Btrfs: implement repair function when direct read fails
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
39279cc3
CM
62
63struct btrfs_iget_args {
90d3e592 64 struct btrfs_key *location;
39279cc3
CM
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
40f76580 128static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 129 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
fe3f566c 132 int compress_type,
c8b97818
CM
133 struct page **compressed_pages)
134{
c8b97818
CM
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
c8b97818 143 unsigned long offset;
c8b97818 144
fe3f566c 145 if (compressed_size && compressed_pages)
c8b97818 146 cur_size = compressed_size;
c8b97818 147
1acae57b 148 inode_add_bytes(inode, size);
c8b97818 149
1acae57b
FDBM
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
c8b97818 153
1acae57b
FDBM
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
962a298f 156 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 157
1acae57b
FDBM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
c8b97818
CM
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
1acae57b 206 btrfs_release_path(path);
c8b97818 207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818 221fail:
c8b97818
CM
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
00361589
JB
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
c8b97818 236{
00361589 237 struct btrfs_trans_handle *trans;
c8b97818
CM
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
fda2832f 241 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
242 u64 data_len = inline_len;
243 int ret;
1acae57b
FDBM
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
c8b97818
CM
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
354877be
WS
252 actual_end > PAGE_CACHE_SIZE ||
253 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
1acae57b
FDBM
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
00361589 265 trans = btrfs_join_transaction(root);
1acae57b
FDBM
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
00361589 268 return PTR_ERR(trans);
1acae57b 269 }
00361589
JB
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
1acae57b
FDBM
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
00361589
JB
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
c8b97818
CM
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
c8b97818 291 inline_len, compressed_size,
fe3f566c 292 compress_type, compressed_pages);
2adcac1a 293 if (ret && ret != -ENOSPC) {
79787eaa 294 btrfs_abort_transaction(trans, root, ret);
00361589 295 goto out;
2adcac1a 296 } else if (ret == -ENOSPC) {
00361589
JB
297 ret = 1;
298 goto out;
79787eaa 299 }
2adcac1a 300
bdc20e67 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 304out:
1acae57b 305 btrfs_free_path(path);
00361589
JB
306 btrfs_end_transaction(trans, root);
307 return ret;
c8b97818
CM
308}
309
771ed689
CM
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
261507a0 316 int compress_type;
771ed689
CM
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
261507a0
LZ
334 unsigned long nr_pages,
335 int compress_type)
771ed689
CM
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 340 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
261507a0 346 async_extent->compress_type = compress_type;
771ed689
CM
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
f79707b0
WS
351static inline int inode_need_compress(struct inode *inode)
352{
353 struct btrfs_root *root = BTRFS_I(inode)->root;
354
355 /* force compress */
356 if (btrfs_test_opt(root, FORCE_COMPRESS))
357 return 1;
358 /* bad compression ratios */
359 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360 return 0;
361 if (btrfs_test_opt(root, COMPRESS) ||
362 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363 BTRFS_I(inode)->force_compress)
364 return 1;
365 return 0;
366}
367
d352ac68 368/*
771ed689
CM
369 * we create compressed extents in two phases. The first
370 * phase compresses a range of pages that have already been
371 * locked (both pages and state bits are locked).
c8b97818 372 *
771ed689
CM
373 * This is done inside an ordered work queue, and the compression
374 * is spread across many cpus. The actual IO submission is step
375 * two, and the ordered work queue takes care of making sure that
376 * happens in the same order things were put onto the queue by
377 * writepages and friends.
c8b97818 378 *
771ed689
CM
379 * If this code finds it can't get good compression, it puts an
380 * entry onto the work queue to write the uncompressed bytes. This
381 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
382 * are written in the same order that the flusher thread sent them
383 * down.
d352ac68 384 */
771ed689
CM
385static noinline int compress_file_range(struct inode *inode,
386 struct page *locked_page,
387 u64 start, u64 end,
388 struct async_cow *async_cow,
389 int *num_added)
b888db2b
CM
390{
391 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 392 u64 num_bytes;
db94535d 393 u64 blocksize = root->sectorsize;
c8b97818 394 u64 actual_end;
42dc7bab 395 u64 isize = i_size_read(inode);
e6dcd2dc 396 int ret = 0;
c8b97818
CM
397 struct page **pages = NULL;
398 unsigned long nr_pages;
399 unsigned long nr_pages_ret = 0;
400 unsigned long total_compressed = 0;
401 unsigned long total_in = 0;
402 unsigned long max_compressed = 128 * 1024;
771ed689 403 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
404 int i;
405 int will_compress;
261507a0 406 int compress_type = root->fs_info->compress_type;
4adaa611 407 int redirty = 0;
b888db2b 408
4cb13e5d
LB
409 /* if this is a small write inside eof, kick off a defrag */
410 if ((end - start + 1) < 16 * 1024 &&
411 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
412 btrfs_add_inode_defrag(NULL, inode);
413
68bb462d
WS
414 /*
415 * skip compression for a small file range(<=blocksize) that
416 * isn't an inline extent, since it dosen't save disk space at all.
417 */
418 if ((end - start + 1) <= blocksize &&
419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420 goto cleanup_and_bail_uncompressed;
421
42dc7bab 422 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
423again:
424 will_compress = 0;
425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 427
f03d9301
CM
428 /*
429 * we don't want to send crud past the end of i_size through
430 * compression, that's just a waste of CPU time. So, if the
431 * end of the file is before the start of our current
432 * requested range of bytes, we bail out to the uncompressed
433 * cleanup code that can deal with all of this.
434 *
435 * It isn't really the fastest way to fix things, but this is a
436 * very uncommon corner.
437 */
438 if (actual_end <= start)
439 goto cleanup_and_bail_uncompressed;
440
c8b97818
CM
441 total_compressed = actual_end - start;
442
443 /* we want to make sure that amount of ram required to uncompress
444 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
445 * of a compressed extent to 128k. This is a crucial number
446 * because it also controls how easily we can spread reads across
447 * cpus for decompression.
448 *
449 * We also want to make sure the amount of IO required to do
450 * a random read is reasonably small, so we limit the size of
451 * a compressed extent to 128k.
c8b97818
CM
452 */
453 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 454 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 455 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
456 total_in = 0;
457 ret = 0;
db94535d 458
771ed689
CM
459 /*
460 * we do compression for mount -o compress and when the
461 * inode has not been flagged as nocompress. This flag can
462 * change at any time if we discover bad compression ratios.
c8b97818 463 */
f79707b0 464 if (inode_need_compress(inode)) {
c8b97818 465 WARN_ON(pages);
cfbc246e 466 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
467 if (!pages) {
468 /* just bail out to the uncompressed code */
469 goto cont;
470 }
c8b97818 471
261507a0
LZ
472 if (BTRFS_I(inode)->force_compress)
473 compress_type = BTRFS_I(inode)->force_compress;
474
4adaa611
CM
475 /*
476 * we need to call clear_page_dirty_for_io on each
477 * page in the range. Otherwise applications with the file
478 * mmap'd can wander in and change the page contents while
479 * we are compressing them.
480 *
481 * If the compression fails for any reason, we set the pages
482 * dirty again later on.
483 */
484 extent_range_clear_dirty_for_io(inode, start, end);
485 redirty = 1;
261507a0
LZ
486 ret = btrfs_compress_pages(compress_type,
487 inode->i_mapping, start,
488 total_compressed, pages,
489 nr_pages, &nr_pages_ret,
490 &total_in,
491 &total_compressed,
492 max_compressed);
c8b97818
CM
493
494 if (!ret) {
495 unsigned long offset = total_compressed &
496 (PAGE_CACHE_SIZE - 1);
497 struct page *page = pages[nr_pages_ret - 1];
498 char *kaddr;
499
500 /* zero the tail end of the last page, we might be
501 * sending it down to disk
502 */
503 if (offset) {
7ac687d9 504 kaddr = kmap_atomic(page);
c8b97818
CM
505 memset(kaddr + offset, 0,
506 PAGE_CACHE_SIZE - offset);
7ac687d9 507 kunmap_atomic(kaddr);
c8b97818
CM
508 }
509 will_compress = 1;
510 }
511 }
560f7d75 512cont:
c8b97818
CM
513 if (start == 0) {
514 /* lets try to make an inline extent */
771ed689 515 if (ret || total_in < (actual_end - start)) {
c8b97818 516 /* we didn't compress the entire range, try
771ed689 517 * to make an uncompressed inline extent.
c8b97818 518 */
00361589
JB
519 ret = cow_file_range_inline(root, inode, start, end,
520 0, 0, NULL);
c8b97818 521 } else {
771ed689 522 /* try making a compressed inline extent */
00361589 523 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
524 total_compressed,
525 compress_type, pages);
c8b97818 526 }
79787eaa 527 if (ret <= 0) {
151a41bc
JB
528 unsigned long clear_flags = EXTENT_DELALLOC |
529 EXTENT_DEFRAG;
530 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
531
771ed689 532 /*
79787eaa
JM
533 * inline extent creation worked or returned error,
534 * we don't need to create any more async work items.
535 * Unlock and free up our temp pages.
771ed689 536 */
c2790a2e 537 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 538 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
539 PAGE_CLEAR_DIRTY |
540 PAGE_SET_WRITEBACK |
541 PAGE_END_WRITEBACK);
c8b97818
CM
542 goto free_pages_out;
543 }
544 }
545
546 if (will_compress) {
547 /*
548 * we aren't doing an inline extent round the compressed size
549 * up to a block size boundary so the allocator does sane
550 * things
551 */
fda2832f 552 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
553
554 /*
555 * one last check to make sure the compression is really a
556 * win, compare the page count read with the blocks on disk
557 */
fda2832f 558 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
559 if (total_compressed >= total_in) {
560 will_compress = 0;
561 } else {
c8b97818
CM
562 num_bytes = total_in;
563 }
564 }
565 if (!will_compress && pages) {
566 /*
567 * the compression code ran but failed to make things smaller,
568 * free any pages it allocated and our page pointer array
569 */
570 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 571 WARN_ON(pages[i]->mapping);
c8b97818
CM
572 page_cache_release(pages[i]);
573 }
574 kfree(pages);
575 pages = NULL;
576 total_compressed = 0;
577 nr_pages_ret = 0;
578
579 /* flag the file so we don't compress in the future */
1e701a32
CM
580 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
581 !(BTRFS_I(inode)->force_compress)) {
a555f810 582 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 583 }
c8b97818 584 }
771ed689
CM
585 if (will_compress) {
586 *num_added += 1;
c8b97818 587
771ed689
CM
588 /* the async work queues will take care of doing actual
589 * allocation on disk for these compressed pages,
590 * and will submit them to the elevator.
591 */
592 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
593 total_compressed, pages, nr_pages_ret,
594 compress_type);
179e29e4 595
24ae6365 596 if (start + num_bytes < end) {
771ed689
CM
597 start += num_bytes;
598 pages = NULL;
599 cond_resched();
600 goto again;
601 }
602 } else {
f03d9301 603cleanup_and_bail_uncompressed:
771ed689
CM
604 /*
605 * No compression, but we still need to write the pages in
606 * the file we've been given so far. redirty the locked
607 * page if it corresponds to our extent and set things up
608 * for the async work queue to run cow_file_range to do
609 * the normal delalloc dance
610 */
611 if (page_offset(locked_page) >= start &&
612 page_offset(locked_page) <= end) {
613 __set_page_dirty_nobuffers(locked_page);
614 /* unlocked later on in the async handlers */
615 }
4adaa611
CM
616 if (redirty)
617 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
618 add_async_extent(async_cow, start, end - start + 1,
619 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
620 *num_added += 1;
621 }
3b951516 622
771ed689 623out:
79787eaa 624 return ret;
771ed689
CM
625
626free_pages_out:
627 for (i = 0; i < nr_pages_ret; i++) {
628 WARN_ON(pages[i]->mapping);
629 page_cache_release(pages[i]);
630 }
d397712b 631 kfree(pages);
771ed689
CM
632
633 goto out;
634}
635
636/*
637 * phase two of compressed writeback. This is the ordered portion
638 * of the code, which only gets called in the order the work was
639 * queued. We walk all the async extents created by compress_file_range
640 * and send them down to the disk.
641 */
642static noinline int submit_compressed_extents(struct inode *inode,
643 struct async_cow *async_cow)
644{
645 struct async_extent *async_extent;
646 u64 alloc_hint = 0;
771ed689
CM
647 struct btrfs_key ins;
648 struct extent_map *em;
649 struct btrfs_root *root = BTRFS_I(inode)->root;
650 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
651 struct extent_io_tree *io_tree;
f5a84ee3 652 int ret = 0;
771ed689
CM
653
654 if (list_empty(&async_cow->extents))
655 return 0;
656
3e04e7f1 657again:
d397712b 658 while (!list_empty(&async_cow->extents)) {
771ed689
CM
659 async_extent = list_entry(async_cow->extents.next,
660 struct async_extent, list);
661 list_del(&async_extent->list);
c8b97818 662
771ed689
CM
663 io_tree = &BTRFS_I(inode)->io_tree;
664
f5a84ee3 665retry:
771ed689
CM
666 /* did the compression code fall back to uncompressed IO? */
667 if (!async_extent->pages) {
668 int page_started = 0;
669 unsigned long nr_written = 0;
670
671 lock_extent(io_tree, async_extent->start,
2ac55d41 672 async_extent->start +
d0082371 673 async_extent->ram_size - 1);
771ed689
CM
674
675 /* allocate blocks */
f5a84ee3
JB
676 ret = cow_file_range(inode, async_cow->locked_page,
677 async_extent->start,
678 async_extent->start +
679 async_extent->ram_size - 1,
680 &page_started, &nr_written, 0);
771ed689 681
79787eaa
JM
682 /* JDM XXX */
683
771ed689
CM
684 /*
685 * if page_started, cow_file_range inserted an
686 * inline extent and took care of all the unlocking
687 * and IO for us. Otherwise, we need to submit
688 * all those pages down to the drive.
689 */
f5a84ee3 690 if (!page_started && !ret)
771ed689
CM
691 extent_write_locked_range(io_tree,
692 inode, async_extent->start,
d397712b 693 async_extent->start +
771ed689
CM
694 async_extent->ram_size - 1,
695 btrfs_get_extent,
696 WB_SYNC_ALL);
3e04e7f1
JB
697 else if (ret)
698 unlock_page(async_cow->locked_page);
771ed689
CM
699 kfree(async_extent);
700 cond_resched();
701 continue;
702 }
703
704 lock_extent(io_tree, async_extent->start,
d0082371 705 async_extent->start + async_extent->ram_size - 1);
771ed689 706
00361589 707 ret = btrfs_reserve_extent(root,
771ed689
CM
708 async_extent->compressed_size,
709 async_extent->compressed_size,
e570fd27 710 0, alloc_hint, &ins, 1, 1);
f5a84ee3
JB
711 if (ret) {
712 int i;
3e04e7f1 713
f5a84ee3
JB
714 for (i = 0; i < async_extent->nr_pages; i++) {
715 WARN_ON(async_extent->pages[i]->mapping);
716 page_cache_release(async_extent->pages[i]);
717 }
718 kfree(async_extent->pages);
719 async_extent->nr_pages = 0;
720 async_extent->pages = NULL;
3e04e7f1 721
fdf8e2ea
JB
722 if (ret == -ENOSPC) {
723 unlock_extent(io_tree, async_extent->start,
724 async_extent->start +
725 async_extent->ram_size - 1);
ce62003f
LB
726
727 /*
728 * we need to redirty the pages if we decide to
729 * fallback to uncompressed IO, otherwise we
730 * will not submit these pages down to lower
731 * layers.
732 */
733 extent_range_redirty_for_io(inode,
734 async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1);
737
79787eaa 738 goto retry;
fdf8e2ea 739 }
3e04e7f1 740 goto out_free;
f5a84ee3
JB
741 }
742
c2167754
YZ
743 /*
744 * here we're doing allocation and writeback of the
745 * compressed pages
746 */
747 btrfs_drop_extent_cache(inode, async_extent->start,
748 async_extent->start +
749 async_extent->ram_size - 1, 0);
750
172ddd60 751 em = alloc_extent_map();
b9aa55be
LB
752 if (!em) {
753 ret = -ENOMEM;
3e04e7f1 754 goto out_free_reserve;
b9aa55be 755 }
771ed689
CM
756 em->start = async_extent->start;
757 em->len = async_extent->ram_size;
445a6944 758 em->orig_start = em->start;
2ab28f32
JB
759 em->mod_start = em->start;
760 em->mod_len = em->len;
c8b97818 761
771ed689
CM
762 em->block_start = ins.objectid;
763 em->block_len = ins.offset;
b4939680 764 em->orig_block_len = ins.offset;
cc95bef6 765 em->ram_bytes = async_extent->ram_size;
771ed689 766 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 767 em->compress_type = async_extent->compress_type;
771ed689
CM
768 set_bit(EXTENT_FLAG_PINNED, &em->flags);
769 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 770 em->generation = -1;
771ed689 771
d397712b 772 while (1) {
890871be 773 write_lock(&em_tree->lock);
09a2a8f9 774 ret = add_extent_mapping(em_tree, em, 1);
890871be 775 write_unlock(&em_tree->lock);
771ed689
CM
776 if (ret != -EEXIST) {
777 free_extent_map(em);
778 break;
779 }
780 btrfs_drop_extent_cache(inode, async_extent->start,
781 async_extent->start +
782 async_extent->ram_size - 1, 0);
783 }
784
3e04e7f1
JB
785 if (ret)
786 goto out_free_reserve;
787
261507a0
LZ
788 ret = btrfs_add_ordered_extent_compress(inode,
789 async_extent->start,
790 ins.objectid,
791 async_extent->ram_size,
792 ins.offset,
793 BTRFS_ORDERED_COMPRESSED,
794 async_extent->compress_type);
d9f85963
FM
795 if (ret) {
796 btrfs_drop_extent_cache(inode, async_extent->start,
797 async_extent->start +
798 async_extent->ram_size - 1, 0);
3e04e7f1 799 goto out_free_reserve;
d9f85963 800 }
771ed689 801
771ed689
CM
802 /*
803 * clear dirty, set writeback and unlock the pages.
804 */
c2790a2e 805 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
806 async_extent->start +
807 async_extent->ram_size - 1,
151a41bc
JB
808 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
809 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 810 PAGE_SET_WRITEBACK);
771ed689 811 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
812 async_extent->start,
813 async_extent->ram_size,
814 ins.objectid,
815 ins.offset, async_extent->pages,
816 async_extent->nr_pages);
771ed689
CM
817 alloc_hint = ins.objectid + ins.offset;
818 kfree(async_extent);
3e04e7f1
JB
819 if (ret)
820 goto out;
771ed689
CM
821 cond_resched();
822 }
79787eaa
JM
823 ret = 0;
824out:
825 return ret;
3e04e7f1 826out_free_reserve:
e570fd27 827 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 828out_free:
c2790a2e 829 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
830 async_extent->start +
831 async_extent->ram_size - 1,
c2790a2e 832 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
833 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
834 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
835 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 836 kfree(async_extent);
3e04e7f1 837 goto again;
771ed689
CM
838}
839
4b46fce2
JB
840static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
841 u64 num_bytes)
842{
843 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
844 struct extent_map *em;
845 u64 alloc_hint = 0;
846
847 read_lock(&em_tree->lock);
848 em = search_extent_mapping(em_tree, start, num_bytes);
849 if (em) {
850 /*
851 * if block start isn't an actual block number then find the
852 * first block in this inode and use that as a hint. If that
853 * block is also bogus then just don't worry about it.
854 */
855 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
856 free_extent_map(em);
857 em = search_extent_mapping(em_tree, 0, 0);
858 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
859 alloc_hint = em->block_start;
860 if (em)
861 free_extent_map(em);
862 } else {
863 alloc_hint = em->block_start;
864 free_extent_map(em);
865 }
866 }
867 read_unlock(&em_tree->lock);
868
869 return alloc_hint;
870}
871
771ed689
CM
872/*
873 * when extent_io.c finds a delayed allocation range in the file,
874 * the call backs end up in this code. The basic idea is to
875 * allocate extents on disk for the range, and create ordered data structs
876 * in ram to track those extents.
877 *
878 * locked_page is the page that writepage had locked already. We use
879 * it to make sure we don't do extra locks or unlocks.
880 *
881 * *page_started is set to one if we unlock locked_page and do everything
882 * required to start IO on it. It may be clean and already done with
883 * IO when we return.
884 */
00361589
JB
885static noinline int cow_file_range(struct inode *inode,
886 struct page *locked_page,
887 u64 start, u64 end, int *page_started,
888 unsigned long *nr_written,
889 int unlock)
771ed689 890{
00361589 891 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
892 u64 alloc_hint = 0;
893 u64 num_bytes;
894 unsigned long ram_size;
895 u64 disk_num_bytes;
896 u64 cur_alloc_size;
897 u64 blocksize = root->sectorsize;
771ed689
CM
898 struct btrfs_key ins;
899 struct extent_map *em;
900 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
901 int ret = 0;
902
02ecd2c2
JB
903 if (btrfs_is_free_space_inode(inode)) {
904 WARN_ON_ONCE(1);
29bce2f3
JB
905 ret = -EINVAL;
906 goto out_unlock;
02ecd2c2 907 }
771ed689 908
fda2832f 909 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
910 num_bytes = max(blocksize, num_bytes);
911 disk_num_bytes = num_bytes;
771ed689 912
4cb5300b 913 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
914 if (num_bytes < 64 * 1024 &&
915 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 916 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 917
771ed689
CM
918 if (start == 0) {
919 /* lets try to make an inline extent */
00361589
JB
920 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
921 NULL);
771ed689 922 if (ret == 0) {
c2790a2e
JB
923 extent_clear_unlock_delalloc(inode, start, end, NULL,
924 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 925 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
926 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
927 PAGE_END_WRITEBACK);
c2167754 928
771ed689
CM
929 *nr_written = *nr_written +
930 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
931 *page_started = 1;
771ed689 932 goto out;
79787eaa 933 } else if (ret < 0) {
79787eaa 934 goto out_unlock;
771ed689
CM
935 }
936 }
937
938 BUG_ON(disk_num_bytes >
6c41761f 939 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 940
4b46fce2 941 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
942 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
943
d397712b 944 while (disk_num_bytes > 0) {
a791e35e
CM
945 unsigned long op;
946
287a0ab9 947 cur_alloc_size = disk_num_bytes;
00361589 948 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 949 root->sectorsize, 0, alloc_hint,
e570fd27 950 &ins, 1, 1);
00361589 951 if (ret < 0)
79787eaa 952 goto out_unlock;
d397712b 953
172ddd60 954 em = alloc_extent_map();
b9aa55be
LB
955 if (!em) {
956 ret = -ENOMEM;
ace68bac 957 goto out_reserve;
b9aa55be 958 }
e6dcd2dc 959 em->start = start;
445a6944 960 em->orig_start = em->start;
771ed689
CM
961 ram_size = ins.offset;
962 em->len = ins.offset;
2ab28f32
JB
963 em->mod_start = em->start;
964 em->mod_len = em->len;
c8b97818 965
e6dcd2dc 966 em->block_start = ins.objectid;
c8b97818 967 em->block_len = ins.offset;
b4939680 968 em->orig_block_len = ins.offset;
cc95bef6 969 em->ram_bytes = ram_size;
e6dcd2dc 970 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 971 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 972 em->generation = -1;
c8b97818 973
d397712b 974 while (1) {
890871be 975 write_lock(&em_tree->lock);
09a2a8f9 976 ret = add_extent_mapping(em_tree, em, 1);
890871be 977 write_unlock(&em_tree->lock);
e6dcd2dc
CM
978 if (ret != -EEXIST) {
979 free_extent_map(em);
980 break;
981 }
982 btrfs_drop_extent_cache(inode, start,
c8b97818 983 start + ram_size - 1, 0);
e6dcd2dc 984 }
ace68bac
LB
985 if (ret)
986 goto out_reserve;
e6dcd2dc 987
98d20f67 988 cur_alloc_size = ins.offset;
e6dcd2dc 989 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 990 ram_size, cur_alloc_size, 0);
ace68bac 991 if (ret)
d9f85963 992 goto out_drop_extent_cache;
c8b97818 993
17d217fe
YZ
994 if (root->root_key.objectid ==
995 BTRFS_DATA_RELOC_TREE_OBJECTID) {
996 ret = btrfs_reloc_clone_csums(inode, start,
997 cur_alloc_size);
00361589 998 if (ret)
d9f85963 999 goto out_drop_extent_cache;
17d217fe
YZ
1000 }
1001
d397712b 1002 if (disk_num_bytes < cur_alloc_size)
3b951516 1003 break;
d397712b 1004
c8b97818
CM
1005 /* we're not doing compressed IO, don't unlock the first
1006 * page (which the caller expects to stay locked), don't
1007 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1008 *
1009 * Do set the Private2 bit so we know this page was properly
1010 * setup for writepage
c8b97818 1011 */
c2790a2e
JB
1012 op = unlock ? PAGE_UNLOCK : 0;
1013 op |= PAGE_SET_PRIVATE2;
a791e35e 1014
c2790a2e
JB
1015 extent_clear_unlock_delalloc(inode, start,
1016 start + ram_size - 1, locked_page,
1017 EXTENT_LOCKED | EXTENT_DELALLOC,
1018 op);
c8b97818 1019 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1020 num_bytes -= cur_alloc_size;
1021 alloc_hint = ins.objectid + ins.offset;
1022 start += cur_alloc_size;
b888db2b 1023 }
79787eaa 1024out:
be20aa9d 1025 return ret;
b7d5b0a8 1026
d9f85963
FM
1027out_drop_extent_cache:
1028 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1029out_reserve:
e570fd27 1030 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1031out_unlock:
c2790a2e 1032 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1033 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1034 EXTENT_DELALLOC | EXTENT_DEFRAG,
1035 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1036 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1037 goto out;
771ed689 1038}
c8b97818 1039
771ed689
CM
1040/*
1041 * work queue call back to started compression on a file and pages
1042 */
1043static noinline void async_cow_start(struct btrfs_work *work)
1044{
1045 struct async_cow *async_cow;
1046 int num_added = 0;
1047 async_cow = container_of(work, struct async_cow, work);
1048
1049 compress_file_range(async_cow->inode, async_cow->locked_page,
1050 async_cow->start, async_cow->end, async_cow,
1051 &num_added);
8180ef88 1052 if (num_added == 0) {
cb77fcd8 1053 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1054 async_cow->inode = NULL;
8180ef88 1055 }
771ed689
CM
1056}
1057
1058/*
1059 * work queue call back to submit previously compressed pages
1060 */
1061static noinline void async_cow_submit(struct btrfs_work *work)
1062{
1063 struct async_cow *async_cow;
1064 struct btrfs_root *root;
1065 unsigned long nr_pages;
1066
1067 async_cow = container_of(work, struct async_cow, work);
1068
1069 root = async_cow->root;
1070 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1071 PAGE_CACHE_SHIFT;
1072
66657b31 1073 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1074 5 * 1024 * 1024 &&
771ed689
CM
1075 waitqueue_active(&root->fs_info->async_submit_wait))
1076 wake_up(&root->fs_info->async_submit_wait);
1077
d397712b 1078 if (async_cow->inode)
771ed689 1079 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1080}
c8b97818 1081
771ed689
CM
1082static noinline void async_cow_free(struct btrfs_work *work)
1083{
1084 struct async_cow *async_cow;
1085 async_cow = container_of(work, struct async_cow, work);
8180ef88 1086 if (async_cow->inode)
cb77fcd8 1087 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1088 kfree(async_cow);
1089}
1090
1091static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1092 u64 start, u64 end, int *page_started,
1093 unsigned long *nr_written)
1094{
1095 struct async_cow *async_cow;
1096 struct btrfs_root *root = BTRFS_I(inode)->root;
1097 unsigned long nr_pages;
1098 u64 cur_end;
287082b0 1099 int limit = 10 * 1024 * 1024;
771ed689 1100
a3429ab7
CM
1101 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1102 1, 0, NULL, GFP_NOFS);
d397712b 1103 while (start < end) {
771ed689 1104 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1105 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1106 async_cow->inode = igrab(inode);
771ed689
CM
1107 async_cow->root = root;
1108 async_cow->locked_page = locked_page;
1109 async_cow->start = start;
1110
f79707b0
WS
1111 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1112 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1113 cur_end = end;
1114 else
1115 cur_end = min(end, start + 512 * 1024 - 1);
1116
1117 async_cow->end = cur_end;
1118 INIT_LIST_HEAD(&async_cow->extents);
1119
9e0af237
LB
1120 btrfs_init_work(&async_cow->work,
1121 btrfs_delalloc_helper,
1122 async_cow_start, async_cow_submit,
1123 async_cow_free);
771ed689 1124
771ed689
CM
1125 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1126 PAGE_CACHE_SHIFT;
1127 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1128
afe3d242
QW
1129 btrfs_queue_work(root->fs_info->delalloc_workers,
1130 &async_cow->work);
771ed689
CM
1131
1132 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1133 wait_event(root->fs_info->async_submit_wait,
1134 (atomic_read(&root->fs_info->async_delalloc_pages) <
1135 limit));
1136 }
1137
d397712b 1138 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1139 atomic_read(&root->fs_info->async_delalloc_pages)) {
1140 wait_event(root->fs_info->async_submit_wait,
1141 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1142 0));
1143 }
1144
1145 *nr_written += nr_pages;
1146 start = cur_end + 1;
1147 }
1148 *page_started = 1;
1149 return 0;
be20aa9d
CM
1150}
1151
d397712b 1152static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1153 u64 bytenr, u64 num_bytes)
1154{
1155 int ret;
1156 struct btrfs_ordered_sum *sums;
1157 LIST_HEAD(list);
1158
07d400a6 1159 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1160 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1161 if (ret == 0 && list_empty(&list))
1162 return 0;
1163
1164 while (!list_empty(&list)) {
1165 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1166 list_del(&sums->list);
1167 kfree(sums);
1168 }
1169 return 1;
1170}
1171
d352ac68
CM
1172/*
1173 * when nowcow writeback call back. This checks for snapshots or COW copies
1174 * of the extents that exist in the file, and COWs the file as required.
1175 *
1176 * If no cow copies or snapshots exist, we write directly to the existing
1177 * blocks on disk
1178 */
7f366cfe
CM
1179static noinline int run_delalloc_nocow(struct inode *inode,
1180 struct page *locked_page,
771ed689
CM
1181 u64 start, u64 end, int *page_started, int force,
1182 unsigned long *nr_written)
be20aa9d 1183{
be20aa9d 1184 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1185 struct btrfs_trans_handle *trans;
be20aa9d 1186 struct extent_buffer *leaf;
be20aa9d 1187 struct btrfs_path *path;
80ff3856 1188 struct btrfs_file_extent_item *fi;
be20aa9d 1189 struct btrfs_key found_key;
80ff3856
YZ
1190 u64 cow_start;
1191 u64 cur_offset;
1192 u64 extent_end;
5d4f98a2 1193 u64 extent_offset;
80ff3856
YZ
1194 u64 disk_bytenr;
1195 u64 num_bytes;
b4939680 1196 u64 disk_num_bytes;
cc95bef6 1197 u64 ram_bytes;
80ff3856 1198 int extent_type;
79787eaa 1199 int ret, err;
d899e052 1200 int type;
80ff3856
YZ
1201 int nocow;
1202 int check_prev = 1;
82d5902d 1203 bool nolock;
33345d01 1204 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1205
1206 path = btrfs_alloc_path();
17ca04af 1207 if (!path) {
c2790a2e
JB
1208 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1209 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1210 EXTENT_DO_ACCOUNTING |
1211 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1212 PAGE_CLEAR_DIRTY |
1213 PAGE_SET_WRITEBACK |
1214 PAGE_END_WRITEBACK);
d8926bb3 1215 return -ENOMEM;
17ca04af 1216 }
82d5902d 1217
83eea1f1 1218 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1219
1220 if (nolock)
7a7eaa40 1221 trans = btrfs_join_transaction_nolock(root);
82d5902d 1222 else
7a7eaa40 1223 trans = btrfs_join_transaction(root);
ff5714cc 1224
79787eaa 1225 if (IS_ERR(trans)) {
c2790a2e
JB
1226 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1227 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1228 EXTENT_DO_ACCOUNTING |
1229 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1230 PAGE_CLEAR_DIRTY |
1231 PAGE_SET_WRITEBACK |
1232 PAGE_END_WRITEBACK);
79787eaa
JM
1233 btrfs_free_path(path);
1234 return PTR_ERR(trans);
1235 }
1236
74b21075 1237 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1238
80ff3856
YZ
1239 cow_start = (u64)-1;
1240 cur_offset = start;
1241 while (1) {
33345d01 1242 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1243 cur_offset, 0);
d788a349 1244 if (ret < 0)
79787eaa 1245 goto error;
80ff3856
YZ
1246 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1247 leaf = path->nodes[0];
1248 btrfs_item_key_to_cpu(leaf, &found_key,
1249 path->slots[0] - 1);
33345d01 1250 if (found_key.objectid == ino &&
80ff3856
YZ
1251 found_key.type == BTRFS_EXTENT_DATA_KEY)
1252 path->slots[0]--;
1253 }
1254 check_prev = 0;
1255next_slot:
1256 leaf = path->nodes[0];
1257 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1258 ret = btrfs_next_leaf(root, path);
d788a349 1259 if (ret < 0)
79787eaa 1260 goto error;
80ff3856
YZ
1261 if (ret > 0)
1262 break;
1263 leaf = path->nodes[0];
1264 }
be20aa9d 1265
80ff3856
YZ
1266 nocow = 0;
1267 disk_bytenr = 0;
17d217fe 1268 num_bytes = 0;
80ff3856
YZ
1269 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1270
33345d01 1271 if (found_key.objectid > ino ||
80ff3856
YZ
1272 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1273 found_key.offset > end)
1274 break;
1275
1276 if (found_key.offset > cur_offset) {
1277 extent_end = found_key.offset;
e9061e21 1278 extent_type = 0;
80ff3856
YZ
1279 goto out_check;
1280 }
1281
1282 fi = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_file_extent_item);
1284 extent_type = btrfs_file_extent_type(leaf, fi);
1285
cc95bef6 1286 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1287 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1288 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1289 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1290 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1291 extent_end = found_key.offset +
1292 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1293 disk_num_bytes =
1294 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1295 if (extent_end <= start) {
1296 path->slots[0]++;
1297 goto next_slot;
1298 }
17d217fe
YZ
1299 if (disk_bytenr == 0)
1300 goto out_check;
80ff3856
YZ
1301 if (btrfs_file_extent_compression(leaf, fi) ||
1302 btrfs_file_extent_encryption(leaf, fi) ||
1303 btrfs_file_extent_other_encoding(leaf, fi))
1304 goto out_check;
d899e052
YZ
1305 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1306 goto out_check;
d2fb3437 1307 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1308 goto out_check;
33345d01 1309 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1310 found_key.offset -
1311 extent_offset, disk_bytenr))
17d217fe 1312 goto out_check;
5d4f98a2 1313 disk_bytenr += extent_offset;
17d217fe
YZ
1314 disk_bytenr += cur_offset - found_key.offset;
1315 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1316 /*
1317 * if there are pending snapshots for this root,
1318 * we fall into common COW way.
1319 */
1320 if (!nolock) {
1321 err = btrfs_start_nocow_write(root);
1322 if (!err)
1323 goto out_check;
1324 }
17d217fe
YZ
1325 /*
1326 * force cow if csum exists in the range.
1327 * this ensure that csum for a given extent are
1328 * either valid or do not exist.
1329 */
1330 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1331 goto out_check;
80ff3856
YZ
1332 nocow = 1;
1333 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1334 extent_end = found_key.offset +
514ac8ad
CM
1335 btrfs_file_extent_inline_len(leaf,
1336 path->slots[0], fi);
80ff3856
YZ
1337 extent_end = ALIGN(extent_end, root->sectorsize);
1338 } else {
1339 BUG_ON(1);
1340 }
1341out_check:
1342 if (extent_end <= start) {
1343 path->slots[0]++;
e9894fd3
WS
1344 if (!nolock && nocow)
1345 btrfs_end_nocow_write(root);
80ff3856
YZ
1346 goto next_slot;
1347 }
1348 if (!nocow) {
1349 if (cow_start == (u64)-1)
1350 cow_start = cur_offset;
1351 cur_offset = extent_end;
1352 if (cur_offset > end)
1353 break;
1354 path->slots[0]++;
1355 goto next_slot;
7ea394f1
YZ
1356 }
1357
b3b4aa74 1358 btrfs_release_path(path);
80ff3856 1359 if (cow_start != (u64)-1) {
00361589
JB
1360 ret = cow_file_range(inode, locked_page,
1361 cow_start, found_key.offset - 1,
1362 page_started, nr_written, 1);
e9894fd3
WS
1363 if (ret) {
1364 if (!nolock && nocow)
1365 btrfs_end_nocow_write(root);
79787eaa 1366 goto error;
e9894fd3 1367 }
80ff3856 1368 cow_start = (u64)-1;
7ea394f1 1369 }
80ff3856 1370
d899e052
YZ
1371 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1372 struct extent_map *em;
1373 struct extent_map_tree *em_tree;
1374 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1375 em = alloc_extent_map();
79787eaa 1376 BUG_ON(!em); /* -ENOMEM */
d899e052 1377 em->start = cur_offset;
70c8a91c 1378 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1379 em->len = num_bytes;
1380 em->block_len = num_bytes;
1381 em->block_start = disk_bytenr;
b4939680 1382 em->orig_block_len = disk_num_bytes;
cc95bef6 1383 em->ram_bytes = ram_bytes;
d899e052 1384 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1385 em->mod_start = em->start;
1386 em->mod_len = em->len;
d899e052 1387 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1388 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1389 em->generation = -1;
d899e052 1390 while (1) {
890871be 1391 write_lock(&em_tree->lock);
09a2a8f9 1392 ret = add_extent_mapping(em_tree, em, 1);
890871be 1393 write_unlock(&em_tree->lock);
d899e052
YZ
1394 if (ret != -EEXIST) {
1395 free_extent_map(em);
1396 break;
1397 }
1398 btrfs_drop_extent_cache(inode, em->start,
1399 em->start + em->len - 1, 0);
1400 }
1401 type = BTRFS_ORDERED_PREALLOC;
1402 } else {
1403 type = BTRFS_ORDERED_NOCOW;
1404 }
80ff3856
YZ
1405
1406 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1407 num_bytes, num_bytes, type);
79787eaa 1408 BUG_ON(ret); /* -ENOMEM */
771ed689 1409
efa56464
YZ
1410 if (root->root_key.objectid ==
1411 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1412 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1413 num_bytes);
e9894fd3
WS
1414 if (ret) {
1415 if (!nolock && nocow)
1416 btrfs_end_nocow_write(root);
79787eaa 1417 goto error;
e9894fd3 1418 }
efa56464
YZ
1419 }
1420
c2790a2e
JB
1421 extent_clear_unlock_delalloc(inode, cur_offset,
1422 cur_offset + num_bytes - 1,
1423 locked_page, EXTENT_LOCKED |
1424 EXTENT_DELALLOC, PAGE_UNLOCK |
1425 PAGE_SET_PRIVATE2);
e9894fd3
WS
1426 if (!nolock && nocow)
1427 btrfs_end_nocow_write(root);
80ff3856
YZ
1428 cur_offset = extent_end;
1429 if (cur_offset > end)
1430 break;
be20aa9d 1431 }
b3b4aa74 1432 btrfs_release_path(path);
80ff3856 1433
17ca04af 1434 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1435 cow_start = cur_offset;
17ca04af
JB
1436 cur_offset = end;
1437 }
1438
80ff3856 1439 if (cow_start != (u64)-1) {
00361589
JB
1440 ret = cow_file_range(inode, locked_page, cow_start, end,
1441 page_started, nr_written, 1);
d788a349 1442 if (ret)
79787eaa 1443 goto error;
80ff3856
YZ
1444 }
1445
79787eaa 1446error:
a698d075 1447 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1448 if (!ret)
1449 ret = err;
1450
17ca04af 1451 if (ret && cur_offset < end)
c2790a2e
JB
1452 extent_clear_unlock_delalloc(inode, cur_offset, end,
1453 locked_page, EXTENT_LOCKED |
151a41bc
JB
1454 EXTENT_DELALLOC | EXTENT_DEFRAG |
1455 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1456 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1457 PAGE_SET_WRITEBACK |
1458 PAGE_END_WRITEBACK);
7ea394f1 1459 btrfs_free_path(path);
79787eaa 1460 return ret;
be20aa9d
CM
1461}
1462
47059d93
WS
1463static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1464{
1465
1466 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1467 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1468 return 0;
1469
1470 /*
1471 * @defrag_bytes is a hint value, no spinlock held here,
1472 * if is not zero, it means the file is defragging.
1473 * Force cow if given extent needs to be defragged.
1474 */
1475 if (BTRFS_I(inode)->defrag_bytes &&
1476 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1477 EXTENT_DEFRAG, 0, NULL))
1478 return 1;
1479
1480 return 0;
1481}
1482
d352ac68
CM
1483/*
1484 * extent_io.c call back to do delayed allocation processing
1485 */
c8b97818 1486static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1487 u64 start, u64 end, int *page_started,
1488 unsigned long *nr_written)
be20aa9d 1489{
be20aa9d 1490 int ret;
47059d93 1491 int force_cow = need_force_cow(inode, start, end);
a2135011 1492
47059d93 1493 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1494 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1495 page_started, 1, nr_written);
47059d93 1496 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1497 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1498 page_started, 0, nr_written);
7816030e 1499 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1500 ret = cow_file_range(inode, locked_page, start, end,
1501 page_started, nr_written, 1);
7ddf5a42
JB
1502 } else {
1503 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1504 &BTRFS_I(inode)->runtime_flags);
771ed689 1505 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1506 page_started, nr_written);
7ddf5a42 1507 }
b888db2b
CM
1508 return ret;
1509}
1510
1bf85046
JM
1511static void btrfs_split_extent_hook(struct inode *inode,
1512 struct extent_state *orig, u64 split)
9ed74f2d 1513{
0ca1f7ce 1514 /* not delalloc, ignore it */
9ed74f2d 1515 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1516 return;
9ed74f2d 1517
9e0baf60
JB
1518 spin_lock(&BTRFS_I(inode)->lock);
1519 BTRFS_I(inode)->outstanding_extents++;
1520 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1521}
1522
1523/*
1524 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1525 * extents so we can keep track of new extents that are just merged onto old
1526 * extents, such as when we are doing sequential writes, so we can properly
1527 * account for the metadata space we'll need.
1528 */
1bf85046
JM
1529static void btrfs_merge_extent_hook(struct inode *inode,
1530 struct extent_state *new,
1531 struct extent_state *other)
9ed74f2d 1532{
9ed74f2d
JB
1533 /* not delalloc, ignore it */
1534 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1535 return;
9ed74f2d 1536
9e0baf60
JB
1537 spin_lock(&BTRFS_I(inode)->lock);
1538 BTRFS_I(inode)->outstanding_extents--;
1539 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1540}
1541
eb73c1b7
MX
1542static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1543 struct inode *inode)
1544{
1545 spin_lock(&root->delalloc_lock);
1546 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1547 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1548 &root->delalloc_inodes);
1549 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1550 &BTRFS_I(inode)->runtime_flags);
1551 root->nr_delalloc_inodes++;
1552 if (root->nr_delalloc_inodes == 1) {
1553 spin_lock(&root->fs_info->delalloc_root_lock);
1554 BUG_ON(!list_empty(&root->delalloc_root));
1555 list_add_tail(&root->delalloc_root,
1556 &root->fs_info->delalloc_roots);
1557 spin_unlock(&root->fs_info->delalloc_root_lock);
1558 }
1559 }
1560 spin_unlock(&root->delalloc_lock);
1561}
1562
1563static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1564 struct inode *inode)
1565{
1566 spin_lock(&root->delalloc_lock);
1567 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1568 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1569 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1570 &BTRFS_I(inode)->runtime_flags);
1571 root->nr_delalloc_inodes--;
1572 if (!root->nr_delalloc_inodes) {
1573 spin_lock(&root->fs_info->delalloc_root_lock);
1574 BUG_ON(list_empty(&root->delalloc_root));
1575 list_del_init(&root->delalloc_root);
1576 spin_unlock(&root->fs_info->delalloc_root_lock);
1577 }
1578 }
1579 spin_unlock(&root->delalloc_lock);
1580}
1581
d352ac68
CM
1582/*
1583 * extent_io.c set_bit_hook, used to track delayed allocation
1584 * bytes in this file, and to maintain the list of inodes that
1585 * have pending delalloc work to be done.
1586 */
1bf85046 1587static void btrfs_set_bit_hook(struct inode *inode,
41074888 1588 struct extent_state *state, unsigned long *bits)
291d673e 1589{
9ed74f2d 1590
47059d93
WS
1591 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1592 WARN_ON(1);
75eff68e
CM
1593 /*
1594 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1595 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1596 * bit, which is only set or cleared with irqs on
1597 */
0ca1f7ce 1598 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1599 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1600 u64 len = state->end + 1 - state->start;
83eea1f1 1601 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1602
9e0baf60 1603 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1604 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1605 } else {
1606 spin_lock(&BTRFS_I(inode)->lock);
1607 BTRFS_I(inode)->outstanding_extents++;
1608 spin_unlock(&BTRFS_I(inode)->lock);
1609 }
287a0ab9 1610
963d678b
MX
1611 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1612 root->fs_info->delalloc_batch);
df0af1a5 1613 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1614 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1615 if (*bits & EXTENT_DEFRAG)
1616 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1617 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1618 &BTRFS_I(inode)->runtime_flags))
1619 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1620 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1621 }
291d673e
CM
1622}
1623
d352ac68
CM
1624/*
1625 * extent_io.c clear_bit_hook, see set_bit_hook for why
1626 */
1bf85046 1627static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1628 struct extent_state *state,
1629 unsigned long *bits)
291d673e 1630{
47059d93
WS
1631 u64 len = state->end + 1 - state->start;
1632
1633 spin_lock(&BTRFS_I(inode)->lock);
1634 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1635 BTRFS_I(inode)->defrag_bytes -= len;
1636 spin_unlock(&BTRFS_I(inode)->lock);
1637
75eff68e
CM
1638 /*
1639 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1640 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1641 * bit, which is only set or cleared with irqs on
1642 */
0ca1f7ce 1643 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1644 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1645 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1646
9e0baf60 1647 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1648 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1649 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1650 spin_lock(&BTRFS_I(inode)->lock);
1651 BTRFS_I(inode)->outstanding_extents--;
1652 spin_unlock(&BTRFS_I(inode)->lock);
1653 }
0ca1f7ce 1654
b6d08f06
JB
1655 /*
1656 * We don't reserve metadata space for space cache inodes so we
1657 * don't need to call dellalloc_release_metadata if there is an
1658 * error.
1659 */
1660 if (*bits & EXTENT_DO_ACCOUNTING &&
1661 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1662 btrfs_delalloc_release_metadata(inode, len);
1663
0cb59c99 1664 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1665 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1666 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1667
963d678b
MX
1668 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1669 root->fs_info->delalloc_batch);
df0af1a5 1670 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1671 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1672 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1673 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1674 &BTRFS_I(inode)->runtime_flags))
1675 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1676 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1677 }
291d673e
CM
1678}
1679
d352ac68
CM
1680/*
1681 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1682 * we don't create bios that span stripes or chunks
1683 */
64a16701 1684int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1685 size_t size, struct bio *bio,
1686 unsigned long bio_flags)
239b14b3
CM
1687{
1688 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1689 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1690 u64 length = 0;
1691 u64 map_length;
239b14b3
CM
1692 int ret;
1693
771ed689
CM
1694 if (bio_flags & EXTENT_BIO_COMPRESSED)
1695 return 0;
1696
4f024f37 1697 length = bio->bi_iter.bi_size;
239b14b3 1698 map_length = length;
64a16701 1699 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1700 &map_length, NULL, 0);
3ec706c8 1701 /* Will always return 0 with map_multi == NULL */
3444a972 1702 BUG_ON(ret < 0);
d397712b 1703 if (map_length < length + size)
239b14b3 1704 return 1;
3444a972 1705 return 0;
239b14b3
CM
1706}
1707
d352ac68
CM
1708/*
1709 * in order to insert checksums into the metadata in large chunks,
1710 * we wait until bio submission time. All the pages in the bio are
1711 * checksummed and sums are attached onto the ordered extent record.
1712 *
1713 * At IO completion time the cums attached on the ordered extent record
1714 * are inserted into the btree
1715 */
d397712b
CM
1716static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1717 struct bio *bio, int mirror_num,
eaf25d93
CM
1718 unsigned long bio_flags,
1719 u64 bio_offset)
065631f6 1720{
065631f6 1721 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1722 int ret = 0;
e015640f 1723
d20f7043 1724 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1725 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1726 return 0;
1727}
e015640f 1728
4a69a410
CM
1729/*
1730 * in order to insert checksums into the metadata in large chunks,
1731 * we wait until bio submission time. All the pages in the bio are
1732 * checksummed and sums are attached onto the ordered extent record.
1733 *
1734 * At IO completion time the cums attached on the ordered extent record
1735 * are inserted into the btree
1736 */
b2950863 1737static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1738 int mirror_num, unsigned long bio_flags,
1739 u64 bio_offset)
4a69a410
CM
1740{
1741 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1742 int ret;
1743
1744 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1745 if (ret)
1746 bio_endio(bio, ret);
1747 return ret;
44b8bd7e
CM
1748}
1749
d352ac68 1750/*
cad321ad
CM
1751 * extent_io.c submission hook. This does the right thing for csum calculation
1752 * on write, or reading the csums from the tree before a read
d352ac68 1753 */
b2950863 1754static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1755 int mirror_num, unsigned long bio_flags,
1756 u64 bio_offset)
44b8bd7e
CM
1757{
1758 struct btrfs_root *root = BTRFS_I(inode)->root;
1759 int ret = 0;
19b9bdb0 1760 int skip_sum;
0417341e 1761 int metadata = 0;
b812ce28 1762 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1763
6cbff00f 1764 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1765
83eea1f1 1766 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1767 metadata = 2;
1768
7b6d91da 1769 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1770 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1771 if (ret)
61891923 1772 goto out;
5fd02043 1773
d20f7043 1774 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1775 ret = btrfs_submit_compressed_read(inode, bio,
1776 mirror_num,
1777 bio_flags);
1778 goto out;
c2db1073
TI
1779 } else if (!skip_sum) {
1780 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1781 if (ret)
61891923 1782 goto out;
c2db1073 1783 }
4d1b5fb4 1784 goto mapit;
b812ce28 1785 } else if (async && !skip_sum) {
17d217fe
YZ
1786 /* csum items have already been cloned */
1787 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1788 goto mapit;
19b9bdb0 1789 /* we're doing a write, do the async checksumming */
61891923 1790 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1791 inode, rw, bio, mirror_num,
eaf25d93
CM
1792 bio_flags, bio_offset,
1793 __btrfs_submit_bio_start,
4a69a410 1794 __btrfs_submit_bio_done);
61891923 1795 goto out;
b812ce28
JB
1796 } else if (!skip_sum) {
1797 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1798 if (ret)
1799 goto out;
19b9bdb0
CM
1800 }
1801
0b86a832 1802mapit:
61891923
SB
1803 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1804
1805out:
1806 if (ret < 0)
1807 bio_endio(bio, ret);
1808 return ret;
065631f6 1809}
6885f308 1810
d352ac68
CM
1811/*
1812 * given a list of ordered sums record them in the inode. This happens
1813 * at IO completion time based on sums calculated at bio submission time.
1814 */
ba1da2f4 1815static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1816 struct inode *inode, u64 file_offset,
1817 struct list_head *list)
1818{
e6dcd2dc
CM
1819 struct btrfs_ordered_sum *sum;
1820
c6e30871 1821 list_for_each_entry(sum, list, list) {
39847c4d 1822 trans->adding_csums = 1;
d20f7043
CM
1823 btrfs_csum_file_blocks(trans,
1824 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1825 trans->adding_csums = 0;
e6dcd2dc
CM
1826 }
1827 return 0;
1828}
1829
2ac55d41
JB
1830int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1831 struct extent_state **cached_state)
ea8c2819 1832{
6c1500f2 1833 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1834 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1835 cached_state, GFP_NOFS);
ea8c2819
CM
1836}
1837
d352ac68 1838/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1839struct btrfs_writepage_fixup {
1840 struct page *page;
1841 struct btrfs_work work;
1842};
1843
b2950863 1844static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1845{
1846 struct btrfs_writepage_fixup *fixup;
1847 struct btrfs_ordered_extent *ordered;
2ac55d41 1848 struct extent_state *cached_state = NULL;
247e743c
CM
1849 struct page *page;
1850 struct inode *inode;
1851 u64 page_start;
1852 u64 page_end;
87826df0 1853 int ret;
247e743c
CM
1854
1855 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1856 page = fixup->page;
4a096752 1857again:
247e743c
CM
1858 lock_page(page);
1859 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1860 ClearPageChecked(page);
1861 goto out_page;
1862 }
1863
1864 inode = page->mapping->host;
1865 page_start = page_offset(page);
1866 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1867
2ac55d41 1868 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1869 &cached_state);
4a096752
CM
1870
1871 /* already ordered? We're done */
8b62b72b 1872 if (PagePrivate2(page))
247e743c 1873 goto out;
4a096752
CM
1874
1875 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1876 if (ordered) {
2ac55d41
JB
1877 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1878 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1879 unlock_page(page);
1880 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1881 btrfs_put_ordered_extent(ordered);
4a096752
CM
1882 goto again;
1883 }
247e743c 1884
87826df0
JM
1885 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1886 if (ret) {
1887 mapping_set_error(page->mapping, ret);
1888 end_extent_writepage(page, ret, page_start, page_end);
1889 ClearPageChecked(page);
1890 goto out;
1891 }
1892
2ac55d41 1893 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1894 ClearPageChecked(page);
87826df0 1895 set_page_dirty(page);
247e743c 1896out:
2ac55d41
JB
1897 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1898 &cached_state, GFP_NOFS);
247e743c
CM
1899out_page:
1900 unlock_page(page);
1901 page_cache_release(page);
b897abec 1902 kfree(fixup);
247e743c
CM
1903}
1904
1905/*
1906 * There are a few paths in the higher layers of the kernel that directly
1907 * set the page dirty bit without asking the filesystem if it is a
1908 * good idea. This causes problems because we want to make sure COW
1909 * properly happens and the data=ordered rules are followed.
1910 *
c8b97818 1911 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1912 * hasn't been properly setup for IO. We kick off an async process
1913 * to fix it up. The async helper will wait for ordered extents, set
1914 * the delalloc bit and make it safe to write the page.
1915 */
b2950863 1916static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1917{
1918 struct inode *inode = page->mapping->host;
1919 struct btrfs_writepage_fixup *fixup;
1920 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1921
8b62b72b
CM
1922 /* this page is properly in the ordered list */
1923 if (TestClearPagePrivate2(page))
247e743c
CM
1924 return 0;
1925
1926 if (PageChecked(page))
1927 return -EAGAIN;
1928
1929 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1930 if (!fixup)
1931 return -EAGAIN;
f421950f 1932
247e743c
CM
1933 SetPageChecked(page);
1934 page_cache_get(page);
9e0af237
LB
1935 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1936 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 1937 fixup->page = page;
dc6e3209 1938 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 1939 return -EBUSY;
247e743c
CM
1940}
1941
d899e052
YZ
1942static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1943 struct inode *inode, u64 file_pos,
1944 u64 disk_bytenr, u64 disk_num_bytes,
1945 u64 num_bytes, u64 ram_bytes,
1946 u8 compression, u8 encryption,
1947 u16 other_encoding, int extent_type)
1948{
1949 struct btrfs_root *root = BTRFS_I(inode)->root;
1950 struct btrfs_file_extent_item *fi;
1951 struct btrfs_path *path;
1952 struct extent_buffer *leaf;
1953 struct btrfs_key ins;
1acae57b 1954 int extent_inserted = 0;
d899e052
YZ
1955 int ret;
1956
1957 path = btrfs_alloc_path();
d8926bb3
MF
1958 if (!path)
1959 return -ENOMEM;
d899e052 1960
a1ed835e
CM
1961 /*
1962 * we may be replacing one extent in the tree with another.
1963 * The new extent is pinned in the extent map, and we don't want
1964 * to drop it from the cache until it is completely in the btree.
1965 *
1966 * So, tell btrfs_drop_extents to leave this extent in the cache.
1967 * the caller is expected to unpin it and allow it to be merged
1968 * with the others.
1969 */
1acae57b
FDBM
1970 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1971 file_pos + num_bytes, NULL, 0,
1972 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
1973 if (ret)
1974 goto out;
d899e052 1975
1acae57b
FDBM
1976 if (!extent_inserted) {
1977 ins.objectid = btrfs_ino(inode);
1978 ins.offset = file_pos;
1979 ins.type = BTRFS_EXTENT_DATA_KEY;
1980
1981 path->leave_spinning = 1;
1982 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1983 sizeof(*fi));
1984 if (ret)
1985 goto out;
1986 }
d899e052
YZ
1987 leaf = path->nodes[0];
1988 fi = btrfs_item_ptr(leaf, path->slots[0],
1989 struct btrfs_file_extent_item);
1990 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1991 btrfs_set_file_extent_type(leaf, fi, extent_type);
1992 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1993 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1994 btrfs_set_file_extent_offset(leaf, fi, 0);
1995 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1996 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1997 btrfs_set_file_extent_compression(leaf, fi, compression);
1998 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1999 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2000
d899e052 2001 btrfs_mark_buffer_dirty(leaf);
ce195332 2002 btrfs_release_path(path);
d899e052
YZ
2003
2004 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2005
2006 ins.objectid = disk_bytenr;
2007 ins.offset = disk_num_bytes;
2008 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2009 ret = btrfs_alloc_reserved_file_extent(trans, root,
2010 root->root_key.objectid,
33345d01 2011 btrfs_ino(inode), file_pos, &ins);
79787eaa 2012out:
d899e052 2013 btrfs_free_path(path);
b9473439 2014
79787eaa 2015 return ret;
d899e052
YZ
2016}
2017
38c227d8
LB
2018/* snapshot-aware defrag */
2019struct sa_defrag_extent_backref {
2020 struct rb_node node;
2021 struct old_sa_defrag_extent *old;
2022 u64 root_id;
2023 u64 inum;
2024 u64 file_pos;
2025 u64 extent_offset;
2026 u64 num_bytes;
2027 u64 generation;
2028};
2029
2030struct old_sa_defrag_extent {
2031 struct list_head list;
2032 struct new_sa_defrag_extent *new;
2033
2034 u64 extent_offset;
2035 u64 bytenr;
2036 u64 offset;
2037 u64 len;
2038 int count;
2039};
2040
2041struct new_sa_defrag_extent {
2042 struct rb_root root;
2043 struct list_head head;
2044 struct btrfs_path *path;
2045 struct inode *inode;
2046 u64 file_pos;
2047 u64 len;
2048 u64 bytenr;
2049 u64 disk_len;
2050 u8 compress_type;
2051};
2052
2053static int backref_comp(struct sa_defrag_extent_backref *b1,
2054 struct sa_defrag_extent_backref *b2)
2055{
2056 if (b1->root_id < b2->root_id)
2057 return -1;
2058 else if (b1->root_id > b2->root_id)
2059 return 1;
2060
2061 if (b1->inum < b2->inum)
2062 return -1;
2063 else if (b1->inum > b2->inum)
2064 return 1;
2065
2066 if (b1->file_pos < b2->file_pos)
2067 return -1;
2068 else if (b1->file_pos > b2->file_pos)
2069 return 1;
2070
2071 /*
2072 * [------------------------------] ===> (a range of space)
2073 * |<--->| |<---->| =============> (fs/file tree A)
2074 * |<---------------------------->| ===> (fs/file tree B)
2075 *
2076 * A range of space can refer to two file extents in one tree while
2077 * refer to only one file extent in another tree.
2078 *
2079 * So we may process a disk offset more than one time(two extents in A)
2080 * and locate at the same extent(one extent in B), then insert two same
2081 * backrefs(both refer to the extent in B).
2082 */
2083 return 0;
2084}
2085
2086static void backref_insert(struct rb_root *root,
2087 struct sa_defrag_extent_backref *backref)
2088{
2089 struct rb_node **p = &root->rb_node;
2090 struct rb_node *parent = NULL;
2091 struct sa_defrag_extent_backref *entry;
2092 int ret;
2093
2094 while (*p) {
2095 parent = *p;
2096 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2097
2098 ret = backref_comp(backref, entry);
2099 if (ret < 0)
2100 p = &(*p)->rb_left;
2101 else
2102 p = &(*p)->rb_right;
2103 }
2104
2105 rb_link_node(&backref->node, parent, p);
2106 rb_insert_color(&backref->node, root);
2107}
2108
2109/*
2110 * Note the backref might has changed, and in this case we just return 0.
2111 */
2112static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2113 void *ctx)
2114{
2115 struct btrfs_file_extent_item *extent;
2116 struct btrfs_fs_info *fs_info;
2117 struct old_sa_defrag_extent *old = ctx;
2118 struct new_sa_defrag_extent *new = old->new;
2119 struct btrfs_path *path = new->path;
2120 struct btrfs_key key;
2121 struct btrfs_root *root;
2122 struct sa_defrag_extent_backref *backref;
2123 struct extent_buffer *leaf;
2124 struct inode *inode = new->inode;
2125 int slot;
2126 int ret;
2127 u64 extent_offset;
2128 u64 num_bytes;
2129
2130 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2131 inum == btrfs_ino(inode))
2132 return 0;
2133
2134 key.objectid = root_id;
2135 key.type = BTRFS_ROOT_ITEM_KEY;
2136 key.offset = (u64)-1;
2137
2138 fs_info = BTRFS_I(inode)->root->fs_info;
2139 root = btrfs_read_fs_root_no_name(fs_info, &key);
2140 if (IS_ERR(root)) {
2141 if (PTR_ERR(root) == -ENOENT)
2142 return 0;
2143 WARN_ON(1);
2144 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2145 inum, offset, root_id);
2146 return PTR_ERR(root);
2147 }
2148
2149 key.objectid = inum;
2150 key.type = BTRFS_EXTENT_DATA_KEY;
2151 if (offset > (u64)-1 << 32)
2152 key.offset = 0;
2153 else
2154 key.offset = offset;
2155
2156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2157 if (WARN_ON(ret < 0))
38c227d8 2158 return ret;
50f1319c 2159 ret = 0;
38c227d8
LB
2160
2161 while (1) {
2162 cond_resched();
2163
2164 leaf = path->nodes[0];
2165 slot = path->slots[0];
2166
2167 if (slot >= btrfs_header_nritems(leaf)) {
2168 ret = btrfs_next_leaf(root, path);
2169 if (ret < 0) {
2170 goto out;
2171 } else if (ret > 0) {
2172 ret = 0;
2173 goto out;
2174 }
2175 continue;
2176 }
2177
2178 path->slots[0]++;
2179
2180 btrfs_item_key_to_cpu(leaf, &key, slot);
2181
2182 if (key.objectid > inum)
2183 goto out;
2184
2185 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2186 continue;
2187
2188 extent = btrfs_item_ptr(leaf, slot,
2189 struct btrfs_file_extent_item);
2190
2191 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2192 continue;
2193
e68afa49
LB
2194 /*
2195 * 'offset' refers to the exact key.offset,
2196 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2197 * (key.offset - extent_offset).
2198 */
2199 if (key.offset != offset)
38c227d8
LB
2200 continue;
2201
e68afa49 2202 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2203 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2204
38c227d8
LB
2205 if (extent_offset >= old->extent_offset + old->offset +
2206 old->len || extent_offset + num_bytes <=
2207 old->extent_offset + old->offset)
2208 continue;
38c227d8
LB
2209 break;
2210 }
2211
2212 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2213 if (!backref) {
2214 ret = -ENOENT;
2215 goto out;
2216 }
2217
2218 backref->root_id = root_id;
2219 backref->inum = inum;
e68afa49 2220 backref->file_pos = offset;
38c227d8
LB
2221 backref->num_bytes = num_bytes;
2222 backref->extent_offset = extent_offset;
2223 backref->generation = btrfs_file_extent_generation(leaf, extent);
2224 backref->old = old;
2225 backref_insert(&new->root, backref);
2226 old->count++;
2227out:
2228 btrfs_release_path(path);
2229 WARN_ON(ret);
2230 return ret;
2231}
2232
2233static noinline bool record_extent_backrefs(struct btrfs_path *path,
2234 struct new_sa_defrag_extent *new)
2235{
2236 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2237 struct old_sa_defrag_extent *old, *tmp;
2238 int ret;
2239
2240 new->path = path;
2241
2242 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2243 ret = iterate_inodes_from_logical(old->bytenr +
2244 old->extent_offset, fs_info,
38c227d8
LB
2245 path, record_one_backref,
2246 old);
4724b106
JB
2247 if (ret < 0 && ret != -ENOENT)
2248 return false;
38c227d8
LB
2249
2250 /* no backref to be processed for this extent */
2251 if (!old->count) {
2252 list_del(&old->list);
2253 kfree(old);
2254 }
2255 }
2256
2257 if (list_empty(&new->head))
2258 return false;
2259
2260 return true;
2261}
2262
2263static int relink_is_mergable(struct extent_buffer *leaf,
2264 struct btrfs_file_extent_item *fi,
116e0024 2265 struct new_sa_defrag_extent *new)
38c227d8 2266{
116e0024 2267 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2268 return 0;
2269
2270 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2271 return 0;
2272
116e0024
LB
2273 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2274 return 0;
2275
2276 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2277 btrfs_file_extent_other_encoding(leaf, fi))
2278 return 0;
2279
2280 return 1;
2281}
2282
2283/*
2284 * Note the backref might has changed, and in this case we just return 0.
2285 */
2286static noinline int relink_extent_backref(struct btrfs_path *path,
2287 struct sa_defrag_extent_backref *prev,
2288 struct sa_defrag_extent_backref *backref)
2289{
2290 struct btrfs_file_extent_item *extent;
2291 struct btrfs_file_extent_item *item;
2292 struct btrfs_ordered_extent *ordered;
2293 struct btrfs_trans_handle *trans;
2294 struct btrfs_fs_info *fs_info;
2295 struct btrfs_root *root;
2296 struct btrfs_key key;
2297 struct extent_buffer *leaf;
2298 struct old_sa_defrag_extent *old = backref->old;
2299 struct new_sa_defrag_extent *new = old->new;
2300 struct inode *src_inode = new->inode;
2301 struct inode *inode;
2302 struct extent_state *cached = NULL;
2303 int ret = 0;
2304 u64 start;
2305 u64 len;
2306 u64 lock_start;
2307 u64 lock_end;
2308 bool merge = false;
2309 int index;
2310
2311 if (prev && prev->root_id == backref->root_id &&
2312 prev->inum == backref->inum &&
2313 prev->file_pos + prev->num_bytes == backref->file_pos)
2314 merge = true;
2315
2316 /* step 1: get root */
2317 key.objectid = backref->root_id;
2318 key.type = BTRFS_ROOT_ITEM_KEY;
2319 key.offset = (u64)-1;
2320
2321 fs_info = BTRFS_I(src_inode)->root->fs_info;
2322 index = srcu_read_lock(&fs_info->subvol_srcu);
2323
2324 root = btrfs_read_fs_root_no_name(fs_info, &key);
2325 if (IS_ERR(root)) {
2326 srcu_read_unlock(&fs_info->subvol_srcu, index);
2327 if (PTR_ERR(root) == -ENOENT)
2328 return 0;
2329 return PTR_ERR(root);
2330 }
38c227d8 2331
bcbba5e6
WS
2332 if (btrfs_root_readonly(root)) {
2333 srcu_read_unlock(&fs_info->subvol_srcu, index);
2334 return 0;
2335 }
2336
38c227d8
LB
2337 /* step 2: get inode */
2338 key.objectid = backref->inum;
2339 key.type = BTRFS_INODE_ITEM_KEY;
2340 key.offset = 0;
2341
2342 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2343 if (IS_ERR(inode)) {
2344 srcu_read_unlock(&fs_info->subvol_srcu, index);
2345 return 0;
2346 }
2347
2348 srcu_read_unlock(&fs_info->subvol_srcu, index);
2349
2350 /* step 3: relink backref */
2351 lock_start = backref->file_pos;
2352 lock_end = backref->file_pos + backref->num_bytes - 1;
2353 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2354 0, &cached);
2355
2356 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2357 if (ordered) {
2358 btrfs_put_ordered_extent(ordered);
2359 goto out_unlock;
2360 }
2361
2362 trans = btrfs_join_transaction(root);
2363 if (IS_ERR(trans)) {
2364 ret = PTR_ERR(trans);
2365 goto out_unlock;
2366 }
2367
2368 key.objectid = backref->inum;
2369 key.type = BTRFS_EXTENT_DATA_KEY;
2370 key.offset = backref->file_pos;
2371
2372 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2373 if (ret < 0) {
2374 goto out_free_path;
2375 } else if (ret > 0) {
2376 ret = 0;
2377 goto out_free_path;
2378 }
2379
2380 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2381 struct btrfs_file_extent_item);
2382
2383 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2384 backref->generation)
2385 goto out_free_path;
2386
2387 btrfs_release_path(path);
2388
2389 start = backref->file_pos;
2390 if (backref->extent_offset < old->extent_offset + old->offset)
2391 start += old->extent_offset + old->offset -
2392 backref->extent_offset;
2393
2394 len = min(backref->extent_offset + backref->num_bytes,
2395 old->extent_offset + old->offset + old->len);
2396 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2397
2398 ret = btrfs_drop_extents(trans, root, inode, start,
2399 start + len, 1);
2400 if (ret)
2401 goto out_free_path;
2402again:
2403 key.objectid = btrfs_ino(inode);
2404 key.type = BTRFS_EXTENT_DATA_KEY;
2405 key.offset = start;
2406
a09a0a70 2407 path->leave_spinning = 1;
38c227d8
LB
2408 if (merge) {
2409 struct btrfs_file_extent_item *fi;
2410 u64 extent_len;
2411 struct btrfs_key found_key;
2412
3c9665df 2413 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2414 if (ret < 0)
2415 goto out_free_path;
2416
2417 path->slots[0]--;
2418 leaf = path->nodes[0];
2419 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2420
2421 fi = btrfs_item_ptr(leaf, path->slots[0],
2422 struct btrfs_file_extent_item);
2423 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2424
116e0024
LB
2425 if (extent_len + found_key.offset == start &&
2426 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2427 btrfs_set_file_extent_num_bytes(leaf, fi,
2428 extent_len + len);
2429 btrfs_mark_buffer_dirty(leaf);
2430 inode_add_bytes(inode, len);
2431
2432 ret = 1;
2433 goto out_free_path;
2434 } else {
2435 merge = false;
2436 btrfs_release_path(path);
2437 goto again;
2438 }
2439 }
2440
2441 ret = btrfs_insert_empty_item(trans, root, path, &key,
2442 sizeof(*extent));
2443 if (ret) {
2444 btrfs_abort_transaction(trans, root, ret);
2445 goto out_free_path;
2446 }
2447
2448 leaf = path->nodes[0];
2449 item = btrfs_item_ptr(leaf, path->slots[0],
2450 struct btrfs_file_extent_item);
2451 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2452 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2453 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2454 btrfs_set_file_extent_num_bytes(leaf, item, len);
2455 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2456 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2457 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2458 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2459 btrfs_set_file_extent_encryption(leaf, item, 0);
2460 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2461
2462 btrfs_mark_buffer_dirty(leaf);
2463 inode_add_bytes(inode, len);
a09a0a70 2464 btrfs_release_path(path);
38c227d8
LB
2465
2466 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2467 new->disk_len, 0,
2468 backref->root_id, backref->inum,
2469 new->file_pos, 0); /* start - extent_offset */
2470 if (ret) {
2471 btrfs_abort_transaction(trans, root, ret);
2472 goto out_free_path;
2473 }
2474
2475 ret = 1;
2476out_free_path:
2477 btrfs_release_path(path);
a09a0a70 2478 path->leave_spinning = 0;
38c227d8
LB
2479 btrfs_end_transaction(trans, root);
2480out_unlock:
2481 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2482 &cached, GFP_NOFS);
2483 iput(inode);
2484 return ret;
2485}
2486
6f519564
LB
2487static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2488{
2489 struct old_sa_defrag_extent *old, *tmp;
2490
2491 if (!new)
2492 return;
2493
2494 list_for_each_entry_safe(old, tmp, &new->head, list) {
2495 list_del(&old->list);
2496 kfree(old);
2497 }
2498 kfree(new);
2499}
2500
38c227d8
LB
2501static void relink_file_extents(struct new_sa_defrag_extent *new)
2502{
2503 struct btrfs_path *path;
38c227d8
LB
2504 struct sa_defrag_extent_backref *backref;
2505 struct sa_defrag_extent_backref *prev = NULL;
2506 struct inode *inode;
2507 struct btrfs_root *root;
2508 struct rb_node *node;
2509 int ret;
2510
2511 inode = new->inode;
2512 root = BTRFS_I(inode)->root;
2513
2514 path = btrfs_alloc_path();
2515 if (!path)
2516 return;
2517
2518 if (!record_extent_backrefs(path, new)) {
2519 btrfs_free_path(path);
2520 goto out;
2521 }
2522 btrfs_release_path(path);
2523
2524 while (1) {
2525 node = rb_first(&new->root);
2526 if (!node)
2527 break;
2528 rb_erase(node, &new->root);
2529
2530 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2531
2532 ret = relink_extent_backref(path, prev, backref);
2533 WARN_ON(ret < 0);
2534
2535 kfree(prev);
2536
2537 if (ret == 1)
2538 prev = backref;
2539 else
2540 prev = NULL;
2541 cond_resched();
2542 }
2543 kfree(prev);
2544
2545 btrfs_free_path(path);
38c227d8 2546out:
6f519564
LB
2547 free_sa_defrag_extent(new);
2548
38c227d8
LB
2549 atomic_dec(&root->fs_info->defrag_running);
2550 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2551}
2552
2553static struct new_sa_defrag_extent *
2554record_old_file_extents(struct inode *inode,
2555 struct btrfs_ordered_extent *ordered)
2556{
2557 struct btrfs_root *root = BTRFS_I(inode)->root;
2558 struct btrfs_path *path;
2559 struct btrfs_key key;
6f519564 2560 struct old_sa_defrag_extent *old;
38c227d8
LB
2561 struct new_sa_defrag_extent *new;
2562 int ret;
2563
2564 new = kmalloc(sizeof(*new), GFP_NOFS);
2565 if (!new)
2566 return NULL;
2567
2568 new->inode = inode;
2569 new->file_pos = ordered->file_offset;
2570 new->len = ordered->len;
2571 new->bytenr = ordered->start;
2572 new->disk_len = ordered->disk_len;
2573 new->compress_type = ordered->compress_type;
2574 new->root = RB_ROOT;
2575 INIT_LIST_HEAD(&new->head);
2576
2577 path = btrfs_alloc_path();
2578 if (!path)
2579 goto out_kfree;
2580
2581 key.objectid = btrfs_ino(inode);
2582 key.type = BTRFS_EXTENT_DATA_KEY;
2583 key.offset = new->file_pos;
2584
2585 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2586 if (ret < 0)
2587 goto out_free_path;
2588 if (ret > 0 && path->slots[0] > 0)
2589 path->slots[0]--;
2590
2591 /* find out all the old extents for the file range */
2592 while (1) {
2593 struct btrfs_file_extent_item *extent;
2594 struct extent_buffer *l;
2595 int slot;
2596 u64 num_bytes;
2597 u64 offset;
2598 u64 end;
2599 u64 disk_bytenr;
2600 u64 extent_offset;
2601
2602 l = path->nodes[0];
2603 slot = path->slots[0];
2604
2605 if (slot >= btrfs_header_nritems(l)) {
2606 ret = btrfs_next_leaf(root, path);
2607 if (ret < 0)
6f519564 2608 goto out_free_path;
38c227d8
LB
2609 else if (ret > 0)
2610 break;
2611 continue;
2612 }
2613
2614 btrfs_item_key_to_cpu(l, &key, slot);
2615
2616 if (key.objectid != btrfs_ino(inode))
2617 break;
2618 if (key.type != BTRFS_EXTENT_DATA_KEY)
2619 break;
2620 if (key.offset >= new->file_pos + new->len)
2621 break;
2622
2623 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2624
2625 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2626 if (key.offset + num_bytes < new->file_pos)
2627 goto next;
2628
2629 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2630 if (!disk_bytenr)
2631 goto next;
2632
2633 extent_offset = btrfs_file_extent_offset(l, extent);
2634
2635 old = kmalloc(sizeof(*old), GFP_NOFS);
2636 if (!old)
6f519564 2637 goto out_free_path;
38c227d8
LB
2638
2639 offset = max(new->file_pos, key.offset);
2640 end = min(new->file_pos + new->len, key.offset + num_bytes);
2641
2642 old->bytenr = disk_bytenr;
2643 old->extent_offset = extent_offset;
2644 old->offset = offset - key.offset;
2645 old->len = end - offset;
2646 old->new = new;
2647 old->count = 0;
2648 list_add_tail(&old->list, &new->head);
2649next:
2650 path->slots[0]++;
2651 cond_resched();
2652 }
2653
2654 btrfs_free_path(path);
2655 atomic_inc(&root->fs_info->defrag_running);
2656
2657 return new;
2658
38c227d8
LB
2659out_free_path:
2660 btrfs_free_path(path);
2661out_kfree:
6f519564 2662 free_sa_defrag_extent(new);
38c227d8
LB
2663 return NULL;
2664}
2665
e570fd27
MX
2666static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2667 u64 start, u64 len)
2668{
2669 struct btrfs_block_group_cache *cache;
2670
2671 cache = btrfs_lookup_block_group(root->fs_info, start);
2672 ASSERT(cache);
2673
2674 spin_lock(&cache->lock);
2675 cache->delalloc_bytes -= len;
2676 spin_unlock(&cache->lock);
2677
2678 btrfs_put_block_group(cache);
2679}
2680
d352ac68
CM
2681/* as ordered data IO finishes, this gets called so we can finish
2682 * an ordered extent if the range of bytes in the file it covers are
2683 * fully written.
2684 */
5fd02043 2685static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2686{
5fd02043 2687 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2688 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2689 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2690 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2691 struct extent_state *cached_state = NULL;
38c227d8 2692 struct new_sa_defrag_extent *new = NULL;
261507a0 2693 int compress_type = 0;
77cef2ec
JB
2694 int ret = 0;
2695 u64 logical_len = ordered_extent->len;
82d5902d 2696 bool nolock;
77cef2ec 2697 bool truncated = false;
e6dcd2dc 2698
83eea1f1 2699 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2700
5fd02043
JB
2701 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2702 ret = -EIO;
2703 goto out;
2704 }
2705
77cef2ec
JB
2706 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2707 truncated = true;
2708 logical_len = ordered_extent->truncated_len;
2709 /* Truncated the entire extent, don't bother adding */
2710 if (!logical_len)
2711 goto out;
2712 }
2713
c2167754 2714 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2715 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2716 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2717 if (nolock)
2718 trans = btrfs_join_transaction_nolock(root);
2719 else
2720 trans = btrfs_join_transaction(root);
2721 if (IS_ERR(trans)) {
2722 ret = PTR_ERR(trans);
2723 trans = NULL;
2724 goto out;
c2167754 2725 }
6c760c07
JB
2726 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2727 ret = btrfs_update_inode_fallback(trans, root, inode);
2728 if (ret) /* -ENOMEM or corruption */
2729 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2730 goto out;
2731 }
e6dcd2dc 2732
2ac55d41
JB
2733 lock_extent_bits(io_tree, ordered_extent->file_offset,
2734 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2735 0, &cached_state);
e6dcd2dc 2736
38c227d8
LB
2737 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2738 ordered_extent->file_offset + ordered_extent->len - 1,
2739 EXTENT_DEFRAG, 1, cached_state);
2740 if (ret) {
2741 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2742 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2743 /* the inode is shared */
2744 new = record_old_file_extents(inode, ordered_extent);
2745
2746 clear_extent_bit(io_tree, ordered_extent->file_offset,
2747 ordered_extent->file_offset + ordered_extent->len - 1,
2748 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2749 }
2750
0cb59c99 2751 if (nolock)
7a7eaa40 2752 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2753 else
7a7eaa40 2754 trans = btrfs_join_transaction(root);
79787eaa
JM
2755 if (IS_ERR(trans)) {
2756 ret = PTR_ERR(trans);
2757 trans = NULL;
2758 goto out_unlock;
2759 }
a79b7d4b 2760
0ca1f7ce 2761 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2762
c8b97818 2763 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2764 compress_type = ordered_extent->compress_type;
d899e052 2765 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2766 BUG_ON(compress_type);
920bbbfb 2767 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2768 ordered_extent->file_offset,
2769 ordered_extent->file_offset +
77cef2ec 2770 logical_len);
d899e052 2771 } else {
0af3d00b 2772 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2773 ret = insert_reserved_file_extent(trans, inode,
2774 ordered_extent->file_offset,
2775 ordered_extent->start,
2776 ordered_extent->disk_len,
77cef2ec 2777 logical_len, logical_len,
261507a0 2778 compress_type, 0, 0,
d899e052 2779 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2780 if (!ret)
2781 btrfs_release_delalloc_bytes(root,
2782 ordered_extent->start,
2783 ordered_extent->disk_len);
d899e052 2784 }
5dc562c5
JB
2785 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2786 ordered_extent->file_offset, ordered_extent->len,
2787 trans->transid);
79787eaa
JM
2788 if (ret < 0) {
2789 btrfs_abort_transaction(trans, root, ret);
5fd02043 2790 goto out_unlock;
79787eaa 2791 }
2ac55d41 2792
e6dcd2dc
CM
2793 add_pending_csums(trans, inode, ordered_extent->file_offset,
2794 &ordered_extent->list);
2795
6c760c07
JB
2796 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2797 ret = btrfs_update_inode_fallback(trans, root, inode);
2798 if (ret) { /* -ENOMEM or corruption */
2799 btrfs_abort_transaction(trans, root, ret);
2800 goto out_unlock;
1ef30be1
JB
2801 }
2802 ret = 0;
5fd02043
JB
2803out_unlock:
2804 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2805 ordered_extent->file_offset +
2806 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2807out:
5b0e95bf 2808 if (root != root->fs_info->tree_root)
0cb59c99 2809 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2810 if (trans)
2811 btrfs_end_transaction(trans, root);
0cb59c99 2812
77cef2ec
JB
2813 if (ret || truncated) {
2814 u64 start, end;
2815
2816 if (truncated)
2817 start = ordered_extent->file_offset + logical_len;
2818 else
2819 start = ordered_extent->file_offset;
2820 end = ordered_extent->file_offset + ordered_extent->len - 1;
2821 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2822
2823 /* Drop the cache for the part of the extent we didn't write. */
2824 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2825
0bec9ef5
JB
2826 /*
2827 * If the ordered extent had an IOERR or something else went
2828 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2829 * back to the allocator. We only free the extent in the
2830 * truncated case if we didn't write out the extent at all.
0bec9ef5 2831 */
77cef2ec
JB
2832 if ((ret || !logical_len) &&
2833 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2834 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2835 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2836 ordered_extent->disk_len, 1);
0bec9ef5
JB
2837 }
2838
2839
5fd02043 2840 /*
8bad3c02
LB
2841 * This needs to be done to make sure anybody waiting knows we are done
2842 * updating everything for this ordered extent.
5fd02043
JB
2843 */
2844 btrfs_remove_ordered_extent(inode, ordered_extent);
2845
38c227d8 2846 /* for snapshot-aware defrag */
6f519564
LB
2847 if (new) {
2848 if (ret) {
2849 free_sa_defrag_extent(new);
2850 atomic_dec(&root->fs_info->defrag_running);
2851 } else {
2852 relink_file_extents(new);
2853 }
2854 }
38c227d8 2855
e6dcd2dc
CM
2856 /* once for us */
2857 btrfs_put_ordered_extent(ordered_extent);
2858 /* once for the tree */
2859 btrfs_put_ordered_extent(ordered_extent);
2860
5fd02043
JB
2861 return ret;
2862}
2863
2864static void finish_ordered_fn(struct btrfs_work *work)
2865{
2866 struct btrfs_ordered_extent *ordered_extent;
2867 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2868 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2869}
2870
b2950863 2871static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2872 struct extent_state *state, int uptodate)
2873{
5fd02043
JB
2874 struct inode *inode = page->mapping->host;
2875 struct btrfs_root *root = BTRFS_I(inode)->root;
2876 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
2877 struct btrfs_workqueue *wq;
2878 btrfs_work_func_t func;
5fd02043 2879
1abe9b8a 2880 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2881
8b62b72b 2882 ClearPagePrivate2(page);
5fd02043
JB
2883 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2884 end - start + 1, uptodate))
2885 return 0;
2886
9e0af237
LB
2887 if (btrfs_is_free_space_inode(inode)) {
2888 wq = root->fs_info->endio_freespace_worker;
2889 func = btrfs_freespace_write_helper;
2890 } else {
2891 wq = root->fs_info->endio_write_workers;
2892 func = btrfs_endio_write_helper;
2893 }
5fd02043 2894
9e0af237
LB
2895 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2896 NULL);
2897 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
2898
2899 return 0;
211f90e6
CM
2900}
2901
dc380aea
MX
2902static int __readpage_endio_check(struct inode *inode,
2903 struct btrfs_io_bio *io_bio,
2904 int icsum, struct page *page,
2905 int pgoff, u64 start, size_t len)
2906{
2907 char *kaddr;
2908 u32 csum_expected;
2909 u32 csum = ~(u32)0;
2910 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2911 DEFAULT_RATELIMIT_BURST);
2912
2913 csum_expected = *(((u32 *)io_bio->csum) + icsum);
2914
2915 kaddr = kmap_atomic(page);
2916 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
2917 btrfs_csum_final(csum, (char *)&csum);
2918 if (csum != csum_expected)
2919 goto zeroit;
2920
2921 kunmap_atomic(kaddr);
2922 return 0;
2923zeroit:
2924 if (__ratelimit(&_rs))
2925 btrfs_info(BTRFS_I(inode)->root->fs_info,
2926 "csum failed ino %llu off %llu csum %u expected csum %u",
2927 btrfs_ino(inode), start, csum, csum_expected);
2928 memset(kaddr + pgoff, 1, len);
2929 flush_dcache_page(page);
2930 kunmap_atomic(kaddr);
2931 if (csum_expected == 0)
2932 return 0;
2933 return -EIO;
2934}
2935
d352ac68
CM
2936/*
2937 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2938 * if there's a match, we allow the bio to finish. If not, the code in
2939 * extent_io.c will try to find good copies for us.
d352ac68 2940 */
facc8a22
MX
2941static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2942 u64 phy_offset, struct page *page,
2943 u64 start, u64 end, int mirror)
07157aac 2944{
4eee4fa4 2945 size_t offset = start - page_offset(page);
07157aac 2946 struct inode *inode = page->mapping->host;
d1310b2e 2947 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2948 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2949
d20f7043
CM
2950 if (PageChecked(page)) {
2951 ClearPageChecked(page);
dc380aea 2952 return 0;
d20f7043 2953 }
6cbff00f
CH
2954
2955 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2956 return 0;
17d217fe
YZ
2957
2958 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2959 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2960 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2961 GFP_NOFS);
b6cda9bc 2962 return 0;
17d217fe 2963 }
d20f7043 2964
facc8a22 2965 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
2966 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
2967 start, (size_t)(end - start + 1));
07157aac 2968}
b888db2b 2969
24bbcf04
YZ
2970struct delayed_iput {
2971 struct list_head list;
2972 struct inode *inode;
2973};
2974
79787eaa
JM
2975/* JDM: If this is fs-wide, why can't we add a pointer to
2976 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2977void btrfs_add_delayed_iput(struct inode *inode)
2978{
2979 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2980 struct delayed_iput *delayed;
2981
2982 if (atomic_add_unless(&inode->i_count, -1, 1))
2983 return;
2984
2985 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2986 delayed->inode = inode;
2987
2988 spin_lock(&fs_info->delayed_iput_lock);
2989 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2990 spin_unlock(&fs_info->delayed_iput_lock);
2991}
2992
2993void btrfs_run_delayed_iputs(struct btrfs_root *root)
2994{
2995 LIST_HEAD(list);
2996 struct btrfs_fs_info *fs_info = root->fs_info;
2997 struct delayed_iput *delayed;
2998 int empty;
2999
3000 spin_lock(&fs_info->delayed_iput_lock);
3001 empty = list_empty(&fs_info->delayed_iputs);
3002 spin_unlock(&fs_info->delayed_iput_lock);
3003 if (empty)
3004 return;
3005
24bbcf04
YZ
3006 spin_lock(&fs_info->delayed_iput_lock);
3007 list_splice_init(&fs_info->delayed_iputs, &list);
3008 spin_unlock(&fs_info->delayed_iput_lock);
3009
3010 while (!list_empty(&list)) {
3011 delayed = list_entry(list.next, struct delayed_iput, list);
3012 list_del(&delayed->list);
3013 iput(delayed->inode);
3014 kfree(delayed);
3015 }
24bbcf04
YZ
3016}
3017
d68fc57b 3018/*
42b2aa86 3019 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3020 * files in the subvolume, it removes orphan item and frees block_rsv
3021 * structure.
3022 */
3023void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3024 struct btrfs_root *root)
3025{
90290e19 3026 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3027 int ret;
3028
8a35d95f 3029 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3030 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3031 return;
3032
90290e19 3033 spin_lock(&root->orphan_lock);
8a35d95f 3034 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3035 spin_unlock(&root->orphan_lock);
3036 return;
3037 }
3038
3039 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3040 spin_unlock(&root->orphan_lock);
3041 return;
3042 }
3043
3044 block_rsv = root->orphan_block_rsv;
3045 root->orphan_block_rsv = NULL;
3046 spin_unlock(&root->orphan_lock);
3047
27cdeb70 3048 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3049 btrfs_root_refs(&root->root_item) > 0) {
3050 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3051 root->root_key.objectid);
4ef31a45
JB
3052 if (ret)
3053 btrfs_abort_transaction(trans, root, ret);
3054 else
27cdeb70
MX
3055 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3056 &root->state);
d68fc57b
YZ
3057 }
3058
90290e19
JB
3059 if (block_rsv) {
3060 WARN_ON(block_rsv->size > 0);
3061 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3062 }
3063}
3064
7b128766
JB
3065/*
3066 * This creates an orphan entry for the given inode in case something goes
3067 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3068 *
3069 * NOTE: caller of this function should reserve 5 units of metadata for
3070 * this function.
7b128766
JB
3071 */
3072int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3073{
3074 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3075 struct btrfs_block_rsv *block_rsv = NULL;
3076 int reserve = 0;
3077 int insert = 0;
3078 int ret;
7b128766 3079
d68fc57b 3080 if (!root->orphan_block_rsv) {
66d8f3dd 3081 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3082 if (!block_rsv)
3083 return -ENOMEM;
d68fc57b 3084 }
7b128766 3085
d68fc57b
YZ
3086 spin_lock(&root->orphan_lock);
3087 if (!root->orphan_block_rsv) {
3088 root->orphan_block_rsv = block_rsv;
3089 } else if (block_rsv) {
3090 btrfs_free_block_rsv(root, block_rsv);
3091 block_rsv = NULL;
7b128766 3092 }
7b128766 3093
8a35d95f
JB
3094 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3095 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3096#if 0
3097 /*
3098 * For proper ENOSPC handling, we should do orphan
3099 * cleanup when mounting. But this introduces backward
3100 * compatibility issue.
3101 */
3102 if (!xchg(&root->orphan_item_inserted, 1))
3103 insert = 2;
3104 else
3105 insert = 1;
3106#endif
3107 insert = 1;
321f0e70 3108 atomic_inc(&root->orphan_inodes);
7b128766
JB
3109 }
3110
72ac3c0d
JB
3111 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3112 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3113 reserve = 1;
d68fc57b 3114 spin_unlock(&root->orphan_lock);
7b128766 3115
d68fc57b
YZ
3116 /* grab metadata reservation from transaction handle */
3117 if (reserve) {
3118 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3119 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3120 }
7b128766 3121
d68fc57b
YZ
3122 /* insert an orphan item to track this unlinked/truncated file */
3123 if (insert >= 1) {
33345d01 3124 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3125 if (ret) {
703c88e0 3126 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3127 if (reserve) {
3128 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3129 &BTRFS_I(inode)->runtime_flags);
3130 btrfs_orphan_release_metadata(inode);
3131 }
3132 if (ret != -EEXIST) {
e8e7cff6
JB
3133 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3134 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3135 btrfs_abort_transaction(trans, root, ret);
3136 return ret;
3137 }
79787eaa
JM
3138 }
3139 ret = 0;
d68fc57b
YZ
3140 }
3141
3142 /* insert an orphan item to track subvolume contains orphan files */
3143 if (insert >= 2) {
3144 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3145 root->root_key.objectid);
79787eaa
JM
3146 if (ret && ret != -EEXIST) {
3147 btrfs_abort_transaction(trans, root, ret);
3148 return ret;
3149 }
d68fc57b
YZ
3150 }
3151 return 0;
7b128766
JB
3152}
3153
3154/*
3155 * We have done the truncate/delete so we can go ahead and remove the orphan
3156 * item for this particular inode.
3157 */
48a3b636
ES
3158static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3159 struct inode *inode)
7b128766
JB
3160{
3161 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3162 int delete_item = 0;
3163 int release_rsv = 0;
7b128766
JB
3164 int ret = 0;
3165
d68fc57b 3166 spin_lock(&root->orphan_lock);
8a35d95f
JB
3167 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3168 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3169 delete_item = 1;
7b128766 3170
72ac3c0d
JB
3171 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3172 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3173 release_rsv = 1;
d68fc57b 3174 spin_unlock(&root->orphan_lock);
7b128766 3175
703c88e0 3176 if (delete_item) {
8a35d95f 3177 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3178 if (trans)
3179 ret = btrfs_del_orphan_item(trans, root,
3180 btrfs_ino(inode));
8a35d95f 3181 }
7b128766 3182
703c88e0
FDBM
3183 if (release_rsv)
3184 btrfs_orphan_release_metadata(inode);
3185
4ef31a45 3186 return ret;
7b128766
JB
3187}
3188
3189/*
3190 * this cleans up any orphans that may be left on the list from the last use
3191 * of this root.
3192 */
66b4ffd1 3193int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3194{
3195 struct btrfs_path *path;
3196 struct extent_buffer *leaf;
7b128766
JB
3197 struct btrfs_key key, found_key;
3198 struct btrfs_trans_handle *trans;
3199 struct inode *inode;
8f6d7f4f 3200 u64 last_objectid = 0;
7b128766
JB
3201 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3202
d68fc57b 3203 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3204 return 0;
c71bf099
YZ
3205
3206 path = btrfs_alloc_path();
66b4ffd1
JB
3207 if (!path) {
3208 ret = -ENOMEM;
3209 goto out;
3210 }
7b128766
JB
3211 path->reada = -1;
3212
3213 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3214 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3215 key.offset = (u64)-1;
3216
7b128766
JB
3217 while (1) {
3218 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3219 if (ret < 0)
3220 goto out;
7b128766
JB
3221
3222 /*
3223 * if ret == 0 means we found what we were searching for, which
25985edc 3224 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3225 * find the key and see if we have stuff that matches
3226 */
3227 if (ret > 0) {
66b4ffd1 3228 ret = 0;
7b128766
JB
3229 if (path->slots[0] == 0)
3230 break;
3231 path->slots[0]--;
3232 }
3233
3234 /* pull out the item */
3235 leaf = path->nodes[0];
7b128766
JB
3236 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3237
3238 /* make sure the item matches what we want */
3239 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3240 break;
962a298f 3241 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3242 break;
3243
3244 /* release the path since we're done with it */
b3b4aa74 3245 btrfs_release_path(path);
7b128766
JB
3246
3247 /*
3248 * this is where we are basically btrfs_lookup, without the
3249 * crossing root thing. we store the inode number in the
3250 * offset of the orphan item.
3251 */
8f6d7f4f
JB
3252
3253 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3254 btrfs_err(root->fs_info,
3255 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3256 ret = -EINVAL;
3257 goto out;
3258 }
3259
3260 last_objectid = found_key.offset;
3261
5d4f98a2
YZ
3262 found_key.objectid = found_key.offset;
3263 found_key.type = BTRFS_INODE_ITEM_KEY;
3264 found_key.offset = 0;
73f73415 3265 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3266 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3267 if (ret && ret != -ESTALE)
66b4ffd1 3268 goto out;
7b128766 3269
f8e9e0b0
AJ
3270 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3271 struct btrfs_root *dead_root;
3272 struct btrfs_fs_info *fs_info = root->fs_info;
3273 int is_dead_root = 0;
3274
3275 /*
3276 * this is an orphan in the tree root. Currently these
3277 * could come from 2 sources:
3278 * a) a snapshot deletion in progress
3279 * b) a free space cache inode
3280 * We need to distinguish those two, as the snapshot
3281 * orphan must not get deleted.
3282 * find_dead_roots already ran before us, so if this
3283 * is a snapshot deletion, we should find the root
3284 * in the dead_roots list
3285 */
3286 spin_lock(&fs_info->trans_lock);
3287 list_for_each_entry(dead_root, &fs_info->dead_roots,
3288 root_list) {
3289 if (dead_root->root_key.objectid ==
3290 found_key.objectid) {
3291 is_dead_root = 1;
3292 break;
3293 }
3294 }
3295 spin_unlock(&fs_info->trans_lock);
3296 if (is_dead_root) {
3297 /* prevent this orphan from being found again */
3298 key.offset = found_key.objectid - 1;
3299 continue;
3300 }
3301 }
7b128766 3302 /*
a8c9e576
JB
3303 * Inode is already gone but the orphan item is still there,
3304 * kill the orphan item.
7b128766 3305 */
a8c9e576
JB
3306 if (ret == -ESTALE) {
3307 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3308 if (IS_ERR(trans)) {
3309 ret = PTR_ERR(trans);
3310 goto out;
3311 }
c2cf52eb
SK
3312 btrfs_debug(root->fs_info, "auto deleting %Lu",
3313 found_key.objectid);
a8c9e576
JB
3314 ret = btrfs_del_orphan_item(trans, root,
3315 found_key.objectid);
5b21f2ed 3316 btrfs_end_transaction(trans, root);
4ef31a45
JB
3317 if (ret)
3318 goto out;
7b128766
JB
3319 continue;
3320 }
3321
a8c9e576
JB
3322 /*
3323 * add this inode to the orphan list so btrfs_orphan_del does
3324 * the proper thing when we hit it
3325 */
8a35d95f
JB
3326 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3327 &BTRFS_I(inode)->runtime_flags);
925396ec 3328 atomic_inc(&root->orphan_inodes);
a8c9e576 3329
7b128766
JB
3330 /* if we have links, this was a truncate, lets do that */
3331 if (inode->i_nlink) {
fae7f21c 3332 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3333 iput(inode);
3334 continue;
3335 }
7b128766 3336 nr_truncate++;
f3fe820c
JB
3337
3338 /* 1 for the orphan item deletion. */
3339 trans = btrfs_start_transaction(root, 1);
3340 if (IS_ERR(trans)) {
c69b26b0 3341 iput(inode);
f3fe820c
JB
3342 ret = PTR_ERR(trans);
3343 goto out;
3344 }
3345 ret = btrfs_orphan_add(trans, inode);
3346 btrfs_end_transaction(trans, root);
c69b26b0
JB
3347 if (ret) {
3348 iput(inode);
f3fe820c 3349 goto out;
c69b26b0 3350 }
f3fe820c 3351
66b4ffd1 3352 ret = btrfs_truncate(inode);
4a7d0f68
JB
3353 if (ret)
3354 btrfs_orphan_del(NULL, inode);
7b128766
JB
3355 } else {
3356 nr_unlink++;
3357 }
3358
3359 /* this will do delete_inode and everything for us */
3360 iput(inode);
66b4ffd1
JB
3361 if (ret)
3362 goto out;
7b128766 3363 }
3254c876
MX
3364 /* release the path since we're done with it */
3365 btrfs_release_path(path);
3366
d68fc57b
YZ
3367 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3368
3369 if (root->orphan_block_rsv)
3370 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3371 (u64)-1);
3372
27cdeb70
MX
3373 if (root->orphan_block_rsv ||
3374 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3375 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3376 if (!IS_ERR(trans))
3377 btrfs_end_transaction(trans, root);
d68fc57b 3378 }
7b128766
JB
3379
3380 if (nr_unlink)
4884b476 3381 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3382 if (nr_truncate)
4884b476 3383 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3384
3385out:
3386 if (ret)
c2cf52eb
SK
3387 btrfs_crit(root->fs_info,
3388 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3389 btrfs_free_path(path);
3390 return ret;
7b128766
JB
3391}
3392
46a53cca
CM
3393/*
3394 * very simple check to peek ahead in the leaf looking for xattrs. If we
3395 * don't find any xattrs, we know there can't be any acls.
3396 *
3397 * slot is the slot the inode is in, objectid is the objectid of the inode
3398 */
3399static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3400 int slot, u64 objectid,
3401 int *first_xattr_slot)
46a53cca
CM
3402{
3403 u32 nritems = btrfs_header_nritems(leaf);
3404 struct btrfs_key found_key;
f23b5a59
JB
3405 static u64 xattr_access = 0;
3406 static u64 xattr_default = 0;
46a53cca
CM
3407 int scanned = 0;
3408
f23b5a59
JB
3409 if (!xattr_access) {
3410 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3411 strlen(POSIX_ACL_XATTR_ACCESS));
3412 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3413 strlen(POSIX_ACL_XATTR_DEFAULT));
3414 }
3415
46a53cca 3416 slot++;
63541927 3417 *first_xattr_slot = -1;
46a53cca
CM
3418 while (slot < nritems) {
3419 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3420
3421 /* we found a different objectid, there must not be acls */
3422 if (found_key.objectid != objectid)
3423 return 0;
3424
3425 /* we found an xattr, assume we've got an acl */
f23b5a59 3426 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3427 if (*first_xattr_slot == -1)
3428 *first_xattr_slot = slot;
f23b5a59
JB
3429 if (found_key.offset == xattr_access ||
3430 found_key.offset == xattr_default)
3431 return 1;
3432 }
46a53cca
CM
3433
3434 /*
3435 * we found a key greater than an xattr key, there can't
3436 * be any acls later on
3437 */
3438 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3439 return 0;
3440
3441 slot++;
3442 scanned++;
3443
3444 /*
3445 * it goes inode, inode backrefs, xattrs, extents,
3446 * so if there are a ton of hard links to an inode there can
3447 * be a lot of backrefs. Don't waste time searching too hard,
3448 * this is just an optimization
3449 */
3450 if (scanned >= 8)
3451 break;
3452 }
3453 /* we hit the end of the leaf before we found an xattr or
3454 * something larger than an xattr. We have to assume the inode
3455 * has acls
3456 */
63541927
FDBM
3457 if (*first_xattr_slot == -1)
3458 *first_xattr_slot = slot;
46a53cca
CM
3459 return 1;
3460}
3461
d352ac68
CM
3462/*
3463 * read an inode from the btree into the in-memory inode
3464 */
5d4f98a2 3465static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3466{
3467 struct btrfs_path *path;
5f39d397 3468 struct extent_buffer *leaf;
39279cc3 3469 struct btrfs_inode_item *inode_item;
0b86a832 3470 struct btrfs_timespec *tspec;
39279cc3
CM
3471 struct btrfs_root *root = BTRFS_I(inode)->root;
3472 struct btrfs_key location;
67de1176 3473 unsigned long ptr;
46a53cca 3474 int maybe_acls;
618e21d5 3475 u32 rdev;
39279cc3 3476 int ret;
2f7e33d4 3477 bool filled = false;
63541927 3478 int first_xattr_slot;
2f7e33d4
MX
3479
3480 ret = btrfs_fill_inode(inode, &rdev);
3481 if (!ret)
3482 filled = true;
39279cc3
CM
3483
3484 path = btrfs_alloc_path();
1748f843
MF
3485 if (!path)
3486 goto make_bad;
3487
39279cc3 3488 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3489
39279cc3 3490 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3491 if (ret)
39279cc3 3492 goto make_bad;
39279cc3 3493
5f39d397 3494 leaf = path->nodes[0];
2f7e33d4
MX
3495
3496 if (filled)
67de1176 3497 goto cache_index;
2f7e33d4 3498
5f39d397
CM
3499 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3500 struct btrfs_inode_item);
5f39d397 3501 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3502 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3503 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3504 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3505 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3506
3507 tspec = btrfs_inode_atime(inode_item);
3508 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3509 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3510
3511 tspec = btrfs_inode_mtime(inode_item);
3512 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3513 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3514
3515 tspec = btrfs_inode_ctime(inode_item);
3516 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3517 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3518
a76a3cd4 3519 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3520 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3521 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3522
3523 /*
3524 * If we were modified in the current generation and evicted from memory
3525 * and then re-read we need to do a full sync since we don't have any
3526 * idea about which extents were modified before we were evicted from
3527 * cache.
3528 */
3529 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3530 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3531 &BTRFS_I(inode)->runtime_flags);
3532
0c4d2d95 3533 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3534 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3535 inode->i_rdev = 0;
5f39d397
CM
3536 rdev = btrfs_inode_rdev(leaf, inode_item);
3537
aec7477b 3538 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3539 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3540
3541cache_index:
3542 path->slots[0]++;
3543 if (inode->i_nlink != 1 ||
3544 path->slots[0] >= btrfs_header_nritems(leaf))
3545 goto cache_acl;
3546
3547 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3548 if (location.objectid != btrfs_ino(inode))
3549 goto cache_acl;
3550
3551 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3552 if (location.type == BTRFS_INODE_REF_KEY) {
3553 struct btrfs_inode_ref *ref;
3554
3555 ref = (struct btrfs_inode_ref *)ptr;
3556 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3557 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3558 struct btrfs_inode_extref *extref;
3559
3560 extref = (struct btrfs_inode_extref *)ptr;
3561 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3562 extref);
3563 }
2f7e33d4 3564cache_acl:
46a53cca
CM
3565 /*
3566 * try to precache a NULL acl entry for files that don't have
3567 * any xattrs or acls
3568 */
33345d01 3569 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3570 btrfs_ino(inode), &first_xattr_slot);
3571 if (first_xattr_slot != -1) {
3572 path->slots[0] = first_xattr_slot;
3573 ret = btrfs_load_inode_props(inode, path);
3574 if (ret)
3575 btrfs_err(root->fs_info,
351fd353 3576 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3577 btrfs_ino(inode),
3578 root->root_key.objectid, ret);
3579 }
3580 btrfs_free_path(path);
3581
72c04902
AV
3582 if (!maybe_acls)
3583 cache_no_acl(inode);
46a53cca 3584
39279cc3 3585 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3586 case S_IFREG:
3587 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3588 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3589 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3590 inode->i_fop = &btrfs_file_operations;
3591 inode->i_op = &btrfs_file_inode_operations;
3592 break;
3593 case S_IFDIR:
3594 inode->i_fop = &btrfs_dir_file_operations;
3595 if (root == root->fs_info->tree_root)
3596 inode->i_op = &btrfs_dir_ro_inode_operations;
3597 else
3598 inode->i_op = &btrfs_dir_inode_operations;
3599 break;
3600 case S_IFLNK:
3601 inode->i_op = &btrfs_symlink_inode_operations;
3602 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3603 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3604 break;
618e21d5 3605 default:
0279b4cd 3606 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3607 init_special_inode(inode, inode->i_mode, rdev);
3608 break;
39279cc3 3609 }
6cbff00f
CH
3610
3611 btrfs_update_iflags(inode);
39279cc3
CM
3612 return;
3613
3614make_bad:
39279cc3 3615 btrfs_free_path(path);
39279cc3
CM
3616 make_bad_inode(inode);
3617}
3618
d352ac68
CM
3619/*
3620 * given a leaf and an inode, copy the inode fields into the leaf
3621 */
e02119d5
CM
3622static void fill_inode_item(struct btrfs_trans_handle *trans,
3623 struct extent_buffer *leaf,
5f39d397 3624 struct btrfs_inode_item *item,
39279cc3
CM
3625 struct inode *inode)
3626{
51fab693
LB
3627 struct btrfs_map_token token;
3628
3629 btrfs_init_map_token(&token);
5f39d397 3630
51fab693
LB
3631 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3632 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3633 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3634 &token);
3635 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3636 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3637
51fab693
LB
3638 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3639 inode->i_atime.tv_sec, &token);
3640 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3641 inode->i_atime.tv_nsec, &token);
5f39d397 3642
51fab693
LB
3643 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3644 inode->i_mtime.tv_sec, &token);
3645 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3646 inode->i_mtime.tv_nsec, &token);
5f39d397 3647
51fab693
LB
3648 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3649 inode->i_ctime.tv_sec, &token);
3650 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3651 inode->i_ctime.tv_nsec, &token);
5f39d397 3652
51fab693
LB
3653 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3654 &token);
3655 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3656 &token);
3657 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3658 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3659 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3660 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3661 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3662}
3663
d352ac68
CM
3664/*
3665 * copy everything in the in-memory inode into the btree.
3666 */
2115133f 3667static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3668 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3669{
3670 struct btrfs_inode_item *inode_item;
3671 struct btrfs_path *path;
5f39d397 3672 struct extent_buffer *leaf;
39279cc3
CM
3673 int ret;
3674
3675 path = btrfs_alloc_path();
16cdcec7
MX
3676 if (!path)
3677 return -ENOMEM;
3678
b9473439 3679 path->leave_spinning = 1;
16cdcec7
MX
3680 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3681 1);
39279cc3
CM
3682 if (ret) {
3683 if (ret > 0)
3684 ret = -ENOENT;
3685 goto failed;
3686 }
3687
5f39d397
CM
3688 leaf = path->nodes[0];
3689 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3690 struct btrfs_inode_item);
39279cc3 3691
e02119d5 3692 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3693 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3694 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3695 ret = 0;
3696failed:
39279cc3
CM
3697 btrfs_free_path(path);
3698 return ret;
3699}
3700
2115133f
CM
3701/*
3702 * copy everything in the in-memory inode into the btree.
3703 */
3704noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3705 struct btrfs_root *root, struct inode *inode)
3706{
3707 int ret;
3708
3709 /*
3710 * If the inode is a free space inode, we can deadlock during commit
3711 * if we put it into the delayed code.
3712 *
3713 * The data relocation inode should also be directly updated
3714 * without delay
3715 */
83eea1f1 3716 if (!btrfs_is_free_space_inode(inode)
2115133f 3717 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3718 btrfs_update_root_times(trans, root);
3719
2115133f
CM
3720 ret = btrfs_delayed_update_inode(trans, root, inode);
3721 if (!ret)
3722 btrfs_set_inode_last_trans(trans, inode);
3723 return ret;
3724 }
3725
3726 return btrfs_update_inode_item(trans, root, inode);
3727}
3728
be6aef60
JB
3729noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3730 struct btrfs_root *root,
3731 struct inode *inode)
2115133f
CM
3732{
3733 int ret;
3734
3735 ret = btrfs_update_inode(trans, root, inode);
3736 if (ret == -ENOSPC)
3737 return btrfs_update_inode_item(trans, root, inode);
3738 return ret;
3739}
3740
d352ac68
CM
3741/*
3742 * unlink helper that gets used here in inode.c and in the tree logging
3743 * recovery code. It remove a link in a directory with a given name, and
3744 * also drops the back refs in the inode to the directory
3745 */
92986796
AV
3746static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3747 struct btrfs_root *root,
3748 struct inode *dir, struct inode *inode,
3749 const char *name, int name_len)
39279cc3
CM
3750{
3751 struct btrfs_path *path;
39279cc3 3752 int ret = 0;
5f39d397 3753 struct extent_buffer *leaf;
39279cc3 3754 struct btrfs_dir_item *di;
5f39d397 3755 struct btrfs_key key;
aec7477b 3756 u64 index;
33345d01
LZ
3757 u64 ino = btrfs_ino(inode);
3758 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3759
3760 path = btrfs_alloc_path();
54aa1f4d
CM
3761 if (!path) {
3762 ret = -ENOMEM;
554233a6 3763 goto out;
54aa1f4d
CM
3764 }
3765
b9473439 3766 path->leave_spinning = 1;
33345d01 3767 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3768 name, name_len, -1);
3769 if (IS_ERR(di)) {
3770 ret = PTR_ERR(di);
3771 goto err;
3772 }
3773 if (!di) {
3774 ret = -ENOENT;
3775 goto err;
3776 }
5f39d397
CM
3777 leaf = path->nodes[0];
3778 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3779 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3780 if (ret)
3781 goto err;
b3b4aa74 3782 btrfs_release_path(path);
39279cc3 3783
67de1176
MX
3784 /*
3785 * If we don't have dir index, we have to get it by looking up
3786 * the inode ref, since we get the inode ref, remove it directly,
3787 * it is unnecessary to do delayed deletion.
3788 *
3789 * But if we have dir index, needn't search inode ref to get it.
3790 * Since the inode ref is close to the inode item, it is better
3791 * that we delay to delete it, and just do this deletion when
3792 * we update the inode item.
3793 */
3794 if (BTRFS_I(inode)->dir_index) {
3795 ret = btrfs_delayed_delete_inode_ref(inode);
3796 if (!ret) {
3797 index = BTRFS_I(inode)->dir_index;
3798 goto skip_backref;
3799 }
3800 }
3801
33345d01
LZ
3802 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3803 dir_ino, &index);
aec7477b 3804 if (ret) {
c2cf52eb
SK
3805 btrfs_info(root->fs_info,
3806 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3807 name_len, name, ino, dir_ino);
79787eaa 3808 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3809 goto err;
3810 }
67de1176 3811skip_backref:
16cdcec7 3812 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3813 if (ret) {
3814 btrfs_abort_transaction(trans, root, ret);
39279cc3 3815 goto err;
79787eaa 3816 }
39279cc3 3817
e02119d5 3818 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3819 inode, dir_ino);
79787eaa
JM
3820 if (ret != 0 && ret != -ENOENT) {
3821 btrfs_abort_transaction(trans, root, ret);
3822 goto err;
3823 }
e02119d5
CM
3824
3825 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3826 dir, index);
6418c961
CM
3827 if (ret == -ENOENT)
3828 ret = 0;
d4e3991b
ZB
3829 else if (ret)
3830 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3831err:
3832 btrfs_free_path(path);
e02119d5
CM
3833 if (ret)
3834 goto out;
3835
3836 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3837 inode_inc_iversion(inode);
3838 inode_inc_iversion(dir);
e02119d5 3839 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3840 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3841out:
39279cc3
CM
3842 return ret;
3843}
3844
92986796
AV
3845int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3846 struct btrfs_root *root,
3847 struct inode *dir, struct inode *inode,
3848 const char *name, int name_len)
3849{
3850 int ret;
3851 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3852 if (!ret) {
8b558c5f 3853 drop_nlink(inode);
92986796
AV
3854 ret = btrfs_update_inode(trans, root, inode);
3855 }
3856 return ret;
3857}
39279cc3 3858
a22285a6
YZ
3859/*
3860 * helper to start transaction for unlink and rmdir.
3861 *
d52be818
JB
3862 * unlink and rmdir are special in btrfs, they do not always free space, so
3863 * if we cannot make our reservations the normal way try and see if there is
3864 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3865 * allow the unlink to occur.
a22285a6 3866 */
d52be818 3867static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3868{
39279cc3 3869 struct btrfs_trans_handle *trans;
a22285a6 3870 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3871 int ret;
3872
e70bea5f
JB
3873 /*
3874 * 1 for the possible orphan item
3875 * 1 for the dir item
3876 * 1 for the dir index
3877 * 1 for the inode ref
e70bea5f
JB
3878 * 1 for the inode
3879 */
6e137ed3 3880 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3881 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3882 return trans;
4df27c4d 3883
d52be818
JB
3884 if (PTR_ERR(trans) == -ENOSPC) {
3885 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3886
d52be818
JB
3887 trans = btrfs_start_transaction(root, 0);
3888 if (IS_ERR(trans))
3889 return trans;
3890 ret = btrfs_cond_migrate_bytes(root->fs_info,
3891 &root->fs_info->trans_block_rsv,
3892 num_bytes, 5);
3893 if (ret) {
3894 btrfs_end_transaction(trans, root);
3895 return ERR_PTR(ret);
a22285a6 3896 }
5a77d76c 3897 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3898 trans->bytes_reserved = num_bytes;
a22285a6 3899 }
d52be818 3900 return trans;
a22285a6
YZ
3901}
3902
3903static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3904{
3905 struct btrfs_root *root = BTRFS_I(dir)->root;
3906 struct btrfs_trans_handle *trans;
3907 struct inode *inode = dentry->d_inode;
3908 int ret;
a22285a6 3909
d52be818 3910 trans = __unlink_start_trans(dir);
a22285a6
YZ
3911 if (IS_ERR(trans))
3912 return PTR_ERR(trans);
5f39d397 3913
12fcfd22
CM
3914 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3915
e02119d5
CM
3916 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3917 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3918 if (ret)
3919 goto out;
7b128766 3920
a22285a6 3921 if (inode->i_nlink == 0) {
7b128766 3922 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3923 if (ret)
3924 goto out;
a22285a6 3925 }
7b128766 3926
b532402e 3927out:
d52be818 3928 btrfs_end_transaction(trans, root);
b53d3f5d 3929 btrfs_btree_balance_dirty(root);
39279cc3
CM
3930 return ret;
3931}
3932
4df27c4d
YZ
3933int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3934 struct btrfs_root *root,
3935 struct inode *dir, u64 objectid,
3936 const char *name, int name_len)
3937{
3938 struct btrfs_path *path;
3939 struct extent_buffer *leaf;
3940 struct btrfs_dir_item *di;
3941 struct btrfs_key key;
3942 u64 index;
3943 int ret;
33345d01 3944 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3945
3946 path = btrfs_alloc_path();
3947 if (!path)
3948 return -ENOMEM;
3949
33345d01 3950 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3951 name, name_len, -1);
79787eaa
JM
3952 if (IS_ERR_OR_NULL(di)) {
3953 if (!di)
3954 ret = -ENOENT;
3955 else
3956 ret = PTR_ERR(di);
3957 goto out;
3958 }
4df27c4d
YZ
3959
3960 leaf = path->nodes[0];
3961 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3962 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3963 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3964 if (ret) {
3965 btrfs_abort_transaction(trans, root, ret);
3966 goto out;
3967 }
b3b4aa74 3968 btrfs_release_path(path);
4df27c4d
YZ
3969
3970 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3971 objectid, root->root_key.objectid,
33345d01 3972 dir_ino, &index, name, name_len);
4df27c4d 3973 if (ret < 0) {
79787eaa
JM
3974 if (ret != -ENOENT) {
3975 btrfs_abort_transaction(trans, root, ret);
3976 goto out;
3977 }
33345d01 3978 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3979 name, name_len);
79787eaa
JM
3980 if (IS_ERR_OR_NULL(di)) {
3981 if (!di)
3982 ret = -ENOENT;
3983 else
3984 ret = PTR_ERR(di);
3985 btrfs_abort_transaction(trans, root, ret);
3986 goto out;
3987 }
4df27c4d
YZ
3988
3989 leaf = path->nodes[0];
3990 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3991 btrfs_release_path(path);
4df27c4d
YZ
3992 index = key.offset;
3993 }
945d8962 3994 btrfs_release_path(path);
4df27c4d 3995
16cdcec7 3996 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3997 if (ret) {
3998 btrfs_abort_transaction(trans, root, ret);
3999 goto out;
4000 }
4df27c4d
YZ
4001
4002 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4003 inode_inc_iversion(dir);
4df27c4d 4004 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4005 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4006 if (ret)
4007 btrfs_abort_transaction(trans, root, ret);
4008out:
71d7aed0 4009 btrfs_free_path(path);
79787eaa 4010 return ret;
4df27c4d
YZ
4011}
4012
39279cc3
CM
4013static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4014{
4015 struct inode *inode = dentry->d_inode;
1832a6d5 4016 int err = 0;
39279cc3 4017 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4018 struct btrfs_trans_handle *trans;
39279cc3 4019
b3ae244e 4020 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4021 return -ENOTEMPTY;
b3ae244e
DS
4022 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4023 return -EPERM;
134d4512 4024
d52be818 4025 trans = __unlink_start_trans(dir);
a22285a6 4026 if (IS_ERR(trans))
5df6a9f6 4027 return PTR_ERR(trans);
5df6a9f6 4028
33345d01 4029 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4030 err = btrfs_unlink_subvol(trans, root, dir,
4031 BTRFS_I(inode)->location.objectid,
4032 dentry->d_name.name,
4033 dentry->d_name.len);
4034 goto out;
4035 }
4036
7b128766
JB
4037 err = btrfs_orphan_add(trans, inode);
4038 if (err)
4df27c4d 4039 goto out;
7b128766 4040
39279cc3 4041 /* now the directory is empty */
e02119d5
CM
4042 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4043 dentry->d_name.name, dentry->d_name.len);
d397712b 4044 if (!err)
dbe674a9 4045 btrfs_i_size_write(inode, 0);
4df27c4d 4046out:
d52be818 4047 btrfs_end_transaction(trans, root);
b53d3f5d 4048 btrfs_btree_balance_dirty(root);
3954401f 4049
39279cc3
CM
4050 return err;
4051}
4052
39279cc3
CM
4053/*
4054 * this can truncate away extent items, csum items and directory items.
4055 * It starts at a high offset and removes keys until it can't find
d352ac68 4056 * any higher than new_size
39279cc3
CM
4057 *
4058 * csum items that cross the new i_size are truncated to the new size
4059 * as well.
7b128766
JB
4060 *
4061 * min_type is the minimum key type to truncate down to. If set to 0, this
4062 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4063 */
8082510e
YZ
4064int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4065 struct btrfs_root *root,
4066 struct inode *inode,
4067 u64 new_size, u32 min_type)
39279cc3 4068{
39279cc3 4069 struct btrfs_path *path;
5f39d397 4070 struct extent_buffer *leaf;
39279cc3 4071 struct btrfs_file_extent_item *fi;
8082510e
YZ
4072 struct btrfs_key key;
4073 struct btrfs_key found_key;
39279cc3 4074 u64 extent_start = 0;
db94535d 4075 u64 extent_num_bytes = 0;
5d4f98a2 4076 u64 extent_offset = 0;
39279cc3 4077 u64 item_end = 0;
7f4f6e0a 4078 u64 last_size = (u64)-1;
8082510e 4079 u32 found_type = (u8)-1;
39279cc3
CM
4080 int found_extent;
4081 int del_item;
85e21bac
CM
4082 int pending_del_nr = 0;
4083 int pending_del_slot = 0;
179e29e4 4084 int extent_type = -1;
8082510e
YZ
4085 int ret;
4086 int err = 0;
33345d01 4087 u64 ino = btrfs_ino(inode);
8082510e
YZ
4088
4089 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4090
0eb0e19c
MF
4091 path = btrfs_alloc_path();
4092 if (!path)
4093 return -ENOMEM;
4094 path->reada = -1;
4095
5dc562c5
JB
4096 /*
4097 * We want to drop from the next block forward in case this new size is
4098 * not block aligned since we will be keeping the last block of the
4099 * extent just the way it is.
4100 */
27cdeb70
MX
4101 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4102 root == root->fs_info->tree_root)
fda2832f
QW
4103 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4104 root->sectorsize), (u64)-1, 0);
8082510e 4105
16cdcec7
MX
4106 /*
4107 * This function is also used to drop the items in the log tree before
4108 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4109 * it is used to drop the loged items. So we shouldn't kill the delayed
4110 * items.
4111 */
4112 if (min_type == 0 && root == BTRFS_I(inode)->root)
4113 btrfs_kill_delayed_inode_items(inode);
4114
33345d01 4115 key.objectid = ino;
39279cc3 4116 key.offset = (u64)-1;
5f39d397
CM
4117 key.type = (u8)-1;
4118
85e21bac 4119search_again:
b9473439 4120 path->leave_spinning = 1;
85e21bac 4121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4122 if (ret < 0) {
4123 err = ret;
4124 goto out;
4125 }
d397712b 4126
85e21bac 4127 if (ret > 0) {
e02119d5
CM
4128 /* there are no items in the tree for us to truncate, we're
4129 * done
4130 */
8082510e
YZ
4131 if (path->slots[0] == 0)
4132 goto out;
85e21bac
CM
4133 path->slots[0]--;
4134 }
4135
d397712b 4136 while (1) {
39279cc3 4137 fi = NULL;
5f39d397
CM
4138 leaf = path->nodes[0];
4139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4140 found_type = found_key.type;
39279cc3 4141
33345d01 4142 if (found_key.objectid != ino)
39279cc3 4143 break;
5f39d397 4144
85e21bac 4145 if (found_type < min_type)
39279cc3
CM
4146 break;
4147
5f39d397 4148 item_end = found_key.offset;
39279cc3 4149 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4150 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4151 struct btrfs_file_extent_item);
179e29e4
CM
4152 extent_type = btrfs_file_extent_type(leaf, fi);
4153 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4154 item_end +=
db94535d 4155 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4156 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4157 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4158 path->slots[0], fi);
39279cc3 4159 }
008630c1 4160 item_end--;
39279cc3 4161 }
8082510e
YZ
4162 if (found_type > min_type) {
4163 del_item = 1;
4164 } else {
4165 if (item_end < new_size)
b888db2b 4166 break;
8082510e
YZ
4167 if (found_key.offset >= new_size)
4168 del_item = 1;
4169 else
4170 del_item = 0;
39279cc3 4171 }
39279cc3 4172 found_extent = 0;
39279cc3 4173 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4174 if (found_type != BTRFS_EXTENT_DATA_KEY)
4175 goto delete;
4176
7f4f6e0a
JB
4177 if (del_item)
4178 last_size = found_key.offset;
4179 else
4180 last_size = new_size;
4181
179e29e4 4182 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4183 u64 num_dec;
db94535d 4184 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4185 if (!del_item) {
db94535d
CM
4186 u64 orig_num_bytes =
4187 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4188 extent_num_bytes = ALIGN(new_size -
4189 found_key.offset,
4190 root->sectorsize);
db94535d
CM
4191 btrfs_set_file_extent_num_bytes(leaf, fi,
4192 extent_num_bytes);
4193 num_dec = (orig_num_bytes -
9069218d 4194 extent_num_bytes);
27cdeb70
MX
4195 if (test_bit(BTRFS_ROOT_REF_COWS,
4196 &root->state) &&
4197 extent_start != 0)
a76a3cd4 4198 inode_sub_bytes(inode, num_dec);
5f39d397 4199 btrfs_mark_buffer_dirty(leaf);
39279cc3 4200 } else {
db94535d
CM
4201 extent_num_bytes =
4202 btrfs_file_extent_disk_num_bytes(leaf,
4203 fi);
5d4f98a2
YZ
4204 extent_offset = found_key.offset -
4205 btrfs_file_extent_offset(leaf, fi);
4206
39279cc3 4207 /* FIXME blocksize != 4096 */
9069218d 4208 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4209 if (extent_start != 0) {
4210 found_extent = 1;
27cdeb70
MX
4211 if (test_bit(BTRFS_ROOT_REF_COWS,
4212 &root->state))
a76a3cd4 4213 inode_sub_bytes(inode, num_dec);
e02119d5 4214 }
39279cc3 4215 }
9069218d 4216 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4217 /*
4218 * we can't truncate inline items that have had
4219 * special encodings
4220 */
4221 if (!del_item &&
4222 btrfs_file_extent_compression(leaf, fi) == 0 &&
4223 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4224 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4225 u32 size = new_size - found_key.offset;
4226
27cdeb70 4227 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
a76a3cd4
YZ
4228 inode_sub_bytes(inode, item_end + 1 -
4229 new_size);
514ac8ad
CM
4230
4231 /*
4232 * update the ram bytes to properly reflect
4233 * the new size of our item
4234 */
4235 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4236 size =
4237 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4238 btrfs_truncate_item(root, path, size, 1);
27cdeb70
MX
4239 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4240 &root->state)) {
a76a3cd4
YZ
4241 inode_sub_bytes(inode, item_end + 1 -
4242 found_key.offset);
9069218d 4243 }
39279cc3 4244 }
179e29e4 4245delete:
39279cc3 4246 if (del_item) {
85e21bac
CM
4247 if (!pending_del_nr) {
4248 /* no pending yet, add ourselves */
4249 pending_del_slot = path->slots[0];
4250 pending_del_nr = 1;
4251 } else if (pending_del_nr &&
4252 path->slots[0] + 1 == pending_del_slot) {
4253 /* hop on the pending chunk */
4254 pending_del_nr++;
4255 pending_del_slot = path->slots[0];
4256 } else {
d397712b 4257 BUG();
85e21bac 4258 }
39279cc3
CM
4259 } else {
4260 break;
4261 }
27cdeb70
MX
4262 if (found_extent &&
4263 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4264 root == root->fs_info->tree_root)) {
b9473439 4265 btrfs_set_path_blocking(path);
39279cc3 4266 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4267 extent_num_bytes, 0,
4268 btrfs_header_owner(leaf),
66d7e7f0 4269 ino, extent_offset, 0);
39279cc3
CM
4270 BUG_ON(ret);
4271 }
85e21bac 4272
8082510e
YZ
4273 if (found_type == BTRFS_INODE_ITEM_KEY)
4274 break;
4275
4276 if (path->slots[0] == 0 ||
4277 path->slots[0] != pending_del_slot) {
8082510e
YZ
4278 if (pending_del_nr) {
4279 ret = btrfs_del_items(trans, root, path,
4280 pending_del_slot,
4281 pending_del_nr);
79787eaa
JM
4282 if (ret) {
4283 btrfs_abort_transaction(trans,
4284 root, ret);
4285 goto error;
4286 }
8082510e
YZ
4287 pending_del_nr = 0;
4288 }
b3b4aa74 4289 btrfs_release_path(path);
85e21bac 4290 goto search_again;
8082510e
YZ
4291 } else {
4292 path->slots[0]--;
85e21bac 4293 }
39279cc3 4294 }
8082510e 4295out:
85e21bac
CM
4296 if (pending_del_nr) {
4297 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4298 pending_del_nr);
79787eaa
JM
4299 if (ret)
4300 btrfs_abort_transaction(trans, root, ret);
85e21bac 4301 }
79787eaa 4302error:
dac5705c
FM
4303 if (last_size != (u64)-1 &&
4304 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4305 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4306 btrfs_free_path(path);
8082510e 4307 return err;
39279cc3
CM
4308}
4309
4310/*
2aaa6655
JB
4311 * btrfs_truncate_page - read, zero a chunk and write a page
4312 * @inode - inode that we're zeroing
4313 * @from - the offset to start zeroing
4314 * @len - the length to zero, 0 to zero the entire range respective to the
4315 * offset
4316 * @front - zero up to the offset instead of from the offset on
4317 *
4318 * This will find the page for the "from" offset and cow the page and zero the
4319 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4320 */
2aaa6655
JB
4321int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4322 int front)
39279cc3 4323{
2aaa6655 4324 struct address_space *mapping = inode->i_mapping;
db94535d 4325 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4326 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4327 struct btrfs_ordered_extent *ordered;
2ac55d41 4328 struct extent_state *cached_state = NULL;
e6dcd2dc 4329 char *kaddr;
db94535d 4330 u32 blocksize = root->sectorsize;
39279cc3
CM
4331 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4332 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4333 struct page *page;
3b16a4e3 4334 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4335 int ret = 0;
a52d9a80 4336 u64 page_start;
e6dcd2dc 4337 u64 page_end;
39279cc3 4338
2aaa6655
JB
4339 if ((offset & (blocksize - 1)) == 0 &&
4340 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4341 goto out;
0ca1f7ce 4342 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4343 if (ret)
4344 goto out;
39279cc3 4345
211c17f5 4346again:
3b16a4e3 4347 page = find_or_create_page(mapping, index, mask);
5d5e103a 4348 if (!page) {
0ca1f7ce 4349 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4350 ret = -ENOMEM;
39279cc3 4351 goto out;
5d5e103a 4352 }
e6dcd2dc
CM
4353
4354 page_start = page_offset(page);
4355 page_end = page_start + PAGE_CACHE_SIZE - 1;
4356
39279cc3 4357 if (!PageUptodate(page)) {
9ebefb18 4358 ret = btrfs_readpage(NULL, page);
39279cc3 4359 lock_page(page);
211c17f5
CM
4360 if (page->mapping != mapping) {
4361 unlock_page(page);
4362 page_cache_release(page);
4363 goto again;
4364 }
39279cc3
CM
4365 if (!PageUptodate(page)) {
4366 ret = -EIO;
89642229 4367 goto out_unlock;
39279cc3
CM
4368 }
4369 }
211c17f5 4370 wait_on_page_writeback(page);
e6dcd2dc 4371
d0082371 4372 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4373 set_page_extent_mapped(page);
4374
4375 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4376 if (ordered) {
2ac55d41
JB
4377 unlock_extent_cached(io_tree, page_start, page_end,
4378 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4379 unlock_page(page);
4380 page_cache_release(page);
eb84ae03 4381 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4382 btrfs_put_ordered_extent(ordered);
4383 goto again;
4384 }
4385
2ac55d41 4386 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4387 EXTENT_DIRTY | EXTENT_DELALLOC |
4388 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4389 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4390
2ac55d41
JB
4391 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4392 &cached_state);
9ed74f2d 4393 if (ret) {
2ac55d41
JB
4394 unlock_extent_cached(io_tree, page_start, page_end,
4395 &cached_state, GFP_NOFS);
9ed74f2d
JB
4396 goto out_unlock;
4397 }
4398
e6dcd2dc 4399 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4400 if (!len)
4401 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4402 kaddr = kmap(page);
2aaa6655
JB
4403 if (front)
4404 memset(kaddr, 0, offset);
4405 else
4406 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4407 flush_dcache_page(page);
4408 kunmap(page);
4409 }
247e743c 4410 ClearPageChecked(page);
e6dcd2dc 4411 set_page_dirty(page);
2ac55d41
JB
4412 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4413 GFP_NOFS);
39279cc3 4414
89642229 4415out_unlock:
5d5e103a 4416 if (ret)
0ca1f7ce 4417 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4418 unlock_page(page);
4419 page_cache_release(page);
4420out:
4421 return ret;
4422}
4423
16e7549f
JB
4424static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4425 u64 offset, u64 len)
4426{
4427 struct btrfs_trans_handle *trans;
4428 int ret;
4429
4430 /*
4431 * Still need to make sure the inode looks like it's been updated so
4432 * that any holes get logged if we fsync.
4433 */
4434 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4435 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4436 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4437 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4438 return 0;
4439 }
4440
4441 /*
4442 * 1 - for the one we're dropping
4443 * 1 - for the one we're adding
4444 * 1 - for updating the inode.
4445 */
4446 trans = btrfs_start_transaction(root, 3);
4447 if (IS_ERR(trans))
4448 return PTR_ERR(trans);
4449
4450 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4451 if (ret) {
4452 btrfs_abort_transaction(trans, root, ret);
4453 btrfs_end_transaction(trans, root);
4454 return ret;
4455 }
4456
4457 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4458 0, 0, len, 0, len, 0, 0, 0);
4459 if (ret)
4460 btrfs_abort_transaction(trans, root, ret);
4461 else
4462 btrfs_update_inode(trans, root, inode);
4463 btrfs_end_transaction(trans, root);
4464 return ret;
4465}
4466
695a0d0d
JB
4467/*
4468 * This function puts in dummy file extents for the area we're creating a hole
4469 * for. So if we are truncating this file to a larger size we need to insert
4470 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4471 * the range between oldsize and size
4472 */
a41ad394 4473int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4474{
9036c102
YZ
4475 struct btrfs_root *root = BTRFS_I(inode)->root;
4476 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4477 struct extent_map *em = NULL;
2ac55d41 4478 struct extent_state *cached_state = NULL;
5dc562c5 4479 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4480 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4481 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4482 u64 last_byte;
4483 u64 cur_offset;
4484 u64 hole_size;
9ed74f2d 4485 int err = 0;
39279cc3 4486
a71754fc
JB
4487 /*
4488 * If our size started in the middle of a page we need to zero out the
4489 * rest of the page before we expand the i_size, otherwise we could
4490 * expose stale data.
4491 */
4492 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4493 if (err)
4494 return err;
4495
9036c102
YZ
4496 if (size <= hole_start)
4497 return 0;
4498
9036c102
YZ
4499 while (1) {
4500 struct btrfs_ordered_extent *ordered;
fa7c1494 4501
2ac55d41 4502 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4503 &cached_state);
fa7c1494
MX
4504 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4505 block_end - hole_start);
9036c102
YZ
4506 if (!ordered)
4507 break;
2ac55d41
JB
4508 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4509 &cached_state, GFP_NOFS);
fa7c1494 4510 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4511 btrfs_put_ordered_extent(ordered);
4512 }
39279cc3 4513
9036c102
YZ
4514 cur_offset = hole_start;
4515 while (1) {
4516 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4517 block_end - cur_offset, 0);
79787eaa
JM
4518 if (IS_ERR(em)) {
4519 err = PTR_ERR(em);
f2767956 4520 em = NULL;
79787eaa
JM
4521 break;
4522 }
9036c102 4523 last_byte = min(extent_map_end(em), block_end);
fda2832f 4524 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4525 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4526 struct extent_map *hole_em;
9036c102 4527 hole_size = last_byte - cur_offset;
9ed74f2d 4528
16e7549f
JB
4529 err = maybe_insert_hole(root, inode, cur_offset,
4530 hole_size);
4531 if (err)
3893e33b 4532 break;
5dc562c5
JB
4533 btrfs_drop_extent_cache(inode, cur_offset,
4534 cur_offset + hole_size - 1, 0);
4535 hole_em = alloc_extent_map();
4536 if (!hole_em) {
4537 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4538 &BTRFS_I(inode)->runtime_flags);
4539 goto next;
4540 }
4541 hole_em->start = cur_offset;
4542 hole_em->len = hole_size;
4543 hole_em->orig_start = cur_offset;
8082510e 4544
5dc562c5
JB
4545 hole_em->block_start = EXTENT_MAP_HOLE;
4546 hole_em->block_len = 0;
b4939680 4547 hole_em->orig_block_len = 0;
cc95bef6 4548 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4549 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4550 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4551 hole_em->generation = root->fs_info->generation;
8082510e 4552
5dc562c5
JB
4553 while (1) {
4554 write_lock(&em_tree->lock);
09a2a8f9 4555 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4556 write_unlock(&em_tree->lock);
4557 if (err != -EEXIST)
4558 break;
4559 btrfs_drop_extent_cache(inode, cur_offset,
4560 cur_offset +
4561 hole_size - 1, 0);
4562 }
4563 free_extent_map(hole_em);
9036c102 4564 }
16e7549f 4565next:
9036c102 4566 free_extent_map(em);
a22285a6 4567 em = NULL;
9036c102 4568 cur_offset = last_byte;
8082510e 4569 if (cur_offset >= block_end)
9036c102
YZ
4570 break;
4571 }
a22285a6 4572 free_extent_map(em);
2ac55d41
JB
4573 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4574 GFP_NOFS);
9036c102
YZ
4575 return err;
4576}
39279cc3 4577
3972f260 4578static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4579{
f4a2f4c5
MX
4580 struct btrfs_root *root = BTRFS_I(inode)->root;
4581 struct btrfs_trans_handle *trans;
a41ad394 4582 loff_t oldsize = i_size_read(inode);
3972f260
ES
4583 loff_t newsize = attr->ia_size;
4584 int mask = attr->ia_valid;
8082510e
YZ
4585 int ret;
4586
3972f260
ES
4587 /*
4588 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4589 * special case where we need to update the times despite not having
4590 * these flags set. For all other operations the VFS set these flags
4591 * explicitly if it wants a timestamp update.
4592 */
dff6efc3
CH
4593 if (newsize != oldsize) {
4594 inode_inc_iversion(inode);
4595 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4596 inode->i_ctime = inode->i_mtime =
4597 current_fs_time(inode->i_sb);
4598 }
3972f260 4599
a41ad394 4600 if (newsize > oldsize) {
7caef267 4601 truncate_pagecache(inode, newsize);
a41ad394 4602 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4603 if (ret)
8082510e 4604 return ret;
8082510e 4605
f4a2f4c5
MX
4606 trans = btrfs_start_transaction(root, 1);
4607 if (IS_ERR(trans))
4608 return PTR_ERR(trans);
4609
4610 i_size_write(inode, newsize);
4611 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4612 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4613 btrfs_end_transaction(trans, root);
a41ad394 4614 } else {
8082510e 4615
a41ad394
JB
4616 /*
4617 * We're truncating a file that used to have good data down to
4618 * zero. Make sure it gets into the ordered flush list so that
4619 * any new writes get down to disk quickly.
4620 */
4621 if (newsize == 0)
72ac3c0d
JB
4622 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4623 &BTRFS_I(inode)->runtime_flags);
8082510e 4624
f3fe820c
JB
4625 /*
4626 * 1 for the orphan item we're going to add
4627 * 1 for the orphan item deletion.
4628 */
4629 trans = btrfs_start_transaction(root, 2);
4630 if (IS_ERR(trans))
4631 return PTR_ERR(trans);
4632
4633 /*
4634 * We need to do this in case we fail at _any_ point during the
4635 * actual truncate. Once we do the truncate_setsize we could
4636 * invalidate pages which forces any outstanding ordered io to
4637 * be instantly completed which will give us extents that need
4638 * to be truncated. If we fail to get an orphan inode down we
4639 * could have left over extents that were never meant to live,
4640 * so we need to garuntee from this point on that everything
4641 * will be consistent.
4642 */
4643 ret = btrfs_orphan_add(trans, inode);
4644 btrfs_end_transaction(trans, root);
4645 if (ret)
4646 return ret;
4647
a41ad394
JB
4648 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4649 truncate_setsize(inode, newsize);
2e60a51e
MX
4650
4651 /* Disable nonlocked read DIO to avoid the end less truncate */
4652 btrfs_inode_block_unlocked_dio(inode);
4653 inode_dio_wait(inode);
4654 btrfs_inode_resume_unlocked_dio(inode);
4655
a41ad394 4656 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4657 if (ret && inode->i_nlink) {
4658 int err;
4659
4660 /*
4661 * failed to truncate, disk_i_size is only adjusted down
4662 * as we remove extents, so it should represent the true
4663 * size of the inode, so reset the in memory size and
4664 * delete our orphan entry.
4665 */
4666 trans = btrfs_join_transaction(root);
4667 if (IS_ERR(trans)) {
4668 btrfs_orphan_del(NULL, inode);
4669 return ret;
4670 }
4671 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4672 err = btrfs_orphan_del(trans, inode);
4673 if (err)
4674 btrfs_abort_transaction(trans, root, err);
4675 btrfs_end_transaction(trans, root);
4676 }
8082510e
YZ
4677 }
4678
a41ad394 4679 return ret;
8082510e
YZ
4680}
4681
9036c102
YZ
4682static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4683{
4684 struct inode *inode = dentry->d_inode;
b83cc969 4685 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4686 int err;
39279cc3 4687
b83cc969
LZ
4688 if (btrfs_root_readonly(root))
4689 return -EROFS;
4690
9036c102
YZ
4691 err = inode_change_ok(inode, attr);
4692 if (err)
4693 return err;
2bf5a725 4694
5a3f23d5 4695 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4696 err = btrfs_setsize(inode, attr);
8082510e
YZ
4697 if (err)
4698 return err;
39279cc3 4699 }
9036c102 4700
1025774c
CH
4701 if (attr->ia_valid) {
4702 setattr_copy(inode, attr);
0c4d2d95 4703 inode_inc_iversion(inode);
22c44fe6 4704 err = btrfs_dirty_inode(inode);
1025774c 4705
22c44fe6 4706 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4707 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4708 }
33268eaf 4709
39279cc3
CM
4710 return err;
4711}
61295eb8 4712
131e404a
FDBM
4713/*
4714 * While truncating the inode pages during eviction, we get the VFS calling
4715 * btrfs_invalidatepage() against each page of the inode. This is slow because
4716 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4717 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4718 * extent_state structures over and over, wasting lots of time.
4719 *
4720 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4721 * those expensive operations on a per page basis and do only the ordered io
4722 * finishing, while we release here the extent_map and extent_state structures,
4723 * without the excessive merging and splitting.
4724 */
4725static void evict_inode_truncate_pages(struct inode *inode)
4726{
4727 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4728 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4729 struct rb_node *node;
4730
4731 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4732 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4733
4734 write_lock(&map_tree->lock);
4735 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4736 struct extent_map *em;
4737
4738 node = rb_first(&map_tree->map);
4739 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4740 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4741 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4742 remove_extent_mapping(map_tree, em);
4743 free_extent_map(em);
7064dd5c
FM
4744 if (need_resched()) {
4745 write_unlock(&map_tree->lock);
4746 cond_resched();
4747 write_lock(&map_tree->lock);
4748 }
131e404a
FDBM
4749 }
4750 write_unlock(&map_tree->lock);
4751
4752 spin_lock(&io_tree->lock);
4753 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4754 struct extent_state *state;
4755 struct extent_state *cached_state = NULL;
4756
4757 node = rb_first(&io_tree->state);
4758 state = rb_entry(node, struct extent_state, rb_node);
4759 atomic_inc(&state->refs);
4760 spin_unlock(&io_tree->lock);
4761
4762 lock_extent_bits(io_tree, state->start, state->end,
4763 0, &cached_state);
4764 clear_extent_bit(io_tree, state->start, state->end,
4765 EXTENT_LOCKED | EXTENT_DIRTY |
4766 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4767 EXTENT_DEFRAG, 1, 1,
4768 &cached_state, GFP_NOFS);
4769 free_extent_state(state);
4770
7064dd5c 4771 cond_resched();
131e404a
FDBM
4772 spin_lock(&io_tree->lock);
4773 }
4774 spin_unlock(&io_tree->lock);
4775}
4776
bd555975 4777void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4778{
4779 struct btrfs_trans_handle *trans;
4780 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4781 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4782 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4783 int ret;
4784
1abe9b8a 4785 trace_btrfs_inode_evict(inode);
4786
131e404a
FDBM
4787 evict_inode_truncate_pages(inode);
4788
69e9c6c6
SB
4789 if (inode->i_nlink &&
4790 ((btrfs_root_refs(&root->root_item) != 0 &&
4791 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4792 btrfs_is_free_space_inode(inode)))
bd555975
AV
4793 goto no_delete;
4794
39279cc3 4795 if (is_bad_inode(inode)) {
7b128766 4796 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4797 goto no_delete;
4798 }
bd555975 4799 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4800 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4801
c71bf099 4802 if (root->fs_info->log_root_recovering) {
6bf02314 4803 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4804 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4805 goto no_delete;
4806 }
4807
76dda93c 4808 if (inode->i_nlink > 0) {
69e9c6c6
SB
4809 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4810 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4811 goto no_delete;
4812 }
4813
0e8c36a9
MX
4814 ret = btrfs_commit_inode_delayed_inode(inode);
4815 if (ret) {
4816 btrfs_orphan_del(NULL, inode);
4817 goto no_delete;
4818 }
4819
66d8f3dd 4820 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4821 if (!rsv) {
4822 btrfs_orphan_del(NULL, inode);
4823 goto no_delete;
4824 }
4a338542 4825 rsv->size = min_size;
ca7e70f5 4826 rsv->failfast = 1;
726c35fa 4827 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4828
dbe674a9 4829 btrfs_i_size_write(inode, 0);
5f39d397 4830
4289a667 4831 /*
8407aa46
MX
4832 * This is a bit simpler than btrfs_truncate since we've already
4833 * reserved our space for our orphan item in the unlink, so we just
4834 * need to reserve some slack space in case we add bytes and update
4835 * inode item when doing the truncate.
4289a667 4836 */
8082510e 4837 while (1) {
08e007d2
MX
4838 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4839 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4840
4841 /*
4842 * Try and steal from the global reserve since we will
4843 * likely not use this space anyway, we want to try as
4844 * hard as possible to get this to work.
4845 */
4846 if (ret)
4847 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4848
d68fc57b 4849 if (ret) {
c2cf52eb
SK
4850 btrfs_warn(root->fs_info,
4851 "Could not get space for a delete, will truncate on mount %d",
4852 ret);
4289a667
JB
4853 btrfs_orphan_del(NULL, inode);
4854 btrfs_free_block_rsv(root, rsv);
4855 goto no_delete;
d68fc57b 4856 }
7b128766 4857
0e8c36a9 4858 trans = btrfs_join_transaction(root);
4289a667
JB
4859 if (IS_ERR(trans)) {
4860 btrfs_orphan_del(NULL, inode);
4861 btrfs_free_block_rsv(root, rsv);
4862 goto no_delete;
d68fc57b 4863 }
7b128766 4864
4289a667
JB
4865 trans->block_rsv = rsv;
4866
d68fc57b 4867 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4868 if (ret != -ENOSPC)
8082510e 4869 break;
85e21bac 4870
8407aa46 4871 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4872 btrfs_end_transaction(trans, root);
4873 trans = NULL;
b53d3f5d 4874 btrfs_btree_balance_dirty(root);
8082510e 4875 }
5f39d397 4876
4289a667
JB
4877 btrfs_free_block_rsv(root, rsv);
4878
4ef31a45
JB
4879 /*
4880 * Errors here aren't a big deal, it just means we leave orphan items
4881 * in the tree. They will be cleaned up on the next mount.
4882 */
8082510e 4883 if (ret == 0) {
4289a667 4884 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4885 btrfs_orphan_del(trans, inode);
4886 } else {
4887 btrfs_orphan_del(NULL, inode);
8082510e 4888 }
54aa1f4d 4889
4289a667 4890 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4891 if (!(root == root->fs_info->tree_root ||
4892 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4893 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4894
54aa1f4d 4895 btrfs_end_transaction(trans, root);
b53d3f5d 4896 btrfs_btree_balance_dirty(root);
39279cc3 4897no_delete:
89042e5a 4898 btrfs_remove_delayed_node(inode);
dbd5768f 4899 clear_inode(inode);
8082510e 4900 return;
39279cc3
CM
4901}
4902
4903/*
4904 * this returns the key found in the dir entry in the location pointer.
4905 * If no dir entries were found, location->objectid is 0.
4906 */
4907static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4908 struct btrfs_key *location)
4909{
4910 const char *name = dentry->d_name.name;
4911 int namelen = dentry->d_name.len;
4912 struct btrfs_dir_item *di;
4913 struct btrfs_path *path;
4914 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4915 int ret = 0;
39279cc3
CM
4916
4917 path = btrfs_alloc_path();
d8926bb3
MF
4918 if (!path)
4919 return -ENOMEM;
3954401f 4920
33345d01 4921 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4922 namelen, 0);
0d9f7f3e
Y
4923 if (IS_ERR(di))
4924 ret = PTR_ERR(di);
d397712b 4925
c704005d 4926 if (IS_ERR_OR_NULL(di))
3954401f 4927 goto out_err;
d397712b 4928
5f39d397 4929 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4930out:
39279cc3
CM
4931 btrfs_free_path(path);
4932 return ret;
3954401f
CM
4933out_err:
4934 location->objectid = 0;
4935 goto out;
39279cc3
CM
4936}
4937
4938/*
4939 * when we hit a tree root in a directory, the btrfs part of the inode
4940 * needs to be changed to reflect the root directory of the tree root. This
4941 * is kind of like crossing a mount point.
4942 */
4943static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4944 struct inode *dir,
4945 struct dentry *dentry,
4946 struct btrfs_key *location,
4947 struct btrfs_root **sub_root)
39279cc3 4948{
4df27c4d
YZ
4949 struct btrfs_path *path;
4950 struct btrfs_root *new_root;
4951 struct btrfs_root_ref *ref;
4952 struct extent_buffer *leaf;
4953 int ret;
4954 int err = 0;
39279cc3 4955
4df27c4d
YZ
4956 path = btrfs_alloc_path();
4957 if (!path) {
4958 err = -ENOMEM;
4959 goto out;
4960 }
39279cc3 4961
4df27c4d 4962 err = -ENOENT;
75ac2dd9
KN
4963 ret = btrfs_find_item(root->fs_info->tree_root, path,
4964 BTRFS_I(dir)->root->root_key.objectid,
4965 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4df27c4d
YZ
4966 if (ret) {
4967 if (ret < 0)
4968 err = ret;
4969 goto out;
4970 }
39279cc3 4971
4df27c4d
YZ
4972 leaf = path->nodes[0];
4973 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4974 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4975 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4976 goto out;
39279cc3 4977
4df27c4d
YZ
4978 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4979 (unsigned long)(ref + 1),
4980 dentry->d_name.len);
4981 if (ret)
4982 goto out;
4983
b3b4aa74 4984 btrfs_release_path(path);
4df27c4d
YZ
4985
4986 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4987 if (IS_ERR(new_root)) {
4988 err = PTR_ERR(new_root);
4989 goto out;
4990 }
4991
4df27c4d
YZ
4992 *sub_root = new_root;
4993 location->objectid = btrfs_root_dirid(&new_root->root_item);
4994 location->type = BTRFS_INODE_ITEM_KEY;
4995 location->offset = 0;
4996 err = 0;
4997out:
4998 btrfs_free_path(path);
4999 return err;
39279cc3
CM
5000}
5001
5d4f98a2
YZ
5002static void inode_tree_add(struct inode *inode)
5003{
5004 struct btrfs_root *root = BTRFS_I(inode)->root;
5005 struct btrfs_inode *entry;
03e860bd
FNP
5006 struct rb_node **p;
5007 struct rb_node *parent;
cef21937 5008 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5009 u64 ino = btrfs_ino(inode);
5d4f98a2 5010
1d3382cb 5011 if (inode_unhashed(inode))
76dda93c 5012 return;
e1409cef 5013 parent = NULL;
5d4f98a2 5014 spin_lock(&root->inode_lock);
e1409cef 5015 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5016 while (*p) {
5017 parent = *p;
5018 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5019
33345d01 5020 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5021 p = &parent->rb_left;
33345d01 5022 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5023 p = &parent->rb_right;
5d4f98a2
YZ
5024 else {
5025 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5026 (I_WILL_FREE | I_FREEING)));
cef21937 5027 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5028 RB_CLEAR_NODE(parent);
5029 spin_unlock(&root->inode_lock);
cef21937 5030 return;
5d4f98a2
YZ
5031 }
5032 }
cef21937
FDBM
5033 rb_link_node(new, parent, p);
5034 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5035 spin_unlock(&root->inode_lock);
5036}
5037
5038static void inode_tree_del(struct inode *inode)
5039{
5040 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5041 int empty = 0;
5d4f98a2 5042
03e860bd 5043 spin_lock(&root->inode_lock);
5d4f98a2 5044 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5045 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5046 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5047 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5048 }
03e860bd 5049 spin_unlock(&root->inode_lock);
76dda93c 5050
69e9c6c6 5051 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5052 synchronize_srcu(&root->fs_info->subvol_srcu);
5053 spin_lock(&root->inode_lock);
5054 empty = RB_EMPTY_ROOT(&root->inode_tree);
5055 spin_unlock(&root->inode_lock);
5056 if (empty)
5057 btrfs_add_dead_root(root);
5058 }
5059}
5060
143bede5 5061void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5062{
5063 struct rb_node *node;
5064 struct rb_node *prev;
5065 struct btrfs_inode *entry;
5066 struct inode *inode;
5067 u64 objectid = 0;
5068
7813b3db
LB
5069 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5070 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5071
5072 spin_lock(&root->inode_lock);
5073again:
5074 node = root->inode_tree.rb_node;
5075 prev = NULL;
5076 while (node) {
5077 prev = node;
5078 entry = rb_entry(node, struct btrfs_inode, rb_node);
5079
33345d01 5080 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5081 node = node->rb_left;
33345d01 5082 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5083 node = node->rb_right;
5084 else
5085 break;
5086 }
5087 if (!node) {
5088 while (prev) {
5089 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5090 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5091 node = prev;
5092 break;
5093 }
5094 prev = rb_next(prev);
5095 }
5096 }
5097 while (node) {
5098 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5099 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5100 inode = igrab(&entry->vfs_inode);
5101 if (inode) {
5102 spin_unlock(&root->inode_lock);
5103 if (atomic_read(&inode->i_count) > 1)
5104 d_prune_aliases(inode);
5105 /*
45321ac5 5106 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5107 * the inode cache when its usage count
5108 * hits zero.
5109 */
5110 iput(inode);
5111 cond_resched();
5112 spin_lock(&root->inode_lock);
5113 goto again;
5114 }
5115
5116 if (cond_resched_lock(&root->inode_lock))
5117 goto again;
5118
5119 node = rb_next(node);
5120 }
5121 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5122}
5123
e02119d5
CM
5124static int btrfs_init_locked_inode(struct inode *inode, void *p)
5125{
5126 struct btrfs_iget_args *args = p;
90d3e592
CM
5127 inode->i_ino = args->location->objectid;
5128 memcpy(&BTRFS_I(inode)->location, args->location,
5129 sizeof(*args->location));
e02119d5 5130 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5131 return 0;
5132}
5133
5134static int btrfs_find_actor(struct inode *inode, void *opaque)
5135{
5136 struct btrfs_iget_args *args = opaque;
90d3e592 5137 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5138 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5139}
5140
5d4f98a2 5141static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5142 struct btrfs_key *location,
5d4f98a2 5143 struct btrfs_root *root)
39279cc3
CM
5144{
5145 struct inode *inode;
5146 struct btrfs_iget_args args;
90d3e592 5147 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5148
90d3e592 5149 args.location = location;
39279cc3
CM
5150 args.root = root;
5151
778ba82b 5152 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5153 btrfs_init_locked_inode,
5154 (void *)&args);
5155 return inode;
5156}
5157
1a54ef8c
BR
5158/* Get an inode object given its location and corresponding root.
5159 * Returns in *is_new if the inode was read from disk
5160 */
5161struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5162 struct btrfs_root *root, int *new)
1a54ef8c
BR
5163{
5164 struct inode *inode;
5165
90d3e592 5166 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5167 if (!inode)
5d4f98a2 5168 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5169
5170 if (inode->i_state & I_NEW) {
1a54ef8c 5171 btrfs_read_locked_inode(inode);
1748f843
MF
5172 if (!is_bad_inode(inode)) {
5173 inode_tree_add(inode);
5174 unlock_new_inode(inode);
5175 if (new)
5176 *new = 1;
5177 } else {
e0b6d65b
ST
5178 unlock_new_inode(inode);
5179 iput(inode);
5180 inode = ERR_PTR(-ESTALE);
1748f843
MF
5181 }
5182 }
5183
1a54ef8c
BR
5184 return inode;
5185}
5186
4df27c4d
YZ
5187static struct inode *new_simple_dir(struct super_block *s,
5188 struct btrfs_key *key,
5189 struct btrfs_root *root)
5190{
5191 struct inode *inode = new_inode(s);
5192
5193 if (!inode)
5194 return ERR_PTR(-ENOMEM);
5195
4df27c4d
YZ
5196 BTRFS_I(inode)->root = root;
5197 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5198 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5199
5200 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5201 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5202 inode->i_fop = &simple_dir_operations;
5203 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5204 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5205
5206 return inode;
5207}
5208
3de4586c 5209struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5210{
d397712b 5211 struct inode *inode;
4df27c4d 5212 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5213 struct btrfs_root *sub_root = root;
5214 struct btrfs_key location;
76dda93c 5215 int index;
b4aff1f8 5216 int ret = 0;
39279cc3
CM
5217
5218 if (dentry->d_name.len > BTRFS_NAME_LEN)
5219 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5220
39e3c955 5221 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5222 if (ret < 0)
5223 return ERR_PTR(ret);
5f39d397 5224
4df27c4d 5225 if (location.objectid == 0)
5662344b 5226 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5227
5228 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5229 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5230 return inode;
5231 }
5232
5233 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5234
76dda93c 5235 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5236 ret = fixup_tree_root_location(root, dir, dentry,
5237 &location, &sub_root);
5238 if (ret < 0) {
5239 if (ret != -ENOENT)
5240 inode = ERR_PTR(ret);
5241 else
5242 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5243 } else {
73f73415 5244 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5245 }
76dda93c
YZ
5246 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5247
34d19bad 5248 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5249 down_read(&root->fs_info->cleanup_work_sem);
5250 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5251 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5252 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5253 if (ret) {
5254 iput(inode);
66b4ffd1 5255 inode = ERR_PTR(ret);
01cd3367 5256 }
9c3b306e
FM
5257 /*
5258 * If orphan cleanup did remove any orphans, it means the tree
5259 * was modified and therefore the commit root is not the same as
5260 * the current root anymore. This is a problem, because send
5261 * uses the commit root and therefore can see inode items that
5262 * don't exist in the current root anymore, and for example make
5263 * calls to btrfs_iget, which will do tree lookups based on the
5264 * current root and not on the commit root. Those lookups will
5265 * fail, returning a -ESTALE error, and making send fail with
5266 * that error. So make sure a send does not see any orphans we
5267 * have just removed, and that it will see the same inodes
5268 * regardless of whether a transaction commit happened before
5269 * it started (meaning that the commit root will be the same as
5270 * the current root) or not.
5271 */
5272 if (sub_root->node != sub_root->commit_root) {
5273 u64 sub_flags = btrfs_root_flags(&sub_root->root_item);
5274
5275 if (sub_flags & BTRFS_ROOT_SUBVOL_RDONLY) {
5276 struct extent_buffer *eb;
5277
5278 /*
5279 * Assert we can't have races between dentry
5280 * lookup called through the snapshot creation
5281 * ioctl and the VFS.
5282 */
5283 ASSERT(mutex_is_locked(&dir->i_mutex));
5284
5285 down_write(&root->fs_info->commit_root_sem);
5286 eb = sub_root->commit_root;
5287 sub_root->commit_root =
5288 btrfs_root_node(sub_root);
5289 up_write(&root->fs_info->commit_root_sem);
5290 free_extent_buffer(eb);
5291 }
5292 }
c71bf099
YZ
5293 }
5294
3de4586c
CM
5295 return inode;
5296}
5297
fe15ce44 5298static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5299{
5300 struct btrfs_root *root;
848cce0d 5301 struct inode *inode = dentry->d_inode;
76dda93c 5302
848cce0d
LZ
5303 if (!inode && !IS_ROOT(dentry))
5304 inode = dentry->d_parent->d_inode;
76dda93c 5305
848cce0d
LZ
5306 if (inode) {
5307 root = BTRFS_I(inode)->root;
efefb143
YZ
5308 if (btrfs_root_refs(&root->root_item) == 0)
5309 return 1;
848cce0d
LZ
5310
5311 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5312 return 1;
efefb143 5313 }
76dda93c
YZ
5314 return 0;
5315}
5316
b4aff1f8
JB
5317static void btrfs_dentry_release(struct dentry *dentry)
5318{
944a4515 5319 kfree(dentry->d_fsdata);
b4aff1f8
JB
5320}
5321
3de4586c 5322static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5323 unsigned int flags)
3de4586c 5324{
5662344b 5325 struct inode *inode;
a66e7cc6 5326
5662344b
TI
5327 inode = btrfs_lookup_dentry(dir, dentry);
5328 if (IS_ERR(inode)) {
5329 if (PTR_ERR(inode) == -ENOENT)
5330 inode = NULL;
5331 else
5332 return ERR_CAST(inode);
5333 }
5334
3a0dfa6a 5335 return d_materialise_unique(dentry, inode);
39279cc3
CM
5336}
5337
16cdcec7 5338unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5339 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5340};
5341
9cdda8d3 5342static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5343{
9cdda8d3 5344 struct inode *inode = file_inode(file);
39279cc3
CM
5345 struct btrfs_root *root = BTRFS_I(inode)->root;
5346 struct btrfs_item *item;
5347 struct btrfs_dir_item *di;
5348 struct btrfs_key key;
5f39d397 5349 struct btrfs_key found_key;
39279cc3 5350 struct btrfs_path *path;
16cdcec7
MX
5351 struct list_head ins_list;
5352 struct list_head del_list;
39279cc3 5353 int ret;
5f39d397 5354 struct extent_buffer *leaf;
39279cc3 5355 int slot;
39279cc3
CM
5356 unsigned char d_type;
5357 int over = 0;
5358 u32 di_cur;
5359 u32 di_total;
5360 u32 di_len;
5361 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5362 char tmp_name[32];
5363 char *name_ptr;
5364 int name_len;
9cdda8d3 5365 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5366
5367 /* FIXME, use a real flag for deciding about the key type */
5368 if (root->fs_info->tree_root == root)
5369 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5370
9cdda8d3
AV
5371 if (!dir_emit_dots(file, ctx))
5372 return 0;
5373
49593bfa 5374 path = btrfs_alloc_path();
16cdcec7
MX
5375 if (!path)
5376 return -ENOMEM;
ff5714cc 5377
026fd317 5378 path->reada = 1;
49593bfa 5379
16cdcec7
MX
5380 if (key_type == BTRFS_DIR_INDEX_KEY) {
5381 INIT_LIST_HEAD(&ins_list);
5382 INIT_LIST_HEAD(&del_list);
5383 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5384 }
5385
962a298f 5386 key.type = key_type;
9cdda8d3 5387 key.offset = ctx->pos;
33345d01 5388 key.objectid = btrfs_ino(inode);
5f39d397 5389
39279cc3
CM
5390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5391 if (ret < 0)
5392 goto err;
49593bfa
DW
5393
5394 while (1) {
5f39d397 5395 leaf = path->nodes[0];
39279cc3 5396 slot = path->slots[0];
b9e03af0
LZ
5397 if (slot >= btrfs_header_nritems(leaf)) {
5398 ret = btrfs_next_leaf(root, path);
5399 if (ret < 0)
5400 goto err;
5401 else if (ret > 0)
5402 break;
5403 continue;
39279cc3 5404 }
3de4586c 5405
dd3cc16b 5406 item = btrfs_item_nr(slot);
5f39d397
CM
5407 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5408
5409 if (found_key.objectid != key.objectid)
39279cc3 5410 break;
962a298f 5411 if (found_key.type != key_type)
39279cc3 5412 break;
9cdda8d3 5413 if (found_key.offset < ctx->pos)
b9e03af0 5414 goto next;
16cdcec7
MX
5415 if (key_type == BTRFS_DIR_INDEX_KEY &&
5416 btrfs_should_delete_dir_index(&del_list,
5417 found_key.offset))
5418 goto next;
5f39d397 5419
9cdda8d3 5420 ctx->pos = found_key.offset;
16cdcec7 5421 is_curr = 1;
49593bfa 5422
39279cc3
CM
5423 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5424 di_cur = 0;
5f39d397 5425 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5426
5427 while (di_cur < di_total) {
5f39d397
CM
5428 struct btrfs_key location;
5429
22a94d44
JB
5430 if (verify_dir_item(root, leaf, di))
5431 break;
5432
5f39d397 5433 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5434 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5435 name_ptr = tmp_name;
5436 } else {
5437 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5438 if (!name_ptr) {
5439 ret = -ENOMEM;
5440 goto err;
5441 }
5f39d397
CM
5442 }
5443 read_extent_buffer(leaf, name_ptr,
5444 (unsigned long)(di + 1), name_len);
5445
5446 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5447 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5448
fede766f 5449
3de4586c 5450 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5451 * skip it.
5452 *
5453 * In contrast to old kernels, we insert the snapshot's
5454 * dir item and dir index after it has been created, so
5455 * we won't find a reference to our own snapshot. We
5456 * still keep the following code for backward
5457 * compatibility.
3de4586c
CM
5458 */
5459 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5460 location.objectid == root->root_key.objectid) {
5461 over = 0;
5462 goto skip;
5463 }
9cdda8d3
AV
5464 over = !dir_emit(ctx, name_ptr, name_len,
5465 location.objectid, d_type);
5f39d397 5466
3de4586c 5467skip:
5f39d397
CM
5468 if (name_ptr != tmp_name)
5469 kfree(name_ptr);
5470
39279cc3
CM
5471 if (over)
5472 goto nopos;
5103e947 5473 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5474 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5475 di_cur += di_len;
5476 di = (struct btrfs_dir_item *)((char *)di + di_len);
5477 }
b9e03af0
LZ
5478next:
5479 path->slots[0]++;
39279cc3 5480 }
49593bfa 5481
16cdcec7
MX
5482 if (key_type == BTRFS_DIR_INDEX_KEY) {
5483 if (is_curr)
9cdda8d3
AV
5484 ctx->pos++;
5485 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5486 if (ret)
5487 goto nopos;
5488 }
5489
49593bfa 5490 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5491 ctx->pos++;
5492
5493 /*
5494 * Stop new entries from being returned after we return the last
5495 * entry.
5496 *
5497 * New directory entries are assigned a strictly increasing
5498 * offset. This means that new entries created during readdir
5499 * are *guaranteed* to be seen in the future by that readdir.
5500 * This has broken buggy programs which operate on names as
5501 * they're returned by readdir. Until we re-use freed offsets
5502 * we have this hack to stop new entries from being returned
5503 * under the assumption that they'll never reach this huge
5504 * offset.
5505 *
5506 * This is being careful not to overflow 32bit loff_t unless the
5507 * last entry requires it because doing so has broken 32bit apps
5508 * in the past.
5509 */
5510 if (key_type == BTRFS_DIR_INDEX_KEY) {
5511 if (ctx->pos >= INT_MAX)
5512 ctx->pos = LLONG_MAX;
5513 else
5514 ctx->pos = INT_MAX;
5515 }
39279cc3
CM
5516nopos:
5517 ret = 0;
5518err:
16cdcec7
MX
5519 if (key_type == BTRFS_DIR_INDEX_KEY)
5520 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5521 btrfs_free_path(path);
39279cc3
CM
5522 return ret;
5523}
5524
a9185b41 5525int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5526{
5527 struct btrfs_root *root = BTRFS_I(inode)->root;
5528 struct btrfs_trans_handle *trans;
5529 int ret = 0;
0af3d00b 5530 bool nolock = false;
39279cc3 5531
72ac3c0d 5532 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5533 return 0;
5534
83eea1f1 5535 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5536 nolock = true;
0af3d00b 5537
a9185b41 5538 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5539 if (nolock)
7a7eaa40 5540 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5541 else
7a7eaa40 5542 trans = btrfs_join_transaction(root);
3612b495
TI
5543 if (IS_ERR(trans))
5544 return PTR_ERR(trans);
a698d075 5545 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5546 }
5547 return ret;
5548}
5549
5550/*
54aa1f4d 5551 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5552 * inode changes. But, it is most likely to find the inode in cache.
5553 * FIXME, needs more benchmarking...there are no reasons other than performance
5554 * to keep or drop this code.
5555 */
48a3b636 5556static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5557{
5558 struct btrfs_root *root = BTRFS_I(inode)->root;
5559 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5560 int ret;
5561
72ac3c0d 5562 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5563 return 0;
39279cc3 5564
7a7eaa40 5565 trans = btrfs_join_transaction(root);
22c44fe6
JB
5566 if (IS_ERR(trans))
5567 return PTR_ERR(trans);
8929ecfa
YZ
5568
5569 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5570 if (ret && ret == -ENOSPC) {
5571 /* whoops, lets try again with the full transaction */
5572 btrfs_end_transaction(trans, root);
5573 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5574 if (IS_ERR(trans))
5575 return PTR_ERR(trans);
8929ecfa 5576
94b60442 5577 ret = btrfs_update_inode(trans, root, inode);
94b60442 5578 }
39279cc3 5579 btrfs_end_transaction(trans, root);
16cdcec7
MX
5580 if (BTRFS_I(inode)->delayed_node)
5581 btrfs_balance_delayed_items(root);
22c44fe6
JB
5582
5583 return ret;
5584}
5585
5586/*
5587 * This is a copy of file_update_time. We need this so we can return error on
5588 * ENOSPC for updating the inode in the case of file write and mmap writes.
5589 */
e41f941a
JB
5590static int btrfs_update_time(struct inode *inode, struct timespec *now,
5591 int flags)
22c44fe6 5592{
2bc55652
AB
5593 struct btrfs_root *root = BTRFS_I(inode)->root;
5594
5595 if (btrfs_root_readonly(root))
5596 return -EROFS;
5597
e41f941a 5598 if (flags & S_VERSION)
22c44fe6 5599 inode_inc_iversion(inode);
e41f941a
JB
5600 if (flags & S_CTIME)
5601 inode->i_ctime = *now;
5602 if (flags & S_MTIME)
5603 inode->i_mtime = *now;
5604 if (flags & S_ATIME)
5605 inode->i_atime = *now;
5606 return btrfs_dirty_inode(inode);
39279cc3
CM
5607}
5608
d352ac68
CM
5609/*
5610 * find the highest existing sequence number in a directory
5611 * and then set the in-memory index_cnt variable to reflect
5612 * free sequence numbers
5613 */
aec7477b
JB
5614static int btrfs_set_inode_index_count(struct inode *inode)
5615{
5616 struct btrfs_root *root = BTRFS_I(inode)->root;
5617 struct btrfs_key key, found_key;
5618 struct btrfs_path *path;
5619 struct extent_buffer *leaf;
5620 int ret;
5621
33345d01 5622 key.objectid = btrfs_ino(inode);
962a298f 5623 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5624 key.offset = (u64)-1;
5625
5626 path = btrfs_alloc_path();
5627 if (!path)
5628 return -ENOMEM;
5629
5630 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5631 if (ret < 0)
5632 goto out;
5633 /* FIXME: we should be able to handle this */
5634 if (ret == 0)
5635 goto out;
5636 ret = 0;
5637
5638 /*
5639 * MAGIC NUMBER EXPLANATION:
5640 * since we search a directory based on f_pos we have to start at 2
5641 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5642 * else has to start at 2
5643 */
5644 if (path->slots[0] == 0) {
5645 BTRFS_I(inode)->index_cnt = 2;
5646 goto out;
5647 }
5648
5649 path->slots[0]--;
5650
5651 leaf = path->nodes[0];
5652 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5653
33345d01 5654 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5655 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
5656 BTRFS_I(inode)->index_cnt = 2;
5657 goto out;
5658 }
5659
5660 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5661out:
5662 btrfs_free_path(path);
5663 return ret;
5664}
5665
d352ac68
CM
5666/*
5667 * helper to find a free sequence number in a given directory. This current
5668 * code is very simple, later versions will do smarter things in the btree
5669 */
3de4586c 5670int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5671{
5672 int ret = 0;
5673
5674 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5675 ret = btrfs_inode_delayed_dir_index_count(dir);
5676 if (ret) {
5677 ret = btrfs_set_inode_index_count(dir);
5678 if (ret)
5679 return ret;
5680 }
aec7477b
JB
5681 }
5682
00e4e6b3 5683 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5684 BTRFS_I(dir)->index_cnt++;
5685
5686 return ret;
5687}
5688
b0d5d10f
CM
5689static int btrfs_insert_inode_locked(struct inode *inode)
5690{
5691 struct btrfs_iget_args args;
5692 args.location = &BTRFS_I(inode)->location;
5693 args.root = BTRFS_I(inode)->root;
5694
5695 return insert_inode_locked4(inode,
5696 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5697 btrfs_find_actor, &args);
5698}
5699
39279cc3
CM
5700static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5701 struct btrfs_root *root,
aec7477b 5702 struct inode *dir,
9c58309d 5703 const char *name, int name_len,
175a4eb7
AV
5704 u64 ref_objectid, u64 objectid,
5705 umode_t mode, u64 *index)
39279cc3
CM
5706{
5707 struct inode *inode;
5f39d397 5708 struct btrfs_inode_item *inode_item;
39279cc3 5709 struct btrfs_key *location;
5f39d397 5710 struct btrfs_path *path;
9c58309d
CM
5711 struct btrfs_inode_ref *ref;
5712 struct btrfs_key key[2];
5713 u32 sizes[2];
ef3b9af5 5714 int nitems = name ? 2 : 1;
9c58309d 5715 unsigned long ptr;
39279cc3 5716 int ret;
39279cc3 5717
5f39d397 5718 path = btrfs_alloc_path();
d8926bb3
MF
5719 if (!path)
5720 return ERR_PTR(-ENOMEM);
5f39d397 5721
39279cc3 5722 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5723 if (!inode) {
5724 btrfs_free_path(path);
39279cc3 5725 return ERR_PTR(-ENOMEM);
8fb27640 5726 }
39279cc3 5727
5762b5c9
FM
5728 /*
5729 * O_TMPFILE, set link count to 0, so that after this point,
5730 * we fill in an inode item with the correct link count.
5731 */
5732 if (!name)
5733 set_nlink(inode, 0);
5734
581bb050
LZ
5735 /*
5736 * we have to initialize this early, so we can reclaim the inode
5737 * number if we fail afterwards in this function.
5738 */
5739 inode->i_ino = objectid;
5740
ef3b9af5 5741 if (dir && name) {
1abe9b8a 5742 trace_btrfs_inode_request(dir);
5743
3de4586c 5744 ret = btrfs_set_inode_index(dir, index);
09771430 5745 if (ret) {
8fb27640 5746 btrfs_free_path(path);
09771430 5747 iput(inode);
aec7477b 5748 return ERR_PTR(ret);
09771430 5749 }
ef3b9af5
FM
5750 } else if (dir) {
5751 *index = 0;
aec7477b
JB
5752 }
5753 /*
5754 * index_cnt is ignored for everything but a dir,
5755 * btrfs_get_inode_index_count has an explanation for the magic
5756 * number
5757 */
5758 BTRFS_I(inode)->index_cnt = 2;
67de1176 5759 BTRFS_I(inode)->dir_index = *index;
39279cc3 5760 BTRFS_I(inode)->root = root;
e02119d5 5761 BTRFS_I(inode)->generation = trans->transid;
76195853 5762 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5763
5dc562c5
JB
5764 /*
5765 * We could have gotten an inode number from somebody who was fsynced
5766 * and then removed in this same transaction, so let's just set full
5767 * sync since it will be a full sync anyway and this will blow away the
5768 * old info in the log.
5769 */
5770 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5771
9c58309d 5772 key[0].objectid = objectid;
962a298f 5773 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
5774 key[0].offset = 0;
5775
9c58309d 5776 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5777
5778 if (name) {
5779 /*
5780 * Start new inodes with an inode_ref. This is slightly more
5781 * efficient for small numbers of hard links since they will
5782 * be packed into one item. Extended refs will kick in if we
5783 * add more hard links than can fit in the ref item.
5784 */
5785 key[1].objectid = objectid;
962a298f 5786 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
5787 key[1].offset = ref_objectid;
5788
5789 sizes[1] = name_len + sizeof(*ref);
5790 }
9c58309d 5791
b0d5d10f
CM
5792 location = &BTRFS_I(inode)->location;
5793 location->objectid = objectid;
5794 location->offset = 0;
962a298f 5795 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
5796
5797 ret = btrfs_insert_inode_locked(inode);
5798 if (ret < 0)
5799 goto fail;
5800
b9473439 5801 path->leave_spinning = 1;
ef3b9af5 5802 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 5803 if (ret != 0)
b0d5d10f 5804 goto fail_unlock;
5f39d397 5805
ecc11fab 5806 inode_init_owner(inode, dir, mode);
a76a3cd4 5807 inode_set_bytes(inode, 0);
39279cc3 5808 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5809 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5810 struct btrfs_inode_item);
293f7e07
LZ
5811 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5812 sizeof(*inode_item));
e02119d5 5813 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 5814
ef3b9af5
FM
5815 if (name) {
5816 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5817 struct btrfs_inode_ref);
5818 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5819 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5820 ptr = (unsigned long)(ref + 1);
5821 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5822 }
9c58309d 5823
5f39d397
CM
5824 btrfs_mark_buffer_dirty(path->nodes[0]);
5825 btrfs_free_path(path);
5826
6cbff00f
CH
5827 btrfs_inherit_iflags(inode, dir);
5828
569254b0 5829 if (S_ISREG(mode)) {
94272164
CM
5830 if (btrfs_test_opt(root, NODATASUM))
5831 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5832 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5833 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5834 BTRFS_INODE_NODATASUM;
94272164
CM
5835 }
5836
5d4f98a2 5837 inode_tree_add(inode);
1abe9b8a 5838
5839 trace_btrfs_inode_new(inode);
1973f0fa 5840 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5841
8ea05e3a
AB
5842 btrfs_update_root_times(trans, root);
5843
63541927
FDBM
5844 ret = btrfs_inode_inherit_props(trans, inode, dir);
5845 if (ret)
5846 btrfs_err(root->fs_info,
5847 "error inheriting props for ino %llu (root %llu): %d",
5848 btrfs_ino(inode), root->root_key.objectid, ret);
5849
39279cc3 5850 return inode;
b0d5d10f
CM
5851
5852fail_unlock:
5853 unlock_new_inode(inode);
5f39d397 5854fail:
ef3b9af5 5855 if (dir && name)
aec7477b 5856 BTRFS_I(dir)->index_cnt--;
5f39d397 5857 btrfs_free_path(path);
09771430 5858 iput(inode);
5f39d397 5859 return ERR_PTR(ret);
39279cc3
CM
5860}
5861
5862static inline u8 btrfs_inode_type(struct inode *inode)
5863{
5864 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5865}
5866
d352ac68
CM
5867/*
5868 * utility function to add 'inode' into 'parent_inode' with
5869 * a give name and a given sequence number.
5870 * if 'add_backref' is true, also insert a backref from the
5871 * inode to the parent directory.
5872 */
e02119d5
CM
5873int btrfs_add_link(struct btrfs_trans_handle *trans,
5874 struct inode *parent_inode, struct inode *inode,
5875 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5876{
4df27c4d 5877 int ret = 0;
39279cc3 5878 struct btrfs_key key;
e02119d5 5879 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5880 u64 ino = btrfs_ino(inode);
5881 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5882
33345d01 5883 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5884 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5885 } else {
33345d01 5886 key.objectid = ino;
962a298f 5887 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
5888 key.offset = 0;
5889 }
5890
33345d01 5891 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5892 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5893 key.objectid, root->root_key.objectid,
33345d01 5894 parent_ino, index, name, name_len);
4df27c4d 5895 } else if (add_backref) {
33345d01
LZ
5896 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5897 parent_ino, index);
4df27c4d 5898 }
39279cc3 5899
79787eaa
JM
5900 /* Nothing to clean up yet */
5901 if (ret)
5902 return ret;
4df27c4d 5903
79787eaa
JM
5904 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5905 parent_inode, &key,
5906 btrfs_inode_type(inode), index);
9c52057c 5907 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5908 goto fail_dir_item;
5909 else if (ret) {
5910 btrfs_abort_transaction(trans, root, ret);
5911 return ret;
39279cc3 5912 }
79787eaa
JM
5913
5914 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5915 name_len * 2);
0c4d2d95 5916 inode_inc_iversion(parent_inode);
79787eaa
JM
5917 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5918 ret = btrfs_update_inode(trans, root, parent_inode);
5919 if (ret)
5920 btrfs_abort_transaction(trans, root, ret);
39279cc3 5921 return ret;
fe66a05a
CM
5922
5923fail_dir_item:
5924 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5925 u64 local_index;
5926 int err;
5927 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5928 key.objectid, root->root_key.objectid,
5929 parent_ino, &local_index, name, name_len);
5930
5931 } else if (add_backref) {
5932 u64 local_index;
5933 int err;
5934
5935 err = btrfs_del_inode_ref(trans, root, name, name_len,
5936 ino, parent_ino, &local_index);
5937 }
5938 return ret;
39279cc3
CM
5939}
5940
5941static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5942 struct inode *dir, struct dentry *dentry,
5943 struct inode *inode, int backref, u64 index)
39279cc3 5944{
a1b075d2
JB
5945 int err = btrfs_add_link(trans, dir, inode,
5946 dentry->d_name.name, dentry->d_name.len,
5947 backref, index);
39279cc3
CM
5948 if (err > 0)
5949 err = -EEXIST;
5950 return err;
5951}
5952
618e21d5 5953static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5954 umode_t mode, dev_t rdev)
618e21d5
JB
5955{
5956 struct btrfs_trans_handle *trans;
5957 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5958 struct inode *inode = NULL;
618e21d5
JB
5959 int err;
5960 int drop_inode = 0;
5961 u64 objectid;
00e4e6b3 5962 u64 index = 0;
618e21d5
JB
5963
5964 if (!new_valid_dev(rdev))
5965 return -EINVAL;
5966
9ed74f2d
JB
5967 /*
5968 * 2 for inode item and ref
5969 * 2 for dir items
5970 * 1 for xattr if selinux is on
5971 */
a22285a6
YZ
5972 trans = btrfs_start_transaction(root, 5);
5973 if (IS_ERR(trans))
5974 return PTR_ERR(trans);
1832a6d5 5975
581bb050
LZ
5976 err = btrfs_find_free_ino(root, &objectid);
5977 if (err)
5978 goto out_unlock;
5979
aec7477b 5980 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5981 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5982 mode, &index);
7cf96da3
TI
5983 if (IS_ERR(inode)) {
5984 err = PTR_ERR(inode);
618e21d5 5985 goto out_unlock;
7cf96da3 5986 }
618e21d5 5987
ad19db71
CS
5988 /*
5989 * If the active LSM wants to access the inode during
5990 * d_instantiate it needs these. Smack checks to see
5991 * if the filesystem supports xattrs by looking at the
5992 * ops vector.
5993 */
ad19db71 5994 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
5995 init_special_inode(inode, inode->i_mode, rdev);
5996
5997 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 5998 if (err)
b0d5d10f
CM
5999 goto out_unlock_inode;
6000
6001 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6002 if (err) {
6003 goto out_unlock_inode;
6004 } else {
1b4ab1bb 6005 btrfs_update_inode(trans, root, inode);
b0d5d10f 6006 unlock_new_inode(inode);
08c422c2 6007 d_instantiate(dentry, inode);
618e21d5 6008 }
b0d5d10f 6009
618e21d5 6010out_unlock:
7ad85bb7 6011 btrfs_end_transaction(trans, root);
c581afc8 6012 btrfs_balance_delayed_items(root);
b53d3f5d 6013 btrfs_btree_balance_dirty(root);
618e21d5
JB
6014 if (drop_inode) {
6015 inode_dec_link_count(inode);
6016 iput(inode);
6017 }
618e21d5 6018 return err;
b0d5d10f
CM
6019
6020out_unlock_inode:
6021 drop_inode = 1;
6022 unlock_new_inode(inode);
6023 goto out_unlock;
6024
618e21d5
JB
6025}
6026
39279cc3 6027static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6028 umode_t mode, bool excl)
39279cc3
CM
6029{
6030 struct btrfs_trans_handle *trans;
6031 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6032 struct inode *inode = NULL;
43baa579 6033 int drop_inode_on_err = 0;
a22285a6 6034 int err;
39279cc3 6035 u64 objectid;
00e4e6b3 6036 u64 index = 0;
39279cc3 6037
9ed74f2d
JB
6038 /*
6039 * 2 for inode item and ref
6040 * 2 for dir items
6041 * 1 for xattr if selinux is on
6042 */
a22285a6
YZ
6043 trans = btrfs_start_transaction(root, 5);
6044 if (IS_ERR(trans))
6045 return PTR_ERR(trans);
9ed74f2d 6046
581bb050
LZ
6047 err = btrfs_find_free_ino(root, &objectid);
6048 if (err)
6049 goto out_unlock;
6050
aec7477b 6051 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6052 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6053 mode, &index);
7cf96da3
TI
6054 if (IS_ERR(inode)) {
6055 err = PTR_ERR(inode);
39279cc3 6056 goto out_unlock;
7cf96da3 6057 }
43baa579 6058 drop_inode_on_err = 1;
ad19db71
CS
6059 /*
6060 * If the active LSM wants to access the inode during
6061 * d_instantiate it needs these. Smack checks to see
6062 * if the filesystem supports xattrs by looking at the
6063 * ops vector.
6064 */
6065 inode->i_fop = &btrfs_file_operations;
6066 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
6067 inode->i_mapping->a_ops = &btrfs_aops;
6068 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6069
6070 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6071 if (err)
6072 goto out_unlock_inode;
6073
6074 err = btrfs_update_inode(trans, root, inode);
6075 if (err)
6076 goto out_unlock_inode;
ad19db71 6077
a1b075d2 6078 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6079 if (err)
b0d5d10f 6080 goto out_unlock_inode;
43baa579 6081
43baa579 6082 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6083 unlock_new_inode(inode);
43baa579
FB
6084 d_instantiate(dentry, inode);
6085
39279cc3 6086out_unlock:
7ad85bb7 6087 btrfs_end_transaction(trans, root);
43baa579 6088 if (err && drop_inode_on_err) {
39279cc3
CM
6089 inode_dec_link_count(inode);
6090 iput(inode);
6091 }
c581afc8 6092 btrfs_balance_delayed_items(root);
b53d3f5d 6093 btrfs_btree_balance_dirty(root);
39279cc3 6094 return err;
b0d5d10f
CM
6095
6096out_unlock_inode:
6097 unlock_new_inode(inode);
6098 goto out_unlock;
6099
39279cc3
CM
6100}
6101
6102static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6103 struct dentry *dentry)
6104{
6105 struct btrfs_trans_handle *trans;
6106 struct btrfs_root *root = BTRFS_I(dir)->root;
6107 struct inode *inode = old_dentry->d_inode;
00e4e6b3 6108 u64 index;
39279cc3
CM
6109 int err;
6110 int drop_inode = 0;
6111
4a8be425
TH
6112 /* do not allow sys_link's with other subvols of the same device */
6113 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6114 return -EXDEV;
4a8be425 6115
f186373f 6116 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6117 return -EMLINK;
4a8be425 6118
3de4586c 6119 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6120 if (err)
6121 goto fail;
6122
a22285a6 6123 /*
7e6b6465 6124 * 2 items for inode and inode ref
a22285a6 6125 * 2 items for dir items
7e6b6465 6126 * 1 item for parent inode
a22285a6 6127 */
7e6b6465 6128 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6129 if (IS_ERR(trans)) {
6130 err = PTR_ERR(trans);
6131 goto fail;
6132 }
5f39d397 6133
67de1176
MX
6134 /* There are several dir indexes for this inode, clear the cache. */
6135 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6136 inc_nlink(inode);
0c4d2d95 6137 inode_inc_iversion(inode);
3153495d 6138 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6139 ihold(inode);
e9976151 6140 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6141
a1b075d2 6142 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6143
a5719521 6144 if (err) {
54aa1f4d 6145 drop_inode = 1;
a5719521 6146 } else {
10d9f309 6147 struct dentry *parent = dentry->d_parent;
a5719521 6148 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6149 if (err)
6150 goto fail;
ef3b9af5
FM
6151 if (inode->i_nlink == 1) {
6152 /*
6153 * If new hard link count is 1, it's a file created
6154 * with open(2) O_TMPFILE flag.
6155 */
6156 err = btrfs_orphan_del(trans, inode);
6157 if (err)
6158 goto fail;
6159 }
08c422c2 6160 d_instantiate(dentry, inode);
6a912213 6161 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6162 }
39279cc3 6163
7ad85bb7 6164 btrfs_end_transaction(trans, root);
c581afc8 6165 btrfs_balance_delayed_items(root);
1832a6d5 6166fail:
39279cc3
CM
6167 if (drop_inode) {
6168 inode_dec_link_count(inode);
6169 iput(inode);
6170 }
b53d3f5d 6171 btrfs_btree_balance_dirty(root);
39279cc3
CM
6172 return err;
6173}
6174
18bb1db3 6175static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6176{
b9d86667 6177 struct inode *inode = NULL;
39279cc3
CM
6178 struct btrfs_trans_handle *trans;
6179 struct btrfs_root *root = BTRFS_I(dir)->root;
6180 int err = 0;
6181 int drop_on_err = 0;
b9d86667 6182 u64 objectid = 0;
00e4e6b3 6183 u64 index = 0;
39279cc3 6184
9ed74f2d
JB
6185 /*
6186 * 2 items for inode and ref
6187 * 2 items for dir items
6188 * 1 for xattr if selinux is on
6189 */
a22285a6
YZ
6190 trans = btrfs_start_transaction(root, 5);
6191 if (IS_ERR(trans))
6192 return PTR_ERR(trans);
39279cc3 6193
581bb050
LZ
6194 err = btrfs_find_free_ino(root, &objectid);
6195 if (err)
6196 goto out_fail;
6197
aec7477b 6198 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6199 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6200 S_IFDIR | mode, &index);
39279cc3
CM
6201 if (IS_ERR(inode)) {
6202 err = PTR_ERR(inode);
6203 goto out_fail;
6204 }
5f39d397 6205
39279cc3 6206 drop_on_err = 1;
b0d5d10f
CM
6207 /* these must be set before we unlock the inode */
6208 inode->i_op = &btrfs_dir_inode_operations;
6209 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6210
2a7dba39 6211 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6212 if (err)
b0d5d10f 6213 goto out_fail_inode;
39279cc3 6214
dbe674a9 6215 btrfs_i_size_write(inode, 0);
39279cc3
CM
6216 err = btrfs_update_inode(trans, root, inode);
6217 if (err)
b0d5d10f 6218 goto out_fail_inode;
5f39d397 6219
a1b075d2
JB
6220 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6221 dentry->d_name.len, 0, index);
39279cc3 6222 if (err)
b0d5d10f 6223 goto out_fail_inode;
5f39d397 6224
39279cc3 6225 d_instantiate(dentry, inode);
b0d5d10f
CM
6226 /*
6227 * mkdir is special. We're unlocking after we call d_instantiate
6228 * to avoid a race with nfsd calling d_instantiate.
6229 */
6230 unlock_new_inode(inode);
39279cc3 6231 drop_on_err = 0;
39279cc3
CM
6232
6233out_fail:
7ad85bb7 6234 btrfs_end_transaction(trans, root);
39279cc3
CM
6235 if (drop_on_err)
6236 iput(inode);
c581afc8 6237 btrfs_balance_delayed_items(root);
b53d3f5d 6238 btrfs_btree_balance_dirty(root);
39279cc3 6239 return err;
b0d5d10f
CM
6240
6241out_fail_inode:
6242 unlock_new_inode(inode);
6243 goto out_fail;
39279cc3
CM
6244}
6245
d352ac68
CM
6246/* helper for btfs_get_extent. Given an existing extent in the tree,
6247 * and an extent that you want to insert, deal with overlap and insert
6248 * the new extent into the tree.
6249 */
3b951516
CM
6250static int merge_extent_mapping(struct extent_map_tree *em_tree,
6251 struct extent_map *existing,
e6dcd2dc 6252 struct extent_map *em,
51f395ad 6253 u64 map_start)
3b951516
CM
6254{
6255 u64 start_diff;
3b951516 6256
e6dcd2dc
CM
6257 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6258 start_diff = map_start - em->start;
6259 em->start = map_start;
51f395ad 6260 em->len = existing->start - em->start;
c8b97818
CM
6261 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6262 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6263 em->block_start += start_diff;
c8b97818
CM
6264 em->block_len -= start_diff;
6265 }
09a2a8f9 6266 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6267}
6268
c8b97818
CM
6269static noinline int uncompress_inline(struct btrfs_path *path,
6270 struct inode *inode, struct page *page,
6271 size_t pg_offset, u64 extent_offset,
6272 struct btrfs_file_extent_item *item)
6273{
6274 int ret;
6275 struct extent_buffer *leaf = path->nodes[0];
6276 char *tmp;
6277 size_t max_size;
6278 unsigned long inline_size;
6279 unsigned long ptr;
261507a0 6280 int compress_type;
c8b97818
CM
6281
6282 WARN_ON(pg_offset != 0);
261507a0 6283 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6284 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6285 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6286 btrfs_item_nr(path->slots[0]));
c8b97818 6287 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6288 if (!tmp)
6289 return -ENOMEM;
c8b97818
CM
6290 ptr = btrfs_file_extent_inline_start(item);
6291
6292 read_extent_buffer(leaf, tmp, ptr, inline_size);
6293
5b050f04 6294 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6295 ret = btrfs_decompress(compress_type, tmp, page,
6296 extent_offset, inline_size, max_size);
c8b97818 6297 kfree(tmp);
166ae5a4 6298 return ret;
c8b97818
CM
6299}
6300
d352ac68
CM
6301/*
6302 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6303 * the ugly parts come from merging extents from the disk with the in-ram
6304 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6305 * where the in-ram extents might be locked pending data=ordered completion.
6306 *
6307 * This also copies inline extents directly into the page.
6308 */
d397712b 6309
a52d9a80 6310struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6311 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6312 int create)
6313{
6314 int ret;
6315 int err = 0;
a52d9a80
CM
6316 u64 extent_start = 0;
6317 u64 extent_end = 0;
33345d01 6318 u64 objectid = btrfs_ino(inode);
a52d9a80 6319 u32 found_type;
f421950f 6320 struct btrfs_path *path = NULL;
a52d9a80
CM
6321 struct btrfs_root *root = BTRFS_I(inode)->root;
6322 struct btrfs_file_extent_item *item;
5f39d397
CM
6323 struct extent_buffer *leaf;
6324 struct btrfs_key found_key;
a52d9a80
CM
6325 struct extent_map *em = NULL;
6326 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6327 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6328 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6329 const bool new_inline = !page || create;
a52d9a80 6330
a52d9a80 6331again:
890871be 6332 read_lock(&em_tree->lock);
d1310b2e 6333 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6334 if (em)
6335 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6336 read_unlock(&em_tree->lock);
d1310b2e 6337
a52d9a80 6338 if (em) {
e1c4b745
CM
6339 if (em->start > start || em->start + em->len <= start)
6340 free_extent_map(em);
6341 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6342 free_extent_map(em);
6343 else
6344 goto out;
a52d9a80 6345 }
172ddd60 6346 em = alloc_extent_map();
a52d9a80 6347 if (!em) {
d1310b2e
CM
6348 err = -ENOMEM;
6349 goto out;
a52d9a80 6350 }
e6dcd2dc 6351 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6352 em->start = EXTENT_MAP_HOLE;
445a6944 6353 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6354 em->len = (u64)-1;
c8b97818 6355 em->block_len = (u64)-1;
f421950f
CM
6356
6357 if (!path) {
6358 path = btrfs_alloc_path();
026fd317
JB
6359 if (!path) {
6360 err = -ENOMEM;
6361 goto out;
6362 }
6363 /*
6364 * Chances are we'll be called again, so go ahead and do
6365 * readahead
6366 */
6367 path->reada = 1;
f421950f
CM
6368 }
6369
179e29e4
CM
6370 ret = btrfs_lookup_file_extent(trans, root, path,
6371 objectid, start, trans != NULL);
a52d9a80
CM
6372 if (ret < 0) {
6373 err = ret;
6374 goto out;
6375 }
6376
6377 if (ret != 0) {
6378 if (path->slots[0] == 0)
6379 goto not_found;
6380 path->slots[0]--;
6381 }
6382
5f39d397
CM
6383 leaf = path->nodes[0];
6384 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6385 struct btrfs_file_extent_item);
a52d9a80 6386 /* are we inside the extent that was found? */
5f39d397 6387 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6388 found_type = found_key.type;
5f39d397 6389 if (found_key.objectid != objectid ||
a52d9a80 6390 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6391 /*
6392 * If we backup past the first extent we want to move forward
6393 * and see if there is an extent in front of us, otherwise we'll
6394 * say there is a hole for our whole search range which can
6395 * cause problems.
6396 */
6397 extent_end = start;
6398 goto next;
a52d9a80
CM
6399 }
6400
5f39d397
CM
6401 found_type = btrfs_file_extent_type(leaf, item);
6402 extent_start = found_key.offset;
d899e052
YZ
6403 if (found_type == BTRFS_FILE_EXTENT_REG ||
6404 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6405 extent_end = extent_start +
db94535d 6406 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6407 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6408 size_t size;
514ac8ad 6409 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6410 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6411 }
25a50341 6412next:
9036c102
YZ
6413 if (start >= extent_end) {
6414 path->slots[0]++;
6415 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6416 ret = btrfs_next_leaf(root, path);
6417 if (ret < 0) {
6418 err = ret;
6419 goto out;
a52d9a80 6420 }
9036c102
YZ
6421 if (ret > 0)
6422 goto not_found;
6423 leaf = path->nodes[0];
a52d9a80 6424 }
9036c102
YZ
6425 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6426 if (found_key.objectid != objectid ||
6427 found_key.type != BTRFS_EXTENT_DATA_KEY)
6428 goto not_found;
6429 if (start + len <= found_key.offset)
6430 goto not_found;
e2eca69d
WS
6431 if (start > found_key.offset)
6432 goto next;
9036c102 6433 em->start = start;
70c8a91c 6434 em->orig_start = start;
9036c102
YZ
6435 em->len = found_key.offset - start;
6436 goto not_found_em;
6437 }
6438
7ffbb598
FM
6439 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6440
d899e052
YZ
6441 if (found_type == BTRFS_FILE_EXTENT_REG ||
6442 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6443 goto insert;
6444 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6445 unsigned long ptr;
a52d9a80 6446 char *map;
3326d1b0
CM
6447 size_t size;
6448 size_t extent_offset;
6449 size_t copy_size;
a52d9a80 6450
7ffbb598 6451 if (new_inline)
689f9346 6452 goto out;
5f39d397 6453
514ac8ad 6454 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6455 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6456 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6457 size - extent_offset);
3326d1b0 6458 em->start = extent_start + extent_offset;
fda2832f 6459 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6460 em->orig_block_len = em->len;
70c8a91c 6461 em->orig_start = em->start;
689f9346 6462 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6463 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6464 if (btrfs_file_extent_compression(leaf, item) !=
6465 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6466 ret = uncompress_inline(path, inode, page,
6467 pg_offset,
6468 extent_offset, item);
166ae5a4
ZB
6469 if (ret) {
6470 err = ret;
6471 goto out;
6472 }
c8b97818
CM
6473 } else {
6474 map = kmap(page);
6475 read_extent_buffer(leaf, map + pg_offset, ptr,
6476 copy_size);
93c82d57
CM
6477 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6478 memset(map + pg_offset + copy_size, 0,
6479 PAGE_CACHE_SIZE - pg_offset -
6480 copy_size);
6481 }
c8b97818
CM
6482 kunmap(page);
6483 }
179e29e4
CM
6484 flush_dcache_page(page);
6485 } else if (create && PageUptodate(page)) {
6bf7e080 6486 BUG();
179e29e4
CM
6487 if (!trans) {
6488 kunmap(page);
6489 free_extent_map(em);
6490 em = NULL;
ff5714cc 6491
b3b4aa74 6492 btrfs_release_path(path);
7a7eaa40 6493 trans = btrfs_join_transaction(root);
ff5714cc 6494
3612b495
TI
6495 if (IS_ERR(trans))
6496 return ERR_CAST(trans);
179e29e4
CM
6497 goto again;
6498 }
c8b97818 6499 map = kmap(page);
70dec807 6500 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6501 copy_size);
c8b97818 6502 kunmap(page);
179e29e4 6503 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6504 }
d1310b2e 6505 set_extent_uptodate(io_tree, em->start,
507903b8 6506 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6507 goto insert;
a52d9a80
CM
6508 }
6509not_found:
6510 em->start = start;
70c8a91c 6511 em->orig_start = start;
d1310b2e 6512 em->len = len;
a52d9a80 6513not_found_em:
5f39d397 6514 em->block_start = EXTENT_MAP_HOLE;
9036c102 6515 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6516insert:
b3b4aa74 6517 btrfs_release_path(path);
d1310b2e 6518 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6519 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6520 em->start, em->len, start, len);
a52d9a80
CM
6521 err = -EIO;
6522 goto out;
6523 }
d1310b2e
CM
6524
6525 err = 0;
890871be 6526 write_lock(&em_tree->lock);
09a2a8f9 6527 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6528 /* it is possible that someone inserted the extent into the tree
6529 * while we had the lock dropped. It is also possible that
6530 * an overlapping map exists in the tree
6531 */
a52d9a80 6532 if (ret == -EEXIST) {
3b951516 6533 struct extent_map *existing;
e6dcd2dc
CM
6534
6535 ret = 0;
6536
3b951516 6537 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6538 if (existing && (existing->start > start ||
6539 existing->start + existing->len <= start)) {
6540 free_extent_map(existing);
6541 existing = NULL;
6542 }
3b951516
CM
6543 if (!existing) {
6544 existing = lookup_extent_mapping(em_tree, em->start,
6545 em->len);
6546 if (existing) {
6547 err = merge_extent_mapping(em_tree, existing,
51f395ad 6548 em, start);
3b951516
CM
6549 free_extent_map(existing);
6550 if (err) {
6551 free_extent_map(em);
6552 em = NULL;
6553 }
6554 } else {
6555 err = -EIO;
3b951516
CM
6556 free_extent_map(em);
6557 em = NULL;
6558 }
6559 } else {
6560 free_extent_map(em);
6561 em = existing;
e6dcd2dc 6562 err = 0;
a52d9a80 6563 }
a52d9a80 6564 }
890871be 6565 write_unlock(&em_tree->lock);
a52d9a80 6566out:
1abe9b8a 6567
4cd8587c 6568 trace_btrfs_get_extent(root, em);
1abe9b8a 6569
f421950f
CM
6570 if (path)
6571 btrfs_free_path(path);
a52d9a80
CM
6572 if (trans) {
6573 ret = btrfs_end_transaction(trans, root);
d397712b 6574 if (!err)
a52d9a80
CM
6575 err = ret;
6576 }
a52d9a80
CM
6577 if (err) {
6578 free_extent_map(em);
a52d9a80
CM
6579 return ERR_PTR(err);
6580 }
79787eaa 6581 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6582 return em;
6583}
6584
ec29ed5b
CM
6585struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6586 size_t pg_offset, u64 start, u64 len,
6587 int create)
6588{
6589 struct extent_map *em;
6590 struct extent_map *hole_em = NULL;
6591 u64 range_start = start;
6592 u64 end;
6593 u64 found;
6594 u64 found_end;
6595 int err = 0;
6596
6597 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6598 if (IS_ERR(em))
6599 return em;
6600 if (em) {
6601 /*
f9e4fb53
LB
6602 * if our em maps to
6603 * - a hole or
6604 * - a pre-alloc extent,
6605 * there might actually be delalloc bytes behind it.
ec29ed5b 6606 */
f9e4fb53
LB
6607 if (em->block_start != EXTENT_MAP_HOLE &&
6608 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6609 return em;
6610 else
6611 hole_em = em;
6612 }
6613
6614 /* check to see if we've wrapped (len == -1 or similar) */
6615 end = start + len;
6616 if (end < start)
6617 end = (u64)-1;
6618 else
6619 end -= 1;
6620
6621 em = NULL;
6622
6623 /* ok, we didn't find anything, lets look for delalloc */
6624 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6625 end, len, EXTENT_DELALLOC, 1);
6626 found_end = range_start + found;
6627 if (found_end < range_start)
6628 found_end = (u64)-1;
6629
6630 /*
6631 * we didn't find anything useful, return
6632 * the original results from get_extent()
6633 */
6634 if (range_start > end || found_end <= start) {
6635 em = hole_em;
6636 hole_em = NULL;
6637 goto out;
6638 }
6639
6640 /* adjust the range_start to make sure it doesn't
6641 * go backwards from the start they passed in
6642 */
67871254 6643 range_start = max(start, range_start);
ec29ed5b
CM
6644 found = found_end - range_start;
6645
6646 if (found > 0) {
6647 u64 hole_start = start;
6648 u64 hole_len = len;
6649
172ddd60 6650 em = alloc_extent_map();
ec29ed5b
CM
6651 if (!em) {
6652 err = -ENOMEM;
6653 goto out;
6654 }
6655 /*
6656 * when btrfs_get_extent can't find anything it
6657 * returns one huge hole
6658 *
6659 * make sure what it found really fits our range, and
6660 * adjust to make sure it is based on the start from
6661 * the caller
6662 */
6663 if (hole_em) {
6664 u64 calc_end = extent_map_end(hole_em);
6665
6666 if (calc_end <= start || (hole_em->start > end)) {
6667 free_extent_map(hole_em);
6668 hole_em = NULL;
6669 } else {
6670 hole_start = max(hole_em->start, start);
6671 hole_len = calc_end - hole_start;
6672 }
6673 }
6674 em->bdev = NULL;
6675 if (hole_em && range_start > hole_start) {
6676 /* our hole starts before our delalloc, so we
6677 * have to return just the parts of the hole
6678 * that go until the delalloc starts
6679 */
6680 em->len = min(hole_len,
6681 range_start - hole_start);
6682 em->start = hole_start;
6683 em->orig_start = hole_start;
6684 /*
6685 * don't adjust block start at all,
6686 * it is fixed at EXTENT_MAP_HOLE
6687 */
6688 em->block_start = hole_em->block_start;
6689 em->block_len = hole_len;
f9e4fb53
LB
6690 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6691 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6692 } else {
6693 em->start = range_start;
6694 em->len = found;
6695 em->orig_start = range_start;
6696 em->block_start = EXTENT_MAP_DELALLOC;
6697 em->block_len = found;
6698 }
6699 } else if (hole_em) {
6700 return hole_em;
6701 }
6702out:
6703
6704 free_extent_map(hole_em);
6705 if (err) {
6706 free_extent_map(em);
6707 return ERR_PTR(err);
6708 }
6709 return em;
6710}
6711
4b46fce2
JB
6712static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6713 u64 start, u64 len)
6714{
6715 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6716 struct extent_map *em;
4b46fce2
JB
6717 struct btrfs_key ins;
6718 u64 alloc_hint;
6719 int ret;
4b46fce2 6720
4b46fce2 6721 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6722 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 6723 alloc_hint, &ins, 1, 1);
00361589
JB
6724 if (ret)
6725 return ERR_PTR(ret);
4b46fce2 6726
70c8a91c 6727 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6728 ins.offset, ins.offset, ins.offset, 0);
00361589 6729 if (IS_ERR(em)) {
e570fd27 6730 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6731 return em;
6732 }
4b46fce2
JB
6733
6734 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6735 ins.offset, ins.offset, 0);
6736 if (ret) {
e570fd27 6737 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6738 free_extent_map(em);
6739 return ERR_PTR(ret);
4b46fce2 6740 }
00361589 6741
4b46fce2
JB
6742 return em;
6743}
6744
46bfbb5c
CM
6745/*
6746 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6747 * block must be cow'd
6748 */
00361589 6749noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6750 u64 *orig_start, u64 *orig_block_len,
6751 u64 *ram_bytes)
46bfbb5c 6752{
00361589 6753 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6754 struct btrfs_path *path;
6755 int ret;
6756 struct extent_buffer *leaf;
6757 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6758 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6759 struct btrfs_file_extent_item *fi;
6760 struct btrfs_key key;
6761 u64 disk_bytenr;
6762 u64 backref_offset;
6763 u64 extent_end;
6764 u64 num_bytes;
6765 int slot;
6766 int found_type;
7ee9e440 6767 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6768
46bfbb5c
CM
6769 path = btrfs_alloc_path();
6770 if (!path)
6771 return -ENOMEM;
6772
00361589 6773 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6774 offset, 0);
6775 if (ret < 0)
6776 goto out;
6777
6778 slot = path->slots[0];
6779 if (ret == 1) {
6780 if (slot == 0) {
6781 /* can't find the item, must cow */
6782 ret = 0;
6783 goto out;
6784 }
6785 slot--;
6786 }
6787 ret = 0;
6788 leaf = path->nodes[0];
6789 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6790 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6791 key.type != BTRFS_EXTENT_DATA_KEY) {
6792 /* not our file or wrong item type, must cow */
6793 goto out;
6794 }
6795
6796 if (key.offset > offset) {
6797 /* Wrong offset, must cow */
6798 goto out;
6799 }
6800
6801 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6802 found_type = btrfs_file_extent_type(leaf, fi);
6803 if (found_type != BTRFS_FILE_EXTENT_REG &&
6804 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6805 /* not a regular extent, must cow */
6806 goto out;
6807 }
7ee9e440
JB
6808
6809 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6810 goto out;
6811
e77751aa
MX
6812 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6813 if (extent_end <= offset)
6814 goto out;
6815
46bfbb5c 6816 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6817 if (disk_bytenr == 0)
6818 goto out;
6819
6820 if (btrfs_file_extent_compression(leaf, fi) ||
6821 btrfs_file_extent_encryption(leaf, fi) ||
6822 btrfs_file_extent_other_encoding(leaf, fi))
6823 goto out;
6824
46bfbb5c
CM
6825 backref_offset = btrfs_file_extent_offset(leaf, fi);
6826
7ee9e440
JB
6827 if (orig_start) {
6828 *orig_start = key.offset - backref_offset;
6829 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6830 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6831 }
eb384b55 6832
46bfbb5c
CM
6833 if (btrfs_extent_readonly(root, disk_bytenr))
6834 goto out;
7b2b7085
MX
6835
6836 num_bytes = min(offset + *len, extent_end) - offset;
6837 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6838 u64 range_end;
6839
6840 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6841 ret = test_range_bit(io_tree, offset, range_end,
6842 EXTENT_DELALLOC, 0, NULL);
6843 if (ret) {
6844 ret = -EAGAIN;
6845 goto out;
6846 }
6847 }
6848
1bda19eb 6849 btrfs_release_path(path);
46bfbb5c
CM
6850
6851 /*
6852 * look for other files referencing this extent, if we
6853 * find any we must cow
6854 */
00361589
JB
6855 trans = btrfs_join_transaction(root);
6856 if (IS_ERR(trans)) {
6857 ret = 0;
46bfbb5c 6858 goto out;
00361589
JB
6859 }
6860
6861 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6862 key.offset - backref_offset, disk_bytenr);
6863 btrfs_end_transaction(trans, root);
6864 if (ret) {
6865 ret = 0;
6866 goto out;
6867 }
46bfbb5c
CM
6868
6869 /*
6870 * adjust disk_bytenr and num_bytes to cover just the bytes
6871 * in this extent we are about to write. If there
6872 * are any csums in that range we have to cow in order
6873 * to keep the csums correct
6874 */
6875 disk_bytenr += backref_offset;
6876 disk_bytenr += offset - key.offset;
46bfbb5c
CM
6877 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6878 goto out;
6879 /*
6880 * all of the above have passed, it is safe to overwrite this extent
6881 * without cow
6882 */
eb384b55 6883 *len = num_bytes;
46bfbb5c
CM
6884 ret = 1;
6885out:
6886 btrfs_free_path(path);
6887 return ret;
6888}
6889
fc4adbff
AG
6890bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6891{
6892 struct radix_tree_root *root = &inode->i_mapping->page_tree;
6893 int found = false;
6894 void **pagep = NULL;
6895 struct page *page = NULL;
6896 int start_idx;
6897 int end_idx;
6898
6899 start_idx = start >> PAGE_CACHE_SHIFT;
6900
6901 /*
6902 * end is the last byte in the last page. end == start is legal
6903 */
6904 end_idx = end >> PAGE_CACHE_SHIFT;
6905
6906 rcu_read_lock();
6907
6908 /* Most of the code in this while loop is lifted from
6909 * find_get_page. It's been modified to begin searching from a
6910 * page and return just the first page found in that range. If the
6911 * found idx is less than or equal to the end idx then we know that
6912 * a page exists. If no pages are found or if those pages are
6913 * outside of the range then we're fine (yay!) */
6914 while (page == NULL &&
6915 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6916 page = radix_tree_deref_slot(pagep);
6917 if (unlikely(!page))
6918 break;
6919
6920 if (radix_tree_exception(page)) {
809f9016
FM
6921 if (radix_tree_deref_retry(page)) {
6922 page = NULL;
fc4adbff 6923 continue;
809f9016 6924 }
fc4adbff
AG
6925 /*
6926 * Otherwise, shmem/tmpfs must be storing a swap entry
6927 * here as an exceptional entry: so return it without
6928 * attempting to raise page count.
6929 */
6fdef6d4 6930 page = NULL;
fc4adbff
AG
6931 break; /* TODO: Is this relevant for this use case? */
6932 }
6933
91405151
FM
6934 if (!page_cache_get_speculative(page)) {
6935 page = NULL;
fc4adbff 6936 continue;
91405151 6937 }
fc4adbff
AG
6938
6939 /*
6940 * Has the page moved?
6941 * This is part of the lockless pagecache protocol. See
6942 * include/linux/pagemap.h for details.
6943 */
6944 if (unlikely(page != *pagep)) {
6945 page_cache_release(page);
6946 page = NULL;
6947 }
6948 }
6949
6950 if (page) {
6951 if (page->index <= end_idx)
6952 found = true;
6953 page_cache_release(page);
6954 }
6955
6956 rcu_read_unlock();
6957 return found;
6958}
6959
eb838e73
JB
6960static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6961 struct extent_state **cached_state, int writing)
6962{
6963 struct btrfs_ordered_extent *ordered;
6964 int ret = 0;
6965
6966 while (1) {
6967 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6968 0, cached_state);
6969 /*
6970 * We're concerned with the entire range that we're going to be
6971 * doing DIO to, so we need to make sure theres no ordered
6972 * extents in this range.
6973 */
6974 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6975 lockend - lockstart + 1);
6976
6977 /*
6978 * We need to make sure there are no buffered pages in this
6979 * range either, we could have raced between the invalidate in
6980 * generic_file_direct_write and locking the extent. The
6981 * invalidate needs to happen so that reads after a write do not
6982 * get stale data.
6983 */
fc4adbff
AG
6984 if (!ordered &&
6985 (!writing ||
6986 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
6987 break;
6988
6989 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6990 cached_state, GFP_NOFS);
6991
6992 if (ordered) {
6993 btrfs_start_ordered_extent(inode, ordered, 1);
6994 btrfs_put_ordered_extent(ordered);
6995 } else {
6996 /* Screw you mmap */
6997 ret = filemap_write_and_wait_range(inode->i_mapping,
6998 lockstart,
6999 lockend);
7000 if (ret)
7001 break;
7002
7003 /*
7004 * If we found a page that couldn't be invalidated just
7005 * fall back to buffered.
7006 */
7007 ret = invalidate_inode_pages2_range(inode->i_mapping,
7008 lockstart >> PAGE_CACHE_SHIFT,
7009 lockend >> PAGE_CACHE_SHIFT);
7010 if (ret)
7011 break;
7012 }
7013
7014 cond_resched();
7015 }
7016
7017 return ret;
7018}
7019
69ffb543
JB
7020static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7021 u64 len, u64 orig_start,
7022 u64 block_start, u64 block_len,
cc95bef6
JB
7023 u64 orig_block_len, u64 ram_bytes,
7024 int type)
69ffb543
JB
7025{
7026 struct extent_map_tree *em_tree;
7027 struct extent_map *em;
7028 struct btrfs_root *root = BTRFS_I(inode)->root;
7029 int ret;
7030
7031 em_tree = &BTRFS_I(inode)->extent_tree;
7032 em = alloc_extent_map();
7033 if (!em)
7034 return ERR_PTR(-ENOMEM);
7035
7036 em->start = start;
7037 em->orig_start = orig_start;
2ab28f32
JB
7038 em->mod_start = start;
7039 em->mod_len = len;
69ffb543
JB
7040 em->len = len;
7041 em->block_len = block_len;
7042 em->block_start = block_start;
7043 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7044 em->orig_block_len = orig_block_len;
cc95bef6 7045 em->ram_bytes = ram_bytes;
70c8a91c 7046 em->generation = -1;
69ffb543
JB
7047 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7048 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7049 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7050
7051 do {
7052 btrfs_drop_extent_cache(inode, em->start,
7053 em->start + em->len - 1, 0);
7054 write_lock(&em_tree->lock);
09a2a8f9 7055 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7056 write_unlock(&em_tree->lock);
7057 } while (ret == -EEXIST);
7058
7059 if (ret) {
7060 free_extent_map(em);
7061 return ERR_PTR(ret);
7062 }
7063
7064 return em;
7065}
7066
7067
4b46fce2
JB
7068static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7069 struct buffer_head *bh_result, int create)
7070{
7071 struct extent_map *em;
7072 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7073 struct extent_state *cached_state = NULL;
4b46fce2 7074 u64 start = iblock << inode->i_blkbits;
eb838e73 7075 u64 lockstart, lockend;
4b46fce2 7076 u64 len = bh_result->b_size;
eb838e73 7077 int unlock_bits = EXTENT_LOCKED;
0934856d 7078 int ret = 0;
eb838e73 7079
172a5049 7080 if (create)
eb838e73 7081 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 7082 else
c329861d 7083 len = min_t(u64, len, root->sectorsize);
eb838e73 7084
c329861d
JB
7085 lockstart = start;
7086 lockend = start + len - 1;
7087
eb838e73
JB
7088 /*
7089 * If this errors out it's because we couldn't invalidate pagecache for
7090 * this range and we need to fallback to buffered.
7091 */
7092 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7093 return -ENOTBLK;
7094
4b46fce2 7095 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7096 if (IS_ERR(em)) {
7097 ret = PTR_ERR(em);
7098 goto unlock_err;
7099 }
4b46fce2
JB
7100
7101 /*
7102 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7103 * io. INLINE is special, and we could probably kludge it in here, but
7104 * it's still buffered so for safety lets just fall back to the generic
7105 * buffered path.
7106 *
7107 * For COMPRESSED we _have_ to read the entire extent in so we can
7108 * decompress it, so there will be buffering required no matter what we
7109 * do, so go ahead and fallback to buffered.
7110 *
7111 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7112 * to buffered IO. Don't blame me, this is the price we pay for using
7113 * the generic code.
7114 */
7115 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7116 em->block_start == EXTENT_MAP_INLINE) {
7117 free_extent_map(em);
eb838e73
JB
7118 ret = -ENOTBLK;
7119 goto unlock_err;
4b46fce2
JB
7120 }
7121
7122 /* Just a good old fashioned hole, return */
7123 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7124 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7125 free_extent_map(em);
eb838e73 7126 goto unlock_err;
4b46fce2
JB
7127 }
7128
7129 /*
7130 * We don't allocate a new extent in the following cases
7131 *
7132 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7133 * existing extent.
7134 * 2) The extent is marked as PREALLOC. We're good to go here and can
7135 * just use the extent.
7136 *
7137 */
46bfbb5c 7138 if (!create) {
eb838e73
JB
7139 len = min(len, em->len - (start - em->start));
7140 lockstart = start + len;
7141 goto unlock;
46bfbb5c 7142 }
4b46fce2
JB
7143
7144 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7145 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7146 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
7147 int type;
7148 int ret;
eb384b55 7149 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7150
7151 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7152 type = BTRFS_ORDERED_PREALLOC;
7153 else
7154 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7155 len = min(len, em->len - (start - em->start));
4b46fce2 7156 block_start = em->block_start + (start - em->start);
46bfbb5c 7157
00361589 7158 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7159 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7160 if (type == BTRFS_ORDERED_PREALLOC) {
7161 free_extent_map(em);
7162 em = create_pinned_em(inode, start, len,
7163 orig_start,
b4939680 7164 block_start, len,
cc95bef6
JB
7165 orig_block_len,
7166 ram_bytes, type);
555e1286
FM
7167 if (IS_ERR(em)) {
7168 ret = PTR_ERR(em);
69ffb543 7169 goto unlock_err;
555e1286 7170 }
69ffb543
JB
7171 }
7172
46bfbb5c
CM
7173 ret = btrfs_add_ordered_extent_dio(inode, start,
7174 block_start, len, len, type);
46bfbb5c
CM
7175 if (ret) {
7176 free_extent_map(em);
eb838e73 7177 goto unlock_err;
46bfbb5c
CM
7178 }
7179 goto unlock;
4b46fce2 7180 }
4b46fce2 7181 }
00361589 7182
46bfbb5c
CM
7183 /*
7184 * this will cow the extent, reset the len in case we changed
7185 * it above
7186 */
7187 len = bh_result->b_size;
70c8a91c
JB
7188 free_extent_map(em);
7189 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7190 if (IS_ERR(em)) {
7191 ret = PTR_ERR(em);
7192 goto unlock_err;
7193 }
46bfbb5c
CM
7194 len = min(len, em->len - (start - em->start));
7195unlock:
4b46fce2
JB
7196 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7197 inode->i_blkbits;
46bfbb5c 7198 bh_result->b_size = len;
4b46fce2
JB
7199 bh_result->b_bdev = em->bdev;
7200 set_buffer_mapped(bh_result);
c3473e83
JB
7201 if (create) {
7202 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7203 set_buffer_new(bh_result);
7204
7205 /*
7206 * Need to update the i_size under the extent lock so buffered
7207 * readers will get the updated i_size when we unlock.
7208 */
7209 if (start + len > i_size_read(inode))
7210 i_size_write(inode, start + len);
0934856d 7211
172a5049
MX
7212 spin_lock(&BTRFS_I(inode)->lock);
7213 BTRFS_I(inode)->outstanding_extents++;
7214 spin_unlock(&BTRFS_I(inode)->lock);
7215
0934856d
MX
7216 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7217 lockstart + len - 1, EXTENT_DELALLOC, NULL,
7218 &cached_state, GFP_NOFS);
7219 BUG_ON(ret);
c3473e83 7220 }
4b46fce2 7221
eb838e73
JB
7222 /*
7223 * In the case of write we need to clear and unlock the entire range,
7224 * in the case of read we need to unlock only the end area that we
7225 * aren't using if there is any left over space.
7226 */
24c03fa5 7227 if (lockstart < lockend) {
0934856d
MX
7228 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7229 lockend, unlock_bits, 1, 0,
7230 &cached_state, GFP_NOFS);
24c03fa5 7231 } else {
eb838e73 7232 free_extent_state(cached_state);
24c03fa5 7233 }
eb838e73 7234
4b46fce2
JB
7235 free_extent_map(em);
7236
7237 return 0;
eb838e73
JB
7238
7239unlock_err:
eb838e73
JB
7240 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7241 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7242 return ret;
4b46fce2
JB
7243}
7244
8b110e39
MX
7245static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7246 int rw, int mirror_num)
7247{
7248 struct btrfs_root *root = BTRFS_I(inode)->root;
7249 int ret;
7250
7251 BUG_ON(rw & REQ_WRITE);
7252
7253 bio_get(bio);
7254
7255 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7256 BTRFS_WQ_ENDIO_DIO_REPAIR);
7257 if (ret)
7258 goto err;
7259
7260 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7261err:
7262 bio_put(bio);
7263 return ret;
7264}
7265
7266static int btrfs_check_dio_repairable(struct inode *inode,
7267 struct bio *failed_bio,
7268 struct io_failure_record *failrec,
7269 int failed_mirror)
7270{
7271 int num_copies;
7272
7273 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7274 failrec->logical, failrec->len);
7275 if (num_copies == 1) {
7276 /*
7277 * we only have a single copy of the data, so don't bother with
7278 * all the retry and error correction code that follows. no
7279 * matter what the error is, it is very likely to persist.
7280 */
7281 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7282 num_copies, failrec->this_mirror, failed_mirror);
7283 return 0;
7284 }
7285
7286 failrec->failed_mirror = failed_mirror;
7287 failrec->this_mirror++;
7288 if (failrec->this_mirror == failed_mirror)
7289 failrec->this_mirror++;
7290
7291 if (failrec->this_mirror > num_copies) {
7292 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7293 num_copies, failrec->this_mirror, failed_mirror);
7294 return 0;
7295 }
7296
7297 return 1;
7298}
7299
7300static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7301 struct page *page, u64 start, u64 end,
7302 int failed_mirror, bio_end_io_t *repair_endio,
7303 void *repair_arg)
7304{
7305 struct io_failure_record *failrec;
7306 struct bio *bio;
7307 int isector;
7308 int read_mode;
7309 int ret;
7310
7311 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7312
7313 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7314 if (ret)
7315 return ret;
7316
7317 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7318 failed_mirror);
7319 if (!ret) {
7320 free_io_failure(inode, failrec);
7321 return -EIO;
7322 }
7323
7324 if (failed_bio->bi_vcnt > 1)
7325 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7326 else
7327 read_mode = READ_SYNC;
7328
7329 isector = start - btrfs_io_bio(failed_bio)->logical;
7330 isector >>= inode->i_sb->s_blocksize_bits;
7331 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7332 0, isector, repair_endio, repair_arg);
7333 if (!bio) {
7334 free_io_failure(inode, failrec);
7335 return -EIO;
7336 }
7337
7338 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7339 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7340 read_mode, failrec->this_mirror, failrec->in_validation);
7341
7342 ret = submit_dio_repair_bio(inode, bio, read_mode,
7343 failrec->this_mirror);
7344 if (ret) {
7345 free_io_failure(inode, failrec);
7346 bio_put(bio);
7347 }
7348
7349 return ret;
7350}
7351
7352struct btrfs_retry_complete {
7353 struct completion done;
7354 struct inode *inode;
7355 u64 start;
7356 int uptodate;
7357};
7358
7359static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7360{
7361 struct btrfs_retry_complete *done = bio->bi_private;
7362 struct bio_vec *bvec;
7363 int i;
7364
7365 if (err)
7366 goto end;
7367
7368 done->uptodate = 1;
7369 bio_for_each_segment_all(bvec, bio, i)
7370 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7371end:
7372 complete(&done->done);
7373 bio_put(bio);
7374}
7375
7376static int __btrfs_correct_data_nocsum(struct inode *inode,
7377 struct btrfs_io_bio *io_bio)
4b46fce2 7378{
2c30c71b 7379 struct bio_vec *bvec;
8b110e39 7380 struct btrfs_retry_complete done;
4b46fce2 7381 u64 start;
2c30c71b 7382 int i;
c1dc0896 7383 int ret;
4b46fce2 7384
8b110e39
MX
7385 start = io_bio->logical;
7386 done.inode = inode;
7387
7388 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7389try_again:
7390 done.uptodate = 0;
7391 done.start = start;
7392 init_completion(&done.done);
7393
7394 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7395 start + bvec->bv_len - 1,
7396 io_bio->mirror_num,
7397 btrfs_retry_endio_nocsum, &done);
7398 if (ret)
7399 return ret;
7400
7401 wait_for_completion(&done.done);
7402
7403 if (!done.uptodate) {
7404 /* We might have another mirror, so try again */
7405 goto try_again;
7406 }
7407
7408 start += bvec->bv_len;
7409 }
7410
7411 return 0;
7412}
7413
7414static void btrfs_retry_endio(struct bio *bio, int err)
7415{
7416 struct btrfs_retry_complete *done = bio->bi_private;
7417 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7418 struct bio_vec *bvec;
7419 int uptodate;
7420 int ret;
7421 int i;
7422
7423 if (err)
7424 goto end;
7425
7426 uptodate = 1;
7427 bio_for_each_segment_all(bvec, bio, i) {
7428 ret = __readpage_endio_check(done->inode, io_bio, i,
7429 bvec->bv_page, 0,
7430 done->start, bvec->bv_len);
7431 if (!ret)
7432 clean_io_failure(done->inode, done->start,
7433 bvec->bv_page, 0);
7434 else
7435 uptodate = 0;
7436 }
7437
7438 done->uptodate = uptodate;
7439end:
7440 complete(&done->done);
7441 bio_put(bio);
7442}
7443
7444static int __btrfs_subio_endio_read(struct inode *inode,
7445 struct btrfs_io_bio *io_bio, int err)
7446{
7447 struct bio_vec *bvec;
7448 struct btrfs_retry_complete done;
7449 u64 start;
7450 u64 offset = 0;
7451 int i;
7452 int ret;
dc380aea 7453
8b110e39 7454 err = 0;
c1dc0896 7455 start = io_bio->logical;
8b110e39
MX
7456 done.inode = inode;
7457
c1dc0896 7458 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7459 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7460 0, start, bvec->bv_len);
8b110e39
MX
7461 if (likely(!ret))
7462 goto next;
7463try_again:
7464 done.uptodate = 0;
7465 done.start = start;
7466 init_completion(&done.done);
7467
7468 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7469 start + bvec->bv_len - 1,
7470 io_bio->mirror_num,
7471 btrfs_retry_endio, &done);
7472 if (ret) {
7473 err = ret;
7474 goto next;
7475 }
7476
7477 wait_for_completion(&done.done);
7478
7479 if (!done.uptodate) {
7480 /* We might have another mirror, so try again */
7481 goto try_again;
7482 }
7483next:
7484 offset += bvec->bv_len;
4b46fce2 7485 start += bvec->bv_len;
2c30c71b 7486 }
c1dc0896
MX
7487
7488 return err;
7489}
7490
8b110e39
MX
7491static int btrfs_subio_endio_read(struct inode *inode,
7492 struct btrfs_io_bio *io_bio, int err)
7493{
7494 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7495
7496 if (skip_csum) {
7497 if (unlikely(err))
7498 return __btrfs_correct_data_nocsum(inode, io_bio);
7499 else
7500 return 0;
7501 } else {
7502 return __btrfs_subio_endio_read(inode, io_bio, err);
7503 }
7504}
7505
c1dc0896
MX
7506static void btrfs_endio_direct_read(struct bio *bio, int err)
7507{
7508 struct btrfs_dio_private *dip = bio->bi_private;
7509 struct inode *inode = dip->inode;
7510 struct bio *dio_bio;
7511 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7512
8b110e39
MX
7513 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7514 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 7515
4b46fce2 7516 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7517 dip->logical_offset + dip->bytes - 1);
9be3395b 7518 dio_bio = dip->dio_bio;
4b46fce2 7519
4b46fce2 7520 kfree(dip);
c0da7aa1
JB
7521
7522 /* If we had a csum failure make sure to clear the uptodate flag */
7523 if (err)
9be3395b
CM
7524 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7525 dio_end_io(dio_bio, err);
23ea8e5a
MX
7526
7527 if (io_bio->end_io)
7528 io_bio->end_io(io_bio, err);
9be3395b 7529 bio_put(bio);
4b46fce2
JB
7530}
7531
7532static void btrfs_endio_direct_write(struct bio *bio, int err)
7533{
7534 struct btrfs_dio_private *dip = bio->bi_private;
7535 struct inode *inode = dip->inode;
7536 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7537 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7538 u64 ordered_offset = dip->logical_offset;
7539 u64 ordered_bytes = dip->bytes;
9be3395b 7540 struct bio *dio_bio;
4b46fce2
JB
7541 int ret;
7542
7543 if (err)
7544 goto out_done;
163cf09c
CM
7545again:
7546 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7547 &ordered_offset,
5fd02043 7548 ordered_bytes, !err);
4b46fce2 7549 if (!ret)
163cf09c 7550 goto out_test;
4b46fce2 7551
9e0af237
LB
7552 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7553 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
7554 btrfs_queue_work(root->fs_info->endio_write_workers,
7555 &ordered->work);
163cf09c
CM
7556out_test:
7557 /*
7558 * our bio might span multiple ordered extents. If we haven't
7559 * completed the accounting for the whole dio, go back and try again
7560 */
7561 if (ordered_offset < dip->logical_offset + dip->bytes) {
7562 ordered_bytes = dip->logical_offset + dip->bytes -
7563 ordered_offset;
5fd02043 7564 ordered = NULL;
163cf09c
CM
7565 goto again;
7566 }
4b46fce2 7567out_done:
9be3395b 7568 dio_bio = dip->dio_bio;
4b46fce2 7569
4b46fce2 7570 kfree(dip);
c0da7aa1
JB
7571
7572 /* If we had an error make sure to clear the uptodate flag */
7573 if (err)
9be3395b
CM
7574 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7575 dio_end_io(dio_bio, err);
7576 bio_put(bio);
4b46fce2
JB
7577}
7578
eaf25d93
CM
7579static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7580 struct bio *bio, int mirror_num,
7581 unsigned long bio_flags, u64 offset)
7582{
7583 int ret;
7584 struct btrfs_root *root = BTRFS_I(inode)->root;
7585 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7586 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7587 return 0;
7588}
7589
e65e1535
MX
7590static void btrfs_end_dio_bio(struct bio *bio, int err)
7591{
7592 struct btrfs_dio_private *dip = bio->bi_private;
7593
8b110e39
MX
7594 if (err)
7595 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7596 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7597 btrfs_ino(dip->inode), bio->bi_rw,
7598 (unsigned long long)bio->bi_iter.bi_sector,
7599 bio->bi_iter.bi_size, err);
7600
7601 if (dip->subio_endio)
7602 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
7603
7604 if (err) {
e65e1535
MX
7605 dip->errors = 1;
7606
7607 /*
7608 * before atomic variable goto zero, we must make sure
7609 * dip->errors is perceived to be set.
7610 */
4e857c58 7611 smp_mb__before_atomic();
e65e1535
MX
7612 }
7613
7614 /* if there are more bios still pending for this dio, just exit */
7615 if (!atomic_dec_and_test(&dip->pending_bios))
7616 goto out;
7617
9be3395b 7618 if (dip->errors) {
e65e1535 7619 bio_io_error(dip->orig_bio);
9be3395b
CM
7620 } else {
7621 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7622 bio_endio(dip->orig_bio, 0);
7623 }
7624out:
7625 bio_put(bio);
7626}
7627
7628static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7629 u64 first_sector, gfp_t gfp_flags)
7630{
7631 int nr_vecs = bio_get_nr_vecs(bdev);
7632 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7633}
7634
c1dc0896
MX
7635static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7636 struct inode *inode,
7637 struct btrfs_dio_private *dip,
7638 struct bio *bio,
7639 u64 file_offset)
7640{
7641 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7642 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7643 int ret;
7644
7645 /*
7646 * We load all the csum data we need when we submit
7647 * the first bio to reduce the csum tree search and
7648 * contention.
7649 */
7650 if (dip->logical_offset == file_offset) {
7651 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7652 file_offset);
7653 if (ret)
7654 return ret;
7655 }
7656
7657 if (bio == dip->orig_bio)
7658 return 0;
7659
7660 file_offset -= dip->logical_offset;
7661 file_offset >>= inode->i_sb->s_blocksize_bits;
7662 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7663
7664 return 0;
7665}
7666
e65e1535
MX
7667static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7668 int rw, u64 file_offset, int skip_sum,
c329861d 7669 int async_submit)
e65e1535 7670{
facc8a22 7671 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7672 int write = rw & REQ_WRITE;
7673 struct btrfs_root *root = BTRFS_I(inode)->root;
7674 int ret;
7675
b812ce28
JB
7676 if (async_submit)
7677 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7678
e65e1535 7679 bio_get(bio);
5fd02043
JB
7680
7681 if (!write) {
7682 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7683 if (ret)
7684 goto err;
7685 }
e65e1535 7686
1ae39938
JB
7687 if (skip_sum)
7688 goto map;
7689
7690 if (write && async_submit) {
e65e1535
MX
7691 ret = btrfs_wq_submit_bio(root->fs_info,
7692 inode, rw, bio, 0, 0,
7693 file_offset,
7694 __btrfs_submit_bio_start_direct_io,
7695 __btrfs_submit_bio_done);
7696 goto err;
1ae39938
JB
7697 } else if (write) {
7698 /*
7699 * If we aren't doing async submit, calculate the csum of the
7700 * bio now.
7701 */
7702 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7703 if (ret)
7704 goto err;
23ea8e5a 7705 } else {
c1dc0896
MX
7706 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7707 file_offset);
c2db1073
TI
7708 if (ret)
7709 goto err;
7710 }
1ae39938
JB
7711map:
7712 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7713err:
7714 bio_put(bio);
7715 return ret;
7716}
7717
7718static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7719 int skip_sum)
7720{
7721 struct inode *inode = dip->inode;
7722 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7723 struct bio *bio;
7724 struct bio *orig_bio = dip->orig_bio;
7725 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 7726 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
7727 u64 file_offset = dip->logical_offset;
7728 u64 submit_len = 0;
7729 u64 map_length;
7730 int nr_pages = 0;
23ea8e5a 7731 int ret;
1ae39938 7732 int async_submit = 0;
e65e1535 7733
4f024f37 7734 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7735 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 7736 &map_length, NULL, 0);
7a5c3c9b 7737 if (ret)
e65e1535 7738 return -EIO;
facc8a22 7739
4f024f37 7740 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 7741 bio = orig_bio;
c1dc0896 7742 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
7743 goto submit;
7744 }
7745
53b381b3
DW
7746 /* async crcs make it difficult to collect full stripe writes. */
7747 if (btrfs_get_alloc_profile(root, 1) &
7748 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7749 async_submit = 0;
7750 else
7751 async_submit = 1;
7752
02f57c7a
JB
7753 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7754 if (!bio)
7755 return -ENOMEM;
7a5c3c9b 7756
02f57c7a
JB
7757 bio->bi_private = dip;
7758 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 7759 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
7760 atomic_inc(&dip->pending_bios);
7761
e65e1535
MX
7762 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7763 if (unlikely(map_length < submit_len + bvec->bv_len ||
7764 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7765 bvec->bv_offset) < bvec->bv_len)) {
7766 /*
7767 * inc the count before we submit the bio so
7768 * we know the end IO handler won't happen before
7769 * we inc the count. Otherwise, the dip might get freed
7770 * before we're done setting it up
7771 */
7772 atomic_inc(&dip->pending_bios);
7773 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7774 file_offset, skip_sum,
c329861d 7775 async_submit);
e65e1535
MX
7776 if (ret) {
7777 bio_put(bio);
7778 atomic_dec(&dip->pending_bios);
7779 goto out_err;
7780 }
7781
e65e1535
MX
7782 start_sector += submit_len >> 9;
7783 file_offset += submit_len;
7784
7785 submit_len = 0;
7786 nr_pages = 0;
7787
7788 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7789 start_sector, GFP_NOFS);
7790 if (!bio)
7791 goto out_err;
7792 bio->bi_private = dip;
7793 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 7794 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 7795
4f024f37 7796 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7797 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7798 start_sector << 9,
e65e1535
MX
7799 &map_length, NULL, 0);
7800 if (ret) {
7801 bio_put(bio);
7802 goto out_err;
7803 }
7804 } else {
7805 submit_len += bvec->bv_len;
67871254 7806 nr_pages++;
e65e1535
MX
7807 bvec++;
7808 }
7809 }
7810
02f57c7a 7811submit:
e65e1535 7812 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7813 async_submit);
e65e1535
MX
7814 if (!ret)
7815 return 0;
7816
7817 bio_put(bio);
7818out_err:
7819 dip->errors = 1;
7820 /*
7821 * before atomic variable goto zero, we must
7822 * make sure dip->errors is perceived to be set.
7823 */
4e857c58 7824 smp_mb__before_atomic();
e65e1535
MX
7825 if (atomic_dec_and_test(&dip->pending_bios))
7826 bio_io_error(dip->orig_bio);
7827
7828 /* bio_end_io() will handle error, so we needn't return it */
7829 return 0;
7830}
7831
9be3395b
CM
7832static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7833 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7834{
7835 struct btrfs_root *root = BTRFS_I(inode)->root;
7836 struct btrfs_dio_private *dip;
9be3395b 7837 struct bio *io_bio;
23ea8e5a 7838 struct btrfs_io_bio *btrfs_bio;
4b46fce2 7839 int skip_sum;
7b6d91da 7840 int write = rw & REQ_WRITE;
4b46fce2
JB
7841 int ret = 0;
7842
7843 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7844
9be3395b 7845 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7846 if (!io_bio) {
7847 ret = -ENOMEM;
7848 goto free_ordered;
7849 }
7850
c1dc0896 7851 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
7852 if (!dip) {
7853 ret = -ENOMEM;
9be3395b 7854 goto free_io_bio;
4b46fce2 7855 }
4b46fce2 7856
9be3395b 7857 dip->private = dio_bio->bi_private;
4b46fce2
JB
7858 dip->inode = inode;
7859 dip->logical_offset = file_offset;
4f024f37
KO
7860 dip->bytes = dio_bio->bi_iter.bi_size;
7861 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 7862 io_bio->bi_private = dip;
9be3395b
CM
7863 dip->orig_bio = io_bio;
7864 dip->dio_bio = dio_bio;
e65e1535 7865 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
7866 btrfs_bio = btrfs_io_bio(io_bio);
7867 btrfs_bio->logical = file_offset;
4b46fce2 7868
c1dc0896 7869 if (write) {
9be3395b 7870 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 7871 } else {
9be3395b 7872 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
7873 dip->subio_endio = btrfs_subio_endio_read;
7874 }
4b46fce2 7875
e65e1535
MX
7876 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7877 if (!ret)
eaf25d93 7878 return;
9be3395b 7879
23ea8e5a
MX
7880 if (btrfs_bio->end_io)
7881 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b
CM
7882free_io_bio:
7883 bio_put(io_bio);
7884
4b46fce2
JB
7885free_ordered:
7886 /*
7887 * If this is a write, we need to clean up the reserved space and kill
7888 * the ordered extent.
7889 */
7890 if (write) {
7891 struct btrfs_ordered_extent *ordered;
955256f2 7892 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7893 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7894 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7895 btrfs_free_reserved_extent(root, ordered->start,
e570fd27 7896 ordered->disk_len, 1);
4b46fce2
JB
7897 btrfs_put_ordered_extent(ordered);
7898 btrfs_put_ordered_extent(ordered);
7899 }
9be3395b 7900 bio_endio(dio_bio, ret);
4b46fce2
JB
7901}
7902
5a5f79b5 7903static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
28060d5d 7904 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
7905{
7906 int seg;
a1b75f7d 7907 int i;
5a5f79b5
CM
7908 unsigned blocksize_mask = root->sectorsize - 1;
7909 ssize_t retval = -EINVAL;
5a5f79b5
CM
7910
7911 if (offset & blocksize_mask)
7912 goto out;
7913
28060d5d
AV
7914 if (iov_iter_alignment(iter) & blocksize_mask)
7915 goto out;
a1b75f7d 7916
28060d5d
AV
7917 /* If this is a write we don't need to check anymore */
7918 if (rw & WRITE)
7919 return 0;
7920 /*
7921 * Check to make sure we don't have duplicate iov_base's in this
7922 * iovec, if so return EINVAL, otherwise we'll get csum errors
7923 * when reading back.
7924 */
7925 for (seg = 0; seg < iter->nr_segs; seg++) {
7926 for (i = seg + 1; i < iter->nr_segs; i++) {
7927 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
7928 goto out;
7929 }
5a5f79b5
CM
7930 }
7931 retval = 0;
7932out:
7933 return retval;
7934}
eb838e73 7935
16432985 7936static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 7937 struct iov_iter *iter, loff_t offset)
16432985 7938{
4b46fce2
JB
7939 struct file *file = iocb->ki_filp;
7940 struct inode *inode = file->f_mapping->host;
0934856d 7941 size_t count = 0;
2e60a51e 7942 int flags = 0;
38851cc1
MX
7943 bool wakeup = true;
7944 bool relock = false;
0934856d 7945 ssize_t ret;
4b46fce2 7946
28060d5d 7947 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
5a5f79b5 7948 return 0;
3f7c579c 7949
38851cc1 7950 atomic_inc(&inode->i_dio_count);
4e857c58 7951 smp_mb__after_atomic();
38851cc1 7952
0e267c44 7953 /*
41bd9ca4
MX
7954 * The generic stuff only does filemap_write_and_wait_range, which
7955 * isn't enough if we've written compressed pages to this area, so
7956 * we need to flush the dirty pages again to make absolutely sure
7957 * that any outstanding dirty pages are on disk.
0e267c44 7958 */
a6cbcd4a 7959 count = iov_iter_count(iter);
41bd9ca4
MX
7960 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7961 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
7962 filemap_fdatawrite_range(inode->i_mapping, offset,
7963 offset + count - 1);
0e267c44 7964
0934856d 7965 if (rw & WRITE) {
38851cc1
MX
7966 /*
7967 * If the write DIO is beyond the EOF, we need update
7968 * the isize, but it is protected by i_mutex. So we can
7969 * not unlock the i_mutex at this case.
7970 */
7971 if (offset + count <= inode->i_size) {
7972 mutex_unlock(&inode->i_mutex);
7973 relock = true;
7974 }
0934856d
MX
7975 ret = btrfs_delalloc_reserve_space(inode, count);
7976 if (ret)
38851cc1
MX
7977 goto out;
7978 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7979 &BTRFS_I(inode)->runtime_flags))) {
7980 inode_dio_done(inode);
7981 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7982 wakeup = false;
0934856d
MX
7983 }
7984
7985 ret = __blockdev_direct_IO(rw, iocb, inode,
7986 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
31b14039 7987 iter, offset, btrfs_get_blocks_direct, NULL,
2e60a51e 7988 btrfs_submit_direct, flags);
0934856d
MX
7989 if (rw & WRITE) {
7990 if (ret < 0 && ret != -EIOCBQUEUED)
7991 btrfs_delalloc_release_space(inode, count);
172a5049 7992 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7993 btrfs_delalloc_release_space(inode,
7994 count - (size_t)ret);
172a5049
MX
7995 else
7996 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7997 }
38851cc1 7998out:
2e60a51e
MX
7999 if (wakeup)
8000 inode_dio_done(inode);
38851cc1
MX
8001 if (relock)
8002 mutex_lock(&inode->i_mutex);
0934856d
MX
8003
8004 return ret;
16432985
CM
8005}
8006
05dadc09
TI
8007#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8008
1506fcc8
YS
8009static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8010 __u64 start, __u64 len)
8011{
05dadc09
TI
8012 int ret;
8013
8014 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8015 if (ret)
8016 return ret;
8017
ec29ed5b 8018 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8019}
8020
a52d9a80 8021int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8022{
d1310b2e
CM
8023 struct extent_io_tree *tree;
8024 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8025 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8026}
1832a6d5 8027
a52d9a80 8028static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8029{
d1310b2e 8030 struct extent_io_tree *tree;
b888db2b
CM
8031
8032
8033 if (current->flags & PF_MEMALLOC) {
8034 redirty_page_for_writepage(wbc, page);
8035 unlock_page(page);
8036 return 0;
8037 }
d1310b2e 8038 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8039 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8040}
8041
48a3b636
ES
8042static int btrfs_writepages(struct address_space *mapping,
8043 struct writeback_control *wbc)
b293f02e 8044{
d1310b2e 8045 struct extent_io_tree *tree;
771ed689 8046
d1310b2e 8047 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8048 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8049}
8050
3ab2fb5a
CM
8051static int
8052btrfs_readpages(struct file *file, struct address_space *mapping,
8053 struct list_head *pages, unsigned nr_pages)
8054{
d1310b2e
CM
8055 struct extent_io_tree *tree;
8056 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8057 return extent_readpages(tree, mapping, pages, nr_pages,
8058 btrfs_get_extent);
8059}
e6dcd2dc 8060static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8061{
d1310b2e
CM
8062 struct extent_io_tree *tree;
8063 struct extent_map_tree *map;
a52d9a80 8064 int ret;
8c2383c3 8065
d1310b2e
CM
8066 tree = &BTRFS_I(page->mapping->host)->io_tree;
8067 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8068 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8069 if (ret == 1) {
8070 ClearPagePrivate(page);
8071 set_page_private(page, 0);
8072 page_cache_release(page);
39279cc3 8073 }
a52d9a80 8074 return ret;
39279cc3
CM
8075}
8076
e6dcd2dc
CM
8077static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8078{
98509cfc
CM
8079 if (PageWriteback(page) || PageDirty(page))
8080 return 0;
b335b003 8081 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8082}
8083
d47992f8
LC
8084static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8085 unsigned int length)
39279cc3 8086{
5fd02043 8087 struct inode *inode = page->mapping->host;
d1310b2e 8088 struct extent_io_tree *tree;
e6dcd2dc 8089 struct btrfs_ordered_extent *ordered;
2ac55d41 8090 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8091 u64 page_start = page_offset(page);
8092 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8093 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8094
8b62b72b
CM
8095 /*
8096 * we have the page locked, so new writeback can't start,
8097 * and the dirty bit won't be cleared while we are here.
8098 *
8099 * Wait for IO on this page so that we can safely clear
8100 * the PagePrivate2 bit and do ordered accounting
8101 */
e6dcd2dc 8102 wait_on_page_writeback(page);
8b62b72b 8103
5fd02043 8104 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8105 if (offset) {
8106 btrfs_releasepage(page, GFP_NOFS);
8107 return;
8108 }
131e404a
FDBM
8109
8110 if (!inode_evicting)
8111 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8112 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8113 if (ordered) {
eb84ae03
CM
8114 /*
8115 * IO on this page will never be started, so we need
8116 * to account for any ordered extents now
8117 */
131e404a
FDBM
8118 if (!inode_evicting)
8119 clear_extent_bit(tree, page_start, page_end,
8120 EXTENT_DIRTY | EXTENT_DELALLOC |
8121 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8122 EXTENT_DEFRAG, 1, 0, &cached_state,
8123 GFP_NOFS);
8b62b72b
CM
8124 /*
8125 * whoever cleared the private bit is responsible
8126 * for the finish_ordered_io
8127 */
77cef2ec
JB
8128 if (TestClearPagePrivate2(page)) {
8129 struct btrfs_ordered_inode_tree *tree;
8130 u64 new_len;
8131
8132 tree = &BTRFS_I(inode)->ordered_tree;
8133
8134 spin_lock_irq(&tree->lock);
8135 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8136 new_len = page_start - ordered->file_offset;
8137 if (new_len < ordered->truncated_len)
8138 ordered->truncated_len = new_len;
8139 spin_unlock_irq(&tree->lock);
8140
8141 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8142 page_start,
8143 PAGE_CACHE_SIZE, 1))
8144 btrfs_finish_ordered_io(ordered);
8b62b72b 8145 }
e6dcd2dc 8146 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8147 if (!inode_evicting) {
8148 cached_state = NULL;
8149 lock_extent_bits(tree, page_start, page_end, 0,
8150 &cached_state);
8151 }
8152 }
8153
8154 if (!inode_evicting) {
8155 clear_extent_bit(tree, page_start, page_end,
8156 EXTENT_LOCKED | EXTENT_DIRTY |
8157 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8158 EXTENT_DEFRAG, 1, 1,
8159 &cached_state, GFP_NOFS);
8160
8161 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8162 }
e6dcd2dc 8163
4a096752 8164 ClearPageChecked(page);
9ad6b7bc 8165 if (PagePrivate(page)) {
9ad6b7bc
CM
8166 ClearPagePrivate(page);
8167 set_page_private(page, 0);
8168 page_cache_release(page);
8169 }
39279cc3
CM
8170}
8171
9ebefb18
CM
8172/*
8173 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8174 * called from a page fault handler when a page is first dirtied. Hence we must
8175 * be careful to check for EOF conditions here. We set the page up correctly
8176 * for a written page which means we get ENOSPC checking when writing into
8177 * holes and correct delalloc and unwritten extent mapping on filesystems that
8178 * support these features.
8179 *
8180 * We are not allowed to take the i_mutex here so we have to play games to
8181 * protect against truncate races as the page could now be beyond EOF. Because
8182 * vmtruncate() writes the inode size before removing pages, once we have the
8183 * page lock we can determine safely if the page is beyond EOF. If it is not
8184 * beyond EOF, then the page is guaranteed safe against truncation until we
8185 * unlock the page.
8186 */
c2ec175c 8187int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8188{
c2ec175c 8189 struct page *page = vmf->page;
496ad9aa 8190 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8191 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8192 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8193 struct btrfs_ordered_extent *ordered;
2ac55d41 8194 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8195 char *kaddr;
8196 unsigned long zero_start;
9ebefb18 8197 loff_t size;
1832a6d5 8198 int ret;
9998eb70 8199 int reserved = 0;
a52d9a80 8200 u64 page_start;
e6dcd2dc 8201 u64 page_end;
9ebefb18 8202
b2b5ef5c 8203 sb_start_pagefault(inode->i_sb);
0ca1f7ce 8204 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 8205 if (!ret) {
e41f941a 8206 ret = file_update_time(vma->vm_file);
9998eb70
CM
8207 reserved = 1;
8208 }
56a76f82
NP
8209 if (ret) {
8210 if (ret == -ENOMEM)
8211 ret = VM_FAULT_OOM;
8212 else /* -ENOSPC, -EIO, etc */
8213 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8214 if (reserved)
8215 goto out;
8216 goto out_noreserve;
56a76f82 8217 }
1832a6d5 8218
56a76f82 8219 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8220again:
9ebefb18 8221 lock_page(page);
9ebefb18 8222 size = i_size_read(inode);
e6dcd2dc
CM
8223 page_start = page_offset(page);
8224 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 8225
9ebefb18 8226 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8227 (page_start >= size)) {
9ebefb18
CM
8228 /* page got truncated out from underneath us */
8229 goto out_unlock;
8230 }
e6dcd2dc
CM
8231 wait_on_page_writeback(page);
8232
d0082371 8233 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8234 set_page_extent_mapped(page);
8235
eb84ae03
CM
8236 /*
8237 * we can't set the delalloc bits if there are pending ordered
8238 * extents. Drop our locks and wait for them to finish
8239 */
e6dcd2dc
CM
8240 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8241 if (ordered) {
2ac55d41
JB
8242 unlock_extent_cached(io_tree, page_start, page_end,
8243 &cached_state, GFP_NOFS);
e6dcd2dc 8244 unlock_page(page);
eb84ae03 8245 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8246 btrfs_put_ordered_extent(ordered);
8247 goto again;
8248 }
8249
fbf19087
JB
8250 /*
8251 * XXX - page_mkwrite gets called every time the page is dirtied, even
8252 * if it was already dirty, so for space accounting reasons we need to
8253 * clear any delalloc bits for the range we are fixing to save. There
8254 * is probably a better way to do this, but for now keep consistent with
8255 * prepare_pages in the normal write path.
8256 */
2ac55d41 8257 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8258 EXTENT_DIRTY | EXTENT_DELALLOC |
8259 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8260 0, 0, &cached_state, GFP_NOFS);
fbf19087 8261
2ac55d41
JB
8262 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8263 &cached_state);
9ed74f2d 8264 if (ret) {
2ac55d41
JB
8265 unlock_extent_cached(io_tree, page_start, page_end,
8266 &cached_state, GFP_NOFS);
9ed74f2d
JB
8267 ret = VM_FAULT_SIGBUS;
8268 goto out_unlock;
8269 }
e6dcd2dc 8270 ret = 0;
9ebefb18
CM
8271
8272 /* page is wholly or partially inside EOF */
a52d9a80 8273 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8274 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8275 else
e6dcd2dc 8276 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8277
e6dcd2dc
CM
8278 if (zero_start != PAGE_CACHE_SIZE) {
8279 kaddr = kmap(page);
8280 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8281 flush_dcache_page(page);
8282 kunmap(page);
8283 }
247e743c 8284 ClearPageChecked(page);
e6dcd2dc 8285 set_page_dirty(page);
50a9b214 8286 SetPageUptodate(page);
5a3f23d5 8287
257c62e1
CM
8288 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8289 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8290 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8291
2ac55d41 8292 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8293
8294out_unlock:
b2b5ef5c
JK
8295 if (!ret) {
8296 sb_end_pagefault(inode->i_sb);
50a9b214 8297 return VM_FAULT_LOCKED;
b2b5ef5c 8298 }
9ebefb18 8299 unlock_page(page);
1832a6d5 8300out:
ec39e180 8301 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 8302out_noreserve:
b2b5ef5c 8303 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8304 return ret;
8305}
8306
a41ad394 8307static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8308{
8309 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8310 struct btrfs_block_rsv *rsv;
a71754fc 8311 int ret = 0;
3893e33b 8312 int err = 0;
39279cc3 8313 struct btrfs_trans_handle *trans;
dbe674a9 8314 u64 mask = root->sectorsize - 1;
07127184 8315 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8316
0ef8b726
JB
8317 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8318 (u64)-1);
8319 if (ret)
8320 return ret;
39279cc3 8321
fcb80c2a
JB
8322 /*
8323 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8324 * 3 things going on here
8325 *
8326 * 1) We need to reserve space for our orphan item and the space to
8327 * delete our orphan item. Lord knows we don't want to have a dangling
8328 * orphan item because we didn't reserve space to remove it.
8329 *
8330 * 2) We need to reserve space to update our inode.
8331 *
8332 * 3) We need to have something to cache all the space that is going to
8333 * be free'd up by the truncate operation, but also have some slack
8334 * space reserved in case it uses space during the truncate (thank you
8335 * very much snapshotting).
8336 *
8337 * And we need these to all be seperate. The fact is we can use alot of
8338 * space doing the truncate, and we have no earthly idea how much space
8339 * we will use, so we need the truncate reservation to be seperate so it
8340 * doesn't end up using space reserved for updating the inode or
8341 * removing the orphan item. We also need to be able to stop the
8342 * transaction and start a new one, which means we need to be able to
8343 * update the inode several times, and we have no idea of knowing how
8344 * many times that will be, so we can't just reserve 1 item for the
8345 * entirety of the opration, so that has to be done seperately as well.
8346 * Then there is the orphan item, which does indeed need to be held on
8347 * to for the whole operation, and we need nobody to touch this reserved
8348 * space except the orphan code.
8349 *
8350 * So that leaves us with
8351 *
8352 * 1) root->orphan_block_rsv - for the orphan deletion.
8353 * 2) rsv - for the truncate reservation, which we will steal from the
8354 * transaction reservation.
8355 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8356 * updating the inode.
8357 */
66d8f3dd 8358 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8359 if (!rsv)
8360 return -ENOMEM;
4a338542 8361 rsv->size = min_size;
ca7e70f5 8362 rsv->failfast = 1;
f0cd846e 8363
907cbceb 8364 /*
07127184 8365 * 1 for the truncate slack space
907cbceb
JB
8366 * 1 for updating the inode.
8367 */
f3fe820c 8368 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8369 if (IS_ERR(trans)) {
8370 err = PTR_ERR(trans);
8371 goto out;
8372 }
f0cd846e 8373
907cbceb
JB
8374 /* Migrate the slack space for the truncate to our reserve */
8375 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8376 min_size);
fcb80c2a 8377 BUG_ON(ret);
f0cd846e 8378
5dc562c5
JB
8379 /*
8380 * So if we truncate and then write and fsync we normally would just
8381 * write the extents that changed, which is a problem if we need to
8382 * first truncate that entire inode. So set this flag so we write out
8383 * all of the extents in the inode to the sync log so we're completely
8384 * safe.
8385 */
8386 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8387 trans->block_rsv = rsv;
907cbceb 8388
8082510e
YZ
8389 while (1) {
8390 ret = btrfs_truncate_inode_items(trans, root, inode,
8391 inode->i_size,
8392 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 8393 if (ret != -ENOSPC) {
3893e33b 8394 err = ret;
8082510e 8395 break;
3893e33b 8396 }
39279cc3 8397
fcb80c2a 8398 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8399 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8400 if (ret) {
8401 err = ret;
8402 break;
8403 }
ca7e70f5 8404
8082510e 8405 btrfs_end_transaction(trans, root);
b53d3f5d 8406 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8407
8408 trans = btrfs_start_transaction(root, 2);
8409 if (IS_ERR(trans)) {
8410 ret = err = PTR_ERR(trans);
8411 trans = NULL;
8412 break;
8413 }
8414
8415 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8416 rsv, min_size);
8417 BUG_ON(ret); /* shouldn't happen */
8418 trans->block_rsv = rsv;
8082510e
YZ
8419 }
8420
8421 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8422 trans->block_rsv = root->orphan_block_rsv;
8082510e 8423 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8424 if (ret)
8425 err = ret;
8082510e
YZ
8426 }
8427
917c16b2
CM
8428 if (trans) {
8429 trans->block_rsv = &root->fs_info->trans_block_rsv;
8430 ret = btrfs_update_inode(trans, root, inode);
8431 if (ret && !err)
8432 err = ret;
7b128766 8433
7ad85bb7 8434 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8435 btrfs_btree_balance_dirty(root);
917c16b2 8436 }
fcb80c2a
JB
8437
8438out:
8439 btrfs_free_block_rsv(root, rsv);
8440
3893e33b
JB
8441 if (ret && !err)
8442 err = ret;
a41ad394 8443
3893e33b 8444 return err;
39279cc3
CM
8445}
8446
d352ac68
CM
8447/*
8448 * create a new subvolume directory/inode (helper for the ioctl).
8449 */
d2fb3437 8450int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8451 struct btrfs_root *new_root,
8452 struct btrfs_root *parent_root,
8453 u64 new_dirid)
39279cc3 8454{
39279cc3 8455 struct inode *inode;
76dda93c 8456 int err;
00e4e6b3 8457 u64 index = 0;
39279cc3 8458
12fc9d09
FA
8459 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8460 new_dirid, new_dirid,
8461 S_IFDIR | (~current_umask() & S_IRWXUGO),
8462 &index);
54aa1f4d 8463 if (IS_ERR(inode))
f46b5a66 8464 return PTR_ERR(inode);
39279cc3
CM
8465 inode->i_op = &btrfs_dir_inode_operations;
8466 inode->i_fop = &btrfs_dir_file_operations;
8467
bfe86848 8468 set_nlink(inode, 1);
dbe674a9 8469 btrfs_i_size_write(inode, 0);
b0d5d10f 8470 unlock_new_inode(inode);
3b96362c 8471
63541927
FDBM
8472 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8473 if (err)
8474 btrfs_err(new_root->fs_info,
351fd353 8475 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8476 new_root->root_key.objectid, err);
8477
76dda93c 8478 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8479
76dda93c 8480 iput(inode);
ce598979 8481 return err;
39279cc3
CM
8482}
8483
39279cc3
CM
8484struct inode *btrfs_alloc_inode(struct super_block *sb)
8485{
8486 struct btrfs_inode *ei;
2ead6ae7 8487 struct inode *inode;
39279cc3
CM
8488
8489 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8490 if (!ei)
8491 return NULL;
2ead6ae7
YZ
8492
8493 ei->root = NULL;
2ead6ae7 8494 ei->generation = 0;
15ee9bc7 8495 ei->last_trans = 0;
257c62e1 8496 ei->last_sub_trans = 0;
e02119d5 8497 ei->logged_trans = 0;
2ead6ae7 8498 ei->delalloc_bytes = 0;
47059d93 8499 ei->defrag_bytes = 0;
2ead6ae7
YZ
8500 ei->disk_i_size = 0;
8501 ei->flags = 0;
7709cde3 8502 ei->csum_bytes = 0;
2ead6ae7 8503 ei->index_cnt = (u64)-1;
67de1176 8504 ei->dir_index = 0;
2ead6ae7 8505 ei->last_unlink_trans = 0;
46d8bc34 8506 ei->last_log_commit = 0;
2ead6ae7 8507
9e0baf60
JB
8508 spin_lock_init(&ei->lock);
8509 ei->outstanding_extents = 0;
8510 ei->reserved_extents = 0;
2ead6ae7 8511
72ac3c0d 8512 ei->runtime_flags = 0;
261507a0 8513 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8514
16cdcec7
MX
8515 ei->delayed_node = NULL;
8516
2ead6ae7 8517 inode = &ei->vfs_inode;
a8067e02 8518 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8519 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8520 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8521 ei->io_tree.track_uptodate = 1;
8522 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8523 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8524 mutex_init(&ei->log_mutex);
f248679e 8525 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8526 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8527 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
8528 RB_CLEAR_NODE(&ei->rb_node);
8529
8530 return inode;
39279cc3
CM
8531}
8532
aaedb55b
JB
8533#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8534void btrfs_test_destroy_inode(struct inode *inode)
8535{
8536 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8537 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8538}
8539#endif
8540
fa0d7e3d
NP
8541static void btrfs_i_callback(struct rcu_head *head)
8542{
8543 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8544 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8545}
8546
39279cc3
CM
8547void btrfs_destroy_inode(struct inode *inode)
8548{
e6dcd2dc 8549 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8550 struct btrfs_root *root = BTRFS_I(inode)->root;
8551
b3d9b7a3 8552 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8553 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8554 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8555 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8556 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8557 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8558 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8559
a6dbd429
JB
8560 /*
8561 * This can happen where we create an inode, but somebody else also
8562 * created the same inode and we need to destroy the one we already
8563 * created.
8564 */
8565 if (!root)
8566 goto free;
8567
8a35d95f
JB
8568 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8569 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8570 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8571 btrfs_ino(inode));
8a35d95f 8572 atomic_dec(&root->orphan_inodes);
7b128766 8573 }
7b128766 8574
d397712b 8575 while (1) {
e6dcd2dc
CM
8576 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8577 if (!ordered)
8578 break;
8579 else {
c2cf52eb 8580 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8581 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8582 btrfs_remove_ordered_extent(inode, ordered);
8583 btrfs_put_ordered_extent(ordered);
8584 btrfs_put_ordered_extent(ordered);
8585 }
8586 }
5d4f98a2 8587 inode_tree_del(inode);
5b21f2ed 8588 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8589free:
fa0d7e3d 8590 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8591}
8592
45321ac5 8593int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8594{
8595 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8596
6379ef9f
NA
8597 if (root == NULL)
8598 return 1;
8599
fa6ac876 8600 /* the snap/subvol tree is on deleting */
69e9c6c6 8601 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8602 return 1;
76dda93c 8603 else
45321ac5 8604 return generic_drop_inode(inode);
76dda93c
YZ
8605}
8606
0ee0fda0 8607static void init_once(void *foo)
39279cc3
CM
8608{
8609 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8610
8611 inode_init_once(&ei->vfs_inode);
8612}
8613
8614void btrfs_destroy_cachep(void)
8615{
8c0a8537
KS
8616 /*
8617 * Make sure all delayed rcu free inodes are flushed before we
8618 * destroy cache.
8619 */
8620 rcu_barrier();
39279cc3
CM
8621 if (btrfs_inode_cachep)
8622 kmem_cache_destroy(btrfs_inode_cachep);
8623 if (btrfs_trans_handle_cachep)
8624 kmem_cache_destroy(btrfs_trans_handle_cachep);
8625 if (btrfs_transaction_cachep)
8626 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8627 if (btrfs_path_cachep)
8628 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8629 if (btrfs_free_space_cachep)
8630 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8631 if (btrfs_delalloc_work_cachep)
8632 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8633}
8634
8635int btrfs_init_cachep(void)
8636{
837e1972 8637 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8638 sizeof(struct btrfs_inode), 0,
8639 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8640 if (!btrfs_inode_cachep)
8641 goto fail;
9601e3f6 8642
837e1972 8643 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8644 sizeof(struct btrfs_trans_handle), 0,
8645 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8646 if (!btrfs_trans_handle_cachep)
8647 goto fail;
9601e3f6 8648
837e1972 8649 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8650 sizeof(struct btrfs_transaction), 0,
8651 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8652 if (!btrfs_transaction_cachep)
8653 goto fail;
9601e3f6 8654
837e1972 8655 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8656 sizeof(struct btrfs_path), 0,
8657 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8658 if (!btrfs_path_cachep)
8659 goto fail;
9601e3f6 8660
837e1972 8661 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8662 sizeof(struct btrfs_free_space), 0,
8663 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8664 if (!btrfs_free_space_cachep)
8665 goto fail;
8666
8ccf6f19
MX
8667 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8668 sizeof(struct btrfs_delalloc_work), 0,
8669 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8670 NULL);
8671 if (!btrfs_delalloc_work_cachep)
8672 goto fail;
8673
39279cc3
CM
8674 return 0;
8675fail:
8676 btrfs_destroy_cachep();
8677 return -ENOMEM;
8678}
8679
8680static int btrfs_getattr(struct vfsmount *mnt,
8681 struct dentry *dentry, struct kstat *stat)
8682{
df0af1a5 8683 u64 delalloc_bytes;
39279cc3 8684 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8685 u32 blocksize = inode->i_sb->s_blocksize;
8686
39279cc3 8687 generic_fillattr(inode, stat);
0ee5dc67 8688 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8689 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8690
8691 spin_lock(&BTRFS_I(inode)->lock);
8692 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8693 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8694 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8695 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8696 return 0;
8697}
8698
d397712b
CM
8699static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8700 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8701{
8702 struct btrfs_trans_handle *trans;
8703 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8704 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8705 struct inode *new_inode = new_dentry->d_inode;
8706 struct inode *old_inode = old_dentry->d_inode;
8707 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8708 u64 index = 0;
4df27c4d 8709 u64 root_objectid;
39279cc3 8710 int ret;
33345d01 8711 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8712
33345d01 8713 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8714 return -EPERM;
8715
4df27c4d 8716 /* we only allow rename subvolume link between subvolumes */
33345d01 8717 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8718 return -EXDEV;
8719
33345d01
LZ
8720 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8721 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8722 return -ENOTEMPTY;
5f39d397 8723
4df27c4d
YZ
8724 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8725 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8726 return -ENOTEMPTY;
9c52057c
CM
8727
8728
8729 /* check for collisions, even if the name isn't there */
4871c158 8730 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8731 new_dentry->d_name.name,
8732 new_dentry->d_name.len);
8733
8734 if (ret) {
8735 if (ret == -EEXIST) {
8736 /* we shouldn't get
8737 * eexist without a new_inode */
fae7f21c 8738 if (WARN_ON(!new_inode)) {
9c52057c
CM
8739 return ret;
8740 }
8741 } else {
8742 /* maybe -EOVERFLOW */
8743 return ret;
8744 }
8745 }
8746 ret = 0;
8747
5a3f23d5 8748 /*
8d875f95
CM
8749 * we're using rename to replace one file with another. Start IO on it
8750 * now so we don't add too much work to the end of the transaction
5a3f23d5 8751 */
8d875f95 8752 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
8753 filemap_flush(old_inode->i_mapping);
8754
76dda93c 8755 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8756 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8757 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8758 /*
8759 * We want to reserve the absolute worst case amount of items. So if
8760 * both inodes are subvols and we need to unlink them then that would
8761 * require 4 item modifications, but if they are both normal inodes it
8762 * would require 5 item modifications, so we'll assume their normal
8763 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8764 * should cover the worst case number of items we'll modify.
8765 */
6e137ed3 8766 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8767 if (IS_ERR(trans)) {
8768 ret = PTR_ERR(trans);
8769 goto out_notrans;
8770 }
76dda93c 8771
4df27c4d
YZ
8772 if (dest != root)
8773 btrfs_record_root_in_trans(trans, dest);
5f39d397 8774
a5719521
YZ
8775 ret = btrfs_set_inode_index(new_dir, &index);
8776 if (ret)
8777 goto out_fail;
5a3f23d5 8778
67de1176 8779 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8780 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 8781 /* force full log commit if subvolume involved. */
995946dd 8782 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 8783 } else {
a5719521
YZ
8784 ret = btrfs_insert_inode_ref(trans, dest,
8785 new_dentry->d_name.name,
8786 new_dentry->d_name.len,
33345d01
LZ
8787 old_ino,
8788 btrfs_ino(new_dir), index);
a5719521
YZ
8789 if (ret)
8790 goto out_fail;
4df27c4d
YZ
8791 /*
8792 * this is an ugly little race, but the rename is required
8793 * to make sure that if we crash, the inode is either at the
8794 * old name or the new one. pinning the log transaction lets
8795 * us make sure we don't allow a log commit to come in after
8796 * we unlink the name but before we add the new name back in.
8797 */
8798 btrfs_pin_log_trans(root);
8799 }
5a3f23d5 8800
0c4d2d95
JB
8801 inode_inc_iversion(old_dir);
8802 inode_inc_iversion(new_dir);
8803 inode_inc_iversion(old_inode);
39279cc3
CM
8804 old_dir->i_ctime = old_dir->i_mtime = ctime;
8805 new_dir->i_ctime = new_dir->i_mtime = ctime;
8806 old_inode->i_ctime = ctime;
5f39d397 8807
12fcfd22
CM
8808 if (old_dentry->d_parent != new_dentry->d_parent)
8809 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8810
33345d01 8811 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8812 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8813 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8814 old_dentry->d_name.name,
8815 old_dentry->d_name.len);
8816 } else {
92986796
AV
8817 ret = __btrfs_unlink_inode(trans, root, old_dir,
8818 old_dentry->d_inode,
8819 old_dentry->d_name.name,
8820 old_dentry->d_name.len);
8821 if (!ret)
8822 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8823 }
79787eaa
JM
8824 if (ret) {
8825 btrfs_abort_transaction(trans, root, ret);
8826 goto out_fail;
8827 }
39279cc3
CM
8828
8829 if (new_inode) {
0c4d2d95 8830 inode_inc_iversion(new_inode);
39279cc3 8831 new_inode->i_ctime = CURRENT_TIME;
33345d01 8832 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8833 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8834 root_objectid = BTRFS_I(new_inode)->location.objectid;
8835 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8836 root_objectid,
8837 new_dentry->d_name.name,
8838 new_dentry->d_name.len);
8839 BUG_ON(new_inode->i_nlink == 0);
8840 } else {
8841 ret = btrfs_unlink_inode(trans, dest, new_dir,
8842 new_dentry->d_inode,
8843 new_dentry->d_name.name,
8844 new_dentry->d_name.len);
8845 }
4ef31a45 8846 if (!ret && new_inode->i_nlink == 0)
e02119d5 8847 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8848 if (ret) {
8849 btrfs_abort_transaction(trans, root, ret);
8850 goto out_fail;
8851 }
39279cc3 8852 }
aec7477b 8853
4df27c4d
YZ
8854 ret = btrfs_add_link(trans, new_dir, old_inode,
8855 new_dentry->d_name.name,
a5719521 8856 new_dentry->d_name.len, 0, index);
79787eaa
JM
8857 if (ret) {
8858 btrfs_abort_transaction(trans, root, ret);
8859 goto out_fail;
8860 }
39279cc3 8861
67de1176
MX
8862 if (old_inode->i_nlink == 1)
8863 BTRFS_I(old_inode)->dir_index = index;
8864
33345d01 8865 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8866 struct dentry *parent = new_dentry->d_parent;
6a912213 8867 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8868 btrfs_end_log_trans(root);
8869 }
39279cc3 8870out_fail:
7ad85bb7 8871 btrfs_end_transaction(trans, root);
b44c59a8 8872out_notrans:
33345d01 8873 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8874 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8875
39279cc3
CM
8876 return ret;
8877}
8878
80ace85c
MS
8879static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8880 struct inode *new_dir, struct dentry *new_dentry,
8881 unsigned int flags)
8882{
8883 if (flags & ~RENAME_NOREPLACE)
8884 return -EINVAL;
8885
8886 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8887}
8888
8ccf6f19
MX
8889static void btrfs_run_delalloc_work(struct btrfs_work *work)
8890{
8891 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8892 struct inode *inode;
8ccf6f19
MX
8893
8894 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8895 work);
9f23e289
JB
8896 inode = delalloc_work->inode;
8897 if (delalloc_work->wait) {
8898 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8899 } else {
8900 filemap_flush(inode->i_mapping);
8901 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8902 &BTRFS_I(inode)->runtime_flags))
8903 filemap_flush(inode->i_mapping);
8904 }
8ccf6f19
MX
8905
8906 if (delalloc_work->delay_iput)
9f23e289 8907 btrfs_add_delayed_iput(inode);
8ccf6f19 8908 else
9f23e289 8909 iput(inode);
8ccf6f19
MX
8910 complete(&delalloc_work->completion);
8911}
8912
8913struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8914 int wait, int delay_iput)
8915{
8916 struct btrfs_delalloc_work *work;
8917
8918 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8919 if (!work)
8920 return NULL;
8921
8922 init_completion(&work->completion);
8923 INIT_LIST_HEAD(&work->list);
8924 work->inode = inode;
8925 work->wait = wait;
8926 work->delay_iput = delay_iput;
9e0af237
LB
8927 WARN_ON_ONCE(!inode);
8928 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8929 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
8930
8931 return work;
8932}
8933
8934void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8935{
8936 wait_for_completion(&work->completion);
8937 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8938}
8939
d352ac68
CM
8940/*
8941 * some fairly slow code that needs optimization. This walks the list
8942 * of all the inodes with pending delalloc and forces them to disk.
8943 */
6c255e67
MX
8944static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8945 int nr)
ea8c2819 8946{
ea8c2819 8947 struct btrfs_inode *binode;
5b21f2ed 8948 struct inode *inode;
8ccf6f19
MX
8949 struct btrfs_delalloc_work *work, *next;
8950 struct list_head works;
1eafa6c7 8951 struct list_head splice;
8ccf6f19 8952 int ret = 0;
ea8c2819 8953
8ccf6f19 8954 INIT_LIST_HEAD(&works);
1eafa6c7 8955 INIT_LIST_HEAD(&splice);
63607cc8 8956
573bfb72 8957 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
8958 spin_lock(&root->delalloc_lock);
8959 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8960 while (!list_empty(&splice)) {
8961 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8962 delalloc_inodes);
1eafa6c7 8963
eb73c1b7
MX
8964 list_move_tail(&binode->delalloc_inodes,
8965 &root->delalloc_inodes);
5b21f2ed 8966 inode = igrab(&binode->vfs_inode);
df0af1a5 8967 if (!inode) {
eb73c1b7 8968 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8969 continue;
df0af1a5 8970 }
eb73c1b7 8971 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8972
8973 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8974 if (unlikely(!work)) {
f4ab9ea7
JB
8975 if (delay_iput)
8976 btrfs_add_delayed_iput(inode);
8977 else
8978 iput(inode);
1eafa6c7 8979 ret = -ENOMEM;
a1ecaabb 8980 goto out;
5b21f2ed 8981 }
1eafa6c7 8982 list_add_tail(&work->list, &works);
a44903ab
QW
8983 btrfs_queue_work(root->fs_info->flush_workers,
8984 &work->work);
6c255e67
MX
8985 ret++;
8986 if (nr != -1 && ret >= nr)
a1ecaabb 8987 goto out;
5b21f2ed 8988 cond_resched();
eb73c1b7 8989 spin_lock(&root->delalloc_lock);
ea8c2819 8990 }
eb73c1b7 8991 spin_unlock(&root->delalloc_lock);
8c8bee1d 8992
a1ecaabb 8993out:
eb73c1b7
MX
8994 list_for_each_entry_safe(work, next, &works, list) {
8995 list_del_init(&work->list);
8996 btrfs_wait_and_free_delalloc_work(work);
8997 }
8998
8999 if (!list_empty_careful(&splice)) {
9000 spin_lock(&root->delalloc_lock);
9001 list_splice_tail(&splice, &root->delalloc_inodes);
9002 spin_unlock(&root->delalloc_lock);
9003 }
573bfb72 9004 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9005 return ret;
9006}
1eafa6c7 9007
eb73c1b7
MX
9008int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9009{
9010 int ret;
1eafa6c7 9011
2c21b4d7 9012 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9013 return -EROFS;
9014
6c255e67
MX
9015 ret = __start_delalloc_inodes(root, delay_iput, -1);
9016 if (ret > 0)
9017 ret = 0;
eb73c1b7
MX
9018 /*
9019 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9020 * we have to make sure the IO is actually started and that
9021 * ordered extents get created before we return
9022 */
9023 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9024 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9025 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9026 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9027 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9028 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9029 }
9030 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9031 return ret;
9032}
9033
6c255e67
MX
9034int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9035 int nr)
eb73c1b7
MX
9036{
9037 struct btrfs_root *root;
9038 struct list_head splice;
9039 int ret;
9040
2c21b4d7 9041 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9042 return -EROFS;
9043
9044 INIT_LIST_HEAD(&splice);
9045
573bfb72 9046 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9047 spin_lock(&fs_info->delalloc_root_lock);
9048 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9049 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9050 root = list_first_entry(&splice, struct btrfs_root,
9051 delalloc_root);
9052 root = btrfs_grab_fs_root(root);
9053 BUG_ON(!root);
9054 list_move_tail(&root->delalloc_root,
9055 &fs_info->delalloc_roots);
9056 spin_unlock(&fs_info->delalloc_root_lock);
9057
6c255e67 9058 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9059 btrfs_put_fs_root(root);
6c255e67 9060 if (ret < 0)
eb73c1b7
MX
9061 goto out;
9062
6c255e67
MX
9063 if (nr != -1) {
9064 nr -= ret;
9065 WARN_ON(nr < 0);
9066 }
eb73c1b7 9067 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9068 }
eb73c1b7 9069 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9070
6c255e67 9071 ret = 0;
eb73c1b7
MX
9072 atomic_inc(&fs_info->async_submit_draining);
9073 while (atomic_read(&fs_info->nr_async_submits) ||
9074 atomic_read(&fs_info->async_delalloc_pages)) {
9075 wait_event(fs_info->async_submit_wait,
9076 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9077 atomic_read(&fs_info->async_delalloc_pages) == 0));
9078 }
9079 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9080out:
1eafa6c7 9081 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9082 spin_lock(&fs_info->delalloc_root_lock);
9083 list_splice_tail(&splice, &fs_info->delalloc_roots);
9084 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9085 }
573bfb72 9086 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9087 return ret;
ea8c2819
CM
9088}
9089
39279cc3
CM
9090static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9091 const char *symname)
9092{
9093 struct btrfs_trans_handle *trans;
9094 struct btrfs_root *root = BTRFS_I(dir)->root;
9095 struct btrfs_path *path;
9096 struct btrfs_key key;
1832a6d5 9097 struct inode *inode = NULL;
39279cc3
CM
9098 int err;
9099 int drop_inode = 0;
9100 u64 objectid;
67871254 9101 u64 index = 0;
39279cc3
CM
9102 int name_len;
9103 int datasize;
5f39d397 9104 unsigned long ptr;
39279cc3 9105 struct btrfs_file_extent_item *ei;
5f39d397 9106 struct extent_buffer *leaf;
39279cc3 9107
f06becc4 9108 name_len = strlen(symname);
39279cc3
CM
9109 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9110 return -ENAMETOOLONG;
1832a6d5 9111
9ed74f2d
JB
9112 /*
9113 * 2 items for inode item and ref
9114 * 2 items for dir items
9115 * 1 item for xattr if selinux is on
9116 */
a22285a6
YZ
9117 trans = btrfs_start_transaction(root, 5);
9118 if (IS_ERR(trans))
9119 return PTR_ERR(trans);
1832a6d5 9120
581bb050
LZ
9121 err = btrfs_find_free_ino(root, &objectid);
9122 if (err)
9123 goto out_unlock;
9124
aec7477b 9125 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9126 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9127 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9128 if (IS_ERR(inode)) {
9129 err = PTR_ERR(inode);
39279cc3 9130 goto out_unlock;
7cf96da3 9131 }
39279cc3 9132
ad19db71
CS
9133 /*
9134 * If the active LSM wants to access the inode during
9135 * d_instantiate it needs these. Smack checks to see
9136 * if the filesystem supports xattrs by looking at the
9137 * ops vector.
9138 */
9139 inode->i_fop = &btrfs_file_operations;
9140 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
9141 inode->i_mapping->a_ops = &btrfs_aops;
9142 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9144
9145 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9146 if (err)
9147 goto out_unlock_inode;
ad19db71 9148
a1b075d2 9149 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9150 if (err)
b0d5d10f 9151 goto out_unlock_inode;
39279cc3
CM
9152
9153 path = btrfs_alloc_path();
d8926bb3
MF
9154 if (!path) {
9155 err = -ENOMEM;
b0d5d10f 9156 goto out_unlock_inode;
d8926bb3 9157 }
33345d01 9158 key.objectid = btrfs_ino(inode);
39279cc3 9159 key.offset = 0;
962a298f 9160 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9161 datasize = btrfs_file_extent_calc_inline_size(name_len);
9162 err = btrfs_insert_empty_item(trans, root, path, &key,
9163 datasize);
54aa1f4d 9164 if (err) {
b0839166 9165 btrfs_free_path(path);
b0d5d10f 9166 goto out_unlock_inode;
54aa1f4d 9167 }
5f39d397
CM
9168 leaf = path->nodes[0];
9169 ei = btrfs_item_ptr(leaf, path->slots[0],
9170 struct btrfs_file_extent_item);
9171 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9172 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9173 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9174 btrfs_set_file_extent_encryption(leaf, ei, 0);
9175 btrfs_set_file_extent_compression(leaf, ei, 0);
9176 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9177 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9178
39279cc3 9179 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9180 write_extent_buffer(leaf, symname, ptr, name_len);
9181 btrfs_mark_buffer_dirty(leaf);
39279cc3 9182 btrfs_free_path(path);
5f39d397 9183
39279cc3
CM
9184 inode->i_op = &btrfs_symlink_inode_operations;
9185 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 9186 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 9187 inode_set_bytes(inode, name_len);
f06becc4 9188 btrfs_i_size_write(inode, name_len);
54aa1f4d 9189 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9190 if (err) {
54aa1f4d 9191 drop_inode = 1;
b0d5d10f
CM
9192 goto out_unlock_inode;
9193 }
9194
9195 unlock_new_inode(inode);
9196 d_instantiate(dentry, inode);
39279cc3
CM
9197
9198out_unlock:
7ad85bb7 9199 btrfs_end_transaction(trans, root);
39279cc3
CM
9200 if (drop_inode) {
9201 inode_dec_link_count(inode);
9202 iput(inode);
9203 }
b53d3f5d 9204 btrfs_btree_balance_dirty(root);
39279cc3 9205 return err;
b0d5d10f
CM
9206
9207out_unlock_inode:
9208 drop_inode = 1;
9209 unlock_new_inode(inode);
9210 goto out_unlock;
39279cc3 9211}
16432985 9212
0af3d00b
JB
9213static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9214 u64 start, u64 num_bytes, u64 min_size,
9215 loff_t actual_len, u64 *alloc_hint,
9216 struct btrfs_trans_handle *trans)
d899e052 9217{
5dc562c5
JB
9218 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9219 struct extent_map *em;
d899e052
YZ
9220 struct btrfs_root *root = BTRFS_I(inode)->root;
9221 struct btrfs_key ins;
d899e052 9222 u64 cur_offset = start;
55a61d1d 9223 u64 i_size;
154ea289 9224 u64 cur_bytes;
d899e052 9225 int ret = 0;
0af3d00b 9226 bool own_trans = true;
d899e052 9227
0af3d00b
JB
9228 if (trans)
9229 own_trans = false;
d899e052 9230 while (num_bytes > 0) {
0af3d00b
JB
9231 if (own_trans) {
9232 trans = btrfs_start_transaction(root, 3);
9233 if (IS_ERR(trans)) {
9234 ret = PTR_ERR(trans);
9235 break;
9236 }
5a303d5d
YZ
9237 }
9238
154ea289
CM
9239 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9240 cur_bytes = max(cur_bytes, min_size);
00361589 9241 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9242 *alloc_hint, &ins, 1, 0);
5a303d5d 9243 if (ret) {
0af3d00b
JB
9244 if (own_trans)
9245 btrfs_end_transaction(trans, root);
a22285a6 9246 break;
d899e052 9247 }
5a303d5d 9248
d899e052
YZ
9249 ret = insert_reserved_file_extent(trans, inode,
9250 cur_offset, ins.objectid,
9251 ins.offset, ins.offset,
920bbbfb 9252 ins.offset, 0, 0, 0,
d899e052 9253 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9254 if (ret) {
857cc2fc 9255 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9256 ins.offset, 0);
79787eaa
JM
9257 btrfs_abort_transaction(trans, root, ret);
9258 if (own_trans)
9259 btrfs_end_transaction(trans, root);
9260 break;
9261 }
a1ed835e
CM
9262 btrfs_drop_extent_cache(inode, cur_offset,
9263 cur_offset + ins.offset -1, 0);
5a303d5d 9264
5dc562c5
JB
9265 em = alloc_extent_map();
9266 if (!em) {
9267 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9268 &BTRFS_I(inode)->runtime_flags);
9269 goto next;
9270 }
9271
9272 em->start = cur_offset;
9273 em->orig_start = cur_offset;
9274 em->len = ins.offset;
9275 em->block_start = ins.objectid;
9276 em->block_len = ins.offset;
b4939680 9277 em->orig_block_len = ins.offset;
cc95bef6 9278 em->ram_bytes = ins.offset;
5dc562c5
JB
9279 em->bdev = root->fs_info->fs_devices->latest_bdev;
9280 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9281 em->generation = trans->transid;
9282
9283 while (1) {
9284 write_lock(&em_tree->lock);
09a2a8f9 9285 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9286 write_unlock(&em_tree->lock);
9287 if (ret != -EEXIST)
9288 break;
9289 btrfs_drop_extent_cache(inode, cur_offset,
9290 cur_offset + ins.offset - 1,
9291 0);
9292 }
9293 free_extent_map(em);
9294next:
d899e052
YZ
9295 num_bytes -= ins.offset;
9296 cur_offset += ins.offset;
efa56464 9297 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9298
0c4d2d95 9299 inode_inc_iversion(inode);
d899e052 9300 inode->i_ctime = CURRENT_TIME;
6cbff00f 9301 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9302 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9303 (actual_len > inode->i_size) &&
9304 (cur_offset > inode->i_size)) {
d1ea6a61 9305 if (cur_offset > actual_len)
55a61d1d 9306 i_size = actual_len;
d1ea6a61 9307 else
55a61d1d
JB
9308 i_size = cur_offset;
9309 i_size_write(inode, i_size);
9310 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9311 }
9312
d899e052 9313 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9314
9315 if (ret) {
9316 btrfs_abort_transaction(trans, root, ret);
9317 if (own_trans)
9318 btrfs_end_transaction(trans, root);
9319 break;
9320 }
d899e052 9321
0af3d00b
JB
9322 if (own_trans)
9323 btrfs_end_transaction(trans, root);
5a303d5d 9324 }
d899e052
YZ
9325 return ret;
9326}
9327
0af3d00b
JB
9328int btrfs_prealloc_file_range(struct inode *inode, int mode,
9329 u64 start, u64 num_bytes, u64 min_size,
9330 loff_t actual_len, u64 *alloc_hint)
9331{
9332 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9333 min_size, actual_len, alloc_hint,
9334 NULL);
9335}
9336
9337int btrfs_prealloc_file_range_trans(struct inode *inode,
9338 struct btrfs_trans_handle *trans, int mode,
9339 u64 start, u64 num_bytes, u64 min_size,
9340 loff_t actual_len, u64 *alloc_hint)
9341{
9342 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9343 min_size, actual_len, alloc_hint, trans);
9344}
9345
e6dcd2dc
CM
9346static int btrfs_set_page_dirty(struct page *page)
9347{
e6dcd2dc
CM
9348 return __set_page_dirty_nobuffers(page);
9349}
9350
10556cb2 9351static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9352{
b83cc969 9353 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9354 umode_t mode = inode->i_mode;
b83cc969 9355
cb6db4e5
JM
9356 if (mask & MAY_WRITE &&
9357 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9358 if (btrfs_root_readonly(root))
9359 return -EROFS;
9360 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9361 return -EACCES;
9362 }
2830ba7f 9363 return generic_permission(inode, mask);
fdebe2bd 9364}
39279cc3 9365
ef3b9af5
FM
9366static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9367{
9368 struct btrfs_trans_handle *trans;
9369 struct btrfs_root *root = BTRFS_I(dir)->root;
9370 struct inode *inode = NULL;
9371 u64 objectid;
9372 u64 index;
9373 int ret = 0;
9374
9375 /*
9376 * 5 units required for adding orphan entry
9377 */
9378 trans = btrfs_start_transaction(root, 5);
9379 if (IS_ERR(trans))
9380 return PTR_ERR(trans);
9381
9382 ret = btrfs_find_free_ino(root, &objectid);
9383 if (ret)
9384 goto out;
9385
9386 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9387 btrfs_ino(dir), objectid, mode, &index);
9388 if (IS_ERR(inode)) {
9389 ret = PTR_ERR(inode);
9390 inode = NULL;
9391 goto out;
9392 }
9393
ef3b9af5
FM
9394 inode->i_fop = &btrfs_file_operations;
9395 inode->i_op = &btrfs_file_inode_operations;
9396
9397 inode->i_mapping->a_ops = &btrfs_aops;
9398 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9399 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9400
b0d5d10f
CM
9401 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9402 if (ret)
9403 goto out_inode;
9404
9405 ret = btrfs_update_inode(trans, root, inode);
9406 if (ret)
9407 goto out_inode;
ef3b9af5
FM
9408 ret = btrfs_orphan_add(trans, inode);
9409 if (ret)
b0d5d10f 9410 goto out_inode;
ef3b9af5 9411
5762b5c9
FM
9412 /*
9413 * We set number of links to 0 in btrfs_new_inode(), and here we set
9414 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9415 * through:
9416 *
9417 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9418 */
9419 set_nlink(inode, 1);
b0d5d10f 9420 unlock_new_inode(inode);
ef3b9af5
FM
9421 d_tmpfile(dentry, inode);
9422 mark_inode_dirty(inode);
9423
9424out:
9425 btrfs_end_transaction(trans, root);
9426 if (ret)
9427 iput(inode);
9428 btrfs_balance_delayed_items(root);
9429 btrfs_btree_balance_dirty(root);
ef3b9af5 9430 return ret;
b0d5d10f
CM
9431
9432out_inode:
9433 unlock_new_inode(inode);
9434 goto out;
9435
ef3b9af5
FM
9436}
9437
6e1d5dcc 9438static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9439 .getattr = btrfs_getattr,
39279cc3
CM
9440 .lookup = btrfs_lookup,
9441 .create = btrfs_create,
9442 .unlink = btrfs_unlink,
9443 .link = btrfs_link,
9444 .mkdir = btrfs_mkdir,
9445 .rmdir = btrfs_rmdir,
80ace85c 9446 .rename2 = btrfs_rename2,
39279cc3
CM
9447 .symlink = btrfs_symlink,
9448 .setattr = btrfs_setattr,
618e21d5 9449 .mknod = btrfs_mknod,
95819c05
CH
9450 .setxattr = btrfs_setxattr,
9451 .getxattr = btrfs_getxattr,
5103e947 9452 .listxattr = btrfs_listxattr,
95819c05 9453 .removexattr = btrfs_removexattr,
fdebe2bd 9454 .permission = btrfs_permission,
4e34e719 9455 .get_acl = btrfs_get_acl,
996a710d 9456 .set_acl = btrfs_set_acl,
93fd63c2 9457 .update_time = btrfs_update_time,
ef3b9af5 9458 .tmpfile = btrfs_tmpfile,
39279cc3 9459};
6e1d5dcc 9460static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 9461 .lookup = btrfs_lookup,
fdebe2bd 9462 .permission = btrfs_permission,
4e34e719 9463 .get_acl = btrfs_get_acl,
996a710d 9464 .set_acl = btrfs_set_acl,
93fd63c2 9465 .update_time = btrfs_update_time,
39279cc3 9466};
76dda93c 9467
828c0950 9468static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
9469 .llseek = generic_file_llseek,
9470 .read = generic_read_dir,
9cdda8d3 9471 .iterate = btrfs_real_readdir,
34287aa3 9472 .unlocked_ioctl = btrfs_ioctl,
39279cc3 9473#ifdef CONFIG_COMPAT
34287aa3 9474 .compat_ioctl = btrfs_ioctl,
39279cc3 9475#endif
6bf13c0c 9476 .release = btrfs_release_file,
e02119d5 9477 .fsync = btrfs_sync_file,
39279cc3
CM
9478};
9479
d1310b2e 9480static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 9481 .fill_delalloc = run_delalloc_range,
065631f6 9482 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 9483 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 9484 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 9485 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 9486 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
9487 .set_bit_hook = btrfs_set_bit_hook,
9488 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
9489 .merge_extent_hook = btrfs_merge_extent_hook,
9490 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
9491};
9492
35054394
CM
9493/*
9494 * btrfs doesn't support the bmap operation because swapfiles
9495 * use bmap to make a mapping of extents in the file. They assume
9496 * these extents won't change over the life of the file and they
9497 * use the bmap result to do IO directly to the drive.
9498 *
9499 * the btrfs bmap call would return logical addresses that aren't
9500 * suitable for IO and they also will change frequently as COW
9501 * operations happen. So, swapfile + btrfs == corruption.
9502 *
9503 * For now we're avoiding this by dropping bmap.
9504 */
7f09410b 9505static const struct address_space_operations btrfs_aops = {
39279cc3
CM
9506 .readpage = btrfs_readpage,
9507 .writepage = btrfs_writepage,
b293f02e 9508 .writepages = btrfs_writepages,
3ab2fb5a 9509 .readpages = btrfs_readpages,
16432985 9510 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
9511 .invalidatepage = btrfs_invalidatepage,
9512 .releasepage = btrfs_releasepage,
e6dcd2dc 9513 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 9514 .error_remove_page = generic_error_remove_page,
39279cc3
CM
9515};
9516
7f09410b 9517static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
9518 .readpage = btrfs_readpage,
9519 .writepage = btrfs_writepage,
2bf5a725
CM
9520 .invalidatepage = btrfs_invalidatepage,
9521 .releasepage = btrfs_releasepage,
39279cc3
CM
9522};
9523
6e1d5dcc 9524static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
9525 .getattr = btrfs_getattr,
9526 .setattr = btrfs_setattr,
95819c05
CH
9527 .setxattr = btrfs_setxattr,
9528 .getxattr = btrfs_getxattr,
5103e947 9529 .listxattr = btrfs_listxattr,
95819c05 9530 .removexattr = btrfs_removexattr,
fdebe2bd 9531 .permission = btrfs_permission,
1506fcc8 9532 .fiemap = btrfs_fiemap,
4e34e719 9533 .get_acl = btrfs_get_acl,
996a710d 9534 .set_acl = btrfs_set_acl,
e41f941a 9535 .update_time = btrfs_update_time,
39279cc3 9536};
6e1d5dcc 9537static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
9538 .getattr = btrfs_getattr,
9539 .setattr = btrfs_setattr,
fdebe2bd 9540 .permission = btrfs_permission,
95819c05
CH
9541 .setxattr = btrfs_setxattr,
9542 .getxattr = btrfs_getxattr,
33268eaf 9543 .listxattr = btrfs_listxattr,
95819c05 9544 .removexattr = btrfs_removexattr,
4e34e719 9545 .get_acl = btrfs_get_acl,
996a710d 9546 .set_acl = btrfs_set_acl,
e41f941a 9547 .update_time = btrfs_update_time,
618e21d5 9548};
6e1d5dcc 9549static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
9550 .readlink = generic_readlink,
9551 .follow_link = page_follow_link_light,
9552 .put_link = page_put_link,
f209561a 9553 .getattr = btrfs_getattr,
22c44fe6 9554 .setattr = btrfs_setattr,
fdebe2bd 9555 .permission = btrfs_permission,
0279b4cd
JO
9556 .setxattr = btrfs_setxattr,
9557 .getxattr = btrfs_getxattr,
9558 .listxattr = btrfs_listxattr,
9559 .removexattr = btrfs_removexattr,
e41f941a 9560 .update_time = btrfs_update_time,
39279cc3 9561};
76dda93c 9562
82d339d9 9563const struct dentry_operations btrfs_dentry_operations = {
76dda93c 9564 .d_delete = btrfs_dentry_delete,
b4aff1f8 9565 .d_release = btrfs_dentry_release,
76dda93c 9566};