PTR_RET is now PTR_ERR_OR_ZERO
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
4b4e25f2 46#include "compat.h"
39279cc3
CM
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
39279cc3 51#include "print-tree.h"
e6dcd2dc 52#include "ordered-data.h"
95819c05 53#include "xattr.h"
e02119d5 54#include "tree-log.h"
4a54c8c1 55#include "volumes.h"
c8b97818 56#include "compression.h"
b4ce94de 57#include "locking.h"
dc89e982 58#include "free-space-cache.h"
581bb050 59#include "inode-map.h"
38c227d8 60#include "backref.h"
f23b5a59 61#include "hash.h"
39279cc3
CM
62
63struct btrfs_iget_args {
64 u64 ino;
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
d397712b 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
fe3f566c 131 int compress_type,
c8b97818
CM
132 struct page **compressed_pages)
133{
134 struct btrfs_key key;
135 struct btrfs_path *path;
136 struct extent_buffer *leaf;
137 struct page *page = NULL;
138 char *kaddr;
139 unsigned long ptr;
140 struct btrfs_file_extent_item *ei;
141 int err = 0;
142 int ret;
143 size_t cur_size = size;
144 size_t datasize;
145 unsigned long offset;
c8b97818 146
fe3f566c 147 if (compressed_size && compressed_pages)
c8b97818 148 cur_size = compressed_size;
c8b97818 149
d397712b
CM
150 path = btrfs_alloc_path();
151 if (!path)
c8b97818
CM
152 return -ENOMEM;
153
b9473439 154 path->leave_spinning = 1;
c8b97818 155
33345d01 156 key.objectid = btrfs_ino(inode);
c8b97818
CM
157 key.offset = start;
158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
159 datasize = btrfs_file_extent_calc_inline_size(cur_size);
160
161 inode_add_bytes(inode, size);
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 datasize);
c8b97818
CM
164 if (ret) {
165 err = ret;
c8b97818
CM
166 goto fail;
167 }
168 leaf = path->nodes[0];
169 ei = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_file_extent_item);
171 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173 btrfs_set_file_extent_encryption(leaf, ei, 0);
174 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176 ptr = btrfs_file_extent_inline_start(ei);
177
261507a0 178 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
179 struct page *cpage;
180 int i = 0;
d397712b 181 while (compressed_size > 0) {
c8b97818 182 cpage = compressed_pages[i];
5b050f04 183 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
184 PAGE_CACHE_SIZE);
185
7ac687d9 186 kaddr = kmap_atomic(cpage);
c8b97818 187 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 188 kunmap_atomic(kaddr);
c8b97818
CM
189
190 i++;
191 ptr += cur_size;
192 compressed_size -= cur_size;
193 }
194 btrfs_set_file_extent_compression(leaf, ei,
261507a0 195 compress_type);
c8b97818
CM
196 } else {
197 page = find_get_page(inode->i_mapping,
198 start >> PAGE_CACHE_SHIFT);
199 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 200 kaddr = kmap_atomic(page);
c8b97818
CM
201 offset = start & (PAGE_CACHE_SIZE - 1);
202 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204 page_cache_release(page);
205 }
206 btrfs_mark_buffer_dirty(leaf);
207 btrfs_free_path(path);
208
c2167754
YZ
209 /*
210 * we're an inline extent, so nobody can
211 * extend the file past i_size without locking
212 * a page we already have locked.
213 *
214 * We must do any isize and inode updates
215 * before we unlock the pages. Otherwise we
216 * could end up racing with unlink.
217 */
c8b97818 218 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 219 ret = btrfs_update_inode(trans, root, inode);
c2167754 220
79787eaa 221 return ret;
c8b97818
CM
222fail:
223 btrfs_free_path(path);
224 return err;
225}
226
227
228/*
229 * conditionally insert an inline extent into the file. This
230 * does the checks required to make sure the data is small enough
231 * to fit as an inline extent.
232 */
7f366cfe 233static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
234 struct btrfs_root *root,
235 struct inode *inode, u64 start, u64 end,
fe3f566c 236 size_t compressed_size, int compress_type,
c8b97818
CM
237 struct page **compressed_pages)
238{
239 u64 isize = i_size_read(inode);
240 u64 actual_end = min(end + 1, isize);
241 u64 inline_len = actual_end - start;
fda2832f 242 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
243 u64 data_len = inline_len;
244 int ret;
245
246 if (compressed_size)
247 data_len = compressed_size;
248
249 if (start > 0 ||
70b99e69 250 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
251 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
252 (!compressed_size &&
253 (actual_end & (root->sectorsize - 1)) == 0) ||
254 end + 1 < isize ||
255 data_len > root->fs_info->max_inline) {
256 return 1;
257 }
258
2671485d 259 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
260 if (ret)
261 return ret;
c8b97818
CM
262
263 if (isize > actual_end)
264 inline_len = min_t(u64, isize, actual_end);
265 ret = insert_inline_extent(trans, root, inode, start,
266 inline_len, compressed_size,
fe3f566c 267 compress_type, compressed_pages);
2adcac1a 268 if (ret && ret != -ENOSPC) {
79787eaa
JM
269 btrfs_abort_transaction(trans, root, ret);
270 return ret;
2adcac1a
JB
271 } else if (ret == -ENOSPC) {
272 return 1;
79787eaa 273 }
2adcac1a 274
bdc20e67 275 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 276 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 277 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
278 return 0;
279}
280
771ed689
CM
281struct async_extent {
282 u64 start;
283 u64 ram_size;
284 u64 compressed_size;
285 struct page **pages;
286 unsigned long nr_pages;
261507a0 287 int compress_type;
771ed689
CM
288 struct list_head list;
289};
290
291struct async_cow {
292 struct inode *inode;
293 struct btrfs_root *root;
294 struct page *locked_page;
295 u64 start;
296 u64 end;
297 struct list_head extents;
298 struct btrfs_work work;
299};
300
301static noinline int add_async_extent(struct async_cow *cow,
302 u64 start, u64 ram_size,
303 u64 compressed_size,
304 struct page **pages,
261507a0
LZ
305 unsigned long nr_pages,
306 int compress_type)
771ed689
CM
307{
308 struct async_extent *async_extent;
309
310 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 311 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
312 async_extent->start = start;
313 async_extent->ram_size = ram_size;
314 async_extent->compressed_size = compressed_size;
315 async_extent->pages = pages;
316 async_extent->nr_pages = nr_pages;
261507a0 317 async_extent->compress_type = compress_type;
771ed689
CM
318 list_add_tail(&async_extent->list, &cow->extents);
319 return 0;
320}
321
d352ac68 322/*
771ed689
CM
323 * we create compressed extents in two phases. The first
324 * phase compresses a range of pages that have already been
325 * locked (both pages and state bits are locked).
c8b97818 326 *
771ed689
CM
327 * This is done inside an ordered work queue, and the compression
328 * is spread across many cpus. The actual IO submission is step
329 * two, and the ordered work queue takes care of making sure that
330 * happens in the same order things were put onto the queue by
331 * writepages and friends.
c8b97818 332 *
771ed689
CM
333 * If this code finds it can't get good compression, it puts an
334 * entry onto the work queue to write the uncompressed bytes. This
335 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
336 * are written in the same order that the flusher thread sent them
337 * down.
d352ac68 338 */
771ed689
CM
339static noinline int compress_file_range(struct inode *inode,
340 struct page *locked_page,
341 u64 start, u64 end,
342 struct async_cow *async_cow,
343 int *num_added)
b888db2b
CM
344{
345 struct btrfs_root *root = BTRFS_I(inode)->root;
346 struct btrfs_trans_handle *trans;
db94535d 347 u64 num_bytes;
db94535d 348 u64 blocksize = root->sectorsize;
c8b97818 349 u64 actual_end;
42dc7bab 350 u64 isize = i_size_read(inode);
e6dcd2dc 351 int ret = 0;
c8b97818
CM
352 struct page **pages = NULL;
353 unsigned long nr_pages;
354 unsigned long nr_pages_ret = 0;
355 unsigned long total_compressed = 0;
356 unsigned long total_in = 0;
357 unsigned long max_compressed = 128 * 1024;
771ed689 358 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
359 int i;
360 int will_compress;
261507a0 361 int compress_type = root->fs_info->compress_type;
4adaa611 362 int redirty = 0;
b888db2b 363
4cb13e5d
LB
364 /* if this is a small write inside eof, kick off a defrag */
365 if ((end - start + 1) < 16 * 1024 &&
366 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
367 btrfs_add_inode_defrag(NULL, inode);
368
42dc7bab 369 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
370again:
371 will_compress = 0;
372 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
373 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 374
f03d9301
CM
375 /*
376 * we don't want to send crud past the end of i_size through
377 * compression, that's just a waste of CPU time. So, if the
378 * end of the file is before the start of our current
379 * requested range of bytes, we bail out to the uncompressed
380 * cleanup code that can deal with all of this.
381 *
382 * It isn't really the fastest way to fix things, but this is a
383 * very uncommon corner.
384 */
385 if (actual_end <= start)
386 goto cleanup_and_bail_uncompressed;
387
c8b97818
CM
388 total_compressed = actual_end - start;
389
390 /* we want to make sure that amount of ram required to uncompress
391 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
392 * of a compressed extent to 128k. This is a crucial number
393 * because it also controls how easily we can spread reads across
394 * cpus for decompression.
395 *
396 * We also want to make sure the amount of IO required to do
397 * a random read is reasonably small, so we limit the size of
398 * a compressed extent to 128k.
c8b97818
CM
399 */
400 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 401 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 402 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
403 total_in = 0;
404 ret = 0;
db94535d 405
771ed689
CM
406 /*
407 * we do compression for mount -o compress and when the
408 * inode has not been flagged as nocompress. This flag can
409 * change at any time if we discover bad compression ratios.
c8b97818 410 */
6cbff00f 411 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 412 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
413 (BTRFS_I(inode)->force_compress) ||
414 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 415 WARN_ON(pages);
cfbc246e 416 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
417 if (!pages) {
418 /* just bail out to the uncompressed code */
419 goto cont;
420 }
c8b97818 421
261507a0
LZ
422 if (BTRFS_I(inode)->force_compress)
423 compress_type = BTRFS_I(inode)->force_compress;
424
4adaa611
CM
425 /*
426 * we need to call clear_page_dirty_for_io on each
427 * page in the range. Otherwise applications with the file
428 * mmap'd can wander in and change the page contents while
429 * we are compressing them.
430 *
431 * If the compression fails for any reason, we set the pages
432 * dirty again later on.
433 */
434 extent_range_clear_dirty_for_io(inode, start, end);
435 redirty = 1;
261507a0
LZ
436 ret = btrfs_compress_pages(compress_type,
437 inode->i_mapping, start,
438 total_compressed, pages,
439 nr_pages, &nr_pages_ret,
440 &total_in,
441 &total_compressed,
442 max_compressed);
c8b97818
CM
443
444 if (!ret) {
445 unsigned long offset = total_compressed &
446 (PAGE_CACHE_SIZE - 1);
447 struct page *page = pages[nr_pages_ret - 1];
448 char *kaddr;
449
450 /* zero the tail end of the last page, we might be
451 * sending it down to disk
452 */
453 if (offset) {
7ac687d9 454 kaddr = kmap_atomic(page);
c8b97818
CM
455 memset(kaddr + offset, 0,
456 PAGE_CACHE_SIZE - offset);
7ac687d9 457 kunmap_atomic(kaddr);
c8b97818
CM
458 }
459 will_compress = 1;
460 }
461 }
560f7d75 462cont:
c8b97818 463 if (start == 0) {
7a7eaa40 464 trans = btrfs_join_transaction(root);
79787eaa
JM
465 if (IS_ERR(trans)) {
466 ret = PTR_ERR(trans);
467 trans = NULL;
468 goto cleanup_and_out;
469 }
0ca1f7ce 470 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 471
c8b97818 472 /* lets try to make an inline extent */
771ed689 473 if (ret || total_in < (actual_end - start)) {
c8b97818 474 /* we didn't compress the entire range, try
771ed689 475 * to make an uncompressed inline extent.
c8b97818
CM
476 */
477 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 478 start, end, 0, 0, NULL);
c8b97818 479 } else {
771ed689 480 /* try making a compressed inline extent */
c8b97818
CM
481 ret = cow_file_range_inline(trans, root, inode,
482 start, end,
fe3f566c
LZ
483 total_compressed,
484 compress_type, pages);
c8b97818 485 }
79787eaa 486 if (ret <= 0) {
771ed689 487 /*
79787eaa
JM
488 * inline extent creation worked or returned error,
489 * we don't need to create any more async work items.
490 * Unlock and free up our temp pages.
771ed689 491 */
c8b97818 492 extent_clear_unlock_delalloc(inode,
a791e35e
CM
493 &BTRFS_I(inode)->io_tree,
494 start, end, NULL,
495 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 496 EXTENT_CLEAR_DELALLOC |
a791e35e 497 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
498
499 btrfs_end_transaction(trans, root);
c8b97818
CM
500 goto free_pages_out;
501 }
c2167754 502 btrfs_end_transaction(trans, root);
c8b97818
CM
503 }
504
505 if (will_compress) {
506 /*
507 * we aren't doing an inline extent round the compressed size
508 * up to a block size boundary so the allocator does sane
509 * things
510 */
fda2832f 511 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
512
513 /*
514 * one last check to make sure the compression is really a
515 * win, compare the page count read with the blocks on disk
516 */
fda2832f 517 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
518 if (total_compressed >= total_in) {
519 will_compress = 0;
520 } else {
c8b97818
CM
521 num_bytes = total_in;
522 }
523 }
524 if (!will_compress && pages) {
525 /*
526 * the compression code ran but failed to make things smaller,
527 * free any pages it allocated and our page pointer array
528 */
529 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 530 WARN_ON(pages[i]->mapping);
c8b97818
CM
531 page_cache_release(pages[i]);
532 }
533 kfree(pages);
534 pages = NULL;
535 total_compressed = 0;
536 nr_pages_ret = 0;
537
538 /* flag the file so we don't compress in the future */
1e701a32
CM
539 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
540 !(BTRFS_I(inode)->force_compress)) {
a555f810 541 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 542 }
c8b97818 543 }
771ed689
CM
544 if (will_compress) {
545 *num_added += 1;
c8b97818 546
771ed689
CM
547 /* the async work queues will take care of doing actual
548 * allocation on disk for these compressed pages,
549 * and will submit them to the elevator.
550 */
551 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
552 total_compressed, pages, nr_pages_ret,
553 compress_type);
179e29e4 554
24ae6365 555 if (start + num_bytes < end) {
771ed689
CM
556 start += num_bytes;
557 pages = NULL;
558 cond_resched();
559 goto again;
560 }
561 } else {
f03d9301 562cleanup_and_bail_uncompressed:
771ed689
CM
563 /*
564 * No compression, but we still need to write the pages in
565 * the file we've been given so far. redirty the locked
566 * page if it corresponds to our extent and set things up
567 * for the async work queue to run cow_file_range to do
568 * the normal delalloc dance
569 */
570 if (page_offset(locked_page) >= start &&
571 page_offset(locked_page) <= end) {
572 __set_page_dirty_nobuffers(locked_page);
573 /* unlocked later on in the async handlers */
574 }
4adaa611
CM
575 if (redirty)
576 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
577 add_async_extent(async_cow, start, end - start + 1,
578 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
579 *num_added += 1;
580 }
3b951516 581
771ed689 582out:
79787eaa 583 return ret;
771ed689
CM
584
585free_pages_out:
586 for (i = 0; i < nr_pages_ret; i++) {
587 WARN_ON(pages[i]->mapping);
588 page_cache_release(pages[i]);
589 }
d397712b 590 kfree(pages);
771ed689
CM
591
592 goto out;
79787eaa
JM
593
594cleanup_and_out:
595 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
596 start, end, NULL,
597 EXTENT_CLEAR_UNLOCK_PAGE |
598 EXTENT_CLEAR_DIRTY |
599 EXTENT_CLEAR_DELALLOC |
600 EXTENT_SET_WRITEBACK |
601 EXTENT_END_WRITEBACK);
602 if (!trans || IS_ERR(trans))
603 btrfs_error(root->fs_info, ret, "Failed to join transaction");
604 else
605 btrfs_abort_transaction(trans, root, ret);
606 goto free_pages_out;
771ed689
CM
607}
608
609/*
610 * phase two of compressed writeback. This is the ordered portion
611 * of the code, which only gets called in the order the work was
612 * queued. We walk all the async extents created by compress_file_range
613 * and send them down to the disk.
614 */
615static noinline int submit_compressed_extents(struct inode *inode,
616 struct async_cow *async_cow)
617{
618 struct async_extent *async_extent;
619 u64 alloc_hint = 0;
620 struct btrfs_trans_handle *trans;
621 struct btrfs_key ins;
622 struct extent_map *em;
623 struct btrfs_root *root = BTRFS_I(inode)->root;
624 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
625 struct extent_io_tree *io_tree;
f5a84ee3 626 int ret = 0;
771ed689
CM
627
628 if (list_empty(&async_cow->extents))
629 return 0;
630
3e04e7f1 631again:
d397712b 632 while (!list_empty(&async_cow->extents)) {
771ed689
CM
633 async_extent = list_entry(async_cow->extents.next,
634 struct async_extent, list);
635 list_del(&async_extent->list);
c8b97818 636
771ed689
CM
637 io_tree = &BTRFS_I(inode)->io_tree;
638
f5a84ee3 639retry:
771ed689
CM
640 /* did the compression code fall back to uncompressed IO? */
641 if (!async_extent->pages) {
642 int page_started = 0;
643 unsigned long nr_written = 0;
644
645 lock_extent(io_tree, async_extent->start,
2ac55d41 646 async_extent->start +
d0082371 647 async_extent->ram_size - 1);
771ed689
CM
648
649 /* allocate blocks */
f5a84ee3
JB
650 ret = cow_file_range(inode, async_cow->locked_page,
651 async_extent->start,
652 async_extent->start +
653 async_extent->ram_size - 1,
654 &page_started, &nr_written, 0);
771ed689 655
79787eaa
JM
656 /* JDM XXX */
657
771ed689
CM
658 /*
659 * if page_started, cow_file_range inserted an
660 * inline extent and took care of all the unlocking
661 * and IO for us. Otherwise, we need to submit
662 * all those pages down to the drive.
663 */
f5a84ee3 664 if (!page_started && !ret)
771ed689
CM
665 extent_write_locked_range(io_tree,
666 inode, async_extent->start,
d397712b 667 async_extent->start +
771ed689
CM
668 async_extent->ram_size - 1,
669 btrfs_get_extent,
670 WB_SYNC_ALL);
3e04e7f1
JB
671 else if (ret)
672 unlock_page(async_cow->locked_page);
771ed689
CM
673 kfree(async_extent);
674 cond_resched();
675 continue;
676 }
677
678 lock_extent(io_tree, async_extent->start,
d0082371 679 async_extent->start + async_extent->ram_size - 1);
771ed689 680
7a7eaa40 681 trans = btrfs_join_transaction(root);
79787eaa
JM
682 if (IS_ERR(trans)) {
683 ret = PTR_ERR(trans);
684 } else {
685 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
686 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
687 async_extent->compressed_size,
688 async_extent->compressed_size,
81c9ad23 689 0, alloc_hint, &ins, 1);
962197ba 690 if (ret && ret != -ENOSPC)
79787eaa
JM
691 btrfs_abort_transaction(trans, root, ret);
692 btrfs_end_transaction(trans, root);
693 }
c2167754 694
f5a84ee3
JB
695 if (ret) {
696 int i;
3e04e7f1 697
f5a84ee3
JB
698 for (i = 0; i < async_extent->nr_pages; i++) {
699 WARN_ON(async_extent->pages[i]->mapping);
700 page_cache_release(async_extent->pages[i]);
701 }
702 kfree(async_extent->pages);
703 async_extent->nr_pages = 0;
704 async_extent->pages = NULL;
3e04e7f1 705
fdf8e2ea
JB
706 if (ret == -ENOSPC) {
707 unlock_extent(io_tree, async_extent->start,
708 async_extent->start +
709 async_extent->ram_size - 1);
79787eaa 710 goto retry;
fdf8e2ea 711 }
3e04e7f1 712 goto out_free;
f5a84ee3
JB
713 }
714
c2167754
YZ
715 /*
716 * here we're doing allocation and writeback of the
717 * compressed pages
718 */
719 btrfs_drop_extent_cache(inode, async_extent->start,
720 async_extent->start +
721 async_extent->ram_size - 1, 0);
722
172ddd60 723 em = alloc_extent_map();
b9aa55be
LB
724 if (!em) {
725 ret = -ENOMEM;
3e04e7f1 726 goto out_free_reserve;
b9aa55be 727 }
771ed689
CM
728 em->start = async_extent->start;
729 em->len = async_extent->ram_size;
445a6944 730 em->orig_start = em->start;
2ab28f32
JB
731 em->mod_start = em->start;
732 em->mod_len = em->len;
c8b97818 733
771ed689
CM
734 em->block_start = ins.objectid;
735 em->block_len = ins.offset;
b4939680 736 em->orig_block_len = ins.offset;
cc95bef6 737 em->ram_bytes = async_extent->ram_size;
771ed689 738 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 739 em->compress_type = async_extent->compress_type;
771ed689
CM
740 set_bit(EXTENT_FLAG_PINNED, &em->flags);
741 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 742 em->generation = -1;
771ed689 743
d397712b 744 while (1) {
890871be 745 write_lock(&em_tree->lock);
09a2a8f9 746 ret = add_extent_mapping(em_tree, em, 1);
890871be 747 write_unlock(&em_tree->lock);
771ed689
CM
748 if (ret != -EEXIST) {
749 free_extent_map(em);
750 break;
751 }
752 btrfs_drop_extent_cache(inode, async_extent->start,
753 async_extent->start +
754 async_extent->ram_size - 1, 0);
755 }
756
3e04e7f1
JB
757 if (ret)
758 goto out_free_reserve;
759
261507a0
LZ
760 ret = btrfs_add_ordered_extent_compress(inode,
761 async_extent->start,
762 ins.objectid,
763 async_extent->ram_size,
764 ins.offset,
765 BTRFS_ORDERED_COMPRESSED,
766 async_extent->compress_type);
3e04e7f1
JB
767 if (ret)
768 goto out_free_reserve;
771ed689 769
771ed689
CM
770 /*
771 * clear dirty, set writeback and unlock the pages.
772 */
773 extent_clear_unlock_delalloc(inode,
a791e35e
CM
774 &BTRFS_I(inode)->io_tree,
775 async_extent->start,
776 async_extent->start +
777 async_extent->ram_size - 1,
778 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
779 EXTENT_CLEAR_UNLOCK |
a3429ab7 780 EXTENT_CLEAR_DELALLOC |
a791e35e 781 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
782
783 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
784 async_extent->start,
785 async_extent->ram_size,
786 ins.objectid,
787 ins.offset, async_extent->pages,
788 async_extent->nr_pages);
771ed689
CM
789 alloc_hint = ins.objectid + ins.offset;
790 kfree(async_extent);
3e04e7f1
JB
791 if (ret)
792 goto out;
771ed689
CM
793 cond_resched();
794 }
79787eaa
JM
795 ret = 0;
796out:
797 return ret;
3e04e7f1
JB
798out_free_reserve:
799 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 800out_free:
3e04e7f1
JB
801 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
802 async_extent->start,
803 async_extent->start +
804 async_extent->ram_size - 1,
805 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
806 EXTENT_CLEAR_UNLOCK |
807 EXTENT_CLEAR_DELALLOC |
808 EXTENT_CLEAR_DIRTY |
809 EXTENT_SET_WRITEBACK |
810 EXTENT_END_WRITEBACK);
79787eaa 811 kfree(async_extent);
3e04e7f1 812 goto again;
771ed689
CM
813}
814
4b46fce2
JB
815static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
816 u64 num_bytes)
817{
818 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
819 struct extent_map *em;
820 u64 alloc_hint = 0;
821
822 read_lock(&em_tree->lock);
823 em = search_extent_mapping(em_tree, start, num_bytes);
824 if (em) {
825 /*
826 * if block start isn't an actual block number then find the
827 * first block in this inode and use that as a hint. If that
828 * block is also bogus then just don't worry about it.
829 */
830 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
831 free_extent_map(em);
832 em = search_extent_mapping(em_tree, 0, 0);
833 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
834 alloc_hint = em->block_start;
835 if (em)
836 free_extent_map(em);
837 } else {
838 alloc_hint = em->block_start;
839 free_extent_map(em);
840 }
841 }
842 read_unlock(&em_tree->lock);
843
844 return alloc_hint;
845}
846
771ed689
CM
847/*
848 * when extent_io.c finds a delayed allocation range in the file,
849 * the call backs end up in this code. The basic idea is to
850 * allocate extents on disk for the range, and create ordered data structs
851 * in ram to track those extents.
852 *
853 * locked_page is the page that writepage had locked already. We use
854 * it to make sure we don't do extra locks or unlocks.
855 *
856 * *page_started is set to one if we unlock locked_page and do everything
857 * required to start IO on it. It may be clean and already done with
858 * IO when we return.
859 */
b7d5b0a8
MX
860static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
861 struct inode *inode,
862 struct btrfs_root *root,
863 struct page *locked_page,
864 u64 start, u64 end, int *page_started,
865 unsigned long *nr_written,
866 int unlock)
771ed689 867{
771ed689
CM
868 u64 alloc_hint = 0;
869 u64 num_bytes;
870 unsigned long ram_size;
871 u64 disk_num_bytes;
872 u64 cur_alloc_size;
873 u64 blocksize = root->sectorsize;
771ed689
CM
874 struct btrfs_key ins;
875 struct extent_map *em;
876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 int ret = 0;
878
83eea1f1 879 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 880
fda2832f 881 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
882 num_bytes = max(blocksize, num_bytes);
883 disk_num_bytes = num_bytes;
771ed689 884
4cb5300b 885 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
886 if (num_bytes < 64 * 1024 &&
887 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
888 btrfs_add_inode_defrag(trans, inode);
889
771ed689
CM
890 if (start == 0) {
891 /* lets try to make an inline extent */
892 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 893 start, end, 0, 0, NULL);
771ed689
CM
894 if (ret == 0) {
895 extent_clear_unlock_delalloc(inode,
a791e35e
CM
896 &BTRFS_I(inode)->io_tree,
897 start, end, NULL,
898 EXTENT_CLEAR_UNLOCK_PAGE |
899 EXTENT_CLEAR_UNLOCK |
900 EXTENT_CLEAR_DELALLOC |
901 EXTENT_CLEAR_DIRTY |
902 EXTENT_SET_WRITEBACK |
903 EXTENT_END_WRITEBACK);
c2167754 904
771ed689
CM
905 *nr_written = *nr_written +
906 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
907 *page_started = 1;
771ed689 908 goto out;
79787eaa
JM
909 } else if (ret < 0) {
910 btrfs_abort_transaction(trans, root, ret);
911 goto out_unlock;
771ed689
CM
912 }
913 }
914
915 BUG_ON(disk_num_bytes >
6c41761f 916 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 917
4b46fce2 918 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
919 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
920
d397712b 921 while (disk_num_bytes > 0) {
a791e35e
CM
922 unsigned long op;
923
287a0ab9 924 cur_alloc_size = disk_num_bytes;
e6dcd2dc 925 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 926 root->sectorsize, 0, alloc_hint,
81c9ad23 927 &ins, 1);
79787eaa
JM
928 if (ret < 0) {
929 btrfs_abort_transaction(trans, root, ret);
930 goto out_unlock;
931 }
d397712b 932
172ddd60 933 em = alloc_extent_map();
b9aa55be
LB
934 if (!em) {
935 ret = -ENOMEM;
ace68bac 936 goto out_reserve;
b9aa55be 937 }
e6dcd2dc 938 em->start = start;
445a6944 939 em->orig_start = em->start;
771ed689
CM
940 ram_size = ins.offset;
941 em->len = ins.offset;
2ab28f32
JB
942 em->mod_start = em->start;
943 em->mod_len = em->len;
c8b97818 944
e6dcd2dc 945 em->block_start = ins.objectid;
c8b97818 946 em->block_len = ins.offset;
b4939680 947 em->orig_block_len = ins.offset;
cc95bef6 948 em->ram_bytes = ram_size;
e6dcd2dc 949 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 950 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 951 em->generation = -1;
c8b97818 952
d397712b 953 while (1) {
890871be 954 write_lock(&em_tree->lock);
09a2a8f9 955 ret = add_extent_mapping(em_tree, em, 1);
890871be 956 write_unlock(&em_tree->lock);
e6dcd2dc
CM
957 if (ret != -EEXIST) {
958 free_extent_map(em);
959 break;
960 }
961 btrfs_drop_extent_cache(inode, start,
c8b97818 962 start + ram_size - 1, 0);
e6dcd2dc 963 }
ace68bac
LB
964 if (ret)
965 goto out_reserve;
e6dcd2dc 966
98d20f67 967 cur_alloc_size = ins.offset;
e6dcd2dc 968 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 969 ram_size, cur_alloc_size, 0);
ace68bac
LB
970 if (ret)
971 goto out_reserve;
c8b97818 972
17d217fe
YZ
973 if (root->root_key.objectid ==
974 BTRFS_DATA_RELOC_TREE_OBJECTID) {
975 ret = btrfs_reloc_clone_csums(inode, start,
976 cur_alloc_size);
79787eaa
JM
977 if (ret) {
978 btrfs_abort_transaction(trans, root, ret);
ace68bac 979 goto out_reserve;
79787eaa 980 }
17d217fe
YZ
981 }
982
d397712b 983 if (disk_num_bytes < cur_alloc_size)
3b951516 984 break;
d397712b 985
c8b97818
CM
986 /* we're not doing compressed IO, don't unlock the first
987 * page (which the caller expects to stay locked), don't
988 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
989 *
990 * Do set the Private2 bit so we know this page was properly
991 * setup for writepage
c8b97818 992 */
a791e35e
CM
993 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
994 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
995 EXTENT_SET_PRIVATE2;
996
c8b97818
CM
997 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
998 start, start + ram_size - 1,
a791e35e 999 locked_page, op);
c8b97818 1000 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1001 num_bytes -= cur_alloc_size;
1002 alloc_hint = ins.objectid + ins.offset;
1003 start += cur_alloc_size;
b888db2b 1004 }
79787eaa 1005out:
be20aa9d 1006 return ret;
b7d5b0a8 1007
ace68bac
LB
1008out_reserve:
1009 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa
JM
1010out_unlock:
1011 extent_clear_unlock_delalloc(inode,
1012 &BTRFS_I(inode)->io_tree,
beb42dd7 1013 start, end, locked_page,
79787eaa
JM
1014 EXTENT_CLEAR_UNLOCK_PAGE |
1015 EXTENT_CLEAR_UNLOCK |
1016 EXTENT_CLEAR_DELALLOC |
1017 EXTENT_CLEAR_DIRTY |
1018 EXTENT_SET_WRITEBACK |
1019 EXTENT_END_WRITEBACK);
1020
1021 goto out;
771ed689 1022}
c8b97818 1023
b7d5b0a8
MX
1024static noinline int cow_file_range(struct inode *inode,
1025 struct page *locked_page,
1026 u64 start, u64 end, int *page_started,
1027 unsigned long *nr_written,
1028 int unlock)
1029{
1030 struct btrfs_trans_handle *trans;
1031 struct btrfs_root *root = BTRFS_I(inode)->root;
1032 int ret;
1033
1034 trans = btrfs_join_transaction(root);
1035 if (IS_ERR(trans)) {
1036 extent_clear_unlock_delalloc(inode,
1037 &BTRFS_I(inode)->io_tree,
1038 start, end, locked_page,
1039 EXTENT_CLEAR_UNLOCK_PAGE |
1040 EXTENT_CLEAR_UNLOCK |
1041 EXTENT_CLEAR_DELALLOC |
1042 EXTENT_CLEAR_DIRTY |
1043 EXTENT_SET_WRITEBACK |
1044 EXTENT_END_WRITEBACK);
1045 return PTR_ERR(trans);
1046 }
1047 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1048
1049 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1050 page_started, nr_written, unlock);
1051
1052 btrfs_end_transaction(trans, root);
1053
1054 return ret;
1055}
1056
771ed689
CM
1057/*
1058 * work queue call back to started compression on a file and pages
1059 */
1060static noinline void async_cow_start(struct btrfs_work *work)
1061{
1062 struct async_cow *async_cow;
1063 int num_added = 0;
1064 async_cow = container_of(work, struct async_cow, work);
1065
1066 compress_file_range(async_cow->inode, async_cow->locked_page,
1067 async_cow->start, async_cow->end, async_cow,
1068 &num_added);
8180ef88 1069 if (num_added == 0) {
cb77fcd8 1070 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1071 async_cow->inode = NULL;
8180ef88 1072 }
771ed689
CM
1073}
1074
1075/*
1076 * work queue call back to submit previously compressed pages
1077 */
1078static noinline void async_cow_submit(struct btrfs_work *work)
1079{
1080 struct async_cow *async_cow;
1081 struct btrfs_root *root;
1082 unsigned long nr_pages;
1083
1084 async_cow = container_of(work, struct async_cow, work);
1085
1086 root = async_cow->root;
1087 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1088 PAGE_CACHE_SHIFT;
1089
66657b31 1090 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1091 5 * 1024 * 1024 &&
771ed689
CM
1092 waitqueue_active(&root->fs_info->async_submit_wait))
1093 wake_up(&root->fs_info->async_submit_wait);
1094
d397712b 1095 if (async_cow->inode)
771ed689 1096 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1097}
c8b97818 1098
771ed689
CM
1099static noinline void async_cow_free(struct btrfs_work *work)
1100{
1101 struct async_cow *async_cow;
1102 async_cow = container_of(work, struct async_cow, work);
8180ef88 1103 if (async_cow->inode)
cb77fcd8 1104 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1105 kfree(async_cow);
1106}
1107
1108static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1109 u64 start, u64 end, int *page_started,
1110 unsigned long *nr_written)
1111{
1112 struct async_cow *async_cow;
1113 struct btrfs_root *root = BTRFS_I(inode)->root;
1114 unsigned long nr_pages;
1115 u64 cur_end;
287082b0 1116 int limit = 10 * 1024 * 1024;
771ed689 1117
a3429ab7
CM
1118 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1119 1, 0, NULL, GFP_NOFS);
d397712b 1120 while (start < end) {
771ed689 1121 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1122 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1123 async_cow->inode = igrab(inode);
771ed689
CM
1124 async_cow->root = root;
1125 async_cow->locked_page = locked_page;
1126 async_cow->start = start;
1127
6cbff00f 1128 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1129 cur_end = end;
1130 else
1131 cur_end = min(end, start + 512 * 1024 - 1);
1132
1133 async_cow->end = cur_end;
1134 INIT_LIST_HEAD(&async_cow->extents);
1135
1136 async_cow->work.func = async_cow_start;
1137 async_cow->work.ordered_func = async_cow_submit;
1138 async_cow->work.ordered_free = async_cow_free;
1139 async_cow->work.flags = 0;
1140
771ed689
CM
1141 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1142 PAGE_CACHE_SHIFT;
1143 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1144
1145 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1146 &async_cow->work);
1147
1148 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1149 wait_event(root->fs_info->async_submit_wait,
1150 (atomic_read(&root->fs_info->async_delalloc_pages) <
1151 limit));
1152 }
1153
d397712b 1154 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1155 atomic_read(&root->fs_info->async_delalloc_pages)) {
1156 wait_event(root->fs_info->async_submit_wait,
1157 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1158 0));
1159 }
1160
1161 *nr_written += nr_pages;
1162 start = cur_end + 1;
1163 }
1164 *page_started = 1;
1165 return 0;
be20aa9d
CM
1166}
1167
d397712b 1168static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1169 u64 bytenr, u64 num_bytes)
1170{
1171 int ret;
1172 struct btrfs_ordered_sum *sums;
1173 LIST_HEAD(list);
1174
07d400a6 1175 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1176 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1177 if (ret == 0 && list_empty(&list))
1178 return 0;
1179
1180 while (!list_empty(&list)) {
1181 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1182 list_del(&sums->list);
1183 kfree(sums);
1184 }
1185 return 1;
1186}
1187
d352ac68
CM
1188/*
1189 * when nowcow writeback call back. This checks for snapshots or COW copies
1190 * of the extents that exist in the file, and COWs the file as required.
1191 *
1192 * If no cow copies or snapshots exist, we write directly to the existing
1193 * blocks on disk
1194 */
7f366cfe
CM
1195static noinline int run_delalloc_nocow(struct inode *inode,
1196 struct page *locked_page,
771ed689
CM
1197 u64 start, u64 end, int *page_started, int force,
1198 unsigned long *nr_written)
be20aa9d 1199{
be20aa9d 1200 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1201 struct btrfs_trans_handle *trans;
be20aa9d 1202 struct extent_buffer *leaf;
be20aa9d 1203 struct btrfs_path *path;
80ff3856 1204 struct btrfs_file_extent_item *fi;
be20aa9d 1205 struct btrfs_key found_key;
80ff3856
YZ
1206 u64 cow_start;
1207 u64 cur_offset;
1208 u64 extent_end;
5d4f98a2 1209 u64 extent_offset;
80ff3856
YZ
1210 u64 disk_bytenr;
1211 u64 num_bytes;
b4939680 1212 u64 disk_num_bytes;
cc95bef6 1213 u64 ram_bytes;
80ff3856 1214 int extent_type;
79787eaa 1215 int ret, err;
d899e052 1216 int type;
80ff3856
YZ
1217 int nocow;
1218 int check_prev = 1;
82d5902d 1219 bool nolock;
33345d01 1220 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1221
1222 path = btrfs_alloc_path();
17ca04af
JB
1223 if (!path) {
1224 extent_clear_unlock_delalloc(inode,
1225 &BTRFS_I(inode)->io_tree,
1226 start, end, locked_page,
1227 EXTENT_CLEAR_UNLOCK_PAGE |
1228 EXTENT_CLEAR_UNLOCK |
1229 EXTENT_CLEAR_DELALLOC |
1230 EXTENT_CLEAR_DIRTY |
1231 EXTENT_SET_WRITEBACK |
1232 EXTENT_END_WRITEBACK);
d8926bb3 1233 return -ENOMEM;
17ca04af 1234 }
82d5902d 1235
83eea1f1 1236 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1237
1238 if (nolock)
7a7eaa40 1239 trans = btrfs_join_transaction_nolock(root);
82d5902d 1240 else
7a7eaa40 1241 trans = btrfs_join_transaction(root);
ff5714cc 1242
79787eaa 1243 if (IS_ERR(trans)) {
17ca04af
JB
1244 extent_clear_unlock_delalloc(inode,
1245 &BTRFS_I(inode)->io_tree,
1246 start, end, locked_page,
1247 EXTENT_CLEAR_UNLOCK_PAGE |
1248 EXTENT_CLEAR_UNLOCK |
1249 EXTENT_CLEAR_DELALLOC |
1250 EXTENT_CLEAR_DIRTY |
1251 EXTENT_SET_WRITEBACK |
1252 EXTENT_END_WRITEBACK);
79787eaa
JM
1253 btrfs_free_path(path);
1254 return PTR_ERR(trans);
1255 }
1256
74b21075 1257 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1258
80ff3856
YZ
1259 cow_start = (u64)-1;
1260 cur_offset = start;
1261 while (1) {
33345d01 1262 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1263 cur_offset, 0);
79787eaa
JM
1264 if (ret < 0) {
1265 btrfs_abort_transaction(trans, root, ret);
1266 goto error;
1267 }
80ff3856
YZ
1268 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1269 leaf = path->nodes[0];
1270 btrfs_item_key_to_cpu(leaf, &found_key,
1271 path->slots[0] - 1);
33345d01 1272 if (found_key.objectid == ino &&
80ff3856
YZ
1273 found_key.type == BTRFS_EXTENT_DATA_KEY)
1274 path->slots[0]--;
1275 }
1276 check_prev = 0;
1277next_slot:
1278 leaf = path->nodes[0];
1279 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1280 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1281 if (ret < 0) {
1282 btrfs_abort_transaction(trans, root, ret);
1283 goto error;
1284 }
80ff3856
YZ
1285 if (ret > 0)
1286 break;
1287 leaf = path->nodes[0];
1288 }
be20aa9d 1289
80ff3856
YZ
1290 nocow = 0;
1291 disk_bytenr = 0;
17d217fe 1292 num_bytes = 0;
80ff3856
YZ
1293 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1294
33345d01 1295 if (found_key.objectid > ino ||
80ff3856
YZ
1296 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1297 found_key.offset > end)
1298 break;
1299
1300 if (found_key.offset > cur_offset) {
1301 extent_end = found_key.offset;
e9061e21 1302 extent_type = 0;
80ff3856
YZ
1303 goto out_check;
1304 }
1305
1306 fi = btrfs_item_ptr(leaf, path->slots[0],
1307 struct btrfs_file_extent_item);
1308 extent_type = btrfs_file_extent_type(leaf, fi);
1309
cc95bef6 1310 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1311 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1312 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1313 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1314 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1315 extent_end = found_key.offset +
1316 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1317 disk_num_bytes =
1318 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1319 if (extent_end <= start) {
1320 path->slots[0]++;
1321 goto next_slot;
1322 }
17d217fe
YZ
1323 if (disk_bytenr == 0)
1324 goto out_check;
80ff3856
YZ
1325 if (btrfs_file_extent_compression(leaf, fi) ||
1326 btrfs_file_extent_encryption(leaf, fi) ||
1327 btrfs_file_extent_other_encoding(leaf, fi))
1328 goto out_check;
d899e052
YZ
1329 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1330 goto out_check;
d2fb3437 1331 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1332 goto out_check;
33345d01 1333 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1334 found_key.offset -
1335 extent_offset, disk_bytenr))
17d217fe 1336 goto out_check;
5d4f98a2 1337 disk_bytenr += extent_offset;
17d217fe
YZ
1338 disk_bytenr += cur_offset - found_key.offset;
1339 num_bytes = min(end + 1, extent_end) - cur_offset;
1340 /*
1341 * force cow if csum exists in the range.
1342 * this ensure that csum for a given extent are
1343 * either valid or do not exist.
1344 */
1345 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1346 goto out_check;
80ff3856
YZ
1347 nocow = 1;
1348 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1349 extent_end = found_key.offset +
1350 btrfs_file_extent_inline_len(leaf, fi);
1351 extent_end = ALIGN(extent_end, root->sectorsize);
1352 } else {
1353 BUG_ON(1);
1354 }
1355out_check:
1356 if (extent_end <= start) {
1357 path->slots[0]++;
1358 goto next_slot;
1359 }
1360 if (!nocow) {
1361 if (cow_start == (u64)-1)
1362 cow_start = cur_offset;
1363 cur_offset = extent_end;
1364 if (cur_offset > end)
1365 break;
1366 path->slots[0]++;
1367 goto next_slot;
7ea394f1
YZ
1368 }
1369
b3b4aa74 1370 btrfs_release_path(path);
80ff3856 1371 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1372 ret = __cow_file_range(trans, inode, root, locked_page,
1373 cow_start, found_key.offset - 1,
1374 page_started, nr_written, 1);
79787eaa
JM
1375 if (ret) {
1376 btrfs_abort_transaction(trans, root, ret);
1377 goto error;
1378 }
80ff3856 1379 cow_start = (u64)-1;
7ea394f1 1380 }
80ff3856 1381
d899e052
YZ
1382 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1383 struct extent_map *em;
1384 struct extent_map_tree *em_tree;
1385 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1386 em = alloc_extent_map();
79787eaa 1387 BUG_ON(!em); /* -ENOMEM */
d899e052 1388 em->start = cur_offset;
70c8a91c 1389 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1390 em->len = num_bytes;
1391 em->block_len = num_bytes;
1392 em->block_start = disk_bytenr;
b4939680 1393 em->orig_block_len = disk_num_bytes;
cc95bef6 1394 em->ram_bytes = ram_bytes;
d899e052 1395 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1396 em->mod_start = em->start;
1397 em->mod_len = em->len;
d899e052 1398 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1399 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1400 em->generation = -1;
d899e052 1401 while (1) {
890871be 1402 write_lock(&em_tree->lock);
09a2a8f9 1403 ret = add_extent_mapping(em_tree, em, 1);
890871be 1404 write_unlock(&em_tree->lock);
d899e052
YZ
1405 if (ret != -EEXIST) {
1406 free_extent_map(em);
1407 break;
1408 }
1409 btrfs_drop_extent_cache(inode, em->start,
1410 em->start + em->len - 1, 0);
1411 }
1412 type = BTRFS_ORDERED_PREALLOC;
1413 } else {
1414 type = BTRFS_ORDERED_NOCOW;
1415 }
80ff3856
YZ
1416
1417 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1418 num_bytes, num_bytes, type);
79787eaa 1419 BUG_ON(ret); /* -ENOMEM */
771ed689 1420
efa56464
YZ
1421 if (root->root_key.objectid ==
1422 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1423 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1424 num_bytes);
79787eaa
JM
1425 if (ret) {
1426 btrfs_abort_transaction(trans, root, ret);
1427 goto error;
1428 }
efa56464
YZ
1429 }
1430
d899e052 1431 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1432 cur_offset, cur_offset + num_bytes - 1,
1433 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1434 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1435 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1436 cur_offset = extent_end;
1437 if (cur_offset > end)
1438 break;
be20aa9d 1439 }
b3b4aa74 1440 btrfs_release_path(path);
80ff3856 1441
17ca04af 1442 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1443 cow_start = cur_offset;
17ca04af
JB
1444 cur_offset = end;
1445 }
1446
80ff3856 1447 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1448 ret = __cow_file_range(trans, inode, root, locked_page,
1449 cow_start, end,
1450 page_started, nr_written, 1);
79787eaa
JM
1451 if (ret) {
1452 btrfs_abort_transaction(trans, root, ret);
1453 goto error;
1454 }
80ff3856
YZ
1455 }
1456
79787eaa 1457error:
a698d075 1458 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1459 if (!ret)
1460 ret = err;
1461
17ca04af
JB
1462 if (ret && cur_offset < end)
1463 extent_clear_unlock_delalloc(inode,
1464 &BTRFS_I(inode)->io_tree,
1465 cur_offset, end, locked_page,
1466 EXTENT_CLEAR_UNLOCK_PAGE |
1467 EXTENT_CLEAR_UNLOCK |
1468 EXTENT_CLEAR_DELALLOC |
1469 EXTENT_CLEAR_DIRTY |
1470 EXTENT_SET_WRITEBACK |
1471 EXTENT_END_WRITEBACK);
1472
7ea394f1 1473 btrfs_free_path(path);
79787eaa 1474 return ret;
be20aa9d
CM
1475}
1476
d352ac68
CM
1477/*
1478 * extent_io.c call back to do delayed allocation processing
1479 */
c8b97818 1480static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1481 u64 start, u64 end, int *page_started,
1482 unsigned long *nr_written)
be20aa9d 1483{
be20aa9d 1484 int ret;
7f366cfe 1485 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1486
7ddf5a42 1487 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1488 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1489 page_started, 1, nr_written);
7ddf5a42 1490 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1491 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1492 page_started, 0, nr_written);
7ddf5a42
JB
1493 } else if (!btrfs_test_opt(root, COMPRESS) &&
1494 !(BTRFS_I(inode)->force_compress) &&
1495 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1496 ret = cow_file_range(inode, locked_page, start, end,
1497 page_started, nr_written, 1);
7ddf5a42
JB
1498 } else {
1499 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1500 &BTRFS_I(inode)->runtime_flags);
771ed689 1501 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1502 page_started, nr_written);
7ddf5a42 1503 }
b888db2b
CM
1504 return ret;
1505}
1506
1bf85046
JM
1507static void btrfs_split_extent_hook(struct inode *inode,
1508 struct extent_state *orig, u64 split)
9ed74f2d 1509{
0ca1f7ce 1510 /* not delalloc, ignore it */
9ed74f2d 1511 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1512 return;
9ed74f2d 1513
9e0baf60
JB
1514 spin_lock(&BTRFS_I(inode)->lock);
1515 BTRFS_I(inode)->outstanding_extents++;
1516 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1517}
1518
1519/*
1520 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1521 * extents so we can keep track of new extents that are just merged onto old
1522 * extents, such as when we are doing sequential writes, so we can properly
1523 * account for the metadata space we'll need.
1524 */
1bf85046
JM
1525static void btrfs_merge_extent_hook(struct inode *inode,
1526 struct extent_state *new,
1527 struct extent_state *other)
9ed74f2d 1528{
9ed74f2d
JB
1529 /* not delalloc, ignore it */
1530 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1531 return;
9ed74f2d 1532
9e0baf60
JB
1533 spin_lock(&BTRFS_I(inode)->lock);
1534 BTRFS_I(inode)->outstanding_extents--;
1535 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1536}
1537
eb73c1b7
MX
1538static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1539 struct inode *inode)
1540{
1541 spin_lock(&root->delalloc_lock);
1542 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1543 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1544 &root->delalloc_inodes);
1545 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1546 &BTRFS_I(inode)->runtime_flags);
1547 root->nr_delalloc_inodes++;
1548 if (root->nr_delalloc_inodes == 1) {
1549 spin_lock(&root->fs_info->delalloc_root_lock);
1550 BUG_ON(!list_empty(&root->delalloc_root));
1551 list_add_tail(&root->delalloc_root,
1552 &root->fs_info->delalloc_roots);
1553 spin_unlock(&root->fs_info->delalloc_root_lock);
1554 }
1555 }
1556 spin_unlock(&root->delalloc_lock);
1557}
1558
1559static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1560 struct inode *inode)
1561{
1562 spin_lock(&root->delalloc_lock);
1563 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1564 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1565 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1566 &BTRFS_I(inode)->runtime_flags);
1567 root->nr_delalloc_inodes--;
1568 if (!root->nr_delalloc_inodes) {
1569 spin_lock(&root->fs_info->delalloc_root_lock);
1570 BUG_ON(list_empty(&root->delalloc_root));
1571 list_del_init(&root->delalloc_root);
1572 spin_unlock(&root->fs_info->delalloc_root_lock);
1573 }
1574 }
1575 spin_unlock(&root->delalloc_lock);
1576}
1577
d352ac68
CM
1578/*
1579 * extent_io.c set_bit_hook, used to track delayed allocation
1580 * bytes in this file, and to maintain the list of inodes that
1581 * have pending delalloc work to be done.
1582 */
1bf85046 1583static void btrfs_set_bit_hook(struct inode *inode,
41074888 1584 struct extent_state *state, unsigned long *bits)
291d673e 1585{
9ed74f2d 1586
75eff68e
CM
1587 /*
1588 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1589 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1590 * bit, which is only set or cleared with irqs on
1591 */
0ca1f7ce 1592 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1593 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1594 u64 len = state->end + 1 - state->start;
83eea1f1 1595 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1596
9e0baf60 1597 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1598 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1599 } else {
1600 spin_lock(&BTRFS_I(inode)->lock);
1601 BTRFS_I(inode)->outstanding_extents++;
1602 spin_unlock(&BTRFS_I(inode)->lock);
1603 }
287a0ab9 1604
963d678b
MX
1605 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1606 root->fs_info->delalloc_batch);
df0af1a5 1607 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1608 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1609 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1610 &BTRFS_I(inode)->runtime_flags))
1611 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1612 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1613 }
291d673e
CM
1614}
1615
d352ac68
CM
1616/*
1617 * extent_io.c clear_bit_hook, see set_bit_hook for why
1618 */
1bf85046 1619static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1620 struct extent_state *state,
1621 unsigned long *bits)
291d673e 1622{
75eff68e
CM
1623 /*
1624 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1625 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1626 * bit, which is only set or cleared with irqs on
1627 */
0ca1f7ce 1628 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1629 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1630 u64 len = state->end + 1 - state->start;
83eea1f1 1631 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1632
9e0baf60 1633 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1634 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1635 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1636 spin_lock(&BTRFS_I(inode)->lock);
1637 BTRFS_I(inode)->outstanding_extents--;
1638 spin_unlock(&BTRFS_I(inode)->lock);
1639 }
0ca1f7ce
YZ
1640
1641 if (*bits & EXTENT_DO_ACCOUNTING)
1642 btrfs_delalloc_release_metadata(inode, len);
1643
0cb59c99 1644 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1645 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1646 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1647
963d678b
MX
1648 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1649 root->fs_info->delalloc_batch);
df0af1a5 1650 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1651 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1652 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1653 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1654 &BTRFS_I(inode)->runtime_flags))
1655 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1656 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1657 }
291d673e
CM
1658}
1659
d352ac68
CM
1660/*
1661 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1662 * we don't create bios that span stripes or chunks
1663 */
64a16701 1664int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1665 size_t size, struct bio *bio,
1666 unsigned long bio_flags)
239b14b3
CM
1667{
1668 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1669 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1670 u64 length = 0;
1671 u64 map_length;
239b14b3
CM
1672 int ret;
1673
771ed689
CM
1674 if (bio_flags & EXTENT_BIO_COMPRESSED)
1675 return 0;
1676
f2d8d74d 1677 length = bio->bi_size;
239b14b3 1678 map_length = length;
64a16701 1679 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1680 &map_length, NULL, 0);
3ec706c8 1681 /* Will always return 0 with map_multi == NULL */
3444a972 1682 BUG_ON(ret < 0);
d397712b 1683 if (map_length < length + size)
239b14b3 1684 return 1;
3444a972 1685 return 0;
239b14b3
CM
1686}
1687
d352ac68
CM
1688/*
1689 * in order to insert checksums into the metadata in large chunks,
1690 * we wait until bio submission time. All the pages in the bio are
1691 * checksummed and sums are attached onto the ordered extent record.
1692 *
1693 * At IO completion time the cums attached on the ordered extent record
1694 * are inserted into the btree
1695 */
d397712b
CM
1696static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1697 struct bio *bio, int mirror_num,
eaf25d93
CM
1698 unsigned long bio_flags,
1699 u64 bio_offset)
065631f6 1700{
065631f6 1701 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1702 int ret = 0;
e015640f 1703
d20f7043 1704 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1705 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1706 return 0;
1707}
e015640f 1708
4a69a410
CM
1709/*
1710 * in order to insert checksums into the metadata in large chunks,
1711 * we wait until bio submission time. All the pages in the bio are
1712 * checksummed and sums are attached onto the ordered extent record.
1713 *
1714 * At IO completion time the cums attached on the ordered extent record
1715 * are inserted into the btree
1716 */
b2950863 1717static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1718 int mirror_num, unsigned long bio_flags,
1719 u64 bio_offset)
4a69a410
CM
1720{
1721 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1722 int ret;
1723
1724 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1725 if (ret)
1726 bio_endio(bio, ret);
1727 return ret;
44b8bd7e
CM
1728}
1729
d352ac68 1730/*
cad321ad
CM
1731 * extent_io.c submission hook. This does the right thing for csum calculation
1732 * on write, or reading the csums from the tree before a read
d352ac68 1733 */
b2950863 1734static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1735 int mirror_num, unsigned long bio_flags,
1736 u64 bio_offset)
44b8bd7e
CM
1737{
1738 struct btrfs_root *root = BTRFS_I(inode)->root;
1739 int ret = 0;
19b9bdb0 1740 int skip_sum;
0417341e 1741 int metadata = 0;
b812ce28 1742 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1743
6cbff00f 1744 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1745
83eea1f1 1746 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1747 metadata = 2;
1748
7b6d91da 1749 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1750 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1751 if (ret)
61891923 1752 goto out;
5fd02043 1753
d20f7043 1754 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1755 ret = btrfs_submit_compressed_read(inode, bio,
1756 mirror_num,
1757 bio_flags);
1758 goto out;
c2db1073
TI
1759 } else if (!skip_sum) {
1760 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1761 if (ret)
61891923 1762 goto out;
c2db1073 1763 }
4d1b5fb4 1764 goto mapit;
b812ce28 1765 } else if (async && !skip_sum) {
17d217fe
YZ
1766 /* csum items have already been cloned */
1767 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1768 goto mapit;
19b9bdb0 1769 /* we're doing a write, do the async checksumming */
61891923 1770 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1771 inode, rw, bio, mirror_num,
eaf25d93
CM
1772 bio_flags, bio_offset,
1773 __btrfs_submit_bio_start,
4a69a410 1774 __btrfs_submit_bio_done);
61891923 1775 goto out;
b812ce28
JB
1776 } else if (!skip_sum) {
1777 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1778 if (ret)
1779 goto out;
19b9bdb0
CM
1780 }
1781
0b86a832 1782mapit:
61891923
SB
1783 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1784
1785out:
1786 if (ret < 0)
1787 bio_endio(bio, ret);
1788 return ret;
065631f6 1789}
6885f308 1790
d352ac68
CM
1791/*
1792 * given a list of ordered sums record them in the inode. This happens
1793 * at IO completion time based on sums calculated at bio submission time.
1794 */
ba1da2f4 1795static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1796 struct inode *inode, u64 file_offset,
1797 struct list_head *list)
1798{
e6dcd2dc
CM
1799 struct btrfs_ordered_sum *sum;
1800
c6e30871 1801 list_for_each_entry(sum, list, list) {
39847c4d 1802 trans->adding_csums = 1;
d20f7043
CM
1803 btrfs_csum_file_blocks(trans,
1804 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1805 trans->adding_csums = 0;
e6dcd2dc
CM
1806 }
1807 return 0;
1808}
1809
2ac55d41
JB
1810int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1811 struct extent_state **cached_state)
ea8c2819 1812{
6c1500f2 1813 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1814 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1815 cached_state, GFP_NOFS);
ea8c2819
CM
1816}
1817
d352ac68 1818/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1819struct btrfs_writepage_fixup {
1820 struct page *page;
1821 struct btrfs_work work;
1822};
1823
b2950863 1824static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1825{
1826 struct btrfs_writepage_fixup *fixup;
1827 struct btrfs_ordered_extent *ordered;
2ac55d41 1828 struct extent_state *cached_state = NULL;
247e743c
CM
1829 struct page *page;
1830 struct inode *inode;
1831 u64 page_start;
1832 u64 page_end;
87826df0 1833 int ret;
247e743c
CM
1834
1835 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1836 page = fixup->page;
4a096752 1837again:
247e743c
CM
1838 lock_page(page);
1839 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1840 ClearPageChecked(page);
1841 goto out_page;
1842 }
1843
1844 inode = page->mapping->host;
1845 page_start = page_offset(page);
1846 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1847
2ac55d41 1848 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1849 &cached_state);
4a096752
CM
1850
1851 /* already ordered? We're done */
8b62b72b 1852 if (PagePrivate2(page))
247e743c 1853 goto out;
4a096752
CM
1854
1855 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1856 if (ordered) {
2ac55d41
JB
1857 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1858 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1859 unlock_page(page);
1860 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1861 btrfs_put_ordered_extent(ordered);
4a096752
CM
1862 goto again;
1863 }
247e743c 1864
87826df0
JM
1865 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1866 if (ret) {
1867 mapping_set_error(page->mapping, ret);
1868 end_extent_writepage(page, ret, page_start, page_end);
1869 ClearPageChecked(page);
1870 goto out;
1871 }
1872
2ac55d41 1873 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1874 ClearPageChecked(page);
87826df0 1875 set_page_dirty(page);
247e743c 1876out:
2ac55d41
JB
1877 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1878 &cached_state, GFP_NOFS);
247e743c
CM
1879out_page:
1880 unlock_page(page);
1881 page_cache_release(page);
b897abec 1882 kfree(fixup);
247e743c
CM
1883}
1884
1885/*
1886 * There are a few paths in the higher layers of the kernel that directly
1887 * set the page dirty bit without asking the filesystem if it is a
1888 * good idea. This causes problems because we want to make sure COW
1889 * properly happens and the data=ordered rules are followed.
1890 *
c8b97818 1891 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1892 * hasn't been properly setup for IO. We kick off an async process
1893 * to fix it up. The async helper will wait for ordered extents, set
1894 * the delalloc bit and make it safe to write the page.
1895 */
b2950863 1896static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1897{
1898 struct inode *inode = page->mapping->host;
1899 struct btrfs_writepage_fixup *fixup;
1900 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1901
8b62b72b
CM
1902 /* this page is properly in the ordered list */
1903 if (TestClearPagePrivate2(page))
247e743c
CM
1904 return 0;
1905
1906 if (PageChecked(page))
1907 return -EAGAIN;
1908
1909 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1910 if (!fixup)
1911 return -EAGAIN;
f421950f 1912
247e743c
CM
1913 SetPageChecked(page);
1914 page_cache_get(page);
1915 fixup->work.func = btrfs_writepage_fixup_worker;
1916 fixup->page = page;
1917 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1918 return -EBUSY;
247e743c
CM
1919}
1920
d899e052
YZ
1921static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1922 struct inode *inode, u64 file_pos,
1923 u64 disk_bytenr, u64 disk_num_bytes,
1924 u64 num_bytes, u64 ram_bytes,
1925 u8 compression, u8 encryption,
1926 u16 other_encoding, int extent_type)
1927{
1928 struct btrfs_root *root = BTRFS_I(inode)->root;
1929 struct btrfs_file_extent_item *fi;
1930 struct btrfs_path *path;
1931 struct extent_buffer *leaf;
1932 struct btrfs_key ins;
d899e052
YZ
1933 int ret;
1934
1935 path = btrfs_alloc_path();
d8926bb3
MF
1936 if (!path)
1937 return -ENOMEM;
d899e052 1938
b9473439 1939 path->leave_spinning = 1;
a1ed835e
CM
1940
1941 /*
1942 * we may be replacing one extent in the tree with another.
1943 * The new extent is pinned in the extent map, and we don't want
1944 * to drop it from the cache until it is completely in the btree.
1945 *
1946 * So, tell btrfs_drop_extents to leave this extent in the cache.
1947 * the caller is expected to unpin it and allow it to be merged
1948 * with the others.
1949 */
5dc562c5 1950 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1951 file_pos + num_bytes, 0);
79787eaa
JM
1952 if (ret)
1953 goto out;
d899e052 1954
33345d01 1955 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1956 ins.offset = file_pos;
1957 ins.type = BTRFS_EXTENT_DATA_KEY;
1958 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1959 if (ret)
1960 goto out;
d899e052
YZ
1961 leaf = path->nodes[0];
1962 fi = btrfs_item_ptr(leaf, path->slots[0],
1963 struct btrfs_file_extent_item);
1964 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1965 btrfs_set_file_extent_type(leaf, fi, extent_type);
1966 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1967 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1968 btrfs_set_file_extent_offset(leaf, fi, 0);
1969 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1970 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1971 btrfs_set_file_extent_compression(leaf, fi, compression);
1972 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1973 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1974
d899e052 1975 btrfs_mark_buffer_dirty(leaf);
ce195332 1976 btrfs_release_path(path);
d899e052
YZ
1977
1978 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1979
1980 ins.objectid = disk_bytenr;
1981 ins.offset = disk_num_bytes;
1982 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1983 ret = btrfs_alloc_reserved_file_extent(trans, root,
1984 root->root_key.objectid,
33345d01 1985 btrfs_ino(inode), file_pos, &ins);
79787eaa 1986out:
d899e052 1987 btrfs_free_path(path);
b9473439 1988
79787eaa 1989 return ret;
d899e052
YZ
1990}
1991
38c227d8
LB
1992/* snapshot-aware defrag */
1993struct sa_defrag_extent_backref {
1994 struct rb_node node;
1995 struct old_sa_defrag_extent *old;
1996 u64 root_id;
1997 u64 inum;
1998 u64 file_pos;
1999 u64 extent_offset;
2000 u64 num_bytes;
2001 u64 generation;
2002};
2003
2004struct old_sa_defrag_extent {
2005 struct list_head list;
2006 struct new_sa_defrag_extent *new;
2007
2008 u64 extent_offset;
2009 u64 bytenr;
2010 u64 offset;
2011 u64 len;
2012 int count;
2013};
2014
2015struct new_sa_defrag_extent {
2016 struct rb_root root;
2017 struct list_head head;
2018 struct btrfs_path *path;
2019 struct inode *inode;
2020 u64 file_pos;
2021 u64 len;
2022 u64 bytenr;
2023 u64 disk_len;
2024 u8 compress_type;
2025};
2026
2027static int backref_comp(struct sa_defrag_extent_backref *b1,
2028 struct sa_defrag_extent_backref *b2)
2029{
2030 if (b1->root_id < b2->root_id)
2031 return -1;
2032 else if (b1->root_id > b2->root_id)
2033 return 1;
2034
2035 if (b1->inum < b2->inum)
2036 return -1;
2037 else if (b1->inum > b2->inum)
2038 return 1;
2039
2040 if (b1->file_pos < b2->file_pos)
2041 return -1;
2042 else if (b1->file_pos > b2->file_pos)
2043 return 1;
2044
2045 /*
2046 * [------------------------------] ===> (a range of space)
2047 * |<--->| |<---->| =============> (fs/file tree A)
2048 * |<---------------------------->| ===> (fs/file tree B)
2049 *
2050 * A range of space can refer to two file extents in one tree while
2051 * refer to only one file extent in another tree.
2052 *
2053 * So we may process a disk offset more than one time(two extents in A)
2054 * and locate at the same extent(one extent in B), then insert two same
2055 * backrefs(both refer to the extent in B).
2056 */
2057 return 0;
2058}
2059
2060static void backref_insert(struct rb_root *root,
2061 struct sa_defrag_extent_backref *backref)
2062{
2063 struct rb_node **p = &root->rb_node;
2064 struct rb_node *parent = NULL;
2065 struct sa_defrag_extent_backref *entry;
2066 int ret;
2067
2068 while (*p) {
2069 parent = *p;
2070 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2071
2072 ret = backref_comp(backref, entry);
2073 if (ret < 0)
2074 p = &(*p)->rb_left;
2075 else
2076 p = &(*p)->rb_right;
2077 }
2078
2079 rb_link_node(&backref->node, parent, p);
2080 rb_insert_color(&backref->node, root);
2081}
2082
2083/*
2084 * Note the backref might has changed, and in this case we just return 0.
2085 */
2086static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2087 void *ctx)
2088{
2089 struct btrfs_file_extent_item *extent;
2090 struct btrfs_fs_info *fs_info;
2091 struct old_sa_defrag_extent *old = ctx;
2092 struct new_sa_defrag_extent *new = old->new;
2093 struct btrfs_path *path = new->path;
2094 struct btrfs_key key;
2095 struct btrfs_root *root;
2096 struct sa_defrag_extent_backref *backref;
2097 struct extent_buffer *leaf;
2098 struct inode *inode = new->inode;
2099 int slot;
2100 int ret;
2101 u64 extent_offset;
2102 u64 num_bytes;
2103
2104 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2105 inum == btrfs_ino(inode))
2106 return 0;
2107
2108 key.objectid = root_id;
2109 key.type = BTRFS_ROOT_ITEM_KEY;
2110 key.offset = (u64)-1;
2111
2112 fs_info = BTRFS_I(inode)->root->fs_info;
2113 root = btrfs_read_fs_root_no_name(fs_info, &key);
2114 if (IS_ERR(root)) {
2115 if (PTR_ERR(root) == -ENOENT)
2116 return 0;
2117 WARN_ON(1);
2118 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2119 inum, offset, root_id);
2120 return PTR_ERR(root);
2121 }
2122
2123 key.objectid = inum;
2124 key.type = BTRFS_EXTENT_DATA_KEY;
2125 if (offset > (u64)-1 << 32)
2126 key.offset = 0;
2127 else
2128 key.offset = offset;
2129
2130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2131 if (ret < 0) {
2132 WARN_ON(1);
2133 return ret;
2134 }
2135
2136 while (1) {
2137 cond_resched();
2138
2139 leaf = path->nodes[0];
2140 slot = path->slots[0];
2141
2142 if (slot >= btrfs_header_nritems(leaf)) {
2143 ret = btrfs_next_leaf(root, path);
2144 if (ret < 0) {
2145 goto out;
2146 } else if (ret > 0) {
2147 ret = 0;
2148 goto out;
2149 }
2150 continue;
2151 }
2152
2153 path->slots[0]++;
2154
2155 btrfs_item_key_to_cpu(leaf, &key, slot);
2156
2157 if (key.objectid > inum)
2158 goto out;
2159
2160 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2161 continue;
2162
2163 extent = btrfs_item_ptr(leaf, slot,
2164 struct btrfs_file_extent_item);
2165
2166 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2167 continue;
2168
2169 extent_offset = btrfs_file_extent_offset(leaf, extent);
2170 if (key.offset - extent_offset != offset)
2171 continue;
2172
2173 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2174 if (extent_offset >= old->extent_offset + old->offset +
2175 old->len || extent_offset + num_bytes <=
2176 old->extent_offset + old->offset)
2177 continue;
2178
2179 break;
2180 }
2181
2182 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2183 if (!backref) {
2184 ret = -ENOENT;
2185 goto out;
2186 }
2187
2188 backref->root_id = root_id;
2189 backref->inum = inum;
2190 backref->file_pos = offset + extent_offset;
2191 backref->num_bytes = num_bytes;
2192 backref->extent_offset = extent_offset;
2193 backref->generation = btrfs_file_extent_generation(leaf, extent);
2194 backref->old = old;
2195 backref_insert(&new->root, backref);
2196 old->count++;
2197out:
2198 btrfs_release_path(path);
2199 WARN_ON(ret);
2200 return ret;
2201}
2202
2203static noinline bool record_extent_backrefs(struct btrfs_path *path,
2204 struct new_sa_defrag_extent *new)
2205{
2206 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2207 struct old_sa_defrag_extent *old, *tmp;
2208 int ret;
2209
2210 new->path = path;
2211
2212 list_for_each_entry_safe(old, tmp, &new->head, list) {
2213 ret = iterate_inodes_from_logical(old->bytenr, fs_info,
2214 path, record_one_backref,
2215 old);
2216 BUG_ON(ret < 0 && ret != -ENOENT);
2217
2218 /* no backref to be processed for this extent */
2219 if (!old->count) {
2220 list_del(&old->list);
2221 kfree(old);
2222 }
2223 }
2224
2225 if (list_empty(&new->head))
2226 return false;
2227
2228 return true;
2229}
2230
2231static int relink_is_mergable(struct extent_buffer *leaf,
2232 struct btrfs_file_extent_item *fi,
2233 u64 disk_bytenr)
2234{
2235 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2236 return 0;
2237
2238 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2239 return 0;
2240
2241 if (btrfs_file_extent_compression(leaf, fi) ||
2242 btrfs_file_extent_encryption(leaf, fi) ||
2243 btrfs_file_extent_other_encoding(leaf, fi))
2244 return 0;
2245
2246 return 1;
2247}
2248
2249/*
2250 * Note the backref might has changed, and in this case we just return 0.
2251 */
2252static noinline int relink_extent_backref(struct btrfs_path *path,
2253 struct sa_defrag_extent_backref *prev,
2254 struct sa_defrag_extent_backref *backref)
2255{
2256 struct btrfs_file_extent_item *extent;
2257 struct btrfs_file_extent_item *item;
2258 struct btrfs_ordered_extent *ordered;
2259 struct btrfs_trans_handle *trans;
2260 struct btrfs_fs_info *fs_info;
2261 struct btrfs_root *root;
2262 struct btrfs_key key;
2263 struct extent_buffer *leaf;
2264 struct old_sa_defrag_extent *old = backref->old;
2265 struct new_sa_defrag_extent *new = old->new;
2266 struct inode *src_inode = new->inode;
2267 struct inode *inode;
2268 struct extent_state *cached = NULL;
2269 int ret = 0;
2270 u64 start;
2271 u64 len;
2272 u64 lock_start;
2273 u64 lock_end;
2274 bool merge = false;
2275 int index;
2276
2277 if (prev && prev->root_id == backref->root_id &&
2278 prev->inum == backref->inum &&
2279 prev->file_pos + prev->num_bytes == backref->file_pos)
2280 merge = true;
2281
2282 /* step 1: get root */
2283 key.objectid = backref->root_id;
2284 key.type = BTRFS_ROOT_ITEM_KEY;
2285 key.offset = (u64)-1;
2286
2287 fs_info = BTRFS_I(src_inode)->root->fs_info;
2288 index = srcu_read_lock(&fs_info->subvol_srcu);
2289
2290 root = btrfs_read_fs_root_no_name(fs_info, &key);
2291 if (IS_ERR(root)) {
2292 srcu_read_unlock(&fs_info->subvol_srcu, index);
2293 if (PTR_ERR(root) == -ENOENT)
2294 return 0;
2295 return PTR_ERR(root);
2296 }
38c227d8
LB
2297
2298 /* step 2: get inode */
2299 key.objectid = backref->inum;
2300 key.type = BTRFS_INODE_ITEM_KEY;
2301 key.offset = 0;
2302
2303 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2304 if (IS_ERR(inode)) {
2305 srcu_read_unlock(&fs_info->subvol_srcu, index);
2306 return 0;
2307 }
2308
2309 srcu_read_unlock(&fs_info->subvol_srcu, index);
2310
2311 /* step 3: relink backref */
2312 lock_start = backref->file_pos;
2313 lock_end = backref->file_pos + backref->num_bytes - 1;
2314 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2315 0, &cached);
2316
2317 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2318 if (ordered) {
2319 btrfs_put_ordered_extent(ordered);
2320 goto out_unlock;
2321 }
2322
2323 trans = btrfs_join_transaction(root);
2324 if (IS_ERR(trans)) {
2325 ret = PTR_ERR(trans);
2326 goto out_unlock;
2327 }
2328
2329 key.objectid = backref->inum;
2330 key.type = BTRFS_EXTENT_DATA_KEY;
2331 key.offset = backref->file_pos;
2332
2333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2334 if (ret < 0) {
2335 goto out_free_path;
2336 } else if (ret > 0) {
2337 ret = 0;
2338 goto out_free_path;
2339 }
2340
2341 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2342 struct btrfs_file_extent_item);
2343
2344 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2345 backref->generation)
2346 goto out_free_path;
2347
2348 btrfs_release_path(path);
2349
2350 start = backref->file_pos;
2351 if (backref->extent_offset < old->extent_offset + old->offset)
2352 start += old->extent_offset + old->offset -
2353 backref->extent_offset;
2354
2355 len = min(backref->extent_offset + backref->num_bytes,
2356 old->extent_offset + old->offset + old->len);
2357 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2358
2359 ret = btrfs_drop_extents(trans, root, inode, start,
2360 start + len, 1);
2361 if (ret)
2362 goto out_free_path;
2363again:
2364 key.objectid = btrfs_ino(inode);
2365 key.type = BTRFS_EXTENT_DATA_KEY;
2366 key.offset = start;
2367
a09a0a70 2368 path->leave_spinning = 1;
38c227d8
LB
2369 if (merge) {
2370 struct btrfs_file_extent_item *fi;
2371 u64 extent_len;
2372 struct btrfs_key found_key;
2373
2374 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2375 if (ret < 0)
2376 goto out_free_path;
2377
2378 path->slots[0]--;
2379 leaf = path->nodes[0];
2380 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2381
2382 fi = btrfs_item_ptr(leaf, path->slots[0],
2383 struct btrfs_file_extent_item);
2384 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2385
2386 if (relink_is_mergable(leaf, fi, new->bytenr) &&
2387 extent_len + found_key.offset == start) {
2388 btrfs_set_file_extent_num_bytes(leaf, fi,
2389 extent_len + len);
2390 btrfs_mark_buffer_dirty(leaf);
2391 inode_add_bytes(inode, len);
2392
2393 ret = 1;
2394 goto out_free_path;
2395 } else {
2396 merge = false;
2397 btrfs_release_path(path);
2398 goto again;
2399 }
2400 }
2401
2402 ret = btrfs_insert_empty_item(trans, root, path, &key,
2403 sizeof(*extent));
2404 if (ret) {
2405 btrfs_abort_transaction(trans, root, ret);
2406 goto out_free_path;
2407 }
2408
2409 leaf = path->nodes[0];
2410 item = btrfs_item_ptr(leaf, path->slots[0],
2411 struct btrfs_file_extent_item);
2412 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2413 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2414 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2415 btrfs_set_file_extent_num_bytes(leaf, item, len);
2416 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2417 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2418 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2419 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2420 btrfs_set_file_extent_encryption(leaf, item, 0);
2421 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2422
2423 btrfs_mark_buffer_dirty(leaf);
2424 inode_add_bytes(inode, len);
a09a0a70 2425 btrfs_release_path(path);
38c227d8
LB
2426
2427 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2428 new->disk_len, 0,
2429 backref->root_id, backref->inum,
2430 new->file_pos, 0); /* start - extent_offset */
2431 if (ret) {
2432 btrfs_abort_transaction(trans, root, ret);
2433 goto out_free_path;
2434 }
2435
2436 ret = 1;
2437out_free_path:
2438 btrfs_release_path(path);
a09a0a70 2439 path->leave_spinning = 0;
38c227d8
LB
2440 btrfs_end_transaction(trans, root);
2441out_unlock:
2442 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2443 &cached, GFP_NOFS);
2444 iput(inode);
2445 return ret;
2446}
2447
2448static void relink_file_extents(struct new_sa_defrag_extent *new)
2449{
2450 struct btrfs_path *path;
2451 struct old_sa_defrag_extent *old, *tmp;
2452 struct sa_defrag_extent_backref *backref;
2453 struct sa_defrag_extent_backref *prev = NULL;
2454 struct inode *inode;
2455 struct btrfs_root *root;
2456 struct rb_node *node;
2457 int ret;
2458
2459 inode = new->inode;
2460 root = BTRFS_I(inode)->root;
2461
2462 path = btrfs_alloc_path();
2463 if (!path)
2464 return;
2465
2466 if (!record_extent_backrefs(path, new)) {
2467 btrfs_free_path(path);
2468 goto out;
2469 }
2470 btrfs_release_path(path);
2471
2472 while (1) {
2473 node = rb_first(&new->root);
2474 if (!node)
2475 break;
2476 rb_erase(node, &new->root);
2477
2478 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2479
2480 ret = relink_extent_backref(path, prev, backref);
2481 WARN_ON(ret < 0);
2482
2483 kfree(prev);
2484
2485 if (ret == 1)
2486 prev = backref;
2487 else
2488 prev = NULL;
2489 cond_resched();
2490 }
2491 kfree(prev);
2492
2493 btrfs_free_path(path);
2494
2495 list_for_each_entry_safe(old, tmp, &new->head, list) {
2496 list_del(&old->list);
2497 kfree(old);
2498 }
2499out:
2500 atomic_dec(&root->fs_info->defrag_running);
2501 wake_up(&root->fs_info->transaction_wait);
2502
2503 kfree(new);
2504}
2505
2506static struct new_sa_defrag_extent *
2507record_old_file_extents(struct inode *inode,
2508 struct btrfs_ordered_extent *ordered)
2509{
2510 struct btrfs_root *root = BTRFS_I(inode)->root;
2511 struct btrfs_path *path;
2512 struct btrfs_key key;
2513 struct old_sa_defrag_extent *old, *tmp;
2514 struct new_sa_defrag_extent *new;
2515 int ret;
2516
2517 new = kmalloc(sizeof(*new), GFP_NOFS);
2518 if (!new)
2519 return NULL;
2520
2521 new->inode = inode;
2522 new->file_pos = ordered->file_offset;
2523 new->len = ordered->len;
2524 new->bytenr = ordered->start;
2525 new->disk_len = ordered->disk_len;
2526 new->compress_type = ordered->compress_type;
2527 new->root = RB_ROOT;
2528 INIT_LIST_HEAD(&new->head);
2529
2530 path = btrfs_alloc_path();
2531 if (!path)
2532 goto out_kfree;
2533
2534 key.objectid = btrfs_ino(inode);
2535 key.type = BTRFS_EXTENT_DATA_KEY;
2536 key.offset = new->file_pos;
2537
2538 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2539 if (ret < 0)
2540 goto out_free_path;
2541 if (ret > 0 && path->slots[0] > 0)
2542 path->slots[0]--;
2543
2544 /* find out all the old extents for the file range */
2545 while (1) {
2546 struct btrfs_file_extent_item *extent;
2547 struct extent_buffer *l;
2548 int slot;
2549 u64 num_bytes;
2550 u64 offset;
2551 u64 end;
2552 u64 disk_bytenr;
2553 u64 extent_offset;
2554
2555 l = path->nodes[0];
2556 slot = path->slots[0];
2557
2558 if (slot >= btrfs_header_nritems(l)) {
2559 ret = btrfs_next_leaf(root, path);
2560 if (ret < 0)
2561 goto out_free_list;
2562 else if (ret > 0)
2563 break;
2564 continue;
2565 }
2566
2567 btrfs_item_key_to_cpu(l, &key, slot);
2568
2569 if (key.objectid != btrfs_ino(inode))
2570 break;
2571 if (key.type != BTRFS_EXTENT_DATA_KEY)
2572 break;
2573 if (key.offset >= new->file_pos + new->len)
2574 break;
2575
2576 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2577
2578 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2579 if (key.offset + num_bytes < new->file_pos)
2580 goto next;
2581
2582 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2583 if (!disk_bytenr)
2584 goto next;
2585
2586 extent_offset = btrfs_file_extent_offset(l, extent);
2587
2588 old = kmalloc(sizeof(*old), GFP_NOFS);
2589 if (!old)
2590 goto out_free_list;
2591
2592 offset = max(new->file_pos, key.offset);
2593 end = min(new->file_pos + new->len, key.offset + num_bytes);
2594
2595 old->bytenr = disk_bytenr;
2596 old->extent_offset = extent_offset;
2597 old->offset = offset - key.offset;
2598 old->len = end - offset;
2599 old->new = new;
2600 old->count = 0;
2601 list_add_tail(&old->list, &new->head);
2602next:
2603 path->slots[0]++;
2604 cond_resched();
2605 }
2606
2607 btrfs_free_path(path);
2608 atomic_inc(&root->fs_info->defrag_running);
2609
2610 return new;
2611
2612out_free_list:
2613 list_for_each_entry_safe(old, tmp, &new->head, list) {
2614 list_del(&old->list);
2615 kfree(old);
2616 }
2617out_free_path:
2618 btrfs_free_path(path);
2619out_kfree:
2620 kfree(new);
2621 return NULL;
2622}
2623
5d13a98f
CM
2624/*
2625 * helper function for btrfs_finish_ordered_io, this
2626 * just reads in some of the csum leaves to prime them into ram
2627 * before we start the transaction. It limits the amount of btree
2628 * reads required while inside the transaction.
2629 */
d352ac68
CM
2630/* as ordered data IO finishes, this gets called so we can finish
2631 * an ordered extent if the range of bytes in the file it covers are
2632 * fully written.
2633 */
5fd02043 2634static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2635{
5fd02043 2636 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2637 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2638 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2639 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2640 struct extent_state *cached_state = NULL;
38c227d8 2641 struct new_sa_defrag_extent *new = NULL;
261507a0 2642 int compress_type = 0;
e6dcd2dc 2643 int ret;
82d5902d 2644 bool nolock;
e6dcd2dc 2645
83eea1f1 2646 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2647
5fd02043
JB
2648 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2649 ret = -EIO;
2650 goto out;
2651 }
2652
c2167754 2653 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2654 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2655 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2656 if (nolock)
2657 trans = btrfs_join_transaction_nolock(root);
2658 else
2659 trans = btrfs_join_transaction(root);
2660 if (IS_ERR(trans)) {
2661 ret = PTR_ERR(trans);
2662 trans = NULL;
2663 goto out;
c2167754 2664 }
6c760c07
JB
2665 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2666 ret = btrfs_update_inode_fallback(trans, root, inode);
2667 if (ret) /* -ENOMEM or corruption */
2668 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2669 goto out;
2670 }
e6dcd2dc 2671
2ac55d41
JB
2672 lock_extent_bits(io_tree, ordered_extent->file_offset,
2673 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2674 0, &cached_state);
e6dcd2dc 2675
38c227d8
LB
2676 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2677 ordered_extent->file_offset + ordered_extent->len - 1,
2678 EXTENT_DEFRAG, 1, cached_state);
2679 if (ret) {
2680 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2681 if (last_snapshot >= BTRFS_I(inode)->generation)
2682 /* the inode is shared */
2683 new = record_old_file_extents(inode, ordered_extent);
2684
2685 clear_extent_bit(io_tree, ordered_extent->file_offset,
2686 ordered_extent->file_offset + ordered_extent->len - 1,
2687 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2688 }
2689
0cb59c99 2690 if (nolock)
7a7eaa40 2691 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2692 else
7a7eaa40 2693 trans = btrfs_join_transaction(root);
79787eaa
JM
2694 if (IS_ERR(trans)) {
2695 ret = PTR_ERR(trans);
2696 trans = NULL;
2697 goto out_unlock;
2698 }
0ca1f7ce 2699 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2700
c8b97818 2701 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2702 compress_type = ordered_extent->compress_type;
d899e052 2703 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2704 BUG_ON(compress_type);
920bbbfb 2705 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2706 ordered_extent->file_offset,
2707 ordered_extent->file_offset +
2708 ordered_extent->len);
d899e052 2709 } else {
0af3d00b 2710 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2711 ret = insert_reserved_file_extent(trans, inode,
2712 ordered_extent->file_offset,
2713 ordered_extent->start,
2714 ordered_extent->disk_len,
2715 ordered_extent->len,
2716 ordered_extent->len,
261507a0 2717 compress_type, 0, 0,
d899e052 2718 BTRFS_FILE_EXTENT_REG);
d899e052 2719 }
5dc562c5
JB
2720 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2721 ordered_extent->file_offset, ordered_extent->len,
2722 trans->transid);
79787eaa
JM
2723 if (ret < 0) {
2724 btrfs_abort_transaction(trans, root, ret);
5fd02043 2725 goto out_unlock;
79787eaa 2726 }
2ac55d41 2727
e6dcd2dc
CM
2728 add_pending_csums(trans, inode, ordered_extent->file_offset,
2729 &ordered_extent->list);
2730
6c760c07
JB
2731 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2732 ret = btrfs_update_inode_fallback(trans, root, inode);
2733 if (ret) { /* -ENOMEM or corruption */
2734 btrfs_abort_transaction(trans, root, ret);
2735 goto out_unlock;
1ef30be1
JB
2736 }
2737 ret = 0;
5fd02043
JB
2738out_unlock:
2739 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2740 ordered_extent->file_offset +
2741 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2742out:
5b0e95bf 2743 if (root != root->fs_info->tree_root)
0cb59c99 2744 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2745 if (trans)
2746 btrfs_end_transaction(trans, root);
0cb59c99 2747
0bec9ef5 2748 if (ret) {
5fd02043
JB
2749 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2750 ordered_extent->file_offset +
2751 ordered_extent->len - 1, NULL, GFP_NOFS);
2752
0bec9ef5
JB
2753 /*
2754 * If the ordered extent had an IOERR or something else went
2755 * wrong we need to return the space for this ordered extent
2756 * back to the allocator.
2757 */
2758 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2759 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2760 btrfs_free_reserved_extent(root, ordered_extent->start,
2761 ordered_extent->disk_len);
2762 }
2763
2764
5fd02043 2765 /*
8bad3c02
LB
2766 * This needs to be done to make sure anybody waiting knows we are done
2767 * updating everything for this ordered extent.
5fd02043
JB
2768 */
2769 btrfs_remove_ordered_extent(inode, ordered_extent);
2770
38c227d8
LB
2771 /* for snapshot-aware defrag */
2772 if (new)
2773 relink_file_extents(new);
2774
e6dcd2dc
CM
2775 /* once for us */
2776 btrfs_put_ordered_extent(ordered_extent);
2777 /* once for the tree */
2778 btrfs_put_ordered_extent(ordered_extent);
2779
5fd02043
JB
2780 return ret;
2781}
2782
2783static void finish_ordered_fn(struct btrfs_work *work)
2784{
2785 struct btrfs_ordered_extent *ordered_extent;
2786 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2787 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2788}
2789
b2950863 2790static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2791 struct extent_state *state, int uptodate)
2792{
5fd02043
JB
2793 struct inode *inode = page->mapping->host;
2794 struct btrfs_root *root = BTRFS_I(inode)->root;
2795 struct btrfs_ordered_extent *ordered_extent = NULL;
2796 struct btrfs_workers *workers;
2797
1abe9b8a 2798 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2799
8b62b72b 2800 ClearPagePrivate2(page);
5fd02043
JB
2801 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2802 end - start + 1, uptodate))
2803 return 0;
2804
2805 ordered_extent->work.func = finish_ordered_fn;
2806 ordered_extent->work.flags = 0;
2807
83eea1f1 2808 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2809 workers = &root->fs_info->endio_freespace_worker;
2810 else
2811 workers = &root->fs_info->endio_write_workers;
2812 btrfs_queue_worker(workers, &ordered_extent->work);
2813
2814 return 0;
211f90e6
CM
2815}
2816
d352ac68
CM
2817/*
2818 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2819 * if there's a match, we allow the bio to finish. If not, the code in
2820 * extent_io.c will try to find good copies for us.
d352ac68 2821 */
b2950863 2822static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2823 struct extent_state *state, int mirror)
07157aac 2824{
4eee4fa4 2825 size_t offset = start - page_offset(page);
07157aac 2826 struct inode *inode = page->mapping->host;
d1310b2e 2827 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2828 char *kaddr;
aadfeb6e 2829 u64 private = ~(u32)0;
07157aac 2830 int ret;
ff79f819
CM
2831 struct btrfs_root *root = BTRFS_I(inode)->root;
2832 u32 csum = ~(u32)0;
c2cf52eb
SK
2833 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2834 DEFAULT_RATELIMIT_BURST);
d1310b2e 2835
d20f7043
CM
2836 if (PageChecked(page)) {
2837 ClearPageChecked(page);
2838 goto good;
2839 }
6cbff00f
CH
2840
2841 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2842 goto good;
17d217fe
YZ
2843
2844 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2845 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2846 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2847 GFP_NOFS);
b6cda9bc 2848 return 0;
17d217fe 2849 }
d20f7043 2850
c2e639f0 2851 if (state && state->start == start) {
70dec807
CM
2852 private = state->private;
2853 ret = 0;
2854 } else {
2855 ret = get_state_private(io_tree, start, &private);
2856 }
7ac687d9 2857 kaddr = kmap_atomic(page);
d397712b 2858 if (ret)
07157aac 2859 goto zeroit;
d397712b 2860
b0496686 2861 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2862 btrfs_csum_final(csum, (char *)&csum);
d397712b 2863 if (csum != private)
07157aac 2864 goto zeroit;
d397712b 2865
7ac687d9 2866 kunmap_atomic(kaddr);
d20f7043 2867good:
07157aac
CM
2868 return 0;
2869
2870zeroit:
c2cf52eb
SK
2871 if (__ratelimit(&_rs))
2872 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu",
2873 (unsigned long long)btrfs_ino(page->mapping->host),
2874 (unsigned long long)start, csum,
2875 (unsigned long long)private);
db94535d
CM
2876 memset(kaddr + offset, 1, end - start + 1);
2877 flush_dcache_page(page);
7ac687d9 2878 kunmap_atomic(kaddr);
3b951516
CM
2879 if (private == 0)
2880 return 0;
7e38326f 2881 return -EIO;
07157aac 2882}
b888db2b 2883
24bbcf04
YZ
2884struct delayed_iput {
2885 struct list_head list;
2886 struct inode *inode;
2887};
2888
79787eaa
JM
2889/* JDM: If this is fs-wide, why can't we add a pointer to
2890 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2891void btrfs_add_delayed_iput(struct inode *inode)
2892{
2893 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2894 struct delayed_iput *delayed;
2895
2896 if (atomic_add_unless(&inode->i_count, -1, 1))
2897 return;
2898
2899 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2900 delayed->inode = inode;
2901
2902 spin_lock(&fs_info->delayed_iput_lock);
2903 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2904 spin_unlock(&fs_info->delayed_iput_lock);
2905}
2906
2907void btrfs_run_delayed_iputs(struct btrfs_root *root)
2908{
2909 LIST_HEAD(list);
2910 struct btrfs_fs_info *fs_info = root->fs_info;
2911 struct delayed_iput *delayed;
2912 int empty;
2913
2914 spin_lock(&fs_info->delayed_iput_lock);
2915 empty = list_empty(&fs_info->delayed_iputs);
2916 spin_unlock(&fs_info->delayed_iput_lock);
2917 if (empty)
2918 return;
2919
24bbcf04
YZ
2920 spin_lock(&fs_info->delayed_iput_lock);
2921 list_splice_init(&fs_info->delayed_iputs, &list);
2922 spin_unlock(&fs_info->delayed_iput_lock);
2923
2924 while (!list_empty(&list)) {
2925 delayed = list_entry(list.next, struct delayed_iput, list);
2926 list_del(&delayed->list);
2927 iput(delayed->inode);
2928 kfree(delayed);
2929 }
24bbcf04
YZ
2930}
2931
d68fc57b 2932/*
42b2aa86 2933 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2934 * files in the subvolume, it removes orphan item and frees block_rsv
2935 * structure.
2936 */
2937void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2938 struct btrfs_root *root)
2939{
90290e19 2940 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2941 int ret;
2942
8a35d95f 2943 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2944 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2945 return;
2946
90290e19 2947 spin_lock(&root->orphan_lock);
8a35d95f 2948 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2949 spin_unlock(&root->orphan_lock);
2950 return;
2951 }
2952
2953 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2954 spin_unlock(&root->orphan_lock);
2955 return;
2956 }
2957
2958 block_rsv = root->orphan_block_rsv;
2959 root->orphan_block_rsv = NULL;
2960 spin_unlock(&root->orphan_lock);
2961
d68fc57b
YZ
2962 if (root->orphan_item_inserted &&
2963 btrfs_root_refs(&root->root_item) > 0) {
2964 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2965 root->root_key.objectid);
2966 BUG_ON(ret);
2967 root->orphan_item_inserted = 0;
2968 }
2969
90290e19
JB
2970 if (block_rsv) {
2971 WARN_ON(block_rsv->size > 0);
2972 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2973 }
2974}
2975
7b128766
JB
2976/*
2977 * This creates an orphan entry for the given inode in case something goes
2978 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2979 *
2980 * NOTE: caller of this function should reserve 5 units of metadata for
2981 * this function.
7b128766
JB
2982 */
2983int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2984{
2985 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2986 struct btrfs_block_rsv *block_rsv = NULL;
2987 int reserve = 0;
2988 int insert = 0;
2989 int ret;
7b128766 2990
d68fc57b 2991 if (!root->orphan_block_rsv) {
66d8f3dd 2992 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2993 if (!block_rsv)
2994 return -ENOMEM;
d68fc57b 2995 }
7b128766 2996
d68fc57b
YZ
2997 spin_lock(&root->orphan_lock);
2998 if (!root->orphan_block_rsv) {
2999 root->orphan_block_rsv = block_rsv;
3000 } else if (block_rsv) {
3001 btrfs_free_block_rsv(root, block_rsv);
3002 block_rsv = NULL;
7b128766 3003 }
7b128766 3004
8a35d95f
JB
3005 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3006 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3007#if 0
3008 /*
3009 * For proper ENOSPC handling, we should do orphan
3010 * cleanup when mounting. But this introduces backward
3011 * compatibility issue.
3012 */
3013 if (!xchg(&root->orphan_item_inserted, 1))
3014 insert = 2;
3015 else
3016 insert = 1;
3017#endif
3018 insert = 1;
321f0e70 3019 atomic_inc(&root->orphan_inodes);
7b128766
JB
3020 }
3021
72ac3c0d
JB
3022 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3023 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3024 reserve = 1;
d68fc57b 3025 spin_unlock(&root->orphan_lock);
7b128766 3026
d68fc57b
YZ
3027 /* grab metadata reservation from transaction handle */
3028 if (reserve) {
3029 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3030 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3031 }
7b128766 3032
d68fc57b
YZ
3033 /* insert an orphan item to track this unlinked/truncated file */
3034 if (insert >= 1) {
33345d01 3035 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 3036 if (ret && ret != -EEXIST) {
8a35d95f
JB
3037 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3038 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
3039 btrfs_abort_transaction(trans, root, ret);
3040 return ret;
3041 }
3042 ret = 0;
d68fc57b
YZ
3043 }
3044
3045 /* insert an orphan item to track subvolume contains orphan files */
3046 if (insert >= 2) {
3047 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3048 root->root_key.objectid);
79787eaa
JM
3049 if (ret && ret != -EEXIST) {
3050 btrfs_abort_transaction(trans, root, ret);
3051 return ret;
3052 }
d68fc57b
YZ
3053 }
3054 return 0;
7b128766
JB
3055}
3056
3057/*
3058 * We have done the truncate/delete so we can go ahead and remove the orphan
3059 * item for this particular inode.
3060 */
48a3b636
ES
3061static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3062 struct inode *inode)
7b128766
JB
3063{
3064 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3065 int delete_item = 0;
3066 int release_rsv = 0;
7b128766
JB
3067 int ret = 0;
3068
d68fc57b 3069 spin_lock(&root->orphan_lock);
8a35d95f
JB
3070 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3071 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3072 delete_item = 1;
7b128766 3073
72ac3c0d
JB
3074 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3075 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3076 release_rsv = 1;
d68fc57b 3077 spin_unlock(&root->orphan_lock);
7b128766 3078
d68fc57b 3079 if (trans && delete_item) {
33345d01 3080 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 3081 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 3082 }
7b128766 3083
8a35d95f 3084 if (release_rsv) {
d68fc57b 3085 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
3086 atomic_dec(&root->orphan_inodes);
3087 }
7b128766 3088
d68fc57b 3089 return 0;
7b128766
JB
3090}
3091
3092/*
3093 * this cleans up any orphans that may be left on the list from the last use
3094 * of this root.
3095 */
66b4ffd1 3096int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3097{
3098 struct btrfs_path *path;
3099 struct extent_buffer *leaf;
7b128766
JB
3100 struct btrfs_key key, found_key;
3101 struct btrfs_trans_handle *trans;
3102 struct inode *inode;
8f6d7f4f 3103 u64 last_objectid = 0;
7b128766
JB
3104 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3105
d68fc57b 3106 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3107 return 0;
c71bf099
YZ
3108
3109 path = btrfs_alloc_path();
66b4ffd1
JB
3110 if (!path) {
3111 ret = -ENOMEM;
3112 goto out;
3113 }
7b128766
JB
3114 path->reada = -1;
3115
3116 key.objectid = BTRFS_ORPHAN_OBJECTID;
3117 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3118 key.offset = (u64)-1;
3119
7b128766
JB
3120 while (1) {
3121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3122 if (ret < 0)
3123 goto out;
7b128766
JB
3124
3125 /*
3126 * if ret == 0 means we found what we were searching for, which
25985edc 3127 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3128 * find the key and see if we have stuff that matches
3129 */
3130 if (ret > 0) {
66b4ffd1 3131 ret = 0;
7b128766
JB
3132 if (path->slots[0] == 0)
3133 break;
3134 path->slots[0]--;
3135 }
3136
3137 /* pull out the item */
3138 leaf = path->nodes[0];
7b128766
JB
3139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3140
3141 /* make sure the item matches what we want */
3142 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3143 break;
3144 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3145 break;
3146
3147 /* release the path since we're done with it */
b3b4aa74 3148 btrfs_release_path(path);
7b128766
JB
3149
3150 /*
3151 * this is where we are basically btrfs_lookup, without the
3152 * crossing root thing. we store the inode number in the
3153 * offset of the orphan item.
3154 */
8f6d7f4f
JB
3155
3156 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3157 btrfs_err(root->fs_info,
3158 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3159 ret = -EINVAL;
3160 goto out;
3161 }
3162
3163 last_objectid = found_key.offset;
3164
5d4f98a2
YZ
3165 found_key.objectid = found_key.offset;
3166 found_key.type = BTRFS_INODE_ITEM_KEY;
3167 found_key.offset = 0;
73f73415 3168 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
3169 ret = PTR_RET(inode);
3170 if (ret && ret != -ESTALE)
66b4ffd1 3171 goto out;
7b128766 3172
f8e9e0b0
AJ
3173 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3174 struct btrfs_root *dead_root;
3175 struct btrfs_fs_info *fs_info = root->fs_info;
3176 int is_dead_root = 0;
3177
3178 /*
3179 * this is an orphan in the tree root. Currently these
3180 * could come from 2 sources:
3181 * a) a snapshot deletion in progress
3182 * b) a free space cache inode
3183 * We need to distinguish those two, as the snapshot
3184 * orphan must not get deleted.
3185 * find_dead_roots already ran before us, so if this
3186 * is a snapshot deletion, we should find the root
3187 * in the dead_roots list
3188 */
3189 spin_lock(&fs_info->trans_lock);
3190 list_for_each_entry(dead_root, &fs_info->dead_roots,
3191 root_list) {
3192 if (dead_root->root_key.objectid ==
3193 found_key.objectid) {
3194 is_dead_root = 1;
3195 break;
3196 }
3197 }
3198 spin_unlock(&fs_info->trans_lock);
3199 if (is_dead_root) {
3200 /* prevent this orphan from being found again */
3201 key.offset = found_key.objectid - 1;
3202 continue;
3203 }
3204 }
7b128766 3205 /*
a8c9e576
JB
3206 * Inode is already gone but the orphan item is still there,
3207 * kill the orphan item.
7b128766 3208 */
a8c9e576
JB
3209 if (ret == -ESTALE) {
3210 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3211 if (IS_ERR(trans)) {
3212 ret = PTR_ERR(trans);
3213 goto out;
3214 }
c2cf52eb
SK
3215 btrfs_debug(root->fs_info, "auto deleting %Lu",
3216 found_key.objectid);
a8c9e576
JB
3217 ret = btrfs_del_orphan_item(trans, root,
3218 found_key.objectid);
79787eaa 3219 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 3220 btrfs_end_transaction(trans, root);
7b128766
JB
3221 continue;
3222 }
3223
a8c9e576
JB
3224 /*
3225 * add this inode to the orphan list so btrfs_orphan_del does
3226 * the proper thing when we hit it
3227 */
8a35d95f
JB
3228 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3229 &BTRFS_I(inode)->runtime_flags);
925396ec 3230 atomic_inc(&root->orphan_inodes);
a8c9e576 3231
7b128766
JB
3232 /* if we have links, this was a truncate, lets do that */
3233 if (inode->i_nlink) {
a41ad394
JB
3234 if (!S_ISREG(inode->i_mode)) {
3235 WARN_ON(1);
3236 iput(inode);
3237 continue;
3238 }
7b128766 3239 nr_truncate++;
f3fe820c
JB
3240
3241 /* 1 for the orphan item deletion. */
3242 trans = btrfs_start_transaction(root, 1);
3243 if (IS_ERR(trans)) {
c69b26b0 3244 iput(inode);
f3fe820c
JB
3245 ret = PTR_ERR(trans);
3246 goto out;
3247 }
3248 ret = btrfs_orphan_add(trans, inode);
3249 btrfs_end_transaction(trans, root);
c69b26b0
JB
3250 if (ret) {
3251 iput(inode);
f3fe820c 3252 goto out;
c69b26b0 3253 }
f3fe820c 3254
66b4ffd1 3255 ret = btrfs_truncate(inode);
4a7d0f68
JB
3256 if (ret)
3257 btrfs_orphan_del(NULL, inode);
7b128766
JB
3258 } else {
3259 nr_unlink++;
3260 }
3261
3262 /* this will do delete_inode and everything for us */
3263 iput(inode);
66b4ffd1
JB
3264 if (ret)
3265 goto out;
7b128766 3266 }
3254c876
MX
3267 /* release the path since we're done with it */
3268 btrfs_release_path(path);
3269
d68fc57b
YZ
3270 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3271
3272 if (root->orphan_block_rsv)
3273 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3274 (u64)-1);
3275
3276 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3277 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3278 if (!IS_ERR(trans))
3279 btrfs_end_transaction(trans, root);
d68fc57b 3280 }
7b128766
JB
3281
3282 if (nr_unlink)
4884b476 3283 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3284 if (nr_truncate)
4884b476 3285 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3286
3287out:
3288 if (ret)
c2cf52eb
SK
3289 btrfs_crit(root->fs_info,
3290 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3291 btrfs_free_path(path);
3292 return ret;
7b128766
JB
3293}
3294
46a53cca
CM
3295/*
3296 * very simple check to peek ahead in the leaf looking for xattrs. If we
3297 * don't find any xattrs, we know there can't be any acls.
3298 *
3299 * slot is the slot the inode is in, objectid is the objectid of the inode
3300 */
3301static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3302 int slot, u64 objectid)
3303{
3304 u32 nritems = btrfs_header_nritems(leaf);
3305 struct btrfs_key found_key;
f23b5a59
JB
3306 static u64 xattr_access = 0;
3307 static u64 xattr_default = 0;
46a53cca
CM
3308 int scanned = 0;
3309
f23b5a59
JB
3310 if (!xattr_access) {
3311 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3312 strlen(POSIX_ACL_XATTR_ACCESS));
3313 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3314 strlen(POSIX_ACL_XATTR_DEFAULT));
3315 }
3316
46a53cca
CM
3317 slot++;
3318 while (slot < nritems) {
3319 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3320
3321 /* we found a different objectid, there must not be acls */
3322 if (found_key.objectid != objectid)
3323 return 0;
3324
3325 /* we found an xattr, assume we've got an acl */
f23b5a59
JB
3326 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3327 if (found_key.offset == xattr_access ||
3328 found_key.offset == xattr_default)
3329 return 1;
3330 }
46a53cca
CM
3331
3332 /*
3333 * we found a key greater than an xattr key, there can't
3334 * be any acls later on
3335 */
3336 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3337 return 0;
3338
3339 slot++;
3340 scanned++;
3341
3342 /*
3343 * it goes inode, inode backrefs, xattrs, extents,
3344 * so if there are a ton of hard links to an inode there can
3345 * be a lot of backrefs. Don't waste time searching too hard,
3346 * this is just an optimization
3347 */
3348 if (scanned >= 8)
3349 break;
3350 }
3351 /* we hit the end of the leaf before we found an xattr or
3352 * something larger than an xattr. We have to assume the inode
3353 * has acls
3354 */
3355 return 1;
3356}
3357
d352ac68
CM
3358/*
3359 * read an inode from the btree into the in-memory inode
3360 */
5d4f98a2 3361static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3362{
3363 struct btrfs_path *path;
5f39d397 3364 struct extent_buffer *leaf;
39279cc3 3365 struct btrfs_inode_item *inode_item;
0b86a832 3366 struct btrfs_timespec *tspec;
39279cc3
CM
3367 struct btrfs_root *root = BTRFS_I(inode)->root;
3368 struct btrfs_key location;
46a53cca 3369 int maybe_acls;
618e21d5 3370 u32 rdev;
39279cc3 3371 int ret;
2f7e33d4
MX
3372 bool filled = false;
3373
3374 ret = btrfs_fill_inode(inode, &rdev);
3375 if (!ret)
3376 filled = true;
39279cc3
CM
3377
3378 path = btrfs_alloc_path();
1748f843
MF
3379 if (!path)
3380 goto make_bad;
3381
d90c7321 3382 path->leave_spinning = 1;
39279cc3 3383 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3384
39279cc3 3385 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3386 if (ret)
39279cc3 3387 goto make_bad;
39279cc3 3388
5f39d397 3389 leaf = path->nodes[0];
2f7e33d4
MX
3390
3391 if (filled)
3392 goto cache_acl;
3393
5f39d397
CM
3394 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3395 struct btrfs_inode_item);
5f39d397 3396 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3397 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3398 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3399 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3400 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3401
3402 tspec = btrfs_inode_atime(inode_item);
3403 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3404 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3405
3406 tspec = btrfs_inode_mtime(inode_item);
3407 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3408 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3409
3410 tspec = btrfs_inode_ctime(inode_item);
3411 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3412 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3413
a76a3cd4 3414 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3415 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3416 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3417
3418 /*
3419 * If we were modified in the current generation and evicted from memory
3420 * and then re-read we need to do a full sync since we don't have any
3421 * idea about which extents were modified before we were evicted from
3422 * cache.
3423 */
3424 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3425 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3426 &BTRFS_I(inode)->runtime_flags);
3427
0c4d2d95 3428 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3429 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3430 inode->i_rdev = 0;
5f39d397
CM
3431 rdev = btrfs_inode_rdev(leaf, inode_item);
3432
aec7477b 3433 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3434 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3435cache_acl:
46a53cca
CM
3436 /*
3437 * try to precache a NULL acl entry for files that don't have
3438 * any xattrs or acls
3439 */
33345d01
LZ
3440 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3441 btrfs_ino(inode));
72c04902
AV
3442 if (!maybe_acls)
3443 cache_no_acl(inode);
46a53cca 3444
39279cc3 3445 btrfs_free_path(path);
39279cc3 3446
39279cc3 3447 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3448 case S_IFREG:
3449 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3450 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3451 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3452 inode->i_fop = &btrfs_file_operations;
3453 inode->i_op = &btrfs_file_inode_operations;
3454 break;
3455 case S_IFDIR:
3456 inode->i_fop = &btrfs_dir_file_operations;
3457 if (root == root->fs_info->tree_root)
3458 inode->i_op = &btrfs_dir_ro_inode_operations;
3459 else
3460 inode->i_op = &btrfs_dir_inode_operations;
3461 break;
3462 case S_IFLNK:
3463 inode->i_op = &btrfs_symlink_inode_operations;
3464 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3465 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3466 break;
618e21d5 3467 default:
0279b4cd 3468 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3469 init_special_inode(inode, inode->i_mode, rdev);
3470 break;
39279cc3 3471 }
6cbff00f
CH
3472
3473 btrfs_update_iflags(inode);
39279cc3
CM
3474 return;
3475
3476make_bad:
39279cc3 3477 btrfs_free_path(path);
39279cc3
CM
3478 make_bad_inode(inode);
3479}
3480
d352ac68
CM
3481/*
3482 * given a leaf and an inode, copy the inode fields into the leaf
3483 */
e02119d5
CM
3484static void fill_inode_item(struct btrfs_trans_handle *trans,
3485 struct extent_buffer *leaf,
5f39d397 3486 struct btrfs_inode_item *item,
39279cc3
CM
3487 struct inode *inode)
3488{
51fab693
LB
3489 struct btrfs_map_token token;
3490
3491 btrfs_init_map_token(&token);
5f39d397 3492
51fab693
LB
3493 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3494 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3495 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3496 &token);
3497 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3498 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3499
51fab693
LB
3500 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3501 inode->i_atime.tv_sec, &token);
3502 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3503 inode->i_atime.tv_nsec, &token);
5f39d397 3504
51fab693
LB
3505 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3506 inode->i_mtime.tv_sec, &token);
3507 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3508 inode->i_mtime.tv_nsec, &token);
5f39d397 3509
51fab693
LB
3510 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3511 inode->i_ctime.tv_sec, &token);
3512 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3513 inode->i_ctime.tv_nsec, &token);
5f39d397 3514
51fab693
LB
3515 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3516 &token);
3517 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3518 &token);
3519 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3520 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3521 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3522 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3523 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3524}
3525
d352ac68
CM
3526/*
3527 * copy everything in the in-memory inode into the btree.
3528 */
2115133f 3529static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3530 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3531{
3532 struct btrfs_inode_item *inode_item;
3533 struct btrfs_path *path;
5f39d397 3534 struct extent_buffer *leaf;
39279cc3
CM
3535 int ret;
3536
3537 path = btrfs_alloc_path();
16cdcec7
MX
3538 if (!path)
3539 return -ENOMEM;
3540
b9473439 3541 path->leave_spinning = 1;
16cdcec7
MX
3542 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3543 1);
39279cc3
CM
3544 if (ret) {
3545 if (ret > 0)
3546 ret = -ENOENT;
3547 goto failed;
3548 }
3549
b4ce94de 3550 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3551 leaf = path->nodes[0];
3552 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3553 struct btrfs_inode_item);
39279cc3 3554
e02119d5 3555 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3556 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3557 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3558 ret = 0;
3559failed:
39279cc3
CM
3560 btrfs_free_path(path);
3561 return ret;
3562}
3563
2115133f
CM
3564/*
3565 * copy everything in the in-memory inode into the btree.
3566 */
3567noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3568 struct btrfs_root *root, struct inode *inode)
3569{
3570 int ret;
3571
3572 /*
3573 * If the inode is a free space inode, we can deadlock during commit
3574 * if we put it into the delayed code.
3575 *
3576 * The data relocation inode should also be directly updated
3577 * without delay
3578 */
83eea1f1 3579 if (!btrfs_is_free_space_inode(inode)
2115133f 3580 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3581 btrfs_update_root_times(trans, root);
3582
2115133f
CM
3583 ret = btrfs_delayed_update_inode(trans, root, inode);
3584 if (!ret)
3585 btrfs_set_inode_last_trans(trans, inode);
3586 return ret;
3587 }
3588
3589 return btrfs_update_inode_item(trans, root, inode);
3590}
3591
be6aef60
JB
3592noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3593 struct btrfs_root *root,
3594 struct inode *inode)
2115133f
CM
3595{
3596 int ret;
3597
3598 ret = btrfs_update_inode(trans, root, inode);
3599 if (ret == -ENOSPC)
3600 return btrfs_update_inode_item(trans, root, inode);
3601 return ret;
3602}
3603
d352ac68
CM
3604/*
3605 * unlink helper that gets used here in inode.c and in the tree logging
3606 * recovery code. It remove a link in a directory with a given name, and
3607 * also drops the back refs in the inode to the directory
3608 */
92986796
AV
3609static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3610 struct btrfs_root *root,
3611 struct inode *dir, struct inode *inode,
3612 const char *name, int name_len)
39279cc3
CM
3613{
3614 struct btrfs_path *path;
39279cc3 3615 int ret = 0;
5f39d397 3616 struct extent_buffer *leaf;
39279cc3 3617 struct btrfs_dir_item *di;
5f39d397 3618 struct btrfs_key key;
aec7477b 3619 u64 index;
33345d01
LZ
3620 u64 ino = btrfs_ino(inode);
3621 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3622
3623 path = btrfs_alloc_path();
54aa1f4d
CM
3624 if (!path) {
3625 ret = -ENOMEM;
554233a6 3626 goto out;
54aa1f4d
CM
3627 }
3628
b9473439 3629 path->leave_spinning = 1;
33345d01 3630 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3631 name, name_len, -1);
3632 if (IS_ERR(di)) {
3633 ret = PTR_ERR(di);
3634 goto err;
3635 }
3636 if (!di) {
3637 ret = -ENOENT;
3638 goto err;
3639 }
5f39d397
CM
3640 leaf = path->nodes[0];
3641 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3642 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3643 if (ret)
3644 goto err;
b3b4aa74 3645 btrfs_release_path(path);
39279cc3 3646
33345d01
LZ
3647 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3648 dir_ino, &index);
aec7477b 3649 if (ret) {
c2cf52eb
SK
3650 btrfs_info(root->fs_info,
3651 "failed to delete reference to %.*s, inode %llu parent %llu",
3652 name_len, name,
3653 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 3654 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3655 goto err;
3656 }
3657
16cdcec7 3658 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3659 if (ret) {
3660 btrfs_abort_transaction(trans, root, ret);
39279cc3 3661 goto err;
79787eaa 3662 }
39279cc3 3663
e02119d5 3664 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3665 inode, dir_ino);
79787eaa
JM
3666 if (ret != 0 && ret != -ENOENT) {
3667 btrfs_abort_transaction(trans, root, ret);
3668 goto err;
3669 }
e02119d5
CM
3670
3671 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3672 dir, index);
6418c961
CM
3673 if (ret == -ENOENT)
3674 ret = 0;
d4e3991b
ZB
3675 else if (ret)
3676 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3677err:
3678 btrfs_free_path(path);
e02119d5
CM
3679 if (ret)
3680 goto out;
3681
3682 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3683 inode_inc_iversion(inode);
3684 inode_inc_iversion(dir);
e02119d5 3685 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3686 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3687out:
39279cc3
CM
3688 return ret;
3689}
3690
92986796
AV
3691int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3692 struct btrfs_root *root,
3693 struct inode *dir, struct inode *inode,
3694 const char *name, int name_len)
3695{
3696 int ret;
3697 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3698 if (!ret) {
3699 btrfs_drop_nlink(inode);
3700 ret = btrfs_update_inode(trans, root, inode);
3701 }
3702 return ret;
3703}
39279cc3 3704
a22285a6
YZ
3705/*
3706 * helper to start transaction for unlink and rmdir.
3707 *
d52be818
JB
3708 * unlink and rmdir are special in btrfs, they do not always free space, so
3709 * if we cannot make our reservations the normal way try and see if there is
3710 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3711 * allow the unlink to occur.
a22285a6 3712 */
d52be818 3713static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3714{
39279cc3 3715 struct btrfs_trans_handle *trans;
a22285a6 3716 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3717 int ret;
3718
e70bea5f
JB
3719 /*
3720 * 1 for the possible orphan item
3721 * 1 for the dir item
3722 * 1 for the dir index
3723 * 1 for the inode ref
e70bea5f
JB
3724 * 1 for the inode
3725 */
6e137ed3 3726 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3727 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3728 return trans;
4df27c4d 3729
d52be818
JB
3730 if (PTR_ERR(trans) == -ENOSPC) {
3731 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3732
d52be818
JB
3733 trans = btrfs_start_transaction(root, 0);
3734 if (IS_ERR(trans))
3735 return trans;
3736 ret = btrfs_cond_migrate_bytes(root->fs_info,
3737 &root->fs_info->trans_block_rsv,
3738 num_bytes, 5);
3739 if (ret) {
3740 btrfs_end_transaction(trans, root);
3741 return ERR_PTR(ret);
a22285a6 3742 }
5a77d76c 3743 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3744 trans->bytes_reserved = num_bytes;
a22285a6 3745 }
d52be818 3746 return trans;
a22285a6
YZ
3747}
3748
3749static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3750{
3751 struct btrfs_root *root = BTRFS_I(dir)->root;
3752 struct btrfs_trans_handle *trans;
3753 struct inode *inode = dentry->d_inode;
3754 int ret;
a22285a6 3755
d52be818 3756 trans = __unlink_start_trans(dir);
a22285a6
YZ
3757 if (IS_ERR(trans))
3758 return PTR_ERR(trans);
5f39d397 3759
12fcfd22
CM
3760 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3761
e02119d5
CM
3762 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3763 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3764 if (ret)
3765 goto out;
7b128766 3766
a22285a6 3767 if (inode->i_nlink == 0) {
7b128766 3768 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3769 if (ret)
3770 goto out;
a22285a6 3771 }
7b128766 3772
b532402e 3773out:
d52be818 3774 btrfs_end_transaction(trans, root);
b53d3f5d 3775 btrfs_btree_balance_dirty(root);
39279cc3
CM
3776 return ret;
3777}
3778
4df27c4d
YZ
3779int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3780 struct btrfs_root *root,
3781 struct inode *dir, u64 objectid,
3782 const char *name, int name_len)
3783{
3784 struct btrfs_path *path;
3785 struct extent_buffer *leaf;
3786 struct btrfs_dir_item *di;
3787 struct btrfs_key key;
3788 u64 index;
3789 int ret;
33345d01 3790 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3791
3792 path = btrfs_alloc_path();
3793 if (!path)
3794 return -ENOMEM;
3795
33345d01 3796 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3797 name, name_len, -1);
79787eaa
JM
3798 if (IS_ERR_OR_NULL(di)) {
3799 if (!di)
3800 ret = -ENOENT;
3801 else
3802 ret = PTR_ERR(di);
3803 goto out;
3804 }
4df27c4d
YZ
3805
3806 leaf = path->nodes[0];
3807 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3808 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3809 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3810 if (ret) {
3811 btrfs_abort_transaction(trans, root, ret);
3812 goto out;
3813 }
b3b4aa74 3814 btrfs_release_path(path);
4df27c4d
YZ
3815
3816 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3817 objectid, root->root_key.objectid,
33345d01 3818 dir_ino, &index, name, name_len);
4df27c4d 3819 if (ret < 0) {
79787eaa
JM
3820 if (ret != -ENOENT) {
3821 btrfs_abort_transaction(trans, root, ret);
3822 goto out;
3823 }
33345d01 3824 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3825 name, name_len);
79787eaa
JM
3826 if (IS_ERR_OR_NULL(di)) {
3827 if (!di)
3828 ret = -ENOENT;
3829 else
3830 ret = PTR_ERR(di);
3831 btrfs_abort_transaction(trans, root, ret);
3832 goto out;
3833 }
4df27c4d
YZ
3834
3835 leaf = path->nodes[0];
3836 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3837 btrfs_release_path(path);
4df27c4d
YZ
3838 index = key.offset;
3839 }
945d8962 3840 btrfs_release_path(path);
4df27c4d 3841
16cdcec7 3842 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3843 if (ret) {
3844 btrfs_abort_transaction(trans, root, ret);
3845 goto out;
3846 }
4df27c4d
YZ
3847
3848 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3849 inode_inc_iversion(dir);
4df27c4d 3850 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3851 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3852 if (ret)
3853 btrfs_abort_transaction(trans, root, ret);
3854out:
71d7aed0 3855 btrfs_free_path(path);
79787eaa 3856 return ret;
4df27c4d
YZ
3857}
3858
39279cc3
CM
3859static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3860{
3861 struct inode *inode = dentry->d_inode;
1832a6d5 3862 int err = 0;
39279cc3 3863 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3864 struct btrfs_trans_handle *trans;
39279cc3 3865
b3ae244e 3866 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3867 return -ENOTEMPTY;
b3ae244e
DS
3868 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3869 return -EPERM;
134d4512 3870
d52be818 3871 trans = __unlink_start_trans(dir);
a22285a6 3872 if (IS_ERR(trans))
5df6a9f6 3873 return PTR_ERR(trans);
5df6a9f6 3874
33345d01 3875 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3876 err = btrfs_unlink_subvol(trans, root, dir,
3877 BTRFS_I(inode)->location.objectid,
3878 dentry->d_name.name,
3879 dentry->d_name.len);
3880 goto out;
3881 }
3882
7b128766
JB
3883 err = btrfs_orphan_add(trans, inode);
3884 if (err)
4df27c4d 3885 goto out;
7b128766 3886
39279cc3 3887 /* now the directory is empty */
e02119d5
CM
3888 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3889 dentry->d_name.name, dentry->d_name.len);
d397712b 3890 if (!err)
dbe674a9 3891 btrfs_i_size_write(inode, 0);
4df27c4d 3892out:
d52be818 3893 btrfs_end_transaction(trans, root);
b53d3f5d 3894 btrfs_btree_balance_dirty(root);
3954401f 3895
39279cc3
CM
3896 return err;
3897}
3898
39279cc3
CM
3899/*
3900 * this can truncate away extent items, csum items and directory items.
3901 * It starts at a high offset and removes keys until it can't find
d352ac68 3902 * any higher than new_size
39279cc3
CM
3903 *
3904 * csum items that cross the new i_size are truncated to the new size
3905 * as well.
7b128766
JB
3906 *
3907 * min_type is the minimum key type to truncate down to. If set to 0, this
3908 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3909 */
8082510e
YZ
3910int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3911 struct btrfs_root *root,
3912 struct inode *inode,
3913 u64 new_size, u32 min_type)
39279cc3 3914{
39279cc3 3915 struct btrfs_path *path;
5f39d397 3916 struct extent_buffer *leaf;
39279cc3 3917 struct btrfs_file_extent_item *fi;
8082510e
YZ
3918 struct btrfs_key key;
3919 struct btrfs_key found_key;
39279cc3 3920 u64 extent_start = 0;
db94535d 3921 u64 extent_num_bytes = 0;
5d4f98a2 3922 u64 extent_offset = 0;
39279cc3 3923 u64 item_end = 0;
8082510e 3924 u32 found_type = (u8)-1;
39279cc3
CM
3925 int found_extent;
3926 int del_item;
85e21bac
CM
3927 int pending_del_nr = 0;
3928 int pending_del_slot = 0;
179e29e4 3929 int extent_type = -1;
8082510e
YZ
3930 int ret;
3931 int err = 0;
33345d01 3932 u64 ino = btrfs_ino(inode);
8082510e
YZ
3933
3934 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3935
0eb0e19c
MF
3936 path = btrfs_alloc_path();
3937 if (!path)
3938 return -ENOMEM;
3939 path->reada = -1;
3940
5dc562c5
JB
3941 /*
3942 * We want to drop from the next block forward in case this new size is
3943 * not block aligned since we will be keeping the last block of the
3944 * extent just the way it is.
3945 */
0af3d00b 3946 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3947 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3948 root->sectorsize), (u64)-1, 0);
8082510e 3949
16cdcec7
MX
3950 /*
3951 * This function is also used to drop the items in the log tree before
3952 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3953 * it is used to drop the loged items. So we shouldn't kill the delayed
3954 * items.
3955 */
3956 if (min_type == 0 && root == BTRFS_I(inode)->root)
3957 btrfs_kill_delayed_inode_items(inode);
3958
33345d01 3959 key.objectid = ino;
39279cc3 3960 key.offset = (u64)-1;
5f39d397
CM
3961 key.type = (u8)-1;
3962
85e21bac 3963search_again:
b9473439 3964 path->leave_spinning = 1;
85e21bac 3965 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3966 if (ret < 0) {
3967 err = ret;
3968 goto out;
3969 }
d397712b 3970
85e21bac 3971 if (ret > 0) {
e02119d5
CM
3972 /* there are no items in the tree for us to truncate, we're
3973 * done
3974 */
8082510e
YZ
3975 if (path->slots[0] == 0)
3976 goto out;
85e21bac
CM
3977 path->slots[0]--;
3978 }
3979
d397712b 3980 while (1) {
39279cc3 3981 fi = NULL;
5f39d397
CM
3982 leaf = path->nodes[0];
3983 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3984 found_type = btrfs_key_type(&found_key);
39279cc3 3985
33345d01 3986 if (found_key.objectid != ino)
39279cc3 3987 break;
5f39d397 3988
85e21bac 3989 if (found_type < min_type)
39279cc3
CM
3990 break;
3991
5f39d397 3992 item_end = found_key.offset;
39279cc3 3993 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3994 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3995 struct btrfs_file_extent_item);
179e29e4
CM
3996 extent_type = btrfs_file_extent_type(leaf, fi);
3997 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3998 item_end +=
db94535d 3999 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4000 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4001 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 4002 fi);
39279cc3 4003 }
008630c1 4004 item_end--;
39279cc3 4005 }
8082510e
YZ
4006 if (found_type > min_type) {
4007 del_item = 1;
4008 } else {
4009 if (item_end < new_size)
b888db2b 4010 break;
8082510e
YZ
4011 if (found_key.offset >= new_size)
4012 del_item = 1;
4013 else
4014 del_item = 0;
39279cc3 4015 }
39279cc3 4016 found_extent = 0;
39279cc3 4017 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4018 if (found_type != BTRFS_EXTENT_DATA_KEY)
4019 goto delete;
4020
4021 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4022 u64 num_dec;
db94535d 4023 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4024 if (!del_item) {
db94535d
CM
4025 u64 orig_num_bytes =
4026 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4027 extent_num_bytes = ALIGN(new_size -
4028 found_key.offset,
4029 root->sectorsize);
db94535d
CM
4030 btrfs_set_file_extent_num_bytes(leaf, fi,
4031 extent_num_bytes);
4032 num_dec = (orig_num_bytes -
9069218d 4033 extent_num_bytes);
e02119d5 4034 if (root->ref_cows && extent_start != 0)
a76a3cd4 4035 inode_sub_bytes(inode, num_dec);
5f39d397 4036 btrfs_mark_buffer_dirty(leaf);
39279cc3 4037 } else {
db94535d
CM
4038 extent_num_bytes =
4039 btrfs_file_extent_disk_num_bytes(leaf,
4040 fi);
5d4f98a2
YZ
4041 extent_offset = found_key.offset -
4042 btrfs_file_extent_offset(leaf, fi);
4043
39279cc3 4044 /* FIXME blocksize != 4096 */
9069218d 4045 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4046 if (extent_start != 0) {
4047 found_extent = 1;
e02119d5 4048 if (root->ref_cows)
a76a3cd4 4049 inode_sub_bytes(inode, num_dec);
e02119d5 4050 }
39279cc3 4051 }
9069218d 4052 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4053 /*
4054 * we can't truncate inline items that have had
4055 * special encodings
4056 */
4057 if (!del_item &&
4058 btrfs_file_extent_compression(leaf, fi) == 0 &&
4059 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4060 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4061 u32 size = new_size - found_key.offset;
4062
4063 if (root->ref_cows) {
a76a3cd4
YZ
4064 inode_sub_bytes(inode, item_end + 1 -
4065 new_size);
e02119d5
CM
4066 }
4067 size =
4068 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4069 btrfs_truncate_item(root, path, size, 1);
e02119d5 4070 } else if (root->ref_cows) {
a76a3cd4
YZ
4071 inode_sub_bytes(inode, item_end + 1 -
4072 found_key.offset);
9069218d 4073 }
39279cc3 4074 }
179e29e4 4075delete:
39279cc3 4076 if (del_item) {
85e21bac
CM
4077 if (!pending_del_nr) {
4078 /* no pending yet, add ourselves */
4079 pending_del_slot = path->slots[0];
4080 pending_del_nr = 1;
4081 } else if (pending_del_nr &&
4082 path->slots[0] + 1 == pending_del_slot) {
4083 /* hop on the pending chunk */
4084 pending_del_nr++;
4085 pending_del_slot = path->slots[0];
4086 } else {
d397712b 4087 BUG();
85e21bac 4088 }
39279cc3
CM
4089 } else {
4090 break;
4091 }
0af3d00b
JB
4092 if (found_extent && (root->ref_cows ||
4093 root == root->fs_info->tree_root)) {
b9473439 4094 btrfs_set_path_blocking(path);
39279cc3 4095 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4096 extent_num_bytes, 0,
4097 btrfs_header_owner(leaf),
66d7e7f0 4098 ino, extent_offset, 0);
39279cc3
CM
4099 BUG_ON(ret);
4100 }
85e21bac 4101
8082510e
YZ
4102 if (found_type == BTRFS_INODE_ITEM_KEY)
4103 break;
4104
4105 if (path->slots[0] == 0 ||
4106 path->slots[0] != pending_del_slot) {
8082510e
YZ
4107 if (pending_del_nr) {
4108 ret = btrfs_del_items(trans, root, path,
4109 pending_del_slot,
4110 pending_del_nr);
79787eaa
JM
4111 if (ret) {
4112 btrfs_abort_transaction(trans,
4113 root, ret);
4114 goto error;
4115 }
8082510e
YZ
4116 pending_del_nr = 0;
4117 }
b3b4aa74 4118 btrfs_release_path(path);
85e21bac 4119 goto search_again;
8082510e
YZ
4120 } else {
4121 path->slots[0]--;
85e21bac 4122 }
39279cc3 4123 }
8082510e 4124out:
85e21bac
CM
4125 if (pending_del_nr) {
4126 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4127 pending_del_nr);
79787eaa
JM
4128 if (ret)
4129 btrfs_abort_transaction(trans, root, ret);
85e21bac 4130 }
79787eaa 4131error:
39279cc3 4132 btrfs_free_path(path);
8082510e 4133 return err;
39279cc3
CM
4134}
4135
4136/*
2aaa6655
JB
4137 * btrfs_truncate_page - read, zero a chunk and write a page
4138 * @inode - inode that we're zeroing
4139 * @from - the offset to start zeroing
4140 * @len - the length to zero, 0 to zero the entire range respective to the
4141 * offset
4142 * @front - zero up to the offset instead of from the offset on
4143 *
4144 * This will find the page for the "from" offset and cow the page and zero the
4145 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4146 */
2aaa6655
JB
4147int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4148 int front)
39279cc3 4149{
2aaa6655 4150 struct address_space *mapping = inode->i_mapping;
db94535d 4151 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4152 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4153 struct btrfs_ordered_extent *ordered;
2ac55d41 4154 struct extent_state *cached_state = NULL;
e6dcd2dc 4155 char *kaddr;
db94535d 4156 u32 blocksize = root->sectorsize;
39279cc3
CM
4157 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4158 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4159 struct page *page;
3b16a4e3 4160 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4161 int ret = 0;
a52d9a80 4162 u64 page_start;
e6dcd2dc 4163 u64 page_end;
39279cc3 4164
2aaa6655
JB
4165 if ((offset & (blocksize - 1)) == 0 &&
4166 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4167 goto out;
0ca1f7ce 4168 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4169 if (ret)
4170 goto out;
39279cc3 4171
211c17f5 4172again:
3b16a4e3 4173 page = find_or_create_page(mapping, index, mask);
5d5e103a 4174 if (!page) {
0ca1f7ce 4175 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4176 ret = -ENOMEM;
39279cc3 4177 goto out;
5d5e103a 4178 }
e6dcd2dc
CM
4179
4180 page_start = page_offset(page);
4181 page_end = page_start + PAGE_CACHE_SIZE - 1;
4182
39279cc3 4183 if (!PageUptodate(page)) {
9ebefb18 4184 ret = btrfs_readpage(NULL, page);
39279cc3 4185 lock_page(page);
211c17f5
CM
4186 if (page->mapping != mapping) {
4187 unlock_page(page);
4188 page_cache_release(page);
4189 goto again;
4190 }
39279cc3
CM
4191 if (!PageUptodate(page)) {
4192 ret = -EIO;
89642229 4193 goto out_unlock;
39279cc3
CM
4194 }
4195 }
211c17f5 4196 wait_on_page_writeback(page);
e6dcd2dc 4197
d0082371 4198 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4199 set_page_extent_mapped(page);
4200
4201 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4202 if (ordered) {
2ac55d41
JB
4203 unlock_extent_cached(io_tree, page_start, page_end,
4204 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4205 unlock_page(page);
4206 page_cache_release(page);
eb84ae03 4207 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4208 btrfs_put_ordered_extent(ordered);
4209 goto again;
4210 }
4211
2ac55d41 4212 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4213 EXTENT_DIRTY | EXTENT_DELALLOC |
4214 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4215 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4216
2ac55d41
JB
4217 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4218 &cached_state);
9ed74f2d 4219 if (ret) {
2ac55d41
JB
4220 unlock_extent_cached(io_tree, page_start, page_end,
4221 &cached_state, GFP_NOFS);
9ed74f2d
JB
4222 goto out_unlock;
4223 }
4224
e6dcd2dc 4225 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4226 if (!len)
4227 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4228 kaddr = kmap(page);
2aaa6655
JB
4229 if (front)
4230 memset(kaddr, 0, offset);
4231 else
4232 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4233 flush_dcache_page(page);
4234 kunmap(page);
4235 }
247e743c 4236 ClearPageChecked(page);
e6dcd2dc 4237 set_page_dirty(page);
2ac55d41
JB
4238 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4239 GFP_NOFS);
39279cc3 4240
89642229 4241out_unlock:
5d5e103a 4242 if (ret)
0ca1f7ce 4243 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4244 unlock_page(page);
4245 page_cache_release(page);
4246out:
4247 return ret;
4248}
4249
695a0d0d
JB
4250/*
4251 * This function puts in dummy file extents for the area we're creating a hole
4252 * for. So if we are truncating this file to a larger size we need to insert
4253 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4254 * the range between oldsize and size
4255 */
a41ad394 4256int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4257{
9036c102
YZ
4258 struct btrfs_trans_handle *trans;
4259 struct btrfs_root *root = BTRFS_I(inode)->root;
4260 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4261 struct extent_map *em = NULL;
2ac55d41 4262 struct extent_state *cached_state = NULL;
5dc562c5 4263 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4264 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4265 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4266 u64 last_byte;
4267 u64 cur_offset;
4268 u64 hole_size;
9ed74f2d 4269 int err = 0;
39279cc3 4270
a71754fc
JB
4271 /*
4272 * If our size started in the middle of a page we need to zero out the
4273 * rest of the page before we expand the i_size, otherwise we could
4274 * expose stale data.
4275 */
4276 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4277 if (err)
4278 return err;
4279
9036c102
YZ
4280 if (size <= hole_start)
4281 return 0;
4282
9036c102
YZ
4283 while (1) {
4284 struct btrfs_ordered_extent *ordered;
4285 btrfs_wait_ordered_range(inode, hole_start,
4286 block_end - hole_start);
2ac55d41 4287 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4288 &cached_state);
9036c102
YZ
4289 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4290 if (!ordered)
4291 break;
2ac55d41
JB
4292 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4293 &cached_state, GFP_NOFS);
9036c102
YZ
4294 btrfs_put_ordered_extent(ordered);
4295 }
39279cc3 4296
9036c102
YZ
4297 cur_offset = hole_start;
4298 while (1) {
4299 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4300 block_end - cur_offset, 0);
79787eaa
JM
4301 if (IS_ERR(em)) {
4302 err = PTR_ERR(em);
f2767956 4303 em = NULL;
79787eaa
JM
4304 break;
4305 }
9036c102 4306 last_byte = min(extent_map_end(em), block_end);
fda2832f 4307 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4308 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4309 struct extent_map *hole_em;
9036c102 4310 hole_size = last_byte - cur_offset;
9ed74f2d 4311
3642320e 4312 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
4313 if (IS_ERR(trans)) {
4314 err = PTR_ERR(trans);
9ed74f2d 4315 break;
a22285a6 4316 }
8082510e 4317
5dc562c5
JB
4318 err = btrfs_drop_extents(trans, root, inode,
4319 cur_offset,
2671485d 4320 cur_offset + hole_size, 1);
5b397377 4321 if (err) {
79787eaa 4322 btrfs_abort_transaction(trans, root, err);
5b397377 4323 btrfs_end_transaction(trans, root);
3893e33b 4324 break;
5b397377 4325 }
8082510e 4326
9036c102 4327 err = btrfs_insert_file_extent(trans, root,
33345d01 4328 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
4329 0, hole_size, 0, hole_size,
4330 0, 0, 0);
5b397377 4331 if (err) {
79787eaa 4332 btrfs_abort_transaction(trans, root, err);
5b397377 4333 btrfs_end_transaction(trans, root);
3893e33b 4334 break;
5b397377 4335 }
8082510e 4336
5dc562c5
JB
4337 btrfs_drop_extent_cache(inode, cur_offset,
4338 cur_offset + hole_size - 1, 0);
4339 hole_em = alloc_extent_map();
4340 if (!hole_em) {
4341 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4342 &BTRFS_I(inode)->runtime_flags);
4343 goto next;
4344 }
4345 hole_em->start = cur_offset;
4346 hole_em->len = hole_size;
4347 hole_em->orig_start = cur_offset;
8082510e 4348
5dc562c5
JB
4349 hole_em->block_start = EXTENT_MAP_HOLE;
4350 hole_em->block_len = 0;
b4939680 4351 hole_em->orig_block_len = 0;
cc95bef6 4352 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4353 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4354 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4355 hole_em->generation = trans->transid;
8082510e 4356
5dc562c5
JB
4357 while (1) {
4358 write_lock(&em_tree->lock);
09a2a8f9 4359 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4360 write_unlock(&em_tree->lock);
4361 if (err != -EEXIST)
4362 break;
4363 btrfs_drop_extent_cache(inode, cur_offset,
4364 cur_offset +
4365 hole_size - 1, 0);
4366 }
4367 free_extent_map(hole_em);
4368next:
3642320e 4369 btrfs_update_inode(trans, root, inode);
8082510e 4370 btrfs_end_transaction(trans, root);
9036c102
YZ
4371 }
4372 free_extent_map(em);
a22285a6 4373 em = NULL;
9036c102 4374 cur_offset = last_byte;
8082510e 4375 if (cur_offset >= block_end)
9036c102
YZ
4376 break;
4377 }
1832a6d5 4378
a22285a6 4379 free_extent_map(em);
2ac55d41
JB
4380 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4381 GFP_NOFS);
9036c102
YZ
4382 return err;
4383}
39279cc3 4384
3972f260 4385static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4386{
f4a2f4c5
MX
4387 struct btrfs_root *root = BTRFS_I(inode)->root;
4388 struct btrfs_trans_handle *trans;
a41ad394 4389 loff_t oldsize = i_size_read(inode);
3972f260
ES
4390 loff_t newsize = attr->ia_size;
4391 int mask = attr->ia_valid;
8082510e
YZ
4392 int ret;
4393
a41ad394 4394 if (newsize == oldsize)
8082510e
YZ
4395 return 0;
4396
3972f260
ES
4397 /*
4398 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4399 * special case where we need to update the times despite not having
4400 * these flags set. For all other operations the VFS set these flags
4401 * explicitly if it wants a timestamp update.
4402 */
4403 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4404 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4405
a41ad394 4406 if (newsize > oldsize) {
a41ad394
JB
4407 truncate_pagecache(inode, oldsize, newsize);
4408 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4409 if (ret)
8082510e 4410 return ret;
8082510e 4411
f4a2f4c5
MX
4412 trans = btrfs_start_transaction(root, 1);
4413 if (IS_ERR(trans))
4414 return PTR_ERR(trans);
4415
4416 i_size_write(inode, newsize);
4417 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4418 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4419 btrfs_end_transaction(trans, root);
a41ad394 4420 } else {
8082510e 4421
a41ad394
JB
4422 /*
4423 * We're truncating a file that used to have good data down to
4424 * zero. Make sure it gets into the ordered flush list so that
4425 * any new writes get down to disk quickly.
4426 */
4427 if (newsize == 0)
72ac3c0d
JB
4428 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4429 &BTRFS_I(inode)->runtime_flags);
8082510e 4430
f3fe820c
JB
4431 /*
4432 * 1 for the orphan item we're going to add
4433 * 1 for the orphan item deletion.
4434 */
4435 trans = btrfs_start_transaction(root, 2);
4436 if (IS_ERR(trans))
4437 return PTR_ERR(trans);
4438
4439 /*
4440 * We need to do this in case we fail at _any_ point during the
4441 * actual truncate. Once we do the truncate_setsize we could
4442 * invalidate pages which forces any outstanding ordered io to
4443 * be instantly completed which will give us extents that need
4444 * to be truncated. If we fail to get an orphan inode down we
4445 * could have left over extents that were never meant to live,
4446 * so we need to garuntee from this point on that everything
4447 * will be consistent.
4448 */
4449 ret = btrfs_orphan_add(trans, inode);
4450 btrfs_end_transaction(trans, root);
4451 if (ret)
4452 return ret;
4453
a41ad394
JB
4454 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4455 truncate_setsize(inode, newsize);
2e60a51e
MX
4456
4457 /* Disable nonlocked read DIO to avoid the end less truncate */
4458 btrfs_inode_block_unlocked_dio(inode);
4459 inode_dio_wait(inode);
4460 btrfs_inode_resume_unlocked_dio(inode);
4461
a41ad394 4462 ret = btrfs_truncate(inode);
f3fe820c
JB
4463 if (ret && inode->i_nlink)
4464 btrfs_orphan_del(NULL, inode);
8082510e
YZ
4465 }
4466
a41ad394 4467 return ret;
8082510e
YZ
4468}
4469
9036c102
YZ
4470static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4471{
4472 struct inode *inode = dentry->d_inode;
b83cc969 4473 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4474 int err;
39279cc3 4475
b83cc969
LZ
4476 if (btrfs_root_readonly(root))
4477 return -EROFS;
4478
9036c102
YZ
4479 err = inode_change_ok(inode, attr);
4480 if (err)
4481 return err;
2bf5a725 4482
5a3f23d5 4483 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4484 err = btrfs_setsize(inode, attr);
8082510e
YZ
4485 if (err)
4486 return err;
39279cc3 4487 }
9036c102 4488
1025774c
CH
4489 if (attr->ia_valid) {
4490 setattr_copy(inode, attr);
0c4d2d95 4491 inode_inc_iversion(inode);
22c44fe6 4492 err = btrfs_dirty_inode(inode);
1025774c 4493
22c44fe6 4494 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4495 err = btrfs_acl_chmod(inode);
4496 }
33268eaf 4497
39279cc3
CM
4498 return err;
4499}
61295eb8 4500
bd555975 4501void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4502{
4503 struct btrfs_trans_handle *trans;
4504 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4505 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4506 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4507 int ret;
4508
1abe9b8a 4509 trace_btrfs_inode_evict(inode);
4510
39279cc3 4511 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 4512 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 4513 btrfs_is_free_space_inode(inode)))
bd555975
AV
4514 goto no_delete;
4515
39279cc3 4516 if (is_bad_inode(inode)) {
7b128766 4517 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4518 goto no_delete;
4519 }
bd555975 4520 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4521 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4522
c71bf099 4523 if (root->fs_info->log_root_recovering) {
6bf02314 4524 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4525 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4526 goto no_delete;
4527 }
4528
76dda93c
YZ
4529 if (inode->i_nlink > 0) {
4530 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4531 goto no_delete;
4532 }
4533
0e8c36a9
MX
4534 ret = btrfs_commit_inode_delayed_inode(inode);
4535 if (ret) {
4536 btrfs_orphan_del(NULL, inode);
4537 goto no_delete;
4538 }
4539
66d8f3dd 4540 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4541 if (!rsv) {
4542 btrfs_orphan_del(NULL, inode);
4543 goto no_delete;
4544 }
4a338542 4545 rsv->size = min_size;
ca7e70f5 4546 rsv->failfast = 1;
726c35fa 4547 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4548
dbe674a9 4549 btrfs_i_size_write(inode, 0);
5f39d397 4550
4289a667 4551 /*
8407aa46
MX
4552 * This is a bit simpler than btrfs_truncate since we've already
4553 * reserved our space for our orphan item in the unlink, so we just
4554 * need to reserve some slack space in case we add bytes and update
4555 * inode item when doing the truncate.
4289a667 4556 */
8082510e 4557 while (1) {
08e007d2
MX
4558 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4559 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4560
4561 /*
4562 * Try and steal from the global reserve since we will
4563 * likely not use this space anyway, we want to try as
4564 * hard as possible to get this to work.
4565 */
4566 if (ret)
4567 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4568
d68fc57b 4569 if (ret) {
c2cf52eb
SK
4570 btrfs_warn(root->fs_info,
4571 "Could not get space for a delete, will truncate on mount %d",
4572 ret);
4289a667
JB
4573 btrfs_orphan_del(NULL, inode);
4574 btrfs_free_block_rsv(root, rsv);
4575 goto no_delete;
d68fc57b 4576 }
7b128766 4577
0e8c36a9 4578 trans = btrfs_join_transaction(root);
4289a667
JB
4579 if (IS_ERR(trans)) {
4580 btrfs_orphan_del(NULL, inode);
4581 btrfs_free_block_rsv(root, rsv);
4582 goto no_delete;
d68fc57b 4583 }
7b128766 4584
4289a667
JB
4585 trans->block_rsv = rsv;
4586
d68fc57b 4587 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4588 if (ret != -ENOSPC)
8082510e 4589 break;
85e21bac 4590
8407aa46 4591 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4592 btrfs_end_transaction(trans, root);
4593 trans = NULL;
b53d3f5d 4594 btrfs_btree_balance_dirty(root);
8082510e 4595 }
5f39d397 4596
4289a667
JB
4597 btrfs_free_block_rsv(root, rsv);
4598
8082510e 4599 if (ret == 0) {
4289a667 4600 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
4601 ret = btrfs_orphan_del(trans, inode);
4602 BUG_ON(ret);
4603 }
54aa1f4d 4604
4289a667 4605 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4606 if (!(root == root->fs_info->tree_root ||
4607 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4608 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4609
54aa1f4d 4610 btrfs_end_transaction(trans, root);
b53d3f5d 4611 btrfs_btree_balance_dirty(root);
39279cc3 4612no_delete:
89042e5a 4613 btrfs_remove_delayed_node(inode);
dbd5768f 4614 clear_inode(inode);
8082510e 4615 return;
39279cc3
CM
4616}
4617
4618/*
4619 * this returns the key found in the dir entry in the location pointer.
4620 * If no dir entries were found, location->objectid is 0.
4621 */
4622static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4623 struct btrfs_key *location)
4624{
4625 const char *name = dentry->d_name.name;
4626 int namelen = dentry->d_name.len;
4627 struct btrfs_dir_item *di;
4628 struct btrfs_path *path;
4629 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4630 int ret = 0;
39279cc3
CM
4631
4632 path = btrfs_alloc_path();
d8926bb3
MF
4633 if (!path)
4634 return -ENOMEM;
3954401f 4635
33345d01 4636 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4637 namelen, 0);
0d9f7f3e
Y
4638 if (IS_ERR(di))
4639 ret = PTR_ERR(di);
d397712b 4640
c704005d 4641 if (IS_ERR_OR_NULL(di))
3954401f 4642 goto out_err;
d397712b 4643
5f39d397 4644 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4645out:
39279cc3
CM
4646 btrfs_free_path(path);
4647 return ret;
3954401f
CM
4648out_err:
4649 location->objectid = 0;
4650 goto out;
39279cc3
CM
4651}
4652
4653/*
4654 * when we hit a tree root in a directory, the btrfs part of the inode
4655 * needs to be changed to reflect the root directory of the tree root. This
4656 * is kind of like crossing a mount point.
4657 */
4658static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4659 struct inode *dir,
4660 struct dentry *dentry,
4661 struct btrfs_key *location,
4662 struct btrfs_root **sub_root)
39279cc3 4663{
4df27c4d
YZ
4664 struct btrfs_path *path;
4665 struct btrfs_root *new_root;
4666 struct btrfs_root_ref *ref;
4667 struct extent_buffer *leaf;
4668 int ret;
4669 int err = 0;
39279cc3 4670
4df27c4d
YZ
4671 path = btrfs_alloc_path();
4672 if (!path) {
4673 err = -ENOMEM;
4674 goto out;
4675 }
39279cc3 4676
4df27c4d
YZ
4677 err = -ENOENT;
4678 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4679 BTRFS_I(dir)->root->root_key.objectid,
4680 location->objectid);
4681 if (ret) {
4682 if (ret < 0)
4683 err = ret;
4684 goto out;
4685 }
39279cc3 4686
4df27c4d
YZ
4687 leaf = path->nodes[0];
4688 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4689 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4690 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4691 goto out;
39279cc3 4692
4df27c4d
YZ
4693 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4694 (unsigned long)(ref + 1),
4695 dentry->d_name.len);
4696 if (ret)
4697 goto out;
4698
b3b4aa74 4699 btrfs_release_path(path);
4df27c4d
YZ
4700
4701 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4702 if (IS_ERR(new_root)) {
4703 err = PTR_ERR(new_root);
4704 goto out;
4705 }
4706
4df27c4d
YZ
4707 *sub_root = new_root;
4708 location->objectid = btrfs_root_dirid(&new_root->root_item);
4709 location->type = BTRFS_INODE_ITEM_KEY;
4710 location->offset = 0;
4711 err = 0;
4712out:
4713 btrfs_free_path(path);
4714 return err;
39279cc3
CM
4715}
4716
5d4f98a2
YZ
4717static void inode_tree_add(struct inode *inode)
4718{
4719 struct btrfs_root *root = BTRFS_I(inode)->root;
4720 struct btrfs_inode *entry;
03e860bd
FNP
4721 struct rb_node **p;
4722 struct rb_node *parent;
33345d01 4723 u64 ino = btrfs_ino(inode);
5d4f98a2 4724
1d3382cb 4725 if (inode_unhashed(inode))
76dda93c 4726 return;
e1409cef
MX
4727again:
4728 parent = NULL;
5d4f98a2 4729 spin_lock(&root->inode_lock);
e1409cef 4730 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4731 while (*p) {
4732 parent = *p;
4733 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4734
33345d01 4735 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4736 p = &parent->rb_left;
33345d01 4737 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4738 p = &parent->rb_right;
5d4f98a2
YZ
4739 else {
4740 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4741 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4742 rb_erase(parent, &root->inode_tree);
4743 RB_CLEAR_NODE(parent);
4744 spin_unlock(&root->inode_lock);
4745 goto again;
5d4f98a2
YZ
4746 }
4747 }
4748 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4749 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4750 spin_unlock(&root->inode_lock);
4751}
4752
4753static void inode_tree_del(struct inode *inode)
4754{
4755 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4756 int empty = 0;
5d4f98a2 4757
03e860bd 4758 spin_lock(&root->inode_lock);
5d4f98a2 4759 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4760 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4761 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4762 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4763 }
03e860bd 4764 spin_unlock(&root->inode_lock);
76dda93c 4765
0af3d00b
JB
4766 /*
4767 * Free space cache has inodes in the tree root, but the tree root has a
4768 * root_refs of 0, so this could end up dropping the tree root as a
4769 * snapshot, so we need the extra !root->fs_info->tree_root check to
4770 * make sure we don't drop it.
4771 */
4772 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4773 root != root->fs_info->tree_root) {
76dda93c
YZ
4774 synchronize_srcu(&root->fs_info->subvol_srcu);
4775 spin_lock(&root->inode_lock);
4776 empty = RB_EMPTY_ROOT(&root->inode_tree);
4777 spin_unlock(&root->inode_lock);
4778 if (empty)
4779 btrfs_add_dead_root(root);
4780 }
4781}
4782
143bede5 4783void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4784{
4785 struct rb_node *node;
4786 struct rb_node *prev;
4787 struct btrfs_inode *entry;
4788 struct inode *inode;
4789 u64 objectid = 0;
4790
4791 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4792
4793 spin_lock(&root->inode_lock);
4794again:
4795 node = root->inode_tree.rb_node;
4796 prev = NULL;
4797 while (node) {
4798 prev = node;
4799 entry = rb_entry(node, struct btrfs_inode, rb_node);
4800
33345d01 4801 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4802 node = node->rb_left;
33345d01 4803 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4804 node = node->rb_right;
4805 else
4806 break;
4807 }
4808 if (!node) {
4809 while (prev) {
4810 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4811 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4812 node = prev;
4813 break;
4814 }
4815 prev = rb_next(prev);
4816 }
4817 }
4818 while (node) {
4819 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4820 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4821 inode = igrab(&entry->vfs_inode);
4822 if (inode) {
4823 spin_unlock(&root->inode_lock);
4824 if (atomic_read(&inode->i_count) > 1)
4825 d_prune_aliases(inode);
4826 /*
45321ac5 4827 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4828 * the inode cache when its usage count
4829 * hits zero.
4830 */
4831 iput(inode);
4832 cond_resched();
4833 spin_lock(&root->inode_lock);
4834 goto again;
4835 }
4836
4837 if (cond_resched_lock(&root->inode_lock))
4838 goto again;
4839
4840 node = rb_next(node);
4841 }
4842 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4843}
4844
e02119d5
CM
4845static int btrfs_init_locked_inode(struct inode *inode, void *p)
4846{
4847 struct btrfs_iget_args *args = p;
4848 inode->i_ino = args->ino;
e02119d5 4849 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4850 return 0;
4851}
4852
4853static int btrfs_find_actor(struct inode *inode, void *opaque)
4854{
4855 struct btrfs_iget_args *args = opaque;
33345d01 4856 return args->ino == btrfs_ino(inode) &&
d397712b 4857 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4858}
4859
5d4f98a2
YZ
4860static struct inode *btrfs_iget_locked(struct super_block *s,
4861 u64 objectid,
4862 struct btrfs_root *root)
39279cc3
CM
4863{
4864 struct inode *inode;
4865 struct btrfs_iget_args args;
4866 args.ino = objectid;
4867 args.root = root;
4868
4869 inode = iget5_locked(s, objectid, btrfs_find_actor,
4870 btrfs_init_locked_inode,
4871 (void *)&args);
4872 return inode;
4873}
4874
1a54ef8c
BR
4875/* Get an inode object given its location and corresponding root.
4876 * Returns in *is_new if the inode was read from disk
4877 */
4878struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4879 struct btrfs_root *root, int *new)
1a54ef8c
BR
4880{
4881 struct inode *inode;
4882
4883 inode = btrfs_iget_locked(s, location->objectid, root);
4884 if (!inode)
5d4f98a2 4885 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4886
4887 if (inode->i_state & I_NEW) {
4888 BTRFS_I(inode)->root = root;
4889 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4890 btrfs_read_locked_inode(inode);
1748f843
MF
4891 if (!is_bad_inode(inode)) {
4892 inode_tree_add(inode);
4893 unlock_new_inode(inode);
4894 if (new)
4895 *new = 1;
4896 } else {
e0b6d65b
ST
4897 unlock_new_inode(inode);
4898 iput(inode);
4899 inode = ERR_PTR(-ESTALE);
1748f843
MF
4900 }
4901 }
4902
1a54ef8c
BR
4903 return inode;
4904}
4905
4df27c4d
YZ
4906static struct inode *new_simple_dir(struct super_block *s,
4907 struct btrfs_key *key,
4908 struct btrfs_root *root)
4909{
4910 struct inode *inode = new_inode(s);
4911
4912 if (!inode)
4913 return ERR_PTR(-ENOMEM);
4914
4df27c4d
YZ
4915 BTRFS_I(inode)->root = root;
4916 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4917 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4918
4919 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4920 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4921 inode->i_fop = &simple_dir_operations;
4922 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4923 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4924
4925 return inode;
4926}
4927
3de4586c 4928struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4929{
d397712b 4930 struct inode *inode;
4df27c4d 4931 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4932 struct btrfs_root *sub_root = root;
4933 struct btrfs_key location;
76dda93c 4934 int index;
b4aff1f8 4935 int ret = 0;
39279cc3
CM
4936
4937 if (dentry->d_name.len > BTRFS_NAME_LEN)
4938 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4939
39e3c955 4940 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
4941 if (ret < 0)
4942 return ERR_PTR(ret);
5f39d397 4943
4df27c4d
YZ
4944 if (location.objectid == 0)
4945 return NULL;
4946
4947 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4948 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4949 return inode;
4950 }
4951
4952 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4953
76dda93c 4954 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4955 ret = fixup_tree_root_location(root, dir, dentry,
4956 &location, &sub_root);
4957 if (ret < 0) {
4958 if (ret != -ENOENT)
4959 inode = ERR_PTR(ret);
4960 else
4961 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4962 } else {
73f73415 4963 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4964 }
76dda93c
YZ
4965 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4966
34d19bad 4967 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4968 down_read(&root->fs_info->cleanup_work_sem);
4969 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4970 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4971 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
4972 if (ret) {
4973 iput(inode);
66b4ffd1 4974 inode = ERR_PTR(ret);
01cd3367 4975 }
c71bf099
YZ
4976 }
4977
3de4586c
CM
4978 return inode;
4979}
4980
fe15ce44 4981static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4982{
4983 struct btrfs_root *root;
848cce0d 4984 struct inode *inode = dentry->d_inode;
76dda93c 4985
848cce0d
LZ
4986 if (!inode && !IS_ROOT(dentry))
4987 inode = dentry->d_parent->d_inode;
76dda93c 4988
848cce0d
LZ
4989 if (inode) {
4990 root = BTRFS_I(inode)->root;
efefb143
YZ
4991 if (btrfs_root_refs(&root->root_item) == 0)
4992 return 1;
848cce0d
LZ
4993
4994 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4995 return 1;
efefb143 4996 }
76dda93c
YZ
4997 return 0;
4998}
4999
b4aff1f8
JB
5000static void btrfs_dentry_release(struct dentry *dentry)
5001{
5002 if (dentry->d_fsdata)
5003 kfree(dentry->d_fsdata);
5004}
5005
3de4586c 5006static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5007 unsigned int flags)
3de4586c 5008{
a66e7cc6
JB
5009 struct dentry *ret;
5010
5011 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
a66e7cc6 5012 return ret;
39279cc3
CM
5013}
5014
16cdcec7 5015unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5016 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5017};
5018
9cdda8d3 5019static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5020{
9cdda8d3 5021 struct inode *inode = file_inode(file);
39279cc3
CM
5022 struct btrfs_root *root = BTRFS_I(inode)->root;
5023 struct btrfs_item *item;
5024 struct btrfs_dir_item *di;
5025 struct btrfs_key key;
5f39d397 5026 struct btrfs_key found_key;
39279cc3 5027 struct btrfs_path *path;
16cdcec7
MX
5028 struct list_head ins_list;
5029 struct list_head del_list;
39279cc3 5030 int ret;
5f39d397 5031 struct extent_buffer *leaf;
39279cc3 5032 int slot;
39279cc3
CM
5033 unsigned char d_type;
5034 int over = 0;
5035 u32 di_cur;
5036 u32 di_total;
5037 u32 di_len;
5038 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5039 char tmp_name[32];
5040 char *name_ptr;
5041 int name_len;
9cdda8d3 5042 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5043
5044 /* FIXME, use a real flag for deciding about the key type */
5045 if (root->fs_info->tree_root == root)
5046 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5047
9cdda8d3
AV
5048 if (!dir_emit_dots(file, ctx))
5049 return 0;
5050
49593bfa 5051 path = btrfs_alloc_path();
16cdcec7
MX
5052 if (!path)
5053 return -ENOMEM;
ff5714cc 5054
026fd317 5055 path->reada = 1;
49593bfa 5056
16cdcec7
MX
5057 if (key_type == BTRFS_DIR_INDEX_KEY) {
5058 INIT_LIST_HEAD(&ins_list);
5059 INIT_LIST_HEAD(&del_list);
5060 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5061 }
5062
39279cc3 5063 btrfs_set_key_type(&key, key_type);
9cdda8d3 5064 key.offset = ctx->pos;
33345d01 5065 key.objectid = btrfs_ino(inode);
5f39d397 5066
39279cc3
CM
5067 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5068 if (ret < 0)
5069 goto err;
49593bfa
DW
5070
5071 while (1) {
5f39d397 5072 leaf = path->nodes[0];
39279cc3 5073 slot = path->slots[0];
b9e03af0
LZ
5074 if (slot >= btrfs_header_nritems(leaf)) {
5075 ret = btrfs_next_leaf(root, path);
5076 if (ret < 0)
5077 goto err;
5078 else if (ret > 0)
5079 break;
5080 continue;
39279cc3 5081 }
3de4586c 5082
5f39d397
CM
5083 item = btrfs_item_nr(leaf, slot);
5084 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5085
5086 if (found_key.objectid != key.objectid)
39279cc3 5087 break;
5f39d397 5088 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5089 break;
9cdda8d3 5090 if (found_key.offset < ctx->pos)
b9e03af0 5091 goto next;
16cdcec7
MX
5092 if (key_type == BTRFS_DIR_INDEX_KEY &&
5093 btrfs_should_delete_dir_index(&del_list,
5094 found_key.offset))
5095 goto next;
5f39d397 5096
9cdda8d3 5097 ctx->pos = found_key.offset;
16cdcec7 5098 is_curr = 1;
49593bfa 5099
39279cc3
CM
5100 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5101 di_cur = 0;
5f39d397 5102 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5103
5104 while (di_cur < di_total) {
5f39d397
CM
5105 struct btrfs_key location;
5106
22a94d44
JB
5107 if (verify_dir_item(root, leaf, di))
5108 break;
5109
5f39d397 5110 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5111 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5112 name_ptr = tmp_name;
5113 } else {
5114 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5115 if (!name_ptr) {
5116 ret = -ENOMEM;
5117 goto err;
5118 }
5f39d397
CM
5119 }
5120 read_extent_buffer(leaf, name_ptr,
5121 (unsigned long)(di + 1), name_len);
5122
5123 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5124 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5125
fede766f 5126
3de4586c 5127 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5128 * skip it.
5129 *
5130 * In contrast to old kernels, we insert the snapshot's
5131 * dir item and dir index after it has been created, so
5132 * we won't find a reference to our own snapshot. We
5133 * still keep the following code for backward
5134 * compatibility.
3de4586c
CM
5135 */
5136 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5137 location.objectid == root->root_key.objectid) {
5138 over = 0;
5139 goto skip;
5140 }
9cdda8d3
AV
5141 over = !dir_emit(ctx, name_ptr, name_len,
5142 location.objectid, d_type);
5f39d397 5143
3de4586c 5144skip:
5f39d397
CM
5145 if (name_ptr != tmp_name)
5146 kfree(name_ptr);
5147
39279cc3
CM
5148 if (over)
5149 goto nopos;
5103e947 5150 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5151 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5152 di_cur += di_len;
5153 di = (struct btrfs_dir_item *)((char *)di + di_len);
5154 }
b9e03af0
LZ
5155next:
5156 path->slots[0]++;
39279cc3 5157 }
49593bfa 5158
16cdcec7
MX
5159 if (key_type == BTRFS_DIR_INDEX_KEY) {
5160 if (is_curr)
9cdda8d3
AV
5161 ctx->pos++;
5162 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5163 if (ret)
5164 goto nopos;
5165 }
5166
49593bfa 5167 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 5168 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
5169 /*
5170 * 32-bit glibc will use getdents64, but then strtol -
5171 * so the last number we can serve is this.
5172 */
9cdda8d3 5173 ctx->pos = 0x7fffffff;
5e591a07 5174 else
9cdda8d3 5175 ctx->pos++;
39279cc3
CM
5176nopos:
5177 ret = 0;
5178err:
16cdcec7
MX
5179 if (key_type == BTRFS_DIR_INDEX_KEY)
5180 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5181 btrfs_free_path(path);
39279cc3
CM
5182 return ret;
5183}
5184
a9185b41 5185int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5186{
5187 struct btrfs_root *root = BTRFS_I(inode)->root;
5188 struct btrfs_trans_handle *trans;
5189 int ret = 0;
0af3d00b 5190 bool nolock = false;
39279cc3 5191
72ac3c0d 5192 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5193 return 0;
5194
83eea1f1 5195 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5196 nolock = true;
0af3d00b 5197
a9185b41 5198 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5199 if (nolock)
7a7eaa40 5200 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5201 else
7a7eaa40 5202 trans = btrfs_join_transaction(root);
3612b495
TI
5203 if (IS_ERR(trans))
5204 return PTR_ERR(trans);
a698d075 5205 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5206 }
5207 return ret;
5208}
5209
5210/*
54aa1f4d 5211 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5212 * inode changes. But, it is most likely to find the inode in cache.
5213 * FIXME, needs more benchmarking...there are no reasons other than performance
5214 * to keep or drop this code.
5215 */
48a3b636 5216static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5217{
5218 struct btrfs_root *root = BTRFS_I(inode)->root;
5219 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5220 int ret;
5221
72ac3c0d 5222 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5223 return 0;
39279cc3 5224
7a7eaa40 5225 trans = btrfs_join_transaction(root);
22c44fe6
JB
5226 if (IS_ERR(trans))
5227 return PTR_ERR(trans);
8929ecfa
YZ
5228
5229 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5230 if (ret && ret == -ENOSPC) {
5231 /* whoops, lets try again with the full transaction */
5232 btrfs_end_transaction(trans, root);
5233 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5234 if (IS_ERR(trans))
5235 return PTR_ERR(trans);
8929ecfa 5236
94b60442 5237 ret = btrfs_update_inode(trans, root, inode);
94b60442 5238 }
39279cc3 5239 btrfs_end_transaction(trans, root);
16cdcec7
MX
5240 if (BTRFS_I(inode)->delayed_node)
5241 btrfs_balance_delayed_items(root);
22c44fe6
JB
5242
5243 return ret;
5244}
5245
5246/*
5247 * This is a copy of file_update_time. We need this so we can return error on
5248 * ENOSPC for updating the inode in the case of file write and mmap writes.
5249 */
e41f941a
JB
5250static int btrfs_update_time(struct inode *inode, struct timespec *now,
5251 int flags)
22c44fe6 5252{
2bc55652
AB
5253 struct btrfs_root *root = BTRFS_I(inode)->root;
5254
5255 if (btrfs_root_readonly(root))
5256 return -EROFS;
5257
e41f941a 5258 if (flags & S_VERSION)
22c44fe6 5259 inode_inc_iversion(inode);
e41f941a
JB
5260 if (flags & S_CTIME)
5261 inode->i_ctime = *now;
5262 if (flags & S_MTIME)
5263 inode->i_mtime = *now;
5264 if (flags & S_ATIME)
5265 inode->i_atime = *now;
5266 return btrfs_dirty_inode(inode);
39279cc3
CM
5267}
5268
d352ac68
CM
5269/*
5270 * find the highest existing sequence number in a directory
5271 * and then set the in-memory index_cnt variable to reflect
5272 * free sequence numbers
5273 */
aec7477b
JB
5274static int btrfs_set_inode_index_count(struct inode *inode)
5275{
5276 struct btrfs_root *root = BTRFS_I(inode)->root;
5277 struct btrfs_key key, found_key;
5278 struct btrfs_path *path;
5279 struct extent_buffer *leaf;
5280 int ret;
5281
33345d01 5282 key.objectid = btrfs_ino(inode);
aec7477b
JB
5283 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5284 key.offset = (u64)-1;
5285
5286 path = btrfs_alloc_path();
5287 if (!path)
5288 return -ENOMEM;
5289
5290 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5291 if (ret < 0)
5292 goto out;
5293 /* FIXME: we should be able to handle this */
5294 if (ret == 0)
5295 goto out;
5296 ret = 0;
5297
5298 /*
5299 * MAGIC NUMBER EXPLANATION:
5300 * since we search a directory based on f_pos we have to start at 2
5301 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5302 * else has to start at 2
5303 */
5304 if (path->slots[0] == 0) {
5305 BTRFS_I(inode)->index_cnt = 2;
5306 goto out;
5307 }
5308
5309 path->slots[0]--;
5310
5311 leaf = path->nodes[0];
5312 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5313
33345d01 5314 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5315 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5316 BTRFS_I(inode)->index_cnt = 2;
5317 goto out;
5318 }
5319
5320 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5321out:
5322 btrfs_free_path(path);
5323 return ret;
5324}
5325
d352ac68
CM
5326/*
5327 * helper to find a free sequence number in a given directory. This current
5328 * code is very simple, later versions will do smarter things in the btree
5329 */
3de4586c 5330int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5331{
5332 int ret = 0;
5333
5334 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5335 ret = btrfs_inode_delayed_dir_index_count(dir);
5336 if (ret) {
5337 ret = btrfs_set_inode_index_count(dir);
5338 if (ret)
5339 return ret;
5340 }
aec7477b
JB
5341 }
5342
00e4e6b3 5343 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5344 BTRFS_I(dir)->index_cnt++;
5345
5346 return ret;
5347}
5348
39279cc3
CM
5349static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5350 struct btrfs_root *root,
aec7477b 5351 struct inode *dir,
9c58309d 5352 const char *name, int name_len,
175a4eb7
AV
5353 u64 ref_objectid, u64 objectid,
5354 umode_t mode, u64 *index)
39279cc3
CM
5355{
5356 struct inode *inode;
5f39d397 5357 struct btrfs_inode_item *inode_item;
39279cc3 5358 struct btrfs_key *location;
5f39d397 5359 struct btrfs_path *path;
9c58309d
CM
5360 struct btrfs_inode_ref *ref;
5361 struct btrfs_key key[2];
5362 u32 sizes[2];
5363 unsigned long ptr;
39279cc3
CM
5364 int ret;
5365 int owner;
5366
5f39d397 5367 path = btrfs_alloc_path();
d8926bb3
MF
5368 if (!path)
5369 return ERR_PTR(-ENOMEM);
5f39d397 5370
39279cc3 5371 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5372 if (!inode) {
5373 btrfs_free_path(path);
39279cc3 5374 return ERR_PTR(-ENOMEM);
8fb27640 5375 }
39279cc3 5376
581bb050
LZ
5377 /*
5378 * we have to initialize this early, so we can reclaim the inode
5379 * number if we fail afterwards in this function.
5380 */
5381 inode->i_ino = objectid;
5382
aec7477b 5383 if (dir) {
1abe9b8a 5384 trace_btrfs_inode_request(dir);
5385
3de4586c 5386 ret = btrfs_set_inode_index(dir, index);
09771430 5387 if (ret) {
8fb27640 5388 btrfs_free_path(path);
09771430 5389 iput(inode);
aec7477b 5390 return ERR_PTR(ret);
09771430 5391 }
aec7477b
JB
5392 }
5393 /*
5394 * index_cnt is ignored for everything but a dir,
5395 * btrfs_get_inode_index_count has an explanation for the magic
5396 * number
5397 */
5398 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5399 BTRFS_I(inode)->root = root;
e02119d5 5400 BTRFS_I(inode)->generation = trans->transid;
76195853 5401 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5402
5dc562c5
JB
5403 /*
5404 * We could have gotten an inode number from somebody who was fsynced
5405 * and then removed in this same transaction, so let's just set full
5406 * sync since it will be a full sync anyway and this will blow away the
5407 * old info in the log.
5408 */
5409 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5410
569254b0 5411 if (S_ISDIR(mode))
39279cc3
CM
5412 owner = 0;
5413 else
5414 owner = 1;
9c58309d
CM
5415
5416 key[0].objectid = objectid;
5417 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5418 key[0].offset = 0;
5419
f186373f
MF
5420 /*
5421 * Start new inodes with an inode_ref. This is slightly more
5422 * efficient for small numbers of hard links since they will
5423 * be packed into one item. Extended refs will kick in if we
5424 * add more hard links than can fit in the ref item.
5425 */
9c58309d
CM
5426 key[1].objectid = objectid;
5427 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5428 key[1].offset = ref_objectid;
5429
5430 sizes[0] = sizeof(struct btrfs_inode_item);
5431 sizes[1] = name_len + sizeof(*ref);
5432
b9473439 5433 path->leave_spinning = 1;
9c58309d
CM
5434 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5435 if (ret != 0)
5f39d397
CM
5436 goto fail;
5437
ecc11fab 5438 inode_init_owner(inode, dir, mode);
a76a3cd4 5439 inode_set_bytes(inode, 0);
39279cc3 5440 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5441 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5442 struct btrfs_inode_item);
293f7e07
LZ
5443 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5444 sizeof(*inode_item));
e02119d5 5445 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5446
5447 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5448 struct btrfs_inode_ref);
5449 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5450 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5451 ptr = (unsigned long)(ref + 1);
5452 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5453
5f39d397
CM
5454 btrfs_mark_buffer_dirty(path->nodes[0]);
5455 btrfs_free_path(path);
5456
39279cc3
CM
5457 location = &BTRFS_I(inode)->location;
5458 location->objectid = objectid;
39279cc3
CM
5459 location->offset = 0;
5460 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5461
6cbff00f
CH
5462 btrfs_inherit_iflags(inode, dir);
5463
569254b0 5464 if (S_ISREG(mode)) {
94272164
CM
5465 if (btrfs_test_opt(root, NODATASUM))
5466 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5467 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5468 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5469 BTRFS_INODE_NODATASUM;
94272164
CM
5470 }
5471
39279cc3 5472 insert_inode_hash(inode);
5d4f98a2 5473 inode_tree_add(inode);
1abe9b8a 5474
5475 trace_btrfs_inode_new(inode);
1973f0fa 5476 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5477
8ea05e3a
AB
5478 btrfs_update_root_times(trans, root);
5479
39279cc3 5480 return inode;
5f39d397 5481fail:
aec7477b
JB
5482 if (dir)
5483 BTRFS_I(dir)->index_cnt--;
5f39d397 5484 btrfs_free_path(path);
09771430 5485 iput(inode);
5f39d397 5486 return ERR_PTR(ret);
39279cc3
CM
5487}
5488
5489static inline u8 btrfs_inode_type(struct inode *inode)
5490{
5491 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5492}
5493
d352ac68
CM
5494/*
5495 * utility function to add 'inode' into 'parent_inode' with
5496 * a give name and a given sequence number.
5497 * if 'add_backref' is true, also insert a backref from the
5498 * inode to the parent directory.
5499 */
e02119d5
CM
5500int btrfs_add_link(struct btrfs_trans_handle *trans,
5501 struct inode *parent_inode, struct inode *inode,
5502 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5503{
4df27c4d 5504 int ret = 0;
39279cc3 5505 struct btrfs_key key;
e02119d5 5506 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5507 u64 ino = btrfs_ino(inode);
5508 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5509
33345d01 5510 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5511 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5512 } else {
33345d01 5513 key.objectid = ino;
4df27c4d
YZ
5514 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5515 key.offset = 0;
5516 }
5517
33345d01 5518 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5519 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5520 key.objectid, root->root_key.objectid,
33345d01 5521 parent_ino, index, name, name_len);
4df27c4d 5522 } else if (add_backref) {
33345d01
LZ
5523 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5524 parent_ino, index);
4df27c4d 5525 }
39279cc3 5526
79787eaa
JM
5527 /* Nothing to clean up yet */
5528 if (ret)
5529 return ret;
4df27c4d 5530
79787eaa
JM
5531 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5532 parent_inode, &key,
5533 btrfs_inode_type(inode), index);
9c52057c 5534 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5535 goto fail_dir_item;
5536 else if (ret) {
5537 btrfs_abort_transaction(trans, root, ret);
5538 return ret;
39279cc3 5539 }
79787eaa
JM
5540
5541 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5542 name_len * 2);
0c4d2d95 5543 inode_inc_iversion(parent_inode);
79787eaa
JM
5544 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5545 ret = btrfs_update_inode(trans, root, parent_inode);
5546 if (ret)
5547 btrfs_abort_transaction(trans, root, ret);
39279cc3 5548 return ret;
fe66a05a
CM
5549
5550fail_dir_item:
5551 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5552 u64 local_index;
5553 int err;
5554 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5555 key.objectid, root->root_key.objectid,
5556 parent_ino, &local_index, name, name_len);
5557
5558 } else if (add_backref) {
5559 u64 local_index;
5560 int err;
5561
5562 err = btrfs_del_inode_ref(trans, root, name, name_len,
5563 ino, parent_ino, &local_index);
5564 }
5565 return ret;
39279cc3
CM
5566}
5567
5568static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5569 struct inode *dir, struct dentry *dentry,
5570 struct inode *inode, int backref, u64 index)
39279cc3 5571{
a1b075d2
JB
5572 int err = btrfs_add_link(trans, dir, inode,
5573 dentry->d_name.name, dentry->d_name.len,
5574 backref, index);
39279cc3
CM
5575 if (err > 0)
5576 err = -EEXIST;
5577 return err;
5578}
5579
618e21d5 5580static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5581 umode_t mode, dev_t rdev)
618e21d5
JB
5582{
5583 struct btrfs_trans_handle *trans;
5584 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5585 struct inode *inode = NULL;
618e21d5
JB
5586 int err;
5587 int drop_inode = 0;
5588 u64 objectid;
00e4e6b3 5589 u64 index = 0;
618e21d5
JB
5590
5591 if (!new_valid_dev(rdev))
5592 return -EINVAL;
5593
9ed74f2d
JB
5594 /*
5595 * 2 for inode item and ref
5596 * 2 for dir items
5597 * 1 for xattr if selinux is on
5598 */
a22285a6
YZ
5599 trans = btrfs_start_transaction(root, 5);
5600 if (IS_ERR(trans))
5601 return PTR_ERR(trans);
1832a6d5 5602
581bb050
LZ
5603 err = btrfs_find_free_ino(root, &objectid);
5604 if (err)
5605 goto out_unlock;
5606
aec7477b 5607 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5608 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5609 mode, &index);
7cf96da3
TI
5610 if (IS_ERR(inode)) {
5611 err = PTR_ERR(inode);
618e21d5 5612 goto out_unlock;
7cf96da3 5613 }
618e21d5 5614
2a7dba39 5615 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5616 if (err) {
5617 drop_inode = 1;
5618 goto out_unlock;
5619 }
5620
ad19db71
CS
5621 /*
5622 * If the active LSM wants to access the inode during
5623 * d_instantiate it needs these. Smack checks to see
5624 * if the filesystem supports xattrs by looking at the
5625 * ops vector.
5626 */
5627
5628 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5629 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5630 if (err)
5631 drop_inode = 1;
5632 else {
618e21d5 5633 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5634 btrfs_update_inode(trans, root, inode);
08c422c2 5635 d_instantiate(dentry, inode);
618e21d5 5636 }
618e21d5 5637out_unlock:
7ad85bb7 5638 btrfs_end_transaction(trans, root);
b53d3f5d 5639 btrfs_btree_balance_dirty(root);
618e21d5
JB
5640 if (drop_inode) {
5641 inode_dec_link_count(inode);
5642 iput(inode);
5643 }
618e21d5
JB
5644 return err;
5645}
5646
39279cc3 5647static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5648 umode_t mode, bool excl)
39279cc3
CM
5649{
5650 struct btrfs_trans_handle *trans;
5651 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5652 struct inode *inode = NULL;
43baa579 5653 int drop_inode_on_err = 0;
a22285a6 5654 int err;
39279cc3 5655 u64 objectid;
00e4e6b3 5656 u64 index = 0;
39279cc3 5657
9ed74f2d
JB
5658 /*
5659 * 2 for inode item and ref
5660 * 2 for dir items
5661 * 1 for xattr if selinux is on
5662 */
a22285a6
YZ
5663 trans = btrfs_start_transaction(root, 5);
5664 if (IS_ERR(trans))
5665 return PTR_ERR(trans);
9ed74f2d 5666
581bb050
LZ
5667 err = btrfs_find_free_ino(root, &objectid);
5668 if (err)
5669 goto out_unlock;
5670
aec7477b 5671 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5672 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5673 mode, &index);
7cf96da3
TI
5674 if (IS_ERR(inode)) {
5675 err = PTR_ERR(inode);
39279cc3 5676 goto out_unlock;
7cf96da3 5677 }
43baa579 5678 drop_inode_on_err = 1;
39279cc3 5679
2a7dba39 5680 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5681 if (err)
33268eaf 5682 goto out_unlock;
33268eaf 5683
9185aa58
FB
5684 err = btrfs_update_inode(trans, root, inode);
5685 if (err)
5686 goto out_unlock;
5687
ad19db71
CS
5688 /*
5689 * If the active LSM wants to access the inode during
5690 * d_instantiate it needs these. Smack checks to see
5691 * if the filesystem supports xattrs by looking at the
5692 * ops vector.
5693 */
5694 inode->i_fop = &btrfs_file_operations;
5695 inode->i_op = &btrfs_file_inode_operations;
5696
a1b075d2 5697 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5698 if (err)
43baa579
FB
5699 goto out_unlock;
5700
5701 inode->i_mapping->a_ops = &btrfs_aops;
5702 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5703 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5704 d_instantiate(dentry, inode);
5705
39279cc3 5706out_unlock:
7ad85bb7 5707 btrfs_end_transaction(trans, root);
43baa579 5708 if (err && drop_inode_on_err) {
39279cc3
CM
5709 inode_dec_link_count(inode);
5710 iput(inode);
5711 }
b53d3f5d 5712 btrfs_btree_balance_dirty(root);
39279cc3
CM
5713 return err;
5714}
5715
5716static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5717 struct dentry *dentry)
5718{
5719 struct btrfs_trans_handle *trans;
5720 struct btrfs_root *root = BTRFS_I(dir)->root;
5721 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5722 u64 index;
39279cc3
CM
5723 int err;
5724 int drop_inode = 0;
5725
4a8be425
TH
5726 /* do not allow sys_link's with other subvols of the same device */
5727 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5728 return -EXDEV;
4a8be425 5729
f186373f 5730 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5731 return -EMLINK;
4a8be425 5732
3de4586c 5733 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5734 if (err)
5735 goto fail;
5736
a22285a6 5737 /*
7e6b6465 5738 * 2 items for inode and inode ref
a22285a6 5739 * 2 items for dir items
7e6b6465 5740 * 1 item for parent inode
a22285a6 5741 */
7e6b6465 5742 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5743 if (IS_ERR(trans)) {
5744 err = PTR_ERR(trans);
5745 goto fail;
5746 }
5f39d397 5747
3153495d 5748 btrfs_inc_nlink(inode);
0c4d2d95 5749 inode_inc_iversion(inode);
3153495d 5750 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5751 ihold(inode);
e9976151 5752 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5753
a1b075d2 5754 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5755
a5719521 5756 if (err) {
54aa1f4d 5757 drop_inode = 1;
a5719521 5758 } else {
10d9f309 5759 struct dentry *parent = dentry->d_parent;
a5719521 5760 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5761 if (err)
5762 goto fail;
08c422c2 5763 d_instantiate(dentry, inode);
6a912213 5764 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5765 }
39279cc3 5766
7ad85bb7 5767 btrfs_end_transaction(trans, root);
1832a6d5 5768fail:
39279cc3
CM
5769 if (drop_inode) {
5770 inode_dec_link_count(inode);
5771 iput(inode);
5772 }
b53d3f5d 5773 btrfs_btree_balance_dirty(root);
39279cc3
CM
5774 return err;
5775}
5776
18bb1db3 5777static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5778{
b9d86667 5779 struct inode *inode = NULL;
39279cc3
CM
5780 struct btrfs_trans_handle *trans;
5781 struct btrfs_root *root = BTRFS_I(dir)->root;
5782 int err = 0;
5783 int drop_on_err = 0;
b9d86667 5784 u64 objectid = 0;
00e4e6b3 5785 u64 index = 0;
39279cc3 5786
9ed74f2d
JB
5787 /*
5788 * 2 items for inode and ref
5789 * 2 items for dir items
5790 * 1 for xattr if selinux is on
5791 */
a22285a6
YZ
5792 trans = btrfs_start_transaction(root, 5);
5793 if (IS_ERR(trans))
5794 return PTR_ERR(trans);
39279cc3 5795
581bb050
LZ
5796 err = btrfs_find_free_ino(root, &objectid);
5797 if (err)
5798 goto out_fail;
5799
aec7477b 5800 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5801 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5802 S_IFDIR | mode, &index);
39279cc3
CM
5803 if (IS_ERR(inode)) {
5804 err = PTR_ERR(inode);
5805 goto out_fail;
5806 }
5f39d397 5807
39279cc3 5808 drop_on_err = 1;
33268eaf 5809
2a7dba39 5810 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5811 if (err)
5812 goto out_fail;
5813
39279cc3
CM
5814 inode->i_op = &btrfs_dir_inode_operations;
5815 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5816
dbe674a9 5817 btrfs_i_size_write(inode, 0);
39279cc3
CM
5818 err = btrfs_update_inode(trans, root, inode);
5819 if (err)
5820 goto out_fail;
5f39d397 5821
a1b075d2
JB
5822 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5823 dentry->d_name.len, 0, index);
39279cc3
CM
5824 if (err)
5825 goto out_fail;
5f39d397 5826
39279cc3
CM
5827 d_instantiate(dentry, inode);
5828 drop_on_err = 0;
39279cc3
CM
5829
5830out_fail:
7ad85bb7 5831 btrfs_end_transaction(trans, root);
39279cc3
CM
5832 if (drop_on_err)
5833 iput(inode);
b53d3f5d 5834 btrfs_btree_balance_dirty(root);
39279cc3
CM
5835 return err;
5836}
5837
d352ac68
CM
5838/* helper for btfs_get_extent. Given an existing extent in the tree,
5839 * and an extent that you want to insert, deal with overlap and insert
5840 * the new extent into the tree.
5841 */
3b951516
CM
5842static int merge_extent_mapping(struct extent_map_tree *em_tree,
5843 struct extent_map *existing,
e6dcd2dc
CM
5844 struct extent_map *em,
5845 u64 map_start, u64 map_len)
3b951516
CM
5846{
5847 u64 start_diff;
3b951516 5848
e6dcd2dc
CM
5849 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5850 start_diff = map_start - em->start;
5851 em->start = map_start;
5852 em->len = map_len;
c8b97818
CM
5853 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5854 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5855 em->block_start += start_diff;
c8b97818
CM
5856 em->block_len -= start_diff;
5857 }
09a2a8f9 5858 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5859}
5860
c8b97818
CM
5861static noinline int uncompress_inline(struct btrfs_path *path,
5862 struct inode *inode, struct page *page,
5863 size_t pg_offset, u64 extent_offset,
5864 struct btrfs_file_extent_item *item)
5865{
5866 int ret;
5867 struct extent_buffer *leaf = path->nodes[0];
5868 char *tmp;
5869 size_t max_size;
5870 unsigned long inline_size;
5871 unsigned long ptr;
261507a0 5872 int compress_type;
c8b97818
CM
5873
5874 WARN_ON(pg_offset != 0);
261507a0 5875 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5876 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5877 inline_size = btrfs_file_extent_inline_item_len(leaf,
5878 btrfs_item_nr(leaf, path->slots[0]));
5879 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5880 if (!tmp)
5881 return -ENOMEM;
c8b97818
CM
5882 ptr = btrfs_file_extent_inline_start(item);
5883
5884 read_extent_buffer(leaf, tmp, ptr, inline_size);
5885
5b050f04 5886 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5887 ret = btrfs_decompress(compress_type, tmp, page,
5888 extent_offset, inline_size, max_size);
c8b97818 5889 if (ret) {
7ac687d9 5890 char *kaddr = kmap_atomic(page);
c8b97818
CM
5891 unsigned long copy_size = min_t(u64,
5892 PAGE_CACHE_SIZE - pg_offset,
5893 max_size - extent_offset);
5894 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5895 kunmap_atomic(kaddr);
c8b97818
CM
5896 }
5897 kfree(tmp);
5898 return 0;
5899}
5900
d352ac68
CM
5901/*
5902 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5903 * the ugly parts come from merging extents from the disk with the in-ram
5904 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5905 * where the in-ram extents might be locked pending data=ordered completion.
5906 *
5907 * This also copies inline extents directly into the page.
5908 */
d397712b 5909
a52d9a80 5910struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5911 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5912 int create)
5913{
5914 int ret;
5915 int err = 0;
db94535d 5916 u64 bytenr;
a52d9a80
CM
5917 u64 extent_start = 0;
5918 u64 extent_end = 0;
33345d01 5919 u64 objectid = btrfs_ino(inode);
a52d9a80 5920 u32 found_type;
f421950f 5921 struct btrfs_path *path = NULL;
a52d9a80
CM
5922 struct btrfs_root *root = BTRFS_I(inode)->root;
5923 struct btrfs_file_extent_item *item;
5f39d397
CM
5924 struct extent_buffer *leaf;
5925 struct btrfs_key found_key;
a52d9a80
CM
5926 struct extent_map *em = NULL;
5927 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5928 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5929 struct btrfs_trans_handle *trans = NULL;
261507a0 5930 int compress_type;
a52d9a80 5931
a52d9a80 5932again:
890871be 5933 read_lock(&em_tree->lock);
d1310b2e 5934 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5935 if (em)
5936 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5937 read_unlock(&em_tree->lock);
d1310b2e 5938
a52d9a80 5939 if (em) {
e1c4b745
CM
5940 if (em->start > start || em->start + em->len <= start)
5941 free_extent_map(em);
5942 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5943 free_extent_map(em);
5944 else
5945 goto out;
a52d9a80 5946 }
172ddd60 5947 em = alloc_extent_map();
a52d9a80 5948 if (!em) {
d1310b2e
CM
5949 err = -ENOMEM;
5950 goto out;
a52d9a80 5951 }
e6dcd2dc 5952 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5953 em->start = EXTENT_MAP_HOLE;
445a6944 5954 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5955 em->len = (u64)-1;
c8b97818 5956 em->block_len = (u64)-1;
f421950f
CM
5957
5958 if (!path) {
5959 path = btrfs_alloc_path();
026fd317
JB
5960 if (!path) {
5961 err = -ENOMEM;
5962 goto out;
5963 }
5964 /*
5965 * Chances are we'll be called again, so go ahead and do
5966 * readahead
5967 */
5968 path->reada = 1;
f421950f
CM
5969 }
5970
179e29e4
CM
5971 ret = btrfs_lookup_file_extent(trans, root, path,
5972 objectid, start, trans != NULL);
a52d9a80
CM
5973 if (ret < 0) {
5974 err = ret;
5975 goto out;
5976 }
5977
5978 if (ret != 0) {
5979 if (path->slots[0] == 0)
5980 goto not_found;
5981 path->slots[0]--;
5982 }
5983
5f39d397
CM
5984 leaf = path->nodes[0];
5985 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5986 struct btrfs_file_extent_item);
a52d9a80 5987 /* are we inside the extent that was found? */
5f39d397
CM
5988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5989 found_type = btrfs_key_type(&found_key);
5990 if (found_key.objectid != objectid ||
a52d9a80
CM
5991 found_type != BTRFS_EXTENT_DATA_KEY) {
5992 goto not_found;
5993 }
5994
5f39d397
CM
5995 found_type = btrfs_file_extent_type(leaf, item);
5996 extent_start = found_key.offset;
261507a0 5997 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5998 if (found_type == BTRFS_FILE_EXTENT_REG ||
5999 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6000 extent_end = extent_start +
db94535d 6001 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6002 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6003 size_t size;
6004 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 6005 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102
YZ
6006 }
6007
6008 if (start >= extent_end) {
6009 path->slots[0]++;
6010 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6011 ret = btrfs_next_leaf(root, path);
6012 if (ret < 0) {
6013 err = ret;
6014 goto out;
a52d9a80 6015 }
9036c102
YZ
6016 if (ret > 0)
6017 goto not_found;
6018 leaf = path->nodes[0];
a52d9a80 6019 }
9036c102
YZ
6020 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6021 if (found_key.objectid != objectid ||
6022 found_key.type != BTRFS_EXTENT_DATA_KEY)
6023 goto not_found;
6024 if (start + len <= found_key.offset)
6025 goto not_found;
6026 em->start = start;
70c8a91c 6027 em->orig_start = start;
9036c102
YZ
6028 em->len = found_key.offset - start;
6029 goto not_found_em;
6030 }
6031
cc95bef6 6032 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6033 if (found_type == BTRFS_FILE_EXTENT_REG ||
6034 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6035 em->start = extent_start;
6036 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6037 em->orig_start = extent_start -
6038 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6039 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6040 item);
db94535d
CM
6041 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6042 if (bytenr == 0) {
5f39d397 6043 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6044 goto insert;
6045 }
261507a0 6046 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6047 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6048 em->compress_type = compress_type;
c8b97818 6049 em->block_start = bytenr;
b4939680 6050 em->block_len = em->orig_block_len;
c8b97818
CM
6051 } else {
6052 bytenr += btrfs_file_extent_offset(leaf, item);
6053 em->block_start = bytenr;
6054 em->block_len = em->len;
d899e052
YZ
6055 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6056 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6057 }
a52d9a80
CM
6058 goto insert;
6059 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6060 unsigned long ptr;
a52d9a80 6061 char *map;
3326d1b0
CM
6062 size_t size;
6063 size_t extent_offset;
6064 size_t copy_size;
a52d9a80 6065
689f9346 6066 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6067 if (!page || create) {
689f9346 6068 em->start = extent_start;
9036c102 6069 em->len = extent_end - extent_start;
689f9346
Y
6070 goto out;
6071 }
5f39d397 6072
9036c102
YZ
6073 size = btrfs_file_extent_inline_len(leaf, item);
6074 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6075 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6076 size - extent_offset);
3326d1b0 6077 em->start = extent_start + extent_offset;
fda2832f 6078 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6079 em->orig_block_len = em->len;
70c8a91c 6080 em->orig_start = em->start;
261507a0 6081 if (compress_type) {
c8b97818 6082 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6083 em->compress_type = compress_type;
6084 }
689f9346 6085 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6086 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6087 if (btrfs_file_extent_compression(leaf, item) !=
6088 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6089 ret = uncompress_inline(path, inode, page,
6090 pg_offset,
6091 extent_offset, item);
79787eaa 6092 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6093 } else {
6094 map = kmap(page);
6095 read_extent_buffer(leaf, map + pg_offset, ptr,
6096 copy_size);
93c82d57
CM
6097 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6098 memset(map + pg_offset + copy_size, 0,
6099 PAGE_CACHE_SIZE - pg_offset -
6100 copy_size);
6101 }
c8b97818
CM
6102 kunmap(page);
6103 }
179e29e4
CM
6104 flush_dcache_page(page);
6105 } else if (create && PageUptodate(page)) {
6bf7e080 6106 BUG();
179e29e4
CM
6107 if (!trans) {
6108 kunmap(page);
6109 free_extent_map(em);
6110 em = NULL;
ff5714cc 6111
b3b4aa74 6112 btrfs_release_path(path);
7a7eaa40 6113 trans = btrfs_join_transaction(root);
ff5714cc 6114
3612b495
TI
6115 if (IS_ERR(trans))
6116 return ERR_CAST(trans);
179e29e4
CM
6117 goto again;
6118 }
c8b97818 6119 map = kmap(page);
70dec807 6120 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6121 copy_size);
c8b97818 6122 kunmap(page);
179e29e4 6123 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6124 }
d1310b2e 6125 set_extent_uptodate(io_tree, em->start,
507903b8 6126 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6127 goto insert;
6128 } else {
31b1a2bd 6129 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6130 }
6131not_found:
6132 em->start = start;
70c8a91c 6133 em->orig_start = start;
d1310b2e 6134 em->len = len;
a52d9a80 6135not_found_em:
5f39d397 6136 em->block_start = EXTENT_MAP_HOLE;
9036c102 6137 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6138insert:
b3b4aa74 6139 btrfs_release_path(path);
d1310b2e 6140 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb
SK
6141 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6142 (unsigned long long)em->start,
6143 (unsigned long long)em->len,
6144 (unsigned long long)start,
6145 (unsigned long long)len);
a52d9a80
CM
6146 err = -EIO;
6147 goto out;
6148 }
d1310b2e
CM
6149
6150 err = 0;
890871be 6151 write_lock(&em_tree->lock);
09a2a8f9 6152 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6153 /* it is possible that someone inserted the extent into the tree
6154 * while we had the lock dropped. It is also possible that
6155 * an overlapping map exists in the tree
6156 */
a52d9a80 6157 if (ret == -EEXIST) {
3b951516 6158 struct extent_map *existing;
e6dcd2dc
CM
6159
6160 ret = 0;
6161
3b951516 6162 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6163 if (existing && (existing->start > start ||
6164 existing->start + existing->len <= start)) {
6165 free_extent_map(existing);
6166 existing = NULL;
6167 }
3b951516
CM
6168 if (!existing) {
6169 existing = lookup_extent_mapping(em_tree, em->start,
6170 em->len);
6171 if (existing) {
6172 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6173 em, start,
6174 root->sectorsize);
3b951516
CM
6175 free_extent_map(existing);
6176 if (err) {
6177 free_extent_map(em);
6178 em = NULL;
6179 }
6180 } else {
6181 err = -EIO;
3b951516
CM
6182 free_extent_map(em);
6183 em = NULL;
6184 }
6185 } else {
6186 free_extent_map(em);
6187 em = existing;
e6dcd2dc 6188 err = 0;
a52d9a80 6189 }
a52d9a80 6190 }
890871be 6191 write_unlock(&em_tree->lock);
a52d9a80 6192out:
1abe9b8a 6193
f0bd95ea
TI
6194 if (em)
6195 trace_btrfs_get_extent(root, em);
1abe9b8a 6196
f421950f
CM
6197 if (path)
6198 btrfs_free_path(path);
a52d9a80
CM
6199 if (trans) {
6200 ret = btrfs_end_transaction(trans, root);
d397712b 6201 if (!err)
a52d9a80
CM
6202 err = ret;
6203 }
a52d9a80
CM
6204 if (err) {
6205 free_extent_map(em);
a52d9a80
CM
6206 return ERR_PTR(err);
6207 }
79787eaa 6208 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6209 return em;
6210}
6211
ec29ed5b
CM
6212struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6213 size_t pg_offset, u64 start, u64 len,
6214 int create)
6215{
6216 struct extent_map *em;
6217 struct extent_map *hole_em = NULL;
6218 u64 range_start = start;
6219 u64 end;
6220 u64 found;
6221 u64 found_end;
6222 int err = 0;
6223
6224 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6225 if (IS_ERR(em))
6226 return em;
6227 if (em) {
6228 /*
f9e4fb53
LB
6229 * if our em maps to
6230 * - a hole or
6231 * - a pre-alloc extent,
6232 * there might actually be delalloc bytes behind it.
ec29ed5b 6233 */
f9e4fb53
LB
6234 if (em->block_start != EXTENT_MAP_HOLE &&
6235 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6236 return em;
6237 else
6238 hole_em = em;
6239 }
6240
6241 /* check to see if we've wrapped (len == -1 or similar) */
6242 end = start + len;
6243 if (end < start)
6244 end = (u64)-1;
6245 else
6246 end -= 1;
6247
6248 em = NULL;
6249
6250 /* ok, we didn't find anything, lets look for delalloc */
6251 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6252 end, len, EXTENT_DELALLOC, 1);
6253 found_end = range_start + found;
6254 if (found_end < range_start)
6255 found_end = (u64)-1;
6256
6257 /*
6258 * we didn't find anything useful, return
6259 * the original results from get_extent()
6260 */
6261 if (range_start > end || found_end <= start) {
6262 em = hole_em;
6263 hole_em = NULL;
6264 goto out;
6265 }
6266
6267 /* adjust the range_start to make sure it doesn't
6268 * go backwards from the start they passed in
6269 */
6270 range_start = max(start,range_start);
6271 found = found_end - range_start;
6272
6273 if (found > 0) {
6274 u64 hole_start = start;
6275 u64 hole_len = len;
6276
172ddd60 6277 em = alloc_extent_map();
ec29ed5b
CM
6278 if (!em) {
6279 err = -ENOMEM;
6280 goto out;
6281 }
6282 /*
6283 * when btrfs_get_extent can't find anything it
6284 * returns one huge hole
6285 *
6286 * make sure what it found really fits our range, and
6287 * adjust to make sure it is based on the start from
6288 * the caller
6289 */
6290 if (hole_em) {
6291 u64 calc_end = extent_map_end(hole_em);
6292
6293 if (calc_end <= start || (hole_em->start > end)) {
6294 free_extent_map(hole_em);
6295 hole_em = NULL;
6296 } else {
6297 hole_start = max(hole_em->start, start);
6298 hole_len = calc_end - hole_start;
6299 }
6300 }
6301 em->bdev = NULL;
6302 if (hole_em && range_start > hole_start) {
6303 /* our hole starts before our delalloc, so we
6304 * have to return just the parts of the hole
6305 * that go until the delalloc starts
6306 */
6307 em->len = min(hole_len,
6308 range_start - hole_start);
6309 em->start = hole_start;
6310 em->orig_start = hole_start;
6311 /*
6312 * don't adjust block start at all,
6313 * it is fixed at EXTENT_MAP_HOLE
6314 */
6315 em->block_start = hole_em->block_start;
6316 em->block_len = hole_len;
f9e4fb53
LB
6317 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6318 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6319 } else {
6320 em->start = range_start;
6321 em->len = found;
6322 em->orig_start = range_start;
6323 em->block_start = EXTENT_MAP_DELALLOC;
6324 em->block_len = found;
6325 }
6326 } else if (hole_em) {
6327 return hole_em;
6328 }
6329out:
6330
6331 free_extent_map(hole_em);
6332 if (err) {
6333 free_extent_map(em);
6334 return ERR_PTR(err);
6335 }
6336 return em;
6337}
6338
4b46fce2
JB
6339static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6340 u64 start, u64 len)
6341{
6342 struct btrfs_root *root = BTRFS_I(inode)->root;
6343 struct btrfs_trans_handle *trans;
70c8a91c 6344 struct extent_map *em;
4b46fce2
JB
6345 struct btrfs_key ins;
6346 u64 alloc_hint;
6347 int ret;
4b46fce2 6348
7a7eaa40 6349 trans = btrfs_join_transaction(root);
3612b495
TI
6350 if (IS_ERR(trans))
6351 return ERR_CAST(trans);
4b46fce2
JB
6352
6353 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6354
6355 alloc_hint = get_extent_allocation_hint(inode, start, len);
6356 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 6357 alloc_hint, &ins, 1);
4b46fce2
JB
6358 if (ret) {
6359 em = ERR_PTR(ret);
6360 goto out;
6361 }
6362
70c8a91c 6363 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6364 ins.offset, ins.offset, ins.offset, 0);
70c8a91c
JB
6365 if (IS_ERR(em))
6366 goto out;
4b46fce2
JB
6367
6368 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6369 ins.offset, ins.offset, 0);
6370 if (ret) {
6371 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6372 em = ERR_PTR(ret);
6373 }
6374out:
6375 btrfs_end_transaction(trans, root);
6376 return em;
6377}
6378
46bfbb5c
CM
6379/*
6380 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6381 * block must be cow'd
6382 */
7ee9e440
JB
6383noinline int can_nocow_extent(struct btrfs_trans_handle *trans,
6384 struct inode *inode, u64 offset, u64 *len,
6385 u64 *orig_start, u64 *orig_block_len,
6386 u64 *ram_bytes)
46bfbb5c
CM
6387{
6388 struct btrfs_path *path;
6389 int ret;
6390 struct extent_buffer *leaf;
6391 struct btrfs_root *root = BTRFS_I(inode)->root;
6392 struct btrfs_file_extent_item *fi;
6393 struct btrfs_key key;
6394 u64 disk_bytenr;
6395 u64 backref_offset;
6396 u64 extent_end;
6397 u64 num_bytes;
6398 int slot;
6399 int found_type;
7ee9e440 6400 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
46bfbb5c
CM
6401 path = btrfs_alloc_path();
6402 if (!path)
6403 return -ENOMEM;
6404
33345d01 6405 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
6406 offset, 0);
6407 if (ret < 0)
6408 goto out;
6409
6410 slot = path->slots[0];
6411 if (ret == 1) {
6412 if (slot == 0) {
6413 /* can't find the item, must cow */
6414 ret = 0;
6415 goto out;
6416 }
6417 slot--;
6418 }
6419 ret = 0;
6420 leaf = path->nodes[0];
6421 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6422 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6423 key.type != BTRFS_EXTENT_DATA_KEY) {
6424 /* not our file or wrong item type, must cow */
6425 goto out;
6426 }
6427
6428 if (key.offset > offset) {
6429 /* Wrong offset, must cow */
6430 goto out;
6431 }
6432
6433 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6434 found_type = btrfs_file_extent_type(leaf, fi);
6435 if (found_type != BTRFS_FILE_EXTENT_REG &&
6436 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6437 /* not a regular extent, must cow */
6438 goto out;
6439 }
7ee9e440
JB
6440
6441 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6442 goto out;
6443
46bfbb5c 6444 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6445 if (disk_bytenr == 0)
6446 goto out;
6447
6448 if (btrfs_file_extent_compression(leaf, fi) ||
6449 btrfs_file_extent_encryption(leaf, fi) ||
6450 btrfs_file_extent_other_encoding(leaf, fi))
6451 goto out;
6452
46bfbb5c
CM
6453 backref_offset = btrfs_file_extent_offset(leaf, fi);
6454
7ee9e440
JB
6455 if (orig_start) {
6456 *orig_start = key.offset - backref_offset;
6457 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6458 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6459 }
eb384b55 6460
46bfbb5c 6461 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
46bfbb5c
CM
6462
6463 if (btrfs_extent_readonly(root, disk_bytenr))
6464 goto out;
6465
6466 /*
6467 * look for other files referencing this extent, if we
6468 * find any we must cow
6469 */
33345d01 6470 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
6471 key.offset - backref_offset, disk_bytenr))
6472 goto out;
6473
6474 /*
6475 * adjust disk_bytenr and num_bytes to cover just the bytes
6476 * in this extent we are about to write. If there
6477 * are any csums in that range we have to cow in order
6478 * to keep the csums correct
6479 */
6480 disk_bytenr += backref_offset;
6481 disk_bytenr += offset - key.offset;
eb384b55 6482 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6483 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6484 goto out;
6485 /*
6486 * all of the above have passed, it is safe to overwrite this extent
6487 * without cow
6488 */
eb384b55 6489 *len = num_bytes;
46bfbb5c
CM
6490 ret = 1;
6491out:
6492 btrfs_free_path(path);
6493 return ret;
6494}
6495
eb838e73
JB
6496static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6497 struct extent_state **cached_state, int writing)
6498{
6499 struct btrfs_ordered_extent *ordered;
6500 int ret = 0;
6501
6502 while (1) {
6503 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6504 0, cached_state);
6505 /*
6506 * We're concerned with the entire range that we're going to be
6507 * doing DIO to, so we need to make sure theres no ordered
6508 * extents in this range.
6509 */
6510 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6511 lockend - lockstart + 1);
6512
6513 /*
6514 * We need to make sure there are no buffered pages in this
6515 * range either, we could have raced between the invalidate in
6516 * generic_file_direct_write and locking the extent. The
6517 * invalidate needs to happen so that reads after a write do not
6518 * get stale data.
6519 */
6520 if (!ordered && (!writing ||
6521 !test_range_bit(&BTRFS_I(inode)->io_tree,
6522 lockstart, lockend, EXTENT_UPTODATE, 0,
6523 *cached_state)))
6524 break;
6525
6526 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6527 cached_state, GFP_NOFS);
6528
6529 if (ordered) {
6530 btrfs_start_ordered_extent(inode, ordered, 1);
6531 btrfs_put_ordered_extent(ordered);
6532 } else {
6533 /* Screw you mmap */
6534 ret = filemap_write_and_wait_range(inode->i_mapping,
6535 lockstart,
6536 lockend);
6537 if (ret)
6538 break;
6539
6540 /*
6541 * If we found a page that couldn't be invalidated just
6542 * fall back to buffered.
6543 */
6544 ret = invalidate_inode_pages2_range(inode->i_mapping,
6545 lockstart >> PAGE_CACHE_SHIFT,
6546 lockend >> PAGE_CACHE_SHIFT);
6547 if (ret)
6548 break;
6549 }
6550
6551 cond_resched();
6552 }
6553
6554 return ret;
6555}
6556
69ffb543
JB
6557static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6558 u64 len, u64 orig_start,
6559 u64 block_start, u64 block_len,
cc95bef6
JB
6560 u64 orig_block_len, u64 ram_bytes,
6561 int type)
69ffb543
JB
6562{
6563 struct extent_map_tree *em_tree;
6564 struct extent_map *em;
6565 struct btrfs_root *root = BTRFS_I(inode)->root;
6566 int ret;
6567
6568 em_tree = &BTRFS_I(inode)->extent_tree;
6569 em = alloc_extent_map();
6570 if (!em)
6571 return ERR_PTR(-ENOMEM);
6572
6573 em->start = start;
6574 em->orig_start = orig_start;
2ab28f32
JB
6575 em->mod_start = start;
6576 em->mod_len = len;
69ffb543
JB
6577 em->len = len;
6578 em->block_len = block_len;
6579 em->block_start = block_start;
6580 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6581 em->orig_block_len = orig_block_len;
cc95bef6 6582 em->ram_bytes = ram_bytes;
70c8a91c 6583 em->generation = -1;
69ffb543
JB
6584 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6585 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6586 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6587
6588 do {
6589 btrfs_drop_extent_cache(inode, em->start,
6590 em->start + em->len - 1, 0);
6591 write_lock(&em_tree->lock);
09a2a8f9 6592 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6593 write_unlock(&em_tree->lock);
6594 } while (ret == -EEXIST);
6595
6596 if (ret) {
6597 free_extent_map(em);
6598 return ERR_PTR(ret);
6599 }
6600
6601 return em;
6602}
6603
6604
4b46fce2
JB
6605static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6606 struct buffer_head *bh_result, int create)
6607{
6608 struct extent_map *em;
6609 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6610 struct extent_state *cached_state = NULL;
4b46fce2 6611 u64 start = iblock << inode->i_blkbits;
eb838e73 6612 u64 lockstart, lockend;
4b46fce2 6613 u64 len = bh_result->b_size;
46bfbb5c 6614 struct btrfs_trans_handle *trans;
eb838e73 6615 int unlock_bits = EXTENT_LOCKED;
0934856d 6616 int ret = 0;
eb838e73 6617
172a5049 6618 if (create)
eb838e73 6619 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6620 else
c329861d 6621 len = min_t(u64, len, root->sectorsize);
eb838e73 6622
c329861d
JB
6623 lockstart = start;
6624 lockend = start + len - 1;
6625
eb838e73
JB
6626 /*
6627 * If this errors out it's because we couldn't invalidate pagecache for
6628 * this range and we need to fallback to buffered.
6629 */
6630 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6631 return -ENOTBLK;
6632
4b46fce2 6633 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6634 if (IS_ERR(em)) {
6635 ret = PTR_ERR(em);
6636 goto unlock_err;
6637 }
4b46fce2
JB
6638
6639 /*
6640 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6641 * io. INLINE is special, and we could probably kludge it in here, but
6642 * it's still buffered so for safety lets just fall back to the generic
6643 * buffered path.
6644 *
6645 * For COMPRESSED we _have_ to read the entire extent in so we can
6646 * decompress it, so there will be buffering required no matter what we
6647 * do, so go ahead and fallback to buffered.
6648 *
6649 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6650 * to buffered IO. Don't blame me, this is the price we pay for using
6651 * the generic code.
6652 */
6653 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6654 em->block_start == EXTENT_MAP_INLINE) {
6655 free_extent_map(em);
eb838e73
JB
6656 ret = -ENOTBLK;
6657 goto unlock_err;
4b46fce2
JB
6658 }
6659
6660 /* Just a good old fashioned hole, return */
6661 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6662 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6663 free_extent_map(em);
eb838e73 6664 goto unlock_err;
4b46fce2
JB
6665 }
6666
6667 /*
6668 * We don't allocate a new extent in the following cases
6669 *
6670 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6671 * existing extent.
6672 * 2) The extent is marked as PREALLOC. We're good to go here and can
6673 * just use the extent.
6674 *
6675 */
46bfbb5c 6676 if (!create) {
eb838e73
JB
6677 len = min(len, em->len - (start - em->start));
6678 lockstart = start + len;
6679 goto unlock;
46bfbb5c 6680 }
4b46fce2
JB
6681
6682 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6683 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6684 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6685 int type;
6686 int ret;
eb384b55 6687 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6688
6689 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6690 type = BTRFS_ORDERED_PREALLOC;
6691 else
6692 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6693 len = min(len, em->len - (start - em->start));
4b46fce2 6694 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6695
6696 /*
6697 * we're not going to log anything, but we do need
6698 * to make sure the current transaction stays open
6699 * while we look for nocow cross refs
6700 */
7a7eaa40 6701 trans = btrfs_join_transaction(root);
3612b495 6702 if (IS_ERR(trans))
46bfbb5c
CM
6703 goto must_cow;
6704
7ee9e440
JB
6705 if (can_nocow_extent(trans, inode, start, &len, &orig_start,
6706 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6707 if (type == BTRFS_ORDERED_PREALLOC) {
6708 free_extent_map(em);
6709 em = create_pinned_em(inode, start, len,
6710 orig_start,
b4939680 6711 block_start, len,
cc95bef6
JB
6712 orig_block_len,
6713 ram_bytes, type);
69ffb543
JB
6714 if (IS_ERR(em)) {
6715 btrfs_end_transaction(trans, root);
6716 goto unlock_err;
6717 }
6718 }
6719
46bfbb5c
CM
6720 ret = btrfs_add_ordered_extent_dio(inode, start,
6721 block_start, len, len, type);
6722 btrfs_end_transaction(trans, root);
6723 if (ret) {
6724 free_extent_map(em);
eb838e73 6725 goto unlock_err;
46bfbb5c
CM
6726 }
6727 goto unlock;
4b46fce2 6728 }
46bfbb5c 6729 btrfs_end_transaction(trans, root);
4b46fce2 6730 }
46bfbb5c
CM
6731must_cow:
6732 /*
6733 * this will cow the extent, reset the len in case we changed
6734 * it above
6735 */
6736 len = bh_result->b_size;
70c8a91c
JB
6737 free_extent_map(em);
6738 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6739 if (IS_ERR(em)) {
6740 ret = PTR_ERR(em);
6741 goto unlock_err;
6742 }
46bfbb5c
CM
6743 len = min(len, em->len - (start - em->start));
6744unlock:
4b46fce2
JB
6745 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6746 inode->i_blkbits;
46bfbb5c 6747 bh_result->b_size = len;
4b46fce2
JB
6748 bh_result->b_bdev = em->bdev;
6749 set_buffer_mapped(bh_result);
c3473e83
JB
6750 if (create) {
6751 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6752 set_buffer_new(bh_result);
6753
6754 /*
6755 * Need to update the i_size under the extent lock so buffered
6756 * readers will get the updated i_size when we unlock.
6757 */
6758 if (start + len > i_size_read(inode))
6759 i_size_write(inode, start + len);
0934856d 6760
172a5049
MX
6761 spin_lock(&BTRFS_I(inode)->lock);
6762 BTRFS_I(inode)->outstanding_extents++;
6763 spin_unlock(&BTRFS_I(inode)->lock);
6764
0934856d
MX
6765 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6766 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6767 &cached_state, GFP_NOFS);
6768 BUG_ON(ret);
c3473e83 6769 }
4b46fce2 6770
eb838e73
JB
6771 /*
6772 * In the case of write we need to clear and unlock the entire range,
6773 * in the case of read we need to unlock only the end area that we
6774 * aren't using if there is any left over space.
6775 */
24c03fa5 6776 if (lockstart < lockend) {
0934856d
MX
6777 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6778 lockend, unlock_bits, 1, 0,
6779 &cached_state, GFP_NOFS);
24c03fa5 6780 } else {
eb838e73 6781 free_extent_state(cached_state);
24c03fa5 6782 }
eb838e73 6783
4b46fce2
JB
6784 free_extent_map(em);
6785
6786 return 0;
eb838e73
JB
6787
6788unlock_err:
eb838e73
JB
6789 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6790 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6791 return ret;
4b46fce2
JB
6792}
6793
6794struct btrfs_dio_private {
6795 struct inode *inode;
6796 u64 logical_offset;
6797 u64 disk_bytenr;
6798 u64 bytes;
4b46fce2 6799 void *private;
e65e1535
MX
6800
6801 /* number of bios pending for this dio */
6802 atomic_t pending_bios;
6803
6804 /* IO errors */
6805 int errors;
6806
9be3395b 6807 /* orig_bio is our btrfs_io_bio */
e65e1535 6808 struct bio *orig_bio;
9be3395b
CM
6809
6810 /* dio_bio came from fs/direct-io.c */
6811 struct bio *dio_bio;
4b46fce2
JB
6812};
6813
6814static void btrfs_endio_direct_read(struct bio *bio, int err)
6815{
e65e1535 6816 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6817 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6818 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6819 struct inode *inode = dip->inode;
6820 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6821 struct bio *dio_bio;
4b46fce2 6822 u64 start;
4b46fce2
JB
6823
6824 start = dip->logical_offset;
6825 do {
6826 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6827 struct page *page = bvec->bv_page;
6828 char *kaddr;
6829 u32 csum = ~(u32)0;
c329861d 6830 u64 private = ~(u32)0;
4b46fce2
JB
6831 unsigned long flags;
6832
c329861d
JB
6833 if (get_state_private(&BTRFS_I(inode)->io_tree,
6834 start, &private))
6835 goto failed;
4b46fce2 6836 local_irq_save(flags);
7ac687d9 6837 kaddr = kmap_atomic(page);
b0496686 6838 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6839 csum, bvec->bv_len);
6840 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6841 kunmap_atomic(kaddr);
4b46fce2
JB
6842 local_irq_restore(flags);
6843
6844 flush_dcache_page(bvec->bv_page);
c329861d
JB
6845 if (csum != private) {
6846failed:
c2cf52eb
SK
6847 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u",
6848 (unsigned long long)btrfs_ino(inode),
6849 (unsigned long long)start,
6850 csum, (unsigned)private);
4b46fce2
JB
6851 err = -EIO;
6852 }
6853 }
6854
6855 start += bvec->bv_len;
4b46fce2
JB
6856 bvec++;
6857 } while (bvec <= bvec_end);
6858
6859 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6860 dip->logical_offset + dip->bytes - 1);
9be3395b 6861 dio_bio = dip->dio_bio;
4b46fce2 6862
4b46fce2 6863 kfree(dip);
c0da7aa1
JB
6864
6865 /* If we had a csum failure make sure to clear the uptodate flag */
6866 if (err)
9be3395b
CM
6867 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6868 dio_end_io(dio_bio, err);
6869 bio_put(bio);
4b46fce2
JB
6870}
6871
6872static void btrfs_endio_direct_write(struct bio *bio, int err)
6873{
6874 struct btrfs_dio_private *dip = bio->bi_private;
6875 struct inode *inode = dip->inode;
6876 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6877 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6878 u64 ordered_offset = dip->logical_offset;
6879 u64 ordered_bytes = dip->bytes;
9be3395b 6880 struct bio *dio_bio;
4b46fce2
JB
6881 int ret;
6882
6883 if (err)
6884 goto out_done;
163cf09c
CM
6885again:
6886 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6887 &ordered_offset,
5fd02043 6888 ordered_bytes, !err);
4b46fce2 6889 if (!ret)
163cf09c 6890 goto out_test;
4b46fce2 6891
5fd02043
JB
6892 ordered->work.func = finish_ordered_fn;
6893 ordered->work.flags = 0;
6894 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6895 &ordered->work);
163cf09c
CM
6896out_test:
6897 /*
6898 * our bio might span multiple ordered extents. If we haven't
6899 * completed the accounting for the whole dio, go back and try again
6900 */
6901 if (ordered_offset < dip->logical_offset + dip->bytes) {
6902 ordered_bytes = dip->logical_offset + dip->bytes -
6903 ordered_offset;
5fd02043 6904 ordered = NULL;
163cf09c
CM
6905 goto again;
6906 }
4b46fce2 6907out_done:
9be3395b 6908 dio_bio = dip->dio_bio;
4b46fce2 6909
4b46fce2 6910 kfree(dip);
c0da7aa1
JB
6911
6912 /* If we had an error make sure to clear the uptodate flag */
6913 if (err)
9be3395b
CM
6914 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6915 dio_end_io(dio_bio, err);
6916 bio_put(bio);
4b46fce2
JB
6917}
6918
eaf25d93
CM
6919static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6920 struct bio *bio, int mirror_num,
6921 unsigned long bio_flags, u64 offset)
6922{
6923 int ret;
6924 struct btrfs_root *root = BTRFS_I(inode)->root;
6925 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6926 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6927 return 0;
6928}
6929
e65e1535
MX
6930static void btrfs_end_dio_bio(struct bio *bio, int err)
6931{
6932 struct btrfs_dio_private *dip = bio->bi_private;
6933
6934 if (err) {
33345d01 6935 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6936 "sector %#Lx len %u err no %d\n",
33345d01 6937 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6938 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6939 dip->errors = 1;
6940
6941 /*
6942 * before atomic variable goto zero, we must make sure
6943 * dip->errors is perceived to be set.
6944 */
6945 smp_mb__before_atomic_dec();
6946 }
6947
6948 /* if there are more bios still pending for this dio, just exit */
6949 if (!atomic_dec_and_test(&dip->pending_bios))
6950 goto out;
6951
9be3395b 6952 if (dip->errors) {
e65e1535 6953 bio_io_error(dip->orig_bio);
9be3395b
CM
6954 } else {
6955 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
6956 bio_endio(dip->orig_bio, 0);
6957 }
6958out:
6959 bio_put(bio);
6960}
6961
6962static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6963 u64 first_sector, gfp_t gfp_flags)
6964{
6965 int nr_vecs = bio_get_nr_vecs(bdev);
6966 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6967}
6968
6969static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6970 int rw, u64 file_offset, int skip_sum,
c329861d 6971 int async_submit)
e65e1535
MX
6972{
6973 int write = rw & REQ_WRITE;
6974 struct btrfs_root *root = BTRFS_I(inode)->root;
6975 int ret;
6976
b812ce28
JB
6977 if (async_submit)
6978 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6979
e65e1535 6980 bio_get(bio);
5fd02043
JB
6981
6982 if (!write) {
6983 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6984 if (ret)
6985 goto err;
6986 }
e65e1535 6987
1ae39938
JB
6988 if (skip_sum)
6989 goto map;
6990
6991 if (write && async_submit) {
e65e1535
MX
6992 ret = btrfs_wq_submit_bio(root->fs_info,
6993 inode, rw, bio, 0, 0,
6994 file_offset,
6995 __btrfs_submit_bio_start_direct_io,
6996 __btrfs_submit_bio_done);
6997 goto err;
1ae39938
JB
6998 } else if (write) {
6999 /*
7000 * If we aren't doing async submit, calculate the csum of the
7001 * bio now.
7002 */
7003 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7004 if (ret)
7005 goto err;
c2db1073 7006 } else if (!skip_sum) {
c329861d 7007 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
7008 if (ret)
7009 goto err;
7010 }
e65e1535 7011
1ae39938
JB
7012map:
7013 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7014err:
7015 bio_put(bio);
7016 return ret;
7017}
7018
7019static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7020 int skip_sum)
7021{
7022 struct inode *inode = dip->inode;
7023 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7024 struct bio *bio;
7025 struct bio *orig_bio = dip->orig_bio;
7026 struct bio_vec *bvec = orig_bio->bi_io_vec;
7027 u64 start_sector = orig_bio->bi_sector;
7028 u64 file_offset = dip->logical_offset;
7029 u64 submit_len = 0;
7030 u64 map_length;
7031 int nr_pages = 0;
e65e1535 7032 int ret = 0;
1ae39938 7033 int async_submit = 0;
e65e1535 7034
e65e1535 7035 map_length = orig_bio->bi_size;
53b381b3 7036 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7037 &map_length, NULL, 0);
7038 if (ret) {
64728bbb 7039 bio_put(orig_bio);
e65e1535
MX
7040 return -EIO;
7041 }
02f57c7a
JB
7042 if (map_length >= orig_bio->bi_size) {
7043 bio = orig_bio;
7044 goto submit;
7045 }
7046
53b381b3
DW
7047 /* async crcs make it difficult to collect full stripe writes. */
7048 if (btrfs_get_alloc_profile(root, 1) &
7049 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7050 async_submit = 0;
7051 else
7052 async_submit = 1;
7053
02f57c7a
JB
7054 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7055 if (!bio)
7056 return -ENOMEM;
7057 bio->bi_private = dip;
7058 bio->bi_end_io = btrfs_end_dio_bio;
7059 atomic_inc(&dip->pending_bios);
7060
e65e1535
MX
7061 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7062 if (unlikely(map_length < submit_len + bvec->bv_len ||
7063 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7064 bvec->bv_offset) < bvec->bv_len)) {
7065 /*
7066 * inc the count before we submit the bio so
7067 * we know the end IO handler won't happen before
7068 * we inc the count. Otherwise, the dip might get freed
7069 * before we're done setting it up
7070 */
7071 atomic_inc(&dip->pending_bios);
7072 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7073 file_offset, skip_sum,
c329861d 7074 async_submit);
e65e1535
MX
7075 if (ret) {
7076 bio_put(bio);
7077 atomic_dec(&dip->pending_bios);
7078 goto out_err;
7079 }
7080
e65e1535
MX
7081 start_sector += submit_len >> 9;
7082 file_offset += submit_len;
7083
7084 submit_len = 0;
7085 nr_pages = 0;
7086
7087 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7088 start_sector, GFP_NOFS);
7089 if (!bio)
7090 goto out_err;
7091 bio->bi_private = dip;
7092 bio->bi_end_io = btrfs_end_dio_bio;
7093
7094 map_length = orig_bio->bi_size;
53b381b3 7095 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7096 start_sector << 9,
e65e1535
MX
7097 &map_length, NULL, 0);
7098 if (ret) {
7099 bio_put(bio);
7100 goto out_err;
7101 }
7102 } else {
7103 submit_len += bvec->bv_len;
7104 nr_pages ++;
7105 bvec++;
7106 }
7107 }
7108
02f57c7a 7109submit:
e65e1535 7110 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7111 async_submit);
e65e1535
MX
7112 if (!ret)
7113 return 0;
7114
7115 bio_put(bio);
7116out_err:
7117 dip->errors = 1;
7118 /*
7119 * before atomic variable goto zero, we must
7120 * make sure dip->errors is perceived to be set.
7121 */
7122 smp_mb__before_atomic_dec();
7123 if (atomic_dec_and_test(&dip->pending_bios))
7124 bio_io_error(dip->orig_bio);
7125
7126 /* bio_end_io() will handle error, so we needn't return it */
7127 return 0;
7128}
7129
9be3395b
CM
7130static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7131 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7132{
7133 struct btrfs_root *root = BTRFS_I(inode)->root;
7134 struct btrfs_dio_private *dip;
9be3395b 7135 struct bio *io_bio;
4b46fce2 7136 int skip_sum;
7b6d91da 7137 int write = rw & REQ_WRITE;
4b46fce2
JB
7138 int ret = 0;
7139
7140 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7141
9be3395b
CM
7142 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7143
7144 if (!io_bio) {
7145 ret = -ENOMEM;
7146 goto free_ordered;
7147 }
7148
4b46fce2
JB
7149 dip = kmalloc(sizeof(*dip), GFP_NOFS);
7150 if (!dip) {
7151 ret = -ENOMEM;
9be3395b 7152 goto free_io_bio;
4b46fce2 7153 }
4b46fce2 7154
9be3395b 7155 dip->private = dio_bio->bi_private;
4b46fce2
JB
7156 dip->inode = inode;
7157 dip->logical_offset = file_offset;
e6da5d2e 7158 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7159 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7160 io_bio->bi_private = dip;
e65e1535 7161 dip->errors = 0;
9be3395b
CM
7162 dip->orig_bio = io_bio;
7163 dip->dio_bio = dio_bio;
e65e1535 7164 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7165
7166 if (write)
9be3395b 7167 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7168 else
9be3395b 7169 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7170
e65e1535
MX
7171 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7172 if (!ret)
eaf25d93 7173 return;
9be3395b
CM
7174
7175free_io_bio:
7176 bio_put(io_bio);
7177
4b46fce2
JB
7178free_ordered:
7179 /*
7180 * If this is a write, we need to clean up the reserved space and kill
7181 * the ordered extent.
7182 */
7183 if (write) {
7184 struct btrfs_ordered_extent *ordered;
955256f2 7185 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7186 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7187 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7188 btrfs_free_reserved_extent(root, ordered->start,
7189 ordered->disk_len);
7190 btrfs_put_ordered_extent(ordered);
7191 btrfs_put_ordered_extent(ordered);
7192 }
9be3395b 7193 bio_endio(dio_bio, ret);
4b46fce2
JB
7194}
7195
5a5f79b5
CM
7196static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7197 const struct iovec *iov, loff_t offset,
7198 unsigned long nr_segs)
7199{
7200 int seg;
a1b75f7d 7201 int i;
5a5f79b5
CM
7202 size_t size;
7203 unsigned long addr;
7204 unsigned blocksize_mask = root->sectorsize - 1;
7205 ssize_t retval = -EINVAL;
7206 loff_t end = offset;
7207
7208 if (offset & blocksize_mask)
7209 goto out;
7210
7211 /* Check the memory alignment. Blocks cannot straddle pages */
7212 for (seg = 0; seg < nr_segs; seg++) {
7213 addr = (unsigned long)iov[seg].iov_base;
7214 size = iov[seg].iov_len;
7215 end += size;
a1b75f7d 7216 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7217 goto out;
a1b75f7d
JB
7218
7219 /* If this is a write we don't need to check anymore */
7220 if (rw & WRITE)
7221 continue;
7222
7223 /*
7224 * Check to make sure we don't have duplicate iov_base's in this
7225 * iovec, if so return EINVAL, otherwise we'll get csum errors
7226 * when reading back.
7227 */
7228 for (i = seg + 1; i < nr_segs; i++) {
7229 if (iov[seg].iov_base == iov[i].iov_base)
7230 goto out;
7231 }
5a5f79b5
CM
7232 }
7233 retval = 0;
7234out:
7235 return retval;
7236}
eb838e73 7237
16432985
CM
7238static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7239 const struct iovec *iov, loff_t offset,
7240 unsigned long nr_segs)
7241{
4b46fce2
JB
7242 struct file *file = iocb->ki_filp;
7243 struct inode *inode = file->f_mapping->host;
0934856d 7244 size_t count = 0;
2e60a51e 7245 int flags = 0;
38851cc1
MX
7246 bool wakeup = true;
7247 bool relock = false;
0934856d 7248 ssize_t ret;
4b46fce2 7249
5a5f79b5 7250 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7251 offset, nr_segs))
5a5f79b5 7252 return 0;
3f7c579c 7253
38851cc1
MX
7254 atomic_inc(&inode->i_dio_count);
7255 smp_mb__after_atomic_inc();
7256
0e267c44
JB
7257 /*
7258 * The generic stuff only does filemap_write_and_wait_range, which isn't
7259 * enough if we've written compressed pages to this area, so we need to
7260 * call btrfs_wait_ordered_range to make absolutely sure that any
7261 * outstanding dirty pages are on disk.
7262 */
7263 count = iov_length(iov, nr_segs);
7264 btrfs_wait_ordered_range(inode, offset, count);
7265
0934856d 7266 if (rw & WRITE) {
38851cc1
MX
7267 /*
7268 * If the write DIO is beyond the EOF, we need update
7269 * the isize, but it is protected by i_mutex. So we can
7270 * not unlock the i_mutex at this case.
7271 */
7272 if (offset + count <= inode->i_size) {
7273 mutex_unlock(&inode->i_mutex);
7274 relock = true;
7275 }
0934856d
MX
7276 ret = btrfs_delalloc_reserve_space(inode, count);
7277 if (ret)
38851cc1
MX
7278 goto out;
7279 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7280 &BTRFS_I(inode)->runtime_flags))) {
7281 inode_dio_done(inode);
7282 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7283 wakeup = false;
0934856d
MX
7284 }
7285
7286 ret = __blockdev_direct_IO(rw, iocb, inode,
7287 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7288 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7289 btrfs_submit_direct, flags);
0934856d
MX
7290 if (rw & WRITE) {
7291 if (ret < 0 && ret != -EIOCBQUEUED)
7292 btrfs_delalloc_release_space(inode, count);
172a5049 7293 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7294 btrfs_delalloc_release_space(inode,
7295 count - (size_t)ret);
172a5049
MX
7296 else
7297 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7298 }
38851cc1 7299out:
2e60a51e
MX
7300 if (wakeup)
7301 inode_dio_done(inode);
38851cc1
MX
7302 if (relock)
7303 mutex_lock(&inode->i_mutex);
0934856d
MX
7304
7305 return ret;
16432985
CM
7306}
7307
05dadc09
TI
7308#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7309
1506fcc8
YS
7310static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7311 __u64 start, __u64 len)
7312{
05dadc09
TI
7313 int ret;
7314
7315 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7316 if (ret)
7317 return ret;
7318
ec29ed5b 7319 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7320}
7321
a52d9a80 7322int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7323{
d1310b2e
CM
7324 struct extent_io_tree *tree;
7325 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7326 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7327}
1832a6d5 7328
a52d9a80 7329static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7330{
d1310b2e 7331 struct extent_io_tree *tree;
b888db2b
CM
7332
7333
7334 if (current->flags & PF_MEMALLOC) {
7335 redirty_page_for_writepage(wbc, page);
7336 unlock_page(page);
7337 return 0;
7338 }
d1310b2e 7339 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7340 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7341}
7342
48a3b636
ES
7343static int btrfs_writepages(struct address_space *mapping,
7344 struct writeback_control *wbc)
b293f02e 7345{
d1310b2e 7346 struct extent_io_tree *tree;
771ed689 7347
d1310b2e 7348 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7349 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7350}
7351
3ab2fb5a
CM
7352static int
7353btrfs_readpages(struct file *file, struct address_space *mapping,
7354 struct list_head *pages, unsigned nr_pages)
7355{
d1310b2e
CM
7356 struct extent_io_tree *tree;
7357 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7358 return extent_readpages(tree, mapping, pages, nr_pages,
7359 btrfs_get_extent);
7360}
e6dcd2dc 7361static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7362{
d1310b2e
CM
7363 struct extent_io_tree *tree;
7364 struct extent_map_tree *map;
a52d9a80 7365 int ret;
8c2383c3 7366
d1310b2e
CM
7367 tree = &BTRFS_I(page->mapping->host)->io_tree;
7368 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7369 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7370 if (ret == 1) {
7371 ClearPagePrivate(page);
7372 set_page_private(page, 0);
7373 page_cache_release(page);
39279cc3 7374 }
a52d9a80 7375 return ret;
39279cc3
CM
7376}
7377
e6dcd2dc
CM
7378static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7379{
98509cfc
CM
7380 if (PageWriteback(page) || PageDirty(page))
7381 return 0;
b335b003 7382 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7383}
7384
d47992f8
LC
7385static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7386 unsigned int length)
39279cc3 7387{
5fd02043 7388 struct inode *inode = page->mapping->host;
d1310b2e 7389 struct extent_io_tree *tree;
e6dcd2dc 7390 struct btrfs_ordered_extent *ordered;
2ac55d41 7391 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7392 u64 page_start = page_offset(page);
7393 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 7394
8b62b72b
CM
7395 /*
7396 * we have the page locked, so new writeback can't start,
7397 * and the dirty bit won't be cleared while we are here.
7398 *
7399 * Wait for IO on this page so that we can safely clear
7400 * the PagePrivate2 bit and do ordered accounting
7401 */
e6dcd2dc 7402 wait_on_page_writeback(page);
8b62b72b 7403
5fd02043 7404 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7405 if (offset) {
7406 btrfs_releasepage(page, GFP_NOFS);
7407 return;
7408 }
d0082371 7409 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 7410 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 7411 if (ordered) {
eb84ae03
CM
7412 /*
7413 * IO on this page will never be started, so we need
7414 * to account for any ordered extents now
7415 */
e6dcd2dc
CM
7416 clear_extent_bit(tree, page_start, page_end,
7417 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7418 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7419 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
7420 /*
7421 * whoever cleared the private bit is responsible
7422 * for the finish_ordered_io
7423 */
5fd02043
JB
7424 if (TestClearPagePrivate2(page) &&
7425 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7426 PAGE_CACHE_SIZE, 1)) {
7427 btrfs_finish_ordered_io(ordered);
8b62b72b 7428 }
e6dcd2dc 7429 btrfs_put_ordered_extent(ordered);
2ac55d41 7430 cached_state = NULL;
d0082371 7431 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7432 }
7433 clear_extent_bit(tree, page_start, page_end,
32c00aff 7434 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7435 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7436 &cached_state, GFP_NOFS);
e6dcd2dc
CM
7437 __btrfs_releasepage(page, GFP_NOFS);
7438
4a096752 7439 ClearPageChecked(page);
9ad6b7bc 7440 if (PagePrivate(page)) {
9ad6b7bc
CM
7441 ClearPagePrivate(page);
7442 set_page_private(page, 0);
7443 page_cache_release(page);
7444 }
39279cc3
CM
7445}
7446
9ebefb18
CM
7447/*
7448 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7449 * called from a page fault handler when a page is first dirtied. Hence we must
7450 * be careful to check for EOF conditions here. We set the page up correctly
7451 * for a written page which means we get ENOSPC checking when writing into
7452 * holes and correct delalloc and unwritten extent mapping on filesystems that
7453 * support these features.
7454 *
7455 * We are not allowed to take the i_mutex here so we have to play games to
7456 * protect against truncate races as the page could now be beyond EOF. Because
7457 * vmtruncate() writes the inode size before removing pages, once we have the
7458 * page lock we can determine safely if the page is beyond EOF. If it is not
7459 * beyond EOF, then the page is guaranteed safe against truncation until we
7460 * unlock the page.
7461 */
c2ec175c 7462int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7463{
c2ec175c 7464 struct page *page = vmf->page;
496ad9aa 7465 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7466 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7467 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7468 struct btrfs_ordered_extent *ordered;
2ac55d41 7469 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7470 char *kaddr;
7471 unsigned long zero_start;
9ebefb18 7472 loff_t size;
1832a6d5 7473 int ret;
9998eb70 7474 int reserved = 0;
a52d9a80 7475 u64 page_start;
e6dcd2dc 7476 u64 page_end;
9ebefb18 7477
b2b5ef5c 7478 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7479 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7480 if (!ret) {
e41f941a 7481 ret = file_update_time(vma->vm_file);
9998eb70
CM
7482 reserved = 1;
7483 }
56a76f82
NP
7484 if (ret) {
7485 if (ret == -ENOMEM)
7486 ret = VM_FAULT_OOM;
7487 else /* -ENOSPC, -EIO, etc */
7488 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7489 if (reserved)
7490 goto out;
7491 goto out_noreserve;
56a76f82 7492 }
1832a6d5 7493
56a76f82 7494 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7495again:
9ebefb18 7496 lock_page(page);
9ebefb18 7497 size = i_size_read(inode);
e6dcd2dc
CM
7498 page_start = page_offset(page);
7499 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7500
9ebefb18 7501 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7502 (page_start >= size)) {
9ebefb18
CM
7503 /* page got truncated out from underneath us */
7504 goto out_unlock;
7505 }
e6dcd2dc
CM
7506 wait_on_page_writeback(page);
7507
d0082371 7508 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7509 set_page_extent_mapped(page);
7510
eb84ae03
CM
7511 /*
7512 * we can't set the delalloc bits if there are pending ordered
7513 * extents. Drop our locks and wait for them to finish
7514 */
e6dcd2dc
CM
7515 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7516 if (ordered) {
2ac55d41
JB
7517 unlock_extent_cached(io_tree, page_start, page_end,
7518 &cached_state, GFP_NOFS);
e6dcd2dc 7519 unlock_page(page);
eb84ae03 7520 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7521 btrfs_put_ordered_extent(ordered);
7522 goto again;
7523 }
7524
fbf19087
JB
7525 /*
7526 * XXX - page_mkwrite gets called every time the page is dirtied, even
7527 * if it was already dirty, so for space accounting reasons we need to
7528 * clear any delalloc bits for the range we are fixing to save. There
7529 * is probably a better way to do this, but for now keep consistent with
7530 * prepare_pages in the normal write path.
7531 */
2ac55d41 7532 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7533 EXTENT_DIRTY | EXTENT_DELALLOC |
7534 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7535 0, 0, &cached_state, GFP_NOFS);
fbf19087 7536
2ac55d41
JB
7537 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7538 &cached_state);
9ed74f2d 7539 if (ret) {
2ac55d41
JB
7540 unlock_extent_cached(io_tree, page_start, page_end,
7541 &cached_state, GFP_NOFS);
9ed74f2d
JB
7542 ret = VM_FAULT_SIGBUS;
7543 goto out_unlock;
7544 }
e6dcd2dc 7545 ret = 0;
9ebefb18
CM
7546
7547 /* page is wholly or partially inside EOF */
a52d9a80 7548 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7549 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7550 else
e6dcd2dc 7551 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7552
e6dcd2dc
CM
7553 if (zero_start != PAGE_CACHE_SIZE) {
7554 kaddr = kmap(page);
7555 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7556 flush_dcache_page(page);
7557 kunmap(page);
7558 }
247e743c 7559 ClearPageChecked(page);
e6dcd2dc 7560 set_page_dirty(page);
50a9b214 7561 SetPageUptodate(page);
5a3f23d5 7562
257c62e1
CM
7563 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7564 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7565 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7566
2ac55d41 7567 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7568
7569out_unlock:
b2b5ef5c
JK
7570 if (!ret) {
7571 sb_end_pagefault(inode->i_sb);
50a9b214 7572 return VM_FAULT_LOCKED;
b2b5ef5c 7573 }
9ebefb18 7574 unlock_page(page);
1832a6d5 7575out:
ec39e180 7576 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7577out_noreserve:
b2b5ef5c 7578 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7579 return ret;
7580}
7581
a41ad394 7582static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7583{
7584 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7585 struct btrfs_block_rsv *rsv;
a71754fc 7586 int ret = 0;
3893e33b 7587 int err = 0;
39279cc3 7588 struct btrfs_trans_handle *trans;
dbe674a9 7589 u64 mask = root->sectorsize - 1;
07127184 7590 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7591
4a096752 7592 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 7593 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 7594
fcb80c2a
JB
7595 /*
7596 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7597 * 3 things going on here
7598 *
7599 * 1) We need to reserve space for our orphan item and the space to
7600 * delete our orphan item. Lord knows we don't want to have a dangling
7601 * orphan item because we didn't reserve space to remove it.
7602 *
7603 * 2) We need to reserve space to update our inode.
7604 *
7605 * 3) We need to have something to cache all the space that is going to
7606 * be free'd up by the truncate operation, but also have some slack
7607 * space reserved in case it uses space during the truncate (thank you
7608 * very much snapshotting).
7609 *
7610 * And we need these to all be seperate. The fact is we can use alot of
7611 * space doing the truncate, and we have no earthly idea how much space
7612 * we will use, so we need the truncate reservation to be seperate so it
7613 * doesn't end up using space reserved for updating the inode or
7614 * removing the orphan item. We also need to be able to stop the
7615 * transaction and start a new one, which means we need to be able to
7616 * update the inode several times, and we have no idea of knowing how
7617 * many times that will be, so we can't just reserve 1 item for the
7618 * entirety of the opration, so that has to be done seperately as well.
7619 * Then there is the orphan item, which does indeed need to be held on
7620 * to for the whole operation, and we need nobody to touch this reserved
7621 * space except the orphan code.
7622 *
7623 * So that leaves us with
7624 *
7625 * 1) root->orphan_block_rsv - for the orphan deletion.
7626 * 2) rsv - for the truncate reservation, which we will steal from the
7627 * transaction reservation.
7628 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7629 * updating the inode.
7630 */
66d8f3dd 7631 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7632 if (!rsv)
7633 return -ENOMEM;
4a338542 7634 rsv->size = min_size;
ca7e70f5 7635 rsv->failfast = 1;
f0cd846e 7636
907cbceb 7637 /*
07127184 7638 * 1 for the truncate slack space
907cbceb
JB
7639 * 1 for updating the inode.
7640 */
f3fe820c 7641 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7642 if (IS_ERR(trans)) {
7643 err = PTR_ERR(trans);
7644 goto out;
7645 }
f0cd846e 7646
907cbceb
JB
7647 /* Migrate the slack space for the truncate to our reserve */
7648 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7649 min_size);
fcb80c2a 7650 BUG_ON(ret);
f0cd846e 7651
5a3f23d5
CM
7652 /*
7653 * setattr is responsible for setting the ordered_data_close flag,
7654 * but that is only tested during the last file release. That
7655 * could happen well after the next commit, leaving a great big
7656 * window where new writes may get lost if someone chooses to write
7657 * to this file after truncating to zero
7658 *
7659 * The inode doesn't have any dirty data here, and so if we commit
7660 * this is a noop. If someone immediately starts writing to the inode
7661 * it is very likely we'll catch some of their writes in this
7662 * transaction, and the commit will find this file on the ordered
7663 * data list with good things to send down.
7664 *
7665 * This is a best effort solution, there is still a window where
7666 * using truncate to replace the contents of the file will
7667 * end up with a zero length file after a crash.
7668 */
72ac3c0d
JB
7669 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7670 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7671 btrfs_add_ordered_operation(trans, root, inode);
7672
5dc562c5
JB
7673 /*
7674 * So if we truncate and then write and fsync we normally would just
7675 * write the extents that changed, which is a problem if we need to
7676 * first truncate that entire inode. So set this flag so we write out
7677 * all of the extents in the inode to the sync log so we're completely
7678 * safe.
7679 */
7680 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7681 trans->block_rsv = rsv;
907cbceb 7682
8082510e
YZ
7683 while (1) {
7684 ret = btrfs_truncate_inode_items(trans, root, inode,
7685 inode->i_size,
7686 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7687 if (ret != -ENOSPC) {
3893e33b 7688 err = ret;
8082510e 7689 break;
3893e33b 7690 }
39279cc3 7691
fcb80c2a 7692 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7693 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7694 if (ret) {
7695 err = ret;
7696 break;
7697 }
ca7e70f5 7698
8082510e 7699 btrfs_end_transaction(trans, root);
b53d3f5d 7700 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7701
7702 trans = btrfs_start_transaction(root, 2);
7703 if (IS_ERR(trans)) {
7704 ret = err = PTR_ERR(trans);
7705 trans = NULL;
7706 break;
7707 }
7708
7709 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7710 rsv, min_size);
7711 BUG_ON(ret); /* shouldn't happen */
7712 trans->block_rsv = rsv;
8082510e
YZ
7713 }
7714
7715 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7716 trans->block_rsv = root->orphan_block_rsv;
8082510e 7717 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7718 if (ret)
7719 err = ret;
8082510e
YZ
7720 }
7721
917c16b2
CM
7722 if (trans) {
7723 trans->block_rsv = &root->fs_info->trans_block_rsv;
7724 ret = btrfs_update_inode(trans, root, inode);
7725 if (ret && !err)
7726 err = ret;
7b128766 7727
7ad85bb7 7728 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7729 btrfs_btree_balance_dirty(root);
917c16b2 7730 }
fcb80c2a
JB
7731
7732out:
7733 btrfs_free_block_rsv(root, rsv);
7734
3893e33b
JB
7735 if (ret && !err)
7736 err = ret;
a41ad394 7737
3893e33b 7738 return err;
39279cc3
CM
7739}
7740
d352ac68
CM
7741/*
7742 * create a new subvolume directory/inode (helper for the ioctl).
7743 */
d2fb3437 7744int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7745 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7746{
39279cc3 7747 struct inode *inode;
76dda93c 7748 int err;
00e4e6b3 7749 u64 index = 0;
39279cc3 7750
12fc9d09
FA
7751 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7752 new_dirid, new_dirid,
7753 S_IFDIR | (~current_umask() & S_IRWXUGO),
7754 &index);
54aa1f4d 7755 if (IS_ERR(inode))
f46b5a66 7756 return PTR_ERR(inode);
39279cc3
CM
7757 inode->i_op = &btrfs_dir_inode_operations;
7758 inode->i_fop = &btrfs_dir_file_operations;
7759
bfe86848 7760 set_nlink(inode, 1);
dbe674a9 7761 btrfs_i_size_write(inode, 0);
3b96362c 7762
76dda93c 7763 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7764
76dda93c 7765 iput(inode);
ce598979 7766 return err;
39279cc3
CM
7767}
7768
39279cc3
CM
7769struct inode *btrfs_alloc_inode(struct super_block *sb)
7770{
7771 struct btrfs_inode *ei;
2ead6ae7 7772 struct inode *inode;
39279cc3
CM
7773
7774 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7775 if (!ei)
7776 return NULL;
2ead6ae7
YZ
7777
7778 ei->root = NULL;
2ead6ae7 7779 ei->generation = 0;
15ee9bc7 7780 ei->last_trans = 0;
257c62e1 7781 ei->last_sub_trans = 0;
e02119d5 7782 ei->logged_trans = 0;
2ead6ae7 7783 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7784 ei->disk_i_size = 0;
7785 ei->flags = 0;
7709cde3 7786 ei->csum_bytes = 0;
2ead6ae7
YZ
7787 ei->index_cnt = (u64)-1;
7788 ei->last_unlink_trans = 0;
46d8bc34 7789 ei->last_log_commit = 0;
2ead6ae7 7790
9e0baf60
JB
7791 spin_lock_init(&ei->lock);
7792 ei->outstanding_extents = 0;
7793 ei->reserved_extents = 0;
2ead6ae7 7794
72ac3c0d 7795 ei->runtime_flags = 0;
261507a0 7796 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7797
16cdcec7
MX
7798 ei->delayed_node = NULL;
7799
2ead6ae7 7800 inode = &ei->vfs_inode;
a8067e02 7801 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7802 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7803 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7804 ei->io_tree.track_uptodate = 1;
7805 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7806 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7807 mutex_init(&ei->log_mutex);
f248679e 7808 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7809 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7810 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7811 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7812 RB_CLEAR_NODE(&ei->rb_node);
7813
7814 return inode;
39279cc3
CM
7815}
7816
fa0d7e3d
NP
7817static void btrfs_i_callback(struct rcu_head *head)
7818{
7819 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7820 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7821}
7822
39279cc3
CM
7823void btrfs_destroy_inode(struct inode *inode)
7824{
e6dcd2dc 7825 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7826 struct btrfs_root *root = BTRFS_I(inode)->root;
7827
b3d9b7a3 7828 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7829 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7830 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7831 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7832 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7833 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7834
a6dbd429
JB
7835 /*
7836 * This can happen where we create an inode, but somebody else also
7837 * created the same inode and we need to destroy the one we already
7838 * created.
7839 */
7840 if (!root)
7841 goto free;
7842
5a3f23d5
CM
7843 /*
7844 * Make sure we're properly removed from the ordered operation
7845 * lists.
7846 */
7847 smp_mb();
7848 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 7849 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 7850 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 7851 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
7852 }
7853
8a35d95f
JB
7854 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7855 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb
SK
7856 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7857 (unsigned long long)btrfs_ino(inode));
8a35d95f 7858 atomic_dec(&root->orphan_inodes);
7b128766 7859 }
7b128766 7860
d397712b 7861 while (1) {
e6dcd2dc
CM
7862 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7863 if (!ordered)
7864 break;
7865 else {
c2cf52eb
SK
7866 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7867 (unsigned long long)ordered->file_offset,
7868 (unsigned long long)ordered->len);
e6dcd2dc
CM
7869 btrfs_remove_ordered_extent(inode, ordered);
7870 btrfs_put_ordered_extent(ordered);
7871 btrfs_put_ordered_extent(ordered);
7872 }
7873 }
5d4f98a2 7874 inode_tree_del(inode);
5b21f2ed 7875 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7876free:
fa0d7e3d 7877 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7878}
7879
45321ac5 7880int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7881{
7882 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7883
6379ef9f
NA
7884 if (root == NULL)
7885 return 1;
7886
fa6ac876 7887 /* the snap/subvol tree is on deleting */
0af3d00b 7888 if (btrfs_root_refs(&root->root_item) == 0 &&
fa6ac876 7889 root != root->fs_info->tree_root)
45321ac5 7890 return 1;
76dda93c 7891 else
45321ac5 7892 return generic_drop_inode(inode);
76dda93c
YZ
7893}
7894
0ee0fda0 7895static void init_once(void *foo)
39279cc3
CM
7896{
7897 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7898
7899 inode_init_once(&ei->vfs_inode);
7900}
7901
7902void btrfs_destroy_cachep(void)
7903{
8c0a8537
KS
7904 /*
7905 * Make sure all delayed rcu free inodes are flushed before we
7906 * destroy cache.
7907 */
7908 rcu_barrier();
39279cc3
CM
7909 if (btrfs_inode_cachep)
7910 kmem_cache_destroy(btrfs_inode_cachep);
7911 if (btrfs_trans_handle_cachep)
7912 kmem_cache_destroy(btrfs_trans_handle_cachep);
7913 if (btrfs_transaction_cachep)
7914 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7915 if (btrfs_path_cachep)
7916 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7917 if (btrfs_free_space_cachep)
7918 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7919 if (btrfs_delalloc_work_cachep)
7920 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7921}
7922
7923int btrfs_init_cachep(void)
7924{
837e1972 7925 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7926 sizeof(struct btrfs_inode), 0,
7927 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7928 if (!btrfs_inode_cachep)
7929 goto fail;
9601e3f6 7930
837e1972 7931 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7932 sizeof(struct btrfs_trans_handle), 0,
7933 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7934 if (!btrfs_trans_handle_cachep)
7935 goto fail;
9601e3f6 7936
837e1972 7937 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7938 sizeof(struct btrfs_transaction), 0,
7939 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7940 if (!btrfs_transaction_cachep)
7941 goto fail;
9601e3f6 7942
837e1972 7943 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7944 sizeof(struct btrfs_path), 0,
7945 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7946 if (!btrfs_path_cachep)
7947 goto fail;
9601e3f6 7948
837e1972 7949 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7950 sizeof(struct btrfs_free_space), 0,
7951 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7952 if (!btrfs_free_space_cachep)
7953 goto fail;
7954
8ccf6f19
MX
7955 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7956 sizeof(struct btrfs_delalloc_work), 0,
7957 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7958 NULL);
7959 if (!btrfs_delalloc_work_cachep)
7960 goto fail;
7961
39279cc3
CM
7962 return 0;
7963fail:
7964 btrfs_destroy_cachep();
7965 return -ENOMEM;
7966}
7967
7968static int btrfs_getattr(struct vfsmount *mnt,
7969 struct dentry *dentry, struct kstat *stat)
7970{
df0af1a5 7971 u64 delalloc_bytes;
39279cc3 7972 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7973 u32 blocksize = inode->i_sb->s_blocksize;
7974
39279cc3 7975 generic_fillattr(inode, stat);
0ee5dc67 7976 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7977 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
7978
7979 spin_lock(&BTRFS_I(inode)->lock);
7980 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7981 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 7982 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 7983 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7984 return 0;
7985}
7986
d397712b
CM
7987static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7988 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7989{
7990 struct btrfs_trans_handle *trans;
7991 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7992 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7993 struct inode *new_inode = new_dentry->d_inode;
7994 struct inode *old_inode = old_dentry->d_inode;
7995 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7996 u64 index = 0;
4df27c4d 7997 u64 root_objectid;
39279cc3 7998 int ret;
33345d01 7999 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8000
33345d01 8001 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8002 return -EPERM;
8003
4df27c4d 8004 /* we only allow rename subvolume link between subvolumes */
33345d01 8005 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8006 return -EXDEV;
8007
33345d01
LZ
8008 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8009 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8010 return -ENOTEMPTY;
5f39d397 8011
4df27c4d
YZ
8012 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8013 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8014 return -ENOTEMPTY;
9c52057c
CM
8015
8016
8017 /* check for collisions, even if the name isn't there */
8018 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8019 new_dentry->d_name.name,
8020 new_dentry->d_name.len);
8021
8022 if (ret) {
8023 if (ret == -EEXIST) {
8024 /* we shouldn't get
8025 * eexist without a new_inode */
8026 if (!new_inode) {
8027 WARN_ON(1);
8028 return ret;
8029 }
8030 } else {
8031 /* maybe -EOVERFLOW */
8032 return ret;
8033 }
8034 }
8035 ret = 0;
8036
5a3f23d5
CM
8037 /*
8038 * we're using rename to replace one file with another.
8039 * and the replacement file is large. Start IO on it now so
8040 * we don't add too much work to the end of the transaction
8041 */
4baf8c92 8042 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8043 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8044 filemap_flush(old_inode->i_mapping);
8045
76dda93c 8046 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8047 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8048 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8049 /*
8050 * We want to reserve the absolute worst case amount of items. So if
8051 * both inodes are subvols and we need to unlink them then that would
8052 * require 4 item modifications, but if they are both normal inodes it
8053 * would require 5 item modifications, so we'll assume their normal
8054 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8055 * should cover the worst case number of items we'll modify.
8056 */
6e137ed3 8057 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8058 if (IS_ERR(trans)) {
8059 ret = PTR_ERR(trans);
8060 goto out_notrans;
8061 }
76dda93c 8062
4df27c4d
YZ
8063 if (dest != root)
8064 btrfs_record_root_in_trans(trans, dest);
5f39d397 8065
a5719521
YZ
8066 ret = btrfs_set_inode_index(new_dir, &index);
8067 if (ret)
8068 goto out_fail;
5a3f23d5 8069
33345d01 8070 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8071 /* force full log commit if subvolume involved. */
8072 root->fs_info->last_trans_log_full_commit = trans->transid;
8073 } else {
a5719521
YZ
8074 ret = btrfs_insert_inode_ref(trans, dest,
8075 new_dentry->d_name.name,
8076 new_dentry->d_name.len,
33345d01
LZ
8077 old_ino,
8078 btrfs_ino(new_dir), index);
a5719521
YZ
8079 if (ret)
8080 goto out_fail;
4df27c4d
YZ
8081 /*
8082 * this is an ugly little race, but the rename is required
8083 * to make sure that if we crash, the inode is either at the
8084 * old name or the new one. pinning the log transaction lets
8085 * us make sure we don't allow a log commit to come in after
8086 * we unlink the name but before we add the new name back in.
8087 */
8088 btrfs_pin_log_trans(root);
8089 }
5a3f23d5
CM
8090 /*
8091 * make sure the inode gets flushed if it is replacing
8092 * something.
8093 */
33345d01 8094 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8095 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8096
0c4d2d95
JB
8097 inode_inc_iversion(old_dir);
8098 inode_inc_iversion(new_dir);
8099 inode_inc_iversion(old_inode);
39279cc3
CM
8100 old_dir->i_ctime = old_dir->i_mtime = ctime;
8101 new_dir->i_ctime = new_dir->i_mtime = ctime;
8102 old_inode->i_ctime = ctime;
5f39d397 8103
12fcfd22
CM
8104 if (old_dentry->d_parent != new_dentry->d_parent)
8105 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8106
33345d01 8107 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8108 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8109 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8110 old_dentry->d_name.name,
8111 old_dentry->d_name.len);
8112 } else {
92986796
AV
8113 ret = __btrfs_unlink_inode(trans, root, old_dir,
8114 old_dentry->d_inode,
8115 old_dentry->d_name.name,
8116 old_dentry->d_name.len);
8117 if (!ret)
8118 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8119 }
79787eaa
JM
8120 if (ret) {
8121 btrfs_abort_transaction(trans, root, ret);
8122 goto out_fail;
8123 }
39279cc3
CM
8124
8125 if (new_inode) {
0c4d2d95 8126 inode_inc_iversion(new_inode);
39279cc3 8127 new_inode->i_ctime = CURRENT_TIME;
33345d01 8128 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8129 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8130 root_objectid = BTRFS_I(new_inode)->location.objectid;
8131 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8132 root_objectid,
8133 new_dentry->d_name.name,
8134 new_dentry->d_name.len);
8135 BUG_ON(new_inode->i_nlink == 0);
8136 } else {
8137 ret = btrfs_unlink_inode(trans, dest, new_dir,
8138 new_dentry->d_inode,
8139 new_dentry->d_name.name,
8140 new_dentry->d_name.len);
8141 }
79787eaa 8142 if (!ret && new_inode->i_nlink == 0) {
e02119d5 8143 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 8144 BUG_ON(ret);
7b128766 8145 }
79787eaa
JM
8146 if (ret) {
8147 btrfs_abort_transaction(trans, root, ret);
8148 goto out_fail;
8149 }
39279cc3 8150 }
aec7477b 8151
4df27c4d
YZ
8152 ret = btrfs_add_link(trans, new_dir, old_inode,
8153 new_dentry->d_name.name,
a5719521 8154 new_dentry->d_name.len, 0, index);
79787eaa
JM
8155 if (ret) {
8156 btrfs_abort_transaction(trans, root, ret);
8157 goto out_fail;
8158 }
39279cc3 8159
33345d01 8160 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8161 struct dentry *parent = new_dentry->d_parent;
6a912213 8162 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8163 btrfs_end_log_trans(root);
8164 }
39279cc3 8165out_fail:
7ad85bb7 8166 btrfs_end_transaction(trans, root);
b44c59a8 8167out_notrans:
33345d01 8168 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8169 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8170
39279cc3
CM
8171 return ret;
8172}
8173
8ccf6f19
MX
8174static void btrfs_run_delalloc_work(struct btrfs_work *work)
8175{
8176 struct btrfs_delalloc_work *delalloc_work;
8177
8178 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8179 work);
8180 if (delalloc_work->wait)
8181 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8182 else
8183 filemap_flush(delalloc_work->inode->i_mapping);
8184
8185 if (delalloc_work->delay_iput)
8186 btrfs_add_delayed_iput(delalloc_work->inode);
8187 else
8188 iput(delalloc_work->inode);
8189 complete(&delalloc_work->completion);
8190}
8191
8192struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8193 int wait, int delay_iput)
8194{
8195 struct btrfs_delalloc_work *work;
8196
8197 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8198 if (!work)
8199 return NULL;
8200
8201 init_completion(&work->completion);
8202 INIT_LIST_HEAD(&work->list);
8203 work->inode = inode;
8204 work->wait = wait;
8205 work->delay_iput = delay_iput;
8206 work->work.func = btrfs_run_delalloc_work;
8207
8208 return work;
8209}
8210
8211void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8212{
8213 wait_for_completion(&work->completion);
8214 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8215}
8216
d352ac68
CM
8217/*
8218 * some fairly slow code that needs optimization. This walks the list
8219 * of all the inodes with pending delalloc and forces them to disk.
8220 */
eb73c1b7 8221static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8222{
ea8c2819 8223 struct btrfs_inode *binode;
5b21f2ed 8224 struct inode *inode;
8ccf6f19
MX
8225 struct btrfs_delalloc_work *work, *next;
8226 struct list_head works;
1eafa6c7 8227 struct list_head splice;
8ccf6f19 8228 int ret = 0;
ea8c2819 8229
8ccf6f19 8230 INIT_LIST_HEAD(&works);
1eafa6c7 8231 INIT_LIST_HEAD(&splice);
63607cc8 8232
eb73c1b7
MX
8233 spin_lock(&root->delalloc_lock);
8234 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8235 while (!list_empty(&splice)) {
8236 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8237 delalloc_inodes);
1eafa6c7 8238
eb73c1b7
MX
8239 list_move_tail(&binode->delalloc_inodes,
8240 &root->delalloc_inodes);
5b21f2ed 8241 inode = igrab(&binode->vfs_inode);
df0af1a5 8242 if (!inode) {
eb73c1b7 8243 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8244 continue;
df0af1a5 8245 }
eb73c1b7 8246 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8247
8248 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8249 if (unlikely(!work)) {
8250 ret = -ENOMEM;
8251 goto out;
5b21f2ed 8252 }
1eafa6c7
MX
8253 list_add_tail(&work->list, &works);
8254 btrfs_queue_worker(&root->fs_info->flush_workers,
8255 &work->work);
8256
5b21f2ed 8257 cond_resched();
eb73c1b7 8258 spin_lock(&root->delalloc_lock);
ea8c2819 8259 }
eb73c1b7 8260 spin_unlock(&root->delalloc_lock);
8c8bee1d 8261
1eafa6c7
MX
8262 list_for_each_entry_safe(work, next, &works, list) {
8263 list_del_init(&work->list);
8264 btrfs_wait_and_free_delalloc_work(work);
8265 }
eb73c1b7
MX
8266 return 0;
8267out:
8268 list_for_each_entry_safe(work, next, &works, list) {
8269 list_del_init(&work->list);
8270 btrfs_wait_and_free_delalloc_work(work);
8271 }
8272
8273 if (!list_empty_careful(&splice)) {
8274 spin_lock(&root->delalloc_lock);
8275 list_splice_tail(&splice, &root->delalloc_inodes);
8276 spin_unlock(&root->delalloc_lock);
8277 }
8278 return ret;
8279}
1eafa6c7 8280
eb73c1b7
MX
8281int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8282{
8283 int ret;
1eafa6c7 8284
eb73c1b7
MX
8285 if (root->fs_info->sb->s_flags & MS_RDONLY)
8286 return -EROFS;
8287
8288 ret = __start_delalloc_inodes(root, delay_iput);
8289 /*
8290 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8291 * we have to make sure the IO is actually started and that
8292 * ordered extents get created before we return
8293 */
8294 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8295 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8296 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8297 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8298 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8299 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8300 }
8301 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8302 return ret;
8303}
8304
8305int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8306 int delay_iput)
8307{
8308 struct btrfs_root *root;
8309 struct list_head splice;
8310 int ret;
8311
8312 if (fs_info->sb->s_flags & MS_RDONLY)
8313 return -EROFS;
8314
8315 INIT_LIST_HEAD(&splice);
8316
8317 spin_lock(&fs_info->delalloc_root_lock);
8318 list_splice_init(&fs_info->delalloc_roots, &splice);
8319 while (!list_empty(&splice)) {
8320 root = list_first_entry(&splice, struct btrfs_root,
8321 delalloc_root);
8322 root = btrfs_grab_fs_root(root);
8323 BUG_ON(!root);
8324 list_move_tail(&root->delalloc_root,
8325 &fs_info->delalloc_roots);
8326 spin_unlock(&fs_info->delalloc_root_lock);
8327
8328 ret = __start_delalloc_inodes(root, delay_iput);
8329 btrfs_put_fs_root(root);
8330 if (ret)
8331 goto out;
8332
8333 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8334 }
eb73c1b7 8335 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8336
eb73c1b7
MX
8337 atomic_inc(&fs_info->async_submit_draining);
8338 while (atomic_read(&fs_info->nr_async_submits) ||
8339 atomic_read(&fs_info->async_delalloc_pages)) {
8340 wait_event(fs_info->async_submit_wait,
8341 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8342 atomic_read(&fs_info->async_delalloc_pages) == 0));
8343 }
8344 atomic_dec(&fs_info->async_submit_draining);
8345 return 0;
8346out:
1eafa6c7 8347 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8348 spin_lock(&fs_info->delalloc_root_lock);
8349 list_splice_tail(&splice, &fs_info->delalloc_roots);
8350 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8351 }
8ccf6f19 8352 return ret;
ea8c2819
CM
8353}
8354
39279cc3
CM
8355static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8356 const char *symname)
8357{
8358 struct btrfs_trans_handle *trans;
8359 struct btrfs_root *root = BTRFS_I(dir)->root;
8360 struct btrfs_path *path;
8361 struct btrfs_key key;
1832a6d5 8362 struct inode *inode = NULL;
39279cc3
CM
8363 int err;
8364 int drop_inode = 0;
8365 u64 objectid;
00e4e6b3 8366 u64 index = 0 ;
39279cc3
CM
8367 int name_len;
8368 int datasize;
5f39d397 8369 unsigned long ptr;
39279cc3 8370 struct btrfs_file_extent_item *ei;
5f39d397 8371 struct extent_buffer *leaf;
39279cc3
CM
8372
8373 name_len = strlen(symname) + 1;
8374 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8375 return -ENAMETOOLONG;
1832a6d5 8376
9ed74f2d
JB
8377 /*
8378 * 2 items for inode item and ref
8379 * 2 items for dir items
8380 * 1 item for xattr if selinux is on
8381 */
a22285a6
YZ
8382 trans = btrfs_start_transaction(root, 5);
8383 if (IS_ERR(trans))
8384 return PTR_ERR(trans);
1832a6d5 8385
581bb050
LZ
8386 err = btrfs_find_free_ino(root, &objectid);
8387 if (err)
8388 goto out_unlock;
8389
aec7477b 8390 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8391 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8392 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8393 if (IS_ERR(inode)) {
8394 err = PTR_ERR(inode);
39279cc3 8395 goto out_unlock;
7cf96da3 8396 }
39279cc3 8397
2a7dba39 8398 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8399 if (err) {
8400 drop_inode = 1;
8401 goto out_unlock;
8402 }
8403
ad19db71
CS
8404 /*
8405 * If the active LSM wants to access the inode during
8406 * d_instantiate it needs these. Smack checks to see
8407 * if the filesystem supports xattrs by looking at the
8408 * ops vector.
8409 */
8410 inode->i_fop = &btrfs_file_operations;
8411 inode->i_op = &btrfs_file_inode_operations;
8412
a1b075d2 8413 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8414 if (err)
8415 drop_inode = 1;
8416 else {
8417 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8418 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8419 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8420 }
39279cc3
CM
8421 if (drop_inode)
8422 goto out_unlock;
8423
8424 path = btrfs_alloc_path();
d8926bb3
MF
8425 if (!path) {
8426 err = -ENOMEM;
8427 drop_inode = 1;
8428 goto out_unlock;
8429 }
33345d01 8430 key.objectid = btrfs_ino(inode);
39279cc3 8431 key.offset = 0;
39279cc3
CM
8432 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8433 datasize = btrfs_file_extent_calc_inline_size(name_len);
8434 err = btrfs_insert_empty_item(trans, root, path, &key,
8435 datasize);
54aa1f4d
CM
8436 if (err) {
8437 drop_inode = 1;
b0839166 8438 btrfs_free_path(path);
54aa1f4d
CM
8439 goto out_unlock;
8440 }
5f39d397
CM
8441 leaf = path->nodes[0];
8442 ei = btrfs_item_ptr(leaf, path->slots[0],
8443 struct btrfs_file_extent_item);
8444 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8445 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8446 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8447 btrfs_set_file_extent_encryption(leaf, ei, 0);
8448 btrfs_set_file_extent_compression(leaf, ei, 0);
8449 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8450 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8451
39279cc3 8452 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8453 write_extent_buffer(leaf, symname, ptr, name_len);
8454 btrfs_mark_buffer_dirty(leaf);
39279cc3 8455 btrfs_free_path(path);
5f39d397 8456
39279cc3
CM
8457 inode->i_op = &btrfs_symlink_inode_operations;
8458 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8459 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8460 inode_set_bytes(inode, name_len);
dbe674a9 8461 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
8462 err = btrfs_update_inode(trans, root, inode);
8463 if (err)
8464 drop_inode = 1;
39279cc3
CM
8465
8466out_unlock:
08c422c2
AV
8467 if (!err)
8468 d_instantiate(dentry, inode);
7ad85bb7 8469 btrfs_end_transaction(trans, root);
39279cc3
CM
8470 if (drop_inode) {
8471 inode_dec_link_count(inode);
8472 iput(inode);
8473 }
b53d3f5d 8474 btrfs_btree_balance_dirty(root);
39279cc3
CM
8475 return err;
8476}
16432985 8477
0af3d00b
JB
8478static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8479 u64 start, u64 num_bytes, u64 min_size,
8480 loff_t actual_len, u64 *alloc_hint,
8481 struct btrfs_trans_handle *trans)
d899e052 8482{
5dc562c5
JB
8483 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8484 struct extent_map *em;
d899e052
YZ
8485 struct btrfs_root *root = BTRFS_I(inode)->root;
8486 struct btrfs_key ins;
d899e052 8487 u64 cur_offset = start;
55a61d1d 8488 u64 i_size;
154ea289 8489 u64 cur_bytes;
d899e052 8490 int ret = 0;
0af3d00b 8491 bool own_trans = true;
d899e052 8492
0af3d00b
JB
8493 if (trans)
8494 own_trans = false;
d899e052 8495 while (num_bytes > 0) {
0af3d00b
JB
8496 if (own_trans) {
8497 trans = btrfs_start_transaction(root, 3);
8498 if (IS_ERR(trans)) {
8499 ret = PTR_ERR(trans);
8500 break;
8501 }
5a303d5d
YZ
8502 }
8503
154ea289
CM
8504 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8505 cur_bytes = max(cur_bytes, min_size);
8506 ret = btrfs_reserve_extent(trans, root, cur_bytes,
24542bf7 8507 min_size, 0, *alloc_hint, &ins, 1);
5a303d5d 8508 if (ret) {
0af3d00b
JB
8509 if (own_trans)
8510 btrfs_end_transaction(trans, root);
a22285a6 8511 break;
d899e052 8512 }
5a303d5d 8513
d899e052
YZ
8514 ret = insert_reserved_file_extent(trans, inode,
8515 cur_offset, ins.objectid,
8516 ins.offset, ins.offset,
920bbbfb 8517 ins.offset, 0, 0, 0,
d899e052 8518 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
8519 if (ret) {
8520 btrfs_abort_transaction(trans, root, ret);
8521 if (own_trans)
8522 btrfs_end_transaction(trans, root);
8523 break;
8524 }
a1ed835e
CM
8525 btrfs_drop_extent_cache(inode, cur_offset,
8526 cur_offset + ins.offset -1, 0);
5a303d5d 8527
5dc562c5
JB
8528 em = alloc_extent_map();
8529 if (!em) {
8530 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8531 &BTRFS_I(inode)->runtime_flags);
8532 goto next;
8533 }
8534
8535 em->start = cur_offset;
8536 em->orig_start = cur_offset;
8537 em->len = ins.offset;
8538 em->block_start = ins.objectid;
8539 em->block_len = ins.offset;
b4939680 8540 em->orig_block_len = ins.offset;
cc95bef6 8541 em->ram_bytes = ins.offset;
5dc562c5
JB
8542 em->bdev = root->fs_info->fs_devices->latest_bdev;
8543 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8544 em->generation = trans->transid;
8545
8546 while (1) {
8547 write_lock(&em_tree->lock);
09a2a8f9 8548 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8549 write_unlock(&em_tree->lock);
8550 if (ret != -EEXIST)
8551 break;
8552 btrfs_drop_extent_cache(inode, cur_offset,
8553 cur_offset + ins.offset - 1,
8554 0);
8555 }
8556 free_extent_map(em);
8557next:
d899e052
YZ
8558 num_bytes -= ins.offset;
8559 cur_offset += ins.offset;
efa56464 8560 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8561
0c4d2d95 8562 inode_inc_iversion(inode);
d899e052 8563 inode->i_ctime = CURRENT_TIME;
6cbff00f 8564 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8565 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8566 (actual_len > inode->i_size) &&
8567 (cur_offset > inode->i_size)) {
d1ea6a61 8568 if (cur_offset > actual_len)
55a61d1d 8569 i_size = actual_len;
d1ea6a61 8570 else
55a61d1d
JB
8571 i_size = cur_offset;
8572 i_size_write(inode, i_size);
8573 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8574 }
8575
d899e052 8576 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8577
8578 if (ret) {
8579 btrfs_abort_transaction(trans, root, ret);
8580 if (own_trans)
8581 btrfs_end_transaction(trans, root);
8582 break;
8583 }
d899e052 8584
0af3d00b
JB
8585 if (own_trans)
8586 btrfs_end_transaction(trans, root);
5a303d5d 8587 }
d899e052
YZ
8588 return ret;
8589}
8590
0af3d00b
JB
8591int btrfs_prealloc_file_range(struct inode *inode, int mode,
8592 u64 start, u64 num_bytes, u64 min_size,
8593 loff_t actual_len, u64 *alloc_hint)
8594{
8595 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8596 min_size, actual_len, alloc_hint,
8597 NULL);
8598}
8599
8600int btrfs_prealloc_file_range_trans(struct inode *inode,
8601 struct btrfs_trans_handle *trans, int mode,
8602 u64 start, u64 num_bytes, u64 min_size,
8603 loff_t actual_len, u64 *alloc_hint)
8604{
8605 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8606 min_size, actual_len, alloc_hint, trans);
8607}
8608
e6dcd2dc
CM
8609static int btrfs_set_page_dirty(struct page *page)
8610{
e6dcd2dc
CM
8611 return __set_page_dirty_nobuffers(page);
8612}
8613
10556cb2 8614static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8615{
b83cc969 8616 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8617 umode_t mode = inode->i_mode;
b83cc969 8618
cb6db4e5
JM
8619 if (mask & MAY_WRITE &&
8620 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8621 if (btrfs_root_readonly(root))
8622 return -EROFS;
8623 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8624 return -EACCES;
8625 }
2830ba7f 8626 return generic_permission(inode, mask);
fdebe2bd 8627}
39279cc3 8628
6e1d5dcc 8629static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8630 .getattr = btrfs_getattr,
39279cc3
CM
8631 .lookup = btrfs_lookup,
8632 .create = btrfs_create,
8633 .unlink = btrfs_unlink,
8634 .link = btrfs_link,
8635 .mkdir = btrfs_mkdir,
8636 .rmdir = btrfs_rmdir,
8637 .rename = btrfs_rename,
8638 .symlink = btrfs_symlink,
8639 .setattr = btrfs_setattr,
618e21d5 8640 .mknod = btrfs_mknod,
95819c05
CH
8641 .setxattr = btrfs_setxattr,
8642 .getxattr = btrfs_getxattr,
5103e947 8643 .listxattr = btrfs_listxattr,
95819c05 8644 .removexattr = btrfs_removexattr,
fdebe2bd 8645 .permission = btrfs_permission,
4e34e719 8646 .get_acl = btrfs_get_acl,
39279cc3 8647};
6e1d5dcc 8648static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8649 .lookup = btrfs_lookup,
fdebe2bd 8650 .permission = btrfs_permission,
4e34e719 8651 .get_acl = btrfs_get_acl,
39279cc3 8652};
76dda93c 8653
828c0950 8654static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8655 .llseek = generic_file_llseek,
8656 .read = generic_read_dir,
9cdda8d3 8657 .iterate = btrfs_real_readdir,
34287aa3 8658 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8659#ifdef CONFIG_COMPAT
34287aa3 8660 .compat_ioctl = btrfs_ioctl,
39279cc3 8661#endif
6bf13c0c 8662 .release = btrfs_release_file,
e02119d5 8663 .fsync = btrfs_sync_file,
39279cc3
CM
8664};
8665
d1310b2e 8666static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8667 .fill_delalloc = run_delalloc_range,
065631f6 8668 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8669 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8670 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8671 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8672 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8673 .set_bit_hook = btrfs_set_bit_hook,
8674 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8675 .merge_extent_hook = btrfs_merge_extent_hook,
8676 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8677};
8678
35054394
CM
8679/*
8680 * btrfs doesn't support the bmap operation because swapfiles
8681 * use bmap to make a mapping of extents in the file. They assume
8682 * these extents won't change over the life of the file and they
8683 * use the bmap result to do IO directly to the drive.
8684 *
8685 * the btrfs bmap call would return logical addresses that aren't
8686 * suitable for IO and they also will change frequently as COW
8687 * operations happen. So, swapfile + btrfs == corruption.
8688 *
8689 * For now we're avoiding this by dropping bmap.
8690 */
7f09410b 8691static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8692 .readpage = btrfs_readpage,
8693 .writepage = btrfs_writepage,
b293f02e 8694 .writepages = btrfs_writepages,
3ab2fb5a 8695 .readpages = btrfs_readpages,
16432985 8696 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8697 .invalidatepage = btrfs_invalidatepage,
8698 .releasepage = btrfs_releasepage,
e6dcd2dc 8699 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8700 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8701};
8702
7f09410b 8703static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8704 .readpage = btrfs_readpage,
8705 .writepage = btrfs_writepage,
2bf5a725
CM
8706 .invalidatepage = btrfs_invalidatepage,
8707 .releasepage = btrfs_releasepage,
39279cc3
CM
8708};
8709
6e1d5dcc 8710static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8711 .getattr = btrfs_getattr,
8712 .setattr = btrfs_setattr,
95819c05
CH
8713 .setxattr = btrfs_setxattr,
8714 .getxattr = btrfs_getxattr,
5103e947 8715 .listxattr = btrfs_listxattr,
95819c05 8716 .removexattr = btrfs_removexattr,
fdebe2bd 8717 .permission = btrfs_permission,
1506fcc8 8718 .fiemap = btrfs_fiemap,
4e34e719 8719 .get_acl = btrfs_get_acl,
e41f941a 8720 .update_time = btrfs_update_time,
39279cc3 8721};
6e1d5dcc 8722static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8723 .getattr = btrfs_getattr,
8724 .setattr = btrfs_setattr,
fdebe2bd 8725 .permission = btrfs_permission,
95819c05
CH
8726 .setxattr = btrfs_setxattr,
8727 .getxattr = btrfs_getxattr,
33268eaf 8728 .listxattr = btrfs_listxattr,
95819c05 8729 .removexattr = btrfs_removexattr,
4e34e719 8730 .get_acl = btrfs_get_acl,
e41f941a 8731 .update_time = btrfs_update_time,
618e21d5 8732};
6e1d5dcc 8733static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8734 .readlink = generic_readlink,
8735 .follow_link = page_follow_link_light,
8736 .put_link = page_put_link,
f209561a 8737 .getattr = btrfs_getattr,
22c44fe6 8738 .setattr = btrfs_setattr,
fdebe2bd 8739 .permission = btrfs_permission,
0279b4cd
JO
8740 .setxattr = btrfs_setxattr,
8741 .getxattr = btrfs_getxattr,
8742 .listxattr = btrfs_listxattr,
8743 .removexattr = btrfs_removexattr,
4e34e719 8744 .get_acl = btrfs_get_acl,
e41f941a 8745 .update_time = btrfs_update_time,
39279cc3 8746};
76dda93c 8747
82d339d9 8748const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8749 .d_delete = btrfs_dentry_delete,
b4aff1f8 8750 .d_release = btrfs_dentry_release,
76dda93c 8751};