Btrfs: Introduce global metadata reservation
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
39279cc3
CM
53
54struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57};
58
6e1d5dcc
AD
59static const struct inode_operations btrfs_dir_inode_operations;
60static const struct inode_operations btrfs_symlink_inode_operations;
61static const struct inode_operations btrfs_dir_ro_inode_operations;
62static const struct inode_operations btrfs_special_inode_operations;
63static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
64static const struct address_space_operations btrfs_aops;
65static const struct address_space_operations btrfs_symlink_aops;
828c0950 66static const struct file_operations btrfs_dir_file_operations;
d1310b2e 67static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
68
69static struct kmem_cache *btrfs_inode_cachep;
70struct kmem_cache *btrfs_trans_handle_cachep;
71struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
72struct kmem_cache *btrfs_path_cachep;
73
74#define S_SHIFT 12
75static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83};
84
7b128766 85static void btrfs_truncate(struct inode *inode);
c8b97818 86static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
87static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
7b128766 91
f34f57a3
YZ
92static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
0279b4cd
JO
94{
95 int err;
96
f34f57a3 97 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 98 if (!err)
f34f57a3 99 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
100 return err;
101}
102
c8b97818
CM
103/*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
d397712b 108static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112{
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int use_compress = 0;
126
127 if (compressed_size && compressed_pages) {
128 use_compress = 1;
129 cur_size = compressed_size;
130 }
131
d397712b
CM
132 path = btrfs_alloc_path();
133 if (!path)
c8b97818
CM
134 return -ENOMEM;
135
b9473439 136 path->leave_spinning = 1;
c8b97818
CM
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
c8b97818
CM
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (use_compress) {
163 struct page *cpage;
164 int i = 0;
d397712b 165 while (compressed_size > 0) {
c8b97818 166 cpage = compressed_pages[i];
5b050f04 167 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
168 PAGE_CACHE_SIZE);
169
b9473439 170 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 172 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
c2167754
YZ
193 /*
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
197 *
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
201 */
c8b97818
CM
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
c2167754 204
c8b97818
CM
205 return 0;
206fail:
207 btrfs_free_path(path);
208 return err;
209}
210
211
212/*
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
216 */
7f366cfe 217static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
222{
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
231
232 if (compressed_size)
233 data_len = compressed_size;
234
235 if (start > 0 ||
70b99e69 236 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
243 }
244
920bbbfb 245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 246 &hint_byte, 1);
c8b97818
CM
247 BUG_ON(ret);
248
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
0ca1f7ce 255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
257 return 0;
258}
259
771ed689
CM
260struct async_extent {
261 u64 start;
262 u64 ram_size;
263 u64 compressed_size;
264 struct page **pages;
265 unsigned long nr_pages;
266 struct list_head list;
267};
268
269struct async_cow {
270 struct inode *inode;
271 struct btrfs_root *root;
272 struct page *locked_page;
273 u64 start;
274 u64 end;
275 struct list_head extents;
276 struct btrfs_work work;
277};
278
279static noinline int add_async_extent(struct async_cow *cow,
280 u64 start, u64 ram_size,
281 u64 compressed_size,
282 struct page **pages,
283 unsigned long nr_pages)
284{
285 struct async_extent *async_extent;
286
287 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
288 async_extent->start = start;
289 async_extent->ram_size = ram_size;
290 async_extent->compressed_size = compressed_size;
291 async_extent->pages = pages;
292 async_extent->nr_pages = nr_pages;
293 list_add_tail(&async_extent->list, &cow->extents);
294 return 0;
295}
296
d352ac68 297/*
771ed689
CM
298 * we create compressed extents in two phases. The first
299 * phase compresses a range of pages that have already been
300 * locked (both pages and state bits are locked).
c8b97818 301 *
771ed689
CM
302 * This is done inside an ordered work queue, and the compression
303 * is spread across many cpus. The actual IO submission is step
304 * two, and the ordered work queue takes care of making sure that
305 * happens in the same order things were put onto the queue by
306 * writepages and friends.
c8b97818 307 *
771ed689
CM
308 * If this code finds it can't get good compression, it puts an
309 * entry onto the work queue to write the uncompressed bytes. This
310 * makes sure that both compressed inodes and uncompressed inodes
311 * are written in the same order that pdflush sent them down.
d352ac68 312 */
771ed689
CM
313static noinline int compress_file_range(struct inode *inode,
314 struct page *locked_page,
315 u64 start, u64 end,
316 struct async_cow *async_cow,
317 int *num_added)
b888db2b
CM
318{
319 struct btrfs_root *root = BTRFS_I(inode)->root;
320 struct btrfs_trans_handle *trans;
db94535d 321 u64 num_bytes;
c8b97818
CM
322 u64 orig_start;
323 u64 disk_num_bytes;
db94535d 324 u64 blocksize = root->sectorsize;
c8b97818 325 u64 actual_end;
42dc7bab 326 u64 isize = i_size_read(inode);
e6dcd2dc 327 int ret = 0;
c8b97818
CM
328 struct page **pages = NULL;
329 unsigned long nr_pages;
330 unsigned long nr_pages_ret = 0;
331 unsigned long total_compressed = 0;
332 unsigned long total_in = 0;
333 unsigned long max_compressed = 128 * 1024;
771ed689 334 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
335 int i;
336 int will_compress;
b888db2b 337
c8b97818
CM
338 orig_start = start;
339
42dc7bab 340 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
341again:
342 will_compress = 0;
343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 345
f03d9301
CM
346 /*
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
352 *
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
355 */
356 if (actual_end <= start)
357 goto cleanup_and_bail_uncompressed;
358
c8b97818
CM
359 total_compressed = actual_end - start;
360
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
366 *
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
c8b97818
CM
370 */
371 total_compressed = min(total_compressed, max_uncompressed);
db94535d 372 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 373 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
374 disk_num_bytes = num_bytes;
375 total_in = 0;
376 ret = 0;
db94535d 377
771ed689
CM
378 /*
379 * we do compression for mount -o compress and when the
380 * inode has not been flagged as nocompress. This flag can
381 * change at any time if we discover bad compression ratios.
c8b97818 382 */
6cbff00f 383 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32
CM
384 (btrfs_test_opt(root, COMPRESS) ||
385 (BTRFS_I(inode)->force_compress))) {
c8b97818 386 WARN_ON(pages);
cfbc246e 387 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 388
c8b97818
CM
389 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
390 total_compressed, pages,
391 nr_pages, &nr_pages_ret,
392 &total_in,
393 &total_compressed,
394 max_compressed);
395
396 if (!ret) {
397 unsigned long offset = total_compressed &
398 (PAGE_CACHE_SIZE - 1);
399 struct page *page = pages[nr_pages_ret - 1];
400 char *kaddr;
401
402 /* zero the tail end of the last page, we might be
403 * sending it down to disk
404 */
405 if (offset) {
406 kaddr = kmap_atomic(page, KM_USER0);
407 memset(kaddr + offset, 0,
408 PAGE_CACHE_SIZE - offset);
409 kunmap_atomic(kaddr, KM_USER0);
410 }
411 will_compress = 1;
412 }
413 }
414 if (start == 0) {
771ed689
CM
415 trans = btrfs_join_transaction(root, 1);
416 BUG_ON(!trans);
417 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 418 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 419
c8b97818 420 /* lets try to make an inline extent */
771ed689 421 if (ret || total_in < (actual_end - start)) {
c8b97818 422 /* we didn't compress the entire range, try
771ed689 423 * to make an uncompressed inline extent.
c8b97818
CM
424 */
425 ret = cow_file_range_inline(trans, root, inode,
426 start, end, 0, NULL);
427 } else {
771ed689 428 /* try making a compressed inline extent */
c8b97818
CM
429 ret = cow_file_range_inline(trans, root, inode,
430 start, end,
431 total_compressed, pages);
432 }
433 if (ret == 0) {
771ed689
CM
434 /*
435 * inline extent creation worked, we don't need
436 * to create any more async work items. Unlock
437 * and free up our temp pages.
438 */
c8b97818 439 extent_clear_unlock_delalloc(inode,
a791e35e
CM
440 &BTRFS_I(inode)->io_tree,
441 start, end, NULL,
442 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 443 EXTENT_CLEAR_DELALLOC |
a791e35e 444 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
445
446 btrfs_end_transaction(trans, root);
c8b97818
CM
447 goto free_pages_out;
448 }
c2167754 449 btrfs_end_transaction(trans, root);
c8b97818
CM
450 }
451
452 if (will_compress) {
453 /*
454 * we aren't doing an inline extent round the compressed size
455 * up to a block size boundary so the allocator does sane
456 * things
457 */
458 total_compressed = (total_compressed + blocksize - 1) &
459 ~(blocksize - 1);
460
461 /*
462 * one last check to make sure the compression is really a
463 * win, compare the page count read with the blocks on disk
464 */
465 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
466 ~(PAGE_CACHE_SIZE - 1);
467 if (total_compressed >= total_in) {
468 will_compress = 0;
469 } else {
470 disk_num_bytes = total_compressed;
471 num_bytes = total_in;
472 }
473 }
474 if (!will_compress && pages) {
475 /*
476 * the compression code ran but failed to make things smaller,
477 * free any pages it allocated and our page pointer array
478 */
479 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 480 WARN_ON(pages[i]->mapping);
c8b97818
CM
481 page_cache_release(pages[i]);
482 }
483 kfree(pages);
484 pages = NULL;
485 total_compressed = 0;
486 nr_pages_ret = 0;
487
488 /* flag the file so we don't compress in the future */
1e701a32
CM
489 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
490 !(BTRFS_I(inode)->force_compress)) {
a555f810 491 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 492 }
c8b97818 493 }
771ed689
CM
494 if (will_compress) {
495 *num_added += 1;
c8b97818 496
771ed689
CM
497 /* the async work queues will take care of doing actual
498 * allocation on disk for these compressed pages,
499 * and will submit them to the elevator.
500 */
501 add_async_extent(async_cow, start, num_bytes,
502 total_compressed, pages, nr_pages_ret);
179e29e4 503
42dc7bab 504 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
505 start += num_bytes;
506 pages = NULL;
507 cond_resched();
508 goto again;
509 }
510 } else {
f03d9301 511cleanup_and_bail_uncompressed:
771ed689
CM
512 /*
513 * No compression, but we still need to write the pages in
514 * the file we've been given so far. redirty the locked
515 * page if it corresponds to our extent and set things up
516 * for the async work queue to run cow_file_range to do
517 * the normal delalloc dance
518 */
519 if (page_offset(locked_page) >= start &&
520 page_offset(locked_page) <= end) {
521 __set_page_dirty_nobuffers(locked_page);
522 /* unlocked later on in the async handlers */
523 }
524 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
525 *num_added += 1;
526 }
3b951516 527
771ed689
CM
528out:
529 return 0;
530
531free_pages_out:
532 for (i = 0; i < nr_pages_ret; i++) {
533 WARN_ON(pages[i]->mapping);
534 page_cache_release(pages[i]);
535 }
d397712b 536 kfree(pages);
771ed689
CM
537
538 goto out;
539}
540
541/*
542 * phase two of compressed writeback. This is the ordered portion
543 * of the code, which only gets called in the order the work was
544 * queued. We walk all the async extents created by compress_file_range
545 * and send them down to the disk.
546 */
547static noinline int submit_compressed_extents(struct inode *inode,
548 struct async_cow *async_cow)
549{
550 struct async_extent *async_extent;
551 u64 alloc_hint = 0;
552 struct btrfs_trans_handle *trans;
553 struct btrfs_key ins;
554 struct extent_map *em;
555 struct btrfs_root *root = BTRFS_I(inode)->root;
556 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
557 struct extent_io_tree *io_tree;
f5a84ee3 558 int ret = 0;
771ed689
CM
559
560 if (list_empty(&async_cow->extents))
561 return 0;
562
771ed689 563
d397712b 564 while (!list_empty(&async_cow->extents)) {
771ed689
CM
565 async_extent = list_entry(async_cow->extents.next,
566 struct async_extent, list);
567 list_del(&async_extent->list);
c8b97818 568
771ed689
CM
569 io_tree = &BTRFS_I(inode)->io_tree;
570
f5a84ee3 571retry:
771ed689
CM
572 /* did the compression code fall back to uncompressed IO? */
573 if (!async_extent->pages) {
574 int page_started = 0;
575 unsigned long nr_written = 0;
576
577 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
578 async_extent->start +
579 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
580
581 /* allocate blocks */
f5a84ee3
JB
582 ret = cow_file_range(inode, async_cow->locked_page,
583 async_extent->start,
584 async_extent->start +
585 async_extent->ram_size - 1,
586 &page_started, &nr_written, 0);
771ed689
CM
587
588 /*
589 * if page_started, cow_file_range inserted an
590 * inline extent and took care of all the unlocking
591 * and IO for us. Otherwise, we need to submit
592 * all those pages down to the drive.
593 */
f5a84ee3 594 if (!page_started && !ret)
771ed689
CM
595 extent_write_locked_range(io_tree,
596 inode, async_extent->start,
d397712b 597 async_extent->start +
771ed689
CM
598 async_extent->ram_size - 1,
599 btrfs_get_extent,
600 WB_SYNC_ALL);
601 kfree(async_extent);
602 cond_resched();
603 continue;
604 }
605
606 lock_extent(io_tree, async_extent->start,
607 async_extent->start + async_extent->ram_size - 1,
608 GFP_NOFS);
771ed689 609
c2167754 610 trans = btrfs_join_transaction(root, 1);
771ed689
CM
611 ret = btrfs_reserve_extent(trans, root,
612 async_extent->compressed_size,
613 async_extent->compressed_size,
614 0, alloc_hint,
615 (u64)-1, &ins, 1);
c2167754
YZ
616 btrfs_end_transaction(trans, root);
617
f5a84ee3
JB
618 if (ret) {
619 int i;
620 for (i = 0; i < async_extent->nr_pages; i++) {
621 WARN_ON(async_extent->pages[i]->mapping);
622 page_cache_release(async_extent->pages[i]);
623 }
624 kfree(async_extent->pages);
625 async_extent->nr_pages = 0;
626 async_extent->pages = NULL;
627 unlock_extent(io_tree, async_extent->start,
628 async_extent->start +
629 async_extent->ram_size - 1, GFP_NOFS);
630 goto retry;
631 }
632
c2167754
YZ
633 /*
634 * here we're doing allocation and writeback of the
635 * compressed pages
636 */
637 btrfs_drop_extent_cache(inode, async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1, 0);
640
771ed689
CM
641 em = alloc_extent_map(GFP_NOFS);
642 em->start = async_extent->start;
643 em->len = async_extent->ram_size;
445a6944 644 em->orig_start = em->start;
c8b97818 645
771ed689
CM
646 em->block_start = ins.objectid;
647 em->block_len = ins.offset;
648 em->bdev = root->fs_info->fs_devices->latest_bdev;
649 set_bit(EXTENT_FLAG_PINNED, &em->flags);
650 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
651
d397712b 652 while (1) {
890871be 653 write_lock(&em_tree->lock);
771ed689 654 ret = add_extent_mapping(em_tree, em);
890871be 655 write_unlock(&em_tree->lock);
771ed689
CM
656 if (ret != -EEXIST) {
657 free_extent_map(em);
658 break;
659 }
660 btrfs_drop_extent_cache(inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1, 0);
663 }
664
665 ret = btrfs_add_ordered_extent(inode, async_extent->start,
666 ins.objectid,
667 async_extent->ram_size,
668 ins.offset,
669 BTRFS_ORDERED_COMPRESSED);
670 BUG_ON(ret);
671
771ed689
CM
672 /*
673 * clear dirty, set writeback and unlock the pages.
674 */
675 extent_clear_unlock_delalloc(inode,
a791e35e
CM
676 &BTRFS_I(inode)->io_tree,
677 async_extent->start,
678 async_extent->start +
679 async_extent->ram_size - 1,
680 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
681 EXTENT_CLEAR_UNLOCK |
a3429ab7 682 EXTENT_CLEAR_DELALLOC |
a791e35e 683 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
684
685 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
686 async_extent->start,
687 async_extent->ram_size,
688 ins.objectid,
689 ins.offset, async_extent->pages,
690 async_extent->nr_pages);
771ed689
CM
691
692 BUG_ON(ret);
771ed689
CM
693 alloc_hint = ins.objectid + ins.offset;
694 kfree(async_extent);
695 cond_resched();
696 }
697
771ed689
CM
698 return 0;
699}
700
701/*
702 * when extent_io.c finds a delayed allocation range in the file,
703 * the call backs end up in this code. The basic idea is to
704 * allocate extents on disk for the range, and create ordered data structs
705 * in ram to track those extents.
706 *
707 * locked_page is the page that writepage had locked already. We use
708 * it to make sure we don't do extra locks or unlocks.
709 *
710 * *page_started is set to one if we unlock locked_page and do everything
711 * required to start IO on it. It may be clean and already done with
712 * IO when we return.
713 */
714static noinline int cow_file_range(struct inode *inode,
715 struct page *locked_page,
716 u64 start, u64 end, int *page_started,
717 unsigned long *nr_written,
718 int unlock)
719{
720 struct btrfs_root *root = BTRFS_I(inode)->root;
721 struct btrfs_trans_handle *trans;
722 u64 alloc_hint = 0;
723 u64 num_bytes;
724 unsigned long ram_size;
725 u64 disk_num_bytes;
726 u64 cur_alloc_size;
727 u64 blocksize = root->sectorsize;
728 u64 actual_end;
42dc7bab 729 u64 isize = i_size_read(inode);
771ed689
CM
730 struct btrfs_key ins;
731 struct extent_map *em;
732 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
733 int ret = 0;
734
735 trans = btrfs_join_transaction(root, 1);
736 BUG_ON(!trans);
737 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 738 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 739
42dc7bab 740 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
741
742 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
743 num_bytes = max(blocksize, num_bytes);
744 disk_num_bytes = num_bytes;
745 ret = 0;
746
747 if (start == 0) {
748 /* lets try to make an inline extent */
749 ret = cow_file_range_inline(trans, root, inode,
750 start, end, 0, NULL);
751 if (ret == 0) {
752 extent_clear_unlock_delalloc(inode,
a791e35e
CM
753 &BTRFS_I(inode)->io_tree,
754 start, end, NULL,
755 EXTENT_CLEAR_UNLOCK_PAGE |
756 EXTENT_CLEAR_UNLOCK |
757 EXTENT_CLEAR_DELALLOC |
758 EXTENT_CLEAR_DIRTY |
759 EXTENT_SET_WRITEBACK |
760 EXTENT_END_WRITEBACK);
c2167754 761
771ed689
CM
762 *nr_written = *nr_written +
763 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
764 *page_started = 1;
765 ret = 0;
766 goto out;
767 }
768 }
769
770 BUG_ON(disk_num_bytes >
771 btrfs_super_total_bytes(&root->fs_info->super_copy));
772
b917b7c3
CM
773
774 read_lock(&BTRFS_I(inode)->extent_tree.lock);
775 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
776 start, num_bytes);
777 if (em) {
6346c939
JB
778 /*
779 * if block start isn't an actual block number then find the
780 * first block in this inode and use that as a hint. If that
781 * block is also bogus then just don't worry about it.
782 */
783 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
784 free_extent_map(em);
785 em = search_extent_mapping(em_tree, 0, 0);
786 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
787 alloc_hint = em->block_start;
788 if (em)
789 free_extent_map(em);
790 } else {
791 alloc_hint = em->block_start;
792 free_extent_map(em);
793 }
b917b7c3
CM
794 }
795 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
771ed689
CM
796 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
797
d397712b 798 while (disk_num_bytes > 0) {
a791e35e
CM
799 unsigned long op;
800
287a0ab9 801 cur_alloc_size = disk_num_bytes;
e6dcd2dc 802 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 803 root->sectorsize, 0, alloc_hint,
e6dcd2dc 804 (u64)-1, &ins, 1);
d397712b
CM
805 BUG_ON(ret);
806
e6dcd2dc
CM
807 em = alloc_extent_map(GFP_NOFS);
808 em->start = start;
445a6944 809 em->orig_start = em->start;
771ed689
CM
810 ram_size = ins.offset;
811 em->len = ins.offset;
c8b97818 812
e6dcd2dc 813 em->block_start = ins.objectid;
c8b97818 814 em->block_len = ins.offset;
e6dcd2dc 815 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 816 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 817
d397712b 818 while (1) {
890871be 819 write_lock(&em_tree->lock);
e6dcd2dc 820 ret = add_extent_mapping(em_tree, em);
890871be 821 write_unlock(&em_tree->lock);
e6dcd2dc
CM
822 if (ret != -EEXIST) {
823 free_extent_map(em);
824 break;
825 }
826 btrfs_drop_extent_cache(inode, start,
c8b97818 827 start + ram_size - 1, 0);
e6dcd2dc
CM
828 }
829
98d20f67 830 cur_alloc_size = ins.offset;
e6dcd2dc 831 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 832 ram_size, cur_alloc_size, 0);
e6dcd2dc 833 BUG_ON(ret);
c8b97818 834
17d217fe
YZ
835 if (root->root_key.objectid ==
836 BTRFS_DATA_RELOC_TREE_OBJECTID) {
837 ret = btrfs_reloc_clone_csums(inode, start,
838 cur_alloc_size);
839 BUG_ON(ret);
840 }
841
d397712b 842 if (disk_num_bytes < cur_alloc_size)
3b951516 843 break;
d397712b 844
c8b97818
CM
845 /* we're not doing compressed IO, don't unlock the first
846 * page (which the caller expects to stay locked), don't
847 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
848 *
849 * Do set the Private2 bit so we know this page was properly
850 * setup for writepage
c8b97818 851 */
a791e35e
CM
852 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
853 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
854 EXTENT_SET_PRIVATE2;
855
c8b97818
CM
856 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
857 start, start + ram_size - 1,
a791e35e 858 locked_page, op);
c8b97818 859 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
860 num_bytes -= cur_alloc_size;
861 alloc_hint = ins.objectid + ins.offset;
862 start += cur_alloc_size;
b888db2b 863 }
b888db2b 864out:
771ed689 865 ret = 0;
b888db2b 866 btrfs_end_transaction(trans, root);
c8b97818 867
be20aa9d 868 return ret;
771ed689 869}
c8b97818 870
771ed689
CM
871/*
872 * work queue call back to started compression on a file and pages
873 */
874static noinline void async_cow_start(struct btrfs_work *work)
875{
876 struct async_cow *async_cow;
877 int num_added = 0;
878 async_cow = container_of(work, struct async_cow, work);
879
880 compress_file_range(async_cow->inode, async_cow->locked_page,
881 async_cow->start, async_cow->end, async_cow,
882 &num_added);
883 if (num_added == 0)
884 async_cow->inode = NULL;
885}
886
887/*
888 * work queue call back to submit previously compressed pages
889 */
890static noinline void async_cow_submit(struct btrfs_work *work)
891{
892 struct async_cow *async_cow;
893 struct btrfs_root *root;
894 unsigned long nr_pages;
895
896 async_cow = container_of(work, struct async_cow, work);
897
898 root = async_cow->root;
899 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
900 PAGE_CACHE_SHIFT;
901
902 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
903
904 if (atomic_read(&root->fs_info->async_delalloc_pages) <
905 5 * 1042 * 1024 &&
906 waitqueue_active(&root->fs_info->async_submit_wait))
907 wake_up(&root->fs_info->async_submit_wait);
908
d397712b 909 if (async_cow->inode)
771ed689 910 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 911}
c8b97818 912
771ed689
CM
913static noinline void async_cow_free(struct btrfs_work *work)
914{
915 struct async_cow *async_cow;
916 async_cow = container_of(work, struct async_cow, work);
917 kfree(async_cow);
918}
919
920static int cow_file_range_async(struct inode *inode, struct page *locked_page,
921 u64 start, u64 end, int *page_started,
922 unsigned long *nr_written)
923{
924 struct async_cow *async_cow;
925 struct btrfs_root *root = BTRFS_I(inode)->root;
926 unsigned long nr_pages;
927 u64 cur_end;
928 int limit = 10 * 1024 * 1042;
929
a3429ab7
CM
930 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
931 1, 0, NULL, GFP_NOFS);
d397712b 932 while (start < end) {
771ed689
CM
933 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
934 async_cow->inode = inode;
935 async_cow->root = root;
936 async_cow->locked_page = locked_page;
937 async_cow->start = start;
938
6cbff00f 939 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
940 cur_end = end;
941 else
942 cur_end = min(end, start + 512 * 1024 - 1);
943
944 async_cow->end = cur_end;
945 INIT_LIST_HEAD(&async_cow->extents);
946
947 async_cow->work.func = async_cow_start;
948 async_cow->work.ordered_func = async_cow_submit;
949 async_cow->work.ordered_free = async_cow_free;
950 async_cow->work.flags = 0;
951
771ed689
CM
952 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
953 PAGE_CACHE_SHIFT;
954 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
955
956 btrfs_queue_worker(&root->fs_info->delalloc_workers,
957 &async_cow->work);
958
959 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
960 wait_event(root->fs_info->async_submit_wait,
961 (atomic_read(&root->fs_info->async_delalloc_pages) <
962 limit));
963 }
964
d397712b 965 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
966 atomic_read(&root->fs_info->async_delalloc_pages)) {
967 wait_event(root->fs_info->async_submit_wait,
968 (atomic_read(&root->fs_info->async_delalloc_pages) ==
969 0));
970 }
971
972 *nr_written += nr_pages;
973 start = cur_end + 1;
974 }
975 *page_started = 1;
976 return 0;
be20aa9d
CM
977}
978
d397712b 979static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
980 u64 bytenr, u64 num_bytes)
981{
982 int ret;
983 struct btrfs_ordered_sum *sums;
984 LIST_HEAD(list);
985
07d400a6
YZ
986 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
987 bytenr + num_bytes - 1, &list);
17d217fe
YZ
988 if (ret == 0 && list_empty(&list))
989 return 0;
990
991 while (!list_empty(&list)) {
992 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
993 list_del(&sums->list);
994 kfree(sums);
995 }
996 return 1;
997}
998
d352ac68
CM
999/*
1000 * when nowcow writeback call back. This checks for snapshots or COW copies
1001 * of the extents that exist in the file, and COWs the file as required.
1002 *
1003 * If no cow copies or snapshots exist, we write directly to the existing
1004 * blocks on disk
1005 */
7f366cfe
CM
1006static noinline int run_delalloc_nocow(struct inode *inode,
1007 struct page *locked_page,
771ed689
CM
1008 u64 start, u64 end, int *page_started, int force,
1009 unsigned long *nr_written)
be20aa9d 1010{
be20aa9d 1011 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1012 struct btrfs_trans_handle *trans;
be20aa9d 1013 struct extent_buffer *leaf;
be20aa9d 1014 struct btrfs_path *path;
80ff3856 1015 struct btrfs_file_extent_item *fi;
be20aa9d 1016 struct btrfs_key found_key;
80ff3856
YZ
1017 u64 cow_start;
1018 u64 cur_offset;
1019 u64 extent_end;
5d4f98a2 1020 u64 extent_offset;
80ff3856
YZ
1021 u64 disk_bytenr;
1022 u64 num_bytes;
1023 int extent_type;
1024 int ret;
d899e052 1025 int type;
80ff3856
YZ
1026 int nocow;
1027 int check_prev = 1;
be20aa9d
CM
1028
1029 path = btrfs_alloc_path();
1030 BUG_ON(!path);
7ea394f1
YZ
1031 trans = btrfs_join_transaction(root, 1);
1032 BUG_ON(!trans);
be20aa9d 1033
80ff3856
YZ
1034 cow_start = (u64)-1;
1035 cur_offset = start;
1036 while (1) {
1037 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1038 cur_offset, 0);
1039 BUG_ON(ret < 0);
1040 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1041 leaf = path->nodes[0];
1042 btrfs_item_key_to_cpu(leaf, &found_key,
1043 path->slots[0] - 1);
1044 if (found_key.objectid == inode->i_ino &&
1045 found_key.type == BTRFS_EXTENT_DATA_KEY)
1046 path->slots[0]--;
1047 }
1048 check_prev = 0;
1049next_slot:
1050 leaf = path->nodes[0];
1051 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1052 ret = btrfs_next_leaf(root, path);
1053 if (ret < 0)
1054 BUG_ON(1);
1055 if (ret > 0)
1056 break;
1057 leaf = path->nodes[0];
1058 }
be20aa9d 1059
80ff3856
YZ
1060 nocow = 0;
1061 disk_bytenr = 0;
17d217fe 1062 num_bytes = 0;
80ff3856
YZ
1063 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1064
1065 if (found_key.objectid > inode->i_ino ||
1066 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1067 found_key.offset > end)
1068 break;
1069
1070 if (found_key.offset > cur_offset) {
1071 extent_end = found_key.offset;
e9061e21 1072 extent_type = 0;
80ff3856
YZ
1073 goto out_check;
1074 }
1075
1076 fi = btrfs_item_ptr(leaf, path->slots[0],
1077 struct btrfs_file_extent_item);
1078 extent_type = btrfs_file_extent_type(leaf, fi);
1079
d899e052
YZ
1080 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1081 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1082 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1083 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1084 extent_end = found_key.offset +
1085 btrfs_file_extent_num_bytes(leaf, fi);
1086 if (extent_end <= start) {
1087 path->slots[0]++;
1088 goto next_slot;
1089 }
17d217fe
YZ
1090 if (disk_bytenr == 0)
1091 goto out_check;
80ff3856
YZ
1092 if (btrfs_file_extent_compression(leaf, fi) ||
1093 btrfs_file_extent_encryption(leaf, fi) ||
1094 btrfs_file_extent_other_encoding(leaf, fi))
1095 goto out_check;
d899e052
YZ
1096 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1097 goto out_check;
d2fb3437 1098 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1099 goto out_check;
17d217fe 1100 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1101 found_key.offset -
1102 extent_offset, disk_bytenr))
17d217fe 1103 goto out_check;
5d4f98a2 1104 disk_bytenr += extent_offset;
17d217fe
YZ
1105 disk_bytenr += cur_offset - found_key.offset;
1106 num_bytes = min(end + 1, extent_end) - cur_offset;
1107 /*
1108 * force cow if csum exists in the range.
1109 * this ensure that csum for a given extent are
1110 * either valid or do not exist.
1111 */
1112 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1113 goto out_check;
80ff3856
YZ
1114 nocow = 1;
1115 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1116 extent_end = found_key.offset +
1117 btrfs_file_extent_inline_len(leaf, fi);
1118 extent_end = ALIGN(extent_end, root->sectorsize);
1119 } else {
1120 BUG_ON(1);
1121 }
1122out_check:
1123 if (extent_end <= start) {
1124 path->slots[0]++;
1125 goto next_slot;
1126 }
1127 if (!nocow) {
1128 if (cow_start == (u64)-1)
1129 cow_start = cur_offset;
1130 cur_offset = extent_end;
1131 if (cur_offset > end)
1132 break;
1133 path->slots[0]++;
1134 goto next_slot;
7ea394f1
YZ
1135 }
1136
1137 btrfs_release_path(root, path);
80ff3856
YZ
1138 if (cow_start != (u64)-1) {
1139 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1140 found_key.offset - 1, page_started,
1141 nr_written, 1);
80ff3856
YZ
1142 BUG_ON(ret);
1143 cow_start = (u64)-1;
7ea394f1 1144 }
80ff3856 1145
d899e052
YZ
1146 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1147 struct extent_map *em;
1148 struct extent_map_tree *em_tree;
1149 em_tree = &BTRFS_I(inode)->extent_tree;
1150 em = alloc_extent_map(GFP_NOFS);
1151 em->start = cur_offset;
445a6944 1152 em->orig_start = em->start;
d899e052
YZ
1153 em->len = num_bytes;
1154 em->block_len = num_bytes;
1155 em->block_start = disk_bytenr;
1156 em->bdev = root->fs_info->fs_devices->latest_bdev;
1157 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1158 while (1) {
890871be 1159 write_lock(&em_tree->lock);
d899e052 1160 ret = add_extent_mapping(em_tree, em);
890871be 1161 write_unlock(&em_tree->lock);
d899e052
YZ
1162 if (ret != -EEXIST) {
1163 free_extent_map(em);
1164 break;
1165 }
1166 btrfs_drop_extent_cache(inode, em->start,
1167 em->start + em->len - 1, 0);
1168 }
1169 type = BTRFS_ORDERED_PREALLOC;
1170 } else {
1171 type = BTRFS_ORDERED_NOCOW;
1172 }
80ff3856
YZ
1173
1174 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1175 num_bytes, num_bytes, type);
1176 BUG_ON(ret);
771ed689 1177
d899e052 1178 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1179 cur_offset, cur_offset + num_bytes - 1,
1180 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1181 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1182 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1183 cur_offset = extent_end;
1184 if (cur_offset > end)
1185 break;
be20aa9d 1186 }
80ff3856
YZ
1187 btrfs_release_path(root, path);
1188
1189 if (cur_offset <= end && cow_start == (u64)-1)
1190 cow_start = cur_offset;
1191 if (cow_start != (u64)-1) {
1192 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1193 page_started, nr_written, 1);
80ff3856
YZ
1194 BUG_ON(ret);
1195 }
1196
1197 ret = btrfs_end_transaction(trans, root);
1198 BUG_ON(ret);
7ea394f1 1199 btrfs_free_path(path);
80ff3856 1200 return 0;
be20aa9d
CM
1201}
1202
d352ac68
CM
1203/*
1204 * extent_io.c call back to do delayed allocation processing
1205 */
c8b97818 1206static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1207 u64 start, u64 end, int *page_started,
1208 unsigned long *nr_written)
be20aa9d 1209{
be20aa9d 1210 int ret;
7f366cfe 1211 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1212
6cbff00f 1213 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1214 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1215 page_started, 1, nr_written);
6cbff00f 1216 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1217 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1218 page_started, 0, nr_written);
1e701a32
CM
1219 else if (!btrfs_test_opt(root, COMPRESS) &&
1220 !(BTRFS_I(inode)->force_compress))
7f366cfe
CM
1221 ret = cow_file_range(inode, locked_page, start, end,
1222 page_started, nr_written, 1);
be20aa9d 1223 else
771ed689 1224 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1225 page_started, nr_written);
b888db2b
CM
1226 return ret;
1227}
1228
9ed74f2d 1229static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1230 struct extent_state *orig, u64 split)
9ed74f2d 1231{
0ca1f7ce 1232 /* not delalloc, ignore it */
9ed74f2d
JB
1233 if (!(orig->state & EXTENT_DELALLOC))
1234 return 0;
1235
0ca1f7ce 1236 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1237 return 0;
1238}
1239
1240/*
1241 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1242 * extents so we can keep track of new extents that are just merged onto old
1243 * extents, such as when we are doing sequential writes, so we can properly
1244 * account for the metadata space we'll need.
1245 */
1246static int btrfs_merge_extent_hook(struct inode *inode,
1247 struct extent_state *new,
1248 struct extent_state *other)
1249{
9ed74f2d
JB
1250 /* not delalloc, ignore it */
1251 if (!(other->state & EXTENT_DELALLOC))
1252 return 0;
1253
0ca1f7ce 1254 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1255 return 0;
1256}
1257
d352ac68
CM
1258/*
1259 * extent_io.c set_bit_hook, used to track delayed allocation
1260 * bytes in this file, and to maintain the list of inodes that
1261 * have pending delalloc work to be done.
1262 */
0ca1f7ce
YZ
1263static int btrfs_set_bit_hook(struct inode *inode,
1264 struct extent_state *state, int *bits)
291d673e 1265{
9ed74f2d 1266
75eff68e
CM
1267 /*
1268 * set_bit and clear bit hooks normally require _irqsave/restore
1269 * but in this case, we are only testeing for the DELALLOC
1270 * bit, which is only set or cleared with irqs on
1271 */
0ca1f7ce 1272 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1273 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1274 u64 len = state->end + 1 - state->start;
9ed74f2d 1275
0ca1f7ce
YZ
1276 if (*bits & EXTENT_FIRST_DELALLOC)
1277 *bits &= ~EXTENT_FIRST_DELALLOC;
1278 else
1279 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1280
75eff68e 1281 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1282 BTRFS_I(inode)->delalloc_bytes += len;
1283 root->fs_info->delalloc_bytes += len;
ea8c2819
CM
1284 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1285 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1286 &root->fs_info->delalloc_inodes);
1287 }
75eff68e 1288 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1289 }
1290 return 0;
1291}
1292
d352ac68
CM
1293/*
1294 * extent_io.c clear_bit_hook, see set_bit_hook for why
1295 */
9ed74f2d 1296static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1297 struct extent_state *state, int *bits)
291d673e 1298{
75eff68e
CM
1299 /*
1300 * set_bit and clear bit hooks normally require _irqsave/restore
1301 * but in this case, we are only testeing for the DELALLOC
1302 * bit, which is only set or cleared with irqs on
1303 */
0ca1f7ce 1304 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1305 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1306 u64 len = state->end + 1 - state->start;
bcbfce8a 1307
0ca1f7ce
YZ
1308 if (*bits & EXTENT_FIRST_DELALLOC)
1309 *bits &= ~EXTENT_FIRST_DELALLOC;
1310 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1311 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1312
1313 if (*bits & EXTENT_DO_ACCOUNTING)
1314 btrfs_delalloc_release_metadata(inode, len);
1315
1316 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1317 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1318
75eff68e 1319 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1320 root->fs_info->delalloc_bytes -= len;
1321 BTRFS_I(inode)->delalloc_bytes -= len;
1322
ea8c2819
CM
1323 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1324 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1325 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1326 }
75eff68e 1327 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1328 }
1329 return 0;
1330}
1331
d352ac68
CM
1332/*
1333 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1334 * we don't create bios that span stripes or chunks
1335 */
239b14b3 1336int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1337 size_t size, struct bio *bio,
1338 unsigned long bio_flags)
239b14b3
CM
1339{
1340 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1341 struct btrfs_mapping_tree *map_tree;
a62b9401 1342 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1343 u64 length = 0;
1344 u64 map_length;
239b14b3
CM
1345 int ret;
1346
771ed689
CM
1347 if (bio_flags & EXTENT_BIO_COMPRESSED)
1348 return 0;
1349
f2d8d74d 1350 length = bio->bi_size;
239b14b3
CM
1351 map_tree = &root->fs_info->mapping_tree;
1352 map_length = length;
cea9e445 1353 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1354 &map_length, NULL, 0);
cea9e445 1355
d397712b 1356 if (map_length < length + size)
239b14b3 1357 return 1;
239b14b3
CM
1358 return 0;
1359}
1360
d352ac68
CM
1361/*
1362 * in order to insert checksums into the metadata in large chunks,
1363 * we wait until bio submission time. All the pages in the bio are
1364 * checksummed and sums are attached onto the ordered extent record.
1365 *
1366 * At IO completion time the cums attached on the ordered extent record
1367 * are inserted into the btree
1368 */
d397712b
CM
1369static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1370 struct bio *bio, int mirror_num,
1371 unsigned long bio_flags)
065631f6 1372{
065631f6 1373 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1374 int ret = 0;
e015640f 1375
d20f7043 1376 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1377 BUG_ON(ret);
4a69a410
CM
1378 return 0;
1379}
e015640f 1380
4a69a410
CM
1381/*
1382 * in order to insert checksums into the metadata in large chunks,
1383 * we wait until bio submission time. All the pages in the bio are
1384 * checksummed and sums are attached onto the ordered extent record.
1385 *
1386 * At IO completion time the cums attached on the ordered extent record
1387 * are inserted into the btree
1388 */
b2950863 1389static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1390 int mirror_num, unsigned long bio_flags)
1391{
1392 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1393 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1394}
1395
d352ac68 1396/*
cad321ad
CM
1397 * extent_io.c submission hook. This does the right thing for csum calculation
1398 * on write, or reading the csums from the tree before a read
d352ac68 1399 */
b2950863 1400static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1401 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1402{
1403 struct btrfs_root *root = BTRFS_I(inode)->root;
1404 int ret = 0;
19b9bdb0 1405 int skip_sum;
44b8bd7e 1406
6cbff00f 1407 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1408
e6dcd2dc
CM
1409 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1410 BUG_ON(ret);
065631f6 1411
4d1b5fb4 1412 if (!(rw & (1 << BIO_RW))) {
d20f7043 1413 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1414 return btrfs_submit_compressed_read(inode, bio,
1415 mirror_num, bio_flags);
d20f7043
CM
1416 } else if (!skip_sum)
1417 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1418 goto mapit;
19b9bdb0 1419 } else if (!skip_sum) {
17d217fe
YZ
1420 /* csum items have already been cloned */
1421 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1422 goto mapit;
19b9bdb0
CM
1423 /* we're doing a write, do the async checksumming */
1424 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1425 inode, rw, bio, mirror_num,
4a69a410
CM
1426 bio_flags, __btrfs_submit_bio_start,
1427 __btrfs_submit_bio_done);
19b9bdb0
CM
1428 }
1429
0b86a832 1430mapit:
8b712842 1431 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1432}
6885f308 1433
d352ac68
CM
1434/*
1435 * given a list of ordered sums record them in the inode. This happens
1436 * at IO completion time based on sums calculated at bio submission time.
1437 */
ba1da2f4 1438static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1439 struct inode *inode, u64 file_offset,
1440 struct list_head *list)
1441{
e6dcd2dc
CM
1442 struct btrfs_ordered_sum *sum;
1443
1444 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1445
1446 list_for_each_entry(sum, list, list) {
d20f7043
CM
1447 btrfs_csum_file_blocks(trans,
1448 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1449 }
1450 return 0;
1451}
1452
2ac55d41
JB
1453int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1454 struct extent_state **cached_state)
ea8c2819 1455{
d397712b 1456 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1457 WARN_ON(1);
ea8c2819 1458 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1459 cached_state, GFP_NOFS);
ea8c2819
CM
1460}
1461
d352ac68 1462/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1463struct btrfs_writepage_fixup {
1464 struct page *page;
1465 struct btrfs_work work;
1466};
1467
b2950863 1468static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1469{
1470 struct btrfs_writepage_fixup *fixup;
1471 struct btrfs_ordered_extent *ordered;
2ac55d41 1472 struct extent_state *cached_state = NULL;
247e743c
CM
1473 struct page *page;
1474 struct inode *inode;
1475 u64 page_start;
1476 u64 page_end;
1477
1478 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1479 page = fixup->page;
4a096752 1480again:
247e743c
CM
1481 lock_page(page);
1482 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1483 ClearPageChecked(page);
1484 goto out_page;
1485 }
1486
1487 inode = page->mapping->host;
1488 page_start = page_offset(page);
1489 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1490
2ac55d41
JB
1491 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1492 &cached_state, GFP_NOFS);
4a096752
CM
1493
1494 /* already ordered? We're done */
8b62b72b 1495 if (PagePrivate2(page))
247e743c 1496 goto out;
4a096752
CM
1497
1498 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1499 if (ordered) {
2ac55d41
JB
1500 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1501 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1502 unlock_page(page);
1503 btrfs_start_ordered_extent(inode, ordered, 1);
1504 goto again;
1505 }
247e743c 1506
0ca1f7ce 1507 BUG();
2ac55d41 1508 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1509 ClearPageChecked(page);
1510out:
2ac55d41
JB
1511 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1512 &cached_state, GFP_NOFS);
247e743c
CM
1513out_page:
1514 unlock_page(page);
1515 page_cache_release(page);
1516}
1517
1518/*
1519 * There are a few paths in the higher layers of the kernel that directly
1520 * set the page dirty bit without asking the filesystem if it is a
1521 * good idea. This causes problems because we want to make sure COW
1522 * properly happens and the data=ordered rules are followed.
1523 *
c8b97818 1524 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1525 * hasn't been properly setup for IO. We kick off an async process
1526 * to fix it up. The async helper will wait for ordered extents, set
1527 * the delalloc bit and make it safe to write the page.
1528 */
b2950863 1529static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1530{
1531 struct inode *inode = page->mapping->host;
1532 struct btrfs_writepage_fixup *fixup;
1533 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1534
8b62b72b
CM
1535 /* this page is properly in the ordered list */
1536 if (TestClearPagePrivate2(page))
247e743c
CM
1537 return 0;
1538
1539 if (PageChecked(page))
1540 return -EAGAIN;
1541
1542 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1543 if (!fixup)
1544 return -EAGAIN;
f421950f 1545
247e743c
CM
1546 SetPageChecked(page);
1547 page_cache_get(page);
1548 fixup->work.func = btrfs_writepage_fixup_worker;
1549 fixup->page = page;
1550 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1551 return -EAGAIN;
1552}
1553
d899e052
YZ
1554static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1555 struct inode *inode, u64 file_pos,
1556 u64 disk_bytenr, u64 disk_num_bytes,
1557 u64 num_bytes, u64 ram_bytes,
1558 u8 compression, u8 encryption,
1559 u16 other_encoding, int extent_type)
1560{
1561 struct btrfs_root *root = BTRFS_I(inode)->root;
1562 struct btrfs_file_extent_item *fi;
1563 struct btrfs_path *path;
1564 struct extent_buffer *leaf;
1565 struct btrfs_key ins;
1566 u64 hint;
1567 int ret;
1568
1569 path = btrfs_alloc_path();
1570 BUG_ON(!path);
1571
b9473439 1572 path->leave_spinning = 1;
a1ed835e
CM
1573
1574 /*
1575 * we may be replacing one extent in the tree with another.
1576 * The new extent is pinned in the extent map, and we don't want
1577 * to drop it from the cache until it is completely in the btree.
1578 *
1579 * So, tell btrfs_drop_extents to leave this extent in the cache.
1580 * the caller is expected to unpin it and allow it to be merged
1581 * with the others.
1582 */
920bbbfb
YZ
1583 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1584 &hint, 0);
d899e052
YZ
1585 BUG_ON(ret);
1586
1587 ins.objectid = inode->i_ino;
1588 ins.offset = file_pos;
1589 ins.type = BTRFS_EXTENT_DATA_KEY;
1590 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1591 BUG_ON(ret);
1592 leaf = path->nodes[0];
1593 fi = btrfs_item_ptr(leaf, path->slots[0],
1594 struct btrfs_file_extent_item);
1595 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1596 btrfs_set_file_extent_type(leaf, fi, extent_type);
1597 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1598 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1599 btrfs_set_file_extent_offset(leaf, fi, 0);
1600 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1601 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1602 btrfs_set_file_extent_compression(leaf, fi, compression);
1603 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1604 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1605
1606 btrfs_unlock_up_safe(path, 1);
1607 btrfs_set_lock_blocking(leaf);
1608
d899e052
YZ
1609 btrfs_mark_buffer_dirty(leaf);
1610
1611 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1612
1613 ins.objectid = disk_bytenr;
1614 ins.offset = disk_num_bytes;
1615 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1616 ret = btrfs_alloc_reserved_file_extent(trans, root,
1617 root->root_key.objectid,
1618 inode->i_ino, file_pos, &ins);
d899e052 1619 BUG_ON(ret);
d899e052 1620 btrfs_free_path(path);
b9473439 1621
d899e052
YZ
1622 return 0;
1623}
1624
5d13a98f
CM
1625/*
1626 * helper function for btrfs_finish_ordered_io, this
1627 * just reads in some of the csum leaves to prime them into ram
1628 * before we start the transaction. It limits the amount of btree
1629 * reads required while inside the transaction.
1630 */
d352ac68
CM
1631/* as ordered data IO finishes, this gets called so we can finish
1632 * an ordered extent if the range of bytes in the file it covers are
1633 * fully written.
1634 */
211f90e6 1635static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1636{
e6dcd2dc 1637 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1638 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1639 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1640 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1641 struct extent_state *cached_state = NULL;
d899e052 1642 int compressed = 0;
e6dcd2dc
CM
1643 int ret;
1644
5a1a3df1
JB
1645 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1646 end - start + 1);
ba1da2f4 1647 if (!ret)
e6dcd2dc 1648 return 0;
e6dcd2dc 1649 BUG_ON(!ordered_extent);
efd049fb 1650
c2167754
YZ
1651 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1652 BUG_ON(!list_empty(&ordered_extent->list));
1653 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1654 if (!ret) {
1655 trans = btrfs_join_transaction(root, 1);
0ca1f7ce
YZ
1656 btrfs_set_trans_block_group(trans, inode);
1657 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1658 ret = btrfs_update_inode(trans, root, inode);
1659 BUG_ON(ret);
c2167754
YZ
1660 }
1661 goto out;
1662 }
e6dcd2dc 1663
2ac55d41
JB
1664 lock_extent_bits(io_tree, ordered_extent->file_offset,
1665 ordered_extent->file_offset + ordered_extent->len - 1,
1666 0, &cached_state, GFP_NOFS);
e6dcd2dc 1667
c2167754 1668 trans = btrfs_join_transaction(root, 1);
0ca1f7ce
YZ
1669 btrfs_set_trans_block_group(trans, inode);
1670 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1671
c8b97818 1672 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1673 compressed = 1;
1674 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1675 BUG_ON(compressed);
920bbbfb 1676 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1677 ordered_extent->file_offset,
1678 ordered_extent->file_offset +
1679 ordered_extent->len);
1680 BUG_ON(ret);
1681 } else {
1682 ret = insert_reserved_file_extent(trans, inode,
1683 ordered_extent->file_offset,
1684 ordered_extent->start,
1685 ordered_extent->disk_len,
1686 ordered_extent->len,
1687 ordered_extent->len,
1688 compressed, 0, 0,
1689 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1690 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1691 ordered_extent->file_offset,
1692 ordered_extent->len);
d899e052
YZ
1693 BUG_ON(ret);
1694 }
2ac55d41
JB
1695 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1696 ordered_extent->file_offset +
1697 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1698
e6dcd2dc
CM
1699 add_pending_csums(trans, inode, ordered_extent->file_offset,
1700 &ordered_extent->list);
1701
c2167754
YZ
1702 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1703 ret = btrfs_update_inode(trans, root, inode);
1704 BUG_ON(ret);
c2167754 1705out:
0ca1f7ce
YZ
1706 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1707 if (trans)
1708 btrfs_end_transaction(trans, root);
e6dcd2dc
CM
1709 /* once for us */
1710 btrfs_put_ordered_extent(ordered_extent);
1711 /* once for the tree */
1712 btrfs_put_ordered_extent(ordered_extent);
1713
e6dcd2dc
CM
1714 return 0;
1715}
1716
b2950863 1717static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1718 struct extent_state *state, int uptodate)
1719{
8b62b72b 1720 ClearPagePrivate2(page);
211f90e6
CM
1721 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1722}
1723
d352ac68
CM
1724/*
1725 * When IO fails, either with EIO or csum verification fails, we
1726 * try other mirrors that might have a good copy of the data. This
1727 * io_failure_record is used to record state as we go through all the
1728 * mirrors. If another mirror has good data, the page is set up to date
1729 * and things continue. If a good mirror can't be found, the original
1730 * bio end_io callback is called to indicate things have failed.
1731 */
7e38326f
CM
1732struct io_failure_record {
1733 struct page *page;
1734 u64 start;
1735 u64 len;
1736 u64 logical;
d20f7043 1737 unsigned long bio_flags;
7e38326f
CM
1738 int last_mirror;
1739};
1740
b2950863 1741static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1742 struct page *page, u64 start, u64 end,
1743 struct extent_state *state)
7e38326f
CM
1744{
1745 struct io_failure_record *failrec = NULL;
1746 u64 private;
1747 struct extent_map *em;
1748 struct inode *inode = page->mapping->host;
1749 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1750 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1751 struct bio *bio;
1752 int num_copies;
1753 int ret;
1259ab75 1754 int rw;
7e38326f
CM
1755 u64 logical;
1756
1757 ret = get_state_private(failure_tree, start, &private);
1758 if (ret) {
7e38326f
CM
1759 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1760 if (!failrec)
1761 return -ENOMEM;
1762 failrec->start = start;
1763 failrec->len = end - start + 1;
1764 failrec->last_mirror = 0;
d20f7043 1765 failrec->bio_flags = 0;
7e38326f 1766
890871be 1767 read_lock(&em_tree->lock);
3b951516
CM
1768 em = lookup_extent_mapping(em_tree, start, failrec->len);
1769 if (em->start > start || em->start + em->len < start) {
1770 free_extent_map(em);
1771 em = NULL;
1772 }
890871be 1773 read_unlock(&em_tree->lock);
7e38326f
CM
1774
1775 if (!em || IS_ERR(em)) {
1776 kfree(failrec);
1777 return -EIO;
1778 }
1779 logical = start - em->start;
1780 logical = em->block_start + logical;
d20f7043
CM
1781 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1782 logical = em->block_start;
1783 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1784 }
7e38326f
CM
1785 failrec->logical = logical;
1786 free_extent_map(em);
1787 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1788 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1789 set_state_private(failure_tree, start,
1790 (u64)(unsigned long)failrec);
7e38326f 1791 } else {
587f7704 1792 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1793 }
1794 num_copies = btrfs_num_copies(
1795 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1796 failrec->logical, failrec->len);
1797 failrec->last_mirror++;
1798 if (!state) {
cad321ad 1799 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1800 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1801 failrec->start,
1802 EXTENT_LOCKED);
1803 if (state && state->start != failrec->start)
1804 state = NULL;
cad321ad 1805 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1806 }
1807 if (!state || failrec->last_mirror > num_copies) {
1808 set_state_private(failure_tree, failrec->start, 0);
1809 clear_extent_bits(failure_tree, failrec->start,
1810 failrec->start + failrec->len - 1,
1811 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1812 kfree(failrec);
1813 return -EIO;
1814 }
1815 bio = bio_alloc(GFP_NOFS, 1);
1816 bio->bi_private = state;
1817 bio->bi_end_io = failed_bio->bi_end_io;
1818 bio->bi_sector = failrec->logical >> 9;
1819 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1820 bio->bi_size = 0;
d20f7043 1821
7e38326f 1822 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1823 if (failed_bio->bi_rw & (1 << BIO_RW))
1824 rw = WRITE;
1825 else
1826 rw = READ;
1827
1828 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1829 failrec->last_mirror,
d20f7043 1830 failrec->bio_flags);
1259ab75
CM
1831 return 0;
1832}
1833
d352ac68
CM
1834/*
1835 * each time an IO finishes, we do a fast check in the IO failure tree
1836 * to see if we need to process or clean up an io_failure_record
1837 */
b2950863 1838static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1839{
1840 u64 private;
1841 u64 private_failure;
1842 struct io_failure_record *failure;
1843 int ret;
1844
1845 private = 0;
1846 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1847 (u64)-1, 1, EXTENT_DIRTY)) {
1848 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1849 start, &private_failure);
1850 if (ret == 0) {
1851 failure = (struct io_failure_record *)(unsigned long)
1852 private_failure;
1853 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1854 failure->start, 0);
1855 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1856 failure->start,
1857 failure->start + failure->len - 1,
1858 EXTENT_DIRTY | EXTENT_LOCKED,
1859 GFP_NOFS);
1860 kfree(failure);
1861 }
1862 }
7e38326f
CM
1863 return 0;
1864}
1865
d352ac68
CM
1866/*
1867 * when reads are done, we need to check csums to verify the data is correct
1868 * if there's a match, we allow the bio to finish. If not, we go through
1869 * the io_failure_record routines to find good copies
1870 */
b2950863 1871static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1872 struct extent_state *state)
07157aac 1873{
35ebb934 1874 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1875 struct inode *inode = page->mapping->host;
d1310b2e 1876 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1877 char *kaddr;
aadfeb6e 1878 u64 private = ~(u32)0;
07157aac 1879 int ret;
ff79f819
CM
1880 struct btrfs_root *root = BTRFS_I(inode)->root;
1881 u32 csum = ~(u32)0;
d1310b2e 1882
d20f7043
CM
1883 if (PageChecked(page)) {
1884 ClearPageChecked(page);
1885 goto good;
1886 }
6cbff00f
CH
1887
1888 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1889 return 0;
1890
1891 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1892 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1893 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1894 GFP_NOFS);
b6cda9bc 1895 return 0;
17d217fe 1896 }
d20f7043 1897
c2e639f0 1898 if (state && state->start == start) {
70dec807
CM
1899 private = state->private;
1900 ret = 0;
1901 } else {
1902 ret = get_state_private(io_tree, start, &private);
1903 }
9ab86c8e 1904 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1905 if (ret)
07157aac 1906 goto zeroit;
d397712b 1907
ff79f819
CM
1908 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1909 btrfs_csum_final(csum, (char *)&csum);
d397712b 1910 if (csum != private)
07157aac 1911 goto zeroit;
d397712b 1912
9ab86c8e 1913 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1914good:
7e38326f
CM
1915 /* if the io failure tree for this inode is non-empty,
1916 * check to see if we've recovered from a failed IO
1917 */
1259ab75 1918 btrfs_clean_io_failures(inode, start);
07157aac
CM
1919 return 0;
1920
1921zeroit:
193f284d
CM
1922 if (printk_ratelimit()) {
1923 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1924 "private %llu\n", page->mapping->host->i_ino,
1925 (unsigned long long)start, csum,
1926 (unsigned long long)private);
1927 }
db94535d
CM
1928 memset(kaddr + offset, 1, end - start + 1);
1929 flush_dcache_page(page);
9ab86c8e 1930 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1931 if (private == 0)
1932 return 0;
7e38326f 1933 return -EIO;
07157aac 1934}
b888db2b 1935
24bbcf04
YZ
1936struct delayed_iput {
1937 struct list_head list;
1938 struct inode *inode;
1939};
1940
1941void btrfs_add_delayed_iput(struct inode *inode)
1942{
1943 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1944 struct delayed_iput *delayed;
1945
1946 if (atomic_add_unless(&inode->i_count, -1, 1))
1947 return;
1948
1949 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1950 delayed->inode = inode;
1951
1952 spin_lock(&fs_info->delayed_iput_lock);
1953 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1954 spin_unlock(&fs_info->delayed_iput_lock);
1955}
1956
1957void btrfs_run_delayed_iputs(struct btrfs_root *root)
1958{
1959 LIST_HEAD(list);
1960 struct btrfs_fs_info *fs_info = root->fs_info;
1961 struct delayed_iput *delayed;
1962 int empty;
1963
1964 spin_lock(&fs_info->delayed_iput_lock);
1965 empty = list_empty(&fs_info->delayed_iputs);
1966 spin_unlock(&fs_info->delayed_iput_lock);
1967 if (empty)
1968 return;
1969
1970 down_read(&root->fs_info->cleanup_work_sem);
1971 spin_lock(&fs_info->delayed_iput_lock);
1972 list_splice_init(&fs_info->delayed_iputs, &list);
1973 spin_unlock(&fs_info->delayed_iput_lock);
1974
1975 while (!list_empty(&list)) {
1976 delayed = list_entry(list.next, struct delayed_iput, list);
1977 list_del(&delayed->list);
1978 iput(delayed->inode);
1979 kfree(delayed);
1980 }
1981 up_read(&root->fs_info->cleanup_work_sem);
1982}
1983
7b128766
JB
1984/*
1985 * This creates an orphan entry for the given inode in case something goes
1986 * wrong in the middle of an unlink/truncate.
1987 */
1988int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1989{
1990 struct btrfs_root *root = BTRFS_I(inode)->root;
1991 int ret = 0;
1992
bcc63abb 1993 spin_lock(&root->list_lock);
7b128766
JB
1994
1995 /* already on the orphan list, we're good */
1996 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1997 spin_unlock(&root->list_lock);
7b128766
JB
1998 return 0;
1999 }
2000
2001 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2002
bcc63abb 2003 spin_unlock(&root->list_lock);
7b128766
JB
2004
2005 /*
2006 * insert an orphan item to track this unlinked/truncated file
2007 */
2008 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2009
2010 return ret;
2011}
2012
2013/*
2014 * We have done the truncate/delete so we can go ahead and remove the orphan
2015 * item for this particular inode.
2016 */
2017int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2018{
2019 struct btrfs_root *root = BTRFS_I(inode)->root;
2020 int ret = 0;
2021
bcc63abb 2022 spin_lock(&root->list_lock);
7b128766
JB
2023
2024 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2025 spin_unlock(&root->list_lock);
7b128766
JB
2026 return 0;
2027 }
2028
2029 list_del_init(&BTRFS_I(inode)->i_orphan);
2030 if (!trans) {
bcc63abb 2031 spin_unlock(&root->list_lock);
7b128766
JB
2032 return 0;
2033 }
2034
bcc63abb 2035 spin_unlock(&root->list_lock);
7b128766
JB
2036
2037 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2038
2039 return ret;
2040}
2041
2042/*
2043 * this cleans up any orphans that may be left on the list from the last use
2044 * of this root.
2045 */
2046void btrfs_orphan_cleanup(struct btrfs_root *root)
2047{
2048 struct btrfs_path *path;
2049 struct extent_buffer *leaf;
2050 struct btrfs_item *item;
2051 struct btrfs_key key, found_key;
2052 struct btrfs_trans_handle *trans;
2053 struct inode *inode;
2054 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2055
c71bf099 2056 if (!xchg(&root->clean_orphans, 0))
7b128766 2057 return;
c71bf099
YZ
2058
2059 path = btrfs_alloc_path();
2060 BUG_ON(!path);
7b128766
JB
2061 path->reada = -1;
2062
2063 key.objectid = BTRFS_ORPHAN_OBJECTID;
2064 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2065 key.offset = (u64)-1;
2066
7b128766
JB
2067 while (1) {
2068 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2069 if (ret < 0) {
2070 printk(KERN_ERR "Error searching slot for orphan: %d"
2071 "\n", ret);
2072 break;
2073 }
2074
2075 /*
2076 * if ret == 0 means we found what we were searching for, which
2077 * is weird, but possible, so only screw with path if we didnt
2078 * find the key and see if we have stuff that matches
2079 */
2080 if (ret > 0) {
2081 if (path->slots[0] == 0)
2082 break;
2083 path->slots[0]--;
2084 }
2085
2086 /* pull out the item */
2087 leaf = path->nodes[0];
2088 item = btrfs_item_nr(leaf, path->slots[0]);
2089 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2090
2091 /* make sure the item matches what we want */
2092 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2093 break;
2094 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2095 break;
2096
2097 /* release the path since we're done with it */
2098 btrfs_release_path(root, path);
2099
2100 /*
2101 * this is where we are basically btrfs_lookup, without the
2102 * crossing root thing. we store the inode number in the
2103 * offset of the orphan item.
2104 */
5d4f98a2
YZ
2105 found_key.objectid = found_key.offset;
2106 found_key.type = BTRFS_INODE_ITEM_KEY;
2107 found_key.offset = 0;
73f73415 2108 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
5d4f98a2 2109 if (IS_ERR(inode))
7b128766
JB
2110 break;
2111
7b128766
JB
2112 /*
2113 * add this inode to the orphan list so btrfs_orphan_del does
2114 * the proper thing when we hit it
2115 */
bcc63abb 2116 spin_lock(&root->list_lock);
7b128766 2117 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 2118 spin_unlock(&root->list_lock);
7b128766
JB
2119
2120 /*
2121 * if this is a bad inode, means we actually succeeded in
2122 * removing the inode, but not the orphan record, which means
2123 * we need to manually delete the orphan since iput will just
2124 * do a destroy_inode
2125 */
2126 if (is_bad_inode(inode)) {
a22285a6 2127 trans = btrfs_start_transaction(root, 0);
7b128766 2128 btrfs_orphan_del(trans, inode);
5b21f2ed 2129 btrfs_end_transaction(trans, root);
7b128766
JB
2130 iput(inode);
2131 continue;
2132 }
2133
2134 /* if we have links, this was a truncate, lets do that */
2135 if (inode->i_nlink) {
2136 nr_truncate++;
2137 btrfs_truncate(inode);
2138 } else {
2139 nr_unlink++;
2140 }
2141
2142 /* this will do delete_inode and everything for us */
2143 iput(inode);
2144 }
2145
2146 if (nr_unlink)
2147 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2148 if (nr_truncate)
2149 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2150
2151 btrfs_free_path(path);
7b128766
JB
2152}
2153
46a53cca
CM
2154/*
2155 * very simple check to peek ahead in the leaf looking for xattrs. If we
2156 * don't find any xattrs, we know there can't be any acls.
2157 *
2158 * slot is the slot the inode is in, objectid is the objectid of the inode
2159 */
2160static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2161 int slot, u64 objectid)
2162{
2163 u32 nritems = btrfs_header_nritems(leaf);
2164 struct btrfs_key found_key;
2165 int scanned = 0;
2166
2167 slot++;
2168 while (slot < nritems) {
2169 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2170
2171 /* we found a different objectid, there must not be acls */
2172 if (found_key.objectid != objectid)
2173 return 0;
2174
2175 /* we found an xattr, assume we've got an acl */
2176 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2177 return 1;
2178
2179 /*
2180 * we found a key greater than an xattr key, there can't
2181 * be any acls later on
2182 */
2183 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2184 return 0;
2185
2186 slot++;
2187 scanned++;
2188
2189 /*
2190 * it goes inode, inode backrefs, xattrs, extents,
2191 * so if there are a ton of hard links to an inode there can
2192 * be a lot of backrefs. Don't waste time searching too hard,
2193 * this is just an optimization
2194 */
2195 if (scanned >= 8)
2196 break;
2197 }
2198 /* we hit the end of the leaf before we found an xattr or
2199 * something larger than an xattr. We have to assume the inode
2200 * has acls
2201 */
2202 return 1;
2203}
2204
d352ac68
CM
2205/*
2206 * read an inode from the btree into the in-memory inode
2207 */
5d4f98a2 2208static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2209{
2210 struct btrfs_path *path;
5f39d397 2211 struct extent_buffer *leaf;
39279cc3 2212 struct btrfs_inode_item *inode_item;
0b86a832 2213 struct btrfs_timespec *tspec;
39279cc3
CM
2214 struct btrfs_root *root = BTRFS_I(inode)->root;
2215 struct btrfs_key location;
46a53cca 2216 int maybe_acls;
39279cc3 2217 u64 alloc_group_block;
618e21d5 2218 u32 rdev;
39279cc3
CM
2219 int ret;
2220
2221 path = btrfs_alloc_path();
2222 BUG_ON(!path);
39279cc3 2223 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2224
39279cc3 2225 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2226 if (ret)
39279cc3 2227 goto make_bad;
39279cc3 2228
5f39d397
CM
2229 leaf = path->nodes[0];
2230 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2231 struct btrfs_inode_item);
2232
2233 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2234 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2235 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2236 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2237 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2238
2239 tspec = btrfs_inode_atime(inode_item);
2240 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2241 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2242
2243 tspec = btrfs_inode_mtime(inode_item);
2244 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2245 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2246
2247 tspec = btrfs_inode_ctime(inode_item);
2248 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2249 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2250
a76a3cd4 2251 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2252 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2253 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2254 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2255 inode->i_rdev = 0;
5f39d397
CM
2256 rdev = btrfs_inode_rdev(leaf, inode_item);
2257
aec7477b 2258 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2259 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2260
5f39d397 2261 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2262
46a53cca
CM
2263 /*
2264 * try to precache a NULL acl entry for files that don't have
2265 * any xattrs or acls
2266 */
2267 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2268 if (!maybe_acls)
2269 cache_no_acl(inode);
46a53cca 2270
d2fb3437
YZ
2271 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2272 alloc_group_block, 0);
39279cc3
CM
2273 btrfs_free_path(path);
2274 inode_item = NULL;
2275
39279cc3 2276 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2277 case S_IFREG:
2278 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2279 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2280 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2281 inode->i_fop = &btrfs_file_operations;
2282 inode->i_op = &btrfs_file_inode_operations;
2283 break;
2284 case S_IFDIR:
2285 inode->i_fop = &btrfs_dir_file_operations;
2286 if (root == root->fs_info->tree_root)
2287 inode->i_op = &btrfs_dir_ro_inode_operations;
2288 else
2289 inode->i_op = &btrfs_dir_inode_operations;
2290 break;
2291 case S_IFLNK:
2292 inode->i_op = &btrfs_symlink_inode_operations;
2293 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2294 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2295 break;
618e21d5 2296 default:
0279b4cd 2297 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2298 init_special_inode(inode, inode->i_mode, rdev);
2299 break;
39279cc3 2300 }
6cbff00f
CH
2301
2302 btrfs_update_iflags(inode);
39279cc3
CM
2303 return;
2304
2305make_bad:
39279cc3 2306 btrfs_free_path(path);
39279cc3
CM
2307 make_bad_inode(inode);
2308}
2309
d352ac68
CM
2310/*
2311 * given a leaf and an inode, copy the inode fields into the leaf
2312 */
e02119d5
CM
2313static void fill_inode_item(struct btrfs_trans_handle *trans,
2314 struct extent_buffer *leaf,
5f39d397 2315 struct btrfs_inode_item *item,
39279cc3
CM
2316 struct inode *inode)
2317{
5f39d397
CM
2318 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2319 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2320 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2321 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2322 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2323
2324 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2325 inode->i_atime.tv_sec);
2326 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2327 inode->i_atime.tv_nsec);
2328
2329 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2330 inode->i_mtime.tv_sec);
2331 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2332 inode->i_mtime.tv_nsec);
2333
2334 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2335 inode->i_ctime.tv_sec);
2336 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2337 inode->i_ctime.tv_nsec);
2338
a76a3cd4 2339 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2340 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2341 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2342 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2343 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2344 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2345 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2346}
2347
d352ac68
CM
2348/*
2349 * copy everything in the in-memory inode into the btree.
2350 */
d397712b
CM
2351noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2352 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2353{
2354 struct btrfs_inode_item *inode_item;
2355 struct btrfs_path *path;
5f39d397 2356 struct extent_buffer *leaf;
39279cc3
CM
2357 int ret;
2358
2359 path = btrfs_alloc_path();
2360 BUG_ON(!path);
b9473439 2361 path->leave_spinning = 1;
39279cc3
CM
2362 ret = btrfs_lookup_inode(trans, root, path,
2363 &BTRFS_I(inode)->location, 1);
2364 if (ret) {
2365 if (ret > 0)
2366 ret = -ENOENT;
2367 goto failed;
2368 }
2369
b4ce94de 2370 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2371 leaf = path->nodes[0];
2372 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2373 struct btrfs_inode_item);
2374
e02119d5 2375 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2376 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2377 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2378 ret = 0;
2379failed:
39279cc3
CM
2380 btrfs_free_path(path);
2381 return ret;
2382}
2383
2384
d352ac68
CM
2385/*
2386 * unlink helper that gets used here in inode.c and in the tree logging
2387 * recovery code. It remove a link in a directory with a given name, and
2388 * also drops the back refs in the inode to the directory
2389 */
e02119d5
CM
2390int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2391 struct btrfs_root *root,
2392 struct inode *dir, struct inode *inode,
2393 const char *name, int name_len)
39279cc3
CM
2394{
2395 struct btrfs_path *path;
39279cc3 2396 int ret = 0;
5f39d397 2397 struct extent_buffer *leaf;
39279cc3 2398 struct btrfs_dir_item *di;
5f39d397 2399 struct btrfs_key key;
aec7477b 2400 u64 index;
39279cc3
CM
2401
2402 path = btrfs_alloc_path();
54aa1f4d
CM
2403 if (!path) {
2404 ret = -ENOMEM;
2405 goto err;
2406 }
2407
b9473439 2408 path->leave_spinning = 1;
39279cc3
CM
2409 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2410 name, name_len, -1);
2411 if (IS_ERR(di)) {
2412 ret = PTR_ERR(di);
2413 goto err;
2414 }
2415 if (!di) {
2416 ret = -ENOENT;
2417 goto err;
2418 }
5f39d397
CM
2419 leaf = path->nodes[0];
2420 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2421 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2422 if (ret)
2423 goto err;
39279cc3
CM
2424 btrfs_release_path(root, path);
2425
aec7477b 2426 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2427 inode->i_ino,
2428 dir->i_ino, &index);
aec7477b 2429 if (ret) {
d397712b 2430 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2431 "inode %lu parent %lu\n", name_len, name,
e02119d5 2432 inode->i_ino, dir->i_ino);
aec7477b
JB
2433 goto err;
2434 }
2435
39279cc3 2436 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2437 index, name, name_len, -1);
39279cc3
CM
2438 if (IS_ERR(di)) {
2439 ret = PTR_ERR(di);
2440 goto err;
2441 }
2442 if (!di) {
2443 ret = -ENOENT;
2444 goto err;
2445 }
2446 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2447 btrfs_release_path(root, path);
39279cc3 2448
e02119d5
CM
2449 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2450 inode, dir->i_ino);
49eb7e46 2451 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2452
2453 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2454 dir, index);
2455 BUG_ON(ret);
39279cc3
CM
2456err:
2457 btrfs_free_path(path);
e02119d5
CM
2458 if (ret)
2459 goto out;
2460
2461 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2462 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2463 btrfs_update_inode(trans, root, dir);
2464 btrfs_drop_nlink(inode);
2465 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2466out:
39279cc3
CM
2467 return ret;
2468}
2469
a22285a6
YZ
2470/* helper to check if there is any shared block in the path */
2471static int check_path_shared(struct btrfs_root *root,
2472 struct btrfs_path *path)
2473{
2474 struct extent_buffer *eb;
2475 int level;
2476 int ret;
2477 u64 refs;
2478
2479 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2480 if (!path->nodes[level])
2481 break;
2482 eb = path->nodes[level];
2483 if (!btrfs_block_can_be_shared(root, eb))
2484 continue;
2485 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2486 &refs, NULL);
2487 if (refs > 1)
2488 return 1;
2489 }
2490 return 0;
2491}
2492
2493/*
2494 * helper to start transaction for unlink and rmdir.
2495 *
2496 * unlink and rmdir are special in btrfs, they do not always free space.
2497 * so in enospc case, we should make sure they will free space before
2498 * allowing them to use the global metadata reservation.
2499 */
2500static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2501 struct dentry *dentry)
39279cc3 2502{
39279cc3 2503 struct btrfs_trans_handle *trans;
a22285a6
YZ
2504 struct btrfs_root *root = BTRFS_I(dir)->root;
2505 struct btrfs_path *path;
2506 struct btrfs_inode_ref *ref;
2507 struct btrfs_dir_item *di;
7b128766 2508 struct inode *inode = dentry->d_inode;
a22285a6
YZ
2509 u64 index;
2510 int check_link = 1;
2511 int err = -ENOSPC;
39279cc3
CM
2512 int ret;
2513
a22285a6
YZ
2514 trans = btrfs_start_transaction(root, 10);
2515 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2516 return trans;
1832a6d5 2517
a22285a6
YZ
2518 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2519 return ERR_PTR(-ENOSPC);
5df6a9f6 2520
a22285a6
YZ
2521 /* check if there is someone else holds reference */
2522 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2523 return ERR_PTR(-ENOSPC);
2524
2525 if (atomic_read(&inode->i_count) > 2)
2526 return ERR_PTR(-ENOSPC);
2527
2528 if (xchg(&root->fs_info->enospc_unlink, 1))
2529 return ERR_PTR(-ENOSPC);
2530
2531 path = btrfs_alloc_path();
2532 if (!path) {
2533 root->fs_info->enospc_unlink = 0;
2534 return ERR_PTR(-ENOMEM);
2535 }
2536
2537 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2538 if (IS_ERR(trans)) {
a22285a6
YZ
2539 btrfs_free_path(path);
2540 root->fs_info->enospc_unlink = 0;
2541 return trans;
2542 }
2543
2544 path->skip_locking = 1;
2545 path->search_commit_root = 1;
2546
2547 ret = btrfs_lookup_inode(trans, root, path,
2548 &BTRFS_I(dir)->location, 0);
2549 if (ret < 0) {
2550 err = ret;
2551 goto out;
2552 }
2553 if (ret == 0) {
2554 if (check_path_shared(root, path))
2555 goto out;
2556 } else {
2557 check_link = 0;
5df6a9f6 2558 }
a22285a6
YZ
2559 btrfs_release_path(root, path);
2560
2561 ret = btrfs_lookup_inode(trans, root, path,
2562 &BTRFS_I(inode)->location, 0);
2563 if (ret < 0) {
2564 err = ret;
2565 goto out;
2566 }
2567 if (ret == 0) {
2568 if (check_path_shared(root, path))
2569 goto out;
2570 } else {
2571 check_link = 0;
2572 }
2573 btrfs_release_path(root, path);
2574
2575 if (ret == 0 && S_ISREG(inode->i_mode)) {
2576 ret = btrfs_lookup_file_extent(trans, root, path,
2577 inode->i_ino, (u64)-1, 0);
2578 if (ret < 0) {
2579 err = ret;
2580 goto out;
2581 }
2582 BUG_ON(ret == 0);
2583 if (check_path_shared(root, path))
2584 goto out;
2585 btrfs_release_path(root, path);
2586 }
2587
2588 if (!check_link) {
2589 err = 0;
2590 goto out;
2591 }
2592
2593 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2594 dentry->d_name.name, dentry->d_name.len, 0);
2595 if (IS_ERR(di)) {
2596 err = PTR_ERR(di);
2597 goto out;
2598 }
2599 if (di) {
2600 if (check_path_shared(root, path))
2601 goto out;
2602 } else {
2603 err = 0;
2604 goto out;
2605 }
2606 btrfs_release_path(root, path);
2607
2608 ref = btrfs_lookup_inode_ref(trans, root, path,
2609 dentry->d_name.name, dentry->d_name.len,
2610 inode->i_ino, dir->i_ino, 0);
2611 if (IS_ERR(ref)) {
2612 err = PTR_ERR(ref);
2613 goto out;
2614 }
2615 BUG_ON(!ref);
2616 if (check_path_shared(root, path))
2617 goto out;
2618 index = btrfs_inode_ref_index(path->nodes[0], ref);
2619 btrfs_release_path(root, path);
2620
2621 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2622 dentry->d_name.name, dentry->d_name.len, 0);
2623 if (IS_ERR(di)) {
2624 err = PTR_ERR(di);
2625 goto out;
2626 }
2627 BUG_ON(ret == -ENOENT);
2628 if (check_path_shared(root, path))
2629 goto out;
2630
2631 err = 0;
2632out:
2633 btrfs_free_path(path);
2634 if (err) {
2635 btrfs_end_transaction(trans, root);
2636 root->fs_info->enospc_unlink = 0;
2637 return ERR_PTR(err);
2638 }
2639
2640 trans->block_rsv = &root->fs_info->global_block_rsv;
2641 return trans;
2642}
2643
2644static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2645 struct btrfs_root *root)
2646{
2647 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2648 BUG_ON(!root->fs_info->enospc_unlink);
2649 root->fs_info->enospc_unlink = 0;
2650 }
2651 btrfs_end_transaction_throttle(trans, root);
2652}
2653
2654static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2655{
2656 struct btrfs_root *root = BTRFS_I(dir)->root;
2657 struct btrfs_trans_handle *trans;
2658 struct inode *inode = dentry->d_inode;
2659 int ret;
2660 unsigned long nr = 0;
2661
2662 trans = __unlink_start_trans(dir, dentry);
2663 if (IS_ERR(trans))
2664 return PTR_ERR(trans);
5f39d397 2665
39279cc3 2666 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2667
2668 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2669
e02119d5
CM
2670 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2671 dentry->d_name.name, dentry->d_name.len);
a22285a6 2672 BUG_ON(ret);
7b128766 2673
a22285a6 2674 if (inode->i_nlink == 0) {
7b128766 2675 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2676 BUG_ON(ret);
2677 }
7b128766 2678
d3c2fdcf 2679 nr = trans->blocks_used;
a22285a6 2680 __unlink_end_trans(trans, root);
d3c2fdcf 2681 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2682 return ret;
2683}
2684
4df27c4d
YZ
2685int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2686 struct btrfs_root *root,
2687 struct inode *dir, u64 objectid,
2688 const char *name, int name_len)
2689{
2690 struct btrfs_path *path;
2691 struct extent_buffer *leaf;
2692 struct btrfs_dir_item *di;
2693 struct btrfs_key key;
2694 u64 index;
2695 int ret;
2696
2697 path = btrfs_alloc_path();
2698 if (!path)
2699 return -ENOMEM;
2700
2701 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2702 name, name_len, -1);
2703 BUG_ON(!di || IS_ERR(di));
2704
2705 leaf = path->nodes[0];
2706 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2707 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2708 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2709 BUG_ON(ret);
2710 btrfs_release_path(root, path);
2711
2712 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2713 objectid, root->root_key.objectid,
2714 dir->i_ino, &index, name, name_len);
2715 if (ret < 0) {
2716 BUG_ON(ret != -ENOENT);
2717 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2718 name, name_len);
2719 BUG_ON(!di || IS_ERR(di));
2720
2721 leaf = path->nodes[0];
2722 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2723 btrfs_release_path(root, path);
2724 index = key.offset;
2725 }
2726
2727 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2728 index, name, name_len, -1);
2729 BUG_ON(!di || IS_ERR(di));
2730
2731 leaf = path->nodes[0];
2732 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2733 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2734 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2735 BUG_ON(ret);
2736 btrfs_release_path(root, path);
2737
2738 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2739 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2740 ret = btrfs_update_inode(trans, root, dir);
2741 BUG_ON(ret);
2742 dir->i_sb->s_dirt = 1;
2743
2744 btrfs_free_path(path);
2745 return 0;
2746}
2747
39279cc3
CM
2748static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2749{
2750 struct inode *inode = dentry->d_inode;
1832a6d5 2751 int err = 0;
39279cc3 2752 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2753 struct btrfs_trans_handle *trans;
1832a6d5 2754 unsigned long nr = 0;
39279cc3 2755
3394e160 2756 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2757 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2758 return -ENOTEMPTY;
2759
a22285a6
YZ
2760 trans = __unlink_start_trans(dir, dentry);
2761 if (IS_ERR(trans))
5df6a9f6 2762 return PTR_ERR(trans);
5df6a9f6 2763
39279cc3 2764 btrfs_set_trans_block_group(trans, dir);
39279cc3 2765
4df27c4d
YZ
2766 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2767 err = btrfs_unlink_subvol(trans, root, dir,
2768 BTRFS_I(inode)->location.objectid,
2769 dentry->d_name.name,
2770 dentry->d_name.len);
2771 goto out;
2772 }
2773
7b128766
JB
2774 err = btrfs_orphan_add(trans, inode);
2775 if (err)
4df27c4d 2776 goto out;
7b128766 2777
39279cc3 2778 /* now the directory is empty */
e02119d5
CM
2779 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2780 dentry->d_name.name, dentry->d_name.len);
d397712b 2781 if (!err)
dbe674a9 2782 btrfs_i_size_write(inode, 0);
4df27c4d 2783out:
d3c2fdcf 2784 nr = trans->blocks_used;
a22285a6 2785 __unlink_end_trans(trans, root);
d3c2fdcf 2786 btrfs_btree_balance_dirty(root, nr);
3954401f 2787
39279cc3
CM
2788 return err;
2789}
2790
d20f7043 2791#if 0
323ac95b
CM
2792/*
2793 * when truncating bytes in a file, it is possible to avoid reading
2794 * the leaves that contain only checksum items. This can be the
2795 * majority of the IO required to delete a large file, but it must
2796 * be done carefully.
2797 *
2798 * The keys in the level just above the leaves are checked to make sure
2799 * the lowest key in a given leaf is a csum key, and starts at an offset
2800 * after the new size.
2801 *
2802 * Then the key for the next leaf is checked to make sure it also has
2803 * a checksum item for the same file. If it does, we know our target leaf
2804 * contains only checksum items, and it can be safely freed without reading
2805 * it.
2806 *
2807 * This is just an optimization targeted at large files. It may do
2808 * nothing. It will return 0 unless things went badly.
2809 */
2810static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2811 struct btrfs_root *root,
2812 struct btrfs_path *path,
2813 struct inode *inode, u64 new_size)
2814{
2815 struct btrfs_key key;
2816 int ret;
2817 int nritems;
2818 struct btrfs_key found_key;
2819 struct btrfs_key other_key;
5b84e8d6
YZ
2820 struct btrfs_leaf_ref *ref;
2821 u64 leaf_gen;
2822 u64 leaf_start;
323ac95b
CM
2823
2824 path->lowest_level = 1;
2825 key.objectid = inode->i_ino;
2826 key.type = BTRFS_CSUM_ITEM_KEY;
2827 key.offset = new_size;
2828again:
2829 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2830 if (ret < 0)
2831 goto out;
2832
2833 if (path->nodes[1] == NULL) {
2834 ret = 0;
2835 goto out;
2836 }
2837 ret = 0;
2838 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2839 nritems = btrfs_header_nritems(path->nodes[1]);
2840
2841 if (!nritems)
2842 goto out;
2843
2844 if (path->slots[1] >= nritems)
2845 goto next_node;
2846
2847 /* did we find a key greater than anything we want to delete? */
2848 if (found_key.objectid > inode->i_ino ||
2849 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2850 goto out;
2851
2852 /* we check the next key in the node to make sure the leave contains
2853 * only checksum items. This comparison doesn't work if our
2854 * leaf is the last one in the node
2855 */
2856 if (path->slots[1] + 1 >= nritems) {
2857next_node:
2858 /* search forward from the last key in the node, this
2859 * will bring us into the next node in the tree
2860 */
2861 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2862
2863 /* unlikely, but we inc below, so check to be safe */
2864 if (found_key.offset == (u64)-1)
2865 goto out;
2866
2867 /* search_forward needs a path with locks held, do the
2868 * search again for the original key. It is possible
2869 * this will race with a balance and return a path that
2870 * we could modify, but this drop is just an optimization
2871 * and is allowed to miss some leaves.
2872 */
2873 btrfs_release_path(root, path);
2874 found_key.offset++;
2875
2876 /* setup a max key for search_forward */
2877 other_key.offset = (u64)-1;
2878 other_key.type = key.type;
2879 other_key.objectid = key.objectid;
2880
2881 path->keep_locks = 1;
2882 ret = btrfs_search_forward(root, &found_key, &other_key,
2883 path, 0, 0);
2884 path->keep_locks = 0;
2885 if (ret || found_key.objectid != key.objectid ||
2886 found_key.type != key.type) {
2887 ret = 0;
2888 goto out;
2889 }
2890
2891 key.offset = found_key.offset;
2892 btrfs_release_path(root, path);
2893 cond_resched();
2894 goto again;
2895 }
2896
2897 /* we know there's one more slot after us in the tree,
2898 * read that key so we can verify it is also a checksum item
2899 */
2900 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2901
2902 if (found_key.objectid < inode->i_ino)
2903 goto next_key;
2904
2905 if (found_key.type != key.type || found_key.offset < new_size)
2906 goto next_key;
2907
2908 /*
2909 * if the key for the next leaf isn't a csum key from this objectid,
2910 * we can't be sure there aren't good items inside this leaf.
2911 * Bail out
2912 */
2913 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2914 goto out;
2915
5b84e8d6
YZ
2916 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2917 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2918 /*
2919 * it is safe to delete this leaf, it contains only
2920 * csum items from this inode at an offset >= new_size
2921 */
5b84e8d6 2922 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2923 BUG_ON(ret);
2924
5b84e8d6
YZ
2925 if (root->ref_cows && leaf_gen < trans->transid) {
2926 ref = btrfs_alloc_leaf_ref(root, 0);
2927 if (ref) {
2928 ref->root_gen = root->root_key.offset;
2929 ref->bytenr = leaf_start;
2930 ref->owner = 0;
2931 ref->generation = leaf_gen;
2932 ref->nritems = 0;
2933
bd56b302
CM
2934 btrfs_sort_leaf_ref(ref);
2935
5b84e8d6
YZ
2936 ret = btrfs_add_leaf_ref(root, ref, 0);
2937 WARN_ON(ret);
2938 btrfs_free_leaf_ref(root, ref);
2939 } else {
2940 WARN_ON(1);
2941 }
2942 }
323ac95b
CM
2943next_key:
2944 btrfs_release_path(root, path);
2945
2946 if (other_key.objectid == inode->i_ino &&
2947 other_key.type == key.type && other_key.offset > key.offset) {
2948 key.offset = other_key.offset;
2949 cond_resched();
2950 goto again;
2951 }
2952 ret = 0;
2953out:
2954 /* fixup any changes we've made to the path */
2955 path->lowest_level = 0;
2956 path->keep_locks = 0;
2957 btrfs_release_path(root, path);
2958 return ret;
2959}
2960
d20f7043
CM
2961#endif
2962
39279cc3
CM
2963/*
2964 * this can truncate away extent items, csum items and directory items.
2965 * It starts at a high offset and removes keys until it can't find
d352ac68 2966 * any higher than new_size
39279cc3
CM
2967 *
2968 * csum items that cross the new i_size are truncated to the new size
2969 * as well.
7b128766
JB
2970 *
2971 * min_type is the minimum key type to truncate down to. If set to 0, this
2972 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2973 */
8082510e
YZ
2974int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2975 struct btrfs_root *root,
2976 struct inode *inode,
2977 u64 new_size, u32 min_type)
39279cc3 2978{
39279cc3 2979 struct btrfs_path *path;
5f39d397 2980 struct extent_buffer *leaf;
39279cc3 2981 struct btrfs_file_extent_item *fi;
8082510e
YZ
2982 struct btrfs_key key;
2983 struct btrfs_key found_key;
39279cc3 2984 u64 extent_start = 0;
db94535d 2985 u64 extent_num_bytes = 0;
5d4f98a2 2986 u64 extent_offset = 0;
39279cc3 2987 u64 item_end = 0;
8082510e
YZ
2988 u64 mask = root->sectorsize - 1;
2989 u32 found_type = (u8)-1;
39279cc3
CM
2990 int found_extent;
2991 int del_item;
85e21bac
CM
2992 int pending_del_nr = 0;
2993 int pending_del_slot = 0;
179e29e4 2994 int extent_type = -1;
771ed689 2995 int encoding;
8082510e
YZ
2996 int ret;
2997 int err = 0;
2998
2999 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3000
e02119d5 3001 if (root->ref_cows)
5b21f2ed 3002 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3003
39279cc3
CM
3004 path = btrfs_alloc_path();
3005 BUG_ON(!path);
33c17ad5 3006 path->reada = -1;
5f39d397 3007
39279cc3
CM
3008 key.objectid = inode->i_ino;
3009 key.offset = (u64)-1;
5f39d397
CM
3010 key.type = (u8)-1;
3011
85e21bac 3012search_again:
b9473439 3013 path->leave_spinning = 1;
85e21bac 3014 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3015 if (ret < 0) {
3016 err = ret;
3017 goto out;
3018 }
d397712b 3019
85e21bac 3020 if (ret > 0) {
e02119d5
CM
3021 /* there are no items in the tree for us to truncate, we're
3022 * done
3023 */
8082510e
YZ
3024 if (path->slots[0] == 0)
3025 goto out;
85e21bac
CM
3026 path->slots[0]--;
3027 }
3028
d397712b 3029 while (1) {
39279cc3 3030 fi = NULL;
5f39d397
CM
3031 leaf = path->nodes[0];
3032 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3033 found_type = btrfs_key_type(&found_key);
771ed689 3034 encoding = 0;
39279cc3 3035
5f39d397 3036 if (found_key.objectid != inode->i_ino)
39279cc3 3037 break;
5f39d397 3038
85e21bac 3039 if (found_type < min_type)
39279cc3
CM
3040 break;
3041
5f39d397 3042 item_end = found_key.offset;
39279cc3 3043 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3044 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3045 struct btrfs_file_extent_item);
179e29e4 3046 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3047 encoding = btrfs_file_extent_compression(leaf, fi);
3048 encoding |= btrfs_file_extent_encryption(leaf, fi);
3049 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3050
179e29e4 3051 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3052 item_end +=
db94535d 3053 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3054 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3055 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3056 fi);
39279cc3 3057 }
008630c1 3058 item_end--;
39279cc3 3059 }
8082510e
YZ
3060 if (found_type > min_type) {
3061 del_item = 1;
3062 } else {
3063 if (item_end < new_size)
b888db2b 3064 break;
8082510e
YZ
3065 if (found_key.offset >= new_size)
3066 del_item = 1;
3067 else
3068 del_item = 0;
39279cc3 3069 }
39279cc3 3070 found_extent = 0;
39279cc3 3071 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3072 if (found_type != BTRFS_EXTENT_DATA_KEY)
3073 goto delete;
3074
3075 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3076 u64 num_dec;
db94535d 3077 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3078 if (!del_item && !encoding) {
db94535d
CM
3079 u64 orig_num_bytes =
3080 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3081 extent_num_bytes = new_size -
5f39d397 3082 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3083 extent_num_bytes = extent_num_bytes &
3084 ~((u64)root->sectorsize - 1);
db94535d
CM
3085 btrfs_set_file_extent_num_bytes(leaf, fi,
3086 extent_num_bytes);
3087 num_dec = (orig_num_bytes -
9069218d 3088 extent_num_bytes);
e02119d5 3089 if (root->ref_cows && extent_start != 0)
a76a3cd4 3090 inode_sub_bytes(inode, num_dec);
5f39d397 3091 btrfs_mark_buffer_dirty(leaf);
39279cc3 3092 } else {
db94535d
CM
3093 extent_num_bytes =
3094 btrfs_file_extent_disk_num_bytes(leaf,
3095 fi);
5d4f98a2
YZ
3096 extent_offset = found_key.offset -
3097 btrfs_file_extent_offset(leaf, fi);
3098
39279cc3 3099 /* FIXME blocksize != 4096 */
9069218d 3100 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3101 if (extent_start != 0) {
3102 found_extent = 1;
e02119d5 3103 if (root->ref_cows)
a76a3cd4 3104 inode_sub_bytes(inode, num_dec);
e02119d5 3105 }
39279cc3 3106 }
9069218d 3107 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3108 /*
3109 * we can't truncate inline items that have had
3110 * special encodings
3111 */
3112 if (!del_item &&
3113 btrfs_file_extent_compression(leaf, fi) == 0 &&
3114 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3115 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3116 u32 size = new_size - found_key.offset;
3117
3118 if (root->ref_cows) {
a76a3cd4
YZ
3119 inode_sub_bytes(inode, item_end + 1 -
3120 new_size);
e02119d5
CM
3121 }
3122 size =
3123 btrfs_file_extent_calc_inline_size(size);
9069218d 3124 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3125 size, 1);
9069218d 3126 BUG_ON(ret);
e02119d5 3127 } else if (root->ref_cows) {
a76a3cd4
YZ
3128 inode_sub_bytes(inode, item_end + 1 -
3129 found_key.offset);
9069218d 3130 }
39279cc3 3131 }
179e29e4 3132delete:
39279cc3 3133 if (del_item) {
85e21bac
CM
3134 if (!pending_del_nr) {
3135 /* no pending yet, add ourselves */
3136 pending_del_slot = path->slots[0];
3137 pending_del_nr = 1;
3138 } else if (pending_del_nr &&
3139 path->slots[0] + 1 == pending_del_slot) {
3140 /* hop on the pending chunk */
3141 pending_del_nr++;
3142 pending_del_slot = path->slots[0];
3143 } else {
d397712b 3144 BUG();
85e21bac 3145 }
39279cc3
CM
3146 } else {
3147 break;
3148 }
5d4f98a2 3149 if (found_extent && root->ref_cows) {
b9473439 3150 btrfs_set_path_blocking(path);
39279cc3 3151 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3152 extent_num_bytes, 0,
3153 btrfs_header_owner(leaf),
3154 inode->i_ino, extent_offset);
39279cc3
CM
3155 BUG_ON(ret);
3156 }
85e21bac 3157
8082510e
YZ
3158 if (found_type == BTRFS_INODE_ITEM_KEY)
3159 break;
3160
3161 if (path->slots[0] == 0 ||
3162 path->slots[0] != pending_del_slot) {
3163 if (root->ref_cows) {
3164 err = -EAGAIN;
3165 goto out;
3166 }
3167 if (pending_del_nr) {
3168 ret = btrfs_del_items(trans, root, path,
3169 pending_del_slot,
3170 pending_del_nr);
3171 BUG_ON(ret);
3172 pending_del_nr = 0;
3173 }
85e21bac
CM
3174 btrfs_release_path(root, path);
3175 goto search_again;
8082510e
YZ
3176 } else {
3177 path->slots[0]--;
85e21bac 3178 }
39279cc3 3179 }
8082510e 3180out:
85e21bac
CM
3181 if (pending_del_nr) {
3182 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3183 pending_del_nr);
3184 }
39279cc3 3185 btrfs_free_path(path);
8082510e 3186 return err;
39279cc3
CM
3187}
3188
3189/*
3190 * taken from block_truncate_page, but does cow as it zeros out
3191 * any bytes left in the last page in the file.
3192 */
3193static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3194{
3195 struct inode *inode = mapping->host;
db94535d 3196 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3197 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3198 struct btrfs_ordered_extent *ordered;
2ac55d41 3199 struct extent_state *cached_state = NULL;
e6dcd2dc 3200 char *kaddr;
db94535d 3201 u32 blocksize = root->sectorsize;
39279cc3
CM
3202 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3203 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3204 struct page *page;
39279cc3 3205 int ret = 0;
a52d9a80 3206 u64 page_start;
e6dcd2dc 3207 u64 page_end;
39279cc3
CM
3208
3209 if ((offset & (blocksize - 1)) == 0)
3210 goto out;
0ca1f7ce 3211 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3212 if (ret)
3213 goto out;
39279cc3
CM
3214
3215 ret = -ENOMEM;
211c17f5 3216again:
39279cc3 3217 page = grab_cache_page(mapping, index);
5d5e103a 3218 if (!page) {
0ca1f7ce 3219 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3220 goto out;
5d5e103a 3221 }
e6dcd2dc
CM
3222
3223 page_start = page_offset(page);
3224 page_end = page_start + PAGE_CACHE_SIZE - 1;
3225
39279cc3 3226 if (!PageUptodate(page)) {
9ebefb18 3227 ret = btrfs_readpage(NULL, page);
39279cc3 3228 lock_page(page);
211c17f5
CM
3229 if (page->mapping != mapping) {
3230 unlock_page(page);
3231 page_cache_release(page);
3232 goto again;
3233 }
39279cc3
CM
3234 if (!PageUptodate(page)) {
3235 ret = -EIO;
89642229 3236 goto out_unlock;
39279cc3
CM
3237 }
3238 }
211c17f5 3239 wait_on_page_writeback(page);
e6dcd2dc 3240
2ac55d41
JB
3241 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3242 GFP_NOFS);
e6dcd2dc
CM
3243 set_page_extent_mapped(page);
3244
3245 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3246 if (ordered) {
2ac55d41
JB
3247 unlock_extent_cached(io_tree, page_start, page_end,
3248 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3249 unlock_page(page);
3250 page_cache_release(page);
eb84ae03 3251 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3252 btrfs_put_ordered_extent(ordered);
3253 goto again;
3254 }
3255
2ac55d41 3256 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3257 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3258 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3259
2ac55d41
JB
3260 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3261 &cached_state);
9ed74f2d 3262 if (ret) {
2ac55d41
JB
3263 unlock_extent_cached(io_tree, page_start, page_end,
3264 &cached_state, GFP_NOFS);
9ed74f2d
JB
3265 goto out_unlock;
3266 }
3267
e6dcd2dc
CM
3268 ret = 0;
3269 if (offset != PAGE_CACHE_SIZE) {
3270 kaddr = kmap(page);
3271 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3272 flush_dcache_page(page);
3273 kunmap(page);
3274 }
247e743c 3275 ClearPageChecked(page);
e6dcd2dc 3276 set_page_dirty(page);
2ac55d41
JB
3277 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3278 GFP_NOFS);
39279cc3 3279
89642229 3280out_unlock:
5d5e103a 3281 if (ret)
0ca1f7ce 3282 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3283 unlock_page(page);
3284 page_cache_release(page);
3285out:
3286 return ret;
3287}
3288
9036c102 3289int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3290{
9036c102
YZ
3291 struct btrfs_trans_handle *trans;
3292 struct btrfs_root *root = BTRFS_I(inode)->root;
3293 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3294 struct extent_map *em = NULL;
2ac55d41 3295 struct extent_state *cached_state = NULL;
9036c102
YZ
3296 u64 mask = root->sectorsize - 1;
3297 u64 hole_start = (inode->i_size + mask) & ~mask;
3298 u64 block_end = (size + mask) & ~mask;
3299 u64 last_byte;
3300 u64 cur_offset;
3301 u64 hole_size;
9ed74f2d 3302 int err = 0;
39279cc3 3303
9036c102
YZ
3304 if (size <= hole_start)
3305 return 0;
3306
9036c102
YZ
3307 while (1) {
3308 struct btrfs_ordered_extent *ordered;
3309 btrfs_wait_ordered_range(inode, hole_start,
3310 block_end - hole_start);
2ac55d41
JB
3311 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3312 &cached_state, GFP_NOFS);
9036c102
YZ
3313 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3314 if (!ordered)
3315 break;
2ac55d41
JB
3316 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3317 &cached_state, GFP_NOFS);
9036c102
YZ
3318 btrfs_put_ordered_extent(ordered);
3319 }
39279cc3 3320
9036c102
YZ
3321 cur_offset = hole_start;
3322 while (1) {
3323 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3324 block_end - cur_offset, 0);
3325 BUG_ON(IS_ERR(em) || !em);
3326 last_byte = min(extent_map_end(em), block_end);
3327 last_byte = (last_byte + mask) & ~mask;
8082510e 3328 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3329 u64 hint_byte = 0;
9036c102 3330 hole_size = last_byte - cur_offset;
9ed74f2d 3331
a22285a6
YZ
3332 trans = btrfs_start_transaction(root, 2);
3333 if (IS_ERR(trans)) {
3334 err = PTR_ERR(trans);
9ed74f2d 3335 break;
a22285a6 3336 }
8082510e
YZ
3337 btrfs_set_trans_block_group(trans, inode);
3338
3339 err = btrfs_drop_extents(trans, inode, cur_offset,
3340 cur_offset + hole_size,
3341 &hint_byte, 1);
3342 BUG_ON(err);
3343
9036c102
YZ
3344 err = btrfs_insert_file_extent(trans, root,
3345 inode->i_ino, cur_offset, 0,
3346 0, hole_size, 0, hole_size,
3347 0, 0, 0);
8082510e
YZ
3348 BUG_ON(err);
3349
9036c102
YZ
3350 btrfs_drop_extent_cache(inode, hole_start,
3351 last_byte - 1, 0);
8082510e
YZ
3352
3353 btrfs_end_transaction(trans, root);
9036c102
YZ
3354 }
3355 free_extent_map(em);
a22285a6 3356 em = NULL;
9036c102 3357 cur_offset = last_byte;
8082510e 3358 if (cur_offset >= block_end)
9036c102
YZ
3359 break;
3360 }
1832a6d5 3361
a22285a6 3362 free_extent_map(em);
2ac55d41
JB
3363 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3364 GFP_NOFS);
9036c102
YZ
3365 return err;
3366}
39279cc3 3367
8082510e
YZ
3368static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3369{
3370 struct btrfs_root *root = BTRFS_I(inode)->root;
3371 struct btrfs_trans_handle *trans;
3372 unsigned long nr;
3373 int ret;
3374
3375 if (attr->ia_size == inode->i_size)
3376 return 0;
3377
3378 if (attr->ia_size > inode->i_size) {
3379 unsigned long limit;
3380 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3381 if (attr->ia_size > inode->i_sb->s_maxbytes)
3382 return -EFBIG;
3383 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3384 send_sig(SIGXFSZ, current, 0);
3385 return -EFBIG;
3386 }
3387 }
3388
8082510e
YZ
3389 trans = btrfs_start_transaction(root, 1);
3390 btrfs_set_trans_block_group(trans, inode);
3391
3392 ret = btrfs_orphan_add(trans, inode);
3393 BUG_ON(ret);
3394
3395 nr = trans->blocks_used;
3396 btrfs_end_transaction(trans, root);
8082510e
YZ
3397 btrfs_btree_balance_dirty(root, nr);
3398
3399 if (attr->ia_size > inode->i_size) {
3400 ret = btrfs_cont_expand(inode, attr->ia_size);
3401 if (ret) {
3402 btrfs_truncate(inode);
3403 return ret;
3404 }
3405
3406 i_size_write(inode, attr->ia_size);
3407 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3408
3409 trans = btrfs_start_transaction(root, 1);
3410 btrfs_set_trans_block_group(trans, inode);
3411
3412 ret = btrfs_update_inode(trans, root, inode);
3413 BUG_ON(ret);
3414 if (inode->i_nlink > 0) {
3415 ret = btrfs_orphan_del(trans, inode);
3416 BUG_ON(ret);
3417 }
3418 nr = trans->blocks_used;
3419 btrfs_end_transaction(trans, root);
3420 btrfs_btree_balance_dirty(root, nr);
3421 return 0;
3422 }
3423
3424 /*
3425 * We're truncating a file that used to have good data down to
3426 * zero. Make sure it gets into the ordered flush list so that
3427 * any new writes get down to disk quickly.
3428 */
3429 if (attr->ia_size == 0)
3430 BTRFS_I(inode)->ordered_data_close = 1;
3431
3432 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3433 ret = vmtruncate(inode, attr->ia_size);
3434 BUG_ON(ret);
3435
3436 return 0;
3437}
3438
9036c102
YZ
3439static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3440{
3441 struct inode *inode = dentry->d_inode;
3442 int err;
39279cc3 3443
9036c102
YZ
3444 err = inode_change_ok(inode, attr);
3445 if (err)
3446 return err;
2bf5a725 3447
5a3f23d5 3448 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
8082510e
YZ
3449 err = btrfs_setattr_size(inode, attr);
3450 if (err)
3451 return err;
39279cc3 3452 }
8082510e 3453 attr->ia_valid &= ~ATTR_SIZE;
9036c102 3454
8082510e
YZ
3455 if (attr->ia_valid)
3456 err = inode_setattr(inode, attr);
33268eaf
JB
3457
3458 if (!err && ((attr->ia_valid & ATTR_MODE)))
3459 err = btrfs_acl_chmod(inode);
39279cc3
CM
3460 return err;
3461}
61295eb8 3462
39279cc3
CM
3463void btrfs_delete_inode(struct inode *inode)
3464{
3465 struct btrfs_trans_handle *trans;
3466 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3467 unsigned long nr;
39279cc3
CM
3468 int ret;
3469
3470 truncate_inode_pages(&inode->i_data, 0);
3471 if (is_bad_inode(inode)) {
7b128766 3472 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3473 goto no_delete;
3474 }
4a096752 3475 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3476
c71bf099
YZ
3477 if (root->fs_info->log_root_recovering) {
3478 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3479 goto no_delete;
3480 }
3481
76dda93c
YZ
3482 if (inode->i_nlink > 0) {
3483 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3484 goto no_delete;
3485 }
3486
dbe674a9 3487 btrfs_i_size_write(inode, 0);
5f39d397 3488
8082510e
YZ
3489 while (1) {
3490 trans = btrfs_start_transaction(root, 1);
3491 btrfs_set_trans_block_group(trans, inode);
3492 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
7b128766 3493
8082510e
YZ
3494 if (ret != -EAGAIN)
3495 break;
85e21bac 3496
8082510e
YZ
3497 nr = trans->blocks_used;
3498 btrfs_end_transaction(trans, root);
3499 trans = NULL;
3500 btrfs_btree_balance_dirty(root, nr);
3501 }
5f39d397 3502
8082510e
YZ
3503 if (ret == 0) {
3504 ret = btrfs_orphan_del(trans, inode);
3505 BUG_ON(ret);
3506 }
54aa1f4d 3507
d3c2fdcf 3508 nr = trans->blocks_used;
54aa1f4d 3509 btrfs_end_transaction(trans, root);
d3c2fdcf 3510 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3511no_delete:
3512 clear_inode(inode);
8082510e 3513 return;
39279cc3
CM
3514}
3515
3516/*
3517 * this returns the key found in the dir entry in the location pointer.
3518 * If no dir entries were found, location->objectid is 0.
3519 */
3520static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3521 struct btrfs_key *location)
3522{
3523 const char *name = dentry->d_name.name;
3524 int namelen = dentry->d_name.len;
3525 struct btrfs_dir_item *di;
3526 struct btrfs_path *path;
3527 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3528 int ret = 0;
39279cc3
CM
3529
3530 path = btrfs_alloc_path();
3531 BUG_ON(!path);
3954401f 3532
39279cc3
CM
3533 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3534 namelen, 0);
0d9f7f3e
Y
3535 if (IS_ERR(di))
3536 ret = PTR_ERR(di);
d397712b
CM
3537
3538 if (!di || IS_ERR(di))
3954401f 3539 goto out_err;
d397712b 3540
5f39d397 3541 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3542out:
39279cc3
CM
3543 btrfs_free_path(path);
3544 return ret;
3954401f
CM
3545out_err:
3546 location->objectid = 0;
3547 goto out;
39279cc3
CM
3548}
3549
3550/*
3551 * when we hit a tree root in a directory, the btrfs part of the inode
3552 * needs to be changed to reflect the root directory of the tree root. This
3553 * is kind of like crossing a mount point.
3554 */
3555static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3556 struct inode *dir,
3557 struct dentry *dentry,
3558 struct btrfs_key *location,
3559 struct btrfs_root **sub_root)
39279cc3 3560{
4df27c4d
YZ
3561 struct btrfs_path *path;
3562 struct btrfs_root *new_root;
3563 struct btrfs_root_ref *ref;
3564 struct extent_buffer *leaf;
3565 int ret;
3566 int err = 0;
39279cc3 3567
4df27c4d
YZ
3568 path = btrfs_alloc_path();
3569 if (!path) {
3570 err = -ENOMEM;
3571 goto out;
3572 }
39279cc3 3573
4df27c4d
YZ
3574 err = -ENOENT;
3575 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3576 BTRFS_I(dir)->root->root_key.objectid,
3577 location->objectid);
3578 if (ret) {
3579 if (ret < 0)
3580 err = ret;
3581 goto out;
3582 }
39279cc3 3583
4df27c4d
YZ
3584 leaf = path->nodes[0];
3585 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3586 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3587 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3588 goto out;
39279cc3 3589
4df27c4d
YZ
3590 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3591 (unsigned long)(ref + 1),
3592 dentry->d_name.len);
3593 if (ret)
3594 goto out;
3595
3596 btrfs_release_path(root->fs_info->tree_root, path);
3597
3598 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3599 if (IS_ERR(new_root)) {
3600 err = PTR_ERR(new_root);
3601 goto out;
3602 }
3603
3604 if (btrfs_root_refs(&new_root->root_item) == 0) {
3605 err = -ENOENT;
3606 goto out;
3607 }
3608
3609 *sub_root = new_root;
3610 location->objectid = btrfs_root_dirid(&new_root->root_item);
3611 location->type = BTRFS_INODE_ITEM_KEY;
3612 location->offset = 0;
3613 err = 0;
3614out:
3615 btrfs_free_path(path);
3616 return err;
39279cc3
CM
3617}
3618
5d4f98a2
YZ
3619static void inode_tree_add(struct inode *inode)
3620{
3621 struct btrfs_root *root = BTRFS_I(inode)->root;
3622 struct btrfs_inode *entry;
03e860bd
FNP
3623 struct rb_node **p;
3624 struct rb_node *parent;
03e860bd
FNP
3625again:
3626 p = &root->inode_tree.rb_node;
3627 parent = NULL;
5d4f98a2 3628
76dda93c
YZ
3629 if (hlist_unhashed(&inode->i_hash))
3630 return;
3631
5d4f98a2
YZ
3632 spin_lock(&root->inode_lock);
3633 while (*p) {
3634 parent = *p;
3635 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3636
3637 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3638 p = &parent->rb_left;
5d4f98a2 3639 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3640 p = &parent->rb_right;
5d4f98a2
YZ
3641 else {
3642 WARN_ON(!(entry->vfs_inode.i_state &
3643 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3644 rb_erase(parent, &root->inode_tree);
3645 RB_CLEAR_NODE(parent);
3646 spin_unlock(&root->inode_lock);
3647 goto again;
5d4f98a2
YZ
3648 }
3649 }
3650 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3651 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3652 spin_unlock(&root->inode_lock);
3653}
3654
3655static void inode_tree_del(struct inode *inode)
3656{
3657 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3658 int empty = 0;
5d4f98a2 3659
03e860bd 3660 spin_lock(&root->inode_lock);
5d4f98a2 3661 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3662 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3663 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3664 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3665 }
03e860bd 3666 spin_unlock(&root->inode_lock);
76dda93c
YZ
3667
3668 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3669 synchronize_srcu(&root->fs_info->subvol_srcu);
3670 spin_lock(&root->inode_lock);
3671 empty = RB_EMPTY_ROOT(&root->inode_tree);
3672 spin_unlock(&root->inode_lock);
3673 if (empty)
3674 btrfs_add_dead_root(root);
3675 }
3676}
3677
3678int btrfs_invalidate_inodes(struct btrfs_root *root)
3679{
3680 struct rb_node *node;
3681 struct rb_node *prev;
3682 struct btrfs_inode *entry;
3683 struct inode *inode;
3684 u64 objectid = 0;
3685
3686 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3687
3688 spin_lock(&root->inode_lock);
3689again:
3690 node = root->inode_tree.rb_node;
3691 prev = NULL;
3692 while (node) {
3693 prev = node;
3694 entry = rb_entry(node, struct btrfs_inode, rb_node);
3695
3696 if (objectid < entry->vfs_inode.i_ino)
3697 node = node->rb_left;
3698 else if (objectid > entry->vfs_inode.i_ino)
3699 node = node->rb_right;
3700 else
3701 break;
3702 }
3703 if (!node) {
3704 while (prev) {
3705 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3706 if (objectid <= entry->vfs_inode.i_ino) {
3707 node = prev;
3708 break;
3709 }
3710 prev = rb_next(prev);
3711 }
3712 }
3713 while (node) {
3714 entry = rb_entry(node, struct btrfs_inode, rb_node);
3715 objectid = entry->vfs_inode.i_ino + 1;
3716 inode = igrab(&entry->vfs_inode);
3717 if (inode) {
3718 spin_unlock(&root->inode_lock);
3719 if (atomic_read(&inode->i_count) > 1)
3720 d_prune_aliases(inode);
3721 /*
3722 * btrfs_drop_inode will remove it from
3723 * the inode cache when its usage count
3724 * hits zero.
3725 */
3726 iput(inode);
3727 cond_resched();
3728 spin_lock(&root->inode_lock);
3729 goto again;
3730 }
3731
3732 if (cond_resched_lock(&root->inode_lock))
3733 goto again;
3734
3735 node = rb_next(node);
3736 }
3737 spin_unlock(&root->inode_lock);
3738 return 0;
5d4f98a2
YZ
3739}
3740
e02119d5
CM
3741static int btrfs_init_locked_inode(struct inode *inode, void *p)
3742{
3743 struct btrfs_iget_args *args = p;
3744 inode->i_ino = args->ino;
e02119d5 3745 BTRFS_I(inode)->root = args->root;
6a63209f 3746 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3747 return 0;
3748}
3749
3750static int btrfs_find_actor(struct inode *inode, void *opaque)
3751{
3752 struct btrfs_iget_args *args = opaque;
d397712b
CM
3753 return args->ino == inode->i_ino &&
3754 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3755}
3756
5d4f98a2
YZ
3757static struct inode *btrfs_iget_locked(struct super_block *s,
3758 u64 objectid,
3759 struct btrfs_root *root)
39279cc3
CM
3760{
3761 struct inode *inode;
3762 struct btrfs_iget_args args;
3763 args.ino = objectid;
3764 args.root = root;
3765
3766 inode = iget5_locked(s, objectid, btrfs_find_actor,
3767 btrfs_init_locked_inode,
3768 (void *)&args);
3769 return inode;
3770}
3771
1a54ef8c
BR
3772/* Get an inode object given its location and corresponding root.
3773 * Returns in *is_new if the inode was read from disk
3774 */
3775struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3776 struct btrfs_root *root, int *new)
1a54ef8c
BR
3777{
3778 struct inode *inode;
3779
3780 inode = btrfs_iget_locked(s, location->objectid, root);
3781 if (!inode)
5d4f98a2 3782 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3783
3784 if (inode->i_state & I_NEW) {
3785 BTRFS_I(inode)->root = root;
3786 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3787 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3788
3789 inode_tree_add(inode);
1a54ef8c 3790 unlock_new_inode(inode);
73f73415
JB
3791 if (new)
3792 *new = 1;
1a54ef8c
BR
3793 }
3794
3795 return inode;
3796}
3797
4df27c4d
YZ
3798static struct inode *new_simple_dir(struct super_block *s,
3799 struct btrfs_key *key,
3800 struct btrfs_root *root)
3801{
3802 struct inode *inode = new_inode(s);
3803
3804 if (!inode)
3805 return ERR_PTR(-ENOMEM);
3806
4df27c4d
YZ
3807 BTRFS_I(inode)->root = root;
3808 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3809 BTRFS_I(inode)->dummy_inode = 1;
3810
3811 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3812 inode->i_op = &simple_dir_inode_operations;
3813 inode->i_fop = &simple_dir_operations;
3814 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3815 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3816
3817 return inode;
3818}
3819
3de4586c 3820struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3821{
d397712b 3822 struct inode *inode;
4df27c4d 3823 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3824 struct btrfs_root *sub_root = root;
3825 struct btrfs_key location;
76dda93c 3826 int index;
5d4f98a2 3827 int ret;
39279cc3 3828
76dda93c
YZ
3829 dentry->d_op = &btrfs_dentry_operations;
3830
39279cc3
CM
3831 if (dentry->d_name.len > BTRFS_NAME_LEN)
3832 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3833
39279cc3 3834 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3835
39279cc3
CM
3836 if (ret < 0)
3837 return ERR_PTR(ret);
5f39d397 3838
4df27c4d
YZ
3839 if (location.objectid == 0)
3840 return NULL;
3841
3842 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 3843 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
3844 return inode;
3845 }
3846
3847 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3848
76dda93c 3849 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3850 ret = fixup_tree_root_location(root, dir, dentry,
3851 &location, &sub_root);
3852 if (ret < 0) {
3853 if (ret != -ENOENT)
3854 inode = ERR_PTR(ret);
3855 else
3856 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3857 } else {
73f73415 3858 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 3859 }
76dda93c
YZ
3860 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3861
c71bf099
YZ
3862 if (root != sub_root) {
3863 down_read(&root->fs_info->cleanup_work_sem);
3864 if (!(inode->i_sb->s_flags & MS_RDONLY))
3865 btrfs_orphan_cleanup(sub_root);
3866 up_read(&root->fs_info->cleanup_work_sem);
3867 }
3868
3de4586c
CM
3869 return inode;
3870}
3871
76dda93c
YZ
3872static int btrfs_dentry_delete(struct dentry *dentry)
3873{
3874 struct btrfs_root *root;
3875
efefb143
YZ
3876 if (!dentry->d_inode && !IS_ROOT(dentry))
3877 dentry = dentry->d_parent;
76dda93c 3878
efefb143
YZ
3879 if (dentry->d_inode) {
3880 root = BTRFS_I(dentry->d_inode)->root;
3881 if (btrfs_root_refs(&root->root_item) == 0)
3882 return 1;
3883 }
76dda93c
YZ
3884 return 0;
3885}
3886
3de4586c
CM
3887static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3888 struct nameidata *nd)
3889{
3890 struct inode *inode;
3891
3de4586c
CM
3892 inode = btrfs_lookup_dentry(dir, dentry);
3893 if (IS_ERR(inode))
3894 return ERR_CAST(inode);
7b128766 3895
39279cc3
CM
3896 return d_splice_alias(inode, dentry);
3897}
3898
39279cc3
CM
3899static unsigned char btrfs_filetype_table[] = {
3900 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3901};
3902
cbdf5a24
DW
3903static int btrfs_real_readdir(struct file *filp, void *dirent,
3904 filldir_t filldir)
39279cc3 3905{
6da6abae 3906 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3907 struct btrfs_root *root = BTRFS_I(inode)->root;
3908 struct btrfs_item *item;
3909 struct btrfs_dir_item *di;
3910 struct btrfs_key key;
5f39d397 3911 struct btrfs_key found_key;
39279cc3
CM
3912 struct btrfs_path *path;
3913 int ret;
3914 u32 nritems;
5f39d397 3915 struct extent_buffer *leaf;
39279cc3
CM
3916 int slot;
3917 int advance;
3918 unsigned char d_type;
3919 int over = 0;
3920 u32 di_cur;
3921 u32 di_total;
3922 u32 di_len;
3923 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3924 char tmp_name[32];
3925 char *name_ptr;
3926 int name_len;
39279cc3
CM
3927
3928 /* FIXME, use a real flag for deciding about the key type */
3929 if (root->fs_info->tree_root == root)
3930 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3931
3954401f
CM
3932 /* special case for "." */
3933 if (filp->f_pos == 0) {
3934 over = filldir(dirent, ".", 1,
3935 1, inode->i_ino,
3936 DT_DIR);
3937 if (over)
3938 return 0;
3939 filp->f_pos = 1;
3940 }
3954401f
CM
3941 /* special case for .., just use the back ref */
3942 if (filp->f_pos == 1) {
5ecc7e5d 3943 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3944 over = filldir(dirent, "..", 2,
5ecc7e5d 3945 2, pino, DT_DIR);
3954401f 3946 if (over)
49593bfa 3947 return 0;
3954401f
CM
3948 filp->f_pos = 2;
3949 }
49593bfa
DW
3950 path = btrfs_alloc_path();
3951 path->reada = 2;
3952
39279cc3
CM
3953 btrfs_set_key_type(&key, key_type);
3954 key.offset = filp->f_pos;
49593bfa 3955 key.objectid = inode->i_ino;
5f39d397 3956
39279cc3
CM
3957 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3958 if (ret < 0)
3959 goto err;
3960 advance = 0;
49593bfa
DW
3961
3962 while (1) {
5f39d397
CM
3963 leaf = path->nodes[0];
3964 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3965 slot = path->slots[0];
3966 if (advance || slot >= nritems) {
49593bfa 3967 if (slot >= nritems - 1) {
39279cc3
CM
3968 ret = btrfs_next_leaf(root, path);
3969 if (ret)
3970 break;
5f39d397
CM
3971 leaf = path->nodes[0];
3972 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3973 slot = path->slots[0];
3974 } else {
3975 slot++;
3976 path->slots[0]++;
3977 }
3978 }
3de4586c 3979
39279cc3 3980 advance = 1;
5f39d397
CM
3981 item = btrfs_item_nr(leaf, slot);
3982 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3983
3984 if (found_key.objectid != key.objectid)
39279cc3 3985 break;
5f39d397 3986 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3987 break;
5f39d397 3988 if (found_key.offset < filp->f_pos)
39279cc3 3989 continue;
5f39d397
CM
3990
3991 filp->f_pos = found_key.offset;
49593bfa 3992
39279cc3
CM
3993 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3994 di_cur = 0;
5f39d397 3995 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3996
3997 while (di_cur < di_total) {
5f39d397
CM
3998 struct btrfs_key location;
3999
4000 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4001 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4002 name_ptr = tmp_name;
4003 } else {
4004 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4005 if (!name_ptr) {
4006 ret = -ENOMEM;
4007 goto err;
4008 }
5f39d397
CM
4009 }
4010 read_extent_buffer(leaf, name_ptr,
4011 (unsigned long)(di + 1), name_len);
4012
4013 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4014 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4015
4016 /* is this a reference to our own snapshot? If so
4017 * skip it
4018 */
4019 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4020 location.objectid == root->root_key.objectid) {
4021 over = 0;
4022 goto skip;
4023 }
5f39d397 4024 over = filldir(dirent, name_ptr, name_len,
49593bfa 4025 found_key.offset, location.objectid,
39279cc3 4026 d_type);
5f39d397 4027
3de4586c 4028skip:
5f39d397
CM
4029 if (name_ptr != tmp_name)
4030 kfree(name_ptr);
4031
39279cc3
CM
4032 if (over)
4033 goto nopos;
5103e947 4034 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4035 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4036 di_cur += di_len;
4037 di = (struct btrfs_dir_item *)((char *)di + di_len);
4038 }
4039 }
49593bfa
DW
4040
4041 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4042 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4043 /*
4044 * 32-bit glibc will use getdents64, but then strtol -
4045 * so the last number we can serve is this.
4046 */
4047 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4048 else
4049 filp->f_pos++;
39279cc3
CM
4050nopos:
4051 ret = 0;
4052err:
39279cc3 4053 btrfs_free_path(path);
39279cc3
CM
4054 return ret;
4055}
4056
a9185b41 4057int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4058{
4059 struct btrfs_root *root = BTRFS_I(inode)->root;
4060 struct btrfs_trans_handle *trans;
4061 int ret = 0;
4062
8929ecfa 4063 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4064 return 0;
4065
a9185b41 4066 if (wbc->sync_mode == WB_SYNC_ALL) {
f9295749 4067 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
4068 btrfs_set_trans_block_group(trans, inode);
4069 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4070 }
4071 return ret;
4072}
4073
4074/*
54aa1f4d 4075 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4076 * inode changes. But, it is most likely to find the inode in cache.
4077 * FIXME, needs more benchmarking...there are no reasons other than performance
4078 * to keep or drop this code.
4079 */
4080void btrfs_dirty_inode(struct inode *inode)
4081{
4082 struct btrfs_root *root = BTRFS_I(inode)->root;
4083 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4084 int ret;
4085
4086 if (BTRFS_I(inode)->dummy_inode)
4087 return;
39279cc3 4088
f9295749 4089 trans = btrfs_join_transaction(root, 1);
39279cc3 4090 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4091
4092 ret = btrfs_update_inode(trans, root, inode);
4093 if (ret)
4094 printk(KERN_ERR"btrfs: fail to dirty inode %lu error %d\n",
4095 inode->i_ino, ret);
4096
39279cc3 4097 btrfs_end_transaction(trans, root);
39279cc3
CM
4098}
4099
d352ac68
CM
4100/*
4101 * find the highest existing sequence number in a directory
4102 * and then set the in-memory index_cnt variable to reflect
4103 * free sequence numbers
4104 */
aec7477b
JB
4105static int btrfs_set_inode_index_count(struct inode *inode)
4106{
4107 struct btrfs_root *root = BTRFS_I(inode)->root;
4108 struct btrfs_key key, found_key;
4109 struct btrfs_path *path;
4110 struct extent_buffer *leaf;
4111 int ret;
4112
4113 key.objectid = inode->i_ino;
4114 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4115 key.offset = (u64)-1;
4116
4117 path = btrfs_alloc_path();
4118 if (!path)
4119 return -ENOMEM;
4120
4121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4122 if (ret < 0)
4123 goto out;
4124 /* FIXME: we should be able to handle this */
4125 if (ret == 0)
4126 goto out;
4127 ret = 0;
4128
4129 /*
4130 * MAGIC NUMBER EXPLANATION:
4131 * since we search a directory based on f_pos we have to start at 2
4132 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4133 * else has to start at 2
4134 */
4135 if (path->slots[0] == 0) {
4136 BTRFS_I(inode)->index_cnt = 2;
4137 goto out;
4138 }
4139
4140 path->slots[0]--;
4141
4142 leaf = path->nodes[0];
4143 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4144
4145 if (found_key.objectid != inode->i_ino ||
4146 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4147 BTRFS_I(inode)->index_cnt = 2;
4148 goto out;
4149 }
4150
4151 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4152out:
4153 btrfs_free_path(path);
4154 return ret;
4155}
4156
d352ac68
CM
4157/*
4158 * helper to find a free sequence number in a given directory. This current
4159 * code is very simple, later versions will do smarter things in the btree
4160 */
3de4586c 4161int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4162{
4163 int ret = 0;
4164
4165 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4166 ret = btrfs_set_inode_index_count(dir);
d397712b 4167 if (ret)
aec7477b
JB
4168 return ret;
4169 }
4170
00e4e6b3 4171 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4172 BTRFS_I(dir)->index_cnt++;
4173
4174 return ret;
4175}
4176
39279cc3
CM
4177static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4178 struct btrfs_root *root,
aec7477b 4179 struct inode *dir,
9c58309d 4180 const char *name, int name_len,
d2fb3437
YZ
4181 u64 ref_objectid, u64 objectid,
4182 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4183{
4184 struct inode *inode;
5f39d397 4185 struct btrfs_inode_item *inode_item;
39279cc3 4186 struct btrfs_key *location;
5f39d397 4187 struct btrfs_path *path;
9c58309d
CM
4188 struct btrfs_inode_ref *ref;
4189 struct btrfs_key key[2];
4190 u32 sizes[2];
4191 unsigned long ptr;
39279cc3
CM
4192 int ret;
4193 int owner;
4194
5f39d397
CM
4195 path = btrfs_alloc_path();
4196 BUG_ON(!path);
4197
39279cc3
CM
4198 inode = new_inode(root->fs_info->sb);
4199 if (!inode)
4200 return ERR_PTR(-ENOMEM);
4201
aec7477b 4202 if (dir) {
3de4586c 4203 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4204 if (ret) {
4205 iput(inode);
aec7477b 4206 return ERR_PTR(ret);
09771430 4207 }
aec7477b
JB
4208 }
4209 /*
4210 * index_cnt is ignored for everything but a dir,
4211 * btrfs_get_inode_index_count has an explanation for the magic
4212 * number
4213 */
4214 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4215 BTRFS_I(inode)->root = root;
e02119d5 4216 BTRFS_I(inode)->generation = trans->transid;
6a63209f 4217 btrfs_set_inode_space_info(root, inode);
b888db2b 4218
39279cc3
CM
4219 if (mode & S_IFDIR)
4220 owner = 0;
4221 else
4222 owner = 1;
d2fb3437
YZ
4223 BTRFS_I(inode)->block_group =
4224 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4225
4226 key[0].objectid = objectid;
4227 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4228 key[0].offset = 0;
4229
4230 key[1].objectid = objectid;
4231 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4232 key[1].offset = ref_objectid;
4233
4234 sizes[0] = sizeof(struct btrfs_inode_item);
4235 sizes[1] = name_len + sizeof(*ref);
4236
b9473439 4237 path->leave_spinning = 1;
9c58309d
CM
4238 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4239 if (ret != 0)
5f39d397
CM
4240 goto fail;
4241
79683f2d 4242 inode->i_uid = current_fsuid();
8c087b51 4243
42f15d77 4244 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
4245 inode->i_gid = dir->i_gid;
4246 if (S_ISDIR(mode))
4247 mode |= S_ISGID;
4248 } else
4249 inode->i_gid = current_fsgid();
4250
39279cc3
CM
4251 inode->i_mode = mode;
4252 inode->i_ino = objectid;
a76a3cd4 4253 inode_set_bytes(inode, 0);
39279cc3 4254 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4255 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4256 struct btrfs_inode_item);
e02119d5 4257 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4258
4259 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4260 struct btrfs_inode_ref);
4261 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4262 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4263 ptr = (unsigned long)(ref + 1);
4264 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4265
5f39d397
CM
4266 btrfs_mark_buffer_dirty(path->nodes[0]);
4267 btrfs_free_path(path);
4268
39279cc3
CM
4269 location = &BTRFS_I(inode)->location;
4270 location->objectid = objectid;
39279cc3
CM
4271 location->offset = 0;
4272 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4273
6cbff00f
CH
4274 btrfs_inherit_iflags(inode, dir);
4275
94272164
CM
4276 if ((mode & S_IFREG)) {
4277 if (btrfs_test_opt(root, NODATASUM))
4278 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4279 if (btrfs_test_opt(root, NODATACOW))
4280 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4281 }
4282
39279cc3 4283 insert_inode_hash(inode);
5d4f98a2 4284 inode_tree_add(inode);
39279cc3 4285 return inode;
5f39d397 4286fail:
aec7477b
JB
4287 if (dir)
4288 BTRFS_I(dir)->index_cnt--;
5f39d397 4289 btrfs_free_path(path);
09771430 4290 iput(inode);
5f39d397 4291 return ERR_PTR(ret);
39279cc3
CM
4292}
4293
4294static inline u8 btrfs_inode_type(struct inode *inode)
4295{
4296 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4297}
4298
d352ac68
CM
4299/*
4300 * utility function to add 'inode' into 'parent_inode' with
4301 * a give name and a given sequence number.
4302 * if 'add_backref' is true, also insert a backref from the
4303 * inode to the parent directory.
4304 */
e02119d5
CM
4305int btrfs_add_link(struct btrfs_trans_handle *trans,
4306 struct inode *parent_inode, struct inode *inode,
4307 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4308{
4df27c4d 4309 int ret = 0;
39279cc3 4310 struct btrfs_key key;
e02119d5 4311 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4312
4df27c4d
YZ
4313 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4314 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4315 } else {
4316 key.objectid = inode->i_ino;
4317 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4318 key.offset = 0;
4319 }
4320
4321 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4322 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4323 key.objectid, root->root_key.objectid,
4324 parent_inode->i_ino,
4325 index, name, name_len);
4326 } else if (add_backref) {
4327 ret = btrfs_insert_inode_ref(trans, root,
4328 name, name_len, inode->i_ino,
4329 parent_inode->i_ino, index);
4330 }
39279cc3 4331
39279cc3 4332 if (ret == 0) {
4df27c4d
YZ
4333 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4334 parent_inode->i_ino, &key,
4335 btrfs_inode_type(inode), index);
4336 BUG_ON(ret);
4337
dbe674a9 4338 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4339 name_len * 2);
79c44584 4340 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4341 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4342 }
4343 return ret;
4344}
4345
4346static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4347 struct dentry *dentry, struct inode *inode,
00e4e6b3 4348 int backref, u64 index)
39279cc3 4349{
e02119d5
CM
4350 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4351 inode, dentry->d_name.name,
4352 dentry->d_name.len, backref, index);
39279cc3
CM
4353 if (!err) {
4354 d_instantiate(dentry, inode);
4355 return 0;
4356 }
4357 if (err > 0)
4358 err = -EEXIST;
4359 return err;
4360}
4361
618e21d5
JB
4362static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4363 int mode, dev_t rdev)
4364{
4365 struct btrfs_trans_handle *trans;
4366 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4367 struct inode *inode = NULL;
618e21d5
JB
4368 int err;
4369 int drop_inode = 0;
4370 u64 objectid;
1832a6d5 4371 unsigned long nr = 0;
00e4e6b3 4372 u64 index = 0;
618e21d5
JB
4373
4374 if (!new_valid_dev(rdev))
4375 return -EINVAL;
4376
a22285a6
YZ
4377 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4378 if (err)
4379 return err;
4380
9ed74f2d
JB
4381 /*
4382 * 2 for inode item and ref
4383 * 2 for dir items
4384 * 1 for xattr if selinux is on
4385 */
a22285a6
YZ
4386 trans = btrfs_start_transaction(root, 5);
4387 if (IS_ERR(trans))
4388 return PTR_ERR(trans);
1832a6d5 4389
618e21d5
JB
4390 btrfs_set_trans_block_group(trans, dir);
4391
aec7477b 4392 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4393 dentry->d_name.len,
4394 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4395 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4396 err = PTR_ERR(inode);
4397 if (IS_ERR(inode))
4398 goto out_unlock;
4399
f34f57a3 4400 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4401 if (err) {
4402 drop_inode = 1;
4403 goto out_unlock;
4404 }
4405
618e21d5 4406 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4407 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4408 if (err)
4409 drop_inode = 1;
4410 else {
4411 inode->i_op = &btrfs_special_inode_operations;
4412 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4413 btrfs_update_inode(trans, root, inode);
618e21d5 4414 }
618e21d5
JB
4415 btrfs_update_inode_block_group(trans, inode);
4416 btrfs_update_inode_block_group(trans, dir);
4417out_unlock:
d3c2fdcf 4418 nr = trans->blocks_used;
89ce8a63 4419 btrfs_end_transaction_throttle(trans, root);
a22285a6 4420 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4421 if (drop_inode) {
4422 inode_dec_link_count(inode);
4423 iput(inode);
4424 }
618e21d5
JB
4425 return err;
4426}
4427
39279cc3
CM
4428static int btrfs_create(struct inode *dir, struct dentry *dentry,
4429 int mode, struct nameidata *nd)
4430{
4431 struct btrfs_trans_handle *trans;
4432 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4433 struct inode *inode = NULL;
39279cc3 4434 int drop_inode = 0;
a22285a6 4435 int err;
1832a6d5 4436 unsigned long nr = 0;
39279cc3 4437 u64 objectid;
00e4e6b3 4438 u64 index = 0;
39279cc3 4439
a22285a6
YZ
4440 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4441 if (err)
4442 return err;
9ed74f2d
JB
4443 /*
4444 * 2 for inode item and ref
4445 * 2 for dir items
4446 * 1 for xattr if selinux is on
4447 */
a22285a6
YZ
4448 trans = btrfs_start_transaction(root, 5);
4449 if (IS_ERR(trans))
4450 return PTR_ERR(trans);
9ed74f2d 4451
39279cc3
CM
4452 btrfs_set_trans_block_group(trans, dir);
4453
aec7477b 4454 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4455 dentry->d_name.len,
4456 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4457 objectid, BTRFS_I(dir)->block_group, mode,
4458 &index);
39279cc3
CM
4459 err = PTR_ERR(inode);
4460 if (IS_ERR(inode))
4461 goto out_unlock;
4462
f34f57a3 4463 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4464 if (err) {
4465 drop_inode = 1;
4466 goto out_unlock;
4467 }
4468
39279cc3 4469 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4470 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4471 if (err)
4472 drop_inode = 1;
4473 else {
4474 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4475 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4476 inode->i_fop = &btrfs_file_operations;
4477 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4478 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4479 }
39279cc3
CM
4480 btrfs_update_inode_block_group(trans, inode);
4481 btrfs_update_inode_block_group(trans, dir);
4482out_unlock:
d3c2fdcf 4483 nr = trans->blocks_used;
ab78c84d 4484 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4485 if (drop_inode) {
4486 inode_dec_link_count(inode);
4487 iput(inode);
4488 }
d3c2fdcf 4489 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4490 return err;
4491}
4492
4493static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4494 struct dentry *dentry)
4495{
4496 struct btrfs_trans_handle *trans;
4497 struct btrfs_root *root = BTRFS_I(dir)->root;
4498 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4499 u64 index;
1832a6d5 4500 unsigned long nr = 0;
39279cc3
CM
4501 int err;
4502 int drop_inode = 0;
4503
4504 if (inode->i_nlink == 0)
4505 return -ENOENT;
4506
4a8be425
TH
4507 /* do not allow sys_link's with other subvols of the same device */
4508 if (root->objectid != BTRFS_I(inode)->root->objectid)
4509 return -EPERM;
4510
9ed74f2d
JB
4511 btrfs_inc_nlink(inode);
4512
3de4586c 4513 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4514 if (err)
4515 goto fail;
4516
a22285a6
YZ
4517 /*
4518 * 1 item for inode ref
4519 * 2 items for dir items
4520 */
4521 trans = btrfs_start_transaction(root, 3);
4522 if (IS_ERR(trans)) {
4523 err = PTR_ERR(trans);
4524 goto fail;
4525 }
5f39d397 4526
39279cc3
CM
4527 btrfs_set_trans_block_group(trans, dir);
4528 atomic_inc(&inode->i_count);
aec7477b 4529
00e4e6b3 4530 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4531
a5719521 4532 if (err) {
54aa1f4d 4533 drop_inode = 1;
a5719521
YZ
4534 } else {
4535 btrfs_update_inode_block_group(trans, dir);
4536 err = btrfs_update_inode(trans, root, inode);
4537 BUG_ON(err);
4538 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4539 }
39279cc3 4540
d3c2fdcf 4541 nr = trans->blocks_used;
ab78c84d 4542 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4543fail:
39279cc3
CM
4544 if (drop_inode) {
4545 inode_dec_link_count(inode);
4546 iput(inode);
4547 }
d3c2fdcf 4548 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4549 return err;
4550}
4551
39279cc3
CM
4552static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4553{
b9d86667 4554 struct inode *inode = NULL;
39279cc3
CM
4555 struct btrfs_trans_handle *trans;
4556 struct btrfs_root *root = BTRFS_I(dir)->root;
4557 int err = 0;
4558 int drop_on_err = 0;
b9d86667 4559 u64 objectid = 0;
00e4e6b3 4560 u64 index = 0;
d3c2fdcf 4561 unsigned long nr = 1;
39279cc3 4562
a22285a6
YZ
4563 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4564 if (err)
4565 return err;
4566
9ed74f2d
JB
4567 /*
4568 * 2 items for inode and ref
4569 * 2 items for dir items
4570 * 1 for xattr if selinux is on
4571 */
a22285a6
YZ
4572 trans = btrfs_start_transaction(root, 5);
4573 if (IS_ERR(trans))
4574 return PTR_ERR(trans);
9ed74f2d 4575 btrfs_set_trans_block_group(trans, dir);
39279cc3 4576
aec7477b 4577 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4578 dentry->d_name.len,
4579 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4580 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4581 &index);
39279cc3
CM
4582 if (IS_ERR(inode)) {
4583 err = PTR_ERR(inode);
4584 goto out_fail;
4585 }
5f39d397 4586
39279cc3 4587 drop_on_err = 1;
33268eaf 4588
f34f57a3 4589 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4590 if (err)
4591 goto out_fail;
4592
39279cc3
CM
4593 inode->i_op = &btrfs_dir_inode_operations;
4594 inode->i_fop = &btrfs_dir_file_operations;
4595 btrfs_set_trans_block_group(trans, inode);
4596
dbe674a9 4597 btrfs_i_size_write(inode, 0);
39279cc3
CM
4598 err = btrfs_update_inode(trans, root, inode);
4599 if (err)
4600 goto out_fail;
5f39d397 4601
e02119d5
CM
4602 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4603 inode, dentry->d_name.name,
4604 dentry->d_name.len, 0, index);
39279cc3
CM
4605 if (err)
4606 goto out_fail;
5f39d397 4607
39279cc3
CM
4608 d_instantiate(dentry, inode);
4609 drop_on_err = 0;
39279cc3
CM
4610 btrfs_update_inode_block_group(trans, inode);
4611 btrfs_update_inode_block_group(trans, dir);
4612
4613out_fail:
d3c2fdcf 4614 nr = trans->blocks_used;
ab78c84d 4615 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4616 if (drop_on_err)
4617 iput(inode);
d3c2fdcf 4618 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4619 return err;
4620}
4621
d352ac68
CM
4622/* helper for btfs_get_extent. Given an existing extent in the tree,
4623 * and an extent that you want to insert, deal with overlap and insert
4624 * the new extent into the tree.
4625 */
3b951516
CM
4626static int merge_extent_mapping(struct extent_map_tree *em_tree,
4627 struct extent_map *existing,
e6dcd2dc
CM
4628 struct extent_map *em,
4629 u64 map_start, u64 map_len)
3b951516
CM
4630{
4631 u64 start_diff;
3b951516 4632
e6dcd2dc
CM
4633 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4634 start_diff = map_start - em->start;
4635 em->start = map_start;
4636 em->len = map_len;
c8b97818
CM
4637 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4638 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4639 em->block_start += start_diff;
c8b97818
CM
4640 em->block_len -= start_diff;
4641 }
e6dcd2dc 4642 return add_extent_mapping(em_tree, em);
3b951516
CM
4643}
4644
c8b97818
CM
4645static noinline int uncompress_inline(struct btrfs_path *path,
4646 struct inode *inode, struct page *page,
4647 size_t pg_offset, u64 extent_offset,
4648 struct btrfs_file_extent_item *item)
4649{
4650 int ret;
4651 struct extent_buffer *leaf = path->nodes[0];
4652 char *tmp;
4653 size_t max_size;
4654 unsigned long inline_size;
4655 unsigned long ptr;
4656
4657 WARN_ON(pg_offset != 0);
4658 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4659 inline_size = btrfs_file_extent_inline_item_len(leaf,
4660 btrfs_item_nr(leaf, path->slots[0]));
4661 tmp = kmalloc(inline_size, GFP_NOFS);
4662 ptr = btrfs_file_extent_inline_start(item);
4663
4664 read_extent_buffer(leaf, tmp, ptr, inline_size);
4665
5b050f04 4666 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4667 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4668 inline_size, max_size);
4669 if (ret) {
4670 char *kaddr = kmap_atomic(page, KM_USER0);
4671 unsigned long copy_size = min_t(u64,
4672 PAGE_CACHE_SIZE - pg_offset,
4673 max_size - extent_offset);
4674 memset(kaddr + pg_offset, 0, copy_size);
4675 kunmap_atomic(kaddr, KM_USER0);
4676 }
4677 kfree(tmp);
4678 return 0;
4679}
4680
d352ac68
CM
4681/*
4682 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4683 * the ugly parts come from merging extents from the disk with the in-ram
4684 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4685 * where the in-ram extents might be locked pending data=ordered completion.
4686 *
4687 * This also copies inline extents directly into the page.
4688 */
d397712b 4689
a52d9a80 4690struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4691 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4692 int create)
4693{
4694 int ret;
4695 int err = 0;
db94535d 4696 u64 bytenr;
a52d9a80
CM
4697 u64 extent_start = 0;
4698 u64 extent_end = 0;
4699 u64 objectid = inode->i_ino;
4700 u32 found_type;
f421950f 4701 struct btrfs_path *path = NULL;
a52d9a80
CM
4702 struct btrfs_root *root = BTRFS_I(inode)->root;
4703 struct btrfs_file_extent_item *item;
5f39d397
CM
4704 struct extent_buffer *leaf;
4705 struct btrfs_key found_key;
a52d9a80
CM
4706 struct extent_map *em = NULL;
4707 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4708 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4709 struct btrfs_trans_handle *trans = NULL;
c8b97818 4710 int compressed;
a52d9a80 4711
a52d9a80 4712again:
890871be 4713 read_lock(&em_tree->lock);
d1310b2e 4714 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4715 if (em)
4716 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4717 read_unlock(&em_tree->lock);
d1310b2e 4718
a52d9a80 4719 if (em) {
e1c4b745
CM
4720 if (em->start > start || em->start + em->len <= start)
4721 free_extent_map(em);
4722 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4723 free_extent_map(em);
4724 else
4725 goto out;
a52d9a80 4726 }
d1310b2e 4727 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4728 if (!em) {
d1310b2e
CM
4729 err = -ENOMEM;
4730 goto out;
a52d9a80 4731 }
e6dcd2dc 4732 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4733 em->start = EXTENT_MAP_HOLE;
445a6944 4734 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4735 em->len = (u64)-1;
c8b97818 4736 em->block_len = (u64)-1;
f421950f
CM
4737
4738 if (!path) {
4739 path = btrfs_alloc_path();
4740 BUG_ON(!path);
4741 }
4742
179e29e4
CM
4743 ret = btrfs_lookup_file_extent(trans, root, path,
4744 objectid, start, trans != NULL);
a52d9a80
CM
4745 if (ret < 0) {
4746 err = ret;
4747 goto out;
4748 }
4749
4750 if (ret != 0) {
4751 if (path->slots[0] == 0)
4752 goto not_found;
4753 path->slots[0]--;
4754 }
4755
5f39d397
CM
4756 leaf = path->nodes[0];
4757 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4758 struct btrfs_file_extent_item);
a52d9a80 4759 /* are we inside the extent that was found? */
5f39d397
CM
4760 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4761 found_type = btrfs_key_type(&found_key);
4762 if (found_key.objectid != objectid ||
a52d9a80
CM
4763 found_type != BTRFS_EXTENT_DATA_KEY) {
4764 goto not_found;
4765 }
4766
5f39d397
CM
4767 found_type = btrfs_file_extent_type(leaf, item);
4768 extent_start = found_key.offset;
c8b97818 4769 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4770 if (found_type == BTRFS_FILE_EXTENT_REG ||
4771 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4772 extent_end = extent_start +
db94535d 4773 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4774 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4775 size_t size;
4776 size = btrfs_file_extent_inline_len(leaf, item);
4777 extent_end = (extent_start + size + root->sectorsize - 1) &
4778 ~((u64)root->sectorsize - 1);
4779 }
4780
4781 if (start >= extent_end) {
4782 path->slots[0]++;
4783 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4784 ret = btrfs_next_leaf(root, path);
4785 if (ret < 0) {
4786 err = ret;
4787 goto out;
a52d9a80 4788 }
9036c102
YZ
4789 if (ret > 0)
4790 goto not_found;
4791 leaf = path->nodes[0];
a52d9a80 4792 }
9036c102
YZ
4793 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4794 if (found_key.objectid != objectid ||
4795 found_key.type != BTRFS_EXTENT_DATA_KEY)
4796 goto not_found;
4797 if (start + len <= found_key.offset)
4798 goto not_found;
4799 em->start = start;
4800 em->len = found_key.offset - start;
4801 goto not_found_em;
4802 }
4803
d899e052
YZ
4804 if (found_type == BTRFS_FILE_EXTENT_REG ||
4805 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4806 em->start = extent_start;
4807 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4808 em->orig_start = extent_start -
4809 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4810 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4811 if (bytenr == 0) {
5f39d397 4812 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4813 goto insert;
4814 }
c8b97818
CM
4815 if (compressed) {
4816 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4817 em->block_start = bytenr;
4818 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4819 item);
4820 } else {
4821 bytenr += btrfs_file_extent_offset(leaf, item);
4822 em->block_start = bytenr;
4823 em->block_len = em->len;
d899e052
YZ
4824 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4825 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4826 }
a52d9a80
CM
4827 goto insert;
4828 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4829 unsigned long ptr;
a52d9a80 4830 char *map;
3326d1b0
CM
4831 size_t size;
4832 size_t extent_offset;
4833 size_t copy_size;
a52d9a80 4834
689f9346 4835 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4836 if (!page || create) {
689f9346 4837 em->start = extent_start;
9036c102 4838 em->len = extent_end - extent_start;
689f9346
Y
4839 goto out;
4840 }
5f39d397 4841
9036c102
YZ
4842 size = btrfs_file_extent_inline_len(leaf, item);
4843 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4844 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4845 size - extent_offset);
3326d1b0 4846 em->start = extent_start + extent_offset;
70dec807
CM
4847 em->len = (copy_size + root->sectorsize - 1) &
4848 ~((u64)root->sectorsize - 1);
ff5b7ee3 4849 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4850 if (compressed)
4851 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4852 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4853 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4854 if (btrfs_file_extent_compression(leaf, item) ==
4855 BTRFS_COMPRESS_ZLIB) {
4856 ret = uncompress_inline(path, inode, page,
4857 pg_offset,
4858 extent_offset, item);
4859 BUG_ON(ret);
4860 } else {
4861 map = kmap(page);
4862 read_extent_buffer(leaf, map + pg_offset, ptr,
4863 copy_size);
93c82d57
CM
4864 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4865 memset(map + pg_offset + copy_size, 0,
4866 PAGE_CACHE_SIZE - pg_offset -
4867 copy_size);
4868 }
c8b97818
CM
4869 kunmap(page);
4870 }
179e29e4
CM
4871 flush_dcache_page(page);
4872 } else if (create && PageUptodate(page)) {
0ca1f7ce 4873 WARN_ON(1);
179e29e4
CM
4874 if (!trans) {
4875 kunmap(page);
4876 free_extent_map(em);
4877 em = NULL;
4878 btrfs_release_path(root, path);
f9295749 4879 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4880 goto again;
4881 }
c8b97818 4882 map = kmap(page);
70dec807 4883 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4884 copy_size);
c8b97818 4885 kunmap(page);
179e29e4 4886 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4887 }
d1310b2e
CM
4888 set_extent_uptodate(io_tree, em->start,
4889 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4890 goto insert;
4891 } else {
d397712b 4892 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4893 WARN_ON(1);
4894 }
4895not_found:
4896 em->start = start;
d1310b2e 4897 em->len = len;
a52d9a80 4898not_found_em:
5f39d397 4899 em->block_start = EXTENT_MAP_HOLE;
9036c102 4900 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4901insert:
4902 btrfs_release_path(root, path);
d1310b2e 4903 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4904 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4905 "[%llu %llu]\n", (unsigned long long)em->start,
4906 (unsigned long long)em->len,
4907 (unsigned long long)start,
4908 (unsigned long long)len);
a52d9a80
CM
4909 err = -EIO;
4910 goto out;
4911 }
d1310b2e
CM
4912
4913 err = 0;
890871be 4914 write_lock(&em_tree->lock);
a52d9a80 4915 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4916 /* it is possible that someone inserted the extent into the tree
4917 * while we had the lock dropped. It is also possible that
4918 * an overlapping map exists in the tree
4919 */
a52d9a80 4920 if (ret == -EEXIST) {
3b951516 4921 struct extent_map *existing;
e6dcd2dc
CM
4922
4923 ret = 0;
4924
3b951516 4925 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4926 if (existing && (existing->start > start ||
4927 existing->start + existing->len <= start)) {
4928 free_extent_map(existing);
4929 existing = NULL;
4930 }
3b951516
CM
4931 if (!existing) {
4932 existing = lookup_extent_mapping(em_tree, em->start,
4933 em->len);
4934 if (existing) {
4935 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4936 em, start,
4937 root->sectorsize);
3b951516
CM
4938 free_extent_map(existing);
4939 if (err) {
4940 free_extent_map(em);
4941 em = NULL;
4942 }
4943 } else {
4944 err = -EIO;
3b951516
CM
4945 free_extent_map(em);
4946 em = NULL;
4947 }
4948 } else {
4949 free_extent_map(em);
4950 em = existing;
e6dcd2dc 4951 err = 0;
a52d9a80 4952 }
a52d9a80 4953 }
890871be 4954 write_unlock(&em_tree->lock);
a52d9a80 4955out:
f421950f
CM
4956 if (path)
4957 btrfs_free_path(path);
a52d9a80
CM
4958 if (trans) {
4959 ret = btrfs_end_transaction(trans, root);
d397712b 4960 if (!err)
a52d9a80
CM
4961 err = ret;
4962 }
a52d9a80
CM
4963 if (err) {
4964 free_extent_map(em);
a52d9a80
CM
4965 return ERR_PTR(err);
4966 }
4967 return em;
4968}
4969
16432985
CM
4970static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4971 const struct iovec *iov, loff_t offset,
4972 unsigned long nr_segs)
4973{
e1c4b745 4974 return -EINVAL;
16432985
CM
4975}
4976
1506fcc8
YS
4977static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4978 __u64 start, __u64 len)
4979{
4980 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4981}
4982
a52d9a80 4983int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4984{
d1310b2e
CM
4985 struct extent_io_tree *tree;
4986 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4987 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4988}
1832a6d5 4989
a52d9a80 4990static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4991{
d1310b2e 4992 struct extent_io_tree *tree;
b888db2b
CM
4993
4994
4995 if (current->flags & PF_MEMALLOC) {
4996 redirty_page_for_writepage(wbc, page);
4997 unlock_page(page);
4998 return 0;
4999 }
d1310b2e 5000 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 5001 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
5002}
5003
f421950f
CM
5004int btrfs_writepages(struct address_space *mapping,
5005 struct writeback_control *wbc)
b293f02e 5006{
d1310b2e 5007 struct extent_io_tree *tree;
771ed689 5008
d1310b2e 5009 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
5010 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
5011}
5012
3ab2fb5a
CM
5013static int
5014btrfs_readpages(struct file *file, struct address_space *mapping,
5015 struct list_head *pages, unsigned nr_pages)
5016{
d1310b2e
CM
5017 struct extent_io_tree *tree;
5018 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
5019 return extent_readpages(tree, mapping, pages, nr_pages,
5020 btrfs_get_extent);
5021}
e6dcd2dc 5022static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 5023{
d1310b2e
CM
5024 struct extent_io_tree *tree;
5025 struct extent_map_tree *map;
a52d9a80 5026 int ret;
8c2383c3 5027
d1310b2e
CM
5028 tree = &BTRFS_I(page->mapping->host)->io_tree;
5029 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 5030 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
5031 if (ret == 1) {
5032 ClearPagePrivate(page);
5033 set_page_private(page, 0);
5034 page_cache_release(page);
39279cc3 5035 }
a52d9a80 5036 return ret;
39279cc3
CM
5037}
5038
e6dcd2dc
CM
5039static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5040{
98509cfc
CM
5041 if (PageWriteback(page) || PageDirty(page))
5042 return 0;
b335b003 5043 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
5044}
5045
a52d9a80 5046static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 5047{
d1310b2e 5048 struct extent_io_tree *tree;
e6dcd2dc 5049 struct btrfs_ordered_extent *ordered;
2ac55d41 5050 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
5051 u64 page_start = page_offset(page);
5052 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 5053
8b62b72b
CM
5054
5055 /*
5056 * we have the page locked, so new writeback can't start,
5057 * and the dirty bit won't be cleared while we are here.
5058 *
5059 * Wait for IO on this page so that we can safely clear
5060 * the PagePrivate2 bit and do ordered accounting
5061 */
e6dcd2dc 5062 wait_on_page_writeback(page);
8b62b72b 5063
d1310b2e 5064 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
5065 if (offset) {
5066 btrfs_releasepage(page, GFP_NOFS);
5067 return;
5068 }
2ac55d41
JB
5069 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5070 GFP_NOFS);
e6dcd2dc
CM
5071 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5072 page_offset(page));
5073 if (ordered) {
eb84ae03
CM
5074 /*
5075 * IO on this page will never be started, so we need
5076 * to account for any ordered extents now
5077 */
e6dcd2dc
CM
5078 clear_extent_bit(tree, page_start, page_end,
5079 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 5080 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 5081 &cached_state, GFP_NOFS);
8b62b72b
CM
5082 /*
5083 * whoever cleared the private bit is responsible
5084 * for the finish_ordered_io
5085 */
5086 if (TestClearPagePrivate2(page)) {
5087 btrfs_finish_ordered_io(page->mapping->host,
5088 page_start, page_end);
5089 }
e6dcd2dc 5090 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
5091 cached_state = NULL;
5092 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5093 GFP_NOFS);
e6dcd2dc
CM
5094 }
5095 clear_extent_bit(tree, page_start, page_end,
32c00aff 5096 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 5097 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
5098 __btrfs_releasepage(page, GFP_NOFS);
5099
4a096752 5100 ClearPageChecked(page);
9ad6b7bc 5101 if (PagePrivate(page)) {
9ad6b7bc
CM
5102 ClearPagePrivate(page);
5103 set_page_private(page, 0);
5104 page_cache_release(page);
5105 }
39279cc3
CM
5106}
5107
9ebefb18
CM
5108/*
5109 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5110 * called from a page fault handler when a page is first dirtied. Hence we must
5111 * be careful to check for EOF conditions here. We set the page up correctly
5112 * for a written page which means we get ENOSPC checking when writing into
5113 * holes and correct delalloc and unwritten extent mapping on filesystems that
5114 * support these features.
5115 *
5116 * We are not allowed to take the i_mutex here so we have to play games to
5117 * protect against truncate races as the page could now be beyond EOF. Because
5118 * vmtruncate() writes the inode size before removing pages, once we have the
5119 * page lock we can determine safely if the page is beyond EOF. If it is not
5120 * beyond EOF, then the page is guaranteed safe against truncation until we
5121 * unlock the page.
5122 */
c2ec175c 5123int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 5124{
c2ec175c 5125 struct page *page = vmf->page;
6da6abae 5126 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 5127 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
5128 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5129 struct btrfs_ordered_extent *ordered;
2ac55d41 5130 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
5131 char *kaddr;
5132 unsigned long zero_start;
9ebefb18 5133 loff_t size;
1832a6d5 5134 int ret;
a52d9a80 5135 u64 page_start;
e6dcd2dc 5136 u64 page_end;
9ebefb18 5137
0ca1f7ce 5138 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
5139 if (ret) {
5140 if (ret == -ENOMEM)
5141 ret = VM_FAULT_OOM;
5142 else /* -ENOSPC, -EIO, etc */
5143 ret = VM_FAULT_SIGBUS;
1832a6d5 5144 goto out;
56a76f82 5145 }
1832a6d5 5146
56a76f82 5147 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 5148again:
9ebefb18 5149 lock_page(page);
9ebefb18 5150 size = i_size_read(inode);
e6dcd2dc
CM
5151 page_start = page_offset(page);
5152 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 5153
9ebefb18 5154 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 5155 (page_start >= size)) {
9ebefb18
CM
5156 /* page got truncated out from underneath us */
5157 goto out_unlock;
5158 }
e6dcd2dc
CM
5159 wait_on_page_writeback(page);
5160
2ac55d41
JB
5161 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
5162 GFP_NOFS);
e6dcd2dc
CM
5163 set_page_extent_mapped(page);
5164
eb84ae03
CM
5165 /*
5166 * we can't set the delalloc bits if there are pending ordered
5167 * extents. Drop our locks and wait for them to finish
5168 */
e6dcd2dc
CM
5169 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5170 if (ordered) {
2ac55d41
JB
5171 unlock_extent_cached(io_tree, page_start, page_end,
5172 &cached_state, GFP_NOFS);
e6dcd2dc 5173 unlock_page(page);
eb84ae03 5174 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
5175 btrfs_put_ordered_extent(ordered);
5176 goto again;
5177 }
5178
fbf19087
JB
5179 /*
5180 * XXX - page_mkwrite gets called every time the page is dirtied, even
5181 * if it was already dirty, so for space accounting reasons we need to
5182 * clear any delalloc bits for the range we are fixing to save. There
5183 * is probably a better way to do this, but for now keep consistent with
5184 * prepare_pages in the normal write path.
5185 */
2ac55d41 5186 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 5187 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 5188 0, 0, &cached_state, GFP_NOFS);
fbf19087 5189
2ac55d41
JB
5190 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
5191 &cached_state);
9ed74f2d 5192 if (ret) {
2ac55d41
JB
5193 unlock_extent_cached(io_tree, page_start, page_end,
5194 &cached_state, GFP_NOFS);
9ed74f2d
JB
5195 ret = VM_FAULT_SIGBUS;
5196 goto out_unlock;
5197 }
e6dcd2dc 5198 ret = 0;
9ebefb18
CM
5199
5200 /* page is wholly or partially inside EOF */
a52d9a80 5201 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 5202 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 5203 else
e6dcd2dc 5204 zero_start = PAGE_CACHE_SIZE;
9ebefb18 5205
e6dcd2dc
CM
5206 if (zero_start != PAGE_CACHE_SIZE) {
5207 kaddr = kmap(page);
5208 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5209 flush_dcache_page(page);
5210 kunmap(page);
5211 }
247e743c 5212 ClearPageChecked(page);
e6dcd2dc 5213 set_page_dirty(page);
50a9b214 5214 SetPageUptodate(page);
5a3f23d5 5215
257c62e1
CM
5216 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5217 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5218
2ac55d41 5219 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
5220
5221out_unlock:
50a9b214
CM
5222 if (!ret)
5223 return VM_FAULT_LOCKED;
9ebefb18 5224 unlock_page(page);
0ca1f7ce 5225 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 5226out:
9ebefb18
CM
5227 return ret;
5228}
5229
39279cc3
CM
5230static void btrfs_truncate(struct inode *inode)
5231{
5232 struct btrfs_root *root = BTRFS_I(inode)->root;
5233 int ret;
5234 struct btrfs_trans_handle *trans;
d3c2fdcf 5235 unsigned long nr;
dbe674a9 5236 u64 mask = root->sectorsize - 1;
39279cc3 5237
8082510e
YZ
5238 if (!S_ISREG(inode->i_mode)) {
5239 WARN_ON(1);
39279cc3 5240 return;
8082510e 5241 }
39279cc3 5242
5d5e103a
JB
5243 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5244 if (ret)
5245 return;
8082510e 5246
4a096752 5247 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 5248 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 5249
39279cc3 5250 trans = btrfs_start_transaction(root, 1);
8082510e 5251 btrfs_set_trans_block_group(trans, inode);
5a3f23d5
CM
5252
5253 /*
5254 * setattr is responsible for setting the ordered_data_close flag,
5255 * but that is only tested during the last file release. That
5256 * could happen well after the next commit, leaving a great big
5257 * window where new writes may get lost if someone chooses to write
5258 * to this file after truncating to zero
5259 *
5260 * The inode doesn't have any dirty data here, and so if we commit
5261 * this is a noop. If someone immediately starts writing to the inode
5262 * it is very likely we'll catch some of their writes in this
5263 * transaction, and the commit will find this file on the ordered
5264 * data list with good things to send down.
5265 *
5266 * This is a best effort solution, there is still a window where
5267 * using truncate to replace the contents of the file will
5268 * end up with a zero length file after a crash.
5269 */
5270 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5271 btrfs_add_ordered_operation(trans, root, inode);
5272
8082510e
YZ
5273 while (1) {
5274 ret = btrfs_truncate_inode_items(trans, root, inode,
5275 inode->i_size,
5276 BTRFS_EXTENT_DATA_KEY);
5277 if (ret != -EAGAIN)
5278 break;
39279cc3 5279
8082510e
YZ
5280 ret = btrfs_update_inode(trans, root, inode);
5281 BUG_ON(ret);
5f39d397 5282
8082510e
YZ
5283 nr = trans->blocks_used;
5284 btrfs_end_transaction(trans, root);
5285 btrfs_btree_balance_dirty(root, nr);
5286
5287 trans = btrfs_start_transaction(root, 1);
5288 btrfs_set_trans_block_group(trans, inode);
5289 }
5290
5291 if (ret == 0 && inode->i_nlink > 0) {
5292 ret = btrfs_orphan_del(trans, inode);
5293 BUG_ON(ret);
5294 }
5295
5296 ret = btrfs_update_inode(trans, root, inode);
7b128766
JB
5297 BUG_ON(ret);
5298
7b128766 5299 nr = trans->blocks_used;
89ce8a63 5300 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 5301 BUG_ON(ret);
d3c2fdcf 5302 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5303}
5304
d352ac68
CM
5305/*
5306 * create a new subvolume directory/inode (helper for the ioctl).
5307 */
d2fb3437 5308int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 5309 struct btrfs_root *new_root,
d2fb3437 5310 u64 new_dirid, u64 alloc_hint)
39279cc3 5311{
39279cc3 5312 struct inode *inode;
76dda93c 5313 int err;
00e4e6b3 5314 u64 index = 0;
39279cc3 5315
aec7477b 5316 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 5317 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 5318 if (IS_ERR(inode))
f46b5a66 5319 return PTR_ERR(inode);
39279cc3
CM
5320 inode->i_op = &btrfs_dir_inode_operations;
5321 inode->i_fop = &btrfs_dir_file_operations;
5322
39279cc3 5323 inode->i_nlink = 1;
dbe674a9 5324 btrfs_i_size_write(inode, 0);
3b96362c 5325
76dda93c
YZ
5326 err = btrfs_update_inode(trans, new_root, inode);
5327 BUG_ON(err);
cb8e7090 5328
76dda93c 5329 iput(inode);
cb8e7090 5330 return 0;
39279cc3
CM
5331}
5332
d352ac68
CM
5333/* helper function for file defrag and space balancing. This
5334 * forces readahead on a given range of bytes in an inode
5335 */
edbd8d4e 5336unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
5337 struct file_ra_state *ra, struct file *file,
5338 pgoff_t offset, pgoff_t last_index)
5339{
8e7bf94f 5340 pgoff_t req_size = last_index - offset + 1;
86479a04 5341
86479a04
CM
5342 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5343 return offset + req_size;
86479a04
CM
5344}
5345
39279cc3
CM
5346struct inode *btrfs_alloc_inode(struct super_block *sb)
5347{
5348 struct btrfs_inode *ei;
2ead6ae7 5349 struct inode *inode;
39279cc3
CM
5350
5351 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5352 if (!ei)
5353 return NULL;
2ead6ae7
YZ
5354
5355 ei->root = NULL;
5356 ei->space_info = NULL;
5357 ei->generation = 0;
5358 ei->sequence = 0;
15ee9bc7 5359 ei->last_trans = 0;
257c62e1 5360 ei->last_sub_trans = 0;
e02119d5 5361 ei->logged_trans = 0;
2ead6ae7
YZ
5362 ei->delalloc_bytes = 0;
5363 ei->reserved_bytes = 0;
5364 ei->disk_i_size = 0;
5365 ei->flags = 0;
5366 ei->index_cnt = (u64)-1;
5367 ei->last_unlink_trans = 0;
5368
5369 spin_lock_init(&ei->accounting_lock);
0ca1f7ce 5370 atomic_set(&ei->outstanding_extents, 0);
32c00aff 5371 ei->reserved_extents = 0;
2ead6ae7
YZ
5372
5373 ei->ordered_data_close = 0;
5374 ei->dummy_inode = 0;
5375 ei->force_compress = 0;
5376
5377 inode = &ei->vfs_inode;
5378 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
5379 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
5380 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
5381 mutex_init(&ei->log_mutex);
e6dcd2dc 5382 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 5383 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 5384 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 5385 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
5386 RB_CLEAR_NODE(&ei->rb_node);
5387
5388 return inode;
39279cc3
CM
5389}
5390
5391void btrfs_destroy_inode(struct inode *inode)
5392{
e6dcd2dc 5393 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
5394 struct btrfs_root *root = BTRFS_I(inode)->root;
5395
39279cc3
CM
5396 WARN_ON(!list_empty(&inode->i_dentry));
5397 WARN_ON(inode->i_data.nrpages);
0ca1f7ce
YZ
5398 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
5399 WARN_ON(BTRFS_I(inode)->reserved_extents);
39279cc3 5400
a6dbd429
JB
5401 /*
5402 * This can happen where we create an inode, but somebody else also
5403 * created the same inode and we need to destroy the one we already
5404 * created.
5405 */
5406 if (!root)
5407 goto free;
5408
5a3f23d5
CM
5409 /*
5410 * Make sure we're properly removed from the ordered operation
5411 * lists.
5412 */
5413 smp_mb();
5414 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5415 spin_lock(&root->fs_info->ordered_extent_lock);
5416 list_del_init(&BTRFS_I(inode)->ordered_operations);
5417 spin_unlock(&root->fs_info->ordered_extent_lock);
5418 }
5419
5420 spin_lock(&root->list_lock);
7b128766 5421 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
5422 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5423 inode->i_ino);
5424 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 5425 }
5a3f23d5 5426 spin_unlock(&root->list_lock);
7b128766 5427
d397712b 5428 while (1) {
e6dcd2dc
CM
5429 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5430 if (!ordered)
5431 break;
5432 else {
d397712b
CM
5433 printk(KERN_ERR "btrfs found ordered "
5434 "extent %llu %llu on inode cleanup\n",
5435 (unsigned long long)ordered->file_offset,
5436 (unsigned long long)ordered->len);
e6dcd2dc
CM
5437 btrfs_remove_ordered_extent(inode, ordered);
5438 btrfs_put_ordered_extent(ordered);
5439 btrfs_put_ordered_extent(ordered);
5440 }
5441 }
5d4f98a2 5442 inode_tree_del(inode);
5b21f2ed 5443 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 5444free:
39279cc3
CM
5445 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5446}
5447
76dda93c
YZ
5448void btrfs_drop_inode(struct inode *inode)
5449{
5450 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c
YZ
5451 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5452 generic_delete_inode(inode);
5453 else
5454 generic_drop_inode(inode);
5455}
5456
0ee0fda0 5457static void init_once(void *foo)
39279cc3
CM
5458{
5459 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5460
5461 inode_init_once(&ei->vfs_inode);
5462}
5463
5464void btrfs_destroy_cachep(void)
5465{
5466 if (btrfs_inode_cachep)
5467 kmem_cache_destroy(btrfs_inode_cachep);
5468 if (btrfs_trans_handle_cachep)
5469 kmem_cache_destroy(btrfs_trans_handle_cachep);
5470 if (btrfs_transaction_cachep)
5471 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
5472 if (btrfs_path_cachep)
5473 kmem_cache_destroy(btrfs_path_cachep);
5474}
5475
5476int btrfs_init_cachep(void)
5477{
9601e3f6
CH
5478 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5479 sizeof(struct btrfs_inode), 0,
5480 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
5481 if (!btrfs_inode_cachep)
5482 goto fail;
9601e3f6
CH
5483
5484 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5485 sizeof(struct btrfs_trans_handle), 0,
5486 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5487 if (!btrfs_trans_handle_cachep)
5488 goto fail;
9601e3f6
CH
5489
5490 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5491 sizeof(struct btrfs_transaction), 0,
5492 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5493 if (!btrfs_transaction_cachep)
5494 goto fail;
9601e3f6
CH
5495
5496 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5497 sizeof(struct btrfs_path), 0,
5498 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5499 if (!btrfs_path_cachep)
5500 goto fail;
9601e3f6 5501
39279cc3
CM
5502 return 0;
5503fail:
5504 btrfs_destroy_cachep();
5505 return -ENOMEM;
5506}
5507
5508static int btrfs_getattr(struct vfsmount *mnt,
5509 struct dentry *dentry, struct kstat *stat)
5510{
5511 struct inode *inode = dentry->d_inode;
5512 generic_fillattr(inode, stat);
3394e160 5513 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 5514 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
5515 stat->blocks = (inode_get_bytes(inode) +
5516 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
5517 return 0;
5518}
5519
d397712b
CM
5520static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5521 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
5522{
5523 struct btrfs_trans_handle *trans;
5524 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 5525 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
5526 struct inode *new_inode = new_dentry->d_inode;
5527 struct inode *old_inode = old_dentry->d_inode;
5528 struct timespec ctime = CURRENT_TIME;
00e4e6b3 5529 u64 index = 0;
4df27c4d 5530 u64 root_objectid;
39279cc3
CM
5531 int ret;
5532
f679a840
YZ
5533 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5534 return -EPERM;
5535
4df27c4d
YZ
5536 /* we only allow rename subvolume link between subvolumes */
5537 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
5538 return -EXDEV;
5539
4df27c4d
YZ
5540 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5541 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 5542 return -ENOTEMPTY;
5f39d397 5543
4df27c4d
YZ
5544 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5545 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5546 return -ENOTEMPTY;
5a3f23d5
CM
5547 /*
5548 * we're using rename to replace one file with another.
5549 * and the replacement file is large. Start IO on it now so
5550 * we don't add too much work to the end of the transaction
5551 */
4baf8c92 5552 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
5553 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5554 filemap_flush(old_inode->i_mapping);
5555
76dda93c
YZ
5556 /* close the racy window with snapshot create/destroy ioctl */
5557 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5558 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
5559 /*
5560 * We want to reserve the absolute worst case amount of items. So if
5561 * both inodes are subvols and we need to unlink them then that would
5562 * require 4 item modifications, but if they are both normal inodes it
5563 * would require 5 item modifications, so we'll assume their normal
5564 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5565 * should cover the worst case number of items we'll modify.
5566 */
5567 trans = btrfs_start_transaction(root, 20);
5568 if (IS_ERR(trans))
5569 return PTR_ERR(trans);
76dda93c 5570
a5719521 5571 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 5572
4df27c4d
YZ
5573 if (dest != root)
5574 btrfs_record_root_in_trans(trans, dest);
5f39d397 5575
a5719521
YZ
5576 ret = btrfs_set_inode_index(new_dir, &index);
5577 if (ret)
5578 goto out_fail;
5a3f23d5 5579
a5719521 5580 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5581 /* force full log commit if subvolume involved. */
5582 root->fs_info->last_trans_log_full_commit = trans->transid;
5583 } else {
a5719521
YZ
5584 ret = btrfs_insert_inode_ref(trans, dest,
5585 new_dentry->d_name.name,
5586 new_dentry->d_name.len,
5587 old_inode->i_ino,
5588 new_dir->i_ino, index);
5589 if (ret)
5590 goto out_fail;
4df27c4d
YZ
5591 /*
5592 * this is an ugly little race, but the rename is required
5593 * to make sure that if we crash, the inode is either at the
5594 * old name or the new one. pinning the log transaction lets
5595 * us make sure we don't allow a log commit to come in after
5596 * we unlink the name but before we add the new name back in.
5597 */
5598 btrfs_pin_log_trans(root);
5599 }
5a3f23d5
CM
5600 /*
5601 * make sure the inode gets flushed if it is replacing
5602 * something.
5603 */
5604 if (new_inode && new_inode->i_size &&
5605 old_inode && S_ISREG(old_inode->i_mode)) {
5606 btrfs_add_ordered_operation(trans, root, old_inode);
5607 }
5608
39279cc3
CM
5609 old_dir->i_ctime = old_dir->i_mtime = ctime;
5610 new_dir->i_ctime = new_dir->i_mtime = ctime;
5611 old_inode->i_ctime = ctime;
5f39d397 5612
12fcfd22
CM
5613 if (old_dentry->d_parent != new_dentry->d_parent)
5614 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5615
4df27c4d
YZ
5616 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5617 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5618 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5619 old_dentry->d_name.name,
5620 old_dentry->d_name.len);
5621 } else {
5622 btrfs_inc_nlink(old_dentry->d_inode);
5623 ret = btrfs_unlink_inode(trans, root, old_dir,
5624 old_dentry->d_inode,
5625 old_dentry->d_name.name,
5626 old_dentry->d_name.len);
5627 }
5628 BUG_ON(ret);
39279cc3
CM
5629
5630 if (new_inode) {
5631 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
5632 if (unlikely(new_inode->i_ino ==
5633 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5634 root_objectid = BTRFS_I(new_inode)->location.objectid;
5635 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5636 root_objectid,
5637 new_dentry->d_name.name,
5638 new_dentry->d_name.len);
5639 BUG_ON(new_inode->i_nlink == 0);
5640 } else {
5641 ret = btrfs_unlink_inode(trans, dest, new_dir,
5642 new_dentry->d_inode,
5643 new_dentry->d_name.name,
5644 new_dentry->d_name.len);
5645 }
5646 BUG_ON(ret);
7b128766 5647 if (new_inode->i_nlink == 0) {
e02119d5 5648 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 5649 BUG_ON(ret);
7b128766 5650 }
39279cc3 5651 }
aec7477b 5652
4df27c4d
YZ
5653 ret = btrfs_add_link(trans, new_dir, old_inode,
5654 new_dentry->d_name.name,
a5719521 5655 new_dentry->d_name.len, 0, index);
4df27c4d 5656 BUG_ON(ret);
39279cc3 5657
4df27c4d
YZ
5658 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5659 btrfs_log_new_name(trans, old_inode, old_dir,
5660 new_dentry->d_parent);
5661 btrfs_end_log_trans(root);
5662 }
39279cc3 5663out_fail:
ab78c84d 5664 btrfs_end_transaction_throttle(trans, root);
4df27c4d 5665
76dda93c
YZ
5666 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5667 up_read(&root->fs_info->subvol_sem);
9ed74f2d 5668
39279cc3
CM
5669 return ret;
5670}
5671
d352ac68
CM
5672/*
5673 * some fairly slow code that needs optimization. This walks the list
5674 * of all the inodes with pending delalloc and forces them to disk.
5675 */
24bbcf04 5676int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
5677{
5678 struct list_head *head = &root->fs_info->delalloc_inodes;
5679 struct btrfs_inode *binode;
5b21f2ed 5680 struct inode *inode;
ea8c2819 5681
c146afad
YZ
5682 if (root->fs_info->sb->s_flags & MS_RDONLY)
5683 return -EROFS;
5684
75eff68e 5685 spin_lock(&root->fs_info->delalloc_lock);
d397712b 5686 while (!list_empty(head)) {
ea8c2819
CM
5687 binode = list_entry(head->next, struct btrfs_inode,
5688 delalloc_inodes);
5b21f2ed
ZY
5689 inode = igrab(&binode->vfs_inode);
5690 if (!inode)
5691 list_del_init(&binode->delalloc_inodes);
75eff68e 5692 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 5693 if (inode) {
8c8bee1d 5694 filemap_flush(inode->i_mapping);
24bbcf04
YZ
5695 if (delay_iput)
5696 btrfs_add_delayed_iput(inode);
5697 else
5698 iput(inode);
5b21f2ed
ZY
5699 }
5700 cond_resched();
75eff68e 5701 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 5702 }
75eff68e 5703 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
5704
5705 /* the filemap_flush will queue IO into the worker threads, but
5706 * we have to make sure the IO is actually started and that
5707 * ordered extents get created before we return
5708 */
5709 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 5710 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 5711 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 5712 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
5713 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5714 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
5715 }
5716 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
5717 return 0;
5718}
5719
5da9d01b
YZ
5720int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput)
5721{
5722 struct btrfs_inode *binode;
5723 struct inode *inode = NULL;
5724
5725 spin_lock(&root->fs_info->delalloc_lock);
5726 while (!list_empty(&root->fs_info->delalloc_inodes)) {
5727 binode = list_entry(root->fs_info->delalloc_inodes.next,
5728 struct btrfs_inode, delalloc_inodes);
5729 inode = igrab(&binode->vfs_inode);
5730 if (inode) {
5731 list_move_tail(&binode->delalloc_inodes,
5732 &root->fs_info->delalloc_inodes);
5733 break;
5734 }
5735
5736 list_del_init(&binode->delalloc_inodes);
5737 cond_resched_lock(&root->fs_info->delalloc_lock);
5738 }
5739 spin_unlock(&root->fs_info->delalloc_lock);
5740
5741 if (inode) {
5742 write_inode_now(inode, 0);
5743 if (delay_iput)
5744 btrfs_add_delayed_iput(inode);
5745 else
5746 iput(inode);
5747 return 1;
5748 }
5749 return 0;
5750}
5751
39279cc3
CM
5752static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5753 const char *symname)
5754{
5755 struct btrfs_trans_handle *trans;
5756 struct btrfs_root *root = BTRFS_I(dir)->root;
5757 struct btrfs_path *path;
5758 struct btrfs_key key;
1832a6d5 5759 struct inode *inode = NULL;
39279cc3
CM
5760 int err;
5761 int drop_inode = 0;
5762 u64 objectid;
00e4e6b3 5763 u64 index = 0 ;
39279cc3
CM
5764 int name_len;
5765 int datasize;
5f39d397 5766 unsigned long ptr;
39279cc3 5767 struct btrfs_file_extent_item *ei;
5f39d397 5768 struct extent_buffer *leaf;
1832a6d5 5769 unsigned long nr = 0;
39279cc3
CM
5770
5771 name_len = strlen(symname) + 1;
5772 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5773 return -ENAMETOOLONG;
1832a6d5 5774
a22285a6
YZ
5775 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
5776 if (err)
5777 return err;
9ed74f2d
JB
5778 /*
5779 * 2 items for inode item and ref
5780 * 2 items for dir items
5781 * 1 item for xattr if selinux is on
5782 */
a22285a6
YZ
5783 trans = btrfs_start_transaction(root, 5);
5784 if (IS_ERR(trans))
5785 return PTR_ERR(trans);
1832a6d5 5786
39279cc3
CM
5787 btrfs_set_trans_block_group(trans, dir);
5788
aec7477b 5789 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
5790 dentry->d_name.len,
5791 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5792 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5793 &index);
39279cc3
CM
5794 err = PTR_ERR(inode);
5795 if (IS_ERR(inode))
5796 goto out_unlock;
5797
f34f57a3 5798 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
5799 if (err) {
5800 drop_inode = 1;
5801 goto out_unlock;
5802 }
5803
39279cc3 5804 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5805 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5806 if (err)
5807 drop_inode = 1;
5808 else {
5809 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5810 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5811 inode->i_fop = &btrfs_file_operations;
5812 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5813 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5814 }
39279cc3
CM
5815 btrfs_update_inode_block_group(trans, inode);
5816 btrfs_update_inode_block_group(trans, dir);
5817 if (drop_inode)
5818 goto out_unlock;
5819
5820 path = btrfs_alloc_path();
5821 BUG_ON(!path);
5822 key.objectid = inode->i_ino;
5823 key.offset = 0;
39279cc3
CM
5824 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5825 datasize = btrfs_file_extent_calc_inline_size(name_len);
5826 err = btrfs_insert_empty_item(trans, root, path, &key,
5827 datasize);
54aa1f4d
CM
5828 if (err) {
5829 drop_inode = 1;
5830 goto out_unlock;
5831 }
5f39d397
CM
5832 leaf = path->nodes[0];
5833 ei = btrfs_item_ptr(leaf, path->slots[0],
5834 struct btrfs_file_extent_item);
5835 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5836 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5837 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5838 btrfs_set_file_extent_encryption(leaf, ei, 0);
5839 btrfs_set_file_extent_compression(leaf, ei, 0);
5840 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5841 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5842
39279cc3 5843 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5844 write_extent_buffer(leaf, symname, ptr, name_len);
5845 btrfs_mark_buffer_dirty(leaf);
39279cc3 5846 btrfs_free_path(path);
5f39d397 5847
39279cc3
CM
5848 inode->i_op = &btrfs_symlink_inode_operations;
5849 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5850 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5851 inode_set_bytes(inode, name_len);
dbe674a9 5852 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5853 err = btrfs_update_inode(trans, root, inode);
5854 if (err)
5855 drop_inode = 1;
39279cc3
CM
5856
5857out_unlock:
d3c2fdcf 5858 nr = trans->blocks_used;
ab78c84d 5859 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
5860 if (drop_inode) {
5861 inode_dec_link_count(inode);
5862 iput(inode);
5863 }
d3c2fdcf 5864 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5865 return err;
5866}
16432985 5867
5a303d5d 5868static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
d1ea6a61 5869 u64 alloc_hint, int mode, loff_t actual_len)
d899e052 5870{
5a303d5d 5871 struct btrfs_trans_handle *trans;
d899e052
YZ
5872 struct btrfs_root *root = BTRFS_I(inode)->root;
5873 struct btrfs_key ins;
d899e052
YZ
5874 u64 cur_offset = start;
5875 u64 num_bytes = end - start;
5876 int ret = 0;
d1ea6a61 5877 u64 i_size;
d899e052 5878
d899e052 5879 while (num_bytes > 0) {
a22285a6
YZ
5880 trans = btrfs_start_transaction(root, 3);
5881 if (IS_ERR(trans)) {
5882 ret = PTR_ERR(trans);
5883 break;
5884 }
3a1abec9 5885
287a0ab9 5886 ret = btrfs_reserve_extent(trans, root, num_bytes,
d899e052
YZ
5887 root->sectorsize, 0, alloc_hint,
5888 (u64)-1, &ins, 1);
5889 if (ret) {
a22285a6
YZ
5890 btrfs_end_transaction(trans, root);
5891 break;
d899e052 5892 }
5a303d5d 5893
d899e052
YZ
5894 ret = insert_reserved_file_extent(trans, inode,
5895 cur_offset, ins.objectid,
5896 ins.offset, ins.offset,
920bbbfb 5897 ins.offset, 0, 0, 0,
d899e052
YZ
5898 BTRFS_FILE_EXTENT_PREALLOC);
5899 BUG_ON(ret);
a1ed835e
CM
5900 btrfs_drop_extent_cache(inode, cur_offset,
5901 cur_offset + ins.offset -1, 0);
5a303d5d 5902
d899e052
YZ
5903 num_bytes -= ins.offset;
5904 cur_offset += ins.offset;
5905 alloc_hint = ins.objectid + ins.offset;
5a303d5d 5906
d899e052 5907 inode->i_ctime = CURRENT_TIME;
6cbff00f 5908 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 5909 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
23b5c509
AK
5910 (actual_len > inode->i_size) &&
5911 (cur_offset > inode->i_size)) {
5912
d1ea6a61
AK
5913 if (cur_offset > actual_len)
5914 i_size = actual_len;
5915 else
5916 i_size = cur_offset;
5917 i_size_write(inode, i_size);
5918 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
5919 }
5920
d899e052
YZ
5921 ret = btrfs_update_inode(trans, root, inode);
5922 BUG_ON(ret);
d899e052 5923
5a303d5d 5924 btrfs_end_transaction(trans, root);
5a303d5d 5925 }
d899e052
YZ
5926 return ret;
5927}
5928
5929static long btrfs_fallocate(struct inode *inode, int mode,
5930 loff_t offset, loff_t len)
5931{
2ac55d41 5932 struct extent_state *cached_state = NULL;
d899e052
YZ
5933 u64 cur_offset;
5934 u64 last_byte;
5935 u64 alloc_start;
5936 u64 alloc_end;
5937 u64 alloc_hint = 0;
e980b50c 5938 u64 locked_end;
d899e052
YZ
5939 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5940 struct extent_map *em;
5941 int ret;
5942
5943 alloc_start = offset & ~mask;
5944 alloc_end = (offset + len + mask) & ~mask;
5945
546888da
CM
5946 /*
5947 * wait for ordered IO before we have any locks. We'll loop again
5948 * below with the locks held.
5949 */
5950 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5951
d899e052
YZ
5952 mutex_lock(&inode->i_mutex);
5953 if (alloc_start > inode->i_size) {
5954 ret = btrfs_cont_expand(inode, alloc_start);
5955 if (ret)
5956 goto out;
5957 }
5958
0ca1f7ce 5959 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
a970b0a1
JB
5960 if (ret)
5961 goto out;
5962
e980b50c 5963 locked_end = alloc_end - 1;
d899e052
YZ
5964 while (1) {
5965 struct btrfs_ordered_extent *ordered;
546888da 5966
546888da
CM
5967 /* the extent lock is ordered inside the running
5968 * transaction
5969 */
2ac55d41
JB
5970 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
5971 locked_end, 0, &cached_state, GFP_NOFS);
d899e052
YZ
5972 ordered = btrfs_lookup_first_ordered_extent(inode,
5973 alloc_end - 1);
5974 if (ordered &&
5975 ordered->file_offset + ordered->len > alloc_start &&
5976 ordered->file_offset < alloc_end) {
5977 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
5978 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
5979 alloc_start, locked_end,
5980 &cached_state, GFP_NOFS);
546888da
CM
5981 /*
5982 * we can't wait on the range with the transaction
5983 * running or with the extent lock held
5984 */
d899e052
YZ
5985 btrfs_wait_ordered_range(inode, alloc_start,
5986 alloc_end - alloc_start);
5987 } else {
5988 if (ordered)
5989 btrfs_put_ordered_extent(ordered);
5990 break;
5991 }
5992 }
5993
5994 cur_offset = alloc_start;
5995 while (1) {
5996 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5997 alloc_end - cur_offset, 0);
5998 BUG_ON(IS_ERR(em) || !em);
5999 last_byte = min(extent_map_end(em), alloc_end);
6000 last_byte = (last_byte + mask) & ~mask;
5a303d5d
YZ
6001 if (em->block_start == EXTENT_MAP_HOLE ||
6002 (cur_offset >= inode->i_size &&
6003 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6004 ret = prealloc_file_range(inode,
6005 cur_offset, last_byte,
d1ea6a61 6006 alloc_hint, mode, offset+len);
d899e052
YZ
6007 if (ret < 0) {
6008 free_extent_map(em);
6009 break;
6010 }
6011 }
6012 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
6013 alloc_hint = em->block_start;
6014 free_extent_map(em);
6015
6016 cur_offset = last_byte;
6017 if (cur_offset >= alloc_end) {
6018 ret = 0;
6019 break;
6020 }
6021 }
2ac55d41
JB
6022 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
6023 &cached_state, GFP_NOFS);
546888da 6024
0ca1f7ce 6025 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
d899e052
YZ
6026out:
6027 mutex_unlock(&inode->i_mutex);
6028 return ret;
6029}
6030
e6dcd2dc
CM
6031static int btrfs_set_page_dirty(struct page *page)
6032{
e6dcd2dc
CM
6033 return __set_page_dirty_nobuffers(page);
6034}
6035
0ee0fda0 6036static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 6037{
6cbff00f 6038 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 6039 return -EACCES;
33268eaf 6040 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 6041}
39279cc3 6042
6e1d5dcc 6043static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 6044 .getattr = btrfs_getattr,
39279cc3
CM
6045 .lookup = btrfs_lookup,
6046 .create = btrfs_create,
6047 .unlink = btrfs_unlink,
6048 .link = btrfs_link,
6049 .mkdir = btrfs_mkdir,
6050 .rmdir = btrfs_rmdir,
6051 .rename = btrfs_rename,
6052 .symlink = btrfs_symlink,
6053 .setattr = btrfs_setattr,
618e21d5 6054 .mknod = btrfs_mknod,
95819c05
CH
6055 .setxattr = btrfs_setxattr,
6056 .getxattr = btrfs_getxattr,
5103e947 6057 .listxattr = btrfs_listxattr,
95819c05 6058 .removexattr = btrfs_removexattr,
fdebe2bd 6059 .permission = btrfs_permission,
39279cc3 6060};
6e1d5dcc 6061static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 6062 .lookup = btrfs_lookup,
fdebe2bd 6063 .permission = btrfs_permission,
39279cc3 6064};
76dda93c 6065
828c0950 6066static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
6067 .llseek = generic_file_llseek,
6068 .read = generic_read_dir,
cbdf5a24 6069 .readdir = btrfs_real_readdir,
34287aa3 6070 .unlocked_ioctl = btrfs_ioctl,
39279cc3 6071#ifdef CONFIG_COMPAT
34287aa3 6072 .compat_ioctl = btrfs_ioctl,
39279cc3 6073#endif
6bf13c0c 6074 .release = btrfs_release_file,
e02119d5 6075 .fsync = btrfs_sync_file,
39279cc3
CM
6076};
6077
d1310b2e 6078static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 6079 .fill_delalloc = run_delalloc_range,
065631f6 6080 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 6081 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 6082 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 6083 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 6084 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 6085 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
6086 .set_bit_hook = btrfs_set_bit_hook,
6087 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
6088 .merge_extent_hook = btrfs_merge_extent_hook,
6089 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
6090};
6091
35054394
CM
6092/*
6093 * btrfs doesn't support the bmap operation because swapfiles
6094 * use bmap to make a mapping of extents in the file. They assume
6095 * these extents won't change over the life of the file and they
6096 * use the bmap result to do IO directly to the drive.
6097 *
6098 * the btrfs bmap call would return logical addresses that aren't
6099 * suitable for IO and they also will change frequently as COW
6100 * operations happen. So, swapfile + btrfs == corruption.
6101 *
6102 * For now we're avoiding this by dropping bmap.
6103 */
7f09410b 6104static const struct address_space_operations btrfs_aops = {
39279cc3
CM
6105 .readpage = btrfs_readpage,
6106 .writepage = btrfs_writepage,
b293f02e 6107 .writepages = btrfs_writepages,
3ab2fb5a 6108 .readpages = btrfs_readpages,
39279cc3 6109 .sync_page = block_sync_page,
16432985 6110 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
6111 .invalidatepage = btrfs_invalidatepage,
6112 .releasepage = btrfs_releasepage,
e6dcd2dc 6113 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 6114 .error_remove_page = generic_error_remove_page,
39279cc3
CM
6115};
6116
7f09410b 6117static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
6118 .readpage = btrfs_readpage,
6119 .writepage = btrfs_writepage,
2bf5a725
CM
6120 .invalidatepage = btrfs_invalidatepage,
6121 .releasepage = btrfs_releasepage,
39279cc3
CM
6122};
6123
6e1d5dcc 6124static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
6125 .truncate = btrfs_truncate,
6126 .getattr = btrfs_getattr,
6127 .setattr = btrfs_setattr,
95819c05
CH
6128 .setxattr = btrfs_setxattr,
6129 .getxattr = btrfs_getxattr,
5103e947 6130 .listxattr = btrfs_listxattr,
95819c05 6131 .removexattr = btrfs_removexattr,
fdebe2bd 6132 .permission = btrfs_permission,
d899e052 6133 .fallocate = btrfs_fallocate,
1506fcc8 6134 .fiemap = btrfs_fiemap,
39279cc3 6135};
6e1d5dcc 6136static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
6137 .getattr = btrfs_getattr,
6138 .setattr = btrfs_setattr,
fdebe2bd 6139 .permission = btrfs_permission,
95819c05
CH
6140 .setxattr = btrfs_setxattr,
6141 .getxattr = btrfs_getxattr,
33268eaf 6142 .listxattr = btrfs_listxattr,
95819c05 6143 .removexattr = btrfs_removexattr,
618e21d5 6144};
6e1d5dcc 6145static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
6146 .readlink = generic_readlink,
6147 .follow_link = page_follow_link_light,
6148 .put_link = page_put_link,
fdebe2bd 6149 .permission = btrfs_permission,
0279b4cd
JO
6150 .setxattr = btrfs_setxattr,
6151 .getxattr = btrfs_getxattr,
6152 .listxattr = btrfs_listxattr,
6153 .removexattr = btrfs_removexattr,
39279cc3 6154};
76dda93c 6155
82d339d9 6156const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
6157 .d_delete = btrfs_dentry_delete,
6158};