btrfs: don't mess with i_nlink of unlocked inode in rename()
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
39279cc3
CM
54
55struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58};
59
6e1d5dcc
AD
60static const struct inode_operations btrfs_dir_inode_operations;
61static const struct inode_operations btrfs_symlink_inode_operations;
62static const struct inode_operations btrfs_dir_ro_inode_operations;
63static const struct inode_operations btrfs_special_inode_operations;
64static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
65static const struct address_space_operations btrfs_aops;
66static const struct address_space_operations btrfs_symlink_aops;
828c0950 67static const struct file_operations btrfs_dir_file_operations;
d1310b2e 68static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
69
70static struct kmem_cache *btrfs_inode_cachep;
71struct kmem_cache *btrfs_trans_handle_cachep;
72struct kmem_cache *btrfs_transaction_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
77static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
a41ad394
JB
87static int btrfs_setsize(struct inode *inode, loff_t newsize);
88static int btrfs_truncate(struct inode *inode);
c8b97818 89static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
7b128766 94
f34f57a3
YZ
95static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
0279b4cd
JO
97{
98 int err;
99
f34f57a3 100 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 101 if (!err)
f34f57a3 102 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
103 return err;
104}
105
c8b97818
CM
106/*
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
110 */
d397712b 111static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
114 struct page **compressed_pages)
115{
116 struct btrfs_key key;
117 struct btrfs_path *path;
118 struct extent_buffer *leaf;
119 struct page *page = NULL;
120 char *kaddr;
121 unsigned long ptr;
122 struct btrfs_file_extent_item *ei;
123 int err = 0;
124 int ret;
125 size_t cur_size = size;
126 size_t datasize;
127 unsigned long offset;
261507a0 128 int compress_type = BTRFS_COMPRESS_NONE;
c8b97818
CM
129
130 if (compressed_size && compressed_pages) {
261507a0 131 compress_type = root->fs_info->compress_type;
c8b97818
CM
132 cur_size = compressed_size;
133 }
134
d397712b
CM
135 path = btrfs_alloc_path();
136 if (!path)
c8b97818
CM
137 return -ENOMEM;
138
b9473439 139 path->leave_spinning = 1;
c8b97818
CM
140 btrfs_set_trans_block_group(trans, inode);
141
142 key.objectid = inode->i_ino;
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
223 size_t compressed_size,
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compressed_pages);
257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 293 BUG_ON(!async_extent);
771ed689
CM
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
261507a0 299 async_extent->compress_type = compress_type;
771ed689
CM
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302}
303
d352ac68 304/*
771ed689
CM
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
c8b97818 308 *
771ed689
CM
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
c8b97818 314 *
771ed689
CM
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
d352ac68 319 */
771ed689
CM
320static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
b888db2b
CM
325{
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
db94535d 328 u64 num_bytes;
db94535d 329 u64 blocksize = root->sectorsize;
c8b97818 330 u64 actual_end;
42dc7bab 331 u64 isize = i_size_read(inode);
e6dcd2dc 332 int ret = 0;
c8b97818
CM
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
771ed689 339 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
340 int i;
341 int will_compress;
261507a0 342 int compress_type = root->fs_info->compress_type;
b888db2b 343
42dc7bab 344 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
345again:
346 will_compress = 0;
347 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
348 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 349
f03d9301
CM
350 /*
351 * we don't want to send crud past the end of i_size through
352 * compression, that's just a waste of CPU time. So, if the
353 * end of the file is before the start of our current
354 * requested range of bytes, we bail out to the uncompressed
355 * cleanup code that can deal with all of this.
356 *
357 * It isn't really the fastest way to fix things, but this is a
358 * very uncommon corner.
359 */
360 if (actual_end <= start)
361 goto cleanup_and_bail_uncompressed;
362
c8b97818
CM
363 total_compressed = actual_end - start;
364
365 /* we want to make sure that amount of ram required to uncompress
366 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
367 * of a compressed extent to 128k. This is a crucial number
368 * because it also controls how easily we can spread reads across
369 * cpus for decompression.
370 *
371 * We also want to make sure the amount of IO required to do
372 * a random read is reasonably small, so we limit the size of
373 * a compressed extent to 128k.
c8b97818
CM
374 */
375 total_compressed = min(total_compressed, max_uncompressed);
db94535d 376 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 377 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
378 total_in = 0;
379 ret = 0;
db94535d 380
771ed689
CM
381 /*
382 * we do compression for mount -o compress and when the
383 * inode has not been flagged as nocompress. This flag can
384 * change at any time if we discover bad compression ratios.
c8b97818 385 */
6cbff00f 386 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 387 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
388 (BTRFS_I(inode)->force_compress) ||
389 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 390 WARN_ON(pages);
cfbc246e 391 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 392 BUG_ON(!pages);
c8b97818 393
261507a0
LZ
394 if (BTRFS_I(inode)->force_compress)
395 compress_type = BTRFS_I(inode)->force_compress;
396
397 ret = btrfs_compress_pages(compress_type,
398 inode->i_mapping, start,
399 total_compressed, pages,
400 nr_pages, &nr_pages_ret,
401 &total_in,
402 &total_compressed,
403 max_compressed);
c8b97818
CM
404
405 if (!ret) {
406 unsigned long offset = total_compressed &
407 (PAGE_CACHE_SIZE - 1);
408 struct page *page = pages[nr_pages_ret - 1];
409 char *kaddr;
410
411 /* zero the tail end of the last page, we might be
412 * sending it down to disk
413 */
414 if (offset) {
415 kaddr = kmap_atomic(page, KM_USER0);
416 memset(kaddr + offset, 0,
417 PAGE_CACHE_SIZE - offset);
418 kunmap_atomic(kaddr, KM_USER0);
419 }
420 will_compress = 1;
421 }
422 }
423 if (start == 0) {
771ed689 424 trans = btrfs_join_transaction(root, 1);
3612b495 425 BUG_ON(IS_ERR(trans));
771ed689 426 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 427 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 428
c8b97818 429 /* lets try to make an inline extent */
771ed689 430 if (ret || total_in < (actual_end - start)) {
c8b97818 431 /* we didn't compress the entire range, try
771ed689 432 * to make an uncompressed inline extent.
c8b97818
CM
433 */
434 ret = cow_file_range_inline(trans, root, inode,
435 start, end, 0, NULL);
436 } else {
771ed689 437 /* try making a compressed inline extent */
c8b97818
CM
438 ret = cow_file_range_inline(trans, root, inode,
439 start, end,
440 total_compressed, pages);
441 }
442 if (ret == 0) {
771ed689
CM
443 /*
444 * inline extent creation worked, we don't need
445 * to create any more async work items. Unlock
446 * and free up our temp pages.
447 */
c8b97818 448 extent_clear_unlock_delalloc(inode,
a791e35e
CM
449 &BTRFS_I(inode)->io_tree,
450 start, end, NULL,
451 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 452 EXTENT_CLEAR_DELALLOC |
a791e35e 453 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
454
455 btrfs_end_transaction(trans, root);
c8b97818
CM
456 goto free_pages_out;
457 }
c2167754 458 btrfs_end_transaction(trans, root);
c8b97818
CM
459 }
460
461 if (will_compress) {
462 /*
463 * we aren't doing an inline extent round the compressed size
464 * up to a block size boundary so the allocator does sane
465 * things
466 */
467 total_compressed = (total_compressed + blocksize - 1) &
468 ~(blocksize - 1);
469
470 /*
471 * one last check to make sure the compression is really a
472 * win, compare the page count read with the blocks on disk
473 */
474 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475 ~(PAGE_CACHE_SIZE - 1);
476 if (total_compressed >= total_in) {
477 will_compress = 0;
478 } else {
c8b97818
CM
479 num_bytes = total_in;
480 }
481 }
482 if (!will_compress && pages) {
483 /*
484 * the compression code ran but failed to make things smaller,
485 * free any pages it allocated and our page pointer array
486 */
487 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 488 WARN_ON(pages[i]->mapping);
c8b97818
CM
489 page_cache_release(pages[i]);
490 }
491 kfree(pages);
492 pages = NULL;
493 total_compressed = 0;
494 nr_pages_ret = 0;
495
496 /* flag the file so we don't compress in the future */
1e701a32
CM
497 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498 !(BTRFS_I(inode)->force_compress)) {
a555f810 499 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 500 }
c8b97818 501 }
771ed689
CM
502 if (will_compress) {
503 *num_added += 1;
c8b97818 504
771ed689
CM
505 /* the async work queues will take care of doing actual
506 * allocation on disk for these compressed pages,
507 * and will submit them to the elevator.
508 */
509 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
510 total_compressed, pages, nr_pages_ret,
511 compress_type);
179e29e4 512
24ae6365 513 if (start + num_bytes < end) {
771ed689
CM
514 start += num_bytes;
515 pages = NULL;
516 cond_resched();
517 goto again;
518 }
519 } else {
f03d9301 520cleanup_and_bail_uncompressed:
771ed689
CM
521 /*
522 * No compression, but we still need to write the pages in
523 * the file we've been given so far. redirty the locked
524 * page if it corresponds to our extent and set things up
525 * for the async work queue to run cow_file_range to do
526 * the normal delalloc dance
527 */
528 if (page_offset(locked_page) >= start &&
529 page_offset(locked_page) <= end) {
530 __set_page_dirty_nobuffers(locked_page);
531 /* unlocked later on in the async handlers */
532 }
261507a0
LZ
533 add_async_extent(async_cow, start, end - start + 1,
534 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
535 *num_added += 1;
536 }
3b951516 537
771ed689
CM
538out:
539 return 0;
540
541free_pages_out:
542 for (i = 0; i < nr_pages_ret; i++) {
543 WARN_ON(pages[i]->mapping);
544 page_cache_release(pages[i]);
545 }
d397712b 546 kfree(pages);
771ed689
CM
547
548 goto out;
549}
550
551/*
552 * phase two of compressed writeback. This is the ordered portion
553 * of the code, which only gets called in the order the work was
554 * queued. We walk all the async extents created by compress_file_range
555 * and send them down to the disk.
556 */
557static noinline int submit_compressed_extents(struct inode *inode,
558 struct async_cow *async_cow)
559{
560 struct async_extent *async_extent;
561 u64 alloc_hint = 0;
562 struct btrfs_trans_handle *trans;
563 struct btrfs_key ins;
564 struct extent_map *em;
565 struct btrfs_root *root = BTRFS_I(inode)->root;
566 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567 struct extent_io_tree *io_tree;
f5a84ee3 568 int ret = 0;
771ed689
CM
569
570 if (list_empty(&async_cow->extents))
571 return 0;
572
771ed689 573
d397712b 574 while (!list_empty(&async_cow->extents)) {
771ed689
CM
575 async_extent = list_entry(async_cow->extents.next,
576 struct async_extent, list);
577 list_del(&async_extent->list);
c8b97818 578
771ed689
CM
579 io_tree = &BTRFS_I(inode)->io_tree;
580
f5a84ee3 581retry:
771ed689
CM
582 /* did the compression code fall back to uncompressed IO? */
583 if (!async_extent->pages) {
584 int page_started = 0;
585 unsigned long nr_written = 0;
586
587 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
588 async_extent->start +
589 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
590
591 /* allocate blocks */
f5a84ee3
JB
592 ret = cow_file_range(inode, async_cow->locked_page,
593 async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1,
596 &page_started, &nr_written, 0);
771ed689
CM
597
598 /*
599 * if page_started, cow_file_range inserted an
600 * inline extent and took care of all the unlocking
601 * and IO for us. Otherwise, we need to submit
602 * all those pages down to the drive.
603 */
f5a84ee3 604 if (!page_started && !ret)
771ed689
CM
605 extent_write_locked_range(io_tree,
606 inode, async_extent->start,
d397712b 607 async_extent->start +
771ed689
CM
608 async_extent->ram_size - 1,
609 btrfs_get_extent,
610 WB_SYNC_ALL);
611 kfree(async_extent);
612 cond_resched();
613 continue;
614 }
615
616 lock_extent(io_tree, async_extent->start,
617 async_extent->start + async_extent->ram_size - 1,
618 GFP_NOFS);
771ed689 619
c2167754 620 trans = btrfs_join_transaction(root, 1);
3612b495 621 BUG_ON(IS_ERR(trans));
771ed689
CM
622 ret = btrfs_reserve_extent(trans, root,
623 async_extent->compressed_size,
624 async_extent->compressed_size,
625 0, alloc_hint,
626 (u64)-1, &ins, 1);
c2167754
YZ
627 btrfs_end_transaction(trans, root);
628
f5a84ee3
JB
629 if (ret) {
630 int i;
631 for (i = 0; i < async_extent->nr_pages; i++) {
632 WARN_ON(async_extent->pages[i]->mapping);
633 page_cache_release(async_extent->pages[i]);
634 }
635 kfree(async_extent->pages);
636 async_extent->nr_pages = 0;
637 async_extent->pages = NULL;
638 unlock_extent(io_tree, async_extent->start,
639 async_extent->start +
640 async_extent->ram_size - 1, GFP_NOFS);
641 goto retry;
642 }
643
c2167754
YZ
644 /*
645 * here we're doing allocation and writeback of the
646 * compressed pages
647 */
648 btrfs_drop_extent_cache(inode, async_extent->start,
649 async_extent->start +
650 async_extent->ram_size - 1, 0);
651
771ed689 652 em = alloc_extent_map(GFP_NOFS);
c26a9203 653 BUG_ON(!em);
771ed689
CM
654 em->start = async_extent->start;
655 em->len = async_extent->ram_size;
445a6944 656 em->orig_start = em->start;
c8b97818 657
771ed689
CM
658 em->block_start = ins.objectid;
659 em->block_len = ins.offset;
660 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 661 em->compress_type = async_extent->compress_type;
771ed689
CM
662 set_bit(EXTENT_FLAG_PINNED, &em->flags);
663 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
664
d397712b 665 while (1) {
890871be 666 write_lock(&em_tree->lock);
771ed689 667 ret = add_extent_mapping(em_tree, em);
890871be 668 write_unlock(&em_tree->lock);
771ed689
CM
669 if (ret != -EEXIST) {
670 free_extent_map(em);
671 break;
672 }
673 btrfs_drop_extent_cache(inode, async_extent->start,
674 async_extent->start +
675 async_extent->ram_size - 1, 0);
676 }
677
261507a0
LZ
678 ret = btrfs_add_ordered_extent_compress(inode,
679 async_extent->start,
680 ins.objectid,
681 async_extent->ram_size,
682 ins.offset,
683 BTRFS_ORDERED_COMPRESSED,
684 async_extent->compress_type);
771ed689
CM
685 BUG_ON(ret);
686
771ed689
CM
687 /*
688 * clear dirty, set writeback and unlock the pages.
689 */
690 extent_clear_unlock_delalloc(inode,
a791e35e
CM
691 &BTRFS_I(inode)->io_tree,
692 async_extent->start,
693 async_extent->start +
694 async_extent->ram_size - 1,
695 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
696 EXTENT_CLEAR_UNLOCK |
a3429ab7 697 EXTENT_CLEAR_DELALLOC |
a791e35e 698 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
699
700 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
701 async_extent->start,
702 async_extent->ram_size,
703 ins.objectid,
704 ins.offset, async_extent->pages,
705 async_extent->nr_pages);
771ed689
CM
706
707 BUG_ON(ret);
771ed689
CM
708 alloc_hint = ins.objectid + ins.offset;
709 kfree(async_extent);
710 cond_resched();
711 }
712
771ed689
CM
713 return 0;
714}
715
4b46fce2
JB
716static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
717 u64 num_bytes)
718{
719 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
720 struct extent_map *em;
721 u64 alloc_hint = 0;
722
723 read_lock(&em_tree->lock);
724 em = search_extent_mapping(em_tree, start, num_bytes);
725 if (em) {
726 /*
727 * if block start isn't an actual block number then find the
728 * first block in this inode and use that as a hint. If that
729 * block is also bogus then just don't worry about it.
730 */
731 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
732 free_extent_map(em);
733 em = search_extent_mapping(em_tree, 0, 0);
734 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
735 alloc_hint = em->block_start;
736 if (em)
737 free_extent_map(em);
738 } else {
739 alloc_hint = em->block_start;
740 free_extent_map(em);
741 }
742 }
743 read_unlock(&em_tree->lock);
744
745 return alloc_hint;
746}
747
771ed689
CM
748/*
749 * when extent_io.c finds a delayed allocation range in the file,
750 * the call backs end up in this code. The basic idea is to
751 * allocate extents on disk for the range, and create ordered data structs
752 * in ram to track those extents.
753 *
754 * locked_page is the page that writepage had locked already. We use
755 * it to make sure we don't do extra locks or unlocks.
756 *
757 * *page_started is set to one if we unlock locked_page and do everything
758 * required to start IO on it. It may be clean and already done with
759 * IO when we return.
760 */
761static noinline int cow_file_range(struct inode *inode,
762 struct page *locked_page,
763 u64 start, u64 end, int *page_started,
764 unsigned long *nr_written,
765 int unlock)
766{
767 struct btrfs_root *root = BTRFS_I(inode)->root;
768 struct btrfs_trans_handle *trans;
769 u64 alloc_hint = 0;
770 u64 num_bytes;
771 unsigned long ram_size;
772 u64 disk_num_bytes;
773 u64 cur_alloc_size;
774 u64 blocksize = root->sectorsize;
771ed689
CM
775 struct btrfs_key ins;
776 struct extent_map *em;
777 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
778 int ret = 0;
779
0cb59c99 780 BUG_ON(root == root->fs_info->tree_root);
771ed689 781 trans = btrfs_join_transaction(root, 1);
3612b495 782 BUG_ON(IS_ERR(trans));
771ed689 783 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 784 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 785
771ed689
CM
786 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
787 num_bytes = max(blocksize, num_bytes);
788 disk_num_bytes = num_bytes;
789 ret = 0;
790
791 if (start == 0) {
792 /* lets try to make an inline extent */
793 ret = cow_file_range_inline(trans, root, inode,
794 start, end, 0, NULL);
795 if (ret == 0) {
796 extent_clear_unlock_delalloc(inode,
a791e35e
CM
797 &BTRFS_I(inode)->io_tree,
798 start, end, NULL,
799 EXTENT_CLEAR_UNLOCK_PAGE |
800 EXTENT_CLEAR_UNLOCK |
801 EXTENT_CLEAR_DELALLOC |
802 EXTENT_CLEAR_DIRTY |
803 EXTENT_SET_WRITEBACK |
804 EXTENT_END_WRITEBACK);
c2167754 805
771ed689
CM
806 *nr_written = *nr_written +
807 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
808 *page_started = 1;
809 ret = 0;
810 goto out;
811 }
812 }
813
814 BUG_ON(disk_num_bytes >
815 btrfs_super_total_bytes(&root->fs_info->super_copy));
816
4b46fce2 817 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
818 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
819
d397712b 820 while (disk_num_bytes > 0) {
a791e35e
CM
821 unsigned long op;
822
287a0ab9 823 cur_alloc_size = disk_num_bytes;
e6dcd2dc 824 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 825 root->sectorsize, 0, alloc_hint,
e6dcd2dc 826 (u64)-1, &ins, 1);
d397712b
CM
827 BUG_ON(ret);
828
e6dcd2dc 829 em = alloc_extent_map(GFP_NOFS);
c26a9203 830 BUG_ON(!em);
e6dcd2dc 831 em->start = start;
445a6944 832 em->orig_start = em->start;
771ed689
CM
833 ram_size = ins.offset;
834 em->len = ins.offset;
c8b97818 835
e6dcd2dc 836 em->block_start = ins.objectid;
c8b97818 837 em->block_len = ins.offset;
e6dcd2dc 838 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 839 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 840
d397712b 841 while (1) {
890871be 842 write_lock(&em_tree->lock);
e6dcd2dc 843 ret = add_extent_mapping(em_tree, em);
890871be 844 write_unlock(&em_tree->lock);
e6dcd2dc
CM
845 if (ret != -EEXIST) {
846 free_extent_map(em);
847 break;
848 }
849 btrfs_drop_extent_cache(inode, start,
c8b97818 850 start + ram_size - 1, 0);
e6dcd2dc
CM
851 }
852
98d20f67 853 cur_alloc_size = ins.offset;
e6dcd2dc 854 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 855 ram_size, cur_alloc_size, 0);
e6dcd2dc 856 BUG_ON(ret);
c8b97818 857
17d217fe
YZ
858 if (root->root_key.objectid ==
859 BTRFS_DATA_RELOC_TREE_OBJECTID) {
860 ret = btrfs_reloc_clone_csums(inode, start,
861 cur_alloc_size);
862 BUG_ON(ret);
863 }
864
d397712b 865 if (disk_num_bytes < cur_alloc_size)
3b951516 866 break;
d397712b 867
c8b97818
CM
868 /* we're not doing compressed IO, don't unlock the first
869 * page (which the caller expects to stay locked), don't
870 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
871 *
872 * Do set the Private2 bit so we know this page was properly
873 * setup for writepage
c8b97818 874 */
a791e35e
CM
875 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
876 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
877 EXTENT_SET_PRIVATE2;
878
c8b97818
CM
879 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
880 start, start + ram_size - 1,
a791e35e 881 locked_page, op);
c8b97818 882 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
883 num_bytes -= cur_alloc_size;
884 alloc_hint = ins.objectid + ins.offset;
885 start += cur_alloc_size;
b888db2b 886 }
b888db2b 887out:
771ed689 888 ret = 0;
b888db2b 889 btrfs_end_transaction(trans, root);
c8b97818 890
be20aa9d 891 return ret;
771ed689 892}
c8b97818 893
771ed689
CM
894/*
895 * work queue call back to started compression on a file and pages
896 */
897static noinline void async_cow_start(struct btrfs_work *work)
898{
899 struct async_cow *async_cow;
900 int num_added = 0;
901 async_cow = container_of(work, struct async_cow, work);
902
903 compress_file_range(async_cow->inode, async_cow->locked_page,
904 async_cow->start, async_cow->end, async_cow,
905 &num_added);
906 if (num_added == 0)
907 async_cow->inode = NULL;
908}
909
910/*
911 * work queue call back to submit previously compressed pages
912 */
913static noinline void async_cow_submit(struct btrfs_work *work)
914{
915 struct async_cow *async_cow;
916 struct btrfs_root *root;
917 unsigned long nr_pages;
918
919 async_cow = container_of(work, struct async_cow, work);
920
921 root = async_cow->root;
922 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
923 PAGE_CACHE_SHIFT;
924
925 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
926
927 if (atomic_read(&root->fs_info->async_delalloc_pages) <
928 5 * 1042 * 1024 &&
929 waitqueue_active(&root->fs_info->async_submit_wait))
930 wake_up(&root->fs_info->async_submit_wait);
931
d397712b 932 if (async_cow->inode)
771ed689 933 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 934}
c8b97818 935
771ed689
CM
936static noinline void async_cow_free(struct btrfs_work *work)
937{
938 struct async_cow *async_cow;
939 async_cow = container_of(work, struct async_cow, work);
940 kfree(async_cow);
941}
942
943static int cow_file_range_async(struct inode *inode, struct page *locked_page,
944 u64 start, u64 end, int *page_started,
945 unsigned long *nr_written)
946{
947 struct async_cow *async_cow;
948 struct btrfs_root *root = BTRFS_I(inode)->root;
949 unsigned long nr_pages;
950 u64 cur_end;
951 int limit = 10 * 1024 * 1042;
952
a3429ab7
CM
953 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
954 1, 0, NULL, GFP_NOFS);
d397712b 955 while (start < end) {
771ed689
CM
956 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
957 async_cow->inode = inode;
958 async_cow->root = root;
959 async_cow->locked_page = locked_page;
960 async_cow->start = start;
961
6cbff00f 962 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
963 cur_end = end;
964 else
965 cur_end = min(end, start + 512 * 1024 - 1);
966
967 async_cow->end = cur_end;
968 INIT_LIST_HEAD(&async_cow->extents);
969
970 async_cow->work.func = async_cow_start;
971 async_cow->work.ordered_func = async_cow_submit;
972 async_cow->work.ordered_free = async_cow_free;
973 async_cow->work.flags = 0;
974
771ed689
CM
975 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
976 PAGE_CACHE_SHIFT;
977 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
978
979 btrfs_queue_worker(&root->fs_info->delalloc_workers,
980 &async_cow->work);
981
982 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
983 wait_event(root->fs_info->async_submit_wait,
984 (atomic_read(&root->fs_info->async_delalloc_pages) <
985 limit));
986 }
987
d397712b 988 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
989 atomic_read(&root->fs_info->async_delalloc_pages)) {
990 wait_event(root->fs_info->async_submit_wait,
991 (atomic_read(&root->fs_info->async_delalloc_pages) ==
992 0));
993 }
994
995 *nr_written += nr_pages;
996 start = cur_end + 1;
997 }
998 *page_started = 1;
999 return 0;
be20aa9d
CM
1000}
1001
d397712b 1002static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1003 u64 bytenr, u64 num_bytes)
1004{
1005 int ret;
1006 struct btrfs_ordered_sum *sums;
1007 LIST_HEAD(list);
1008
07d400a6
YZ
1009 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1010 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1011 if (ret == 0 && list_empty(&list))
1012 return 0;
1013
1014 while (!list_empty(&list)) {
1015 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1016 list_del(&sums->list);
1017 kfree(sums);
1018 }
1019 return 1;
1020}
1021
d352ac68
CM
1022/*
1023 * when nowcow writeback call back. This checks for snapshots or COW copies
1024 * of the extents that exist in the file, and COWs the file as required.
1025 *
1026 * If no cow copies or snapshots exist, we write directly to the existing
1027 * blocks on disk
1028 */
7f366cfe
CM
1029static noinline int run_delalloc_nocow(struct inode *inode,
1030 struct page *locked_page,
771ed689
CM
1031 u64 start, u64 end, int *page_started, int force,
1032 unsigned long *nr_written)
be20aa9d 1033{
be20aa9d 1034 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1035 struct btrfs_trans_handle *trans;
be20aa9d 1036 struct extent_buffer *leaf;
be20aa9d 1037 struct btrfs_path *path;
80ff3856 1038 struct btrfs_file_extent_item *fi;
be20aa9d 1039 struct btrfs_key found_key;
80ff3856
YZ
1040 u64 cow_start;
1041 u64 cur_offset;
1042 u64 extent_end;
5d4f98a2 1043 u64 extent_offset;
80ff3856
YZ
1044 u64 disk_bytenr;
1045 u64 num_bytes;
1046 int extent_type;
1047 int ret;
d899e052 1048 int type;
80ff3856
YZ
1049 int nocow;
1050 int check_prev = 1;
0cb59c99 1051 bool nolock = false;
be20aa9d
CM
1052
1053 path = btrfs_alloc_path();
1054 BUG_ON(!path);
0cb59c99
JB
1055 if (root == root->fs_info->tree_root) {
1056 nolock = true;
1057 trans = btrfs_join_transaction_nolock(root, 1);
1058 } else {
1059 trans = btrfs_join_transaction(root, 1);
1060 }
3612b495 1061 BUG_ON(IS_ERR(trans));
be20aa9d 1062
80ff3856
YZ
1063 cow_start = (u64)-1;
1064 cur_offset = start;
1065 while (1) {
1066 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1067 cur_offset, 0);
1068 BUG_ON(ret < 0);
1069 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1070 leaf = path->nodes[0];
1071 btrfs_item_key_to_cpu(leaf, &found_key,
1072 path->slots[0] - 1);
1073 if (found_key.objectid == inode->i_ino &&
1074 found_key.type == BTRFS_EXTENT_DATA_KEY)
1075 path->slots[0]--;
1076 }
1077 check_prev = 0;
1078next_slot:
1079 leaf = path->nodes[0];
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 BUG_ON(1);
1084 if (ret > 0)
1085 break;
1086 leaf = path->nodes[0];
1087 }
be20aa9d 1088
80ff3856
YZ
1089 nocow = 0;
1090 disk_bytenr = 0;
17d217fe 1091 num_bytes = 0;
80ff3856
YZ
1092 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1093
1094 if (found_key.objectid > inode->i_ino ||
1095 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1096 found_key.offset > end)
1097 break;
1098
1099 if (found_key.offset > cur_offset) {
1100 extent_end = found_key.offset;
e9061e21 1101 extent_type = 0;
80ff3856
YZ
1102 goto out_check;
1103 }
1104
1105 fi = btrfs_item_ptr(leaf, path->slots[0],
1106 struct btrfs_file_extent_item);
1107 extent_type = btrfs_file_extent_type(leaf, fi);
1108
d899e052
YZ
1109 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1110 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1111 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1112 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1113 extent_end = found_key.offset +
1114 btrfs_file_extent_num_bytes(leaf, fi);
1115 if (extent_end <= start) {
1116 path->slots[0]++;
1117 goto next_slot;
1118 }
17d217fe
YZ
1119 if (disk_bytenr == 0)
1120 goto out_check;
80ff3856
YZ
1121 if (btrfs_file_extent_compression(leaf, fi) ||
1122 btrfs_file_extent_encryption(leaf, fi) ||
1123 btrfs_file_extent_other_encoding(leaf, fi))
1124 goto out_check;
d899e052
YZ
1125 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1126 goto out_check;
d2fb3437 1127 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1128 goto out_check;
17d217fe 1129 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1130 found_key.offset -
1131 extent_offset, disk_bytenr))
17d217fe 1132 goto out_check;
5d4f98a2 1133 disk_bytenr += extent_offset;
17d217fe
YZ
1134 disk_bytenr += cur_offset - found_key.offset;
1135 num_bytes = min(end + 1, extent_end) - cur_offset;
1136 /*
1137 * force cow if csum exists in the range.
1138 * this ensure that csum for a given extent are
1139 * either valid or do not exist.
1140 */
1141 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1142 goto out_check;
80ff3856
YZ
1143 nocow = 1;
1144 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1145 extent_end = found_key.offset +
1146 btrfs_file_extent_inline_len(leaf, fi);
1147 extent_end = ALIGN(extent_end, root->sectorsize);
1148 } else {
1149 BUG_ON(1);
1150 }
1151out_check:
1152 if (extent_end <= start) {
1153 path->slots[0]++;
1154 goto next_slot;
1155 }
1156 if (!nocow) {
1157 if (cow_start == (u64)-1)
1158 cow_start = cur_offset;
1159 cur_offset = extent_end;
1160 if (cur_offset > end)
1161 break;
1162 path->slots[0]++;
1163 goto next_slot;
7ea394f1
YZ
1164 }
1165
1166 btrfs_release_path(root, path);
80ff3856
YZ
1167 if (cow_start != (u64)-1) {
1168 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1169 found_key.offset - 1, page_started,
1170 nr_written, 1);
80ff3856
YZ
1171 BUG_ON(ret);
1172 cow_start = (u64)-1;
7ea394f1 1173 }
80ff3856 1174
d899e052
YZ
1175 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1176 struct extent_map *em;
1177 struct extent_map_tree *em_tree;
1178 em_tree = &BTRFS_I(inode)->extent_tree;
1179 em = alloc_extent_map(GFP_NOFS);
c26a9203 1180 BUG_ON(!em);
d899e052 1181 em->start = cur_offset;
445a6944 1182 em->orig_start = em->start;
d899e052
YZ
1183 em->len = num_bytes;
1184 em->block_len = num_bytes;
1185 em->block_start = disk_bytenr;
1186 em->bdev = root->fs_info->fs_devices->latest_bdev;
1187 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1188 while (1) {
890871be 1189 write_lock(&em_tree->lock);
d899e052 1190 ret = add_extent_mapping(em_tree, em);
890871be 1191 write_unlock(&em_tree->lock);
d899e052
YZ
1192 if (ret != -EEXIST) {
1193 free_extent_map(em);
1194 break;
1195 }
1196 btrfs_drop_extent_cache(inode, em->start,
1197 em->start + em->len - 1, 0);
1198 }
1199 type = BTRFS_ORDERED_PREALLOC;
1200 } else {
1201 type = BTRFS_ORDERED_NOCOW;
1202 }
80ff3856
YZ
1203
1204 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1205 num_bytes, num_bytes, type);
1206 BUG_ON(ret);
771ed689 1207
efa56464
YZ
1208 if (root->root_key.objectid ==
1209 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1210 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1211 num_bytes);
1212 BUG_ON(ret);
1213 }
1214
d899e052 1215 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1216 cur_offset, cur_offset + num_bytes - 1,
1217 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1218 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1219 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1220 cur_offset = extent_end;
1221 if (cur_offset > end)
1222 break;
be20aa9d 1223 }
80ff3856
YZ
1224 btrfs_release_path(root, path);
1225
1226 if (cur_offset <= end && cow_start == (u64)-1)
1227 cow_start = cur_offset;
1228 if (cow_start != (u64)-1) {
1229 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1230 page_started, nr_written, 1);
80ff3856
YZ
1231 BUG_ON(ret);
1232 }
1233
0cb59c99
JB
1234 if (nolock) {
1235 ret = btrfs_end_transaction_nolock(trans, root);
1236 BUG_ON(ret);
1237 } else {
1238 ret = btrfs_end_transaction(trans, root);
1239 BUG_ON(ret);
1240 }
7ea394f1 1241 btrfs_free_path(path);
80ff3856 1242 return 0;
be20aa9d
CM
1243}
1244
d352ac68
CM
1245/*
1246 * extent_io.c call back to do delayed allocation processing
1247 */
c8b97818 1248static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1249 u64 start, u64 end, int *page_started,
1250 unsigned long *nr_written)
be20aa9d 1251{
be20aa9d 1252 int ret;
7f366cfe 1253 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1254
6cbff00f 1255 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1256 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1257 page_started, 1, nr_written);
6cbff00f 1258 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1259 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1260 page_started, 0, nr_written);
1e701a32 1261 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1262 !(BTRFS_I(inode)->force_compress) &&
1263 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1264 ret = cow_file_range(inode, locked_page, start, end,
1265 page_started, nr_written, 1);
be20aa9d 1266 else
771ed689 1267 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1268 page_started, nr_written);
b888db2b
CM
1269 return ret;
1270}
1271
9ed74f2d 1272static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1273 struct extent_state *orig, u64 split)
9ed74f2d 1274{
0ca1f7ce 1275 /* not delalloc, ignore it */
9ed74f2d
JB
1276 if (!(orig->state & EXTENT_DELALLOC))
1277 return 0;
1278
0ca1f7ce 1279 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1280 return 0;
1281}
1282
1283/*
1284 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1285 * extents so we can keep track of new extents that are just merged onto old
1286 * extents, such as when we are doing sequential writes, so we can properly
1287 * account for the metadata space we'll need.
1288 */
1289static int btrfs_merge_extent_hook(struct inode *inode,
1290 struct extent_state *new,
1291 struct extent_state *other)
1292{
9ed74f2d
JB
1293 /* not delalloc, ignore it */
1294 if (!(other->state & EXTENT_DELALLOC))
1295 return 0;
1296
0ca1f7ce 1297 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1298 return 0;
1299}
1300
d352ac68
CM
1301/*
1302 * extent_io.c set_bit_hook, used to track delayed allocation
1303 * bytes in this file, and to maintain the list of inodes that
1304 * have pending delalloc work to be done.
1305 */
0ca1f7ce
YZ
1306static int btrfs_set_bit_hook(struct inode *inode,
1307 struct extent_state *state, int *bits)
291d673e 1308{
9ed74f2d 1309
75eff68e
CM
1310 /*
1311 * set_bit and clear bit hooks normally require _irqsave/restore
1312 * but in this case, we are only testeing for the DELALLOC
1313 * bit, which is only set or cleared with irqs on
1314 */
0ca1f7ce 1315 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1316 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1317 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1318 int do_list = (root->root_key.objectid !=
1319 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1320
0ca1f7ce
YZ
1321 if (*bits & EXTENT_FIRST_DELALLOC)
1322 *bits &= ~EXTENT_FIRST_DELALLOC;
1323 else
1324 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1325
75eff68e 1326 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1327 BTRFS_I(inode)->delalloc_bytes += len;
1328 root->fs_info->delalloc_bytes += len;
0cb59c99 1329 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1330 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331 &root->fs_info->delalloc_inodes);
1332 }
75eff68e 1333 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1334 }
1335 return 0;
1336}
1337
d352ac68
CM
1338/*
1339 * extent_io.c clear_bit_hook, see set_bit_hook for why
1340 */
9ed74f2d 1341static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1342 struct extent_state *state, int *bits)
291d673e 1343{
75eff68e
CM
1344 /*
1345 * set_bit and clear bit hooks normally require _irqsave/restore
1346 * but in this case, we are only testeing for the DELALLOC
1347 * bit, which is only set or cleared with irqs on
1348 */
0ca1f7ce 1349 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1350 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1351 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1352 int do_list = (root->root_key.objectid !=
1353 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1354
0ca1f7ce
YZ
1355 if (*bits & EXTENT_FIRST_DELALLOC)
1356 *bits &= ~EXTENT_FIRST_DELALLOC;
1357 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1358 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1359
1360 if (*bits & EXTENT_DO_ACCOUNTING)
1361 btrfs_delalloc_release_metadata(inode, len);
1362
0cb59c99
JB
1363 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1364 && do_list)
0ca1f7ce 1365 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1366
75eff68e 1367 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1368 root->fs_info->delalloc_bytes -= len;
1369 BTRFS_I(inode)->delalloc_bytes -= len;
1370
0cb59c99 1371 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1372 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1373 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1374 }
75eff68e 1375 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1376 }
1377 return 0;
1378}
1379
d352ac68
CM
1380/*
1381 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1382 * we don't create bios that span stripes or chunks
1383 */
239b14b3 1384int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1385 size_t size, struct bio *bio,
1386 unsigned long bio_flags)
239b14b3
CM
1387{
1388 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1389 struct btrfs_mapping_tree *map_tree;
a62b9401 1390 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1391 u64 length = 0;
1392 u64 map_length;
239b14b3
CM
1393 int ret;
1394
771ed689
CM
1395 if (bio_flags & EXTENT_BIO_COMPRESSED)
1396 return 0;
1397
f2d8d74d 1398 length = bio->bi_size;
239b14b3
CM
1399 map_tree = &root->fs_info->mapping_tree;
1400 map_length = length;
cea9e445 1401 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1402 &map_length, NULL, 0);
cea9e445 1403
d397712b 1404 if (map_length < length + size)
239b14b3 1405 return 1;
411fc6bc 1406 return ret;
239b14b3
CM
1407}
1408
d352ac68
CM
1409/*
1410 * in order to insert checksums into the metadata in large chunks,
1411 * we wait until bio submission time. All the pages in the bio are
1412 * checksummed and sums are attached onto the ordered extent record.
1413 *
1414 * At IO completion time the cums attached on the ordered extent record
1415 * are inserted into the btree
1416 */
d397712b
CM
1417static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1418 struct bio *bio, int mirror_num,
eaf25d93
CM
1419 unsigned long bio_flags,
1420 u64 bio_offset)
065631f6 1421{
065631f6 1422 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1423 int ret = 0;
e015640f 1424
d20f7043 1425 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1426 BUG_ON(ret);
4a69a410
CM
1427 return 0;
1428}
e015640f 1429
4a69a410
CM
1430/*
1431 * in order to insert checksums into the metadata in large chunks,
1432 * we wait until bio submission time. All the pages in the bio are
1433 * checksummed and sums are attached onto the ordered extent record.
1434 *
1435 * At IO completion time the cums attached on the ordered extent record
1436 * are inserted into the btree
1437 */
b2950863 1438static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1439 int mirror_num, unsigned long bio_flags,
1440 u64 bio_offset)
4a69a410
CM
1441{
1442 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1443 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1444}
1445
d352ac68 1446/*
cad321ad
CM
1447 * extent_io.c submission hook. This does the right thing for csum calculation
1448 * on write, or reading the csums from the tree before a read
d352ac68 1449 */
b2950863 1450static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1451 int mirror_num, unsigned long bio_flags,
1452 u64 bio_offset)
44b8bd7e
CM
1453{
1454 struct btrfs_root *root = BTRFS_I(inode)->root;
1455 int ret = 0;
19b9bdb0 1456 int skip_sum;
44b8bd7e 1457
6cbff00f 1458 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1459
0cb59c99
JB
1460 if (root == root->fs_info->tree_root)
1461 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1462 else
1463 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1464 BUG_ON(ret);
065631f6 1465
7b6d91da 1466 if (!(rw & REQ_WRITE)) {
d20f7043 1467 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1468 return btrfs_submit_compressed_read(inode, bio,
1469 mirror_num, bio_flags);
c2db1073
TI
1470 } else if (!skip_sum) {
1471 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1472 if (ret)
1473 return ret;
1474 }
4d1b5fb4 1475 goto mapit;
19b9bdb0 1476 } else if (!skip_sum) {
17d217fe
YZ
1477 /* csum items have already been cloned */
1478 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479 goto mapit;
19b9bdb0
CM
1480 /* we're doing a write, do the async checksumming */
1481 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1482 inode, rw, bio, mirror_num,
eaf25d93
CM
1483 bio_flags, bio_offset,
1484 __btrfs_submit_bio_start,
4a69a410 1485 __btrfs_submit_bio_done);
19b9bdb0
CM
1486 }
1487
0b86a832 1488mapit:
8b712842 1489 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1490}
6885f308 1491
d352ac68
CM
1492/*
1493 * given a list of ordered sums record them in the inode. This happens
1494 * at IO completion time based on sums calculated at bio submission time.
1495 */
ba1da2f4 1496static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1497 struct inode *inode, u64 file_offset,
1498 struct list_head *list)
1499{
e6dcd2dc
CM
1500 struct btrfs_ordered_sum *sum;
1501
1502 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1503
1504 list_for_each_entry(sum, list, list) {
d20f7043
CM
1505 btrfs_csum_file_blocks(trans,
1506 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1507 }
1508 return 0;
1509}
1510
2ac55d41
JB
1511int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1512 struct extent_state **cached_state)
ea8c2819 1513{
d397712b 1514 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1515 WARN_ON(1);
ea8c2819 1516 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1517 cached_state, GFP_NOFS);
ea8c2819
CM
1518}
1519
d352ac68 1520/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1521struct btrfs_writepage_fixup {
1522 struct page *page;
1523 struct btrfs_work work;
1524};
1525
b2950863 1526static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1527{
1528 struct btrfs_writepage_fixup *fixup;
1529 struct btrfs_ordered_extent *ordered;
2ac55d41 1530 struct extent_state *cached_state = NULL;
247e743c
CM
1531 struct page *page;
1532 struct inode *inode;
1533 u64 page_start;
1534 u64 page_end;
1535
1536 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1537 page = fixup->page;
4a096752 1538again:
247e743c
CM
1539 lock_page(page);
1540 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1541 ClearPageChecked(page);
1542 goto out_page;
1543 }
1544
1545 inode = page->mapping->host;
1546 page_start = page_offset(page);
1547 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1548
2ac55d41
JB
1549 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1550 &cached_state, GFP_NOFS);
4a096752
CM
1551
1552 /* already ordered? We're done */
8b62b72b 1553 if (PagePrivate2(page))
247e743c 1554 goto out;
4a096752
CM
1555
1556 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1557 if (ordered) {
2ac55d41
JB
1558 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1559 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1560 unlock_page(page);
1561 btrfs_start_ordered_extent(inode, ordered, 1);
1562 goto again;
1563 }
247e743c 1564
0ca1f7ce 1565 BUG();
2ac55d41 1566 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1567 ClearPageChecked(page);
1568out:
2ac55d41
JB
1569 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1570 &cached_state, GFP_NOFS);
247e743c
CM
1571out_page:
1572 unlock_page(page);
1573 page_cache_release(page);
b897abec 1574 kfree(fixup);
247e743c
CM
1575}
1576
1577/*
1578 * There are a few paths in the higher layers of the kernel that directly
1579 * set the page dirty bit without asking the filesystem if it is a
1580 * good idea. This causes problems because we want to make sure COW
1581 * properly happens and the data=ordered rules are followed.
1582 *
c8b97818 1583 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1584 * hasn't been properly setup for IO. We kick off an async process
1585 * to fix it up. The async helper will wait for ordered extents, set
1586 * the delalloc bit and make it safe to write the page.
1587 */
b2950863 1588static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1589{
1590 struct inode *inode = page->mapping->host;
1591 struct btrfs_writepage_fixup *fixup;
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1593
8b62b72b
CM
1594 /* this page is properly in the ordered list */
1595 if (TestClearPagePrivate2(page))
247e743c
CM
1596 return 0;
1597
1598 if (PageChecked(page))
1599 return -EAGAIN;
1600
1601 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1602 if (!fixup)
1603 return -EAGAIN;
f421950f 1604
247e743c
CM
1605 SetPageChecked(page);
1606 page_cache_get(page);
1607 fixup->work.func = btrfs_writepage_fixup_worker;
1608 fixup->page = page;
1609 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1610 return -EAGAIN;
1611}
1612
d899e052
YZ
1613static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1614 struct inode *inode, u64 file_pos,
1615 u64 disk_bytenr, u64 disk_num_bytes,
1616 u64 num_bytes, u64 ram_bytes,
1617 u8 compression, u8 encryption,
1618 u16 other_encoding, int extent_type)
1619{
1620 struct btrfs_root *root = BTRFS_I(inode)->root;
1621 struct btrfs_file_extent_item *fi;
1622 struct btrfs_path *path;
1623 struct extent_buffer *leaf;
1624 struct btrfs_key ins;
1625 u64 hint;
1626 int ret;
1627
1628 path = btrfs_alloc_path();
1629 BUG_ON(!path);
1630
b9473439 1631 path->leave_spinning = 1;
a1ed835e
CM
1632
1633 /*
1634 * we may be replacing one extent in the tree with another.
1635 * The new extent is pinned in the extent map, and we don't want
1636 * to drop it from the cache until it is completely in the btree.
1637 *
1638 * So, tell btrfs_drop_extents to leave this extent in the cache.
1639 * the caller is expected to unpin it and allow it to be merged
1640 * with the others.
1641 */
920bbbfb
YZ
1642 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1643 &hint, 0);
d899e052
YZ
1644 BUG_ON(ret);
1645
1646 ins.objectid = inode->i_ino;
1647 ins.offset = file_pos;
1648 ins.type = BTRFS_EXTENT_DATA_KEY;
1649 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1650 BUG_ON(ret);
1651 leaf = path->nodes[0];
1652 fi = btrfs_item_ptr(leaf, path->slots[0],
1653 struct btrfs_file_extent_item);
1654 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1655 btrfs_set_file_extent_type(leaf, fi, extent_type);
1656 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1657 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1658 btrfs_set_file_extent_offset(leaf, fi, 0);
1659 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1660 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1661 btrfs_set_file_extent_compression(leaf, fi, compression);
1662 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1663 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1664
1665 btrfs_unlock_up_safe(path, 1);
1666 btrfs_set_lock_blocking(leaf);
1667
d899e052
YZ
1668 btrfs_mark_buffer_dirty(leaf);
1669
1670 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1671
1672 ins.objectid = disk_bytenr;
1673 ins.offset = disk_num_bytes;
1674 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1675 ret = btrfs_alloc_reserved_file_extent(trans, root,
1676 root->root_key.objectid,
1677 inode->i_ino, file_pos, &ins);
d899e052 1678 BUG_ON(ret);
d899e052 1679 btrfs_free_path(path);
b9473439 1680
d899e052
YZ
1681 return 0;
1682}
1683
5d13a98f
CM
1684/*
1685 * helper function for btrfs_finish_ordered_io, this
1686 * just reads in some of the csum leaves to prime them into ram
1687 * before we start the transaction. It limits the amount of btree
1688 * reads required while inside the transaction.
1689 */
d352ac68
CM
1690/* as ordered data IO finishes, this gets called so we can finish
1691 * an ordered extent if the range of bytes in the file it covers are
1692 * fully written.
1693 */
211f90e6 1694static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1695{
e6dcd2dc 1696 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1697 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1698 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1699 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1700 struct extent_state *cached_state = NULL;
261507a0 1701 int compress_type = 0;
e6dcd2dc 1702 int ret;
0cb59c99 1703 bool nolock = false;
e6dcd2dc 1704
5a1a3df1
JB
1705 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1706 end - start + 1);
ba1da2f4 1707 if (!ret)
e6dcd2dc 1708 return 0;
e6dcd2dc 1709 BUG_ON(!ordered_extent);
efd049fb 1710
0cb59c99
JB
1711 nolock = (root == root->fs_info->tree_root);
1712
c2167754
YZ
1713 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714 BUG_ON(!list_empty(&ordered_extent->list));
1715 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716 if (!ret) {
0cb59c99
JB
1717 if (nolock)
1718 trans = btrfs_join_transaction_nolock(root, 1);
1719 else
1720 trans = btrfs_join_transaction(root, 1);
3612b495 1721 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1722 btrfs_set_trans_block_group(trans, inode);
1723 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1724 ret = btrfs_update_inode(trans, root, inode);
1725 BUG_ON(ret);
c2167754
YZ
1726 }
1727 goto out;
1728 }
e6dcd2dc 1729
2ac55d41
JB
1730 lock_extent_bits(io_tree, ordered_extent->file_offset,
1731 ordered_extent->file_offset + ordered_extent->len - 1,
1732 0, &cached_state, GFP_NOFS);
e6dcd2dc 1733
0cb59c99
JB
1734 if (nolock)
1735 trans = btrfs_join_transaction_nolock(root, 1);
1736 else
1737 trans = btrfs_join_transaction(root, 1);
3612b495 1738 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1739 btrfs_set_trans_block_group(trans, inode);
1740 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1741
c8b97818 1742 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1743 compress_type = ordered_extent->compress_type;
d899e052 1744 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1745 BUG_ON(compress_type);
920bbbfb 1746 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1747 ordered_extent->file_offset,
1748 ordered_extent->file_offset +
1749 ordered_extent->len);
1750 BUG_ON(ret);
1751 } else {
0af3d00b 1752 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1753 ret = insert_reserved_file_extent(trans, inode,
1754 ordered_extent->file_offset,
1755 ordered_extent->start,
1756 ordered_extent->disk_len,
1757 ordered_extent->len,
1758 ordered_extent->len,
261507a0 1759 compress_type, 0, 0,
d899e052 1760 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1761 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1762 ordered_extent->file_offset,
1763 ordered_extent->len);
d899e052
YZ
1764 BUG_ON(ret);
1765 }
2ac55d41
JB
1766 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1767 ordered_extent->file_offset +
1768 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1769
e6dcd2dc
CM
1770 add_pending_csums(trans, inode, ordered_extent->file_offset,
1771 &ordered_extent->list);
1772
c2167754
YZ
1773 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1774 ret = btrfs_update_inode(trans, root, inode);
1775 BUG_ON(ret);
c2167754 1776out:
0cb59c99
JB
1777 if (nolock) {
1778 if (trans)
1779 btrfs_end_transaction_nolock(trans, root);
1780 } else {
1781 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1782 if (trans)
1783 btrfs_end_transaction(trans, root);
1784 }
1785
e6dcd2dc
CM
1786 /* once for us */
1787 btrfs_put_ordered_extent(ordered_extent);
1788 /* once for the tree */
1789 btrfs_put_ordered_extent(ordered_extent);
1790
e6dcd2dc
CM
1791 return 0;
1792}
1793
b2950863 1794static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1795 struct extent_state *state, int uptodate)
1796{
1abe9b8a 1797 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1798
8b62b72b 1799 ClearPagePrivate2(page);
211f90e6
CM
1800 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1801}
1802
d352ac68
CM
1803/*
1804 * When IO fails, either with EIO or csum verification fails, we
1805 * try other mirrors that might have a good copy of the data. This
1806 * io_failure_record is used to record state as we go through all the
1807 * mirrors. If another mirror has good data, the page is set up to date
1808 * and things continue. If a good mirror can't be found, the original
1809 * bio end_io callback is called to indicate things have failed.
1810 */
7e38326f
CM
1811struct io_failure_record {
1812 struct page *page;
1813 u64 start;
1814 u64 len;
1815 u64 logical;
d20f7043 1816 unsigned long bio_flags;
7e38326f
CM
1817 int last_mirror;
1818};
1819
b2950863 1820static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1821 struct page *page, u64 start, u64 end,
1822 struct extent_state *state)
7e38326f
CM
1823{
1824 struct io_failure_record *failrec = NULL;
1825 u64 private;
1826 struct extent_map *em;
1827 struct inode *inode = page->mapping->host;
1828 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1829 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1830 struct bio *bio;
1831 int num_copies;
1832 int ret;
1259ab75 1833 int rw;
7e38326f
CM
1834 u64 logical;
1835
1836 ret = get_state_private(failure_tree, start, &private);
1837 if (ret) {
7e38326f
CM
1838 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1839 if (!failrec)
1840 return -ENOMEM;
1841 failrec->start = start;
1842 failrec->len = end - start + 1;
1843 failrec->last_mirror = 0;
d20f7043 1844 failrec->bio_flags = 0;
7e38326f 1845
890871be 1846 read_lock(&em_tree->lock);
3b951516
CM
1847 em = lookup_extent_mapping(em_tree, start, failrec->len);
1848 if (em->start > start || em->start + em->len < start) {
1849 free_extent_map(em);
1850 em = NULL;
1851 }
890871be 1852 read_unlock(&em_tree->lock);
7e38326f
CM
1853
1854 if (!em || IS_ERR(em)) {
1855 kfree(failrec);
1856 return -EIO;
1857 }
1858 logical = start - em->start;
1859 logical = em->block_start + logical;
d20f7043
CM
1860 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1861 logical = em->block_start;
1862 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1863 extent_set_compress_type(&failrec->bio_flags,
1864 em->compress_type);
d20f7043 1865 }
7e38326f
CM
1866 failrec->logical = logical;
1867 free_extent_map(em);
1868 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1869 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1870 set_state_private(failure_tree, start,
1871 (u64)(unsigned long)failrec);
7e38326f 1872 } else {
587f7704 1873 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1874 }
1875 num_copies = btrfs_num_copies(
1876 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1877 failrec->logical, failrec->len);
1878 failrec->last_mirror++;
1879 if (!state) {
cad321ad 1880 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1881 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1882 failrec->start,
1883 EXTENT_LOCKED);
1884 if (state && state->start != failrec->start)
1885 state = NULL;
cad321ad 1886 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1887 }
1888 if (!state || failrec->last_mirror > num_copies) {
1889 set_state_private(failure_tree, failrec->start, 0);
1890 clear_extent_bits(failure_tree, failrec->start,
1891 failrec->start + failrec->len - 1,
1892 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1893 kfree(failrec);
1894 return -EIO;
1895 }
1896 bio = bio_alloc(GFP_NOFS, 1);
1897 bio->bi_private = state;
1898 bio->bi_end_io = failed_bio->bi_end_io;
1899 bio->bi_sector = failrec->logical >> 9;
1900 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1901 bio->bi_size = 0;
d20f7043 1902
7e38326f 1903 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1904 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1905 rw = WRITE;
1906 else
1907 rw = READ;
1908
c2db1073 1909 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1910 failrec->last_mirror,
eaf25d93 1911 failrec->bio_flags, 0);
c2db1073 1912 return ret;
1259ab75
CM
1913}
1914
d352ac68
CM
1915/*
1916 * each time an IO finishes, we do a fast check in the IO failure tree
1917 * to see if we need to process or clean up an io_failure_record
1918 */
b2950863 1919static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1920{
1921 u64 private;
1922 u64 private_failure;
1923 struct io_failure_record *failure;
1924 int ret;
1925
1926 private = 0;
1927 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1928 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1929 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1930 start, &private_failure);
1931 if (ret == 0) {
1932 failure = (struct io_failure_record *)(unsigned long)
1933 private_failure;
1934 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1935 failure->start, 0);
1936 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1937 failure->start,
1938 failure->start + failure->len - 1,
1939 EXTENT_DIRTY | EXTENT_LOCKED,
1940 GFP_NOFS);
1941 kfree(failure);
1942 }
1943 }
7e38326f
CM
1944 return 0;
1945}
1946
d352ac68
CM
1947/*
1948 * when reads are done, we need to check csums to verify the data is correct
1949 * if there's a match, we allow the bio to finish. If not, we go through
1950 * the io_failure_record routines to find good copies
1951 */
b2950863 1952static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1953 struct extent_state *state)
07157aac 1954{
35ebb934 1955 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1956 struct inode *inode = page->mapping->host;
d1310b2e 1957 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1958 char *kaddr;
aadfeb6e 1959 u64 private = ~(u32)0;
07157aac 1960 int ret;
ff79f819
CM
1961 struct btrfs_root *root = BTRFS_I(inode)->root;
1962 u32 csum = ~(u32)0;
d1310b2e 1963
d20f7043
CM
1964 if (PageChecked(page)) {
1965 ClearPageChecked(page);
1966 goto good;
1967 }
6cbff00f
CH
1968
1969 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1970 return 0;
1971
1972 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1973 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1974 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1975 GFP_NOFS);
b6cda9bc 1976 return 0;
17d217fe 1977 }
d20f7043 1978
c2e639f0 1979 if (state && state->start == start) {
70dec807
CM
1980 private = state->private;
1981 ret = 0;
1982 } else {
1983 ret = get_state_private(io_tree, start, &private);
1984 }
9ab86c8e 1985 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1986 if (ret)
07157aac 1987 goto zeroit;
d397712b 1988
ff79f819
CM
1989 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1990 btrfs_csum_final(csum, (char *)&csum);
d397712b 1991 if (csum != private)
07157aac 1992 goto zeroit;
d397712b 1993
9ab86c8e 1994 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1995good:
7e38326f
CM
1996 /* if the io failure tree for this inode is non-empty,
1997 * check to see if we've recovered from a failed IO
1998 */
1259ab75 1999 btrfs_clean_io_failures(inode, start);
07157aac
CM
2000 return 0;
2001
2002zeroit:
193f284d
CM
2003 if (printk_ratelimit()) {
2004 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2005 "private %llu\n", page->mapping->host->i_ino,
2006 (unsigned long long)start, csum,
2007 (unsigned long long)private);
2008 }
db94535d
CM
2009 memset(kaddr + offset, 1, end - start + 1);
2010 flush_dcache_page(page);
9ab86c8e 2011 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2012 if (private == 0)
2013 return 0;
7e38326f 2014 return -EIO;
07157aac 2015}
b888db2b 2016
24bbcf04
YZ
2017struct delayed_iput {
2018 struct list_head list;
2019 struct inode *inode;
2020};
2021
2022void btrfs_add_delayed_iput(struct inode *inode)
2023{
2024 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2025 struct delayed_iput *delayed;
2026
2027 if (atomic_add_unless(&inode->i_count, -1, 1))
2028 return;
2029
2030 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2031 delayed->inode = inode;
2032
2033 spin_lock(&fs_info->delayed_iput_lock);
2034 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2035 spin_unlock(&fs_info->delayed_iput_lock);
2036}
2037
2038void btrfs_run_delayed_iputs(struct btrfs_root *root)
2039{
2040 LIST_HEAD(list);
2041 struct btrfs_fs_info *fs_info = root->fs_info;
2042 struct delayed_iput *delayed;
2043 int empty;
2044
2045 spin_lock(&fs_info->delayed_iput_lock);
2046 empty = list_empty(&fs_info->delayed_iputs);
2047 spin_unlock(&fs_info->delayed_iput_lock);
2048 if (empty)
2049 return;
2050
2051 down_read(&root->fs_info->cleanup_work_sem);
2052 spin_lock(&fs_info->delayed_iput_lock);
2053 list_splice_init(&fs_info->delayed_iputs, &list);
2054 spin_unlock(&fs_info->delayed_iput_lock);
2055
2056 while (!list_empty(&list)) {
2057 delayed = list_entry(list.next, struct delayed_iput, list);
2058 list_del(&delayed->list);
2059 iput(delayed->inode);
2060 kfree(delayed);
2061 }
2062 up_read(&root->fs_info->cleanup_work_sem);
2063}
2064
d68fc57b
YZ
2065/*
2066 * calculate extra metadata reservation when snapshotting a subvolume
2067 * contains orphan files.
2068 */
2069void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2070 struct btrfs_pending_snapshot *pending,
2071 u64 *bytes_to_reserve)
2072{
2073 struct btrfs_root *root;
2074 struct btrfs_block_rsv *block_rsv;
2075 u64 num_bytes;
2076 int index;
2077
2078 root = pending->root;
2079 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2080 return;
2081
2082 block_rsv = root->orphan_block_rsv;
2083
2084 /* orphan block reservation for the snapshot */
2085 num_bytes = block_rsv->size;
2086
2087 /*
2088 * after the snapshot is created, COWing tree blocks may use more
2089 * space than it frees. So we should make sure there is enough
2090 * reserved space.
2091 */
2092 index = trans->transid & 0x1;
2093 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2094 num_bytes += block_rsv->size -
2095 (block_rsv->reserved + block_rsv->freed[index]);
2096 }
2097
2098 *bytes_to_reserve += num_bytes;
2099}
2100
2101void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2102 struct btrfs_pending_snapshot *pending)
2103{
2104 struct btrfs_root *root = pending->root;
2105 struct btrfs_root *snap = pending->snap;
2106 struct btrfs_block_rsv *block_rsv;
2107 u64 num_bytes;
2108 int index;
2109 int ret;
2110
2111 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2112 return;
2113
2114 /* refill source subvolume's orphan block reservation */
2115 block_rsv = root->orphan_block_rsv;
2116 index = trans->transid & 0x1;
2117 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2118 num_bytes = block_rsv->size -
2119 (block_rsv->reserved + block_rsv->freed[index]);
2120 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2121 root->orphan_block_rsv,
2122 num_bytes);
2123 BUG_ON(ret);
2124 }
2125
2126 /* setup orphan block reservation for the snapshot */
2127 block_rsv = btrfs_alloc_block_rsv(snap);
2128 BUG_ON(!block_rsv);
2129
2130 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2131 snap->orphan_block_rsv = block_rsv;
2132
2133 num_bytes = root->orphan_block_rsv->size;
2134 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2135 block_rsv, num_bytes);
2136 BUG_ON(ret);
2137
2138#if 0
2139 /* insert orphan item for the snapshot */
2140 WARN_ON(!root->orphan_item_inserted);
2141 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2142 snap->root_key.objectid);
2143 BUG_ON(ret);
2144 snap->orphan_item_inserted = 1;
2145#endif
2146}
2147
2148enum btrfs_orphan_cleanup_state {
2149 ORPHAN_CLEANUP_STARTED = 1,
2150 ORPHAN_CLEANUP_DONE = 2,
2151};
2152
2153/*
2154 * This is called in transaction commmit time. If there are no orphan
2155 * files in the subvolume, it removes orphan item and frees block_rsv
2156 * structure.
2157 */
2158void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2159 struct btrfs_root *root)
2160{
2161 int ret;
2162
2163 if (!list_empty(&root->orphan_list) ||
2164 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2165 return;
2166
2167 if (root->orphan_item_inserted &&
2168 btrfs_root_refs(&root->root_item) > 0) {
2169 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2170 root->root_key.objectid);
2171 BUG_ON(ret);
2172 root->orphan_item_inserted = 0;
2173 }
2174
2175 if (root->orphan_block_rsv) {
2176 WARN_ON(root->orphan_block_rsv->size > 0);
2177 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2178 root->orphan_block_rsv = NULL;
2179 }
2180}
2181
7b128766
JB
2182/*
2183 * This creates an orphan entry for the given inode in case something goes
2184 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2185 *
2186 * NOTE: caller of this function should reserve 5 units of metadata for
2187 * this function.
7b128766
JB
2188 */
2189int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2190{
2191 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2192 struct btrfs_block_rsv *block_rsv = NULL;
2193 int reserve = 0;
2194 int insert = 0;
2195 int ret;
7b128766 2196
d68fc57b
YZ
2197 if (!root->orphan_block_rsv) {
2198 block_rsv = btrfs_alloc_block_rsv(root);
2199 BUG_ON(!block_rsv);
2200 }
7b128766 2201
d68fc57b
YZ
2202 spin_lock(&root->orphan_lock);
2203 if (!root->orphan_block_rsv) {
2204 root->orphan_block_rsv = block_rsv;
2205 } else if (block_rsv) {
2206 btrfs_free_block_rsv(root, block_rsv);
2207 block_rsv = NULL;
7b128766 2208 }
7b128766 2209
d68fc57b
YZ
2210 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2211 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2212#if 0
2213 /*
2214 * For proper ENOSPC handling, we should do orphan
2215 * cleanup when mounting. But this introduces backward
2216 * compatibility issue.
2217 */
2218 if (!xchg(&root->orphan_item_inserted, 1))
2219 insert = 2;
2220 else
2221 insert = 1;
2222#endif
2223 insert = 1;
2224 } else {
2225 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
7b128766
JB
2226 }
2227
d68fc57b
YZ
2228 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2229 BTRFS_I(inode)->orphan_meta_reserved = 1;
2230 reserve = 1;
2231 }
2232 spin_unlock(&root->orphan_lock);
7b128766 2233
d68fc57b
YZ
2234 if (block_rsv)
2235 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2236
d68fc57b
YZ
2237 /* grab metadata reservation from transaction handle */
2238 if (reserve) {
2239 ret = btrfs_orphan_reserve_metadata(trans, inode);
2240 BUG_ON(ret);
2241 }
7b128766 2242
d68fc57b
YZ
2243 /* insert an orphan item to track this unlinked/truncated file */
2244 if (insert >= 1) {
2245 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2246 BUG_ON(ret);
2247 }
2248
2249 /* insert an orphan item to track subvolume contains orphan files */
2250 if (insert >= 2) {
2251 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2252 root->root_key.objectid);
2253 BUG_ON(ret);
2254 }
2255 return 0;
7b128766
JB
2256}
2257
2258/*
2259 * We have done the truncate/delete so we can go ahead and remove the orphan
2260 * item for this particular inode.
2261 */
2262int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2263{
2264 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2265 int delete_item = 0;
2266 int release_rsv = 0;
7b128766
JB
2267 int ret = 0;
2268
d68fc57b
YZ
2269 spin_lock(&root->orphan_lock);
2270 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2271 list_del_init(&BTRFS_I(inode)->i_orphan);
2272 delete_item = 1;
7b128766
JB
2273 }
2274
d68fc57b
YZ
2275 if (BTRFS_I(inode)->orphan_meta_reserved) {
2276 BTRFS_I(inode)->orphan_meta_reserved = 0;
2277 release_rsv = 1;
7b128766 2278 }
d68fc57b 2279 spin_unlock(&root->orphan_lock);
7b128766 2280
d68fc57b
YZ
2281 if (trans && delete_item) {
2282 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2283 BUG_ON(ret);
2284 }
7b128766 2285
d68fc57b
YZ
2286 if (release_rsv)
2287 btrfs_orphan_release_metadata(inode);
7b128766 2288
d68fc57b 2289 return 0;
7b128766
JB
2290}
2291
2292/*
2293 * this cleans up any orphans that may be left on the list from the last use
2294 * of this root.
2295 */
66b4ffd1 2296int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2297{
2298 struct btrfs_path *path;
2299 struct extent_buffer *leaf;
7b128766
JB
2300 struct btrfs_key key, found_key;
2301 struct btrfs_trans_handle *trans;
2302 struct inode *inode;
2303 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2304
d68fc57b 2305 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2306 return 0;
c71bf099
YZ
2307
2308 path = btrfs_alloc_path();
66b4ffd1
JB
2309 if (!path) {
2310 ret = -ENOMEM;
2311 goto out;
2312 }
7b128766
JB
2313 path->reada = -1;
2314
2315 key.objectid = BTRFS_ORPHAN_OBJECTID;
2316 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2317 key.offset = (u64)-1;
2318
7b128766
JB
2319 while (1) {
2320 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2321 if (ret < 0)
2322 goto out;
7b128766
JB
2323
2324 /*
2325 * if ret == 0 means we found what we were searching for, which
2326 * is weird, but possible, so only screw with path if we didnt
2327 * find the key and see if we have stuff that matches
2328 */
2329 if (ret > 0) {
66b4ffd1 2330 ret = 0;
7b128766
JB
2331 if (path->slots[0] == 0)
2332 break;
2333 path->slots[0]--;
2334 }
2335
2336 /* pull out the item */
2337 leaf = path->nodes[0];
7b128766
JB
2338 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2339
2340 /* make sure the item matches what we want */
2341 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2342 break;
2343 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2344 break;
2345
2346 /* release the path since we're done with it */
2347 btrfs_release_path(root, path);
2348
2349 /*
2350 * this is where we are basically btrfs_lookup, without the
2351 * crossing root thing. we store the inode number in the
2352 * offset of the orphan item.
2353 */
5d4f98a2
YZ
2354 found_key.objectid = found_key.offset;
2355 found_key.type = BTRFS_INODE_ITEM_KEY;
2356 found_key.offset = 0;
73f73415 2357 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2358 if (IS_ERR(inode)) {
2359 ret = PTR_ERR(inode);
2360 goto out;
2361 }
7b128766 2362
7b128766
JB
2363 /*
2364 * add this inode to the orphan list so btrfs_orphan_del does
2365 * the proper thing when we hit it
2366 */
d68fc57b 2367 spin_lock(&root->orphan_lock);
7b128766 2368 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2369 spin_unlock(&root->orphan_lock);
7b128766
JB
2370
2371 /*
2372 * if this is a bad inode, means we actually succeeded in
2373 * removing the inode, but not the orphan record, which means
2374 * we need to manually delete the orphan since iput will just
2375 * do a destroy_inode
2376 */
2377 if (is_bad_inode(inode)) {
a22285a6 2378 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2379 if (IS_ERR(trans)) {
2380 ret = PTR_ERR(trans);
2381 goto out;
2382 }
7b128766 2383 btrfs_orphan_del(trans, inode);
5b21f2ed 2384 btrfs_end_transaction(trans, root);
7b128766
JB
2385 iput(inode);
2386 continue;
2387 }
2388
2389 /* if we have links, this was a truncate, lets do that */
2390 if (inode->i_nlink) {
a41ad394
JB
2391 if (!S_ISREG(inode->i_mode)) {
2392 WARN_ON(1);
2393 iput(inode);
2394 continue;
2395 }
7b128766 2396 nr_truncate++;
66b4ffd1 2397 ret = btrfs_truncate(inode);
7b128766
JB
2398 } else {
2399 nr_unlink++;
2400 }
2401
2402 /* this will do delete_inode and everything for us */
2403 iput(inode);
66b4ffd1
JB
2404 if (ret)
2405 goto out;
7b128766 2406 }
d68fc57b
YZ
2407 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2408
2409 if (root->orphan_block_rsv)
2410 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2411 (u64)-1);
2412
2413 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2414 trans = btrfs_join_transaction(root, 1);
66b4ffd1
JB
2415 if (!IS_ERR(trans))
2416 btrfs_end_transaction(trans, root);
d68fc57b 2417 }
7b128766
JB
2418
2419 if (nr_unlink)
2420 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2421 if (nr_truncate)
2422 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2423
2424out:
2425 if (ret)
2426 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2427 btrfs_free_path(path);
2428 return ret;
7b128766
JB
2429}
2430
46a53cca
CM
2431/*
2432 * very simple check to peek ahead in the leaf looking for xattrs. If we
2433 * don't find any xattrs, we know there can't be any acls.
2434 *
2435 * slot is the slot the inode is in, objectid is the objectid of the inode
2436 */
2437static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2438 int slot, u64 objectid)
2439{
2440 u32 nritems = btrfs_header_nritems(leaf);
2441 struct btrfs_key found_key;
2442 int scanned = 0;
2443
2444 slot++;
2445 while (slot < nritems) {
2446 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2447
2448 /* we found a different objectid, there must not be acls */
2449 if (found_key.objectid != objectid)
2450 return 0;
2451
2452 /* we found an xattr, assume we've got an acl */
2453 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2454 return 1;
2455
2456 /*
2457 * we found a key greater than an xattr key, there can't
2458 * be any acls later on
2459 */
2460 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2461 return 0;
2462
2463 slot++;
2464 scanned++;
2465
2466 /*
2467 * it goes inode, inode backrefs, xattrs, extents,
2468 * so if there are a ton of hard links to an inode there can
2469 * be a lot of backrefs. Don't waste time searching too hard,
2470 * this is just an optimization
2471 */
2472 if (scanned >= 8)
2473 break;
2474 }
2475 /* we hit the end of the leaf before we found an xattr or
2476 * something larger than an xattr. We have to assume the inode
2477 * has acls
2478 */
2479 return 1;
2480}
2481
d352ac68
CM
2482/*
2483 * read an inode from the btree into the in-memory inode
2484 */
5d4f98a2 2485static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2486{
2487 struct btrfs_path *path;
5f39d397 2488 struct extent_buffer *leaf;
39279cc3 2489 struct btrfs_inode_item *inode_item;
0b86a832 2490 struct btrfs_timespec *tspec;
39279cc3
CM
2491 struct btrfs_root *root = BTRFS_I(inode)->root;
2492 struct btrfs_key location;
46a53cca 2493 int maybe_acls;
39279cc3 2494 u64 alloc_group_block;
618e21d5 2495 u32 rdev;
39279cc3
CM
2496 int ret;
2497
2498 path = btrfs_alloc_path();
2499 BUG_ON(!path);
39279cc3 2500 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2501
39279cc3 2502 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2503 if (ret)
39279cc3 2504 goto make_bad;
39279cc3 2505
5f39d397
CM
2506 leaf = path->nodes[0];
2507 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2508 struct btrfs_inode_item);
2509
2510 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2511 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2512 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2513 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2514 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2515
2516 tspec = btrfs_inode_atime(inode_item);
2517 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2518 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2519
2520 tspec = btrfs_inode_mtime(inode_item);
2521 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2522 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2523
2524 tspec = btrfs_inode_ctime(inode_item);
2525 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2526 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2527
a76a3cd4 2528 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2529 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2530 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2531 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2532 inode->i_rdev = 0;
5f39d397
CM
2533 rdev = btrfs_inode_rdev(leaf, inode_item);
2534
aec7477b 2535 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2536 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2537
5f39d397 2538 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2539
46a53cca
CM
2540 /*
2541 * try to precache a NULL acl entry for files that don't have
2542 * any xattrs or acls
2543 */
2544 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2545 if (!maybe_acls)
2546 cache_no_acl(inode);
46a53cca 2547
d2fb3437
YZ
2548 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2549 alloc_group_block, 0);
39279cc3
CM
2550 btrfs_free_path(path);
2551 inode_item = NULL;
2552
39279cc3 2553 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2554 case S_IFREG:
2555 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2556 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2557 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2558 inode->i_fop = &btrfs_file_operations;
2559 inode->i_op = &btrfs_file_inode_operations;
2560 break;
2561 case S_IFDIR:
2562 inode->i_fop = &btrfs_dir_file_operations;
2563 if (root == root->fs_info->tree_root)
2564 inode->i_op = &btrfs_dir_ro_inode_operations;
2565 else
2566 inode->i_op = &btrfs_dir_inode_operations;
2567 break;
2568 case S_IFLNK:
2569 inode->i_op = &btrfs_symlink_inode_operations;
2570 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2571 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2572 break;
618e21d5 2573 default:
0279b4cd 2574 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2575 init_special_inode(inode, inode->i_mode, rdev);
2576 break;
39279cc3 2577 }
6cbff00f
CH
2578
2579 btrfs_update_iflags(inode);
39279cc3
CM
2580 return;
2581
2582make_bad:
39279cc3 2583 btrfs_free_path(path);
39279cc3
CM
2584 make_bad_inode(inode);
2585}
2586
d352ac68
CM
2587/*
2588 * given a leaf and an inode, copy the inode fields into the leaf
2589 */
e02119d5
CM
2590static void fill_inode_item(struct btrfs_trans_handle *trans,
2591 struct extent_buffer *leaf,
5f39d397 2592 struct btrfs_inode_item *item,
39279cc3
CM
2593 struct inode *inode)
2594{
5f39d397
CM
2595 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2596 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2597 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2598 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2599 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2600
2601 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2602 inode->i_atime.tv_sec);
2603 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2604 inode->i_atime.tv_nsec);
2605
2606 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2607 inode->i_mtime.tv_sec);
2608 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2609 inode->i_mtime.tv_nsec);
2610
2611 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2612 inode->i_ctime.tv_sec);
2613 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2614 inode->i_ctime.tv_nsec);
2615
a76a3cd4 2616 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2617 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2618 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2619 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2620 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2621 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2622 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2623}
2624
d352ac68
CM
2625/*
2626 * copy everything in the in-memory inode into the btree.
2627 */
d397712b
CM
2628noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2629 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2630{
2631 struct btrfs_inode_item *inode_item;
2632 struct btrfs_path *path;
5f39d397 2633 struct extent_buffer *leaf;
39279cc3
CM
2634 int ret;
2635
2636 path = btrfs_alloc_path();
2637 BUG_ON(!path);
b9473439 2638 path->leave_spinning = 1;
39279cc3
CM
2639 ret = btrfs_lookup_inode(trans, root, path,
2640 &BTRFS_I(inode)->location, 1);
2641 if (ret) {
2642 if (ret > 0)
2643 ret = -ENOENT;
2644 goto failed;
2645 }
2646
b4ce94de 2647 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2648 leaf = path->nodes[0];
2649 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2650 struct btrfs_inode_item);
2651
e02119d5 2652 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2653 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2654 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2655 ret = 0;
2656failed:
39279cc3
CM
2657 btrfs_free_path(path);
2658 return ret;
2659}
2660
2661
d352ac68
CM
2662/*
2663 * unlink helper that gets used here in inode.c and in the tree logging
2664 * recovery code. It remove a link in a directory with a given name, and
2665 * also drops the back refs in the inode to the directory
2666 */
92986796
AV
2667static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2668 struct btrfs_root *root,
2669 struct inode *dir, struct inode *inode,
2670 const char *name, int name_len)
39279cc3
CM
2671{
2672 struct btrfs_path *path;
39279cc3 2673 int ret = 0;
5f39d397 2674 struct extent_buffer *leaf;
39279cc3 2675 struct btrfs_dir_item *di;
5f39d397 2676 struct btrfs_key key;
aec7477b 2677 u64 index;
39279cc3
CM
2678
2679 path = btrfs_alloc_path();
54aa1f4d
CM
2680 if (!path) {
2681 ret = -ENOMEM;
554233a6 2682 goto out;
54aa1f4d
CM
2683 }
2684
b9473439 2685 path->leave_spinning = 1;
39279cc3
CM
2686 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2687 name, name_len, -1);
2688 if (IS_ERR(di)) {
2689 ret = PTR_ERR(di);
2690 goto err;
2691 }
2692 if (!di) {
2693 ret = -ENOENT;
2694 goto err;
2695 }
5f39d397
CM
2696 leaf = path->nodes[0];
2697 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2698 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2699 if (ret)
2700 goto err;
39279cc3
CM
2701 btrfs_release_path(root, path);
2702
aec7477b 2703 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2704 inode->i_ino,
2705 dir->i_ino, &index);
aec7477b 2706 if (ret) {
d397712b 2707 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2708 "inode %lu parent %lu\n", name_len, name,
e02119d5 2709 inode->i_ino, dir->i_ino);
aec7477b
JB
2710 goto err;
2711 }
2712
39279cc3 2713 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2714 index, name, name_len, -1);
39279cc3
CM
2715 if (IS_ERR(di)) {
2716 ret = PTR_ERR(di);
2717 goto err;
2718 }
2719 if (!di) {
2720 ret = -ENOENT;
2721 goto err;
2722 }
2723 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2724 btrfs_release_path(root, path);
39279cc3 2725
e02119d5
CM
2726 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2727 inode, dir->i_ino);
49eb7e46 2728 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2729
2730 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2731 dir, index);
6418c961
CM
2732 if (ret == -ENOENT)
2733 ret = 0;
39279cc3
CM
2734err:
2735 btrfs_free_path(path);
e02119d5
CM
2736 if (ret)
2737 goto out;
2738
2739 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2740 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2741 btrfs_update_inode(trans, root, dir);
e02119d5 2742out:
39279cc3
CM
2743 return ret;
2744}
2745
92986796
AV
2746int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2747 struct btrfs_root *root,
2748 struct inode *dir, struct inode *inode,
2749 const char *name, int name_len)
2750{
2751 int ret;
2752 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2753 if (!ret) {
2754 btrfs_drop_nlink(inode);
2755 ret = btrfs_update_inode(trans, root, inode);
2756 }
2757 return ret;
2758}
2759
2760
a22285a6
YZ
2761/* helper to check if there is any shared block in the path */
2762static int check_path_shared(struct btrfs_root *root,
2763 struct btrfs_path *path)
39279cc3 2764{
a22285a6
YZ
2765 struct extent_buffer *eb;
2766 int level;
0e4dcbef 2767 u64 refs = 1;
5df6a9f6 2768
a22285a6 2769 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2770 int ret;
2771
a22285a6
YZ
2772 if (!path->nodes[level])
2773 break;
2774 eb = path->nodes[level];
2775 if (!btrfs_block_can_be_shared(root, eb))
2776 continue;
2777 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2778 &refs, NULL);
2779 if (refs > 1)
2780 return 1;
5df6a9f6 2781 }
dedefd72 2782 return 0;
39279cc3
CM
2783}
2784
a22285a6
YZ
2785/*
2786 * helper to start transaction for unlink and rmdir.
2787 *
2788 * unlink and rmdir are special in btrfs, they do not always free space.
2789 * so in enospc case, we should make sure they will free space before
2790 * allowing them to use the global metadata reservation.
2791 */
2792static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2793 struct dentry *dentry)
4df27c4d 2794{
39279cc3 2795 struct btrfs_trans_handle *trans;
a22285a6 2796 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2797 struct btrfs_path *path;
a22285a6 2798 struct btrfs_inode_ref *ref;
4df27c4d 2799 struct btrfs_dir_item *di;
7b128766 2800 struct inode *inode = dentry->d_inode;
4df27c4d 2801 u64 index;
a22285a6
YZ
2802 int check_link = 1;
2803 int err = -ENOSPC;
4df27c4d
YZ
2804 int ret;
2805
a22285a6
YZ
2806 trans = btrfs_start_transaction(root, 10);
2807 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2808 return trans;
4df27c4d 2809
a22285a6
YZ
2810 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2811 return ERR_PTR(-ENOSPC);
4df27c4d 2812
a22285a6
YZ
2813 /* check if there is someone else holds reference */
2814 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2815 return ERR_PTR(-ENOSPC);
4df27c4d 2816
a22285a6
YZ
2817 if (atomic_read(&inode->i_count) > 2)
2818 return ERR_PTR(-ENOSPC);
4df27c4d 2819
a22285a6
YZ
2820 if (xchg(&root->fs_info->enospc_unlink, 1))
2821 return ERR_PTR(-ENOSPC);
2822
2823 path = btrfs_alloc_path();
2824 if (!path) {
2825 root->fs_info->enospc_unlink = 0;
2826 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2827 }
2828
a22285a6 2829 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2830 if (IS_ERR(trans)) {
a22285a6
YZ
2831 btrfs_free_path(path);
2832 root->fs_info->enospc_unlink = 0;
2833 return trans;
2834 }
4df27c4d 2835
a22285a6
YZ
2836 path->skip_locking = 1;
2837 path->search_commit_root = 1;
4df27c4d 2838
a22285a6
YZ
2839 ret = btrfs_lookup_inode(trans, root, path,
2840 &BTRFS_I(dir)->location, 0);
2841 if (ret < 0) {
2842 err = ret;
2843 goto out;
2844 }
2845 if (ret == 0) {
2846 if (check_path_shared(root, path))
2847 goto out;
2848 } else {
2849 check_link = 0;
5df6a9f6 2850 }
a22285a6
YZ
2851 btrfs_release_path(root, path);
2852
2853 ret = btrfs_lookup_inode(trans, root, path,
2854 &BTRFS_I(inode)->location, 0);
2855 if (ret < 0) {
2856 err = ret;
2857 goto out;
2858 }
2859 if (ret == 0) {
2860 if (check_path_shared(root, path))
2861 goto out;
2862 } else {
2863 check_link = 0;
2864 }
2865 btrfs_release_path(root, path);
2866
2867 if (ret == 0 && S_ISREG(inode->i_mode)) {
2868 ret = btrfs_lookup_file_extent(trans, root, path,
2869 inode->i_ino, (u64)-1, 0);
2870 if (ret < 0) {
2871 err = ret;
2872 goto out;
2873 }
2874 BUG_ON(ret == 0);
2875 if (check_path_shared(root, path))
2876 goto out;
2877 btrfs_release_path(root, path);
2878 }
2879
2880 if (!check_link) {
2881 err = 0;
2882 goto out;
2883 }
2884
2885 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2886 dentry->d_name.name, dentry->d_name.len, 0);
2887 if (IS_ERR(di)) {
2888 err = PTR_ERR(di);
2889 goto out;
2890 }
2891 if (di) {
2892 if (check_path_shared(root, path))
2893 goto out;
2894 } else {
2895 err = 0;
2896 goto out;
2897 }
2898 btrfs_release_path(root, path);
2899
2900 ref = btrfs_lookup_inode_ref(trans, root, path,
2901 dentry->d_name.name, dentry->d_name.len,
2902 inode->i_ino, dir->i_ino, 0);
2903 if (IS_ERR(ref)) {
2904 err = PTR_ERR(ref);
2905 goto out;
2906 }
2907 BUG_ON(!ref);
2908 if (check_path_shared(root, path))
2909 goto out;
2910 index = btrfs_inode_ref_index(path->nodes[0], ref);
2911 btrfs_release_path(root, path);
2912
2913 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2914 dentry->d_name.name, dentry->d_name.len, 0);
2915 if (IS_ERR(di)) {
2916 err = PTR_ERR(di);
2917 goto out;
2918 }
2919 BUG_ON(ret == -ENOENT);
2920 if (check_path_shared(root, path))
2921 goto out;
2922
2923 err = 0;
2924out:
2925 btrfs_free_path(path);
2926 if (err) {
2927 btrfs_end_transaction(trans, root);
2928 root->fs_info->enospc_unlink = 0;
2929 return ERR_PTR(err);
2930 }
2931
2932 trans->block_rsv = &root->fs_info->global_block_rsv;
2933 return trans;
2934}
2935
2936static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2937 struct btrfs_root *root)
2938{
2939 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2940 BUG_ON(!root->fs_info->enospc_unlink);
2941 root->fs_info->enospc_unlink = 0;
2942 }
2943 btrfs_end_transaction_throttle(trans, root);
2944}
2945
2946static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2947{
2948 struct btrfs_root *root = BTRFS_I(dir)->root;
2949 struct btrfs_trans_handle *trans;
2950 struct inode *inode = dentry->d_inode;
2951 int ret;
2952 unsigned long nr = 0;
2953
2954 trans = __unlink_start_trans(dir, dentry);
2955 if (IS_ERR(trans))
2956 return PTR_ERR(trans);
5f39d397 2957
39279cc3 2958 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2959
2960 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2961
e02119d5
CM
2962 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2963 dentry->d_name.name, dentry->d_name.len);
a22285a6 2964 BUG_ON(ret);
7b128766 2965
a22285a6 2966 if (inode->i_nlink == 0) {
7b128766 2967 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2968 BUG_ON(ret);
2969 }
7b128766 2970
d3c2fdcf 2971 nr = trans->blocks_used;
a22285a6 2972 __unlink_end_trans(trans, root);
d3c2fdcf 2973 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2974 return ret;
2975}
2976
4df27c4d
YZ
2977int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2978 struct btrfs_root *root,
2979 struct inode *dir, u64 objectid,
2980 const char *name, int name_len)
2981{
2982 struct btrfs_path *path;
2983 struct extent_buffer *leaf;
2984 struct btrfs_dir_item *di;
2985 struct btrfs_key key;
2986 u64 index;
2987 int ret;
2988
2989 path = btrfs_alloc_path();
2990 if (!path)
2991 return -ENOMEM;
2992
2993 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2994 name, name_len, -1);
2995 BUG_ON(!di || IS_ERR(di));
2996
2997 leaf = path->nodes[0];
2998 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2999 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3000 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3001 BUG_ON(ret);
3002 btrfs_release_path(root, path);
3003
3004 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3005 objectid, root->root_key.objectid,
3006 dir->i_ino, &index, name, name_len);
3007 if (ret < 0) {
3008 BUG_ON(ret != -ENOENT);
3009 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3010 name, name_len);
3011 BUG_ON(!di || IS_ERR(di));
3012
3013 leaf = path->nodes[0];
3014 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3015 btrfs_release_path(root, path);
3016 index = key.offset;
3017 }
3018
3019 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3020 index, name, name_len, -1);
3021 BUG_ON(!di || IS_ERR(di));
3022
3023 leaf = path->nodes[0];
3024 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3025 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3026 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3027 BUG_ON(ret);
3028 btrfs_release_path(root, path);
3029
3030 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3031 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3032 ret = btrfs_update_inode(trans, root, dir);
3033 BUG_ON(ret);
4df27c4d
YZ
3034
3035 btrfs_free_path(path);
3036 return 0;
3037}
3038
39279cc3
CM
3039static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3040{
3041 struct inode *inode = dentry->d_inode;
1832a6d5 3042 int err = 0;
39279cc3 3043 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3044 struct btrfs_trans_handle *trans;
1832a6d5 3045 unsigned long nr = 0;
39279cc3 3046
3394e160 3047 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 3048 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3049 return -ENOTEMPTY;
3050
a22285a6
YZ
3051 trans = __unlink_start_trans(dir, dentry);
3052 if (IS_ERR(trans))
5df6a9f6 3053 return PTR_ERR(trans);
5df6a9f6 3054
39279cc3 3055 btrfs_set_trans_block_group(trans, dir);
39279cc3 3056
4df27c4d
YZ
3057 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3058 err = btrfs_unlink_subvol(trans, root, dir,
3059 BTRFS_I(inode)->location.objectid,
3060 dentry->d_name.name,
3061 dentry->d_name.len);
3062 goto out;
3063 }
3064
7b128766
JB
3065 err = btrfs_orphan_add(trans, inode);
3066 if (err)
4df27c4d 3067 goto out;
7b128766 3068
39279cc3 3069 /* now the directory is empty */
e02119d5
CM
3070 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3071 dentry->d_name.name, dentry->d_name.len);
d397712b 3072 if (!err)
dbe674a9 3073 btrfs_i_size_write(inode, 0);
4df27c4d 3074out:
d3c2fdcf 3075 nr = trans->blocks_used;
a22285a6 3076 __unlink_end_trans(trans, root);
d3c2fdcf 3077 btrfs_btree_balance_dirty(root, nr);
3954401f 3078
39279cc3
CM
3079 return err;
3080}
3081
d20f7043 3082#if 0
323ac95b
CM
3083/*
3084 * when truncating bytes in a file, it is possible to avoid reading
3085 * the leaves that contain only checksum items. This can be the
3086 * majority of the IO required to delete a large file, but it must
3087 * be done carefully.
3088 *
3089 * The keys in the level just above the leaves are checked to make sure
3090 * the lowest key in a given leaf is a csum key, and starts at an offset
3091 * after the new size.
3092 *
3093 * Then the key for the next leaf is checked to make sure it also has
3094 * a checksum item for the same file. If it does, we know our target leaf
3095 * contains only checksum items, and it can be safely freed without reading
3096 * it.
3097 *
3098 * This is just an optimization targeted at large files. It may do
3099 * nothing. It will return 0 unless things went badly.
3100 */
3101static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *root,
3103 struct btrfs_path *path,
3104 struct inode *inode, u64 new_size)
3105{
3106 struct btrfs_key key;
3107 int ret;
3108 int nritems;
3109 struct btrfs_key found_key;
3110 struct btrfs_key other_key;
5b84e8d6
YZ
3111 struct btrfs_leaf_ref *ref;
3112 u64 leaf_gen;
3113 u64 leaf_start;
323ac95b
CM
3114
3115 path->lowest_level = 1;
3116 key.objectid = inode->i_ino;
3117 key.type = BTRFS_CSUM_ITEM_KEY;
3118 key.offset = new_size;
3119again:
3120 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3121 if (ret < 0)
3122 goto out;
3123
3124 if (path->nodes[1] == NULL) {
3125 ret = 0;
3126 goto out;
3127 }
3128 ret = 0;
3129 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3130 nritems = btrfs_header_nritems(path->nodes[1]);
3131
3132 if (!nritems)
3133 goto out;
3134
3135 if (path->slots[1] >= nritems)
3136 goto next_node;
3137
3138 /* did we find a key greater than anything we want to delete? */
3139 if (found_key.objectid > inode->i_ino ||
3140 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3141 goto out;
3142
3143 /* we check the next key in the node to make sure the leave contains
3144 * only checksum items. This comparison doesn't work if our
3145 * leaf is the last one in the node
3146 */
3147 if (path->slots[1] + 1 >= nritems) {
3148next_node:
3149 /* search forward from the last key in the node, this
3150 * will bring us into the next node in the tree
3151 */
3152 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3153
3154 /* unlikely, but we inc below, so check to be safe */
3155 if (found_key.offset == (u64)-1)
3156 goto out;
3157
3158 /* search_forward needs a path with locks held, do the
3159 * search again for the original key. It is possible
3160 * this will race with a balance and return a path that
3161 * we could modify, but this drop is just an optimization
3162 * and is allowed to miss some leaves.
3163 */
3164 btrfs_release_path(root, path);
3165 found_key.offset++;
3166
3167 /* setup a max key for search_forward */
3168 other_key.offset = (u64)-1;
3169 other_key.type = key.type;
3170 other_key.objectid = key.objectid;
3171
3172 path->keep_locks = 1;
3173 ret = btrfs_search_forward(root, &found_key, &other_key,
3174 path, 0, 0);
3175 path->keep_locks = 0;
3176 if (ret || found_key.objectid != key.objectid ||
3177 found_key.type != key.type) {
3178 ret = 0;
3179 goto out;
3180 }
3181
3182 key.offset = found_key.offset;
3183 btrfs_release_path(root, path);
3184 cond_resched();
3185 goto again;
3186 }
3187
3188 /* we know there's one more slot after us in the tree,
3189 * read that key so we can verify it is also a checksum item
3190 */
3191 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3192
3193 if (found_key.objectid < inode->i_ino)
3194 goto next_key;
3195
3196 if (found_key.type != key.type || found_key.offset < new_size)
3197 goto next_key;
3198
3199 /*
3200 * if the key for the next leaf isn't a csum key from this objectid,
3201 * we can't be sure there aren't good items inside this leaf.
3202 * Bail out
3203 */
3204 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3205 goto out;
3206
5b84e8d6
YZ
3207 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3208 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3209 /*
3210 * it is safe to delete this leaf, it contains only
3211 * csum items from this inode at an offset >= new_size
3212 */
5b84e8d6 3213 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3214 BUG_ON(ret);
3215
5b84e8d6
YZ
3216 if (root->ref_cows && leaf_gen < trans->transid) {
3217 ref = btrfs_alloc_leaf_ref(root, 0);
3218 if (ref) {
3219 ref->root_gen = root->root_key.offset;
3220 ref->bytenr = leaf_start;
3221 ref->owner = 0;
3222 ref->generation = leaf_gen;
3223 ref->nritems = 0;
3224
bd56b302
CM
3225 btrfs_sort_leaf_ref(ref);
3226
5b84e8d6
YZ
3227 ret = btrfs_add_leaf_ref(root, ref, 0);
3228 WARN_ON(ret);
3229 btrfs_free_leaf_ref(root, ref);
3230 } else {
3231 WARN_ON(1);
3232 }
3233 }
323ac95b
CM
3234next_key:
3235 btrfs_release_path(root, path);
3236
3237 if (other_key.objectid == inode->i_ino &&
3238 other_key.type == key.type && other_key.offset > key.offset) {
3239 key.offset = other_key.offset;
3240 cond_resched();
3241 goto again;
3242 }
3243 ret = 0;
3244out:
3245 /* fixup any changes we've made to the path */
3246 path->lowest_level = 0;
3247 path->keep_locks = 0;
3248 btrfs_release_path(root, path);
3249 return ret;
3250}
3251
d20f7043
CM
3252#endif
3253
39279cc3
CM
3254/*
3255 * this can truncate away extent items, csum items and directory items.
3256 * It starts at a high offset and removes keys until it can't find
d352ac68 3257 * any higher than new_size
39279cc3
CM
3258 *
3259 * csum items that cross the new i_size are truncated to the new size
3260 * as well.
7b128766
JB
3261 *
3262 * min_type is the minimum key type to truncate down to. If set to 0, this
3263 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3264 */
8082510e
YZ
3265int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3266 struct btrfs_root *root,
3267 struct inode *inode,
3268 u64 new_size, u32 min_type)
39279cc3 3269{
39279cc3 3270 struct btrfs_path *path;
5f39d397 3271 struct extent_buffer *leaf;
39279cc3 3272 struct btrfs_file_extent_item *fi;
8082510e
YZ
3273 struct btrfs_key key;
3274 struct btrfs_key found_key;
39279cc3 3275 u64 extent_start = 0;
db94535d 3276 u64 extent_num_bytes = 0;
5d4f98a2 3277 u64 extent_offset = 0;
39279cc3 3278 u64 item_end = 0;
8082510e
YZ
3279 u64 mask = root->sectorsize - 1;
3280 u32 found_type = (u8)-1;
39279cc3
CM
3281 int found_extent;
3282 int del_item;
85e21bac
CM
3283 int pending_del_nr = 0;
3284 int pending_del_slot = 0;
179e29e4 3285 int extent_type = -1;
771ed689 3286 int encoding;
8082510e
YZ
3287 int ret;
3288 int err = 0;
3289
3290 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3291
0af3d00b 3292 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3293 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3294
39279cc3
CM
3295 path = btrfs_alloc_path();
3296 BUG_ON(!path);
33c17ad5 3297 path->reada = -1;
5f39d397 3298
39279cc3
CM
3299 key.objectid = inode->i_ino;
3300 key.offset = (u64)-1;
5f39d397
CM
3301 key.type = (u8)-1;
3302
85e21bac 3303search_again:
b9473439 3304 path->leave_spinning = 1;
85e21bac 3305 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3306 if (ret < 0) {
3307 err = ret;
3308 goto out;
3309 }
d397712b 3310
85e21bac 3311 if (ret > 0) {
e02119d5
CM
3312 /* there are no items in the tree for us to truncate, we're
3313 * done
3314 */
8082510e
YZ
3315 if (path->slots[0] == 0)
3316 goto out;
85e21bac
CM
3317 path->slots[0]--;
3318 }
3319
d397712b 3320 while (1) {
39279cc3 3321 fi = NULL;
5f39d397
CM
3322 leaf = path->nodes[0];
3323 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3324 found_type = btrfs_key_type(&found_key);
771ed689 3325 encoding = 0;
39279cc3 3326
5f39d397 3327 if (found_key.objectid != inode->i_ino)
39279cc3 3328 break;
5f39d397 3329
85e21bac 3330 if (found_type < min_type)
39279cc3
CM
3331 break;
3332
5f39d397 3333 item_end = found_key.offset;
39279cc3 3334 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3335 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3336 struct btrfs_file_extent_item);
179e29e4 3337 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3338 encoding = btrfs_file_extent_compression(leaf, fi);
3339 encoding |= btrfs_file_extent_encryption(leaf, fi);
3340 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3341
179e29e4 3342 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3343 item_end +=
db94535d 3344 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3345 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3346 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3347 fi);
39279cc3 3348 }
008630c1 3349 item_end--;
39279cc3 3350 }
8082510e
YZ
3351 if (found_type > min_type) {
3352 del_item = 1;
3353 } else {
3354 if (item_end < new_size)
b888db2b 3355 break;
8082510e
YZ
3356 if (found_key.offset >= new_size)
3357 del_item = 1;
3358 else
3359 del_item = 0;
39279cc3 3360 }
39279cc3 3361 found_extent = 0;
39279cc3 3362 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3363 if (found_type != BTRFS_EXTENT_DATA_KEY)
3364 goto delete;
3365
3366 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3367 u64 num_dec;
db94535d 3368 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3369 if (!del_item && !encoding) {
db94535d
CM
3370 u64 orig_num_bytes =
3371 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3372 extent_num_bytes = new_size -
5f39d397 3373 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3374 extent_num_bytes = extent_num_bytes &
3375 ~((u64)root->sectorsize - 1);
db94535d
CM
3376 btrfs_set_file_extent_num_bytes(leaf, fi,
3377 extent_num_bytes);
3378 num_dec = (orig_num_bytes -
9069218d 3379 extent_num_bytes);
e02119d5 3380 if (root->ref_cows && extent_start != 0)
a76a3cd4 3381 inode_sub_bytes(inode, num_dec);
5f39d397 3382 btrfs_mark_buffer_dirty(leaf);
39279cc3 3383 } else {
db94535d
CM
3384 extent_num_bytes =
3385 btrfs_file_extent_disk_num_bytes(leaf,
3386 fi);
5d4f98a2
YZ
3387 extent_offset = found_key.offset -
3388 btrfs_file_extent_offset(leaf, fi);
3389
39279cc3 3390 /* FIXME blocksize != 4096 */
9069218d 3391 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3392 if (extent_start != 0) {
3393 found_extent = 1;
e02119d5 3394 if (root->ref_cows)
a76a3cd4 3395 inode_sub_bytes(inode, num_dec);
e02119d5 3396 }
39279cc3 3397 }
9069218d 3398 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3399 /*
3400 * we can't truncate inline items that have had
3401 * special encodings
3402 */
3403 if (!del_item &&
3404 btrfs_file_extent_compression(leaf, fi) == 0 &&
3405 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3406 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3407 u32 size = new_size - found_key.offset;
3408
3409 if (root->ref_cows) {
a76a3cd4
YZ
3410 inode_sub_bytes(inode, item_end + 1 -
3411 new_size);
e02119d5
CM
3412 }
3413 size =
3414 btrfs_file_extent_calc_inline_size(size);
9069218d 3415 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3416 size, 1);
9069218d 3417 BUG_ON(ret);
e02119d5 3418 } else if (root->ref_cows) {
a76a3cd4
YZ
3419 inode_sub_bytes(inode, item_end + 1 -
3420 found_key.offset);
9069218d 3421 }
39279cc3 3422 }
179e29e4 3423delete:
39279cc3 3424 if (del_item) {
85e21bac
CM
3425 if (!pending_del_nr) {
3426 /* no pending yet, add ourselves */
3427 pending_del_slot = path->slots[0];
3428 pending_del_nr = 1;
3429 } else if (pending_del_nr &&
3430 path->slots[0] + 1 == pending_del_slot) {
3431 /* hop on the pending chunk */
3432 pending_del_nr++;
3433 pending_del_slot = path->slots[0];
3434 } else {
d397712b 3435 BUG();
85e21bac 3436 }
39279cc3
CM
3437 } else {
3438 break;
3439 }
0af3d00b
JB
3440 if (found_extent && (root->ref_cows ||
3441 root == root->fs_info->tree_root)) {
b9473439 3442 btrfs_set_path_blocking(path);
39279cc3 3443 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3444 extent_num_bytes, 0,
3445 btrfs_header_owner(leaf),
3446 inode->i_ino, extent_offset);
39279cc3
CM
3447 BUG_ON(ret);
3448 }
85e21bac 3449
8082510e
YZ
3450 if (found_type == BTRFS_INODE_ITEM_KEY)
3451 break;
3452
3453 if (path->slots[0] == 0 ||
3454 path->slots[0] != pending_del_slot) {
3455 if (root->ref_cows) {
3456 err = -EAGAIN;
3457 goto out;
3458 }
3459 if (pending_del_nr) {
3460 ret = btrfs_del_items(trans, root, path,
3461 pending_del_slot,
3462 pending_del_nr);
3463 BUG_ON(ret);
3464 pending_del_nr = 0;
3465 }
85e21bac
CM
3466 btrfs_release_path(root, path);
3467 goto search_again;
8082510e
YZ
3468 } else {
3469 path->slots[0]--;
85e21bac 3470 }
39279cc3 3471 }
8082510e 3472out:
85e21bac
CM
3473 if (pending_del_nr) {
3474 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3475 pending_del_nr);
d68fc57b 3476 BUG_ON(ret);
85e21bac 3477 }
39279cc3 3478 btrfs_free_path(path);
8082510e 3479 return err;
39279cc3
CM
3480}
3481
3482/*
3483 * taken from block_truncate_page, but does cow as it zeros out
3484 * any bytes left in the last page in the file.
3485 */
3486static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3487{
3488 struct inode *inode = mapping->host;
db94535d 3489 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3490 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3491 struct btrfs_ordered_extent *ordered;
2ac55d41 3492 struct extent_state *cached_state = NULL;
e6dcd2dc 3493 char *kaddr;
db94535d 3494 u32 blocksize = root->sectorsize;
39279cc3
CM
3495 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3496 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3497 struct page *page;
39279cc3 3498 int ret = 0;
a52d9a80 3499 u64 page_start;
e6dcd2dc 3500 u64 page_end;
39279cc3
CM
3501
3502 if ((offset & (blocksize - 1)) == 0)
3503 goto out;
0ca1f7ce 3504 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3505 if (ret)
3506 goto out;
39279cc3
CM
3507
3508 ret = -ENOMEM;
211c17f5 3509again:
39279cc3 3510 page = grab_cache_page(mapping, index);
5d5e103a 3511 if (!page) {
0ca1f7ce 3512 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3513 goto out;
5d5e103a 3514 }
e6dcd2dc
CM
3515
3516 page_start = page_offset(page);
3517 page_end = page_start + PAGE_CACHE_SIZE - 1;
3518
39279cc3 3519 if (!PageUptodate(page)) {
9ebefb18 3520 ret = btrfs_readpage(NULL, page);
39279cc3 3521 lock_page(page);
211c17f5
CM
3522 if (page->mapping != mapping) {
3523 unlock_page(page);
3524 page_cache_release(page);
3525 goto again;
3526 }
39279cc3
CM
3527 if (!PageUptodate(page)) {
3528 ret = -EIO;
89642229 3529 goto out_unlock;
39279cc3
CM
3530 }
3531 }
211c17f5 3532 wait_on_page_writeback(page);
e6dcd2dc 3533
2ac55d41
JB
3534 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3535 GFP_NOFS);
e6dcd2dc
CM
3536 set_page_extent_mapped(page);
3537
3538 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3539 if (ordered) {
2ac55d41
JB
3540 unlock_extent_cached(io_tree, page_start, page_end,
3541 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3542 unlock_page(page);
3543 page_cache_release(page);
eb84ae03 3544 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3545 btrfs_put_ordered_extent(ordered);
3546 goto again;
3547 }
3548
2ac55d41 3549 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3550 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3551 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3552
2ac55d41
JB
3553 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3554 &cached_state);
9ed74f2d 3555 if (ret) {
2ac55d41
JB
3556 unlock_extent_cached(io_tree, page_start, page_end,
3557 &cached_state, GFP_NOFS);
9ed74f2d
JB
3558 goto out_unlock;
3559 }
3560
e6dcd2dc
CM
3561 ret = 0;
3562 if (offset != PAGE_CACHE_SIZE) {
3563 kaddr = kmap(page);
3564 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3565 flush_dcache_page(page);
3566 kunmap(page);
3567 }
247e743c 3568 ClearPageChecked(page);
e6dcd2dc 3569 set_page_dirty(page);
2ac55d41
JB
3570 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3571 GFP_NOFS);
39279cc3 3572
89642229 3573out_unlock:
5d5e103a 3574 if (ret)
0ca1f7ce 3575 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3576 unlock_page(page);
3577 page_cache_release(page);
3578out:
3579 return ret;
3580}
3581
695a0d0d
JB
3582/*
3583 * This function puts in dummy file extents for the area we're creating a hole
3584 * for. So if we are truncating this file to a larger size we need to insert
3585 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3586 * the range between oldsize and size
3587 */
a41ad394 3588int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3589{
9036c102
YZ
3590 struct btrfs_trans_handle *trans;
3591 struct btrfs_root *root = BTRFS_I(inode)->root;
3592 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3593 struct extent_map *em = NULL;
2ac55d41 3594 struct extent_state *cached_state = NULL;
9036c102 3595 u64 mask = root->sectorsize - 1;
a41ad394 3596 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3597 u64 block_end = (size + mask) & ~mask;
3598 u64 last_byte;
3599 u64 cur_offset;
3600 u64 hole_size;
9ed74f2d 3601 int err = 0;
39279cc3 3602
9036c102
YZ
3603 if (size <= hole_start)
3604 return 0;
3605
9036c102
YZ
3606 while (1) {
3607 struct btrfs_ordered_extent *ordered;
3608 btrfs_wait_ordered_range(inode, hole_start,
3609 block_end - hole_start);
2ac55d41
JB
3610 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3611 &cached_state, GFP_NOFS);
9036c102
YZ
3612 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3613 if (!ordered)
3614 break;
2ac55d41
JB
3615 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3616 &cached_state, GFP_NOFS);
9036c102
YZ
3617 btrfs_put_ordered_extent(ordered);
3618 }
39279cc3 3619
9036c102
YZ
3620 cur_offset = hole_start;
3621 while (1) {
3622 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3623 block_end - cur_offset, 0);
3624 BUG_ON(IS_ERR(em) || !em);
3625 last_byte = min(extent_map_end(em), block_end);
3626 last_byte = (last_byte + mask) & ~mask;
8082510e 3627 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3628 u64 hint_byte = 0;
9036c102 3629 hole_size = last_byte - cur_offset;
9ed74f2d 3630
a22285a6
YZ
3631 trans = btrfs_start_transaction(root, 2);
3632 if (IS_ERR(trans)) {
3633 err = PTR_ERR(trans);
9ed74f2d 3634 break;
a22285a6 3635 }
8082510e
YZ
3636 btrfs_set_trans_block_group(trans, inode);
3637
3638 err = btrfs_drop_extents(trans, inode, cur_offset,
3639 cur_offset + hole_size,
3640 &hint_byte, 1);
3893e33b
JB
3641 if (err)
3642 break;
8082510e 3643
9036c102
YZ
3644 err = btrfs_insert_file_extent(trans, root,
3645 inode->i_ino, cur_offset, 0,
3646 0, hole_size, 0, hole_size,
3647 0, 0, 0);
3893e33b
JB
3648 if (err)
3649 break;
8082510e 3650
9036c102
YZ
3651 btrfs_drop_extent_cache(inode, hole_start,
3652 last_byte - 1, 0);
8082510e
YZ
3653
3654 btrfs_end_transaction(trans, root);
9036c102
YZ
3655 }
3656 free_extent_map(em);
a22285a6 3657 em = NULL;
9036c102 3658 cur_offset = last_byte;
8082510e 3659 if (cur_offset >= block_end)
9036c102
YZ
3660 break;
3661 }
1832a6d5 3662
a22285a6 3663 free_extent_map(em);
2ac55d41
JB
3664 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3665 GFP_NOFS);
9036c102
YZ
3666 return err;
3667}
39279cc3 3668
a41ad394 3669static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3670{
a41ad394 3671 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3672 int ret;
3673
a41ad394 3674 if (newsize == oldsize)
8082510e
YZ
3675 return 0;
3676
a41ad394
JB
3677 if (newsize > oldsize) {
3678 i_size_write(inode, newsize);
3679 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3680 truncate_pagecache(inode, oldsize, newsize);
3681 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3682 if (ret) {
a41ad394 3683 btrfs_setsize(inode, oldsize);
8082510e
YZ
3684 return ret;
3685 }
3686
930f028a 3687 mark_inode_dirty(inode);
a41ad394 3688 } else {
8082510e 3689
a41ad394
JB
3690 /*
3691 * We're truncating a file that used to have good data down to
3692 * zero. Make sure it gets into the ordered flush list so that
3693 * any new writes get down to disk quickly.
3694 */
3695 if (newsize == 0)
3696 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3697
a41ad394
JB
3698 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3699 truncate_setsize(inode, newsize);
3700 ret = btrfs_truncate(inode);
3701 }
8082510e 3702
a41ad394 3703 return ret;
8082510e
YZ
3704}
3705
9036c102
YZ
3706static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3707{
3708 struct inode *inode = dentry->d_inode;
b83cc969 3709 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3710 int err;
39279cc3 3711
b83cc969
LZ
3712 if (btrfs_root_readonly(root))
3713 return -EROFS;
3714
9036c102
YZ
3715 err = inode_change_ok(inode, attr);
3716 if (err)
3717 return err;
2bf5a725 3718
5a3f23d5 3719 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3720 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3721 if (err)
3722 return err;
39279cc3 3723 }
9036c102 3724
1025774c
CH
3725 if (attr->ia_valid) {
3726 setattr_copy(inode, attr);
3727 mark_inode_dirty(inode);
3728
3729 if (attr->ia_valid & ATTR_MODE)
3730 err = btrfs_acl_chmod(inode);
3731 }
33268eaf 3732
39279cc3
CM
3733 return err;
3734}
61295eb8 3735
bd555975 3736void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3737{
3738 struct btrfs_trans_handle *trans;
3739 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3740 unsigned long nr;
39279cc3
CM
3741 int ret;
3742
1abe9b8a 3743 trace_btrfs_inode_evict(inode);
3744
39279cc3 3745 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3746 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3747 root == root->fs_info->tree_root))
bd555975
AV
3748 goto no_delete;
3749
39279cc3 3750 if (is_bad_inode(inode)) {
7b128766 3751 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3752 goto no_delete;
3753 }
bd555975 3754 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3755 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3756
c71bf099
YZ
3757 if (root->fs_info->log_root_recovering) {
3758 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3759 goto no_delete;
3760 }
3761
76dda93c
YZ
3762 if (inode->i_nlink > 0) {
3763 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3764 goto no_delete;
3765 }
3766
dbe674a9 3767 btrfs_i_size_write(inode, 0);
5f39d397 3768
8082510e 3769 while (1) {
d68fc57b
YZ
3770 trans = btrfs_start_transaction(root, 0);
3771 BUG_ON(IS_ERR(trans));
8082510e 3772 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3773 trans->block_rsv = root->orphan_block_rsv;
3774
3775 ret = btrfs_block_rsv_check(trans, root,
3776 root->orphan_block_rsv, 0, 5);
3777 if (ret) {
3778 BUG_ON(ret != -EAGAIN);
3779 ret = btrfs_commit_transaction(trans, root);
3780 BUG_ON(ret);
3781 continue;
3782 }
7b128766 3783
d68fc57b 3784 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3785 if (ret != -EAGAIN)
3786 break;
85e21bac 3787
8082510e
YZ
3788 nr = trans->blocks_used;
3789 btrfs_end_transaction(trans, root);
3790 trans = NULL;
3791 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3792
8082510e 3793 }
5f39d397 3794
8082510e
YZ
3795 if (ret == 0) {
3796 ret = btrfs_orphan_del(trans, inode);
3797 BUG_ON(ret);
3798 }
54aa1f4d 3799
d3c2fdcf 3800 nr = trans->blocks_used;
54aa1f4d 3801 btrfs_end_transaction(trans, root);
d3c2fdcf 3802 btrfs_btree_balance_dirty(root, nr);
39279cc3 3803no_delete:
bd555975 3804 end_writeback(inode);
8082510e 3805 return;
39279cc3
CM
3806}
3807
3808/*
3809 * this returns the key found in the dir entry in the location pointer.
3810 * If no dir entries were found, location->objectid is 0.
3811 */
3812static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3813 struct btrfs_key *location)
3814{
3815 const char *name = dentry->d_name.name;
3816 int namelen = dentry->d_name.len;
3817 struct btrfs_dir_item *di;
3818 struct btrfs_path *path;
3819 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3820 int ret = 0;
39279cc3
CM
3821
3822 path = btrfs_alloc_path();
3823 BUG_ON(!path);
3954401f 3824
39279cc3
CM
3825 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3826 namelen, 0);
0d9f7f3e
Y
3827 if (IS_ERR(di))
3828 ret = PTR_ERR(di);
d397712b
CM
3829
3830 if (!di || IS_ERR(di))
3954401f 3831 goto out_err;
d397712b 3832
5f39d397 3833 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3834out:
39279cc3
CM
3835 btrfs_free_path(path);
3836 return ret;
3954401f
CM
3837out_err:
3838 location->objectid = 0;
3839 goto out;
39279cc3
CM
3840}
3841
3842/*
3843 * when we hit a tree root in a directory, the btrfs part of the inode
3844 * needs to be changed to reflect the root directory of the tree root. This
3845 * is kind of like crossing a mount point.
3846 */
3847static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3848 struct inode *dir,
3849 struct dentry *dentry,
3850 struct btrfs_key *location,
3851 struct btrfs_root **sub_root)
39279cc3 3852{
4df27c4d
YZ
3853 struct btrfs_path *path;
3854 struct btrfs_root *new_root;
3855 struct btrfs_root_ref *ref;
3856 struct extent_buffer *leaf;
3857 int ret;
3858 int err = 0;
39279cc3 3859
4df27c4d
YZ
3860 path = btrfs_alloc_path();
3861 if (!path) {
3862 err = -ENOMEM;
3863 goto out;
3864 }
39279cc3 3865
4df27c4d
YZ
3866 err = -ENOENT;
3867 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3868 BTRFS_I(dir)->root->root_key.objectid,
3869 location->objectid);
3870 if (ret) {
3871 if (ret < 0)
3872 err = ret;
3873 goto out;
3874 }
39279cc3 3875
4df27c4d
YZ
3876 leaf = path->nodes[0];
3877 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3878 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3879 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3880 goto out;
39279cc3 3881
4df27c4d
YZ
3882 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3883 (unsigned long)(ref + 1),
3884 dentry->d_name.len);
3885 if (ret)
3886 goto out;
3887
3888 btrfs_release_path(root->fs_info->tree_root, path);
3889
3890 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3891 if (IS_ERR(new_root)) {
3892 err = PTR_ERR(new_root);
3893 goto out;
3894 }
3895
3896 if (btrfs_root_refs(&new_root->root_item) == 0) {
3897 err = -ENOENT;
3898 goto out;
3899 }
3900
3901 *sub_root = new_root;
3902 location->objectid = btrfs_root_dirid(&new_root->root_item);
3903 location->type = BTRFS_INODE_ITEM_KEY;
3904 location->offset = 0;
3905 err = 0;
3906out:
3907 btrfs_free_path(path);
3908 return err;
39279cc3
CM
3909}
3910
5d4f98a2
YZ
3911static void inode_tree_add(struct inode *inode)
3912{
3913 struct btrfs_root *root = BTRFS_I(inode)->root;
3914 struct btrfs_inode *entry;
03e860bd
FNP
3915 struct rb_node **p;
3916 struct rb_node *parent;
03e860bd
FNP
3917again:
3918 p = &root->inode_tree.rb_node;
3919 parent = NULL;
5d4f98a2 3920
1d3382cb 3921 if (inode_unhashed(inode))
76dda93c
YZ
3922 return;
3923
5d4f98a2
YZ
3924 spin_lock(&root->inode_lock);
3925 while (*p) {
3926 parent = *p;
3927 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3928
3929 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3930 p = &parent->rb_left;
5d4f98a2 3931 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3932 p = &parent->rb_right;
5d4f98a2
YZ
3933 else {
3934 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3935 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3936 rb_erase(parent, &root->inode_tree);
3937 RB_CLEAR_NODE(parent);
3938 spin_unlock(&root->inode_lock);
3939 goto again;
5d4f98a2
YZ
3940 }
3941 }
3942 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3943 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3944 spin_unlock(&root->inode_lock);
3945}
3946
3947static void inode_tree_del(struct inode *inode)
3948{
3949 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3950 int empty = 0;
5d4f98a2 3951
03e860bd 3952 spin_lock(&root->inode_lock);
5d4f98a2 3953 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3954 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3955 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3956 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3957 }
03e860bd 3958 spin_unlock(&root->inode_lock);
76dda93c 3959
0af3d00b
JB
3960 /*
3961 * Free space cache has inodes in the tree root, but the tree root has a
3962 * root_refs of 0, so this could end up dropping the tree root as a
3963 * snapshot, so we need the extra !root->fs_info->tree_root check to
3964 * make sure we don't drop it.
3965 */
3966 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3967 root != root->fs_info->tree_root) {
76dda93c
YZ
3968 synchronize_srcu(&root->fs_info->subvol_srcu);
3969 spin_lock(&root->inode_lock);
3970 empty = RB_EMPTY_ROOT(&root->inode_tree);
3971 spin_unlock(&root->inode_lock);
3972 if (empty)
3973 btrfs_add_dead_root(root);
3974 }
3975}
3976
3977int btrfs_invalidate_inodes(struct btrfs_root *root)
3978{
3979 struct rb_node *node;
3980 struct rb_node *prev;
3981 struct btrfs_inode *entry;
3982 struct inode *inode;
3983 u64 objectid = 0;
3984
3985 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3986
3987 spin_lock(&root->inode_lock);
3988again:
3989 node = root->inode_tree.rb_node;
3990 prev = NULL;
3991 while (node) {
3992 prev = node;
3993 entry = rb_entry(node, struct btrfs_inode, rb_node);
3994
3995 if (objectid < entry->vfs_inode.i_ino)
3996 node = node->rb_left;
3997 else if (objectid > entry->vfs_inode.i_ino)
3998 node = node->rb_right;
3999 else
4000 break;
4001 }
4002 if (!node) {
4003 while (prev) {
4004 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4005 if (objectid <= entry->vfs_inode.i_ino) {
4006 node = prev;
4007 break;
4008 }
4009 prev = rb_next(prev);
4010 }
4011 }
4012 while (node) {
4013 entry = rb_entry(node, struct btrfs_inode, rb_node);
4014 objectid = entry->vfs_inode.i_ino + 1;
4015 inode = igrab(&entry->vfs_inode);
4016 if (inode) {
4017 spin_unlock(&root->inode_lock);
4018 if (atomic_read(&inode->i_count) > 1)
4019 d_prune_aliases(inode);
4020 /*
45321ac5 4021 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4022 * the inode cache when its usage count
4023 * hits zero.
4024 */
4025 iput(inode);
4026 cond_resched();
4027 spin_lock(&root->inode_lock);
4028 goto again;
4029 }
4030
4031 if (cond_resched_lock(&root->inode_lock))
4032 goto again;
4033
4034 node = rb_next(node);
4035 }
4036 spin_unlock(&root->inode_lock);
4037 return 0;
5d4f98a2
YZ
4038}
4039
e02119d5
CM
4040static int btrfs_init_locked_inode(struct inode *inode, void *p)
4041{
4042 struct btrfs_iget_args *args = p;
4043 inode->i_ino = args->ino;
e02119d5 4044 BTRFS_I(inode)->root = args->root;
6a63209f 4045 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4046 return 0;
4047}
4048
4049static int btrfs_find_actor(struct inode *inode, void *opaque)
4050{
4051 struct btrfs_iget_args *args = opaque;
d397712b
CM
4052 return args->ino == inode->i_ino &&
4053 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4054}
4055
5d4f98a2
YZ
4056static struct inode *btrfs_iget_locked(struct super_block *s,
4057 u64 objectid,
4058 struct btrfs_root *root)
39279cc3
CM
4059{
4060 struct inode *inode;
4061 struct btrfs_iget_args args;
4062 args.ino = objectid;
4063 args.root = root;
4064
4065 inode = iget5_locked(s, objectid, btrfs_find_actor,
4066 btrfs_init_locked_inode,
4067 (void *)&args);
4068 return inode;
4069}
4070
1a54ef8c
BR
4071/* Get an inode object given its location and corresponding root.
4072 * Returns in *is_new if the inode was read from disk
4073 */
4074struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4075 struct btrfs_root *root, int *new)
1a54ef8c
BR
4076{
4077 struct inode *inode;
4078
4079 inode = btrfs_iget_locked(s, location->objectid, root);
4080 if (!inode)
5d4f98a2 4081 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4082
4083 if (inode->i_state & I_NEW) {
4084 BTRFS_I(inode)->root = root;
4085 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4086 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
4087
4088 inode_tree_add(inode);
1a54ef8c 4089 unlock_new_inode(inode);
73f73415
JB
4090 if (new)
4091 *new = 1;
1a54ef8c
BR
4092 }
4093
4094 return inode;
4095}
4096
4df27c4d
YZ
4097static struct inode *new_simple_dir(struct super_block *s,
4098 struct btrfs_key *key,
4099 struct btrfs_root *root)
4100{
4101 struct inode *inode = new_inode(s);
4102
4103 if (!inode)
4104 return ERR_PTR(-ENOMEM);
4105
4df27c4d
YZ
4106 BTRFS_I(inode)->root = root;
4107 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4108 BTRFS_I(inode)->dummy_inode = 1;
4109
4110 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4111 inode->i_op = &simple_dir_inode_operations;
4112 inode->i_fop = &simple_dir_operations;
4113 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4114 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4115
4116 return inode;
4117}
4118
3de4586c 4119struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4120{
d397712b 4121 struct inode *inode;
4df27c4d 4122 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4123 struct btrfs_root *sub_root = root;
4124 struct btrfs_key location;
76dda93c 4125 int index;
5d4f98a2 4126 int ret;
39279cc3
CM
4127
4128 if (dentry->d_name.len > BTRFS_NAME_LEN)
4129 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4130
39279cc3 4131 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4132
39279cc3
CM
4133 if (ret < 0)
4134 return ERR_PTR(ret);
5f39d397 4135
4df27c4d
YZ
4136 if (location.objectid == 0)
4137 return NULL;
4138
4139 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4140 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4141 return inode;
4142 }
4143
4144 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4145
76dda93c 4146 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4147 ret = fixup_tree_root_location(root, dir, dentry,
4148 &location, &sub_root);
4149 if (ret < 0) {
4150 if (ret != -ENOENT)
4151 inode = ERR_PTR(ret);
4152 else
4153 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4154 } else {
73f73415 4155 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4156 }
76dda93c
YZ
4157 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4158
34d19bad 4159 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4160 down_read(&root->fs_info->cleanup_work_sem);
4161 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4162 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4163 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4164 if (ret)
4165 inode = ERR_PTR(ret);
c71bf099
YZ
4166 }
4167
3de4586c
CM
4168 return inode;
4169}
4170
fe15ce44 4171static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4172{
4173 struct btrfs_root *root;
4174
efefb143
YZ
4175 if (!dentry->d_inode && !IS_ROOT(dentry))
4176 dentry = dentry->d_parent;
76dda93c 4177
efefb143
YZ
4178 if (dentry->d_inode) {
4179 root = BTRFS_I(dentry->d_inode)->root;
4180 if (btrfs_root_refs(&root->root_item) == 0)
4181 return 1;
4182 }
76dda93c
YZ
4183 return 0;
4184}
4185
3de4586c
CM
4186static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4187 struct nameidata *nd)
4188{
4189 struct inode *inode;
4190
3de4586c
CM
4191 inode = btrfs_lookup_dentry(dir, dentry);
4192 if (IS_ERR(inode))
4193 return ERR_CAST(inode);
7b128766 4194
39279cc3
CM
4195 return d_splice_alias(inode, dentry);
4196}
4197
39279cc3
CM
4198static unsigned char btrfs_filetype_table[] = {
4199 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4200};
4201
cbdf5a24
DW
4202static int btrfs_real_readdir(struct file *filp, void *dirent,
4203 filldir_t filldir)
39279cc3 4204{
6da6abae 4205 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4206 struct btrfs_root *root = BTRFS_I(inode)->root;
4207 struct btrfs_item *item;
4208 struct btrfs_dir_item *di;
4209 struct btrfs_key key;
5f39d397 4210 struct btrfs_key found_key;
39279cc3
CM
4211 struct btrfs_path *path;
4212 int ret;
4213 u32 nritems;
5f39d397 4214 struct extent_buffer *leaf;
39279cc3
CM
4215 int slot;
4216 int advance;
4217 unsigned char d_type;
4218 int over = 0;
4219 u32 di_cur;
4220 u32 di_total;
4221 u32 di_len;
4222 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4223 char tmp_name[32];
4224 char *name_ptr;
4225 int name_len;
39279cc3
CM
4226
4227 /* FIXME, use a real flag for deciding about the key type */
4228 if (root->fs_info->tree_root == root)
4229 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4230
3954401f
CM
4231 /* special case for "." */
4232 if (filp->f_pos == 0) {
4233 over = filldir(dirent, ".", 1,
4234 1, inode->i_ino,
4235 DT_DIR);
4236 if (over)
4237 return 0;
4238 filp->f_pos = 1;
4239 }
3954401f
CM
4240 /* special case for .., just use the back ref */
4241 if (filp->f_pos == 1) {
5ecc7e5d 4242 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4243 over = filldir(dirent, "..", 2,
5ecc7e5d 4244 2, pino, DT_DIR);
3954401f 4245 if (over)
49593bfa 4246 return 0;
3954401f
CM
4247 filp->f_pos = 2;
4248 }
49593bfa
DW
4249 path = btrfs_alloc_path();
4250 path->reada = 2;
4251
39279cc3
CM
4252 btrfs_set_key_type(&key, key_type);
4253 key.offset = filp->f_pos;
49593bfa 4254 key.objectid = inode->i_ino;
5f39d397 4255
39279cc3
CM
4256 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4257 if (ret < 0)
4258 goto err;
4259 advance = 0;
49593bfa
DW
4260
4261 while (1) {
5f39d397
CM
4262 leaf = path->nodes[0];
4263 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4264 slot = path->slots[0];
4265 if (advance || slot >= nritems) {
49593bfa 4266 if (slot >= nritems - 1) {
39279cc3
CM
4267 ret = btrfs_next_leaf(root, path);
4268 if (ret)
4269 break;
5f39d397
CM
4270 leaf = path->nodes[0];
4271 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4272 slot = path->slots[0];
4273 } else {
4274 slot++;
4275 path->slots[0]++;
4276 }
4277 }
3de4586c 4278
39279cc3 4279 advance = 1;
5f39d397
CM
4280 item = btrfs_item_nr(leaf, slot);
4281 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4282
4283 if (found_key.objectid != key.objectid)
39279cc3 4284 break;
5f39d397 4285 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4286 break;
5f39d397 4287 if (found_key.offset < filp->f_pos)
39279cc3 4288 continue;
5f39d397
CM
4289
4290 filp->f_pos = found_key.offset;
49593bfa 4291
39279cc3
CM
4292 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4293 di_cur = 0;
5f39d397 4294 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4295
4296 while (di_cur < di_total) {
5f39d397
CM
4297 struct btrfs_key location;
4298
22a94d44
JB
4299 if (verify_dir_item(root, leaf, di))
4300 break;
4301
5f39d397 4302 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4303 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4304 name_ptr = tmp_name;
4305 } else {
4306 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4307 if (!name_ptr) {
4308 ret = -ENOMEM;
4309 goto err;
4310 }
5f39d397
CM
4311 }
4312 read_extent_buffer(leaf, name_ptr,
4313 (unsigned long)(di + 1), name_len);
4314
4315 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4316 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4317
4318 /* is this a reference to our own snapshot? If so
4319 * skip it
4320 */
4321 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4322 location.objectid == root->root_key.objectid) {
4323 over = 0;
4324 goto skip;
4325 }
5f39d397 4326 over = filldir(dirent, name_ptr, name_len,
49593bfa 4327 found_key.offset, location.objectid,
39279cc3 4328 d_type);
5f39d397 4329
3de4586c 4330skip:
5f39d397
CM
4331 if (name_ptr != tmp_name)
4332 kfree(name_ptr);
4333
39279cc3
CM
4334 if (over)
4335 goto nopos;
5103e947 4336 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4337 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4338 di_cur += di_len;
4339 di = (struct btrfs_dir_item *)((char *)di + di_len);
4340 }
4341 }
49593bfa
DW
4342
4343 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4344 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4345 /*
4346 * 32-bit glibc will use getdents64, but then strtol -
4347 * so the last number we can serve is this.
4348 */
4349 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4350 else
4351 filp->f_pos++;
39279cc3
CM
4352nopos:
4353 ret = 0;
4354err:
39279cc3 4355 btrfs_free_path(path);
39279cc3
CM
4356 return ret;
4357}
4358
a9185b41 4359int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4360{
4361 struct btrfs_root *root = BTRFS_I(inode)->root;
4362 struct btrfs_trans_handle *trans;
4363 int ret = 0;
0af3d00b 4364 bool nolock = false;
39279cc3 4365
8929ecfa 4366 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4367 return 0;
4368
0af3d00b
JB
4369 smp_mb();
4370 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4371
a9185b41 4372 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4373 if (nolock)
4374 trans = btrfs_join_transaction_nolock(root, 1);
4375 else
4376 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4377 if (IS_ERR(trans))
4378 return PTR_ERR(trans);
39279cc3 4379 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4380 if (nolock)
4381 ret = btrfs_end_transaction_nolock(trans, root);
4382 else
4383 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4384 }
4385 return ret;
4386}
4387
4388/*
54aa1f4d 4389 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4390 * inode changes. But, it is most likely to find the inode in cache.
4391 * FIXME, needs more benchmarking...there are no reasons other than performance
4392 * to keep or drop this code.
4393 */
4394void btrfs_dirty_inode(struct inode *inode)
4395{
4396 struct btrfs_root *root = BTRFS_I(inode)->root;
4397 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4398 int ret;
4399
4400 if (BTRFS_I(inode)->dummy_inode)
4401 return;
39279cc3 4402
f9295749 4403 trans = btrfs_join_transaction(root, 1);
3612b495 4404 BUG_ON(IS_ERR(trans));
39279cc3 4405 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4406
4407 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4408 if (ret && ret == -ENOSPC) {
4409 /* whoops, lets try again with the full transaction */
4410 btrfs_end_transaction(trans, root);
4411 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4412 if (IS_ERR(trans)) {
4413 if (printk_ratelimit()) {
4414 printk(KERN_ERR "btrfs: fail to "
4415 "dirty inode %lu error %ld\n",
4416 inode->i_ino, PTR_ERR(trans));
4417 }
4418 return;
4419 }
94b60442 4420 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4421
94b60442
CM
4422 ret = btrfs_update_inode(trans, root, inode);
4423 if (ret) {
9aeead73
CM
4424 if (printk_ratelimit()) {
4425 printk(KERN_ERR "btrfs: fail to "
4426 "dirty inode %lu error %d\n",
4427 inode->i_ino, ret);
4428 }
94b60442
CM
4429 }
4430 }
39279cc3 4431 btrfs_end_transaction(trans, root);
39279cc3
CM
4432}
4433
d352ac68
CM
4434/*
4435 * find the highest existing sequence number in a directory
4436 * and then set the in-memory index_cnt variable to reflect
4437 * free sequence numbers
4438 */
aec7477b
JB
4439static int btrfs_set_inode_index_count(struct inode *inode)
4440{
4441 struct btrfs_root *root = BTRFS_I(inode)->root;
4442 struct btrfs_key key, found_key;
4443 struct btrfs_path *path;
4444 struct extent_buffer *leaf;
4445 int ret;
4446
4447 key.objectid = inode->i_ino;
4448 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4449 key.offset = (u64)-1;
4450
4451 path = btrfs_alloc_path();
4452 if (!path)
4453 return -ENOMEM;
4454
4455 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4456 if (ret < 0)
4457 goto out;
4458 /* FIXME: we should be able to handle this */
4459 if (ret == 0)
4460 goto out;
4461 ret = 0;
4462
4463 /*
4464 * MAGIC NUMBER EXPLANATION:
4465 * since we search a directory based on f_pos we have to start at 2
4466 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4467 * else has to start at 2
4468 */
4469 if (path->slots[0] == 0) {
4470 BTRFS_I(inode)->index_cnt = 2;
4471 goto out;
4472 }
4473
4474 path->slots[0]--;
4475
4476 leaf = path->nodes[0];
4477 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4478
4479 if (found_key.objectid != inode->i_ino ||
4480 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4481 BTRFS_I(inode)->index_cnt = 2;
4482 goto out;
4483 }
4484
4485 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4486out:
4487 btrfs_free_path(path);
4488 return ret;
4489}
4490
d352ac68
CM
4491/*
4492 * helper to find a free sequence number in a given directory. This current
4493 * code is very simple, later versions will do smarter things in the btree
4494 */
3de4586c 4495int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4496{
4497 int ret = 0;
4498
4499 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4500 ret = btrfs_set_inode_index_count(dir);
d397712b 4501 if (ret)
aec7477b
JB
4502 return ret;
4503 }
4504
00e4e6b3 4505 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4506 BTRFS_I(dir)->index_cnt++;
4507
4508 return ret;
4509}
4510
39279cc3
CM
4511static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4512 struct btrfs_root *root,
aec7477b 4513 struct inode *dir,
9c58309d 4514 const char *name, int name_len,
d2fb3437
YZ
4515 u64 ref_objectid, u64 objectid,
4516 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4517{
4518 struct inode *inode;
5f39d397 4519 struct btrfs_inode_item *inode_item;
39279cc3 4520 struct btrfs_key *location;
5f39d397 4521 struct btrfs_path *path;
9c58309d
CM
4522 struct btrfs_inode_ref *ref;
4523 struct btrfs_key key[2];
4524 u32 sizes[2];
4525 unsigned long ptr;
39279cc3
CM
4526 int ret;
4527 int owner;
4528
5f39d397
CM
4529 path = btrfs_alloc_path();
4530 BUG_ON(!path);
4531
39279cc3
CM
4532 inode = new_inode(root->fs_info->sb);
4533 if (!inode)
4534 return ERR_PTR(-ENOMEM);
4535
aec7477b 4536 if (dir) {
1abe9b8a 4537 trace_btrfs_inode_request(dir);
4538
3de4586c 4539 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4540 if (ret) {
4541 iput(inode);
aec7477b 4542 return ERR_PTR(ret);
09771430 4543 }
aec7477b
JB
4544 }
4545 /*
4546 * index_cnt is ignored for everything but a dir,
4547 * btrfs_get_inode_index_count has an explanation for the magic
4548 * number
4549 */
4550 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4551 BTRFS_I(inode)->root = root;
e02119d5 4552 BTRFS_I(inode)->generation = trans->transid;
76195853 4553 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4554 btrfs_set_inode_space_info(root, inode);
b888db2b 4555
39279cc3
CM
4556 if (mode & S_IFDIR)
4557 owner = 0;
4558 else
4559 owner = 1;
d2fb3437
YZ
4560 BTRFS_I(inode)->block_group =
4561 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4562
4563 key[0].objectid = objectid;
4564 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4565 key[0].offset = 0;
4566
4567 key[1].objectid = objectid;
4568 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4569 key[1].offset = ref_objectid;
4570
4571 sizes[0] = sizeof(struct btrfs_inode_item);
4572 sizes[1] = name_len + sizeof(*ref);
4573
b9473439 4574 path->leave_spinning = 1;
9c58309d
CM
4575 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4576 if (ret != 0)
5f39d397
CM
4577 goto fail;
4578
ecc11fab 4579 inode_init_owner(inode, dir, mode);
39279cc3 4580 inode->i_ino = objectid;
a76a3cd4 4581 inode_set_bytes(inode, 0);
39279cc3 4582 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4583 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4584 struct btrfs_inode_item);
e02119d5 4585 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4586
4587 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4588 struct btrfs_inode_ref);
4589 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4590 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4591 ptr = (unsigned long)(ref + 1);
4592 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4593
5f39d397
CM
4594 btrfs_mark_buffer_dirty(path->nodes[0]);
4595 btrfs_free_path(path);
4596
39279cc3
CM
4597 location = &BTRFS_I(inode)->location;
4598 location->objectid = objectid;
39279cc3
CM
4599 location->offset = 0;
4600 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4601
6cbff00f
CH
4602 btrfs_inherit_iflags(inode, dir);
4603
94272164
CM
4604 if ((mode & S_IFREG)) {
4605 if (btrfs_test_opt(root, NODATASUM))
4606 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4607 if (btrfs_test_opt(root, NODATACOW) ||
4608 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4609 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4610 }
4611
39279cc3 4612 insert_inode_hash(inode);
5d4f98a2 4613 inode_tree_add(inode);
1abe9b8a 4614
4615 trace_btrfs_inode_new(inode);
4616
39279cc3 4617 return inode;
5f39d397 4618fail:
aec7477b
JB
4619 if (dir)
4620 BTRFS_I(dir)->index_cnt--;
5f39d397 4621 btrfs_free_path(path);
09771430 4622 iput(inode);
5f39d397 4623 return ERR_PTR(ret);
39279cc3
CM
4624}
4625
4626static inline u8 btrfs_inode_type(struct inode *inode)
4627{
4628 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4629}
4630
d352ac68
CM
4631/*
4632 * utility function to add 'inode' into 'parent_inode' with
4633 * a give name and a given sequence number.
4634 * if 'add_backref' is true, also insert a backref from the
4635 * inode to the parent directory.
4636 */
e02119d5
CM
4637int btrfs_add_link(struct btrfs_trans_handle *trans,
4638 struct inode *parent_inode, struct inode *inode,
4639 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4640{
4df27c4d 4641 int ret = 0;
39279cc3 4642 struct btrfs_key key;
e02119d5 4643 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4644
4df27c4d
YZ
4645 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4646 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4647 } else {
4648 key.objectid = inode->i_ino;
4649 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4650 key.offset = 0;
4651 }
4652
4653 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4654 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4655 key.objectid, root->root_key.objectid,
4656 parent_inode->i_ino,
4657 index, name, name_len);
4658 } else if (add_backref) {
4659 ret = btrfs_insert_inode_ref(trans, root,
4660 name, name_len, inode->i_ino,
4661 parent_inode->i_ino, index);
4662 }
39279cc3 4663
39279cc3 4664 if (ret == 0) {
4df27c4d
YZ
4665 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4666 parent_inode->i_ino, &key,
4667 btrfs_inode_type(inode), index);
4668 BUG_ON(ret);
4669
dbe674a9 4670 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4671 name_len * 2);
79c44584 4672 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4673 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4674 }
4675 return ret;
4676}
4677
4678static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4679 struct inode *dir, struct dentry *dentry,
4680 struct inode *inode, int backref, u64 index)
39279cc3 4681{
a1b075d2
JB
4682 int err = btrfs_add_link(trans, dir, inode,
4683 dentry->d_name.name, dentry->d_name.len,
4684 backref, index);
39279cc3
CM
4685 if (!err) {
4686 d_instantiate(dentry, inode);
4687 return 0;
4688 }
4689 if (err > 0)
4690 err = -EEXIST;
4691 return err;
4692}
4693
618e21d5
JB
4694static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4695 int mode, dev_t rdev)
4696{
4697 struct btrfs_trans_handle *trans;
4698 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4699 struct inode *inode = NULL;
618e21d5
JB
4700 int err;
4701 int drop_inode = 0;
4702 u64 objectid;
1832a6d5 4703 unsigned long nr = 0;
00e4e6b3 4704 u64 index = 0;
618e21d5
JB
4705
4706 if (!new_valid_dev(rdev))
4707 return -EINVAL;
4708
a22285a6
YZ
4709 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4710 if (err)
4711 return err;
4712
9ed74f2d
JB
4713 /*
4714 * 2 for inode item and ref
4715 * 2 for dir items
4716 * 1 for xattr if selinux is on
4717 */
a22285a6
YZ
4718 trans = btrfs_start_transaction(root, 5);
4719 if (IS_ERR(trans))
4720 return PTR_ERR(trans);
1832a6d5 4721
618e21d5
JB
4722 btrfs_set_trans_block_group(trans, dir);
4723
aec7477b 4724 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4725 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4726 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4727 err = PTR_ERR(inode);
4728 if (IS_ERR(inode))
4729 goto out_unlock;
4730
f34f57a3 4731 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4732 if (err) {
4733 drop_inode = 1;
4734 goto out_unlock;
4735 }
4736
618e21d5 4737 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4738 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4739 if (err)
4740 drop_inode = 1;
4741 else {
4742 inode->i_op = &btrfs_special_inode_operations;
4743 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4744 btrfs_update_inode(trans, root, inode);
618e21d5 4745 }
618e21d5
JB
4746 btrfs_update_inode_block_group(trans, inode);
4747 btrfs_update_inode_block_group(trans, dir);
4748out_unlock:
d3c2fdcf 4749 nr = trans->blocks_used;
89ce8a63 4750 btrfs_end_transaction_throttle(trans, root);
a22285a6 4751 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4752 if (drop_inode) {
4753 inode_dec_link_count(inode);
4754 iput(inode);
4755 }
618e21d5
JB
4756 return err;
4757}
4758
39279cc3
CM
4759static int btrfs_create(struct inode *dir, struct dentry *dentry,
4760 int mode, struct nameidata *nd)
4761{
4762 struct btrfs_trans_handle *trans;
4763 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4764 struct inode *inode = NULL;
39279cc3 4765 int drop_inode = 0;
a22285a6 4766 int err;
1832a6d5 4767 unsigned long nr = 0;
39279cc3 4768 u64 objectid;
00e4e6b3 4769 u64 index = 0;
39279cc3 4770
a22285a6
YZ
4771 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4772 if (err)
4773 return err;
9ed74f2d
JB
4774 /*
4775 * 2 for inode item and ref
4776 * 2 for dir items
4777 * 1 for xattr if selinux is on
4778 */
a22285a6
YZ
4779 trans = btrfs_start_transaction(root, 5);
4780 if (IS_ERR(trans))
4781 return PTR_ERR(trans);
9ed74f2d 4782
39279cc3
CM
4783 btrfs_set_trans_block_group(trans, dir);
4784
aec7477b 4785 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4786 dentry->d_name.len, dir->i_ino, objectid,
4787 BTRFS_I(dir)->block_group, mode, &index);
39279cc3
CM
4788 err = PTR_ERR(inode);
4789 if (IS_ERR(inode))
4790 goto out_unlock;
4791
f34f57a3 4792 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4793 if (err) {
4794 drop_inode = 1;
4795 goto out_unlock;
4796 }
4797
39279cc3 4798 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4799 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4800 if (err)
4801 drop_inode = 1;
4802 else {
4803 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4804 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4805 inode->i_fop = &btrfs_file_operations;
4806 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4807 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4808 }
39279cc3
CM
4809 btrfs_update_inode_block_group(trans, inode);
4810 btrfs_update_inode_block_group(trans, dir);
4811out_unlock:
d3c2fdcf 4812 nr = trans->blocks_used;
ab78c84d 4813 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4814 if (drop_inode) {
4815 inode_dec_link_count(inode);
4816 iput(inode);
4817 }
d3c2fdcf 4818 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4819 return err;
4820}
4821
4822static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4823 struct dentry *dentry)
4824{
4825 struct btrfs_trans_handle *trans;
4826 struct btrfs_root *root = BTRFS_I(dir)->root;
4827 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4828 u64 index;
1832a6d5 4829 unsigned long nr = 0;
39279cc3
CM
4830 int err;
4831 int drop_inode = 0;
4832
4833 if (inode->i_nlink == 0)
4834 return -ENOENT;
4835
4a8be425
TH
4836 /* do not allow sys_link's with other subvols of the same device */
4837 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4838 return -EXDEV;
4a8be425 4839
9ed74f2d 4840 btrfs_inc_nlink(inode);
bc1cbf1f 4841 inode->i_ctime = CURRENT_TIME;
9ed74f2d 4842
3de4586c 4843 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4844 if (err)
4845 goto fail;
4846
a22285a6 4847 /*
7e6b6465 4848 * 2 items for inode and inode ref
a22285a6 4849 * 2 items for dir items
7e6b6465 4850 * 1 item for parent inode
a22285a6 4851 */
7e6b6465 4852 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4853 if (IS_ERR(trans)) {
4854 err = PTR_ERR(trans);
4855 goto fail;
4856 }
5f39d397 4857
39279cc3 4858 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4859 ihold(inode);
aec7477b 4860
a1b075d2 4861 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4862
a5719521 4863 if (err) {
54aa1f4d 4864 drop_inode = 1;
a5719521 4865 } else {
6a912213 4866 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4867 btrfs_update_inode_block_group(trans, dir);
4868 err = btrfs_update_inode(trans, root, inode);
4869 BUG_ON(err);
6a912213
JB
4870 btrfs_log_new_name(trans, inode, NULL, parent);
4871 dput(parent);
a5719521 4872 }
39279cc3 4873
d3c2fdcf 4874 nr = trans->blocks_used;
ab78c84d 4875 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4876fail:
39279cc3
CM
4877 if (drop_inode) {
4878 inode_dec_link_count(inode);
4879 iput(inode);
4880 }
d3c2fdcf 4881 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4882 return err;
4883}
4884
39279cc3
CM
4885static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4886{
b9d86667 4887 struct inode *inode = NULL;
39279cc3
CM
4888 struct btrfs_trans_handle *trans;
4889 struct btrfs_root *root = BTRFS_I(dir)->root;
4890 int err = 0;
4891 int drop_on_err = 0;
b9d86667 4892 u64 objectid = 0;
00e4e6b3 4893 u64 index = 0;
d3c2fdcf 4894 unsigned long nr = 1;
39279cc3 4895
a22285a6
YZ
4896 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4897 if (err)
4898 return err;
4899
9ed74f2d
JB
4900 /*
4901 * 2 items for inode and ref
4902 * 2 items for dir items
4903 * 1 for xattr if selinux is on
4904 */
a22285a6
YZ
4905 trans = btrfs_start_transaction(root, 5);
4906 if (IS_ERR(trans))
4907 return PTR_ERR(trans);
9ed74f2d 4908 btrfs_set_trans_block_group(trans, dir);
39279cc3 4909
aec7477b 4910 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4911 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4912 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4913 &index);
39279cc3
CM
4914 if (IS_ERR(inode)) {
4915 err = PTR_ERR(inode);
4916 goto out_fail;
4917 }
5f39d397 4918
39279cc3 4919 drop_on_err = 1;
33268eaf 4920
f34f57a3 4921 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4922 if (err)
4923 goto out_fail;
4924
39279cc3
CM
4925 inode->i_op = &btrfs_dir_inode_operations;
4926 inode->i_fop = &btrfs_dir_file_operations;
4927 btrfs_set_trans_block_group(trans, inode);
4928
dbe674a9 4929 btrfs_i_size_write(inode, 0);
39279cc3
CM
4930 err = btrfs_update_inode(trans, root, inode);
4931 if (err)
4932 goto out_fail;
5f39d397 4933
a1b075d2
JB
4934 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4935 dentry->d_name.len, 0, index);
39279cc3
CM
4936 if (err)
4937 goto out_fail;
5f39d397 4938
39279cc3
CM
4939 d_instantiate(dentry, inode);
4940 drop_on_err = 0;
39279cc3
CM
4941 btrfs_update_inode_block_group(trans, inode);
4942 btrfs_update_inode_block_group(trans, dir);
4943
4944out_fail:
d3c2fdcf 4945 nr = trans->blocks_used;
ab78c84d 4946 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4947 if (drop_on_err)
4948 iput(inode);
d3c2fdcf 4949 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4950 return err;
4951}
4952
d352ac68
CM
4953/* helper for btfs_get_extent. Given an existing extent in the tree,
4954 * and an extent that you want to insert, deal with overlap and insert
4955 * the new extent into the tree.
4956 */
3b951516
CM
4957static int merge_extent_mapping(struct extent_map_tree *em_tree,
4958 struct extent_map *existing,
e6dcd2dc
CM
4959 struct extent_map *em,
4960 u64 map_start, u64 map_len)
3b951516
CM
4961{
4962 u64 start_diff;
3b951516 4963
e6dcd2dc
CM
4964 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4965 start_diff = map_start - em->start;
4966 em->start = map_start;
4967 em->len = map_len;
c8b97818
CM
4968 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4969 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4970 em->block_start += start_diff;
c8b97818
CM
4971 em->block_len -= start_diff;
4972 }
e6dcd2dc 4973 return add_extent_mapping(em_tree, em);
3b951516
CM
4974}
4975
c8b97818
CM
4976static noinline int uncompress_inline(struct btrfs_path *path,
4977 struct inode *inode, struct page *page,
4978 size_t pg_offset, u64 extent_offset,
4979 struct btrfs_file_extent_item *item)
4980{
4981 int ret;
4982 struct extent_buffer *leaf = path->nodes[0];
4983 char *tmp;
4984 size_t max_size;
4985 unsigned long inline_size;
4986 unsigned long ptr;
261507a0 4987 int compress_type;
c8b97818
CM
4988
4989 WARN_ON(pg_offset != 0);
261507a0 4990 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4991 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4992 inline_size = btrfs_file_extent_inline_item_len(leaf,
4993 btrfs_item_nr(leaf, path->slots[0]));
4994 tmp = kmalloc(inline_size, GFP_NOFS);
4995 ptr = btrfs_file_extent_inline_start(item);
4996
4997 read_extent_buffer(leaf, tmp, ptr, inline_size);
4998
5b050f04 4999 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5000 ret = btrfs_decompress(compress_type, tmp, page,
5001 extent_offset, inline_size, max_size);
c8b97818
CM
5002 if (ret) {
5003 char *kaddr = kmap_atomic(page, KM_USER0);
5004 unsigned long copy_size = min_t(u64,
5005 PAGE_CACHE_SIZE - pg_offset,
5006 max_size - extent_offset);
5007 memset(kaddr + pg_offset, 0, copy_size);
5008 kunmap_atomic(kaddr, KM_USER0);
5009 }
5010 kfree(tmp);
5011 return 0;
5012}
5013
d352ac68
CM
5014/*
5015 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5016 * the ugly parts come from merging extents from the disk with the in-ram
5017 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5018 * where the in-ram extents might be locked pending data=ordered completion.
5019 *
5020 * This also copies inline extents directly into the page.
5021 */
d397712b 5022
a52d9a80 5023struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5024 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5025 int create)
5026{
5027 int ret;
5028 int err = 0;
db94535d 5029 u64 bytenr;
a52d9a80
CM
5030 u64 extent_start = 0;
5031 u64 extent_end = 0;
5032 u64 objectid = inode->i_ino;
5033 u32 found_type;
f421950f 5034 struct btrfs_path *path = NULL;
a52d9a80
CM
5035 struct btrfs_root *root = BTRFS_I(inode)->root;
5036 struct btrfs_file_extent_item *item;
5f39d397
CM
5037 struct extent_buffer *leaf;
5038 struct btrfs_key found_key;
a52d9a80
CM
5039 struct extent_map *em = NULL;
5040 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5041 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5042 struct btrfs_trans_handle *trans = NULL;
261507a0 5043 int compress_type;
a52d9a80 5044
a52d9a80 5045again:
890871be 5046 read_lock(&em_tree->lock);
d1310b2e 5047 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5048 if (em)
5049 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5050 read_unlock(&em_tree->lock);
d1310b2e 5051
a52d9a80 5052 if (em) {
e1c4b745
CM
5053 if (em->start > start || em->start + em->len <= start)
5054 free_extent_map(em);
5055 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5056 free_extent_map(em);
5057 else
5058 goto out;
a52d9a80 5059 }
d1310b2e 5060 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5061 if (!em) {
d1310b2e
CM
5062 err = -ENOMEM;
5063 goto out;
a52d9a80 5064 }
e6dcd2dc 5065 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5066 em->start = EXTENT_MAP_HOLE;
445a6944 5067 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5068 em->len = (u64)-1;
c8b97818 5069 em->block_len = (u64)-1;
f421950f
CM
5070
5071 if (!path) {
5072 path = btrfs_alloc_path();
5073 BUG_ON(!path);
5074 }
5075
179e29e4
CM
5076 ret = btrfs_lookup_file_extent(trans, root, path,
5077 objectid, start, trans != NULL);
a52d9a80
CM
5078 if (ret < 0) {
5079 err = ret;
5080 goto out;
5081 }
5082
5083 if (ret != 0) {
5084 if (path->slots[0] == 0)
5085 goto not_found;
5086 path->slots[0]--;
5087 }
5088
5f39d397
CM
5089 leaf = path->nodes[0];
5090 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5091 struct btrfs_file_extent_item);
a52d9a80 5092 /* are we inside the extent that was found? */
5f39d397
CM
5093 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5094 found_type = btrfs_key_type(&found_key);
5095 if (found_key.objectid != objectid ||
a52d9a80
CM
5096 found_type != BTRFS_EXTENT_DATA_KEY) {
5097 goto not_found;
5098 }
5099
5f39d397
CM
5100 found_type = btrfs_file_extent_type(leaf, item);
5101 extent_start = found_key.offset;
261507a0 5102 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5103 if (found_type == BTRFS_FILE_EXTENT_REG ||
5104 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5105 extent_end = extent_start +
db94535d 5106 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5107 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5108 size_t size;
5109 size = btrfs_file_extent_inline_len(leaf, item);
5110 extent_end = (extent_start + size + root->sectorsize - 1) &
5111 ~((u64)root->sectorsize - 1);
5112 }
5113
5114 if (start >= extent_end) {
5115 path->slots[0]++;
5116 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5117 ret = btrfs_next_leaf(root, path);
5118 if (ret < 0) {
5119 err = ret;
5120 goto out;
a52d9a80 5121 }
9036c102
YZ
5122 if (ret > 0)
5123 goto not_found;
5124 leaf = path->nodes[0];
a52d9a80 5125 }
9036c102
YZ
5126 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5127 if (found_key.objectid != objectid ||
5128 found_key.type != BTRFS_EXTENT_DATA_KEY)
5129 goto not_found;
5130 if (start + len <= found_key.offset)
5131 goto not_found;
5132 em->start = start;
5133 em->len = found_key.offset - start;
5134 goto not_found_em;
5135 }
5136
d899e052
YZ
5137 if (found_type == BTRFS_FILE_EXTENT_REG ||
5138 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5139 em->start = extent_start;
5140 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5141 em->orig_start = extent_start -
5142 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5143 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5144 if (bytenr == 0) {
5f39d397 5145 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5146 goto insert;
5147 }
261507a0 5148 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5149 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5150 em->compress_type = compress_type;
c8b97818
CM
5151 em->block_start = bytenr;
5152 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5153 item);
5154 } else {
5155 bytenr += btrfs_file_extent_offset(leaf, item);
5156 em->block_start = bytenr;
5157 em->block_len = em->len;
d899e052
YZ
5158 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5159 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5160 }
a52d9a80
CM
5161 goto insert;
5162 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5163 unsigned long ptr;
a52d9a80 5164 char *map;
3326d1b0
CM
5165 size_t size;
5166 size_t extent_offset;
5167 size_t copy_size;
a52d9a80 5168
689f9346 5169 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5170 if (!page || create) {
689f9346 5171 em->start = extent_start;
9036c102 5172 em->len = extent_end - extent_start;
689f9346
Y
5173 goto out;
5174 }
5f39d397 5175
9036c102
YZ
5176 size = btrfs_file_extent_inline_len(leaf, item);
5177 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5178 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5179 size - extent_offset);
3326d1b0 5180 em->start = extent_start + extent_offset;
70dec807
CM
5181 em->len = (copy_size + root->sectorsize - 1) &
5182 ~((u64)root->sectorsize - 1);
ff5b7ee3 5183 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5184 if (compress_type) {
c8b97818 5185 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5186 em->compress_type = compress_type;
5187 }
689f9346 5188 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5189 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5190 if (btrfs_file_extent_compression(leaf, item) !=
5191 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5192 ret = uncompress_inline(path, inode, page,
5193 pg_offset,
5194 extent_offset, item);
5195 BUG_ON(ret);
5196 } else {
5197 map = kmap(page);
5198 read_extent_buffer(leaf, map + pg_offset, ptr,
5199 copy_size);
93c82d57
CM
5200 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5201 memset(map + pg_offset + copy_size, 0,
5202 PAGE_CACHE_SIZE - pg_offset -
5203 copy_size);
5204 }
c8b97818
CM
5205 kunmap(page);
5206 }
179e29e4
CM
5207 flush_dcache_page(page);
5208 } else if (create && PageUptodate(page)) {
0ca1f7ce 5209 WARN_ON(1);
179e29e4
CM
5210 if (!trans) {
5211 kunmap(page);
5212 free_extent_map(em);
5213 em = NULL;
5214 btrfs_release_path(root, path);
f9295749 5215 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5216 if (IS_ERR(trans))
5217 return ERR_CAST(trans);
179e29e4
CM
5218 goto again;
5219 }
c8b97818 5220 map = kmap(page);
70dec807 5221 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5222 copy_size);
c8b97818 5223 kunmap(page);
179e29e4 5224 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5225 }
d1310b2e
CM
5226 set_extent_uptodate(io_tree, em->start,
5227 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
5228 goto insert;
5229 } else {
d397712b 5230 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5231 WARN_ON(1);
5232 }
5233not_found:
5234 em->start = start;
d1310b2e 5235 em->len = len;
a52d9a80 5236not_found_em:
5f39d397 5237 em->block_start = EXTENT_MAP_HOLE;
9036c102 5238 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5239insert:
5240 btrfs_release_path(root, path);
d1310b2e 5241 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5242 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5243 "[%llu %llu]\n", (unsigned long long)em->start,
5244 (unsigned long long)em->len,
5245 (unsigned long long)start,
5246 (unsigned long long)len);
a52d9a80
CM
5247 err = -EIO;
5248 goto out;
5249 }
d1310b2e
CM
5250
5251 err = 0;
890871be 5252 write_lock(&em_tree->lock);
a52d9a80 5253 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5254 /* it is possible that someone inserted the extent into the tree
5255 * while we had the lock dropped. It is also possible that
5256 * an overlapping map exists in the tree
5257 */
a52d9a80 5258 if (ret == -EEXIST) {
3b951516 5259 struct extent_map *existing;
e6dcd2dc
CM
5260
5261 ret = 0;
5262
3b951516 5263 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5264 if (existing && (existing->start > start ||
5265 existing->start + existing->len <= start)) {
5266 free_extent_map(existing);
5267 existing = NULL;
5268 }
3b951516
CM
5269 if (!existing) {
5270 existing = lookup_extent_mapping(em_tree, em->start,
5271 em->len);
5272 if (existing) {
5273 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5274 em, start,
5275 root->sectorsize);
3b951516
CM
5276 free_extent_map(existing);
5277 if (err) {
5278 free_extent_map(em);
5279 em = NULL;
5280 }
5281 } else {
5282 err = -EIO;
3b951516
CM
5283 free_extent_map(em);
5284 em = NULL;
5285 }
5286 } else {
5287 free_extent_map(em);
5288 em = existing;
e6dcd2dc 5289 err = 0;
a52d9a80 5290 }
a52d9a80 5291 }
890871be 5292 write_unlock(&em_tree->lock);
a52d9a80 5293out:
1abe9b8a 5294
5295 trace_btrfs_get_extent(root, em);
5296
f421950f
CM
5297 if (path)
5298 btrfs_free_path(path);
a52d9a80
CM
5299 if (trans) {
5300 ret = btrfs_end_transaction(trans, root);
d397712b 5301 if (!err)
a52d9a80
CM
5302 err = ret;
5303 }
a52d9a80
CM
5304 if (err) {
5305 free_extent_map(em);
a52d9a80
CM
5306 return ERR_PTR(err);
5307 }
5308 return em;
5309}
5310
ec29ed5b
CM
5311struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5312 size_t pg_offset, u64 start, u64 len,
5313 int create)
5314{
5315 struct extent_map *em;
5316 struct extent_map *hole_em = NULL;
5317 u64 range_start = start;
5318 u64 end;
5319 u64 found;
5320 u64 found_end;
5321 int err = 0;
5322
5323 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5324 if (IS_ERR(em))
5325 return em;
5326 if (em) {
5327 /*
5328 * if our em maps to a hole, there might
5329 * actually be delalloc bytes behind it
5330 */
5331 if (em->block_start != EXTENT_MAP_HOLE)
5332 return em;
5333 else
5334 hole_em = em;
5335 }
5336
5337 /* check to see if we've wrapped (len == -1 or similar) */
5338 end = start + len;
5339 if (end < start)
5340 end = (u64)-1;
5341 else
5342 end -= 1;
5343
5344 em = NULL;
5345
5346 /* ok, we didn't find anything, lets look for delalloc */
5347 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5348 end, len, EXTENT_DELALLOC, 1);
5349 found_end = range_start + found;
5350 if (found_end < range_start)
5351 found_end = (u64)-1;
5352
5353 /*
5354 * we didn't find anything useful, return
5355 * the original results from get_extent()
5356 */
5357 if (range_start > end || found_end <= start) {
5358 em = hole_em;
5359 hole_em = NULL;
5360 goto out;
5361 }
5362
5363 /* adjust the range_start to make sure it doesn't
5364 * go backwards from the start they passed in
5365 */
5366 range_start = max(start,range_start);
5367 found = found_end - range_start;
5368
5369 if (found > 0) {
5370 u64 hole_start = start;
5371 u64 hole_len = len;
5372
5373 em = alloc_extent_map(GFP_NOFS);
5374 if (!em) {
5375 err = -ENOMEM;
5376 goto out;
5377 }
5378 /*
5379 * when btrfs_get_extent can't find anything it
5380 * returns one huge hole
5381 *
5382 * make sure what it found really fits our range, and
5383 * adjust to make sure it is based on the start from
5384 * the caller
5385 */
5386 if (hole_em) {
5387 u64 calc_end = extent_map_end(hole_em);
5388
5389 if (calc_end <= start || (hole_em->start > end)) {
5390 free_extent_map(hole_em);
5391 hole_em = NULL;
5392 } else {
5393 hole_start = max(hole_em->start, start);
5394 hole_len = calc_end - hole_start;
5395 }
5396 }
5397 em->bdev = NULL;
5398 if (hole_em && range_start > hole_start) {
5399 /* our hole starts before our delalloc, so we
5400 * have to return just the parts of the hole
5401 * that go until the delalloc starts
5402 */
5403 em->len = min(hole_len,
5404 range_start - hole_start);
5405 em->start = hole_start;
5406 em->orig_start = hole_start;
5407 /*
5408 * don't adjust block start at all,
5409 * it is fixed at EXTENT_MAP_HOLE
5410 */
5411 em->block_start = hole_em->block_start;
5412 em->block_len = hole_len;
5413 } else {
5414 em->start = range_start;
5415 em->len = found;
5416 em->orig_start = range_start;
5417 em->block_start = EXTENT_MAP_DELALLOC;
5418 em->block_len = found;
5419 }
5420 } else if (hole_em) {
5421 return hole_em;
5422 }
5423out:
5424
5425 free_extent_map(hole_em);
5426 if (err) {
5427 free_extent_map(em);
5428 return ERR_PTR(err);
5429 }
5430 return em;
5431}
5432
4b46fce2
JB
5433static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5434 u64 start, u64 len)
5435{
5436 struct btrfs_root *root = BTRFS_I(inode)->root;
5437 struct btrfs_trans_handle *trans;
5438 struct extent_map *em;
5439 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5440 struct btrfs_key ins;
5441 u64 alloc_hint;
5442 int ret;
5443
5444 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5445
5446 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5447 if (IS_ERR(trans))
5448 return ERR_CAST(trans);
4b46fce2
JB
5449
5450 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5451
5452 alloc_hint = get_extent_allocation_hint(inode, start, len);
5453 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5454 alloc_hint, (u64)-1, &ins, 1);
5455 if (ret) {
5456 em = ERR_PTR(ret);
5457 goto out;
5458 }
5459
5460 em = alloc_extent_map(GFP_NOFS);
5461 if (!em) {
5462 em = ERR_PTR(-ENOMEM);
5463 goto out;
5464 }
5465
5466 em->start = start;
5467 em->orig_start = em->start;
5468 em->len = ins.offset;
5469
5470 em->block_start = ins.objectid;
5471 em->block_len = ins.offset;
5472 em->bdev = root->fs_info->fs_devices->latest_bdev;
5473 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5474
5475 while (1) {
5476 write_lock(&em_tree->lock);
5477 ret = add_extent_mapping(em_tree, em);
5478 write_unlock(&em_tree->lock);
5479 if (ret != -EEXIST)
5480 break;
5481 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5482 }
5483
5484 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5485 ins.offset, ins.offset, 0);
5486 if (ret) {
5487 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5488 em = ERR_PTR(ret);
5489 }
5490out:
5491 btrfs_end_transaction(trans, root);
5492 return em;
5493}
5494
46bfbb5c
CM
5495/*
5496 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5497 * block must be cow'd
5498 */
5499static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5500 struct inode *inode, u64 offset, u64 len)
5501{
5502 struct btrfs_path *path;
5503 int ret;
5504 struct extent_buffer *leaf;
5505 struct btrfs_root *root = BTRFS_I(inode)->root;
5506 struct btrfs_file_extent_item *fi;
5507 struct btrfs_key key;
5508 u64 disk_bytenr;
5509 u64 backref_offset;
5510 u64 extent_end;
5511 u64 num_bytes;
5512 int slot;
5513 int found_type;
5514
5515 path = btrfs_alloc_path();
5516 if (!path)
5517 return -ENOMEM;
5518
5519 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5520 offset, 0);
5521 if (ret < 0)
5522 goto out;
5523
5524 slot = path->slots[0];
5525 if (ret == 1) {
5526 if (slot == 0) {
5527 /* can't find the item, must cow */
5528 ret = 0;
5529 goto out;
5530 }
5531 slot--;
5532 }
5533 ret = 0;
5534 leaf = path->nodes[0];
5535 btrfs_item_key_to_cpu(leaf, &key, slot);
5536 if (key.objectid != inode->i_ino ||
5537 key.type != BTRFS_EXTENT_DATA_KEY) {
5538 /* not our file or wrong item type, must cow */
5539 goto out;
5540 }
5541
5542 if (key.offset > offset) {
5543 /* Wrong offset, must cow */
5544 goto out;
5545 }
5546
5547 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5548 found_type = btrfs_file_extent_type(leaf, fi);
5549 if (found_type != BTRFS_FILE_EXTENT_REG &&
5550 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5551 /* not a regular extent, must cow */
5552 goto out;
5553 }
5554 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5555 backref_offset = btrfs_file_extent_offset(leaf, fi);
5556
5557 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5558 if (extent_end < offset + len) {
5559 /* extent doesn't include our full range, must cow */
5560 goto out;
5561 }
5562
5563 if (btrfs_extent_readonly(root, disk_bytenr))
5564 goto out;
5565
5566 /*
5567 * look for other files referencing this extent, if we
5568 * find any we must cow
5569 */
5570 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5571 key.offset - backref_offset, disk_bytenr))
5572 goto out;
5573
5574 /*
5575 * adjust disk_bytenr and num_bytes to cover just the bytes
5576 * in this extent we are about to write. If there
5577 * are any csums in that range we have to cow in order
5578 * to keep the csums correct
5579 */
5580 disk_bytenr += backref_offset;
5581 disk_bytenr += offset - key.offset;
5582 num_bytes = min(offset + len, extent_end) - offset;
5583 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5584 goto out;
5585 /*
5586 * all of the above have passed, it is safe to overwrite this extent
5587 * without cow
5588 */
5589 ret = 1;
5590out:
5591 btrfs_free_path(path);
5592 return ret;
5593}
5594
4b46fce2
JB
5595static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5596 struct buffer_head *bh_result, int create)
5597{
5598 struct extent_map *em;
5599 struct btrfs_root *root = BTRFS_I(inode)->root;
5600 u64 start = iblock << inode->i_blkbits;
5601 u64 len = bh_result->b_size;
46bfbb5c 5602 struct btrfs_trans_handle *trans;
4b46fce2
JB
5603
5604 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5605 if (IS_ERR(em))
5606 return PTR_ERR(em);
5607
5608 /*
5609 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5610 * io. INLINE is special, and we could probably kludge it in here, but
5611 * it's still buffered so for safety lets just fall back to the generic
5612 * buffered path.
5613 *
5614 * For COMPRESSED we _have_ to read the entire extent in so we can
5615 * decompress it, so there will be buffering required no matter what we
5616 * do, so go ahead and fallback to buffered.
5617 *
5618 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5619 * to buffered IO. Don't blame me, this is the price we pay for using
5620 * the generic code.
5621 */
5622 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5623 em->block_start == EXTENT_MAP_INLINE) {
5624 free_extent_map(em);
5625 return -ENOTBLK;
5626 }
5627
5628 /* Just a good old fashioned hole, return */
5629 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5630 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5631 free_extent_map(em);
5632 /* DIO will do one hole at a time, so just unlock a sector */
5633 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5634 start + root->sectorsize - 1, GFP_NOFS);
5635 return 0;
5636 }
5637
5638 /*
5639 * We don't allocate a new extent in the following cases
5640 *
5641 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5642 * existing extent.
5643 * 2) The extent is marked as PREALLOC. We're good to go here and can
5644 * just use the extent.
5645 *
5646 */
46bfbb5c
CM
5647 if (!create) {
5648 len = em->len - (start - em->start);
4b46fce2 5649 goto map;
46bfbb5c 5650 }
4b46fce2
JB
5651
5652 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5653 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5654 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5655 int type;
5656 int ret;
46bfbb5c 5657 u64 block_start;
4b46fce2
JB
5658
5659 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5660 type = BTRFS_ORDERED_PREALLOC;
5661 else
5662 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5663 len = min(len, em->len - (start - em->start));
4b46fce2 5664 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5665
5666 /*
5667 * we're not going to log anything, but we do need
5668 * to make sure the current transaction stays open
5669 * while we look for nocow cross refs
5670 */
5671 trans = btrfs_join_transaction(root, 0);
3612b495 5672 if (IS_ERR(trans))
46bfbb5c
CM
5673 goto must_cow;
5674
5675 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5676 ret = btrfs_add_ordered_extent_dio(inode, start,
5677 block_start, len, len, type);
5678 btrfs_end_transaction(trans, root);
5679 if (ret) {
5680 free_extent_map(em);
5681 return ret;
5682 }
5683 goto unlock;
4b46fce2 5684 }
46bfbb5c 5685 btrfs_end_transaction(trans, root);
4b46fce2 5686 }
46bfbb5c
CM
5687must_cow:
5688 /*
5689 * this will cow the extent, reset the len in case we changed
5690 * it above
5691 */
5692 len = bh_result->b_size;
5693 free_extent_map(em);
5694 em = btrfs_new_extent_direct(inode, start, len);
5695 if (IS_ERR(em))
5696 return PTR_ERR(em);
5697 len = min(len, em->len - (start - em->start));
5698unlock:
4845e44f
CM
5699 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5700 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5701 0, NULL, GFP_NOFS);
4b46fce2
JB
5702map:
5703 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5704 inode->i_blkbits;
46bfbb5c 5705 bh_result->b_size = len;
4b46fce2
JB
5706 bh_result->b_bdev = em->bdev;
5707 set_buffer_mapped(bh_result);
5708 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5709 set_buffer_new(bh_result);
5710
5711 free_extent_map(em);
5712
5713 return 0;
5714}
5715
5716struct btrfs_dio_private {
5717 struct inode *inode;
5718 u64 logical_offset;
5719 u64 disk_bytenr;
5720 u64 bytes;
5721 u32 *csums;
5722 void *private;
e65e1535
MX
5723
5724 /* number of bios pending for this dio */
5725 atomic_t pending_bios;
5726
5727 /* IO errors */
5728 int errors;
5729
5730 struct bio *orig_bio;
4b46fce2
JB
5731};
5732
5733static void btrfs_endio_direct_read(struct bio *bio, int err)
5734{
e65e1535 5735 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5736 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5737 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5738 struct inode *inode = dip->inode;
5739 struct btrfs_root *root = BTRFS_I(inode)->root;
5740 u64 start;
5741 u32 *private = dip->csums;
5742
5743 start = dip->logical_offset;
5744 do {
5745 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5746 struct page *page = bvec->bv_page;
5747 char *kaddr;
5748 u32 csum = ~(u32)0;
5749 unsigned long flags;
5750
5751 local_irq_save(flags);
5752 kaddr = kmap_atomic(page, KM_IRQ0);
5753 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5754 csum, bvec->bv_len);
5755 btrfs_csum_final(csum, (char *)&csum);
5756 kunmap_atomic(kaddr, KM_IRQ0);
5757 local_irq_restore(flags);
5758
5759 flush_dcache_page(bvec->bv_page);
5760 if (csum != *private) {
5761 printk(KERN_ERR "btrfs csum failed ino %lu off"
5762 " %llu csum %u private %u\n",
5763 inode->i_ino, (unsigned long long)start,
5764 csum, *private);
5765 err = -EIO;
5766 }
5767 }
5768
5769 start += bvec->bv_len;
5770 private++;
5771 bvec++;
5772 } while (bvec <= bvec_end);
5773
5774 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5775 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5776 bio->bi_private = dip->private;
5777
5778 kfree(dip->csums);
5779 kfree(dip);
c0da7aa1
JB
5780
5781 /* If we had a csum failure make sure to clear the uptodate flag */
5782 if (err)
5783 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5784 dio_end_io(bio, err);
5785}
5786
5787static void btrfs_endio_direct_write(struct bio *bio, int err)
5788{
5789 struct btrfs_dio_private *dip = bio->bi_private;
5790 struct inode *inode = dip->inode;
5791 struct btrfs_root *root = BTRFS_I(inode)->root;
5792 struct btrfs_trans_handle *trans;
5793 struct btrfs_ordered_extent *ordered = NULL;
5794 struct extent_state *cached_state = NULL;
163cf09c
CM
5795 u64 ordered_offset = dip->logical_offset;
5796 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5797 int ret;
5798
5799 if (err)
5800 goto out_done;
163cf09c
CM
5801again:
5802 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5803 &ordered_offset,
5804 ordered_bytes);
4b46fce2 5805 if (!ret)
163cf09c 5806 goto out_test;
4b46fce2
JB
5807
5808 BUG_ON(!ordered);
5809
5810 trans = btrfs_join_transaction(root, 1);
3612b495 5811 if (IS_ERR(trans)) {
4b46fce2
JB
5812 err = -ENOMEM;
5813 goto out;
5814 }
5815 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5816
5817 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5818 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5819 if (!ret)
5820 ret = btrfs_update_inode(trans, root, inode);
5821 err = ret;
5822 goto out;
5823 }
5824
5825 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5826 ordered->file_offset + ordered->len - 1, 0,
5827 &cached_state, GFP_NOFS);
5828
5829 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5830 ret = btrfs_mark_extent_written(trans, inode,
5831 ordered->file_offset,
5832 ordered->file_offset +
5833 ordered->len);
5834 if (ret) {
5835 err = ret;
5836 goto out_unlock;
5837 }
5838 } else {
5839 ret = insert_reserved_file_extent(trans, inode,
5840 ordered->file_offset,
5841 ordered->start,
5842 ordered->disk_len,
5843 ordered->len,
5844 ordered->len,
5845 0, 0, 0,
5846 BTRFS_FILE_EXTENT_REG);
5847 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5848 ordered->file_offset, ordered->len);
5849 if (ret) {
5850 err = ret;
5851 WARN_ON(1);
5852 goto out_unlock;
5853 }
5854 }
5855
5856 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5857 btrfs_ordered_update_i_size(inode, 0, ordered);
5858 btrfs_update_inode(trans, root, inode);
5859out_unlock:
5860 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5861 ordered->file_offset + ordered->len - 1,
5862 &cached_state, GFP_NOFS);
5863out:
5864 btrfs_delalloc_release_metadata(inode, ordered->len);
5865 btrfs_end_transaction(trans, root);
163cf09c 5866 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5867 btrfs_put_ordered_extent(ordered);
5868 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5869
5870out_test:
5871 /*
5872 * our bio might span multiple ordered extents. If we haven't
5873 * completed the accounting for the whole dio, go back and try again
5874 */
5875 if (ordered_offset < dip->logical_offset + dip->bytes) {
5876 ordered_bytes = dip->logical_offset + dip->bytes -
5877 ordered_offset;
5878 goto again;
5879 }
4b46fce2
JB
5880out_done:
5881 bio->bi_private = dip->private;
5882
5883 kfree(dip->csums);
5884 kfree(dip);
c0da7aa1
JB
5885
5886 /* If we had an error make sure to clear the uptodate flag */
5887 if (err)
5888 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5889 dio_end_io(bio, err);
5890}
5891
eaf25d93
CM
5892static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5893 struct bio *bio, int mirror_num,
5894 unsigned long bio_flags, u64 offset)
5895{
5896 int ret;
5897 struct btrfs_root *root = BTRFS_I(inode)->root;
5898 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5899 BUG_ON(ret);
5900 return 0;
5901}
5902
e65e1535
MX
5903static void btrfs_end_dio_bio(struct bio *bio, int err)
5904{
5905 struct btrfs_dio_private *dip = bio->bi_private;
5906
5907 if (err) {
5908 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5909 "sector %#Lx len %u err no %d\n",
5910 dip->inode->i_ino, bio->bi_rw,
5911 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5912 dip->errors = 1;
5913
5914 /*
5915 * before atomic variable goto zero, we must make sure
5916 * dip->errors is perceived to be set.
5917 */
5918 smp_mb__before_atomic_dec();
5919 }
5920
5921 /* if there are more bios still pending for this dio, just exit */
5922 if (!atomic_dec_and_test(&dip->pending_bios))
5923 goto out;
5924
5925 if (dip->errors)
5926 bio_io_error(dip->orig_bio);
5927 else {
5928 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5929 bio_endio(dip->orig_bio, 0);
5930 }
5931out:
5932 bio_put(bio);
5933}
5934
5935static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5936 u64 first_sector, gfp_t gfp_flags)
5937{
5938 int nr_vecs = bio_get_nr_vecs(bdev);
5939 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5940}
5941
5942static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5943 int rw, u64 file_offset, int skip_sum,
5944 u32 *csums)
5945{
5946 int write = rw & REQ_WRITE;
5947 struct btrfs_root *root = BTRFS_I(inode)->root;
5948 int ret;
5949
5950 bio_get(bio);
5951 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5952 if (ret)
5953 goto err;
5954
5955 if (write && !skip_sum) {
5956 ret = btrfs_wq_submit_bio(root->fs_info,
5957 inode, rw, bio, 0, 0,
5958 file_offset,
5959 __btrfs_submit_bio_start_direct_io,
5960 __btrfs_submit_bio_done);
5961 goto err;
c2db1073
TI
5962 } else if (!skip_sum) {
5963 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5964 file_offset, csums);
c2db1073
TI
5965 if (ret)
5966 goto err;
5967 }
e65e1535
MX
5968
5969 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5970err:
5971 bio_put(bio);
5972 return ret;
5973}
5974
5975static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5976 int skip_sum)
5977{
5978 struct inode *inode = dip->inode;
5979 struct btrfs_root *root = BTRFS_I(inode)->root;
5980 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5981 struct bio *bio;
5982 struct bio *orig_bio = dip->orig_bio;
5983 struct bio_vec *bvec = orig_bio->bi_io_vec;
5984 u64 start_sector = orig_bio->bi_sector;
5985 u64 file_offset = dip->logical_offset;
5986 u64 submit_len = 0;
5987 u64 map_length;
5988 int nr_pages = 0;
5989 u32 *csums = dip->csums;
5990 int ret = 0;
98bc3149 5991 int write = rw & REQ_WRITE;
e65e1535
MX
5992
5993 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5994 if (!bio)
5995 return -ENOMEM;
5996 bio->bi_private = dip;
5997 bio->bi_end_io = btrfs_end_dio_bio;
5998 atomic_inc(&dip->pending_bios);
5999
6000 map_length = orig_bio->bi_size;
6001 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6002 &map_length, NULL, 0);
6003 if (ret) {
6004 bio_put(bio);
6005 return -EIO;
6006 }
6007
6008 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6009 if (unlikely(map_length < submit_len + bvec->bv_len ||
6010 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6011 bvec->bv_offset) < bvec->bv_len)) {
6012 /*
6013 * inc the count before we submit the bio so
6014 * we know the end IO handler won't happen before
6015 * we inc the count. Otherwise, the dip might get freed
6016 * before we're done setting it up
6017 */
6018 atomic_inc(&dip->pending_bios);
6019 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6020 file_offset, skip_sum,
6021 csums);
6022 if (ret) {
6023 bio_put(bio);
6024 atomic_dec(&dip->pending_bios);
6025 goto out_err;
6026 }
6027
98bc3149
JB
6028 /* Write's use the ordered csums */
6029 if (!write && !skip_sum)
e65e1535
MX
6030 csums = csums + nr_pages;
6031 start_sector += submit_len >> 9;
6032 file_offset += submit_len;
6033
6034 submit_len = 0;
6035 nr_pages = 0;
6036
6037 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6038 start_sector, GFP_NOFS);
6039 if (!bio)
6040 goto out_err;
6041 bio->bi_private = dip;
6042 bio->bi_end_io = btrfs_end_dio_bio;
6043
6044 map_length = orig_bio->bi_size;
6045 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6046 &map_length, NULL, 0);
6047 if (ret) {
6048 bio_put(bio);
6049 goto out_err;
6050 }
6051 } else {
6052 submit_len += bvec->bv_len;
6053 nr_pages ++;
6054 bvec++;
6055 }
6056 }
6057
6058 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6059 csums);
6060 if (!ret)
6061 return 0;
6062
6063 bio_put(bio);
6064out_err:
6065 dip->errors = 1;
6066 /*
6067 * before atomic variable goto zero, we must
6068 * make sure dip->errors is perceived to be set.
6069 */
6070 smp_mb__before_atomic_dec();
6071 if (atomic_dec_and_test(&dip->pending_bios))
6072 bio_io_error(dip->orig_bio);
6073
6074 /* bio_end_io() will handle error, so we needn't return it */
6075 return 0;
6076}
6077
4b46fce2
JB
6078static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6079 loff_t file_offset)
6080{
6081 struct btrfs_root *root = BTRFS_I(inode)->root;
6082 struct btrfs_dio_private *dip;
6083 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6084 int skip_sum;
7b6d91da 6085 int write = rw & REQ_WRITE;
4b46fce2
JB
6086 int ret = 0;
6087
6088 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6089
6090 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6091 if (!dip) {
6092 ret = -ENOMEM;
6093 goto free_ordered;
6094 }
6095 dip->csums = NULL;
6096
98bc3149
JB
6097 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6098 if (!write && !skip_sum) {
4b46fce2
JB
6099 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6100 if (!dip->csums) {
b4966b77 6101 kfree(dip);
4b46fce2
JB
6102 ret = -ENOMEM;
6103 goto free_ordered;
6104 }
6105 }
6106
6107 dip->private = bio->bi_private;
6108 dip->inode = inode;
6109 dip->logical_offset = file_offset;
6110
4b46fce2
JB
6111 dip->bytes = 0;
6112 do {
6113 dip->bytes += bvec->bv_len;
6114 bvec++;
6115 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6116
46bfbb5c 6117 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6118 bio->bi_private = dip;
e65e1535
MX
6119 dip->errors = 0;
6120 dip->orig_bio = bio;
6121 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6122
6123 if (write)
6124 bio->bi_end_io = btrfs_endio_direct_write;
6125 else
6126 bio->bi_end_io = btrfs_endio_direct_read;
6127
e65e1535
MX
6128 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6129 if (!ret)
eaf25d93 6130 return;
4b46fce2
JB
6131free_ordered:
6132 /*
6133 * If this is a write, we need to clean up the reserved space and kill
6134 * the ordered extent.
6135 */
6136 if (write) {
6137 struct btrfs_ordered_extent *ordered;
955256f2 6138 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6139 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6140 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6141 btrfs_free_reserved_extent(root, ordered->start,
6142 ordered->disk_len);
6143 btrfs_put_ordered_extent(ordered);
6144 btrfs_put_ordered_extent(ordered);
6145 }
6146 bio_endio(bio, ret);
6147}
6148
5a5f79b5
CM
6149static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6150 const struct iovec *iov, loff_t offset,
6151 unsigned long nr_segs)
6152{
6153 int seg;
6154 size_t size;
6155 unsigned long addr;
6156 unsigned blocksize_mask = root->sectorsize - 1;
6157 ssize_t retval = -EINVAL;
6158 loff_t end = offset;
6159
6160 if (offset & blocksize_mask)
6161 goto out;
6162
6163 /* Check the memory alignment. Blocks cannot straddle pages */
6164 for (seg = 0; seg < nr_segs; seg++) {
6165 addr = (unsigned long)iov[seg].iov_base;
6166 size = iov[seg].iov_len;
6167 end += size;
6168 if ((addr & blocksize_mask) || (size & blocksize_mask))
6169 goto out;
6170 }
6171 retval = 0;
6172out:
6173 return retval;
6174}
16432985
CM
6175static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6176 const struct iovec *iov, loff_t offset,
6177 unsigned long nr_segs)
6178{
4b46fce2
JB
6179 struct file *file = iocb->ki_filp;
6180 struct inode *inode = file->f_mapping->host;
6181 struct btrfs_ordered_extent *ordered;
4845e44f 6182 struct extent_state *cached_state = NULL;
4b46fce2
JB
6183 u64 lockstart, lockend;
6184 ssize_t ret;
4845e44f
CM
6185 int writing = rw & WRITE;
6186 int write_bits = 0;
3f7c579c 6187 size_t count = iov_length(iov, nr_segs);
4b46fce2 6188
5a5f79b5
CM
6189 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6190 offset, nr_segs)) {
6191 return 0;
6192 }
6193
4b46fce2 6194 lockstart = offset;
3f7c579c
CM
6195 lockend = offset + count - 1;
6196
6197 if (writing) {
6198 ret = btrfs_delalloc_reserve_space(inode, count);
6199 if (ret)
6200 goto out;
6201 }
4845e44f 6202
4b46fce2 6203 while (1) {
4845e44f
CM
6204 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6205 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6206 /*
6207 * We're concerned with the entire range that we're going to be
6208 * doing DIO to, so we need to make sure theres no ordered
6209 * extents in this range.
6210 */
6211 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6212 lockend - lockstart + 1);
6213 if (!ordered)
6214 break;
4845e44f
CM
6215 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6216 &cached_state, GFP_NOFS);
4b46fce2
JB
6217 btrfs_start_ordered_extent(inode, ordered, 1);
6218 btrfs_put_ordered_extent(ordered);
6219 cond_resched();
6220 }
6221
4845e44f
CM
6222 /*
6223 * we don't use btrfs_set_extent_delalloc because we don't want
6224 * the dirty or uptodate bits
6225 */
6226 if (writing) {
6227 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6228 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6229 EXTENT_DELALLOC, 0, NULL, &cached_state,
6230 GFP_NOFS);
6231 if (ret) {
6232 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6233 lockend, EXTENT_LOCKED | write_bits,
6234 1, 0, &cached_state, GFP_NOFS);
6235 goto out;
6236 }
6237 }
6238
6239 free_extent_state(cached_state);
6240 cached_state = NULL;
6241
5a5f79b5
CM
6242 ret = __blockdev_direct_IO(rw, iocb, inode,
6243 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6244 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6245 btrfs_submit_direct, 0);
4b46fce2
JB
6246
6247 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6248 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6249 offset + iov_length(iov, nr_segs) - 1,
6250 EXTENT_LOCKED | write_bits, 1, 0,
6251 &cached_state, GFP_NOFS);
4b46fce2
JB
6252 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6253 /*
6254 * We're falling back to buffered, unlock the section we didn't
6255 * do IO on.
6256 */
4845e44f
CM
6257 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6258 offset + iov_length(iov, nr_segs) - 1,
6259 EXTENT_LOCKED | write_bits, 1, 0,
6260 &cached_state, GFP_NOFS);
4b46fce2 6261 }
4845e44f
CM
6262out:
6263 free_extent_state(cached_state);
4b46fce2 6264 return ret;
16432985
CM
6265}
6266
1506fcc8
YS
6267static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6268 __u64 start, __u64 len)
6269{
ec29ed5b 6270 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6271}
6272
a52d9a80 6273int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6274{
d1310b2e
CM
6275 struct extent_io_tree *tree;
6276 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6277 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6278}
1832a6d5 6279
a52d9a80 6280static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6281{
d1310b2e 6282 struct extent_io_tree *tree;
b888db2b
CM
6283
6284
6285 if (current->flags & PF_MEMALLOC) {
6286 redirty_page_for_writepage(wbc, page);
6287 unlock_page(page);
6288 return 0;
6289 }
d1310b2e 6290 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6291 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6292}
6293
f421950f
CM
6294int btrfs_writepages(struct address_space *mapping,
6295 struct writeback_control *wbc)
b293f02e 6296{
d1310b2e 6297 struct extent_io_tree *tree;
771ed689 6298
d1310b2e 6299 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6300 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6301}
6302
3ab2fb5a
CM
6303static int
6304btrfs_readpages(struct file *file, struct address_space *mapping,
6305 struct list_head *pages, unsigned nr_pages)
6306{
d1310b2e
CM
6307 struct extent_io_tree *tree;
6308 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6309 return extent_readpages(tree, mapping, pages, nr_pages,
6310 btrfs_get_extent);
6311}
e6dcd2dc 6312static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6313{
d1310b2e
CM
6314 struct extent_io_tree *tree;
6315 struct extent_map_tree *map;
a52d9a80 6316 int ret;
8c2383c3 6317
d1310b2e
CM
6318 tree = &BTRFS_I(page->mapping->host)->io_tree;
6319 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6320 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6321 if (ret == 1) {
6322 ClearPagePrivate(page);
6323 set_page_private(page, 0);
6324 page_cache_release(page);
39279cc3 6325 }
a52d9a80 6326 return ret;
39279cc3
CM
6327}
6328
e6dcd2dc
CM
6329static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6330{
98509cfc
CM
6331 if (PageWriteback(page) || PageDirty(page))
6332 return 0;
b335b003 6333 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6334}
6335
a52d9a80 6336static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6337{
d1310b2e 6338 struct extent_io_tree *tree;
e6dcd2dc 6339 struct btrfs_ordered_extent *ordered;
2ac55d41 6340 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6341 u64 page_start = page_offset(page);
6342 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6343
8b62b72b
CM
6344
6345 /*
6346 * we have the page locked, so new writeback can't start,
6347 * and the dirty bit won't be cleared while we are here.
6348 *
6349 * Wait for IO on this page so that we can safely clear
6350 * the PagePrivate2 bit and do ordered accounting
6351 */
e6dcd2dc 6352 wait_on_page_writeback(page);
8b62b72b 6353
d1310b2e 6354 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6355 if (offset) {
6356 btrfs_releasepage(page, GFP_NOFS);
6357 return;
6358 }
2ac55d41
JB
6359 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6360 GFP_NOFS);
e6dcd2dc
CM
6361 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6362 page_offset(page));
6363 if (ordered) {
eb84ae03
CM
6364 /*
6365 * IO on this page will never be started, so we need
6366 * to account for any ordered extents now
6367 */
e6dcd2dc
CM
6368 clear_extent_bit(tree, page_start, page_end,
6369 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6370 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6371 &cached_state, GFP_NOFS);
8b62b72b
CM
6372 /*
6373 * whoever cleared the private bit is responsible
6374 * for the finish_ordered_io
6375 */
6376 if (TestClearPagePrivate2(page)) {
6377 btrfs_finish_ordered_io(page->mapping->host,
6378 page_start, page_end);
6379 }
e6dcd2dc 6380 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6381 cached_state = NULL;
6382 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6383 GFP_NOFS);
e6dcd2dc
CM
6384 }
6385 clear_extent_bit(tree, page_start, page_end,
32c00aff 6386 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6387 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6388 __btrfs_releasepage(page, GFP_NOFS);
6389
4a096752 6390 ClearPageChecked(page);
9ad6b7bc 6391 if (PagePrivate(page)) {
9ad6b7bc
CM
6392 ClearPagePrivate(page);
6393 set_page_private(page, 0);
6394 page_cache_release(page);
6395 }
39279cc3
CM
6396}
6397
9ebefb18
CM
6398/*
6399 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6400 * called from a page fault handler when a page is first dirtied. Hence we must
6401 * be careful to check for EOF conditions here. We set the page up correctly
6402 * for a written page which means we get ENOSPC checking when writing into
6403 * holes and correct delalloc and unwritten extent mapping on filesystems that
6404 * support these features.
6405 *
6406 * We are not allowed to take the i_mutex here so we have to play games to
6407 * protect against truncate races as the page could now be beyond EOF. Because
6408 * vmtruncate() writes the inode size before removing pages, once we have the
6409 * page lock we can determine safely if the page is beyond EOF. If it is not
6410 * beyond EOF, then the page is guaranteed safe against truncation until we
6411 * unlock the page.
6412 */
c2ec175c 6413int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6414{
c2ec175c 6415 struct page *page = vmf->page;
6da6abae 6416 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6417 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6418 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6419 struct btrfs_ordered_extent *ordered;
2ac55d41 6420 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6421 char *kaddr;
6422 unsigned long zero_start;
9ebefb18 6423 loff_t size;
1832a6d5 6424 int ret;
a52d9a80 6425 u64 page_start;
e6dcd2dc 6426 u64 page_end;
9ebefb18 6427
0ca1f7ce 6428 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6429 if (ret) {
6430 if (ret == -ENOMEM)
6431 ret = VM_FAULT_OOM;
6432 else /* -ENOSPC, -EIO, etc */
6433 ret = VM_FAULT_SIGBUS;
1832a6d5 6434 goto out;
56a76f82 6435 }
1832a6d5 6436
56a76f82 6437 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6438again:
9ebefb18 6439 lock_page(page);
9ebefb18 6440 size = i_size_read(inode);
e6dcd2dc
CM
6441 page_start = page_offset(page);
6442 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6443
9ebefb18 6444 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6445 (page_start >= size)) {
9ebefb18
CM
6446 /* page got truncated out from underneath us */
6447 goto out_unlock;
6448 }
e6dcd2dc
CM
6449 wait_on_page_writeback(page);
6450
2ac55d41
JB
6451 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6452 GFP_NOFS);
e6dcd2dc
CM
6453 set_page_extent_mapped(page);
6454
eb84ae03
CM
6455 /*
6456 * we can't set the delalloc bits if there are pending ordered
6457 * extents. Drop our locks and wait for them to finish
6458 */
e6dcd2dc
CM
6459 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6460 if (ordered) {
2ac55d41
JB
6461 unlock_extent_cached(io_tree, page_start, page_end,
6462 &cached_state, GFP_NOFS);
e6dcd2dc 6463 unlock_page(page);
eb84ae03 6464 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6465 btrfs_put_ordered_extent(ordered);
6466 goto again;
6467 }
6468
fbf19087
JB
6469 /*
6470 * XXX - page_mkwrite gets called every time the page is dirtied, even
6471 * if it was already dirty, so for space accounting reasons we need to
6472 * clear any delalloc bits for the range we are fixing to save. There
6473 * is probably a better way to do this, but for now keep consistent with
6474 * prepare_pages in the normal write path.
6475 */
2ac55d41 6476 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6477 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6478 0, 0, &cached_state, GFP_NOFS);
fbf19087 6479
2ac55d41
JB
6480 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6481 &cached_state);
9ed74f2d 6482 if (ret) {
2ac55d41
JB
6483 unlock_extent_cached(io_tree, page_start, page_end,
6484 &cached_state, GFP_NOFS);
9ed74f2d
JB
6485 ret = VM_FAULT_SIGBUS;
6486 goto out_unlock;
6487 }
e6dcd2dc 6488 ret = 0;
9ebefb18
CM
6489
6490 /* page is wholly or partially inside EOF */
a52d9a80 6491 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6492 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6493 else
e6dcd2dc 6494 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6495
e6dcd2dc
CM
6496 if (zero_start != PAGE_CACHE_SIZE) {
6497 kaddr = kmap(page);
6498 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6499 flush_dcache_page(page);
6500 kunmap(page);
6501 }
247e743c 6502 ClearPageChecked(page);
e6dcd2dc 6503 set_page_dirty(page);
50a9b214 6504 SetPageUptodate(page);
5a3f23d5 6505
257c62e1
CM
6506 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6507 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6508
2ac55d41 6509 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6510
6511out_unlock:
50a9b214
CM
6512 if (!ret)
6513 return VM_FAULT_LOCKED;
9ebefb18 6514 unlock_page(page);
0ca1f7ce 6515 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6516out:
9ebefb18
CM
6517 return ret;
6518}
6519
a41ad394 6520static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6521{
6522 struct btrfs_root *root = BTRFS_I(inode)->root;
6523 int ret;
3893e33b 6524 int err = 0;
39279cc3 6525 struct btrfs_trans_handle *trans;
d3c2fdcf 6526 unsigned long nr;
dbe674a9 6527 u64 mask = root->sectorsize - 1;
39279cc3 6528
5d5e103a
JB
6529 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6530 if (ret)
a41ad394 6531 return ret;
8082510e 6532
4a096752 6533 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6534 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6535
f0cd846e
JB
6536 trans = btrfs_start_transaction(root, 5);
6537 if (IS_ERR(trans))
6538 return PTR_ERR(trans);
6539
6540 btrfs_set_trans_block_group(trans, inode);
6541
6542 ret = btrfs_orphan_add(trans, inode);
6543 if (ret) {
6544 btrfs_end_transaction(trans, root);
6545 return ret;
6546 }
6547
6548 nr = trans->blocks_used;
6549 btrfs_end_transaction(trans, root);
6550 btrfs_btree_balance_dirty(root, nr);
6551
6552 /* Now start a transaction for the truncate */
d68fc57b 6553 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6554 if (IS_ERR(trans))
6555 return PTR_ERR(trans);
8082510e 6556 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6557 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6558
6559 /*
6560 * setattr is responsible for setting the ordered_data_close flag,
6561 * but that is only tested during the last file release. That
6562 * could happen well after the next commit, leaving a great big
6563 * window where new writes may get lost if someone chooses to write
6564 * to this file after truncating to zero
6565 *
6566 * The inode doesn't have any dirty data here, and so if we commit
6567 * this is a noop. If someone immediately starts writing to the inode
6568 * it is very likely we'll catch some of their writes in this
6569 * transaction, and the commit will find this file on the ordered
6570 * data list with good things to send down.
6571 *
6572 * This is a best effort solution, there is still a window where
6573 * using truncate to replace the contents of the file will
6574 * end up with a zero length file after a crash.
6575 */
6576 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6577 btrfs_add_ordered_operation(trans, root, inode);
6578
8082510e 6579 while (1) {
d68fc57b
YZ
6580 if (!trans) {
6581 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6582 if (IS_ERR(trans))
6583 return PTR_ERR(trans);
d68fc57b
YZ
6584 btrfs_set_trans_block_group(trans, inode);
6585 trans->block_rsv = root->orphan_block_rsv;
6586 }
6587
6588 ret = btrfs_block_rsv_check(trans, root,
6589 root->orphan_block_rsv, 0, 5);
3893e33b 6590 if (ret == -EAGAIN) {
d68fc57b 6591 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6592 if (ret)
6593 return ret;
d68fc57b
YZ
6594 trans = NULL;
6595 continue;
3893e33b
JB
6596 } else if (ret) {
6597 err = ret;
6598 break;
d68fc57b
YZ
6599 }
6600
8082510e
YZ
6601 ret = btrfs_truncate_inode_items(trans, root, inode,
6602 inode->i_size,
6603 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6604 if (ret != -EAGAIN) {
6605 err = ret;
8082510e 6606 break;
3893e33b 6607 }
39279cc3 6608
8082510e 6609 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6610 if (ret) {
6611 err = ret;
6612 break;
6613 }
5f39d397 6614
8082510e
YZ
6615 nr = trans->blocks_used;
6616 btrfs_end_transaction(trans, root);
d68fc57b 6617 trans = NULL;
8082510e 6618 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6619 }
6620
6621 if (ret == 0 && inode->i_nlink > 0) {
6622 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6623 if (ret)
6624 err = ret;
ded5db9d
JB
6625 } else if (ret && inode->i_nlink > 0) {
6626 /*
6627 * Failed to do the truncate, remove us from the in memory
6628 * orphan list.
6629 */
6630 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6631 }
6632
6633 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6634 if (ret && !err)
6635 err = ret;
7b128766 6636
7b128766 6637 nr = trans->blocks_used;
89ce8a63 6638 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6639 if (ret && !err)
6640 err = ret;
d3c2fdcf 6641 btrfs_btree_balance_dirty(root, nr);
a41ad394 6642
3893e33b 6643 return err;
39279cc3
CM
6644}
6645
d352ac68
CM
6646/*
6647 * create a new subvolume directory/inode (helper for the ioctl).
6648 */
d2fb3437 6649int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6650 struct btrfs_root *new_root,
d2fb3437 6651 u64 new_dirid, u64 alloc_hint)
39279cc3 6652{
39279cc3 6653 struct inode *inode;
76dda93c 6654 int err;
00e4e6b3 6655 u64 index = 0;
39279cc3 6656
aec7477b 6657 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6658 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6659 if (IS_ERR(inode))
f46b5a66 6660 return PTR_ERR(inode);
39279cc3
CM
6661 inode->i_op = &btrfs_dir_inode_operations;
6662 inode->i_fop = &btrfs_dir_file_operations;
6663
39279cc3 6664 inode->i_nlink = 1;
dbe674a9 6665 btrfs_i_size_write(inode, 0);
3b96362c 6666
76dda93c
YZ
6667 err = btrfs_update_inode(trans, new_root, inode);
6668 BUG_ON(err);
cb8e7090 6669
76dda93c 6670 iput(inode);
cb8e7090 6671 return 0;
39279cc3
CM
6672}
6673
d352ac68
CM
6674/* helper function for file defrag and space balancing. This
6675 * forces readahead on a given range of bytes in an inode
6676 */
edbd8d4e 6677unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6678 struct file_ra_state *ra, struct file *file,
6679 pgoff_t offset, pgoff_t last_index)
6680{
8e7bf94f 6681 pgoff_t req_size = last_index - offset + 1;
86479a04 6682
86479a04
CM
6683 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6684 return offset + req_size;
86479a04
CM
6685}
6686
39279cc3
CM
6687struct inode *btrfs_alloc_inode(struct super_block *sb)
6688{
6689 struct btrfs_inode *ei;
2ead6ae7 6690 struct inode *inode;
39279cc3
CM
6691
6692 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6693 if (!ei)
6694 return NULL;
2ead6ae7
YZ
6695
6696 ei->root = NULL;
6697 ei->space_info = NULL;
6698 ei->generation = 0;
6699 ei->sequence = 0;
15ee9bc7 6700 ei->last_trans = 0;
257c62e1 6701 ei->last_sub_trans = 0;
e02119d5 6702 ei->logged_trans = 0;
2ead6ae7
YZ
6703 ei->delalloc_bytes = 0;
6704 ei->reserved_bytes = 0;
6705 ei->disk_i_size = 0;
6706 ei->flags = 0;
6707 ei->index_cnt = (u64)-1;
6708 ei->last_unlink_trans = 0;
6709
0ca1f7ce 6710 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6711 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6712
6713 ei->ordered_data_close = 0;
d68fc57b 6714 ei->orphan_meta_reserved = 0;
2ead6ae7 6715 ei->dummy_inode = 0;
261507a0 6716 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7
YZ
6717
6718 inode = &ei->vfs_inode;
6719 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6720 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6721 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6722 mutex_init(&ei->log_mutex);
e6dcd2dc 6723 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6724 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6725 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6726 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6727 RB_CLEAR_NODE(&ei->rb_node);
6728
6729 return inode;
39279cc3
CM
6730}
6731
fa0d7e3d
NP
6732static void btrfs_i_callback(struct rcu_head *head)
6733{
6734 struct inode *inode = container_of(head, struct inode, i_rcu);
6735 INIT_LIST_HEAD(&inode->i_dentry);
6736 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6737}
6738
39279cc3
CM
6739void btrfs_destroy_inode(struct inode *inode)
6740{
e6dcd2dc 6741 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6742 struct btrfs_root *root = BTRFS_I(inode)->root;
6743
39279cc3
CM
6744 WARN_ON(!list_empty(&inode->i_dentry));
6745 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6746 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6747 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6748
a6dbd429
JB
6749 /*
6750 * This can happen where we create an inode, but somebody else also
6751 * created the same inode and we need to destroy the one we already
6752 * created.
6753 */
6754 if (!root)
6755 goto free;
6756
5a3f23d5
CM
6757 /*
6758 * Make sure we're properly removed from the ordered operation
6759 * lists.
6760 */
6761 smp_mb();
6762 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6763 spin_lock(&root->fs_info->ordered_extent_lock);
6764 list_del_init(&BTRFS_I(inode)->ordered_operations);
6765 spin_unlock(&root->fs_info->ordered_extent_lock);
6766 }
6767
0af3d00b
JB
6768 if (root == root->fs_info->tree_root) {
6769 struct btrfs_block_group_cache *block_group;
6770
6771 block_group = btrfs_lookup_block_group(root->fs_info,
6772 BTRFS_I(inode)->block_group);
6773 if (block_group && block_group->inode == inode) {
6774 spin_lock(&block_group->lock);
6775 block_group->inode = NULL;
6776 spin_unlock(&block_group->lock);
6777 btrfs_put_block_group(block_group);
6778 } else if (block_group) {
6779 btrfs_put_block_group(block_group);
6780 }
6781 }
6782
d68fc57b 6783 spin_lock(&root->orphan_lock);
7b128766 6784 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6785 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6786 inode->i_ino);
6787 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6788 }
d68fc57b 6789 spin_unlock(&root->orphan_lock);
7b128766 6790
d397712b 6791 while (1) {
e6dcd2dc
CM
6792 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6793 if (!ordered)
6794 break;
6795 else {
d397712b
CM
6796 printk(KERN_ERR "btrfs found ordered "
6797 "extent %llu %llu on inode cleanup\n",
6798 (unsigned long long)ordered->file_offset,
6799 (unsigned long long)ordered->len);
e6dcd2dc
CM
6800 btrfs_remove_ordered_extent(inode, ordered);
6801 btrfs_put_ordered_extent(ordered);
6802 btrfs_put_ordered_extent(ordered);
6803 }
6804 }
5d4f98a2 6805 inode_tree_del(inode);
5b21f2ed 6806 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6807free:
fa0d7e3d 6808 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6809}
6810
45321ac5 6811int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6812{
6813 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6814
0af3d00b
JB
6815 if (btrfs_root_refs(&root->root_item) == 0 &&
6816 root != root->fs_info->tree_root)
45321ac5 6817 return 1;
76dda93c 6818 else
45321ac5 6819 return generic_drop_inode(inode);
76dda93c
YZ
6820}
6821
0ee0fda0 6822static void init_once(void *foo)
39279cc3
CM
6823{
6824 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6825
6826 inode_init_once(&ei->vfs_inode);
6827}
6828
6829void btrfs_destroy_cachep(void)
6830{
6831 if (btrfs_inode_cachep)
6832 kmem_cache_destroy(btrfs_inode_cachep);
6833 if (btrfs_trans_handle_cachep)
6834 kmem_cache_destroy(btrfs_trans_handle_cachep);
6835 if (btrfs_transaction_cachep)
6836 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6837 if (btrfs_path_cachep)
6838 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6839 if (btrfs_free_space_cachep)
6840 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6841}
6842
6843int btrfs_init_cachep(void)
6844{
9601e3f6
CH
6845 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6846 sizeof(struct btrfs_inode), 0,
6847 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6848 if (!btrfs_inode_cachep)
6849 goto fail;
9601e3f6
CH
6850
6851 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6852 sizeof(struct btrfs_trans_handle), 0,
6853 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6854 if (!btrfs_trans_handle_cachep)
6855 goto fail;
9601e3f6
CH
6856
6857 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6858 sizeof(struct btrfs_transaction), 0,
6859 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6860 if (!btrfs_transaction_cachep)
6861 goto fail;
9601e3f6
CH
6862
6863 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6864 sizeof(struct btrfs_path), 0,
6865 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6866 if (!btrfs_path_cachep)
6867 goto fail;
9601e3f6 6868
dc89e982
JB
6869 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6870 sizeof(struct btrfs_free_space), 0,
6871 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6872 if (!btrfs_free_space_cachep)
6873 goto fail;
6874
39279cc3
CM
6875 return 0;
6876fail:
6877 btrfs_destroy_cachep();
6878 return -ENOMEM;
6879}
6880
6881static int btrfs_getattr(struct vfsmount *mnt,
6882 struct dentry *dentry, struct kstat *stat)
6883{
6884 struct inode *inode = dentry->d_inode;
6885 generic_fillattr(inode, stat);
3394e160 6886 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6887 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6888 stat->blocks = (inode_get_bytes(inode) +
6889 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6890 return 0;
6891}
6892
75e7cb7f
LB
6893/*
6894 * If a file is moved, it will inherit the cow and compression flags of the new
6895 * directory.
6896 */
6897static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6898{
6899 struct btrfs_inode *b_dir = BTRFS_I(dir);
6900 struct btrfs_inode *b_inode = BTRFS_I(inode);
6901
6902 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6903 b_inode->flags |= BTRFS_INODE_NODATACOW;
6904 else
6905 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6906
6907 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6908 b_inode->flags |= BTRFS_INODE_COMPRESS;
6909 else
6910 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6911}
6912
d397712b
CM
6913static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6914 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6915{
6916 struct btrfs_trans_handle *trans;
6917 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6918 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6919 struct inode *new_inode = new_dentry->d_inode;
6920 struct inode *old_inode = old_dentry->d_inode;
6921 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6922 u64 index = 0;
4df27c4d 6923 u64 root_objectid;
39279cc3
CM
6924 int ret;
6925
f679a840
YZ
6926 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6927 return -EPERM;
6928
4df27c4d
YZ
6929 /* we only allow rename subvolume link between subvolumes */
6930 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6931 return -EXDEV;
6932
4df27c4d
YZ
6933 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6934 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6935 return -ENOTEMPTY;
5f39d397 6936
4df27c4d
YZ
6937 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6938 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6939 return -ENOTEMPTY;
5a3f23d5
CM
6940 /*
6941 * we're using rename to replace one file with another.
6942 * and the replacement file is large. Start IO on it now so
6943 * we don't add too much work to the end of the transaction
6944 */
4baf8c92 6945 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6946 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6947 filemap_flush(old_inode->i_mapping);
6948
76dda93c
YZ
6949 /* close the racy window with snapshot create/destroy ioctl */
6950 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6951 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6952 /*
6953 * We want to reserve the absolute worst case amount of items. So if
6954 * both inodes are subvols and we need to unlink them then that would
6955 * require 4 item modifications, but if they are both normal inodes it
6956 * would require 5 item modifications, so we'll assume their normal
6957 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6958 * should cover the worst case number of items we'll modify.
6959 */
6960 trans = btrfs_start_transaction(root, 20);
6961 if (IS_ERR(trans))
6962 return PTR_ERR(trans);
76dda93c 6963
a5719521 6964 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 6965
4df27c4d
YZ
6966 if (dest != root)
6967 btrfs_record_root_in_trans(trans, dest);
5f39d397 6968
a5719521
YZ
6969 ret = btrfs_set_inode_index(new_dir, &index);
6970 if (ret)
6971 goto out_fail;
5a3f23d5 6972
a5719521 6973 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6974 /* force full log commit if subvolume involved. */
6975 root->fs_info->last_trans_log_full_commit = trans->transid;
6976 } else {
a5719521
YZ
6977 ret = btrfs_insert_inode_ref(trans, dest,
6978 new_dentry->d_name.name,
6979 new_dentry->d_name.len,
6980 old_inode->i_ino,
6981 new_dir->i_ino, index);
6982 if (ret)
6983 goto out_fail;
4df27c4d
YZ
6984 /*
6985 * this is an ugly little race, but the rename is required
6986 * to make sure that if we crash, the inode is either at the
6987 * old name or the new one. pinning the log transaction lets
6988 * us make sure we don't allow a log commit to come in after
6989 * we unlink the name but before we add the new name back in.
6990 */
6991 btrfs_pin_log_trans(root);
6992 }
5a3f23d5
CM
6993 /*
6994 * make sure the inode gets flushed if it is replacing
6995 * something.
6996 */
6997 if (new_inode && new_inode->i_size &&
6998 old_inode && S_ISREG(old_inode->i_mode)) {
6999 btrfs_add_ordered_operation(trans, root, old_inode);
7000 }
7001
39279cc3
CM
7002 old_dir->i_ctime = old_dir->i_mtime = ctime;
7003 new_dir->i_ctime = new_dir->i_mtime = ctime;
7004 old_inode->i_ctime = ctime;
5f39d397 7005
12fcfd22
CM
7006 if (old_dentry->d_parent != new_dentry->d_parent)
7007 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7008
4df27c4d
YZ
7009 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7010 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7011 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7012 old_dentry->d_name.name,
7013 old_dentry->d_name.len);
7014 } else {
92986796
AV
7015 ret = __btrfs_unlink_inode(trans, root, old_dir,
7016 old_dentry->d_inode,
7017 old_dentry->d_name.name,
7018 old_dentry->d_name.len);
7019 if (!ret)
7020 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7021 }
7022 BUG_ON(ret);
39279cc3
CM
7023
7024 if (new_inode) {
7025 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
7026 if (unlikely(new_inode->i_ino ==
7027 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7028 root_objectid = BTRFS_I(new_inode)->location.objectid;
7029 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7030 root_objectid,
7031 new_dentry->d_name.name,
7032 new_dentry->d_name.len);
7033 BUG_ON(new_inode->i_nlink == 0);
7034 } else {
7035 ret = btrfs_unlink_inode(trans, dest, new_dir,
7036 new_dentry->d_inode,
7037 new_dentry->d_name.name,
7038 new_dentry->d_name.len);
7039 }
7040 BUG_ON(ret);
7b128766 7041 if (new_inode->i_nlink == 0) {
e02119d5 7042 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7043 BUG_ON(ret);
7b128766 7044 }
39279cc3 7045 }
aec7477b 7046
75e7cb7f
LB
7047 fixup_inode_flags(new_dir, old_inode);
7048
4df27c4d
YZ
7049 ret = btrfs_add_link(trans, new_dir, old_inode,
7050 new_dentry->d_name.name,
a5719521 7051 new_dentry->d_name.len, 0, index);
4df27c4d 7052 BUG_ON(ret);
39279cc3 7053
4df27c4d 7054 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7055 struct dentry *parent = dget_parent(new_dentry);
7056 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7057 dput(parent);
4df27c4d
YZ
7058 btrfs_end_log_trans(root);
7059 }
39279cc3 7060out_fail:
ab78c84d 7061 btrfs_end_transaction_throttle(trans, root);
4df27c4d 7062
76dda93c
YZ
7063 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7064 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7065
39279cc3
CM
7066 return ret;
7067}
7068
d352ac68
CM
7069/*
7070 * some fairly slow code that needs optimization. This walks the list
7071 * of all the inodes with pending delalloc and forces them to disk.
7072 */
24bbcf04 7073int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7074{
7075 struct list_head *head = &root->fs_info->delalloc_inodes;
7076 struct btrfs_inode *binode;
5b21f2ed 7077 struct inode *inode;
ea8c2819 7078
c146afad
YZ
7079 if (root->fs_info->sb->s_flags & MS_RDONLY)
7080 return -EROFS;
7081
75eff68e 7082 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7083 while (!list_empty(head)) {
ea8c2819
CM
7084 binode = list_entry(head->next, struct btrfs_inode,
7085 delalloc_inodes);
5b21f2ed
ZY
7086 inode = igrab(&binode->vfs_inode);
7087 if (!inode)
7088 list_del_init(&binode->delalloc_inodes);
75eff68e 7089 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7090 if (inode) {
8c8bee1d 7091 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7092 if (delay_iput)
7093 btrfs_add_delayed_iput(inode);
7094 else
7095 iput(inode);
5b21f2ed
ZY
7096 }
7097 cond_resched();
75eff68e 7098 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7099 }
75eff68e 7100 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7101
7102 /* the filemap_flush will queue IO into the worker threads, but
7103 * we have to make sure the IO is actually started and that
7104 * ordered extents get created before we return
7105 */
7106 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7107 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7108 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7109 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7110 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7111 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7112 }
7113 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7114 return 0;
7115}
7116
0019f10d
JB
7117int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7118 int sync)
5da9d01b
YZ
7119{
7120 struct btrfs_inode *binode;
7121 struct inode *inode = NULL;
7122
7123 spin_lock(&root->fs_info->delalloc_lock);
7124 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7125 binode = list_entry(root->fs_info->delalloc_inodes.next,
7126 struct btrfs_inode, delalloc_inodes);
7127 inode = igrab(&binode->vfs_inode);
7128 if (inode) {
7129 list_move_tail(&binode->delalloc_inodes,
7130 &root->fs_info->delalloc_inodes);
7131 break;
7132 }
7133
7134 list_del_init(&binode->delalloc_inodes);
7135 cond_resched_lock(&root->fs_info->delalloc_lock);
7136 }
7137 spin_unlock(&root->fs_info->delalloc_lock);
7138
7139 if (inode) {
0019f10d
JB
7140 if (sync) {
7141 filemap_write_and_wait(inode->i_mapping);
7142 /*
7143 * We have to do this because compression doesn't
7144 * actually set PG_writeback until it submits the pages
7145 * for IO, which happens in an async thread, so we could
7146 * race and not actually wait for any writeback pages
7147 * because they've not been submitted yet. Technically
7148 * this could still be the case for the ordered stuff
7149 * since the async thread may not have started to do its
7150 * work yet. If this becomes the case then we need to
7151 * figure out a way to make sure that in writepage we
7152 * wait for any async pages to be submitted before
7153 * returning so that fdatawait does what its supposed to
7154 * do.
7155 */
7156 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7157 } else {
7158 filemap_flush(inode->i_mapping);
7159 }
5da9d01b
YZ
7160 if (delay_iput)
7161 btrfs_add_delayed_iput(inode);
7162 else
7163 iput(inode);
7164 return 1;
7165 }
7166 return 0;
7167}
7168
39279cc3
CM
7169static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7170 const char *symname)
7171{
7172 struct btrfs_trans_handle *trans;
7173 struct btrfs_root *root = BTRFS_I(dir)->root;
7174 struct btrfs_path *path;
7175 struct btrfs_key key;
1832a6d5 7176 struct inode *inode = NULL;
39279cc3
CM
7177 int err;
7178 int drop_inode = 0;
7179 u64 objectid;
00e4e6b3 7180 u64 index = 0 ;
39279cc3
CM
7181 int name_len;
7182 int datasize;
5f39d397 7183 unsigned long ptr;
39279cc3 7184 struct btrfs_file_extent_item *ei;
5f39d397 7185 struct extent_buffer *leaf;
1832a6d5 7186 unsigned long nr = 0;
39279cc3
CM
7187
7188 name_len = strlen(symname) + 1;
7189 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7190 return -ENAMETOOLONG;
1832a6d5 7191
a22285a6
YZ
7192 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7193 if (err)
7194 return err;
9ed74f2d
JB
7195 /*
7196 * 2 items for inode item and ref
7197 * 2 items for dir items
7198 * 1 item for xattr if selinux is on
7199 */
a22285a6
YZ
7200 trans = btrfs_start_transaction(root, 5);
7201 if (IS_ERR(trans))
7202 return PTR_ERR(trans);
1832a6d5 7203
39279cc3
CM
7204 btrfs_set_trans_block_group(trans, dir);
7205
aec7477b 7206 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 7207 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
7208 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7209 &index);
39279cc3
CM
7210 err = PTR_ERR(inode);
7211 if (IS_ERR(inode))
7212 goto out_unlock;
7213
f34f57a3 7214 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
7215 if (err) {
7216 drop_inode = 1;
7217 goto out_unlock;
7218 }
7219
39279cc3 7220 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7221 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7222 if (err)
7223 drop_inode = 1;
7224 else {
7225 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7226 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7227 inode->i_fop = &btrfs_file_operations;
7228 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7229 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7230 }
39279cc3
CM
7231 btrfs_update_inode_block_group(trans, inode);
7232 btrfs_update_inode_block_group(trans, dir);
7233 if (drop_inode)
7234 goto out_unlock;
7235
7236 path = btrfs_alloc_path();
7237 BUG_ON(!path);
7238 key.objectid = inode->i_ino;
7239 key.offset = 0;
39279cc3
CM
7240 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7241 datasize = btrfs_file_extent_calc_inline_size(name_len);
7242 err = btrfs_insert_empty_item(trans, root, path, &key,
7243 datasize);
54aa1f4d
CM
7244 if (err) {
7245 drop_inode = 1;
7246 goto out_unlock;
7247 }
5f39d397
CM
7248 leaf = path->nodes[0];
7249 ei = btrfs_item_ptr(leaf, path->slots[0],
7250 struct btrfs_file_extent_item);
7251 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7252 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7253 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7254 btrfs_set_file_extent_encryption(leaf, ei, 0);
7255 btrfs_set_file_extent_compression(leaf, ei, 0);
7256 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7257 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7258
39279cc3 7259 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7260 write_extent_buffer(leaf, symname, ptr, name_len);
7261 btrfs_mark_buffer_dirty(leaf);
39279cc3 7262 btrfs_free_path(path);
5f39d397 7263
39279cc3
CM
7264 inode->i_op = &btrfs_symlink_inode_operations;
7265 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7266 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7267 inode_set_bytes(inode, name_len);
dbe674a9 7268 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7269 err = btrfs_update_inode(trans, root, inode);
7270 if (err)
7271 drop_inode = 1;
39279cc3
CM
7272
7273out_unlock:
d3c2fdcf 7274 nr = trans->blocks_used;
ab78c84d 7275 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7276 if (drop_inode) {
7277 inode_dec_link_count(inode);
7278 iput(inode);
7279 }
d3c2fdcf 7280 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7281 return err;
7282}
16432985 7283
0af3d00b
JB
7284static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7285 u64 start, u64 num_bytes, u64 min_size,
7286 loff_t actual_len, u64 *alloc_hint,
7287 struct btrfs_trans_handle *trans)
d899e052 7288{
d899e052
YZ
7289 struct btrfs_root *root = BTRFS_I(inode)->root;
7290 struct btrfs_key ins;
d899e052 7291 u64 cur_offset = start;
55a61d1d 7292 u64 i_size;
d899e052 7293 int ret = 0;
0af3d00b 7294 bool own_trans = true;
d899e052 7295
0af3d00b
JB
7296 if (trans)
7297 own_trans = false;
d899e052 7298 while (num_bytes > 0) {
0af3d00b
JB
7299 if (own_trans) {
7300 trans = btrfs_start_transaction(root, 3);
7301 if (IS_ERR(trans)) {
7302 ret = PTR_ERR(trans);
7303 break;
7304 }
5a303d5d
YZ
7305 }
7306
efa56464
YZ
7307 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7308 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7309 if (ret) {
0af3d00b
JB
7310 if (own_trans)
7311 btrfs_end_transaction(trans, root);
a22285a6 7312 break;
d899e052 7313 }
5a303d5d 7314
d899e052
YZ
7315 ret = insert_reserved_file_extent(trans, inode,
7316 cur_offset, ins.objectid,
7317 ins.offset, ins.offset,
920bbbfb 7318 ins.offset, 0, 0, 0,
d899e052
YZ
7319 BTRFS_FILE_EXTENT_PREALLOC);
7320 BUG_ON(ret);
a1ed835e
CM
7321 btrfs_drop_extent_cache(inode, cur_offset,
7322 cur_offset + ins.offset -1, 0);
5a303d5d 7323
d899e052
YZ
7324 num_bytes -= ins.offset;
7325 cur_offset += ins.offset;
efa56464 7326 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7327
d899e052 7328 inode->i_ctime = CURRENT_TIME;
6cbff00f 7329 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7330 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7331 (actual_len > inode->i_size) &&
7332 (cur_offset > inode->i_size)) {
d1ea6a61 7333 if (cur_offset > actual_len)
55a61d1d 7334 i_size = actual_len;
d1ea6a61 7335 else
55a61d1d
JB
7336 i_size = cur_offset;
7337 i_size_write(inode, i_size);
7338 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7339 }
7340
d899e052
YZ
7341 ret = btrfs_update_inode(trans, root, inode);
7342 BUG_ON(ret);
d899e052 7343
0af3d00b
JB
7344 if (own_trans)
7345 btrfs_end_transaction(trans, root);
5a303d5d 7346 }
d899e052
YZ
7347 return ret;
7348}
7349
0af3d00b
JB
7350int btrfs_prealloc_file_range(struct inode *inode, int mode,
7351 u64 start, u64 num_bytes, u64 min_size,
7352 loff_t actual_len, u64 *alloc_hint)
7353{
7354 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7355 min_size, actual_len, alloc_hint,
7356 NULL);
7357}
7358
7359int btrfs_prealloc_file_range_trans(struct inode *inode,
7360 struct btrfs_trans_handle *trans, int mode,
7361 u64 start, u64 num_bytes, u64 min_size,
7362 loff_t actual_len, u64 *alloc_hint)
7363{
7364 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7365 min_size, actual_len, alloc_hint, trans);
7366}
7367
e6dcd2dc
CM
7368static int btrfs_set_page_dirty(struct page *page)
7369{
e6dcd2dc
CM
7370 return __set_page_dirty_nobuffers(page);
7371}
7372
b74c79e9 7373static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7374{
b83cc969
LZ
7375 struct btrfs_root *root = BTRFS_I(inode)->root;
7376
7377 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7378 return -EROFS;
6cbff00f 7379 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7380 return -EACCES;
b74c79e9 7381 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7382}
39279cc3 7383
6e1d5dcc 7384static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7385 .getattr = btrfs_getattr,
39279cc3
CM
7386 .lookup = btrfs_lookup,
7387 .create = btrfs_create,
7388 .unlink = btrfs_unlink,
7389 .link = btrfs_link,
7390 .mkdir = btrfs_mkdir,
7391 .rmdir = btrfs_rmdir,
7392 .rename = btrfs_rename,
7393 .symlink = btrfs_symlink,
7394 .setattr = btrfs_setattr,
618e21d5 7395 .mknod = btrfs_mknod,
95819c05
CH
7396 .setxattr = btrfs_setxattr,
7397 .getxattr = btrfs_getxattr,
5103e947 7398 .listxattr = btrfs_listxattr,
95819c05 7399 .removexattr = btrfs_removexattr,
fdebe2bd 7400 .permission = btrfs_permission,
39279cc3 7401};
6e1d5dcc 7402static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7403 .lookup = btrfs_lookup,
fdebe2bd 7404 .permission = btrfs_permission,
39279cc3 7405};
76dda93c 7406
828c0950 7407static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7408 .llseek = generic_file_llseek,
7409 .read = generic_read_dir,
cbdf5a24 7410 .readdir = btrfs_real_readdir,
34287aa3 7411 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7412#ifdef CONFIG_COMPAT
34287aa3 7413 .compat_ioctl = btrfs_ioctl,
39279cc3 7414#endif
6bf13c0c 7415 .release = btrfs_release_file,
e02119d5 7416 .fsync = btrfs_sync_file,
39279cc3
CM
7417};
7418
d1310b2e 7419static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7420 .fill_delalloc = run_delalloc_range,
065631f6 7421 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7422 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7423 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7424 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7425 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7426 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7427 .set_bit_hook = btrfs_set_bit_hook,
7428 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7429 .merge_extent_hook = btrfs_merge_extent_hook,
7430 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7431};
7432
35054394
CM
7433/*
7434 * btrfs doesn't support the bmap operation because swapfiles
7435 * use bmap to make a mapping of extents in the file. They assume
7436 * these extents won't change over the life of the file and they
7437 * use the bmap result to do IO directly to the drive.
7438 *
7439 * the btrfs bmap call would return logical addresses that aren't
7440 * suitable for IO and they also will change frequently as COW
7441 * operations happen. So, swapfile + btrfs == corruption.
7442 *
7443 * For now we're avoiding this by dropping bmap.
7444 */
7f09410b 7445static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7446 .readpage = btrfs_readpage,
7447 .writepage = btrfs_writepage,
b293f02e 7448 .writepages = btrfs_writepages,
3ab2fb5a 7449 .readpages = btrfs_readpages,
39279cc3 7450 .sync_page = block_sync_page,
16432985 7451 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7452 .invalidatepage = btrfs_invalidatepage,
7453 .releasepage = btrfs_releasepage,
e6dcd2dc 7454 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7455 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7456};
7457
7f09410b 7458static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7459 .readpage = btrfs_readpage,
7460 .writepage = btrfs_writepage,
2bf5a725
CM
7461 .invalidatepage = btrfs_invalidatepage,
7462 .releasepage = btrfs_releasepage,
39279cc3
CM
7463};
7464
6e1d5dcc 7465static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7466 .getattr = btrfs_getattr,
7467 .setattr = btrfs_setattr,
95819c05
CH
7468 .setxattr = btrfs_setxattr,
7469 .getxattr = btrfs_getxattr,
5103e947 7470 .listxattr = btrfs_listxattr,
95819c05 7471 .removexattr = btrfs_removexattr,
fdebe2bd 7472 .permission = btrfs_permission,
1506fcc8 7473 .fiemap = btrfs_fiemap,
39279cc3 7474};
6e1d5dcc 7475static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7476 .getattr = btrfs_getattr,
7477 .setattr = btrfs_setattr,
fdebe2bd 7478 .permission = btrfs_permission,
95819c05
CH
7479 .setxattr = btrfs_setxattr,
7480 .getxattr = btrfs_getxattr,
33268eaf 7481 .listxattr = btrfs_listxattr,
95819c05 7482 .removexattr = btrfs_removexattr,
618e21d5 7483};
6e1d5dcc 7484static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7485 .readlink = generic_readlink,
7486 .follow_link = page_follow_link_light,
7487 .put_link = page_put_link,
f209561a 7488 .getattr = btrfs_getattr,
fdebe2bd 7489 .permission = btrfs_permission,
0279b4cd
JO
7490 .setxattr = btrfs_setxattr,
7491 .getxattr = btrfs_getxattr,
7492 .listxattr = btrfs_listxattr,
7493 .removexattr = btrfs_removexattr,
39279cc3 7494};
76dda93c 7495
82d339d9 7496const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7497 .d_delete = btrfs_dentry_delete,
7498};