = container_of(work, struct async_cow, work);
8180ef88 1112 if (async_cow->inode)
cb77fcd8 1113 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1114 kfree(async_cow);
1115}
1116
1117static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1118 u64 start, u64 end, int *page_started,
1119 unsigned long *nr_written)
1120{
1121 struct async_cow *async_cow;
1122 struct btrfs_root *root = BTRFS_I(inode)->root;
1123 unsigned long nr_pages;
1124 u64 cur_end;
287082b0 1125 int limit = 10 * 1024 * 1024;
771ed689 1126
a3429ab7
CM
1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1128 1, 0, NULL, GFP_NOFS);
d397712b 1129 while (start < end) {
771ed689 1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1131 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1132 async_cow->inode = igrab(inode);
771ed689
CM
1133 async_cow->root = root;
1134 async_cow->locked_page = locked_page;
1135 async_cow->start = start;
1136
f79707b0
WS
1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1138 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1139 cur_end = end;
1140 else
1141 cur_end = min(end, start + 512 * 1024 - 1);
1142
1143 async_cow->end = cur_end;
1144 INIT_LIST_HEAD(&async_cow->extents);
1145
9e0af237
LB
1146 btrfs_init_work(&async_cow->work,
1147 btrfs_delalloc_helper,
1148 async_cow_start, async_cow_submit,
1149 async_cow_free);
771ed689 1150
771ed689
CM
1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1152 PAGE_CACHE_SHIFT;
1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1154
afe3d242
QW
1155 btrfs_queue_work(root->fs_info->delalloc_workers,
1156 &async_cow->work);
771ed689
CM
1157
1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) <
1161 limit));
1162 }
1163
d397712b 1164 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1165 atomic_read(&root->fs_info->async_delalloc_pages)) {
1166 wait_event(root->fs_info->async_submit_wait,
1167 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1168 0));
1169 }
1170
1171 *nr_written += nr_pages;
1172 start = cur_end + 1;
1173 }
1174 *page_started = 1;
1175 return 0;
be20aa9d
CM
1176}
1177
d397712b 1178static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1179 u64 bytenr, u64 num_bytes)
1180{
1181 int ret;
1182 struct btrfs_ordered_sum *sums;
1183 LIST_HEAD(list);
1184
07d400a6 1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1186 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1187 if (ret == 0 && list_empty(&list))
1188 return 0;
1189
1190 while (!list_empty(&list)) {
1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1192 list_del(&sums->list);
1193 kfree(sums);
1194 }
1195 return 1;
1196}
1197
d352ac68
CM
1198/*
1199 * when nowcow writeback call back. This checks for snapshots or COW copies
1200 * of the extents that exist in the file, and COWs the file as required.
1201 *
1202 * If no cow copies or snapshots exist, we write directly to the existing
1203 * blocks on disk
1204 */
7f366cfe
CM
1205static noinline int run_delalloc_nocow(struct inode *inode,
1206 struct page *locked_page,
771ed689
CM
1207 u64 start, u64 end, int *page_started, int force,
1208 unsigned long *nr_written)
be20aa9d 1209{
be20aa9d 1210 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1211 struct btrfs_trans_handle *trans;
be20aa9d 1212 struct extent_buffer *leaf;
be20aa9d 1213 struct btrfs_path *path;
80ff3856 1214 struct btrfs_file_extent_item *fi;
be20aa9d 1215 struct btrfs_key found_key;
80ff3856
YZ
1216 u64 cow_start;
1217 u64 cur_offset;
1218 u64 extent_end;
5d4f98a2 1219 u64 extent_offset;
80ff3856
YZ
1220 u64 disk_bytenr;
1221 u64 num_bytes;
b4939680 1222 u64 disk_num_bytes;
cc95bef6 1223 u64 ram_bytes;
80ff3856 1224 int extent_type;
79787eaa 1225 int ret, err;
d899e052 1226 int type;
80ff3856
YZ
1227 int nocow;
1228 int check_prev = 1;
82d5902d 1229 bool nolock;
33345d01 1230 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1231
1232 path = btrfs_alloc_path();
17ca04af 1233 if (!path) {
c2790a2e
JB
1234 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1235 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1236 EXTENT_DO_ACCOUNTING |
1237 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1238 PAGE_CLEAR_DIRTY |
1239 PAGE_SET_WRITEBACK |
1240 PAGE_END_WRITEBACK);
d8926bb3 1241 return -ENOMEM;
17ca04af 1242 }
82d5902d 1243
83eea1f1 1244 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1245
1246 if (nolock)
7a7eaa40 1247 trans = btrfs_join_transaction_nolock(root);
82d5902d 1248 else
7a7eaa40 1249 trans = btrfs_join_transaction(root);
ff5714cc 1250
79787eaa 1251 if (IS_ERR(trans)) {
c2790a2e
JB
1252 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1253 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1254 EXTENT_DO_ACCOUNTING |
1255 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1256 PAGE_CLEAR_DIRTY |
1257 PAGE_SET_WRITEBACK |
1258 PAGE_END_WRITEBACK);
79787eaa
JM
1259 btrfs_free_path(path);
1260 return PTR_ERR(trans);
1261 }
1262
74b21075 1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1264
80ff3856
YZ
1265 cow_start = (u64)-1;
1266 cur_offset = start;
1267 while (1) {
33345d01 1268 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1269 cur_offset, 0);
d788a349 1270 if (ret < 0)
79787eaa 1271 goto error;
80ff3856
YZ
1272 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &found_key,
1275 path->slots[0] - 1);
33345d01 1276 if (found_key.objectid == ino &&
80ff3856
YZ
1277 found_key.type == BTRFS_EXTENT_DATA_KEY)
1278 path->slots[0]--;
1279 }
1280 check_prev = 0;
1281next_slot:
1282 leaf = path->nodes[0];
1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1284 ret = btrfs_next_leaf(root, path);
d788a349 1285 if (ret < 0)
79787eaa 1286 goto error;
80ff3856
YZ
1287 if (ret > 0)
1288 break;
1289 leaf = path->nodes[0];
1290 }
be20aa9d 1291
80ff3856
YZ
1292 nocow = 0;
1293 disk_bytenr = 0;
17d217fe 1294 num_bytes = 0;
80ff3856
YZ
1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1296
33345d01 1297 if (found_key.objectid > ino ||
80ff3856
YZ
1298 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1299 found_key.offset > end)
1300 break;
1301
1302 if (found_key.offset > cur_offset) {
1303 extent_end = found_key.offset;
e9061e21 1304 extent_type = 0;
80ff3856
YZ
1305 goto out_check;
1306 }
1307
1308 fi = btrfs_item_ptr(leaf, path->slots[0],
1309 struct btrfs_file_extent_item);
1310 extent_type = btrfs_file_extent_type(leaf, fi);
1311
cc95bef6 1312 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1313 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1314 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1316 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1317 extent_end = found_key.offset +
1318 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1319 disk_num_bytes =
1320 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1321 if (extent_end <= start) {
1322 path->slots[0]++;
1323 goto next_slot;
1324 }
17d217fe
YZ
1325 if (disk_bytenr == 0)
1326 goto out_check;
80ff3856
YZ
1327 if (btrfs_file_extent_compression(leaf, fi) ||
1328 btrfs_file_extent_encryption(leaf, fi) ||
1329 btrfs_file_extent_other_encoding(leaf, fi))
1330 goto out_check;
d899e052
YZ
1331 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1332 goto out_check;
d2fb3437 1333 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1334 goto out_check;
33345d01 1335 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1336 found_key.offset -
1337 extent_offset, disk_bytenr))
17d217fe 1338 goto out_check;
5d4f98a2 1339 disk_bytenr += extent_offset;
17d217fe
YZ
1340 disk_bytenr += cur_offset - found_key.offset;
1341 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1342 /*
1343 * if there are pending snapshots for this root,
1344 * we fall into common COW way.
1345 */
1346 if (!nolock) {
9ea24bbe 1347 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1348 if (!err)
1349 goto out_check;
1350 }
17d217fe
YZ
1351 /*
1352 * force cow if csum exists in the range.
1353 * this ensure that csum for a given extent are
1354 * either valid or do not exist.
1355 */
1356 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1357 goto out_check;
80ff3856
YZ
1358 nocow = 1;
1359 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1360 extent_end = found_key.offset +
514ac8ad
CM
1361 btrfs_file_extent_inline_len(leaf,
1362 path->slots[0], fi);
80ff3856
YZ
1363 extent_end = ALIGN(extent_end, root->sectorsize);
1364 } else {
1365 BUG_ON(1);
1366 }
1367out_check:
1368 if (extent_end <= start) {
1369 path->slots[0]++;
e9894fd3 1370 if (!nolock && nocow)
9ea24bbe 1371 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1372 goto next_slot;
1373 }
1374 if (!nocow) {
1375 if (cow_start == (u64)-1)
1376 cow_start = cur_offset;
1377 cur_offset = extent_end;
1378 if (cur_offset > end)
1379 break;
1380 path->slots[0]++;
1381 goto next_slot;
7ea394f1
YZ
1382 }
1383
b3b4aa74 1384 btrfs_release_path(path);
80ff3856 1385 if (cow_start != (u64)-1) {
00361589
JB
1386 ret = cow_file_range(inode, locked_page,
1387 cow_start, found_key.offset - 1,
1388 page_started, nr_written, 1);
e9894fd3
WS
1389 if (ret) {
1390 if (!nolock && nocow)
9ea24bbe 1391 btrfs_end_write_no_snapshoting(root);
79787eaa 1392 goto error;
e9894fd3 1393 }
80ff3856 1394 cow_start = (u64)-1;
7ea394f1 1395 }
80ff3856 1396
d899e052
YZ
1397 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1398 struct extent_map *em;
1399 struct extent_map_tree *em_tree;
1400 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1401 em = alloc_extent_map();
79787eaa 1402 BUG_ON(!em); /* -ENOMEM */
d899e052 1403 em->start = cur_offset;
70c8a91c 1404 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1405 em->len = num_bytes;
1406 em->block_len = num_bytes;
1407 em->block_start = disk_bytenr;
b4939680 1408 em->orig_block_len = disk_num_bytes;
cc95bef6 1409 em->ram_bytes = ram_bytes;
d899e052 1410 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1411 em->mod_start = em->start;
1412 em->mod_len = em->len;
d899e052 1413 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1414 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1415 em->generation = -1;
d899e052 1416 while (1) {
890871be 1417 write_lock(&em_tree->lock);
09a2a8f9 1418 ret = add_extent_mapping(em_tree, em, 1);
890871be 1419 write_unlock(&em_tree->lock);
d899e052
YZ
1420 if (ret != -EEXIST) {
1421 free_extent_map(em);
1422 break;
1423 }
1424 btrfs_drop_extent_cache(inode, em->start,
1425 em->start + em->len - 1, 0);
1426 }
1427 type = BTRFS_ORDERED_PREALLOC;
1428 } else {
1429 type = BTRFS_ORDERED_NOCOW;
1430 }
80ff3856
YZ
1431
1432 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1433 num_bytes, num_bytes, type);
79787eaa 1434 BUG_ON(ret); /* -ENOMEM */
771ed689 1435
efa56464
YZ
1436 if (root->root_key.objectid ==
1437 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1439 num_bytes);
e9894fd3
WS
1440 if (ret) {
1441 if (!nolock && nocow)
9ea24bbe 1442 btrfs_end_write_no_snapshoting(root);
79787eaa 1443 goto error;
e9894fd3 1444 }
efa56464
YZ
1445 }
1446
c2790a2e
JB
1447 extent_clear_unlock_delalloc(inode, cur_offset,
1448 cur_offset + num_bytes - 1,
1449 locked_page, EXTENT_LOCKED |
1450 EXTENT_DELALLOC, PAGE_UNLOCK |
1451 PAGE_SET_PRIVATE2);
e9894fd3 1452 if (!nolock && nocow)
9ea24bbe 1453 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1454 cur_offset = extent_end;
1455 if (cur_offset > end)
1456 break;
be20aa9d 1457 }
b3b4aa74 1458 btrfs_release_path(path);
80ff3856 1459
17ca04af 1460 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1461 cow_start = cur_offset;
17ca04af
JB
1462 cur_offset = end;
1463 }
1464
80ff3856 1465 if (cow_start != (u64)-1) {
00361589
JB
1466 ret = cow_file_range(inode, locked_page, cow_start, end,
1467 page_started, nr_written, 1);
d788a349 1468 if (ret)
79787eaa 1469 goto error;
80ff3856
YZ
1470 }
1471
79787eaa 1472error:
a698d075 1473 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1474 if (!ret)
1475 ret = err;
1476
17ca04af 1477 if (ret && cur_offset < end)
c2790a2e
JB
1478 extent_clear_unlock_delalloc(inode, cur_offset, end,
1479 locked_page, EXTENT_LOCKED |
151a41bc
JB
1480 EXTENT_DELALLOC | EXTENT_DEFRAG |
1481 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1482 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1483 PAGE_SET_WRITEBACK |
1484 PAGE_END_WRITEBACK);
7ea394f1 1485 btrfs_free_path(path);
79787eaa 1486 return ret;
be20aa9d
CM
1487}
1488
47059d93
WS
1489static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1490{
1491
1492 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1493 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1494 return 0;
1495
1496 /*
1497 * @defrag_bytes is a hint value, no spinlock held here,
1498 * if is not zero, it means the file is defragging.
1499 * Force cow if given extent needs to be defragged.
1500 */
1501 if (BTRFS_I(inode)->defrag_bytes &&
1502 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1503 EXTENT_DEFRAG, 0, NULL))
1504 return 1;
1505
1506 return 0;
1507}
1508
d352ac68
CM
1509/*
1510 * extent_io.c call back to do delayed allocation processing
1511 */
c8b97818 1512static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1513 u64 start, u64 end, int *page_started,
1514 unsigned long *nr_written)
be20aa9d 1515{
be20aa9d 1516 int ret;
47059d93 1517 int force_cow = need_force_cow(inode, start, end);
a2135011 1518
47059d93 1519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1520 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1521 page_started, 1, nr_written);
47059d93 1522 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1523 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1524 page_started, 0, nr_written);
7816030e 1525 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1526 ret = cow_file_range(inode, locked_page, start, end,
1527 page_started, nr_written, 1);
7ddf5a42
JB
1528 } else {
1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1530 &BTRFS_I(inode)->runtime_flags);
771ed689 1531 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1532 page_started, nr_written);
7ddf5a42 1533 }
b888db2b
CM
1534 return ret;
1535}
1536
1bf85046
JM
1537static void btrfs_split_extent_hook(struct inode *inode,
1538 struct extent_state *orig, u64 split)
9ed74f2d 1539{
dcab6a3b
JB
1540 u64 size;
1541
0ca1f7ce 1542 /* not delalloc, ignore it */
9ed74f2d 1543 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1544 return;
9ed74f2d 1545
dcab6a3b
JB
1546 size = orig->end - orig->start + 1;
1547 if (size > BTRFS_MAX_EXTENT_SIZE) {
1548 u64 num_extents;
1549 u64 new_size;
1550
1551 /*
ba117213
JB
1552 * See the explanation in btrfs_merge_extent_hook, the same
1553 * applies here, just in reverse.
dcab6a3b
JB
1554 */
1555 new_size = orig->end - split + 1;
ba117213 1556 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1557 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1558 new_size = split - orig->start;
1559 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1560 BTRFS_MAX_EXTENT_SIZE);
1561 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1562 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1563 return;
1564 }
1565
9e0baf60
JB
1566 spin_lock(&BTRFS_I(inode)->lock);
1567 BTRFS_I(inode)->outstanding_extents++;
1568 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1569}
1570
1571/*
1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1573 * extents so we can keep track of new extents that are just merged onto old
1574 * extents, such as when we are doing sequential writes, so we can properly
1575 * account for the metadata space we'll need.
1576 */
1bf85046
JM
1577static void btrfs_merge_extent_hook(struct inode *inode,
1578 struct extent_state *new,
1579 struct extent_state *other)
9ed74f2d 1580{
dcab6a3b
JB
1581 u64 new_size, old_size;
1582 u64 num_extents;
1583
9ed74f2d
JB
1584 /* not delalloc, ignore it */
1585 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1586 return;
9ed74f2d 1587
8461a3de
JB
1588 if (new->start > other->start)
1589 new_size = new->end - other->start + 1;
1590 else
1591 new_size = other->end - new->start + 1;
dcab6a3b
JB
1592
1593 /* we're not bigger than the max, unreserve the space and go */
1594 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1595 spin_lock(&BTRFS_I(inode)->lock);
1596 BTRFS_I(inode)->outstanding_extents--;
1597 spin_unlock(&BTRFS_I(inode)->lock);
1598 return;
1599 }
1600
1601 /*
ba117213
JB
1602 * We have to add up either side to figure out how many extents were
1603 * accounted for before we merged into one big extent. If the number of
1604 * extents we accounted for is <= the amount we need for the new range
1605 * then we can return, otherwise drop. Think of it like this
1606 *
1607 * [ 4k][MAX_SIZE]
1608 *
1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1610 * need 2 outstanding extents, on one side we have 1 and the other side
1611 * we have 1 so they are == and we can return. But in this case
1612 *
1613 * [MAX_SIZE+4k][MAX_SIZE+4k]
1614 *
1615 * Each range on their own accounts for 2 extents, but merged together
1616 * they are only 3 extents worth of accounting, so we need to drop in
1617 * this case.
dcab6a3b 1618 */
ba117213 1619 old_size = other->end - other->start + 1;
dcab6a3b
JB
1620 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1621 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1622 old_size = new->end - new->start + 1;
1623 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624 BTRFS_MAX_EXTENT_SIZE);
1625
dcab6a3b 1626 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1627 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1628 return;
1629
9e0baf60
JB
1630 spin_lock(&BTRFS_I(inode)->lock);
1631 BTRFS_I(inode)->outstanding_extents--;
1632 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1633}
1634
eb73c1b7
MX
1635static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1636 struct inode *inode)
1637{
1638 spin_lock(&root->delalloc_lock);
1639 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1640 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1641 &root->delalloc_inodes);
1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1643 &BTRFS_I(inode)->runtime_flags);
1644 root->nr_delalloc_inodes++;
1645 if (root->nr_delalloc_inodes == 1) {
1646 spin_lock(&root->fs_info->delalloc_root_lock);
1647 BUG_ON(!list_empty(&root->delalloc_root));
1648 list_add_tail(&root->delalloc_root,
1649 &root->fs_info->delalloc_roots);
1650 spin_unlock(&root->fs_info->delalloc_root_lock);
1651 }
1652 }
1653 spin_unlock(&root->delalloc_lock);
1654}
1655
1656static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1657 struct inode *inode)
1658{
1659 spin_lock(&root->delalloc_lock);
1660 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1661 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1663 &BTRFS_I(inode)->runtime_flags);
1664 root->nr_delalloc_inodes--;
1665 if (!root->nr_delalloc_inodes) {
1666 spin_lock(&root->fs_info->delalloc_root_lock);
1667 BUG_ON(list_empty(&root->delalloc_root));
1668 list_del_init(&root->delalloc_root);
1669 spin_unlock(&root->fs_info->delalloc_root_lock);
1670 }
1671 }
1672 spin_unlock(&root->delalloc_lock);
1673}
1674
d352ac68
CM
1675/*
1676 * extent_io.c set_bit_hook, used to track delayed allocation
1677 * bytes in this file, and to maintain the list of inodes that
1678 * have pending delalloc work to be done.
1679 */
1bf85046 1680static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1681 struct extent_state *state, unsigned *bits)
291d673e 1682{
9ed74f2d 1683
47059d93
WS
1684 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1685 WARN_ON(1);
75eff68e
CM
1686 /*
1687 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1688 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1689 * bit, which is only set or cleared with irqs on
1690 */
0ca1f7ce 1691 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1692 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1693 u64 len = state->end + 1 - state->start;
83eea1f1 1694 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1695
9e0baf60 1696 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1697 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1698 } else {
1699 spin_lock(&BTRFS_I(inode)->lock);
1700 BTRFS_I(inode)->outstanding_extents++;
1701 spin_unlock(&BTRFS_I(inode)->lock);
1702 }
287a0ab9 1703
6a3891c5
JB
1704 /* For sanity tests */
1705 if (btrfs_test_is_dummy_root(root))
1706 return;
1707
963d678b
MX
1708 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1709 root->fs_info->delalloc_batch);
df0af1a5 1710 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1711 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1712 if (*bits & EXTENT_DEFRAG)
1713 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1714 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1715 &BTRFS_I(inode)->runtime_flags))
1716 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1717 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1718 }
291d673e
CM
1719}
1720
d352ac68
CM
1721/*
1722 * extent_io.c clear_bit_hook, see set_bit_hook for why
1723 */
1bf85046 1724static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1725 struct extent_state *state,
9ee49a04 1726 unsigned *bits)
291d673e 1727{
47059d93 1728 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1729 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1730 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1731
1732 spin_lock(&BTRFS_I(inode)->lock);
1733 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1734 BTRFS_I(inode)->defrag_bytes -= len;
1735 spin_unlock(&BTRFS_I(inode)->lock);
1736
75eff68e
CM
1737 /*
1738 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1739 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1740 * bit, which is only set or cleared with irqs on
1741 */
0ca1f7ce 1742 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1743 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1744 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1745
9e0baf60 1746 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1747 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1748 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1749 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1750 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1751 spin_unlock(&BTRFS_I(inode)->lock);
1752 }
0ca1f7ce 1753
b6d08f06
JB
1754 /*
1755 * We don't reserve metadata space for space cache inodes so we
1756 * don't need to call dellalloc_release_metadata if there is an
1757 * error.
1758 */
1759 if (*bits & EXTENT_DO_ACCOUNTING &&
1760 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1761 btrfs_delalloc_release_metadata(inode, len);
1762
6a3891c5
JB
1763 /* For sanity tests. */
1764 if (btrfs_test_is_dummy_root(root))
1765 return;
1766
0cb59c99 1767 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1768 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1769 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1770
963d678b
MX
1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1772 root->fs_info->delalloc_batch);
df0af1a5 1773 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1774 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1775 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1777 &BTRFS_I(inode)->runtime_flags))
1778 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1779 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1780 }
291d673e
CM
1781}
1782
d352ac68
CM
1783/*
1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1785 * we don't create bios that span stripes or chunks
1786 */
64a16701 1787int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1788 size_t size, struct bio *bio,
1789 unsigned long bio_flags)
239b14b3
CM
1790{
1791 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1792 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1793 u64 length = 0;
1794 u64 map_length;
239b14b3
CM
1795 int ret;
1796
771ed689
CM
1797 if (bio_flags & EXTENT_BIO_COMPRESSED)
1798 return 0;
1799
4f024f37 1800 length = bio->bi_iter.bi_size;
239b14b3 1801 map_length = length;
64a16701 1802 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1803 &map_length, NULL, 0);
3ec706c8 1804 /* Will always return 0 with map_multi == NULL */
3444a972 1805 BUG_ON(ret < 0);
d397712b 1806 if (map_length < length + size)
239b14b3 1807 return 1;
3444a972 1808 return 0;
239b14b3
CM
1809}
1810
d352ac68
CM
1811/*
1812 * in order to insert checksums into the metadata in large chunks,
1813 * we wait until bio submission time. All the pages in the bio are
1814 * checksummed and sums are attached onto the ordered extent record.
1815 *
1816 * At IO completion time the cums attached on the ordered extent record
1817 * are inserted into the btree
1818 */
d397712b
CM
1819static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1820 struct bio *bio, int mirror_num,
eaf25d93
CM
1821 unsigned long bio_flags,
1822 u64 bio_offset)
065631f6 1823{
065631f6 1824 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1825 int ret = 0;
e015640f 1826
d20f7043 1827 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1828 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1829 return 0;
1830}
e015640f 1831
4a69a410
CM
1832/*
1833 * in order to insert checksums into the metadata in large chunks,
1834 * we wait until bio submission time. All the pages in the bio are
1835 * checksummed and sums are attached onto the ordered extent record.
1836 *
1837 * At IO completion time the cums attached on the ordered extent record
1838 * are inserted into the btree
1839 */
b2950863 1840static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1841 int mirror_num, unsigned long bio_flags,
1842 u64 bio_offset)
4a69a410
CM
1843{
1844 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1845 int ret;
1846
1847 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1848 if (ret)
1849 bio_endio(bio, ret);
1850 return ret;
44b8bd7e
CM
1851}
1852
d352ac68 1853/*
cad321ad
CM
1854 * extent_io.c submission hook. This does the right thing for csum calculation
1855 * on write, or reading the csums from the tree before a read
d352ac68 1856 */
b2950863 1857static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1858 int mirror_num, unsigned long bio_flags,
1859 u64 bio_offset)
44b8bd7e
CM
1860{
1861 struct btrfs_root *root = BTRFS_I(inode)->root;
1862 int ret = 0;
19b9bdb0 1863 int skip_sum;
0417341e 1864 int metadata = 0;
b812ce28 1865 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1866
6cbff00f 1867 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1868
83eea1f1 1869 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1870 metadata = 2;
1871
7b6d91da 1872 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1873 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1874 if (ret)
61891923 1875 goto out;
5fd02043 1876
d20f7043 1877 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1878 ret = btrfs_submit_compressed_read(inode, bio,
1879 mirror_num,
1880 bio_flags);
1881 goto out;
c2db1073
TI
1882 } else if (!skip_sum) {
1883 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1884 if (ret)
61891923 1885 goto out;
c2db1073 1886 }
4d1b5fb4 1887 goto mapit;
b812ce28 1888 } else if (async && !skip_sum) {
17d217fe
YZ
1889 /* csum items have already been cloned */
1890 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1891 goto mapit;
19b9bdb0 1892 /* we're doing a write, do the async checksumming */
61891923 1893 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1894 inode, rw, bio, mirror_num,
eaf25d93
CM
1895 bio_flags, bio_offset,
1896 __btrfs_submit_bio_start,
4a69a410 1897 __btrfs_submit_bio_done);
61891923 1898 goto out;
b812ce28
JB
1899 } else if (!skip_sum) {
1900 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1901 if (ret)
1902 goto out;
19b9bdb0
CM
1903 }
1904
0b86a832 1905mapit:
61891923
SB
1906 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1907
1908out:
1909 if (ret < 0)
1910 bio_endio(bio, ret);
1911 return ret;
065631f6 1912}
6885f308 1913
d352ac68
CM
1914/*
1915 * given a list of ordered sums record them in the inode. This happens
1916 * at IO completion time based on sums calculated at bio submission time.
1917 */
ba1da2f4 1918static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1919 struct inode *inode, u64 file_offset,
1920 struct list_head *list)
1921{
e6dcd2dc
CM
1922 struct btrfs_ordered_sum *sum;
1923
c6e30871 1924 list_for_each_entry(sum, list, list) {
39847c4d 1925 trans->adding_csums = 1;
d20f7043
CM
1926 btrfs_csum_file_blocks(trans,
1927 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1928 trans->adding_csums = 0;
e6dcd2dc
CM
1929 }
1930 return 0;
1931}
1932
2ac55d41
JB
1933int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1934 struct extent_state **cached_state)
ea8c2819 1935{
6c1500f2 1936 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1937 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1938 cached_state, GFP_NOFS);
ea8c2819
CM
1939}
1940
d352ac68 1941/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1942struct btrfs_writepage_fixup {
1943 struct page *page;
1944 struct btrfs_work work;
1945};
1946
b2950863 1947static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1948{
1949 struct btrfs_writepage_fixup *fixup;
1950 struct btrfs_ordered_extent *ordered;
2ac55d41 1951 struct extent_state *cached_state = NULL;
247e743c
CM
1952 struct page *page;
1953 struct inode *inode;
1954 u64 page_start;
1955 u64 page_end;
87826df0 1956 int ret;
247e743c
CM
1957
1958 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1959 page = fixup->page;
4a096752 1960again:
247e743c
CM
1961 lock_page(page);
1962 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1963 ClearPageChecked(page);
1964 goto out_page;
1965 }
1966
1967 inode = page->mapping->host;
1968 page_start = page_offset(page);
1969 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1970
2ac55d41 1971 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1972 &cached_state);
4a096752
CM
1973
1974 /* already ordered? We're done */
8b62b72b 1975 if (PagePrivate2(page))
247e743c 1976 goto out;
4a096752
CM
1977
1978 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1979 if (ordered) {
2ac55d41
JB
1980 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1981 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1982 unlock_page(page);
1983 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1984 btrfs_put_ordered_extent(ordered);
4a096752
CM
1985 goto again;
1986 }
247e743c 1987
87826df0
JM
1988 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1989 if (ret) {
1990 mapping_set_error(page->mapping, ret);
1991 end_extent_writepage(page, ret, page_start, page_end);
1992 ClearPageChecked(page);
1993 goto out;
1994 }
1995
2ac55d41 1996 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1997 ClearPageChecked(page);
87826df0 1998 set_page_dirty(page);
247e743c 1999out:
2ac55d41
JB
2000 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2001 &cached_state, GFP_NOFS);
247e743c
CM
2002out_page:
2003 unlock_page(page);
2004 page_cache_release(page);
b897abec 2005 kfree(fixup);
247e743c
CM
2006}
2007
2008/*
2009 * There are a few paths in the higher layers of the kernel that directly
2010 * set the page dirty bit without asking the filesystem if it is a
2011 * good idea. This causes problems because we want to make sure COW
2012 * properly happens and the data=ordered rules are followed.
2013 *
c8b97818 2014 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2015 * hasn't been properly setup for IO. We kick off an async process
2016 * to fix it up. The async helper will wait for ordered extents, set
2017 * the delalloc bit and make it safe to write the page.
2018 */
b2950863 2019static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2020{
2021 struct inode *inode = page->mapping->host;
2022 struct btrfs_writepage_fixup *fixup;
2023 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2024
8b62b72b
CM
2025 /* this page is properly in the ordered list */
2026 if (TestClearPagePrivate2(page))
247e743c
CM
2027 return 0;
2028
2029 if (PageChecked(page))
2030 return -EAGAIN;
2031
2032 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2033 if (!fixup)
2034 return -EAGAIN;
f421950f 2035
247e743c
CM
2036 SetPageChecked(page);
2037 page_cache_get(page);
9e0af237
LB
2038 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2039 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2040 fixup->page = page;
dc6e3209 2041 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2042 return -EBUSY;
247e743c
CM
2043}
2044
d899e052
YZ
2045static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2046 struct inode *inode, u64 file_pos,
2047 u64 disk_bytenr, u64 disk_num_bytes,
2048 u64 num_bytes, u64 ram_bytes,
2049 u8 compression, u8 encryption,
2050 u16 other_encoding, int extent_type)
2051{
2052 struct btrfs_root *root = BTRFS_I(inode)->root;
2053 struct btrfs_file_extent_item *fi;
2054 struct btrfs_path *path;
2055 struct extent_buffer *leaf;
2056 struct btrfs_key ins;
1acae57b 2057 int extent_inserted = 0;
d899e052
YZ
2058 int ret;
2059
2060 path = btrfs_alloc_path();
d8926bb3
MF
2061 if (!path)
2062 return -ENOMEM;
d899e052 2063
a1ed835e
CM
2064 /*
2065 * we may be replacing one extent in the tree with another.
2066 * The new extent is pinned in the extent map, and we don't want
2067 * to drop it from the cache until it is completely in the btree.
2068 *
2069 * So, tell btrfs_drop_extents to leave this extent in the cache.
2070 * the caller is expected to unpin it and allow it to be merged
2071 * with the others.
2072 */
1acae57b
FDBM
2073 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2074 file_pos + num_bytes, NULL, 0,
2075 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2076 if (ret)
2077 goto out;
d899e052 2078
1acae57b
FDBM
2079 if (!extent_inserted) {
2080 ins.objectid = btrfs_ino(inode);
2081 ins.offset = file_pos;
2082 ins.type = BTRFS_EXTENT_DATA_KEY;
2083
2084 path->leave_spinning = 1;
2085 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2086 sizeof(*fi));
2087 if (ret)
2088 goto out;
2089 }
d899e052
YZ
2090 leaf = path->nodes[0];
2091 fi = btrfs_item_ptr(leaf, path->slots[0],
2092 struct btrfs_file_extent_item);
2093 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2094 btrfs_set_file_extent_type(leaf, fi, extent_type);
2095 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2096 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2097 btrfs_set_file_extent_offset(leaf, fi, 0);
2098 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2099 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2100 btrfs_set_file_extent_compression(leaf, fi, compression);
2101 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2102 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2103
d899e052 2104 btrfs_mark_buffer_dirty(leaf);
ce195332 2105 btrfs_release_path(path);
d899e052
YZ
2106
2107 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2108
2109 ins.objectid = disk_bytenr;
2110 ins.offset = disk_num_bytes;
2111 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2112 ret = btrfs_alloc_reserved_file_extent(trans, root,
2113 root->root_key.objectid,
33345d01 2114 btrfs_ino(inode), file_pos, &ins);
79787eaa 2115out:
d899e052 2116 btrfs_free_path(path);
b9473439 2117
79787eaa 2118 return ret;
d899e052
YZ
2119}
2120
38c227d8
LB
2121/* snapshot-aware defrag */
2122struct sa_defrag_extent_backref {
2123 struct rb_node node;
2124 struct old_sa_defrag_extent *old;
2125 u64 root_id;
2126 u64 inum;
2127 u64 file_pos;
2128 u64 extent_offset;
2129 u64 num_bytes;
2130 u64 generation;
2131};
2132
2133struct old_sa_defrag_extent {
2134 struct list_head list;
2135 struct new_sa_defrag_extent *new;
2136
2137 u64 extent_offset;
2138 u64 bytenr;
2139 u64 offset;
2140 u64 len;
2141 int count;
2142};
2143
2144struct new_sa_defrag_extent {
2145 struct rb_root root;
2146 struct list_head head;
2147 struct btrfs_path *path;
2148 struct inode *inode;
2149 u64 file_pos;
2150 u64 len;
2151 u64 bytenr;
2152 u64 disk_len;
2153 u8 compress_type;
2154};
2155
2156static int backref_comp(struct sa_defrag_extent_backref *b1,
2157 struct sa_defrag_extent_backref *b2)
2158{
2159 if (b1->root_id < b2->root_id)
2160 return -1;
2161 else if (b1->root_id > b2->root_id)
2162 return 1;
2163
2164 if (b1->inum < b2->inum)
2165 return -1;
2166 else if (b1->inum > b2->inum)
2167 return 1;
2168
2169 if (b1->file_pos < b2->file_pos)
2170 return -1;
2171 else if (b1->file_pos > b2->file_pos)
2172 return 1;
2173
2174 /*
2175 * [------------------------------] ===> (a range of space)
2176 * |<--->| |<---->| =============> (fs/file tree A)
2177 * |<---------------------------->| ===> (fs/file tree B)
2178 *
2179 * A range of space can refer to two file extents in one tree while
2180 * refer to only one file extent in another tree.
2181 *
2182 * So we may process a disk offset more than one time(two extents in A)
2183 * and locate at the same extent(one extent in B), then insert two same
2184 * backrefs(both refer to the extent in B).
2185 */
2186 return 0;
2187}
2188
2189static void backref_insert(struct rb_root *root,
2190 struct sa_defrag_extent_backref *backref)
2191{
2192 struct rb_node **p = &root->rb_node;
2193 struct rb_node *parent = NULL;
2194 struct sa_defrag_extent_backref *entry;
2195 int ret;
2196
2197 while (*p) {
2198 parent = *p;
2199 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2200
2201 ret = backref_comp(backref, entry);
2202 if (ret < 0)
2203 p = &(*p)->rb_left;
2204 else
2205 p = &(*p)->rb_right;
2206 }
2207
2208 rb_link_node(&backref->node, parent, p);
2209 rb_insert_color(&backref->node, root);
2210}
2211
2212/*
2213 * Note the backref might has changed, and in this case we just return 0.
2214 */
2215static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2216 void *ctx)
2217{
2218 struct btrfs_file_extent_item *extent;
2219 struct btrfs_fs_info *fs_info;
2220 struct old_sa_defrag_extent *old = ctx;
2221 struct new_sa_defrag_extent *new = old->new;
2222 struct btrfs_path *path = new->path;
2223 struct btrfs_key key;
2224 struct btrfs_root *root;
2225 struct sa_defrag_extent_backref *backref;
2226 struct extent_buffer *leaf;
2227 struct inode *inode = new->inode;
2228 int slot;
2229 int ret;
2230 u64 extent_offset;
2231 u64 num_bytes;
2232
2233 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2234 inum == btrfs_ino(inode))
2235 return 0;
2236
2237 key.objectid = root_id;
2238 key.type = BTRFS_ROOT_ITEM_KEY;
2239 key.offset = (u64)-1;
2240
2241 fs_info = BTRFS_I(inode)->root->fs_info;
2242 root = btrfs_read_fs_root_no_name(fs_info, &key);
2243 if (IS_ERR(root)) {
2244 if (PTR_ERR(root) == -ENOENT)
2245 return 0;
2246 WARN_ON(1);
2247 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2248 inum, offset, root_id);
2249 return PTR_ERR(root);
2250 }
2251
2252 key.objectid = inum;
2253 key.type = BTRFS_EXTENT_DATA_KEY;
2254 if (offset > (u64)-1 << 32)
2255 key.offset = 0;
2256 else
2257 key.offset = offset;
2258
2259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2260 if (WARN_ON(ret < 0))
38c227d8 2261 return ret;
50f1319c 2262 ret = 0;
38c227d8
LB
2263
2264 while (1) {
2265 cond_resched();
2266
2267 leaf = path->nodes[0];
2268 slot = path->slots[0];
2269
2270 if (slot >= btrfs_header_nritems(leaf)) {
2271 ret = btrfs_next_leaf(root, path);
2272 if (ret < 0) {
2273 goto out;
2274 } else if (ret > 0) {
2275 ret = 0;
2276 goto out;
2277 }
2278 continue;
2279 }
2280
2281 path->slots[0]++;
2282
2283 btrfs_item_key_to_cpu(leaf, &key, slot);
2284
2285 if (key.objectid > inum)
2286 goto out;
2287
2288 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2289 continue;
2290
2291 extent = btrfs_item_ptr(leaf, slot,
2292 struct btrfs_file_extent_item);
2293
2294 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2295 continue;
2296
e68afa49
LB
2297 /*
2298 * 'offset' refers to the exact key.offset,
2299 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2300 * (key.offset - extent_offset).
2301 */
2302 if (key.offset != offset)
38c227d8
LB
2303 continue;
2304
e68afa49 2305 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2306 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2307
38c227d8
LB
2308 if (extent_offset >= old->extent_offset + old->offset +
2309 old->len || extent_offset + num_bytes <=
2310 old->extent_offset + old->offset)
2311 continue;
38c227d8
LB
2312 break;
2313 }
2314
2315 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2316 if (!backref) {
2317 ret = -ENOENT;
2318 goto out;
2319 }
2320
2321 backref->root_id = root_id;
2322 backref->inum = inum;
e68afa49 2323 backref->file_pos = offset;
38c227d8
LB
2324 backref->num_bytes = num_bytes;
2325 backref->extent_offset = extent_offset;
2326 backref->generation = btrfs_file_extent_generation(leaf, extent);
2327 backref->old = old;
2328 backref_insert(&new->root, backref);
2329 old->count++;
2330out:
2331 btrfs_release_path(path);
2332 WARN_ON(ret);
2333 return ret;
2334}
2335
2336static noinline bool record_extent_backrefs(struct btrfs_path *path,
2337 struct new_sa_defrag_extent *new)
2338{
2339 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2340 struct old_sa_defrag_extent *old, *tmp;
2341 int ret;
2342
2343 new->path = path;
2344
2345 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2346 ret = iterate_inodes_from_logical(old->bytenr +
2347 old->extent_offset, fs_info,
38c227d8
LB
2348 path, record_one_backref,
2349 old);
4724b106
JB
2350 if (ret < 0 && ret != -ENOENT)
2351 return false;
38c227d8
LB
2352
2353 /* no backref to be processed for this extent */
2354 if (!old->count) {
2355 list_del(&old->list);
2356 kfree(old);
2357 }
2358 }
2359
2360 if (list_empty(&new->head))
2361 return false;
2362
2363 return true;
2364}
2365
2366static int relink_is_mergable(struct extent_buffer *leaf,
2367 struct btrfs_file_extent_item *fi,
116e0024 2368 struct new_sa_defrag_extent *new)
38c227d8 2369{
116e0024 2370 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2371 return 0;
2372
2373 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2374 return 0;
2375
116e0024
LB
2376 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2377 return 0;
2378
2379 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2380 btrfs_file_extent_other_encoding(leaf, fi))
2381 return 0;
2382
2383 return 1;
2384}
2385
2386/*
2387 * Note the backref might has changed, and in this case we just return 0.
2388 */
2389static noinline int relink_extent_backref(struct btrfs_path *path,
2390 struct sa_defrag_extent_backref *prev,
2391 struct sa_defrag_extent_backref *backref)
2392{
2393 struct btrfs_file_extent_item *extent;
2394 struct btrfs_file_extent_item *item;
2395 struct btrfs_ordered_extent *ordered;
2396 struct btrfs_trans_handle *trans;
2397 struct btrfs_fs_info *fs_info;
2398 struct btrfs_root *root;
2399 struct btrfs_key key;
2400 struct extent_buffer *leaf;
2401 struct old_sa_defrag_extent *old = backref->old;
2402 struct new_sa_defrag_extent *new = old->new;
2403 struct inode *src_inode = new->inode;
2404 struct inode *inode;
2405 struct extent_state *cached = NULL;
2406 int ret = 0;
2407 u64 start;
2408 u64 len;
2409 u64 lock_start;
2410 u64 lock_end;
2411 bool merge = false;
2412 int index;
2413
2414 if (prev && prev->root_id == backref->root_id &&
2415 prev->inum == backref->inum &&
2416 prev->file_pos + prev->num_bytes == backref->file_pos)
2417 merge = true;
2418
2419 /* step 1: get root */
2420 key.objectid = backref->root_id;
2421 key.type = BTRFS_ROOT_ITEM_KEY;
2422 key.offset = (u64)-1;
2423
2424 fs_info = BTRFS_I(src_inode)->root->fs_info;
2425 index = srcu_read_lock(&fs_info->subvol_srcu);
2426
2427 root = btrfs_read_fs_root_no_name(fs_info, &key);
2428 if (IS_ERR(root)) {
2429 srcu_read_unlock(&fs_info->subvol_srcu, index);
2430 if (PTR_ERR(root) == -ENOENT)
2431 return 0;
2432 return PTR_ERR(root);
2433 }
38c227d8 2434
bcbba5e6
WS
2435 if (btrfs_root_readonly(root)) {
2436 srcu_read_unlock(&fs_info->subvol_srcu, index);
2437 return 0;
2438 }
2439
38c227d8
LB
2440 /* step 2: get inode */
2441 key.objectid = backref->inum;
2442 key.type = BTRFS_INODE_ITEM_KEY;
2443 key.offset = 0;
2444
2445 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2446 if (IS_ERR(inode)) {
2447 srcu_read_unlock(&fs_info->subvol_srcu, index);
2448 return 0;
2449 }
2450
2451 srcu_read_unlock(&fs_info->subvol_srcu, index);
2452
2453 /* step 3: relink backref */
2454 lock_start = backref->file_pos;
2455 lock_end = backref->file_pos + backref->num_bytes - 1;
2456 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2457 0, &cached);
2458
2459 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2460 if (ordered) {
2461 btrfs_put_ordered_extent(ordered);
2462 goto out_unlock;
2463 }
2464
2465 trans = btrfs_join_transaction(root);
2466 if (IS_ERR(trans)) {
2467 ret = PTR_ERR(trans);
2468 goto out_unlock;
2469 }
2470
2471 key.objectid = backref->inum;
2472 key.type = BTRFS_EXTENT_DATA_KEY;
2473 key.offset = backref->file_pos;
2474
2475 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2476 if (ret < 0) {
2477 goto out_free_path;
2478 } else if (ret > 0) {
2479 ret = 0;
2480 goto out_free_path;
2481 }
2482
2483 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2484 struct btrfs_file_extent_item);
2485
2486 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2487 backref->generation)
2488 goto out_free_path;
2489
2490 btrfs_release_path(path);
2491
2492 start = backref->file_pos;
2493 if (backref->extent_offset < old->extent_offset + old->offset)
2494 start += old->extent_offset + old->offset -
2495 backref->extent_offset;
2496
2497 len = min(backref->extent_offset + backref->num_bytes,
2498 old->extent_offset + old->offset + old->len);
2499 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2500
2501 ret = btrfs_drop_extents(trans, root, inode, start,
2502 start + len, 1);
2503 if (ret)
2504 goto out_free_path;
2505again:
2506 key.objectid = btrfs_ino(inode);
2507 key.type = BTRFS_EXTENT_DATA_KEY;
2508 key.offset = start;
2509
a09a0a70 2510 path->leave_spinning = 1;
38c227d8
LB
2511 if (merge) {
2512 struct btrfs_file_extent_item *fi;
2513 u64 extent_len;
2514 struct btrfs_key found_key;
2515
3c9665df 2516 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2517 if (ret < 0)
2518 goto out_free_path;
2519
2520 path->slots[0]--;
2521 leaf = path->nodes[0];
2522 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2523
2524 fi = btrfs_item_ptr(leaf, path->slots[0],
2525 struct btrfs_file_extent_item);
2526 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2527
116e0024
LB
2528 if (extent_len + found_key.offset == start &&
2529 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2530 btrfs_set_file_extent_num_bytes(leaf, fi,
2531 extent_len + len);
2532 btrfs_mark_buffer_dirty(leaf);
2533 inode_add_bytes(inode, len);
2534
2535 ret = 1;
2536 goto out_free_path;
2537 } else {
2538 merge = false;
2539 btrfs_release_path(path);
2540 goto again;
2541 }
2542 }
2543
2544 ret = btrfs_insert_empty_item(trans, root, path, &key,
2545 sizeof(*extent));
2546 if (ret) {
2547 btrfs_abort_transaction(trans, root, ret);
2548 goto out_free_path;
2549 }
2550
2551 leaf = path->nodes[0];
2552 item = btrfs_item_ptr(leaf, path->slots[0],
2553 struct btrfs_file_extent_item);
2554 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2555 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2556 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2557 btrfs_set_file_extent_num_bytes(leaf, item, len);
2558 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2559 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2560 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2561 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2562 btrfs_set_file_extent_encryption(leaf, item, 0);
2563 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2564
2565 btrfs_mark_buffer_dirty(leaf);
2566 inode_add_bytes(inode, len);
a09a0a70 2567 btrfs_release_path(path);
38c227d8
LB
2568
2569 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2570 new->disk_len, 0,
2571 backref->root_id, backref->inum,
2572 new->file_pos, 0); /* start - extent_offset */
2573 if (ret) {
2574 btrfs_abort_transaction(trans, root, ret);
2575 goto out_free_path;
2576 }
2577
2578 ret = 1;
2579out_free_path:
2580 btrfs_release_path(path);
a09a0a70 2581 path->leave_spinning = 0;
38c227d8
LB
2582 btrfs_end_transaction(trans, root);
2583out_unlock:
2584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2585 &cached, GFP_NOFS);
2586 iput(inode);
2587 return ret;
2588}
2589
6f519564
LB
2590static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2591{
2592 struct old_sa_defrag_extent *old, *tmp;
2593
2594 if (!new)
2595 return;
2596
2597 list_for_each_entry_safe(old, tmp, &new->head, list) {
2598 list_del(&old->list);
2599 kfree(old);
2600 }
2601 kfree(new);
2602}
2603
38c227d8
LB
2604static void relink_file_extents(struct new_sa_defrag_extent *new)
2605{
2606 struct btrfs_path *path;
38c227d8
LB
2607 struct sa_defrag_extent_backref *backref;
2608 struct sa_defrag_extent_backref *prev = NULL;
2609 struct inode *inode;
2610 struct btrfs_root *root;
2611 struct rb_node *node;
2612 int ret;
2613
2614 inode = new->inode;
2615 root = BTRFS_I(inode)->root;
2616
2617 path = btrfs_alloc_path();
2618 if (!path)
2619 return;
2620
2621 if (!record_extent_backrefs(path, new)) {
2622 btrfs_free_path(path);
2623 goto out;
2624 }
2625 btrfs_release_path(path);
2626
2627 while (1) {
2628 node = rb_first(&new->root);
2629 if (!node)
2630 break;
2631 rb_erase(node, &new->root);
2632
2633 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2634
2635 ret = relink_extent_backref(path, prev, backref);
2636 WARN_ON(ret < 0);
2637
2638 kfree(prev);
2639
2640 if (ret == 1)
2641 prev = backref;
2642 else
2643 prev = NULL;
2644 cond_resched();
2645 }
2646 kfree(prev);
2647
2648 btrfs_free_path(path);
38c227d8 2649out:
6f519564
LB
2650 free_sa_defrag_extent(new);
2651
38c227d8
LB
2652 atomic_dec(&root->fs_info->defrag_running);
2653 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2654}
2655
2656static struct new_sa_defrag_extent *
2657record_old_file_extents(struct inode *inode,
2658 struct btrfs_ordered_extent *ordered)
2659{
2660 struct btrfs_root *root = BTRFS_I(inode)->root;
2661 struct btrfs_path *path;
2662 struct btrfs_key key;
6f519564 2663 struct old_sa_defrag_extent *old;
38c227d8
LB
2664 struct new_sa_defrag_extent *new;
2665 int ret;
2666
2667 new = kmalloc(sizeof(*new), GFP_NOFS);
2668 if (!new)
2669 return NULL;
2670
2671 new->inode = inode;
2672 new->file_pos = ordered->file_offset;
2673 new->len = ordered->len;
2674 new->bytenr = ordered->start;
2675 new->disk_len = ordered->disk_len;
2676 new->compress_type = ordered->compress_type;
2677 new->root = RB_ROOT;
2678 INIT_LIST_HEAD(&new->head);
2679
2680 path = btrfs_alloc_path();
2681 if (!path)
2682 goto out_kfree;
2683
2684 key.objectid = btrfs_ino(inode);
2685 key.type = BTRFS_EXTENT_DATA_KEY;
2686 key.offset = new->file_pos;
2687
2688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2689 if (ret < 0)
2690 goto out_free_path;
2691 if (ret > 0 && path->slots[0] > 0)
2692 path->slots[0]--;
2693
2694 /* find out all the old extents for the file range */
2695 while (1) {
2696 struct btrfs_file_extent_item *extent;
2697 struct extent_buffer *l;
2698 int slot;
2699 u64 num_bytes;
2700 u64 offset;
2701 u64 end;
2702 u64 disk_bytenr;
2703 u64 extent_offset;
2704
2705 l = path->nodes[0];
2706 slot = path->slots[0];
2707
2708 if (slot >= btrfs_header_nritems(l)) {
2709 ret = btrfs_next_leaf(root, path);
2710 if (ret < 0)
6f519564 2711 goto out_free_path;
38c227d8
LB
2712 else if (ret > 0)
2713 break;
2714 continue;
2715 }
2716
2717 btrfs_item_key_to_cpu(l, &key, slot);
2718
2719 if (key.objectid != btrfs_ino(inode))
2720 break;
2721 if (key.type != BTRFS_EXTENT_DATA_KEY)
2722 break;
2723 if (key.offset >= new->file_pos + new->len)
2724 break;
2725
2726 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2727
2728 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2729 if (key.offset + num_bytes < new->file_pos)
2730 goto next;
2731
2732 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2733 if (!disk_bytenr)
2734 goto next;
2735
2736 extent_offset = btrfs_file_extent_offset(l, extent);
2737
2738 old = kmalloc(sizeof(*old), GFP_NOFS);
2739 if (!old)
6f519564 2740 goto out_free_path;
38c227d8
LB
2741
2742 offset = max(new->file_pos, key.offset);
2743 end = min(new->file_pos + new->len, key.offset + num_bytes);
2744
2745 old->bytenr = disk_bytenr;
2746 old->extent_offset = extent_offset;
2747 old->offset = offset - key.offset;
2748 old->len = end - offset;
2749 old->new = new;
2750 old->count = 0;
2751 list_add_tail(&old->list, &new->head);
2752next:
2753 path->slots[0]++;
2754 cond_resched();
2755 }
2756
2757 btrfs_free_path(path);
2758 atomic_inc(&root->fs_info->defrag_running);
2759
2760 return new;
2761
38c227d8
LB
2762out_free_path:
2763 btrfs_free_path(path);
2764out_kfree:
6f519564 2765 free_sa_defrag_extent(new);
38c227d8
LB
2766 return NULL;
2767}
2768
e570fd27
MX
2769static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2770 u64 start, u64 len)
2771{
2772 struct btrfs_block_group_cache *cache;
2773
2774 cache = btrfs_lookup_block_group(root->fs_info, start);
2775 ASSERT(cache);
2776
2777 spin_lock(&cache->lock);
2778 cache->delalloc_bytes -= len;
2779 spin_unlock(&cache->lock);
2780
2781 btrfs_put_block_group(cache);
2782}
2783
d352ac68
CM
2784/* as ordered data IO finishes, this gets called so we can finish
2785 * an ordered extent if the range of bytes in the file it covers are
2786 * fully written.
2787 */
5fd02043 2788static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2789{
5fd02043 2790 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2791 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2792 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2793 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2794 struct extent_state *cached_state = NULL;
38c227d8 2795 struct new_sa_defrag_extent *new = NULL;
261507a0 2796 int compress_type = 0;
77cef2ec
JB
2797 int ret = 0;
2798 u64 logical_len = ordered_extent->len;
82d5902d 2799 bool nolock;
77cef2ec 2800 bool truncated = false;
e6dcd2dc 2801
83eea1f1 2802 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2803
5fd02043
JB
2804 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2805 ret = -EIO;
2806 goto out;
2807 }
2808
f612496b
MX
2809 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2810 ordered_extent->file_offset +
2811 ordered_extent->len - 1);
2812
77cef2ec
JB
2813 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2814 truncated = true;
2815 logical_len = ordered_extent->truncated_len;
2816 /* Truncated the entire extent, don't bother adding */
2817 if (!logical_len)
2818 goto out;
2819 }
2820
c2167754 2821 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2822 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2823 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2824 if (nolock)
2825 trans = btrfs_join_transaction_nolock(root);
2826 else
2827 trans = btrfs_join_transaction(root);
2828 if (IS_ERR(trans)) {
2829 ret = PTR_ERR(trans);
2830 trans = NULL;
2831 goto out;
c2167754 2832 }
6c760c07
JB
2833 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2834 ret = btrfs_update_inode_fallback(trans, root, inode);
2835 if (ret) /* -ENOMEM or corruption */
2836 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2837 goto out;
2838 }
e6dcd2dc 2839
2ac55d41
JB
2840 lock_extent_bits(io_tree, ordered_extent->file_offset,
2841 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2842 0, &cached_state);
e6dcd2dc 2843
38c227d8
LB
2844 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2845 ordered_extent->file_offset + ordered_extent->len - 1,
2846 EXTENT_DEFRAG, 1, cached_state);
2847 if (ret) {
2848 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2849 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2850 /* the inode is shared */
2851 new = record_old_file_extents(inode, ordered_extent);
2852
2853 clear_extent_bit(io_tree, ordered_extent->file_offset,
2854 ordered_extent->file_offset + ordered_extent->len - 1,
2855 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2856 }
2857
0cb59c99 2858 if (nolock)
7a7eaa40 2859 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2860 else
7a7eaa40 2861 trans = btrfs_join_transaction(root);
79787eaa
JM
2862 if (IS_ERR(trans)) {
2863 ret = PTR_ERR(trans);
2864 trans = NULL;
2865 goto out_unlock;
2866 }
a79b7d4b 2867
0ca1f7ce 2868 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2869
c8b97818 2870 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2871 compress_type = ordered_extent->compress_type;
d899e052 2872 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2873 BUG_ON(compress_type);
920bbbfb 2874 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2875 ordered_extent->file_offset,
2876 ordered_extent->file_offset +
77cef2ec 2877 logical_len);
d899e052 2878 } else {
0af3d00b 2879 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2880 ret = insert_reserved_file_extent(trans, inode,
2881 ordered_extent->file_offset,
2882 ordered_extent->start,
2883 ordered_extent->disk_len,
77cef2ec 2884 logical_len, logical_len,
261507a0 2885 compress_type, 0, 0,
d899e052 2886 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2887 if (!ret)
2888 btrfs_release_delalloc_bytes(root,
2889 ordered_extent->start,
2890 ordered_extent->disk_len);
d899e052 2891 }
5dc562c5
JB
2892 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2893 ordered_extent->file_offset, ordered_extent->len,
2894 trans->transid);
79787eaa
JM
2895 if (ret < 0) {
2896 btrfs_abort_transaction(trans, root, ret);
5fd02043 2897 goto out_unlock;
79787eaa 2898 }
2ac55d41 2899
e6dcd2dc
CM
2900 add_pending_csums(trans, inode, ordered_extent->file_offset,
2901 &ordered_extent->list);
2902
6c760c07
JB
2903 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2904 ret = btrfs_update_inode_fallback(trans, root, inode);
2905 if (ret) { /* -ENOMEM or corruption */
2906 btrfs_abort_transaction(trans, root, ret);
2907 goto out_unlock;
1ef30be1
JB
2908 }
2909 ret = 0;
5fd02043
JB
2910out_unlock:
2911 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2912 ordered_extent->file_offset +
2913 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2914out:
5b0e95bf 2915 if (root != root->fs_info->tree_root)
0cb59c99 2916 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2917 if (trans)
2918 btrfs_end_transaction(trans, root);
0cb59c99 2919
77cef2ec
JB
2920 if (ret || truncated) {
2921 u64 start, end;
2922
2923 if (truncated)
2924 start = ordered_extent->file_offset + logical_len;
2925 else
2926 start = ordered_extent->file_offset;
2927 end = ordered_extent->file_offset + ordered_extent->len - 1;
2928 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2929
2930 /* Drop the cache for the part of the extent we didn't write. */
2931 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2932
0bec9ef5
JB
2933 /*
2934 * If the ordered extent had an IOERR or something else went
2935 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2936 * back to the allocator. We only free the extent in the
2937 * truncated case if we didn't write out the extent at all.
0bec9ef5 2938 */
77cef2ec
JB
2939 if ((ret || !logical_len) &&
2940 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2941 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2942 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2943 ordered_extent->disk_len, 1);
0bec9ef5
JB
2944 }
2945
2946
5fd02043 2947 /*
8bad3c02
LB
2948 * This needs to be done to make sure anybody waiting knows we are done
2949 * updating everything for this ordered extent.
5fd02043
JB
2950 */
2951 btrfs_remove_ordered_extent(inode, ordered_extent);
2952
38c227d8 2953 /* for snapshot-aware defrag */
6f519564
LB
2954 if (new) {
2955 if (ret) {
2956 free_sa_defrag_extent(new);
2957 atomic_dec(&root->fs_info->defrag_running);
2958 } else {
2959 relink_file_extents(new);
2960 }
2961 }
38c227d8 2962
e6dcd2dc
CM
2963 /* once for us */
2964 btrfs_put_ordered_extent(ordered_extent);
2965 /* once for the tree */
2966 btrfs_put_ordered_extent(ordered_extent);
2967
5fd02043
JB
2968 return ret;
2969}
2970
2971static void finish_ordered_fn(struct btrfs_work *work)
2972{
2973 struct btrfs_ordered_extent *ordered_extent;
2974 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2975 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2976}
2977
b2950863 2978static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2979 struct extent_state *state, int uptodate)
2980{
5fd02043
JB
2981 struct inode *inode = page->mapping->host;
2982 struct btrfs_root *root = BTRFS_I(inode)->root;
2983 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
2984 struct btrfs_workqueue *wq;
2985 btrfs_work_func_t func;
5fd02043 2986
1abe9b8a 2987 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2988
8b62b72b 2989 ClearPagePrivate2(page);
5fd02043
JB
2990 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2991 end - start + 1, uptodate))
2992 return 0;
2993
9e0af237
LB
2994 if (btrfs_is_free_space_inode(inode)) {
2995 wq = root->fs_info->endio_freespace_worker;
2996 func = btrfs_freespace_write_helper;
2997 } else {
2998 wq = root->fs_info->endio_write_workers;
2999 func = btrfs_endio_write_helper;
3000 }
5fd02043 3001
9e0af237
LB
3002 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3003 NULL);
3004 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3005
3006 return 0;
211f90e6
CM
3007}
3008
dc380aea
MX
3009static int __readpage_endio_check(struct inode *inode,
3010 struct btrfs_io_bio *io_bio,
3011 int icsum, struct page *page,
3012 int pgoff, u64 start, size_t len)
3013{
3014 char *kaddr;
3015 u32 csum_expected;
3016 u32 csum = ~(u32)0;
3017 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3018 DEFAULT_RATELIMIT_BURST);
3019
3020 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3021
3022 kaddr = kmap_atomic(page);
3023 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3024 btrfs_csum_final(csum, (char *)&csum);
3025 if (csum != csum_expected)
3026 goto zeroit;
3027
3028 kunmap_atomic(kaddr);
3029 return 0;
3030zeroit:
3031 if (__ratelimit(&_rs))
f0954c66 3032 btrfs_warn(BTRFS_I(inode)->root->fs_info,
dc380aea
MX
3033 "csum failed ino %llu off %llu csum %u expected csum %u",
3034 btrfs_ino(inode), start, csum, csum_expected);
3035 memset(kaddr + pgoff, 1, len);
3036 flush_dcache_page(page);
3037 kunmap_atomic(kaddr);
3038 if (csum_expected == 0)
3039 return 0;
3040 return -EIO;
3041}
3042
d352ac68
CM
3043/*
3044 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3045 * if there's a match, we allow the bio to finish. If not, the code in
3046 * extent_io.c will try to find good copies for us.
d352ac68 3047 */
facc8a22
MX
3048static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3049 u64 phy_offset, struct page *page,
3050 u64 start, u64 end, int mirror)
07157aac 3051{
4eee4fa4 3052 size_t offset = start - page_offset(page);
07157aac 3053 struct inode *inode = page->mapping->host;
d1310b2e 3054 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3055 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3056
d20f7043
CM
3057 if (PageChecked(page)) {
3058 ClearPageChecked(page);
dc380aea 3059 return 0;
d20f7043 3060 }
6cbff00f
CH
3061
3062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3063 return 0;
17d217fe
YZ
3064
3065 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3066 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
3067 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3068 GFP_NOFS);
b6cda9bc 3069 return 0;
17d217fe 3070 }
d20f7043 3071
facc8a22 3072 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3073 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3074 start, (size_t)(end - start + 1));
07157aac 3075}
b888db2b 3076
24bbcf04
YZ
3077struct delayed_iput {
3078 struct list_head list;
3079 struct inode *inode;
3080};
3081
79787eaa
JM
3082/* JDM: If this is fs-wide, why can't we add a pointer to
3083 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
3084void btrfs_add_delayed_iput(struct inode *inode)
3085{
3086 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3087 struct delayed_iput *delayed;
3088
3089 if (atomic_add_unless(&inode->i_count, -1, 1))
3090 return;
3091
3092 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3093 delayed->inode = inode;
3094
3095 spin_lock(&fs_info->delayed_iput_lock);
3096 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3097 spin_unlock(&fs_info->delayed_iput_lock);
3098}
3099
3100void btrfs_run_delayed_iputs(struct btrfs_root *root)
3101{
3102 LIST_HEAD(list);
3103 struct btrfs_fs_info *fs_info = root->fs_info;
3104 struct delayed_iput *delayed;
3105 int empty;
3106
3107 spin_lock(&fs_info->delayed_iput_lock);
3108 empty = list_empty(&fs_info->delayed_iputs);
3109 spin_unlock(&fs_info->delayed_iput_lock);
3110 if (empty)
3111 return;
3112
d7c15171
ZL
3113 down_read(&fs_info->delayed_iput_sem);
3114
24bbcf04
YZ
3115 spin_lock(&fs_info->delayed_iput_lock);
3116 list_splice_init(&fs_info->delayed_iputs, &list);
3117 spin_unlock(&fs_info->delayed_iput_lock);
3118
3119 while (!list_empty(&list)) {
3120 delayed = list_entry(list.next, struct delayed_iput, list);
3121 list_del(&delayed->list);
3122 iput(delayed->inode);
3123 kfree(delayed);
3124 }
d7c15171
ZL
3125
3126 up_read(&root->fs_info->delayed_iput_sem);
24bbcf04
YZ
3127}
3128
d68fc57b 3129/*
42b2aa86 3130 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3131 * files in the subvolume, it removes orphan item and frees block_rsv
3132 * structure.
3133 */
3134void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3135 struct btrfs_root *root)
3136{
90290e19 3137 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3138 int ret;
3139
8a35d95f 3140 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3141 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3142 return;
3143
90290e19 3144 spin_lock(&root->orphan_lock);
8a35d95f 3145 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3146 spin_unlock(&root->orphan_lock);
3147 return;
3148 }
3149
3150 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3151 spin_unlock(&root->orphan_lock);
3152 return;
3153 }
3154
3155 block_rsv = root->orphan_block_rsv;
3156 root->orphan_block_rsv = NULL;
3157 spin_unlock(&root->orphan_lock);
3158
27cdeb70 3159 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3160 btrfs_root_refs(&root->root_item) > 0) {
3161 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3162 root->root_key.objectid);
4ef31a45
JB
3163 if (ret)
3164 btrfs_abort_transaction(trans, root, ret);
3165 else
27cdeb70
MX
3166 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3167 &root->state);
d68fc57b
YZ
3168 }
3169
90290e19
JB
3170 if (block_rsv) {
3171 WARN_ON(block_rsv->size > 0);
3172 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3173 }
3174}
3175
7b128766
JB
3176/*
3177 * This creates an orphan entry for the given inode in case something goes
3178 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3179 *
3180 * NOTE: caller of this function should reserve 5 units of metadata for
3181 * this function.
7b128766
JB
3182 */
3183int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3184{
3185 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3186 struct btrfs_block_rsv *block_rsv = NULL;
3187 int reserve = 0;
3188 int insert = 0;
3189 int ret;
7b128766 3190
d68fc57b 3191 if (!root->orphan_block_rsv) {
66d8f3dd 3192 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3193 if (!block_rsv)
3194 return -ENOMEM;
d68fc57b 3195 }
7b128766 3196
d68fc57b
YZ
3197 spin_lock(&root->orphan_lock);
3198 if (!root->orphan_block_rsv) {
3199 root->orphan_block_rsv = block_rsv;
3200 } else if (block_rsv) {
3201 btrfs_free_block_rsv(root, block_rsv);
3202 block_rsv = NULL;
7b128766 3203 }
7b128766 3204
8a35d95f
JB
3205 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3206 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3207#if 0
3208 /*
3209 * For proper ENOSPC handling, we should do orphan
3210 * cleanup when mounting. But this introduces backward
3211 * compatibility issue.
3212 */
3213 if (!xchg(&root->orphan_item_inserted, 1))
3214 insert = 2;
3215 else
3216 insert = 1;
3217#endif
3218 insert = 1;
321f0e70 3219 atomic_inc(&root->orphan_inodes);
7b128766
JB
3220 }
3221
72ac3c0d
JB
3222 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3223 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3224 reserve = 1;
d68fc57b 3225 spin_unlock(&root->orphan_lock);
7b128766 3226
d68fc57b
YZ
3227 /* grab metadata reservation from transaction handle */
3228 if (reserve) {
3229 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3230 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3231 }
7b128766 3232
d68fc57b
YZ
3233 /* insert an orphan item to track this unlinked/truncated file */
3234 if (insert >= 1) {
33345d01 3235 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3236 if (ret) {
703c88e0 3237 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3238 if (reserve) {
3239 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3240 &BTRFS_I(inode)->runtime_flags);
3241 btrfs_orphan_release_metadata(inode);
3242 }
3243 if (ret != -EEXIST) {
e8e7cff6
JB
3244 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3245 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3246 btrfs_abort_transaction(trans, root, ret);
3247 return ret;
3248 }
79787eaa
JM
3249 }
3250 ret = 0;
d68fc57b
YZ
3251 }
3252
3253 /* insert an orphan item to track subvolume contains orphan files */
3254 if (insert >= 2) {
3255 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3256 root->root_key.objectid);
79787eaa
JM
3257 if (ret && ret != -EEXIST) {
3258 btrfs_abort_transaction(trans, root, ret);
3259 return ret;
3260 }
d68fc57b
YZ
3261 }
3262 return 0;
7b128766
JB
3263}
3264
3265/*
3266 * We have done the truncate/delete so we can go ahead and remove the orphan
3267 * item for this particular inode.
3268 */
48a3b636
ES
3269static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3270 struct inode *inode)
7b128766
JB
3271{
3272 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3273 int delete_item = 0;
3274 int release_rsv = 0;
7b128766
JB
3275 int ret = 0;
3276
d68fc57b 3277 spin_lock(&root->orphan_lock);
8a35d95f
JB
3278 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3279 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3280 delete_item = 1;
7b128766 3281
72ac3c0d
JB
3282 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3283 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3284 release_rsv = 1;
d68fc57b 3285 spin_unlock(&root->orphan_lock);
7b128766 3286
703c88e0 3287 if (delete_item) {
8a35d95f 3288 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3289 if (trans)
3290 ret = btrfs_del_orphan_item(trans, root,
3291 btrfs_ino(inode));
8a35d95f 3292 }
7b128766 3293
703c88e0
FDBM
3294 if (release_rsv)
3295 btrfs_orphan_release_metadata(inode);
3296
4ef31a45 3297 return ret;
7b128766
JB
3298}
3299
3300/*
3301 * this cleans up any orphans that may be left on the list from the last use
3302 * of this root.
3303 */
66b4ffd1 3304int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3305{
3306 struct btrfs_path *path;
3307 struct extent_buffer *leaf;
7b128766
JB
3308 struct btrfs_key key, found_key;
3309 struct btrfs_trans_handle *trans;
3310 struct inode *inode;
8f6d7f4f 3311 u64 last_objectid = 0;
7b128766
JB
3312 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3313
d68fc57b 3314 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3315 return 0;
c71bf099
YZ
3316
3317 path = btrfs_alloc_path();
66b4ffd1
JB
3318 if (!path) {
3319 ret = -ENOMEM;
3320 goto out;
3321 }
7b128766
JB
3322 path->reada = -1;
3323
3324 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3325 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3326 key.offset = (u64)-1;
3327
7b128766
JB
3328 while (1) {
3329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3330 if (ret < 0)
3331 goto out;
7b128766
JB
3332
3333 /*
3334 * if ret == 0 means we found what we were searching for, which
25985edc 3335 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3336 * find the key and see if we have stuff that matches
3337 */
3338 if (ret > 0) {
66b4ffd1 3339 ret = 0;
7b128766
JB
3340 if (path->slots[0] == 0)
3341 break;
3342 path->slots[0]--;
3343 }
3344
3345 /* pull out the item */
3346 leaf = path->nodes[0];
7b128766
JB
3347 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3348
3349 /* make sure the item matches what we want */
3350 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3351 break;
962a298f 3352 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3353 break;
3354
3355 /* release the path since we're done with it */
b3b4aa74 3356 btrfs_release_path(path);
7b128766
JB
3357
3358 /*
3359 * this is where we are basically btrfs_lookup, without the
3360 * crossing root thing. we store the inode number in the
3361 * offset of the orphan item.
3362 */
8f6d7f4f
JB
3363
3364 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3365 btrfs_err(root->fs_info,
3366 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3367 ret = -EINVAL;
3368 goto out;
3369 }
3370
3371 last_objectid = found_key.offset;
3372
5d4f98a2
YZ
3373 found_key.objectid = found_key.offset;
3374 found_key.type = BTRFS_INODE_ITEM_KEY;
3375 found_key.offset = 0;
73f73415 3376 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3377 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3378 if (ret && ret != -ESTALE)
66b4ffd1 3379 goto out;
7b128766 3380
f8e9e0b0
AJ
3381 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3382 struct btrfs_root *dead_root;
3383 struct btrfs_fs_info *fs_info = root->fs_info;
3384 int is_dead_root = 0;
3385
3386 /*
3387 * this is an orphan in the tree root. Currently these
3388 * could come from 2 sources:
3389 * a) a snapshot deletion in progress
3390 * b) a free space cache inode
3391 * We need to distinguish those two, as the snapshot
3392 * orphan must not get deleted.
3393 * find_dead_roots already ran before us, so if this
3394 * is a snapshot deletion, we should find the root
3395 * in the dead_roots list
3396 */
3397 spin_lock(&fs_info->trans_lock);
3398 list_for_each_entry(dead_root, &fs_info->dead_roots,
3399 root_list) {
3400 if (dead_root->root_key.objectid ==
3401 found_key.objectid) {
3402 is_dead_root = 1;
3403 break;
3404 }
3405 }
3406 spin_unlock(&fs_info->trans_lock);
3407 if (is_dead_root) {
3408 /* prevent this orphan from being found again */
3409 key.offset = found_key.objectid - 1;
3410 continue;
3411 }
3412 }
7b128766 3413 /*
a8c9e576
JB
3414 * Inode is already gone but the orphan item is still there,
3415 * kill the orphan item.
7b128766 3416 */
a8c9e576
JB
3417 if (ret == -ESTALE) {
3418 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3419 if (IS_ERR(trans)) {
3420 ret = PTR_ERR(trans);
3421 goto out;
3422 }
c2cf52eb
SK
3423 btrfs_debug(root->fs_info, "auto deleting %Lu",
3424 found_key.objectid);
a8c9e576
JB
3425 ret = btrfs_del_orphan_item(trans, root,
3426 found_key.objectid);
5b21f2ed 3427 btrfs_end_transaction(trans, root);
4ef31a45
JB
3428 if (ret)
3429 goto out;
7b128766
JB
3430 continue;
3431 }
3432
a8c9e576
JB
3433 /*
3434 * add this inode to the orphan list so btrfs_orphan_del does
3435 * the proper thing when we hit it
3436 */
8a35d95f
JB
3437 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3438 &BTRFS_I(inode)->runtime_flags);
925396ec 3439 atomic_inc(&root->orphan_inodes);
a8c9e576 3440
7b128766
JB
3441 /* if we have links, this was a truncate, lets do that */
3442 if (inode->i_nlink) {
fae7f21c 3443 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3444 iput(inode);
3445 continue;
3446 }
7b128766 3447 nr_truncate++;
f3fe820c
JB
3448
3449 /* 1 for the orphan item deletion. */
3450 trans = btrfs_start_transaction(root, 1);
3451 if (IS_ERR(trans)) {
c69b26b0 3452 iput(inode);
f3fe820c
JB
3453 ret = PTR_ERR(trans);
3454 goto out;
3455 }
3456 ret = btrfs_orphan_add(trans, inode);
3457 btrfs_end_transaction(trans, root);
c69b26b0
JB
3458 if (ret) {
3459 iput(inode);
f3fe820c 3460 goto out;
c69b26b0 3461 }
f3fe820c 3462
66b4ffd1 3463 ret = btrfs_truncate(inode);
4a7d0f68
JB
3464 if (ret)
3465 btrfs_orphan_del(NULL, inode);
7b128766
JB
3466 } else {
3467 nr_unlink++;
3468 }
3469
3470 /* this will do delete_inode and everything for us */
3471 iput(inode);
66b4ffd1
JB
3472 if (ret)
3473 goto out;
7b128766 3474 }
3254c876
MX
3475 /* release the path since we're done with it */
3476 btrfs_release_path(path);
3477
d68fc57b
YZ
3478 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3479
3480 if (root->orphan_block_rsv)
3481 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3482 (u64)-1);
3483
27cdeb70
MX
3484 if (root->orphan_block_rsv ||
3485 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3486 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3487 if (!IS_ERR(trans))
3488 btrfs_end_transaction(trans, root);
d68fc57b 3489 }
7b128766
JB
3490
3491 if (nr_unlink)
4884b476 3492 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3493 if (nr_truncate)
4884b476 3494 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3495
3496out:
3497 if (ret)
68b663d1 3498 btrfs_err(root->fs_info,
c2cf52eb 3499 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3500 btrfs_free_path(path);
3501 return ret;
7b128766
JB
3502}
3503
46a53cca
CM
3504/*
3505 * very simple check to peek ahead in the leaf looking for xattrs. If we
3506 * don't find any xattrs, we know there can't be any acls.
3507 *
3508 * slot is the slot the inode is in, objectid is the objectid of the inode
3509 */
3510static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3511 int slot, u64 objectid,
3512 int *first_xattr_slot)
46a53cca
CM
3513{
3514 u32 nritems = btrfs_header_nritems(leaf);
3515 struct btrfs_key found_key;
f23b5a59
JB
3516 static u64 xattr_access = 0;
3517 static u64 xattr_default = 0;
46a53cca
CM
3518 int scanned = 0;
3519
f23b5a59
JB
3520 if (!xattr_access) {
3521 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3522 strlen(POSIX_ACL_XATTR_ACCESS));
3523 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3524 strlen(POSIX_ACL_XATTR_DEFAULT));
3525 }
3526
46a53cca 3527 slot++;
63541927 3528 *first_xattr_slot = -1;
46a53cca
CM
3529 while (slot < nritems) {
3530 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3531
3532 /* we found a different objectid, there must not be acls */
3533 if (found_key.objectid != objectid)
3534 return 0;
3535
3536 /* we found an xattr, assume we've got an acl */
f23b5a59 3537 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3538 if (*first_xattr_slot == -1)
3539 *first_xattr_slot = slot;
f23b5a59
JB
3540 if (found_key.offset == xattr_access ||
3541 found_key.offset == xattr_default)
3542 return 1;
3543 }
46a53cca
CM
3544
3545 /*
3546 * we found a key greater than an xattr key, there can't
3547 * be any acls later on
3548 */
3549 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3550 return 0;
3551
3552 slot++;
3553 scanned++;
3554
3555 /*
3556 * it goes inode, inode backrefs, xattrs, extents,
3557 * so if there are a ton of hard links to an inode there can
3558 * be a lot of backrefs. Don't waste time searching too hard,
3559 * this is just an optimization
3560 */
3561 if (scanned >= 8)
3562 break;
3563 }
3564 /* we hit the end of the leaf before we found an xattr or
3565 * something larger than an xattr. We have to assume the inode
3566 * has acls
3567 */
63541927
FDBM
3568 if (*first_xattr_slot == -1)
3569 *first_xattr_slot = slot;
46a53cca
CM
3570 return 1;
3571}
3572
d352ac68
CM
3573/*
3574 * read an inode from the btree into the in-memory inode
3575 */
5d4f98a2 3576static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3577{
3578 struct btrfs_path *path;
5f39d397 3579 struct extent_buffer *leaf;
39279cc3
CM
3580 struct btrfs_inode_item *inode_item;
3581 struct btrfs_root *root = BTRFS_I(inode)->root;
3582 struct btrfs_key location;
67de1176 3583 unsigned long ptr;
46a53cca 3584 int maybe_acls;
618e21d5 3585 u32 rdev;
39279cc3 3586 int ret;
2f7e33d4 3587 bool filled = false;
63541927 3588 int first_xattr_slot;
2f7e33d4
MX
3589
3590 ret = btrfs_fill_inode(inode, &rdev);
3591 if (!ret)
3592 filled = true;
39279cc3
CM
3593
3594 path = btrfs_alloc_path();
1748f843
MF
3595 if (!path)
3596 goto make_bad;
3597
39279cc3 3598 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3599
39279cc3 3600 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3601 if (ret)
39279cc3 3602 goto make_bad;
39279cc3 3603
5f39d397 3604 leaf = path->nodes[0];
2f7e33d4
MX
3605
3606 if (filled)
67de1176 3607 goto cache_index;
2f7e33d4 3608
5f39d397
CM
3609 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3610 struct btrfs_inode_item);
5f39d397 3611 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3612 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3613 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3614 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3615 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3616
a937b979
DS
3617 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3618 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3619
a937b979
DS
3620 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3621 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3622
a937b979
DS
3623 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3624 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3625
9cc97d64 3626 BTRFS_I(inode)->i_otime.tv_sec =
3627 btrfs_timespec_sec(leaf, &inode_item->otime);
3628 BTRFS_I(inode)->i_otime.tv_nsec =
3629 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3630
a76a3cd4 3631 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3632 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3633 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3634
6e17d30b
YD
3635 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3636 inode->i_generation = BTRFS_I(inode)->generation;
3637 inode->i_rdev = 0;
3638 rdev = btrfs_inode_rdev(leaf, inode_item);
3639
3640 BTRFS_I(inode)->index_cnt = (u64)-1;
3641 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3642
3643cache_index:
5dc562c5
JB
3644 /*
3645 * If we were modified in the current generation and evicted from memory
3646 * and then re-read we need to do a full sync since we don't have any
3647 * idea about which extents were modified before we were evicted from
3648 * cache.
6e17d30b
YD
3649 *
3650 * This is required for both inode re-read from disk and delayed inode
3651 * in delayed_nodes_tree.
5dc562c5
JB
3652 */
3653 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3654 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3655 &BTRFS_I(inode)->runtime_flags);
3656
bde6c242
FM
3657 /*
3658 * We don't persist the id of the transaction where an unlink operation
3659 * against the inode was last made. So here we assume the inode might
3660 * have been evicted, and therefore the exact value of last_unlink_trans
3661 * lost, and set it to last_trans to avoid metadata inconsistencies
3662 * between the inode and its parent if the inode is fsync'ed and the log
3663 * replayed. For example, in the scenario:
3664 *
3665 * touch mydir/foo
3666 * ln mydir/foo mydir/bar
3667 * sync
3668 * unlink mydir/bar
3669 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3670 * xfs_io -c fsync mydir/foo
3671 * <power failure>
3672 * mount fs, triggers fsync log replay
3673 *
3674 * We must make sure that when we fsync our inode foo we also log its
3675 * parent inode, otherwise after log replay the parent still has the
3676 * dentry with the "bar" name but our inode foo has a link count of 1
3677 * and doesn't have an inode ref with the name "bar" anymore.
3678 *
3679 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3680 * but it guarantees correctness at the expense of ocassional full
3681 * transaction commits on fsync if our inode is a directory, or if our
3682 * inode is not a directory, logging its parent unnecessarily.
3683 */
3684 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3685
67de1176
MX
3686 path->slots[0]++;
3687 if (inode->i_nlink != 1 ||
3688 path->slots[0] >= btrfs_header_nritems(leaf))
3689 goto cache_acl;
3690
3691 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3692 if (location.objectid != btrfs_ino(inode))
3693 goto cache_acl;
3694
3695 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3696 if (location.type == BTRFS_INODE_REF_KEY) {
3697 struct btrfs_inode_ref *ref;
3698
3699 ref = (struct btrfs_inode_ref *)ptr;
3700 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3701 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3702 struct btrfs_inode_extref *extref;
3703
3704 extref = (struct btrfs_inode_extref *)ptr;
3705 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3706 extref);
3707 }
2f7e33d4 3708cache_acl:
46a53cca
CM
3709 /*
3710 * try to precache a NULL acl entry for files that don't have
3711 * any xattrs or acls
3712 */
33345d01 3713 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3714 btrfs_ino(inode), &first_xattr_slot);
3715 if (first_xattr_slot != -1) {
3716 path->slots[0] = first_xattr_slot;
3717 ret = btrfs_load_inode_props(inode, path);
3718 if (ret)
3719 btrfs_err(root->fs_info,
351fd353 3720 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3721 btrfs_ino(inode),
3722 root->root_key.objectid, ret);
3723 }
3724 btrfs_free_path(path);
3725
72c04902
AV
3726 if (!maybe_acls)
3727 cache_no_acl(inode);
46a53cca 3728
39279cc3 3729 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3730 case S_IFREG:
3731 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3732 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3733 inode->i_fop = &btrfs_file_operations;
3734 inode->i_op = &btrfs_file_inode_operations;
3735 break;
3736 case S_IFDIR:
3737 inode->i_fop = &btrfs_dir_file_operations;
3738 if (root == root->fs_info->tree_root)
3739 inode->i_op = &btrfs_dir_ro_inode_operations;
3740 else
3741 inode->i_op = &btrfs_dir_inode_operations;
3742 break;
3743 case S_IFLNK:
3744 inode->i_op = &btrfs_symlink_inode_operations;
3745 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3746 break;
618e21d5 3747 default:
0279b4cd 3748 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3749 init_special_inode(inode, inode->i_mode, rdev);
3750 break;
39279cc3 3751 }
6cbff00f
CH
3752
3753 btrfs_update_iflags(inode);
39279cc3
CM
3754 return;
3755
3756make_bad:
39279cc3 3757 btrfs_free_path(path);
39279cc3
CM
3758 make_bad_inode(inode);
3759}
3760
d352ac68
CM
3761/*
3762 * given a leaf and an inode, copy the inode fields into the leaf
3763 */
e02119d5
CM
3764static void fill_inode_item(struct btrfs_trans_handle *trans,
3765 struct extent_buffer *leaf,
5f39d397 3766 struct btrfs_inode_item *item,
39279cc3
CM
3767 struct inode *inode)
3768{
51fab693
LB
3769 struct btrfs_map_token token;
3770
3771 btrfs_init_map_token(&token);
5f39d397 3772
51fab693
LB
3773 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3774 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3775 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3776 &token);
3777 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3778 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3779
a937b979 3780 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3781 inode->i_atime.tv_sec, &token);
a937b979 3782 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3783 inode->i_atime.tv_nsec, &token);
5f39d397 3784
a937b979 3785 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3786 inode->i_mtime.tv_sec, &token);
a937b979 3787 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3788 inode->i_mtime.tv_nsec, &token);
5f39d397 3789
a937b979 3790 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3791 inode->i_ctime.tv_sec, &token);
a937b979 3792 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3793 inode->i_ctime.tv_nsec, &token);
5f39d397 3794
9cc97d64 3795 btrfs_set_token_timespec_sec(leaf, &item->otime,
3796 BTRFS_I(inode)->i_otime.tv_sec, &token);
3797 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3798 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3799
51fab693
LB
3800 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3801 &token);
3802 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3803 &token);
3804 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3805 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3806 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3807 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3808 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3809}
3810
d352ac68
CM
3811/*
3812 * copy everything in the in-memory inode into the btree.
3813 */
2115133f 3814static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3815 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3816{
3817 struct btrfs_inode_item *inode_item;
3818 struct btrfs_path *path;
5f39d397 3819 struct extent_buffer *leaf;
39279cc3
CM
3820 int ret;
3821
3822 path = btrfs_alloc_path();
16cdcec7
MX
3823 if (!path)
3824 return -ENOMEM;
3825
b9473439 3826 path->leave_spinning = 1;
16cdcec7
MX
3827 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3828 1);
39279cc3
CM
3829 if (ret) {
3830 if (ret > 0)
3831 ret = -ENOENT;
3832 goto failed;
3833 }
3834
5f39d397
CM
3835 leaf = path->nodes[0];
3836 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3837 struct btrfs_inode_item);
39279cc3 3838
e02119d5 3839 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3840 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3841 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3842 ret = 0;
3843failed:
39279cc3
CM
3844 btrfs_free_path(path);
3845 return ret;
3846}
3847
2115133f
CM
3848/*
3849 * copy everything in the in-memory inode into the btree.
3850 */
3851noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3852 struct btrfs_root *root, struct inode *inode)
3853{
3854 int ret;
3855
3856 /*
3857 * If the inode is a free space inode, we can deadlock during commit
3858 * if we put it into the delayed code.
3859 *
3860 * The data relocation inode should also be directly updated
3861 * without delay
3862 */
83eea1f1 3863 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3864 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3865 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3866 btrfs_update_root_times(trans, root);
3867
2115133f
CM
3868 ret = btrfs_delayed_update_inode(trans, root, inode);
3869 if (!ret)
3870 btrfs_set_inode_last_trans(trans, inode);
3871 return ret;
3872 }
3873
3874 return btrfs_update_inode_item(trans, root, inode);
3875}
3876
be6aef60
JB
3877noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *root,
3879 struct inode *inode)
2115133f
CM
3880{
3881 int ret;
3882
3883 ret = btrfs_update_inode(trans, root, inode);
3884 if (ret == -ENOSPC)
3885 return btrfs_update_inode_item(trans, root, inode);
3886 return ret;
3887}
3888
d352ac68
CM
3889/*
3890 * unlink helper that gets used here in inode.c and in the tree logging
3891 * recovery code. It remove a link in a directory with a given name, and
3892 * also drops the back refs in the inode to the directory
3893 */
92986796
AV
3894static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3895 struct btrfs_root *root,
3896 struct inode *dir, struct inode *inode,
3897 const char *name, int name_len)
39279cc3
CM
3898{
3899 struct btrfs_path *path;
39279cc3 3900 int ret = 0;
5f39d397 3901 struct extent_buffer *leaf;
39279cc3 3902 struct btrfs_dir_item *di;
5f39d397 3903 struct btrfs_key key;
aec7477b 3904 u64 index;
33345d01
LZ
3905 u64 ino = btrfs_ino(inode);
3906 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3907
3908 path = btrfs_alloc_path();
54aa1f4d
CM
3909 if (!path) {
3910 ret = -ENOMEM;
554233a6 3911 goto out;
54aa1f4d
CM
3912 }
3913
b9473439 3914 path->leave_spinning = 1;
33345d01 3915 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3916 name, name_len, -1);
3917 if (IS_ERR(di)) {
3918 ret = PTR_ERR(di);
3919 goto err;
3920 }
3921 if (!di) {
3922 ret = -ENOENT;
3923 goto err;
3924 }
5f39d397
CM
3925 leaf = path->nodes[0];
3926 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3927 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3928 if (ret)
3929 goto err;
b3b4aa74 3930 btrfs_release_path(path);
39279cc3 3931
67de1176
MX
3932 /*
3933 * If we don't have dir index, we have to get it by looking up
3934 * the inode ref, since we get the inode ref, remove it directly,
3935 * it is unnecessary to do delayed deletion.
3936 *
3937 * But if we have dir index, needn't search inode ref to get it.
3938 * Since the inode ref is close to the inode item, it is better
3939 * that we delay to delete it, and just do this deletion when
3940 * we update the inode item.
3941 */
3942 if (BTRFS_I(inode)->dir_index) {
3943 ret = btrfs_delayed_delete_inode_ref(inode);
3944 if (!ret) {
3945 index = BTRFS_I(inode)->dir_index;
3946 goto skip_backref;
3947 }
3948 }
3949
33345d01
LZ
3950 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3951 dir_ino, &index);
aec7477b 3952 if (ret) {
c2cf52eb
SK
3953 btrfs_info(root->fs_info,
3954 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3955 name_len, name, ino, dir_ino);
79787eaa 3956 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3957 goto err;
3958 }
67de1176 3959skip_backref:
16cdcec7 3960 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3961 if (ret) {
3962 btrfs_abort_transaction(trans, root, ret);
39279cc3 3963 goto err;
79787eaa 3964 }
39279cc3 3965
e02119d5 3966 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3967 inode, dir_ino);
79787eaa
JM
3968 if (ret != 0 && ret != -ENOENT) {
3969 btrfs_abort_transaction(trans, root, ret);
3970 goto err;
3971 }
e02119d5
CM
3972
3973 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3974 dir, index);
6418c961
CM
3975 if (ret == -ENOENT)
3976 ret = 0;
d4e3991b
ZB
3977 else if (ret)
3978 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3979err:
3980 btrfs_free_path(path);
e02119d5
CM
3981 if (ret)
3982 goto out;
3983
3984 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3985 inode_inc_iversion(inode);
3986 inode_inc_iversion(dir);
e02119d5 3987 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3988 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3989out:
39279cc3
CM
3990 return ret;
3991}
3992
92986796
AV
3993int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3994 struct btrfs_root *root,
3995 struct inode *dir, struct inode *inode,
3996 const char *name, int name_len)
3997{
3998 int ret;
3999 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4000 if (!ret) {
8b558c5f 4001 drop_nlink(inode);
92986796
AV
4002 ret = btrfs_update_inode(trans, root, inode);
4003 }
4004 return ret;
4005}
39279cc3 4006
a22285a6
YZ
4007/*
4008 * helper to start transaction for unlink and rmdir.
4009 *
d52be818
JB
4010 * unlink and rmdir are special in btrfs, they do not always free space, so
4011 * if we cannot make our reservations the normal way try and see if there is
4012 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4013 * allow the unlink to occur.
a22285a6 4014 */
d52be818 4015static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4016{
39279cc3 4017 struct btrfs_trans_handle *trans;
a22285a6 4018 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4019 int ret;
4020
e70bea5f
JB
4021 /*
4022 * 1 for the possible orphan item
4023 * 1 for the dir item
4024 * 1 for the dir index
4025 * 1 for the inode ref
e70bea5f
JB
4026 * 1 for the inode
4027 */
6e137ed3 4028 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4029 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4030 return trans;
4df27c4d 4031
d52be818
JB
4032 if (PTR_ERR(trans) == -ENOSPC) {
4033 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 4034
d52be818
JB
4035 trans = btrfs_start_transaction(root, 0);
4036 if (IS_ERR(trans))
4037 return trans;
4038 ret = btrfs_cond_migrate_bytes(root->fs_info,
4039 &root->fs_info->trans_block_rsv,
4040 num_bytes, 5);
4041 if (ret) {
4042 btrfs_end_transaction(trans, root);
4043 return ERR_PTR(ret);
a22285a6 4044 }
5a77d76c 4045 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 4046 trans->bytes_reserved = num_bytes;
a22285a6 4047 }
d52be818 4048 return trans;
a22285a6
YZ
4049}
4050
4051static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4052{
4053 struct btrfs_root *root = BTRFS_I(dir)->root;
4054 struct btrfs_trans_handle *trans;
2b0143b5 4055 struct inode *inode = d_inode(dentry);
a22285a6 4056 int ret;
a22285a6 4057
d52be818 4058 trans = __unlink_start_trans(dir);
a22285a6
YZ
4059 if (IS_ERR(trans))
4060 return PTR_ERR(trans);
5f39d397 4061
2b0143b5 4062 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4063
2b0143b5 4064 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4065 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4066 if (ret)
4067 goto out;
7b128766 4068
a22285a6 4069 if (inode->i_nlink == 0) {
7b128766 4070 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4071 if (ret)
4072 goto out;
a22285a6 4073 }
7b128766 4074
b532402e 4075out:
d52be818 4076 btrfs_end_transaction(trans, root);
b53d3f5d 4077 btrfs_btree_balance_dirty(root);
39279cc3
CM
4078 return ret;
4079}
4080
4df27c4d
YZ
4081int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4082 struct btrfs_root *root,
4083 struct inode *dir, u64 objectid,
4084 const char *name, int name_len)
4085{
4086 struct btrfs_path *path;
4087 struct extent_buffer *leaf;
4088 struct btrfs_dir_item *di;
4089 struct btrfs_key key;
4090 u64 index;
4091 int ret;
33345d01 4092 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4093
4094 path = btrfs_alloc_path();
4095 if (!path)
4096 return -ENOMEM;
4097
33345d01 4098 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4099 name, name_len, -1);
79787eaa
JM
4100 if (IS_ERR_OR_NULL(di)) {
4101 if (!di)
4102 ret = -ENOENT;
4103 else
4104 ret = PTR_ERR(di);
4105 goto out;
4106 }
4df27c4d
YZ
4107
4108 leaf = path->nodes[0];
4109 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4110 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4111 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4112 if (ret) {
4113 btrfs_abort_transaction(trans, root, ret);
4114 goto out;
4115 }
b3b4aa74 4116 btrfs_release_path(path);
4df27c4d
YZ
4117
4118 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4119 objectid, root->root_key.objectid,
33345d01 4120 dir_ino, &index, name, name_len);
4df27c4d 4121 if (ret < 0) {
79787eaa
JM
4122 if (ret != -ENOENT) {
4123 btrfs_abort_transaction(trans, root, ret);
4124 goto out;
4125 }
33345d01 4126 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4127 name, name_len);
79787eaa
JM
4128 if (IS_ERR_OR_NULL(di)) {
4129 if (!di)
4130 ret = -ENOENT;
4131 else
4132 ret = PTR_ERR(di);
4133 btrfs_abort_transaction(trans, root, ret);
4134 goto out;
4135 }
4df27c4d
YZ
4136
4137 leaf = path->nodes[0];
4138 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4139 btrfs_release_path(path);
4df27c4d
YZ
4140 index = key.offset;
4141 }
945d8962 4142 btrfs_release_path(path);
4df27c4d 4143
16cdcec7 4144 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4145 if (ret) {
4146 btrfs_abort_transaction(trans, root, ret);
4147 goto out;
4148 }
4df27c4d
YZ
4149
4150 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4151 inode_inc_iversion(dir);
4df27c4d 4152 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4153 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4154 if (ret)
4155 btrfs_abort_transaction(trans, root, ret);
4156out:
71d7aed0 4157 btrfs_free_path(path);
79787eaa 4158 return ret;
4df27c4d
YZ
4159}
4160
39279cc3
CM
4161static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4162{
2b0143b5 4163 struct inode *inode = d_inode(dentry);
1832a6d5 4164 int err = 0;
39279cc3 4165 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4166 struct btrfs_trans_handle *trans;
39279cc3 4167
b3ae244e 4168 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4169 return -ENOTEMPTY;
b3ae244e
DS
4170 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4171 return -EPERM;
134d4512 4172
d52be818 4173 trans = __unlink_start_trans(dir);
a22285a6 4174 if (IS_ERR(trans))
5df6a9f6 4175 return PTR_ERR(trans);
5df6a9f6 4176
33345d01 4177 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4178 err = btrfs_unlink_subvol(trans, root, dir,
4179 BTRFS_I(inode)->location.objectid,
4180 dentry->d_name.name,
4181 dentry->d_name.len);
4182 goto out;
4183 }
4184
7b128766
JB
4185 err = btrfs_orphan_add(trans, inode);
4186 if (err)
4df27c4d 4187 goto out;
7b128766 4188
39279cc3 4189 /* now the directory is empty */
2b0143b5 4190 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4191 dentry->d_name.name, dentry->d_name.len);
d397712b 4192 if (!err)
dbe674a9 4193 btrfs_i_size_write(inode, 0);
4df27c4d 4194out:
d52be818 4195 btrfs_end_transaction(trans, root);
b53d3f5d 4196 btrfs_btree_balance_dirty(root);
3954401f 4197
39279cc3
CM
4198 return err;
4199}
4200
28f75a0e
CM
4201static int truncate_space_check(struct btrfs_trans_handle *trans,
4202 struct btrfs_root *root,
4203 u64 bytes_deleted)
4204{
4205 int ret;
4206
4207 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4208 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4209 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4210 if (!ret)
4211 trans->bytes_reserved += bytes_deleted;
4212 return ret;
4213
4214}
4215
39279cc3
CM
4216/*
4217 * this can truncate away extent items, csum items and directory items.
4218 * It starts at a high offset and removes keys until it can't find
d352ac68 4219 * any higher than new_size
39279cc3
CM
4220 *
4221 * csum items that cross the new i_size are truncated to the new size
4222 * as well.
7b128766
JB
4223 *
4224 * min_type is the minimum key type to truncate down to. If set to 0, this
4225 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4226 */
8082510e
YZ
4227int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4228 struct btrfs_root *root,
4229 struct inode *inode,
4230 u64 new_size, u32 min_type)
39279cc3 4231{
39279cc3 4232 struct btrfs_path *path;
5f39d397 4233 struct extent_buffer *leaf;
39279cc3 4234 struct btrfs_file_extent_item *fi;
8082510e
YZ
4235 struct btrfs_key key;
4236 struct btrfs_key found_key;
39279cc3 4237 u64 extent_start = 0;
db94535d 4238 u64 extent_num_bytes = 0;
5d4f98a2 4239 u64 extent_offset = 0;
39279cc3 4240 u64 item_end = 0;
c1aa4575 4241 u64 last_size = new_size;
8082510e 4242 u32 found_type = (u8)-1;
39279cc3
CM
4243 int found_extent;
4244 int del_item;
85e21bac
CM
4245 int pending_del_nr = 0;
4246 int pending_del_slot = 0;
179e29e4 4247 int extent_type = -1;
8082510e
YZ
4248 int ret;
4249 int err = 0;
33345d01 4250 u64 ino = btrfs_ino(inode);
28ed1345 4251 u64 bytes_deleted = 0;
1262133b
JB
4252 bool be_nice = 0;
4253 bool should_throttle = 0;
28f75a0e 4254 bool should_end = 0;
8082510e
YZ
4255
4256 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4257
28ed1345
CM
4258 /*
4259 * for non-free space inodes and ref cows, we want to back off from
4260 * time to time
4261 */
4262 if (!btrfs_is_free_space_inode(inode) &&
4263 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4264 be_nice = 1;
4265
0eb0e19c
MF
4266 path = btrfs_alloc_path();
4267 if (!path)
4268 return -ENOMEM;
4269 path->reada = -1;
4270
5dc562c5
JB
4271 /*
4272 * We want to drop from the next block forward in case this new size is
4273 * not block aligned since we will be keeping the last block of the
4274 * extent just the way it is.
4275 */
27cdeb70
MX
4276 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4277 root == root->fs_info->tree_root)
fda2832f
QW
4278 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4279 root->sectorsize), (u64)-1, 0);
8082510e 4280
16cdcec7
MX
4281 /*
4282 * This function is also used to drop the items in the log tree before
4283 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4284 * it is used to drop the loged items. So we shouldn't kill the delayed
4285 * items.
4286 */
4287 if (min_type == 0 && root == BTRFS_I(inode)->root)
4288 btrfs_kill_delayed_inode_items(inode);
4289
33345d01 4290 key.objectid = ino;
39279cc3 4291 key.offset = (u64)-1;
5f39d397
CM
4292 key.type = (u8)-1;
4293
85e21bac 4294search_again:
28ed1345
CM
4295 /*
4296 * with a 16K leaf size and 128MB extents, you can actually queue
4297 * up a huge file in a single leaf. Most of the time that
4298 * bytes_deleted is > 0, it will be huge by the time we get here
4299 */
4300 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4301 if (btrfs_should_end_transaction(trans, root)) {
4302 err = -EAGAIN;
4303 goto error;
4304 }
4305 }
4306
4307
b9473439 4308 path->leave_spinning = 1;
85e21bac 4309 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4310 if (ret < 0) {
4311 err = ret;
4312 goto out;
4313 }
d397712b 4314
85e21bac 4315 if (ret > 0) {
e02119d5
CM
4316 /* there are no items in the tree for us to truncate, we're
4317 * done
4318 */
8082510e
YZ
4319 if (path->slots[0] == 0)
4320 goto out;
85e21bac
CM
4321 path->slots[0]--;
4322 }
4323
d397712b 4324 while (1) {
39279cc3 4325 fi = NULL;
5f39d397
CM
4326 leaf = path->nodes[0];
4327 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4328 found_type = found_key.type;
39279cc3 4329
33345d01 4330 if (found_key.objectid != ino)
39279cc3 4331 break;
5f39d397 4332
85e21bac 4333 if (found_type < min_type)
39279cc3
CM
4334 break;
4335
5f39d397 4336 item_end = found_key.offset;
39279cc3 4337 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4338 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4339 struct btrfs_file_extent_item);
179e29e4
CM
4340 extent_type = btrfs_file_extent_type(leaf, fi);
4341 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4342 item_end +=
db94535d 4343 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4344 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4345 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4346 path->slots[0], fi);
39279cc3 4347 }
008630c1 4348 item_end--;
39279cc3 4349 }
8082510e
YZ
4350 if (found_type > min_type) {
4351 del_item = 1;
4352 } else {
4353 if (item_end < new_size)
b888db2b 4354 break;
8082510e
YZ
4355 if (found_key.offset >= new_size)
4356 del_item = 1;
4357 else
4358 del_item = 0;
39279cc3 4359 }
39279cc3 4360 found_extent = 0;
39279cc3 4361 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4362 if (found_type != BTRFS_EXTENT_DATA_KEY)
4363 goto delete;
4364
7f4f6e0a
JB
4365 if (del_item)
4366 last_size = found_key.offset;
4367 else
4368 last_size = new_size;
4369
179e29e4 4370 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4371 u64 num_dec;
db94535d 4372 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4373 if (!del_item) {
db94535d
CM
4374 u64 orig_num_bytes =
4375 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4376 extent_num_bytes = ALIGN(new_size -
4377 found_key.offset,
4378 root->sectorsize);
db94535d
CM
4379 btrfs_set_file_extent_num_bytes(leaf, fi,
4380 extent_num_bytes);
4381 num_dec = (orig_num_bytes -
9069218d 4382 extent_num_bytes);
27cdeb70
MX
4383 if (test_bit(BTRFS_ROOT_REF_COWS,
4384 &root->state) &&
4385 extent_start != 0)
a76a3cd4 4386 inode_sub_bytes(inode, num_dec);
5f39d397 4387 btrfs_mark_buffer_dirty(leaf);
39279cc3 4388 } else {
db94535d
CM
4389 extent_num_bytes =
4390 btrfs_file_extent_disk_num_bytes(leaf,
4391 fi);
5d4f98a2
YZ
4392 extent_offset = found_key.offset -
4393 btrfs_file_extent_offset(leaf, fi);
4394
39279cc3 4395 /* FIXME blocksize != 4096 */
9069218d 4396 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4397 if (extent_start != 0) {
4398 found_extent = 1;
27cdeb70
MX
4399 if (test_bit(BTRFS_ROOT_REF_COWS,
4400 &root->state))
a76a3cd4 4401 inode_sub_bytes(inode, num_dec);
e02119d5 4402 }
39279cc3 4403 }
9069218d 4404 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4405 /*
4406 * we can't truncate inline items that have had
4407 * special encodings
4408 */
4409 if (!del_item &&
4410 btrfs_file_extent_compression(leaf, fi) == 0 &&
4411 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4412 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4413 u32 size = new_size - found_key.offset;
4414
27cdeb70 4415 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
a76a3cd4
YZ
4416 inode_sub_bytes(inode, item_end + 1 -
4417 new_size);
514ac8ad
CM
4418
4419 /*
4420 * update the ram bytes to properly reflect
4421 * the new size of our item
4422 */
4423 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4424 size =
4425 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4426 btrfs_truncate_item(root, path, size, 1);
27cdeb70
MX
4427 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4428 &root->state)) {
a76a3cd4
YZ
4429 inode_sub_bytes(inode, item_end + 1 -
4430 found_key.offset);
9069218d 4431 }
39279cc3 4432 }
179e29e4 4433delete:
39279cc3 4434 if (del_item) {
85e21bac
CM
4435 if (!pending_del_nr) {
4436 /* no pending yet, add ourselves */
4437 pending_del_slot = path->slots[0];
4438 pending_del_nr = 1;
4439 } else if (pending_del_nr &&
4440 path->slots[0] + 1 == pending_del_slot) {
4441 /* hop on the pending chunk */
4442 pending_del_nr++;
4443 pending_del_slot = path->slots[0];
4444 } else {
d397712b 4445 BUG();
85e21bac 4446 }
39279cc3
CM
4447 } else {
4448 break;
4449 }
28f75a0e
CM
4450 should_throttle = 0;
4451
27cdeb70
MX
4452 if (found_extent &&
4453 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4454 root == root->fs_info->tree_root)) {
b9473439 4455 btrfs_set_path_blocking(path);
28ed1345 4456 bytes_deleted += extent_num_bytes;
39279cc3 4457 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4458 extent_num_bytes, 0,
4459 btrfs_header_owner(leaf),
66d7e7f0 4460 ino, extent_offset, 0);
39279cc3 4461 BUG_ON(ret);
1262133b 4462 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4463 btrfs_async_run_delayed_refs(root,
4464 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4465 if (be_nice) {
4466 if (truncate_space_check(trans, root,
4467 extent_num_bytes)) {
4468 should_end = 1;
4469 }
4470 if (btrfs_should_throttle_delayed_refs(trans,
4471 root)) {
4472 should_throttle = 1;
4473 }
4474 }
39279cc3 4475 }
85e21bac 4476
8082510e
YZ
4477 if (found_type == BTRFS_INODE_ITEM_KEY)
4478 break;
4479
4480 if (path->slots[0] == 0 ||
1262133b 4481 path->slots[0] != pending_del_slot ||
28f75a0e 4482 should_throttle || should_end) {
8082510e
YZ
4483 if (pending_del_nr) {
4484 ret = btrfs_del_items(trans, root, path,
4485 pending_del_slot,
4486 pending_del_nr);
79787eaa
JM
4487 if (ret) {
4488 btrfs_abort_transaction(trans,
4489 root, ret);
4490 goto error;
4491 }
8082510e
YZ
4492 pending_del_nr = 0;
4493 }
b3b4aa74 4494 btrfs_release_path(path);
28f75a0e 4495 if (should_throttle) {
1262133b
JB
4496 unsigned long updates = trans->delayed_ref_updates;
4497 if (updates) {
4498 trans->delayed_ref_updates = 0;
4499 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4500 if (ret && !err)
4501 err = ret;
4502 }
4503 }
28f75a0e
CM
4504 /*
4505 * if we failed to refill our space rsv, bail out
4506 * and let the transaction restart
4507 */
4508 if (should_end) {
4509 err = -EAGAIN;
4510 goto error;
4511 }
85e21bac 4512 goto search_again;
8082510e
YZ
4513 } else {
4514 path->slots[0]--;
85e21bac 4515 }
39279cc3 4516 }
8082510e 4517out:
85e21bac
CM
4518 if (pending_del_nr) {
4519 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4520 pending_del_nr);
79787eaa
JM
4521 if (ret)
4522 btrfs_abort_transaction(trans, root, ret);
85e21bac 4523 }
79787eaa 4524error:
c1aa4575 4525 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4526 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4527
39279cc3 4528 btrfs_free_path(path);
28ed1345 4529
28f75a0e 4530 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
28ed1345
CM
4531 unsigned long updates = trans->delayed_ref_updates;
4532 if (updates) {
4533 trans->delayed_ref_updates = 0;
4534 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4535 if (ret && !err)
4536 err = ret;
4537 }
4538 }
8082510e 4539 return err;
39279cc3
CM
4540}
4541
4542/*
2aaa6655
JB
4543 * btrfs_truncate_page - read, zero a chunk and write a page
4544 * @inode - inode that we're zeroing
4545 * @from - the offset to start zeroing
4546 * @len - the length to zero, 0 to zero the entire range respective to the
4547 * offset
4548 * @front - zero up to the offset instead of from the offset on
4549 *
4550 * This will find the page for the "from" offset and cow the page and zero the
4551 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4552 */
2aaa6655
JB
4553int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4554 int front)
39279cc3 4555{
2aaa6655 4556 struct address_space *mapping = inode->i_mapping;
db94535d 4557 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4558 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4559 struct btrfs_ordered_extent *ordered;
2ac55d41 4560 struct extent_state *cached_state = NULL;
e6dcd2dc 4561 char *kaddr;
db94535d 4562 u32 blocksize = root->sectorsize;
39279cc3
CM
4563 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4564 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4565 struct page *page;
3b16a4e3 4566 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4567 int ret = 0;
a52d9a80 4568 u64 page_start;
e6dcd2dc 4569 u64 page_end;
39279cc3 4570
2aaa6655
JB
4571 if ((offset & (blocksize - 1)) == 0 &&
4572 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4573 goto out;
0ca1f7ce 4574 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4575 if (ret)
4576 goto out;
39279cc3 4577
211c17f5 4578again:
3b16a4e3 4579 page = find_or_create_page(mapping, index, mask);
5d5e103a 4580 if (!page) {
0ca1f7ce 4581 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4582 ret = -ENOMEM;
39279cc3 4583 goto out;
5d5e103a 4584 }
e6dcd2dc
CM
4585
4586 page_start = page_offset(page);
4587 page_end = page_start + PAGE_CACHE_SIZE - 1;
4588
39279cc3 4589 if (!PageUptodate(page)) {
9ebefb18 4590 ret = btrfs_readpage(NULL, page);
39279cc3 4591 lock_page(page);
211c17f5
CM
4592 if (page->mapping != mapping) {
4593 unlock_page(page);
4594 page_cache_release(page);
4595 goto again;
4596 }
39279cc3
CM
4597 if (!PageUptodate(page)) {
4598 ret = -EIO;
89642229 4599 goto out_unlock;
39279cc3
CM
4600 }
4601 }
211c17f5 4602 wait_on_page_writeback(page);
e6dcd2dc 4603
d0082371 4604 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4605 set_page_extent_mapped(page);
4606
4607 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4608 if (ordered) {
2ac55d41
JB
4609 unlock_extent_cached(io_tree, page_start, page_end,
4610 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4611 unlock_page(page);
4612 page_cache_release(page);
eb84ae03 4613 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4614 btrfs_put_ordered_extent(ordered);
4615 goto again;
4616 }
4617
2ac55d41 4618 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4619 EXTENT_DIRTY | EXTENT_DELALLOC |
4620 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4621 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4622
2ac55d41
JB
4623 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4624 &cached_state);
9ed74f2d 4625 if (ret) {
2ac55d41
JB
4626 unlock_extent_cached(io_tree, page_start, page_end,
4627 &cached_state, GFP_NOFS);
9ed74f2d
JB
4628 goto out_unlock;
4629 }
4630
e6dcd2dc 4631 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4632 if (!len)
4633 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4634 kaddr = kmap(page);
2aaa6655
JB
4635 if (front)
4636 memset(kaddr, 0, offset);
4637 else
4638 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4639 flush_dcache_page(page);
4640 kunmap(page);
4641 }
247e743c 4642 ClearPageChecked(page);
e6dcd2dc 4643 set_page_dirty(page);
2ac55d41
JB
4644 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4645 GFP_NOFS);
39279cc3 4646
89642229 4647out_unlock:
5d5e103a 4648 if (ret)
0ca1f7ce 4649 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4650 unlock_page(page);
4651 page_cache_release(page);
4652out:
4653 return ret;
4654}
4655
16e7549f
JB
4656static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4657 u64 offset, u64 len)
4658{
4659 struct btrfs_trans_handle *trans;
4660 int ret;
4661
4662 /*
4663 * Still need to make sure the inode looks like it's been updated so
4664 * that any holes get logged if we fsync.
4665 */
4666 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4667 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4668 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4669 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4670 return 0;
4671 }
4672
4673 /*
4674 * 1 - for the one we're dropping
4675 * 1 - for the one we're adding
4676 * 1 - for updating the inode.
4677 */
4678 trans = btrfs_start_transaction(root, 3);
4679 if (IS_ERR(trans))
4680 return PTR_ERR(trans);
4681
4682 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4683 if (ret) {
4684 btrfs_abort_transaction(trans, root, ret);
4685 btrfs_end_transaction(trans, root);
4686 return ret;
4687 }
4688
4689 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4690 0, 0, len, 0, len, 0, 0, 0);
4691 if (ret)
4692 btrfs_abort_transaction(trans, root, ret);
4693 else
4694 btrfs_update_inode(trans, root, inode);
4695 btrfs_end_transaction(trans, root);
4696 return ret;
4697}
4698
695a0d0d
JB
4699/*
4700 * This function puts in dummy file extents for the area we're creating a hole
4701 * for. So if we are truncating this file to a larger size we need to insert
4702 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4703 * the range between oldsize and size
4704 */
a41ad394 4705int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4706{
9036c102
YZ
4707 struct btrfs_root *root = BTRFS_I(inode)->root;
4708 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4709 struct extent_map *em = NULL;
2ac55d41 4710 struct extent_state *cached_state = NULL;
5dc562c5 4711 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4712 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4713 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4714 u64 last_byte;
4715 u64 cur_offset;
4716 u64 hole_size;
9ed74f2d 4717 int err = 0;
39279cc3 4718
a71754fc
JB
4719 /*
4720 * If our size started in the middle of a page we need to zero out the
4721 * rest of the page before we expand the i_size, otherwise we could
4722 * expose stale data.
4723 */
4724 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4725 if (err)
4726 return err;
4727
9036c102
YZ
4728 if (size <= hole_start)
4729 return 0;
4730
9036c102
YZ
4731 while (1) {
4732 struct btrfs_ordered_extent *ordered;
fa7c1494 4733
2ac55d41 4734 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4735 &cached_state);
fa7c1494
MX
4736 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4737 block_end - hole_start);
9036c102
YZ
4738 if (!ordered)
4739 break;
2ac55d41
JB
4740 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4741 &cached_state, GFP_NOFS);
fa7c1494 4742 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4743 btrfs_put_ordered_extent(ordered);
4744 }
39279cc3 4745
9036c102
YZ
4746 cur_offset = hole_start;
4747 while (1) {
4748 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4749 block_end - cur_offset, 0);
79787eaa
JM
4750 if (IS_ERR(em)) {
4751 err = PTR_ERR(em);
f2767956 4752 em = NULL;
79787eaa
JM
4753 break;
4754 }
9036c102 4755 last_byte = min(extent_map_end(em), block_end);
fda2832f 4756 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4757 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4758 struct extent_map *hole_em;
9036c102 4759 hole_size = last_byte - cur_offset;
9ed74f2d 4760
16e7549f
JB
4761 err = maybe_insert_hole(root, inode, cur_offset,
4762 hole_size);
4763 if (err)
3893e33b 4764 break;
5dc562c5
JB
4765 btrfs_drop_extent_cache(inode, cur_offset,
4766 cur_offset + hole_size - 1, 0);
4767 hole_em = alloc_extent_map();
4768 if (!hole_em) {
4769 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4770 &BTRFS_I(inode)->runtime_flags);
4771 goto next;
4772 }
4773 hole_em->start = cur_offset;
4774 hole_em->len = hole_size;
4775 hole_em->orig_start = cur_offset;
8082510e 4776
5dc562c5
JB
4777 hole_em->block_start = EXTENT_MAP_HOLE;
4778 hole_em->block_len = 0;
b4939680 4779 hole_em->orig_block_len = 0;
cc95bef6 4780 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4781 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4782 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4783 hole_em->generation = root->fs_info->generation;
8082510e 4784
5dc562c5
JB
4785 while (1) {
4786 write_lock(&em_tree->lock);
09a2a8f9 4787 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4788 write_unlock(&em_tree->lock);
4789 if (err != -EEXIST)
4790 break;
4791 btrfs_drop_extent_cache(inode, cur_offset,
4792 cur_offset +
4793 hole_size - 1, 0);
4794 }
4795 free_extent_map(hole_em);
9036c102 4796 }
16e7549f 4797next:
9036c102 4798 free_extent_map(em);
a22285a6 4799 em = NULL;
9036c102 4800 cur_offset = last_byte;
8082510e 4801 if (cur_offset >= block_end)
9036c102
YZ
4802 break;
4803 }
a22285a6 4804 free_extent_map(em);
2ac55d41
JB
4805 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4806 GFP_NOFS);
9036c102
YZ
4807 return err;
4808}
39279cc3 4809
9ea24bbe
FM
4810static int wait_snapshoting_atomic_t(atomic_t *a)
4811{
4812 schedule();
4813 return 0;
4814}
4815
4816static void wait_for_snapshot_creation(struct btrfs_root *root)
4817{
4818 while (true) {
4819 int ret;
4820
4821 ret = btrfs_start_write_no_snapshoting(root);
4822 if (ret)
4823 break;
4824 wait_on_atomic_t(&root->will_be_snapshoted,
4825 wait_snapshoting_atomic_t,
4826 TASK_UNINTERRUPTIBLE);
4827 }
4828}
4829
3972f260 4830static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4831{
f4a2f4c5
MX
4832 struct btrfs_root *root = BTRFS_I(inode)->root;
4833 struct btrfs_trans_handle *trans;
a41ad394 4834 loff_t oldsize = i_size_read(inode);
3972f260
ES
4835 loff_t newsize = attr->ia_size;
4836 int mask = attr->ia_valid;
8082510e
YZ
4837 int ret;
4838
3972f260
ES
4839 /*
4840 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4841 * special case where we need to update the times despite not having
4842 * these flags set. For all other operations the VFS set these flags
4843 * explicitly if it wants a timestamp update.
4844 */
dff6efc3
CH
4845 if (newsize != oldsize) {
4846 inode_inc_iversion(inode);
4847 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4848 inode->i_ctime = inode->i_mtime =
4849 current_fs_time(inode->i_sb);
4850 }
3972f260 4851
a41ad394 4852 if (newsize > oldsize) {
7caef267 4853 truncate_pagecache(inode, newsize);
9ea24bbe
FM
4854 /*
4855 * Don't do an expanding truncate while snapshoting is ongoing.
4856 * This is to ensure the snapshot captures a fully consistent
4857 * state of this file - if the snapshot captures this expanding
4858 * truncation, it must capture all writes that happened before
4859 * this truncation.
4860 */
4861 wait_for_snapshot_creation(root);
a41ad394 4862 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4863 if (ret) {
4864 btrfs_end_write_no_snapshoting(root);
8082510e 4865 return ret;
9ea24bbe 4866 }
8082510e 4867
f4a2f4c5 4868 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4869 if (IS_ERR(trans)) {
4870 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4871 return PTR_ERR(trans);
9ea24bbe 4872 }
f4a2f4c5
MX
4873
4874 i_size_write(inode, newsize);
4875 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4876 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4877 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4878 btrfs_end_transaction(trans, root);
a41ad394 4879 } else {
8082510e 4880
a41ad394
JB
4881 /*
4882 * We're truncating a file that used to have good data down to
4883 * zero. Make sure it gets into the ordered flush list so that
4884 * any new writes get down to disk quickly.
4885 */
4886 if (newsize == 0)
72ac3c0d
JB
4887 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4888 &BTRFS_I(inode)->runtime_flags);
8082510e 4889
f3fe820c
JB
4890 /*
4891 * 1 for the orphan item we're going to add
4892 * 1 for the orphan item deletion.
4893 */
4894 trans = btrfs_start_transaction(root, 2);
4895 if (IS_ERR(trans))
4896 return PTR_ERR(trans);
4897
4898 /*
4899 * We need to do this in case we fail at _any_ point during the
4900 * actual truncate. Once we do the truncate_setsize we could
4901 * invalidate pages which forces any outstanding ordered io to
4902 * be instantly completed which will give us extents that need
4903 * to be truncated. If we fail to get an orphan inode down we
4904 * could have left over extents that were never meant to live,
4905 * so we need to garuntee from this point on that everything
4906 * will be consistent.
4907 */
4908 ret = btrfs_orphan_add(trans, inode);
4909 btrfs_end_transaction(trans, root);
4910 if (ret)
4911 return ret;
4912
a41ad394
JB
4913 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4914 truncate_setsize(inode, newsize);
2e60a51e
MX
4915
4916 /* Disable nonlocked read DIO to avoid the end less truncate */
4917 btrfs_inode_block_unlocked_dio(inode);
4918 inode_dio_wait(inode);
4919 btrfs_inode_resume_unlocked_dio(inode);
4920
a41ad394 4921 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4922 if (ret && inode->i_nlink) {
4923 int err;
4924
4925 /*
4926 * failed to truncate, disk_i_size is only adjusted down
4927 * as we remove extents, so it should represent the true
4928 * size of the inode, so reset the in memory size and
4929 * delete our orphan entry.
4930 */
4931 trans = btrfs_join_transaction(root);
4932 if (IS_ERR(trans)) {
4933 btrfs_orphan_del(NULL, inode);
4934 return ret;
4935 }
4936 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4937 err = btrfs_orphan_del(trans, inode);
4938 if (err)
4939 btrfs_abort_transaction(trans, root, err);
4940 btrfs_end_transaction(trans, root);
4941 }
8082510e
YZ
4942 }
4943
a41ad394 4944 return ret;
8082510e
YZ
4945}
4946
9036c102
YZ
4947static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4948{
2b0143b5 4949 struct inode *inode = d_inode(dentry);
b83cc969 4950 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4951 int err;
39279cc3 4952
b83cc969
LZ
4953 if (btrfs_root_readonly(root))
4954 return -EROFS;
4955
9036c102
YZ
4956 err = inode_change_ok(inode, attr);
4957 if (err)
4958 return err;
2bf5a725 4959
5a3f23d5 4960 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4961 err = btrfs_setsize(inode, attr);
8082510e
YZ
4962 if (err)
4963 return err;
39279cc3 4964 }
9036c102 4965
1025774c
CH
4966 if (attr->ia_valid) {
4967 setattr_copy(inode, attr);
0c4d2d95 4968 inode_inc_iversion(inode);
22c44fe6 4969 err = btrfs_dirty_inode(inode);
1025774c 4970
22c44fe6 4971 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4972 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4973 }
33268eaf 4974
39279cc3
CM
4975 return err;
4976}
61295eb8 4977
131e404a
FDBM
4978/*
4979 * While truncating the inode pages during eviction, we get the VFS calling
4980 * btrfs_invalidatepage() against each page of the inode. This is slow because
4981 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4982 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4983 * extent_state structures over and over, wasting lots of time.
4984 *
4985 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4986 * those expensive operations on a per page basis and do only the ordered io
4987 * finishing, while we release here the extent_map and extent_state structures,
4988 * without the excessive merging and splitting.
4989 */
4990static void evict_inode_truncate_pages(struct inode *inode)
4991{
4992 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4993 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4994 struct rb_node *node;
4995
4996 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4997 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4998
4999 write_lock(&map_tree->lock);
5000 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5001 struct extent_map *em;
5002
5003 node = rb_first(&map_tree->map);
5004 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5005 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5006 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5007 remove_extent_mapping(map_tree, em);
5008 free_extent_map(em);
7064dd5c
FM
5009 if (need_resched()) {
5010 write_unlock(&map_tree->lock);
5011 cond_resched();
5012 write_lock(&map_tree->lock);
5013 }
131e404a
FDBM
5014 }
5015 write_unlock(&map_tree->lock);
5016
6ca07097
FM
5017 /*
5018 * Keep looping until we have no more ranges in the io tree.
5019 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5020 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5021 * still in progress (unlocked the pages in the bio but did not yet
5022 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5023 * ranges can still be locked and eviction started because before
5024 * submitting those bios, which are executed by a separate task (work
5025 * queue kthread), inode references (inode->i_count) were not taken
5026 * (which would be dropped in the end io callback of each bio).
5027 * Therefore here we effectively end up waiting for those bios and
5028 * anyone else holding locked ranges without having bumped the inode's
5029 * reference count - if we don't do it, when they access the inode's
5030 * io_tree to unlock a range it may be too late, leading to an
5031 * use-after-free issue.
5032 */
131e404a
FDBM
5033 spin_lock(&io_tree->lock);
5034 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5035 struct extent_state *state;
5036 struct extent_state *cached_state = NULL;
6ca07097
FM
5037 u64 start;
5038 u64 end;
131e404a
FDBM
5039
5040 node = rb_first(&io_tree->state);
5041 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5042 start = state->start;
5043 end = state->end;
131e404a
FDBM
5044 spin_unlock(&io_tree->lock);
5045
6ca07097
FM
5046 lock_extent_bits(io_tree, start, end, 0, &cached_state);
5047 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5048 EXTENT_LOCKED | EXTENT_DIRTY |
5049 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5050 EXTENT_DEFRAG, 1, 1,
5051 &cached_state, GFP_NOFS);
131e404a 5052
7064dd5c 5053 cond_resched();
131e404a
FDBM
5054 spin_lock(&io_tree->lock);
5055 }
5056 spin_unlock(&io_tree->lock);
5057}
5058
bd555975 5059void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5060{
5061 struct btrfs_trans_handle *trans;
5062 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5063 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5064 int steal_from_global = 0;
07127184 5065 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5066 int ret;
5067
1abe9b8a 5068 trace_btrfs_inode_evict(inode);
5069
131e404a
FDBM
5070 evict_inode_truncate_pages(inode);
5071
69e9c6c6
SB
5072 if (inode->i_nlink &&
5073 ((btrfs_root_refs(&root->root_item) != 0 &&
5074 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5075 btrfs_is_free_space_inode(inode)))
bd555975
AV
5076 goto no_delete;
5077
39279cc3 5078 if (is_bad_inode(inode)) {
7b128766 5079 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5080 goto no_delete;
5081 }
bd555975 5082 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 5083 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5084
f612496b
MX
5085 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5086
c71bf099 5087 if (root->fs_info->log_root_recovering) {
6bf02314 5088 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5089 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5090 goto no_delete;
5091 }
5092
76dda93c 5093 if (inode->i_nlink > 0) {
69e9c6c6
SB
5094 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5095 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5096 goto no_delete;
5097 }
5098
0e8c36a9
MX
5099 ret = btrfs_commit_inode_delayed_inode(inode);
5100 if (ret) {
5101 btrfs_orphan_del(NULL, inode);
5102 goto no_delete;
5103 }
5104
66d8f3dd 5105 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5106 if (!rsv) {
5107 btrfs_orphan_del(NULL, inode);
5108 goto no_delete;
5109 }
4a338542 5110 rsv->size = min_size;
ca7e70f5 5111 rsv->failfast = 1;
726c35fa 5112 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5113
dbe674a9 5114 btrfs_i_size_write(inode, 0);
5f39d397 5115
4289a667 5116 /*
8407aa46
MX
5117 * This is a bit simpler than btrfs_truncate since we've already
5118 * reserved our space for our orphan item in the unlink, so we just
5119 * need to reserve some slack space in case we add bytes and update
5120 * inode item when doing the truncate.
4289a667 5121 */
8082510e 5122 while (1) {
08e007d2
MX
5123 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5124 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5125
5126 /*
5127 * Try and steal from the global reserve since we will
5128 * likely not use this space anyway, we want to try as
5129 * hard as possible to get this to work.
5130 */
5131 if (ret)
3bce876f
JB
5132 steal_from_global++;
5133 else
5134 steal_from_global = 0;
5135 ret = 0;
d68fc57b 5136
3bce876f
JB
5137 /*
5138 * steal_from_global == 0: we reserved stuff, hooray!
5139 * steal_from_global == 1: we didn't reserve stuff, boo!
5140 * steal_from_global == 2: we've committed, still not a lot of
5141 * room but maybe we'll have room in the global reserve this
5142 * time.
5143 * steal_from_global == 3: abandon all hope!
5144 */
5145 if (steal_from_global > 2) {
c2cf52eb
SK
5146 btrfs_warn(root->fs_info,
5147 "Could not get space for a delete, will truncate on mount %d",
5148 ret);
4289a667
JB
5149 btrfs_orphan_del(NULL, inode);
5150 btrfs_free_block_rsv(root, rsv);
5151 goto no_delete;
d68fc57b 5152 }
7b128766 5153
0e8c36a9 5154 trans = btrfs_join_transaction(root);
4289a667
JB
5155 if (IS_ERR(trans)) {
5156 btrfs_orphan_del(NULL, inode);
5157 btrfs_free_block_rsv(root, rsv);
5158 goto no_delete;
d68fc57b 5159 }
7b128766 5160
3bce876f
JB
5161 /*
5162 * We can't just steal from the global reserve, we need tomake
5163 * sure there is room to do it, if not we need to commit and try
5164 * again.
5165 */
5166 if (steal_from_global) {
5167 if (!btrfs_check_space_for_delayed_refs(trans, root))
5168 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5169 min_size);
5170 else
5171 ret = -ENOSPC;
5172 }
5173
5174 /*
5175 * Couldn't steal from the global reserve, we have too much
5176 * pending stuff built up, commit the transaction and try it
5177 * again.
5178 */
5179 if (ret) {
5180 ret = btrfs_commit_transaction(trans, root);
5181 if (ret) {
5182 btrfs_orphan_del(NULL, inode);
5183 btrfs_free_block_rsv(root, rsv);
5184 goto no_delete;
5185 }
5186 continue;
5187 } else {
5188 steal_from_global = 0;
5189 }
5190
4289a667
JB
5191 trans->block_rsv = rsv;
5192
d68fc57b 5193 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5194 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5195 break;
85e21bac 5196
8407aa46 5197 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5198 btrfs_end_transaction(trans, root);
5199 trans = NULL;
b53d3f5d 5200 btrfs_btree_balance_dirty(root);
8082510e 5201 }
5f39d397 5202
4289a667
JB
5203 btrfs_free_block_rsv(root, rsv);
5204
4ef31a45
JB
5205 /*
5206 * Errors here aren't a big deal, it just means we leave orphan items
5207 * in the tree. They will be cleaned up on the next mount.
5208 */
8082510e 5209 if (ret == 0) {
4289a667 5210 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5211 btrfs_orphan_del(trans, inode);
5212 } else {
5213 btrfs_orphan_del(NULL, inode);
8082510e 5214 }
54aa1f4d 5215
4289a667 5216 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5217 if (!(root == root->fs_info->tree_root ||
5218 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5219 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5220
54aa1f4d 5221 btrfs_end_transaction(trans, root);
b53d3f5d 5222 btrfs_btree_balance_dirty(root);
39279cc3 5223no_delete:
89042e5a 5224 btrfs_remove_delayed_node(inode);
dbd5768f 5225 clear_inode(inode);
8082510e 5226 return;
39279cc3
CM
5227}
5228
5229/*
5230 * this returns the key found in the dir entry in the location pointer.
5231 * If no dir entries were found, location->objectid is 0.
5232 */
5233static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5234 struct btrfs_key *location)
5235{
5236 const char *name = dentry->d_name.name;
5237 int namelen = dentry->d_name.len;
5238 struct btrfs_dir_item *di;
5239 struct btrfs_path *path;
5240 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5241 int ret = 0;
39279cc3
CM
5242
5243 path = btrfs_alloc_path();
d8926bb3
MF
5244 if (!path)
5245 return -ENOMEM;
3954401f 5246
33345d01 5247 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5248 namelen, 0);
0d9f7f3e
Y
5249 if (IS_ERR(di))
5250 ret = PTR_ERR(di);
d397712b 5251
c704005d 5252 if (IS_ERR_OR_NULL(di))
3954401f 5253 goto out_err;
d397712b 5254
5f39d397 5255 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5256out:
39279cc3
CM
5257 btrfs_free_path(path);
5258 return ret;
3954401f
CM
5259out_err:
5260 location->objectid = 0;
5261 goto out;
39279cc3
CM
5262}
5263
5264/*
5265 * when we hit a tree root in a directory, the btrfs part of the inode
5266 * needs to be changed to reflect the root directory of the tree root. This
5267 * is kind of like crossing a mount point.
5268 */
5269static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5270 struct inode *dir,
5271 struct dentry *dentry,
5272 struct btrfs_key *location,
5273 struct btrfs_root **sub_root)
39279cc3 5274{
4df27c4d
YZ
5275 struct btrfs_path *path;
5276 struct btrfs_root *new_root;
5277 struct btrfs_root_ref *ref;
5278 struct extent_buffer *leaf;
1d4c08e0 5279 struct btrfs_key key;
4df27c4d
YZ
5280 int ret;
5281 int err = 0;
39279cc3 5282
4df27c4d
YZ
5283 path = btrfs_alloc_path();
5284 if (!path) {
5285 err = -ENOMEM;
5286 goto out;
5287 }
39279cc3 5288
4df27c4d 5289 err = -ENOENT;
1d4c08e0
DS
5290 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5291 key.type = BTRFS_ROOT_REF_KEY;
5292 key.offset = location->objectid;
5293
5294 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5295 0, 0);
4df27c4d
YZ
5296 if (ret) {
5297 if (ret < 0)
5298 err = ret;
5299 goto out;
5300 }
39279cc3 5301
4df27c4d
YZ
5302 leaf = path->nodes[0];
5303 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5304 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5305 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5306 goto out;
39279cc3 5307
4df27c4d
YZ
5308 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5309 (unsigned long)(ref + 1),
5310 dentry->d_name.len);
5311 if (ret)
5312 goto out;
5313
b3b4aa74 5314 btrfs_release_path(path);
4df27c4d
YZ
5315
5316 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5317 if (IS_ERR(new_root)) {
5318 err = PTR_ERR(new_root);
5319 goto out;
5320 }
5321
4df27c4d
YZ
5322 *sub_root = new_root;
5323 location->objectid = btrfs_root_dirid(&new_root->root_item);
5324 location->type = BTRFS_INODE_ITEM_KEY;
5325 location->offset = 0;
5326 err = 0;
5327out:
5328 btrfs_free_path(path);
5329 return err;
39279cc3
CM
5330}
5331
5d4f98a2
YZ
5332static void inode_tree_add(struct inode *inode)
5333{
5334 struct btrfs_root *root = BTRFS_I(inode)->root;
5335 struct btrfs_inode *entry;
03e860bd
FNP
5336 struct rb_node **p;
5337 struct rb_node *parent;
cef21937 5338 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5339 u64 ino = btrfs_ino(inode);
5d4f98a2 5340
1d3382cb 5341 if (inode_unhashed(inode))
76dda93c 5342 return;
e1409cef 5343 parent = NULL;
5d4f98a2 5344 spin_lock(&root->inode_lock);
e1409cef 5345 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5346 while (*p) {
5347 parent = *p;
5348 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5349
33345d01 5350 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5351 p = &parent->rb_left;
33345d01 5352 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5353 p = &parent->rb_right;
5d4f98a2
YZ
5354 else {
5355 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5356 (I_WILL_FREE | I_FREEING)));
cef21937 5357 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5358 RB_CLEAR_NODE(parent);
5359 spin_unlock(&root->inode_lock);
cef21937 5360 return;
5d4f98a2
YZ
5361 }
5362 }
cef21937
FDBM
5363 rb_link_node(new, parent, p);
5364 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5365 spin_unlock(&root->inode_lock);
5366}
5367
5368static void inode_tree_del(struct inode *inode)
5369{
5370 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5371 int empty = 0;
5d4f98a2 5372
03e860bd 5373 spin_lock(&root->inode_lock);
5d4f98a2 5374 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5375 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5376 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5377 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5378 }
03e860bd 5379 spin_unlock(&root->inode_lock);
76dda93c 5380
69e9c6c6 5381 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5382 synchronize_srcu(&root->fs_info->subvol_srcu);
5383 spin_lock(&root->inode_lock);
5384 empty = RB_EMPTY_ROOT(&root->inode_tree);
5385 spin_unlock(&root->inode_lock);
5386 if (empty)
5387 btrfs_add_dead_root(root);
5388 }
5389}
5390
143bede5 5391void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5392{
5393 struct rb_node *node;
5394 struct rb_node *prev;
5395 struct btrfs_inode *entry;
5396 struct inode *inode;
5397 u64 objectid = 0;
5398
7813b3db
LB
5399 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5400 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5401
5402 spin_lock(&root->inode_lock);
5403again:
5404 node = root->inode_tree.rb_node;
5405 prev = NULL;
5406 while (node) {
5407 prev = node;
5408 entry = rb_entry(node, struct btrfs_inode, rb_node);
5409
33345d01 5410 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5411 node = node->rb_left;
33345d01 5412 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5413 node = node->rb_right;
5414 else
5415 break;
5416 }
5417 if (!node) {
5418 while (prev) {
5419 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5420 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5421 node = prev;
5422 break;
5423 }
5424 prev = rb_next(prev);
5425 }
5426 }
5427 while (node) {
5428 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5429 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5430 inode = igrab(&entry->vfs_inode);
5431 if (inode) {
5432 spin_unlock(&root->inode_lock);
5433 if (atomic_read(&inode->i_count) > 1)
5434 d_prune_aliases(inode);
5435 /*
45321ac5 5436 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5437 * the inode cache when its usage count
5438 * hits zero.
5439 */
5440 iput(inode);
5441 cond_resched();
5442 spin_lock(&root->inode_lock);
5443 goto again;
5444 }
5445
5446 if (cond_resched_lock(&root->inode_lock))
5447 goto again;
5448
5449 node = rb_next(node);
5450 }
5451 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5452}
5453
e02119d5
CM
5454static int btrfs_init_locked_inode(struct inode *inode, void *p)
5455{
5456 struct btrfs_iget_args *args = p;
90d3e592
CM
5457 inode->i_ino = args->location->objectid;
5458 memcpy(&BTRFS_I(inode)->location, args->location,
5459 sizeof(*args->location));
e02119d5 5460 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5461 return 0;
5462}
5463
5464static int btrfs_find_actor(struct inode *inode, void *opaque)
5465{
5466 struct btrfs_iget_args *args = opaque;
90d3e592 5467 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5468 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5469}
5470
5d4f98a2 5471static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5472 struct btrfs_key *location,
5d4f98a2 5473 struct btrfs_root *root)
39279cc3
CM
5474{
5475 struct inode *inode;
5476 struct btrfs_iget_args args;
90d3e592 5477 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5478
90d3e592 5479 args.location = location;
39279cc3
CM
5480 args.root = root;
5481
778ba82b 5482 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5483 btrfs_init_locked_inode,
5484 (void *)&args);
5485 return inode;
5486}
5487
1a54ef8c
BR
5488/* Get an inode object given its location and corresponding root.
5489 * Returns in *is_new if the inode was read from disk
5490 */
5491struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5492 struct btrfs_root *root, int *new)
1a54ef8c
BR
5493{
5494 struct inode *inode;
5495
90d3e592 5496 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5497 if (!inode)
5d4f98a2 5498 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5499
5500 if (inode->i_state & I_NEW) {
1a54ef8c 5501 btrfs_read_locked_inode(inode);
1748f843
MF
5502 if (!is_bad_inode(inode)) {
5503 inode_tree_add(inode);
5504 unlock_new_inode(inode);
5505 if (new)
5506 *new = 1;
5507 } else {
e0b6d65b
ST
5508 unlock_new_inode(inode);
5509 iput(inode);
5510 inode = ERR_PTR(-ESTALE);
1748f843
MF
5511 }
5512 }
5513
1a54ef8c
BR
5514 return inode;
5515}
5516
4df27c4d
YZ
5517static struct inode *new_simple_dir(struct super_block *s,
5518 struct btrfs_key *key,
5519 struct btrfs_root *root)
5520{
5521 struct inode *inode = new_inode(s);
5522
5523 if (!inode)
5524 return ERR_PTR(-ENOMEM);
5525
4df27c4d
YZ
5526 BTRFS_I(inode)->root = root;
5527 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5528 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5529
5530 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5531 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5532 inode->i_fop = &simple_dir_operations;
5533 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
9cc97d64 5534 inode->i_mtime = CURRENT_TIME;
5535 inode->i_atime = inode->i_mtime;
5536 inode->i_ctime = inode->i_mtime;
5537 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5538
5539 return inode;
5540}
5541
3de4586c 5542struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5543{
d397712b 5544 struct inode *inode;
4df27c4d 5545 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5546 struct btrfs_root *sub_root = root;
5547 struct btrfs_key location;
76dda93c 5548 int index;
b4aff1f8 5549 int ret = 0;
39279cc3
CM
5550
5551 if (dentry->d_name.len > BTRFS_NAME_LEN)
5552 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5553
39e3c955 5554 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5555 if (ret < 0)
5556 return ERR_PTR(ret);
5f39d397 5557
4df27c4d 5558 if (location.objectid == 0)
5662344b 5559 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5560
5561 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5562 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5563 return inode;
5564 }
5565
5566 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5567
76dda93c 5568 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5569 ret = fixup_tree_root_location(root, dir, dentry,
5570 &location, &sub_root);
5571 if (ret < 0) {
5572 if (ret != -ENOENT)
5573 inode = ERR_PTR(ret);
5574 else
5575 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5576 } else {
73f73415 5577 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5578 }
76dda93c
YZ
5579 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5580
34d19bad 5581 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5582 down_read(&root->fs_info->cleanup_work_sem);
5583 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5584 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5585 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5586 if (ret) {
5587 iput(inode);
66b4ffd1 5588 inode = ERR_PTR(ret);
01cd3367 5589 }
c71bf099
YZ
5590 }
5591
3de4586c
CM
5592 return inode;
5593}
5594
fe15ce44 5595static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5596{
5597 struct btrfs_root *root;
2b0143b5 5598 struct inode *inode = d_inode(dentry);
76dda93c 5599
848cce0d 5600 if (!inode && !IS_ROOT(dentry))
2b0143b5 5601 inode = d_inode(dentry->d_parent);
76dda93c 5602
848cce0d
LZ
5603 if (inode) {
5604 root = BTRFS_I(inode)->root;
efefb143
YZ
5605 if (btrfs_root_refs(&root->root_item) == 0)
5606 return 1;
848cce0d
LZ
5607
5608 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5609 return 1;
efefb143 5610 }
76dda93c
YZ
5611 return 0;
5612}
5613
b4aff1f8
JB
5614static void btrfs_dentry_release(struct dentry *dentry)
5615{
944a4515 5616 kfree(dentry->d_fsdata);
b4aff1f8
JB
5617}
5618
3de4586c 5619static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5620 unsigned int flags)
3de4586c 5621{
5662344b 5622 struct inode *inode;
a66e7cc6 5623
5662344b
TI
5624 inode = btrfs_lookup_dentry(dir, dentry);
5625 if (IS_ERR(inode)) {
5626 if (PTR_ERR(inode) == -ENOENT)
5627 inode = NULL;
5628 else
5629 return ERR_CAST(inode);
5630 }
5631
41d28bca 5632 return d_splice_alias(inode, dentry);
39279cc3
CM
5633}
5634
16cdcec7 5635unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5636 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5637};
5638
9cdda8d3 5639static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5640{
9cdda8d3 5641 struct inode *inode = file_inode(file);
39279cc3
CM
5642 struct btrfs_root *root = BTRFS_I(inode)->root;
5643 struct btrfs_item *item;
5644 struct btrfs_dir_item *di;
5645 struct btrfs_key key;
5f39d397 5646 struct btrfs_key found_key;
39279cc3 5647 struct btrfs_path *path;
16cdcec7
MX
5648 struct list_head ins_list;
5649 struct list_head del_list;
39279cc3 5650 int ret;
5f39d397 5651 struct extent_buffer *leaf;
39279cc3 5652 int slot;
39279cc3
CM
5653 unsigned char d_type;
5654 int over = 0;
5655 u32 di_cur;
5656 u32 di_total;
5657 u32 di_len;
5658 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5659 char tmp_name[32];
5660 char *name_ptr;
5661 int name_len;
9cdda8d3 5662 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5663
5664 /* FIXME, use a real flag for deciding about the key type */
5665 if (root->fs_info->tree_root == root)
5666 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5667
9cdda8d3
AV
5668 if (!dir_emit_dots(file, ctx))
5669 return 0;
5670
49593bfa 5671 path = btrfs_alloc_path();
16cdcec7
MX
5672 if (!path)
5673 return -ENOMEM;
ff5714cc 5674
026fd317 5675 path->reada = 1;
49593bfa 5676
16cdcec7
MX
5677 if (key_type == BTRFS_DIR_INDEX_KEY) {
5678 INIT_LIST_HEAD(&ins_list);
5679 INIT_LIST_HEAD(&del_list);
5680 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5681 }
5682
962a298f 5683 key.type = key_type;
9cdda8d3 5684 key.offset = ctx->pos;
33345d01 5685 key.objectid = btrfs_ino(inode);
5f39d397 5686
39279cc3
CM
5687 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5688 if (ret < 0)
5689 goto err;
49593bfa
DW
5690
5691 while (1) {
5f39d397 5692 leaf = path->nodes[0];
39279cc3 5693 slot = path->slots[0];
b9e03af0
LZ
5694 if (slot >= btrfs_header_nritems(leaf)) {
5695 ret = btrfs_next_leaf(root, path);
5696 if (ret < 0)
5697 goto err;
5698 else if (ret > 0)
5699 break;
5700 continue;
39279cc3 5701 }
3de4586c 5702
dd3cc16b 5703 item = btrfs_item_nr(slot);
5f39d397
CM
5704 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5705
5706 if (found_key.objectid != key.objectid)
39279cc3 5707 break;
962a298f 5708 if (found_key.type != key_type)
39279cc3 5709 break;
9cdda8d3 5710 if (found_key.offset < ctx->pos)
b9e03af0 5711 goto next;
16cdcec7
MX
5712 if (key_type == BTRFS_DIR_INDEX_KEY &&
5713 btrfs_should_delete_dir_index(&del_list,
5714 found_key.offset))
5715 goto next;
5f39d397 5716
9cdda8d3 5717 ctx->pos = found_key.offset;
16cdcec7 5718 is_curr = 1;
49593bfa 5719
39279cc3
CM
5720 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5721 di_cur = 0;
5f39d397 5722 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5723
5724 while (di_cur < di_total) {
5f39d397
CM
5725 struct btrfs_key location;
5726
22a94d44
JB
5727 if (verify_dir_item(root, leaf, di))
5728 break;
5729
5f39d397 5730 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5731 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5732 name_ptr = tmp_name;
5733 } else {
5734 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5735 if (!name_ptr) {
5736 ret = -ENOMEM;
5737 goto err;
5738 }
5f39d397
CM
5739 }
5740 read_extent_buffer(leaf, name_ptr,
5741 (unsigned long)(di + 1), name_len);
5742
5743 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5744 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5745
fede766f 5746
3de4586c 5747 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5748 * skip it.
5749 *
5750 * In contrast to old kernels, we insert the snapshot's
5751 * dir item and dir index after it has been created, so
5752 * we won't find a reference to our own snapshot. We
5753 * still keep the following code for backward
5754 * compatibility.
3de4586c
CM
5755 */
5756 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5757 location.objectid == root->root_key.objectid) {
5758 over = 0;
5759 goto skip;
5760 }
9cdda8d3
AV
5761 over = !dir_emit(ctx, name_ptr, name_len,
5762 location.objectid, d_type);
5f39d397 5763
3de4586c 5764skip:
5f39d397
CM
5765 if (name_ptr != tmp_name)
5766 kfree(name_ptr);
5767
39279cc3
CM
5768 if (over)
5769 goto nopos;
5103e947 5770 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5771 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5772 di_cur += di_len;
5773 di = (struct btrfs_dir_item *)((char *)di + di_len);
5774 }
b9e03af0
LZ
5775next:
5776 path->slots[0]++;
39279cc3 5777 }
49593bfa 5778
16cdcec7
MX
5779 if (key_type == BTRFS_DIR_INDEX_KEY) {
5780 if (is_curr)
9cdda8d3
AV
5781 ctx->pos++;
5782 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5783 if (ret)
5784 goto nopos;
5785 }
5786
49593bfa 5787 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5788 ctx->pos++;
5789
5790 /*
5791 * Stop new entries from being returned after we return the last
5792 * entry.
5793 *
5794 * New directory entries are assigned a strictly increasing
5795 * offset. This means that new entries created during readdir
5796 * are *guaranteed* to be seen in the future by that readdir.
5797 * This has broken buggy programs which operate on names as
5798 * they're returned by readdir. Until we re-use freed offsets
5799 * we have this hack to stop new entries from being returned
5800 * under the assumption that they'll never reach this huge
5801 * offset.
5802 *
5803 * This is being careful not to overflow 32bit loff_t unless the
5804 * last entry requires it because doing so has broken 32bit apps
5805 * in the past.
5806 */
5807 if (key_type == BTRFS_DIR_INDEX_KEY) {
5808 if (ctx->pos >= INT_MAX)
5809 ctx->pos = LLONG_MAX;
5810 else
5811 ctx->pos = INT_MAX;
5812 }
39279cc3
CM
5813nopos:
5814 ret = 0;
5815err:
16cdcec7
MX
5816 if (key_type == BTRFS_DIR_INDEX_KEY)
5817 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5818 btrfs_free_path(path);
39279cc3
CM
5819 return ret;
5820}
5821
a9185b41 5822int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5823{
5824 struct btrfs_root *root = BTRFS_I(inode)->root;
5825 struct btrfs_trans_handle *trans;
5826 int ret = 0;
0af3d00b 5827 bool nolock = false;
39279cc3 5828
72ac3c0d 5829 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5830 return 0;
5831
83eea1f1 5832 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5833 nolock = true;
0af3d00b 5834
a9185b41 5835 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5836 if (nolock)
7a7eaa40 5837 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5838 else
7a7eaa40 5839 trans = btrfs_join_transaction(root);
3612b495
TI
5840 if (IS_ERR(trans))
5841 return PTR_ERR(trans);
a698d075 5842 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5843 }
5844 return ret;
5845}
5846
5847/*
54aa1f4d 5848 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5849 * inode changes. But, it is most likely to find the inode in cache.
5850 * FIXME, needs more benchmarking...there are no reasons other than performance
5851 * to keep or drop this code.
5852 */
48a3b636 5853static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5854{
5855 struct btrfs_root *root = BTRFS_I(inode)->root;
5856 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5857 int ret;
5858
72ac3c0d 5859 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5860 return 0;
39279cc3 5861
7a7eaa40 5862 trans = btrfs_join_transaction(root);
22c44fe6
JB
5863 if (IS_ERR(trans))
5864 return PTR_ERR(trans);
8929ecfa
YZ
5865
5866 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5867 if (ret && ret == -ENOSPC) {
5868 /* whoops, lets try again with the full transaction */
5869 btrfs_end_transaction(trans, root);
5870 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5871 if (IS_ERR(trans))
5872 return PTR_ERR(trans);
8929ecfa 5873
94b60442 5874 ret = btrfs_update_inode(trans, root, inode);
94b60442 5875 }
39279cc3 5876 btrfs_end_transaction(trans, root);
16cdcec7
MX
5877 if (BTRFS_I(inode)->delayed_node)
5878 btrfs_balance_delayed_items(root);
22c44fe6
JB
5879
5880 return ret;
5881}
5882
5883/*
5884 * This is a copy of file_update_time. We need this so we can return error on
5885 * ENOSPC for updating the inode in the case of file write and mmap writes.
5886 */
e41f941a
JB
5887static int btrfs_update_time(struct inode *inode, struct timespec *now,
5888 int flags)
22c44fe6 5889{
2bc55652
AB
5890 struct btrfs_root *root = BTRFS_I(inode)->root;
5891
5892 if (btrfs_root_readonly(root))
5893 return -EROFS;
5894
e41f941a 5895 if (flags & S_VERSION)
22c44fe6 5896 inode_inc_iversion(inode);
e41f941a
JB
5897 if (flags & S_CTIME)
5898 inode->i_ctime = *now;
5899 if (flags & S_MTIME)
5900 inode->i_mtime = *now;
5901 if (flags & S_ATIME)
5902 inode->i_atime = *now;
5903 return btrfs_dirty_inode(inode);
39279cc3
CM
5904}
5905
d352ac68
CM
5906/*
5907 * find the highest existing sequence number in a directory
5908 * and then set the in-memory index_cnt variable to reflect
5909 * free sequence numbers
5910 */
aec7477b
JB
5911static int btrfs_set_inode_index_count(struct inode *inode)
5912{
5913 struct btrfs_root *root = BTRFS_I(inode)->root;
5914 struct btrfs_key key, found_key;
5915 struct btrfs_path *path;
5916 struct extent_buffer *leaf;
5917 int ret;
5918
33345d01 5919 key.objectid = btrfs_ino(inode);
962a298f 5920 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5921 key.offset = (u64)-1;
5922
5923 path = btrfs_alloc_path();
5924 if (!path)
5925 return -ENOMEM;
5926
5927 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5928 if (ret < 0)
5929 goto out;
5930 /* FIXME: we should be able to handle this */
5931 if (ret == 0)
5932 goto out;
5933 ret = 0;
5934
5935 /*
5936 * MAGIC NUMBER EXPLANATION:
5937 * since we search a directory based on f_pos we have to start at 2
5938 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5939 * else has to start at 2
5940 */
5941 if (path->slots[0] == 0) {
5942 BTRFS_I(inode)->index_cnt = 2;
5943 goto out;
5944 }
5945
5946 path->slots[0]--;
5947
5948 leaf = path->nodes[0];
5949 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5950
33345d01 5951 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5952 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
5953 BTRFS_I(inode)->index_cnt = 2;
5954 goto out;
5955 }
5956
5957 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5958out:
5959 btrfs_free_path(path);
5960 return ret;
5961}
5962
d352ac68
CM
5963/*
5964 * helper to find a free sequence number in a given directory. This current
5965 * code is very simple, later versions will do smarter things in the btree
5966 */
3de4586c 5967int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5968{
5969 int ret = 0;
5970
5971 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5972 ret = btrfs_inode_delayed_dir_index_count(dir);
5973 if (ret) {
5974 ret = btrfs_set_inode_index_count(dir);
5975 if (ret)
5976 return ret;
5977 }
aec7477b
JB
5978 }
5979
00e4e6b3 5980 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5981 BTRFS_I(dir)->index_cnt++;
5982
5983 return ret;
5984}
5985
b0d5d10f
CM
5986static int btrfs_insert_inode_locked(struct inode *inode)
5987{
5988 struct btrfs_iget_args args;
5989 args.location = &BTRFS_I(inode)->location;
5990 args.root = BTRFS_I(inode)->root;
5991
5992 return insert_inode_locked4(inode,
5993 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5994 btrfs_find_actor, &args);
5995}
5996
39279cc3
CM
5997static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5998 struct btrfs_root *root,
aec7477b 5999 struct inode *dir,
9c58309d 6000 const char *name, int name_len,
175a4eb7
AV
6001 u64 ref_objectid, u64 objectid,
6002 umode_t mode, u64 *index)
39279cc3
CM
6003{
6004 struct inode *inode;
5f39d397 6005 struct btrfs_inode_item *inode_item;
39279cc3 6006 struct btrfs_key *location;
5f39d397 6007 struct btrfs_path *path;
9c58309d
CM
6008 struct btrfs_inode_ref *ref;
6009 struct btrfs_key key[2];
6010 u32 sizes[2];
ef3b9af5 6011 int nitems = name ? 2 : 1;
9c58309d 6012 unsigned long ptr;
39279cc3 6013 int ret;
39279cc3 6014
5f39d397 6015 path = btrfs_alloc_path();
d8926bb3
MF
6016 if (!path)
6017 return ERR_PTR(-ENOMEM);
5f39d397 6018
39279cc3 6019 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6020 if (!inode) {
6021 btrfs_free_path(path);
39279cc3 6022 return ERR_PTR(-ENOMEM);
8fb27640 6023 }
39279cc3 6024
5762b5c9
FM
6025 /*
6026 * O_TMPFILE, set link count to 0, so that after this point,
6027 * we fill in an inode item with the correct link count.
6028 */
6029 if (!name)
6030 set_nlink(inode, 0);
6031
581bb050
LZ
6032 /*
6033 * we have to initialize this early, so we can reclaim the inode
6034 * number if we fail afterwards in this function.
6035 */
6036 inode->i_ino = objectid;
6037
ef3b9af5 6038 if (dir && name) {
1abe9b8a 6039 trace_btrfs_inode_request(dir);
6040
3de4586c 6041 ret = btrfs_set_inode_index(dir, index);
09771430 6042 if (ret) {
8fb27640 6043 btrfs_free_path(path);
09771430 6044 iput(inode);
aec7477b 6045 return ERR_PTR(ret);
09771430 6046 }
ef3b9af5
FM
6047 } else if (dir) {
6048 *index = 0;
aec7477b
JB
6049 }
6050 /*
6051 * index_cnt is ignored for everything but a dir,
6052 * btrfs_get_inode_index_count has an explanation for the magic
6053 * number
6054 */
6055 BTRFS_I(inode)->index_cnt = 2;
67de1176 6056 BTRFS_I(inode)->dir_index = *index;
39279cc3 6057 BTRFS_I(inode)->root = root;
e02119d5 6058 BTRFS_I(inode)->generation = trans->transid;
76195853 6059 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6060
5dc562c5
JB
6061 /*
6062 * We could have gotten an inode number from somebody who was fsynced
6063 * and then removed in this same transaction, so let's just set full
6064 * sync since it will be a full sync anyway and this will blow away the
6065 * old info in the log.
6066 */
6067 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6068
9c58309d 6069 key[0].objectid = objectid;
962a298f 6070 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6071 key[0].offset = 0;
6072
9c58309d 6073 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6074
6075 if (name) {
6076 /*
6077 * Start new inodes with an inode_ref. This is slightly more
6078 * efficient for small numbers of hard links since they will
6079 * be packed into one item. Extended refs will kick in if we
6080 * add more hard links than can fit in the ref item.
6081 */
6082 key[1].objectid = objectid;
962a298f 6083 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6084 key[1].offset = ref_objectid;
6085
6086 sizes[1] = name_len + sizeof(*ref);
6087 }
9c58309d 6088
b0d5d10f
CM
6089 location = &BTRFS_I(inode)->location;
6090 location->objectid = objectid;
6091 location->offset = 0;
962a298f 6092 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6093
6094 ret = btrfs_insert_inode_locked(inode);
6095 if (ret < 0)
6096 goto fail;
6097
b9473439 6098 path->leave_spinning = 1;
ef3b9af5 6099 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6100 if (ret != 0)
b0d5d10f 6101 goto fail_unlock;
5f39d397 6102
ecc11fab 6103 inode_init_owner(inode, dir, mode);
a76a3cd4 6104 inode_set_bytes(inode, 0);
9cc97d64 6105
6106 inode->i_mtime = CURRENT_TIME;
6107 inode->i_atime = inode->i_mtime;
6108 inode->i_ctime = inode->i_mtime;
6109 BTRFS_I(inode)->i_otime = inode->i_mtime;
6110
5f39d397
CM
6111 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6112 struct btrfs_inode_item);
293f7e07
LZ
6113 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6114 sizeof(*inode_item));
e02119d5 6115 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6116
ef3b9af5
FM
6117 if (name) {
6118 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6119 struct btrfs_inode_ref);
6120 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6121 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6122 ptr = (unsigned long)(ref + 1);
6123 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6124 }
9c58309d 6125
5f39d397
CM
6126 btrfs_mark_buffer_dirty(path->nodes[0]);
6127 btrfs_free_path(path);
6128
6cbff00f
CH
6129 btrfs_inherit_iflags(inode, dir);
6130
569254b0 6131 if (S_ISREG(mode)) {
94272164
CM
6132 if (btrfs_test_opt(root, NODATASUM))
6133 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6134 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6135 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6136 BTRFS_INODE_NODATASUM;
94272164
CM
6137 }
6138
5d4f98a2 6139 inode_tree_add(inode);
1abe9b8a 6140
6141 trace_btrfs_inode_new(inode);
1973f0fa 6142 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6143
8ea05e3a
AB
6144 btrfs_update_root_times(trans, root);
6145
63541927
FDBM
6146 ret = btrfs_inode_inherit_props(trans, inode, dir);
6147 if (ret)
6148 btrfs_err(root->fs_info,
6149 "error inheriting props for ino %llu (root %llu): %d",
6150 btrfs_ino(inode), root->root_key.objectid, ret);
6151
39279cc3 6152 return inode;
b0d5d10f
CM
6153
6154fail_unlock:
6155 unlock_new_inode(inode);
5f39d397 6156fail:
ef3b9af5 6157 if (dir && name)
aec7477b 6158 BTRFS_I(dir)->index_cnt--;
5f39d397 6159 btrfs_free_path(path);
09771430 6160 iput(inode);
5f39d397 6161 return ERR_PTR(ret);
39279cc3
CM
6162}
6163
6164static inline u8 btrfs_inode_type(struct inode *inode)
6165{
6166 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6167}
6168
d352ac68
CM
6169/*
6170 * utility function to add 'inode' into 'parent_inode' with
6171 * a give name and a given sequence number.
6172 * if 'add_backref' is true, also insert a backref from the
6173 * inode to the parent directory.
6174 */
e02119d5
CM
6175int btrfs_add_link(struct btrfs_trans_handle *trans,
6176 struct inode *parent_inode, struct inode *inode,
6177 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6178{
4df27c4d 6179 int ret = 0;
39279cc3 6180 struct btrfs_key key;
e02119d5 6181 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6182 u64 ino = btrfs_ino(inode);
6183 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6184
33345d01 6185 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6186 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6187 } else {
33345d01 6188 key.objectid = ino;
962a298f 6189 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6190 key.offset = 0;
6191 }
6192
33345d01 6193 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6194 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6195 key.objectid, root->root_key.objectid,
33345d01 6196 parent_ino, index, name, name_len);
4df27c4d 6197 } else if (add_backref) {
33345d01
LZ
6198 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6199 parent_ino, index);
4df27c4d 6200 }
39279cc3 6201
79787eaa
JM
6202 /* Nothing to clean up yet */
6203 if (ret)
6204 return ret;
4df27c4d 6205
79787eaa
JM
6206 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6207 parent_inode, &key,
6208 btrfs_inode_type(inode), index);
9c52057c 6209 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6210 goto fail_dir_item;
6211 else if (ret) {
6212 btrfs_abort_transaction(trans, root, ret);
6213 return ret;
39279cc3 6214 }
79787eaa
JM
6215
6216 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6217 name_len * 2);
0c4d2d95 6218 inode_inc_iversion(parent_inode);
79787eaa
JM
6219 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6220 ret = btrfs_update_inode(trans, root, parent_inode);
6221 if (ret)
6222 btrfs_abort_transaction(trans, root, ret);
39279cc3 6223 return ret;
fe66a05a
CM
6224
6225fail_dir_item:
6226 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6227 u64 local_index;
6228 int err;
6229 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6230 key.objectid, root->root_key.objectid,
6231 parent_ino, &local_index, name, name_len);
6232
6233 } else if (add_backref) {
6234 u64 local_index;
6235 int err;
6236
6237 err = btrfs_del_inode_ref(trans, root, name, name_len,
6238 ino, parent_ino, &local_index);
6239 }
6240 return ret;
39279cc3
CM
6241}
6242
6243static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6244 struct inode *dir, struct dentry *dentry,
6245 struct inode *inode, int backref, u64 index)
39279cc3 6246{
a1b075d2
JB
6247 int err = btrfs_add_link(trans, dir, inode,
6248 dentry->d_name.name, dentry->d_name.len,
6249 backref, index);
39279cc3
CM
6250 if (err > 0)
6251 err = -EEXIST;
6252 return err;
6253}
6254
618e21d5 6255static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6256 umode_t mode, dev_t rdev)
618e21d5
JB
6257{
6258 struct btrfs_trans_handle *trans;
6259 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6260 struct inode *inode = NULL;
618e21d5
JB
6261 int err;
6262 int drop_inode = 0;
6263 u64 objectid;
00e4e6b3 6264 u64 index = 0;
618e21d5
JB
6265
6266 if (!new_valid_dev(rdev))
6267 return -EINVAL;
6268
9ed74f2d
JB
6269 /*
6270 * 2 for inode item and ref
6271 * 2 for dir items
6272 * 1 for xattr if selinux is on
6273 */
a22285a6
YZ
6274 trans = btrfs_start_transaction(root, 5);
6275 if (IS_ERR(trans))
6276 return PTR_ERR(trans);
1832a6d5 6277
581bb050
LZ
6278 err = btrfs_find_free_ino(root, &objectid);
6279 if (err)
6280 goto out_unlock;
6281
aec7477b 6282 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6283 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6284 mode, &index);
7cf96da3
TI
6285 if (IS_ERR(inode)) {
6286 err = PTR_ERR(inode);
618e21d5 6287 goto out_unlock;
7cf96da3 6288 }
618e21d5 6289
ad19db71
CS
6290 /*
6291 * If the active LSM wants to access the inode during
6292 * d_instantiate it needs these. Smack checks to see
6293 * if the filesystem supports xattrs by looking at the
6294 * ops vector.
6295 */
ad19db71 6296 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6297 init_special_inode(inode, inode->i_mode, rdev);
6298
6299 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6300 if (err)
b0d5d10f
CM
6301 goto out_unlock_inode;
6302
6303 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6304 if (err) {
6305 goto out_unlock_inode;
6306 } else {
1b4ab1bb 6307 btrfs_update_inode(trans, root, inode);
b0d5d10f 6308 unlock_new_inode(inode);
08c422c2 6309 d_instantiate(dentry, inode);
618e21d5 6310 }
b0d5d10f 6311
618e21d5 6312out_unlock:
7ad85bb7 6313 btrfs_end_transaction(trans, root);
c581afc8 6314 btrfs_balance_delayed_items(root);
b53d3f5d 6315 btrfs_btree_balance_dirty(root);
618e21d5
JB
6316 if (drop_inode) {
6317 inode_dec_link_count(inode);
6318 iput(inode);
6319 }
618e21d5 6320 return err;
b0d5d10f
CM
6321
6322out_unlock_inode:
6323 drop_inode = 1;
6324 unlock_new_inode(inode);
6325 goto out_unlock;
6326
618e21d5
JB
6327}
6328
39279cc3 6329static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6330 umode_t mode, bool excl)
39279cc3
CM
6331{
6332 struct btrfs_trans_handle *trans;
6333 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6334 struct inode *inode = NULL;
43baa579 6335 int drop_inode_on_err = 0;
a22285a6 6336 int err;
39279cc3 6337 u64 objectid;
00e4e6b3 6338 u64 index = 0;
39279cc3 6339
9ed74f2d
JB
6340 /*
6341 * 2 for inode item and ref
6342 * 2 for dir items
6343 * 1 for xattr if selinux is on
6344 */
a22285a6
YZ
6345 trans = btrfs_start_transaction(root, 5);
6346 if (IS_ERR(trans))
6347 return PTR_ERR(trans);
9ed74f2d 6348
581bb050
LZ
6349 err = btrfs_find_free_ino(root, &objectid);
6350 if (err)
6351 goto out_unlock;
6352
aec7477b 6353 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6354 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6355 mode, &index);
7cf96da3
TI
6356 if (IS_ERR(inode)) {
6357 err = PTR_ERR(inode);
39279cc3 6358 goto out_unlock;
7cf96da3 6359 }
43baa579 6360 drop_inode_on_err = 1;
ad19db71
CS
6361 /*
6362 * If the active LSM wants to access the inode during
6363 * d_instantiate it needs these. Smack checks to see
6364 * if the filesystem supports xattrs by looking at the
6365 * ops vector.
6366 */
6367 inode->i_fop = &btrfs_file_operations;
6368 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6369 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6370
6371 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6372 if (err)
6373 goto out_unlock_inode;
6374
6375 err = btrfs_update_inode(trans, root, inode);
6376 if (err)
6377 goto out_unlock_inode;
ad19db71 6378
a1b075d2 6379 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6380 if (err)
b0d5d10f 6381 goto out_unlock_inode;
43baa579 6382
43baa579 6383 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6384 unlock_new_inode(inode);
43baa579
FB
6385 d_instantiate(dentry, inode);
6386
39279cc3 6387out_unlock:
7ad85bb7 6388 btrfs_end_transaction(trans, root);
43baa579 6389 if (err && drop_inode_on_err) {
39279cc3
CM
6390 inode_dec_link_count(inode);
6391 iput(inode);
6392 }
c581afc8 6393 btrfs_balance_delayed_items(root);
b53d3f5d 6394 btrfs_btree_balance_dirty(root);
39279cc3 6395 return err;
b0d5d10f
CM
6396
6397out_unlock_inode:
6398 unlock_new_inode(inode);
6399 goto out_unlock;
6400
39279cc3
CM
6401}
6402
6403static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6404 struct dentry *dentry)
6405{
6406 struct btrfs_trans_handle *trans;
6407 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6408 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6409 u64 index;
39279cc3
CM
6410 int err;
6411 int drop_inode = 0;
6412
4a8be425
TH
6413 /* do not allow sys_link's with other subvols of the same device */
6414 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6415 return -EXDEV;
4a8be425 6416
f186373f 6417 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6418 return -EMLINK;
4a8be425 6419
3de4586c 6420 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6421 if (err)
6422 goto fail;
6423
a22285a6 6424 /*
7e6b6465 6425 * 2 items for inode and inode ref
a22285a6 6426 * 2 items for dir items
7e6b6465 6427 * 1 item for parent inode
a22285a6 6428 */
7e6b6465 6429 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6430 if (IS_ERR(trans)) {
6431 err = PTR_ERR(trans);
6432 goto fail;
6433 }
5f39d397 6434
67de1176
MX
6435 /* There are several dir indexes for this inode, clear the cache. */
6436 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6437 inc_nlink(inode);
0c4d2d95 6438 inode_inc_iversion(inode);
3153495d 6439 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6440 ihold(inode);
e9976151 6441 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6442
a1b075d2 6443 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6444
a5719521 6445 if (err) {
54aa1f4d 6446 drop_inode = 1;
a5719521 6447 } else {
10d9f309 6448 struct dentry *parent = dentry->d_parent;
a5719521 6449 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6450 if (err)
6451 goto fail;
ef3b9af5
FM
6452 if (inode->i_nlink == 1) {
6453 /*
6454 * If new hard link count is 1, it's a file created
6455 * with open(2) O_TMPFILE flag.
6456 */
6457 err = btrfs_orphan_del(trans, inode);
6458 if (err)
6459 goto fail;
6460 }
08c422c2 6461 d_instantiate(dentry, inode);
6a912213 6462 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6463 }
39279cc3 6464
7ad85bb7 6465 btrfs_end_transaction(trans, root);
c581afc8 6466 btrfs_balance_delayed_items(root);
1832a6d5 6467fail:
39279cc3
CM
6468 if (drop_inode) {
6469 inode_dec_link_count(inode);
6470 iput(inode);
6471 }
b53d3f5d 6472 btrfs_btree_balance_dirty(root);
39279cc3
CM
6473 return err;
6474}
6475
18bb1db3 6476static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6477{
b9d86667 6478 struct inode *inode = NULL;
39279cc3
CM
6479 struct btrfs_trans_handle *trans;
6480 struct btrfs_root *root = BTRFS_I(dir)->root;
6481 int err = 0;
6482 int drop_on_err = 0;
b9d86667 6483 u64 objectid = 0;
00e4e6b3 6484 u64 index = 0;
39279cc3 6485
9ed74f2d
JB
6486 /*
6487 * 2 items for inode and ref
6488 * 2 items for dir items
6489 * 1 for xattr if selinux is on
6490 */
a22285a6
YZ
6491 trans = btrfs_start_transaction(root, 5);
6492 if (IS_ERR(trans))
6493 return PTR_ERR(trans);
39279cc3 6494
581bb050
LZ
6495 err = btrfs_find_free_ino(root, &objectid);
6496 if (err)
6497 goto out_fail;
6498
aec7477b 6499 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6500 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6501 S_IFDIR | mode, &index);
39279cc3
CM
6502 if (IS_ERR(inode)) {
6503 err = PTR_ERR(inode);
6504 goto out_fail;
6505 }
5f39d397 6506
39279cc3 6507 drop_on_err = 1;
b0d5d10f
CM
6508 /* these must be set before we unlock the inode */
6509 inode->i_op = &btrfs_dir_inode_operations;
6510 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6511
2a7dba39 6512 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6513 if (err)
b0d5d10f 6514 goto out_fail_inode;
39279cc3 6515
dbe674a9 6516 btrfs_i_size_write(inode, 0);
39279cc3
CM
6517 err = btrfs_update_inode(trans, root, inode);
6518 if (err)
b0d5d10f 6519 goto out_fail_inode;
5f39d397 6520
a1b075d2
JB
6521 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6522 dentry->d_name.len, 0, index);
39279cc3 6523 if (err)
b0d5d10f 6524 goto out_fail_inode;
5f39d397 6525
39279cc3 6526 d_instantiate(dentry, inode);
b0d5d10f
CM
6527 /*
6528 * mkdir is special. We're unlocking after we call d_instantiate
6529 * to avoid a race with nfsd calling d_instantiate.
6530 */
6531 unlock_new_inode(inode);
39279cc3 6532 drop_on_err = 0;
39279cc3
CM
6533
6534out_fail:
7ad85bb7 6535 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6536 if (drop_on_err) {
6537 inode_dec_link_count(inode);
39279cc3 6538 iput(inode);
c7cfb8a5 6539 }
c581afc8 6540 btrfs_balance_delayed_items(root);
b53d3f5d 6541 btrfs_btree_balance_dirty(root);
39279cc3 6542 return err;
b0d5d10f
CM
6543
6544out_fail_inode:
6545 unlock_new_inode(inode);
6546 goto out_fail;
39279cc3
CM
6547}
6548
e6c4efd8
QW
6549/* Find next extent map of a given extent map, caller needs to ensure locks */
6550static struct extent_map *next_extent_map(struct extent_map *em)
6551{
6552 struct rb_node *next;
6553
6554 next = rb_next(&em->rb_node);
6555 if (!next)
6556 return NULL;
6557 return container_of(next, struct extent_map, rb_node);
6558}
6559
6560static struct extent_map *prev_extent_map(struct extent_map *em)
6561{
6562 struct rb_node *prev;
6563
6564 prev = rb_prev(&em->rb_node);
6565 if (!prev)
6566 return NULL;
6567 return container_of(prev, struct extent_map, rb_node);
6568}
6569
d352ac68 6570/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6571 * the existing extent is the nearest extent to map_start,
d352ac68 6572 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6573 * the best fitted new extent into the tree.
d352ac68 6574 */
3b951516
CM
6575static int merge_extent_mapping(struct extent_map_tree *em_tree,
6576 struct extent_map *existing,
e6dcd2dc 6577 struct extent_map *em,
51f395ad 6578 u64 map_start)
3b951516 6579{
e6c4efd8
QW
6580 struct extent_map *prev;
6581 struct extent_map *next;
6582 u64 start;
6583 u64 end;
3b951516 6584 u64 start_diff;
3b951516 6585
e6dcd2dc 6586 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6587
6588 if (existing->start > map_start) {
6589 next = existing;
6590 prev = prev_extent_map(next);
6591 } else {
6592 prev = existing;
6593 next = next_extent_map(prev);
6594 }
6595
6596 start = prev ? extent_map_end(prev) : em->start;
6597 start = max_t(u64, start, em->start);
6598 end = next ? next->start : extent_map_end(em);
6599 end = min_t(u64, end, extent_map_end(em));
6600 start_diff = start - em->start;
6601 em->start = start;
6602 em->len = end - start;
c8b97818
CM
6603 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6604 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6605 em->block_start += start_diff;
c8b97818
CM
6606 em->block_len -= start_diff;
6607 }
09a2a8f9 6608 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6609}
6610
c8b97818
CM
6611static noinline int uncompress_inline(struct btrfs_path *path,
6612 struct inode *inode, struct page *page,
6613 size_t pg_offset, u64 extent_offset,
6614 struct btrfs_file_extent_item *item)
6615{
6616 int ret;
6617 struct extent_buffer *leaf = path->nodes[0];
6618 char *tmp;
6619 size_t max_size;
6620 unsigned long inline_size;
6621 unsigned long ptr;
261507a0 6622 int compress_type;
c8b97818
CM
6623
6624 WARN_ON(pg_offset != 0);
261507a0 6625 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6626 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6627 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6628 btrfs_item_nr(path->slots[0]));
c8b97818 6629 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6630 if (!tmp)
6631 return -ENOMEM;
c8b97818
CM
6632 ptr = btrfs_file_extent_inline_start(item);
6633
6634 read_extent_buffer(leaf, tmp, ptr, inline_size);
6635
5b050f04 6636 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6637 ret = btrfs_decompress(compress_type, tmp, page,
6638 extent_offset, inline_size, max_size);
c8b97818 6639 kfree(tmp);
166ae5a4 6640 return ret;
c8b97818
CM
6641}
6642
d352ac68
CM
6643/*
6644 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6645 * the ugly parts come from merging extents from the disk with the in-ram
6646 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6647 * where the in-ram extents might be locked pending data=ordered completion.
6648 *
6649 * This also copies inline extents directly into the page.
6650 */
d397712b 6651
a52d9a80 6652struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6653 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6654 int create)
6655{
6656 int ret;
6657 int err = 0;
a52d9a80
CM
6658 u64 extent_start = 0;
6659 u64 extent_end = 0;
33345d01 6660 u64 objectid = btrfs_ino(inode);
a52d9a80 6661 u32 found_type;
f421950f 6662 struct btrfs_path *path = NULL;
a52d9a80
CM
6663 struct btrfs_root *root = BTRFS_I(inode)->root;
6664 struct btrfs_file_extent_item *item;
5f39d397
CM
6665 struct extent_buffer *leaf;
6666 struct btrfs_key found_key;
a52d9a80
CM
6667 struct extent_map *em = NULL;
6668 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6669 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6670 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6671 const bool new_inline = !page || create;
a52d9a80 6672
a52d9a80 6673again:
890871be 6674 read_lock(&em_tree->lock);
d1310b2e 6675 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6676 if (em)
6677 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6678 read_unlock(&em_tree->lock);
d1310b2e 6679
a52d9a80 6680 if (em) {
e1c4b745
CM
6681 if (em->start > start || em->start + em->len <= start)
6682 free_extent_map(em);
6683 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6684 free_extent_map(em);
6685 else
6686 goto out;
a52d9a80 6687 }
172ddd60 6688 em = alloc_extent_map();
a52d9a80 6689 if (!em) {
d1310b2e
CM
6690 err = -ENOMEM;
6691 goto out;
a52d9a80 6692 }
e6dcd2dc 6693 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6694 em->start = EXTENT_MAP_HOLE;
445a6944 6695 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6696 em->len = (u64)-1;
c8b97818 6697 em->block_len = (u64)-1;
f421950f
CM
6698
6699 if (!path) {
6700 path = btrfs_alloc_path();
026fd317
JB
6701 if (!path) {
6702 err = -ENOMEM;
6703 goto out;
6704 }
6705 /*
6706 * Chances are we'll be called again, so go ahead and do
6707 * readahead
6708 */
6709 path->reada = 1;
f421950f
CM
6710 }
6711
179e29e4
CM
6712 ret = btrfs_lookup_file_extent(trans, root, path,
6713 objectid, start, trans != NULL);
a52d9a80
CM
6714 if (ret < 0) {
6715 err = ret;
6716 goto out;
6717 }
6718
6719 if (ret != 0) {
6720 if (path->slots[0] == 0)
6721 goto not_found;
6722 path->slots[0]--;
6723 }
6724
5f39d397
CM
6725 leaf = path->nodes[0];
6726 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6727 struct btrfs_file_extent_item);
a52d9a80 6728 /* are we inside the extent that was found? */
5f39d397 6729 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6730 found_type = found_key.type;
5f39d397 6731 if (found_key.objectid != objectid ||
a52d9a80 6732 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6733 /*
6734 * If we backup past the first extent we want to move forward
6735 * and see if there is an extent in front of us, otherwise we'll
6736 * say there is a hole for our whole search range which can
6737 * cause problems.
6738 */
6739 extent_end = start;
6740 goto next;
a52d9a80
CM
6741 }
6742
5f39d397
CM
6743 found_type = btrfs_file_extent_type(leaf, item);
6744 extent_start = found_key.offset;
d899e052
YZ
6745 if (found_type == BTRFS_FILE_EXTENT_REG ||
6746 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6747 extent_end = extent_start +
db94535d 6748 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6749 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6750 size_t size;
514ac8ad 6751 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6752 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6753 }
25a50341 6754next:
9036c102
YZ
6755 if (start >= extent_end) {
6756 path->slots[0]++;
6757 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6758 ret = btrfs_next_leaf(root, path);
6759 if (ret < 0) {
6760 err = ret;
6761 goto out;
a52d9a80 6762 }
9036c102
YZ
6763 if (ret > 0)
6764 goto not_found;
6765 leaf = path->nodes[0];
a52d9a80 6766 }
9036c102
YZ
6767 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6768 if (found_key.objectid != objectid ||
6769 found_key.type != BTRFS_EXTENT_DATA_KEY)
6770 goto not_found;
6771 if (start + len <= found_key.offset)
6772 goto not_found;
e2eca69d
WS
6773 if (start > found_key.offset)
6774 goto next;
9036c102 6775 em->start = start;
70c8a91c 6776 em->orig_start = start;
9036c102
YZ
6777 em->len = found_key.offset - start;
6778 goto not_found_em;
6779 }
6780
7ffbb598
FM
6781 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6782
d899e052
YZ
6783 if (found_type == BTRFS_FILE_EXTENT_REG ||
6784 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6785 goto insert;
6786 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6787 unsigned long ptr;
a52d9a80 6788 char *map;
3326d1b0
CM
6789 size_t size;
6790 size_t extent_offset;
6791 size_t copy_size;
a52d9a80 6792
7ffbb598 6793 if (new_inline)
689f9346 6794 goto out;
5f39d397 6795
514ac8ad 6796 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6797 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6798 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6799 size - extent_offset);
3326d1b0 6800 em->start = extent_start + extent_offset;
fda2832f 6801 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6802 em->orig_block_len = em->len;
70c8a91c 6803 em->orig_start = em->start;
689f9346 6804 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6805 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6806 if (btrfs_file_extent_compression(leaf, item) !=
6807 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6808 ret = uncompress_inline(path, inode, page,
6809 pg_offset,
6810 extent_offset, item);
166ae5a4
ZB
6811 if (ret) {
6812 err = ret;
6813 goto out;
6814 }
c8b97818
CM
6815 } else {
6816 map = kmap(page);
6817 read_extent_buffer(leaf, map + pg_offset, ptr,
6818 copy_size);
93c82d57
CM
6819 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6820 memset(map + pg_offset + copy_size, 0,
6821 PAGE_CACHE_SIZE - pg_offset -
6822 copy_size);
6823 }
c8b97818
CM
6824 kunmap(page);
6825 }
179e29e4
CM
6826 flush_dcache_page(page);
6827 } else if (create && PageUptodate(page)) {
6bf7e080 6828 BUG();
179e29e4
CM
6829 if (!trans) {
6830 kunmap(page);
6831 free_extent_map(em);
6832 em = NULL;
ff5714cc 6833
b3b4aa74 6834 btrfs_release_path(path);
7a7eaa40 6835 trans = btrfs_join_transaction(root);
ff5714cc 6836
3612b495
TI
6837 if (IS_ERR(trans))
6838 return ERR_CAST(trans);
179e29e4
CM
6839 goto again;
6840 }
c8b97818 6841 map = kmap(page);
70dec807 6842 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6843 copy_size);
c8b97818 6844 kunmap(page);
179e29e4 6845 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6846 }
d1310b2e 6847 set_extent_uptodate(io_tree, em->start,
507903b8 6848 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6849 goto insert;
a52d9a80
CM
6850 }
6851not_found:
6852 em->start = start;
70c8a91c 6853 em->orig_start = start;
d1310b2e 6854 em->len = len;
a52d9a80 6855not_found_em:
5f39d397 6856 em->block_start = EXTENT_MAP_HOLE;
9036c102 6857 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6858insert:
b3b4aa74 6859 btrfs_release_path(path);
d1310b2e 6860 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6861 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6862 em->start, em->len, start, len);
a52d9a80
CM
6863 err = -EIO;
6864 goto out;
6865 }
d1310b2e
CM
6866
6867 err = 0;
890871be 6868 write_lock(&em_tree->lock);
09a2a8f9 6869 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6870 /* it is possible that someone inserted the extent into the tree
6871 * while we had the lock dropped. It is also possible that
6872 * an overlapping map exists in the tree
6873 */
a52d9a80 6874 if (ret == -EEXIST) {
3b951516 6875 struct extent_map *existing;
e6dcd2dc
CM
6876
6877 ret = 0;
6878
e6c4efd8
QW
6879 existing = search_extent_mapping(em_tree, start, len);
6880 /*
6881 * existing will always be non-NULL, since there must be
6882 * extent causing the -EEXIST.
6883 */
6884 if (start >= extent_map_end(existing) ||
32be3a1a 6885 start <= existing->start) {
e6c4efd8
QW
6886 /*
6887 * The existing extent map is the one nearest to
6888 * the [start, start + len) range which overlaps
6889 */
6890 err = merge_extent_mapping(em_tree, existing,
6891 em, start);
e1c4b745 6892 free_extent_map(existing);
e6c4efd8 6893 if (err) {
3b951516
CM
6894 free_extent_map(em);
6895 em = NULL;
6896 }
6897 } else {
6898 free_extent_map(em);
6899 em = existing;
e6dcd2dc 6900 err = 0;
a52d9a80 6901 }
a52d9a80 6902 }
890871be 6903 write_unlock(&em_tree->lock);
a52d9a80 6904out:
1abe9b8a 6905
4cd8587c 6906 trace_btrfs_get_extent(root, em);
1abe9b8a 6907
f421950f
CM
6908 if (path)
6909 btrfs_free_path(path);
a52d9a80
CM
6910 if (trans) {
6911 ret = btrfs_end_transaction(trans, root);
d397712b 6912 if (!err)
a52d9a80
CM
6913 err = ret;
6914 }
a52d9a80
CM
6915 if (err) {
6916 free_extent_map(em);
a52d9a80
CM
6917 return ERR_PTR(err);
6918 }
79787eaa 6919 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6920 return em;
6921}
6922
ec29ed5b
CM
6923struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6924 size_t pg_offset, u64 start, u64 len,
6925 int create)
6926{
6927 struct extent_map *em;
6928 struct extent_map *hole_em = NULL;
6929 u64 range_start = start;
6930 u64 end;
6931 u64 found;
6932 u64 found_end;
6933 int err = 0;
6934
6935 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6936 if (IS_ERR(em))
6937 return em;
6938 if (em) {
6939 /*
f9e4fb53
LB
6940 * if our em maps to
6941 * - a hole or
6942 * - a pre-alloc extent,
6943 * there might actually be delalloc bytes behind it.
ec29ed5b 6944 */
f9e4fb53
LB
6945 if (em->block_start != EXTENT_MAP_HOLE &&
6946 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6947 return em;
6948 else
6949 hole_em = em;
6950 }
6951
6952 /* check to see if we've wrapped (len == -1 or similar) */
6953 end = start + len;
6954 if (end < start)
6955 end = (u64)-1;
6956 else
6957 end -= 1;
6958
6959 em = NULL;
6960
6961 /* ok, we didn't find anything, lets look for delalloc */
6962 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6963 end, len, EXTENT_DELALLOC, 1);
6964 found_end = range_start + found;
6965 if (found_end < range_start)
6966 found_end = (u64)-1;
6967
6968 /*
6969 * we didn't find anything useful, return
6970 * the original results from get_extent()
6971 */
6972 if (range_start > end || found_end <= start) {
6973 em = hole_em;
6974 hole_em = NULL;
6975 goto out;
6976 }
6977
6978 /* adjust the range_start to make sure it doesn't
6979 * go backwards from the start they passed in
6980 */
67871254 6981 range_start = max(start, range_start);
ec29ed5b
CM
6982 found = found_end - range_start;
6983
6984 if (found > 0) {
6985 u64 hole_start = start;
6986 u64 hole_len = len;
6987
172ddd60 6988 em = alloc_extent_map();
ec29ed5b
CM
6989 if (!em) {
6990 err = -ENOMEM;
6991 goto out;
6992 }
6993 /*
6994 * when btrfs_get_extent can't find anything it
6995 * returns one huge hole
6996 *
6997 * make sure what it found really fits our range, and
6998 * adjust to make sure it is based on the start from
6999 * the caller
7000 */
7001 if (hole_em) {
7002 u64 calc_end = extent_map_end(hole_em);
7003
7004 if (calc_end <= start || (hole_em->start > end)) {
7005 free_extent_map(hole_em);
7006 hole_em = NULL;
7007 } else {
7008 hole_start = max(hole_em->start, start);
7009 hole_len = calc_end - hole_start;
7010 }
7011 }
7012 em->bdev = NULL;
7013 if (hole_em && range_start > hole_start) {
7014 /* our hole starts before our delalloc, so we
7015 * have to return just the parts of the hole
7016 * that go until the delalloc starts
7017 */
7018 em->len = min(hole_len,
7019 range_start - hole_start);
7020 em->start = hole_start;
7021 em->orig_start = hole_start;
7022 /*
7023 * don't adjust block start at all,
7024 * it is fixed at EXTENT_MAP_HOLE
7025 */
7026 em->block_start = hole_em->block_start;
7027 em->block_len = hole_len;
f9e4fb53
LB
7028 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7029 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7030 } else {
7031 em->start = range_start;
7032 em->len = found;
7033 em->orig_start = range_start;
7034 em->block_start = EXTENT_MAP_DELALLOC;
7035 em->block_len = found;
7036 }
7037 } else if (hole_em) {
7038 return hole_em;
7039 }
7040out:
7041
7042 free_extent_map(hole_em);
7043 if (err) {
7044 free_extent_map(em);
7045 return ERR_PTR(err);
7046 }
7047 return em;
7048}
7049
4b46fce2
JB
7050static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7051 u64 start, u64 len)
7052{
7053 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7054 struct extent_map *em;
4b46fce2
JB
7055 struct btrfs_key ins;
7056 u64 alloc_hint;
7057 int ret;
4b46fce2 7058
4b46fce2 7059 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7060 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7061 alloc_hint, &ins, 1, 1);
00361589
JB
7062 if (ret)
7063 return ERR_PTR(ret);
4b46fce2 7064
70c8a91c 7065 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 7066 ins.offset, ins.offset, ins.offset, 0);
00361589 7067 if (IS_ERR(em)) {
e570fd27 7068 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7069 return em;
7070 }
4b46fce2
JB
7071
7072 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7073 ins.offset, ins.offset, 0);
7074 if (ret) {
e570fd27 7075 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7076 free_extent_map(em);
7077 return ERR_PTR(ret);
4b46fce2 7078 }
00361589 7079
4b46fce2
JB
7080 return em;
7081}
7082
46bfbb5c
CM
7083/*
7084 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7085 * block must be cow'd
7086 */
00361589 7087noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7088 u64 *orig_start, u64 *orig_block_len,
7089 u64 *ram_bytes)
46bfbb5c 7090{
00361589 7091 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7092 struct btrfs_path *path;
7093 int ret;
7094 struct extent_buffer *leaf;
7095 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7096 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7097 struct btrfs_file_extent_item *fi;
7098 struct btrfs_key key;
7099 u64 disk_bytenr;
7100 u64 backref_offset;
7101 u64 extent_end;
7102 u64 num_bytes;
7103 int slot;
7104 int found_type;
7ee9e440 7105 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7106
46bfbb5c
CM
7107 path = btrfs_alloc_path();
7108 if (!path)
7109 return -ENOMEM;
7110
00361589 7111 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7112 offset, 0);
7113 if (ret < 0)
7114 goto out;
7115
7116 slot = path->slots[0];
7117 if (ret == 1) {
7118 if (slot == 0) {
7119 /* can't find the item, must cow */
7120 ret = 0;
7121 goto out;
7122 }
7123 slot--;
7124 }
7125 ret = 0;
7126 leaf = path->nodes[0];
7127 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7128 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7129 key.type != BTRFS_EXTENT_DATA_KEY) {
7130 /* not our file or wrong item type, must cow */
7131 goto out;
7132 }
7133
7134 if (key.offset > offset) {
7135 /* Wrong offset, must cow */
7136 goto out;
7137 }
7138
7139 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7140 found_type = btrfs_file_extent_type(leaf, fi);
7141 if (found_type != BTRFS_FILE_EXTENT_REG &&
7142 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7143 /* not a regular extent, must cow */
7144 goto out;
7145 }
7ee9e440
JB
7146
7147 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7148 goto out;
7149
e77751aa
MX
7150 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7151 if (extent_end <= offset)
7152 goto out;
7153
46bfbb5c 7154 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7155 if (disk_bytenr == 0)
7156 goto out;
7157
7158 if (btrfs_file_extent_compression(leaf, fi) ||
7159 btrfs_file_extent_encryption(leaf, fi) ||
7160 btrfs_file_extent_other_encoding(leaf, fi))
7161 goto out;
7162
46bfbb5c
CM
7163 backref_offset = btrfs_file_extent_offset(leaf, fi);
7164
7ee9e440
JB
7165 if (orig_start) {
7166 *orig_start = key.offset - backref_offset;
7167 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7168 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7169 }
eb384b55 7170
46bfbb5c
CM
7171 if (btrfs_extent_readonly(root, disk_bytenr))
7172 goto out;
7b2b7085
MX
7173
7174 num_bytes = min(offset + *len, extent_end) - offset;
7175 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7176 u64 range_end;
7177
7178 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7179 ret = test_range_bit(io_tree, offset, range_end,
7180 EXTENT_DELALLOC, 0, NULL);
7181 if (ret) {
7182 ret = -EAGAIN;
7183 goto out;
7184 }
7185 }
7186
1bda19eb 7187 btrfs_release_path(path);
46bfbb5c
CM
7188
7189 /*
7190 * look for other files referencing this extent, if we
7191 * find any we must cow
7192 */
00361589
JB
7193 trans = btrfs_join_transaction(root);
7194 if (IS_ERR(trans)) {
7195 ret = 0;
46bfbb5c 7196 goto out;
00361589
JB
7197 }
7198
7199 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7200 key.offset - backref_offset, disk_bytenr);
7201 btrfs_end_transaction(trans, root);
7202 if (ret) {
7203 ret = 0;
7204 goto out;
7205 }
46bfbb5c
CM
7206
7207 /*
7208 * adjust disk_bytenr and num_bytes to cover just the bytes
7209 * in this extent we are about to write. If there
7210 * are any csums in that range we have to cow in order
7211 * to keep the csums correct
7212 */
7213 disk_bytenr += backref_offset;
7214 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7215 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7216 goto out;
7217 /*
7218 * all of the above have passed, it is safe to overwrite this extent
7219 * without cow
7220 */
eb384b55 7221 *len = num_bytes;
46bfbb5c
CM
7222 ret = 1;
7223out:
7224 btrfs_free_path(path);
7225 return ret;
7226}
7227
fc4adbff
AG
7228bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7229{
7230 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7231 int found = false;
7232 void **pagep = NULL;
7233 struct page *page = NULL;
7234 int start_idx;
7235 int end_idx;
7236
7237 start_idx = start >> PAGE_CACHE_SHIFT;
7238
7239 /*
7240 * end is the last byte in the last page. end == start is legal
7241 */
7242 end_idx = end >> PAGE_CACHE_SHIFT;
7243
7244 rcu_read_lock();
7245
7246 /* Most of the code in this while loop is lifted from
7247 * find_get_page. It's been modified to begin searching from a
7248 * page and return just the first page found in that range. If the
7249 * found idx is less than or equal to the end idx then we know that
7250 * a page exists. If no pages are found or if those pages are
7251 * outside of the range then we're fine (yay!) */
7252 while (page == NULL &&
7253 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7254 page = radix_tree_deref_slot(pagep);
7255 if (unlikely(!page))
7256 break;
7257
7258 if (radix_tree_exception(page)) {
809f9016
FM
7259 if (radix_tree_deref_retry(page)) {
7260 page = NULL;
fc4adbff 7261 continue;
809f9016 7262 }
fc4adbff
AG
7263 /*
7264 * Otherwise, shmem/tmpfs must be storing a swap entry
7265 * here as an exceptional entry: so return it without
7266 * attempting to raise page count.
7267 */
6fdef6d4 7268 page = NULL;
fc4adbff
AG
7269 break; /* TODO: Is this relevant for this use case? */
7270 }
7271
91405151
FM
7272 if (!page_cache_get_speculative(page)) {
7273 page = NULL;
fc4adbff 7274 continue;
91405151 7275 }
fc4adbff
AG
7276
7277 /*
7278 * Has the page moved?
7279 * This is part of the lockless pagecache protocol. See
7280 * include/linux/pagemap.h for details.
7281 */
7282 if (unlikely(page != *pagep)) {
7283 page_cache_release(page);
7284 page = NULL;
7285 }
7286 }
7287
7288 if (page) {
7289 if (page->index <= end_idx)
7290 found = true;
7291 page_cache_release(page);
7292 }
7293
7294 rcu_read_unlock();
7295 return found;
7296}
7297
eb838e73
JB
7298static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7299 struct extent_state **cached_state, int writing)
7300{
7301 struct btrfs_ordered_extent *ordered;
7302 int ret = 0;
7303
7304 while (1) {
7305 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7306 0, cached_state);
7307 /*
7308 * We're concerned with the entire range that we're going to be
7309 * doing DIO to, so we need to make sure theres no ordered
7310 * extents in this range.
7311 */
7312 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7313 lockend - lockstart + 1);
7314
7315 /*
7316 * We need to make sure there are no buffered pages in this
7317 * range either, we could have raced between the invalidate in
7318 * generic_file_direct_write and locking the extent. The
7319 * invalidate needs to happen so that reads after a write do not
7320 * get stale data.
7321 */
fc4adbff
AG
7322 if (!ordered &&
7323 (!writing ||
7324 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7325 break;
7326
7327 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7328 cached_state, GFP_NOFS);
7329
7330 if (ordered) {
7331 btrfs_start_ordered_extent(inode, ordered, 1);
7332 btrfs_put_ordered_extent(ordered);
7333 } else {
7334 /* Screw you mmap */
728404da 7335 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
075bdbdb
FM
7336 if (ret)
7337 break;
7338 ret = filemap_fdatawait_range(inode->i_mapping,
7339 lockstart,
7340 lockend);
eb838e73
JB
7341 if (ret)
7342 break;
7343
7344 /*
7345 * If we found a page that couldn't be invalidated just
7346 * fall back to buffered.
7347 */
7348 ret = invalidate_inode_pages2_range(inode->i_mapping,
7349 lockstart >> PAGE_CACHE_SHIFT,
7350 lockend >> PAGE_CACHE_SHIFT);
7351 if (ret)
7352 break;
7353 }
7354
7355 cond_resched();
7356 }
7357
7358 return ret;
7359}
7360
69ffb543
JB
7361static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7362 u64 len, u64 orig_start,
7363 u64 block_start, u64 block_len,
cc95bef6
JB
7364 u64 orig_block_len, u64 ram_bytes,
7365 int type)
69ffb543
JB
7366{
7367 struct extent_map_tree *em_tree;
7368 struct extent_map *em;
7369 struct btrfs_root *root = BTRFS_I(inode)->root;
7370 int ret;
7371
7372 em_tree = &BTRFS_I(inode)->extent_tree;
7373 em = alloc_extent_map();
7374 if (!em)
7375 return ERR_PTR(-ENOMEM);
7376
7377 em->start = start;
7378 em->orig_start = orig_start;
2ab28f32
JB
7379 em->mod_start = start;
7380 em->mod_len = len;
69ffb543
JB
7381 em->len = len;
7382 em->block_len = block_len;
7383 em->block_start = block_start;
7384 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7385 em->orig_block_len = orig_block_len;
cc95bef6 7386 em->ram_bytes = ram_bytes;
70c8a91c 7387 em->generation = -1;
69ffb543
JB
7388 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7389 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7390 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7391
7392 do {
7393 btrfs_drop_extent_cache(inode, em->start,
7394 em->start + em->len - 1, 0);
7395 write_lock(&em_tree->lock);
09a2a8f9 7396 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7397 write_unlock(&em_tree->lock);
7398 } while (ret == -EEXIST);
7399
7400 if (ret) {
7401 free_extent_map(em);
7402 return ERR_PTR(ret);
7403 }
7404
7405 return em;
7406}
7407
7408
4b46fce2
JB
7409static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7410 struct buffer_head *bh_result, int create)
7411{
7412 struct extent_map *em;
7413 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7414 struct extent_state *cached_state = NULL;
4b46fce2 7415 u64 start = iblock << inode->i_blkbits;
eb838e73 7416 u64 lockstart, lockend;
4b46fce2 7417 u64 len = bh_result->b_size;
e1cbbfa5 7418 u64 *outstanding_extents = NULL;
eb838e73 7419 int unlock_bits = EXTENT_LOCKED;
0934856d 7420 int ret = 0;
eb838e73 7421
172a5049 7422 if (create)
3266789f 7423 unlock_bits |= EXTENT_DIRTY;
172a5049 7424 else
c329861d 7425 len = min_t(u64, len, root->sectorsize);
eb838e73 7426
c329861d
JB
7427 lockstart = start;
7428 lockend = start + len - 1;
7429
e1cbbfa5
JB
7430 if (current->journal_info) {
7431 /*
7432 * Need to pull our outstanding extents and set journal_info to NULL so
7433 * that anything that needs to check if there's a transction doesn't get
7434 * confused.
7435 */
7436 outstanding_extents = current->journal_info;
7437 current->journal_info = NULL;
7438 }
7439
eb838e73
JB
7440 /*
7441 * If this errors out it's because we couldn't invalidate pagecache for
7442 * this range and we need to fallback to buffered.
7443 */
7444 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7445 return -ENOTBLK;
7446
4b46fce2 7447 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7448 if (IS_ERR(em)) {
7449 ret = PTR_ERR(em);
7450 goto unlock_err;
7451 }
4b46fce2
JB
7452
7453 /*
7454 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7455 * io. INLINE is special, and we could probably kludge it in here, but
7456 * it's still buffered so for safety lets just fall back to the generic
7457 * buffered path.
7458 *
7459 * For COMPRESSED we _have_ to read the entire extent in so we can
7460 * decompress it, so there will be buffering required no matter what we
7461 * do, so go ahead and fallback to buffered.
7462 *
7463 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7464 * to buffered IO. Don't blame me, this is the price we pay for using
7465 * the generic code.
7466 */
7467 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7468 em->block_start == EXTENT_MAP_INLINE) {
7469 free_extent_map(em);
eb838e73
JB
7470 ret = -ENOTBLK;
7471 goto unlock_err;
4b46fce2
JB
7472 }
7473
7474 /* Just a good old fashioned hole, return */
7475 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7476 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7477 free_extent_map(em);
eb838e73 7478 goto unlock_err;
4b46fce2
JB
7479 }
7480
7481 /*
7482 * We don't allocate a new extent in the following cases
7483 *
7484 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7485 * existing extent.
7486 * 2) The extent is marked as PREALLOC. We're good to go here and can
7487 * just use the extent.
7488 *
7489 */
46bfbb5c 7490 if (!create) {
eb838e73
JB
7491 len = min(len, em->len - (start - em->start));
7492 lockstart = start + len;
7493 goto unlock;
46bfbb5c 7494 }
4b46fce2
JB
7495
7496 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7497 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7498 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7499 int type;
eb384b55 7500 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7501
7502 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7503 type = BTRFS_ORDERED_PREALLOC;
7504 else
7505 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7506 len = min(len, em->len - (start - em->start));
4b46fce2 7507 block_start = em->block_start + (start - em->start);
46bfbb5c 7508
00361589 7509 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7510 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7511 if (type == BTRFS_ORDERED_PREALLOC) {
7512 free_extent_map(em);
7513 em = create_pinned_em(inode, start, len,
7514 orig_start,
b4939680 7515 block_start, len,
cc95bef6
JB
7516 orig_block_len,
7517 ram_bytes, type);
555e1286
FM
7518 if (IS_ERR(em)) {
7519 ret = PTR_ERR(em);
69ffb543 7520 goto unlock_err;
555e1286 7521 }
69ffb543
JB
7522 }
7523
46bfbb5c
CM
7524 ret = btrfs_add_ordered_extent_dio(inode, start,
7525 block_start, len, len, type);
46bfbb5c
CM
7526 if (ret) {
7527 free_extent_map(em);
eb838e73 7528 goto unlock_err;
46bfbb5c
CM
7529 }
7530 goto unlock;
4b46fce2 7531 }
4b46fce2 7532 }
00361589 7533
46bfbb5c
CM
7534 /*
7535 * this will cow the extent, reset the len in case we changed
7536 * it above
7537 */
7538 len = bh_result->b_size;
70c8a91c
JB
7539 free_extent_map(em);
7540 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7541 if (IS_ERR(em)) {
7542 ret = PTR_ERR(em);
7543 goto unlock_err;
7544 }
46bfbb5c
CM
7545 len = min(len, em->len - (start - em->start));
7546unlock:
4b46fce2
JB
7547 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7548 inode->i_blkbits;
46bfbb5c 7549 bh_result->b_size = len;
4b46fce2
JB
7550 bh_result->b_bdev = em->bdev;
7551 set_buffer_mapped(bh_result);
c3473e83
JB
7552 if (create) {
7553 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7554 set_buffer_new(bh_result);
7555
7556 /*
7557 * Need to update the i_size under the extent lock so buffered
7558 * readers will get the updated i_size when we unlock.
7559 */
7560 if (start + len > i_size_read(inode))
7561 i_size_write(inode, start + len);
0934856d 7562
e1cbbfa5
JB
7563 /*
7564 * If we have an outstanding_extents count still set then we're
7565 * within our reservation, otherwise we need to adjust our inode
7566 * counter appropriately.
7567 */
7568 if (*outstanding_extents) {
7569 (*outstanding_extents)--;
7570 } else {
3e05bde8
JB
7571 spin_lock(&BTRFS_I(inode)->lock);
7572 BTRFS_I(inode)->outstanding_extents++;
7573 spin_unlock(&BTRFS_I(inode)->lock);
7574 }
e1cbbfa5
JB
7575
7576 current->journal_info = outstanding_extents;
3266789f 7577 btrfs_free_reserved_data_space(inode, len);
ddba1bfc 7578 set_bit(BTRFS_INODE_DIO_READY, &BTRFS_I(inode)->runtime_flags);
c3473e83 7579 }
4b46fce2 7580
eb838e73
JB
7581 /*
7582 * In the case of write we need to clear and unlock the entire range,
7583 * in the case of read we need to unlock only the end area that we
7584 * aren't using if there is any left over space.
7585 */
24c03fa5 7586 if (lockstart < lockend) {
0934856d
MX
7587 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7588 lockend, unlock_bits, 1, 0,
7589 &cached_state, GFP_NOFS);
24c03fa5 7590 } else {
eb838e73 7591 free_extent_state(cached_state);
24c03fa5 7592 }
eb838e73 7593
4b46fce2
JB
7594 free_extent_map(em);
7595
7596 return 0;
eb838e73
JB
7597
7598unlock_err:
eb838e73
JB
7599 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7600 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
e1cbbfa5
JB
7601 if (outstanding_extents)
7602 current->journal_info = outstanding_extents;
eb838e73 7603 return ret;
4b46fce2
JB
7604}
7605
8b110e39
MX
7606static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7607 int rw, int mirror_num)
7608{
7609 struct btrfs_root *root = BTRFS_I(inode)->root;
7610 int ret;
7611
7612 BUG_ON(rw & REQ_WRITE);
7613
7614 bio_get(bio);
7615
7616 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7617 BTRFS_WQ_ENDIO_DIO_REPAIR);
7618 if (ret)
7619 goto err;
7620
7621 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7622err:
7623 bio_put(bio);
7624 return ret;
7625}
7626
7627static int btrfs_check_dio_repairable(struct inode *inode,
7628 struct bio *failed_bio,
7629 struct io_failure_record *failrec,
7630 int failed_mirror)
7631{
7632 int num_copies;
7633
7634 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7635 failrec->logical, failrec->len);
7636 if (num_copies == 1) {
7637 /*
7638 * we only have a single copy of the data, so don't bother with
7639 * all the retry and error correction code that follows. no
7640 * matter what the error is, it is very likely to persist.
7641 */
7642 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7643 num_copies, failrec->this_mirror, failed_mirror);
7644 return 0;
7645 }
7646
7647 failrec->failed_mirror = failed_mirror;
7648 failrec->this_mirror++;
7649 if (failrec->this_mirror == failed_mirror)
7650 failrec->this_mirror++;
7651
7652 if (failrec->this_mirror > num_copies) {
7653 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7654 num_copies, failrec->this_mirror, failed_mirror);
7655 return 0;
7656 }
7657
7658 return 1;
7659}
7660
7661static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7662 struct page *page, u64 start, u64 end,
7663 int failed_mirror, bio_end_io_t *repair_endio,
7664 void *repair_arg)
7665{
7666 struct io_failure_record *failrec;
7667 struct bio *bio;
7668 int isector;
7669 int read_mode;
7670 int ret;
7671
7672 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7673
7674 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7675 if (ret)
7676 return ret;
7677
7678 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7679 failed_mirror);
7680 if (!ret) {
7681 free_io_failure(inode, failrec);
7682 return -EIO;
7683 }
7684
7685 if (failed_bio->bi_vcnt > 1)
7686 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7687 else
7688 read_mode = READ_SYNC;
7689
7690 isector = start - btrfs_io_bio(failed_bio)->logical;
7691 isector >>= inode->i_sb->s_blocksize_bits;
7692 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7693 0, isector, repair_endio, repair_arg);
7694 if (!bio) {
7695 free_io_failure(inode, failrec);
7696 return -EIO;
7697 }
7698
7699 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7700 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7701 read_mode, failrec->this_mirror, failrec->in_validation);
7702
7703 ret = submit_dio_repair_bio(inode, bio, read_mode,
7704 failrec->this_mirror);
7705 if (ret) {
7706 free_io_failure(inode, failrec);
7707 bio_put(bio);
7708 }
7709
7710 return ret;
7711}
7712
7713struct btrfs_retry_complete {
7714 struct completion done;
7715 struct inode *inode;
7716 u64 start;
7717 int uptodate;
7718};
7719
7720static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7721{
7722 struct btrfs_retry_complete *done = bio->bi_private;
7723 struct bio_vec *bvec;
7724 int i;
7725
7726 if (err)
7727 goto end;
7728
7729 done->uptodate = 1;
7730 bio_for_each_segment_all(bvec, bio, i)
7731 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7732end:
7733 complete(&done->done);
7734 bio_put(bio);
7735}
7736
7737static int __btrfs_correct_data_nocsum(struct inode *inode,
7738 struct btrfs_io_bio *io_bio)
4b46fce2 7739{
2c30c71b 7740 struct bio_vec *bvec;
8b110e39 7741 struct btrfs_retry_complete done;
4b46fce2 7742 u64 start;
2c30c71b 7743 int i;
c1dc0896 7744 int ret;
4b46fce2 7745
8b110e39
MX
7746 start = io_bio->logical;
7747 done.inode = inode;
7748
7749 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7750try_again:
7751 done.uptodate = 0;
7752 done.start = start;
7753 init_completion(&done.done);
7754
7755 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7756 start + bvec->bv_len - 1,
7757 io_bio->mirror_num,
7758 btrfs_retry_endio_nocsum, &done);
7759 if (ret)
7760 return ret;
7761
7762 wait_for_completion(&done.done);
7763
7764 if (!done.uptodate) {
7765 /* We might have another mirror, so try again */
7766 goto try_again;
7767 }
7768
7769 start += bvec->bv_len;
7770 }
7771
7772 return 0;
7773}
7774
7775static void btrfs_retry_endio(struct bio *bio, int err)
7776{
7777 struct btrfs_retry_complete *done = bio->bi_private;
7778 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7779 struct bio_vec *bvec;
7780 int uptodate;
7781 int ret;
7782 int i;
7783
7784 if (err)
7785 goto end;
7786
7787 uptodate = 1;
7788 bio_for_each_segment_all(bvec, bio, i) {
7789 ret = __readpage_endio_check(done->inode, io_bio, i,
7790 bvec->bv_page, 0,
7791 done->start, bvec->bv_len);
7792 if (!ret)
7793 clean_io_failure(done->inode, done->start,
7794 bvec->bv_page, 0);
7795 else
7796 uptodate = 0;
7797 }
7798
7799 done->uptodate = uptodate;
7800end:
7801 complete(&done->done);
7802 bio_put(bio);
7803}
7804
7805static int __btrfs_subio_endio_read(struct inode *inode,
7806 struct btrfs_io_bio *io_bio, int err)
7807{
7808 struct bio_vec *bvec;
7809 struct btrfs_retry_complete done;
7810 u64 start;
7811 u64 offset = 0;
7812 int i;
7813 int ret;
dc380aea 7814
8b110e39 7815 err = 0;
c1dc0896 7816 start = io_bio->logical;
8b110e39
MX
7817 done.inode = inode;
7818
c1dc0896 7819 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7820 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7821 0, start, bvec->bv_len);
8b110e39
MX
7822 if (likely(!ret))
7823 goto next;
7824try_again:
7825 done.uptodate = 0;
7826 done.start = start;
7827 init_completion(&done.done);
7828
7829 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7830 start + bvec->bv_len - 1,
7831 io_bio->mirror_num,
7832 btrfs_retry_endio, &done);
7833 if (ret) {
7834 err = ret;
7835 goto next;
7836 }
7837
7838 wait_for_completion(&done.done);
7839
7840 if (!done.uptodate) {
7841 /* We might have another mirror, so try again */
7842 goto try_again;
7843 }
7844next:
7845 offset += bvec->bv_len;
4b46fce2 7846 start += bvec->bv_len;
2c30c71b 7847 }
c1dc0896
MX
7848
7849 return err;
7850}
7851
8b110e39
MX
7852static int btrfs_subio_endio_read(struct inode *inode,
7853 struct btrfs_io_bio *io_bio, int err)
7854{
7855 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7856
7857 if (skip_csum) {
7858 if (unlikely(err))
7859 return __btrfs_correct_data_nocsum(inode, io_bio);
7860 else
7861 return 0;
7862 } else {
7863 return __btrfs_subio_endio_read(inode, io_bio, err);
7864 }
7865}
7866
c1dc0896
MX
7867static void btrfs_endio_direct_read(struct bio *bio, int err)
7868{
7869 struct btrfs_dio_private *dip = bio->bi_private;
7870 struct inode *inode = dip->inode;
7871 struct bio *dio_bio;
7872 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7873
8b110e39
MX
7874 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7875 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 7876
4b46fce2 7877 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7878 dip->logical_offset + dip->bytes - 1);
9be3395b 7879 dio_bio = dip->dio_bio;
4b46fce2 7880
4b46fce2 7881 kfree(dip);
c0da7aa1
JB
7882
7883 /* If we had a csum failure make sure to clear the uptodate flag */
7884 if (err)
9be3395b
CM
7885 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7886 dio_end_io(dio_bio, err);
23ea8e5a
MX
7887
7888 if (io_bio->end_io)
7889 io_bio->end_io(io_bio, err);
9be3395b 7890 bio_put(bio);
4b46fce2
JB
7891}
7892
7893static void btrfs_endio_direct_write(struct bio *bio, int err)
7894{
7895 struct btrfs_dio_private *dip = bio->bi_private;
7896 struct inode *inode = dip->inode;
7897 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7898 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7899 u64 ordered_offset = dip->logical_offset;
7900 u64 ordered_bytes = dip->bytes;
9be3395b 7901 struct bio *dio_bio;
4b46fce2
JB
7902 int ret;
7903
163cf09c
CM
7904again:
7905 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7906 &ordered_offset,
5fd02043 7907 ordered_bytes, !err);
4b46fce2 7908 if (!ret)
163cf09c 7909 goto out_test;
4b46fce2 7910
9e0af237
LB
7911 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7912 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
7913 btrfs_queue_work(root->fs_info->endio_write_workers,
7914 &ordered->work);
163cf09c
CM
7915out_test:
7916 /*
7917 * our bio might span multiple ordered extents. If we haven't
7918 * completed the accounting for the whole dio, go back and try again
7919 */
7920 if (ordered_offset < dip->logical_offset + dip->bytes) {
7921 ordered_bytes = dip->logical_offset + dip->bytes -
7922 ordered_offset;
5fd02043 7923 ordered = NULL;
163cf09c
CM
7924 goto again;
7925 }
9be3395b 7926 dio_bio = dip->dio_bio;
4b46fce2 7927
4b46fce2 7928 kfree(dip);
c0da7aa1
JB
7929
7930 /* If we had an error make sure to clear the uptodate flag */
7931 if (err)
9be3395b
CM
7932 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7933 dio_end_io(dio_bio, err);
7934 bio_put(bio);
4b46fce2
JB
7935}
7936
eaf25d93
CM
7937static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7938 struct bio *bio, int mirror_num,
7939 unsigned long bio_flags, u64 offset)
7940{
7941 int ret;
7942 struct btrfs_root *root = BTRFS_I(inode)->root;
7943 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7944 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7945 return 0;
7946}
7947
e65e1535
MX
7948static void btrfs_end_dio_bio(struct bio *bio, int err)
7949{
7950 struct btrfs_dio_private *dip = bio->bi_private;
7951
8b110e39
MX
7952 if (err)
7953 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7954 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7955 btrfs_ino(dip->inode), bio->bi_rw,
7956 (unsigned long long)bio->bi_iter.bi_sector,
7957 bio->bi_iter.bi_size, err);
7958
7959 if (dip->subio_endio)
7960 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
7961
7962 if (err) {
e65e1535
MX
7963 dip->errors = 1;
7964
7965 /*
7966 * before atomic variable goto zero, we must make sure
7967 * dip->errors is perceived to be set.
7968 */
4e857c58 7969 smp_mb__before_atomic();
e65e1535
MX
7970 }
7971
7972 /* if there are more bios still pending for this dio, just exit */
7973 if (!atomic_dec_and_test(&dip->pending_bios))
7974 goto out;
7975
9be3395b 7976 if (dip->errors) {
e65e1535 7977 bio_io_error(dip->orig_bio);
9be3395b
CM
7978 } else {
7979 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7980 bio_endio(dip->orig_bio, 0);
7981 }
7982out:
7983 bio_put(bio);
7984}
7985
7986static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7987 u64 first_sector, gfp_t gfp_flags)
7988{
7989 int nr_vecs = bio_get_nr_vecs(bdev);
7990 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7991}
7992
c1dc0896
MX
7993static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7994 struct inode *inode,
7995 struct btrfs_dio_private *dip,
7996 struct bio *bio,
7997 u64 file_offset)
7998{
7999 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8000 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8001 int ret;
8002
8003 /*
8004 * We load all the csum data we need when we submit
8005 * the first bio to reduce the csum tree search and
8006 * contention.
8007 */
8008 if (dip->logical_offset == file_offset) {
8009 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8010 file_offset);
8011 if (ret)
8012 return ret;
8013 }
8014
8015 if (bio == dip->orig_bio)
8016 return 0;
8017
8018 file_offset -= dip->logical_offset;
8019 file_offset >>= inode->i_sb->s_blocksize_bits;
8020 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8021
8022 return 0;
8023}
8024
e65e1535
MX
8025static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8026 int rw, u64 file_offset, int skip_sum,
c329861d 8027 int async_submit)
e65e1535 8028{
facc8a22 8029 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8030 int write = rw & REQ_WRITE;
8031 struct btrfs_root *root = BTRFS_I(inode)->root;
8032 int ret;
8033
b812ce28
JB
8034 if (async_submit)
8035 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8036
e65e1535 8037 bio_get(bio);
5fd02043
JB
8038
8039 if (!write) {
bfebd8b5
DS
8040 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8041 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8042 if (ret)
8043 goto err;
8044 }
e65e1535 8045
1ae39938
JB
8046 if (skip_sum)
8047 goto map;
8048
8049 if (write && async_submit) {
e65e1535
MX
8050 ret = btrfs_wq_submit_bio(root->fs_info,
8051 inode, rw, bio, 0, 0,
8052 file_offset,
8053 __btrfs_submit_bio_start_direct_io,
8054 __btrfs_submit_bio_done);
8055 goto err;
1ae39938
JB
8056 } else if (write) {
8057 /*
8058 * If we aren't doing async submit, calculate the csum of the
8059 * bio now.
8060 */
8061 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8062 if (ret)
8063 goto err;
23ea8e5a 8064 } else {
c1dc0896
MX
8065 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8066 file_offset);
c2db1073
TI
8067 if (ret)
8068 goto err;
8069 }
1ae39938
JB
8070map:
8071 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8072err:
8073 bio_put(bio);
8074 return ret;
8075}
8076
8077static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8078 int skip_sum)
8079{
8080 struct inode *inode = dip->inode;
8081 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8082 struct bio *bio;
8083 struct bio *orig_bio = dip->orig_bio;
8084 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8085 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8086 u64 file_offset = dip->logical_offset;
8087 u64 submit_len = 0;
8088 u64 map_length;
8089 int nr_pages = 0;
23ea8e5a 8090 int ret;
1ae39938 8091 int async_submit = 0;
e65e1535 8092
4f024f37 8093 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8094 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8095 &map_length, NULL, 0);
7a5c3c9b 8096 if (ret)
e65e1535 8097 return -EIO;
facc8a22 8098
4f024f37 8099 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8100 bio = orig_bio;
c1dc0896 8101 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8102 goto submit;
8103 }
8104
53b381b3 8105 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8106 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8107 async_submit = 0;
8108 else
8109 async_submit = 1;
8110
02f57c7a
JB
8111 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8112 if (!bio)
8113 return -ENOMEM;
7a5c3c9b 8114
02f57c7a
JB
8115 bio->bi_private = dip;
8116 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8117 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8118 atomic_inc(&dip->pending_bios);
8119
e65e1535 8120 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
ee39b432 8121 if (map_length < submit_len + bvec->bv_len ||
e65e1535 8122 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
ee39b432 8123 bvec->bv_offset) < bvec->bv_len) {
e65e1535
MX
8124 /*
8125 * inc the count before we submit the bio so
8126 * we know the end IO handler won't happen before
8127 * we inc the count. Otherwise, the dip might get freed
8128 * before we're done setting it up
8129 */
8130 atomic_inc(&dip->pending_bios);
8131 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8132 file_offset, skip_sum,
c329861d 8133 async_submit);
e65e1535
MX
8134 if (ret) {
8135 bio_put(bio);
8136 atomic_dec(&dip->pending_bios);
8137 goto out_err;
8138 }
8139
e65e1535
MX
8140 start_sector += submit_len >> 9;
8141 file_offset += submit_len;
8142
8143 submit_len = 0;
8144 nr_pages = 0;
8145
8146 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8147 start_sector, GFP_NOFS);
8148 if (!bio)
8149 goto out_err;
8150 bio->bi_private = dip;
8151 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8152 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8153
4f024f37 8154 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8155 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8156 start_sector << 9,
e65e1535
MX
8157 &map_length, NULL, 0);
8158 if (ret) {
8159 bio_put(bio);
8160 goto out_err;
8161 }
8162 } else {
8163 submit_len += bvec->bv_len;
67871254 8164 nr_pages++;
e65e1535
MX
8165 bvec++;
8166 }
8167 }
8168
02f57c7a 8169submit:
e65e1535 8170 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8171 async_submit);
e65e1535
MX
8172 if (!ret)
8173 return 0;
8174
8175 bio_put(bio);
8176out_err:
8177 dip->errors = 1;
8178 /*
8179 * before atomic variable goto zero, we must
8180 * make sure dip->errors is perceived to be set.
8181 */
4e857c58 8182 smp_mb__before_atomic();
e65e1535
MX
8183 if (atomic_dec_and_test(&dip->pending_bios))
8184 bio_io_error(dip->orig_bio);
8185
8186 /* bio_end_io() will handle error, so we needn't return it */
8187 return 0;
8188}
8189
9be3395b
CM
8190static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8191 struct inode *inode, loff_t file_offset)
4b46fce2 8192{
61de718f
FM
8193 struct btrfs_dio_private *dip = NULL;
8194 struct bio *io_bio = NULL;
23ea8e5a 8195 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8196 int skip_sum;
7b6d91da 8197 int write = rw & REQ_WRITE;
4b46fce2
JB
8198 int ret = 0;
8199
8200 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8201
9be3395b 8202 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8203 if (!io_bio) {
8204 ret = -ENOMEM;
8205 goto free_ordered;
8206 }
8207
c1dc0896 8208 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8209 if (!dip) {
8210 ret = -ENOMEM;
61de718f 8211 goto free_ordered;
4b46fce2 8212 }
4b46fce2 8213
9be3395b 8214 dip->private = dio_bio->bi_private;
4b46fce2
JB
8215 dip->inode = inode;
8216 dip->logical_offset = file_offset;
4f024f37
KO
8217 dip->bytes = dio_bio->bi_iter.bi_size;
8218 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8219 io_bio->bi_private = dip;
9be3395b
CM
8220 dip->orig_bio = io_bio;
8221 dip->dio_bio = dio_bio;
e65e1535 8222 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8223 btrfs_bio = btrfs_io_bio(io_bio);
8224 btrfs_bio->logical = file_offset;
4b46fce2 8225
c1dc0896 8226 if (write) {
9be3395b 8227 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8228 } else {
9be3395b 8229 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8230 dip->subio_endio = btrfs_subio_endio_read;
8231 }
4b46fce2 8232
e65e1535
MX
8233 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8234 if (!ret)
eaf25d93 8235 return;
9be3395b 8236
23ea8e5a
MX
8237 if (btrfs_bio->end_io)
8238 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8239
4b46fce2
JB
8240free_ordered:
8241 /*
61de718f
FM
8242 * If we arrived here it means either we failed to submit the dip
8243 * or we either failed to clone the dio_bio or failed to allocate the
8244 * dip. If we cloned the dio_bio and allocated the dip, we can just
8245 * call bio_endio against our io_bio so that we get proper resource
8246 * cleanup if we fail to submit the dip, otherwise, we must do the
8247 * same as btrfs_endio_direct_[write|read] because we can't call these
8248 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8249 */
61de718f
FM
8250 if (io_bio && dip) {
8251 bio_endio(io_bio, ret);
8252 /*
8253 * The end io callbacks free our dip, do the final put on io_bio
8254 * and all the cleanup and final put for dio_bio (through
8255 * dio_end_io()).
8256 */
8257 dip = NULL;
8258 io_bio = NULL;
8259 } else {
8260 if (write) {
8261 struct btrfs_ordered_extent *ordered;
8262
8263 ordered = btrfs_lookup_ordered_extent(inode,
8264 file_offset);
8265 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8266 /*
8267 * Decrements our ref on the ordered extent and removes
8268 * the ordered extent from the inode's ordered tree,
8269 * doing all the proper resource cleanup such as for the
8270 * reserved space and waking up any waiters for this
8271 * ordered extent (through btrfs_remove_ordered_extent).
8272 */
8273 btrfs_finish_ordered_io(ordered);
8274 } else {
8275 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8276 file_offset + dio_bio->bi_iter.bi_size - 1);
8277 }
8278 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
8279 /*
8280 * Releases and cleans up our dio_bio, no need to bio_put()
8281 * nor bio_endio()/bio_io_error() against dio_bio.
8282 */
8283 dio_end_io(dio_bio, ret);
4b46fce2 8284 }
61de718f
FM
8285 if (io_bio)
8286 bio_put(io_bio);
8287 kfree(dip);
4b46fce2
JB
8288}
8289
6f673763 8290static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8291 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8292{
8293 int seg;
a1b75f7d 8294 int i;
5a5f79b5
CM
8295 unsigned blocksize_mask = root->sectorsize - 1;
8296 ssize_t retval = -EINVAL;
5a5f79b5
CM
8297
8298 if (offset & blocksize_mask)
8299 goto out;
8300
28060d5d
AV
8301 if (iov_iter_alignment(iter) & blocksize_mask)
8302 goto out;
a1b75f7d 8303
28060d5d 8304 /* If this is a write we don't need to check anymore */
6f673763 8305 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8306 return 0;
8307 /*
8308 * Check to make sure we don't have duplicate iov_base's in this
8309 * iovec, if so return EINVAL, otherwise we'll get csum errors
8310 * when reading back.
8311 */
8312 for (seg = 0; seg < iter->nr_segs; seg++) {
8313 for (i = seg + 1; i < iter->nr_segs; i++) {
8314 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8315 goto out;
8316 }
5a5f79b5
CM
8317 }
8318 retval = 0;
8319out:
8320 return retval;
8321}
eb838e73 8322
22c6186e
OS
8323static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8324 loff_t offset)
16432985 8325{
4b46fce2
JB
8326 struct file *file = iocb->ki_filp;
8327 struct inode *inode = file->f_mapping->host;
e1cbbfa5 8328 u64 outstanding_extents = 0;
0934856d 8329 size_t count = 0;
2e60a51e 8330 int flags = 0;
38851cc1
MX
8331 bool wakeup = true;
8332 bool relock = false;
0934856d 8333 ssize_t ret;
4b46fce2 8334
6f673763 8335 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8336 return 0;
3f7c579c 8337
fe0f07d0 8338 inode_dio_begin(inode);
4e857c58 8339 smp_mb__after_atomic();
38851cc1 8340
0e267c44 8341 /*
41bd9ca4
MX
8342 * The generic stuff only does filemap_write_and_wait_range, which
8343 * isn't enough if we've written compressed pages to this area, so
8344 * we need to flush the dirty pages again to make absolutely sure
8345 * that any outstanding dirty pages are on disk.
0e267c44 8346 */
a6cbcd4a 8347 count = iov_iter_count(iter);
41bd9ca4
MX
8348 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8349 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8350 filemap_fdatawrite_range(inode->i_mapping, offset,
8351 offset + count - 1);
0e267c44 8352
6f673763 8353 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8354 /*
8355 * If the write DIO is beyond the EOF, we need update
8356 * the isize, but it is protected by i_mutex. So we can
8357 * not unlock the i_mutex at this case.
8358 */
8359 if (offset + count <= inode->i_size) {
8360 mutex_unlock(&inode->i_mutex);
8361 relock = true;
8362 }
0934856d
MX
8363 ret = btrfs_delalloc_reserve_space(inode, count);
8364 if (ret)
38851cc1 8365 goto out;
e1cbbfa5
JB
8366 outstanding_extents = div64_u64(count +
8367 BTRFS_MAX_EXTENT_SIZE - 1,
8368 BTRFS_MAX_EXTENT_SIZE);
8369
8370 /*
8371 * We need to know how many extents we reserved so that we can
8372 * do the accounting properly if we go over the number we
8373 * originally calculated. Abuse current->journal_info for this.
8374 */
8375 current->journal_info = &outstanding_extents;
ee39b432
DS
8376 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8377 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8378 inode_dio_end(inode);
38851cc1
MX
8379 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8380 wakeup = false;
0934856d
MX
8381 }
8382
17f8c842
OS
8383 ret = __blockdev_direct_IO(iocb, inode,
8384 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8385 iter, offset, btrfs_get_blocks_direct, NULL,
8386 btrfs_submit_direct, flags);
6f673763 8387 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8388 current->journal_info = NULL;
ddba1bfc
LB
8389 if (ret < 0 && ret != -EIOCBQUEUED) {
8390 /*
8391 * If the error comes from submitting stage,
8392 * btrfs_get_blocsk_direct() has free'd data space,
8393 * and metadata space will be handled by
8394 * finish_ordered_fn, don't do that again to make
8395 * sure bytes_may_use is correct.
8396 */
8397 if (!test_and_clear_bit(BTRFS_INODE_DIO_READY,
8398 &BTRFS_I(inode)->runtime_flags))
8399 btrfs_delalloc_release_space(inode, count);
8400 } else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
8401 btrfs_delalloc_release_space(inode,
8402 count - (size_t)ret);
0934856d 8403 }
38851cc1 8404out:
2e60a51e 8405 if (wakeup)
fe0f07d0 8406 inode_dio_end(inode);
38851cc1
MX
8407 if (relock)
8408 mutex_lock(&inode->i_mutex);
0934856d
MX
8409
8410 return ret;
16432985
CM
8411}
8412
05dadc09
TI
8413#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8414
1506fcc8
YS
8415static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8416 __u64 start, __u64 len)
8417{
05dadc09
TI
8418 int ret;
8419
8420 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8421 if (ret)
8422 return ret;
8423
ec29ed5b 8424 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8425}
8426
a52d9a80 8427int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8428{
d1310b2e
CM
8429 struct extent_io_tree *tree;
8430 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8431 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8432}
1832a6d5 8433
a52d9a80 8434static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8435{
d1310b2e 8436 struct extent_io_tree *tree;
b888db2b
CM
8437
8438
8439 if (current->flags & PF_MEMALLOC) {
8440 redirty_page_for_writepage(wbc, page);
8441 unlock_page(page);
8442 return 0;
8443 }
d1310b2e 8444 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8445 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8446}
8447
48a3b636
ES
8448static int btrfs_writepages(struct address_space *mapping,
8449 struct writeback_control *wbc)
b293f02e 8450{
d1310b2e 8451 struct extent_io_tree *tree;
771ed689 8452
d1310b2e 8453 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8454 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8455}
8456
3ab2fb5a
CM
8457static int
8458btrfs_readpages(struct file *file, struct address_space *mapping,
8459 struct list_head *pages, unsigned nr_pages)
8460{
d1310b2e
CM
8461 struct extent_io_tree *tree;
8462 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8463 return extent_readpages(tree, mapping, pages, nr_pages,
8464 btrfs_get_extent);
8465}
e6dcd2dc 8466static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8467{
d1310b2e
CM
8468 struct extent_io_tree *tree;
8469 struct extent_map_tree *map;
a52d9a80 8470 int ret;
8c2383c3 8471
d1310b2e
CM
8472 tree = &BTRFS_I(page->mapping->host)->io_tree;
8473 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8474 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8475 if (ret == 1) {
8476 ClearPagePrivate(page);
8477 set_page_private(page, 0);
8478 page_cache_release(page);
39279cc3 8479 }
a52d9a80 8480 return ret;
39279cc3
CM
8481}
8482
e6dcd2dc
CM
8483static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8484{
98509cfc
CM
8485 if (PageWriteback(page) || PageDirty(page))
8486 return 0;
b335b003 8487 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8488}
8489
d47992f8
LC
8490static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8491 unsigned int length)
39279cc3 8492{
5fd02043 8493 struct inode *inode = page->mapping->host;
d1310b2e 8494 struct extent_io_tree *tree;
e6dcd2dc 8495 struct btrfs_ordered_extent *ordered;
2ac55d41 8496 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8497 u64 page_start = page_offset(page);
8498 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8499 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8500
8b62b72b
CM
8501 /*
8502 * we have the page locked, so new writeback can't start,
8503 * and the dirty bit won't be cleared while we are here.
8504 *
8505 * Wait for IO on this page so that we can safely clear
8506 * the PagePrivate2 bit and do ordered accounting
8507 */
e6dcd2dc 8508 wait_on_page_writeback(page);
8b62b72b 8509
5fd02043 8510 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8511 if (offset) {
8512 btrfs_releasepage(page, GFP_NOFS);
8513 return;
8514 }
131e404a
FDBM
8515
8516 if (!inode_evicting)
8517 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8518 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8519 if (ordered) {
eb84ae03
CM
8520 /*
8521 * IO on this page will never be started, so we need
8522 * to account for any ordered extents now
8523 */
131e404a
FDBM
8524 if (!inode_evicting)
8525 clear_extent_bit(tree, page_start, page_end,
8526 EXTENT_DIRTY | EXTENT_DELALLOC |
8527 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8528 EXTENT_DEFRAG, 1, 0, &cached_state,
8529 GFP_NOFS);
8b62b72b
CM
8530 /*
8531 * whoever cleared the private bit is responsible
8532 * for the finish_ordered_io
8533 */
77cef2ec
JB
8534 if (TestClearPagePrivate2(page)) {
8535 struct btrfs_ordered_inode_tree *tree;
8536 u64 new_len;
8537
8538 tree = &BTRFS_I(inode)->ordered_tree;
8539
8540 spin_lock_irq(&tree->lock);
8541 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8542 new_len = page_start - ordered->file_offset;
8543 if (new_len < ordered->truncated_len)
8544 ordered->truncated_len = new_len;
8545 spin_unlock_irq(&tree->lock);
8546
8547 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8548 page_start,
8549 PAGE_CACHE_SIZE, 1))
8550 btrfs_finish_ordered_io(ordered);
8b62b72b 8551 }
e6dcd2dc 8552 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8553 if (!inode_evicting) {
8554 cached_state = NULL;
8555 lock_extent_bits(tree, page_start, page_end, 0,
8556 &cached_state);
8557 }
8558 }
8559
8560 if (!inode_evicting) {
8561 clear_extent_bit(tree, page_start, page_end,
8562 EXTENT_LOCKED | EXTENT_DIRTY |
8563 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8564 EXTENT_DEFRAG, 1, 1,
8565 &cached_state, GFP_NOFS);
8566
8567 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8568 }
e6dcd2dc 8569
4a096752 8570 ClearPageChecked(page);
9ad6b7bc 8571 if (PagePrivate(page)) {
9ad6b7bc
CM
8572 ClearPagePrivate(page);
8573 set_page_private(page, 0);
8574 page_cache_release(page);
8575 }
39279cc3
CM
8576}
8577
9ebefb18
CM
8578/*
8579 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8580 * called from a page fault handler when a page is first dirtied. Hence we must
8581 * be careful to check for EOF conditions here. We set the page up correctly
8582 * for a written page which means we get ENOSPC checking when writing into
8583 * holes and correct delalloc and unwritten extent mapping on filesystems that
8584 * support these features.
8585 *
8586 * We are not allowed to take the i_mutex here so we have to play games to
8587 * protect against truncate races as the page could now be beyond EOF. Because
8588 * vmtruncate() writes the inode size before removing pages, once we have the
8589 * page lock we can determine safely if the page is beyond EOF. If it is not
8590 * beyond EOF, then the page is guaranteed safe against truncation until we
8591 * unlock the page.
8592 */
c2ec175c 8593int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8594{
c2ec175c 8595 struct page *page = vmf->page;
496ad9aa 8596 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8597 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8598 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8599 struct btrfs_ordered_extent *ordered;
2ac55d41 8600 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8601 char *kaddr;
8602 unsigned long zero_start;
9ebefb18 8603 loff_t size;
1832a6d5 8604 int ret;
9998eb70 8605 int reserved = 0;
a52d9a80 8606 u64 page_start;
e6dcd2dc 8607 u64 page_end;
9ebefb18 8608
b2b5ef5c 8609 sb_start_pagefault(inode->i_sb);
0ca1f7ce 8610 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 8611 if (!ret) {
e41f941a 8612 ret = file_update_time(vma->vm_file);
9998eb70
CM
8613 reserved = 1;
8614 }
56a76f82
NP
8615 if (ret) {
8616 if (ret == -ENOMEM)
8617 ret = VM_FAULT_OOM;
8618 else /* -ENOSPC, -EIO, etc */
8619 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8620 if (reserved)
8621 goto out;
8622 goto out_noreserve;
56a76f82 8623 }
1832a6d5 8624
56a76f82 8625 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8626again:
9ebefb18 8627 lock_page(page);
9ebefb18 8628 size = i_size_read(inode);
e6dcd2dc
CM
8629 page_start = page_offset(page);
8630 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 8631
9ebefb18 8632 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8633 (page_start >= size)) {
9ebefb18
CM
8634 /* page got truncated out from underneath us */
8635 goto out_unlock;
8636 }
e6dcd2dc
CM
8637 wait_on_page_writeback(page);
8638
d0082371 8639 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8640 set_page_extent_mapped(page);
8641
eb84ae03
CM
8642 /*
8643 * we can't set the delalloc bits if there are pending ordered
8644 * extents. Drop our locks and wait for them to finish
8645 */
e6dcd2dc
CM
8646 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8647 if (ordered) {
2ac55d41
JB
8648 unlock_extent_cached(io_tree, page_start, page_end,
8649 &cached_state, GFP_NOFS);
e6dcd2dc 8650 unlock_page(page);
eb84ae03 8651 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8652 btrfs_put_ordered_extent(ordered);
8653 goto again;
8654 }
8655
fbf19087
JB
8656 /*
8657 * XXX - page_mkwrite gets called every time the page is dirtied, even
8658 * if it was already dirty, so for space accounting reasons we need to
8659 * clear any delalloc bits for the range we are fixing to save. There
8660 * is probably a better way to do this, but for now keep consistent with
8661 * prepare_pages in the normal write path.
8662 */
2ac55d41 8663 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8664 EXTENT_DIRTY | EXTENT_DELALLOC |
8665 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8666 0, 0, &cached_state, GFP_NOFS);
fbf19087 8667
2ac55d41
JB
8668 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8669 &cached_state);
9ed74f2d 8670 if (ret) {
2ac55d41
JB
8671 unlock_extent_cached(io_tree, page_start, page_end,
8672 &cached_state, GFP_NOFS);
9ed74f2d
JB
8673 ret = VM_FAULT_SIGBUS;
8674 goto out_unlock;
8675 }
e6dcd2dc 8676 ret = 0;
9ebefb18
CM
8677
8678 /* page is wholly or partially inside EOF */
a52d9a80 8679 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8680 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8681 else
e6dcd2dc 8682 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8683
e6dcd2dc
CM
8684 if (zero_start != PAGE_CACHE_SIZE) {
8685 kaddr = kmap(page);
8686 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8687 flush_dcache_page(page);
8688 kunmap(page);
8689 }
247e743c 8690 ClearPageChecked(page);
e6dcd2dc 8691 set_page_dirty(page);
50a9b214 8692 SetPageUptodate(page);
5a3f23d5 8693
257c62e1
CM
8694 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8695 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8696 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8697
2ac55d41 8698 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8699
8700out_unlock:
b2b5ef5c
JK
8701 if (!ret) {
8702 sb_end_pagefault(inode->i_sb);
50a9b214 8703 return VM_FAULT_LOCKED;
b2b5ef5c 8704 }
9ebefb18 8705 unlock_page(page);
1832a6d5 8706out:
ec39e180 8707 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 8708out_noreserve:
b2b5ef5c 8709 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8710 return ret;
8711}
8712
a41ad394 8713static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8714{
8715 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8716 struct btrfs_block_rsv *rsv;
a71754fc 8717 int ret = 0;
3893e33b 8718 int err = 0;
39279cc3 8719 struct btrfs_trans_handle *trans;
dbe674a9 8720 u64 mask = root->sectorsize - 1;
07127184 8721 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8722
0ef8b726
JB
8723 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8724 (u64)-1);
8725 if (ret)
8726 return ret;
39279cc3 8727
fcb80c2a
JB
8728 /*
8729 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8730 * 3 things going on here
8731 *
8732 * 1) We need to reserve space for our orphan item and the space to
8733 * delete our orphan item. Lord knows we don't want to have a dangling
8734 * orphan item because we didn't reserve space to remove it.
8735 *
8736 * 2) We need to reserve space to update our inode.
8737 *
8738 * 3) We need to have something to cache all the space that is going to
8739 * be free'd up by the truncate operation, but also have some slack
8740 * space reserved in case it uses space during the truncate (thank you
8741 * very much snapshotting).
8742 *
8743 * And we need these to all be seperate. The fact is we can use alot of
8744 * space doing the truncate, and we have no earthly idea how much space
8745 * we will use, so we need the truncate reservation to be seperate so it
8746 * doesn't end up using space reserved for updating the inode or
8747 * removing the orphan item. We also need to be able to stop the
8748 * transaction and start a new one, which means we need to be able to
8749 * update the inode several times, and we have no idea of knowing how
8750 * many times that will be, so we can't just reserve 1 item for the
8751 * entirety of the opration, so that has to be done seperately as well.
8752 * Then there is the orphan item, which does indeed need to be held on
8753 * to for the whole operation, and we need nobody to touch this reserved
8754 * space except the orphan code.
8755 *
8756 * So that leaves us with
8757 *
8758 * 1) root->orphan_block_rsv - for the orphan deletion.
8759 * 2) rsv - for the truncate reservation, which we will steal from the
8760 * transaction reservation.
8761 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8762 * updating the inode.
8763 */
66d8f3dd 8764 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8765 if (!rsv)
8766 return -ENOMEM;
4a338542 8767 rsv->size = min_size;
ca7e70f5 8768 rsv->failfast = 1;
f0cd846e 8769
907cbceb 8770 /*
07127184 8771 * 1 for the truncate slack space
907cbceb
JB
8772 * 1 for updating the inode.
8773 */
f3fe820c 8774 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8775 if (IS_ERR(trans)) {
8776 err = PTR_ERR(trans);
8777 goto out;
8778 }
f0cd846e 8779
907cbceb
JB
8780 /* Migrate the slack space for the truncate to our reserve */
8781 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8782 min_size);
fcb80c2a 8783 BUG_ON(ret);
f0cd846e 8784
5dc562c5
JB
8785 /*
8786 * So if we truncate and then write and fsync we normally would just
8787 * write the extents that changed, which is a problem if we need to
8788 * first truncate that entire inode. So set this flag so we write out
8789 * all of the extents in the inode to the sync log so we're completely
8790 * safe.
8791 */
8792 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8793 trans->block_rsv = rsv;
907cbceb 8794
8082510e
YZ
8795 while (1) {
8796 ret = btrfs_truncate_inode_items(trans, root, inode,
8797 inode->i_size,
8798 BTRFS_EXTENT_DATA_KEY);
28ed1345 8799 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 8800 err = ret;
8082510e 8801 break;
3893e33b 8802 }
39279cc3 8803
fcb80c2a 8804 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8805 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8806 if (ret) {
8807 err = ret;
8808 break;
8809 }
ca7e70f5 8810
8082510e 8811 btrfs_end_transaction(trans, root);
b53d3f5d 8812 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8813
8814 trans = btrfs_start_transaction(root, 2);
8815 if (IS_ERR(trans)) {
8816 ret = err = PTR_ERR(trans);
8817 trans = NULL;
8818 break;
8819 }
8820
8821 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8822 rsv, min_size);
8823 BUG_ON(ret); /* shouldn't happen */
8824 trans->block_rsv = rsv;
8082510e
YZ
8825 }
8826
8827 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8828 trans->block_rsv = root->orphan_block_rsv;
8082510e 8829 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8830 if (ret)
8831 err = ret;
8082510e
YZ
8832 }
8833
917c16b2
CM
8834 if (trans) {
8835 trans->block_rsv = &root->fs_info->trans_block_rsv;
8836 ret = btrfs_update_inode(trans, root, inode);
8837 if (ret && !err)
8838 err = ret;
7b128766 8839
7ad85bb7 8840 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8841 btrfs_btree_balance_dirty(root);
917c16b2 8842 }
fcb80c2a
JB
8843
8844out:
8845 btrfs_free_block_rsv(root, rsv);
8846
3893e33b
JB
8847 if (ret && !err)
8848 err = ret;
a41ad394 8849
3893e33b 8850 return err;
39279cc3
CM
8851}
8852
d352ac68
CM
8853/*
8854 * create a new subvolume directory/inode (helper for the ioctl).
8855 */
d2fb3437 8856int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8857 struct btrfs_root *new_root,
8858 struct btrfs_root *parent_root,
8859 u64 new_dirid)
39279cc3 8860{
39279cc3 8861 struct inode *inode;
76dda93c 8862 int err;
00e4e6b3 8863 u64 index = 0;
39279cc3 8864
12fc9d09
FA
8865 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8866 new_dirid, new_dirid,
8867 S_IFDIR | (~current_umask() & S_IRWXUGO),
8868 &index);
54aa1f4d 8869 if (IS_ERR(inode))
f46b5a66 8870 return PTR_ERR(inode);
39279cc3
CM
8871 inode->i_op = &btrfs_dir_inode_operations;
8872 inode->i_fop = &btrfs_dir_file_operations;
8873
bfe86848 8874 set_nlink(inode, 1);
dbe674a9 8875 btrfs_i_size_write(inode, 0);
b0d5d10f 8876 unlock_new_inode(inode);
3b96362c 8877
63541927
FDBM
8878 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8879 if (err)
8880 btrfs_err(new_root->fs_info,
351fd353 8881 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8882 new_root->root_key.objectid, err);
8883
76dda93c 8884 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8885
76dda93c 8886 iput(inode);
ce598979 8887 return err;
39279cc3
CM
8888}
8889
39279cc3
CM
8890struct inode *btrfs_alloc_inode(struct super_block *sb)
8891{
8892 struct btrfs_inode *ei;
2ead6ae7 8893 struct inode *inode;
39279cc3
CM
8894
8895 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8896 if (!ei)
8897 return NULL;
2ead6ae7
YZ
8898
8899 ei->root = NULL;
2ead6ae7 8900 ei->generation = 0;
15ee9bc7 8901 ei->last_trans = 0;
257c62e1 8902 ei->last_sub_trans = 0;
e02119d5 8903 ei->logged_trans = 0;
2ead6ae7 8904 ei->delalloc_bytes = 0;
47059d93 8905 ei->defrag_bytes = 0;
2ead6ae7
YZ
8906 ei->disk_i_size = 0;
8907 ei->flags = 0;
7709cde3 8908 ei->csum_bytes = 0;
2ead6ae7 8909 ei->index_cnt = (u64)-1;
67de1176 8910 ei->dir_index = 0;
2ead6ae7 8911 ei->last_unlink_trans = 0;
46d8bc34 8912 ei->last_log_commit = 0;
2ead6ae7 8913
9e0baf60
JB
8914 spin_lock_init(&ei->lock);
8915 ei->outstanding_extents = 0;
8916 ei->reserved_extents = 0;
2ead6ae7 8917
72ac3c0d 8918 ei->runtime_flags = 0;
261507a0 8919 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8920
16cdcec7
MX
8921 ei->delayed_node = NULL;
8922
9cc97d64 8923 ei->i_otime.tv_sec = 0;
8924 ei->i_otime.tv_nsec = 0;
8925
2ead6ae7 8926 inode = &ei->vfs_inode;
a8067e02 8927 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8928 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8929 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8930 ei->io_tree.track_uptodate = 1;
8931 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8932 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8933 mutex_init(&ei->log_mutex);
f248679e 8934 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8935 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8936 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
8937 RB_CLEAR_NODE(&ei->rb_node);
8938
8939 return inode;
39279cc3
CM
8940}
8941
aaedb55b
JB
8942#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8943void btrfs_test_destroy_inode(struct inode *inode)
8944{
8945 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8946 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8947}
8948#endif
8949
fa0d7e3d
NP
8950static void btrfs_i_callback(struct rcu_head *head)
8951{
8952 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8953 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8954}
8955
39279cc3
CM
8956void btrfs_destroy_inode(struct inode *inode)
8957{
e6dcd2dc 8958 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8959 struct btrfs_root *root = BTRFS_I(inode)->root;
8960
b3d9b7a3 8961 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8962 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8963 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8964 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8965 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8966 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8967 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8968
a6dbd429
JB
8969 /*
8970 * This can happen where we create an inode, but somebody else also
8971 * created the same inode and we need to destroy the one we already
8972 * created.
8973 */
8974 if (!root)
8975 goto free;
8976
8a35d95f
JB
8977 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8978 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8979 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8980 btrfs_ino(inode));
8a35d95f 8981 atomic_dec(&root->orphan_inodes);
7b128766 8982 }
7b128766 8983
d397712b 8984 while (1) {
e6dcd2dc
CM
8985 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8986 if (!ordered)
8987 break;
8988 else {
c2cf52eb 8989 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8990 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8991 btrfs_remove_ordered_extent(inode, ordered);
8992 btrfs_put_ordered_extent(ordered);
8993 btrfs_put_ordered_extent(ordered);
8994 }
8995 }
5d4f98a2 8996 inode_tree_del(inode);
5b21f2ed 8997 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8998free:
fa0d7e3d 8999 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9000}
9001
45321ac5 9002int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9003{
9004 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9005
6379ef9f
NA
9006 if (root == NULL)
9007 return 1;
9008
fa6ac876 9009 /* the snap/subvol tree is on deleting */
69e9c6c6 9010 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9011 return 1;
76dda93c 9012 else
45321ac5 9013 return generic_drop_inode(inode);
76dda93c
YZ
9014}
9015
0ee0fda0 9016static void init_once(void *foo)
39279cc3
CM
9017{
9018 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9019
9020 inode_init_once(&ei->vfs_inode);
9021}
9022
9023void btrfs_destroy_cachep(void)
9024{
8c0a8537
KS
9025 /*
9026 * Make sure all delayed rcu free inodes are flushed before we
9027 * destroy cache.
9028 */
9029 rcu_barrier();
39279cc3
CM
9030 if (btrfs_inode_cachep)
9031 kmem_cache_destroy(btrfs_inode_cachep);
9032 if (btrfs_trans_handle_cachep)
9033 kmem_cache_destroy(btrfs_trans_handle_cachep);
9034 if (btrfs_transaction_cachep)
9035 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
9036 if (btrfs_path_cachep)
9037 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
9038 if (btrfs_free_space_cachep)
9039 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
9040 if (btrfs_delalloc_work_cachep)
9041 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
9042}
9043
9044int btrfs_init_cachep(void)
9045{
837e1972 9046 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
9047 sizeof(struct btrfs_inode), 0,
9048 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
9049 if (!btrfs_inode_cachep)
9050 goto fail;
9601e3f6 9051
837e1972 9052 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9053 sizeof(struct btrfs_trans_handle), 0,
9054 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9055 if (!btrfs_trans_handle_cachep)
9056 goto fail;
9601e3f6 9057
837e1972 9058 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9059 sizeof(struct btrfs_transaction), 0,
9060 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9061 if (!btrfs_transaction_cachep)
9062 goto fail;
9601e3f6 9063
837e1972 9064 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9065 sizeof(struct btrfs_path), 0,
9066 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9067 if (!btrfs_path_cachep)
9068 goto fail;
9601e3f6 9069
837e1972 9070 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9071 sizeof(struct btrfs_free_space), 0,
9072 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9073 if (!btrfs_free_space_cachep)
9074 goto fail;
9075
8ccf6f19
MX
9076 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9077 sizeof(struct btrfs_delalloc_work), 0,
9078 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9079 NULL);
9080 if (!btrfs_delalloc_work_cachep)
9081 goto fail;
9082
39279cc3
CM
9083 return 0;
9084fail:
9085 btrfs_destroy_cachep();
9086 return -ENOMEM;
9087}
9088
9089static int btrfs_getattr(struct vfsmount *mnt,
9090 struct dentry *dentry, struct kstat *stat)
9091{
df0af1a5 9092 u64 delalloc_bytes;
2b0143b5 9093 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9094 u32 blocksize = inode->i_sb->s_blocksize;
9095
39279cc3 9096 generic_fillattr(inode, stat);
0ee5dc67 9097 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 9098 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
9099
9100 spin_lock(&BTRFS_I(inode)->lock);
9101 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9102 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9103 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9104 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9105 return 0;
9106}
9107
d397712b
CM
9108static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9109 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
9110{
9111 struct btrfs_trans_handle *trans;
9112 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9113 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9114 struct inode *new_inode = d_inode(new_dentry);
9115 struct inode *old_inode = d_inode(old_dentry);
39279cc3 9116 struct timespec ctime = CURRENT_TIME;
00e4e6b3 9117 u64 index = 0;
4df27c4d 9118 u64 root_objectid;
39279cc3 9119 int ret;
33345d01 9120 u64 old_ino = btrfs_ino(old_inode);
39279cc3 9121
33345d01 9122 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9123 return -EPERM;
9124
4df27c4d 9125 /* we only allow rename subvolume link between subvolumes */
33345d01 9126 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9127 return -EXDEV;
9128
33345d01
LZ
9129 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9130 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9131 return -ENOTEMPTY;
5f39d397 9132
4df27c4d
YZ
9133 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9134 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9135 return -ENOTEMPTY;
9c52057c
CM
9136
9137
9138 /* check for collisions, even if the name isn't there */
4871c158 9139 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9140 new_dentry->d_name.name,
9141 new_dentry->d_name.len);
9142
9143 if (ret) {
9144 if (ret == -EEXIST) {
9145 /* we shouldn't get
9146 * eexist without a new_inode */
fae7f21c 9147 if (WARN_ON(!new_inode)) {
9c52057c
CM
9148 return ret;
9149 }
9150 } else {
9151 /* maybe -EOVERFLOW */
9152 return ret;
9153 }
9154 }
9155 ret = 0;
9156
5a3f23d5 9157 /*
8d875f95
CM
9158 * we're using rename to replace one file with another. Start IO on it
9159 * now so we don't add too much work to the end of the transaction
5a3f23d5 9160 */
8d875f95 9161 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9162 filemap_flush(old_inode->i_mapping);
9163
76dda93c 9164 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9165 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9166 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9167 /*
9168 * We want to reserve the absolute worst case amount of items. So if
9169 * both inodes are subvols and we need to unlink them then that would
9170 * require 4 item modifications, but if they are both normal inodes it
9171 * would require 5 item modifications, so we'll assume their normal
9172 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9173 * should cover the worst case number of items we'll modify.
9174 */
6e137ed3 9175 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
9176 if (IS_ERR(trans)) {
9177 ret = PTR_ERR(trans);
9178 goto out_notrans;
9179 }
76dda93c 9180
4df27c4d
YZ
9181 if (dest != root)
9182 btrfs_record_root_in_trans(trans, dest);
5f39d397 9183
a5719521
YZ
9184 ret = btrfs_set_inode_index(new_dir, &index);
9185 if (ret)
9186 goto out_fail;
5a3f23d5 9187
67de1176 9188 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9189 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9190 /* force full log commit if subvolume involved. */
995946dd 9191 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9192 } else {
a5719521
YZ
9193 ret = btrfs_insert_inode_ref(trans, dest,
9194 new_dentry->d_name.name,
9195 new_dentry->d_name.len,
33345d01
LZ
9196 old_ino,
9197 btrfs_ino(new_dir), index);
a5719521
YZ
9198 if (ret)
9199 goto out_fail;
4df27c4d
YZ
9200 /*
9201 * this is an ugly little race, but the rename is required
9202 * to make sure that if we crash, the inode is either at the
9203 * old name or the new one. pinning the log transaction lets
9204 * us make sure we don't allow a log commit to come in after
9205 * we unlink the name but before we add the new name back in.
9206 */
9207 btrfs_pin_log_trans(root);
9208 }
5a3f23d5 9209
0c4d2d95
JB
9210 inode_inc_iversion(old_dir);
9211 inode_inc_iversion(new_dir);
9212 inode_inc_iversion(old_inode);
39279cc3
CM
9213 old_dir->i_ctime = old_dir->i_mtime = ctime;
9214 new_dir->i_ctime = new_dir->i_mtime = ctime;
9215 old_inode->i_ctime = ctime;
5f39d397 9216
12fcfd22
CM
9217 if (old_dentry->d_parent != new_dentry->d_parent)
9218 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9219
33345d01 9220 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9221 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9222 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9223 old_dentry->d_name.name,
9224 old_dentry->d_name.len);
9225 } else {
92986796 9226 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9227 d_inode(old_dentry),
92986796
AV
9228 old_dentry->d_name.name,
9229 old_dentry->d_name.len);
9230 if (!ret)
9231 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9232 }
79787eaa
JM
9233 if (ret) {
9234 btrfs_abort_transaction(trans, root, ret);
9235 goto out_fail;
9236 }
39279cc3
CM
9237
9238 if (new_inode) {
0c4d2d95 9239 inode_inc_iversion(new_inode);
39279cc3 9240 new_inode->i_ctime = CURRENT_TIME;
33345d01 9241 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9242 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9243 root_objectid = BTRFS_I(new_inode)->location.objectid;
9244 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9245 root_objectid,
9246 new_dentry->d_name.name,
9247 new_dentry->d_name.len);
9248 BUG_ON(new_inode->i_nlink == 0);
9249 } else {
9250 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9251 d_inode(new_dentry),
4df27c4d
YZ
9252 new_dentry->d_name.name,
9253 new_dentry->d_name.len);
9254 }
4ef31a45 9255 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9256 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9257 if (ret) {
9258 btrfs_abort_transaction(trans, root, ret);
9259 goto out_fail;
9260 }
39279cc3 9261 }
aec7477b 9262
4df27c4d
YZ
9263 ret = btrfs_add_link(trans, new_dir, old_inode,
9264 new_dentry->d_name.name,
a5719521 9265 new_dentry->d_name.len, 0, index);
79787eaa
JM
9266 if (ret) {
9267 btrfs_abort_transaction(trans, root, ret);
9268 goto out_fail;
9269 }
39279cc3 9270
67de1176
MX
9271 if (old_inode->i_nlink == 1)
9272 BTRFS_I(old_inode)->dir_index = index;
9273
33345d01 9274 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 9275 struct dentry *parent = new_dentry->d_parent;
6a912213 9276 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
9277 btrfs_end_log_trans(root);
9278 }
39279cc3 9279out_fail:
7ad85bb7 9280 btrfs_end_transaction(trans, root);
b44c59a8 9281out_notrans:
33345d01 9282 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9283 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9284
39279cc3
CM
9285 return ret;
9286}
9287
80ace85c
MS
9288static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9289 struct inode *new_dir, struct dentry *new_dentry,
9290 unsigned int flags)
9291{
9292 if (flags & ~RENAME_NOREPLACE)
9293 return -EINVAL;
9294
9295 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9296}
9297
8ccf6f19
MX
9298static void btrfs_run_delalloc_work(struct btrfs_work *work)
9299{
9300 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9301 struct inode *inode;
8ccf6f19
MX
9302
9303 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9304 work);
9f23e289
JB
9305 inode = delalloc_work->inode;
9306 if (delalloc_work->wait) {
9307 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9308 } else {
9309 filemap_flush(inode->i_mapping);
9310 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9311 &BTRFS_I(inode)->runtime_flags))
9312 filemap_flush(inode->i_mapping);
9313 }
8ccf6f19
MX
9314
9315 if (delalloc_work->delay_iput)
9f23e289 9316 btrfs_add_delayed_iput(inode);
8ccf6f19 9317 else
9f23e289 9318 iput(inode);
8ccf6f19
MX
9319 complete(&delalloc_work->completion);
9320}
9321
9322struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9323 int wait, int delay_iput)
9324{
9325 struct btrfs_delalloc_work *work;
9326
9327 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9328 if (!work)
9329 return NULL;
9330
9331 init_completion(&work->completion);
9332 INIT_LIST_HEAD(&work->list);
9333 work->inode = inode;
9334 work->wait = wait;
9335 work->delay_iput = delay_iput;
9e0af237
LB
9336 WARN_ON_ONCE(!inode);
9337 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9338 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9339
9340 return work;
9341}
9342
9343void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9344{
9345 wait_for_completion(&work->completion);
9346 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9347}
9348
d352ac68
CM
9349/*
9350 * some fairly slow code that needs optimization. This walks the list
9351 * of all the inodes with pending delalloc and forces them to disk.
9352 */
6c255e67
MX
9353static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9354 int nr)
ea8c2819 9355{
ea8c2819 9356 struct btrfs_inode *binode;
5b21f2ed 9357 struct inode *inode;
8ccf6f19
MX
9358 struct btrfs_delalloc_work *work, *next;
9359 struct list_head works;
1eafa6c7 9360 struct list_head splice;
8ccf6f19 9361 int ret = 0;
ea8c2819 9362
8ccf6f19 9363 INIT_LIST_HEAD(&works);
1eafa6c7 9364 INIT_LIST_HEAD(&splice);
63607cc8 9365
573bfb72 9366 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9367 spin_lock(&root->delalloc_lock);
9368 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9369 while (!list_empty(&splice)) {
9370 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9371 delalloc_inodes);
1eafa6c7 9372
eb73c1b7
MX
9373 list_move_tail(&binode->delalloc_inodes,
9374 &root->delalloc_inodes);
5b21f2ed 9375 inode = igrab(&binode->vfs_inode);
df0af1a5 9376 if (!inode) {
eb73c1b7 9377 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9378 continue;
df0af1a5 9379 }
eb73c1b7 9380 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
9381
9382 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
5d99a998 9383 if (!work) {
f4ab9ea7
JB
9384 if (delay_iput)
9385 btrfs_add_delayed_iput(inode);
9386 else
9387 iput(inode);
1eafa6c7 9388 ret = -ENOMEM;
a1ecaabb 9389 goto out;
5b21f2ed 9390 }
1eafa6c7 9391 list_add_tail(&work->list, &works);
a44903ab
QW
9392 btrfs_queue_work(root->fs_info->flush_workers,
9393 &work->work);
6c255e67
MX
9394 ret++;
9395 if (nr != -1 && ret >= nr)
a1ecaabb 9396 goto out;
5b21f2ed 9397 cond_resched();
eb73c1b7 9398 spin_lock(&root->delalloc_lock);
ea8c2819 9399 }
eb73c1b7 9400 spin_unlock(&root->delalloc_lock);
8c8bee1d 9401
a1ecaabb 9402out:
eb73c1b7
MX
9403 list_for_each_entry_safe(work, next, &works, list) {
9404 list_del_init(&work->list);
9405 btrfs_wait_and_free_delalloc_work(work);
9406 }
9407
9408 if (!list_empty_careful(&splice)) {
9409 spin_lock(&root->delalloc_lock);
9410 list_splice_tail(&splice, &root->delalloc_inodes);
9411 spin_unlock(&root->delalloc_lock);
9412 }
573bfb72 9413 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9414 return ret;
9415}
1eafa6c7 9416
eb73c1b7
MX
9417int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9418{
9419 int ret;
1eafa6c7 9420
2c21b4d7 9421 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9422 return -EROFS;
9423
6c255e67
MX
9424 ret = __start_delalloc_inodes(root, delay_iput, -1);
9425 if (ret > 0)
9426 ret = 0;
eb73c1b7
MX
9427 /*
9428 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9429 * we have to make sure the IO is actually started and that
9430 * ordered extents get created before we return
9431 */
9432 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9433 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9434 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9435 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9436 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9437 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9438 }
9439 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9440 return ret;
9441}
9442
6c255e67
MX
9443int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9444 int nr)
eb73c1b7
MX
9445{
9446 struct btrfs_root *root;
9447 struct list_head splice;
9448 int ret;
9449
2c21b4d7 9450 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9451 return -EROFS;
9452
9453 INIT_LIST_HEAD(&splice);
9454
573bfb72 9455 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9456 spin_lock(&fs_info->delalloc_root_lock);
9457 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9458 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9459 root = list_first_entry(&splice, struct btrfs_root,
9460 delalloc_root);
9461 root = btrfs_grab_fs_root(root);
9462 BUG_ON(!root);
9463 list_move_tail(&root->delalloc_root,
9464 &fs_info->delalloc_roots);
9465 spin_unlock(&fs_info->delalloc_root_lock);
9466
6c255e67 9467 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9468 btrfs_put_fs_root(root);
6c255e67 9469 if (ret < 0)
eb73c1b7
MX
9470 goto out;
9471
6c255e67
MX
9472 if (nr != -1) {
9473 nr -= ret;
9474 WARN_ON(nr < 0);
9475 }
eb73c1b7 9476 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9477 }
eb73c1b7 9478 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9479
6c255e67 9480 ret = 0;
eb73c1b7
MX
9481 atomic_inc(&fs_info->async_submit_draining);
9482 while (atomic_read(&fs_info->nr_async_submits) ||
9483 atomic_read(&fs_info->async_delalloc_pages)) {
9484 wait_event(fs_info->async_submit_wait,
9485 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9486 atomic_read(&fs_info->async_delalloc_pages) == 0));
9487 }
9488 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9489out:
1eafa6c7 9490 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9491 spin_lock(&fs_info->delalloc_root_lock);
9492 list_splice_tail(&splice, &fs_info->delalloc_roots);
9493 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9494 }
573bfb72 9495 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9496 return ret;
ea8c2819
CM
9497}
9498
39279cc3
CM
9499static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9500 const char *symname)
9501{
9502 struct btrfs_trans_handle *trans;
9503 struct btrfs_root *root = BTRFS_I(dir)->root;
9504 struct btrfs_path *path;
9505 struct btrfs_key key;
1832a6d5 9506 struct inode *inode = NULL;
39279cc3
CM
9507 int err;
9508 int drop_inode = 0;
9509 u64 objectid;
67871254 9510 u64 index = 0;
39279cc3
CM
9511 int name_len;
9512 int datasize;
5f39d397 9513 unsigned long ptr;
39279cc3 9514 struct btrfs_file_extent_item *ei;
5f39d397 9515 struct extent_buffer *leaf;
39279cc3 9516
f06becc4 9517 name_len = strlen(symname);
39279cc3
CM
9518 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9519 return -ENAMETOOLONG;
1832a6d5 9520
9ed74f2d
JB
9521 /*
9522 * 2 items for inode item and ref
9523 * 2 items for dir items
9524 * 1 item for xattr if selinux is on
9525 */
a22285a6
YZ
9526 trans = btrfs_start_transaction(root, 5);
9527 if (IS_ERR(trans))
9528 return PTR_ERR(trans);
1832a6d5 9529
581bb050
LZ
9530 err = btrfs_find_free_ino(root, &objectid);
9531 if (err)
9532 goto out_unlock;
9533
aec7477b 9534 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9535 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9536 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9537 if (IS_ERR(inode)) {
9538 err = PTR_ERR(inode);
39279cc3 9539 goto out_unlock;
7cf96da3 9540 }
39279cc3 9541
ad19db71
CS
9542 /*
9543 * If the active LSM wants to access the inode during
9544 * d_instantiate it needs these. Smack checks to see
9545 * if the filesystem supports xattrs by looking at the
9546 * ops vector.
9547 */
9548 inode->i_fop = &btrfs_file_operations;
9549 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9550 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9551 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9552
9553 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9554 if (err)
9555 goto out_unlock_inode;
ad19db71 9556
a1b075d2 9557 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9558 if (err)
b0d5d10f 9559 goto out_unlock_inode;
39279cc3
CM
9560
9561 path = btrfs_alloc_path();
d8926bb3
MF
9562 if (!path) {
9563 err = -ENOMEM;
b0d5d10f 9564 goto out_unlock_inode;
d8926bb3 9565 }
33345d01 9566 key.objectid = btrfs_ino(inode);
39279cc3 9567 key.offset = 0;
962a298f 9568 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9569 datasize = btrfs_file_extent_calc_inline_size(name_len);
9570 err = btrfs_insert_empty_item(trans, root, path, &key,
9571 datasize);
54aa1f4d 9572 if (err) {
b0839166 9573 btrfs_free_path(path);
b0d5d10f 9574 goto out_unlock_inode;
54aa1f4d 9575 }
5f39d397
CM
9576 leaf = path->nodes[0];
9577 ei = btrfs_item_ptr(leaf, path->slots[0],
9578 struct btrfs_file_extent_item);
9579 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9580 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9581 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9582 btrfs_set_file_extent_encryption(leaf, ei, 0);
9583 btrfs_set_file_extent_compression(leaf, ei, 0);
9584 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9585 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9586
39279cc3 9587 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9588 write_extent_buffer(leaf, symname, ptr, name_len);
9589 btrfs_mark_buffer_dirty(leaf);
39279cc3 9590 btrfs_free_path(path);
5f39d397 9591
39279cc3
CM
9592 inode->i_op = &btrfs_symlink_inode_operations;
9593 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 9594 inode_set_bytes(inode, name_len);
f06becc4 9595 btrfs_i_size_write(inode, name_len);
54aa1f4d 9596 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9597 if (err) {
54aa1f4d 9598 drop_inode = 1;
b0d5d10f
CM
9599 goto out_unlock_inode;
9600 }
9601
9602 unlock_new_inode(inode);
9603 d_instantiate(dentry, inode);
39279cc3
CM
9604
9605out_unlock:
7ad85bb7 9606 btrfs_end_transaction(trans, root);
39279cc3
CM
9607 if (drop_inode) {
9608 inode_dec_link_count(inode);
9609 iput(inode);
9610 }
b53d3f5d 9611 btrfs_btree_balance_dirty(root);
39279cc3 9612 return err;
b0d5d10f
CM
9613
9614out_unlock_inode:
9615 drop_inode = 1;
9616 unlock_new_inode(inode);
9617 goto out_unlock;
39279cc3 9618}
16432985 9619
0af3d00b
JB
9620static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9621 u64 start, u64 num_bytes, u64 min_size,
9622 loff_t actual_len, u64 *alloc_hint,
9623 struct btrfs_trans_handle *trans)
d899e052 9624{
5dc562c5
JB
9625 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9626 struct extent_map *em;
d899e052
YZ
9627 struct btrfs_root *root = BTRFS_I(inode)->root;
9628 struct btrfs_key ins;
d899e052 9629 u64 cur_offset = start;
55a61d1d 9630 u64 i_size;
154ea289 9631 u64 cur_bytes;
d899e052 9632 int ret = 0;
0af3d00b 9633 bool own_trans = true;
d899e052 9634
0af3d00b
JB
9635 if (trans)
9636 own_trans = false;
d899e052 9637 while (num_bytes > 0) {
0af3d00b
JB
9638 if (own_trans) {
9639 trans = btrfs_start_transaction(root, 3);
9640 if (IS_ERR(trans)) {
9641 ret = PTR_ERR(trans);
9642 break;
9643 }
5a303d5d
YZ
9644 }
9645
154ea289
CM
9646 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9647 cur_bytes = max(cur_bytes, min_size);
00361589 9648 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9649 *alloc_hint, &ins, 1, 0);
5a303d5d 9650 if (ret) {
0af3d00b
JB
9651 if (own_trans)
9652 btrfs_end_transaction(trans, root);
a22285a6 9653 break;
d899e052 9654 }
5a303d5d 9655
d899e052
YZ
9656 ret = insert_reserved_file_extent(trans, inode,
9657 cur_offset, ins.objectid,
9658 ins.offset, ins.offset,
920bbbfb 9659 ins.offset, 0, 0, 0,
d899e052 9660 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9661 if (ret) {
857cc2fc 9662 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9663 ins.offset, 0);
79787eaa
JM
9664 btrfs_abort_transaction(trans, root, ret);
9665 if (own_trans)
9666 btrfs_end_transaction(trans, root);
9667 break;
9668 }
31193213 9669
a1ed835e
CM
9670 btrfs_drop_extent_cache(inode, cur_offset,
9671 cur_offset + ins.offset -1, 0);
5a303d5d 9672
5dc562c5
JB
9673 em = alloc_extent_map();
9674 if (!em) {
9675 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9676 &BTRFS_I(inode)->runtime_flags);
9677 goto next;
9678 }
9679
9680 em->start = cur_offset;
9681 em->orig_start = cur_offset;
9682 em->len = ins.offset;
9683 em->block_start = ins.objectid;
9684 em->block_len = ins.offset;
b4939680 9685 em->orig_block_len = ins.offset;
cc95bef6 9686 em->ram_bytes = ins.offset;
5dc562c5
JB
9687 em->bdev = root->fs_info->fs_devices->latest_bdev;
9688 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9689 em->generation = trans->transid;
9690
9691 while (1) {
9692 write_lock(&em_tree->lock);
09a2a8f9 9693 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9694 write_unlock(&em_tree->lock);
9695 if (ret != -EEXIST)
9696 break;
9697 btrfs_drop_extent_cache(inode, cur_offset,
9698 cur_offset + ins.offset - 1,
9699 0);
9700 }
9701 free_extent_map(em);
9702next:
d899e052
YZ
9703 num_bytes -= ins.offset;
9704 cur_offset += ins.offset;
efa56464 9705 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9706
0c4d2d95 9707 inode_inc_iversion(inode);
d899e052 9708 inode->i_ctime = CURRENT_TIME;
6cbff00f 9709 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9710 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9711 (actual_len > inode->i_size) &&
9712 (cur_offset > inode->i_size)) {
d1ea6a61 9713 if (cur_offset > actual_len)
55a61d1d 9714 i_size = actual_len;
d1ea6a61 9715 else
55a61d1d
JB
9716 i_size = cur_offset;
9717 i_size_write(inode, i_size);
9718 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9719 }
9720
d899e052 9721 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9722
9723 if (ret) {
9724 btrfs_abort_transaction(trans, root, ret);
9725 if (own_trans)
9726 btrfs_end_transaction(trans, root);
9727 break;
9728 }
d899e052 9729
0af3d00b
JB
9730 if (own_trans)
9731 btrfs_end_transaction(trans, root);
5a303d5d 9732 }
d899e052
YZ
9733 return ret;
9734}
9735
0af3d00b
JB
9736int btrfs_prealloc_file_range(struct inode *inode, int mode,
9737 u64 start, u64 num_bytes, u64 min_size,
9738 loff_t actual_len, u64 *alloc_hint)
9739{
9740 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9741 min_size, actual_len, alloc_hint,
9742 NULL);
9743}
9744
9745int btrfs_prealloc_file_range_trans(struct inode *inode,
9746 struct btrfs_trans_handle *trans, int mode,
9747 u64 start, u64 num_bytes, u64 min_size,
9748 loff_t actual_len, u64 *alloc_hint)
9749{
9750 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9751 min_size, actual_len, alloc_hint, trans);
9752}
9753
e6dcd2dc
CM
9754static int btrfs_set_page_dirty(struct page *page)
9755{
e6dcd2dc
CM
9756 return __set_page_dirty_nobuffers(page);
9757}
9758
10556cb2 9759static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9760{
b83cc969 9761 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9762 umode_t mode = inode->i_mode;
b83cc969 9763
cb6db4e5
JM
9764 if (mask & MAY_WRITE &&
9765 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9766 if (btrfs_root_readonly(root))
9767 return -EROFS;
9768 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9769 return -EACCES;
9770 }
2830ba7f 9771 return generic_permission(inode, mask);
fdebe2bd 9772}
39279cc3 9773
ef3b9af5
FM
9774static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9775{
9776 struct btrfs_trans_handle *trans;
9777 struct btrfs_root *root = BTRFS_I(dir)->root;
9778 struct inode *inode = NULL;
9779 u64 objectid;
9780 u64 index;
9781 int ret = 0;
9782
9783 /*
9784 * 5 units required for adding orphan entry
9785 */
9786 trans = btrfs_start_transaction(root, 5);
9787 if (IS_ERR(trans))
9788 return PTR_ERR(trans);
9789
9790 ret = btrfs_find_free_ino(root, &objectid);
9791 if (ret)
9792 goto out;
9793
9794 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9795 btrfs_ino(dir), objectid, mode, &index);
9796 if (IS_ERR(inode)) {
9797 ret = PTR_ERR(inode);
9798 inode = NULL;
9799 goto out;
9800 }
9801
ef3b9af5
FM
9802 inode->i_fop = &btrfs_file_operations;
9803 inode->i_op = &btrfs_file_inode_operations;
9804
9805 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9806 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9807
b0d5d10f
CM
9808 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9809 if (ret)
9810 goto out_inode;
9811
9812 ret = btrfs_update_inode(trans, root, inode);
9813 if (ret)
9814 goto out_inode;
ef3b9af5
FM
9815 ret = btrfs_orphan_add(trans, inode);
9816 if (ret)
b0d5d10f 9817 goto out_inode;
ef3b9af5 9818
5762b5c9
FM
9819 /*
9820 * We set number of links to 0 in btrfs_new_inode(), and here we set
9821 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9822 * through:
9823 *
9824 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9825 */
9826 set_nlink(inode, 1);
b0d5d10f 9827 unlock_new_inode(inode);
ef3b9af5
FM
9828 d_tmpfile(dentry, inode);
9829 mark_inode_dirty(inode);
9830
9831out:
9832 btrfs_end_transaction(trans, root);
9833 if (ret)
9834 iput(inode);
9835 btrfs_balance_delayed_items(root);
9836 btrfs_btree_balance_dirty(root);
ef3b9af5 9837 return ret;
b0d5d10f
CM
9838
9839out_inode:
9840 unlock_new_inode(inode);
9841 goto out;
9842
ef3b9af5
FM
9843}
9844
b38ef71c
FM
9845/* Inspired by filemap_check_errors() */
9846int btrfs_inode_check_errors(struct inode *inode)
9847{
9848 int ret = 0;
9849
9850 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9851 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9852 ret = -ENOSPC;
9853 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9854 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9855 ret = -EIO;
9856
9857 return ret;
9858}
9859
6e1d5dcc 9860static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9861 .getattr = btrfs_getattr,
39279cc3
CM
9862 .lookup = btrfs_lookup,
9863 .create = btrfs_create,
9864 .unlink = btrfs_unlink,
9865 .link = btrfs_link,
9866 .mkdir = btrfs_mkdir,
9867 .rmdir = btrfs_rmdir,
80ace85c 9868 .rename2 = btrfs_rename2,
39279cc3
CM
9869 .symlink = btrfs_symlink,
9870 .setattr = btrfs_setattr,
618e21d5 9871 .mknod = btrfs_mknod,
95819c05
CH
9872 .setxattr = btrfs_setxattr,
9873 .getxattr = btrfs_getxattr,
5103e947 9874 .listxattr = btrfs_listxattr,
95819c05 9875 .removexattr = btrfs_removexattr,
fdebe2bd 9876 .permission = btrfs_permission,
4e34e719 9877 .get_acl = btrfs_get_acl,
996a710d 9878 .set_acl = btrfs_set_acl,
93fd63c2 9879 .update_time = btrfs_update_time,
ef3b9af5 9880 .tmpfile = btrfs_tmpfile,
39279cc3 9881};
6e1d5dcc 9882static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 9883 .lookup = btrfs_lookup,
fdebe2bd 9884 .permission = btrfs_permission,
4e34e719 9885 .get_acl = btrfs_get_acl,
996a710d 9886 .set_acl = btrfs_set_acl,
93fd63c2 9887 .update_time = btrfs_update_time,
39279cc3 9888};
76dda93c 9889
828c0950 9890static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
9891 .llseek = generic_file_llseek,
9892 .read = generic_read_dir,
9cdda8d3 9893 .iterate = btrfs_real_readdir,
34287aa3 9894 .unlocked_ioctl = btrfs_ioctl,
39279cc3 9895#ifdef CONFIG_COMPAT
34287aa3 9896 .compat_ioctl = btrfs_ioctl,
39279cc3 9897#endif
6bf13c0c 9898 .release = btrfs_release_file,
e02119d5 9899 .fsync = btrfs_sync_file,
39279cc3
CM
9900};
9901
d1310b2e 9902static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 9903 .fill_delalloc = run_delalloc_range,
065631f6 9904 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 9905 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 9906 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 9907 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 9908 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
9909 .set_bit_hook = btrfs_set_bit_hook,
9910 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
9911 .merge_extent_hook = btrfs_merge_extent_hook,
9912 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
9913};
9914
35054394
CM
9915/*
9916 * btrfs doesn't support the bmap operation because swapfiles
9917 * use bmap to make a mapping of extents in the file. They assume
9918 * these extents won't change over the life of the file and they
9919 * use the bmap result to do IO directly to the drive.
9920 *
9921 * the btrfs bmap call would return logical addresses that aren't
9922 * suitable for IO and they also will change frequently as COW
9923 * operations happen. So, swapfile + btrfs == corruption.
9924 *
9925 * For now we're avoiding this by dropping bmap.
9926 */
7f09410b 9927static const struct address_space_operations btrfs_aops = {
39279cc3
CM
9928 .readpage = btrfs_readpage,
9929 .writepage = btrfs_writepage,
b293f02e 9930 .writepages = btrfs_writepages,
3ab2fb5a 9931 .readpages = btrfs_readpages,
16432985 9932 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
9933 .invalidatepage = btrfs_invalidatepage,
9934 .releasepage = btrfs_releasepage,
e6dcd2dc 9935 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 9936 .error_remove_page = generic_error_remove_page,
39279cc3
CM
9937};
9938
7f09410b 9939static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
9940 .readpage = btrfs_readpage,
9941 .writepage = btrfs_writepage,
2bf5a725
CM
9942 .invalidatepage = btrfs_invalidatepage,
9943 .releasepage = btrfs_releasepage,
39279cc3
CM
9944};
9945
6e1d5dcc 9946static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
9947 .getattr = btrfs_getattr,
9948 .setattr = btrfs_setattr,
95819c05
CH
9949 .setxattr = btrfs_setxattr,
9950 .getxattr = btrfs_getxattr,
5103e947 9951 .listxattr = btrfs_listxattr,
95819c05 9952 .removexattr = btrfs_removexattr,
fdebe2bd 9953 .permission = btrfs_permission,
1506fcc8 9954 .fiemap = btrfs_fiemap,
4e34e719 9955 .get_acl = btrfs_get_acl,
996a710d 9956 .set_acl = btrfs_set_acl,
e41f941a 9957 .update_time = btrfs_update_time,
39279cc3 9958};
6e1d5dcc 9959static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
9960 .getattr = btrfs_getattr,
9961 .setattr = btrfs_setattr,
fdebe2bd 9962 .permission = btrfs_permission,
95819c05
CH
9963 .setxattr = btrfs_setxattr,
9964 .getxattr = btrfs_getxattr,
33268eaf 9965 .listxattr = btrfs_listxattr,
95819c05 9966 .removexattr = btrfs_removexattr,
4e34e719 9967 .get_acl = btrfs_get_acl,
996a710d 9968 .set_acl = btrfs_set_acl,
e41f941a 9969 .update_time = btrfs_update_time,
618e21d5 9970};
6e1d5dcc 9971static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
9972 .readlink = generic_readlink,
9973 .follow_link = page_follow_link_light,
9974 .put_link = page_put_link,
f209561a 9975 .getattr = btrfs_getattr,
22c44fe6 9976 .setattr = btrfs_setattr,
fdebe2bd 9977 .permission = btrfs_permission,
0279b4cd
JO
9978 .setxattr = btrfs_setxattr,
9979 .getxattr = btrfs_getxattr,
9980 .listxattr = btrfs_listxattr,
9981 .removexattr = btrfs_removexattr,
e41f941a 9982 .update_time = btrfs_update_time,
39279cc3 9983};
76dda93c 9984
82d339d9 9985const struct dentry_operations btrfs_dentry_operations = {
76dda93c 9986 .d_delete = btrfs_dentry_delete,
b4aff1f8 9987 .d_release = btrfs_dentry_release,
76dda93c 9988};