Btrfs: be less strict on finding next node in clear_extent_bit
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
74struct kmem_cache *btrfs_trans_handle_cachep;
75struct kmem_cache *btrfs_transaction_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
78
79#define S_SHIFT 12
80static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88};
89
a41ad394
JB
90static int btrfs_setsize(struct inode *inode, loff_t newsize);
91static int btrfs_truncate(struct inode *inode);
c8b97818 92static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
93static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
2115133f
CM
97static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
7b128766 99
f34f57a3 100static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
0279b4cd
JO
103{
104 int err;
105
f34f57a3 106 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 107 if (!err)
2a7dba39 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
109 return err;
110}
111
c8b97818
CM
112/*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
d397712b 117static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
fe3f566c 120 int compress_type,
c8b97818
CM
121 struct page **compressed_pages)
122{
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
c8b97818 135
fe3f566c 136 if (compressed_size && compressed_pages)
c8b97818 137 cur_size = compressed_size;
c8b97818 138
d397712b
CM
139 path = btrfs_alloc_path();
140 if (!path)
c8b97818
CM
141 return -ENOMEM;
142
b9473439 143 path->leave_spinning = 1;
c8b97818 144
33345d01 145 key.objectid = btrfs_ino(inode);
c8b97818
CM
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
153 BUG_ON(ret);
154 if (ret) {
155 err = ret;
c8b97818
CM
156 goto fail;
157 }
158 leaf = path->nodes[0];
159 ei = btrfs_item_ptr(leaf, path->slots[0],
160 struct btrfs_file_extent_item);
161 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
162 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
163 btrfs_set_file_extent_encryption(leaf, ei, 0);
164 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
165 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
166 ptr = btrfs_file_extent_inline_start(ei);
167
261507a0 168 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
169 struct page *cpage;
170 int i = 0;
d397712b 171 while (compressed_size > 0) {
c8b97818 172 cpage = compressed_pages[i];
5b050f04 173 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
174 PAGE_CACHE_SIZE);
175
b9473439 176 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 177 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 178 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
179
180 i++;
181 ptr += cur_size;
182 compressed_size -= cur_size;
183 }
184 btrfs_set_file_extent_compression(leaf, ei,
261507a0 185 compress_type);
c8b97818
CM
186 } else {
187 page = find_get_page(inode->i_mapping,
188 start >> PAGE_CACHE_SHIFT);
189 btrfs_set_file_extent_compression(leaf, ei, 0);
190 kaddr = kmap_atomic(page, KM_USER0);
191 offset = start & (PAGE_CACHE_SIZE - 1);
192 write_extent_buffer(leaf, kaddr + offset, ptr, size);
193 kunmap_atomic(kaddr, KM_USER0);
194 page_cache_release(page);
195 }
196 btrfs_mark_buffer_dirty(leaf);
197 btrfs_free_path(path);
198
c2167754
YZ
199 /*
200 * we're an inline extent, so nobody can
201 * extend the file past i_size without locking
202 * a page we already have locked.
203 *
204 * We must do any isize and inode updates
205 * before we unlock the pages. Otherwise we
206 * could end up racing with unlink.
207 */
c8b97818
CM
208 BTRFS_I(inode)->disk_i_size = inode->i_size;
209 btrfs_update_inode(trans, root, inode);
c2167754 210
c8b97818
CM
211 return 0;
212fail:
213 btrfs_free_path(path);
214 return err;
215}
216
217
218/*
219 * conditionally insert an inline extent into the file. This
220 * does the checks required to make sure the data is small enough
221 * to fit as an inline extent.
222 */
7f366cfe 223static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
224 struct btrfs_root *root,
225 struct inode *inode, u64 start, u64 end,
fe3f566c 226 size_t compressed_size, int compress_type,
c8b97818
CM
227 struct page **compressed_pages)
228{
229 u64 isize = i_size_read(inode);
230 u64 actual_end = min(end + 1, isize);
231 u64 inline_len = actual_end - start;
232 u64 aligned_end = (end + root->sectorsize - 1) &
233 ~((u64)root->sectorsize - 1);
234 u64 hint_byte;
235 u64 data_len = inline_len;
236 int ret;
237
238 if (compressed_size)
239 data_len = compressed_size;
240
241 if (start > 0 ||
70b99e69 242 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
243 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
244 (!compressed_size &&
245 (actual_end & (root->sectorsize - 1)) == 0) ||
246 end + 1 < isize ||
247 data_len > root->fs_info->max_inline) {
248 return 1;
249 }
250
920bbbfb 251 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 252 &hint_byte, 1);
c8b97818
CM
253 BUG_ON(ret);
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
fe3f566c 259 compress_type, compressed_pages);
c8b97818 260 BUG_ON(ret);
0ca1f7ce 261 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 262 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
263 return 0;
264}
265
771ed689
CM
266struct async_extent {
267 u64 start;
268 u64 ram_size;
269 u64 compressed_size;
270 struct page **pages;
271 unsigned long nr_pages;
261507a0 272 int compress_type;
771ed689
CM
273 struct list_head list;
274};
275
276struct async_cow {
277 struct inode *inode;
278 struct btrfs_root *root;
279 struct page *locked_page;
280 u64 start;
281 u64 end;
282 struct list_head extents;
283 struct btrfs_work work;
284};
285
286static noinline int add_async_extent(struct async_cow *cow,
287 u64 start, u64 ram_size,
288 u64 compressed_size,
289 struct page **pages,
261507a0
LZ
290 unsigned long nr_pages,
291 int compress_type)
771ed689
CM
292{
293 struct async_extent *async_extent;
294
295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 296 BUG_ON(!async_extent);
771ed689
CM
297 async_extent->start = start;
298 async_extent->ram_size = ram_size;
299 async_extent->compressed_size = compressed_size;
300 async_extent->pages = pages;
301 async_extent->nr_pages = nr_pages;
261507a0 302 async_extent->compress_type = compress_type;
771ed689
CM
303 list_add_tail(&async_extent->list, &cow->extents);
304 return 0;
305}
306
d352ac68 307/*
771ed689
CM
308 * we create compressed extents in two phases. The first
309 * phase compresses a range of pages that have already been
310 * locked (both pages and state bits are locked).
c8b97818 311 *
771ed689
CM
312 * This is done inside an ordered work queue, and the compression
313 * is spread across many cpus. The actual IO submission is step
314 * two, and the ordered work queue takes care of making sure that
315 * happens in the same order things were put onto the queue by
316 * writepages and friends.
c8b97818 317 *
771ed689
CM
318 * If this code finds it can't get good compression, it puts an
319 * entry onto the work queue to write the uncompressed bytes. This
320 * makes sure that both compressed inodes and uncompressed inodes
321 * are written in the same order that pdflush sent them down.
d352ac68 322 */
771ed689
CM
323static noinline int compress_file_range(struct inode *inode,
324 struct page *locked_page,
325 u64 start, u64 end,
326 struct async_cow *async_cow,
327 int *num_added)
b888db2b
CM
328{
329 struct btrfs_root *root = BTRFS_I(inode)->root;
330 struct btrfs_trans_handle *trans;
db94535d 331 u64 num_bytes;
db94535d 332 u64 blocksize = root->sectorsize;
c8b97818 333 u64 actual_end;
42dc7bab 334 u64 isize = i_size_read(inode);
e6dcd2dc 335 int ret = 0;
c8b97818
CM
336 struct page **pages = NULL;
337 unsigned long nr_pages;
338 unsigned long nr_pages_ret = 0;
339 unsigned long total_compressed = 0;
340 unsigned long total_in = 0;
341 unsigned long max_compressed = 128 * 1024;
771ed689 342 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
343 int i;
344 int will_compress;
261507a0 345 int compress_type = root->fs_info->compress_type;
b888db2b 346
4cb5300b
CM
347 /* if this is a small write inside eof, kick off a defragbot */
348 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
349 btrfs_add_inode_defrag(NULL, inode);
350
42dc7bab 351 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
352again:
353 will_compress = 0;
354 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
355 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 356
f03d9301
CM
357 /*
358 * we don't want to send crud past the end of i_size through
359 * compression, that's just a waste of CPU time. So, if the
360 * end of the file is before the start of our current
361 * requested range of bytes, we bail out to the uncompressed
362 * cleanup code that can deal with all of this.
363 *
364 * It isn't really the fastest way to fix things, but this is a
365 * very uncommon corner.
366 */
367 if (actual_end <= start)
368 goto cleanup_and_bail_uncompressed;
369
c8b97818
CM
370 total_compressed = actual_end - start;
371
372 /* we want to make sure that amount of ram required to uncompress
373 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
374 * of a compressed extent to 128k. This is a crucial number
375 * because it also controls how easily we can spread reads across
376 * cpus for decompression.
377 *
378 * We also want to make sure the amount of IO required to do
379 * a random read is reasonably small, so we limit the size of
380 * a compressed extent to 128k.
c8b97818
CM
381 */
382 total_compressed = min(total_compressed, max_uncompressed);
db94535d 383 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 384 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
385 total_in = 0;
386 ret = 0;
db94535d 387
771ed689
CM
388 /*
389 * we do compression for mount -o compress and when the
390 * inode has not been flagged as nocompress. This flag can
391 * change at any time if we discover bad compression ratios.
c8b97818 392 */
6cbff00f 393 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 394 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
395 (BTRFS_I(inode)->force_compress) ||
396 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 397 WARN_ON(pages);
cfbc246e 398 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
399 if (!pages) {
400 /* just bail out to the uncompressed code */
401 goto cont;
402 }
c8b97818 403
261507a0
LZ
404 if (BTRFS_I(inode)->force_compress)
405 compress_type = BTRFS_I(inode)->force_compress;
406
407 ret = btrfs_compress_pages(compress_type,
408 inode->i_mapping, start,
409 total_compressed, pages,
410 nr_pages, &nr_pages_ret,
411 &total_in,
412 &total_compressed,
413 max_compressed);
c8b97818
CM
414
415 if (!ret) {
416 unsigned long offset = total_compressed &
417 (PAGE_CACHE_SIZE - 1);
418 struct page *page = pages[nr_pages_ret - 1];
419 char *kaddr;
420
421 /* zero the tail end of the last page, we might be
422 * sending it down to disk
423 */
424 if (offset) {
425 kaddr = kmap_atomic(page, KM_USER0);
426 memset(kaddr + offset, 0,
427 PAGE_CACHE_SIZE - offset);
428 kunmap_atomic(kaddr, KM_USER0);
429 }
430 will_compress = 1;
431 }
432 }
560f7d75 433cont:
c8b97818 434 if (start == 0) {
7a7eaa40 435 trans = btrfs_join_transaction(root);
3612b495 436 BUG_ON(IS_ERR(trans));
0ca1f7ce 437 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 438
c8b97818 439 /* lets try to make an inline extent */
771ed689 440 if (ret || total_in < (actual_end - start)) {
c8b97818 441 /* we didn't compress the entire range, try
771ed689 442 * to make an uncompressed inline extent.
c8b97818
CM
443 */
444 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 445 start, end, 0, 0, NULL);
c8b97818 446 } else {
771ed689 447 /* try making a compressed inline extent */
c8b97818
CM
448 ret = cow_file_range_inline(trans, root, inode,
449 start, end,
fe3f566c
LZ
450 total_compressed,
451 compress_type, pages);
c8b97818
CM
452 }
453 if (ret == 0) {
771ed689
CM
454 /*
455 * inline extent creation worked, we don't need
456 * to create any more async work items. Unlock
457 * and free up our temp pages.
458 */
c8b97818 459 extent_clear_unlock_delalloc(inode,
a791e35e
CM
460 &BTRFS_I(inode)->io_tree,
461 start, end, NULL,
462 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 463 EXTENT_CLEAR_DELALLOC |
a791e35e 464 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
465
466 btrfs_end_transaction(trans, root);
c8b97818
CM
467 goto free_pages_out;
468 }
c2167754 469 btrfs_end_transaction(trans, root);
c8b97818
CM
470 }
471
472 if (will_compress) {
473 /*
474 * we aren't doing an inline extent round the compressed size
475 * up to a block size boundary so the allocator does sane
476 * things
477 */
478 total_compressed = (total_compressed + blocksize - 1) &
479 ~(blocksize - 1);
480
481 /*
482 * one last check to make sure the compression is really a
483 * win, compare the page count read with the blocks on disk
484 */
485 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
486 ~(PAGE_CACHE_SIZE - 1);
487 if (total_compressed >= total_in) {
488 will_compress = 0;
489 } else {
c8b97818
CM
490 num_bytes = total_in;
491 }
492 }
493 if (!will_compress && pages) {
494 /*
495 * the compression code ran but failed to make things smaller,
496 * free any pages it allocated and our page pointer array
497 */
498 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 499 WARN_ON(pages[i]->mapping);
c8b97818
CM
500 page_cache_release(pages[i]);
501 }
502 kfree(pages);
503 pages = NULL;
504 total_compressed = 0;
505 nr_pages_ret = 0;
506
507 /* flag the file so we don't compress in the future */
1e701a32
CM
508 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
509 !(BTRFS_I(inode)->force_compress)) {
a555f810 510 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 511 }
c8b97818 512 }
771ed689
CM
513 if (will_compress) {
514 *num_added += 1;
c8b97818 515
771ed689
CM
516 /* the async work queues will take care of doing actual
517 * allocation on disk for these compressed pages,
518 * and will submit them to the elevator.
519 */
520 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
521 total_compressed, pages, nr_pages_ret,
522 compress_type);
179e29e4 523
24ae6365 524 if (start + num_bytes < end) {
771ed689
CM
525 start += num_bytes;
526 pages = NULL;
527 cond_resched();
528 goto again;
529 }
530 } else {
f03d9301 531cleanup_and_bail_uncompressed:
771ed689
CM
532 /*
533 * No compression, but we still need to write the pages in
534 * the file we've been given so far. redirty the locked
535 * page if it corresponds to our extent and set things up
536 * for the async work queue to run cow_file_range to do
537 * the normal delalloc dance
538 */
539 if (page_offset(locked_page) >= start &&
540 page_offset(locked_page) <= end) {
541 __set_page_dirty_nobuffers(locked_page);
542 /* unlocked later on in the async handlers */
543 }
261507a0
LZ
544 add_async_extent(async_cow, start, end - start + 1,
545 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
546 *num_added += 1;
547 }
3b951516 548
771ed689
CM
549out:
550 return 0;
551
552free_pages_out:
553 for (i = 0; i < nr_pages_ret; i++) {
554 WARN_ON(pages[i]->mapping);
555 page_cache_release(pages[i]);
556 }
d397712b 557 kfree(pages);
771ed689
CM
558
559 goto out;
560}
561
562/*
563 * phase two of compressed writeback. This is the ordered portion
564 * of the code, which only gets called in the order the work was
565 * queued. We walk all the async extents created by compress_file_range
566 * and send them down to the disk.
567 */
568static noinline int submit_compressed_extents(struct inode *inode,
569 struct async_cow *async_cow)
570{
571 struct async_extent *async_extent;
572 u64 alloc_hint = 0;
573 struct btrfs_trans_handle *trans;
574 struct btrfs_key ins;
575 struct extent_map *em;
576 struct btrfs_root *root = BTRFS_I(inode)->root;
577 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
578 struct extent_io_tree *io_tree;
f5a84ee3 579 int ret = 0;
771ed689
CM
580
581 if (list_empty(&async_cow->extents))
582 return 0;
583
771ed689 584
d397712b 585 while (!list_empty(&async_cow->extents)) {
771ed689
CM
586 async_extent = list_entry(async_cow->extents.next,
587 struct async_extent, list);
588 list_del(&async_extent->list);
c8b97818 589
771ed689
CM
590 io_tree = &BTRFS_I(inode)->io_tree;
591
f5a84ee3 592retry:
771ed689
CM
593 /* did the compression code fall back to uncompressed IO? */
594 if (!async_extent->pages) {
595 int page_started = 0;
596 unsigned long nr_written = 0;
597
598 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
599 async_extent->start +
600 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
601
602 /* allocate blocks */
f5a84ee3
JB
603 ret = cow_file_range(inode, async_cow->locked_page,
604 async_extent->start,
605 async_extent->start +
606 async_extent->ram_size - 1,
607 &page_started, &nr_written, 0);
771ed689
CM
608
609 /*
610 * if page_started, cow_file_range inserted an
611 * inline extent and took care of all the unlocking
612 * and IO for us. Otherwise, we need to submit
613 * all those pages down to the drive.
614 */
f5a84ee3 615 if (!page_started && !ret)
771ed689
CM
616 extent_write_locked_range(io_tree,
617 inode, async_extent->start,
d397712b 618 async_extent->start +
771ed689
CM
619 async_extent->ram_size - 1,
620 btrfs_get_extent,
621 WB_SYNC_ALL);
622 kfree(async_extent);
623 cond_resched();
624 continue;
625 }
626
627 lock_extent(io_tree, async_extent->start,
628 async_extent->start + async_extent->ram_size - 1,
629 GFP_NOFS);
771ed689 630
7a7eaa40 631 trans = btrfs_join_transaction(root);
3612b495 632 BUG_ON(IS_ERR(trans));
74b21075 633 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
634 ret = btrfs_reserve_extent(trans, root,
635 async_extent->compressed_size,
636 async_extent->compressed_size,
637 0, alloc_hint,
638 (u64)-1, &ins, 1);
c2167754
YZ
639 btrfs_end_transaction(trans, root);
640
f5a84ee3
JB
641 if (ret) {
642 int i;
643 for (i = 0; i < async_extent->nr_pages; i++) {
644 WARN_ON(async_extent->pages[i]->mapping);
645 page_cache_release(async_extent->pages[i]);
646 }
647 kfree(async_extent->pages);
648 async_extent->nr_pages = 0;
649 async_extent->pages = NULL;
650 unlock_extent(io_tree, async_extent->start,
651 async_extent->start +
652 async_extent->ram_size - 1, GFP_NOFS);
653 goto retry;
654 }
655
c2167754
YZ
656 /*
657 * here we're doing allocation and writeback of the
658 * compressed pages
659 */
660 btrfs_drop_extent_cache(inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1, 0);
663
172ddd60 664 em = alloc_extent_map();
c26a9203 665 BUG_ON(!em);
771ed689
CM
666 em->start = async_extent->start;
667 em->len = async_extent->ram_size;
445a6944 668 em->orig_start = em->start;
c8b97818 669
771ed689
CM
670 em->block_start = ins.objectid;
671 em->block_len = ins.offset;
672 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 673 em->compress_type = async_extent->compress_type;
771ed689
CM
674 set_bit(EXTENT_FLAG_PINNED, &em->flags);
675 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
676
d397712b 677 while (1) {
890871be 678 write_lock(&em_tree->lock);
771ed689 679 ret = add_extent_mapping(em_tree, em);
890871be 680 write_unlock(&em_tree->lock);
771ed689
CM
681 if (ret != -EEXIST) {
682 free_extent_map(em);
683 break;
684 }
685 btrfs_drop_extent_cache(inode, async_extent->start,
686 async_extent->start +
687 async_extent->ram_size - 1, 0);
688 }
689
261507a0
LZ
690 ret = btrfs_add_ordered_extent_compress(inode,
691 async_extent->start,
692 ins.objectid,
693 async_extent->ram_size,
694 ins.offset,
695 BTRFS_ORDERED_COMPRESSED,
696 async_extent->compress_type);
771ed689
CM
697 BUG_ON(ret);
698
771ed689
CM
699 /*
700 * clear dirty, set writeback and unlock the pages.
701 */
702 extent_clear_unlock_delalloc(inode,
a791e35e
CM
703 &BTRFS_I(inode)->io_tree,
704 async_extent->start,
705 async_extent->start +
706 async_extent->ram_size - 1,
707 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
708 EXTENT_CLEAR_UNLOCK |
a3429ab7 709 EXTENT_CLEAR_DELALLOC |
a791e35e 710 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
711
712 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
713 async_extent->start,
714 async_extent->ram_size,
715 ins.objectid,
716 ins.offset, async_extent->pages,
717 async_extent->nr_pages);
771ed689
CM
718
719 BUG_ON(ret);
771ed689
CM
720 alloc_hint = ins.objectid + ins.offset;
721 kfree(async_extent);
722 cond_resched();
723 }
724
771ed689
CM
725 return 0;
726}
727
4b46fce2
JB
728static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
729 u64 num_bytes)
730{
731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732 struct extent_map *em;
733 u64 alloc_hint = 0;
734
735 read_lock(&em_tree->lock);
736 em = search_extent_mapping(em_tree, start, num_bytes);
737 if (em) {
738 /*
739 * if block start isn't an actual block number then find the
740 * first block in this inode and use that as a hint. If that
741 * block is also bogus then just don't worry about it.
742 */
743 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
744 free_extent_map(em);
745 em = search_extent_mapping(em_tree, 0, 0);
746 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
747 alloc_hint = em->block_start;
748 if (em)
749 free_extent_map(em);
750 } else {
751 alloc_hint = em->block_start;
752 free_extent_map(em);
753 }
754 }
755 read_unlock(&em_tree->lock);
756
757 return alloc_hint;
758}
759
771ed689
CM
760/*
761 * when extent_io.c finds a delayed allocation range in the file,
762 * the call backs end up in this code. The basic idea is to
763 * allocate extents on disk for the range, and create ordered data structs
764 * in ram to track those extents.
765 *
766 * locked_page is the page that writepage had locked already. We use
767 * it to make sure we don't do extra locks or unlocks.
768 *
769 * *page_started is set to one if we unlock locked_page and do everything
770 * required to start IO on it. It may be clean and already done with
771 * IO when we return.
772 */
773static noinline int cow_file_range(struct inode *inode,
774 struct page *locked_page,
775 u64 start, u64 end, int *page_started,
776 unsigned long *nr_written,
777 int unlock)
778{
779 struct btrfs_root *root = BTRFS_I(inode)->root;
780 struct btrfs_trans_handle *trans;
781 u64 alloc_hint = 0;
782 u64 num_bytes;
783 unsigned long ram_size;
784 u64 disk_num_bytes;
785 u64 cur_alloc_size;
786 u64 blocksize = root->sectorsize;
771ed689
CM
787 struct btrfs_key ins;
788 struct extent_map *em;
789 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
790 int ret = 0;
791
2cf8572d 792 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 793 trans = btrfs_join_transaction(root);
3612b495 794 BUG_ON(IS_ERR(trans));
0ca1f7ce 795 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 796
771ed689
CM
797 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
798 num_bytes = max(blocksize, num_bytes);
799 disk_num_bytes = num_bytes;
800 ret = 0;
801
4cb5300b
CM
802 /* if this is a small write inside eof, kick off defrag */
803 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
804 btrfs_add_inode_defrag(trans, inode);
805
771ed689
CM
806 if (start == 0) {
807 /* lets try to make an inline extent */
808 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 809 start, end, 0, 0, NULL);
771ed689
CM
810 if (ret == 0) {
811 extent_clear_unlock_delalloc(inode,
a791e35e
CM
812 &BTRFS_I(inode)->io_tree,
813 start, end, NULL,
814 EXTENT_CLEAR_UNLOCK_PAGE |
815 EXTENT_CLEAR_UNLOCK |
816 EXTENT_CLEAR_DELALLOC |
817 EXTENT_CLEAR_DIRTY |
818 EXTENT_SET_WRITEBACK |
819 EXTENT_END_WRITEBACK);
c2167754 820
771ed689
CM
821 *nr_written = *nr_written +
822 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
823 *page_started = 1;
824 ret = 0;
825 goto out;
826 }
827 }
828
829 BUG_ON(disk_num_bytes >
6c41761f 830 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 831
4b46fce2 832 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
833 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
834
d397712b 835 while (disk_num_bytes > 0) {
a791e35e
CM
836 unsigned long op;
837
287a0ab9 838 cur_alloc_size = disk_num_bytes;
e6dcd2dc 839 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 840 root->sectorsize, 0, alloc_hint,
e6dcd2dc 841 (u64)-1, &ins, 1);
d397712b
CM
842 BUG_ON(ret);
843
172ddd60 844 em = alloc_extent_map();
c26a9203 845 BUG_ON(!em);
e6dcd2dc 846 em->start = start;
445a6944 847 em->orig_start = em->start;
771ed689
CM
848 ram_size = ins.offset;
849 em->len = ins.offset;
c8b97818 850
e6dcd2dc 851 em->block_start = ins.objectid;
c8b97818 852 em->block_len = ins.offset;
e6dcd2dc 853 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 854 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 855
d397712b 856 while (1) {
890871be 857 write_lock(&em_tree->lock);
e6dcd2dc 858 ret = add_extent_mapping(em_tree, em);
890871be 859 write_unlock(&em_tree->lock);
e6dcd2dc
CM
860 if (ret != -EEXIST) {
861 free_extent_map(em);
862 break;
863 }
864 btrfs_drop_extent_cache(inode, start,
c8b97818 865 start + ram_size - 1, 0);
e6dcd2dc
CM
866 }
867
98d20f67 868 cur_alloc_size = ins.offset;
e6dcd2dc 869 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 870 ram_size, cur_alloc_size, 0);
e6dcd2dc 871 BUG_ON(ret);
c8b97818 872
17d217fe
YZ
873 if (root->root_key.objectid ==
874 BTRFS_DATA_RELOC_TREE_OBJECTID) {
875 ret = btrfs_reloc_clone_csums(inode, start,
876 cur_alloc_size);
877 BUG_ON(ret);
878 }
879
d397712b 880 if (disk_num_bytes < cur_alloc_size)
3b951516 881 break;
d397712b 882
c8b97818
CM
883 /* we're not doing compressed IO, don't unlock the first
884 * page (which the caller expects to stay locked), don't
885 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
886 *
887 * Do set the Private2 bit so we know this page was properly
888 * setup for writepage
c8b97818 889 */
a791e35e
CM
890 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
891 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
892 EXTENT_SET_PRIVATE2;
893
c8b97818
CM
894 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
895 start, start + ram_size - 1,
a791e35e 896 locked_page, op);
c8b97818 897 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
898 num_bytes -= cur_alloc_size;
899 alloc_hint = ins.objectid + ins.offset;
900 start += cur_alloc_size;
b888db2b 901 }
b888db2b 902out:
771ed689 903 ret = 0;
b888db2b 904 btrfs_end_transaction(trans, root);
c8b97818 905
be20aa9d 906 return ret;
771ed689 907}
c8b97818 908
771ed689
CM
909/*
910 * work queue call back to started compression on a file and pages
911 */
912static noinline void async_cow_start(struct btrfs_work *work)
913{
914 struct async_cow *async_cow;
915 int num_added = 0;
916 async_cow = container_of(work, struct async_cow, work);
917
918 compress_file_range(async_cow->inode, async_cow->locked_page,
919 async_cow->start, async_cow->end, async_cow,
920 &num_added);
921 if (num_added == 0)
922 async_cow->inode = NULL;
923}
924
925/*
926 * work queue call back to submit previously compressed pages
927 */
928static noinline void async_cow_submit(struct btrfs_work *work)
929{
930 struct async_cow *async_cow;
931 struct btrfs_root *root;
932 unsigned long nr_pages;
933
934 async_cow = container_of(work, struct async_cow, work);
935
936 root = async_cow->root;
937 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
938 PAGE_CACHE_SHIFT;
939
940 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
941
942 if (atomic_read(&root->fs_info->async_delalloc_pages) <
943 5 * 1042 * 1024 &&
944 waitqueue_active(&root->fs_info->async_submit_wait))
945 wake_up(&root->fs_info->async_submit_wait);
946
d397712b 947 if (async_cow->inode)
771ed689 948 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 949}
c8b97818 950
771ed689
CM
951static noinline void async_cow_free(struct btrfs_work *work)
952{
953 struct async_cow *async_cow;
954 async_cow = container_of(work, struct async_cow, work);
955 kfree(async_cow);
956}
957
958static int cow_file_range_async(struct inode *inode, struct page *locked_page,
959 u64 start, u64 end, int *page_started,
960 unsigned long *nr_written)
961{
962 struct async_cow *async_cow;
963 struct btrfs_root *root = BTRFS_I(inode)->root;
964 unsigned long nr_pages;
965 u64 cur_end;
966 int limit = 10 * 1024 * 1042;
967
a3429ab7
CM
968 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
969 1, 0, NULL, GFP_NOFS);
d397712b 970 while (start < end) {
771ed689 971 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 972 BUG_ON(!async_cow);
771ed689
CM
973 async_cow->inode = inode;
974 async_cow->root = root;
975 async_cow->locked_page = locked_page;
976 async_cow->start = start;
977
6cbff00f 978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
979 cur_end = end;
980 else
981 cur_end = min(end, start + 512 * 1024 - 1);
982
983 async_cow->end = cur_end;
984 INIT_LIST_HEAD(&async_cow->extents);
985
986 async_cow->work.func = async_cow_start;
987 async_cow->work.ordered_func = async_cow_submit;
988 async_cow->work.ordered_free = async_cow_free;
989 async_cow->work.flags = 0;
990
771ed689
CM
991 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
992 PAGE_CACHE_SHIFT;
993 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
994
995 btrfs_queue_worker(&root->fs_info->delalloc_workers,
996 &async_cow->work);
997
998 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) <
1001 limit));
1002 }
1003
d397712b 1004 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1005 atomic_read(&root->fs_info->async_delalloc_pages)) {
1006 wait_event(root->fs_info->async_submit_wait,
1007 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1008 0));
1009 }
1010
1011 *nr_written += nr_pages;
1012 start = cur_end + 1;
1013 }
1014 *page_started = 1;
1015 return 0;
be20aa9d
CM
1016}
1017
d397712b 1018static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1019 u64 bytenr, u64 num_bytes)
1020{
1021 int ret;
1022 struct btrfs_ordered_sum *sums;
1023 LIST_HEAD(list);
1024
07d400a6 1025 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1026 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1027 if (ret == 0 && list_empty(&list))
1028 return 0;
1029
1030 while (!list_empty(&list)) {
1031 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1032 list_del(&sums->list);
1033 kfree(sums);
1034 }
1035 return 1;
1036}
1037
d352ac68
CM
1038/*
1039 * when nowcow writeback call back. This checks for snapshots or COW copies
1040 * of the extents that exist in the file, and COWs the file as required.
1041 *
1042 * If no cow copies or snapshots exist, we write directly to the existing
1043 * blocks on disk
1044 */
7f366cfe
CM
1045static noinline int run_delalloc_nocow(struct inode *inode,
1046 struct page *locked_page,
771ed689
CM
1047 u64 start, u64 end, int *page_started, int force,
1048 unsigned long *nr_written)
be20aa9d 1049{
be20aa9d 1050 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1051 struct btrfs_trans_handle *trans;
be20aa9d 1052 struct extent_buffer *leaf;
be20aa9d 1053 struct btrfs_path *path;
80ff3856 1054 struct btrfs_file_extent_item *fi;
be20aa9d 1055 struct btrfs_key found_key;
80ff3856
YZ
1056 u64 cow_start;
1057 u64 cur_offset;
1058 u64 extent_end;
5d4f98a2 1059 u64 extent_offset;
80ff3856
YZ
1060 u64 disk_bytenr;
1061 u64 num_bytes;
1062 int extent_type;
1063 int ret;
d899e052 1064 int type;
80ff3856
YZ
1065 int nocow;
1066 int check_prev = 1;
82d5902d 1067 bool nolock;
33345d01 1068 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1069
1070 path = btrfs_alloc_path();
d8926bb3
MF
1071 if (!path)
1072 return -ENOMEM;
82d5902d 1073
2cf8572d 1074 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1075
1076 if (nolock)
7a7eaa40 1077 trans = btrfs_join_transaction_nolock(root);
82d5902d 1078 else
7a7eaa40 1079 trans = btrfs_join_transaction(root);
ff5714cc 1080
3612b495 1081 BUG_ON(IS_ERR(trans));
74b21075 1082 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1083
80ff3856
YZ
1084 cow_start = (u64)-1;
1085 cur_offset = start;
1086 while (1) {
33345d01 1087 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1088 cur_offset, 0);
1089 BUG_ON(ret < 0);
1090 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1091 leaf = path->nodes[0];
1092 btrfs_item_key_to_cpu(leaf, &found_key,
1093 path->slots[0] - 1);
33345d01 1094 if (found_key.objectid == ino &&
80ff3856
YZ
1095 found_key.type == BTRFS_EXTENT_DATA_KEY)
1096 path->slots[0]--;
1097 }
1098 check_prev = 0;
1099next_slot:
1100 leaf = path->nodes[0];
1101 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1102 ret = btrfs_next_leaf(root, path);
1103 if (ret < 0)
1104 BUG_ON(1);
1105 if (ret > 0)
1106 break;
1107 leaf = path->nodes[0];
1108 }
be20aa9d 1109
80ff3856
YZ
1110 nocow = 0;
1111 disk_bytenr = 0;
17d217fe 1112 num_bytes = 0;
80ff3856
YZ
1113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1114
33345d01 1115 if (found_key.objectid > ino ||
80ff3856
YZ
1116 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1117 found_key.offset > end)
1118 break;
1119
1120 if (found_key.offset > cur_offset) {
1121 extent_end = found_key.offset;
e9061e21 1122 extent_type = 0;
80ff3856
YZ
1123 goto out_check;
1124 }
1125
1126 fi = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_file_extent_item);
1128 extent_type = btrfs_file_extent_type(leaf, fi);
1129
d899e052
YZ
1130 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1131 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1132 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1133 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1134 extent_end = found_key.offset +
1135 btrfs_file_extent_num_bytes(leaf, fi);
1136 if (extent_end <= start) {
1137 path->slots[0]++;
1138 goto next_slot;
1139 }
17d217fe
YZ
1140 if (disk_bytenr == 0)
1141 goto out_check;
80ff3856
YZ
1142 if (btrfs_file_extent_compression(leaf, fi) ||
1143 btrfs_file_extent_encryption(leaf, fi) ||
1144 btrfs_file_extent_other_encoding(leaf, fi))
1145 goto out_check;
d899e052
YZ
1146 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1147 goto out_check;
d2fb3437 1148 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1149 goto out_check;
33345d01 1150 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1151 found_key.offset -
1152 extent_offset, disk_bytenr))
17d217fe 1153 goto out_check;
5d4f98a2 1154 disk_bytenr += extent_offset;
17d217fe
YZ
1155 disk_bytenr += cur_offset - found_key.offset;
1156 num_bytes = min(end + 1, extent_end) - cur_offset;
1157 /*
1158 * force cow if csum exists in the range.
1159 * this ensure that csum for a given extent are
1160 * either valid or do not exist.
1161 */
1162 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1163 goto out_check;
80ff3856
YZ
1164 nocow = 1;
1165 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1166 extent_end = found_key.offset +
1167 btrfs_file_extent_inline_len(leaf, fi);
1168 extent_end = ALIGN(extent_end, root->sectorsize);
1169 } else {
1170 BUG_ON(1);
1171 }
1172out_check:
1173 if (extent_end <= start) {
1174 path->slots[0]++;
1175 goto next_slot;
1176 }
1177 if (!nocow) {
1178 if (cow_start == (u64)-1)
1179 cow_start = cur_offset;
1180 cur_offset = extent_end;
1181 if (cur_offset > end)
1182 break;
1183 path->slots[0]++;
1184 goto next_slot;
7ea394f1
YZ
1185 }
1186
b3b4aa74 1187 btrfs_release_path(path);
80ff3856
YZ
1188 if (cow_start != (u64)-1) {
1189 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1190 found_key.offset - 1, page_started,
1191 nr_written, 1);
80ff3856
YZ
1192 BUG_ON(ret);
1193 cow_start = (u64)-1;
7ea394f1 1194 }
80ff3856 1195
d899e052
YZ
1196 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1197 struct extent_map *em;
1198 struct extent_map_tree *em_tree;
1199 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1200 em = alloc_extent_map();
c26a9203 1201 BUG_ON(!em);
d899e052 1202 em->start = cur_offset;
445a6944 1203 em->orig_start = em->start;
d899e052
YZ
1204 em->len = num_bytes;
1205 em->block_len = num_bytes;
1206 em->block_start = disk_bytenr;
1207 em->bdev = root->fs_info->fs_devices->latest_bdev;
1208 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1209 while (1) {
890871be 1210 write_lock(&em_tree->lock);
d899e052 1211 ret = add_extent_mapping(em_tree, em);
890871be 1212 write_unlock(&em_tree->lock);
d899e052
YZ
1213 if (ret != -EEXIST) {
1214 free_extent_map(em);
1215 break;
1216 }
1217 btrfs_drop_extent_cache(inode, em->start,
1218 em->start + em->len - 1, 0);
1219 }
1220 type = BTRFS_ORDERED_PREALLOC;
1221 } else {
1222 type = BTRFS_ORDERED_NOCOW;
1223 }
80ff3856
YZ
1224
1225 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1226 num_bytes, num_bytes, type);
1227 BUG_ON(ret);
771ed689 1228
efa56464
YZ
1229 if (root->root_key.objectid ==
1230 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1231 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1232 num_bytes);
1233 BUG_ON(ret);
1234 }
1235
d899e052 1236 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1237 cur_offset, cur_offset + num_bytes - 1,
1238 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1239 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1240 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1241 cur_offset = extent_end;
1242 if (cur_offset > end)
1243 break;
be20aa9d 1244 }
b3b4aa74 1245 btrfs_release_path(path);
80ff3856
YZ
1246
1247 if (cur_offset <= end && cow_start == (u64)-1)
1248 cow_start = cur_offset;
1249 if (cow_start != (u64)-1) {
1250 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1251 page_started, nr_written, 1);
80ff3856
YZ
1252 BUG_ON(ret);
1253 }
1254
0cb59c99
JB
1255 if (nolock) {
1256 ret = btrfs_end_transaction_nolock(trans, root);
1257 BUG_ON(ret);
1258 } else {
1259 ret = btrfs_end_transaction(trans, root);
1260 BUG_ON(ret);
1261 }
7ea394f1 1262 btrfs_free_path(path);
80ff3856 1263 return 0;
be20aa9d
CM
1264}
1265
d352ac68
CM
1266/*
1267 * extent_io.c call back to do delayed allocation processing
1268 */
c8b97818 1269static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1270 u64 start, u64 end, int *page_started,
1271 unsigned long *nr_written)
be20aa9d 1272{
be20aa9d 1273 int ret;
7f366cfe 1274 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1275
6cbff00f 1276 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1277 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1278 page_started, 1, nr_written);
6cbff00f 1279 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1280 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1281 page_started, 0, nr_written);
1e701a32 1282 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1283 !(BTRFS_I(inode)->force_compress) &&
1284 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1285 ret = cow_file_range(inode, locked_page, start, end,
1286 page_started, nr_written, 1);
be20aa9d 1287 else
771ed689 1288 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1289 page_started, nr_written);
b888db2b
CM
1290 return ret;
1291}
1292
1bf85046
JM
1293static void btrfs_split_extent_hook(struct inode *inode,
1294 struct extent_state *orig, u64 split)
9ed74f2d 1295{
0ca1f7ce 1296 /* not delalloc, ignore it */
9ed74f2d 1297 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1298 return;
9ed74f2d 1299
9e0baf60
JB
1300 spin_lock(&BTRFS_I(inode)->lock);
1301 BTRFS_I(inode)->outstanding_extents++;
1302 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1303}
1304
1305/*
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1310 */
1bf85046
JM
1311static void btrfs_merge_extent_hook(struct inode *inode,
1312 struct extent_state *new,
1313 struct extent_state *other)
9ed74f2d 1314{
9ed74f2d
JB
1315 /* not delalloc, ignore it */
1316 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1317 return;
9ed74f2d 1318
9e0baf60
JB
1319 spin_lock(&BTRFS_I(inode)->lock);
1320 BTRFS_I(inode)->outstanding_extents--;
1321 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1322}
1323
d352ac68
CM
1324/*
1325 * extent_io.c set_bit_hook, used to track delayed allocation
1326 * bytes in this file, and to maintain the list of inodes that
1327 * have pending delalloc work to be done.
1328 */
1bf85046
JM
1329static void btrfs_set_bit_hook(struct inode *inode,
1330 struct extent_state *state, int *bits)
291d673e 1331{
9ed74f2d 1332
75eff68e
CM
1333 /*
1334 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1335 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1336 * bit, which is only set or cleared with irqs on
1337 */
0ca1f7ce 1338 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1339 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1340 u64 len = state->end + 1 - state->start;
2cf8572d 1341 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1342
9e0baf60 1343 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1344 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1345 } else {
1346 spin_lock(&BTRFS_I(inode)->lock);
1347 BTRFS_I(inode)->outstanding_extents++;
1348 spin_unlock(&BTRFS_I(inode)->lock);
1349 }
287a0ab9 1350
75eff68e 1351 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1352 BTRFS_I(inode)->delalloc_bytes += len;
1353 root->fs_info->delalloc_bytes += len;
0cb59c99 1354 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1355 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1356 &root->fs_info->delalloc_inodes);
1357 }
75eff68e 1358 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1359 }
291d673e
CM
1360}
1361
d352ac68
CM
1362/*
1363 * extent_io.c clear_bit_hook, see set_bit_hook for why
1364 */
1bf85046
JM
1365static void btrfs_clear_bit_hook(struct inode *inode,
1366 struct extent_state *state, int *bits)
291d673e 1367{
75eff68e
CM
1368 /*
1369 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1370 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1371 * bit, which is only set or cleared with irqs on
1372 */
0ca1f7ce 1373 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1374 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1375 u64 len = state->end + 1 - state->start;
2cf8572d 1376 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1377
9e0baf60 1378 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1379 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1380 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1381 spin_lock(&BTRFS_I(inode)->lock);
1382 BTRFS_I(inode)->outstanding_extents--;
1383 spin_unlock(&BTRFS_I(inode)->lock);
1384 }
0ca1f7ce
YZ
1385
1386 if (*bits & EXTENT_DO_ACCOUNTING)
1387 btrfs_delalloc_release_metadata(inode, len);
1388
0cb59c99
JB
1389 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1390 && do_list)
0ca1f7ce 1391 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1392
75eff68e 1393 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1394 root->fs_info->delalloc_bytes -= len;
1395 BTRFS_I(inode)->delalloc_bytes -= len;
1396
0cb59c99 1397 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1398 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1399 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1400 }
75eff68e 1401 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1402 }
291d673e
CM
1403}
1404
d352ac68
CM
1405/*
1406 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1407 * we don't create bios that span stripes or chunks
1408 */
239b14b3 1409int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1410 size_t size, struct bio *bio,
1411 unsigned long bio_flags)
239b14b3
CM
1412{
1413 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1414 struct btrfs_mapping_tree *map_tree;
a62b9401 1415 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1416 u64 length = 0;
1417 u64 map_length;
239b14b3
CM
1418 int ret;
1419
771ed689
CM
1420 if (bio_flags & EXTENT_BIO_COMPRESSED)
1421 return 0;
1422
f2d8d74d 1423 length = bio->bi_size;
239b14b3
CM
1424 map_tree = &root->fs_info->mapping_tree;
1425 map_length = length;
cea9e445 1426 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1427 &map_length, NULL, 0);
cea9e445 1428
d397712b 1429 if (map_length < length + size)
239b14b3 1430 return 1;
411fc6bc 1431 return ret;
239b14b3
CM
1432}
1433
d352ac68
CM
1434/*
1435 * in order to insert checksums into the metadata in large chunks,
1436 * we wait until bio submission time. All the pages in the bio are
1437 * checksummed and sums are attached onto the ordered extent record.
1438 *
1439 * At IO completion time the cums attached on the ordered extent record
1440 * are inserted into the btree
1441 */
d397712b
CM
1442static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1443 struct bio *bio, int mirror_num,
eaf25d93
CM
1444 unsigned long bio_flags,
1445 u64 bio_offset)
065631f6 1446{
065631f6 1447 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1448 int ret = 0;
e015640f 1449
d20f7043 1450 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1451 BUG_ON(ret);
4a69a410
CM
1452 return 0;
1453}
e015640f 1454
4a69a410
CM
1455/*
1456 * in order to insert checksums into the metadata in large chunks,
1457 * we wait until bio submission time. All the pages in the bio are
1458 * checksummed and sums are attached onto the ordered extent record.
1459 *
1460 * At IO completion time the cums attached on the ordered extent record
1461 * are inserted into the btree
1462 */
b2950863 1463static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1464 int mirror_num, unsigned long bio_flags,
1465 u64 bio_offset)
4a69a410
CM
1466{
1467 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1468 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1469}
1470
d352ac68 1471/*
cad321ad
CM
1472 * extent_io.c submission hook. This does the right thing for csum calculation
1473 * on write, or reading the csums from the tree before a read
d352ac68 1474 */
b2950863 1475static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1476 int mirror_num, unsigned long bio_flags,
1477 u64 bio_offset)
44b8bd7e
CM
1478{
1479 struct btrfs_root *root = BTRFS_I(inode)->root;
1480 int ret = 0;
19b9bdb0 1481 int skip_sum;
44b8bd7e 1482
6cbff00f 1483 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1484
2cf8572d 1485 if (btrfs_is_free_space_inode(root, inode))
0cb59c99
JB
1486 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1487 else
1488 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1489 BUG_ON(ret);
065631f6 1490
7b6d91da 1491 if (!(rw & REQ_WRITE)) {
d20f7043 1492 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1493 return btrfs_submit_compressed_read(inode, bio,
1494 mirror_num, bio_flags);
c2db1073
TI
1495 } else if (!skip_sum) {
1496 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1497 if (ret)
1498 return ret;
1499 }
4d1b5fb4 1500 goto mapit;
19b9bdb0 1501 } else if (!skip_sum) {
17d217fe
YZ
1502 /* csum items have already been cloned */
1503 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1504 goto mapit;
19b9bdb0
CM
1505 /* we're doing a write, do the async checksumming */
1506 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1507 inode, rw, bio, mirror_num,
eaf25d93
CM
1508 bio_flags, bio_offset,
1509 __btrfs_submit_bio_start,
4a69a410 1510 __btrfs_submit_bio_done);
19b9bdb0
CM
1511 }
1512
0b86a832 1513mapit:
8b712842 1514 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1515}
6885f308 1516
d352ac68
CM
1517/*
1518 * given a list of ordered sums record them in the inode. This happens
1519 * at IO completion time based on sums calculated at bio submission time.
1520 */
ba1da2f4 1521static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1522 struct inode *inode, u64 file_offset,
1523 struct list_head *list)
1524{
e6dcd2dc
CM
1525 struct btrfs_ordered_sum *sum;
1526
c6e30871 1527 list_for_each_entry(sum, list, list) {
d20f7043
CM
1528 btrfs_csum_file_blocks(trans,
1529 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1530 }
1531 return 0;
1532}
1533
2ac55d41
JB
1534int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1535 struct extent_state **cached_state)
ea8c2819 1536{
d397712b 1537 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1538 WARN_ON(1);
ea8c2819 1539 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1540 cached_state, GFP_NOFS);
ea8c2819
CM
1541}
1542
d352ac68 1543/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1544struct btrfs_writepage_fixup {
1545 struct page *page;
1546 struct btrfs_work work;
1547};
1548
b2950863 1549static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1550{
1551 struct btrfs_writepage_fixup *fixup;
1552 struct btrfs_ordered_extent *ordered;
2ac55d41 1553 struct extent_state *cached_state = NULL;
247e743c
CM
1554 struct page *page;
1555 struct inode *inode;
1556 u64 page_start;
1557 u64 page_end;
87826df0 1558 int ret;
247e743c
CM
1559
1560 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1561 page = fixup->page;
4a096752 1562again:
247e743c
CM
1563 lock_page(page);
1564 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1565 ClearPageChecked(page);
1566 goto out_page;
1567 }
1568
1569 inode = page->mapping->host;
1570 page_start = page_offset(page);
1571 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1572
2ac55d41
JB
1573 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1574 &cached_state, GFP_NOFS);
4a096752
CM
1575
1576 /* already ordered? We're done */
8b62b72b 1577 if (PagePrivate2(page))
247e743c 1578 goto out;
4a096752
CM
1579
1580 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1581 if (ordered) {
2ac55d41
JB
1582 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1583 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1584 unlock_page(page);
1585 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1586 btrfs_put_ordered_extent(ordered);
4a096752
CM
1587 goto again;
1588 }
247e743c 1589
87826df0
JM
1590 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1591 if (ret) {
1592 mapping_set_error(page->mapping, ret);
1593 end_extent_writepage(page, ret, page_start, page_end);
1594 ClearPageChecked(page);
1595 goto out;
1596 }
1597
2ac55d41 1598 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1599 ClearPageChecked(page);
87826df0 1600 set_page_dirty(page);
247e743c 1601out:
2ac55d41
JB
1602 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1603 &cached_state, GFP_NOFS);
247e743c
CM
1604out_page:
1605 unlock_page(page);
1606 page_cache_release(page);
b897abec 1607 kfree(fixup);
247e743c
CM
1608}
1609
1610/*
1611 * There are a few paths in the higher layers of the kernel that directly
1612 * set the page dirty bit without asking the filesystem if it is a
1613 * good idea. This causes problems because we want to make sure COW
1614 * properly happens and the data=ordered rules are followed.
1615 *
c8b97818 1616 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1617 * hasn't been properly setup for IO. We kick off an async process
1618 * to fix it up. The async helper will wait for ordered extents, set
1619 * the delalloc bit and make it safe to write the page.
1620 */
b2950863 1621static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1622{
1623 struct inode *inode = page->mapping->host;
1624 struct btrfs_writepage_fixup *fixup;
1625 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1626
8b62b72b
CM
1627 /* this page is properly in the ordered list */
1628 if (TestClearPagePrivate2(page))
247e743c
CM
1629 return 0;
1630
1631 if (PageChecked(page))
1632 return -EAGAIN;
1633
1634 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1635 if (!fixup)
1636 return -EAGAIN;
f421950f 1637
247e743c
CM
1638 SetPageChecked(page);
1639 page_cache_get(page);
1640 fixup->work.func = btrfs_writepage_fixup_worker;
1641 fixup->page = page;
1642 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1643 return -EBUSY;
247e743c
CM
1644}
1645
d899e052
YZ
1646static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1647 struct inode *inode, u64 file_pos,
1648 u64 disk_bytenr, u64 disk_num_bytes,
1649 u64 num_bytes, u64 ram_bytes,
1650 u8 compression, u8 encryption,
1651 u16 other_encoding, int extent_type)
1652{
1653 struct btrfs_root *root = BTRFS_I(inode)->root;
1654 struct btrfs_file_extent_item *fi;
1655 struct btrfs_path *path;
1656 struct extent_buffer *leaf;
1657 struct btrfs_key ins;
1658 u64 hint;
1659 int ret;
1660
1661 path = btrfs_alloc_path();
d8926bb3
MF
1662 if (!path)
1663 return -ENOMEM;
d899e052 1664
b9473439 1665 path->leave_spinning = 1;
a1ed835e
CM
1666
1667 /*
1668 * we may be replacing one extent in the tree with another.
1669 * The new extent is pinned in the extent map, and we don't want
1670 * to drop it from the cache until it is completely in the btree.
1671 *
1672 * So, tell btrfs_drop_extents to leave this extent in the cache.
1673 * the caller is expected to unpin it and allow it to be merged
1674 * with the others.
1675 */
920bbbfb
YZ
1676 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1677 &hint, 0);
d899e052
YZ
1678 BUG_ON(ret);
1679
33345d01 1680 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1681 ins.offset = file_pos;
1682 ins.type = BTRFS_EXTENT_DATA_KEY;
1683 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1684 BUG_ON(ret);
1685 leaf = path->nodes[0];
1686 fi = btrfs_item_ptr(leaf, path->slots[0],
1687 struct btrfs_file_extent_item);
1688 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1689 btrfs_set_file_extent_type(leaf, fi, extent_type);
1690 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1691 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1692 btrfs_set_file_extent_offset(leaf, fi, 0);
1693 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1694 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1695 btrfs_set_file_extent_compression(leaf, fi, compression);
1696 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1697 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1698
1699 btrfs_unlock_up_safe(path, 1);
1700 btrfs_set_lock_blocking(leaf);
1701
d899e052
YZ
1702 btrfs_mark_buffer_dirty(leaf);
1703
1704 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1705
1706 ins.objectid = disk_bytenr;
1707 ins.offset = disk_num_bytes;
1708 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1709 ret = btrfs_alloc_reserved_file_extent(trans, root,
1710 root->root_key.objectid,
33345d01 1711 btrfs_ino(inode), file_pos, &ins);
d899e052 1712 BUG_ON(ret);
d899e052 1713 btrfs_free_path(path);
b9473439 1714
d899e052
YZ
1715 return 0;
1716}
1717
5d13a98f
CM
1718/*
1719 * helper function for btrfs_finish_ordered_io, this
1720 * just reads in some of the csum leaves to prime them into ram
1721 * before we start the transaction. It limits the amount of btree
1722 * reads required while inside the transaction.
1723 */
d352ac68
CM
1724/* as ordered data IO finishes, this gets called so we can finish
1725 * an ordered extent if the range of bytes in the file it covers are
1726 * fully written.
1727 */
211f90e6 1728static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1729{
e6dcd2dc 1730 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1731 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1732 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1733 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1734 struct extent_state *cached_state = NULL;
261507a0 1735 int compress_type = 0;
e6dcd2dc 1736 int ret;
82d5902d 1737 bool nolock;
e6dcd2dc 1738
5a1a3df1
JB
1739 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1740 end - start + 1);
ba1da2f4 1741 if (!ret)
e6dcd2dc 1742 return 0;
e6dcd2dc 1743 BUG_ON(!ordered_extent);
efd049fb 1744
2cf8572d 1745 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1746
c2167754
YZ
1747 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1748 BUG_ON(!list_empty(&ordered_extent->list));
1749 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1750 if (!ret) {
0cb59c99 1751 if (nolock)
7a7eaa40 1752 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1753 else
7a7eaa40 1754 trans = btrfs_join_transaction(root);
3612b495 1755 BUG_ON(IS_ERR(trans));
0ca1f7ce 1756 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1757 ret = btrfs_update_inode_fallback(trans, root, inode);
c2167754 1758 BUG_ON(ret);
c2167754
YZ
1759 }
1760 goto out;
1761 }
e6dcd2dc 1762
2ac55d41
JB
1763 lock_extent_bits(io_tree, ordered_extent->file_offset,
1764 ordered_extent->file_offset + ordered_extent->len - 1,
1765 0, &cached_state, GFP_NOFS);
e6dcd2dc 1766
0cb59c99 1767 if (nolock)
7a7eaa40 1768 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1769 else
7a7eaa40 1770 trans = btrfs_join_transaction(root);
3612b495 1771 BUG_ON(IS_ERR(trans));
0ca1f7ce 1772 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1773
c8b97818 1774 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1775 compress_type = ordered_extent->compress_type;
d899e052 1776 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1777 BUG_ON(compress_type);
920bbbfb 1778 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1779 ordered_extent->file_offset,
1780 ordered_extent->file_offset +
1781 ordered_extent->len);
1782 BUG_ON(ret);
1783 } else {
0af3d00b 1784 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1785 ret = insert_reserved_file_extent(trans, inode,
1786 ordered_extent->file_offset,
1787 ordered_extent->start,
1788 ordered_extent->disk_len,
1789 ordered_extent->len,
1790 ordered_extent->len,
261507a0 1791 compress_type, 0, 0,
d899e052 1792 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1793 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1794 ordered_extent->file_offset,
1795 ordered_extent->len);
d899e052
YZ
1796 BUG_ON(ret);
1797 }
2ac55d41
JB
1798 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1799 ordered_extent->file_offset +
1800 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1801
e6dcd2dc
CM
1802 add_pending_csums(trans, inode, ordered_extent->file_offset,
1803 &ordered_extent->list);
1804
1ef30be1 1805 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1806 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1807 ret = btrfs_update_inode_fallback(trans, root, inode);
1ef30be1
JB
1808 BUG_ON(ret);
1809 }
1810 ret = 0;
c2167754 1811out:
5b0e95bf 1812 if (root != root->fs_info->tree_root)
0cb59c99 1813 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
5b0e95bf
JB
1814 if (trans) {
1815 if (nolock)
0cb59c99 1816 btrfs_end_transaction_nolock(trans, root);
5b0e95bf 1817 else
0cb59c99
JB
1818 btrfs_end_transaction(trans, root);
1819 }
1820
e6dcd2dc
CM
1821 /* once for us */
1822 btrfs_put_ordered_extent(ordered_extent);
1823 /* once for the tree */
1824 btrfs_put_ordered_extent(ordered_extent);
1825
e6dcd2dc
CM
1826 return 0;
1827}
1828
b2950863 1829static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1830 struct extent_state *state, int uptodate)
1831{
1abe9b8a 1832 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1833
8b62b72b 1834 ClearPagePrivate2(page);
211f90e6
CM
1835 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1836}
1837
d352ac68
CM
1838/*
1839 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
1840 * if there's a match, we allow the bio to finish. If not, the code in
1841 * extent_io.c will try to find good copies for us.
d352ac68 1842 */
b2950863 1843static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1844 struct extent_state *state)
07157aac 1845{
35ebb934 1846 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1847 struct inode *inode = page->mapping->host;
d1310b2e 1848 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1849 char *kaddr;
aadfeb6e 1850 u64 private = ~(u32)0;
07157aac 1851 int ret;
ff79f819
CM
1852 struct btrfs_root *root = BTRFS_I(inode)->root;
1853 u32 csum = ~(u32)0;
d1310b2e 1854
d20f7043
CM
1855 if (PageChecked(page)) {
1856 ClearPageChecked(page);
1857 goto good;
1858 }
6cbff00f
CH
1859
1860 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1861 goto good;
17d217fe
YZ
1862
1863 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1864 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1865 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1866 GFP_NOFS);
b6cda9bc 1867 return 0;
17d217fe 1868 }
d20f7043 1869
c2e639f0 1870 if (state && state->start == start) {
70dec807
CM
1871 private = state->private;
1872 ret = 0;
1873 } else {
1874 ret = get_state_private(io_tree, start, &private);
1875 }
9ab86c8e 1876 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1877 if (ret)
07157aac 1878 goto zeroit;
d397712b 1879
ff79f819
CM
1880 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1881 btrfs_csum_final(csum, (char *)&csum);
d397712b 1882 if (csum != private)
07157aac 1883 goto zeroit;
d397712b 1884
9ab86c8e 1885 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1886good:
07157aac
CM
1887 return 0;
1888
1889zeroit:
945d8962 1890 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
1891 "private %llu\n",
1892 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
1893 (unsigned long long)start, csum,
1894 (unsigned long long)private);
db94535d
CM
1895 memset(kaddr + offset, 1, end - start + 1);
1896 flush_dcache_page(page);
9ab86c8e 1897 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1898 if (private == 0)
1899 return 0;
7e38326f 1900 return -EIO;
07157aac 1901}
b888db2b 1902
24bbcf04
YZ
1903struct delayed_iput {
1904 struct list_head list;
1905 struct inode *inode;
1906};
1907
1908void btrfs_add_delayed_iput(struct inode *inode)
1909{
1910 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1911 struct delayed_iput *delayed;
1912
1913 if (atomic_add_unless(&inode->i_count, -1, 1))
1914 return;
1915
1916 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1917 delayed->inode = inode;
1918
1919 spin_lock(&fs_info->delayed_iput_lock);
1920 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1921 spin_unlock(&fs_info->delayed_iput_lock);
1922}
1923
1924void btrfs_run_delayed_iputs(struct btrfs_root *root)
1925{
1926 LIST_HEAD(list);
1927 struct btrfs_fs_info *fs_info = root->fs_info;
1928 struct delayed_iput *delayed;
1929 int empty;
1930
1931 spin_lock(&fs_info->delayed_iput_lock);
1932 empty = list_empty(&fs_info->delayed_iputs);
1933 spin_unlock(&fs_info->delayed_iput_lock);
1934 if (empty)
1935 return;
1936
1937 down_read(&root->fs_info->cleanup_work_sem);
1938 spin_lock(&fs_info->delayed_iput_lock);
1939 list_splice_init(&fs_info->delayed_iputs, &list);
1940 spin_unlock(&fs_info->delayed_iput_lock);
1941
1942 while (!list_empty(&list)) {
1943 delayed = list_entry(list.next, struct delayed_iput, list);
1944 list_del(&delayed->list);
1945 iput(delayed->inode);
1946 kfree(delayed);
1947 }
1948 up_read(&root->fs_info->cleanup_work_sem);
1949}
1950
d68fc57b
YZ
1951enum btrfs_orphan_cleanup_state {
1952 ORPHAN_CLEANUP_STARTED = 1,
1953 ORPHAN_CLEANUP_DONE = 2,
1954};
1955
1956/*
1957 * This is called in transaction commmit time. If there are no orphan
1958 * files in the subvolume, it removes orphan item and frees block_rsv
1959 * structure.
1960 */
1961void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1962 struct btrfs_root *root)
1963{
90290e19 1964 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
1965 int ret;
1966
1967 if (!list_empty(&root->orphan_list) ||
1968 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1969 return;
1970
90290e19
JB
1971 spin_lock(&root->orphan_lock);
1972 if (!list_empty(&root->orphan_list)) {
1973 spin_unlock(&root->orphan_lock);
1974 return;
1975 }
1976
1977 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
1978 spin_unlock(&root->orphan_lock);
1979 return;
1980 }
1981
1982 block_rsv = root->orphan_block_rsv;
1983 root->orphan_block_rsv = NULL;
1984 spin_unlock(&root->orphan_lock);
1985
d68fc57b
YZ
1986 if (root->orphan_item_inserted &&
1987 btrfs_root_refs(&root->root_item) > 0) {
1988 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1989 root->root_key.objectid);
1990 BUG_ON(ret);
1991 root->orphan_item_inserted = 0;
1992 }
1993
90290e19
JB
1994 if (block_rsv) {
1995 WARN_ON(block_rsv->size > 0);
1996 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
1997 }
1998}
1999
7b128766
JB
2000/*
2001 * This creates an orphan entry for the given inode in case something goes
2002 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2003 *
2004 * NOTE: caller of this function should reserve 5 units of metadata for
2005 * this function.
7b128766
JB
2006 */
2007int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2008{
2009 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2010 struct btrfs_block_rsv *block_rsv = NULL;
2011 int reserve = 0;
2012 int insert = 0;
2013 int ret;
7b128766 2014
d68fc57b
YZ
2015 if (!root->orphan_block_rsv) {
2016 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2017 if (!block_rsv)
2018 return -ENOMEM;
d68fc57b 2019 }
7b128766 2020
d68fc57b
YZ
2021 spin_lock(&root->orphan_lock);
2022 if (!root->orphan_block_rsv) {
2023 root->orphan_block_rsv = block_rsv;
2024 } else if (block_rsv) {
2025 btrfs_free_block_rsv(root, block_rsv);
2026 block_rsv = NULL;
7b128766 2027 }
7b128766 2028
d68fc57b
YZ
2029 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2030 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2031#if 0
2032 /*
2033 * For proper ENOSPC handling, we should do orphan
2034 * cleanup when mounting. But this introduces backward
2035 * compatibility issue.
2036 */
2037 if (!xchg(&root->orphan_item_inserted, 1))
2038 insert = 2;
2039 else
2040 insert = 1;
2041#endif
2042 insert = 1;
7b128766
JB
2043 }
2044
d68fc57b
YZ
2045 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2046 BTRFS_I(inode)->orphan_meta_reserved = 1;
2047 reserve = 1;
2048 }
2049 spin_unlock(&root->orphan_lock);
7b128766 2050
d68fc57b
YZ
2051 /* grab metadata reservation from transaction handle */
2052 if (reserve) {
2053 ret = btrfs_orphan_reserve_metadata(trans, inode);
2054 BUG_ON(ret);
2055 }
7b128766 2056
d68fc57b
YZ
2057 /* insert an orphan item to track this unlinked/truncated file */
2058 if (insert >= 1) {
33345d01 2059 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
ee4d89f0 2060 BUG_ON(ret && ret != -EEXIST);
d68fc57b
YZ
2061 }
2062
2063 /* insert an orphan item to track subvolume contains orphan files */
2064 if (insert >= 2) {
2065 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2066 root->root_key.objectid);
2067 BUG_ON(ret);
2068 }
2069 return 0;
7b128766
JB
2070}
2071
2072/*
2073 * We have done the truncate/delete so we can go ahead and remove the orphan
2074 * item for this particular inode.
2075 */
2076int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2077{
2078 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2079 int delete_item = 0;
2080 int release_rsv = 0;
7b128766
JB
2081 int ret = 0;
2082
d68fc57b
YZ
2083 spin_lock(&root->orphan_lock);
2084 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2085 list_del_init(&BTRFS_I(inode)->i_orphan);
2086 delete_item = 1;
7b128766
JB
2087 }
2088
d68fc57b
YZ
2089 if (BTRFS_I(inode)->orphan_meta_reserved) {
2090 BTRFS_I(inode)->orphan_meta_reserved = 0;
2091 release_rsv = 1;
7b128766 2092 }
d68fc57b 2093 spin_unlock(&root->orphan_lock);
7b128766 2094
d68fc57b 2095 if (trans && delete_item) {
33345d01 2096 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2097 BUG_ON(ret);
2098 }
7b128766 2099
d68fc57b
YZ
2100 if (release_rsv)
2101 btrfs_orphan_release_metadata(inode);
7b128766 2102
d68fc57b 2103 return 0;
7b128766
JB
2104}
2105
2106/*
2107 * this cleans up any orphans that may be left on the list from the last use
2108 * of this root.
2109 */
66b4ffd1 2110int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2111{
2112 struct btrfs_path *path;
2113 struct extent_buffer *leaf;
7b128766
JB
2114 struct btrfs_key key, found_key;
2115 struct btrfs_trans_handle *trans;
2116 struct inode *inode;
8f6d7f4f 2117 u64 last_objectid = 0;
7b128766
JB
2118 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2119
d68fc57b 2120 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2121 return 0;
c71bf099
YZ
2122
2123 path = btrfs_alloc_path();
66b4ffd1
JB
2124 if (!path) {
2125 ret = -ENOMEM;
2126 goto out;
2127 }
7b128766
JB
2128 path->reada = -1;
2129
2130 key.objectid = BTRFS_ORPHAN_OBJECTID;
2131 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2132 key.offset = (u64)-1;
2133
7b128766
JB
2134 while (1) {
2135 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2136 if (ret < 0)
2137 goto out;
7b128766
JB
2138
2139 /*
2140 * if ret == 0 means we found what we were searching for, which
25985edc 2141 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2142 * find the key and see if we have stuff that matches
2143 */
2144 if (ret > 0) {
66b4ffd1 2145 ret = 0;
7b128766
JB
2146 if (path->slots[0] == 0)
2147 break;
2148 path->slots[0]--;
2149 }
2150
2151 /* pull out the item */
2152 leaf = path->nodes[0];
7b128766
JB
2153 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2154
2155 /* make sure the item matches what we want */
2156 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2157 break;
2158 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2159 break;
2160
2161 /* release the path since we're done with it */
b3b4aa74 2162 btrfs_release_path(path);
7b128766
JB
2163
2164 /*
2165 * this is where we are basically btrfs_lookup, without the
2166 * crossing root thing. we store the inode number in the
2167 * offset of the orphan item.
2168 */
8f6d7f4f
JB
2169
2170 if (found_key.offset == last_objectid) {
2171 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2172 "stopping orphan cleanup\n");
2173 ret = -EINVAL;
2174 goto out;
2175 }
2176
2177 last_objectid = found_key.offset;
2178
5d4f98a2
YZ
2179 found_key.objectid = found_key.offset;
2180 found_key.type = BTRFS_INODE_ITEM_KEY;
2181 found_key.offset = 0;
73f73415 2182 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2183 ret = PTR_RET(inode);
2184 if (ret && ret != -ESTALE)
66b4ffd1 2185 goto out;
7b128766 2186
f8e9e0b0
AJ
2187 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2188 struct btrfs_root *dead_root;
2189 struct btrfs_fs_info *fs_info = root->fs_info;
2190 int is_dead_root = 0;
2191
2192 /*
2193 * this is an orphan in the tree root. Currently these
2194 * could come from 2 sources:
2195 * a) a snapshot deletion in progress
2196 * b) a free space cache inode
2197 * We need to distinguish those two, as the snapshot
2198 * orphan must not get deleted.
2199 * find_dead_roots already ran before us, so if this
2200 * is a snapshot deletion, we should find the root
2201 * in the dead_roots list
2202 */
2203 spin_lock(&fs_info->trans_lock);
2204 list_for_each_entry(dead_root, &fs_info->dead_roots,
2205 root_list) {
2206 if (dead_root->root_key.objectid ==
2207 found_key.objectid) {
2208 is_dead_root = 1;
2209 break;
2210 }
2211 }
2212 spin_unlock(&fs_info->trans_lock);
2213 if (is_dead_root) {
2214 /* prevent this orphan from being found again */
2215 key.offset = found_key.objectid - 1;
2216 continue;
2217 }
2218 }
7b128766 2219 /*
a8c9e576
JB
2220 * Inode is already gone but the orphan item is still there,
2221 * kill the orphan item.
7b128766 2222 */
a8c9e576
JB
2223 if (ret == -ESTALE) {
2224 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2225 if (IS_ERR(trans)) {
2226 ret = PTR_ERR(trans);
2227 goto out;
2228 }
a8c9e576
JB
2229 ret = btrfs_del_orphan_item(trans, root,
2230 found_key.objectid);
2231 BUG_ON(ret);
5b21f2ed 2232 btrfs_end_transaction(trans, root);
7b128766
JB
2233 continue;
2234 }
2235
a8c9e576
JB
2236 /*
2237 * add this inode to the orphan list so btrfs_orphan_del does
2238 * the proper thing when we hit it
2239 */
2240 spin_lock(&root->orphan_lock);
2241 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2242 spin_unlock(&root->orphan_lock);
2243
7b128766
JB
2244 /* if we have links, this was a truncate, lets do that */
2245 if (inode->i_nlink) {
a41ad394
JB
2246 if (!S_ISREG(inode->i_mode)) {
2247 WARN_ON(1);
2248 iput(inode);
2249 continue;
2250 }
7b128766 2251 nr_truncate++;
66b4ffd1 2252 ret = btrfs_truncate(inode);
7b128766
JB
2253 } else {
2254 nr_unlink++;
2255 }
2256
2257 /* this will do delete_inode and everything for us */
2258 iput(inode);
66b4ffd1
JB
2259 if (ret)
2260 goto out;
7b128766 2261 }
3254c876
MX
2262 /* release the path since we're done with it */
2263 btrfs_release_path(path);
2264
d68fc57b
YZ
2265 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2266
2267 if (root->orphan_block_rsv)
2268 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2269 (u64)-1);
2270
2271 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2272 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2273 if (!IS_ERR(trans))
2274 btrfs_end_transaction(trans, root);
d68fc57b 2275 }
7b128766
JB
2276
2277 if (nr_unlink)
2278 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2279 if (nr_truncate)
2280 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2281
2282out:
2283 if (ret)
2284 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2285 btrfs_free_path(path);
2286 return ret;
7b128766
JB
2287}
2288
46a53cca
CM
2289/*
2290 * very simple check to peek ahead in the leaf looking for xattrs. If we
2291 * don't find any xattrs, we know there can't be any acls.
2292 *
2293 * slot is the slot the inode is in, objectid is the objectid of the inode
2294 */
2295static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2296 int slot, u64 objectid)
2297{
2298 u32 nritems = btrfs_header_nritems(leaf);
2299 struct btrfs_key found_key;
2300 int scanned = 0;
2301
2302 slot++;
2303 while (slot < nritems) {
2304 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2305
2306 /* we found a different objectid, there must not be acls */
2307 if (found_key.objectid != objectid)
2308 return 0;
2309
2310 /* we found an xattr, assume we've got an acl */
2311 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2312 return 1;
2313
2314 /*
2315 * we found a key greater than an xattr key, there can't
2316 * be any acls later on
2317 */
2318 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2319 return 0;
2320
2321 slot++;
2322 scanned++;
2323
2324 /*
2325 * it goes inode, inode backrefs, xattrs, extents,
2326 * so if there are a ton of hard links to an inode there can
2327 * be a lot of backrefs. Don't waste time searching too hard,
2328 * this is just an optimization
2329 */
2330 if (scanned >= 8)
2331 break;
2332 }
2333 /* we hit the end of the leaf before we found an xattr or
2334 * something larger than an xattr. We have to assume the inode
2335 * has acls
2336 */
2337 return 1;
2338}
2339
d352ac68
CM
2340/*
2341 * read an inode from the btree into the in-memory inode
2342 */
5d4f98a2 2343static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2344{
2345 struct btrfs_path *path;
5f39d397 2346 struct extent_buffer *leaf;
39279cc3 2347 struct btrfs_inode_item *inode_item;
0b86a832 2348 struct btrfs_timespec *tspec;
39279cc3
CM
2349 struct btrfs_root *root = BTRFS_I(inode)->root;
2350 struct btrfs_key location;
46a53cca 2351 int maybe_acls;
618e21d5 2352 u32 rdev;
39279cc3 2353 int ret;
2f7e33d4
MX
2354 bool filled = false;
2355
2356 ret = btrfs_fill_inode(inode, &rdev);
2357 if (!ret)
2358 filled = true;
39279cc3
CM
2359
2360 path = btrfs_alloc_path();
1748f843
MF
2361 if (!path)
2362 goto make_bad;
2363
d90c7321 2364 path->leave_spinning = 1;
39279cc3 2365 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2366
39279cc3 2367 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2368 if (ret)
39279cc3 2369 goto make_bad;
39279cc3 2370
5f39d397 2371 leaf = path->nodes[0];
2f7e33d4
MX
2372
2373 if (filled)
2374 goto cache_acl;
2375
5f39d397
CM
2376 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2377 struct btrfs_inode_item);
5f39d397 2378 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2379 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
5f39d397
CM
2380 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2381 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2382 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2383
2384 tspec = btrfs_inode_atime(inode_item);
2385 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2386 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2387
2388 tspec = btrfs_inode_mtime(inode_item);
2389 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2390 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2391
2392 tspec = btrfs_inode_ctime(inode_item);
2393 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2394 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2395
a76a3cd4 2396 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2397 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2398 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2399 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2400 inode->i_rdev = 0;
5f39d397
CM
2401 rdev = btrfs_inode_rdev(leaf, inode_item);
2402
aec7477b 2403 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2404 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2405cache_acl:
46a53cca
CM
2406 /*
2407 * try to precache a NULL acl entry for files that don't have
2408 * any xattrs or acls
2409 */
33345d01
LZ
2410 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2411 btrfs_ino(inode));
72c04902
AV
2412 if (!maybe_acls)
2413 cache_no_acl(inode);
46a53cca 2414
39279cc3 2415 btrfs_free_path(path);
39279cc3 2416
39279cc3 2417 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2418 case S_IFREG:
2419 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2420 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2421 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2422 inode->i_fop = &btrfs_file_operations;
2423 inode->i_op = &btrfs_file_inode_operations;
2424 break;
2425 case S_IFDIR:
2426 inode->i_fop = &btrfs_dir_file_operations;
2427 if (root == root->fs_info->tree_root)
2428 inode->i_op = &btrfs_dir_ro_inode_operations;
2429 else
2430 inode->i_op = &btrfs_dir_inode_operations;
2431 break;
2432 case S_IFLNK:
2433 inode->i_op = &btrfs_symlink_inode_operations;
2434 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2435 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2436 break;
618e21d5 2437 default:
0279b4cd 2438 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2439 init_special_inode(inode, inode->i_mode, rdev);
2440 break;
39279cc3 2441 }
6cbff00f
CH
2442
2443 btrfs_update_iflags(inode);
39279cc3
CM
2444 return;
2445
2446make_bad:
39279cc3 2447 btrfs_free_path(path);
39279cc3
CM
2448 make_bad_inode(inode);
2449}
2450
d352ac68
CM
2451/*
2452 * given a leaf and an inode, copy the inode fields into the leaf
2453 */
e02119d5
CM
2454static void fill_inode_item(struct btrfs_trans_handle *trans,
2455 struct extent_buffer *leaf,
5f39d397 2456 struct btrfs_inode_item *item,
39279cc3
CM
2457 struct inode *inode)
2458{
5f39d397
CM
2459 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2460 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2461 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2462 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2463 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2464
2465 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2466 inode->i_atime.tv_sec);
2467 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2468 inode->i_atime.tv_nsec);
2469
2470 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2471 inode->i_mtime.tv_sec);
2472 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2473 inode->i_mtime.tv_nsec);
2474
2475 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2476 inode->i_ctime.tv_sec);
2477 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2478 inode->i_ctime.tv_nsec);
2479
a76a3cd4 2480 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2481 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2482 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2483 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2484 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2485 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2486 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2487}
2488
d352ac68
CM
2489/*
2490 * copy everything in the in-memory inode into the btree.
2491 */
2115133f 2492static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2493 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2494{
2495 struct btrfs_inode_item *inode_item;
2496 struct btrfs_path *path;
5f39d397 2497 struct extent_buffer *leaf;
39279cc3
CM
2498 int ret;
2499
2500 path = btrfs_alloc_path();
16cdcec7
MX
2501 if (!path)
2502 return -ENOMEM;
2503
b9473439 2504 path->leave_spinning = 1;
16cdcec7
MX
2505 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2506 1);
39279cc3
CM
2507 if (ret) {
2508 if (ret > 0)
2509 ret = -ENOENT;
2510 goto failed;
2511 }
2512
b4ce94de 2513 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2514 leaf = path->nodes[0];
2515 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2516 struct btrfs_inode_item);
39279cc3 2517
e02119d5 2518 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2519 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2520 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2521 ret = 0;
2522failed:
39279cc3
CM
2523 btrfs_free_path(path);
2524 return ret;
2525}
2526
2115133f
CM
2527/*
2528 * copy everything in the in-memory inode into the btree.
2529 */
2530noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2531 struct btrfs_root *root, struct inode *inode)
2532{
2533 int ret;
2534
2535 /*
2536 * If the inode is a free space inode, we can deadlock during commit
2537 * if we put it into the delayed code.
2538 *
2539 * The data relocation inode should also be directly updated
2540 * without delay
2541 */
2542 if (!btrfs_is_free_space_inode(root, inode)
2543 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2544 ret = btrfs_delayed_update_inode(trans, root, inode);
2545 if (!ret)
2546 btrfs_set_inode_last_trans(trans, inode);
2547 return ret;
2548 }
2549
2550 return btrfs_update_inode_item(trans, root, inode);
2551}
2552
2553static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2554 struct btrfs_root *root, struct inode *inode)
2555{
2556 int ret;
2557
2558 ret = btrfs_update_inode(trans, root, inode);
2559 if (ret == -ENOSPC)
2560 return btrfs_update_inode_item(trans, root, inode);
2561 return ret;
2562}
2563
d352ac68
CM
2564/*
2565 * unlink helper that gets used here in inode.c and in the tree logging
2566 * recovery code. It remove a link in a directory with a given name, and
2567 * also drops the back refs in the inode to the directory
2568 */
92986796
AV
2569static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2570 struct btrfs_root *root,
2571 struct inode *dir, struct inode *inode,
2572 const char *name, int name_len)
39279cc3
CM
2573{
2574 struct btrfs_path *path;
39279cc3 2575 int ret = 0;
5f39d397 2576 struct extent_buffer *leaf;
39279cc3 2577 struct btrfs_dir_item *di;
5f39d397 2578 struct btrfs_key key;
aec7477b 2579 u64 index;
33345d01
LZ
2580 u64 ino = btrfs_ino(inode);
2581 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2582
2583 path = btrfs_alloc_path();
54aa1f4d
CM
2584 if (!path) {
2585 ret = -ENOMEM;
554233a6 2586 goto out;
54aa1f4d
CM
2587 }
2588
b9473439 2589 path->leave_spinning = 1;
33345d01 2590 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2591 name, name_len, -1);
2592 if (IS_ERR(di)) {
2593 ret = PTR_ERR(di);
2594 goto err;
2595 }
2596 if (!di) {
2597 ret = -ENOENT;
2598 goto err;
2599 }
5f39d397
CM
2600 leaf = path->nodes[0];
2601 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2602 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2603 if (ret)
2604 goto err;
b3b4aa74 2605 btrfs_release_path(path);
39279cc3 2606
33345d01
LZ
2607 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2608 dir_ino, &index);
aec7477b 2609 if (ret) {
d397712b 2610 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2611 "inode %llu parent %llu\n", name_len, name,
2612 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2613 goto err;
2614 }
2615
16cdcec7
MX
2616 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2617 if (ret)
39279cc3 2618 goto err;
39279cc3 2619
e02119d5 2620 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2621 inode, dir_ino);
49eb7e46 2622 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2623
2624 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2625 dir, index);
6418c961
CM
2626 if (ret == -ENOENT)
2627 ret = 0;
39279cc3
CM
2628err:
2629 btrfs_free_path(path);
e02119d5
CM
2630 if (ret)
2631 goto out;
2632
2633 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2634 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2635 btrfs_update_inode(trans, root, dir);
e02119d5 2636out:
39279cc3
CM
2637 return ret;
2638}
2639
92986796
AV
2640int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2641 struct btrfs_root *root,
2642 struct inode *dir, struct inode *inode,
2643 const char *name, int name_len)
2644{
2645 int ret;
2646 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2647 if (!ret) {
2648 btrfs_drop_nlink(inode);
2649 ret = btrfs_update_inode(trans, root, inode);
2650 }
2651 return ret;
2652}
2653
2654
a22285a6
YZ
2655/* helper to check if there is any shared block in the path */
2656static int check_path_shared(struct btrfs_root *root,
2657 struct btrfs_path *path)
39279cc3 2658{
a22285a6
YZ
2659 struct extent_buffer *eb;
2660 int level;
0e4dcbef 2661 u64 refs = 1;
5df6a9f6 2662
a22285a6 2663 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2664 int ret;
2665
a22285a6
YZ
2666 if (!path->nodes[level])
2667 break;
2668 eb = path->nodes[level];
2669 if (!btrfs_block_can_be_shared(root, eb))
2670 continue;
2671 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2672 &refs, NULL);
2673 if (refs > 1)
2674 return 1;
5df6a9f6 2675 }
dedefd72 2676 return 0;
39279cc3
CM
2677}
2678
a22285a6
YZ
2679/*
2680 * helper to start transaction for unlink and rmdir.
2681 *
2682 * unlink and rmdir are special in btrfs, they do not always free space.
2683 * so in enospc case, we should make sure they will free space before
2684 * allowing them to use the global metadata reservation.
2685 */
2686static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2687 struct dentry *dentry)
4df27c4d 2688{
39279cc3 2689 struct btrfs_trans_handle *trans;
a22285a6 2690 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2691 struct btrfs_path *path;
a22285a6 2692 struct btrfs_inode_ref *ref;
4df27c4d 2693 struct btrfs_dir_item *di;
7b128766 2694 struct inode *inode = dentry->d_inode;
4df27c4d 2695 u64 index;
a22285a6
YZ
2696 int check_link = 1;
2697 int err = -ENOSPC;
4df27c4d 2698 int ret;
33345d01
LZ
2699 u64 ino = btrfs_ino(inode);
2700 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2701
e70bea5f
JB
2702 /*
2703 * 1 for the possible orphan item
2704 * 1 for the dir item
2705 * 1 for the dir index
2706 * 1 for the inode ref
2707 * 1 for the inode ref in the tree log
2708 * 2 for the dir entries in the log
2709 * 1 for the inode
2710 */
2711 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2712 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2713 return trans;
4df27c4d 2714
33345d01 2715 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2716 return ERR_PTR(-ENOSPC);
4df27c4d 2717
a22285a6
YZ
2718 /* check if there is someone else holds reference */
2719 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2720 return ERR_PTR(-ENOSPC);
4df27c4d 2721
a22285a6
YZ
2722 if (atomic_read(&inode->i_count) > 2)
2723 return ERR_PTR(-ENOSPC);
4df27c4d 2724
a22285a6
YZ
2725 if (xchg(&root->fs_info->enospc_unlink, 1))
2726 return ERR_PTR(-ENOSPC);
2727
2728 path = btrfs_alloc_path();
2729 if (!path) {
2730 root->fs_info->enospc_unlink = 0;
2731 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2732 }
2733
3880a1b4
JB
2734 /* 1 for the orphan item */
2735 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2736 if (IS_ERR(trans)) {
a22285a6
YZ
2737 btrfs_free_path(path);
2738 root->fs_info->enospc_unlink = 0;
2739 return trans;
2740 }
4df27c4d 2741
a22285a6
YZ
2742 path->skip_locking = 1;
2743 path->search_commit_root = 1;
4df27c4d 2744
a22285a6
YZ
2745 ret = btrfs_lookup_inode(trans, root, path,
2746 &BTRFS_I(dir)->location, 0);
2747 if (ret < 0) {
2748 err = ret;
2749 goto out;
2750 }
2751 if (ret == 0) {
2752 if (check_path_shared(root, path))
2753 goto out;
2754 } else {
2755 check_link = 0;
5df6a9f6 2756 }
b3b4aa74 2757 btrfs_release_path(path);
a22285a6
YZ
2758
2759 ret = btrfs_lookup_inode(trans, root, path,
2760 &BTRFS_I(inode)->location, 0);
2761 if (ret < 0) {
2762 err = ret;
2763 goto out;
2764 }
2765 if (ret == 0) {
2766 if (check_path_shared(root, path))
2767 goto out;
2768 } else {
2769 check_link = 0;
2770 }
b3b4aa74 2771 btrfs_release_path(path);
a22285a6
YZ
2772
2773 if (ret == 0 && S_ISREG(inode->i_mode)) {
2774 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2775 ino, (u64)-1, 0);
a22285a6
YZ
2776 if (ret < 0) {
2777 err = ret;
2778 goto out;
2779 }
2780 BUG_ON(ret == 0);
2781 if (check_path_shared(root, path))
2782 goto out;
b3b4aa74 2783 btrfs_release_path(path);
a22285a6
YZ
2784 }
2785
2786 if (!check_link) {
2787 err = 0;
2788 goto out;
2789 }
2790
33345d01 2791 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2792 dentry->d_name.name, dentry->d_name.len, 0);
2793 if (IS_ERR(di)) {
2794 err = PTR_ERR(di);
2795 goto out;
2796 }
2797 if (di) {
2798 if (check_path_shared(root, path))
2799 goto out;
2800 } else {
2801 err = 0;
2802 goto out;
2803 }
b3b4aa74 2804 btrfs_release_path(path);
a22285a6
YZ
2805
2806 ref = btrfs_lookup_inode_ref(trans, root, path,
2807 dentry->d_name.name, dentry->d_name.len,
33345d01 2808 ino, dir_ino, 0);
a22285a6
YZ
2809 if (IS_ERR(ref)) {
2810 err = PTR_ERR(ref);
2811 goto out;
2812 }
2813 BUG_ON(!ref);
2814 if (check_path_shared(root, path))
2815 goto out;
2816 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2817 btrfs_release_path(path);
a22285a6 2818
16cdcec7
MX
2819 /*
2820 * This is a commit root search, if we can lookup inode item and other
2821 * relative items in the commit root, it means the transaction of
2822 * dir/file creation has been committed, and the dir index item that we
2823 * delay to insert has also been inserted into the commit root. So
2824 * we needn't worry about the delayed insertion of the dir index item
2825 * here.
2826 */
33345d01 2827 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2828 dentry->d_name.name, dentry->d_name.len, 0);
2829 if (IS_ERR(di)) {
2830 err = PTR_ERR(di);
2831 goto out;
2832 }
2833 BUG_ON(ret == -ENOENT);
2834 if (check_path_shared(root, path))
2835 goto out;
2836
2837 err = 0;
2838out:
2839 btrfs_free_path(path);
3880a1b4
JB
2840 /* Migrate the orphan reservation over */
2841 if (!err)
2842 err = btrfs_block_rsv_migrate(trans->block_rsv,
2843 &root->fs_info->global_block_rsv,
5a77d76c 2844 trans->bytes_reserved);
3880a1b4 2845
a22285a6
YZ
2846 if (err) {
2847 btrfs_end_transaction(trans, root);
2848 root->fs_info->enospc_unlink = 0;
2849 return ERR_PTR(err);
2850 }
2851
2852 trans->block_rsv = &root->fs_info->global_block_rsv;
2853 return trans;
2854}
2855
2856static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2857 struct btrfs_root *root)
2858{
2859 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
5a77d76c
JB
2860 btrfs_block_rsv_release(root, trans->block_rsv,
2861 trans->bytes_reserved);
2862 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
2863 BUG_ON(!root->fs_info->enospc_unlink);
2864 root->fs_info->enospc_unlink = 0;
2865 }
7ad85bb7 2866 btrfs_end_transaction(trans, root);
a22285a6
YZ
2867}
2868
2869static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2870{
2871 struct btrfs_root *root = BTRFS_I(dir)->root;
2872 struct btrfs_trans_handle *trans;
2873 struct inode *inode = dentry->d_inode;
2874 int ret;
2875 unsigned long nr = 0;
2876
2877 trans = __unlink_start_trans(dir, dentry);
2878 if (IS_ERR(trans))
2879 return PTR_ERR(trans);
5f39d397 2880
12fcfd22
CM
2881 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2882
e02119d5
CM
2883 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2884 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
2885 if (ret)
2886 goto out;
7b128766 2887
a22285a6 2888 if (inode->i_nlink == 0) {
7b128766 2889 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
2890 if (ret)
2891 goto out;
a22285a6 2892 }
7b128766 2893
b532402e 2894out:
d3c2fdcf 2895 nr = trans->blocks_used;
a22285a6 2896 __unlink_end_trans(trans, root);
d3c2fdcf 2897 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2898 return ret;
2899}
2900
4df27c4d
YZ
2901int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2902 struct btrfs_root *root,
2903 struct inode *dir, u64 objectid,
2904 const char *name, int name_len)
2905{
2906 struct btrfs_path *path;
2907 struct extent_buffer *leaf;
2908 struct btrfs_dir_item *di;
2909 struct btrfs_key key;
2910 u64 index;
2911 int ret;
33345d01 2912 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
2913
2914 path = btrfs_alloc_path();
2915 if (!path)
2916 return -ENOMEM;
2917
33345d01 2918 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 2919 name, name_len, -1);
c704005d 2920 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2921
2922 leaf = path->nodes[0];
2923 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2924 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2925 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2926 BUG_ON(ret);
b3b4aa74 2927 btrfs_release_path(path);
4df27c4d
YZ
2928
2929 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2930 objectid, root->root_key.objectid,
33345d01 2931 dir_ino, &index, name, name_len);
4df27c4d
YZ
2932 if (ret < 0) {
2933 BUG_ON(ret != -ENOENT);
33345d01 2934 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 2935 name, name_len);
c704005d 2936 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2937
2938 leaf = path->nodes[0];
2939 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2940 btrfs_release_path(path);
4df27c4d
YZ
2941 index = key.offset;
2942 }
945d8962 2943 btrfs_release_path(path);
4df27c4d 2944
16cdcec7 2945 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 2946 BUG_ON(ret);
4df27c4d
YZ
2947
2948 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2949 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2950 ret = btrfs_update_inode(trans, root, dir);
2951 BUG_ON(ret);
4df27c4d 2952
71d7aed0 2953 btrfs_free_path(path);
4df27c4d
YZ
2954 return 0;
2955}
2956
39279cc3
CM
2957static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2958{
2959 struct inode *inode = dentry->d_inode;
1832a6d5 2960 int err = 0;
39279cc3 2961 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2962 struct btrfs_trans_handle *trans;
1832a6d5 2963 unsigned long nr = 0;
39279cc3 2964
3394e160 2965 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 2966 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2967 return -ENOTEMPTY;
2968
a22285a6
YZ
2969 trans = __unlink_start_trans(dir, dentry);
2970 if (IS_ERR(trans))
5df6a9f6 2971 return PTR_ERR(trans);
5df6a9f6 2972
33345d01 2973 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
2974 err = btrfs_unlink_subvol(trans, root, dir,
2975 BTRFS_I(inode)->location.objectid,
2976 dentry->d_name.name,
2977 dentry->d_name.len);
2978 goto out;
2979 }
2980
7b128766
JB
2981 err = btrfs_orphan_add(trans, inode);
2982 if (err)
4df27c4d 2983 goto out;
7b128766 2984
39279cc3 2985 /* now the directory is empty */
e02119d5
CM
2986 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2987 dentry->d_name.name, dentry->d_name.len);
d397712b 2988 if (!err)
dbe674a9 2989 btrfs_i_size_write(inode, 0);
4df27c4d 2990out:
d3c2fdcf 2991 nr = trans->blocks_used;
a22285a6 2992 __unlink_end_trans(trans, root);
d3c2fdcf 2993 btrfs_btree_balance_dirty(root, nr);
3954401f 2994
39279cc3
CM
2995 return err;
2996}
2997
39279cc3
CM
2998/*
2999 * this can truncate away extent items, csum items and directory items.
3000 * It starts at a high offset and removes keys until it can't find
d352ac68 3001 * any higher than new_size
39279cc3
CM
3002 *
3003 * csum items that cross the new i_size are truncated to the new size
3004 * as well.
7b128766
JB
3005 *
3006 * min_type is the minimum key type to truncate down to. If set to 0, this
3007 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3008 */
8082510e
YZ
3009int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3010 struct btrfs_root *root,
3011 struct inode *inode,
3012 u64 new_size, u32 min_type)
39279cc3 3013{
39279cc3 3014 struct btrfs_path *path;
5f39d397 3015 struct extent_buffer *leaf;
39279cc3 3016 struct btrfs_file_extent_item *fi;
8082510e
YZ
3017 struct btrfs_key key;
3018 struct btrfs_key found_key;
39279cc3 3019 u64 extent_start = 0;
db94535d 3020 u64 extent_num_bytes = 0;
5d4f98a2 3021 u64 extent_offset = 0;
39279cc3 3022 u64 item_end = 0;
8082510e
YZ
3023 u64 mask = root->sectorsize - 1;
3024 u32 found_type = (u8)-1;
39279cc3
CM
3025 int found_extent;
3026 int del_item;
85e21bac
CM
3027 int pending_del_nr = 0;
3028 int pending_del_slot = 0;
179e29e4 3029 int extent_type = -1;
8082510e
YZ
3030 int ret;
3031 int err = 0;
33345d01 3032 u64 ino = btrfs_ino(inode);
8082510e
YZ
3033
3034 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3035
0eb0e19c
MF
3036 path = btrfs_alloc_path();
3037 if (!path)
3038 return -ENOMEM;
3039 path->reada = -1;
3040
0af3d00b 3041 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3042 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3043
16cdcec7
MX
3044 /*
3045 * This function is also used to drop the items in the log tree before
3046 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3047 * it is used to drop the loged items. So we shouldn't kill the delayed
3048 * items.
3049 */
3050 if (min_type == 0 && root == BTRFS_I(inode)->root)
3051 btrfs_kill_delayed_inode_items(inode);
3052
33345d01 3053 key.objectid = ino;
39279cc3 3054 key.offset = (u64)-1;
5f39d397
CM
3055 key.type = (u8)-1;
3056
85e21bac 3057search_again:
b9473439 3058 path->leave_spinning = 1;
85e21bac 3059 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3060 if (ret < 0) {
3061 err = ret;
3062 goto out;
3063 }
d397712b 3064
85e21bac 3065 if (ret > 0) {
e02119d5
CM
3066 /* there are no items in the tree for us to truncate, we're
3067 * done
3068 */
8082510e
YZ
3069 if (path->slots[0] == 0)
3070 goto out;
85e21bac
CM
3071 path->slots[0]--;
3072 }
3073
d397712b 3074 while (1) {
39279cc3 3075 fi = NULL;
5f39d397
CM
3076 leaf = path->nodes[0];
3077 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3078 found_type = btrfs_key_type(&found_key);
39279cc3 3079
33345d01 3080 if (found_key.objectid != ino)
39279cc3 3081 break;
5f39d397 3082
85e21bac 3083 if (found_type < min_type)
39279cc3
CM
3084 break;
3085
5f39d397 3086 item_end = found_key.offset;
39279cc3 3087 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3088 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3089 struct btrfs_file_extent_item);
179e29e4
CM
3090 extent_type = btrfs_file_extent_type(leaf, fi);
3091 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3092 item_end +=
db94535d 3093 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3094 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3095 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3096 fi);
39279cc3 3097 }
008630c1 3098 item_end--;
39279cc3 3099 }
8082510e
YZ
3100 if (found_type > min_type) {
3101 del_item = 1;
3102 } else {
3103 if (item_end < new_size)
b888db2b 3104 break;
8082510e
YZ
3105 if (found_key.offset >= new_size)
3106 del_item = 1;
3107 else
3108 del_item = 0;
39279cc3 3109 }
39279cc3 3110 found_extent = 0;
39279cc3 3111 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3112 if (found_type != BTRFS_EXTENT_DATA_KEY)
3113 goto delete;
3114
3115 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3116 u64 num_dec;
db94535d 3117 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3118 if (!del_item) {
db94535d
CM
3119 u64 orig_num_bytes =
3120 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3121 extent_num_bytes = new_size -
5f39d397 3122 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3123 extent_num_bytes = extent_num_bytes &
3124 ~((u64)root->sectorsize - 1);
db94535d
CM
3125 btrfs_set_file_extent_num_bytes(leaf, fi,
3126 extent_num_bytes);
3127 num_dec = (orig_num_bytes -
9069218d 3128 extent_num_bytes);
e02119d5 3129 if (root->ref_cows && extent_start != 0)
a76a3cd4 3130 inode_sub_bytes(inode, num_dec);
5f39d397 3131 btrfs_mark_buffer_dirty(leaf);
39279cc3 3132 } else {
db94535d
CM
3133 extent_num_bytes =
3134 btrfs_file_extent_disk_num_bytes(leaf,
3135 fi);
5d4f98a2
YZ
3136 extent_offset = found_key.offset -
3137 btrfs_file_extent_offset(leaf, fi);
3138
39279cc3 3139 /* FIXME blocksize != 4096 */
9069218d 3140 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3141 if (extent_start != 0) {
3142 found_extent = 1;
e02119d5 3143 if (root->ref_cows)
a76a3cd4 3144 inode_sub_bytes(inode, num_dec);
e02119d5 3145 }
39279cc3 3146 }
9069218d 3147 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3148 /*
3149 * we can't truncate inline items that have had
3150 * special encodings
3151 */
3152 if (!del_item &&
3153 btrfs_file_extent_compression(leaf, fi) == 0 &&
3154 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3155 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3156 u32 size = new_size - found_key.offset;
3157
3158 if (root->ref_cows) {
a76a3cd4
YZ
3159 inode_sub_bytes(inode, item_end + 1 -
3160 new_size);
e02119d5
CM
3161 }
3162 size =
3163 btrfs_file_extent_calc_inline_size(size);
9069218d 3164 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3165 size, 1);
e02119d5 3166 } else if (root->ref_cows) {
a76a3cd4
YZ
3167 inode_sub_bytes(inode, item_end + 1 -
3168 found_key.offset);
9069218d 3169 }
39279cc3 3170 }
179e29e4 3171delete:
39279cc3 3172 if (del_item) {
85e21bac
CM
3173 if (!pending_del_nr) {
3174 /* no pending yet, add ourselves */
3175 pending_del_slot = path->slots[0];
3176 pending_del_nr = 1;
3177 } else if (pending_del_nr &&
3178 path->slots[0] + 1 == pending_del_slot) {
3179 /* hop on the pending chunk */
3180 pending_del_nr++;
3181 pending_del_slot = path->slots[0];
3182 } else {
d397712b 3183 BUG();
85e21bac 3184 }
39279cc3
CM
3185 } else {
3186 break;
3187 }
0af3d00b
JB
3188 if (found_extent && (root->ref_cows ||
3189 root == root->fs_info->tree_root)) {
b9473439 3190 btrfs_set_path_blocking(path);
39279cc3 3191 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3192 extent_num_bytes, 0,
3193 btrfs_header_owner(leaf),
66d7e7f0 3194 ino, extent_offset, 0);
39279cc3
CM
3195 BUG_ON(ret);
3196 }
85e21bac 3197
8082510e
YZ
3198 if (found_type == BTRFS_INODE_ITEM_KEY)
3199 break;
3200
3201 if (path->slots[0] == 0 ||
3202 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3203 if (root->ref_cows &&
3204 BTRFS_I(inode)->location.objectid !=
3205 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3206 err = -EAGAIN;
3207 goto out;
3208 }
3209 if (pending_del_nr) {
3210 ret = btrfs_del_items(trans, root, path,
3211 pending_del_slot,
3212 pending_del_nr);
3213 BUG_ON(ret);
3214 pending_del_nr = 0;
3215 }
b3b4aa74 3216 btrfs_release_path(path);
85e21bac 3217 goto search_again;
8082510e
YZ
3218 } else {
3219 path->slots[0]--;
85e21bac 3220 }
39279cc3 3221 }
8082510e 3222out:
85e21bac
CM
3223 if (pending_del_nr) {
3224 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3225 pending_del_nr);
d68fc57b 3226 BUG_ON(ret);
85e21bac 3227 }
39279cc3 3228 btrfs_free_path(path);
8082510e 3229 return err;
39279cc3
CM
3230}
3231
3232/*
3233 * taken from block_truncate_page, but does cow as it zeros out
3234 * any bytes left in the last page in the file.
3235 */
3236static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3237{
3238 struct inode *inode = mapping->host;
db94535d 3239 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3240 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3241 struct btrfs_ordered_extent *ordered;
2ac55d41 3242 struct extent_state *cached_state = NULL;
e6dcd2dc 3243 char *kaddr;
db94535d 3244 u32 blocksize = root->sectorsize;
39279cc3
CM
3245 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3246 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3247 struct page *page;
3b16a4e3 3248 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3249 int ret = 0;
a52d9a80 3250 u64 page_start;
e6dcd2dc 3251 u64 page_end;
39279cc3
CM
3252
3253 if ((offset & (blocksize - 1)) == 0)
3254 goto out;
0ca1f7ce 3255 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3256 if (ret)
3257 goto out;
39279cc3
CM
3258
3259 ret = -ENOMEM;
211c17f5 3260again:
3b16a4e3 3261 page = find_or_create_page(mapping, index, mask);
5d5e103a 3262 if (!page) {
0ca1f7ce 3263 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3264 goto out;
5d5e103a 3265 }
e6dcd2dc
CM
3266
3267 page_start = page_offset(page);
3268 page_end = page_start + PAGE_CACHE_SIZE - 1;
3269
39279cc3 3270 if (!PageUptodate(page)) {
9ebefb18 3271 ret = btrfs_readpage(NULL, page);
39279cc3 3272 lock_page(page);
211c17f5
CM
3273 if (page->mapping != mapping) {
3274 unlock_page(page);
3275 page_cache_release(page);
3276 goto again;
3277 }
39279cc3
CM
3278 if (!PageUptodate(page)) {
3279 ret = -EIO;
89642229 3280 goto out_unlock;
39279cc3
CM
3281 }
3282 }
211c17f5 3283 wait_on_page_writeback(page);
e6dcd2dc 3284
2ac55d41
JB
3285 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3286 GFP_NOFS);
e6dcd2dc
CM
3287 set_page_extent_mapped(page);
3288
3289 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3290 if (ordered) {
2ac55d41
JB
3291 unlock_extent_cached(io_tree, page_start, page_end,
3292 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3293 unlock_page(page);
3294 page_cache_release(page);
eb84ae03 3295 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3296 btrfs_put_ordered_extent(ordered);
3297 goto again;
3298 }
3299
2ac55d41 3300 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3301 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3302 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3303
2ac55d41
JB
3304 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3305 &cached_state);
9ed74f2d 3306 if (ret) {
2ac55d41
JB
3307 unlock_extent_cached(io_tree, page_start, page_end,
3308 &cached_state, GFP_NOFS);
9ed74f2d
JB
3309 goto out_unlock;
3310 }
3311
e6dcd2dc
CM
3312 ret = 0;
3313 if (offset != PAGE_CACHE_SIZE) {
3314 kaddr = kmap(page);
3315 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3316 flush_dcache_page(page);
3317 kunmap(page);
3318 }
247e743c 3319 ClearPageChecked(page);
e6dcd2dc 3320 set_page_dirty(page);
2ac55d41
JB
3321 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3322 GFP_NOFS);
39279cc3 3323
89642229 3324out_unlock:
5d5e103a 3325 if (ret)
0ca1f7ce 3326 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3327 unlock_page(page);
3328 page_cache_release(page);
3329out:
3330 return ret;
3331}
3332
695a0d0d
JB
3333/*
3334 * This function puts in dummy file extents for the area we're creating a hole
3335 * for. So if we are truncating this file to a larger size we need to insert
3336 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3337 * the range between oldsize and size
3338 */
a41ad394 3339int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3340{
9036c102
YZ
3341 struct btrfs_trans_handle *trans;
3342 struct btrfs_root *root = BTRFS_I(inode)->root;
3343 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3344 struct extent_map *em = NULL;
2ac55d41 3345 struct extent_state *cached_state = NULL;
9036c102 3346 u64 mask = root->sectorsize - 1;
a41ad394 3347 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3348 u64 block_end = (size + mask) & ~mask;
3349 u64 last_byte;
3350 u64 cur_offset;
3351 u64 hole_size;
9ed74f2d 3352 int err = 0;
39279cc3 3353
9036c102
YZ
3354 if (size <= hole_start)
3355 return 0;
3356
9036c102
YZ
3357 while (1) {
3358 struct btrfs_ordered_extent *ordered;
3359 btrfs_wait_ordered_range(inode, hole_start,
3360 block_end - hole_start);
2ac55d41
JB
3361 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3362 &cached_state, GFP_NOFS);
9036c102
YZ
3363 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3364 if (!ordered)
3365 break;
2ac55d41
JB
3366 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3367 &cached_state, GFP_NOFS);
9036c102
YZ
3368 btrfs_put_ordered_extent(ordered);
3369 }
39279cc3 3370
9036c102
YZ
3371 cur_offset = hole_start;
3372 while (1) {
3373 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3374 block_end - cur_offset, 0);
c704005d 3375 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3376 last_byte = min(extent_map_end(em), block_end);
3377 last_byte = (last_byte + mask) & ~mask;
8082510e 3378 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3379 u64 hint_byte = 0;
9036c102 3380 hole_size = last_byte - cur_offset;
9ed74f2d 3381
3642320e 3382 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3383 if (IS_ERR(trans)) {
3384 err = PTR_ERR(trans);
9ed74f2d 3385 break;
a22285a6 3386 }
8082510e
YZ
3387
3388 err = btrfs_drop_extents(trans, inode, cur_offset,
3389 cur_offset + hole_size,
3390 &hint_byte, 1);
5b397377 3391 if (err) {
3642320e 3392 btrfs_update_inode(trans, root, inode);
5b397377 3393 btrfs_end_transaction(trans, root);
3893e33b 3394 break;
5b397377 3395 }
8082510e 3396
9036c102 3397 err = btrfs_insert_file_extent(trans, root,
33345d01 3398 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3399 0, hole_size, 0, hole_size,
3400 0, 0, 0);
5b397377 3401 if (err) {
3642320e 3402 btrfs_update_inode(trans, root, inode);
5b397377 3403 btrfs_end_transaction(trans, root);
3893e33b 3404 break;
5b397377 3405 }
8082510e 3406
9036c102
YZ
3407 btrfs_drop_extent_cache(inode, hole_start,
3408 last_byte - 1, 0);
8082510e 3409
3642320e 3410 btrfs_update_inode(trans, root, inode);
8082510e 3411 btrfs_end_transaction(trans, root);
9036c102
YZ
3412 }
3413 free_extent_map(em);
a22285a6 3414 em = NULL;
9036c102 3415 cur_offset = last_byte;
8082510e 3416 if (cur_offset >= block_end)
9036c102
YZ
3417 break;
3418 }
1832a6d5 3419
a22285a6 3420 free_extent_map(em);
2ac55d41
JB
3421 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3422 GFP_NOFS);
9036c102
YZ
3423 return err;
3424}
39279cc3 3425
a41ad394 3426static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3427{
f4a2f4c5
MX
3428 struct btrfs_root *root = BTRFS_I(inode)->root;
3429 struct btrfs_trans_handle *trans;
a41ad394 3430 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3431 int ret;
3432
a41ad394 3433 if (newsize == oldsize)
8082510e
YZ
3434 return 0;
3435
a41ad394 3436 if (newsize > oldsize) {
a41ad394
JB
3437 truncate_pagecache(inode, oldsize, newsize);
3438 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3439 if (ret)
8082510e 3440 return ret;
8082510e 3441
f4a2f4c5
MX
3442 trans = btrfs_start_transaction(root, 1);
3443 if (IS_ERR(trans))
3444 return PTR_ERR(trans);
3445
3446 i_size_write(inode, newsize);
3447 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3448 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3449 btrfs_end_transaction(trans, root);
a41ad394 3450 } else {
8082510e 3451
a41ad394
JB
3452 /*
3453 * We're truncating a file that used to have good data down to
3454 * zero. Make sure it gets into the ordered flush list so that
3455 * any new writes get down to disk quickly.
3456 */
3457 if (newsize == 0)
3458 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3459
a41ad394
JB
3460 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3461 truncate_setsize(inode, newsize);
3462 ret = btrfs_truncate(inode);
8082510e
YZ
3463 }
3464
a41ad394 3465 return ret;
8082510e
YZ
3466}
3467
9036c102
YZ
3468static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3469{
3470 struct inode *inode = dentry->d_inode;
b83cc969 3471 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3472 int err;
39279cc3 3473
b83cc969
LZ
3474 if (btrfs_root_readonly(root))
3475 return -EROFS;
3476
9036c102
YZ
3477 err = inode_change_ok(inode, attr);
3478 if (err)
3479 return err;
2bf5a725 3480
5a3f23d5 3481 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3482 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3483 if (err)
3484 return err;
39279cc3 3485 }
9036c102 3486
1025774c
CH
3487 if (attr->ia_valid) {
3488 setattr_copy(inode, attr);
22c44fe6 3489 err = btrfs_dirty_inode(inode);
1025774c 3490
22c44fe6 3491 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3492 err = btrfs_acl_chmod(inode);
3493 }
33268eaf 3494
39279cc3
CM
3495 return err;
3496}
61295eb8 3497
bd555975 3498void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3499{
3500 struct btrfs_trans_handle *trans;
3501 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3502 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3503 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3504 unsigned long nr;
39279cc3
CM
3505 int ret;
3506
1abe9b8a 3507 trace_btrfs_inode_evict(inode);
3508
39279cc3 3509 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3510 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3511 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3512 goto no_delete;
3513
39279cc3 3514 if (is_bad_inode(inode)) {
7b128766 3515 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3516 goto no_delete;
3517 }
bd555975 3518 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3519 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3520
c71bf099
YZ
3521 if (root->fs_info->log_root_recovering) {
3522 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3523 goto no_delete;
3524 }
3525
76dda93c
YZ
3526 if (inode->i_nlink > 0) {
3527 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3528 goto no_delete;
3529 }
3530
4289a667
JB
3531 rsv = btrfs_alloc_block_rsv(root);
3532 if (!rsv) {
3533 btrfs_orphan_del(NULL, inode);
3534 goto no_delete;
3535 }
4a338542 3536 rsv->size = min_size;
726c35fa 3537 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3538
dbe674a9 3539 btrfs_i_size_write(inode, 0);
5f39d397 3540
4289a667
JB
3541 /*
3542 * This is a bit simpler than btrfs_truncate since
3543 *
3544 * 1) We've already reserved our space for our orphan item in the
3545 * unlink.
3546 * 2) We're going to delete the inode item, so we don't need to update
3547 * it at all.
3548 *
3549 * So we just need to reserve some slack space in case we add bytes when
3550 * doing the truncate.
3551 */
8082510e 3552 while (1) {
aa38a711 3553 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
726c35fa
JB
3554
3555 /*
3556 * Try and steal from the global reserve since we will
3557 * likely not use this space anyway, we want to try as
3558 * hard as possible to get this to work.
3559 */
3560 if (ret)
3561 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3562
d68fc57b 3563 if (ret) {
4289a667 3564 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3565 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3566 btrfs_orphan_del(NULL, inode);
3567 btrfs_free_block_rsv(root, rsv);
3568 goto no_delete;
d68fc57b 3569 }
7b128766 3570
4289a667
JB
3571 trans = btrfs_start_transaction(root, 0);
3572 if (IS_ERR(trans)) {
3573 btrfs_orphan_del(NULL, inode);
3574 btrfs_free_block_rsv(root, rsv);
3575 goto no_delete;
d68fc57b 3576 }
7b128766 3577
4289a667
JB
3578 trans->block_rsv = rsv;
3579
d68fc57b 3580 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3581 if (ret != -EAGAIN)
3582 break;
85e21bac 3583
8082510e
YZ
3584 nr = trans->blocks_used;
3585 btrfs_end_transaction(trans, root);
3586 trans = NULL;
3587 btrfs_btree_balance_dirty(root, nr);
3588 }
5f39d397 3589
4289a667
JB
3590 btrfs_free_block_rsv(root, rsv);
3591
8082510e 3592 if (ret == 0) {
4289a667 3593 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3594 ret = btrfs_orphan_del(trans, inode);
3595 BUG_ON(ret);
3596 }
54aa1f4d 3597
4289a667 3598 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3599 if (!(root == root->fs_info->tree_root ||
3600 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3601 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3602
d3c2fdcf 3603 nr = trans->blocks_used;
54aa1f4d 3604 btrfs_end_transaction(trans, root);
d3c2fdcf 3605 btrfs_btree_balance_dirty(root, nr);
39279cc3 3606no_delete:
bd555975 3607 end_writeback(inode);
8082510e 3608 return;
39279cc3
CM
3609}
3610
3611/*
3612 * this returns the key found in the dir entry in the location pointer.
3613 * If no dir entries were found, location->objectid is 0.
3614 */
3615static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3616 struct btrfs_key *location)
3617{
3618 const char *name = dentry->d_name.name;
3619 int namelen = dentry->d_name.len;
3620 struct btrfs_dir_item *di;
3621 struct btrfs_path *path;
3622 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3623 int ret = 0;
39279cc3
CM
3624
3625 path = btrfs_alloc_path();
d8926bb3
MF
3626 if (!path)
3627 return -ENOMEM;
3954401f 3628
33345d01 3629 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3630 namelen, 0);
0d9f7f3e
Y
3631 if (IS_ERR(di))
3632 ret = PTR_ERR(di);
d397712b 3633
c704005d 3634 if (IS_ERR_OR_NULL(di))
3954401f 3635 goto out_err;
d397712b 3636
5f39d397 3637 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3638out:
39279cc3
CM
3639 btrfs_free_path(path);
3640 return ret;
3954401f
CM
3641out_err:
3642 location->objectid = 0;
3643 goto out;
39279cc3
CM
3644}
3645
3646/*
3647 * when we hit a tree root in a directory, the btrfs part of the inode
3648 * needs to be changed to reflect the root directory of the tree root. This
3649 * is kind of like crossing a mount point.
3650 */
3651static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3652 struct inode *dir,
3653 struct dentry *dentry,
3654 struct btrfs_key *location,
3655 struct btrfs_root **sub_root)
39279cc3 3656{
4df27c4d
YZ
3657 struct btrfs_path *path;
3658 struct btrfs_root *new_root;
3659 struct btrfs_root_ref *ref;
3660 struct extent_buffer *leaf;
3661 int ret;
3662 int err = 0;
39279cc3 3663
4df27c4d
YZ
3664 path = btrfs_alloc_path();
3665 if (!path) {
3666 err = -ENOMEM;
3667 goto out;
3668 }
39279cc3 3669
4df27c4d
YZ
3670 err = -ENOENT;
3671 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3672 BTRFS_I(dir)->root->root_key.objectid,
3673 location->objectid);
3674 if (ret) {
3675 if (ret < 0)
3676 err = ret;
3677 goto out;
3678 }
39279cc3 3679
4df27c4d
YZ
3680 leaf = path->nodes[0];
3681 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3682 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3683 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3684 goto out;
39279cc3 3685
4df27c4d
YZ
3686 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3687 (unsigned long)(ref + 1),
3688 dentry->d_name.len);
3689 if (ret)
3690 goto out;
3691
b3b4aa74 3692 btrfs_release_path(path);
4df27c4d
YZ
3693
3694 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3695 if (IS_ERR(new_root)) {
3696 err = PTR_ERR(new_root);
3697 goto out;
3698 }
3699
3700 if (btrfs_root_refs(&new_root->root_item) == 0) {
3701 err = -ENOENT;
3702 goto out;
3703 }
3704
3705 *sub_root = new_root;
3706 location->objectid = btrfs_root_dirid(&new_root->root_item);
3707 location->type = BTRFS_INODE_ITEM_KEY;
3708 location->offset = 0;
3709 err = 0;
3710out:
3711 btrfs_free_path(path);
3712 return err;
39279cc3
CM
3713}
3714
5d4f98a2
YZ
3715static void inode_tree_add(struct inode *inode)
3716{
3717 struct btrfs_root *root = BTRFS_I(inode)->root;
3718 struct btrfs_inode *entry;
03e860bd
FNP
3719 struct rb_node **p;
3720 struct rb_node *parent;
33345d01 3721 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3722again:
3723 p = &root->inode_tree.rb_node;
3724 parent = NULL;
5d4f98a2 3725
1d3382cb 3726 if (inode_unhashed(inode))
76dda93c
YZ
3727 return;
3728
5d4f98a2
YZ
3729 spin_lock(&root->inode_lock);
3730 while (*p) {
3731 parent = *p;
3732 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3733
33345d01 3734 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3735 p = &parent->rb_left;
33345d01 3736 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3737 p = &parent->rb_right;
5d4f98a2
YZ
3738 else {
3739 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3740 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3741 rb_erase(parent, &root->inode_tree);
3742 RB_CLEAR_NODE(parent);
3743 spin_unlock(&root->inode_lock);
3744 goto again;
5d4f98a2
YZ
3745 }
3746 }
3747 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3748 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3749 spin_unlock(&root->inode_lock);
3750}
3751
3752static void inode_tree_del(struct inode *inode)
3753{
3754 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3755 int empty = 0;
5d4f98a2 3756
03e860bd 3757 spin_lock(&root->inode_lock);
5d4f98a2 3758 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3759 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3760 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3761 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3762 }
03e860bd 3763 spin_unlock(&root->inode_lock);
76dda93c 3764
0af3d00b
JB
3765 /*
3766 * Free space cache has inodes in the tree root, but the tree root has a
3767 * root_refs of 0, so this could end up dropping the tree root as a
3768 * snapshot, so we need the extra !root->fs_info->tree_root check to
3769 * make sure we don't drop it.
3770 */
3771 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3772 root != root->fs_info->tree_root) {
76dda93c
YZ
3773 synchronize_srcu(&root->fs_info->subvol_srcu);
3774 spin_lock(&root->inode_lock);
3775 empty = RB_EMPTY_ROOT(&root->inode_tree);
3776 spin_unlock(&root->inode_lock);
3777 if (empty)
3778 btrfs_add_dead_root(root);
3779 }
3780}
3781
3782int btrfs_invalidate_inodes(struct btrfs_root *root)
3783{
3784 struct rb_node *node;
3785 struct rb_node *prev;
3786 struct btrfs_inode *entry;
3787 struct inode *inode;
3788 u64 objectid = 0;
3789
3790 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3791
3792 spin_lock(&root->inode_lock);
3793again:
3794 node = root->inode_tree.rb_node;
3795 prev = NULL;
3796 while (node) {
3797 prev = node;
3798 entry = rb_entry(node, struct btrfs_inode, rb_node);
3799
33345d01 3800 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3801 node = node->rb_left;
33345d01 3802 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3803 node = node->rb_right;
3804 else
3805 break;
3806 }
3807 if (!node) {
3808 while (prev) {
3809 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3810 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3811 node = prev;
3812 break;
3813 }
3814 prev = rb_next(prev);
3815 }
3816 }
3817 while (node) {
3818 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3819 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3820 inode = igrab(&entry->vfs_inode);
3821 if (inode) {
3822 spin_unlock(&root->inode_lock);
3823 if (atomic_read(&inode->i_count) > 1)
3824 d_prune_aliases(inode);
3825 /*
45321ac5 3826 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3827 * the inode cache when its usage count
3828 * hits zero.
3829 */
3830 iput(inode);
3831 cond_resched();
3832 spin_lock(&root->inode_lock);
3833 goto again;
3834 }
3835
3836 if (cond_resched_lock(&root->inode_lock))
3837 goto again;
3838
3839 node = rb_next(node);
3840 }
3841 spin_unlock(&root->inode_lock);
3842 return 0;
5d4f98a2
YZ
3843}
3844
e02119d5
CM
3845static int btrfs_init_locked_inode(struct inode *inode, void *p)
3846{
3847 struct btrfs_iget_args *args = p;
3848 inode->i_ino = args->ino;
e02119d5 3849 BTRFS_I(inode)->root = args->root;
6a63209f 3850 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3851 return 0;
3852}
3853
3854static int btrfs_find_actor(struct inode *inode, void *opaque)
3855{
3856 struct btrfs_iget_args *args = opaque;
33345d01 3857 return args->ino == btrfs_ino(inode) &&
d397712b 3858 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3859}
3860
5d4f98a2
YZ
3861static struct inode *btrfs_iget_locked(struct super_block *s,
3862 u64 objectid,
3863 struct btrfs_root *root)
39279cc3
CM
3864{
3865 struct inode *inode;
3866 struct btrfs_iget_args args;
3867 args.ino = objectid;
3868 args.root = root;
3869
3870 inode = iget5_locked(s, objectid, btrfs_find_actor,
3871 btrfs_init_locked_inode,
3872 (void *)&args);
3873 return inode;
3874}
3875
1a54ef8c
BR
3876/* Get an inode object given its location and corresponding root.
3877 * Returns in *is_new if the inode was read from disk
3878 */
3879struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3880 struct btrfs_root *root, int *new)
1a54ef8c
BR
3881{
3882 struct inode *inode;
3883
3884 inode = btrfs_iget_locked(s, location->objectid, root);
3885 if (!inode)
5d4f98a2 3886 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3887
3888 if (inode->i_state & I_NEW) {
3889 BTRFS_I(inode)->root = root;
3890 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3891 btrfs_read_locked_inode(inode);
1748f843
MF
3892 if (!is_bad_inode(inode)) {
3893 inode_tree_add(inode);
3894 unlock_new_inode(inode);
3895 if (new)
3896 *new = 1;
3897 } else {
e0b6d65b
ST
3898 unlock_new_inode(inode);
3899 iput(inode);
3900 inode = ERR_PTR(-ESTALE);
1748f843
MF
3901 }
3902 }
3903
1a54ef8c
BR
3904 return inode;
3905}
3906
4df27c4d
YZ
3907static struct inode *new_simple_dir(struct super_block *s,
3908 struct btrfs_key *key,
3909 struct btrfs_root *root)
3910{
3911 struct inode *inode = new_inode(s);
3912
3913 if (!inode)
3914 return ERR_PTR(-ENOMEM);
3915
4df27c4d
YZ
3916 BTRFS_I(inode)->root = root;
3917 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3918 BTRFS_I(inode)->dummy_inode = 1;
3919
3920 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3921 inode->i_op = &simple_dir_inode_operations;
3922 inode->i_fop = &simple_dir_operations;
3923 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3924 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3925
3926 return inode;
3927}
3928
3de4586c 3929struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3930{
d397712b 3931 struct inode *inode;
4df27c4d 3932 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3933 struct btrfs_root *sub_root = root;
3934 struct btrfs_key location;
76dda93c 3935 int index;
b4aff1f8 3936 int ret = 0;
39279cc3
CM
3937
3938 if (dentry->d_name.len > BTRFS_NAME_LEN)
3939 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3940
b4aff1f8
JB
3941 if (unlikely(d_need_lookup(dentry))) {
3942 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3943 kfree(dentry->d_fsdata);
3944 dentry->d_fsdata = NULL;
a66e7cc6
JB
3945 /* This thing is hashed, drop it for now */
3946 d_drop(dentry);
b4aff1f8
JB
3947 } else {
3948 ret = btrfs_inode_by_name(dir, dentry, &location);
3949 }
5f39d397 3950
39279cc3
CM
3951 if (ret < 0)
3952 return ERR_PTR(ret);
5f39d397 3953
4df27c4d
YZ
3954 if (location.objectid == 0)
3955 return NULL;
3956
3957 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 3958 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
3959 return inode;
3960 }
3961
3962 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3963
76dda93c 3964 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3965 ret = fixup_tree_root_location(root, dir, dentry,
3966 &location, &sub_root);
3967 if (ret < 0) {
3968 if (ret != -ENOENT)
3969 inode = ERR_PTR(ret);
3970 else
3971 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3972 } else {
73f73415 3973 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 3974 }
76dda93c
YZ
3975 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3976
34d19bad 3977 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
3978 down_read(&root->fs_info->cleanup_work_sem);
3979 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 3980 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 3981 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
3982 if (ret)
3983 inode = ERR_PTR(ret);
c71bf099
YZ
3984 }
3985
3de4586c
CM
3986 return inode;
3987}
3988
fe15ce44 3989static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
3990{
3991 struct btrfs_root *root;
3992
efefb143
YZ
3993 if (!dentry->d_inode && !IS_ROOT(dentry))
3994 dentry = dentry->d_parent;
76dda93c 3995
efefb143
YZ
3996 if (dentry->d_inode) {
3997 root = BTRFS_I(dentry->d_inode)->root;
3998 if (btrfs_root_refs(&root->root_item) == 0)
3999 return 1;
4000 }
76dda93c
YZ
4001 return 0;
4002}
4003
b4aff1f8
JB
4004static void btrfs_dentry_release(struct dentry *dentry)
4005{
4006 if (dentry->d_fsdata)
4007 kfree(dentry->d_fsdata);
4008}
4009
3de4586c
CM
4010static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4011 struct nameidata *nd)
4012{
a66e7cc6
JB
4013 struct dentry *ret;
4014
4015 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4016 if (unlikely(d_need_lookup(dentry))) {
4017 spin_lock(&dentry->d_lock);
4018 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4019 spin_unlock(&dentry->d_lock);
4020 }
4021 return ret;
39279cc3
CM
4022}
4023
16cdcec7 4024unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4025 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4026};
4027
cbdf5a24
DW
4028static int btrfs_real_readdir(struct file *filp, void *dirent,
4029 filldir_t filldir)
39279cc3 4030{
6da6abae 4031 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4032 struct btrfs_root *root = BTRFS_I(inode)->root;
4033 struct btrfs_item *item;
4034 struct btrfs_dir_item *di;
4035 struct btrfs_key key;
5f39d397 4036 struct btrfs_key found_key;
39279cc3 4037 struct btrfs_path *path;
16cdcec7
MX
4038 struct list_head ins_list;
4039 struct list_head del_list;
b4aff1f8 4040 struct qstr q;
39279cc3 4041 int ret;
5f39d397 4042 struct extent_buffer *leaf;
39279cc3 4043 int slot;
39279cc3
CM
4044 unsigned char d_type;
4045 int over = 0;
4046 u32 di_cur;
4047 u32 di_total;
4048 u32 di_len;
4049 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4050 char tmp_name[32];
4051 char *name_ptr;
4052 int name_len;
16cdcec7 4053 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4054
4055 /* FIXME, use a real flag for deciding about the key type */
4056 if (root->fs_info->tree_root == root)
4057 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4058
3954401f
CM
4059 /* special case for "." */
4060 if (filp->f_pos == 0) {
3765fefa
HS
4061 over = filldir(dirent, ".", 1,
4062 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4063 if (over)
4064 return 0;
4065 filp->f_pos = 1;
4066 }
3954401f
CM
4067 /* special case for .., just use the back ref */
4068 if (filp->f_pos == 1) {
5ecc7e5d 4069 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4070 over = filldir(dirent, "..", 2,
3765fefa 4071 filp->f_pos, pino, DT_DIR);
3954401f 4072 if (over)
49593bfa 4073 return 0;
3954401f
CM
4074 filp->f_pos = 2;
4075 }
49593bfa 4076 path = btrfs_alloc_path();
16cdcec7
MX
4077 if (!path)
4078 return -ENOMEM;
ff5714cc 4079
026fd317 4080 path->reada = 1;
49593bfa 4081
16cdcec7
MX
4082 if (key_type == BTRFS_DIR_INDEX_KEY) {
4083 INIT_LIST_HEAD(&ins_list);
4084 INIT_LIST_HEAD(&del_list);
4085 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4086 }
4087
39279cc3
CM
4088 btrfs_set_key_type(&key, key_type);
4089 key.offset = filp->f_pos;
33345d01 4090 key.objectid = btrfs_ino(inode);
5f39d397 4091
39279cc3
CM
4092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4093 if (ret < 0)
4094 goto err;
49593bfa
DW
4095
4096 while (1) {
5f39d397 4097 leaf = path->nodes[0];
39279cc3 4098 slot = path->slots[0];
b9e03af0
LZ
4099 if (slot >= btrfs_header_nritems(leaf)) {
4100 ret = btrfs_next_leaf(root, path);
4101 if (ret < 0)
4102 goto err;
4103 else if (ret > 0)
4104 break;
4105 continue;
39279cc3 4106 }
3de4586c 4107
5f39d397
CM
4108 item = btrfs_item_nr(leaf, slot);
4109 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4110
4111 if (found_key.objectid != key.objectid)
39279cc3 4112 break;
5f39d397 4113 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4114 break;
5f39d397 4115 if (found_key.offset < filp->f_pos)
b9e03af0 4116 goto next;
16cdcec7
MX
4117 if (key_type == BTRFS_DIR_INDEX_KEY &&
4118 btrfs_should_delete_dir_index(&del_list,
4119 found_key.offset))
4120 goto next;
5f39d397
CM
4121
4122 filp->f_pos = found_key.offset;
16cdcec7 4123 is_curr = 1;
49593bfa 4124
39279cc3
CM
4125 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4126 di_cur = 0;
5f39d397 4127 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4128
4129 while (di_cur < di_total) {
5f39d397 4130 struct btrfs_key location;
b4aff1f8 4131 struct dentry *tmp;
5f39d397 4132
22a94d44
JB
4133 if (verify_dir_item(root, leaf, di))
4134 break;
4135
5f39d397 4136 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4137 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4138 name_ptr = tmp_name;
4139 } else {
4140 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4141 if (!name_ptr) {
4142 ret = -ENOMEM;
4143 goto err;
4144 }
5f39d397
CM
4145 }
4146 read_extent_buffer(leaf, name_ptr,
4147 (unsigned long)(di + 1), name_len);
4148
4149 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4150 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4151
b4aff1f8
JB
4152 q.name = name_ptr;
4153 q.len = name_len;
4154 q.hash = full_name_hash(q.name, q.len);
4155 tmp = d_lookup(filp->f_dentry, &q);
4156 if (!tmp) {
4157 struct btrfs_key *newkey;
4158
4159 newkey = kzalloc(sizeof(struct btrfs_key),
4160 GFP_NOFS);
4161 if (!newkey)
4162 goto no_dentry;
4163 tmp = d_alloc(filp->f_dentry, &q);
4164 if (!tmp) {
4165 kfree(newkey);
4166 dput(tmp);
4167 goto no_dentry;
4168 }
4169 memcpy(newkey, &location,
4170 sizeof(struct btrfs_key));
4171 tmp->d_fsdata = newkey;
4172 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4173 d_rehash(tmp);
4174 dput(tmp);
4175 } else {
4176 dput(tmp);
4177 }
4178no_dentry:
3de4586c
CM
4179 /* is this a reference to our own snapshot? If so
4180 * skip it
4181 */
4182 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4183 location.objectid == root->root_key.objectid) {
4184 over = 0;
4185 goto skip;
4186 }
5f39d397 4187 over = filldir(dirent, name_ptr, name_len,
49593bfa 4188 found_key.offset, location.objectid,
39279cc3 4189 d_type);
5f39d397 4190
3de4586c 4191skip:
5f39d397
CM
4192 if (name_ptr != tmp_name)
4193 kfree(name_ptr);
4194
39279cc3
CM
4195 if (over)
4196 goto nopos;
5103e947 4197 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4198 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4199 di_cur += di_len;
4200 di = (struct btrfs_dir_item *)((char *)di + di_len);
4201 }
b9e03af0
LZ
4202next:
4203 path->slots[0]++;
39279cc3 4204 }
49593bfa 4205
16cdcec7
MX
4206 if (key_type == BTRFS_DIR_INDEX_KEY) {
4207 if (is_curr)
4208 filp->f_pos++;
4209 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4210 &ins_list);
4211 if (ret)
4212 goto nopos;
4213 }
4214
49593bfa 4215 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4216 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4217 /*
4218 * 32-bit glibc will use getdents64, but then strtol -
4219 * so the last number we can serve is this.
4220 */
4221 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4222 else
4223 filp->f_pos++;
39279cc3
CM
4224nopos:
4225 ret = 0;
4226err:
16cdcec7
MX
4227 if (key_type == BTRFS_DIR_INDEX_KEY)
4228 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4229 btrfs_free_path(path);
39279cc3
CM
4230 return ret;
4231}
4232
a9185b41 4233int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4234{
4235 struct btrfs_root *root = BTRFS_I(inode)->root;
4236 struct btrfs_trans_handle *trans;
4237 int ret = 0;
0af3d00b 4238 bool nolock = false;
39279cc3 4239
8929ecfa 4240 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4241 return 0;
4242
2cf8572d 4243 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4244 nolock = true;
0af3d00b 4245
a9185b41 4246 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4247 if (nolock)
7a7eaa40 4248 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4249 else
7a7eaa40 4250 trans = btrfs_join_transaction(root);
3612b495
TI
4251 if (IS_ERR(trans))
4252 return PTR_ERR(trans);
0af3d00b
JB
4253 if (nolock)
4254 ret = btrfs_end_transaction_nolock(trans, root);
4255 else
4256 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4257 }
4258 return ret;
4259}
4260
4261/*
54aa1f4d 4262 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4263 * inode changes. But, it is most likely to find the inode in cache.
4264 * FIXME, needs more benchmarking...there are no reasons other than performance
4265 * to keep or drop this code.
4266 */
22c44fe6 4267int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4268{
4269 struct btrfs_root *root = BTRFS_I(inode)->root;
4270 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4271 int ret;
4272
4273 if (BTRFS_I(inode)->dummy_inode)
22c44fe6 4274 return 0;
39279cc3 4275
7a7eaa40 4276 trans = btrfs_join_transaction(root);
22c44fe6
JB
4277 if (IS_ERR(trans))
4278 return PTR_ERR(trans);
8929ecfa
YZ
4279
4280 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4281 if (ret && ret == -ENOSPC) {
4282 /* whoops, lets try again with the full transaction */
4283 btrfs_end_transaction(trans, root);
4284 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4285 if (IS_ERR(trans))
4286 return PTR_ERR(trans);
8929ecfa 4287
94b60442 4288 ret = btrfs_update_inode(trans, root, inode);
94b60442 4289 }
39279cc3 4290 btrfs_end_transaction(trans, root);
16cdcec7
MX
4291 if (BTRFS_I(inode)->delayed_node)
4292 btrfs_balance_delayed_items(root);
22c44fe6
JB
4293
4294 return ret;
4295}
4296
4297/*
4298 * This is a copy of file_update_time. We need this so we can return error on
4299 * ENOSPC for updating the inode in the case of file write and mmap writes.
4300 */
4301int btrfs_update_time(struct file *file)
4302{
4303 struct inode *inode = file->f_path.dentry->d_inode;
4304 struct timespec now;
4305 int ret;
4306 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4307
4308 /* First try to exhaust all avenues to not sync */
4309 if (IS_NOCMTIME(inode))
4310 return 0;
4311
4312 now = current_fs_time(inode->i_sb);
4313 if (!timespec_equal(&inode->i_mtime, &now))
4314 sync_it = S_MTIME;
4315
4316 if (!timespec_equal(&inode->i_ctime, &now))
4317 sync_it |= S_CTIME;
4318
4319 if (IS_I_VERSION(inode))
4320 sync_it |= S_VERSION;
4321
4322 if (!sync_it)
4323 return 0;
4324
4325 /* Finally allowed to write? Takes lock. */
4326 if (mnt_want_write_file(file))
4327 return 0;
4328
4329 /* Only change inode inside the lock region */
4330 if (sync_it & S_VERSION)
4331 inode_inc_iversion(inode);
4332 if (sync_it & S_CTIME)
4333 inode->i_ctime = now;
4334 if (sync_it & S_MTIME)
4335 inode->i_mtime = now;
4336 ret = btrfs_dirty_inode(inode);
4337 if (!ret)
4338 mark_inode_dirty_sync(inode);
4339 mnt_drop_write(file->f_path.mnt);
4340 return ret;
39279cc3
CM
4341}
4342
d352ac68
CM
4343/*
4344 * find the highest existing sequence number in a directory
4345 * and then set the in-memory index_cnt variable to reflect
4346 * free sequence numbers
4347 */
aec7477b
JB
4348static int btrfs_set_inode_index_count(struct inode *inode)
4349{
4350 struct btrfs_root *root = BTRFS_I(inode)->root;
4351 struct btrfs_key key, found_key;
4352 struct btrfs_path *path;
4353 struct extent_buffer *leaf;
4354 int ret;
4355
33345d01 4356 key.objectid = btrfs_ino(inode);
aec7477b
JB
4357 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4358 key.offset = (u64)-1;
4359
4360 path = btrfs_alloc_path();
4361 if (!path)
4362 return -ENOMEM;
4363
4364 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4365 if (ret < 0)
4366 goto out;
4367 /* FIXME: we should be able to handle this */
4368 if (ret == 0)
4369 goto out;
4370 ret = 0;
4371
4372 /*
4373 * MAGIC NUMBER EXPLANATION:
4374 * since we search a directory based on f_pos we have to start at 2
4375 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4376 * else has to start at 2
4377 */
4378 if (path->slots[0] == 0) {
4379 BTRFS_I(inode)->index_cnt = 2;
4380 goto out;
4381 }
4382
4383 path->slots[0]--;
4384
4385 leaf = path->nodes[0];
4386 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4387
33345d01 4388 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4389 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4390 BTRFS_I(inode)->index_cnt = 2;
4391 goto out;
4392 }
4393
4394 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4395out:
4396 btrfs_free_path(path);
4397 return ret;
4398}
4399
d352ac68
CM
4400/*
4401 * helper to find a free sequence number in a given directory. This current
4402 * code is very simple, later versions will do smarter things in the btree
4403 */
3de4586c 4404int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4405{
4406 int ret = 0;
4407
4408 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4409 ret = btrfs_inode_delayed_dir_index_count(dir);
4410 if (ret) {
4411 ret = btrfs_set_inode_index_count(dir);
4412 if (ret)
4413 return ret;
4414 }
aec7477b
JB
4415 }
4416
00e4e6b3 4417 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4418 BTRFS_I(dir)->index_cnt++;
4419
4420 return ret;
4421}
4422
39279cc3
CM
4423static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4424 struct btrfs_root *root,
aec7477b 4425 struct inode *dir,
9c58309d 4426 const char *name, int name_len,
d82a6f1d
JB
4427 u64 ref_objectid, u64 objectid, int mode,
4428 u64 *index)
39279cc3
CM
4429{
4430 struct inode *inode;
5f39d397 4431 struct btrfs_inode_item *inode_item;
39279cc3 4432 struct btrfs_key *location;
5f39d397 4433 struct btrfs_path *path;
9c58309d
CM
4434 struct btrfs_inode_ref *ref;
4435 struct btrfs_key key[2];
4436 u32 sizes[2];
4437 unsigned long ptr;
39279cc3
CM
4438 int ret;
4439 int owner;
4440
5f39d397 4441 path = btrfs_alloc_path();
d8926bb3
MF
4442 if (!path)
4443 return ERR_PTR(-ENOMEM);
5f39d397 4444
39279cc3 4445 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4446 if (!inode) {
4447 btrfs_free_path(path);
39279cc3 4448 return ERR_PTR(-ENOMEM);
8fb27640 4449 }
39279cc3 4450
581bb050
LZ
4451 /*
4452 * we have to initialize this early, so we can reclaim the inode
4453 * number if we fail afterwards in this function.
4454 */
4455 inode->i_ino = objectid;
4456
aec7477b 4457 if (dir) {
1abe9b8a 4458 trace_btrfs_inode_request(dir);
4459
3de4586c 4460 ret = btrfs_set_inode_index(dir, index);
09771430 4461 if (ret) {
8fb27640 4462 btrfs_free_path(path);
09771430 4463 iput(inode);
aec7477b 4464 return ERR_PTR(ret);
09771430 4465 }
aec7477b
JB
4466 }
4467 /*
4468 * index_cnt is ignored for everything but a dir,
4469 * btrfs_get_inode_index_count has an explanation for the magic
4470 * number
4471 */
4472 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4473 BTRFS_I(inode)->root = root;
e02119d5 4474 BTRFS_I(inode)->generation = trans->transid;
76195853 4475 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4476 btrfs_set_inode_space_info(root, inode);
b888db2b 4477
569254b0 4478 if (S_ISDIR(mode))
39279cc3
CM
4479 owner = 0;
4480 else
4481 owner = 1;
9c58309d
CM
4482
4483 key[0].objectid = objectid;
4484 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4485 key[0].offset = 0;
4486
4487 key[1].objectid = objectid;
4488 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4489 key[1].offset = ref_objectid;
4490
4491 sizes[0] = sizeof(struct btrfs_inode_item);
4492 sizes[1] = name_len + sizeof(*ref);
4493
b9473439 4494 path->leave_spinning = 1;
9c58309d
CM
4495 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4496 if (ret != 0)
5f39d397
CM
4497 goto fail;
4498
ecc11fab 4499 inode_init_owner(inode, dir, mode);
a76a3cd4 4500 inode_set_bytes(inode, 0);
39279cc3 4501 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4502 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4503 struct btrfs_inode_item);
e02119d5 4504 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4505
4506 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4507 struct btrfs_inode_ref);
4508 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4509 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4510 ptr = (unsigned long)(ref + 1);
4511 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4512
5f39d397
CM
4513 btrfs_mark_buffer_dirty(path->nodes[0]);
4514 btrfs_free_path(path);
4515
39279cc3
CM
4516 location = &BTRFS_I(inode)->location;
4517 location->objectid = objectid;
39279cc3
CM
4518 location->offset = 0;
4519 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4520
6cbff00f
CH
4521 btrfs_inherit_iflags(inode, dir);
4522
569254b0 4523 if (S_ISREG(mode)) {
94272164
CM
4524 if (btrfs_test_opt(root, NODATASUM))
4525 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4526 if (btrfs_test_opt(root, NODATACOW) ||
4527 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4528 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4529 }
4530
39279cc3 4531 insert_inode_hash(inode);
5d4f98a2 4532 inode_tree_add(inode);
1abe9b8a 4533
4534 trace_btrfs_inode_new(inode);
1973f0fa 4535 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4536
39279cc3 4537 return inode;
5f39d397 4538fail:
aec7477b
JB
4539 if (dir)
4540 BTRFS_I(dir)->index_cnt--;
5f39d397 4541 btrfs_free_path(path);
09771430 4542 iput(inode);
5f39d397 4543 return ERR_PTR(ret);
39279cc3
CM
4544}
4545
4546static inline u8 btrfs_inode_type(struct inode *inode)
4547{
4548 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4549}
4550
d352ac68
CM
4551/*
4552 * utility function to add 'inode' into 'parent_inode' with
4553 * a give name and a given sequence number.
4554 * if 'add_backref' is true, also insert a backref from the
4555 * inode to the parent directory.
4556 */
e02119d5
CM
4557int btrfs_add_link(struct btrfs_trans_handle *trans,
4558 struct inode *parent_inode, struct inode *inode,
4559 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4560{
4df27c4d 4561 int ret = 0;
39279cc3 4562 struct btrfs_key key;
e02119d5 4563 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4564 u64 ino = btrfs_ino(inode);
4565 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4566
33345d01 4567 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4568 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4569 } else {
33345d01 4570 key.objectid = ino;
4df27c4d
YZ
4571 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4572 key.offset = 0;
4573 }
4574
33345d01 4575 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4576 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4577 key.objectid, root->root_key.objectid,
33345d01 4578 parent_ino, index, name, name_len);
4df27c4d 4579 } else if (add_backref) {
33345d01
LZ
4580 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4581 parent_ino, index);
4df27c4d 4582 }
39279cc3 4583
39279cc3 4584 if (ret == 0) {
4df27c4d 4585 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4586 parent_inode, &key,
4df27c4d
YZ
4587 btrfs_inode_type(inode), index);
4588 BUG_ON(ret);
4589
dbe674a9 4590 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4591 name_len * 2);
79c44584 4592 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4593 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4594 }
4595 return ret;
4596}
4597
4598static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4599 struct inode *dir, struct dentry *dentry,
4600 struct inode *inode, int backref, u64 index)
39279cc3 4601{
a1b075d2
JB
4602 int err = btrfs_add_link(trans, dir, inode,
4603 dentry->d_name.name, dentry->d_name.len,
4604 backref, index);
39279cc3
CM
4605 if (err > 0)
4606 err = -EEXIST;
4607 return err;
4608}
4609
618e21d5
JB
4610static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4611 int mode, dev_t rdev)
4612{
4613 struct btrfs_trans_handle *trans;
4614 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4615 struct inode *inode = NULL;
618e21d5
JB
4616 int err;
4617 int drop_inode = 0;
4618 u64 objectid;
1832a6d5 4619 unsigned long nr = 0;
00e4e6b3 4620 u64 index = 0;
618e21d5
JB
4621
4622 if (!new_valid_dev(rdev))
4623 return -EINVAL;
4624
9ed74f2d
JB
4625 /*
4626 * 2 for inode item and ref
4627 * 2 for dir items
4628 * 1 for xattr if selinux is on
4629 */
a22285a6
YZ
4630 trans = btrfs_start_transaction(root, 5);
4631 if (IS_ERR(trans))
4632 return PTR_ERR(trans);
1832a6d5 4633
581bb050
LZ
4634 err = btrfs_find_free_ino(root, &objectid);
4635 if (err)
4636 goto out_unlock;
4637
aec7477b 4638 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4639 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4640 mode, &index);
7cf96da3
TI
4641 if (IS_ERR(inode)) {
4642 err = PTR_ERR(inode);
618e21d5 4643 goto out_unlock;
7cf96da3 4644 }
618e21d5 4645
2a7dba39 4646 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4647 if (err) {
4648 drop_inode = 1;
4649 goto out_unlock;
4650 }
4651
ad19db71
CS
4652 /*
4653 * If the active LSM wants to access the inode during
4654 * d_instantiate it needs these. Smack checks to see
4655 * if the filesystem supports xattrs by looking at the
4656 * ops vector.
4657 */
4658
4659 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4660 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4661 if (err)
4662 drop_inode = 1;
4663 else {
618e21d5 4664 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4665 btrfs_update_inode(trans, root, inode);
08c422c2 4666 d_instantiate(dentry, inode);
618e21d5 4667 }
618e21d5 4668out_unlock:
d3c2fdcf 4669 nr = trans->blocks_used;
7ad85bb7 4670 btrfs_end_transaction(trans, root);
a22285a6 4671 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4672 if (drop_inode) {
4673 inode_dec_link_count(inode);
4674 iput(inode);
4675 }
618e21d5
JB
4676 return err;
4677}
4678
39279cc3
CM
4679static int btrfs_create(struct inode *dir, struct dentry *dentry,
4680 int mode, struct nameidata *nd)
4681{
4682 struct btrfs_trans_handle *trans;
4683 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4684 struct inode *inode = NULL;
39279cc3 4685 int drop_inode = 0;
a22285a6 4686 int err;
1832a6d5 4687 unsigned long nr = 0;
39279cc3 4688 u64 objectid;
00e4e6b3 4689 u64 index = 0;
39279cc3 4690
9ed74f2d
JB
4691 /*
4692 * 2 for inode item and ref
4693 * 2 for dir items
4694 * 1 for xattr if selinux is on
4695 */
a22285a6
YZ
4696 trans = btrfs_start_transaction(root, 5);
4697 if (IS_ERR(trans))
4698 return PTR_ERR(trans);
9ed74f2d 4699
581bb050
LZ
4700 err = btrfs_find_free_ino(root, &objectid);
4701 if (err)
4702 goto out_unlock;
4703
aec7477b 4704 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4705 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4706 mode, &index);
7cf96da3
TI
4707 if (IS_ERR(inode)) {
4708 err = PTR_ERR(inode);
39279cc3 4709 goto out_unlock;
7cf96da3 4710 }
39279cc3 4711
2a7dba39 4712 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4713 if (err) {
4714 drop_inode = 1;
4715 goto out_unlock;
4716 }
4717
ad19db71
CS
4718 /*
4719 * If the active LSM wants to access the inode during
4720 * d_instantiate it needs these. Smack checks to see
4721 * if the filesystem supports xattrs by looking at the
4722 * ops vector.
4723 */
4724 inode->i_fop = &btrfs_file_operations;
4725 inode->i_op = &btrfs_file_inode_operations;
4726
a1b075d2 4727 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4728 if (err)
4729 drop_inode = 1;
4730 else {
4731 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4732 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 4733 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
08c422c2 4734 d_instantiate(dentry, inode);
39279cc3 4735 }
39279cc3 4736out_unlock:
d3c2fdcf 4737 nr = trans->blocks_used;
7ad85bb7 4738 btrfs_end_transaction(trans, root);
39279cc3
CM
4739 if (drop_inode) {
4740 inode_dec_link_count(inode);
4741 iput(inode);
4742 }
d3c2fdcf 4743 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4744 return err;
4745}
4746
4747static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4748 struct dentry *dentry)
4749{
4750 struct btrfs_trans_handle *trans;
4751 struct btrfs_root *root = BTRFS_I(dir)->root;
4752 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4753 u64 index;
1832a6d5 4754 unsigned long nr = 0;
39279cc3
CM
4755 int err;
4756 int drop_inode = 0;
4757
4a8be425
TH
4758 /* do not allow sys_link's with other subvols of the same device */
4759 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4760 return -EXDEV;
4a8be425 4761
c055e99e
AV
4762 if (inode->i_nlink == ~0U)
4763 return -EMLINK;
4a8be425 4764
3de4586c 4765 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4766 if (err)
4767 goto fail;
4768
a22285a6 4769 /*
7e6b6465 4770 * 2 items for inode and inode ref
a22285a6 4771 * 2 items for dir items
7e6b6465 4772 * 1 item for parent inode
a22285a6 4773 */
7e6b6465 4774 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4775 if (IS_ERR(trans)) {
4776 err = PTR_ERR(trans);
4777 goto fail;
4778 }
5f39d397 4779
3153495d
MX
4780 btrfs_inc_nlink(inode);
4781 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4782 ihold(inode);
aec7477b 4783
a1b075d2 4784 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4785
a5719521 4786 if (err) {
54aa1f4d 4787 drop_inode = 1;
a5719521 4788 } else {
10d9f309 4789 struct dentry *parent = dentry->d_parent;
a5719521
YZ
4790 err = btrfs_update_inode(trans, root, inode);
4791 BUG_ON(err);
08c422c2 4792 d_instantiate(dentry, inode);
6a912213 4793 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 4794 }
39279cc3 4795
d3c2fdcf 4796 nr = trans->blocks_used;
7ad85bb7 4797 btrfs_end_transaction(trans, root);
1832a6d5 4798fail:
39279cc3
CM
4799 if (drop_inode) {
4800 inode_dec_link_count(inode);
4801 iput(inode);
4802 }
d3c2fdcf 4803 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4804 return err;
4805}
4806
39279cc3
CM
4807static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4808{
b9d86667 4809 struct inode *inode = NULL;
39279cc3
CM
4810 struct btrfs_trans_handle *trans;
4811 struct btrfs_root *root = BTRFS_I(dir)->root;
4812 int err = 0;
4813 int drop_on_err = 0;
b9d86667 4814 u64 objectid = 0;
00e4e6b3 4815 u64 index = 0;
d3c2fdcf 4816 unsigned long nr = 1;
39279cc3 4817
9ed74f2d
JB
4818 /*
4819 * 2 items for inode and ref
4820 * 2 items for dir items
4821 * 1 for xattr if selinux is on
4822 */
a22285a6
YZ
4823 trans = btrfs_start_transaction(root, 5);
4824 if (IS_ERR(trans))
4825 return PTR_ERR(trans);
39279cc3 4826
581bb050
LZ
4827 err = btrfs_find_free_ino(root, &objectid);
4828 if (err)
4829 goto out_fail;
4830
aec7477b 4831 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4832 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4833 S_IFDIR | mode, &index);
39279cc3
CM
4834 if (IS_ERR(inode)) {
4835 err = PTR_ERR(inode);
4836 goto out_fail;
4837 }
5f39d397 4838
39279cc3 4839 drop_on_err = 1;
33268eaf 4840
2a7dba39 4841 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4842 if (err)
4843 goto out_fail;
4844
39279cc3
CM
4845 inode->i_op = &btrfs_dir_inode_operations;
4846 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4847
dbe674a9 4848 btrfs_i_size_write(inode, 0);
39279cc3
CM
4849 err = btrfs_update_inode(trans, root, inode);
4850 if (err)
4851 goto out_fail;
5f39d397 4852
a1b075d2
JB
4853 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4854 dentry->d_name.len, 0, index);
39279cc3
CM
4855 if (err)
4856 goto out_fail;
5f39d397 4857
39279cc3
CM
4858 d_instantiate(dentry, inode);
4859 drop_on_err = 0;
39279cc3
CM
4860
4861out_fail:
d3c2fdcf 4862 nr = trans->blocks_used;
7ad85bb7 4863 btrfs_end_transaction(trans, root);
39279cc3
CM
4864 if (drop_on_err)
4865 iput(inode);
d3c2fdcf 4866 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4867 return err;
4868}
4869
d352ac68
CM
4870/* helper for btfs_get_extent. Given an existing extent in the tree,
4871 * and an extent that you want to insert, deal with overlap and insert
4872 * the new extent into the tree.
4873 */
3b951516
CM
4874static int merge_extent_mapping(struct extent_map_tree *em_tree,
4875 struct extent_map *existing,
e6dcd2dc
CM
4876 struct extent_map *em,
4877 u64 map_start, u64 map_len)
3b951516
CM
4878{
4879 u64 start_diff;
3b951516 4880
e6dcd2dc
CM
4881 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4882 start_diff = map_start - em->start;
4883 em->start = map_start;
4884 em->len = map_len;
c8b97818
CM
4885 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4886 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4887 em->block_start += start_diff;
c8b97818
CM
4888 em->block_len -= start_diff;
4889 }
e6dcd2dc 4890 return add_extent_mapping(em_tree, em);
3b951516
CM
4891}
4892
c8b97818
CM
4893static noinline int uncompress_inline(struct btrfs_path *path,
4894 struct inode *inode, struct page *page,
4895 size_t pg_offset, u64 extent_offset,
4896 struct btrfs_file_extent_item *item)
4897{
4898 int ret;
4899 struct extent_buffer *leaf = path->nodes[0];
4900 char *tmp;
4901 size_t max_size;
4902 unsigned long inline_size;
4903 unsigned long ptr;
261507a0 4904 int compress_type;
c8b97818
CM
4905
4906 WARN_ON(pg_offset != 0);
261507a0 4907 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4908 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4909 inline_size = btrfs_file_extent_inline_item_len(leaf,
4910 btrfs_item_nr(leaf, path->slots[0]));
4911 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4912 if (!tmp)
4913 return -ENOMEM;
c8b97818
CM
4914 ptr = btrfs_file_extent_inline_start(item);
4915
4916 read_extent_buffer(leaf, tmp, ptr, inline_size);
4917
5b050f04 4918 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4919 ret = btrfs_decompress(compress_type, tmp, page,
4920 extent_offset, inline_size, max_size);
c8b97818
CM
4921 if (ret) {
4922 char *kaddr = kmap_atomic(page, KM_USER0);
4923 unsigned long copy_size = min_t(u64,
4924 PAGE_CACHE_SIZE - pg_offset,
4925 max_size - extent_offset);
4926 memset(kaddr + pg_offset, 0, copy_size);
4927 kunmap_atomic(kaddr, KM_USER0);
4928 }
4929 kfree(tmp);
4930 return 0;
4931}
4932
d352ac68
CM
4933/*
4934 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4935 * the ugly parts come from merging extents from the disk with the in-ram
4936 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4937 * where the in-ram extents might be locked pending data=ordered completion.
4938 *
4939 * This also copies inline extents directly into the page.
4940 */
d397712b 4941
a52d9a80 4942struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4943 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4944 int create)
4945{
4946 int ret;
4947 int err = 0;
db94535d 4948 u64 bytenr;
a52d9a80
CM
4949 u64 extent_start = 0;
4950 u64 extent_end = 0;
33345d01 4951 u64 objectid = btrfs_ino(inode);
a52d9a80 4952 u32 found_type;
f421950f 4953 struct btrfs_path *path = NULL;
a52d9a80
CM
4954 struct btrfs_root *root = BTRFS_I(inode)->root;
4955 struct btrfs_file_extent_item *item;
5f39d397
CM
4956 struct extent_buffer *leaf;
4957 struct btrfs_key found_key;
a52d9a80
CM
4958 struct extent_map *em = NULL;
4959 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4960 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4961 struct btrfs_trans_handle *trans = NULL;
261507a0 4962 int compress_type;
a52d9a80 4963
a52d9a80 4964again:
890871be 4965 read_lock(&em_tree->lock);
d1310b2e 4966 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4967 if (em)
4968 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4969 read_unlock(&em_tree->lock);
d1310b2e 4970
a52d9a80 4971 if (em) {
e1c4b745
CM
4972 if (em->start > start || em->start + em->len <= start)
4973 free_extent_map(em);
4974 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4975 free_extent_map(em);
4976 else
4977 goto out;
a52d9a80 4978 }
172ddd60 4979 em = alloc_extent_map();
a52d9a80 4980 if (!em) {
d1310b2e
CM
4981 err = -ENOMEM;
4982 goto out;
a52d9a80 4983 }
e6dcd2dc 4984 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4985 em->start = EXTENT_MAP_HOLE;
445a6944 4986 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4987 em->len = (u64)-1;
c8b97818 4988 em->block_len = (u64)-1;
f421950f
CM
4989
4990 if (!path) {
4991 path = btrfs_alloc_path();
026fd317
JB
4992 if (!path) {
4993 err = -ENOMEM;
4994 goto out;
4995 }
4996 /*
4997 * Chances are we'll be called again, so go ahead and do
4998 * readahead
4999 */
5000 path->reada = 1;
f421950f
CM
5001 }
5002
179e29e4
CM
5003 ret = btrfs_lookup_file_extent(trans, root, path,
5004 objectid, start, trans != NULL);
a52d9a80
CM
5005 if (ret < 0) {
5006 err = ret;
5007 goto out;
5008 }
5009
5010 if (ret != 0) {
5011 if (path->slots[0] == 0)
5012 goto not_found;
5013 path->slots[0]--;
5014 }
5015
5f39d397
CM
5016 leaf = path->nodes[0];
5017 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5018 struct btrfs_file_extent_item);
a52d9a80 5019 /* are we inside the extent that was found? */
5f39d397
CM
5020 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5021 found_type = btrfs_key_type(&found_key);
5022 if (found_key.objectid != objectid ||
a52d9a80
CM
5023 found_type != BTRFS_EXTENT_DATA_KEY) {
5024 goto not_found;
5025 }
5026
5f39d397
CM
5027 found_type = btrfs_file_extent_type(leaf, item);
5028 extent_start = found_key.offset;
261507a0 5029 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5030 if (found_type == BTRFS_FILE_EXTENT_REG ||
5031 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5032 extent_end = extent_start +
db94535d 5033 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5034 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5035 size_t size;
5036 size = btrfs_file_extent_inline_len(leaf, item);
5037 extent_end = (extent_start + size + root->sectorsize - 1) &
5038 ~((u64)root->sectorsize - 1);
5039 }
5040
5041 if (start >= extent_end) {
5042 path->slots[0]++;
5043 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5044 ret = btrfs_next_leaf(root, path);
5045 if (ret < 0) {
5046 err = ret;
5047 goto out;
a52d9a80 5048 }
9036c102
YZ
5049 if (ret > 0)
5050 goto not_found;
5051 leaf = path->nodes[0];
a52d9a80 5052 }
9036c102
YZ
5053 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5054 if (found_key.objectid != objectid ||
5055 found_key.type != BTRFS_EXTENT_DATA_KEY)
5056 goto not_found;
5057 if (start + len <= found_key.offset)
5058 goto not_found;
5059 em->start = start;
5060 em->len = found_key.offset - start;
5061 goto not_found_em;
5062 }
5063
d899e052
YZ
5064 if (found_type == BTRFS_FILE_EXTENT_REG ||
5065 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5066 em->start = extent_start;
5067 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5068 em->orig_start = extent_start -
5069 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5070 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5071 if (bytenr == 0) {
5f39d397 5072 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5073 goto insert;
5074 }
261507a0 5075 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5076 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5077 em->compress_type = compress_type;
c8b97818
CM
5078 em->block_start = bytenr;
5079 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5080 item);
5081 } else {
5082 bytenr += btrfs_file_extent_offset(leaf, item);
5083 em->block_start = bytenr;
5084 em->block_len = em->len;
d899e052
YZ
5085 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5086 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5087 }
a52d9a80
CM
5088 goto insert;
5089 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5090 unsigned long ptr;
a52d9a80 5091 char *map;
3326d1b0
CM
5092 size_t size;
5093 size_t extent_offset;
5094 size_t copy_size;
a52d9a80 5095
689f9346 5096 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5097 if (!page || create) {
689f9346 5098 em->start = extent_start;
9036c102 5099 em->len = extent_end - extent_start;
689f9346
Y
5100 goto out;
5101 }
5f39d397 5102
9036c102
YZ
5103 size = btrfs_file_extent_inline_len(leaf, item);
5104 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5105 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5106 size - extent_offset);
3326d1b0 5107 em->start = extent_start + extent_offset;
70dec807
CM
5108 em->len = (copy_size + root->sectorsize - 1) &
5109 ~((u64)root->sectorsize - 1);
ff5b7ee3 5110 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5111 if (compress_type) {
c8b97818 5112 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5113 em->compress_type = compress_type;
5114 }
689f9346 5115 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5116 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5117 if (btrfs_file_extent_compression(leaf, item) !=
5118 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5119 ret = uncompress_inline(path, inode, page,
5120 pg_offset,
5121 extent_offset, item);
5122 BUG_ON(ret);
5123 } else {
5124 map = kmap(page);
5125 read_extent_buffer(leaf, map + pg_offset, ptr,
5126 copy_size);
93c82d57
CM
5127 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5128 memset(map + pg_offset + copy_size, 0,
5129 PAGE_CACHE_SIZE - pg_offset -
5130 copy_size);
5131 }
c8b97818
CM
5132 kunmap(page);
5133 }
179e29e4
CM
5134 flush_dcache_page(page);
5135 } else if (create && PageUptodate(page)) {
6bf7e080 5136 BUG();
179e29e4
CM
5137 if (!trans) {
5138 kunmap(page);
5139 free_extent_map(em);
5140 em = NULL;
ff5714cc 5141
b3b4aa74 5142 btrfs_release_path(path);
7a7eaa40 5143 trans = btrfs_join_transaction(root);
ff5714cc 5144
3612b495
TI
5145 if (IS_ERR(trans))
5146 return ERR_CAST(trans);
179e29e4
CM
5147 goto again;
5148 }
c8b97818 5149 map = kmap(page);
70dec807 5150 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5151 copy_size);
c8b97818 5152 kunmap(page);
179e29e4 5153 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5154 }
d1310b2e 5155 set_extent_uptodate(io_tree, em->start,
507903b8 5156 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5157 goto insert;
5158 } else {
d397712b 5159 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5160 WARN_ON(1);
5161 }
5162not_found:
5163 em->start = start;
d1310b2e 5164 em->len = len;
a52d9a80 5165not_found_em:
5f39d397 5166 em->block_start = EXTENT_MAP_HOLE;
9036c102 5167 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5168insert:
b3b4aa74 5169 btrfs_release_path(path);
d1310b2e 5170 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5171 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5172 "[%llu %llu]\n", (unsigned long long)em->start,
5173 (unsigned long long)em->len,
5174 (unsigned long long)start,
5175 (unsigned long long)len);
a52d9a80
CM
5176 err = -EIO;
5177 goto out;
5178 }
d1310b2e
CM
5179
5180 err = 0;
890871be 5181 write_lock(&em_tree->lock);
a52d9a80 5182 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5183 /* it is possible that someone inserted the extent into the tree
5184 * while we had the lock dropped. It is also possible that
5185 * an overlapping map exists in the tree
5186 */
a52d9a80 5187 if (ret == -EEXIST) {
3b951516 5188 struct extent_map *existing;
e6dcd2dc
CM
5189
5190 ret = 0;
5191
3b951516 5192 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5193 if (existing && (existing->start > start ||
5194 existing->start + existing->len <= start)) {
5195 free_extent_map(existing);
5196 existing = NULL;
5197 }
3b951516
CM
5198 if (!existing) {
5199 existing = lookup_extent_mapping(em_tree, em->start,
5200 em->len);
5201 if (existing) {
5202 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5203 em, start,
5204 root->sectorsize);
3b951516
CM
5205 free_extent_map(existing);
5206 if (err) {
5207 free_extent_map(em);
5208 em = NULL;
5209 }
5210 } else {
5211 err = -EIO;
3b951516
CM
5212 free_extent_map(em);
5213 em = NULL;
5214 }
5215 } else {
5216 free_extent_map(em);
5217 em = existing;
e6dcd2dc 5218 err = 0;
a52d9a80 5219 }
a52d9a80 5220 }
890871be 5221 write_unlock(&em_tree->lock);
a52d9a80 5222out:
1abe9b8a 5223
5224 trace_btrfs_get_extent(root, em);
5225
f421950f
CM
5226 if (path)
5227 btrfs_free_path(path);
a52d9a80
CM
5228 if (trans) {
5229 ret = btrfs_end_transaction(trans, root);
d397712b 5230 if (!err)
a52d9a80
CM
5231 err = ret;
5232 }
a52d9a80
CM
5233 if (err) {
5234 free_extent_map(em);
a52d9a80
CM
5235 return ERR_PTR(err);
5236 }
5237 return em;
5238}
5239
ec29ed5b
CM
5240struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5241 size_t pg_offset, u64 start, u64 len,
5242 int create)
5243{
5244 struct extent_map *em;
5245 struct extent_map *hole_em = NULL;
5246 u64 range_start = start;
5247 u64 end;
5248 u64 found;
5249 u64 found_end;
5250 int err = 0;
5251
5252 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5253 if (IS_ERR(em))
5254 return em;
5255 if (em) {
5256 /*
5257 * if our em maps to a hole, there might
5258 * actually be delalloc bytes behind it
5259 */
5260 if (em->block_start != EXTENT_MAP_HOLE)
5261 return em;
5262 else
5263 hole_em = em;
5264 }
5265
5266 /* check to see if we've wrapped (len == -1 or similar) */
5267 end = start + len;
5268 if (end < start)
5269 end = (u64)-1;
5270 else
5271 end -= 1;
5272
5273 em = NULL;
5274
5275 /* ok, we didn't find anything, lets look for delalloc */
5276 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5277 end, len, EXTENT_DELALLOC, 1);
5278 found_end = range_start + found;
5279 if (found_end < range_start)
5280 found_end = (u64)-1;
5281
5282 /*
5283 * we didn't find anything useful, return
5284 * the original results from get_extent()
5285 */
5286 if (range_start > end || found_end <= start) {
5287 em = hole_em;
5288 hole_em = NULL;
5289 goto out;
5290 }
5291
5292 /* adjust the range_start to make sure it doesn't
5293 * go backwards from the start they passed in
5294 */
5295 range_start = max(start,range_start);
5296 found = found_end - range_start;
5297
5298 if (found > 0) {
5299 u64 hole_start = start;
5300 u64 hole_len = len;
5301
172ddd60 5302 em = alloc_extent_map();
ec29ed5b
CM
5303 if (!em) {
5304 err = -ENOMEM;
5305 goto out;
5306 }
5307 /*
5308 * when btrfs_get_extent can't find anything it
5309 * returns one huge hole
5310 *
5311 * make sure what it found really fits our range, and
5312 * adjust to make sure it is based on the start from
5313 * the caller
5314 */
5315 if (hole_em) {
5316 u64 calc_end = extent_map_end(hole_em);
5317
5318 if (calc_end <= start || (hole_em->start > end)) {
5319 free_extent_map(hole_em);
5320 hole_em = NULL;
5321 } else {
5322 hole_start = max(hole_em->start, start);
5323 hole_len = calc_end - hole_start;
5324 }
5325 }
5326 em->bdev = NULL;
5327 if (hole_em && range_start > hole_start) {
5328 /* our hole starts before our delalloc, so we
5329 * have to return just the parts of the hole
5330 * that go until the delalloc starts
5331 */
5332 em->len = min(hole_len,
5333 range_start - hole_start);
5334 em->start = hole_start;
5335 em->orig_start = hole_start;
5336 /*
5337 * don't adjust block start at all,
5338 * it is fixed at EXTENT_MAP_HOLE
5339 */
5340 em->block_start = hole_em->block_start;
5341 em->block_len = hole_len;
5342 } else {
5343 em->start = range_start;
5344 em->len = found;
5345 em->orig_start = range_start;
5346 em->block_start = EXTENT_MAP_DELALLOC;
5347 em->block_len = found;
5348 }
5349 } else if (hole_em) {
5350 return hole_em;
5351 }
5352out:
5353
5354 free_extent_map(hole_em);
5355 if (err) {
5356 free_extent_map(em);
5357 return ERR_PTR(err);
5358 }
5359 return em;
5360}
5361
4b46fce2 5362static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5363 struct extent_map *em,
4b46fce2
JB
5364 u64 start, u64 len)
5365{
5366 struct btrfs_root *root = BTRFS_I(inode)->root;
5367 struct btrfs_trans_handle *trans;
4b46fce2
JB
5368 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5369 struct btrfs_key ins;
5370 u64 alloc_hint;
5371 int ret;
16d299ac 5372 bool insert = false;
4b46fce2 5373
16d299ac
JB
5374 /*
5375 * Ok if the extent map we looked up is a hole and is for the exact
5376 * range we want, there is no reason to allocate a new one, however if
5377 * it is not right then we need to free this one and drop the cache for
5378 * our range.
5379 */
5380 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5381 em->len != len) {
5382 free_extent_map(em);
5383 em = NULL;
5384 insert = true;
5385 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5386 }
4b46fce2 5387
7a7eaa40 5388 trans = btrfs_join_transaction(root);
3612b495
TI
5389 if (IS_ERR(trans))
5390 return ERR_CAST(trans);
4b46fce2 5391
4cb5300b
CM
5392 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5393 btrfs_add_inode_defrag(trans, inode);
5394
4b46fce2
JB
5395 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5396
5397 alloc_hint = get_extent_allocation_hint(inode, start, len);
5398 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5399 alloc_hint, (u64)-1, &ins, 1);
5400 if (ret) {
5401 em = ERR_PTR(ret);
5402 goto out;
5403 }
5404
4b46fce2 5405 if (!em) {
172ddd60 5406 em = alloc_extent_map();
16d299ac
JB
5407 if (!em) {
5408 em = ERR_PTR(-ENOMEM);
5409 goto out;
5410 }
4b46fce2
JB
5411 }
5412
5413 em->start = start;
5414 em->orig_start = em->start;
5415 em->len = ins.offset;
5416
5417 em->block_start = ins.objectid;
5418 em->block_len = ins.offset;
5419 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5420
5421 /*
5422 * We need to do this because if we're using the original em we searched
5423 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5424 */
5425 em->flags = 0;
4b46fce2
JB
5426 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5427
16d299ac 5428 while (insert) {
4b46fce2
JB
5429 write_lock(&em_tree->lock);
5430 ret = add_extent_mapping(em_tree, em);
5431 write_unlock(&em_tree->lock);
5432 if (ret != -EEXIST)
5433 break;
5434 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5435 }
5436
5437 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5438 ins.offset, ins.offset, 0);
5439 if (ret) {
5440 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5441 em = ERR_PTR(ret);
5442 }
5443out:
5444 btrfs_end_transaction(trans, root);
5445 return em;
5446}
5447
46bfbb5c
CM
5448/*
5449 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5450 * block must be cow'd
5451 */
5452static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5453 struct inode *inode, u64 offset, u64 len)
5454{
5455 struct btrfs_path *path;
5456 int ret;
5457 struct extent_buffer *leaf;
5458 struct btrfs_root *root = BTRFS_I(inode)->root;
5459 struct btrfs_file_extent_item *fi;
5460 struct btrfs_key key;
5461 u64 disk_bytenr;
5462 u64 backref_offset;
5463 u64 extent_end;
5464 u64 num_bytes;
5465 int slot;
5466 int found_type;
5467
5468 path = btrfs_alloc_path();
5469 if (!path)
5470 return -ENOMEM;
5471
33345d01 5472 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5473 offset, 0);
5474 if (ret < 0)
5475 goto out;
5476
5477 slot = path->slots[0];
5478 if (ret == 1) {
5479 if (slot == 0) {
5480 /* can't find the item, must cow */
5481 ret = 0;
5482 goto out;
5483 }
5484 slot--;
5485 }
5486 ret = 0;
5487 leaf = path->nodes[0];
5488 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5489 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5490 key.type != BTRFS_EXTENT_DATA_KEY) {
5491 /* not our file or wrong item type, must cow */
5492 goto out;
5493 }
5494
5495 if (key.offset > offset) {
5496 /* Wrong offset, must cow */
5497 goto out;
5498 }
5499
5500 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5501 found_type = btrfs_file_extent_type(leaf, fi);
5502 if (found_type != BTRFS_FILE_EXTENT_REG &&
5503 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5504 /* not a regular extent, must cow */
5505 goto out;
5506 }
5507 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5508 backref_offset = btrfs_file_extent_offset(leaf, fi);
5509
5510 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5511 if (extent_end < offset + len) {
5512 /* extent doesn't include our full range, must cow */
5513 goto out;
5514 }
5515
5516 if (btrfs_extent_readonly(root, disk_bytenr))
5517 goto out;
5518
5519 /*
5520 * look for other files referencing this extent, if we
5521 * find any we must cow
5522 */
33345d01 5523 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5524 key.offset - backref_offset, disk_bytenr))
5525 goto out;
5526
5527 /*
5528 * adjust disk_bytenr and num_bytes to cover just the bytes
5529 * in this extent we are about to write. If there
5530 * are any csums in that range we have to cow in order
5531 * to keep the csums correct
5532 */
5533 disk_bytenr += backref_offset;
5534 disk_bytenr += offset - key.offset;
5535 num_bytes = min(offset + len, extent_end) - offset;
5536 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5537 goto out;
5538 /*
5539 * all of the above have passed, it is safe to overwrite this extent
5540 * without cow
5541 */
5542 ret = 1;
5543out:
5544 btrfs_free_path(path);
5545 return ret;
5546}
5547
4b46fce2
JB
5548static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5549 struct buffer_head *bh_result, int create)
5550{
5551 struct extent_map *em;
5552 struct btrfs_root *root = BTRFS_I(inode)->root;
5553 u64 start = iblock << inode->i_blkbits;
5554 u64 len = bh_result->b_size;
46bfbb5c 5555 struct btrfs_trans_handle *trans;
4b46fce2
JB
5556
5557 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5558 if (IS_ERR(em))
5559 return PTR_ERR(em);
5560
5561 /*
5562 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5563 * io. INLINE is special, and we could probably kludge it in here, but
5564 * it's still buffered so for safety lets just fall back to the generic
5565 * buffered path.
5566 *
5567 * For COMPRESSED we _have_ to read the entire extent in so we can
5568 * decompress it, so there will be buffering required no matter what we
5569 * do, so go ahead and fallback to buffered.
5570 *
5571 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5572 * to buffered IO. Don't blame me, this is the price we pay for using
5573 * the generic code.
5574 */
5575 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5576 em->block_start == EXTENT_MAP_INLINE) {
5577 free_extent_map(em);
5578 return -ENOTBLK;
5579 }
5580
5581 /* Just a good old fashioned hole, return */
5582 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5583 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5584 free_extent_map(em);
5585 /* DIO will do one hole at a time, so just unlock a sector */
5586 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5587 start + root->sectorsize - 1, GFP_NOFS);
5588 return 0;
5589 }
5590
5591 /*
5592 * We don't allocate a new extent in the following cases
5593 *
5594 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5595 * existing extent.
5596 * 2) The extent is marked as PREALLOC. We're good to go here and can
5597 * just use the extent.
5598 *
5599 */
46bfbb5c
CM
5600 if (!create) {
5601 len = em->len - (start - em->start);
4b46fce2 5602 goto map;
46bfbb5c 5603 }
4b46fce2
JB
5604
5605 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5606 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5607 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5608 int type;
5609 int ret;
46bfbb5c 5610 u64 block_start;
4b46fce2
JB
5611
5612 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5613 type = BTRFS_ORDERED_PREALLOC;
5614 else
5615 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5616 len = min(len, em->len - (start - em->start));
4b46fce2 5617 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5618
5619 /*
5620 * we're not going to log anything, but we do need
5621 * to make sure the current transaction stays open
5622 * while we look for nocow cross refs
5623 */
7a7eaa40 5624 trans = btrfs_join_transaction(root);
3612b495 5625 if (IS_ERR(trans))
46bfbb5c
CM
5626 goto must_cow;
5627
5628 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5629 ret = btrfs_add_ordered_extent_dio(inode, start,
5630 block_start, len, len, type);
5631 btrfs_end_transaction(trans, root);
5632 if (ret) {
5633 free_extent_map(em);
5634 return ret;
5635 }
5636 goto unlock;
4b46fce2 5637 }
46bfbb5c 5638 btrfs_end_transaction(trans, root);
4b46fce2 5639 }
46bfbb5c
CM
5640must_cow:
5641 /*
5642 * this will cow the extent, reset the len in case we changed
5643 * it above
5644 */
5645 len = bh_result->b_size;
16d299ac 5646 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5647 if (IS_ERR(em))
5648 return PTR_ERR(em);
5649 len = min(len, em->len - (start - em->start));
5650unlock:
4845e44f
CM
5651 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5652 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5653 0, NULL, GFP_NOFS);
4b46fce2
JB
5654map:
5655 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5656 inode->i_blkbits;
46bfbb5c 5657 bh_result->b_size = len;
4b46fce2
JB
5658 bh_result->b_bdev = em->bdev;
5659 set_buffer_mapped(bh_result);
5660 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5661 set_buffer_new(bh_result);
5662
5663 free_extent_map(em);
5664
5665 return 0;
5666}
5667
5668struct btrfs_dio_private {
5669 struct inode *inode;
5670 u64 logical_offset;
5671 u64 disk_bytenr;
5672 u64 bytes;
5673 u32 *csums;
5674 void *private;
e65e1535
MX
5675
5676 /* number of bios pending for this dio */
5677 atomic_t pending_bios;
5678
5679 /* IO errors */
5680 int errors;
5681
5682 struct bio *orig_bio;
4b46fce2
JB
5683};
5684
5685static void btrfs_endio_direct_read(struct bio *bio, int err)
5686{
e65e1535 5687 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5688 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5689 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5690 struct inode *inode = dip->inode;
5691 struct btrfs_root *root = BTRFS_I(inode)->root;
5692 u64 start;
5693 u32 *private = dip->csums;
5694
5695 start = dip->logical_offset;
5696 do {
5697 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5698 struct page *page = bvec->bv_page;
5699 char *kaddr;
5700 u32 csum = ~(u32)0;
5701 unsigned long flags;
5702
5703 local_irq_save(flags);
5704 kaddr = kmap_atomic(page, KM_IRQ0);
5705 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5706 csum, bvec->bv_len);
5707 btrfs_csum_final(csum, (char *)&csum);
5708 kunmap_atomic(kaddr, KM_IRQ0);
5709 local_irq_restore(flags);
5710
5711 flush_dcache_page(bvec->bv_page);
5712 if (csum != *private) {
33345d01 5713 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5714 " %llu csum %u private %u\n",
33345d01
LZ
5715 (unsigned long long)btrfs_ino(inode),
5716 (unsigned long long)start,
4b46fce2
JB
5717 csum, *private);
5718 err = -EIO;
5719 }
5720 }
5721
5722 start += bvec->bv_len;
5723 private++;
5724 bvec++;
5725 } while (bvec <= bvec_end);
5726
5727 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5728 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5729 bio->bi_private = dip->private;
5730
5731 kfree(dip->csums);
5732 kfree(dip);
c0da7aa1
JB
5733
5734 /* If we had a csum failure make sure to clear the uptodate flag */
5735 if (err)
5736 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5737 dio_end_io(bio, err);
5738}
5739
5740static void btrfs_endio_direct_write(struct bio *bio, int err)
5741{
5742 struct btrfs_dio_private *dip = bio->bi_private;
5743 struct inode *inode = dip->inode;
5744 struct btrfs_root *root = BTRFS_I(inode)->root;
5745 struct btrfs_trans_handle *trans;
5746 struct btrfs_ordered_extent *ordered = NULL;
5747 struct extent_state *cached_state = NULL;
163cf09c
CM
5748 u64 ordered_offset = dip->logical_offset;
5749 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5750 int ret;
5751
5752 if (err)
5753 goto out_done;
163cf09c
CM
5754again:
5755 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5756 &ordered_offset,
5757 ordered_bytes);
4b46fce2 5758 if (!ret)
163cf09c 5759 goto out_test;
4b46fce2
JB
5760
5761 BUG_ON(!ordered);
5762
7a7eaa40 5763 trans = btrfs_join_transaction(root);
3612b495 5764 if (IS_ERR(trans)) {
4b46fce2
JB
5765 err = -ENOMEM;
5766 goto out;
5767 }
5768 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5769
5770 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5771 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5772 if (!ret)
2115133f 5773 err = btrfs_update_inode_fallback(trans, root, inode);
4b46fce2
JB
5774 goto out;
5775 }
5776
5777 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5778 ordered->file_offset + ordered->len - 1, 0,
5779 &cached_state, GFP_NOFS);
5780
5781 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5782 ret = btrfs_mark_extent_written(trans, inode,
5783 ordered->file_offset,
5784 ordered->file_offset +
5785 ordered->len);
5786 if (ret) {
5787 err = ret;
5788 goto out_unlock;
5789 }
5790 } else {
5791 ret = insert_reserved_file_extent(trans, inode,
5792 ordered->file_offset,
5793 ordered->start,
5794 ordered->disk_len,
5795 ordered->len,
5796 ordered->len,
5797 0, 0, 0,
5798 BTRFS_FILE_EXTENT_REG);
5799 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5800 ordered->file_offset, ordered->len);
5801 if (ret) {
5802 err = ret;
5803 WARN_ON(1);
5804 goto out_unlock;
5805 }
5806 }
5807
5808 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1 5809 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
a39f7521 5810 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
2115133f 5811 btrfs_update_inode_fallback(trans, root, inode);
1ef30be1 5812 ret = 0;
4b46fce2
JB
5813out_unlock:
5814 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5815 ordered->file_offset + ordered->len - 1,
5816 &cached_state, GFP_NOFS);
5817out:
5818 btrfs_delalloc_release_metadata(inode, ordered->len);
5819 btrfs_end_transaction(trans, root);
163cf09c 5820 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5821 btrfs_put_ordered_extent(ordered);
5822 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5823
5824out_test:
5825 /*
5826 * our bio might span multiple ordered extents. If we haven't
5827 * completed the accounting for the whole dio, go back and try again
5828 */
5829 if (ordered_offset < dip->logical_offset + dip->bytes) {
5830 ordered_bytes = dip->logical_offset + dip->bytes -
5831 ordered_offset;
5832 goto again;
5833 }
4b46fce2
JB
5834out_done:
5835 bio->bi_private = dip->private;
5836
5837 kfree(dip->csums);
5838 kfree(dip);
c0da7aa1
JB
5839
5840 /* If we had an error make sure to clear the uptodate flag */
5841 if (err)
5842 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5843 dio_end_io(bio, err);
5844}
5845
eaf25d93
CM
5846static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5847 struct bio *bio, int mirror_num,
5848 unsigned long bio_flags, u64 offset)
5849{
5850 int ret;
5851 struct btrfs_root *root = BTRFS_I(inode)->root;
5852 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5853 BUG_ON(ret);
5854 return 0;
5855}
5856
e65e1535
MX
5857static void btrfs_end_dio_bio(struct bio *bio, int err)
5858{
5859 struct btrfs_dio_private *dip = bio->bi_private;
5860
5861 if (err) {
33345d01 5862 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5863 "sector %#Lx len %u err no %d\n",
33345d01 5864 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5865 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5866 dip->errors = 1;
5867
5868 /*
5869 * before atomic variable goto zero, we must make sure
5870 * dip->errors is perceived to be set.
5871 */
5872 smp_mb__before_atomic_dec();
5873 }
5874
5875 /* if there are more bios still pending for this dio, just exit */
5876 if (!atomic_dec_and_test(&dip->pending_bios))
5877 goto out;
5878
5879 if (dip->errors)
5880 bio_io_error(dip->orig_bio);
5881 else {
5882 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5883 bio_endio(dip->orig_bio, 0);
5884 }
5885out:
5886 bio_put(bio);
5887}
5888
5889static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5890 u64 first_sector, gfp_t gfp_flags)
5891{
5892 int nr_vecs = bio_get_nr_vecs(bdev);
5893 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5894}
5895
5896static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5897 int rw, u64 file_offset, int skip_sum,
1ae39938 5898 u32 *csums, int async_submit)
e65e1535
MX
5899{
5900 int write = rw & REQ_WRITE;
5901 struct btrfs_root *root = BTRFS_I(inode)->root;
5902 int ret;
5903
5904 bio_get(bio);
5905 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5906 if (ret)
5907 goto err;
5908
1ae39938
JB
5909 if (skip_sum)
5910 goto map;
5911
5912 if (write && async_submit) {
e65e1535
MX
5913 ret = btrfs_wq_submit_bio(root->fs_info,
5914 inode, rw, bio, 0, 0,
5915 file_offset,
5916 __btrfs_submit_bio_start_direct_io,
5917 __btrfs_submit_bio_done);
5918 goto err;
1ae39938
JB
5919 } else if (write) {
5920 /*
5921 * If we aren't doing async submit, calculate the csum of the
5922 * bio now.
5923 */
5924 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5925 if (ret)
5926 goto err;
c2db1073
TI
5927 } else if (!skip_sum) {
5928 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5929 file_offset, csums);
c2db1073
TI
5930 if (ret)
5931 goto err;
5932 }
e65e1535 5933
1ae39938
JB
5934map:
5935 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5936err:
5937 bio_put(bio);
5938 return ret;
5939}
5940
5941static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5942 int skip_sum)
5943{
5944 struct inode *inode = dip->inode;
5945 struct btrfs_root *root = BTRFS_I(inode)->root;
5946 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5947 struct bio *bio;
5948 struct bio *orig_bio = dip->orig_bio;
5949 struct bio_vec *bvec = orig_bio->bi_io_vec;
5950 u64 start_sector = orig_bio->bi_sector;
5951 u64 file_offset = dip->logical_offset;
5952 u64 submit_len = 0;
5953 u64 map_length;
5954 int nr_pages = 0;
5955 u32 *csums = dip->csums;
5956 int ret = 0;
1ae39938 5957 int async_submit = 0;
98bc3149 5958 int write = rw & REQ_WRITE;
e65e1535 5959
e65e1535
MX
5960 map_length = orig_bio->bi_size;
5961 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5962 &map_length, NULL, 0);
5963 if (ret) {
64728bbb 5964 bio_put(orig_bio);
e65e1535
MX
5965 return -EIO;
5966 }
5967
02f57c7a
JB
5968 if (map_length >= orig_bio->bi_size) {
5969 bio = orig_bio;
5970 goto submit;
5971 }
5972
1ae39938 5973 async_submit = 1;
02f57c7a
JB
5974 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5975 if (!bio)
5976 return -ENOMEM;
5977 bio->bi_private = dip;
5978 bio->bi_end_io = btrfs_end_dio_bio;
5979 atomic_inc(&dip->pending_bios);
5980
e65e1535
MX
5981 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5982 if (unlikely(map_length < submit_len + bvec->bv_len ||
5983 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5984 bvec->bv_offset) < bvec->bv_len)) {
5985 /*
5986 * inc the count before we submit the bio so
5987 * we know the end IO handler won't happen before
5988 * we inc the count. Otherwise, the dip might get freed
5989 * before we're done setting it up
5990 */
5991 atomic_inc(&dip->pending_bios);
5992 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5993 file_offset, skip_sum,
1ae39938 5994 csums, async_submit);
e65e1535
MX
5995 if (ret) {
5996 bio_put(bio);
5997 atomic_dec(&dip->pending_bios);
5998 goto out_err;
5999 }
6000
98bc3149
JB
6001 /* Write's use the ordered csums */
6002 if (!write && !skip_sum)
e65e1535
MX
6003 csums = csums + nr_pages;
6004 start_sector += submit_len >> 9;
6005 file_offset += submit_len;
6006
6007 submit_len = 0;
6008 nr_pages = 0;
6009
6010 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6011 start_sector, GFP_NOFS);
6012 if (!bio)
6013 goto out_err;
6014 bio->bi_private = dip;
6015 bio->bi_end_io = btrfs_end_dio_bio;
6016
6017 map_length = orig_bio->bi_size;
6018 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6019 &map_length, NULL, 0);
6020 if (ret) {
6021 bio_put(bio);
6022 goto out_err;
6023 }
6024 } else {
6025 submit_len += bvec->bv_len;
6026 nr_pages ++;
6027 bvec++;
6028 }
6029 }
6030
02f57c7a 6031submit:
e65e1535 6032 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6033 csums, async_submit);
e65e1535
MX
6034 if (!ret)
6035 return 0;
6036
6037 bio_put(bio);
6038out_err:
6039 dip->errors = 1;
6040 /*
6041 * before atomic variable goto zero, we must
6042 * make sure dip->errors is perceived to be set.
6043 */
6044 smp_mb__before_atomic_dec();
6045 if (atomic_dec_and_test(&dip->pending_bios))
6046 bio_io_error(dip->orig_bio);
6047
6048 /* bio_end_io() will handle error, so we needn't return it */
6049 return 0;
6050}
6051
4b46fce2
JB
6052static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6053 loff_t file_offset)
6054{
6055 struct btrfs_root *root = BTRFS_I(inode)->root;
6056 struct btrfs_dio_private *dip;
6057 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6058 int skip_sum;
7b6d91da 6059 int write = rw & REQ_WRITE;
4b46fce2
JB
6060 int ret = 0;
6061
6062 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6063
6064 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6065 if (!dip) {
6066 ret = -ENOMEM;
6067 goto free_ordered;
6068 }
6069 dip->csums = NULL;
6070
98bc3149
JB
6071 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6072 if (!write && !skip_sum) {
4b46fce2
JB
6073 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6074 if (!dip->csums) {
b4966b77 6075 kfree(dip);
4b46fce2
JB
6076 ret = -ENOMEM;
6077 goto free_ordered;
6078 }
6079 }
6080
6081 dip->private = bio->bi_private;
6082 dip->inode = inode;
6083 dip->logical_offset = file_offset;
6084
4b46fce2
JB
6085 dip->bytes = 0;
6086 do {
6087 dip->bytes += bvec->bv_len;
6088 bvec++;
6089 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6090
46bfbb5c 6091 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6092 bio->bi_private = dip;
e65e1535
MX
6093 dip->errors = 0;
6094 dip->orig_bio = bio;
6095 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6096
6097 if (write)
6098 bio->bi_end_io = btrfs_endio_direct_write;
6099 else
6100 bio->bi_end_io = btrfs_endio_direct_read;
6101
e65e1535
MX
6102 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6103 if (!ret)
eaf25d93 6104 return;
4b46fce2
JB
6105free_ordered:
6106 /*
6107 * If this is a write, we need to clean up the reserved space and kill
6108 * the ordered extent.
6109 */
6110 if (write) {
6111 struct btrfs_ordered_extent *ordered;
955256f2 6112 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6113 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6114 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6115 btrfs_free_reserved_extent(root, ordered->start,
6116 ordered->disk_len);
6117 btrfs_put_ordered_extent(ordered);
6118 btrfs_put_ordered_extent(ordered);
6119 }
6120 bio_endio(bio, ret);
6121}
6122
5a5f79b5
CM
6123static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6124 const struct iovec *iov, loff_t offset,
6125 unsigned long nr_segs)
6126{
6127 int seg;
a1b75f7d 6128 int i;
5a5f79b5
CM
6129 size_t size;
6130 unsigned long addr;
6131 unsigned blocksize_mask = root->sectorsize - 1;
6132 ssize_t retval = -EINVAL;
6133 loff_t end = offset;
6134
6135 if (offset & blocksize_mask)
6136 goto out;
6137
6138 /* Check the memory alignment. Blocks cannot straddle pages */
6139 for (seg = 0; seg < nr_segs; seg++) {
6140 addr = (unsigned long)iov[seg].iov_base;
6141 size = iov[seg].iov_len;
6142 end += size;
a1b75f7d 6143 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6144 goto out;
a1b75f7d
JB
6145
6146 /* If this is a write we don't need to check anymore */
6147 if (rw & WRITE)
6148 continue;
6149
6150 /*
6151 * Check to make sure we don't have duplicate iov_base's in this
6152 * iovec, if so return EINVAL, otherwise we'll get csum errors
6153 * when reading back.
6154 */
6155 for (i = seg + 1; i < nr_segs; i++) {
6156 if (iov[seg].iov_base == iov[i].iov_base)
6157 goto out;
6158 }
5a5f79b5
CM
6159 }
6160 retval = 0;
6161out:
6162 return retval;
6163}
16432985
CM
6164static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6165 const struct iovec *iov, loff_t offset,
6166 unsigned long nr_segs)
6167{
4b46fce2
JB
6168 struct file *file = iocb->ki_filp;
6169 struct inode *inode = file->f_mapping->host;
6170 struct btrfs_ordered_extent *ordered;
4845e44f 6171 struct extent_state *cached_state = NULL;
4b46fce2
JB
6172 u64 lockstart, lockend;
6173 ssize_t ret;
4845e44f
CM
6174 int writing = rw & WRITE;
6175 int write_bits = 0;
3f7c579c 6176 size_t count = iov_length(iov, nr_segs);
4b46fce2 6177
5a5f79b5
CM
6178 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6179 offset, nr_segs)) {
6180 return 0;
6181 }
6182
4b46fce2 6183 lockstart = offset;
3f7c579c
CM
6184 lockend = offset + count - 1;
6185
6186 if (writing) {
6187 ret = btrfs_delalloc_reserve_space(inode, count);
6188 if (ret)
6189 goto out;
6190 }
4845e44f 6191
4b46fce2 6192 while (1) {
4845e44f
CM
6193 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6194 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6195 /*
6196 * We're concerned with the entire range that we're going to be
6197 * doing DIO to, so we need to make sure theres no ordered
6198 * extents in this range.
6199 */
6200 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6201 lockend - lockstart + 1);
6202 if (!ordered)
6203 break;
4845e44f
CM
6204 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6205 &cached_state, GFP_NOFS);
4b46fce2
JB
6206 btrfs_start_ordered_extent(inode, ordered, 1);
6207 btrfs_put_ordered_extent(ordered);
6208 cond_resched();
6209 }
6210
4845e44f
CM
6211 /*
6212 * we don't use btrfs_set_extent_delalloc because we don't want
6213 * the dirty or uptodate bits
6214 */
6215 if (writing) {
6216 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6217 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6218 EXTENT_DELALLOC, 0, NULL, &cached_state,
6219 GFP_NOFS);
6220 if (ret) {
6221 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6222 lockend, EXTENT_LOCKED | write_bits,
6223 1, 0, &cached_state, GFP_NOFS);
6224 goto out;
6225 }
6226 }
6227
6228 free_extent_state(cached_state);
6229 cached_state = NULL;
6230
5a5f79b5
CM
6231 ret = __blockdev_direct_IO(rw, iocb, inode,
6232 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6233 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6234 btrfs_submit_direct, 0);
4b46fce2
JB
6235
6236 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6237 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6238 offset + iov_length(iov, nr_segs) - 1,
6239 EXTENT_LOCKED | write_bits, 1, 0,
6240 &cached_state, GFP_NOFS);
4b46fce2
JB
6241 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6242 /*
6243 * We're falling back to buffered, unlock the section we didn't
6244 * do IO on.
6245 */
4845e44f
CM
6246 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6247 offset + iov_length(iov, nr_segs) - 1,
6248 EXTENT_LOCKED | write_bits, 1, 0,
6249 &cached_state, GFP_NOFS);
4b46fce2 6250 }
4845e44f
CM
6251out:
6252 free_extent_state(cached_state);
4b46fce2 6253 return ret;
16432985
CM
6254}
6255
1506fcc8
YS
6256static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6257 __u64 start, __u64 len)
6258{
ec29ed5b 6259 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6260}
6261
a52d9a80 6262int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6263{
d1310b2e
CM
6264 struct extent_io_tree *tree;
6265 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6266 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6267}
1832a6d5 6268
a52d9a80 6269static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6270{
d1310b2e 6271 struct extent_io_tree *tree;
b888db2b
CM
6272
6273
6274 if (current->flags & PF_MEMALLOC) {
6275 redirty_page_for_writepage(wbc, page);
6276 unlock_page(page);
6277 return 0;
6278 }
d1310b2e 6279 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6280 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6281}
6282
f421950f
CM
6283int btrfs_writepages(struct address_space *mapping,
6284 struct writeback_control *wbc)
b293f02e 6285{
d1310b2e 6286 struct extent_io_tree *tree;
771ed689 6287
d1310b2e 6288 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6289 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6290}
6291
3ab2fb5a
CM
6292static int
6293btrfs_readpages(struct file *file, struct address_space *mapping,
6294 struct list_head *pages, unsigned nr_pages)
6295{
d1310b2e
CM
6296 struct extent_io_tree *tree;
6297 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6298 return extent_readpages(tree, mapping, pages, nr_pages,
6299 btrfs_get_extent);
6300}
e6dcd2dc 6301static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6302{
d1310b2e
CM
6303 struct extent_io_tree *tree;
6304 struct extent_map_tree *map;
a52d9a80 6305 int ret;
8c2383c3 6306
d1310b2e
CM
6307 tree = &BTRFS_I(page->mapping->host)->io_tree;
6308 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6309 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6310 if (ret == 1) {
6311 ClearPagePrivate(page);
6312 set_page_private(page, 0);
6313 page_cache_release(page);
39279cc3 6314 }
a52d9a80 6315 return ret;
39279cc3
CM
6316}
6317
e6dcd2dc
CM
6318static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6319{
98509cfc
CM
6320 if (PageWriteback(page) || PageDirty(page))
6321 return 0;
b335b003 6322 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6323}
6324
a52d9a80 6325static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6326{
d1310b2e 6327 struct extent_io_tree *tree;
e6dcd2dc 6328 struct btrfs_ordered_extent *ordered;
2ac55d41 6329 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6330 u64 page_start = page_offset(page);
6331 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6332
8b62b72b
CM
6333
6334 /*
6335 * we have the page locked, so new writeback can't start,
6336 * and the dirty bit won't be cleared while we are here.
6337 *
6338 * Wait for IO on this page so that we can safely clear
6339 * the PagePrivate2 bit and do ordered accounting
6340 */
e6dcd2dc 6341 wait_on_page_writeback(page);
8b62b72b 6342
d1310b2e 6343 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6344 if (offset) {
6345 btrfs_releasepage(page, GFP_NOFS);
6346 return;
6347 }
2ac55d41
JB
6348 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6349 GFP_NOFS);
e6dcd2dc
CM
6350 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6351 page_offset(page));
6352 if (ordered) {
eb84ae03
CM
6353 /*
6354 * IO on this page will never be started, so we need
6355 * to account for any ordered extents now
6356 */
e6dcd2dc
CM
6357 clear_extent_bit(tree, page_start, page_end,
6358 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6359 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6360 &cached_state, GFP_NOFS);
8b62b72b
CM
6361 /*
6362 * whoever cleared the private bit is responsible
6363 * for the finish_ordered_io
6364 */
6365 if (TestClearPagePrivate2(page)) {
6366 btrfs_finish_ordered_io(page->mapping->host,
6367 page_start, page_end);
6368 }
e6dcd2dc 6369 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6370 cached_state = NULL;
6371 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6372 GFP_NOFS);
e6dcd2dc
CM
6373 }
6374 clear_extent_bit(tree, page_start, page_end,
32c00aff 6375 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6376 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6377 __btrfs_releasepage(page, GFP_NOFS);
6378
4a096752 6379 ClearPageChecked(page);
9ad6b7bc 6380 if (PagePrivate(page)) {
9ad6b7bc
CM
6381 ClearPagePrivate(page);
6382 set_page_private(page, 0);
6383 page_cache_release(page);
6384 }
39279cc3
CM
6385}
6386
9ebefb18
CM
6387/*
6388 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6389 * called from a page fault handler when a page is first dirtied. Hence we must
6390 * be careful to check for EOF conditions here. We set the page up correctly
6391 * for a written page which means we get ENOSPC checking when writing into
6392 * holes and correct delalloc and unwritten extent mapping on filesystems that
6393 * support these features.
6394 *
6395 * We are not allowed to take the i_mutex here so we have to play games to
6396 * protect against truncate races as the page could now be beyond EOF. Because
6397 * vmtruncate() writes the inode size before removing pages, once we have the
6398 * page lock we can determine safely if the page is beyond EOF. If it is not
6399 * beyond EOF, then the page is guaranteed safe against truncation until we
6400 * unlock the page.
6401 */
c2ec175c 6402int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6403{
c2ec175c 6404 struct page *page = vmf->page;
6da6abae 6405 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6406 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6407 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6408 struct btrfs_ordered_extent *ordered;
2ac55d41 6409 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6410 char *kaddr;
6411 unsigned long zero_start;
9ebefb18 6412 loff_t size;
1832a6d5 6413 int ret;
9998eb70 6414 int reserved = 0;
a52d9a80 6415 u64 page_start;
e6dcd2dc 6416 u64 page_end;
9ebefb18 6417
0ca1f7ce 6418 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6419 if (!ret) {
22c44fe6 6420 ret = btrfs_update_time(vma->vm_file);
9998eb70
CM
6421 reserved = 1;
6422 }
56a76f82
NP
6423 if (ret) {
6424 if (ret == -ENOMEM)
6425 ret = VM_FAULT_OOM;
6426 else /* -ENOSPC, -EIO, etc */
6427 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6428 if (reserved)
6429 goto out;
6430 goto out_noreserve;
56a76f82 6431 }
1832a6d5 6432
56a76f82 6433 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6434again:
9ebefb18 6435 lock_page(page);
9ebefb18 6436 size = i_size_read(inode);
e6dcd2dc
CM
6437 page_start = page_offset(page);
6438 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6439
9ebefb18 6440 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6441 (page_start >= size)) {
9ebefb18
CM
6442 /* page got truncated out from underneath us */
6443 goto out_unlock;
6444 }
e6dcd2dc
CM
6445 wait_on_page_writeback(page);
6446
2ac55d41
JB
6447 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6448 GFP_NOFS);
e6dcd2dc
CM
6449 set_page_extent_mapped(page);
6450
eb84ae03
CM
6451 /*
6452 * we can't set the delalloc bits if there are pending ordered
6453 * extents. Drop our locks and wait for them to finish
6454 */
e6dcd2dc
CM
6455 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6456 if (ordered) {
2ac55d41
JB
6457 unlock_extent_cached(io_tree, page_start, page_end,
6458 &cached_state, GFP_NOFS);
e6dcd2dc 6459 unlock_page(page);
eb84ae03 6460 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6461 btrfs_put_ordered_extent(ordered);
6462 goto again;
6463 }
6464
fbf19087
JB
6465 /*
6466 * XXX - page_mkwrite gets called every time the page is dirtied, even
6467 * if it was already dirty, so for space accounting reasons we need to
6468 * clear any delalloc bits for the range we are fixing to save. There
6469 * is probably a better way to do this, but for now keep consistent with
6470 * prepare_pages in the normal write path.
6471 */
2ac55d41 6472 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6473 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6474 0, 0, &cached_state, GFP_NOFS);
fbf19087 6475
2ac55d41
JB
6476 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6477 &cached_state);
9ed74f2d 6478 if (ret) {
2ac55d41
JB
6479 unlock_extent_cached(io_tree, page_start, page_end,
6480 &cached_state, GFP_NOFS);
9ed74f2d
JB
6481 ret = VM_FAULT_SIGBUS;
6482 goto out_unlock;
6483 }
e6dcd2dc 6484 ret = 0;
9ebefb18
CM
6485
6486 /* page is wholly or partially inside EOF */
a52d9a80 6487 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6488 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6489 else
e6dcd2dc 6490 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6491
e6dcd2dc
CM
6492 if (zero_start != PAGE_CACHE_SIZE) {
6493 kaddr = kmap(page);
6494 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6495 flush_dcache_page(page);
6496 kunmap(page);
6497 }
247e743c 6498 ClearPageChecked(page);
e6dcd2dc 6499 set_page_dirty(page);
50a9b214 6500 SetPageUptodate(page);
5a3f23d5 6501
257c62e1
CM
6502 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6503 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6504
2ac55d41 6505 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6506
6507out_unlock:
50a9b214
CM
6508 if (!ret)
6509 return VM_FAULT_LOCKED;
9ebefb18 6510 unlock_page(page);
1832a6d5 6511out:
ec39e180 6512 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6513out_noreserve:
9ebefb18
CM
6514 return ret;
6515}
6516
a41ad394 6517static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6518{
6519 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6520 struct btrfs_block_rsv *rsv;
39279cc3 6521 int ret;
3893e33b 6522 int err = 0;
39279cc3 6523 struct btrfs_trans_handle *trans;
d3c2fdcf 6524 unsigned long nr;
dbe674a9 6525 u64 mask = root->sectorsize - 1;
07127184 6526 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6527
5d5e103a
JB
6528 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6529 if (ret)
a41ad394 6530 return ret;
8082510e 6531
4a096752 6532 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6533 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6534
fcb80c2a
JB
6535 /*
6536 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6537 * 3 things going on here
6538 *
6539 * 1) We need to reserve space for our orphan item and the space to
6540 * delete our orphan item. Lord knows we don't want to have a dangling
6541 * orphan item because we didn't reserve space to remove it.
6542 *
6543 * 2) We need to reserve space to update our inode.
6544 *
6545 * 3) We need to have something to cache all the space that is going to
6546 * be free'd up by the truncate operation, but also have some slack
6547 * space reserved in case it uses space during the truncate (thank you
6548 * very much snapshotting).
6549 *
6550 * And we need these to all be seperate. The fact is we can use alot of
6551 * space doing the truncate, and we have no earthly idea how much space
6552 * we will use, so we need the truncate reservation to be seperate so it
6553 * doesn't end up using space reserved for updating the inode or
6554 * removing the orphan item. We also need to be able to stop the
6555 * transaction and start a new one, which means we need to be able to
6556 * update the inode several times, and we have no idea of knowing how
6557 * many times that will be, so we can't just reserve 1 item for the
6558 * entirety of the opration, so that has to be done seperately as well.
6559 * Then there is the orphan item, which does indeed need to be held on
6560 * to for the whole operation, and we need nobody to touch this reserved
6561 * space except the orphan code.
6562 *
6563 * So that leaves us with
6564 *
6565 * 1) root->orphan_block_rsv - for the orphan deletion.
6566 * 2) rsv - for the truncate reservation, which we will steal from the
6567 * transaction reservation.
6568 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6569 * updating the inode.
6570 */
6571 rsv = btrfs_alloc_block_rsv(root);
6572 if (!rsv)
6573 return -ENOMEM;
4a338542 6574 rsv->size = min_size;
f0cd846e 6575
907cbceb 6576 /*
07127184 6577 * 1 for the truncate slack space
907cbceb
JB
6578 * 1 for the orphan item we're going to add
6579 * 1 for the orphan item deletion
6580 * 1 for updating the inode.
6581 */
fcb80c2a
JB
6582 trans = btrfs_start_transaction(root, 4);
6583 if (IS_ERR(trans)) {
6584 err = PTR_ERR(trans);
6585 goto out;
6586 }
f0cd846e 6587
907cbceb
JB
6588 /* Migrate the slack space for the truncate to our reserve */
6589 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6590 min_size);
fcb80c2a 6591 BUG_ON(ret);
f0cd846e
JB
6592
6593 ret = btrfs_orphan_add(trans, inode);
6594 if (ret) {
6595 btrfs_end_transaction(trans, root);
fcb80c2a 6596 goto out;
f0cd846e
JB
6597 }
6598
5a3f23d5
CM
6599 /*
6600 * setattr is responsible for setting the ordered_data_close flag,
6601 * but that is only tested during the last file release. That
6602 * could happen well after the next commit, leaving a great big
6603 * window where new writes may get lost if someone chooses to write
6604 * to this file after truncating to zero
6605 *
6606 * The inode doesn't have any dirty data here, and so if we commit
6607 * this is a noop. If someone immediately starts writing to the inode
6608 * it is very likely we'll catch some of their writes in this
6609 * transaction, and the commit will find this file on the ordered
6610 * data list with good things to send down.
6611 *
6612 * This is a best effort solution, there is still a window where
6613 * using truncate to replace the contents of the file will
6614 * end up with a zero length file after a crash.
6615 */
6616 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6617 btrfs_add_ordered_operation(trans, root, inode);
6618
8082510e 6619 while (1) {
36ba022a 6620 ret = btrfs_block_rsv_refill(root, rsv, min_size);
907cbceb
JB
6621 if (ret) {
6622 /*
6623 * This can only happen with the original transaction we
6624 * started above, every other time we shouldn't have a
6625 * transaction started yet.
6626 */
6627 if (ret == -EAGAIN)
6628 goto end_trans;
6629 err = ret;
6630 break;
6631 }
6632
d68fc57b 6633 if (!trans) {
907cbceb
JB
6634 /* Just need the 1 for updating the inode */
6635 trans = btrfs_start_transaction(root, 1);
fcb80c2a 6636 if (IS_ERR(trans)) {
7041ee97
JB
6637 ret = err = PTR_ERR(trans);
6638 trans = NULL;
6639 break;
fcb80c2a 6640 }
d68fc57b
YZ
6641 }
6642
907cbceb
JB
6643 trans->block_rsv = rsv;
6644
8082510e
YZ
6645 ret = btrfs_truncate_inode_items(trans, root, inode,
6646 inode->i_size,
6647 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6648 if (ret != -EAGAIN) {
6649 err = ret;
8082510e 6650 break;
3893e33b 6651 }
39279cc3 6652
fcb80c2a 6653 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6654 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6655 if (ret) {
6656 err = ret;
6657 break;
6658 }
907cbceb 6659end_trans:
8082510e
YZ
6660 nr = trans->blocks_used;
6661 btrfs_end_transaction(trans, root);
d68fc57b 6662 trans = NULL;
8082510e 6663 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6664 }
6665
6666 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6667 trans->block_rsv = root->orphan_block_rsv;
8082510e 6668 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6669 if (ret)
6670 err = ret;
ded5db9d
JB
6671 } else if (ret && inode->i_nlink > 0) {
6672 /*
6673 * Failed to do the truncate, remove us from the in memory
6674 * orphan list.
6675 */
6676 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6677 }
6678
917c16b2
CM
6679 if (trans) {
6680 trans->block_rsv = &root->fs_info->trans_block_rsv;
6681 ret = btrfs_update_inode(trans, root, inode);
6682 if (ret && !err)
6683 err = ret;
7b128766 6684
917c16b2 6685 nr = trans->blocks_used;
7ad85bb7 6686 ret = btrfs_end_transaction(trans, root);
917c16b2
CM
6687 btrfs_btree_balance_dirty(root, nr);
6688 }
fcb80c2a
JB
6689
6690out:
6691 btrfs_free_block_rsv(root, rsv);
6692
3893e33b
JB
6693 if (ret && !err)
6694 err = ret;
a41ad394 6695
3893e33b 6696 return err;
39279cc3
CM
6697}
6698
d352ac68
CM
6699/*
6700 * create a new subvolume directory/inode (helper for the ioctl).
6701 */
d2fb3437 6702int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6703 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6704{
39279cc3 6705 struct inode *inode;
76dda93c 6706 int err;
00e4e6b3 6707 u64 index = 0;
39279cc3 6708
12fc9d09
FA
6709 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6710 new_dirid, new_dirid,
6711 S_IFDIR | (~current_umask() & S_IRWXUGO),
6712 &index);
54aa1f4d 6713 if (IS_ERR(inode))
f46b5a66 6714 return PTR_ERR(inode);
39279cc3
CM
6715 inode->i_op = &btrfs_dir_inode_operations;
6716 inode->i_fop = &btrfs_dir_file_operations;
6717
bfe86848 6718 set_nlink(inode, 1);
dbe674a9 6719 btrfs_i_size_write(inode, 0);
3b96362c 6720
76dda93c
YZ
6721 err = btrfs_update_inode(trans, new_root, inode);
6722 BUG_ON(err);
cb8e7090 6723
76dda93c 6724 iput(inode);
cb8e7090 6725 return 0;
39279cc3
CM
6726}
6727
39279cc3
CM
6728struct inode *btrfs_alloc_inode(struct super_block *sb)
6729{
6730 struct btrfs_inode *ei;
2ead6ae7 6731 struct inode *inode;
39279cc3
CM
6732
6733 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6734 if (!ei)
6735 return NULL;
2ead6ae7
YZ
6736
6737 ei->root = NULL;
6738 ei->space_info = NULL;
6739 ei->generation = 0;
6740 ei->sequence = 0;
15ee9bc7 6741 ei->last_trans = 0;
257c62e1 6742 ei->last_sub_trans = 0;
e02119d5 6743 ei->logged_trans = 0;
2ead6ae7 6744 ei->delalloc_bytes = 0;
2ead6ae7
YZ
6745 ei->disk_i_size = 0;
6746 ei->flags = 0;
7709cde3 6747 ei->csum_bytes = 0;
2ead6ae7
YZ
6748 ei->index_cnt = (u64)-1;
6749 ei->last_unlink_trans = 0;
6750
9e0baf60
JB
6751 spin_lock_init(&ei->lock);
6752 ei->outstanding_extents = 0;
6753 ei->reserved_extents = 0;
2ead6ae7
YZ
6754
6755 ei->ordered_data_close = 0;
d68fc57b 6756 ei->orphan_meta_reserved = 0;
2ead6ae7 6757 ei->dummy_inode = 0;
4cb5300b 6758 ei->in_defrag = 0;
7fd2ae21 6759 ei->delalloc_meta_reserved = 0;
261507a0 6760 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6761
16cdcec7
MX
6762 ei->delayed_node = NULL;
6763
2ead6ae7 6764 inode = &ei->vfs_inode;
a8067e02 6765 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6766 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6767 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6768 mutex_init(&ei->log_mutex);
f248679e 6769 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 6770 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6771 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6772 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6773 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6774 RB_CLEAR_NODE(&ei->rb_node);
6775
6776 return inode;
39279cc3
CM
6777}
6778
fa0d7e3d
NP
6779static void btrfs_i_callback(struct rcu_head *head)
6780{
6781 struct inode *inode = container_of(head, struct inode, i_rcu);
6782 INIT_LIST_HEAD(&inode->i_dentry);
6783 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6784}
6785
39279cc3
CM
6786void btrfs_destroy_inode(struct inode *inode)
6787{
e6dcd2dc 6788 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6789 struct btrfs_root *root = BTRFS_I(inode)->root;
6790
39279cc3
CM
6791 WARN_ON(!list_empty(&inode->i_dentry));
6792 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6793 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6794 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
6795 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6796 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 6797
a6dbd429
JB
6798 /*
6799 * This can happen where we create an inode, but somebody else also
6800 * created the same inode and we need to destroy the one we already
6801 * created.
6802 */
6803 if (!root)
6804 goto free;
6805
5a3f23d5
CM
6806 /*
6807 * Make sure we're properly removed from the ordered operation
6808 * lists.
6809 */
6810 smp_mb();
6811 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6812 spin_lock(&root->fs_info->ordered_extent_lock);
6813 list_del_init(&BTRFS_I(inode)->ordered_operations);
6814 spin_unlock(&root->fs_info->ordered_extent_lock);
6815 }
6816
d68fc57b 6817 spin_lock(&root->orphan_lock);
7b128766 6818 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6819 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6820 (unsigned long long)btrfs_ino(inode));
8082510e 6821 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6822 }
d68fc57b 6823 spin_unlock(&root->orphan_lock);
7b128766 6824
d397712b 6825 while (1) {
e6dcd2dc
CM
6826 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6827 if (!ordered)
6828 break;
6829 else {
d397712b
CM
6830 printk(KERN_ERR "btrfs found ordered "
6831 "extent %llu %llu on inode cleanup\n",
6832 (unsigned long long)ordered->file_offset,
6833 (unsigned long long)ordered->len);
e6dcd2dc
CM
6834 btrfs_remove_ordered_extent(inode, ordered);
6835 btrfs_put_ordered_extent(ordered);
6836 btrfs_put_ordered_extent(ordered);
6837 }
6838 }
5d4f98a2 6839 inode_tree_del(inode);
5b21f2ed 6840 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6841free:
16cdcec7 6842 btrfs_remove_delayed_node(inode);
fa0d7e3d 6843 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6844}
6845
45321ac5 6846int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6847{
6848 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6849
0af3d00b 6850 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 6851 !btrfs_is_free_space_inode(root, inode))
45321ac5 6852 return 1;
76dda93c 6853 else
45321ac5 6854 return generic_drop_inode(inode);
76dda93c
YZ
6855}
6856
0ee0fda0 6857static void init_once(void *foo)
39279cc3
CM
6858{
6859 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6860
6861 inode_init_once(&ei->vfs_inode);
6862}
6863
6864void btrfs_destroy_cachep(void)
6865{
6866 if (btrfs_inode_cachep)
6867 kmem_cache_destroy(btrfs_inode_cachep);
6868 if (btrfs_trans_handle_cachep)
6869 kmem_cache_destroy(btrfs_trans_handle_cachep);
6870 if (btrfs_transaction_cachep)
6871 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6872 if (btrfs_path_cachep)
6873 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6874 if (btrfs_free_space_cachep)
6875 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6876}
6877
6878int btrfs_init_cachep(void)
6879{
9601e3f6
CH
6880 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6881 sizeof(struct btrfs_inode), 0,
6882 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6883 if (!btrfs_inode_cachep)
6884 goto fail;
9601e3f6
CH
6885
6886 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6887 sizeof(struct btrfs_trans_handle), 0,
6888 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6889 if (!btrfs_trans_handle_cachep)
6890 goto fail;
9601e3f6
CH
6891
6892 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6893 sizeof(struct btrfs_transaction), 0,
6894 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6895 if (!btrfs_transaction_cachep)
6896 goto fail;
9601e3f6
CH
6897
6898 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6899 sizeof(struct btrfs_path), 0,
6900 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6901 if (!btrfs_path_cachep)
6902 goto fail;
9601e3f6 6903
dc89e982
JB
6904 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6905 sizeof(struct btrfs_free_space), 0,
6906 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6907 if (!btrfs_free_space_cachep)
6908 goto fail;
6909
39279cc3
CM
6910 return 0;
6911fail:
6912 btrfs_destroy_cachep();
6913 return -ENOMEM;
6914}
6915
6916static int btrfs_getattr(struct vfsmount *mnt,
6917 struct dentry *dentry, struct kstat *stat)
6918{
6919 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
6920 u32 blocksize = inode->i_sb->s_blocksize;
6921
39279cc3 6922 generic_fillattr(inode, stat);
0ee5dc67 6923 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 6924 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
6925 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
6926 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
6927 return 0;
6928}
6929
75e7cb7f
LB
6930/*
6931 * If a file is moved, it will inherit the cow and compression flags of the new
6932 * directory.
6933 */
6934static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6935{
6936 struct btrfs_inode *b_dir = BTRFS_I(dir);
6937 struct btrfs_inode *b_inode = BTRFS_I(inode);
6938
6939 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6940 b_inode->flags |= BTRFS_INODE_NODATACOW;
6941 else
6942 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6943
6944 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6945 b_inode->flags |= BTRFS_INODE_COMPRESS;
6946 else
6947 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6948}
6949
d397712b
CM
6950static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6951 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6952{
6953 struct btrfs_trans_handle *trans;
6954 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6955 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6956 struct inode *new_inode = new_dentry->d_inode;
6957 struct inode *old_inode = old_dentry->d_inode;
6958 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6959 u64 index = 0;
4df27c4d 6960 u64 root_objectid;
39279cc3 6961 int ret;
33345d01 6962 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6963
33345d01 6964 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6965 return -EPERM;
6966
4df27c4d 6967 /* we only allow rename subvolume link between subvolumes */
33345d01 6968 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6969 return -EXDEV;
6970
33345d01
LZ
6971 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6972 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6973 return -ENOTEMPTY;
5f39d397 6974
4df27c4d
YZ
6975 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6976 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6977 return -ENOTEMPTY;
5a3f23d5
CM
6978 /*
6979 * we're using rename to replace one file with another.
6980 * and the replacement file is large. Start IO on it now so
6981 * we don't add too much work to the end of the transaction
6982 */
4baf8c92 6983 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6984 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6985 filemap_flush(old_inode->i_mapping);
6986
76dda93c 6987 /* close the racy window with snapshot create/destroy ioctl */
33345d01 6988 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6989 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6990 /*
6991 * We want to reserve the absolute worst case amount of items. So if
6992 * both inodes are subvols and we need to unlink them then that would
6993 * require 4 item modifications, but if they are both normal inodes it
6994 * would require 5 item modifications, so we'll assume their normal
6995 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6996 * should cover the worst case number of items we'll modify.
6997 */
6998 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6999 if (IS_ERR(trans)) {
7000 ret = PTR_ERR(trans);
7001 goto out_notrans;
7002 }
76dda93c 7003
4df27c4d
YZ
7004 if (dest != root)
7005 btrfs_record_root_in_trans(trans, dest);
5f39d397 7006
a5719521
YZ
7007 ret = btrfs_set_inode_index(new_dir, &index);
7008 if (ret)
7009 goto out_fail;
5a3f23d5 7010
33345d01 7011 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7012 /* force full log commit if subvolume involved. */
7013 root->fs_info->last_trans_log_full_commit = trans->transid;
7014 } else {
a5719521
YZ
7015 ret = btrfs_insert_inode_ref(trans, dest,
7016 new_dentry->d_name.name,
7017 new_dentry->d_name.len,
33345d01
LZ
7018 old_ino,
7019 btrfs_ino(new_dir), index);
a5719521
YZ
7020 if (ret)
7021 goto out_fail;
4df27c4d
YZ
7022 /*
7023 * this is an ugly little race, but the rename is required
7024 * to make sure that if we crash, the inode is either at the
7025 * old name or the new one. pinning the log transaction lets
7026 * us make sure we don't allow a log commit to come in after
7027 * we unlink the name but before we add the new name back in.
7028 */
7029 btrfs_pin_log_trans(root);
7030 }
5a3f23d5
CM
7031 /*
7032 * make sure the inode gets flushed if it is replacing
7033 * something.
7034 */
33345d01 7035 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7036 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7037
39279cc3
CM
7038 old_dir->i_ctime = old_dir->i_mtime = ctime;
7039 new_dir->i_ctime = new_dir->i_mtime = ctime;
7040 old_inode->i_ctime = ctime;
5f39d397 7041
12fcfd22
CM
7042 if (old_dentry->d_parent != new_dentry->d_parent)
7043 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7044
33345d01 7045 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7046 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7047 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7048 old_dentry->d_name.name,
7049 old_dentry->d_name.len);
7050 } else {
92986796
AV
7051 ret = __btrfs_unlink_inode(trans, root, old_dir,
7052 old_dentry->d_inode,
7053 old_dentry->d_name.name,
7054 old_dentry->d_name.len);
7055 if (!ret)
7056 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7057 }
7058 BUG_ON(ret);
39279cc3
CM
7059
7060 if (new_inode) {
7061 new_inode->i_ctime = CURRENT_TIME;
33345d01 7062 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7063 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7064 root_objectid = BTRFS_I(new_inode)->location.objectid;
7065 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7066 root_objectid,
7067 new_dentry->d_name.name,
7068 new_dentry->d_name.len);
7069 BUG_ON(new_inode->i_nlink == 0);
7070 } else {
7071 ret = btrfs_unlink_inode(trans, dest, new_dir,
7072 new_dentry->d_inode,
7073 new_dentry->d_name.name,
7074 new_dentry->d_name.len);
7075 }
7076 BUG_ON(ret);
7b128766 7077 if (new_inode->i_nlink == 0) {
e02119d5 7078 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7079 BUG_ON(ret);
7b128766 7080 }
39279cc3 7081 }
aec7477b 7082
75e7cb7f
LB
7083 fixup_inode_flags(new_dir, old_inode);
7084
4df27c4d
YZ
7085 ret = btrfs_add_link(trans, new_dir, old_inode,
7086 new_dentry->d_name.name,
a5719521 7087 new_dentry->d_name.len, 0, index);
4df27c4d 7088 BUG_ON(ret);
39279cc3 7089
33345d01 7090 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7091 struct dentry *parent = new_dentry->d_parent;
6a912213 7092 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7093 btrfs_end_log_trans(root);
7094 }
39279cc3 7095out_fail:
7ad85bb7 7096 btrfs_end_transaction(trans, root);
b44c59a8 7097out_notrans:
33345d01 7098 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7099 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7100
39279cc3
CM
7101 return ret;
7102}
7103
d352ac68
CM
7104/*
7105 * some fairly slow code that needs optimization. This walks the list
7106 * of all the inodes with pending delalloc and forces them to disk.
7107 */
24bbcf04 7108int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7109{
7110 struct list_head *head = &root->fs_info->delalloc_inodes;
7111 struct btrfs_inode *binode;
5b21f2ed 7112 struct inode *inode;
ea8c2819 7113
c146afad
YZ
7114 if (root->fs_info->sb->s_flags & MS_RDONLY)
7115 return -EROFS;
7116
75eff68e 7117 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7118 while (!list_empty(head)) {
ea8c2819
CM
7119 binode = list_entry(head->next, struct btrfs_inode,
7120 delalloc_inodes);
5b21f2ed
ZY
7121 inode = igrab(&binode->vfs_inode);
7122 if (!inode)
7123 list_del_init(&binode->delalloc_inodes);
75eff68e 7124 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7125 if (inode) {
8c8bee1d 7126 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7127 if (delay_iput)
7128 btrfs_add_delayed_iput(inode);
7129 else
7130 iput(inode);
5b21f2ed
ZY
7131 }
7132 cond_resched();
75eff68e 7133 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7134 }
75eff68e 7135 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7136
7137 /* the filemap_flush will queue IO into the worker threads, but
7138 * we have to make sure the IO is actually started and that
7139 * ordered extents get created before we return
7140 */
7141 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7142 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7143 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7144 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7145 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7146 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7147 }
7148 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7149 return 0;
7150}
7151
39279cc3
CM
7152static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7153 const char *symname)
7154{
7155 struct btrfs_trans_handle *trans;
7156 struct btrfs_root *root = BTRFS_I(dir)->root;
7157 struct btrfs_path *path;
7158 struct btrfs_key key;
1832a6d5 7159 struct inode *inode = NULL;
39279cc3
CM
7160 int err;
7161 int drop_inode = 0;
7162 u64 objectid;
00e4e6b3 7163 u64 index = 0 ;
39279cc3
CM
7164 int name_len;
7165 int datasize;
5f39d397 7166 unsigned long ptr;
39279cc3 7167 struct btrfs_file_extent_item *ei;
5f39d397 7168 struct extent_buffer *leaf;
1832a6d5 7169 unsigned long nr = 0;
39279cc3
CM
7170
7171 name_len = strlen(symname) + 1;
7172 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7173 return -ENAMETOOLONG;
1832a6d5 7174
9ed74f2d
JB
7175 /*
7176 * 2 items for inode item and ref
7177 * 2 items for dir items
7178 * 1 item for xattr if selinux is on
7179 */
a22285a6
YZ
7180 trans = btrfs_start_transaction(root, 5);
7181 if (IS_ERR(trans))
7182 return PTR_ERR(trans);
1832a6d5 7183
581bb050
LZ
7184 err = btrfs_find_free_ino(root, &objectid);
7185 if (err)
7186 goto out_unlock;
7187
aec7477b 7188 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7189 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7190 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7191 if (IS_ERR(inode)) {
7192 err = PTR_ERR(inode);
39279cc3 7193 goto out_unlock;
7cf96da3 7194 }
39279cc3 7195
2a7dba39 7196 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7197 if (err) {
7198 drop_inode = 1;
7199 goto out_unlock;
7200 }
7201
ad19db71
CS
7202 /*
7203 * If the active LSM wants to access the inode during
7204 * d_instantiate it needs these. Smack checks to see
7205 * if the filesystem supports xattrs by looking at the
7206 * ops vector.
7207 */
7208 inode->i_fop = &btrfs_file_operations;
7209 inode->i_op = &btrfs_file_inode_operations;
7210
a1b075d2 7211 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7212 if (err)
7213 drop_inode = 1;
7214 else {
7215 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7216 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7217 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7218 }
39279cc3
CM
7219 if (drop_inode)
7220 goto out_unlock;
7221
7222 path = btrfs_alloc_path();
d8926bb3
MF
7223 if (!path) {
7224 err = -ENOMEM;
7225 drop_inode = 1;
7226 goto out_unlock;
7227 }
33345d01 7228 key.objectid = btrfs_ino(inode);
39279cc3 7229 key.offset = 0;
39279cc3
CM
7230 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7231 datasize = btrfs_file_extent_calc_inline_size(name_len);
7232 err = btrfs_insert_empty_item(trans, root, path, &key,
7233 datasize);
54aa1f4d
CM
7234 if (err) {
7235 drop_inode = 1;
b0839166 7236 btrfs_free_path(path);
54aa1f4d
CM
7237 goto out_unlock;
7238 }
5f39d397
CM
7239 leaf = path->nodes[0];
7240 ei = btrfs_item_ptr(leaf, path->slots[0],
7241 struct btrfs_file_extent_item);
7242 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7243 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7244 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7245 btrfs_set_file_extent_encryption(leaf, ei, 0);
7246 btrfs_set_file_extent_compression(leaf, ei, 0);
7247 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7248 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7249
39279cc3 7250 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7251 write_extent_buffer(leaf, symname, ptr, name_len);
7252 btrfs_mark_buffer_dirty(leaf);
39279cc3 7253 btrfs_free_path(path);
5f39d397 7254
39279cc3
CM
7255 inode->i_op = &btrfs_symlink_inode_operations;
7256 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7257 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7258 inode_set_bytes(inode, name_len);
dbe674a9 7259 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7260 err = btrfs_update_inode(trans, root, inode);
7261 if (err)
7262 drop_inode = 1;
39279cc3
CM
7263
7264out_unlock:
08c422c2
AV
7265 if (!err)
7266 d_instantiate(dentry, inode);
d3c2fdcf 7267 nr = trans->blocks_used;
7ad85bb7 7268 btrfs_end_transaction(trans, root);
39279cc3
CM
7269 if (drop_inode) {
7270 inode_dec_link_count(inode);
7271 iput(inode);
7272 }
d3c2fdcf 7273 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7274 return err;
7275}
16432985 7276
0af3d00b
JB
7277static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7278 u64 start, u64 num_bytes, u64 min_size,
7279 loff_t actual_len, u64 *alloc_hint,
7280 struct btrfs_trans_handle *trans)
d899e052 7281{
d899e052
YZ
7282 struct btrfs_root *root = BTRFS_I(inode)->root;
7283 struct btrfs_key ins;
d899e052 7284 u64 cur_offset = start;
55a61d1d 7285 u64 i_size;
d899e052 7286 int ret = 0;
0af3d00b 7287 bool own_trans = true;
d899e052 7288
0af3d00b
JB
7289 if (trans)
7290 own_trans = false;
d899e052 7291 while (num_bytes > 0) {
0af3d00b
JB
7292 if (own_trans) {
7293 trans = btrfs_start_transaction(root, 3);
7294 if (IS_ERR(trans)) {
7295 ret = PTR_ERR(trans);
7296 break;
7297 }
5a303d5d
YZ
7298 }
7299
efa56464
YZ
7300 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7301 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7302 if (ret) {
0af3d00b
JB
7303 if (own_trans)
7304 btrfs_end_transaction(trans, root);
a22285a6 7305 break;
d899e052 7306 }
5a303d5d 7307
d899e052
YZ
7308 ret = insert_reserved_file_extent(trans, inode,
7309 cur_offset, ins.objectid,
7310 ins.offset, ins.offset,
920bbbfb 7311 ins.offset, 0, 0, 0,
d899e052
YZ
7312 BTRFS_FILE_EXTENT_PREALLOC);
7313 BUG_ON(ret);
a1ed835e
CM
7314 btrfs_drop_extent_cache(inode, cur_offset,
7315 cur_offset + ins.offset -1, 0);
5a303d5d 7316
d899e052
YZ
7317 num_bytes -= ins.offset;
7318 cur_offset += ins.offset;
efa56464 7319 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7320
d899e052 7321 inode->i_ctime = CURRENT_TIME;
6cbff00f 7322 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7323 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7324 (actual_len > inode->i_size) &&
7325 (cur_offset > inode->i_size)) {
d1ea6a61 7326 if (cur_offset > actual_len)
55a61d1d 7327 i_size = actual_len;
d1ea6a61 7328 else
55a61d1d
JB
7329 i_size = cur_offset;
7330 i_size_write(inode, i_size);
7331 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7332 }
7333
d899e052
YZ
7334 ret = btrfs_update_inode(trans, root, inode);
7335 BUG_ON(ret);
d899e052 7336
0af3d00b
JB
7337 if (own_trans)
7338 btrfs_end_transaction(trans, root);
5a303d5d 7339 }
d899e052
YZ
7340 return ret;
7341}
7342
0af3d00b
JB
7343int btrfs_prealloc_file_range(struct inode *inode, int mode,
7344 u64 start, u64 num_bytes, u64 min_size,
7345 loff_t actual_len, u64 *alloc_hint)
7346{
7347 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7348 min_size, actual_len, alloc_hint,
7349 NULL);
7350}
7351
7352int btrfs_prealloc_file_range_trans(struct inode *inode,
7353 struct btrfs_trans_handle *trans, int mode,
7354 u64 start, u64 num_bytes, u64 min_size,
7355 loff_t actual_len, u64 *alloc_hint)
7356{
7357 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7358 min_size, actual_len, alloc_hint, trans);
7359}
7360
e6dcd2dc
CM
7361static int btrfs_set_page_dirty(struct page *page)
7362{
e6dcd2dc
CM
7363 return __set_page_dirty_nobuffers(page);
7364}
7365
10556cb2 7366static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7367{
b83cc969 7368 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7369 umode_t mode = inode->i_mode;
b83cc969 7370
cb6db4e5
JM
7371 if (mask & MAY_WRITE &&
7372 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7373 if (btrfs_root_readonly(root))
7374 return -EROFS;
7375 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7376 return -EACCES;
7377 }
2830ba7f 7378 return generic_permission(inode, mask);
fdebe2bd 7379}
39279cc3 7380
6e1d5dcc 7381static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7382 .getattr = btrfs_getattr,
39279cc3
CM
7383 .lookup = btrfs_lookup,
7384 .create = btrfs_create,
7385 .unlink = btrfs_unlink,
7386 .link = btrfs_link,
7387 .mkdir = btrfs_mkdir,
7388 .rmdir = btrfs_rmdir,
7389 .rename = btrfs_rename,
7390 .symlink = btrfs_symlink,
7391 .setattr = btrfs_setattr,
618e21d5 7392 .mknod = btrfs_mknod,
95819c05
CH
7393 .setxattr = btrfs_setxattr,
7394 .getxattr = btrfs_getxattr,
5103e947 7395 .listxattr = btrfs_listxattr,
95819c05 7396 .removexattr = btrfs_removexattr,
fdebe2bd 7397 .permission = btrfs_permission,
4e34e719 7398 .get_acl = btrfs_get_acl,
39279cc3 7399};
6e1d5dcc 7400static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7401 .lookup = btrfs_lookup,
fdebe2bd 7402 .permission = btrfs_permission,
4e34e719 7403 .get_acl = btrfs_get_acl,
39279cc3 7404};
76dda93c 7405
828c0950 7406static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7407 .llseek = generic_file_llseek,
7408 .read = generic_read_dir,
cbdf5a24 7409 .readdir = btrfs_real_readdir,
34287aa3 7410 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7411#ifdef CONFIG_COMPAT
34287aa3 7412 .compat_ioctl = btrfs_ioctl,
39279cc3 7413#endif
6bf13c0c 7414 .release = btrfs_release_file,
e02119d5 7415 .fsync = btrfs_sync_file,
39279cc3
CM
7416};
7417
d1310b2e 7418static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7419 .fill_delalloc = run_delalloc_range,
065631f6 7420 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7421 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7422 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7423 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7424 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7425 .set_bit_hook = btrfs_set_bit_hook,
7426 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7427 .merge_extent_hook = btrfs_merge_extent_hook,
7428 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7429};
7430
35054394
CM
7431/*
7432 * btrfs doesn't support the bmap operation because swapfiles
7433 * use bmap to make a mapping of extents in the file. They assume
7434 * these extents won't change over the life of the file and they
7435 * use the bmap result to do IO directly to the drive.
7436 *
7437 * the btrfs bmap call would return logical addresses that aren't
7438 * suitable for IO and they also will change frequently as COW
7439 * operations happen. So, swapfile + btrfs == corruption.
7440 *
7441 * For now we're avoiding this by dropping bmap.
7442 */
7f09410b 7443static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7444 .readpage = btrfs_readpage,
7445 .writepage = btrfs_writepage,
b293f02e 7446 .writepages = btrfs_writepages,
3ab2fb5a 7447 .readpages = btrfs_readpages,
16432985 7448 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7449 .invalidatepage = btrfs_invalidatepage,
7450 .releasepage = btrfs_releasepage,
e6dcd2dc 7451 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7452 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7453};
7454
7f09410b 7455static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7456 .readpage = btrfs_readpage,
7457 .writepage = btrfs_writepage,
2bf5a725
CM
7458 .invalidatepage = btrfs_invalidatepage,
7459 .releasepage = btrfs_releasepage,
39279cc3
CM
7460};
7461
6e1d5dcc 7462static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7463 .getattr = btrfs_getattr,
7464 .setattr = btrfs_setattr,
95819c05
CH
7465 .setxattr = btrfs_setxattr,
7466 .getxattr = btrfs_getxattr,
5103e947 7467 .listxattr = btrfs_listxattr,
95819c05 7468 .removexattr = btrfs_removexattr,
fdebe2bd 7469 .permission = btrfs_permission,
1506fcc8 7470 .fiemap = btrfs_fiemap,
4e34e719 7471 .get_acl = btrfs_get_acl,
39279cc3 7472};
6e1d5dcc 7473static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7474 .getattr = btrfs_getattr,
7475 .setattr = btrfs_setattr,
fdebe2bd 7476 .permission = btrfs_permission,
95819c05
CH
7477 .setxattr = btrfs_setxattr,
7478 .getxattr = btrfs_getxattr,
33268eaf 7479 .listxattr = btrfs_listxattr,
95819c05 7480 .removexattr = btrfs_removexattr,
4e34e719 7481 .get_acl = btrfs_get_acl,
618e21d5 7482};
6e1d5dcc 7483static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7484 .readlink = generic_readlink,
7485 .follow_link = page_follow_link_light,
7486 .put_link = page_put_link,
f209561a 7487 .getattr = btrfs_getattr,
22c44fe6 7488 .setattr = btrfs_setattr,
fdebe2bd 7489 .permission = btrfs_permission,
0279b4cd
JO
7490 .setxattr = btrfs_setxattr,
7491 .getxattr = btrfs_getxattr,
7492 .listxattr = btrfs_listxattr,
7493 .removexattr = btrfs_removexattr,
4e34e719 7494 .get_acl = btrfs_get_acl,
39279cc3 7495};
76dda93c 7496
82d339d9 7497const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7498 .d_delete = btrfs_dentry_delete,
b4aff1f8 7499 .d_release = btrfs_dentry_release,
76dda93c 7500};