Btrfs: constify dentry_operations
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
4b4e25f2 39#include "compat.h"
39279cc3
CM
40#include "ctree.h"
41#include "disk-io.h"
42#include "transaction.h"
43#include "btrfs_inode.h"
44#include "ioctl.h"
45#include "print-tree.h"
0b86a832 46#include "volumes.h"
e6dcd2dc 47#include "ordered-data.h"
95819c05 48#include "xattr.h"
e02119d5 49#include "tree-log.h"
c8b97818 50#include "compression.h"
b4ce94de 51#include "locking.h"
39279cc3
CM
52
53struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56};
57
58static struct inode_operations btrfs_dir_inode_operations;
59static struct inode_operations btrfs_symlink_inode_operations;
60static struct inode_operations btrfs_dir_ro_inode_operations;
618e21d5 61static struct inode_operations btrfs_special_inode_operations;
39279cc3
CM
62static struct inode_operations btrfs_file_inode_operations;
63static struct address_space_operations btrfs_aops;
64static struct address_space_operations btrfs_symlink_aops;
65static struct file_operations btrfs_dir_file_operations;
d1310b2e 66static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
67
68static struct kmem_cache *btrfs_inode_cachep;
69struct kmem_cache *btrfs_trans_handle_cachep;
70struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
71struct kmem_cache *btrfs_path_cachep;
72
73#define S_SHIFT 12
74static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82};
83
7b128766 84static void btrfs_truncate(struct inode *inode);
c8b97818 85static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
86static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
7b128766 90
0279b4cd
JO
91static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
92{
93 int err;
94
95 err = btrfs_init_acl(inode, dir);
96 if (!err)
97 err = btrfs_xattr_security_init(inode, dir);
98 return err;
99}
100
c8b97818
CM
101/*
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
105 */
d397712b 106static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
110{
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
115 char *kaddr;
116 unsigned long ptr;
117 struct btrfs_file_extent_item *ei;
118 int err = 0;
119 int ret;
120 size_t cur_size = size;
121 size_t datasize;
122 unsigned long offset;
123 int use_compress = 0;
124
125 if (compressed_size && compressed_pages) {
126 use_compress = 1;
127 cur_size = compressed_size;
128 }
129
d397712b
CM
130 path = btrfs_alloc_path();
131 if (!path)
c8b97818
CM
132 return -ENOMEM;
133
b9473439 134 path->leave_spinning = 1;
c8b97818
CM
135 btrfs_set_trans_block_group(trans, inode);
136
137 key.objectid = inode->i_ino;
138 key.offset = start;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
144 datasize);
145 BUG_ON(ret);
146 if (ret) {
147 err = ret;
c8b97818
CM
148 goto fail;
149 }
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
159
160 if (use_compress) {
161 struct page *cpage;
162 int i = 0;
d397712b 163 while (compressed_size > 0) {
c8b97818 164 cpage = compressed_pages[i];
5b050f04 165 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
166 PAGE_CACHE_SIZE);
167
b9473439 168 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 170 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
171
172 i++;
173 ptr += cur_size;
174 compressed_size -= cur_size;
175 }
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
178 } else {
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
187 }
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
190
191 BTRFS_I(inode)->disk_i_size = inode->i_size;
192 btrfs_update_inode(trans, root, inode);
193 return 0;
194fail:
195 btrfs_free_path(path);
196 return err;
197}
198
199
200/*
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
204 */
7f366cfe 205static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
206 struct btrfs_root *root,
207 struct inode *inode, u64 start, u64 end,
208 size_t compressed_size,
209 struct page **compressed_pages)
210{
211 u64 isize = i_size_read(inode);
212 u64 actual_end = min(end + 1, isize);
213 u64 inline_len = actual_end - start;
214 u64 aligned_end = (end + root->sectorsize - 1) &
215 ~((u64)root->sectorsize - 1);
216 u64 hint_byte;
217 u64 data_len = inline_len;
218 int ret;
219
220 if (compressed_size)
221 data_len = compressed_size;
222
223 if (start > 0 ||
70b99e69 224 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 (!compressed_size &&
227 (actual_end & (root->sectorsize - 1)) == 0) ||
228 end + 1 < isize ||
229 data_len > root->fs_info->max_inline) {
230 return 1;
231 }
232
c8b97818 233 ret = btrfs_drop_extents(trans, root, inode, start,
a1ed835e
CM
234 aligned_end, aligned_end, start,
235 &hint_byte, 1);
c8b97818
CM
236 BUG_ON(ret);
237
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
242 compressed_pages);
243 BUG_ON(ret);
a1ed835e 244 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
245 return 0;
246}
247
771ed689
CM
248struct async_extent {
249 u64 start;
250 u64 ram_size;
251 u64 compressed_size;
252 struct page **pages;
253 unsigned long nr_pages;
254 struct list_head list;
255};
256
257struct async_cow {
258 struct inode *inode;
259 struct btrfs_root *root;
260 struct page *locked_page;
261 u64 start;
262 u64 end;
263 struct list_head extents;
264 struct btrfs_work work;
265};
266
267static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
269 u64 compressed_size,
270 struct page **pages,
271 unsigned long nr_pages)
272{
273 struct async_extent *async_extent;
274
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
282 return 0;
283}
284
d352ac68 285/*
771ed689
CM
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
c8b97818 289 *
771ed689
CM
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
c8b97818 295 *
771ed689
CM
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
d352ac68 300 */
771ed689
CM
301static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
303 u64 start, u64 end,
304 struct async_cow *async_cow,
305 int *num_added)
b888db2b
CM
306{
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
db94535d 309 u64 num_bytes;
c8b97818
CM
310 u64 orig_start;
311 u64 disk_num_bytes;
db94535d 312 u64 blocksize = root->sectorsize;
c8b97818 313 u64 actual_end;
42dc7bab 314 u64 isize = i_size_read(inode);
e6dcd2dc 315 int ret = 0;
c8b97818
CM
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
771ed689 322 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
323 int i;
324 int will_compress;
b888db2b 325
c8b97818
CM
326 orig_start = start;
327
42dc7bab 328 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
329again:
330 will_compress = 0;
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 333
f03d9301
CM
334 /*
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
340 *
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
343 */
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
346
c8b97818
CM
347 total_compressed = actual_end - start;
348
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
354 *
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
c8b97818
CM
358 */
359 total_compressed = min(total_compressed, max_uncompressed);
db94535d 360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 361 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
362 disk_num_bytes = num_bytes;
363 total_in = 0;
364 ret = 0;
db94535d 365
771ed689
CM
366 /*
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
c8b97818 370 */
6cbff00f 371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
c8b97818
CM
372 btrfs_test_opt(root, COMPRESS)) {
373 WARN_ON(pages);
cfbc246e 374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 375
c8b97818
CM
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
379 &total_in,
380 &total_compressed,
381 max_compressed);
382
383 if (!ret) {
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
387 char *kaddr;
388
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
391 */
392 if (offset) {
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
397 }
398 will_compress = 1;
399 }
400 }
401 if (start == 0) {
771ed689
CM
402 trans = btrfs_join_transaction(root, 1);
403 BUG_ON(!trans);
404 btrfs_set_trans_block_group(trans, inode);
405
c8b97818 406 /* lets try to make an inline extent */
771ed689 407 if (ret || total_in < (actual_end - start)) {
c8b97818 408 /* we didn't compress the entire range, try
771ed689 409 * to make an uncompressed inline extent.
c8b97818
CM
410 */
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
413 } else {
771ed689 414 /* try making a compressed inline extent */
c8b97818
CM
415 ret = cow_file_range_inline(trans, root, inode,
416 start, end,
417 total_compressed, pages);
418 }
771ed689 419 btrfs_end_transaction(trans, root);
c8b97818 420 if (ret == 0) {
771ed689
CM
421 /*
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
425 */
c8b97818 426 extent_clear_unlock_delalloc(inode,
a791e35e
CM
427 &BTRFS_I(inode)->io_tree,
428 start, end, NULL,
429 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 430 EXTENT_CLEAR_DELALLOC |
32c00aff 431 EXTENT_CLEAR_ACCOUNTING |
a791e35e 432 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c8b97818
CM
433 ret = 0;
434 goto free_pages_out;
435 }
436 }
437
438 if (will_compress) {
439 /*
440 * we aren't doing an inline extent round the compressed size
441 * up to a block size boundary so the allocator does sane
442 * things
443 */
444 total_compressed = (total_compressed + blocksize - 1) &
445 ~(blocksize - 1);
446
447 /*
448 * one last check to make sure the compression is really a
449 * win, compare the page count read with the blocks on disk
450 */
451 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
452 ~(PAGE_CACHE_SIZE - 1);
453 if (total_compressed >= total_in) {
454 will_compress = 0;
455 } else {
456 disk_num_bytes = total_compressed;
457 num_bytes = total_in;
458 }
459 }
460 if (!will_compress && pages) {
461 /*
462 * the compression code ran but failed to make things smaller,
463 * free any pages it allocated and our page pointer array
464 */
465 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 466 WARN_ON(pages[i]->mapping);
c8b97818
CM
467 page_cache_release(pages[i]);
468 }
469 kfree(pages);
470 pages = NULL;
471 total_compressed = 0;
472 nr_pages_ret = 0;
473
474 /* flag the file so we don't compress in the future */
6cbff00f 475 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
c8b97818 476 }
771ed689
CM
477 if (will_compress) {
478 *num_added += 1;
c8b97818 479
771ed689
CM
480 /* the async work queues will take care of doing actual
481 * allocation on disk for these compressed pages,
482 * and will submit them to the elevator.
483 */
484 add_async_extent(async_cow, start, num_bytes,
485 total_compressed, pages, nr_pages_ret);
179e29e4 486
42dc7bab 487 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
488 start += num_bytes;
489 pages = NULL;
490 cond_resched();
491 goto again;
492 }
493 } else {
f03d9301 494cleanup_and_bail_uncompressed:
771ed689
CM
495 /*
496 * No compression, but we still need to write the pages in
497 * the file we've been given so far. redirty the locked
498 * page if it corresponds to our extent and set things up
499 * for the async work queue to run cow_file_range to do
500 * the normal delalloc dance
501 */
502 if (page_offset(locked_page) >= start &&
503 page_offset(locked_page) <= end) {
504 __set_page_dirty_nobuffers(locked_page);
505 /* unlocked later on in the async handlers */
506 }
507 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
508 *num_added += 1;
509 }
3b951516 510
771ed689
CM
511out:
512 return 0;
513
514free_pages_out:
515 for (i = 0; i < nr_pages_ret; i++) {
516 WARN_ON(pages[i]->mapping);
517 page_cache_release(pages[i]);
518 }
d397712b 519 kfree(pages);
771ed689
CM
520
521 goto out;
522}
523
524/*
525 * phase two of compressed writeback. This is the ordered portion
526 * of the code, which only gets called in the order the work was
527 * queued. We walk all the async extents created by compress_file_range
528 * and send them down to the disk.
529 */
530static noinline int submit_compressed_extents(struct inode *inode,
531 struct async_cow *async_cow)
532{
533 struct async_extent *async_extent;
534 u64 alloc_hint = 0;
535 struct btrfs_trans_handle *trans;
536 struct btrfs_key ins;
537 struct extent_map *em;
538 struct btrfs_root *root = BTRFS_I(inode)->root;
539 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540 struct extent_io_tree *io_tree;
541 int ret;
542
543 if (list_empty(&async_cow->extents))
544 return 0;
545
546 trans = btrfs_join_transaction(root, 1);
547
d397712b 548 while (!list_empty(&async_cow->extents)) {
771ed689
CM
549 async_extent = list_entry(async_cow->extents.next,
550 struct async_extent, list);
551 list_del(&async_extent->list);
c8b97818 552
771ed689
CM
553 io_tree = &BTRFS_I(inode)->io_tree;
554
555 /* did the compression code fall back to uncompressed IO? */
556 if (!async_extent->pages) {
557 int page_started = 0;
558 unsigned long nr_written = 0;
559
560 lock_extent(io_tree, async_extent->start,
d397712b
CM
561 async_extent->start +
562 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
563
564 /* allocate blocks */
565 cow_file_range(inode, async_cow->locked_page,
566 async_extent->start,
567 async_extent->start +
568 async_extent->ram_size - 1,
569 &page_started, &nr_written, 0);
570
571 /*
572 * if page_started, cow_file_range inserted an
573 * inline extent and took care of all the unlocking
574 * and IO for us. Otherwise, we need to submit
575 * all those pages down to the drive.
576 */
577 if (!page_started)
578 extent_write_locked_range(io_tree,
579 inode, async_extent->start,
d397712b 580 async_extent->start +
771ed689
CM
581 async_extent->ram_size - 1,
582 btrfs_get_extent,
583 WB_SYNC_ALL);
584 kfree(async_extent);
585 cond_resched();
586 continue;
587 }
588
589 lock_extent(io_tree, async_extent->start,
590 async_extent->start + async_extent->ram_size - 1,
591 GFP_NOFS);
c8b97818 592 /*
771ed689
CM
593 * here we're doing allocation and writeback of the
594 * compressed pages
c8b97818 595 */
771ed689
CM
596 btrfs_drop_extent_cache(inode, async_extent->start,
597 async_extent->start +
598 async_extent->ram_size - 1, 0);
599
600 ret = btrfs_reserve_extent(trans, root,
601 async_extent->compressed_size,
602 async_extent->compressed_size,
603 0, alloc_hint,
604 (u64)-1, &ins, 1);
605 BUG_ON(ret);
606 em = alloc_extent_map(GFP_NOFS);
607 em->start = async_extent->start;
608 em->len = async_extent->ram_size;
445a6944 609 em->orig_start = em->start;
c8b97818 610
771ed689
CM
611 em->block_start = ins.objectid;
612 em->block_len = ins.offset;
613 em->bdev = root->fs_info->fs_devices->latest_bdev;
614 set_bit(EXTENT_FLAG_PINNED, &em->flags);
615 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
616
d397712b 617 while (1) {
890871be 618 write_lock(&em_tree->lock);
771ed689 619 ret = add_extent_mapping(em_tree, em);
890871be 620 write_unlock(&em_tree->lock);
771ed689
CM
621 if (ret != -EEXIST) {
622 free_extent_map(em);
623 break;
624 }
625 btrfs_drop_extent_cache(inode, async_extent->start,
626 async_extent->start +
627 async_extent->ram_size - 1, 0);
628 }
629
630 ret = btrfs_add_ordered_extent(inode, async_extent->start,
631 ins.objectid,
632 async_extent->ram_size,
633 ins.offset,
634 BTRFS_ORDERED_COMPRESSED);
635 BUG_ON(ret);
636
637 btrfs_end_transaction(trans, root);
638
639 /*
640 * clear dirty, set writeback and unlock the pages.
641 */
642 extent_clear_unlock_delalloc(inode,
a791e35e
CM
643 &BTRFS_I(inode)->io_tree,
644 async_extent->start,
645 async_extent->start +
646 async_extent->ram_size - 1,
647 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
648 EXTENT_CLEAR_UNLOCK |
a3429ab7 649 EXTENT_CLEAR_DELALLOC |
a791e35e 650 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
651
652 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
653 async_extent->start,
654 async_extent->ram_size,
655 ins.objectid,
656 ins.offset, async_extent->pages,
657 async_extent->nr_pages);
771ed689
CM
658
659 BUG_ON(ret);
660 trans = btrfs_join_transaction(root, 1);
661 alloc_hint = ins.objectid + ins.offset;
662 kfree(async_extent);
663 cond_resched();
664 }
665
666 btrfs_end_transaction(trans, root);
667 return 0;
668}
669
670/*
671 * when extent_io.c finds a delayed allocation range in the file,
672 * the call backs end up in this code. The basic idea is to
673 * allocate extents on disk for the range, and create ordered data structs
674 * in ram to track those extents.
675 *
676 * locked_page is the page that writepage had locked already. We use
677 * it to make sure we don't do extra locks or unlocks.
678 *
679 * *page_started is set to one if we unlock locked_page and do everything
680 * required to start IO on it. It may be clean and already done with
681 * IO when we return.
682 */
683static noinline int cow_file_range(struct inode *inode,
684 struct page *locked_page,
685 u64 start, u64 end, int *page_started,
686 unsigned long *nr_written,
687 int unlock)
688{
689 struct btrfs_root *root = BTRFS_I(inode)->root;
690 struct btrfs_trans_handle *trans;
691 u64 alloc_hint = 0;
692 u64 num_bytes;
693 unsigned long ram_size;
694 u64 disk_num_bytes;
695 u64 cur_alloc_size;
696 u64 blocksize = root->sectorsize;
697 u64 actual_end;
42dc7bab 698 u64 isize = i_size_read(inode);
771ed689
CM
699 struct btrfs_key ins;
700 struct extent_map *em;
701 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702 int ret = 0;
703
704 trans = btrfs_join_transaction(root, 1);
705 BUG_ON(!trans);
706 btrfs_set_trans_block_group(trans, inode);
707
42dc7bab 708 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
709
710 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711 num_bytes = max(blocksize, num_bytes);
712 disk_num_bytes = num_bytes;
713 ret = 0;
714
715 if (start == 0) {
716 /* lets try to make an inline extent */
717 ret = cow_file_range_inline(trans, root, inode,
718 start, end, 0, NULL);
719 if (ret == 0) {
720 extent_clear_unlock_delalloc(inode,
a791e35e
CM
721 &BTRFS_I(inode)->io_tree,
722 start, end, NULL,
723 EXTENT_CLEAR_UNLOCK_PAGE |
724 EXTENT_CLEAR_UNLOCK |
725 EXTENT_CLEAR_DELALLOC |
32c00aff 726 EXTENT_CLEAR_ACCOUNTING |
a791e35e
CM
727 EXTENT_CLEAR_DIRTY |
728 EXTENT_SET_WRITEBACK |
729 EXTENT_END_WRITEBACK);
771ed689
CM
730 *nr_written = *nr_written +
731 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
732 *page_started = 1;
733 ret = 0;
734 goto out;
735 }
736 }
737
738 BUG_ON(disk_num_bytes >
739 btrfs_super_total_bytes(&root->fs_info->super_copy));
740
b917b7c3
CM
741
742 read_lock(&BTRFS_I(inode)->extent_tree.lock);
743 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
744 start, num_bytes);
745 if (em) {
746 alloc_hint = em->block_start;
747 free_extent_map(em);
748 }
749 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
771ed689
CM
750 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
751
d397712b 752 while (disk_num_bytes > 0) {
a791e35e
CM
753 unsigned long op;
754
c8b97818 755 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 756 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 757 root->sectorsize, 0, alloc_hint,
e6dcd2dc 758 (u64)-1, &ins, 1);
d397712b
CM
759 BUG_ON(ret);
760
e6dcd2dc
CM
761 em = alloc_extent_map(GFP_NOFS);
762 em->start = start;
445a6944 763 em->orig_start = em->start;
771ed689
CM
764 ram_size = ins.offset;
765 em->len = ins.offset;
c8b97818 766
e6dcd2dc 767 em->block_start = ins.objectid;
c8b97818 768 em->block_len = ins.offset;
e6dcd2dc 769 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 770 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 771
d397712b 772 while (1) {
890871be 773 write_lock(&em_tree->lock);
e6dcd2dc 774 ret = add_extent_mapping(em_tree, em);
890871be 775 write_unlock(&em_tree->lock);
e6dcd2dc
CM
776 if (ret != -EEXIST) {
777 free_extent_map(em);
778 break;
779 }
780 btrfs_drop_extent_cache(inode, start,
c8b97818 781 start + ram_size - 1, 0);
e6dcd2dc
CM
782 }
783
98d20f67 784 cur_alloc_size = ins.offset;
e6dcd2dc 785 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 786 ram_size, cur_alloc_size, 0);
e6dcd2dc 787 BUG_ON(ret);
c8b97818 788
17d217fe
YZ
789 if (root->root_key.objectid ==
790 BTRFS_DATA_RELOC_TREE_OBJECTID) {
791 ret = btrfs_reloc_clone_csums(inode, start,
792 cur_alloc_size);
793 BUG_ON(ret);
794 }
795
d397712b 796 if (disk_num_bytes < cur_alloc_size)
3b951516 797 break;
d397712b 798
c8b97818
CM
799 /* we're not doing compressed IO, don't unlock the first
800 * page (which the caller expects to stay locked), don't
801 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
802 *
803 * Do set the Private2 bit so we know this page was properly
804 * setup for writepage
c8b97818 805 */
a791e35e
CM
806 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
807 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
808 EXTENT_SET_PRIVATE2;
809
c8b97818
CM
810 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
811 start, start + ram_size - 1,
a791e35e 812 locked_page, op);
c8b97818 813 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
814 num_bytes -= cur_alloc_size;
815 alloc_hint = ins.objectid + ins.offset;
816 start += cur_alloc_size;
b888db2b 817 }
b888db2b 818out:
771ed689 819 ret = 0;
b888db2b 820 btrfs_end_transaction(trans, root);
c8b97818 821
be20aa9d 822 return ret;
771ed689 823}
c8b97818 824
771ed689
CM
825/*
826 * work queue call back to started compression on a file and pages
827 */
828static noinline void async_cow_start(struct btrfs_work *work)
829{
830 struct async_cow *async_cow;
831 int num_added = 0;
832 async_cow = container_of(work, struct async_cow, work);
833
834 compress_file_range(async_cow->inode, async_cow->locked_page,
835 async_cow->start, async_cow->end, async_cow,
836 &num_added);
837 if (num_added == 0)
838 async_cow->inode = NULL;
839}
840
841/*
842 * work queue call back to submit previously compressed pages
843 */
844static noinline void async_cow_submit(struct btrfs_work *work)
845{
846 struct async_cow *async_cow;
847 struct btrfs_root *root;
848 unsigned long nr_pages;
849
850 async_cow = container_of(work, struct async_cow, work);
851
852 root = async_cow->root;
853 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
854 PAGE_CACHE_SHIFT;
855
856 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
857
858 if (atomic_read(&root->fs_info->async_delalloc_pages) <
859 5 * 1042 * 1024 &&
860 waitqueue_active(&root->fs_info->async_submit_wait))
861 wake_up(&root->fs_info->async_submit_wait);
862
d397712b 863 if (async_cow->inode)
771ed689 864 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 865}
c8b97818 866
771ed689
CM
867static noinline void async_cow_free(struct btrfs_work *work)
868{
869 struct async_cow *async_cow;
870 async_cow = container_of(work, struct async_cow, work);
871 kfree(async_cow);
872}
873
874static int cow_file_range_async(struct inode *inode, struct page *locked_page,
875 u64 start, u64 end, int *page_started,
876 unsigned long *nr_written)
877{
878 struct async_cow *async_cow;
879 struct btrfs_root *root = BTRFS_I(inode)->root;
880 unsigned long nr_pages;
881 u64 cur_end;
882 int limit = 10 * 1024 * 1042;
883
a3429ab7
CM
884 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
885 1, 0, NULL, GFP_NOFS);
d397712b 886 while (start < end) {
771ed689
CM
887 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
888 async_cow->inode = inode;
889 async_cow->root = root;
890 async_cow->locked_page = locked_page;
891 async_cow->start = start;
892
6cbff00f 893 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
894 cur_end = end;
895 else
896 cur_end = min(end, start + 512 * 1024 - 1);
897
898 async_cow->end = cur_end;
899 INIT_LIST_HEAD(&async_cow->extents);
900
901 async_cow->work.func = async_cow_start;
902 async_cow->work.ordered_func = async_cow_submit;
903 async_cow->work.ordered_free = async_cow_free;
904 async_cow->work.flags = 0;
905
771ed689
CM
906 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
907 PAGE_CACHE_SHIFT;
908 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
909
910 btrfs_queue_worker(&root->fs_info->delalloc_workers,
911 &async_cow->work);
912
913 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
914 wait_event(root->fs_info->async_submit_wait,
915 (atomic_read(&root->fs_info->async_delalloc_pages) <
916 limit));
917 }
918
d397712b 919 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
920 atomic_read(&root->fs_info->async_delalloc_pages)) {
921 wait_event(root->fs_info->async_submit_wait,
922 (atomic_read(&root->fs_info->async_delalloc_pages) ==
923 0));
924 }
925
926 *nr_written += nr_pages;
927 start = cur_end + 1;
928 }
929 *page_started = 1;
930 return 0;
be20aa9d
CM
931}
932
d397712b 933static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
934 u64 bytenr, u64 num_bytes)
935{
936 int ret;
937 struct btrfs_ordered_sum *sums;
938 LIST_HEAD(list);
939
07d400a6
YZ
940 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
941 bytenr + num_bytes - 1, &list);
17d217fe
YZ
942 if (ret == 0 && list_empty(&list))
943 return 0;
944
945 while (!list_empty(&list)) {
946 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
947 list_del(&sums->list);
948 kfree(sums);
949 }
950 return 1;
951}
952
d352ac68
CM
953/*
954 * when nowcow writeback call back. This checks for snapshots or COW copies
955 * of the extents that exist in the file, and COWs the file as required.
956 *
957 * If no cow copies or snapshots exist, we write directly to the existing
958 * blocks on disk
959 */
7f366cfe
CM
960static noinline int run_delalloc_nocow(struct inode *inode,
961 struct page *locked_page,
771ed689
CM
962 u64 start, u64 end, int *page_started, int force,
963 unsigned long *nr_written)
be20aa9d 964{
be20aa9d 965 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 966 struct btrfs_trans_handle *trans;
be20aa9d 967 struct extent_buffer *leaf;
be20aa9d 968 struct btrfs_path *path;
80ff3856 969 struct btrfs_file_extent_item *fi;
be20aa9d 970 struct btrfs_key found_key;
80ff3856
YZ
971 u64 cow_start;
972 u64 cur_offset;
973 u64 extent_end;
5d4f98a2 974 u64 extent_offset;
80ff3856
YZ
975 u64 disk_bytenr;
976 u64 num_bytes;
977 int extent_type;
978 int ret;
d899e052 979 int type;
80ff3856
YZ
980 int nocow;
981 int check_prev = 1;
be20aa9d
CM
982
983 path = btrfs_alloc_path();
984 BUG_ON(!path);
7ea394f1
YZ
985 trans = btrfs_join_transaction(root, 1);
986 BUG_ON(!trans);
be20aa9d 987
80ff3856
YZ
988 cow_start = (u64)-1;
989 cur_offset = start;
990 while (1) {
991 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
992 cur_offset, 0);
993 BUG_ON(ret < 0);
994 if (ret > 0 && path->slots[0] > 0 && check_prev) {
995 leaf = path->nodes[0];
996 btrfs_item_key_to_cpu(leaf, &found_key,
997 path->slots[0] - 1);
998 if (found_key.objectid == inode->i_ino &&
999 found_key.type == BTRFS_EXTENT_DATA_KEY)
1000 path->slots[0]--;
1001 }
1002 check_prev = 0;
1003next_slot:
1004 leaf = path->nodes[0];
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 BUG_ON(1);
1009 if (ret > 0)
1010 break;
1011 leaf = path->nodes[0];
1012 }
be20aa9d 1013
80ff3856
YZ
1014 nocow = 0;
1015 disk_bytenr = 0;
17d217fe 1016 num_bytes = 0;
80ff3856
YZ
1017 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1018
1019 if (found_key.objectid > inode->i_ino ||
1020 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1021 found_key.offset > end)
1022 break;
1023
1024 if (found_key.offset > cur_offset) {
1025 extent_end = found_key.offset;
1026 goto out_check;
1027 }
1028
1029 fi = btrfs_item_ptr(leaf, path->slots[0],
1030 struct btrfs_file_extent_item);
1031 extent_type = btrfs_file_extent_type(leaf, fi);
1032
d899e052
YZ
1033 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1034 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1035 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1036 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1037 extent_end = found_key.offset +
1038 btrfs_file_extent_num_bytes(leaf, fi);
1039 if (extent_end <= start) {
1040 path->slots[0]++;
1041 goto next_slot;
1042 }
17d217fe
YZ
1043 if (disk_bytenr == 0)
1044 goto out_check;
80ff3856
YZ
1045 if (btrfs_file_extent_compression(leaf, fi) ||
1046 btrfs_file_extent_encryption(leaf, fi) ||
1047 btrfs_file_extent_other_encoding(leaf, fi))
1048 goto out_check;
d899e052
YZ
1049 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1050 goto out_check;
d2fb3437 1051 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1052 goto out_check;
17d217fe 1053 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1054 found_key.offset -
1055 extent_offset, disk_bytenr))
17d217fe 1056 goto out_check;
5d4f98a2 1057 disk_bytenr += extent_offset;
17d217fe
YZ
1058 disk_bytenr += cur_offset - found_key.offset;
1059 num_bytes = min(end + 1, extent_end) - cur_offset;
1060 /*
1061 * force cow if csum exists in the range.
1062 * this ensure that csum for a given extent are
1063 * either valid or do not exist.
1064 */
1065 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1066 goto out_check;
80ff3856
YZ
1067 nocow = 1;
1068 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1069 extent_end = found_key.offset +
1070 btrfs_file_extent_inline_len(leaf, fi);
1071 extent_end = ALIGN(extent_end, root->sectorsize);
1072 } else {
1073 BUG_ON(1);
1074 }
1075out_check:
1076 if (extent_end <= start) {
1077 path->slots[0]++;
1078 goto next_slot;
1079 }
1080 if (!nocow) {
1081 if (cow_start == (u64)-1)
1082 cow_start = cur_offset;
1083 cur_offset = extent_end;
1084 if (cur_offset > end)
1085 break;
1086 path->slots[0]++;
1087 goto next_slot;
7ea394f1
YZ
1088 }
1089
1090 btrfs_release_path(root, path);
80ff3856
YZ
1091 if (cow_start != (u64)-1) {
1092 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1093 found_key.offset - 1, page_started,
1094 nr_written, 1);
80ff3856
YZ
1095 BUG_ON(ret);
1096 cow_start = (u64)-1;
7ea394f1 1097 }
80ff3856 1098
d899e052
YZ
1099 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1100 struct extent_map *em;
1101 struct extent_map_tree *em_tree;
1102 em_tree = &BTRFS_I(inode)->extent_tree;
1103 em = alloc_extent_map(GFP_NOFS);
1104 em->start = cur_offset;
445a6944 1105 em->orig_start = em->start;
d899e052
YZ
1106 em->len = num_bytes;
1107 em->block_len = num_bytes;
1108 em->block_start = disk_bytenr;
1109 em->bdev = root->fs_info->fs_devices->latest_bdev;
1110 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1111 while (1) {
890871be 1112 write_lock(&em_tree->lock);
d899e052 1113 ret = add_extent_mapping(em_tree, em);
890871be 1114 write_unlock(&em_tree->lock);
d899e052
YZ
1115 if (ret != -EEXIST) {
1116 free_extent_map(em);
1117 break;
1118 }
1119 btrfs_drop_extent_cache(inode, em->start,
1120 em->start + em->len - 1, 0);
1121 }
1122 type = BTRFS_ORDERED_PREALLOC;
1123 } else {
1124 type = BTRFS_ORDERED_NOCOW;
1125 }
80ff3856
YZ
1126
1127 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1128 num_bytes, num_bytes, type);
1129 BUG_ON(ret);
771ed689 1130
d899e052 1131 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1132 cur_offset, cur_offset + num_bytes - 1,
1133 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1134 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1135 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1136 cur_offset = extent_end;
1137 if (cur_offset > end)
1138 break;
be20aa9d 1139 }
80ff3856
YZ
1140 btrfs_release_path(root, path);
1141
1142 if (cur_offset <= end && cow_start == (u64)-1)
1143 cow_start = cur_offset;
1144 if (cow_start != (u64)-1) {
1145 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1146 page_started, nr_written, 1);
80ff3856
YZ
1147 BUG_ON(ret);
1148 }
1149
1150 ret = btrfs_end_transaction(trans, root);
1151 BUG_ON(ret);
7ea394f1 1152 btrfs_free_path(path);
80ff3856 1153 return 0;
be20aa9d
CM
1154}
1155
d352ac68
CM
1156/*
1157 * extent_io.c call back to do delayed allocation processing
1158 */
c8b97818 1159static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1160 u64 start, u64 end, int *page_started,
1161 unsigned long *nr_written)
be20aa9d 1162{
be20aa9d 1163 int ret;
7f366cfe 1164 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1165
6cbff00f 1166 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1167 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1168 page_started, 1, nr_written);
6cbff00f 1169 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1170 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1171 page_started, 0, nr_written);
7f366cfe
CM
1172 else if (!btrfs_test_opt(root, COMPRESS))
1173 ret = cow_file_range(inode, locked_page, start, end,
1174 page_started, nr_written, 1);
be20aa9d 1175 else
771ed689 1176 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1177 page_started, nr_written);
b888db2b
CM
1178 return ret;
1179}
1180
9ed74f2d
JB
1181static int btrfs_split_extent_hook(struct inode *inode,
1182 struct extent_state *orig, u64 split)
1183{
1184 struct btrfs_root *root = BTRFS_I(inode)->root;
1185 u64 size;
1186
1187 if (!(orig->state & EXTENT_DELALLOC))
1188 return 0;
1189
1190 size = orig->end - orig->start + 1;
1191 if (size > root->fs_info->max_extent) {
1192 u64 num_extents;
1193 u64 new_size;
1194
1195 new_size = orig->end - split + 1;
1196 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1197 root->fs_info->max_extent);
1198
1199 /*
32c00aff
JB
1200 * if we break a large extent up then leave oustanding_extents
1201 * be, since we've already accounted for the large extent.
9ed74f2d
JB
1202 */
1203 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1204 root->fs_info->max_extent) < num_extents)
1205 return 0;
1206 }
1207
32c00aff
JB
1208 spin_lock(&BTRFS_I(inode)->accounting_lock);
1209 BTRFS_I(inode)->outstanding_extents++;
1210 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1211
1212 return 0;
1213}
1214
1215/*
1216 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1217 * extents so we can keep track of new extents that are just merged onto old
1218 * extents, such as when we are doing sequential writes, so we can properly
1219 * account for the metadata space we'll need.
1220 */
1221static int btrfs_merge_extent_hook(struct inode *inode,
1222 struct extent_state *new,
1223 struct extent_state *other)
1224{
1225 struct btrfs_root *root = BTRFS_I(inode)->root;
1226 u64 new_size, old_size;
1227 u64 num_extents;
1228
1229 /* not delalloc, ignore it */
1230 if (!(other->state & EXTENT_DELALLOC))
1231 return 0;
1232
1233 old_size = other->end - other->start + 1;
1234 if (new->start < other->start)
1235 new_size = other->end - new->start + 1;
1236 else
1237 new_size = new->end - other->start + 1;
1238
1239 /* we're not bigger than the max, unreserve the space and go */
1240 if (new_size <= root->fs_info->max_extent) {
32c00aff
JB
1241 spin_lock(&BTRFS_I(inode)->accounting_lock);
1242 BTRFS_I(inode)->outstanding_extents--;
1243 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1244 return 0;
1245 }
1246
1247 /*
1248 * If we grew by another max_extent, just return, we want to keep that
1249 * reserved amount.
1250 */
1251 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1252 root->fs_info->max_extent);
1253 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1254 root->fs_info->max_extent) > num_extents)
1255 return 0;
1256
32c00aff
JB
1257 spin_lock(&BTRFS_I(inode)->accounting_lock);
1258 BTRFS_I(inode)->outstanding_extents--;
1259 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1260
1261 return 0;
1262}
1263
d352ac68
CM
1264/*
1265 * extent_io.c set_bit_hook, used to track delayed allocation
1266 * bytes in this file, and to maintain the list of inodes that
1267 * have pending delalloc work to be done.
1268 */
b2950863 1269static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1270 unsigned long old, unsigned long bits)
291d673e 1271{
9ed74f2d 1272
75eff68e
CM
1273 /*
1274 * set_bit and clear bit hooks normally require _irqsave/restore
1275 * but in this case, we are only testeing for the DELALLOC
1276 * bit, which is only set or cleared with irqs on
1277 */
b0c68f8b 1278 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1279 struct btrfs_root *root = BTRFS_I(inode)->root;
9ed74f2d 1280
32c00aff
JB
1281 spin_lock(&BTRFS_I(inode)->accounting_lock);
1282 BTRFS_I(inode)->outstanding_extents++;
1283 spin_unlock(&BTRFS_I(inode)->accounting_lock);
6a63209f 1284 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1285 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1286 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1287 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1288 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1289 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1290 &root->fs_info->delalloc_inodes);
1291 }
75eff68e 1292 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1293 }
1294 return 0;
1295}
1296
d352ac68
CM
1297/*
1298 * extent_io.c clear_bit_hook, see set_bit_hook for why
1299 */
9ed74f2d
JB
1300static int btrfs_clear_bit_hook(struct inode *inode,
1301 struct extent_state *state, unsigned long bits)
291d673e 1302{
75eff68e
CM
1303 /*
1304 * set_bit and clear bit hooks normally require _irqsave/restore
1305 * but in this case, we are only testeing for the DELALLOC
1306 * bit, which is only set or cleared with irqs on
1307 */
9ed74f2d 1308 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1309 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1310
32c00aff
JB
1311 if (bits & EXTENT_DO_ACCOUNTING) {
1312 spin_lock(&BTRFS_I(inode)->accounting_lock);
1313 BTRFS_I(inode)->outstanding_extents--;
1314 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1315 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1316 }
9ed74f2d 1317
75eff68e 1318 spin_lock(&root->fs_info->delalloc_lock);
9ed74f2d
JB
1319 if (state->end - state->start + 1 >
1320 root->fs_info->delalloc_bytes) {
d397712b
CM
1321 printk(KERN_INFO "btrfs warning: delalloc account "
1322 "%llu %llu\n",
9ed74f2d
JB
1323 (unsigned long long)
1324 state->end - state->start + 1,
d397712b
CM
1325 (unsigned long long)
1326 root->fs_info->delalloc_bytes);
6a63209f 1327 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1328 root->fs_info->delalloc_bytes = 0;
9069218d 1329 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1330 } else {
6a63209f 1331 btrfs_delalloc_free_space(root, inode,
9ed74f2d
JB
1332 state->end -
1333 state->start + 1);
1334 root->fs_info->delalloc_bytes -= state->end -
1335 state->start + 1;
1336 BTRFS_I(inode)->delalloc_bytes -= state->end -
1337 state->start + 1;
b0c68f8b 1338 }
ea8c2819
CM
1339 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1340 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1341 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1342 }
75eff68e 1343 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1344 }
1345 return 0;
1346}
1347
d352ac68
CM
1348/*
1349 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1350 * we don't create bios that span stripes or chunks
1351 */
239b14b3 1352int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1353 size_t size, struct bio *bio,
1354 unsigned long bio_flags)
239b14b3
CM
1355{
1356 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1357 struct btrfs_mapping_tree *map_tree;
a62b9401 1358 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1359 u64 length = 0;
1360 u64 map_length;
239b14b3
CM
1361 int ret;
1362
771ed689
CM
1363 if (bio_flags & EXTENT_BIO_COMPRESSED)
1364 return 0;
1365
f2d8d74d 1366 length = bio->bi_size;
239b14b3
CM
1367 map_tree = &root->fs_info->mapping_tree;
1368 map_length = length;
cea9e445 1369 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1370 &map_length, NULL, 0);
cea9e445 1371
d397712b 1372 if (map_length < length + size)
239b14b3 1373 return 1;
239b14b3
CM
1374 return 0;
1375}
1376
d352ac68
CM
1377/*
1378 * in order to insert checksums into the metadata in large chunks,
1379 * we wait until bio submission time. All the pages in the bio are
1380 * checksummed and sums are attached onto the ordered extent record.
1381 *
1382 * At IO completion time the cums attached on the ordered extent record
1383 * are inserted into the btree
1384 */
d397712b
CM
1385static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1386 struct bio *bio, int mirror_num,
1387 unsigned long bio_flags)
065631f6 1388{
065631f6 1389 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1390 int ret = 0;
e015640f 1391
d20f7043 1392 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1393 BUG_ON(ret);
4a69a410
CM
1394 return 0;
1395}
e015640f 1396
4a69a410
CM
1397/*
1398 * in order to insert checksums into the metadata in large chunks,
1399 * we wait until bio submission time. All the pages in the bio are
1400 * checksummed and sums are attached onto the ordered extent record.
1401 *
1402 * At IO completion time the cums attached on the ordered extent record
1403 * are inserted into the btree
1404 */
b2950863 1405static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1406 int mirror_num, unsigned long bio_flags)
1407{
1408 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1409 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1410}
1411
d352ac68 1412/*
cad321ad
CM
1413 * extent_io.c submission hook. This does the right thing for csum calculation
1414 * on write, or reading the csums from the tree before a read
d352ac68 1415 */
b2950863 1416static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1417 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1418{
1419 struct btrfs_root *root = BTRFS_I(inode)->root;
1420 int ret = 0;
19b9bdb0 1421 int skip_sum;
44b8bd7e 1422
6cbff00f 1423 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1424
e6dcd2dc
CM
1425 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1426 BUG_ON(ret);
065631f6 1427
4d1b5fb4 1428 if (!(rw & (1 << BIO_RW))) {
d20f7043 1429 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1430 return btrfs_submit_compressed_read(inode, bio,
1431 mirror_num, bio_flags);
d20f7043
CM
1432 } else if (!skip_sum)
1433 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1434 goto mapit;
19b9bdb0 1435 } else if (!skip_sum) {
17d217fe
YZ
1436 /* csum items have already been cloned */
1437 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1438 goto mapit;
19b9bdb0
CM
1439 /* we're doing a write, do the async checksumming */
1440 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1441 inode, rw, bio, mirror_num,
4a69a410
CM
1442 bio_flags, __btrfs_submit_bio_start,
1443 __btrfs_submit_bio_done);
19b9bdb0
CM
1444 }
1445
0b86a832 1446mapit:
8b712842 1447 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1448}
6885f308 1449
d352ac68
CM
1450/*
1451 * given a list of ordered sums record them in the inode. This happens
1452 * at IO completion time based on sums calculated at bio submission time.
1453 */
ba1da2f4 1454static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1455 struct inode *inode, u64 file_offset,
1456 struct list_head *list)
1457{
e6dcd2dc
CM
1458 struct btrfs_ordered_sum *sum;
1459
1460 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1461
1462 list_for_each_entry(sum, list, list) {
d20f7043
CM
1463 btrfs_csum_file_blocks(trans,
1464 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1465 }
1466 return 0;
1467}
1468
ea8c2819
CM
1469int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1470{
d397712b 1471 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1472 WARN_ON(1);
ea8c2819
CM
1473 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1474 GFP_NOFS);
1475}
1476
d352ac68 1477/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1478struct btrfs_writepage_fixup {
1479 struct page *page;
1480 struct btrfs_work work;
1481};
1482
b2950863 1483static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1484{
1485 struct btrfs_writepage_fixup *fixup;
1486 struct btrfs_ordered_extent *ordered;
1487 struct page *page;
1488 struct inode *inode;
1489 u64 page_start;
1490 u64 page_end;
1491
1492 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1493 page = fixup->page;
4a096752 1494again:
247e743c
CM
1495 lock_page(page);
1496 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1497 ClearPageChecked(page);
1498 goto out_page;
1499 }
1500
1501 inode = page->mapping->host;
1502 page_start = page_offset(page);
1503 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1504
1505 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1506
1507 /* already ordered? We're done */
8b62b72b 1508 if (PagePrivate2(page))
247e743c 1509 goto out;
4a096752
CM
1510
1511 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1512 if (ordered) {
1513 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1514 page_end, GFP_NOFS);
1515 unlock_page(page);
1516 btrfs_start_ordered_extent(inode, ordered, 1);
1517 goto again;
1518 }
247e743c 1519
ea8c2819 1520 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1521 ClearPageChecked(page);
1522out:
1523 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1524out_page:
1525 unlock_page(page);
1526 page_cache_release(page);
1527}
1528
1529/*
1530 * There are a few paths in the higher layers of the kernel that directly
1531 * set the page dirty bit without asking the filesystem if it is a
1532 * good idea. This causes problems because we want to make sure COW
1533 * properly happens and the data=ordered rules are followed.
1534 *
c8b97818 1535 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1536 * hasn't been properly setup for IO. We kick off an async process
1537 * to fix it up. The async helper will wait for ordered extents, set
1538 * the delalloc bit and make it safe to write the page.
1539 */
b2950863 1540static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1541{
1542 struct inode *inode = page->mapping->host;
1543 struct btrfs_writepage_fixup *fixup;
1544 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1545
8b62b72b
CM
1546 /* this page is properly in the ordered list */
1547 if (TestClearPagePrivate2(page))
247e743c
CM
1548 return 0;
1549
1550 if (PageChecked(page))
1551 return -EAGAIN;
1552
1553 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1554 if (!fixup)
1555 return -EAGAIN;
f421950f 1556
247e743c
CM
1557 SetPageChecked(page);
1558 page_cache_get(page);
1559 fixup->work.func = btrfs_writepage_fixup_worker;
1560 fixup->page = page;
1561 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1562 return -EAGAIN;
1563}
1564
d899e052
YZ
1565static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1566 struct inode *inode, u64 file_pos,
1567 u64 disk_bytenr, u64 disk_num_bytes,
1568 u64 num_bytes, u64 ram_bytes,
e980b50c 1569 u64 locked_end,
d899e052
YZ
1570 u8 compression, u8 encryption,
1571 u16 other_encoding, int extent_type)
1572{
1573 struct btrfs_root *root = BTRFS_I(inode)->root;
1574 struct btrfs_file_extent_item *fi;
1575 struct btrfs_path *path;
1576 struct extent_buffer *leaf;
1577 struct btrfs_key ins;
1578 u64 hint;
1579 int ret;
1580
1581 path = btrfs_alloc_path();
1582 BUG_ON(!path);
1583
b9473439 1584 path->leave_spinning = 1;
a1ed835e
CM
1585
1586 /*
1587 * we may be replacing one extent in the tree with another.
1588 * The new extent is pinned in the extent map, and we don't want
1589 * to drop it from the cache until it is completely in the btree.
1590 *
1591 * So, tell btrfs_drop_extents to leave this extent in the cache.
1592 * the caller is expected to unpin it and allow it to be merged
1593 * with the others.
1594 */
d899e052 1595 ret = btrfs_drop_extents(trans, root, inode, file_pos,
e980b50c 1596 file_pos + num_bytes, locked_end,
a1ed835e 1597 file_pos, &hint, 0);
d899e052
YZ
1598 BUG_ON(ret);
1599
1600 ins.objectid = inode->i_ino;
1601 ins.offset = file_pos;
1602 ins.type = BTRFS_EXTENT_DATA_KEY;
1603 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1604 BUG_ON(ret);
1605 leaf = path->nodes[0];
1606 fi = btrfs_item_ptr(leaf, path->slots[0],
1607 struct btrfs_file_extent_item);
1608 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1609 btrfs_set_file_extent_type(leaf, fi, extent_type);
1610 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1611 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1612 btrfs_set_file_extent_offset(leaf, fi, 0);
1613 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1614 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1615 btrfs_set_file_extent_compression(leaf, fi, compression);
1616 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1617 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1618
1619 btrfs_unlock_up_safe(path, 1);
1620 btrfs_set_lock_blocking(leaf);
1621
d899e052
YZ
1622 btrfs_mark_buffer_dirty(leaf);
1623
1624 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1625
1626 ins.objectid = disk_bytenr;
1627 ins.offset = disk_num_bytes;
1628 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1629 ret = btrfs_alloc_reserved_file_extent(trans, root,
1630 root->root_key.objectid,
1631 inode->i_ino, file_pos, &ins);
d899e052 1632 BUG_ON(ret);
d899e052 1633 btrfs_free_path(path);
b9473439 1634
d899e052
YZ
1635 return 0;
1636}
1637
5d13a98f
CM
1638/*
1639 * helper function for btrfs_finish_ordered_io, this
1640 * just reads in some of the csum leaves to prime them into ram
1641 * before we start the transaction. It limits the amount of btree
1642 * reads required while inside the transaction.
1643 */
1644static noinline void reada_csum(struct btrfs_root *root,
1645 struct btrfs_path *path,
1646 struct btrfs_ordered_extent *ordered_extent)
1647{
1648 struct btrfs_ordered_sum *sum;
1649 u64 bytenr;
1650
1651 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1652 list);
1653 bytenr = sum->sums[0].bytenr;
1654
1655 /*
1656 * we don't care about the results, the point of this search is
1657 * just to get the btree leaves into ram
1658 */
1659 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1660}
1661
d352ac68
CM
1662/* as ordered data IO finishes, this gets called so we can finish
1663 * an ordered extent if the range of bytes in the file it covers are
1664 * fully written.
1665 */
211f90e6 1666static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1667{
e6dcd2dc
CM
1668 struct btrfs_root *root = BTRFS_I(inode)->root;
1669 struct btrfs_trans_handle *trans;
5d13a98f 1670 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1671 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1672 struct btrfs_path *path;
d899e052 1673 int compressed = 0;
e6dcd2dc
CM
1674 int ret;
1675
1676 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1677 if (!ret)
e6dcd2dc 1678 return 0;
e6dcd2dc 1679
b7ec40d7
CM
1680 /*
1681 * before we join the transaction, try to do some of our IO.
1682 * This will limit the amount of IO that we have to do with
1683 * the transaction running. We're unlikely to need to do any
1684 * IO if the file extents are new, the disk_i_size checks
1685 * covers the most common case.
1686 */
1687 if (start < BTRFS_I(inode)->disk_i_size) {
1688 path = btrfs_alloc_path();
1689 if (path) {
1690 ret = btrfs_lookup_file_extent(NULL, root, path,
1691 inode->i_ino,
1692 start, 0);
5d13a98f
CM
1693 ordered_extent = btrfs_lookup_ordered_extent(inode,
1694 start);
1695 if (!list_empty(&ordered_extent->list)) {
1696 btrfs_release_path(root, path);
1697 reada_csum(root, path, ordered_extent);
1698 }
b7ec40d7
CM
1699 btrfs_free_path(path);
1700 }
1701 }
1702
f9295749 1703 trans = btrfs_join_transaction(root, 1);
e6dcd2dc 1704
5d13a98f
CM
1705 if (!ordered_extent)
1706 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1707 BUG_ON(!ordered_extent);
7ea394f1
YZ
1708 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1709 goto nocow;
e6dcd2dc
CM
1710
1711 lock_extent(io_tree, ordered_extent->file_offset,
1712 ordered_extent->file_offset + ordered_extent->len - 1,
1713 GFP_NOFS);
1714
c8b97818 1715 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1716 compressed = 1;
1717 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1718 BUG_ON(compressed);
1719 ret = btrfs_mark_extent_written(trans, root, inode,
1720 ordered_extent->file_offset,
1721 ordered_extent->file_offset +
1722 ordered_extent->len);
1723 BUG_ON(ret);
1724 } else {
1725 ret = insert_reserved_file_extent(trans, inode,
1726 ordered_extent->file_offset,
1727 ordered_extent->start,
1728 ordered_extent->disk_len,
1729 ordered_extent->len,
1730 ordered_extent->len,
e980b50c
CM
1731 ordered_extent->file_offset +
1732 ordered_extent->len,
d899e052
YZ
1733 compressed, 0, 0,
1734 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1735 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1736 ordered_extent->file_offset,
1737 ordered_extent->len);
d899e052
YZ
1738 BUG_ON(ret);
1739 }
e6dcd2dc
CM
1740 unlock_extent(io_tree, ordered_extent->file_offset,
1741 ordered_extent->file_offset + ordered_extent->len - 1,
1742 GFP_NOFS);
7ea394f1 1743nocow:
e6dcd2dc
CM
1744 add_pending_csums(trans, inode, ordered_extent->file_offset,
1745 &ordered_extent->list);
1746
34353029 1747 mutex_lock(&BTRFS_I(inode)->extent_mutex);
dbe674a9 1748 btrfs_ordered_update_i_size(inode, ordered_extent);
e02119d5 1749 btrfs_update_inode(trans, root, inode);
e6dcd2dc 1750 btrfs_remove_ordered_extent(inode, ordered_extent);
34353029 1751 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
7f3c74fb 1752
e6dcd2dc
CM
1753 /* once for us */
1754 btrfs_put_ordered_extent(ordered_extent);
1755 /* once for the tree */
1756 btrfs_put_ordered_extent(ordered_extent);
1757
e6dcd2dc
CM
1758 btrfs_end_transaction(trans, root);
1759 return 0;
1760}
1761
b2950863 1762static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1763 struct extent_state *state, int uptodate)
1764{
8b62b72b 1765 ClearPagePrivate2(page);
211f90e6
CM
1766 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1767}
1768
d352ac68
CM
1769/*
1770 * When IO fails, either with EIO or csum verification fails, we
1771 * try other mirrors that might have a good copy of the data. This
1772 * io_failure_record is used to record state as we go through all the
1773 * mirrors. If another mirror has good data, the page is set up to date
1774 * and things continue. If a good mirror can't be found, the original
1775 * bio end_io callback is called to indicate things have failed.
1776 */
7e38326f
CM
1777struct io_failure_record {
1778 struct page *page;
1779 u64 start;
1780 u64 len;
1781 u64 logical;
d20f7043 1782 unsigned long bio_flags;
7e38326f
CM
1783 int last_mirror;
1784};
1785
b2950863 1786static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1787 struct page *page, u64 start, u64 end,
1788 struct extent_state *state)
7e38326f
CM
1789{
1790 struct io_failure_record *failrec = NULL;
1791 u64 private;
1792 struct extent_map *em;
1793 struct inode *inode = page->mapping->host;
1794 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1795 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1796 struct bio *bio;
1797 int num_copies;
1798 int ret;
1259ab75 1799 int rw;
7e38326f
CM
1800 u64 logical;
1801
1802 ret = get_state_private(failure_tree, start, &private);
1803 if (ret) {
7e38326f
CM
1804 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1805 if (!failrec)
1806 return -ENOMEM;
1807 failrec->start = start;
1808 failrec->len = end - start + 1;
1809 failrec->last_mirror = 0;
d20f7043 1810 failrec->bio_flags = 0;
7e38326f 1811
890871be 1812 read_lock(&em_tree->lock);
3b951516
CM
1813 em = lookup_extent_mapping(em_tree, start, failrec->len);
1814 if (em->start > start || em->start + em->len < start) {
1815 free_extent_map(em);
1816 em = NULL;
1817 }
890871be 1818 read_unlock(&em_tree->lock);
7e38326f
CM
1819
1820 if (!em || IS_ERR(em)) {
1821 kfree(failrec);
1822 return -EIO;
1823 }
1824 logical = start - em->start;
1825 logical = em->block_start + logical;
d20f7043
CM
1826 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1827 logical = em->block_start;
1828 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1829 }
7e38326f
CM
1830 failrec->logical = logical;
1831 free_extent_map(em);
1832 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1833 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1834 set_state_private(failure_tree, start,
1835 (u64)(unsigned long)failrec);
7e38326f 1836 } else {
587f7704 1837 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1838 }
1839 num_copies = btrfs_num_copies(
1840 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1841 failrec->logical, failrec->len);
1842 failrec->last_mirror++;
1843 if (!state) {
cad321ad 1844 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1845 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1846 failrec->start,
1847 EXTENT_LOCKED);
1848 if (state && state->start != failrec->start)
1849 state = NULL;
cad321ad 1850 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1851 }
1852 if (!state || failrec->last_mirror > num_copies) {
1853 set_state_private(failure_tree, failrec->start, 0);
1854 clear_extent_bits(failure_tree, failrec->start,
1855 failrec->start + failrec->len - 1,
1856 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1857 kfree(failrec);
1858 return -EIO;
1859 }
1860 bio = bio_alloc(GFP_NOFS, 1);
1861 bio->bi_private = state;
1862 bio->bi_end_io = failed_bio->bi_end_io;
1863 bio->bi_sector = failrec->logical >> 9;
1864 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1865 bio->bi_size = 0;
d20f7043 1866
7e38326f 1867 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1868 if (failed_bio->bi_rw & (1 << BIO_RW))
1869 rw = WRITE;
1870 else
1871 rw = READ;
1872
1873 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1874 failrec->last_mirror,
d20f7043 1875 failrec->bio_flags);
1259ab75
CM
1876 return 0;
1877}
1878
d352ac68
CM
1879/*
1880 * each time an IO finishes, we do a fast check in the IO failure tree
1881 * to see if we need to process or clean up an io_failure_record
1882 */
b2950863 1883static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1884{
1885 u64 private;
1886 u64 private_failure;
1887 struct io_failure_record *failure;
1888 int ret;
1889
1890 private = 0;
1891 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1892 (u64)-1, 1, EXTENT_DIRTY)) {
1893 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1894 start, &private_failure);
1895 if (ret == 0) {
1896 failure = (struct io_failure_record *)(unsigned long)
1897 private_failure;
1898 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1899 failure->start, 0);
1900 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1901 failure->start,
1902 failure->start + failure->len - 1,
1903 EXTENT_DIRTY | EXTENT_LOCKED,
1904 GFP_NOFS);
1905 kfree(failure);
1906 }
1907 }
7e38326f
CM
1908 return 0;
1909}
1910
d352ac68
CM
1911/*
1912 * when reads are done, we need to check csums to verify the data is correct
1913 * if there's a match, we allow the bio to finish. If not, we go through
1914 * the io_failure_record routines to find good copies
1915 */
b2950863 1916static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1917 struct extent_state *state)
07157aac 1918{
35ebb934 1919 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1920 struct inode *inode = page->mapping->host;
d1310b2e 1921 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1922 char *kaddr;
aadfeb6e 1923 u64 private = ~(u32)0;
07157aac 1924 int ret;
ff79f819
CM
1925 struct btrfs_root *root = BTRFS_I(inode)->root;
1926 u32 csum = ~(u32)0;
d1310b2e 1927
d20f7043
CM
1928 if (PageChecked(page)) {
1929 ClearPageChecked(page);
1930 goto good;
1931 }
6cbff00f
CH
1932
1933 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1934 return 0;
1935
1936 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1937 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1938 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1939 GFP_NOFS);
b6cda9bc 1940 return 0;
17d217fe 1941 }
d20f7043 1942
c2e639f0 1943 if (state && state->start == start) {
70dec807
CM
1944 private = state->private;
1945 ret = 0;
1946 } else {
1947 ret = get_state_private(io_tree, start, &private);
1948 }
9ab86c8e 1949 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1950 if (ret)
07157aac 1951 goto zeroit;
d397712b 1952
ff79f819
CM
1953 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1954 btrfs_csum_final(csum, (char *)&csum);
d397712b 1955 if (csum != private)
07157aac 1956 goto zeroit;
d397712b 1957
9ab86c8e 1958 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1959good:
7e38326f
CM
1960 /* if the io failure tree for this inode is non-empty,
1961 * check to see if we've recovered from a failed IO
1962 */
1259ab75 1963 btrfs_clean_io_failures(inode, start);
07157aac
CM
1964 return 0;
1965
1966zeroit:
193f284d
CM
1967 if (printk_ratelimit()) {
1968 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1969 "private %llu\n", page->mapping->host->i_ino,
1970 (unsigned long long)start, csum,
1971 (unsigned long long)private);
1972 }
db94535d
CM
1973 memset(kaddr + offset, 1, end - start + 1);
1974 flush_dcache_page(page);
9ab86c8e 1975 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1976 if (private == 0)
1977 return 0;
7e38326f 1978 return -EIO;
07157aac 1979}
b888db2b 1980
7b128766
JB
1981/*
1982 * This creates an orphan entry for the given inode in case something goes
1983 * wrong in the middle of an unlink/truncate.
1984 */
1985int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1986{
1987 struct btrfs_root *root = BTRFS_I(inode)->root;
1988 int ret = 0;
1989
bcc63abb 1990 spin_lock(&root->list_lock);
7b128766
JB
1991
1992 /* already on the orphan list, we're good */
1993 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1994 spin_unlock(&root->list_lock);
7b128766
JB
1995 return 0;
1996 }
1997
1998 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1999
bcc63abb 2000 spin_unlock(&root->list_lock);
7b128766
JB
2001
2002 /*
2003 * insert an orphan item to track this unlinked/truncated file
2004 */
2005 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2006
2007 return ret;
2008}
2009
2010/*
2011 * We have done the truncate/delete so we can go ahead and remove the orphan
2012 * item for this particular inode.
2013 */
2014int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2015{
2016 struct btrfs_root *root = BTRFS_I(inode)->root;
2017 int ret = 0;
2018
bcc63abb 2019 spin_lock(&root->list_lock);
7b128766
JB
2020
2021 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2022 spin_unlock(&root->list_lock);
7b128766
JB
2023 return 0;
2024 }
2025
2026 list_del_init(&BTRFS_I(inode)->i_orphan);
2027 if (!trans) {
bcc63abb 2028 spin_unlock(&root->list_lock);
7b128766
JB
2029 return 0;
2030 }
2031
bcc63abb 2032 spin_unlock(&root->list_lock);
7b128766
JB
2033
2034 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2035
2036 return ret;
2037}
2038
2039/*
2040 * this cleans up any orphans that may be left on the list from the last use
2041 * of this root.
2042 */
2043void btrfs_orphan_cleanup(struct btrfs_root *root)
2044{
2045 struct btrfs_path *path;
2046 struct extent_buffer *leaf;
2047 struct btrfs_item *item;
2048 struct btrfs_key key, found_key;
2049 struct btrfs_trans_handle *trans;
2050 struct inode *inode;
2051 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2052
7b128766
JB
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return;
2056 path->reada = -1;
2057
2058 key.objectid = BTRFS_ORPHAN_OBJECTID;
2059 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2060 key.offset = (u64)-1;
2061
7b128766
JB
2062
2063 while (1) {
2064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2065 if (ret < 0) {
2066 printk(KERN_ERR "Error searching slot for orphan: %d"
2067 "\n", ret);
2068 break;
2069 }
2070
2071 /*
2072 * if ret == 0 means we found what we were searching for, which
2073 * is weird, but possible, so only screw with path if we didnt
2074 * find the key and see if we have stuff that matches
2075 */
2076 if (ret > 0) {
2077 if (path->slots[0] == 0)
2078 break;
2079 path->slots[0]--;
2080 }
2081
2082 /* pull out the item */
2083 leaf = path->nodes[0];
2084 item = btrfs_item_nr(leaf, path->slots[0]);
2085 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2086
2087 /* make sure the item matches what we want */
2088 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2089 break;
2090 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2091 break;
2092
2093 /* release the path since we're done with it */
2094 btrfs_release_path(root, path);
2095
2096 /*
2097 * this is where we are basically btrfs_lookup, without the
2098 * crossing root thing. we store the inode number in the
2099 * offset of the orphan item.
2100 */
5d4f98a2
YZ
2101 found_key.objectid = found_key.offset;
2102 found_key.type = BTRFS_INODE_ITEM_KEY;
2103 found_key.offset = 0;
2104 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2105 if (IS_ERR(inode))
7b128766
JB
2106 break;
2107
7b128766
JB
2108 /*
2109 * add this inode to the orphan list so btrfs_orphan_del does
2110 * the proper thing when we hit it
2111 */
bcc63abb 2112 spin_lock(&root->list_lock);
7b128766 2113 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 2114 spin_unlock(&root->list_lock);
7b128766
JB
2115
2116 /*
2117 * if this is a bad inode, means we actually succeeded in
2118 * removing the inode, but not the orphan record, which means
2119 * we need to manually delete the orphan since iput will just
2120 * do a destroy_inode
2121 */
2122 if (is_bad_inode(inode)) {
5b21f2ed 2123 trans = btrfs_start_transaction(root, 1);
7b128766 2124 btrfs_orphan_del(trans, inode);
5b21f2ed 2125 btrfs_end_transaction(trans, root);
7b128766
JB
2126 iput(inode);
2127 continue;
2128 }
2129
2130 /* if we have links, this was a truncate, lets do that */
2131 if (inode->i_nlink) {
2132 nr_truncate++;
2133 btrfs_truncate(inode);
2134 } else {
2135 nr_unlink++;
2136 }
2137
2138 /* this will do delete_inode and everything for us */
2139 iput(inode);
2140 }
2141
2142 if (nr_unlink)
2143 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2144 if (nr_truncate)
2145 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2146
2147 btrfs_free_path(path);
7b128766
JB
2148}
2149
46a53cca
CM
2150/*
2151 * very simple check to peek ahead in the leaf looking for xattrs. If we
2152 * don't find any xattrs, we know there can't be any acls.
2153 *
2154 * slot is the slot the inode is in, objectid is the objectid of the inode
2155 */
2156static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2157 int slot, u64 objectid)
2158{
2159 u32 nritems = btrfs_header_nritems(leaf);
2160 struct btrfs_key found_key;
2161 int scanned = 0;
2162
2163 slot++;
2164 while (slot < nritems) {
2165 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2166
2167 /* we found a different objectid, there must not be acls */
2168 if (found_key.objectid != objectid)
2169 return 0;
2170
2171 /* we found an xattr, assume we've got an acl */
2172 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2173 return 1;
2174
2175 /*
2176 * we found a key greater than an xattr key, there can't
2177 * be any acls later on
2178 */
2179 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2180 return 0;
2181
2182 slot++;
2183 scanned++;
2184
2185 /*
2186 * it goes inode, inode backrefs, xattrs, extents,
2187 * so if there are a ton of hard links to an inode there can
2188 * be a lot of backrefs. Don't waste time searching too hard,
2189 * this is just an optimization
2190 */
2191 if (scanned >= 8)
2192 break;
2193 }
2194 /* we hit the end of the leaf before we found an xattr or
2195 * something larger than an xattr. We have to assume the inode
2196 * has acls
2197 */
2198 return 1;
2199}
2200
d352ac68
CM
2201/*
2202 * read an inode from the btree into the in-memory inode
2203 */
5d4f98a2 2204static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2205{
2206 struct btrfs_path *path;
5f39d397 2207 struct extent_buffer *leaf;
39279cc3 2208 struct btrfs_inode_item *inode_item;
0b86a832 2209 struct btrfs_timespec *tspec;
39279cc3
CM
2210 struct btrfs_root *root = BTRFS_I(inode)->root;
2211 struct btrfs_key location;
46a53cca 2212 int maybe_acls;
39279cc3 2213 u64 alloc_group_block;
618e21d5 2214 u32 rdev;
39279cc3
CM
2215 int ret;
2216
2217 path = btrfs_alloc_path();
2218 BUG_ON(!path);
39279cc3 2219 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2220
39279cc3 2221 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2222 if (ret)
39279cc3 2223 goto make_bad;
39279cc3 2224
5f39d397
CM
2225 leaf = path->nodes[0];
2226 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2227 struct btrfs_inode_item);
2228
2229 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2230 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2231 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2232 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2233 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2234
2235 tspec = btrfs_inode_atime(inode_item);
2236 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2237 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2238
2239 tspec = btrfs_inode_mtime(inode_item);
2240 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2241 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2242
2243 tspec = btrfs_inode_ctime(inode_item);
2244 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2245 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2246
a76a3cd4 2247 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2248 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2249 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2250 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2251 inode->i_rdev = 0;
5f39d397
CM
2252 rdev = btrfs_inode_rdev(leaf, inode_item);
2253
aec7477b 2254 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2255 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2256
5f39d397 2257 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2258
46a53cca
CM
2259 /*
2260 * try to precache a NULL acl entry for files that don't have
2261 * any xattrs or acls
2262 */
2263 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2264 if (!maybe_acls)
2265 cache_no_acl(inode);
46a53cca 2266
d2fb3437
YZ
2267 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2268 alloc_group_block, 0);
39279cc3
CM
2269 btrfs_free_path(path);
2270 inode_item = NULL;
2271
39279cc3 2272 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2273 case S_IFREG:
2274 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2275 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2276 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2277 inode->i_fop = &btrfs_file_operations;
2278 inode->i_op = &btrfs_file_inode_operations;
2279 break;
2280 case S_IFDIR:
2281 inode->i_fop = &btrfs_dir_file_operations;
2282 if (root == root->fs_info->tree_root)
2283 inode->i_op = &btrfs_dir_ro_inode_operations;
2284 else
2285 inode->i_op = &btrfs_dir_inode_operations;
2286 break;
2287 case S_IFLNK:
2288 inode->i_op = &btrfs_symlink_inode_operations;
2289 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2290 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2291 break;
618e21d5 2292 default:
0279b4cd 2293 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2294 init_special_inode(inode, inode->i_mode, rdev);
2295 break;
39279cc3 2296 }
6cbff00f
CH
2297
2298 btrfs_update_iflags(inode);
39279cc3
CM
2299 return;
2300
2301make_bad:
39279cc3 2302 btrfs_free_path(path);
39279cc3
CM
2303 make_bad_inode(inode);
2304}
2305
d352ac68
CM
2306/*
2307 * given a leaf and an inode, copy the inode fields into the leaf
2308 */
e02119d5
CM
2309static void fill_inode_item(struct btrfs_trans_handle *trans,
2310 struct extent_buffer *leaf,
5f39d397 2311 struct btrfs_inode_item *item,
39279cc3
CM
2312 struct inode *inode)
2313{
5f39d397
CM
2314 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2315 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2316 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2317 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2318 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2319
2320 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2321 inode->i_atime.tv_sec);
2322 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2323 inode->i_atime.tv_nsec);
2324
2325 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2326 inode->i_mtime.tv_sec);
2327 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2328 inode->i_mtime.tv_nsec);
2329
2330 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2331 inode->i_ctime.tv_sec);
2332 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2333 inode->i_ctime.tv_nsec);
2334
a76a3cd4 2335 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2336 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2337 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2338 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2339 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2340 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2341 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2342}
2343
d352ac68
CM
2344/*
2345 * copy everything in the in-memory inode into the btree.
2346 */
d397712b
CM
2347noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2348 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2349{
2350 struct btrfs_inode_item *inode_item;
2351 struct btrfs_path *path;
5f39d397 2352 struct extent_buffer *leaf;
39279cc3
CM
2353 int ret;
2354
2355 path = btrfs_alloc_path();
2356 BUG_ON(!path);
b9473439 2357 path->leave_spinning = 1;
39279cc3
CM
2358 ret = btrfs_lookup_inode(trans, root, path,
2359 &BTRFS_I(inode)->location, 1);
2360 if (ret) {
2361 if (ret > 0)
2362 ret = -ENOENT;
2363 goto failed;
2364 }
2365
b4ce94de 2366 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2367 leaf = path->nodes[0];
2368 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2369 struct btrfs_inode_item);
2370
e02119d5 2371 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2372 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2373 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2374 ret = 0;
2375failed:
39279cc3
CM
2376 btrfs_free_path(path);
2377 return ret;
2378}
2379
2380
d352ac68
CM
2381/*
2382 * unlink helper that gets used here in inode.c and in the tree logging
2383 * recovery code. It remove a link in a directory with a given name, and
2384 * also drops the back refs in the inode to the directory
2385 */
e02119d5
CM
2386int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2387 struct btrfs_root *root,
2388 struct inode *dir, struct inode *inode,
2389 const char *name, int name_len)
39279cc3
CM
2390{
2391 struct btrfs_path *path;
39279cc3 2392 int ret = 0;
5f39d397 2393 struct extent_buffer *leaf;
39279cc3 2394 struct btrfs_dir_item *di;
5f39d397 2395 struct btrfs_key key;
aec7477b 2396 u64 index;
39279cc3
CM
2397
2398 path = btrfs_alloc_path();
54aa1f4d
CM
2399 if (!path) {
2400 ret = -ENOMEM;
2401 goto err;
2402 }
2403
b9473439 2404 path->leave_spinning = 1;
39279cc3
CM
2405 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2406 name, name_len, -1);
2407 if (IS_ERR(di)) {
2408 ret = PTR_ERR(di);
2409 goto err;
2410 }
2411 if (!di) {
2412 ret = -ENOENT;
2413 goto err;
2414 }
5f39d397
CM
2415 leaf = path->nodes[0];
2416 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2417 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2418 if (ret)
2419 goto err;
39279cc3
CM
2420 btrfs_release_path(root, path);
2421
aec7477b 2422 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2423 inode->i_ino,
2424 dir->i_ino, &index);
aec7477b 2425 if (ret) {
d397712b 2426 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2427 "inode %lu parent %lu\n", name_len, name,
e02119d5 2428 inode->i_ino, dir->i_ino);
aec7477b
JB
2429 goto err;
2430 }
2431
39279cc3 2432 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2433 index, name, name_len, -1);
39279cc3
CM
2434 if (IS_ERR(di)) {
2435 ret = PTR_ERR(di);
2436 goto err;
2437 }
2438 if (!di) {
2439 ret = -ENOENT;
2440 goto err;
2441 }
2442 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2443 btrfs_release_path(root, path);
39279cc3 2444
e02119d5
CM
2445 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2446 inode, dir->i_ino);
49eb7e46 2447 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2448
2449 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2450 dir, index);
2451 BUG_ON(ret);
39279cc3
CM
2452err:
2453 btrfs_free_path(path);
e02119d5
CM
2454 if (ret)
2455 goto out;
2456
2457 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2458 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2459 btrfs_update_inode(trans, root, dir);
2460 btrfs_drop_nlink(inode);
2461 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2462out:
39279cc3
CM
2463 return ret;
2464}
2465
2466static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2467{
2468 struct btrfs_root *root;
2469 struct btrfs_trans_handle *trans;
7b128766 2470 struct inode *inode = dentry->d_inode;
39279cc3 2471 int ret;
1832a6d5 2472 unsigned long nr = 0;
39279cc3
CM
2473
2474 root = BTRFS_I(dir)->root;
1832a6d5 2475
39279cc3 2476 trans = btrfs_start_transaction(root, 1);
5f39d397 2477
39279cc3 2478 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2479
2480 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2481
e02119d5
CM
2482 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2483 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2484
2485 if (inode->i_nlink == 0)
2486 ret = btrfs_orphan_add(trans, inode);
2487
d3c2fdcf 2488 nr = trans->blocks_used;
5f39d397 2489
89ce8a63 2490 btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2491 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2492 return ret;
2493}
2494
4df27c4d
YZ
2495int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2496 struct btrfs_root *root,
2497 struct inode *dir, u64 objectid,
2498 const char *name, int name_len)
2499{
2500 struct btrfs_path *path;
2501 struct extent_buffer *leaf;
2502 struct btrfs_dir_item *di;
2503 struct btrfs_key key;
2504 u64 index;
2505 int ret;
2506
2507 path = btrfs_alloc_path();
2508 if (!path)
2509 return -ENOMEM;
2510
2511 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2512 name, name_len, -1);
2513 BUG_ON(!di || IS_ERR(di));
2514
2515 leaf = path->nodes[0];
2516 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2517 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2518 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2519 BUG_ON(ret);
2520 btrfs_release_path(root, path);
2521
2522 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2523 objectid, root->root_key.objectid,
2524 dir->i_ino, &index, name, name_len);
2525 if (ret < 0) {
2526 BUG_ON(ret != -ENOENT);
2527 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2528 name, name_len);
2529 BUG_ON(!di || IS_ERR(di));
2530
2531 leaf = path->nodes[0];
2532 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2533 btrfs_release_path(root, path);
2534 index = key.offset;
2535 }
2536
2537 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2538 index, name, name_len, -1);
2539 BUG_ON(!di || IS_ERR(di));
2540
2541 leaf = path->nodes[0];
2542 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2543 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2544 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2545 BUG_ON(ret);
2546 btrfs_release_path(root, path);
2547
2548 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2549 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2550 ret = btrfs_update_inode(trans, root, dir);
2551 BUG_ON(ret);
2552 dir->i_sb->s_dirt = 1;
2553
2554 btrfs_free_path(path);
2555 return 0;
2556}
2557
39279cc3
CM
2558static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2559{
2560 struct inode *inode = dentry->d_inode;
1832a6d5 2561 int err = 0;
39279cc3
CM
2562 int ret;
2563 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2564 struct btrfs_trans_handle *trans;
1832a6d5 2565 unsigned long nr = 0;
39279cc3 2566
3394e160 2567 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2568 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2569 return -ENOTEMPTY;
2570
39279cc3
CM
2571 trans = btrfs_start_transaction(root, 1);
2572 btrfs_set_trans_block_group(trans, dir);
39279cc3 2573
4df27c4d
YZ
2574 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2575 err = btrfs_unlink_subvol(trans, root, dir,
2576 BTRFS_I(inode)->location.objectid,
2577 dentry->d_name.name,
2578 dentry->d_name.len);
2579 goto out;
2580 }
2581
7b128766
JB
2582 err = btrfs_orphan_add(trans, inode);
2583 if (err)
4df27c4d 2584 goto out;
7b128766 2585
39279cc3 2586 /* now the directory is empty */
e02119d5
CM
2587 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2588 dentry->d_name.name, dentry->d_name.len);
d397712b 2589 if (!err)
dbe674a9 2590 btrfs_i_size_write(inode, 0);
4df27c4d 2591out:
d3c2fdcf 2592 nr = trans->blocks_used;
89ce8a63 2593 ret = btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2594 btrfs_btree_balance_dirty(root, nr);
3954401f 2595
39279cc3
CM
2596 if (ret && !err)
2597 err = ret;
2598 return err;
2599}
2600
d20f7043 2601#if 0
323ac95b
CM
2602/*
2603 * when truncating bytes in a file, it is possible to avoid reading
2604 * the leaves that contain only checksum items. This can be the
2605 * majority of the IO required to delete a large file, but it must
2606 * be done carefully.
2607 *
2608 * The keys in the level just above the leaves are checked to make sure
2609 * the lowest key in a given leaf is a csum key, and starts at an offset
2610 * after the new size.
2611 *
2612 * Then the key for the next leaf is checked to make sure it also has
2613 * a checksum item for the same file. If it does, we know our target leaf
2614 * contains only checksum items, and it can be safely freed without reading
2615 * it.
2616 *
2617 * This is just an optimization targeted at large files. It may do
2618 * nothing. It will return 0 unless things went badly.
2619 */
2620static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2621 struct btrfs_root *root,
2622 struct btrfs_path *path,
2623 struct inode *inode, u64 new_size)
2624{
2625 struct btrfs_key key;
2626 int ret;
2627 int nritems;
2628 struct btrfs_key found_key;
2629 struct btrfs_key other_key;
5b84e8d6
YZ
2630 struct btrfs_leaf_ref *ref;
2631 u64 leaf_gen;
2632 u64 leaf_start;
323ac95b
CM
2633
2634 path->lowest_level = 1;
2635 key.objectid = inode->i_ino;
2636 key.type = BTRFS_CSUM_ITEM_KEY;
2637 key.offset = new_size;
2638again:
2639 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2640 if (ret < 0)
2641 goto out;
2642
2643 if (path->nodes[1] == NULL) {
2644 ret = 0;
2645 goto out;
2646 }
2647 ret = 0;
2648 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2649 nritems = btrfs_header_nritems(path->nodes[1]);
2650
2651 if (!nritems)
2652 goto out;
2653
2654 if (path->slots[1] >= nritems)
2655 goto next_node;
2656
2657 /* did we find a key greater than anything we want to delete? */
2658 if (found_key.objectid > inode->i_ino ||
2659 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2660 goto out;
2661
2662 /* we check the next key in the node to make sure the leave contains
2663 * only checksum items. This comparison doesn't work if our
2664 * leaf is the last one in the node
2665 */
2666 if (path->slots[1] + 1 >= nritems) {
2667next_node:
2668 /* search forward from the last key in the node, this
2669 * will bring us into the next node in the tree
2670 */
2671 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2672
2673 /* unlikely, but we inc below, so check to be safe */
2674 if (found_key.offset == (u64)-1)
2675 goto out;
2676
2677 /* search_forward needs a path with locks held, do the
2678 * search again for the original key. It is possible
2679 * this will race with a balance and return a path that
2680 * we could modify, but this drop is just an optimization
2681 * and is allowed to miss some leaves.
2682 */
2683 btrfs_release_path(root, path);
2684 found_key.offset++;
2685
2686 /* setup a max key for search_forward */
2687 other_key.offset = (u64)-1;
2688 other_key.type = key.type;
2689 other_key.objectid = key.objectid;
2690
2691 path->keep_locks = 1;
2692 ret = btrfs_search_forward(root, &found_key, &other_key,
2693 path, 0, 0);
2694 path->keep_locks = 0;
2695 if (ret || found_key.objectid != key.objectid ||
2696 found_key.type != key.type) {
2697 ret = 0;
2698 goto out;
2699 }
2700
2701 key.offset = found_key.offset;
2702 btrfs_release_path(root, path);
2703 cond_resched();
2704 goto again;
2705 }
2706
2707 /* we know there's one more slot after us in the tree,
2708 * read that key so we can verify it is also a checksum item
2709 */
2710 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2711
2712 if (found_key.objectid < inode->i_ino)
2713 goto next_key;
2714
2715 if (found_key.type != key.type || found_key.offset < new_size)
2716 goto next_key;
2717
2718 /*
2719 * if the key for the next leaf isn't a csum key from this objectid,
2720 * we can't be sure there aren't good items inside this leaf.
2721 * Bail out
2722 */
2723 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2724 goto out;
2725
5b84e8d6
YZ
2726 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2727 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2728 /*
2729 * it is safe to delete this leaf, it contains only
2730 * csum items from this inode at an offset >= new_size
2731 */
5b84e8d6 2732 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2733 BUG_ON(ret);
2734
5b84e8d6
YZ
2735 if (root->ref_cows && leaf_gen < trans->transid) {
2736 ref = btrfs_alloc_leaf_ref(root, 0);
2737 if (ref) {
2738 ref->root_gen = root->root_key.offset;
2739 ref->bytenr = leaf_start;
2740 ref->owner = 0;
2741 ref->generation = leaf_gen;
2742 ref->nritems = 0;
2743
bd56b302
CM
2744 btrfs_sort_leaf_ref(ref);
2745
5b84e8d6
YZ
2746 ret = btrfs_add_leaf_ref(root, ref, 0);
2747 WARN_ON(ret);
2748 btrfs_free_leaf_ref(root, ref);
2749 } else {
2750 WARN_ON(1);
2751 }
2752 }
323ac95b
CM
2753next_key:
2754 btrfs_release_path(root, path);
2755
2756 if (other_key.objectid == inode->i_ino &&
2757 other_key.type == key.type && other_key.offset > key.offset) {
2758 key.offset = other_key.offset;
2759 cond_resched();
2760 goto again;
2761 }
2762 ret = 0;
2763out:
2764 /* fixup any changes we've made to the path */
2765 path->lowest_level = 0;
2766 path->keep_locks = 0;
2767 btrfs_release_path(root, path);
2768 return ret;
2769}
2770
d20f7043
CM
2771#endif
2772
39279cc3
CM
2773/*
2774 * this can truncate away extent items, csum items and directory items.
2775 * It starts at a high offset and removes keys until it can't find
d352ac68 2776 * any higher than new_size
39279cc3
CM
2777 *
2778 * csum items that cross the new i_size are truncated to the new size
2779 * as well.
7b128766
JB
2780 *
2781 * min_type is the minimum key type to truncate down to. If set to 0, this
2782 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2783 */
e02119d5
CM
2784noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2785 struct btrfs_root *root,
2786 struct inode *inode,
2787 u64 new_size, u32 min_type)
39279cc3
CM
2788{
2789 int ret;
2790 struct btrfs_path *path;
2791 struct btrfs_key key;
5f39d397 2792 struct btrfs_key found_key;
06d9a8d7 2793 u32 found_type = (u8)-1;
5f39d397 2794 struct extent_buffer *leaf;
39279cc3
CM
2795 struct btrfs_file_extent_item *fi;
2796 u64 extent_start = 0;
db94535d 2797 u64 extent_num_bytes = 0;
5d4f98a2 2798 u64 extent_offset = 0;
39279cc3
CM
2799 u64 item_end = 0;
2800 int found_extent;
2801 int del_item;
85e21bac
CM
2802 int pending_del_nr = 0;
2803 int pending_del_slot = 0;
179e29e4 2804 int extent_type = -1;
771ed689 2805 int encoding;
3b951516 2806 u64 mask = root->sectorsize - 1;
39279cc3 2807
e02119d5 2808 if (root->ref_cows)
5b21f2ed 2809 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
39279cc3
CM
2810 path = btrfs_alloc_path();
2811 BUG_ON(!path);
33c17ad5 2812 path->reada = -1;
5f39d397 2813
39279cc3
CM
2814 /* FIXME, add redo link to tree so we don't leak on crash */
2815 key.objectid = inode->i_ino;
2816 key.offset = (u64)-1;
5f39d397
CM
2817 key.type = (u8)-1;
2818
85e21bac 2819search_again:
b9473439 2820 path->leave_spinning = 1;
85e21bac 2821 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
d397712b 2822 if (ret < 0)
85e21bac 2823 goto error;
d397712b 2824
85e21bac 2825 if (ret > 0) {
e02119d5
CM
2826 /* there are no items in the tree for us to truncate, we're
2827 * done
2828 */
2829 if (path->slots[0] == 0) {
2830 ret = 0;
2831 goto error;
2832 }
85e21bac
CM
2833 path->slots[0]--;
2834 }
2835
d397712b 2836 while (1) {
39279cc3 2837 fi = NULL;
5f39d397
CM
2838 leaf = path->nodes[0];
2839 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2840 found_type = btrfs_key_type(&found_key);
771ed689 2841 encoding = 0;
39279cc3 2842
5f39d397 2843 if (found_key.objectid != inode->i_ino)
39279cc3 2844 break;
5f39d397 2845
85e21bac 2846 if (found_type < min_type)
39279cc3
CM
2847 break;
2848
5f39d397 2849 item_end = found_key.offset;
39279cc3 2850 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2851 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2852 struct btrfs_file_extent_item);
179e29e4 2853 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2854 encoding = btrfs_file_extent_compression(leaf, fi);
2855 encoding |= btrfs_file_extent_encryption(leaf, fi);
2856 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2857
179e29e4 2858 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2859 item_end +=
db94535d 2860 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2861 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2862 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2863 fi);
39279cc3 2864 }
008630c1 2865 item_end--;
39279cc3 2866 }
e02119d5 2867 if (item_end < new_size) {
d397712b 2868 if (found_type == BTRFS_DIR_ITEM_KEY)
b888db2b 2869 found_type = BTRFS_INODE_ITEM_KEY;
d397712b 2870 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
d20f7043 2871 found_type = BTRFS_EXTENT_DATA_KEY;
d397712b 2872 else if (found_type == BTRFS_EXTENT_DATA_KEY)
85e21bac 2873 found_type = BTRFS_XATTR_ITEM_KEY;
d397712b 2874 else if (found_type == BTRFS_XATTR_ITEM_KEY)
85e21bac 2875 found_type = BTRFS_INODE_REF_KEY;
d397712b 2876 else if (found_type)
b888db2b 2877 found_type--;
d397712b 2878 else
b888db2b 2879 break;
a61721d5 2880 btrfs_set_key_type(&key, found_type);
85e21bac 2881 goto next;
39279cc3 2882 }
e02119d5 2883 if (found_key.offset >= new_size)
39279cc3
CM
2884 del_item = 1;
2885 else
2886 del_item = 0;
2887 found_extent = 0;
2888
2889 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2890 if (found_type != BTRFS_EXTENT_DATA_KEY)
2891 goto delete;
2892
2893 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2894 u64 num_dec;
db94535d 2895 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2896 if (!del_item && !encoding) {
db94535d
CM
2897 u64 orig_num_bytes =
2898 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2899 extent_num_bytes = new_size -
5f39d397 2900 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2901 extent_num_bytes = extent_num_bytes &
2902 ~((u64)root->sectorsize - 1);
db94535d
CM
2903 btrfs_set_file_extent_num_bytes(leaf, fi,
2904 extent_num_bytes);
2905 num_dec = (orig_num_bytes -
9069218d 2906 extent_num_bytes);
e02119d5 2907 if (root->ref_cows && extent_start != 0)
a76a3cd4 2908 inode_sub_bytes(inode, num_dec);
5f39d397 2909 btrfs_mark_buffer_dirty(leaf);
39279cc3 2910 } else {
db94535d
CM
2911 extent_num_bytes =
2912 btrfs_file_extent_disk_num_bytes(leaf,
2913 fi);
5d4f98a2
YZ
2914 extent_offset = found_key.offset -
2915 btrfs_file_extent_offset(leaf, fi);
2916
39279cc3 2917 /* FIXME blocksize != 4096 */
9069218d 2918 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2919 if (extent_start != 0) {
2920 found_extent = 1;
e02119d5 2921 if (root->ref_cows)
a76a3cd4 2922 inode_sub_bytes(inode, num_dec);
e02119d5 2923 }
39279cc3 2924 }
9069218d 2925 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
2926 /*
2927 * we can't truncate inline items that have had
2928 * special encodings
2929 */
2930 if (!del_item &&
2931 btrfs_file_extent_compression(leaf, fi) == 0 &&
2932 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2933 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
2934 u32 size = new_size - found_key.offset;
2935
2936 if (root->ref_cows) {
a76a3cd4
YZ
2937 inode_sub_bytes(inode, item_end + 1 -
2938 new_size);
e02119d5
CM
2939 }
2940 size =
2941 btrfs_file_extent_calc_inline_size(size);
9069218d 2942 ret = btrfs_truncate_item(trans, root, path,
e02119d5 2943 size, 1);
9069218d 2944 BUG_ON(ret);
e02119d5 2945 } else if (root->ref_cows) {
a76a3cd4
YZ
2946 inode_sub_bytes(inode, item_end + 1 -
2947 found_key.offset);
9069218d 2948 }
39279cc3 2949 }
179e29e4 2950delete:
39279cc3 2951 if (del_item) {
85e21bac
CM
2952 if (!pending_del_nr) {
2953 /* no pending yet, add ourselves */
2954 pending_del_slot = path->slots[0];
2955 pending_del_nr = 1;
2956 } else if (pending_del_nr &&
2957 path->slots[0] + 1 == pending_del_slot) {
2958 /* hop on the pending chunk */
2959 pending_del_nr++;
2960 pending_del_slot = path->slots[0];
2961 } else {
d397712b 2962 BUG();
85e21bac 2963 }
39279cc3
CM
2964 } else {
2965 break;
2966 }
5d4f98a2 2967 if (found_extent && root->ref_cows) {
b9473439 2968 btrfs_set_path_blocking(path);
39279cc3 2969 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
2970 extent_num_bytes, 0,
2971 btrfs_header_owner(leaf),
2972 inode->i_ino, extent_offset);
39279cc3
CM
2973 BUG_ON(ret);
2974 }
85e21bac
CM
2975next:
2976 if (path->slots[0] == 0) {
2977 if (pending_del_nr)
2978 goto del_pending;
2979 btrfs_release_path(root, path);
06d9a8d7
CM
2980 if (found_type == BTRFS_INODE_ITEM_KEY)
2981 break;
85e21bac
CM
2982 goto search_again;
2983 }
2984
2985 path->slots[0]--;
2986 if (pending_del_nr &&
2987 path->slots[0] + 1 != pending_del_slot) {
2988 struct btrfs_key debug;
2989del_pending:
2990 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2991 pending_del_slot);
2992 ret = btrfs_del_items(trans, root, path,
2993 pending_del_slot,
2994 pending_del_nr);
2995 BUG_ON(ret);
2996 pending_del_nr = 0;
2997 btrfs_release_path(root, path);
06d9a8d7
CM
2998 if (found_type == BTRFS_INODE_ITEM_KEY)
2999 break;
85e21bac
CM
3000 goto search_again;
3001 }
39279cc3
CM
3002 }
3003 ret = 0;
3004error:
85e21bac
CM
3005 if (pending_del_nr) {
3006 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3007 pending_del_nr);
3008 }
39279cc3 3009 btrfs_free_path(path);
39279cc3
CM
3010 return ret;
3011}
3012
3013/*
3014 * taken from block_truncate_page, but does cow as it zeros out
3015 * any bytes left in the last page in the file.
3016 */
3017static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3018{
3019 struct inode *inode = mapping->host;
db94535d 3020 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3021 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3022 struct btrfs_ordered_extent *ordered;
3023 char *kaddr;
db94535d 3024 u32 blocksize = root->sectorsize;
39279cc3
CM
3025 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3026 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3027 struct page *page;
39279cc3 3028 int ret = 0;
a52d9a80 3029 u64 page_start;
e6dcd2dc 3030 u64 page_end;
39279cc3
CM
3031
3032 if ((offset & (blocksize - 1)) == 0)
3033 goto out;
3034
3035 ret = -ENOMEM;
211c17f5 3036again:
39279cc3
CM
3037 page = grab_cache_page(mapping, index);
3038 if (!page)
3039 goto out;
e6dcd2dc
CM
3040
3041 page_start = page_offset(page);
3042 page_end = page_start + PAGE_CACHE_SIZE - 1;
3043
39279cc3 3044 if (!PageUptodate(page)) {
9ebefb18 3045 ret = btrfs_readpage(NULL, page);
39279cc3 3046 lock_page(page);
211c17f5
CM
3047 if (page->mapping != mapping) {
3048 unlock_page(page);
3049 page_cache_release(page);
3050 goto again;
3051 }
39279cc3
CM
3052 if (!PageUptodate(page)) {
3053 ret = -EIO;
89642229 3054 goto out_unlock;
39279cc3
CM
3055 }
3056 }
211c17f5 3057 wait_on_page_writeback(page);
e6dcd2dc
CM
3058
3059 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3060 set_page_extent_mapped(page);
3061
3062 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3063 if (ordered) {
3064 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3065 unlock_page(page);
3066 page_cache_release(page);
eb84ae03 3067 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3068 btrfs_put_ordered_extent(ordered);
3069 goto again;
3070 }
3071
9ed74f2d
JB
3072 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3073 if (ret) {
3074 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3075 goto out_unlock;
3076 }
3077
e6dcd2dc
CM
3078 ret = 0;
3079 if (offset != PAGE_CACHE_SIZE) {
3080 kaddr = kmap(page);
3081 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3082 flush_dcache_page(page);
3083 kunmap(page);
3084 }
247e743c 3085 ClearPageChecked(page);
e6dcd2dc
CM
3086 set_page_dirty(page);
3087 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 3088
89642229 3089out_unlock:
39279cc3
CM
3090 unlock_page(page);
3091 page_cache_release(page);
3092out:
3093 return ret;
3094}
3095
9036c102 3096int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3097{
9036c102
YZ
3098 struct btrfs_trans_handle *trans;
3099 struct btrfs_root *root = BTRFS_I(inode)->root;
3100 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3101 struct extent_map *em;
3102 u64 mask = root->sectorsize - 1;
3103 u64 hole_start = (inode->i_size + mask) & ~mask;
3104 u64 block_end = (size + mask) & ~mask;
3105 u64 last_byte;
3106 u64 cur_offset;
3107 u64 hole_size;
9ed74f2d 3108 int err = 0;
39279cc3 3109
9036c102
YZ
3110 if (size <= hole_start)
3111 return 0;
3112
9036c102 3113 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2bf5a725 3114
9036c102
YZ
3115 while (1) {
3116 struct btrfs_ordered_extent *ordered;
3117 btrfs_wait_ordered_range(inode, hole_start,
3118 block_end - hole_start);
3119 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3120 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3121 if (!ordered)
3122 break;
3123 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3124 btrfs_put_ordered_extent(ordered);
3125 }
39279cc3 3126
9036c102
YZ
3127 trans = btrfs_start_transaction(root, 1);
3128 btrfs_set_trans_block_group(trans, inode);
39279cc3 3129
9036c102
YZ
3130 cur_offset = hole_start;
3131 while (1) {
3132 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3133 block_end - cur_offset, 0);
3134 BUG_ON(IS_ERR(em) || !em);
3135 last_byte = min(extent_map_end(em), block_end);
3136 last_byte = (last_byte + mask) & ~mask;
3137 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
771ed689 3138 u64 hint_byte = 0;
9036c102 3139 hole_size = last_byte - cur_offset;
771ed689
CM
3140 err = btrfs_drop_extents(trans, root, inode,
3141 cur_offset,
3142 cur_offset + hole_size,
e980b50c 3143 block_end,
a1ed835e 3144 cur_offset, &hint_byte, 1);
771ed689
CM
3145 if (err)
3146 break;
9ed74f2d
JB
3147
3148 err = btrfs_reserve_metadata_space(root, 1);
3149 if (err)
3150 break;
3151
9036c102
YZ
3152 err = btrfs_insert_file_extent(trans, root,
3153 inode->i_ino, cur_offset, 0,
3154 0, hole_size, 0, hole_size,
3155 0, 0, 0);
3156 btrfs_drop_extent_cache(inode, hole_start,
3157 last_byte - 1, 0);
9ed74f2d 3158 btrfs_unreserve_metadata_space(root, 1);
9036c102
YZ
3159 }
3160 free_extent_map(em);
3161 cur_offset = last_byte;
3162 if (err || cur_offset >= block_end)
3163 break;
3164 }
1832a6d5 3165
9036c102
YZ
3166 btrfs_end_transaction(trans, root);
3167 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3168 return err;
3169}
39279cc3 3170
9036c102
YZ
3171static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3172{
3173 struct inode *inode = dentry->d_inode;
3174 int err;
39279cc3 3175
9036c102
YZ
3176 err = inode_change_ok(inode, attr);
3177 if (err)
3178 return err;
2bf5a725 3179
5a3f23d5
CM
3180 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3181 if (attr->ia_size > inode->i_size) {
3182 err = btrfs_cont_expand(inode, attr->ia_size);
3183 if (err)
3184 return err;
3185 } else if (inode->i_size > 0 &&
3186 attr->ia_size == 0) {
3187
3188 /* we're truncating a file that used to have good
3189 * data down to zero. Make sure it gets into
3190 * the ordered flush list so that any new writes
3191 * get down to disk quickly.
3192 */
3193 BTRFS_I(inode)->ordered_data_close = 1;
3194 }
39279cc3 3195 }
9036c102 3196
39279cc3 3197 err = inode_setattr(inode, attr);
33268eaf
JB
3198
3199 if (!err && ((attr->ia_valid & ATTR_MODE)))
3200 err = btrfs_acl_chmod(inode);
39279cc3
CM
3201 return err;
3202}
61295eb8 3203
39279cc3
CM
3204void btrfs_delete_inode(struct inode *inode)
3205{
3206 struct btrfs_trans_handle *trans;
3207 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3208 unsigned long nr;
39279cc3
CM
3209 int ret;
3210
3211 truncate_inode_pages(&inode->i_data, 0);
3212 if (is_bad_inode(inode)) {
7b128766 3213 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3214 goto no_delete;
3215 }
4a096752 3216 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3217
76dda93c
YZ
3218 if (inode->i_nlink > 0) {
3219 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3220 goto no_delete;
3221 }
3222
dbe674a9 3223 btrfs_i_size_write(inode, 0);
180591bc 3224 trans = btrfs_join_transaction(root, 1);
5f39d397 3225
39279cc3 3226 btrfs_set_trans_block_group(trans, inode);
e02119d5 3227 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
7b128766
JB
3228 if (ret) {
3229 btrfs_orphan_del(NULL, inode);
54aa1f4d 3230 goto no_delete_lock;
7b128766
JB
3231 }
3232
3233 btrfs_orphan_del(trans, inode);
85e21bac 3234
d3c2fdcf 3235 nr = trans->blocks_used;
85e21bac 3236 clear_inode(inode);
5f39d397 3237
39279cc3 3238 btrfs_end_transaction(trans, root);
d3c2fdcf 3239 btrfs_btree_balance_dirty(root, nr);
39279cc3 3240 return;
54aa1f4d
CM
3241
3242no_delete_lock:
d3c2fdcf 3243 nr = trans->blocks_used;
54aa1f4d 3244 btrfs_end_transaction(trans, root);
d3c2fdcf 3245 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3246no_delete:
3247 clear_inode(inode);
3248}
3249
3250/*
3251 * this returns the key found in the dir entry in the location pointer.
3252 * If no dir entries were found, location->objectid is 0.
3253 */
3254static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3255 struct btrfs_key *location)
3256{
3257 const char *name = dentry->d_name.name;
3258 int namelen = dentry->d_name.len;
3259 struct btrfs_dir_item *di;
3260 struct btrfs_path *path;
3261 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3262 int ret = 0;
39279cc3
CM
3263
3264 path = btrfs_alloc_path();
3265 BUG_ON(!path);
3954401f 3266
39279cc3
CM
3267 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3268 namelen, 0);
0d9f7f3e
Y
3269 if (IS_ERR(di))
3270 ret = PTR_ERR(di);
d397712b
CM
3271
3272 if (!di || IS_ERR(di))
3954401f 3273 goto out_err;
d397712b 3274
5f39d397 3275 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3276out:
39279cc3
CM
3277 btrfs_free_path(path);
3278 return ret;
3954401f
CM
3279out_err:
3280 location->objectid = 0;
3281 goto out;
39279cc3
CM
3282}
3283
3284/*
3285 * when we hit a tree root in a directory, the btrfs part of the inode
3286 * needs to be changed to reflect the root directory of the tree root. This
3287 * is kind of like crossing a mount point.
3288 */
3289static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3290 struct inode *dir,
3291 struct dentry *dentry,
3292 struct btrfs_key *location,
3293 struct btrfs_root **sub_root)
39279cc3 3294{
4df27c4d
YZ
3295 struct btrfs_path *path;
3296 struct btrfs_root *new_root;
3297 struct btrfs_root_ref *ref;
3298 struct extent_buffer *leaf;
3299 int ret;
3300 int err = 0;
39279cc3 3301
4df27c4d
YZ
3302 path = btrfs_alloc_path();
3303 if (!path) {
3304 err = -ENOMEM;
3305 goto out;
3306 }
39279cc3 3307
4df27c4d
YZ
3308 err = -ENOENT;
3309 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3310 BTRFS_I(dir)->root->root_key.objectid,
3311 location->objectid);
3312 if (ret) {
3313 if (ret < 0)
3314 err = ret;
3315 goto out;
3316 }
39279cc3 3317
4df27c4d
YZ
3318 leaf = path->nodes[0];
3319 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3320 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3321 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3322 goto out;
39279cc3 3323
4df27c4d
YZ
3324 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3325 (unsigned long)(ref + 1),
3326 dentry->d_name.len);
3327 if (ret)
3328 goto out;
3329
3330 btrfs_release_path(root->fs_info->tree_root, path);
3331
3332 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3333 if (IS_ERR(new_root)) {
3334 err = PTR_ERR(new_root);
3335 goto out;
3336 }
3337
3338 if (btrfs_root_refs(&new_root->root_item) == 0) {
3339 err = -ENOENT;
3340 goto out;
3341 }
3342
3343 *sub_root = new_root;
3344 location->objectid = btrfs_root_dirid(&new_root->root_item);
3345 location->type = BTRFS_INODE_ITEM_KEY;
3346 location->offset = 0;
3347 err = 0;
3348out:
3349 btrfs_free_path(path);
3350 return err;
39279cc3
CM
3351}
3352
5d4f98a2
YZ
3353static void inode_tree_add(struct inode *inode)
3354{
3355 struct btrfs_root *root = BTRFS_I(inode)->root;
3356 struct btrfs_inode *entry;
03e860bd
FNP
3357 struct rb_node **p;
3358 struct rb_node *parent;
03e860bd
FNP
3359again:
3360 p = &root->inode_tree.rb_node;
3361 parent = NULL;
5d4f98a2 3362
76dda93c
YZ
3363 if (hlist_unhashed(&inode->i_hash))
3364 return;
3365
5d4f98a2
YZ
3366 spin_lock(&root->inode_lock);
3367 while (*p) {
3368 parent = *p;
3369 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3370
3371 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3372 p = &parent->rb_left;
5d4f98a2 3373 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3374 p = &parent->rb_right;
5d4f98a2
YZ
3375 else {
3376 WARN_ON(!(entry->vfs_inode.i_state &
3377 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3378 rb_erase(parent, &root->inode_tree);
3379 RB_CLEAR_NODE(parent);
3380 spin_unlock(&root->inode_lock);
3381 goto again;
5d4f98a2
YZ
3382 }
3383 }
3384 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3385 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3386 spin_unlock(&root->inode_lock);
3387}
3388
3389static void inode_tree_del(struct inode *inode)
3390{
3391 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3392 int empty = 0;
5d4f98a2 3393
03e860bd 3394 spin_lock(&root->inode_lock);
5d4f98a2 3395 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3396 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3397 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3398 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3399 }
03e860bd 3400 spin_unlock(&root->inode_lock);
76dda93c
YZ
3401
3402 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3403 synchronize_srcu(&root->fs_info->subvol_srcu);
3404 spin_lock(&root->inode_lock);
3405 empty = RB_EMPTY_ROOT(&root->inode_tree);
3406 spin_unlock(&root->inode_lock);
3407 if (empty)
3408 btrfs_add_dead_root(root);
3409 }
3410}
3411
3412int btrfs_invalidate_inodes(struct btrfs_root *root)
3413{
3414 struct rb_node *node;
3415 struct rb_node *prev;
3416 struct btrfs_inode *entry;
3417 struct inode *inode;
3418 u64 objectid = 0;
3419
3420 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3421
3422 spin_lock(&root->inode_lock);
3423again:
3424 node = root->inode_tree.rb_node;
3425 prev = NULL;
3426 while (node) {
3427 prev = node;
3428 entry = rb_entry(node, struct btrfs_inode, rb_node);
3429
3430 if (objectid < entry->vfs_inode.i_ino)
3431 node = node->rb_left;
3432 else if (objectid > entry->vfs_inode.i_ino)
3433 node = node->rb_right;
3434 else
3435 break;
3436 }
3437 if (!node) {
3438 while (prev) {
3439 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3440 if (objectid <= entry->vfs_inode.i_ino) {
3441 node = prev;
3442 break;
3443 }
3444 prev = rb_next(prev);
3445 }
3446 }
3447 while (node) {
3448 entry = rb_entry(node, struct btrfs_inode, rb_node);
3449 objectid = entry->vfs_inode.i_ino + 1;
3450 inode = igrab(&entry->vfs_inode);
3451 if (inode) {
3452 spin_unlock(&root->inode_lock);
3453 if (atomic_read(&inode->i_count) > 1)
3454 d_prune_aliases(inode);
3455 /*
3456 * btrfs_drop_inode will remove it from
3457 * the inode cache when its usage count
3458 * hits zero.
3459 */
3460 iput(inode);
3461 cond_resched();
3462 spin_lock(&root->inode_lock);
3463 goto again;
3464 }
3465
3466 if (cond_resched_lock(&root->inode_lock))
3467 goto again;
3468
3469 node = rb_next(node);
3470 }
3471 spin_unlock(&root->inode_lock);
3472 return 0;
5d4f98a2
YZ
3473}
3474
e02119d5 3475static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3476{
e02119d5
CM
3477 struct btrfs_inode *bi = BTRFS_I(inode);
3478
e02119d5 3479 bi->generation = 0;
c3027eb5 3480 bi->sequence = 0;
e02119d5
CM
3481 bi->last_trans = 0;
3482 bi->logged_trans = 0;
3483 bi->delalloc_bytes = 0;
6a63209f 3484 bi->reserved_bytes = 0;
e02119d5
CM
3485 bi->disk_i_size = 0;
3486 bi->flags = 0;
3487 bi->index_cnt = (u64)-1;
12fcfd22 3488 bi->last_unlink_trans = 0;
2757495c 3489 bi->ordered_data_close = 0;
d1310b2e
CM
3490 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3491 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3492 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3493 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3494 inode->i_mapping, GFP_NOFS);
ea8c2819 3495 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3496 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3497 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3498 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
ee6e6504 3499 mutex_init(&BTRFS_I(inode)->extent_mutex);
e02119d5
CM
3500 mutex_init(&BTRFS_I(inode)->log_mutex);
3501}
3502
3503static int btrfs_init_locked_inode(struct inode *inode, void *p)
3504{
3505 struct btrfs_iget_args *args = p;
3506 inode->i_ino = args->ino;
3507 init_btrfs_i(inode);
3508 BTRFS_I(inode)->root = args->root;
6a63209f 3509 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3510 return 0;
3511}
3512
3513static int btrfs_find_actor(struct inode *inode, void *opaque)
3514{
3515 struct btrfs_iget_args *args = opaque;
d397712b
CM
3516 return args->ino == inode->i_ino &&
3517 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3518}
3519
5d4f98a2
YZ
3520static struct inode *btrfs_iget_locked(struct super_block *s,
3521 u64 objectid,
3522 struct btrfs_root *root)
39279cc3
CM
3523{
3524 struct inode *inode;
3525 struct btrfs_iget_args args;
3526 args.ino = objectid;
3527 args.root = root;
3528
3529 inode = iget5_locked(s, objectid, btrfs_find_actor,
3530 btrfs_init_locked_inode,
3531 (void *)&args);
3532 return inode;
3533}
3534
1a54ef8c
BR
3535/* Get an inode object given its location and corresponding root.
3536 * Returns in *is_new if the inode was read from disk
3537 */
3538struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3539 struct btrfs_root *root)
1a54ef8c
BR
3540{
3541 struct inode *inode;
3542
3543 inode = btrfs_iget_locked(s, location->objectid, root);
3544 if (!inode)
5d4f98a2 3545 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3546
3547 if (inode->i_state & I_NEW) {
3548 BTRFS_I(inode)->root = root;
3549 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3550 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3551
3552 inode_tree_add(inode);
1a54ef8c 3553 unlock_new_inode(inode);
1a54ef8c
BR
3554 }
3555
3556 return inode;
3557}
3558
4df27c4d
YZ
3559static struct inode *new_simple_dir(struct super_block *s,
3560 struct btrfs_key *key,
3561 struct btrfs_root *root)
3562{
3563 struct inode *inode = new_inode(s);
3564
3565 if (!inode)
3566 return ERR_PTR(-ENOMEM);
3567
3568 init_btrfs_i(inode);
3569
3570 BTRFS_I(inode)->root = root;
3571 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3572 BTRFS_I(inode)->dummy_inode = 1;
3573
3574 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3575 inode->i_op = &simple_dir_inode_operations;
3576 inode->i_fop = &simple_dir_operations;
3577 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3578 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3579
3580 return inode;
3581}
3582
3de4586c 3583struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3584{
d397712b 3585 struct inode *inode;
4df27c4d 3586 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3587 struct btrfs_root *sub_root = root;
3588 struct btrfs_key location;
76dda93c 3589 int index;
5d4f98a2 3590 int ret;
39279cc3 3591
76dda93c
YZ
3592 dentry->d_op = &btrfs_dentry_operations;
3593
39279cc3
CM
3594 if (dentry->d_name.len > BTRFS_NAME_LEN)
3595 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3596
39279cc3 3597 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3598
39279cc3
CM
3599 if (ret < 0)
3600 return ERR_PTR(ret);
5f39d397 3601
4df27c4d
YZ
3602 if (location.objectid == 0)
3603 return NULL;
3604
3605 if (location.type == BTRFS_INODE_ITEM_KEY) {
3606 inode = btrfs_iget(dir->i_sb, &location, root);
3607 return inode;
3608 }
3609
3610 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3611
76dda93c 3612 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3613 ret = fixup_tree_root_location(root, dir, dentry,
3614 &location, &sub_root);
3615 if (ret < 0) {
3616 if (ret != -ENOENT)
3617 inode = ERR_PTR(ret);
3618 else
3619 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3620 } else {
5d4f98a2 3621 inode = btrfs_iget(dir->i_sb, &location, sub_root);
39279cc3 3622 }
76dda93c
YZ
3623 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3624
3de4586c
CM
3625 return inode;
3626}
3627
76dda93c
YZ
3628static int btrfs_dentry_delete(struct dentry *dentry)
3629{
3630 struct btrfs_root *root;
3631
efefb143
YZ
3632 if (!dentry->d_inode && !IS_ROOT(dentry))
3633 dentry = dentry->d_parent;
76dda93c 3634
efefb143
YZ
3635 if (dentry->d_inode) {
3636 root = BTRFS_I(dentry->d_inode)->root;
3637 if (btrfs_root_refs(&root->root_item) == 0)
3638 return 1;
3639 }
76dda93c
YZ
3640 return 0;
3641}
3642
3de4586c
CM
3643static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3644 struct nameidata *nd)
3645{
3646 struct inode *inode;
3647
3de4586c
CM
3648 inode = btrfs_lookup_dentry(dir, dentry);
3649 if (IS_ERR(inode))
3650 return ERR_CAST(inode);
7b128766 3651
39279cc3
CM
3652 return d_splice_alias(inode, dentry);
3653}
3654
39279cc3
CM
3655static unsigned char btrfs_filetype_table[] = {
3656 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3657};
3658
cbdf5a24
DW
3659static int btrfs_real_readdir(struct file *filp, void *dirent,
3660 filldir_t filldir)
39279cc3 3661{
6da6abae 3662 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3663 struct btrfs_root *root = BTRFS_I(inode)->root;
3664 struct btrfs_item *item;
3665 struct btrfs_dir_item *di;
3666 struct btrfs_key key;
5f39d397 3667 struct btrfs_key found_key;
39279cc3
CM
3668 struct btrfs_path *path;
3669 int ret;
3670 u32 nritems;
5f39d397 3671 struct extent_buffer *leaf;
39279cc3
CM
3672 int slot;
3673 int advance;
3674 unsigned char d_type;
3675 int over = 0;
3676 u32 di_cur;
3677 u32 di_total;
3678 u32 di_len;
3679 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3680 char tmp_name[32];
3681 char *name_ptr;
3682 int name_len;
39279cc3
CM
3683
3684 /* FIXME, use a real flag for deciding about the key type */
3685 if (root->fs_info->tree_root == root)
3686 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3687
3954401f
CM
3688 /* special case for "." */
3689 if (filp->f_pos == 0) {
3690 over = filldir(dirent, ".", 1,
3691 1, inode->i_ino,
3692 DT_DIR);
3693 if (over)
3694 return 0;
3695 filp->f_pos = 1;
3696 }
3954401f
CM
3697 /* special case for .., just use the back ref */
3698 if (filp->f_pos == 1) {
5ecc7e5d 3699 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3700 over = filldir(dirent, "..", 2,
5ecc7e5d 3701 2, pino, DT_DIR);
3954401f 3702 if (over)
49593bfa 3703 return 0;
3954401f
CM
3704 filp->f_pos = 2;
3705 }
49593bfa
DW
3706 path = btrfs_alloc_path();
3707 path->reada = 2;
3708
39279cc3
CM
3709 btrfs_set_key_type(&key, key_type);
3710 key.offset = filp->f_pos;
49593bfa 3711 key.objectid = inode->i_ino;
5f39d397 3712
39279cc3
CM
3713 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3714 if (ret < 0)
3715 goto err;
3716 advance = 0;
49593bfa
DW
3717
3718 while (1) {
5f39d397
CM
3719 leaf = path->nodes[0];
3720 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3721 slot = path->slots[0];
3722 if (advance || slot >= nritems) {
49593bfa 3723 if (slot >= nritems - 1) {
39279cc3
CM
3724 ret = btrfs_next_leaf(root, path);
3725 if (ret)
3726 break;
5f39d397
CM
3727 leaf = path->nodes[0];
3728 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3729 slot = path->slots[0];
3730 } else {
3731 slot++;
3732 path->slots[0]++;
3733 }
3734 }
3de4586c 3735
39279cc3 3736 advance = 1;
5f39d397
CM
3737 item = btrfs_item_nr(leaf, slot);
3738 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3739
3740 if (found_key.objectid != key.objectid)
39279cc3 3741 break;
5f39d397 3742 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3743 break;
5f39d397 3744 if (found_key.offset < filp->f_pos)
39279cc3 3745 continue;
5f39d397
CM
3746
3747 filp->f_pos = found_key.offset;
49593bfa 3748
39279cc3
CM
3749 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3750 di_cur = 0;
5f39d397 3751 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3752
3753 while (di_cur < di_total) {
5f39d397
CM
3754 struct btrfs_key location;
3755
3756 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3757 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3758 name_ptr = tmp_name;
3759 } else {
3760 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3761 if (!name_ptr) {
3762 ret = -ENOMEM;
3763 goto err;
3764 }
5f39d397
CM
3765 }
3766 read_extent_buffer(leaf, name_ptr,
3767 (unsigned long)(di + 1), name_len);
3768
3769 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3770 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3771
3772 /* is this a reference to our own snapshot? If so
3773 * skip it
3774 */
3775 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3776 location.objectid == root->root_key.objectid) {
3777 over = 0;
3778 goto skip;
3779 }
5f39d397 3780 over = filldir(dirent, name_ptr, name_len,
49593bfa 3781 found_key.offset, location.objectid,
39279cc3 3782 d_type);
5f39d397 3783
3de4586c 3784skip:
5f39d397
CM
3785 if (name_ptr != tmp_name)
3786 kfree(name_ptr);
3787
39279cc3
CM
3788 if (over)
3789 goto nopos;
5103e947 3790 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3791 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3792 di_cur += di_len;
3793 di = (struct btrfs_dir_item *)((char *)di + di_len);
3794 }
3795 }
49593bfa
DW
3796
3797 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3798 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3799 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3800 else
3801 filp->f_pos++;
39279cc3
CM
3802nopos:
3803 ret = 0;
3804err:
39279cc3 3805 btrfs_free_path(path);
39279cc3
CM
3806 return ret;
3807}
3808
3809int btrfs_write_inode(struct inode *inode, int wait)
3810{
3811 struct btrfs_root *root = BTRFS_I(inode)->root;
3812 struct btrfs_trans_handle *trans;
3813 int ret = 0;
3814
c146afad 3815 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
3816 return 0;
3817
39279cc3 3818 if (wait) {
f9295749 3819 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3820 btrfs_set_trans_block_group(trans, inode);
3821 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
3822 }
3823 return ret;
3824}
3825
3826/*
54aa1f4d 3827 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
3828 * inode changes. But, it is most likely to find the inode in cache.
3829 * FIXME, needs more benchmarking...there are no reasons other than performance
3830 * to keep or drop this code.
3831 */
3832void btrfs_dirty_inode(struct inode *inode)
3833{
3834 struct btrfs_root *root = BTRFS_I(inode)->root;
3835 struct btrfs_trans_handle *trans;
3836
f9295749 3837 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3838 btrfs_set_trans_block_group(trans, inode);
3839 btrfs_update_inode(trans, root, inode);
3840 btrfs_end_transaction(trans, root);
39279cc3
CM
3841}
3842
d352ac68
CM
3843/*
3844 * find the highest existing sequence number in a directory
3845 * and then set the in-memory index_cnt variable to reflect
3846 * free sequence numbers
3847 */
aec7477b
JB
3848static int btrfs_set_inode_index_count(struct inode *inode)
3849{
3850 struct btrfs_root *root = BTRFS_I(inode)->root;
3851 struct btrfs_key key, found_key;
3852 struct btrfs_path *path;
3853 struct extent_buffer *leaf;
3854 int ret;
3855
3856 key.objectid = inode->i_ino;
3857 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3858 key.offset = (u64)-1;
3859
3860 path = btrfs_alloc_path();
3861 if (!path)
3862 return -ENOMEM;
3863
3864 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3865 if (ret < 0)
3866 goto out;
3867 /* FIXME: we should be able to handle this */
3868 if (ret == 0)
3869 goto out;
3870 ret = 0;
3871
3872 /*
3873 * MAGIC NUMBER EXPLANATION:
3874 * since we search a directory based on f_pos we have to start at 2
3875 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3876 * else has to start at 2
3877 */
3878 if (path->slots[0] == 0) {
3879 BTRFS_I(inode)->index_cnt = 2;
3880 goto out;
3881 }
3882
3883 path->slots[0]--;
3884
3885 leaf = path->nodes[0];
3886 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3887
3888 if (found_key.objectid != inode->i_ino ||
3889 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3890 BTRFS_I(inode)->index_cnt = 2;
3891 goto out;
3892 }
3893
3894 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3895out:
3896 btrfs_free_path(path);
3897 return ret;
3898}
3899
d352ac68
CM
3900/*
3901 * helper to find a free sequence number in a given directory. This current
3902 * code is very simple, later versions will do smarter things in the btree
3903 */
3de4586c 3904int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
3905{
3906 int ret = 0;
3907
3908 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3909 ret = btrfs_set_inode_index_count(dir);
d397712b 3910 if (ret)
aec7477b
JB
3911 return ret;
3912 }
3913
00e4e6b3 3914 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
3915 BTRFS_I(dir)->index_cnt++;
3916
3917 return ret;
3918}
3919
39279cc3
CM
3920static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3921 struct btrfs_root *root,
aec7477b 3922 struct inode *dir,
9c58309d 3923 const char *name, int name_len,
d2fb3437
YZ
3924 u64 ref_objectid, u64 objectid,
3925 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
3926{
3927 struct inode *inode;
5f39d397 3928 struct btrfs_inode_item *inode_item;
39279cc3 3929 struct btrfs_key *location;
5f39d397 3930 struct btrfs_path *path;
9c58309d
CM
3931 struct btrfs_inode_ref *ref;
3932 struct btrfs_key key[2];
3933 u32 sizes[2];
3934 unsigned long ptr;
39279cc3
CM
3935 int ret;
3936 int owner;
3937
5f39d397
CM
3938 path = btrfs_alloc_path();
3939 BUG_ON(!path);
3940
39279cc3
CM
3941 inode = new_inode(root->fs_info->sb);
3942 if (!inode)
3943 return ERR_PTR(-ENOMEM);
3944
aec7477b 3945 if (dir) {
3de4586c 3946 ret = btrfs_set_inode_index(dir, index);
09771430
SF
3947 if (ret) {
3948 iput(inode);
aec7477b 3949 return ERR_PTR(ret);
09771430 3950 }
aec7477b
JB
3951 }
3952 /*
3953 * index_cnt is ignored for everything but a dir,
3954 * btrfs_get_inode_index_count has an explanation for the magic
3955 * number
3956 */
e02119d5 3957 init_btrfs_i(inode);
aec7477b 3958 BTRFS_I(inode)->index_cnt = 2;
39279cc3 3959 BTRFS_I(inode)->root = root;
e02119d5 3960 BTRFS_I(inode)->generation = trans->transid;
6a63209f 3961 btrfs_set_inode_space_info(root, inode);
b888db2b 3962
39279cc3
CM
3963 if (mode & S_IFDIR)
3964 owner = 0;
3965 else
3966 owner = 1;
d2fb3437
YZ
3967 BTRFS_I(inode)->block_group =
3968 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
3969
3970 key[0].objectid = objectid;
3971 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3972 key[0].offset = 0;
3973
3974 key[1].objectid = objectid;
3975 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3976 key[1].offset = ref_objectid;
3977
3978 sizes[0] = sizeof(struct btrfs_inode_item);
3979 sizes[1] = name_len + sizeof(*ref);
3980
b9473439 3981 path->leave_spinning = 1;
9c58309d
CM
3982 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3983 if (ret != 0)
5f39d397
CM
3984 goto fail;
3985
79683f2d 3986 inode->i_uid = current_fsuid();
8c087b51 3987
42f15d77 3988 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
3989 inode->i_gid = dir->i_gid;
3990 if (S_ISDIR(mode))
3991 mode |= S_ISGID;
3992 } else
3993 inode->i_gid = current_fsgid();
3994
39279cc3
CM
3995 inode->i_mode = mode;
3996 inode->i_ino = objectid;
a76a3cd4 3997 inode_set_bytes(inode, 0);
39279cc3 3998 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
3999 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4000 struct btrfs_inode_item);
e02119d5 4001 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4002
4003 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4004 struct btrfs_inode_ref);
4005 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4006 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4007 ptr = (unsigned long)(ref + 1);
4008 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4009
5f39d397
CM
4010 btrfs_mark_buffer_dirty(path->nodes[0]);
4011 btrfs_free_path(path);
4012
39279cc3
CM
4013 location = &BTRFS_I(inode)->location;
4014 location->objectid = objectid;
39279cc3
CM
4015 location->offset = 0;
4016 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4017
6cbff00f
CH
4018 btrfs_inherit_iflags(inode, dir);
4019
94272164
CM
4020 if ((mode & S_IFREG)) {
4021 if (btrfs_test_opt(root, NODATASUM))
4022 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4023 if (btrfs_test_opt(root, NODATACOW))
4024 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4025 }
4026
39279cc3 4027 insert_inode_hash(inode);
5d4f98a2 4028 inode_tree_add(inode);
39279cc3 4029 return inode;
5f39d397 4030fail:
aec7477b
JB
4031 if (dir)
4032 BTRFS_I(dir)->index_cnt--;
5f39d397 4033 btrfs_free_path(path);
09771430 4034 iput(inode);
5f39d397 4035 return ERR_PTR(ret);
39279cc3
CM
4036}
4037
4038static inline u8 btrfs_inode_type(struct inode *inode)
4039{
4040 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4041}
4042
d352ac68
CM
4043/*
4044 * utility function to add 'inode' into 'parent_inode' with
4045 * a give name and a given sequence number.
4046 * if 'add_backref' is true, also insert a backref from the
4047 * inode to the parent directory.
4048 */
e02119d5
CM
4049int btrfs_add_link(struct btrfs_trans_handle *trans,
4050 struct inode *parent_inode, struct inode *inode,
4051 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4052{
4df27c4d 4053 int ret = 0;
39279cc3 4054 struct btrfs_key key;
e02119d5 4055 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4056
4df27c4d
YZ
4057 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4058 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4059 } else {
4060 key.objectid = inode->i_ino;
4061 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4062 key.offset = 0;
4063 }
4064
4065 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4066 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4067 key.objectid, root->root_key.objectid,
4068 parent_inode->i_ino,
4069 index, name, name_len);
4070 } else if (add_backref) {
4071 ret = btrfs_insert_inode_ref(trans, root,
4072 name, name_len, inode->i_ino,
4073 parent_inode->i_ino, index);
4074 }
39279cc3 4075
39279cc3 4076 if (ret == 0) {
4df27c4d
YZ
4077 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4078 parent_inode->i_ino, &key,
4079 btrfs_inode_type(inode), index);
4080 BUG_ON(ret);
4081
dbe674a9 4082 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4083 name_len * 2);
79c44584 4084 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4085 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4086 }
4087 return ret;
4088}
4089
4090static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4091 struct dentry *dentry, struct inode *inode,
00e4e6b3 4092 int backref, u64 index)
39279cc3 4093{
e02119d5
CM
4094 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4095 inode, dentry->d_name.name,
4096 dentry->d_name.len, backref, index);
39279cc3
CM
4097 if (!err) {
4098 d_instantiate(dentry, inode);
4099 return 0;
4100 }
4101 if (err > 0)
4102 err = -EEXIST;
4103 return err;
4104}
4105
618e21d5
JB
4106static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4107 int mode, dev_t rdev)
4108{
4109 struct btrfs_trans_handle *trans;
4110 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4111 struct inode *inode = NULL;
618e21d5
JB
4112 int err;
4113 int drop_inode = 0;
4114 u64 objectid;
1832a6d5 4115 unsigned long nr = 0;
00e4e6b3 4116 u64 index = 0;
618e21d5
JB
4117
4118 if (!new_valid_dev(rdev))
4119 return -EINVAL;
4120
9ed74f2d
JB
4121 /*
4122 * 2 for inode item and ref
4123 * 2 for dir items
4124 * 1 for xattr if selinux is on
4125 */
4126 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4127 if (err)
9ed74f2d 4128 return err;
1832a6d5 4129
618e21d5 4130 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4131 if (!trans)
4132 goto fail;
618e21d5
JB
4133 btrfs_set_trans_block_group(trans, dir);
4134
4135 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4136 if (err) {
4137 err = -ENOSPC;
4138 goto out_unlock;
4139 }
4140
aec7477b 4141 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4142 dentry->d_name.len,
4143 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4144 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4145 err = PTR_ERR(inode);
4146 if (IS_ERR(inode))
4147 goto out_unlock;
4148
0279b4cd 4149 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4150 if (err) {
4151 drop_inode = 1;
4152 goto out_unlock;
4153 }
4154
618e21d5 4155 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4156 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4157 if (err)
4158 drop_inode = 1;
4159 else {
4160 inode->i_op = &btrfs_special_inode_operations;
4161 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4162 btrfs_update_inode(trans, root, inode);
618e21d5 4163 }
618e21d5
JB
4164 btrfs_update_inode_block_group(trans, inode);
4165 btrfs_update_inode_block_group(trans, dir);
4166out_unlock:
d3c2fdcf 4167 nr = trans->blocks_used;
89ce8a63 4168 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4169fail:
9ed74f2d 4170 btrfs_unreserve_metadata_space(root, 5);
618e21d5
JB
4171 if (drop_inode) {
4172 inode_dec_link_count(inode);
4173 iput(inode);
4174 }
d3c2fdcf 4175 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4176 return err;
4177}
4178
39279cc3
CM
4179static int btrfs_create(struct inode *dir, struct dentry *dentry,
4180 int mode, struct nameidata *nd)
4181{
4182 struct btrfs_trans_handle *trans;
4183 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4184 struct inode *inode = NULL;
39279cc3
CM
4185 int err;
4186 int drop_inode = 0;
1832a6d5 4187 unsigned long nr = 0;
39279cc3 4188 u64 objectid;
00e4e6b3 4189 u64 index = 0;
39279cc3 4190
9ed74f2d
JB
4191 /*
4192 * 2 for inode item and ref
4193 * 2 for dir items
4194 * 1 for xattr if selinux is on
4195 */
4196 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4197 if (err)
9ed74f2d
JB
4198 return err;
4199
39279cc3 4200 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4201 if (!trans)
4202 goto fail;
39279cc3
CM
4203 btrfs_set_trans_block_group(trans, dir);
4204
4205 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4206 if (err) {
4207 err = -ENOSPC;
4208 goto out_unlock;
4209 }
4210
aec7477b 4211 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4212 dentry->d_name.len,
4213 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4214 objectid, BTRFS_I(dir)->block_group, mode,
4215 &index);
39279cc3
CM
4216 err = PTR_ERR(inode);
4217 if (IS_ERR(inode))
4218 goto out_unlock;
4219
0279b4cd 4220 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4221 if (err) {
4222 drop_inode = 1;
4223 goto out_unlock;
4224 }
4225
39279cc3 4226 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4227 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4228 if (err)
4229 drop_inode = 1;
4230 else {
4231 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4232 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4233 inode->i_fop = &btrfs_file_operations;
4234 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4235 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4236 }
39279cc3
CM
4237 btrfs_update_inode_block_group(trans, inode);
4238 btrfs_update_inode_block_group(trans, dir);
4239out_unlock:
d3c2fdcf 4240 nr = trans->blocks_used;
ab78c84d 4241 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4242fail:
9ed74f2d 4243 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4244 if (drop_inode) {
4245 inode_dec_link_count(inode);
4246 iput(inode);
4247 }
d3c2fdcf 4248 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4249 return err;
4250}
4251
4252static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4253 struct dentry *dentry)
4254{
4255 struct btrfs_trans_handle *trans;
4256 struct btrfs_root *root = BTRFS_I(dir)->root;
4257 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4258 u64 index;
1832a6d5 4259 unsigned long nr = 0;
39279cc3
CM
4260 int err;
4261 int drop_inode = 0;
4262
4263 if (inode->i_nlink == 0)
4264 return -ENOENT;
4265
9ed74f2d
JB
4266 /*
4267 * 1 item for inode ref
4268 * 2 items for dir items
4269 */
4270 err = btrfs_reserve_metadata_space(root, 3);
1832a6d5 4271 if (err)
9ed74f2d
JB
4272 return err;
4273
4274 btrfs_inc_nlink(inode);
4275
3de4586c 4276 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4277 if (err)
4278 goto fail;
4279
39279cc3 4280 trans = btrfs_start_transaction(root, 1);
5f39d397 4281
39279cc3
CM
4282 btrfs_set_trans_block_group(trans, dir);
4283 atomic_inc(&inode->i_count);
aec7477b 4284
00e4e6b3 4285 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4286
a5719521 4287 if (err) {
54aa1f4d 4288 drop_inode = 1;
a5719521
YZ
4289 } else {
4290 btrfs_update_inode_block_group(trans, dir);
4291 err = btrfs_update_inode(trans, root, inode);
4292 BUG_ON(err);
4293 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4294 }
39279cc3 4295
d3c2fdcf 4296 nr = trans->blocks_used;
ab78c84d 4297 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4298fail:
9ed74f2d 4299 btrfs_unreserve_metadata_space(root, 3);
39279cc3
CM
4300 if (drop_inode) {
4301 inode_dec_link_count(inode);
4302 iput(inode);
4303 }
d3c2fdcf 4304 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4305 return err;
4306}
4307
39279cc3
CM
4308static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4309{
b9d86667 4310 struct inode *inode = NULL;
39279cc3
CM
4311 struct btrfs_trans_handle *trans;
4312 struct btrfs_root *root = BTRFS_I(dir)->root;
4313 int err = 0;
4314 int drop_on_err = 0;
b9d86667 4315 u64 objectid = 0;
00e4e6b3 4316 u64 index = 0;
d3c2fdcf 4317 unsigned long nr = 1;
39279cc3 4318
9ed74f2d
JB
4319 /*
4320 * 2 items for inode and ref
4321 * 2 items for dir items
4322 * 1 for xattr if selinux is on
4323 */
4324 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4325 if (err)
9ed74f2d 4326 return err;
1832a6d5 4327
39279cc3 4328 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4329 if (!trans) {
4330 err = -ENOMEM;
39279cc3
CM
4331 goto out_unlock;
4332 }
9ed74f2d 4333 btrfs_set_trans_block_group(trans, dir);
39279cc3
CM
4334
4335 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4336 if (err) {
4337 err = -ENOSPC;
4338 goto out_unlock;
4339 }
4340
aec7477b 4341 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4342 dentry->d_name.len,
4343 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4344 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4345 &index);
39279cc3
CM
4346 if (IS_ERR(inode)) {
4347 err = PTR_ERR(inode);
4348 goto out_fail;
4349 }
5f39d397 4350
39279cc3 4351 drop_on_err = 1;
33268eaf 4352
0279b4cd 4353 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4354 if (err)
4355 goto out_fail;
4356
39279cc3
CM
4357 inode->i_op = &btrfs_dir_inode_operations;
4358 inode->i_fop = &btrfs_dir_file_operations;
4359 btrfs_set_trans_block_group(trans, inode);
4360
dbe674a9 4361 btrfs_i_size_write(inode, 0);
39279cc3
CM
4362 err = btrfs_update_inode(trans, root, inode);
4363 if (err)
4364 goto out_fail;
5f39d397 4365
e02119d5
CM
4366 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4367 inode, dentry->d_name.name,
4368 dentry->d_name.len, 0, index);
39279cc3
CM
4369 if (err)
4370 goto out_fail;
5f39d397 4371
39279cc3
CM
4372 d_instantiate(dentry, inode);
4373 drop_on_err = 0;
39279cc3
CM
4374 btrfs_update_inode_block_group(trans, inode);
4375 btrfs_update_inode_block_group(trans, dir);
4376
4377out_fail:
d3c2fdcf 4378 nr = trans->blocks_used;
ab78c84d 4379 btrfs_end_transaction_throttle(trans, root);
5f39d397 4380
39279cc3 4381out_unlock:
9ed74f2d 4382 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4383 if (drop_on_err)
4384 iput(inode);
d3c2fdcf 4385 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4386 return err;
4387}
4388
d352ac68
CM
4389/* helper for btfs_get_extent. Given an existing extent in the tree,
4390 * and an extent that you want to insert, deal with overlap and insert
4391 * the new extent into the tree.
4392 */
3b951516
CM
4393static int merge_extent_mapping(struct extent_map_tree *em_tree,
4394 struct extent_map *existing,
e6dcd2dc
CM
4395 struct extent_map *em,
4396 u64 map_start, u64 map_len)
3b951516
CM
4397{
4398 u64 start_diff;
3b951516 4399
e6dcd2dc
CM
4400 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4401 start_diff = map_start - em->start;
4402 em->start = map_start;
4403 em->len = map_len;
c8b97818
CM
4404 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4405 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4406 em->block_start += start_diff;
c8b97818
CM
4407 em->block_len -= start_diff;
4408 }
e6dcd2dc 4409 return add_extent_mapping(em_tree, em);
3b951516
CM
4410}
4411
c8b97818
CM
4412static noinline int uncompress_inline(struct btrfs_path *path,
4413 struct inode *inode, struct page *page,
4414 size_t pg_offset, u64 extent_offset,
4415 struct btrfs_file_extent_item *item)
4416{
4417 int ret;
4418 struct extent_buffer *leaf = path->nodes[0];
4419 char *tmp;
4420 size_t max_size;
4421 unsigned long inline_size;
4422 unsigned long ptr;
4423
4424 WARN_ON(pg_offset != 0);
4425 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4426 inline_size = btrfs_file_extent_inline_item_len(leaf,
4427 btrfs_item_nr(leaf, path->slots[0]));
4428 tmp = kmalloc(inline_size, GFP_NOFS);
4429 ptr = btrfs_file_extent_inline_start(item);
4430
4431 read_extent_buffer(leaf, tmp, ptr, inline_size);
4432
5b050f04 4433 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4434 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4435 inline_size, max_size);
4436 if (ret) {
4437 char *kaddr = kmap_atomic(page, KM_USER0);
4438 unsigned long copy_size = min_t(u64,
4439 PAGE_CACHE_SIZE - pg_offset,
4440 max_size - extent_offset);
4441 memset(kaddr + pg_offset, 0, copy_size);
4442 kunmap_atomic(kaddr, KM_USER0);
4443 }
4444 kfree(tmp);
4445 return 0;
4446}
4447
d352ac68
CM
4448/*
4449 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4450 * the ugly parts come from merging extents from the disk with the in-ram
4451 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4452 * where the in-ram extents might be locked pending data=ordered completion.
4453 *
4454 * This also copies inline extents directly into the page.
4455 */
d397712b 4456
a52d9a80 4457struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4458 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4459 int create)
4460{
4461 int ret;
4462 int err = 0;
db94535d 4463 u64 bytenr;
a52d9a80
CM
4464 u64 extent_start = 0;
4465 u64 extent_end = 0;
4466 u64 objectid = inode->i_ino;
4467 u32 found_type;
f421950f 4468 struct btrfs_path *path = NULL;
a52d9a80
CM
4469 struct btrfs_root *root = BTRFS_I(inode)->root;
4470 struct btrfs_file_extent_item *item;
5f39d397
CM
4471 struct extent_buffer *leaf;
4472 struct btrfs_key found_key;
a52d9a80
CM
4473 struct extent_map *em = NULL;
4474 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4475 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4476 struct btrfs_trans_handle *trans = NULL;
c8b97818 4477 int compressed;
a52d9a80 4478
a52d9a80 4479again:
890871be 4480 read_lock(&em_tree->lock);
d1310b2e 4481 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4482 if (em)
4483 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4484 read_unlock(&em_tree->lock);
d1310b2e 4485
a52d9a80 4486 if (em) {
e1c4b745
CM
4487 if (em->start > start || em->start + em->len <= start)
4488 free_extent_map(em);
4489 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4490 free_extent_map(em);
4491 else
4492 goto out;
a52d9a80 4493 }
d1310b2e 4494 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4495 if (!em) {
d1310b2e
CM
4496 err = -ENOMEM;
4497 goto out;
a52d9a80 4498 }
e6dcd2dc 4499 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4500 em->start = EXTENT_MAP_HOLE;
445a6944 4501 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4502 em->len = (u64)-1;
c8b97818 4503 em->block_len = (u64)-1;
f421950f
CM
4504
4505 if (!path) {
4506 path = btrfs_alloc_path();
4507 BUG_ON(!path);
4508 }
4509
179e29e4
CM
4510 ret = btrfs_lookup_file_extent(trans, root, path,
4511 objectid, start, trans != NULL);
a52d9a80
CM
4512 if (ret < 0) {
4513 err = ret;
4514 goto out;
4515 }
4516
4517 if (ret != 0) {
4518 if (path->slots[0] == 0)
4519 goto not_found;
4520 path->slots[0]--;
4521 }
4522
5f39d397
CM
4523 leaf = path->nodes[0];
4524 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4525 struct btrfs_file_extent_item);
a52d9a80 4526 /* are we inside the extent that was found? */
5f39d397
CM
4527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4528 found_type = btrfs_key_type(&found_key);
4529 if (found_key.objectid != objectid ||
a52d9a80
CM
4530 found_type != BTRFS_EXTENT_DATA_KEY) {
4531 goto not_found;
4532 }
4533
5f39d397
CM
4534 found_type = btrfs_file_extent_type(leaf, item);
4535 extent_start = found_key.offset;
c8b97818 4536 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4537 if (found_type == BTRFS_FILE_EXTENT_REG ||
4538 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4539 extent_end = extent_start +
db94535d 4540 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4541 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4542 size_t size;
4543 size = btrfs_file_extent_inline_len(leaf, item);
4544 extent_end = (extent_start + size + root->sectorsize - 1) &
4545 ~((u64)root->sectorsize - 1);
4546 }
4547
4548 if (start >= extent_end) {
4549 path->slots[0]++;
4550 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4551 ret = btrfs_next_leaf(root, path);
4552 if (ret < 0) {
4553 err = ret;
4554 goto out;
a52d9a80 4555 }
9036c102
YZ
4556 if (ret > 0)
4557 goto not_found;
4558 leaf = path->nodes[0];
a52d9a80 4559 }
9036c102
YZ
4560 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4561 if (found_key.objectid != objectid ||
4562 found_key.type != BTRFS_EXTENT_DATA_KEY)
4563 goto not_found;
4564 if (start + len <= found_key.offset)
4565 goto not_found;
4566 em->start = start;
4567 em->len = found_key.offset - start;
4568 goto not_found_em;
4569 }
4570
d899e052
YZ
4571 if (found_type == BTRFS_FILE_EXTENT_REG ||
4572 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4573 em->start = extent_start;
4574 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4575 em->orig_start = extent_start -
4576 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4577 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4578 if (bytenr == 0) {
5f39d397 4579 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4580 goto insert;
4581 }
c8b97818
CM
4582 if (compressed) {
4583 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4584 em->block_start = bytenr;
4585 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4586 item);
4587 } else {
4588 bytenr += btrfs_file_extent_offset(leaf, item);
4589 em->block_start = bytenr;
4590 em->block_len = em->len;
d899e052
YZ
4591 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4592 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4593 }
a52d9a80
CM
4594 goto insert;
4595 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4596 unsigned long ptr;
a52d9a80 4597 char *map;
3326d1b0
CM
4598 size_t size;
4599 size_t extent_offset;
4600 size_t copy_size;
a52d9a80 4601
689f9346 4602 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4603 if (!page || create) {
689f9346 4604 em->start = extent_start;
9036c102 4605 em->len = extent_end - extent_start;
689f9346
Y
4606 goto out;
4607 }
5f39d397 4608
9036c102
YZ
4609 size = btrfs_file_extent_inline_len(leaf, item);
4610 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4611 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4612 size - extent_offset);
3326d1b0 4613 em->start = extent_start + extent_offset;
70dec807
CM
4614 em->len = (copy_size + root->sectorsize - 1) &
4615 ~((u64)root->sectorsize - 1);
ff5b7ee3 4616 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4617 if (compressed)
4618 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4619 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4620 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4621 if (btrfs_file_extent_compression(leaf, item) ==
4622 BTRFS_COMPRESS_ZLIB) {
4623 ret = uncompress_inline(path, inode, page,
4624 pg_offset,
4625 extent_offset, item);
4626 BUG_ON(ret);
4627 } else {
4628 map = kmap(page);
4629 read_extent_buffer(leaf, map + pg_offset, ptr,
4630 copy_size);
93c82d57
CM
4631 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4632 memset(map + pg_offset + copy_size, 0,
4633 PAGE_CACHE_SIZE - pg_offset -
4634 copy_size);
4635 }
c8b97818
CM
4636 kunmap(page);
4637 }
179e29e4
CM
4638 flush_dcache_page(page);
4639 } else if (create && PageUptodate(page)) {
4640 if (!trans) {
4641 kunmap(page);
4642 free_extent_map(em);
4643 em = NULL;
4644 btrfs_release_path(root, path);
f9295749 4645 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4646 goto again;
4647 }
c8b97818 4648 map = kmap(page);
70dec807 4649 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4650 copy_size);
c8b97818 4651 kunmap(page);
179e29e4 4652 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4653 }
d1310b2e
CM
4654 set_extent_uptodate(io_tree, em->start,
4655 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4656 goto insert;
4657 } else {
d397712b 4658 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4659 WARN_ON(1);
4660 }
4661not_found:
4662 em->start = start;
d1310b2e 4663 em->len = len;
a52d9a80 4664not_found_em:
5f39d397 4665 em->block_start = EXTENT_MAP_HOLE;
9036c102 4666 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4667insert:
4668 btrfs_release_path(root, path);
d1310b2e 4669 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4670 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4671 "[%llu %llu]\n", (unsigned long long)em->start,
4672 (unsigned long long)em->len,
4673 (unsigned long long)start,
4674 (unsigned long long)len);
a52d9a80
CM
4675 err = -EIO;
4676 goto out;
4677 }
d1310b2e
CM
4678
4679 err = 0;
890871be 4680 write_lock(&em_tree->lock);
a52d9a80 4681 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4682 /* it is possible that someone inserted the extent into the tree
4683 * while we had the lock dropped. It is also possible that
4684 * an overlapping map exists in the tree
4685 */
a52d9a80 4686 if (ret == -EEXIST) {
3b951516 4687 struct extent_map *existing;
e6dcd2dc
CM
4688
4689 ret = 0;
4690
3b951516 4691 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4692 if (existing && (existing->start > start ||
4693 existing->start + existing->len <= start)) {
4694 free_extent_map(existing);
4695 existing = NULL;
4696 }
3b951516
CM
4697 if (!existing) {
4698 existing = lookup_extent_mapping(em_tree, em->start,
4699 em->len);
4700 if (existing) {
4701 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4702 em, start,
4703 root->sectorsize);
3b951516
CM
4704 free_extent_map(existing);
4705 if (err) {
4706 free_extent_map(em);
4707 em = NULL;
4708 }
4709 } else {
4710 err = -EIO;
3b951516
CM
4711 free_extent_map(em);
4712 em = NULL;
4713 }
4714 } else {
4715 free_extent_map(em);
4716 em = existing;
e6dcd2dc 4717 err = 0;
a52d9a80 4718 }
a52d9a80 4719 }
890871be 4720 write_unlock(&em_tree->lock);
a52d9a80 4721out:
f421950f
CM
4722 if (path)
4723 btrfs_free_path(path);
a52d9a80
CM
4724 if (trans) {
4725 ret = btrfs_end_transaction(trans, root);
d397712b 4726 if (!err)
a52d9a80
CM
4727 err = ret;
4728 }
a52d9a80
CM
4729 if (err) {
4730 free_extent_map(em);
a52d9a80
CM
4731 return ERR_PTR(err);
4732 }
4733 return em;
4734}
4735
16432985
CM
4736static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4737 const struct iovec *iov, loff_t offset,
4738 unsigned long nr_segs)
4739{
e1c4b745 4740 return -EINVAL;
16432985
CM
4741}
4742
1506fcc8
YS
4743static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4744 __u64 start, __u64 len)
4745{
4746 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4747}
4748
a52d9a80 4749int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4750{
d1310b2e
CM
4751 struct extent_io_tree *tree;
4752 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4753 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4754}
1832a6d5 4755
a52d9a80 4756static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4757{
d1310b2e 4758 struct extent_io_tree *tree;
b888db2b
CM
4759
4760
4761 if (current->flags & PF_MEMALLOC) {
4762 redirty_page_for_writepage(wbc, page);
4763 unlock_page(page);
4764 return 0;
4765 }
d1310b2e 4766 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4767 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4768}
4769
f421950f
CM
4770int btrfs_writepages(struct address_space *mapping,
4771 struct writeback_control *wbc)
b293f02e 4772{
d1310b2e 4773 struct extent_io_tree *tree;
771ed689 4774
d1310b2e 4775 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4776 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4777}
4778
3ab2fb5a
CM
4779static int
4780btrfs_readpages(struct file *file, struct address_space *mapping,
4781 struct list_head *pages, unsigned nr_pages)
4782{
d1310b2e
CM
4783 struct extent_io_tree *tree;
4784 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4785 return extent_readpages(tree, mapping, pages, nr_pages,
4786 btrfs_get_extent);
4787}
e6dcd2dc 4788static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4789{
d1310b2e
CM
4790 struct extent_io_tree *tree;
4791 struct extent_map_tree *map;
a52d9a80 4792 int ret;
8c2383c3 4793
d1310b2e
CM
4794 tree = &BTRFS_I(page->mapping->host)->io_tree;
4795 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4796 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4797 if (ret == 1) {
4798 ClearPagePrivate(page);
4799 set_page_private(page, 0);
4800 page_cache_release(page);
39279cc3 4801 }
a52d9a80 4802 return ret;
39279cc3
CM
4803}
4804
e6dcd2dc
CM
4805static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4806{
98509cfc
CM
4807 if (PageWriteback(page) || PageDirty(page))
4808 return 0;
b335b003 4809 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4810}
4811
a52d9a80 4812static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 4813{
d1310b2e 4814 struct extent_io_tree *tree;
e6dcd2dc
CM
4815 struct btrfs_ordered_extent *ordered;
4816 u64 page_start = page_offset(page);
4817 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 4818
8b62b72b
CM
4819
4820 /*
4821 * we have the page locked, so new writeback can't start,
4822 * and the dirty bit won't be cleared while we are here.
4823 *
4824 * Wait for IO on this page so that we can safely clear
4825 * the PagePrivate2 bit and do ordered accounting
4826 */
e6dcd2dc 4827 wait_on_page_writeback(page);
8b62b72b 4828
d1310b2e 4829 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
4830 if (offset) {
4831 btrfs_releasepage(page, GFP_NOFS);
4832 return;
4833 }
e6dcd2dc
CM
4834 lock_extent(tree, page_start, page_end, GFP_NOFS);
4835 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4836 page_offset(page));
4837 if (ordered) {
eb84ae03
CM
4838 /*
4839 * IO on this page will never be started, so we need
4840 * to account for any ordered extents now
4841 */
e6dcd2dc
CM
4842 clear_extent_bit(tree, page_start, page_end,
4843 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff
JB
4844 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4845 NULL, GFP_NOFS);
8b62b72b
CM
4846 /*
4847 * whoever cleared the private bit is responsible
4848 * for the finish_ordered_io
4849 */
4850 if (TestClearPagePrivate2(page)) {
4851 btrfs_finish_ordered_io(page->mapping->host,
4852 page_start, page_end);
4853 }
e6dcd2dc
CM
4854 btrfs_put_ordered_extent(ordered);
4855 lock_extent(tree, page_start, page_end, GFP_NOFS);
4856 }
4857 clear_extent_bit(tree, page_start, page_end,
32c00aff
JB
4858 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4859 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
e6dcd2dc
CM
4860 __btrfs_releasepage(page, GFP_NOFS);
4861
4a096752 4862 ClearPageChecked(page);
9ad6b7bc 4863 if (PagePrivate(page)) {
9ad6b7bc
CM
4864 ClearPagePrivate(page);
4865 set_page_private(page, 0);
4866 page_cache_release(page);
4867 }
39279cc3
CM
4868}
4869
9ebefb18
CM
4870/*
4871 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4872 * called from a page fault handler when a page is first dirtied. Hence we must
4873 * be careful to check for EOF conditions here. We set the page up correctly
4874 * for a written page which means we get ENOSPC checking when writing into
4875 * holes and correct delalloc and unwritten extent mapping on filesystems that
4876 * support these features.
4877 *
4878 * We are not allowed to take the i_mutex here so we have to play games to
4879 * protect against truncate races as the page could now be beyond EOF. Because
4880 * vmtruncate() writes the inode size before removing pages, once we have the
4881 * page lock we can determine safely if the page is beyond EOF. If it is not
4882 * beyond EOF, then the page is guaranteed safe against truncation until we
4883 * unlock the page.
4884 */
c2ec175c 4885int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 4886{
c2ec175c 4887 struct page *page = vmf->page;
6da6abae 4888 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 4889 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4890 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4891 struct btrfs_ordered_extent *ordered;
4892 char *kaddr;
4893 unsigned long zero_start;
9ebefb18 4894 loff_t size;
1832a6d5 4895 int ret;
a52d9a80 4896 u64 page_start;
e6dcd2dc 4897 u64 page_end;
9ebefb18 4898
6a63209f 4899 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
4900 if (ret) {
4901 if (ret == -ENOMEM)
4902 ret = VM_FAULT_OOM;
4903 else /* -ENOSPC, -EIO, etc */
4904 ret = VM_FAULT_SIGBUS;
1832a6d5 4905 goto out;
56a76f82 4906 }
1832a6d5 4907
9ed74f2d
JB
4908 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4909 if (ret) {
4910 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4911 ret = VM_FAULT_SIGBUS;
4912 goto out;
4913 }
4914
56a76f82 4915 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 4916again:
9ebefb18 4917 lock_page(page);
9ebefb18 4918 size = i_size_read(inode);
e6dcd2dc
CM
4919 page_start = page_offset(page);
4920 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 4921
9ebefb18 4922 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 4923 (page_start >= size)) {
6a63209f 4924 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
4925 /* page got truncated out from underneath us */
4926 goto out_unlock;
4927 }
e6dcd2dc
CM
4928 wait_on_page_writeback(page);
4929
4930 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4931 set_page_extent_mapped(page);
4932
eb84ae03
CM
4933 /*
4934 * we can't set the delalloc bits if there are pending ordered
4935 * extents. Drop our locks and wait for them to finish
4936 */
e6dcd2dc
CM
4937 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4938 if (ordered) {
4939 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4940 unlock_page(page);
eb84ae03 4941 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4942 btrfs_put_ordered_extent(ordered);
4943 goto again;
4944 }
4945
fbf19087
JB
4946 /*
4947 * XXX - page_mkwrite gets called every time the page is dirtied, even
4948 * if it was already dirty, so for space accounting reasons we need to
4949 * clear any delalloc bits for the range we are fixing to save. There
4950 * is probably a better way to do this, but for now keep consistent with
4951 * prepare_pages in the normal write path.
4952 */
4953 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff
JB
4954 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
4955 GFP_NOFS);
fbf19087 4956
9ed74f2d
JB
4957 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
4958 if (ret) {
4959 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4960 ret = VM_FAULT_SIGBUS;
fbf19087 4961 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ed74f2d
JB
4962 goto out_unlock;
4963 }
e6dcd2dc 4964 ret = 0;
9ebefb18
CM
4965
4966 /* page is wholly or partially inside EOF */
a52d9a80 4967 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 4968 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 4969 else
e6dcd2dc 4970 zero_start = PAGE_CACHE_SIZE;
9ebefb18 4971
e6dcd2dc
CM
4972 if (zero_start != PAGE_CACHE_SIZE) {
4973 kaddr = kmap(page);
4974 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4975 flush_dcache_page(page);
4976 kunmap(page);
4977 }
247e743c 4978 ClearPageChecked(page);
e6dcd2dc 4979 set_page_dirty(page);
50a9b214 4980 SetPageUptodate(page);
5a3f23d5
CM
4981
4982 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
e6dcd2dc 4983 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
4984
4985out_unlock:
9ed74f2d 4986 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
50a9b214
CM
4987 if (!ret)
4988 return VM_FAULT_LOCKED;
9ebefb18 4989 unlock_page(page);
1832a6d5 4990out:
9ebefb18
CM
4991 return ret;
4992}
4993
39279cc3
CM
4994static void btrfs_truncate(struct inode *inode)
4995{
4996 struct btrfs_root *root = BTRFS_I(inode)->root;
4997 int ret;
4998 struct btrfs_trans_handle *trans;
d3c2fdcf 4999 unsigned long nr;
dbe674a9 5000 u64 mask = root->sectorsize - 1;
39279cc3
CM
5001
5002 if (!S_ISREG(inode->i_mode))
5003 return;
5004 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5005 return;
5006
5007 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4a096752 5008 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 5009
39279cc3 5010 trans = btrfs_start_transaction(root, 1);
5a3f23d5
CM
5011
5012 /*
5013 * setattr is responsible for setting the ordered_data_close flag,
5014 * but that is only tested during the last file release. That
5015 * could happen well after the next commit, leaving a great big
5016 * window where new writes may get lost if someone chooses to write
5017 * to this file after truncating to zero
5018 *
5019 * The inode doesn't have any dirty data here, and so if we commit
5020 * this is a noop. If someone immediately starts writing to the inode
5021 * it is very likely we'll catch some of their writes in this
5022 * transaction, and the commit will find this file on the ordered
5023 * data list with good things to send down.
5024 *
5025 * This is a best effort solution, there is still a window where
5026 * using truncate to replace the contents of the file will
5027 * end up with a zero length file after a crash.
5028 */
5029 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5030 btrfs_add_ordered_operation(trans, root, inode);
5031
39279cc3 5032 btrfs_set_trans_block_group(trans, inode);
dbe674a9 5033 btrfs_i_size_write(inode, inode->i_size);
39279cc3 5034
7b128766
JB
5035 ret = btrfs_orphan_add(trans, inode);
5036 if (ret)
5037 goto out;
39279cc3 5038 /* FIXME, add redo link to tree so we don't leak on crash */
e02119d5 5039 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
85e21bac 5040 BTRFS_EXTENT_DATA_KEY);
39279cc3 5041 btrfs_update_inode(trans, root, inode);
5f39d397 5042
7b128766
JB
5043 ret = btrfs_orphan_del(trans, inode);
5044 BUG_ON(ret);
5045
5046out:
5047 nr = trans->blocks_used;
89ce8a63 5048 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 5049 BUG_ON(ret);
d3c2fdcf 5050 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5051}
5052
d352ac68
CM
5053/*
5054 * create a new subvolume directory/inode (helper for the ioctl).
5055 */
d2fb3437 5056int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 5057 struct btrfs_root *new_root,
d2fb3437 5058 u64 new_dirid, u64 alloc_hint)
39279cc3 5059{
39279cc3 5060 struct inode *inode;
76dda93c 5061 int err;
00e4e6b3 5062 u64 index = 0;
39279cc3 5063
aec7477b 5064 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 5065 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 5066 if (IS_ERR(inode))
f46b5a66 5067 return PTR_ERR(inode);
39279cc3
CM
5068 inode->i_op = &btrfs_dir_inode_operations;
5069 inode->i_fop = &btrfs_dir_file_operations;
5070
39279cc3 5071 inode->i_nlink = 1;
dbe674a9 5072 btrfs_i_size_write(inode, 0);
3b96362c 5073
76dda93c
YZ
5074 err = btrfs_update_inode(trans, new_root, inode);
5075 BUG_ON(err);
cb8e7090 5076
76dda93c 5077 iput(inode);
cb8e7090 5078 return 0;
39279cc3
CM
5079}
5080
d352ac68
CM
5081/* helper function for file defrag and space balancing. This
5082 * forces readahead on a given range of bytes in an inode
5083 */
edbd8d4e 5084unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
5085 struct file_ra_state *ra, struct file *file,
5086 pgoff_t offset, pgoff_t last_index)
5087{
8e7bf94f 5088 pgoff_t req_size = last_index - offset + 1;
86479a04 5089
86479a04
CM
5090 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5091 return offset + req_size;
86479a04
CM
5092}
5093
39279cc3
CM
5094struct inode *btrfs_alloc_inode(struct super_block *sb)
5095{
5096 struct btrfs_inode *ei;
5097
5098 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5099 if (!ei)
5100 return NULL;
15ee9bc7 5101 ei->last_trans = 0;
e02119d5 5102 ei->logged_trans = 0;
32c00aff
JB
5103 ei->outstanding_extents = 0;
5104 ei->reserved_extents = 0;
5105 spin_lock_init(&ei->accounting_lock);
e6dcd2dc 5106 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 5107 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 5108 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
5109 return &ei->vfs_inode;
5110}
5111
5112void btrfs_destroy_inode(struct inode *inode)
5113{
e6dcd2dc 5114 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
5115 struct btrfs_root *root = BTRFS_I(inode)->root;
5116
39279cc3
CM
5117 WARN_ON(!list_empty(&inode->i_dentry));
5118 WARN_ON(inode->i_data.nrpages);
5119
5a3f23d5
CM
5120 /*
5121 * Make sure we're properly removed from the ordered operation
5122 * lists.
5123 */
5124 smp_mb();
5125 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5126 spin_lock(&root->fs_info->ordered_extent_lock);
5127 list_del_init(&BTRFS_I(inode)->ordered_operations);
5128 spin_unlock(&root->fs_info->ordered_extent_lock);
5129 }
5130
5131 spin_lock(&root->list_lock);
7b128766
JB
5132 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5133 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5134 " list\n", inode->i_ino);
5135 dump_stack();
5136 }
5a3f23d5 5137 spin_unlock(&root->list_lock);
7b128766 5138
d397712b 5139 while (1) {
e6dcd2dc
CM
5140 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5141 if (!ordered)
5142 break;
5143 else {
d397712b
CM
5144 printk(KERN_ERR "btrfs found ordered "
5145 "extent %llu %llu on inode cleanup\n",
5146 (unsigned long long)ordered->file_offset,
5147 (unsigned long long)ordered->len);
e6dcd2dc
CM
5148 btrfs_remove_ordered_extent(inode, ordered);
5149 btrfs_put_ordered_extent(ordered);
5150 btrfs_put_ordered_extent(ordered);
5151 }
5152 }
5d4f98a2 5153 inode_tree_del(inode);
5b21f2ed 5154 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
39279cc3
CM
5155 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5156}
5157
76dda93c
YZ
5158void btrfs_drop_inode(struct inode *inode)
5159{
5160 struct btrfs_root *root = BTRFS_I(inode)->root;
5161
5162 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5163 generic_delete_inode(inode);
5164 else
5165 generic_drop_inode(inode);
5166}
5167
0ee0fda0 5168static void init_once(void *foo)
39279cc3
CM
5169{
5170 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5171
5172 inode_init_once(&ei->vfs_inode);
5173}
5174
5175void btrfs_destroy_cachep(void)
5176{
5177 if (btrfs_inode_cachep)
5178 kmem_cache_destroy(btrfs_inode_cachep);
5179 if (btrfs_trans_handle_cachep)
5180 kmem_cache_destroy(btrfs_trans_handle_cachep);
5181 if (btrfs_transaction_cachep)
5182 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
5183 if (btrfs_path_cachep)
5184 kmem_cache_destroy(btrfs_path_cachep);
5185}
5186
5187int btrfs_init_cachep(void)
5188{
9601e3f6
CH
5189 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5190 sizeof(struct btrfs_inode), 0,
5191 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
5192 if (!btrfs_inode_cachep)
5193 goto fail;
9601e3f6
CH
5194
5195 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5196 sizeof(struct btrfs_trans_handle), 0,
5197 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5198 if (!btrfs_trans_handle_cachep)
5199 goto fail;
9601e3f6
CH
5200
5201 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5202 sizeof(struct btrfs_transaction), 0,
5203 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5204 if (!btrfs_transaction_cachep)
5205 goto fail;
9601e3f6
CH
5206
5207 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5208 sizeof(struct btrfs_path), 0,
5209 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5210 if (!btrfs_path_cachep)
5211 goto fail;
9601e3f6 5212
39279cc3
CM
5213 return 0;
5214fail:
5215 btrfs_destroy_cachep();
5216 return -ENOMEM;
5217}
5218
5219static int btrfs_getattr(struct vfsmount *mnt,
5220 struct dentry *dentry, struct kstat *stat)
5221{
5222 struct inode *inode = dentry->d_inode;
5223 generic_fillattr(inode, stat);
3394e160 5224 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 5225 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
5226 stat->blocks = (inode_get_bytes(inode) +
5227 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
5228 return 0;
5229}
5230
d397712b
CM
5231static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5232 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
5233{
5234 struct btrfs_trans_handle *trans;
5235 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 5236 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
5237 struct inode *new_inode = new_dentry->d_inode;
5238 struct inode *old_inode = old_dentry->d_inode;
5239 struct timespec ctime = CURRENT_TIME;
00e4e6b3 5240 u64 index = 0;
4df27c4d 5241 u64 root_objectid;
39279cc3
CM
5242 int ret;
5243
f679a840
YZ
5244 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5245 return -EPERM;
5246
4df27c4d
YZ
5247 /* we only allow rename subvolume link between subvolumes */
5248 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
5249 return -EXDEV;
5250
4df27c4d
YZ
5251 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5252 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 5253 return -ENOTEMPTY;
5f39d397 5254
4df27c4d
YZ
5255 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5256 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5257 return -ENOTEMPTY;
0660b5af 5258
9ed74f2d
JB
5259 /*
5260 * 2 items for dir items
5261 * 1 item for orphan entry
5262 * 1 item for ref
5263 */
5264 ret = btrfs_reserve_metadata_space(root, 4);
1832a6d5 5265 if (ret)
4df27c4d 5266 return ret;
1832a6d5 5267
5a3f23d5
CM
5268 /*
5269 * we're using rename to replace one file with another.
5270 * and the replacement file is large. Start IO on it now so
5271 * we don't add too much work to the end of the transaction
5272 */
4baf8c92 5273 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
5274 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5275 filemap_flush(old_inode->i_mapping);
5276
76dda93c
YZ
5277 /* close the racy window with snapshot create/destroy ioctl */
5278 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5279 down_read(&root->fs_info->subvol_sem);
5280
39279cc3 5281 trans = btrfs_start_transaction(root, 1);
a5719521 5282 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 5283
4df27c4d
YZ
5284 if (dest != root)
5285 btrfs_record_root_in_trans(trans, dest);
5286
a5719521
YZ
5287 ret = btrfs_set_inode_index(new_dir, &index);
5288 if (ret)
5289 goto out_fail;
5a3f23d5 5290
a5719521 5291 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5292 /* force full log commit if subvolume involved. */
5293 root->fs_info->last_trans_log_full_commit = trans->transid;
5294 } else {
a5719521
YZ
5295 ret = btrfs_insert_inode_ref(trans, dest,
5296 new_dentry->d_name.name,
5297 new_dentry->d_name.len,
5298 old_inode->i_ino,
5299 new_dir->i_ino, index);
5300 if (ret)
5301 goto out_fail;
4df27c4d
YZ
5302 /*
5303 * this is an ugly little race, but the rename is required
5304 * to make sure that if we crash, the inode is either at the
5305 * old name or the new one. pinning the log transaction lets
5306 * us make sure we don't allow a log commit to come in after
5307 * we unlink the name but before we add the new name back in.
5308 */
5309 btrfs_pin_log_trans(root);
5310 }
a5719521
YZ
5311 /*
5312 * make sure the inode gets flushed if it is replacing
5313 * something.
5314 */
5315 if (new_inode && new_inode->i_size &&
5316 old_inode && S_ISREG(old_inode->i_mode)) {
5317 btrfs_add_ordered_operation(trans, root, old_inode);
5318 }
39279cc3 5319
39279cc3
CM
5320 old_dir->i_ctime = old_dir->i_mtime = ctime;
5321 new_dir->i_ctime = new_dir->i_mtime = ctime;
5322 old_inode->i_ctime = ctime;
5f39d397 5323
12fcfd22
CM
5324 if (old_dentry->d_parent != new_dentry->d_parent)
5325 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5326
4df27c4d
YZ
5327 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5328 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5329 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5330 old_dentry->d_name.name,
5331 old_dentry->d_name.len);
5332 } else {
5333 btrfs_inc_nlink(old_dentry->d_inode);
5334 ret = btrfs_unlink_inode(trans, root, old_dir,
5335 old_dentry->d_inode,
5336 old_dentry->d_name.name,
5337 old_dentry->d_name.len);
5338 }
5339 BUG_ON(ret);
39279cc3
CM
5340
5341 if (new_inode) {
5342 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
5343 if (unlikely(new_inode->i_ino ==
5344 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5345 root_objectid = BTRFS_I(new_inode)->location.objectid;
5346 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5347 root_objectid,
5348 new_dentry->d_name.name,
5349 new_dentry->d_name.len);
5350 BUG_ON(new_inode->i_nlink == 0);
5351 } else {
5352 ret = btrfs_unlink_inode(trans, dest, new_dir,
5353 new_dentry->d_inode,
5354 new_dentry->d_name.name,
5355 new_dentry->d_name.len);
5356 }
5357 BUG_ON(ret);
7b128766 5358 if (new_inode->i_nlink == 0) {
e02119d5 5359 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 5360 BUG_ON(ret);
7b128766 5361 }
39279cc3 5362 }
aec7477b 5363
4df27c4d
YZ
5364 ret = btrfs_add_link(trans, new_dir, old_inode,
5365 new_dentry->d_name.name,
a5719521 5366 new_dentry->d_name.len, 0, index);
4df27c4d 5367 BUG_ON(ret);
39279cc3 5368
4df27c4d
YZ
5369 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5370 btrfs_log_new_name(trans, old_inode, old_dir,
5371 new_dentry->d_parent);
5372 btrfs_end_log_trans(root);
5373 }
a5719521 5374out_fail:
ab78c84d 5375 btrfs_end_transaction_throttle(trans, root);
4df27c4d 5376
76dda93c
YZ
5377 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5378 up_read(&root->fs_info->subvol_sem);
9ed74f2d
JB
5379
5380 btrfs_unreserve_metadata_space(root, 4);
39279cc3
CM
5381 return ret;
5382}
5383
d352ac68
CM
5384/*
5385 * some fairly slow code that needs optimization. This walks the list
5386 * of all the inodes with pending delalloc and forces them to disk.
5387 */
ea8c2819
CM
5388int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5389{
5390 struct list_head *head = &root->fs_info->delalloc_inodes;
5391 struct btrfs_inode *binode;
5b21f2ed 5392 struct inode *inode;
ea8c2819 5393
c146afad
YZ
5394 if (root->fs_info->sb->s_flags & MS_RDONLY)
5395 return -EROFS;
5396
75eff68e 5397 spin_lock(&root->fs_info->delalloc_lock);
d397712b 5398 while (!list_empty(head)) {
ea8c2819
CM
5399 binode = list_entry(head->next, struct btrfs_inode,
5400 delalloc_inodes);
5b21f2ed
ZY
5401 inode = igrab(&binode->vfs_inode);
5402 if (!inode)
5403 list_del_init(&binode->delalloc_inodes);
75eff68e 5404 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 5405 if (inode) {
8c8bee1d 5406 filemap_flush(inode->i_mapping);
5b21f2ed
ZY
5407 iput(inode);
5408 }
5409 cond_resched();
75eff68e 5410 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 5411 }
75eff68e 5412 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
5413
5414 /* the filemap_flush will queue IO into the worker threads, but
5415 * we have to make sure the IO is actually started and that
5416 * ordered extents get created before we return
5417 */
5418 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 5419 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 5420 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 5421 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
5422 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5423 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
5424 }
5425 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
5426 return 0;
5427}
5428
39279cc3
CM
5429static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5430 const char *symname)
5431{
5432 struct btrfs_trans_handle *trans;
5433 struct btrfs_root *root = BTRFS_I(dir)->root;
5434 struct btrfs_path *path;
5435 struct btrfs_key key;
1832a6d5 5436 struct inode *inode = NULL;
39279cc3
CM
5437 int err;
5438 int drop_inode = 0;
5439 u64 objectid;
00e4e6b3 5440 u64 index = 0 ;
39279cc3
CM
5441 int name_len;
5442 int datasize;
5f39d397 5443 unsigned long ptr;
39279cc3 5444 struct btrfs_file_extent_item *ei;
5f39d397 5445 struct extent_buffer *leaf;
1832a6d5 5446 unsigned long nr = 0;
39279cc3
CM
5447
5448 name_len = strlen(symname) + 1;
5449 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5450 return -ENAMETOOLONG;
1832a6d5 5451
9ed74f2d
JB
5452 /*
5453 * 2 items for inode item and ref
5454 * 2 items for dir items
5455 * 1 item for xattr if selinux is on
5456 */
5457 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 5458 if (err)
9ed74f2d 5459 return err;
1832a6d5 5460
39279cc3 5461 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
5462 if (!trans)
5463 goto out_fail;
39279cc3
CM
5464 btrfs_set_trans_block_group(trans, dir);
5465
5466 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5467 if (err) {
5468 err = -ENOSPC;
5469 goto out_unlock;
5470 }
5471
aec7477b 5472 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
5473 dentry->d_name.len,
5474 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5475 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5476 &index);
39279cc3
CM
5477 err = PTR_ERR(inode);
5478 if (IS_ERR(inode))
5479 goto out_unlock;
5480
0279b4cd 5481 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
5482 if (err) {
5483 drop_inode = 1;
5484 goto out_unlock;
5485 }
5486
39279cc3 5487 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5488 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5489 if (err)
5490 drop_inode = 1;
5491 else {
5492 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5493 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5494 inode->i_fop = &btrfs_file_operations;
5495 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5496 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5497 }
39279cc3
CM
5498 btrfs_update_inode_block_group(trans, inode);
5499 btrfs_update_inode_block_group(trans, dir);
5500 if (drop_inode)
5501 goto out_unlock;
5502
5503 path = btrfs_alloc_path();
5504 BUG_ON(!path);
5505 key.objectid = inode->i_ino;
5506 key.offset = 0;
39279cc3
CM
5507 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5508 datasize = btrfs_file_extent_calc_inline_size(name_len);
5509 err = btrfs_insert_empty_item(trans, root, path, &key,
5510 datasize);
54aa1f4d
CM
5511 if (err) {
5512 drop_inode = 1;
5513 goto out_unlock;
5514 }
5f39d397
CM
5515 leaf = path->nodes[0];
5516 ei = btrfs_item_ptr(leaf, path->slots[0],
5517 struct btrfs_file_extent_item);
5518 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5519 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5520 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5521 btrfs_set_file_extent_encryption(leaf, ei, 0);
5522 btrfs_set_file_extent_compression(leaf, ei, 0);
5523 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5524 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5525
39279cc3 5526 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5527 write_extent_buffer(leaf, symname, ptr, name_len);
5528 btrfs_mark_buffer_dirty(leaf);
39279cc3 5529 btrfs_free_path(path);
5f39d397 5530
39279cc3
CM
5531 inode->i_op = &btrfs_symlink_inode_operations;
5532 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5533 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5534 inode_set_bytes(inode, name_len);
dbe674a9 5535 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5536 err = btrfs_update_inode(trans, root, inode);
5537 if (err)
5538 drop_inode = 1;
39279cc3
CM
5539
5540out_unlock:
d3c2fdcf 5541 nr = trans->blocks_used;
ab78c84d 5542 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5543out_fail:
9ed74f2d 5544 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
5545 if (drop_inode) {
5546 inode_dec_link_count(inode);
5547 iput(inode);
5548 }
d3c2fdcf 5549 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5550 return err;
5551}
16432985 5552
546888da
CM
5553static int prealloc_file_range(struct btrfs_trans_handle *trans,
5554 struct inode *inode, u64 start, u64 end,
e980b50c 5555 u64 locked_end, u64 alloc_hint, int mode)
d899e052 5556{
d899e052
YZ
5557 struct btrfs_root *root = BTRFS_I(inode)->root;
5558 struct btrfs_key ins;
5559 u64 alloc_size;
5560 u64 cur_offset = start;
5561 u64 num_bytes = end - start;
5562 int ret = 0;
5563
d899e052
YZ
5564 while (num_bytes > 0) {
5565 alloc_size = min(num_bytes, root->fs_info->max_extent);
9ed74f2d
JB
5566
5567 ret = btrfs_reserve_metadata_space(root, 1);
5568 if (ret)
5569 goto out;
5570
d899e052
YZ
5571 ret = btrfs_reserve_extent(trans, root, alloc_size,
5572 root->sectorsize, 0, alloc_hint,
5573 (u64)-1, &ins, 1);
5574 if (ret) {
5575 WARN_ON(1);
5576 goto out;
5577 }
5578 ret = insert_reserved_file_extent(trans, inode,
5579 cur_offset, ins.objectid,
5580 ins.offset, ins.offset,
e980b50c
CM
5581 ins.offset, locked_end,
5582 0, 0, 0,
d899e052
YZ
5583 BTRFS_FILE_EXTENT_PREALLOC);
5584 BUG_ON(ret);
a1ed835e
CM
5585 btrfs_drop_extent_cache(inode, cur_offset,
5586 cur_offset + ins.offset -1, 0);
d899e052
YZ
5587 num_bytes -= ins.offset;
5588 cur_offset += ins.offset;
5589 alloc_hint = ins.objectid + ins.offset;
9ed74f2d 5590 btrfs_unreserve_metadata_space(root, 1);
d899e052
YZ
5591 }
5592out:
5593 if (cur_offset > start) {
5594 inode->i_ctime = CURRENT_TIME;
6cbff00f 5595 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052
YZ
5596 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5597 cur_offset > i_size_read(inode))
5598 btrfs_i_size_write(inode, cur_offset);
5599 ret = btrfs_update_inode(trans, root, inode);
5600 BUG_ON(ret);
5601 }
5602
d899e052
YZ
5603 return ret;
5604}
5605
5606static long btrfs_fallocate(struct inode *inode, int mode,
5607 loff_t offset, loff_t len)
5608{
5609 u64 cur_offset;
5610 u64 last_byte;
5611 u64 alloc_start;
5612 u64 alloc_end;
5613 u64 alloc_hint = 0;
e980b50c 5614 u64 locked_end;
d899e052
YZ
5615 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5616 struct extent_map *em;
546888da 5617 struct btrfs_trans_handle *trans;
a970b0a1 5618 struct btrfs_root *root;
d899e052
YZ
5619 int ret;
5620
5621 alloc_start = offset & ~mask;
5622 alloc_end = (offset + len + mask) & ~mask;
5623
546888da
CM
5624 /*
5625 * wait for ordered IO before we have any locks. We'll loop again
5626 * below with the locks held.
5627 */
5628 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5629
d899e052
YZ
5630 mutex_lock(&inode->i_mutex);
5631 if (alloc_start > inode->i_size) {
5632 ret = btrfs_cont_expand(inode, alloc_start);
5633 if (ret)
5634 goto out;
5635 }
5636
a970b0a1
JB
5637 root = BTRFS_I(inode)->root;
5638
5639 ret = btrfs_check_data_free_space(root, inode,
5640 alloc_end - alloc_start);
5641 if (ret)
5642 goto out;
5643
e980b50c 5644 locked_end = alloc_end - 1;
d899e052
YZ
5645 while (1) {
5646 struct btrfs_ordered_extent *ordered;
546888da
CM
5647
5648 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5649 if (!trans) {
5650 ret = -EIO;
a970b0a1 5651 goto out_free;
546888da
CM
5652 }
5653
5654 /* the extent lock is ordered inside the running
5655 * transaction
5656 */
e980b50c
CM
5657 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5658 GFP_NOFS);
d899e052
YZ
5659 ordered = btrfs_lookup_first_ordered_extent(inode,
5660 alloc_end - 1);
5661 if (ordered &&
5662 ordered->file_offset + ordered->len > alloc_start &&
5663 ordered->file_offset < alloc_end) {
5664 btrfs_put_ordered_extent(ordered);
5665 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5666 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5667 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5668
5669 /*
5670 * we can't wait on the range with the transaction
5671 * running or with the extent lock held
5672 */
d899e052
YZ
5673 btrfs_wait_ordered_range(inode, alloc_start,
5674 alloc_end - alloc_start);
5675 } else {
5676 if (ordered)
5677 btrfs_put_ordered_extent(ordered);
5678 break;
5679 }
5680 }
5681
5682 cur_offset = alloc_start;
5683 while (1) {
5684 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5685 alloc_end - cur_offset, 0);
5686 BUG_ON(IS_ERR(em) || !em);
5687 last_byte = min(extent_map_end(em), alloc_end);
5688 last_byte = (last_byte + mask) & ~mask;
5689 if (em->block_start == EXTENT_MAP_HOLE) {
546888da 5690 ret = prealloc_file_range(trans, inode, cur_offset,
e980b50c
CM
5691 last_byte, locked_end + 1,
5692 alloc_hint, mode);
d899e052
YZ
5693 if (ret < 0) {
5694 free_extent_map(em);
5695 break;
5696 }
5697 }
5698 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5699 alloc_hint = em->block_start;
5700 free_extent_map(em);
5701
5702 cur_offset = last_byte;
5703 if (cur_offset >= alloc_end) {
5704 ret = 0;
5705 break;
5706 }
5707 }
e980b50c 5708 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5709 GFP_NOFS);
546888da
CM
5710
5711 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
a970b0a1
JB
5712out_free:
5713 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
d899e052
YZ
5714out:
5715 mutex_unlock(&inode->i_mutex);
5716 return ret;
5717}
5718
e6dcd2dc
CM
5719static int btrfs_set_page_dirty(struct page *page)
5720{
e6dcd2dc
CM
5721 return __set_page_dirty_nobuffers(page);
5722}
5723
0ee0fda0 5724static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5725{
6cbff00f 5726 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5727 return -EACCES;
33268eaf 5728 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5729}
39279cc3
CM
5730
5731static struct inode_operations btrfs_dir_inode_operations = {
3394e160 5732 .getattr = btrfs_getattr,
39279cc3
CM
5733 .lookup = btrfs_lookup,
5734 .create = btrfs_create,
5735 .unlink = btrfs_unlink,
5736 .link = btrfs_link,
5737 .mkdir = btrfs_mkdir,
5738 .rmdir = btrfs_rmdir,
5739 .rename = btrfs_rename,
5740 .symlink = btrfs_symlink,
5741 .setattr = btrfs_setattr,
618e21d5 5742 .mknod = btrfs_mknod,
95819c05
CH
5743 .setxattr = btrfs_setxattr,
5744 .getxattr = btrfs_getxattr,
5103e947 5745 .listxattr = btrfs_listxattr,
95819c05 5746 .removexattr = btrfs_removexattr,
fdebe2bd 5747 .permission = btrfs_permission,
39279cc3 5748};
39279cc3
CM
5749static struct inode_operations btrfs_dir_ro_inode_operations = {
5750 .lookup = btrfs_lookup,
fdebe2bd 5751 .permission = btrfs_permission,
39279cc3 5752};
76dda93c 5753
39279cc3
CM
5754static struct file_operations btrfs_dir_file_operations = {
5755 .llseek = generic_file_llseek,
5756 .read = generic_read_dir,
cbdf5a24 5757 .readdir = btrfs_real_readdir,
34287aa3 5758 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5759#ifdef CONFIG_COMPAT
34287aa3 5760 .compat_ioctl = btrfs_ioctl,
39279cc3 5761#endif
6bf13c0c 5762 .release = btrfs_release_file,
e02119d5 5763 .fsync = btrfs_sync_file,
39279cc3
CM
5764};
5765
d1310b2e 5766static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5767 .fill_delalloc = run_delalloc_range,
065631f6 5768 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 5769 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 5770 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 5771 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 5772 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 5773 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
5774 .set_bit_hook = btrfs_set_bit_hook,
5775 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
5776 .merge_extent_hook = btrfs_merge_extent_hook,
5777 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
5778};
5779
35054394
CM
5780/*
5781 * btrfs doesn't support the bmap operation because swapfiles
5782 * use bmap to make a mapping of extents in the file. They assume
5783 * these extents won't change over the life of the file and they
5784 * use the bmap result to do IO directly to the drive.
5785 *
5786 * the btrfs bmap call would return logical addresses that aren't
5787 * suitable for IO and they also will change frequently as COW
5788 * operations happen. So, swapfile + btrfs == corruption.
5789 *
5790 * For now we're avoiding this by dropping bmap.
5791 */
39279cc3
CM
5792static struct address_space_operations btrfs_aops = {
5793 .readpage = btrfs_readpage,
5794 .writepage = btrfs_writepage,
b293f02e 5795 .writepages = btrfs_writepages,
3ab2fb5a 5796 .readpages = btrfs_readpages,
39279cc3 5797 .sync_page = block_sync_page,
16432985 5798 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
5799 .invalidatepage = btrfs_invalidatepage,
5800 .releasepage = btrfs_releasepage,
e6dcd2dc 5801 .set_page_dirty = btrfs_set_page_dirty,
39279cc3
CM
5802};
5803
5804static struct address_space_operations btrfs_symlink_aops = {
5805 .readpage = btrfs_readpage,
5806 .writepage = btrfs_writepage,
2bf5a725
CM
5807 .invalidatepage = btrfs_invalidatepage,
5808 .releasepage = btrfs_releasepage,
39279cc3
CM
5809};
5810
5811static struct inode_operations btrfs_file_inode_operations = {
5812 .truncate = btrfs_truncate,
5813 .getattr = btrfs_getattr,
5814 .setattr = btrfs_setattr,
95819c05
CH
5815 .setxattr = btrfs_setxattr,
5816 .getxattr = btrfs_getxattr,
5103e947 5817 .listxattr = btrfs_listxattr,
95819c05 5818 .removexattr = btrfs_removexattr,
fdebe2bd 5819 .permission = btrfs_permission,
d899e052 5820 .fallocate = btrfs_fallocate,
1506fcc8 5821 .fiemap = btrfs_fiemap,
39279cc3 5822};
618e21d5
JB
5823static struct inode_operations btrfs_special_inode_operations = {
5824 .getattr = btrfs_getattr,
5825 .setattr = btrfs_setattr,
fdebe2bd 5826 .permission = btrfs_permission,
95819c05
CH
5827 .setxattr = btrfs_setxattr,
5828 .getxattr = btrfs_getxattr,
33268eaf 5829 .listxattr = btrfs_listxattr,
95819c05 5830 .removexattr = btrfs_removexattr,
618e21d5 5831};
39279cc3
CM
5832static struct inode_operations btrfs_symlink_inode_operations = {
5833 .readlink = generic_readlink,
5834 .follow_link = page_follow_link_light,
5835 .put_link = page_put_link,
fdebe2bd 5836 .permission = btrfs_permission,
0279b4cd
JO
5837 .setxattr = btrfs_setxattr,
5838 .getxattr = btrfs_getxattr,
5839 .listxattr = btrfs_listxattr,
5840 .removexattr = btrfs_removexattr,
39279cc3 5841};
76dda93c 5842
82d339d9 5843const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
5844 .d_delete = btrfs_dentry_delete,
5845};