Btrfs:don't check the return value of __btrfs_add_inode_defrag
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
4b4e25f2 41#include "compat.h"
39279cc3
CM
42#include "ctree.h"
43#include "disk-io.h"
44#include "transaction.h"
45#include "btrfs_inode.h"
46#include "ioctl.h"
47#include "print-tree.h"
0b86a832 48#include "volumes.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
c8b97818 52#include "compression.h"
b4ce94de 53#include "locking.h"
dc89e982 54#include "free-space-cache.h"
581bb050 55#include "inode-map.h"
39279cc3
CM
56
57struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
60};
61
6e1d5dcc
AD
62static const struct inode_operations btrfs_dir_inode_operations;
63static const struct inode_operations btrfs_symlink_inode_operations;
64static const struct inode_operations btrfs_dir_ro_inode_operations;
65static const struct inode_operations btrfs_special_inode_operations;
66static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
67static const struct address_space_operations btrfs_aops;
68static const struct address_space_operations btrfs_symlink_aops;
828c0950 69static const struct file_operations btrfs_dir_file_operations;
d1310b2e 70static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
71
72static struct kmem_cache *btrfs_inode_cachep;
73struct kmem_cache *btrfs_trans_handle_cachep;
74struct kmem_cache *btrfs_transaction_cachep;
39279cc3 75struct kmem_cache *btrfs_path_cachep;
dc89e982 76struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
77
78#define S_SHIFT 12
79static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87};
88
a41ad394
JB
89static int btrfs_setsize(struct inode *inode, loff_t newsize);
90static int btrfs_truncate(struct inode *inode);
c8b97818 91static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
92static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
7b128766 96
f34f57a3 97static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
0279b4cd
JO
100{
101 int err;
102
f34f57a3 103 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 104 if (!err)
2a7dba39 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
106 return err;
107}
108
c8b97818
CM
109/*
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
113 */
d397712b 114static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
fe3f566c 117 int compress_type,
c8b97818
CM
118 struct page **compressed_pages)
119{
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
c8b97818 132
fe3f566c 133 if (compressed_size && compressed_pages)
c8b97818 134 cur_size = compressed_size;
c8b97818 135
d397712b
CM
136 path = btrfs_alloc_path();
137 if (!path)
c8b97818
CM
138 return -ENOMEM;
139
b9473439 140 path->leave_spinning = 1;
c8b97818 141
33345d01 142 key.objectid = btrfs_ino(inode);
c8b97818
CM
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
fe3f566c 223 size_t compressed_size, int compress_type,
c8b97818
CM
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
c8b97818 257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 293 BUG_ON(!async_extent);
771ed689
CM
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
261507a0 299 async_extent->compress_type = compress_type;
771ed689
CM
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302}
303
d352ac68 304/*
771ed689
CM
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
c8b97818 308 *
771ed689
CM
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
c8b97818 314 *
771ed689
CM
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
d352ac68 319 */
771ed689
CM
320static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
b888db2b
CM
325{
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
db94535d 328 u64 num_bytes;
db94535d 329 u64 blocksize = root->sectorsize;
c8b97818 330 u64 actual_end;
42dc7bab 331 u64 isize = i_size_read(inode);
e6dcd2dc 332 int ret = 0;
c8b97818
CM
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
771ed689 339 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
340 int i;
341 int will_compress;
261507a0 342 int compress_type = root->fs_info->compress_type;
b888db2b 343
4cb5300b
CM
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
347
42dc7bab 348 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
349again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 353
f03d9301
CM
354 /*
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
360 *
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
363 */
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
366
c8b97818
CM
367 total_compressed = actual_end - start;
368
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
374 *
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
c8b97818
CM
378 */
379 total_compressed = min(total_compressed, max_uncompressed);
db94535d 380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 381 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
382 total_in = 0;
383 ret = 0;
db94535d 384
771ed689
CM
385 /*
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
c8b97818 389 */
6cbff00f 390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 391 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 394 WARN_ON(pages);
cfbc246e 395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 396 BUG_ON(!pages);
c8b97818 397
261507a0
LZ
398 if (BTRFS_I(inode)->force_compress)
399 compress_type = BTRFS_I(inode)->force_compress;
400
401 ret = btrfs_compress_pages(compress_type,
402 inode->i_mapping, start,
403 total_compressed, pages,
404 nr_pages, &nr_pages_ret,
405 &total_in,
406 &total_compressed,
407 max_compressed);
c8b97818
CM
408
409 if (!ret) {
410 unsigned long offset = total_compressed &
411 (PAGE_CACHE_SIZE - 1);
412 struct page *page = pages[nr_pages_ret - 1];
413 char *kaddr;
414
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
417 */
418 if (offset) {
419 kaddr = kmap_atomic(page, KM_USER0);
420 memset(kaddr + offset, 0,
421 PAGE_CACHE_SIZE - offset);
422 kunmap_atomic(kaddr, KM_USER0);
423 }
424 will_compress = 1;
425 }
426 }
427 if (start == 0) {
7a7eaa40 428 trans = btrfs_join_transaction(root);
3612b495 429 BUG_ON(IS_ERR(trans));
0ca1f7ce 430 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 431
c8b97818 432 /* lets try to make an inline extent */
771ed689 433 if (ret || total_in < (actual_end - start)) {
c8b97818 434 /* we didn't compress the entire range, try
771ed689 435 * to make an uncompressed inline extent.
c8b97818
CM
436 */
437 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 438 start, end, 0, 0, NULL);
c8b97818 439 } else {
771ed689 440 /* try making a compressed inline extent */
c8b97818
CM
441 ret = cow_file_range_inline(trans, root, inode,
442 start, end,
fe3f566c
LZ
443 total_compressed,
444 compress_type, pages);
c8b97818
CM
445 }
446 if (ret == 0) {
771ed689
CM
447 /*
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
451 */
c8b97818 452 extent_clear_unlock_delalloc(inode,
a791e35e
CM
453 &BTRFS_I(inode)->io_tree,
454 start, end, NULL,
455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 456 EXTENT_CLEAR_DELALLOC |
a791e35e 457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
458
459 btrfs_end_transaction(trans, root);
c8b97818
CM
460 goto free_pages_out;
461 }
c2167754 462 btrfs_end_transaction(trans, root);
c8b97818
CM
463 }
464
465 if (will_compress) {
466 /*
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
469 * things
470 */
471 total_compressed = (total_compressed + blocksize - 1) &
472 ~(blocksize - 1);
473
474 /*
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
477 */
478 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 ~(PAGE_CACHE_SIZE - 1);
480 if (total_compressed >= total_in) {
481 will_compress = 0;
482 } else {
c8b97818
CM
483 num_bytes = total_in;
484 }
485 }
486 if (!will_compress && pages) {
487 /*
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
490 */
491 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 492 WARN_ON(pages[i]->mapping);
c8b97818
CM
493 page_cache_release(pages[i]);
494 }
495 kfree(pages);
496 pages = NULL;
497 total_compressed = 0;
498 nr_pages_ret = 0;
499
500 /* flag the file so we don't compress in the future */
1e701a32
CM
501 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 !(BTRFS_I(inode)->force_compress)) {
a555f810 503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 504 }
c8b97818 505 }
771ed689
CM
506 if (will_compress) {
507 *num_added += 1;
c8b97818 508
771ed689
CM
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
512 */
513 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
514 total_compressed, pages, nr_pages_ret,
515 compress_type);
179e29e4 516
24ae6365 517 if (start + num_bytes < end) {
771ed689
CM
518 start += num_bytes;
519 pages = NULL;
520 cond_resched();
521 goto again;
522 }
523 } else {
f03d9301 524cleanup_and_bail_uncompressed:
771ed689
CM
525 /*
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
531 */
532 if (page_offset(locked_page) >= start &&
533 page_offset(locked_page) <= end) {
534 __set_page_dirty_nobuffers(locked_page);
535 /* unlocked later on in the async handlers */
536 }
261507a0
LZ
537 add_async_extent(async_cow, start, end - start + 1,
538 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
539 *num_added += 1;
540 }
3b951516 541
771ed689
CM
542out:
543 return 0;
544
545free_pages_out:
546 for (i = 0; i < nr_pages_ret; i++) {
547 WARN_ON(pages[i]->mapping);
548 page_cache_release(pages[i]);
549 }
d397712b 550 kfree(pages);
771ed689
CM
551
552 goto out;
553}
554
555/*
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
560 */
561static noinline int submit_compressed_extents(struct inode *inode,
562 struct async_cow *async_cow)
563{
564 struct async_extent *async_extent;
565 u64 alloc_hint = 0;
566 struct btrfs_trans_handle *trans;
567 struct btrfs_key ins;
568 struct extent_map *em;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 struct extent_io_tree *io_tree;
f5a84ee3 572 int ret = 0;
771ed689
CM
573
574 if (list_empty(&async_cow->extents))
575 return 0;
576
771ed689 577
d397712b 578 while (!list_empty(&async_cow->extents)) {
771ed689
CM
579 async_extent = list_entry(async_cow->extents.next,
580 struct async_extent, list);
581 list_del(&async_extent->list);
c8b97818 582
771ed689
CM
583 io_tree = &BTRFS_I(inode)->io_tree;
584
f5a84ee3 585retry:
771ed689
CM
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent->pages) {
588 int page_started = 0;
589 unsigned long nr_written = 0;
590
591 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
592 async_extent->start +
593 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
594
595 /* allocate blocks */
f5a84ee3
JB
596 ret = cow_file_range(inode, async_cow->locked_page,
597 async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1,
600 &page_started, &nr_written, 0);
771ed689
CM
601
602 /*
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
607 */
f5a84ee3 608 if (!page_started && !ret)
771ed689
CM
609 extent_write_locked_range(io_tree,
610 inode, async_extent->start,
d397712b 611 async_extent->start +
771ed689
CM
612 async_extent->ram_size - 1,
613 btrfs_get_extent,
614 WB_SYNC_ALL);
615 kfree(async_extent);
616 cond_resched();
617 continue;
618 }
619
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start + async_extent->ram_size - 1,
622 GFP_NOFS);
771ed689 623
7a7eaa40 624 trans = btrfs_join_transaction(root);
3612b495 625 BUG_ON(IS_ERR(trans));
74b21075 626 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
627 ret = btrfs_reserve_extent(trans, root,
628 async_extent->compressed_size,
629 async_extent->compressed_size,
630 0, alloc_hint,
631 (u64)-1, &ins, 1);
c2167754
YZ
632 btrfs_end_transaction(trans, root);
633
f5a84ee3
JB
634 if (ret) {
635 int i;
636 for (i = 0; i < async_extent->nr_pages; i++) {
637 WARN_ON(async_extent->pages[i]->mapping);
638 page_cache_release(async_extent->pages[i]);
639 }
640 kfree(async_extent->pages);
641 async_extent->nr_pages = 0;
642 async_extent->pages = NULL;
643 unlock_extent(io_tree, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1, GFP_NOFS);
646 goto retry;
647 }
648
c2167754
YZ
649 /*
650 * here we're doing allocation and writeback of the
651 * compressed pages
652 */
653 btrfs_drop_extent_cache(inode, async_extent->start,
654 async_extent->start +
655 async_extent->ram_size - 1, 0);
656
172ddd60 657 em = alloc_extent_map();
c26a9203 658 BUG_ON(!em);
771ed689
CM
659 em->start = async_extent->start;
660 em->len = async_extent->ram_size;
445a6944 661 em->orig_start = em->start;
c8b97818 662
771ed689
CM
663 em->block_start = ins.objectid;
664 em->block_len = ins.offset;
665 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 666 em->compress_type = async_extent->compress_type;
771ed689
CM
667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669
d397712b 670 while (1) {
890871be 671 write_lock(&em_tree->lock);
771ed689 672 ret = add_extent_mapping(em_tree, em);
890871be 673 write_unlock(&em_tree->lock);
771ed689
CM
674 if (ret != -EEXIST) {
675 free_extent_map(em);
676 break;
677 }
678 btrfs_drop_extent_cache(inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1, 0);
681 }
682
261507a0
LZ
683 ret = btrfs_add_ordered_extent_compress(inode,
684 async_extent->start,
685 ins.objectid,
686 async_extent->ram_size,
687 ins.offset,
688 BTRFS_ORDERED_COMPRESSED,
689 async_extent->compress_type);
771ed689
CM
690 BUG_ON(ret);
691
771ed689
CM
692 /*
693 * clear dirty, set writeback and unlock the pages.
694 */
695 extent_clear_unlock_delalloc(inode,
a791e35e
CM
696 &BTRFS_I(inode)->io_tree,
697 async_extent->start,
698 async_extent->start +
699 async_extent->ram_size - 1,
700 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 EXTENT_CLEAR_UNLOCK |
a3429ab7 702 EXTENT_CLEAR_DELALLOC |
a791e35e 703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
704
705 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
706 async_extent->start,
707 async_extent->ram_size,
708 ins.objectid,
709 ins.offset, async_extent->pages,
710 async_extent->nr_pages);
771ed689
CM
711
712 BUG_ON(ret);
771ed689
CM
713 alloc_hint = ins.objectid + ins.offset;
714 kfree(async_extent);
715 cond_resched();
716 }
717
771ed689
CM
718 return 0;
719}
720
4b46fce2
JB
721static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 u64 num_bytes)
723{
724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 struct extent_map *em;
726 u64 alloc_hint = 0;
727
728 read_lock(&em_tree->lock);
729 em = search_extent_mapping(em_tree, start, num_bytes);
730 if (em) {
731 /*
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
735 */
736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 free_extent_map(em);
738 em = search_extent_mapping(em_tree, 0, 0);
739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 alloc_hint = em->block_start;
741 if (em)
742 free_extent_map(em);
743 } else {
744 alloc_hint = em->block_start;
745 free_extent_map(em);
746 }
747 }
748 read_unlock(&em_tree->lock);
749
750 return alloc_hint;
751}
752
771ed689
CM
753/*
754 * when extent_io.c finds a delayed allocation range in the file,
755 * the call backs end up in this code. The basic idea is to
756 * allocate extents on disk for the range, and create ordered data structs
757 * in ram to track those extents.
758 *
759 * locked_page is the page that writepage had locked already. We use
760 * it to make sure we don't do extra locks or unlocks.
761 *
762 * *page_started is set to one if we unlock locked_page and do everything
763 * required to start IO on it. It may be clean and already done with
764 * IO when we return.
765 */
766static noinline int cow_file_range(struct inode *inode,
767 struct page *locked_page,
768 u64 start, u64 end, int *page_started,
769 unsigned long *nr_written,
770 int unlock)
771{
772 struct btrfs_root *root = BTRFS_I(inode)->root;
773 struct btrfs_trans_handle *trans;
774 u64 alloc_hint = 0;
775 u64 num_bytes;
776 unsigned long ram_size;
777 u64 disk_num_bytes;
778 u64 cur_alloc_size;
779 u64 blocksize = root->sectorsize;
771ed689
CM
780 struct btrfs_key ins;
781 struct extent_map *em;
782 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
783 int ret = 0;
784
2cf8572d 785 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 786 trans = btrfs_join_transaction(root);
3612b495 787 BUG_ON(IS_ERR(trans));
0ca1f7ce 788 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 789
771ed689
CM
790 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
791 num_bytes = max(blocksize, num_bytes);
792 disk_num_bytes = num_bytes;
793 ret = 0;
794
4cb5300b
CM
795 /* if this is a small write inside eof, kick off defrag */
796 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
797 btrfs_add_inode_defrag(trans, inode);
798
771ed689
CM
799 if (start == 0) {
800 /* lets try to make an inline extent */
801 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 802 start, end, 0, 0, NULL);
771ed689
CM
803 if (ret == 0) {
804 extent_clear_unlock_delalloc(inode,
a791e35e
CM
805 &BTRFS_I(inode)->io_tree,
806 start, end, NULL,
807 EXTENT_CLEAR_UNLOCK_PAGE |
808 EXTENT_CLEAR_UNLOCK |
809 EXTENT_CLEAR_DELALLOC |
810 EXTENT_CLEAR_DIRTY |
811 EXTENT_SET_WRITEBACK |
812 EXTENT_END_WRITEBACK);
c2167754 813
771ed689
CM
814 *nr_written = *nr_written +
815 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
816 *page_started = 1;
817 ret = 0;
818 goto out;
819 }
820 }
821
822 BUG_ON(disk_num_bytes >
823 btrfs_super_total_bytes(&root->fs_info->super_copy));
824
4b46fce2 825 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
826 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
827
d397712b 828 while (disk_num_bytes > 0) {
a791e35e
CM
829 unsigned long op;
830
287a0ab9 831 cur_alloc_size = disk_num_bytes;
e6dcd2dc 832 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 833 root->sectorsize, 0, alloc_hint,
e6dcd2dc 834 (u64)-1, &ins, 1);
d397712b
CM
835 BUG_ON(ret);
836
172ddd60 837 em = alloc_extent_map();
c26a9203 838 BUG_ON(!em);
e6dcd2dc 839 em->start = start;
445a6944 840 em->orig_start = em->start;
771ed689
CM
841 ram_size = ins.offset;
842 em->len = ins.offset;
c8b97818 843
e6dcd2dc 844 em->block_start = ins.objectid;
c8b97818 845 em->block_len = ins.offset;
e6dcd2dc 846 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 847 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 848
d397712b 849 while (1) {
890871be 850 write_lock(&em_tree->lock);
e6dcd2dc 851 ret = add_extent_mapping(em_tree, em);
890871be 852 write_unlock(&em_tree->lock);
e6dcd2dc
CM
853 if (ret != -EEXIST) {
854 free_extent_map(em);
855 break;
856 }
857 btrfs_drop_extent_cache(inode, start,
c8b97818 858 start + ram_size - 1, 0);
e6dcd2dc
CM
859 }
860
98d20f67 861 cur_alloc_size = ins.offset;
e6dcd2dc 862 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 863 ram_size, cur_alloc_size, 0);
e6dcd2dc 864 BUG_ON(ret);
c8b97818 865
17d217fe
YZ
866 if (root->root_key.objectid ==
867 BTRFS_DATA_RELOC_TREE_OBJECTID) {
868 ret = btrfs_reloc_clone_csums(inode, start,
869 cur_alloc_size);
870 BUG_ON(ret);
871 }
872
d397712b 873 if (disk_num_bytes < cur_alloc_size)
3b951516 874 break;
d397712b 875
c8b97818
CM
876 /* we're not doing compressed IO, don't unlock the first
877 * page (which the caller expects to stay locked), don't
878 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
879 *
880 * Do set the Private2 bit so we know this page was properly
881 * setup for writepage
c8b97818 882 */
a791e35e
CM
883 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
884 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
885 EXTENT_SET_PRIVATE2;
886
c8b97818
CM
887 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
888 start, start + ram_size - 1,
a791e35e 889 locked_page, op);
c8b97818 890 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
891 num_bytes -= cur_alloc_size;
892 alloc_hint = ins.objectid + ins.offset;
893 start += cur_alloc_size;
b888db2b 894 }
b888db2b 895out:
771ed689 896 ret = 0;
b888db2b 897 btrfs_end_transaction(trans, root);
c8b97818 898
be20aa9d 899 return ret;
771ed689 900}
c8b97818 901
771ed689
CM
902/*
903 * work queue call back to started compression on a file and pages
904 */
905static noinline void async_cow_start(struct btrfs_work *work)
906{
907 struct async_cow *async_cow;
908 int num_added = 0;
909 async_cow = container_of(work, struct async_cow, work);
910
911 compress_file_range(async_cow->inode, async_cow->locked_page,
912 async_cow->start, async_cow->end, async_cow,
913 &num_added);
914 if (num_added == 0)
915 async_cow->inode = NULL;
916}
917
918/*
919 * work queue call back to submit previously compressed pages
920 */
921static noinline void async_cow_submit(struct btrfs_work *work)
922{
923 struct async_cow *async_cow;
924 struct btrfs_root *root;
925 unsigned long nr_pages;
926
927 async_cow = container_of(work, struct async_cow, work);
928
929 root = async_cow->root;
930 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
931 PAGE_CACHE_SHIFT;
932
933 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
934
935 if (atomic_read(&root->fs_info->async_delalloc_pages) <
936 5 * 1042 * 1024 &&
937 waitqueue_active(&root->fs_info->async_submit_wait))
938 wake_up(&root->fs_info->async_submit_wait);
939
d397712b 940 if (async_cow->inode)
771ed689 941 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 942}
c8b97818 943
771ed689
CM
944static noinline void async_cow_free(struct btrfs_work *work)
945{
946 struct async_cow *async_cow;
947 async_cow = container_of(work, struct async_cow, work);
948 kfree(async_cow);
949}
950
951static int cow_file_range_async(struct inode *inode, struct page *locked_page,
952 u64 start, u64 end, int *page_started,
953 unsigned long *nr_written)
954{
955 struct async_cow *async_cow;
956 struct btrfs_root *root = BTRFS_I(inode)->root;
957 unsigned long nr_pages;
958 u64 cur_end;
959 int limit = 10 * 1024 * 1042;
960
a3429ab7
CM
961 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
962 1, 0, NULL, GFP_NOFS);
d397712b 963 while (start < end) {
771ed689 964 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 965 BUG_ON(!async_cow);
771ed689
CM
966 async_cow->inode = inode;
967 async_cow->root = root;
968 async_cow->locked_page = locked_page;
969 async_cow->start = start;
970
6cbff00f 971 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
972 cur_end = end;
973 else
974 cur_end = min(end, start + 512 * 1024 - 1);
975
976 async_cow->end = cur_end;
977 INIT_LIST_HEAD(&async_cow->extents);
978
979 async_cow->work.func = async_cow_start;
980 async_cow->work.ordered_func = async_cow_submit;
981 async_cow->work.ordered_free = async_cow_free;
982 async_cow->work.flags = 0;
983
771ed689
CM
984 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
985 PAGE_CACHE_SHIFT;
986 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
987
988 btrfs_queue_worker(&root->fs_info->delalloc_workers,
989 &async_cow->work);
990
991 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
992 wait_event(root->fs_info->async_submit_wait,
993 (atomic_read(&root->fs_info->async_delalloc_pages) <
994 limit));
995 }
996
d397712b 997 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
998 atomic_read(&root->fs_info->async_delalloc_pages)) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1001 0));
1002 }
1003
1004 *nr_written += nr_pages;
1005 start = cur_end + 1;
1006 }
1007 *page_started = 1;
1008 return 0;
be20aa9d
CM
1009}
1010
d397712b 1011static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1012 u64 bytenr, u64 num_bytes)
1013{
1014 int ret;
1015 struct btrfs_ordered_sum *sums;
1016 LIST_HEAD(list);
1017
07d400a6 1018 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1019 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1020 if (ret == 0 && list_empty(&list))
1021 return 0;
1022
1023 while (!list_empty(&list)) {
1024 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1025 list_del(&sums->list);
1026 kfree(sums);
1027 }
1028 return 1;
1029}
1030
d352ac68
CM
1031/*
1032 * when nowcow writeback call back. This checks for snapshots or COW copies
1033 * of the extents that exist in the file, and COWs the file as required.
1034 *
1035 * If no cow copies or snapshots exist, we write directly to the existing
1036 * blocks on disk
1037 */
7f366cfe
CM
1038static noinline int run_delalloc_nocow(struct inode *inode,
1039 struct page *locked_page,
771ed689
CM
1040 u64 start, u64 end, int *page_started, int force,
1041 unsigned long *nr_written)
be20aa9d 1042{
be20aa9d 1043 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1044 struct btrfs_trans_handle *trans;
be20aa9d 1045 struct extent_buffer *leaf;
be20aa9d 1046 struct btrfs_path *path;
80ff3856 1047 struct btrfs_file_extent_item *fi;
be20aa9d 1048 struct btrfs_key found_key;
80ff3856
YZ
1049 u64 cow_start;
1050 u64 cur_offset;
1051 u64 extent_end;
5d4f98a2 1052 u64 extent_offset;
80ff3856
YZ
1053 u64 disk_bytenr;
1054 u64 num_bytes;
1055 int extent_type;
1056 int ret;
d899e052 1057 int type;
80ff3856
YZ
1058 int nocow;
1059 int check_prev = 1;
82d5902d 1060 bool nolock;
33345d01 1061 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1062
1063 path = btrfs_alloc_path();
d8926bb3
MF
1064 if (!path)
1065 return -ENOMEM;
82d5902d 1066
2cf8572d 1067 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1068
1069 if (nolock)
7a7eaa40 1070 trans = btrfs_join_transaction_nolock(root);
82d5902d 1071 else
7a7eaa40 1072 trans = btrfs_join_transaction(root);
ff5714cc 1073
3612b495 1074 BUG_ON(IS_ERR(trans));
74b21075 1075 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1076
80ff3856
YZ
1077 cow_start = (u64)-1;
1078 cur_offset = start;
1079 while (1) {
33345d01 1080 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1081 cur_offset, 0);
1082 BUG_ON(ret < 0);
1083 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1084 leaf = path->nodes[0];
1085 btrfs_item_key_to_cpu(leaf, &found_key,
1086 path->slots[0] - 1);
33345d01 1087 if (found_key.objectid == ino &&
80ff3856
YZ
1088 found_key.type == BTRFS_EXTENT_DATA_KEY)
1089 path->slots[0]--;
1090 }
1091 check_prev = 0;
1092next_slot:
1093 leaf = path->nodes[0];
1094 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 ret = btrfs_next_leaf(root, path);
1096 if (ret < 0)
1097 BUG_ON(1);
1098 if (ret > 0)
1099 break;
1100 leaf = path->nodes[0];
1101 }
be20aa9d 1102
80ff3856
YZ
1103 nocow = 0;
1104 disk_bytenr = 0;
17d217fe 1105 num_bytes = 0;
80ff3856
YZ
1106 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1107
33345d01 1108 if (found_key.objectid > ino ||
80ff3856
YZ
1109 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1110 found_key.offset > end)
1111 break;
1112
1113 if (found_key.offset > cur_offset) {
1114 extent_end = found_key.offset;
e9061e21 1115 extent_type = 0;
80ff3856
YZ
1116 goto out_check;
1117 }
1118
1119 fi = btrfs_item_ptr(leaf, path->slots[0],
1120 struct btrfs_file_extent_item);
1121 extent_type = btrfs_file_extent_type(leaf, fi);
1122
d899e052
YZ
1123 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1124 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1125 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1126 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1127 extent_end = found_key.offset +
1128 btrfs_file_extent_num_bytes(leaf, fi);
1129 if (extent_end <= start) {
1130 path->slots[0]++;
1131 goto next_slot;
1132 }
17d217fe
YZ
1133 if (disk_bytenr == 0)
1134 goto out_check;
80ff3856
YZ
1135 if (btrfs_file_extent_compression(leaf, fi) ||
1136 btrfs_file_extent_encryption(leaf, fi) ||
1137 btrfs_file_extent_other_encoding(leaf, fi))
1138 goto out_check;
d899e052
YZ
1139 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1140 goto out_check;
d2fb3437 1141 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1142 goto out_check;
33345d01 1143 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1144 found_key.offset -
1145 extent_offset, disk_bytenr))
17d217fe 1146 goto out_check;
5d4f98a2 1147 disk_bytenr += extent_offset;
17d217fe
YZ
1148 disk_bytenr += cur_offset - found_key.offset;
1149 num_bytes = min(end + 1, extent_end) - cur_offset;
1150 /*
1151 * force cow if csum exists in the range.
1152 * this ensure that csum for a given extent are
1153 * either valid or do not exist.
1154 */
1155 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1156 goto out_check;
80ff3856
YZ
1157 nocow = 1;
1158 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1159 extent_end = found_key.offset +
1160 btrfs_file_extent_inline_len(leaf, fi);
1161 extent_end = ALIGN(extent_end, root->sectorsize);
1162 } else {
1163 BUG_ON(1);
1164 }
1165out_check:
1166 if (extent_end <= start) {
1167 path->slots[0]++;
1168 goto next_slot;
1169 }
1170 if (!nocow) {
1171 if (cow_start == (u64)-1)
1172 cow_start = cur_offset;
1173 cur_offset = extent_end;
1174 if (cur_offset > end)
1175 break;
1176 path->slots[0]++;
1177 goto next_slot;
7ea394f1
YZ
1178 }
1179
b3b4aa74 1180 btrfs_release_path(path);
80ff3856
YZ
1181 if (cow_start != (u64)-1) {
1182 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1183 found_key.offset - 1, page_started,
1184 nr_written, 1);
80ff3856
YZ
1185 BUG_ON(ret);
1186 cow_start = (u64)-1;
7ea394f1 1187 }
80ff3856 1188
d899e052
YZ
1189 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1190 struct extent_map *em;
1191 struct extent_map_tree *em_tree;
1192 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1193 em = alloc_extent_map();
c26a9203 1194 BUG_ON(!em);
d899e052 1195 em->start = cur_offset;
445a6944 1196 em->orig_start = em->start;
d899e052
YZ
1197 em->len = num_bytes;
1198 em->block_len = num_bytes;
1199 em->block_start = disk_bytenr;
1200 em->bdev = root->fs_info->fs_devices->latest_bdev;
1201 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1202 while (1) {
890871be 1203 write_lock(&em_tree->lock);
d899e052 1204 ret = add_extent_mapping(em_tree, em);
890871be 1205 write_unlock(&em_tree->lock);
d899e052
YZ
1206 if (ret != -EEXIST) {
1207 free_extent_map(em);
1208 break;
1209 }
1210 btrfs_drop_extent_cache(inode, em->start,
1211 em->start + em->len - 1, 0);
1212 }
1213 type = BTRFS_ORDERED_PREALLOC;
1214 } else {
1215 type = BTRFS_ORDERED_NOCOW;
1216 }
80ff3856
YZ
1217
1218 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1219 num_bytes, num_bytes, type);
1220 BUG_ON(ret);
771ed689 1221
efa56464
YZ
1222 if (root->root_key.objectid ==
1223 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1224 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1225 num_bytes);
1226 BUG_ON(ret);
1227 }
1228
d899e052 1229 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1230 cur_offset, cur_offset + num_bytes - 1,
1231 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1232 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1233 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1234 cur_offset = extent_end;
1235 if (cur_offset > end)
1236 break;
be20aa9d 1237 }
b3b4aa74 1238 btrfs_release_path(path);
80ff3856
YZ
1239
1240 if (cur_offset <= end && cow_start == (u64)-1)
1241 cow_start = cur_offset;
1242 if (cow_start != (u64)-1) {
1243 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1244 page_started, nr_written, 1);
80ff3856
YZ
1245 BUG_ON(ret);
1246 }
1247
0cb59c99
JB
1248 if (nolock) {
1249 ret = btrfs_end_transaction_nolock(trans, root);
1250 BUG_ON(ret);
1251 } else {
1252 ret = btrfs_end_transaction(trans, root);
1253 BUG_ON(ret);
1254 }
7ea394f1 1255 btrfs_free_path(path);
80ff3856 1256 return 0;
be20aa9d
CM
1257}
1258
d352ac68
CM
1259/*
1260 * extent_io.c call back to do delayed allocation processing
1261 */
c8b97818 1262static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1263 u64 start, u64 end, int *page_started,
1264 unsigned long *nr_written)
be20aa9d 1265{
be20aa9d 1266 int ret;
7f366cfe 1267 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1268
6cbff00f 1269 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1270 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1271 page_started, 1, nr_written);
6cbff00f 1272 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1273 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1274 page_started, 0, nr_written);
1e701a32 1275 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1276 !(BTRFS_I(inode)->force_compress) &&
1277 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1278 ret = cow_file_range(inode, locked_page, start, end,
1279 page_started, nr_written, 1);
be20aa9d 1280 else
771ed689 1281 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1282 page_started, nr_written);
b888db2b
CM
1283 return ret;
1284}
1285
9ed74f2d 1286static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1287 struct extent_state *orig, u64 split)
9ed74f2d 1288{
0ca1f7ce 1289 /* not delalloc, ignore it */
9ed74f2d
JB
1290 if (!(orig->state & EXTENT_DELALLOC))
1291 return 0;
1292
9e0baf60
JB
1293 spin_lock(&BTRFS_I(inode)->lock);
1294 BTRFS_I(inode)->outstanding_extents++;
1295 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1296 return 0;
1297}
1298
1299/*
1300 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1301 * extents so we can keep track of new extents that are just merged onto old
1302 * extents, such as when we are doing sequential writes, so we can properly
1303 * account for the metadata space we'll need.
1304 */
1305static int btrfs_merge_extent_hook(struct inode *inode,
1306 struct extent_state *new,
1307 struct extent_state *other)
1308{
9ed74f2d
JB
1309 /* not delalloc, ignore it */
1310 if (!(other->state & EXTENT_DELALLOC))
1311 return 0;
1312
9e0baf60
JB
1313 spin_lock(&BTRFS_I(inode)->lock);
1314 BTRFS_I(inode)->outstanding_extents--;
1315 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1316 return 0;
1317}
1318
d352ac68
CM
1319/*
1320 * extent_io.c set_bit_hook, used to track delayed allocation
1321 * bytes in this file, and to maintain the list of inodes that
1322 * have pending delalloc work to be done.
1323 */
0ca1f7ce
YZ
1324static int btrfs_set_bit_hook(struct inode *inode,
1325 struct extent_state *state, int *bits)
291d673e 1326{
9ed74f2d 1327
75eff68e
CM
1328 /*
1329 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1330 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1331 * bit, which is only set or cleared with irqs on
1332 */
0ca1f7ce 1333 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1334 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1335 u64 len = state->end + 1 - state->start;
2cf8572d 1336 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1337
9e0baf60 1338 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1339 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1340 } else {
1341 spin_lock(&BTRFS_I(inode)->lock);
1342 BTRFS_I(inode)->outstanding_extents++;
1343 spin_unlock(&BTRFS_I(inode)->lock);
1344 }
287a0ab9 1345
75eff68e 1346 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1347 BTRFS_I(inode)->delalloc_bytes += len;
1348 root->fs_info->delalloc_bytes += len;
0cb59c99 1349 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1350 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1351 &root->fs_info->delalloc_inodes);
1352 }
75eff68e 1353 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1354 }
1355 return 0;
1356}
1357
d352ac68
CM
1358/*
1359 * extent_io.c clear_bit_hook, see set_bit_hook for why
1360 */
9ed74f2d 1361static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1362 struct extent_state *state, int *bits)
291d673e 1363{
75eff68e
CM
1364 /*
1365 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1366 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1367 * bit, which is only set or cleared with irqs on
1368 */
0ca1f7ce 1369 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1370 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1371 u64 len = state->end + 1 - state->start;
2cf8572d 1372 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1373
9e0baf60 1374 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1375 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1376 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1377 spin_lock(&BTRFS_I(inode)->lock);
1378 BTRFS_I(inode)->outstanding_extents--;
1379 spin_unlock(&BTRFS_I(inode)->lock);
1380 }
0ca1f7ce
YZ
1381
1382 if (*bits & EXTENT_DO_ACCOUNTING)
1383 btrfs_delalloc_release_metadata(inode, len);
1384
0cb59c99
JB
1385 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1386 && do_list)
0ca1f7ce 1387 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1388
75eff68e 1389 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1390 root->fs_info->delalloc_bytes -= len;
1391 BTRFS_I(inode)->delalloc_bytes -= len;
1392
0cb59c99 1393 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1394 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1395 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1396 }
75eff68e 1397 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1398 }
1399 return 0;
1400}
1401
d352ac68
CM
1402/*
1403 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1404 * we don't create bios that span stripes or chunks
1405 */
239b14b3 1406int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1407 size_t size, struct bio *bio,
1408 unsigned long bio_flags)
239b14b3
CM
1409{
1410 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1411 struct btrfs_mapping_tree *map_tree;
a62b9401 1412 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1413 u64 length = 0;
1414 u64 map_length;
239b14b3
CM
1415 int ret;
1416
771ed689
CM
1417 if (bio_flags & EXTENT_BIO_COMPRESSED)
1418 return 0;
1419
f2d8d74d 1420 length = bio->bi_size;
239b14b3
CM
1421 map_tree = &root->fs_info->mapping_tree;
1422 map_length = length;
cea9e445 1423 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1424 &map_length, NULL, 0);
cea9e445 1425
d397712b 1426 if (map_length < length + size)
239b14b3 1427 return 1;
411fc6bc 1428 return ret;
239b14b3
CM
1429}
1430
d352ac68
CM
1431/*
1432 * in order to insert checksums into the metadata in large chunks,
1433 * we wait until bio submission time. All the pages in the bio are
1434 * checksummed and sums are attached onto the ordered extent record.
1435 *
1436 * At IO completion time the cums attached on the ordered extent record
1437 * are inserted into the btree
1438 */
d397712b
CM
1439static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1440 struct bio *bio, int mirror_num,
eaf25d93
CM
1441 unsigned long bio_flags,
1442 u64 bio_offset)
065631f6 1443{
065631f6 1444 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1445 int ret = 0;
e015640f 1446
d20f7043 1447 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1448 BUG_ON(ret);
4a69a410
CM
1449 return 0;
1450}
e015640f 1451
4a69a410
CM
1452/*
1453 * in order to insert checksums into the metadata in large chunks,
1454 * we wait until bio submission time. All the pages in the bio are
1455 * checksummed and sums are attached onto the ordered extent record.
1456 *
1457 * At IO completion time the cums attached on the ordered extent record
1458 * are inserted into the btree
1459 */
b2950863 1460static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1461 int mirror_num, unsigned long bio_flags,
1462 u64 bio_offset)
4a69a410
CM
1463{
1464 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1465 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1466}
1467
d352ac68 1468/*
cad321ad
CM
1469 * extent_io.c submission hook. This does the right thing for csum calculation
1470 * on write, or reading the csums from the tree before a read
d352ac68 1471 */
b2950863 1472static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1473 int mirror_num, unsigned long bio_flags,
1474 u64 bio_offset)
44b8bd7e
CM
1475{
1476 struct btrfs_root *root = BTRFS_I(inode)->root;
1477 int ret = 0;
19b9bdb0 1478 int skip_sum;
44b8bd7e 1479
6cbff00f 1480 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1481
2cf8572d 1482 if (btrfs_is_free_space_inode(root, inode))
0cb59c99
JB
1483 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1484 else
1485 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1486 BUG_ON(ret);
065631f6 1487
7b6d91da 1488 if (!(rw & REQ_WRITE)) {
d20f7043 1489 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1490 return btrfs_submit_compressed_read(inode, bio,
1491 mirror_num, bio_flags);
c2db1073
TI
1492 } else if (!skip_sum) {
1493 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1494 if (ret)
1495 return ret;
1496 }
4d1b5fb4 1497 goto mapit;
19b9bdb0 1498 } else if (!skip_sum) {
17d217fe
YZ
1499 /* csum items have already been cloned */
1500 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1501 goto mapit;
19b9bdb0
CM
1502 /* we're doing a write, do the async checksumming */
1503 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1504 inode, rw, bio, mirror_num,
eaf25d93
CM
1505 bio_flags, bio_offset,
1506 __btrfs_submit_bio_start,
4a69a410 1507 __btrfs_submit_bio_done);
19b9bdb0
CM
1508 }
1509
0b86a832 1510mapit:
8b712842 1511 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1512}
6885f308 1513
d352ac68
CM
1514/*
1515 * given a list of ordered sums record them in the inode. This happens
1516 * at IO completion time based on sums calculated at bio submission time.
1517 */
ba1da2f4 1518static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1519 struct inode *inode, u64 file_offset,
1520 struct list_head *list)
1521{
e6dcd2dc
CM
1522 struct btrfs_ordered_sum *sum;
1523
c6e30871 1524 list_for_each_entry(sum, list, list) {
d20f7043
CM
1525 btrfs_csum_file_blocks(trans,
1526 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1527 }
1528 return 0;
1529}
1530
2ac55d41
JB
1531int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1532 struct extent_state **cached_state)
ea8c2819 1533{
d397712b 1534 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1535 WARN_ON(1);
ea8c2819 1536 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1537 cached_state, GFP_NOFS);
ea8c2819
CM
1538}
1539
d352ac68 1540/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1541struct btrfs_writepage_fixup {
1542 struct page *page;
1543 struct btrfs_work work;
1544};
1545
b2950863 1546static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1547{
1548 struct btrfs_writepage_fixup *fixup;
1549 struct btrfs_ordered_extent *ordered;
2ac55d41 1550 struct extent_state *cached_state = NULL;
247e743c
CM
1551 struct page *page;
1552 struct inode *inode;
1553 u64 page_start;
1554 u64 page_end;
1555
1556 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1557 page = fixup->page;
4a096752 1558again:
247e743c
CM
1559 lock_page(page);
1560 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1561 ClearPageChecked(page);
1562 goto out_page;
1563 }
1564
1565 inode = page->mapping->host;
1566 page_start = page_offset(page);
1567 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1568
2ac55d41
JB
1569 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1570 &cached_state, GFP_NOFS);
4a096752
CM
1571
1572 /* already ordered? We're done */
8b62b72b 1573 if (PagePrivate2(page))
247e743c 1574 goto out;
4a096752
CM
1575
1576 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1577 if (ordered) {
2ac55d41
JB
1578 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1579 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1580 unlock_page(page);
1581 btrfs_start_ordered_extent(inode, ordered, 1);
1582 goto again;
1583 }
247e743c 1584
0ca1f7ce 1585 BUG();
2ac55d41 1586 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1587 ClearPageChecked(page);
1588out:
2ac55d41
JB
1589 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1590 &cached_state, GFP_NOFS);
247e743c
CM
1591out_page:
1592 unlock_page(page);
1593 page_cache_release(page);
b897abec 1594 kfree(fixup);
247e743c
CM
1595}
1596
1597/*
1598 * There are a few paths in the higher layers of the kernel that directly
1599 * set the page dirty bit without asking the filesystem if it is a
1600 * good idea. This causes problems because we want to make sure COW
1601 * properly happens and the data=ordered rules are followed.
1602 *
c8b97818 1603 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1604 * hasn't been properly setup for IO. We kick off an async process
1605 * to fix it up. The async helper will wait for ordered extents, set
1606 * the delalloc bit and make it safe to write the page.
1607 */
b2950863 1608static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1609{
1610 struct inode *inode = page->mapping->host;
1611 struct btrfs_writepage_fixup *fixup;
1612 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1613
8b62b72b
CM
1614 /* this page is properly in the ordered list */
1615 if (TestClearPagePrivate2(page))
247e743c
CM
1616 return 0;
1617
1618 if (PageChecked(page))
1619 return -EAGAIN;
1620
1621 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1622 if (!fixup)
1623 return -EAGAIN;
f421950f 1624
247e743c
CM
1625 SetPageChecked(page);
1626 page_cache_get(page);
1627 fixup->work.func = btrfs_writepage_fixup_worker;
1628 fixup->page = page;
1629 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1630 return -EAGAIN;
1631}
1632
d899e052
YZ
1633static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1634 struct inode *inode, u64 file_pos,
1635 u64 disk_bytenr, u64 disk_num_bytes,
1636 u64 num_bytes, u64 ram_bytes,
1637 u8 compression, u8 encryption,
1638 u16 other_encoding, int extent_type)
1639{
1640 struct btrfs_root *root = BTRFS_I(inode)->root;
1641 struct btrfs_file_extent_item *fi;
1642 struct btrfs_path *path;
1643 struct extent_buffer *leaf;
1644 struct btrfs_key ins;
1645 u64 hint;
1646 int ret;
1647
1648 path = btrfs_alloc_path();
d8926bb3
MF
1649 if (!path)
1650 return -ENOMEM;
d899e052 1651
b9473439 1652 path->leave_spinning = 1;
a1ed835e
CM
1653
1654 /*
1655 * we may be replacing one extent in the tree with another.
1656 * The new extent is pinned in the extent map, and we don't want
1657 * to drop it from the cache until it is completely in the btree.
1658 *
1659 * So, tell btrfs_drop_extents to leave this extent in the cache.
1660 * the caller is expected to unpin it and allow it to be merged
1661 * with the others.
1662 */
920bbbfb
YZ
1663 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1664 &hint, 0);
d899e052
YZ
1665 BUG_ON(ret);
1666
33345d01 1667 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1668 ins.offset = file_pos;
1669 ins.type = BTRFS_EXTENT_DATA_KEY;
1670 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1671 BUG_ON(ret);
1672 leaf = path->nodes[0];
1673 fi = btrfs_item_ptr(leaf, path->slots[0],
1674 struct btrfs_file_extent_item);
1675 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1676 btrfs_set_file_extent_type(leaf, fi, extent_type);
1677 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1678 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1679 btrfs_set_file_extent_offset(leaf, fi, 0);
1680 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1681 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1682 btrfs_set_file_extent_compression(leaf, fi, compression);
1683 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1684 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1685
1686 btrfs_unlock_up_safe(path, 1);
1687 btrfs_set_lock_blocking(leaf);
1688
d899e052
YZ
1689 btrfs_mark_buffer_dirty(leaf);
1690
1691 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1692
1693 ins.objectid = disk_bytenr;
1694 ins.offset = disk_num_bytes;
1695 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1696 ret = btrfs_alloc_reserved_file_extent(trans, root,
1697 root->root_key.objectid,
33345d01 1698 btrfs_ino(inode), file_pos, &ins);
d899e052 1699 BUG_ON(ret);
d899e052 1700 btrfs_free_path(path);
b9473439 1701
d899e052
YZ
1702 return 0;
1703}
1704
5d13a98f
CM
1705/*
1706 * helper function for btrfs_finish_ordered_io, this
1707 * just reads in some of the csum leaves to prime them into ram
1708 * before we start the transaction. It limits the amount of btree
1709 * reads required while inside the transaction.
1710 */
d352ac68
CM
1711/* as ordered data IO finishes, this gets called so we can finish
1712 * an ordered extent if the range of bytes in the file it covers are
1713 * fully written.
1714 */
211f90e6 1715static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1716{
e6dcd2dc 1717 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1718 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1719 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1720 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1721 struct extent_state *cached_state = NULL;
261507a0 1722 int compress_type = 0;
e6dcd2dc 1723 int ret;
82d5902d 1724 bool nolock;
e6dcd2dc 1725
5a1a3df1
JB
1726 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1727 end - start + 1);
ba1da2f4 1728 if (!ret)
e6dcd2dc 1729 return 0;
e6dcd2dc 1730 BUG_ON(!ordered_extent);
efd049fb 1731
2cf8572d 1732 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1733
c2167754
YZ
1734 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1735 BUG_ON(!list_empty(&ordered_extent->list));
1736 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1737 if (!ret) {
0cb59c99 1738 if (nolock)
7a7eaa40 1739 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1740 else
7a7eaa40 1741 trans = btrfs_join_transaction(root);
3612b495 1742 BUG_ON(IS_ERR(trans));
0ca1f7ce 1743 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1744 ret = btrfs_update_inode(trans, root, inode);
1745 BUG_ON(ret);
c2167754
YZ
1746 }
1747 goto out;
1748 }
e6dcd2dc 1749
2ac55d41
JB
1750 lock_extent_bits(io_tree, ordered_extent->file_offset,
1751 ordered_extent->file_offset + ordered_extent->len - 1,
1752 0, &cached_state, GFP_NOFS);
e6dcd2dc 1753
0cb59c99 1754 if (nolock)
7a7eaa40 1755 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1756 else
7a7eaa40 1757 trans = btrfs_join_transaction(root);
3612b495 1758 BUG_ON(IS_ERR(trans));
0ca1f7ce 1759 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1760
c8b97818 1761 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1762 compress_type = ordered_extent->compress_type;
d899e052 1763 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1764 BUG_ON(compress_type);
920bbbfb 1765 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1766 ordered_extent->file_offset,
1767 ordered_extent->file_offset +
1768 ordered_extent->len);
1769 BUG_ON(ret);
1770 } else {
0af3d00b 1771 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1772 ret = insert_reserved_file_extent(trans, inode,
1773 ordered_extent->file_offset,
1774 ordered_extent->start,
1775 ordered_extent->disk_len,
1776 ordered_extent->len,
1777 ordered_extent->len,
261507a0 1778 compress_type, 0, 0,
d899e052 1779 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1780 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1781 ordered_extent->file_offset,
1782 ordered_extent->len);
d899e052
YZ
1783 BUG_ON(ret);
1784 }
2ac55d41
JB
1785 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1786 ordered_extent->file_offset +
1787 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1788
e6dcd2dc
CM
1789 add_pending_csums(trans, inode, ordered_extent->file_offset,
1790 &ordered_extent->list);
1791
1ef30be1
JB
1792 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1793 if (!ret) {
1794 ret = btrfs_update_inode(trans, root, inode);
1795 BUG_ON(ret);
1796 }
1797 ret = 0;
c2167754 1798out:
0cb59c99
JB
1799 if (nolock) {
1800 if (trans)
1801 btrfs_end_transaction_nolock(trans, root);
1802 } else {
1803 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1804 if (trans)
1805 btrfs_end_transaction(trans, root);
1806 }
1807
e6dcd2dc
CM
1808 /* once for us */
1809 btrfs_put_ordered_extent(ordered_extent);
1810 /* once for the tree */
1811 btrfs_put_ordered_extent(ordered_extent);
1812
e6dcd2dc
CM
1813 return 0;
1814}
1815
b2950863 1816static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1817 struct extent_state *state, int uptodate)
1818{
1abe9b8a 1819 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1820
8b62b72b 1821 ClearPagePrivate2(page);
211f90e6
CM
1822 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1823}
1824
d352ac68
CM
1825/*
1826 * When IO fails, either with EIO or csum verification fails, we
1827 * try other mirrors that might have a good copy of the data. This
1828 * io_failure_record is used to record state as we go through all the
1829 * mirrors. If another mirror has good data, the page is set up to date
1830 * and things continue. If a good mirror can't be found, the original
1831 * bio end_io callback is called to indicate things have failed.
1832 */
7e38326f
CM
1833struct io_failure_record {
1834 struct page *page;
1835 u64 start;
1836 u64 len;
1837 u64 logical;
d20f7043 1838 unsigned long bio_flags;
7e38326f
CM
1839 int last_mirror;
1840};
1841
b2950863 1842static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1843 struct page *page, u64 start, u64 end,
1844 struct extent_state *state)
7e38326f
CM
1845{
1846 struct io_failure_record *failrec = NULL;
1847 u64 private;
1848 struct extent_map *em;
1849 struct inode *inode = page->mapping->host;
1850 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1851 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1852 struct bio *bio;
1853 int num_copies;
1854 int ret;
1259ab75 1855 int rw;
7e38326f
CM
1856 u64 logical;
1857
1858 ret = get_state_private(failure_tree, start, &private);
1859 if (ret) {
7e38326f
CM
1860 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1861 if (!failrec)
1862 return -ENOMEM;
1863 failrec->start = start;
1864 failrec->len = end - start + 1;
1865 failrec->last_mirror = 0;
d20f7043 1866 failrec->bio_flags = 0;
7e38326f 1867
890871be 1868 read_lock(&em_tree->lock);
3b951516
CM
1869 em = lookup_extent_mapping(em_tree, start, failrec->len);
1870 if (em->start > start || em->start + em->len < start) {
1871 free_extent_map(em);
1872 em = NULL;
1873 }
890871be 1874 read_unlock(&em_tree->lock);
7e38326f 1875
c704005d 1876 if (IS_ERR_OR_NULL(em)) {
7e38326f
CM
1877 kfree(failrec);
1878 return -EIO;
1879 }
1880 logical = start - em->start;
1881 logical = em->block_start + logical;
d20f7043
CM
1882 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1883 logical = em->block_start;
1884 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1885 extent_set_compress_type(&failrec->bio_flags,
1886 em->compress_type);
d20f7043 1887 }
7e38326f
CM
1888 failrec->logical = logical;
1889 free_extent_map(em);
1890 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1891 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1892 set_state_private(failure_tree, start,
1893 (u64)(unsigned long)failrec);
7e38326f 1894 } else {
587f7704 1895 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1896 }
1897 num_copies = btrfs_num_copies(
1898 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1899 failrec->logical, failrec->len);
1900 failrec->last_mirror++;
1901 if (!state) {
cad321ad 1902 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1903 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1904 failrec->start,
1905 EXTENT_LOCKED);
1906 if (state && state->start != failrec->start)
1907 state = NULL;
cad321ad 1908 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1909 }
1910 if (!state || failrec->last_mirror > num_copies) {
1911 set_state_private(failure_tree, failrec->start, 0);
1912 clear_extent_bits(failure_tree, failrec->start,
1913 failrec->start + failrec->len - 1,
1914 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1915 kfree(failrec);
1916 return -EIO;
1917 }
1918 bio = bio_alloc(GFP_NOFS, 1);
1919 bio->bi_private = state;
1920 bio->bi_end_io = failed_bio->bi_end_io;
1921 bio->bi_sector = failrec->logical >> 9;
1922 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1923 bio->bi_size = 0;
d20f7043 1924
7e38326f 1925 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1926 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1927 rw = WRITE;
1928 else
1929 rw = READ;
1930
c2db1073 1931 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1932 failrec->last_mirror,
eaf25d93 1933 failrec->bio_flags, 0);
c2db1073 1934 return ret;
1259ab75
CM
1935}
1936
d352ac68
CM
1937/*
1938 * each time an IO finishes, we do a fast check in the IO failure tree
1939 * to see if we need to process or clean up an io_failure_record
1940 */
b2950863 1941static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1942{
1943 u64 private;
1944 u64 private_failure;
1945 struct io_failure_record *failure;
1946 int ret;
1947
1948 private = 0;
1949 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1950 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1951 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1952 start, &private_failure);
1953 if (ret == 0) {
1954 failure = (struct io_failure_record *)(unsigned long)
1955 private_failure;
1956 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1957 failure->start, 0);
1958 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1959 failure->start,
1960 failure->start + failure->len - 1,
1961 EXTENT_DIRTY | EXTENT_LOCKED,
1962 GFP_NOFS);
1963 kfree(failure);
1964 }
1965 }
7e38326f
CM
1966 return 0;
1967}
1968
d352ac68
CM
1969/*
1970 * when reads are done, we need to check csums to verify the data is correct
1971 * if there's a match, we allow the bio to finish. If not, we go through
1972 * the io_failure_record routines to find good copies
1973 */
b2950863 1974static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1975 struct extent_state *state)
07157aac 1976{
35ebb934 1977 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1978 struct inode *inode = page->mapping->host;
d1310b2e 1979 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1980 char *kaddr;
aadfeb6e 1981 u64 private = ~(u32)0;
07157aac 1982 int ret;
ff79f819
CM
1983 struct btrfs_root *root = BTRFS_I(inode)->root;
1984 u32 csum = ~(u32)0;
d1310b2e 1985
d20f7043
CM
1986 if (PageChecked(page)) {
1987 ClearPageChecked(page);
1988 goto good;
1989 }
6cbff00f
CH
1990
1991 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1992 goto good;
17d217fe
YZ
1993
1994 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1995 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1996 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1997 GFP_NOFS);
b6cda9bc 1998 return 0;
17d217fe 1999 }
d20f7043 2000
c2e639f0 2001 if (state && state->start == start) {
70dec807
CM
2002 private = state->private;
2003 ret = 0;
2004 } else {
2005 ret = get_state_private(io_tree, start, &private);
2006 }
9ab86c8e 2007 kaddr = kmap_atomic(page, KM_USER0);
d397712b 2008 if (ret)
07157aac 2009 goto zeroit;
d397712b 2010
ff79f819
CM
2011 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2012 btrfs_csum_final(csum, (char *)&csum);
d397712b 2013 if (csum != private)
07157aac 2014 goto zeroit;
d397712b 2015
9ab86c8e 2016 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2017good:
7e38326f
CM
2018 /* if the io failure tree for this inode is non-empty,
2019 * check to see if we've recovered from a failed IO
2020 */
1259ab75 2021 btrfs_clean_io_failures(inode, start);
07157aac
CM
2022 return 0;
2023
2024zeroit:
945d8962 2025 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2026 "private %llu\n",
2027 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2028 (unsigned long long)start, csum,
2029 (unsigned long long)private);
db94535d
CM
2030 memset(kaddr + offset, 1, end - start + 1);
2031 flush_dcache_page(page);
9ab86c8e 2032 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2033 if (private == 0)
2034 return 0;
7e38326f 2035 return -EIO;
07157aac 2036}
b888db2b 2037
24bbcf04
YZ
2038struct delayed_iput {
2039 struct list_head list;
2040 struct inode *inode;
2041};
2042
2043void btrfs_add_delayed_iput(struct inode *inode)
2044{
2045 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2046 struct delayed_iput *delayed;
2047
2048 if (atomic_add_unless(&inode->i_count, -1, 1))
2049 return;
2050
2051 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2052 delayed->inode = inode;
2053
2054 spin_lock(&fs_info->delayed_iput_lock);
2055 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2056 spin_unlock(&fs_info->delayed_iput_lock);
2057}
2058
2059void btrfs_run_delayed_iputs(struct btrfs_root *root)
2060{
2061 LIST_HEAD(list);
2062 struct btrfs_fs_info *fs_info = root->fs_info;
2063 struct delayed_iput *delayed;
2064 int empty;
2065
2066 spin_lock(&fs_info->delayed_iput_lock);
2067 empty = list_empty(&fs_info->delayed_iputs);
2068 spin_unlock(&fs_info->delayed_iput_lock);
2069 if (empty)
2070 return;
2071
2072 down_read(&root->fs_info->cleanup_work_sem);
2073 spin_lock(&fs_info->delayed_iput_lock);
2074 list_splice_init(&fs_info->delayed_iputs, &list);
2075 spin_unlock(&fs_info->delayed_iput_lock);
2076
2077 while (!list_empty(&list)) {
2078 delayed = list_entry(list.next, struct delayed_iput, list);
2079 list_del(&delayed->list);
2080 iput(delayed->inode);
2081 kfree(delayed);
2082 }
2083 up_read(&root->fs_info->cleanup_work_sem);
2084}
2085
d68fc57b
YZ
2086/*
2087 * calculate extra metadata reservation when snapshotting a subvolume
2088 * contains orphan files.
2089 */
2090void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2091 struct btrfs_pending_snapshot *pending,
2092 u64 *bytes_to_reserve)
2093{
2094 struct btrfs_root *root;
2095 struct btrfs_block_rsv *block_rsv;
2096 u64 num_bytes;
2097 int index;
2098
2099 root = pending->root;
2100 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2101 return;
2102
2103 block_rsv = root->orphan_block_rsv;
2104
2105 /* orphan block reservation for the snapshot */
2106 num_bytes = block_rsv->size;
2107
2108 /*
2109 * after the snapshot is created, COWing tree blocks may use more
2110 * space than it frees. So we should make sure there is enough
2111 * reserved space.
2112 */
2113 index = trans->transid & 0x1;
2114 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2115 num_bytes += block_rsv->size -
2116 (block_rsv->reserved + block_rsv->freed[index]);
2117 }
2118
2119 *bytes_to_reserve += num_bytes;
2120}
2121
2122void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2123 struct btrfs_pending_snapshot *pending)
2124{
2125 struct btrfs_root *root = pending->root;
2126 struct btrfs_root *snap = pending->snap;
2127 struct btrfs_block_rsv *block_rsv;
2128 u64 num_bytes;
2129 int index;
2130 int ret;
2131
2132 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2133 return;
2134
2135 /* refill source subvolume's orphan block reservation */
2136 block_rsv = root->orphan_block_rsv;
2137 index = trans->transid & 0x1;
2138 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2139 num_bytes = block_rsv->size -
2140 (block_rsv->reserved + block_rsv->freed[index]);
2141 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2142 root->orphan_block_rsv,
2143 num_bytes);
2144 BUG_ON(ret);
2145 }
2146
2147 /* setup orphan block reservation for the snapshot */
2148 block_rsv = btrfs_alloc_block_rsv(snap);
2149 BUG_ON(!block_rsv);
2150
2151 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2152 snap->orphan_block_rsv = block_rsv;
2153
2154 num_bytes = root->orphan_block_rsv->size;
2155 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2156 block_rsv, num_bytes);
2157 BUG_ON(ret);
2158
2159#if 0
2160 /* insert orphan item for the snapshot */
2161 WARN_ON(!root->orphan_item_inserted);
2162 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2163 snap->root_key.objectid);
2164 BUG_ON(ret);
2165 snap->orphan_item_inserted = 1;
2166#endif
2167}
2168
2169enum btrfs_orphan_cleanup_state {
2170 ORPHAN_CLEANUP_STARTED = 1,
2171 ORPHAN_CLEANUP_DONE = 2,
2172};
2173
2174/*
2175 * This is called in transaction commmit time. If there are no orphan
2176 * files in the subvolume, it removes orphan item and frees block_rsv
2177 * structure.
2178 */
2179void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2180 struct btrfs_root *root)
2181{
2182 int ret;
2183
2184 if (!list_empty(&root->orphan_list) ||
2185 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2186 return;
2187
2188 if (root->orphan_item_inserted &&
2189 btrfs_root_refs(&root->root_item) > 0) {
2190 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2191 root->root_key.objectid);
2192 BUG_ON(ret);
2193 root->orphan_item_inserted = 0;
2194 }
2195
2196 if (root->orphan_block_rsv) {
2197 WARN_ON(root->orphan_block_rsv->size > 0);
2198 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2199 root->orphan_block_rsv = NULL;
2200 }
2201}
2202
7b128766
JB
2203/*
2204 * This creates an orphan entry for the given inode in case something goes
2205 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2206 *
2207 * NOTE: caller of this function should reserve 5 units of metadata for
2208 * this function.
7b128766
JB
2209 */
2210int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2211{
2212 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2213 struct btrfs_block_rsv *block_rsv = NULL;
2214 int reserve = 0;
2215 int insert = 0;
2216 int ret;
7b128766 2217
d68fc57b
YZ
2218 if (!root->orphan_block_rsv) {
2219 block_rsv = btrfs_alloc_block_rsv(root);
2220 BUG_ON(!block_rsv);
2221 }
7b128766 2222
d68fc57b
YZ
2223 spin_lock(&root->orphan_lock);
2224 if (!root->orphan_block_rsv) {
2225 root->orphan_block_rsv = block_rsv;
2226 } else if (block_rsv) {
2227 btrfs_free_block_rsv(root, block_rsv);
2228 block_rsv = NULL;
7b128766 2229 }
7b128766 2230
d68fc57b
YZ
2231 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2232 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2233#if 0
2234 /*
2235 * For proper ENOSPC handling, we should do orphan
2236 * cleanup when mounting. But this introduces backward
2237 * compatibility issue.
2238 */
2239 if (!xchg(&root->orphan_item_inserted, 1))
2240 insert = 2;
2241 else
2242 insert = 1;
2243#endif
2244 insert = 1;
7b128766
JB
2245 }
2246
d68fc57b
YZ
2247 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2248 BTRFS_I(inode)->orphan_meta_reserved = 1;
2249 reserve = 1;
2250 }
2251 spin_unlock(&root->orphan_lock);
7b128766 2252
d68fc57b
YZ
2253 if (block_rsv)
2254 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2255
d68fc57b
YZ
2256 /* grab metadata reservation from transaction handle */
2257 if (reserve) {
2258 ret = btrfs_orphan_reserve_metadata(trans, inode);
2259 BUG_ON(ret);
2260 }
7b128766 2261
d68fc57b
YZ
2262 /* insert an orphan item to track this unlinked/truncated file */
2263 if (insert >= 1) {
33345d01 2264 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2265 BUG_ON(ret);
2266 }
2267
2268 /* insert an orphan item to track subvolume contains orphan files */
2269 if (insert >= 2) {
2270 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2271 root->root_key.objectid);
2272 BUG_ON(ret);
2273 }
2274 return 0;
7b128766
JB
2275}
2276
2277/*
2278 * We have done the truncate/delete so we can go ahead and remove the orphan
2279 * item for this particular inode.
2280 */
2281int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2282{
2283 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2284 int delete_item = 0;
2285 int release_rsv = 0;
7b128766
JB
2286 int ret = 0;
2287
d68fc57b
YZ
2288 spin_lock(&root->orphan_lock);
2289 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2290 list_del_init(&BTRFS_I(inode)->i_orphan);
2291 delete_item = 1;
7b128766
JB
2292 }
2293
d68fc57b
YZ
2294 if (BTRFS_I(inode)->orphan_meta_reserved) {
2295 BTRFS_I(inode)->orphan_meta_reserved = 0;
2296 release_rsv = 1;
7b128766 2297 }
d68fc57b 2298 spin_unlock(&root->orphan_lock);
7b128766 2299
d68fc57b 2300 if (trans && delete_item) {
33345d01 2301 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2302 BUG_ON(ret);
2303 }
7b128766 2304
d68fc57b
YZ
2305 if (release_rsv)
2306 btrfs_orphan_release_metadata(inode);
7b128766 2307
d68fc57b 2308 return 0;
7b128766
JB
2309}
2310
2311/*
2312 * this cleans up any orphans that may be left on the list from the last use
2313 * of this root.
2314 */
66b4ffd1 2315int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2316{
2317 struct btrfs_path *path;
2318 struct extent_buffer *leaf;
7b128766
JB
2319 struct btrfs_key key, found_key;
2320 struct btrfs_trans_handle *trans;
2321 struct inode *inode;
2322 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2323
d68fc57b 2324 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2325 return 0;
c71bf099
YZ
2326
2327 path = btrfs_alloc_path();
66b4ffd1
JB
2328 if (!path) {
2329 ret = -ENOMEM;
2330 goto out;
2331 }
7b128766
JB
2332 path->reada = -1;
2333
2334 key.objectid = BTRFS_ORPHAN_OBJECTID;
2335 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2336 key.offset = (u64)-1;
2337
7b128766
JB
2338 while (1) {
2339 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2340 if (ret < 0)
2341 goto out;
7b128766
JB
2342
2343 /*
2344 * if ret == 0 means we found what we were searching for, which
25985edc 2345 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2346 * find the key and see if we have stuff that matches
2347 */
2348 if (ret > 0) {
66b4ffd1 2349 ret = 0;
7b128766
JB
2350 if (path->slots[0] == 0)
2351 break;
2352 path->slots[0]--;
2353 }
2354
2355 /* pull out the item */
2356 leaf = path->nodes[0];
7b128766
JB
2357 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2358
2359 /* make sure the item matches what we want */
2360 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2361 break;
2362 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2363 break;
2364
2365 /* release the path since we're done with it */
b3b4aa74 2366 btrfs_release_path(path);
7b128766
JB
2367
2368 /*
2369 * this is where we are basically btrfs_lookup, without the
2370 * crossing root thing. we store the inode number in the
2371 * offset of the orphan item.
2372 */
5d4f98a2
YZ
2373 found_key.objectid = found_key.offset;
2374 found_key.type = BTRFS_INODE_ITEM_KEY;
2375 found_key.offset = 0;
73f73415 2376 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2377 if (IS_ERR(inode)) {
2378 ret = PTR_ERR(inode);
2379 goto out;
2380 }
7b128766 2381
7b128766
JB
2382 /*
2383 * add this inode to the orphan list so btrfs_orphan_del does
2384 * the proper thing when we hit it
2385 */
d68fc57b 2386 spin_lock(&root->orphan_lock);
7b128766 2387 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2388 spin_unlock(&root->orphan_lock);
7b128766
JB
2389
2390 /*
2391 * if this is a bad inode, means we actually succeeded in
2392 * removing the inode, but not the orphan record, which means
2393 * we need to manually delete the orphan since iput will just
2394 * do a destroy_inode
2395 */
2396 if (is_bad_inode(inode)) {
a22285a6 2397 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2398 if (IS_ERR(trans)) {
2399 ret = PTR_ERR(trans);
2400 goto out;
2401 }
7b128766 2402 btrfs_orphan_del(trans, inode);
5b21f2ed 2403 btrfs_end_transaction(trans, root);
7b128766
JB
2404 iput(inode);
2405 continue;
2406 }
2407
2408 /* if we have links, this was a truncate, lets do that */
2409 if (inode->i_nlink) {
a41ad394
JB
2410 if (!S_ISREG(inode->i_mode)) {
2411 WARN_ON(1);
2412 iput(inode);
2413 continue;
2414 }
7b128766 2415 nr_truncate++;
66b4ffd1 2416 ret = btrfs_truncate(inode);
7b128766
JB
2417 } else {
2418 nr_unlink++;
2419 }
2420
2421 /* this will do delete_inode and everything for us */
2422 iput(inode);
66b4ffd1
JB
2423 if (ret)
2424 goto out;
7b128766 2425 }
d68fc57b
YZ
2426 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2427
2428 if (root->orphan_block_rsv)
2429 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2430 (u64)-1);
2431
2432 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2433 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2434 if (!IS_ERR(trans))
2435 btrfs_end_transaction(trans, root);
d68fc57b 2436 }
7b128766
JB
2437
2438 if (nr_unlink)
2439 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2440 if (nr_truncate)
2441 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2442
2443out:
2444 if (ret)
2445 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2446 btrfs_free_path(path);
2447 return ret;
7b128766
JB
2448}
2449
46a53cca
CM
2450/*
2451 * very simple check to peek ahead in the leaf looking for xattrs. If we
2452 * don't find any xattrs, we know there can't be any acls.
2453 *
2454 * slot is the slot the inode is in, objectid is the objectid of the inode
2455 */
2456static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2457 int slot, u64 objectid)
2458{
2459 u32 nritems = btrfs_header_nritems(leaf);
2460 struct btrfs_key found_key;
2461 int scanned = 0;
2462
2463 slot++;
2464 while (slot < nritems) {
2465 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2466
2467 /* we found a different objectid, there must not be acls */
2468 if (found_key.objectid != objectid)
2469 return 0;
2470
2471 /* we found an xattr, assume we've got an acl */
2472 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2473 return 1;
2474
2475 /*
2476 * we found a key greater than an xattr key, there can't
2477 * be any acls later on
2478 */
2479 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2480 return 0;
2481
2482 slot++;
2483 scanned++;
2484
2485 /*
2486 * it goes inode, inode backrefs, xattrs, extents,
2487 * so if there are a ton of hard links to an inode there can
2488 * be a lot of backrefs. Don't waste time searching too hard,
2489 * this is just an optimization
2490 */
2491 if (scanned >= 8)
2492 break;
2493 }
2494 /* we hit the end of the leaf before we found an xattr or
2495 * something larger than an xattr. We have to assume the inode
2496 * has acls
2497 */
2498 return 1;
2499}
2500
d352ac68
CM
2501/*
2502 * read an inode from the btree into the in-memory inode
2503 */
5d4f98a2 2504static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2505{
2506 struct btrfs_path *path;
5f39d397 2507 struct extent_buffer *leaf;
39279cc3 2508 struct btrfs_inode_item *inode_item;
0b86a832 2509 struct btrfs_timespec *tspec;
39279cc3
CM
2510 struct btrfs_root *root = BTRFS_I(inode)->root;
2511 struct btrfs_key location;
46a53cca 2512 int maybe_acls;
618e21d5 2513 u32 rdev;
39279cc3 2514 int ret;
2f7e33d4
MX
2515 bool filled = false;
2516
2517 ret = btrfs_fill_inode(inode, &rdev);
2518 if (!ret)
2519 filled = true;
39279cc3
CM
2520
2521 path = btrfs_alloc_path();
1748f843
MF
2522 if (!path)
2523 goto make_bad;
2524
d90c7321 2525 path->leave_spinning = 1;
39279cc3 2526 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2527
39279cc3 2528 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2529 if (ret)
39279cc3 2530 goto make_bad;
39279cc3 2531
5f39d397 2532 leaf = path->nodes[0];
2f7e33d4
MX
2533
2534 if (filled)
2535 goto cache_acl;
2536
5f39d397
CM
2537 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2538 struct btrfs_inode_item);
5f39d397
CM
2539 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2540 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2541 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2542 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2543 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2544
2545 tspec = btrfs_inode_atime(inode_item);
2546 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2547 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2548
2549 tspec = btrfs_inode_mtime(inode_item);
2550 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2551 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2552
2553 tspec = btrfs_inode_ctime(inode_item);
2554 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2555 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2556
a76a3cd4 2557 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2558 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2559 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2560 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2561 inode->i_rdev = 0;
5f39d397
CM
2562 rdev = btrfs_inode_rdev(leaf, inode_item);
2563
aec7477b 2564 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2565 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2566cache_acl:
46a53cca
CM
2567 /*
2568 * try to precache a NULL acl entry for files that don't have
2569 * any xattrs or acls
2570 */
33345d01
LZ
2571 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2572 btrfs_ino(inode));
72c04902
AV
2573 if (!maybe_acls)
2574 cache_no_acl(inode);
46a53cca 2575
39279cc3 2576 btrfs_free_path(path);
39279cc3 2577
39279cc3 2578 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2579 case S_IFREG:
2580 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2581 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2582 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2583 inode->i_fop = &btrfs_file_operations;
2584 inode->i_op = &btrfs_file_inode_operations;
2585 break;
2586 case S_IFDIR:
2587 inode->i_fop = &btrfs_dir_file_operations;
2588 if (root == root->fs_info->tree_root)
2589 inode->i_op = &btrfs_dir_ro_inode_operations;
2590 else
2591 inode->i_op = &btrfs_dir_inode_operations;
2592 break;
2593 case S_IFLNK:
2594 inode->i_op = &btrfs_symlink_inode_operations;
2595 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2596 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2597 break;
618e21d5 2598 default:
0279b4cd 2599 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2600 init_special_inode(inode, inode->i_mode, rdev);
2601 break;
39279cc3 2602 }
6cbff00f
CH
2603
2604 btrfs_update_iflags(inode);
39279cc3
CM
2605 return;
2606
2607make_bad:
39279cc3 2608 btrfs_free_path(path);
39279cc3
CM
2609 make_bad_inode(inode);
2610}
2611
d352ac68
CM
2612/*
2613 * given a leaf and an inode, copy the inode fields into the leaf
2614 */
e02119d5
CM
2615static void fill_inode_item(struct btrfs_trans_handle *trans,
2616 struct extent_buffer *leaf,
5f39d397 2617 struct btrfs_inode_item *item,
39279cc3
CM
2618 struct inode *inode)
2619{
5f39d397
CM
2620 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2621 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2622 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2623 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2624 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2625
2626 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2627 inode->i_atime.tv_sec);
2628 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2629 inode->i_atime.tv_nsec);
2630
2631 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2632 inode->i_mtime.tv_sec);
2633 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2634 inode->i_mtime.tv_nsec);
2635
2636 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2637 inode->i_ctime.tv_sec);
2638 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2639 inode->i_ctime.tv_nsec);
2640
a76a3cd4 2641 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2642 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2643 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2644 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2645 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2646 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2647 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2648}
2649
d352ac68
CM
2650/*
2651 * copy everything in the in-memory inode into the btree.
2652 */
d397712b
CM
2653noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2654 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2655{
2656 struct btrfs_inode_item *inode_item;
2657 struct btrfs_path *path;
5f39d397 2658 struct extent_buffer *leaf;
39279cc3
CM
2659 int ret;
2660
16cdcec7 2661 /*
149e2d76
MX
2662 * If the inode is a free space inode, we can deadlock during commit
2663 * if we put it into the delayed code.
2664 *
2665 * The data relocation inode should also be directly updated
2666 * without delay
16cdcec7 2667 */
2cf8572d 2668 if (!btrfs_is_free_space_inode(root, inode)
149e2d76 2669 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
16cdcec7
MX
2670 ret = btrfs_delayed_update_inode(trans, root, inode);
2671 if (!ret)
2672 btrfs_set_inode_last_trans(trans, inode);
2673 return ret;
2674 }
2675
39279cc3 2676 path = btrfs_alloc_path();
16cdcec7
MX
2677 if (!path)
2678 return -ENOMEM;
2679
b9473439 2680 path->leave_spinning = 1;
16cdcec7
MX
2681 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2682 1);
39279cc3
CM
2683 if (ret) {
2684 if (ret > 0)
2685 ret = -ENOENT;
2686 goto failed;
2687 }
2688
b4ce94de 2689 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2690 leaf = path->nodes[0];
2691 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2692 struct btrfs_inode_item);
39279cc3 2693
e02119d5 2694 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2695 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2696 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2697 ret = 0;
2698failed:
39279cc3
CM
2699 btrfs_free_path(path);
2700 return ret;
2701}
2702
d352ac68
CM
2703/*
2704 * unlink helper that gets used here in inode.c and in the tree logging
2705 * recovery code. It remove a link in a directory with a given name, and
2706 * also drops the back refs in the inode to the directory
2707 */
92986796
AV
2708static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2709 struct btrfs_root *root,
2710 struct inode *dir, struct inode *inode,
2711 const char *name, int name_len)
39279cc3
CM
2712{
2713 struct btrfs_path *path;
39279cc3 2714 int ret = 0;
5f39d397 2715 struct extent_buffer *leaf;
39279cc3 2716 struct btrfs_dir_item *di;
5f39d397 2717 struct btrfs_key key;
aec7477b 2718 u64 index;
33345d01
LZ
2719 u64 ino = btrfs_ino(inode);
2720 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2721
2722 path = btrfs_alloc_path();
54aa1f4d
CM
2723 if (!path) {
2724 ret = -ENOMEM;
554233a6 2725 goto out;
54aa1f4d
CM
2726 }
2727
b9473439 2728 path->leave_spinning = 1;
33345d01 2729 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2730 name, name_len, -1);
2731 if (IS_ERR(di)) {
2732 ret = PTR_ERR(di);
2733 goto err;
2734 }
2735 if (!di) {
2736 ret = -ENOENT;
2737 goto err;
2738 }
5f39d397
CM
2739 leaf = path->nodes[0];
2740 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2741 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2742 if (ret)
2743 goto err;
b3b4aa74 2744 btrfs_release_path(path);
39279cc3 2745
33345d01
LZ
2746 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2747 dir_ino, &index);
aec7477b 2748 if (ret) {
d397712b 2749 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2750 "inode %llu parent %llu\n", name_len, name,
2751 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2752 goto err;
2753 }
2754
16cdcec7
MX
2755 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2756 if (ret)
39279cc3 2757 goto err;
39279cc3 2758
e02119d5 2759 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2760 inode, dir_ino);
49eb7e46 2761 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2762
2763 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2764 dir, index);
6418c961
CM
2765 if (ret == -ENOENT)
2766 ret = 0;
39279cc3
CM
2767err:
2768 btrfs_free_path(path);
e02119d5
CM
2769 if (ret)
2770 goto out;
2771
2772 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2773 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2774 btrfs_update_inode(trans, root, dir);
e02119d5 2775out:
39279cc3
CM
2776 return ret;
2777}
2778
92986796
AV
2779int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2780 struct btrfs_root *root,
2781 struct inode *dir, struct inode *inode,
2782 const char *name, int name_len)
2783{
2784 int ret;
2785 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2786 if (!ret) {
2787 btrfs_drop_nlink(inode);
2788 ret = btrfs_update_inode(trans, root, inode);
2789 }
2790 return ret;
2791}
2792
2793
a22285a6
YZ
2794/* helper to check if there is any shared block in the path */
2795static int check_path_shared(struct btrfs_root *root,
2796 struct btrfs_path *path)
39279cc3 2797{
a22285a6
YZ
2798 struct extent_buffer *eb;
2799 int level;
0e4dcbef 2800 u64 refs = 1;
5df6a9f6 2801
a22285a6 2802 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2803 int ret;
2804
a22285a6
YZ
2805 if (!path->nodes[level])
2806 break;
2807 eb = path->nodes[level];
2808 if (!btrfs_block_can_be_shared(root, eb))
2809 continue;
2810 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2811 &refs, NULL);
2812 if (refs > 1)
2813 return 1;
5df6a9f6 2814 }
dedefd72 2815 return 0;
39279cc3
CM
2816}
2817
a22285a6
YZ
2818/*
2819 * helper to start transaction for unlink and rmdir.
2820 *
2821 * unlink and rmdir are special in btrfs, they do not always free space.
2822 * so in enospc case, we should make sure they will free space before
2823 * allowing them to use the global metadata reservation.
2824 */
2825static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2826 struct dentry *dentry)
4df27c4d 2827{
39279cc3 2828 struct btrfs_trans_handle *trans;
a22285a6 2829 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2830 struct btrfs_path *path;
a22285a6 2831 struct btrfs_inode_ref *ref;
4df27c4d 2832 struct btrfs_dir_item *di;
7b128766 2833 struct inode *inode = dentry->d_inode;
4df27c4d 2834 u64 index;
a22285a6
YZ
2835 int check_link = 1;
2836 int err = -ENOSPC;
4df27c4d 2837 int ret;
33345d01
LZ
2838 u64 ino = btrfs_ino(inode);
2839 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2840
a22285a6
YZ
2841 trans = btrfs_start_transaction(root, 10);
2842 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2843 return trans;
4df27c4d 2844
33345d01 2845 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2846 return ERR_PTR(-ENOSPC);
4df27c4d 2847
a22285a6
YZ
2848 /* check if there is someone else holds reference */
2849 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2850 return ERR_PTR(-ENOSPC);
4df27c4d 2851
a22285a6
YZ
2852 if (atomic_read(&inode->i_count) > 2)
2853 return ERR_PTR(-ENOSPC);
4df27c4d 2854
a22285a6
YZ
2855 if (xchg(&root->fs_info->enospc_unlink, 1))
2856 return ERR_PTR(-ENOSPC);
2857
2858 path = btrfs_alloc_path();
2859 if (!path) {
2860 root->fs_info->enospc_unlink = 0;
2861 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2862 }
2863
a22285a6 2864 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2865 if (IS_ERR(trans)) {
a22285a6
YZ
2866 btrfs_free_path(path);
2867 root->fs_info->enospc_unlink = 0;
2868 return trans;
2869 }
4df27c4d 2870
a22285a6
YZ
2871 path->skip_locking = 1;
2872 path->search_commit_root = 1;
4df27c4d 2873
a22285a6
YZ
2874 ret = btrfs_lookup_inode(trans, root, path,
2875 &BTRFS_I(dir)->location, 0);
2876 if (ret < 0) {
2877 err = ret;
2878 goto out;
2879 }
2880 if (ret == 0) {
2881 if (check_path_shared(root, path))
2882 goto out;
2883 } else {
2884 check_link = 0;
5df6a9f6 2885 }
b3b4aa74 2886 btrfs_release_path(path);
a22285a6
YZ
2887
2888 ret = btrfs_lookup_inode(trans, root, path,
2889 &BTRFS_I(inode)->location, 0);
2890 if (ret < 0) {
2891 err = ret;
2892 goto out;
2893 }
2894 if (ret == 0) {
2895 if (check_path_shared(root, path))
2896 goto out;
2897 } else {
2898 check_link = 0;
2899 }
b3b4aa74 2900 btrfs_release_path(path);
a22285a6
YZ
2901
2902 if (ret == 0 && S_ISREG(inode->i_mode)) {
2903 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2904 ino, (u64)-1, 0);
a22285a6
YZ
2905 if (ret < 0) {
2906 err = ret;
2907 goto out;
2908 }
2909 BUG_ON(ret == 0);
2910 if (check_path_shared(root, path))
2911 goto out;
b3b4aa74 2912 btrfs_release_path(path);
a22285a6
YZ
2913 }
2914
2915 if (!check_link) {
2916 err = 0;
2917 goto out;
2918 }
2919
33345d01 2920 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2921 dentry->d_name.name, dentry->d_name.len, 0);
2922 if (IS_ERR(di)) {
2923 err = PTR_ERR(di);
2924 goto out;
2925 }
2926 if (di) {
2927 if (check_path_shared(root, path))
2928 goto out;
2929 } else {
2930 err = 0;
2931 goto out;
2932 }
b3b4aa74 2933 btrfs_release_path(path);
a22285a6
YZ
2934
2935 ref = btrfs_lookup_inode_ref(trans, root, path,
2936 dentry->d_name.name, dentry->d_name.len,
33345d01 2937 ino, dir_ino, 0);
a22285a6
YZ
2938 if (IS_ERR(ref)) {
2939 err = PTR_ERR(ref);
2940 goto out;
2941 }
2942 BUG_ON(!ref);
2943 if (check_path_shared(root, path))
2944 goto out;
2945 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2946 btrfs_release_path(path);
a22285a6 2947
16cdcec7
MX
2948 /*
2949 * This is a commit root search, if we can lookup inode item and other
2950 * relative items in the commit root, it means the transaction of
2951 * dir/file creation has been committed, and the dir index item that we
2952 * delay to insert has also been inserted into the commit root. So
2953 * we needn't worry about the delayed insertion of the dir index item
2954 * here.
2955 */
33345d01 2956 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2957 dentry->d_name.name, dentry->d_name.len, 0);
2958 if (IS_ERR(di)) {
2959 err = PTR_ERR(di);
2960 goto out;
2961 }
2962 BUG_ON(ret == -ENOENT);
2963 if (check_path_shared(root, path))
2964 goto out;
2965
2966 err = 0;
2967out:
2968 btrfs_free_path(path);
2969 if (err) {
2970 btrfs_end_transaction(trans, root);
2971 root->fs_info->enospc_unlink = 0;
2972 return ERR_PTR(err);
2973 }
2974
2975 trans->block_rsv = &root->fs_info->global_block_rsv;
2976 return trans;
2977}
2978
2979static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2980 struct btrfs_root *root)
2981{
2982 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2983 BUG_ON(!root->fs_info->enospc_unlink);
2984 root->fs_info->enospc_unlink = 0;
2985 }
2986 btrfs_end_transaction_throttle(trans, root);
2987}
2988
2989static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2990{
2991 struct btrfs_root *root = BTRFS_I(dir)->root;
2992 struct btrfs_trans_handle *trans;
2993 struct inode *inode = dentry->d_inode;
2994 int ret;
2995 unsigned long nr = 0;
2996
2997 trans = __unlink_start_trans(dir, dentry);
2998 if (IS_ERR(trans))
2999 return PTR_ERR(trans);
5f39d397 3000
12fcfd22
CM
3001 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3002
e02119d5
CM
3003 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3004 dentry->d_name.name, dentry->d_name.len);
a22285a6 3005 BUG_ON(ret);
7b128766 3006
a22285a6 3007 if (inode->i_nlink == 0) {
7b128766 3008 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
3009 BUG_ON(ret);
3010 }
7b128766 3011
d3c2fdcf 3012 nr = trans->blocks_used;
a22285a6 3013 __unlink_end_trans(trans, root);
d3c2fdcf 3014 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3015 return ret;
3016}
3017
4df27c4d
YZ
3018int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3019 struct btrfs_root *root,
3020 struct inode *dir, u64 objectid,
3021 const char *name, int name_len)
3022{
3023 struct btrfs_path *path;
3024 struct extent_buffer *leaf;
3025 struct btrfs_dir_item *di;
3026 struct btrfs_key key;
3027 u64 index;
3028 int ret;
33345d01 3029 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3030
3031 path = btrfs_alloc_path();
3032 if (!path)
3033 return -ENOMEM;
3034
33345d01 3035 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3036 name, name_len, -1);
c704005d 3037 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
3038
3039 leaf = path->nodes[0];
3040 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3041 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3042 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3043 BUG_ON(ret);
b3b4aa74 3044 btrfs_release_path(path);
4df27c4d
YZ
3045
3046 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3047 objectid, root->root_key.objectid,
33345d01 3048 dir_ino, &index, name, name_len);
4df27c4d
YZ
3049 if (ret < 0) {
3050 BUG_ON(ret != -ENOENT);
33345d01 3051 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3052 name, name_len);
c704005d 3053 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
3054
3055 leaf = path->nodes[0];
3056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3057 btrfs_release_path(path);
4df27c4d
YZ
3058 index = key.offset;
3059 }
945d8962 3060 btrfs_release_path(path);
4df27c4d 3061
16cdcec7 3062 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 3063 BUG_ON(ret);
4df27c4d
YZ
3064
3065 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3066 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3067 ret = btrfs_update_inode(trans, root, dir);
3068 BUG_ON(ret);
4df27c4d 3069
71d7aed0 3070 btrfs_free_path(path);
4df27c4d
YZ
3071 return 0;
3072}
3073
39279cc3
CM
3074static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3075{
3076 struct inode *inode = dentry->d_inode;
1832a6d5 3077 int err = 0;
39279cc3 3078 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3079 struct btrfs_trans_handle *trans;
1832a6d5 3080 unsigned long nr = 0;
39279cc3 3081
3394e160 3082 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3083 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3084 return -ENOTEMPTY;
3085
a22285a6
YZ
3086 trans = __unlink_start_trans(dir, dentry);
3087 if (IS_ERR(trans))
5df6a9f6 3088 return PTR_ERR(trans);
5df6a9f6 3089
33345d01 3090 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3091 err = btrfs_unlink_subvol(trans, root, dir,
3092 BTRFS_I(inode)->location.objectid,
3093 dentry->d_name.name,
3094 dentry->d_name.len);
3095 goto out;
3096 }
3097
7b128766
JB
3098 err = btrfs_orphan_add(trans, inode);
3099 if (err)
4df27c4d 3100 goto out;
7b128766 3101
39279cc3 3102 /* now the directory is empty */
e02119d5
CM
3103 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3104 dentry->d_name.name, dentry->d_name.len);
d397712b 3105 if (!err)
dbe674a9 3106 btrfs_i_size_write(inode, 0);
4df27c4d 3107out:
d3c2fdcf 3108 nr = trans->blocks_used;
a22285a6 3109 __unlink_end_trans(trans, root);
d3c2fdcf 3110 btrfs_btree_balance_dirty(root, nr);
3954401f 3111
39279cc3
CM
3112 return err;
3113}
3114
39279cc3
CM
3115/*
3116 * this can truncate away extent items, csum items and directory items.
3117 * It starts at a high offset and removes keys until it can't find
d352ac68 3118 * any higher than new_size
39279cc3
CM
3119 *
3120 * csum items that cross the new i_size are truncated to the new size
3121 * as well.
7b128766
JB
3122 *
3123 * min_type is the minimum key type to truncate down to. If set to 0, this
3124 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3125 */
8082510e
YZ
3126int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3127 struct btrfs_root *root,
3128 struct inode *inode,
3129 u64 new_size, u32 min_type)
39279cc3 3130{
39279cc3 3131 struct btrfs_path *path;
5f39d397 3132 struct extent_buffer *leaf;
39279cc3 3133 struct btrfs_file_extent_item *fi;
8082510e
YZ
3134 struct btrfs_key key;
3135 struct btrfs_key found_key;
39279cc3 3136 u64 extent_start = 0;
db94535d 3137 u64 extent_num_bytes = 0;
5d4f98a2 3138 u64 extent_offset = 0;
39279cc3 3139 u64 item_end = 0;
8082510e
YZ
3140 u64 mask = root->sectorsize - 1;
3141 u32 found_type = (u8)-1;
39279cc3
CM
3142 int found_extent;
3143 int del_item;
85e21bac
CM
3144 int pending_del_nr = 0;
3145 int pending_del_slot = 0;
179e29e4 3146 int extent_type = -1;
771ed689 3147 int encoding;
8082510e
YZ
3148 int ret;
3149 int err = 0;
33345d01 3150 u64 ino = btrfs_ino(inode);
8082510e
YZ
3151
3152 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3153
0eb0e19c
MF
3154 path = btrfs_alloc_path();
3155 if (!path)
3156 return -ENOMEM;
3157 path->reada = -1;
3158
0af3d00b 3159 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3160 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3161
16cdcec7
MX
3162 /*
3163 * This function is also used to drop the items in the log tree before
3164 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3165 * it is used to drop the loged items. So we shouldn't kill the delayed
3166 * items.
3167 */
3168 if (min_type == 0 && root == BTRFS_I(inode)->root)
3169 btrfs_kill_delayed_inode_items(inode);
3170
33345d01 3171 key.objectid = ino;
39279cc3 3172 key.offset = (u64)-1;
5f39d397
CM
3173 key.type = (u8)-1;
3174
85e21bac 3175search_again:
b9473439 3176 path->leave_spinning = 1;
85e21bac 3177 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3178 if (ret < 0) {
3179 err = ret;
3180 goto out;
3181 }
d397712b 3182
85e21bac 3183 if (ret > 0) {
e02119d5
CM
3184 /* there are no items in the tree for us to truncate, we're
3185 * done
3186 */
8082510e
YZ
3187 if (path->slots[0] == 0)
3188 goto out;
85e21bac
CM
3189 path->slots[0]--;
3190 }
3191
d397712b 3192 while (1) {
39279cc3 3193 fi = NULL;
5f39d397
CM
3194 leaf = path->nodes[0];
3195 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3196 found_type = btrfs_key_type(&found_key);
771ed689 3197 encoding = 0;
39279cc3 3198
33345d01 3199 if (found_key.objectid != ino)
39279cc3 3200 break;
5f39d397 3201
85e21bac 3202 if (found_type < min_type)
39279cc3
CM
3203 break;
3204
5f39d397 3205 item_end = found_key.offset;
39279cc3 3206 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3207 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3208 struct btrfs_file_extent_item);
179e29e4 3209 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3210 encoding = btrfs_file_extent_compression(leaf, fi);
3211 encoding |= btrfs_file_extent_encryption(leaf, fi);
3212 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3213
179e29e4 3214 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3215 item_end +=
db94535d 3216 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3217 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3218 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3219 fi);
39279cc3 3220 }
008630c1 3221 item_end--;
39279cc3 3222 }
8082510e
YZ
3223 if (found_type > min_type) {
3224 del_item = 1;
3225 } else {
3226 if (item_end < new_size)
b888db2b 3227 break;
8082510e
YZ
3228 if (found_key.offset >= new_size)
3229 del_item = 1;
3230 else
3231 del_item = 0;
39279cc3 3232 }
39279cc3 3233 found_extent = 0;
39279cc3 3234 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3235 if (found_type != BTRFS_EXTENT_DATA_KEY)
3236 goto delete;
3237
3238 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3239 u64 num_dec;
db94535d 3240 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3241 if (!del_item && !encoding) {
db94535d
CM
3242 u64 orig_num_bytes =
3243 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3244 extent_num_bytes = new_size -
5f39d397 3245 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3246 extent_num_bytes = extent_num_bytes &
3247 ~((u64)root->sectorsize - 1);
db94535d
CM
3248 btrfs_set_file_extent_num_bytes(leaf, fi,
3249 extent_num_bytes);
3250 num_dec = (orig_num_bytes -
9069218d 3251 extent_num_bytes);
e02119d5 3252 if (root->ref_cows && extent_start != 0)
a76a3cd4 3253 inode_sub_bytes(inode, num_dec);
5f39d397 3254 btrfs_mark_buffer_dirty(leaf);
39279cc3 3255 } else {
db94535d
CM
3256 extent_num_bytes =
3257 btrfs_file_extent_disk_num_bytes(leaf,
3258 fi);
5d4f98a2
YZ
3259 extent_offset = found_key.offset -
3260 btrfs_file_extent_offset(leaf, fi);
3261
39279cc3 3262 /* FIXME blocksize != 4096 */
9069218d 3263 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3264 if (extent_start != 0) {
3265 found_extent = 1;
e02119d5 3266 if (root->ref_cows)
a76a3cd4 3267 inode_sub_bytes(inode, num_dec);
e02119d5 3268 }
39279cc3 3269 }
9069218d 3270 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3271 /*
3272 * we can't truncate inline items that have had
3273 * special encodings
3274 */
3275 if (!del_item &&
3276 btrfs_file_extent_compression(leaf, fi) == 0 &&
3277 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3278 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3279 u32 size = new_size - found_key.offset;
3280
3281 if (root->ref_cows) {
a76a3cd4
YZ
3282 inode_sub_bytes(inode, item_end + 1 -
3283 new_size);
e02119d5
CM
3284 }
3285 size =
3286 btrfs_file_extent_calc_inline_size(size);
9069218d 3287 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3288 size, 1);
e02119d5 3289 } else if (root->ref_cows) {
a76a3cd4
YZ
3290 inode_sub_bytes(inode, item_end + 1 -
3291 found_key.offset);
9069218d 3292 }
39279cc3 3293 }
179e29e4 3294delete:
39279cc3 3295 if (del_item) {
85e21bac
CM
3296 if (!pending_del_nr) {
3297 /* no pending yet, add ourselves */
3298 pending_del_slot = path->slots[0];
3299 pending_del_nr = 1;
3300 } else if (pending_del_nr &&
3301 path->slots[0] + 1 == pending_del_slot) {
3302 /* hop on the pending chunk */
3303 pending_del_nr++;
3304 pending_del_slot = path->slots[0];
3305 } else {
d397712b 3306 BUG();
85e21bac 3307 }
39279cc3
CM
3308 } else {
3309 break;
3310 }
0af3d00b
JB
3311 if (found_extent && (root->ref_cows ||
3312 root == root->fs_info->tree_root)) {
b9473439 3313 btrfs_set_path_blocking(path);
39279cc3 3314 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3315 extent_num_bytes, 0,
3316 btrfs_header_owner(leaf),
33345d01 3317 ino, extent_offset);
39279cc3
CM
3318 BUG_ON(ret);
3319 }
85e21bac 3320
8082510e
YZ
3321 if (found_type == BTRFS_INODE_ITEM_KEY)
3322 break;
3323
3324 if (path->slots[0] == 0 ||
3325 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3326 if (root->ref_cows &&
3327 BTRFS_I(inode)->location.objectid !=
3328 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3329 err = -EAGAIN;
3330 goto out;
3331 }
3332 if (pending_del_nr) {
3333 ret = btrfs_del_items(trans, root, path,
3334 pending_del_slot,
3335 pending_del_nr);
3336 BUG_ON(ret);
3337 pending_del_nr = 0;
3338 }
b3b4aa74 3339 btrfs_release_path(path);
85e21bac 3340 goto search_again;
8082510e
YZ
3341 } else {
3342 path->slots[0]--;
85e21bac 3343 }
39279cc3 3344 }
8082510e 3345out:
85e21bac
CM
3346 if (pending_del_nr) {
3347 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3348 pending_del_nr);
d68fc57b 3349 BUG_ON(ret);
85e21bac 3350 }
39279cc3 3351 btrfs_free_path(path);
8082510e 3352 return err;
39279cc3
CM
3353}
3354
3355/*
3356 * taken from block_truncate_page, but does cow as it zeros out
3357 * any bytes left in the last page in the file.
3358 */
3359static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3360{
3361 struct inode *inode = mapping->host;
db94535d 3362 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3363 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3364 struct btrfs_ordered_extent *ordered;
2ac55d41 3365 struct extent_state *cached_state = NULL;
e6dcd2dc 3366 char *kaddr;
db94535d 3367 u32 blocksize = root->sectorsize;
39279cc3
CM
3368 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3369 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3370 struct page *page;
39279cc3 3371 int ret = 0;
a52d9a80 3372 u64 page_start;
e6dcd2dc 3373 u64 page_end;
39279cc3
CM
3374
3375 if ((offset & (blocksize - 1)) == 0)
3376 goto out;
0ca1f7ce 3377 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3378 if (ret)
3379 goto out;
39279cc3
CM
3380
3381 ret = -ENOMEM;
211c17f5 3382again:
a94733d0 3383 page = find_or_create_page(mapping, index, GFP_NOFS);
5d5e103a 3384 if (!page) {
0ca1f7ce 3385 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3386 goto out;
5d5e103a 3387 }
e6dcd2dc
CM
3388
3389 page_start = page_offset(page);
3390 page_end = page_start + PAGE_CACHE_SIZE - 1;
3391
39279cc3 3392 if (!PageUptodate(page)) {
9ebefb18 3393 ret = btrfs_readpage(NULL, page);
39279cc3 3394 lock_page(page);
211c17f5
CM
3395 if (page->mapping != mapping) {
3396 unlock_page(page);
3397 page_cache_release(page);
3398 goto again;
3399 }
39279cc3
CM
3400 if (!PageUptodate(page)) {
3401 ret = -EIO;
89642229 3402 goto out_unlock;
39279cc3
CM
3403 }
3404 }
211c17f5 3405 wait_on_page_writeback(page);
e6dcd2dc 3406
2ac55d41
JB
3407 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3408 GFP_NOFS);
e6dcd2dc
CM
3409 set_page_extent_mapped(page);
3410
3411 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3412 if (ordered) {
2ac55d41
JB
3413 unlock_extent_cached(io_tree, page_start, page_end,
3414 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3415 unlock_page(page);
3416 page_cache_release(page);
eb84ae03 3417 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3418 btrfs_put_ordered_extent(ordered);
3419 goto again;
3420 }
3421
2ac55d41 3422 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3423 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3424 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3425
2ac55d41
JB
3426 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3427 &cached_state);
9ed74f2d 3428 if (ret) {
2ac55d41
JB
3429 unlock_extent_cached(io_tree, page_start, page_end,
3430 &cached_state, GFP_NOFS);
9ed74f2d
JB
3431 goto out_unlock;
3432 }
3433
e6dcd2dc
CM
3434 ret = 0;
3435 if (offset != PAGE_CACHE_SIZE) {
3436 kaddr = kmap(page);
3437 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3438 flush_dcache_page(page);
3439 kunmap(page);
3440 }
247e743c 3441 ClearPageChecked(page);
e6dcd2dc 3442 set_page_dirty(page);
2ac55d41
JB
3443 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3444 GFP_NOFS);
39279cc3 3445
89642229 3446out_unlock:
5d5e103a 3447 if (ret)
0ca1f7ce 3448 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3449 unlock_page(page);
3450 page_cache_release(page);
3451out:
3452 return ret;
3453}
3454
695a0d0d
JB
3455/*
3456 * This function puts in dummy file extents for the area we're creating a hole
3457 * for. So if we are truncating this file to a larger size we need to insert
3458 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3459 * the range between oldsize and size
3460 */
a41ad394 3461int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3462{
9036c102
YZ
3463 struct btrfs_trans_handle *trans;
3464 struct btrfs_root *root = BTRFS_I(inode)->root;
3465 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3466 struct extent_map *em = NULL;
2ac55d41 3467 struct extent_state *cached_state = NULL;
9036c102 3468 u64 mask = root->sectorsize - 1;
a41ad394 3469 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3470 u64 block_end = (size + mask) & ~mask;
3471 u64 last_byte;
3472 u64 cur_offset;
3473 u64 hole_size;
9ed74f2d 3474 int err = 0;
39279cc3 3475
9036c102
YZ
3476 if (size <= hole_start)
3477 return 0;
3478
9036c102
YZ
3479 while (1) {
3480 struct btrfs_ordered_extent *ordered;
3481 btrfs_wait_ordered_range(inode, hole_start,
3482 block_end - hole_start);
2ac55d41
JB
3483 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3484 &cached_state, GFP_NOFS);
9036c102
YZ
3485 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3486 if (!ordered)
3487 break;
2ac55d41
JB
3488 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3489 &cached_state, GFP_NOFS);
9036c102
YZ
3490 btrfs_put_ordered_extent(ordered);
3491 }
39279cc3 3492
9036c102
YZ
3493 cur_offset = hole_start;
3494 while (1) {
3495 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3496 block_end - cur_offset, 0);
c704005d 3497 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3498 last_byte = min(extent_map_end(em), block_end);
3499 last_byte = (last_byte + mask) & ~mask;
8082510e 3500 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3501 u64 hint_byte = 0;
9036c102 3502 hole_size = last_byte - cur_offset;
9ed74f2d 3503
a22285a6
YZ
3504 trans = btrfs_start_transaction(root, 2);
3505 if (IS_ERR(trans)) {
3506 err = PTR_ERR(trans);
9ed74f2d 3507 break;
a22285a6 3508 }
8082510e
YZ
3509
3510 err = btrfs_drop_extents(trans, inode, cur_offset,
3511 cur_offset + hole_size,
3512 &hint_byte, 1);
3893e33b
JB
3513 if (err)
3514 break;
8082510e 3515
9036c102 3516 err = btrfs_insert_file_extent(trans, root,
33345d01 3517 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3518 0, hole_size, 0, hole_size,
3519 0, 0, 0);
3893e33b
JB
3520 if (err)
3521 break;
8082510e 3522
9036c102
YZ
3523 btrfs_drop_extent_cache(inode, hole_start,
3524 last_byte - 1, 0);
8082510e
YZ
3525
3526 btrfs_end_transaction(trans, root);
9036c102
YZ
3527 }
3528 free_extent_map(em);
a22285a6 3529 em = NULL;
9036c102 3530 cur_offset = last_byte;
8082510e 3531 if (cur_offset >= block_end)
9036c102
YZ
3532 break;
3533 }
1832a6d5 3534
a22285a6 3535 free_extent_map(em);
2ac55d41
JB
3536 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3537 GFP_NOFS);
9036c102
YZ
3538 return err;
3539}
39279cc3 3540
a41ad394 3541static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3542{
a41ad394 3543 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3544 int ret;
3545
a41ad394 3546 if (newsize == oldsize)
8082510e
YZ
3547 return 0;
3548
a41ad394
JB
3549 if (newsize > oldsize) {
3550 i_size_write(inode, newsize);
3551 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3552 truncate_pagecache(inode, oldsize, newsize);
3553 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3554 if (ret) {
a41ad394 3555 btrfs_setsize(inode, oldsize);
8082510e
YZ
3556 return ret;
3557 }
3558
930f028a 3559 mark_inode_dirty(inode);
a41ad394 3560 } else {
8082510e 3561
a41ad394
JB
3562 /*
3563 * We're truncating a file that used to have good data down to
3564 * zero. Make sure it gets into the ordered flush list so that
3565 * any new writes get down to disk quickly.
3566 */
3567 if (newsize == 0)
3568 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3569
a41ad394
JB
3570 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3571 truncate_setsize(inode, newsize);
3572 ret = btrfs_truncate(inode);
8082510e
YZ
3573 }
3574
a41ad394 3575 return ret;
8082510e
YZ
3576}
3577
9036c102
YZ
3578static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3579{
3580 struct inode *inode = dentry->d_inode;
b83cc969 3581 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3582 int err;
39279cc3 3583
b83cc969
LZ
3584 if (btrfs_root_readonly(root))
3585 return -EROFS;
3586
9036c102
YZ
3587 err = inode_change_ok(inode, attr);
3588 if (err)
3589 return err;
2bf5a725 3590
5a3f23d5 3591 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3592 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3593 if (err)
3594 return err;
39279cc3 3595 }
9036c102 3596
1025774c
CH
3597 if (attr->ia_valid) {
3598 setattr_copy(inode, attr);
3599 mark_inode_dirty(inode);
3600
3601 if (attr->ia_valid & ATTR_MODE)
3602 err = btrfs_acl_chmod(inode);
3603 }
33268eaf 3604
39279cc3
CM
3605 return err;
3606}
61295eb8 3607
bd555975 3608void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3609{
3610 struct btrfs_trans_handle *trans;
3611 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3612 unsigned long nr;
39279cc3
CM
3613 int ret;
3614
1abe9b8a 3615 trace_btrfs_inode_evict(inode);
3616
39279cc3 3617 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3618 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3619 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3620 goto no_delete;
3621
39279cc3 3622 if (is_bad_inode(inode)) {
7b128766 3623 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3624 goto no_delete;
3625 }
bd555975 3626 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3627 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3628
c71bf099
YZ
3629 if (root->fs_info->log_root_recovering) {
3630 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3631 goto no_delete;
3632 }
3633
76dda93c
YZ
3634 if (inode->i_nlink > 0) {
3635 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3636 goto no_delete;
3637 }
3638
dbe674a9 3639 btrfs_i_size_write(inode, 0);
5f39d397 3640
8082510e 3641 while (1) {
30b4caf5 3642 trans = btrfs_join_transaction(root);
d68fc57b 3643 BUG_ON(IS_ERR(trans));
d68fc57b
YZ
3644 trans->block_rsv = root->orphan_block_rsv;
3645
3646 ret = btrfs_block_rsv_check(trans, root,
3647 root->orphan_block_rsv, 0, 5);
3648 if (ret) {
3649 BUG_ON(ret != -EAGAIN);
3650 ret = btrfs_commit_transaction(trans, root);
3651 BUG_ON(ret);
3652 continue;
3653 }
7b128766 3654
d68fc57b 3655 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3656 if (ret != -EAGAIN)
3657 break;
85e21bac 3658
8082510e
YZ
3659 nr = trans->blocks_used;
3660 btrfs_end_transaction(trans, root);
3661 trans = NULL;
3662 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3663
8082510e 3664 }
5f39d397 3665
8082510e
YZ
3666 if (ret == 0) {
3667 ret = btrfs_orphan_del(trans, inode);
3668 BUG_ON(ret);
3669 }
54aa1f4d 3670
581bb050
LZ
3671 if (!(root == root->fs_info->tree_root ||
3672 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3673 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3674
d3c2fdcf 3675 nr = trans->blocks_used;
54aa1f4d 3676 btrfs_end_transaction(trans, root);
d3c2fdcf 3677 btrfs_btree_balance_dirty(root, nr);
39279cc3 3678no_delete:
bd555975 3679 end_writeback(inode);
8082510e 3680 return;
39279cc3
CM
3681}
3682
3683/*
3684 * this returns the key found in the dir entry in the location pointer.
3685 * If no dir entries were found, location->objectid is 0.
3686 */
3687static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3688 struct btrfs_key *location)
3689{
3690 const char *name = dentry->d_name.name;
3691 int namelen = dentry->d_name.len;
3692 struct btrfs_dir_item *di;
3693 struct btrfs_path *path;
3694 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3695 int ret = 0;
39279cc3
CM
3696
3697 path = btrfs_alloc_path();
d8926bb3
MF
3698 if (!path)
3699 return -ENOMEM;
3954401f 3700
33345d01 3701 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3702 namelen, 0);
0d9f7f3e
Y
3703 if (IS_ERR(di))
3704 ret = PTR_ERR(di);
d397712b 3705
c704005d 3706 if (IS_ERR_OR_NULL(di))
3954401f 3707 goto out_err;
d397712b 3708
5f39d397 3709 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3710out:
39279cc3
CM
3711 btrfs_free_path(path);
3712 return ret;
3954401f
CM
3713out_err:
3714 location->objectid = 0;
3715 goto out;
39279cc3
CM
3716}
3717
3718/*
3719 * when we hit a tree root in a directory, the btrfs part of the inode
3720 * needs to be changed to reflect the root directory of the tree root. This
3721 * is kind of like crossing a mount point.
3722 */
3723static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3724 struct inode *dir,
3725 struct dentry *dentry,
3726 struct btrfs_key *location,
3727 struct btrfs_root **sub_root)
39279cc3 3728{
4df27c4d
YZ
3729 struct btrfs_path *path;
3730 struct btrfs_root *new_root;
3731 struct btrfs_root_ref *ref;
3732 struct extent_buffer *leaf;
3733 int ret;
3734 int err = 0;
39279cc3 3735
4df27c4d
YZ
3736 path = btrfs_alloc_path();
3737 if (!path) {
3738 err = -ENOMEM;
3739 goto out;
3740 }
39279cc3 3741
4df27c4d
YZ
3742 err = -ENOENT;
3743 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3744 BTRFS_I(dir)->root->root_key.objectid,
3745 location->objectid);
3746 if (ret) {
3747 if (ret < 0)
3748 err = ret;
3749 goto out;
3750 }
39279cc3 3751
4df27c4d
YZ
3752 leaf = path->nodes[0];
3753 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3754 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3755 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3756 goto out;
39279cc3 3757
4df27c4d
YZ
3758 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3759 (unsigned long)(ref + 1),
3760 dentry->d_name.len);
3761 if (ret)
3762 goto out;
3763
b3b4aa74 3764 btrfs_release_path(path);
4df27c4d
YZ
3765
3766 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3767 if (IS_ERR(new_root)) {
3768 err = PTR_ERR(new_root);
3769 goto out;
3770 }
3771
3772 if (btrfs_root_refs(&new_root->root_item) == 0) {
3773 err = -ENOENT;
3774 goto out;
3775 }
3776
3777 *sub_root = new_root;
3778 location->objectid = btrfs_root_dirid(&new_root->root_item);
3779 location->type = BTRFS_INODE_ITEM_KEY;
3780 location->offset = 0;
3781 err = 0;
3782out:
3783 btrfs_free_path(path);
3784 return err;
39279cc3
CM
3785}
3786
5d4f98a2
YZ
3787static void inode_tree_add(struct inode *inode)
3788{
3789 struct btrfs_root *root = BTRFS_I(inode)->root;
3790 struct btrfs_inode *entry;
03e860bd
FNP
3791 struct rb_node **p;
3792 struct rb_node *parent;
33345d01 3793 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3794again:
3795 p = &root->inode_tree.rb_node;
3796 parent = NULL;
5d4f98a2 3797
1d3382cb 3798 if (inode_unhashed(inode))
76dda93c
YZ
3799 return;
3800
5d4f98a2
YZ
3801 spin_lock(&root->inode_lock);
3802 while (*p) {
3803 parent = *p;
3804 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3805
33345d01 3806 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3807 p = &parent->rb_left;
33345d01 3808 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3809 p = &parent->rb_right;
5d4f98a2
YZ
3810 else {
3811 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3812 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3813 rb_erase(parent, &root->inode_tree);
3814 RB_CLEAR_NODE(parent);
3815 spin_unlock(&root->inode_lock);
3816 goto again;
5d4f98a2
YZ
3817 }
3818 }
3819 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3820 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3821 spin_unlock(&root->inode_lock);
3822}
3823
3824static void inode_tree_del(struct inode *inode)
3825{
3826 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3827 int empty = 0;
5d4f98a2 3828
03e860bd 3829 spin_lock(&root->inode_lock);
5d4f98a2 3830 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3831 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3832 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3833 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3834 }
03e860bd 3835 spin_unlock(&root->inode_lock);
76dda93c 3836
0af3d00b
JB
3837 /*
3838 * Free space cache has inodes in the tree root, but the tree root has a
3839 * root_refs of 0, so this could end up dropping the tree root as a
3840 * snapshot, so we need the extra !root->fs_info->tree_root check to
3841 * make sure we don't drop it.
3842 */
3843 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3844 root != root->fs_info->tree_root) {
76dda93c
YZ
3845 synchronize_srcu(&root->fs_info->subvol_srcu);
3846 spin_lock(&root->inode_lock);
3847 empty = RB_EMPTY_ROOT(&root->inode_tree);
3848 spin_unlock(&root->inode_lock);
3849 if (empty)
3850 btrfs_add_dead_root(root);
3851 }
3852}
3853
3854int btrfs_invalidate_inodes(struct btrfs_root *root)
3855{
3856 struct rb_node *node;
3857 struct rb_node *prev;
3858 struct btrfs_inode *entry;
3859 struct inode *inode;
3860 u64 objectid = 0;
3861
3862 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3863
3864 spin_lock(&root->inode_lock);
3865again:
3866 node = root->inode_tree.rb_node;
3867 prev = NULL;
3868 while (node) {
3869 prev = node;
3870 entry = rb_entry(node, struct btrfs_inode, rb_node);
3871
33345d01 3872 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3873 node = node->rb_left;
33345d01 3874 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3875 node = node->rb_right;
3876 else
3877 break;
3878 }
3879 if (!node) {
3880 while (prev) {
3881 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3882 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3883 node = prev;
3884 break;
3885 }
3886 prev = rb_next(prev);
3887 }
3888 }
3889 while (node) {
3890 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3891 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3892 inode = igrab(&entry->vfs_inode);
3893 if (inode) {
3894 spin_unlock(&root->inode_lock);
3895 if (atomic_read(&inode->i_count) > 1)
3896 d_prune_aliases(inode);
3897 /*
45321ac5 3898 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3899 * the inode cache when its usage count
3900 * hits zero.
3901 */
3902 iput(inode);
3903 cond_resched();
3904 spin_lock(&root->inode_lock);
3905 goto again;
3906 }
3907
3908 if (cond_resched_lock(&root->inode_lock))
3909 goto again;
3910
3911 node = rb_next(node);
3912 }
3913 spin_unlock(&root->inode_lock);
3914 return 0;
5d4f98a2
YZ
3915}
3916
e02119d5
CM
3917static int btrfs_init_locked_inode(struct inode *inode, void *p)
3918{
3919 struct btrfs_iget_args *args = p;
3920 inode->i_ino = args->ino;
e02119d5 3921 BTRFS_I(inode)->root = args->root;
6a63209f 3922 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3923 return 0;
3924}
3925
3926static int btrfs_find_actor(struct inode *inode, void *opaque)
3927{
3928 struct btrfs_iget_args *args = opaque;
33345d01 3929 return args->ino == btrfs_ino(inode) &&
d397712b 3930 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3931}
3932
5d4f98a2
YZ
3933static struct inode *btrfs_iget_locked(struct super_block *s,
3934 u64 objectid,
3935 struct btrfs_root *root)
39279cc3
CM
3936{
3937 struct inode *inode;
3938 struct btrfs_iget_args args;
3939 args.ino = objectid;
3940 args.root = root;
3941
3942 inode = iget5_locked(s, objectid, btrfs_find_actor,
3943 btrfs_init_locked_inode,
3944 (void *)&args);
3945 return inode;
3946}
3947
1a54ef8c
BR
3948/* Get an inode object given its location and corresponding root.
3949 * Returns in *is_new if the inode was read from disk
3950 */
3951struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3952 struct btrfs_root *root, int *new)
1a54ef8c
BR
3953{
3954 struct inode *inode;
1748f843 3955 int bad_inode = 0;
1a54ef8c
BR
3956
3957 inode = btrfs_iget_locked(s, location->objectid, root);
3958 if (!inode)
5d4f98a2 3959 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3960
3961 if (inode->i_state & I_NEW) {
3962 BTRFS_I(inode)->root = root;
3963 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3964 btrfs_read_locked_inode(inode);
1748f843
MF
3965 if (!is_bad_inode(inode)) {
3966 inode_tree_add(inode);
3967 unlock_new_inode(inode);
3968 if (new)
3969 *new = 1;
3970 } else {
3971 bad_inode = 1;
3972 }
3973 }
3974
3975 if (bad_inode) {
3976 iput(inode);
3977 inode = ERR_PTR(-ESTALE);
1a54ef8c
BR
3978 }
3979
3980 return inode;
3981}
3982
4df27c4d
YZ
3983static struct inode *new_simple_dir(struct super_block *s,
3984 struct btrfs_key *key,
3985 struct btrfs_root *root)
3986{
3987 struct inode *inode = new_inode(s);
3988
3989 if (!inode)
3990 return ERR_PTR(-ENOMEM);
3991
4df27c4d
YZ
3992 BTRFS_I(inode)->root = root;
3993 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3994 BTRFS_I(inode)->dummy_inode = 1;
3995
3996 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3997 inode->i_op = &simple_dir_inode_operations;
3998 inode->i_fop = &simple_dir_operations;
3999 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4000 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4001
4002 return inode;
4003}
4004
3de4586c 4005struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4006{
d397712b 4007 struct inode *inode;
4df27c4d 4008 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4009 struct btrfs_root *sub_root = root;
4010 struct btrfs_key location;
76dda93c 4011 int index;
5d4f98a2 4012 int ret;
39279cc3
CM
4013
4014 if (dentry->d_name.len > BTRFS_NAME_LEN)
4015 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4016
39279cc3 4017 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4018
39279cc3
CM
4019 if (ret < 0)
4020 return ERR_PTR(ret);
5f39d397 4021
4df27c4d
YZ
4022 if (location.objectid == 0)
4023 return NULL;
4024
4025 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4026 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4027 return inode;
4028 }
4029
4030 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4031
76dda93c 4032 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4033 ret = fixup_tree_root_location(root, dir, dentry,
4034 &location, &sub_root);
4035 if (ret < 0) {
4036 if (ret != -ENOENT)
4037 inode = ERR_PTR(ret);
4038 else
4039 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4040 } else {
73f73415 4041 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4042 }
76dda93c
YZ
4043 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4044
34d19bad 4045 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4046 down_read(&root->fs_info->cleanup_work_sem);
4047 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4048 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4049 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4050 if (ret)
4051 inode = ERR_PTR(ret);
c71bf099
YZ
4052 }
4053
3de4586c
CM
4054 return inode;
4055}
4056
fe15ce44 4057static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4058{
4059 struct btrfs_root *root;
4060
efefb143
YZ
4061 if (!dentry->d_inode && !IS_ROOT(dentry))
4062 dentry = dentry->d_parent;
76dda93c 4063
efefb143
YZ
4064 if (dentry->d_inode) {
4065 root = BTRFS_I(dentry->d_inode)->root;
4066 if (btrfs_root_refs(&root->root_item) == 0)
4067 return 1;
4068 }
76dda93c
YZ
4069 return 0;
4070}
4071
3de4586c
CM
4072static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4073 struct nameidata *nd)
4074{
4075 struct inode *inode;
4076
3de4586c
CM
4077 inode = btrfs_lookup_dentry(dir, dentry);
4078 if (IS_ERR(inode))
4079 return ERR_CAST(inode);
7b128766 4080
39279cc3
CM
4081 return d_splice_alias(inode, dentry);
4082}
4083
16cdcec7 4084unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4085 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4086};
4087
cbdf5a24
DW
4088static int btrfs_real_readdir(struct file *filp, void *dirent,
4089 filldir_t filldir)
39279cc3 4090{
6da6abae 4091 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4092 struct btrfs_root *root = BTRFS_I(inode)->root;
4093 struct btrfs_item *item;
4094 struct btrfs_dir_item *di;
4095 struct btrfs_key key;
5f39d397 4096 struct btrfs_key found_key;
39279cc3 4097 struct btrfs_path *path;
16cdcec7
MX
4098 struct list_head ins_list;
4099 struct list_head del_list;
39279cc3 4100 int ret;
5f39d397 4101 struct extent_buffer *leaf;
39279cc3 4102 int slot;
39279cc3
CM
4103 unsigned char d_type;
4104 int over = 0;
4105 u32 di_cur;
4106 u32 di_total;
4107 u32 di_len;
4108 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4109 char tmp_name[32];
4110 char *name_ptr;
4111 int name_len;
16cdcec7 4112 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4113
4114 /* FIXME, use a real flag for deciding about the key type */
4115 if (root->fs_info->tree_root == root)
4116 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4117
3954401f
CM
4118 /* special case for "." */
4119 if (filp->f_pos == 0) {
33345d01 4120 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
3954401f
CM
4121 if (over)
4122 return 0;
4123 filp->f_pos = 1;
4124 }
3954401f
CM
4125 /* special case for .., just use the back ref */
4126 if (filp->f_pos == 1) {
5ecc7e5d 4127 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4128 over = filldir(dirent, "..", 2,
5ecc7e5d 4129 2, pino, DT_DIR);
3954401f 4130 if (over)
49593bfa 4131 return 0;
3954401f
CM
4132 filp->f_pos = 2;
4133 }
49593bfa 4134 path = btrfs_alloc_path();
16cdcec7
MX
4135 if (!path)
4136 return -ENOMEM;
ff5714cc 4137
026fd317 4138 path->reada = 1;
49593bfa 4139
16cdcec7
MX
4140 if (key_type == BTRFS_DIR_INDEX_KEY) {
4141 INIT_LIST_HEAD(&ins_list);
4142 INIT_LIST_HEAD(&del_list);
4143 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4144 }
4145
39279cc3
CM
4146 btrfs_set_key_type(&key, key_type);
4147 key.offset = filp->f_pos;
33345d01 4148 key.objectid = btrfs_ino(inode);
5f39d397 4149
39279cc3
CM
4150 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4151 if (ret < 0)
4152 goto err;
49593bfa
DW
4153
4154 while (1) {
5f39d397 4155 leaf = path->nodes[0];
39279cc3 4156 slot = path->slots[0];
b9e03af0
LZ
4157 if (slot >= btrfs_header_nritems(leaf)) {
4158 ret = btrfs_next_leaf(root, path);
4159 if (ret < 0)
4160 goto err;
4161 else if (ret > 0)
4162 break;
4163 continue;
39279cc3 4164 }
3de4586c 4165
5f39d397
CM
4166 item = btrfs_item_nr(leaf, slot);
4167 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4168
4169 if (found_key.objectid != key.objectid)
39279cc3 4170 break;
5f39d397 4171 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4172 break;
5f39d397 4173 if (found_key.offset < filp->f_pos)
b9e03af0 4174 goto next;
16cdcec7
MX
4175 if (key_type == BTRFS_DIR_INDEX_KEY &&
4176 btrfs_should_delete_dir_index(&del_list,
4177 found_key.offset))
4178 goto next;
5f39d397
CM
4179
4180 filp->f_pos = found_key.offset;
16cdcec7 4181 is_curr = 1;
49593bfa 4182
39279cc3
CM
4183 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4184 di_cur = 0;
5f39d397 4185 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4186
4187 while (di_cur < di_total) {
5f39d397
CM
4188 struct btrfs_key location;
4189
22a94d44
JB
4190 if (verify_dir_item(root, leaf, di))
4191 break;
4192
5f39d397 4193 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4194 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4195 name_ptr = tmp_name;
4196 } else {
4197 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4198 if (!name_ptr) {
4199 ret = -ENOMEM;
4200 goto err;
4201 }
5f39d397
CM
4202 }
4203 read_extent_buffer(leaf, name_ptr,
4204 (unsigned long)(di + 1), name_len);
4205
4206 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4207 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4208
4209 /* is this a reference to our own snapshot? If so
4210 * skip it
4211 */
4212 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4213 location.objectid == root->root_key.objectid) {
4214 over = 0;
4215 goto skip;
4216 }
5f39d397 4217 over = filldir(dirent, name_ptr, name_len,
49593bfa 4218 found_key.offset, location.objectid,
39279cc3 4219 d_type);
5f39d397 4220
3de4586c 4221skip:
5f39d397
CM
4222 if (name_ptr != tmp_name)
4223 kfree(name_ptr);
4224
39279cc3
CM
4225 if (over)
4226 goto nopos;
5103e947 4227 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4228 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4229 di_cur += di_len;
4230 di = (struct btrfs_dir_item *)((char *)di + di_len);
4231 }
b9e03af0
LZ
4232next:
4233 path->slots[0]++;
39279cc3 4234 }
49593bfa 4235
16cdcec7
MX
4236 if (key_type == BTRFS_DIR_INDEX_KEY) {
4237 if (is_curr)
4238 filp->f_pos++;
4239 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4240 &ins_list);
4241 if (ret)
4242 goto nopos;
4243 }
4244
49593bfa 4245 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4246 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4247 /*
4248 * 32-bit glibc will use getdents64, but then strtol -
4249 * so the last number we can serve is this.
4250 */
4251 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4252 else
4253 filp->f_pos++;
39279cc3
CM
4254nopos:
4255 ret = 0;
4256err:
16cdcec7
MX
4257 if (key_type == BTRFS_DIR_INDEX_KEY)
4258 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4259 btrfs_free_path(path);
39279cc3
CM
4260 return ret;
4261}
4262
a9185b41 4263int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4264{
4265 struct btrfs_root *root = BTRFS_I(inode)->root;
4266 struct btrfs_trans_handle *trans;
4267 int ret = 0;
0af3d00b 4268 bool nolock = false;
39279cc3 4269
8929ecfa 4270 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4271 return 0;
4272
2cf8572d 4273 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4274 nolock = true;
0af3d00b 4275
a9185b41 4276 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4277 if (nolock)
7a7eaa40 4278 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4279 else
7a7eaa40 4280 trans = btrfs_join_transaction(root);
3612b495
TI
4281 if (IS_ERR(trans))
4282 return PTR_ERR(trans);
0af3d00b
JB
4283 if (nolock)
4284 ret = btrfs_end_transaction_nolock(trans, root);
4285 else
4286 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4287 }
4288 return ret;
4289}
4290
4291/*
54aa1f4d 4292 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4293 * inode changes. But, it is most likely to find the inode in cache.
4294 * FIXME, needs more benchmarking...there are no reasons other than performance
4295 * to keep or drop this code.
4296 */
aa385729 4297void btrfs_dirty_inode(struct inode *inode, int flags)
39279cc3
CM
4298{
4299 struct btrfs_root *root = BTRFS_I(inode)->root;
4300 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4301 int ret;
4302
4303 if (BTRFS_I(inode)->dummy_inode)
4304 return;
39279cc3 4305
7a7eaa40 4306 trans = btrfs_join_transaction(root);
3612b495 4307 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
4308
4309 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4310 if (ret && ret == -ENOSPC) {
4311 /* whoops, lets try again with the full transaction */
4312 btrfs_end_transaction(trans, root);
4313 trans = btrfs_start_transaction(root, 1);
9aeead73 4314 if (IS_ERR(trans)) {
7a36ddec 4315 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4316 "dirty inode %llu error %ld\n",
4317 (unsigned long long)btrfs_ino(inode),
4318 PTR_ERR(trans));
9aeead73
CM
4319 return;
4320 }
8929ecfa 4321
94b60442
CM
4322 ret = btrfs_update_inode(trans, root, inode);
4323 if (ret) {
7a36ddec 4324 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4325 "dirty inode %llu error %d\n",
4326 (unsigned long long)btrfs_ino(inode),
4327 ret);
94b60442
CM
4328 }
4329 }
39279cc3 4330 btrfs_end_transaction(trans, root);
16cdcec7
MX
4331 if (BTRFS_I(inode)->delayed_node)
4332 btrfs_balance_delayed_items(root);
39279cc3
CM
4333}
4334
d352ac68
CM
4335/*
4336 * find the highest existing sequence number in a directory
4337 * and then set the in-memory index_cnt variable to reflect
4338 * free sequence numbers
4339 */
aec7477b
JB
4340static int btrfs_set_inode_index_count(struct inode *inode)
4341{
4342 struct btrfs_root *root = BTRFS_I(inode)->root;
4343 struct btrfs_key key, found_key;
4344 struct btrfs_path *path;
4345 struct extent_buffer *leaf;
4346 int ret;
4347
33345d01 4348 key.objectid = btrfs_ino(inode);
aec7477b
JB
4349 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4350 key.offset = (u64)-1;
4351
4352 path = btrfs_alloc_path();
4353 if (!path)
4354 return -ENOMEM;
4355
4356 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4357 if (ret < 0)
4358 goto out;
4359 /* FIXME: we should be able to handle this */
4360 if (ret == 0)
4361 goto out;
4362 ret = 0;
4363
4364 /*
4365 * MAGIC NUMBER EXPLANATION:
4366 * since we search a directory based on f_pos we have to start at 2
4367 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4368 * else has to start at 2
4369 */
4370 if (path->slots[0] == 0) {
4371 BTRFS_I(inode)->index_cnt = 2;
4372 goto out;
4373 }
4374
4375 path->slots[0]--;
4376
4377 leaf = path->nodes[0];
4378 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4379
33345d01 4380 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4381 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4382 BTRFS_I(inode)->index_cnt = 2;
4383 goto out;
4384 }
4385
4386 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4387out:
4388 btrfs_free_path(path);
4389 return ret;
4390}
4391
d352ac68
CM
4392/*
4393 * helper to find a free sequence number in a given directory. This current
4394 * code is very simple, later versions will do smarter things in the btree
4395 */
3de4586c 4396int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4397{
4398 int ret = 0;
4399
4400 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4401 ret = btrfs_inode_delayed_dir_index_count(dir);
4402 if (ret) {
4403 ret = btrfs_set_inode_index_count(dir);
4404 if (ret)
4405 return ret;
4406 }
aec7477b
JB
4407 }
4408
00e4e6b3 4409 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4410 BTRFS_I(dir)->index_cnt++;
4411
4412 return ret;
4413}
4414
39279cc3
CM
4415static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4416 struct btrfs_root *root,
aec7477b 4417 struct inode *dir,
9c58309d 4418 const char *name, int name_len,
d82a6f1d
JB
4419 u64 ref_objectid, u64 objectid, int mode,
4420 u64 *index)
39279cc3
CM
4421{
4422 struct inode *inode;
5f39d397 4423 struct btrfs_inode_item *inode_item;
39279cc3 4424 struct btrfs_key *location;
5f39d397 4425 struct btrfs_path *path;
9c58309d
CM
4426 struct btrfs_inode_ref *ref;
4427 struct btrfs_key key[2];
4428 u32 sizes[2];
4429 unsigned long ptr;
39279cc3
CM
4430 int ret;
4431 int owner;
4432
5f39d397 4433 path = btrfs_alloc_path();
d8926bb3
MF
4434 if (!path)
4435 return ERR_PTR(-ENOMEM);
5f39d397 4436
39279cc3 4437 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4438 if (!inode) {
4439 btrfs_free_path(path);
39279cc3 4440 return ERR_PTR(-ENOMEM);
8fb27640 4441 }
39279cc3 4442
581bb050
LZ
4443 /*
4444 * we have to initialize this early, so we can reclaim the inode
4445 * number if we fail afterwards in this function.
4446 */
4447 inode->i_ino = objectid;
4448
aec7477b 4449 if (dir) {
1abe9b8a 4450 trace_btrfs_inode_request(dir);
4451
3de4586c 4452 ret = btrfs_set_inode_index(dir, index);
09771430 4453 if (ret) {
8fb27640 4454 btrfs_free_path(path);
09771430 4455 iput(inode);
aec7477b 4456 return ERR_PTR(ret);
09771430 4457 }
aec7477b
JB
4458 }
4459 /*
4460 * index_cnt is ignored for everything but a dir,
4461 * btrfs_get_inode_index_count has an explanation for the magic
4462 * number
4463 */
4464 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4465 BTRFS_I(inode)->root = root;
e02119d5 4466 BTRFS_I(inode)->generation = trans->transid;
76195853 4467 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4468 btrfs_set_inode_space_info(root, inode);
b888db2b 4469
39279cc3
CM
4470 if (mode & S_IFDIR)
4471 owner = 0;
4472 else
4473 owner = 1;
9c58309d
CM
4474
4475 key[0].objectid = objectid;
4476 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4477 key[0].offset = 0;
4478
4479 key[1].objectid = objectid;
4480 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4481 key[1].offset = ref_objectid;
4482
4483 sizes[0] = sizeof(struct btrfs_inode_item);
4484 sizes[1] = name_len + sizeof(*ref);
4485
b9473439 4486 path->leave_spinning = 1;
9c58309d
CM
4487 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4488 if (ret != 0)
5f39d397
CM
4489 goto fail;
4490
ecc11fab 4491 inode_init_owner(inode, dir, mode);
a76a3cd4 4492 inode_set_bytes(inode, 0);
39279cc3 4493 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4494 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4495 struct btrfs_inode_item);
e02119d5 4496 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4497
4498 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4499 struct btrfs_inode_ref);
4500 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4501 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4502 ptr = (unsigned long)(ref + 1);
4503 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4504
5f39d397
CM
4505 btrfs_mark_buffer_dirty(path->nodes[0]);
4506 btrfs_free_path(path);
4507
39279cc3
CM
4508 location = &BTRFS_I(inode)->location;
4509 location->objectid = objectid;
39279cc3
CM
4510 location->offset = 0;
4511 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4512
6cbff00f
CH
4513 btrfs_inherit_iflags(inode, dir);
4514
94272164
CM
4515 if ((mode & S_IFREG)) {
4516 if (btrfs_test_opt(root, NODATASUM))
4517 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4518 if (btrfs_test_opt(root, NODATACOW) ||
4519 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4520 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4521 }
4522
39279cc3 4523 insert_inode_hash(inode);
5d4f98a2 4524 inode_tree_add(inode);
1abe9b8a 4525
4526 trace_btrfs_inode_new(inode);
1973f0fa 4527 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4528
39279cc3 4529 return inode;
5f39d397 4530fail:
aec7477b
JB
4531 if (dir)
4532 BTRFS_I(dir)->index_cnt--;
5f39d397 4533 btrfs_free_path(path);
09771430 4534 iput(inode);
5f39d397 4535 return ERR_PTR(ret);
39279cc3
CM
4536}
4537
4538static inline u8 btrfs_inode_type(struct inode *inode)
4539{
4540 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4541}
4542
d352ac68
CM
4543/*
4544 * utility function to add 'inode' into 'parent_inode' with
4545 * a give name and a given sequence number.
4546 * if 'add_backref' is true, also insert a backref from the
4547 * inode to the parent directory.
4548 */
e02119d5
CM
4549int btrfs_add_link(struct btrfs_trans_handle *trans,
4550 struct inode *parent_inode, struct inode *inode,
4551 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4552{
4df27c4d 4553 int ret = 0;
39279cc3 4554 struct btrfs_key key;
e02119d5 4555 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4556 u64 ino = btrfs_ino(inode);
4557 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4558
33345d01 4559 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4560 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4561 } else {
33345d01 4562 key.objectid = ino;
4df27c4d
YZ
4563 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4564 key.offset = 0;
4565 }
4566
33345d01 4567 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4568 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4569 key.objectid, root->root_key.objectid,
33345d01 4570 parent_ino, index, name, name_len);
4df27c4d 4571 } else if (add_backref) {
33345d01
LZ
4572 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4573 parent_ino, index);
4df27c4d 4574 }
39279cc3 4575
39279cc3 4576 if (ret == 0) {
4df27c4d 4577 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4578 parent_inode, &key,
4df27c4d
YZ
4579 btrfs_inode_type(inode), index);
4580 BUG_ON(ret);
4581
dbe674a9 4582 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4583 name_len * 2);
79c44584 4584 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4585 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4586 }
4587 return ret;
4588}
4589
4590static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4591 struct inode *dir, struct dentry *dentry,
4592 struct inode *inode, int backref, u64 index)
39279cc3 4593{
a1b075d2
JB
4594 int err = btrfs_add_link(trans, dir, inode,
4595 dentry->d_name.name, dentry->d_name.len,
4596 backref, index);
39279cc3
CM
4597 if (!err) {
4598 d_instantiate(dentry, inode);
4599 return 0;
4600 }
4601 if (err > 0)
4602 err = -EEXIST;
4603 return err;
4604}
4605
618e21d5
JB
4606static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4607 int mode, dev_t rdev)
4608{
4609 struct btrfs_trans_handle *trans;
4610 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4611 struct inode *inode = NULL;
618e21d5
JB
4612 int err;
4613 int drop_inode = 0;
4614 u64 objectid;
1832a6d5 4615 unsigned long nr = 0;
00e4e6b3 4616 u64 index = 0;
618e21d5
JB
4617
4618 if (!new_valid_dev(rdev))
4619 return -EINVAL;
4620
9ed74f2d
JB
4621 /*
4622 * 2 for inode item and ref
4623 * 2 for dir items
4624 * 1 for xattr if selinux is on
4625 */
a22285a6
YZ
4626 trans = btrfs_start_transaction(root, 5);
4627 if (IS_ERR(trans))
4628 return PTR_ERR(trans);
1832a6d5 4629
581bb050
LZ
4630 err = btrfs_find_free_ino(root, &objectid);
4631 if (err)
4632 goto out_unlock;
4633
aec7477b 4634 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4635 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4636 mode, &index);
7cf96da3
TI
4637 if (IS_ERR(inode)) {
4638 err = PTR_ERR(inode);
618e21d5 4639 goto out_unlock;
7cf96da3 4640 }
618e21d5 4641
2a7dba39 4642 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4643 if (err) {
4644 drop_inode = 1;
4645 goto out_unlock;
4646 }
4647
a1b075d2 4648 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4649 if (err)
4650 drop_inode = 1;
4651 else {
4652 inode->i_op = &btrfs_special_inode_operations;
4653 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4654 btrfs_update_inode(trans, root, inode);
618e21d5 4655 }
618e21d5 4656out_unlock:
d3c2fdcf 4657 nr = trans->blocks_used;
89ce8a63 4658 btrfs_end_transaction_throttle(trans, root);
a22285a6 4659 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4660 if (drop_inode) {
4661 inode_dec_link_count(inode);
4662 iput(inode);
4663 }
618e21d5
JB
4664 return err;
4665}
4666
39279cc3
CM
4667static int btrfs_create(struct inode *dir, struct dentry *dentry,
4668 int mode, struct nameidata *nd)
4669{
4670 struct btrfs_trans_handle *trans;
4671 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4672 struct inode *inode = NULL;
39279cc3 4673 int drop_inode = 0;
a22285a6 4674 int err;
1832a6d5 4675 unsigned long nr = 0;
39279cc3 4676 u64 objectid;
00e4e6b3 4677 u64 index = 0;
39279cc3 4678
9ed74f2d
JB
4679 /*
4680 * 2 for inode item and ref
4681 * 2 for dir items
4682 * 1 for xattr if selinux is on
4683 */
a22285a6
YZ
4684 trans = btrfs_start_transaction(root, 5);
4685 if (IS_ERR(trans))
4686 return PTR_ERR(trans);
9ed74f2d 4687
581bb050
LZ
4688 err = btrfs_find_free_ino(root, &objectid);
4689 if (err)
4690 goto out_unlock;
4691
aec7477b 4692 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4693 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4694 mode, &index);
7cf96da3
TI
4695 if (IS_ERR(inode)) {
4696 err = PTR_ERR(inode);
39279cc3 4697 goto out_unlock;
7cf96da3 4698 }
39279cc3 4699
2a7dba39 4700 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4701 if (err) {
4702 drop_inode = 1;
4703 goto out_unlock;
4704 }
4705
a1b075d2 4706 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4707 if (err)
4708 drop_inode = 1;
4709 else {
4710 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4711 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4712 inode->i_fop = &btrfs_file_operations;
4713 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4714 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4715 }
39279cc3 4716out_unlock:
d3c2fdcf 4717 nr = trans->blocks_used;
ab78c84d 4718 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4719 if (drop_inode) {
4720 inode_dec_link_count(inode);
4721 iput(inode);
4722 }
d3c2fdcf 4723 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4724 return err;
4725}
4726
4727static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4728 struct dentry *dentry)
4729{
4730 struct btrfs_trans_handle *trans;
4731 struct btrfs_root *root = BTRFS_I(dir)->root;
4732 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4733 u64 index;
1832a6d5 4734 unsigned long nr = 0;
39279cc3
CM
4735 int err;
4736 int drop_inode = 0;
4737
4a8be425
TH
4738 /* do not allow sys_link's with other subvols of the same device */
4739 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4740 return -EXDEV;
4a8be425 4741
c055e99e
AV
4742 if (inode->i_nlink == ~0U)
4743 return -EMLINK;
4a8be425 4744
3de4586c 4745 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4746 if (err)
4747 goto fail;
4748
a22285a6 4749 /*
7e6b6465 4750 * 2 items for inode and inode ref
a22285a6 4751 * 2 items for dir items
7e6b6465 4752 * 1 item for parent inode
a22285a6 4753 */
7e6b6465 4754 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4755 if (IS_ERR(trans)) {
4756 err = PTR_ERR(trans);
4757 goto fail;
4758 }
5f39d397 4759
3153495d
MX
4760 btrfs_inc_nlink(inode);
4761 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4762 ihold(inode);
aec7477b 4763
a1b075d2 4764 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4765
a5719521 4766 if (err) {
54aa1f4d 4767 drop_inode = 1;
a5719521 4768 } else {
6a912213 4769 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4770 err = btrfs_update_inode(trans, root, inode);
4771 BUG_ON(err);
6a912213
JB
4772 btrfs_log_new_name(trans, inode, NULL, parent);
4773 dput(parent);
a5719521 4774 }
39279cc3 4775
d3c2fdcf 4776 nr = trans->blocks_used;
ab78c84d 4777 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4778fail:
39279cc3
CM
4779 if (drop_inode) {
4780 inode_dec_link_count(inode);
4781 iput(inode);
4782 }
d3c2fdcf 4783 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4784 return err;
4785}
4786
39279cc3
CM
4787static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4788{
b9d86667 4789 struct inode *inode = NULL;
39279cc3
CM
4790 struct btrfs_trans_handle *trans;
4791 struct btrfs_root *root = BTRFS_I(dir)->root;
4792 int err = 0;
4793 int drop_on_err = 0;
b9d86667 4794 u64 objectid = 0;
00e4e6b3 4795 u64 index = 0;
d3c2fdcf 4796 unsigned long nr = 1;
39279cc3 4797
9ed74f2d
JB
4798 /*
4799 * 2 items for inode and ref
4800 * 2 items for dir items
4801 * 1 for xattr if selinux is on
4802 */
a22285a6
YZ
4803 trans = btrfs_start_transaction(root, 5);
4804 if (IS_ERR(trans))
4805 return PTR_ERR(trans);
39279cc3 4806
581bb050
LZ
4807 err = btrfs_find_free_ino(root, &objectid);
4808 if (err)
4809 goto out_fail;
4810
aec7477b 4811 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4812 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4813 S_IFDIR | mode, &index);
39279cc3
CM
4814 if (IS_ERR(inode)) {
4815 err = PTR_ERR(inode);
4816 goto out_fail;
4817 }
5f39d397 4818
39279cc3 4819 drop_on_err = 1;
33268eaf 4820
2a7dba39 4821 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4822 if (err)
4823 goto out_fail;
4824
39279cc3
CM
4825 inode->i_op = &btrfs_dir_inode_operations;
4826 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4827
dbe674a9 4828 btrfs_i_size_write(inode, 0);
39279cc3
CM
4829 err = btrfs_update_inode(trans, root, inode);
4830 if (err)
4831 goto out_fail;
5f39d397 4832
a1b075d2
JB
4833 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4834 dentry->d_name.len, 0, index);
39279cc3
CM
4835 if (err)
4836 goto out_fail;
5f39d397 4837
39279cc3
CM
4838 d_instantiate(dentry, inode);
4839 drop_on_err = 0;
39279cc3
CM
4840
4841out_fail:
d3c2fdcf 4842 nr = trans->blocks_used;
ab78c84d 4843 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4844 if (drop_on_err)
4845 iput(inode);
d3c2fdcf 4846 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4847 return err;
4848}
4849
d352ac68
CM
4850/* helper for btfs_get_extent. Given an existing extent in the tree,
4851 * and an extent that you want to insert, deal with overlap and insert
4852 * the new extent into the tree.
4853 */
3b951516
CM
4854static int merge_extent_mapping(struct extent_map_tree *em_tree,
4855 struct extent_map *existing,
e6dcd2dc
CM
4856 struct extent_map *em,
4857 u64 map_start, u64 map_len)
3b951516
CM
4858{
4859 u64 start_diff;
3b951516 4860
e6dcd2dc
CM
4861 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4862 start_diff = map_start - em->start;
4863 em->start = map_start;
4864 em->len = map_len;
c8b97818
CM
4865 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4866 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4867 em->block_start += start_diff;
c8b97818
CM
4868 em->block_len -= start_diff;
4869 }
e6dcd2dc 4870 return add_extent_mapping(em_tree, em);
3b951516
CM
4871}
4872
c8b97818
CM
4873static noinline int uncompress_inline(struct btrfs_path *path,
4874 struct inode *inode, struct page *page,
4875 size_t pg_offset, u64 extent_offset,
4876 struct btrfs_file_extent_item *item)
4877{
4878 int ret;
4879 struct extent_buffer *leaf = path->nodes[0];
4880 char *tmp;
4881 size_t max_size;
4882 unsigned long inline_size;
4883 unsigned long ptr;
261507a0 4884 int compress_type;
c8b97818
CM
4885
4886 WARN_ON(pg_offset != 0);
261507a0 4887 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4888 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4889 inline_size = btrfs_file_extent_inline_item_len(leaf,
4890 btrfs_item_nr(leaf, path->slots[0]));
4891 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4892 if (!tmp)
4893 return -ENOMEM;
c8b97818
CM
4894 ptr = btrfs_file_extent_inline_start(item);
4895
4896 read_extent_buffer(leaf, tmp, ptr, inline_size);
4897
5b050f04 4898 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4899 ret = btrfs_decompress(compress_type, tmp, page,
4900 extent_offset, inline_size, max_size);
c8b97818
CM
4901 if (ret) {
4902 char *kaddr = kmap_atomic(page, KM_USER0);
4903 unsigned long copy_size = min_t(u64,
4904 PAGE_CACHE_SIZE - pg_offset,
4905 max_size - extent_offset);
4906 memset(kaddr + pg_offset, 0, copy_size);
4907 kunmap_atomic(kaddr, KM_USER0);
4908 }
4909 kfree(tmp);
4910 return 0;
4911}
4912
d352ac68
CM
4913/*
4914 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4915 * the ugly parts come from merging extents from the disk with the in-ram
4916 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4917 * where the in-ram extents might be locked pending data=ordered completion.
4918 *
4919 * This also copies inline extents directly into the page.
4920 */
d397712b 4921
a52d9a80 4922struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4923 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4924 int create)
4925{
4926 int ret;
4927 int err = 0;
db94535d 4928 u64 bytenr;
a52d9a80
CM
4929 u64 extent_start = 0;
4930 u64 extent_end = 0;
33345d01 4931 u64 objectid = btrfs_ino(inode);
a52d9a80 4932 u32 found_type;
f421950f 4933 struct btrfs_path *path = NULL;
a52d9a80
CM
4934 struct btrfs_root *root = BTRFS_I(inode)->root;
4935 struct btrfs_file_extent_item *item;
5f39d397
CM
4936 struct extent_buffer *leaf;
4937 struct btrfs_key found_key;
a52d9a80
CM
4938 struct extent_map *em = NULL;
4939 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4940 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4941 struct btrfs_trans_handle *trans = NULL;
261507a0 4942 int compress_type;
a52d9a80 4943
a52d9a80 4944again:
890871be 4945 read_lock(&em_tree->lock);
d1310b2e 4946 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4947 if (em)
4948 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4949 read_unlock(&em_tree->lock);
d1310b2e 4950
a52d9a80 4951 if (em) {
e1c4b745
CM
4952 if (em->start > start || em->start + em->len <= start)
4953 free_extent_map(em);
4954 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4955 free_extent_map(em);
4956 else
4957 goto out;
a52d9a80 4958 }
172ddd60 4959 em = alloc_extent_map();
a52d9a80 4960 if (!em) {
d1310b2e
CM
4961 err = -ENOMEM;
4962 goto out;
a52d9a80 4963 }
e6dcd2dc 4964 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4965 em->start = EXTENT_MAP_HOLE;
445a6944 4966 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4967 em->len = (u64)-1;
c8b97818 4968 em->block_len = (u64)-1;
f421950f
CM
4969
4970 if (!path) {
4971 path = btrfs_alloc_path();
026fd317
JB
4972 if (!path) {
4973 err = -ENOMEM;
4974 goto out;
4975 }
4976 /*
4977 * Chances are we'll be called again, so go ahead and do
4978 * readahead
4979 */
4980 path->reada = 1;
f421950f
CM
4981 }
4982
179e29e4
CM
4983 ret = btrfs_lookup_file_extent(trans, root, path,
4984 objectid, start, trans != NULL);
a52d9a80
CM
4985 if (ret < 0) {
4986 err = ret;
4987 goto out;
4988 }
4989
4990 if (ret != 0) {
4991 if (path->slots[0] == 0)
4992 goto not_found;
4993 path->slots[0]--;
4994 }
4995
5f39d397
CM
4996 leaf = path->nodes[0];
4997 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4998 struct btrfs_file_extent_item);
a52d9a80 4999 /* are we inside the extent that was found? */
5f39d397
CM
5000 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5001 found_type = btrfs_key_type(&found_key);
5002 if (found_key.objectid != objectid ||
a52d9a80
CM
5003 found_type != BTRFS_EXTENT_DATA_KEY) {
5004 goto not_found;
5005 }
5006
5f39d397
CM
5007 found_type = btrfs_file_extent_type(leaf, item);
5008 extent_start = found_key.offset;
261507a0 5009 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5010 if (found_type == BTRFS_FILE_EXTENT_REG ||
5011 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5012 extent_end = extent_start +
db94535d 5013 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5014 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5015 size_t size;
5016 size = btrfs_file_extent_inline_len(leaf, item);
5017 extent_end = (extent_start + size + root->sectorsize - 1) &
5018 ~((u64)root->sectorsize - 1);
5019 }
5020
5021 if (start >= extent_end) {
5022 path->slots[0]++;
5023 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5024 ret = btrfs_next_leaf(root, path);
5025 if (ret < 0) {
5026 err = ret;
5027 goto out;
a52d9a80 5028 }
9036c102
YZ
5029 if (ret > 0)
5030 goto not_found;
5031 leaf = path->nodes[0];
a52d9a80 5032 }
9036c102
YZ
5033 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5034 if (found_key.objectid != objectid ||
5035 found_key.type != BTRFS_EXTENT_DATA_KEY)
5036 goto not_found;
5037 if (start + len <= found_key.offset)
5038 goto not_found;
5039 em->start = start;
5040 em->len = found_key.offset - start;
5041 goto not_found_em;
5042 }
5043
d899e052
YZ
5044 if (found_type == BTRFS_FILE_EXTENT_REG ||
5045 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5046 em->start = extent_start;
5047 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5048 em->orig_start = extent_start -
5049 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5050 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5051 if (bytenr == 0) {
5f39d397 5052 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5053 goto insert;
5054 }
261507a0 5055 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5056 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5057 em->compress_type = compress_type;
c8b97818
CM
5058 em->block_start = bytenr;
5059 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5060 item);
5061 } else {
5062 bytenr += btrfs_file_extent_offset(leaf, item);
5063 em->block_start = bytenr;
5064 em->block_len = em->len;
d899e052
YZ
5065 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5066 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5067 }
a52d9a80
CM
5068 goto insert;
5069 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5070 unsigned long ptr;
a52d9a80 5071 char *map;
3326d1b0
CM
5072 size_t size;
5073 size_t extent_offset;
5074 size_t copy_size;
a52d9a80 5075
689f9346 5076 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5077 if (!page || create) {
689f9346 5078 em->start = extent_start;
9036c102 5079 em->len = extent_end - extent_start;
689f9346
Y
5080 goto out;
5081 }
5f39d397 5082
9036c102
YZ
5083 size = btrfs_file_extent_inline_len(leaf, item);
5084 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5085 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5086 size - extent_offset);
3326d1b0 5087 em->start = extent_start + extent_offset;
70dec807
CM
5088 em->len = (copy_size + root->sectorsize - 1) &
5089 ~((u64)root->sectorsize - 1);
ff5b7ee3 5090 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5091 if (compress_type) {
c8b97818 5092 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5093 em->compress_type = compress_type;
5094 }
689f9346 5095 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5096 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5097 if (btrfs_file_extent_compression(leaf, item) !=
5098 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5099 ret = uncompress_inline(path, inode, page,
5100 pg_offset,
5101 extent_offset, item);
5102 BUG_ON(ret);
5103 } else {
5104 map = kmap(page);
5105 read_extent_buffer(leaf, map + pg_offset, ptr,
5106 copy_size);
93c82d57
CM
5107 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5108 memset(map + pg_offset + copy_size, 0,
5109 PAGE_CACHE_SIZE - pg_offset -
5110 copy_size);
5111 }
c8b97818
CM
5112 kunmap(page);
5113 }
179e29e4
CM
5114 flush_dcache_page(page);
5115 } else if (create && PageUptodate(page)) {
0ca1f7ce 5116 WARN_ON(1);
179e29e4
CM
5117 if (!trans) {
5118 kunmap(page);
5119 free_extent_map(em);
5120 em = NULL;
ff5714cc 5121
b3b4aa74 5122 btrfs_release_path(path);
7a7eaa40 5123 trans = btrfs_join_transaction(root);
ff5714cc 5124
3612b495
TI
5125 if (IS_ERR(trans))
5126 return ERR_CAST(trans);
179e29e4
CM
5127 goto again;
5128 }
c8b97818 5129 map = kmap(page);
70dec807 5130 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5131 copy_size);
c8b97818 5132 kunmap(page);
179e29e4 5133 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5134 }
d1310b2e 5135 set_extent_uptodate(io_tree, em->start,
507903b8 5136 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5137 goto insert;
5138 } else {
d397712b 5139 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5140 WARN_ON(1);
5141 }
5142not_found:
5143 em->start = start;
d1310b2e 5144 em->len = len;
a52d9a80 5145not_found_em:
5f39d397 5146 em->block_start = EXTENT_MAP_HOLE;
9036c102 5147 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5148insert:
b3b4aa74 5149 btrfs_release_path(path);
d1310b2e 5150 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5151 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5152 "[%llu %llu]\n", (unsigned long long)em->start,
5153 (unsigned long long)em->len,
5154 (unsigned long long)start,
5155 (unsigned long long)len);
a52d9a80
CM
5156 err = -EIO;
5157 goto out;
5158 }
d1310b2e
CM
5159
5160 err = 0;
890871be 5161 write_lock(&em_tree->lock);
a52d9a80 5162 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5163 /* it is possible that someone inserted the extent into the tree
5164 * while we had the lock dropped. It is also possible that
5165 * an overlapping map exists in the tree
5166 */
a52d9a80 5167 if (ret == -EEXIST) {
3b951516 5168 struct extent_map *existing;
e6dcd2dc
CM
5169
5170 ret = 0;
5171
3b951516 5172 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5173 if (existing && (existing->start > start ||
5174 existing->start + existing->len <= start)) {
5175 free_extent_map(existing);
5176 existing = NULL;
5177 }
3b951516
CM
5178 if (!existing) {
5179 existing = lookup_extent_mapping(em_tree, em->start,
5180 em->len);
5181 if (existing) {
5182 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5183 em, start,
5184 root->sectorsize);
3b951516
CM
5185 free_extent_map(existing);
5186 if (err) {
5187 free_extent_map(em);
5188 em = NULL;
5189 }
5190 } else {
5191 err = -EIO;
3b951516
CM
5192 free_extent_map(em);
5193 em = NULL;
5194 }
5195 } else {
5196 free_extent_map(em);
5197 em = existing;
e6dcd2dc 5198 err = 0;
a52d9a80 5199 }
a52d9a80 5200 }
890871be 5201 write_unlock(&em_tree->lock);
a52d9a80 5202out:
1abe9b8a 5203
5204 trace_btrfs_get_extent(root, em);
5205
f421950f
CM
5206 if (path)
5207 btrfs_free_path(path);
a52d9a80
CM
5208 if (trans) {
5209 ret = btrfs_end_transaction(trans, root);
d397712b 5210 if (!err)
a52d9a80
CM
5211 err = ret;
5212 }
a52d9a80
CM
5213 if (err) {
5214 free_extent_map(em);
a52d9a80
CM
5215 return ERR_PTR(err);
5216 }
5217 return em;
5218}
5219
ec29ed5b
CM
5220struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5221 size_t pg_offset, u64 start, u64 len,
5222 int create)
5223{
5224 struct extent_map *em;
5225 struct extent_map *hole_em = NULL;
5226 u64 range_start = start;
5227 u64 end;
5228 u64 found;
5229 u64 found_end;
5230 int err = 0;
5231
5232 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5233 if (IS_ERR(em))
5234 return em;
5235 if (em) {
5236 /*
5237 * if our em maps to a hole, there might
5238 * actually be delalloc bytes behind it
5239 */
5240 if (em->block_start != EXTENT_MAP_HOLE)
5241 return em;
5242 else
5243 hole_em = em;
5244 }
5245
5246 /* check to see if we've wrapped (len == -1 or similar) */
5247 end = start + len;
5248 if (end < start)
5249 end = (u64)-1;
5250 else
5251 end -= 1;
5252
5253 em = NULL;
5254
5255 /* ok, we didn't find anything, lets look for delalloc */
5256 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5257 end, len, EXTENT_DELALLOC, 1);
5258 found_end = range_start + found;
5259 if (found_end < range_start)
5260 found_end = (u64)-1;
5261
5262 /*
5263 * we didn't find anything useful, return
5264 * the original results from get_extent()
5265 */
5266 if (range_start > end || found_end <= start) {
5267 em = hole_em;
5268 hole_em = NULL;
5269 goto out;
5270 }
5271
5272 /* adjust the range_start to make sure it doesn't
5273 * go backwards from the start they passed in
5274 */
5275 range_start = max(start,range_start);
5276 found = found_end - range_start;
5277
5278 if (found > 0) {
5279 u64 hole_start = start;
5280 u64 hole_len = len;
5281
172ddd60 5282 em = alloc_extent_map();
ec29ed5b
CM
5283 if (!em) {
5284 err = -ENOMEM;
5285 goto out;
5286 }
5287 /*
5288 * when btrfs_get_extent can't find anything it
5289 * returns one huge hole
5290 *
5291 * make sure what it found really fits our range, and
5292 * adjust to make sure it is based on the start from
5293 * the caller
5294 */
5295 if (hole_em) {
5296 u64 calc_end = extent_map_end(hole_em);
5297
5298 if (calc_end <= start || (hole_em->start > end)) {
5299 free_extent_map(hole_em);
5300 hole_em = NULL;
5301 } else {
5302 hole_start = max(hole_em->start, start);
5303 hole_len = calc_end - hole_start;
5304 }
5305 }
5306 em->bdev = NULL;
5307 if (hole_em && range_start > hole_start) {
5308 /* our hole starts before our delalloc, so we
5309 * have to return just the parts of the hole
5310 * that go until the delalloc starts
5311 */
5312 em->len = min(hole_len,
5313 range_start - hole_start);
5314 em->start = hole_start;
5315 em->orig_start = hole_start;
5316 /*
5317 * don't adjust block start at all,
5318 * it is fixed at EXTENT_MAP_HOLE
5319 */
5320 em->block_start = hole_em->block_start;
5321 em->block_len = hole_len;
5322 } else {
5323 em->start = range_start;
5324 em->len = found;
5325 em->orig_start = range_start;
5326 em->block_start = EXTENT_MAP_DELALLOC;
5327 em->block_len = found;
5328 }
5329 } else if (hole_em) {
5330 return hole_em;
5331 }
5332out:
5333
5334 free_extent_map(hole_em);
5335 if (err) {
5336 free_extent_map(em);
5337 return ERR_PTR(err);
5338 }
5339 return em;
5340}
5341
4b46fce2 5342static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5343 struct extent_map *em,
4b46fce2
JB
5344 u64 start, u64 len)
5345{
5346 struct btrfs_root *root = BTRFS_I(inode)->root;
5347 struct btrfs_trans_handle *trans;
4b46fce2
JB
5348 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5349 struct btrfs_key ins;
5350 u64 alloc_hint;
5351 int ret;
16d299ac 5352 bool insert = false;
4b46fce2 5353
16d299ac
JB
5354 /*
5355 * Ok if the extent map we looked up is a hole and is for the exact
5356 * range we want, there is no reason to allocate a new one, however if
5357 * it is not right then we need to free this one and drop the cache for
5358 * our range.
5359 */
5360 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5361 em->len != len) {
5362 free_extent_map(em);
5363 em = NULL;
5364 insert = true;
5365 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5366 }
4b46fce2 5367
7a7eaa40 5368 trans = btrfs_join_transaction(root);
3612b495
TI
5369 if (IS_ERR(trans))
5370 return ERR_CAST(trans);
4b46fce2 5371
4cb5300b
CM
5372 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5373 btrfs_add_inode_defrag(trans, inode);
5374
4b46fce2
JB
5375 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5376
5377 alloc_hint = get_extent_allocation_hint(inode, start, len);
5378 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5379 alloc_hint, (u64)-1, &ins, 1);
5380 if (ret) {
5381 em = ERR_PTR(ret);
5382 goto out;
5383 }
5384
4b46fce2 5385 if (!em) {
172ddd60 5386 em = alloc_extent_map();
16d299ac
JB
5387 if (!em) {
5388 em = ERR_PTR(-ENOMEM);
5389 goto out;
5390 }
4b46fce2
JB
5391 }
5392
5393 em->start = start;
5394 em->orig_start = em->start;
5395 em->len = ins.offset;
5396
5397 em->block_start = ins.objectid;
5398 em->block_len = ins.offset;
5399 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5400
5401 /*
5402 * We need to do this because if we're using the original em we searched
5403 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5404 */
5405 em->flags = 0;
4b46fce2
JB
5406 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5407
16d299ac 5408 while (insert) {
4b46fce2
JB
5409 write_lock(&em_tree->lock);
5410 ret = add_extent_mapping(em_tree, em);
5411 write_unlock(&em_tree->lock);
5412 if (ret != -EEXIST)
5413 break;
5414 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5415 }
5416
5417 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5418 ins.offset, ins.offset, 0);
5419 if (ret) {
5420 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5421 em = ERR_PTR(ret);
5422 }
5423out:
5424 btrfs_end_transaction(trans, root);
5425 return em;
5426}
5427
46bfbb5c
CM
5428/*
5429 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5430 * block must be cow'd
5431 */
5432static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5433 struct inode *inode, u64 offset, u64 len)
5434{
5435 struct btrfs_path *path;
5436 int ret;
5437 struct extent_buffer *leaf;
5438 struct btrfs_root *root = BTRFS_I(inode)->root;
5439 struct btrfs_file_extent_item *fi;
5440 struct btrfs_key key;
5441 u64 disk_bytenr;
5442 u64 backref_offset;
5443 u64 extent_end;
5444 u64 num_bytes;
5445 int slot;
5446 int found_type;
5447
5448 path = btrfs_alloc_path();
5449 if (!path)
5450 return -ENOMEM;
5451
33345d01 5452 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5453 offset, 0);
5454 if (ret < 0)
5455 goto out;
5456
5457 slot = path->slots[0];
5458 if (ret == 1) {
5459 if (slot == 0) {
5460 /* can't find the item, must cow */
5461 ret = 0;
5462 goto out;
5463 }
5464 slot--;
5465 }
5466 ret = 0;
5467 leaf = path->nodes[0];
5468 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5469 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5470 key.type != BTRFS_EXTENT_DATA_KEY) {
5471 /* not our file or wrong item type, must cow */
5472 goto out;
5473 }
5474
5475 if (key.offset > offset) {
5476 /* Wrong offset, must cow */
5477 goto out;
5478 }
5479
5480 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5481 found_type = btrfs_file_extent_type(leaf, fi);
5482 if (found_type != BTRFS_FILE_EXTENT_REG &&
5483 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5484 /* not a regular extent, must cow */
5485 goto out;
5486 }
5487 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5488 backref_offset = btrfs_file_extent_offset(leaf, fi);
5489
5490 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5491 if (extent_end < offset + len) {
5492 /* extent doesn't include our full range, must cow */
5493 goto out;
5494 }
5495
5496 if (btrfs_extent_readonly(root, disk_bytenr))
5497 goto out;
5498
5499 /*
5500 * look for other files referencing this extent, if we
5501 * find any we must cow
5502 */
33345d01 5503 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5504 key.offset - backref_offset, disk_bytenr))
5505 goto out;
5506
5507 /*
5508 * adjust disk_bytenr and num_bytes to cover just the bytes
5509 * in this extent we are about to write. If there
5510 * are any csums in that range we have to cow in order
5511 * to keep the csums correct
5512 */
5513 disk_bytenr += backref_offset;
5514 disk_bytenr += offset - key.offset;
5515 num_bytes = min(offset + len, extent_end) - offset;
5516 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5517 goto out;
5518 /*
5519 * all of the above have passed, it is safe to overwrite this extent
5520 * without cow
5521 */
5522 ret = 1;
5523out:
5524 btrfs_free_path(path);
5525 return ret;
5526}
5527
4b46fce2
JB
5528static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5529 struct buffer_head *bh_result, int create)
5530{
5531 struct extent_map *em;
5532 struct btrfs_root *root = BTRFS_I(inode)->root;
5533 u64 start = iblock << inode->i_blkbits;
5534 u64 len = bh_result->b_size;
46bfbb5c 5535 struct btrfs_trans_handle *trans;
4b46fce2
JB
5536
5537 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5538 if (IS_ERR(em))
5539 return PTR_ERR(em);
5540
5541 /*
5542 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5543 * io. INLINE is special, and we could probably kludge it in here, but
5544 * it's still buffered so for safety lets just fall back to the generic
5545 * buffered path.
5546 *
5547 * For COMPRESSED we _have_ to read the entire extent in so we can
5548 * decompress it, so there will be buffering required no matter what we
5549 * do, so go ahead and fallback to buffered.
5550 *
5551 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5552 * to buffered IO. Don't blame me, this is the price we pay for using
5553 * the generic code.
5554 */
5555 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5556 em->block_start == EXTENT_MAP_INLINE) {
5557 free_extent_map(em);
5558 return -ENOTBLK;
5559 }
5560
5561 /* Just a good old fashioned hole, return */
5562 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5563 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5564 free_extent_map(em);
5565 /* DIO will do one hole at a time, so just unlock a sector */
5566 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5567 start + root->sectorsize - 1, GFP_NOFS);
5568 return 0;
5569 }
5570
5571 /*
5572 * We don't allocate a new extent in the following cases
5573 *
5574 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5575 * existing extent.
5576 * 2) The extent is marked as PREALLOC. We're good to go here and can
5577 * just use the extent.
5578 *
5579 */
46bfbb5c
CM
5580 if (!create) {
5581 len = em->len - (start - em->start);
4b46fce2 5582 goto map;
46bfbb5c 5583 }
4b46fce2
JB
5584
5585 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5586 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5587 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5588 int type;
5589 int ret;
46bfbb5c 5590 u64 block_start;
4b46fce2
JB
5591
5592 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5593 type = BTRFS_ORDERED_PREALLOC;
5594 else
5595 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5596 len = min(len, em->len - (start - em->start));
4b46fce2 5597 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5598
5599 /*
5600 * we're not going to log anything, but we do need
5601 * to make sure the current transaction stays open
5602 * while we look for nocow cross refs
5603 */
7a7eaa40 5604 trans = btrfs_join_transaction(root);
3612b495 5605 if (IS_ERR(trans))
46bfbb5c
CM
5606 goto must_cow;
5607
5608 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5609 ret = btrfs_add_ordered_extent_dio(inode, start,
5610 block_start, len, len, type);
5611 btrfs_end_transaction(trans, root);
5612 if (ret) {
5613 free_extent_map(em);
5614 return ret;
5615 }
5616 goto unlock;
4b46fce2 5617 }
46bfbb5c 5618 btrfs_end_transaction(trans, root);
4b46fce2 5619 }
46bfbb5c
CM
5620must_cow:
5621 /*
5622 * this will cow the extent, reset the len in case we changed
5623 * it above
5624 */
5625 len = bh_result->b_size;
16d299ac 5626 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5627 if (IS_ERR(em))
5628 return PTR_ERR(em);
5629 len = min(len, em->len - (start - em->start));
5630unlock:
4845e44f
CM
5631 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5632 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5633 0, NULL, GFP_NOFS);
4b46fce2
JB
5634map:
5635 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5636 inode->i_blkbits;
46bfbb5c 5637 bh_result->b_size = len;
4b46fce2
JB
5638 bh_result->b_bdev = em->bdev;
5639 set_buffer_mapped(bh_result);
5640 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5641 set_buffer_new(bh_result);
5642
5643 free_extent_map(em);
5644
5645 return 0;
5646}
5647
5648struct btrfs_dio_private {
5649 struct inode *inode;
5650 u64 logical_offset;
5651 u64 disk_bytenr;
5652 u64 bytes;
5653 u32 *csums;
5654 void *private;
e65e1535
MX
5655
5656 /* number of bios pending for this dio */
5657 atomic_t pending_bios;
5658
5659 /* IO errors */
5660 int errors;
5661
5662 struct bio *orig_bio;
4b46fce2
JB
5663};
5664
5665static void btrfs_endio_direct_read(struct bio *bio, int err)
5666{
e65e1535 5667 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5668 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5669 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5670 struct inode *inode = dip->inode;
5671 struct btrfs_root *root = BTRFS_I(inode)->root;
5672 u64 start;
5673 u32 *private = dip->csums;
5674
5675 start = dip->logical_offset;
5676 do {
5677 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5678 struct page *page = bvec->bv_page;
5679 char *kaddr;
5680 u32 csum = ~(u32)0;
5681 unsigned long flags;
5682
5683 local_irq_save(flags);
5684 kaddr = kmap_atomic(page, KM_IRQ0);
5685 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5686 csum, bvec->bv_len);
5687 btrfs_csum_final(csum, (char *)&csum);
5688 kunmap_atomic(kaddr, KM_IRQ0);
5689 local_irq_restore(flags);
5690
5691 flush_dcache_page(bvec->bv_page);
5692 if (csum != *private) {
33345d01 5693 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5694 " %llu csum %u private %u\n",
33345d01
LZ
5695 (unsigned long long)btrfs_ino(inode),
5696 (unsigned long long)start,
4b46fce2
JB
5697 csum, *private);
5698 err = -EIO;
5699 }
5700 }
5701
5702 start += bvec->bv_len;
5703 private++;
5704 bvec++;
5705 } while (bvec <= bvec_end);
5706
5707 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5708 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5709 bio->bi_private = dip->private;
5710
5711 kfree(dip->csums);
5712 kfree(dip);
c0da7aa1
JB
5713
5714 /* If we had a csum failure make sure to clear the uptodate flag */
5715 if (err)
5716 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5717 dio_end_io(bio, err);
5718}
5719
5720static void btrfs_endio_direct_write(struct bio *bio, int err)
5721{
5722 struct btrfs_dio_private *dip = bio->bi_private;
5723 struct inode *inode = dip->inode;
5724 struct btrfs_root *root = BTRFS_I(inode)->root;
5725 struct btrfs_trans_handle *trans;
5726 struct btrfs_ordered_extent *ordered = NULL;
5727 struct extent_state *cached_state = NULL;
163cf09c
CM
5728 u64 ordered_offset = dip->logical_offset;
5729 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5730 int ret;
5731
5732 if (err)
5733 goto out_done;
163cf09c
CM
5734again:
5735 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5736 &ordered_offset,
5737 ordered_bytes);
4b46fce2 5738 if (!ret)
163cf09c 5739 goto out_test;
4b46fce2
JB
5740
5741 BUG_ON(!ordered);
5742
7a7eaa40 5743 trans = btrfs_join_transaction(root);
3612b495 5744 if (IS_ERR(trans)) {
4b46fce2
JB
5745 err = -ENOMEM;
5746 goto out;
5747 }
5748 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5749
5750 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5751 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5752 if (!ret)
5753 ret = btrfs_update_inode(trans, root, inode);
5754 err = ret;
5755 goto out;
5756 }
5757
5758 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5759 ordered->file_offset + ordered->len - 1, 0,
5760 &cached_state, GFP_NOFS);
5761
5762 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5763 ret = btrfs_mark_extent_written(trans, inode,
5764 ordered->file_offset,
5765 ordered->file_offset +
5766 ordered->len);
5767 if (ret) {
5768 err = ret;
5769 goto out_unlock;
5770 }
5771 } else {
5772 ret = insert_reserved_file_extent(trans, inode,
5773 ordered->file_offset,
5774 ordered->start,
5775 ordered->disk_len,
5776 ordered->len,
5777 ordered->len,
5778 0, 0, 0,
5779 BTRFS_FILE_EXTENT_REG);
5780 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5781 ordered->file_offset, ordered->len);
5782 if (ret) {
5783 err = ret;
5784 WARN_ON(1);
5785 goto out_unlock;
5786 }
5787 }
5788
5789 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1
JB
5790 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5791 if (!ret)
5792 btrfs_update_inode(trans, root, inode);
5793 ret = 0;
4b46fce2
JB
5794out_unlock:
5795 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5796 ordered->file_offset + ordered->len - 1,
5797 &cached_state, GFP_NOFS);
5798out:
5799 btrfs_delalloc_release_metadata(inode, ordered->len);
5800 btrfs_end_transaction(trans, root);
163cf09c 5801 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5802 btrfs_put_ordered_extent(ordered);
5803 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5804
5805out_test:
5806 /*
5807 * our bio might span multiple ordered extents. If we haven't
5808 * completed the accounting for the whole dio, go back and try again
5809 */
5810 if (ordered_offset < dip->logical_offset + dip->bytes) {
5811 ordered_bytes = dip->logical_offset + dip->bytes -
5812 ordered_offset;
5813 goto again;
5814 }
4b46fce2
JB
5815out_done:
5816 bio->bi_private = dip->private;
5817
5818 kfree(dip->csums);
5819 kfree(dip);
c0da7aa1
JB
5820
5821 /* If we had an error make sure to clear the uptodate flag */
5822 if (err)
5823 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5824 dio_end_io(bio, err);
5825}
5826
eaf25d93
CM
5827static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5828 struct bio *bio, int mirror_num,
5829 unsigned long bio_flags, u64 offset)
5830{
5831 int ret;
5832 struct btrfs_root *root = BTRFS_I(inode)->root;
5833 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5834 BUG_ON(ret);
5835 return 0;
5836}
5837
e65e1535
MX
5838static void btrfs_end_dio_bio(struct bio *bio, int err)
5839{
5840 struct btrfs_dio_private *dip = bio->bi_private;
5841
5842 if (err) {
33345d01 5843 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5844 "sector %#Lx len %u err no %d\n",
33345d01 5845 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5846 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5847 dip->errors = 1;
5848
5849 /*
5850 * before atomic variable goto zero, we must make sure
5851 * dip->errors is perceived to be set.
5852 */
5853 smp_mb__before_atomic_dec();
5854 }
5855
5856 /* if there are more bios still pending for this dio, just exit */
5857 if (!atomic_dec_and_test(&dip->pending_bios))
5858 goto out;
5859
5860 if (dip->errors)
5861 bio_io_error(dip->orig_bio);
5862 else {
5863 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5864 bio_endio(dip->orig_bio, 0);
5865 }
5866out:
5867 bio_put(bio);
5868}
5869
5870static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5871 u64 first_sector, gfp_t gfp_flags)
5872{
5873 int nr_vecs = bio_get_nr_vecs(bdev);
5874 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5875}
5876
5877static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5878 int rw, u64 file_offset, int skip_sum,
1ae39938 5879 u32 *csums, int async_submit)
e65e1535
MX
5880{
5881 int write = rw & REQ_WRITE;
5882 struct btrfs_root *root = BTRFS_I(inode)->root;
5883 int ret;
5884
5885 bio_get(bio);
5886 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5887 if (ret)
5888 goto err;
5889
1ae39938
JB
5890 if (skip_sum)
5891 goto map;
5892
5893 if (write && async_submit) {
e65e1535
MX
5894 ret = btrfs_wq_submit_bio(root->fs_info,
5895 inode, rw, bio, 0, 0,
5896 file_offset,
5897 __btrfs_submit_bio_start_direct_io,
5898 __btrfs_submit_bio_done);
5899 goto err;
1ae39938
JB
5900 } else if (write) {
5901 /*
5902 * If we aren't doing async submit, calculate the csum of the
5903 * bio now.
5904 */
5905 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5906 if (ret)
5907 goto err;
c2db1073
TI
5908 } else if (!skip_sum) {
5909 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5910 file_offset, csums);
c2db1073
TI
5911 if (ret)
5912 goto err;
5913 }
e65e1535 5914
1ae39938
JB
5915map:
5916 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5917err:
5918 bio_put(bio);
5919 return ret;
5920}
5921
5922static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5923 int skip_sum)
5924{
5925 struct inode *inode = dip->inode;
5926 struct btrfs_root *root = BTRFS_I(inode)->root;
5927 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5928 struct bio *bio;
5929 struct bio *orig_bio = dip->orig_bio;
5930 struct bio_vec *bvec = orig_bio->bi_io_vec;
5931 u64 start_sector = orig_bio->bi_sector;
5932 u64 file_offset = dip->logical_offset;
5933 u64 submit_len = 0;
5934 u64 map_length;
5935 int nr_pages = 0;
5936 u32 *csums = dip->csums;
5937 int ret = 0;
1ae39938 5938 int async_submit = 0;
98bc3149 5939 int write = rw & REQ_WRITE;
e65e1535 5940
e65e1535
MX
5941 map_length = orig_bio->bi_size;
5942 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5943 &map_length, NULL, 0);
5944 if (ret) {
64728bbb 5945 bio_put(orig_bio);
e65e1535
MX
5946 return -EIO;
5947 }
5948
02f57c7a
JB
5949 if (map_length >= orig_bio->bi_size) {
5950 bio = orig_bio;
5951 goto submit;
5952 }
5953
1ae39938 5954 async_submit = 1;
02f57c7a
JB
5955 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5956 if (!bio)
5957 return -ENOMEM;
5958 bio->bi_private = dip;
5959 bio->bi_end_io = btrfs_end_dio_bio;
5960 atomic_inc(&dip->pending_bios);
5961
e65e1535
MX
5962 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5963 if (unlikely(map_length < submit_len + bvec->bv_len ||
5964 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5965 bvec->bv_offset) < bvec->bv_len)) {
5966 /*
5967 * inc the count before we submit the bio so
5968 * we know the end IO handler won't happen before
5969 * we inc the count. Otherwise, the dip might get freed
5970 * before we're done setting it up
5971 */
5972 atomic_inc(&dip->pending_bios);
5973 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5974 file_offset, skip_sum,
1ae39938 5975 csums, async_submit);
e65e1535
MX
5976 if (ret) {
5977 bio_put(bio);
5978 atomic_dec(&dip->pending_bios);
5979 goto out_err;
5980 }
5981
98bc3149
JB
5982 /* Write's use the ordered csums */
5983 if (!write && !skip_sum)
e65e1535
MX
5984 csums = csums + nr_pages;
5985 start_sector += submit_len >> 9;
5986 file_offset += submit_len;
5987
5988 submit_len = 0;
5989 nr_pages = 0;
5990
5991 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5992 start_sector, GFP_NOFS);
5993 if (!bio)
5994 goto out_err;
5995 bio->bi_private = dip;
5996 bio->bi_end_io = btrfs_end_dio_bio;
5997
5998 map_length = orig_bio->bi_size;
5999 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6000 &map_length, NULL, 0);
6001 if (ret) {
6002 bio_put(bio);
6003 goto out_err;
6004 }
6005 } else {
6006 submit_len += bvec->bv_len;
6007 nr_pages ++;
6008 bvec++;
6009 }
6010 }
6011
02f57c7a 6012submit:
e65e1535 6013 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6014 csums, async_submit);
e65e1535
MX
6015 if (!ret)
6016 return 0;
6017
6018 bio_put(bio);
6019out_err:
6020 dip->errors = 1;
6021 /*
6022 * before atomic variable goto zero, we must
6023 * make sure dip->errors is perceived to be set.
6024 */
6025 smp_mb__before_atomic_dec();
6026 if (atomic_dec_and_test(&dip->pending_bios))
6027 bio_io_error(dip->orig_bio);
6028
6029 /* bio_end_io() will handle error, so we needn't return it */
6030 return 0;
6031}
6032
4b46fce2
JB
6033static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6034 loff_t file_offset)
6035{
6036 struct btrfs_root *root = BTRFS_I(inode)->root;
6037 struct btrfs_dio_private *dip;
6038 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6039 int skip_sum;
7b6d91da 6040 int write = rw & REQ_WRITE;
4b46fce2
JB
6041 int ret = 0;
6042
6043 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6044
6045 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6046 if (!dip) {
6047 ret = -ENOMEM;
6048 goto free_ordered;
6049 }
6050 dip->csums = NULL;
6051
98bc3149
JB
6052 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6053 if (!write && !skip_sum) {
4b46fce2
JB
6054 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6055 if (!dip->csums) {
b4966b77 6056 kfree(dip);
4b46fce2
JB
6057 ret = -ENOMEM;
6058 goto free_ordered;
6059 }
6060 }
6061
6062 dip->private = bio->bi_private;
6063 dip->inode = inode;
6064 dip->logical_offset = file_offset;
6065
4b46fce2
JB
6066 dip->bytes = 0;
6067 do {
6068 dip->bytes += bvec->bv_len;
6069 bvec++;
6070 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6071
46bfbb5c 6072 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6073 bio->bi_private = dip;
e65e1535
MX
6074 dip->errors = 0;
6075 dip->orig_bio = bio;
6076 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6077
6078 if (write)
6079 bio->bi_end_io = btrfs_endio_direct_write;
6080 else
6081 bio->bi_end_io = btrfs_endio_direct_read;
6082
e65e1535
MX
6083 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6084 if (!ret)
eaf25d93 6085 return;
4b46fce2
JB
6086free_ordered:
6087 /*
6088 * If this is a write, we need to clean up the reserved space and kill
6089 * the ordered extent.
6090 */
6091 if (write) {
6092 struct btrfs_ordered_extent *ordered;
955256f2 6093 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6094 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6095 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6096 btrfs_free_reserved_extent(root, ordered->start,
6097 ordered->disk_len);
6098 btrfs_put_ordered_extent(ordered);
6099 btrfs_put_ordered_extent(ordered);
6100 }
6101 bio_endio(bio, ret);
6102}
6103
5a5f79b5
CM
6104static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6105 const struct iovec *iov, loff_t offset,
6106 unsigned long nr_segs)
6107{
6108 int seg;
a1b75f7d 6109 int i;
5a5f79b5
CM
6110 size_t size;
6111 unsigned long addr;
6112 unsigned blocksize_mask = root->sectorsize - 1;
6113 ssize_t retval = -EINVAL;
6114 loff_t end = offset;
6115
6116 if (offset & blocksize_mask)
6117 goto out;
6118
6119 /* Check the memory alignment. Blocks cannot straddle pages */
6120 for (seg = 0; seg < nr_segs; seg++) {
6121 addr = (unsigned long)iov[seg].iov_base;
6122 size = iov[seg].iov_len;
6123 end += size;
a1b75f7d 6124 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6125 goto out;
a1b75f7d
JB
6126
6127 /* If this is a write we don't need to check anymore */
6128 if (rw & WRITE)
6129 continue;
6130
6131 /*
6132 * Check to make sure we don't have duplicate iov_base's in this
6133 * iovec, if so return EINVAL, otherwise we'll get csum errors
6134 * when reading back.
6135 */
6136 for (i = seg + 1; i < nr_segs; i++) {
6137 if (iov[seg].iov_base == iov[i].iov_base)
6138 goto out;
6139 }
5a5f79b5
CM
6140 }
6141 retval = 0;
6142out:
6143 return retval;
6144}
16432985
CM
6145static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6146 const struct iovec *iov, loff_t offset,
6147 unsigned long nr_segs)
6148{
4b46fce2
JB
6149 struct file *file = iocb->ki_filp;
6150 struct inode *inode = file->f_mapping->host;
6151 struct btrfs_ordered_extent *ordered;
4845e44f 6152 struct extent_state *cached_state = NULL;
4b46fce2
JB
6153 u64 lockstart, lockend;
6154 ssize_t ret;
4845e44f
CM
6155 int writing = rw & WRITE;
6156 int write_bits = 0;
3f7c579c 6157 size_t count = iov_length(iov, nr_segs);
4b46fce2 6158
5a5f79b5
CM
6159 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6160 offset, nr_segs)) {
6161 return 0;
6162 }
6163
4b46fce2 6164 lockstart = offset;
3f7c579c
CM
6165 lockend = offset + count - 1;
6166
6167 if (writing) {
6168 ret = btrfs_delalloc_reserve_space(inode, count);
6169 if (ret)
6170 goto out;
6171 }
4845e44f 6172
4b46fce2 6173 while (1) {
4845e44f
CM
6174 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6175 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6176 /*
6177 * We're concerned with the entire range that we're going to be
6178 * doing DIO to, so we need to make sure theres no ordered
6179 * extents in this range.
6180 */
6181 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6182 lockend - lockstart + 1);
6183 if (!ordered)
6184 break;
4845e44f
CM
6185 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6186 &cached_state, GFP_NOFS);
4b46fce2
JB
6187 btrfs_start_ordered_extent(inode, ordered, 1);
6188 btrfs_put_ordered_extent(ordered);
6189 cond_resched();
6190 }
6191
4845e44f
CM
6192 /*
6193 * we don't use btrfs_set_extent_delalloc because we don't want
6194 * the dirty or uptodate bits
6195 */
6196 if (writing) {
6197 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6198 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6199 EXTENT_DELALLOC, 0, NULL, &cached_state,
6200 GFP_NOFS);
6201 if (ret) {
6202 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6203 lockend, EXTENT_LOCKED | write_bits,
6204 1, 0, &cached_state, GFP_NOFS);
6205 goto out;
6206 }
6207 }
6208
6209 free_extent_state(cached_state);
6210 cached_state = NULL;
6211
5a5f79b5
CM
6212 ret = __blockdev_direct_IO(rw, iocb, inode,
6213 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6214 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6215 btrfs_submit_direct, 0);
4b46fce2
JB
6216
6217 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6218 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6219 offset + iov_length(iov, nr_segs) - 1,
6220 EXTENT_LOCKED | write_bits, 1, 0,
6221 &cached_state, GFP_NOFS);
4b46fce2
JB
6222 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6223 /*
6224 * We're falling back to buffered, unlock the section we didn't
6225 * do IO on.
6226 */
4845e44f
CM
6227 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6228 offset + iov_length(iov, nr_segs) - 1,
6229 EXTENT_LOCKED | write_bits, 1, 0,
6230 &cached_state, GFP_NOFS);
4b46fce2 6231 }
4845e44f
CM
6232out:
6233 free_extent_state(cached_state);
4b46fce2 6234 return ret;
16432985
CM
6235}
6236
1506fcc8
YS
6237static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6238 __u64 start, __u64 len)
6239{
ec29ed5b 6240 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6241}
6242
a52d9a80 6243int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6244{
d1310b2e
CM
6245 struct extent_io_tree *tree;
6246 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6247 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6248}
1832a6d5 6249
a52d9a80 6250static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6251{
d1310b2e 6252 struct extent_io_tree *tree;
b888db2b
CM
6253
6254
6255 if (current->flags & PF_MEMALLOC) {
6256 redirty_page_for_writepage(wbc, page);
6257 unlock_page(page);
6258 return 0;
6259 }
d1310b2e 6260 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6261 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6262}
6263
f421950f
CM
6264int btrfs_writepages(struct address_space *mapping,
6265 struct writeback_control *wbc)
b293f02e 6266{
d1310b2e 6267 struct extent_io_tree *tree;
771ed689 6268
d1310b2e 6269 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6270 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6271}
6272
3ab2fb5a
CM
6273static int
6274btrfs_readpages(struct file *file, struct address_space *mapping,
6275 struct list_head *pages, unsigned nr_pages)
6276{
d1310b2e
CM
6277 struct extent_io_tree *tree;
6278 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6279 return extent_readpages(tree, mapping, pages, nr_pages,
6280 btrfs_get_extent);
6281}
e6dcd2dc 6282static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6283{
d1310b2e
CM
6284 struct extent_io_tree *tree;
6285 struct extent_map_tree *map;
a52d9a80 6286 int ret;
8c2383c3 6287
d1310b2e
CM
6288 tree = &BTRFS_I(page->mapping->host)->io_tree;
6289 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6290 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6291 if (ret == 1) {
6292 ClearPagePrivate(page);
6293 set_page_private(page, 0);
6294 page_cache_release(page);
39279cc3 6295 }
a52d9a80 6296 return ret;
39279cc3
CM
6297}
6298
e6dcd2dc
CM
6299static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6300{
98509cfc
CM
6301 if (PageWriteback(page) || PageDirty(page))
6302 return 0;
b335b003 6303 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6304}
6305
a52d9a80 6306static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6307{
d1310b2e 6308 struct extent_io_tree *tree;
e6dcd2dc 6309 struct btrfs_ordered_extent *ordered;
2ac55d41 6310 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6311 u64 page_start = page_offset(page);
6312 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6313
8b62b72b
CM
6314
6315 /*
6316 * we have the page locked, so new writeback can't start,
6317 * and the dirty bit won't be cleared while we are here.
6318 *
6319 * Wait for IO on this page so that we can safely clear
6320 * the PagePrivate2 bit and do ordered accounting
6321 */
e6dcd2dc 6322 wait_on_page_writeback(page);
8b62b72b 6323
d1310b2e 6324 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6325 if (offset) {
6326 btrfs_releasepage(page, GFP_NOFS);
6327 return;
6328 }
2ac55d41
JB
6329 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6330 GFP_NOFS);
e6dcd2dc
CM
6331 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6332 page_offset(page));
6333 if (ordered) {
eb84ae03
CM
6334 /*
6335 * IO on this page will never be started, so we need
6336 * to account for any ordered extents now
6337 */
e6dcd2dc
CM
6338 clear_extent_bit(tree, page_start, page_end,
6339 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6340 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6341 &cached_state, GFP_NOFS);
8b62b72b
CM
6342 /*
6343 * whoever cleared the private bit is responsible
6344 * for the finish_ordered_io
6345 */
6346 if (TestClearPagePrivate2(page)) {
6347 btrfs_finish_ordered_io(page->mapping->host,
6348 page_start, page_end);
6349 }
e6dcd2dc 6350 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6351 cached_state = NULL;
6352 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6353 GFP_NOFS);
e6dcd2dc
CM
6354 }
6355 clear_extent_bit(tree, page_start, page_end,
32c00aff 6356 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6357 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6358 __btrfs_releasepage(page, GFP_NOFS);
6359
4a096752 6360 ClearPageChecked(page);
9ad6b7bc 6361 if (PagePrivate(page)) {
9ad6b7bc
CM
6362 ClearPagePrivate(page);
6363 set_page_private(page, 0);
6364 page_cache_release(page);
6365 }
39279cc3
CM
6366}
6367
9ebefb18
CM
6368/*
6369 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6370 * called from a page fault handler when a page is first dirtied. Hence we must
6371 * be careful to check for EOF conditions here. We set the page up correctly
6372 * for a written page which means we get ENOSPC checking when writing into
6373 * holes and correct delalloc and unwritten extent mapping on filesystems that
6374 * support these features.
6375 *
6376 * We are not allowed to take the i_mutex here so we have to play games to
6377 * protect against truncate races as the page could now be beyond EOF. Because
6378 * vmtruncate() writes the inode size before removing pages, once we have the
6379 * page lock we can determine safely if the page is beyond EOF. If it is not
6380 * beyond EOF, then the page is guaranteed safe against truncation until we
6381 * unlock the page.
6382 */
c2ec175c 6383int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6384{
c2ec175c 6385 struct page *page = vmf->page;
6da6abae 6386 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6387 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6388 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6389 struct btrfs_ordered_extent *ordered;
2ac55d41 6390 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6391 char *kaddr;
6392 unsigned long zero_start;
9ebefb18 6393 loff_t size;
1832a6d5 6394 int ret;
a52d9a80 6395 u64 page_start;
e6dcd2dc 6396 u64 page_end;
9ebefb18 6397
0ca1f7ce 6398 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6399 if (ret) {
6400 if (ret == -ENOMEM)
6401 ret = VM_FAULT_OOM;
6402 else /* -ENOSPC, -EIO, etc */
6403 ret = VM_FAULT_SIGBUS;
1832a6d5 6404 goto out;
56a76f82 6405 }
1832a6d5 6406
56a76f82 6407 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6408again:
9ebefb18 6409 lock_page(page);
9ebefb18 6410 size = i_size_read(inode);
e6dcd2dc
CM
6411 page_start = page_offset(page);
6412 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6413
9ebefb18 6414 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6415 (page_start >= size)) {
9ebefb18
CM
6416 /* page got truncated out from underneath us */
6417 goto out_unlock;
6418 }
e6dcd2dc
CM
6419 wait_on_page_writeback(page);
6420
2ac55d41
JB
6421 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6422 GFP_NOFS);
e6dcd2dc
CM
6423 set_page_extent_mapped(page);
6424
eb84ae03
CM
6425 /*
6426 * we can't set the delalloc bits if there are pending ordered
6427 * extents. Drop our locks and wait for them to finish
6428 */
e6dcd2dc
CM
6429 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6430 if (ordered) {
2ac55d41
JB
6431 unlock_extent_cached(io_tree, page_start, page_end,
6432 &cached_state, GFP_NOFS);
e6dcd2dc 6433 unlock_page(page);
eb84ae03 6434 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6435 btrfs_put_ordered_extent(ordered);
6436 goto again;
6437 }
6438
fbf19087
JB
6439 /*
6440 * XXX - page_mkwrite gets called every time the page is dirtied, even
6441 * if it was already dirty, so for space accounting reasons we need to
6442 * clear any delalloc bits for the range we are fixing to save. There
6443 * is probably a better way to do this, but for now keep consistent with
6444 * prepare_pages in the normal write path.
6445 */
2ac55d41 6446 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6447 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6448 0, 0, &cached_state, GFP_NOFS);
fbf19087 6449
2ac55d41
JB
6450 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6451 &cached_state);
9ed74f2d 6452 if (ret) {
2ac55d41
JB
6453 unlock_extent_cached(io_tree, page_start, page_end,
6454 &cached_state, GFP_NOFS);
9ed74f2d
JB
6455 ret = VM_FAULT_SIGBUS;
6456 goto out_unlock;
6457 }
e6dcd2dc 6458 ret = 0;
9ebefb18
CM
6459
6460 /* page is wholly or partially inside EOF */
a52d9a80 6461 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6462 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6463 else
e6dcd2dc 6464 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6465
e6dcd2dc
CM
6466 if (zero_start != PAGE_CACHE_SIZE) {
6467 kaddr = kmap(page);
6468 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6469 flush_dcache_page(page);
6470 kunmap(page);
6471 }
247e743c 6472 ClearPageChecked(page);
e6dcd2dc 6473 set_page_dirty(page);
50a9b214 6474 SetPageUptodate(page);
5a3f23d5 6475
257c62e1
CM
6476 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6477 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6478
2ac55d41 6479 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6480
6481out_unlock:
50a9b214
CM
6482 if (!ret)
6483 return VM_FAULT_LOCKED;
9ebefb18 6484 unlock_page(page);
0ca1f7ce 6485 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6486out:
9ebefb18
CM
6487 return ret;
6488}
6489
a41ad394 6490static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6491{
6492 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6493 struct btrfs_block_rsv *rsv;
39279cc3 6494 int ret;
3893e33b 6495 int err = 0;
39279cc3 6496 struct btrfs_trans_handle *trans;
d3c2fdcf 6497 unsigned long nr;
dbe674a9 6498 u64 mask = root->sectorsize - 1;
39279cc3 6499
5d5e103a
JB
6500 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6501 if (ret)
a41ad394 6502 return ret;
8082510e 6503
4a096752 6504 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6505 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6506
fcb80c2a
JB
6507 /*
6508 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6509 * 3 things going on here
6510 *
6511 * 1) We need to reserve space for our orphan item and the space to
6512 * delete our orphan item. Lord knows we don't want to have a dangling
6513 * orphan item because we didn't reserve space to remove it.
6514 *
6515 * 2) We need to reserve space to update our inode.
6516 *
6517 * 3) We need to have something to cache all the space that is going to
6518 * be free'd up by the truncate operation, but also have some slack
6519 * space reserved in case it uses space during the truncate (thank you
6520 * very much snapshotting).
6521 *
6522 * And we need these to all be seperate. The fact is we can use alot of
6523 * space doing the truncate, and we have no earthly idea how much space
6524 * we will use, so we need the truncate reservation to be seperate so it
6525 * doesn't end up using space reserved for updating the inode or
6526 * removing the orphan item. We also need to be able to stop the
6527 * transaction and start a new one, which means we need to be able to
6528 * update the inode several times, and we have no idea of knowing how
6529 * many times that will be, so we can't just reserve 1 item for the
6530 * entirety of the opration, so that has to be done seperately as well.
6531 * Then there is the orphan item, which does indeed need to be held on
6532 * to for the whole operation, and we need nobody to touch this reserved
6533 * space except the orphan code.
6534 *
6535 * So that leaves us with
6536 *
6537 * 1) root->orphan_block_rsv - for the orphan deletion.
6538 * 2) rsv - for the truncate reservation, which we will steal from the
6539 * transaction reservation.
6540 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6541 * updating the inode.
6542 */
6543 rsv = btrfs_alloc_block_rsv(root);
6544 if (!rsv)
6545 return -ENOMEM;
6546 btrfs_add_durable_block_rsv(root->fs_info, rsv);
f0cd846e 6547
fcb80c2a
JB
6548 trans = btrfs_start_transaction(root, 4);
6549 if (IS_ERR(trans)) {
6550 err = PTR_ERR(trans);
6551 goto out;
6552 }
f0cd846e 6553
fcb80c2a
JB
6554 /*
6555 * Reserve space for the truncate process. Truncate should be adding
6556 * space, but if there are snapshots it may end up using space.
6557 */
6558 ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6559 BUG_ON(ret);
f0cd846e
JB
6560
6561 ret = btrfs_orphan_add(trans, inode);
6562 if (ret) {
6563 btrfs_end_transaction(trans, root);
fcb80c2a 6564 goto out;
f0cd846e
JB
6565 }
6566
6567 nr = trans->blocks_used;
6568 btrfs_end_transaction(trans, root);
6569 btrfs_btree_balance_dirty(root, nr);
6570
fcb80c2a
JB
6571 /*
6572 * Ok so we've already migrated our bytes over for the truncate, so here
6573 * just reserve the one slot we need for updating the inode.
6574 */
6575 trans = btrfs_start_transaction(root, 1);
6576 if (IS_ERR(trans)) {
6577 err = PTR_ERR(trans);
6578 goto out;
6579 }
fcb80c2a 6580 trans->block_rsv = rsv;
5a3f23d5
CM
6581
6582 /*
6583 * setattr is responsible for setting the ordered_data_close flag,
6584 * but that is only tested during the last file release. That
6585 * could happen well after the next commit, leaving a great big
6586 * window where new writes may get lost if someone chooses to write
6587 * to this file after truncating to zero
6588 *
6589 * The inode doesn't have any dirty data here, and so if we commit
6590 * this is a noop. If someone immediately starts writing to the inode
6591 * it is very likely we'll catch some of their writes in this
6592 * transaction, and the commit will find this file on the ordered
6593 * data list with good things to send down.
6594 *
6595 * This is a best effort solution, there is still a window where
6596 * using truncate to replace the contents of the file will
6597 * end up with a zero length file after a crash.
6598 */
6599 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6600 btrfs_add_ordered_operation(trans, root, inode);
6601
8082510e 6602 while (1) {
d68fc57b 6603 if (!trans) {
fcb80c2a
JB
6604 trans = btrfs_start_transaction(root, 3);
6605 if (IS_ERR(trans)) {
6606 err = PTR_ERR(trans);
6607 goto out;
6608 }
d68fc57b 6609
fcb80c2a
JB
6610 ret = btrfs_truncate_reserve_metadata(trans, root,
6611 rsv);
6612 BUG_ON(ret);
6613
fcb80c2a 6614 trans->block_rsv = rsv;
d68fc57b
YZ
6615 }
6616
8082510e
YZ
6617 ret = btrfs_truncate_inode_items(trans, root, inode,
6618 inode->i_size,
6619 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6620 if (ret != -EAGAIN) {
6621 err = ret;
8082510e 6622 break;
3893e33b 6623 }
39279cc3 6624
fcb80c2a 6625 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6626 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6627 if (ret) {
6628 err = ret;
6629 break;
6630 }
5f39d397 6631
8082510e
YZ
6632 nr = trans->blocks_used;
6633 btrfs_end_transaction(trans, root);
d68fc57b 6634 trans = NULL;
8082510e 6635 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6636 }
6637
6638 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6639 trans->block_rsv = root->orphan_block_rsv;
8082510e 6640 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6641 if (ret)
6642 err = ret;
ded5db9d
JB
6643 } else if (ret && inode->i_nlink > 0) {
6644 /*
6645 * Failed to do the truncate, remove us from the in memory
6646 * orphan list.
6647 */
6648 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6649 }
6650
fcb80c2a 6651 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6652 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6653 if (ret && !err)
6654 err = ret;
7b128766 6655
7b128766 6656 nr = trans->blocks_used;
89ce8a63 6657 ret = btrfs_end_transaction_throttle(trans, root);
fcb80c2a
JB
6658 btrfs_btree_balance_dirty(root, nr);
6659
6660out:
6661 btrfs_free_block_rsv(root, rsv);
6662
3893e33b
JB
6663 if (ret && !err)
6664 err = ret;
a41ad394 6665
3893e33b 6666 return err;
39279cc3
CM
6667}
6668
d352ac68
CM
6669/*
6670 * create a new subvolume directory/inode (helper for the ioctl).
6671 */
d2fb3437 6672int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6673 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6674{
39279cc3 6675 struct inode *inode;
76dda93c 6676 int err;
00e4e6b3 6677 u64 index = 0;
39279cc3 6678
aec7477b 6679 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d82a6f1d 6680 new_dirid, S_IFDIR | 0700, &index);
54aa1f4d 6681 if (IS_ERR(inode))
f46b5a66 6682 return PTR_ERR(inode);
39279cc3
CM
6683 inode->i_op = &btrfs_dir_inode_operations;
6684 inode->i_fop = &btrfs_dir_file_operations;
6685
39279cc3 6686 inode->i_nlink = 1;
dbe674a9 6687 btrfs_i_size_write(inode, 0);
3b96362c 6688
76dda93c
YZ
6689 err = btrfs_update_inode(trans, new_root, inode);
6690 BUG_ON(err);
cb8e7090 6691
76dda93c 6692 iput(inode);
cb8e7090 6693 return 0;
39279cc3
CM
6694}
6695
d352ac68
CM
6696/* helper function for file defrag and space balancing. This
6697 * forces readahead on a given range of bytes in an inode
6698 */
edbd8d4e 6699unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6700 struct file_ra_state *ra, struct file *file,
6701 pgoff_t offset, pgoff_t last_index)
6702{
8e7bf94f 6703 pgoff_t req_size = last_index - offset + 1;
86479a04 6704
86479a04
CM
6705 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6706 return offset + req_size;
86479a04
CM
6707}
6708
39279cc3
CM
6709struct inode *btrfs_alloc_inode(struct super_block *sb)
6710{
6711 struct btrfs_inode *ei;
2ead6ae7 6712 struct inode *inode;
39279cc3
CM
6713
6714 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6715 if (!ei)
6716 return NULL;
2ead6ae7
YZ
6717
6718 ei->root = NULL;
6719 ei->space_info = NULL;
6720 ei->generation = 0;
6721 ei->sequence = 0;
15ee9bc7 6722 ei->last_trans = 0;
257c62e1 6723 ei->last_sub_trans = 0;
e02119d5 6724 ei->logged_trans = 0;
2ead6ae7
YZ
6725 ei->delalloc_bytes = 0;
6726 ei->reserved_bytes = 0;
6727 ei->disk_i_size = 0;
6728 ei->flags = 0;
6729 ei->index_cnt = (u64)-1;
6730 ei->last_unlink_trans = 0;
6731
9e0baf60
JB
6732 spin_lock_init(&ei->lock);
6733 ei->outstanding_extents = 0;
6734 ei->reserved_extents = 0;
2ead6ae7
YZ
6735
6736 ei->ordered_data_close = 0;
d68fc57b 6737 ei->orphan_meta_reserved = 0;
2ead6ae7 6738 ei->dummy_inode = 0;
4cb5300b 6739 ei->in_defrag = 0;
261507a0 6740 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6741
16cdcec7
MX
6742 ei->delayed_node = NULL;
6743
2ead6ae7 6744 inode = &ei->vfs_inode;
a8067e02 6745 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6746 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6747 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6748 mutex_init(&ei->log_mutex);
e6dcd2dc 6749 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6750 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6751 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6752 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6753 RB_CLEAR_NODE(&ei->rb_node);
6754
6755 return inode;
39279cc3
CM
6756}
6757
fa0d7e3d
NP
6758static void btrfs_i_callback(struct rcu_head *head)
6759{
6760 struct inode *inode = container_of(head, struct inode, i_rcu);
6761 INIT_LIST_HEAD(&inode->i_dentry);
6762 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6763}
6764
39279cc3
CM
6765void btrfs_destroy_inode(struct inode *inode)
6766{
e6dcd2dc 6767 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6768 struct btrfs_root *root = BTRFS_I(inode)->root;
6769
39279cc3
CM
6770 WARN_ON(!list_empty(&inode->i_dentry));
6771 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6772 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6773 WARN_ON(BTRFS_I(inode)->reserved_extents);
39279cc3 6774
a6dbd429
JB
6775 /*
6776 * This can happen where we create an inode, but somebody else also
6777 * created the same inode and we need to destroy the one we already
6778 * created.
6779 */
6780 if (!root)
6781 goto free;
6782
5a3f23d5
CM
6783 /*
6784 * Make sure we're properly removed from the ordered operation
6785 * lists.
6786 */
6787 smp_mb();
6788 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6789 spin_lock(&root->fs_info->ordered_extent_lock);
6790 list_del_init(&BTRFS_I(inode)->ordered_operations);
6791 spin_unlock(&root->fs_info->ordered_extent_lock);
6792 }
6793
d68fc57b 6794 spin_lock(&root->orphan_lock);
7b128766 6795 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6796 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6797 (unsigned long long)btrfs_ino(inode));
8082510e 6798 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6799 }
d68fc57b 6800 spin_unlock(&root->orphan_lock);
7b128766 6801
d397712b 6802 while (1) {
e6dcd2dc
CM
6803 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6804 if (!ordered)
6805 break;
6806 else {
d397712b
CM
6807 printk(KERN_ERR "btrfs found ordered "
6808 "extent %llu %llu on inode cleanup\n",
6809 (unsigned long long)ordered->file_offset,
6810 (unsigned long long)ordered->len);
e6dcd2dc
CM
6811 btrfs_remove_ordered_extent(inode, ordered);
6812 btrfs_put_ordered_extent(ordered);
6813 btrfs_put_ordered_extent(ordered);
6814 }
6815 }
5d4f98a2 6816 inode_tree_del(inode);
5b21f2ed 6817 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6818free:
16cdcec7 6819 btrfs_remove_delayed_node(inode);
fa0d7e3d 6820 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6821}
6822
45321ac5 6823int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6824{
6825 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6826
0af3d00b 6827 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 6828 !btrfs_is_free_space_inode(root, inode))
45321ac5 6829 return 1;
76dda93c 6830 else
45321ac5 6831 return generic_drop_inode(inode);
76dda93c
YZ
6832}
6833
0ee0fda0 6834static void init_once(void *foo)
39279cc3
CM
6835{
6836 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6837
6838 inode_init_once(&ei->vfs_inode);
6839}
6840
6841void btrfs_destroy_cachep(void)
6842{
6843 if (btrfs_inode_cachep)
6844 kmem_cache_destroy(btrfs_inode_cachep);
6845 if (btrfs_trans_handle_cachep)
6846 kmem_cache_destroy(btrfs_trans_handle_cachep);
6847 if (btrfs_transaction_cachep)
6848 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6849 if (btrfs_path_cachep)
6850 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6851 if (btrfs_free_space_cachep)
6852 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6853}
6854
6855int btrfs_init_cachep(void)
6856{
9601e3f6
CH
6857 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6858 sizeof(struct btrfs_inode), 0,
6859 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6860 if (!btrfs_inode_cachep)
6861 goto fail;
9601e3f6
CH
6862
6863 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6864 sizeof(struct btrfs_trans_handle), 0,
6865 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6866 if (!btrfs_trans_handle_cachep)
6867 goto fail;
9601e3f6
CH
6868
6869 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6870 sizeof(struct btrfs_transaction), 0,
6871 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6872 if (!btrfs_transaction_cachep)
6873 goto fail;
9601e3f6
CH
6874
6875 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6876 sizeof(struct btrfs_path), 0,
6877 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6878 if (!btrfs_path_cachep)
6879 goto fail;
9601e3f6 6880
dc89e982
JB
6881 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6882 sizeof(struct btrfs_free_space), 0,
6883 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6884 if (!btrfs_free_space_cachep)
6885 goto fail;
6886
39279cc3
CM
6887 return 0;
6888fail:
6889 btrfs_destroy_cachep();
6890 return -ENOMEM;
6891}
6892
6893static int btrfs_getattr(struct vfsmount *mnt,
6894 struct dentry *dentry, struct kstat *stat)
6895{
6896 struct inode *inode = dentry->d_inode;
6897 generic_fillattr(inode, stat);
3394e160 6898 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6899 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6900 stat->blocks = (inode_get_bytes(inode) +
6901 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6902 return 0;
6903}
6904
75e7cb7f
LB
6905/*
6906 * If a file is moved, it will inherit the cow and compression flags of the new
6907 * directory.
6908 */
6909static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6910{
6911 struct btrfs_inode *b_dir = BTRFS_I(dir);
6912 struct btrfs_inode *b_inode = BTRFS_I(inode);
6913
6914 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6915 b_inode->flags |= BTRFS_INODE_NODATACOW;
6916 else
6917 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6918
6919 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6920 b_inode->flags |= BTRFS_INODE_COMPRESS;
6921 else
6922 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6923}
6924
d397712b
CM
6925static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6926 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6927{
6928 struct btrfs_trans_handle *trans;
6929 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6930 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6931 struct inode *new_inode = new_dentry->d_inode;
6932 struct inode *old_inode = old_dentry->d_inode;
6933 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6934 u64 index = 0;
4df27c4d 6935 u64 root_objectid;
39279cc3 6936 int ret;
33345d01 6937 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6938
33345d01 6939 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6940 return -EPERM;
6941
4df27c4d 6942 /* we only allow rename subvolume link between subvolumes */
33345d01 6943 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6944 return -EXDEV;
6945
33345d01
LZ
6946 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6947 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6948 return -ENOTEMPTY;
5f39d397 6949
4df27c4d
YZ
6950 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6951 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6952 return -ENOTEMPTY;
5a3f23d5
CM
6953 /*
6954 * we're using rename to replace one file with another.
6955 * and the replacement file is large. Start IO on it now so
6956 * we don't add too much work to the end of the transaction
6957 */
4baf8c92 6958 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6959 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6960 filemap_flush(old_inode->i_mapping);
6961
76dda93c 6962 /* close the racy window with snapshot create/destroy ioctl */
33345d01 6963 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6964 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6965 /*
6966 * We want to reserve the absolute worst case amount of items. So if
6967 * both inodes are subvols and we need to unlink them then that would
6968 * require 4 item modifications, but if they are both normal inodes it
6969 * would require 5 item modifications, so we'll assume their normal
6970 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6971 * should cover the worst case number of items we'll modify.
6972 */
6973 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6974 if (IS_ERR(trans)) {
6975 ret = PTR_ERR(trans);
6976 goto out_notrans;
6977 }
76dda93c 6978
4df27c4d
YZ
6979 if (dest != root)
6980 btrfs_record_root_in_trans(trans, dest);
5f39d397 6981
a5719521
YZ
6982 ret = btrfs_set_inode_index(new_dir, &index);
6983 if (ret)
6984 goto out_fail;
5a3f23d5 6985
33345d01 6986 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6987 /* force full log commit if subvolume involved. */
6988 root->fs_info->last_trans_log_full_commit = trans->transid;
6989 } else {
a5719521
YZ
6990 ret = btrfs_insert_inode_ref(trans, dest,
6991 new_dentry->d_name.name,
6992 new_dentry->d_name.len,
33345d01
LZ
6993 old_ino,
6994 btrfs_ino(new_dir), index);
a5719521
YZ
6995 if (ret)
6996 goto out_fail;
4df27c4d
YZ
6997 /*
6998 * this is an ugly little race, but the rename is required
6999 * to make sure that if we crash, the inode is either at the
7000 * old name or the new one. pinning the log transaction lets
7001 * us make sure we don't allow a log commit to come in after
7002 * we unlink the name but before we add the new name back in.
7003 */
7004 btrfs_pin_log_trans(root);
7005 }
5a3f23d5
CM
7006 /*
7007 * make sure the inode gets flushed if it is replacing
7008 * something.
7009 */
33345d01 7010 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7011 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7012
39279cc3
CM
7013 old_dir->i_ctime = old_dir->i_mtime = ctime;
7014 new_dir->i_ctime = new_dir->i_mtime = ctime;
7015 old_inode->i_ctime = ctime;
5f39d397 7016
12fcfd22
CM
7017 if (old_dentry->d_parent != new_dentry->d_parent)
7018 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7019
33345d01 7020 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7021 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7022 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7023 old_dentry->d_name.name,
7024 old_dentry->d_name.len);
7025 } else {
92986796
AV
7026 ret = __btrfs_unlink_inode(trans, root, old_dir,
7027 old_dentry->d_inode,
7028 old_dentry->d_name.name,
7029 old_dentry->d_name.len);
7030 if (!ret)
7031 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7032 }
7033 BUG_ON(ret);
39279cc3
CM
7034
7035 if (new_inode) {
7036 new_inode->i_ctime = CURRENT_TIME;
33345d01 7037 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7038 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7039 root_objectid = BTRFS_I(new_inode)->location.objectid;
7040 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7041 root_objectid,
7042 new_dentry->d_name.name,
7043 new_dentry->d_name.len);
7044 BUG_ON(new_inode->i_nlink == 0);
7045 } else {
7046 ret = btrfs_unlink_inode(trans, dest, new_dir,
7047 new_dentry->d_inode,
7048 new_dentry->d_name.name,
7049 new_dentry->d_name.len);
7050 }
7051 BUG_ON(ret);
7b128766 7052 if (new_inode->i_nlink == 0) {
e02119d5 7053 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7054 BUG_ON(ret);
7b128766 7055 }
39279cc3 7056 }
aec7477b 7057
75e7cb7f
LB
7058 fixup_inode_flags(new_dir, old_inode);
7059
4df27c4d
YZ
7060 ret = btrfs_add_link(trans, new_dir, old_inode,
7061 new_dentry->d_name.name,
a5719521 7062 new_dentry->d_name.len, 0, index);
4df27c4d 7063 BUG_ON(ret);
39279cc3 7064
33345d01 7065 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7066 struct dentry *parent = dget_parent(new_dentry);
7067 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7068 dput(parent);
4df27c4d
YZ
7069 btrfs_end_log_trans(root);
7070 }
39279cc3 7071out_fail:
ab78c84d 7072 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7073out_notrans:
33345d01 7074 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7075 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7076
39279cc3
CM
7077 return ret;
7078}
7079
d352ac68
CM
7080/*
7081 * some fairly slow code that needs optimization. This walks the list
7082 * of all the inodes with pending delalloc and forces them to disk.
7083 */
24bbcf04 7084int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7085{
7086 struct list_head *head = &root->fs_info->delalloc_inodes;
7087 struct btrfs_inode *binode;
5b21f2ed 7088 struct inode *inode;
ea8c2819 7089
c146afad
YZ
7090 if (root->fs_info->sb->s_flags & MS_RDONLY)
7091 return -EROFS;
7092
75eff68e 7093 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7094 while (!list_empty(head)) {
ea8c2819
CM
7095 binode = list_entry(head->next, struct btrfs_inode,
7096 delalloc_inodes);
5b21f2ed
ZY
7097 inode = igrab(&binode->vfs_inode);
7098 if (!inode)
7099 list_del_init(&binode->delalloc_inodes);
75eff68e 7100 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7101 if (inode) {
8c8bee1d 7102 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7103 if (delay_iput)
7104 btrfs_add_delayed_iput(inode);
7105 else
7106 iput(inode);
5b21f2ed
ZY
7107 }
7108 cond_resched();
75eff68e 7109 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7110 }
75eff68e 7111 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7112
7113 /* the filemap_flush will queue IO into the worker threads, but
7114 * we have to make sure the IO is actually started and that
7115 * ordered extents get created before we return
7116 */
7117 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7118 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7119 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7120 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7121 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7122 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7123 }
7124 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7125 return 0;
7126}
7127
39279cc3
CM
7128static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7129 const char *symname)
7130{
7131 struct btrfs_trans_handle *trans;
7132 struct btrfs_root *root = BTRFS_I(dir)->root;
7133 struct btrfs_path *path;
7134 struct btrfs_key key;
1832a6d5 7135 struct inode *inode = NULL;
39279cc3
CM
7136 int err;
7137 int drop_inode = 0;
7138 u64 objectid;
00e4e6b3 7139 u64 index = 0 ;
39279cc3
CM
7140 int name_len;
7141 int datasize;
5f39d397 7142 unsigned long ptr;
39279cc3 7143 struct btrfs_file_extent_item *ei;
5f39d397 7144 struct extent_buffer *leaf;
1832a6d5 7145 unsigned long nr = 0;
39279cc3
CM
7146
7147 name_len = strlen(symname) + 1;
7148 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7149 return -ENAMETOOLONG;
1832a6d5 7150
9ed74f2d
JB
7151 /*
7152 * 2 items for inode item and ref
7153 * 2 items for dir items
7154 * 1 item for xattr if selinux is on
7155 */
a22285a6
YZ
7156 trans = btrfs_start_transaction(root, 5);
7157 if (IS_ERR(trans))
7158 return PTR_ERR(trans);
1832a6d5 7159
581bb050
LZ
7160 err = btrfs_find_free_ino(root, &objectid);
7161 if (err)
7162 goto out_unlock;
7163
aec7477b 7164 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7165 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7166 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7167 if (IS_ERR(inode)) {
7168 err = PTR_ERR(inode);
39279cc3 7169 goto out_unlock;
7cf96da3 7170 }
39279cc3 7171
2a7dba39 7172 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7173 if (err) {
7174 drop_inode = 1;
7175 goto out_unlock;
7176 }
7177
a1b075d2 7178 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7179 if (err)
7180 drop_inode = 1;
7181 else {
7182 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7183 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7184 inode->i_fop = &btrfs_file_operations;
7185 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7186 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7187 }
39279cc3
CM
7188 if (drop_inode)
7189 goto out_unlock;
7190
7191 path = btrfs_alloc_path();
d8926bb3
MF
7192 if (!path) {
7193 err = -ENOMEM;
7194 drop_inode = 1;
7195 goto out_unlock;
7196 }
33345d01 7197 key.objectid = btrfs_ino(inode);
39279cc3 7198 key.offset = 0;
39279cc3
CM
7199 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7200 datasize = btrfs_file_extent_calc_inline_size(name_len);
7201 err = btrfs_insert_empty_item(trans, root, path, &key,
7202 datasize);
54aa1f4d
CM
7203 if (err) {
7204 drop_inode = 1;
b0839166 7205 btrfs_free_path(path);
54aa1f4d
CM
7206 goto out_unlock;
7207 }
5f39d397
CM
7208 leaf = path->nodes[0];
7209 ei = btrfs_item_ptr(leaf, path->slots[0],
7210 struct btrfs_file_extent_item);
7211 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7212 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7213 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7214 btrfs_set_file_extent_encryption(leaf, ei, 0);
7215 btrfs_set_file_extent_compression(leaf, ei, 0);
7216 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7217 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7218
39279cc3 7219 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7220 write_extent_buffer(leaf, symname, ptr, name_len);
7221 btrfs_mark_buffer_dirty(leaf);
39279cc3 7222 btrfs_free_path(path);
5f39d397 7223
39279cc3
CM
7224 inode->i_op = &btrfs_symlink_inode_operations;
7225 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7226 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7227 inode_set_bytes(inode, name_len);
dbe674a9 7228 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7229 err = btrfs_update_inode(trans, root, inode);
7230 if (err)
7231 drop_inode = 1;
39279cc3
CM
7232
7233out_unlock:
d3c2fdcf 7234 nr = trans->blocks_used;
ab78c84d 7235 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7236 if (drop_inode) {
7237 inode_dec_link_count(inode);
7238 iput(inode);
7239 }
d3c2fdcf 7240 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7241 return err;
7242}
16432985 7243
0af3d00b
JB
7244static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7245 u64 start, u64 num_bytes, u64 min_size,
7246 loff_t actual_len, u64 *alloc_hint,
7247 struct btrfs_trans_handle *trans)
d899e052 7248{
d899e052
YZ
7249 struct btrfs_root *root = BTRFS_I(inode)->root;
7250 struct btrfs_key ins;
d899e052 7251 u64 cur_offset = start;
55a61d1d 7252 u64 i_size;
d899e052 7253 int ret = 0;
0af3d00b 7254 bool own_trans = true;
d899e052 7255
0af3d00b
JB
7256 if (trans)
7257 own_trans = false;
d899e052 7258 while (num_bytes > 0) {
0af3d00b
JB
7259 if (own_trans) {
7260 trans = btrfs_start_transaction(root, 3);
7261 if (IS_ERR(trans)) {
7262 ret = PTR_ERR(trans);
7263 break;
7264 }
5a303d5d
YZ
7265 }
7266
efa56464
YZ
7267 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7268 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7269 if (ret) {
0af3d00b
JB
7270 if (own_trans)
7271 btrfs_end_transaction(trans, root);
a22285a6 7272 break;
d899e052 7273 }
5a303d5d 7274
d899e052
YZ
7275 ret = insert_reserved_file_extent(trans, inode,
7276 cur_offset, ins.objectid,
7277 ins.offset, ins.offset,
920bbbfb 7278 ins.offset, 0, 0, 0,
d899e052
YZ
7279 BTRFS_FILE_EXTENT_PREALLOC);
7280 BUG_ON(ret);
a1ed835e
CM
7281 btrfs_drop_extent_cache(inode, cur_offset,
7282 cur_offset + ins.offset -1, 0);
5a303d5d 7283
d899e052
YZ
7284 num_bytes -= ins.offset;
7285 cur_offset += ins.offset;
efa56464 7286 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7287
d899e052 7288 inode->i_ctime = CURRENT_TIME;
6cbff00f 7289 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7290 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7291 (actual_len > inode->i_size) &&
7292 (cur_offset > inode->i_size)) {
d1ea6a61 7293 if (cur_offset > actual_len)
55a61d1d 7294 i_size = actual_len;
d1ea6a61 7295 else
55a61d1d
JB
7296 i_size = cur_offset;
7297 i_size_write(inode, i_size);
7298 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7299 }
7300
d899e052
YZ
7301 ret = btrfs_update_inode(trans, root, inode);
7302 BUG_ON(ret);
d899e052 7303
0af3d00b
JB
7304 if (own_trans)
7305 btrfs_end_transaction(trans, root);
5a303d5d 7306 }
d899e052
YZ
7307 return ret;
7308}
7309
0af3d00b
JB
7310int btrfs_prealloc_file_range(struct inode *inode, int mode,
7311 u64 start, u64 num_bytes, u64 min_size,
7312 loff_t actual_len, u64 *alloc_hint)
7313{
7314 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7315 min_size, actual_len, alloc_hint,
7316 NULL);
7317}
7318
7319int btrfs_prealloc_file_range_trans(struct inode *inode,
7320 struct btrfs_trans_handle *trans, int mode,
7321 u64 start, u64 num_bytes, u64 min_size,
7322 loff_t actual_len, u64 *alloc_hint)
7323{
7324 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7325 min_size, actual_len, alloc_hint, trans);
7326}
7327
e6dcd2dc
CM
7328static int btrfs_set_page_dirty(struct page *page)
7329{
e6dcd2dc
CM
7330 return __set_page_dirty_nobuffers(page);
7331}
7332
b74c79e9 7333static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7334{
b83cc969
LZ
7335 struct btrfs_root *root = BTRFS_I(inode)->root;
7336
7337 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7338 return -EROFS;
6cbff00f 7339 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7340 return -EACCES;
b74c79e9 7341 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7342}
39279cc3 7343
6e1d5dcc 7344static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7345 .getattr = btrfs_getattr,
39279cc3
CM
7346 .lookup = btrfs_lookup,
7347 .create = btrfs_create,
7348 .unlink = btrfs_unlink,
7349 .link = btrfs_link,
7350 .mkdir = btrfs_mkdir,
7351 .rmdir = btrfs_rmdir,
7352 .rename = btrfs_rename,
7353 .symlink = btrfs_symlink,
7354 .setattr = btrfs_setattr,
618e21d5 7355 .mknod = btrfs_mknod,
95819c05
CH
7356 .setxattr = btrfs_setxattr,
7357 .getxattr = btrfs_getxattr,
5103e947 7358 .listxattr = btrfs_listxattr,
95819c05 7359 .removexattr = btrfs_removexattr,
fdebe2bd 7360 .permission = btrfs_permission,
39279cc3 7361};
6e1d5dcc 7362static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7363 .lookup = btrfs_lookup,
fdebe2bd 7364 .permission = btrfs_permission,
39279cc3 7365};
76dda93c 7366
828c0950 7367static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7368 .llseek = generic_file_llseek,
7369 .read = generic_read_dir,
cbdf5a24 7370 .readdir = btrfs_real_readdir,
34287aa3 7371 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7372#ifdef CONFIG_COMPAT
34287aa3 7373 .compat_ioctl = btrfs_ioctl,
39279cc3 7374#endif
6bf13c0c 7375 .release = btrfs_release_file,
e02119d5 7376 .fsync = btrfs_sync_file,
39279cc3
CM
7377};
7378
d1310b2e 7379static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7380 .fill_delalloc = run_delalloc_range,
065631f6 7381 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7382 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7383 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7384 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7385 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7386 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7387 .set_bit_hook = btrfs_set_bit_hook,
7388 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7389 .merge_extent_hook = btrfs_merge_extent_hook,
7390 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7391};
7392
35054394
CM
7393/*
7394 * btrfs doesn't support the bmap operation because swapfiles
7395 * use bmap to make a mapping of extents in the file. They assume
7396 * these extents won't change over the life of the file and they
7397 * use the bmap result to do IO directly to the drive.
7398 *
7399 * the btrfs bmap call would return logical addresses that aren't
7400 * suitable for IO and they also will change frequently as COW
7401 * operations happen. So, swapfile + btrfs == corruption.
7402 *
7403 * For now we're avoiding this by dropping bmap.
7404 */
7f09410b 7405static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7406 .readpage = btrfs_readpage,
7407 .writepage = btrfs_writepage,
b293f02e 7408 .writepages = btrfs_writepages,
3ab2fb5a 7409 .readpages = btrfs_readpages,
16432985 7410 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7411 .invalidatepage = btrfs_invalidatepage,
7412 .releasepage = btrfs_releasepage,
e6dcd2dc 7413 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7414 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7415};
7416
7f09410b 7417static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7418 .readpage = btrfs_readpage,
7419 .writepage = btrfs_writepage,
2bf5a725
CM
7420 .invalidatepage = btrfs_invalidatepage,
7421 .releasepage = btrfs_releasepage,
39279cc3
CM
7422};
7423
6e1d5dcc 7424static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7425 .getattr = btrfs_getattr,
7426 .setattr = btrfs_setattr,
95819c05
CH
7427 .setxattr = btrfs_setxattr,
7428 .getxattr = btrfs_getxattr,
5103e947 7429 .listxattr = btrfs_listxattr,
95819c05 7430 .removexattr = btrfs_removexattr,
fdebe2bd 7431 .permission = btrfs_permission,
1506fcc8 7432 .fiemap = btrfs_fiemap,
39279cc3 7433};
6e1d5dcc 7434static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7435 .getattr = btrfs_getattr,
7436 .setattr = btrfs_setattr,
fdebe2bd 7437 .permission = btrfs_permission,
95819c05
CH
7438 .setxattr = btrfs_setxattr,
7439 .getxattr = btrfs_getxattr,
33268eaf 7440 .listxattr = btrfs_listxattr,
95819c05 7441 .removexattr = btrfs_removexattr,
618e21d5 7442};
6e1d5dcc 7443static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7444 .readlink = generic_readlink,
7445 .follow_link = page_follow_link_light,
7446 .put_link = page_put_link,
f209561a 7447 .getattr = btrfs_getattr,
fdebe2bd 7448 .permission = btrfs_permission,
0279b4cd
JO
7449 .setxattr = btrfs_setxattr,
7450 .getxattr = btrfs_getxattr,
7451 .listxattr = btrfs_listxattr,
7452 .removexattr = btrfs_removexattr,
39279cc3 7453};
76dda93c 7454
82d339d9 7455const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7456 .d_delete = btrfs_dentry_delete,
7457};