Btrfs: add rw argument to merge_bio_hook()
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 74static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
75struct kmem_cache *btrfs_trans_handle_cachep;
76struct kmem_cache *btrfs_transaction_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
81static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
a41ad394
JB
91static int btrfs_setsize(struct inode *inode, loff_t newsize);
92static int btrfs_truncate(struct inode *inode);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
70c8a91c
JB
98static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
99 u64 len, u64 orig_start,
100 u64 block_start, u64 block_len,
101 u64 orig_block_len, int type);
7b128766 102
f34f57a3 103static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
104 struct inode *inode, struct inode *dir,
105 const struct qstr *qstr)
0279b4cd
JO
106{
107 int err;
108
f34f57a3 109 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 110 if (!err)
2a7dba39 111 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
112 return err;
113}
114
c8b97818
CM
115/*
116 * this does all the hard work for inserting an inline extent into
117 * the btree. The caller should have done a btrfs_drop_extents so that
118 * no overlapping inline items exist in the btree
119 */
d397712b 120static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
121 struct btrfs_root *root, struct inode *inode,
122 u64 start, size_t size, size_t compressed_size,
fe3f566c 123 int compress_type,
c8b97818
CM
124 struct page **compressed_pages)
125{
126 struct btrfs_key key;
127 struct btrfs_path *path;
128 struct extent_buffer *leaf;
129 struct page *page = NULL;
130 char *kaddr;
131 unsigned long ptr;
132 struct btrfs_file_extent_item *ei;
133 int err = 0;
134 int ret;
135 size_t cur_size = size;
136 size_t datasize;
137 unsigned long offset;
c8b97818 138
fe3f566c 139 if (compressed_size && compressed_pages)
c8b97818 140 cur_size = compressed_size;
c8b97818 141
d397712b
CM
142 path = btrfs_alloc_path();
143 if (!path)
c8b97818
CM
144 return -ENOMEM;
145
b9473439 146 path->leave_spinning = 1;
c8b97818 147
33345d01 148 key.objectid = btrfs_ino(inode);
c8b97818
CM
149 key.offset = start;
150 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
151 datasize = btrfs_file_extent_calc_inline_size(cur_size);
152
153 inode_add_bytes(inode, size);
154 ret = btrfs_insert_empty_item(trans, root, path, &key,
155 datasize);
c8b97818
CM
156 if (ret) {
157 err = ret;
c8b97818
CM
158 goto fail;
159 }
160 leaf = path->nodes[0];
161 ei = btrfs_item_ptr(leaf, path->slots[0],
162 struct btrfs_file_extent_item);
163 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
164 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
165 btrfs_set_file_extent_encryption(leaf, ei, 0);
166 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
167 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
168 ptr = btrfs_file_extent_inline_start(ei);
169
261507a0 170 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
171 struct page *cpage;
172 int i = 0;
d397712b 173 while (compressed_size > 0) {
c8b97818 174 cpage = compressed_pages[i];
5b050f04 175 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
176 PAGE_CACHE_SIZE);
177
7ac687d9 178 kaddr = kmap_atomic(cpage);
c8b97818 179 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 180 kunmap_atomic(kaddr);
c8b97818
CM
181
182 i++;
183 ptr += cur_size;
184 compressed_size -= cur_size;
185 }
186 btrfs_set_file_extent_compression(leaf, ei,
261507a0 187 compress_type);
c8b97818
CM
188 } else {
189 page = find_get_page(inode->i_mapping,
190 start >> PAGE_CACHE_SHIFT);
191 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 192 kaddr = kmap_atomic(page);
c8b97818
CM
193 offset = start & (PAGE_CACHE_SIZE - 1);
194 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196 page_cache_release(page);
197 }
198 btrfs_mark_buffer_dirty(leaf);
199 btrfs_free_path(path);
200
c2167754
YZ
201 /*
202 * we're an inline extent, so nobody can
203 * extend the file past i_size without locking
204 * a page we already have locked.
205 *
206 * We must do any isize and inode updates
207 * before we unlock the pages. Otherwise we
208 * could end up racing with unlink.
209 */
c8b97818 210 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 211 ret = btrfs_update_inode(trans, root, inode);
c2167754 212
79787eaa 213 return ret;
c8b97818
CM
214fail:
215 btrfs_free_path(path);
216 return err;
217}
218
219
220/*
221 * conditionally insert an inline extent into the file. This
222 * does the checks required to make sure the data is small enough
223 * to fit as an inline extent.
224 */
7f366cfe 225static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
226 struct btrfs_root *root,
227 struct inode *inode, u64 start, u64 end,
fe3f566c 228 size_t compressed_size, int compress_type,
c8b97818
CM
229 struct page **compressed_pages)
230{
231 u64 isize = i_size_read(inode);
232 u64 actual_end = min(end + 1, isize);
233 u64 inline_len = actual_end - start;
234 u64 aligned_end = (end + root->sectorsize - 1) &
235 ~((u64)root->sectorsize - 1);
c8b97818
CM
236 u64 data_len = inline_len;
237 int ret;
238
239 if (compressed_size)
240 data_len = compressed_size;
241
242 if (start > 0 ||
70b99e69 243 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
244 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
245 (!compressed_size &&
246 (actual_end & (root->sectorsize - 1)) == 0) ||
247 end + 1 < isize ||
248 data_len > root->fs_info->max_inline) {
249 return 1;
250 }
251
2671485d 252 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
253 if (ret)
254 return ret;
c8b97818
CM
255
256 if (isize > actual_end)
257 inline_len = min_t(u64, isize, actual_end);
258 ret = insert_inline_extent(trans, root, inode, start,
259 inline_len, compressed_size,
fe3f566c 260 compress_type, compressed_pages);
2adcac1a 261 if (ret && ret != -ENOSPC) {
79787eaa
JM
262 btrfs_abort_transaction(trans, root, ret);
263 return ret;
2adcac1a
JB
264 } else if (ret == -ENOSPC) {
265 return 1;
79787eaa 266 }
2adcac1a 267
0ca1f7ce 268 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 269 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
270 return 0;
271}
272
771ed689
CM
273struct async_extent {
274 u64 start;
275 u64 ram_size;
276 u64 compressed_size;
277 struct page **pages;
278 unsigned long nr_pages;
261507a0 279 int compress_type;
771ed689
CM
280 struct list_head list;
281};
282
283struct async_cow {
284 struct inode *inode;
285 struct btrfs_root *root;
286 struct page *locked_page;
287 u64 start;
288 u64 end;
289 struct list_head extents;
290 struct btrfs_work work;
291};
292
293static noinline int add_async_extent(struct async_cow *cow,
294 u64 start, u64 ram_size,
295 u64 compressed_size,
296 struct page **pages,
261507a0
LZ
297 unsigned long nr_pages,
298 int compress_type)
771ed689
CM
299{
300 struct async_extent *async_extent;
301
302 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 303 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
304 async_extent->start = start;
305 async_extent->ram_size = ram_size;
306 async_extent->compressed_size = compressed_size;
307 async_extent->pages = pages;
308 async_extent->nr_pages = nr_pages;
261507a0 309 async_extent->compress_type = compress_type;
771ed689
CM
310 list_add_tail(&async_extent->list, &cow->extents);
311 return 0;
312}
313
d352ac68 314/*
771ed689
CM
315 * we create compressed extents in two phases. The first
316 * phase compresses a range of pages that have already been
317 * locked (both pages and state bits are locked).
c8b97818 318 *
771ed689
CM
319 * This is done inside an ordered work queue, and the compression
320 * is spread across many cpus. The actual IO submission is step
321 * two, and the ordered work queue takes care of making sure that
322 * happens in the same order things were put onto the queue by
323 * writepages and friends.
c8b97818 324 *
771ed689
CM
325 * If this code finds it can't get good compression, it puts an
326 * entry onto the work queue to write the uncompressed bytes. This
327 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
328 * are written in the same order that the flusher thread sent them
329 * down.
d352ac68 330 */
771ed689
CM
331static noinline int compress_file_range(struct inode *inode,
332 struct page *locked_page,
333 u64 start, u64 end,
334 struct async_cow *async_cow,
335 int *num_added)
b888db2b
CM
336{
337 struct btrfs_root *root = BTRFS_I(inode)->root;
338 struct btrfs_trans_handle *trans;
db94535d 339 u64 num_bytes;
db94535d 340 u64 blocksize = root->sectorsize;
c8b97818 341 u64 actual_end;
42dc7bab 342 u64 isize = i_size_read(inode);
e6dcd2dc 343 int ret = 0;
c8b97818
CM
344 struct page **pages = NULL;
345 unsigned long nr_pages;
346 unsigned long nr_pages_ret = 0;
347 unsigned long total_compressed = 0;
348 unsigned long total_in = 0;
349 unsigned long max_compressed = 128 * 1024;
771ed689 350 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
351 int i;
352 int will_compress;
261507a0 353 int compress_type = root->fs_info->compress_type;
b888db2b 354
4cb13e5d
LB
355 /* if this is a small write inside eof, kick off a defrag */
356 if ((end - start + 1) < 16 * 1024 &&
357 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
358 btrfs_add_inode_defrag(NULL, inode);
359
42dc7bab 360 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
361again:
362 will_compress = 0;
363 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
364 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 365
f03d9301
CM
366 /*
367 * we don't want to send crud past the end of i_size through
368 * compression, that's just a waste of CPU time. So, if the
369 * end of the file is before the start of our current
370 * requested range of bytes, we bail out to the uncompressed
371 * cleanup code that can deal with all of this.
372 *
373 * It isn't really the fastest way to fix things, but this is a
374 * very uncommon corner.
375 */
376 if (actual_end <= start)
377 goto cleanup_and_bail_uncompressed;
378
c8b97818
CM
379 total_compressed = actual_end - start;
380
381 /* we want to make sure that amount of ram required to uncompress
382 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
383 * of a compressed extent to 128k. This is a crucial number
384 * because it also controls how easily we can spread reads across
385 * cpus for decompression.
386 *
387 * We also want to make sure the amount of IO required to do
388 * a random read is reasonably small, so we limit the size of
389 * a compressed extent to 128k.
c8b97818
CM
390 */
391 total_compressed = min(total_compressed, max_uncompressed);
db94535d 392 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 393 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
394 total_in = 0;
395 ret = 0;
db94535d 396
771ed689
CM
397 /*
398 * we do compression for mount -o compress and when the
399 * inode has not been flagged as nocompress. This flag can
400 * change at any time if we discover bad compression ratios.
c8b97818 401 */
6cbff00f 402 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 403 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
404 (BTRFS_I(inode)->force_compress) ||
405 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 406 WARN_ON(pages);
cfbc246e 407 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
408 if (!pages) {
409 /* just bail out to the uncompressed code */
410 goto cont;
411 }
c8b97818 412
261507a0
LZ
413 if (BTRFS_I(inode)->force_compress)
414 compress_type = BTRFS_I(inode)->force_compress;
415
416 ret = btrfs_compress_pages(compress_type,
417 inode->i_mapping, start,
418 total_compressed, pages,
419 nr_pages, &nr_pages_ret,
420 &total_in,
421 &total_compressed,
422 max_compressed);
c8b97818
CM
423
424 if (!ret) {
425 unsigned long offset = total_compressed &
426 (PAGE_CACHE_SIZE - 1);
427 struct page *page = pages[nr_pages_ret - 1];
428 char *kaddr;
429
430 /* zero the tail end of the last page, we might be
431 * sending it down to disk
432 */
433 if (offset) {
7ac687d9 434 kaddr = kmap_atomic(page);
c8b97818
CM
435 memset(kaddr + offset, 0,
436 PAGE_CACHE_SIZE - offset);
7ac687d9 437 kunmap_atomic(kaddr);
c8b97818
CM
438 }
439 will_compress = 1;
440 }
441 }
560f7d75 442cont:
c8b97818 443 if (start == 0) {
7a7eaa40 444 trans = btrfs_join_transaction(root);
79787eaa
JM
445 if (IS_ERR(trans)) {
446 ret = PTR_ERR(trans);
447 trans = NULL;
448 goto cleanup_and_out;
449 }
0ca1f7ce 450 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 451
c8b97818 452 /* lets try to make an inline extent */
771ed689 453 if (ret || total_in < (actual_end - start)) {
c8b97818 454 /* we didn't compress the entire range, try
771ed689 455 * to make an uncompressed inline extent.
c8b97818
CM
456 */
457 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 458 start, end, 0, 0, NULL);
c8b97818 459 } else {
771ed689 460 /* try making a compressed inline extent */
c8b97818
CM
461 ret = cow_file_range_inline(trans, root, inode,
462 start, end,
fe3f566c
LZ
463 total_compressed,
464 compress_type, pages);
c8b97818 465 }
79787eaa 466 if (ret <= 0) {
771ed689 467 /*
79787eaa
JM
468 * inline extent creation worked or returned error,
469 * we don't need to create any more async work items.
470 * Unlock and free up our temp pages.
771ed689 471 */
c8b97818 472 extent_clear_unlock_delalloc(inode,
a791e35e
CM
473 &BTRFS_I(inode)->io_tree,
474 start, end, NULL,
475 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 476 EXTENT_CLEAR_DELALLOC |
a791e35e 477 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
478
479 btrfs_end_transaction(trans, root);
c8b97818
CM
480 goto free_pages_out;
481 }
c2167754 482 btrfs_end_transaction(trans, root);
c8b97818
CM
483 }
484
485 if (will_compress) {
486 /*
487 * we aren't doing an inline extent round the compressed size
488 * up to a block size boundary so the allocator does sane
489 * things
490 */
491 total_compressed = (total_compressed + blocksize - 1) &
492 ~(blocksize - 1);
493
494 /*
495 * one last check to make sure the compression is really a
496 * win, compare the page count read with the blocks on disk
497 */
498 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
499 ~(PAGE_CACHE_SIZE - 1);
500 if (total_compressed >= total_in) {
501 will_compress = 0;
502 } else {
c8b97818
CM
503 num_bytes = total_in;
504 }
505 }
506 if (!will_compress && pages) {
507 /*
508 * the compression code ran but failed to make things smaller,
509 * free any pages it allocated and our page pointer array
510 */
511 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 512 WARN_ON(pages[i]->mapping);
c8b97818
CM
513 page_cache_release(pages[i]);
514 }
515 kfree(pages);
516 pages = NULL;
517 total_compressed = 0;
518 nr_pages_ret = 0;
519
520 /* flag the file so we don't compress in the future */
1e701a32
CM
521 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
522 !(BTRFS_I(inode)->force_compress)) {
a555f810 523 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 524 }
c8b97818 525 }
771ed689
CM
526 if (will_compress) {
527 *num_added += 1;
c8b97818 528
771ed689
CM
529 /* the async work queues will take care of doing actual
530 * allocation on disk for these compressed pages,
531 * and will submit them to the elevator.
532 */
533 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
534 total_compressed, pages, nr_pages_ret,
535 compress_type);
179e29e4 536
24ae6365 537 if (start + num_bytes < end) {
771ed689
CM
538 start += num_bytes;
539 pages = NULL;
540 cond_resched();
541 goto again;
542 }
543 } else {
f03d9301 544cleanup_and_bail_uncompressed:
771ed689
CM
545 /*
546 * No compression, but we still need to write the pages in
547 * the file we've been given so far. redirty the locked
548 * page if it corresponds to our extent and set things up
549 * for the async work queue to run cow_file_range to do
550 * the normal delalloc dance
551 */
552 if (page_offset(locked_page) >= start &&
553 page_offset(locked_page) <= end) {
554 __set_page_dirty_nobuffers(locked_page);
555 /* unlocked later on in the async handlers */
556 }
261507a0
LZ
557 add_async_extent(async_cow, start, end - start + 1,
558 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
559 *num_added += 1;
560 }
3b951516 561
771ed689 562out:
79787eaa 563 return ret;
771ed689
CM
564
565free_pages_out:
566 for (i = 0; i < nr_pages_ret; i++) {
567 WARN_ON(pages[i]->mapping);
568 page_cache_release(pages[i]);
569 }
d397712b 570 kfree(pages);
771ed689
CM
571
572 goto out;
79787eaa
JM
573
574cleanup_and_out:
575 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
576 start, end, NULL,
577 EXTENT_CLEAR_UNLOCK_PAGE |
578 EXTENT_CLEAR_DIRTY |
579 EXTENT_CLEAR_DELALLOC |
580 EXTENT_SET_WRITEBACK |
581 EXTENT_END_WRITEBACK);
582 if (!trans || IS_ERR(trans))
583 btrfs_error(root->fs_info, ret, "Failed to join transaction");
584 else
585 btrfs_abort_transaction(trans, root, ret);
586 goto free_pages_out;
771ed689
CM
587}
588
589/*
590 * phase two of compressed writeback. This is the ordered portion
591 * of the code, which only gets called in the order the work was
592 * queued. We walk all the async extents created by compress_file_range
593 * and send them down to the disk.
594 */
595static noinline int submit_compressed_extents(struct inode *inode,
596 struct async_cow *async_cow)
597{
598 struct async_extent *async_extent;
599 u64 alloc_hint = 0;
600 struct btrfs_trans_handle *trans;
601 struct btrfs_key ins;
602 struct extent_map *em;
603 struct btrfs_root *root = BTRFS_I(inode)->root;
604 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
605 struct extent_io_tree *io_tree;
f5a84ee3 606 int ret = 0;
771ed689
CM
607
608 if (list_empty(&async_cow->extents))
609 return 0;
610
771ed689 611
d397712b 612 while (!list_empty(&async_cow->extents)) {
771ed689
CM
613 async_extent = list_entry(async_cow->extents.next,
614 struct async_extent, list);
615 list_del(&async_extent->list);
c8b97818 616
771ed689
CM
617 io_tree = &BTRFS_I(inode)->io_tree;
618
f5a84ee3 619retry:
771ed689
CM
620 /* did the compression code fall back to uncompressed IO? */
621 if (!async_extent->pages) {
622 int page_started = 0;
623 unsigned long nr_written = 0;
624
625 lock_extent(io_tree, async_extent->start,
2ac55d41 626 async_extent->start +
d0082371 627 async_extent->ram_size - 1);
771ed689
CM
628
629 /* allocate blocks */
f5a84ee3
JB
630 ret = cow_file_range(inode, async_cow->locked_page,
631 async_extent->start,
632 async_extent->start +
633 async_extent->ram_size - 1,
634 &page_started, &nr_written, 0);
771ed689 635
79787eaa
JM
636 /* JDM XXX */
637
771ed689
CM
638 /*
639 * if page_started, cow_file_range inserted an
640 * inline extent and took care of all the unlocking
641 * and IO for us. Otherwise, we need to submit
642 * all those pages down to the drive.
643 */
f5a84ee3 644 if (!page_started && !ret)
771ed689
CM
645 extent_write_locked_range(io_tree,
646 inode, async_extent->start,
d397712b 647 async_extent->start +
771ed689
CM
648 async_extent->ram_size - 1,
649 btrfs_get_extent,
650 WB_SYNC_ALL);
651 kfree(async_extent);
652 cond_resched();
653 continue;
654 }
655
656 lock_extent(io_tree, async_extent->start,
d0082371 657 async_extent->start + async_extent->ram_size - 1);
771ed689 658
7a7eaa40 659 trans = btrfs_join_transaction(root);
79787eaa
JM
660 if (IS_ERR(trans)) {
661 ret = PTR_ERR(trans);
662 } else {
663 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
664 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
665 async_extent->compressed_size,
666 async_extent->compressed_size,
81c9ad23 667 0, alloc_hint, &ins, 1);
962197ba 668 if (ret && ret != -ENOSPC)
79787eaa
JM
669 btrfs_abort_transaction(trans, root, ret);
670 btrfs_end_transaction(trans, root);
671 }
c2167754 672
f5a84ee3
JB
673 if (ret) {
674 int i;
675 for (i = 0; i < async_extent->nr_pages; i++) {
676 WARN_ON(async_extent->pages[i]->mapping);
677 page_cache_release(async_extent->pages[i]);
678 }
679 kfree(async_extent->pages);
680 async_extent->nr_pages = 0;
681 async_extent->pages = NULL;
682 unlock_extent(io_tree, async_extent->start,
683 async_extent->start +
d0082371 684 async_extent->ram_size - 1);
79787eaa
JM
685 if (ret == -ENOSPC)
686 goto retry;
687 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
688 }
689
c2167754
YZ
690 /*
691 * here we're doing allocation and writeback of the
692 * compressed pages
693 */
694 btrfs_drop_extent_cache(inode, async_extent->start,
695 async_extent->start +
696 async_extent->ram_size - 1, 0);
697
172ddd60 698 em = alloc_extent_map();
79787eaa 699 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
700 em->start = async_extent->start;
701 em->len = async_extent->ram_size;
445a6944 702 em->orig_start = em->start;
c8b97818 703
771ed689
CM
704 em->block_start = ins.objectid;
705 em->block_len = ins.offset;
b4939680 706 em->orig_block_len = ins.offset;
771ed689 707 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 708 em->compress_type = async_extent->compress_type;
771ed689
CM
709 set_bit(EXTENT_FLAG_PINNED, &em->flags);
710 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 711 em->generation = -1;
771ed689 712
d397712b 713 while (1) {
890871be 714 write_lock(&em_tree->lock);
771ed689 715 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
716 if (!ret)
717 list_move(&em->list,
718 &em_tree->modified_extents);
890871be 719 write_unlock(&em_tree->lock);
771ed689
CM
720 if (ret != -EEXIST) {
721 free_extent_map(em);
722 break;
723 }
724 btrfs_drop_extent_cache(inode, async_extent->start,
725 async_extent->start +
726 async_extent->ram_size - 1, 0);
727 }
728
261507a0
LZ
729 ret = btrfs_add_ordered_extent_compress(inode,
730 async_extent->start,
731 ins.objectid,
732 async_extent->ram_size,
733 ins.offset,
734 BTRFS_ORDERED_COMPRESSED,
735 async_extent->compress_type);
79787eaa 736 BUG_ON(ret); /* -ENOMEM */
771ed689 737
771ed689
CM
738 /*
739 * clear dirty, set writeback and unlock the pages.
740 */
741 extent_clear_unlock_delalloc(inode,
a791e35e
CM
742 &BTRFS_I(inode)->io_tree,
743 async_extent->start,
744 async_extent->start +
745 async_extent->ram_size - 1,
746 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
747 EXTENT_CLEAR_UNLOCK |
a3429ab7 748 EXTENT_CLEAR_DELALLOC |
a791e35e 749 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
750
751 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
752 async_extent->start,
753 async_extent->ram_size,
754 ins.objectid,
755 ins.offset, async_extent->pages,
756 async_extent->nr_pages);
771ed689 757
79787eaa 758 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
759 alloc_hint = ins.objectid + ins.offset;
760 kfree(async_extent);
761 cond_resched();
762 }
79787eaa
JM
763 ret = 0;
764out:
765 return ret;
766out_free:
767 kfree(async_extent);
768 goto out;
771ed689
CM
769}
770
4b46fce2
JB
771static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
772 u64 num_bytes)
773{
774 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
775 struct extent_map *em;
776 u64 alloc_hint = 0;
777
778 read_lock(&em_tree->lock);
779 em = search_extent_mapping(em_tree, start, num_bytes);
780 if (em) {
781 /*
782 * if block start isn't an actual block number then find the
783 * first block in this inode and use that as a hint. If that
784 * block is also bogus then just don't worry about it.
785 */
786 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
787 free_extent_map(em);
788 em = search_extent_mapping(em_tree, 0, 0);
789 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
790 alloc_hint = em->block_start;
791 if (em)
792 free_extent_map(em);
793 } else {
794 alloc_hint = em->block_start;
795 free_extent_map(em);
796 }
797 }
798 read_unlock(&em_tree->lock);
799
800 return alloc_hint;
801}
802
771ed689
CM
803/*
804 * when extent_io.c finds a delayed allocation range in the file,
805 * the call backs end up in this code. The basic idea is to
806 * allocate extents on disk for the range, and create ordered data structs
807 * in ram to track those extents.
808 *
809 * locked_page is the page that writepage had locked already. We use
810 * it to make sure we don't do extra locks or unlocks.
811 *
812 * *page_started is set to one if we unlock locked_page and do everything
813 * required to start IO on it. It may be clean and already done with
814 * IO when we return.
815 */
b7d5b0a8
MX
816static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
817 struct inode *inode,
818 struct btrfs_root *root,
819 struct page *locked_page,
820 u64 start, u64 end, int *page_started,
821 unsigned long *nr_written,
822 int unlock)
771ed689 823{
771ed689
CM
824 u64 alloc_hint = 0;
825 u64 num_bytes;
826 unsigned long ram_size;
827 u64 disk_num_bytes;
828 u64 cur_alloc_size;
829 u64 blocksize = root->sectorsize;
771ed689
CM
830 struct btrfs_key ins;
831 struct extent_map *em;
832 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
833 int ret = 0;
834
83eea1f1 835 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 836
771ed689
CM
837 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
838 num_bytes = max(blocksize, num_bytes);
839 disk_num_bytes = num_bytes;
771ed689 840
4cb5300b 841 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
842 if (num_bytes < 64 * 1024 &&
843 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
844 btrfs_add_inode_defrag(trans, inode);
845
771ed689
CM
846 if (start == 0) {
847 /* lets try to make an inline extent */
848 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 849 start, end, 0, 0, NULL);
771ed689
CM
850 if (ret == 0) {
851 extent_clear_unlock_delalloc(inode,
a791e35e
CM
852 &BTRFS_I(inode)->io_tree,
853 start, end, NULL,
854 EXTENT_CLEAR_UNLOCK_PAGE |
855 EXTENT_CLEAR_UNLOCK |
856 EXTENT_CLEAR_DELALLOC |
857 EXTENT_CLEAR_DIRTY |
858 EXTENT_SET_WRITEBACK |
859 EXTENT_END_WRITEBACK);
c2167754 860
771ed689
CM
861 *nr_written = *nr_written +
862 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
863 *page_started = 1;
771ed689 864 goto out;
79787eaa
JM
865 } else if (ret < 0) {
866 btrfs_abort_transaction(trans, root, ret);
867 goto out_unlock;
771ed689
CM
868 }
869 }
870
871 BUG_ON(disk_num_bytes >
6c41761f 872 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 873
4b46fce2 874 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
875 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
876
d397712b 877 while (disk_num_bytes > 0) {
a791e35e
CM
878 unsigned long op;
879
287a0ab9 880 cur_alloc_size = disk_num_bytes;
e6dcd2dc 881 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 882 root->sectorsize, 0, alloc_hint,
81c9ad23 883 &ins, 1);
79787eaa
JM
884 if (ret < 0) {
885 btrfs_abort_transaction(trans, root, ret);
886 goto out_unlock;
887 }
d397712b 888
172ddd60 889 em = alloc_extent_map();
79787eaa 890 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 891 em->start = start;
445a6944 892 em->orig_start = em->start;
771ed689
CM
893 ram_size = ins.offset;
894 em->len = ins.offset;
c8b97818 895
e6dcd2dc 896 em->block_start = ins.objectid;
c8b97818 897 em->block_len = ins.offset;
b4939680 898 em->orig_block_len = ins.offset;
e6dcd2dc 899 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 900 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 901 em->generation = -1;
c8b97818 902
d397712b 903 while (1) {
890871be 904 write_lock(&em_tree->lock);
e6dcd2dc 905 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
906 if (!ret)
907 list_move(&em->list,
908 &em_tree->modified_extents);
890871be 909 write_unlock(&em_tree->lock);
e6dcd2dc
CM
910 if (ret != -EEXIST) {
911 free_extent_map(em);
912 break;
913 }
914 btrfs_drop_extent_cache(inode, start,
c8b97818 915 start + ram_size - 1, 0);
e6dcd2dc
CM
916 }
917
98d20f67 918 cur_alloc_size = ins.offset;
e6dcd2dc 919 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 920 ram_size, cur_alloc_size, 0);
79787eaa 921 BUG_ON(ret); /* -ENOMEM */
c8b97818 922
17d217fe
YZ
923 if (root->root_key.objectid ==
924 BTRFS_DATA_RELOC_TREE_OBJECTID) {
925 ret = btrfs_reloc_clone_csums(inode, start,
926 cur_alloc_size);
79787eaa
JM
927 if (ret) {
928 btrfs_abort_transaction(trans, root, ret);
929 goto out_unlock;
930 }
17d217fe
YZ
931 }
932
d397712b 933 if (disk_num_bytes < cur_alloc_size)
3b951516 934 break;
d397712b 935
c8b97818
CM
936 /* we're not doing compressed IO, don't unlock the first
937 * page (which the caller expects to stay locked), don't
938 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
939 *
940 * Do set the Private2 bit so we know this page was properly
941 * setup for writepage
c8b97818 942 */
a791e35e
CM
943 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
944 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
945 EXTENT_SET_PRIVATE2;
946
c8b97818
CM
947 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
948 start, start + ram_size - 1,
a791e35e 949 locked_page, op);
c8b97818 950 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
951 num_bytes -= cur_alloc_size;
952 alloc_hint = ins.objectid + ins.offset;
953 start += cur_alloc_size;
b888db2b 954 }
79787eaa 955out:
be20aa9d 956 return ret;
b7d5b0a8 957
79787eaa
JM
958out_unlock:
959 extent_clear_unlock_delalloc(inode,
960 &BTRFS_I(inode)->io_tree,
beb42dd7 961 start, end, locked_page,
79787eaa
JM
962 EXTENT_CLEAR_UNLOCK_PAGE |
963 EXTENT_CLEAR_UNLOCK |
964 EXTENT_CLEAR_DELALLOC |
965 EXTENT_CLEAR_DIRTY |
966 EXTENT_SET_WRITEBACK |
967 EXTENT_END_WRITEBACK);
968
969 goto out;
771ed689 970}
c8b97818 971
b7d5b0a8
MX
972static noinline int cow_file_range(struct inode *inode,
973 struct page *locked_page,
974 u64 start, u64 end, int *page_started,
975 unsigned long *nr_written,
976 int unlock)
977{
978 struct btrfs_trans_handle *trans;
979 struct btrfs_root *root = BTRFS_I(inode)->root;
980 int ret;
981
982 trans = btrfs_join_transaction(root);
983 if (IS_ERR(trans)) {
984 extent_clear_unlock_delalloc(inode,
985 &BTRFS_I(inode)->io_tree,
986 start, end, locked_page,
987 EXTENT_CLEAR_UNLOCK_PAGE |
988 EXTENT_CLEAR_UNLOCK |
989 EXTENT_CLEAR_DELALLOC |
990 EXTENT_CLEAR_DIRTY |
991 EXTENT_SET_WRITEBACK |
992 EXTENT_END_WRITEBACK);
993 return PTR_ERR(trans);
994 }
995 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
996
997 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
998 page_started, nr_written, unlock);
999
1000 btrfs_end_transaction(trans, root);
1001
1002 return ret;
1003}
1004
771ed689
CM
1005/*
1006 * work queue call back to started compression on a file and pages
1007 */
1008static noinline void async_cow_start(struct btrfs_work *work)
1009{
1010 struct async_cow *async_cow;
1011 int num_added = 0;
1012 async_cow = container_of(work, struct async_cow, work);
1013
1014 compress_file_range(async_cow->inode, async_cow->locked_page,
1015 async_cow->start, async_cow->end, async_cow,
1016 &num_added);
8180ef88 1017 if (num_added == 0) {
cb77fcd8 1018 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1019 async_cow->inode = NULL;
8180ef88 1020 }
771ed689
CM
1021}
1022
1023/*
1024 * work queue call back to submit previously compressed pages
1025 */
1026static noinline void async_cow_submit(struct btrfs_work *work)
1027{
1028 struct async_cow *async_cow;
1029 struct btrfs_root *root;
1030 unsigned long nr_pages;
1031
1032 async_cow = container_of(work, struct async_cow, work);
1033
1034 root = async_cow->root;
1035 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1036 PAGE_CACHE_SHIFT;
1037
66657b31 1038 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1039 5 * 1024 * 1024 &&
771ed689
CM
1040 waitqueue_active(&root->fs_info->async_submit_wait))
1041 wake_up(&root->fs_info->async_submit_wait);
1042
d397712b 1043 if (async_cow->inode)
771ed689 1044 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1045}
c8b97818 1046
771ed689
CM
1047static noinline void async_cow_free(struct btrfs_work *work)
1048{
1049 struct async_cow *async_cow;
1050 async_cow = container_of(work, struct async_cow, work);
8180ef88 1051 if (async_cow->inode)
cb77fcd8 1052 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1053 kfree(async_cow);
1054}
1055
1056static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1057 u64 start, u64 end, int *page_started,
1058 unsigned long *nr_written)
1059{
1060 struct async_cow *async_cow;
1061 struct btrfs_root *root = BTRFS_I(inode)->root;
1062 unsigned long nr_pages;
1063 u64 cur_end;
287082b0 1064 int limit = 10 * 1024 * 1024;
771ed689 1065
a3429ab7
CM
1066 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1067 1, 0, NULL, GFP_NOFS);
d397712b 1068 while (start < end) {
771ed689 1069 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1070 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1071 async_cow->inode = igrab(inode);
771ed689
CM
1072 async_cow->root = root;
1073 async_cow->locked_page = locked_page;
1074 async_cow->start = start;
1075
6cbff00f 1076 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1077 cur_end = end;
1078 else
1079 cur_end = min(end, start + 512 * 1024 - 1);
1080
1081 async_cow->end = cur_end;
1082 INIT_LIST_HEAD(&async_cow->extents);
1083
1084 async_cow->work.func = async_cow_start;
1085 async_cow->work.ordered_func = async_cow_submit;
1086 async_cow->work.ordered_free = async_cow_free;
1087 async_cow->work.flags = 0;
1088
771ed689
CM
1089 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1090 PAGE_CACHE_SHIFT;
1091 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1092
1093 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1094 &async_cow->work);
1095
1096 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1097 wait_event(root->fs_info->async_submit_wait,
1098 (atomic_read(&root->fs_info->async_delalloc_pages) <
1099 limit));
1100 }
1101
d397712b 1102 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1103 atomic_read(&root->fs_info->async_delalloc_pages)) {
1104 wait_event(root->fs_info->async_submit_wait,
1105 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1106 0));
1107 }
1108
1109 *nr_written += nr_pages;
1110 start = cur_end + 1;
1111 }
1112 *page_started = 1;
1113 return 0;
be20aa9d
CM
1114}
1115
d397712b 1116static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1117 u64 bytenr, u64 num_bytes)
1118{
1119 int ret;
1120 struct btrfs_ordered_sum *sums;
1121 LIST_HEAD(list);
1122
07d400a6 1123 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1124 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1125 if (ret == 0 && list_empty(&list))
1126 return 0;
1127
1128 while (!list_empty(&list)) {
1129 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1130 list_del(&sums->list);
1131 kfree(sums);
1132 }
1133 return 1;
1134}
1135
d352ac68
CM
1136/*
1137 * when nowcow writeback call back. This checks for snapshots or COW copies
1138 * of the extents that exist in the file, and COWs the file as required.
1139 *
1140 * If no cow copies or snapshots exist, we write directly to the existing
1141 * blocks on disk
1142 */
7f366cfe
CM
1143static noinline int run_delalloc_nocow(struct inode *inode,
1144 struct page *locked_page,
771ed689
CM
1145 u64 start, u64 end, int *page_started, int force,
1146 unsigned long *nr_written)
be20aa9d 1147{
be20aa9d 1148 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1149 struct btrfs_trans_handle *trans;
be20aa9d 1150 struct extent_buffer *leaf;
be20aa9d 1151 struct btrfs_path *path;
80ff3856 1152 struct btrfs_file_extent_item *fi;
be20aa9d 1153 struct btrfs_key found_key;
80ff3856
YZ
1154 u64 cow_start;
1155 u64 cur_offset;
1156 u64 extent_end;
5d4f98a2 1157 u64 extent_offset;
80ff3856
YZ
1158 u64 disk_bytenr;
1159 u64 num_bytes;
b4939680 1160 u64 disk_num_bytes;
80ff3856 1161 int extent_type;
79787eaa 1162 int ret, err;
d899e052 1163 int type;
80ff3856
YZ
1164 int nocow;
1165 int check_prev = 1;
82d5902d 1166 bool nolock;
33345d01 1167 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1168
1169 path = btrfs_alloc_path();
17ca04af
JB
1170 if (!path) {
1171 extent_clear_unlock_delalloc(inode,
1172 &BTRFS_I(inode)->io_tree,
1173 start, end, locked_page,
1174 EXTENT_CLEAR_UNLOCK_PAGE |
1175 EXTENT_CLEAR_UNLOCK |
1176 EXTENT_CLEAR_DELALLOC |
1177 EXTENT_CLEAR_DIRTY |
1178 EXTENT_SET_WRITEBACK |
1179 EXTENT_END_WRITEBACK);
d8926bb3 1180 return -ENOMEM;
17ca04af 1181 }
82d5902d 1182
83eea1f1 1183 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1184
1185 if (nolock)
7a7eaa40 1186 trans = btrfs_join_transaction_nolock(root);
82d5902d 1187 else
7a7eaa40 1188 trans = btrfs_join_transaction(root);
ff5714cc 1189
79787eaa 1190 if (IS_ERR(trans)) {
17ca04af
JB
1191 extent_clear_unlock_delalloc(inode,
1192 &BTRFS_I(inode)->io_tree,
1193 start, end, locked_page,
1194 EXTENT_CLEAR_UNLOCK_PAGE |
1195 EXTENT_CLEAR_UNLOCK |
1196 EXTENT_CLEAR_DELALLOC |
1197 EXTENT_CLEAR_DIRTY |
1198 EXTENT_SET_WRITEBACK |
1199 EXTENT_END_WRITEBACK);
79787eaa
JM
1200 btrfs_free_path(path);
1201 return PTR_ERR(trans);
1202 }
1203
74b21075 1204 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1205
80ff3856
YZ
1206 cow_start = (u64)-1;
1207 cur_offset = start;
1208 while (1) {
33345d01 1209 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1210 cur_offset, 0);
79787eaa
JM
1211 if (ret < 0) {
1212 btrfs_abort_transaction(trans, root, ret);
1213 goto error;
1214 }
80ff3856
YZ
1215 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1216 leaf = path->nodes[0];
1217 btrfs_item_key_to_cpu(leaf, &found_key,
1218 path->slots[0] - 1);
33345d01 1219 if (found_key.objectid == ino &&
80ff3856
YZ
1220 found_key.type == BTRFS_EXTENT_DATA_KEY)
1221 path->slots[0]--;
1222 }
1223 check_prev = 0;
1224next_slot:
1225 leaf = path->nodes[0];
1226 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1227 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1228 if (ret < 0) {
1229 btrfs_abort_transaction(trans, root, ret);
1230 goto error;
1231 }
80ff3856
YZ
1232 if (ret > 0)
1233 break;
1234 leaf = path->nodes[0];
1235 }
be20aa9d 1236
80ff3856
YZ
1237 nocow = 0;
1238 disk_bytenr = 0;
17d217fe 1239 num_bytes = 0;
80ff3856
YZ
1240 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1241
33345d01 1242 if (found_key.objectid > ino ||
80ff3856
YZ
1243 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1244 found_key.offset > end)
1245 break;
1246
1247 if (found_key.offset > cur_offset) {
1248 extent_end = found_key.offset;
e9061e21 1249 extent_type = 0;
80ff3856
YZ
1250 goto out_check;
1251 }
1252
1253 fi = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_file_extent_item);
1255 extent_type = btrfs_file_extent_type(leaf, fi);
1256
d899e052
YZ
1257 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1258 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1259 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1260 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1261 extent_end = found_key.offset +
1262 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1263 disk_num_bytes =
1264 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1265 if (extent_end <= start) {
1266 path->slots[0]++;
1267 goto next_slot;
1268 }
17d217fe
YZ
1269 if (disk_bytenr == 0)
1270 goto out_check;
80ff3856
YZ
1271 if (btrfs_file_extent_compression(leaf, fi) ||
1272 btrfs_file_extent_encryption(leaf, fi) ||
1273 btrfs_file_extent_other_encoding(leaf, fi))
1274 goto out_check;
d899e052
YZ
1275 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1276 goto out_check;
d2fb3437 1277 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1278 goto out_check;
33345d01 1279 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1280 found_key.offset -
1281 extent_offset, disk_bytenr))
17d217fe 1282 goto out_check;
5d4f98a2 1283 disk_bytenr += extent_offset;
17d217fe
YZ
1284 disk_bytenr += cur_offset - found_key.offset;
1285 num_bytes = min(end + 1, extent_end) - cur_offset;
1286 /*
1287 * force cow if csum exists in the range.
1288 * this ensure that csum for a given extent are
1289 * either valid or do not exist.
1290 */
1291 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1292 goto out_check;
80ff3856
YZ
1293 nocow = 1;
1294 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1295 extent_end = found_key.offset +
1296 btrfs_file_extent_inline_len(leaf, fi);
1297 extent_end = ALIGN(extent_end, root->sectorsize);
1298 } else {
1299 BUG_ON(1);
1300 }
1301out_check:
1302 if (extent_end <= start) {
1303 path->slots[0]++;
1304 goto next_slot;
1305 }
1306 if (!nocow) {
1307 if (cow_start == (u64)-1)
1308 cow_start = cur_offset;
1309 cur_offset = extent_end;
1310 if (cur_offset > end)
1311 break;
1312 path->slots[0]++;
1313 goto next_slot;
7ea394f1
YZ
1314 }
1315
b3b4aa74 1316 btrfs_release_path(path);
80ff3856 1317 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1318 ret = __cow_file_range(trans, inode, root, locked_page,
1319 cow_start, found_key.offset - 1,
1320 page_started, nr_written, 1);
79787eaa
JM
1321 if (ret) {
1322 btrfs_abort_transaction(trans, root, ret);
1323 goto error;
1324 }
80ff3856 1325 cow_start = (u64)-1;
7ea394f1 1326 }
80ff3856 1327
d899e052
YZ
1328 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1329 struct extent_map *em;
1330 struct extent_map_tree *em_tree;
1331 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1332 em = alloc_extent_map();
79787eaa 1333 BUG_ON(!em); /* -ENOMEM */
d899e052 1334 em->start = cur_offset;
70c8a91c 1335 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1336 em->len = num_bytes;
1337 em->block_len = num_bytes;
1338 em->block_start = disk_bytenr;
b4939680 1339 em->orig_block_len = disk_num_bytes;
d899e052
YZ
1340 em->bdev = root->fs_info->fs_devices->latest_bdev;
1341 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1342 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1343 em->generation = -1;
d899e052 1344 while (1) {
890871be 1345 write_lock(&em_tree->lock);
d899e052 1346 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
1347 if (!ret)
1348 list_move(&em->list,
1349 &em_tree->modified_extents);
890871be 1350 write_unlock(&em_tree->lock);
d899e052
YZ
1351 if (ret != -EEXIST) {
1352 free_extent_map(em);
1353 break;
1354 }
1355 btrfs_drop_extent_cache(inode, em->start,
1356 em->start + em->len - 1, 0);
1357 }
1358 type = BTRFS_ORDERED_PREALLOC;
1359 } else {
1360 type = BTRFS_ORDERED_NOCOW;
1361 }
80ff3856
YZ
1362
1363 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1364 num_bytes, num_bytes, type);
79787eaa 1365 BUG_ON(ret); /* -ENOMEM */
771ed689 1366
efa56464
YZ
1367 if (root->root_key.objectid ==
1368 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1369 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1370 num_bytes);
79787eaa
JM
1371 if (ret) {
1372 btrfs_abort_transaction(trans, root, ret);
1373 goto error;
1374 }
efa56464
YZ
1375 }
1376
d899e052 1377 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1378 cur_offset, cur_offset + num_bytes - 1,
1379 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1380 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1381 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1382 cur_offset = extent_end;
1383 if (cur_offset > end)
1384 break;
be20aa9d 1385 }
b3b4aa74 1386 btrfs_release_path(path);
80ff3856 1387
17ca04af 1388 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1389 cow_start = cur_offset;
17ca04af
JB
1390 cur_offset = end;
1391 }
1392
80ff3856 1393 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1394 ret = __cow_file_range(trans, inode, root, locked_page,
1395 cow_start, end,
1396 page_started, nr_written, 1);
79787eaa
JM
1397 if (ret) {
1398 btrfs_abort_transaction(trans, root, ret);
1399 goto error;
1400 }
80ff3856
YZ
1401 }
1402
79787eaa 1403error:
a698d075 1404 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1405 if (!ret)
1406 ret = err;
1407
17ca04af
JB
1408 if (ret && cur_offset < end)
1409 extent_clear_unlock_delalloc(inode,
1410 &BTRFS_I(inode)->io_tree,
1411 cur_offset, end, locked_page,
1412 EXTENT_CLEAR_UNLOCK_PAGE |
1413 EXTENT_CLEAR_UNLOCK |
1414 EXTENT_CLEAR_DELALLOC |
1415 EXTENT_CLEAR_DIRTY |
1416 EXTENT_SET_WRITEBACK |
1417 EXTENT_END_WRITEBACK);
1418
7ea394f1 1419 btrfs_free_path(path);
79787eaa 1420 return ret;
be20aa9d
CM
1421}
1422
d352ac68
CM
1423/*
1424 * extent_io.c call back to do delayed allocation processing
1425 */
c8b97818 1426static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1427 u64 start, u64 end, int *page_started,
1428 unsigned long *nr_written)
be20aa9d 1429{
be20aa9d 1430 int ret;
7f366cfe 1431 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1432
7ddf5a42 1433 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1434 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1435 page_started, 1, nr_written);
7ddf5a42 1436 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1437 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1438 page_started, 0, nr_written);
7ddf5a42
JB
1439 } else if (!btrfs_test_opt(root, COMPRESS) &&
1440 !(BTRFS_I(inode)->force_compress) &&
1441 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1442 ret = cow_file_range(inode, locked_page, start, end,
1443 page_started, nr_written, 1);
7ddf5a42
JB
1444 } else {
1445 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1446 &BTRFS_I(inode)->runtime_flags);
771ed689 1447 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1448 page_started, nr_written);
7ddf5a42 1449 }
b888db2b
CM
1450 return ret;
1451}
1452
1bf85046
JM
1453static void btrfs_split_extent_hook(struct inode *inode,
1454 struct extent_state *orig, u64 split)
9ed74f2d 1455{
0ca1f7ce 1456 /* not delalloc, ignore it */
9ed74f2d 1457 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1458 return;
9ed74f2d 1459
9e0baf60
JB
1460 spin_lock(&BTRFS_I(inode)->lock);
1461 BTRFS_I(inode)->outstanding_extents++;
1462 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1463}
1464
1465/*
1466 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1467 * extents so we can keep track of new extents that are just merged onto old
1468 * extents, such as when we are doing sequential writes, so we can properly
1469 * account for the metadata space we'll need.
1470 */
1bf85046
JM
1471static void btrfs_merge_extent_hook(struct inode *inode,
1472 struct extent_state *new,
1473 struct extent_state *other)
9ed74f2d 1474{
9ed74f2d
JB
1475 /* not delalloc, ignore it */
1476 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1477 return;
9ed74f2d 1478
9e0baf60
JB
1479 spin_lock(&BTRFS_I(inode)->lock);
1480 BTRFS_I(inode)->outstanding_extents--;
1481 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1482}
1483
d352ac68
CM
1484/*
1485 * extent_io.c set_bit_hook, used to track delayed allocation
1486 * bytes in this file, and to maintain the list of inodes that
1487 * have pending delalloc work to be done.
1488 */
1bf85046
JM
1489static void btrfs_set_bit_hook(struct inode *inode,
1490 struct extent_state *state, int *bits)
291d673e 1491{
9ed74f2d 1492
75eff68e
CM
1493 /*
1494 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1495 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1496 * bit, which is only set or cleared with irqs on
1497 */
0ca1f7ce 1498 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1499 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1500 u64 len = state->end + 1 - state->start;
83eea1f1 1501 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1502
9e0baf60 1503 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1504 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1505 } else {
1506 spin_lock(&BTRFS_I(inode)->lock);
1507 BTRFS_I(inode)->outstanding_extents++;
1508 spin_unlock(&BTRFS_I(inode)->lock);
1509 }
287a0ab9 1510
75eff68e 1511 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1512 BTRFS_I(inode)->delalloc_bytes += len;
1513 root->fs_info->delalloc_bytes += len;
0cb59c99 1514 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1515 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1516 &root->fs_info->delalloc_inodes);
1517 }
75eff68e 1518 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1519 }
291d673e
CM
1520}
1521
d352ac68
CM
1522/*
1523 * extent_io.c clear_bit_hook, see set_bit_hook for why
1524 */
1bf85046
JM
1525static void btrfs_clear_bit_hook(struct inode *inode,
1526 struct extent_state *state, int *bits)
291d673e 1527{
75eff68e
CM
1528 /*
1529 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1530 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1531 * bit, which is only set or cleared with irqs on
1532 */
0ca1f7ce 1533 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1534 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1535 u64 len = state->end + 1 - state->start;
83eea1f1 1536 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1537
9e0baf60 1538 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1539 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1540 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1541 spin_lock(&BTRFS_I(inode)->lock);
1542 BTRFS_I(inode)->outstanding_extents--;
1543 spin_unlock(&BTRFS_I(inode)->lock);
1544 }
0ca1f7ce
YZ
1545
1546 if (*bits & EXTENT_DO_ACCOUNTING)
1547 btrfs_delalloc_release_metadata(inode, len);
1548
0cb59c99
JB
1549 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1550 && do_list)
0ca1f7ce 1551 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1552
75eff68e 1553 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1554 root->fs_info->delalloc_bytes -= len;
1555 BTRFS_I(inode)->delalloc_bytes -= len;
1556
0cb59c99 1557 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1558 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1559 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1560 }
75eff68e 1561 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1562 }
291d673e
CM
1563}
1564
d352ac68
CM
1565/*
1566 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1567 * we don't create bios that span stripes or chunks
1568 */
64a16701 1569int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1570 size_t size, struct bio *bio,
1571 unsigned long bio_flags)
239b14b3
CM
1572{
1573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1574 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1575 u64 length = 0;
1576 u64 map_length;
239b14b3
CM
1577 int ret;
1578
771ed689
CM
1579 if (bio_flags & EXTENT_BIO_COMPRESSED)
1580 return 0;
1581
f2d8d74d 1582 length = bio->bi_size;
239b14b3 1583 map_length = length;
64a16701 1584 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1585 &map_length, NULL, 0);
3ec706c8 1586 /* Will always return 0 with map_multi == NULL */
3444a972 1587 BUG_ON(ret < 0);
d397712b 1588 if (map_length < length + size)
239b14b3 1589 return 1;
3444a972 1590 return 0;
239b14b3
CM
1591}
1592
d352ac68
CM
1593/*
1594 * in order to insert checksums into the metadata in large chunks,
1595 * we wait until bio submission time. All the pages in the bio are
1596 * checksummed and sums are attached onto the ordered extent record.
1597 *
1598 * At IO completion time the cums attached on the ordered extent record
1599 * are inserted into the btree
1600 */
d397712b
CM
1601static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1602 struct bio *bio, int mirror_num,
eaf25d93
CM
1603 unsigned long bio_flags,
1604 u64 bio_offset)
065631f6 1605{
065631f6 1606 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1607 int ret = 0;
e015640f 1608
d20f7043 1609 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1610 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1611 return 0;
1612}
e015640f 1613
4a69a410
CM
1614/*
1615 * in order to insert checksums into the metadata in large chunks,
1616 * we wait until bio submission time. All the pages in the bio are
1617 * checksummed and sums are attached onto the ordered extent record.
1618 *
1619 * At IO completion time the cums attached on the ordered extent record
1620 * are inserted into the btree
1621 */
b2950863 1622static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1623 int mirror_num, unsigned long bio_flags,
1624 u64 bio_offset)
4a69a410
CM
1625{
1626 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1627 int ret;
1628
1629 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1630 if (ret)
1631 bio_endio(bio, ret);
1632 return ret;
44b8bd7e
CM
1633}
1634
d352ac68 1635/*
cad321ad
CM
1636 * extent_io.c submission hook. This does the right thing for csum calculation
1637 * on write, or reading the csums from the tree before a read
d352ac68 1638 */
b2950863 1639static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1640 int mirror_num, unsigned long bio_flags,
1641 u64 bio_offset)
44b8bd7e
CM
1642{
1643 struct btrfs_root *root = BTRFS_I(inode)->root;
1644 int ret = 0;
19b9bdb0 1645 int skip_sum;
0417341e 1646 int metadata = 0;
b812ce28 1647 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1648
6cbff00f 1649 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1650
83eea1f1 1651 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1652 metadata = 2;
1653
7b6d91da 1654 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1655 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1656 if (ret)
61891923 1657 goto out;
5fd02043 1658
d20f7043 1659 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1660 ret = btrfs_submit_compressed_read(inode, bio,
1661 mirror_num,
1662 bio_flags);
1663 goto out;
c2db1073
TI
1664 } else if (!skip_sum) {
1665 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1666 if (ret)
61891923 1667 goto out;
c2db1073 1668 }
4d1b5fb4 1669 goto mapit;
b812ce28 1670 } else if (async && !skip_sum) {
17d217fe
YZ
1671 /* csum items have already been cloned */
1672 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1673 goto mapit;
19b9bdb0 1674 /* we're doing a write, do the async checksumming */
61891923 1675 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1676 inode, rw, bio, mirror_num,
eaf25d93
CM
1677 bio_flags, bio_offset,
1678 __btrfs_submit_bio_start,
4a69a410 1679 __btrfs_submit_bio_done);
61891923 1680 goto out;
b812ce28
JB
1681 } else if (!skip_sum) {
1682 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1683 if (ret)
1684 goto out;
19b9bdb0
CM
1685 }
1686
0b86a832 1687mapit:
61891923
SB
1688 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1689
1690out:
1691 if (ret < 0)
1692 bio_endio(bio, ret);
1693 return ret;
065631f6 1694}
6885f308 1695
d352ac68
CM
1696/*
1697 * given a list of ordered sums record them in the inode. This happens
1698 * at IO completion time based on sums calculated at bio submission time.
1699 */
ba1da2f4 1700static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1701 struct inode *inode, u64 file_offset,
1702 struct list_head *list)
1703{
e6dcd2dc
CM
1704 struct btrfs_ordered_sum *sum;
1705
c6e30871 1706 list_for_each_entry(sum, list, list) {
d20f7043
CM
1707 btrfs_csum_file_blocks(trans,
1708 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1709 }
1710 return 0;
1711}
1712
2ac55d41
JB
1713int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1714 struct extent_state **cached_state)
ea8c2819 1715{
6c1500f2 1716 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1717 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1718 cached_state, GFP_NOFS);
ea8c2819
CM
1719}
1720
d352ac68 1721/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1722struct btrfs_writepage_fixup {
1723 struct page *page;
1724 struct btrfs_work work;
1725};
1726
b2950863 1727static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1728{
1729 struct btrfs_writepage_fixup *fixup;
1730 struct btrfs_ordered_extent *ordered;
2ac55d41 1731 struct extent_state *cached_state = NULL;
247e743c
CM
1732 struct page *page;
1733 struct inode *inode;
1734 u64 page_start;
1735 u64 page_end;
87826df0 1736 int ret;
247e743c
CM
1737
1738 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1739 page = fixup->page;
4a096752 1740again:
247e743c
CM
1741 lock_page(page);
1742 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1743 ClearPageChecked(page);
1744 goto out_page;
1745 }
1746
1747 inode = page->mapping->host;
1748 page_start = page_offset(page);
1749 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1750
2ac55d41 1751 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1752 &cached_state);
4a096752
CM
1753
1754 /* already ordered? We're done */
8b62b72b 1755 if (PagePrivate2(page))
247e743c 1756 goto out;
4a096752
CM
1757
1758 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1759 if (ordered) {
2ac55d41
JB
1760 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1761 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1762 unlock_page(page);
1763 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1764 btrfs_put_ordered_extent(ordered);
4a096752
CM
1765 goto again;
1766 }
247e743c 1767
87826df0
JM
1768 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1769 if (ret) {
1770 mapping_set_error(page->mapping, ret);
1771 end_extent_writepage(page, ret, page_start, page_end);
1772 ClearPageChecked(page);
1773 goto out;
1774 }
1775
2ac55d41 1776 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1777 ClearPageChecked(page);
87826df0 1778 set_page_dirty(page);
247e743c 1779out:
2ac55d41
JB
1780 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1781 &cached_state, GFP_NOFS);
247e743c
CM
1782out_page:
1783 unlock_page(page);
1784 page_cache_release(page);
b897abec 1785 kfree(fixup);
247e743c
CM
1786}
1787
1788/*
1789 * There are a few paths in the higher layers of the kernel that directly
1790 * set the page dirty bit without asking the filesystem if it is a
1791 * good idea. This causes problems because we want to make sure COW
1792 * properly happens and the data=ordered rules are followed.
1793 *
c8b97818 1794 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1795 * hasn't been properly setup for IO. We kick off an async process
1796 * to fix it up. The async helper will wait for ordered extents, set
1797 * the delalloc bit and make it safe to write the page.
1798 */
b2950863 1799static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1800{
1801 struct inode *inode = page->mapping->host;
1802 struct btrfs_writepage_fixup *fixup;
1803 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1804
8b62b72b
CM
1805 /* this page is properly in the ordered list */
1806 if (TestClearPagePrivate2(page))
247e743c
CM
1807 return 0;
1808
1809 if (PageChecked(page))
1810 return -EAGAIN;
1811
1812 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1813 if (!fixup)
1814 return -EAGAIN;
f421950f 1815
247e743c
CM
1816 SetPageChecked(page);
1817 page_cache_get(page);
1818 fixup->work.func = btrfs_writepage_fixup_worker;
1819 fixup->page = page;
1820 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1821 return -EBUSY;
247e743c
CM
1822}
1823
d899e052
YZ
1824static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1825 struct inode *inode, u64 file_pos,
1826 u64 disk_bytenr, u64 disk_num_bytes,
1827 u64 num_bytes, u64 ram_bytes,
1828 u8 compression, u8 encryption,
1829 u16 other_encoding, int extent_type)
1830{
1831 struct btrfs_root *root = BTRFS_I(inode)->root;
1832 struct btrfs_file_extent_item *fi;
1833 struct btrfs_path *path;
1834 struct extent_buffer *leaf;
1835 struct btrfs_key ins;
d899e052
YZ
1836 int ret;
1837
1838 path = btrfs_alloc_path();
d8926bb3
MF
1839 if (!path)
1840 return -ENOMEM;
d899e052 1841
b9473439 1842 path->leave_spinning = 1;
a1ed835e
CM
1843
1844 /*
1845 * we may be replacing one extent in the tree with another.
1846 * The new extent is pinned in the extent map, and we don't want
1847 * to drop it from the cache until it is completely in the btree.
1848 *
1849 * So, tell btrfs_drop_extents to leave this extent in the cache.
1850 * the caller is expected to unpin it and allow it to be merged
1851 * with the others.
1852 */
5dc562c5 1853 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1854 file_pos + num_bytes, 0);
79787eaa
JM
1855 if (ret)
1856 goto out;
d899e052 1857
33345d01 1858 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1859 ins.offset = file_pos;
1860 ins.type = BTRFS_EXTENT_DATA_KEY;
1861 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1862 if (ret)
1863 goto out;
d899e052
YZ
1864 leaf = path->nodes[0];
1865 fi = btrfs_item_ptr(leaf, path->slots[0],
1866 struct btrfs_file_extent_item);
1867 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1868 btrfs_set_file_extent_type(leaf, fi, extent_type);
1869 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1870 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1871 btrfs_set_file_extent_offset(leaf, fi, 0);
1872 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1873 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1874 btrfs_set_file_extent_compression(leaf, fi, compression);
1875 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1876 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1877
d899e052 1878 btrfs_mark_buffer_dirty(leaf);
ce195332 1879 btrfs_release_path(path);
d899e052
YZ
1880
1881 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1882
1883 ins.objectid = disk_bytenr;
1884 ins.offset = disk_num_bytes;
1885 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1886 ret = btrfs_alloc_reserved_file_extent(trans, root,
1887 root->root_key.objectid,
33345d01 1888 btrfs_ino(inode), file_pos, &ins);
79787eaa 1889out:
d899e052 1890 btrfs_free_path(path);
b9473439 1891
79787eaa 1892 return ret;
d899e052
YZ
1893}
1894
5d13a98f
CM
1895/*
1896 * helper function for btrfs_finish_ordered_io, this
1897 * just reads in some of the csum leaves to prime them into ram
1898 * before we start the transaction. It limits the amount of btree
1899 * reads required while inside the transaction.
1900 */
d352ac68
CM
1901/* as ordered data IO finishes, this gets called so we can finish
1902 * an ordered extent if the range of bytes in the file it covers are
1903 * fully written.
1904 */
5fd02043 1905static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 1906{
5fd02043 1907 struct inode *inode = ordered_extent->inode;
e6dcd2dc 1908 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1909 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 1910 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1911 struct extent_state *cached_state = NULL;
261507a0 1912 int compress_type = 0;
e6dcd2dc 1913 int ret;
82d5902d 1914 bool nolock;
e6dcd2dc 1915
83eea1f1 1916 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 1917
5fd02043
JB
1918 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1919 ret = -EIO;
1920 goto out;
1921 }
1922
c2167754 1923 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1924 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
1925 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1926 if (nolock)
1927 trans = btrfs_join_transaction_nolock(root);
1928 else
1929 trans = btrfs_join_transaction(root);
1930 if (IS_ERR(trans)) {
1931 ret = PTR_ERR(trans);
1932 trans = NULL;
1933 goto out;
c2167754 1934 }
6c760c07
JB
1935 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1936 ret = btrfs_update_inode_fallback(trans, root, inode);
1937 if (ret) /* -ENOMEM or corruption */
1938 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1939 goto out;
1940 }
e6dcd2dc 1941
2ac55d41
JB
1942 lock_extent_bits(io_tree, ordered_extent->file_offset,
1943 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1944 0, &cached_state);
e6dcd2dc 1945
0cb59c99 1946 if (nolock)
7a7eaa40 1947 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1948 else
7a7eaa40 1949 trans = btrfs_join_transaction(root);
79787eaa
JM
1950 if (IS_ERR(trans)) {
1951 ret = PTR_ERR(trans);
1952 trans = NULL;
1953 goto out_unlock;
1954 }
0ca1f7ce 1955 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1956
c8b97818 1957 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1958 compress_type = ordered_extent->compress_type;
d899e052 1959 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1960 BUG_ON(compress_type);
920bbbfb 1961 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1962 ordered_extent->file_offset,
1963 ordered_extent->file_offset +
1964 ordered_extent->len);
d899e052 1965 } else {
0af3d00b 1966 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1967 ret = insert_reserved_file_extent(trans, inode,
1968 ordered_extent->file_offset,
1969 ordered_extent->start,
1970 ordered_extent->disk_len,
1971 ordered_extent->len,
1972 ordered_extent->len,
261507a0 1973 compress_type, 0, 0,
d899e052 1974 BTRFS_FILE_EXTENT_REG);
d899e052 1975 }
5dc562c5
JB
1976 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1977 ordered_extent->file_offset, ordered_extent->len,
1978 trans->transid);
79787eaa
JM
1979 if (ret < 0) {
1980 btrfs_abort_transaction(trans, root, ret);
5fd02043 1981 goto out_unlock;
79787eaa 1982 }
2ac55d41 1983
e6dcd2dc
CM
1984 add_pending_csums(trans, inode, ordered_extent->file_offset,
1985 &ordered_extent->list);
1986
6c760c07
JB
1987 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1988 ret = btrfs_update_inode_fallback(trans, root, inode);
1989 if (ret) { /* -ENOMEM or corruption */
1990 btrfs_abort_transaction(trans, root, ret);
1991 goto out_unlock;
1ef30be1
JB
1992 }
1993 ret = 0;
5fd02043
JB
1994out_unlock:
1995 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1996 ordered_extent->file_offset +
1997 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 1998out:
5b0e95bf 1999 if (root != root->fs_info->tree_root)
0cb59c99 2000 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2001 if (trans)
2002 btrfs_end_transaction(trans, root);
0cb59c99 2003
5fd02043
JB
2004 if (ret)
2005 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2006 ordered_extent->file_offset +
2007 ordered_extent->len - 1, NULL, GFP_NOFS);
2008
2009 /*
8bad3c02
LB
2010 * This needs to be done to make sure anybody waiting knows we are done
2011 * updating everything for this ordered extent.
5fd02043
JB
2012 */
2013 btrfs_remove_ordered_extent(inode, ordered_extent);
2014
e6dcd2dc
CM
2015 /* once for us */
2016 btrfs_put_ordered_extent(ordered_extent);
2017 /* once for the tree */
2018 btrfs_put_ordered_extent(ordered_extent);
2019
5fd02043
JB
2020 return ret;
2021}
2022
2023static void finish_ordered_fn(struct btrfs_work *work)
2024{
2025 struct btrfs_ordered_extent *ordered_extent;
2026 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2027 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2028}
2029
b2950863 2030static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2031 struct extent_state *state, int uptodate)
2032{
5fd02043
JB
2033 struct inode *inode = page->mapping->host;
2034 struct btrfs_root *root = BTRFS_I(inode)->root;
2035 struct btrfs_ordered_extent *ordered_extent = NULL;
2036 struct btrfs_workers *workers;
2037
1abe9b8a 2038 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2039
8b62b72b 2040 ClearPagePrivate2(page);
5fd02043
JB
2041 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2042 end - start + 1, uptodate))
2043 return 0;
2044
2045 ordered_extent->work.func = finish_ordered_fn;
2046 ordered_extent->work.flags = 0;
2047
83eea1f1 2048 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2049 workers = &root->fs_info->endio_freespace_worker;
2050 else
2051 workers = &root->fs_info->endio_write_workers;
2052 btrfs_queue_worker(workers, &ordered_extent->work);
2053
2054 return 0;
211f90e6
CM
2055}
2056
d352ac68
CM
2057/*
2058 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2059 * if there's a match, we allow the bio to finish. If not, the code in
2060 * extent_io.c will try to find good copies for us.
d352ac68 2061 */
b2950863 2062static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2063 struct extent_state *state, int mirror)
07157aac 2064{
35ebb934 2065 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 2066 struct inode *inode = page->mapping->host;
d1310b2e 2067 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2068 char *kaddr;
aadfeb6e 2069 u64 private = ~(u32)0;
07157aac 2070 int ret;
ff79f819
CM
2071 struct btrfs_root *root = BTRFS_I(inode)->root;
2072 u32 csum = ~(u32)0;
d1310b2e 2073
d20f7043
CM
2074 if (PageChecked(page)) {
2075 ClearPageChecked(page);
2076 goto good;
2077 }
6cbff00f
CH
2078
2079 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2080 goto good;
17d217fe
YZ
2081
2082 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2083 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2084 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2085 GFP_NOFS);
b6cda9bc 2086 return 0;
17d217fe 2087 }
d20f7043 2088
c2e639f0 2089 if (state && state->start == start) {
70dec807
CM
2090 private = state->private;
2091 ret = 0;
2092 } else {
2093 ret = get_state_private(io_tree, start, &private);
2094 }
7ac687d9 2095 kaddr = kmap_atomic(page);
d397712b 2096 if (ret)
07157aac 2097 goto zeroit;
d397712b 2098
ff79f819
CM
2099 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2100 btrfs_csum_final(csum, (char *)&csum);
d397712b 2101 if (csum != private)
07157aac 2102 goto zeroit;
d397712b 2103
7ac687d9 2104 kunmap_atomic(kaddr);
d20f7043 2105good:
07157aac
CM
2106 return 0;
2107
2108zeroit:
945d8962 2109 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2110 "private %llu\n",
2111 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2112 (unsigned long long)start, csum,
2113 (unsigned long long)private);
db94535d
CM
2114 memset(kaddr + offset, 1, end - start + 1);
2115 flush_dcache_page(page);
7ac687d9 2116 kunmap_atomic(kaddr);
3b951516
CM
2117 if (private == 0)
2118 return 0;
7e38326f 2119 return -EIO;
07157aac 2120}
b888db2b 2121
24bbcf04
YZ
2122struct delayed_iput {
2123 struct list_head list;
2124 struct inode *inode;
2125};
2126
79787eaa
JM
2127/* JDM: If this is fs-wide, why can't we add a pointer to
2128 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2129void btrfs_add_delayed_iput(struct inode *inode)
2130{
2131 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2132 struct delayed_iput *delayed;
2133
2134 if (atomic_add_unless(&inode->i_count, -1, 1))
2135 return;
2136
2137 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2138 delayed->inode = inode;
2139
2140 spin_lock(&fs_info->delayed_iput_lock);
2141 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2142 spin_unlock(&fs_info->delayed_iput_lock);
2143}
2144
2145void btrfs_run_delayed_iputs(struct btrfs_root *root)
2146{
2147 LIST_HEAD(list);
2148 struct btrfs_fs_info *fs_info = root->fs_info;
2149 struct delayed_iput *delayed;
2150 int empty;
2151
2152 spin_lock(&fs_info->delayed_iput_lock);
2153 empty = list_empty(&fs_info->delayed_iputs);
2154 spin_unlock(&fs_info->delayed_iput_lock);
2155 if (empty)
2156 return;
2157
24bbcf04
YZ
2158 spin_lock(&fs_info->delayed_iput_lock);
2159 list_splice_init(&fs_info->delayed_iputs, &list);
2160 spin_unlock(&fs_info->delayed_iput_lock);
2161
2162 while (!list_empty(&list)) {
2163 delayed = list_entry(list.next, struct delayed_iput, list);
2164 list_del(&delayed->list);
2165 iput(delayed->inode);
2166 kfree(delayed);
2167 }
24bbcf04
YZ
2168}
2169
d68fc57b
YZ
2170enum btrfs_orphan_cleanup_state {
2171 ORPHAN_CLEANUP_STARTED = 1,
2172 ORPHAN_CLEANUP_DONE = 2,
2173};
2174
2175/*
42b2aa86 2176 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2177 * files in the subvolume, it removes orphan item and frees block_rsv
2178 * structure.
2179 */
2180void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root)
2182{
90290e19 2183 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2184 int ret;
2185
8a35d95f 2186 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2187 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2188 return;
2189
90290e19 2190 spin_lock(&root->orphan_lock);
8a35d95f 2191 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2192 spin_unlock(&root->orphan_lock);
2193 return;
2194 }
2195
2196 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2197 spin_unlock(&root->orphan_lock);
2198 return;
2199 }
2200
2201 block_rsv = root->orphan_block_rsv;
2202 root->orphan_block_rsv = NULL;
2203 spin_unlock(&root->orphan_lock);
2204
d68fc57b
YZ
2205 if (root->orphan_item_inserted &&
2206 btrfs_root_refs(&root->root_item) > 0) {
2207 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2208 root->root_key.objectid);
2209 BUG_ON(ret);
2210 root->orphan_item_inserted = 0;
2211 }
2212
90290e19
JB
2213 if (block_rsv) {
2214 WARN_ON(block_rsv->size > 0);
2215 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2216 }
2217}
2218
7b128766
JB
2219/*
2220 * This creates an orphan entry for the given inode in case something goes
2221 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2222 *
2223 * NOTE: caller of this function should reserve 5 units of metadata for
2224 * this function.
7b128766
JB
2225 */
2226int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2227{
2228 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2229 struct btrfs_block_rsv *block_rsv = NULL;
2230 int reserve = 0;
2231 int insert = 0;
2232 int ret;
7b128766 2233
d68fc57b 2234 if (!root->orphan_block_rsv) {
66d8f3dd 2235 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2236 if (!block_rsv)
2237 return -ENOMEM;
d68fc57b 2238 }
7b128766 2239
d68fc57b
YZ
2240 spin_lock(&root->orphan_lock);
2241 if (!root->orphan_block_rsv) {
2242 root->orphan_block_rsv = block_rsv;
2243 } else if (block_rsv) {
2244 btrfs_free_block_rsv(root, block_rsv);
2245 block_rsv = NULL;
7b128766 2246 }
7b128766 2247
8a35d95f
JB
2248 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2249 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2250#if 0
2251 /*
2252 * For proper ENOSPC handling, we should do orphan
2253 * cleanup when mounting. But this introduces backward
2254 * compatibility issue.
2255 */
2256 if (!xchg(&root->orphan_item_inserted, 1))
2257 insert = 2;
2258 else
2259 insert = 1;
2260#endif
2261 insert = 1;
321f0e70 2262 atomic_inc(&root->orphan_inodes);
7b128766
JB
2263 }
2264
72ac3c0d
JB
2265 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2266 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2267 reserve = 1;
d68fc57b 2268 spin_unlock(&root->orphan_lock);
7b128766 2269
d68fc57b
YZ
2270 /* grab metadata reservation from transaction handle */
2271 if (reserve) {
2272 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2273 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2274 }
7b128766 2275
d68fc57b
YZ
2276 /* insert an orphan item to track this unlinked/truncated file */
2277 if (insert >= 1) {
33345d01 2278 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2279 if (ret && ret != -EEXIST) {
8a35d95f
JB
2280 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2281 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2282 btrfs_abort_transaction(trans, root, ret);
2283 return ret;
2284 }
2285 ret = 0;
d68fc57b
YZ
2286 }
2287
2288 /* insert an orphan item to track subvolume contains orphan files */
2289 if (insert >= 2) {
2290 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2291 root->root_key.objectid);
79787eaa
JM
2292 if (ret && ret != -EEXIST) {
2293 btrfs_abort_transaction(trans, root, ret);
2294 return ret;
2295 }
d68fc57b
YZ
2296 }
2297 return 0;
7b128766
JB
2298}
2299
2300/*
2301 * We have done the truncate/delete so we can go ahead and remove the orphan
2302 * item for this particular inode.
2303 */
2304int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2305{
2306 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2307 int delete_item = 0;
2308 int release_rsv = 0;
7b128766
JB
2309 int ret = 0;
2310
d68fc57b 2311 spin_lock(&root->orphan_lock);
8a35d95f
JB
2312 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2313 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2314 delete_item = 1;
7b128766 2315
72ac3c0d
JB
2316 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2317 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2318 release_rsv = 1;
d68fc57b 2319 spin_unlock(&root->orphan_lock);
7b128766 2320
d68fc57b 2321 if (trans && delete_item) {
33345d01 2322 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2323 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2324 }
7b128766 2325
8a35d95f 2326 if (release_rsv) {
d68fc57b 2327 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
2328 atomic_dec(&root->orphan_inodes);
2329 }
7b128766 2330
d68fc57b 2331 return 0;
7b128766
JB
2332}
2333
2334/*
2335 * this cleans up any orphans that may be left on the list from the last use
2336 * of this root.
2337 */
66b4ffd1 2338int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2339{
2340 struct btrfs_path *path;
2341 struct extent_buffer *leaf;
7b128766
JB
2342 struct btrfs_key key, found_key;
2343 struct btrfs_trans_handle *trans;
2344 struct inode *inode;
8f6d7f4f 2345 u64 last_objectid = 0;
7b128766
JB
2346 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2347
d68fc57b 2348 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2349 return 0;
c71bf099
YZ
2350
2351 path = btrfs_alloc_path();
66b4ffd1
JB
2352 if (!path) {
2353 ret = -ENOMEM;
2354 goto out;
2355 }
7b128766
JB
2356 path->reada = -1;
2357
2358 key.objectid = BTRFS_ORPHAN_OBJECTID;
2359 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2360 key.offset = (u64)-1;
2361
7b128766
JB
2362 while (1) {
2363 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2364 if (ret < 0)
2365 goto out;
7b128766
JB
2366
2367 /*
2368 * if ret == 0 means we found what we were searching for, which
25985edc 2369 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2370 * find the key and see if we have stuff that matches
2371 */
2372 if (ret > 0) {
66b4ffd1 2373 ret = 0;
7b128766
JB
2374 if (path->slots[0] == 0)
2375 break;
2376 path->slots[0]--;
2377 }
2378
2379 /* pull out the item */
2380 leaf = path->nodes[0];
7b128766
JB
2381 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2382
2383 /* make sure the item matches what we want */
2384 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2385 break;
2386 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2387 break;
2388
2389 /* release the path since we're done with it */
b3b4aa74 2390 btrfs_release_path(path);
7b128766
JB
2391
2392 /*
2393 * this is where we are basically btrfs_lookup, without the
2394 * crossing root thing. we store the inode number in the
2395 * offset of the orphan item.
2396 */
8f6d7f4f
JB
2397
2398 if (found_key.offset == last_objectid) {
2399 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2400 "stopping orphan cleanup\n");
2401 ret = -EINVAL;
2402 goto out;
2403 }
2404
2405 last_objectid = found_key.offset;
2406
5d4f98a2
YZ
2407 found_key.objectid = found_key.offset;
2408 found_key.type = BTRFS_INODE_ITEM_KEY;
2409 found_key.offset = 0;
73f73415 2410 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2411 ret = PTR_RET(inode);
2412 if (ret && ret != -ESTALE)
66b4ffd1 2413 goto out;
7b128766 2414
f8e9e0b0
AJ
2415 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2416 struct btrfs_root *dead_root;
2417 struct btrfs_fs_info *fs_info = root->fs_info;
2418 int is_dead_root = 0;
2419
2420 /*
2421 * this is an orphan in the tree root. Currently these
2422 * could come from 2 sources:
2423 * a) a snapshot deletion in progress
2424 * b) a free space cache inode
2425 * We need to distinguish those two, as the snapshot
2426 * orphan must not get deleted.
2427 * find_dead_roots already ran before us, so if this
2428 * is a snapshot deletion, we should find the root
2429 * in the dead_roots list
2430 */
2431 spin_lock(&fs_info->trans_lock);
2432 list_for_each_entry(dead_root, &fs_info->dead_roots,
2433 root_list) {
2434 if (dead_root->root_key.objectid ==
2435 found_key.objectid) {
2436 is_dead_root = 1;
2437 break;
2438 }
2439 }
2440 spin_unlock(&fs_info->trans_lock);
2441 if (is_dead_root) {
2442 /* prevent this orphan from being found again */
2443 key.offset = found_key.objectid - 1;
2444 continue;
2445 }
2446 }
7b128766 2447 /*
a8c9e576
JB
2448 * Inode is already gone but the orphan item is still there,
2449 * kill the orphan item.
7b128766 2450 */
a8c9e576
JB
2451 if (ret == -ESTALE) {
2452 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2453 if (IS_ERR(trans)) {
2454 ret = PTR_ERR(trans);
2455 goto out;
2456 }
8a35d95f
JB
2457 printk(KERN_ERR "auto deleting %Lu\n",
2458 found_key.objectid);
a8c9e576
JB
2459 ret = btrfs_del_orphan_item(trans, root,
2460 found_key.objectid);
79787eaa 2461 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2462 btrfs_end_transaction(trans, root);
7b128766
JB
2463 continue;
2464 }
2465
a8c9e576
JB
2466 /*
2467 * add this inode to the orphan list so btrfs_orphan_del does
2468 * the proper thing when we hit it
2469 */
8a35d95f
JB
2470 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2471 &BTRFS_I(inode)->runtime_flags);
a8c9e576 2472
7b128766
JB
2473 /* if we have links, this was a truncate, lets do that */
2474 if (inode->i_nlink) {
a41ad394
JB
2475 if (!S_ISREG(inode->i_mode)) {
2476 WARN_ON(1);
2477 iput(inode);
2478 continue;
2479 }
7b128766 2480 nr_truncate++;
66b4ffd1 2481 ret = btrfs_truncate(inode);
7b128766
JB
2482 } else {
2483 nr_unlink++;
2484 }
2485
2486 /* this will do delete_inode and everything for us */
2487 iput(inode);
66b4ffd1
JB
2488 if (ret)
2489 goto out;
7b128766 2490 }
3254c876
MX
2491 /* release the path since we're done with it */
2492 btrfs_release_path(path);
2493
d68fc57b
YZ
2494 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2495
2496 if (root->orphan_block_rsv)
2497 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2498 (u64)-1);
2499
2500 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2501 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2502 if (!IS_ERR(trans))
2503 btrfs_end_transaction(trans, root);
d68fc57b 2504 }
7b128766
JB
2505
2506 if (nr_unlink)
2507 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2508 if (nr_truncate)
2509 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2510
2511out:
2512 if (ret)
2513 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2514 btrfs_free_path(path);
2515 return ret;
7b128766
JB
2516}
2517
46a53cca
CM
2518/*
2519 * very simple check to peek ahead in the leaf looking for xattrs. If we
2520 * don't find any xattrs, we know there can't be any acls.
2521 *
2522 * slot is the slot the inode is in, objectid is the objectid of the inode
2523 */
2524static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2525 int slot, u64 objectid)
2526{
2527 u32 nritems = btrfs_header_nritems(leaf);
2528 struct btrfs_key found_key;
2529 int scanned = 0;
2530
2531 slot++;
2532 while (slot < nritems) {
2533 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2534
2535 /* we found a different objectid, there must not be acls */
2536 if (found_key.objectid != objectid)
2537 return 0;
2538
2539 /* we found an xattr, assume we've got an acl */
2540 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2541 return 1;
2542
2543 /*
2544 * we found a key greater than an xattr key, there can't
2545 * be any acls later on
2546 */
2547 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2548 return 0;
2549
2550 slot++;
2551 scanned++;
2552
2553 /*
2554 * it goes inode, inode backrefs, xattrs, extents,
2555 * so if there are a ton of hard links to an inode there can
2556 * be a lot of backrefs. Don't waste time searching too hard,
2557 * this is just an optimization
2558 */
2559 if (scanned >= 8)
2560 break;
2561 }
2562 /* we hit the end of the leaf before we found an xattr or
2563 * something larger than an xattr. We have to assume the inode
2564 * has acls
2565 */
2566 return 1;
2567}
2568
d352ac68
CM
2569/*
2570 * read an inode from the btree into the in-memory inode
2571 */
5d4f98a2 2572static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2573{
2574 struct btrfs_path *path;
5f39d397 2575 struct extent_buffer *leaf;
39279cc3 2576 struct btrfs_inode_item *inode_item;
0b86a832 2577 struct btrfs_timespec *tspec;
39279cc3
CM
2578 struct btrfs_root *root = BTRFS_I(inode)->root;
2579 struct btrfs_key location;
46a53cca 2580 int maybe_acls;
618e21d5 2581 u32 rdev;
39279cc3 2582 int ret;
2f7e33d4
MX
2583 bool filled = false;
2584
2585 ret = btrfs_fill_inode(inode, &rdev);
2586 if (!ret)
2587 filled = true;
39279cc3
CM
2588
2589 path = btrfs_alloc_path();
1748f843
MF
2590 if (!path)
2591 goto make_bad;
2592
d90c7321 2593 path->leave_spinning = 1;
39279cc3 2594 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2595
39279cc3 2596 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2597 if (ret)
39279cc3 2598 goto make_bad;
39279cc3 2599
5f39d397 2600 leaf = path->nodes[0];
2f7e33d4
MX
2601
2602 if (filled)
2603 goto cache_acl;
2604
5f39d397
CM
2605 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2606 struct btrfs_inode_item);
5f39d397 2607 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2608 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
2609 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2610 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 2611 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2612
2613 tspec = btrfs_inode_atime(inode_item);
2614 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2615 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2616
2617 tspec = btrfs_inode_mtime(inode_item);
2618 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2619 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2620
2621 tspec = btrfs_inode_ctime(inode_item);
2622 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2623 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2624
a76a3cd4 2625 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2626 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
2627 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2628
2629 /*
2630 * If we were modified in the current generation and evicted from memory
2631 * and then re-read we need to do a full sync since we don't have any
2632 * idea about which extents were modified before we were evicted from
2633 * cache.
2634 */
2635 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2636 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2637 &BTRFS_I(inode)->runtime_flags);
2638
0c4d2d95 2639 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2640 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2641 inode->i_rdev = 0;
5f39d397
CM
2642 rdev = btrfs_inode_rdev(leaf, inode_item);
2643
aec7477b 2644 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2645 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2646cache_acl:
46a53cca
CM
2647 /*
2648 * try to precache a NULL acl entry for files that don't have
2649 * any xattrs or acls
2650 */
33345d01
LZ
2651 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2652 btrfs_ino(inode));
72c04902
AV
2653 if (!maybe_acls)
2654 cache_no_acl(inode);
46a53cca 2655
39279cc3 2656 btrfs_free_path(path);
39279cc3 2657
39279cc3 2658 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2659 case S_IFREG:
2660 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2661 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2662 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2663 inode->i_fop = &btrfs_file_operations;
2664 inode->i_op = &btrfs_file_inode_operations;
2665 break;
2666 case S_IFDIR:
2667 inode->i_fop = &btrfs_dir_file_operations;
2668 if (root == root->fs_info->tree_root)
2669 inode->i_op = &btrfs_dir_ro_inode_operations;
2670 else
2671 inode->i_op = &btrfs_dir_inode_operations;
2672 break;
2673 case S_IFLNK:
2674 inode->i_op = &btrfs_symlink_inode_operations;
2675 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2676 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2677 break;
618e21d5 2678 default:
0279b4cd 2679 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2680 init_special_inode(inode, inode->i_mode, rdev);
2681 break;
39279cc3 2682 }
6cbff00f
CH
2683
2684 btrfs_update_iflags(inode);
39279cc3
CM
2685 return;
2686
2687make_bad:
39279cc3 2688 btrfs_free_path(path);
39279cc3
CM
2689 make_bad_inode(inode);
2690}
2691
d352ac68
CM
2692/*
2693 * given a leaf and an inode, copy the inode fields into the leaf
2694 */
e02119d5
CM
2695static void fill_inode_item(struct btrfs_trans_handle *trans,
2696 struct extent_buffer *leaf,
5f39d397 2697 struct btrfs_inode_item *item,
39279cc3
CM
2698 struct inode *inode)
2699{
2f2f43d3
EB
2700 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2701 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
dbe674a9 2702 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2703 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2704 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2705
2706 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2707 inode->i_atime.tv_sec);
2708 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2709 inode->i_atime.tv_nsec);
2710
2711 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2712 inode->i_mtime.tv_sec);
2713 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2714 inode->i_mtime.tv_nsec);
2715
2716 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2717 inode->i_ctime.tv_sec);
2718 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2719 inode->i_ctime.tv_nsec);
2720
a76a3cd4 2721 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2722 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
0c4d2d95 2723 btrfs_set_inode_sequence(leaf, item, inode->i_version);
e02119d5 2724 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2725 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2726 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2727 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2728}
2729
d352ac68
CM
2730/*
2731 * copy everything in the in-memory inode into the btree.
2732 */
2115133f 2733static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2734 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2735{
2736 struct btrfs_inode_item *inode_item;
2737 struct btrfs_path *path;
5f39d397 2738 struct extent_buffer *leaf;
39279cc3
CM
2739 int ret;
2740
2741 path = btrfs_alloc_path();
16cdcec7
MX
2742 if (!path)
2743 return -ENOMEM;
2744
b9473439 2745 path->leave_spinning = 1;
16cdcec7
MX
2746 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2747 1);
39279cc3
CM
2748 if (ret) {
2749 if (ret > 0)
2750 ret = -ENOENT;
2751 goto failed;
2752 }
2753
b4ce94de 2754 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2755 leaf = path->nodes[0];
2756 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2757 struct btrfs_inode_item);
39279cc3 2758
e02119d5 2759 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2760 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2761 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2762 ret = 0;
2763failed:
39279cc3
CM
2764 btrfs_free_path(path);
2765 return ret;
2766}
2767
2115133f
CM
2768/*
2769 * copy everything in the in-memory inode into the btree.
2770 */
2771noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2772 struct btrfs_root *root, struct inode *inode)
2773{
2774 int ret;
2775
2776 /*
2777 * If the inode is a free space inode, we can deadlock during commit
2778 * if we put it into the delayed code.
2779 *
2780 * The data relocation inode should also be directly updated
2781 * without delay
2782 */
83eea1f1 2783 if (!btrfs_is_free_space_inode(inode)
2115133f 2784 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
2785 btrfs_update_root_times(trans, root);
2786
2115133f
CM
2787 ret = btrfs_delayed_update_inode(trans, root, inode);
2788 if (!ret)
2789 btrfs_set_inode_last_trans(trans, inode);
2790 return ret;
2791 }
2792
2793 return btrfs_update_inode_item(trans, root, inode);
2794}
2795
be6aef60
JB
2796noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2797 struct btrfs_root *root,
2798 struct inode *inode)
2115133f
CM
2799{
2800 int ret;
2801
2802 ret = btrfs_update_inode(trans, root, inode);
2803 if (ret == -ENOSPC)
2804 return btrfs_update_inode_item(trans, root, inode);
2805 return ret;
2806}
2807
d352ac68
CM
2808/*
2809 * unlink helper that gets used here in inode.c and in the tree logging
2810 * recovery code. It remove a link in a directory with a given name, and
2811 * also drops the back refs in the inode to the directory
2812 */
92986796
AV
2813static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2814 struct btrfs_root *root,
2815 struct inode *dir, struct inode *inode,
2816 const char *name, int name_len)
39279cc3
CM
2817{
2818 struct btrfs_path *path;
39279cc3 2819 int ret = 0;
5f39d397 2820 struct extent_buffer *leaf;
39279cc3 2821 struct btrfs_dir_item *di;
5f39d397 2822 struct btrfs_key key;
aec7477b 2823 u64 index;
33345d01
LZ
2824 u64 ino = btrfs_ino(inode);
2825 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2826
2827 path = btrfs_alloc_path();
54aa1f4d
CM
2828 if (!path) {
2829 ret = -ENOMEM;
554233a6 2830 goto out;
54aa1f4d
CM
2831 }
2832
b9473439 2833 path->leave_spinning = 1;
33345d01 2834 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2835 name, name_len, -1);
2836 if (IS_ERR(di)) {
2837 ret = PTR_ERR(di);
2838 goto err;
2839 }
2840 if (!di) {
2841 ret = -ENOENT;
2842 goto err;
2843 }
5f39d397
CM
2844 leaf = path->nodes[0];
2845 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2846 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2847 if (ret)
2848 goto err;
b3b4aa74 2849 btrfs_release_path(path);
39279cc3 2850
33345d01
LZ
2851 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2852 dir_ino, &index);
aec7477b 2853 if (ret) {
d397712b 2854 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2855 "inode %llu parent %llu\n", name_len, name,
2856 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2857 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2858 goto err;
2859 }
2860
16cdcec7 2861 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2862 if (ret) {
2863 btrfs_abort_transaction(trans, root, ret);
39279cc3 2864 goto err;
79787eaa 2865 }
39279cc3 2866
e02119d5 2867 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2868 inode, dir_ino);
79787eaa
JM
2869 if (ret != 0 && ret != -ENOENT) {
2870 btrfs_abort_transaction(trans, root, ret);
2871 goto err;
2872 }
e02119d5
CM
2873
2874 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2875 dir, index);
6418c961
CM
2876 if (ret == -ENOENT)
2877 ret = 0;
39279cc3
CM
2878err:
2879 btrfs_free_path(path);
e02119d5
CM
2880 if (ret)
2881 goto out;
2882
2883 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2884 inode_inc_iversion(inode);
2885 inode_inc_iversion(dir);
e02119d5 2886 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 2887 ret = btrfs_update_inode(trans, root, dir);
e02119d5 2888out:
39279cc3
CM
2889 return ret;
2890}
2891
92986796
AV
2892int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2893 struct btrfs_root *root,
2894 struct inode *dir, struct inode *inode,
2895 const char *name, int name_len)
2896{
2897 int ret;
2898 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2899 if (!ret) {
2900 btrfs_drop_nlink(inode);
2901 ret = btrfs_update_inode(trans, root, inode);
2902 }
2903 return ret;
2904}
2905
2906
a22285a6
YZ
2907/* helper to check if there is any shared block in the path */
2908static int check_path_shared(struct btrfs_root *root,
2909 struct btrfs_path *path)
39279cc3 2910{
a22285a6
YZ
2911 struct extent_buffer *eb;
2912 int level;
0e4dcbef 2913 u64 refs = 1;
5df6a9f6 2914
a22285a6 2915 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2916 int ret;
2917
a22285a6
YZ
2918 if (!path->nodes[level])
2919 break;
2920 eb = path->nodes[level];
2921 if (!btrfs_block_can_be_shared(root, eb))
2922 continue;
2923 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2924 &refs, NULL);
2925 if (refs > 1)
2926 return 1;
5df6a9f6 2927 }
dedefd72 2928 return 0;
39279cc3
CM
2929}
2930
a22285a6
YZ
2931/*
2932 * helper to start transaction for unlink and rmdir.
2933 *
2934 * unlink and rmdir are special in btrfs, they do not always free space.
2935 * so in enospc case, we should make sure they will free space before
2936 * allowing them to use the global metadata reservation.
2937 */
2938static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2939 struct dentry *dentry)
4df27c4d 2940{
39279cc3 2941 struct btrfs_trans_handle *trans;
a22285a6 2942 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2943 struct btrfs_path *path;
4df27c4d 2944 struct btrfs_dir_item *di;
7b128766 2945 struct inode *inode = dentry->d_inode;
4df27c4d 2946 u64 index;
a22285a6
YZ
2947 int check_link = 1;
2948 int err = -ENOSPC;
4df27c4d 2949 int ret;
33345d01
LZ
2950 u64 ino = btrfs_ino(inode);
2951 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2952
e70bea5f
JB
2953 /*
2954 * 1 for the possible orphan item
2955 * 1 for the dir item
2956 * 1 for the dir index
2957 * 1 for the inode ref
2958 * 1 for the inode ref in the tree log
2959 * 2 for the dir entries in the log
2960 * 1 for the inode
2961 */
2962 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2963 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2964 return trans;
4df27c4d 2965
33345d01 2966 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2967 return ERR_PTR(-ENOSPC);
4df27c4d 2968
a22285a6
YZ
2969 /* check if there is someone else holds reference */
2970 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2971 return ERR_PTR(-ENOSPC);
4df27c4d 2972
a22285a6
YZ
2973 if (atomic_read(&inode->i_count) > 2)
2974 return ERR_PTR(-ENOSPC);
4df27c4d 2975
a22285a6
YZ
2976 if (xchg(&root->fs_info->enospc_unlink, 1))
2977 return ERR_PTR(-ENOSPC);
2978
2979 path = btrfs_alloc_path();
2980 if (!path) {
2981 root->fs_info->enospc_unlink = 0;
2982 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2983 }
2984
3880a1b4
JB
2985 /* 1 for the orphan item */
2986 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2987 if (IS_ERR(trans)) {
a22285a6
YZ
2988 btrfs_free_path(path);
2989 root->fs_info->enospc_unlink = 0;
2990 return trans;
2991 }
4df27c4d 2992
a22285a6
YZ
2993 path->skip_locking = 1;
2994 path->search_commit_root = 1;
4df27c4d 2995
a22285a6
YZ
2996 ret = btrfs_lookup_inode(trans, root, path,
2997 &BTRFS_I(dir)->location, 0);
2998 if (ret < 0) {
2999 err = ret;
3000 goto out;
3001 }
3002 if (ret == 0) {
3003 if (check_path_shared(root, path))
3004 goto out;
3005 } else {
3006 check_link = 0;
5df6a9f6 3007 }
b3b4aa74 3008 btrfs_release_path(path);
a22285a6
YZ
3009
3010 ret = btrfs_lookup_inode(trans, root, path,
3011 &BTRFS_I(inode)->location, 0);
3012 if (ret < 0) {
3013 err = ret;
3014 goto out;
3015 }
3016 if (ret == 0) {
3017 if (check_path_shared(root, path))
3018 goto out;
3019 } else {
3020 check_link = 0;
3021 }
b3b4aa74 3022 btrfs_release_path(path);
a22285a6
YZ
3023
3024 if (ret == 0 && S_ISREG(inode->i_mode)) {
3025 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 3026 ino, (u64)-1, 0);
a22285a6
YZ
3027 if (ret < 0) {
3028 err = ret;
3029 goto out;
3030 }
79787eaa 3031 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
3032 if (check_path_shared(root, path))
3033 goto out;
b3b4aa74 3034 btrfs_release_path(path);
a22285a6
YZ
3035 }
3036
3037 if (!check_link) {
3038 err = 0;
3039 goto out;
3040 }
3041
33345d01 3042 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3043 dentry->d_name.name, dentry->d_name.len, 0);
3044 if (IS_ERR(di)) {
3045 err = PTR_ERR(di);
3046 goto out;
3047 }
3048 if (di) {
3049 if (check_path_shared(root, path))
3050 goto out;
3051 } else {
3052 err = 0;
3053 goto out;
3054 }
b3b4aa74 3055 btrfs_release_path(path);
a22285a6 3056
f186373f
MF
3057 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3058 dentry->d_name.len, ino, dir_ino, 0,
3059 &index);
3060 if (ret) {
3061 err = ret;
a22285a6
YZ
3062 goto out;
3063 }
f186373f 3064
a22285a6
YZ
3065 if (check_path_shared(root, path))
3066 goto out;
f186373f 3067
b3b4aa74 3068 btrfs_release_path(path);
a22285a6 3069
16cdcec7
MX
3070 /*
3071 * This is a commit root search, if we can lookup inode item and other
3072 * relative items in the commit root, it means the transaction of
3073 * dir/file creation has been committed, and the dir index item that we
3074 * delay to insert has also been inserted into the commit root. So
3075 * we needn't worry about the delayed insertion of the dir index item
3076 * here.
3077 */
33345d01 3078 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3079 dentry->d_name.name, dentry->d_name.len, 0);
3080 if (IS_ERR(di)) {
3081 err = PTR_ERR(di);
3082 goto out;
3083 }
3084 BUG_ON(ret == -ENOENT);
3085 if (check_path_shared(root, path))
3086 goto out;
3087
3088 err = 0;
3089out:
3090 btrfs_free_path(path);
3880a1b4
JB
3091 /* Migrate the orphan reservation over */
3092 if (!err)
3093 err = btrfs_block_rsv_migrate(trans->block_rsv,
3094 &root->fs_info->global_block_rsv,
5a77d76c 3095 trans->bytes_reserved);
3880a1b4 3096
a22285a6
YZ
3097 if (err) {
3098 btrfs_end_transaction(trans, root);
3099 root->fs_info->enospc_unlink = 0;
3100 return ERR_PTR(err);
3101 }
3102
3103 trans->block_rsv = &root->fs_info->global_block_rsv;
3104 return trans;
3105}
3106
3107static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3108 struct btrfs_root *root)
3109{
66d8f3dd 3110 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
5a77d76c
JB
3111 btrfs_block_rsv_release(root, trans->block_rsv,
3112 trans->bytes_reserved);
3113 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3114 BUG_ON(!root->fs_info->enospc_unlink);
3115 root->fs_info->enospc_unlink = 0;
3116 }
7ad85bb7 3117 btrfs_end_transaction(trans, root);
a22285a6
YZ
3118}
3119
3120static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3121{
3122 struct btrfs_root *root = BTRFS_I(dir)->root;
3123 struct btrfs_trans_handle *trans;
3124 struct inode *inode = dentry->d_inode;
3125 int ret;
a22285a6
YZ
3126
3127 trans = __unlink_start_trans(dir, dentry);
3128 if (IS_ERR(trans))
3129 return PTR_ERR(trans);
5f39d397 3130
12fcfd22
CM
3131 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3132
e02119d5
CM
3133 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3134 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3135 if (ret)
3136 goto out;
7b128766 3137
a22285a6 3138 if (inode->i_nlink == 0) {
7b128766 3139 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3140 if (ret)
3141 goto out;
a22285a6 3142 }
7b128766 3143
b532402e 3144out:
a22285a6 3145 __unlink_end_trans(trans, root);
b53d3f5d 3146 btrfs_btree_balance_dirty(root);
39279cc3
CM
3147 return ret;
3148}
3149
4df27c4d
YZ
3150int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3151 struct btrfs_root *root,
3152 struct inode *dir, u64 objectid,
3153 const char *name, int name_len)
3154{
3155 struct btrfs_path *path;
3156 struct extent_buffer *leaf;
3157 struct btrfs_dir_item *di;
3158 struct btrfs_key key;
3159 u64 index;
3160 int ret;
33345d01 3161 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3162
3163 path = btrfs_alloc_path();
3164 if (!path)
3165 return -ENOMEM;
3166
33345d01 3167 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3168 name, name_len, -1);
79787eaa
JM
3169 if (IS_ERR_OR_NULL(di)) {
3170 if (!di)
3171 ret = -ENOENT;
3172 else
3173 ret = PTR_ERR(di);
3174 goto out;
3175 }
4df27c4d
YZ
3176
3177 leaf = path->nodes[0];
3178 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3179 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3180 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3181 if (ret) {
3182 btrfs_abort_transaction(trans, root, ret);
3183 goto out;
3184 }
b3b4aa74 3185 btrfs_release_path(path);
4df27c4d
YZ
3186
3187 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3188 objectid, root->root_key.objectid,
33345d01 3189 dir_ino, &index, name, name_len);
4df27c4d 3190 if (ret < 0) {
79787eaa
JM
3191 if (ret != -ENOENT) {
3192 btrfs_abort_transaction(trans, root, ret);
3193 goto out;
3194 }
33345d01 3195 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3196 name, name_len);
79787eaa
JM
3197 if (IS_ERR_OR_NULL(di)) {
3198 if (!di)
3199 ret = -ENOENT;
3200 else
3201 ret = PTR_ERR(di);
3202 btrfs_abort_transaction(trans, root, ret);
3203 goto out;
3204 }
4df27c4d
YZ
3205
3206 leaf = path->nodes[0];
3207 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3208 btrfs_release_path(path);
4df27c4d
YZ
3209 index = key.offset;
3210 }
945d8962 3211 btrfs_release_path(path);
4df27c4d 3212
16cdcec7 3213 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3214 if (ret) {
3215 btrfs_abort_transaction(trans, root, ret);
3216 goto out;
3217 }
4df27c4d
YZ
3218
3219 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3220 inode_inc_iversion(dir);
4df27c4d 3221 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3222 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3223 if (ret)
3224 btrfs_abort_transaction(trans, root, ret);
3225out:
71d7aed0 3226 btrfs_free_path(path);
79787eaa 3227 return ret;
4df27c4d
YZ
3228}
3229
39279cc3
CM
3230static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3231{
3232 struct inode *inode = dentry->d_inode;
1832a6d5 3233 int err = 0;
39279cc3 3234 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3235 struct btrfs_trans_handle *trans;
39279cc3 3236
b3ae244e 3237 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3238 return -ENOTEMPTY;
b3ae244e
DS
3239 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3240 return -EPERM;
134d4512 3241
a22285a6
YZ
3242 trans = __unlink_start_trans(dir, dentry);
3243 if (IS_ERR(trans))
5df6a9f6 3244 return PTR_ERR(trans);
5df6a9f6 3245
33345d01 3246 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3247 err = btrfs_unlink_subvol(trans, root, dir,
3248 BTRFS_I(inode)->location.objectid,
3249 dentry->d_name.name,
3250 dentry->d_name.len);
3251 goto out;
3252 }
3253
7b128766
JB
3254 err = btrfs_orphan_add(trans, inode);
3255 if (err)
4df27c4d 3256 goto out;
7b128766 3257
39279cc3 3258 /* now the directory is empty */
e02119d5
CM
3259 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3260 dentry->d_name.name, dentry->d_name.len);
d397712b 3261 if (!err)
dbe674a9 3262 btrfs_i_size_write(inode, 0);
4df27c4d 3263out:
a22285a6 3264 __unlink_end_trans(trans, root);
b53d3f5d 3265 btrfs_btree_balance_dirty(root);
3954401f 3266
39279cc3
CM
3267 return err;
3268}
3269
39279cc3
CM
3270/*
3271 * this can truncate away extent items, csum items and directory items.
3272 * It starts at a high offset and removes keys until it can't find
d352ac68 3273 * any higher than new_size
39279cc3
CM
3274 *
3275 * csum items that cross the new i_size are truncated to the new size
3276 * as well.
7b128766
JB
3277 *
3278 * min_type is the minimum key type to truncate down to. If set to 0, this
3279 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3280 */
8082510e
YZ
3281int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3282 struct btrfs_root *root,
3283 struct inode *inode,
3284 u64 new_size, u32 min_type)
39279cc3 3285{
39279cc3 3286 struct btrfs_path *path;
5f39d397 3287 struct extent_buffer *leaf;
39279cc3 3288 struct btrfs_file_extent_item *fi;
8082510e
YZ
3289 struct btrfs_key key;
3290 struct btrfs_key found_key;
39279cc3 3291 u64 extent_start = 0;
db94535d 3292 u64 extent_num_bytes = 0;
5d4f98a2 3293 u64 extent_offset = 0;
39279cc3 3294 u64 item_end = 0;
8082510e
YZ
3295 u64 mask = root->sectorsize - 1;
3296 u32 found_type = (u8)-1;
39279cc3
CM
3297 int found_extent;
3298 int del_item;
85e21bac
CM
3299 int pending_del_nr = 0;
3300 int pending_del_slot = 0;
179e29e4 3301 int extent_type = -1;
8082510e
YZ
3302 int ret;
3303 int err = 0;
33345d01 3304 u64 ino = btrfs_ino(inode);
8082510e
YZ
3305
3306 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3307
0eb0e19c
MF
3308 path = btrfs_alloc_path();
3309 if (!path)
3310 return -ENOMEM;
3311 path->reada = -1;
3312
5dc562c5
JB
3313 /*
3314 * We want to drop from the next block forward in case this new size is
3315 * not block aligned since we will be keeping the last block of the
3316 * extent just the way it is.
3317 */
0af3d00b 3318 if (root->ref_cows || root == root->fs_info->tree_root)
5dc562c5 3319 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
8082510e 3320
16cdcec7
MX
3321 /*
3322 * This function is also used to drop the items in the log tree before
3323 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3324 * it is used to drop the loged items. So we shouldn't kill the delayed
3325 * items.
3326 */
3327 if (min_type == 0 && root == BTRFS_I(inode)->root)
3328 btrfs_kill_delayed_inode_items(inode);
3329
33345d01 3330 key.objectid = ino;
39279cc3 3331 key.offset = (u64)-1;
5f39d397
CM
3332 key.type = (u8)-1;
3333
85e21bac 3334search_again:
b9473439 3335 path->leave_spinning = 1;
85e21bac 3336 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3337 if (ret < 0) {
3338 err = ret;
3339 goto out;
3340 }
d397712b 3341
85e21bac 3342 if (ret > 0) {
e02119d5
CM
3343 /* there are no items in the tree for us to truncate, we're
3344 * done
3345 */
8082510e
YZ
3346 if (path->slots[0] == 0)
3347 goto out;
85e21bac
CM
3348 path->slots[0]--;
3349 }
3350
d397712b 3351 while (1) {
39279cc3 3352 fi = NULL;
5f39d397
CM
3353 leaf = path->nodes[0];
3354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3355 found_type = btrfs_key_type(&found_key);
39279cc3 3356
33345d01 3357 if (found_key.objectid != ino)
39279cc3 3358 break;
5f39d397 3359
85e21bac 3360 if (found_type < min_type)
39279cc3
CM
3361 break;
3362
5f39d397 3363 item_end = found_key.offset;
39279cc3 3364 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3365 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3366 struct btrfs_file_extent_item);
179e29e4
CM
3367 extent_type = btrfs_file_extent_type(leaf, fi);
3368 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3369 item_end +=
db94535d 3370 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3371 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3372 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3373 fi);
39279cc3 3374 }
008630c1 3375 item_end--;
39279cc3 3376 }
8082510e
YZ
3377 if (found_type > min_type) {
3378 del_item = 1;
3379 } else {
3380 if (item_end < new_size)
b888db2b 3381 break;
8082510e
YZ
3382 if (found_key.offset >= new_size)
3383 del_item = 1;
3384 else
3385 del_item = 0;
39279cc3 3386 }
39279cc3 3387 found_extent = 0;
39279cc3 3388 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3389 if (found_type != BTRFS_EXTENT_DATA_KEY)
3390 goto delete;
3391
3392 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3393 u64 num_dec;
db94535d 3394 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3395 if (!del_item) {
db94535d
CM
3396 u64 orig_num_bytes =
3397 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3398 extent_num_bytes = new_size -
5f39d397 3399 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3400 extent_num_bytes = extent_num_bytes &
3401 ~((u64)root->sectorsize - 1);
db94535d
CM
3402 btrfs_set_file_extent_num_bytes(leaf, fi,
3403 extent_num_bytes);
3404 num_dec = (orig_num_bytes -
9069218d 3405 extent_num_bytes);
e02119d5 3406 if (root->ref_cows && extent_start != 0)
a76a3cd4 3407 inode_sub_bytes(inode, num_dec);
5f39d397 3408 btrfs_mark_buffer_dirty(leaf);
39279cc3 3409 } else {
db94535d
CM
3410 extent_num_bytes =
3411 btrfs_file_extent_disk_num_bytes(leaf,
3412 fi);
5d4f98a2
YZ
3413 extent_offset = found_key.offset -
3414 btrfs_file_extent_offset(leaf, fi);
3415
39279cc3 3416 /* FIXME blocksize != 4096 */
9069218d 3417 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3418 if (extent_start != 0) {
3419 found_extent = 1;
e02119d5 3420 if (root->ref_cows)
a76a3cd4 3421 inode_sub_bytes(inode, num_dec);
e02119d5 3422 }
39279cc3 3423 }
9069218d 3424 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3425 /*
3426 * we can't truncate inline items that have had
3427 * special encodings
3428 */
3429 if (!del_item &&
3430 btrfs_file_extent_compression(leaf, fi) == 0 &&
3431 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3432 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3433 u32 size = new_size - found_key.offset;
3434
3435 if (root->ref_cows) {
a76a3cd4
YZ
3436 inode_sub_bytes(inode, item_end + 1 -
3437 new_size);
e02119d5
CM
3438 }
3439 size =
3440 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3441 btrfs_truncate_item(trans, root, path,
3442 size, 1);
e02119d5 3443 } else if (root->ref_cows) {
a76a3cd4
YZ
3444 inode_sub_bytes(inode, item_end + 1 -
3445 found_key.offset);
9069218d 3446 }
39279cc3 3447 }
179e29e4 3448delete:
39279cc3 3449 if (del_item) {
85e21bac
CM
3450 if (!pending_del_nr) {
3451 /* no pending yet, add ourselves */
3452 pending_del_slot = path->slots[0];
3453 pending_del_nr = 1;
3454 } else if (pending_del_nr &&
3455 path->slots[0] + 1 == pending_del_slot) {
3456 /* hop on the pending chunk */
3457 pending_del_nr++;
3458 pending_del_slot = path->slots[0];
3459 } else {
d397712b 3460 BUG();
85e21bac 3461 }
39279cc3
CM
3462 } else {
3463 break;
3464 }
0af3d00b
JB
3465 if (found_extent && (root->ref_cows ||
3466 root == root->fs_info->tree_root)) {
b9473439 3467 btrfs_set_path_blocking(path);
39279cc3 3468 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3469 extent_num_bytes, 0,
3470 btrfs_header_owner(leaf),
66d7e7f0 3471 ino, extent_offset, 0);
39279cc3
CM
3472 BUG_ON(ret);
3473 }
85e21bac 3474
8082510e
YZ
3475 if (found_type == BTRFS_INODE_ITEM_KEY)
3476 break;
3477
3478 if (path->slots[0] == 0 ||
3479 path->slots[0] != pending_del_slot) {
8082510e
YZ
3480 if (pending_del_nr) {
3481 ret = btrfs_del_items(trans, root, path,
3482 pending_del_slot,
3483 pending_del_nr);
79787eaa
JM
3484 if (ret) {
3485 btrfs_abort_transaction(trans,
3486 root, ret);
3487 goto error;
3488 }
8082510e
YZ
3489 pending_del_nr = 0;
3490 }
b3b4aa74 3491 btrfs_release_path(path);
85e21bac 3492 goto search_again;
8082510e
YZ
3493 } else {
3494 path->slots[0]--;
85e21bac 3495 }
39279cc3 3496 }
8082510e 3497out:
85e21bac
CM
3498 if (pending_del_nr) {
3499 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3500 pending_del_nr);
79787eaa
JM
3501 if (ret)
3502 btrfs_abort_transaction(trans, root, ret);
85e21bac 3503 }
79787eaa 3504error:
39279cc3 3505 btrfs_free_path(path);
8082510e 3506 return err;
39279cc3
CM
3507}
3508
3509/*
2aaa6655
JB
3510 * btrfs_truncate_page - read, zero a chunk and write a page
3511 * @inode - inode that we're zeroing
3512 * @from - the offset to start zeroing
3513 * @len - the length to zero, 0 to zero the entire range respective to the
3514 * offset
3515 * @front - zero up to the offset instead of from the offset on
3516 *
3517 * This will find the page for the "from" offset and cow the page and zero the
3518 * part we want to zero. This is used with truncate and hole punching.
39279cc3 3519 */
2aaa6655
JB
3520int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3521 int front)
39279cc3 3522{
2aaa6655 3523 struct address_space *mapping = inode->i_mapping;
db94535d 3524 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3525 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3526 struct btrfs_ordered_extent *ordered;
2ac55d41 3527 struct extent_state *cached_state = NULL;
e6dcd2dc 3528 char *kaddr;
db94535d 3529 u32 blocksize = root->sectorsize;
39279cc3
CM
3530 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3531 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3532 struct page *page;
3b16a4e3 3533 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3534 int ret = 0;
a52d9a80 3535 u64 page_start;
e6dcd2dc 3536 u64 page_end;
39279cc3 3537
2aaa6655
JB
3538 if ((offset & (blocksize - 1)) == 0 &&
3539 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 3540 goto out;
0ca1f7ce 3541 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3542 if (ret)
3543 goto out;
39279cc3 3544
211c17f5 3545again:
3b16a4e3 3546 page = find_or_create_page(mapping, index, mask);
5d5e103a 3547 if (!page) {
0ca1f7ce 3548 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 3549 ret = -ENOMEM;
39279cc3 3550 goto out;
5d5e103a 3551 }
e6dcd2dc
CM
3552
3553 page_start = page_offset(page);
3554 page_end = page_start + PAGE_CACHE_SIZE - 1;
3555
39279cc3 3556 if (!PageUptodate(page)) {
9ebefb18 3557 ret = btrfs_readpage(NULL, page);
39279cc3 3558 lock_page(page);
211c17f5
CM
3559 if (page->mapping != mapping) {
3560 unlock_page(page);
3561 page_cache_release(page);
3562 goto again;
3563 }
39279cc3
CM
3564 if (!PageUptodate(page)) {
3565 ret = -EIO;
89642229 3566 goto out_unlock;
39279cc3
CM
3567 }
3568 }
211c17f5 3569 wait_on_page_writeback(page);
e6dcd2dc 3570
d0082371 3571 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3572 set_page_extent_mapped(page);
3573
3574 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3575 if (ordered) {
2ac55d41
JB
3576 unlock_extent_cached(io_tree, page_start, page_end,
3577 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3578 unlock_page(page);
3579 page_cache_release(page);
eb84ae03 3580 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3581 btrfs_put_ordered_extent(ordered);
3582 goto again;
3583 }
3584
2ac55d41 3585 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
3586 EXTENT_DIRTY | EXTENT_DELALLOC |
3587 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 3588 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3589
2ac55d41
JB
3590 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3591 &cached_state);
9ed74f2d 3592 if (ret) {
2ac55d41
JB
3593 unlock_extent_cached(io_tree, page_start, page_end,
3594 &cached_state, GFP_NOFS);
9ed74f2d
JB
3595 goto out_unlock;
3596 }
3597
e6dcd2dc 3598 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
3599 if (!len)
3600 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 3601 kaddr = kmap(page);
2aaa6655
JB
3602 if (front)
3603 memset(kaddr, 0, offset);
3604 else
3605 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
3606 flush_dcache_page(page);
3607 kunmap(page);
3608 }
247e743c 3609 ClearPageChecked(page);
e6dcd2dc 3610 set_page_dirty(page);
2ac55d41
JB
3611 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3612 GFP_NOFS);
39279cc3 3613
89642229 3614out_unlock:
5d5e103a 3615 if (ret)
0ca1f7ce 3616 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3617 unlock_page(page);
3618 page_cache_release(page);
3619out:
3620 return ret;
3621}
3622
695a0d0d
JB
3623/*
3624 * This function puts in dummy file extents for the area we're creating a hole
3625 * for. So if we are truncating this file to a larger size we need to insert
3626 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3627 * the range between oldsize and size
3628 */
a41ad394 3629int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3630{
9036c102
YZ
3631 struct btrfs_trans_handle *trans;
3632 struct btrfs_root *root = BTRFS_I(inode)->root;
3633 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3634 struct extent_map *em = NULL;
2ac55d41 3635 struct extent_state *cached_state = NULL;
5dc562c5 3636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9036c102 3637 u64 mask = root->sectorsize - 1;
a41ad394 3638 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3639 u64 block_end = (size + mask) & ~mask;
3640 u64 last_byte;
3641 u64 cur_offset;
3642 u64 hole_size;
9ed74f2d 3643 int err = 0;
39279cc3 3644
9036c102
YZ
3645 if (size <= hole_start)
3646 return 0;
3647
9036c102
YZ
3648 while (1) {
3649 struct btrfs_ordered_extent *ordered;
3650 btrfs_wait_ordered_range(inode, hole_start,
3651 block_end - hole_start);
2ac55d41 3652 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3653 &cached_state);
9036c102
YZ
3654 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3655 if (!ordered)
3656 break;
2ac55d41
JB
3657 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3658 &cached_state, GFP_NOFS);
9036c102
YZ
3659 btrfs_put_ordered_extent(ordered);
3660 }
39279cc3 3661
9036c102
YZ
3662 cur_offset = hole_start;
3663 while (1) {
3664 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3665 block_end - cur_offset, 0);
79787eaa
JM
3666 if (IS_ERR(em)) {
3667 err = PTR_ERR(em);
3668 break;
3669 }
9036c102
YZ
3670 last_byte = min(extent_map_end(em), block_end);
3671 last_byte = (last_byte + mask) & ~mask;
8082510e 3672 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 3673 struct extent_map *hole_em;
9036c102 3674 hole_size = last_byte - cur_offset;
9ed74f2d 3675
3642320e 3676 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3677 if (IS_ERR(trans)) {
3678 err = PTR_ERR(trans);
9ed74f2d 3679 break;
a22285a6 3680 }
8082510e 3681
5dc562c5
JB
3682 err = btrfs_drop_extents(trans, root, inode,
3683 cur_offset,
2671485d 3684 cur_offset + hole_size, 1);
5b397377 3685 if (err) {
79787eaa 3686 btrfs_abort_transaction(trans, root, err);
5b397377 3687 btrfs_end_transaction(trans, root);
3893e33b 3688 break;
5b397377 3689 }
8082510e 3690
9036c102 3691 err = btrfs_insert_file_extent(trans, root,
33345d01 3692 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3693 0, hole_size, 0, hole_size,
3694 0, 0, 0);
5b397377 3695 if (err) {
79787eaa 3696 btrfs_abort_transaction(trans, root, err);
5b397377 3697 btrfs_end_transaction(trans, root);
3893e33b 3698 break;
5b397377 3699 }
8082510e 3700
5dc562c5
JB
3701 btrfs_drop_extent_cache(inode, cur_offset,
3702 cur_offset + hole_size - 1, 0);
3703 hole_em = alloc_extent_map();
3704 if (!hole_em) {
3705 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3706 &BTRFS_I(inode)->runtime_flags);
3707 goto next;
3708 }
3709 hole_em->start = cur_offset;
3710 hole_em->len = hole_size;
3711 hole_em->orig_start = cur_offset;
8082510e 3712
5dc562c5
JB
3713 hole_em->block_start = EXTENT_MAP_HOLE;
3714 hole_em->block_len = 0;
b4939680 3715 hole_em->orig_block_len = 0;
5dc562c5
JB
3716 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3717 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3718 hole_em->generation = trans->transid;
8082510e 3719
5dc562c5
JB
3720 while (1) {
3721 write_lock(&em_tree->lock);
3722 err = add_extent_mapping(em_tree, hole_em);
3723 if (!err)
3724 list_move(&hole_em->list,
3725 &em_tree->modified_extents);
3726 write_unlock(&em_tree->lock);
3727 if (err != -EEXIST)
3728 break;
3729 btrfs_drop_extent_cache(inode, cur_offset,
3730 cur_offset +
3731 hole_size - 1, 0);
3732 }
3733 free_extent_map(hole_em);
3734next:
3642320e 3735 btrfs_update_inode(trans, root, inode);
8082510e 3736 btrfs_end_transaction(trans, root);
9036c102
YZ
3737 }
3738 free_extent_map(em);
a22285a6 3739 em = NULL;
9036c102 3740 cur_offset = last_byte;
8082510e 3741 if (cur_offset >= block_end)
9036c102
YZ
3742 break;
3743 }
1832a6d5 3744
a22285a6 3745 free_extent_map(em);
2ac55d41
JB
3746 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3747 GFP_NOFS);
9036c102
YZ
3748 return err;
3749}
39279cc3 3750
a41ad394 3751static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3752{
f4a2f4c5
MX
3753 struct btrfs_root *root = BTRFS_I(inode)->root;
3754 struct btrfs_trans_handle *trans;
a41ad394 3755 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3756 int ret;
3757
a41ad394 3758 if (newsize == oldsize)
8082510e
YZ
3759 return 0;
3760
a41ad394 3761 if (newsize > oldsize) {
a41ad394
JB
3762 truncate_pagecache(inode, oldsize, newsize);
3763 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3764 if (ret)
8082510e 3765 return ret;
8082510e 3766
f4a2f4c5
MX
3767 trans = btrfs_start_transaction(root, 1);
3768 if (IS_ERR(trans))
3769 return PTR_ERR(trans);
3770
3771 i_size_write(inode, newsize);
3772 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3773 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3774 btrfs_end_transaction(trans, root);
a41ad394 3775 } else {
8082510e 3776
a41ad394
JB
3777 /*
3778 * We're truncating a file that used to have good data down to
3779 * zero. Make sure it gets into the ordered flush list so that
3780 * any new writes get down to disk quickly.
3781 */
3782 if (newsize == 0)
72ac3c0d
JB
3783 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3784 &BTRFS_I(inode)->runtime_flags);
8082510e 3785
a41ad394
JB
3786 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3787 truncate_setsize(inode, newsize);
3788 ret = btrfs_truncate(inode);
8082510e
YZ
3789 }
3790
a41ad394 3791 return ret;
8082510e
YZ
3792}
3793
9036c102
YZ
3794static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3795{
3796 struct inode *inode = dentry->d_inode;
b83cc969 3797 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3798 int err;
39279cc3 3799
b83cc969
LZ
3800 if (btrfs_root_readonly(root))
3801 return -EROFS;
3802
9036c102
YZ
3803 err = inode_change_ok(inode, attr);
3804 if (err)
3805 return err;
2bf5a725 3806
5a3f23d5 3807 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3808 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3809 if (err)
3810 return err;
39279cc3 3811 }
9036c102 3812
1025774c
CH
3813 if (attr->ia_valid) {
3814 setattr_copy(inode, attr);
0c4d2d95 3815 inode_inc_iversion(inode);
22c44fe6 3816 err = btrfs_dirty_inode(inode);
1025774c 3817
22c44fe6 3818 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3819 err = btrfs_acl_chmod(inode);
3820 }
33268eaf 3821
39279cc3
CM
3822 return err;
3823}
61295eb8 3824
bd555975 3825void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3826{
3827 struct btrfs_trans_handle *trans;
3828 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3829 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3830 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
3831 int ret;
3832
1abe9b8a 3833 trace_btrfs_inode_evict(inode);
3834
39279cc3 3835 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3836 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 3837 btrfs_is_free_space_inode(inode)))
bd555975
AV
3838 goto no_delete;
3839
39279cc3 3840 if (is_bad_inode(inode)) {
7b128766 3841 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3842 goto no_delete;
3843 }
bd555975 3844 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3845 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3846
c71bf099 3847 if (root->fs_info->log_root_recovering) {
6bf02314 3848 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 3849 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
3850 goto no_delete;
3851 }
3852
76dda93c
YZ
3853 if (inode->i_nlink > 0) {
3854 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3855 goto no_delete;
3856 }
3857
66d8f3dd 3858 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
3859 if (!rsv) {
3860 btrfs_orphan_del(NULL, inode);
3861 goto no_delete;
3862 }
4a338542 3863 rsv->size = min_size;
ca7e70f5 3864 rsv->failfast = 1;
726c35fa 3865 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3866
dbe674a9 3867 btrfs_i_size_write(inode, 0);
5f39d397 3868
4289a667 3869 /*
8407aa46
MX
3870 * This is a bit simpler than btrfs_truncate since we've already
3871 * reserved our space for our orphan item in the unlink, so we just
3872 * need to reserve some slack space in case we add bytes and update
3873 * inode item when doing the truncate.
4289a667 3874 */
8082510e 3875 while (1) {
08e007d2
MX
3876 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3877 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
3878
3879 /*
3880 * Try and steal from the global reserve since we will
3881 * likely not use this space anyway, we want to try as
3882 * hard as possible to get this to work.
3883 */
3884 if (ret)
3885 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3886
d68fc57b 3887 if (ret) {
4289a667 3888 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3889 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3890 btrfs_orphan_del(NULL, inode);
3891 btrfs_free_block_rsv(root, rsv);
3892 goto no_delete;
d68fc57b 3893 }
7b128766 3894
08e007d2 3895 trans = btrfs_start_transaction_lflush(root, 1);
4289a667
JB
3896 if (IS_ERR(trans)) {
3897 btrfs_orphan_del(NULL, inode);
3898 btrfs_free_block_rsv(root, rsv);
3899 goto no_delete;
d68fc57b 3900 }
7b128766 3901
4289a667
JB
3902 trans->block_rsv = rsv;
3903
d68fc57b 3904 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 3905 if (ret != -ENOSPC)
8082510e 3906 break;
85e21bac 3907
8407aa46
MX
3908 trans->block_rsv = &root->fs_info->trans_block_rsv;
3909 ret = btrfs_update_inode(trans, root, inode);
3910 BUG_ON(ret);
3911
8082510e
YZ
3912 btrfs_end_transaction(trans, root);
3913 trans = NULL;
b53d3f5d 3914 btrfs_btree_balance_dirty(root);
8082510e 3915 }
5f39d397 3916
4289a667
JB
3917 btrfs_free_block_rsv(root, rsv);
3918
8082510e 3919 if (ret == 0) {
4289a667 3920 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3921 ret = btrfs_orphan_del(trans, inode);
3922 BUG_ON(ret);
3923 }
54aa1f4d 3924
4289a667 3925 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3926 if (!(root == root->fs_info->tree_root ||
3927 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3928 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3929
54aa1f4d 3930 btrfs_end_transaction(trans, root);
b53d3f5d 3931 btrfs_btree_balance_dirty(root);
39279cc3 3932no_delete:
dbd5768f 3933 clear_inode(inode);
8082510e 3934 return;
39279cc3
CM
3935}
3936
3937/*
3938 * this returns the key found in the dir entry in the location pointer.
3939 * If no dir entries were found, location->objectid is 0.
3940 */
3941static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3942 struct btrfs_key *location)
3943{
3944 const char *name = dentry->d_name.name;
3945 int namelen = dentry->d_name.len;
3946 struct btrfs_dir_item *di;
3947 struct btrfs_path *path;
3948 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3949 int ret = 0;
39279cc3
CM
3950
3951 path = btrfs_alloc_path();
d8926bb3
MF
3952 if (!path)
3953 return -ENOMEM;
3954401f 3954
33345d01 3955 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3956 namelen, 0);
0d9f7f3e
Y
3957 if (IS_ERR(di))
3958 ret = PTR_ERR(di);
d397712b 3959
c704005d 3960 if (IS_ERR_OR_NULL(di))
3954401f 3961 goto out_err;
d397712b 3962
5f39d397 3963 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3964out:
39279cc3
CM
3965 btrfs_free_path(path);
3966 return ret;
3954401f
CM
3967out_err:
3968 location->objectid = 0;
3969 goto out;
39279cc3
CM
3970}
3971
3972/*
3973 * when we hit a tree root in a directory, the btrfs part of the inode
3974 * needs to be changed to reflect the root directory of the tree root. This
3975 * is kind of like crossing a mount point.
3976 */
3977static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3978 struct inode *dir,
3979 struct dentry *dentry,
3980 struct btrfs_key *location,
3981 struct btrfs_root **sub_root)
39279cc3 3982{
4df27c4d
YZ
3983 struct btrfs_path *path;
3984 struct btrfs_root *new_root;
3985 struct btrfs_root_ref *ref;
3986 struct extent_buffer *leaf;
3987 int ret;
3988 int err = 0;
39279cc3 3989
4df27c4d
YZ
3990 path = btrfs_alloc_path();
3991 if (!path) {
3992 err = -ENOMEM;
3993 goto out;
3994 }
39279cc3 3995
4df27c4d
YZ
3996 err = -ENOENT;
3997 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3998 BTRFS_I(dir)->root->root_key.objectid,
3999 location->objectid);
4000 if (ret) {
4001 if (ret < 0)
4002 err = ret;
4003 goto out;
4004 }
39279cc3 4005
4df27c4d
YZ
4006 leaf = path->nodes[0];
4007 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4008 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4009 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4010 goto out;
39279cc3 4011
4df27c4d
YZ
4012 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4013 (unsigned long)(ref + 1),
4014 dentry->d_name.len);
4015 if (ret)
4016 goto out;
4017
b3b4aa74 4018 btrfs_release_path(path);
4df27c4d
YZ
4019
4020 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4021 if (IS_ERR(new_root)) {
4022 err = PTR_ERR(new_root);
4023 goto out;
4024 }
4025
4026 if (btrfs_root_refs(&new_root->root_item) == 0) {
4027 err = -ENOENT;
4028 goto out;
4029 }
4030
4031 *sub_root = new_root;
4032 location->objectid = btrfs_root_dirid(&new_root->root_item);
4033 location->type = BTRFS_INODE_ITEM_KEY;
4034 location->offset = 0;
4035 err = 0;
4036out:
4037 btrfs_free_path(path);
4038 return err;
39279cc3
CM
4039}
4040
5d4f98a2
YZ
4041static void inode_tree_add(struct inode *inode)
4042{
4043 struct btrfs_root *root = BTRFS_I(inode)->root;
4044 struct btrfs_inode *entry;
03e860bd
FNP
4045 struct rb_node **p;
4046 struct rb_node *parent;
33345d01 4047 u64 ino = btrfs_ino(inode);
03e860bd
FNP
4048again:
4049 p = &root->inode_tree.rb_node;
4050 parent = NULL;
5d4f98a2 4051
1d3382cb 4052 if (inode_unhashed(inode))
76dda93c
YZ
4053 return;
4054
5d4f98a2
YZ
4055 spin_lock(&root->inode_lock);
4056 while (*p) {
4057 parent = *p;
4058 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4059
33345d01 4060 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4061 p = &parent->rb_left;
33345d01 4062 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4063 p = &parent->rb_right;
5d4f98a2
YZ
4064 else {
4065 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4066 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4067 rb_erase(parent, &root->inode_tree);
4068 RB_CLEAR_NODE(parent);
4069 spin_unlock(&root->inode_lock);
4070 goto again;
5d4f98a2
YZ
4071 }
4072 }
4073 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4074 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4075 spin_unlock(&root->inode_lock);
4076}
4077
4078static void inode_tree_del(struct inode *inode)
4079{
4080 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4081 int empty = 0;
5d4f98a2 4082
03e860bd 4083 spin_lock(&root->inode_lock);
5d4f98a2 4084 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4085 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4086 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4087 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4088 }
03e860bd 4089 spin_unlock(&root->inode_lock);
76dda93c 4090
0af3d00b
JB
4091 /*
4092 * Free space cache has inodes in the tree root, but the tree root has a
4093 * root_refs of 0, so this could end up dropping the tree root as a
4094 * snapshot, so we need the extra !root->fs_info->tree_root check to
4095 * make sure we don't drop it.
4096 */
4097 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4098 root != root->fs_info->tree_root) {
76dda93c
YZ
4099 synchronize_srcu(&root->fs_info->subvol_srcu);
4100 spin_lock(&root->inode_lock);
4101 empty = RB_EMPTY_ROOT(&root->inode_tree);
4102 spin_unlock(&root->inode_lock);
4103 if (empty)
4104 btrfs_add_dead_root(root);
4105 }
4106}
4107
143bede5 4108void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4109{
4110 struct rb_node *node;
4111 struct rb_node *prev;
4112 struct btrfs_inode *entry;
4113 struct inode *inode;
4114 u64 objectid = 0;
4115
4116 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4117
4118 spin_lock(&root->inode_lock);
4119again:
4120 node = root->inode_tree.rb_node;
4121 prev = NULL;
4122 while (node) {
4123 prev = node;
4124 entry = rb_entry(node, struct btrfs_inode, rb_node);
4125
33345d01 4126 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4127 node = node->rb_left;
33345d01 4128 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4129 node = node->rb_right;
4130 else
4131 break;
4132 }
4133 if (!node) {
4134 while (prev) {
4135 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4136 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4137 node = prev;
4138 break;
4139 }
4140 prev = rb_next(prev);
4141 }
4142 }
4143 while (node) {
4144 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4145 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4146 inode = igrab(&entry->vfs_inode);
4147 if (inode) {
4148 spin_unlock(&root->inode_lock);
4149 if (atomic_read(&inode->i_count) > 1)
4150 d_prune_aliases(inode);
4151 /*
45321ac5 4152 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4153 * the inode cache when its usage count
4154 * hits zero.
4155 */
4156 iput(inode);
4157 cond_resched();
4158 spin_lock(&root->inode_lock);
4159 goto again;
4160 }
4161
4162 if (cond_resched_lock(&root->inode_lock))
4163 goto again;
4164
4165 node = rb_next(node);
4166 }
4167 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4168}
4169
e02119d5
CM
4170static int btrfs_init_locked_inode(struct inode *inode, void *p)
4171{
4172 struct btrfs_iget_args *args = p;
4173 inode->i_ino = args->ino;
e02119d5 4174 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4175 return 0;
4176}
4177
4178static int btrfs_find_actor(struct inode *inode, void *opaque)
4179{
4180 struct btrfs_iget_args *args = opaque;
33345d01 4181 return args->ino == btrfs_ino(inode) &&
d397712b 4182 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4183}
4184
5d4f98a2
YZ
4185static struct inode *btrfs_iget_locked(struct super_block *s,
4186 u64 objectid,
4187 struct btrfs_root *root)
39279cc3
CM
4188{
4189 struct inode *inode;
4190 struct btrfs_iget_args args;
4191 args.ino = objectid;
4192 args.root = root;
4193
4194 inode = iget5_locked(s, objectid, btrfs_find_actor,
4195 btrfs_init_locked_inode,
4196 (void *)&args);
4197 return inode;
4198}
4199
1a54ef8c
BR
4200/* Get an inode object given its location and corresponding root.
4201 * Returns in *is_new if the inode was read from disk
4202 */
4203struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4204 struct btrfs_root *root, int *new)
1a54ef8c
BR
4205{
4206 struct inode *inode;
4207
4208 inode = btrfs_iget_locked(s, location->objectid, root);
4209 if (!inode)
5d4f98a2 4210 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4211
4212 if (inode->i_state & I_NEW) {
4213 BTRFS_I(inode)->root = root;
4214 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4215 btrfs_read_locked_inode(inode);
1748f843
MF
4216 if (!is_bad_inode(inode)) {
4217 inode_tree_add(inode);
4218 unlock_new_inode(inode);
4219 if (new)
4220 *new = 1;
4221 } else {
e0b6d65b
ST
4222 unlock_new_inode(inode);
4223 iput(inode);
4224 inode = ERR_PTR(-ESTALE);
1748f843
MF
4225 }
4226 }
4227
1a54ef8c
BR
4228 return inode;
4229}
4230
4df27c4d
YZ
4231static struct inode *new_simple_dir(struct super_block *s,
4232 struct btrfs_key *key,
4233 struct btrfs_root *root)
4234{
4235 struct inode *inode = new_inode(s);
4236
4237 if (!inode)
4238 return ERR_PTR(-ENOMEM);
4239
4df27c4d
YZ
4240 BTRFS_I(inode)->root = root;
4241 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4242 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4243
4244 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4245 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4246 inode->i_fop = &simple_dir_operations;
4247 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4248 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4249
4250 return inode;
4251}
4252
3de4586c 4253struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4254{
d397712b 4255 struct inode *inode;
4df27c4d 4256 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4257 struct btrfs_root *sub_root = root;
4258 struct btrfs_key location;
76dda93c 4259 int index;
b4aff1f8 4260 int ret = 0;
39279cc3
CM
4261
4262 if (dentry->d_name.len > BTRFS_NAME_LEN)
4263 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4264
b4aff1f8
JB
4265 if (unlikely(d_need_lookup(dentry))) {
4266 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4267 kfree(dentry->d_fsdata);
4268 dentry->d_fsdata = NULL;
a66e7cc6
JB
4269 /* This thing is hashed, drop it for now */
4270 d_drop(dentry);
b4aff1f8
JB
4271 } else {
4272 ret = btrfs_inode_by_name(dir, dentry, &location);
4273 }
5f39d397 4274
39279cc3
CM
4275 if (ret < 0)
4276 return ERR_PTR(ret);
5f39d397 4277
4df27c4d
YZ
4278 if (location.objectid == 0)
4279 return NULL;
4280
4281 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4282 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4283 return inode;
4284 }
4285
4286 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4287
76dda93c 4288 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4289 ret = fixup_tree_root_location(root, dir, dentry,
4290 &location, &sub_root);
4291 if (ret < 0) {
4292 if (ret != -ENOENT)
4293 inode = ERR_PTR(ret);
4294 else
4295 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4296 } else {
73f73415 4297 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4298 }
76dda93c
YZ
4299 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4300
34d19bad 4301 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4302 down_read(&root->fs_info->cleanup_work_sem);
4303 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4304 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4305 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4306 if (ret)
4307 inode = ERR_PTR(ret);
c71bf099
YZ
4308 }
4309
3de4586c
CM
4310 return inode;
4311}
4312
fe15ce44 4313static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4314{
4315 struct btrfs_root *root;
848cce0d 4316 struct inode *inode = dentry->d_inode;
76dda93c 4317
848cce0d
LZ
4318 if (!inode && !IS_ROOT(dentry))
4319 inode = dentry->d_parent->d_inode;
76dda93c 4320
848cce0d
LZ
4321 if (inode) {
4322 root = BTRFS_I(inode)->root;
efefb143
YZ
4323 if (btrfs_root_refs(&root->root_item) == 0)
4324 return 1;
848cce0d
LZ
4325
4326 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4327 return 1;
efefb143 4328 }
76dda93c
YZ
4329 return 0;
4330}
4331
b4aff1f8
JB
4332static void btrfs_dentry_release(struct dentry *dentry)
4333{
4334 if (dentry->d_fsdata)
4335 kfree(dentry->d_fsdata);
4336}
4337
3de4586c 4338static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4339 unsigned int flags)
3de4586c 4340{
a66e7cc6
JB
4341 struct dentry *ret;
4342
4343 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4344 if (unlikely(d_need_lookup(dentry))) {
4345 spin_lock(&dentry->d_lock);
4346 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4347 spin_unlock(&dentry->d_lock);
4348 }
4349 return ret;
39279cc3
CM
4350}
4351
16cdcec7 4352unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4353 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4354};
4355
cbdf5a24
DW
4356static int btrfs_real_readdir(struct file *filp, void *dirent,
4357 filldir_t filldir)
39279cc3 4358{
6da6abae 4359 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4360 struct btrfs_root *root = BTRFS_I(inode)->root;
4361 struct btrfs_item *item;
4362 struct btrfs_dir_item *di;
4363 struct btrfs_key key;
5f39d397 4364 struct btrfs_key found_key;
39279cc3 4365 struct btrfs_path *path;
16cdcec7
MX
4366 struct list_head ins_list;
4367 struct list_head del_list;
39279cc3 4368 int ret;
5f39d397 4369 struct extent_buffer *leaf;
39279cc3 4370 int slot;
39279cc3
CM
4371 unsigned char d_type;
4372 int over = 0;
4373 u32 di_cur;
4374 u32 di_total;
4375 u32 di_len;
4376 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4377 char tmp_name[32];
4378 char *name_ptr;
4379 int name_len;
16cdcec7 4380 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4381
4382 /* FIXME, use a real flag for deciding about the key type */
4383 if (root->fs_info->tree_root == root)
4384 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4385
3954401f
CM
4386 /* special case for "." */
4387 if (filp->f_pos == 0) {
3765fefa
HS
4388 over = filldir(dirent, ".", 1,
4389 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4390 if (over)
4391 return 0;
4392 filp->f_pos = 1;
4393 }
3954401f
CM
4394 /* special case for .., just use the back ref */
4395 if (filp->f_pos == 1) {
5ecc7e5d 4396 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4397 over = filldir(dirent, "..", 2,
3765fefa 4398 filp->f_pos, pino, DT_DIR);
3954401f 4399 if (over)
49593bfa 4400 return 0;
3954401f
CM
4401 filp->f_pos = 2;
4402 }
49593bfa 4403 path = btrfs_alloc_path();
16cdcec7
MX
4404 if (!path)
4405 return -ENOMEM;
ff5714cc 4406
026fd317 4407 path->reada = 1;
49593bfa 4408
16cdcec7
MX
4409 if (key_type == BTRFS_DIR_INDEX_KEY) {
4410 INIT_LIST_HEAD(&ins_list);
4411 INIT_LIST_HEAD(&del_list);
4412 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4413 }
4414
39279cc3
CM
4415 btrfs_set_key_type(&key, key_type);
4416 key.offset = filp->f_pos;
33345d01 4417 key.objectid = btrfs_ino(inode);
5f39d397 4418
39279cc3
CM
4419 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4420 if (ret < 0)
4421 goto err;
49593bfa
DW
4422
4423 while (1) {
5f39d397 4424 leaf = path->nodes[0];
39279cc3 4425 slot = path->slots[0];
b9e03af0
LZ
4426 if (slot >= btrfs_header_nritems(leaf)) {
4427 ret = btrfs_next_leaf(root, path);
4428 if (ret < 0)
4429 goto err;
4430 else if (ret > 0)
4431 break;
4432 continue;
39279cc3 4433 }
3de4586c 4434
5f39d397
CM
4435 item = btrfs_item_nr(leaf, slot);
4436 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4437
4438 if (found_key.objectid != key.objectid)
39279cc3 4439 break;
5f39d397 4440 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4441 break;
5f39d397 4442 if (found_key.offset < filp->f_pos)
b9e03af0 4443 goto next;
16cdcec7
MX
4444 if (key_type == BTRFS_DIR_INDEX_KEY &&
4445 btrfs_should_delete_dir_index(&del_list,
4446 found_key.offset))
4447 goto next;
5f39d397
CM
4448
4449 filp->f_pos = found_key.offset;
16cdcec7 4450 is_curr = 1;
49593bfa 4451
39279cc3
CM
4452 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4453 di_cur = 0;
5f39d397 4454 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4455
4456 while (di_cur < di_total) {
5f39d397
CM
4457 struct btrfs_key location;
4458
22a94d44
JB
4459 if (verify_dir_item(root, leaf, di))
4460 break;
4461
5f39d397 4462 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4463 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4464 name_ptr = tmp_name;
4465 } else {
4466 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4467 if (!name_ptr) {
4468 ret = -ENOMEM;
4469 goto err;
4470 }
5f39d397
CM
4471 }
4472 read_extent_buffer(leaf, name_ptr,
4473 (unsigned long)(di + 1), name_len);
4474
4475 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4476 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4477
fede766f 4478
3de4586c 4479 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4480 * skip it.
4481 *
4482 * In contrast to old kernels, we insert the snapshot's
4483 * dir item and dir index after it has been created, so
4484 * we won't find a reference to our own snapshot. We
4485 * still keep the following code for backward
4486 * compatibility.
3de4586c
CM
4487 */
4488 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4489 location.objectid == root->root_key.objectid) {
4490 over = 0;
4491 goto skip;
4492 }
5f39d397 4493 over = filldir(dirent, name_ptr, name_len,
49593bfa 4494 found_key.offset, location.objectid,
39279cc3 4495 d_type);
5f39d397 4496
3de4586c 4497skip:
5f39d397
CM
4498 if (name_ptr != tmp_name)
4499 kfree(name_ptr);
4500
39279cc3
CM
4501 if (over)
4502 goto nopos;
5103e947 4503 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4504 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4505 di_cur += di_len;
4506 di = (struct btrfs_dir_item *)((char *)di + di_len);
4507 }
b9e03af0
LZ
4508next:
4509 path->slots[0]++;
39279cc3 4510 }
49593bfa 4511
16cdcec7
MX
4512 if (key_type == BTRFS_DIR_INDEX_KEY) {
4513 if (is_curr)
4514 filp->f_pos++;
4515 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4516 &ins_list);
4517 if (ret)
4518 goto nopos;
4519 }
4520
49593bfa 4521 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4522 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4523 /*
4524 * 32-bit glibc will use getdents64, but then strtol -
4525 * so the last number we can serve is this.
4526 */
4527 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4528 else
4529 filp->f_pos++;
39279cc3
CM
4530nopos:
4531 ret = 0;
4532err:
16cdcec7
MX
4533 if (key_type == BTRFS_DIR_INDEX_KEY)
4534 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4535 btrfs_free_path(path);
39279cc3
CM
4536 return ret;
4537}
4538
a9185b41 4539int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4540{
4541 struct btrfs_root *root = BTRFS_I(inode)->root;
4542 struct btrfs_trans_handle *trans;
4543 int ret = 0;
0af3d00b 4544 bool nolock = false;
39279cc3 4545
72ac3c0d 4546 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
4547 return 0;
4548
83eea1f1 4549 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 4550 nolock = true;
0af3d00b 4551
a9185b41 4552 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4553 if (nolock)
7a7eaa40 4554 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4555 else
7a7eaa40 4556 trans = btrfs_join_transaction(root);
3612b495
TI
4557 if (IS_ERR(trans))
4558 return PTR_ERR(trans);
a698d075 4559 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4560 }
4561 return ret;
4562}
4563
4564/*
54aa1f4d 4565 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4566 * inode changes. But, it is most likely to find the inode in cache.
4567 * FIXME, needs more benchmarking...there are no reasons other than performance
4568 * to keep or drop this code.
4569 */
22c44fe6 4570int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4571{
4572 struct btrfs_root *root = BTRFS_I(inode)->root;
4573 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4574 int ret;
4575
72ac3c0d 4576 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 4577 return 0;
39279cc3 4578
7a7eaa40 4579 trans = btrfs_join_transaction(root);
22c44fe6
JB
4580 if (IS_ERR(trans))
4581 return PTR_ERR(trans);
8929ecfa
YZ
4582
4583 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4584 if (ret && ret == -ENOSPC) {
4585 /* whoops, lets try again with the full transaction */
4586 btrfs_end_transaction(trans, root);
4587 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4588 if (IS_ERR(trans))
4589 return PTR_ERR(trans);
8929ecfa 4590
94b60442 4591 ret = btrfs_update_inode(trans, root, inode);
94b60442 4592 }
39279cc3 4593 btrfs_end_transaction(trans, root);
16cdcec7
MX
4594 if (BTRFS_I(inode)->delayed_node)
4595 btrfs_balance_delayed_items(root);
22c44fe6
JB
4596
4597 return ret;
4598}
4599
4600/*
4601 * This is a copy of file_update_time. We need this so we can return error on
4602 * ENOSPC for updating the inode in the case of file write and mmap writes.
4603 */
e41f941a
JB
4604static int btrfs_update_time(struct inode *inode, struct timespec *now,
4605 int flags)
22c44fe6 4606{
2bc55652
AB
4607 struct btrfs_root *root = BTRFS_I(inode)->root;
4608
4609 if (btrfs_root_readonly(root))
4610 return -EROFS;
4611
e41f941a 4612 if (flags & S_VERSION)
22c44fe6 4613 inode_inc_iversion(inode);
e41f941a
JB
4614 if (flags & S_CTIME)
4615 inode->i_ctime = *now;
4616 if (flags & S_MTIME)
4617 inode->i_mtime = *now;
4618 if (flags & S_ATIME)
4619 inode->i_atime = *now;
4620 return btrfs_dirty_inode(inode);
39279cc3
CM
4621}
4622
d352ac68
CM
4623/*
4624 * find the highest existing sequence number in a directory
4625 * and then set the in-memory index_cnt variable to reflect
4626 * free sequence numbers
4627 */
aec7477b
JB
4628static int btrfs_set_inode_index_count(struct inode *inode)
4629{
4630 struct btrfs_root *root = BTRFS_I(inode)->root;
4631 struct btrfs_key key, found_key;
4632 struct btrfs_path *path;
4633 struct extent_buffer *leaf;
4634 int ret;
4635
33345d01 4636 key.objectid = btrfs_ino(inode);
aec7477b
JB
4637 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4638 key.offset = (u64)-1;
4639
4640 path = btrfs_alloc_path();
4641 if (!path)
4642 return -ENOMEM;
4643
4644 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4645 if (ret < 0)
4646 goto out;
4647 /* FIXME: we should be able to handle this */
4648 if (ret == 0)
4649 goto out;
4650 ret = 0;
4651
4652 /*
4653 * MAGIC NUMBER EXPLANATION:
4654 * since we search a directory based on f_pos we have to start at 2
4655 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4656 * else has to start at 2
4657 */
4658 if (path->slots[0] == 0) {
4659 BTRFS_I(inode)->index_cnt = 2;
4660 goto out;
4661 }
4662
4663 path->slots[0]--;
4664
4665 leaf = path->nodes[0];
4666 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4667
33345d01 4668 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4669 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4670 BTRFS_I(inode)->index_cnt = 2;
4671 goto out;
4672 }
4673
4674 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4675out:
4676 btrfs_free_path(path);
4677 return ret;
4678}
4679
d352ac68
CM
4680/*
4681 * helper to find a free sequence number in a given directory. This current
4682 * code is very simple, later versions will do smarter things in the btree
4683 */
3de4586c 4684int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4685{
4686 int ret = 0;
4687
4688 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4689 ret = btrfs_inode_delayed_dir_index_count(dir);
4690 if (ret) {
4691 ret = btrfs_set_inode_index_count(dir);
4692 if (ret)
4693 return ret;
4694 }
aec7477b
JB
4695 }
4696
00e4e6b3 4697 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4698 BTRFS_I(dir)->index_cnt++;
4699
4700 return ret;
4701}
4702
39279cc3
CM
4703static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4704 struct btrfs_root *root,
aec7477b 4705 struct inode *dir,
9c58309d 4706 const char *name, int name_len,
175a4eb7
AV
4707 u64 ref_objectid, u64 objectid,
4708 umode_t mode, u64 *index)
39279cc3
CM
4709{
4710 struct inode *inode;
5f39d397 4711 struct btrfs_inode_item *inode_item;
39279cc3 4712 struct btrfs_key *location;
5f39d397 4713 struct btrfs_path *path;
9c58309d
CM
4714 struct btrfs_inode_ref *ref;
4715 struct btrfs_key key[2];
4716 u32 sizes[2];
4717 unsigned long ptr;
39279cc3
CM
4718 int ret;
4719 int owner;
4720
5f39d397 4721 path = btrfs_alloc_path();
d8926bb3
MF
4722 if (!path)
4723 return ERR_PTR(-ENOMEM);
5f39d397 4724
39279cc3 4725 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4726 if (!inode) {
4727 btrfs_free_path(path);
39279cc3 4728 return ERR_PTR(-ENOMEM);
8fb27640 4729 }
39279cc3 4730
581bb050
LZ
4731 /*
4732 * we have to initialize this early, so we can reclaim the inode
4733 * number if we fail afterwards in this function.
4734 */
4735 inode->i_ino = objectid;
4736
aec7477b 4737 if (dir) {
1abe9b8a 4738 trace_btrfs_inode_request(dir);
4739
3de4586c 4740 ret = btrfs_set_inode_index(dir, index);
09771430 4741 if (ret) {
8fb27640 4742 btrfs_free_path(path);
09771430 4743 iput(inode);
aec7477b 4744 return ERR_PTR(ret);
09771430 4745 }
aec7477b
JB
4746 }
4747 /*
4748 * index_cnt is ignored for everything but a dir,
4749 * btrfs_get_inode_index_count has an explanation for the magic
4750 * number
4751 */
4752 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4753 BTRFS_I(inode)->root = root;
e02119d5 4754 BTRFS_I(inode)->generation = trans->transid;
76195853 4755 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 4756
5dc562c5
JB
4757 /*
4758 * We could have gotten an inode number from somebody who was fsynced
4759 * and then removed in this same transaction, so let's just set full
4760 * sync since it will be a full sync anyway and this will blow away the
4761 * old info in the log.
4762 */
4763 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4764
569254b0 4765 if (S_ISDIR(mode))
39279cc3
CM
4766 owner = 0;
4767 else
4768 owner = 1;
9c58309d
CM
4769
4770 key[0].objectid = objectid;
4771 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4772 key[0].offset = 0;
4773
f186373f
MF
4774 /*
4775 * Start new inodes with an inode_ref. This is slightly more
4776 * efficient for small numbers of hard links since they will
4777 * be packed into one item. Extended refs will kick in if we
4778 * add more hard links than can fit in the ref item.
4779 */
9c58309d
CM
4780 key[1].objectid = objectid;
4781 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4782 key[1].offset = ref_objectid;
4783
4784 sizes[0] = sizeof(struct btrfs_inode_item);
4785 sizes[1] = name_len + sizeof(*ref);
4786
b9473439 4787 path->leave_spinning = 1;
9c58309d
CM
4788 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4789 if (ret != 0)
5f39d397
CM
4790 goto fail;
4791
ecc11fab 4792 inode_init_owner(inode, dir, mode);
a76a3cd4 4793 inode_set_bytes(inode, 0);
39279cc3 4794 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4795 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4796 struct btrfs_inode_item);
293f7e07
LZ
4797 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4798 sizeof(*inode_item));
e02119d5 4799 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4800
4801 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4802 struct btrfs_inode_ref);
4803 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4804 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4805 ptr = (unsigned long)(ref + 1);
4806 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4807
5f39d397
CM
4808 btrfs_mark_buffer_dirty(path->nodes[0]);
4809 btrfs_free_path(path);
4810
39279cc3
CM
4811 location = &BTRFS_I(inode)->location;
4812 location->objectid = objectid;
39279cc3
CM
4813 location->offset = 0;
4814 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4815
6cbff00f
CH
4816 btrfs_inherit_iflags(inode, dir);
4817
569254b0 4818 if (S_ISREG(mode)) {
94272164
CM
4819 if (btrfs_test_opt(root, NODATASUM))
4820 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 4821 if (btrfs_test_opt(root, NODATACOW))
94272164
CM
4822 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4823 }
4824
39279cc3 4825 insert_inode_hash(inode);
5d4f98a2 4826 inode_tree_add(inode);
1abe9b8a 4827
4828 trace_btrfs_inode_new(inode);
1973f0fa 4829 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4830
8ea05e3a
AB
4831 btrfs_update_root_times(trans, root);
4832
39279cc3 4833 return inode;
5f39d397 4834fail:
aec7477b
JB
4835 if (dir)
4836 BTRFS_I(dir)->index_cnt--;
5f39d397 4837 btrfs_free_path(path);
09771430 4838 iput(inode);
5f39d397 4839 return ERR_PTR(ret);
39279cc3
CM
4840}
4841
4842static inline u8 btrfs_inode_type(struct inode *inode)
4843{
4844 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4845}
4846
d352ac68
CM
4847/*
4848 * utility function to add 'inode' into 'parent_inode' with
4849 * a give name and a given sequence number.
4850 * if 'add_backref' is true, also insert a backref from the
4851 * inode to the parent directory.
4852 */
e02119d5
CM
4853int btrfs_add_link(struct btrfs_trans_handle *trans,
4854 struct inode *parent_inode, struct inode *inode,
4855 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4856{
4df27c4d 4857 int ret = 0;
39279cc3 4858 struct btrfs_key key;
e02119d5 4859 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4860 u64 ino = btrfs_ino(inode);
4861 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4862
33345d01 4863 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4864 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4865 } else {
33345d01 4866 key.objectid = ino;
4df27c4d
YZ
4867 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4868 key.offset = 0;
4869 }
4870
33345d01 4871 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4872 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4873 key.objectid, root->root_key.objectid,
33345d01 4874 parent_ino, index, name, name_len);
4df27c4d 4875 } else if (add_backref) {
33345d01
LZ
4876 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4877 parent_ino, index);
4df27c4d 4878 }
39279cc3 4879
79787eaa
JM
4880 /* Nothing to clean up yet */
4881 if (ret)
4882 return ret;
4df27c4d 4883
79787eaa
JM
4884 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4885 parent_inode, &key,
4886 btrfs_inode_type(inode), index);
9c52057c 4887 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
4888 goto fail_dir_item;
4889 else if (ret) {
4890 btrfs_abort_transaction(trans, root, ret);
4891 return ret;
39279cc3 4892 }
79787eaa
JM
4893
4894 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4895 name_len * 2);
0c4d2d95 4896 inode_inc_iversion(parent_inode);
79787eaa
JM
4897 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4898 ret = btrfs_update_inode(trans, root, parent_inode);
4899 if (ret)
4900 btrfs_abort_transaction(trans, root, ret);
39279cc3 4901 return ret;
fe66a05a
CM
4902
4903fail_dir_item:
4904 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4905 u64 local_index;
4906 int err;
4907 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4908 key.objectid, root->root_key.objectid,
4909 parent_ino, &local_index, name, name_len);
4910
4911 } else if (add_backref) {
4912 u64 local_index;
4913 int err;
4914
4915 err = btrfs_del_inode_ref(trans, root, name, name_len,
4916 ino, parent_ino, &local_index);
4917 }
4918 return ret;
39279cc3
CM
4919}
4920
4921static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4922 struct inode *dir, struct dentry *dentry,
4923 struct inode *inode, int backref, u64 index)
39279cc3 4924{
a1b075d2
JB
4925 int err = btrfs_add_link(trans, dir, inode,
4926 dentry->d_name.name, dentry->d_name.len,
4927 backref, index);
39279cc3
CM
4928 if (err > 0)
4929 err = -EEXIST;
4930 return err;
4931}
4932
618e21d5 4933static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4934 umode_t mode, dev_t rdev)
618e21d5
JB
4935{
4936 struct btrfs_trans_handle *trans;
4937 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4938 struct inode *inode = NULL;
618e21d5
JB
4939 int err;
4940 int drop_inode = 0;
4941 u64 objectid;
00e4e6b3 4942 u64 index = 0;
618e21d5
JB
4943
4944 if (!new_valid_dev(rdev))
4945 return -EINVAL;
4946
9ed74f2d
JB
4947 /*
4948 * 2 for inode item and ref
4949 * 2 for dir items
4950 * 1 for xattr if selinux is on
4951 */
a22285a6
YZ
4952 trans = btrfs_start_transaction(root, 5);
4953 if (IS_ERR(trans))
4954 return PTR_ERR(trans);
1832a6d5 4955
581bb050
LZ
4956 err = btrfs_find_free_ino(root, &objectid);
4957 if (err)
4958 goto out_unlock;
4959
aec7477b 4960 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4961 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4962 mode, &index);
7cf96da3
TI
4963 if (IS_ERR(inode)) {
4964 err = PTR_ERR(inode);
618e21d5 4965 goto out_unlock;
7cf96da3 4966 }
618e21d5 4967
2a7dba39 4968 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4969 if (err) {
4970 drop_inode = 1;
4971 goto out_unlock;
4972 }
4973
2794ed01
FB
4974 err = btrfs_update_inode(trans, root, inode);
4975 if (err) {
4976 drop_inode = 1;
4977 goto out_unlock;
4978 }
4979
ad19db71
CS
4980 /*
4981 * If the active LSM wants to access the inode during
4982 * d_instantiate it needs these. Smack checks to see
4983 * if the filesystem supports xattrs by looking at the
4984 * ops vector.
4985 */
4986
4987 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4988 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4989 if (err)
4990 drop_inode = 1;
4991 else {
618e21d5 4992 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4993 btrfs_update_inode(trans, root, inode);
08c422c2 4994 d_instantiate(dentry, inode);
618e21d5 4995 }
618e21d5 4996out_unlock:
7ad85bb7 4997 btrfs_end_transaction(trans, root);
b53d3f5d 4998 btrfs_btree_balance_dirty(root);
618e21d5
JB
4999 if (drop_inode) {
5000 inode_dec_link_count(inode);
5001 iput(inode);
5002 }
618e21d5
JB
5003 return err;
5004}
5005
39279cc3 5006static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5007 umode_t mode, bool excl)
39279cc3
CM
5008{
5009 struct btrfs_trans_handle *trans;
5010 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5011 struct inode *inode = NULL;
43baa579 5012 int drop_inode_on_err = 0;
a22285a6 5013 int err;
39279cc3 5014 u64 objectid;
00e4e6b3 5015 u64 index = 0;
39279cc3 5016
9ed74f2d
JB
5017 /*
5018 * 2 for inode item and ref
5019 * 2 for dir items
5020 * 1 for xattr if selinux is on
5021 */
a22285a6
YZ
5022 trans = btrfs_start_transaction(root, 5);
5023 if (IS_ERR(trans))
5024 return PTR_ERR(trans);
9ed74f2d 5025
581bb050
LZ
5026 err = btrfs_find_free_ino(root, &objectid);
5027 if (err)
5028 goto out_unlock;
5029
aec7477b 5030 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5031 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5032 mode, &index);
7cf96da3
TI
5033 if (IS_ERR(inode)) {
5034 err = PTR_ERR(inode);
39279cc3 5035 goto out_unlock;
7cf96da3 5036 }
43baa579 5037 drop_inode_on_err = 1;
39279cc3 5038
2a7dba39 5039 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5040 if (err)
33268eaf 5041 goto out_unlock;
33268eaf 5042
9185aa58
FB
5043 err = btrfs_update_inode(trans, root, inode);
5044 if (err)
5045 goto out_unlock;
5046
ad19db71
CS
5047 /*
5048 * If the active LSM wants to access the inode during
5049 * d_instantiate it needs these. Smack checks to see
5050 * if the filesystem supports xattrs by looking at the
5051 * ops vector.
5052 */
5053 inode->i_fop = &btrfs_file_operations;
5054 inode->i_op = &btrfs_file_inode_operations;
5055
a1b075d2 5056 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5057 if (err)
43baa579
FB
5058 goto out_unlock;
5059
5060 inode->i_mapping->a_ops = &btrfs_aops;
5061 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5062 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5063 d_instantiate(dentry, inode);
5064
39279cc3 5065out_unlock:
7ad85bb7 5066 btrfs_end_transaction(trans, root);
43baa579 5067 if (err && drop_inode_on_err) {
39279cc3
CM
5068 inode_dec_link_count(inode);
5069 iput(inode);
5070 }
b53d3f5d 5071 btrfs_btree_balance_dirty(root);
39279cc3
CM
5072 return err;
5073}
5074
5075static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5076 struct dentry *dentry)
5077{
5078 struct btrfs_trans_handle *trans;
5079 struct btrfs_root *root = BTRFS_I(dir)->root;
5080 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5081 u64 index;
39279cc3
CM
5082 int err;
5083 int drop_inode = 0;
5084
4a8be425
TH
5085 /* do not allow sys_link's with other subvols of the same device */
5086 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5087 return -EXDEV;
4a8be425 5088
f186373f 5089 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5090 return -EMLINK;
4a8be425 5091
3de4586c 5092 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5093 if (err)
5094 goto fail;
5095
a22285a6 5096 /*
7e6b6465 5097 * 2 items for inode and inode ref
a22285a6 5098 * 2 items for dir items
7e6b6465 5099 * 1 item for parent inode
a22285a6 5100 */
7e6b6465 5101 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5102 if (IS_ERR(trans)) {
5103 err = PTR_ERR(trans);
5104 goto fail;
5105 }
5f39d397 5106
3153495d 5107 btrfs_inc_nlink(inode);
0c4d2d95 5108 inode_inc_iversion(inode);
3153495d 5109 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5110 ihold(inode);
e9976151 5111 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5112
a1b075d2 5113 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5114
a5719521 5115 if (err) {
54aa1f4d 5116 drop_inode = 1;
a5719521 5117 } else {
10d9f309 5118 struct dentry *parent = dentry->d_parent;
a5719521 5119 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5120 if (err)
5121 goto fail;
08c422c2 5122 d_instantiate(dentry, inode);
6a912213 5123 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5124 }
39279cc3 5125
7ad85bb7 5126 btrfs_end_transaction(trans, root);
1832a6d5 5127fail:
39279cc3
CM
5128 if (drop_inode) {
5129 inode_dec_link_count(inode);
5130 iput(inode);
5131 }
b53d3f5d 5132 btrfs_btree_balance_dirty(root);
39279cc3
CM
5133 return err;
5134}
5135
18bb1db3 5136static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5137{
b9d86667 5138 struct inode *inode = NULL;
39279cc3
CM
5139 struct btrfs_trans_handle *trans;
5140 struct btrfs_root *root = BTRFS_I(dir)->root;
5141 int err = 0;
5142 int drop_on_err = 0;
b9d86667 5143 u64 objectid = 0;
00e4e6b3 5144 u64 index = 0;
39279cc3 5145
9ed74f2d
JB
5146 /*
5147 * 2 items for inode and ref
5148 * 2 items for dir items
5149 * 1 for xattr if selinux is on
5150 */
a22285a6
YZ
5151 trans = btrfs_start_transaction(root, 5);
5152 if (IS_ERR(trans))
5153 return PTR_ERR(trans);
39279cc3 5154
581bb050
LZ
5155 err = btrfs_find_free_ino(root, &objectid);
5156 if (err)
5157 goto out_fail;
5158
aec7477b 5159 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5160 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5161 S_IFDIR | mode, &index);
39279cc3
CM
5162 if (IS_ERR(inode)) {
5163 err = PTR_ERR(inode);
5164 goto out_fail;
5165 }
5f39d397 5166
39279cc3 5167 drop_on_err = 1;
33268eaf 5168
2a7dba39 5169 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5170 if (err)
5171 goto out_fail;
5172
39279cc3
CM
5173 inode->i_op = &btrfs_dir_inode_operations;
5174 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5175
dbe674a9 5176 btrfs_i_size_write(inode, 0);
39279cc3
CM
5177 err = btrfs_update_inode(trans, root, inode);
5178 if (err)
5179 goto out_fail;
5f39d397 5180
a1b075d2
JB
5181 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5182 dentry->d_name.len, 0, index);
39279cc3
CM
5183 if (err)
5184 goto out_fail;
5f39d397 5185
39279cc3
CM
5186 d_instantiate(dentry, inode);
5187 drop_on_err = 0;
39279cc3
CM
5188
5189out_fail:
7ad85bb7 5190 btrfs_end_transaction(trans, root);
39279cc3
CM
5191 if (drop_on_err)
5192 iput(inode);
b53d3f5d 5193 btrfs_btree_balance_dirty(root);
39279cc3
CM
5194 return err;
5195}
5196
d352ac68
CM
5197/* helper for btfs_get_extent. Given an existing extent in the tree,
5198 * and an extent that you want to insert, deal with overlap and insert
5199 * the new extent into the tree.
5200 */
3b951516
CM
5201static int merge_extent_mapping(struct extent_map_tree *em_tree,
5202 struct extent_map *existing,
e6dcd2dc
CM
5203 struct extent_map *em,
5204 u64 map_start, u64 map_len)
3b951516
CM
5205{
5206 u64 start_diff;
3b951516 5207
e6dcd2dc
CM
5208 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5209 start_diff = map_start - em->start;
5210 em->start = map_start;
5211 em->len = map_len;
c8b97818
CM
5212 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5213 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5214 em->block_start += start_diff;
c8b97818
CM
5215 em->block_len -= start_diff;
5216 }
e6dcd2dc 5217 return add_extent_mapping(em_tree, em);
3b951516
CM
5218}
5219
c8b97818
CM
5220static noinline int uncompress_inline(struct btrfs_path *path,
5221 struct inode *inode, struct page *page,
5222 size_t pg_offset, u64 extent_offset,
5223 struct btrfs_file_extent_item *item)
5224{
5225 int ret;
5226 struct extent_buffer *leaf = path->nodes[0];
5227 char *tmp;
5228 size_t max_size;
5229 unsigned long inline_size;
5230 unsigned long ptr;
261507a0 5231 int compress_type;
c8b97818
CM
5232
5233 WARN_ON(pg_offset != 0);
261507a0 5234 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5235 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5236 inline_size = btrfs_file_extent_inline_item_len(leaf,
5237 btrfs_item_nr(leaf, path->slots[0]));
5238 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5239 if (!tmp)
5240 return -ENOMEM;
c8b97818
CM
5241 ptr = btrfs_file_extent_inline_start(item);
5242
5243 read_extent_buffer(leaf, tmp, ptr, inline_size);
5244
5b050f04 5245 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5246 ret = btrfs_decompress(compress_type, tmp, page,
5247 extent_offset, inline_size, max_size);
c8b97818 5248 if (ret) {
7ac687d9 5249 char *kaddr = kmap_atomic(page);
c8b97818
CM
5250 unsigned long copy_size = min_t(u64,
5251 PAGE_CACHE_SIZE - pg_offset,
5252 max_size - extent_offset);
5253 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5254 kunmap_atomic(kaddr);
c8b97818
CM
5255 }
5256 kfree(tmp);
5257 return 0;
5258}
5259
d352ac68
CM
5260/*
5261 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5262 * the ugly parts come from merging extents from the disk with the in-ram
5263 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5264 * where the in-ram extents might be locked pending data=ordered completion.
5265 *
5266 * This also copies inline extents directly into the page.
5267 */
d397712b 5268
a52d9a80 5269struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5270 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5271 int create)
5272{
5273 int ret;
5274 int err = 0;
db94535d 5275 u64 bytenr;
a52d9a80
CM
5276 u64 extent_start = 0;
5277 u64 extent_end = 0;
33345d01 5278 u64 objectid = btrfs_ino(inode);
a52d9a80 5279 u32 found_type;
f421950f 5280 struct btrfs_path *path = NULL;
a52d9a80
CM
5281 struct btrfs_root *root = BTRFS_I(inode)->root;
5282 struct btrfs_file_extent_item *item;
5f39d397
CM
5283 struct extent_buffer *leaf;
5284 struct btrfs_key found_key;
a52d9a80
CM
5285 struct extent_map *em = NULL;
5286 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5287 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5288 struct btrfs_trans_handle *trans = NULL;
261507a0 5289 int compress_type;
a52d9a80 5290
a52d9a80 5291again:
890871be 5292 read_lock(&em_tree->lock);
d1310b2e 5293 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5294 if (em)
5295 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5296 read_unlock(&em_tree->lock);
d1310b2e 5297
a52d9a80 5298 if (em) {
e1c4b745
CM
5299 if (em->start > start || em->start + em->len <= start)
5300 free_extent_map(em);
5301 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5302 free_extent_map(em);
5303 else
5304 goto out;
a52d9a80 5305 }
172ddd60 5306 em = alloc_extent_map();
a52d9a80 5307 if (!em) {
d1310b2e
CM
5308 err = -ENOMEM;
5309 goto out;
a52d9a80 5310 }
e6dcd2dc 5311 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5312 em->start = EXTENT_MAP_HOLE;
445a6944 5313 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5314 em->len = (u64)-1;
c8b97818 5315 em->block_len = (u64)-1;
f421950f
CM
5316
5317 if (!path) {
5318 path = btrfs_alloc_path();
026fd317
JB
5319 if (!path) {
5320 err = -ENOMEM;
5321 goto out;
5322 }
5323 /*
5324 * Chances are we'll be called again, so go ahead and do
5325 * readahead
5326 */
5327 path->reada = 1;
f421950f
CM
5328 }
5329
179e29e4
CM
5330 ret = btrfs_lookup_file_extent(trans, root, path,
5331 objectid, start, trans != NULL);
a52d9a80
CM
5332 if (ret < 0) {
5333 err = ret;
5334 goto out;
5335 }
5336
5337 if (ret != 0) {
5338 if (path->slots[0] == 0)
5339 goto not_found;
5340 path->slots[0]--;
5341 }
5342
5f39d397
CM
5343 leaf = path->nodes[0];
5344 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5345 struct btrfs_file_extent_item);
a52d9a80 5346 /* are we inside the extent that was found? */
5f39d397
CM
5347 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5348 found_type = btrfs_key_type(&found_key);
5349 if (found_key.objectid != objectid ||
a52d9a80
CM
5350 found_type != BTRFS_EXTENT_DATA_KEY) {
5351 goto not_found;
5352 }
5353
5f39d397
CM
5354 found_type = btrfs_file_extent_type(leaf, item);
5355 extent_start = found_key.offset;
261507a0 5356 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5357 if (found_type == BTRFS_FILE_EXTENT_REG ||
5358 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5359 extent_end = extent_start +
db94535d 5360 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5361 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5362 size_t size;
5363 size = btrfs_file_extent_inline_len(leaf, item);
5364 extent_end = (extent_start + size + root->sectorsize - 1) &
5365 ~((u64)root->sectorsize - 1);
5366 }
5367
5368 if (start >= extent_end) {
5369 path->slots[0]++;
5370 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5371 ret = btrfs_next_leaf(root, path);
5372 if (ret < 0) {
5373 err = ret;
5374 goto out;
a52d9a80 5375 }
9036c102
YZ
5376 if (ret > 0)
5377 goto not_found;
5378 leaf = path->nodes[0];
a52d9a80 5379 }
9036c102
YZ
5380 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5381 if (found_key.objectid != objectid ||
5382 found_key.type != BTRFS_EXTENT_DATA_KEY)
5383 goto not_found;
5384 if (start + len <= found_key.offset)
5385 goto not_found;
5386 em->start = start;
70c8a91c 5387 em->orig_start = start;
9036c102
YZ
5388 em->len = found_key.offset - start;
5389 goto not_found_em;
5390 }
5391
d899e052
YZ
5392 if (found_type == BTRFS_FILE_EXTENT_REG ||
5393 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5394 em->start = extent_start;
5395 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5396 em->orig_start = extent_start -
5397 btrfs_file_extent_offset(leaf, item);
b4939680
JB
5398 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
5399 item);
db94535d
CM
5400 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5401 if (bytenr == 0) {
5f39d397 5402 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5403 goto insert;
5404 }
261507a0 5405 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5406 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5407 em->compress_type = compress_type;
c8b97818 5408 em->block_start = bytenr;
b4939680 5409 em->block_len = em->orig_block_len;
c8b97818
CM
5410 } else {
5411 bytenr += btrfs_file_extent_offset(leaf, item);
5412 em->block_start = bytenr;
5413 em->block_len = em->len;
d899e052
YZ
5414 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5415 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5416 }
a52d9a80
CM
5417 goto insert;
5418 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5419 unsigned long ptr;
a52d9a80 5420 char *map;
3326d1b0
CM
5421 size_t size;
5422 size_t extent_offset;
5423 size_t copy_size;
a52d9a80 5424
689f9346 5425 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5426 if (!page || create) {
689f9346 5427 em->start = extent_start;
9036c102 5428 em->len = extent_end - extent_start;
689f9346
Y
5429 goto out;
5430 }
5f39d397 5431
9036c102
YZ
5432 size = btrfs_file_extent_inline_len(leaf, item);
5433 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5434 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5435 size - extent_offset);
3326d1b0 5436 em->start = extent_start + extent_offset;
70dec807
CM
5437 em->len = (copy_size + root->sectorsize - 1) &
5438 ~((u64)root->sectorsize - 1);
b4939680 5439 em->orig_block_len = em->len;
70c8a91c 5440 em->orig_start = em->start;
261507a0 5441 if (compress_type) {
c8b97818 5442 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5443 em->compress_type = compress_type;
5444 }
689f9346 5445 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5446 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5447 if (btrfs_file_extent_compression(leaf, item) !=
5448 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5449 ret = uncompress_inline(path, inode, page,
5450 pg_offset,
5451 extent_offset, item);
79787eaa 5452 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5453 } else {
5454 map = kmap(page);
5455 read_extent_buffer(leaf, map + pg_offset, ptr,
5456 copy_size);
93c82d57
CM
5457 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5458 memset(map + pg_offset + copy_size, 0,
5459 PAGE_CACHE_SIZE - pg_offset -
5460 copy_size);
5461 }
c8b97818
CM
5462 kunmap(page);
5463 }
179e29e4
CM
5464 flush_dcache_page(page);
5465 } else if (create && PageUptodate(page)) {
6bf7e080 5466 BUG();
179e29e4
CM
5467 if (!trans) {
5468 kunmap(page);
5469 free_extent_map(em);
5470 em = NULL;
ff5714cc 5471
b3b4aa74 5472 btrfs_release_path(path);
7a7eaa40 5473 trans = btrfs_join_transaction(root);
ff5714cc 5474
3612b495
TI
5475 if (IS_ERR(trans))
5476 return ERR_CAST(trans);
179e29e4
CM
5477 goto again;
5478 }
c8b97818 5479 map = kmap(page);
70dec807 5480 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5481 copy_size);
c8b97818 5482 kunmap(page);
179e29e4 5483 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5484 }
d1310b2e 5485 set_extent_uptodate(io_tree, em->start,
507903b8 5486 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5487 goto insert;
5488 } else {
31b1a2bd 5489 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5490 }
5491not_found:
5492 em->start = start;
70c8a91c 5493 em->orig_start = start;
d1310b2e 5494 em->len = len;
a52d9a80 5495not_found_em:
5f39d397 5496 em->block_start = EXTENT_MAP_HOLE;
9036c102 5497 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5498insert:
b3b4aa74 5499 btrfs_release_path(path);
d1310b2e 5500 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5501 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5502 "[%llu %llu]\n", (unsigned long long)em->start,
5503 (unsigned long long)em->len,
5504 (unsigned long long)start,
5505 (unsigned long long)len);
a52d9a80
CM
5506 err = -EIO;
5507 goto out;
5508 }
d1310b2e
CM
5509
5510 err = 0;
890871be 5511 write_lock(&em_tree->lock);
a52d9a80 5512 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5513 /* it is possible that someone inserted the extent into the tree
5514 * while we had the lock dropped. It is also possible that
5515 * an overlapping map exists in the tree
5516 */
a52d9a80 5517 if (ret == -EEXIST) {
3b951516 5518 struct extent_map *existing;
e6dcd2dc
CM
5519
5520 ret = 0;
5521
3b951516 5522 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5523 if (existing && (existing->start > start ||
5524 existing->start + existing->len <= start)) {
5525 free_extent_map(existing);
5526 existing = NULL;
5527 }
3b951516
CM
5528 if (!existing) {
5529 existing = lookup_extent_mapping(em_tree, em->start,
5530 em->len);
5531 if (existing) {
5532 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5533 em, start,
5534 root->sectorsize);
3b951516
CM
5535 free_extent_map(existing);
5536 if (err) {
5537 free_extent_map(em);
5538 em = NULL;
5539 }
5540 } else {
5541 err = -EIO;
3b951516
CM
5542 free_extent_map(em);
5543 em = NULL;
5544 }
5545 } else {
5546 free_extent_map(em);
5547 em = existing;
e6dcd2dc 5548 err = 0;
a52d9a80 5549 }
a52d9a80 5550 }
890871be 5551 write_unlock(&em_tree->lock);
a52d9a80 5552out:
1abe9b8a 5553
f0bd95ea
TI
5554 if (em)
5555 trace_btrfs_get_extent(root, em);
1abe9b8a 5556
f421950f
CM
5557 if (path)
5558 btrfs_free_path(path);
a52d9a80
CM
5559 if (trans) {
5560 ret = btrfs_end_transaction(trans, root);
d397712b 5561 if (!err)
a52d9a80
CM
5562 err = ret;
5563 }
a52d9a80
CM
5564 if (err) {
5565 free_extent_map(em);
a52d9a80
CM
5566 return ERR_PTR(err);
5567 }
79787eaa 5568 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5569 return em;
5570}
5571
ec29ed5b
CM
5572struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5573 size_t pg_offset, u64 start, u64 len,
5574 int create)
5575{
5576 struct extent_map *em;
5577 struct extent_map *hole_em = NULL;
5578 u64 range_start = start;
5579 u64 end;
5580 u64 found;
5581 u64 found_end;
5582 int err = 0;
5583
5584 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5585 if (IS_ERR(em))
5586 return em;
5587 if (em) {
5588 /*
5589 * if our em maps to a hole, there might
5590 * actually be delalloc bytes behind it
5591 */
5592 if (em->block_start != EXTENT_MAP_HOLE)
5593 return em;
5594 else
5595 hole_em = em;
5596 }
5597
5598 /* check to see if we've wrapped (len == -1 or similar) */
5599 end = start + len;
5600 if (end < start)
5601 end = (u64)-1;
5602 else
5603 end -= 1;
5604
5605 em = NULL;
5606
5607 /* ok, we didn't find anything, lets look for delalloc */
5608 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5609 end, len, EXTENT_DELALLOC, 1);
5610 found_end = range_start + found;
5611 if (found_end < range_start)
5612 found_end = (u64)-1;
5613
5614 /*
5615 * we didn't find anything useful, return
5616 * the original results from get_extent()
5617 */
5618 if (range_start > end || found_end <= start) {
5619 em = hole_em;
5620 hole_em = NULL;
5621 goto out;
5622 }
5623
5624 /* adjust the range_start to make sure it doesn't
5625 * go backwards from the start they passed in
5626 */
5627 range_start = max(start,range_start);
5628 found = found_end - range_start;
5629
5630 if (found > 0) {
5631 u64 hole_start = start;
5632 u64 hole_len = len;
5633
172ddd60 5634 em = alloc_extent_map();
ec29ed5b
CM
5635 if (!em) {
5636 err = -ENOMEM;
5637 goto out;
5638 }
5639 /*
5640 * when btrfs_get_extent can't find anything it
5641 * returns one huge hole
5642 *
5643 * make sure what it found really fits our range, and
5644 * adjust to make sure it is based on the start from
5645 * the caller
5646 */
5647 if (hole_em) {
5648 u64 calc_end = extent_map_end(hole_em);
5649
5650 if (calc_end <= start || (hole_em->start > end)) {
5651 free_extent_map(hole_em);
5652 hole_em = NULL;
5653 } else {
5654 hole_start = max(hole_em->start, start);
5655 hole_len = calc_end - hole_start;
5656 }
5657 }
5658 em->bdev = NULL;
5659 if (hole_em && range_start > hole_start) {
5660 /* our hole starts before our delalloc, so we
5661 * have to return just the parts of the hole
5662 * that go until the delalloc starts
5663 */
5664 em->len = min(hole_len,
5665 range_start - hole_start);
5666 em->start = hole_start;
5667 em->orig_start = hole_start;
5668 /*
5669 * don't adjust block start at all,
5670 * it is fixed at EXTENT_MAP_HOLE
5671 */
5672 em->block_start = hole_em->block_start;
5673 em->block_len = hole_len;
5674 } else {
5675 em->start = range_start;
5676 em->len = found;
5677 em->orig_start = range_start;
5678 em->block_start = EXTENT_MAP_DELALLOC;
5679 em->block_len = found;
5680 }
5681 } else if (hole_em) {
5682 return hole_em;
5683 }
5684out:
5685
5686 free_extent_map(hole_em);
5687 if (err) {
5688 free_extent_map(em);
5689 return ERR_PTR(err);
5690 }
5691 return em;
5692}
5693
4b46fce2
JB
5694static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5695 u64 start, u64 len)
5696{
5697 struct btrfs_root *root = BTRFS_I(inode)->root;
5698 struct btrfs_trans_handle *trans;
70c8a91c 5699 struct extent_map *em;
4b46fce2
JB
5700 struct btrfs_key ins;
5701 u64 alloc_hint;
5702 int ret;
4b46fce2 5703
7a7eaa40 5704 trans = btrfs_join_transaction(root);
3612b495
TI
5705 if (IS_ERR(trans))
5706 return ERR_CAST(trans);
4b46fce2
JB
5707
5708 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5709
5710 alloc_hint = get_extent_allocation_hint(inode, start, len);
5711 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5712 alloc_hint, &ins, 1);
4b46fce2
JB
5713 if (ret) {
5714 em = ERR_PTR(ret);
5715 goto out;
5716 }
5717
70c8a91c
JB
5718 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
5719 ins.offset, ins.offset, 0);
5720 if (IS_ERR(em))
5721 goto out;
4b46fce2
JB
5722
5723 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5724 ins.offset, ins.offset, 0);
5725 if (ret) {
5726 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5727 em = ERR_PTR(ret);
5728 }
5729out:
5730 btrfs_end_transaction(trans, root);
5731 return em;
5732}
5733
46bfbb5c
CM
5734/*
5735 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5736 * block must be cow'd
5737 */
5738static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5739 struct inode *inode, u64 offset, u64 len)
5740{
5741 struct btrfs_path *path;
5742 int ret;
5743 struct extent_buffer *leaf;
5744 struct btrfs_root *root = BTRFS_I(inode)->root;
5745 struct btrfs_file_extent_item *fi;
5746 struct btrfs_key key;
5747 u64 disk_bytenr;
5748 u64 backref_offset;
5749 u64 extent_end;
5750 u64 num_bytes;
5751 int slot;
5752 int found_type;
5753
5754 path = btrfs_alloc_path();
5755 if (!path)
5756 return -ENOMEM;
5757
33345d01 5758 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5759 offset, 0);
5760 if (ret < 0)
5761 goto out;
5762
5763 slot = path->slots[0];
5764 if (ret == 1) {
5765 if (slot == 0) {
5766 /* can't find the item, must cow */
5767 ret = 0;
5768 goto out;
5769 }
5770 slot--;
5771 }
5772 ret = 0;
5773 leaf = path->nodes[0];
5774 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5775 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5776 key.type != BTRFS_EXTENT_DATA_KEY) {
5777 /* not our file or wrong item type, must cow */
5778 goto out;
5779 }
5780
5781 if (key.offset > offset) {
5782 /* Wrong offset, must cow */
5783 goto out;
5784 }
5785
5786 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5787 found_type = btrfs_file_extent_type(leaf, fi);
5788 if (found_type != BTRFS_FILE_EXTENT_REG &&
5789 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5790 /* not a regular extent, must cow */
5791 goto out;
5792 }
5793 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5794 backref_offset = btrfs_file_extent_offset(leaf, fi);
5795
5796 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5797 if (extent_end < offset + len) {
5798 /* extent doesn't include our full range, must cow */
5799 goto out;
5800 }
5801
5802 if (btrfs_extent_readonly(root, disk_bytenr))
5803 goto out;
5804
5805 /*
5806 * look for other files referencing this extent, if we
5807 * find any we must cow
5808 */
33345d01 5809 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5810 key.offset - backref_offset, disk_bytenr))
5811 goto out;
5812
5813 /*
5814 * adjust disk_bytenr and num_bytes to cover just the bytes
5815 * in this extent we are about to write. If there
5816 * are any csums in that range we have to cow in order
5817 * to keep the csums correct
5818 */
5819 disk_bytenr += backref_offset;
5820 disk_bytenr += offset - key.offset;
5821 num_bytes = min(offset + len, extent_end) - offset;
5822 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5823 goto out;
5824 /*
5825 * all of the above have passed, it is safe to overwrite this extent
5826 * without cow
5827 */
5828 ret = 1;
5829out:
5830 btrfs_free_path(path);
5831 return ret;
5832}
5833
eb838e73
JB
5834static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5835 struct extent_state **cached_state, int writing)
5836{
5837 struct btrfs_ordered_extent *ordered;
5838 int ret = 0;
5839
5840 while (1) {
5841 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5842 0, cached_state);
5843 /*
5844 * We're concerned with the entire range that we're going to be
5845 * doing DIO to, so we need to make sure theres no ordered
5846 * extents in this range.
5847 */
5848 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5849 lockend - lockstart + 1);
5850
5851 /*
5852 * We need to make sure there are no buffered pages in this
5853 * range either, we could have raced between the invalidate in
5854 * generic_file_direct_write and locking the extent. The
5855 * invalidate needs to happen so that reads after a write do not
5856 * get stale data.
5857 */
5858 if (!ordered && (!writing ||
5859 !test_range_bit(&BTRFS_I(inode)->io_tree,
5860 lockstart, lockend, EXTENT_UPTODATE, 0,
5861 *cached_state)))
5862 break;
5863
5864 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5865 cached_state, GFP_NOFS);
5866
5867 if (ordered) {
5868 btrfs_start_ordered_extent(inode, ordered, 1);
5869 btrfs_put_ordered_extent(ordered);
5870 } else {
5871 /* Screw you mmap */
5872 ret = filemap_write_and_wait_range(inode->i_mapping,
5873 lockstart,
5874 lockend);
5875 if (ret)
5876 break;
5877
5878 /*
5879 * If we found a page that couldn't be invalidated just
5880 * fall back to buffered.
5881 */
5882 ret = invalidate_inode_pages2_range(inode->i_mapping,
5883 lockstart >> PAGE_CACHE_SHIFT,
5884 lockend >> PAGE_CACHE_SHIFT);
5885 if (ret)
5886 break;
5887 }
5888
5889 cond_resched();
5890 }
5891
5892 return ret;
5893}
5894
69ffb543
JB
5895static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5896 u64 len, u64 orig_start,
5897 u64 block_start, u64 block_len,
b4939680 5898 u64 orig_block_len, int type)
69ffb543
JB
5899{
5900 struct extent_map_tree *em_tree;
5901 struct extent_map *em;
5902 struct btrfs_root *root = BTRFS_I(inode)->root;
5903 int ret;
5904
5905 em_tree = &BTRFS_I(inode)->extent_tree;
5906 em = alloc_extent_map();
5907 if (!em)
5908 return ERR_PTR(-ENOMEM);
5909
5910 em->start = start;
5911 em->orig_start = orig_start;
5912 em->len = len;
5913 em->block_len = block_len;
5914 em->block_start = block_start;
5915 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 5916 em->orig_block_len = orig_block_len;
70c8a91c 5917 em->generation = -1;
69ffb543
JB
5918 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5919 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 5920 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
5921
5922 do {
5923 btrfs_drop_extent_cache(inode, em->start,
5924 em->start + em->len - 1, 0);
5925 write_lock(&em_tree->lock);
5926 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
5927 if (!ret)
5928 list_move(&em->list,
5929 &em_tree->modified_extents);
69ffb543
JB
5930 write_unlock(&em_tree->lock);
5931 } while (ret == -EEXIST);
5932
5933 if (ret) {
5934 free_extent_map(em);
5935 return ERR_PTR(ret);
5936 }
5937
5938 return em;
5939}
5940
5941
4b46fce2
JB
5942static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5943 struct buffer_head *bh_result, int create)
5944{
5945 struct extent_map *em;
5946 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 5947 struct extent_state *cached_state = NULL;
4b46fce2 5948 u64 start = iblock << inode->i_blkbits;
eb838e73 5949 u64 lockstart, lockend;
4b46fce2 5950 u64 len = bh_result->b_size;
46bfbb5c 5951 struct btrfs_trans_handle *trans;
eb838e73
JB
5952 int unlock_bits = EXTENT_LOCKED;
5953 int ret;
5954
eb838e73
JB
5955 if (create) {
5956 ret = btrfs_delalloc_reserve_space(inode, len);
5957 if (ret)
5958 return ret;
5959 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
c329861d
JB
5960 } else {
5961 len = min_t(u64, len, root->sectorsize);
eb838e73
JB
5962 }
5963
c329861d
JB
5964 lockstart = start;
5965 lockend = start + len - 1;
5966
eb838e73
JB
5967 /*
5968 * If this errors out it's because we couldn't invalidate pagecache for
5969 * this range and we need to fallback to buffered.
5970 */
5971 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5972 return -ENOTBLK;
5973
5974 if (create) {
5975 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5976 lockend, EXTENT_DELALLOC, NULL,
5977 &cached_state, GFP_NOFS);
5978 if (ret)
5979 goto unlock_err;
5980 }
4b46fce2
JB
5981
5982 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
5983 if (IS_ERR(em)) {
5984 ret = PTR_ERR(em);
5985 goto unlock_err;
5986 }
4b46fce2
JB
5987
5988 /*
5989 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5990 * io. INLINE is special, and we could probably kludge it in here, but
5991 * it's still buffered so for safety lets just fall back to the generic
5992 * buffered path.
5993 *
5994 * For COMPRESSED we _have_ to read the entire extent in so we can
5995 * decompress it, so there will be buffering required no matter what we
5996 * do, so go ahead and fallback to buffered.
5997 *
5998 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5999 * to buffered IO. Don't blame me, this is the price we pay for using
6000 * the generic code.
6001 */
6002 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6003 em->block_start == EXTENT_MAP_INLINE) {
6004 free_extent_map(em);
eb838e73
JB
6005 ret = -ENOTBLK;
6006 goto unlock_err;
4b46fce2
JB
6007 }
6008
6009 /* Just a good old fashioned hole, return */
6010 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6011 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6012 free_extent_map(em);
eb838e73
JB
6013 ret = 0;
6014 goto unlock_err;
4b46fce2
JB
6015 }
6016
6017 /*
6018 * We don't allocate a new extent in the following cases
6019 *
6020 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6021 * existing extent.
6022 * 2) The extent is marked as PREALLOC. We're good to go here and can
6023 * just use the extent.
6024 *
6025 */
46bfbb5c 6026 if (!create) {
eb838e73
JB
6027 len = min(len, em->len - (start - em->start));
6028 lockstart = start + len;
6029 goto unlock;
46bfbb5c 6030 }
4b46fce2
JB
6031
6032 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6033 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6034 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6035 int type;
6036 int ret;
46bfbb5c 6037 u64 block_start;
4b46fce2
JB
6038
6039 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6040 type = BTRFS_ORDERED_PREALLOC;
6041 else
6042 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6043 len = min(len, em->len - (start - em->start));
4b46fce2 6044 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6045
6046 /*
6047 * we're not going to log anything, but we do need
6048 * to make sure the current transaction stays open
6049 * while we look for nocow cross refs
6050 */
7a7eaa40 6051 trans = btrfs_join_transaction(root);
3612b495 6052 if (IS_ERR(trans))
46bfbb5c
CM
6053 goto must_cow;
6054
6055 if (can_nocow_odirect(trans, inode, start, len) == 1) {
70c8a91c 6056 u64 orig_start = em->orig_start;
b4939680 6057 u64 orig_block_len = em->orig_block_len;
69ffb543
JB
6058
6059 if (type == BTRFS_ORDERED_PREALLOC) {
6060 free_extent_map(em);
6061 em = create_pinned_em(inode, start, len,
6062 orig_start,
b4939680
JB
6063 block_start, len,
6064 orig_block_len, type);
69ffb543
JB
6065 if (IS_ERR(em)) {
6066 btrfs_end_transaction(trans, root);
6067 goto unlock_err;
6068 }
6069 }
6070
46bfbb5c
CM
6071 ret = btrfs_add_ordered_extent_dio(inode, start,
6072 block_start, len, len, type);
6073 btrfs_end_transaction(trans, root);
6074 if (ret) {
6075 free_extent_map(em);
eb838e73 6076 goto unlock_err;
46bfbb5c
CM
6077 }
6078 goto unlock;
4b46fce2 6079 }
46bfbb5c 6080 btrfs_end_transaction(trans, root);
4b46fce2 6081 }
46bfbb5c
CM
6082must_cow:
6083 /*
6084 * this will cow the extent, reset the len in case we changed
6085 * it above
6086 */
6087 len = bh_result->b_size;
70c8a91c
JB
6088 free_extent_map(em);
6089 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6090 if (IS_ERR(em)) {
6091 ret = PTR_ERR(em);
6092 goto unlock_err;
6093 }
46bfbb5c
CM
6094 len = min(len, em->len - (start - em->start));
6095unlock:
4b46fce2
JB
6096 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6097 inode->i_blkbits;
46bfbb5c 6098 bh_result->b_size = len;
4b46fce2
JB
6099 bh_result->b_bdev = em->bdev;
6100 set_buffer_mapped(bh_result);
c3473e83
JB
6101 if (create) {
6102 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6103 set_buffer_new(bh_result);
6104
6105 /*
6106 * Need to update the i_size under the extent lock so buffered
6107 * readers will get the updated i_size when we unlock.
6108 */
6109 if (start + len > i_size_read(inode))
6110 i_size_write(inode, start + len);
6111 }
4b46fce2 6112
eb838e73
JB
6113 /*
6114 * In the case of write we need to clear and unlock the entire range,
6115 * in the case of read we need to unlock only the end area that we
6116 * aren't using if there is any left over space.
6117 */
24c03fa5
LB
6118 if (lockstart < lockend) {
6119 if (create && len < lockend - lockstart) {
6120 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
9e8a4a8b
LB
6121 lockstart + len - 1,
6122 unlock_bits | EXTENT_DEFRAG, 1, 0,
24c03fa5
LB
6123 &cached_state, GFP_NOFS);
6124 /*
6125 * Beside unlock, we also need to cleanup reserved space
6126 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6127 */
6128 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6129 lockstart + len, lockend,
9e8a4a8b
LB
6130 unlock_bits | EXTENT_DO_ACCOUNTING |
6131 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
24c03fa5
LB
6132 } else {
6133 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6134 lockend, unlock_bits, 1, 0,
6135 &cached_state, GFP_NOFS);
6136 }
6137 } else {
eb838e73 6138 free_extent_state(cached_state);
24c03fa5 6139 }
eb838e73 6140
4b46fce2
JB
6141 free_extent_map(em);
6142
6143 return 0;
eb838e73
JB
6144
6145unlock_err:
6146 if (create)
6147 unlock_bits |= EXTENT_DO_ACCOUNTING;
6148
6149 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6150 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6151 return ret;
4b46fce2
JB
6152}
6153
6154struct btrfs_dio_private {
6155 struct inode *inode;
6156 u64 logical_offset;
6157 u64 disk_bytenr;
6158 u64 bytes;
4b46fce2 6159 void *private;
e65e1535
MX
6160
6161 /* number of bios pending for this dio */
6162 atomic_t pending_bios;
6163
6164 /* IO errors */
6165 int errors;
6166
6167 struct bio *orig_bio;
4b46fce2
JB
6168};
6169
6170static void btrfs_endio_direct_read(struct bio *bio, int err)
6171{
e65e1535 6172 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6173 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6174 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6175 struct inode *inode = dip->inode;
6176 struct btrfs_root *root = BTRFS_I(inode)->root;
6177 u64 start;
4b46fce2
JB
6178
6179 start = dip->logical_offset;
6180 do {
6181 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6182 struct page *page = bvec->bv_page;
6183 char *kaddr;
6184 u32 csum = ~(u32)0;
c329861d 6185 u64 private = ~(u32)0;
4b46fce2
JB
6186 unsigned long flags;
6187
c329861d
JB
6188 if (get_state_private(&BTRFS_I(inode)->io_tree,
6189 start, &private))
6190 goto failed;
4b46fce2 6191 local_irq_save(flags);
7ac687d9 6192 kaddr = kmap_atomic(page);
4b46fce2
JB
6193 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6194 csum, bvec->bv_len);
6195 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6196 kunmap_atomic(kaddr);
4b46fce2
JB
6197 local_irq_restore(flags);
6198
6199 flush_dcache_page(bvec->bv_page);
c329861d
JB
6200 if (csum != private) {
6201failed:
33345d01 6202 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 6203 " %llu csum %u private %u\n",
33345d01
LZ
6204 (unsigned long long)btrfs_ino(inode),
6205 (unsigned long long)start,
c329861d 6206 csum, (unsigned)private);
4b46fce2
JB
6207 err = -EIO;
6208 }
6209 }
6210
6211 start += bvec->bv_len;
4b46fce2
JB
6212 bvec++;
6213 } while (bvec <= bvec_end);
6214
6215 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6216 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
6217 bio->bi_private = dip->private;
6218
4b46fce2 6219 kfree(dip);
c0da7aa1
JB
6220
6221 /* If we had a csum failure make sure to clear the uptodate flag */
6222 if (err)
6223 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6224 dio_end_io(bio, err);
6225}
6226
6227static void btrfs_endio_direct_write(struct bio *bio, int err)
6228{
6229 struct btrfs_dio_private *dip = bio->bi_private;
6230 struct inode *inode = dip->inode;
6231 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6232 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6233 u64 ordered_offset = dip->logical_offset;
6234 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
6235 int ret;
6236
6237 if (err)
6238 goto out_done;
163cf09c
CM
6239again:
6240 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6241 &ordered_offset,
5fd02043 6242 ordered_bytes, !err);
4b46fce2 6243 if (!ret)
163cf09c 6244 goto out_test;
4b46fce2 6245
5fd02043
JB
6246 ordered->work.func = finish_ordered_fn;
6247 ordered->work.flags = 0;
6248 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6249 &ordered->work);
163cf09c
CM
6250out_test:
6251 /*
6252 * our bio might span multiple ordered extents. If we haven't
6253 * completed the accounting for the whole dio, go back and try again
6254 */
6255 if (ordered_offset < dip->logical_offset + dip->bytes) {
6256 ordered_bytes = dip->logical_offset + dip->bytes -
6257 ordered_offset;
5fd02043 6258 ordered = NULL;
163cf09c
CM
6259 goto again;
6260 }
4b46fce2
JB
6261out_done:
6262 bio->bi_private = dip->private;
6263
4b46fce2 6264 kfree(dip);
c0da7aa1
JB
6265
6266 /* If we had an error make sure to clear the uptodate flag */
6267 if (err)
6268 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6269 dio_end_io(bio, err);
6270}
6271
eaf25d93
CM
6272static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6273 struct bio *bio, int mirror_num,
6274 unsigned long bio_flags, u64 offset)
6275{
6276 int ret;
6277 struct btrfs_root *root = BTRFS_I(inode)->root;
6278 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6279 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6280 return 0;
6281}
6282
e65e1535
MX
6283static void btrfs_end_dio_bio(struct bio *bio, int err)
6284{
6285 struct btrfs_dio_private *dip = bio->bi_private;
6286
6287 if (err) {
33345d01 6288 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6289 "sector %#Lx len %u err no %d\n",
33345d01 6290 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6291 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6292 dip->errors = 1;
6293
6294 /*
6295 * before atomic variable goto zero, we must make sure
6296 * dip->errors is perceived to be set.
6297 */
6298 smp_mb__before_atomic_dec();
6299 }
6300
6301 /* if there are more bios still pending for this dio, just exit */
6302 if (!atomic_dec_and_test(&dip->pending_bios))
6303 goto out;
6304
6305 if (dip->errors)
6306 bio_io_error(dip->orig_bio);
6307 else {
6308 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6309 bio_endio(dip->orig_bio, 0);
6310 }
6311out:
6312 bio_put(bio);
6313}
6314
6315static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6316 u64 first_sector, gfp_t gfp_flags)
6317{
6318 int nr_vecs = bio_get_nr_vecs(bdev);
6319 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6320}
6321
6322static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6323 int rw, u64 file_offset, int skip_sum,
c329861d 6324 int async_submit)
e65e1535
MX
6325{
6326 int write = rw & REQ_WRITE;
6327 struct btrfs_root *root = BTRFS_I(inode)->root;
6328 int ret;
6329
b812ce28
JB
6330 if (async_submit)
6331 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6332
e65e1535 6333 bio_get(bio);
5fd02043
JB
6334
6335 if (!write) {
6336 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6337 if (ret)
6338 goto err;
6339 }
e65e1535 6340
1ae39938
JB
6341 if (skip_sum)
6342 goto map;
6343
6344 if (write && async_submit) {
e65e1535
MX
6345 ret = btrfs_wq_submit_bio(root->fs_info,
6346 inode, rw, bio, 0, 0,
6347 file_offset,
6348 __btrfs_submit_bio_start_direct_io,
6349 __btrfs_submit_bio_done);
6350 goto err;
1ae39938
JB
6351 } else if (write) {
6352 /*
6353 * If we aren't doing async submit, calculate the csum of the
6354 * bio now.
6355 */
6356 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6357 if (ret)
6358 goto err;
c2db1073 6359 } else if (!skip_sum) {
c329861d 6360 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
6361 if (ret)
6362 goto err;
6363 }
e65e1535 6364
1ae39938
JB
6365map:
6366 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6367err:
6368 bio_put(bio);
6369 return ret;
6370}
6371
6372static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6373 int skip_sum)
6374{
6375 struct inode *inode = dip->inode;
6376 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6377 struct bio *bio;
6378 struct bio *orig_bio = dip->orig_bio;
6379 struct bio_vec *bvec = orig_bio->bi_io_vec;
6380 u64 start_sector = orig_bio->bi_sector;
6381 u64 file_offset = dip->logical_offset;
6382 u64 submit_len = 0;
6383 u64 map_length;
6384 int nr_pages = 0;
e65e1535 6385 int ret = 0;
1ae39938 6386 int async_submit = 0;
e65e1535 6387
e65e1535 6388 map_length = orig_bio->bi_size;
3ec706c8 6389 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
e65e1535
MX
6390 &map_length, NULL, 0);
6391 if (ret) {
64728bbb 6392 bio_put(orig_bio);
e65e1535
MX
6393 return -EIO;
6394 }
6395
02f57c7a
JB
6396 if (map_length >= orig_bio->bi_size) {
6397 bio = orig_bio;
6398 goto submit;
6399 }
6400
1ae39938 6401 async_submit = 1;
02f57c7a
JB
6402 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6403 if (!bio)
6404 return -ENOMEM;
6405 bio->bi_private = dip;
6406 bio->bi_end_io = btrfs_end_dio_bio;
6407 atomic_inc(&dip->pending_bios);
6408
e65e1535
MX
6409 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6410 if (unlikely(map_length < submit_len + bvec->bv_len ||
6411 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6412 bvec->bv_offset) < bvec->bv_len)) {
6413 /*
6414 * inc the count before we submit the bio so
6415 * we know the end IO handler won't happen before
6416 * we inc the count. Otherwise, the dip might get freed
6417 * before we're done setting it up
6418 */
6419 atomic_inc(&dip->pending_bios);
6420 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6421 file_offset, skip_sum,
c329861d 6422 async_submit);
e65e1535
MX
6423 if (ret) {
6424 bio_put(bio);
6425 atomic_dec(&dip->pending_bios);
6426 goto out_err;
6427 }
6428
e65e1535
MX
6429 start_sector += submit_len >> 9;
6430 file_offset += submit_len;
6431
6432 submit_len = 0;
6433 nr_pages = 0;
6434
6435 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6436 start_sector, GFP_NOFS);
6437 if (!bio)
6438 goto out_err;
6439 bio->bi_private = dip;
6440 bio->bi_end_io = btrfs_end_dio_bio;
6441
6442 map_length = orig_bio->bi_size;
3ec706c8
SB
6443 ret = btrfs_map_block(root->fs_info, READ,
6444 start_sector << 9,
e65e1535
MX
6445 &map_length, NULL, 0);
6446 if (ret) {
6447 bio_put(bio);
6448 goto out_err;
6449 }
6450 } else {
6451 submit_len += bvec->bv_len;
6452 nr_pages ++;
6453 bvec++;
6454 }
6455 }
6456
02f57c7a 6457submit:
e65e1535 6458 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 6459 async_submit);
e65e1535
MX
6460 if (!ret)
6461 return 0;
6462
6463 bio_put(bio);
6464out_err:
6465 dip->errors = 1;
6466 /*
6467 * before atomic variable goto zero, we must
6468 * make sure dip->errors is perceived to be set.
6469 */
6470 smp_mb__before_atomic_dec();
6471 if (atomic_dec_and_test(&dip->pending_bios))
6472 bio_io_error(dip->orig_bio);
6473
6474 /* bio_end_io() will handle error, so we needn't return it */
6475 return 0;
6476}
6477
4b46fce2
JB
6478static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6479 loff_t file_offset)
6480{
6481 struct btrfs_root *root = BTRFS_I(inode)->root;
6482 struct btrfs_dio_private *dip;
6483 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6484 int skip_sum;
7b6d91da 6485 int write = rw & REQ_WRITE;
4b46fce2
JB
6486 int ret = 0;
6487
6488 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6489
6490 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6491 if (!dip) {
6492 ret = -ENOMEM;
6493 goto free_ordered;
6494 }
4b46fce2
JB
6495
6496 dip->private = bio->bi_private;
6497 dip->inode = inode;
6498 dip->logical_offset = file_offset;
6499
4b46fce2
JB
6500 dip->bytes = 0;
6501 do {
6502 dip->bytes += bvec->bv_len;
6503 bvec++;
6504 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6505
46bfbb5c 6506 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6507 bio->bi_private = dip;
e65e1535
MX
6508 dip->errors = 0;
6509 dip->orig_bio = bio;
6510 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6511
6512 if (write)
6513 bio->bi_end_io = btrfs_endio_direct_write;
6514 else
6515 bio->bi_end_io = btrfs_endio_direct_read;
6516
e65e1535
MX
6517 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6518 if (!ret)
eaf25d93 6519 return;
4b46fce2
JB
6520free_ordered:
6521 /*
6522 * If this is a write, we need to clean up the reserved space and kill
6523 * the ordered extent.
6524 */
6525 if (write) {
6526 struct btrfs_ordered_extent *ordered;
955256f2 6527 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6528 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6529 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6530 btrfs_free_reserved_extent(root, ordered->start,
6531 ordered->disk_len);
6532 btrfs_put_ordered_extent(ordered);
6533 btrfs_put_ordered_extent(ordered);
6534 }
6535 bio_endio(bio, ret);
6536}
6537
5a5f79b5
CM
6538static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6539 const struct iovec *iov, loff_t offset,
6540 unsigned long nr_segs)
6541{
6542 int seg;
a1b75f7d 6543 int i;
5a5f79b5
CM
6544 size_t size;
6545 unsigned long addr;
6546 unsigned blocksize_mask = root->sectorsize - 1;
6547 ssize_t retval = -EINVAL;
6548 loff_t end = offset;
6549
6550 if (offset & blocksize_mask)
6551 goto out;
6552
6553 /* Check the memory alignment. Blocks cannot straddle pages */
6554 for (seg = 0; seg < nr_segs; seg++) {
6555 addr = (unsigned long)iov[seg].iov_base;
6556 size = iov[seg].iov_len;
6557 end += size;
a1b75f7d 6558 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6559 goto out;
a1b75f7d
JB
6560
6561 /* If this is a write we don't need to check anymore */
6562 if (rw & WRITE)
6563 continue;
6564
6565 /*
6566 * Check to make sure we don't have duplicate iov_base's in this
6567 * iovec, if so return EINVAL, otherwise we'll get csum errors
6568 * when reading back.
6569 */
6570 for (i = seg + 1; i < nr_segs; i++) {
6571 if (iov[seg].iov_base == iov[i].iov_base)
6572 goto out;
6573 }
5a5f79b5
CM
6574 }
6575 retval = 0;
6576out:
6577 return retval;
6578}
eb838e73 6579
16432985
CM
6580static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6581 const struct iovec *iov, loff_t offset,
6582 unsigned long nr_segs)
6583{
4b46fce2
JB
6584 struct file *file = iocb->ki_filp;
6585 struct inode *inode = file->f_mapping->host;
4b46fce2 6586
5a5f79b5 6587 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 6588 offset, nr_segs))
5a5f79b5 6589 return 0;
3f7c579c 6590
eb838e73 6591 return __blockdev_direct_IO(rw, iocb, inode,
5a5f79b5
CM
6592 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6593 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6594 btrfs_submit_direct, 0);
16432985
CM
6595}
6596
05dadc09
TI
6597#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6598
1506fcc8
YS
6599static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6600 __u64 start, __u64 len)
6601{
05dadc09
TI
6602 int ret;
6603
6604 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
6605 if (ret)
6606 return ret;
6607
ec29ed5b 6608 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6609}
6610
a52d9a80 6611int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6612{
d1310b2e
CM
6613 struct extent_io_tree *tree;
6614 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6615 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6616}
1832a6d5 6617
a52d9a80 6618static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6619{
d1310b2e 6620 struct extent_io_tree *tree;
b888db2b
CM
6621
6622
6623 if (current->flags & PF_MEMALLOC) {
6624 redirty_page_for_writepage(wbc, page);
6625 unlock_page(page);
6626 return 0;
6627 }
d1310b2e 6628 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6629 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6630}
6631
f421950f
CM
6632int btrfs_writepages(struct address_space *mapping,
6633 struct writeback_control *wbc)
b293f02e 6634{
d1310b2e 6635 struct extent_io_tree *tree;
771ed689 6636
d1310b2e 6637 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6638 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6639}
6640
3ab2fb5a
CM
6641static int
6642btrfs_readpages(struct file *file, struct address_space *mapping,
6643 struct list_head *pages, unsigned nr_pages)
6644{
d1310b2e
CM
6645 struct extent_io_tree *tree;
6646 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6647 return extent_readpages(tree, mapping, pages, nr_pages,
6648 btrfs_get_extent);
6649}
e6dcd2dc 6650static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6651{
d1310b2e
CM
6652 struct extent_io_tree *tree;
6653 struct extent_map_tree *map;
a52d9a80 6654 int ret;
8c2383c3 6655
d1310b2e
CM
6656 tree = &BTRFS_I(page->mapping->host)->io_tree;
6657 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6658 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6659 if (ret == 1) {
6660 ClearPagePrivate(page);
6661 set_page_private(page, 0);
6662 page_cache_release(page);
39279cc3 6663 }
a52d9a80 6664 return ret;
39279cc3
CM
6665}
6666
e6dcd2dc
CM
6667static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6668{
98509cfc
CM
6669 if (PageWriteback(page) || PageDirty(page))
6670 return 0;
b335b003 6671 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6672}
6673
a52d9a80 6674static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6675{
5fd02043 6676 struct inode *inode = page->mapping->host;
d1310b2e 6677 struct extent_io_tree *tree;
e6dcd2dc 6678 struct btrfs_ordered_extent *ordered;
2ac55d41 6679 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6680 u64 page_start = page_offset(page);
6681 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6682
8b62b72b
CM
6683 /*
6684 * we have the page locked, so new writeback can't start,
6685 * and the dirty bit won't be cleared while we are here.
6686 *
6687 * Wait for IO on this page so that we can safely clear
6688 * the PagePrivate2 bit and do ordered accounting
6689 */
e6dcd2dc 6690 wait_on_page_writeback(page);
8b62b72b 6691
5fd02043 6692 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
6693 if (offset) {
6694 btrfs_releasepage(page, GFP_NOFS);
6695 return;
6696 }
d0082371 6697 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
5fd02043 6698 ordered = btrfs_lookup_ordered_extent(inode,
e6dcd2dc
CM
6699 page_offset(page));
6700 if (ordered) {
eb84ae03
CM
6701 /*
6702 * IO on this page will never be started, so we need
6703 * to account for any ordered extents now
6704 */
e6dcd2dc
CM
6705 clear_extent_bit(tree, page_start, page_end,
6706 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6707 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6708 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
6709 /*
6710 * whoever cleared the private bit is responsible
6711 * for the finish_ordered_io
6712 */
5fd02043
JB
6713 if (TestClearPagePrivate2(page) &&
6714 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6715 PAGE_CACHE_SIZE, 1)) {
6716 btrfs_finish_ordered_io(ordered);
8b62b72b 6717 }
e6dcd2dc 6718 btrfs_put_ordered_extent(ordered);
2ac55d41 6719 cached_state = NULL;
d0082371 6720 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6721 }
6722 clear_extent_bit(tree, page_start, page_end,
32c00aff 6723 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6724 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6725 &cached_state, GFP_NOFS);
e6dcd2dc
CM
6726 __btrfs_releasepage(page, GFP_NOFS);
6727
4a096752 6728 ClearPageChecked(page);
9ad6b7bc 6729 if (PagePrivate(page)) {
9ad6b7bc
CM
6730 ClearPagePrivate(page);
6731 set_page_private(page, 0);
6732 page_cache_release(page);
6733 }
39279cc3
CM
6734}
6735
9ebefb18
CM
6736/*
6737 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6738 * called from a page fault handler when a page is first dirtied. Hence we must
6739 * be careful to check for EOF conditions here. We set the page up correctly
6740 * for a written page which means we get ENOSPC checking when writing into
6741 * holes and correct delalloc and unwritten extent mapping on filesystems that
6742 * support these features.
6743 *
6744 * We are not allowed to take the i_mutex here so we have to play games to
6745 * protect against truncate races as the page could now be beyond EOF. Because
6746 * vmtruncate() writes the inode size before removing pages, once we have the
6747 * page lock we can determine safely if the page is beyond EOF. If it is not
6748 * beyond EOF, then the page is guaranteed safe against truncation until we
6749 * unlock the page.
6750 */
c2ec175c 6751int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6752{
c2ec175c 6753 struct page *page = vmf->page;
6da6abae 6754 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6755 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6756 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6757 struct btrfs_ordered_extent *ordered;
2ac55d41 6758 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6759 char *kaddr;
6760 unsigned long zero_start;
9ebefb18 6761 loff_t size;
1832a6d5 6762 int ret;
9998eb70 6763 int reserved = 0;
a52d9a80 6764 u64 page_start;
e6dcd2dc 6765 u64 page_end;
9ebefb18 6766
b2b5ef5c 6767 sb_start_pagefault(inode->i_sb);
0ca1f7ce 6768 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6769 if (!ret) {
e41f941a 6770 ret = file_update_time(vma->vm_file);
9998eb70
CM
6771 reserved = 1;
6772 }
56a76f82
NP
6773 if (ret) {
6774 if (ret == -ENOMEM)
6775 ret = VM_FAULT_OOM;
6776 else /* -ENOSPC, -EIO, etc */
6777 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6778 if (reserved)
6779 goto out;
6780 goto out_noreserve;
56a76f82 6781 }
1832a6d5 6782
56a76f82 6783 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6784again:
9ebefb18 6785 lock_page(page);
9ebefb18 6786 size = i_size_read(inode);
e6dcd2dc
CM
6787 page_start = page_offset(page);
6788 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6789
9ebefb18 6790 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6791 (page_start >= size)) {
9ebefb18
CM
6792 /* page got truncated out from underneath us */
6793 goto out_unlock;
6794 }
e6dcd2dc
CM
6795 wait_on_page_writeback(page);
6796
d0082371 6797 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6798 set_page_extent_mapped(page);
6799
eb84ae03
CM
6800 /*
6801 * we can't set the delalloc bits if there are pending ordered
6802 * extents. Drop our locks and wait for them to finish
6803 */
e6dcd2dc
CM
6804 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6805 if (ordered) {
2ac55d41
JB
6806 unlock_extent_cached(io_tree, page_start, page_end,
6807 &cached_state, GFP_NOFS);
e6dcd2dc 6808 unlock_page(page);
eb84ae03 6809 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6810 btrfs_put_ordered_extent(ordered);
6811 goto again;
6812 }
6813
fbf19087
JB
6814 /*
6815 * XXX - page_mkwrite gets called every time the page is dirtied, even
6816 * if it was already dirty, so for space accounting reasons we need to
6817 * clear any delalloc bits for the range we are fixing to save. There
6818 * is probably a better way to do this, but for now keep consistent with
6819 * prepare_pages in the normal write path.
6820 */
2ac55d41 6821 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
6822 EXTENT_DIRTY | EXTENT_DELALLOC |
6823 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 6824 0, 0, &cached_state, GFP_NOFS);
fbf19087 6825
2ac55d41
JB
6826 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6827 &cached_state);
9ed74f2d 6828 if (ret) {
2ac55d41
JB
6829 unlock_extent_cached(io_tree, page_start, page_end,
6830 &cached_state, GFP_NOFS);
9ed74f2d
JB
6831 ret = VM_FAULT_SIGBUS;
6832 goto out_unlock;
6833 }
e6dcd2dc 6834 ret = 0;
9ebefb18
CM
6835
6836 /* page is wholly or partially inside EOF */
a52d9a80 6837 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6838 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6839 else
e6dcd2dc 6840 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6841
e6dcd2dc
CM
6842 if (zero_start != PAGE_CACHE_SIZE) {
6843 kaddr = kmap(page);
6844 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6845 flush_dcache_page(page);
6846 kunmap(page);
6847 }
247e743c 6848 ClearPageChecked(page);
e6dcd2dc 6849 set_page_dirty(page);
50a9b214 6850 SetPageUptodate(page);
5a3f23d5 6851
257c62e1
CM
6852 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6853 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 6854 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 6855
2ac55d41 6856 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6857
6858out_unlock:
b2b5ef5c
JK
6859 if (!ret) {
6860 sb_end_pagefault(inode->i_sb);
50a9b214 6861 return VM_FAULT_LOCKED;
b2b5ef5c 6862 }
9ebefb18 6863 unlock_page(page);
1832a6d5 6864out:
ec39e180 6865 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6866out_noreserve:
b2b5ef5c 6867 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
6868 return ret;
6869}
6870
a41ad394 6871static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6872{
6873 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6874 struct btrfs_block_rsv *rsv;
39279cc3 6875 int ret;
3893e33b 6876 int err = 0;
39279cc3 6877 struct btrfs_trans_handle *trans;
dbe674a9 6878 u64 mask = root->sectorsize - 1;
07127184 6879 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6880
2aaa6655 6881 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
5d5e103a 6882 if (ret)
a41ad394 6883 return ret;
8082510e 6884
4a096752 6885 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6886 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6887
fcb80c2a
JB
6888 /*
6889 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6890 * 3 things going on here
6891 *
6892 * 1) We need to reserve space for our orphan item and the space to
6893 * delete our orphan item. Lord knows we don't want to have a dangling
6894 * orphan item because we didn't reserve space to remove it.
6895 *
6896 * 2) We need to reserve space to update our inode.
6897 *
6898 * 3) We need to have something to cache all the space that is going to
6899 * be free'd up by the truncate operation, but also have some slack
6900 * space reserved in case it uses space during the truncate (thank you
6901 * very much snapshotting).
6902 *
6903 * And we need these to all be seperate. The fact is we can use alot of
6904 * space doing the truncate, and we have no earthly idea how much space
6905 * we will use, so we need the truncate reservation to be seperate so it
6906 * doesn't end up using space reserved for updating the inode or
6907 * removing the orphan item. We also need to be able to stop the
6908 * transaction and start a new one, which means we need to be able to
6909 * update the inode several times, and we have no idea of knowing how
6910 * many times that will be, so we can't just reserve 1 item for the
6911 * entirety of the opration, so that has to be done seperately as well.
6912 * Then there is the orphan item, which does indeed need to be held on
6913 * to for the whole operation, and we need nobody to touch this reserved
6914 * space except the orphan code.
6915 *
6916 * So that leaves us with
6917 *
6918 * 1) root->orphan_block_rsv - for the orphan deletion.
6919 * 2) rsv - for the truncate reservation, which we will steal from the
6920 * transaction reservation.
6921 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6922 * updating the inode.
6923 */
66d8f3dd 6924 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
6925 if (!rsv)
6926 return -ENOMEM;
4a338542 6927 rsv->size = min_size;
ca7e70f5 6928 rsv->failfast = 1;
f0cd846e 6929
907cbceb 6930 /*
07127184 6931 * 1 for the truncate slack space
907cbceb
JB
6932 * 1 for the orphan item we're going to add
6933 * 1 for the orphan item deletion
6934 * 1 for updating the inode.
6935 */
fcb80c2a
JB
6936 trans = btrfs_start_transaction(root, 4);
6937 if (IS_ERR(trans)) {
6938 err = PTR_ERR(trans);
6939 goto out;
6940 }
f0cd846e 6941
907cbceb
JB
6942 /* Migrate the slack space for the truncate to our reserve */
6943 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6944 min_size);
fcb80c2a 6945 BUG_ON(ret);
f0cd846e
JB
6946
6947 ret = btrfs_orphan_add(trans, inode);
6948 if (ret) {
6949 btrfs_end_transaction(trans, root);
fcb80c2a 6950 goto out;
f0cd846e
JB
6951 }
6952
5a3f23d5
CM
6953 /*
6954 * setattr is responsible for setting the ordered_data_close flag,
6955 * but that is only tested during the last file release. That
6956 * could happen well after the next commit, leaving a great big
6957 * window where new writes may get lost if someone chooses to write
6958 * to this file after truncating to zero
6959 *
6960 * The inode doesn't have any dirty data here, and so if we commit
6961 * this is a noop. If someone immediately starts writing to the inode
6962 * it is very likely we'll catch some of their writes in this
6963 * transaction, and the commit will find this file on the ordered
6964 * data list with good things to send down.
6965 *
6966 * This is a best effort solution, there is still a window where
6967 * using truncate to replace the contents of the file will
6968 * end up with a zero length file after a crash.
6969 */
72ac3c0d
JB
6970 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6971 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
6972 btrfs_add_ordered_operation(trans, root, inode);
6973
5dc562c5
JB
6974 /*
6975 * So if we truncate and then write and fsync we normally would just
6976 * write the extents that changed, which is a problem if we need to
6977 * first truncate that entire inode. So set this flag so we write out
6978 * all of the extents in the inode to the sync log so we're completely
6979 * safe.
6980 */
6981 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 6982 trans->block_rsv = rsv;
907cbceb 6983
8082510e
YZ
6984 while (1) {
6985 ret = btrfs_truncate_inode_items(trans, root, inode,
6986 inode->i_size,
6987 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 6988 if (ret != -ENOSPC) {
3893e33b 6989 err = ret;
8082510e 6990 break;
3893e33b 6991 }
39279cc3 6992
fcb80c2a 6993 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6994 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6995 if (ret) {
6996 err = ret;
6997 break;
6998 }
ca7e70f5 6999
8082510e 7000 btrfs_end_transaction(trans, root);
b53d3f5d 7001 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7002
7003 trans = btrfs_start_transaction(root, 2);
7004 if (IS_ERR(trans)) {
7005 ret = err = PTR_ERR(trans);
7006 trans = NULL;
7007 break;
7008 }
7009
7010 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7011 rsv, min_size);
7012 BUG_ON(ret); /* shouldn't happen */
7013 trans->block_rsv = rsv;
8082510e
YZ
7014 }
7015
7016 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7017 trans->block_rsv = root->orphan_block_rsv;
8082510e 7018 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7019 if (ret)
7020 err = ret;
ded5db9d
JB
7021 } else if (ret && inode->i_nlink > 0) {
7022 /*
7023 * Failed to do the truncate, remove us from the in memory
7024 * orphan list.
7025 */
7026 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
7027 }
7028
917c16b2
CM
7029 if (trans) {
7030 trans->block_rsv = &root->fs_info->trans_block_rsv;
7031 ret = btrfs_update_inode(trans, root, inode);
7032 if (ret && !err)
7033 err = ret;
7b128766 7034
7ad85bb7 7035 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7036 btrfs_btree_balance_dirty(root);
917c16b2 7037 }
fcb80c2a
JB
7038
7039out:
7040 btrfs_free_block_rsv(root, rsv);
7041
3893e33b
JB
7042 if (ret && !err)
7043 err = ret;
a41ad394 7044
3893e33b 7045 return err;
39279cc3
CM
7046}
7047
d352ac68
CM
7048/*
7049 * create a new subvolume directory/inode (helper for the ioctl).
7050 */
d2fb3437 7051int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7052 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7053{
39279cc3 7054 struct inode *inode;
76dda93c 7055 int err;
00e4e6b3 7056 u64 index = 0;
39279cc3 7057
12fc9d09
FA
7058 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7059 new_dirid, new_dirid,
7060 S_IFDIR | (~current_umask() & S_IRWXUGO),
7061 &index);
54aa1f4d 7062 if (IS_ERR(inode))
f46b5a66 7063 return PTR_ERR(inode);
39279cc3
CM
7064 inode->i_op = &btrfs_dir_inode_operations;
7065 inode->i_fop = &btrfs_dir_file_operations;
7066
bfe86848 7067 set_nlink(inode, 1);
dbe674a9 7068 btrfs_i_size_write(inode, 0);
3b96362c 7069
76dda93c 7070 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7071
76dda93c 7072 iput(inode);
ce598979 7073 return err;
39279cc3
CM
7074}
7075
39279cc3
CM
7076struct inode *btrfs_alloc_inode(struct super_block *sb)
7077{
7078 struct btrfs_inode *ei;
2ead6ae7 7079 struct inode *inode;
39279cc3
CM
7080
7081 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7082 if (!ei)
7083 return NULL;
2ead6ae7
YZ
7084
7085 ei->root = NULL;
2ead6ae7 7086 ei->generation = 0;
15ee9bc7 7087 ei->last_trans = 0;
257c62e1 7088 ei->last_sub_trans = 0;
e02119d5 7089 ei->logged_trans = 0;
2ead6ae7 7090 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7091 ei->disk_i_size = 0;
7092 ei->flags = 0;
7709cde3 7093 ei->csum_bytes = 0;
2ead6ae7
YZ
7094 ei->index_cnt = (u64)-1;
7095 ei->last_unlink_trans = 0;
46d8bc34 7096 ei->last_log_commit = 0;
2ead6ae7 7097
9e0baf60
JB
7098 spin_lock_init(&ei->lock);
7099 ei->outstanding_extents = 0;
7100 ei->reserved_extents = 0;
2ead6ae7 7101
72ac3c0d 7102 ei->runtime_flags = 0;
261507a0 7103 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7104
16cdcec7
MX
7105 ei->delayed_node = NULL;
7106
2ead6ae7 7107 inode = &ei->vfs_inode;
a8067e02 7108 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7109 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7110 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7111 ei->io_tree.track_uptodate = 1;
7112 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7113 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7114 mutex_init(&ei->log_mutex);
f248679e 7115 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7116 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7117 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7118 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7119 RB_CLEAR_NODE(&ei->rb_node);
7120
7121 return inode;
39279cc3
CM
7122}
7123
fa0d7e3d
NP
7124static void btrfs_i_callback(struct rcu_head *head)
7125{
7126 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7127 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7128}
7129
39279cc3
CM
7130void btrfs_destroy_inode(struct inode *inode)
7131{
e6dcd2dc 7132 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7133 struct btrfs_root *root = BTRFS_I(inode)->root;
7134
b3d9b7a3 7135 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7136 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7137 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7138 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7139 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7140 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7141
a6dbd429
JB
7142 /*
7143 * This can happen where we create an inode, but somebody else also
7144 * created the same inode and we need to destroy the one we already
7145 * created.
7146 */
7147 if (!root)
7148 goto free;
7149
5a3f23d5
CM
7150 /*
7151 * Make sure we're properly removed from the ordered operation
7152 * lists.
7153 */
7154 smp_mb();
7155 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7156 spin_lock(&root->fs_info->ordered_extent_lock);
7157 list_del_init(&BTRFS_I(inode)->ordered_operations);
7158 spin_unlock(&root->fs_info->ordered_extent_lock);
7159 }
7160
8a35d95f
JB
7161 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7162 &BTRFS_I(inode)->runtime_flags)) {
33345d01
LZ
7163 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7164 (unsigned long long)btrfs_ino(inode));
8a35d95f 7165 atomic_dec(&root->orphan_inodes);
7b128766 7166 }
7b128766 7167
d397712b 7168 while (1) {
e6dcd2dc
CM
7169 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7170 if (!ordered)
7171 break;
7172 else {
d397712b
CM
7173 printk(KERN_ERR "btrfs found ordered "
7174 "extent %llu %llu on inode cleanup\n",
7175 (unsigned long long)ordered->file_offset,
7176 (unsigned long long)ordered->len);
e6dcd2dc
CM
7177 btrfs_remove_ordered_extent(inode, ordered);
7178 btrfs_put_ordered_extent(ordered);
7179 btrfs_put_ordered_extent(ordered);
7180 }
7181 }
5d4f98a2 7182 inode_tree_del(inode);
5b21f2ed 7183 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7184free:
16cdcec7 7185 btrfs_remove_delayed_node(inode);
fa0d7e3d 7186 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7187}
7188
45321ac5 7189int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7190{
7191 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7192
0af3d00b 7193 if (btrfs_root_refs(&root->root_item) == 0 &&
83eea1f1 7194 !btrfs_is_free_space_inode(inode))
45321ac5 7195 return 1;
76dda93c 7196 else
45321ac5 7197 return generic_drop_inode(inode);
76dda93c
YZ
7198}
7199
0ee0fda0 7200static void init_once(void *foo)
39279cc3
CM
7201{
7202 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7203
7204 inode_init_once(&ei->vfs_inode);
7205}
7206
7207void btrfs_destroy_cachep(void)
7208{
8c0a8537
KS
7209 /*
7210 * Make sure all delayed rcu free inodes are flushed before we
7211 * destroy cache.
7212 */
7213 rcu_barrier();
39279cc3
CM
7214 if (btrfs_inode_cachep)
7215 kmem_cache_destroy(btrfs_inode_cachep);
7216 if (btrfs_trans_handle_cachep)
7217 kmem_cache_destroy(btrfs_trans_handle_cachep);
7218 if (btrfs_transaction_cachep)
7219 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7220 if (btrfs_path_cachep)
7221 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7222 if (btrfs_free_space_cachep)
7223 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7224 if (btrfs_delalloc_work_cachep)
7225 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7226}
7227
7228int btrfs_init_cachep(void)
7229{
837e1972 7230 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7231 sizeof(struct btrfs_inode), 0,
7232 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7233 if (!btrfs_inode_cachep)
7234 goto fail;
9601e3f6 7235
837e1972 7236 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7237 sizeof(struct btrfs_trans_handle), 0,
7238 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7239 if (!btrfs_trans_handle_cachep)
7240 goto fail;
9601e3f6 7241
837e1972 7242 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7243 sizeof(struct btrfs_transaction), 0,
7244 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7245 if (!btrfs_transaction_cachep)
7246 goto fail;
9601e3f6 7247
837e1972 7248 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7249 sizeof(struct btrfs_path), 0,
7250 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7251 if (!btrfs_path_cachep)
7252 goto fail;
9601e3f6 7253
837e1972 7254 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7255 sizeof(struct btrfs_free_space), 0,
7256 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7257 if (!btrfs_free_space_cachep)
7258 goto fail;
7259
8ccf6f19
MX
7260 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7261 sizeof(struct btrfs_delalloc_work), 0,
7262 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7263 NULL);
7264 if (!btrfs_delalloc_work_cachep)
7265 goto fail;
7266
39279cc3
CM
7267 return 0;
7268fail:
7269 btrfs_destroy_cachep();
7270 return -ENOMEM;
7271}
7272
7273static int btrfs_getattr(struct vfsmount *mnt,
7274 struct dentry *dentry, struct kstat *stat)
7275{
7276 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7277 u32 blocksize = inode->i_sb->s_blocksize;
7278
39279cc3 7279 generic_fillattr(inode, stat);
0ee5dc67 7280 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7281 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
7282 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7283 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7284 return 0;
7285}
7286
75e7cb7f
LB
7287/*
7288 * If a file is moved, it will inherit the cow and compression flags of the new
7289 * directory.
7290 */
7291static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7292{
7293 struct btrfs_inode *b_dir = BTRFS_I(dir);
7294 struct btrfs_inode *b_inode = BTRFS_I(inode);
7295
7296 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7297 b_inode->flags |= BTRFS_INODE_NODATACOW;
7298 else
7299 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7300
bc178237 7301 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
75e7cb7f 7302 b_inode->flags |= BTRFS_INODE_COMPRESS;
bc178237
LB
7303 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7304 } else {
7305 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7306 BTRFS_INODE_NOCOMPRESS);
7307 }
75e7cb7f
LB
7308}
7309
d397712b
CM
7310static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7311 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7312{
7313 struct btrfs_trans_handle *trans;
7314 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7315 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7316 struct inode *new_inode = new_dentry->d_inode;
7317 struct inode *old_inode = old_dentry->d_inode;
7318 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7319 u64 index = 0;
4df27c4d 7320 u64 root_objectid;
39279cc3 7321 int ret;
33345d01 7322 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7323
33345d01 7324 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7325 return -EPERM;
7326
4df27c4d 7327 /* we only allow rename subvolume link between subvolumes */
33345d01 7328 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7329 return -EXDEV;
7330
33345d01
LZ
7331 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7332 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7333 return -ENOTEMPTY;
5f39d397 7334
4df27c4d
YZ
7335 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7336 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7337 return -ENOTEMPTY;
9c52057c
CM
7338
7339
7340 /* check for collisions, even if the name isn't there */
7341 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
7342 new_dentry->d_name.name,
7343 new_dentry->d_name.len);
7344
7345 if (ret) {
7346 if (ret == -EEXIST) {
7347 /* we shouldn't get
7348 * eexist without a new_inode */
7349 if (!new_inode) {
7350 WARN_ON(1);
7351 return ret;
7352 }
7353 } else {
7354 /* maybe -EOVERFLOW */
7355 return ret;
7356 }
7357 }
7358 ret = 0;
7359
5a3f23d5
CM
7360 /*
7361 * we're using rename to replace one file with another.
7362 * and the replacement file is large. Start IO on it now so
7363 * we don't add too much work to the end of the transaction
7364 */
4baf8c92 7365 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7366 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7367 filemap_flush(old_inode->i_mapping);
7368
76dda93c 7369 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7370 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7371 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7372 /*
7373 * We want to reserve the absolute worst case amount of items. So if
7374 * both inodes are subvols and we need to unlink them then that would
7375 * require 4 item modifications, but if they are both normal inodes it
7376 * would require 5 item modifications, so we'll assume their normal
7377 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7378 * should cover the worst case number of items we'll modify.
7379 */
7380 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7381 if (IS_ERR(trans)) {
7382 ret = PTR_ERR(trans);
7383 goto out_notrans;
7384 }
76dda93c 7385
4df27c4d
YZ
7386 if (dest != root)
7387 btrfs_record_root_in_trans(trans, dest);
5f39d397 7388
a5719521
YZ
7389 ret = btrfs_set_inode_index(new_dir, &index);
7390 if (ret)
7391 goto out_fail;
5a3f23d5 7392
33345d01 7393 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7394 /* force full log commit if subvolume involved. */
7395 root->fs_info->last_trans_log_full_commit = trans->transid;
7396 } else {
a5719521
YZ
7397 ret = btrfs_insert_inode_ref(trans, dest,
7398 new_dentry->d_name.name,
7399 new_dentry->d_name.len,
33345d01
LZ
7400 old_ino,
7401 btrfs_ino(new_dir), index);
a5719521
YZ
7402 if (ret)
7403 goto out_fail;
4df27c4d
YZ
7404 /*
7405 * this is an ugly little race, but the rename is required
7406 * to make sure that if we crash, the inode is either at the
7407 * old name or the new one. pinning the log transaction lets
7408 * us make sure we don't allow a log commit to come in after
7409 * we unlink the name but before we add the new name back in.
7410 */
7411 btrfs_pin_log_trans(root);
7412 }
5a3f23d5
CM
7413 /*
7414 * make sure the inode gets flushed if it is replacing
7415 * something.
7416 */
33345d01 7417 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7418 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7419
0c4d2d95
JB
7420 inode_inc_iversion(old_dir);
7421 inode_inc_iversion(new_dir);
7422 inode_inc_iversion(old_inode);
39279cc3
CM
7423 old_dir->i_ctime = old_dir->i_mtime = ctime;
7424 new_dir->i_ctime = new_dir->i_mtime = ctime;
7425 old_inode->i_ctime = ctime;
5f39d397 7426
12fcfd22
CM
7427 if (old_dentry->d_parent != new_dentry->d_parent)
7428 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7429
33345d01 7430 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7431 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7432 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7433 old_dentry->d_name.name,
7434 old_dentry->d_name.len);
7435 } else {
92986796
AV
7436 ret = __btrfs_unlink_inode(trans, root, old_dir,
7437 old_dentry->d_inode,
7438 old_dentry->d_name.name,
7439 old_dentry->d_name.len);
7440 if (!ret)
7441 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7442 }
79787eaa
JM
7443 if (ret) {
7444 btrfs_abort_transaction(trans, root, ret);
7445 goto out_fail;
7446 }
39279cc3
CM
7447
7448 if (new_inode) {
0c4d2d95 7449 inode_inc_iversion(new_inode);
39279cc3 7450 new_inode->i_ctime = CURRENT_TIME;
33345d01 7451 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7452 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7453 root_objectid = BTRFS_I(new_inode)->location.objectid;
7454 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7455 root_objectid,
7456 new_dentry->d_name.name,
7457 new_dentry->d_name.len);
7458 BUG_ON(new_inode->i_nlink == 0);
7459 } else {
7460 ret = btrfs_unlink_inode(trans, dest, new_dir,
7461 new_dentry->d_inode,
7462 new_dentry->d_name.name,
7463 new_dentry->d_name.len);
7464 }
79787eaa 7465 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7466 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7467 BUG_ON(ret);
7b128766 7468 }
79787eaa
JM
7469 if (ret) {
7470 btrfs_abort_transaction(trans, root, ret);
7471 goto out_fail;
7472 }
39279cc3 7473 }
aec7477b 7474
75e7cb7f
LB
7475 fixup_inode_flags(new_dir, old_inode);
7476
4df27c4d
YZ
7477 ret = btrfs_add_link(trans, new_dir, old_inode,
7478 new_dentry->d_name.name,
a5719521 7479 new_dentry->d_name.len, 0, index);
79787eaa
JM
7480 if (ret) {
7481 btrfs_abort_transaction(trans, root, ret);
7482 goto out_fail;
7483 }
39279cc3 7484
33345d01 7485 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7486 struct dentry *parent = new_dentry->d_parent;
6a912213 7487 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7488 btrfs_end_log_trans(root);
7489 }
39279cc3 7490out_fail:
7ad85bb7 7491 btrfs_end_transaction(trans, root);
b44c59a8 7492out_notrans:
33345d01 7493 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7494 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7495
39279cc3
CM
7496 return ret;
7497}
7498
8ccf6f19
MX
7499static void btrfs_run_delalloc_work(struct btrfs_work *work)
7500{
7501 struct btrfs_delalloc_work *delalloc_work;
7502
7503 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7504 work);
7505 if (delalloc_work->wait)
7506 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7507 else
7508 filemap_flush(delalloc_work->inode->i_mapping);
7509
7510 if (delalloc_work->delay_iput)
7511 btrfs_add_delayed_iput(delalloc_work->inode);
7512 else
7513 iput(delalloc_work->inode);
7514 complete(&delalloc_work->completion);
7515}
7516
7517struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7518 int wait, int delay_iput)
7519{
7520 struct btrfs_delalloc_work *work;
7521
7522 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7523 if (!work)
7524 return NULL;
7525
7526 init_completion(&work->completion);
7527 INIT_LIST_HEAD(&work->list);
7528 work->inode = inode;
7529 work->wait = wait;
7530 work->delay_iput = delay_iput;
7531 work->work.func = btrfs_run_delalloc_work;
7532
7533 return work;
7534}
7535
7536void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7537{
7538 wait_for_completion(&work->completion);
7539 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7540}
7541
d352ac68
CM
7542/*
7543 * some fairly slow code that needs optimization. This walks the list
7544 * of all the inodes with pending delalloc and forces them to disk.
7545 */
24bbcf04 7546int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7547{
7548 struct list_head *head = &root->fs_info->delalloc_inodes;
7549 struct btrfs_inode *binode;
5b21f2ed 7550 struct inode *inode;
8ccf6f19
MX
7551 struct btrfs_delalloc_work *work, *next;
7552 struct list_head works;
7553 int ret = 0;
ea8c2819 7554
c146afad
YZ
7555 if (root->fs_info->sb->s_flags & MS_RDONLY)
7556 return -EROFS;
7557
8ccf6f19
MX
7558 INIT_LIST_HEAD(&works);
7559
75eff68e 7560 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7561 while (!list_empty(head)) {
ea8c2819
CM
7562 binode = list_entry(head->next, struct btrfs_inode,
7563 delalloc_inodes);
5b21f2ed
ZY
7564 inode = igrab(&binode->vfs_inode);
7565 if (!inode)
7566 list_del_init(&binode->delalloc_inodes);
75eff68e 7567 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7568 if (inode) {
8ccf6f19
MX
7569 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7570 if (!work) {
7571 ret = -ENOMEM;
7572 goto out;
7573 }
7574 list_add_tail(&work->list, &works);
7575 btrfs_queue_worker(&root->fs_info->flush_workers,
7576 &work->work);
5b21f2ed
ZY
7577 }
7578 cond_resched();
75eff68e 7579 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7580 }
75eff68e 7581 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7582
7583 /* the filemap_flush will queue IO into the worker threads, but
7584 * we have to make sure the IO is actually started and that
7585 * ordered extents get created before we return
7586 */
7587 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7588 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7589 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7590 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7591 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7592 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7593 }
7594 atomic_dec(&root->fs_info->async_submit_draining);
8ccf6f19
MX
7595out:
7596 list_for_each_entry_safe(work, next, &works, list) {
7597 list_del_init(&work->list);
7598 btrfs_wait_and_free_delalloc_work(work);
7599 }
7600 return ret;
ea8c2819
CM
7601}
7602
39279cc3
CM
7603static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7604 const char *symname)
7605{
7606 struct btrfs_trans_handle *trans;
7607 struct btrfs_root *root = BTRFS_I(dir)->root;
7608 struct btrfs_path *path;
7609 struct btrfs_key key;
1832a6d5 7610 struct inode *inode = NULL;
39279cc3
CM
7611 int err;
7612 int drop_inode = 0;
7613 u64 objectid;
00e4e6b3 7614 u64 index = 0 ;
39279cc3
CM
7615 int name_len;
7616 int datasize;
5f39d397 7617 unsigned long ptr;
39279cc3 7618 struct btrfs_file_extent_item *ei;
5f39d397 7619 struct extent_buffer *leaf;
39279cc3
CM
7620
7621 name_len = strlen(symname) + 1;
7622 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7623 return -ENAMETOOLONG;
1832a6d5 7624
9ed74f2d
JB
7625 /*
7626 * 2 items for inode item and ref
7627 * 2 items for dir items
7628 * 1 item for xattr if selinux is on
7629 */
a22285a6
YZ
7630 trans = btrfs_start_transaction(root, 5);
7631 if (IS_ERR(trans))
7632 return PTR_ERR(trans);
1832a6d5 7633
581bb050
LZ
7634 err = btrfs_find_free_ino(root, &objectid);
7635 if (err)
7636 goto out_unlock;
7637
aec7477b 7638 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7639 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7640 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7641 if (IS_ERR(inode)) {
7642 err = PTR_ERR(inode);
39279cc3 7643 goto out_unlock;
7cf96da3 7644 }
39279cc3 7645
2a7dba39 7646 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7647 if (err) {
7648 drop_inode = 1;
7649 goto out_unlock;
7650 }
7651
ad19db71
CS
7652 /*
7653 * If the active LSM wants to access the inode during
7654 * d_instantiate it needs these. Smack checks to see
7655 * if the filesystem supports xattrs by looking at the
7656 * ops vector.
7657 */
7658 inode->i_fop = &btrfs_file_operations;
7659 inode->i_op = &btrfs_file_inode_operations;
7660
a1b075d2 7661 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7662 if (err)
7663 drop_inode = 1;
7664 else {
7665 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7666 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7667 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7668 }
39279cc3
CM
7669 if (drop_inode)
7670 goto out_unlock;
7671
7672 path = btrfs_alloc_path();
d8926bb3
MF
7673 if (!path) {
7674 err = -ENOMEM;
7675 drop_inode = 1;
7676 goto out_unlock;
7677 }
33345d01 7678 key.objectid = btrfs_ino(inode);
39279cc3 7679 key.offset = 0;
39279cc3
CM
7680 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7681 datasize = btrfs_file_extent_calc_inline_size(name_len);
7682 err = btrfs_insert_empty_item(trans, root, path, &key,
7683 datasize);
54aa1f4d
CM
7684 if (err) {
7685 drop_inode = 1;
b0839166 7686 btrfs_free_path(path);
54aa1f4d
CM
7687 goto out_unlock;
7688 }
5f39d397
CM
7689 leaf = path->nodes[0];
7690 ei = btrfs_item_ptr(leaf, path->slots[0],
7691 struct btrfs_file_extent_item);
7692 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7693 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7694 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7695 btrfs_set_file_extent_encryption(leaf, ei, 0);
7696 btrfs_set_file_extent_compression(leaf, ei, 0);
7697 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7698 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7699
39279cc3 7700 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7701 write_extent_buffer(leaf, symname, ptr, name_len);
7702 btrfs_mark_buffer_dirty(leaf);
39279cc3 7703 btrfs_free_path(path);
5f39d397 7704
39279cc3
CM
7705 inode->i_op = &btrfs_symlink_inode_operations;
7706 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7707 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7708 inode_set_bytes(inode, name_len);
dbe674a9 7709 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7710 err = btrfs_update_inode(trans, root, inode);
7711 if (err)
7712 drop_inode = 1;
39279cc3
CM
7713
7714out_unlock:
08c422c2
AV
7715 if (!err)
7716 d_instantiate(dentry, inode);
7ad85bb7 7717 btrfs_end_transaction(trans, root);
39279cc3
CM
7718 if (drop_inode) {
7719 inode_dec_link_count(inode);
7720 iput(inode);
7721 }
b53d3f5d 7722 btrfs_btree_balance_dirty(root);
39279cc3
CM
7723 return err;
7724}
16432985 7725
0af3d00b
JB
7726static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7727 u64 start, u64 num_bytes, u64 min_size,
7728 loff_t actual_len, u64 *alloc_hint,
7729 struct btrfs_trans_handle *trans)
d899e052 7730{
5dc562c5
JB
7731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7732 struct extent_map *em;
d899e052
YZ
7733 struct btrfs_root *root = BTRFS_I(inode)->root;
7734 struct btrfs_key ins;
d899e052 7735 u64 cur_offset = start;
55a61d1d 7736 u64 i_size;
d899e052 7737 int ret = 0;
0af3d00b 7738 bool own_trans = true;
d899e052 7739
0af3d00b
JB
7740 if (trans)
7741 own_trans = false;
d899e052 7742 while (num_bytes > 0) {
0af3d00b
JB
7743 if (own_trans) {
7744 trans = btrfs_start_transaction(root, 3);
7745 if (IS_ERR(trans)) {
7746 ret = PTR_ERR(trans);
7747 break;
7748 }
5a303d5d
YZ
7749 }
7750
efa56464 7751 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7752 0, *alloc_hint, &ins, 1);
5a303d5d 7753 if (ret) {
0af3d00b
JB
7754 if (own_trans)
7755 btrfs_end_transaction(trans, root);
a22285a6 7756 break;
d899e052 7757 }
5a303d5d 7758
d899e052
YZ
7759 ret = insert_reserved_file_extent(trans, inode,
7760 cur_offset, ins.objectid,
7761 ins.offset, ins.offset,
920bbbfb 7762 ins.offset, 0, 0, 0,
d899e052 7763 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7764 if (ret) {
7765 btrfs_abort_transaction(trans, root, ret);
7766 if (own_trans)
7767 btrfs_end_transaction(trans, root);
7768 break;
7769 }
a1ed835e
CM
7770 btrfs_drop_extent_cache(inode, cur_offset,
7771 cur_offset + ins.offset -1, 0);
5a303d5d 7772
5dc562c5
JB
7773 em = alloc_extent_map();
7774 if (!em) {
7775 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7776 &BTRFS_I(inode)->runtime_flags);
7777 goto next;
7778 }
7779
7780 em->start = cur_offset;
7781 em->orig_start = cur_offset;
7782 em->len = ins.offset;
7783 em->block_start = ins.objectid;
7784 em->block_len = ins.offset;
b4939680 7785 em->orig_block_len = ins.offset;
5dc562c5
JB
7786 em->bdev = root->fs_info->fs_devices->latest_bdev;
7787 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7788 em->generation = trans->transid;
7789
7790 while (1) {
7791 write_lock(&em_tree->lock);
7792 ret = add_extent_mapping(em_tree, em);
7793 if (!ret)
7794 list_move(&em->list,
7795 &em_tree->modified_extents);
7796 write_unlock(&em_tree->lock);
7797 if (ret != -EEXIST)
7798 break;
7799 btrfs_drop_extent_cache(inode, cur_offset,
7800 cur_offset + ins.offset - 1,
7801 0);
7802 }
7803 free_extent_map(em);
7804next:
d899e052
YZ
7805 num_bytes -= ins.offset;
7806 cur_offset += ins.offset;
efa56464 7807 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7808
0c4d2d95 7809 inode_inc_iversion(inode);
d899e052 7810 inode->i_ctime = CURRENT_TIME;
6cbff00f 7811 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7812 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7813 (actual_len > inode->i_size) &&
7814 (cur_offset > inode->i_size)) {
d1ea6a61 7815 if (cur_offset > actual_len)
55a61d1d 7816 i_size = actual_len;
d1ea6a61 7817 else
55a61d1d
JB
7818 i_size = cur_offset;
7819 i_size_write(inode, i_size);
7820 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7821 }
7822
d899e052 7823 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7824
7825 if (ret) {
7826 btrfs_abort_transaction(trans, root, ret);
7827 if (own_trans)
7828 btrfs_end_transaction(trans, root);
7829 break;
7830 }
d899e052 7831
0af3d00b
JB
7832 if (own_trans)
7833 btrfs_end_transaction(trans, root);
5a303d5d 7834 }
d899e052
YZ
7835 return ret;
7836}
7837
0af3d00b
JB
7838int btrfs_prealloc_file_range(struct inode *inode, int mode,
7839 u64 start, u64 num_bytes, u64 min_size,
7840 loff_t actual_len, u64 *alloc_hint)
7841{
7842 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7843 min_size, actual_len, alloc_hint,
7844 NULL);
7845}
7846
7847int btrfs_prealloc_file_range_trans(struct inode *inode,
7848 struct btrfs_trans_handle *trans, int mode,
7849 u64 start, u64 num_bytes, u64 min_size,
7850 loff_t actual_len, u64 *alloc_hint)
7851{
7852 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7853 min_size, actual_len, alloc_hint, trans);
7854}
7855
e6dcd2dc
CM
7856static int btrfs_set_page_dirty(struct page *page)
7857{
e6dcd2dc
CM
7858 return __set_page_dirty_nobuffers(page);
7859}
7860
10556cb2 7861static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7862{
b83cc969 7863 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7864 umode_t mode = inode->i_mode;
b83cc969 7865
cb6db4e5
JM
7866 if (mask & MAY_WRITE &&
7867 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7868 if (btrfs_root_readonly(root))
7869 return -EROFS;
7870 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7871 return -EACCES;
7872 }
2830ba7f 7873 return generic_permission(inode, mask);
fdebe2bd 7874}
39279cc3 7875
6e1d5dcc 7876static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7877 .getattr = btrfs_getattr,
39279cc3
CM
7878 .lookup = btrfs_lookup,
7879 .create = btrfs_create,
7880 .unlink = btrfs_unlink,
7881 .link = btrfs_link,
7882 .mkdir = btrfs_mkdir,
7883 .rmdir = btrfs_rmdir,
7884 .rename = btrfs_rename,
7885 .symlink = btrfs_symlink,
7886 .setattr = btrfs_setattr,
618e21d5 7887 .mknod = btrfs_mknod,
95819c05
CH
7888 .setxattr = btrfs_setxattr,
7889 .getxattr = btrfs_getxattr,
5103e947 7890 .listxattr = btrfs_listxattr,
95819c05 7891 .removexattr = btrfs_removexattr,
fdebe2bd 7892 .permission = btrfs_permission,
4e34e719 7893 .get_acl = btrfs_get_acl,
39279cc3 7894};
6e1d5dcc 7895static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7896 .lookup = btrfs_lookup,
fdebe2bd 7897 .permission = btrfs_permission,
4e34e719 7898 .get_acl = btrfs_get_acl,
39279cc3 7899};
76dda93c 7900
828c0950 7901static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7902 .llseek = generic_file_llseek,
7903 .read = generic_read_dir,
cbdf5a24 7904 .readdir = btrfs_real_readdir,
34287aa3 7905 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7906#ifdef CONFIG_COMPAT
34287aa3 7907 .compat_ioctl = btrfs_ioctl,
39279cc3 7908#endif
6bf13c0c 7909 .release = btrfs_release_file,
e02119d5 7910 .fsync = btrfs_sync_file,
39279cc3
CM
7911};
7912
d1310b2e 7913static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7914 .fill_delalloc = run_delalloc_range,
065631f6 7915 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7916 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7917 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7918 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7919 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7920 .set_bit_hook = btrfs_set_bit_hook,
7921 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7922 .merge_extent_hook = btrfs_merge_extent_hook,
7923 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7924};
7925
35054394
CM
7926/*
7927 * btrfs doesn't support the bmap operation because swapfiles
7928 * use bmap to make a mapping of extents in the file. They assume
7929 * these extents won't change over the life of the file and they
7930 * use the bmap result to do IO directly to the drive.
7931 *
7932 * the btrfs bmap call would return logical addresses that aren't
7933 * suitable for IO and they also will change frequently as COW
7934 * operations happen. So, swapfile + btrfs == corruption.
7935 *
7936 * For now we're avoiding this by dropping bmap.
7937 */
7f09410b 7938static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7939 .readpage = btrfs_readpage,
7940 .writepage = btrfs_writepage,
b293f02e 7941 .writepages = btrfs_writepages,
3ab2fb5a 7942 .readpages = btrfs_readpages,
16432985 7943 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7944 .invalidatepage = btrfs_invalidatepage,
7945 .releasepage = btrfs_releasepage,
e6dcd2dc 7946 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7947 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7948};
7949
7f09410b 7950static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7951 .readpage = btrfs_readpage,
7952 .writepage = btrfs_writepage,
2bf5a725
CM
7953 .invalidatepage = btrfs_invalidatepage,
7954 .releasepage = btrfs_releasepage,
39279cc3
CM
7955};
7956
6e1d5dcc 7957static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7958 .getattr = btrfs_getattr,
7959 .setattr = btrfs_setattr,
95819c05
CH
7960 .setxattr = btrfs_setxattr,
7961 .getxattr = btrfs_getxattr,
5103e947 7962 .listxattr = btrfs_listxattr,
95819c05 7963 .removexattr = btrfs_removexattr,
fdebe2bd 7964 .permission = btrfs_permission,
1506fcc8 7965 .fiemap = btrfs_fiemap,
4e34e719 7966 .get_acl = btrfs_get_acl,
e41f941a 7967 .update_time = btrfs_update_time,
39279cc3 7968};
6e1d5dcc 7969static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7970 .getattr = btrfs_getattr,
7971 .setattr = btrfs_setattr,
fdebe2bd 7972 .permission = btrfs_permission,
95819c05
CH
7973 .setxattr = btrfs_setxattr,
7974 .getxattr = btrfs_getxattr,
33268eaf 7975 .listxattr = btrfs_listxattr,
95819c05 7976 .removexattr = btrfs_removexattr,
4e34e719 7977 .get_acl = btrfs_get_acl,
e41f941a 7978 .update_time = btrfs_update_time,
618e21d5 7979};
6e1d5dcc 7980static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7981 .readlink = generic_readlink,
7982 .follow_link = page_follow_link_light,
7983 .put_link = page_put_link,
f209561a 7984 .getattr = btrfs_getattr,
22c44fe6 7985 .setattr = btrfs_setattr,
fdebe2bd 7986 .permission = btrfs_permission,
0279b4cd
JO
7987 .setxattr = btrfs_setxattr,
7988 .getxattr = btrfs_getxattr,
7989 .listxattr = btrfs_listxattr,
7990 .removexattr = btrfs_removexattr,
4e34e719 7991 .get_acl = btrfs_get_acl,
e41f941a 7992 .update_time = btrfs_update_time,
39279cc3 7993};
76dda93c 7994
82d339d9 7995const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7996 .d_delete = btrfs_dentry_delete,
b4aff1f8 7997 .d_release = btrfs_dentry_release,
76dda93c 7998};