Btrfs: Use PagePrivate2 to track pages in the data=ordered code.
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
29#include <linux/smp_lock.h>
30#include <linux/backing-dev.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
39279cc3
CM
53
54struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57};
58
59static struct inode_operations btrfs_dir_inode_operations;
60static struct inode_operations btrfs_symlink_inode_operations;
61static struct inode_operations btrfs_dir_ro_inode_operations;
618e21d5 62static struct inode_operations btrfs_special_inode_operations;
39279cc3
CM
63static struct inode_operations btrfs_file_inode_operations;
64static struct address_space_operations btrfs_aops;
65static struct address_space_operations btrfs_symlink_aops;
66static struct file_operations btrfs_dir_file_operations;
d1310b2e 67static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
68
69static struct kmem_cache *btrfs_inode_cachep;
70struct kmem_cache *btrfs_trans_handle_cachep;
71struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
72struct kmem_cache *btrfs_path_cachep;
73
74#define S_SHIFT 12
75static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83};
84
7b128766 85static void btrfs_truncate(struct inode *inode);
c8b97818 86static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
87static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
7b128766 91
0279b4cd
JO
92static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
93{
94 int err;
95
96 err = btrfs_init_acl(inode, dir);
97 if (!err)
98 err = btrfs_xattr_security_init(inode, dir);
99 return err;
100}
101
c8b97818
CM
102/*
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
106 */
d397712b 107static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
111{
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
116 char *kaddr;
117 unsigned long ptr;
118 struct btrfs_file_extent_item *ei;
119 int err = 0;
120 int ret;
121 size_t cur_size = size;
122 size_t datasize;
123 unsigned long offset;
124 int use_compress = 0;
125
126 if (compressed_size && compressed_pages) {
127 use_compress = 1;
128 cur_size = compressed_size;
129 }
130
d397712b
CM
131 path = btrfs_alloc_path();
132 if (!path)
c8b97818
CM
133 return -ENOMEM;
134
b9473439 135 path->leave_spinning = 1;
c8b97818
CM
136 btrfs_set_trans_block_group(trans, inode);
137
138 key.objectid = inode->i_ino;
139 key.offset = start;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
145 datasize);
146 BUG_ON(ret);
147 if (ret) {
148 err = ret;
c8b97818
CM
149 goto fail;
150 }
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
160
161 if (use_compress) {
162 struct page *cpage;
163 int i = 0;
d397712b 164 while (compressed_size > 0) {
c8b97818 165 cpage = compressed_pages[i];
5b050f04 166 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
167 PAGE_CACHE_SIZE);
168
b9473439 169 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 171 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
172
173 i++;
174 ptr += cur_size;
175 compressed_size -= cur_size;
176 }
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
179 } else {
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
188 }
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
191
192 BTRFS_I(inode)->disk_i_size = inode->i_size;
193 btrfs_update_inode(trans, root, inode);
194 return 0;
195fail:
196 btrfs_free_path(path);
197 return err;
198}
199
200
201/*
202 * conditionally insert an inline extent into the file. This
203 * does the checks required to make sure the data is small enough
204 * to fit as an inline extent.
205 */
7f366cfe 206static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
207 struct btrfs_root *root,
208 struct inode *inode, u64 start, u64 end,
209 size_t compressed_size,
210 struct page **compressed_pages)
211{
212 u64 isize = i_size_read(inode);
213 u64 actual_end = min(end + 1, isize);
214 u64 inline_len = actual_end - start;
215 u64 aligned_end = (end + root->sectorsize - 1) &
216 ~((u64)root->sectorsize - 1);
217 u64 hint_byte;
218 u64 data_len = inline_len;
219 int ret;
220
221 if (compressed_size)
222 data_len = compressed_size;
223
224 if (start > 0 ||
70b99e69 225 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
226 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
227 (!compressed_size &&
228 (actual_end & (root->sectorsize - 1)) == 0) ||
229 end + 1 < isize ||
230 data_len > root->fs_info->max_inline) {
231 return 1;
232 }
233
c8b97818 234 ret = btrfs_drop_extents(trans, root, inode, start,
e980b50c 235 aligned_end, aligned_end, start, &hint_byte);
c8b97818
CM
236 BUG_ON(ret);
237
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
242 compressed_pages);
243 BUG_ON(ret);
244 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
c8b97818
CM
245 return 0;
246}
247
771ed689
CM
248struct async_extent {
249 u64 start;
250 u64 ram_size;
251 u64 compressed_size;
252 struct page **pages;
253 unsigned long nr_pages;
254 struct list_head list;
255};
256
257struct async_cow {
258 struct inode *inode;
259 struct btrfs_root *root;
260 struct page *locked_page;
261 u64 start;
262 u64 end;
263 struct list_head extents;
264 struct btrfs_work work;
265};
266
267static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
269 u64 compressed_size,
270 struct page **pages,
271 unsigned long nr_pages)
272{
273 struct async_extent *async_extent;
274
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
282 return 0;
283}
284
d352ac68 285/*
771ed689
CM
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
c8b97818 289 *
771ed689
CM
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
c8b97818 295 *
771ed689
CM
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
d352ac68 300 */
771ed689
CM
301static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
303 u64 start, u64 end,
304 struct async_cow *async_cow,
305 int *num_added)
b888db2b
CM
306{
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
db94535d 309 u64 num_bytes;
c8b97818
CM
310 u64 orig_start;
311 u64 disk_num_bytes;
db94535d 312 u64 blocksize = root->sectorsize;
c8b97818 313 u64 actual_end;
42dc7bab 314 u64 isize = i_size_read(inode);
e6dcd2dc 315 int ret = 0;
c8b97818
CM
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
771ed689 322 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
323 int i;
324 int will_compress;
b888db2b 325
c8b97818
CM
326 orig_start = start;
327
42dc7bab 328 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
329again:
330 will_compress = 0;
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 333
f03d9301
CM
334 /*
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
340 *
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
343 */
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
346
c8b97818
CM
347 total_compressed = actual_end - start;
348
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
354 *
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
c8b97818
CM
358 */
359 total_compressed = min(total_compressed, max_uncompressed);
db94535d 360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 361 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
362 disk_num_bytes = num_bytes;
363 total_in = 0;
364 ret = 0;
db94535d 365
771ed689
CM
366 /*
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
c8b97818 370 */
6cbff00f 371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
c8b97818
CM
372 btrfs_test_opt(root, COMPRESS)) {
373 WARN_ON(pages);
cfbc246e 374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 375
c8b97818
CM
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
379 &total_in,
380 &total_compressed,
381 max_compressed);
382
383 if (!ret) {
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
387 char *kaddr;
388
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
391 */
392 if (offset) {
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
397 }
398 will_compress = 1;
399 }
400 }
401 if (start == 0) {
771ed689
CM
402 trans = btrfs_join_transaction(root, 1);
403 BUG_ON(!trans);
404 btrfs_set_trans_block_group(trans, inode);
405
c8b97818 406 /* lets try to make an inline extent */
771ed689 407 if (ret || total_in < (actual_end - start)) {
c8b97818 408 /* we didn't compress the entire range, try
771ed689 409 * to make an uncompressed inline extent.
c8b97818
CM
410 */
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
413 } else {
771ed689 414 /* try making a compressed inline extent */
c8b97818
CM
415 ret = cow_file_range_inline(trans, root, inode,
416 start, end,
417 total_compressed, pages);
418 }
771ed689 419 btrfs_end_transaction(trans, root);
c8b97818 420 if (ret == 0) {
771ed689
CM
421 /*
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
425 */
c8b97818
CM
426 extent_clear_unlock_delalloc(inode,
427 &BTRFS_I(inode)->io_tree,
771ed689 428 start, end, NULL, 1, 0,
8b62b72b 429 0, 1, 1, 1, 0);
c8b97818
CM
430 ret = 0;
431 goto free_pages_out;
432 }
433 }
434
435 if (will_compress) {
436 /*
437 * we aren't doing an inline extent round the compressed size
438 * up to a block size boundary so the allocator does sane
439 * things
440 */
441 total_compressed = (total_compressed + blocksize - 1) &
442 ~(blocksize - 1);
443
444 /*
445 * one last check to make sure the compression is really a
446 * win, compare the page count read with the blocks on disk
447 */
448 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
449 ~(PAGE_CACHE_SIZE - 1);
450 if (total_compressed >= total_in) {
451 will_compress = 0;
452 } else {
453 disk_num_bytes = total_compressed;
454 num_bytes = total_in;
455 }
456 }
457 if (!will_compress && pages) {
458 /*
459 * the compression code ran but failed to make things smaller,
460 * free any pages it allocated and our page pointer array
461 */
462 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 463 WARN_ON(pages[i]->mapping);
c8b97818
CM
464 page_cache_release(pages[i]);
465 }
466 kfree(pages);
467 pages = NULL;
468 total_compressed = 0;
469 nr_pages_ret = 0;
470
471 /* flag the file so we don't compress in the future */
6cbff00f 472 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
c8b97818 473 }
771ed689
CM
474 if (will_compress) {
475 *num_added += 1;
c8b97818 476
771ed689
CM
477 /* the async work queues will take care of doing actual
478 * allocation on disk for these compressed pages,
479 * and will submit them to the elevator.
480 */
481 add_async_extent(async_cow, start, num_bytes,
482 total_compressed, pages, nr_pages_ret);
179e29e4 483
42dc7bab 484 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
485 start += num_bytes;
486 pages = NULL;
487 cond_resched();
488 goto again;
489 }
490 } else {
f03d9301 491cleanup_and_bail_uncompressed:
771ed689
CM
492 /*
493 * No compression, but we still need to write the pages in
494 * the file we've been given so far. redirty the locked
495 * page if it corresponds to our extent and set things up
496 * for the async work queue to run cow_file_range to do
497 * the normal delalloc dance
498 */
499 if (page_offset(locked_page) >= start &&
500 page_offset(locked_page) <= end) {
501 __set_page_dirty_nobuffers(locked_page);
502 /* unlocked later on in the async handlers */
503 }
504 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
505 *num_added += 1;
506 }
3b951516 507
771ed689
CM
508out:
509 return 0;
510
511free_pages_out:
512 for (i = 0; i < nr_pages_ret; i++) {
513 WARN_ON(pages[i]->mapping);
514 page_cache_release(pages[i]);
515 }
d397712b 516 kfree(pages);
771ed689
CM
517
518 goto out;
519}
520
521/*
522 * phase two of compressed writeback. This is the ordered portion
523 * of the code, which only gets called in the order the work was
524 * queued. We walk all the async extents created by compress_file_range
525 * and send them down to the disk.
526 */
527static noinline int submit_compressed_extents(struct inode *inode,
528 struct async_cow *async_cow)
529{
530 struct async_extent *async_extent;
531 u64 alloc_hint = 0;
532 struct btrfs_trans_handle *trans;
533 struct btrfs_key ins;
534 struct extent_map *em;
535 struct btrfs_root *root = BTRFS_I(inode)->root;
536 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
537 struct extent_io_tree *io_tree;
538 int ret;
539
540 if (list_empty(&async_cow->extents))
541 return 0;
542
543 trans = btrfs_join_transaction(root, 1);
544
d397712b 545 while (!list_empty(&async_cow->extents)) {
771ed689
CM
546 async_extent = list_entry(async_cow->extents.next,
547 struct async_extent, list);
548 list_del(&async_extent->list);
c8b97818 549
771ed689
CM
550 io_tree = &BTRFS_I(inode)->io_tree;
551
552 /* did the compression code fall back to uncompressed IO? */
553 if (!async_extent->pages) {
554 int page_started = 0;
555 unsigned long nr_written = 0;
556
557 lock_extent(io_tree, async_extent->start,
d397712b
CM
558 async_extent->start +
559 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
560
561 /* allocate blocks */
562 cow_file_range(inode, async_cow->locked_page,
563 async_extent->start,
564 async_extent->start +
565 async_extent->ram_size - 1,
566 &page_started, &nr_written, 0);
567
568 /*
569 * if page_started, cow_file_range inserted an
570 * inline extent and took care of all the unlocking
571 * and IO for us. Otherwise, we need to submit
572 * all those pages down to the drive.
573 */
574 if (!page_started)
575 extent_write_locked_range(io_tree,
576 inode, async_extent->start,
d397712b 577 async_extent->start +
771ed689
CM
578 async_extent->ram_size - 1,
579 btrfs_get_extent,
580 WB_SYNC_ALL);
581 kfree(async_extent);
582 cond_resched();
583 continue;
584 }
585
586 lock_extent(io_tree, async_extent->start,
587 async_extent->start + async_extent->ram_size - 1,
588 GFP_NOFS);
c8b97818 589 /*
771ed689
CM
590 * here we're doing allocation and writeback of the
591 * compressed pages
c8b97818 592 */
771ed689
CM
593 btrfs_drop_extent_cache(inode, async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1, 0);
596
597 ret = btrfs_reserve_extent(trans, root,
598 async_extent->compressed_size,
599 async_extent->compressed_size,
600 0, alloc_hint,
601 (u64)-1, &ins, 1);
602 BUG_ON(ret);
603 em = alloc_extent_map(GFP_NOFS);
604 em->start = async_extent->start;
605 em->len = async_extent->ram_size;
445a6944 606 em->orig_start = em->start;
c8b97818 607
771ed689
CM
608 em->block_start = ins.objectid;
609 em->block_len = ins.offset;
610 em->bdev = root->fs_info->fs_devices->latest_bdev;
611 set_bit(EXTENT_FLAG_PINNED, &em->flags);
612 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
613
d397712b 614 while (1) {
890871be 615 write_lock(&em_tree->lock);
771ed689 616 ret = add_extent_mapping(em_tree, em);
890871be 617 write_unlock(&em_tree->lock);
771ed689
CM
618 if (ret != -EEXIST) {
619 free_extent_map(em);
620 break;
621 }
622 btrfs_drop_extent_cache(inode, async_extent->start,
623 async_extent->start +
624 async_extent->ram_size - 1, 0);
625 }
626
627 ret = btrfs_add_ordered_extent(inode, async_extent->start,
628 ins.objectid,
629 async_extent->ram_size,
630 ins.offset,
631 BTRFS_ORDERED_COMPRESSED);
632 BUG_ON(ret);
633
634 btrfs_end_transaction(trans, root);
635
636 /*
637 * clear dirty, set writeback and unlock the pages.
638 */
639 extent_clear_unlock_delalloc(inode,
640 &BTRFS_I(inode)->io_tree,
641 async_extent->start,
642 async_extent->start +
643 async_extent->ram_size - 1,
8b62b72b 644 NULL, 1, 1, 0, 1, 1, 0, 0);
771ed689
CM
645
646 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
647 async_extent->start,
648 async_extent->ram_size,
649 ins.objectid,
650 ins.offset, async_extent->pages,
651 async_extent->nr_pages);
771ed689
CM
652
653 BUG_ON(ret);
654 trans = btrfs_join_transaction(root, 1);
655 alloc_hint = ins.objectid + ins.offset;
656 kfree(async_extent);
657 cond_resched();
658 }
659
660 btrfs_end_transaction(trans, root);
661 return 0;
662}
663
664/*
665 * when extent_io.c finds a delayed allocation range in the file,
666 * the call backs end up in this code. The basic idea is to
667 * allocate extents on disk for the range, and create ordered data structs
668 * in ram to track those extents.
669 *
670 * locked_page is the page that writepage had locked already. We use
671 * it to make sure we don't do extra locks or unlocks.
672 *
673 * *page_started is set to one if we unlock locked_page and do everything
674 * required to start IO on it. It may be clean and already done with
675 * IO when we return.
676 */
677static noinline int cow_file_range(struct inode *inode,
678 struct page *locked_page,
679 u64 start, u64 end, int *page_started,
680 unsigned long *nr_written,
681 int unlock)
682{
683 struct btrfs_root *root = BTRFS_I(inode)->root;
684 struct btrfs_trans_handle *trans;
685 u64 alloc_hint = 0;
686 u64 num_bytes;
687 unsigned long ram_size;
688 u64 disk_num_bytes;
689 u64 cur_alloc_size;
690 u64 blocksize = root->sectorsize;
691 u64 actual_end;
42dc7bab 692 u64 isize = i_size_read(inode);
771ed689
CM
693 struct btrfs_key ins;
694 struct extent_map *em;
695 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
696 int ret = 0;
697
698 trans = btrfs_join_transaction(root, 1);
699 BUG_ON(!trans);
700 btrfs_set_trans_block_group(trans, inode);
701
42dc7bab 702 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
703
704 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
705 num_bytes = max(blocksize, num_bytes);
706 disk_num_bytes = num_bytes;
707 ret = 0;
708
709 if (start == 0) {
710 /* lets try to make an inline extent */
711 ret = cow_file_range_inline(trans, root, inode,
712 start, end, 0, NULL);
713 if (ret == 0) {
714 extent_clear_unlock_delalloc(inode,
715 &BTRFS_I(inode)->io_tree,
716 start, end, NULL, 1, 1,
8b62b72b 717 1, 1, 1, 1, 0);
771ed689
CM
718 *nr_written = *nr_written +
719 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
720 *page_started = 1;
721 ret = 0;
722 goto out;
723 }
724 }
725
726 BUG_ON(disk_num_bytes >
727 btrfs_super_total_bytes(&root->fs_info->super_copy));
728
729 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
730
d397712b 731 while (disk_num_bytes > 0) {
c8b97818 732 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 733 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 734 root->sectorsize, 0, alloc_hint,
e6dcd2dc 735 (u64)-1, &ins, 1);
d397712b
CM
736 BUG_ON(ret);
737
e6dcd2dc
CM
738 em = alloc_extent_map(GFP_NOFS);
739 em->start = start;
445a6944 740 em->orig_start = em->start;
c8b97818 741
771ed689
CM
742 ram_size = ins.offset;
743 em->len = ins.offset;
c8b97818 744
e6dcd2dc 745 em->block_start = ins.objectid;
c8b97818 746 em->block_len = ins.offset;
e6dcd2dc 747 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 748 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 749
d397712b 750 while (1) {
890871be 751 write_lock(&em_tree->lock);
e6dcd2dc 752 ret = add_extent_mapping(em_tree, em);
890871be 753 write_unlock(&em_tree->lock);
e6dcd2dc
CM
754 if (ret != -EEXIST) {
755 free_extent_map(em);
756 break;
757 }
758 btrfs_drop_extent_cache(inode, start,
c8b97818 759 start + ram_size - 1, 0);
e6dcd2dc
CM
760 }
761
98d20f67 762 cur_alloc_size = ins.offset;
e6dcd2dc 763 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 764 ram_size, cur_alloc_size, 0);
e6dcd2dc 765 BUG_ON(ret);
c8b97818 766
17d217fe
YZ
767 if (root->root_key.objectid ==
768 BTRFS_DATA_RELOC_TREE_OBJECTID) {
769 ret = btrfs_reloc_clone_csums(inode, start,
770 cur_alloc_size);
771 BUG_ON(ret);
772 }
773
d397712b 774 if (disk_num_bytes < cur_alloc_size)
3b951516 775 break;
d397712b 776
c8b97818
CM
777 /* we're not doing compressed IO, don't unlock the first
778 * page (which the caller expects to stay locked), don't
779 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
780 *
781 * Do set the Private2 bit so we know this page was properly
782 * setup for writepage
c8b97818
CM
783 */
784 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
785 start, start + ram_size - 1,
771ed689 786 locked_page, unlock, 1,
8b62b72b 787 1, 0, 0, 0, 1);
c8b97818 788 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
789 num_bytes -= cur_alloc_size;
790 alloc_hint = ins.objectid + ins.offset;
791 start += cur_alloc_size;
b888db2b 792 }
b888db2b 793out:
771ed689 794 ret = 0;
b888db2b 795 btrfs_end_transaction(trans, root);
c8b97818 796
be20aa9d 797 return ret;
771ed689 798}
c8b97818 799
771ed689
CM
800/*
801 * work queue call back to started compression on a file and pages
802 */
803static noinline void async_cow_start(struct btrfs_work *work)
804{
805 struct async_cow *async_cow;
806 int num_added = 0;
807 async_cow = container_of(work, struct async_cow, work);
808
809 compress_file_range(async_cow->inode, async_cow->locked_page,
810 async_cow->start, async_cow->end, async_cow,
811 &num_added);
812 if (num_added == 0)
813 async_cow->inode = NULL;
814}
815
816/*
817 * work queue call back to submit previously compressed pages
818 */
819static noinline void async_cow_submit(struct btrfs_work *work)
820{
821 struct async_cow *async_cow;
822 struct btrfs_root *root;
823 unsigned long nr_pages;
824
825 async_cow = container_of(work, struct async_cow, work);
826
827 root = async_cow->root;
828 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
829 PAGE_CACHE_SHIFT;
830
831 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
832
833 if (atomic_read(&root->fs_info->async_delalloc_pages) <
834 5 * 1042 * 1024 &&
835 waitqueue_active(&root->fs_info->async_submit_wait))
836 wake_up(&root->fs_info->async_submit_wait);
837
d397712b 838 if (async_cow->inode)
771ed689 839 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 840}
c8b97818 841
771ed689
CM
842static noinline void async_cow_free(struct btrfs_work *work)
843{
844 struct async_cow *async_cow;
845 async_cow = container_of(work, struct async_cow, work);
846 kfree(async_cow);
847}
848
849static int cow_file_range_async(struct inode *inode, struct page *locked_page,
850 u64 start, u64 end, int *page_started,
851 unsigned long *nr_written)
852{
853 struct async_cow *async_cow;
854 struct btrfs_root *root = BTRFS_I(inode)->root;
855 unsigned long nr_pages;
856 u64 cur_end;
857 int limit = 10 * 1024 * 1042;
858
771ed689 859 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
2c64c53d 860 EXTENT_DELALLOC, 1, 0, NULL, GFP_NOFS);
d397712b 861 while (start < end) {
771ed689
CM
862 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
863 async_cow->inode = inode;
864 async_cow->root = root;
865 async_cow->locked_page = locked_page;
866 async_cow->start = start;
867
6cbff00f 868 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
869 cur_end = end;
870 else
871 cur_end = min(end, start + 512 * 1024 - 1);
872
873 async_cow->end = cur_end;
874 INIT_LIST_HEAD(&async_cow->extents);
875
876 async_cow->work.func = async_cow_start;
877 async_cow->work.ordered_func = async_cow_submit;
878 async_cow->work.ordered_free = async_cow_free;
879 async_cow->work.flags = 0;
880
771ed689
CM
881 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
882 PAGE_CACHE_SHIFT;
883 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
884
885 btrfs_queue_worker(&root->fs_info->delalloc_workers,
886 &async_cow->work);
887
888 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
889 wait_event(root->fs_info->async_submit_wait,
890 (atomic_read(&root->fs_info->async_delalloc_pages) <
891 limit));
892 }
893
d397712b 894 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
895 atomic_read(&root->fs_info->async_delalloc_pages)) {
896 wait_event(root->fs_info->async_submit_wait,
897 (atomic_read(&root->fs_info->async_delalloc_pages) ==
898 0));
899 }
900
901 *nr_written += nr_pages;
902 start = cur_end + 1;
903 }
904 *page_started = 1;
905 return 0;
be20aa9d
CM
906}
907
d397712b 908static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
909 u64 bytenr, u64 num_bytes)
910{
911 int ret;
912 struct btrfs_ordered_sum *sums;
913 LIST_HEAD(list);
914
07d400a6
YZ
915 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
916 bytenr + num_bytes - 1, &list);
17d217fe
YZ
917 if (ret == 0 && list_empty(&list))
918 return 0;
919
920 while (!list_empty(&list)) {
921 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
922 list_del(&sums->list);
923 kfree(sums);
924 }
925 return 1;
926}
927
d352ac68
CM
928/*
929 * when nowcow writeback call back. This checks for snapshots or COW copies
930 * of the extents that exist in the file, and COWs the file as required.
931 *
932 * If no cow copies or snapshots exist, we write directly to the existing
933 * blocks on disk
934 */
7f366cfe
CM
935static noinline int run_delalloc_nocow(struct inode *inode,
936 struct page *locked_page,
771ed689
CM
937 u64 start, u64 end, int *page_started, int force,
938 unsigned long *nr_written)
be20aa9d 939{
be20aa9d 940 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 941 struct btrfs_trans_handle *trans;
be20aa9d 942 struct extent_buffer *leaf;
be20aa9d 943 struct btrfs_path *path;
80ff3856 944 struct btrfs_file_extent_item *fi;
be20aa9d 945 struct btrfs_key found_key;
80ff3856
YZ
946 u64 cow_start;
947 u64 cur_offset;
948 u64 extent_end;
5d4f98a2 949 u64 extent_offset;
80ff3856
YZ
950 u64 disk_bytenr;
951 u64 num_bytes;
952 int extent_type;
953 int ret;
d899e052 954 int type;
80ff3856
YZ
955 int nocow;
956 int check_prev = 1;
be20aa9d
CM
957
958 path = btrfs_alloc_path();
959 BUG_ON(!path);
7ea394f1
YZ
960 trans = btrfs_join_transaction(root, 1);
961 BUG_ON(!trans);
be20aa9d 962
80ff3856
YZ
963 cow_start = (u64)-1;
964 cur_offset = start;
965 while (1) {
966 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
967 cur_offset, 0);
968 BUG_ON(ret < 0);
969 if (ret > 0 && path->slots[0] > 0 && check_prev) {
970 leaf = path->nodes[0];
971 btrfs_item_key_to_cpu(leaf, &found_key,
972 path->slots[0] - 1);
973 if (found_key.objectid == inode->i_ino &&
974 found_key.type == BTRFS_EXTENT_DATA_KEY)
975 path->slots[0]--;
976 }
977 check_prev = 0;
978next_slot:
979 leaf = path->nodes[0];
980 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981 ret = btrfs_next_leaf(root, path);
982 if (ret < 0)
983 BUG_ON(1);
984 if (ret > 0)
985 break;
986 leaf = path->nodes[0];
987 }
be20aa9d 988
80ff3856
YZ
989 nocow = 0;
990 disk_bytenr = 0;
17d217fe 991 num_bytes = 0;
80ff3856
YZ
992 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
993
994 if (found_key.objectid > inode->i_ino ||
995 found_key.type > BTRFS_EXTENT_DATA_KEY ||
996 found_key.offset > end)
997 break;
998
999 if (found_key.offset > cur_offset) {
1000 extent_end = found_key.offset;
1001 goto out_check;
1002 }
1003
1004 fi = btrfs_item_ptr(leaf, path->slots[0],
1005 struct btrfs_file_extent_item);
1006 extent_type = btrfs_file_extent_type(leaf, fi);
1007
d899e052
YZ
1008 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1009 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1010 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1011 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1012 extent_end = found_key.offset +
1013 btrfs_file_extent_num_bytes(leaf, fi);
1014 if (extent_end <= start) {
1015 path->slots[0]++;
1016 goto next_slot;
1017 }
17d217fe
YZ
1018 if (disk_bytenr == 0)
1019 goto out_check;
80ff3856
YZ
1020 if (btrfs_file_extent_compression(leaf, fi) ||
1021 btrfs_file_extent_encryption(leaf, fi) ||
1022 btrfs_file_extent_other_encoding(leaf, fi))
1023 goto out_check;
d899e052
YZ
1024 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1025 goto out_check;
d2fb3437 1026 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1027 goto out_check;
17d217fe 1028 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1029 found_key.offset -
1030 extent_offset, disk_bytenr))
17d217fe 1031 goto out_check;
5d4f98a2 1032 disk_bytenr += extent_offset;
17d217fe
YZ
1033 disk_bytenr += cur_offset - found_key.offset;
1034 num_bytes = min(end + 1, extent_end) - cur_offset;
1035 /*
1036 * force cow if csum exists in the range.
1037 * this ensure that csum for a given extent are
1038 * either valid or do not exist.
1039 */
1040 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1041 goto out_check;
80ff3856
YZ
1042 nocow = 1;
1043 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1044 extent_end = found_key.offset +
1045 btrfs_file_extent_inline_len(leaf, fi);
1046 extent_end = ALIGN(extent_end, root->sectorsize);
1047 } else {
1048 BUG_ON(1);
1049 }
1050out_check:
1051 if (extent_end <= start) {
1052 path->slots[0]++;
1053 goto next_slot;
1054 }
1055 if (!nocow) {
1056 if (cow_start == (u64)-1)
1057 cow_start = cur_offset;
1058 cur_offset = extent_end;
1059 if (cur_offset > end)
1060 break;
1061 path->slots[0]++;
1062 goto next_slot;
7ea394f1
YZ
1063 }
1064
1065 btrfs_release_path(root, path);
80ff3856
YZ
1066 if (cow_start != (u64)-1) {
1067 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1068 found_key.offset - 1, page_started,
1069 nr_written, 1);
80ff3856
YZ
1070 BUG_ON(ret);
1071 cow_start = (u64)-1;
7ea394f1 1072 }
80ff3856 1073
d899e052
YZ
1074 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1075 struct extent_map *em;
1076 struct extent_map_tree *em_tree;
1077 em_tree = &BTRFS_I(inode)->extent_tree;
1078 em = alloc_extent_map(GFP_NOFS);
1079 em->start = cur_offset;
445a6944 1080 em->orig_start = em->start;
d899e052
YZ
1081 em->len = num_bytes;
1082 em->block_len = num_bytes;
1083 em->block_start = disk_bytenr;
1084 em->bdev = root->fs_info->fs_devices->latest_bdev;
1085 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1086 while (1) {
890871be 1087 write_lock(&em_tree->lock);
d899e052 1088 ret = add_extent_mapping(em_tree, em);
890871be 1089 write_unlock(&em_tree->lock);
d899e052
YZ
1090 if (ret != -EEXIST) {
1091 free_extent_map(em);
1092 break;
1093 }
1094 btrfs_drop_extent_cache(inode, em->start,
1095 em->start + em->len - 1, 0);
1096 }
1097 type = BTRFS_ORDERED_PREALLOC;
1098 } else {
1099 type = BTRFS_ORDERED_NOCOW;
1100 }
80ff3856
YZ
1101
1102 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1103 num_bytes, num_bytes, type);
1104 BUG_ON(ret);
771ed689 1105
d899e052
YZ
1106 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1107 cur_offset, cur_offset + num_bytes - 1,
8b62b72b 1108 locked_page, 1, 1, 1, 0, 0, 0, 1);
80ff3856
YZ
1109 cur_offset = extent_end;
1110 if (cur_offset > end)
1111 break;
be20aa9d 1112 }
80ff3856
YZ
1113 btrfs_release_path(root, path);
1114
1115 if (cur_offset <= end && cow_start == (u64)-1)
1116 cow_start = cur_offset;
1117 if (cow_start != (u64)-1) {
1118 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1119 page_started, nr_written, 1);
80ff3856
YZ
1120 BUG_ON(ret);
1121 }
1122
1123 ret = btrfs_end_transaction(trans, root);
1124 BUG_ON(ret);
7ea394f1 1125 btrfs_free_path(path);
80ff3856 1126 return 0;
be20aa9d
CM
1127}
1128
d352ac68
CM
1129/*
1130 * extent_io.c call back to do delayed allocation processing
1131 */
c8b97818 1132static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1133 u64 start, u64 end, int *page_started,
1134 unsigned long *nr_written)
be20aa9d 1135{
be20aa9d 1136 int ret;
7f366cfe 1137 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1138
6cbff00f 1139 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1140 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1141 page_started, 1, nr_written);
6cbff00f 1142 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1143 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1144 page_started, 0, nr_written);
7f366cfe
CM
1145 else if (!btrfs_test_opt(root, COMPRESS))
1146 ret = cow_file_range(inode, locked_page, start, end,
1147 page_started, nr_written, 1);
be20aa9d 1148 else
771ed689 1149 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1150 page_started, nr_written);
b888db2b
CM
1151 return ret;
1152}
1153
d352ac68
CM
1154/*
1155 * extent_io.c set_bit_hook, used to track delayed allocation
1156 * bytes in this file, and to maintain the list of inodes that
1157 * have pending delalloc work to be done.
1158 */
b2950863 1159static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1160 unsigned long old, unsigned long bits)
291d673e 1161{
75eff68e
CM
1162 /*
1163 * set_bit and clear bit hooks normally require _irqsave/restore
1164 * but in this case, we are only testeing for the DELALLOC
1165 * bit, which is only set or cleared with irqs on
1166 */
b0c68f8b 1167 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1168 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 1169 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1170 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1171 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1172 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1173 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1174 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1175 &root->fs_info->delalloc_inodes);
1176 }
75eff68e 1177 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1178 }
1179 return 0;
1180}
1181
d352ac68
CM
1182/*
1183 * extent_io.c clear_bit_hook, see set_bit_hook for why
1184 */
b2950863 1185static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1186 unsigned long old, unsigned long bits)
291d673e 1187{
75eff68e
CM
1188 /*
1189 * set_bit and clear bit hooks normally require _irqsave/restore
1190 * but in this case, we are only testeing for the DELALLOC
1191 * bit, which is only set or cleared with irqs on
1192 */
b0c68f8b 1193 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1194 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1195
75eff68e 1196 spin_lock(&root->fs_info->delalloc_lock);
b0c68f8b 1197 if (end - start + 1 > root->fs_info->delalloc_bytes) {
d397712b
CM
1198 printk(KERN_INFO "btrfs warning: delalloc account "
1199 "%llu %llu\n",
1200 (unsigned long long)end - start + 1,
1201 (unsigned long long)
1202 root->fs_info->delalloc_bytes);
6a63209f 1203 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1204 root->fs_info->delalloc_bytes = 0;
9069218d 1205 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1206 } else {
6a63209f
JB
1207 btrfs_delalloc_free_space(root, inode,
1208 end - start + 1);
b0c68f8b 1209 root->fs_info->delalloc_bytes -= end - start + 1;
9069218d 1210 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
b0c68f8b 1211 }
ea8c2819
CM
1212 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1213 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1214 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1215 }
75eff68e 1216 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1217 }
1218 return 0;
1219}
1220
d352ac68
CM
1221/*
1222 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1223 * we don't create bios that span stripes or chunks
1224 */
239b14b3 1225int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1226 size_t size, struct bio *bio,
1227 unsigned long bio_flags)
239b14b3
CM
1228{
1229 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1230 struct btrfs_mapping_tree *map_tree;
a62b9401 1231 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1232 u64 length = 0;
1233 u64 map_length;
239b14b3
CM
1234 int ret;
1235
771ed689
CM
1236 if (bio_flags & EXTENT_BIO_COMPRESSED)
1237 return 0;
1238
f2d8d74d 1239 length = bio->bi_size;
239b14b3
CM
1240 map_tree = &root->fs_info->mapping_tree;
1241 map_length = length;
cea9e445 1242 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1243 &map_length, NULL, 0);
cea9e445 1244
d397712b 1245 if (map_length < length + size)
239b14b3 1246 return 1;
239b14b3
CM
1247 return 0;
1248}
1249
d352ac68
CM
1250/*
1251 * in order to insert checksums into the metadata in large chunks,
1252 * we wait until bio submission time. All the pages in the bio are
1253 * checksummed and sums are attached onto the ordered extent record.
1254 *
1255 * At IO completion time the cums attached on the ordered extent record
1256 * are inserted into the btree
1257 */
d397712b
CM
1258static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1259 struct bio *bio, int mirror_num,
1260 unsigned long bio_flags)
065631f6 1261{
065631f6 1262 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1263 int ret = 0;
e015640f 1264
d20f7043 1265 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1266 BUG_ON(ret);
4a69a410
CM
1267 return 0;
1268}
e015640f 1269
4a69a410
CM
1270/*
1271 * in order to insert checksums into the metadata in large chunks,
1272 * we wait until bio submission time. All the pages in the bio are
1273 * checksummed and sums are attached onto the ordered extent record.
1274 *
1275 * At IO completion time the cums attached on the ordered extent record
1276 * are inserted into the btree
1277 */
b2950863 1278static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1279 int mirror_num, unsigned long bio_flags)
1280{
1281 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1282 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1283}
1284
d352ac68 1285/*
cad321ad
CM
1286 * extent_io.c submission hook. This does the right thing for csum calculation
1287 * on write, or reading the csums from the tree before a read
d352ac68 1288 */
b2950863 1289static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1290 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1291{
1292 struct btrfs_root *root = BTRFS_I(inode)->root;
1293 int ret = 0;
19b9bdb0 1294 int skip_sum;
44b8bd7e 1295
6cbff00f 1296 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1297
e6dcd2dc
CM
1298 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1299 BUG_ON(ret);
065631f6 1300
4d1b5fb4 1301 if (!(rw & (1 << BIO_RW))) {
d20f7043 1302 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1303 return btrfs_submit_compressed_read(inode, bio,
1304 mirror_num, bio_flags);
d20f7043
CM
1305 } else if (!skip_sum)
1306 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1307 goto mapit;
19b9bdb0 1308 } else if (!skip_sum) {
17d217fe
YZ
1309 /* csum items have already been cloned */
1310 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1311 goto mapit;
19b9bdb0
CM
1312 /* we're doing a write, do the async checksumming */
1313 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1314 inode, rw, bio, mirror_num,
4a69a410
CM
1315 bio_flags, __btrfs_submit_bio_start,
1316 __btrfs_submit_bio_done);
19b9bdb0
CM
1317 }
1318
0b86a832 1319mapit:
8b712842 1320 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1321}
6885f308 1322
d352ac68
CM
1323/*
1324 * given a list of ordered sums record them in the inode. This happens
1325 * at IO completion time based on sums calculated at bio submission time.
1326 */
ba1da2f4 1327static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1328 struct inode *inode, u64 file_offset,
1329 struct list_head *list)
1330{
e6dcd2dc
CM
1331 struct btrfs_ordered_sum *sum;
1332
1333 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1334
1335 list_for_each_entry(sum, list, list) {
d20f7043
CM
1336 btrfs_csum_file_blocks(trans,
1337 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1338 }
1339 return 0;
1340}
1341
ea8c2819
CM
1342int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1343{
d397712b 1344 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1345 WARN_ON(1);
ea8c2819
CM
1346 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1347 GFP_NOFS);
1348}
1349
d352ac68 1350/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1351struct btrfs_writepage_fixup {
1352 struct page *page;
1353 struct btrfs_work work;
1354};
1355
b2950863 1356static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1357{
1358 struct btrfs_writepage_fixup *fixup;
1359 struct btrfs_ordered_extent *ordered;
1360 struct page *page;
1361 struct inode *inode;
1362 u64 page_start;
1363 u64 page_end;
1364
1365 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1366 page = fixup->page;
4a096752 1367again:
247e743c
CM
1368 lock_page(page);
1369 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1370 ClearPageChecked(page);
1371 goto out_page;
1372 }
1373
1374 inode = page->mapping->host;
1375 page_start = page_offset(page);
1376 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1377
1378 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1379
1380 /* already ordered? We're done */
8b62b72b 1381 if (PagePrivate2(page))
247e743c 1382 goto out;
4a096752
CM
1383
1384 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1385 if (ordered) {
1386 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1387 page_end, GFP_NOFS);
1388 unlock_page(page);
1389 btrfs_start_ordered_extent(inode, ordered, 1);
1390 goto again;
1391 }
247e743c 1392
ea8c2819 1393 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1394 ClearPageChecked(page);
1395out:
1396 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1397out_page:
1398 unlock_page(page);
1399 page_cache_release(page);
1400}
1401
1402/*
1403 * There are a few paths in the higher layers of the kernel that directly
1404 * set the page dirty bit without asking the filesystem if it is a
1405 * good idea. This causes problems because we want to make sure COW
1406 * properly happens and the data=ordered rules are followed.
1407 *
c8b97818 1408 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1409 * hasn't been properly setup for IO. We kick off an async process
1410 * to fix it up. The async helper will wait for ordered extents, set
1411 * the delalloc bit and make it safe to write the page.
1412 */
b2950863 1413static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1414{
1415 struct inode *inode = page->mapping->host;
1416 struct btrfs_writepage_fixup *fixup;
1417 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1418
8b62b72b
CM
1419 /* this page is properly in the ordered list */
1420 if (TestClearPagePrivate2(page))
247e743c
CM
1421 return 0;
1422
1423 if (PageChecked(page))
1424 return -EAGAIN;
1425
1426 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427 if (!fixup)
1428 return -EAGAIN;
f421950f 1429
247e743c
CM
1430 SetPageChecked(page);
1431 page_cache_get(page);
1432 fixup->work.func = btrfs_writepage_fixup_worker;
1433 fixup->page = page;
1434 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435 return -EAGAIN;
1436}
1437
d899e052
YZ
1438static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439 struct inode *inode, u64 file_pos,
1440 u64 disk_bytenr, u64 disk_num_bytes,
1441 u64 num_bytes, u64 ram_bytes,
e980b50c 1442 u64 locked_end,
d899e052
YZ
1443 u8 compression, u8 encryption,
1444 u16 other_encoding, int extent_type)
1445{
1446 struct btrfs_root *root = BTRFS_I(inode)->root;
1447 struct btrfs_file_extent_item *fi;
1448 struct btrfs_path *path;
1449 struct extent_buffer *leaf;
1450 struct btrfs_key ins;
1451 u64 hint;
1452 int ret;
1453
1454 path = btrfs_alloc_path();
1455 BUG_ON(!path);
1456
b9473439 1457 path->leave_spinning = 1;
d899e052 1458 ret = btrfs_drop_extents(trans, root, inode, file_pos,
e980b50c
CM
1459 file_pos + num_bytes, locked_end,
1460 file_pos, &hint);
d899e052
YZ
1461 BUG_ON(ret);
1462
1463 ins.objectid = inode->i_ino;
1464 ins.offset = file_pos;
1465 ins.type = BTRFS_EXTENT_DATA_KEY;
1466 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1467 BUG_ON(ret);
1468 leaf = path->nodes[0];
1469 fi = btrfs_item_ptr(leaf, path->slots[0],
1470 struct btrfs_file_extent_item);
1471 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1472 btrfs_set_file_extent_type(leaf, fi, extent_type);
1473 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1474 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1475 btrfs_set_file_extent_offset(leaf, fi, 0);
1476 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1477 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1478 btrfs_set_file_extent_compression(leaf, fi, compression);
1479 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1480 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1481
1482 btrfs_unlock_up_safe(path, 1);
1483 btrfs_set_lock_blocking(leaf);
1484
d899e052
YZ
1485 btrfs_mark_buffer_dirty(leaf);
1486
1487 inode_add_bytes(inode, num_bytes);
1488 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1489
1490 ins.objectid = disk_bytenr;
1491 ins.offset = disk_num_bytes;
1492 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1493 ret = btrfs_alloc_reserved_file_extent(trans, root,
1494 root->root_key.objectid,
1495 inode->i_ino, file_pos, &ins);
d899e052 1496 BUG_ON(ret);
d899e052 1497 btrfs_free_path(path);
b9473439 1498
d899e052
YZ
1499 return 0;
1500}
1501
5d13a98f
CM
1502/*
1503 * helper function for btrfs_finish_ordered_io, this
1504 * just reads in some of the csum leaves to prime them into ram
1505 * before we start the transaction. It limits the amount of btree
1506 * reads required while inside the transaction.
1507 */
1508static noinline void reada_csum(struct btrfs_root *root,
1509 struct btrfs_path *path,
1510 struct btrfs_ordered_extent *ordered_extent)
1511{
1512 struct btrfs_ordered_sum *sum;
1513 u64 bytenr;
1514
1515 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1516 list);
1517 bytenr = sum->sums[0].bytenr;
1518
1519 /*
1520 * we don't care about the results, the point of this search is
1521 * just to get the btree leaves into ram
1522 */
1523 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1524}
1525
d352ac68
CM
1526/* as ordered data IO finishes, this gets called so we can finish
1527 * an ordered extent if the range of bytes in the file it covers are
1528 * fully written.
1529 */
211f90e6 1530static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1531{
e6dcd2dc
CM
1532 struct btrfs_root *root = BTRFS_I(inode)->root;
1533 struct btrfs_trans_handle *trans;
5d13a98f 1534 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1535 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1536 struct btrfs_path *path;
d899e052 1537 int compressed = 0;
e6dcd2dc
CM
1538 int ret;
1539
1540 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1541 if (!ret)
e6dcd2dc 1542 return 0;
e6dcd2dc 1543
b7ec40d7
CM
1544 /*
1545 * before we join the transaction, try to do some of our IO.
1546 * This will limit the amount of IO that we have to do with
1547 * the transaction running. We're unlikely to need to do any
1548 * IO if the file extents are new, the disk_i_size checks
1549 * covers the most common case.
1550 */
1551 if (start < BTRFS_I(inode)->disk_i_size) {
1552 path = btrfs_alloc_path();
1553 if (path) {
1554 ret = btrfs_lookup_file_extent(NULL, root, path,
1555 inode->i_ino,
1556 start, 0);
5d13a98f
CM
1557 ordered_extent = btrfs_lookup_ordered_extent(inode,
1558 start);
1559 if (!list_empty(&ordered_extent->list)) {
1560 btrfs_release_path(root, path);
1561 reada_csum(root, path, ordered_extent);
1562 }
b7ec40d7
CM
1563 btrfs_free_path(path);
1564 }
1565 }
1566
f9295749 1567 trans = btrfs_join_transaction(root, 1);
e6dcd2dc 1568
5d13a98f
CM
1569 if (!ordered_extent)
1570 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1571 BUG_ON(!ordered_extent);
7ea394f1
YZ
1572 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1573 goto nocow;
e6dcd2dc
CM
1574
1575 lock_extent(io_tree, ordered_extent->file_offset,
1576 ordered_extent->file_offset + ordered_extent->len - 1,
1577 GFP_NOFS);
1578
c8b97818 1579 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1580 compressed = 1;
1581 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1582 BUG_ON(compressed);
1583 ret = btrfs_mark_extent_written(trans, root, inode,
1584 ordered_extent->file_offset,
1585 ordered_extent->file_offset +
1586 ordered_extent->len);
1587 BUG_ON(ret);
1588 } else {
1589 ret = insert_reserved_file_extent(trans, inode,
1590 ordered_extent->file_offset,
1591 ordered_extent->start,
1592 ordered_extent->disk_len,
1593 ordered_extent->len,
1594 ordered_extent->len,
e980b50c
CM
1595 ordered_extent->file_offset +
1596 ordered_extent->len,
d899e052
YZ
1597 compressed, 0, 0,
1598 BTRFS_FILE_EXTENT_REG);
1599 BUG_ON(ret);
1600 }
e6dcd2dc
CM
1601 unlock_extent(io_tree, ordered_extent->file_offset,
1602 ordered_extent->file_offset + ordered_extent->len - 1,
1603 GFP_NOFS);
7ea394f1 1604nocow:
e6dcd2dc
CM
1605 add_pending_csums(trans, inode, ordered_extent->file_offset,
1606 &ordered_extent->list);
1607
34353029 1608 mutex_lock(&BTRFS_I(inode)->extent_mutex);
dbe674a9 1609 btrfs_ordered_update_i_size(inode, ordered_extent);
e02119d5 1610 btrfs_update_inode(trans, root, inode);
e6dcd2dc 1611 btrfs_remove_ordered_extent(inode, ordered_extent);
34353029 1612 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
7f3c74fb 1613
e6dcd2dc
CM
1614 /* once for us */
1615 btrfs_put_ordered_extent(ordered_extent);
1616 /* once for the tree */
1617 btrfs_put_ordered_extent(ordered_extent);
1618
e6dcd2dc
CM
1619 btrfs_end_transaction(trans, root);
1620 return 0;
1621}
1622
b2950863 1623static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1624 struct extent_state *state, int uptodate)
1625{
8b62b72b 1626 ClearPagePrivate2(page);
211f90e6
CM
1627 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1628}
1629
d352ac68
CM
1630/*
1631 * When IO fails, either with EIO or csum verification fails, we
1632 * try other mirrors that might have a good copy of the data. This
1633 * io_failure_record is used to record state as we go through all the
1634 * mirrors. If another mirror has good data, the page is set up to date
1635 * and things continue. If a good mirror can't be found, the original
1636 * bio end_io callback is called to indicate things have failed.
1637 */
7e38326f
CM
1638struct io_failure_record {
1639 struct page *page;
1640 u64 start;
1641 u64 len;
1642 u64 logical;
d20f7043 1643 unsigned long bio_flags;
7e38326f
CM
1644 int last_mirror;
1645};
1646
b2950863 1647static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1648 struct page *page, u64 start, u64 end,
1649 struct extent_state *state)
7e38326f
CM
1650{
1651 struct io_failure_record *failrec = NULL;
1652 u64 private;
1653 struct extent_map *em;
1654 struct inode *inode = page->mapping->host;
1655 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1656 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1657 struct bio *bio;
1658 int num_copies;
1659 int ret;
1259ab75 1660 int rw;
7e38326f
CM
1661 u64 logical;
1662
1663 ret = get_state_private(failure_tree, start, &private);
1664 if (ret) {
7e38326f
CM
1665 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1666 if (!failrec)
1667 return -ENOMEM;
1668 failrec->start = start;
1669 failrec->len = end - start + 1;
1670 failrec->last_mirror = 0;
d20f7043 1671 failrec->bio_flags = 0;
7e38326f 1672
890871be 1673 read_lock(&em_tree->lock);
3b951516
CM
1674 em = lookup_extent_mapping(em_tree, start, failrec->len);
1675 if (em->start > start || em->start + em->len < start) {
1676 free_extent_map(em);
1677 em = NULL;
1678 }
890871be 1679 read_unlock(&em_tree->lock);
7e38326f
CM
1680
1681 if (!em || IS_ERR(em)) {
1682 kfree(failrec);
1683 return -EIO;
1684 }
1685 logical = start - em->start;
1686 logical = em->block_start + logical;
d20f7043
CM
1687 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1688 logical = em->block_start;
1689 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1690 }
7e38326f
CM
1691 failrec->logical = logical;
1692 free_extent_map(em);
1693 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1694 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1695 set_state_private(failure_tree, start,
1696 (u64)(unsigned long)failrec);
7e38326f 1697 } else {
587f7704 1698 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1699 }
1700 num_copies = btrfs_num_copies(
1701 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1702 failrec->logical, failrec->len);
1703 failrec->last_mirror++;
1704 if (!state) {
cad321ad 1705 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1706 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1707 failrec->start,
1708 EXTENT_LOCKED);
1709 if (state && state->start != failrec->start)
1710 state = NULL;
cad321ad 1711 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1712 }
1713 if (!state || failrec->last_mirror > num_copies) {
1714 set_state_private(failure_tree, failrec->start, 0);
1715 clear_extent_bits(failure_tree, failrec->start,
1716 failrec->start + failrec->len - 1,
1717 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1718 kfree(failrec);
1719 return -EIO;
1720 }
1721 bio = bio_alloc(GFP_NOFS, 1);
1722 bio->bi_private = state;
1723 bio->bi_end_io = failed_bio->bi_end_io;
1724 bio->bi_sector = failrec->logical >> 9;
1725 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1726 bio->bi_size = 0;
d20f7043 1727
7e38326f 1728 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1729 if (failed_bio->bi_rw & (1 << BIO_RW))
1730 rw = WRITE;
1731 else
1732 rw = READ;
1733
1734 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1735 failrec->last_mirror,
d20f7043 1736 failrec->bio_flags);
1259ab75
CM
1737 return 0;
1738}
1739
d352ac68
CM
1740/*
1741 * each time an IO finishes, we do a fast check in the IO failure tree
1742 * to see if we need to process or clean up an io_failure_record
1743 */
b2950863 1744static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1745{
1746 u64 private;
1747 u64 private_failure;
1748 struct io_failure_record *failure;
1749 int ret;
1750
1751 private = 0;
1752 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1753 (u64)-1, 1, EXTENT_DIRTY)) {
1754 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1755 start, &private_failure);
1756 if (ret == 0) {
1757 failure = (struct io_failure_record *)(unsigned long)
1758 private_failure;
1759 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1760 failure->start, 0);
1761 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1762 failure->start,
1763 failure->start + failure->len - 1,
1764 EXTENT_DIRTY | EXTENT_LOCKED,
1765 GFP_NOFS);
1766 kfree(failure);
1767 }
1768 }
7e38326f
CM
1769 return 0;
1770}
1771
d352ac68
CM
1772/*
1773 * when reads are done, we need to check csums to verify the data is correct
1774 * if there's a match, we allow the bio to finish. If not, we go through
1775 * the io_failure_record routines to find good copies
1776 */
b2950863 1777static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1778 struct extent_state *state)
07157aac 1779{
35ebb934 1780 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1781 struct inode *inode = page->mapping->host;
d1310b2e 1782 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1783 char *kaddr;
aadfeb6e 1784 u64 private = ~(u32)0;
07157aac 1785 int ret;
ff79f819
CM
1786 struct btrfs_root *root = BTRFS_I(inode)->root;
1787 u32 csum = ~(u32)0;
d1310b2e 1788
d20f7043
CM
1789 if (PageChecked(page)) {
1790 ClearPageChecked(page);
1791 goto good;
1792 }
6cbff00f
CH
1793
1794 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1795 return 0;
1796
1797 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1798 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1799 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1800 GFP_NOFS);
b6cda9bc 1801 return 0;
17d217fe 1802 }
d20f7043 1803
c2e639f0 1804 if (state && state->start == start) {
70dec807
CM
1805 private = state->private;
1806 ret = 0;
1807 } else {
1808 ret = get_state_private(io_tree, start, &private);
1809 }
9ab86c8e 1810 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1811 if (ret)
07157aac 1812 goto zeroit;
d397712b 1813
ff79f819
CM
1814 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1815 btrfs_csum_final(csum, (char *)&csum);
d397712b 1816 if (csum != private)
07157aac 1817 goto zeroit;
d397712b 1818
9ab86c8e 1819 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1820good:
7e38326f
CM
1821 /* if the io failure tree for this inode is non-empty,
1822 * check to see if we've recovered from a failed IO
1823 */
1259ab75 1824 btrfs_clean_io_failures(inode, start);
07157aac
CM
1825 return 0;
1826
1827zeroit:
193f284d
CM
1828 if (printk_ratelimit()) {
1829 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1830 "private %llu\n", page->mapping->host->i_ino,
1831 (unsigned long long)start, csum,
1832 (unsigned long long)private);
1833 }
db94535d
CM
1834 memset(kaddr + offset, 1, end - start + 1);
1835 flush_dcache_page(page);
9ab86c8e 1836 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1837 if (private == 0)
1838 return 0;
7e38326f 1839 return -EIO;
07157aac 1840}
b888db2b 1841
7b128766
JB
1842/*
1843 * This creates an orphan entry for the given inode in case something goes
1844 * wrong in the middle of an unlink/truncate.
1845 */
1846int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1847{
1848 struct btrfs_root *root = BTRFS_I(inode)->root;
1849 int ret = 0;
1850
bcc63abb 1851 spin_lock(&root->list_lock);
7b128766
JB
1852
1853 /* already on the orphan list, we're good */
1854 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1855 spin_unlock(&root->list_lock);
7b128766
JB
1856 return 0;
1857 }
1858
1859 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1860
bcc63abb 1861 spin_unlock(&root->list_lock);
7b128766
JB
1862
1863 /*
1864 * insert an orphan item to track this unlinked/truncated file
1865 */
1866 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1867
1868 return ret;
1869}
1870
1871/*
1872 * We have done the truncate/delete so we can go ahead and remove the orphan
1873 * item for this particular inode.
1874 */
1875int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1876{
1877 struct btrfs_root *root = BTRFS_I(inode)->root;
1878 int ret = 0;
1879
bcc63abb 1880 spin_lock(&root->list_lock);
7b128766
JB
1881
1882 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1883 spin_unlock(&root->list_lock);
7b128766
JB
1884 return 0;
1885 }
1886
1887 list_del_init(&BTRFS_I(inode)->i_orphan);
1888 if (!trans) {
bcc63abb 1889 spin_unlock(&root->list_lock);
7b128766
JB
1890 return 0;
1891 }
1892
bcc63abb 1893 spin_unlock(&root->list_lock);
7b128766
JB
1894
1895 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1896
1897 return ret;
1898}
1899
1900/*
1901 * this cleans up any orphans that may be left on the list from the last use
1902 * of this root.
1903 */
1904void btrfs_orphan_cleanup(struct btrfs_root *root)
1905{
1906 struct btrfs_path *path;
1907 struct extent_buffer *leaf;
1908 struct btrfs_item *item;
1909 struct btrfs_key key, found_key;
1910 struct btrfs_trans_handle *trans;
1911 struct inode *inode;
1912 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1913
7b128766
JB
1914 path = btrfs_alloc_path();
1915 if (!path)
1916 return;
1917 path->reada = -1;
1918
1919 key.objectid = BTRFS_ORPHAN_OBJECTID;
1920 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1921 key.offset = (u64)-1;
1922
7b128766
JB
1923
1924 while (1) {
1925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1926 if (ret < 0) {
1927 printk(KERN_ERR "Error searching slot for orphan: %d"
1928 "\n", ret);
1929 break;
1930 }
1931
1932 /*
1933 * if ret == 0 means we found what we were searching for, which
1934 * is weird, but possible, so only screw with path if we didnt
1935 * find the key and see if we have stuff that matches
1936 */
1937 if (ret > 0) {
1938 if (path->slots[0] == 0)
1939 break;
1940 path->slots[0]--;
1941 }
1942
1943 /* pull out the item */
1944 leaf = path->nodes[0];
1945 item = btrfs_item_nr(leaf, path->slots[0]);
1946 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1947
1948 /* make sure the item matches what we want */
1949 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1950 break;
1951 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1952 break;
1953
1954 /* release the path since we're done with it */
1955 btrfs_release_path(root, path);
1956
1957 /*
1958 * this is where we are basically btrfs_lookup, without the
1959 * crossing root thing. we store the inode number in the
1960 * offset of the orphan item.
1961 */
5d4f98a2
YZ
1962 found_key.objectid = found_key.offset;
1963 found_key.type = BTRFS_INODE_ITEM_KEY;
1964 found_key.offset = 0;
1965 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1966 if (IS_ERR(inode))
7b128766
JB
1967 break;
1968
7b128766
JB
1969 /*
1970 * add this inode to the orphan list so btrfs_orphan_del does
1971 * the proper thing when we hit it
1972 */
bcc63abb 1973 spin_lock(&root->list_lock);
7b128766 1974 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 1975 spin_unlock(&root->list_lock);
7b128766
JB
1976
1977 /*
1978 * if this is a bad inode, means we actually succeeded in
1979 * removing the inode, but not the orphan record, which means
1980 * we need to manually delete the orphan since iput will just
1981 * do a destroy_inode
1982 */
1983 if (is_bad_inode(inode)) {
5b21f2ed 1984 trans = btrfs_start_transaction(root, 1);
7b128766 1985 btrfs_orphan_del(trans, inode);
5b21f2ed 1986 btrfs_end_transaction(trans, root);
7b128766
JB
1987 iput(inode);
1988 continue;
1989 }
1990
1991 /* if we have links, this was a truncate, lets do that */
1992 if (inode->i_nlink) {
1993 nr_truncate++;
1994 btrfs_truncate(inode);
1995 } else {
1996 nr_unlink++;
1997 }
1998
1999 /* this will do delete_inode and everything for us */
2000 iput(inode);
2001 }
2002
2003 if (nr_unlink)
2004 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2005 if (nr_truncate)
2006 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2007
2008 btrfs_free_path(path);
7b128766
JB
2009}
2010
46a53cca
CM
2011/*
2012 * very simple check to peek ahead in the leaf looking for xattrs. If we
2013 * don't find any xattrs, we know there can't be any acls.
2014 *
2015 * slot is the slot the inode is in, objectid is the objectid of the inode
2016 */
2017static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2018 int slot, u64 objectid)
2019{
2020 u32 nritems = btrfs_header_nritems(leaf);
2021 struct btrfs_key found_key;
2022 int scanned = 0;
2023
2024 slot++;
2025 while (slot < nritems) {
2026 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2027
2028 /* we found a different objectid, there must not be acls */
2029 if (found_key.objectid != objectid)
2030 return 0;
2031
2032 /* we found an xattr, assume we've got an acl */
2033 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2034 return 1;
2035
2036 /*
2037 * we found a key greater than an xattr key, there can't
2038 * be any acls later on
2039 */
2040 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2041 return 0;
2042
2043 slot++;
2044 scanned++;
2045
2046 /*
2047 * it goes inode, inode backrefs, xattrs, extents,
2048 * so if there are a ton of hard links to an inode there can
2049 * be a lot of backrefs. Don't waste time searching too hard,
2050 * this is just an optimization
2051 */
2052 if (scanned >= 8)
2053 break;
2054 }
2055 /* we hit the end of the leaf before we found an xattr or
2056 * something larger than an xattr. We have to assume the inode
2057 * has acls
2058 */
2059 return 1;
2060}
2061
d352ac68
CM
2062/*
2063 * read an inode from the btree into the in-memory inode
2064 */
5d4f98a2 2065static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2066{
2067 struct btrfs_path *path;
5f39d397 2068 struct extent_buffer *leaf;
39279cc3 2069 struct btrfs_inode_item *inode_item;
0b86a832 2070 struct btrfs_timespec *tspec;
39279cc3
CM
2071 struct btrfs_root *root = BTRFS_I(inode)->root;
2072 struct btrfs_key location;
46a53cca 2073 int maybe_acls;
39279cc3 2074 u64 alloc_group_block;
618e21d5 2075 u32 rdev;
39279cc3
CM
2076 int ret;
2077
2078 path = btrfs_alloc_path();
2079 BUG_ON(!path);
39279cc3 2080 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2081
39279cc3 2082 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2083 if (ret)
39279cc3 2084 goto make_bad;
39279cc3 2085
5f39d397
CM
2086 leaf = path->nodes[0];
2087 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2088 struct btrfs_inode_item);
2089
2090 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2091 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2092 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2093 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2094 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2095
2096 tspec = btrfs_inode_atime(inode_item);
2097 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2098 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2099
2100 tspec = btrfs_inode_mtime(inode_item);
2101 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2102 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2103
2104 tspec = btrfs_inode_ctime(inode_item);
2105 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2106 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2107
a76a3cd4 2108 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2109 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2110 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2111 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2112 inode->i_rdev = 0;
5f39d397
CM
2113 rdev = btrfs_inode_rdev(leaf, inode_item);
2114
aec7477b 2115 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2116 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2117
5f39d397 2118 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2119
46a53cca
CM
2120 /*
2121 * try to precache a NULL acl entry for files that don't have
2122 * any xattrs or acls
2123 */
2124 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2125 if (!maybe_acls) {
2126 BTRFS_I(inode)->i_acl = NULL;
2127 BTRFS_I(inode)->i_default_acl = NULL;
2128 }
2129
d2fb3437
YZ
2130 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2131 alloc_group_block, 0);
39279cc3
CM
2132 btrfs_free_path(path);
2133 inode_item = NULL;
2134
39279cc3 2135 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2136 case S_IFREG:
2137 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2138 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2139 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2140 inode->i_fop = &btrfs_file_operations;
2141 inode->i_op = &btrfs_file_inode_operations;
2142 break;
2143 case S_IFDIR:
2144 inode->i_fop = &btrfs_dir_file_operations;
2145 if (root == root->fs_info->tree_root)
2146 inode->i_op = &btrfs_dir_ro_inode_operations;
2147 else
2148 inode->i_op = &btrfs_dir_inode_operations;
2149 break;
2150 case S_IFLNK:
2151 inode->i_op = &btrfs_symlink_inode_operations;
2152 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2153 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2154 break;
618e21d5 2155 default:
0279b4cd 2156 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2157 init_special_inode(inode, inode->i_mode, rdev);
2158 break;
39279cc3 2159 }
6cbff00f
CH
2160
2161 btrfs_update_iflags(inode);
39279cc3
CM
2162 return;
2163
2164make_bad:
39279cc3 2165 btrfs_free_path(path);
39279cc3
CM
2166 make_bad_inode(inode);
2167}
2168
d352ac68
CM
2169/*
2170 * given a leaf and an inode, copy the inode fields into the leaf
2171 */
e02119d5
CM
2172static void fill_inode_item(struct btrfs_trans_handle *trans,
2173 struct extent_buffer *leaf,
5f39d397 2174 struct btrfs_inode_item *item,
39279cc3
CM
2175 struct inode *inode)
2176{
5f39d397
CM
2177 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2178 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2179 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2180 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2181 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2182
2183 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2184 inode->i_atime.tv_sec);
2185 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2186 inode->i_atime.tv_nsec);
2187
2188 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2189 inode->i_mtime.tv_sec);
2190 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2191 inode->i_mtime.tv_nsec);
2192
2193 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2194 inode->i_ctime.tv_sec);
2195 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2196 inode->i_ctime.tv_nsec);
2197
a76a3cd4 2198 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2199 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2200 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2201 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2202 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2203 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2204 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2205}
2206
d352ac68
CM
2207/*
2208 * copy everything in the in-memory inode into the btree.
2209 */
d397712b
CM
2210noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2211 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2212{
2213 struct btrfs_inode_item *inode_item;
2214 struct btrfs_path *path;
5f39d397 2215 struct extent_buffer *leaf;
39279cc3
CM
2216 int ret;
2217
2218 path = btrfs_alloc_path();
2219 BUG_ON(!path);
b9473439 2220 path->leave_spinning = 1;
39279cc3
CM
2221 ret = btrfs_lookup_inode(trans, root, path,
2222 &BTRFS_I(inode)->location, 1);
2223 if (ret) {
2224 if (ret > 0)
2225 ret = -ENOENT;
2226 goto failed;
2227 }
2228
b4ce94de 2229 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2230 leaf = path->nodes[0];
2231 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2232 struct btrfs_inode_item);
2233
e02119d5 2234 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2235 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2236 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2237 ret = 0;
2238failed:
39279cc3
CM
2239 btrfs_free_path(path);
2240 return ret;
2241}
2242
2243
d352ac68
CM
2244/*
2245 * unlink helper that gets used here in inode.c and in the tree logging
2246 * recovery code. It remove a link in a directory with a given name, and
2247 * also drops the back refs in the inode to the directory
2248 */
e02119d5
CM
2249int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2250 struct btrfs_root *root,
2251 struct inode *dir, struct inode *inode,
2252 const char *name, int name_len)
39279cc3
CM
2253{
2254 struct btrfs_path *path;
39279cc3 2255 int ret = 0;
5f39d397 2256 struct extent_buffer *leaf;
39279cc3 2257 struct btrfs_dir_item *di;
5f39d397 2258 struct btrfs_key key;
aec7477b 2259 u64 index;
39279cc3
CM
2260
2261 path = btrfs_alloc_path();
54aa1f4d
CM
2262 if (!path) {
2263 ret = -ENOMEM;
2264 goto err;
2265 }
2266
b9473439 2267 path->leave_spinning = 1;
39279cc3
CM
2268 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2269 name, name_len, -1);
2270 if (IS_ERR(di)) {
2271 ret = PTR_ERR(di);
2272 goto err;
2273 }
2274 if (!di) {
2275 ret = -ENOENT;
2276 goto err;
2277 }
5f39d397
CM
2278 leaf = path->nodes[0];
2279 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2280 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2281 if (ret)
2282 goto err;
39279cc3
CM
2283 btrfs_release_path(root, path);
2284
aec7477b 2285 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2286 inode->i_ino,
2287 dir->i_ino, &index);
aec7477b 2288 if (ret) {
d397712b 2289 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2290 "inode %lu parent %lu\n", name_len, name,
e02119d5 2291 inode->i_ino, dir->i_ino);
aec7477b
JB
2292 goto err;
2293 }
2294
39279cc3 2295 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2296 index, name, name_len, -1);
39279cc3
CM
2297 if (IS_ERR(di)) {
2298 ret = PTR_ERR(di);
2299 goto err;
2300 }
2301 if (!di) {
2302 ret = -ENOENT;
2303 goto err;
2304 }
2305 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2306 btrfs_release_path(root, path);
39279cc3 2307
e02119d5
CM
2308 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2309 inode, dir->i_ino);
49eb7e46 2310 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2311
2312 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2313 dir, index);
2314 BUG_ON(ret);
39279cc3
CM
2315err:
2316 btrfs_free_path(path);
e02119d5
CM
2317 if (ret)
2318 goto out;
2319
2320 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2321 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2322 btrfs_update_inode(trans, root, dir);
2323 btrfs_drop_nlink(inode);
2324 ret = btrfs_update_inode(trans, root, inode);
2325 dir->i_sb->s_dirt = 1;
2326out:
39279cc3
CM
2327 return ret;
2328}
2329
2330static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2331{
2332 struct btrfs_root *root;
2333 struct btrfs_trans_handle *trans;
7b128766 2334 struct inode *inode = dentry->d_inode;
39279cc3 2335 int ret;
1832a6d5 2336 unsigned long nr = 0;
39279cc3
CM
2337
2338 root = BTRFS_I(dir)->root;
1832a6d5 2339
39279cc3 2340 trans = btrfs_start_transaction(root, 1);
5f39d397 2341
39279cc3 2342 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2343
2344 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2345
e02119d5
CM
2346 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2347 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2348
2349 if (inode->i_nlink == 0)
2350 ret = btrfs_orphan_add(trans, inode);
2351
d3c2fdcf 2352 nr = trans->blocks_used;
5f39d397 2353
89ce8a63 2354 btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2355 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2356 return ret;
2357}
2358
2359static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2360{
2361 struct inode *inode = dentry->d_inode;
1832a6d5 2362 int err = 0;
39279cc3
CM
2363 int ret;
2364 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2365 struct btrfs_trans_handle *trans;
1832a6d5 2366 unsigned long nr = 0;
39279cc3 2367
3394e160
CM
2368 /*
2369 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2370 * the root of a subvolume or snapshot
2371 */
2372 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2373 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
134d4512 2374 return -ENOTEMPTY;
925baedd 2375 }
134d4512 2376
39279cc3
CM
2377 trans = btrfs_start_transaction(root, 1);
2378 btrfs_set_trans_block_group(trans, dir);
39279cc3 2379
7b128766
JB
2380 err = btrfs_orphan_add(trans, inode);
2381 if (err)
2382 goto fail_trans;
2383
39279cc3 2384 /* now the directory is empty */
e02119d5
CM
2385 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2386 dentry->d_name.name, dentry->d_name.len);
d397712b 2387 if (!err)
dbe674a9 2388 btrfs_i_size_write(inode, 0);
3954401f 2389
7b128766 2390fail_trans:
d3c2fdcf 2391 nr = trans->blocks_used;
89ce8a63 2392 ret = btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2393 btrfs_btree_balance_dirty(root, nr);
3954401f 2394
39279cc3
CM
2395 if (ret && !err)
2396 err = ret;
2397 return err;
2398}
2399
d20f7043 2400#if 0
323ac95b
CM
2401/*
2402 * when truncating bytes in a file, it is possible to avoid reading
2403 * the leaves that contain only checksum items. This can be the
2404 * majority of the IO required to delete a large file, but it must
2405 * be done carefully.
2406 *
2407 * The keys in the level just above the leaves are checked to make sure
2408 * the lowest key in a given leaf is a csum key, and starts at an offset
2409 * after the new size.
2410 *
2411 * Then the key for the next leaf is checked to make sure it also has
2412 * a checksum item for the same file. If it does, we know our target leaf
2413 * contains only checksum items, and it can be safely freed without reading
2414 * it.
2415 *
2416 * This is just an optimization targeted at large files. It may do
2417 * nothing. It will return 0 unless things went badly.
2418 */
2419static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2420 struct btrfs_root *root,
2421 struct btrfs_path *path,
2422 struct inode *inode, u64 new_size)
2423{
2424 struct btrfs_key key;
2425 int ret;
2426 int nritems;
2427 struct btrfs_key found_key;
2428 struct btrfs_key other_key;
5b84e8d6
YZ
2429 struct btrfs_leaf_ref *ref;
2430 u64 leaf_gen;
2431 u64 leaf_start;
323ac95b
CM
2432
2433 path->lowest_level = 1;
2434 key.objectid = inode->i_ino;
2435 key.type = BTRFS_CSUM_ITEM_KEY;
2436 key.offset = new_size;
2437again:
2438 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2439 if (ret < 0)
2440 goto out;
2441
2442 if (path->nodes[1] == NULL) {
2443 ret = 0;
2444 goto out;
2445 }
2446 ret = 0;
2447 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2448 nritems = btrfs_header_nritems(path->nodes[1]);
2449
2450 if (!nritems)
2451 goto out;
2452
2453 if (path->slots[1] >= nritems)
2454 goto next_node;
2455
2456 /* did we find a key greater than anything we want to delete? */
2457 if (found_key.objectid > inode->i_ino ||
2458 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2459 goto out;
2460
2461 /* we check the next key in the node to make sure the leave contains
2462 * only checksum items. This comparison doesn't work if our
2463 * leaf is the last one in the node
2464 */
2465 if (path->slots[1] + 1 >= nritems) {
2466next_node:
2467 /* search forward from the last key in the node, this
2468 * will bring us into the next node in the tree
2469 */
2470 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2471
2472 /* unlikely, but we inc below, so check to be safe */
2473 if (found_key.offset == (u64)-1)
2474 goto out;
2475
2476 /* search_forward needs a path with locks held, do the
2477 * search again for the original key. It is possible
2478 * this will race with a balance and return a path that
2479 * we could modify, but this drop is just an optimization
2480 * and is allowed to miss some leaves.
2481 */
2482 btrfs_release_path(root, path);
2483 found_key.offset++;
2484
2485 /* setup a max key for search_forward */
2486 other_key.offset = (u64)-1;
2487 other_key.type = key.type;
2488 other_key.objectid = key.objectid;
2489
2490 path->keep_locks = 1;
2491 ret = btrfs_search_forward(root, &found_key, &other_key,
2492 path, 0, 0);
2493 path->keep_locks = 0;
2494 if (ret || found_key.objectid != key.objectid ||
2495 found_key.type != key.type) {
2496 ret = 0;
2497 goto out;
2498 }
2499
2500 key.offset = found_key.offset;
2501 btrfs_release_path(root, path);
2502 cond_resched();
2503 goto again;
2504 }
2505
2506 /* we know there's one more slot after us in the tree,
2507 * read that key so we can verify it is also a checksum item
2508 */
2509 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2510
2511 if (found_key.objectid < inode->i_ino)
2512 goto next_key;
2513
2514 if (found_key.type != key.type || found_key.offset < new_size)
2515 goto next_key;
2516
2517 /*
2518 * if the key for the next leaf isn't a csum key from this objectid,
2519 * we can't be sure there aren't good items inside this leaf.
2520 * Bail out
2521 */
2522 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2523 goto out;
2524
5b84e8d6
YZ
2525 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2526 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2527 /*
2528 * it is safe to delete this leaf, it contains only
2529 * csum items from this inode at an offset >= new_size
2530 */
5b84e8d6 2531 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2532 BUG_ON(ret);
2533
5b84e8d6
YZ
2534 if (root->ref_cows && leaf_gen < trans->transid) {
2535 ref = btrfs_alloc_leaf_ref(root, 0);
2536 if (ref) {
2537 ref->root_gen = root->root_key.offset;
2538 ref->bytenr = leaf_start;
2539 ref->owner = 0;
2540 ref->generation = leaf_gen;
2541 ref->nritems = 0;
2542
bd56b302
CM
2543 btrfs_sort_leaf_ref(ref);
2544
5b84e8d6
YZ
2545 ret = btrfs_add_leaf_ref(root, ref, 0);
2546 WARN_ON(ret);
2547 btrfs_free_leaf_ref(root, ref);
2548 } else {
2549 WARN_ON(1);
2550 }
2551 }
323ac95b
CM
2552next_key:
2553 btrfs_release_path(root, path);
2554
2555 if (other_key.objectid == inode->i_ino &&
2556 other_key.type == key.type && other_key.offset > key.offset) {
2557 key.offset = other_key.offset;
2558 cond_resched();
2559 goto again;
2560 }
2561 ret = 0;
2562out:
2563 /* fixup any changes we've made to the path */
2564 path->lowest_level = 0;
2565 path->keep_locks = 0;
2566 btrfs_release_path(root, path);
2567 return ret;
2568}
2569
d20f7043
CM
2570#endif
2571
39279cc3
CM
2572/*
2573 * this can truncate away extent items, csum items and directory items.
2574 * It starts at a high offset and removes keys until it can't find
d352ac68 2575 * any higher than new_size
39279cc3
CM
2576 *
2577 * csum items that cross the new i_size are truncated to the new size
2578 * as well.
7b128766
JB
2579 *
2580 * min_type is the minimum key type to truncate down to. If set to 0, this
2581 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2582 */
e02119d5
CM
2583noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2584 struct btrfs_root *root,
2585 struct inode *inode,
2586 u64 new_size, u32 min_type)
39279cc3
CM
2587{
2588 int ret;
2589 struct btrfs_path *path;
2590 struct btrfs_key key;
5f39d397 2591 struct btrfs_key found_key;
06d9a8d7 2592 u32 found_type = (u8)-1;
5f39d397 2593 struct extent_buffer *leaf;
39279cc3
CM
2594 struct btrfs_file_extent_item *fi;
2595 u64 extent_start = 0;
db94535d 2596 u64 extent_num_bytes = 0;
5d4f98a2 2597 u64 extent_offset = 0;
39279cc3
CM
2598 u64 item_end = 0;
2599 int found_extent;
2600 int del_item;
85e21bac
CM
2601 int pending_del_nr = 0;
2602 int pending_del_slot = 0;
179e29e4 2603 int extent_type = -1;
771ed689 2604 int encoding;
3b951516 2605 u64 mask = root->sectorsize - 1;
39279cc3 2606
e02119d5 2607 if (root->ref_cows)
5b21f2ed 2608 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
39279cc3
CM
2609 path = btrfs_alloc_path();
2610 BUG_ON(!path);
33c17ad5 2611 path->reada = -1;
5f39d397 2612
39279cc3
CM
2613 /* FIXME, add redo link to tree so we don't leak on crash */
2614 key.objectid = inode->i_ino;
2615 key.offset = (u64)-1;
5f39d397
CM
2616 key.type = (u8)-1;
2617
85e21bac 2618search_again:
b9473439 2619 path->leave_spinning = 1;
85e21bac 2620 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
d397712b 2621 if (ret < 0)
85e21bac 2622 goto error;
d397712b 2623
85e21bac 2624 if (ret > 0) {
e02119d5
CM
2625 /* there are no items in the tree for us to truncate, we're
2626 * done
2627 */
2628 if (path->slots[0] == 0) {
2629 ret = 0;
2630 goto error;
2631 }
85e21bac
CM
2632 path->slots[0]--;
2633 }
2634
d397712b 2635 while (1) {
39279cc3 2636 fi = NULL;
5f39d397
CM
2637 leaf = path->nodes[0];
2638 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2639 found_type = btrfs_key_type(&found_key);
771ed689 2640 encoding = 0;
39279cc3 2641
5f39d397 2642 if (found_key.objectid != inode->i_ino)
39279cc3 2643 break;
5f39d397 2644
85e21bac 2645 if (found_type < min_type)
39279cc3
CM
2646 break;
2647
5f39d397 2648 item_end = found_key.offset;
39279cc3 2649 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2650 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2651 struct btrfs_file_extent_item);
179e29e4 2652 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2653 encoding = btrfs_file_extent_compression(leaf, fi);
2654 encoding |= btrfs_file_extent_encryption(leaf, fi);
2655 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2656
179e29e4 2657 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2658 item_end +=
db94535d 2659 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2660 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2661 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2662 fi);
39279cc3 2663 }
008630c1 2664 item_end--;
39279cc3 2665 }
e02119d5 2666 if (item_end < new_size) {
d397712b 2667 if (found_type == BTRFS_DIR_ITEM_KEY)
b888db2b 2668 found_type = BTRFS_INODE_ITEM_KEY;
d397712b 2669 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
d20f7043 2670 found_type = BTRFS_EXTENT_DATA_KEY;
d397712b 2671 else if (found_type == BTRFS_EXTENT_DATA_KEY)
85e21bac 2672 found_type = BTRFS_XATTR_ITEM_KEY;
d397712b 2673 else if (found_type == BTRFS_XATTR_ITEM_KEY)
85e21bac 2674 found_type = BTRFS_INODE_REF_KEY;
d397712b 2675 else if (found_type)
b888db2b 2676 found_type--;
d397712b 2677 else
b888db2b 2678 break;
a61721d5 2679 btrfs_set_key_type(&key, found_type);
85e21bac 2680 goto next;
39279cc3 2681 }
e02119d5 2682 if (found_key.offset >= new_size)
39279cc3
CM
2683 del_item = 1;
2684 else
2685 del_item = 0;
2686 found_extent = 0;
2687
2688 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2689 if (found_type != BTRFS_EXTENT_DATA_KEY)
2690 goto delete;
2691
2692 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2693 u64 num_dec;
db94535d 2694 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2695 if (!del_item && !encoding) {
db94535d
CM
2696 u64 orig_num_bytes =
2697 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2698 extent_num_bytes = new_size -
5f39d397 2699 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2700 extent_num_bytes = extent_num_bytes &
2701 ~((u64)root->sectorsize - 1);
db94535d
CM
2702 btrfs_set_file_extent_num_bytes(leaf, fi,
2703 extent_num_bytes);
2704 num_dec = (orig_num_bytes -
9069218d 2705 extent_num_bytes);
e02119d5 2706 if (root->ref_cows && extent_start != 0)
a76a3cd4 2707 inode_sub_bytes(inode, num_dec);
5f39d397 2708 btrfs_mark_buffer_dirty(leaf);
39279cc3 2709 } else {
db94535d
CM
2710 extent_num_bytes =
2711 btrfs_file_extent_disk_num_bytes(leaf,
2712 fi);
5d4f98a2
YZ
2713 extent_offset = found_key.offset -
2714 btrfs_file_extent_offset(leaf, fi);
2715
39279cc3 2716 /* FIXME blocksize != 4096 */
9069218d 2717 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2718 if (extent_start != 0) {
2719 found_extent = 1;
e02119d5 2720 if (root->ref_cows)
a76a3cd4 2721 inode_sub_bytes(inode, num_dec);
e02119d5 2722 }
39279cc3 2723 }
9069218d 2724 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
2725 /*
2726 * we can't truncate inline items that have had
2727 * special encodings
2728 */
2729 if (!del_item &&
2730 btrfs_file_extent_compression(leaf, fi) == 0 &&
2731 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2732 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
2733 u32 size = new_size - found_key.offset;
2734
2735 if (root->ref_cows) {
a76a3cd4
YZ
2736 inode_sub_bytes(inode, item_end + 1 -
2737 new_size);
e02119d5
CM
2738 }
2739 size =
2740 btrfs_file_extent_calc_inline_size(size);
9069218d 2741 ret = btrfs_truncate_item(trans, root, path,
e02119d5 2742 size, 1);
9069218d 2743 BUG_ON(ret);
e02119d5 2744 } else if (root->ref_cows) {
a76a3cd4
YZ
2745 inode_sub_bytes(inode, item_end + 1 -
2746 found_key.offset);
9069218d 2747 }
39279cc3 2748 }
179e29e4 2749delete:
39279cc3 2750 if (del_item) {
85e21bac
CM
2751 if (!pending_del_nr) {
2752 /* no pending yet, add ourselves */
2753 pending_del_slot = path->slots[0];
2754 pending_del_nr = 1;
2755 } else if (pending_del_nr &&
2756 path->slots[0] + 1 == pending_del_slot) {
2757 /* hop on the pending chunk */
2758 pending_del_nr++;
2759 pending_del_slot = path->slots[0];
2760 } else {
d397712b 2761 BUG();
85e21bac 2762 }
39279cc3
CM
2763 } else {
2764 break;
2765 }
5d4f98a2 2766 if (found_extent && root->ref_cows) {
b9473439 2767 btrfs_set_path_blocking(path);
39279cc3 2768 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
2769 extent_num_bytes, 0,
2770 btrfs_header_owner(leaf),
2771 inode->i_ino, extent_offset);
39279cc3
CM
2772 BUG_ON(ret);
2773 }
85e21bac
CM
2774next:
2775 if (path->slots[0] == 0) {
2776 if (pending_del_nr)
2777 goto del_pending;
2778 btrfs_release_path(root, path);
06d9a8d7
CM
2779 if (found_type == BTRFS_INODE_ITEM_KEY)
2780 break;
85e21bac
CM
2781 goto search_again;
2782 }
2783
2784 path->slots[0]--;
2785 if (pending_del_nr &&
2786 path->slots[0] + 1 != pending_del_slot) {
2787 struct btrfs_key debug;
2788del_pending:
2789 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2790 pending_del_slot);
2791 ret = btrfs_del_items(trans, root, path,
2792 pending_del_slot,
2793 pending_del_nr);
2794 BUG_ON(ret);
2795 pending_del_nr = 0;
2796 btrfs_release_path(root, path);
06d9a8d7
CM
2797 if (found_type == BTRFS_INODE_ITEM_KEY)
2798 break;
85e21bac
CM
2799 goto search_again;
2800 }
39279cc3
CM
2801 }
2802 ret = 0;
2803error:
85e21bac
CM
2804 if (pending_del_nr) {
2805 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2806 pending_del_nr);
2807 }
39279cc3
CM
2808 btrfs_free_path(path);
2809 inode->i_sb->s_dirt = 1;
2810 return ret;
2811}
2812
2813/*
2814 * taken from block_truncate_page, but does cow as it zeros out
2815 * any bytes left in the last page in the file.
2816 */
2817static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2818{
2819 struct inode *inode = mapping->host;
db94535d 2820 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
2821 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2822 struct btrfs_ordered_extent *ordered;
2823 char *kaddr;
db94535d 2824 u32 blocksize = root->sectorsize;
39279cc3
CM
2825 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2826 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2827 struct page *page;
39279cc3 2828 int ret = 0;
a52d9a80 2829 u64 page_start;
e6dcd2dc 2830 u64 page_end;
39279cc3
CM
2831
2832 if ((offset & (blocksize - 1)) == 0)
2833 goto out;
2834
2835 ret = -ENOMEM;
211c17f5 2836again:
39279cc3
CM
2837 page = grab_cache_page(mapping, index);
2838 if (!page)
2839 goto out;
e6dcd2dc
CM
2840
2841 page_start = page_offset(page);
2842 page_end = page_start + PAGE_CACHE_SIZE - 1;
2843
39279cc3 2844 if (!PageUptodate(page)) {
9ebefb18 2845 ret = btrfs_readpage(NULL, page);
39279cc3 2846 lock_page(page);
211c17f5
CM
2847 if (page->mapping != mapping) {
2848 unlock_page(page);
2849 page_cache_release(page);
2850 goto again;
2851 }
39279cc3
CM
2852 if (!PageUptodate(page)) {
2853 ret = -EIO;
89642229 2854 goto out_unlock;
39279cc3
CM
2855 }
2856 }
211c17f5 2857 wait_on_page_writeback(page);
e6dcd2dc
CM
2858
2859 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2860 set_page_extent_mapped(page);
2861
2862 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2863 if (ordered) {
2864 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2865 unlock_page(page);
2866 page_cache_release(page);
eb84ae03 2867 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
2868 btrfs_put_ordered_extent(ordered);
2869 goto again;
2870 }
2871
ea8c2819 2872 btrfs_set_extent_delalloc(inode, page_start, page_end);
e6dcd2dc
CM
2873 ret = 0;
2874 if (offset != PAGE_CACHE_SIZE) {
2875 kaddr = kmap(page);
2876 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2877 flush_dcache_page(page);
2878 kunmap(page);
2879 }
247e743c 2880 ClearPageChecked(page);
e6dcd2dc
CM
2881 set_page_dirty(page);
2882 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 2883
89642229 2884out_unlock:
39279cc3
CM
2885 unlock_page(page);
2886 page_cache_release(page);
2887out:
2888 return ret;
2889}
2890
9036c102 2891int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 2892{
9036c102
YZ
2893 struct btrfs_trans_handle *trans;
2894 struct btrfs_root *root = BTRFS_I(inode)->root;
2895 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2896 struct extent_map *em;
2897 u64 mask = root->sectorsize - 1;
2898 u64 hole_start = (inode->i_size + mask) & ~mask;
2899 u64 block_end = (size + mask) & ~mask;
2900 u64 last_byte;
2901 u64 cur_offset;
2902 u64 hole_size;
39279cc3
CM
2903 int err;
2904
9036c102
YZ
2905 if (size <= hole_start)
2906 return 0;
2907
6a63209f 2908 err = btrfs_check_metadata_free_space(root);
39279cc3
CM
2909 if (err)
2910 return err;
2911
9036c102 2912 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2bf5a725 2913
9036c102
YZ
2914 while (1) {
2915 struct btrfs_ordered_extent *ordered;
2916 btrfs_wait_ordered_range(inode, hole_start,
2917 block_end - hole_start);
2918 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2919 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2920 if (!ordered)
2921 break;
2922 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2923 btrfs_put_ordered_extent(ordered);
2924 }
39279cc3 2925
9036c102
YZ
2926 trans = btrfs_start_transaction(root, 1);
2927 btrfs_set_trans_block_group(trans, inode);
39279cc3 2928
9036c102
YZ
2929 cur_offset = hole_start;
2930 while (1) {
2931 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2932 block_end - cur_offset, 0);
2933 BUG_ON(IS_ERR(em) || !em);
2934 last_byte = min(extent_map_end(em), block_end);
2935 last_byte = (last_byte + mask) & ~mask;
2936 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
771ed689 2937 u64 hint_byte = 0;
9036c102 2938 hole_size = last_byte - cur_offset;
771ed689
CM
2939 err = btrfs_drop_extents(trans, root, inode,
2940 cur_offset,
2941 cur_offset + hole_size,
e980b50c 2942 block_end,
771ed689
CM
2943 cur_offset, &hint_byte);
2944 if (err)
2945 break;
9036c102
YZ
2946 err = btrfs_insert_file_extent(trans, root,
2947 inode->i_ino, cur_offset, 0,
2948 0, hole_size, 0, hole_size,
2949 0, 0, 0);
2950 btrfs_drop_extent_cache(inode, hole_start,
2951 last_byte - 1, 0);
2952 }
2953 free_extent_map(em);
2954 cur_offset = last_byte;
2955 if (err || cur_offset >= block_end)
2956 break;
2957 }
1832a6d5 2958
9036c102
YZ
2959 btrfs_end_transaction(trans, root);
2960 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2961 return err;
2962}
39279cc3 2963
9036c102
YZ
2964static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2965{
2966 struct inode *inode = dentry->d_inode;
2967 int err;
39279cc3 2968
9036c102
YZ
2969 err = inode_change_ok(inode, attr);
2970 if (err)
2971 return err;
2bf5a725 2972
5a3f23d5
CM
2973 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2974 if (attr->ia_size > inode->i_size) {
2975 err = btrfs_cont_expand(inode, attr->ia_size);
2976 if (err)
2977 return err;
2978 } else if (inode->i_size > 0 &&
2979 attr->ia_size == 0) {
2980
2981 /* we're truncating a file that used to have good
2982 * data down to zero. Make sure it gets into
2983 * the ordered flush list so that any new writes
2984 * get down to disk quickly.
2985 */
2986 BTRFS_I(inode)->ordered_data_close = 1;
2987 }
39279cc3 2988 }
9036c102 2989
39279cc3 2990 err = inode_setattr(inode, attr);
33268eaf
JB
2991
2992 if (!err && ((attr->ia_valid & ATTR_MODE)))
2993 err = btrfs_acl_chmod(inode);
39279cc3
CM
2994 return err;
2995}
61295eb8 2996
39279cc3
CM
2997void btrfs_delete_inode(struct inode *inode)
2998{
2999 struct btrfs_trans_handle *trans;
3000 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3001 unsigned long nr;
39279cc3
CM
3002 int ret;
3003
3004 truncate_inode_pages(&inode->i_data, 0);
3005 if (is_bad_inode(inode)) {
7b128766 3006 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3007 goto no_delete;
3008 }
4a096752 3009 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3010
dbe674a9 3011 btrfs_i_size_write(inode, 0);
180591bc 3012 trans = btrfs_join_transaction(root, 1);
5f39d397 3013
39279cc3 3014 btrfs_set_trans_block_group(trans, inode);
e02119d5 3015 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
7b128766
JB
3016 if (ret) {
3017 btrfs_orphan_del(NULL, inode);
54aa1f4d 3018 goto no_delete_lock;
7b128766
JB
3019 }
3020
3021 btrfs_orphan_del(trans, inode);
85e21bac 3022
d3c2fdcf 3023 nr = trans->blocks_used;
85e21bac 3024 clear_inode(inode);
5f39d397 3025
39279cc3 3026 btrfs_end_transaction(trans, root);
d3c2fdcf 3027 btrfs_btree_balance_dirty(root, nr);
39279cc3 3028 return;
54aa1f4d
CM
3029
3030no_delete_lock:
d3c2fdcf 3031 nr = trans->blocks_used;
54aa1f4d 3032 btrfs_end_transaction(trans, root);
d3c2fdcf 3033 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3034no_delete:
3035 clear_inode(inode);
3036}
3037
3038/*
3039 * this returns the key found in the dir entry in the location pointer.
3040 * If no dir entries were found, location->objectid is 0.
3041 */
3042static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3043 struct btrfs_key *location)
3044{
3045 const char *name = dentry->d_name.name;
3046 int namelen = dentry->d_name.len;
3047 struct btrfs_dir_item *di;
3048 struct btrfs_path *path;
3049 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3050 int ret = 0;
39279cc3
CM
3051
3052 path = btrfs_alloc_path();
3053 BUG_ON(!path);
3954401f 3054
39279cc3
CM
3055 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3056 namelen, 0);
0d9f7f3e
Y
3057 if (IS_ERR(di))
3058 ret = PTR_ERR(di);
d397712b
CM
3059
3060 if (!di || IS_ERR(di))
3954401f 3061 goto out_err;
d397712b 3062
5f39d397 3063 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3064out:
39279cc3
CM
3065 btrfs_free_path(path);
3066 return ret;
3954401f
CM
3067out_err:
3068 location->objectid = 0;
3069 goto out;
39279cc3
CM
3070}
3071
3072/*
3073 * when we hit a tree root in a directory, the btrfs part of the inode
3074 * needs to be changed to reflect the root directory of the tree root. This
3075 * is kind of like crossing a mount point.
3076 */
3077static int fixup_tree_root_location(struct btrfs_root *root,
3078 struct btrfs_key *location,
58176a96
JB
3079 struct btrfs_root **sub_root,
3080 struct dentry *dentry)
39279cc3 3081{
39279cc3
CM
3082 struct btrfs_root_item *ri;
3083
3084 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3085 return 0;
3086 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3087 return 0;
3088
58176a96
JB
3089 *sub_root = btrfs_read_fs_root(root->fs_info, location,
3090 dentry->d_name.name,
3091 dentry->d_name.len);
39279cc3
CM
3092 if (IS_ERR(*sub_root))
3093 return PTR_ERR(*sub_root);
3094
3095 ri = &(*sub_root)->root_item;
3096 location->objectid = btrfs_root_dirid(ri);
39279cc3
CM
3097 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3098 location->offset = 0;
3099
39279cc3
CM
3100 return 0;
3101}
3102
5d4f98a2
YZ
3103static void inode_tree_add(struct inode *inode)
3104{
3105 struct btrfs_root *root = BTRFS_I(inode)->root;
3106 struct btrfs_inode *entry;
3107 struct rb_node **p = &root->inode_tree.rb_node;
3108 struct rb_node *parent = NULL;
3109
3110 spin_lock(&root->inode_lock);
3111 while (*p) {
3112 parent = *p;
3113 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3114
3115 if (inode->i_ino < entry->vfs_inode.i_ino)
3116 p = &(*p)->rb_left;
3117 else if (inode->i_ino > entry->vfs_inode.i_ino)
3118 p = &(*p)->rb_right;
3119 else {
3120 WARN_ON(!(entry->vfs_inode.i_state &
3121 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3122 break;
3123 }
3124 }
3125 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3126 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3127 spin_unlock(&root->inode_lock);
3128}
3129
3130static void inode_tree_del(struct inode *inode)
3131{
3132 struct btrfs_root *root = BTRFS_I(inode)->root;
3133
3134 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3135 spin_lock(&root->inode_lock);
3136 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3137 spin_unlock(&root->inode_lock);
3138 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3139 }
3140}
3141
e02119d5 3142static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3143{
e02119d5
CM
3144 struct btrfs_inode *bi = BTRFS_I(inode);
3145
7b1a14bb
CM
3146 bi->i_acl = BTRFS_ACL_NOT_CACHED;
3147 bi->i_default_acl = BTRFS_ACL_NOT_CACHED;
e02119d5
CM
3148
3149 bi->generation = 0;
c3027eb5 3150 bi->sequence = 0;
e02119d5
CM
3151 bi->last_trans = 0;
3152 bi->logged_trans = 0;
3153 bi->delalloc_bytes = 0;
6a63209f 3154 bi->reserved_bytes = 0;
e02119d5
CM
3155 bi->disk_i_size = 0;
3156 bi->flags = 0;
3157 bi->index_cnt = (u64)-1;
12fcfd22 3158 bi->last_unlink_trans = 0;
2757495c 3159 bi->ordered_data_close = 0;
d1310b2e
CM
3160 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3161 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3162 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3163 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3164 inode->i_mapping, GFP_NOFS);
ea8c2819 3165 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3166 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3167 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3168 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
ee6e6504 3169 mutex_init(&BTRFS_I(inode)->extent_mutex);
e02119d5
CM
3170 mutex_init(&BTRFS_I(inode)->log_mutex);
3171}
3172
3173static int btrfs_init_locked_inode(struct inode *inode, void *p)
3174{
3175 struct btrfs_iget_args *args = p;
3176 inode->i_ino = args->ino;
3177 init_btrfs_i(inode);
3178 BTRFS_I(inode)->root = args->root;
6a63209f 3179 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3180 return 0;
3181}
3182
3183static int btrfs_find_actor(struct inode *inode, void *opaque)
3184{
3185 struct btrfs_iget_args *args = opaque;
d397712b
CM
3186 return args->ino == inode->i_ino &&
3187 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3188}
3189
5d4f98a2
YZ
3190static struct inode *btrfs_iget_locked(struct super_block *s,
3191 u64 objectid,
3192 struct btrfs_root *root)
39279cc3
CM
3193{
3194 struct inode *inode;
3195 struct btrfs_iget_args args;
3196 args.ino = objectid;
3197 args.root = root;
3198
3199 inode = iget5_locked(s, objectid, btrfs_find_actor,
3200 btrfs_init_locked_inode,
3201 (void *)&args);
3202 return inode;
3203}
3204
1a54ef8c
BR
3205/* Get an inode object given its location and corresponding root.
3206 * Returns in *is_new if the inode was read from disk
3207 */
3208struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3209 struct btrfs_root *root)
1a54ef8c
BR
3210{
3211 struct inode *inode;
3212
3213 inode = btrfs_iget_locked(s, location->objectid, root);
3214 if (!inode)
5d4f98a2 3215 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3216
3217 if (inode->i_state & I_NEW) {
3218 BTRFS_I(inode)->root = root;
3219 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3220 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3221
3222 inode_tree_add(inode);
1a54ef8c 3223 unlock_new_inode(inode);
1a54ef8c
BR
3224 }
3225
3226 return inode;
3227}
3228
3de4586c 3229struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3230{
d397712b 3231 struct inode *inode;
39279cc3
CM
3232 struct btrfs_inode *bi = BTRFS_I(dir);
3233 struct btrfs_root *root = bi->root;
3234 struct btrfs_root *sub_root = root;
3235 struct btrfs_key location;
5d4f98a2 3236 int ret;
39279cc3
CM
3237
3238 if (dentry->d_name.len > BTRFS_NAME_LEN)
3239 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3240
39279cc3 3241 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3242
39279cc3
CM
3243 if (ret < 0)
3244 return ERR_PTR(ret);
5f39d397 3245
39279cc3
CM
3246 inode = NULL;
3247 if (location.objectid) {
58176a96
JB
3248 ret = fixup_tree_root_location(root, &location, &sub_root,
3249 dentry);
39279cc3
CM
3250 if (ret < 0)
3251 return ERR_PTR(ret);
3252 if (ret > 0)
3253 return ERR_PTR(-ENOENT);
5d4f98a2 3254 inode = btrfs_iget(dir->i_sb, &location, sub_root);
1a54ef8c
BR
3255 if (IS_ERR(inode))
3256 return ERR_CAST(inode);
39279cc3 3257 }
3de4586c
CM
3258 return inode;
3259}
3260
3261static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3262 struct nameidata *nd)
3263{
3264 struct inode *inode;
3265
3266 if (dentry->d_name.len > BTRFS_NAME_LEN)
3267 return ERR_PTR(-ENAMETOOLONG);
3268
3269 inode = btrfs_lookup_dentry(dir, dentry);
3270 if (IS_ERR(inode))
3271 return ERR_CAST(inode);
7b128766 3272
39279cc3
CM
3273 return d_splice_alias(inode, dentry);
3274}
3275
39279cc3
CM
3276static unsigned char btrfs_filetype_table[] = {
3277 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3278};
3279
cbdf5a24
DW
3280static int btrfs_real_readdir(struct file *filp, void *dirent,
3281 filldir_t filldir)
39279cc3 3282{
6da6abae 3283 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3284 struct btrfs_root *root = BTRFS_I(inode)->root;
3285 struct btrfs_item *item;
3286 struct btrfs_dir_item *di;
3287 struct btrfs_key key;
5f39d397 3288 struct btrfs_key found_key;
39279cc3
CM
3289 struct btrfs_path *path;
3290 int ret;
3291 u32 nritems;
5f39d397 3292 struct extent_buffer *leaf;
39279cc3
CM
3293 int slot;
3294 int advance;
3295 unsigned char d_type;
3296 int over = 0;
3297 u32 di_cur;
3298 u32 di_total;
3299 u32 di_len;
3300 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3301 char tmp_name[32];
3302 char *name_ptr;
3303 int name_len;
39279cc3
CM
3304
3305 /* FIXME, use a real flag for deciding about the key type */
3306 if (root->fs_info->tree_root == root)
3307 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3308
3954401f
CM
3309 /* special case for "." */
3310 if (filp->f_pos == 0) {
3311 over = filldir(dirent, ".", 1,
3312 1, inode->i_ino,
3313 DT_DIR);
3314 if (over)
3315 return 0;
3316 filp->f_pos = 1;
3317 }
3954401f
CM
3318 /* special case for .., just use the back ref */
3319 if (filp->f_pos == 1) {
5ecc7e5d 3320 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3321 over = filldir(dirent, "..", 2,
5ecc7e5d 3322 2, pino, DT_DIR);
3954401f 3323 if (over)
49593bfa 3324 return 0;
3954401f
CM
3325 filp->f_pos = 2;
3326 }
49593bfa
DW
3327 path = btrfs_alloc_path();
3328 path->reada = 2;
3329
39279cc3
CM
3330 btrfs_set_key_type(&key, key_type);
3331 key.offset = filp->f_pos;
49593bfa 3332 key.objectid = inode->i_ino;
5f39d397 3333
39279cc3
CM
3334 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3335 if (ret < 0)
3336 goto err;
3337 advance = 0;
49593bfa
DW
3338
3339 while (1) {
5f39d397
CM
3340 leaf = path->nodes[0];
3341 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3342 slot = path->slots[0];
3343 if (advance || slot >= nritems) {
49593bfa 3344 if (slot >= nritems - 1) {
39279cc3
CM
3345 ret = btrfs_next_leaf(root, path);
3346 if (ret)
3347 break;
5f39d397
CM
3348 leaf = path->nodes[0];
3349 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3350 slot = path->slots[0];
3351 } else {
3352 slot++;
3353 path->slots[0]++;
3354 }
3355 }
3de4586c 3356
39279cc3 3357 advance = 1;
5f39d397
CM
3358 item = btrfs_item_nr(leaf, slot);
3359 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3360
3361 if (found_key.objectid != key.objectid)
39279cc3 3362 break;
5f39d397 3363 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3364 break;
5f39d397 3365 if (found_key.offset < filp->f_pos)
39279cc3 3366 continue;
5f39d397
CM
3367
3368 filp->f_pos = found_key.offset;
49593bfa 3369
39279cc3
CM
3370 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3371 di_cur = 0;
5f39d397 3372 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3373
3374 while (di_cur < di_total) {
5f39d397
CM
3375 struct btrfs_key location;
3376
3377 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3378 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3379 name_ptr = tmp_name;
3380 } else {
3381 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3382 if (!name_ptr) {
3383 ret = -ENOMEM;
3384 goto err;
3385 }
5f39d397
CM
3386 }
3387 read_extent_buffer(leaf, name_ptr,
3388 (unsigned long)(di + 1), name_len);
3389
3390 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3391 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3392
3393 /* is this a reference to our own snapshot? If so
3394 * skip it
3395 */
3396 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3397 location.objectid == root->root_key.objectid) {
3398 over = 0;
3399 goto skip;
3400 }
5f39d397 3401 over = filldir(dirent, name_ptr, name_len,
49593bfa 3402 found_key.offset, location.objectid,
39279cc3 3403 d_type);
5f39d397 3404
3de4586c 3405skip:
5f39d397
CM
3406 if (name_ptr != tmp_name)
3407 kfree(name_ptr);
3408
39279cc3
CM
3409 if (over)
3410 goto nopos;
5103e947 3411 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3412 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3413 di_cur += di_len;
3414 di = (struct btrfs_dir_item *)((char *)di + di_len);
3415 }
3416 }
49593bfa
DW
3417
3418 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3419 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3420 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3421 else
3422 filp->f_pos++;
39279cc3
CM
3423nopos:
3424 ret = 0;
3425err:
39279cc3 3426 btrfs_free_path(path);
39279cc3
CM
3427 return ret;
3428}
3429
3430int btrfs_write_inode(struct inode *inode, int wait)
3431{
3432 struct btrfs_root *root = BTRFS_I(inode)->root;
3433 struct btrfs_trans_handle *trans;
3434 int ret = 0;
3435
c146afad 3436 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
3437 return 0;
3438
39279cc3 3439 if (wait) {
f9295749 3440 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3441 btrfs_set_trans_block_group(trans, inode);
3442 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
3443 }
3444 return ret;
3445}
3446
3447/*
54aa1f4d 3448 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
3449 * inode changes. But, it is most likely to find the inode in cache.
3450 * FIXME, needs more benchmarking...there are no reasons other than performance
3451 * to keep or drop this code.
3452 */
3453void btrfs_dirty_inode(struct inode *inode)
3454{
3455 struct btrfs_root *root = BTRFS_I(inode)->root;
3456 struct btrfs_trans_handle *trans;
3457
f9295749 3458 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3459 btrfs_set_trans_block_group(trans, inode);
3460 btrfs_update_inode(trans, root, inode);
3461 btrfs_end_transaction(trans, root);
39279cc3
CM
3462}
3463
d352ac68
CM
3464/*
3465 * find the highest existing sequence number in a directory
3466 * and then set the in-memory index_cnt variable to reflect
3467 * free sequence numbers
3468 */
aec7477b
JB
3469static int btrfs_set_inode_index_count(struct inode *inode)
3470{
3471 struct btrfs_root *root = BTRFS_I(inode)->root;
3472 struct btrfs_key key, found_key;
3473 struct btrfs_path *path;
3474 struct extent_buffer *leaf;
3475 int ret;
3476
3477 key.objectid = inode->i_ino;
3478 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3479 key.offset = (u64)-1;
3480
3481 path = btrfs_alloc_path();
3482 if (!path)
3483 return -ENOMEM;
3484
3485 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3486 if (ret < 0)
3487 goto out;
3488 /* FIXME: we should be able to handle this */
3489 if (ret == 0)
3490 goto out;
3491 ret = 0;
3492
3493 /*
3494 * MAGIC NUMBER EXPLANATION:
3495 * since we search a directory based on f_pos we have to start at 2
3496 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3497 * else has to start at 2
3498 */
3499 if (path->slots[0] == 0) {
3500 BTRFS_I(inode)->index_cnt = 2;
3501 goto out;
3502 }
3503
3504 path->slots[0]--;
3505
3506 leaf = path->nodes[0];
3507 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3508
3509 if (found_key.objectid != inode->i_ino ||
3510 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3511 BTRFS_I(inode)->index_cnt = 2;
3512 goto out;
3513 }
3514
3515 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3516out:
3517 btrfs_free_path(path);
3518 return ret;
3519}
3520
d352ac68
CM
3521/*
3522 * helper to find a free sequence number in a given directory. This current
3523 * code is very simple, later versions will do smarter things in the btree
3524 */
3de4586c 3525int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
3526{
3527 int ret = 0;
3528
3529 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3530 ret = btrfs_set_inode_index_count(dir);
d397712b 3531 if (ret)
aec7477b
JB
3532 return ret;
3533 }
3534
00e4e6b3 3535 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
3536 BTRFS_I(dir)->index_cnt++;
3537
3538 return ret;
3539}
3540
39279cc3
CM
3541static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3542 struct btrfs_root *root,
aec7477b 3543 struct inode *dir,
9c58309d 3544 const char *name, int name_len,
d2fb3437
YZ
3545 u64 ref_objectid, u64 objectid,
3546 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
3547{
3548 struct inode *inode;
5f39d397 3549 struct btrfs_inode_item *inode_item;
39279cc3 3550 struct btrfs_key *location;
5f39d397 3551 struct btrfs_path *path;
9c58309d
CM
3552 struct btrfs_inode_ref *ref;
3553 struct btrfs_key key[2];
3554 u32 sizes[2];
3555 unsigned long ptr;
39279cc3
CM
3556 int ret;
3557 int owner;
3558
5f39d397
CM
3559 path = btrfs_alloc_path();
3560 BUG_ON(!path);
3561
39279cc3
CM
3562 inode = new_inode(root->fs_info->sb);
3563 if (!inode)
3564 return ERR_PTR(-ENOMEM);
3565
aec7477b 3566 if (dir) {
3de4586c 3567 ret = btrfs_set_inode_index(dir, index);
09771430
SF
3568 if (ret) {
3569 iput(inode);
aec7477b 3570 return ERR_PTR(ret);
09771430 3571 }
aec7477b
JB
3572 }
3573 /*
3574 * index_cnt is ignored for everything but a dir,
3575 * btrfs_get_inode_index_count has an explanation for the magic
3576 * number
3577 */
e02119d5 3578 init_btrfs_i(inode);
aec7477b 3579 BTRFS_I(inode)->index_cnt = 2;
39279cc3 3580 BTRFS_I(inode)->root = root;
e02119d5 3581 BTRFS_I(inode)->generation = trans->transid;
6a63209f 3582 btrfs_set_inode_space_info(root, inode);
b888db2b 3583
39279cc3
CM
3584 if (mode & S_IFDIR)
3585 owner = 0;
3586 else
3587 owner = 1;
d2fb3437
YZ
3588 BTRFS_I(inode)->block_group =
3589 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
3590
3591 key[0].objectid = objectid;
3592 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3593 key[0].offset = 0;
3594
3595 key[1].objectid = objectid;
3596 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3597 key[1].offset = ref_objectid;
3598
3599 sizes[0] = sizeof(struct btrfs_inode_item);
3600 sizes[1] = name_len + sizeof(*ref);
3601
b9473439 3602 path->leave_spinning = 1;
9c58309d
CM
3603 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3604 if (ret != 0)
5f39d397
CM
3605 goto fail;
3606
9c58309d
CM
3607 if (objectid > root->highest_inode)
3608 root->highest_inode = objectid;
3609
79683f2d 3610 inode->i_uid = current_fsuid();
8c087b51 3611
42f15d77 3612 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
3613 inode->i_gid = dir->i_gid;
3614 if (S_ISDIR(mode))
3615 mode |= S_ISGID;
3616 } else
3617 inode->i_gid = current_fsgid();
3618
39279cc3
CM
3619 inode->i_mode = mode;
3620 inode->i_ino = objectid;
a76a3cd4 3621 inode_set_bytes(inode, 0);
39279cc3 3622 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
3623 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3624 struct btrfs_inode_item);
e02119d5 3625 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
3626
3627 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3628 struct btrfs_inode_ref);
3629 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 3630 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
3631 ptr = (unsigned long)(ref + 1);
3632 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3633
5f39d397
CM
3634 btrfs_mark_buffer_dirty(path->nodes[0]);
3635 btrfs_free_path(path);
3636
39279cc3
CM
3637 location = &BTRFS_I(inode)->location;
3638 location->objectid = objectid;
39279cc3
CM
3639 location->offset = 0;
3640 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3641
6cbff00f
CH
3642 btrfs_inherit_iflags(inode, dir);
3643
94272164
CM
3644 if ((mode & S_IFREG)) {
3645 if (btrfs_test_opt(root, NODATASUM))
3646 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3647 if (btrfs_test_opt(root, NODATACOW))
3648 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3649 }
3650
39279cc3 3651 insert_inode_hash(inode);
5d4f98a2 3652 inode_tree_add(inode);
39279cc3 3653 return inode;
5f39d397 3654fail:
aec7477b
JB
3655 if (dir)
3656 BTRFS_I(dir)->index_cnt--;
5f39d397 3657 btrfs_free_path(path);
09771430 3658 iput(inode);
5f39d397 3659 return ERR_PTR(ret);
39279cc3
CM
3660}
3661
3662static inline u8 btrfs_inode_type(struct inode *inode)
3663{
3664 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3665}
3666
d352ac68
CM
3667/*
3668 * utility function to add 'inode' into 'parent_inode' with
3669 * a give name and a given sequence number.
3670 * if 'add_backref' is true, also insert a backref from the
3671 * inode to the parent directory.
3672 */
e02119d5
CM
3673int btrfs_add_link(struct btrfs_trans_handle *trans,
3674 struct inode *parent_inode, struct inode *inode,
3675 const char *name, int name_len, int add_backref, u64 index)
39279cc3
CM
3676{
3677 int ret;
3678 struct btrfs_key key;
e02119d5 3679 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 3680
39279cc3 3681 key.objectid = inode->i_ino;
39279cc3
CM
3682 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3683 key.offset = 0;
3684
e02119d5
CM
3685 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3686 parent_inode->i_ino,
aec7477b 3687 &key, btrfs_inode_type(inode),
00e4e6b3 3688 index);
39279cc3 3689 if (ret == 0) {
9c58309d
CM
3690 if (add_backref) {
3691 ret = btrfs_insert_inode_ref(trans, root,
e02119d5
CM
3692 name, name_len,
3693 inode->i_ino,
3694 parent_inode->i_ino,
3695 index);
9c58309d 3696 }
dbe674a9 3697 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 3698 name_len * 2);
79c44584 3699 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 3700 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
3701 }
3702 return ret;
3703}
3704
3705static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 3706 struct dentry *dentry, struct inode *inode,
00e4e6b3 3707 int backref, u64 index)
39279cc3 3708{
e02119d5
CM
3709 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3710 inode, dentry->d_name.name,
3711 dentry->d_name.len, backref, index);
39279cc3
CM
3712 if (!err) {
3713 d_instantiate(dentry, inode);
3714 return 0;
3715 }
3716 if (err > 0)
3717 err = -EEXIST;
3718 return err;
3719}
3720
618e21d5
JB
3721static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3722 int mode, dev_t rdev)
3723{
3724 struct btrfs_trans_handle *trans;
3725 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 3726 struct inode *inode = NULL;
618e21d5
JB
3727 int err;
3728 int drop_inode = 0;
3729 u64 objectid;
1832a6d5 3730 unsigned long nr = 0;
00e4e6b3 3731 u64 index = 0;
618e21d5
JB
3732
3733 if (!new_valid_dev(rdev))
3734 return -EINVAL;
3735
6a63209f 3736 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3737 if (err)
3738 goto fail;
3739
618e21d5
JB
3740 trans = btrfs_start_transaction(root, 1);
3741 btrfs_set_trans_block_group(trans, dir);
3742
3743 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3744 if (err) {
3745 err = -ENOSPC;
3746 goto out_unlock;
3747 }
3748
aec7477b 3749 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3750 dentry->d_name.len,
3751 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 3752 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
3753 err = PTR_ERR(inode);
3754 if (IS_ERR(inode))
3755 goto out_unlock;
3756
0279b4cd 3757 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3758 if (err) {
3759 drop_inode = 1;
3760 goto out_unlock;
3761 }
3762
618e21d5 3763 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 3764 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
3765 if (err)
3766 drop_inode = 1;
3767 else {
3768 inode->i_op = &btrfs_special_inode_operations;
3769 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 3770 btrfs_update_inode(trans, root, inode);
618e21d5
JB
3771 }
3772 dir->i_sb->s_dirt = 1;
3773 btrfs_update_inode_block_group(trans, inode);
3774 btrfs_update_inode_block_group(trans, dir);
3775out_unlock:
d3c2fdcf 3776 nr = trans->blocks_used;
89ce8a63 3777 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3778fail:
618e21d5
JB
3779 if (drop_inode) {
3780 inode_dec_link_count(inode);
3781 iput(inode);
3782 }
d3c2fdcf 3783 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
3784 return err;
3785}
3786
39279cc3
CM
3787static int btrfs_create(struct inode *dir, struct dentry *dentry,
3788 int mode, struct nameidata *nd)
3789{
3790 struct btrfs_trans_handle *trans;
3791 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 3792 struct inode *inode = NULL;
39279cc3
CM
3793 int err;
3794 int drop_inode = 0;
1832a6d5 3795 unsigned long nr = 0;
39279cc3 3796 u64 objectid;
00e4e6b3 3797 u64 index = 0;
39279cc3 3798
6a63209f 3799 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3800 if (err)
3801 goto fail;
39279cc3
CM
3802 trans = btrfs_start_transaction(root, 1);
3803 btrfs_set_trans_block_group(trans, dir);
3804
3805 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3806 if (err) {
3807 err = -ENOSPC;
3808 goto out_unlock;
3809 }
3810
aec7477b 3811 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3812 dentry->d_name.len,
3813 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
3814 objectid, BTRFS_I(dir)->block_group, mode,
3815 &index);
39279cc3
CM
3816 err = PTR_ERR(inode);
3817 if (IS_ERR(inode))
3818 goto out_unlock;
3819
0279b4cd 3820 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3821 if (err) {
3822 drop_inode = 1;
3823 goto out_unlock;
3824 }
3825
39279cc3 3826 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 3827 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
3828 if (err)
3829 drop_inode = 1;
3830 else {
3831 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3832 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
3833 inode->i_fop = &btrfs_file_operations;
3834 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 3835 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3836 }
3837 dir->i_sb->s_dirt = 1;
3838 btrfs_update_inode_block_group(trans, inode);
3839 btrfs_update_inode_block_group(trans, dir);
3840out_unlock:
d3c2fdcf 3841 nr = trans->blocks_used;
ab78c84d 3842 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3843fail:
39279cc3
CM
3844 if (drop_inode) {
3845 inode_dec_link_count(inode);
3846 iput(inode);
3847 }
d3c2fdcf 3848 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3849 return err;
3850}
3851
3852static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3853 struct dentry *dentry)
3854{
3855 struct btrfs_trans_handle *trans;
3856 struct btrfs_root *root = BTRFS_I(dir)->root;
3857 struct inode *inode = old_dentry->d_inode;
00e4e6b3 3858 u64 index;
1832a6d5 3859 unsigned long nr = 0;
39279cc3
CM
3860 int err;
3861 int drop_inode = 0;
3862
3863 if (inode->i_nlink == 0)
3864 return -ENOENT;
3865
e02119d5 3866 btrfs_inc_nlink(inode);
6a63209f 3867 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3868 if (err)
3869 goto fail;
3de4586c 3870 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
3871 if (err)
3872 goto fail;
3873
39279cc3 3874 trans = btrfs_start_transaction(root, 1);
5f39d397 3875
39279cc3
CM
3876 btrfs_set_trans_block_group(trans, dir);
3877 atomic_inc(&inode->i_count);
aec7477b 3878
00e4e6b3 3879 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 3880
39279cc3
CM
3881 if (err)
3882 drop_inode = 1;
5f39d397 3883
39279cc3
CM
3884 dir->i_sb->s_dirt = 1;
3885 btrfs_update_inode_block_group(trans, dir);
54aa1f4d 3886 err = btrfs_update_inode(trans, root, inode);
5f39d397 3887
54aa1f4d
CM
3888 if (err)
3889 drop_inode = 1;
39279cc3 3890
d3c2fdcf 3891 nr = trans->blocks_used;
12fcfd22
CM
3892
3893 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
ab78c84d 3894 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3895fail:
39279cc3
CM
3896 if (drop_inode) {
3897 inode_dec_link_count(inode);
3898 iput(inode);
3899 }
d3c2fdcf 3900 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3901 return err;
3902}
3903
39279cc3
CM
3904static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3905{
b9d86667 3906 struct inode *inode = NULL;
39279cc3
CM
3907 struct btrfs_trans_handle *trans;
3908 struct btrfs_root *root = BTRFS_I(dir)->root;
3909 int err = 0;
3910 int drop_on_err = 0;
b9d86667 3911 u64 objectid = 0;
00e4e6b3 3912 u64 index = 0;
d3c2fdcf 3913 unsigned long nr = 1;
39279cc3 3914
6a63209f 3915 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3916 if (err)
3917 goto out_unlock;
3918
39279cc3
CM
3919 trans = btrfs_start_transaction(root, 1);
3920 btrfs_set_trans_block_group(trans, dir);
5f39d397 3921
39279cc3
CM
3922 if (IS_ERR(trans)) {
3923 err = PTR_ERR(trans);
3924 goto out_unlock;
3925 }
3926
3927 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3928 if (err) {
3929 err = -ENOSPC;
3930 goto out_unlock;
3931 }
3932
aec7477b 3933 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3934 dentry->d_name.len,
3935 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
3936 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3937 &index);
39279cc3
CM
3938 if (IS_ERR(inode)) {
3939 err = PTR_ERR(inode);
3940 goto out_fail;
3941 }
5f39d397 3942
39279cc3 3943 drop_on_err = 1;
33268eaf 3944
0279b4cd 3945 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3946 if (err)
3947 goto out_fail;
3948
39279cc3
CM
3949 inode->i_op = &btrfs_dir_inode_operations;
3950 inode->i_fop = &btrfs_dir_file_operations;
3951 btrfs_set_trans_block_group(trans, inode);
3952
dbe674a9 3953 btrfs_i_size_write(inode, 0);
39279cc3
CM
3954 err = btrfs_update_inode(trans, root, inode);
3955 if (err)
3956 goto out_fail;
5f39d397 3957
e02119d5
CM
3958 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3959 inode, dentry->d_name.name,
3960 dentry->d_name.len, 0, index);
39279cc3
CM
3961 if (err)
3962 goto out_fail;
5f39d397 3963
39279cc3
CM
3964 d_instantiate(dentry, inode);
3965 drop_on_err = 0;
3966 dir->i_sb->s_dirt = 1;
3967 btrfs_update_inode_block_group(trans, inode);
3968 btrfs_update_inode_block_group(trans, dir);
3969
3970out_fail:
d3c2fdcf 3971 nr = trans->blocks_used;
ab78c84d 3972 btrfs_end_transaction_throttle(trans, root);
5f39d397 3973
39279cc3 3974out_unlock:
39279cc3
CM
3975 if (drop_on_err)
3976 iput(inode);
d3c2fdcf 3977 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3978 return err;
3979}
3980
d352ac68
CM
3981/* helper for btfs_get_extent. Given an existing extent in the tree,
3982 * and an extent that you want to insert, deal with overlap and insert
3983 * the new extent into the tree.
3984 */
3b951516
CM
3985static int merge_extent_mapping(struct extent_map_tree *em_tree,
3986 struct extent_map *existing,
e6dcd2dc
CM
3987 struct extent_map *em,
3988 u64 map_start, u64 map_len)
3b951516
CM
3989{
3990 u64 start_diff;
3b951516 3991
e6dcd2dc
CM
3992 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3993 start_diff = map_start - em->start;
3994 em->start = map_start;
3995 em->len = map_len;
c8b97818
CM
3996 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3997 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 3998 em->block_start += start_diff;
c8b97818
CM
3999 em->block_len -= start_diff;
4000 }
e6dcd2dc 4001 return add_extent_mapping(em_tree, em);
3b951516
CM
4002}
4003
c8b97818
CM
4004static noinline int uncompress_inline(struct btrfs_path *path,
4005 struct inode *inode, struct page *page,
4006 size_t pg_offset, u64 extent_offset,
4007 struct btrfs_file_extent_item *item)
4008{
4009 int ret;
4010 struct extent_buffer *leaf = path->nodes[0];
4011 char *tmp;
4012 size_t max_size;
4013 unsigned long inline_size;
4014 unsigned long ptr;
4015
4016 WARN_ON(pg_offset != 0);
4017 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4018 inline_size = btrfs_file_extent_inline_item_len(leaf,
4019 btrfs_item_nr(leaf, path->slots[0]));
4020 tmp = kmalloc(inline_size, GFP_NOFS);
4021 ptr = btrfs_file_extent_inline_start(item);
4022
4023 read_extent_buffer(leaf, tmp, ptr, inline_size);
4024
5b050f04 4025 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4026 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4027 inline_size, max_size);
4028 if (ret) {
4029 char *kaddr = kmap_atomic(page, KM_USER0);
4030 unsigned long copy_size = min_t(u64,
4031 PAGE_CACHE_SIZE - pg_offset,
4032 max_size - extent_offset);
4033 memset(kaddr + pg_offset, 0, copy_size);
4034 kunmap_atomic(kaddr, KM_USER0);
4035 }
4036 kfree(tmp);
4037 return 0;
4038}
4039
d352ac68
CM
4040/*
4041 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4042 * the ugly parts come from merging extents from the disk with the in-ram
4043 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4044 * where the in-ram extents might be locked pending data=ordered completion.
4045 *
4046 * This also copies inline extents directly into the page.
4047 */
d397712b 4048
a52d9a80 4049struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4050 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4051 int create)
4052{
4053 int ret;
4054 int err = 0;
db94535d 4055 u64 bytenr;
a52d9a80
CM
4056 u64 extent_start = 0;
4057 u64 extent_end = 0;
4058 u64 objectid = inode->i_ino;
4059 u32 found_type;
f421950f 4060 struct btrfs_path *path = NULL;
a52d9a80
CM
4061 struct btrfs_root *root = BTRFS_I(inode)->root;
4062 struct btrfs_file_extent_item *item;
5f39d397
CM
4063 struct extent_buffer *leaf;
4064 struct btrfs_key found_key;
a52d9a80
CM
4065 struct extent_map *em = NULL;
4066 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4067 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4068 struct btrfs_trans_handle *trans = NULL;
c8b97818 4069 int compressed;
a52d9a80 4070
a52d9a80 4071again:
890871be 4072 read_lock(&em_tree->lock);
d1310b2e 4073 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4074 if (em)
4075 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4076 read_unlock(&em_tree->lock);
d1310b2e 4077
a52d9a80 4078 if (em) {
e1c4b745
CM
4079 if (em->start > start || em->start + em->len <= start)
4080 free_extent_map(em);
4081 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4082 free_extent_map(em);
4083 else
4084 goto out;
a52d9a80 4085 }
d1310b2e 4086 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4087 if (!em) {
d1310b2e
CM
4088 err = -ENOMEM;
4089 goto out;
a52d9a80 4090 }
e6dcd2dc 4091 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4092 em->start = EXTENT_MAP_HOLE;
445a6944 4093 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4094 em->len = (u64)-1;
c8b97818 4095 em->block_len = (u64)-1;
f421950f
CM
4096
4097 if (!path) {
4098 path = btrfs_alloc_path();
4099 BUG_ON(!path);
4100 }
4101
179e29e4
CM
4102 ret = btrfs_lookup_file_extent(trans, root, path,
4103 objectid, start, trans != NULL);
a52d9a80
CM
4104 if (ret < 0) {
4105 err = ret;
4106 goto out;
4107 }
4108
4109 if (ret != 0) {
4110 if (path->slots[0] == 0)
4111 goto not_found;
4112 path->slots[0]--;
4113 }
4114
5f39d397
CM
4115 leaf = path->nodes[0];
4116 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4117 struct btrfs_file_extent_item);
a52d9a80 4118 /* are we inside the extent that was found? */
5f39d397
CM
4119 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4120 found_type = btrfs_key_type(&found_key);
4121 if (found_key.objectid != objectid ||
a52d9a80
CM
4122 found_type != BTRFS_EXTENT_DATA_KEY) {
4123 goto not_found;
4124 }
4125
5f39d397
CM
4126 found_type = btrfs_file_extent_type(leaf, item);
4127 extent_start = found_key.offset;
c8b97818 4128 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4129 if (found_type == BTRFS_FILE_EXTENT_REG ||
4130 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4131 extent_end = extent_start +
db94535d 4132 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4133 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4134 size_t size;
4135 size = btrfs_file_extent_inline_len(leaf, item);
4136 extent_end = (extent_start + size + root->sectorsize - 1) &
4137 ~((u64)root->sectorsize - 1);
4138 }
4139
4140 if (start >= extent_end) {
4141 path->slots[0]++;
4142 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4143 ret = btrfs_next_leaf(root, path);
4144 if (ret < 0) {
4145 err = ret;
4146 goto out;
a52d9a80 4147 }
9036c102
YZ
4148 if (ret > 0)
4149 goto not_found;
4150 leaf = path->nodes[0];
a52d9a80 4151 }
9036c102
YZ
4152 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4153 if (found_key.objectid != objectid ||
4154 found_key.type != BTRFS_EXTENT_DATA_KEY)
4155 goto not_found;
4156 if (start + len <= found_key.offset)
4157 goto not_found;
4158 em->start = start;
4159 em->len = found_key.offset - start;
4160 goto not_found_em;
4161 }
4162
d899e052
YZ
4163 if (found_type == BTRFS_FILE_EXTENT_REG ||
4164 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4165 em->start = extent_start;
4166 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4167 em->orig_start = extent_start -
4168 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4169 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4170 if (bytenr == 0) {
5f39d397 4171 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4172 goto insert;
4173 }
c8b97818
CM
4174 if (compressed) {
4175 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4176 em->block_start = bytenr;
4177 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4178 item);
4179 } else {
4180 bytenr += btrfs_file_extent_offset(leaf, item);
4181 em->block_start = bytenr;
4182 em->block_len = em->len;
d899e052
YZ
4183 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4184 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4185 }
a52d9a80
CM
4186 goto insert;
4187 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4188 unsigned long ptr;
a52d9a80 4189 char *map;
3326d1b0
CM
4190 size_t size;
4191 size_t extent_offset;
4192 size_t copy_size;
a52d9a80 4193
689f9346 4194 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4195 if (!page || create) {
689f9346 4196 em->start = extent_start;
9036c102 4197 em->len = extent_end - extent_start;
689f9346
Y
4198 goto out;
4199 }
5f39d397 4200
9036c102
YZ
4201 size = btrfs_file_extent_inline_len(leaf, item);
4202 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4203 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4204 size - extent_offset);
3326d1b0 4205 em->start = extent_start + extent_offset;
70dec807
CM
4206 em->len = (copy_size + root->sectorsize - 1) &
4207 ~((u64)root->sectorsize - 1);
ff5b7ee3 4208 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4209 if (compressed)
4210 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4211 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4212 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4213 if (btrfs_file_extent_compression(leaf, item) ==
4214 BTRFS_COMPRESS_ZLIB) {
4215 ret = uncompress_inline(path, inode, page,
4216 pg_offset,
4217 extent_offset, item);
4218 BUG_ON(ret);
4219 } else {
4220 map = kmap(page);
4221 read_extent_buffer(leaf, map + pg_offset, ptr,
4222 copy_size);
4223 kunmap(page);
4224 }
179e29e4
CM
4225 flush_dcache_page(page);
4226 } else if (create && PageUptodate(page)) {
4227 if (!trans) {
4228 kunmap(page);
4229 free_extent_map(em);
4230 em = NULL;
4231 btrfs_release_path(root, path);
f9295749 4232 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4233 goto again;
4234 }
c8b97818 4235 map = kmap(page);
70dec807 4236 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4237 copy_size);
c8b97818 4238 kunmap(page);
179e29e4 4239 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4240 }
d1310b2e
CM
4241 set_extent_uptodate(io_tree, em->start,
4242 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4243 goto insert;
4244 } else {
d397712b 4245 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4246 WARN_ON(1);
4247 }
4248not_found:
4249 em->start = start;
d1310b2e 4250 em->len = len;
a52d9a80 4251not_found_em:
5f39d397 4252 em->block_start = EXTENT_MAP_HOLE;
9036c102 4253 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4254insert:
4255 btrfs_release_path(root, path);
d1310b2e 4256 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4257 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4258 "[%llu %llu]\n", (unsigned long long)em->start,
4259 (unsigned long long)em->len,
4260 (unsigned long long)start,
4261 (unsigned long long)len);
a52d9a80
CM
4262 err = -EIO;
4263 goto out;
4264 }
d1310b2e
CM
4265
4266 err = 0;
890871be 4267 write_lock(&em_tree->lock);
a52d9a80 4268 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4269 /* it is possible that someone inserted the extent into the tree
4270 * while we had the lock dropped. It is also possible that
4271 * an overlapping map exists in the tree
4272 */
a52d9a80 4273 if (ret == -EEXIST) {
3b951516 4274 struct extent_map *existing;
e6dcd2dc
CM
4275
4276 ret = 0;
4277
3b951516 4278 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4279 if (existing && (existing->start > start ||
4280 existing->start + existing->len <= start)) {
4281 free_extent_map(existing);
4282 existing = NULL;
4283 }
3b951516
CM
4284 if (!existing) {
4285 existing = lookup_extent_mapping(em_tree, em->start,
4286 em->len);
4287 if (existing) {
4288 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4289 em, start,
4290 root->sectorsize);
3b951516
CM
4291 free_extent_map(existing);
4292 if (err) {
4293 free_extent_map(em);
4294 em = NULL;
4295 }
4296 } else {
4297 err = -EIO;
3b951516
CM
4298 free_extent_map(em);
4299 em = NULL;
4300 }
4301 } else {
4302 free_extent_map(em);
4303 em = existing;
e6dcd2dc 4304 err = 0;
a52d9a80 4305 }
a52d9a80 4306 }
890871be 4307 write_unlock(&em_tree->lock);
a52d9a80 4308out:
f421950f
CM
4309 if (path)
4310 btrfs_free_path(path);
a52d9a80
CM
4311 if (trans) {
4312 ret = btrfs_end_transaction(trans, root);
d397712b 4313 if (!err)
a52d9a80
CM
4314 err = ret;
4315 }
a52d9a80
CM
4316 if (err) {
4317 free_extent_map(em);
a52d9a80
CM
4318 return ERR_PTR(err);
4319 }
4320 return em;
4321}
4322
16432985
CM
4323static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4324 const struct iovec *iov, loff_t offset,
4325 unsigned long nr_segs)
4326{
e1c4b745 4327 return -EINVAL;
16432985
CM
4328}
4329
1506fcc8
YS
4330static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4331 __u64 start, __u64 len)
4332{
4333 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4334}
4335
a52d9a80 4336int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4337{
d1310b2e
CM
4338 struct extent_io_tree *tree;
4339 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4340 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4341}
1832a6d5 4342
a52d9a80 4343static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4344{
d1310b2e 4345 struct extent_io_tree *tree;
b888db2b
CM
4346
4347
4348 if (current->flags & PF_MEMALLOC) {
4349 redirty_page_for_writepage(wbc, page);
4350 unlock_page(page);
4351 return 0;
4352 }
d1310b2e 4353 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4354 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4355}
4356
f421950f
CM
4357int btrfs_writepages(struct address_space *mapping,
4358 struct writeback_control *wbc)
b293f02e 4359{
d1310b2e 4360 struct extent_io_tree *tree;
771ed689 4361
d1310b2e 4362 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4363 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4364}
4365
3ab2fb5a
CM
4366static int
4367btrfs_readpages(struct file *file, struct address_space *mapping,
4368 struct list_head *pages, unsigned nr_pages)
4369{
d1310b2e
CM
4370 struct extent_io_tree *tree;
4371 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4372 return extent_readpages(tree, mapping, pages, nr_pages,
4373 btrfs_get_extent);
4374}
e6dcd2dc 4375static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4376{
d1310b2e
CM
4377 struct extent_io_tree *tree;
4378 struct extent_map_tree *map;
a52d9a80 4379 int ret;
8c2383c3 4380
d1310b2e
CM
4381 tree = &BTRFS_I(page->mapping->host)->io_tree;
4382 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4383 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4384 if (ret == 1) {
4385 ClearPagePrivate(page);
4386 set_page_private(page, 0);
4387 page_cache_release(page);
39279cc3 4388 }
a52d9a80 4389 return ret;
39279cc3
CM
4390}
4391
e6dcd2dc
CM
4392static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4393{
98509cfc
CM
4394 if (PageWriteback(page) || PageDirty(page))
4395 return 0;
b335b003 4396 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4397}
4398
a52d9a80 4399static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 4400{
d1310b2e 4401 struct extent_io_tree *tree;
e6dcd2dc
CM
4402 struct btrfs_ordered_extent *ordered;
4403 u64 page_start = page_offset(page);
4404 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 4405
8b62b72b
CM
4406
4407 /*
4408 * we have the page locked, so new writeback can't start,
4409 * and the dirty bit won't be cleared while we are here.
4410 *
4411 * Wait for IO on this page so that we can safely clear
4412 * the PagePrivate2 bit and do ordered accounting
4413 */
e6dcd2dc 4414 wait_on_page_writeback(page);
8b62b72b 4415
d1310b2e 4416 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
4417 if (offset) {
4418 btrfs_releasepage(page, GFP_NOFS);
4419 return;
4420 }
e6dcd2dc
CM
4421 lock_extent(tree, page_start, page_end, GFP_NOFS);
4422 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4423 page_offset(page));
4424 if (ordered) {
eb84ae03
CM
4425 /*
4426 * IO on this page will never be started, so we need
4427 * to account for any ordered extents now
4428 */
e6dcd2dc
CM
4429 clear_extent_bit(tree, page_start, page_end,
4430 EXTENT_DIRTY | EXTENT_DELALLOC |
2c64c53d 4431 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
8b62b72b
CM
4432 /*
4433 * whoever cleared the private bit is responsible
4434 * for the finish_ordered_io
4435 */
4436 if (TestClearPagePrivate2(page)) {
4437 btrfs_finish_ordered_io(page->mapping->host,
4438 page_start, page_end);
4439 }
e6dcd2dc
CM
4440 btrfs_put_ordered_extent(ordered);
4441 lock_extent(tree, page_start, page_end, GFP_NOFS);
4442 }
4443 clear_extent_bit(tree, page_start, page_end,
8b62b72b 4444 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2c64c53d 4445 1, 1, NULL, GFP_NOFS);
e6dcd2dc
CM
4446 __btrfs_releasepage(page, GFP_NOFS);
4447
4a096752 4448 ClearPageChecked(page);
9ad6b7bc 4449 if (PagePrivate(page)) {
9ad6b7bc
CM
4450 ClearPagePrivate(page);
4451 set_page_private(page, 0);
4452 page_cache_release(page);
4453 }
39279cc3
CM
4454}
4455
9ebefb18
CM
4456/*
4457 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4458 * called from a page fault handler when a page is first dirtied. Hence we must
4459 * be careful to check for EOF conditions here. We set the page up correctly
4460 * for a written page which means we get ENOSPC checking when writing into
4461 * holes and correct delalloc and unwritten extent mapping on filesystems that
4462 * support these features.
4463 *
4464 * We are not allowed to take the i_mutex here so we have to play games to
4465 * protect against truncate races as the page could now be beyond EOF. Because
4466 * vmtruncate() writes the inode size before removing pages, once we have the
4467 * page lock we can determine safely if the page is beyond EOF. If it is not
4468 * beyond EOF, then the page is guaranteed safe against truncation until we
4469 * unlock the page.
4470 */
c2ec175c 4471int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 4472{
c2ec175c 4473 struct page *page = vmf->page;
6da6abae 4474 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 4475 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4476 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4477 struct btrfs_ordered_extent *ordered;
4478 char *kaddr;
4479 unsigned long zero_start;
9ebefb18 4480 loff_t size;
1832a6d5 4481 int ret;
a52d9a80 4482 u64 page_start;
e6dcd2dc 4483 u64 page_end;
9ebefb18 4484
6a63209f 4485 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
4486 if (ret) {
4487 if (ret == -ENOMEM)
4488 ret = VM_FAULT_OOM;
4489 else /* -ENOSPC, -EIO, etc */
4490 ret = VM_FAULT_SIGBUS;
1832a6d5 4491 goto out;
56a76f82 4492 }
1832a6d5 4493
56a76f82 4494 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 4495again:
9ebefb18 4496 lock_page(page);
9ebefb18 4497 size = i_size_read(inode);
e6dcd2dc
CM
4498 page_start = page_offset(page);
4499 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 4500
9ebefb18 4501 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 4502 (page_start >= size)) {
6a63209f 4503 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
4504 /* page got truncated out from underneath us */
4505 goto out_unlock;
4506 }
e6dcd2dc
CM
4507 wait_on_page_writeback(page);
4508
4509 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4510 set_page_extent_mapped(page);
4511
eb84ae03
CM
4512 /*
4513 * we can't set the delalloc bits if there are pending ordered
4514 * extents. Drop our locks and wait for them to finish
4515 */
e6dcd2dc
CM
4516 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4517 if (ordered) {
4518 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4519 unlock_page(page);
eb84ae03 4520 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4521 btrfs_put_ordered_extent(ordered);
4522 goto again;
4523 }
4524
ea8c2819 4525 btrfs_set_extent_delalloc(inode, page_start, page_end);
e6dcd2dc 4526 ret = 0;
9ebefb18
CM
4527
4528 /* page is wholly or partially inside EOF */
a52d9a80 4529 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 4530 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 4531 else
e6dcd2dc 4532 zero_start = PAGE_CACHE_SIZE;
9ebefb18 4533
e6dcd2dc
CM
4534 if (zero_start != PAGE_CACHE_SIZE) {
4535 kaddr = kmap(page);
4536 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4537 flush_dcache_page(page);
4538 kunmap(page);
4539 }
247e743c 4540 ClearPageChecked(page);
e6dcd2dc 4541 set_page_dirty(page);
5a3f23d5
CM
4542
4543 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
e6dcd2dc 4544 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
4545
4546out_unlock:
4547 unlock_page(page);
1832a6d5 4548out:
9ebefb18
CM
4549 return ret;
4550}
4551
39279cc3
CM
4552static void btrfs_truncate(struct inode *inode)
4553{
4554 struct btrfs_root *root = BTRFS_I(inode)->root;
4555 int ret;
4556 struct btrfs_trans_handle *trans;
d3c2fdcf 4557 unsigned long nr;
dbe674a9 4558 u64 mask = root->sectorsize - 1;
39279cc3
CM
4559
4560 if (!S_ISREG(inode->i_mode))
4561 return;
4562 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4563 return;
4564
4565 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4a096752 4566 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 4567
39279cc3 4568 trans = btrfs_start_transaction(root, 1);
5a3f23d5
CM
4569
4570 /*
4571 * setattr is responsible for setting the ordered_data_close flag,
4572 * but that is only tested during the last file release. That
4573 * could happen well after the next commit, leaving a great big
4574 * window where new writes may get lost if someone chooses to write
4575 * to this file after truncating to zero
4576 *
4577 * The inode doesn't have any dirty data here, and so if we commit
4578 * this is a noop. If someone immediately starts writing to the inode
4579 * it is very likely we'll catch some of their writes in this
4580 * transaction, and the commit will find this file on the ordered
4581 * data list with good things to send down.
4582 *
4583 * This is a best effort solution, there is still a window where
4584 * using truncate to replace the contents of the file will
4585 * end up with a zero length file after a crash.
4586 */
4587 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4588 btrfs_add_ordered_operation(trans, root, inode);
4589
39279cc3 4590 btrfs_set_trans_block_group(trans, inode);
dbe674a9 4591 btrfs_i_size_write(inode, inode->i_size);
39279cc3 4592
7b128766
JB
4593 ret = btrfs_orphan_add(trans, inode);
4594 if (ret)
4595 goto out;
39279cc3 4596 /* FIXME, add redo link to tree so we don't leak on crash */
e02119d5 4597 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
85e21bac 4598 BTRFS_EXTENT_DATA_KEY);
39279cc3 4599 btrfs_update_inode(trans, root, inode);
5f39d397 4600
7b128766
JB
4601 ret = btrfs_orphan_del(trans, inode);
4602 BUG_ON(ret);
4603
4604out:
4605 nr = trans->blocks_used;
89ce8a63 4606 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 4607 BUG_ON(ret);
d3c2fdcf 4608 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4609}
4610
d352ac68
CM
4611/*
4612 * create a new subvolume directory/inode (helper for the ioctl).
4613 */
d2fb3437
YZ
4614int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4615 struct btrfs_root *new_root, struct dentry *dentry,
4616 u64 new_dirid, u64 alloc_hint)
39279cc3 4617{
39279cc3 4618 struct inode *inode;
cb8e7090 4619 int error;
00e4e6b3 4620 u64 index = 0;
39279cc3 4621
aec7477b 4622 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 4623 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 4624 if (IS_ERR(inode))
f46b5a66 4625 return PTR_ERR(inode);
39279cc3
CM
4626 inode->i_op = &btrfs_dir_inode_operations;
4627 inode->i_fop = &btrfs_dir_file_operations;
4628
39279cc3 4629 inode->i_nlink = 1;
dbe674a9 4630 btrfs_i_size_write(inode, 0);
3b96362c 4631
cb8e7090
CH
4632 error = btrfs_update_inode(trans, new_root, inode);
4633 if (error)
4634 return error;
4635
4636 d_instantiate(dentry, inode);
4637 return 0;
39279cc3
CM
4638}
4639
d352ac68
CM
4640/* helper function for file defrag and space balancing. This
4641 * forces readahead on a given range of bytes in an inode
4642 */
edbd8d4e 4643unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
4644 struct file_ra_state *ra, struct file *file,
4645 pgoff_t offset, pgoff_t last_index)
4646{
8e7bf94f 4647 pgoff_t req_size = last_index - offset + 1;
86479a04 4648
86479a04
CM
4649 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4650 return offset + req_size;
86479a04
CM
4651}
4652
39279cc3
CM
4653struct inode *btrfs_alloc_inode(struct super_block *sb)
4654{
4655 struct btrfs_inode *ei;
4656
4657 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4658 if (!ei)
4659 return NULL;
15ee9bc7 4660 ei->last_trans = 0;
e02119d5 4661 ei->logged_trans = 0;
e6dcd2dc 4662 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
33268eaf
JB
4663 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4664 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
7b128766 4665 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 4666 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
4667 return &ei->vfs_inode;
4668}
4669
4670void btrfs_destroy_inode(struct inode *inode)
4671{
e6dcd2dc 4672 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
4673 struct btrfs_root *root = BTRFS_I(inode)->root;
4674
39279cc3
CM
4675 WARN_ON(!list_empty(&inode->i_dentry));
4676 WARN_ON(inode->i_data.nrpages);
4677
33268eaf
JB
4678 if (BTRFS_I(inode)->i_acl &&
4679 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4680 posix_acl_release(BTRFS_I(inode)->i_acl);
4681 if (BTRFS_I(inode)->i_default_acl &&
4682 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4683 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4684
5a3f23d5
CM
4685 /*
4686 * Make sure we're properly removed from the ordered operation
4687 * lists.
4688 */
4689 smp_mb();
4690 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4691 spin_lock(&root->fs_info->ordered_extent_lock);
4692 list_del_init(&BTRFS_I(inode)->ordered_operations);
4693 spin_unlock(&root->fs_info->ordered_extent_lock);
4694 }
4695
4696 spin_lock(&root->list_lock);
7b128766
JB
4697 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4698 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4699 " list\n", inode->i_ino);
4700 dump_stack();
4701 }
5a3f23d5 4702 spin_unlock(&root->list_lock);
7b128766 4703
d397712b 4704 while (1) {
e6dcd2dc
CM
4705 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4706 if (!ordered)
4707 break;
4708 else {
d397712b
CM
4709 printk(KERN_ERR "btrfs found ordered "
4710 "extent %llu %llu on inode cleanup\n",
4711 (unsigned long long)ordered->file_offset,
4712 (unsigned long long)ordered->len);
e6dcd2dc
CM
4713 btrfs_remove_ordered_extent(inode, ordered);
4714 btrfs_put_ordered_extent(ordered);
4715 btrfs_put_ordered_extent(ordered);
4716 }
4717 }
5d4f98a2 4718 inode_tree_del(inode);
5b21f2ed 4719 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
39279cc3
CM
4720 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4721}
4722
0ee0fda0 4723static void init_once(void *foo)
39279cc3
CM
4724{
4725 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4726
4727 inode_init_once(&ei->vfs_inode);
4728}
4729
4730void btrfs_destroy_cachep(void)
4731{
4732 if (btrfs_inode_cachep)
4733 kmem_cache_destroy(btrfs_inode_cachep);
4734 if (btrfs_trans_handle_cachep)
4735 kmem_cache_destroy(btrfs_trans_handle_cachep);
4736 if (btrfs_transaction_cachep)
4737 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
4738 if (btrfs_path_cachep)
4739 kmem_cache_destroy(btrfs_path_cachep);
4740}
4741
4742int btrfs_init_cachep(void)
4743{
9601e3f6
CH
4744 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4745 sizeof(struct btrfs_inode), 0,
4746 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
4747 if (!btrfs_inode_cachep)
4748 goto fail;
9601e3f6
CH
4749
4750 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4751 sizeof(struct btrfs_trans_handle), 0,
4752 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4753 if (!btrfs_trans_handle_cachep)
4754 goto fail;
9601e3f6
CH
4755
4756 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4757 sizeof(struct btrfs_transaction), 0,
4758 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4759 if (!btrfs_transaction_cachep)
4760 goto fail;
9601e3f6
CH
4761
4762 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4763 sizeof(struct btrfs_path), 0,
4764 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4765 if (!btrfs_path_cachep)
4766 goto fail;
9601e3f6 4767
39279cc3
CM
4768 return 0;
4769fail:
4770 btrfs_destroy_cachep();
4771 return -ENOMEM;
4772}
4773
4774static int btrfs_getattr(struct vfsmount *mnt,
4775 struct dentry *dentry, struct kstat *stat)
4776{
4777 struct inode *inode = dentry->d_inode;
4778 generic_fillattr(inode, stat);
3394e160 4779 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 4780 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
4781 stat->blocks = (inode_get_bytes(inode) +
4782 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
4783 return 0;
4784}
4785
d397712b
CM
4786static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4787 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
4788{
4789 struct btrfs_trans_handle *trans;
4790 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4791 struct inode *new_inode = new_dentry->d_inode;
4792 struct inode *old_inode = old_dentry->d_inode;
4793 struct timespec ctime = CURRENT_TIME;
00e4e6b3 4794 u64 index = 0;
39279cc3
CM
4795 int ret;
4796
3394e160
CM
4797 /* we're not allowed to rename between subvolumes */
4798 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4799 BTRFS_I(new_dir)->root->root_key.objectid)
4800 return -EXDEV;
4801
39279cc3
CM
4802 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4803 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4804 return -ENOTEMPTY;
4805 }
5f39d397 4806
0660b5af
CM
4807 /* to rename a snapshot or subvolume, we need to juggle the
4808 * backrefs. This isn't coded yet
4809 */
4810 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4811 return -EXDEV;
4812
6a63209f 4813 ret = btrfs_check_metadata_free_space(root);
1832a6d5
CM
4814 if (ret)
4815 goto out_unlock;
4816
5a3f23d5
CM
4817 /*
4818 * we're using rename to replace one file with another.
4819 * and the replacement file is large. Start IO on it now so
4820 * we don't add too much work to the end of the transaction
4821 */
4baf8c92 4822 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
4823 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4824 filemap_flush(old_inode->i_mapping);
4825
39279cc3 4826 trans = btrfs_start_transaction(root, 1);
5f39d397 4827
5a3f23d5
CM
4828 /*
4829 * make sure the inode gets flushed if it is replacing
4830 * something.
4831 */
4832 if (new_inode && new_inode->i_size &&
4833 old_inode && S_ISREG(old_inode->i_mode)) {
4834 btrfs_add_ordered_operation(trans, root, old_inode);
4835 }
4836
12fcfd22
CM
4837 /*
4838 * this is an ugly little race, but the rename is required to make
4839 * sure that if we crash, the inode is either at the old name
4840 * or the new one. pinning the log transaction lets us make sure
4841 * we don't allow a log commit to come in after we unlink the
4842 * name but before we add the new name back in.
4843 */
4844 btrfs_pin_log_trans(root);
4845
39279cc3 4846 btrfs_set_trans_block_group(trans, new_dir);
39279cc3 4847
e02119d5 4848 btrfs_inc_nlink(old_dentry->d_inode);
39279cc3
CM
4849 old_dir->i_ctime = old_dir->i_mtime = ctime;
4850 new_dir->i_ctime = new_dir->i_mtime = ctime;
4851 old_inode->i_ctime = ctime;
5f39d397 4852
12fcfd22
CM
4853 if (old_dentry->d_parent != new_dentry->d_parent)
4854 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4855
e02119d5
CM
4856 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4857 old_dentry->d_name.name,
4858 old_dentry->d_name.len);
39279cc3
CM
4859 if (ret)
4860 goto out_fail;
4861
4862 if (new_inode) {
4863 new_inode->i_ctime = CURRENT_TIME;
e02119d5
CM
4864 ret = btrfs_unlink_inode(trans, root, new_dir,
4865 new_dentry->d_inode,
4866 new_dentry->d_name.name,
4867 new_dentry->d_name.len);
39279cc3
CM
4868 if (ret)
4869 goto out_fail;
7b128766 4870 if (new_inode->i_nlink == 0) {
e02119d5 4871 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7b128766
JB
4872 if (ret)
4873 goto out_fail;
4874 }
e02119d5 4875
39279cc3 4876 }
3de4586c 4877 ret = btrfs_set_inode_index(new_dir, &index);
aec7477b
JB
4878 if (ret)
4879 goto out_fail;
4880
e02119d5
CM
4881 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4882 old_inode, new_dentry->d_name.name,
4883 new_dentry->d_name.len, 1, index);
39279cc3
CM
4884 if (ret)
4885 goto out_fail;
4886
12fcfd22
CM
4887 btrfs_log_new_name(trans, old_inode, old_dir,
4888 new_dentry->d_parent);
39279cc3 4889out_fail:
12fcfd22
CM
4890
4891 /* this btrfs_end_log_trans just allows the current
4892 * log-sub transaction to complete
4893 */
4894 btrfs_end_log_trans(root);
ab78c84d 4895 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4896out_unlock:
39279cc3
CM
4897 return ret;
4898}
4899
d352ac68
CM
4900/*
4901 * some fairly slow code that needs optimization. This walks the list
4902 * of all the inodes with pending delalloc and forces them to disk.
4903 */
ea8c2819
CM
4904int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4905{
4906 struct list_head *head = &root->fs_info->delalloc_inodes;
4907 struct btrfs_inode *binode;
5b21f2ed 4908 struct inode *inode;
ea8c2819 4909
c146afad
YZ
4910 if (root->fs_info->sb->s_flags & MS_RDONLY)
4911 return -EROFS;
4912
75eff68e 4913 spin_lock(&root->fs_info->delalloc_lock);
d397712b 4914 while (!list_empty(head)) {
ea8c2819
CM
4915 binode = list_entry(head->next, struct btrfs_inode,
4916 delalloc_inodes);
5b21f2ed
ZY
4917 inode = igrab(&binode->vfs_inode);
4918 if (!inode)
4919 list_del_init(&binode->delalloc_inodes);
75eff68e 4920 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 4921 if (inode) {
8c8bee1d 4922 filemap_flush(inode->i_mapping);
5b21f2ed
ZY
4923 iput(inode);
4924 }
4925 cond_resched();
75eff68e 4926 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 4927 }
75eff68e 4928 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
4929
4930 /* the filemap_flush will queue IO into the worker threads, but
4931 * we have to make sure the IO is actually started and that
4932 * ordered extents get created before we return
4933 */
4934 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 4935 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 4936 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 4937 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
4938 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4939 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
4940 }
4941 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
4942 return 0;
4943}
4944
39279cc3
CM
4945static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4946 const char *symname)
4947{
4948 struct btrfs_trans_handle *trans;
4949 struct btrfs_root *root = BTRFS_I(dir)->root;
4950 struct btrfs_path *path;
4951 struct btrfs_key key;
1832a6d5 4952 struct inode *inode = NULL;
39279cc3
CM
4953 int err;
4954 int drop_inode = 0;
4955 u64 objectid;
00e4e6b3 4956 u64 index = 0 ;
39279cc3
CM
4957 int name_len;
4958 int datasize;
5f39d397 4959 unsigned long ptr;
39279cc3 4960 struct btrfs_file_extent_item *ei;
5f39d397 4961 struct extent_buffer *leaf;
1832a6d5 4962 unsigned long nr = 0;
39279cc3
CM
4963
4964 name_len = strlen(symname) + 1;
4965 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4966 return -ENAMETOOLONG;
1832a6d5 4967
6a63209f 4968 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
4969 if (err)
4970 goto out_fail;
4971
39279cc3
CM
4972 trans = btrfs_start_transaction(root, 1);
4973 btrfs_set_trans_block_group(trans, dir);
4974
4975 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4976 if (err) {
4977 err = -ENOSPC;
4978 goto out_unlock;
4979 }
4980
aec7477b 4981 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4982 dentry->d_name.len,
4983 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4984 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4985 &index);
39279cc3
CM
4986 err = PTR_ERR(inode);
4987 if (IS_ERR(inode))
4988 goto out_unlock;
4989
0279b4cd 4990 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4991 if (err) {
4992 drop_inode = 1;
4993 goto out_unlock;
4994 }
4995
39279cc3 4996 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4997 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4998 if (err)
4999 drop_inode = 1;
5000 else {
5001 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5002 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5003 inode->i_fop = &btrfs_file_operations;
5004 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5005 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
5006 }
5007 dir->i_sb->s_dirt = 1;
5008 btrfs_update_inode_block_group(trans, inode);
5009 btrfs_update_inode_block_group(trans, dir);
5010 if (drop_inode)
5011 goto out_unlock;
5012
5013 path = btrfs_alloc_path();
5014 BUG_ON(!path);
5015 key.objectid = inode->i_ino;
5016 key.offset = 0;
39279cc3
CM
5017 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5018 datasize = btrfs_file_extent_calc_inline_size(name_len);
5019 err = btrfs_insert_empty_item(trans, root, path, &key,
5020 datasize);
54aa1f4d
CM
5021 if (err) {
5022 drop_inode = 1;
5023 goto out_unlock;
5024 }
5f39d397
CM
5025 leaf = path->nodes[0];
5026 ei = btrfs_item_ptr(leaf, path->slots[0],
5027 struct btrfs_file_extent_item);
5028 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5029 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5030 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5031 btrfs_set_file_extent_encryption(leaf, ei, 0);
5032 btrfs_set_file_extent_compression(leaf, ei, 0);
5033 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5034 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5035
39279cc3 5036 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5037 write_extent_buffer(leaf, symname, ptr, name_len);
5038 btrfs_mark_buffer_dirty(leaf);
39279cc3 5039 btrfs_free_path(path);
5f39d397 5040
39279cc3
CM
5041 inode->i_op = &btrfs_symlink_inode_operations;
5042 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5043 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5044 inode_set_bytes(inode, name_len);
dbe674a9 5045 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5046 err = btrfs_update_inode(trans, root, inode);
5047 if (err)
5048 drop_inode = 1;
39279cc3
CM
5049
5050out_unlock:
d3c2fdcf 5051 nr = trans->blocks_used;
ab78c84d 5052 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5053out_fail:
39279cc3
CM
5054 if (drop_inode) {
5055 inode_dec_link_count(inode);
5056 iput(inode);
5057 }
d3c2fdcf 5058 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5059 return err;
5060}
16432985 5061
546888da
CM
5062static int prealloc_file_range(struct btrfs_trans_handle *trans,
5063 struct inode *inode, u64 start, u64 end,
e980b50c 5064 u64 locked_end, u64 alloc_hint, int mode)
d899e052 5065{
d899e052
YZ
5066 struct btrfs_root *root = BTRFS_I(inode)->root;
5067 struct btrfs_key ins;
5068 u64 alloc_size;
5069 u64 cur_offset = start;
5070 u64 num_bytes = end - start;
5071 int ret = 0;
5072
d899e052
YZ
5073 while (num_bytes > 0) {
5074 alloc_size = min(num_bytes, root->fs_info->max_extent);
5075 ret = btrfs_reserve_extent(trans, root, alloc_size,
5076 root->sectorsize, 0, alloc_hint,
5077 (u64)-1, &ins, 1);
5078 if (ret) {
5079 WARN_ON(1);
5080 goto out;
5081 }
5082 ret = insert_reserved_file_extent(trans, inode,
5083 cur_offset, ins.objectid,
5084 ins.offset, ins.offset,
e980b50c
CM
5085 ins.offset, locked_end,
5086 0, 0, 0,
d899e052
YZ
5087 BTRFS_FILE_EXTENT_PREALLOC);
5088 BUG_ON(ret);
5089 num_bytes -= ins.offset;
5090 cur_offset += ins.offset;
5091 alloc_hint = ins.objectid + ins.offset;
5092 }
5093out:
5094 if (cur_offset > start) {
5095 inode->i_ctime = CURRENT_TIME;
6cbff00f 5096 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052
YZ
5097 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5098 cur_offset > i_size_read(inode))
5099 btrfs_i_size_write(inode, cur_offset);
5100 ret = btrfs_update_inode(trans, root, inode);
5101 BUG_ON(ret);
5102 }
5103
d899e052
YZ
5104 return ret;
5105}
5106
5107static long btrfs_fallocate(struct inode *inode, int mode,
5108 loff_t offset, loff_t len)
5109{
5110 u64 cur_offset;
5111 u64 last_byte;
5112 u64 alloc_start;
5113 u64 alloc_end;
5114 u64 alloc_hint = 0;
e980b50c 5115 u64 locked_end;
d899e052
YZ
5116 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5117 struct extent_map *em;
546888da 5118 struct btrfs_trans_handle *trans;
a970b0a1 5119 struct btrfs_root *root;
d899e052
YZ
5120 int ret;
5121
5122 alloc_start = offset & ~mask;
5123 alloc_end = (offset + len + mask) & ~mask;
5124
546888da
CM
5125 /*
5126 * wait for ordered IO before we have any locks. We'll loop again
5127 * below with the locks held.
5128 */
5129 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5130
d899e052
YZ
5131 mutex_lock(&inode->i_mutex);
5132 if (alloc_start > inode->i_size) {
5133 ret = btrfs_cont_expand(inode, alloc_start);
5134 if (ret)
5135 goto out;
5136 }
5137
a970b0a1
JB
5138 root = BTRFS_I(inode)->root;
5139
5140 ret = btrfs_check_data_free_space(root, inode,
5141 alloc_end - alloc_start);
5142 if (ret)
5143 goto out;
5144
e980b50c 5145 locked_end = alloc_end - 1;
d899e052
YZ
5146 while (1) {
5147 struct btrfs_ordered_extent *ordered;
546888da
CM
5148
5149 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5150 if (!trans) {
5151 ret = -EIO;
a970b0a1 5152 goto out_free;
546888da
CM
5153 }
5154
5155 /* the extent lock is ordered inside the running
5156 * transaction
5157 */
e980b50c
CM
5158 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5159 GFP_NOFS);
d899e052
YZ
5160 ordered = btrfs_lookup_first_ordered_extent(inode,
5161 alloc_end - 1);
5162 if (ordered &&
5163 ordered->file_offset + ordered->len > alloc_start &&
5164 ordered->file_offset < alloc_end) {
5165 btrfs_put_ordered_extent(ordered);
5166 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5167 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5168 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5169
5170 /*
5171 * we can't wait on the range with the transaction
5172 * running or with the extent lock held
5173 */
d899e052
YZ
5174 btrfs_wait_ordered_range(inode, alloc_start,
5175 alloc_end - alloc_start);
5176 } else {
5177 if (ordered)
5178 btrfs_put_ordered_extent(ordered);
5179 break;
5180 }
5181 }
5182
5183 cur_offset = alloc_start;
5184 while (1) {
5185 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5186 alloc_end - cur_offset, 0);
5187 BUG_ON(IS_ERR(em) || !em);
5188 last_byte = min(extent_map_end(em), alloc_end);
5189 last_byte = (last_byte + mask) & ~mask;
5190 if (em->block_start == EXTENT_MAP_HOLE) {
546888da 5191 ret = prealloc_file_range(trans, inode, cur_offset,
e980b50c
CM
5192 last_byte, locked_end + 1,
5193 alloc_hint, mode);
d899e052
YZ
5194 if (ret < 0) {
5195 free_extent_map(em);
5196 break;
5197 }
5198 }
5199 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5200 alloc_hint = em->block_start;
5201 free_extent_map(em);
5202
5203 cur_offset = last_byte;
5204 if (cur_offset >= alloc_end) {
5205 ret = 0;
5206 break;
5207 }
5208 }
e980b50c 5209 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5210 GFP_NOFS);
546888da
CM
5211
5212 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
a970b0a1
JB
5213out_free:
5214 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
d899e052
YZ
5215out:
5216 mutex_unlock(&inode->i_mutex);
5217 return ret;
5218}
5219
e6dcd2dc
CM
5220static int btrfs_set_page_dirty(struct page *page)
5221{
e6dcd2dc
CM
5222 return __set_page_dirty_nobuffers(page);
5223}
5224
0ee0fda0 5225static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5226{
6cbff00f 5227 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5228 return -EACCES;
33268eaf 5229 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5230}
39279cc3
CM
5231
5232static struct inode_operations btrfs_dir_inode_operations = {
3394e160 5233 .getattr = btrfs_getattr,
39279cc3
CM
5234 .lookup = btrfs_lookup,
5235 .create = btrfs_create,
5236 .unlink = btrfs_unlink,
5237 .link = btrfs_link,
5238 .mkdir = btrfs_mkdir,
5239 .rmdir = btrfs_rmdir,
5240 .rename = btrfs_rename,
5241 .symlink = btrfs_symlink,
5242 .setattr = btrfs_setattr,
618e21d5 5243 .mknod = btrfs_mknod,
95819c05
CH
5244 .setxattr = btrfs_setxattr,
5245 .getxattr = btrfs_getxattr,
5103e947 5246 .listxattr = btrfs_listxattr,
95819c05 5247 .removexattr = btrfs_removexattr,
fdebe2bd 5248 .permission = btrfs_permission,
39279cc3 5249};
39279cc3
CM
5250static struct inode_operations btrfs_dir_ro_inode_operations = {
5251 .lookup = btrfs_lookup,
fdebe2bd 5252 .permission = btrfs_permission,
39279cc3 5253};
39279cc3
CM
5254static struct file_operations btrfs_dir_file_operations = {
5255 .llseek = generic_file_llseek,
5256 .read = generic_read_dir,
cbdf5a24 5257 .readdir = btrfs_real_readdir,
34287aa3 5258 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5259#ifdef CONFIG_COMPAT
34287aa3 5260 .compat_ioctl = btrfs_ioctl,
39279cc3 5261#endif
6bf13c0c 5262 .release = btrfs_release_file,
e02119d5 5263 .fsync = btrfs_sync_file,
39279cc3
CM
5264};
5265
d1310b2e 5266static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5267 .fill_delalloc = run_delalloc_range,
065631f6 5268 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 5269 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 5270 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 5271 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 5272 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 5273 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
5274 .set_bit_hook = btrfs_set_bit_hook,
5275 .clear_bit_hook = btrfs_clear_bit_hook,
07157aac
CM
5276};
5277
35054394
CM
5278/*
5279 * btrfs doesn't support the bmap operation because swapfiles
5280 * use bmap to make a mapping of extents in the file. They assume
5281 * these extents won't change over the life of the file and they
5282 * use the bmap result to do IO directly to the drive.
5283 *
5284 * the btrfs bmap call would return logical addresses that aren't
5285 * suitable for IO and they also will change frequently as COW
5286 * operations happen. So, swapfile + btrfs == corruption.
5287 *
5288 * For now we're avoiding this by dropping bmap.
5289 */
39279cc3
CM
5290static struct address_space_operations btrfs_aops = {
5291 .readpage = btrfs_readpage,
5292 .writepage = btrfs_writepage,
b293f02e 5293 .writepages = btrfs_writepages,
3ab2fb5a 5294 .readpages = btrfs_readpages,
39279cc3 5295 .sync_page = block_sync_page,
16432985 5296 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
5297 .invalidatepage = btrfs_invalidatepage,
5298 .releasepage = btrfs_releasepage,
e6dcd2dc 5299 .set_page_dirty = btrfs_set_page_dirty,
39279cc3
CM
5300};
5301
5302static struct address_space_operations btrfs_symlink_aops = {
5303 .readpage = btrfs_readpage,
5304 .writepage = btrfs_writepage,
2bf5a725
CM
5305 .invalidatepage = btrfs_invalidatepage,
5306 .releasepage = btrfs_releasepage,
39279cc3
CM
5307};
5308
5309static struct inode_operations btrfs_file_inode_operations = {
5310 .truncate = btrfs_truncate,
5311 .getattr = btrfs_getattr,
5312 .setattr = btrfs_setattr,
95819c05
CH
5313 .setxattr = btrfs_setxattr,
5314 .getxattr = btrfs_getxattr,
5103e947 5315 .listxattr = btrfs_listxattr,
95819c05 5316 .removexattr = btrfs_removexattr,
fdebe2bd 5317 .permission = btrfs_permission,
d899e052 5318 .fallocate = btrfs_fallocate,
1506fcc8 5319 .fiemap = btrfs_fiemap,
39279cc3 5320};
618e21d5
JB
5321static struct inode_operations btrfs_special_inode_operations = {
5322 .getattr = btrfs_getattr,
5323 .setattr = btrfs_setattr,
fdebe2bd 5324 .permission = btrfs_permission,
95819c05
CH
5325 .setxattr = btrfs_setxattr,
5326 .getxattr = btrfs_getxattr,
33268eaf 5327 .listxattr = btrfs_listxattr,
95819c05 5328 .removexattr = btrfs_removexattr,
618e21d5 5329};
39279cc3
CM
5330static struct inode_operations btrfs_symlink_inode_operations = {
5331 .readlink = generic_readlink,
5332 .follow_link = page_follow_link_light,
5333 .put_link = page_put_link,
fdebe2bd 5334 .permission = btrfs_permission,
0279b4cd
JO
5335 .setxattr = btrfs_setxattr,
5336 .getxattr = btrfs_getxattr,
5337 .listxattr = btrfs_listxattr,
5338 .removexattr = btrfs_removexattr,
39279cc3 5339};