Btrfs: rework the overcommit logic to be based on the total size
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
4b4e25f2 43#include "compat.h"
39279cc3
CM
44#include "ctree.h"
45#include "disk-io.h"
46#include "transaction.h"
47#include "btrfs_inode.h"
39279cc3 48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 74static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
75struct kmem_cache *btrfs_trans_handle_cachep;
76struct kmem_cache *btrfs_transaction_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
81static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
3972f260 91static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 92static int btrfs_truncate(struct inode *inode);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
70c8a91c
JB
98static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
99 u64 len, u64 orig_start,
100 u64 block_start, u64 block_len,
101 u64 orig_block_len, int type);
7b128766 102
f34f57a3 103static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
104 struct inode *inode, struct inode *dir,
105 const struct qstr *qstr)
0279b4cd
JO
106{
107 int err;
108
f34f57a3 109 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 110 if (!err)
2a7dba39 111 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
112 return err;
113}
114
c8b97818
CM
115/*
116 * this does all the hard work for inserting an inline extent into
117 * the btree. The caller should have done a btrfs_drop_extents so that
118 * no overlapping inline items exist in the btree
119 */
d397712b 120static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
121 struct btrfs_root *root, struct inode *inode,
122 u64 start, size_t size, size_t compressed_size,
fe3f566c 123 int compress_type,
c8b97818
CM
124 struct page **compressed_pages)
125{
126 struct btrfs_key key;
127 struct btrfs_path *path;
128 struct extent_buffer *leaf;
129 struct page *page = NULL;
130 char *kaddr;
131 unsigned long ptr;
132 struct btrfs_file_extent_item *ei;
133 int err = 0;
134 int ret;
135 size_t cur_size = size;
136 size_t datasize;
137 unsigned long offset;
c8b97818 138
fe3f566c 139 if (compressed_size && compressed_pages)
c8b97818 140 cur_size = compressed_size;
c8b97818 141
d397712b
CM
142 path = btrfs_alloc_path();
143 if (!path)
c8b97818
CM
144 return -ENOMEM;
145
b9473439 146 path->leave_spinning = 1;
c8b97818 147
33345d01 148 key.objectid = btrfs_ino(inode);
c8b97818
CM
149 key.offset = start;
150 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
151 datasize = btrfs_file_extent_calc_inline_size(cur_size);
152
153 inode_add_bytes(inode, size);
154 ret = btrfs_insert_empty_item(trans, root, path, &key,
155 datasize);
c8b97818
CM
156 if (ret) {
157 err = ret;
c8b97818
CM
158 goto fail;
159 }
160 leaf = path->nodes[0];
161 ei = btrfs_item_ptr(leaf, path->slots[0],
162 struct btrfs_file_extent_item);
163 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
164 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
165 btrfs_set_file_extent_encryption(leaf, ei, 0);
166 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
167 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
168 ptr = btrfs_file_extent_inline_start(ei);
169
261507a0 170 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
171 struct page *cpage;
172 int i = 0;
d397712b 173 while (compressed_size > 0) {
c8b97818 174 cpage = compressed_pages[i];
5b050f04 175 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
176 PAGE_CACHE_SIZE);
177
7ac687d9 178 kaddr = kmap_atomic(cpage);
c8b97818 179 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 180 kunmap_atomic(kaddr);
c8b97818
CM
181
182 i++;
183 ptr += cur_size;
184 compressed_size -= cur_size;
185 }
186 btrfs_set_file_extent_compression(leaf, ei,
261507a0 187 compress_type);
c8b97818
CM
188 } else {
189 page = find_get_page(inode->i_mapping,
190 start >> PAGE_CACHE_SHIFT);
191 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 192 kaddr = kmap_atomic(page);
c8b97818
CM
193 offset = start & (PAGE_CACHE_SIZE - 1);
194 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196 page_cache_release(page);
197 }
198 btrfs_mark_buffer_dirty(leaf);
199 btrfs_free_path(path);
200
c2167754
YZ
201 /*
202 * we're an inline extent, so nobody can
203 * extend the file past i_size without locking
204 * a page we already have locked.
205 *
206 * We must do any isize and inode updates
207 * before we unlock the pages. Otherwise we
208 * could end up racing with unlink.
209 */
c8b97818 210 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 211 ret = btrfs_update_inode(trans, root, inode);
c2167754 212
79787eaa 213 return ret;
c8b97818
CM
214fail:
215 btrfs_free_path(path);
216 return err;
217}
218
219
220/*
221 * conditionally insert an inline extent into the file. This
222 * does the checks required to make sure the data is small enough
223 * to fit as an inline extent.
224 */
7f366cfe 225static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
226 struct btrfs_root *root,
227 struct inode *inode, u64 start, u64 end,
fe3f566c 228 size_t compressed_size, int compress_type,
c8b97818
CM
229 struct page **compressed_pages)
230{
231 u64 isize = i_size_read(inode);
232 u64 actual_end = min(end + 1, isize);
233 u64 inline_len = actual_end - start;
234 u64 aligned_end = (end + root->sectorsize - 1) &
235 ~((u64)root->sectorsize - 1);
c8b97818
CM
236 u64 data_len = inline_len;
237 int ret;
238
239 if (compressed_size)
240 data_len = compressed_size;
241
242 if (start > 0 ||
70b99e69 243 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
244 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
245 (!compressed_size &&
246 (actual_end & (root->sectorsize - 1)) == 0) ||
247 end + 1 < isize ||
248 data_len > root->fs_info->max_inline) {
249 return 1;
250 }
251
2671485d 252 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
253 if (ret)
254 return ret;
c8b97818
CM
255
256 if (isize > actual_end)
257 inline_len = min_t(u64, isize, actual_end);
258 ret = insert_inline_extent(trans, root, inode, start,
259 inline_len, compressed_size,
fe3f566c 260 compress_type, compressed_pages);
2adcac1a 261 if (ret && ret != -ENOSPC) {
79787eaa
JM
262 btrfs_abort_transaction(trans, root, ret);
263 return ret;
2adcac1a
JB
264 } else if (ret == -ENOSPC) {
265 return 1;
79787eaa 266 }
2adcac1a 267
0ca1f7ce 268 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 269 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
270 return 0;
271}
272
771ed689
CM
273struct async_extent {
274 u64 start;
275 u64 ram_size;
276 u64 compressed_size;
277 struct page **pages;
278 unsigned long nr_pages;
261507a0 279 int compress_type;
771ed689
CM
280 struct list_head list;
281};
282
283struct async_cow {
284 struct inode *inode;
285 struct btrfs_root *root;
286 struct page *locked_page;
287 u64 start;
288 u64 end;
289 struct list_head extents;
290 struct btrfs_work work;
291};
292
293static noinline int add_async_extent(struct async_cow *cow,
294 u64 start, u64 ram_size,
295 u64 compressed_size,
296 struct page **pages,
261507a0
LZ
297 unsigned long nr_pages,
298 int compress_type)
771ed689
CM
299{
300 struct async_extent *async_extent;
301
302 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 303 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
304 async_extent->start = start;
305 async_extent->ram_size = ram_size;
306 async_extent->compressed_size = compressed_size;
307 async_extent->pages = pages;
308 async_extent->nr_pages = nr_pages;
261507a0 309 async_extent->compress_type = compress_type;
771ed689
CM
310 list_add_tail(&async_extent->list, &cow->extents);
311 return 0;
312}
313
d352ac68 314/*
771ed689
CM
315 * we create compressed extents in two phases. The first
316 * phase compresses a range of pages that have already been
317 * locked (both pages and state bits are locked).
c8b97818 318 *
771ed689
CM
319 * This is done inside an ordered work queue, and the compression
320 * is spread across many cpus. The actual IO submission is step
321 * two, and the ordered work queue takes care of making sure that
322 * happens in the same order things were put onto the queue by
323 * writepages and friends.
c8b97818 324 *
771ed689
CM
325 * If this code finds it can't get good compression, it puts an
326 * entry onto the work queue to write the uncompressed bytes. This
327 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
328 * are written in the same order that the flusher thread sent them
329 * down.
d352ac68 330 */
771ed689
CM
331static noinline int compress_file_range(struct inode *inode,
332 struct page *locked_page,
333 u64 start, u64 end,
334 struct async_cow *async_cow,
335 int *num_added)
b888db2b
CM
336{
337 struct btrfs_root *root = BTRFS_I(inode)->root;
338 struct btrfs_trans_handle *trans;
db94535d 339 u64 num_bytes;
db94535d 340 u64 blocksize = root->sectorsize;
c8b97818 341 u64 actual_end;
42dc7bab 342 u64 isize = i_size_read(inode);
e6dcd2dc 343 int ret = 0;
c8b97818
CM
344 struct page **pages = NULL;
345 unsigned long nr_pages;
346 unsigned long nr_pages_ret = 0;
347 unsigned long total_compressed = 0;
348 unsigned long total_in = 0;
349 unsigned long max_compressed = 128 * 1024;
771ed689 350 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
351 int i;
352 int will_compress;
261507a0 353 int compress_type = root->fs_info->compress_type;
b888db2b 354
4cb13e5d
LB
355 /* if this is a small write inside eof, kick off a defrag */
356 if ((end - start + 1) < 16 * 1024 &&
357 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
358 btrfs_add_inode_defrag(NULL, inode);
359
42dc7bab 360 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
361again:
362 will_compress = 0;
363 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
364 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 365
f03d9301
CM
366 /*
367 * we don't want to send crud past the end of i_size through
368 * compression, that's just a waste of CPU time. So, if the
369 * end of the file is before the start of our current
370 * requested range of bytes, we bail out to the uncompressed
371 * cleanup code that can deal with all of this.
372 *
373 * It isn't really the fastest way to fix things, but this is a
374 * very uncommon corner.
375 */
376 if (actual_end <= start)
377 goto cleanup_and_bail_uncompressed;
378
c8b97818
CM
379 total_compressed = actual_end - start;
380
381 /* we want to make sure that amount of ram required to uncompress
382 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
383 * of a compressed extent to 128k. This is a crucial number
384 * because it also controls how easily we can spread reads across
385 * cpus for decompression.
386 *
387 * We also want to make sure the amount of IO required to do
388 * a random read is reasonably small, so we limit the size of
389 * a compressed extent to 128k.
c8b97818
CM
390 */
391 total_compressed = min(total_compressed, max_uncompressed);
db94535d 392 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 393 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
394 total_in = 0;
395 ret = 0;
db94535d 396
771ed689
CM
397 /*
398 * we do compression for mount -o compress and when the
399 * inode has not been flagged as nocompress. This flag can
400 * change at any time if we discover bad compression ratios.
c8b97818 401 */
6cbff00f 402 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 403 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
404 (BTRFS_I(inode)->force_compress) ||
405 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 406 WARN_ON(pages);
cfbc246e 407 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
408 if (!pages) {
409 /* just bail out to the uncompressed code */
410 goto cont;
411 }
c8b97818 412
261507a0
LZ
413 if (BTRFS_I(inode)->force_compress)
414 compress_type = BTRFS_I(inode)->force_compress;
415
416 ret = btrfs_compress_pages(compress_type,
417 inode->i_mapping, start,
418 total_compressed, pages,
419 nr_pages, &nr_pages_ret,
420 &total_in,
421 &total_compressed,
422 max_compressed);
c8b97818
CM
423
424 if (!ret) {
425 unsigned long offset = total_compressed &
426 (PAGE_CACHE_SIZE - 1);
427 struct page *page = pages[nr_pages_ret - 1];
428 char *kaddr;
429
430 /* zero the tail end of the last page, we might be
431 * sending it down to disk
432 */
433 if (offset) {
7ac687d9 434 kaddr = kmap_atomic(page);
c8b97818
CM
435 memset(kaddr + offset, 0,
436 PAGE_CACHE_SIZE - offset);
7ac687d9 437 kunmap_atomic(kaddr);
c8b97818
CM
438 }
439 will_compress = 1;
440 }
441 }
560f7d75 442cont:
c8b97818 443 if (start == 0) {
7a7eaa40 444 trans = btrfs_join_transaction(root);
79787eaa
JM
445 if (IS_ERR(trans)) {
446 ret = PTR_ERR(trans);
447 trans = NULL;
448 goto cleanup_and_out;
449 }
0ca1f7ce 450 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 451
c8b97818 452 /* lets try to make an inline extent */
771ed689 453 if (ret || total_in < (actual_end - start)) {
c8b97818 454 /* we didn't compress the entire range, try
771ed689 455 * to make an uncompressed inline extent.
c8b97818
CM
456 */
457 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 458 start, end, 0, 0, NULL);
c8b97818 459 } else {
771ed689 460 /* try making a compressed inline extent */
c8b97818
CM
461 ret = cow_file_range_inline(trans, root, inode,
462 start, end,
fe3f566c
LZ
463 total_compressed,
464 compress_type, pages);
c8b97818 465 }
79787eaa 466 if (ret <= 0) {
771ed689 467 /*
79787eaa
JM
468 * inline extent creation worked or returned error,
469 * we don't need to create any more async work items.
470 * Unlock and free up our temp pages.
771ed689 471 */
c8b97818 472 extent_clear_unlock_delalloc(inode,
a791e35e
CM
473 &BTRFS_I(inode)->io_tree,
474 start, end, NULL,
475 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 476 EXTENT_CLEAR_DELALLOC |
a791e35e 477 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
478
479 btrfs_end_transaction(trans, root);
c8b97818
CM
480 goto free_pages_out;
481 }
c2167754 482 btrfs_end_transaction(trans, root);
c8b97818
CM
483 }
484
485 if (will_compress) {
486 /*
487 * we aren't doing an inline extent round the compressed size
488 * up to a block size boundary so the allocator does sane
489 * things
490 */
491 total_compressed = (total_compressed + blocksize - 1) &
492 ~(blocksize - 1);
493
494 /*
495 * one last check to make sure the compression is really a
496 * win, compare the page count read with the blocks on disk
497 */
498 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
499 ~(PAGE_CACHE_SIZE - 1);
500 if (total_compressed >= total_in) {
501 will_compress = 0;
502 } else {
c8b97818
CM
503 num_bytes = total_in;
504 }
505 }
506 if (!will_compress && pages) {
507 /*
508 * the compression code ran but failed to make things smaller,
509 * free any pages it allocated and our page pointer array
510 */
511 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 512 WARN_ON(pages[i]->mapping);
c8b97818
CM
513 page_cache_release(pages[i]);
514 }
515 kfree(pages);
516 pages = NULL;
517 total_compressed = 0;
518 nr_pages_ret = 0;
519
520 /* flag the file so we don't compress in the future */
1e701a32
CM
521 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
522 !(BTRFS_I(inode)->force_compress)) {
a555f810 523 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 524 }
c8b97818 525 }
771ed689
CM
526 if (will_compress) {
527 *num_added += 1;
c8b97818 528
771ed689
CM
529 /* the async work queues will take care of doing actual
530 * allocation on disk for these compressed pages,
531 * and will submit them to the elevator.
532 */
533 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
534 total_compressed, pages, nr_pages_ret,
535 compress_type);
179e29e4 536
24ae6365 537 if (start + num_bytes < end) {
771ed689
CM
538 start += num_bytes;
539 pages = NULL;
540 cond_resched();
541 goto again;
542 }
543 } else {
f03d9301 544cleanup_and_bail_uncompressed:
771ed689
CM
545 /*
546 * No compression, but we still need to write the pages in
547 * the file we've been given so far. redirty the locked
548 * page if it corresponds to our extent and set things up
549 * for the async work queue to run cow_file_range to do
550 * the normal delalloc dance
551 */
552 if (page_offset(locked_page) >= start &&
553 page_offset(locked_page) <= end) {
554 __set_page_dirty_nobuffers(locked_page);
555 /* unlocked later on in the async handlers */
556 }
261507a0
LZ
557 add_async_extent(async_cow, start, end - start + 1,
558 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
559 *num_added += 1;
560 }
3b951516 561
771ed689 562out:
79787eaa 563 return ret;
771ed689
CM
564
565free_pages_out:
566 for (i = 0; i < nr_pages_ret; i++) {
567 WARN_ON(pages[i]->mapping);
568 page_cache_release(pages[i]);
569 }
d397712b 570 kfree(pages);
771ed689
CM
571
572 goto out;
79787eaa
JM
573
574cleanup_and_out:
575 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
576 start, end, NULL,
577 EXTENT_CLEAR_UNLOCK_PAGE |
578 EXTENT_CLEAR_DIRTY |
579 EXTENT_CLEAR_DELALLOC |
580 EXTENT_SET_WRITEBACK |
581 EXTENT_END_WRITEBACK);
582 if (!trans || IS_ERR(trans))
583 btrfs_error(root->fs_info, ret, "Failed to join transaction");
584 else
585 btrfs_abort_transaction(trans, root, ret);
586 goto free_pages_out;
771ed689
CM
587}
588
589/*
590 * phase two of compressed writeback. This is the ordered portion
591 * of the code, which only gets called in the order the work was
592 * queued. We walk all the async extents created by compress_file_range
593 * and send them down to the disk.
594 */
595static noinline int submit_compressed_extents(struct inode *inode,
596 struct async_cow *async_cow)
597{
598 struct async_extent *async_extent;
599 u64 alloc_hint = 0;
600 struct btrfs_trans_handle *trans;
601 struct btrfs_key ins;
602 struct extent_map *em;
603 struct btrfs_root *root = BTRFS_I(inode)->root;
604 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
605 struct extent_io_tree *io_tree;
f5a84ee3 606 int ret = 0;
771ed689
CM
607
608 if (list_empty(&async_cow->extents))
609 return 0;
610
771ed689 611
d397712b 612 while (!list_empty(&async_cow->extents)) {
771ed689
CM
613 async_extent = list_entry(async_cow->extents.next,
614 struct async_extent, list);
615 list_del(&async_extent->list);
c8b97818 616
771ed689
CM
617 io_tree = &BTRFS_I(inode)->io_tree;
618
f5a84ee3 619retry:
771ed689
CM
620 /* did the compression code fall back to uncompressed IO? */
621 if (!async_extent->pages) {
622 int page_started = 0;
623 unsigned long nr_written = 0;
624
625 lock_extent(io_tree, async_extent->start,
2ac55d41 626 async_extent->start +
d0082371 627 async_extent->ram_size - 1);
771ed689
CM
628
629 /* allocate blocks */
f5a84ee3
JB
630 ret = cow_file_range(inode, async_cow->locked_page,
631 async_extent->start,
632 async_extent->start +
633 async_extent->ram_size - 1,
634 &page_started, &nr_written, 0);
771ed689 635
79787eaa
JM
636 /* JDM XXX */
637
771ed689
CM
638 /*
639 * if page_started, cow_file_range inserted an
640 * inline extent and took care of all the unlocking
641 * and IO for us. Otherwise, we need to submit
642 * all those pages down to the drive.
643 */
f5a84ee3 644 if (!page_started && !ret)
771ed689
CM
645 extent_write_locked_range(io_tree,
646 inode, async_extent->start,
d397712b 647 async_extent->start +
771ed689
CM
648 async_extent->ram_size - 1,
649 btrfs_get_extent,
650 WB_SYNC_ALL);
651 kfree(async_extent);
652 cond_resched();
653 continue;
654 }
655
656 lock_extent(io_tree, async_extent->start,
d0082371 657 async_extent->start + async_extent->ram_size - 1);
771ed689 658
7a7eaa40 659 trans = btrfs_join_transaction(root);
79787eaa
JM
660 if (IS_ERR(trans)) {
661 ret = PTR_ERR(trans);
662 } else {
663 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
664 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
665 async_extent->compressed_size,
666 async_extent->compressed_size,
81c9ad23 667 0, alloc_hint, &ins, 1);
962197ba 668 if (ret && ret != -ENOSPC)
79787eaa
JM
669 btrfs_abort_transaction(trans, root, ret);
670 btrfs_end_transaction(trans, root);
671 }
c2167754 672
f5a84ee3
JB
673 if (ret) {
674 int i;
675 for (i = 0; i < async_extent->nr_pages; i++) {
676 WARN_ON(async_extent->pages[i]->mapping);
677 page_cache_release(async_extent->pages[i]);
678 }
679 kfree(async_extent->pages);
680 async_extent->nr_pages = 0;
681 async_extent->pages = NULL;
682 unlock_extent(io_tree, async_extent->start,
683 async_extent->start +
d0082371 684 async_extent->ram_size - 1);
79787eaa
JM
685 if (ret == -ENOSPC)
686 goto retry;
687 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
688 }
689
c2167754
YZ
690 /*
691 * here we're doing allocation and writeback of the
692 * compressed pages
693 */
694 btrfs_drop_extent_cache(inode, async_extent->start,
695 async_extent->start +
696 async_extent->ram_size - 1, 0);
697
172ddd60 698 em = alloc_extent_map();
79787eaa 699 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
700 em->start = async_extent->start;
701 em->len = async_extent->ram_size;
445a6944 702 em->orig_start = em->start;
2ab28f32
JB
703 em->mod_start = em->start;
704 em->mod_len = em->len;
c8b97818 705
771ed689
CM
706 em->block_start = ins.objectid;
707 em->block_len = ins.offset;
b4939680 708 em->orig_block_len = ins.offset;
771ed689 709 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 710 em->compress_type = async_extent->compress_type;
771ed689
CM
711 set_bit(EXTENT_FLAG_PINNED, &em->flags);
712 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 713 em->generation = -1;
771ed689 714
d397712b 715 while (1) {
890871be 716 write_lock(&em_tree->lock);
771ed689 717 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
718 if (!ret)
719 list_move(&em->list,
720 &em_tree->modified_extents);
890871be 721 write_unlock(&em_tree->lock);
771ed689
CM
722 if (ret != -EEXIST) {
723 free_extent_map(em);
724 break;
725 }
726 btrfs_drop_extent_cache(inode, async_extent->start,
727 async_extent->start +
728 async_extent->ram_size - 1, 0);
729 }
730
261507a0
LZ
731 ret = btrfs_add_ordered_extent_compress(inode,
732 async_extent->start,
733 ins.objectid,
734 async_extent->ram_size,
735 ins.offset,
736 BTRFS_ORDERED_COMPRESSED,
737 async_extent->compress_type);
79787eaa 738 BUG_ON(ret); /* -ENOMEM */
771ed689 739
771ed689
CM
740 /*
741 * clear dirty, set writeback and unlock the pages.
742 */
743 extent_clear_unlock_delalloc(inode,
a791e35e
CM
744 &BTRFS_I(inode)->io_tree,
745 async_extent->start,
746 async_extent->start +
747 async_extent->ram_size - 1,
748 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
749 EXTENT_CLEAR_UNLOCK |
a3429ab7 750 EXTENT_CLEAR_DELALLOC |
a791e35e 751 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
752
753 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
754 async_extent->start,
755 async_extent->ram_size,
756 ins.objectid,
757 ins.offset, async_extent->pages,
758 async_extent->nr_pages);
771ed689 759
79787eaa 760 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
761 alloc_hint = ins.objectid + ins.offset;
762 kfree(async_extent);
763 cond_resched();
764 }
79787eaa
JM
765 ret = 0;
766out:
767 return ret;
768out_free:
769 kfree(async_extent);
770 goto out;
771ed689
CM
771}
772
4b46fce2
JB
773static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
774 u64 num_bytes)
775{
776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777 struct extent_map *em;
778 u64 alloc_hint = 0;
779
780 read_lock(&em_tree->lock);
781 em = search_extent_mapping(em_tree, start, num_bytes);
782 if (em) {
783 /*
784 * if block start isn't an actual block number then find the
785 * first block in this inode and use that as a hint. If that
786 * block is also bogus then just don't worry about it.
787 */
788 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
789 free_extent_map(em);
790 em = search_extent_mapping(em_tree, 0, 0);
791 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
792 alloc_hint = em->block_start;
793 if (em)
794 free_extent_map(em);
795 } else {
796 alloc_hint = em->block_start;
797 free_extent_map(em);
798 }
799 }
800 read_unlock(&em_tree->lock);
801
802 return alloc_hint;
803}
804
771ed689
CM
805/*
806 * when extent_io.c finds a delayed allocation range in the file,
807 * the call backs end up in this code. The basic idea is to
808 * allocate extents on disk for the range, and create ordered data structs
809 * in ram to track those extents.
810 *
811 * locked_page is the page that writepage had locked already. We use
812 * it to make sure we don't do extra locks or unlocks.
813 *
814 * *page_started is set to one if we unlock locked_page and do everything
815 * required to start IO on it. It may be clean and already done with
816 * IO when we return.
817 */
b7d5b0a8
MX
818static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
819 struct inode *inode,
820 struct btrfs_root *root,
821 struct page *locked_page,
822 u64 start, u64 end, int *page_started,
823 unsigned long *nr_written,
824 int unlock)
771ed689 825{
771ed689
CM
826 u64 alloc_hint = 0;
827 u64 num_bytes;
828 unsigned long ram_size;
829 u64 disk_num_bytes;
830 u64 cur_alloc_size;
831 u64 blocksize = root->sectorsize;
771ed689
CM
832 struct btrfs_key ins;
833 struct extent_map *em;
834 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
835 int ret = 0;
836
83eea1f1 837 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 838
771ed689
CM
839 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
840 num_bytes = max(blocksize, num_bytes);
841 disk_num_bytes = num_bytes;
771ed689 842
4cb5300b 843 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
844 if (num_bytes < 64 * 1024 &&
845 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
846 btrfs_add_inode_defrag(trans, inode);
847
771ed689
CM
848 if (start == 0) {
849 /* lets try to make an inline extent */
850 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 851 start, end, 0, 0, NULL);
771ed689
CM
852 if (ret == 0) {
853 extent_clear_unlock_delalloc(inode,
a791e35e
CM
854 &BTRFS_I(inode)->io_tree,
855 start, end, NULL,
856 EXTENT_CLEAR_UNLOCK_PAGE |
857 EXTENT_CLEAR_UNLOCK |
858 EXTENT_CLEAR_DELALLOC |
859 EXTENT_CLEAR_DIRTY |
860 EXTENT_SET_WRITEBACK |
861 EXTENT_END_WRITEBACK);
c2167754 862
771ed689
CM
863 *nr_written = *nr_written +
864 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
865 *page_started = 1;
771ed689 866 goto out;
79787eaa
JM
867 } else if (ret < 0) {
868 btrfs_abort_transaction(trans, root, ret);
869 goto out_unlock;
771ed689
CM
870 }
871 }
872
873 BUG_ON(disk_num_bytes >
6c41761f 874 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 875
4b46fce2 876 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
877 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
878
d397712b 879 while (disk_num_bytes > 0) {
a791e35e
CM
880 unsigned long op;
881
287a0ab9 882 cur_alloc_size = disk_num_bytes;
e6dcd2dc 883 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 884 root->sectorsize, 0, alloc_hint,
81c9ad23 885 &ins, 1);
79787eaa
JM
886 if (ret < 0) {
887 btrfs_abort_transaction(trans, root, ret);
888 goto out_unlock;
889 }
d397712b 890
172ddd60 891 em = alloc_extent_map();
79787eaa 892 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 893 em->start = start;
445a6944 894 em->orig_start = em->start;
771ed689
CM
895 ram_size = ins.offset;
896 em->len = ins.offset;
2ab28f32
JB
897 em->mod_start = em->start;
898 em->mod_len = em->len;
c8b97818 899
e6dcd2dc 900 em->block_start = ins.objectid;
c8b97818 901 em->block_len = ins.offset;
b4939680 902 em->orig_block_len = ins.offset;
e6dcd2dc 903 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 904 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 905 em->generation = -1;
c8b97818 906
d397712b 907 while (1) {
890871be 908 write_lock(&em_tree->lock);
e6dcd2dc 909 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
910 if (!ret)
911 list_move(&em->list,
912 &em_tree->modified_extents);
890871be 913 write_unlock(&em_tree->lock);
e6dcd2dc
CM
914 if (ret != -EEXIST) {
915 free_extent_map(em);
916 break;
917 }
918 btrfs_drop_extent_cache(inode, start,
c8b97818 919 start + ram_size - 1, 0);
e6dcd2dc
CM
920 }
921
98d20f67 922 cur_alloc_size = ins.offset;
e6dcd2dc 923 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 924 ram_size, cur_alloc_size, 0);
79787eaa 925 BUG_ON(ret); /* -ENOMEM */
c8b97818 926
17d217fe
YZ
927 if (root->root_key.objectid ==
928 BTRFS_DATA_RELOC_TREE_OBJECTID) {
929 ret = btrfs_reloc_clone_csums(inode, start,
930 cur_alloc_size);
79787eaa
JM
931 if (ret) {
932 btrfs_abort_transaction(trans, root, ret);
933 goto out_unlock;
934 }
17d217fe
YZ
935 }
936
d397712b 937 if (disk_num_bytes < cur_alloc_size)
3b951516 938 break;
d397712b 939
c8b97818
CM
940 /* we're not doing compressed IO, don't unlock the first
941 * page (which the caller expects to stay locked), don't
942 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
943 *
944 * Do set the Private2 bit so we know this page was properly
945 * setup for writepage
c8b97818 946 */
a791e35e
CM
947 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
948 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
949 EXTENT_SET_PRIVATE2;
950
c8b97818
CM
951 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
952 start, start + ram_size - 1,
a791e35e 953 locked_page, op);
c8b97818 954 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
955 num_bytes -= cur_alloc_size;
956 alloc_hint = ins.objectid + ins.offset;
957 start += cur_alloc_size;
b888db2b 958 }
79787eaa 959out:
be20aa9d 960 return ret;
b7d5b0a8 961
79787eaa
JM
962out_unlock:
963 extent_clear_unlock_delalloc(inode,
964 &BTRFS_I(inode)->io_tree,
beb42dd7 965 start, end, locked_page,
79787eaa
JM
966 EXTENT_CLEAR_UNLOCK_PAGE |
967 EXTENT_CLEAR_UNLOCK |
968 EXTENT_CLEAR_DELALLOC |
969 EXTENT_CLEAR_DIRTY |
970 EXTENT_SET_WRITEBACK |
971 EXTENT_END_WRITEBACK);
972
973 goto out;
771ed689 974}
c8b97818 975
b7d5b0a8
MX
976static noinline int cow_file_range(struct inode *inode,
977 struct page *locked_page,
978 u64 start, u64 end, int *page_started,
979 unsigned long *nr_written,
980 int unlock)
981{
982 struct btrfs_trans_handle *trans;
983 struct btrfs_root *root = BTRFS_I(inode)->root;
984 int ret;
985
986 trans = btrfs_join_transaction(root);
987 if (IS_ERR(trans)) {
988 extent_clear_unlock_delalloc(inode,
989 &BTRFS_I(inode)->io_tree,
990 start, end, locked_page,
991 EXTENT_CLEAR_UNLOCK_PAGE |
992 EXTENT_CLEAR_UNLOCK |
993 EXTENT_CLEAR_DELALLOC |
994 EXTENT_CLEAR_DIRTY |
995 EXTENT_SET_WRITEBACK |
996 EXTENT_END_WRITEBACK);
997 return PTR_ERR(trans);
998 }
999 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1000
1001 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1002 page_started, nr_written, unlock);
1003
1004 btrfs_end_transaction(trans, root);
1005
1006 return ret;
1007}
1008
771ed689
CM
1009/*
1010 * work queue call back to started compression on a file and pages
1011 */
1012static noinline void async_cow_start(struct btrfs_work *work)
1013{
1014 struct async_cow *async_cow;
1015 int num_added = 0;
1016 async_cow = container_of(work, struct async_cow, work);
1017
1018 compress_file_range(async_cow->inode, async_cow->locked_page,
1019 async_cow->start, async_cow->end, async_cow,
1020 &num_added);
8180ef88 1021 if (num_added == 0) {
cb77fcd8 1022 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1023 async_cow->inode = NULL;
8180ef88 1024 }
771ed689
CM
1025}
1026
1027/*
1028 * work queue call back to submit previously compressed pages
1029 */
1030static noinline void async_cow_submit(struct btrfs_work *work)
1031{
1032 struct async_cow *async_cow;
1033 struct btrfs_root *root;
1034 unsigned long nr_pages;
1035
1036 async_cow = container_of(work, struct async_cow, work);
1037
1038 root = async_cow->root;
1039 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1040 PAGE_CACHE_SHIFT;
1041
66657b31 1042 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1043 5 * 1024 * 1024 &&
771ed689
CM
1044 waitqueue_active(&root->fs_info->async_submit_wait))
1045 wake_up(&root->fs_info->async_submit_wait);
1046
d397712b 1047 if (async_cow->inode)
771ed689 1048 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1049}
c8b97818 1050
771ed689
CM
1051static noinline void async_cow_free(struct btrfs_work *work)
1052{
1053 struct async_cow *async_cow;
1054 async_cow = container_of(work, struct async_cow, work);
8180ef88 1055 if (async_cow->inode)
cb77fcd8 1056 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1057 kfree(async_cow);
1058}
1059
1060static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1061 u64 start, u64 end, int *page_started,
1062 unsigned long *nr_written)
1063{
1064 struct async_cow *async_cow;
1065 struct btrfs_root *root = BTRFS_I(inode)->root;
1066 unsigned long nr_pages;
1067 u64 cur_end;
287082b0 1068 int limit = 10 * 1024 * 1024;
771ed689 1069
a3429ab7
CM
1070 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1071 1, 0, NULL, GFP_NOFS);
d397712b 1072 while (start < end) {
771ed689 1073 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1074 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1075 async_cow->inode = igrab(inode);
771ed689
CM
1076 async_cow->root = root;
1077 async_cow->locked_page = locked_page;
1078 async_cow->start = start;
1079
6cbff00f 1080 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1081 cur_end = end;
1082 else
1083 cur_end = min(end, start + 512 * 1024 - 1);
1084
1085 async_cow->end = cur_end;
1086 INIT_LIST_HEAD(&async_cow->extents);
1087
1088 async_cow->work.func = async_cow_start;
1089 async_cow->work.ordered_func = async_cow_submit;
1090 async_cow->work.ordered_free = async_cow_free;
1091 async_cow->work.flags = 0;
1092
771ed689
CM
1093 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1094 PAGE_CACHE_SHIFT;
1095 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1096
1097 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1098 &async_cow->work);
1099
1100 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1101 wait_event(root->fs_info->async_submit_wait,
1102 (atomic_read(&root->fs_info->async_delalloc_pages) <
1103 limit));
1104 }
1105
d397712b 1106 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1107 atomic_read(&root->fs_info->async_delalloc_pages)) {
1108 wait_event(root->fs_info->async_submit_wait,
1109 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1110 0));
1111 }
1112
1113 *nr_written += nr_pages;
1114 start = cur_end + 1;
1115 }
1116 *page_started = 1;
1117 return 0;
be20aa9d
CM
1118}
1119
d397712b 1120static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1121 u64 bytenr, u64 num_bytes)
1122{
1123 int ret;
1124 struct btrfs_ordered_sum *sums;
1125 LIST_HEAD(list);
1126
07d400a6 1127 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1128 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1129 if (ret == 0 && list_empty(&list))
1130 return 0;
1131
1132 while (!list_empty(&list)) {
1133 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1134 list_del(&sums->list);
1135 kfree(sums);
1136 }
1137 return 1;
1138}
1139
d352ac68
CM
1140/*
1141 * when nowcow writeback call back. This checks for snapshots or COW copies
1142 * of the extents that exist in the file, and COWs the file as required.
1143 *
1144 * If no cow copies or snapshots exist, we write directly to the existing
1145 * blocks on disk
1146 */
7f366cfe
CM
1147static noinline int run_delalloc_nocow(struct inode *inode,
1148 struct page *locked_page,
771ed689
CM
1149 u64 start, u64 end, int *page_started, int force,
1150 unsigned long *nr_written)
be20aa9d 1151{
be20aa9d 1152 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1153 struct btrfs_trans_handle *trans;
be20aa9d 1154 struct extent_buffer *leaf;
be20aa9d 1155 struct btrfs_path *path;
80ff3856 1156 struct btrfs_file_extent_item *fi;
be20aa9d 1157 struct btrfs_key found_key;
80ff3856
YZ
1158 u64 cow_start;
1159 u64 cur_offset;
1160 u64 extent_end;
5d4f98a2 1161 u64 extent_offset;
80ff3856
YZ
1162 u64 disk_bytenr;
1163 u64 num_bytes;
b4939680 1164 u64 disk_num_bytes;
80ff3856 1165 int extent_type;
79787eaa 1166 int ret, err;
d899e052 1167 int type;
80ff3856
YZ
1168 int nocow;
1169 int check_prev = 1;
82d5902d 1170 bool nolock;
33345d01 1171 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1172
1173 path = btrfs_alloc_path();
17ca04af
JB
1174 if (!path) {
1175 extent_clear_unlock_delalloc(inode,
1176 &BTRFS_I(inode)->io_tree,
1177 start, end, locked_page,
1178 EXTENT_CLEAR_UNLOCK_PAGE |
1179 EXTENT_CLEAR_UNLOCK |
1180 EXTENT_CLEAR_DELALLOC |
1181 EXTENT_CLEAR_DIRTY |
1182 EXTENT_SET_WRITEBACK |
1183 EXTENT_END_WRITEBACK);
d8926bb3 1184 return -ENOMEM;
17ca04af 1185 }
82d5902d 1186
83eea1f1 1187 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1188
1189 if (nolock)
7a7eaa40 1190 trans = btrfs_join_transaction_nolock(root);
82d5902d 1191 else
7a7eaa40 1192 trans = btrfs_join_transaction(root);
ff5714cc 1193
79787eaa 1194 if (IS_ERR(trans)) {
17ca04af
JB
1195 extent_clear_unlock_delalloc(inode,
1196 &BTRFS_I(inode)->io_tree,
1197 start, end, locked_page,
1198 EXTENT_CLEAR_UNLOCK_PAGE |
1199 EXTENT_CLEAR_UNLOCK |
1200 EXTENT_CLEAR_DELALLOC |
1201 EXTENT_CLEAR_DIRTY |
1202 EXTENT_SET_WRITEBACK |
1203 EXTENT_END_WRITEBACK);
79787eaa
JM
1204 btrfs_free_path(path);
1205 return PTR_ERR(trans);
1206 }
1207
74b21075 1208 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1209
80ff3856
YZ
1210 cow_start = (u64)-1;
1211 cur_offset = start;
1212 while (1) {
33345d01 1213 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1214 cur_offset, 0);
79787eaa
JM
1215 if (ret < 0) {
1216 btrfs_abort_transaction(trans, root, ret);
1217 goto error;
1218 }
80ff3856
YZ
1219 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1220 leaf = path->nodes[0];
1221 btrfs_item_key_to_cpu(leaf, &found_key,
1222 path->slots[0] - 1);
33345d01 1223 if (found_key.objectid == ino &&
80ff3856
YZ
1224 found_key.type == BTRFS_EXTENT_DATA_KEY)
1225 path->slots[0]--;
1226 }
1227 check_prev = 0;
1228next_slot:
1229 leaf = path->nodes[0];
1230 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1231 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1232 if (ret < 0) {
1233 btrfs_abort_transaction(trans, root, ret);
1234 goto error;
1235 }
80ff3856
YZ
1236 if (ret > 0)
1237 break;
1238 leaf = path->nodes[0];
1239 }
be20aa9d 1240
80ff3856
YZ
1241 nocow = 0;
1242 disk_bytenr = 0;
17d217fe 1243 num_bytes = 0;
80ff3856
YZ
1244 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1245
33345d01 1246 if (found_key.objectid > ino ||
80ff3856
YZ
1247 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1248 found_key.offset > end)
1249 break;
1250
1251 if (found_key.offset > cur_offset) {
1252 extent_end = found_key.offset;
e9061e21 1253 extent_type = 0;
80ff3856
YZ
1254 goto out_check;
1255 }
1256
1257 fi = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_file_extent_item);
1259 extent_type = btrfs_file_extent_type(leaf, fi);
1260
d899e052
YZ
1261 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1262 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1263 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1264 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1265 extent_end = found_key.offset +
1266 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1267 disk_num_bytes =
1268 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1269 if (extent_end <= start) {
1270 path->slots[0]++;
1271 goto next_slot;
1272 }
17d217fe
YZ
1273 if (disk_bytenr == 0)
1274 goto out_check;
80ff3856
YZ
1275 if (btrfs_file_extent_compression(leaf, fi) ||
1276 btrfs_file_extent_encryption(leaf, fi) ||
1277 btrfs_file_extent_other_encoding(leaf, fi))
1278 goto out_check;
d899e052
YZ
1279 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1280 goto out_check;
d2fb3437 1281 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1282 goto out_check;
33345d01 1283 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1284 found_key.offset -
1285 extent_offset, disk_bytenr))
17d217fe 1286 goto out_check;
5d4f98a2 1287 disk_bytenr += extent_offset;
17d217fe
YZ
1288 disk_bytenr += cur_offset - found_key.offset;
1289 num_bytes = min(end + 1, extent_end) - cur_offset;
1290 /*
1291 * force cow if csum exists in the range.
1292 * this ensure that csum for a given extent are
1293 * either valid or do not exist.
1294 */
1295 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1296 goto out_check;
80ff3856
YZ
1297 nocow = 1;
1298 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1299 extent_end = found_key.offset +
1300 btrfs_file_extent_inline_len(leaf, fi);
1301 extent_end = ALIGN(extent_end, root->sectorsize);
1302 } else {
1303 BUG_ON(1);
1304 }
1305out_check:
1306 if (extent_end <= start) {
1307 path->slots[0]++;
1308 goto next_slot;
1309 }
1310 if (!nocow) {
1311 if (cow_start == (u64)-1)
1312 cow_start = cur_offset;
1313 cur_offset = extent_end;
1314 if (cur_offset > end)
1315 break;
1316 path->slots[0]++;
1317 goto next_slot;
7ea394f1
YZ
1318 }
1319
b3b4aa74 1320 btrfs_release_path(path);
80ff3856 1321 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1322 ret = __cow_file_range(trans, inode, root, locked_page,
1323 cow_start, found_key.offset - 1,
1324 page_started, nr_written, 1);
79787eaa
JM
1325 if (ret) {
1326 btrfs_abort_transaction(trans, root, ret);
1327 goto error;
1328 }
80ff3856 1329 cow_start = (u64)-1;
7ea394f1 1330 }
80ff3856 1331
d899e052
YZ
1332 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1333 struct extent_map *em;
1334 struct extent_map_tree *em_tree;
1335 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1336 em = alloc_extent_map();
79787eaa 1337 BUG_ON(!em); /* -ENOMEM */
d899e052 1338 em->start = cur_offset;
70c8a91c 1339 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1340 em->len = num_bytes;
1341 em->block_len = num_bytes;
1342 em->block_start = disk_bytenr;
b4939680 1343 em->orig_block_len = disk_num_bytes;
d899e052 1344 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1345 em->mod_start = em->start;
1346 em->mod_len = em->len;
d899e052 1347 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1348 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1349 em->generation = -1;
d899e052 1350 while (1) {
890871be 1351 write_lock(&em_tree->lock);
d899e052 1352 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
1353 if (!ret)
1354 list_move(&em->list,
1355 &em_tree->modified_extents);
890871be 1356 write_unlock(&em_tree->lock);
d899e052
YZ
1357 if (ret != -EEXIST) {
1358 free_extent_map(em);
1359 break;
1360 }
1361 btrfs_drop_extent_cache(inode, em->start,
1362 em->start + em->len - 1, 0);
1363 }
1364 type = BTRFS_ORDERED_PREALLOC;
1365 } else {
1366 type = BTRFS_ORDERED_NOCOW;
1367 }
80ff3856
YZ
1368
1369 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1370 num_bytes, num_bytes, type);
79787eaa 1371 BUG_ON(ret); /* -ENOMEM */
771ed689 1372
efa56464
YZ
1373 if (root->root_key.objectid ==
1374 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1375 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1376 num_bytes);
79787eaa
JM
1377 if (ret) {
1378 btrfs_abort_transaction(trans, root, ret);
1379 goto error;
1380 }
efa56464
YZ
1381 }
1382
d899e052 1383 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1384 cur_offset, cur_offset + num_bytes - 1,
1385 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1386 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1387 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1388 cur_offset = extent_end;
1389 if (cur_offset > end)
1390 break;
be20aa9d 1391 }
b3b4aa74 1392 btrfs_release_path(path);
80ff3856 1393
17ca04af 1394 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1395 cow_start = cur_offset;
17ca04af
JB
1396 cur_offset = end;
1397 }
1398
80ff3856 1399 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1400 ret = __cow_file_range(trans, inode, root, locked_page,
1401 cow_start, end,
1402 page_started, nr_written, 1);
79787eaa
JM
1403 if (ret) {
1404 btrfs_abort_transaction(trans, root, ret);
1405 goto error;
1406 }
80ff3856
YZ
1407 }
1408
79787eaa 1409error:
a698d075 1410 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1411 if (!ret)
1412 ret = err;
1413
17ca04af
JB
1414 if (ret && cur_offset < end)
1415 extent_clear_unlock_delalloc(inode,
1416 &BTRFS_I(inode)->io_tree,
1417 cur_offset, end, locked_page,
1418 EXTENT_CLEAR_UNLOCK_PAGE |
1419 EXTENT_CLEAR_UNLOCK |
1420 EXTENT_CLEAR_DELALLOC |
1421 EXTENT_CLEAR_DIRTY |
1422 EXTENT_SET_WRITEBACK |
1423 EXTENT_END_WRITEBACK);
1424
7ea394f1 1425 btrfs_free_path(path);
79787eaa 1426 return ret;
be20aa9d
CM
1427}
1428
d352ac68
CM
1429/*
1430 * extent_io.c call back to do delayed allocation processing
1431 */
c8b97818 1432static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1433 u64 start, u64 end, int *page_started,
1434 unsigned long *nr_written)
be20aa9d 1435{
be20aa9d 1436 int ret;
7f366cfe 1437 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1438
7ddf5a42 1439 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1440 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1441 page_started, 1, nr_written);
7ddf5a42 1442 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1443 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1444 page_started, 0, nr_written);
7ddf5a42
JB
1445 } else if (!btrfs_test_opt(root, COMPRESS) &&
1446 !(BTRFS_I(inode)->force_compress) &&
1447 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1448 ret = cow_file_range(inode, locked_page, start, end,
1449 page_started, nr_written, 1);
7ddf5a42
JB
1450 } else {
1451 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1452 &BTRFS_I(inode)->runtime_flags);
771ed689 1453 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1454 page_started, nr_written);
7ddf5a42 1455 }
b888db2b
CM
1456 return ret;
1457}
1458
1bf85046
JM
1459static void btrfs_split_extent_hook(struct inode *inode,
1460 struct extent_state *orig, u64 split)
9ed74f2d 1461{
0ca1f7ce 1462 /* not delalloc, ignore it */
9ed74f2d 1463 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1464 return;
9ed74f2d 1465
9e0baf60
JB
1466 spin_lock(&BTRFS_I(inode)->lock);
1467 BTRFS_I(inode)->outstanding_extents++;
1468 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1469}
1470
1471/*
1472 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1473 * extents so we can keep track of new extents that are just merged onto old
1474 * extents, such as when we are doing sequential writes, so we can properly
1475 * account for the metadata space we'll need.
1476 */
1bf85046
JM
1477static void btrfs_merge_extent_hook(struct inode *inode,
1478 struct extent_state *new,
1479 struct extent_state *other)
9ed74f2d 1480{
9ed74f2d
JB
1481 /* not delalloc, ignore it */
1482 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1483 return;
9ed74f2d 1484
9e0baf60
JB
1485 spin_lock(&BTRFS_I(inode)->lock);
1486 BTRFS_I(inode)->outstanding_extents--;
1487 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1488}
1489
d352ac68
CM
1490/*
1491 * extent_io.c set_bit_hook, used to track delayed allocation
1492 * bytes in this file, and to maintain the list of inodes that
1493 * have pending delalloc work to be done.
1494 */
1bf85046
JM
1495static void btrfs_set_bit_hook(struct inode *inode,
1496 struct extent_state *state, int *bits)
291d673e 1497{
9ed74f2d 1498
75eff68e
CM
1499 /*
1500 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1501 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1502 * bit, which is only set or cleared with irqs on
1503 */
0ca1f7ce 1504 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1505 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1506 u64 len = state->end + 1 - state->start;
83eea1f1 1507 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1508
9e0baf60 1509 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1510 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1511 } else {
1512 spin_lock(&BTRFS_I(inode)->lock);
1513 BTRFS_I(inode)->outstanding_extents++;
1514 spin_unlock(&BTRFS_I(inode)->lock);
1515 }
287a0ab9 1516
963d678b
MX
1517 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1518 root->fs_info->delalloc_batch);
df0af1a5
MX
1519 spin_lock(&BTRFS_I(inode)->lock);
1520 BTRFS_I(inode)->delalloc_bytes += len;
1521 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1522 &BTRFS_I(inode)->runtime_flags)) {
1523 spin_lock(&root->fs_info->delalloc_lock);
1524 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1525 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1526 &root->fs_info->delalloc_inodes);
1527 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1528 &BTRFS_I(inode)->runtime_flags);
1529 }
1530 spin_unlock(&root->fs_info->delalloc_lock);
ea8c2819 1531 }
df0af1a5 1532 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1533 }
291d673e
CM
1534}
1535
d352ac68
CM
1536/*
1537 * extent_io.c clear_bit_hook, see set_bit_hook for why
1538 */
1bf85046
JM
1539static void btrfs_clear_bit_hook(struct inode *inode,
1540 struct extent_state *state, int *bits)
291d673e 1541{
75eff68e
CM
1542 /*
1543 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1544 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1545 * bit, which is only set or cleared with irqs on
1546 */
0ca1f7ce 1547 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1548 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1549 u64 len = state->end + 1 - state->start;
83eea1f1 1550 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1551
9e0baf60 1552 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1553 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1554 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1555 spin_lock(&BTRFS_I(inode)->lock);
1556 BTRFS_I(inode)->outstanding_extents--;
1557 spin_unlock(&BTRFS_I(inode)->lock);
1558 }
0ca1f7ce
YZ
1559
1560 if (*bits & EXTENT_DO_ACCOUNTING)
1561 btrfs_delalloc_release_metadata(inode, len);
1562
0cb59c99
JB
1563 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1564 && do_list)
0ca1f7ce 1565 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1566
963d678b
MX
1567 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1568 root->fs_info->delalloc_batch);
df0af1a5 1569 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1570 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1571 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5
MX
1572 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1573 &BTRFS_I(inode)->runtime_flags)) {
1574 spin_lock(&root->fs_info->delalloc_lock);
1575 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1576 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1577 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1578 &BTRFS_I(inode)->runtime_flags);
1579 }
1580 spin_unlock(&root->fs_info->delalloc_lock);
ea8c2819 1581 }
df0af1a5 1582 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1583 }
291d673e
CM
1584}
1585
d352ac68
CM
1586/*
1587 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1588 * we don't create bios that span stripes or chunks
1589 */
239b14b3 1590int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1591 size_t size, struct bio *bio,
1592 unsigned long bio_flags)
239b14b3
CM
1593{
1594 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1595 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1596 u64 length = 0;
1597 u64 map_length;
239b14b3
CM
1598 int ret;
1599
771ed689
CM
1600 if (bio_flags & EXTENT_BIO_COMPRESSED)
1601 return 0;
1602
f2d8d74d 1603 length = bio->bi_size;
239b14b3 1604 map_length = length;
3ec706c8 1605 ret = btrfs_map_block(root->fs_info, READ, logical,
f188591e 1606 &map_length, NULL, 0);
3ec706c8 1607 /* Will always return 0 with map_multi == NULL */
3444a972 1608 BUG_ON(ret < 0);
d397712b 1609 if (map_length < length + size)
239b14b3 1610 return 1;
3444a972 1611 return 0;
239b14b3
CM
1612}
1613
d352ac68
CM
1614/*
1615 * in order to insert checksums into the metadata in large chunks,
1616 * we wait until bio submission time. All the pages in the bio are
1617 * checksummed and sums are attached onto the ordered extent record.
1618 *
1619 * At IO completion time the cums attached on the ordered extent record
1620 * are inserted into the btree
1621 */
d397712b
CM
1622static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1623 struct bio *bio, int mirror_num,
eaf25d93
CM
1624 unsigned long bio_flags,
1625 u64 bio_offset)
065631f6 1626{
065631f6 1627 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1628 int ret = 0;
e015640f 1629
d20f7043 1630 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1631 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1632 return 0;
1633}
e015640f 1634
4a69a410
CM
1635/*
1636 * in order to insert checksums into the metadata in large chunks,
1637 * we wait until bio submission time. All the pages in the bio are
1638 * checksummed and sums are attached onto the ordered extent record.
1639 *
1640 * At IO completion time the cums attached on the ordered extent record
1641 * are inserted into the btree
1642 */
b2950863 1643static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1644 int mirror_num, unsigned long bio_flags,
1645 u64 bio_offset)
4a69a410
CM
1646{
1647 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1648 int ret;
1649
1650 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1651 if (ret)
1652 bio_endio(bio, ret);
1653 return ret;
44b8bd7e
CM
1654}
1655
d352ac68 1656/*
cad321ad
CM
1657 * extent_io.c submission hook. This does the right thing for csum calculation
1658 * on write, or reading the csums from the tree before a read
d352ac68 1659 */
b2950863 1660static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1661 int mirror_num, unsigned long bio_flags,
1662 u64 bio_offset)
44b8bd7e
CM
1663{
1664 struct btrfs_root *root = BTRFS_I(inode)->root;
1665 int ret = 0;
19b9bdb0 1666 int skip_sum;
0417341e 1667 int metadata = 0;
b812ce28 1668 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1669
6cbff00f 1670 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1671
83eea1f1 1672 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1673 metadata = 2;
1674
7b6d91da 1675 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1676 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1677 if (ret)
61891923 1678 goto out;
5fd02043 1679
d20f7043 1680 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1681 ret = btrfs_submit_compressed_read(inode, bio,
1682 mirror_num,
1683 bio_flags);
1684 goto out;
c2db1073
TI
1685 } else if (!skip_sum) {
1686 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1687 if (ret)
61891923 1688 goto out;
c2db1073 1689 }
4d1b5fb4 1690 goto mapit;
b812ce28 1691 } else if (async && !skip_sum) {
17d217fe
YZ
1692 /* csum items have already been cloned */
1693 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1694 goto mapit;
19b9bdb0 1695 /* we're doing a write, do the async checksumming */
61891923 1696 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1697 inode, rw, bio, mirror_num,
eaf25d93
CM
1698 bio_flags, bio_offset,
1699 __btrfs_submit_bio_start,
4a69a410 1700 __btrfs_submit_bio_done);
61891923 1701 goto out;
b812ce28
JB
1702 } else if (!skip_sum) {
1703 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1704 if (ret)
1705 goto out;
19b9bdb0
CM
1706 }
1707
0b86a832 1708mapit:
61891923
SB
1709 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1710
1711out:
1712 if (ret < 0)
1713 bio_endio(bio, ret);
1714 return ret;
065631f6 1715}
6885f308 1716
d352ac68
CM
1717/*
1718 * given a list of ordered sums record them in the inode. This happens
1719 * at IO completion time based on sums calculated at bio submission time.
1720 */
ba1da2f4 1721static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1722 struct inode *inode, u64 file_offset,
1723 struct list_head *list)
1724{
e6dcd2dc
CM
1725 struct btrfs_ordered_sum *sum;
1726
c6e30871 1727 list_for_each_entry(sum, list, list) {
d20f7043
CM
1728 btrfs_csum_file_blocks(trans,
1729 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1730 }
1731 return 0;
1732}
1733
2ac55d41
JB
1734int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1735 struct extent_state **cached_state)
ea8c2819 1736{
6c1500f2 1737 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1738 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1739 cached_state, GFP_NOFS);
ea8c2819
CM
1740}
1741
d352ac68 1742/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1743struct btrfs_writepage_fixup {
1744 struct page *page;
1745 struct btrfs_work work;
1746};
1747
b2950863 1748static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1749{
1750 struct btrfs_writepage_fixup *fixup;
1751 struct btrfs_ordered_extent *ordered;
2ac55d41 1752 struct extent_state *cached_state = NULL;
247e743c
CM
1753 struct page *page;
1754 struct inode *inode;
1755 u64 page_start;
1756 u64 page_end;
87826df0 1757 int ret;
247e743c
CM
1758
1759 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1760 page = fixup->page;
4a096752 1761again:
247e743c
CM
1762 lock_page(page);
1763 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1764 ClearPageChecked(page);
1765 goto out_page;
1766 }
1767
1768 inode = page->mapping->host;
1769 page_start = page_offset(page);
1770 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1771
2ac55d41 1772 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1773 &cached_state);
4a096752
CM
1774
1775 /* already ordered? We're done */
8b62b72b 1776 if (PagePrivate2(page))
247e743c 1777 goto out;
4a096752
CM
1778
1779 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1780 if (ordered) {
2ac55d41
JB
1781 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1782 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1783 unlock_page(page);
1784 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1785 btrfs_put_ordered_extent(ordered);
4a096752
CM
1786 goto again;
1787 }
247e743c 1788
87826df0
JM
1789 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1790 if (ret) {
1791 mapping_set_error(page->mapping, ret);
1792 end_extent_writepage(page, ret, page_start, page_end);
1793 ClearPageChecked(page);
1794 goto out;
1795 }
1796
2ac55d41 1797 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1798 ClearPageChecked(page);
87826df0 1799 set_page_dirty(page);
247e743c 1800out:
2ac55d41
JB
1801 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1802 &cached_state, GFP_NOFS);
247e743c
CM
1803out_page:
1804 unlock_page(page);
1805 page_cache_release(page);
b897abec 1806 kfree(fixup);
247e743c
CM
1807}
1808
1809/*
1810 * There are a few paths in the higher layers of the kernel that directly
1811 * set the page dirty bit without asking the filesystem if it is a
1812 * good idea. This causes problems because we want to make sure COW
1813 * properly happens and the data=ordered rules are followed.
1814 *
c8b97818 1815 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1816 * hasn't been properly setup for IO. We kick off an async process
1817 * to fix it up. The async helper will wait for ordered extents, set
1818 * the delalloc bit and make it safe to write the page.
1819 */
b2950863 1820static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1821{
1822 struct inode *inode = page->mapping->host;
1823 struct btrfs_writepage_fixup *fixup;
1824 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1825
8b62b72b
CM
1826 /* this page is properly in the ordered list */
1827 if (TestClearPagePrivate2(page))
247e743c
CM
1828 return 0;
1829
1830 if (PageChecked(page))
1831 return -EAGAIN;
1832
1833 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1834 if (!fixup)
1835 return -EAGAIN;
f421950f 1836
247e743c
CM
1837 SetPageChecked(page);
1838 page_cache_get(page);
1839 fixup->work.func = btrfs_writepage_fixup_worker;
1840 fixup->page = page;
1841 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1842 return -EBUSY;
247e743c
CM
1843}
1844
d899e052
YZ
1845static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1846 struct inode *inode, u64 file_pos,
1847 u64 disk_bytenr, u64 disk_num_bytes,
1848 u64 num_bytes, u64 ram_bytes,
1849 u8 compression, u8 encryption,
1850 u16 other_encoding, int extent_type)
1851{
1852 struct btrfs_root *root = BTRFS_I(inode)->root;
1853 struct btrfs_file_extent_item *fi;
1854 struct btrfs_path *path;
1855 struct extent_buffer *leaf;
1856 struct btrfs_key ins;
d899e052
YZ
1857 int ret;
1858
1859 path = btrfs_alloc_path();
d8926bb3
MF
1860 if (!path)
1861 return -ENOMEM;
d899e052 1862
b9473439 1863 path->leave_spinning = 1;
a1ed835e
CM
1864
1865 /*
1866 * we may be replacing one extent in the tree with another.
1867 * The new extent is pinned in the extent map, and we don't want
1868 * to drop it from the cache until it is completely in the btree.
1869 *
1870 * So, tell btrfs_drop_extents to leave this extent in the cache.
1871 * the caller is expected to unpin it and allow it to be merged
1872 * with the others.
1873 */
5dc562c5 1874 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1875 file_pos + num_bytes, 0);
79787eaa
JM
1876 if (ret)
1877 goto out;
d899e052 1878
33345d01 1879 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1880 ins.offset = file_pos;
1881 ins.type = BTRFS_EXTENT_DATA_KEY;
1882 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1883 if (ret)
1884 goto out;
d899e052
YZ
1885 leaf = path->nodes[0];
1886 fi = btrfs_item_ptr(leaf, path->slots[0],
1887 struct btrfs_file_extent_item);
1888 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1889 btrfs_set_file_extent_type(leaf, fi, extent_type);
1890 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1891 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1892 btrfs_set_file_extent_offset(leaf, fi, 0);
1893 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1894 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1895 btrfs_set_file_extent_compression(leaf, fi, compression);
1896 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1897 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1898
d899e052 1899 btrfs_mark_buffer_dirty(leaf);
ce195332 1900 btrfs_release_path(path);
d899e052
YZ
1901
1902 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1903
1904 ins.objectid = disk_bytenr;
1905 ins.offset = disk_num_bytes;
1906 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1907 ret = btrfs_alloc_reserved_file_extent(trans, root,
1908 root->root_key.objectid,
33345d01 1909 btrfs_ino(inode), file_pos, &ins);
79787eaa 1910out:
d899e052 1911 btrfs_free_path(path);
b9473439 1912
79787eaa 1913 return ret;
d899e052
YZ
1914}
1915
5d13a98f
CM
1916/*
1917 * helper function for btrfs_finish_ordered_io, this
1918 * just reads in some of the csum leaves to prime them into ram
1919 * before we start the transaction. It limits the amount of btree
1920 * reads required while inside the transaction.
1921 */
d352ac68
CM
1922/* as ordered data IO finishes, this gets called so we can finish
1923 * an ordered extent if the range of bytes in the file it covers are
1924 * fully written.
1925 */
5fd02043 1926static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 1927{
5fd02043 1928 struct inode *inode = ordered_extent->inode;
e6dcd2dc 1929 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1930 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 1931 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1932 struct extent_state *cached_state = NULL;
261507a0 1933 int compress_type = 0;
e6dcd2dc 1934 int ret;
82d5902d 1935 bool nolock;
e6dcd2dc 1936
83eea1f1 1937 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 1938
5fd02043
JB
1939 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1940 ret = -EIO;
1941 goto out;
1942 }
1943
c2167754 1944 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1945 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
1946 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1947 if (nolock)
1948 trans = btrfs_join_transaction_nolock(root);
1949 else
1950 trans = btrfs_join_transaction(root);
1951 if (IS_ERR(trans)) {
1952 ret = PTR_ERR(trans);
1953 trans = NULL;
1954 goto out;
c2167754 1955 }
6c760c07
JB
1956 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1957 ret = btrfs_update_inode_fallback(trans, root, inode);
1958 if (ret) /* -ENOMEM or corruption */
1959 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1960 goto out;
1961 }
e6dcd2dc 1962
2ac55d41
JB
1963 lock_extent_bits(io_tree, ordered_extent->file_offset,
1964 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1965 0, &cached_state);
e6dcd2dc 1966
0cb59c99 1967 if (nolock)
7a7eaa40 1968 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1969 else
7a7eaa40 1970 trans = btrfs_join_transaction(root);
79787eaa
JM
1971 if (IS_ERR(trans)) {
1972 ret = PTR_ERR(trans);
1973 trans = NULL;
1974 goto out_unlock;
1975 }
0ca1f7ce 1976 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1977
c8b97818 1978 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1979 compress_type = ordered_extent->compress_type;
d899e052 1980 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1981 BUG_ON(compress_type);
920bbbfb 1982 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1983 ordered_extent->file_offset,
1984 ordered_extent->file_offset +
1985 ordered_extent->len);
d899e052 1986 } else {
0af3d00b 1987 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1988 ret = insert_reserved_file_extent(trans, inode,
1989 ordered_extent->file_offset,
1990 ordered_extent->start,
1991 ordered_extent->disk_len,
1992 ordered_extent->len,
1993 ordered_extent->len,
261507a0 1994 compress_type, 0, 0,
d899e052 1995 BTRFS_FILE_EXTENT_REG);
d899e052 1996 }
5dc562c5
JB
1997 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1998 ordered_extent->file_offset, ordered_extent->len,
1999 trans->transid);
79787eaa
JM
2000 if (ret < 0) {
2001 btrfs_abort_transaction(trans, root, ret);
5fd02043 2002 goto out_unlock;
79787eaa 2003 }
2ac55d41 2004
e6dcd2dc
CM
2005 add_pending_csums(trans, inode, ordered_extent->file_offset,
2006 &ordered_extent->list);
2007
6c760c07
JB
2008 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2009 ret = btrfs_update_inode_fallback(trans, root, inode);
2010 if (ret) { /* -ENOMEM or corruption */
2011 btrfs_abort_transaction(trans, root, ret);
2012 goto out_unlock;
1ef30be1
JB
2013 }
2014 ret = 0;
5fd02043
JB
2015out_unlock:
2016 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2017 ordered_extent->file_offset +
2018 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2019out:
5b0e95bf 2020 if (root != root->fs_info->tree_root)
0cb59c99 2021 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2022 if (trans)
2023 btrfs_end_transaction(trans, root);
0cb59c99 2024
0bec9ef5 2025 if (ret) {
5fd02043
JB
2026 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2027 ordered_extent->file_offset +
2028 ordered_extent->len - 1, NULL, GFP_NOFS);
2029
0bec9ef5
JB
2030 /*
2031 * If the ordered extent had an IOERR or something else went
2032 * wrong we need to return the space for this ordered extent
2033 * back to the allocator.
2034 */
2035 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2036 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2037 btrfs_free_reserved_extent(root, ordered_extent->start,
2038 ordered_extent->disk_len);
2039 }
2040
2041
5fd02043 2042 /*
8bad3c02
LB
2043 * This needs to be done to make sure anybody waiting knows we are done
2044 * updating everything for this ordered extent.
5fd02043
JB
2045 */
2046 btrfs_remove_ordered_extent(inode, ordered_extent);
2047
e6dcd2dc
CM
2048 /* once for us */
2049 btrfs_put_ordered_extent(ordered_extent);
2050 /* once for the tree */
2051 btrfs_put_ordered_extent(ordered_extent);
2052
5fd02043
JB
2053 return ret;
2054}
2055
2056static void finish_ordered_fn(struct btrfs_work *work)
2057{
2058 struct btrfs_ordered_extent *ordered_extent;
2059 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2060 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2061}
2062
b2950863 2063static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2064 struct extent_state *state, int uptodate)
2065{
5fd02043
JB
2066 struct inode *inode = page->mapping->host;
2067 struct btrfs_root *root = BTRFS_I(inode)->root;
2068 struct btrfs_ordered_extent *ordered_extent = NULL;
2069 struct btrfs_workers *workers;
2070
1abe9b8a 2071 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2072
8b62b72b 2073 ClearPagePrivate2(page);
5fd02043
JB
2074 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2075 end - start + 1, uptodate))
2076 return 0;
2077
2078 ordered_extent->work.func = finish_ordered_fn;
2079 ordered_extent->work.flags = 0;
2080
83eea1f1 2081 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2082 workers = &root->fs_info->endio_freespace_worker;
2083 else
2084 workers = &root->fs_info->endio_write_workers;
2085 btrfs_queue_worker(workers, &ordered_extent->work);
2086
2087 return 0;
211f90e6
CM
2088}
2089
d352ac68
CM
2090/*
2091 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2092 * if there's a match, we allow the bio to finish. If not, the code in
2093 * extent_io.c will try to find good copies for us.
d352ac68 2094 */
b2950863 2095static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2096 struct extent_state *state, int mirror)
07157aac 2097{
4eee4fa4 2098 size_t offset = start - page_offset(page);
07157aac 2099 struct inode *inode = page->mapping->host;
d1310b2e 2100 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2101 char *kaddr;
aadfeb6e 2102 u64 private = ~(u32)0;
07157aac 2103 int ret;
ff79f819
CM
2104 struct btrfs_root *root = BTRFS_I(inode)->root;
2105 u32 csum = ~(u32)0;
d1310b2e 2106
d20f7043
CM
2107 if (PageChecked(page)) {
2108 ClearPageChecked(page);
2109 goto good;
2110 }
6cbff00f
CH
2111
2112 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2113 goto good;
17d217fe
YZ
2114
2115 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2116 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2117 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2118 GFP_NOFS);
b6cda9bc 2119 return 0;
17d217fe 2120 }
d20f7043 2121
c2e639f0 2122 if (state && state->start == start) {
70dec807
CM
2123 private = state->private;
2124 ret = 0;
2125 } else {
2126 ret = get_state_private(io_tree, start, &private);
2127 }
7ac687d9 2128 kaddr = kmap_atomic(page);
d397712b 2129 if (ret)
07157aac 2130 goto zeroit;
d397712b 2131
ff79f819
CM
2132 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2133 btrfs_csum_final(csum, (char *)&csum);
d397712b 2134 if (csum != private)
07157aac 2135 goto zeroit;
d397712b 2136
7ac687d9 2137 kunmap_atomic(kaddr);
d20f7043 2138good:
07157aac
CM
2139 return 0;
2140
2141zeroit:
945d8962 2142 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2143 "private %llu\n",
2144 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2145 (unsigned long long)start, csum,
2146 (unsigned long long)private);
db94535d
CM
2147 memset(kaddr + offset, 1, end - start + 1);
2148 flush_dcache_page(page);
7ac687d9 2149 kunmap_atomic(kaddr);
3b951516
CM
2150 if (private == 0)
2151 return 0;
7e38326f 2152 return -EIO;
07157aac 2153}
b888db2b 2154
24bbcf04
YZ
2155struct delayed_iput {
2156 struct list_head list;
2157 struct inode *inode;
2158};
2159
79787eaa
JM
2160/* JDM: If this is fs-wide, why can't we add a pointer to
2161 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2162void btrfs_add_delayed_iput(struct inode *inode)
2163{
2164 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2165 struct delayed_iput *delayed;
2166
2167 if (atomic_add_unless(&inode->i_count, -1, 1))
2168 return;
2169
2170 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2171 delayed->inode = inode;
2172
2173 spin_lock(&fs_info->delayed_iput_lock);
2174 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2175 spin_unlock(&fs_info->delayed_iput_lock);
2176}
2177
2178void btrfs_run_delayed_iputs(struct btrfs_root *root)
2179{
2180 LIST_HEAD(list);
2181 struct btrfs_fs_info *fs_info = root->fs_info;
2182 struct delayed_iput *delayed;
2183 int empty;
2184
2185 spin_lock(&fs_info->delayed_iput_lock);
2186 empty = list_empty(&fs_info->delayed_iputs);
2187 spin_unlock(&fs_info->delayed_iput_lock);
2188 if (empty)
2189 return;
2190
24bbcf04
YZ
2191 spin_lock(&fs_info->delayed_iput_lock);
2192 list_splice_init(&fs_info->delayed_iputs, &list);
2193 spin_unlock(&fs_info->delayed_iput_lock);
2194
2195 while (!list_empty(&list)) {
2196 delayed = list_entry(list.next, struct delayed_iput, list);
2197 list_del(&delayed->list);
2198 iput(delayed->inode);
2199 kfree(delayed);
2200 }
24bbcf04
YZ
2201}
2202
d68fc57b
YZ
2203enum btrfs_orphan_cleanup_state {
2204 ORPHAN_CLEANUP_STARTED = 1,
2205 ORPHAN_CLEANUP_DONE = 2,
2206};
2207
2208/*
42b2aa86 2209 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2210 * files in the subvolume, it removes orphan item and frees block_rsv
2211 * structure.
2212 */
2213void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2214 struct btrfs_root *root)
2215{
90290e19 2216 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2217 int ret;
2218
8a35d95f 2219 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2220 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2221 return;
2222
90290e19 2223 spin_lock(&root->orphan_lock);
8a35d95f 2224 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2225 spin_unlock(&root->orphan_lock);
2226 return;
2227 }
2228
2229 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2230 spin_unlock(&root->orphan_lock);
2231 return;
2232 }
2233
2234 block_rsv = root->orphan_block_rsv;
2235 root->orphan_block_rsv = NULL;
2236 spin_unlock(&root->orphan_lock);
2237
d68fc57b
YZ
2238 if (root->orphan_item_inserted &&
2239 btrfs_root_refs(&root->root_item) > 0) {
2240 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2241 root->root_key.objectid);
2242 BUG_ON(ret);
2243 root->orphan_item_inserted = 0;
2244 }
2245
90290e19
JB
2246 if (block_rsv) {
2247 WARN_ON(block_rsv->size > 0);
2248 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2249 }
2250}
2251
7b128766
JB
2252/*
2253 * This creates an orphan entry for the given inode in case something goes
2254 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2255 *
2256 * NOTE: caller of this function should reserve 5 units of metadata for
2257 * this function.
7b128766
JB
2258 */
2259int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2260{
2261 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2262 struct btrfs_block_rsv *block_rsv = NULL;
2263 int reserve = 0;
2264 int insert = 0;
2265 int ret;
7b128766 2266
d68fc57b 2267 if (!root->orphan_block_rsv) {
66d8f3dd 2268 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2269 if (!block_rsv)
2270 return -ENOMEM;
d68fc57b 2271 }
7b128766 2272
d68fc57b
YZ
2273 spin_lock(&root->orphan_lock);
2274 if (!root->orphan_block_rsv) {
2275 root->orphan_block_rsv = block_rsv;
2276 } else if (block_rsv) {
2277 btrfs_free_block_rsv(root, block_rsv);
2278 block_rsv = NULL;
7b128766 2279 }
7b128766 2280
8a35d95f
JB
2281 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2282 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2283#if 0
2284 /*
2285 * For proper ENOSPC handling, we should do orphan
2286 * cleanup when mounting. But this introduces backward
2287 * compatibility issue.
2288 */
2289 if (!xchg(&root->orphan_item_inserted, 1))
2290 insert = 2;
2291 else
2292 insert = 1;
2293#endif
2294 insert = 1;
321f0e70 2295 atomic_inc(&root->orphan_inodes);
7b128766
JB
2296 }
2297
72ac3c0d
JB
2298 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2299 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2300 reserve = 1;
d68fc57b 2301 spin_unlock(&root->orphan_lock);
7b128766 2302
d68fc57b
YZ
2303 /* grab metadata reservation from transaction handle */
2304 if (reserve) {
2305 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2306 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2307 }
7b128766 2308
d68fc57b
YZ
2309 /* insert an orphan item to track this unlinked/truncated file */
2310 if (insert >= 1) {
33345d01 2311 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2312 if (ret && ret != -EEXIST) {
8a35d95f
JB
2313 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2314 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2315 btrfs_abort_transaction(trans, root, ret);
2316 return ret;
2317 }
2318 ret = 0;
d68fc57b
YZ
2319 }
2320
2321 /* insert an orphan item to track subvolume contains orphan files */
2322 if (insert >= 2) {
2323 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2324 root->root_key.objectid);
79787eaa
JM
2325 if (ret && ret != -EEXIST) {
2326 btrfs_abort_transaction(trans, root, ret);
2327 return ret;
2328 }
d68fc57b
YZ
2329 }
2330 return 0;
7b128766
JB
2331}
2332
2333/*
2334 * We have done the truncate/delete so we can go ahead and remove the orphan
2335 * item for this particular inode.
2336 */
2337int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2338{
2339 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2340 int delete_item = 0;
2341 int release_rsv = 0;
7b128766
JB
2342 int ret = 0;
2343
d68fc57b 2344 spin_lock(&root->orphan_lock);
8a35d95f
JB
2345 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2346 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2347 delete_item = 1;
7b128766 2348
72ac3c0d
JB
2349 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2350 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2351 release_rsv = 1;
d68fc57b 2352 spin_unlock(&root->orphan_lock);
7b128766 2353
d68fc57b 2354 if (trans && delete_item) {
33345d01 2355 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2356 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2357 }
7b128766 2358
8a35d95f 2359 if (release_rsv) {
d68fc57b 2360 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
2361 atomic_dec(&root->orphan_inodes);
2362 }
7b128766 2363
d68fc57b 2364 return 0;
7b128766
JB
2365}
2366
2367/*
2368 * this cleans up any orphans that may be left on the list from the last use
2369 * of this root.
2370 */
66b4ffd1 2371int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2372{
2373 struct btrfs_path *path;
2374 struct extent_buffer *leaf;
7b128766
JB
2375 struct btrfs_key key, found_key;
2376 struct btrfs_trans_handle *trans;
2377 struct inode *inode;
8f6d7f4f 2378 u64 last_objectid = 0;
7b128766
JB
2379 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2380
d68fc57b 2381 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2382 return 0;
c71bf099
YZ
2383
2384 path = btrfs_alloc_path();
66b4ffd1
JB
2385 if (!path) {
2386 ret = -ENOMEM;
2387 goto out;
2388 }
7b128766
JB
2389 path->reada = -1;
2390
2391 key.objectid = BTRFS_ORPHAN_OBJECTID;
2392 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2393 key.offset = (u64)-1;
2394
7b128766
JB
2395 while (1) {
2396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2397 if (ret < 0)
2398 goto out;
7b128766
JB
2399
2400 /*
2401 * if ret == 0 means we found what we were searching for, which
25985edc 2402 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2403 * find the key and see if we have stuff that matches
2404 */
2405 if (ret > 0) {
66b4ffd1 2406 ret = 0;
7b128766
JB
2407 if (path->slots[0] == 0)
2408 break;
2409 path->slots[0]--;
2410 }
2411
2412 /* pull out the item */
2413 leaf = path->nodes[0];
7b128766
JB
2414 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2415
2416 /* make sure the item matches what we want */
2417 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2418 break;
2419 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2420 break;
2421
2422 /* release the path since we're done with it */
b3b4aa74 2423 btrfs_release_path(path);
7b128766
JB
2424
2425 /*
2426 * this is where we are basically btrfs_lookup, without the
2427 * crossing root thing. we store the inode number in the
2428 * offset of the orphan item.
2429 */
8f6d7f4f
JB
2430
2431 if (found_key.offset == last_objectid) {
2432 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2433 "stopping orphan cleanup\n");
2434 ret = -EINVAL;
2435 goto out;
2436 }
2437
2438 last_objectid = found_key.offset;
2439
5d4f98a2
YZ
2440 found_key.objectid = found_key.offset;
2441 found_key.type = BTRFS_INODE_ITEM_KEY;
2442 found_key.offset = 0;
73f73415 2443 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2444 ret = PTR_RET(inode);
2445 if (ret && ret != -ESTALE)
66b4ffd1 2446 goto out;
7b128766 2447
f8e9e0b0
AJ
2448 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2449 struct btrfs_root *dead_root;
2450 struct btrfs_fs_info *fs_info = root->fs_info;
2451 int is_dead_root = 0;
2452
2453 /*
2454 * this is an orphan in the tree root. Currently these
2455 * could come from 2 sources:
2456 * a) a snapshot deletion in progress
2457 * b) a free space cache inode
2458 * We need to distinguish those two, as the snapshot
2459 * orphan must not get deleted.
2460 * find_dead_roots already ran before us, so if this
2461 * is a snapshot deletion, we should find the root
2462 * in the dead_roots list
2463 */
2464 spin_lock(&fs_info->trans_lock);
2465 list_for_each_entry(dead_root, &fs_info->dead_roots,
2466 root_list) {
2467 if (dead_root->root_key.objectid ==
2468 found_key.objectid) {
2469 is_dead_root = 1;
2470 break;
2471 }
2472 }
2473 spin_unlock(&fs_info->trans_lock);
2474 if (is_dead_root) {
2475 /* prevent this orphan from being found again */
2476 key.offset = found_key.objectid - 1;
2477 continue;
2478 }
2479 }
7b128766 2480 /*
a8c9e576
JB
2481 * Inode is already gone but the orphan item is still there,
2482 * kill the orphan item.
7b128766 2483 */
a8c9e576
JB
2484 if (ret == -ESTALE) {
2485 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2486 if (IS_ERR(trans)) {
2487 ret = PTR_ERR(trans);
2488 goto out;
2489 }
8a35d95f
JB
2490 printk(KERN_ERR "auto deleting %Lu\n",
2491 found_key.objectid);
a8c9e576
JB
2492 ret = btrfs_del_orphan_item(trans, root,
2493 found_key.objectid);
79787eaa 2494 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2495 btrfs_end_transaction(trans, root);
7b128766
JB
2496 continue;
2497 }
2498
a8c9e576
JB
2499 /*
2500 * add this inode to the orphan list so btrfs_orphan_del does
2501 * the proper thing when we hit it
2502 */
8a35d95f
JB
2503 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2504 &BTRFS_I(inode)->runtime_flags);
925396ec 2505 atomic_inc(&root->orphan_inodes);
a8c9e576 2506
7b128766
JB
2507 /* if we have links, this was a truncate, lets do that */
2508 if (inode->i_nlink) {
a41ad394
JB
2509 if (!S_ISREG(inode->i_mode)) {
2510 WARN_ON(1);
2511 iput(inode);
2512 continue;
2513 }
7b128766 2514 nr_truncate++;
f3fe820c
JB
2515
2516 /* 1 for the orphan item deletion. */
2517 trans = btrfs_start_transaction(root, 1);
2518 if (IS_ERR(trans)) {
2519 ret = PTR_ERR(trans);
2520 goto out;
2521 }
2522 ret = btrfs_orphan_add(trans, inode);
2523 btrfs_end_transaction(trans, root);
2524 if (ret)
2525 goto out;
2526
66b4ffd1 2527 ret = btrfs_truncate(inode);
7b128766
JB
2528 } else {
2529 nr_unlink++;
2530 }
2531
2532 /* this will do delete_inode and everything for us */
2533 iput(inode);
66b4ffd1
JB
2534 if (ret)
2535 goto out;
7b128766 2536 }
3254c876
MX
2537 /* release the path since we're done with it */
2538 btrfs_release_path(path);
2539
d68fc57b
YZ
2540 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2541
2542 if (root->orphan_block_rsv)
2543 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2544 (u64)-1);
2545
2546 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2547 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2548 if (!IS_ERR(trans))
2549 btrfs_end_transaction(trans, root);
d68fc57b 2550 }
7b128766
JB
2551
2552 if (nr_unlink)
2553 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2554 if (nr_truncate)
2555 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2556
2557out:
2558 if (ret)
2559 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2560 btrfs_free_path(path);
2561 return ret;
7b128766
JB
2562}
2563
46a53cca
CM
2564/*
2565 * very simple check to peek ahead in the leaf looking for xattrs. If we
2566 * don't find any xattrs, we know there can't be any acls.
2567 *
2568 * slot is the slot the inode is in, objectid is the objectid of the inode
2569 */
2570static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2571 int slot, u64 objectid)
2572{
2573 u32 nritems = btrfs_header_nritems(leaf);
2574 struct btrfs_key found_key;
2575 int scanned = 0;
2576
2577 slot++;
2578 while (slot < nritems) {
2579 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2580
2581 /* we found a different objectid, there must not be acls */
2582 if (found_key.objectid != objectid)
2583 return 0;
2584
2585 /* we found an xattr, assume we've got an acl */
2586 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2587 return 1;
2588
2589 /*
2590 * we found a key greater than an xattr key, there can't
2591 * be any acls later on
2592 */
2593 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2594 return 0;
2595
2596 slot++;
2597 scanned++;
2598
2599 /*
2600 * it goes inode, inode backrefs, xattrs, extents,
2601 * so if there are a ton of hard links to an inode there can
2602 * be a lot of backrefs. Don't waste time searching too hard,
2603 * this is just an optimization
2604 */
2605 if (scanned >= 8)
2606 break;
2607 }
2608 /* we hit the end of the leaf before we found an xattr or
2609 * something larger than an xattr. We have to assume the inode
2610 * has acls
2611 */
2612 return 1;
2613}
2614
d352ac68
CM
2615/*
2616 * read an inode from the btree into the in-memory inode
2617 */
5d4f98a2 2618static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2619{
2620 struct btrfs_path *path;
5f39d397 2621 struct extent_buffer *leaf;
39279cc3 2622 struct btrfs_inode_item *inode_item;
0b86a832 2623 struct btrfs_timespec *tspec;
39279cc3
CM
2624 struct btrfs_root *root = BTRFS_I(inode)->root;
2625 struct btrfs_key location;
46a53cca 2626 int maybe_acls;
618e21d5 2627 u32 rdev;
39279cc3 2628 int ret;
2f7e33d4
MX
2629 bool filled = false;
2630
2631 ret = btrfs_fill_inode(inode, &rdev);
2632 if (!ret)
2633 filled = true;
39279cc3
CM
2634
2635 path = btrfs_alloc_path();
1748f843
MF
2636 if (!path)
2637 goto make_bad;
2638
d90c7321 2639 path->leave_spinning = 1;
39279cc3 2640 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2641
39279cc3 2642 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2643 if (ret)
39279cc3 2644 goto make_bad;
39279cc3 2645
5f39d397 2646 leaf = path->nodes[0];
2f7e33d4
MX
2647
2648 if (filled)
2649 goto cache_acl;
2650
5f39d397
CM
2651 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2652 struct btrfs_inode_item);
5f39d397 2653 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2654 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
2655 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2656 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 2657 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2658
2659 tspec = btrfs_inode_atime(inode_item);
2660 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2661 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2662
2663 tspec = btrfs_inode_mtime(inode_item);
2664 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2665 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2666
2667 tspec = btrfs_inode_ctime(inode_item);
2668 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2669 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2670
a76a3cd4 2671 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2672 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
2673 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2674
2675 /*
2676 * If we were modified in the current generation and evicted from memory
2677 * and then re-read we need to do a full sync since we don't have any
2678 * idea about which extents were modified before we were evicted from
2679 * cache.
2680 */
2681 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2682 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2683 &BTRFS_I(inode)->runtime_flags);
2684
0c4d2d95 2685 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2686 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2687 inode->i_rdev = 0;
5f39d397
CM
2688 rdev = btrfs_inode_rdev(leaf, inode_item);
2689
aec7477b 2690 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2691 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2692cache_acl:
46a53cca
CM
2693 /*
2694 * try to precache a NULL acl entry for files that don't have
2695 * any xattrs or acls
2696 */
33345d01
LZ
2697 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2698 btrfs_ino(inode));
72c04902
AV
2699 if (!maybe_acls)
2700 cache_no_acl(inode);
46a53cca 2701
39279cc3 2702 btrfs_free_path(path);
39279cc3 2703
39279cc3 2704 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2705 case S_IFREG:
2706 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2707 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2708 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2709 inode->i_fop = &btrfs_file_operations;
2710 inode->i_op = &btrfs_file_inode_operations;
2711 break;
2712 case S_IFDIR:
2713 inode->i_fop = &btrfs_dir_file_operations;
2714 if (root == root->fs_info->tree_root)
2715 inode->i_op = &btrfs_dir_ro_inode_operations;
2716 else
2717 inode->i_op = &btrfs_dir_inode_operations;
2718 break;
2719 case S_IFLNK:
2720 inode->i_op = &btrfs_symlink_inode_operations;
2721 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2722 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2723 break;
618e21d5 2724 default:
0279b4cd 2725 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2726 init_special_inode(inode, inode->i_mode, rdev);
2727 break;
39279cc3 2728 }
6cbff00f
CH
2729
2730 btrfs_update_iflags(inode);
39279cc3
CM
2731 return;
2732
2733make_bad:
39279cc3 2734 btrfs_free_path(path);
39279cc3
CM
2735 make_bad_inode(inode);
2736}
2737
d352ac68
CM
2738/*
2739 * given a leaf and an inode, copy the inode fields into the leaf
2740 */
e02119d5
CM
2741static void fill_inode_item(struct btrfs_trans_handle *trans,
2742 struct extent_buffer *leaf,
5f39d397 2743 struct btrfs_inode_item *item,
39279cc3
CM
2744 struct inode *inode)
2745{
51fab693
LB
2746 struct btrfs_map_token token;
2747
2748 btrfs_init_map_token(&token);
2749
2750 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
2751 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
2752 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
2753 &token);
2754 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
2755 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
2756
2757 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
2758 inode->i_atime.tv_sec, &token);
2759 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
2760 inode->i_atime.tv_nsec, &token);
2761
2762 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
2763 inode->i_mtime.tv_sec, &token);
2764 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
2765 inode->i_mtime.tv_nsec, &token);
2766
2767 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
2768 inode->i_ctime.tv_sec, &token);
2769 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
2770 inode->i_ctime.tv_nsec, &token);
2771
2772 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
2773 &token);
2774 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
2775 &token);
2776 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
2777 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
2778 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
2779 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
2780 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
2781}
2782
d352ac68
CM
2783/*
2784 * copy everything in the in-memory inode into the btree.
2785 */
2115133f 2786static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2787 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2788{
2789 struct btrfs_inode_item *inode_item;
2790 struct btrfs_path *path;
5f39d397 2791 struct extent_buffer *leaf;
39279cc3
CM
2792 int ret;
2793
2794 path = btrfs_alloc_path();
16cdcec7
MX
2795 if (!path)
2796 return -ENOMEM;
2797
b9473439 2798 path->leave_spinning = 1;
16cdcec7
MX
2799 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2800 1);
39279cc3
CM
2801 if (ret) {
2802 if (ret > 0)
2803 ret = -ENOENT;
2804 goto failed;
2805 }
2806
b4ce94de 2807 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2808 leaf = path->nodes[0];
2809 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2810 struct btrfs_inode_item);
39279cc3 2811
e02119d5 2812 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2813 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2814 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2815 ret = 0;
2816failed:
39279cc3
CM
2817 btrfs_free_path(path);
2818 return ret;
2819}
2820
2115133f
CM
2821/*
2822 * copy everything in the in-memory inode into the btree.
2823 */
2824noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2825 struct btrfs_root *root, struct inode *inode)
2826{
2827 int ret;
2828
2829 /*
2830 * If the inode is a free space inode, we can deadlock during commit
2831 * if we put it into the delayed code.
2832 *
2833 * The data relocation inode should also be directly updated
2834 * without delay
2835 */
83eea1f1 2836 if (!btrfs_is_free_space_inode(inode)
2115133f 2837 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
2838 btrfs_update_root_times(trans, root);
2839
2115133f
CM
2840 ret = btrfs_delayed_update_inode(trans, root, inode);
2841 if (!ret)
2842 btrfs_set_inode_last_trans(trans, inode);
2843 return ret;
2844 }
2845
2846 return btrfs_update_inode_item(trans, root, inode);
2847}
2848
be6aef60
JB
2849noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2850 struct btrfs_root *root,
2851 struct inode *inode)
2115133f
CM
2852{
2853 int ret;
2854
2855 ret = btrfs_update_inode(trans, root, inode);
2856 if (ret == -ENOSPC)
2857 return btrfs_update_inode_item(trans, root, inode);
2858 return ret;
2859}
2860
d352ac68
CM
2861/*
2862 * unlink helper that gets used here in inode.c and in the tree logging
2863 * recovery code. It remove a link in a directory with a given name, and
2864 * also drops the back refs in the inode to the directory
2865 */
92986796
AV
2866static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2867 struct btrfs_root *root,
2868 struct inode *dir, struct inode *inode,
2869 const char *name, int name_len)
39279cc3
CM
2870{
2871 struct btrfs_path *path;
39279cc3 2872 int ret = 0;
5f39d397 2873 struct extent_buffer *leaf;
39279cc3 2874 struct btrfs_dir_item *di;
5f39d397 2875 struct btrfs_key key;
aec7477b 2876 u64 index;
33345d01
LZ
2877 u64 ino = btrfs_ino(inode);
2878 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2879
2880 path = btrfs_alloc_path();
54aa1f4d
CM
2881 if (!path) {
2882 ret = -ENOMEM;
554233a6 2883 goto out;
54aa1f4d
CM
2884 }
2885
b9473439 2886 path->leave_spinning = 1;
33345d01 2887 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2888 name, name_len, -1);
2889 if (IS_ERR(di)) {
2890 ret = PTR_ERR(di);
2891 goto err;
2892 }
2893 if (!di) {
2894 ret = -ENOENT;
2895 goto err;
2896 }
5f39d397
CM
2897 leaf = path->nodes[0];
2898 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2899 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2900 if (ret)
2901 goto err;
b3b4aa74 2902 btrfs_release_path(path);
39279cc3 2903
33345d01
LZ
2904 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2905 dir_ino, &index);
aec7477b 2906 if (ret) {
d397712b 2907 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2908 "inode %llu parent %llu\n", name_len, name,
2909 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2910 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2911 goto err;
2912 }
2913
16cdcec7 2914 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2915 if (ret) {
2916 btrfs_abort_transaction(trans, root, ret);
39279cc3 2917 goto err;
79787eaa 2918 }
39279cc3 2919
e02119d5 2920 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2921 inode, dir_ino);
79787eaa
JM
2922 if (ret != 0 && ret != -ENOENT) {
2923 btrfs_abort_transaction(trans, root, ret);
2924 goto err;
2925 }
e02119d5
CM
2926
2927 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2928 dir, index);
6418c961
CM
2929 if (ret == -ENOENT)
2930 ret = 0;
39279cc3
CM
2931err:
2932 btrfs_free_path(path);
e02119d5
CM
2933 if (ret)
2934 goto out;
2935
2936 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2937 inode_inc_iversion(inode);
2938 inode_inc_iversion(dir);
e02119d5 2939 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 2940 ret = btrfs_update_inode(trans, root, dir);
e02119d5 2941out:
39279cc3
CM
2942 return ret;
2943}
2944
92986796
AV
2945int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2946 struct btrfs_root *root,
2947 struct inode *dir, struct inode *inode,
2948 const char *name, int name_len)
2949{
2950 int ret;
2951 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2952 if (!ret) {
2953 btrfs_drop_nlink(inode);
2954 ret = btrfs_update_inode(trans, root, inode);
2955 }
2956 return ret;
2957}
2958
2959
a22285a6
YZ
2960/* helper to check if there is any shared block in the path */
2961static int check_path_shared(struct btrfs_root *root,
2962 struct btrfs_path *path)
39279cc3 2963{
a22285a6
YZ
2964 struct extent_buffer *eb;
2965 int level;
0e4dcbef 2966 u64 refs = 1;
5df6a9f6 2967
a22285a6 2968 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2969 int ret;
2970
a22285a6
YZ
2971 if (!path->nodes[level])
2972 break;
2973 eb = path->nodes[level];
2974 if (!btrfs_block_can_be_shared(root, eb))
2975 continue;
2976 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2977 &refs, NULL);
2978 if (refs > 1)
2979 return 1;
5df6a9f6 2980 }
dedefd72 2981 return 0;
39279cc3
CM
2982}
2983
a22285a6
YZ
2984/*
2985 * helper to start transaction for unlink and rmdir.
2986 *
2987 * unlink and rmdir are special in btrfs, they do not always free space.
2988 * so in enospc case, we should make sure they will free space before
2989 * allowing them to use the global metadata reservation.
2990 */
2991static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2992 struct dentry *dentry)
4df27c4d 2993{
39279cc3 2994 struct btrfs_trans_handle *trans;
a22285a6 2995 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2996 struct btrfs_path *path;
4df27c4d 2997 struct btrfs_dir_item *di;
7b128766 2998 struct inode *inode = dentry->d_inode;
4df27c4d 2999 u64 index;
a22285a6
YZ
3000 int check_link = 1;
3001 int err = -ENOSPC;
4df27c4d 3002 int ret;
33345d01
LZ
3003 u64 ino = btrfs_ino(inode);
3004 u64 dir_ino = btrfs_ino(dir);
4df27c4d 3005
e70bea5f
JB
3006 /*
3007 * 1 for the possible orphan item
3008 * 1 for the dir item
3009 * 1 for the dir index
3010 * 1 for the inode ref
3011 * 1 for the inode ref in the tree log
3012 * 2 for the dir entries in the log
3013 * 1 for the inode
3014 */
3015 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
3016 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3017 return trans;
4df27c4d 3018
33345d01 3019 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 3020 return ERR_PTR(-ENOSPC);
4df27c4d 3021
a22285a6
YZ
3022 /* check if there is someone else holds reference */
3023 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
3024 return ERR_PTR(-ENOSPC);
4df27c4d 3025
a22285a6
YZ
3026 if (atomic_read(&inode->i_count) > 2)
3027 return ERR_PTR(-ENOSPC);
4df27c4d 3028
a22285a6
YZ
3029 if (xchg(&root->fs_info->enospc_unlink, 1))
3030 return ERR_PTR(-ENOSPC);
3031
3032 path = btrfs_alloc_path();
3033 if (!path) {
3034 root->fs_info->enospc_unlink = 0;
3035 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
3036 }
3037
3880a1b4
JB
3038 /* 1 for the orphan item */
3039 trans = btrfs_start_transaction(root, 1);
5df6a9f6 3040 if (IS_ERR(trans)) {
a22285a6
YZ
3041 btrfs_free_path(path);
3042 root->fs_info->enospc_unlink = 0;
3043 return trans;
3044 }
4df27c4d 3045
a22285a6
YZ
3046 path->skip_locking = 1;
3047 path->search_commit_root = 1;
4df27c4d 3048
a22285a6
YZ
3049 ret = btrfs_lookup_inode(trans, root, path,
3050 &BTRFS_I(dir)->location, 0);
3051 if (ret < 0) {
3052 err = ret;
3053 goto out;
3054 }
3055 if (ret == 0) {
3056 if (check_path_shared(root, path))
3057 goto out;
3058 } else {
3059 check_link = 0;
5df6a9f6 3060 }
b3b4aa74 3061 btrfs_release_path(path);
a22285a6
YZ
3062
3063 ret = btrfs_lookup_inode(trans, root, path,
3064 &BTRFS_I(inode)->location, 0);
3065 if (ret < 0) {
3066 err = ret;
3067 goto out;
3068 }
3069 if (ret == 0) {
3070 if (check_path_shared(root, path))
3071 goto out;
3072 } else {
3073 check_link = 0;
3074 }
b3b4aa74 3075 btrfs_release_path(path);
a22285a6
YZ
3076
3077 if (ret == 0 && S_ISREG(inode->i_mode)) {
3078 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 3079 ino, (u64)-1, 0);
a22285a6
YZ
3080 if (ret < 0) {
3081 err = ret;
3082 goto out;
3083 }
79787eaa 3084 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
3085 if (check_path_shared(root, path))
3086 goto out;
b3b4aa74 3087 btrfs_release_path(path);
a22285a6
YZ
3088 }
3089
3090 if (!check_link) {
3091 err = 0;
3092 goto out;
3093 }
3094
33345d01 3095 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3096 dentry->d_name.name, dentry->d_name.len, 0);
3097 if (IS_ERR(di)) {
3098 err = PTR_ERR(di);
3099 goto out;
3100 }
3101 if (di) {
3102 if (check_path_shared(root, path))
3103 goto out;
3104 } else {
3105 err = 0;
3106 goto out;
3107 }
b3b4aa74 3108 btrfs_release_path(path);
a22285a6 3109
f186373f
MF
3110 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3111 dentry->d_name.len, ino, dir_ino, 0,
3112 &index);
3113 if (ret) {
3114 err = ret;
a22285a6
YZ
3115 goto out;
3116 }
f186373f 3117
a22285a6
YZ
3118 if (check_path_shared(root, path))
3119 goto out;
f186373f 3120
b3b4aa74 3121 btrfs_release_path(path);
a22285a6 3122
16cdcec7
MX
3123 /*
3124 * This is a commit root search, if we can lookup inode item and other
3125 * relative items in the commit root, it means the transaction of
3126 * dir/file creation has been committed, and the dir index item that we
3127 * delay to insert has also been inserted into the commit root. So
3128 * we needn't worry about the delayed insertion of the dir index item
3129 * here.
3130 */
33345d01 3131 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3132 dentry->d_name.name, dentry->d_name.len, 0);
3133 if (IS_ERR(di)) {
3134 err = PTR_ERR(di);
3135 goto out;
3136 }
3137 BUG_ON(ret == -ENOENT);
3138 if (check_path_shared(root, path))
3139 goto out;
3140
3141 err = 0;
3142out:
3143 btrfs_free_path(path);
3880a1b4
JB
3144 /* Migrate the orphan reservation over */
3145 if (!err)
3146 err = btrfs_block_rsv_migrate(trans->block_rsv,
3147 &root->fs_info->global_block_rsv,
5a77d76c 3148 trans->bytes_reserved);
3880a1b4 3149
a22285a6
YZ
3150 if (err) {
3151 btrfs_end_transaction(trans, root);
3152 root->fs_info->enospc_unlink = 0;
3153 return ERR_PTR(err);
3154 }
3155
3156 trans->block_rsv = &root->fs_info->global_block_rsv;
3157 return trans;
3158}
3159
3160static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root)
3162{
66d8f3dd 3163 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
5a77d76c
JB
3164 btrfs_block_rsv_release(root, trans->block_rsv,
3165 trans->bytes_reserved);
3166 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3167 BUG_ON(!root->fs_info->enospc_unlink);
3168 root->fs_info->enospc_unlink = 0;
3169 }
7ad85bb7 3170 btrfs_end_transaction(trans, root);
a22285a6
YZ
3171}
3172
3173static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3174{
3175 struct btrfs_root *root = BTRFS_I(dir)->root;
3176 struct btrfs_trans_handle *trans;
3177 struct inode *inode = dentry->d_inode;
3178 int ret;
a22285a6
YZ
3179
3180 trans = __unlink_start_trans(dir, dentry);
3181 if (IS_ERR(trans))
3182 return PTR_ERR(trans);
5f39d397 3183
12fcfd22
CM
3184 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3185
e02119d5
CM
3186 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3187 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3188 if (ret)
3189 goto out;
7b128766 3190
a22285a6 3191 if (inode->i_nlink == 0) {
7b128766 3192 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3193 if (ret)
3194 goto out;
a22285a6 3195 }
7b128766 3196
b532402e 3197out:
a22285a6 3198 __unlink_end_trans(trans, root);
b53d3f5d 3199 btrfs_btree_balance_dirty(root);
39279cc3
CM
3200 return ret;
3201}
3202
4df27c4d
YZ
3203int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3204 struct btrfs_root *root,
3205 struct inode *dir, u64 objectid,
3206 const char *name, int name_len)
3207{
3208 struct btrfs_path *path;
3209 struct extent_buffer *leaf;
3210 struct btrfs_dir_item *di;
3211 struct btrfs_key key;
3212 u64 index;
3213 int ret;
33345d01 3214 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3215
3216 path = btrfs_alloc_path();
3217 if (!path)
3218 return -ENOMEM;
3219
33345d01 3220 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3221 name, name_len, -1);
79787eaa
JM
3222 if (IS_ERR_OR_NULL(di)) {
3223 if (!di)
3224 ret = -ENOENT;
3225 else
3226 ret = PTR_ERR(di);
3227 goto out;
3228 }
4df27c4d
YZ
3229
3230 leaf = path->nodes[0];
3231 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3232 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3233 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3234 if (ret) {
3235 btrfs_abort_transaction(trans, root, ret);
3236 goto out;
3237 }
b3b4aa74 3238 btrfs_release_path(path);
4df27c4d
YZ
3239
3240 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3241 objectid, root->root_key.objectid,
33345d01 3242 dir_ino, &index, name, name_len);
4df27c4d 3243 if (ret < 0) {
79787eaa
JM
3244 if (ret != -ENOENT) {
3245 btrfs_abort_transaction(trans, root, ret);
3246 goto out;
3247 }
33345d01 3248 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3249 name, name_len);
79787eaa
JM
3250 if (IS_ERR_OR_NULL(di)) {
3251 if (!di)
3252 ret = -ENOENT;
3253 else
3254 ret = PTR_ERR(di);
3255 btrfs_abort_transaction(trans, root, ret);
3256 goto out;
3257 }
4df27c4d
YZ
3258
3259 leaf = path->nodes[0];
3260 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3261 btrfs_release_path(path);
4df27c4d
YZ
3262 index = key.offset;
3263 }
945d8962 3264 btrfs_release_path(path);
4df27c4d 3265
16cdcec7 3266 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3267 if (ret) {
3268 btrfs_abort_transaction(trans, root, ret);
3269 goto out;
3270 }
4df27c4d
YZ
3271
3272 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3273 inode_inc_iversion(dir);
4df27c4d 3274 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3275 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3276 if (ret)
3277 btrfs_abort_transaction(trans, root, ret);
3278out:
71d7aed0 3279 btrfs_free_path(path);
79787eaa 3280 return ret;
4df27c4d
YZ
3281}
3282
39279cc3
CM
3283static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3284{
3285 struct inode *inode = dentry->d_inode;
1832a6d5 3286 int err = 0;
39279cc3 3287 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3288 struct btrfs_trans_handle *trans;
39279cc3 3289
b3ae244e 3290 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3291 return -ENOTEMPTY;
b3ae244e
DS
3292 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3293 return -EPERM;
134d4512 3294
a22285a6
YZ
3295 trans = __unlink_start_trans(dir, dentry);
3296 if (IS_ERR(trans))
5df6a9f6 3297 return PTR_ERR(trans);
5df6a9f6 3298
33345d01 3299 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3300 err = btrfs_unlink_subvol(trans, root, dir,
3301 BTRFS_I(inode)->location.objectid,
3302 dentry->d_name.name,
3303 dentry->d_name.len);
3304 goto out;
3305 }
3306
7b128766
JB
3307 err = btrfs_orphan_add(trans, inode);
3308 if (err)
4df27c4d 3309 goto out;
7b128766 3310
39279cc3 3311 /* now the directory is empty */
e02119d5
CM
3312 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3313 dentry->d_name.name, dentry->d_name.len);
d397712b 3314 if (!err)
dbe674a9 3315 btrfs_i_size_write(inode, 0);
4df27c4d 3316out:
a22285a6 3317 __unlink_end_trans(trans, root);
b53d3f5d 3318 btrfs_btree_balance_dirty(root);
3954401f 3319
39279cc3
CM
3320 return err;
3321}
3322
39279cc3
CM
3323/*
3324 * this can truncate away extent items, csum items and directory items.
3325 * It starts at a high offset and removes keys until it can't find
d352ac68 3326 * any higher than new_size
39279cc3
CM
3327 *
3328 * csum items that cross the new i_size are truncated to the new size
3329 * as well.
7b128766
JB
3330 *
3331 * min_type is the minimum key type to truncate down to. If set to 0, this
3332 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3333 */
8082510e
YZ
3334int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3335 struct btrfs_root *root,
3336 struct inode *inode,
3337 u64 new_size, u32 min_type)
39279cc3 3338{
39279cc3 3339 struct btrfs_path *path;
5f39d397 3340 struct extent_buffer *leaf;
39279cc3 3341 struct btrfs_file_extent_item *fi;
8082510e
YZ
3342 struct btrfs_key key;
3343 struct btrfs_key found_key;
39279cc3 3344 u64 extent_start = 0;
db94535d 3345 u64 extent_num_bytes = 0;
5d4f98a2 3346 u64 extent_offset = 0;
39279cc3 3347 u64 item_end = 0;
8082510e
YZ
3348 u64 mask = root->sectorsize - 1;
3349 u32 found_type = (u8)-1;
39279cc3
CM
3350 int found_extent;
3351 int del_item;
85e21bac
CM
3352 int pending_del_nr = 0;
3353 int pending_del_slot = 0;
179e29e4 3354 int extent_type = -1;
8082510e
YZ
3355 int ret;
3356 int err = 0;
33345d01 3357 u64 ino = btrfs_ino(inode);
8082510e
YZ
3358
3359 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3360
0eb0e19c
MF
3361 path = btrfs_alloc_path();
3362 if (!path)
3363 return -ENOMEM;
3364 path->reada = -1;
3365
5dc562c5
JB
3366 /*
3367 * We want to drop from the next block forward in case this new size is
3368 * not block aligned since we will be keeping the last block of the
3369 * extent just the way it is.
3370 */
0af3d00b 3371 if (root->ref_cows || root == root->fs_info->tree_root)
5dc562c5 3372 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
8082510e 3373
16cdcec7
MX
3374 /*
3375 * This function is also used to drop the items in the log tree before
3376 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3377 * it is used to drop the loged items. So we shouldn't kill the delayed
3378 * items.
3379 */
3380 if (min_type == 0 && root == BTRFS_I(inode)->root)
3381 btrfs_kill_delayed_inode_items(inode);
3382
33345d01 3383 key.objectid = ino;
39279cc3 3384 key.offset = (u64)-1;
5f39d397
CM
3385 key.type = (u8)-1;
3386
85e21bac 3387search_again:
b9473439 3388 path->leave_spinning = 1;
85e21bac 3389 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3390 if (ret < 0) {
3391 err = ret;
3392 goto out;
3393 }
d397712b 3394
85e21bac 3395 if (ret > 0) {
e02119d5
CM
3396 /* there are no items in the tree for us to truncate, we're
3397 * done
3398 */
8082510e
YZ
3399 if (path->slots[0] == 0)
3400 goto out;
85e21bac
CM
3401 path->slots[0]--;
3402 }
3403
d397712b 3404 while (1) {
39279cc3 3405 fi = NULL;
5f39d397
CM
3406 leaf = path->nodes[0];
3407 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3408 found_type = btrfs_key_type(&found_key);
39279cc3 3409
33345d01 3410 if (found_key.objectid != ino)
39279cc3 3411 break;
5f39d397 3412
85e21bac 3413 if (found_type < min_type)
39279cc3
CM
3414 break;
3415
5f39d397 3416 item_end = found_key.offset;
39279cc3 3417 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3418 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3419 struct btrfs_file_extent_item);
179e29e4
CM
3420 extent_type = btrfs_file_extent_type(leaf, fi);
3421 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3422 item_end +=
db94535d 3423 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3424 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3425 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3426 fi);
39279cc3 3427 }
008630c1 3428 item_end--;
39279cc3 3429 }
8082510e
YZ
3430 if (found_type > min_type) {
3431 del_item = 1;
3432 } else {
3433 if (item_end < new_size)
b888db2b 3434 break;
8082510e
YZ
3435 if (found_key.offset >= new_size)
3436 del_item = 1;
3437 else
3438 del_item = 0;
39279cc3 3439 }
39279cc3 3440 found_extent = 0;
39279cc3 3441 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3442 if (found_type != BTRFS_EXTENT_DATA_KEY)
3443 goto delete;
3444
3445 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3446 u64 num_dec;
db94535d 3447 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3448 if (!del_item) {
db94535d
CM
3449 u64 orig_num_bytes =
3450 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3451 extent_num_bytes = new_size -
5f39d397 3452 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3453 extent_num_bytes = extent_num_bytes &
3454 ~((u64)root->sectorsize - 1);
db94535d
CM
3455 btrfs_set_file_extent_num_bytes(leaf, fi,
3456 extent_num_bytes);
3457 num_dec = (orig_num_bytes -
9069218d 3458 extent_num_bytes);
e02119d5 3459 if (root->ref_cows && extent_start != 0)
a76a3cd4 3460 inode_sub_bytes(inode, num_dec);
5f39d397 3461 btrfs_mark_buffer_dirty(leaf);
39279cc3 3462 } else {
db94535d
CM
3463 extent_num_bytes =
3464 btrfs_file_extent_disk_num_bytes(leaf,
3465 fi);
5d4f98a2
YZ
3466 extent_offset = found_key.offset -
3467 btrfs_file_extent_offset(leaf, fi);
3468
39279cc3 3469 /* FIXME blocksize != 4096 */
9069218d 3470 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3471 if (extent_start != 0) {
3472 found_extent = 1;
e02119d5 3473 if (root->ref_cows)
a76a3cd4 3474 inode_sub_bytes(inode, num_dec);
e02119d5 3475 }
39279cc3 3476 }
9069218d 3477 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3478 /*
3479 * we can't truncate inline items that have had
3480 * special encodings
3481 */
3482 if (!del_item &&
3483 btrfs_file_extent_compression(leaf, fi) == 0 &&
3484 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3485 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3486 u32 size = new_size - found_key.offset;
3487
3488 if (root->ref_cows) {
a76a3cd4
YZ
3489 inode_sub_bytes(inode, item_end + 1 -
3490 new_size);
e02119d5
CM
3491 }
3492 size =
3493 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3494 btrfs_truncate_item(trans, root, path,
3495 size, 1);
e02119d5 3496 } else if (root->ref_cows) {
a76a3cd4
YZ
3497 inode_sub_bytes(inode, item_end + 1 -
3498 found_key.offset);
9069218d 3499 }
39279cc3 3500 }
179e29e4 3501delete:
39279cc3 3502 if (del_item) {
85e21bac
CM
3503 if (!pending_del_nr) {
3504 /* no pending yet, add ourselves */
3505 pending_del_slot = path->slots[0];
3506 pending_del_nr = 1;
3507 } else if (pending_del_nr &&
3508 path->slots[0] + 1 == pending_del_slot) {
3509 /* hop on the pending chunk */
3510 pending_del_nr++;
3511 pending_del_slot = path->slots[0];
3512 } else {
d397712b 3513 BUG();
85e21bac 3514 }
39279cc3
CM
3515 } else {
3516 break;
3517 }
0af3d00b
JB
3518 if (found_extent && (root->ref_cows ||
3519 root == root->fs_info->tree_root)) {
b9473439 3520 btrfs_set_path_blocking(path);
39279cc3 3521 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3522 extent_num_bytes, 0,
3523 btrfs_header_owner(leaf),
66d7e7f0 3524 ino, extent_offset, 0);
39279cc3
CM
3525 BUG_ON(ret);
3526 }
85e21bac 3527
8082510e
YZ
3528 if (found_type == BTRFS_INODE_ITEM_KEY)
3529 break;
3530
3531 if (path->slots[0] == 0 ||
3532 path->slots[0] != pending_del_slot) {
8082510e
YZ
3533 if (pending_del_nr) {
3534 ret = btrfs_del_items(trans, root, path,
3535 pending_del_slot,
3536 pending_del_nr);
79787eaa
JM
3537 if (ret) {
3538 btrfs_abort_transaction(trans,
3539 root, ret);
3540 goto error;
3541 }
8082510e
YZ
3542 pending_del_nr = 0;
3543 }
b3b4aa74 3544 btrfs_release_path(path);
85e21bac 3545 goto search_again;
8082510e
YZ
3546 } else {
3547 path->slots[0]--;
85e21bac 3548 }
39279cc3 3549 }
8082510e 3550out:
85e21bac
CM
3551 if (pending_del_nr) {
3552 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3553 pending_del_nr);
79787eaa
JM
3554 if (ret)
3555 btrfs_abort_transaction(trans, root, ret);
85e21bac 3556 }
79787eaa 3557error:
39279cc3 3558 btrfs_free_path(path);
8082510e 3559 return err;
39279cc3
CM
3560}
3561
3562/*
2aaa6655
JB
3563 * btrfs_truncate_page - read, zero a chunk and write a page
3564 * @inode - inode that we're zeroing
3565 * @from - the offset to start zeroing
3566 * @len - the length to zero, 0 to zero the entire range respective to the
3567 * offset
3568 * @front - zero up to the offset instead of from the offset on
3569 *
3570 * This will find the page for the "from" offset and cow the page and zero the
3571 * part we want to zero. This is used with truncate and hole punching.
39279cc3 3572 */
2aaa6655
JB
3573int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3574 int front)
39279cc3 3575{
2aaa6655 3576 struct address_space *mapping = inode->i_mapping;
db94535d 3577 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3578 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3579 struct btrfs_ordered_extent *ordered;
2ac55d41 3580 struct extent_state *cached_state = NULL;
e6dcd2dc 3581 char *kaddr;
db94535d 3582 u32 blocksize = root->sectorsize;
39279cc3
CM
3583 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3584 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3585 struct page *page;
3b16a4e3 3586 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3587 int ret = 0;
a52d9a80 3588 u64 page_start;
e6dcd2dc 3589 u64 page_end;
39279cc3 3590
2aaa6655
JB
3591 if ((offset & (blocksize - 1)) == 0 &&
3592 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 3593 goto out;
0ca1f7ce 3594 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3595 if (ret)
3596 goto out;
39279cc3 3597
211c17f5 3598again:
3b16a4e3 3599 page = find_or_create_page(mapping, index, mask);
5d5e103a 3600 if (!page) {
0ca1f7ce 3601 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 3602 ret = -ENOMEM;
39279cc3 3603 goto out;
5d5e103a 3604 }
e6dcd2dc
CM
3605
3606 page_start = page_offset(page);
3607 page_end = page_start + PAGE_CACHE_SIZE - 1;
3608
39279cc3 3609 if (!PageUptodate(page)) {
9ebefb18 3610 ret = btrfs_readpage(NULL, page);
39279cc3 3611 lock_page(page);
211c17f5
CM
3612 if (page->mapping != mapping) {
3613 unlock_page(page);
3614 page_cache_release(page);
3615 goto again;
3616 }
39279cc3
CM
3617 if (!PageUptodate(page)) {
3618 ret = -EIO;
89642229 3619 goto out_unlock;
39279cc3
CM
3620 }
3621 }
211c17f5 3622 wait_on_page_writeback(page);
e6dcd2dc 3623
d0082371 3624 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3625 set_page_extent_mapped(page);
3626
3627 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3628 if (ordered) {
2ac55d41
JB
3629 unlock_extent_cached(io_tree, page_start, page_end,
3630 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3631 unlock_page(page);
3632 page_cache_release(page);
eb84ae03 3633 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3634 btrfs_put_ordered_extent(ordered);
3635 goto again;
3636 }
3637
2ac55d41 3638 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
3639 EXTENT_DIRTY | EXTENT_DELALLOC |
3640 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 3641 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3642
2ac55d41
JB
3643 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3644 &cached_state);
9ed74f2d 3645 if (ret) {
2ac55d41
JB
3646 unlock_extent_cached(io_tree, page_start, page_end,
3647 &cached_state, GFP_NOFS);
9ed74f2d
JB
3648 goto out_unlock;
3649 }
3650
e6dcd2dc 3651 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
3652 if (!len)
3653 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 3654 kaddr = kmap(page);
2aaa6655
JB
3655 if (front)
3656 memset(kaddr, 0, offset);
3657 else
3658 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
3659 flush_dcache_page(page);
3660 kunmap(page);
3661 }
247e743c 3662 ClearPageChecked(page);
e6dcd2dc 3663 set_page_dirty(page);
2ac55d41
JB
3664 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3665 GFP_NOFS);
39279cc3 3666
89642229 3667out_unlock:
5d5e103a 3668 if (ret)
0ca1f7ce 3669 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3670 unlock_page(page);
3671 page_cache_release(page);
3672out:
3673 return ret;
3674}
3675
695a0d0d
JB
3676/*
3677 * This function puts in dummy file extents for the area we're creating a hole
3678 * for. So if we are truncating this file to a larger size we need to insert
3679 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3680 * the range between oldsize and size
3681 */
a41ad394 3682int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3683{
9036c102
YZ
3684 struct btrfs_trans_handle *trans;
3685 struct btrfs_root *root = BTRFS_I(inode)->root;
3686 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3687 struct extent_map *em = NULL;
2ac55d41 3688 struct extent_state *cached_state = NULL;
5dc562c5 3689 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9036c102 3690 u64 mask = root->sectorsize - 1;
a41ad394 3691 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3692 u64 block_end = (size + mask) & ~mask;
3693 u64 last_byte;
3694 u64 cur_offset;
3695 u64 hole_size;
9ed74f2d 3696 int err = 0;
39279cc3 3697
9036c102
YZ
3698 if (size <= hole_start)
3699 return 0;
3700
9036c102
YZ
3701 while (1) {
3702 struct btrfs_ordered_extent *ordered;
3703 btrfs_wait_ordered_range(inode, hole_start,
3704 block_end - hole_start);
2ac55d41 3705 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3706 &cached_state);
9036c102
YZ
3707 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3708 if (!ordered)
3709 break;
2ac55d41
JB
3710 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3711 &cached_state, GFP_NOFS);
9036c102
YZ
3712 btrfs_put_ordered_extent(ordered);
3713 }
39279cc3 3714
9036c102
YZ
3715 cur_offset = hole_start;
3716 while (1) {
3717 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3718 block_end - cur_offset, 0);
79787eaa
JM
3719 if (IS_ERR(em)) {
3720 err = PTR_ERR(em);
f2767956 3721 em = NULL;
79787eaa
JM
3722 break;
3723 }
9036c102
YZ
3724 last_byte = min(extent_map_end(em), block_end);
3725 last_byte = (last_byte + mask) & ~mask;
8082510e 3726 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 3727 struct extent_map *hole_em;
9036c102 3728 hole_size = last_byte - cur_offset;
9ed74f2d 3729
3642320e 3730 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3731 if (IS_ERR(trans)) {
3732 err = PTR_ERR(trans);
9ed74f2d 3733 break;
a22285a6 3734 }
8082510e 3735
5dc562c5
JB
3736 err = btrfs_drop_extents(trans, root, inode,
3737 cur_offset,
2671485d 3738 cur_offset + hole_size, 1);
5b397377 3739 if (err) {
79787eaa 3740 btrfs_abort_transaction(trans, root, err);
5b397377 3741 btrfs_end_transaction(trans, root);
3893e33b 3742 break;
5b397377 3743 }
8082510e 3744
9036c102 3745 err = btrfs_insert_file_extent(trans, root,
33345d01 3746 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3747 0, hole_size, 0, hole_size,
3748 0, 0, 0);
5b397377 3749 if (err) {
79787eaa 3750 btrfs_abort_transaction(trans, root, err);
5b397377 3751 btrfs_end_transaction(trans, root);
3893e33b 3752 break;
5b397377 3753 }
8082510e 3754
5dc562c5
JB
3755 btrfs_drop_extent_cache(inode, cur_offset,
3756 cur_offset + hole_size - 1, 0);
3757 hole_em = alloc_extent_map();
3758 if (!hole_em) {
3759 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3760 &BTRFS_I(inode)->runtime_flags);
3761 goto next;
3762 }
3763 hole_em->start = cur_offset;
3764 hole_em->len = hole_size;
3765 hole_em->orig_start = cur_offset;
8082510e 3766
5dc562c5
JB
3767 hole_em->block_start = EXTENT_MAP_HOLE;
3768 hole_em->block_len = 0;
b4939680 3769 hole_em->orig_block_len = 0;
5dc562c5
JB
3770 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3771 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3772 hole_em->generation = trans->transid;
8082510e 3773
5dc562c5
JB
3774 while (1) {
3775 write_lock(&em_tree->lock);
3776 err = add_extent_mapping(em_tree, hole_em);
3777 if (!err)
3778 list_move(&hole_em->list,
3779 &em_tree->modified_extents);
3780 write_unlock(&em_tree->lock);
3781 if (err != -EEXIST)
3782 break;
3783 btrfs_drop_extent_cache(inode, cur_offset,
3784 cur_offset +
3785 hole_size - 1, 0);
3786 }
3787 free_extent_map(hole_em);
3788next:
3642320e 3789 btrfs_update_inode(trans, root, inode);
8082510e 3790 btrfs_end_transaction(trans, root);
9036c102
YZ
3791 }
3792 free_extent_map(em);
a22285a6 3793 em = NULL;
9036c102 3794 cur_offset = last_byte;
8082510e 3795 if (cur_offset >= block_end)
9036c102
YZ
3796 break;
3797 }
1832a6d5 3798
a22285a6 3799 free_extent_map(em);
2ac55d41
JB
3800 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3801 GFP_NOFS);
9036c102
YZ
3802 return err;
3803}
39279cc3 3804
3972f260 3805static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 3806{
f4a2f4c5
MX
3807 struct btrfs_root *root = BTRFS_I(inode)->root;
3808 struct btrfs_trans_handle *trans;
a41ad394 3809 loff_t oldsize = i_size_read(inode);
3972f260
ES
3810 loff_t newsize = attr->ia_size;
3811 int mask = attr->ia_valid;
8082510e
YZ
3812 int ret;
3813
a41ad394 3814 if (newsize == oldsize)
8082510e
YZ
3815 return 0;
3816
3972f260
ES
3817 /*
3818 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
3819 * special case where we need to update the times despite not having
3820 * these flags set. For all other operations the VFS set these flags
3821 * explicitly if it wants a timestamp update.
3822 */
3823 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
3824 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
3825
a41ad394 3826 if (newsize > oldsize) {
a41ad394
JB
3827 truncate_pagecache(inode, oldsize, newsize);
3828 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3829 if (ret)
8082510e 3830 return ret;
8082510e 3831
f4a2f4c5
MX
3832 trans = btrfs_start_transaction(root, 1);
3833 if (IS_ERR(trans))
3834 return PTR_ERR(trans);
3835
3836 i_size_write(inode, newsize);
3837 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3838 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3839 btrfs_end_transaction(trans, root);
a41ad394 3840 } else {
8082510e 3841
a41ad394
JB
3842 /*
3843 * We're truncating a file that used to have good data down to
3844 * zero. Make sure it gets into the ordered flush list so that
3845 * any new writes get down to disk quickly.
3846 */
3847 if (newsize == 0)
72ac3c0d
JB
3848 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3849 &BTRFS_I(inode)->runtime_flags);
8082510e 3850
f3fe820c
JB
3851 /*
3852 * 1 for the orphan item we're going to add
3853 * 1 for the orphan item deletion.
3854 */
3855 trans = btrfs_start_transaction(root, 2);
3856 if (IS_ERR(trans))
3857 return PTR_ERR(trans);
3858
3859 /*
3860 * We need to do this in case we fail at _any_ point during the
3861 * actual truncate. Once we do the truncate_setsize we could
3862 * invalidate pages which forces any outstanding ordered io to
3863 * be instantly completed which will give us extents that need
3864 * to be truncated. If we fail to get an orphan inode down we
3865 * could have left over extents that were never meant to live,
3866 * so we need to garuntee from this point on that everything
3867 * will be consistent.
3868 */
3869 ret = btrfs_orphan_add(trans, inode);
3870 btrfs_end_transaction(trans, root);
3871 if (ret)
3872 return ret;
3873
a41ad394
JB
3874 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3875 truncate_setsize(inode, newsize);
3876 ret = btrfs_truncate(inode);
f3fe820c
JB
3877 if (ret && inode->i_nlink)
3878 btrfs_orphan_del(NULL, inode);
8082510e
YZ
3879 }
3880
a41ad394 3881 return ret;
8082510e
YZ
3882}
3883
9036c102
YZ
3884static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3885{
3886 struct inode *inode = dentry->d_inode;
b83cc969 3887 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3888 int err;
39279cc3 3889
b83cc969
LZ
3890 if (btrfs_root_readonly(root))
3891 return -EROFS;
3892
9036c102
YZ
3893 err = inode_change_ok(inode, attr);
3894 if (err)
3895 return err;
2bf5a725 3896
5a3f23d5 3897 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 3898 err = btrfs_setsize(inode, attr);
8082510e
YZ
3899 if (err)
3900 return err;
39279cc3 3901 }
9036c102 3902
1025774c
CH
3903 if (attr->ia_valid) {
3904 setattr_copy(inode, attr);
0c4d2d95 3905 inode_inc_iversion(inode);
22c44fe6 3906 err = btrfs_dirty_inode(inode);
1025774c 3907
22c44fe6 3908 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3909 err = btrfs_acl_chmod(inode);
3910 }
33268eaf 3911
39279cc3
CM
3912 return err;
3913}
61295eb8 3914
bd555975 3915void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3916{
3917 struct btrfs_trans_handle *trans;
3918 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3919 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3920 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
3921 int ret;
3922
1abe9b8a 3923 trace_btrfs_inode_evict(inode);
3924
39279cc3 3925 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3926 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 3927 btrfs_is_free_space_inode(inode)))
bd555975
AV
3928 goto no_delete;
3929
39279cc3 3930 if (is_bad_inode(inode)) {
7b128766 3931 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3932 goto no_delete;
3933 }
bd555975 3934 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3935 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3936
c71bf099 3937 if (root->fs_info->log_root_recovering) {
6bf02314 3938 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 3939 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
3940 goto no_delete;
3941 }
3942
76dda93c
YZ
3943 if (inode->i_nlink > 0) {
3944 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3945 goto no_delete;
3946 }
3947
0e8c36a9
MX
3948 ret = btrfs_commit_inode_delayed_inode(inode);
3949 if (ret) {
3950 btrfs_orphan_del(NULL, inode);
3951 goto no_delete;
3952 }
3953
66d8f3dd 3954 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
3955 if (!rsv) {
3956 btrfs_orphan_del(NULL, inode);
3957 goto no_delete;
3958 }
4a338542 3959 rsv->size = min_size;
ca7e70f5 3960 rsv->failfast = 1;
726c35fa 3961 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3962
dbe674a9 3963 btrfs_i_size_write(inode, 0);
5f39d397 3964
4289a667 3965 /*
8407aa46
MX
3966 * This is a bit simpler than btrfs_truncate since we've already
3967 * reserved our space for our orphan item in the unlink, so we just
3968 * need to reserve some slack space in case we add bytes and update
3969 * inode item when doing the truncate.
4289a667 3970 */
8082510e 3971 while (1) {
08e007d2
MX
3972 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3973 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
3974
3975 /*
3976 * Try and steal from the global reserve since we will
3977 * likely not use this space anyway, we want to try as
3978 * hard as possible to get this to work.
3979 */
3980 if (ret)
3981 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3982
d68fc57b 3983 if (ret) {
4289a667 3984 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3985 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3986 btrfs_orphan_del(NULL, inode);
3987 btrfs_free_block_rsv(root, rsv);
3988 goto no_delete;
d68fc57b 3989 }
7b128766 3990
0e8c36a9 3991 trans = btrfs_join_transaction(root);
4289a667
JB
3992 if (IS_ERR(trans)) {
3993 btrfs_orphan_del(NULL, inode);
3994 btrfs_free_block_rsv(root, rsv);
3995 goto no_delete;
d68fc57b 3996 }
7b128766 3997
4289a667
JB
3998 trans->block_rsv = rsv;
3999
d68fc57b 4000 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4001 if (ret != -ENOSPC)
8082510e 4002 break;
85e21bac 4003
8407aa46 4004 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4005 btrfs_end_transaction(trans, root);
4006 trans = NULL;
b53d3f5d 4007 btrfs_btree_balance_dirty(root);
8082510e 4008 }
5f39d397 4009
4289a667
JB
4010 btrfs_free_block_rsv(root, rsv);
4011
8082510e 4012 if (ret == 0) {
4289a667 4013 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
4014 ret = btrfs_orphan_del(trans, inode);
4015 BUG_ON(ret);
4016 }
54aa1f4d 4017
4289a667 4018 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4019 if (!(root == root->fs_info->tree_root ||
4020 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4021 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4022
54aa1f4d 4023 btrfs_end_transaction(trans, root);
b53d3f5d 4024 btrfs_btree_balance_dirty(root);
39279cc3 4025no_delete:
dbd5768f 4026 clear_inode(inode);
8082510e 4027 return;
39279cc3
CM
4028}
4029
4030/*
4031 * this returns the key found in the dir entry in the location pointer.
4032 * If no dir entries were found, location->objectid is 0.
4033 */
4034static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4035 struct btrfs_key *location)
4036{
4037 const char *name = dentry->d_name.name;
4038 int namelen = dentry->d_name.len;
4039 struct btrfs_dir_item *di;
4040 struct btrfs_path *path;
4041 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4042 int ret = 0;
39279cc3
CM
4043
4044 path = btrfs_alloc_path();
d8926bb3
MF
4045 if (!path)
4046 return -ENOMEM;
3954401f 4047
33345d01 4048 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4049 namelen, 0);
0d9f7f3e
Y
4050 if (IS_ERR(di))
4051 ret = PTR_ERR(di);
d397712b 4052
c704005d 4053 if (IS_ERR_OR_NULL(di))
3954401f 4054 goto out_err;
d397712b 4055
5f39d397 4056 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4057out:
39279cc3
CM
4058 btrfs_free_path(path);
4059 return ret;
3954401f
CM
4060out_err:
4061 location->objectid = 0;
4062 goto out;
39279cc3
CM
4063}
4064
4065/*
4066 * when we hit a tree root in a directory, the btrfs part of the inode
4067 * needs to be changed to reflect the root directory of the tree root. This
4068 * is kind of like crossing a mount point.
4069 */
4070static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4071 struct inode *dir,
4072 struct dentry *dentry,
4073 struct btrfs_key *location,
4074 struct btrfs_root **sub_root)
39279cc3 4075{
4df27c4d
YZ
4076 struct btrfs_path *path;
4077 struct btrfs_root *new_root;
4078 struct btrfs_root_ref *ref;
4079 struct extent_buffer *leaf;
4080 int ret;
4081 int err = 0;
39279cc3 4082
4df27c4d
YZ
4083 path = btrfs_alloc_path();
4084 if (!path) {
4085 err = -ENOMEM;
4086 goto out;
4087 }
39279cc3 4088
4df27c4d
YZ
4089 err = -ENOENT;
4090 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4091 BTRFS_I(dir)->root->root_key.objectid,
4092 location->objectid);
4093 if (ret) {
4094 if (ret < 0)
4095 err = ret;
4096 goto out;
4097 }
39279cc3 4098
4df27c4d
YZ
4099 leaf = path->nodes[0];
4100 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4101 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4102 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4103 goto out;
39279cc3 4104
4df27c4d
YZ
4105 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4106 (unsigned long)(ref + 1),
4107 dentry->d_name.len);
4108 if (ret)
4109 goto out;
4110
b3b4aa74 4111 btrfs_release_path(path);
4df27c4d
YZ
4112
4113 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4114 if (IS_ERR(new_root)) {
4115 err = PTR_ERR(new_root);
4116 goto out;
4117 }
4118
4119 if (btrfs_root_refs(&new_root->root_item) == 0) {
4120 err = -ENOENT;
4121 goto out;
4122 }
4123
4124 *sub_root = new_root;
4125 location->objectid = btrfs_root_dirid(&new_root->root_item);
4126 location->type = BTRFS_INODE_ITEM_KEY;
4127 location->offset = 0;
4128 err = 0;
4129out:
4130 btrfs_free_path(path);
4131 return err;
39279cc3
CM
4132}
4133
5d4f98a2
YZ
4134static void inode_tree_add(struct inode *inode)
4135{
4136 struct btrfs_root *root = BTRFS_I(inode)->root;
4137 struct btrfs_inode *entry;
03e860bd
FNP
4138 struct rb_node **p;
4139 struct rb_node *parent;
33345d01 4140 u64 ino = btrfs_ino(inode);
03e860bd
FNP
4141again:
4142 p = &root->inode_tree.rb_node;
4143 parent = NULL;
5d4f98a2 4144
1d3382cb 4145 if (inode_unhashed(inode))
76dda93c
YZ
4146 return;
4147
5d4f98a2
YZ
4148 spin_lock(&root->inode_lock);
4149 while (*p) {
4150 parent = *p;
4151 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4152
33345d01 4153 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4154 p = &parent->rb_left;
33345d01 4155 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4156 p = &parent->rb_right;
5d4f98a2
YZ
4157 else {
4158 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4159 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4160 rb_erase(parent, &root->inode_tree);
4161 RB_CLEAR_NODE(parent);
4162 spin_unlock(&root->inode_lock);
4163 goto again;
5d4f98a2
YZ
4164 }
4165 }
4166 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4167 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4168 spin_unlock(&root->inode_lock);
4169}
4170
4171static void inode_tree_del(struct inode *inode)
4172{
4173 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4174 int empty = 0;
5d4f98a2 4175
03e860bd 4176 spin_lock(&root->inode_lock);
5d4f98a2 4177 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4178 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4179 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4180 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4181 }
03e860bd 4182 spin_unlock(&root->inode_lock);
76dda93c 4183
0af3d00b
JB
4184 /*
4185 * Free space cache has inodes in the tree root, but the tree root has a
4186 * root_refs of 0, so this could end up dropping the tree root as a
4187 * snapshot, so we need the extra !root->fs_info->tree_root check to
4188 * make sure we don't drop it.
4189 */
4190 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4191 root != root->fs_info->tree_root) {
76dda93c
YZ
4192 synchronize_srcu(&root->fs_info->subvol_srcu);
4193 spin_lock(&root->inode_lock);
4194 empty = RB_EMPTY_ROOT(&root->inode_tree);
4195 spin_unlock(&root->inode_lock);
4196 if (empty)
4197 btrfs_add_dead_root(root);
4198 }
4199}
4200
143bede5 4201void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4202{
4203 struct rb_node *node;
4204 struct rb_node *prev;
4205 struct btrfs_inode *entry;
4206 struct inode *inode;
4207 u64 objectid = 0;
4208
4209 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4210
4211 spin_lock(&root->inode_lock);
4212again:
4213 node = root->inode_tree.rb_node;
4214 prev = NULL;
4215 while (node) {
4216 prev = node;
4217 entry = rb_entry(node, struct btrfs_inode, rb_node);
4218
33345d01 4219 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4220 node = node->rb_left;
33345d01 4221 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4222 node = node->rb_right;
4223 else
4224 break;
4225 }
4226 if (!node) {
4227 while (prev) {
4228 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4229 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4230 node = prev;
4231 break;
4232 }
4233 prev = rb_next(prev);
4234 }
4235 }
4236 while (node) {
4237 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4238 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4239 inode = igrab(&entry->vfs_inode);
4240 if (inode) {
4241 spin_unlock(&root->inode_lock);
4242 if (atomic_read(&inode->i_count) > 1)
4243 d_prune_aliases(inode);
4244 /*
45321ac5 4245 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4246 * the inode cache when its usage count
4247 * hits zero.
4248 */
4249 iput(inode);
4250 cond_resched();
4251 spin_lock(&root->inode_lock);
4252 goto again;
4253 }
4254
4255 if (cond_resched_lock(&root->inode_lock))
4256 goto again;
4257
4258 node = rb_next(node);
4259 }
4260 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4261}
4262
e02119d5
CM
4263static int btrfs_init_locked_inode(struct inode *inode, void *p)
4264{
4265 struct btrfs_iget_args *args = p;
4266 inode->i_ino = args->ino;
e02119d5 4267 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4268 return 0;
4269}
4270
4271static int btrfs_find_actor(struct inode *inode, void *opaque)
4272{
4273 struct btrfs_iget_args *args = opaque;
33345d01 4274 return args->ino == btrfs_ino(inode) &&
d397712b 4275 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4276}
4277
5d4f98a2
YZ
4278static struct inode *btrfs_iget_locked(struct super_block *s,
4279 u64 objectid,
4280 struct btrfs_root *root)
39279cc3
CM
4281{
4282 struct inode *inode;
4283 struct btrfs_iget_args args;
4284 args.ino = objectid;
4285 args.root = root;
4286
4287 inode = iget5_locked(s, objectid, btrfs_find_actor,
4288 btrfs_init_locked_inode,
4289 (void *)&args);
4290 return inode;
4291}
4292
1a54ef8c
BR
4293/* Get an inode object given its location and corresponding root.
4294 * Returns in *is_new if the inode was read from disk
4295 */
4296struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4297 struct btrfs_root *root, int *new)
1a54ef8c
BR
4298{
4299 struct inode *inode;
4300
4301 inode = btrfs_iget_locked(s, location->objectid, root);
4302 if (!inode)
5d4f98a2 4303 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4304
4305 if (inode->i_state & I_NEW) {
4306 BTRFS_I(inode)->root = root;
4307 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4308 btrfs_read_locked_inode(inode);
1748f843
MF
4309 if (!is_bad_inode(inode)) {
4310 inode_tree_add(inode);
4311 unlock_new_inode(inode);
4312 if (new)
4313 *new = 1;
4314 } else {
e0b6d65b
ST
4315 unlock_new_inode(inode);
4316 iput(inode);
4317 inode = ERR_PTR(-ESTALE);
1748f843
MF
4318 }
4319 }
4320
1a54ef8c
BR
4321 return inode;
4322}
4323
4df27c4d
YZ
4324static struct inode *new_simple_dir(struct super_block *s,
4325 struct btrfs_key *key,
4326 struct btrfs_root *root)
4327{
4328 struct inode *inode = new_inode(s);
4329
4330 if (!inode)
4331 return ERR_PTR(-ENOMEM);
4332
4df27c4d
YZ
4333 BTRFS_I(inode)->root = root;
4334 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4335 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4336
4337 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4338 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4339 inode->i_fop = &simple_dir_operations;
4340 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4341 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4342
4343 return inode;
4344}
4345
3de4586c 4346struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4347{
d397712b 4348 struct inode *inode;
4df27c4d 4349 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4350 struct btrfs_root *sub_root = root;
4351 struct btrfs_key location;
76dda93c 4352 int index;
b4aff1f8 4353 int ret = 0;
39279cc3
CM
4354
4355 if (dentry->d_name.len > BTRFS_NAME_LEN)
4356 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4357
b4aff1f8
JB
4358 if (unlikely(d_need_lookup(dentry))) {
4359 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4360 kfree(dentry->d_fsdata);
4361 dentry->d_fsdata = NULL;
a66e7cc6
JB
4362 /* This thing is hashed, drop it for now */
4363 d_drop(dentry);
b4aff1f8
JB
4364 } else {
4365 ret = btrfs_inode_by_name(dir, dentry, &location);
4366 }
5f39d397 4367
39279cc3
CM
4368 if (ret < 0)
4369 return ERR_PTR(ret);
5f39d397 4370
4df27c4d
YZ
4371 if (location.objectid == 0)
4372 return NULL;
4373
4374 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4375 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4376 return inode;
4377 }
4378
4379 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4380
76dda93c 4381 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4382 ret = fixup_tree_root_location(root, dir, dentry,
4383 &location, &sub_root);
4384 if (ret < 0) {
4385 if (ret != -ENOENT)
4386 inode = ERR_PTR(ret);
4387 else
4388 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4389 } else {
73f73415 4390 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4391 }
76dda93c
YZ
4392 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4393
34d19bad 4394 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4395 down_read(&root->fs_info->cleanup_work_sem);
4396 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4397 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4398 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4399 if (ret)
4400 inode = ERR_PTR(ret);
c71bf099
YZ
4401 }
4402
3de4586c
CM
4403 return inode;
4404}
4405
fe15ce44 4406static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4407{
4408 struct btrfs_root *root;
848cce0d 4409 struct inode *inode = dentry->d_inode;
76dda93c 4410
848cce0d
LZ
4411 if (!inode && !IS_ROOT(dentry))
4412 inode = dentry->d_parent->d_inode;
76dda93c 4413
848cce0d
LZ
4414 if (inode) {
4415 root = BTRFS_I(inode)->root;
efefb143
YZ
4416 if (btrfs_root_refs(&root->root_item) == 0)
4417 return 1;
848cce0d
LZ
4418
4419 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4420 return 1;
efefb143 4421 }
76dda93c
YZ
4422 return 0;
4423}
4424
b4aff1f8
JB
4425static void btrfs_dentry_release(struct dentry *dentry)
4426{
4427 if (dentry->d_fsdata)
4428 kfree(dentry->d_fsdata);
4429}
4430
3de4586c 4431static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4432 unsigned int flags)
3de4586c 4433{
a66e7cc6
JB
4434 struct dentry *ret;
4435
4436 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4437 if (unlikely(d_need_lookup(dentry))) {
4438 spin_lock(&dentry->d_lock);
4439 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4440 spin_unlock(&dentry->d_lock);
4441 }
4442 return ret;
39279cc3
CM
4443}
4444
16cdcec7 4445unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4446 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4447};
4448
cbdf5a24
DW
4449static int btrfs_real_readdir(struct file *filp, void *dirent,
4450 filldir_t filldir)
39279cc3 4451{
6da6abae 4452 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4453 struct btrfs_root *root = BTRFS_I(inode)->root;
4454 struct btrfs_item *item;
4455 struct btrfs_dir_item *di;
4456 struct btrfs_key key;
5f39d397 4457 struct btrfs_key found_key;
39279cc3 4458 struct btrfs_path *path;
16cdcec7
MX
4459 struct list_head ins_list;
4460 struct list_head del_list;
39279cc3 4461 int ret;
5f39d397 4462 struct extent_buffer *leaf;
39279cc3 4463 int slot;
39279cc3
CM
4464 unsigned char d_type;
4465 int over = 0;
4466 u32 di_cur;
4467 u32 di_total;
4468 u32 di_len;
4469 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4470 char tmp_name[32];
4471 char *name_ptr;
4472 int name_len;
16cdcec7 4473 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4474
4475 /* FIXME, use a real flag for deciding about the key type */
4476 if (root->fs_info->tree_root == root)
4477 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4478
3954401f
CM
4479 /* special case for "." */
4480 if (filp->f_pos == 0) {
3765fefa
HS
4481 over = filldir(dirent, ".", 1,
4482 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4483 if (over)
4484 return 0;
4485 filp->f_pos = 1;
4486 }
3954401f
CM
4487 /* special case for .., just use the back ref */
4488 if (filp->f_pos == 1) {
5ecc7e5d 4489 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4490 over = filldir(dirent, "..", 2,
3765fefa 4491 filp->f_pos, pino, DT_DIR);
3954401f 4492 if (over)
49593bfa 4493 return 0;
3954401f
CM
4494 filp->f_pos = 2;
4495 }
49593bfa 4496 path = btrfs_alloc_path();
16cdcec7
MX
4497 if (!path)
4498 return -ENOMEM;
ff5714cc 4499
026fd317 4500 path->reada = 1;
49593bfa 4501
16cdcec7
MX
4502 if (key_type == BTRFS_DIR_INDEX_KEY) {
4503 INIT_LIST_HEAD(&ins_list);
4504 INIT_LIST_HEAD(&del_list);
4505 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4506 }
4507
39279cc3
CM
4508 btrfs_set_key_type(&key, key_type);
4509 key.offset = filp->f_pos;
33345d01 4510 key.objectid = btrfs_ino(inode);
5f39d397 4511
39279cc3
CM
4512 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4513 if (ret < 0)
4514 goto err;
49593bfa
DW
4515
4516 while (1) {
5f39d397 4517 leaf = path->nodes[0];
39279cc3 4518 slot = path->slots[0];
b9e03af0
LZ
4519 if (slot >= btrfs_header_nritems(leaf)) {
4520 ret = btrfs_next_leaf(root, path);
4521 if (ret < 0)
4522 goto err;
4523 else if (ret > 0)
4524 break;
4525 continue;
39279cc3 4526 }
3de4586c 4527
5f39d397
CM
4528 item = btrfs_item_nr(leaf, slot);
4529 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4530
4531 if (found_key.objectid != key.objectid)
39279cc3 4532 break;
5f39d397 4533 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4534 break;
5f39d397 4535 if (found_key.offset < filp->f_pos)
b9e03af0 4536 goto next;
16cdcec7
MX
4537 if (key_type == BTRFS_DIR_INDEX_KEY &&
4538 btrfs_should_delete_dir_index(&del_list,
4539 found_key.offset))
4540 goto next;
5f39d397
CM
4541
4542 filp->f_pos = found_key.offset;
16cdcec7 4543 is_curr = 1;
49593bfa 4544
39279cc3
CM
4545 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4546 di_cur = 0;
5f39d397 4547 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4548
4549 while (di_cur < di_total) {
5f39d397
CM
4550 struct btrfs_key location;
4551
22a94d44
JB
4552 if (verify_dir_item(root, leaf, di))
4553 break;
4554
5f39d397 4555 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4556 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4557 name_ptr = tmp_name;
4558 } else {
4559 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4560 if (!name_ptr) {
4561 ret = -ENOMEM;
4562 goto err;
4563 }
5f39d397
CM
4564 }
4565 read_extent_buffer(leaf, name_ptr,
4566 (unsigned long)(di + 1), name_len);
4567
4568 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4569 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4570
fede766f 4571
3de4586c 4572 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4573 * skip it.
4574 *
4575 * In contrast to old kernels, we insert the snapshot's
4576 * dir item and dir index after it has been created, so
4577 * we won't find a reference to our own snapshot. We
4578 * still keep the following code for backward
4579 * compatibility.
3de4586c
CM
4580 */
4581 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4582 location.objectid == root->root_key.objectid) {
4583 over = 0;
4584 goto skip;
4585 }
5f39d397 4586 over = filldir(dirent, name_ptr, name_len,
49593bfa 4587 found_key.offset, location.objectid,
39279cc3 4588 d_type);
5f39d397 4589
3de4586c 4590skip:
5f39d397
CM
4591 if (name_ptr != tmp_name)
4592 kfree(name_ptr);
4593
39279cc3
CM
4594 if (over)
4595 goto nopos;
5103e947 4596 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4597 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4598 di_cur += di_len;
4599 di = (struct btrfs_dir_item *)((char *)di + di_len);
4600 }
b9e03af0
LZ
4601next:
4602 path->slots[0]++;
39279cc3 4603 }
49593bfa 4604
16cdcec7
MX
4605 if (key_type == BTRFS_DIR_INDEX_KEY) {
4606 if (is_curr)
4607 filp->f_pos++;
4608 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4609 &ins_list);
4610 if (ret)
4611 goto nopos;
4612 }
4613
49593bfa 4614 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4615 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4616 /*
4617 * 32-bit glibc will use getdents64, but then strtol -
4618 * so the last number we can serve is this.
4619 */
4620 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4621 else
4622 filp->f_pos++;
39279cc3
CM
4623nopos:
4624 ret = 0;
4625err:
16cdcec7
MX
4626 if (key_type == BTRFS_DIR_INDEX_KEY)
4627 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4628 btrfs_free_path(path);
39279cc3
CM
4629 return ret;
4630}
4631
a9185b41 4632int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4633{
4634 struct btrfs_root *root = BTRFS_I(inode)->root;
4635 struct btrfs_trans_handle *trans;
4636 int ret = 0;
0af3d00b 4637 bool nolock = false;
39279cc3 4638
72ac3c0d 4639 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
4640 return 0;
4641
83eea1f1 4642 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 4643 nolock = true;
0af3d00b 4644
a9185b41 4645 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4646 if (nolock)
7a7eaa40 4647 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4648 else
7a7eaa40 4649 trans = btrfs_join_transaction(root);
3612b495
TI
4650 if (IS_ERR(trans))
4651 return PTR_ERR(trans);
a698d075 4652 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4653 }
4654 return ret;
4655}
4656
4657/*
54aa1f4d 4658 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4659 * inode changes. But, it is most likely to find the inode in cache.
4660 * FIXME, needs more benchmarking...there are no reasons other than performance
4661 * to keep or drop this code.
4662 */
22c44fe6 4663int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4664{
4665 struct btrfs_root *root = BTRFS_I(inode)->root;
4666 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4667 int ret;
4668
72ac3c0d 4669 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 4670 return 0;
39279cc3 4671
7a7eaa40 4672 trans = btrfs_join_transaction(root);
22c44fe6
JB
4673 if (IS_ERR(trans))
4674 return PTR_ERR(trans);
8929ecfa
YZ
4675
4676 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4677 if (ret && ret == -ENOSPC) {
4678 /* whoops, lets try again with the full transaction */
4679 btrfs_end_transaction(trans, root);
4680 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4681 if (IS_ERR(trans))
4682 return PTR_ERR(trans);
8929ecfa 4683
94b60442 4684 ret = btrfs_update_inode(trans, root, inode);
94b60442 4685 }
39279cc3 4686 btrfs_end_transaction(trans, root);
16cdcec7
MX
4687 if (BTRFS_I(inode)->delayed_node)
4688 btrfs_balance_delayed_items(root);
22c44fe6
JB
4689
4690 return ret;
4691}
4692
4693/*
4694 * This is a copy of file_update_time. We need this so we can return error on
4695 * ENOSPC for updating the inode in the case of file write and mmap writes.
4696 */
e41f941a
JB
4697static int btrfs_update_time(struct inode *inode, struct timespec *now,
4698 int flags)
22c44fe6 4699{
2bc55652
AB
4700 struct btrfs_root *root = BTRFS_I(inode)->root;
4701
4702 if (btrfs_root_readonly(root))
4703 return -EROFS;
4704
e41f941a 4705 if (flags & S_VERSION)
22c44fe6 4706 inode_inc_iversion(inode);
e41f941a
JB
4707 if (flags & S_CTIME)
4708 inode->i_ctime = *now;
4709 if (flags & S_MTIME)
4710 inode->i_mtime = *now;
4711 if (flags & S_ATIME)
4712 inode->i_atime = *now;
4713 return btrfs_dirty_inode(inode);
39279cc3
CM
4714}
4715
d352ac68
CM
4716/*
4717 * find the highest existing sequence number in a directory
4718 * and then set the in-memory index_cnt variable to reflect
4719 * free sequence numbers
4720 */
aec7477b
JB
4721static int btrfs_set_inode_index_count(struct inode *inode)
4722{
4723 struct btrfs_root *root = BTRFS_I(inode)->root;
4724 struct btrfs_key key, found_key;
4725 struct btrfs_path *path;
4726 struct extent_buffer *leaf;
4727 int ret;
4728
33345d01 4729 key.objectid = btrfs_ino(inode);
aec7477b
JB
4730 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4731 key.offset = (u64)-1;
4732
4733 path = btrfs_alloc_path();
4734 if (!path)
4735 return -ENOMEM;
4736
4737 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4738 if (ret < 0)
4739 goto out;
4740 /* FIXME: we should be able to handle this */
4741 if (ret == 0)
4742 goto out;
4743 ret = 0;
4744
4745 /*
4746 * MAGIC NUMBER EXPLANATION:
4747 * since we search a directory based on f_pos we have to start at 2
4748 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4749 * else has to start at 2
4750 */
4751 if (path->slots[0] == 0) {
4752 BTRFS_I(inode)->index_cnt = 2;
4753 goto out;
4754 }
4755
4756 path->slots[0]--;
4757
4758 leaf = path->nodes[0];
4759 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4760
33345d01 4761 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4762 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4763 BTRFS_I(inode)->index_cnt = 2;
4764 goto out;
4765 }
4766
4767 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4768out:
4769 btrfs_free_path(path);
4770 return ret;
4771}
4772
d352ac68
CM
4773/*
4774 * helper to find a free sequence number in a given directory. This current
4775 * code is very simple, later versions will do smarter things in the btree
4776 */
3de4586c 4777int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4778{
4779 int ret = 0;
4780
4781 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4782 ret = btrfs_inode_delayed_dir_index_count(dir);
4783 if (ret) {
4784 ret = btrfs_set_inode_index_count(dir);
4785 if (ret)
4786 return ret;
4787 }
aec7477b
JB
4788 }
4789
00e4e6b3 4790 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4791 BTRFS_I(dir)->index_cnt++;
4792
4793 return ret;
4794}
4795
39279cc3
CM
4796static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4797 struct btrfs_root *root,
aec7477b 4798 struct inode *dir,
9c58309d 4799 const char *name, int name_len,
175a4eb7
AV
4800 u64 ref_objectid, u64 objectid,
4801 umode_t mode, u64 *index)
39279cc3
CM
4802{
4803 struct inode *inode;
5f39d397 4804 struct btrfs_inode_item *inode_item;
39279cc3 4805 struct btrfs_key *location;
5f39d397 4806 struct btrfs_path *path;
9c58309d
CM
4807 struct btrfs_inode_ref *ref;
4808 struct btrfs_key key[2];
4809 u32 sizes[2];
4810 unsigned long ptr;
39279cc3
CM
4811 int ret;
4812 int owner;
4813
5f39d397 4814 path = btrfs_alloc_path();
d8926bb3
MF
4815 if (!path)
4816 return ERR_PTR(-ENOMEM);
5f39d397 4817
39279cc3 4818 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4819 if (!inode) {
4820 btrfs_free_path(path);
39279cc3 4821 return ERR_PTR(-ENOMEM);
8fb27640 4822 }
39279cc3 4823
581bb050
LZ
4824 /*
4825 * we have to initialize this early, so we can reclaim the inode
4826 * number if we fail afterwards in this function.
4827 */
4828 inode->i_ino = objectid;
4829
aec7477b 4830 if (dir) {
1abe9b8a 4831 trace_btrfs_inode_request(dir);
4832
3de4586c 4833 ret = btrfs_set_inode_index(dir, index);
09771430 4834 if (ret) {
8fb27640 4835 btrfs_free_path(path);
09771430 4836 iput(inode);
aec7477b 4837 return ERR_PTR(ret);
09771430 4838 }
aec7477b
JB
4839 }
4840 /*
4841 * index_cnt is ignored for everything but a dir,
4842 * btrfs_get_inode_index_count has an explanation for the magic
4843 * number
4844 */
4845 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4846 BTRFS_I(inode)->root = root;
e02119d5 4847 BTRFS_I(inode)->generation = trans->transid;
76195853 4848 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 4849
5dc562c5
JB
4850 /*
4851 * We could have gotten an inode number from somebody who was fsynced
4852 * and then removed in this same transaction, so let's just set full
4853 * sync since it will be a full sync anyway and this will blow away the
4854 * old info in the log.
4855 */
4856 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4857
569254b0 4858 if (S_ISDIR(mode))
39279cc3
CM
4859 owner = 0;
4860 else
4861 owner = 1;
9c58309d
CM
4862
4863 key[0].objectid = objectid;
4864 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4865 key[0].offset = 0;
4866
f186373f
MF
4867 /*
4868 * Start new inodes with an inode_ref. This is slightly more
4869 * efficient for small numbers of hard links since they will
4870 * be packed into one item. Extended refs will kick in if we
4871 * add more hard links than can fit in the ref item.
4872 */
9c58309d
CM
4873 key[1].objectid = objectid;
4874 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4875 key[1].offset = ref_objectid;
4876
4877 sizes[0] = sizeof(struct btrfs_inode_item);
4878 sizes[1] = name_len + sizeof(*ref);
4879
b9473439 4880 path->leave_spinning = 1;
9c58309d
CM
4881 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4882 if (ret != 0)
5f39d397
CM
4883 goto fail;
4884
ecc11fab 4885 inode_init_owner(inode, dir, mode);
a76a3cd4 4886 inode_set_bytes(inode, 0);
39279cc3 4887 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4888 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4889 struct btrfs_inode_item);
293f7e07
LZ
4890 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4891 sizeof(*inode_item));
e02119d5 4892 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4893
4894 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4895 struct btrfs_inode_ref);
4896 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4897 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4898 ptr = (unsigned long)(ref + 1);
4899 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4900
5f39d397
CM
4901 btrfs_mark_buffer_dirty(path->nodes[0]);
4902 btrfs_free_path(path);
4903
39279cc3
CM
4904 location = &BTRFS_I(inode)->location;
4905 location->objectid = objectid;
39279cc3
CM
4906 location->offset = 0;
4907 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4908
6cbff00f
CH
4909 btrfs_inherit_iflags(inode, dir);
4910
569254b0 4911 if (S_ISREG(mode)) {
94272164
CM
4912 if (btrfs_test_opt(root, NODATASUM))
4913 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 4914 if (btrfs_test_opt(root, NODATACOW))
94272164
CM
4915 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4916 }
4917
39279cc3 4918 insert_inode_hash(inode);
5d4f98a2 4919 inode_tree_add(inode);
1abe9b8a 4920
4921 trace_btrfs_inode_new(inode);
1973f0fa 4922 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4923
8ea05e3a
AB
4924 btrfs_update_root_times(trans, root);
4925
39279cc3 4926 return inode;
5f39d397 4927fail:
aec7477b
JB
4928 if (dir)
4929 BTRFS_I(dir)->index_cnt--;
5f39d397 4930 btrfs_free_path(path);
09771430 4931 iput(inode);
5f39d397 4932 return ERR_PTR(ret);
39279cc3
CM
4933}
4934
4935static inline u8 btrfs_inode_type(struct inode *inode)
4936{
4937 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4938}
4939
d352ac68
CM
4940/*
4941 * utility function to add 'inode' into 'parent_inode' with
4942 * a give name and a given sequence number.
4943 * if 'add_backref' is true, also insert a backref from the
4944 * inode to the parent directory.
4945 */
e02119d5
CM
4946int btrfs_add_link(struct btrfs_trans_handle *trans,
4947 struct inode *parent_inode, struct inode *inode,
4948 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4949{
4df27c4d 4950 int ret = 0;
39279cc3 4951 struct btrfs_key key;
e02119d5 4952 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4953 u64 ino = btrfs_ino(inode);
4954 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4955
33345d01 4956 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4957 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4958 } else {
33345d01 4959 key.objectid = ino;
4df27c4d
YZ
4960 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4961 key.offset = 0;
4962 }
4963
33345d01 4964 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4965 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4966 key.objectid, root->root_key.objectid,
33345d01 4967 parent_ino, index, name, name_len);
4df27c4d 4968 } else if (add_backref) {
33345d01
LZ
4969 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4970 parent_ino, index);
4df27c4d 4971 }
39279cc3 4972
79787eaa
JM
4973 /* Nothing to clean up yet */
4974 if (ret)
4975 return ret;
4df27c4d 4976
79787eaa
JM
4977 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4978 parent_inode, &key,
4979 btrfs_inode_type(inode), index);
9c52057c 4980 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
4981 goto fail_dir_item;
4982 else if (ret) {
4983 btrfs_abort_transaction(trans, root, ret);
4984 return ret;
39279cc3 4985 }
79787eaa
JM
4986
4987 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4988 name_len * 2);
0c4d2d95 4989 inode_inc_iversion(parent_inode);
79787eaa
JM
4990 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4991 ret = btrfs_update_inode(trans, root, parent_inode);
4992 if (ret)
4993 btrfs_abort_transaction(trans, root, ret);
39279cc3 4994 return ret;
fe66a05a
CM
4995
4996fail_dir_item:
4997 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4998 u64 local_index;
4999 int err;
5000 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5001 key.objectid, root->root_key.objectid,
5002 parent_ino, &local_index, name, name_len);
5003
5004 } else if (add_backref) {
5005 u64 local_index;
5006 int err;
5007
5008 err = btrfs_del_inode_ref(trans, root, name, name_len,
5009 ino, parent_ino, &local_index);
5010 }
5011 return ret;
39279cc3
CM
5012}
5013
5014static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5015 struct inode *dir, struct dentry *dentry,
5016 struct inode *inode, int backref, u64 index)
39279cc3 5017{
a1b075d2
JB
5018 int err = btrfs_add_link(trans, dir, inode,
5019 dentry->d_name.name, dentry->d_name.len,
5020 backref, index);
39279cc3
CM
5021 if (err > 0)
5022 err = -EEXIST;
5023 return err;
5024}
5025
618e21d5 5026static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5027 umode_t mode, dev_t rdev)
618e21d5
JB
5028{
5029 struct btrfs_trans_handle *trans;
5030 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5031 struct inode *inode = NULL;
618e21d5
JB
5032 int err;
5033 int drop_inode = 0;
5034 u64 objectid;
00e4e6b3 5035 u64 index = 0;
618e21d5
JB
5036
5037 if (!new_valid_dev(rdev))
5038 return -EINVAL;
5039
9ed74f2d
JB
5040 /*
5041 * 2 for inode item and ref
5042 * 2 for dir items
5043 * 1 for xattr if selinux is on
5044 */
a22285a6
YZ
5045 trans = btrfs_start_transaction(root, 5);
5046 if (IS_ERR(trans))
5047 return PTR_ERR(trans);
1832a6d5 5048
581bb050
LZ
5049 err = btrfs_find_free_ino(root, &objectid);
5050 if (err)
5051 goto out_unlock;
5052
aec7477b 5053 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5054 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5055 mode, &index);
7cf96da3
TI
5056 if (IS_ERR(inode)) {
5057 err = PTR_ERR(inode);
618e21d5 5058 goto out_unlock;
7cf96da3 5059 }
618e21d5 5060
2a7dba39 5061 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5062 if (err) {
5063 drop_inode = 1;
5064 goto out_unlock;
5065 }
5066
ad19db71
CS
5067 /*
5068 * If the active LSM wants to access the inode during
5069 * d_instantiate it needs these. Smack checks to see
5070 * if the filesystem supports xattrs by looking at the
5071 * ops vector.
5072 */
5073
5074 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5075 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5076 if (err)
5077 drop_inode = 1;
5078 else {
618e21d5 5079 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5080 btrfs_update_inode(trans, root, inode);
08c422c2 5081 d_instantiate(dentry, inode);
618e21d5 5082 }
618e21d5 5083out_unlock:
7ad85bb7 5084 btrfs_end_transaction(trans, root);
b53d3f5d 5085 btrfs_btree_balance_dirty(root);
618e21d5
JB
5086 if (drop_inode) {
5087 inode_dec_link_count(inode);
5088 iput(inode);
5089 }
618e21d5
JB
5090 return err;
5091}
5092
39279cc3 5093static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5094 umode_t mode, bool excl)
39279cc3
CM
5095{
5096 struct btrfs_trans_handle *trans;
5097 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5098 struct inode *inode = NULL;
43baa579 5099 int drop_inode_on_err = 0;
a22285a6 5100 int err;
39279cc3 5101 u64 objectid;
00e4e6b3 5102 u64 index = 0;
39279cc3 5103
9ed74f2d
JB
5104 /*
5105 * 2 for inode item and ref
5106 * 2 for dir items
5107 * 1 for xattr if selinux is on
5108 */
a22285a6
YZ
5109 trans = btrfs_start_transaction(root, 5);
5110 if (IS_ERR(trans))
5111 return PTR_ERR(trans);
9ed74f2d 5112
581bb050
LZ
5113 err = btrfs_find_free_ino(root, &objectid);
5114 if (err)
5115 goto out_unlock;
5116
aec7477b 5117 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5118 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5119 mode, &index);
7cf96da3
TI
5120 if (IS_ERR(inode)) {
5121 err = PTR_ERR(inode);
39279cc3 5122 goto out_unlock;
7cf96da3 5123 }
43baa579 5124 drop_inode_on_err = 1;
39279cc3 5125
2a7dba39 5126 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5127 if (err)
33268eaf 5128 goto out_unlock;
33268eaf 5129
9185aa58
FB
5130 err = btrfs_update_inode(trans, root, inode);
5131 if (err)
5132 goto out_unlock;
5133
ad19db71
CS
5134 /*
5135 * If the active LSM wants to access the inode during
5136 * d_instantiate it needs these. Smack checks to see
5137 * if the filesystem supports xattrs by looking at the
5138 * ops vector.
5139 */
5140 inode->i_fop = &btrfs_file_operations;
5141 inode->i_op = &btrfs_file_inode_operations;
5142
a1b075d2 5143 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5144 if (err)
43baa579
FB
5145 goto out_unlock;
5146
5147 inode->i_mapping->a_ops = &btrfs_aops;
5148 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5149 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5150 d_instantiate(dentry, inode);
5151
39279cc3 5152out_unlock:
7ad85bb7 5153 btrfs_end_transaction(trans, root);
43baa579 5154 if (err && drop_inode_on_err) {
39279cc3
CM
5155 inode_dec_link_count(inode);
5156 iput(inode);
5157 }
b53d3f5d 5158 btrfs_btree_balance_dirty(root);
39279cc3
CM
5159 return err;
5160}
5161
5162static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5163 struct dentry *dentry)
5164{
5165 struct btrfs_trans_handle *trans;
5166 struct btrfs_root *root = BTRFS_I(dir)->root;
5167 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5168 u64 index;
39279cc3
CM
5169 int err;
5170 int drop_inode = 0;
5171
4a8be425
TH
5172 /* do not allow sys_link's with other subvols of the same device */
5173 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5174 return -EXDEV;
4a8be425 5175
f186373f 5176 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5177 return -EMLINK;
4a8be425 5178
3de4586c 5179 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5180 if (err)
5181 goto fail;
5182
a22285a6 5183 /*
7e6b6465 5184 * 2 items for inode and inode ref
a22285a6 5185 * 2 items for dir items
7e6b6465 5186 * 1 item for parent inode
a22285a6 5187 */
7e6b6465 5188 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5189 if (IS_ERR(trans)) {
5190 err = PTR_ERR(trans);
5191 goto fail;
5192 }
5f39d397 5193
3153495d 5194 btrfs_inc_nlink(inode);
0c4d2d95 5195 inode_inc_iversion(inode);
3153495d 5196 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5197 ihold(inode);
e9976151 5198 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5199
a1b075d2 5200 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5201
a5719521 5202 if (err) {
54aa1f4d 5203 drop_inode = 1;
a5719521 5204 } else {
10d9f309 5205 struct dentry *parent = dentry->d_parent;
a5719521 5206 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5207 if (err)
5208 goto fail;
08c422c2 5209 d_instantiate(dentry, inode);
6a912213 5210 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5211 }
39279cc3 5212
7ad85bb7 5213 btrfs_end_transaction(trans, root);
1832a6d5 5214fail:
39279cc3
CM
5215 if (drop_inode) {
5216 inode_dec_link_count(inode);
5217 iput(inode);
5218 }
b53d3f5d 5219 btrfs_btree_balance_dirty(root);
39279cc3
CM
5220 return err;
5221}
5222
18bb1db3 5223static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5224{
b9d86667 5225 struct inode *inode = NULL;
39279cc3
CM
5226 struct btrfs_trans_handle *trans;
5227 struct btrfs_root *root = BTRFS_I(dir)->root;
5228 int err = 0;
5229 int drop_on_err = 0;
b9d86667 5230 u64 objectid = 0;
00e4e6b3 5231 u64 index = 0;
39279cc3 5232
9ed74f2d
JB
5233 /*
5234 * 2 items for inode and ref
5235 * 2 items for dir items
5236 * 1 for xattr if selinux is on
5237 */
a22285a6
YZ
5238 trans = btrfs_start_transaction(root, 5);
5239 if (IS_ERR(trans))
5240 return PTR_ERR(trans);
39279cc3 5241
581bb050
LZ
5242 err = btrfs_find_free_ino(root, &objectid);
5243 if (err)
5244 goto out_fail;
5245
aec7477b 5246 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5247 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5248 S_IFDIR | mode, &index);
39279cc3
CM
5249 if (IS_ERR(inode)) {
5250 err = PTR_ERR(inode);
5251 goto out_fail;
5252 }
5f39d397 5253
39279cc3 5254 drop_on_err = 1;
33268eaf 5255
2a7dba39 5256 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5257 if (err)
5258 goto out_fail;
5259
39279cc3
CM
5260 inode->i_op = &btrfs_dir_inode_operations;
5261 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5262
dbe674a9 5263 btrfs_i_size_write(inode, 0);
39279cc3
CM
5264 err = btrfs_update_inode(trans, root, inode);
5265 if (err)
5266 goto out_fail;
5f39d397 5267
a1b075d2
JB
5268 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5269 dentry->d_name.len, 0, index);
39279cc3
CM
5270 if (err)
5271 goto out_fail;
5f39d397 5272
39279cc3
CM
5273 d_instantiate(dentry, inode);
5274 drop_on_err = 0;
39279cc3
CM
5275
5276out_fail:
7ad85bb7 5277 btrfs_end_transaction(trans, root);
39279cc3
CM
5278 if (drop_on_err)
5279 iput(inode);
b53d3f5d 5280 btrfs_btree_balance_dirty(root);
39279cc3
CM
5281 return err;
5282}
5283
d352ac68
CM
5284/* helper for btfs_get_extent. Given an existing extent in the tree,
5285 * and an extent that you want to insert, deal with overlap and insert
5286 * the new extent into the tree.
5287 */
3b951516
CM
5288static int merge_extent_mapping(struct extent_map_tree *em_tree,
5289 struct extent_map *existing,
e6dcd2dc
CM
5290 struct extent_map *em,
5291 u64 map_start, u64 map_len)
3b951516
CM
5292{
5293 u64 start_diff;
3b951516 5294
e6dcd2dc
CM
5295 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5296 start_diff = map_start - em->start;
5297 em->start = map_start;
5298 em->len = map_len;
c8b97818
CM
5299 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5300 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5301 em->block_start += start_diff;
c8b97818
CM
5302 em->block_len -= start_diff;
5303 }
e6dcd2dc 5304 return add_extent_mapping(em_tree, em);
3b951516
CM
5305}
5306
c8b97818
CM
5307static noinline int uncompress_inline(struct btrfs_path *path,
5308 struct inode *inode, struct page *page,
5309 size_t pg_offset, u64 extent_offset,
5310 struct btrfs_file_extent_item *item)
5311{
5312 int ret;
5313 struct extent_buffer *leaf = path->nodes[0];
5314 char *tmp;
5315 size_t max_size;
5316 unsigned long inline_size;
5317 unsigned long ptr;
261507a0 5318 int compress_type;
c8b97818
CM
5319
5320 WARN_ON(pg_offset != 0);
261507a0 5321 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5322 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5323 inline_size = btrfs_file_extent_inline_item_len(leaf,
5324 btrfs_item_nr(leaf, path->slots[0]));
5325 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5326 if (!tmp)
5327 return -ENOMEM;
c8b97818
CM
5328 ptr = btrfs_file_extent_inline_start(item);
5329
5330 read_extent_buffer(leaf, tmp, ptr, inline_size);
5331
5b050f04 5332 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5333 ret = btrfs_decompress(compress_type, tmp, page,
5334 extent_offset, inline_size, max_size);
c8b97818 5335 if (ret) {
7ac687d9 5336 char *kaddr = kmap_atomic(page);
c8b97818
CM
5337 unsigned long copy_size = min_t(u64,
5338 PAGE_CACHE_SIZE - pg_offset,
5339 max_size - extent_offset);
5340 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5341 kunmap_atomic(kaddr);
c8b97818
CM
5342 }
5343 kfree(tmp);
5344 return 0;
5345}
5346
d352ac68
CM
5347/*
5348 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5349 * the ugly parts come from merging extents from the disk with the in-ram
5350 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5351 * where the in-ram extents might be locked pending data=ordered completion.
5352 *
5353 * This also copies inline extents directly into the page.
5354 */
d397712b 5355
a52d9a80 5356struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5357 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5358 int create)
5359{
5360 int ret;
5361 int err = 0;
db94535d 5362 u64 bytenr;
a52d9a80
CM
5363 u64 extent_start = 0;
5364 u64 extent_end = 0;
33345d01 5365 u64 objectid = btrfs_ino(inode);
a52d9a80 5366 u32 found_type;
f421950f 5367 struct btrfs_path *path = NULL;
a52d9a80
CM
5368 struct btrfs_root *root = BTRFS_I(inode)->root;
5369 struct btrfs_file_extent_item *item;
5f39d397
CM
5370 struct extent_buffer *leaf;
5371 struct btrfs_key found_key;
a52d9a80
CM
5372 struct extent_map *em = NULL;
5373 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5374 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5375 struct btrfs_trans_handle *trans = NULL;
261507a0 5376 int compress_type;
a52d9a80 5377
a52d9a80 5378again:
890871be 5379 read_lock(&em_tree->lock);
d1310b2e 5380 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5381 if (em)
5382 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5383 read_unlock(&em_tree->lock);
d1310b2e 5384
a52d9a80 5385 if (em) {
e1c4b745
CM
5386 if (em->start > start || em->start + em->len <= start)
5387 free_extent_map(em);
5388 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5389 free_extent_map(em);
5390 else
5391 goto out;
a52d9a80 5392 }
172ddd60 5393 em = alloc_extent_map();
a52d9a80 5394 if (!em) {
d1310b2e
CM
5395 err = -ENOMEM;
5396 goto out;
a52d9a80 5397 }
e6dcd2dc 5398 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5399 em->start = EXTENT_MAP_HOLE;
445a6944 5400 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5401 em->len = (u64)-1;
c8b97818 5402 em->block_len = (u64)-1;
f421950f
CM
5403
5404 if (!path) {
5405 path = btrfs_alloc_path();
026fd317
JB
5406 if (!path) {
5407 err = -ENOMEM;
5408 goto out;
5409 }
5410 /*
5411 * Chances are we'll be called again, so go ahead and do
5412 * readahead
5413 */
5414 path->reada = 1;
f421950f
CM
5415 }
5416
179e29e4
CM
5417 ret = btrfs_lookup_file_extent(trans, root, path,
5418 objectid, start, trans != NULL);
a52d9a80
CM
5419 if (ret < 0) {
5420 err = ret;
5421 goto out;
5422 }
5423
5424 if (ret != 0) {
5425 if (path->slots[0] == 0)
5426 goto not_found;
5427 path->slots[0]--;
5428 }
5429
5f39d397
CM
5430 leaf = path->nodes[0];
5431 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5432 struct btrfs_file_extent_item);
a52d9a80 5433 /* are we inside the extent that was found? */
5f39d397
CM
5434 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5435 found_type = btrfs_key_type(&found_key);
5436 if (found_key.objectid != objectid ||
a52d9a80
CM
5437 found_type != BTRFS_EXTENT_DATA_KEY) {
5438 goto not_found;
5439 }
5440
5f39d397
CM
5441 found_type = btrfs_file_extent_type(leaf, item);
5442 extent_start = found_key.offset;
261507a0 5443 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5444 if (found_type == BTRFS_FILE_EXTENT_REG ||
5445 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5446 extent_end = extent_start +
db94535d 5447 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5448 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5449 size_t size;
5450 size = btrfs_file_extent_inline_len(leaf, item);
5451 extent_end = (extent_start + size + root->sectorsize - 1) &
5452 ~((u64)root->sectorsize - 1);
5453 }
5454
5455 if (start >= extent_end) {
5456 path->slots[0]++;
5457 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5458 ret = btrfs_next_leaf(root, path);
5459 if (ret < 0) {
5460 err = ret;
5461 goto out;
a52d9a80 5462 }
9036c102
YZ
5463 if (ret > 0)
5464 goto not_found;
5465 leaf = path->nodes[0];
a52d9a80 5466 }
9036c102
YZ
5467 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5468 if (found_key.objectid != objectid ||
5469 found_key.type != BTRFS_EXTENT_DATA_KEY)
5470 goto not_found;
5471 if (start + len <= found_key.offset)
5472 goto not_found;
5473 em->start = start;
70c8a91c 5474 em->orig_start = start;
9036c102
YZ
5475 em->len = found_key.offset - start;
5476 goto not_found_em;
5477 }
5478
d899e052
YZ
5479 if (found_type == BTRFS_FILE_EXTENT_REG ||
5480 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5481 em->start = extent_start;
5482 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5483 em->orig_start = extent_start -
5484 btrfs_file_extent_offset(leaf, item);
b4939680
JB
5485 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
5486 item);
db94535d
CM
5487 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5488 if (bytenr == 0) {
5f39d397 5489 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5490 goto insert;
5491 }
261507a0 5492 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5493 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5494 em->compress_type = compress_type;
c8b97818 5495 em->block_start = bytenr;
b4939680 5496 em->block_len = em->orig_block_len;
c8b97818
CM
5497 } else {
5498 bytenr += btrfs_file_extent_offset(leaf, item);
5499 em->block_start = bytenr;
5500 em->block_len = em->len;
d899e052
YZ
5501 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5502 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5503 }
a52d9a80
CM
5504 goto insert;
5505 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5506 unsigned long ptr;
a52d9a80 5507 char *map;
3326d1b0
CM
5508 size_t size;
5509 size_t extent_offset;
5510 size_t copy_size;
a52d9a80 5511
689f9346 5512 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5513 if (!page || create) {
689f9346 5514 em->start = extent_start;
9036c102 5515 em->len = extent_end - extent_start;
689f9346
Y
5516 goto out;
5517 }
5f39d397 5518
9036c102
YZ
5519 size = btrfs_file_extent_inline_len(leaf, item);
5520 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5521 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5522 size - extent_offset);
3326d1b0 5523 em->start = extent_start + extent_offset;
70dec807
CM
5524 em->len = (copy_size + root->sectorsize - 1) &
5525 ~((u64)root->sectorsize - 1);
b4939680 5526 em->orig_block_len = em->len;
70c8a91c 5527 em->orig_start = em->start;
261507a0 5528 if (compress_type) {
c8b97818 5529 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5530 em->compress_type = compress_type;
5531 }
689f9346 5532 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5533 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5534 if (btrfs_file_extent_compression(leaf, item) !=
5535 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5536 ret = uncompress_inline(path, inode, page,
5537 pg_offset,
5538 extent_offset, item);
79787eaa 5539 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5540 } else {
5541 map = kmap(page);
5542 read_extent_buffer(leaf, map + pg_offset, ptr,
5543 copy_size);
93c82d57
CM
5544 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5545 memset(map + pg_offset + copy_size, 0,
5546 PAGE_CACHE_SIZE - pg_offset -
5547 copy_size);
5548 }
c8b97818
CM
5549 kunmap(page);
5550 }
179e29e4
CM
5551 flush_dcache_page(page);
5552 } else if (create && PageUptodate(page)) {
6bf7e080 5553 BUG();
179e29e4
CM
5554 if (!trans) {
5555 kunmap(page);
5556 free_extent_map(em);
5557 em = NULL;
ff5714cc 5558
b3b4aa74 5559 btrfs_release_path(path);
7a7eaa40 5560 trans = btrfs_join_transaction(root);
ff5714cc 5561
3612b495
TI
5562 if (IS_ERR(trans))
5563 return ERR_CAST(trans);
179e29e4
CM
5564 goto again;
5565 }
c8b97818 5566 map = kmap(page);
70dec807 5567 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5568 copy_size);
c8b97818 5569 kunmap(page);
179e29e4 5570 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5571 }
d1310b2e 5572 set_extent_uptodate(io_tree, em->start,
507903b8 5573 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5574 goto insert;
5575 } else {
31b1a2bd 5576 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5577 }
5578not_found:
5579 em->start = start;
70c8a91c 5580 em->orig_start = start;
d1310b2e 5581 em->len = len;
a52d9a80 5582not_found_em:
5f39d397 5583 em->block_start = EXTENT_MAP_HOLE;
9036c102 5584 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5585insert:
b3b4aa74 5586 btrfs_release_path(path);
d1310b2e 5587 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5588 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5589 "[%llu %llu]\n", (unsigned long long)em->start,
5590 (unsigned long long)em->len,
5591 (unsigned long long)start,
5592 (unsigned long long)len);
a52d9a80
CM
5593 err = -EIO;
5594 goto out;
5595 }
d1310b2e
CM
5596
5597 err = 0;
890871be 5598 write_lock(&em_tree->lock);
a52d9a80 5599 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5600 /* it is possible that someone inserted the extent into the tree
5601 * while we had the lock dropped. It is also possible that
5602 * an overlapping map exists in the tree
5603 */
a52d9a80 5604 if (ret == -EEXIST) {
3b951516 5605 struct extent_map *existing;
e6dcd2dc
CM
5606
5607 ret = 0;
5608
3b951516 5609 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5610 if (existing && (existing->start > start ||
5611 existing->start + existing->len <= start)) {
5612 free_extent_map(existing);
5613 existing = NULL;
5614 }
3b951516
CM
5615 if (!existing) {
5616 existing = lookup_extent_mapping(em_tree, em->start,
5617 em->len);
5618 if (existing) {
5619 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5620 em, start,
5621 root->sectorsize);
3b951516
CM
5622 free_extent_map(existing);
5623 if (err) {
5624 free_extent_map(em);
5625 em = NULL;
5626 }
5627 } else {
5628 err = -EIO;
3b951516
CM
5629 free_extent_map(em);
5630 em = NULL;
5631 }
5632 } else {
5633 free_extent_map(em);
5634 em = existing;
e6dcd2dc 5635 err = 0;
a52d9a80 5636 }
a52d9a80 5637 }
890871be 5638 write_unlock(&em_tree->lock);
a52d9a80 5639out:
1abe9b8a 5640
f0bd95ea
TI
5641 if (em)
5642 trace_btrfs_get_extent(root, em);
1abe9b8a 5643
f421950f
CM
5644 if (path)
5645 btrfs_free_path(path);
a52d9a80
CM
5646 if (trans) {
5647 ret = btrfs_end_transaction(trans, root);
d397712b 5648 if (!err)
a52d9a80
CM
5649 err = ret;
5650 }
a52d9a80
CM
5651 if (err) {
5652 free_extent_map(em);
a52d9a80
CM
5653 return ERR_PTR(err);
5654 }
79787eaa 5655 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5656 return em;
5657}
5658
ec29ed5b
CM
5659struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5660 size_t pg_offset, u64 start, u64 len,
5661 int create)
5662{
5663 struct extent_map *em;
5664 struct extent_map *hole_em = NULL;
5665 u64 range_start = start;
5666 u64 end;
5667 u64 found;
5668 u64 found_end;
5669 int err = 0;
5670
5671 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5672 if (IS_ERR(em))
5673 return em;
5674 if (em) {
5675 /*
f9e4fb53
LB
5676 * if our em maps to
5677 * - a hole or
5678 * - a pre-alloc extent,
5679 * there might actually be delalloc bytes behind it.
ec29ed5b 5680 */
f9e4fb53
LB
5681 if (em->block_start != EXTENT_MAP_HOLE &&
5682 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
5683 return em;
5684 else
5685 hole_em = em;
5686 }
5687
5688 /* check to see if we've wrapped (len == -1 or similar) */
5689 end = start + len;
5690 if (end < start)
5691 end = (u64)-1;
5692 else
5693 end -= 1;
5694
5695 em = NULL;
5696
5697 /* ok, we didn't find anything, lets look for delalloc */
5698 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5699 end, len, EXTENT_DELALLOC, 1);
5700 found_end = range_start + found;
5701 if (found_end < range_start)
5702 found_end = (u64)-1;
5703
5704 /*
5705 * we didn't find anything useful, return
5706 * the original results from get_extent()
5707 */
5708 if (range_start > end || found_end <= start) {
5709 em = hole_em;
5710 hole_em = NULL;
5711 goto out;
5712 }
5713
5714 /* adjust the range_start to make sure it doesn't
5715 * go backwards from the start they passed in
5716 */
5717 range_start = max(start,range_start);
5718 found = found_end - range_start;
5719
5720 if (found > 0) {
5721 u64 hole_start = start;
5722 u64 hole_len = len;
5723
172ddd60 5724 em = alloc_extent_map();
ec29ed5b
CM
5725 if (!em) {
5726 err = -ENOMEM;
5727 goto out;
5728 }
5729 /*
5730 * when btrfs_get_extent can't find anything it
5731 * returns one huge hole
5732 *
5733 * make sure what it found really fits our range, and
5734 * adjust to make sure it is based on the start from
5735 * the caller
5736 */
5737 if (hole_em) {
5738 u64 calc_end = extent_map_end(hole_em);
5739
5740 if (calc_end <= start || (hole_em->start > end)) {
5741 free_extent_map(hole_em);
5742 hole_em = NULL;
5743 } else {
5744 hole_start = max(hole_em->start, start);
5745 hole_len = calc_end - hole_start;
5746 }
5747 }
5748 em->bdev = NULL;
5749 if (hole_em && range_start > hole_start) {
5750 /* our hole starts before our delalloc, so we
5751 * have to return just the parts of the hole
5752 * that go until the delalloc starts
5753 */
5754 em->len = min(hole_len,
5755 range_start - hole_start);
5756 em->start = hole_start;
5757 em->orig_start = hole_start;
5758 /*
5759 * don't adjust block start at all,
5760 * it is fixed at EXTENT_MAP_HOLE
5761 */
5762 em->block_start = hole_em->block_start;
5763 em->block_len = hole_len;
f9e4fb53
LB
5764 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
5765 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
5766 } else {
5767 em->start = range_start;
5768 em->len = found;
5769 em->orig_start = range_start;
5770 em->block_start = EXTENT_MAP_DELALLOC;
5771 em->block_len = found;
5772 }
5773 } else if (hole_em) {
5774 return hole_em;
5775 }
5776out:
5777
5778 free_extent_map(hole_em);
5779 if (err) {
5780 free_extent_map(em);
5781 return ERR_PTR(err);
5782 }
5783 return em;
5784}
5785
4b46fce2
JB
5786static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5787 u64 start, u64 len)
5788{
5789 struct btrfs_root *root = BTRFS_I(inode)->root;
5790 struct btrfs_trans_handle *trans;
70c8a91c 5791 struct extent_map *em;
4b46fce2
JB
5792 struct btrfs_key ins;
5793 u64 alloc_hint;
5794 int ret;
4b46fce2 5795
7a7eaa40 5796 trans = btrfs_join_transaction(root);
3612b495
TI
5797 if (IS_ERR(trans))
5798 return ERR_CAST(trans);
4b46fce2
JB
5799
5800 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5801
5802 alloc_hint = get_extent_allocation_hint(inode, start, len);
5803 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5804 alloc_hint, &ins, 1);
4b46fce2
JB
5805 if (ret) {
5806 em = ERR_PTR(ret);
5807 goto out;
5808 }
5809
70c8a91c
JB
5810 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
5811 ins.offset, ins.offset, 0);
5812 if (IS_ERR(em))
5813 goto out;
4b46fce2
JB
5814
5815 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5816 ins.offset, ins.offset, 0);
5817 if (ret) {
5818 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5819 em = ERR_PTR(ret);
5820 }
5821out:
5822 btrfs_end_transaction(trans, root);
5823 return em;
5824}
5825
46bfbb5c
CM
5826/*
5827 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5828 * block must be cow'd
5829 */
5830static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5831 struct inode *inode, u64 offset, u64 len)
5832{
5833 struct btrfs_path *path;
5834 int ret;
5835 struct extent_buffer *leaf;
5836 struct btrfs_root *root = BTRFS_I(inode)->root;
5837 struct btrfs_file_extent_item *fi;
5838 struct btrfs_key key;
5839 u64 disk_bytenr;
5840 u64 backref_offset;
5841 u64 extent_end;
5842 u64 num_bytes;
5843 int slot;
5844 int found_type;
5845
5846 path = btrfs_alloc_path();
5847 if (!path)
5848 return -ENOMEM;
5849
33345d01 5850 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5851 offset, 0);
5852 if (ret < 0)
5853 goto out;
5854
5855 slot = path->slots[0];
5856 if (ret == 1) {
5857 if (slot == 0) {
5858 /* can't find the item, must cow */
5859 ret = 0;
5860 goto out;
5861 }
5862 slot--;
5863 }
5864 ret = 0;
5865 leaf = path->nodes[0];
5866 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5867 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5868 key.type != BTRFS_EXTENT_DATA_KEY) {
5869 /* not our file or wrong item type, must cow */
5870 goto out;
5871 }
5872
5873 if (key.offset > offset) {
5874 /* Wrong offset, must cow */
5875 goto out;
5876 }
5877
5878 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5879 found_type = btrfs_file_extent_type(leaf, fi);
5880 if (found_type != BTRFS_FILE_EXTENT_REG &&
5881 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5882 /* not a regular extent, must cow */
5883 goto out;
5884 }
5885 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5886 backref_offset = btrfs_file_extent_offset(leaf, fi);
5887
5888 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5889 if (extent_end < offset + len) {
5890 /* extent doesn't include our full range, must cow */
5891 goto out;
5892 }
5893
5894 if (btrfs_extent_readonly(root, disk_bytenr))
5895 goto out;
5896
5897 /*
5898 * look for other files referencing this extent, if we
5899 * find any we must cow
5900 */
33345d01 5901 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5902 key.offset - backref_offset, disk_bytenr))
5903 goto out;
5904
5905 /*
5906 * adjust disk_bytenr and num_bytes to cover just the bytes
5907 * in this extent we are about to write. If there
5908 * are any csums in that range we have to cow in order
5909 * to keep the csums correct
5910 */
5911 disk_bytenr += backref_offset;
5912 disk_bytenr += offset - key.offset;
5913 num_bytes = min(offset + len, extent_end) - offset;
5914 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5915 goto out;
5916 /*
5917 * all of the above have passed, it is safe to overwrite this extent
5918 * without cow
5919 */
5920 ret = 1;
5921out:
5922 btrfs_free_path(path);
5923 return ret;
5924}
5925
eb838e73
JB
5926static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5927 struct extent_state **cached_state, int writing)
5928{
5929 struct btrfs_ordered_extent *ordered;
5930 int ret = 0;
5931
5932 while (1) {
5933 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5934 0, cached_state);
5935 /*
5936 * We're concerned with the entire range that we're going to be
5937 * doing DIO to, so we need to make sure theres no ordered
5938 * extents in this range.
5939 */
5940 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5941 lockend - lockstart + 1);
5942
5943 /*
5944 * We need to make sure there are no buffered pages in this
5945 * range either, we could have raced between the invalidate in
5946 * generic_file_direct_write and locking the extent. The
5947 * invalidate needs to happen so that reads after a write do not
5948 * get stale data.
5949 */
5950 if (!ordered && (!writing ||
5951 !test_range_bit(&BTRFS_I(inode)->io_tree,
5952 lockstart, lockend, EXTENT_UPTODATE, 0,
5953 *cached_state)))
5954 break;
5955
5956 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5957 cached_state, GFP_NOFS);
5958
5959 if (ordered) {
5960 btrfs_start_ordered_extent(inode, ordered, 1);
5961 btrfs_put_ordered_extent(ordered);
5962 } else {
5963 /* Screw you mmap */
5964 ret = filemap_write_and_wait_range(inode->i_mapping,
5965 lockstart,
5966 lockend);
5967 if (ret)
5968 break;
5969
5970 /*
5971 * If we found a page that couldn't be invalidated just
5972 * fall back to buffered.
5973 */
5974 ret = invalidate_inode_pages2_range(inode->i_mapping,
5975 lockstart >> PAGE_CACHE_SHIFT,
5976 lockend >> PAGE_CACHE_SHIFT);
5977 if (ret)
5978 break;
5979 }
5980
5981 cond_resched();
5982 }
5983
5984 return ret;
5985}
5986
69ffb543
JB
5987static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5988 u64 len, u64 orig_start,
5989 u64 block_start, u64 block_len,
b4939680 5990 u64 orig_block_len, int type)
69ffb543
JB
5991{
5992 struct extent_map_tree *em_tree;
5993 struct extent_map *em;
5994 struct btrfs_root *root = BTRFS_I(inode)->root;
5995 int ret;
5996
5997 em_tree = &BTRFS_I(inode)->extent_tree;
5998 em = alloc_extent_map();
5999 if (!em)
6000 return ERR_PTR(-ENOMEM);
6001
6002 em->start = start;
6003 em->orig_start = orig_start;
2ab28f32
JB
6004 em->mod_start = start;
6005 em->mod_len = len;
69ffb543
JB
6006 em->len = len;
6007 em->block_len = block_len;
6008 em->block_start = block_start;
6009 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6010 em->orig_block_len = orig_block_len;
70c8a91c 6011 em->generation = -1;
69ffb543
JB
6012 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6013 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6014 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6015
6016 do {
6017 btrfs_drop_extent_cache(inode, em->start,
6018 em->start + em->len - 1, 0);
6019 write_lock(&em_tree->lock);
6020 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
6021 if (!ret)
6022 list_move(&em->list,
6023 &em_tree->modified_extents);
69ffb543
JB
6024 write_unlock(&em_tree->lock);
6025 } while (ret == -EEXIST);
6026
6027 if (ret) {
6028 free_extent_map(em);
6029 return ERR_PTR(ret);
6030 }
6031
6032 return em;
6033}
6034
6035
4b46fce2
JB
6036static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6037 struct buffer_head *bh_result, int create)
6038{
6039 struct extent_map *em;
6040 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6041 struct extent_state *cached_state = NULL;
4b46fce2 6042 u64 start = iblock << inode->i_blkbits;
eb838e73 6043 u64 lockstart, lockend;
4b46fce2 6044 u64 len = bh_result->b_size;
46bfbb5c 6045 struct btrfs_trans_handle *trans;
eb838e73
JB
6046 int unlock_bits = EXTENT_LOCKED;
6047 int ret;
6048
eb838e73
JB
6049 if (create) {
6050 ret = btrfs_delalloc_reserve_space(inode, len);
6051 if (ret)
6052 return ret;
6053 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
c329861d
JB
6054 } else {
6055 len = min_t(u64, len, root->sectorsize);
eb838e73
JB
6056 }
6057
c329861d
JB
6058 lockstart = start;
6059 lockend = start + len - 1;
6060
eb838e73
JB
6061 /*
6062 * If this errors out it's because we couldn't invalidate pagecache for
6063 * this range and we need to fallback to buffered.
6064 */
6065 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6066 return -ENOTBLK;
6067
6068 if (create) {
6069 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6070 lockend, EXTENT_DELALLOC, NULL,
6071 &cached_state, GFP_NOFS);
6072 if (ret)
6073 goto unlock_err;
6074 }
4b46fce2
JB
6075
6076 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6077 if (IS_ERR(em)) {
6078 ret = PTR_ERR(em);
6079 goto unlock_err;
6080 }
4b46fce2
JB
6081
6082 /*
6083 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6084 * io. INLINE is special, and we could probably kludge it in here, but
6085 * it's still buffered so for safety lets just fall back to the generic
6086 * buffered path.
6087 *
6088 * For COMPRESSED we _have_ to read the entire extent in so we can
6089 * decompress it, so there will be buffering required no matter what we
6090 * do, so go ahead and fallback to buffered.
6091 *
6092 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6093 * to buffered IO. Don't blame me, this is the price we pay for using
6094 * the generic code.
6095 */
6096 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6097 em->block_start == EXTENT_MAP_INLINE) {
6098 free_extent_map(em);
eb838e73
JB
6099 ret = -ENOTBLK;
6100 goto unlock_err;
4b46fce2
JB
6101 }
6102
6103 /* Just a good old fashioned hole, return */
6104 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6105 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6106 free_extent_map(em);
eb838e73
JB
6107 ret = 0;
6108 goto unlock_err;
4b46fce2
JB
6109 }
6110
6111 /*
6112 * We don't allocate a new extent in the following cases
6113 *
6114 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6115 * existing extent.
6116 * 2) The extent is marked as PREALLOC. We're good to go here and can
6117 * just use the extent.
6118 *
6119 */
46bfbb5c 6120 if (!create) {
eb838e73
JB
6121 len = min(len, em->len - (start - em->start));
6122 lockstart = start + len;
6123 goto unlock;
46bfbb5c 6124 }
4b46fce2
JB
6125
6126 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6127 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6128 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6129 int type;
6130 int ret;
46bfbb5c 6131 u64 block_start;
4b46fce2
JB
6132
6133 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6134 type = BTRFS_ORDERED_PREALLOC;
6135 else
6136 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6137 len = min(len, em->len - (start - em->start));
4b46fce2 6138 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6139
6140 /*
6141 * we're not going to log anything, but we do need
6142 * to make sure the current transaction stays open
6143 * while we look for nocow cross refs
6144 */
7a7eaa40 6145 trans = btrfs_join_transaction(root);
3612b495 6146 if (IS_ERR(trans))
46bfbb5c
CM
6147 goto must_cow;
6148
6149 if (can_nocow_odirect(trans, inode, start, len) == 1) {
70c8a91c 6150 u64 orig_start = em->orig_start;
b4939680 6151 u64 orig_block_len = em->orig_block_len;
69ffb543
JB
6152
6153 if (type == BTRFS_ORDERED_PREALLOC) {
6154 free_extent_map(em);
6155 em = create_pinned_em(inode, start, len,
6156 orig_start,
b4939680
JB
6157 block_start, len,
6158 orig_block_len, type);
69ffb543
JB
6159 if (IS_ERR(em)) {
6160 btrfs_end_transaction(trans, root);
6161 goto unlock_err;
6162 }
6163 }
6164
46bfbb5c
CM
6165 ret = btrfs_add_ordered_extent_dio(inode, start,
6166 block_start, len, len, type);
6167 btrfs_end_transaction(trans, root);
6168 if (ret) {
6169 free_extent_map(em);
eb838e73 6170 goto unlock_err;
46bfbb5c
CM
6171 }
6172 goto unlock;
4b46fce2 6173 }
46bfbb5c 6174 btrfs_end_transaction(trans, root);
4b46fce2 6175 }
46bfbb5c
CM
6176must_cow:
6177 /*
6178 * this will cow the extent, reset the len in case we changed
6179 * it above
6180 */
6181 len = bh_result->b_size;
70c8a91c
JB
6182 free_extent_map(em);
6183 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6184 if (IS_ERR(em)) {
6185 ret = PTR_ERR(em);
6186 goto unlock_err;
6187 }
46bfbb5c
CM
6188 len = min(len, em->len - (start - em->start));
6189unlock:
4b46fce2
JB
6190 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6191 inode->i_blkbits;
46bfbb5c 6192 bh_result->b_size = len;
4b46fce2
JB
6193 bh_result->b_bdev = em->bdev;
6194 set_buffer_mapped(bh_result);
c3473e83
JB
6195 if (create) {
6196 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6197 set_buffer_new(bh_result);
6198
6199 /*
6200 * Need to update the i_size under the extent lock so buffered
6201 * readers will get the updated i_size when we unlock.
6202 */
6203 if (start + len > i_size_read(inode))
6204 i_size_write(inode, start + len);
6205 }
4b46fce2 6206
eb838e73
JB
6207 /*
6208 * In the case of write we need to clear and unlock the entire range,
6209 * in the case of read we need to unlock only the end area that we
6210 * aren't using if there is any left over space.
6211 */
24c03fa5
LB
6212 if (lockstart < lockend) {
6213 if (create && len < lockend - lockstart) {
6214 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
9e8a4a8b
LB
6215 lockstart + len - 1,
6216 unlock_bits | EXTENT_DEFRAG, 1, 0,
24c03fa5
LB
6217 &cached_state, GFP_NOFS);
6218 /*
6219 * Beside unlock, we also need to cleanup reserved space
6220 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6221 */
6222 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6223 lockstart + len, lockend,
9e8a4a8b
LB
6224 unlock_bits | EXTENT_DO_ACCOUNTING |
6225 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
24c03fa5
LB
6226 } else {
6227 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6228 lockend, unlock_bits, 1, 0,
6229 &cached_state, GFP_NOFS);
6230 }
6231 } else {
eb838e73 6232 free_extent_state(cached_state);
24c03fa5 6233 }
eb838e73 6234
4b46fce2
JB
6235 free_extent_map(em);
6236
6237 return 0;
eb838e73
JB
6238
6239unlock_err:
6240 if (create)
6241 unlock_bits |= EXTENT_DO_ACCOUNTING;
6242
6243 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6244 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6245 return ret;
4b46fce2
JB
6246}
6247
6248struct btrfs_dio_private {
6249 struct inode *inode;
6250 u64 logical_offset;
6251 u64 disk_bytenr;
6252 u64 bytes;
4b46fce2 6253 void *private;
e65e1535
MX
6254
6255 /* number of bios pending for this dio */
6256 atomic_t pending_bios;
6257
6258 /* IO errors */
6259 int errors;
6260
6261 struct bio *orig_bio;
4b46fce2
JB
6262};
6263
6264static void btrfs_endio_direct_read(struct bio *bio, int err)
6265{
e65e1535 6266 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6267 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6268 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6269 struct inode *inode = dip->inode;
6270 struct btrfs_root *root = BTRFS_I(inode)->root;
6271 u64 start;
4b46fce2
JB
6272
6273 start = dip->logical_offset;
6274 do {
6275 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6276 struct page *page = bvec->bv_page;
6277 char *kaddr;
6278 u32 csum = ~(u32)0;
c329861d 6279 u64 private = ~(u32)0;
4b46fce2
JB
6280 unsigned long flags;
6281
c329861d
JB
6282 if (get_state_private(&BTRFS_I(inode)->io_tree,
6283 start, &private))
6284 goto failed;
4b46fce2 6285 local_irq_save(flags);
7ac687d9 6286 kaddr = kmap_atomic(page);
4b46fce2
JB
6287 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6288 csum, bvec->bv_len);
6289 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6290 kunmap_atomic(kaddr);
4b46fce2
JB
6291 local_irq_restore(flags);
6292
6293 flush_dcache_page(bvec->bv_page);
c329861d
JB
6294 if (csum != private) {
6295failed:
33345d01 6296 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 6297 " %llu csum %u private %u\n",
33345d01
LZ
6298 (unsigned long long)btrfs_ino(inode),
6299 (unsigned long long)start,
c329861d 6300 csum, (unsigned)private);
4b46fce2
JB
6301 err = -EIO;
6302 }
6303 }
6304
6305 start += bvec->bv_len;
4b46fce2
JB
6306 bvec++;
6307 } while (bvec <= bvec_end);
6308
6309 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6310 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
6311 bio->bi_private = dip->private;
6312
4b46fce2 6313 kfree(dip);
c0da7aa1
JB
6314
6315 /* If we had a csum failure make sure to clear the uptodate flag */
6316 if (err)
6317 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6318 dio_end_io(bio, err);
6319}
6320
6321static void btrfs_endio_direct_write(struct bio *bio, int err)
6322{
6323 struct btrfs_dio_private *dip = bio->bi_private;
6324 struct inode *inode = dip->inode;
6325 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6326 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6327 u64 ordered_offset = dip->logical_offset;
6328 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
6329 int ret;
6330
6331 if (err)
6332 goto out_done;
163cf09c
CM
6333again:
6334 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6335 &ordered_offset,
5fd02043 6336 ordered_bytes, !err);
4b46fce2 6337 if (!ret)
163cf09c 6338 goto out_test;
4b46fce2 6339
5fd02043
JB
6340 ordered->work.func = finish_ordered_fn;
6341 ordered->work.flags = 0;
6342 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6343 &ordered->work);
163cf09c
CM
6344out_test:
6345 /*
6346 * our bio might span multiple ordered extents. If we haven't
6347 * completed the accounting for the whole dio, go back and try again
6348 */
6349 if (ordered_offset < dip->logical_offset + dip->bytes) {
6350 ordered_bytes = dip->logical_offset + dip->bytes -
6351 ordered_offset;
5fd02043 6352 ordered = NULL;
163cf09c
CM
6353 goto again;
6354 }
4b46fce2
JB
6355out_done:
6356 bio->bi_private = dip->private;
6357
4b46fce2 6358 kfree(dip);
c0da7aa1
JB
6359
6360 /* If we had an error make sure to clear the uptodate flag */
6361 if (err)
6362 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6363 dio_end_io(bio, err);
6364}
6365
eaf25d93
CM
6366static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6367 struct bio *bio, int mirror_num,
6368 unsigned long bio_flags, u64 offset)
6369{
6370 int ret;
6371 struct btrfs_root *root = BTRFS_I(inode)->root;
6372 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6373 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6374 return 0;
6375}
6376
e65e1535
MX
6377static void btrfs_end_dio_bio(struct bio *bio, int err)
6378{
6379 struct btrfs_dio_private *dip = bio->bi_private;
6380
6381 if (err) {
33345d01 6382 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6383 "sector %#Lx len %u err no %d\n",
33345d01 6384 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6385 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6386 dip->errors = 1;
6387
6388 /*
6389 * before atomic variable goto zero, we must make sure
6390 * dip->errors is perceived to be set.
6391 */
6392 smp_mb__before_atomic_dec();
6393 }
6394
6395 /* if there are more bios still pending for this dio, just exit */
6396 if (!atomic_dec_and_test(&dip->pending_bios))
6397 goto out;
6398
6399 if (dip->errors)
6400 bio_io_error(dip->orig_bio);
6401 else {
6402 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6403 bio_endio(dip->orig_bio, 0);
6404 }
6405out:
6406 bio_put(bio);
6407}
6408
6409static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6410 u64 first_sector, gfp_t gfp_flags)
6411{
6412 int nr_vecs = bio_get_nr_vecs(bdev);
6413 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6414}
6415
6416static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6417 int rw, u64 file_offset, int skip_sum,
c329861d 6418 int async_submit)
e65e1535
MX
6419{
6420 int write = rw & REQ_WRITE;
6421 struct btrfs_root *root = BTRFS_I(inode)->root;
6422 int ret;
6423
b812ce28
JB
6424 if (async_submit)
6425 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6426
e65e1535 6427 bio_get(bio);
5fd02043
JB
6428
6429 if (!write) {
6430 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6431 if (ret)
6432 goto err;
6433 }
e65e1535 6434
1ae39938
JB
6435 if (skip_sum)
6436 goto map;
6437
6438 if (write && async_submit) {
e65e1535
MX
6439 ret = btrfs_wq_submit_bio(root->fs_info,
6440 inode, rw, bio, 0, 0,
6441 file_offset,
6442 __btrfs_submit_bio_start_direct_io,
6443 __btrfs_submit_bio_done);
6444 goto err;
1ae39938
JB
6445 } else if (write) {
6446 /*
6447 * If we aren't doing async submit, calculate the csum of the
6448 * bio now.
6449 */
6450 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6451 if (ret)
6452 goto err;
c2db1073 6453 } else if (!skip_sum) {
c329861d 6454 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
6455 if (ret)
6456 goto err;
6457 }
e65e1535 6458
1ae39938
JB
6459map:
6460 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6461err:
6462 bio_put(bio);
6463 return ret;
6464}
6465
6466static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6467 int skip_sum)
6468{
6469 struct inode *inode = dip->inode;
6470 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6471 struct bio *bio;
6472 struct bio *orig_bio = dip->orig_bio;
6473 struct bio_vec *bvec = orig_bio->bi_io_vec;
6474 u64 start_sector = orig_bio->bi_sector;
6475 u64 file_offset = dip->logical_offset;
6476 u64 submit_len = 0;
6477 u64 map_length;
6478 int nr_pages = 0;
e65e1535 6479 int ret = 0;
1ae39938 6480 int async_submit = 0;
e65e1535 6481
e65e1535 6482 map_length = orig_bio->bi_size;
3ec706c8 6483 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
e65e1535
MX
6484 &map_length, NULL, 0);
6485 if (ret) {
64728bbb 6486 bio_put(orig_bio);
e65e1535
MX
6487 return -EIO;
6488 }
6489
02f57c7a
JB
6490 if (map_length >= orig_bio->bi_size) {
6491 bio = orig_bio;
6492 goto submit;
6493 }
6494
1ae39938 6495 async_submit = 1;
02f57c7a
JB
6496 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6497 if (!bio)
6498 return -ENOMEM;
6499 bio->bi_private = dip;
6500 bio->bi_end_io = btrfs_end_dio_bio;
6501 atomic_inc(&dip->pending_bios);
6502
e65e1535
MX
6503 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6504 if (unlikely(map_length < submit_len + bvec->bv_len ||
6505 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6506 bvec->bv_offset) < bvec->bv_len)) {
6507 /*
6508 * inc the count before we submit the bio so
6509 * we know the end IO handler won't happen before
6510 * we inc the count. Otherwise, the dip might get freed
6511 * before we're done setting it up
6512 */
6513 atomic_inc(&dip->pending_bios);
6514 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6515 file_offset, skip_sum,
c329861d 6516 async_submit);
e65e1535
MX
6517 if (ret) {
6518 bio_put(bio);
6519 atomic_dec(&dip->pending_bios);
6520 goto out_err;
6521 }
6522
e65e1535
MX
6523 start_sector += submit_len >> 9;
6524 file_offset += submit_len;
6525
6526 submit_len = 0;
6527 nr_pages = 0;
6528
6529 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6530 start_sector, GFP_NOFS);
6531 if (!bio)
6532 goto out_err;
6533 bio->bi_private = dip;
6534 bio->bi_end_io = btrfs_end_dio_bio;
6535
6536 map_length = orig_bio->bi_size;
3ec706c8
SB
6537 ret = btrfs_map_block(root->fs_info, READ,
6538 start_sector << 9,
e65e1535
MX
6539 &map_length, NULL, 0);
6540 if (ret) {
6541 bio_put(bio);
6542 goto out_err;
6543 }
6544 } else {
6545 submit_len += bvec->bv_len;
6546 nr_pages ++;
6547 bvec++;
6548 }
6549 }
6550
02f57c7a 6551submit:
e65e1535 6552 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 6553 async_submit);
e65e1535
MX
6554 if (!ret)
6555 return 0;
6556
6557 bio_put(bio);
6558out_err:
6559 dip->errors = 1;
6560 /*
6561 * before atomic variable goto zero, we must
6562 * make sure dip->errors is perceived to be set.
6563 */
6564 smp_mb__before_atomic_dec();
6565 if (atomic_dec_and_test(&dip->pending_bios))
6566 bio_io_error(dip->orig_bio);
6567
6568 /* bio_end_io() will handle error, so we needn't return it */
6569 return 0;
6570}
6571
4b46fce2
JB
6572static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6573 loff_t file_offset)
6574{
6575 struct btrfs_root *root = BTRFS_I(inode)->root;
6576 struct btrfs_dio_private *dip;
6577 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6578 int skip_sum;
7b6d91da 6579 int write = rw & REQ_WRITE;
4b46fce2
JB
6580 int ret = 0;
6581
6582 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6583
6584 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6585 if (!dip) {
6586 ret = -ENOMEM;
6587 goto free_ordered;
6588 }
4b46fce2
JB
6589
6590 dip->private = bio->bi_private;
6591 dip->inode = inode;
6592 dip->logical_offset = file_offset;
6593
4b46fce2
JB
6594 dip->bytes = 0;
6595 do {
6596 dip->bytes += bvec->bv_len;
6597 bvec++;
6598 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6599
46bfbb5c 6600 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6601 bio->bi_private = dip;
e65e1535
MX
6602 dip->errors = 0;
6603 dip->orig_bio = bio;
6604 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6605
6606 if (write)
6607 bio->bi_end_io = btrfs_endio_direct_write;
6608 else
6609 bio->bi_end_io = btrfs_endio_direct_read;
6610
e65e1535
MX
6611 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6612 if (!ret)
eaf25d93 6613 return;
4b46fce2
JB
6614free_ordered:
6615 /*
6616 * If this is a write, we need to clean up the reserved space and kill
6617 * the ordered extent.
6618 */
6619 if (write) {
6620 struct btrfs_ordered_extent *ordered;
955256f2 6621 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6622 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6623 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6624 btrfs_free_reserved_extent(root, ordered->start,
6625 ordered->disk_len);
6626 btrfs_put_ordered_extent(ordered);
6627 btrfs_put_ordered_extent(ordered);
6628 }
6629 bio_endio(bio, ret);
6630}
6631
5a5f79b5
CM
6632static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6633 const struct iovec *iov, loff_t offset,
6634 unsigned long nr_segs)
6635{
6636 int seg;
a1b75f7d 6637 int i;
5a5f79b5
CM
6638 size_t size;
6639 unsigned long addr;
6640 unsigned blocksize_mask = root->sectorsize - 1;
6641 ssize_t retval = -EINVAL;
6642 loff_t end = offset;
6643
6644 if (offset & blocksize_mask)
6645 goto out;
6646
6647 /* Check the memory alignment. Blocks cannot straddle pages */
6648 for (seg = 0; seg < nr_segs; seg++) {
6649 addr = (unsigned long)iov[seg].iov_base;
6650 size = iov[seg].iov_len;
6651 end += size;
a1b75f7d 6652 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6653 goto out;
a1b75f7d
JB
6654
6655 /* If this is a write we don't need to check anymore */
6656 if (rw & WRITE)
6657 continue;
6658
6659 /*
6660 * Check to make sure we don't have duplicate iov_base's in this
6661 * iovec, if so return EINVAL, otherwise we'll get csum errors
6662 * when reading back.
6663 */
6664 for (i = seg + 1; i < nr_segs; i++) {
6665 if (iov[seg].iov_base == iov[i].iov_base)
6666 goto out;
6667 }
5a5f79b5
CM
6668 }
6669 retval = 0;
6670out:
6671 return retval;
6672}
eb838e73 6673
16432985
CM
6674static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6675 const struct iovec *iov, loff_t offset,
6676 unsigned long nr_segs)
6677{
4b46fce2
JB
6678 struct file *file = iocb->ki_filp;
6679 struct inode *inode = file->f_mapping->host;
4b46fce2 6680
5a5f79b5 6681 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 6682 offset, nr_segs))
5a5f79b5 6683 return 0;
3f7c579c 6684
eb838e73 6685 return __blockdev_direct_IO(rw, iocb, inode,
5a5f79b5
CM
6686 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6687 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6688 btrfs_submit_direct, 0);
16432985
CM
6689}
6690
05dadc09
TI
6691#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6692
1506fcc8
YS
6693static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6694 __u64 start, __u64 len)
6695{
05dadc09
TI
6696 int ret;
6697
6698 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
6699 if (ret)
6700 return ret;
6701
ec29ed5b 6702 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6703}
6704
a52d9a80 6705int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6706{
d1310b2e
CM
6707 struct extent_io_tree *tree;
6708 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6709 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6710}
1832a6d5 6711
a52d9a80 6712static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6713{
d1310b2e 6714 struct extent_io_tree *tree;
b888db2b
CM
6715
6716
6717 if (current->flags & PF_MEMALLOC) {
6718 redirty_page_for_writepage(wbc, page);
6719 unlock_page(page);
6720 return 0;
6721 }
d1310b2e 6722 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6723 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6724}
6725
f421950f
CM
6726int btrfs_writepages(struct address_space *mapping,
6727 struct writeback_control *wbc)
b293f02e 6728{
d1310b2e 6729 struct extent_io_tree *tree;
771ed689 6730
d1310b2e 6731 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6732 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6733}
6734
3ab2fb5a
CM
6735static int
6736btrfs_readpages(struct file *file, struct address_space *mapping,
6737 struct list_head *pages, unsigned nr_pages)
6738{
d1310b2e
CM
6739 struct extent_io_tree *tree;
6740 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6741 return extent_readpages(tree, mapping, pages, nr_pages,
6742 btrfs_get_extent);
6743}
e6dcd2dc 6744static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6745{
d1310b2e
CM
6746 struct extent_io_tree *tree;
6747 struct extent_map_tree *map;
a52d9a80 6748 int ret;
8c2383c3 6749
d1310b2e
CM
6750 tree = &BTRFS_I(page->mapping->host)->io_tree;
6751 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6752 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6753 if (ret == 1) {
6754 ClearPagePrivate(page);
6755 set_page_private(page, 0);
6756 page_cache_release(page);
39279cc3 6757 }
a52d9a80 6758 return ret;
39279cc3
CM
6759}
6760
e6dcd2dc
CM
6761static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6762{
98509cfc
CM
6763 if (PageWriteback(page) || PageDirty(page))
6764 return 0;
b335b003 6765 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6766}
6767
a52d9a80 6768static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6769{
5fd02043 6770 struct inode *inode = page->mapping->host;
d1310b2e 6771 struct extent_io_tree *tree;
e6dcd2dc 6772 struct btrfs_ordered_extent *ordered;
2ac55d41 6773 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6774 u64 page_start = page_offset(page);
6775 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6776
8b62b72b
CM
6777 /*
6778 * we have the page locked, so new writeback can't start,
6779 * and the dirty bit won't be cleared while we are here.
6780 *
6781 * Wait for IO on this page so that we can safely clear
6782 * the PagePrivate2 bit and do ordered accounting
6783 */
e6dcd2dc 6784 wait_on_page_writeback(page);
8b62b72b 6785
5fd02043 6786 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
6787 if (offset) {
6788 btrfs_releasepage(page, GFP_NOFS);
6789 return;
6790 }
d0082371 6791 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 6792 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 6793 if (ordered) {
eb84ae03
CM
6794 /*
6795 * IO on this page will never be started, so we need
6796 * to account for any ordered extents now
6797 */
e6dcd2dc
CM
6798 clear_extent_bit(tree, page_start, page_end,
6799 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6800 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6801 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
6802 /*
6803 * whoever cleared the private bit is responsible
6804 * for the finish_ordered_io
6805 */
5fd02043
JB
6806 if (TestClearPagePrivate2(page) &&
6807 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6808 PAGE_CACHE_SIZE, 1)) {
6809 btrfs_finish_ordered_io(ordered);
8b62b72b 6810 }
e6dcd2dc 6811 btrfs_put_ordered_extent(ordered);
2ac55d41 6812 cached_state = NULL;
d0082371 6813 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6814 }
6815 clear_extent_bit(tree, page_start, page_end,
32c00aff 6816 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6817 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6818 &cached_state, GFP_NOFS);
e6dcd2dc
CM
6819 __btrfs_releasepage(page, GFP_NOFS);
6820
4a096752 6821 ClearPageChecked(page);
9ad6b7bc 6822 if (PagePrivate(page)) {
9ad6b7bc
CM
6823 ClearPagePrivate(page);
6824 set_page_private(page, 0);
6825 page_cache_release(page);
6826 }
39279cc3
CM
6827}
6828
9ebefb18
CM
6829/*
6830 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6831 * called from a page fault handler when a page is first dirtied. Hence we must
6832 * be careful to check for EOF conditions here. We set the page up correctly
6833 * for a written page which means we get ENOSPC checking when writing into
6834 * holes and correct delalloc and unwritten extent mapping on filesystems that
6835 * support these features.
6836 *
6837 * We are not allowed to take the i_mutex here so we have to play games to
6838 * protect against truncate races as the page could now be beyond EOF. Because
6839 * vmtruncate() writes the inode size before removing pages, once we have the
6840 * page lock we can determine safely if the page is beyond EOF. If it is not
6841 * beyond EOF, then the page is guaranteed safe against truncation until we
6842 * unlock the page.
6843 */
c2ec175c 6844int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6845{
c2ec175c 6846 struct page *page = vmf->page;
6da6abae 6847 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6848 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6849 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6850 struct btrfs_ordered_extent *ordered;
2ac55d41 6851 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6852 char *kaddr;
6853 unsigned long zero_start;
9ebefb18 6854 loff_t size;
1832a6d5 6855 int ret;
9998eb70 6856 int reserved = 0;
a52d9a80 6857 u64 page_start;
e6dcd2dc 6858 u64 page_end;
9ebefb18 6859
b2b5ef5c 6860 sb_start_pagefault(inode->i_sb);
0ca1f7ce 6861 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6862 if (!ret) {
e41f941a 6863 ret = file_update_time(vma->vm_file);
9998eb70
CM
6864 reserved = 1;
6865 }
56a76f82
NP
6866 if (ret) {
6867 if (ret == -ENOMEM)
6868 ret = VM_FAULT_OOM;
6869 else /* -ENOSPC, -EIO, etc */
6870 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6871 if (reserved)
6872 goto out;
6873 goto out_noreserve;
56a76f82 6874 }
1832a6d5 6875
56a76f82 6876 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6877again:
9ebefb18 6878 lock_page(page);
9ebefb18 6879 size = i_size_read(inode);
e6dcd2dc
CM
6880 page_start = page_offset(page);
6881 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6882
9ebefb18 6883 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6884 (page_start >= size)) {
9ebefb18
CM
6885 /* page got truncated out from underneath us */
6886 goto out_unlock;
6887 }
e6dcd2dc
CM
6888 wait_on_page_writeback(page);
6889
d0082371 6890 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6891 set_page_extent_mapped(page);
6892
eb84ae03
CM
6893 /*
6894 * we can't set the delalloc bits if there are pending ordered
6895 * extents. Drop our locks and wait for them to finish
6896 */
e6dcd2dc
CM
6897 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6898 if (ordered) {
2ac55d41
JB
6899 unlock_extent_cached(io_tree, page_start, page_end,
6900 &cached_state, GFP_NOFS);
e6dcd2dc 6901 unlock_page(page);
eb84ae03 6902 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6903 btrfs_put_ordered_extent(ordered);
6904 goto again;
6905 }
6906
fbf19087
JB
6907 /*
6908 * XXX - page_mkwrite gets called every time the page is dirtied, even
6909 * if it was already dirty, so for space accounting reasons we need to
6910 * clear any delalloc bits for the range we are fixing to save. There
6911 * is probably a better way to do this, but for now keep consistent with
6912 * prepare_pages in the normal write path.
6913 */
2ac55d41 6914 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
6915 EXTENT_DIRTY | EXTENT_DELALLOC |
6916 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 6917 0, 0, &cached_state, GFP_NOFS);
fbf19087 6918
2ac55d41
JB
6919 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6920 &cached_state);
9ed74f2d 6921 if (ret) {
2ac55d41
JB
6922 unlock_extent_cached(io_tree, page_start, page_end,
6923 &cached_state, GFP_NOFS);
9ed74f2d
JB
6924 ret = VM_FAULT_SIGBUS;
6925 goto out_unlock;
6926 }
e6dcd2dc 6927 ret = 0;
9ebefb18
CM
6928
6929 /* page is wholly or partially inside EOF */
a52d9a80 6930 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6931 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6932 else
e6dcd2dc 6933 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6934
e6dcd2dc
CM
6935 if (zero_start != PAGE_CACHE_SIZE) {
6936 kaddr = kmap(page);
6937 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6938 flush_dcache_page(page);
6939 kunmap(page);
6940 }
247e743c 6941 ClearPageChecked(page);
e6dcd2dc 6942 set_page_dirty(page);
50a9b214 6943 SetPageUptodate(page);
5a3f23d5 6944
257c62e1
CM
6945 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6946 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 6947 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 6948
2ac55d41 6949 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6950
6951out_unlock:
b2b5ef5c
JK
6952 if (!ret) {
6953 sb_end_pagefault(inode->i_sb);
50a9b214 6954 return VM_FAULT_LOCKED;
b2b5ef5c 6955 }
9ebefb18 6956 unlock_page(page);
1832a6d5 6957out:
ec39e180 6958 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6959out_noreserve:
b2b5ef5c 6960 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
6961 return ret;
6962}
6963
a41ad394 6964static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6965{
6966 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6967 struct btrfs_block_rsv *rsv;
39279cc3 6968 int ret;
3893e33b 6969 int err = 0;
39279cc3 6970 struct btrfs_trans_handle *trans;
dbe674a9 6971 u64 mask = root->sectorsize - 1;
07127184 6972 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6973
2aaa6655 6974 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
5d5e103a 6975 if (ret)
a41ad394 6976 return ret;
8082510e 6977
4a096752 6978 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6979 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6980
fcb80c2a
JB
6981 /*
6982 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6983 * 3 things going on here
6984 *
6985 * 1) We need to reserve space for our orphan item and the space to
6986 * delete our orphan item. Lord knows we don't want to have a dangling
6987 * orphan item because we didn't reserve space to remove it.
6988 *
6989 * 2) We need to reserve space to update our inode.
6990 *
6991 * 3) We need to have something to cache all the space that is going to
6992 * be free'd up by the truncate operation, but also have some slack
6993 * space reserved in case it uses space during the truncate (thank you
6994 * very much snapshotting).
6995 *
6996 * And we need these to all be seperate. The fact is we can use alot of
6997 * space doing the truncate, and we have no earthly idea how much space
6998 * we will use, so we need the truncate reservation to be seperate so it
6999 * doesn't end up using space reserved for updating the inode or
7000 * removing the orphan item. We also need to be able to stop the
7001 * transaction and start a new one, which means we need to be able to
7002 * update the inode several times, and we have no idea of knowing how
7003 * many times that will be, so we can't just reserve 1 item for the
7004 * entirety of the opration, so that has to be done seperately as well.
7005 * Then there is the orphan item, which does indeed need to be held on
7006 * to for the whole operation, and we need nobody to touch this reserved
7007 * space except the orphan code.
7008 *
7009 * So that leaves us with
7010 *
7011 * 1) root->orphan_block_rsv - for the orphan deletion.
7012 * 2) rsv - for the truncate reservation, which we will steal from the
7013 * transaction reservation.
7014 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7015 * updating the inode.
7016 */
66d8f3dd 7017 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7018 if (!rsv)
7019 return -ENOMEM;
4a338542 7020 rsv->size = min_size;
ca7e70f5 7021 rsv->failfast = 1;
f0cd846e 7022
907cbceb 7023 /*
07127184 7024 * 1 for the truncate slack space
907cbceb
JB
7025 * 1 for updating the inode.
7026 */
f3fe820c 7027 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7028 if (IS_ERR(trans)) {
7029 err = PTR_ERR(trans);
7030 goto out;
7031 }
f0cd846e 7032
907cbceb
JB
7033 /* Migrate the slack space for the truncate to our reserve */
7034 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7035 min_size);
fcb80c2a 7036 BUG_ON(ret);
f0cd846e 7037
5a3f23d5
CM
7038 /*
7039 * setattr is responsible for setting the ordered_data_close flag,
7040 * but that is only tested during the last file release. That
7041 * could happen well after the next commit, leaving a great big
7042 * window where new writes may get lost if someone chooses to write
7043 * to this file after truncating to zero
7044 *
7045 * The inode doesn't have any dirty data here, and so if we commit
7046 * this is a noop. If someone immediately starts writing to the inode
7047 * it is very likely we'll catch some of their writes in this
7048 * transaction, and the commit will find this file on the ordered
7049 * data list with good things to send down.
7050 *
7051 * This is a best effort solution, there is still a window where
7052 * using truncate to replace the contents of the file will
7053 * end up with a zero length file after a crash.
7054 */
72ac3c0d
JB
7055 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7056 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7057 btrfs_add_ordered_operation(trans, root, inode);
7058
5dc562c5
JB
7059 /*
7060 * So if we truncate and then write and fsync we normally would just
7061 * write the extents that changed, which is a problem if we need to
7062 * first truncate that entire inode. So set this flag so we write out
7063 * all of the extents in the inode to the sync log so we're completely
7064 * safe.
7065 */
7066 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7067 trans->block_rsv = rsv;
907cbceb 7068
8082510e
YZ
7069 while (1) {
7070 ret = btrfs_truncate_inode_items(trans, root, inode,
7071 inode->i_size,
7072 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7073 if (ret != -ENOSPC) {
3893e33b 7074 err = ret;
8082510e 7075 break;
3893e33b 7076 }
39279cc3 7077
fcb80c2a 7078 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7079 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7080 if (ret) {
7081 err = ret;
7082 break;
7083 }
ca7e70f5 7084
8082510e 7085 btrfs_end_transaction(trans, root);
b53d3f5d 7086 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7087
7088 trans = btrfs_start_transaction(root, 2);
7089 if (IS_ERR(trans)) {
7090 ret = err = PTR_ERR(trans);
7091 trans = NULL;
7092 break;
7093 }
7094
7095 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7096 rsv, min_size);
7097 BUG_ON(ret); /* shouldn't happen */
7098 trans->block_rsv = rsv;
8082510e
YZ
7099 }
7100
7101 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7102 trans->block_rsv = root->orphan_block_rsv;
8082510e 7103 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7104 if (ret)
7105 err = ret;
8082510e
YZ
7106 }
7107
917c16b2
CM
7108 if (trans) {
7109 trans->block_rsv = &root->fs_info->trans_block_rsv;
7110 ret = btrfs_update_inode(trans, root, inode);
7111 if (ret && !err)
7112 err = ret;
7b128766 7113
7ad85bb7 7114 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7115 btrfs_btree_balance_dirty(root);
917c16b2 7116 }
fcb80c2a
JB
7117
7118out:
7119 btrfs_free_block_rsv(root, rsv);
7120
3893e33b
JB
7121 if (ret && !err)
7122 err = ret;
a41ad394 7123
3893e33b 7124 return err;
39279cc3
CM
7125}
7126
d352ac68
CM
7127/*
7128 * create a new subvolume directory/inode (helper for the ioctl).
7129 */
d2fb3437 7130int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7131 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7132{
39279cc3 7133 struct inode *inode;
76dda93c 7134 int err;
00e4e6b3 7135 u64 index = 0;
39279cc3 7136
12fc9d09
FA
7137 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7138 new_dirid, new_dirid,
7139 S_IFDIR | (~current_umask() & S_IRWXUGO),
7140 &index);
54aa1f4d 7141 if (IS_ERR(inode))
f46b5a66 7142 return PTR_ERR(inode);
39279cc3
CM
7143 inode->i_op = &btrfs_dir_inode_operations;
7144 inode->i_fop = &btrfs_dir_file_operations;
7145
bfe86848 7146 set_nlink(inode, 1);
dbe674a9 7147 btrfs_i_size_write(inode, 0);
3b96362c 7148
76dda93c 7149 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7150
76dda93c 7151 iput(inode);
ce598979 7152 return err;
39279cc3
CM
7153}
7154
39279cc3
CM
7155struct inode *btrfs_alloc_inode(struct super_block *sb)
7156{
7157 struct btrfs_inode *ei;
2ead6ae7 7158 struct inode *inode;
39279cc3
CM
7159
7160 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7161 if (!ei)
7162 return NULL;
2ead6ae7
YZ
7163
7164 ei->root = NULL;
2ead6ae7 7165 ei->generation = 0;
15ee9bc7 7166 ei->last_trans = 0;
257c62e1 7167 ei->last_sub_trans = 0;
e02119d5 7168 ei->logged_trans = 0;
2ead6ae7 7169 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7170 ei->disk_i_size = 0;
7171 ei->flags = 0;
7709cde3 7172 ei->csum_bytes = 0;
2ead6ae7
YZ
7173 ei->index_cnt = (u64)-1;
7174 ei->last_unlink_trans = 0;
46d8bc34 7175 ei->last_log_commit = 0;
2ead6ae7 7176
9e0baf60
JB
7177 spin_lock_init(&ei->lock);
7178 ei->outstanding_extents = 0;
7179 ei->reserved_extents = 0;
2ead6ae7 7180
72ac3c0d 7181 ei->runtime_flags = 0;
261507a0 7182 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7183
16cdcec7
MX
7184 ei->delayed_node = NULL;
7185
2ead6ae7 7186 inode = &ei->vfs_inode;
a8067e02 7187 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7188 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7189 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7190 ei->io_tree.track_uptodate = 1;
7191 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7192 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7193 mutex_init(&ei->log_mutex);
f248679e 7194 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7195 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7196 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7197 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7198 RB_CLEAR_NODE(&ei->rb_node);
7199
7200 return inode;
39279cc3
CM
7201}
7202
fa0d7e3d
NP
7203static void btrfs_i_callback(struct rcu_head *head)
7204{
7205 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7206 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7207}
7208
39279cc3
CM
7209void btrfs_destroy_inode(struct inode *inode)
7210{
e6dcd2dc 7211 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7212 struct btrfs_root *root = BTRFS_I(inode)->root;
7213
b3d9b7a3 7214 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7215 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7216 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7217 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7218 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7219 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7220
a6dbd429
JB
7221 /*
7222 * This can happen where we create an inode, but somebody else also
7223 * created the same inode and we need to destroy the one we already
7224 * created.
7225 */
7226 if (!root)
7227 goto free;
7228
5a3f23d5
CM
7229 /*
7230 * Make sure we're properly removed from the ordered operation
7231 * lists.
7232 */
7233 smp_mb();
7234 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7235 spin_lock(&root->fs_info->ordered_extent_lock);
7236 list_del_init(&BTRFS_I(inode)->ordered_operations);
7237 spin_unlock(&root->fs_info->ordered_extent_lock);
7238 }
7239
8a35d95f
JB
7240 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7241 &BTRFS_I(inode)->runtime_flags)) {
33345d01
LZ
7242 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7243 (unsigned long long)btrfs_ino(inode));
8a35d95f 7244 atomic_dec(&root->orphan_inodes);
7b128766 7245 }
7b128766 7246
d397712b 7247 while (1) {
e6dcd2dc
CM
7248 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7249 if (!ordered)
7250 break;
7251 else {
d397712b
CM
7252 printk(KERN_ERR "btrfs found ordered "
7253 "extent %llu %llu on inode cleanup\n",
7254 (unsigned long long)ordered->file_offset,
7255 (unsigned long long)ordered->len);
e6dcd2dc
CM
7256 btrfs_remove_ordered_extent(inode, ordered);
7257 btrfs_put_ordered_extent(ordered);
7258 btrfs_put_ordered_extent(ordered);
7259 }
7260 }
5d4f98a2 7261 inode_tree_del(inode);
5b21f2ed 7262 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7263free:
16cdcec7 7264 btrfs_remove_delayed_node(inode);
fa0d7e3d 7265 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7266}
7267
45321ac5 7268int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7269{
7270 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7271
0af3d00b 7272 if (btrfs_root_refs(&root->root_item) == 0 &&
83eea1f1 7273 !btrfs_is_free_space_inode(inode))
45321ac5 7274 return 1;
76dda93c 7275 else
45321ac5 7276 return generic_drop_inode(inode);
76dda93c
YZ
7277}
7278
0ee0fda0 7279static void init_once(void *foo)
39279cc3
CM
7280{
7281 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7282
7283 inode_init_once(&ei->vfs_inode);
7284}
7285
7286void btrfs_destroy_cachep(void)
7287{
8c0a8537
KS
7288 /*
7289 * Make sure all delayed rcu free inodes are flushed before we
7290 * destroy cache.
7291 */
7292 rcu_barrier();
39279cc3
CM
7293 if (btrfs_inode_cachep)
7294 kmem_cache_destroy(btrfs_inode_cachep);
7295 if (btrfs_trans_handle_cachep)
7296 kmem_cache_destroy(btrfs_trans_handle_cachep);
7297 if (btrfs_transaction_cachep)
7298 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7299 if (btrfs_path_cachep)
7300 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7301 if (btrfs_free_space_cachep)
7302 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7303 if (btrfs_delalloc_work_cachep)
7304 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7305}
7306
7307int btrfs_init_cachep(void)
7308{
837e1972 7309 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7310 sizeof(struct btrfs_inode), 0,
7311 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7312 if (!btrfs_inode_cachep)
7313 goto fail;
9601e3f6 7314
837e1972 7315 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7316 sizeof(struct btrfs_trans_handle), 0,
7317 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7318 if (!btrfs_trans_handle_cachep)
7319 goto fail;
9601e3f6 7320
837e1972 7321 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7322 sizeof(struct btrfs_transaction), 0,
7323 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7324 if (!btrfs_transaction_cachep)
7325 goto fail;
9601e3f6 7326
837e1972 7327 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7328 sizeof(struct btrfs_path), 0,
7329 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7330 if (!btrfs_path_cachep)
7331 goto fail;
9601e3f6 7332
837e1972 7333 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7334 sizeof(struct btrfs_free_space), 0,
7335 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7336 if (!btrfs_free_space_cachep)
7337 goto fail;
7338
8ccf6f19
MX
7339 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7340 sizeof(struct btrfs_delalloc_work), 0,
7341 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7342 NULL);
7343 if (!btrfs_delalloc_work_cachep)
7344 goto fail;
7345
39279cc3
CM
7346 return 0;
7347fail:
7348 btrfs_destroy_cachep();
7349 return -ENOMEM;
7350}
7351
7352static int btrfs_getattr(struct vfsmount *mnt,
7353 struct dentry *dentry, struct kstat *stat)
7354{
df0af1a5 7355 u64 delalloc_bytes;
39279cc3 7356 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7357 u32 blocksize = inode->i_sb->s_blocksize;
7358
39279cc3 7359 generic_fillattr(inode, stat);
0ee5dc67 7360 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7361 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
7362
7363 spin_lock(&BTRFS_I(inode)->lock);
7364 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7365 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 7366 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 7367 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7368 return 0;
7369}
7370
75e7cb7f
LB
7371/*
7372 * If a file is moved, it will inherit the cow and compression flags of the new
7373 * directory.
7374 */
7375static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7376{
7377 struct btrfs_inode *b_dir = BTRFS_I(dir);
7378 struct btrfs_inode *b_inode = BTRFS_I(inode);
7379
7380 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7381 b_inode->flags |= BTRFS_INODE_NODATACOW;
7382 else
7383 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7384
bc178237 7385 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
75e7cb7f 7386 b_inode->flags |= BTRFS_INODE_COMPRESS;
bc178237
LB
7387 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7388 } else {
7389 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7390 BTRFS_INODE_NOCOMPRESS);
7391 }
75e7cb7f
LB
7392}
7393
d397712b
CM
7394static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7395 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7396{
7397 struct btrfs_trans_handle *trans;
7398 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7399 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7400 struct inode *new_inode = new_dentry->d_inode;
7401 struct inode *old_inode = old_dentry->d_inode;
7402 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7403 u64 index = 0;
4df27c4d 7404 u64 root_objectid;
39279cc3 7405 int ret;
33345d01 7406 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7407
33345d01 7408 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7409 return -EPERM;
7410
4df27c4d 7411 /* we only allow rename subvolume link between subvolumes */
33345d01 7412 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7413 return -EXDEV;
7414
33345d01
LZ
7415 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7416 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7417 return -ENOTEMPTY;
5f39d397 7418
4df27c4d
YZ
7419 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7420 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7421 return -ENOTEMPTY;
9c52057c
CM
7422
7423
7424 /* check for collisions, even if the name isn't there */
7425 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
7426 new_dentry->d_name.name,
7427 new_dentry->d_name.len);
7428
7429 if (ret) {
7430 if (ret == -EEXIST) {
7431 /* we shouldn't get
7432 * eexist without a new_inode */
7433 if (!new_inode) {
7434 WARN_ON(1);
7435 return ret;
7436 }
7437 } else {
7438 /* maybe -EOVERFLOW */
7439 return ret;
7440 }
7441 }
7442 ret = 0;
7443
5a3f23d5
CM
7444 /*
7445 * we're using rename to replace one file with another.
7446 * and the replacement file is large. Start IO on it now so
7447 * we don't add too much work to the end of the transaction
7448 */
4baf8c92 7449 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7450 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7451 filemap_flush(old_inode->i_mapping);
7452
76dda93c 7453 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7454 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7455 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7456 /*
7457 * We want to reserve the absolute worst case amount of items. So if
7458 * both inodes are subvols and we need to unlink them then that would
7459 * require 4 item modifications, but if they are both normal inodes it
7460 * would require 5 item modifications, so we'll assume their normal
7461 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7462 * should cover the worst case number of items we'll modify.
7463 */
7464 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7465 if (IS_ERR(trans)) {
7466 ret = PTR_ERR(trans);
7467 goto out_notrans;
7468 }
76dda93c 7469
4df27c4d
YZ
7470 if (dest != root)
7471 btrfs_record_root_in_trans(trans, dest);
5f39d397 7472
a5719521
YZ
7473 ret = btrfs_set_inode_index(new_dir, &index);
7474 if (ret)
7475 goto out_fail;
5a3f23d5 7476
33345d01 7477 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7478 /* force full log commit if subvolume involved. */
7479 root->fs_info->last_trans_log_full_commit = trans->transid;
7480 } else {
a5719521
YZ
7481 ret = btrfs_insert_inode_ref(trans, dest,
7482 new_dentry->d_name.name,
7483 new_dentry->d_name.len,
33345d01
LZ
7484 old_ino,
7485 btrfs_ino(new_dir), index);
a5719521
YZ
7486 if (ret)
7487 goto out_fail;
4df27c4d
YZ
7488 /*
7489 * this is an ugly little race, but the rename is required
7490 * to make sure that if we crash, the inode is either at the
7491 * old name or the new one. pinning the log transaction lets
7492 * us make sure we don't allow a log commit to come in after
7493 * we unlink the name but before we add the new name back in.
7494 */
7495 btrfs_pin_log_trans(root);
7496 }
5a3f23d5
CM
7497 /*
7498 * make sure the inode gets flushed if it is replacing
7499 * something.
7500 */
33345d01 7501 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7502 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7503
0c4d2d95
JB
7504 inode_inc_iversion(old_dir);
7505 inode_inc_iversion(new_dir);
7506 inode_inc_iversion(old_inode);
39279cc3
CM
7507 old_dir->i_ctime = old_dir->i_mtime = ctime;
7508 new_dir->i_ctime = new_dir->i_mtime = ctime;
7509 old_inode->i_ctime = ctime;
5f39d397 7510
12fcfd22
CM
7511 if (old_dentry->d_parent != new_dentry->d_parent)
7512 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7513
33345d01 7514 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7515 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7516 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7517 old_dentry->d_name.name,
7518 old_dentry->d_name.len);
7519 } else {
92986796
AV
7520 ret = __btrfs_unlink_inode(trans, root, old_dir,
7521 old_dentry->d_inode,
7522 old_dentry->d_name.name,
7523 old_dentry->d_name.len);
7524 if (!ret)
7525 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7526 }
79787eaa
JM
7527 if (ret) {
7528 btrfs_abort_transaction(trans, root, ret);
7529 goto out_fail;
7530 }
39279cc3
CM
7531
7532 if (new_inode) {
0c4d2d95 7533 inode_inc_iversion(new_inode);
39279cc3 7534 new_inode->i_ctime = CURRENT_TIME;
33345d01 7535 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7536 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7537 root_objectid = BTRFS_I(new_inode)->location.objectid;
7538 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7539 root_objectid,
7540 new_dentry->d_name.name,
7541 new_dentry->d_name.len);
7542 BUG_ON(new_inode->i_nlink == 0);
7543 } else {
7544 ret = btrfs_unlink_inode(trans, dest, new_dir,
7545 new_dentry->d_inode,
7546 new_dentry->d_name.name,
7547 new_dentry->d_name.len);
7548 }
79787eaa 7549 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7550 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7551 BUG_ON(ret);
7b128766 7552 }
79787eaa
JM
7553 if (ret) {
7554 btrfs_abort_transaction(trans, root, ret);
7555 goto out_fail;
7556 }
39279cc3 7557 }
aec7477b 7558
75e7cb7f
LB
7559 fixup_inode_flags(new_dir, old_inode);
7560
4df27c4d
YZ
7561 ret = btrfs_add_link(trans, new_dir, old_inode,
7562 new_dentry->d_name.name,
a5719521 7563 new_dentry->d_name.len, 0, index);
79787eaa
JM
7564 if (ret) {
7565 btrfs_abort_transaction(trans, root, ret);
7566 goto out_fail;
7567 }
39279cc3 7568
33345d01 7569 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7570 struct dentry *parent = new_dentry->d_parent;
6a912213 7571 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7572 btrfs_end_log_trans(root);
7573 }
39279cc3 7574out_fail:
7ad85bb7 7575 btrfs_end_transaction(trans, root);
b44c59a8 7576out_notrans:
33345d01 7577 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7578 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7579
39279cc3
CM
7580 return ret;
7581}
7582
8ccf6f19
MX
7583static void btrfs_run_delalloc_work(struct btrfs_work *work)
7584{
7585 struct btrfs_delalloc_work *delalloc_work;
7586
7587 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7588 work);
7589 if (delalloc_work->wait)
7590 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7591 else
7592 filemap_flush(delalloc_work->inode->i_mapping);
7593
7594 if (delalloc_work->delay_iput)
7595 btrfs_add_delayed_iput(delalloc_work->inode);
7596 else
7597 iput(delalloc_work->inode);
7598 complete(&delalloc_work->completion);
7599}
7600
7601struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7602 int wait, int delay_iput)
7603{
7604 struct btrfs_delalloc_work *work;
7605
7606 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7607 if (!work)
7608 return NULL;
7609
7610 init_completion(&work->completion);
7611 INIT_LIST_HEAD(&work->list);
7612 work->inode = inode;
7613 work->wait = wait;
7614 work->delay_iput = delay_iput;
7615 work->work.func = btrfs_run_delalloc_work;
7616
7617 return work;
7618}
7619
7620void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7621{
7622 wait_for_completion(&work->completion);
7623 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7624}
7625
d352ac68
CM
7626/*
7627 * some fairly slow code that needs optimization. This walks the list
7628 * of all the inodes with pending delalloc and forces them to disk.
7629 */
24bbcf04 7630int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 7631{
ea8c2819 7632 struct btrfs_inode *binode;
5b21f2ed 7633 struct inode *inode;
8ccf6f19
MX
7634 struct btrfs_delalloc_work *work, *next;
7635 struct list_head works;
1eafa6c7 7636 struct list_head splice;
8ccf6f19 7637 int ret = 0;
ea8c2819 7638
c146afad
YZ
7639 if (root->fs_info->sb->s_flags & MS_RDONLY)
7640 return -EROFS;
7641
8ccf6f19 7642 INIT_LIST_HEAD(&works);
1eafa6c7 7643 INIT_LIST_HEAD(&splice);
63607cc8 7644
75eff68e 7645 spin_lock(&root->fs_info->delalloc_lock);
1eafa6c7
MX
7646 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
7647 while (!list_empty(&splice)) {
7648 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 7649 delalloc_inodes);
1eafa6c7
MX
7650
7651 list_del_init(&binode->delalloc_inodes);
7652
5b21f2ed 7653 inode = igrab(&binode->vfs_inode);
df0af1a5
MX
7654 if (!inode) {
7655 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
7656 &binode->runtime_flags);
1eafa6c7 7657 continue;
df0af1a5 7658 }
1eafa6c7
MX
7659
7660 list_add_tail(&binode->delalloc_inodes,
7661 &root->fs_info->delalloc_inodes);
75eff68e 7662 spin_unlock(&root->fs_info->delalloc_lock);
1eafa6c7
MX
7663
7664 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7665 if (unlikely(!work)) {
7666 ret = -ENOMEM;
7667 goto out;
5b21f2ed 7668 }
1eafa6c7
MX
7669 list_add_tail(&work->list, &works);
7670 btrfs_queue_worker(&root->fs_info->flush_workers,
7671 &work->work);
7672
5b21f2ed 7673 cond_resched();
75eff68e 7674 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7675 }
75eff68e 7676 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d 7677
1eafa6c7
MX
7678 list_for_each_entry_safe(work, next, &works, list) {
7679 list_del_init(&work->list);
7680 btrfs_wait_and_free_delalloc_work(work);
7681 }
7682
8c8bee1d
CM
7683 /* the filemap_flush will queue IO into the worker threads, but
7684 * we have to make sure the IO is actually started and that
7685 * ordered extents get created before we return
7686 */
7687 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7688 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7689 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7690 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7691 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7692 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7693 }
7694 atomic_dec(&root->fs_info->async_submit_draining);
1eafa6c7 7695 return 0;
8ccf6f19
MX
7696out:
7697 list_for_each_entry_safe(work, next, &works, list) {
7698 list_del_init(&work->list);
7699 btrfs_wait_and_free_delalloc_work(work);
7700 }
1eafa6c7
MX
7701
7702 if (!list_empty_careful(&splice)) {
7703 spin_lock(&root->fs_info->delalloc_lock);
7704 list_splice_tail(&splice, &root->fs_info->delalloc_inodes);
7705 spin_unlock(&root->fs_info->delalloc_lock);
7706 }
8ccf6f19 7707 return ret;
ea8c2819
CM
7708}
7709
39279cc3
CM
7710static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7711 const char *symname)
7712{
7713 struct btrfs_trans_handle *trans;
7714 struct btrfs_root *root = BTRFS_I(dir)->root;
7715 struct btrfs_path *path;
7716 struct btrfs_key key;
1832a6d5 7717 struct inode *inode = NULL;
39279cc3
CM
7718 int err;
7719 int drop_inode = 0;
7720 u64 objectid;
00e4e6b3 7721 u64 index = 0 ;
39279cc3
CM
7722 int name_len;
7723 int datasize;
5f39d397 7724 unsigned long ptr;
39279cc3 7725 struct btrfs_file_extent_item *ei;
5f39d397 7726 struct extent_buffer *leaf;
39279cc3
CM
7727
7728 name_len = strlen(symname) + 1;
7729 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7730 return -ENAMETOOLONG;
1832a6d5 7731
9ed74f2d
JB
7732 /*
7733 * 2 items for inode item and ref
7734 * 2 items for dir items
7735 * 1 item for xattr if selinux is on
7736 */
a22285a6
YZ
7737 trans = btrfs_start_transaction(root, 5);
7738 if (IS_ERR(trans))
7739 return PTR_ERR(trans);
1832a6d5 7740
581bb050
LZ
7741 err = btrfs_find_free_ino(root, &objectid);
7742 if (err)
7743 goto out_unlock;
7744
aec7477b 7745 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7746 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7747 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7748 if (IS_ERR(inode)) {
7749 err = PTR_ERR(inode);
39279cc3 7750 goto out_unlock;
7cf96da3 7751 }
39279cc3 7752
2a7dba39 7753 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7754 if (err) {
7755 drop_inode = 1;
7756 goto out_unlock;
7757 }
7758
ad19db71
CS
7759 /*
7760 * If the active LSM wants to access the inode during
7761 * d_instantiate it needs these. Smack checks to see
7762 * if the filesystem supports xattrs by looking at the
7763 * ops vector.
7764 */
7765 inode->i_fop = &btrfs_file_operations;
7766 inode->i_op = &btrfs_file_inode_operations;
7767
a1b075d2 7768 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7769 if (err)
7770 drop_inode = 1;
7771 else {
7772 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7773 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7774 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7775 }
39279cc3
CM
7776 if (drop_inode)
7777 goto out_unlock;
7778
7779 path = btrfs_alloc_path();
d8926bb3
MF
7780 if (!path) {
7781 err = -ENOMEM;
7782 drop_inode = 1;
7783 goto out_unlock;
7784 }
33345d01 7785 key.objectid = btrfs_ino(inode);
39279cc3 7786 key.offset = 0;
39279cc3
CM
7787 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7788 datasize = btrfs_file_extent_calc_inline_size(name_len);
7789 err = btrfs_insert_empty_item(trans, root, path, &key,
7790 datasize);
54aa1f4d
CM
7791 if (err) {
7792 drop_inode = 1;
b0839166 7793 btrfs_free_path(path);
54aa1f4d
CM
7794 goto out_unlock;
7795 }
5f39d397
CM
7796 leaf = path->nodes[0];
7797 ei = btrfs_item_ptr(leaf, path->slots[0],
7798 struct btrfs_file_extent_item);
7799 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7800 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7801 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7802 btrfs_set_file_extent_encryption(leaf, ei, 0);
7803 btrfs_set_file_extent_compression(leaf, ei, 0);
7804 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7805 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7806
39279cc3 7807 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7808 write_extent_buffer(leaf, symname, ptr, name_len);
7809 btrfs_mark_buffer_dirty(leaf);
39279cc3 7810 btrfs_free_path(path);
5f39d397 7811
39279cc3
CM
7812 inode->i_op = &btrfs_symlink_inode_operations;
7813 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7814 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7815 inode_set_bytes(inode, name_len);
dbe674a9 7816 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7817 err = btrfs_update_inode(trans, root, inode);
7818 if (err)
7819 drop_inode = 1;
39279cc3
CM
7820
7821out_unlock:
08c422c2
AV
7822 if (!err)
7823 d_instantiate(dentry, inode);
7ad85bb7 7824 btrfs_end_transaction(trans, root);
39279cc3
CM
7825 if (drop_inode) {
7826 inode_dec_link_count(inode);
7827 iput(inode);
7828 }
b53d3f5d 7829 btrfs_btree_balance_dirty(root);
39279cc3
CM
7830 return err;
7831}
16432985 7832
0af3d00b
JB
7833static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7834 u64 start, u64 num_bytes, u64 min_size,
7835 loff_t actual_len, u64 *alloc_hint,
7836 struct btrfs_trans_handle *trans)
d899e052 7837{
5dc562c5
JB
7838 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7839 struct extent_map *em;
d899e052
YZ
7840 struct btrfs_root *root = BTRFS_I(inode)->root;
7841 struct btrfs_key ins;
d899e052 7842 u64 cur_offset = start;
55a61d1d 7843 u64 i_size;
d899e052 7844 int ret = 0;
0af3d00b 7845 bool own_trans = true;
d899e052 7846
0af3d00b
JB
7847 if (trans)
7848 own_trans = false;
d899e052 7849 while (num_bytes > 0) {
0af3d00b
JB
7850 if (own_trans) {
7851 trans = btrfs_start_transaction(root, 3);
7852 if (IS_ERR(trans)) {
7853 ret = PTR_ERR(trans);
7854 break;
7855 }
5a303d5d
YZ
7856 }
7857
efa56464 7858 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7859 0, *alloc_hint, &ins, 1);
5a303d5d 7860 if (ret) {
0af3d00b
JB
7861 if (own_trans)
7862 btrfs_end_transaction(trans, root);
a22285a6 7863 break;
d899e052 7864 }
5a303d5d 7865
d899e052
YZ
7866 ret = insert_reserved_file_extent(trans, inode,
7867 cur_offset, ins.objectid,
7868 ins.offset, ins.offset,
920bbbfb 7869 ins.offset, 0, 0, 0,
d899e052 7870 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7871 if (ret) {
7872 btrfs_abort_transaction(trans, root, ret);
7873 if (own_trans)
7874 btrfs_end_transaction(trans, root);
7875 break;
7876 }
a1ed835e
CM
7877 btrfs_drop_extent_cache(inode, cur_offset,
7878 cur_offset + ins.offset -1, 0);
5a303d5d 7879
5dc562c5
JB
7880 em = alloc_extent_map();
7881 if (!em) {
7882 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7883 &BTRFS_I(inode)->runtime_flags);
7884 goto next;
7885 }
7886
7887 em->start = cur_offset;
7888 em->orig_start = cur_offset;
7889 em->len = ins.offset;
7890 em->block_start = ins.objectid;
7891 em->block_len = ins.offset;
b4939680 7892 em->orig_block_len = ins.offset;
5dc562c5
JB
7893 em->bdev = root->fs_info->fs_devices->latest_bdev;
7894 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7895 em->generation = trans->transid;
7896
7897 while (1) {
7898 write_lock(&em_tree->lock);
7899 ret = add_extent_mapping(em_tree, em);
7900 if (!ret)
7901 list_move(&em->list,
7902 &em_tree->modified_extents);
7903 write_unlock(&em_tree->lock);
7904 if (ret != -EEXIST)
7905 break;
7906 btrfs_drop_extent_cache(inode, cur_offset,
7907 cur_offset + ins.offset - 1,
7908 0);
7909 }
7910 free_extent_map(em);
7911next:
d899e052
YZ
7912 num_bytes -= ins.offset;
7913 cur_offset += ins.offset;
efa56464 7914 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7915
0c4d2d95 7916 inode_inc_iversion(inode);
d899e052 7917 inode->i_ctime = CURRENT_TIME;
6cbff00f 7918 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7919 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7920 (actual_len > inode->i_size) &&
7921 (cur_offset > inode->i_size)) {
d1ea6a61 7922 if (cur_offset > actual_len)
55a61d1d 7923 i_size = actual_len;
d1ea6a61 7924 else
55a61d1d
JB
7925 i_size = cur_offset;
7926 i_size_write(inode, i_size);
7927 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7928 }
7929
d899e052 7930 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7931
7932 if (ret) {
7933 btrfs_abort_transaction(trans, root, ret);
7934 if (own_trans)
7935 btrfs_end_transaction(trans, root);
7936 break;
7937 }
d899e052 7938
0af3d00b
JB
7939 if (own_trans)
7940 btrfs_end_transaction(trans, root);
5a303d5d 7941 }
d899e052
YZ
7942 return ret;
7943}
7944
0af3d00b
JB
7945int btrfs_prealloc_file_range(struct inode *inode, int mode,
7946 u64 start, u64 num_bytes, u64 min_size,
7947 loff_t actual_len, u64 *alloc_hint)
7948{
7949 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7950 min_size, actual_len, alloc_hint,
7951 NULL);
7952}
7953
7954int btrfs_prealloc_file_range_trans(struct inode *inode,
7955 struct btrfs_trans_handle *trans, int mode,
7956 u64 start, u64 num_bytes, u64 min_size,
7957 loff_t actual_len, u64 *alloc_hint)
7958{
7959 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7960 min_size, actual_len, alloc_hint, trans);
7961}
7962
e6dcd2dc
CM
7963static int btrfs_set_page_dirty(struct page *page)
7964{
e6dcd2dc
CM
7965 return __set_page_dirty_nobuffers(page);
7966}
7967
10556cb2 7968static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7969{
b83cc969 7970 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7971 umode_t mode = inode->i_mode;
b83cc969 7972
cb6db4e5
JM
7973 if (mask & MAY_WRITE &&
7974 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7975 if (btrfs_root_readonly(root))
7976 return -EROFS;
7977 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7978 return -EACCES;
7979 }
2830ba7f 7980 return generic_permission(inode, mask);
fdebe2bd 7981}
39279cc3 7982
6e1d5dcc 7983static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7984 .getattr = btrfs_getattr,
39279cc3
CM
7985 .lookup = btrfs_lookup,
7986 .create = btrfs_create,
7987 .unlink = btrfs_unlink,
7988 .link = btrfs_link,
7989 .mkdir = btrfs_mkdir,
7990 .rmdir = btrfs_rmdir,
7991 .rename = btrfs_rename,
7992 .symlink = btrfs_symlink,
7993 .setattr = btrfs_setattr,
618e21d5 7994 .mknod = btrfs_mknod,
95819c05
CH
7995 .setxattr = btrfs_setxattr,
7996 .getxattr = btrfs_getxattr,
5103e947 7997 .listxattr = btrfs_listxattr,
95819c05 7998 .removexattr = btrfs_removexattr,
fdebe2bd 7999 .permission = btrfs_permission,
4e34e719 8000 .get_acl = btrfs_get_acl,
39279cc3 8001};
6e1d5dcc 8002static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8003 .lookup = btrfs_lookup,
fdebe2bd 8004 .permission = btrfs_permission,
4e34e719 8005 .get_acl = btrfs_get_acl,
39279cc3 8006};
76dda93c 8007
828c0950 8008static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8009 .llseek = generic_file_llseek,
8010 .read = generic_read_dir,
cbdf5a24 8011 .readdir = btrfs_real_readdir,
34287aa3 8012 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8013#ifdef CONFIG_COMPAT
34287aa3 8014 .compat_ioctl = btrfs_ioctl,
39279cc3 8015#endif
6bf13c0c 8016 .release = btrfs_release_file,
e02119d5 8017 .fsync = btrfs_sync_file,
39279cc3
CM
8018};
8019
d1310b2e 8020static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8021 .fill_delalloc = run_delalloc_range,
065631f6 8022 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8023 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8024 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8025 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8026 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8027 .set_bit_hook = btrfs_set_bit_hook,
8028 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8029 .merge_extent_hook = btrfs_merge_extent_hook,
8030 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8031};
8032
35054394
CM
8033/*
8034 * btrfs doesn't support the bmap operation because swapfiles
8035 * use bmap to make a mapping of extents in the file. They assume
8036 * these extents won't change over the life of the file and they
8037 * use the bmap result to do IO directly to the drive.
8038 *
8039 * the btrfs bmap call would return logical addresses that aren't
8040 * suitable for IO and they also will change frequently as COW
8041 * operations happen. So, swapfile + btrfs == corruption.
8042 *
8043 * For now we're avoiding this by dropping bmap.
8044 */
7f09410b 8045static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8046 .readpage = btrfs_readpage,
8047 .writepage = btrfs_writepage,
b293f02e 8048 .writepages = btrfs_writepages,
3ab2fb5a 8049 .readpages = btrfs_readpages,
16432985 8050 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8051 .invalidatepage = btrfs_invalidatepage,
8052 .releasepage = btrfs_releasepage,
e6dcd2dc 8053 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8054 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8055};
8056
7f09410b 8057static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8058 .readpage = btrfs_readpage,
8059 .writepage = btrfs_writepage,
2bf5a725
CM
8060 .invalidatepage = btrfs_invalidatepage,
8061 .releasepage = btrfs_releasepage,
39279cc3
CM
8062};
8063
6e1d5dcc 8064static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8065 .getattr = btrfs_getattr,
8066 .setattr = btrfs_setattr,
95819c05
CH
8067 .setxattr = btrfs_setxattr,
8068 .getxattr = btrfs_getxattr,
5103e947 8069 .listxattr = btrfs_listxattr,
95819c05 8070 .removexattr = btrfs_removexattr,
fdebe2bd 8071 .permission = btrfs_permission,
1506fcc8 8072 .fiemap = btrfs_fiemap,
4e34e719 8073 .get_acl = btrfs_get_acl,
e41f941a 8074 .update_time = btrfs_update_time,
39279cc3 8075};
6e1d5dcc 8076static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8077 .getattr = btrfs_getattr,
8078 .setattr = btrfs_setattr,
fdebe2bd 8079 .permission = btrfs_permission,
95819c05
CH
8080 .setxattr = btrfs_setxattr,
8081 .getxattr = btrfs_getxattr,
33268eaf 8082 .listxattr = btrfs_listxattr,
95819c05 8083 .removexattr = btrfs_removexattr,
4e34e719 8084 .get_acl = btrfs_get_acl,
e41f941a 8085 .update_time = btrfs_update_time,
618e21d5 8086};
6e1d5dcc 8087static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8088 .readlink = generic_readlink,
8089 .follow_link = page_follow_link_light,
8090 .put_link = page_put_link,
f209561a 8091 .getattr = btrfs_getattr,
22c44fe6 8092 .setattr = btrfs_setattr,
fdebe2bd 8093 .permission = btrfs_permission,
0279b4cd
JO
8094 .setxattr = btrfs_setxattr,
8095 .getxattr = btrfs_getxattr,
8096 .listxattr = btrfs_listxattr,
8097 .removexattr = btrfs_removexattr,
4e34e719 8098 .get_acl = btrfs_get_acl,
e41f941a 8099 .update_time = btrfs_update_time,
39279cc3 8100};
76dda93c 8101
82d339d9 8102const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8103 .d_delete = btrfs_dentry_delete,
b4aff1f8 8104 .d_release = btrfs_dentry_release,
76dda93c 8105};