Btrfs: fix memory leaks after transaction is aborted
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
6e1d5dcc
AD
69static const struct inode_operations btrfs_dir_inode_operations;
70static const struct inode_operations btrfs_symlink_inode_operations;
71static const struct inode_operations btrfs_dir_ro_inode_operations;
72static const struct inode_operations btrfs_special_inode_operations;
73static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
74static const struct address_space_operations btrfs_aops;
75static const struct address_space_operations btrfs_symlink_aops;
828c0950 76static const struct file_operations btrfs_dir_file_operations;
d1310b2e 77static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
78
79static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 80static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
81struct kmem_cache *btrfs_trans_handle_cachep;
82struct kmem_cache *btrfs_transaction_cachep;
39279cc3 83struct kmem_cache *btrfs_path_cachep;
dc89e982 84struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
85
86#define S_SHIFT 12
87static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95};
96
3972f260 97static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 98static int btrfs_truncate(struct inode *inode);
5fd02043 99static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
100static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
70c8a91c
JB
104static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
cc95bef6
JB
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
7b128766 109
48a3b636 110static int btrfs_dirty_inode(struct inode *inode);
7b128766 111
6a3891c5
JB
112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113void btrfs_test_inode_set_ops(struct inode *inode)
114{
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116}
117#endif
118
f34f57a3 119static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
0279b4cd
JO
122{
123 int err;
124
f34f57a3 125 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 126 if (!err)
2a7dba39 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
128 return err;
129}
130
c8b97818
CM
131/*
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
40f76580 136static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 137 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
fe3f566c 140 int compress_type,
c8b97818
CM
141 struct page **compressed_pages)
142{
c8b97818
CM
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
c8b97818 151 unsigned long offset;
c8b97818 152
fe3f566c 153 if (compressed_size && compressed_pages)
c8b97818 154 cur_size = compressed_size;
c8b97818 155
1acae57b 156 inode_add_bytes(inode, size);
c8b97818 157
1acae57b
FDBM
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
c8b97818 161
1acae57b
FDBM
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
962a298f 164 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 165
1acae57b
FDBM
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
173 }
c8b97818
CM
174 }
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
184
261507a0 185 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
186 struct page *cpage;
187 int i = 0;
d397712b 188 while (compressed_size > 0) {
c8b97818 189 cpage = compressed_pages[i];
5b050f04 190 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
191 PAGE_CACHE_SIZE);
192
7ac687d9 193 kaddr = kmap_atomic(cpage);
c8b97818 194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
200 }
201 btrfs_set_file_extent_compression(leaf, ei,
261507a0 202 compress_type);
c8b97818
CM
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 207 kaddr = kmap_atomic(page);
c8b97818
CM
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 210 kunmap_atomic(kaddr);
c8b97818
CM
211 page_cache_release(page);
212 }
213 btrfs_mark_buffer_dirty(leaf);
1acae57b 214 btrfs_release_path(path);
c8b97818 215
c2167754
YZ
216 /*
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
220 *
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
224 */
c8b97818 225 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 226 ret = btrfs_update_inode(trans, root, inode);
c2167754 227
79787eaa 228 return ret;
c8b97818 229fail:
c8b97818
CM
230 return err;
231}
232
233
234/*
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
00361589
JB
239static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
c8b97818 244{
00361589 245 struct btrfs_trans_handle *trans;
c8b97818
CM
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
fda2832f 249 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
250 u64 data_len = inline_len;
251 int ret;
1acae57b
FDBM
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
c8b97818
CM
255
256 if (compressed_size)
257 data_len = compressed_size;
258
259 if (start > 0 ||
354877be
WS
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
267 }
268
1acae57b
FDBM
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272
00361589 273 trans = btrfs_join_transaction(root);
1acae57b
FDBM
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
00361589 276 return PTR_ERR(trans);
1acae57b 277 }
00361589
JB
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
1acae57b
FDBM
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
286
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
00361589
JB
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
293 }
c8b97818
CM
294
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
c8b97818 299 inline_len, compressed_size,
fe3f566c 300 compress_type, compressed_pages);
2adcac1a 301 if (ret && ret != -ENOSPC) {
79787eaa 302 btrfs_abort_transaction(trans, root, ret);
00361589 303 goto out;
2adcac1a 304 } else if (ret == -ENOSPC) {
00361589
JB
305 ret = 1;
306 goto out;
79787eaa 307 }
2adcac1a 308
bdc20e67 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 312out:
94ed938a
QW
313 /*
314 * Don't forget to free the reserved space, as for inlined extent
315 * it won't count as data extent, free them directly here.
316 * And at reserve time, it's always aligned to page size, so
317 * just free one page here.
318 */
319 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
1acae57b 320 btrfs_free_path(path);
00361589
JB
321 btrfs_end_transaction(trans, root);
322 return ret;
c8b97818
CM
323}
324
771ed689
CM
325struct async_extent {
326 u64 start;
327 u64 ram_size;
328 u64 compressed_size;
329 struct page **pages;
330 unsigned long nr_pages;
261507a0 331 int compress_type;
771ed689
CM
332 struct list_head list;
333};
334
335struct async_cow {
336 struct inode *inode;
337 struct btrfs_root *root;
338 struct page *locked_page;
339 u64 start;
340 u64 end;
341 struct list_head extents;
342 struct btrfs_work work;
343};
344
345static noinline int add_async_extent(struct async_cow *cow,
346 u64 start, u64 ram_size,
347 u64 compressed_size,
348 struct page **pages,
261507a0
LZ
349 unsigned long nr_pages,
350 int compress_type)
771ed689
CM
351{
352 struct async_extent *async_extent;
353
354 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 355 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
356 async_extent->start = start;
357 async_extent->ram_size = ram_size;
358 async_extent->compressed_size = compressed_size;
359 async_extent->pages = pages;
360 async_extent->nr_pages = nr_pages;
261507a0 361 async_extent->compress_type = compress_type;
771ed689
CM
362 list_add_tail(&async_extent->list, &cow->extents);
363 return 0;
364}
365
f79707b0
WS
366static inline int inode_need_compress(struct inode *inode)
367{
368 struct btrfs_root *root = BTRFS_I(inode)->root;
369
370 /* force compress */
371 if (btrfs_test_opt(root, FORCE_COMPRESS))
372 return 1;
373 /* bad compression ratios */
374 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
375 return 0;
376 if (btrfs_test_opt(root, COMPRESS) ||
377 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
378 BTRFS_I(inode)->force_compress)
379 return 1;
380 return 0;
381}
382
d352ac68 383/*
771ed689
CM
384 * we create compressed extents in two phases. The first
385 * phase compresses a range of pages that have already been
386 * locked (both pages and state bits are locked).
c8b97818 387 *
771ed689
CM
388 * This is done inside an ordered work queue, and the compression
389 * is spread across many cpus. The actual IO submission is step
390 * two, and the ordered work queue takes care of making sure that
391 * happens in the same order things were put onto the queue by
392 * writepages and friends.
c8b97818 393 *
771ed689
CM
394 * If this code finds it can't get good compression, it puts an
395 * entry onto the work queue to write the uncompressed bytes. This
396 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
397 * are written in the same order that the flusher thread sent them
398 * down.
d352ac68 399 */
c44f649e 400static noinline void compress_file_range(struct inode *inode,
771ed689
CM
401 struct page *locked_page,
402 u64 start, u64 end,
403 struct async_cow *async_cow,
404 int *num_added)
b888db2b
CM
405{
406 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 407 u64 num_bytes;
db94535d 408 u64 blocksize = root->sectorsize;
c8b97818 409 u64 actual_end;
42dc7bab 410 u64 isize = i_size_read(inode);
e6dcd2dc 411 int ret = 0;
c8b97818
CM
412 struct page **pages = NULL;
413 unsigned long nr_pages;
414 unsigned long nr_pages_ret = 0;
415 unsigned long total_compressed = 0;
416 unsigned long total_in = 0;
417 unsigned long max_compressed = 128 * 1024;
771ed689 418 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
419 int i;
420 int will_compress;
261507a0 421 int compress_type = root->fs_info->compress_type;
4adaa611 422 int redirty = 0;
b888db2b 423
4cb13e5d
LB
424 /* if this is a small write inside eof, kick off a defrag */
425 if ((end - start + 1) < 16 * 1024 &&
426 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
427 btrfs_add_inode_defrag(NULL, inode);
428
42dc7bab 429 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
430again:
431 will_compress = 0;
432 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
433 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 434
f03d9301
CM
435 /*
436 * we don't want to send crud past the end of i_size through
437 * compression, that's just a waste of CPU time. So, if the
438 * end of the file is before the start of our current
439 * requested range of bytes, we bail out to the uncompressed
440 * cleanup code that can deal with all of this.
441 *
442 * It isn't really the fastest way to fix things, but this is a
443 * very uncommon corner.
444 */
445 if (actual_end <= start)
446 goto cleanup_and_bail_uncompressed;
447
c8b97818
CM
448 total_compressed = actual_end - start;
449
4bcbb332
SW
450 /*
451 * skip compression for a small file range(<=blocksize) that
452 * isn't an inline extent, since it dosen't save disk space at all.
453 */
454 if (total_compressed <= blocksize &&
455 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
456 goto cleanup_and_bail_uncompressed;
457
c8b97818
CM
458 /* we want to make sure that amount of ram required to uncompress
459 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
460 * of a compressed extent to 128k. This is a crucial number
461 * because it also controls how easily we can spread reads across
462 * cpus for decompression.
463 *
464 * We also want to make sure the amount of IO required to do
465 * a random read is reasonably small, so we limit the size of
466 * a compressed extent to 128k.
c8b97818
CM
467 */
468 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 469 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 470 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
471 total_in = 0;
472 ret = 0;
db94535d 473
771ed689
CM
474 /*
475 * we do compression for mount -o compress and when the
476 * inode has not been flagged as nocompress. This flag can
477 * change at any time if we discover bad compression ratios.
c8b97818 478 */
f79707b0 479 if (inode_need_compress(inode)) {
c8b97818 480 WARN_ON(pages);
31e818fe 481 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
482 if (!pages) {
483 /* just bail out to the uncompressed code */
484 goto cont;
485 }
c8b97818 486
261507a0
LZ
487 if (BTRFS_I(inode)->force_compress)
488 compress_type = BTRFS_I(inode)->force_compress;
489
4adaa611
CM
490 /*
491 * we need to call clear_page_dirty_for_io on each
492 * page in the range. Otherwise applications with the file
493 * mmap'd can wander in and change the page contents while
494 * we are compressing them.
495 *
496 * If the compression fails for any reason, we set the pages
497 * dirty again later on.
498 */
499 extent_range_clear_dirty_for_io(inode, start, end);
500 redirty = 1;
261507a0
LZ
501 ret = btrfs_compress_pages(compress_type,
502 inode->i_mapping, start,
503 total_compressed, pages,
504 nr_pages, &nr_pages_ret,
505 &total_in,
506 &total_compressed,
507 max_compressed);
c8b97818
CM
508
509 if (!ret) {
510 unsigned long offset = total_compressed &
511 (PAGE_CACHE_SIZE - 1);
512 struct page *page = pages[nr_pages_ret - 1];
513 char *kaddr;
514
515 /* zero the tail end of the last page, we might be
516 * sending it down to disk
517 */
518 if (offset) {
7ac687d9 519 kaddr = kmap_atomic(page);
c8b97818
CM
520 memset(kaddr + offset, 0,
521 PAGE_CACHE_SIZE - offset);
7ac687d9 522 kunmap_atomic(kaddr);
c8b97818
CM
523 }
524 will_compress = 1;
525 }
526 }
560f7d75 527cont:
c8b97818
CM
528 if (start == 0) {
529 /* lets try to make an inline extent */
771ed689 530 if (ret || total_in < (actual_end - start)) {
c8b97818 531 /* we didn't compress the entire range, try
771ed689 532 * to make an uncompressed inline extent.
c8b97818 533 */
00361589
JB
534 ret = cow_file_range_inline(root, inode, start, end,
535 0, 0, NULL);
c8b97818 536 } else {
771ed689 537 /* try making a compressed inline extent */
00361589 538 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
539 total_compressed,
540 compress_type, pages);
c8b97818 541 }
79787eaa 542 if (ret <= 0) {
151a41bc
JB
543 unsigned long clear_flags = EXTENT_DELALLOC |
544 EXTENT_DEFRAG;
e6eb4314
FM
545 unsigned long page_error_op;
546
151a41bc 547 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 548 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 549
771ed689 550 /*
79787eaa
JM
551 * inline extent creation worked or returned error,
552 * we don't need to create any more async work items.
553 * Unlock and free up our temp pages.
771ed689 554 */
c2790a2e 555 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 556 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
557 PAGE_CLEAR_DIRTY |
558 PAGE_SET_WRITEBACK |
e6eb4314 559 page_error_op |
c2790a2e 560 PAGE_END_WRITEBACK);
c8b97818
CM
561 goto free_pages_out;
562 }
563 }
564
565 if (will_compress) {
566 /*
567 * we aren't doing an inline extent round the compressed size
568 * up to a block size boundary so the allocator does sane
569 * things
570 */
fda2832f 571 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
572
573 /*
574 * one last check to make sure the compression is really a
575 * win, compare the page count read with the blocks on disk
576 */
fda2832f 577 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
578 if (total_compressed >= total_in) {
579 will_compress = 0;
580 } else {
c8b97818
CM
581 num_bytes = total_in;
582 }
583 }
584 if (!will_compress && pages) {
585 /*
586 * the compression code ran but failed to make things smaller,
587 * free any pages it allocated and our page pointer array
588 */
589 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 590 WARN_ON(pages[i]->mapping);
c8b97818
CM
591 page_cache_release(pages[i]);
592 }
593 kfree(pages);
594 pages = NULL;
595 total_compressed = 0;
596 nr_pages_ret = 0;
597
598 /* flag the file so we don't compress in the future */
1e701a32
CM
599 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
600 !(BTRFS_I(inode)->force_compress)) {
a555f810 601 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 602 }
c8b97818 603 }
771ed689
CM
604 if (will_compress) {
605 *num_added += 1;
c8b97818 606
771ed689
CM
607 /* the async work queues will take care of doing actual
608 * allocation on disk for these compressed pages,
609 * and will submit them to the elevator.
610 */
611 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
612 total_compressed, pages, nr_pages_ret,
613 compress_type);
179e29e4 614
24ae6365 615 if (start + num_bytes < end) {
771ed689
CM
616 start += num_bytes;
617 pages = NULL;
618 cond_resched();
619 goto again;
620 }
621 } else {
f03d9301 622cleanup_and_bail_uncompressed:
771ed689
CM
623 /*
624 * No compression, but we still need to write the pages in
625 * the file we've been given so far. redirty the locked
626 * page if it corresponds to our extent and set things up
627 * for the async work queue to run cow_file_range to do
628 * the normal delalloc dance
629 */
630 if (page_offset(locked_page) >= start &&
631 page_offset(locked_page) <= end) {
632 __set_page_dirty_nobuffers(locked_page);
633 /* unlocked later on in the async handlers */
634 }
4adaa611
CM
635 if (redirty)
636 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
637 add_async_extent(async_cow, start, end - start + 1,
638 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
639 *num_added += 1;
640 }
3b951516 641
c44f649e 642 return;
771ed689
CM
643
644free_pages_out:
645 for (i = 0; i < nr_pages_ret; i++) {
646 WARN_ON(pages[i]->mapping);
647 page_cache_release(pages[i]);
648 }
d397712b 649 kfree(pages);
771ed689 650}
771ed689 651
40ae837b
FM
652static void free_async_extent_pages(struct async_extent *async_extent)
653{
654 int i;
655
656 if (!async_extent->pages)
657 return;
658
659 for (i = 0; i < async_extent->nr_pages; i++) {
660 WARN_ON(async_extent->pages[i]->mapping);
661 page_cache_release(async_extent->pages[i]);
662 }
663 kfree(async_extent->pages);
664 async_extent->nr_pages = 0;
665 async_extent->pages = NULL;
771ed689
CM
666}
667
668/*
669 * phase two of compressed writeback. This is the ordered portion
670 * of the code, which only gets called in the order the work was
671 * queued. We walk all the async extents created by compress_file_range
672 * and send them down to the disk.
673 */
dec8f175 674static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
675 struct async_cow *async_cow)
676{
677 struct async_extent *async_extent;
678 u64 alloc_hint = 0;
771ed689
CM
679 struct btrfs_key ins;
680 struct extent_map *em;
681 struct btrfs_root *root = BTRFS_I(inode)->root;
682 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
683 struct extent_io_tree *io_tree;
f5a84ee3 684 int ret = 0;
771ed689 685
3e04e7f1 686again:
d397712b 687 while (!list_empty(&async_cow->extents)) {
771ed689
CM
688 async_extent = list_entry(async_cow->extents.next,
689 struct async_extent, list);
690 list_del(&async_extent->list);
c8b97818 691
771ed689
CM
692 io_tree = &BTRFS_I(inode)->io_tree;
693
f5a84ee3 694retry:
771ed689
CM
695 /* did the compression code fall back to uncompressed IO? */
696 if (!async_extent->pages) {
697 int page_started = 0;
698 unsigned long nr_written = 0;
699
700 lock_extent(io_tree, async_extent->start,
2ac55d41 701 async_extent->start +
d0082371 702 async_extent->ram_size - 1);
771ed689
CM
703
704 /* allocate blocks */
f5a84ee3
JB
705 ret = cow_file_range(inode, async_cow->locked_page,
706 async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1,
709 &page_started, &nr_written, 0);
771ed689 710
79787eaa
JM
711 /* JDM XXX */
712
771ed689
CM
713 /*
714 * if page_started, cow_file_range inserted an
715 * inline extent and took care of all the unlocking
716 * and IO for us. Otherwise, we need to submit
717 * all those pages down to the drive.
718 */
f5a84ee3 719 if (!page_started && !ret)
771ed689
CM
720 extent_write_locked_range(io_tree,
721 inode, async_extent->start,
d397712b 722 async_extent->start +
771ed689
CM
723 async_extent->ram_size - 1,
724 btrfs_get_extent,
725 WB_SYNC_ALL);
3e04e7f1
JB
726 else if (ret)
727 unlock_page(async_cow->locked_page);
771ed689
CM
728 kfree(async_extent);
729 cond_resched();
730 continue;
731 }
732
733 lock_extent(io_tree, async_extent->start,
d0082371 734 async_extent->start + async_extent->ram_size - 1);
771ed689 735
00361589 736 ret = btrfs_reserve_extent(root,
771ed689
CM
737 async_extent->compressed_size,
738 async_extent->compressed_size,
e570fd27 739 0, alloc_hint, &ins, 1, 1);
f5a84ee3 740 if (ret) {
40ae837b 741 free_async_extent_pages(async_extent);
3e04e7f1 742
fdf8e2ea
JB
743 if (ret == -ENOSPC) {
744 unlock_extent(io_tree, async_extent->start,
745 async_extent->start +
746 async_extent->ram_size - 1);
ce62003f
LB
747
748 /*
749 * we need to redirty the pages if we decide to
750 * fallback to uncompressed IO, otherwise we
751 * will not submit these pages down to lower
752 * layers.
753 */
754 extent_range_redirty_for_io(inode,
755 async_extent->start,
756 async_extent->start +
757 async_extent->ram_size - 1);
758
79787eaa 759 goto retry;
fdf8e2ea 760 }
3e04e7f1 761 goto out_free;
f5a84ee3 762 }
c2167754
YZ
763 /*
764 * here we're doing allocation and writeback of the
765 * compressed pages
766 */
767 btrfs_drop_extent_cache(inode, async_extent->start,
768 async_extent->start +
769 async_extent->ram_size - 1, 0);
770
172ddd60 771 em = alloc_extent_map();
b9aa55be
LB
772 if (!em) {
773 ret = -ENOMEM;
3e04e7f1 774 goto out_free_reserve;
b9aa55be 775 }
771ed689
CM
776 em->start = async_extent->start;
777 em->len = async_extent->ram_size;
445a6944 778 em->orig_start = em->start;
2ab28f32
JB
779 em->mod_start = em->start;
780 em->mod_len = em->len;
c8b97818 781
771ed689
CM
782 em->block_start = ins.objectid;
783 em->block_len = ins.offset;
b4939680 784 em->orig_block_len = ins.offset;
cc95bef6 785 em->ram_bytes = async_extent->ram_size;
771ed689 786 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 787 em->compress_type = async_extent->compress_type;
771ed689
CM
788 set_bit(EXTENT_FLAG_PINNED, &em->flags);
789 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 790 em->generation = -1;
771ed689 791
d397712b 792 while (1) {
890871be 793 write_lock(&em_tree->lock);
09a2a8f9 794 ret = add_extent_mapping(em_tree, em, 1);
890871be 795 write_unlock(&em_tree->lock);
771ed689
CM
796 if (ret != -EEXIST) {
797 free_extent_map(em);
798 break;
799 }
800 btrfs_drop_extent_cache(inode, async_extent->start,
801 async_extent->start +
802 async_extent->ram_size - 1, 0);
803 }
804
3e04e7f1
JB
805 if (ret)
806 goto out_free_reserve;
807
261507a0
LZ
808 ret = btrfs_add_ordered_extent_compress(inode,
809 async_extent->start,
810 ins.objectid,
811 async_extent->ram_size,
812 ins.offset,
813 BTRFS_ORDERED_COMPRESSED,
814 async_extent->compress_type);
d9f85963
FM
815 if (ret) {
816 btrfs_drop_extent_cache(inode, async_extent->start,
817 async_extent->start +
818 async_extent->ram_size - 1, 0);
3e04e7f1 819 goto out_free_reserve;
d9f85963 820 }
771ed689 821
771ed689
CM
822 /*
823 * clear dirty, set writeback and unlock the pages.
824 */
c2790a2e 825 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
826 async_extent->start +
827 async_extent->ram_size - 1,
151a41bc
JB
828 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
829 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 830 PAGE_SET_WRITEBACK);
771ed689 831 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
832 async_extent->start,
833 async_extent->ram_size,
834 ins.objectid,
835 ins.offset, async_extent->pages,
836 async_extent->nr_pages);
fce2a4e6
FM
837 if (ret) {
838 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
839 struct page *p = async_extent->pages[0];
840 const u64 start = async_extent->start;
841 const u64 end = start + async_extent->ram_size - 1;
842
843 p->mapping = inode->i_mapping;
844 tree->ops->writepage_end_io_hook(p, start, end,
845 NULL, 0);
846 p->mapping = NULL;
847 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
848 PAGE_END_WRITEBACK |
849 PAGE_SET_ERROR);
40ae837b 850 free_async_extent_pages(async_extent);
fce2a4e6 851 }
771ed689
CM
852 alloc_hint = ins.objectid + ins.offset;
853 kfree(async_extent);
854 cond_resched();
855 }
dec8f175 856 return;
3e04e7f1 857out_free_reserve:
e570fd27 858 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 859out_free:
c2790a2e 860 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
861 async_extent->start +
862 async_extent->ram_size - 1,
c2790a2e 863 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
864 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
865 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
866 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
867 PAGE_SET_ERROR);
40ae837b 868 free_async_extent_pages(async_extent);
79787eaa 869 kfree(async_extent);
3e04e7f1 870 goto again;
771ed689
CM
871}
872
4b46fce2
JB
873static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
874 u64 num_bytes)
875{
876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 struct extent_map *em;
878 u64 alloc_hint = 0;
879
880 read_lock(&em_tree->lock);
881 em = search_extent_mapping(em_tree, start, num_bytes);
882 if (em) {
883 /*
884 * if block start isn't an actual block number then find the
885 * first block in this inode and use that as a hint. If that
886 * block is also bogus then just don't worry about it.
887 */
888 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
889 free_extent_map(em);
890 em = search_extent_mapping(em_tree, 0, 0);
891 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
892 alloc_hint = em->block_start;
893 if (em)
894 free_extent_map(em);
895 } else {
896 alloc_hint = em->block_start;
897 free_extent_map(em);
898 }
899 }
900 read_unlock(&em_tree->lock);
901
902 return alloc_hint;
903}
904
771ed689
CM
905/*
906 * when extent_io.c finds a delayed allocation range in the file,
907 * the call backs end up in this code. The basic idea is to
908 * allocate extents on disk for the range, and create ordered data structs
909 * in ram to track those extents.
910 *
911 * locked_page is the page that writepage had locked already. We use
912 * it to make sure we don't do extra locks or unlocks.
913 *
914 * *page_started is set to one if we unlock locked_page and do everything
915 * required to start IO on it. It may be clean and already done with
916 * IO when we return.
917 */
00361589
JB
918static noinline int cow_file_range(struct inode *inode,
919 struct page *locked_page,
920 u64 start, u64 end, int *page_started,
921 unsigned long *nr_written,
922 int unlock)
771ed689 923{
00361589 924 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
925 u64 alloc_hint = 0;
926 u64 num_bytes;
927 unsigned long ram_size;
928 u64 disk_num_bytes;
929 u64 cur_alloc_size;
930 u64 blocksize = root->sectorsize;
771ed689
CM
931 struct btrfs_key ins;
932 struct extent_map *em;
933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 int ret = 0;
935
02ecd2c2
JB
936 if (btrfs_is_free_space_inode(inode)) {
937 WARN_ON_ONCE(1);
29bce2f3
JB
938 ret = -EINVAL;
939 goto out_unlock;
02ecd2c2 940 }
771ed689 941
fda2832f 942 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
943 num_bytes = max(blocksize, num_bytes);
944 disk_num_bytes = num_bytes;
771ed689 945
4cb5300b 946 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
947 if (num_bytes < 64 * 1024 &&
948 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 949 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 950
771ed689
CM
951 if (start == 0) {
952 /* lets try to make an inline extent */
00361589
JB
953 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
954 NULL);
771ed689 955 if (ret == 0) {
c2790a2e
JB
956 extent_clear_unlock_delalloc(inode, start, end, NULL,
957 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 958 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
959 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
960 PAGE_END_WRITEBACK);
c2167754 961
771ed689
CM
962 *nr_written = *nr_written +
963 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
964 *page_started = 1;
771ed689 965 goto out;
79787eaa 966 } else if (ret < 0) {
79787eaa 967 goto out_unlock;
771ed689
CM
968 }
969 }
970
971 BUG_ON(disk_num_bytes >
6c41761f 972 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 973
4b46fce2 974 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
975 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
976
d397712b 977 while (disk_num_bytes > 0) {
a791e35e
CM
978 unsigned long op;
979
287a0ab9 980 cur_alloc_size = disk_num_bytes;
00361589 981 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 982 root->sectorsize, 0, alloc_hint,
e570fd27 983 &ins, 1, 1);
00361589 984 if (ret < 0)
79787eaa 985 goto out_unlock;
d397712b 986
172ddd60 987 em = alloc_extent_map();
b9aa55be
LB
988 if (!em) {
989 ret = -ENOMEM;
ace68bac 990 goto out_reserve;
b9aa55be 991 }
e6dcd2dc 992 em->start = start;
445a6944 993 em->orig_start = em->start;
771ed689
CM
994 ram_size = ins.offset;
995 em->len = ins.offset;
2ab28f32
JB
996 em->mod_start = em->start;
997 em->mod_len = em->len;
c8b97818 998
e6dcd2dc 999 em->block_start = ins.objectid;
c8b97818 1000 em->block_len = ins.offset;
b4939680 1001 em->orig_block_len = ins.offset;
cc95bef6 1002 em->ram_bytes = ram_size;
e6dcd2dc 1003 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1004 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1005 em->generation = -1;
c8b97818 1006
d397712b 1007 while (1) {
890871be 1008 write_lock(&em_tree->lock);
09a2a8f9 1009 ret = add_extent_mapping(em_tree, em, 1);
890871be 1010 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1011 if (ret != -EEXIST) {
1012 free_extent_map(em);
1013 break;
1014 }
1015 btrfs_drop_extent_cache(inode, start,
c8b97818 1016 start + ram_size - 1, 0);
e6dcd2dc 1017 }
ace68bac
LB
1018 if (ret)
1019 goto out_reserve;
e6dcd2dc 1020
98d20f67 1021 cur_alloc_size = ins.offset;
e6dcd2dc 1022 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1023 ram_size, cur_alloc_size, 0);
ace68bac 1024 if (ret)
d9f85963 1025 goto out_drop_extent_cache;
c8b97818 1026
17d217fe
YZ
1027 if (root->root_key.objectid ==
1028 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 ret = btrfs_reloc_clone_csums(inode, start,
1030 cur_alloc_size);
00361589 1031 if (ret)
d9f85963 1032 goto out_drop_extent_cache;
17d217fe
YZ
1033 }
1034
d397712b 1035 if (disk_num_bytes < cur_alloc_size)
3b951516 1036 break;
d397712b 1037
c8b97818
CM
1038 /* we're not doing compressed IO, don't unlock the first
1039 * page (which the caller expects to stay locked), don't
1040 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1041 *
1042 * Do set the Private2 bit so we know this page was properly
1043 * setup for writepage
c8b97818 1044 */
c2790a2e
JB
1045 op = unlock ? PAGE_UNLOCK : 0;
1046 op |= PAGE_SET_PRIVATE2;
a791e35e 1047
c2790a2e
JB
1048 extent_clear_unlock_delalloc(inode, start,
1049 start + ram_size - 1, locked_page,
1050 EXTENT_LOCKED | EXTENT_DELALLOC,
1051 op);
c8b97818 1052 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1053 num_bytes -= cur_alloc_size;
1054 alloc_hint = ins.objectid + ins.offset;
1055 start += cur_alloc_size;
b888db2b 1056 }
79787eaa 1057out:
be20aa9d 1058 return ret;
b7d5b0a8 1059
d9f85963
FM
1060out_drop_extent_cache:
1061 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1062out_reserve:
e570fd27 1063 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1064out_unlock:
c2790a2e 1065 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1066 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1067 EXTENT_DELALLOC | EXTENT_DEFRAG,
1068 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1069 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1070 goto out;
771ed689 1071}
c8b97818 1072
771ed689
CM
1073/*
1074 * work queue call back to started compression on a file and pages
1075 */
1076static noinline void async_cow_start(struct btrfs_work *work)
1077{
1078 struct async_cow *async_cow;
1079 int num_added = 0;
1080 async_cow = container_of(work, struct async_cow, work);
1081
1082 compress_file_range(async_cow->inode, async_cow->locked_page,
1083 async_cow->start, async_cow->end, async_cow,
1084 &num_added);
8180ef88 1085 if (num_added == 0) {
cb77fcd8 1086 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1087 async_cow->inode = NULL;
8180ef88 1088 }
771ed689
CM
1089}
1090
1091/*
1092 * work queue call back to submit previously compressed pages
1093 */
1094static noinline void async_cow_submit(struct btrfs_work *work)
1095{
1096 struct async_cow *async_cow;
1097 struct btrfs_root *root;
1098 unsigned long nr_pages;
1099
1100 async_cow = container_of(work, struct async_cow, work);
1101
1102 root = async_cow->root;
1103 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1104 PAGE_CACHE_SHIFT;
1105
ee863954
DS
1106 /*
1107 * atomic_sub_return implies a barrier for waitqueue_active
1108 */
66657b31 1109 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1110 5 * 1024 * 1024 &&
771ed689
CM
1111 waitqueue_active(&root->fs_info->async_submit_wait))
1112 wake_up(&root->fs_info->async_submit_wait);
1113
d397712b 1114 if (async_cow->inode)
771ed689 1115 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1116}
c8b97818 1117
771ed689
CM
1118static noinline void async_cow_free(struct btrfs_work *work)
1119{
1120 struct async_cow *async_cow;
1121 async_cow = container_of(work, struct async_cow, work);
8180ef88 1122 if (async_cow->inode)
cb77fcd8 1123 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1124 kfree(async_cow);
1125}
1126
1127static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1128 u64 start, u64 end, int *page_started,
1129 unsigned long *nr_written)
1130{
1131 struct async_cow *async_cow;
1132 struct btrfs_root *root = BTRFS_I(inode)->root;
1133 unsigned long nr_pages;
1134 u64 cur_end;
287082b0 1135 int limit = 10 * 1024 * 1024;
771ed689 1136
a3429ab7
CM
1137 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1138 1, 0, NULL, GFP_NOFS);
d397712b 1139 while (start < end) {
771ed689 1140 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1141 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1142 async_cow->inode = igrab(inode);
771ed689
CM
1143 async_cow->root = root;
1144 async_cow->locked_page = locked_page;
1145 async_cow->start = start;
1146
f79707b0
WS
1147 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1148 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1149 cur_end = end;
1150 else
1151 cur_end = min(end, start + 512 * 1024 - 1);
1152
1153 async_cow->end = cur_end;
1154 INIT_LIST_HEAD(&async_cow->extents);
1155
9e0af237
LB
1156 btrfs_init_work(&async_cow->work,
1157 btrfs_delalloc_helper,
1158 async_cow_start, async_cow_submit,
1159 async_cow_free);
771ed689 1160
771ed689
CM
1161 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1162 PAGE_CACHE_SHIFT;
1163 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1164
afe3d242
QW
1165 btrfs_queue_work(root->fs_info->delalloc_workers,
1166 &async_cow->work);
771ed689
CM
1167
1168 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1169 wait_event(root->fs_info->async_submit_wait,
1170 (atomic_read(&root->fs_info->async_delalloc_pages) <
1171 limit));
1172 }
1173
d397712b 1174 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1175 atomic_read(&root->fs_info->async_delalloc_pages)) {
1176 wait_event(root->fs_info->async_submit_wait,
1177 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1178 0));
1179 }
1180
1181 *nr_written += nr_pages;
1182 start = cur_end + 1;
1183 }
1184 *page_started = 1;
1185 return 0;
be20aa9d
CM
1186}
1187
d397712b 1188static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1189 u64 bytenr, u64 num_bytes)
1190{
1191 int ret;
1192 struct btrfs_ordered_sum *sums;
1193 LIST_HEAD(list);
1194
07d400a6 1195 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1196 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1197 if (ret == 0 && list_empty(&list))
1198 return 0;
1199
1200 while (!list_empty(&list)) {
1201 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1202 list_del(&sums->list);
1203 kfree(sums);
1204 }
1205 return 1;
1206}
1207
d352ac68
CM
1208/*
1209 * when nowcow writeback call back. This checks for snapshots or COW copies
1210 * of the extents that exist in the file, and COWs the file as required.
1211 *
1212 * If no cow copies or snapshots exist, we write directly to the existing
1213 * blocks on disk
1214 */
7f366cfe
CM
1215static noinline int run_delalloc_nocow(struct inode *inode,
1216 struct page *locked_page,
771ed689
CM
1217 u64 start, u64 end, int *page_started, int force,
1218 unsigned long *nr_written)
be20aa9d 1219{
be20aa9d 1220 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1221 struct btrfs_trans_handle *trans;
be20aa9d 1222 struct extent_buffer *leaf;
be20aa9d 1223 struct btrfs_path *path;
80ff3856 1224 struct btrfs_file_extent_item *fi;
be20aa9d 1225 struct btrfs_key found_key;
80ff3856
YZ
1226 u64 cow_start;
1227 u64 cur_offset;
1228 u64 extent_end;
5d4f98a2 1229 u64 extent_offset;
80ff3856
YZ
1230 u64 disk_bytenr;
1231 u64 num_bytes;
b4939680 1232 u64 disk_num_bytes;
cc95bef6 1233 u64 ram_bytes;
80ff3856 1234 int extent_type;
79787eaa 1235 int ret, err;
d899e052 1236 int type;
80ff3856
YZ
1237 int nocow;
1238 int check_prev = 1;
82d5902d 1239 bool nolock;
33345d01 1240 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1241
1242 path = btrfs_alloc_path();
17ca04af 1243 if (!path) {
c2790a2e
JB
1244 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1245 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1246 EXTENT_DO_ACCOUNTING |
1247 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1248 PAGE_CLEAR_DIRTY |
1249 PAGE_SET_WRITEBACK |
1250 PAGE_END_WRITEBACK);
d8926bb3 1251 return -ENOMEM;
17ca04af 1252 }
82d5902d 1253
83eea1f1 1254 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1255
1256 if (nolock)
7a7eaa40 1257 trans = btrfs_join_transaction_nolock(root);
82d5902d 1258 else
7a7eaa40 1259 trans = btrfs_join_transaction(root);
ff5714cc 1260
79787eaa 1261 if (IS_ERR(trans)) {
c2790a2e
JB
1262 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1263 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1264 EXTENT_DO_ACCOUNTING |
1265 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1266 PAGE_CLEAR_DIRTY |
1267 PAGE_SET_WRITEBACK |
1268 PAGE_END_WRITEBACK);
79787eaa
JM
1269 btrfs_free_path(path);
1270 return PTR_ERR(trans);
1271 }
1272
74b21075 1273 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1274
80ff3856
YZ
1275 cow_start = (u64)-1;
1276 cur_offset = start;
1277 while (1) {
33345d01 1278 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1279 cur_offset, 0);
d788a349 1280 if (ret < 0)
79787eaa 1281 goto error;
80ff3856
YZ
1282 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &found_key,
1285 path->slots[0] - 1);
33345d01 1286 if (found_key.objectid == ino &&
80ff3856
YZ
1287 found_key.type == BTRFS_EXTENT_DATA_KEY)
1288 path->slots[0]--;
1289 }
1290 check_prev = 0;
1291next_slot:
1292 leaf = path->nodes[0];
1293 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1294 ret = btrfs_next_leaf(root, path);
d788a349 1295 if (ret < 0)
79787eaa 1296 goto error;
80ff3856
YZ
1297 if (ret > 0)
1298 break;
1299 leaf = path->nodes[0];
1300 }
be20aa9d 1301
80ff3856
YZ
1302 nocow = 0;
1303 disk_bytenr = 0;
17d217fe 1304 num_bytes = 0;
80ff3856
YZ
1305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1306
1d512cb7
FM
1307 if (found_key.objectid > ino)
1308 break;
1309 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1310 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1311 path->slots[0]++;
1312 goto next_slot;
1313 }
1314 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1315 found_key.offset > end)
1316 break;
1317
1318 if (found_key.offset > cur_offset) {
1319 extent_end = found_key.offset;
e9061e21 1320 extent_type = 0;
80ff3856
YZ
1321 goto out_check;
1322 }
1323
1324 fi = btrfs_item_ptr(leaf, path->slots[0],
1325 struct btrfs_file_extent_item);
1326 extent_type = btrfs_file_extent_type(leaf, fi);
1327
cc95bef6 1328 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1329 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1330 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1331 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1332 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1333 extent_end = found_key.offset +
1334 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1335 disk_num_bytes =
1336 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1337 if (extent_end <= start) {
1338 path->slots[0]++;
1339 goto next_slot;
1340 }
17d217fe
YZ
1341 if (disk_bytenr == 0)
1342 goto out_check;
80ff3856
YZ
1343 if (btrfs_file_extent_compression(leaf, fi) ||
1344 btrfs_file_extent_encryption(leaf, fi) ||
1345 btrfs_file_extent_other_encoding(leaf, fi))
1346 goto out_check;
d899e052
YZ
1347 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1348 goto out_check;
d2fb3437 1349 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1350 goto out_check;
33345d01 1351 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1352 found_key.offset -
1353 extent_offset, disk_bytenr))
17d217fe 1354 goto out_check;
5d4f98a2 1355 disk_bytenr += extent_offset;
17d217fe
YZ
1356 disk_bytenr += cur_offset - found_key.offset;
1357 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1358 /*
1359 * if there are pending snapshots for this root,
1360 * we fall into common COW way.
1361 */
1362 if (!nolock) {
9ea24bbe 1363 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1364 if (!err)
1365 goto out_check;
1366 }
17d217fe
YZ
1367 /*
1368 * force cow if csum exists in the range.
1369 * this ensure that csum for a given extent are
1370 * either valid or do not exist.
1371 */
1372 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1373 goto out_check;
80ff3856
YZ
1374 nocow = 1;
1375 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1376 extent_end = found_key.offset +
514ac8ad
CM
1377 btrfs_file_extent_inline_len(leaf,
1378 path->slots[0], fi);
80ff3856
YZ
1379 extent_end = ALIGN(extent_end, root->sectorsize);
1380 } else {
1381 BUG_ON(1);
1382 }
1383out_check:
1384 if (extent_end <= start) {
1385 path->slots[0]++;
e9894fd3 1386 if (!nolock && nocow)
9ea24bbe 1387 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1388 goto next_slot;
1389 }
1390 if (!nocow) {
1391 if (cow_start == (u64)-1)
1392 cow_start = cur_offset;
1393 cur_offset = extent_end;
1394 if (cur_offset > end)
1395 break;
1396 path->slots[0]++;
1397 goto next_slot;
7ea394f1
YZ
1398 }
1399
b3b4aa74 1400 btrfs_release_path(path);
80ff3856 1401 if (cow_start != (u64)-1) {
00361589
JB
1402 ret = cow_file_range(inode, locked_page,
1403 cow_start, found_key.offset - 1,
1404 page_started, nr_written, 1);
e9894fd3
WS
1405 if (ret) {
1406 if (!nolock && nocow)
9ea24bbe 1407 btrfs_end_write_no_snapshoting(root);
79787eaa 1408 goto error;
e9894fd3 1409 }
80ff3856 1410 cow_start = (u64)-1;
7ea394f1 1411 }
80ff3856 1412
d899e052
YZ
1413 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1414 struct extent_map *em;
1415 struct extent_map_tree *em_tree;
1416 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1417 em = alloc_extent_map();
79787eaa 1418 BUG_ON(!em); /* -ENOMEM */
d899e052 1419 em->start = cur_offset;
70c8a91c 1420 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1421 em->len = num_bytes;
1422 em->block_len = num_bytes;
1423 em->block_start = disk_bytenr;
b4939680 1424 em->orig_block_len = disk_num_bytes;
cc95bef6 1425 em->ram_bytes = ram_bytes;
d899e052 1426 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1427 em->mod_start = em->start;
1428 em->mod_len = em->len;
d899e052 1429 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1430 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1431 em->generation = -1;
d899e052 1432 while (1) {
890871be 1433 write_lock(&em_tree->lock);
09a2a8f9 1434 ret = add_extent_mapping(em_tree, em, 1);
890871be 1435 write_unlock(&em_tree->lock);
d899e052
YZ
1436 if (ret != -EEXIST) {
1437 free_extent_map(em);
1438 break;
1439 }
1440 btrfs_drop_extent_cache(inode, em->start,
1441 em->start + em->len - 1, 0);
1442 }
1443 type = BTRFS_ORDERED_PREALLOC;
1444 } else {
1445 type = BTRFS_ORDERED_NOCOW;
1446 }
80ff3856
YZ
1447
1448 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1449 num_bytes, num_bytes, type);
79787eaa 1450 BUG_ON(ret); /* -ENOMEM */
771ed689 1451
efa56464
YZ
1452 if (root->root_key.objectid ==
1453 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1454 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1455 num_bytes);
e9894fd3
WS
1456 if (ret) {
1457 if (!nolock && nocow)
9ea24bbe 1458 btrfs_end_write_no_snapshoting(root);
79787eaa 1459 goto error;
e9894fd3 1460 }
efa56464
YZ
1461 }
1462
c2790a2e
JB
1463 extent_clear_unlock_delalloc(inode, cur_offset,
1464 cur_offset + num_bytes - 1,
1465 locked_page, EXTENT_LOCKED |
1466 EXTENT_DELALLOC, PAGE_UNLOCK |
1467 PAGE_SET_PRIVATE2);
e9894fd3 1468 if (!nolock && nocow)
9ea24bbe 1469 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1470 cur_offset = extent_end;
1471 if (cur_offset > end)
1472 break;
be20aa9d 1473 }
b3b4aa74 1474 btrfs_release_path(path);
80ff3856 1475
17ca04af 1476 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1477 cow_start = cur_offset;
17ca04af
JB
1478 cur_offset = end;
1479 }
1480
80ff3856 1481 if (cow_start != (u64)-1) {
00361589
JB
1482 ret = cow_file_range(inode, locked_page, cow_start, end,
1483 page_started, nr_written, 1);
d788a349 1484 if (ret)
79787eaa 1485 goto error;
80ff3856
YZ
1486 }
1487
79787eaa 1488error:
a698d075 1489 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1490 if (!ret)
1491 ret = err;
1492
17ca04af 1493 if (ret && cur_offset < end)
c2790a2e
JB
1494 extent_clear_unlock_delalloc(inode, cur_offset, end,
1495 locked_page, EXTENT_LOCKED |
151a41bc
JB
1496 EXTENT_DELALLOC | EXTENT_DEFRAG |
1497 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1498 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1499 PAGE_SET_WRITEBACK |
1500 PAGE_END_WRITEBACK);
7ea394f1 1501 btrfs_free_path(path);
79787eaa 1502 return ret;
be20aa9d
CM
1503}
1504
47059d93
WS
1505static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1506{
1507
1508 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1509 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1510 return 0;
1511
1512 /*
1513 * @defrag_bytes is a hint value, no spinlock held here,
1514 * if is not zero, it means the file is defragging.
1515 * Force cow if given extent needs to be defragged.
1516 */
1517 if (BTRFS_I(inode)->defrag_bytes &&
1518 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1519 EXTENT_DEFRAG, 0, NULL))
1520 return 1;
1521
1522 return 0;
1523}
1524
d352ac68
CM
1525/*
1526 * extent_io.c call back to do delayed allocation processing
1527 */
c8b97818 1528static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1529 u64 start, u64 end, int *page_started,
1530 unsigned long *nr_written)
be20aa9d 1531{
be20aa9d 1532 int ret;
47059d93 1533 int force_cow = need_force_cow(inode, start, end);
a2135011 1534
47059d93 1535 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1536 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1537 page_started, 1, nr_written);
47059d93 1538 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1539 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1540 page_started, 0, nr_written);
7816030e 1541 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1542 ret = cow_file_range(inode, locked_page, start, end,
1543 page_started, nr_written, 1);
7ddf5a42
JB
1544 } else {
1545 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1546 &BTRFS_I(inode)->runtime_flags);
771ed689 1547 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1548 page_started, nr_written);
7ddf5a42 1549 }
b888db2b
CM
1550 return ret;
1551}
1552
1bf85046
JM
1553static void btrfs_split_extent_hook(struct inode *inode,
1554 struct extent_state *orig, u64 split)
9ed74f2d 1555{
dcab6a3b
JB
1556 u64 size;
1557
0ca1f7ce 1558 /* not delalloc, ignore it */
9ed74f2d 1559 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1560 return;
9ed74f2d 1561
dcab6a3b
JB
1562 size = orig->end - orig->start + 1;
1563 if (size > BTRFS_MAX_EXTENT_SIZE) {
1564 u64 num_extents;
1565 u64 new_size;
1566
1567 /*
ba117213
JB
1568 * See the explanation in btrfs_merge_extent_hook, the same
1569 * applies here, just in reverse.
dcab6a3b
JB
1570 */
1571 new_size = orig->end - split + 1;
ba117213 1572 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1573 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1574 new_size = split - orig->start;
1575 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1576 BTRFS_MAX_EXTENT_SIZE);
1577 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1578 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1579 return;
1580 }
1581
9e0baf60
JB
1582 spin_lock(&BTRFS_I(inode)->lock);
1583 BTRFS_I(inode)->outstanding_extents++;
1584 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1585}
1586
1587/*
1588 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1589 * extents so we can keep track of new extents that are just merged onto old
1590 * extents, such as when we are doing sequential writes, so we can properly
1591 * account for the metadata space we'll need.
1592 */
1bf85046
JM
1593static void btrfs_merge_extent_hook(struct inode *inode,
1594 struct extent_state *new,
1595 struct extent_state *other)
9ed74f2d 1596{
dcab6a3b
JB
1597 u64 new_size, old_size;
1598 u64 num_extents;
1599
9ed74f2d
JB
1600 /* not delalloc, ignore it */
1601 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1602 return;
9ed74f2d 1603
8461a3de
JB
1604 if (new->start > other->start)
1605 new_size = new->end - other->start + 1;
1606 else
1607 new_size = other->end - new->start + 1;
dcab6a3b
JB
1608
1609 /* we're not bigger than the max, unreserve the space and go */
1610 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1611 spin_lock(&BTRFS_I(inode)->lock);
1612 BTRFS_I(inode)->outstanding_extents--;
1613 spin_unlock(&BTRFS_I(inode)->lock);
1614 return;
1615 }
1616
1617 /*
ba117213
JB
1618 * We have to add up either side to figure out how many extents were
1619 * accounted for before we merged into one big extent. If the number of
1620 * extents we accounted for is <= the amount we need for the new range
1621 * then we can return, otherwise drop. Think of it like this
1622 *
1623 * [ 4k][MAX_SIZE]
1624 *
1625 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1626 * need 2 outstanding extents, on one side we have 1 and the other side
1627 * we have 1 so they are == and we can return. But in this case
1628 *
1629 * [MAX_SIZE+4k][MAX_SIZE+4k]
1630 *
1631 * Each range on their own accounts for 2 extents, but merged together
1632 * they are only 3 extents worth of accounting, so we need to drop in
1633 * this case.
dcab6a3b 1634 */
ba117213 1635 old_size = other->end - other->start + 1;
dcab6a3b
JB
1636 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1637 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1638 old_size = new->end - new->start + 1;
1639 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1640 BTRFS_MAX_EXTENT_SIZE);
1641
dcab6a3b 1642 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1643 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1644 return;
1645
9e0baf60
JB
1646 spin_lock(&BTRFS_I(inode)->lock);
1647 BTRFS_I(inode)->outstanding_extents--;
1648 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1649}
1650
eb73c1b7
MX
1651static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1652 struct inode *inode)
1653{
1654 spin_lock(&root->delalloc_lock);
1655 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1656 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1657 &root->delalloc_inodes);
1658 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1659 &BTRFS_I(inode)->runtime_flags);
1660 root->nr_delalloc_inodes++;
1661 if (root->nr_delalloc_inodes == 1) {
1662 spin_lock(&root->fs_info->delalloc_root_lock);
1663 BUG_ON(!list_empty(&root->delalloc_root));
1664 list_add_tail(&root->delalloc_root,
1665 &root->fs_info->delalloc_roots);
1666 spin_unlock(&root->fs_info->delalloc_root_lock);
1667 }
1668 }
1669 spin_unlock(&root->delalloc_lock);
1670}
1671
1672static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1673 struct inode *inode)
1674{
1675 spin_lock(&root->delalloc_lock);
1676 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1677 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1678 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1679 &BTRFS_I(inode)->runtime_flags);
1680 root->nr_delalloc_inodes--;
1681 if (!root->nr_delalloc_inodes) {
1682 spin_lock(&root->fs_info->delalloc_root_lock);
1683 BUG_ON(list_empty(&root->delalloc_root));
1684 list_del_init(&root->delalloc_root);
1685 spin_unlock(&root->fs_info->delalloc_root_lock);
1686 }
1687 }
1688 spin_unlock(&root->delalloc_lock);
1689}
1690
d352ac68
CM
1691/*
1692 * extent_io.c set_bit_hook, used to track delayed allocation
1693 * bytes in this file, and to maintain the list of inodes that
1694 * have pending delalloc work to be done.
1695 */
1bf85046 1696static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1697 struct extent_state *state, unsigned *bits)
291d673e 1698{
9ed74f2d 1699
47059d93
WS
1700 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1701 WARN_ON(1);
75eff68e
CM
1702 /*
1703 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1704 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1705 * bit, which is only set or cleared with irqs on
1706 */
0ca1f7ce 1707 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1708 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1709 u64 len = state->end + 1 - state->start;
83eea1f1 1710 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1711
9e0baf60 1712 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1713 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1714 } else {
1715 spin_lock(&BTRFS_I(inode)->lock);
1716 BTRFS_I(inode)->outstanding_extents++;
1717 spin_unlock(&BTRFS_I(inode)->lock);
1718 }
287a0ab9 1719
6a3891c5
JB
1720 /* For sanity tests */
1721 if (btrfs_test_is_dummy_root(root))
1722 return;
1723
963d678b
MX
1724 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1725 root->fs_info->delalloc_batch);
df0af1a5 1726 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1727 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1728 if (*bits & EXTENT_DEFRAG)
1729 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1730 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1731 &BTRFS_I(inode)->runtime_flags))
1732 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1733 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1734 }
291d673e
CM
1735}
1736
d352ac68
CM
1737/*
1738 * extent_io.c clear_bit_hook, see set_bit_hook for why
1739 */
1bf85046 1740static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1741 struct extent_state *state,
9ee49a04 1742 unsigned *bits)
291d673e 1743{
47059d93 1744 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1745 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1746 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1747
1748 spin_lock(&BTRFS_I(inode)->lock);
1749 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1750 BTRFS_I(inode)->defrag_bytes -= len;
1751 spin_unlock(&BTRFS_I(inode)->lock);
1752
75eff68e
CM
1753 /*
1754 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1755 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1756 * bit, which is only set or cleared with irqs on
1757 */
0ca1f7ce 1758 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1759 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1760 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1761
9e0baf60 1762 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1763 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1764 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1765 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1766 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1767 spin_unlock(&BTRFS_I(inode)->lock);
1768 }
0ca1f7ce 1769
b6d08f06
JB
1770 /*
1771 * We don't reserve metadata space for space cache inodes so we
1772 * don't need to call dellalloc_release_metadata if there is an
1773 * error.
1774 */
1775 if (*bits & EXTENT_DO_ACCOUNTING &&
1776 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1777 btrfs_delalloc_release_metadata(inode, len);
1778
6a3891c5
JB
1779 /* For sanity tests. */
1780 if (btrfs_test_is_dummy_root(root))
1781 return;
1782
0cb59c99 1783 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1784 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1785 btrfs_free_reserved_data_space_noquota(inode,
1786 state->start, len);
9ed74f2d 1787
963d678b
MX
1788 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1789 root->fs_info->delalloc_batch);
df0af1a5 1790 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1791 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1792 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1793 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1794 &BTRFS_I(inode)->runtime_flags))
1795 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1796 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1797 }
291d673e
CM
1798}
1799
d352ac68
CM
1800/*
1801 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1802 * we don't create bios that span stripes or chunks
1803 */
64a16701 1804int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1805 size_t size, struct bio *bio,
1806 unsigned long bio_flags)
239b14b3
CM
1807{
1808 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1809 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1810 u64 length = 0;
1811 u64 map_length;
239b14b3
CM
1812 int ret;
1813
771ed689
CM
1814 if (bio_flags & EXTENT_BIO_COMPRESSED)
1815 return 0;
1816
4f024f37 1817 length = bio->bi_iter.bi_size;
239b14b3 1818 map_length = length;
64a16701 1819 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1820 &map_length, NULL, 0);
3ec706c8 1821 /* Will always return 0 with map_multi == NULL */
3444a972 1822 BUG_ON(ret < 0);
d397712b 1823 if (map_length < length + size)
239b14b3 1824 return 1;
3444a972 1825 return 0;
239b14b3
CM
1826}
1827
d352ac68
CM
1828/*
1829 * in order to insert checksums into the metadata in large chunks,
1830 * we wait until bio submission time. All the pages in the bio are
1831 * checksummed and sums are attached onto the ordered extent record.
1832 *
1833 * At IO completion time the cums attached on the ordered extent record
1834 * are inserted into the btree
1835 */
d397712b
CM
1836static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1837 struct bio *bio, int mirror_num,
eaf25d93
CM
1838 unsigned long bio_flags,
1839 u64 bio_offset)
065631f6 1840{
065631f6 1841 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1842 int ret = 0;
e015640f 1843
d20f7043 1844 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1845 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1846 return 0;
1847}
e015640f 1848
4a69a410
CM
1849/*
1850 * in order to insert checksums into the metadata in large chunks,
1851 * we wait until bio submission time. All the pages in the bio are
1852 * checksummed and sums are attached onto the ordered extent record.
1853 *
1854 * At IO completion time the cums attached on the ordered extent record
1855 * are inserted into the btree
1856 */
b2950863 1857static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1858 int mirror_num, unsigned long bio_flags,
1859 u64 bio_offset)
4a69a410
CM
1860{
1861 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1862 int ret;
1863
1864 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1865 if (ret) {
1866 bio->bi_error = ret;
1867 bio_endio(bio);
1868 }
61891923 1869 return ret;
44b8bd7e
CM
1870}
1871
d352ac68 1872/*
cad321ad
CM
1873 * extent_io.c submission hook. This does the right thing for csum calculation
1874 * on write, or reading the csums from the tree before a read
d352ac68 1875 */
b2950863 1876static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1877 int mirror_num, unsigned long bio_flags,
1878 u64 bio_offset)
44b8bd7e
CM
1879{
1880 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1881 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1882 int ret = 0;
19b9bdb0 1883 int skip_sum;
b812ce28 1884 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1885
6cbff00f 1886 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1887
83eea1f1 1888 if (btrfs_is_free_space_inode(inode))
0d51e28a 1889 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1890
7b6d91da 1891 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1892 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1893 if (ret)
61891923 1894 goto out;
5fd02043 1895
d20f7043 1896 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1897 ret = btrfs_submit_compressed_read(inode, bio,
1898 mirror_num,
1899 bio_flags);
1900 goto out;
c2db1073
TI
1901 } else if (!skip_sum) {
1902 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1903 if (ret)
61891923 1904 goto out;
c2db1073 1905 }
4d1b5fb4 1906 goto mapit;
b812ce28 1907 } else if (async && !skip_sum) {
17d217fe
YZ
1908 /* csum items have already been cloned */
1909 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1910 goto mapit;
19b9bdb0 1911 /* we're doing a write, do the async checksumming */
61891923 1912 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1913 inode, rw, bio, mirror_num,
eaf25d93
CM
1914 bio_flags, bio_offset,
1915 __btrfs_submit_bio_start,
4a69a410 1916 __btrfs_submit_bio_done);
61891923 1917 goto out;
b812ce28
JB
1918 } else if (!skip_sum) {
1919 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1920 if (ret)
1921 goto out;
19b9bdb0
CM
1922 }
1923
0b86a832 1924mapit:
61891923
SB
1925 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1926
1927out:
4246a0b6
CH
1928 if (ret < 0) {
1929 bio->bi_error = ret;
1930 bio_endio(bio);
1931 }
61891923 1932 return ret;
065631f6 1933}
6885f308 1934
d352ac68
CM
1935/*
1936 * given a list of ordered sums record them in the inode. This happens
1937 * at IO completion time based on sums calculated at bio submission time.
1938 */
ba1da2f4 1939static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1940 struct inode *inode, u64 file_offset,
1941 struct list_head *list)
1942{
e6dcd2dc
CM
1943 struct btrfs_ordered_sum *sum;
1944
c6e30871 1945 list_for_each_entry(sum, list, list) {
39847c4d 1946 trans->adding_csums = 1;
d20f7043
CM
1947 btrfs_csum_file_blocks(trans,
1948 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1949 trans->adding_csums = 0;
e6dcd2dc
CM
1950 }
1951 return 0;
1952}
1953
2ac55d41
JB
1954int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1955 struct extent_state **cached_state)
ea8c2819 1956{
6c1500f2 1957 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1958 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1959 cached_state, GFP_NOFS);
ea8c2819
CM
1960}
1961
d352ac68 1962/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1963struct btrfs_writepage_fixup {
1964 struct page *page;
1965 struct btrfs_work work;
1966};
1967
b2950863 1968static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1969{
1970 struct btrfs_writepage_fixup *fixup;
1971 struct btrfs_ordered_extent *ordered;
2ac55d41 1972 struct extent_state *cached_state = NULL;
247e743c
CM
1973 struct page *page;
1974 struct inode *inode;
1975 u64 page_start;
1976 u64 page_end;
87826df0 1977 int ret;
247e743c
CM
1978
1979 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1980 page = fixup->page;
4a096752 1981again:
247e743c
CM
1982 lock_page(page);
1983 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1984 ClearPageChecked(page);
1985 goto out_page;
1986 }
1987
1988 inode = page->mapping->host;
1989 page_start = page_offset(page);
1990 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1991
2ac55d41 1992 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1993 &cached_state);
4a096752
CM
1994
1995 /* already ordered? We're done */
8b62b72b 1996 if (PagePrivate2(page))
247e743c 1997 goto out;
4a096752
CM
1998
1999 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2000 if (ordered) {
2ac55d41
JB
2001 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2002 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2003 unlock_page(page);
2004 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2005 btrfs_put_ordered_extent(ordered);
4a096752
CM
2006 goto again;
2007 }
247e743c 2008
7cf5b976
QW
2009 ret = btrfs_delalloc_reserve_space(inode, page_start,
2010 PAGE_CACHE_SIZE);
87826df0
JM
2011 if (ret) {
2012 mapping_set_error(page->mapping, ret);
2013 end_extent_writepage(page, ret, page_start, page_end);
2014 ClearPageChecked(page);
2015 goto out;
2016 }
2017
2ac55d41 2018 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2019 ClearPageChecked(page);
87826df0 2020 set_page_dirty(page);
247e743c 2021out:
2ac55d41
JB
2022 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2023 &cached_state, GFP_NOFS);
247e743c
CM
2024out_page:
2025 unlock_page(page);
2026 page_cache_release(page);
b897abec 2027 kfree(fixup);
247e743c
CM
2028}
2029
2030/*
2031 * There are a few paths in the higher layers of the kernel that directly
2032 * set the page dirty bit without asking the filesystem if it is a
2033 * good idea. This causes problems because we want to make sure COW
2034 * properly happens and the data=ordered rules are followed.
2035 *
c8b97818 2036 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2037 * hasn't been properly setup for IO. We kick off an async process
2038 * to fix it up. The async helper will wait for ordered extents, set
2039 * the delalloc bit and make it safe to write the page.
2040 */
b2950863 2041static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2042{
2043 struct inode *inode = page->mapping->host;
2044 struct btrfs_writepage_fixup *fixup;
2045 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2046
8b62b72b
CM
2047 /* this page is properly in the ordered list */
2048 if (TestClearPagePrivate2(page))
247e743c
CM
2049 return 0;
2050
2051 if (PageChecked(page))
2052 return -EAGAIN;
2053
2054 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2055 if (!fixup)
2056 return -EAGAIN;
f421950f 2057
247e743c
CM
2058 SetPageChecked(page);
2059 page_cache_get(page);
9e0af237
LB
2060 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2061 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2062 fixup->page = page;
dc6e3209 2063 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2064 return -EBUSY;
247e743c
CM
2065}
2066
d899e052
YZ
2067static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2068 struct inode *inode, u64 file_pos,
2069 u64 disk_bytenr, u64 disk_num_bytes,
2070 u64 num_bytes, u64 ram_bytes,
2071 u8 compression, u8 encryption,
2072 u16 other_encoding, int extent_type)
2073{
2074 struct btrfs_root *root = BTRFS_I(inode)->root;
2075 struct btrfs_file_extent_item *fi;
2076 struct btrfs_path *path;
2077 struct extent_buffer *leaf;
2078 struct btrfs_key ins;
1acae57b 2079 int extent_inserted = 0;
d899e052
YZ
2080 int ret;
2081
2082 path = btrfs_alloc_path();
d8926bb3
MF
2083 if (!path)
2084 return -ENOMEM;
d899e052 2085
a1ed835e
CM
2086 /*
2087 * we may be replacing one extent in the tree with another.
2088 * The new extent is pinned in the extent map, and we don't want
2089 * to drop it from the cache until it is completely in the btree.
2090 *
2091 * So, tell btrfs_drop_extents to leave this extent in the cache.
2092 * the caller is expected to unpin it and allow it to be merged
2093 * with the others.
2094 */
1acae57b
FDBM
2095 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2096 file_pos + num_bytes, NULL, 0,
2097 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2098 if (ret)
2099 goto out;
d899e052 2100
1acae57b
FDBM
2101 if (!extent_inserted) {
2102 ins.objectid = btrfs_ino(inode);
2103 ins.offset = file_pos;
2104 ins.type = BTRFS_EXTENT_DATA_KEY;
2105
2106 path->leave_spinning = 1;
2107 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2108 sizeof(*fi));
2109 if (ret)
2110 goto out;
2111 }
d899e052
YZ
2112 leaf = path->nodes[0];
2113 fi = btrfs_item_ptr(leaf, path->slots[0],
2114 struct btrfs_file_extent_item);
2115 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2116 btrfs_set_file_extent_type(leaf, fi, extent_type);
2117 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2118 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2119 btrfs_set_file_extent_offset(leaf, fi, 0);
2120 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2121 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2122 btrfs_set_file_extent_compression(leaf, fi, compression);
2123 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2124 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2125
d899e052 2126 btrfs_mark_buffer_dirty(leaf);
ce195332 2127 btrfs_release_path(path);
d899e052
YZ
2128
2129 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2130
2131 ins.objectid = disk_bytenr;
2132 ins.offset = disk_num_bytes;
2133 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2134 ret = btrfs_alloc_reserved_file_extent(trans, root,
2135 root->root_key.objectid,
5846a3c2
QW
2136 btrfs_ino(inode), file_pos,
2137 ram_bytes, &ins);
297d750b 2138 /*
5846a3c2
QW
2139 * Release the reserved range from inode dirty range map, as it is
2140 * already moved into delayed_ref_head
297d750b
QW
2141 */
2142 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2143out:
d899e052 2144 btrfs_free_path(path);
b9473439 2145
79787eaa 2146 return ret;
d899e052
YZ
2147}
2148
38c227d8
LB
2149/* snapshot-aware defrag */
2150struct sa_defrag_extent_backref {
2151 struct rb_node node;
2152 struct old_sa_defrag_extent *old;
2153 u64 root_id;
2154 u64 inum;
2155 u64 file_pos;
2156 u64 extent_offset;
2157 u64 num_bytes;
2158 u64 generation;
2159};
2160
2161struct old_sa_defrag_extent {
2162 struct list_head list;
2163 struct new_sa_defrag_extent *new;
2164
2165 u64 extent_offset;
2166 u64 bytenr;
2167 u64 offset;
2168 u64 len;
2169 int count;
2170};
2171
2172struct new_sa_defrag_extent {
2173 struct rb_root root;
2174 struct list_head head;
2175 struct btrfs_path *path;
2176 struct inode *inode;
2177 u64 file_pos;
2178 u64 len;
2179 u64 bytenr;
2180 u64 disk_len;
2181 u8 compress_type;
2182};
2183
2184static int backref_comp(struct sa_defrag_extent_backref *b1,
2185 struct sa_defrag_extent_backref *b2)
2186{
2187 if (b1->root_id < b2->root_id)
2188 return -1;
2189 else if (b1->root_id > b2->root_id)
2190 return 1;
2191
2192 if (b1->inum < b2->inum)
2193 return -1;
2194 else if (b1->inum > b2->inum)
2195 return 1;
2196
2197 if (b1->file_pos < b2->file_pos)
2198 return -1;
2199 else if (b1->file_pos > b2->file_pos)
2200 return 1;
2201
2202 /*
2203 * [------------------------------] ===> (a range of space)
2204 * |<--->| |<---->| =============> (fs/file tree A)
2205 * |<---------------------------->| ===> (fs/file tree B)
2206 *
2207 * A range of space can refer to two file extents in one tree while
2208 * refer to only one file extent in another tree.
2209 *
2210 * So we may process a disk offset more than one time(two extents in A)
2211 * and locate at the same extent(one extent in B), then insert two same
2212 * backrefs(both refer to the extent in B).
2213 */
2214 return 0;
2215}
2216
2217static void backref_insert(struct rb_root *root,
2218 struct sa_defrag_extent_backref *backref)
2219{
2220 struct rb_node **p = &root->rb_node;
2221 struct rb_node *parent = NULL;
2222 struct sa_defrag_extent_backref *entry;
2223 int ret;
2224
2225 while (*p) {
2226 parent = *p;
2227 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2228
2229 ret = backref_comp(backref, entry);
2230 if (ret < 0)
2231 p = &(*p)->rb_left;
2232 else
2233 p = &(*p)->rb_right;
2234 }
2235
2236 rb_link_node(&backref->node, parent, p);
2237 rb_insert_color(&backref->node, root);
2238}
2239
2240/*
2241 * Note the backref might has changed, and in this case we just return 0.
2242 */
2243static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2244 void *ctx)
2245{
2246 struct btrfs_file_extent_item *extent;
2247 struct btrfs_fs_info *fs_info;
2248 struct old_sa_defrag_extent *old = ctx;
2249 struct new_sa_defrag_extent *new = old->new;
2250 struct btrfs_path *path = new->path;
2251 struct btrfs_key key;
2252 struct btrfs_root *root;
2253 struct sa_defrag_extent_backref *backref;
2254 struct extent_buffer *leaf;
2255 struct inode *inode = new->inode;
2256 int slot;
2257 int ret;
2258 u64 extent_offset;
2259 u64 num_bytes;
2260
2261 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2262 inum == btrfs_ino(inode))
2263 return 0;
2264
2265 key.objectid = root_id;
2266 key.type = BTRFS_ROOT_ITEM_KEY;
2267 key.offset = (u64)-1;
2268
2269 fs_info = BTRFS_I(inode)->root->fs_info;
2270 root = btrfs_read_fs_root_no_name(fs_info, &key);
2271 if (IS_ERR(root)) {
2272 if (PTR_ERR(root) == -ENOENT)
2273 return 0;
2274 WARN_ON(1);
2275 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2276 inum, offset, root_id);
2277 return PTR_ERR(root);
2278 }
2279
2280 key.objectid = inum;
2281 key.type = BTRFS_EXTENT_DATA_KEY;
2282 if (offset > (u64)-1 << 32)
2283 key.offset = 0;
2284 else
2285 key.offset = offset;
2286
2287 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2288 if (WARN_ON(ret < 0))
38c227d8 2289 return ret;
50f1319c 2290 ret = 0;
38c227d8
LB
2291
2292 while (1) {
2293 cond_resched();
2294
2295 leaf = path->nodes[0];
2296 slot = path->slots[0];
2297
2298 if (slot >= btrfs_header_nritems(leaf)) {
2299 ret = btrfs_next_leaf(root, path);
2300 if (ret < 0) {
2301 goto out;
2302 } else if (ret > 0) {
2303 ret = 0;
2304 goto out;
2305 }
2306 continue;
2307 }
2308
2309 path->slots[0]++;
2310
2311 btrfs_item_key_to_cpu(leaf, &key, slot);
2312
2313 if (key.objectid > inum)
2314 goto out;
2315
2316 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2317 continue;
2318
2319 extent = btrfs_item_ptr(leaf, slot,
2320 struct btrfs_file_extent_item);
2321
2322 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2323 continue;
2324
e68afa49
LB
2325 /*
2326 * 'offset' refers to the exact key.offset,
2327 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2328 * (key.offset - extent_offset).
2329 */
2330 if (key.offset != offset)
38c227d8
LB
2331 continue;
2332
e68afa49 2333 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2334 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2335
38c227d8
LB
2336 if (extent_offset >= old->extent_offset + old->offset +
2337 old->len || extent_offset + num_bytes <=
2338 old->extent_offset + old->offset)
2339 continue;
38c227d8
LB
2340 break;
2341 }
2342
2343 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2344 if (!backref) {
2345 ret = -ENOENT;
2346 goto out;
2347 }
2348
2349 backref->root_id = root_id;
2350 backref->inum = inum;
e68afa49 2351 backref->file_pos = offset;
38c227d8
LB
2352 backref->num_bytes = num_bytes;
2353 backref->extent_offset = extent_offset;
2354 backref->generation = btrfs_file_extent_generation(leaf, extent);
2355 backref->old = old;
2356 backref_insert(&new->root, backref);
2357 old->count++;
2358out:
2359 btrfs_release_path(path);
2360 WARN_ON(ret);
2361 return ret;
2362}
2363
2364static noinline bool record_extent_backrefs(struct btrfs_path *path,
2365 struct new_sa_defrag_extent *new)
2366{
2367 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2368 struct old_sa_defrag_extent *old, *tmp;
2369 int ret;
2370
2371 new->path = path;
2372
2373 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2374 ret = iterate_inodes_from_logical(old->bytenr +
2375 old->extent_offset, fs_info,
38c227d8
LB
2376 path, record_one_backref,
2377 old);
4724b106
JB
2378 if (ret < 0 && ret != -ENOENT)
2379 return false;
38c227d8
LB
2380
2381 /* no backref to be processed for this extent */
2382 if (!old->count) {
2383 list_del(&old->list);
2384 kfree(old);
2385 }
2386 }
2387
2388 if (list_empty(&new->head))
2389 return false;
2390
2391 return true;
2392}
2393
2394static int relink_is_mergable(struct extent_buffer *leaf,
2395 struct btrfs_file_extent_item *fi,
116e0024 2396 struct new_sa_defrag_extent *new)
38c227d8 2397{
116e0024 2398 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2399 return 0;
2400
2401 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2402 return 0;
2403
116e0024
LB
2404 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2405 return 0;
2406
2407 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2408 btrfs_file_extent_other_encoding(leaf, fi))
2409 return 0;
2410
2411 return 1;
2412}
2413
2414/*
2415 * Note the backref might has changed, and in this case we just return 0.
2416 */
2417static noinline int relink_extent_backref(struct btrfs_path *path,
2418 struct sa_defrag_extent_backref *prev,
2419 struct sa_defrag_extent_backref *backref)
2420{
2421 struct btrfs_file_extent_item *extent;
2422 struct btrfs_file_extent_item *item;
2423 struct btrfs_ordered_extent *ordered;
2424 struct btrfs_trans_handle *trans;
2425 struct btrfs_fs_info *fs_info;
2426 struct btrfs_root *root;
2427 struct btrfs_key key;
2428 struct extent_buffer *leaf;
2429 struct old_sa_defrag_extent *old = backref->old;
2430 struct new_sa_defrag_extent *new = old->new;
2431 struct inode *src_inode = new->inode;
2432 struct inode *inode;
2433 struct extent_state *cached = NULL;
2434 int ret = 0;
2435 u64 start;
2436 u64 len;
2437 u64 lock_start;
2438 u64 lock_end;
2439 bool merge = false;
2440 int index;
2441
2442 if (prev && prev->root_id == backref->root_id &&
2443 prev->inum == backref->inum &&
2444 prev->file_pos + prev->num_bytes == backref->file_pos)
2445 merge = true;
2446
2447 /* step 1: get root */
2448 key.objectid = backref->root_id;
2449 key.type = BTRFS_ROOT_ITEM_KEY;
2450 key.offset = (u64)-1;
2451
2452 fs_info = BTRFS_I(src_inode)->root->fs_info;
2453 index = srcu_read_lock(&fs_info->subvol_srcu);
2454
2455 root = btrfs_read_fs_root_no_name(fs_info, &key);
2456 if (IS_ERR(root)) {
2457 srcu_read_unlock(&fs_info->subvol_srcu, index);
2458 if (PTR_ERR(root) == -ENOENT)
2459 return 0;
2460 return PTR_ERR(root);
2461 }
38c227d8 2462
bcbba5e6
WS
2463 if (btrfs_root_readonly(root)) {
2464 srcu_read_unlock(&fs_info->subvol_srcu, index);
2465 return 0;
2466 }
2467
38c227d8
LB
2468 /* step 2: get inode */
2469 key.objectid = backref->inum;
2470 key.type = BTRFS_INODE_ITEM_KEY;
2471 key.offset = 0;
2472
2473 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2474 if (IS_ERR(inode)) {
2475 srcu_read_unlock(&fs_info->subvol_srcu, index);
2476 return 0;
2477 }
2478
2479 srcu_read_unlock(&fs_info->subvol_srcu, index);
2480
2481 /* step 3: relink backref */
2482 lock_start = backref->file_pos;
2483 lock_end = backref->file_pos + backref->num_bytes - 1;
2484 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2485 0, &cached);
2486
2487 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2488 if (ordered) {
2489 btrfs_put_ordered_extent(ordered);
2490 goto out_unlock;
2491 }
2492
2493 trans = btrfs_join_transaction(root);
2494 if (IS_ERR(trans)) {
2495 ret = PTR_ERR(trans);
2496 goto out_unlock;
2497 }
2498
2499 key.objectid = backref->inum;
2500 key.type = BTRFS_EXTENT_DATA_KEY;
2501 key.offset = backref->file_pos;
2502
2503 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2504 if (ret < 0) {
2505 goto out_free_path;
2506 } else if (ret > 0) {
2507 ret = 0;
2508 goto out_free_path;
2509 }
2510
2511 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2512 struct btrfs_file_extent_item);
2513
2514 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2515 backref->generation)
2516 goto out_free_path;
2517
2518 btrfs_release_path(path);
2519
2520 start = backref->file_pos;
2521 if (backref->extent_offset < old->extent_offset + old->offset)
2522 start += old->extent_offset + old->offset -
2523 backref->extent_offset;
2524
2525 len = min(backref->extent_offset + backref->num_bytes,
2526 old->extent_offset + old->offset + old->len);
2527 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2528
2529 ret = btrfs_drop_extents(trans, root, inode, start,
2530 start + len, 1);
2531 if (ret)
2532 goto out_free_path;
2533again:
2534 key.objectid = btrfs_ino(inode);
2535 key.type = BTRFS_EXTENT_DATA_KEY;
2536 key.offset = start;
2537
a09a0a70 2538 path->leave_spinning = 1;
38c227d8
LB
2539 if (merge) {
2540 struct btrfs_file_extent_item *fi;
2541 u64 extent_len;
2542 struct btrfs_key found_key;
2543
3c9665df 2544 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2545 if (ret < 0)
2546 goto out_free_path;
2547
2548 path->slots[0]--;
2549 leaf = path->nodes[0];
2550 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2551
2552 fi = btrfs_item_ptr(leaf, path->slots[0],
2553 struct btrfs_file_extent_item);
2554 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2555
116e0024
LB
2556 if (extent_len + found_key.offset == start &&
2557 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2558 btrfs_set_file_extent_num_bytes(leaf, fi,
2559 extent_len + len);
2560 btrfs_mark_buffer_dirty(leaf);
2561 inode_add_bytes(inode, len);
2562
2563 ret = 1;
2564 goto out_free_path;
2565 } else {
2566 merge = false;
2567 btrfs_release_path(path);
2568 goto again;
2569 }
2570 }
2571
2572 ret = btrfs_insert_empty_item(trans, root, path, &key,
2573 sizeof(*extent));
2574 if (ret) {
2575 btrfs_abort_transaction(trans, root, ret);
2576 goto out_free_path;
2577 }
2578
2579 leaf = path->nodes[0];
2580 item = btrfs_item_ptr(leaf, path->slots[0],
2581 struct btrfs_file_extent_item);
2582 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2583 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2584 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2585 btrfs_set_file_extent_num_bytes(leaf, item, len);
2586 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2587 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2588 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2589 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2590 btrfs_set_file_extent_encryption(leaf, item, 0);
2591 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2592
2593 btrfs_mark_buffer_dirty(leaf);
2594 inode_add_bytes(inode, len);
a09a0a70 2595 btrfs_release_path(path);
38c227d8
LB
2596
2597 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2598 new->disk_len, 0,
2599 backref->root_id, backref->inum,
b06c4bf5 2600 new->file_pos); /* start - extent_offset */
38c227d8
LB
2601 if (ret) {
2602 btrfs_abort_transaction(trans, root, ret);
2603 goto out_free_path;
2604 }
2605
2606 ret = 1;
2607out_free_path:
2608 btrfs_release_path(path);
a09a0a70 2609 path->leave_spinning = 0;
38c227d8
LB
2610 btrfs_end_transaction(trans, root);
2611out_unlock:
2612 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2613 &cached, GFP_NOFS);
2614 iput(inode);
2615 return ret;
2616}
2617
6f519564
LB
2618static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2619{
2620 struct old_sa_defrag_extent *old, *tmp;
2621
2622 if (!new)
2623 return;
2624
2625 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2626 kfree(old);
2627 }
2628 kfree(new);
2629}
2630
38c227d8
LB
2631static void relink_file_extents(struct new_sa_defrag_extent *new)
2632{
2633 struct btrfs_path *path;
38c227d8
LB
2634 struct sa_defrag_extent_backref *backref;
2635 struct sa_defrag_extent_backref *prev = NULL;
2636 struct inode *inode;
2637 struct btrfs_root *root;
2638 struct rb_node *node;
2639 int ret;
2640
2641 inode = new->inode;
2642 root = BTRFS_I(inode)->root;
2643
2644 path = btrfs_alloc_path();
2645 if (!path)
2646 return;
2647
2648 if (!record_extent_backrefs(path, new)) {
2649 btrfs_free_path(path);
2650 goto out;
2651 }
2652 btrfs_release_path(path);
2653
2654 while (1) {
2655 node = rb_first(&new->root);
2656 if (!node)
2657 break;
2658 rb_erase(node, &new->root);
2659
2660 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2661
2662 ret = relink_extent_backref(path, prev, backref);
2663 WARN_ON(ret < 0);
2664
2665 kfree(prev);
2666
2667 if (ret == 1)
2668 prev = backref;
2669 else
2670 prev = NULL;
2671 cond_resched();
2672 }
2673 kfree(prev);
2674
2675 btrfs_free_path(path);
38c227d8 2676out:
6f519564
LB
2677 free_sa_defrag_extent(new);
2678
38c227d8
LB
2679 atomic_dec(&root->fs_info->defrag_running);
2680 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2681}
2682
2683static struct new_sa_defrag_extent *
2684record_old_file_extents(struct inode *inode,
2685 struct btrfs_ordered_extent *ordered)
2686{
2687 struct btrfs_root *root = BTRFS_I(inode)->root;
2688 struct btrfs_path *path;
2689 struct btrfs_key key;
6f519564 2690 struct old_sa_defrag_extent *old;
38c227d8
LB
2691 struct new_sa_defrag_extent *new;
2692 int ret;
2693
2694 new = kmalloc(sizeof(*new), GFP_NOFS);
2695 if (!new)
2696 return NULL;
2697
2698 new->inode = inode;
2699 new->file_pos = ordered->file_offset;
2700 new->len = ordered->len;
2701 new->bytenr = ordered->start;
2702 new->disk_len = ordered->disk_len;
2703 new->compress_type = ordered->compress_type;
2704 new->root = RB_ROOT;
2705 INIT_LIST_HEAD(&new->head);
2706
2707 path = btrfs_alloc_path();
2708 if (!path)
2709 goto out_kfree;
2710
2711 key.objectid = btrfs_ino(inode);
2712 key.type = BTRFS_EXTENT_DATA_KEY;
2713 key.offset = new->file_pos;
2714
2715 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2716 if (ret < 0)
2717 goto out_free_path;
2718 if (ret > 0 && path->slots[0] > 0)
2719 path->slots[0]--;
2720
2721 /* find out all the old extents for the file range */
2722 while (1) {
2723 struct btrfs_file_extent_item *extent;
2724 struct extent_buffer *l;
2725 int slot;
2726 u64 num_bytes;
2727 u64 offset;
2728 u64 end;
2729 u64 disk_bytenr;
2730 u64 extent_offset;
2731
2732 l = path->nodes[0];
2733 slot = path->slots[0];
2734
2735 if (slot >= btrfs_header_nritems(l)) {
2736 ret = btrfs_next_leaf(root, path);
2737 if (ret < 0)
6f519564 2738 goto out_free_path;
38c227d8
LB
2739 else if (ret > 0)
2740 break;
2741 continue;
2742 }
2743
2744 btrfs_item_key_to_cpu(l, &key, slot);
2745
2746 if (key.objectid != btrfs_ino(inode))
2747 break;
2748 if (key.type != BTRFS_EXTENT_DATA_KEY)
2749 break;
2750 if (key.offset >= new->file_pos + new->len)
2751 break;
2752
2753 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2754
2755 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2756 if (key.offset + num_bytes < new->file_pos)
2757 goto next;
2758
2759 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2760 if (!disk_bytenr)
2761 goto next;
2762
2763 extent_offset = btrfs_file_extent_offset(l, extent);
2764
2765 old = kmalloc(sizeof(*old), GFP_NOFS);
2766 if (!old)
6f519564 2767 goto out_free_path;
38c227d8
LB
2768
2769 offset = max(new->file_pos, key.offset);
2770 end = min(new->file_pos + new->len, key.offset + num_bytes);
2771
2772 old->bytenr = disk_bytenr;
2773 old->extent_offset = extent_offset;
2774 old->offset = offset - key.offset;
2775 old->len = end - offset;
2776 old->new = new;
2777 old->count = 0;
2778 list_add_tail(&old->list, &new->head);
2779next:
2780 path->slots[0]++;
2781 cond_resched();
2782 }
2783
2784 btrfs_free_path(path);
2785 atomic_inc(&root->fs_info->defrag_running);
2786
2787 return new;
2788
38c227d8
LB
2789out_free_path:
2790 btrfs_free_path(path);
2791out_kfree:
6f519564 2792 free_sa_defrag_extent(new);
38c227d8
LB
2793 return NULL;
2794}
2795
e570fd27
MX
2796static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2797 u64 start, u64 len)
2798{
2799 struct btrfs_block_group_cache *cache;
2800
2801 cache = btrfs_lookup_block_group(root->fs_info, start);
2802 ASSERT(cache);
2803
2804 spin_lock(&cache->lock);
2805 cache->delalloc_bytes -= len;
2806 spin_unlock(&cache->lock);
2807
2808 btrfs_put_block_group(cache);
2809}
2810
d352ac68
CM
2811/* as ordered data IO finishes, this gets called so we can finish
2812 * an ordered extent if the range of bytes in the file it covers are
2813 * fully written.
2814 */
5fd02043 2815static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2816{
5fd02043 2817 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2818 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2819 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2820 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2821 struct extent_state *cached_state = NULL;
38c227d8 2822 struct new_sa_defrag_extent *new = NULL;
261507a0 2823 int compress_type = 0;
77cef2ec
JB
2824 int ret = 0;
2825 u64 logical_len = ordered_extent->len;
82d5902d 2826 bool nolock;
77cef2ec 2827 bool truncated = false;
e6dcd2dc 2828
83eea1f1 2829 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2830
5fd02043
JB
2831 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2832 ret = -EIO;
2833 goto out;
2834 }
2835
f612496b
MX
2836 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2837 ordered_extent->file_offset +
2838 ordered_extent->len - 1);
2839
77cef2ec
JB
2840 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2841 truncated = true;
2842 logical_len = ordered_extent->truncated_len;
2843 /* Truncated the entire extent, don't bother adding */
2844 if (!logical_len)
2845 goto out;
2846 }
2847
c2167754 2848 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2849 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2850
2851 /*
2852 * For mwrite(mmap + memset to write) case, we still reserve
2853 * space for NOCOW range.
2854 * As NOCOW won't cause a new delayed ref, just free the space
2855 */
2856 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2857 ordered_extent->len);
6c760c07
JB
2858 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2859 if (nolock)
2860 trans = btrfs_join_transaction_nolock(root);
2861 else
2862 trans = btrfs_join_transaction(root);
2863 if (IS_ERR(trans)) {
2864 ret = PTR_ERR(trans);
2865 trans = NULL;
2866 goto out;
c2167754 2867 }
6c760c07
JB
2868 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2869 ret = btrfs_update_inode_fallback(trans, root, inode);
2870 if (ret) /* -ENOMEM or corruption */
2871 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2872 goto out;
2873 }
e6dcd2dc 2874
2ac55d41
JB
2875 lock_extent_bits(io_tree, ordered_extent->file_offset,
2876 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2877 0, &cached_state);
e6dcd2dc 2878
38c227d8
LB
2879 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2880 ordered_extent->file_offset + ordered_extent->len - 1,
2881 EXTENT_DEFRAG, 1, cached_state);
2882 if (ret) {
2883 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2884 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2885 /* the inode is shared */
2886 new = record_old_file_extents(inode, ordered_extent);
2887
2888 clear_extent_bit(io_tree, ordered_extent->file_offset,
2889 ordered_extent->file_offset + ordered_extent->len - 1,
2890 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2891 }
2892
0cb59c99 2893 if (nolock)
7a7eaa40 2894 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2895 else
7a7eaa40 2896 trans = btrfs_join_transaction(root);
79787eaa
JM
2897 if (IS_ERR(trans)) {
2898 ret = PTR_ERR(trans);
2899 trans = NULL;
2900 goto out_unlock;
2901 }
a79b7d4b 2902
0ca1f7ce 2903 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2904
c8b97818 2905 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2906 compress_type = ordered_extent->compress_type;
d899e052 2907 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2908 BUG_ON(compress_type);
920bbbfb 2909 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2910 ordered_extent->file_offset,
2911 ordered_extent->file_offset +
77cef2ec 2912 logical_len);
d899e052 2913 } else {
0af3d00b 2914 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2915 ret = insert_reserved_file_extent(trans, inode,
2916 ordered_extent->file_offset,
2917 ordered_extent->start,
2918 ordered_extent->disk_len,
77cef2ec 2919 logical_len, logical_len,
261507a0 2920 compress_type, 0, 0,
d899e052 2921 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2922 if (!ret)
2923 btrfs_release_delalloc_bytes(root,
2924 ordered_extent->start,
2925 ordered_extent->disk_len);
d899e052 2926 }
5dc562c5
JB
2927 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2928 ordered_extent->file_offset, ordered_extent->len,
2929 trans->transid);
79787eaa
JM
2930 if (ret < 0) {
2931 btrfs_abort_transaction(trans, root, ret);
5fd02043 2932 goto out_unlock;
79787eaa 2933 }
2ac55d41 2934
e6dcd2dc
CM
2935 add_pending_csums(trans, inode, ordered_extent->file_offset,
2936 &ordered_extent->list);
2937
6c760c07
JB
2938 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2939 ret = btrfs_update_inode_fallback(trans, root, inode);
2940 if (ret) { /* -ENOMEM or corruption */
2941 btrfs_abort_transaction(trans, root, ret);
2942 goto out_unlock;
1ef30be1
JB
2943 }
2944 ret = 0;
5fd02043
JB
2945out_unlock:
2946 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2947 ordered_extent->file_offset +
2948 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2949out:
5b0e95bf 2950 if (root != root->fs_info->tree_root)
0cb59c99 2951 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2952 if (trans)
2953 btrfs_end_transaction(trans, root);
0cb59c99 2954
77cef2ec
JB
2955 if (ret || truncated) {
2956 u64 start, end;
2957
2958 if (truncated)
2959 start = ordered_extent->file_offset + logical_len;
2960 else
2961 start = ordered_extent->file_offset;
2962 end = ordered_extent->file_offset + ordered_extent->len - 1;
2963 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2964
2965 /* Drop the cache for the part of the extent we didn't write. */
2966 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2967
0bec9ef5
JB
2968 /*
2969 * If the ordered extent had an IOERR or something else went
2970 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2971 * back to the allocator. We only free the extent in the
2972 * truncated case if we didn't write out the extent at all.
0bec9ef5 2973 */
77cef2ec
JB
2974 if ((ret || !logical_len) &&
2975 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2976 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2977 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2978 ordered_extent->disk_len, 1);
0bec9ef5
JB
2979 }
2980
2981
5fd02043 2982 /*
8bad3c02
LB
2983 * This needs to be done to make sure anybody waiting knows we are done
2984 * updating everything for this ordered extent.
5fd02043
JB
2985 */
2986 btrfs_remove_ordered_extent(inode, ordered_extent);
2987
38c227d8 2988 /* for snapshot-aware defrag */
6f519564
LB
2989 if (new) {
2990 if (ret) {
2991 free_sa_defrag_extent(new);
2992 atomic_dec(&root->fs_info->defrag_running);
2993 } else {
2994 relink_file_extents(new);
2995 }
2996 }
38c227d8 2997
e6dcd2dc
CM
2998 /* once for us */
2999 btrfs_put_ordered_extent(ordered_extent);
3000 /* once for the tree */
3001 btrfs_put_ordered_extent(ordered_extent);
3002
5fd02043
JB
3003 return ret;
3004}
3005
3006static void finish_ordered_fn(struct btrfs_work *work)
3007{
3008 struct btrfs_ordered_extent *ordered_extent;
3009 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3010 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3011}
3012
b2950863 3013static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3014 struct extent_state *state, int uptodate)
3015{
5fd02043
JB
3016 struct inode *inode = page->mapping->host;
3017 struct btrfs_root *root = BTRFS_I(inode)->root;
3018 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3019 struct btrfs_workqueue *wq;
3020 btrfs_work_func_t func;
5fd02043 3021
1abe9b8a 3022 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3023
8b62b72b 3024 ClearPagePrivate2(page);
5fd02043
JB
3025 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3026 end - start + 1, uptodate))
3027 return 0;
3028
9e0af237
LB
3029 if (btrfs_is_free_space_inode(inode)) {
3030 wq = root->fs_info->endio_freespace_worker;
3031 func = btrfs_freespace_write_helper;
3032 } else {
3033 wq = root->fs_info->endio_write_workers;
3034 func = btrfs_endio_write_helper;
3035 }
5fd02043 3036
9e0af237
LB
3037 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3038 NULL);
3039 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3040
3041 return 0;
211f90e6
CM
3042}
3043
dc380aea
MX
3044static int __readpage_endio_check(struct inode *inode,
3045 struct btrfs_io_bio *io_bio,
3046 int icsum, struct page *page,
3047 int pgoff, u64 start, size_t len)
3048{
3049 char *kaddr;
3050 u32 csum_expected;
3051 u32 csum = ~(u32)0;
dc380aea
MX
3052
3053 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3054
3055 kaddr = kmap_atomic(page);
3056 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3057 btrfs_csum_final(csum, (char *)&csum);
3058 if (csum != csum_expected)
3059 goto zeroit;
3060
3061 kunmap_atomic(kaddr);
3062 return 0;
3063zeroit:
94647322
DS
3064 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3065 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3066 btrfs_ino(inode), start, csum, csum_expected);
3067 memset(kaddr + pgoff, 1, len);
3068 flush_dcache_page(page);
3069 kunmap_atomic(kaddr);
3070 if (csum_expected == 0)
3071 return 0;
3072 return -EIO;
3073}
3074
d352ac68
CM
3075/*
3076 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3077 * if there's a match, we allow the bio to finish. If not, the code in
3078 * extent_io.c will try to find good copies for us.
d352ac68 3079 */
facc8a22
MX
3080static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3081 u64 phy_offset, struct page *page,
3082 u64 start, u64 end, int mirror)
07157aac 3083{
4eee4fa4 3084 size_t offset = start - page_offset(page);
07157aac 3085 struct inode *inode = page->mapping->host;
d1310b2e 3086 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3087 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3088
d20f7043
CM
3089 if (PageChecked(page)) {
3090 ClearPageChecked(page);
dc380aea 3091 return 0;
d20f7043 3092 }
6cbff00f
CH
3093
3094 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3095 return 0;
17d217fe
YZ
3096
3097 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3098 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
3099 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3100 GFP_NOFS);
b6cda9bc 3101 return 0;
17d217fe 3102 }
d20f7043 3103
facc8a22 3104 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3105 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3106 start, (size_t)(end - start + 1));
07157aac 3107}
b888db2b 3108
24bbcf04
YZ
3109struct delayed_iput {
3110 struct list_head list;
3111 struct inode *inode;
3112};
3113
79787eaa
JM
3114/* JDM: If this is fs-wide, why can't we add a pointer to
3115 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
3116void btrfs_add_delayed_iput(struct inode *inode)
3117{
3118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3119 struct delayed_iput *delayed;
3120
3121 if (atomic_add_unless(&inode->i_count, -1, 1))
3122 return;
3123
3124 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3125 delayed->inode = inode;
3126
3127 spin_lock(&fs_info->delayed_iput_lock);
3128 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3129 spin_unlock(&fs_info->delayed_iput_lock);
3130}
3131
3132void btrfs_run_delayed_iputs(struct btrfs_root *root)
3133{
3134 LIST_HEAD(list);
3135 struct btrfs_fs_info *fs_info = root->fs_info;
3136 struct delayed_iput *delayed;
3137 int empty;
3138
3139 spin_lock(&fs_info->delayed_iput_lock);
3140 empty = list_empty(&fs_info->delayed_iputs);
3141 spin_unlock(&fs_info->delayed_iput_lock);
3142 if (empty)
3143 return;
3144
d7c15171
ZL
3145 down_read(&fs_info->delayed_iput_sem);
3146
24bbcf04
YZ
3147 spin_lock(&fs_info->delayed_iput_lock);
3148 list_splice_init(&fs_info->delayed_iputs, &list);
3149 spin_unlock(&fs_info->delayed_iput_lock);
3150
3151 while (!list_empty(&list)) {
3152 delayed = list_entry(list.next, struct delayed_iput, list);
3153 list_del(&delayed->list);
3154 iput(delayed->inode);
3155 kfree(delayed);
3156 }
d7c15171
ZL
3157
3158 up_read(&root->fs_info->delayed_iput_sem);
24bbcf04
YZ
3159}
3160
d68fc57b 3161/*
42b2aa86 3162 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3163 * files in the subvolume, it removes orphan item and frees block_rsv
3164 * structure.
3165 */
3166void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3167 struct btrfs_root *root)
3168{
90290e19 3169 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3170 int ret;
3171
8a35d95f 3172 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3173 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3174 return;
3175
90290e19 3176 spin_lock(&root->orphan_lock);
8a35d95f 3177 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3178 spin_unlock(&root->orphan_lock);
3179 return;
3180 }
3181
3182 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3183 spin_unlock(&root->orphan_lock);
3184 return;
3185 }
3186
3187 block_rsv = root->orphan_block_rsv;
3188 root->orphan_block_rsv = NULL;
3189 spin_unlock(&root->orphan_lock);
3190
27cdeb70 3191 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3192 btrfs_root_refs(&root->root_item) > 0) {
3193 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3194 root->root_key.objectid);
4ef31a45
JB
3195 if (ret)
3196 btrfs_abort_transaction(trans, root, ret);
3197 else
27cdeb70
MX
3198 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3199 &root->state);
d68fc57b
YZ
3200 }
3201
90290e19
JB
3202 if (block_rsv) {
3203 WARN_ON(block_rsv->size > 0);
3204 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3205 }
3206}
3207
7b128766
JB
3208/*
3209 * This creates an orphan entry for the given inode in case something goes
3210 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3211 *
3212 * NOTE: caller of this function should reserve 5 units of metadata for
3213 * this function.
7b128766
JB
3214 */
3215int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3216{
3217 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3218 struct btrfs_block_rsv *block_rsv = NULL;
3219 int reserve = 0;
3220 int insert = 0;
3221 int ret;
7b128766 3222
d68fc57b 3223 if (!root->orphan_block_rsv) {
66d8f3dd 3224 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3225 if (!block_rsv)
3226 return -ENOMEM;
d68fc57b 3227 }
7b128766 3228
d68fc57b
YZ
3229 spin_lock(&root->orphan_lock);
3230 if (!root->orphan_block_rsv) {
3231 root->orphan_block_rsv = block_rsv;
3232 } else if (block_rsv) {
3233 btrfs_free_block_rsv(root, block_rsv);
3234 block_rsv = NULL;
7b128766 3235 }
7b128766 3236
8a35d95f
JB
3237 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3238 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3239#if 0
3240 /*
3241 * For proper ENOSPC handling, we should do orphan
3242 * cleanup when mounting. But this introduces backward
3243 * compatibility issue.
3244 */
3245 if (!xchg(&root->orphan_item_inserted, 1))
3246 insert = 2;
3247 else
3248 insert = 1;
3249#endif
3250 insert = 1;
321f0e70 3251 atomic_inc(&root->orphan_inodes);
7b128766
JB
3252 }
3253
72ac3c0d
JB
3254 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3255 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3256 reserve = 1;
d68fc57b 3257 spin_unlock(&root->orphan_lock);
7b128766 3258
d68fc57b
YZ
3259 /* grab metadata reservation from transaction handle */
3260 if (reserve) {
3261 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3262 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3263 }
7b128766 3264
d68fc57b
YZ
3265 /* insert an orphan item to track this unlinked/truncated file */
3266 if (insert >= 1) {
33345d01 3267 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3268 if (ret) {
703c88e0 3269 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3270 if (reserve) {
3271 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3272 &BTRFS_I(inode)->runtime_flags);
3273 btrfs_orphan_release_metadata(inode);
3274 }
3275 if (ret != -EEXIST) {
e8e7cff6
JB
3276 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3277 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3278 btrfs_abort_transaction(trans, root, ret);
3279 return ret;
3280 }
79787eaa
JM
3281 }
3282 ret = 0;
d68fc57b
YZ
3283 }
3284
3285 /* insert an orphan item to track subvolume contains orphan files */
3286 if (insert >= 2) {
3287 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3288 root->root_key.objectid);
79787eaa
JM
3289 if (ret && ret != -EEXIST) {
3290 btrfs_abort_transaction(trans, root, ret);
3291 return ret;
3292 }
d68fc57b
YZ
3293 }
3294 return 0;
7b128766
JB
3295}
3296
3297/*
3298 * We have done the truncate/delete so we can go ahead and remove the orphan
3299 * item for this particular inode.
3300 */
48a3b636
ES
3301static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3302 struct inode *inode)
7b128766
JB
3303{
3304 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3305 int delete_item = 0;
3306 int release_rsv = 0;
7b128766
JB
3307 int ret = 0;
3308
d68fc57b 3309 spin_lock(&root->orphan_lock);
8a35d95f
JB
3310 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3311 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3312 delete_item = 1;
7b128766 3313
72ac3c0d
JB
3314 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3315 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3316 release_rsv = 1;
d68fc57b 3317 spin_unlock(&root->orphan_lock);
7b128766 3318
703c88e0 3319 if (delete_item) {
8a35d95f 3320 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3321 if (trans)
3322 ret = btrfs_del_orphan_item(trans, root,
3323 btrfs_ino(inode));
8a35d95f 3324 }
7b128766 3325
703c88e0
FDBM
3326 if (release_rsv)
3327 btrfs_orphan_release_metadata(inode);
3328
4ef31a45 3329 return ret;
7b128766
JB
3330}
3331
3332/*
3333 * this cleans up any orphans that may be left on the list from the last use
3334 * of this root.
3335 */
66b4ffd1 3336int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3337{
3338 struct btrfs_path *path;
3339 struct extent_buffer *leaf;
7b128766
JB
3340 struct btrfs_key key, found_key;
3341 struct btrfs_trans_handle *trans;
3342 struct inode *inode;
8f6d7f4f 3343 u64 last_objectid = 0;
7b128766
JB
3344 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3345
d68fc57b 3346 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3347 return 0;
c71bf099
YZ
3348
3349 path = btrfs_alloc_path();
66b4ffd1
JB
3350 if (!path) {
3351 ret = -ENOMEM;
3352 goto out;
3353 }
7b128766
JB
3354 path->reada = -1;
3355
3356 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3357 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3358 key.offset = (u64)-1;
3359
7b128766
JB
3360 while (1) {
3361 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3362 if (ret < 0)
3363 goto out;
7b128766
JB
3364
3365 /*
3366 * if ret == 0 means we found what we were searching for, which
25985edc 3367 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3368 * find the key and see if we have stuff that matches
3369 */
3370 if (ret > 0) {
66b4ffd1 3371 ret = 0;
7b128766
JB
3372 if (path->slots[0] == 0)
3373 break;
3374 path->slots[0]--;
3375 }
3376
3377 /* pull out the item */
3378 leaf = path->nodes[0];
7b128766
JB
3379 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3380
3381 /* make sure the item matches what we want */
3382 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3383 break;
962a298f 3384 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3385 break;
3386
3387 /* release the path since we're done with it */
b3b4aa74 3388 btrfs_release_path(path);
7b128766
JB
3389
3390 /*
3391 * this is where we are basically btrfs_lookup, without the
3392 * crossing root thing. we store the inode number in the
3393 * offset of the orphan item.
3394 */
8f6d7f4f
JB
3395
3396 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3397 btrfs_err(root->fs_info,
3398 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3399 ret = -EINVAL;
3400 goto out;
3401 }
3402
3403 last_objectid = found_key.offset;
3404
5d4f98a2
YZ
3405 found_key.objectid = found_key.offset;
3406 found_key.type = BTRFS_INODE_ITEM_KEY;
3407 found_key.offset = 0;
73f73415 3408 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3409 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3410 if (ret && ret != -ESTALE)
66b4ffd1 3411 goto out;
7b128766 3412
f8e9e0b0
AJ
3413 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3414 struct btrfs_root *dead_root;
3415 struct btrfs_fs_info *fs_info = root->fs_info;
3416 int is_dead_root = 0;
3417
3418 /*
3419 * this is an orphan in the tree root. Currently these
3420 * could come from 2 sources:
3421 * a) a snapshot deletion in progress
3422 * b) a free space cache inode
3423 * We need to distinguish those two, as the snapshot
3424 * orphan must not get deleted.
3425 * find_dead_roots already ran before us, so if this
3426 * is a snapshot deletion, we should find the root
3427 * in the dead_roots list
3428 */
3429 spin_lock(&fs_info->trans_lock);
3430 list_for_each_entry(dead_root, &fs_info->dead_roots,
3431 root_list) {
3432 if (dead_root->root_key.objectid ==
3433 found_key.objectid) {
3434 is_dead_root = 1;
3435 break;
3436 }
3437 }
3438 spin_unlock(&fs_info->trans_lock);
3439 if (is_dead_root) {
3440 /* prevent this orphan from being found again */
3441 key.offset = found_key.objectid - 1;
3442 continue;
3443 }
3444 }
7b128766 3445 /*
a8c9e576
JB
3446 * Inode is already gone but the orphan item is still there,
3447 * kill the orphan item.
7b128766 3448 */
a8c9e576
JB
3449 if (ret == -ESTALE) {
3450 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3451 if (IS_ERR(trans)) {
3452 ret = PTR_ERR(trans);
3453 goto out;
3454 }
c2cf52eb
SK
3455 btrfs_debug(root->fs_info, "auto deleting %Lu",
3456 found_key.objectid);
a8c9e576
JB
3457 ret = btrfs_del_orphan_item(trans, root,
3458 found_key.objectid);
5b21f2ed 3459 btrfs_end_transaction(trans, root);
4ef31a45
JB
3460 if (ret)
3461 goto out;
7b128766
JB
3462 continue;
3463 }
3464
a8c9e576
JB
3465 /*
3466 * add this inode to the orphan list so btrfs_orphan_del does
3467 * the proper thing when we hit it
3468 */
8a35d95f
JB
3469 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3470 &BTRFS_I(inode)->runtime_flags);
925396ec 3471 atomic_inc(&root->orphan_inodes);
a8c9e576 3472
7b128766
JB
3473 /* if we have links, this was a truncate, lets do that */
3474 if (inode->i_nlink) {
fae7f21c 3475 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3476 iput(inode);
3477 continue;
3478 }
7b128766 3479 nr_truncate++;
f3fe820c
JB
3480
3481 /* 1 for the orphan item deletion. */
3482 trans = btrfs_start_transaction(root, 1);
3483 if (IS_ERR(trans)) {
c69b26b0 3484 iput(inode);
f3fe820c
JB
3485 ret = PTR_ERR(trans);
3486 goto out;
3487 }
3488 ret = btrfs_orphan_add(trans, inode);
3489 btrfs_end_transaction(trans, root);
c69b26b0
JB
3490 if (ret) {
3491 iput(inode);
f3fe820c 3492 goto out;
c69b26b0 3493 }
f3fe820c 3494
66b4ffd1 3495 ret = btrfs_truncate(inode);
4a7d0f68
JB
3496 if (ret)
3497 btrfs_orphan_del(NULL, inode);
7b128766
JB
3498 } else {
3499 nr_unlink++;
3500 }
3501
3502 /* this will do delete_inode and everything for us */
3503 iput(inode);
66b4ffd1
JB
3504 if (ret)
3505 goto out;
7b128766 3506 }
3254c876
MX
3507 /* release the path since we're done with it */
3508 btrfs_release_path(path);
3509
d68fc57b
YZ
3510 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3511
3512 if (root->orphan_block_rsv)
3513 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3514 (u64)-1);
3515
27cdeb70
MX
3516 if (root->orphan_block_rsv ||
3517 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3518 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3519 if (!IS_ERR(trans))
3520 btrfs_end_transaction(trans, root);
d68fc57b 3521 }
7b128766
JB
3522
3523 if (nr_unlink)
4884b476 3524 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3525 if (nr_truncate)
4884b476 3526 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3527
3528out:
3529 if (ret)
68b663d1 3530 btrfs_err(root->fs_info,
c2cf52eb 3531 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3532 btrfs_free_path(path);
3533 return ret;
7b128766
JB
3534}
3535
46a53cca
CM
3536/*
3537 * very simple check to peek ahead in the leaf looking for xattrs. If we
3538 * don't find any xattrs, we know there can't be any acls.
3539 *
3540 * slot is the slot the inode is in, objectid is the objectid of the inode
3541 */
3542static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3543 int slot, u64 objectid,
3544 int *first_xattr_slot)
46a53cca
CM
3545{
3546 u32 nritems = btrfs_header_nritems(leaf);
3547 struct btrfs_key found_key;
f23b5a59
JB
3548 static u64 xattr_access = 0;
3549 static u64 xattr_default = 0;
46a53cca
CM
3550 int scanned = 0;
3551
f23b5a59
JB
3552 if (!xattr_access) {
3553 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3554 strlen(POSIX_ACL_XATTR_ACCESS));
3555 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3556 strlen(POSIX_ACL_XATTR_DEFAULT));
3557 }
3558
46a53cca 3559 slot++;
63541927 3560 *first_xattr_slot = -1;
46a53cca
CM
3561 while (slot < nritems) {
3562 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3563
3564 /* we found a different objectid, there must not be acls */
3565 if (found_key.objectid != objectid)
3566 return 0;
3567
3568 /* we found an xattr, assume we've got an acl */
f23b5a59 3569 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3570 if (*first_xattr_slot == -1)
3571 *first_xattr_slot = slot;
f23b5a59
JB
3572 if (found_key.offset == xattr_access ||
3573 found_key.offset == xattr_default)
3574 return 1;
3575 }
46a53cca
CM
3576
3577 /*
3578 * we found a key greater than an xattr key, there can't
3579 * be any acls later on
3580 */
3581 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3582 return 0;
3583
3584 slot++;
3585 scanned++;
3586
3587 /*
3588 * it goes inode, inode backrefs, xattrs, extents,
3589 * so if there are a ton of hard links to an inode there can
3590 * be a lot of backrefs. Don't waste time searching too hard,
3591 * this is just an optimization
3592 */
3593 if (scanned >= 8)
3594 break;
3595 }
3596 /* we hit the end of the leaf before we found an xattr or
3597 * something larger than an xattr. We have to assume the inode
3598 * has acls
3599 */
63541927
FDBM
3600 if (*first_xattr_slot == -1)
3601 *first_xattr_slot = slot;
46a53cca
CM
3602 return 1;
3603}
3604
d352ac68
CM
3605/*
3606 * read an inode from the btree into the in-memory inode
3607 */
5d4f98a2 3608static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3609{
3610 struct btrfs_path *path;
5f39d397 3611 struct extent_buffer *leaf;
39279cc3
CM
3612 struct btrfs_inode_item *inode_item;
3613 struct btrfs_root *root = BTRFS_I(inode)->root;
3614 struct btrfs_key location;
67de1176 3615 unsigned long ptr;
46a53cca 3616 int maybe_acls;
618e21d5 3617 u32 rdev;
39279cc3 3618 int ret;
2f7e33d4 3619 bool filled = false;
63541927 3620 int first_xattr_slot;
2f7e33d4
MX
3621
3622 ret = btrfs_fill_inode(inode, &rdev);
3623 if (!ret)
3624 filled = true;
39279cc3
CM
3625
3626 path = btrfs_alloc_path();
1748f843
MF
3627 if (!path)
3628 goto make_bad;
3629
39279cc3 3630 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3631
39279cc3 3632 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3633 if (ret)
39279cc3 3634 goto make_bad;
39279cc3 3635
5f39d397 3636 leaf = path->nodes[0];
2f7e33d4
MX
3637
3638 if (filled)
67de1176 3639 goto cache_index;
2f7e33d4 3640
5f39d397
CM
3641 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3642 struct btrfs_inode_item);
5f39d397 3643 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3644 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3645 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3646 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3647 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3648
a937b979
DS
3649 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3650 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3651
a937b979
DS
3652 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3653 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3654
a937b979
DS
3655 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3656 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3657
9cc97d64 3658 BTRFS_I(inode)->i_otime.tv_sec =
3659 btrfs_timespec_sec(leaf, &inode_item->otime);
3660 BTRFS_I(inode)->i_otime.tv_nsec =
3661 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3662
a76a3cd4 3663 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3664 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3665 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3666
6e17d30b
YD
3667 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3668 inode->i_generation = BTRFS_I(inode)->generation;
3669 inode->i_rdev = 0;
3670 rdev = btrfs_inode_rdev(leaf, inode_item);
3671
3672 BTRFS_I(inode)->index_cnt = (u64)-1;
3673 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3674
3675cache_index:
5dc562c5
JB
3676 /*
3677 * If we were modified in the current generation and evicted from memory
3678 * and then re-read we need to do a full sync since we don't have any
3679 * idea about which extents were modified before we were evicted from
3680 * cache.
6e17d30b
YD
3681 *
3682 * This is required for both inode re-read from disk and delayed inode
3683 * in delayed_nodes_tree.
5dc562c5
JB
3684 */
3685 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3686 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3687 &BTRFS_I(inode)->runtime_flags);
3688
bde6c242
FM
3689 /*
3690 * We don't persist the id of the transaction where an unlink operation
3691 * against the inode was last made. So here we assume the inode might
3692 * have been evicted, and therefore the exact value of last_unlink_trans
3693 * lost, and set it to last_trans to avoid metadata inconsistencies
3694 * between the inode and its parent if the inode is fsync'ed and the log
3695 * replayed. For example, in the scenario:
3696 *
3697 * touch mydir/foo
3698 * ln mydir/foo mydir/bar
3699 * sync
3700 * unlink mydir/bar
3701 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3702 * xfs_io -c fsync mydir/foo
3703 * <power failure>
3704 * mount fs, triggers fsync log replay
3705 *
3706 * We must make sure that when we fsync our inode foo we also log its
3707 * parent inode, otherwise after log replay the parent still has the
3708 * dentry with the "bar" name but our inode foo has a link count of 1
3709 * and doesn't have an inode ref with the name "bar" anymore.
3710 *
3711 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3712 * but it guarantees correctness at the expense of ocassional full
3713 * transaction commits on fsync if our inode is a directory, or if our
3714 * inode is not a directory, logging its parent unnecessarily.
3715 */
3716 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3717
67de1176
MX
3718 path->slots[0]++;
3719 if (inode->i_nlink != 1 ||
3720 path->slots[0] >= btrfs_header_nritems(leaf))
3721 goto cache_acl;
3722
3723 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3724 if (location.objectid != btrfs_ino(inode))
3725 goto cache_acl;
3726
3727 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3728 if (location.type == BTRFS_INODE_REF_KEY) {
3729 struct btrfs_inode_ref *ref;
3730
3731 ref = (struct btrfs_inode_ref *)ptr;
3732 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3733 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3734 struct btrfs_inode_extref *extref;
3735
3736 extref = (struct btrfs_inode_extref *)ptr;
3737 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3738 extref);
3739 }
2f7e33d4 3740cache_acl:
46a53cca
CM
3741 /*
3742 * try to precache a NULL acl entry for files that don't have
3743 * any xattrs or acls
3744 */
33345d01 3745 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3746 btrfs_ino(inode), &first_xattr_slot);
3747 if (first_xattr_slot != -1) {
3748 path->slots[0] = first_xattr_slot;
3749 ret = btrfs_load_inode_props(inode, path);
3750 if (ret)
3751 btrfs_err(root->fs_info,
351fd353 3752 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3753 btrfs_ino(inode),
3754 root->root_key.objectid, ret);
3755 }
3756 btrfs_free_path(path);
3757
72c04902
AV
3758 if (!maybe_acls)
3759 cache_no_acl(inode);
46a53cca 3760
39279cc3 3761 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3762 case S_IFREG:
3763 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3764 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3765 inode->i_fop = &btrfs_file_operations;
3766 inode->i_op = &btrfs_file_inode_operations;
3767 break;
3768 case S_IFDIR:
3769 inode->i_fop = &btrfs_dir_file_operations;
3770 if (root == root->fs_info->tree_root)
3771 inode->i_op = &btrfs_dir_ro_inode_operations;
3772 else
3773 inode->i_op = &btrfs_dir_inode_operations;
3774 break;
3775 case S_IFLNK:
3776 inode->i_op = &btrfs_symlink_inode_operations;
3777 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3778 break;
618e21d5 3779 default:
0279b4cd 3780 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3781 init_special_inode(inode, inode->i_mode, rdev);
3782 break;
39279cc3 3783 }
6cbff00f
CH
3784
3785 btrfs_update_iflags(inode);
39279cc3
CM
3786 return;
3787
3788make_bad:
39279cc3 3789 btrfs_free_path(path);
39279cc3
CM
3790 make_bad_inode(inode);
3791}
3792
d352ac68
CM
3793/*
3794 * given a leaf and an inode, copy the inode fields into the leaf
3795 */
e02119d5
CM
3796static void fill_inode_item(struct btrfs_trans_handle *trans,
3797 struct extent_buffer *leaf,
5f39d397 3798 struct btrfs_inode_item *item,
39279cc3
CM
3799 struct inode *inode)
3800{
51fab693
LB
3801 struct btrfs_map_token token;
3802
3803 btrfs_init_map_token(&token);
5f39d397 3804
51fab693
LB
3805 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3806 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3807 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3808 &token);
3809 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3810 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3811
a937b979 3812 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3813 inode->i_atime.tv_sec, &token);
a937b979 3814 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3815 inode->i_atime.tv_nsec, &token);
5f39d397 3816
a937b979 3817 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3818 inode->i_mtime.tv_sec, &token);
a937b979 3819 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3820 inode->i_mtime.tv_nsec, &token);
5f39d397 3821
a937b979 3822 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3823 inode->i_ctime.tv_sec, &token);
a937b979 3824 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3825 inode->i_ctime.tv_nsec, &token);
5f39d397 3826
9cc97d64 3827 btrfs_set_token_timespec_sec(leaf, &item->otime,
3828 BTRFS_I(inode)->i_otime.tv_sec, &token);
3829 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3830 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3831
51fab693
LB
3832 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3833 &token);
3834 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3835 &token);
3836 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3837 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3838 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3839 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3840 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3841}
3842
d352ac68
CM
3843/*
3844 * copy everything in the in-memory inode into the btree.
3845 */
2115133f 3846static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3847 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3848{
3849 struct btrfs_inode_item *inode_item;
3850 struct btrfs_path *path;
5f39d397 3851 struct extent_buffer *leaf;
39279cc3
CM
3852 int ret;
3853
3854 path = btrfs_alloc_path();
16cdcec7
MX
3855 if (!path)
3856 return -ENOMEM;
3857
b9473439 3858 path->leave_spinning = 1;
16cdcec7
MX
3859 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3860 1);
39279cc3
CM
3861 if (ret) {
3862 if (ret > 0)
3863 ret = -ENOENT;
3864 goto failed;
3865 }
3866
5f39d397
CM
3867 leaf = path->nodes[0];
3868 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3869 struct btrfs_inode_item);
39279cc3 3870
e02119d5 3871 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3872 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3873 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3874 ret = 0;
3875failed:
39279cc3
CM
3876 btrfs_free_path(path);
3877 return ret;
3878}
3879
2115133f
CM
3880/*
3881 * copy everything in the in-memory inode into the btree.
3882 */
3883noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3884 struct btrfs_root *root, struct inode *inode)
3885{
3886 int ret;
3887
3888 /*
3889 * If the inode is a free space inode, we can deadlock during commit
3890 * if we put it into the delayed code.
3891 *
3892 * The data relocation inode should also be directly updated
3893 * without delay
3894 */
83eea1f1 3895 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3896 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3897 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3898 btrfs_update_root_times(trans, root);
3899
2115133f
CM
3900 ret = btrfs_delayed_update_inode(trans, root, inode);
3901 if (!ret)
3902 btrfs_set_inode_last_trans(trans, inode);
3903 return ret;
3904 }
3905
3906 return btrfs_update_inode_item(trans, root, inode);
3907}
3908
be6aef60
JB
3909noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3910 struct btrfs_root *root,
3911 struct inode *inode)
2115133f
CM
3912{
3913 int ret;
3914
3915 ret = btrfs_update_inode(trans, root, inode);
3916 if (ret == -ENOSPC)
3917 return btrfs_update_inode_item(trans, root, inode);
3918 return ret;
3919}
3920
d352ac68
CM
3921/*
3922 * unlink helper that gets used here in inode.c and in the tree logging
3923 * recovery code. It remove a link in a directory with a given name, and
3924 * also drops the back refs in the inode to the directory
3925 */
92986796
AV
3926static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3927 struct btrfs_root *root,
3928 struct inode *dir, struct inode *inode,
3929 const char *name, int name_len)
39279cc3
CM
3930{
3931 struct btrfs_path *path;
39279cc3 3932 int ret = 0;
5f39d397 3933 struct extent_buffer *leaf;
39279cc3 3934 struct btrfs_dir_item *di;
5f39d397 3935 struct btrfs_key key;
aec7477b 3936 u64 index;
33345d01
LZ
3937 u64 ino = btrfs_ino(inode);
3938 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3939
3940 path = btrfs_alloc_path();
54aa1f4d
CM
3941 if (!path) {
3942 ret = -ENOMEM;
554233a6 3943 goto out;
54aa1f4d
CM
3944 }
3945
b9473439 3946 path->leave_spinning = 1;
33345d01 3947 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3948 name, name_len, -1);
3949 if (IS_ERR(di)) {
3950 ret = PTR_ERR(di);
3951 goto err;
3952 }
3953 if (!di) {
3954 ret = -ENOENT;
3955 goto err;
3956 }
5f39d397
CM
3957 leaf = path->nodes[0];
3958 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3959 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3960 if (ret)
3961 goto err;
b3b4aa74 3962 btrfs_release_path(path);
39279cc3 3963
67de1176
MX
3964 /*
3965 * If we don't have dir index, we have to get it by looking up
3966 * the inode ref, since we get the inode ref, remove it directly,
3967 * it is unnecessary to do delayed deletion.
3968 *
3969 * But if we have dir index, needn't search inode ref to get it.
3970 * Since the inode ref is close to the inode item, it is better
3971 * that we delay to delete it, and just do this deletion when
3972 * we update the inode item.
3973 */
3974 if (BTRFS_I(inode)->dir_index) {
3975 ret = btrfs_delayed_delete_inode_ref(inode);
3976 if (!ret) {
3977 index = BTRFS_I(inode)->dir_index;
3978 goto skip_backref;
3979 }
3980 }
3981
33345d01
LZ
3982 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3983 dir_ino, &index);
aec7477b 3984 if (ret) {
c2cf52eb
SK
3985 btrfs_info(root->fs_info,
3986 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3987 name_len, name, ino, dir_ino);
79787eaa 3988 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3989 goto err;
3990 }
67de1176 3991skip_backref:
16cdcec7 3992 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3993 if (ret) {
3994 btrfs_abort_transaction(trans, root, ret);
39279cc3 3995 goto err;
79787eaa 3996 }
39279cc3 3997
e02119d5 3998 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3999 inode, dir_ino);
79787eaa
JM
4000 if (ret != 0 && ret != -ENOENT) {
4001 btrfs_abort_transaction(trans, root, ret);
4002 goto err;
4003 }
e02119d5
CM
4004
4005 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4006 dir, index);
6418c961
CM
4007 if (ret == -ENOENT)
4008 ret = 0;
d4e3991b
ZB
4009 else if (ret)
4010 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4011err:
4012 btrfs_free_path(path);
e02119d5
CM
4013 if (ret)
4014 goto out;
4015
4016 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4017 inode_inc_iversion(inode);
4018 inode_inc_iversion(dir);
e02119d5 4019 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 4020 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4021out:
39279cc3
CM
4022 return ret;
4023}
4024
92986796
AV
4025int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4026 struct btrfs_root *root,
4027 struct inode *dir, struct inode *inode,
4028 const char *name, int name_len)
4029{
4030 int ret;
4031 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4032 if (!ret) {
8b558c5f 4033 drop_nlink(inode);
92986796
AV
4034 ret = btrfs_update_inode(trans, root, inode);
4035 }
4036 return ret;
4037}
39279cc3 4038
a22285a6
YZ
4039/*
4040 * helper to start transaction for unlink and rmdir.
4041 *
d52be818
JB
4042 * unlink and rmdir are special in btrfs, they do not always free space, so
4043 * if we cannot make our reservations the normal way try and see if there is
4044 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4045 * allow the unlink to occur.
a22285a6 4046 */
d52be818 4047static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4048{
a22285a6 4049 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4050
e70bea5f
JB
4051 /*
4052 * 1 for the possible orphan item
4053 * 1 for the dir item
4054 * 1 for the dir index
4055 * 1 for the inode ref
e70bea5f
JB
4056 * 1 for the inode
4057 */
8eab77ff 4058 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4059}
4060
4061static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4062{
4063 struct btrfs_root *root = BTRFS_I(dir)->root;
4064 struct btrfs_trans_handle *trans;
2b0143b5 4065 struct inode *inode = d_inode(dentry);
a22285a6 4066 int ret;
a22285a6 4067
d52be818 4068 trans = __unlink_start_trans(dir);
a22285a6
YZ
4069 if (IS_ERR(trans))
4070 return PTR_ERR(trans);
5f39d397 4071
2b0143b5 4072 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4073
2b0143b5 4074 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4075 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4076 if (ret)
4077 goto out;
7b128766 4078
a22285a6 4079 if (inode->i_nlink == 0) {
7b128766 4080 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4081 if (ret)
4082 goto out;
a22285a6 4083 }
7b128766 4084
b532402e 4085out:
d52be818 4086 btrfs_end_transaction(trans, root);
b53d3f5d 4087 btrfs_btree_balance_dirty(root);
39279cc3
CM
4088 return ret;
4089}
4090
4df27c4d
YZ
4091int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4092 struct btrfs_root *root,
4093 struct inode *dir, u64 objectid,
4094 const char *name, int name_len)
4095{
4096 struct btrfs_path *path;
4097 struct extent_buffer *leaf;
4098 struct btrfs_dir_item *di;
4099 struct btrfs_key key;
4100 u64 index;
4101 int ret;
33345d01 4102 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4103
4104 path = btrfs_alloc_path();
4105 if (!path)
4106 return -ENOMEM;
4107
33345d01 4108 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4109 name, name_len, -1);
79787eaa
JM
4110 if (IS_ERR_OR_NULL(di)) {
4111 if (!di)
4112 ret = -ENOENT;
4113 else
4114 ret = PTR_ERR(di);
4115 goto out;
4116 }
4df27c4d
YZ
4117
4118 leaf = path->nodes[0];
4119 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4120 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4121 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4122 if (ret) {
4123 btrfs_abort_transaction(trans, root, ret);
4124 goto out;
4125 }
b3b4aa74 4126 btrfs_release_path(path);
4df27c4d
YZ
4127
4128 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4129 objectid, root->root_key.objectid,
33345d01 4130 dir_ino, &index, name, name_len);
4df27c4d 4131 if (ret < 0) {
79787eaa
JM
4132 if (ret != -ENOENT) {
4133 btrfs_abort_transaction(trans, root, ret);
4134 goto out;
4135 }
33345d01 4136 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4137 name, name_len);
79787eaa
JM
4138 if (IS_ERR_OR_NULL(di)) {
4139 if (!di)
4140 ret = -ENOENT;
4141 else
4142 ret = PTR_ERR(di);
4143 btrfs_abort_transaction(trans, root, ret);
4144 goto out;
4145 }
4df27c4d
YZ
4146
4147 leaf = path->nodes[0];
4148 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4149 btrfs_release_path(path);
4df27c4d
YZ
4150 index = key.offset;
4151 }
945d8962 4152 btrfs_release_path(path);
4df27c4d 4153
16cdcec7 4154 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4155 if (ret) {
4156 btrfs_abort_transaction(trans, root, ret);
4157 goto out;
4158 }
4df27c4d
YZ
4159
4160 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4161 inode_inc_iversion(dir);
4df27c4d 4162 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4163 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4164 if (ret)
4165 btrfs_abort_transaction(trans, root, ret);
4166out:
71d7aed0 4167 btrfs_free_path(path);
79787eaa 4168 return ret;
4df27c4d
YZ
4169}
4170
39279cc3
CM
4171static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4172{
2b0143b5 4173 struct inode *inode = d_inode(dentry);
1832a6d5 4174 int err = 0;
39279cc3 4175 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4176 struct btrfs_trans_handle *trans;
39279cc3 4177
b3ae244e 4178 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4179 return -ENOTEMPTY;
b3ae244e
DS
4180 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4181 return -EPERM;
134d4512 4182
d52be818 4183 trans = __unlink_start_trans(dir);
a22285a6 4184 if (IS_ERR(trans))
5df6a9f6 4185 return PTR_ERR(trans);
5df6a9f6 4186
33345d01 4187 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4188 err = btrfs_unlink_subvol(trans, root, dir,
4189 BTRFS_I(inode)->location.objectid,
4190 dentry->d_name.name,
4191 dentry->d_name.len);
4192 goto out;
4193 }
4194
7b128766
JB
4195 err = btrfs_orphan_add(trans, inode);
4196 if (err)
4df27c4d 4197 goto out;
7b128766 4198
39279cc3 4199 /* now the directory is empty */
2b0143b5 4200 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4201 dentry->d_name.name, dentry->d_name.len);
d397712b 4202 if (!err)
dbe674a9 4203 btrfs_i_size_write(inode, 0);
4df27c4d 4204out:
d52be818 4205 btrfs_end_transaction(trans, root);
b53d3f5d 4206 btrfs_btree_balance_dirty(root);
3954401f 4207
39279cc3
CM
4208 return err;
4209}
4210
28f75a0e
CM
4211static int truncate_space_check(struct btrfs_trans_handle *trans,
4212 struct btrfs_root *root,
4213 u64 bytes_deleted)
4214{
4215 int ret;
4216
4217 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4218 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4219 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4220 if (!ret)
4221 trans->bytes_reserved += bytes_deleted;
4222 return ret;
4223
4224}
4225
0305cd5f
FM
4226static int truncate_inline_extent(struct inode *inode,
4227 struct btrfs_path *path,
4228 struct btrfs_key *found_key,
4229 const u64 item_end,
4230 const u64 new_size)
4231{
4232 struct extent_buffer *leaf = path->nodes[0];
4233 int slot = path->slots[0];
4234 struct btrfs_file_extent_item *fi;
4235 u32 size = (u32)(new_size - found_key->offset);
4236 struct btrfs_root *root = BTRFS_I(inode)->root;
4237
4238 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4239
4240 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4241 loff_t offset = new_size;
4242 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4243
4244 /*
4245 * Zero out the remaining of the last page of our inline extent,
4246 * instead of directly truncating our inline extent here - that
4247 * would be much more complex (decompressing all the data, then
4248 * compressing the truncated data, which might be bigger than
4249 * the size of the inline extent, resize the extent, etc).
4250 * We release the path because to get the page we might need to
4251 * read the extent item from disk (data not in the page cache).
4252 */
4253 btrfs_release_path(path);
4254 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4255 }
4256
4257 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4258 size = btrfs_file_extent_calc_inline_size(size);
4259 btrfs_truncate_item(root, path, size, 1);
4260
4261 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4262 inode_sub_bytes(inode, item_end + 1 - new_size);
4263
4264 return 0;
4265}
4266
39279cc3
CM
4267/*
4268 * this can truncate away extent items, csum items and directory items.
4269 * It starts at a high offset and removes keys until it can't find
d352ac68 4270 * any higher than new_size
39279cc3
CM
4271 *
4272 * csum items that cross the new i_size are truncated to the new size
4273 * as well.
7b128766
JB
4274 *
4275 * min_type is the minimum key type to truncate down to. If set to 0, this
4276 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4277 */
8082510e
YZ
4278int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4279 struct btrfs_root *root,
4280 struct inode *inode,
4281 u64 new_size, u32 min_type)
39279cc3 4282{
39279cc3 4283 struct btrfs_path *path;
5f39d397 4284 struct extent_buffer *leaf;
39279cc3 4285 struct btrfs_file_extent_item *fi;
8082510e
YZ
4286 struct btrfs_key key;
4287 struct btrfs_key found_key;
39279cc3 4288 u64 extent_start = 0;
db94535d 4289 u64 extent_num_bytes = 0;
5d4f98a2 4290 u64 extent_offset = 0;
39279cc3 4291 u64 item_end = 0;
c1aa4575 4292 u64 last_size = new_size;
8082510e 4293 u32 found_type = (u8)-1;
39279cc3
CM
4294 int found_extent;
4295 int del_item;
85e21bac
CM
4296 int pending_del_nr = 0;
4297 int pending_del_slot = 0;
179e29e4 4298 int extent_type = -1;
8082510e
YZ
4299 int ret;
4300 int err = 0;
33345d01 4301 u64 ino = btrfs_ino(inode);
28ed1345 4302 u64 bytes_deleted = 0;
1262133b
JB
4303 bool be_nice = 0;
4304 bool should_throttle = 0;
28f75a0e 4305 bool should_end = 0;
8082510e
YZ
4306
4307 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4308
28ed1345
CM
4309 /*
4310 * for non-free space inodes and ref cows, we want to back off from
4311 * time to time
4312 */
4313 if (!btrfs_is_free_space_inode(inode) &&
4314 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4315 be_nice = 1;
4316
0eb0e19c
MF
4317 path = btrfs_alloc_path();
4318 if (!path)
4319 return -ENOMEM;
4320 path->reada = -1;
4321
5dc562c5
JB
4322 /*
4323 * We want to drop from the next block forward in case this new size is
4324 * not block aligned since we will be keeping the last block of the
4325 * extent just the way it is.
4326 */
27cdeb70
MX
4327 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4328 root == root->fs_info->tree_root)
fda2832f
QW
4329 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4330 root->sectorsize), (u64)-1, 0);
8082510e 4331
16cdcec7
MX
4332 /*
4333 * This function is also used to drop the items in the log tree before
4334 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4335 * it is used to drop the loged items. So we shouldn't kill the delayed
4336 * items.
4337 */
4338 if (min_type == 0 && root == BTRFS_I(inode)->root)
4339 btrfs_kill_delayed_inode_items(inode);
4340
33345d01 4341 key.objectid = ino;
39279cc3 4342 key.offset = (u64)-1;
5f39d397
CM
4343 key.type = (u8)-1;
4344
85e21bac 4345search_again:
28ed1345
CM
4346 /*
4347 * with a 16K leaf size and 128MB extents, you can actually queue
4348 * up a huge file in a single leaf. Most of the time that
4349 * bytes_deleted is > 0, it will be huge by the time we get here
4350 */
4351 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4352 if (btrfs_should_end_transaction(trans, root)) {
4353 err = -EAGAIN;
4354 goto error;
4355 }
4356 }
4357
4358
b9473439 4359 path->leave_spinning = 1;
85e21bac 4360 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4361 if (ret < 0) {
4362 err = ret;
4363 goto out;
4364 }
d397712b 4365
85e21bac 4366 if (ret > 0) {
e02119d5
CM
4367 /* there are no items in the tree for us to truncate, we're
4368 * done
4369 */
8082510e
YZ
4370 if (path->slots[0] == 0)
4371 goto out;
85e21bac
CM
4372 path->slots[0]--;
4373 }
4374
d397712b 4375 while (1) {
39279cc3 4376 fi = NULL;
5f39d397
CM
4377 leaf = path->nodes[0];
4378 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4379 found_type = found_key.type;
39279cc3 4380
33345d01 4381 if (found_key.objectid != ino)
39279cc3 4382 break;
5f39d397 4383
85e21bac 4384 if (found_type < min_type)
39279cc3
CM
4385 break;
4386
5f39d397 4387 item_end = found_key.offset;
39279cc3 4388 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4389 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4390 struct btrfs_file_extent_item);
179e29e4
CM
4391 extent_type = btrfs_file_extent_type(leaf, fi);
4392 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4393 item_end +=
db94535d 4394 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4395 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4396 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4397 path->slots[0], fi);
39279cc3 4398 }
008630c1 4399 item_end--;
39279cc3 4400 }
8082510e
YZ
4401 if (found_type > min_type) {
4402 del_item = 1;
4403 } else {
4404 if (item_end < new_size)
b888db2b 4405 break;
8082510e
YZ
4406 if (found_key.offset >= new_size)
4407 del_item = 1;
4408 else
4409 del_item = 0;
39279cc3 4410 }
39279cc3 4411 found_extent = 0;
39279cc3 4412 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4413 if (found_type != BTRFS_EXTENT_DATA_KEY)
4414 goto delete;
4415
7f4f6e0a
JB
4416 if (del_item)
4417 last_size = found_key.offset;
4418 else
4419 last_size = new_size;
4420
179e29e4 4421 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4422 u64 num_dec;
db94535d 4423 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4424 if (!del_item) {
db94535d
CM
4425 u64 orig_num_bytes =
4426 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4427 extent_num_bytes = ALIGN(new_size -
4428 found_key.offset,
4429 root->sectorsize);
db94535d
CM
4430 btrfs_set_file_extent_num_bytes(leaf, fi,
4431 extent_num_bytes);
4432 num_dec = (orig_num_bytes -
9069218d 4433 extent_num_bytes);
27cdeb70
MX
4434 if (test_bit(BTRFS_ROOT_REF_COWS,
4435 &root->state) &&
4436 extent_start != 0)
a76a3cd4 4437 inode_sub_bytes(inode, num_dec);
5f39d397 4438 btrfs_mark_buffer_dirty(leaf);
39279cc3 4439 } else {
db94535d
CM
4440 extent_num_bytes =
4441 btrfs_file_extent_disk_num_bytes(leaf,
4442 fi);
5d4f98a2
YZ
4443 extent_offset = found_key.offset -
4444 btrfs_file_extent_offset(leaf, fi);
4445
39279cc3 4446 /* FIXME blocksize != 4096 */
9069218d 4447 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4448 if (extent_start != 0) {
4449 found_extent = 1;
27cdeb70
MX
4450 if (test_bit(BTRFS_ROOT_REF_COWS,
4451 &root->state))
a76a3cd4 4452 inode_sub_bytes(inode, num_dec);
e02119d5 4453 }
39279cc3 4454 }
9069218d 4455 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4456 /*
4457 * we can't truncate inline items that have had
4458 * special encodings
4459 */
4460 if (!del_item &&
c8b97818
CM
4461 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4462 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4463
4464 /*
0305cd5f
FM
4465 * Need to release path in order to truncate a
4466 * compressed extent. So delete any accumulated
4467 * extent items so far.
514ac8ad 4468 */
0305cd5f
FM
4469 if (btrfs_file_extent_compression(leaf, fi) !=
4470 BTRFS_COMPRESS_NONE && pending_del_nr) {
4471 err = btrfs_del_items(trans, root, path,
4472 pending_del_slot,
4473 pending_del_nr);
4474 if (err) {
4475 btrfs_abort_transaction(trans,
4476 root,
4477 err);
4478 goto error;
4479 }
4480 pending_del_nr = 0;
4481 }
4482
4483 err = truncate_inline_extent(inode, path,
4484 &found_key,
4485 item_end,
4486 new_size);
4487 if (err) {
4488 btrfs_abort_transaction(trans,
4489 root, err);
4490 goto error;
4491 }
27cdeb70
MX
4492 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4493 &root->state)) {
0305cd5f 4494 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4495 }
39279cc3 4496 }
179e29e4 4497delete:
39279cc3 4498 if (del_item) {
85e21bac
CM
4499 if (!pending_del_nr) {
4500 /* no pending yet, add ourselves */
4501 pending_del_slot = path->slots[0];
4502 pending_del_nr = 1;
4503 } else if (pending_del_nr &&
4504 path->slots[0] + 1 == pending_del_slot) {
4505 /* hop on the pending chunk */
4506 pending_del_nr++;
4507 pending_del_slot = path->slots[0];
4508 } else {
d397712b 4509 BUG();
85e21bac 4510 }
39279cc3
CM
4511 } else {
4512 break;
4513 }
28f75a0e
CM
4514 should_throttle = 0;
4515
27cdeb70
MX
4516 if (found_extent &&
4517 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4518 root == root->fs_info->tree_root)) {
b9473439 4519 btrfs_set_path_blocking(path);
28ed1345 4520 bytes_deleted += extent_num_bytes;
39279cc3 4521 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4522 extent_num_bytes, 0,
4523 btrfs_header_owner(leaf),
b06c4bf5 4524 ino, extent_offset);
39279cc3 4525 BUG_ON(ret);
1262133b 4526 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4527 btrfs_async_run_delayed_refs(root,
4528 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4529 if (be_nice) {
4530 if (truncate_space_check(trans, root,
4531 extent_num_bytes)) {
4532 should_end = 1;
4533 }
4534 if (btrfs_should_throttle_delayed_refs(trans,
4535 root)) {
4536 should_throttle = 1;
4537 }
4538 }
39279cc3 4539 }
85e21bac 4540
8082510e
YZ
4541 if (found_type == BTRFS_INODE_ITEM_KEY)
4542 break;
4543
4544 if (path->slots[0] == 0 ||
1262133b 4545 path->slots[0] != pending_del_slot ||
28f75a0e 4546 should_throttle || should_end) {
8082510e
YZ
4547 if (pending_del_nr) {
4548 ret = btrfs_del_items(trans, root, path,
4549 pending_del_slot,
4550 pending_del_nr);
79787eaa
JM
4551 if (ret) {
4552 btrfs_abort_transaction(trans,
4553 root, ret);
4554 goto error;
4555 }
8082510e
YZ
4556 pending_del_nr = 0;
4557 }
b3b4aa74 4558 btrfs_release_path(path);
28f75a0e 4559 if (should_throttle) {
1262133b
JB
4560 unsigned long updates = trans->delayed_ref_updates;
4561 if (updates) {
4562 trans->delayed_ref_updates = 0;
4563 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4564 if (ret && !err)
4565 err = ret;
4566 }
4567 }
28f75a0e
CM
4568 /*
4569 * if we failed to refill our space rsv, bail out
4570 * and let the transaction restart
4571 */
4572 if (should_end) {
4573 err = -EAGAIN;
4574 goto error;
4575 }
85e21bac 4576 goto search_again;
8082510e
YZ
4577 } else {
4578 path->slots[0]--;
85e21bac 4579 }
39279cc3 4580 }
8082510e 4581out:
85e21bac
CM
4582 if (pending_del_nr) {
4583 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4584 pending_del_nr);
79787eaa
JM
4585 if (ret)
4586 btrfs_abort_transaction(trans, root, ret);
85e21bac 4587 }
79787eaa 4588error:
c1aa4575 4589 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4590 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4591
39279cc3 4592 btrfs_free_path(path);
28ed1345 4593
28f75a0e 4594 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
28ed1345
CM
4595 unsigned long updates = trans->delayed_ref_updates;
4596 if (updates) {
4597 trans->delayed_ref_updates = 0;
4598 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4599 if (ret && !err)
4600 err = ret;
4601 }
4602 }
8082510e 4603 return err;
39279cc3
CM
4604}
4605
4606/*
2aaa6655
JB
4607 * btrfs_truncate_page - read, zero a chunk and write a page
4608 * @inode - inode that we're zeroing
4609 * @from - the offset to start zeroing
4610 * @len - the length to zero, 0 to zero the entire range respective to the
4611 * offset
4612 * @front - zero up to the offset instead of from the offset on
4613 *
4614 * This will find the page for the "from" offset and cow the page and zero the
4615 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4616 */
2aaa6655
JB
4617int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4618 int front)
39279cc3 4619{
2aaa6655 4620 struct address_space *mapping = inode->i_mapping;
db94535d 4621 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4622 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4623 struct btrfs_ordered_extent *ordered;
2ac55d41 4624 struct extent_state *cached_state = NULL;
e6dcd2dc 4625 char *kaddr;
db94535d 4626 u32 blocksize = root->sectorsize;
39279cc3
CM
4627 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4628 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4629 struct page *page;
3b16a4e3 4630 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4631 int ret = 0;
a52d9a80 4632 u64 page_start;
e6dcd2dc 4633 u64 page_end;
39279cc3 4634
2aaa6655
JB
4635 if ((offset & (blocksize - 1)) == 0 &&
4636 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4637 goto out;
7cf5b976 4638 ret = btrfs_delalloc_reserve_space(inode,
df480633 4639 round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
5d5e103a
JB
4640 if (ret)
4641 goto out;
39279cc3 4642
211c17f5 4643again:
3b16a4e3 4644 page = find_or_create_page(mapping, index, mask);
5d5e103a 4645 if (!page) {
7cf5b976 4646 btrfs_delalloc_release_space(inode,
df480633
QW
4647 round_down(from, PAGE_CACHE_SIZE),
4648 PAGE_CACHE_SIZE);
ac6a2b36 4649 ret = -ENOMEM;
39279cc3 4650 goto out;
5d5e103a 4651 }
e6dcd2dc
CM
4652
4653 page_start = page_offset(page);
4654 page_end = page_start + PAGE_CACHE_SIZE - 1;
4655
39279cc3 4656 if (!PageUptodate(page)) {
9ebefb18 4657 ret = btrfs_readpage(NULL, page);
39279cc3 4658 lock_page(page);
211c17f5
CM
4659 if (page->mapping != mapping) {
4660 unlock_page(page);
4661 page_cache_release(page);
4662 goto again;
4663 }
39279cc3
CM
4664 if (!PageUptodate(page)) {
4665 ret = -EIO;
89642229 4666 goto out_unlock;
39279cc3
CM
4667 }
4668 }
211c17f5 4669 wait_on_page_writeback(page);
e6dcd2dc 4670
d0082371 4671 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4672 set_page_extent_mapped(page);
4673
4674 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4675 if (ordered) {
2ac55d41
JB
4676 unlock_extent_cached(io_tree, page_start, page_end,
4677 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4678 unlock_page(page);
4679 page_cache_release(page);
eb84ae03 4680 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4681 btrfs_put_ordered_extent(ordered);
4682 goto again;
4683 }
4684
2ac55d41 4685 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4686 EXTENT_DIRTY | EXTENT_DELALLOC |
4687 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4688 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4689
2ac55d41
JB
4690 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4691 &cached_state);
9ed74f2d 4692 if (ret) {
2ac55d41
JB
4693 unlock_extent_cached(io_tree, page_start, page_end,
4694 &cached_state, GFP_NOFS);
9ed74f2d
JB
4695 goto out_unlock;
4696 }
4697
e6dcd2dc 4698 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4699 if (!len)
4700 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4701 kaddr = kmap(page);
2aaa6655
JB
4702 if (front)
4703 memset(kaddr, 0, offset);
4704 else
4705 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4706 flush_dcache_page(page);
4707 kunmap(page);
4708 }
247e743c 4709 ClearPageChecked(page);
e6dcd2dc 4710 set_page_dirty(page);
2ac55d41
JB
4711 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4712 GFP_NOFS);
39279cc3 4713
89642229 4714out_unlock:
5d5e103a 4715 if (ret)
7cf5b976
QW
4716 btrfs_delalloc_release_space(inode, page_start,
4717 PAGE_CACHE_SIZE);
39279cc3
CM
4718 unlock_page(page);
4719 page_cache_release(page);
4720out:
4721 return ret;
4722}
4723
16e7549f
JB
4724static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4725 u64 offset, u64 len)
4726{
4727 struct btrfs_trans_handle *trans;
4728 int ret;
4729
4730 /*
4731 * Still need to make sure the inode looks like it's been updated so
4732 * that any holes get logged if we fsync.
4733 */
4734 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4735 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4736 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4737 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4738 return 0;
4739 }
4740
4741 /*
4742 * 1 - for the one we're dropping
4743 * 1 - for the one we're adding
4744 * 1 - for updating the inode.
4745 */
4746 trans = btrfs_start_transaction(root, 3);
4747 if (IS_ERR(trans))
4748 return PTR_ERR(trans);
4749
4750 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4751 if (ret) {
4752 btrfs_abort_transaction(trans, root, ret);
4753 btrfs_end_transaction(trans, root);
4754 return ret;
4755 }
4756
4757 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4758 0, 0, len, 0, len, 0, 0, 0);
4759 if (ret)
4760 btrfs_abort_transaction(trans, root, ret);
4761 else
4762 btrfs_update_inode(trans, root, inode);
4763 btrfs_end_transaction(trans, root);
4764 return ret;
4765}
4766
695a0d0d
JB
4767/*
4768 * This function puts in dummy file extents for the area we're creating a hole
4769 * for. So if we are truncating this file to a larger size we need to insert
4770 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4771 * the range between oldsize and size
4772 */
a41ad394 4773int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4774{
9036c102
YZ
4775 struct btrfs_root *root = BTRFS_I(inode)->root;
4776 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4777 struct extent_map *em = NULL;
2ac55d41 4778 struct extent_state *cached_state = NULL;
5dc562c5 4779 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4780 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4781 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4782 u64 last_byte;
4783 u64 cur_offset;
4784 u64 hole_size;
9ed74f2d 4785 int err = 0;
39279cc3 4786
a71754fc
JB
4787 /*
4788 * If our size started in the middle of a page we need to zero out the
4789 * rest of the page before we expand the i_size, otherwise we could
4790 * expose stale data.
4791 */
4792 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4793 if (err)
4794 return err;
4795
9036c102
YZ
4796 if (size <= hole_start)
4797 return 0;
4798
9036c102
YZ
4799 while (1) {
4800 struct btrfs_ordered_extent *ordered;
fa7c1494 4801
2ac55d41 4802 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4803 &cached_state);
fa7c1494
MX
4804 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4805 block_end - hole_start);
9036c102
YZ
4806 if (!ordered)
4807 break;
2ac55d41
JB
4808 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4809 &cached_state, GFP_NOFS);
fa7c1494 4810 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4811 btrfs_put_ordered_extent(ordered);
4812 }
39279cc3 4813
9036c102
YZ
4814 cur_offset = hole_start;
4815 while (1) {
4816 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4817 block_end - cur_offset, 0);
79787eaa
JM
4818 if (IS_ERR(em)) {
4819 err = PTR_ERR(em);
f2767956 4820 em = NULL;
79787eaa
JM
4821 break;
4822 }
9036c102 4823 last_byte = min(extent_map_end(em), block_end);
fda2832f 4824 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4825 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4826 struct extent_map *hole_em;
9036c102 4827 hole_size = last_byte - cur_offset;
9ed74f2d 4828
16e7549f
JB
4829 err = maybe_insert_hole(root, inode, cur_offset,
4830 hole_size);
4831 if (err)
3893e33b 4832 break;
5dc562c5
JB
4833 btrfs_drop_extent_cache(inode, cur_offset,
4834 cur_offset + hole_size - 1, 0);
4835 hole_em = alloc_extent_map();
4836 if (!hole_em) {
4837 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4838 &BTRFS_I(inode)->runtime_flags);
4839 goto next;
4840 }
4841 hole_em->start = cur_offset;
4842 hole_em->len = hole_size;
4843 hole_em->orig_start = cur_offset;
8082510e 4844
5dc562c5
JB
4845 hole_em->block_start = EXTENT_MAP_HOLE;
4846 hole_em->block_len = 0;
b4939680 4847 hole_em->orig_block_len = 0;
cc95bef6 4848 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4849 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4850 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4851 hole_em->generation = root->fs_info->generation;
8082510e 4852
5dc562c5
JB
4853 while (1) {
4854 write_lock(&em_tree->lock);
09a2a8f9 4855 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4856 write_unlock(&em_tree->lock);
4857 if (err != -EEXIST)
4858 break;
4859 btrfs_drop_extent_cache(inode, cur_offset,
4860 cur_offset +
4861 hole_size - 1, 0);
4862 }
4863 free_extent_map(hole_em);
9036c102 4864 }
16e7549f 4865next:
9036c102 4866 free_extent_map(em);
a22285a6 4867 em = NULL;
9036c102 4868 cur_offset = last_byte;
8082510e 4869 if (cur_offset >= block_end)
9036c102
YZ
4870 break;
4871 }
a22285a6 4872 free_extent_map(em);
2ac55d41
JB
4873 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4874 GFP_NOFS);
9036c102
YZ
4875 return err;
4876}
39279cc3 4877
9ea24bbe
FM
4878static int wait_snapshoting_atomic_t(atomic_t *a)
4879{
4880 schedule();
4881 return 0;
4882}
4883
4884static void wait_for_snapshot_creation(struct btrfs_root *root)
4885{
4886 while (true) {
4887 int ret;
4888
4889 ret = btrfs_start_write_no_snapshoting(root);
4890 if (ret)
4891 break;
4892 wait_on_atomic_t(&root->will_be_snapshoted,
4893 wait_snapshoting_atomic_t,
4894 TASK_UNINTERRUPTIBLE);
4895 }
4896}
4897
3972f260 4898static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4899{
f4a2f4c5
MX
4900 struct btrfs_root *root = BTRFS_I(inode)->root;
4901 struct btrfs_trans_handle *trans;
a41ad394 4902 loff_t oldsize = i_size_read(inode);
3972f260
ES
4903 loff_t newsize = attr->ia_size;
4904 int mask = attr->ia_valid;
8082510e
YZ
4905 int ret;
4906
3972f260
ES
4907 /*
4908 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4909 * special case where we need to update the times despite not having
4910 * these flags set. For all other operations the VFS set these flags
4911 * explicitly if it wants a timestamp update.
4912 */
dff6efc3
CH
4913 if (newsize != oldsize) {
4914 inode_inc_iversion(inode);
4915 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4916 inode->i_ctime = inode->i_mtime =
4917 current_fs_time(inode->i_sb);
4918 }
3972f260 4919
a41ad394 4920 if (newsize > oldsize) {
7caef267 4921 truncate_pagecache(inode, newsize);
9ea24bbe
FM
4922 /*
4923 * Don't do an expanding truncate while snapshoting is ongoing.
4924 * This is to ensure the snapshot captures a fully consistent
4925 * state of this file - if the snapshot captures this expanding
4926 * truncation, it must capture all writes that happened before
4927 * this truncation.
4928 */
4929 wait_for_snapshot_creation(root);
a41ad394 4930 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4931 if (ret) {
4932 btrfs_end_write_no_snapshoting(root);
8082510e 4933 return ret;
9ea24bbe 4934 }
8082510e 4935
f4a2f4c5 4936 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4937 if (IS_ERR(trans)) {
4938 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4939 return PTR_ERR(trans);
9ea24bbe 4940 }
f4a2f4c5
MX
4941
4942 i_size_write(inode, newsize);
4943 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4944 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4945 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4946 btrfs_end_transaction(trans, root);
a41ad394 4947 } else {
8082510e 4948
a41ad394
JB
4949 /*
4950 * We're truncating a file that used to have good data down to
4951 * zero. Make sure it gets into the ordered flush list so that
4952 * any new writes get down to disk quickly.
4953 */
4954 if (newsize == 0)
72ac3c0d
JB
4955 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4956 &BTRFS_I(inode)->runtime_flags);
8082510e 4957
f3fe820c
JB
4958 /*
4959 * 1 for the orphan item we're going to add
4960 * 1 for the orphan item deletion.
4961 */
4962 trans = btrfs_start_transaction(root, 2);
4963 if (IS_ERR(trans))
4964 return PTR_ERR(trans);
4965
4966 /*
4967 * We need to do this in case we fail at _any_ point during the
4968 * actual truncate. Once we do the truncate_setsize we could
4969 * invalidate pages which forces any outstanding ordered io to
4970 * be instantly completed which will give us extents that need
4971 * to be truncated. If we fail to get an orphan inode down we
4972 * could have left over extents that were never meant to live,
4973 * so we need to garuntee from this point on that everything
4974 * will be consistent.
4975 */
4976 ret = btrfs_orphan_add(trans, inode);
4977 btrfs_end_transaction(trans, root);
4978 if (ret)
4979 return ret;
4980
a41ad394
JB
4981 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4982 truncate_setsize(inode, newsize);
2e60a51e
MX
4983
4984 /* Disable nonlocked read DIO to avoid the end less truncate */
4985 btrfs_inode_block_unlocked_dio(inode);
4986 inode_dio_wait(inode);
4987 btrfs_inode_resume_unlocked_dio(inode);
4988
a41ad394 4989 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4990 if (ret && inode->i_nlink) {
4991 int err;
4992
4993 /*
4994 * failed to truncate, disk_i_size is only adjusted down
4995 * as we remove extents, so it should represent the true
4996 * size of the inode, so reset the in memory size and
4997 * delete our orphan entry.
4998 */
4999 trans = btrfs_join_transaction(root);
5000 if (IS_ERR(trans)) {
5001 btrfs_orphan_del(NULL, inode);
5002 return ret;
5003 }
5004 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5005 err = btrfs_orphan_del(trans, inode);
5006 if (err)
5007 btrfs_abort_transaction(trans, root, err);
5008 btrfs_end_transaction(trans, root);
5009 }
8082510e
YZ
5010 }
5011
a41ad394 5012 return ret;
8082510e
YZ
5013}
5014
9036c102
YZ
5015static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5016{
2b0143b5 5017 struct inode *inode = d_inode(dentry);
b83cc969 5018 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5019 int err;
39279cc3 5020
b83cc969
LZ
5021 if (btrfs_root_readonly(root))
5022 return -EROFS;
5023
9036c102
YZ
5024 err = inode_change_ok(inode, attr);
5025 if (err)
5026 return err;
2bf5a725 5027
5a3f23d5 5028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5029 err = btrfs_setsize(inode, attr);
8082510e
YZ
5030 if (err)
5031 return err;
39279cc3 5032 }
9036c102 5033
1025774c
CH
5034 if (attr->ia_valid) {
5035 setattr_copy(inode, attr);
0c4d2d95 5036 inode_inc_iversion(inode);
22c44fe6 5037 err = btrfs_dirty_inode(inode);
1025774c 5038
22c44fe6 5039 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5040 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5041 }
33268eaf 5042
39279cc3
CM
5043 return err;
5044}
61295eb8 5045
131e404a
FDBM
5046/*
5047 * While truncating the inode pages during eviction, we get the VFS calling
5048 * btrfs_invalidatepage() against each page of the inode. This is slow because
5049 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5050 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5051 * extent_state structures over and over, wasting lots of time.
5052 *
5053 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5054 * those expensive operations on a per page basis and do only the ordered io
5055 * finishing, while we release here the extent_map and extent_state structures,
5056 * without the excessive merging and splitting.
5057 */
5058static void evict_inode_truncate_pages(struct inode *inode)
5059{
5060 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5061 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5062 struct rb_node *node;
5063
5064 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5065 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5066
5067 write_lock(&map_tree->lock);
5068 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5069 struct extent_map *em;
5070
5071 node = rb_first(&map_tree->map);
5072 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5073 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5074 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5075 remove_extent_mapping(map_tree, em);
5076 free_extent_map(em);
7064dd5c
FM
5077 if (need_resched()) {
5078 write_unlock(&map_tree->lock);
5079 cond_resched();
5080 write_lock(&map_tree->lock);
5081 }
131e404a
FDBM
5082 }
5083 write_unlock(&map_tree->lock);
5084
6ca07097
FM
5085 /*
5086 * Keep looping until we have no more ranges in the io tree.
5087 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5088 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5089 * still in progress (unlocked the pages in the bio but did not yet
5090 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5091 * ranges can still be locked and eviction started because before
5092 * submitting those bios, which are executed by a separate task (work
5093 * queue kthread), inode references (inode->i_count) were not taken
5094 * (which would be dropped in the end io callback of each bio).
5095 * Therefore here we effectively end up waiting for those bios and
5096 * anyone else holding locked ranges without having bumped the inode's
5097 * reference count - if we don't do it, when they access the inode's
5098 * io_tree to unlock a range it may be too late, leading to an
5099 * use-after-free issue.
5100 */
131e404a
FDBM
5101 spin_lock(&io_tree->lock);
5102 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5103 struct extent_state *state;
5104 struct extent_state *cached_state = NULL;
6ca07097
FM
5105 u64 start;
5106 u64 end;
131e404a
FDBM
5107
5108 node = rb_first(&io_tree->state);
5109 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5110 start = state->start;
5111 end = state->end;
131e404a
FDBM
5112 spin_unlock(&io_tree->lock);
5113
6ca07097 5114 lock_extent_bits(io_tree, start, end, 0, &cached_state);
b9d0b389
QW
5115
5116 /*
5117 * If still has DELALLOC flag, the extent didn't reach disk,
5118 * and its reserved space won't be freed by delayed_ref.
5119 * So we need to free its reserved space here.
5120 * (Refer to comment in btrfs_invalidatepage, case 2)
5121 *
5122 * Note, end is the bytenr of last byte, so we need + 1 here.
5123 */
5124 if (state->state & EXTENT_DELALLOC)
5125 btrfs_qgroup_free_data(inode, start, end - start + 1);
5126
6ca07097 5127 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5128 EXTENT_LOCKED | EXTENT_DIRTY |
5129 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5130 EXTENT_DEFRAG, 1, 1,
5131 &cached_state, GFP_NOFS);
131e404a 5132
7064dd5c 5133 cond_resched();
131e404a
FDBM
5134 spin_lock(&io_tree->lock);
5135 }
5136 spin_unlock(&io_tree->lock);
5137}
5138
bd555975 5139void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5140{
5141 struct btrfs_trans_handle *trans;
5142 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5143 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5144 int steal_from_global = 0;
07127184 5145 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5146 int ret;
5147
1abe9b8a 5148 trace_btrfs_inode_evict(inode);
5149
131e404a
FDBM
5150 evict_inode_truncate_pages(inode);
5151
69e9c6c6
SB
5152 if (inode->i_nlink &&
5153 ((btrfs_root_refs(&root->root_item) != 0 &&
5154 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5155 btrfs_is_free_space_inode(inode)))
bd555975
AV
5156 goto no_delete;
5157
39279cc3 5158 if (is_bad_inode(inode)) {
7b128766 5159 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5160 goto no_delete;
5161 }
bd555975 5162 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5163 if (!special_file(inode->i_mode))
5164 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5165
f612496b
MX
5166 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5167
c71bf099 5168 if (root->fs_info->log_root_recovering) {
6bf02314 5169 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5170 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5171 goto no_delete;
5172 }
5173
76dda93c 5174 if (inode->i_nlink > 0) {
69e9c6c6
SB
5175 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5176 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5177 goto no_delete;
5178 }
5179
0e8c36a9
MX
5180 ret = btrfs_commit_inode_delayed_inode(inode);
5181 if (ret) {
5182 btrfs_orphan_del(NULL, inode);
5183 goto no_delete;
5184 }
5185
66d8f3dd 5186 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5187 if (!rsv) {
5188 btrfs_orphan_del(NULL, inode);
5189 goto no_delete;
5190 }
4a338542 5191 rsv->size = min_size;
ca7e70f5 5192 rsv->failfast = 1;
726c35fa 5193 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5194
dbe674a9 5195 btrfs_i_size_write(inode, 0);
5f39d397 5196
4289a667 5197 /*
8407aa46
MX
5198 * This is a bit simpler than btrfs_truncate since we've already
5199 * reserved our space for our orphan item in the unlink, so we just
5200 * need to reserve some slack space in case we add bytes and update
5201 * inode item when doing the truncate.
4289a667 5202 */
8082510e 5203 while (1) {
08e007d2
MX
5204 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5205 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5206
5207 /*
5208 * Try and steal from the global reserve since we will
5209 * likely not use this space anyway, we want to try as
5210 * hard as possible to get this to work.
5211 */
5212 if (ret)
3bce876f
JB
5213 steal_from_global++;
5214 else
5215 steal_from_global = 0;
5216 ret = 0;
d68fc57b 5217
3bce876f
JB
5218 /*
5219 * steal_from_global == 0: we reserved stuff, hooray!
5220 * steal_from_global == 1: we didn't reserve stuff, boo!
5221 * steal_from_global == 2: we've committed, still not a lot of
5222 * room but maybe we'll have room in the global reserve this
5223 * time.
5224 * steal_from_global == 3: abandon all hope!
5225 */
5226 if (steal_from_global > 2) {
c2cf52eb
SK
5227 btrfs_warn(root->fs_info,
5228 "Could not get space for a delete, will truncate on mount %d",
5229 ret);
4289a667
JB
5230 btrfs_orphan_del(NULL, inode);
5231 btrfs_free_block_rsv(root, rsv);
5232 goto no_delete;
d68fc57b 5233 }
7b128766 5234
0e8c36a9 5235 trans = btrfs_join_transaction(root);
4289a667
JB
5236 if (IS_ERR(trans)) {
5237 btrfs_orphan_del(NULL, inode);
5238 btrfs_free_block_rsv(root, rsv);
5239 goto no_delete;
d68fc57b 5240 }
7b128766 5241
3bce876f
JB
5242 /*
5243 * We can't just steal from the global reserve, we need tomake
5244 * sure there is room to do it, if not we need to commit and try
5245 * again.
5246 */
5247 if (steal_from_global) {
5248 if (!btrfs_check_space_for_delayed_refs(trans, root))
5249 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5250 min_size);
5251 else
5252 ret = -ENOSPC;
5253 }
5254
5255 /*
5256 * Couldn't steal from the global reserve, we have too much
5257 * pending stuff built up, commit the transaction and try it
5258 * again.
5259 */
5260 if (ret) {
5261 ret = btrfs_commit_transaction(trans, root);
5262 if (ret) {
5263 btrfs_orphan_del(NULL, inode);
5264 btrfs_free_block_rsv(root, rsv);
5265 goto no_delete;
5266 }
5267 continue;
5268 } else {
5269 steal_from_global = 0;
5270 }
5271
4289a667
JB
5272 trans->block_rsv = rsv;
5273
d68fc57b 5274 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5275 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5276 break;
85e21bac 5277
8407aa46 5278 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5279 btrfs_end_transaction(trans, root);
5280 trans = NULL;
b53d3f5d 5281 btrfs_btree_balance_dirty(root);
8082510e 5282 }
5f39d397 5283
4289a667
JB
5284 btrfs_free_block_rsv(root, rsv);
5285
4ef31a45
JB
5286 /*
5287 * Errors here aren't a big deal, it just means we leave orphan items
5288 * in the tree. They will be cleaned up on the next mount.
5289 */
8082510e 5290 if (ret == 0) {
4289a667 5291 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5292 btrfs_orphan_del(trans, inode);
5293 } else {
5294 btrfs_orphan_del(NULL, inode);
8082510e 5295 }
54aa1f4d 5296
4289a667 5297 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5298 if (!(root == root->fs_info->tree_root ||
5299 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5300 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5301
54aa1f4d 5302 btrfs_end_transaction(trans, root);
b53d3f5d 5303 btrfs_btree_balance_dirty(root);
39279cc3 5304no_delete:
89042e5a 5305 btrfs_remove_delayed_node(inode);
dbd5768f 5306 clear_inode(inode);
8082510e 5307 return;
39279cc3
CM
5308}
5309
5310/*
5311 * this returns the key found in the dir entry in the location pointer.
5312 * If no dir entries were found, location->objectid is 0.
5313 */
5314static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5315 struct btrfs_key *location)
5316{
5317 const char *name = dentry->d_name.name;
5318 int namelen = dentry->d_name.len;
5319 struct btrfs_dir_item *di;
5320 struct btrfs_path *path;
5321 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5322 int ret = 0;
39279cc3
CM
5323
5324 path = btrfs_alloc_path();
d8926bb3
MF
5325 if (!path)
5326 return -ENOMEM;
3954401f 5327
33345d01 5328 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5329 namelen, 0);
0d9f7f3e
Y
5330 if (IS_ERR(di))
5331 ret = PTR_ERR(di);
d397712b 5332
c704005d 5333 if (IS_ERR_OR_NULL(di))
3954401f 5334 goto out_err;
d397712b 5335
5f39d397 5336 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5337out:
39279cc3
CM
5338 btrfs_free_path(path);
5339 return ret;
3954401f
CM
5340out_err:
5341 location->objectid = 0;
5342 goto out;
39279cc3
CM
5343}
5344
5345/*
5346 * when we hit a tree root in a directory, the btrfs part of the inode
5347 * needs to be changed to reflect the root directory of the tree root. This
5348 * is kind of like crossing a mount point.
5349 */
5350static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5351 struct inode *dir,
5352 struct dentry *dentry,
5353 struct btrfs_key *location,
5354 struct btrfs_root **sub_root)
39279cc3 5355{
4df27c4d
YZ
5356 struct btrfs_path *path;
5357 struct btrfs_root *new_root;
5358 struct btrfs_root_ref *ref;
5359 struct extent_buffer *leaf;
1d4c08e0 5360 struct btrfs_key key;
4df27c4d
YZ
5361 int ret;
5362 int err = 0;
39279cc3 5363
4df27c4d
YZ
5364 path = btrfs_alloc_path();
5365 if (!path) {
5366 err = -ENOMEM;
5367 goto out;
5368 }
39279cc3 5369
4df27c4d 5370 err = -ENOENT;
1d4c08e0
DS
5371 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5372 key.type = BTRFS_ROOT_REF_KEY;
5373 key.offset = location->objectid;
5374
5375 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5376 0, 0);
4df27c4d
YZ
5377 if (ret) {
5378 if (ret < 0)
5379 err = ret;
5380 goto out;
5381 }
39279cc3 5382
4df27c4d
YZ
5383 leaf = path->nodes[0];
5384 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5385 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5386 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5387 goto out;
39279cc3 5388
4df27c4d
YZ
5389 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5390 (unsigned long)(ref + 1),
5391 dentry->d_name.len);
5392 if (ret)
5393 goto out;
5394
b3b4aa74 5395 btrfs_release_path(path);
4df27c4d
YZ
5396
5397 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5398 if (IS_ERR(new_root)) {
5399 err = PTR_ERR(new_root);
5400 goto out;
5401 }
5402
4df27c4d
YZ
5403 *sub_root = new_root;
5404 location->objectid = btrfs_root_dirid(&new_root->root_item);
5405 location->type = BTRFS_INODE_ITEM_KEY;
5406 location->offset = 0;
5407 err = 0;
5408out:
5409 btrfs_free_path(path);
5410 return err;
39279cc3
CM
5411}
5412
5d4f98a2
YZ
5413static void inode_tree_add(struct inode *inode)
5414{
5415 struct btrfs_root *root = BTRFS_I(inode)->root;
5416 struct btrfs_inode *entry;
03e860bd
FNP
5417 struct rb_node **p;
5418 struct rb_node *parent;
cef21937 5419 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5420 u64 ino = btrfs_ino(inode);
5d4f98a2 5421
1d3382cb 5422 if (inode_unhashed(inode))
76dda93c 5423 return;
e1409cef 5424 parent = NULL;
5d4f98a2 5425 spin_lock(&root->inode_lock);
e1409cef 5426 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5427 while (*p) {
5428 parent = *p;
5429 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5430
33345d01 5431 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5432 p = &parent->rb_left;
33345d01 5433 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5434 p = &parent->rb_right;
5d4f98a2
YZ
5435 else {
5436 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5437 (I_WILL_FREE | I_FREEING)));
cef21937 5438 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5439 RB_CLEAR_NODE(parent);
5440 spin_unlock(&root->inode_lock);
cef21937 5441 return;
5d4f98a2
YZ
5442 }
5443 }
cef21937
FDBM
5444 rb_link_node(new, parent, p);
5445 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5446 spin_unlock(&root->inode_lock);
5447}
5448
5449static void inode_tree_del(struct inode *inode)
5450{
5451 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5452 int empty = 0;
5d4f98a2 5453
03e860bd 5454 spin_lock(&root->inode_lock);
5d4f98a2 5455 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5456 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5457 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5458 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5459 }
03e860bd 5460 spin_unlock(&root->inode_lock);
76dda93c 5461
69e9c6c6 5462 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5463 synchronize_srcu(&root->fs_info->subvol_srcu);
5464 spin_lock(&root->inode_lock);
5465 empty = RB_EMPTY_ROOT(&root->inode_tree);
5466 spin_unlock(&root->inode_lock);
5467 if (empty)
5468 btrfs_add_dead_root(root);
5469 }
5470}
5471
143bede5 5472void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5473{
5474 struct rb_node *node;
5475 struct rb_node *prev;
5476 struct btrfs_inode *entry;
5477 struct inode *inode;
5478 u64 objectid = 0;
5479
7813b3db
LB
5480 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5481 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5482
5483 spin_lock(&root->inode_lock);
5484again:
5485 node = root->inode_tree.rb_node;
5486 prev = NULL;
5487 while (node) {
5488 prev = node;
5489 entry = rb_entry(node, struct btrfs_inode, rb_node);
5490
33345d01 5491 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5492 node = node->rb_left;
33345d01 5493 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5494 node = node->rb_right;
5495 else
5496 break;
5497 }
5498 if (!node) {
5499 while (prev) {
5500 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5501 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5502 node = prev;
5503 break;
5504 }
5505 prev = rb_next(prev);
5506 }
5507 }
5508 while (node) {
5509 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5510 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5511 inode = igrab(&entry->vfs_inode);
5512 if (inode) {
5513 spin_unlock(&root->inode_lock);
5514 if (atomic_read(&inode->i_count) > 1)
5515 d_prune_aliases(inode);
5516 /*
45321ac5 5517 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5518 * the inode cache when its usage count
5519 * hits zero.
5520 */
5521 iput(inode);
5522 cond_resched();
5523 spin_lock(&root->inode_lock);
5524 goto again;
5525 }
5526
5527 if (cond_resched_lock(&root->inode_lock))
5528 goto again;
5529
5530 node = rb_next(node);
5531 }
5532 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5533}
5534
e02119d5
CM
5535static int btrfs_init_locked_inode(struct inode *inode, void *p)
5536{
5537 struct btrfs_iget_args *args = p;
90d3e592
CM
5538 inode->i_ino = args->location->objectid;
5539 memcpy(&BTRFS_I(inode)->location, args->location,
5540 sizeof(*args->location));
e02119d5 5541 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5542 return 0;
5543}
5544
5545static int btrfs_find_actor(struct inode *inode, void *opaque)
5546{
5547 struct btrfs_iget_args *args = opaque;
90d3e592 5548 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5549 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5550}
5551
5d4f98a2 5552static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5553 struct btrfs_key *location,
5d4f98a2 5554 struct btrfs_root *root)
39279cc3
CM
5555{
5556 struct inode *inode;
5557 struct btrfs_iget_args args;
90d3e592 5558 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5559
90d3e592 5560 args.location = location;
39279cc3
CM
5561 args.root = root;
5562
778ba82b 5563 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5564 btrfs_init_locked_inode,
5565 (void *)&args);
5566 return inode;
5567}
5568
1a54ef8c
BR
5569/* Get an inode object given its location and corresponding root.
5570 * Returns in *is_new if the inode was read from disk
5571 */
5572struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5573 struct btrfs_root *root, int *new)
1a54ef8c
BR
5574{
5575 struct inode *inode;
5576
90d3e592 5577 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5578 if (!inode)
5d4f98a2 5579 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5580
5581 if (inode->i_state & I_NEW) {
1a54ef8c 5582 btrfs_read_locked_inode(inode);
1748f843
MF
5583 if (!is_bad_inode(inode)) {
5584 inode_tree_add(inode);
5585 unlock_new_inode(inode);
5586 if (new)
5587 *new = 1;
5588 } else {
e0b6d65b
ST
5589 unlock_new_inode(inode);
5590 iput(inode);
5591 inode = ERR_PTR(-ESTALE);
1748f843
MF
5592 }
5593 }
5594
1a54ef8c
BR
5595 return inode;
5596}
5597
4df27c4d
YZ
5598static struct inode *new_simple_dir(struct super_block *s,
5599 struct btrfs_key *key,
5600 struct btrfs_root *root)
5601{
5602 struct inode *inode = new_inode(s);
5603
5604 if (!inode)
5605 return ERR_PTR(-ENOMEM);
5606
4df27c4d
YZ
5607 BTRFS_I(inode)->root = root;
5608 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5609 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5610
5611 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5612 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5613 inode->i_fop = &simple_dir_operations;
5614 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
9cc97d64 5615 inode->i_mtime = CURRENT_TIME;
5616 inode->i_atime = inode->i_mtime;
5617 inode->i_ctime = inode->i_mtime;
5618 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5619
5620 return inode;
5621}
5622
3de4586c 5623struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5624{
d397712b 5625 struct inode *inode;
4df27c4d 5626 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5627 struct btrfs_root *sub_root = root;
5628 struct btrfs_key location;
76dda93c 5629 int index;
b4aff1f8 5630 int ret = 0;
39279cc3
CM
5631
5632 if (dentry->d_name.len > BTRFS_NAME_LEN)
5633 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5634
39e3c955 5635 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5636 if (ret < 0)
5637 return ERR_PTR(ret);
5f39d397 5638
4df27c4d 5639 if (location.objectid == 0)
5662344b 5640 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5641
5642 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5643 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5644 return inode;
5645 }
5646
5647 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5648
76dda93c 5649 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5650 ret = fixup_tree_root_location(root, dir, dentry,
5651 &location, &sub_root);
5652 if (ret < 0) {
5653 if (ret != -ENOENT)
5654 inode = ERR_PTR(ret);
5655 else
5656 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5657 } else {
73f73415 5658 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5659 }
76dda93c
YZ
5660 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5661
34d19bad 5662 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5663 down_read(&root->fs_info->cleanup_work_sem);
5664 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5665 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5666 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5667 if (ret) {
5668 iput(inode);
66b4ffd1 5669 inode = ERR_PTR(ret);
01cd3367 5670 }
c71bf099
YZ
5671 }
5672
3de4586c
CM
5673 return inode;
5674}
5675
fe15ce44 5676static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5677{
5678 struct btrfs_root *root;
2b0143b5 5679 struct inode *inode = d_inode(dentry);
76dda93c 5680
848cce0d 5681 if (!inode && !IS_ROOT(dentry))
2b0143b5 5682 inode = d_inode(dentry->d_parent);
76dda93c 5683
848cce0d
LZ
5684 if (inode) {
5685 root = BTRFS_I(inode)->root;
efefb143
YZ
5686 if (btrfs_root_refs(&root->root_item) == 0)
5687 return 1;
848cce0d
LZ
5688
5689 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5690 return 1;
efefb143 5691 }
76dda93c
YZ
5692 return 0;
5693}
5694
b4aff1f8
JB
5695static void btrfs_dentry_release(struct dentry *dentry)
5696{
944a4515 5697 kfree(dentry->d_fsdata);
b4aff1f8
JB
5698}
5699
3de4586c 5700static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5701 unsigned int flags)
3de4586c 5702{
5662344b 5703 struct inode *inode;
a66e7cc6 5704
5662344b
TI
5705 inode = btrfs_lookup_dentry(dir, dentry);
5706 if (IS_ERR(inode)) {
5707 if (PTR_ERR(inode) == -ENOENT)
5708 inode = NULL;
5709 else
5710 return ERR_CAST(inode);
5711 }
5712
41d28bca 5713 return d_splice_alias(inode, dentry);
39279cc3
CM
5714}
5715
16cdcec7 5716unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5717 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5718};
5719
9cdda8d3 5720static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5721{
9cdda8d3 5722 struct inode *inode = file_inode(file);
39279cc3
CM
5723 struct btrfs_root *root = BTRFS_I(inode)->root;
5724 struct btrfs_item *item;
5725 struct btrfs_dir_item *di;
5726 struct btrfs_key key;
5f39d397 5727 struct btrfs_key found_key;
39279cc3 5728 struct btrfs_path *path;
16cdcec7
MX
5729 struct list_head ins_list;
5730 struct list_head del_list;
39279cc3 5731 int ret;
5f39d397 5732 struct extent_buffer *leaf;
39279cc3 5733 int slot;
39279cc3
CM
5734 unsigned char d_type;
5735 int over = 0;
5736 u32 di_cur;
5737 u32 di_total;
5738 u32 di_len;
5739 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5740 char tmp_name[32];
5741 char *name_ptr;
5742 int name_len;
9cdda8d3 5743 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5744
5745 /* FIXME, use a real flag for deciding about the key type */
5746 if (root->fs_info->tree_root == root)
5747 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5748
9cdda8d3
AV
5749 if (!dir_emit_dots(file, ctx))
5750 return 0;
5751
49593bfa 5752 path = btrfs_alloc_path();
16cdcec7
MX
5753 if (!path)
5754 return -ENOMEM;
ff5714cc 5755
026fd317 5756 path->reada = 1;
49593bfa 5757
16cdcec7
MX
5758 if (key_type == BTRFS_DIR_INDEX_KEY) {
5759 INIT_LIST_HEAD(&ins_list);
5760 INIT_LIST_HEAD(&del_list);
5761 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5762 }
5763
962a298f 5764 key.type = key_type;
9cdda8d3 5765 key.offset = ctx->pos;
33345d01 5766 key.objectid = btrfs_ino(inode);
5f39d397 5767
39279cc3
CM
5768 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5769 if (ret < 0)
5770 goto err;
49593bfa
DW
5771
5772 while (1) {
5f39d397 5773 leaf = path->nodes[0];
39279cc3 5774 slot = path->slots[0];
b9e03af0
LZ
5775 if (slot >= btrfs_header_nritems(leaf)) {
5776 ret = btrfs_next_leaf(root, path);
5777 if (ret < 0)
5778 goto err;
5779 else if (ret > 0)
5780 break;
5781 continue;
39279cc3 5782 }
3de4586c 5783
dd3cc16b 5784 item = btrfs_item_nr(slot);
5f39d397
CM
5785 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5786
5787 if (found_key.objectid != key.objectid)
39279cc3 5788 break;
962a298f 5789 if (found_key.type != key_type)
39279cc3 5790 break;
9cdda8d3 5791 if (found_key.offset < ctx->pos)
b9e03af0 5792 goto next;
16cdcec7
MX
5793 if (key_type == BTRFS_DIR_INDEX_KEY &&
5794 btrfs_should_delete_dir_index(&del_list,
5795 found_key.offset))
5796 goto next;
5f39d397 5797
9cdda8d3 5798 ctx->pos = found_key.offset;
16cdcec7 5799 is_curr = 1;
49593bfa 5800
39279cc3
CM
5801 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5802 di_cur = 0;
5f39d397 5803 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5804
5805 while (di_cur < di_total) {
5f39d397
CM
5806 struct btrfs_key location;
5807
22a94d44
JB
5808 if (verify_dir_item(root, leaf, di))
5809 break;
5810
5f39d397 5811 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5812 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5813 name_ptr = tmp_name;
5814 } else {
5815 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5816 if (!name_ptr) {
5817 ret = -ENOMEM;
5818 goto err;
5819 }
5f39d397
CM
5820 }
5821 read_extent_buffer(leaf, name_ptr,
5822 (unsigned long)(di + 1), name_len);
5823
5824 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5825 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5826
fede766f 5827
3de4586c 5828 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5829 * skip it.
5830 *
5831 * In contrast to old kernels, we insert the snapshot's
5832 * dir item and dir index after it has been created, so
5833 * we won't find a reference to our own snapshot. We
5834 * still keep the following code for backward
5835 * compatibility.
3de4586c
CM
5836 */
5837 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5838 location.objectid == root->root_key.objectid) {
5839 over = 0;
5840 goto skip;
5841 }
9cdda8d3
AV
5842 over = !dir_emit(ctx, name_ptr, name_len,
5843 location.objectid, d_type);
5f39d397 5844
3de4586c 5845skip:
5f39d397
CM
5846 if (name_ptr != tmp_name)
5847 kfree(name_ptr);
5848
39279cc3
CM
5849 if (over)
5850 goto nopos;
5103e947 5851 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5852 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5853 di_cur += di_len;
5854 di = (struct btrfs_dir_item *)((char *)di + di_len);
5855 }
b9e03af0
LZ
5856next:
5857 path->slots[0]++;
39279cc3 5858 }
49593bfa 5859
16cdcec7
MX
5860 if (key_type == BTRFS_DIR_INDEX_KEY) {
5861 if (is_curr)
9cdda8d3
AV
5862 ctx->pos++;
5863 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5864 if (ret)
5865 goto nopos;
5866 }
5867
49593bfa 5868 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5869 ctx->pos++;
5870
5871 /*
5872 * Stop new entries from being returned after we return the last
5873 * entry.
5874 *
5875 * New directory entries are assigned a strictly increasing
5876 * offset. This means that new entries created during readdir
5877 * are *guaranteed* to be seen in the future by that readdir.
5878 * This has broken buggy programs which operate on names as
5879 * they're returned by readdir. Until we re-use freed offsets
5880 * we have this hack to stop new entries from being returned
5881 * under the assumption that they'll never reach this huge
5882 * offset.
5883 *
5884 * This is being careful not to overflow 32bit loff_t unless the
5885 * last entry requires it because doing so has broken 32bit apps
5886 * in the past.
5887 */
5888 if (key_type == BTRFS_DIR_INDEX_KEY) {
5889 if (ctx->pos >= INT_MAX)
5890 ctx->pos = LLONG_MAX;
5891 else
5892 ctx->pos = INT_MAX;
5893 }
39279cc3
CM
5894nopos:
5895 ret = 0;
5896err:
16cdcec7
MX
5897 if (key_type == BTRFS_DIR_INDEX_KEY)
5898 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5899 btrfs_free_path(path);
39279cc3
CM
5900 return ret;
5901}
5902
a9185b41 5903int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5904{
5905 struct btrfs_root *root = BTRFS_I(inode)->root;
5906 struct btrfs_trans_handle *trans;
5907 int ret = 0;
0af3d00b 5908 bool nolock = false;
39279cc3 5909
72ac3c0d 5910 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5911 return 0;
5912
83eea1f1 5913 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5914 nolock = true;
0af3d00b 5915
a9185b41 5916 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5917 if (nolock)
7a7eaa40 5918 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5919 else
7a7eaa40 5920 trans = btrfs_join_transaction(root);
3612b495
TI
5921 if (IS_ERR(trans))
5922 return PTR_ERR(trans);
a698d075 5923 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5924 }
5925 return ret;
5926}
5927
5928/*
54aa1f4d 5929 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5930 * inode changes. But, it is most likely to find the inode in cache.
5931 * FIXME, needs more benchmarking...there are no reasons other than performance
5932 * to keep or drop this code.
5933 */
48a3b636 5934static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5935{
5936 struct btrfs_root *root = BTRFS_I(inode)->root;
5937 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5938 int ret;
5939
72ac3c0d 5940 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5941 return 0;
39279cc3 5942
7a7eaa40 5943 trans = btrfs_join_transaction(root);
22c44fe6
JB
5944 if (IS_ERR(trans))
5945 return PTR_ERR(trans);
8929ecfa
YZ
5946
5947 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5948 if (ret && ret == -ENOSPC) {
5949 /* whoops, lets try again with the full transaction */
5950 btrfs_end_transaction(trans, root);
5951 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5952 if (IS_ERR(trans))
5953 return PTR_ERR(trans);
8929ecfa 5954
94b60442 5955 ret = btrfs_update_inode(trans, root, inode);
94b60442 5956 }
39279cc3 5957 btrfs_end_transaction(trans, root);
16cdcec7
MX
5958 if (BTRFS_I(inode)->delayed_node)
5959 btrfs_balance_delayed_items(root);
22c44fe6
JB
5960
5961 return ret;
5962}
5963
5964/*
5965 * This is a copy of file_update_time. We need this so we can return error on
5966 * ENOSPC for updating the inode in the case of file write and mmap writes.
5967 */
e41f941a
JB
5968static int btrfs_update_time(struct inode *inode, struct timespec *now,
5969 int flags)
22c44fe6 5970{
2bc55652
AB
5971 struct btrfs_root *root = BTRFS_I(inode)->root;
5972
5973 if (btrfs_root_readonly(root))
5974 return -EROFS;
5975
e41f941a 5976 if (flags & S_VERSION)
22c44fe6 5977 inode_inc_iversion(inode);
e41f941a
JB
5978 if (flags & S_CTIME)
5979 inode->i_ctime = *now;
5980 if (flags & S_MTIME)
5981 inode->i_mtime = *now;
5982 if (flags & S_ATIME)
5983 inode->i_atime = *now;
5984 return btrfs_dirty_inode(inode);
39279cc3
CM
5985}
5986
d352ac68
CM
5987/*
5988 * find the highest existing sequence number in a directory
5989 * and then set the in-memory index_cnt variable to reflect
5990 * free sequence numbers
5991 */
aec7477b
JB
5992static int btrfs_set_inode_index_count(struct inode *inode)
5993{
5994 struct btrfs_root *root = BTRFS_I(inode)->root;
5995 struct btrfs_key key, found_key;
5996 struct btrfs_path *path;
5997 struct extent_buffer *leaf;
5998 int ret;
5999
33345d01 6000 key.objectid = btrfs_ino(inode);
962a298f 6001 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6002 key.offset = (u64)-1;
6003
6004 path = btrfs_alloc_path();
6005 if (!path)
6006 return -ENOMEM;
6007
6008 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6009 if (ret < 0)
6010 goto out;
6011 /* FIXME: we should be able to handle this */
6012 if (ret == 0)
6013 goto out;
6014 ret = 0;
6015
6016 /*
6017 * MAGIC NUMBER EXPLANATION:
6018 * since we search a directory based on f_pos we have to start at 2
6019 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6020 * else has to start at 2
6021 */
6022 if (path->slots[0] == 0) {
6023 BTRFS_I(inode)->index_cnt = 2;
6024 goto out;
6025 }
6026
6027 path->slots[0]--;
6028
6029 leaf = path->nodes[0];
6030 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6031
33345d01 6032 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6033 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6034 BTRFS_I(inode)->index_cnt = 2;
6035 goto out;
6036 }
6037
6038 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6039out:
6040 btrfs_free_path(path);
6041 return ret;
6042}
6043
d352ac68
CM
6044/*
6045 * helper to find a free sequence number in a given directory. This current
6046 * code is very simple, later versions will do smarter things in the btree
6047 */
3de4586c 6048int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6049{
6050 int ret = 0;
6051
6052 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6053 ret = btrfs_inode_delayed_dir_index_count(dir);
6054 if (ret) {
6055 ret = btrfs_set_inode_index_count(dir);
6056 if (ret)
6057 return ret;
6058 }
aec7477b
JB
6059 }
6060
00e4e6b3 6061 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6062 BTRFS_I(dir)->index_cnt++;
6063
6064 return ret;
6065}
6066
b0d5d10f
CM
6067static int btrfs_insert_inode_locked(struct inode *inode)
6068{
6069 struct btrfs_iget_args args;
6070 args.location = &BTRFS_I(inode)->location;
6071 args.root = BTRFS_I(inode)->root;
6072
6073 return insert_inode_locked4(inode,
6074 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6075 btrfs_find_actor, &args);
6076}
6077
39279cc3
CM
6078static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6079 struct btrfs_root *root,
aec7477b 6080 struct inode *dir,
9c58309d 6081 const char *name, int name_len,
175a4eb7
AV
6082 u64 ref_objectid, u64 objectid,
6083 umode_t mode, u64 *index)
39279cc3
CM
6084{
6085 struct inode *inode;
5f39d397 6086 struct btrfs_inode_item *inode_item;
39279cc3 6087 struct btrfs_key *location;
5f39d397 6088 struct btrfs_path *path;
9c58309d
CM
6089 struct btrfs_inode_ref *ref;
6090 struct btrfs_key key[2];
6091 u32 sizes[2];
ef3b9af5 6092 int nitems = name ? 2 : 1;
9c58309d 6093 unsigned long ptr;
39279cc3 6094 int ret;
39279cc3 6095
5f39d397 6096 path = btrfs_alloc_path();
d8926bb3
MF
6097 if (!path)
6098 return ERR_PTR(-ENOMEM);
5f39d397 6099
39279cc3 6100 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6101 if (!inode) {
6102 btrfs_free_path(path);
39279cc3 6103 return ERR_PTR(-ENOMEM);
8fb27640 6104 }
39279cc3 6105
5762b5c9
FM
6106 /*
6107 * O_TMPFILE, set link count to 0, so that after this point,
6108 * we fill in an inode item with the correct link count.
6109 */
6110 if (!name)
6111 set_nlink(inode, 0);
6112
581bb050
LZ
6113 /*
6114 * we have to initialize this early, so we can reclaim the inode
6115 * number if we fail afterwards in this function.
6116 */
6117 inode->i_ino = objectid;
6118
ef3b9af5 6119 if (dir && name) {
1abe9b8a 6120 trace_btrfs_inode_request(dir);
6121
3de4586c 6122 ret = btrfs_set_inode_index(dir, index);
09771430 6123 if (ret) {
8fb27640 6124 btrfs_free_path(path);
09771430 6125 iput(inode);
aec7477b 6126 return ERR_PTR(ret);
09771430 6127 }
ef3b9af5
FM
6128 } else if (dir) {
6129 *index = 0;
aec7477b
JB
6130 }
6131 /*
6132 * index_cnt is ignored for everything but a dir,
6133 * btrfs_get_inode_index_count has an explanation for the magic
6134 * number
6135 */
6136 BTRFS_I(inode)->index_cnt = 2;
67de1176 6137 BTRFS_I(inode)->dir_index = *index;
39279cc3 6138 BTRFS_I(inode)->root = root;
e02119d5 6139 BTRFS_I(inode)->generation = trans->transid;
76195853 6140 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6141
5dc562c5
JB
6142 /*
6143 * We could have gotten an inode number from somebody who was fsynced
6144 * and then removed in this same transaction, so let's just set full
6145 * sync since it will be a full sync anyway and this will blow away the
6146 * old info in the log.
6147 */
6148 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6149
9c58309d 6150 key[0].objectid = objectid;
962a298f 6151 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6152 key[0].offset = 0;
6153
9c58309d 6154 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6155
6156 if (name) {
6157 /*
6158 * Start new inodes with an inode_ref. This is slightly more
6159 * efficient for small numbers of hard links since they will
6160 * be packed into one item. Extended refs will kick in if we
6161 * add more hard links than can fit in the ref item.
6162 */
6163 key[1].objectid = objectid;
962a298f 6164 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6165 key[1].offset = ref_objectid;
6166
6167 sizes[1] = name_len + sizeof(*ref);
6168 }
9c58309d 6169
b0d5d10f
CM
6170 location = &BTRFS_I(inode)->location;
6171 location->objectid = objectid;
6172 location->offset = 0;
962a298f 6173 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6174
6175 ret = btrfs_insert_inode_locked(inode);
6176 if (ret < 0)
6177 goto fail;
6178
b9473439 6179 path->leave_spinning = 1;
ef3b9af5 6180 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6181 if (ret != 0)
b0d5d10f 6182 goto fail_unlock;
5f39d397 6183
ecc11fab 6184 inode_init_owner(inode, dir, mode);
a76a3cd4 6185 inode_set_bytes(inode, 0);
9cc97d64 6186
6187 inode->i_mtime = CURRENT_TIME;
6188 inode->i_atime = inode->i_mtime;
6189 inode->i_ctime = inode->i_mtime;
6190 BTRFS_I(inode)->i_otime = inode->i_mtime;
6191
5f39d397
CM
6192 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6193 struct btrfs_inode_item);
293f7e07
LZ
6194 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6195 sizeof(*inode_item));
e02119d5 6196 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6197
ef3b9af5
FM
6198 if (name) {
6199 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6200 struct btrfs_inode_ref);
6201 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6202 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6203 ptr = (unsigned long)(ref + 1);
6204 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6205 }
9c58309d 6206
5f39d397
CM
6207 btrfs_mark_buffer_dirty(path->nodes[0]);
6208 btrfs_free_path(path);
6209
6cbff00f
CH
6210 btrfs_inherit_iflags(inode, dir);
6211
569254b0 6212 if (S_ISREG(mode)) {
94272164
CM
6213 if (btrfs_test_opt(root, NODATASUM))
6214 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6215 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6216 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6217 BTRFS_INODE_NODATASUM;
94272164
CM
6218 }
6219
5d4f98a2 6220 inode_tree_add(inode);
1abe9b8a 6221
6222 trace_btrfs_inode_new(inode);
1973f0fa 6223 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6224
8ea05e3a
AB
6225 btrfs_update_root_times(trans, root);
6226
63541927
FDBM
6227 ret = btrfs_inode_inherit_props(trans, inode, dir);
6228 if (ret)
6229 btrfs_err(root->fs_info,
6230 "error inheriting props for ino %llu (root %llu): %d",
6231 btrfs_ino(inode), root->root_key.objectid, ret);
6232
39279cc3 6233 return inode;
b0d5d10f
CM
6234
6235fail_unlock:
6236 unlock_new_inode(inode);
5f39d397 6237fail:
ef3b9af5 6238 if (dir && name)
aec7477b 6239 BTRFS_I(dir)->index_cnt--;
5f39d397 6240 btrfs_free_path(path);
09771430 6241 iput(inode);
5f39d397 6242 return ERR_PTR(ret);
39279cc3
CM
6243}
6244
6245static inline u8 btrfs_inode_type(struct inode *inode)
6246{
6247 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6248}
6249
d352ac68
CM
6250/*
6251 * utility function to add 'inode' into 'parent_inode' with
6252 * a give name and a given sequence number.
6253 * if 'add_backref' is true, also insert a backref from the
6254 * inode to the parent directory.
6255 */
e02119d5
CM
6256int btrfs_add_link(struct btrfs_trans_handle *trans,
6257 struct inode *parent_inode, struct inode *inode,
6258 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6259{
4df27c4d 6260 int ret = 0;
39279cc3 6261 struct btrfs_key key;
e02119d5 6262 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6263 u64 ino = btrfs_ino(inode);
6264 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6265
33345d01 6266 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6267 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6268 } else {
33345d01 6269 key.objectid = ino;
962a298f 6270 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6271 key.offset = 0;
6272 }
6273
33345d01 6274 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6275 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6276 key.objectid, root->root_key.objectid,
33345d01 6277 parent_ino, index, name, name_len);
4df27c4d 6278 } else if (add_backref) {
33345d01
LZ
6279 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6280 parent_ino, index);
4df27c4d 6281 }
39279cc3 6282
79787eaa
JM
6283 /* Nothing to clean up yet */
6284 if (ret)
6285 return ret;
4df27c4d 6286
79787eaa
JM
6287 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6288 parent_inode, &key,
6289 btrfs_inode_type(inode), index);
9c52057c 6290 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6291 goto fail_dir_item;
6292 else if (ret) {
6293 btrfs_abort_transaction(trans, root, ret);
6294 return ret;
39279cc3 6295 }
79787eaa
JM
6296
6297 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6298 name_len * 2);
0c4d2d95 6299 inode_inc_iversion(parent_inode);
79787eaa
JM
6300 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6301 ret = btrfs_update_inode(trans, root, parent_inode);
6302 if (ret)
6303 btrfs_abort_transaction(trans, root, ret);
39279cc3 6304 return ret;
fe66a05a
CM
6305
6306fail_dir_item:
6307 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6308 u64 local_index;
6309 int err;
6310 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6311 key.objectid, root->root_key.objectid,
6312 parent_ino, &local_index, name, name_len);
6313
6314 } else if (add_backref) {
6315 u64 local_index;
6316 int err;
6317
6318 err = btrfs_del_inode_ref(trans, root, name, name_len,
6319 ino, parent_ino, &local_index);
6320 }
6321 return ret;
39279cc3
CM
6322}
6323
6324static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6325 struct inode *dir, struct dentry *dentry,
6326 struct inode *inode, int backref, u64 index)
39279cc3 6327{
a1b075d2
JB
6328 int err = btrfs_add_link(trans, dir, inode,
6329 dentry->d_name.name, dentry->d_name.len,
6330 backref, index);
39279cc3
CM
6331 if (err > 0)
6332 err = -EEXIST;
6333 return err;
6334}
6335
618e21d5 6336static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6337 umode_t mode, dev_t rdev)
618e21d5
JB
6338{
6339 struct btrfs_trans_handle *trans;
6340 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6341 struct inode *inode = NULL;
618e21d5
JB
6342 int err;
6343 int drop_inode = 0;
6344 u64 objectid;
00e4e6b3 6345 u64 index = 0;
618e21d5
JB
6346
6347 if (!new_valid_dev(rdev))
6348 return -EINVAL;
6349
9ed74f2d
JB
6350 /*
6351 * 2 for inode item and ref
6352 * 2 for dir items
6353 * 1 for xattr if selinux is on
6354 */
a22285a6
YZ
6355 trans = btrfs_start_transaction(root, 5);
6356 if (IS_ERR(trans))
6357 return PTR_ERR(trans);
1832a6d5 6358
581bb050
LZ
6359 err = btrfs_find_free_ino(root, &objectid);
6360 if (err)
6361 goto out_unlock;
6362
aec7477b 6363 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6364 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6365 mode, &index);
7cf96da3
TI
6366 if (IS_ERR(inode)) {
6367 err = PTR_ERR(inode);
618e21d5 6368 goto out_unlock;
7cf96da3 6369 }
618e21d5 6370
ad19db71
CS
6371 /*
6372 * If the active LSM wants to access the inode during
6373 * d_instantiate it needs these. Smack checks to see
6374 * if the filesystem supports xattrs by looking at the
6375 * ops vector.
6376 */
ad19db71 6377 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6378 init_special_inode(inode, inode->i_mode, rdev);
6379
6380 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6381 if (err)
b0d5d10f
CM
6382 goto out_unlock_inode;
6383
6384 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6385 if (err) {
6386 goto out_unlock_inode;
6387 } else {
1b4ab1bb 6388 btrfs_update_inode(trans, root, inode);
b0d5d10f 6389 unlock_new_inode(inode);
08c422c2 6390 d_instantiate(dentry, inode);
618e21d5 6391 }
b0d5d10f 6392
618e21d5 6393out_unlock:
7ad85bb7 6394 btrfs_end_transaction(trans, root);
c581afc8 6395 btrfs_balance_delayed_items(root);
b53d3f5d 6396 btrfs_btree_balance_dirty(root);
618e21d5
JB
6397 if (drop_inode) {
6398 inode_dec_link_count(inode);
6399 iput(inode);
6400 }
618e21d5 6401 return err;
b0d5d10f
CM
6402
6403out_unlock_inode:
6404 drop_inode = 1;
6405 unlock_new_inode(inode);
6406 goto out_unlock;
6407
618e21d5
JB
6408}
6409
39279cc3 6410static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6411 umode_t mode, bool excl)
39279cc3
CM
6412{
6413 struct btrfs_trans_handle *trans;
6414 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6415 struct inode *inode = NULL;
43baa579 6416 int drop_inode_on_err = 0;
a22285a6 6417 int err;
39279cc3 6418 u64 objectid;
00e4e6b3 6419 u64 index = 0;
39279cc3 6420
9ed74f2d
JB
6421 /*
6422 * 2 for inode item and ref
6423 * 2 for dir items
6424 * 1 for xattr if selinux is on
6425 */
a22285a6
YZ
6426 trans = btrfs_start_transaction(root, 5);
6427 if (IS_ERR(trans))
6428 return PTR_ERR(trans);
9ed74f2d 6429
581bb050
LZ
6430 err = btrfs_find_free_ino(root, &objectid);
6431 if (err)
6432 goto out_unlock;
6433
aec7477b 6434 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6435 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6436 mode, &index);
7cf96da3
TI
6437 if (IS_ERR(inode)) {
6438 err = PTR_ERR(inode);
39279cc3 6439 goto out_unlock;
7cf96da3 6440 }
43baa579 6441 drop_inode_on_err = 1;
ad19db71
CS
6442 /*
6443 * If the active LSM wants to access the inode during
6444 * d_instantiate it needs these. Smack checks to see
6445 * if the filesystem supports xattrs by looking at the
6446 * ops vector.
6447 */
6448 inode->i_fop = &btrfs_file_operations;
6449 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6450 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6451
6452 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6453 if (err)
6454 goto out_unlock_inode;
6455
6456 err = btrfs_update_inode(trans, root, inode);
6457 if (err)
6458 goto out_unlock_inode;
ad19db71 6459
a1b075d2 6460 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6461 if (err)
b0d5d10f 6462 goto out_unlock_inode;
43baa579 6463
43baa579 6464 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6465 unlock_new_inode(inode);
43baa579
FB
6466 d_instantiate(dentry, inode);
6467
39279cc3 6468out_unlock:
7ad85bb7 6469 btrfs_end_transaction(trans, root);
43baa579 6470 if (err && drop_inode_on_err) {
39279cc3
CM
6471 inode_dec_link_count(inode);
6472 iput(inode);
6473 }
c581afc8 6474 btrfs_balance_delayed_items(root);
b53d3f5d 6475 btrfs_btree_balance_dirty(root);
39279cc3 6476 return err;
b0d5d10f
CM
6477
6478out_unlock_inode:
6479 unlock_new_inode(inode);
6480 goto out_unlock;
6481
39279cc3
CM
6482}
6483
6484static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6485 struct dentry *dentry)
6486{
6487 struct btrfs_trans_handle *trans;
6488 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6489 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6490 u64 index;
39279cc3
CM
6491 int err;
6492 int drop_inode = 0;
6493
4a8be425
TH
6494 /* do not allow sys_link's with other subvols of the same device */
6495 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6496 return -EXDEV;
4a8be425 6497
f186373f 6498 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6499 return -EMLINK;
4a8be425 6500
3de4586c 6501 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6502 if (err)
6503 goto fail;
6504
a22285a6 6505 /*
7e6b6465 6506 * 2 items for inode and inode ref
a22285a6 6507 * 2 items for dir items
7e6b6465 6508 * 1 item for parent inode
a22285a6 6509 */
7e6b6465 6510 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6511 if (IS_ERR(trans)) {
6512 err = PTR_ERR(trans);
6513 goto fail;
6514 }
5f39d397 6515
67de1176
MX
6516 /* There are several dir indexes for this inode, clear the cache. */
6517 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6518 inc_nlink(inode);
0c4d2d95 6519 inode_inc_iversion(inode);
3153495d 6520 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6521 ihold(inode);
e9976151 6522 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6523
a1b075d2 6524 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6525
a5719521 6526 if (err) {
54aa1f4d 6527 drop_inode = 1;
a5719521 6528 } else {
10d9f309 6529 struct dentry *parent = dentry->d_parent;
a5719521 6530 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6531 if (err)
6532 goto fail;
ef3b9af5
FM
6533 if (inode->i_nlink == 1) {
6534 /*
6535 * If new hard link count is 1, it's a file created
6536 * with open(2) O_TMPFILE flag.
6537 */
6538 err = btrfs_orphan_del(trans, inode);
6539 if (err)
6540 goto fail;
6541 }
08c422c2 6542 d_instantiate(dentry, inode);
6a912213 6543 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6544 }
39279cc3 6545
7ad85bb7 6546 btrfs_end_transaction(trans, root);
c581afc8 6547 btrfs_balance_delayed_items(root);
1832a6d5 6548fail:
39279cc3
CM
6549 if (drop_inode) {
6550 inode_dec_link_count(inode);
6551 iput(inode);
6552 }
b53d3f5d 6553 btrfs_btree_balance_dirty(root);
39279cc3
CM
6554 return err;
6555}
6556
18bb1db3 6557static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6558{
b9d86667 6559 struct inode *inode = NULL;
39279cc3
CM
6560 struct btrfs_trans_handle *trans;
6561 struct btrfs_root *root = BTRFS_I(dir)->root;
6562 int err = 0;
6563 int drop_on_err = 0;
b9d86667 6564 u64 objectid = 0;
00e4e6b3 6565 u64 index = 0;
39279cc3 6566
9ed74f2d
JB
6567 /*
6568 * 2 items for inode and ref
6569 * 2 items for dir items
6570 * 1 for xattr if selinux is on
6571 */
a22285a6
YZ
6572 trans = btrfs_start_transaction(root, 5);
6573 if (IS_ERR(trans))
6574 return PTR_ERR(trans);
39279cc3 6575
581bb050
LZ
6576 err = btrfs_find_free_ino(root, &objectid);
6577 if (err)
6578 goto out_fail;
6579
aec7477b 6580 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6581 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6582 S_IFDIR | mode, &index);
39279cc3
CM
6583 if (IS_ERR(inode)) {
6584 err = PTR_ERR(inode);
6585 goto out_fail;
6586 }
5f39d397 6587
39279cc3 6588 drop_on_err = 1;
b0d5d10f
CM
6589 /* these must be set before we unlock the inode */
6590 inode->i_op = &btrfs_dir_inode_operations;
6591 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6592
2a7dba39 6593 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6594 if (err)
b0d5d10f 6595 goto out_fail_inode;
39279cc3 6596
dbe674a9 6597 btrfs_i_size_write(inode, 0);
39279cc3
CM
6598 err = btrfs_update_inode(trans, root, inode);
6599 if (err)
b0d5d10f 6600 goto out_fail_inode;
5f39d397 6601
a1b075d2
JB
6602 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6603 dentry->d_name.len, 0, index);
39279cc3 6604 if (err)
b0d5d10f 6605 goto out_fail_inode;
5f39d397 6606
39279cc3 6607 d_instantiate(dentry, inode);
b0d5d10f
CM
6608 /*
6609 * mkdir is special. We're unlocking after we call d_instantiate
6610 * to avoid a race with nfsd calling d_instantiate.
6611 */
6612 unlock_new_inode(inode);
39279cc3 6613 drop_on_err = 0;
39279cc3
CM
6614
6615out_fail:
7ad85bb7 6616 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6617 if (drop_on_err) {
6618 inode_dec_link_count(inode);
39279cc3 6619 iput(inode);
c7cfb8a5 6620 }
c581afc8 6621 btrfs_balance_delayed_items(root);
b53d3f5d 6622 btrfs_btree_balance_dirty(root);
39279cc3 6623 return err;
b0d5d10f
CM
6624
6625out_fail_inode:
6626 unlock_new_inode(inode);
6627 goto out_fail;
39279cc3
CM
6628}
6629
e6c4efd8
QW
6630/* Find next extent map of a given extent map, caller needs to ensure locks */
6631static struct extent_map *next_extent_map(struct extent_map *em)
6632{
6633 struct rb_node *next;
6634
6635 next = rb_next(&em->rb_node);
6636 if (!next)
6637 return NULL;
6638 return container_of(next, struct extent_map, rb_node);
6639}
6640
6641static struct extent_map *prev_extent_map(struct extent_map *em)
6642{
6643 struct rb_node *prev;
6644
6645 prev = rb_prev(&em->rb_node);
6646 if (!prev)
6647 return NULL;
6648 return container_of(prev, struct extent_map, rb_node);
6649}
6650
d352ac68 6651/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6652 * the existing extent is the nearest extent to map_start,
d352ac68 6653 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6654 * the best fitted new extent into the tree.
d352ac68 6655 */
3b951516
CM
6656static int merge_extent_mapping(struct extent_map_tree *em_tree,
6657 struct extent_map *existing,
e6dcd2dc 6658 struct extent_map *em,
51f395ad 6659 u64 map_start)
3b951516 6660{
e6c4efd8
QW
6661 struct extent_map *prev;
6662 struct extent_map *next;
6663 u64 start;
6664 u64 end;
3b951516 6665 u64 start_diff;
3b951516 6666
e6dcd2dc 6667 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6668
6669 if (existing->start > map_start) {
6670 next = existing;
6671 prev = prev_extent_map(next);
6672 } else {
6673 prev = existing;
6674 next = next_extent_map(prev);
6675 }
6676
6677 start = prev ? extent_map_end(prev) : em->start;
6678 start = max_t(u64, start, em->start);
6679 end = next ? next->start : extent_map_end(em);
6680 end = min_t(u64, end, extent_map_end(em));
6681 start_diff = start - em->start;
6682 em->start = start;
6683 em->len = end - start;
c8b97818
CM
6684 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6685 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6686 em->block_start += start_diff;
c8b97818
CM
6687 em->block_len -= start_diff;
6688 }
09a2a8f9 6689 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6690}
6691
c8b97818
CM
6692static noinline int uncompress_inline(struct btrfs_path *path,
6693 struct inode *inode, struct page *page,
6694 size_t pg_offset, u64 extent_offset,
6695 struct btrfs_file_extent_item *item)
6696{
6697 int ret;
6698 struct extent_buffer *leaf = path->nodes[0];
6699 char *tmp;
6700 size_t max_size;
6701 unsigned long inline_size;
6702 unsigned long ptr;
261507a0 6703 int compress_type;
c8b97818
CM
6704
6705 WARN_ON(pg_offset != 0);
261507a0 6706 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6707 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6708 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6709 btrfs_item_nr(path->slots[0]));
c8b97818 6710 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6711 if (!tmp)
6712 return -ENOMEM;
c8b97818
CM
6713 ptr = btrfs_file_extent_inline_start(item);
6714
6715 read_extent_buffer(leaf, tmp, ptr, inline_size);
6716
5b050f04 6717 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6718 ret = btrfs_decompress(compress_type, tmp, page,
6719 extent_offset, inline_size, max_size);
c8b97818 6720 kfree(tmp);
166ae5a4 6721 return ret;
c8b97818
CM
6722}
6723
d352ac68
CM
6724/*
6725 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6726 * the ugly parts come from merging extents from the disk with the in-ram
6727 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6728 * where the in-ram extents might be locked pending data=ordered completion.
6729 *
6730 * This also copies inline extents directly into the page.
6731 */
d397712b 6732
a52d9a80 6733struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6734 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6735 int create)
6736{
6737 int ret;
6738 int err = 0;
a52d9a80
CM
6739 u64 extent_start = 0;
6740 u64 extent_end = 0;
33345d01 6741 u64 objectid = btrfs_ino(inode);
a52d9a80 6742 u32 found_type;
f421950f 6743 struct btrfs_path *path = NULL;
a52d9a80
CM
6744 struct btrfs_root *root = BTRFS_I(inode)->root;
6745 struct btrfs_file_extent_item *item;
5f39d397
CM
6746 struct extent_buffer *leaf;
6747 struct btrfs_key found_key;
a52d9a80
CM
6748 struct extent_map *em = NULL;
6749 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6750 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6751 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6752 const bool new_inline = !page || create;
a52d9a80 6753
a52d9a80 6754again:
890871be 6755 read_lock(&em_tree->lock);
d1310b2e 6756 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6757 if (em)
6758 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6759 read_unlock(&em_tree->lock);
d1310b2e 6760
a52d9a80 6761 if (em) {
e1c4b745
CM
6762 if (em->start > start || em->start + em->len <= start)
6763 free_extent_map(em);
6764 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6765 free_extent_map(em);
6766 else
6767 goto out;
a52d9a80 6768 }
172ddd60 6769 em = alloc_extent_map();
a52d9a80 6770 if (!em) {
d1310b2e
CM
6771 err = -ENOMEM;
6772 goto out;
a52d9a80 6773 }
e6dcd2dc 6774 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6775 em->start = EXTENT_MAP_HOLE;
445a6944 6776 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6777 em->len = (u64)-1;
c8b97818 6778 em->block_len = (u64)-1;
f421950f
CM
6779
6780 if (!path) {
6781 path = btrfs_alloc_path();
026fd317
JB
6782 if (!path) {
6783 err = -ENOMEM;
6784 goto out;
6785 }
6786 /*
6787 * Chances are we'll be called again, so go ahead and do
6788 * readahead
6789 */
6790 path->reada = 1;
f421950f
CM
6791 }
6792
179e29e4
CM
6793 ret = btrfs_lookup_file_extent(trans, root, path,
6794 objectid, start, trans != NULL);
a52d9a80
CM
6795 if (ret < 0) {
6796 err = ret;
6797 goto out;
6798 }
6799
6800 if (ret != 0) {
6801 if (path->slots[0] == 0)
6802 goto not_found;
6803 path->slots[0]--;
6804 }
6805
5f39d397
CM
6806 leaf = path->nodes[0];
6807 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6808 struct btrfs_file_extent_item);
a52d9a80 6809 /* are we inside the extent that was found? */
5f39d397 6810 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6811 found_type = found_key.type;
5f39d397 6812 if (found_key.objectid != objectid ||
a52d9a80 6813 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6814 /*
6815 * If we backup past the first extent we want to move forward
6816 * and see if there is an extent in front of us, otherwise we'll
6817 * say there is a hole for our whole search range which can
6818 * cause problems.
6819 */
6820 extent_end = start;
6821 goto next;
a52d9a80
CM
6822 }
6823
5f39d397
CM
6824 found_type = btrfs_file_extent_type(leaf, item);
6825 extent_start = found_key.offset;
d899e052
YZ
6826 if (found_type == BTRFS_FILE_EXTENT_REG ||
6827 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6828 extent_end = extent_start +
db94535d 6829 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6830 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6831 size_t size;
514ac8ad 6832 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6833 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6834 }
25a50341 6835next:
9036c102
YZ
6836 if (start >= extent_end) {
6837 path->slots[0]++;
6838 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6839 ret = btrfs_next_leaf(root, path);
6840 if (ret < 0) {
6841 err = ret;
6842 goto out;
a52d9a80 6843 }
9036c102
YZ
6844 if (ret > 0)
6845 goto not_found;
6846 leaf = path->nodes[0];
a52d9a80 6847 }
9036c102
YZ
6848 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6849 if (found_key.objectid != objectid ||
6850 found_key.type != BTRFS_EXTENT_DATA_KEY)
6851 goto not_found;
6852 if (start + len <= found_key.offset)
6853 goto not_found;
e2eca69d
WS
6854 if (start > found_key.offset)
6855 goto next;
9036c102 6856 em->start = start;
70c8a91c 6857 em->orig_start = start;
9036c102
YZ
6858 em->len = found_key.offset - start;
6859 goto not_found_em;
6860 }
6861
7ffbb598
FM
6862 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6863
d899e052
YZ
6864 if (found_type == BTRFS_FILE_EXTENT_REG ||
6865 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6866 goto insert;
6867 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6868 unsigned long ptr;
a52d9a80 6869 char *map;
3326d1b0
CM
6870 size_t size;
6871 size_t extent_offset;
6872 size_t copy_size;
a52d9a80 6873
7ffbb598 6874 if (new_inline)
689f9346 6875 goto out;
5f39d397 6876
514ac8ad 6877 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6878 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6879 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6880 size - extent_offset);
3326d1b0 6881 em->start = extent_start + extent_offset;
fda2832f 6882 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6883 em->orig_block_len = em->len;
70c8a91c 6884 em->orig_start = em->start;
689f9346 6885 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6886 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6887 if (btrfs_file_extent_compression(leaf, item) !=
6888 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6889 ret = uncompress_inline(path, inode, page,
6890 pg_offset,
6891 extent_offset, item);
166ae5a4
ZB
6892 if (ret) {
6893 err = ret;
6894 goto out;
6895 }
c8b97818
CM
6896 } else {
6897 map = kmap(page);
6898 read_extent_buffer(leaf, map + pg_offset, ptr,
6899 copy_size);
93c82d57
CM
6900 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6901 memset(map + pg_offset + copy_size, 0,
6902 PAGE_CACHE_SIZE - pg_offset -
6903 copy_size);
6904 }
c8b97818
CM
6905 kunmap(page);
6906 }
179e29e4
CM
6907 flush_dcache_page(page);
6908 } else if (create && PageUptodate(page)) {
6bf7e080 6909 BUG();
179e29e4
CM
6910 if (!trans) {
6911 kunmap(page);
6912 free_extent_map(em);
6913 em = NULL;
ff5714cc 6914
b3b4aa74 6915 btrfs_release_path(path);
7a7eaa40 6916 trans = btrfs_join_transaction(root);
ff5714cc 6917
3612b495
TI
6918 if (IS_ERR(trans))
6919 return ERR_CAST(trans);
179e29e4
CM
6920 goto again;
6921 }
c8b97818 6922 map = kmap(page);
70dec807 6923 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6924 copy_size);
c8b97818 6925 kunmap(page);
179e29e4 6926 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6927 }
d1310b2e 6928 set_extent_uptodate(io_tree, em->start,
507903b8 6929 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6930 goto insert;
a52d9a80
CM
6931 }
6932not_found:
6933 em->start = start;
70c8a91c 6934 em->orig_start = start;
d1310b2e 6935 em->len = len;
a52d9a80 6936not_found_em:
5f39d397 6937 em->block_start = EXTENT_MAP_HOLE;
9036c102 6938 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6939insert:
b3b4aa74 6940 btrfs_release_path(path);
d1310b2e 6941 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6942 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6943 em->start, em->len, start, len);
a52d9a80
CM
6944 err = -EIO;
6945 goto out;
6946 }
d1310b2e
CM
6947
6948 err = 0;
890871be 6949 write_lock(&em_tree->lock);
09a2a8f9 6950 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6951 /* it is possible that someone inserted the extent into the tree
6952 * while we had the lock dropped. It is also possible that
6953 * an overlapping map exists in the tree
6954 */
a52d9a80 6955 if (ret == -EEXIST) {
3b951516 6956 struct extent_map *existing;
e6dcd2dc
CM
6957
6958 ret = 0;
6959
e6c4efd8
QW
6960 existing = search_extent_mapping(em_tree, start, len);
6961 /*
6962 * existing will always be non-NULL, since there must be
6963 * extent causing the -EEXIST.
6964 */
6965 if (start >= extent_map_end(existing) ||
32be3a1a 6966 start <= existing->start) {
e6c4efd8
QW
6967 /*
6968 * The existing extent map is the one nearest to
6969 * the [start, start + len) range which overlaps
6970 */
6971 err = merge_extent_mapping(em_tree, existing,
6972 em, start);
e1c4b745 6973 free_extent_map(existing);
e6c4efd8 6974 if (err) {
3b951516
CM
6975 free_extent_map(em);
6976 em = NULL;
6977 }
6978 } else {
6979 free_extent_map(em);
6980 em = existing;
e6dcd2dc 6981 err = 0;
a52d9a80 6982 }
a52d9a80 6983 }
890871be 6984 write_unlock(&em_tree->lock);
a52d9a80 6985out:
1abe9b8a 6986
4cd8587c 6987 trace_btrfs_get_extent(root, em);
1abe9b8a 6988
527afb44 6989 btrfs_free_path(path);
a52d9a80
CM
6990 if (trans) {
6991 ret = btrfs_end_transaction(trans, root);
d397712b 6992 if (!err)
a52d9a80
CM
6993 err = ret;
6994 }
a52d9a80
CM
6995 if (err) {
6996 free_extent_map(em);
a52d9a80
CM
6997 return ERR_PTR(err);
6998 }
79787eaa 6999 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7000 return em;
7001}
7002
ec29ed5b
CM
7003struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7004 size_t pg_offset, u64 start, u64 len,
7005 int create)
7006{
7007 struct extent_map *em;
7008 struct extent_map *hole_em = NULL;
7009 u64 range_start = start;
7010 u64 end;
7011 u64 found;
7012 u64 found_end;
7013 int err = 0;
7014
7015 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7016 if (IS_ERR(em))
7017 return em;
7018 if (em) {
7019 /*
f9e4fb53
LB
7020 * if our em maps to
7021 * - a hole or
7022 * - a pre-alloc extent,
7023 * there might actually be delalloc bytes behind it.
ec29ed5b 7024 */
f9e4fb53
LB
7025 if (em->block_start != EXTENT_MAP_HOLE &&
7026 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7027 return em;
7028 else
7029 hole_em = em;
7030 }
7031
7032 /* check to see if we've wrapped (len == -1 or similar) */
7033 end = start + len;
7034 if (end < start)
7035 end = (u64)-1;
7036 else
7037 end -= 1;
7038
7039 em = NULL;
7040
7041 /* ok, we didn't find anything, lets look for delalloc */
7042 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7043 end, len, EXTENT_DELALLOC, 1);
7044 found_end = range_start + found;
7045 if (found_end < range_start)
7046 found_end = (u64)-1;
7047
7048 /*
7049 * we didn't find anything useful, return
7050 * the original results from get_extent()
7051 */
7052 if (range_start > end || found_end <= start) {
7053 em = hole_em;
7054 hole_em = NULL;
7055 goto out;
7056 }
7057
7058 /* adjust the range_start to make sure it doesn't
7059 * go backwards from the start they passed in
7060 */
67871254 7061 range_start = max(start, range_start);
ec29ed5b
CM
7062 found = found_end - range_start;
7063
7064 if (found > 0) {
7065 u64 hole_start = start;
7066 u64 hole_len = len;
7067
172ddd60 7068 em = alloc_extent_map();
ec29ed5b
CM
7069 if (!em) {
7070 err = -ENOMEM;
7071 goto out;
7072 }
7073 /*
7074 * when btrfs_get_extent can't find anything it
7075 * returns one huge hole
7076 *
7077 * make sure what it found really fits our range, and
7078 * adjust to make sure it is based on the start from
7079 * the caller
7080 */
7081 if (hole_em) {
7082 u64 calc_end = extent_map_end(hole_em);
7083
7084 if (calc_end <= start || (hole_em->start > end)) {
7085 free_extent_map(hole_em);
7086 hole_em = NULL;
7087 } else {
7088 hole_start = max(hole_em->start, start);
7089 hole_len = calc_end - hole_start;
7090 }
7091 }
7092 em->bdev = NULL;
7093 if (hole_em && range_start > hole_start) {
7094 /* our hole starts before our delalloc, so we
7095 * have to return just the parts of the hole
7096 * that go until the delalloc starts
7097 */
7098 em->len = min(hole_len,
7099 range_start - hole_start);
7100 em->start = hole_start;
7101 em->orig_start = hole_start;
7102 /*
7103 * don't adjust block start at all,
7104 * it is fixed at EXTENT_MAP_HOLE
7105 */
7106 em->block_start = hole_em->block_start;
7107 em->block_len = hole_len;
f9e4fb53
LB
7108 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7109 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7110 } else {
7111 em->start = range_start;
7112 em->len = found;
7113 em->orig_start = range_start;
7114 em->block_start = EXTENT_MAP_DELALLOC;
7115 em->block_len = found;
7116 }
7117 } else if (hole_em) {
7118 return hole_em;
7119 }
7120out:
7121
7122 free_extent_map(hole_em);
7123 if (err) {
7124 free_extent_map(em);
7125 return ERR_PTR(err);
7126 }
7127 return em;
7128}
7129
4b46fce2
JB
7130static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7131 u64 start, u64 len)
7132{
7133 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7134 struct extent_map *em;
4b46fce2
JB
7135 struct btrfs_key ins;
7136 u64 alloc_hint;
7137 int ret;
4b46fce2 7138
4b46fce2 7139 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7140 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7141 alloc_hint, &ins, 1, 1);
00361589
JB
7142 if (ret)
7143 return ERR_PTR(ret);
4b46fce2 7144
70c8a91c 7145 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 7146 ins.offset, ins.offset, ins.offset, 0);
00361589 7147 if (IS_ERR(em)) {
e570fd27 7148 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7149 return em;
7150 }
4b46fce2
JB
7151
7152 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7153 ins.offset, ins.offset, 0);
7154 if (ret) {
e570fd27 7155 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7156 free_extent_map(em);
7157 return ERR_PTR(ret);
4b46fce2 7158 }
00361589 7159
4b46fce2
JB
7160 return em;
7161}
7162
46bfbb5c
CM
7163/*
7164 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7165 * block must be cow'd
7166 */
00361589 7167noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7168 u64 *orig_start, u64 *orig_block_len,
7169 u64 *ram_bytes)
46bfbb5c 7170{
00361589 7171 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7172 struct btrfs_path *path;
7173 int ret;
7174 struct extent_buffer *leaf;
7175 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7176 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7177 struct btrfs_file_extent_item *fi;
7178 struct btrfs_key key;
7179 u64 disk_bytenr;
7180 u64 backref_offset;
7181 u64 extent_end;
7182 u64 num_bytes;
7183 int slot;
7184 int found_type;
7ee9e440 7185 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7186
46bfbb5c
CM
7187 path = btrfs_alloc_path();
7188 if (!path)
7189 return -ENOMEM;
7190
00361589 7191 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7192 offset, 0);
7193 if (ret < 0)
7194 goto out;
7195
7196 slot = path->slots[0];
7197 if (ret == 1) {
7198 if (slot == 0) {
7199 /* can't find the item, must cow */
7200 ret = 0;
7201 goto out;
7202 }
7203 slot--;
7204 }
7205 ret = 0;
7206 leaf = path->nodes[0];
7207 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7208 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7209 key.type != BTRFS_EXTENT_DATA_KEY) {
7210 /* not our file or wrong item type, must cow */
7211 goto out;
7212 }
7213
7214 if (key.offset > offset) {
7215 /* Wrong offset, must cow */
7216 goto out;
7217 }
7218
7219 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7220 found_type = btrfs_file_extent_type(leaf, fi);
7221 if (found_type != BTRFS_FILE_EXTENT_REG &&
7222 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7223 /* not a regular extent, must cow */
7224 goto out;
7225 }
7ee9e440
JB
7226
7227 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7228 goto out;
7229
e77751aa
MX
7230 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7231 if (extent_end <= offset)
7232 goto out;
7233
46bfbb5c 7234 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7235 if (disk_bytenr == 0)
7236 goto out;
7237
7238 if (btrfs_file_extent_compression(leaf, fi) ||
7239 btrfs_file_extent_encryption(leaf, fi) ||
7240 btrfs_file_extent_other_encoding(leaf, fi))
7241 goto out;
7242
46bfbb5c
CM
7243 backref_offset = btrfs_file_extent_offset(leaf, fi);
7244
7ee9e440
JB
7245 if (orig_start) {
7246 *orig_start = key.offset - backref_offset;
7247 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7248 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7249 }
eb384b55 7250
46bfbb5c
CM
7251 if (btrfs_extent_readonly(root, disk_bytenr))
7252 goto out;
7b2b7085
MX
7253
7254 num_bytes = min(offset + *len, extent_end) - offset;
7255 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7256 u64 range_end;
7257
7258 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7259 ret = test_range_bit(io_tree, offset, range_end,
7260 EXTENT_DELALLOC, 0, NULL);
7261 if (ret) {
7262 ret = -EAGAIN;
7263 goto out;
7264 }
7265 }
7266
1bda19eb 7267 btrfs_release_path(path);
46bfbb5c
CM
7268
7269 /*
7270 * look for other files referencing this extent, if we
7271 * find any we must cow
7272 */
00361589
JB
7273 trans = btrfs_join_transaction(root);
7274 if (IS_ERR(trans)) {
7275 ret = 0;
46bfbb5c 7276 goto out;
00361589
JB
7277 }
7278
7279 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7280 key.offset - backref_offset, disk_bytenr);
7281 btrfs_end_transaction(trans, root);
7282 if (ret) {
7283 ret = 0;
7284 goto out;
7285 }
46bfbb5c
CM
7286
7287 /*
7288 * adjust disk_bytenr and num_bytes to cover just the bytes
7289 * in this extent we are about to write. If there
7290 * are any csums in that range we have to cow in order
7291 * to keep the csums correct
7292 */
7293 disk_bytenr += backref_offset;
7294 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7295 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7296 goto out;
7297 /*
7298 * all of the above have passed, it is safe to overwrite this extent
7299 * without cow
7300 */
eb384b55 7301 *len = num_bytes;
46bfbb5c
CM
7302 ret = 1;
7303out:
7304 btrfs_free_path(path);
7305 return ret;
7306}
7307
fc4adbff
AG
7308bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7309{
7310 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7311 int found = false;
7312 void **pagep = NULL;
7313 struct page *page = NULL;
7314 int start_idx;
7315 int end_idx;
7316
7317 start_idx = start >> PAGE_CACHE_SHIFT;
7318
7319 /*
7320 * end is the last byte in the last page. end == start is legal
7321 */
7322 end_idx = end >> PAGE_CACHE_SHIFT;
7323
7324 rcu_read_lock();
7325
7326 /* Most of the code in this while loop is lifted from
7327 * find_get_page. It's been modified to begin searching from a
7328 * page and return just the first page found in that range. If the
7329 * found idx is less than or equal to the end idx then we know that
7330 * a page exists. If no pages are found or if those pages are
7331 * outside of the range then we're fine (yay!) */
7332 while (page == NULL &&
7333 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7334 page = radix_tree_deref_slot(pagep);
7335 if (unlikely(!page))
7336 break;
7337
7338 if (radix_tree_exception(page)) {
809f9016
FM
7339 if (radix_tree_deref_retry(page)) {
7340 page = NULL;
fc4adbff 7341 continue;
809f9016 7342 }
fc4adbff
AG
7343 /*
7344 * Otherwise, shmem/tmpfs must be storing a swap entry
7345 * here as an exceptional entry: so return it without
7346 * attempting to raise page count.
7347 */
6fdef6d4 7348 page = NULL;
fc4adbff
AG
7349 break; /* TODO: Is this relevant for this use case? */
7350 }
7351
91405151
FM
7352 if (!page_cache_get_speculative(page)) {
7353 page = NULL;
fc4adbff 7354 continue;
91405151 7355 }
fc4adbff
AG
7356
7357 /*
7358 * Has the page moved?
7359 * This is part of the lockless pagecache protocol. See
7360 * include/linux/pagemap.h for details.
7361 */
7362 if (unlikely(page != *pagep)) {
7363 page_cache_release(page);
7364 page = NULL;
7365 }
7366 }
7367
7368 if (page) {
7369 if (page->index <= end_idx)
7370 found = true;
7371 page_cache_release(page);
7372 }
7373
7374 rcu_read_unlock();
7375 return found;
7376}
7377
eb838e73
JB
7378static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7379 struct extent_state **cached_state, int writing)
7380{
7381 struct btrfs_ordered_extent *ordered;
7382 int ret = 0;
7383
7384 while (1) {
7385 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7386 0, cached_state);
7387 /*
7388 * We're concerned with the entire range that we're going to be
7389 * doing DIO to, so we need to make sure theres no ordered
7390 * extents in this range.
7391 */
7392 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7393 lockend - lockstart + 1);
7394
7395 /*
7396 * We need to make sure there are no buffered pages in this
7397 * range either, we could have raced between the invalidate in
7398 * generic_file_direct_write and locking the extent. The
7399 * invalidate needs to happen so that reads after a write do not
7400 * get stale data.
7401 */
fc4adbff
AG
7402 if (!ordered &&
7403 (!writing ||
7404 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7405 break;
7406
7407 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7408 cached_state, GFP_NOFS);
7409
7410 if (ordered) {
7411 btrfs_start_ordered_extent(inode, ordered, 1);
7412 btrfs_put_ordered_extent(ordered);
7413 } else {
7414 /* Screw you mmap */
728404da 7415 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
075bdbdb
FM
7416 if (ret)
7417 break;
7418 ret = filemap_fdatawait_range(inode->i_mapping,
7419 lockstart,
7420 lockend);
eb838e73
JB
7421 if (ret)
7422 break;
7423
7424 /*
7425 * If we found a page that couldn't be invalidated just
7426 * fall back to buffered.
7427 */
7428 ret = invalidate_inode_pages2_range(inode->i_mapping,
7429 lockstart >> PAGE_CACHE_SHIFT,
7430 lockend >> PAGE_CACHE_SHIFT);
7431 if (ret)
7432 break;
7433 }
7434
7435 cond_resched();
7436 }
7437
7438 return ret;
7439}
7440
69ffb543
JB
7441static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7442 u64 len, u64 orig_start,
7443 u64 block_start, u64 block_len,
cc95bef6
JB
7444 u64 orig_block_len, u64 ram_bytes,
7445 int type)
69ffb543
JB
7446{
7447 struct extent_map_tree *em_tree;
7448 struct extent_map *em;
7449 struct btrfs_root *root = BTRFS_I(inode)->root;
7450 int ret;
7451
7452 em_tree = &BTRFS_I(inode)->extent_tree;
7453 em = alloc_extent_map();
7454 if (!em)
7455 return ERR_PTR(-ENOMEM);
7456
7457 em->start = start;
7458 em->orig_start = orig_start;
2ab28f32
JB
7459 em->mod_start = start;
7460 em->mod_len = len;
69ffb543
JB
7461 em->len = len;
7462 em->block_len = block_len;
7463 em->block_start = block_start;
7464 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7465 em->orig_block_len = orig_block_len;
cc95bef6 7466 em->ram_bytes = ram_bytes;
70c8a91c 7467 em->generation = -1;
69ffb543
JB
7468 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7469 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7470 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7471
7472 do {
7473 btrfs_drop_extent_cache(inode, em->start,
7474 em->start + em->len - 1, 0);
7475 write_lock(&em_tree->lock);
09a2a8f9 7476 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7477 write_unlock(&em_tree->lock);
7478 } while (ret == -EEXIST);
7479
7480 if (ret) {
7481 free_extent_map(em);
7482 return ERR_PTR(ret);
7483 }
7484
7485 return em;
7486}
7487
50745b0a 7488struct btrfs_dio_data {
7489 u64 outstanding_extents;
7490 u64 reserve;
7491};
69ffb543 7492
9c9464cc
FM
7493static void adjust_dio_outstanding_extents(struct inode *inode,
7494 struct btrfs_dio_data *dio_data,
7495 const u64 len)
7496{
7497 unsigned num_extents;
7498
7499 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7500 BTRFS_MAX_EXTENT_SIZE);
7501 /*
7502 * If we have an outstanding_extents count still set then we're
7503 * within our reservation, otherwise we need to adjust our inode
7504 * counter appropriately.
7505 */
7506 if (dio_data->outstanding_extents) {
7507 dio_data->outstanding_extents -= num_extents;
7508 } else {
7509 spin_lock(&BTRFS_I(inode)->lock);
7510 BTRFS_I(inode)->outstanding_extents += num_extents;
7511 spin_unlock(&BTRFS_I(inode)->lock);
7512 }
7513}
7514
4b46fce2
JB
7515static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7516 struct buffer_head *bh_result, int create)
7517{
7518 struct extent_map *em;
7519 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7520 struct extent_state *cached_state = NULL;
50745b0a 7521 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7522 u64 start = iblock << inode->i_blkbits;
eb838e73 7523 u64 lockstart, lockend;
4b46fce2 7524 u64 len = bh_result->b_size;
eb838e73 7525 int unlock_bits = EXTENT_LOCKED;
0934856d 7526 int ret = 0;
eb838e73 7527
172a5049 7528 if (create)
3266789f 7529 unlock_bits |= EXTENT_DIRTY;
172a5049 7530 else
c329861d 7531 len = min_t(u64, len, root->sectorsize);
eb838e73 7532
c329861d
JB
7533 lockstart = start;
7534 lockend = start + len - 1;
7535
e1cbbfa5
JB
7536 if (current->journal_info) {
7537 /*
7538 * Need to pull our outstanding extents and set journal_info to NULL so
7539 * that anything that needs to check if there's a transction doesn't get
7540 * confused.
7541 */
50745b0a 7542 dio_data = current->journal_info;
e1cbbfa5
JB
7543 current->journal_info = NULL;
7544 }
7545
eb838e73
JB
7546 /*
7547 * If this errors out it's because we couldn't invalidate pagecache for
7548 * this range and we need to fallback to buffered.
7549 */
9c9464cc
FM
7550 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7551 create)) {
7552 ret = -ENOTBLK;
7553 goto err;
7554 }
eb838e73 7555
4b46fce2 7556 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7557 if (IS_ERR(em)) {
7558 ret = PTR_ERR(em);
7559 goto unlock_err;
7560 }
4b46fce2
JB
7561
7562 /*
7563 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7564 * io. INLINE is special, and we could probably kludge it in here, but
7565 * it's still buffered so for safety lets just fall back to the generic
7566 * buffered path.
7567 *
7568 * For COMPRESSED we _have_ to read the entire extent in so we can
7569 * decompress it, so there will be buffering required no matter what we
7570 * do, so go ahead and fallback to buffered.
7571 *
7572 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7573 * to buffered IO. Don't blame me, this is the price we pay for using
7574 * the generic code.
7575 */
7576 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7577 em->block_start == EXTENT_MAP_INLINE) {
7578 free_extent_map(em);
eb838e73
JB
7579 ret = -ENOTBLK;
7580 goto unlock_err;
4b46fce2
JB
7581 }
7582
7583 /* Just a good old fashioned hole, return */
7584 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7585 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7586 free_extent_map(em);
eb838e73 7587 goto unlock_err;
4b46fce2
JB
7588 }
7589
7590 /*
7591 * We don't allocate a new extent in the following cases
7592 *
7593 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7594 * existing extent.
7595 * 2) The extent is marked as PREALLOC. We're good to go here and can
7596 * just use the extent.
7597 *
7598 */
46bfbb5c 7599 if (!create) {
eb838e73
JB
7600 len = min(len, em->len - (start - em->start));
7601 lockstart = start + len;
7602 goto unlock;
46bfbb5c 7603 }
4b46fce2
JB
7604
7605 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7606 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7607 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7608 int type;
eb384b55 7609 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7610
7611 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7612 type = BTRFS_ORDERED_PREALLOC;
7613 else
7614 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7615 len = min(len, em->len - (start - em->start));
4b46fce2 7616 block_start = em->block_start + (start - em->start);
46bfbb5c 7617
00361589 7618 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7619 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7620 if (type == BTRFS_ORDERED_PREALLOC) {
7621 free_extent_map(em);
7622 em = create_pinned_em(inode, start, len,
7623 orig_start,
b4939680 7624 block_start, len,
cc95bef6
JB
7625 orig_block_len,
7626 ram_bytes, type);
555e1286
FM
7627 if (IS_ERR(em)) {
7628 ret = PTR_ERR(em);
69ffb543 7629 goto unlock_err;
555e1286 7630 }
69ffb543
JB
7631 }
7632
46bfbb5c
CM
7633 ret = btrfs_add_ordered_extent_dio(inode, start,
7634 block_start, len, len, type);
46bfbb5c
CM
7635 if (ret) {
7636 free_extent_map(em);
eb838e73 7637 goto unlock_err;
46bfbb5c
CM
7638 }
7639 goto unlock;
4b46fce2 7640 }
4b46fce2 7641 }
00361589 7642
46bfbb5c
CM
7643 /*
7644 * this will cow the extent, reset the len in case we changed
7645 * it above
7646 */
7647 len = bh_result->b_size;
70c8a91c
JB
7648 free_extent_map(em);
7649 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7650 if (IS_ERR(em)) {
7651 ret = PTR_ERR(em);
7652 goto unlock_err;
7653 }
46bfbb5c
CM
7654 len = min(len, em->len - (start - em->start));
7655unlock:
4b46fce2
JB
7656 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7657 inode->i_blkbits;
46bfbb5c 7658 bh_result->b_size = len;
4b46fce2
JB
7659 bh_result->b_bdev = em->bdev;
7660 set_buffer_mapped(bh_result);
c3473e83
JB
7661 if (create) {
7662 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7663 set_buffer_new(bh_result);
7664
7665 /*
7666 * Need to update the i_size under the extent lock so buffered
7667 * readers will get the updated i_size when we unlock.
7668 */
7669 if (start + len > i_size_read(inode))
7670 i_size_write(inode, start + len);
0934856d 7671
9c9464cc 7672 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7673 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7674 WARN_ON(dio_data->reserve < len);
7675 dio_data->reserve -= len;
7676 current->journal_info = dio_data;
c3473e83 7677 }
4b46fce2 7678
eb838e73
JB
7679 /*
7680 * In the case of write we need to clear and unlock the entire range,
7681 * in the case of read we need to unlock only the end area that we
7682 * aren't using if there is any left over space.
7683 */
24c03fa5 7684 if (lockstart < lockend) {
0934856d
MX
7685 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7686 lockend, unlock_bits, 1, 0,
7687 &cached_state, GFP_NOFS);
24c03fa5 7688 } else {
eb838e73 7689 free_extent_state(cached_state);
24c03fa5 7690 }
eb838e73 7691
4b46fce2
JB
7692 free_extent_map(em);
7693
7694 return 0;
eb838e73
JB
7695
7696unlock_err:
eb838e73
JB
7697 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7698 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7699err:
50745b0a 7700 if (dio_data)
7701 current->journal_info = dio_data;
9c9464cc
FM
7702 /*
7703 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7704 * write less data then expected, so that we don't underflow our inode's
7705 * outstanding extents counter.
7706 */
7707 if (create && dio_data)
7708 adjust_dio_outstanding_extents(inode, dio_data, len);
7709
eb838e73 7710 return ret;
4b46fce2
JB
7711}
7712
8b110e39
MX
7713static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7714 int rw, int mirror_num)
7715{
7716 struct btrfs_root *root = BTRFS_I(inode)->root;
7717 int ret;
7718
7719 BUG_ON(rw & REQ_WRITE);
7720
7721 bio_get(bio);
7722
7723 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7724 BTRFS_WQ_ENDIO_DIO_REPAIR);
7725 if (ret)
7726 goto err;
7727
7728 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7729err:
7730 bio_put(bio);
7731 return ret;
7732}
7733
7734static int btrfs_check_dio_repairable(struct inode *inode,
7735 struct bio *failed_bio,
7736 struct io_failure_record *failrec,
7737 int failed_mirror)
7738{
7739 int num_copies;
7740
7741 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7742 failrec->logical, failrec->len);
7743 if (num_copies == 1) {
7744 /*
7745 * we only have a single copy of the data, so don't bother with
7746 * all the retry and error correction code that follows. no
7747 * matter what the error is, it is very likely to persist.
7748 */
7749 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7750 num_copies, failrec->this_mirror, failed_mirror);
7751 return 0;
7752 }
7753
7754 failrec->failed_mirror = failed_mirror;
7755 failrec->this_mirror++;
7756 if (failrec->this_mirror == failed_mirror)
7757 failrec->this_mirror++;
7758
7759 if (failrec->this_mirror > num_copies) {
7760 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7761 num_copies, failrec->this_mirror, failed_mirror);
7762 return 0;
7763 }
7764
7765 return 1;
7766}
7767
7768static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7769 struct page *page, u64 start, u64 end,
7770 int failed_mirror, bio_end_io_t *repair_endio,
7771 void *repair_arg)
7772{
7773 struct io_failure_record *failrec;
7774 struct bio *bio;
7775 int isector;
7776 int read_mode;
7777 int ret;
7778
7779 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7780
7781 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7782 if (ret)
7783 return ret;
7784
7785 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7786 failed_mirror);
7787 if (!ret) {
7788 free_io_failure(inode, failrec);
7789 return -EIO;
7790 }
7791
7792 if (failed_bio->bi_vcnt > 1)
7793 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7794 else
7795 read_mode = READ_SYNC;
7796
7797 isector = start - btrfs_io_bio(failed_bio)->logical;
7798 isector >>= inode->i_sb->s_blocksize_bits;
7799 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7800 0, isector, repair_endio, repair_arg);
7801 if (!bio) {
7802 free_io_failure(inode, failrec);
7803 return -EIO;
7804 }
7805
7806 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7807 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7808 read_mode, failrec->this_mirror, failrec->in_validation);
7809
7810 ret = submit_dio_repair_bio(inode, bio, read_mode,
7811 failrec->this_mirror);
7812 if (ret) {
7813 free_io_failure(inode, failrec);
7814 bio_put(bio);
7815 }
7816
7817 return ret;
7818}
7819
7820struct btrfs_retry_complete {
7821 struct completion done;
7822 struct inode *inode;
7823 u64 start;
7824 int uptodate;
7825};
7826
4246a0b6 7827static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7828{
7829 struct btrfs_retry_complete *done = bio->bi_private;
7830 struct bio_vec *bvec;
7831 int i;
7832
4246a0b6 7833 if (bio->bi_error)
8b110e39
MX
7834 goto end;
7835
7836 done->uptodate = 1;
7837 bio_for_each_segment_all(bvec, bio, i)
7838 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7839end:
7840 complete(&done->done);
7841 bio_put(bio);
7842}
7843
7844static int __btrfs_correct_data_nocsum(struct inode *inode,
7845 struct btrfs_io_bio *io_bio)
4b46fce2 7846{
2c30c71b 7847 struct bio_vec *bvec;
8b110e39 7848 struct btrfs_retry_complete done;
4b46fce2 7849 u64 start;
2c30c71b 7850 int i;
c1dc0896 7851 int ret;
4b46fce2 7852
8b110e39
MX
7853 start = io_bio->logical;
7854 done.inode = inode;
7855
7856 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7857try_again:
7858 done.uptodate = 0;
7859 done.start = start;
7860 init_completion(&done.done);
7861
7862 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7863 start + bvec->bv_len - 1,
7864 io_bio->mirror_num,
7865 btrfs_retry_endio_nocsum, &done);
7866 if (ret)
7867 return ret;
7868
7869 wait_for_completion(&done.done);
7870
7871 if (!done.uptodate) {
7872 /* We might have another mirror, so try again */
7873 goto try_again;
7874 }
7875
7876 start += bvec->bv_len;
7877 }
7878
7879 return 0;
7880}
7881
4246a0b6 7882static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7883{
7884 struct btrfs_retry_complete *done = bio->bi_private;
7885 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7886 struct bio_vec *bvec;
7887 int uptodate;
7888 int ret;
7889 int i;
7890
4246a0b6 7891 if (bio->bi_error)
8b110e39
MX
7892 goto end;
7893
7894 uptodate = 1;
7895 bio_for_each_segment_all(bvec, bio, i) {
7896 ret = __readpage_endio_check(done->inode, io_bio, i,
7897 bvec->bv_page, 0,
7898 done->start, bvec->bv_len);
7899 if (!ret)
7900 clean_io_failure(done->inode, done->start,
7901 bvec->bv_page, 0);
7902 else
7903 uptodate = 0;
7904 }
7905
7906 done->uptodate = uptodate;
7907end:
7908 complete(&done->done);
7909 bio_put(bio);
7910}
7911
7912static int __btrfs_subio_endio_read(struct inode *inode,
7913 struct btrfs_io_bio *io_bio, int err)
7914{
7915 struct bio_vec *bvec;
7916 struct btrfs_retry_complete done;
7917 u64 start;
7918 u64 offset = 0;
7919 int i;
7920 int ret;
dc380aea 7921
8b110e39 7922 err = 0;
c1dc0896 7923 start = io_bio->logical;
8b110e39
MX
7924 done.inode = inode;
7925
c1dc0896 7926 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7927 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7928 0, start, bvec->bv_len);
8b110e39
MX
7929 if (likely(!ret))
7930 goto next;
7931try_again:
7932 done.uptodate = 0;
7933 done.start = start;
7934 init_completion(&done.done);
7935
7936 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7937 start + bvec->bv_len - 1,
7938 io_bio->mirror_num,
7939 btrfs_retry_endio, &done);
7940 if (ret) {
7941 err = ret;
7942 goto next;
7943 }
7944
7945 wait_for_completion(&done.done);
7946
7947 if (!done.uptodate) {
7948 /* We might have another mirror, so try again */
7949 goto try_again;
7950 }
7951next:
7952 offset += bvec->bv_len;
4b46fce2 7953 start += bvec->bv_len;
2c30c71b 7954 }
c1dc0896
MX
7955
7956 return err;
7957}
7958
8b110e39
MX
7959static int btrfs_subio_endio_read(struct inode *inode,
7960 struct btrfs_io_bio *io_bio, int err)
7961{
7962 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7963
7964 if (skip_csum) {
7965 if (unlikely(err))
7966 return __btrfs_correct_data_nocsum(inode, io_bio);
7967 else
7968 return 0;
7969 } else {
7970 return __btrfs_subio_endio_read(inode, io_bio, err);
7971 }
7972}
7973
4246a0b6 7974static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
7975{
7976 struct btrfs_dio_private *dip = bio->bi_private;
7977 struct inode *inode = dip->inode;
7978 struct bio *dio_bio;
7979 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 7980 int err = bio->bi_error;
c1dc0896 7981
8b110e39
MX
7982 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7983 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 7984
4b46fce2 7985 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7986 dip->logical_offset + dip->bytes - 1);
9be3395b 7987 dio_bio = dip->dio_bio;
4b46fce2 7988
4b46fce2 7989 kfree(dip);
c0da7aa1 7990
4246a0b6 7991 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
7992
7993 if (io_bio->end_io)
7994 io_bio->end_io(io_bio, err);
9be3395b 7995 bio_put(bio);
4b46fce2
JB
7996}
7997
4246a0b6 7998static void btrfs_endio_direct_write(struct bio *bio)
4b46fce2
JB
7999{
8000 struct btrfs_dio_private *dip = bio->bi_private;
8001 struct inode *inode = dip->inode;
8002 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8003 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
8004 u64 ordered_offset = dip->logical_offset;
8005 u64 ordered_bytes = dip->bytes;
9be3395b 8006 struct bio *dio_bio;
4b46fce2
JB
8007 int ret;
8008
163cf09c
CM
8009again:
8010 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8011 &ordered_offset,
4246a0b6
CH
8012 ordered_bytes,
8013 !bio->bi_error);
4b46fce2 8014 if (!ret)
163cf09c 8015 goto out_test;
4b46fce2 8016
9e0af237
LB
8017 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8018 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8019 btrfs_queue_work(root->fs_info->endio_write_workers,
8020 &ordered->work);
163cf09c
CM
8021out_test:
8022 /*
8023 * our bio might span multiple ordered extents. If we haven't
8024 * completed the accounting for the whole dio, go back and try again
8025 */
8026 if (ordered_offset < dip->logical_offset + dip->bytes) {
8027 ordered_bytes = dip->logical_offset + dip->bytes -
8028 ordered_offset;
5fd02043 8029 ordered = NULL;
163cf09c
CM
8030 goto again;
8031 }
9be3395b 8032 dio_bio = dip->dio_bio;
4b46fce2 8033
4b46fce2 8034 kfree(dip);
c0da7aa1 8035
4246a0b6 8036 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8037 bio_put(bio);
4b46fce2
JB
8038}
8039
eaf25d93
CM
8040static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8041 struct bio *bio, int mirror_num,
8042 unsigned long bio_flags, u64 offset)
8043{
8044 int ret;
8045 struct btrfs_root *root = BTRFS_I(inode)->root;
8046 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8047 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8048 return 0;
8049}
8050
4246a0b6 8051static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8052{
8053 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8054 int err = bio->bi_error;
e65e1535 8055
8b110e39
MX
8056 if (err)
8057 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8058 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8059 btrfs_ino(dip->inode), bio->bi_rw,
8060 (unsigned long long)bio->bi_iter.bi_sector,
8061 bio->bi_iter.bi_size, err);
8062
8063 if (dip->subio_endio)
8064 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8065
8066 if (err) {
e65e1535
MX
8067 dip->errors = 1;
8068
8069 /*
8070 * before atomic variable goto zero, we must make sure
8071 * dip->errors is perceived to be set.
8072 */
4e857c58 8073 smp_mb__before_atomic();
e65e1535
MX
8074 }
8075
8076 /* if there are more bios still pending for this dio, just exit */
8077 if (!atomic_dec_and_test(&dip->pending_bios))
8078 goto out;
8079
9be3395b 8080 if (dip->errors) {
e65e1535 8081 bio_io_error(dip->orig_bio);
9be3395b 8082 } else {
4246a0b6
CH
8083 dip->dio_bio->bi_error = 0;
8084 bio_endio(dip->orig_bio);
e65e1535
MX
8085 }
8086out:
8087 bio_put(bio);
8088}
8089
8090static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8091 u64 first_sector, gfp_t gfp_flags)
8092{
da2f0f74 8093 struct bio *bio;
22365979 8094 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8095 if (bio)
8096 bio_associate_current(bio);
8097 return bio;
e65e1535
MX
8098}
8099
c1dc0896
MX
8100static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8101 struct inode *inode,
8102 struct btrfs_dio_private *dip,
8103 struct bio *bio,
8104 u64 file_offset)
8105{
8106 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8107 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8108 int ret;
8109
8110 /*
8111 * We load all the csum data we need when we submit
8112 * the first bio to reduce the csum tree search and
8113 * contention.
8114 */
8115 if (dip->logical_offset == file_offset) {
8116 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8117 file_offset);
8118 if (ret)
8119 return ret;
8120 }
8121
8122 if (bio == dip->orig_bio)
8123 return 0;
8124
8125 file_offset -= dip->logical_offset;
8126 file_offset >>= inode->i_sb->s_blocksize_bits;
8127 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8128
8129 return 0;
8130}
8131
e65e1535
MX
8132static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8133 int rw, u64 file_offset, int skip_sum,
c329861d 8134 int async_submit)
e65e1535 8135{
facc8a22 8136 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8137 int write = rw & REQ_WRITE;
8138 struct btrfs_root *root = BTRFS_I(inode)->root;
8139 int ret;
8140
b812ce28
JB
8141 if (async_submit)
8142 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8143
e65e1535 8144 bio_get(bio);
5fd02043
JB
8145
8146 if (!write) {
bfebd8b5
DS
8147 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8148 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8149 if (ret)
8150 goto err;
8151 }
e65e1535 8152
1ae39938
JB
8153 if (skip_sum)
8154 goto map;
8155
8156 if (write && async_submit) {
e65e1535
MX
8157 ret = btrfs_wq_submit_bio(root->fs_info,
8158 inode, rw, bio, 0, 0,
8159 file_offset,
8160 __btrfs_submit_bio_start_direct_io,
8161 __btrfs_submit_bio_done);
8162 goto err;
1ae39938
JB
8163 } else if (write) {
8164 /*
8165 * If we aren't doing async submit, calculate the csum of the
8166 * bio now.
8167 */
8168 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8169 if (ret)
8170 goto err;
23ea8e5a 8171 } else {
c1dc0896
MX
8172 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8173 file_offset);
c2db1073
TI
8174 if (ret)
8175 goto err;
8176 }
1ae39938
JB
8177map:
8178 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8179err:
8180 bio_put(bio);
8181 return ret;
8182}
8183
8184static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8185 int skip_sum)
8186{
8187 struct inode *inode = dip->inode;
8188 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8189 struct bio *bio;
8190 struct bio *orig_bio = dip->orig_bio;
8191 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8192 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8193 u64 file_offset = dip->logical_offset;
8194 u64 submit_len = 0;
8195 u64 map_length;
8196 int nr_pages = 0;
23ea8e5a 8197 int ret;
1ae39938 8198 int async_submit = 0;
e65e1535 8199
4f024f37 8200 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8201 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8202 &map_length, NULL, 0);
7a5c3c9b 8203 if (ret)
e65e1535 8204 return -EIO;
facc8a22 8205
4f024f37 8206 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8207 bio = orig_bio;
c1dc0896 8208 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8209 goto submit;
8210 }
8211
53b381b3 8212 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8213 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8214 async_submit = 0;
8215 else
8216 async_submit = 1;
8217
02f57c7a
JB
8218 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8219 if (!bio)
8220 return -ENOMEM;
7a5c3c9b 8221
02f57c7a
JB
8222 bio->bi_private = dip;
8223 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8224 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8225 atomic_inc(&dip->pending_bios);
8226
e65e1535 8227 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
ee39b432 8228 if (map_length < submit_len + bvec->bv_len ||
e65e1535 8229 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
ee39b432 8230 bvec->bv_offset) < bvec->bv_len) {
e65e1535
MX
8231 /*
8232 * inc the count before we submit the bio so
8233 * we know the end IO handler won't happen before
8234 * we inc the count. Otherwise, the dip might get freed
8235 * before we're done setting it up
8236 */
8237 atomic_inc(&dip->pending_bios);
8238 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8239 file_offset, skip_sum,
c329861d 8240 async_submit);
e65e1535
MX
8241 if (ret) {
8242 bio_put(bio);
8243 atomic_dec(&dip->pending_bios);
8244 goto out_err;
8245 }
8246
e65e1535
MX
8247 start_sector += submit_len >> 9;
8248 file_offset += submit_len;
8249
8250 submit_len = 0;
8251 nr_pages = 0;
8252
8253 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8254 start_sector, GFP_NOFS);
8255 if (!bio)
8256 goto out_err;
8257 bio->bi_private = dip;
8258 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8259 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8260
4f024f37 8261 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8262 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8263 start_sector << 9,
e65e1535
MX
8264 &map_length, NULL, 0);
8265 if (ret) {
8266 bio_put(bio);
8267 goto out_err;
8268 }
8269 } else {
8270 submit_len += bvec->bv_len;
67871254 8271 nr_pages++;
e65e1535
MX
8272 bvec++;
8273 }
8274 }
8275
02f57c7a 8276submit:
e65e1535 8277 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8278 async_submit);
e65e1535
MX
8279 if (!ret)
8280 return 0;
8281
8282 bio_put(bio);
8283out_err:
8284 dip->errors = 1;
8285 /*
8286 * before atomic variable goto zero, we must
8287 * make sure dip->errors is perceived to be set.
8288 */
4e857c58 8289 smp_mb__before_atomic();
e65e1535
MX
8290 if (atomic_dec_and_test(&dip->pending_bios))
8291 bio_io_error(dip->orig_bio);
8292
8293 /* bio_end_io() will handle error, so we needn't return it */
8294 return 0;
8295}
8296
9be3395b
CM
8297static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8298 struct inode *inode, loff_t file_offset)
4b46fce2 8299{
61de718f
FM
8300 struct btrfs_dio_private *dip = NULL;
8301 struct bio *io_bio = NULL;
23ea8e5a 8302 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8303 int skip_sum;
7b6d91da 8304 int write = rw & REQ_WRITE;
4b46fce2
JB
8305 int ret = 0;
8306
8307 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8308
9be3395b 8309 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8310 if (!io_bio) {
8311 ret = -ENOMEM;
8312 goto free_ordered;
8313 }
8314
c1dc0896 8315 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8316 if (!dip) {
8317 ret = -ENOMEM;
61de718f 8318 goto free_ordered;
4b46fce2 8319 }
4b46fce2 8320
9be3395b 8321 dip->private = dio_bio->bi_private;
4b46fce2
JB
8322 dip->inode = inode;
8323 dip->logical_offset = file_offset;
4f024f37
KO
8324 dip->bytes = dio_bio->bi_iter.bi_size;
8325 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8326 io_bio->bi_private = dip;
9be3395b
CM
8327 dip->orig_bio = io_bio;
8328 dip->dio_bio = dio_bio;
e65e1535 8329 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8330 btrfs_bio = btrfs_io_bio(io_bio);
8331 btrfs_bio->logical = file_offset;
4b46fce2 8332
c1dc0896 8333 if (write) {
9be3395b 8334 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8335 } else {
9be3395b 8336 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8337 dip->subio_endio = btrfs_subio_endio_read;
8338 }
4b46fce2 8339
e65e1535
MX
8340 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8341 if (!ret)
eaf25d93 8342 return;
9be3395b 8343
23ea8e5a
MX
8344 if (btrfs_bio->end_io)
8345 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8346
4b46fce2
JB
8347free_ordered:
8348 /*
61de718f
FM
8349 * If we arrived here it means either we failed to submit the dip
8350 * or we either failed to clone the dio_bio or failed to allocate the
8351 * dip. If we cloned the dio_bio and allocated the dip, we can just
8352 * call bio_endio against our io_bio so that we get proper resource
8353 * cleanup if we fail to submit the dip, otherwise, we must do the
8354 * same as btrfs_endio_direct_[write|read] because we can't call these
8355 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8356 */
61de718f 8357 if (io_bio && dip) {
4246a0b6
CH
8358 io_bio->bi_error = -EIO;
8359 bio_endio(io_bio);
61de718f
FM
8360 /*
8361 * The end io callbacks free our dip, do the final put on io_bio
8362 * and all the cleanup and final put for dio_bio (through
8363 * dio_end_io()).
8364 */
8365 dip = NULL;
8366 io_bio = NULL;
8367 } else {
8368 if (write) {
8369 struct btrfs_ordered_extent *ordered;
8370
8371 ordered = btrfs_lookup_ordered_extent(inode,
8372 file_offset);
8373 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8374 /*
8375 * Decrements our ref on the ordered extent and removes
8376 * the ordered extent from the inode's ordered tree,
8377 * doing all the proper resource cleanup such as for the
8378 * reserved space and waking up any waiters for this
8379 * ordered extent (through btrfs_remove_ordered_extent).
8380 */
8381 btrfs_finish_ordered_io(ordered);
8382 } else {
8383 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8384 file_offset + dio_bio->bi_iter.bi_size - 1);
8385 }
4246a0b6 8386 dio_bio->bi_error = -EIO;
61de718f
FM
8387 /*
8388 * Releases and cleans up our dio_bio, no need to bio_put()
8389 * nor bio_endio()/bio_io_error() against dio_bio.
8390 */
8391 dio_end_io(dio_bio, ret);
4b46fce2 8392 }
61de718f
FM
8393 if (io_bio)
8394 bio_put(io_bio);
8395 kfree(dip);
4b46fce2
JB
8396}
8397
6f673763 8398static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8399 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8400{
8401 int seg;
a1b75f7d 8402 int i;
5a5f79b5
CM
8403 unsigned blocksize_mask = root->sectorsize - 1;
8404 ssize_t retval = -EINVAL;
5a5f79b5
CM
8405
8406 if (offset & blocksize_mask)
8407 goto out;
8408
28060d5d
AV
8409 if (iov_iter_alignment(iter) & blocksize_mask)
8410 goto out;
a1b75f7d 8411
28060d5d 8412 /* If this is a write we don't need to check anymore */
6f673763 8413 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8414 return 0;
8415 /*
8416 * Check to make sure we don't have duplicate iov_base's in this
8417 * iovec, if so return EINVAL, otherwise we'll get csum errors
8418 * when reading back.
8419 */
8420 for (seg = 0; seg < iter->nr_segs; seg++) {
8421 for (i = seg + 1; i < iter->nr_segs; i++) {
8422 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8423 goto out;
8424 }
5a5f79b5
CM
8425 }
8426 retval = 0;
8427out:
8428 return retval;
8429}
eb838e73 8430
22c6186e
OS
8431static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8432 loff_t offset)
16432985 8433{
4b46fce2
JB
8434 struct file *file = iocb->ki_filp;
8435 struct inode *inode = file->f_mapping->host;
50745b0a 8436 struct btrfs_root *root = BTRFS_I(inode)->root;
8437 struct btrfs_dio_data dio_data = { 0 };
0934856d 8438 size_t count = 0;
2e60a51e 8439 int flags = 0;
38851cc1
MX
8440 bool wakeup = true;
8441 bool relock = false;
0934856d 8442 ssize_t ret;
4b46fce2 8443
6f673763 8444 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8445 return 0;
3f7c579c 8446
fe0f07d0 8447 inode_dio_begin(inode);
4e857c58 8448 smp_mb__after_atomic();
38851cc1 8449
0e267c44 8450 /*
41bd9ca4
MX
8451 * The generic stuff only does filemap_write_and_wait_range, which
8452 * isn't enough if we've written compressed pages to this area, so
8453 * we need to flush the dirty pages again to make absolutely sure
8454 * that any outstanding dirty pages are on disk.
0e267c44 8455 */
a6cbcd4a 8456 count = iov_iter_count(iter);
41bd9ca4
MX
8457 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8458 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8459 filemap_fdatawrite_range(inode->i_mapping, offset,
8460 offset + count - 1);
0e267c44 8461
6f673763 8462 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8463 /*
8464 * If the write DIO is beyond the EOF, we need update
8465 * the isize, but it is protected by i_mutex. So we can
8466 * not unlock the i_mutex at this case.
8467 */
8468 if (offset + count <= inode->i_size) {
8469 mutex_unlock(&inode->i_mutex);
8470 relock = true;
8471 }
7cf5b976 8472 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8473 if (ret)
38851cc1 8474 goto out;
50745b0a 8475 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8476 BTRFS_MAX_EXTENT_SIZE - 1,
8477 BTRFS_MAX_EXTENT_SIZE);
8478
8479 /*
8480 * We need to know how many extents we reserved so that we can
8481 * do the accounting properly if we go over the number we
8482 * originally calculated. Abuse current->journal_info for this.
8483 */
50745b0a 8484 dio_data.reserve = round_up(count, root->sectorsize);
8485 current->journal_info = &dio_data;
ee39b432
DS
8486 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8487 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8488 inode_dio_end(inode);
38851cc1
MX
8489 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8490 wakeup = false;
0934856d
MX
8491 }
8492
17f8c842
OS
8493 ret = __blockdev_direct_IO(iocb, inode,
8494 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8495 iter, offset, btrfs_get_blocks_direct, NULL,
8496 btrfs_submit_direct, flags);
6f673763 8497 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8498 current->journal_info = NULL;
ddba1bfc 8499 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8500 if (dio_data.reserve)
7cf5b976
QW
8501 btrfs_delalloc_release_space(inode, offset,
8502 dio_data.reserve);
ddba1bfc 8503 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8504 btrfs_delalloc_release_space(inode, offset,
8505 count - (size_t)ret);
0934856d 8506 }
38851cc1 8507out:
2e60a51e 8508 if (wakeup)
fe0f07d0 8509 inode_dio_end(inode);
38851cc1
MX
8510 if (relock)
8511 mutex_lock(&inode->i_mutex);
0934856d
MX
8512
8513 return ret;
16432985
CM
8514}
8515
05dadc09
TI
8516#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8517
1506fcc8
YS
8518static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8519 __u64 start, __u64 len)
8520{
05dadc09
TI
8521 int ret;
8522
8523 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8524 if (ret)
8525 return ret;
8526
ec29ed5b 8527 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8528}
8529
a52d9a80 8530int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8531{
d1310b2e
CM
8532 struct extent_io_tree *tree;
8533 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8534 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8535}
1832a6d5 8536
a52d9a80 8537static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8538{
d1310b2e 8539 struct extent_io_tree *tree;
b888db2b
CM
8540
8541
8542 if (current->flags & PF_MEMALLOC) {
8543 redirty_page_for_writepage(wbc, page);
8544 unlock_page(page);
8545 return 0;
8546 }
d1310b2e 8547 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8548 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8549}
8550
48a3b636
ES
8551static int btrfs_writepages(struct address_space *mapping,
8552 struct writeback_control *wbc)
b293f02e 8553{
d1310b2e 8554 struct extent_io_tree *tree;
771ed689 8555
d1310b2e 8556 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8557 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8558}
8559
3ab2fb5a
CM
8560static int
8561btrfs_readpages(struct file *file, struct address_space *mapping,
8562 struct list_head *pages, unsigned nr_pages)
8563{
d1310b2e
CM
8564 struct extent_io_tree *tree;
8565 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8566 return extent_readpages(tree, mapping, pages, nr_pages,
8567 btrfs_get_extent);
8568}
e6dcd2dc 8569static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8570{
d1310b2e
CM
8571 struct extent_io_tree *tree;
8572 struct extent_map_tree *map;
a52d9a80 8573 int ret;
8c2383c3 8574
d1310b2e
CM
8575 tree = &BTRFS_I(page->mapping->host)->io_tree;
8576 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8577 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8578 if (ret == 1) {
8579 ClearPagePrivate(page);
8580 set_page_private(page, 0);
8581 page_cache_release(page);
39279cc3 8582 }
a52d9a80 8583 return ret;
39279cc3
CM
8584}
8585
e6dcd2dc
CM
8586static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8587{
98509cfc
CM
8588 if (PageWriteback(page) || PageDirty(page))
8589 return 0;
b335b003 8590 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8591}
8592
d47992f8
LC
8593static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8594 unsigned int length)
39279cc3 8595{
5fd02043 8596 struct inode *inode = page->mapping->host;
d1310b2e 8597 struct extent_io_tree *tree;
e6dcd2dc 8598 struct btrfs_ordered_extent *ordered;
2ac55d41 8599 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8600 u64 page_start = page_offset(page);
8601 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8602 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8603
8b62b72b
CM
8604 /*
8605 * we have the page locked, so new writeback can't start,
8606 * and the dirty bit won't be cleared while we are here.
8607 *
8608 * Wait for IO on this page so that we can safely clear
8609 * the PagePrivate2 bit and do ordered accounting
8610 */
e6dcd2dc 8611 wait_on_page_writeback(page);
8b62b72b 8612
5fd02043 8613 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8614 if (offset) {
8615 btrfs_releasepage(page, GFP_NOFS);
8616 return;
8617 }
131e404a
FDBM
8618
8619 if (!inode_evicting)
8620 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8621 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8622 if (ordered) {
eb84ae03
CM
8623 /*
8624 * IO on this page will never be started, so we need
8625 * to account for any ordered extents now
8626 */
131e404a
FDBM
8627 if (!inode_evicting)
8628 clear_extent_bit(tree, page_start, page_end,
8629 EXTENT_DIRTY | EXTENT_DELALLOC |
8630 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8631 EXTENT_DEFRAG, 1, 0, &cached_state,
8632 GFP_NOFS);
8b62b72b
CM
8633 /*
8634 * whoever cleared the private bit is responsible
8635 * for the finish_ordered_io
8636 */
77cef2ec
JB
8637 if (TestClearPagePrivate2(page)) {
8638 struct btrfs_ordered_inode_tree *tree;
8639 u64 new_len;
8640
8641 tree = &BTRFS_I(inode)->ordered_tree;
8642
8643 spin_lock_irq(&tree->lock);
8644 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8645 new_len = page_start - ordered->file_offset;
8646 if (new_len < ordered->truncated_len)
8647 ordered->truncated_len = new_len;
8648 spin_unlock_irq(&tree->lock);
8649
8650 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8651 page_start,
8652 PAGE_CACHE_SIZE, 1))
8653 btrfs_finish_ordered_io(ordered);
8b62b72b 8654 }
e6dcd2dc 8655 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8656 if (!inode_evicting) {
8657 cached_state = NULL;
8658 lock_extent_bits(tree, page_start, page_end, 0,
8659 &cached_state);
8660 }
8661 }
8662
b9d0b389
QW
8663 /*
8664 * Qgroup reserved space handler
8665 * Page here will be either
8666 * 1) Already written to disk
8667 * In this case, its reserved space is released from data rsv map
8668 * and will be freed by delayed_ref handler finally.
8669 * So even we call qgroup_free_data(), it won't decrease reserved
8670 * space.
8671 * 2) Not written to disk
8672 * This means the reserved space should be freed here.
8673 */
8674 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
131e404a
FDBM
8675 if (!inode_evicting) {
8676 clear_extent_bit(tree, page_start, page_end,
8677 EXTENT_LOCKED | EXTENT_DIRTY |
8678 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8679 EXTENT_DEFRAG, 1, 1,
8680 &cached_state, GFP_NOFS);
8681
8682 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8683 }
e6dcd2dc 8684
4a096752 8685 ClearPageChecked(page);
9ad6b7bc 8686 if (PagePrivate(page)) {
9ad6b7bc
CM
8687 ClearPagePrivate(page);
8688 set_page_private(page, 0);
8689 page_cache_release(page);
8690 }
39279cc3
CM
8691}
8692
9ebefb18
CM
8693/*
8694 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8695 * called from a page fault handler when a page is first dirtied. Hence we must
8696 * be careful to check for EOF conditions here. We set the page up correctly
8697 * for a written page which means we get ENOSPC checking when writing into
8698 * holes and correct delalloc and unwritten extent mapping on filesystems that
8699 * support these features.
8700 *
8701 * We are not allowed to take the i_mutex here so we have to play games to
8702 * protect against truncate races as the page could now be beyond EOF. Because
8703 * vmtruncate() writes the inode size before removing pages, once we have the
8704 * page lock we can determine safely if the page is beyond EOF. If it is not
8705 * beyond EOF, then the page is guaranteed safe against truncation until we
8706 * unlock the page.
8707 */
c2ec175c 8708int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8709{
c2ec175c 8710 struct page *page = vmf->page;
496ad9aa 8711 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8712 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8713 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8714 struct btrfs_ordered_extent *ordered;
2ac55d41 8715 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8716 char *kaddr;
8717 unsigned long zero_start;
9ebefb18 8718 loff_t size;
1832a6d5 8719 int ret;
9998eb70 8720 int reserved = 0;
a52d9a80 8721 u64 page_start;
e6dcd2dc 8722 u64 page_end;
9ebefb18 8723
b2b5ef5c 8724 sb_start_pagefault(inode->i_sb);
df480633
QW
8725 page_start = page_offset(page);
8726 page_end = page_start + PAGE_CACHE_SIZE - 1;
8727
7cf5b976
QW
8728 ret = btrfs_delalloc_reserve_space(inode, page_start,
8729 PAGE_CACHE_SIZE);
9998eb70 8730 if (!ret) {
e41f941a 8731 ret = file_update_time(vma->vm_file);
9998eb70
CM
8732 reserved = 1;
8733 }
56a76f82
NP
8734 if (ret) {
8735 if (ret == -ENOMEM)
8736 ret = VM_FAULT_OOM;
8737 else /* -ENOSPC, -EIO, etc */
8738 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8739 if (reserved)
8740 goto out;
8741 goto out_noreserve;
56a76f82 8742 }
1832a6d5 8743
56a76f82 8744 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8745again:
9ebefb18 8746 lock_page(page);
9ebefb18 8747 size = i_size_read(inode);
a52d9a80 8748
9ebefb18 8749 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8750 (page_start >= size)) {
9ebefb18
CM
8751 /* page got truncated out from underneath us */
8752 goto out_unlock;
8753 }
e6dcd2dc
CM
8754 wait_on_page_writeback(page);
8755
d0082371 8756 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8757 set_page_extent_mapped(page);
8758
eb84ae03
CM
8759 /*
8760 * we can't set the delalloc bits if there are pending ordered
8761 * extents. Drop our locks and wait for them to finish
8762 */
e6dcd2dc
CM
8763 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8764 if (ordered) {
2ac55d41
JB
8765 unlock_extent_cached(io_tree, page_start, page_end,
8766 &cached_state, GFP_NOFS);
e6dcd2dc 8767 unlock_page(page);
eb84ae03 8768 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8769 btrfs_put_ordered_extent(ordered);
8770 goto again;
8771 }
8772
fbf19087
JB
8773 /*
8774 * XXX - page_mkwrite gets called every time the page is dirtied, even
8775 * if it was already dirty, so for space accounting reasons we need to
8776 * clear any delalloc bits for the range we are fixing to save. There
8777 * is probably a better way to do this, but for now keep consistent with
8778 * prepare_pages in the normal write path.
8779 */
2ac55d41 8780 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8781 EXTENT_DIRTY | EXTENT_DELALLOC |
8782 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8783 0, 0, &cached_state, GFP_NOFS);
fbf19087 8784
2ac55d41
JB
8785 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8786 &cached_state);
9ed74f2d 8787 if (ret) {
2ac55d41
JB
8788 unlock_extent_cached(io_tree, page_start, page_end,
8789 &cached_state, GFP_NOFS);
9ed74f2d
JB
8790 ret = VM_FAULT_SIGBUS;
8791 goto out_unlock;
8792 }
e6dcd2dc 8793 ret = 0;
9ebefb18
CM
8794
8795 /* page is wholly or partially inside EOF */
a52d9a80 8796 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8797 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8798 else
e6dcd2dc 8799 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8800
e6dcd2dc
CM
8801 if (zero_start != PAGE_CACHE_SIZE) {
8802 kaddr = kmap(page);
8803 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8804 flush_dcache_page(page);
8805 kunmap(page);
8806 }
247e743c 8807 ClearPageChecked(page);
e6dcd2dc 8808 set_page_dirty(page);
50a9b214 8809 SetPageUptodate(page);
5a3f23d5 8810
257c62e1
CM
8811 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8812 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8813 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8814
2ac55d41 8815 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8816
8817out_unlock:
b2b5ef5c
JK
8818 if (!ret) {
8819 sb_end_pagefault(inode->i_sb);
50a9b214 8820 return VM_FAULT_LOCKED;
b2b5ef5c 8821 }
9ebefb18 8822 unlock_page(page);
1832a6d5 8823out:
7cf5b976 8824 btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
9998eb70 8825out_noreserve:
b2b5ef5c 8826 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8827 return ret;
8828}
8829
a41ad394 8830static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8831{
8832 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8833 struct btrfs_block_rsv *rsv;
a71754fc 8834 int ret = 0;
3893e33b 8835 int err = 0;
39279cc3 8836 struct btrfs_trans_handle *trans;
dbe674a9 8837 u64 mask = root->sectorsize - 1;
07127184 8838 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8839
0ef8b726
JB
8840 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8841 (u64)-1);
8842 if (ret)
8843 return ret;
39279cc3 8844
fcb80c2a
JB
8845 /*
8846 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8847 * 3 things going on here
8848 *
8849 * 1) We need to reserve space for our orphan item and the space to
8850 * delete our orphan item. Lord knows we don't want to have a dangling
8851 * orphan item because we didn't reserve space to remove it.
8852 *
8853 * 2) We need to reserve space to update our inode.
8854 *
8855 * 3) We need to have something to cache all the space that is going to
8856 * be free'd up by the truncate operation, but also have some slack
8857 * space reserved in case it uses space during the truncate (thank you
8858 * very much snapshotting).
8859 *
8860 * And we need these to all be seperate. The fact is we can use alot of
8861 * space doing the truncate, and we have no earthly idea how much space
8862 * we will use, so we need the truncate reservation to be seperate so it
8863 * doesn't end up using space reserved for updating the inode or
8864 * removing the orphan item. We also need to be able to stop the
8865 * transaction and start a new one, which means we need to be able to
8866 * update the inode several times, and we have no idea of knowing how
8867 * many times that will be, so we can't just reserve 1 item for the
8868 * entirety of the opration, so that has to be done seperately as well.
8869 * Then there is the orphan item, which does indeed need to be held on
8870 * to for the whole operation, and we need nobody to touch this reserved
8871 * space except the orphan code.
8872 *
8873 * So that leaves us with
8874 *
8875 * 1) root->orphan_block_rsv - for the orphan deletion.
8876 * 2) rsv - for the truncate reservation, which we will steal from the
8877 * transaction reservation.
8878 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8879 * updating the inode.
8880 */
66d8f3dd 8881 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8882 if (!rsv)
8883 return -ENOMEM;
4a338542 8884 rsv->size = min_size;
ca7e70f5 8885 rsv->failfast = 1;
f0cd846e 8886
907cbceb 8887 /*
07127184 8888 * 1 for the truncate slack space
907cbceb
JB
8889 * 1 for updating the inode.
8890 */
f3fe820c 8891 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8892 if (IS_ERR(trans)) {
8893 err = PTR_ERR(trans);
8894 goto out;
8895 }
f0cd846e 8896
907cbceb
JB
8897 /* Migrate the slack space for the truncate to our reserve */
8898 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8899 min_size);
fcb80c2a 8900 BUG_ON(ret);
f0cd846e 8901
5dc562c5
JB
8902 /*
8903 * So if we truncate and then write and fsync we normally would just
8904 * write the extents that changed, which is a problem if we need to
8905 * first truncate that entire inode. So set this flag so we write out
8906 * all of the extents in the inode to the sync log so we're completely
8907 * safe.
8908 */
8909 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8910 trans->block_rsv = rsv;
907cbceb 8911
8082510e
YZ
8912 while (1) {
8913 ret = btrfs_truncate_inode_items(trans, root, inode,
8914 inode->i_size,
8915 BTRFS_EXTENT_DATA_KEY);
28ed1345 8916 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 8917 err = ret;
8082510e 8918 break;
3893e33b 8919 }
39279cc3 8920
fcb80c2a 8921 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8922 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8923 if (ret) {
8924 err = ret;
8925 break;
8926 }
ca7e70f5 8927
8082510e 8928 btrfs_end_transaction(trans, root);
b53d3f5d 8929 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8930
8931 trans = btrfs_start_transaction(root, 2);
8932 if (IS_ERR(trans)) {
8933 ret = err = PTR_ERR(trans);
8934 trans = NULL;
8935 break;
8936 }
8937
8938 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8939 rsv, min_size);
8940 BUG_ON(ret); /* shouldn't happen */
8941 trans->block_rsv = rsv;
8082510e
YZ
8942 }
8943
8944 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8945 trans->block_rsv = root->orphan_block_rsv;
8082510e 8946 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8947 if (ret)
8948 err = ret;
8082510e
YZ
8949 }
8950
917c16b2
CM
8951 if (trans) {
8952 trans->block_rsv = &root->fs_info->trans_block_rsv;
8953 ret = btrfs_update_inode(trans, root, inode);
8954 if (ret && !err)
8955 err = ret;
7b128766 8956
7ad85bb7 8957 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8958 btrfs_btree_balance_dirty(root);
917c16b2 8959 }
fcb80c2a
JB
8960
8961out:
8962 btrfs_free_block_rsv(root, rsv);
8963
3893e33b
JB
8964 if (ret && !err)
8965 err = ret;
a41ad394 8966
3893e33b 8967 return err;
39279cc3
CM
8968}
8969
d352ac68
CM
8970/*
8971 * create a new subvolume directory/inode (helper for the ioctl).
8972 */
d2fb3437 8973int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8974 struct btrfs_root *new_root,
8975 struct btrfs_root *parent_root,
8976 u64 new_dirid)
39279cc3 8977{
39279cc3 8978 struct inode *inode;
76dda93c 8979 int err;
00e4e6b3 8980 u64 index = 0;
39279cc3 8981
12fc9d09
FA
8982 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8983 new_dirid, new_dirid,
8984 S_IFDIR | (~current_umask() & S_IRWXUGO),
8985 &index);
54aa1f4d 8986 if (IS_ERR(inode))
f46b5a66 8987 return PTR_ERR(inode);
39279cc3
CM
8988 inode->i_op = &btrfs_dir_inode_operations;
8989 inode->i_fop = &btrfs_dir_file_operations;
8990
bfe86848 8991 set_nlink(inode, 1);
dbe674a9 8992 btrfs_i_size_write(inode, 0);
b0d5d10f 8993 unlock_new_inode(inode);
3b96362c 8994
63541927
FDBM
8995 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8996 if (err)
8997 btrfs_err(new_root->fs_info,
351fd353 8998 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8999 new_root->root_key.objectid, err);
9000
76dda93c 9001 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9002
76dda93c 9003 iput(inode);
ce598979 9004 return err;
39279cc3
CM
9005}
9006
39279cc3
CM
9007struct inode *btrfs_alloc_inode(struct super_block *sb)
9008{
9009 struct btrfs_inode *ei;
2ead6ae7 9010 struct inode *inode;
39279cc3
CM
9011
9012 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9013 if (!ei)
9014 return NULL;
2ead6ae7
YZ
9015
9016 ei->root = NULL;
2ead6ae7 9017 ei->generation = 0;
15ee9bc7 9018 ei->last_trans = 0;
257c62e1 9019 ei->last_sub_trans = 0;
e02119d5 9020 ei->logged_trans = 0;
2ead6ae7 9021 ei->delalloc_bytes = 0;
47059d93 9022 ei->defrag_bytes = 0;
2ead6ae7
YZ
9023 ei->disk_i_size = 0;
9024 ei->flags = 0;
7709cde3 9025 ei->csum_bytes = 0;
2ead6ae7 9026 ei->index_cnt = (u64)-1;
67de1176 9027 ei->dir_index = 0;
2ead6ae7 9028 ei->last_unlink_trans = 0;
46d8bc34 9029 ei->last_log_commit = 0;
2ead6ae7 9030
9e0baf60
JB
9031 spin_lock_init(&ei->lock);
9032 ei->outstanding_extents = 0;
9033 ei->reserved_extents = 0;
2ead6ae7 9034
72ac3c0d 9035 ei->runtime_flags = 0;
261507a0 9036 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9037
16cdcec7
MX
9038 ei->delayed_node = NULL;
9039
9cc97d64 9040 ei->i_otime.tv_sec = 0;
9041 ei->i_otime.tv_nsec = 0;
9042
2ead6ae7 9043 inode = &ei->vfs_inode;
a8067e02 9044 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9045 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9046 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9047 ei->io_tree.track_uptodate = 1;
9048 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9049 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9050 mutex_init(&ei->log_mutex);
f248679e 9051 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9052 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9053 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
9054 RB_CLEAR_NODE(&ei->rb_node);
9055
9056 return inode;
39279cc3
CM
9057}
9058
aaedb55b
JB
9059#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9060void btrfs_test_destroy_inode(struct inode *inode)
9061{
9062 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9063 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9064}
9065#endif
9066
fa0d7e3d
NP
9067static void btrfs_i_callback(struct rcu_head *head)
9068{
9069 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9070 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9071}
9072
39279cc3
CM
9073void btrfs_destroy_inode(struct inode *inode)
9074{
e6dcd2dc 9075 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9076 struct btrfs_root *root = BTRFS_I(inode)->root;
9077
b3d9b7a3 9078 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9079 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9080 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9081 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9082 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9083 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9084 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9085
a6dbd429
JB
9086 /*
9087 * This can happen where we create an inode, but somebody else also
9088 * created the same inode and we need to destroy the one we already
9089 * created.
9090 */
9091 if (!root)
9092 goto free;
9093
8a35d95f
JB
9094 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9095 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9096 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9097 btrfs_ino(inode));
8a35d95f 9098 atomic_dec(&root->orphan_inodes);
7b128766 9099 }
7b128766 9100
d397712b 9101 while (1) {
e6dcd2dc
CM
9102 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9103 if (!ordered)
9104 break;
9105 else {
c2cf52eb 9106 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9107 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9108 btrfs_remove_ordered_extent(inode, ordered);
9109 btrfs_put_ordered_extent(ordered);
9110 btrfs_put_ordered_extent(ordered);
9111 }
9112 }
56fa9d07 9113 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9114 inode_tree_del(inode);
5b21f2ed 9115 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9116free:
fa0d7e3d 9117 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9118}
9119
45321ac5 9120int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9121{
9122 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9123
6379ef9f
NA
9124 if (root == NULL)
9125 return 1;
9126
fa6ac876 9127 /* the snap/subvol tree is on deleting */
69e9c6c6 9128 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9129 return 1;
76dda93c 9130 else
45321ac5 9131 return generic_drop_inode(inode);
76dda93c
YZ
9132}
9133
0ee0fda0 9134static void init_once(void *foo)
39279cc3
CM
9135{
9136 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9137
9138 inode_init_once(&ei->vfs_inode);
9139}
9140
9141void btrfs_destroy_cachep(void)
9142{
8c0a8537
KS
9143 /*
9144 * Make sure all delayed rcu free inodes are flushed before we
9145 * destroy cache.
9146 */
9147 rcu_barrier();
39279cc3
CM
9148 if (btrfs_inode_cachep)
9149 kmem_cache_destroy(btrfs_inode_cachep);
9150 if (btrfs_trans_handle_cachep)
9151 kmem_cache_destroy(btrfs_trans_handle_cachep);
9152 if (btrfs_transaction_cachep)
9153 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
9154 if (btrfs_path_cachep)
9155 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
9156 if (btrfs_free_space_cachep)
9157 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
9158 if (btrfs_delalloc_work_cachep)
9159 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
9160}
9161
9162int btrfs_init_cachep(void)
9163{
837e1972 9164 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
9165 sizeof(struct btrfs_inode), 0,
9166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
9167 if (!btrfs_inode_cachep)
9168 goto fail;
9601e3f6 9169
837e1972 9170 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9171 sizeof(struct btrfs_trans_handle), 0,
9172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9173 if (!btrfs_trans_handle_cachep)
9174 goto fail;
9601e3f6 9175
837e1972 9176 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9177 sizeof(struct btrfs_transaction), 0,
9178 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9179 if (!btrfs_transaction_cachep)
9180 goto fail;
9601e3f6 9181
837e1972 9182 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9183 sizeof(struct btrfs_path), 0,
9184 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9185 if (!btrfs_path_cachep)
9186 goto fail;
9601e3f6 9187
837e1972 9188 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9189 sizeof(struct btrfs_free_space), 0,
9190 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9191 if (!btrfs_free_space_cachep)
9192 goto fail;
9193
8ccf6f19
MX
9194 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9195 sizeof(struct btrfs_delalloc_work), 0,
9196 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9197 NULL);
9198 if (!btrfs_delalloc_work_cachep)
9199 goto fail;
9200
39279cc3
CM
9201 return 0;
9202fail:
9203 btrfs_destroy_cachep();
9204 return -ENOMEM;
9205}
9206
9207static int btrfs_getattr(struct vfsmount *mnt,
9208 struct dentry *dentry, struct kstat *stat)
9209{
df0af1a5 9210 u64 delalloc_bytes;
2b0143b5 9211 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9212 u32 blocksize = inode->i_sb->s_blocksize;
9213
39279cc3 9214 generic_fillattr(inode, stat);
0ee5dc67 9215 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 9216 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
9217
9218 spin_lock(&BTRFS_I(inode)->lock);
9219 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9220 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9221 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9222 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9223 return 0;
9224}
9225
d397712b
CM
9226static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9227 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
9228{
9229 struct btrfs_trans_handle *trans;
9230 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9231 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9232 struct inode *new_inode = d_inode(new_dentry);
9233 struct inode *old_inode = d_inode(old_dentry);
39279cc3 9234 struct timespec ctime = CURRENT_TIME;
00e4e6b3 9235 u64 index = 0;
4df27c4d 9236 u64 root_objectid;
39279cc3 9237 int ret;
33345d01 9238 u64 old_ino = btrfs_ino(old_inode);
39279cc3 9239
33345d01 9240 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9241 return -EPERM;
9242
4df27c4d 9243 /* we only allow rename subvolume link between subvolumes */
33345d01 9244 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9245 return -EXDEV;
9246
33345d01
LZ
9247 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9248 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9249 return -ENOTEMPTY;
5f39d397 9250
4df27c4d
YZ
9251 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9252 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9253 return -ENOTEMPTY;
9c52057c
CM
9254
9255
9256 /* check for collisions, even if the name isn't there */
4871c158 9257 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9258 new_dentry->d_name.name,
9259 new_dentry->d_name.len);
9260
9261 if (ret) {
9262 if (ret == -EEXIST) {
9263 /* we shouldn't get
9264 * eexist without a new_inode */
fae7f21c 9265 if (WARN_ON(!new_inode)) {
9c52057c
CM
9266 return ret;
9267 }
9268 } else {
9269 /* maybe -EOVERFLOW */
9270 return ret;
9271 }
9272 }
9273 ret = 0;
9274
5a3f23d5 9275 /*
8d875f95
CM
9276 * we're using rename to replace one file with another. Start IO on it
9277 * now so we don't add too much work to the end of the transaction
5a3f23d5 9278 */
8d875f95 9279 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9280 filemap_flush(old_inode->i_mapping);
9281
76dda93c 9282 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9283 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9284 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9285 /*
9286 * We want to reserve the absolute worst case amount of items. So if
9287 * both inodes are subvols and we need to unlink them then that would
9288 * require 4 item modifications, but if they are both normal inodes it
9289 * would require 5 item modifications, so we'll assume their normal
9290 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9291 * should cover the worst case number of items we'll modify.
9292 */
6e137ed3 9293 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
9294 if (IS_ERR(trans)) {
9295 ret = PTR_ERR(trans);
9296 goto out_notrans;
9297 }
76dda93c 9298
4df27c4d
YZ
9299 if (dest != root)
9300 btrfs_record_root_in_trans(trans, dest);
5f39d397 9301
a5719521
YZ
9302 ret = btrfs_set_inode_index(new_dir, &index);
9303 if (ret)
9304 goto out_fail;
5a3f23d5 9305
67de1176 9306 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9307 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9308 /* force full log commit if subvolume involved. */
995946dd 9309 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9310 } else {
a5719521
YZ
9311 ret = btrfs_insert_inode_ref(trans, dest,
9312 new_dentry->d_name.name,
9313 new_dentry->d_name.len,
33345d01
LZ
9314 old_ino,
9315 btrfs_ino(new_dir), index);
a5719521
YZ
9316 if (ret)
9317 goto out_fail;
4df27c4d
YZ
9318 /*
9319 * this is an ugly little race, but the rename is required
9320 * to make sure that if we crash, the inode is either at the
9321 * old name or the new one. pinning the log transaction lets
9322 * us make sure we don't allow a log commit to come in after
9323 * we unlink the name but before we add the new name back in.
9324 */
9325 btrfs_pin_log_trans(root);
9326 }
5a3f23d5 9327
0c4d2d95
JB
9328 inode_inc_iversion(old_dir);
9329 inode_inc_iversion(new_dir);
9330 inode_inc_iversion(old_inode);
39279cc3
CM
9331 old_dir->i_ctime = old_dir->i_mtime = ctime;
9332 new_dir->i_ctime = new_dir->i_mtime = ctime;
9333 old_inode->i_ctime = ctime;
5f39d397 9334
12fcfd22
CM
9335 if (old_dentry->d_parent != new_dentry->d_parent)
9336 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9337
33345d01 9338 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9339 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9340 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9341 old_dentry->d_name.name,
9342 old_dentry->d_name.len);
9343 } else {
92986796 9344 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9345 d_inode(old_dentry),
92986796
AV
9346 old_dentry->d_name.name,
9347 old_dentry->d_name.len);
9348 if (!ret)
9349 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9350 }
79787eaa
JM
9351 if (ret) {
9352 btrfs_abort_transaction(trans, root, ret);
9353 goto out_fail;
9354 }
39279cc3
CM
9355
9356 if (new_inode) {
0c4d2d95 9357 inode_inc_iversion(new_inode);
39279cc3 9358 new_inode->i_ctime = CURRENT_TIME;
33345d01 9359 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9360 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9361 root_objectid = BTRFS_I(new_inode)->location.objectid;
9362 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9363 root_objectid,
9364 new_dentry->d_name.name,
9365 new_dentry->d_name.len);
9366 BUG_ON(new_inode->i_nlink == 0);
9367 } else {
9368 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9369 d_inode(new_dentry),
4df27c4d
YZ
9370 new_dentry->d_name.name,
9371 new_dentry->d_name.len);
9372 }
4ef31a45 9373 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9374 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9375 if (ret) {
9376 btrfs_abort_transaction(trans, root, ret);
9377 goto out_fail;
9378 }
39279cc3 9379 }
aec7477b 9380
4df27c4d
YZ
9381 ret = btrfs_add_link(trans, new_dir, old_inode,
9382 new_dentry->d_name.name,
a5719521 9383 new_dentry->d_name.len, 0, index);
79787eaa
JM
9384 if (ret) {
9385 btrfs_abort_transaction(trans, root, ret);
9386 goto out_fail;
9387 }
39279cc3 9388
67de1176
MX
9389 if (old_inode->i_nlink == 1)
9390 BTRFS_I(old_inode)->dir_index = index;
9391
33345d01 9392 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 9393 struct dentry *parent = new_dentry->d_parent;
6a912213 9394 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
9395 btrfs_end_log_trans(root);
9396 }
39279cc3 9397out_fail:
7ad85bb7 9398 btrfs_end_transaction(trans, root);
b44c59a8 9399out_notrans:
33345d01 9400 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9401 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9402
39279cc3
CM
9403 return ret;
9404}
9405
80ace85c
MS
9406static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9407 struct inode *new_dir, struct dentry *new_dentry,
9408 unsigned int flags)
9409{
9410 if (flags & ~RENAME_NOREPLACE)
9411 return -EINVAL;
9412
9413 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9414}
9415
8ccf6f19
MX
9416static void btrfs_run_delalloc_work(struct btrfs_work *work)
9417{
9418 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9419 struct inode *inode;
8ccf6f19
MX
9420
9421 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9422 work);
9f23e289
JB
9423 inode = delalloc_work->inode;
9424 if (delalloc_work->wait) {
9425 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9426 } else {
9427 filemap_flush(inode->i_mapping);
9428 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9429 &BTRFS_I(inode)->runtime_flags))
9430 filemap_flush(inode->i_mapping);
9431 }
8ccf6f19
MX
9432
9433 if (delalloc_work->delay_iput)
9f23e289 9434 btrfs_add_delayed_iput(inode);
8ccf6f19 9435 else
9f23e289 9436 iput(inode);
8ccf6f19
MX
9437 complete(&delalloc_work->completion);
9438}
9439
9440struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9441 int wait, int delay_iput)
9442{
9443 struct btrfs_delalloc_work *work;
9444
9445 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9446 if (!work)
9447 return NULL;
9448
9449 init_completion(&work->completion);
9450 INIT_LIST_HEAD(&work->list);
9451 work->inode = inode;
9452 work->wait = wait;
9453 work->delay_iput = delay_iput;
9e0af237
LB
9454 WARN_ON_ONCE(!inode);
9455 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9456 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9457
9458 return work;
9459}
9460
9461void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9462{
9463 wait_for_completion(&work->completion);
9464 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9465}
9466
d352ac68
CM
9467/*
9468 * some fairly slow code that needs optimization. This walks the list
9469 * of all the inodes with pending delalloc and forces them to disk.
9470 */
6c255e67
MX
9471static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9472 int nr)
ea8c2819 9473{
ea8c2819 9474 struct btrfs_inode *binode;
5b21f2ed 9475 struct inode *inode;
8ccf6f19
MX
9476 struct btrfs_delalloc_work *work, *next;
9477 struct list_head works;
1eafa6c7 9478 struct list_head splice;
8ccf6f19 9479 int ret = 0;
ea8c2819 9480
8ccf6f19 9481 INIT_LIST_HEAD(&works);
1eafa6c7 9482 INIT_LIST_HEAD(&splice);
63607cc8 9483
573bfb72 9484 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9485 spin_lock(&root->delalloc_lock);
9486 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9487 while (!list_empty(&splice)) {
9488 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9489 delalloc_inodes);
1eafa6c7 9490
eb73c1b7
MX
9491 list_move_tail(&binode->delalloc_inodes,
9492 &root->delalloc_inodes);
5b21f2ed 9493 inode = igrab(&binode->vfs_inode);
df0af1a5 9494 if (!inode) {
eb73c1b7 9495 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9496 continue;
df0af1a5 9497 }
eb73c1b7 9498 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
9499
9500 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
5d99a998 9501 if (!work) {
f4ab9ea7
JB
9502 if (delay_iput)
9503 btrfs_add_delayed_iput(inode);
9504 else
9505 iput(inode);
1eafa6c7 9506 ret = -ENOMEM;
a1ecaabb 9507 goto out;
5b21f2ed 9508 }
1eafa6c7 9509 list_add_tail(&work->list, &works);
a44903ab
QW
9510 btrfs_queue_work(root->fs_info->flush_workers,
9511 &work->work);
6c255e67
MX
9512 ret++;
9513 if (nr != -1 && ret >= nr)
a1ecaabb 9514 goto out;
5b21f2ed 9515 cond_resched();
eb73c1b7 9516 spin_lock(&root->delalloc_lock);
ea8c2819 9517 }
eb73c1b7 9518 spin_unlock(&root->delalloc_lock);
8c8bee1d 9519
a1ecaabb 9520out:
eb73c1b7
MX
9521 list_for_each_entry_safe(work, next, &works, list) {
9522 list_del_init(&work->list);
9523 btrfs_wait_and_free_delalloc_work(work);
9524 }
9525
9526 if (!list_empty_careful(&splice)) {
9527 spin_lock(&root->delalloc_lock);
9528 list_splice_tail(&splice, &root->delalloc_inodes);
9529 spin_unlock(&root->delalloc_lock);
9530 }
573bfb72 9531 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9532 return ret;
9533}
1eafa6c7 9534
eb73c1b7
MX
9535int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9536{
9537 int ret;
1eafa6c7 9538
2c21b4d7 9539 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9540 return -EROFS;
9541
6c255e67
MX
9542 ret = __start_delalloc_inodes(root, delay_iput, -1);
9543 if (ret > 0)
9544 ret = 0;
eb73c1b7
MX
9545 /*
9546 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9547 * we have to make sure the IO is actually started and that
9548 * ordered extents get created before we return
9549 */
9550 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9551 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9552 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9553 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9554 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9555 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9556 }
9557 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9558 return ret;
9559}
9560
6c255e67
MX
9561int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9562 int nr)
eb73c1b7
MX
9563{
9564 struct btrfs_root *root;
9565 struct list_head splice;
9566 int ret;
9567
2c21b4d7 9568 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9569 return -EROFS;
9570
9571 INIT_LIST_HEAD(&splice);
9572
573bfb72 9573 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9574 spin_lock(&fs_info->delalloc_root_lock);
9575 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9576 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9577 root = list_first_entry(&splice, struct btrfs_root,
9578 delalloc_root);
9579 root = btrfs_grab_fs_root(root);
9580 BUG_ON(!root);
9581 list_move_tail(&root->delalloc_root,
9582 &fs_info->delalloc_roots);
9583 spin_unlock(&fs_info->delalloc_root_lock);
9584
6c255e67 9585 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9586 btrfs_put_fs_root(root);
6c255e67 9587 if (ret < 0)
eb73c1b7
MX
9588 goto out;
9589
6c255e67
MX
9590 if (nr != -1) {
9591 nr -= ret;
9592 WARN_ON(nr < 0);
9593 }
eb73c1b7 9594 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9595 }
eb73c1b7 9596 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9597
6c255e67 9598 ret = 0;
eb73c1b7
MX
9599 atomic_inc(&fs_info->async_submit_draining);
9600 while (atomic_read(&fs_info->nr_async_submits) ||
9601 atomic_read(&fs_info->async_delalloc_pages)) {
9602 wait_event(fs_info->async_submit_wait,
9603 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9604 atomic_read(&fs_info->async_delalloc_pages) == 0));
9605 }
9606 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9607out:
1eafa6c7 9608 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9609 spin_lock(&fs_info->delalloc_root_lock);
9610 list_splice_tail(&splice, &fs_info->delalloc_roots);
9611 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9612 }
573bfb72 9613 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9614 return ret;
ea8c2819
CM
9615}
9616
39279cc3
CM
9617static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9618 const char *symname)
9619{
9620 struct btrfs_trans_handle *trans;
9621 struct btrfs_root *root = BTRFS_I(dir)->root;
9622 struct btrfs_path *path;
9623 struct btrfs_key key;
1832a6d5 9624 struct inode *inode = NULL;
39279cc3
CM
9625 int err;
9626 int drop_inode = 0;
9627 u64 objectid;
67871254 9628 u64 index = 0;
39279cc3
CM
9629 int name_len;
9630 int datasize;
5f39d397 9631 unsigned long ptr;
39279cc3 9632 struct btrfs_file_extent_item *ei;
5f39d397 9633 struct extent_buffer *leaf;
39279cc3 9634
f06becc4 9635 name_len = strlen(symname);
39279cc3
CM
9636 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9637 return -ENAMETOOLONG;
1832a6d5 9638
9ed74f2d
JB
9639 /*
9640 * 2 items for inode item and ref
9641 * 2 items for dir items
9642 * 1 item for xattr if selinux is on
9643 */
a22285a6
YZ
9644 trans = btrfs_start_transaction(root, 5);
9645 if (IS_ERR(trans))
9646 return PTR_ERR(trans);
1832a6d5 9647
581bb050
LZ
9648 err = btrfs_find_free_ino(root, &objectid);
9649 if (err)
9650 goto out_unlock;
9651
aec7477b 9652 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9653 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9654 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9655 if (IS_ERR(inode)) {
9656 err = PTR_ERR(inode);
39279cc3 9657 goto out_unlock;
7cf96da3 9658 }
39279cc3 9659
ad19db71
CS
9660 /*
9661 * If the active LSM wants to access the inode during
9662 * d_instantiate it needs these. Smack checks to see
9663 * if the filesystem supports xattrs by looking at the
9664 * ops vector.
9665 */
9666 inode->i_fop = &btrfs_file_operations;
9667 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9668 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9669 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9670
9671 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9672 if (err)
9673 goto out_unlock_inode;
ad19db71 9674
a1b075d2 9675 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9676 if (err)
b0d5d10f 9677 goto out_unlock_inode;
39279cc3
CM
9678
9679 path = btrfs_alloc_path();
d8926bb3
MF
9680 if (!path) {
9681 err = -ENOMEM;
b0d5d10f 9682 goto out_unlock_inode;
d8926bb3 9683 }
33345d01 9684 key.objectid = btrfs_ino(inode);
39279cc3 9685 key.offset = 0;
962a298f 9686 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9687 datasize = btrfs_file_extent_calc_inline_size(name_len);
9688 err = btrfs_insert_empty_item(trans, root, path, &key,
9689 datasize);
54aa1f4d 9690 if (err) {
b0839166 9691 btrfs_free_path(path);
b0d5d10f 9692 goto out_unlock_inode;
54aa1f4d 9693 }
5f39d397
CM
9694 leaf = path->nodes[0];
9695 ei = btrfs_item_ptr(leaf, path->slots[0],
9696 struct btrfs_file_extent_item);
9697 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9698 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9699 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9700 btrfs_set_file_extent_encryption(leaf, ei, 0);
9701 btrfs_set_file_extent_compression(leaf, ei, 0);
9702 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9703 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9704
39279cc3 9705 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9706 write_extent_buffer(leaf, symname, ptr, name_len);
9707 btrfs_mark_buffer_dirty(leaf);
39279cc3 9708 btrfs_free_path(path);
5f39d397 9709
39279cc3
CM
9710 inode->i_op = &btrfs_symlink_inode_operations;
9711 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 9712 inode_set_bytes(inode, name_len);
f06becc4 9713 btrfs_i_size_write(inode, name_len);
54aa1f4d 9714 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9715 if (err) {
54aa1f4d 9716 drop_inode = 1;
b0d5d10f
CM
9717 goto out_unlock_inode;
9718 }
9719
9720 unlock_new_inode(inode);
9721 d_instantiate(dentry, inode);
39279cc3
CM
9722
9723out_unlock:
7ad85bb7 9724 btrfs_end_transaction(trans, root);
39279cc3
CM
9725 if (drop_inode) {
9726 inode_dec_link_count(inode);
9727 iput(inode);
9728 }
b53d3f5d 9729 btrfs_btree_balance_dirty(root);
39279cc3 9730 return err;
b0d5d10f
CM
9731
9732out_unlock_inode:
9733 drop_inode = 1;
9734 unlock_new_inode(inode);
9735 goto out_unlock;
39279cc3 9736}
16432985 9737
0af3d00b
JB
9738static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9739 u64 start, u64 num_bytes, u64 min_size,
9740 loff_t actual_len, u64 *alloc_hint,
9741 struct btrfs_trans_handle *trans)
d899e052 9742{
5dc562c5
JB
9743 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9744 struct extent_map *em;
d899e052
YZ
9745 struct btrfs_root *root = BTRFS_I(inode)->root;
9746 struct btrfs_key ins;
d899e052 9747 u64 cur_offset = start;
55a61d1d 9748 u64 i_size;
154ea289 9749 u64 cur_bytes;
0b670dc4 9750 u64 last_alloc = (u64)-1;
d899e052 9751 int ret = 0;
0af3d00b 9752 bool own_trans = true;
d899e052 9753
0af3d00b
JB
9754 if (trans)
9755 own_trans = false;
d899e052 9756 while (num_bytes > 0) {
0af3d00b
JB
9757 if (own_trans) {
9758 trans = btrfs_start_transaction(root, 3);
9759 if (IS_ERR(trans)) {
9760 ret = PTR_ERR(trans);
9761 break;
9762 }
5a303d5d
YZ
9763 }
9764
154ea289
CM
9765 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9766 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9767 /*
9768 * If we are severely fragmented we could end up with really
9769 * small allocations, so if the allocator is returning small
9770 * chunks lets make its job easier by only searching for those
9771 * sized chunks.
9772 */
9773 cur_bytes = min(cur_bytes, last_alloc);
00361589 9774 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9775 *alloc_hint, &ins, 1, 0);
5a303d5d 9776 if (ret) {
0af3d00b
JB
9777 if (own_trans)
9778 btrfs_end_transaction(trans, root);
a22285a6 9779 break;
d899e052 9780 }
5a303d5d 9781
0b670dc4 9782 last_alloc = ins.offset;
d899e052
YZ
9783 ret = insert_reserved_file_extent(trans, inode,
9784 cur_offset, ins.objectid,
9785 ins.offset, ins.offset,
920bbbfb 9786 ins.offset, 0, 0, 0,
d899e052 9787 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9788 if (ret) {
857cc2fc 9789 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9790 ins.offset, 0);
79787eaa
JM
9791 btrfs_abort_transaction(trans, root, ret);
9792 if (own_trans)
9793 btrfs_end_transaction(trans, root);
9794 break;
9795 }
31193213 9796
a1ed835e
CM
9797 btrfs_drop_extent_cache(inode, cur_offset,
9798 cur_offset + ins.offset -1, 0);
5a303d5d 9799
5dc562c5
JB
9800 em = alloc_extent_map();
9801 if (!em) {
9802 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9803 &BTRFS_I(inode)->runtime_flags);
9804 goto next;
9805 }
9806
9807 em->start = cur_offset;
9808 em->orig_start = cur_offset;
9809 em->len = ins.offset;
9810 em->block_start = ins.objectid;
9811 em->block_len = ins.offset;
b4939680 9812 em->orig_block_len = ins.offset;
cc95bef6 9813 em->ram_bytes = ins.offset;
5dc562c5
JB
9814 em->bdev = root->fs_info->fs_devices->latest_bdev;
9815 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9816 em->generation = trans->transid;
9817
9818 while (1) {
9819 write_lock(&em_tree->lock);
09a2a8f9 9820 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9821 write_unlock(&em_tree->lock);
9822 if (ret != -EEXIST)
9823 break;
9824 btrfs_drop_extent_cache(inode, cur_offset,
9825 cur_offset + ins.offset - 1,
9826 0);
9827 }
9828 free_extent_map(em);
9829next:
d899e052
YZ
9830 num_bytes -= ins.offset;
9831 cur_offset += ins.offset;
efa56464 9832 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9833
0c4d2d95 9834 inode_inc_iversion(inode);
d899e052 9835 inode->i_ctime = CURRENT_TIME;
6cbff00f 9836 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9837 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9838 (actual_len > inode->i_size) &&
9839 (cur_offset > inode->i_size)) {
d1ea6a61 9840 if (cur_offset > actual_len)
55a61d1d 9841 i_size = actual_len;
d1ea6a61 9842 else
55a61d1d
JB
9843 i_size = cur_offset;
9844 i_size_write(inode, i_size);
9845 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9846 }
9847
d899e052 9848 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9849
9850 if (ret) {
9851 btrfs_abort_transaction(trans, root, ret);
9852 if (own_trans)
9853 btrfs_end_transaction(trans, root);
9854 break;
9855 }
d899e052 9856
0af3d00b
JB
9857 if (own_trans)
9858 btrfs_end_transaction(trans, root);
5a303d5d 9859 }
d899e052
YZ
9860 return ret;
9861}
9862
0af3d00b
JB
9863int btrfs_prealloc_file_range(struct inode *inode, int mode,
9864 u64 start, u64 num_bytes, u64 min_size,
9865 loff_t actual_len, u64 *alloc_hint)
9866{
9867 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9868 min_size, actual_len, alloc_hint,
9869 NULL);
9870}
9871
9872int btrfs_prealloc_file_range_trans(struct inode *inode,
9873 struct btrfs_trans_handle *trans, int mode,
9874 u64 start, u64 num_bytes, u64 min_size,
9875 loff_t actual_len, u64 *alloc_hint)
9876{
9877 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9878 min_size, actual_len, alloc_hint, trans);
9879}
9880
e6dcd2dc
CM
9881static int btrfs_set_page_dirty(struct page *page)
9882{
e6dcd2dc
CM
9883 return __set_page_dirty_nobuffers(page);
9884}
9885
10556cb2 9886static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9887{
b83cc969 9888 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9889 umode_t mode = inode->i_mode;
b83cc969 9890
cb6db4e5
JM
9891 if (mask & MAY_WRITE &&
9892 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9893 if (btrfs_root_readonly(root))
9894 return -EROFS;
9895 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9896 return -EACCES;
9897 }
2830ba7f 9898 return generic_permission(inode, mask);
fdebe2bd 9899}
39279cc3 9900
ef3b9af5
FM
9901static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9902{
9903 struct btrfs_trans_handle *trans;
9904 struct btrfs_root *root = BTRFS_I(dir)->root;
9905 struct inode *inode = NULL;
9906 u64 objectid;
9907 u64 index;
9908 int ret = 0;
9909
9910 /*
9911 * 5 units required for adding orphan entry
9912 */
9913 trans = btrfs_start_transaction(root, 5);
9914 if (IS_ERR(trans))
9915 return PTR_ERR(trans);
9916
9917 ret = btrfs_find_free_ino(root, &objectid);
9918 if (ret)
9919 goto out;
9920
9921 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9922 btrfs_ino(dir), objectid, mode, &index);
9923 if (IS_ERR(inode)) {
9924 ret = PTR_ERR(inode);
9925 inode = NULL;
9926 goto out;
9927 }
9928
ef3b9af5
FM
9929 inode->i_fop = &btrfs_file_operations;
9930 inode->i_op = &btrfs_file_inode_operations;
9931
9932 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9933 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9934
b0d5d10f
CM
9935 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9936 if (ret)
9937 goto out_inode;
9938
9939 ret = btrfs_update_inode(trans, root, inode);
9940 if (ret)
9941 goto out_inode;
ef3b9af5
FM
9942 ret = btrfs_orphan_add(trans, inode);
9943 if (ret)
b0d5d10f 9944 goto out_inode;
ef3b9af5 9945
5762b5c9
FM
9946 /*
9947 * We set number of links to 0 in btrfs_new_inode(), and here we set
9948 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9949 * through:
9950 *
9951 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9952 */
9953 set_nlink(inode, 1);
b0d5d10f 9954 unlock_new_inode(inode);
ef3b9af5
FM
9955 d_tmpfile(dentry, inode);
9956 mark_inode_dirty(inode);
9957
9958out:
9959 btrfs_end_transaction(trans, root);
9960 if (ret)
9961 iput(inode);
9962 btrfs_balance_delayed_items(root);
9963 btrfs_btree_balance_dirty(root);
ef3b9af5 9964 return ret;
b0d5d10f
CM
9965
9966out_inode:
9967 unlock_new_inode(inode);
9968 goto out;
9969
ef3b9af5
FM
9970}
9971
b38ef71c
FM
9972/* Inspired by filemap_check_errors() */
9973int btrfs_inode_check_errors(struct inode *inode)
9974{
9975 int ret = 0;
9976
9977 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9978 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9979 ret = -ENOSPC;
9980 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9981 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9982 ret = -EIO;
9983
9984 return ret;
9985}
9986
6e1d5dcc 9987static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9988 .getattr = btrfs_getattr,
39279cc3
CM
9989 .lookup = btrfs_lookup,
9990 .create = btrfs_create,
9991 .unlink = btrfs_unlink,
9992 .link = btrfs_link,
9993 .mkdir = btrfs_mkdir,
9994 .rmdir = btrfs_rmdir,
80ace85c 9995 .rename2 = btrfs_rename2,
39279cc3
CM
9996 .symlink = btrfs_symlink,
9997 .setattr = btrfs_setattr,
618e21d5 9998 .mknod = btrfs_mknod,
95819c05
CH
9999 .setxattr = btrfs_setxattr,
10000 .getxattr = btrfs_getxattr,
5103e947 10001 .listxattr = btrfs_listxattr,
95819c05 10002 .removexattr = btrfs_removexattr,
fdebe2bd 10003 .permission = btrfs_permission,
4e34e719 10004 .get_acl = btrfs_get_acl,
996a710d 10005 .set_acl = btrfs_set_acl,
93fd63c2 10006 .update_time = btrfs_update_time,
ef3b9af5 10007 .tmpfile = btrfs_tmpfile,
39279cc3 10008};
6e1d5dcc 10009static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10010 .lookup = btrfs_lookup,
fdebe2bd 10011 .permission = btrfs_permission,
4e34e719 10012 .get_acl = btrfs_get_acl,
996a710d 10013 .set_acl = btrfs_set_acl,
93fd63c2 10014 .update_time = btrfs_update_time,
39279cc3 10015};
76dda93c 10016
828c0950 10017static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10018 .llseek = generic_file_llseek,
10019 .read = generic_read_dir,
9cdda8d3 10020 .iterate = btrfs_real_readdir,
34287aa3 10021 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10022#ifdef CONFIG_COMPAT
34287aa3 10023 .compat_ioctl = btrfs_ioctl,
39279cc3 10024#endif
6bf13c0c 10025 .release = btrfs_release_file,
e02119d5 10026 .fsync = btrfs_sync_file,
39279cc3
CM
10027};
10028
d1310b2e 10029static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10030 .fill_delalloc = run_delalloc_range,
065631f6 10031 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10032 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10033 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10034 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10035 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10036 .set_bit_hook = btrfs_set_bit_hook,
10037 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10038 .merge_extent_hook = btrfs_merge_extent_hook,
10039 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10040};
10041
35054394
CM
10042/*
10043 * btrfs doesn't support the bmap operation because swapfiles
10044 * use bmap to make a mapping of extents in the file. They assume
10045 * these extents won't change over the life of the file and they
10046 * use the bmap result to do IO directly to the drive.
10047 *
10048 * the btrfs bmap call would return logical addresses that aren't
10049 * suitable for IO and they also will change frequently as COW
10050 * operations happen. So, swapfile + btrfs == corruption.
10051 *
10052 * For now we're avoiding this by dropping bmap.
10053 */
7f09410b 10054static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10055 .readpage = btrfs_readpage,
10056 .writepage = btrfs_writepage,
b293f02e 10057 .writepages = btrfs_writepages,
3ab2fb5a 10058 .readpages = btrfs_readpages,
16432985 10059 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10060 .invalidatepage = btrfs_invalidatepage,
10061 .releasepage = btrfs_releasepage,
e6dcd2dc 10062 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10063 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10064};
10065
7f09410b 10066static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10067 .readpage = btrfs_readpage,
10068 .writepage = btrfs_writepage,
2bf5a725
CM
10069 .invalidatepage = btrfs_invalidatepage,
10070 .releasepage = btrfs_releasepage,
39279cc3
CM
10071};
10072
6e1d5dcc 10073static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10074 .getattr = btrfs_getattr,
10075 .setattr = btrfs_setattr,
95819c05
CH
10076 .setxattr = btrfs_setxattr,
10077 .getxattr = btrfs_getxattr,
5103e947 10078 .listxattr = btrfs_listxattr,
95819c05 10079 .removexattr = btrfs_removexattr,
fdebe2bd 10080 .permission = btrfs_permission,
1506fcc8 10081 .fiemap = btrfs_fiemap,
4e34e719 10082 .get_acl = btrfs_get_acl,
996a710d 10083 .set_acl = btrfs_set_acl,
e41f941a 10084 .update_time = btrfs_update_time,
39279cc3 10085};
6e1d5dcc 10086static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10087 .getattr = btrfs_getattr,
10088 .setattr = btrfs_setattr,
fdebe2bd 10089 .permission = btrfs_permission,
95819c05
CH
10090 .setxattr = btrfs_setxattr,
10091 .getxattr = btrfs_getxattr,
33268eaf 10092 .listxattr = btrfs_listxattr,
95819c05 10093 .removexattr = btrfs_removexattr,
4e34e719 10094 .get_acl = btrfs_get_acl,
996a710d 10095 .set_acl = btrfs_set_acl,
e41f941a 10096 .update_time = btrfs_update_time,
618e21d5 10097};
6e1d5dcc 10098static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
10099 .readlink = generic_readlink,
10100 .follow_link = page_follow_link_light,
10101 .put_link = page_put_link,
f209561a 10102 .getattr = btrfs_getattr,
22c44fe6 10103 .setattr = btrfs_setattr,
fdebe2bd 10104 .permission = btrfs_permission,
0279b4cd
JO
10105 .setxattr = btrfs_setxattr,
10106 .getxattr = btrfs_getxattr,
10107 .listxattr = btrfs_listxattr,
10108 .removexattr = btrfs_removexattr,
e41f941a 10109 .update_time = btrfs_update_time,
39279cc3 10110};
76dda93c 10111
82d339d9 10112const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10113 .d_delete = btrfs_dentry_delete,
b4aff1f8 10114 .d_release = btrfs_dentry_release,
76dda93c 10115};