Btrfs: clone, don't create invalid hole extent map
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
39279cc3
CM
62
63struct btrfs_iget_args {
90d3e592 64 struct btrfs_key *location;
39279cc3
CM
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
40f76580 128static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 129 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
fe3f566c 132 int compress_type,
c8b97818
CM
133 struct page **compressed_pages)
134{
c8b97818
CM
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
c8b97818 143 unsigned long offset;
c8b97818 144
fe3f566c 145 if (compressed_size && compressed_pages)
c8b97818 146 cur_size = compressed_size;
c8b97818 147
1acae57b 148 inode_add_bytes(inode, size);
c8b97818 149
1acae57b
FDBM
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
c8b97818 153
1acae57b
FDBM
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818 157
1acae57b
FDBM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
c8b97818
CM
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
1acae57b 206 btrfs_release_path(path);
c8b97818 207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818 221fail:
c8b97818
CM
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
00361589
JB
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
c8b97818 236{
00361589 237 struct btrfs_trans_handle *trans;
c8b97818
CM
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
fda2832f 241 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
242 u64 data_len = inline_len;
243 int ret;
1acae57b
FDBM
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
c8b97818
CM
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
70b99e69 252 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
1acae57b
FDBM
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
00361589 265 trans = btrfs_join_transaction(root);
1acae57b
FDBM
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
00361589 268 return PTR_ERR(trans);
1acae57b 269 }
00361589
JB
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
1acae57b
FDBM
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
00361589
JB
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
c8b97818
CM
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
c8b97818 291 inline_len, compressed_size,
fe3f566c 292 compress_type, compressed_pages);
2adcac1a 293 if (ret && ret != -ENOSPC) {
79787eaa 294 btrfs_abort_transaction(trans, root, ret);
00361589 295 goto out;
2adcac1a 296 } else if (ret == -ENOSPC) {
00361589
JB
297 ret = 1;
298 goto out;
79787eaa 299 }
2adcac1a 300
bdc20e67 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 304out:
1acae57b 305 btrfs_free_path(path);
00361589
JB
306 btrfs_end_transaction(trans, root);
307 return ret;
c8b97818
CM
308}
309
771ed689
CM
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
261507a0 316 int compress_type;
771ed689
CM
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
261507a0
LZ
334 unsigned long nr_pages,
335 int compress_type)
771ed689
CM
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 340 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
261507a0 346 async_extent->compress_type = compress_type;
771ed689
CM
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
d352ac68 351/*
771ed689
CM
352 * we create compressed extents in two phases. The first
353 * phase compresses a range of pages that have already been
354 * locked (both pages and state bits are locked).
c8b97818 355 *
771ed689
CM
356 * This is done inside an ordered work queue, and the compression
357 * is spread across many cpus. The actual IO submission is step
358 * two, and the ordered work queue takes care of making sure that
359 * happens in the same order things were put onto the queue by
360 * writepages and friends.
c8b97818 361 *
771ed689
CM
362 * If this code finds it can't get good compression, it puts an
363 * entry onto the work queue to write the uncompressed bytes. This
364 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
365 * are written in the same order that the flusher thread sent them
366 * down.
d352ac68 367 */
771ed689
CM
368static noinline int compress_file_range(struct inode *inode,
369 struct page *locked_page,
370 u64 start, u64 end,
371 struct async_cow *async_cow,
372 int *num_added)
b888db2b
CM
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 375 u64 num_bytes;
db94535d 376 u64 blocksize = root->sectorsize;
c8b97818 377 u64 actual_end;
42dc7bab 378 u64 isize = i_size_read(inode);
e6dcd2dc 379 int ret = 0;
c8b97818
CM
380 struct page **pages = NULL;
381 unsigned long nr_pages;
382 unsigned long nr_pages_ret = 0;
383 unsigned long total_compressed = 0;
384 unsigned long total_in = 0;
385 unsigned long max_compressed = 128 * 1024;
771ed689 386 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
387 int i;
388 int will_compress;
261507a0 389 int compress_type = root->fs_info->compress_type;
4adaa611 390 int redirty = 0;
b888db2b 391
4cb13e5d
LB
392 /* if this is a small write inside eof, kick off a defrag */
393 if ((end - start + 1) < 16 * 1024 &&
394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
395 btrfs_add_inode_defrag(NULL, inode);
396
68bb462d
WS
397 /*
398 * skip compression for a small file range(<=blocksize) that
399 * isn't an inline extent, since it dosen't save disk space at all.
400 */
401 if ((end - start + 1) <= blocksize &&
402 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
403 goto cleanup_and_bail_uncompressed;
404
42dc7bab 405 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
406again:
407 will_compress = 0;
408 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
409 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 410
f03d9301
CM
411 /*
412 * we don't want to send crud past the end of i_size through
413 * compression, that's just a waste of CPU time. So, if the
414 * end of the file is before the start of our current
415 * requested range of bytes, we bail out to the uncompressed
416 * cleanup code that can deal with all of this.
417 *
418 * It isn't really the fastest way to fix things, but this is a
419 * very uncommon corner.
420 */
421 if (actual_end <= start)
422 goto cleanup_and_bail_uncompressed;
423
c8b97818
CM
424 total_compressed = actual_end - start;
425
426 /* we want to make sure that amount of ram required to uncompress
427 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
428 * of a compressed extent to 128k. This is a crucial number
429 * because it also controls how easily we can spread reads across
430 * cpus for decompression.
431 *
432 * We also want to make sure the amount of IO required to do
433 * a random read is reasonably small, so we limit the size of
434 * a compressed extent to 128k.
c8b97818
CM
435 */
436 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 437 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 438 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
439 total_in = 0;
440 ret = 0;
db94535d 441
771ed689
CM
442 /*
443 * we do compression for mount -o compress and when the
444 * inode has not been flagged as nocompress. This flag can
445 * change at any time if we discover bad compression ratios.
c8b97818 446 */
6cbff00f 447 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 448 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
449 (BTRFS_I(inode)->force_compress) ||
450 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 451 WARN_ON(pages);
cfbc246e 452 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
453 if (!pages) {
454 /* just bail out to the uncompressed code */
455 goto cont;
456 }
c8b97818 457
261507a0
LZ
458 if (BTRFS_I(inode)->force_compress)
459 compress_type = BTRFS_I(inode)->force_compress;
460
4adaa611
CM
461 /*
462 * we need to call clear_page_dirty_for_io on each
463 * page in the range. Otherwise applications with the file
464 * mmap'd can wander in and change the page contents while
465 * we are compressing them.
466 *
467 * If the compression fails for any reason, we set the pages
468 * dirty again later on.
469 */
470 extent_range_clear_dirty_for_io(inode, start, end);
471 redirty = 1;
261507a0
LZ
472 ret = btrfs_compress_pages(compress_type,
473 inode->i_mapping, start,
474 total_compressed, pages,
475 nr_pages, &nr_pages_ret,
476 &total_in,
477 &total_compressed,
478 max_compressed);
c8b97818
CM
479
480 if (!ret) {
481 unsigned long offset = total_compressed &
482 (PAGE_CACHE_SIZE - 1);
483 struct page *page = pages[nr_pages_ret - 1];
484 char *kaddr;
485
486 /* zero the tail end of the last page, we might be
487 * sending it down to disk
488 */
489 if (offset) {
7ac687d9 490 kaddr = kmap_atomic(page);
c8b97818
CM
491 memset(kaddr + offset, 0,
492 PAGE_CACHE_SIZE - offset);
7ac687d9 493 kunmap_atomic(kaddr);
c8b97818
CM
494 }
495 will_compress = 1;
496 }
497 }
560f7d75 498cont:
c8b97818
CM
499 if (start == 0) {
500 /* lets try to make an inline extent */
771ed689 501 if (ret || total_in < (actual_end - start)) {
c8b97818 502 /* we didn't compress the entire range, try
771ed689 503 * to make an uncompressed inline extent.
c8b97818 504 */
00361589
JB
505 ret = cow_file_range_inline(root, inode, start, end,
506 0, 0, NULL);
c8b97818 507 } else {
771ed689 508 /* try making a compressed inline extent */
00361589 509 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
510 total_compressed,
511 compress_type, pages);
c8b97818 512 }
79787eaa 513 if (ret <= 0) {
151a41bc
JB
514 unsigned long clear_flags = EXTENT_DELALLOC |
515 EXTENT_DEFRAG;
516 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
517
771ed689 518 /*
79787eaa
JM
519 * inline extent creation worked or returned error,
520 * we don't need to create any more async work items.
521 * Unlock and free up our temp pages.
771ed689 522 */
c2790a2e 523 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 524 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
525 PAGE_CLEAR_DIRTY |
526 PAGE_SET_WRITEBACK |
527 PAGE_END_WRITEBACK);
c8b97818
CM
528 goto free_pages_out;
529 }
530 }
531
532 if (will_compress) {
533 /*
534 * we aren't doing an inline extent round the compressed size
535 * up to a block size boundary so the allocator does sane
536 * things
537 */
fda2832f 538 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
539
540 /*
541 * one last check to make sure the compression is really a
542 * win, compare the page count read with the blocks on disk
543 */
fda2832f 544 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
545 if (total_compressed >= total_in) {
546 will_compress = 0;
547 } else {
c8b97818
CM
548 num_bytes = total_in;
549 }
550 }
551 if (!will_compress && pages) {
552 /*
553 * the compression code ran but failed to make things smaller,
554 * free any pages it allocated and our page pointer array
555 */
556 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 557 WARN_ON(pages[i]->mapping);
c8b97818
CM
558 page_cache_release(pages[i]);
559 }
560 kfree(pages);
561 pages = NULL;
562 total_compressed = 0;
563 nr_pages_ret = 0;
564
565 /* flag the file so we don't compress in the future */
1e701a32
CM
566 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
567 !(BTRFS_I(inode)->force_compress)) {
a555f810 568 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 569 }
c8b97818 570 }
771ed689
CM
571 if (will_compress) {
572 *num_added += 1;
c8b97818 573
771ed689
CM
574 /* the async work queues will take care of doing actual
575 * allocation on disk for these compressed pages,
576 * and will submit them to the elevator.
577 */
578 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
579 total_compressed, pages, nr_pages_ret,
580 compress_type);
179e29e4 581
24ae6365 582 if (start + num_bytes < end) {
771ed689
CM
583 start += num_bytes;
584 pages = NULL;
585 cond_resched();
586 goto again;
587 }
588 } else {
f03d9301 589cleanup_and_bail_uncompressed:
771ed689
CM
590 /*
591 * No compression, but we still need to write the pages in
592 * the file we've been given so far. redirty the locked
593 * page if it corresponds to our extent and set things up
594 * for the async work queue to run cow_file_range to do
595 * the normal delalloc dance
596 */
597 if (page_offset(locked_page) >= start &&
598 page_offset(locked_page) <= end) {
599 __set_page_dirty_nobuffers(locked_page);
600 /* unlocked later on in the async handlers */
601 }
4adaa611
CM
602 if (redirty)
603 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
604 add_async_extent(async_cow, start, end - start + 1,
605 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
606 *num_added += 1;
607 }
3b951516 608
771ed689 609out:
79787eaa 610 return ret;
771ed689
CM
611
612free_pages_out:
613 for (i = 0; i < nr_pages_ret; i++) {
614 WARN_ON(pages[i]->mapping);
615 page_cache_release(pages[i]);
616 }
d397712b 617 kfree(pages);
771ed689
CM
618
619 goto out;
620}
621
622/*
623 * phase two of compressed writeback. This is the ordered portion
624 * of the code, which only gets called in the order the work was
625 * queued. We walk all the async extents created by compress_file_range
626 * and send them down to the disk.
627 */
628static noinline int submit_compressed_extents(struct inode *inode,
629 struct async_cow *async_cow)
630{
631 struct async_extent *async_extent;
632 u64 alloc_hint = 0;
771ed689
CM
633 struct btrfs_key ins;
634 struct extent_map *em;
635 struct btrfs_root *root = BTRFS_I(inode)->root;
636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
637 struct extent_io_tree *io_tree;
f5a84ee3 638 int ret = 0;
771ed689
CM
639
640 if (list_empty(&async_cow->extents))
641 return 0;
642
3e04e7f1 643again:
d397712b 644 while (!list_empty(&async_cow->extents)) {
771ed689
CM
645 async_extent = list_entry(async_cow->extents.next,
646 struct async_extent, list);
647 list_del(&async_extent->list);
c8b97818 648
771ed689
CM
649 io_tree = &BTRFS_I(inode)->io_tree;
650
f5a84ee3 651retry:
771ed689
CM
652 /* did the compression code fall back to uncompressed IO? */
653 if (!async_extent->pages) {
654 int page_started = 0;
655 unsigned long nr_written = 0;
656
657 lock_extent(io_tree, async_extent->start,
2ac55d41 658 async_extent->start +
d0082371 659 async_extent->ram_size - 1);
771ed689
CM
660
661 /* allocate blocks */
f5a84ee3
JB
662 ret = cow_file_range(inode, async_cow->locked_page,
663 async_extent->start,
664 async_extent->start +
665 async_extent->ram_size - 1,
666 &page_started, &nr_written, 0);
771ed689 667
79787eaa
JM
668 /* JDM XXX */
669
771ed689
CM
670 /*
671 * if page_started, cow_file_range inserted an
672 * inline extent and took care of all the unlocking
673 * and IO for us. Otherwise, we need to submit
674 * all those pages down to the drive.
675 */
f5a84ee3 676 if (!page_started && !ret)
771ed689
CM
677 extent_write_locked_range(io_tree,
678 inode, async_extent->start,
d397712b 679 async_extent->start +
771ed689
CM
680 async_extent->ram_size - 1,
681 btrfs_get_extent,
682 WB_SYNC_ALL);
3e04e7f1
JB
683 else if (ret)
684 unlock_page(async_cow->locked_page);
771ed689
CM
685 kfree(async_extent);
686 cond_resched();
687 continue;
688 }
689
690 lock_extent(io_tree, async_extent->start,
d0082371 691 async_extent->start + async_extent->ram_size - 1);
771ed689 692
00361589 693 ret = btrfs_reserve_extent(root,
771ed689
CM
694 async_extent->compressed_size,
695 async_extent->compressed_size,
e570fd27 696 0, alloc_hint, &ins, 1, 1);
f5a84ee3
JB
697 if (ret) {
698 int i;
3e04e7f1 699
f5a84ee3
JB
700 for (i = 0; i < async_extent->nr_pages; i++) {
701 WARN_ON(async_extent->pages[i]->mapping);
702 page_cache_release(async_extent->pages[i]);
703 }
704 kfree(async_extent->pages);
705 async_extent->nr_pages = 0;
706 async_extent->pages = NULL;
3e04e7f1 707
fdf8e2ea
JB
708 if (ret == -ENOSPC) {
709 unlock_extent(io_tree, async_extent->start,
710 async_extent->start +
711 async_extent->ram_size - 1);
ce62003f
LB
712
713 /*
714 * we need to redirty the pages if we decide to
715 * fallback to uncompressed IO, otherwise we
716 * will not submit these pages down to lower
717 * layers.
718 */
719 extent_range_redirty_for_io(inode,
720 async_extent->start,
721 async_extent->start +
722 async_extent->ram_size - 1);
723
79787eaa 724 goto retry;
fdf8e2ea 725 }
3e04e7f1 726 goto out_free;
f5a84ee3
JB
727 }
728
c2167754
YZ
729 /*
730 * here we're doing allocation and writeback of the
731 * compressed pages
732 */
733 btrfs_drop_extent_cache(inode, async_extent->start,
734 async_extent->start +
735 async_extent->ram_size - 1, 0);
736
172ddd60 737 em = alloc_extent_map();
b9aa55be
LB
738 if (!em) {
739 ret = -ENOMEM;
3e04e7f1 740 goto out_free_reserve;
b9aa55be 741 }
771ed689
CM
742 em->start = async_extent->start;
743 em->len = async_extent->ram_size;
445a6944 744 em->orig_start = em->start;
2ab28f32
JB
745 em->mod_start = em->start;
746 em->mod_len = em->len;
c8b97818 747
771ed689
CM
748 em->block_start = ins.objectid;
749 em->block_len = ins.offset;
b4939680 750 em->orig_block_len = ins.offset;
cc95bef6 751 em->ram_bytes = async_extent->ram_size;
771ed689 752 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 753 em->compress_type = async_extent->compress_type;
771ed689
CM
754 set_bit(EXTENT_FLAG_PINNED, &em->flags);
755 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 756 em->generation = -1;
771ed689 757
d397712b 758 while (1) {
890871be 759 write_lock(&em_tree->lock);
09a2a8f9 760 ret = add_extent_mapping(em_tree, em, 1);
890871be 761 write_unlock(&em_tree->lock);
771ed689
CM
762 if (ret != -EEXIST) {
763 free_extent_map(em);
764 break;
765 }
766 btrfs_drop_extent_cache(inode, async_extent->start,
767 async_extent->start +
768 async_extent->ram_size - 1, 0);
769 }
770
3e04e7f1
JB
771 if (ret)
772 goto out_free_reserve;
773
261507a0
LZ
774 ret = btrfs_add_ordered_extent_compress(inode,
775 async_extent->start,
776 ins.objectid,
777 async_extent->ram_size,
778 ins.offset,
779 BTRFS_ORDERED_COMPRESSED,
780 async_extent->compress_type);
3e04e7f1
JB
781 if (ret)
782 goto out_free_reserve;
771ed689 783
771ed689
CM
784 /*
785 * clear dirty, set writeback and unlock the pages.
786 */
c2790a2e 787 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
788 async_extent->start +
789 async_extent->ram_size - 1,
151a41bc
JB
790 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
791 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 792 PAGE_SET_WRITEBACK);
771ed689 793 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
794 async_extent->start,
795 async_extent->ram_size,
796 ins.objectid,
797 ins.offset, async_extent->pages,
798 async_extent->nr_pages);
771ed689
CM
799 alloc_hint = ins.objectid + ins.offset;
800 kfree(async_extent);
3e04e7f1
JB
801 if (ret)
802 goto out;
771ed689
CM
803 cond_resched();
804 }
79787eaa
JM
805 ret = 0;
806out:
807 return ret;
3e04e7f1 808out_free_reserve:
e570fd27 809 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 810out_free:
c2790a2e 811 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
812 async_extent->start +
813 async_extent->ram_size - 1,
c2790a2e 814 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
815 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
816 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
817 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 818 kfree(async_extent);
3e04e7f1 819 goto again;
771ed689
CM
820}
821
4b46fce2
JB
822static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
823 u64 num_bytes)
824{
825 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
826 struct extent_map *em;
827 u64 alloc_hint = 0;
828
829 read_lock(&em_tree->lock);
830 em = search_extent_mapping(em_tree, start, num_bytes);
831 if (em) {
832 /*
833 * if block start isn't an actual block number then find the
834 * first block in this inode and use that as a hint. If that
835 * block is also bogus then just don't worry about it.
836 */
837 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
838 free_extent_map(em);
839 em = search_extent_mapping(em_tree, 0, 0);
840 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
841 alloc_hint = em->block_start;
842 if (em)
843 free_extent_map(em);
844 } else {
845 alloc_hint = em->block_start;
846 free_extent_map(em);
847 }
848 }
849 read_unlock(&em_tree->lock);
850
851 return alloc_hint;
852}
853
771ed689
CM
854/*
855 * when extent_io.c finds a delayed allocation range in the file,
856 * the call backs end up in this code. The basic idea is to
857 * allocate extents on disk for the range, and create ordered data structs
858 * in ram to track those extents.
859 *
860 * locked_page is the page that writepage had locked already. We use
861 * it to make sure we don't do extra locks or unlocks.
862 *
863 * *page_started is set to one if we unlock locked_page and do everything
864 * required to start IO on it. It may be clean and already done with
865 * IO when we return.
866 */
00361589
JB
867static noinline int cow_file_range(struct inode *inode,
868 struct page *locked_page,
869 u64 start, u64 end, int *page_started,
870 unsigned long *nr_written,
871 int unlock)
771ed689 872{
00361589 873 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
874 u64 alloc_hint = 0;
875 u64 num_bytes;
876 unsigned long ram_size;
877 u64 disk_num_bytes;
878 u64 cur_alloc_size;
879 u64 blocksize = root->sectorsize;
771ed689
CM
880 struct btrfs_key ins;
881 struct extent_map *em;
882 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
883 int ret = 0;
884
02ecd2c2
JB
885 if (btrfs_is_free_space_inode(inode)) {
886 WARN_ON_ONCE(1);
29bce2f3
JB
887 ret = -EINVAL;
888 goto out_unlock;
02ecd2c2 889 }
771ed689 890
fda2832f 891 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
892 num_bytes = max(blocksize, num_bytes);
893 disk_num_bytes = num_bytes;
771ed689 894
4cb5300b 895 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
896 if (num_bytes < 64 * 1024 &&
897 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 898 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 899
771ed689
CM
900 if (start == 0) {
901 /* lets try to make an inline extent */
00361589
JB
902 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
903 NULL);
771ed689 904 if (ret == 0) {
c2790a2e
JB
905 extent_clear_unlock_delalloc(inode, start, end, NULL,
906 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 907 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
908 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
909 PAGE_END_WRITEBACK);
c2167754 910
771ed689
CM
911 *nr_written = *nr_written +
912 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
913 *page_started = 1;
771ed689 914 goto out;
79787eaa 915 } else if (ret < 0) {
79787eaa 916 goto out_unlock;
771ed689
CM
917 }
918 }
919
920 BUG_ON(disk_num_bytes >
6c41761f 921 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 922
4b46fce2 923 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
924 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
925
d397712b 926 while (disk_num_bytes > 0) {
a791e35e
CM
927 unsigned long op;
928
287a0ab9 929 cur_alloc_size = disk_num_bytes;
00361589 930 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 931 root->sectorsize, 0, alloc_hint,
e570fd27 932 &ins, 1, 1);
00361589 933 if (ret < 0)
79787eaa 934 goto out_unlock;
d397712b 935
172ddd60 936 em = alloc_extent_map();
b9aa55be
LB
937 if (!em) {
938 ret = -ENOMEM;
ace68bac 939 goto out_reserve;
b9aa55be 940 }
e6dcd2dc 941 em->start = start;
445a6944 942 em->orig_start = em->start;
771ed689
CM
943 ram_size = ins.offset;
944 em->len = ins.offset;
2ab28f32
JB
945 em->mod_start = em->start;
946 em->mod_len = em->len;
c8b97818 947
e6dcd2dc 948 em->block_start = ins.objectid;
c8b97818 949 em->block_len = ins.offset;
b4939680 950 em->orig_block_len = ins.offset;
cc95bef6 951 em->ram_bytes = ram_size;
e6dcd2dc 952 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 953 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 954 em->generation = -1;
c8b97818 955
d397712b 956 while (1) {
890871be 957 write_lock(&em_tree->lock);
09a2a8f9 958 ret = add_extent_mapping(em_tree, em, 1);
890871be 959 write_unlock(&em_tree->lock);
e6dcd2dc
CM
960 if (ret != -EEXIST) {
961 free_extent_map(em);
962 break;
963 }
964 btrfs_drop_extent_cache(inode, start,
c8b97818 965 start + ram_size - 1, 0);
e6dcd2dc 966 }
ace68bac
LB
967 if (ret)
968 goto out_reserve;
e6dcd2dc 969
98d20f67 970 cur_alloc_size = ins.offset;
e6dcd2dc 971 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 972 ram_size, cur_alloc_size, 0);
ace68bac
LB
973 if (ret)
974 goto out_reserve;
c8b97818 975
17d217fe
YZ
976 if (root->root_key.objectid ==
977 BTRFS_DATA_RELOC_TREE_OBJECTID) {
978 ret = btrfs_reloc_clone_csums(inode, start,
979 cur_alloc_size);
00361589 980 if (ret)
ace68bac 981 goto out_reserve;
17d217fe
YZ
982 }
983
d397712b 984 if (disk_num_bytes < cur_alloc_size)
3b951516 985 break;
d397712b 986
c8b97818
CM
987 /* we're not doing compressed IO, don't unlock the first
988 * page (which the caller expects to stay locked), don't
989 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
990 *
991 * Do set the Private2 bit so we know this page was properly
992 * setup for writepage
c8b97818 993 */
c2790a2e
JB
994 op = unlock ? PAGE_UNLOCK : 0;
995 op |= PAGE_SET_PRIVATE2;
a791e35e 996
c2790a2e
JB
997 extent_clear_unlock_delalloc(inode, start,
998 start + ram_size - 1, locked_page,
999 EXTENT_LOCKED | EXTENT_DELALLOC,
1000 op);
c8b97818 1001 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1002 num_bytes -= cur_alloc_size;
1003 alloc_hint = ins.objectid + ins.offset;
1004 start += cur_alloc_size;
b888db2b 1005 }
79787eaa 1006out:
be20aa9d 1007 return ret;
b7d5b0a8 1008
ace68bac 1009out_reserve:
e570fd27 1010 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1011out_unlock:
c2790a2e 1012 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1013 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1014 EXTENT_DELALLOC | EXTENT_DEFRAG,
1015 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1016 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1017 goto out;
771ed689 1018}
c8b97818 1019
771ed689
CM
1020/*
1021 * work queue call back to started compression on a file and pages
1022 */
1023static noinline void async_cow_start(struct btrfs_work *work)
1024{
1025 struct async_cow *async_cow;
1026 int num_added = 0;
1027 async_cow = container_of(work, struct async_cow, work);
1028
1029 compress_file_range(async_cow->inode, async_cow->locked_page,
1030 async_cow->start, async_cow->end, async_cow,
1031 &num_added);
8180ef88 1032 if (num_added == 0) {
cb77fcd8 1033 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1034 async_cow->inode = NULL;
8180ef88 1035 }
771ed689
CM
1036}
1037
1038/*
1039 * work queue call back to submit previously compressed pages
1040 */
1041static noinline void async_cow_submit(struct btrfs_work *work)
1042{
1043 struct async_cow *async_cow;
1044 struct btrfs_root *root;
1045 unsigned long nr_pages;
1046
1047 async_cow = container_of(work, struct async_cow, work);
1048
1049 root = async_cow->root;
1050 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1051 PAGE_CACHE_SHIFT;
1052
66657b31 1053 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1054 5 * 1024 * 1024 &&
771ed689
CM
1055 waitqueue_active(&root->fs_info->async_submit_wait))
1056 wake_up(&root->fs_info->async_submit_wait);
1057
d397712b 1058 if (async_cow->inode)
771ed689 1059 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1060}
c8b97818 1061
771ed689
CM
1062static noinline void async_cow_free(struct btrfs_work *work)
1063{
1064 struct async_cow *async_cow;
1065 async_cow = container_of(work, struct async_cow, work);
8180ef88 1066 if (async_cow->inode)
cb77fcd8 1067 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1068 kfree(async_cow);
1069}
1070
1071static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1072 u64 start, u64 end, int *page_started,
1073 unsigned long *nr_written)
1074{
1075 struct async_cow *async_cow;
1076 struct btrfs_root *root = BTRFS_I(inode)->root;
1077 unsigned long nr_pages;
1078 u64 cur_end;
287082b0 1079 int limit = 10 * 1024 * 1024;
771ed689 1080
a3429ab7
CM
1081 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1082 1, 0, NULL, GFP_NOFS);
d397712b 1083 while (start < end) {
771ed689 1084 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1085 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1086 async_cow->inode = igrab(inode);
771ed689
CM
1087 async_cow->root = root;
1088 async_cow->locked_page = locked_page;
1089 async_cow->start = start;
1090
6cbff00f 1091 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1092 cur_end = end;
1093 else
1094 cur_end = min(end, start + 512 * 1024 - 1);
1095
1096 async_cow->end = cur_end;
1097 INIT_LIST_HEAD(&async_cow->extents);
1098
afe3d242
QW
1099 btrfs_init_work(&async_cow->work, async_cow_start,
1100 async_cow_submit, async_cow_free);
771ed689 1101
771ed689
CM
1102 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1103 PAGE_CACHE_SHIFT;
1104 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1105
afe3d242
QW
1106 btrfs_queue_work(root->fs_info->delalloc_workers,
1107 &async_cow->work);
771ed689
CM
1108
1109 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1110 wait_event(root->fs_info->async_submit_wait,
1111 (atomic_read(&root->fs_info->async_delalloc_pages) <
1112 limit));
1113 }
1114
d397712b 1115 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1116 atomic_read(&root->fs_info->async_delalloc_pages)) {
1117 wait_event(root->fs_info->async_submit_wait,
1118 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1119 0));
1120 }
1121
1122 *nr_written += nr_pages;
1123 start = cur_end + 1;
1124 }
1125 *page_started = 1;
1126 return 0;
be20aa9d
CM
1127}
1128
d397712b 1129static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1130 u64 bytenr, u64 num_bytes)
1131{
1132 int ret;
1133 struct btrfs_ordered_sum *sums;
1134 LIST_HEAD(list);
1135
07d400a6 1136 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1137 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1138 if (ret == 0 && list_empty(&list))
1139 return 0;
1140
1141 while (!list_empty(&list)) {
1142 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1143 list_del(&sums->list);
1144 kfree(sums);
1145 }
1146 return 1;
1147}
1148
d352ac68
CM
1149/*
1150 * when nowcow writeback call back. This checks for snapshots or COW copies
1151 * of the extents that exist in the file, and COWs the file as required.
1152 *
1153 * If no cow copies or snapshots exist, we write directly to the existing
1154 * blocks on disk
1155 */
7f366cfe
CM
1156static noinline int run_delalloc_nocow(struct inode *inode,
1157 struct page *locked_page,
771ed689
CM
1158 u64 start, u64 end, int *page_started, int force,
1159 unsigned long *nr_written)
be20aa9d 1160{
be20aa9d 1161 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1162 struct btrfs_trans_handle *trans;
be20aa9d 1163 struct extent_buffer *leaf;
be20aa9d 1164 struct btrfs_path *path;
80ff3856 1165 struct btrfs_file_extent_item *fi;
be20aa9d 1166 struct btrfs_key found_key;
80ff3856
YZ
1167 u64 cow_start;
1168 u64 cur_offset;
1169 u64 extent_end;
5d4f98a2 1170 u64 extent_offset;
80ff3856
YZ
1171 u64 disk_bytenr;
1172 u64 num_bytes;
b4939680 1173 u64 disk_num_bytes;
cc95bef6 1174 u64 ram_bytes;
80ff3856 1175 int extent_type;
79787eaa 1176 int ret, err;
d899e052 1177 int type;
80ff3856
YZ
1178 int nocow;
1179 int check_prev = 1;
82d5902d 1180 bool nolock;
33345d01 1181 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1182
1183 path = btrfs_alloc_path();
17ca04af 1184 if (!path) {
c2790a2e
JB
1185 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1186 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1187 EXTENT_DO_ACCOUNTING |
1188 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1189 PAGE_CLEAR_DIRTY |
1190 PAGE_SET_WRITEBACK |
1191 PAGE_END_WRITEBACK);
d8926bb3 1192 return -ENOMEM;
17ca04af 1193 }
82d5902d 1194
83eea1f1 1195 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1196
1197 if (nolock)
7a7eaa40 1198 trans = btrfs_join_transaction_nolock(root);
82d5902d 1199 else
7a7eaa40 1200 trans = btrfs_join_transaction(root);
ff5714cc 1201
79787eaa 1202 if (IS_ERR(trans)) {
c2790a2e
JB
1203 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1204 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1205 EXTENT_DO_ACCOUNTING |
1206 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1207 PAGE_CLEAR_DIRTY |
1208 PAGE_SET_WRITEBACK |
1209 PAGE_END_WRITEBACK);
79787eaa
JM
1210 btrfs_free_path(path);
1211 return PTR_ERR(trans);
1212 }
1213
74b21075 1214 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1215
80ff3856
YZ
1216 cow_start = (u64)-1;
1217 cur_offset = start;
1218 while (1) {
33345d01 1219 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1220 cur_offset, 0);
d788a349 1221 if (ret < 0)
79787eaa 1222 goto error;
80ff3856
YZ
1223 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1224 leaf = path->nodes[0];
1225 btrfs_item_key_to_cpu(leaf, &found_key,
1226 path->slots[0] - 1);
33345d01 1227 if (found_key.objectid == ino &&
80ff3856
YZ
1228 found_key.type == BTRFS_EXTENT_DATA_KEY)
1229 path->slots[0]--;
1230 }
1231 check_prev = 0;
1232next_slot:
1233 leaf = path->nodes[0];
1234 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1235 ret = btrfs_next_leaf(root, path);
d788a349 1236 if (ret < 0)
79787eaa 1237 goto error;
80ff3856
YZ
1238 if (ret > 0)
1239 break;
1240 leaf = path->nodes[0];
1241 }
be20aa9d 1242
80ff3856
YZ
1243 nocow = 0;
1244 disk_bytenr = 0;
17d217fe 1245 num_bytes = 0;
80ff3856
YZ
1246 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1247
33345d01 1248 if (found_key.objectid > ino ||
80ff3856
YZ
1249 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1250 found_key.offset > end)
1251 break;
1252
1253 if (found_key.offset > cur_offset) {
1254 extent_end = found_key.offset;
e9061e21 1255 extent_type = 0;
80ff3856
YZ
1256 goto out_check;
1257 }
1258
1259 fi = btrfs_item_ptr(leaf, path->slots[0],
1260 struct btrfs_file_extent_item);
1261 extent_type = btrfs_file_extent_type(leaf, fi);
1262
cc95bef6 1263 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1264 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1265 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1266 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1267 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1268 extent_end = found_key.offset +
1269 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1270 disk_num_bytes =
1271 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1272 if (extent_end <= start) {
1273 path->slots[0]++;
1274 goto next_slot;
1275 }
17d217fe
YZ
1276 if (disk_bytenr == 0)
1277 goto out_check;
80ff3856
YZ
1278 if (btrfs_file_extent_compression(leaf, fi) ||
1279 btrfs_file_extent_encryption(leaf, fi) ||
1280 btrfs_file_extent_other_encoding(leaf, fi))
1281 goto out_check;
d899e052
YZ
1282 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1283 goto out_check;
d2fb3437 1284 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1285 goto out_check;
33345d01 1286 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1287 found_key.offset -
1288 extent_offset, disk_bytenr))
17d217fe 1289 goto out_check;
5d4f98a2 1290 disk_bytenr += extent_offset;
17d217fe
YZ
1291 disk_bytenr += cur_offset - found_key.offset;
1292 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1293 /*
1294 * if there are pending snapshots for this root,
1295 * we fall into common COW way.
1296 */
1297 if (!nolock) {
1298 err = btrfs_start_nocow_write(root);
1299 if (!err)
1300 goto out_check;
1301 }
17d217fe
YZ
1302 /*
1303 * force cow if csum exists in the range.
1304 * this ensure that csum for a given extent are
1305 * either valid or do not exist.
1306 */
1307 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1308 goto out_check;
80ff3856
YZ
1309 nocow = 1;
1310 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1311 extent_end = found_key.offset +
514ac8ad
CM
1312 btrfs_file_extent_inline_len(leaf,
1313 path->slots[0], fi);
80ff3856
YZ
1314 extent_end = ALIGN(extent_end, root->sectorsize);
1315 } else {
1316 BUG_ON(1);
1317 }
1318out_check:
1319 if (extent_end <= start) {
1320 path->slots[0]++;
e9894fd3
WS
1321 if (!nolock && nocow)
1322 btrfs_end_nocow_write(root);
80ff3856
YZ
1323 goto next_slot;
1324 }
1325 if (!nocow) {
1326 if (cow_start == (u64)-1)
1327 cow_start = cur_offset;
1328 cur_offset = extent_end;
1329 if (cur_offset > end)
1330 break;
1331 path->slots[0]++;
1332 goto next_slot;
7ea394f1
YZ
1333 }
1334
b3b4aa74 1335 btrfs_release_path(path);
80ff3856 1336 if (cow_start != (u64)-1) {
00361589
JB
1337 ret = cow_file_range(inode, locked_page,
1338 cow_start, found_key.offset - 1,
1339 page_started, nr_written, 1);
e9894fd3
WS
1340 if (ret) {
1341 if (!nolock && nocow)
1342 btrfs_end_nocow_write(root);
79787eaa 1343 goto error;
e9894fd3 1344 }
80ff3856 1345 cow_start = (u64)-1;
7ea394f1 1346 }
80ff3856 1347
d899e052
YZ
1348 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1349 struct extent_map *em;
1350 struct extent_map_tree *em_tree;
1351 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1352 em = alloc_extent_map();
79787eaa 1353 BUG_ON(!em); /* -ENOMEM */
d899e052 1354 em->start = cur_offset;
70c8a91c 1355 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1356 em->len = num_bytes;
1357 em->block_len = num_bytes;
1358 em->block_start = disk_bytenr;
b4939680 1359 em->orig_block_len = disk_num_bytes;
cc95bef6 1360 em->ram_bytes = ram_bytes;
d899e052 1361 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1362 em->mod_start = em->start;
1363 em->mod_len = em->len;
d899e052 1364 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1365 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1366 em->generation = -1;
d899e052 1367 while (1) {
890871be 1368 write_lock(&em_tree->lock);
09a2a8f9 1369 ret = add_extent_mapping(em_tree, em, 1);
890871be 1370 write_unlock(&em_tree->lock);
d899e052
YZ
1371 if (ret != -EEXIST) {
1372 free_extent_map(em);
1373 break;
1374 }
1375 btrfs_drop_extent_cache(inode, em->start,
1376 em->start + em->len - 1, 0);
1377 }
1378 type = BTRFS_ORDERED_PREALLOC;
1379 } else {
1380 type = BTRFS_ORDERED_NOCOW;
1381 }
80ff3856
YZ
1382
1383 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1384 num_bytes, num_bytes, type);
79787eaa 1385 BUG_ON(ret); /* -ENOMEM */
771ed689 1386
efa56464
YZ
1387 if (root->root_key.objectid ==
1388 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1389 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1390 num_bytes);
e9894fd3
WS
1391 if (ret) {
1392 if (!nolock && nocow)
1393 btrfs_end_nocow_write(root);
79787eaa 1394 goto error;
e9894fd3 1395 }
efa56464
YZ
1396 }
1397
c2790a2e
JB
1398 extent_clear_unlock_delalloc(inode, cur_offset,
1399 cur_offset + num_bytes - 1,
1400 locked_page, EXTENT_LOCKED |
1401 EXTENT_DELALLOC, PAGE_UNLOCK |
1402 PAGE_SET_PRIVATE2);
e9894fd3
WS
1403 if (!nolock && nocow)
1404 btrfs_end_nocow_write(root);
80ff3856
YZ
1405 cur_offset = extent_end;
1406 if (cur_offset > end)
1407 break;
be20aa9d 1408 }
b3b4aa74 1409 btrfs_release_path(path);
80ff3856 1410
17ca04af 1411 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1412 cow_start = cur_offset;
17ca04af
JB
1413 cur_offset = end;
1414 }
1415
80ff3856 1416 if (cow_start != (u64)-1) {
00361589
JB
1417 ret = cow_file_range(inode, locked_page, cow_start, end,
1418 page_started, nr_written, 1);
d788a349 1419 if (ret)
79787eaa 1420 goto error;
80ff3856
YZ
1421 }
1422
79787eaa 1423error:
a698d075 1424 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1425 if (!ret)
1426 ret = err;
1427
17ca04af 1428 if (ret && cur_offset < end)
c2790a2e
JB
1429 extent_clear_unlock_delalloc(inode, cur_offset, end,
1430 locked_page, EXTENT_LOCKED |
151a41bc
JB
1431 EXTENT_DELALLOC | EXTENT_DEFRAG |
1432 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1433 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1434 PAGE_SET_WRITEBACK |
1435 PAGE_END_WRITEBACK);
7ea394f1 1436 btrfs_free_path(path);
79787eaa 1437 return ret;
be20aa9d
CM
1438}
1439
d352ac68
CM
1440/*
1441 * extent_io.c call back to do delayed allocation processing
1442 */
c8b97818 1443static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1444 u64 start, u64 end, int *page_started,
1445 unsigned long *nr_written)
be20aa9d 1446{
be20aa9d 1447 int ret;
7f366cfe 1448 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1449
7ddf5a42 1450 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1451 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1452 page_started, 1, nr_written);
7ddf5a42 1453 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1454 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1455 page_started, 0, nr_written);
7ddf5a42
JB
1456 } else if (!btrfs_test_opt(root, COMPRESS) &&
1457 !(BTRFS_I(inode)->force_compress) &&
1458 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1459 ret = cow_file_range(inode, locked_page, start, end,
1460 page_started, nr_written, 1);
7ddf5a42
JB
1461 } else {
1462 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1463 &BTRFS_I(inode)->runtime_flags);
771ed689 1464 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1465 page_started, nr_written);
7ddf5a42 1466 }
b888db2b
CM
1467 return ret;
1468}
1469
1bf85046
JM
1470static void btrfs_split_extent_hook(struct inode *inode,
1471 struct extent_state *orig, u64 split)
9ed74f2d 1472{
0ca1f7ce 1473 /* not delalloc, ignore it */
9ed74f2d 1474 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1475 return;
9ed74f2d 1476
9e0baf60
JB
1477 spin_lock(&BTRFS_I(inode)->lock);
1478 BTRFS_I(inode)->outstanding_extents++;
1479 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1480}
1481
1482/*
1483 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1484 * extents so we can keep track of new extents that are just merged onto old
1485 * extents, such as when we are doing sequential writes, so we can properly
1486 * account for the metadata space we'll need.
1487 */
1bf85046
JM
1488static void btrfs_merge_extent_hook(struct inode *inode,
1489 struct extent_state *new,
1490 struct extent_state *other)
9ed74f2d 1491{
9ed74f2d
JB
1492 /* not delalloc, ignore it */
1493 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1494 return;
9ed74f2d 1495
9e0baf60
JB
1496 spin_lock(&BTRFS_I(inode)->lock);
1497 BTRFS_I(inode)->outstanding_extents--;
1498 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1499}
1500
eb73c1b7
MX
1501static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1502 struct inode *inode)
1503{
1504 spin_lock(&root->delalloc_lock);
1505 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1506 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1507 &root->delalloc_inodes);
1508 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1509 &BTRFS_I(inode)->runtime_flags);
1510 root->nr_delalloc_inodes++;
1511 if (root->nr_delalloc_inodes == 1) {
1512 spin_lock(&root->fs_info->delalloc_root_lock);
1513 BUG_ON(!list_empty(&root->delalloc_root));
1514 list_add_tail(&root->delalloc_root,
1515 &root->fs_info->delalloc_roots);
1516 spin_unlock(&root->fs_info->delalloc_root_lock);
1517 }
1518 }
1519 spin_unlock(&root->delalloc_lock);
1520}
1521
1522static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1523 struct inode *inode)
1524{
1525 spin_lock(&root->delalloc_lock);
1526 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1527 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1528 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1529 &BTRFS_I(inode)->runtime_flags);
1530 root->nr_delalloc_inodes--;
1531 if (!root->nr_delalloc_inodes) {
1532 spin_lock(&root->fs_info->delalloc_root_lock);
1533 BUG_ON(list_empty(&root->delalloc_root));
1534 list_del_init(&root->delalloc_root);
1535 spin_unlock(&root->fs_info->delalloc_root_lock);
1536 }
1537 }
1538 spin_unlock(&root->delalloc_lock);
1539}
1540
d352ac68
CM
1541/*
1542 * extent_io.c set_bit_hook, used to track delayed allocation
1543 * bytes in this file, and to maintain the list of inodes that
1544 * have pending delalloc work to be done.
1545 */
1bf85046 1546static void btrfs_set_bit_hook(struct inode *inode,
41074888 1547 struct extent_state *state, unsigned long *bits)
291d673e 1548{
9ed74f2d 1549
75eff68e
CM
1550 /*
1551 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1552 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1553 * bit, which is only set or cleared with irqs on
1554 */
0ca1f7ce 1555 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1556 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1557 u64 len = state->end + 1 - state->start;
83eea1f1 1558 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1559
9e0baf60 1560 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1561 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1562 } else {
1563 spin_lock(&BTRFS_I(inode)->lock);
1564 BTRFS_I(inode)->outstanding_extents++;
1565 spin_unlock(&BTRFS_I(inode)->lock);
1566 }
287a0ab9 1567
963d678b
MX
1568 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1569 root->fs_info->delalloc_batch);
df0af1a5 1570 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1571 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1572 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1573 &BTRFS_I(inode)->runtime_flags))
1574 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1575 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1576 }
291d673e
CM
1577}
1578
d352ac68
CM
1579/*
1580 * extent_io.c clear_bit_hook, see set_bit_hook for why
1581 */
1bf85046 1582static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1583 struct extent_state *state,
1584 unsigned long *bits)
291d673e 1585{
75eff68e
CM
1586 /*
1587 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1588 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1589 * bit, which is only set or cleared with irqs on
1590 */
0ca1f7ce 1591 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1592 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1593 u64 len = state->end + 1 - state->start;
83eea1f1 1594 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1595
9e0baf60 1596 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1597 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1598 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1599 spin_lock(&BTRFS_I(inode)->lock);
1600 BTRFS_I(inode)->outstanding_extents--;
1601 spin_unlock(&BTRFS_I(inode)->lock);
1602 }
0ca1f7ce 1603
b6d08f06
JB
1604 /*
1605 * We don't reserve metadata space for space cache inodes so we
1606 * don't need to call dellalloc_release_metadata if there is an
1607 * error.
1608 */
1609 if (*bits & EXTENT_DO_ACCOUNTING &&
1610 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1611 btrfs_delalloc_release_metadata(inode, len);
1612
0cb59c99 1613 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1614 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1615 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1616
963d678b
MX
1617 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1618 root->fs_info->delalloc_batch);
df0af1a5 1619 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1620 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1621 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1622 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1623 &BTRFS_I(inode)->runtime_flags))
1624 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1625 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1626 }
291d673e
CM
1627}
1628
d352ac68
CM
1629/*
1630 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1631 * we don't create bios that span stripes or chunks
1632 */
64a16701 1633int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1634 size_t size, struct bio *bio,
1635 unsigned long bio_flags)
239b14b3
CM
1636{
1637 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1638 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1639 u64 length = 0;
1640 u64 map_length;
239b14b3
CM
1641 int ret;
1642
771ed689
CM
1643 if (bio_flags & EXTENT_BIO_COMPRESSED)
1644 return 0;
1645
4f024f37 1646 length = bio->bi_iter.bi_size;
239b14b3 1647 map_length = length;
64a16701 1648 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1649 &map_length, NULL, 0);
3ec706c8 1650 /* Will always return 0 with map_multi == NULL */
3444a972 1651 BUG_ON(ret < 0);
d397712b 1652 if (map_length < length + size)
239b14b3 1653 return 1;
3444a972 1654 return 0;
239b14b3
CM
1655}
1656
d352ac68
CM
1657/*
1658 * in order to insert checksums into the metadata in large chunks,
1659 * we wait until bio submission time. All the pages in the bio are
1660 * checksummed and sums are attached onto the ordered extent record.
1661 *
1662 * At IO completion time the cums attached on the ordered extent record
1663 * are inserted into the btree
1664 */
d397712b
CM
1665static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1666 struct bio *bio, int mirror_num,
eaf25d93
CM
1667 unsigned long bio_flags,
1668 u64 bio_offset)
065631f6 1669{
065631f6 1670 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1671 int ret = 0;
e015640f 1672
d20f7043 1673 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1674 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1675 return 0;
1676}
e015640f 1677
4a69a410
CM
1678/*
1679 * in order to insert checksums into the metadata in large chunks,
1680 * we wait until bio submission time. All the pages in the bio are
1681 * checksummed and sums are attached onto the ordered extent record.
1682 *
1683 * At IO completion time the cums attached on the ordered extent record
1684 * are inserted into the btree
1685 */
b2950863 1686static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1687 int mirror_num, unsigned long bio_flags,
1688 u64 bio_offset)
4a69a410
CM
1689{
1690 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1691 int ret;
1692
1693 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1694 if (ret)
1695 bio_endio(bio, ret);
1696 return ret;
44b8bd7e
CM
1697}
1698
d352ac68 1699/*
cad321ad
CM
1700 * extent_io.c submission hook. This does the right thing for csum calculation
1701 * on write, or reading the csums from the tree before a read
d352ac68 1702 */
b2950863 1703static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1704 int mirror_num, unsigned long bio_flags,
1705 u64 bio_offset)
44b8bd7e
CM
1706{
1707 struct btrfs_root *root = BTRFS_I(inode)->root;
1708 int ret = 0;
19b9bdb0 1709 int skip_sum;
0417341e 1710 int metadata = 0;
b812ce28 1711 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1712
6cbff00f 1713 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1714
83eea1f1 1715 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1716 metadata = 2;
1717
7b6d91da 1718 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1719 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1720 if (ret)
61891923 1721 goto out;
5fd02043 1722
d20f7043 1723 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1724 ret = btrfs_submit_compressed_read(inode, bio,
1725 mirror_num,
1726 bio_flags);
1727 goto out;
c2db1073
TI
1728 } else if (!skip_sum) {
1729 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1730 if (ret)
61891923 1731 goto out;
c2db1073 1732 }
4d1b5fb4 1733 goto mapit;
b812ce28 1734 } else if (async && !skip_sum) {
17d217fe
YZ
1735 /* csum items have already been cloned */
1736 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1737 goto mapit;
19b9bdb0 1738 /* we're doing a write, do the async checksumming */
61891923 1739 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1740 inode, rw, bio, mirror_num,
eaf25d93
CM
1741 bio_flags, bio_offset,
1742 __btrfs_submit_bio_start,
4a69a410 1743 __btrfs_submit_bio_done);
61891923 1744 goto out;
b812ce28
JB
1745 } else if (!skip_sum) {
1746 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1747 if (ret)
1748 goto out;
19b9bdb0
CM
1749 }
1750
0b86a832 1751mapit:
61891923
SB
1752 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1753
1754out:
1755 if (ret < 0)
1756 bio_endio(bio, ret);
1757 return ret;
065631f6 1758}
6885f308 1759
d352ac68
CM
1760/*
1761 * given a list of ordered sums record them in the inode. This happens
1762 * at IO completion time based on sums calculated at bio submission time.
1763 */
ba1da2f4 1764static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1765 struct inode *inode, u64 file_offset,
1766 struct list_head *list)
1767{
e6dcd2dc
CM
1768 struct btrfs_ordered_sum *sum;
1769
c6e30871 1770 list_for_each_entry(sum, list, list) {
39847c4d 1771 trans->adding_csums = 1;
d20f7043
CM
1772 btrfs_csum_file_blocks(trans,
1773 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1774 trans->adding_csums = 0;
e6dcd2dc
CM
1775 }
1776 return 0;
1777}
1778
2ac55d41
JB
1779int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1780 struct extent_state **cached_state)
ea8c2819 1781{
6c1500f2 1782 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1783 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1784 cached_state, GFP_NOFS);
ea8c2819
CM
1785}
1786
d352ac68 1787/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1788struct btrfs_writepage_fixup {
1789 struct page *page;
1790 struct btrfs_work work;
1791};
1792
b2950863 1793static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1794{
1795 struct btrfs_writepage_fixup *fixup;
1796 struct btrfs_ordered_extent *ordered;
2ac55d41 1797 struct extent_state *cached_state = NULL;
247e743c
CM
1798 struct page *page;
1799 struct inode *inode;
1800 u64 page_start;
1801 u64 page_end;
87826df0 1802 int ret;
247e743c
CM
1803
1804 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1805 page = fixup->page;
4a096752 1806again:
247e743c
CM
1807 lock_page(page);
1808 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1809 ClearPageChecked(page);
1810 goto out_page;
1811 }
1812
1813 inode = page->mapping->host;
1814 page_start = page_offset(page);
1815 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1816
2ac55d41 1817 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1818 &cached_state);
4a096752
CM
1819
1820 /* already ordered? We're done */
8b62b72b 1821 if (PagePrivate2(page))
247e743c 1822 goto out;
4a096752
CM
1823
1824 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1825 if (ordered) {
2ac55d41
JB
1826 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1827 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1828 unlock_page(page);
1829 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1830 btrfs_put_ordered_extent(ordered);
4a096752
CM
1831 goto again;
1832 }
247e743c 1833
87826df0
JM
1834 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1835 if (ret) {
1836 mapping_set_error(page->mapping, ret);
1837 end_extent_writepage(page, ret, page_start, page_end);
1838 ClearPageChecked(page);
1839 goto out;
1840 }
1841
2ac55d41 1842 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1843 ClearPageChecked(page);
87826df0 1844 set_page_dirty(page);
247e743c 1845out:
2ac55d41
JB
1846 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1847 &cached_state, GFP_NOFS);
247e743c
CM
1848out_page:
1849 unlock_page(page);
1850 page_cache_release(page);
b897abec 1851 kfree(fixup);
247e743c
CM
1852}
1853
1854/*
1855 * There are a few paths in the higher layers of the kernel that directly
1856 * set the page dirty bit without asking the filesystem if it is a
1857 * good idea. This causes problems because we want to make sure COW
1858 * properly happens and the data=ordered rules are followed.
1859 *
c8b97818 1860 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1861 * hasn't been properly setup for IO. We kick off an async process
1862 * to fix it up. The async helper will wait for ordered extents, set
1863 * the delalloc bit and make it safe to write the page.
1864 */
b2950863 1865static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1866{
1867 struct inode *inode = page->mapping->host;
1868 struct btrfs_writepage_fixup *fixup;
1869 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1870
8b62b72b
CM
1871 /* this page is properly in the ordered list */
1872 if (TestClearPagePrivate2(page))
247e743c
CM
1873 return 0;
1874
1875 if (PageChecked(page))
1876 return -EAGAIN;
1877
1878 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1879 if (!fixup)
1880 return -EAGAIN;
f421950f 1881
247e743c
CM
1882 SetPageChecked(page);
1883 page_cache_get(page);
dc6e3209 1884 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 1885 fixup->page = page;
dc6e3209 1886 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 1887 return -EBUSY;
247e743c
CM
1888}
1889
d899e052
YZ
1890static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1891 struct inode *inode, u64 file_pos,
1892 u64 disk_bytenr, u64 disk_num_bytes,
1893 u64 num_bytes, u64 ram_bytes,
1894 u8 compression, u8 encryption,
1895 u16 other_encoding, int extent_type)
1896{
1897 struct btrfs_root *root = BTRFS_I(inode)->root;
1898 struct btrfs_file_extent_item *fi;
1899 struct btrfs_path *path;
1900 struct extent_buffer *leaf;
1901 struct btrfs_key ins;
1acae57b 1902 int extent_inserted = 0;
d899e052
YZ
1903 int ret;
1904
1905 path = btrfs_alloc_path();
d8926bb3
MF
1906 if (!path)
1907 return -ENOMEM;
d899e052 1908
a1ed835e
CM
1909 /*
1910 * we may be replacing one extent in the tree with another.
1911 * The new extent is pinned in the extent map, and we don't want
1912 * to drop it from the cache until it is completely in the btree.
1913 *
1914 * So, tell btrfs_drop_extents to leave this extent in the cache.
1915 * the caller is expected to unpin it and allow it to be merged
1916 * with the others.
1917 */
1acae57b
FDBM
1918 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1919 file_pos + num_bytes, NULL, 0,
1920 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
1921 if (ret)
1922 goto out;
d899e052 1923
1acae57b
FDBM
1924 if (!extent_inserted) {
1925 ins.objectid = btrfs_ino(inode);
1926 ins.offset = file_pos;
1927 ins.type = BTRFS_EXTENT_DATA_KEY;
1928
1929 path->leave_spinning = 1;
1930 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1931 sizeof(*fi));
1932 if (ret)
1933 goto out;
1934 }
d899e052
YZ
1935 leaf = path->nodes[0];
1936 fi = btrfs_item_ptr(leaf, path->slots[0],
1937 struct btrfs_file_extent_item);
1938 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1939 btrfs_set_file_extent_type(leaf, fi, extent_type);
1940 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1941 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1942 btrfs_set_file_extent_offset(leaf, fi, 0);
1943 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1944 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1945 btrfs_set_file_extent_compression(leaf, fi, compression);
1946 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1947 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1948
d899e052 1949 btrfs_mark_buffer_dirty(leaf);
ce195332 1950 btrfs_release_path(path);
d899e052
YZ
1951
1952 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1953
1954 ins.objectid = disk_bytenr;
1955 ins.offset = disk_num_bytes;
1956 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1957 ret = btrfs_alloc_reserved_file_extent(trans, root,
1958 root->root_key.objectid,
33345d01 1959 btrfs_ino(inode), file_pos, &ins);
79787eaa 1960out:
d899e052 1961 btrfs_free_path(path);
b9473439 1962
79787eaa 1963 return ret;
d899e052
YZ
1964}
1965
38c227d8
LB
1966/* snapshot-aware defrag */
1967struct sa_defrag_extent_backref {
1968 struct rb_node node;
1969 struct old_sa_defrag_extent *old;
1970 u64 root_id;
1971 u64 inum;
1972 u64 file_pos;
1973 u64 extent_offset;
1974 u64 num_bytes;
1975 u64 generation;
1976};
1977
1978struct old_sa_defrag_extent {
1979 struct list_head list;
1980 struct new_sa_defrag_extent *new;
1981
1982 u64 extent_offset;
1983 u64 bytenr;
1984 u64 offset;
1985 u64 len;
1986 int count;
1987};
1988
1989struct new_sa_defrag_extent {
1990 struct rb_root root;
1991 struct list_head head;
1992 struct btrfs_path *path;
1993 struct inode *inode;
1994 u64 file_pos;
1995 u64 len;
1996 u64 bytenr;
1997 u64 disk_len;
1998 u8 compress_type;
1999};
2000
2001static int backref_comp(struct sa_defrag_extent_backref *b1,
2002 struct sa_defrag_extent_backref *b2)
2003{
2004 if (b1->root_id < b2->root_id)
2005 return -1;
2006 else if (b1->root_id > b2->root_id)
2007 return 1;
2008
2009 if (b1->inum < b2->inum)
2010 return -1;
2011 else if (b1->inum > b2->inum)
2012 return 1;
2013
2014 if (b1->file_pos < b2->file_pos)
2015 return -1;
2016 else if (b1->file_pos > b2->file_pos)
2017 return 1;
2018
2019 /*
2020 * [------------------------------] ===> (a range of space)
2021 * |<--->| |<---->| =============> (fs/file tree A)
2022 * |<---------------------------->| ===> (fs/file tree B)
2023 *
2024 * A range of space can refer to two file extents in one tree while
2025 * refer to only one file extent in another tree.
2026 *
2027 * So we may process a disk offset more than one time(two extents in A)
2028 * and locate at the same extent(one extent in B), then insert two same
2029 * backrefs(both refer to the extent in B).
2030 */
2031 return 0;
2032}
2033
2034static void backref_insert(struct rb_root *root,
2035 struct sa_defrag_extent_backref *backref)
2036{
2037 struct rb_node **p = &root->rb_node;
2038 struct rb_node *parent = NULL;
2039 struct sa_defrag_extent_backref *entry;
2040 int ret;
2041
2042 while (*p) {
2043 parent = *p;
2044 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2045
2046 ret = backref_comp(backref, entry);
2047 if (ret < 0)
2048 p = &(*p)->rb_left;
2049 else
2050 p = &(*p)->rb_right;
2051 }
2052
2053 rb_link_node(&backref->node, parent, p);
2054 rb_insert_color(&backref->node, root);
2055}
2056
2057/*
2058 * Note the backref might has changed, and in this case we just return 0.
2059 */
2060static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2061 void *ctx)
2062{
2063 struct btrfs_file_extent_item *extent;
2064 struct btrfs_fs_info *fs_info;
2065 struct old_sa_defrag_extent *old = ctx;
2066 struct new_sa_defrag_extent *new = old->new;
2067 struct btrfs_path *path = new->path;
2068 struct btrfs_key key;
2069 struct btrfs_root *root;
2070 struct sa_defrag_extent_backref *backref;
2071 struct extent_buffer *leaf;
2072 struct inode *inode = new->inode;
2073 int slot;
2074 int ret;
2075 u64 extent_offset;
2076 u64 num_bytes;
2077
2078 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2079 inum == btrfs_ino(inode))
2080 return 0;
2081
2082 key.objectid = root_id;
2083 key.type = BTRFS_ROOT_ITEM_KEY;
2084 key.offset = (u64)-1;
2085
2086 fs_info = BTRFS_I(inode)->root->fs_info;
2087 root = btrfs_read_fs_root_no_name(fs_info, &key);
2088 if (IS_ERR(root)) {
2089 if (PTR_ERR(root) == -ENOENT)
2090 return 0;
2091 WARN_ON(1);
2092 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2093 inum, offset, root_id);
2094 return PTR_ERR(root);
2095 }
2096
2097 key.objectid = inum;
2098 key.type = BTRFS_EXTENT_DATA_KEY;
2099 if (offset > (u64)-1 << 32)
2100 key.offset = 0;
2101 else
2102 key.offset = offset;
2103
2104 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2105 if (WARN_ON(ret < 0))
38c227d8 2106 return ret;
50f1319c 2107 ret = 0;
38c227d8
LB
2108
2109 while (1) {
2110 cond_resched();
2111
2112 leaf = path->nodes[0];
2113 slot = path->slots[0];
2114
2115 if (slot >= btrfs_header_nritems(leaf)) {
2116 ret = btrfs_next_leaf(root, path);
2117 if (ret < 0) {
2118 goto out;
2119 } else if (ret > 0) {
2120 ret = 0;
2121 goto out;
2122 }
2123 continue;
2124 }
2125
2126 path->slots[0]++;
2127
2128 btrfs_item_key_to_cpu(leaf, &key, slot);
2129
2130 if (key.objectid > inum)
2131 goto out;
2132
2133 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2134 continue;
2135
2136 extent = btrfs_item_ptr(leaf, slot,
2137 struct btrfs_file_extent_item);
2138
2139 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2140 continue;
2141
e68afa49
LB
2142 /*
2143 * 'offset' refers to the exact key.offset,
2144 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2145 * (key.offset - extent_offset).
2146 */
2147 if (key.offset != offset)
38c227d8
LB
2148 continue;
2149
e68afa49 2150 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2151 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2152
38c227d8
LB
2153 if (extent_offset >= old->extent_offset + old->offset +
2154 old->len || extent_offset + num_bytes <=
2155 old->extent_offset + old->offset)
2156 continue;
38c227d8
LB
2157 break;
2158 }
2159
2160 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2161 if (!backref) {
2162 ret = -ENOENT;
2163 goto out;
2164 }
2165
2166 backref->root_id = root_id;
2167 backref->inum = inum;
e68afa49 2168 backref->file_pos = offset;
38c227d8
LB
2169 backref->num_bytes = num_bytes;
2170 backref->extent_offset = extent_offset;
2171 backref->generation = btrfs_file_extent_generation(leaf, extent);
2172 backref->old = old;
2173 backref_insert(&new->root, backref);
2174 old->count++;
2175out:
2176 btrfs_release_path(path);
2177 WARN_ON(ret);
2178 return ret;
2179}
2180
2181static noinline bool record_extent_backrefs(struct btrfs_path *path,
2182 struct new_sa_defrag_extent *new)
2183{
2184 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2185 struct old_sa_defrag_extent *old, *tmp;
2186 int ret;
2187
2188 new->path = path;
2189
2190 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2191 ret = iterate_inodes_from_logical(old->bytenr +
2192 old->extent_offset, fs_info,
38c227d8
LB
2193 path, record_one_backref,
2194 old);
4724b106
JB
2195 if (ret < 0 && ret != -ENOENT)
2196 return false;
38c227d8
LB
2197
2198 /* no backref to be processed for this extent */
2199 if (!old->count) {
2200 list_del(&old->list);
2201 kfree(old);
2202 }
2203 }
2204
2205 if (list_empty(&new->head))
2206 return false;
2207
2208 return true;
2209}
2210
2211static int relink_is_mergable(struct extent_buffer *leaf,
2212 struct btrfs_file_extent_item *fi,
116e0024 2213 struct new_sa_defrag_extent *new)
38c227d8 2214{
116e0024 2215 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2216 return 0;
2217
2218 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2219 return 0;
2220
116e0024
LB
2221 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2222 return 0;
2223
2224 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2225 btrfs_file_extent_other_encoding(leaf, fi))
2226 return 0;
2227
2228 return 1;
2229}
2230
2231/*
2232 * Note the backref might has changed, and in this case we just return 0.
2233 */
2234static noinline int relink_extent_backref(struct btrfs_path *path,
2235 struct sa_defrag_extent_backref *prev,
2236 struct sa_defrag_extent_backref *backref)
2237{
2238 struct btrfs_file_extent_item *extent;
2239 struct btrfs_file_extent_item *item;
2240 struct btrfs_ordered_extent *ordered;
2241 struct btrfs_trans_handle *trans;
2242 struct btrfs_fs_info *fs_info;
2243 struct btrfs_root *root;
2244 struct btrfs_key key;
2245 struct extent_buffer *leaf;
2246 struct old_sa_defrag_extent *old = backref->old;
2247 struct new_sa_defrag_extent *new = old->new;
2248 struct inode *src_inode = new->inode;
2249 struct inode *inode;
2250 struct extent_state *cached = NULL;
2251 int ret = 0;
2252 u64 start;
2253 u64 len;
2254 u64 lock_start;
2255 u64 lock_end;
2256 bool merge = false;
2257 int index;
2258
2259 if (prev && prev->root_id == backref->root_id &&
2260 prev->inum == backref->inum &&
2261 prev->file_pos + prev->num_bytes == backref->file_pos)
2262 merge = true;
2263
2264 /* step 1: get root */
2265 key.objectid = backref->root_id;
2266 key.type = BTRFS_ROOT_ITEM_KEY;
2267 key.offset = (u64)-1;
2268
2269 fs_info = BTRFS_I(src_inode)->root->fs_info;
2270 index = srcu_read_lock(&fs_info->subvol_srcu);
2271
2272 root = btrfs_read_fs_root_no_name(fs_info, &key);
2273 if (IS_ERR(root)) {
2274 srcu_read_unlock(&fs_info->subvol_srcu, index);
2275 if (PTR_ERR(root) == -ENOENT)
2276 return 0;
2277 return PTR_ERR(root);
2278 }
38c227d8 2279
bcbba5e6
WS
2280 if (btrfs_root_readonly(root)) {
2281 srcu_read_unlock(&fs_info->subvol_srcu, index);
2282 return 0;
2283 }
2284
38c227d8
LB
2285 /* step 2: get inode */
2286 key.objectid = backref->inum;
2287 key.type = BTRFS_INODE_ITEM_KEY;
2288 key.offset = 0;
2289
2290 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2291 if (IS_ERR(inode)) {
2292 srcu_read_unlock(&fs_info->subvol_srcu, index);
2293 return 0;
2294 }
2295
2296 srcu_read_unlock(&fs_info->subvol_srcu, index);
2297
2298 /* step 3: relink backref */
2299 lock_start = backref->file_pos;
2300 lock_end = backref->file_pos + backref->num_bytes - 1;
2301 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2302 0, &cached);
2303
2304 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2305 if (ordered) {
2306 btrfs_put_ordered_extent(ordered);
2307 goto out_unlock;
2308 }
2309
2310 trans = btrfs_join_transaction(root);
2311 if (IS_ERR(trans)) {
2312 ret = PTR_ERR(trans);
2313 goto out_unlock;
2314 }
2315
2316 key.objectid = backref->inum;
2317 key.type = BTRFS_EXTENT_DATA_KEY;
2318 key.offset = backref->file_pos;
2319
2320 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2321 if (ret < 0) {
2322 goto out_free_path;
2323 } else if (ret > 0) {
2324 ret = 0;
2325 goto out_free_path;
2326 }
2327
2328 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2329 struct btrfs_file_extent_item);
2330
2331 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2332 backref->generation)
2333 goto out_free_path;
2334
2335 btrfs_release_path(path);
2336
2337 start = backref->file_pos;
2338 if (backref->extent_offset < old->extent_offset + old->offset)
2339 start += old->extent_offset + old->offset -
2340 backref->extent_offset;
2341
2342 len = min(backref->extent_offset + backref->num_bytes,
2343 old->extent_offset + old->offset + old->len);
2344 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2345
2346 ret = btrfs_drop_extents(trans, root, inode, start,
2347 start + len, 1);
2348 if (ret)
2349 goto out_free_path;
2350again:
2351 key.objectid = btrfs_ino(inode);
2352 key.type = BTRFS_EXTENT_DATA_KEY;
2353 key.offset = start;
2354
a09a0a70 2355 path->leave_spinning = 1;
38c227d8
LB
2356 if (merge) {
2357 struct btrfs_file_extent_item *fi;
2358 u64 extent_len;
2359 struct btrfs_key found_key;
2360
3c9665df 2361 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2362 if (ret < 0)
2363 goto out_free_path;
2364
2365 path->slots[0]--;
2366 leaf = path->nodes[0];
2367 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2368
2369 fi = btrfs_item_ptr(leaf, path->slots[0],
2370 struct btrfs_file_extent_item);
2371 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2372
116e0024
LB
2373 if (extent_len + found_key.offset == start &&
2374 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2375 btrfs_set_file_extent_num_bytes(leaf, fi,
2376 extent_len + len);
2377 btrfs_mark_buffer_dirty(leaf);
2378 inode_add_bytes(inode, len);
2379
2380 ret = 1;
2381 goto out_free_path;
2382 } else {
2383 merge = false;
2384 btrfs_release_path(path);
2385 goto again;
2386 }
2387 }
2388
2389 ret = btrfs_insert_empty_item(trans, root, path, &key,
2390 sizeof(*extent));
2391 if (ret) {
2392 btrfs_abort_transaction(trans, root, ret);
2393 goto out_free_path;
2394 }
2395
2396 leaf = path->nodes[0];
2397 item = btrfs_item_ptr(leaf, path->slots[0],
2398 struct btrfs_file_extent_item);
2399 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2400 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2401 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2402 btrfs_set_file_extent_num_bytes(leaf, item, len);
2403 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2404 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2405 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2406 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2407 btrfs_set_file_extent_encryption(leaf, item, 0);
2408 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2409
2410 btrfs_mark_buffer_dirty(leaf);
2411 inode_add_bytes(inode, len);
a09a0a70 2412 btrfs_release_path(path);
38c227d8
LB
2413
2414 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2415 new->disk_len, 0,
2416 backref->root_id, backref->inum,
2417 new->file_pos, 0); /* start - extent_offset */
2418 if (ret) {
2419 btrfs_abort_transaction(trans, root, ret);
2420 goto out_free_path;
2421 }
2422
2423 ret = 1;
2424out_free_path:
2425 btrfs_release_path(path);
a09a0a70 2426 path->leave_spinning = 0;
38c227d8
LB
2427 btrfs_end_transaction(trans, root);
2428out_unlock:
2429 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2430 &cached, GFP_NOFS);
2431 iput(inode);
2432 return ret;
2433}
2434
6f519564
LB
2435static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2436{
2437 struct old_sa_defrag_extent *old, *tmp;
2438
2439 if (!new)
2440 return;
2441
2442 list_for_each_entry_safe(old, tmp, &new->head, list) {
2443 list_del(&old->list);
2444 kfree(old);
2445 }
2446 kfree(new);
2447}
2448
38c227d8
LB
2449static void relink_file_extents(struct new_sa_defrag_extent *new)
2450{
2451 struct btrfs_path *path;
38c227d8
LB
2452 struct sa_defrag_extent_backref *backref;
2453 struct sa_defrag_extent_backref *prev = NULL;
2454 struct inode *inode;
2455 struct btrfs_root *root;
2456 struct rb_node *node;
2457 int ret;
2458
2459 inode = new->inode;
2460 root = BTRFS_I(inode)->root;
2461
2462 path = btrfs_alloc_path();
2463 if (!path)
2464 return;
2465
2466 if (!record_extent_backrefs(path, new)) {
2467 btrfs_free_path(path);
2468 goto out;
2469 }
2470 btrfs_release_path(path);
2471
2472 while (1) {
2473 node = rb_first(&new->root);
2474 if (!node)
2475 break;
2476 rb_erase(node, &new->root);
2477
2478 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2479
2480 ret = relink_extent_backref(path, prev, backref);
2481 WARN_ON(ret < 0);
2482
2483 kfree(prev);
2484
2485 if (ret == 1)
2486 prev = backref;
2487 else
2488 prev = NULL;
2489 cond_resched();
2490 }
2491 kfree(prev);
2492
2493 btrfs_free_path(path);
38c227d8 2494out:
6f519564
LB
2495 free_sa_defrag_extent(new);
2496
38c227d8
LB
2497 atomic_dec(&root->fs_info->defrag_running);
2498 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2499}
2500
2501static struct new_sa_defrag_extent *
2502record_old_file_extents(struct inode *inode,
2503 struct btrfs_ordered_extent *ordered)
2504{
2505 struct btrfs_root *root = BTRFS_I(inode)->root;
2506 struct btrfs_path *path;
2507 struct btrfs_key key;
6f519564 2508 struct old_sa_defrag_extent *old;
38c227d8
LB
2509 struct new_sa_defrag_extent *new;
2510 int ret;
2511
2512 new = kmalloc(sizeof(*new), GFP_NOFS);
2513 if (!new)
2514 return NULL;
2515
2516 new->inode = inode;
2517 new->file_pos = ordered->file_offset;
2518 new->len = ordered->len;
2519 new->bytenr = ordered->start;
2520 new->disk_len = ordered->disk_len;
2521 new->compress_type = ordered->compress_type;
2522 new->root = RB_ROOT;
2523 INIT_LIST_HEAD(&new->head);
2524
2525 path = btrfs_alloc_path();
2526 if (!path)
2527 goto out_kfree;
2528
2529 key.objectid = btrfs_ino(inode);
2530 key.type = BTRFS_EXTENT_DATA_KEY;
2531 key.offset = new->file_pos;
2532
2533 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2534 if (ret < 0)
2535 goto out_free_path;
2536 if (ret > 0 && path->slots[0] > 0)
2537 path->slots[0]--;
2538
2539 /* find out all the old extents for the file range */
2540 while (1) {
2541 struct btrfs_file_extent_item *extent;
2542 struct extent_buffer *l;
2543 int slot;
2544 u64 num_bytes;
2545 u64 offset;
2546 u64 end;
2547 u64 disk_bytenr;
2548 u64 extent_offset;
2549
2550 l = path->nodes[0];
2551 slot = path->slots[0];
2552
2553 if (slot >= btrfs_header_nritems(l)) {
2554 ret = btrfs_next_leaf(root, path);
2555 if (ret < 0)
6f519564 2556 goto out_free_path;
38c227d8
LB
2557 else if (ret > 0)
2558 break;
2559 continue;
2560 }
2561
2562 btrfs_item_key_to_cpu(l, &key, slot);
2563
2564 if (key.objectid != btrfs_ino(inode))
2565 break;
2566 if (key.type != BTRFS_EXTENT_DATA_KEY)
2567 break;
2568 if (key.offset >= new->file_pos + new->len)
2569 break;
2570
2571 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2572
2573 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2574 if (key.offset + num_bytes < new->file_pos)
2575 goto next;
2576
2577 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2578 if (!disk_bytenr)
2579 goto next;
2580
2581 extent_offset = btrfs_file_extent_offset(l, extent);
2582
2583 old = kmalloc(sizeof(*old), GFP_NOFS);
2584 if (!old)
6f519564 2585 goto out_free_path;
38c227d8
LB
2586
2587 offset = max(new->file_pos, key.offset);
2588 end = min(new->file_pos + new->len, key.offset + num_bytes);
2589
2590 old->bytenr = disk_bytenr;
2591 old->extent_offset = extent_offset;
2592 old->offset = offset - key.offset;
2593 old->len = end - offset;
2594 old->new = new;
2595 old->count = 0;
2596 list_add_tail(&old->list, &new->head);
2597next:
2598 path->slots[0]++;
2599 cond_resched();
2600 }
2601
2602 btrfs_free_path(path);
2603 atomic_inc(&root->fs_info->defrag_running);
2604
2605 return new;
2606
38c227d8
LB
2607out_free_path:
2608 btrfs_free_path(path);
2609out_kfree:
6f519564 2610 free_sa_defrag_extent(new);
38c227d8
LB
2611 return NULL;
2612}
2613
e570fd27
MX
2614static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2615 u64 start, u64 len)
2616{
2617 struct btrfs_block_group_cache *cache;
2618
2619 cache = btrfs_lookup_block_group(root->fs_info, start);
2620 ASSERT(cache);
2621
2622 spin_lock(&cache->lock);
2623 cache->delalloc_bytes -= len;
2624 spin_unlock(&cache->lock);
2625
2626 btrfs_put_block_group(cache);
2627}
2628
d352ac68
CM
2629/* as ordered data IO finishes, this gets called so we can finish
2630 * an ordered extent if the range of bytes in the file it covers are
2631 * fully written.
2632 */
5fd02043 2633static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2634{
5fd02043 2635 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2636 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2637 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2638 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2639 struct extent_state *cached_state = NULL;
38c227d8 2640 struct new_sa_defrag_extent *new = NULL;
261507a0 2641 int compress_type = 0;
77cef2ec
JB
2642 int ret = 0;
2643 u64 logical_len = ordered_extent->len;
82d5902d 2644 bool nolock;
77cef2ec 2645 bool truncated = false;
e6dcd2dc 2646
83eea1f1 2647 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2648
5fd02043
JB
2649 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2650 ret = -EIO;
2651 goto out;
2652 }
2653
77cef2ec
JB
2654 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2655 truncated = true;
2656 logical_len = ordered_extent->truncated_len;
2657 /* Truncated the entire extent, don't bother adding */
2658 if (!logical_len)
2659 goto out;
2660 }
2661
c2167754 2662 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2663 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2664 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2665 if (nolock)
2666 trans = btrfs_join_transaction_nolock(root);
2667 else
2668 trans = btrfs_join_transaction(root);
2669 if (IS_ERR(trans)) {
2670 ret = PTR_ERR(trans);
2671 trans = NULL;
2672 goto out;
c2167754 2673 }
6c760c07
JB
2674 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2675 ret = btrfs_update_inode_fallback(trans, root, inode);
2676 if (ret) /* -ENOMEM or corruption */
2677 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2678 goto out;
2679 }
e6dcd2dc 2680
2ac55d41
JB
2681 lock_extent_bits(io_tree, ordered_extent->file_offset,
2682 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2683 0, &cached_state);
e6dcd2dc 2684
38c227d8
LB
2685 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2686 ordered_extent->file_offset + ordered_extent->len - 1,
2687 EXTENT_DEFRAG, 1, cached_state);
2688 if (ret) {
2689 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2690 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2691 /* the inode is shared */
2692 new = record_old_file_extents(inode, ordered_extent);
2693
2694 clear_extent_bit(io_tree, ordered_extent->file_offset,
2695 ordered_extent->file_offset + ordered_extent->len - 1,
2696 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2697 }
2698
0cb59c99 2699 if (nolock)
7a7eaa40 2700 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2701 else
7a7eaa40 2702 trans = btrfs_join_transaction(root);
79787eaa
JM
2703 if (IS_ERR(trans)) {
2704 ret = PTR_ERR(trans);
2705 trans = NULL;
2706 goto out_unlock;
2707 }
a79b7d4b 2708
0ca1f7ce 2709 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2710
c8b97818 2711 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2712 compress_type = ordered_extent->compress_type;
d899e052 2713 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2714 BUG_ON(compress_type);
920bbbfb 2715 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2716 ordered_extent->file_offset,
2717 ordered_extent->file_offset +
77cef2ec 2718 logical_len);
d899e052 2719 } else {
0af3d00b 2720 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2721 ret = insert_reserved_file_extent(trans, inode,
2722 ordered_extent->file_offset,
2723 ordered_extent->start,
2724 ordered_extent->disk_len,
77cef2ec 2725 logical_len, logical_len,
261507a0 2726 compress_type, 0, 0,
d899e052 2727 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2728 if (!ret)
2729 btrfs_release_delalloc_bytes(root,
2730 ordered_extent->start,
2731 ordered_extent->disk_len);
d899e052 2732 }
5dc562c5
JB
2733 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2734 ordered_extent->file_offset, ordered_extent->len,
2735 trans->transid);
79787eaa
JM
2736 if (ret < 0) {
2737 btrfs_abort_transaction(trans, root, ret);
5fd02043 2738 goto out_unlock;
79787eaa 2739 }
2ac55d41 2740
e6dcd2dc
CM
2741 add_pending_csums(trans, inode, ordered_extent->file_offset,
2742 &ordered_extent->list);
2743
6c760c07
JB
2744 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2745 ret = btrfs_update_inode_fallback(trans, root, inode);
2746 if (ret) { /* -ENOMEM or corruption */
2747 btrfs_abort_transaction(trans, root, ret);
2748 goto out_unlock;
1ef30be1
JB
2749 }
2750 ret = 0;
5fd02043
JB
2751out_unlock:
2752 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2753 ordered_extent->file_offset +
2754 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2755out:
5b0e95bf 2756 if (root != root->fs_info->tree_root)
0cb59c99 2757 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2758 if (trans)
2759 btrfs_end_transaction(trans, root);
0cb59c99 2760
77cef2ec
JB
2761 if (ret || truncated) {
2762 u64 start, end;
2763
2764 if (truncated)
2765 start = ordered_extent->file_offset + logical_len;
2766 else
2767 start = ordered_extent->file_offset;
2768 end = ordered_extent->file_offset + ordered_extent->len - 1;
2769 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2770
2771 /* Drop the cache for the part of the extent we didn't write. */
2772 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2773
0bec9ef5
JB
2774 /*
2775 * If the ordered extent had an IOERR or something else went
2776 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2777 * back to the allocator. We only free the extent in the
2778 * truncated case if we didn't write out the extent at all.
0bec9ef5 2779 */
77cef2ec
JB
2780 if ((ret || !logical_len) &&
2781 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2782 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2783 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2784 ordered_extent->disk_len, 1);
0bec9ef5
JB
2785 }
2786
2787
5fd02043 2788 /*
8bad3c02
LB
2789 * This needs to be done to make sure anybody waiting knows we are done
2790 * updating everything for this ordered extent.
5fd02043
JB
2791 */
2792 btrfs_remove_ordered_extent(inode, ordered_extent);
2793
38c227d8 2794 /* for snapshot-aware defrag */
6f519564
LB
2795 if (new) {
2796 if (ret) {
2797 free_sa_defrag_extent(new);
2798 atomic_dec(&root->fs_info->defrag_running);
2799 } else {
2800 relink_file_extents(new);
2801 }
2802 }
38c227d8 2803
e6dcd2dc
CM
2804 /* once for us */
2805 btrfs_put_ordered_extent(ordered_extent);
2806 /* once for the tree */
2807 btrfs_put_ordered_extent(ordered_extent);
2808
5fd02043
JB
2809 return ret;
2810}
2811
2812static void finish_ordered_fn(struct btrfs_work *work)
2813{
2814 struct btrfs_ordered_extent *ordered_extent;
2815 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2816 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2817}
2818
b2950863 2819static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2820 struct extent_state *state, int uptodate)
2821{
5fd02043
JB
2822 struct inode *inode = page->mapping->host;
2823 struct btrfs_root *root = BTRFS_I(inode)->root;
2824 struct btrfs_ordered_extent *ordered_extent = NULL;
d458b054 2825 struct btrfs_workqueue *workers;
5fd02043 2826
1abe9b8a 2827 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2828
8b62b72b 2829 ClearPagePrivate2(page);
5fd02043
JB
2830 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2831 end - start + 1, uptodate))
2832 return 0;
2833
fccb5d86 2834 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
5fd02043 2835
83eea1f1 2836 if (btrfs_is_free_space_inode(inode))
fccb5d86 2837 workers = root->fs_info->endio_freespace_worker;
5fd02043 2838 else
fccb5d86
QW
2839 workers = root->fs_info->endio_write_workers;
2840 btrfs_queue_work(workers, &ordered_extent->work);
5fd02043
JB
2841
2842 return 0;
211f90e6
CM
2843}
2844
d352ac68
CM
2845/*
2846 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2847 * if there's a match, we allow the bio to finish. If not, the code in
2848 * extent_io.c will try to find good copies for us.
d352ac68 2849 */
facc8a22
MX
2850static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2851 u64 phy_offset, struct page *page,
2852 u64 start, u64 end, int mirror)
07157aac 2853{
4eee4fa4 2854 size_t offset = start - page_offset(page);
07157aac 2855 struct inode *inode = page->mapping->host;
d1310b2e 2856 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2857 char *kaddr;
ff79f819 2858 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2859 u32 csum_expected;
ff79f819 2860 u32 csum = ~(u32)0;
c2cf52eb
SK
2861 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2862 DEFAULT_RATELIMIT_BURST);
d1310b2e 2863
d20f7043
CM
2864 if (PageChecked(page)) {
2865 ClearPageChecked(page);
2866 goto good;
2867 }
6cbff00f
CH
2868
2869 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2870 goto good;
17d217fe
YZ
2871
2872 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2873 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2874 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2875 GFP_NOFS);
b6cda9bc 2876 return 0;
17d217fe 2877 }
d20f7043 2878
facc8a22
MX
2879 phy_offset >>= inode->i_sb->s_blocksize_bits;
2880 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2881
facc8a22 2882 kaddr = kmap_atomic(page);
b0496686 2883 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2884 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2885 if (csum != csum_expected)
07157aac 2886 goto zeroit;
d397712b 2887
7ac687d9 2888 kunmap_atomic(kaddr);
d20f7043 2889good:
07157aac
CM
2890 return 0;
2891
2892zeroit:
c2cf52eb 2893 if (__ratelimit(&_rs))
facc8a22 2894 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2895 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2896 memset(kaddr + offset, 1, end - start + 1);
2897 flush_dcache_page(page);
7ac687d9 2898 kunmap_atomic(kaddr);
facc8a22 2899 if (csum_expected == 0)
3b951516 2900 return 0;
7e38326f 2901 return -EIO;
07157aac 2902}
b888db2b 2903
24bbcf04
YZ
2904struct delayed_iput {
2905 struct list_head list;
2906 struct inode *inode;
2907};
2908
79787eaa
JM
2909/* JDM: If this is fs-wide, why can't we add a pointer to
2910 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2911void btrfs_add_delayed_iput(struct inode *inode)
2912{
2913 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2914 struct delayed_iput *delayed;
2915
2916 if (atomic_add_unless(&inode->i_count, -1, 1))
2917 return;
2918
2919 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2920 delayed->inode = inode;
2921
2922 spin_lock(&fs_info->delayed_iput_lock);
2923 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2924 spin_unlock(&fs_info->delayed_iput_lock);
2925}
2926
2927void btrfs_run_delayed_iputs(struct btrfs_root *root)
2928{
2929 LIST_HEAD(list);
2930 struct btrfs_fs_info *fs_info = root->fs_info;
2931 struct delayed_iput *delayed;
2932 int empty;
2933
2934 spin_lock(&fs_info->delayed_iput_lock);
2935 empty = list_empty(&fs_info->delayed_iputs);
2936 spin_unlock(&fs_info->delayed_iput_lock);
2937 if (empty)
2938 return;
2939
24bbcf04
YZ
2940 spin_lock(&fs_info->delayed_iput_lock);
2941 list_splice_init(&fs_info->delayed_iputs, &list);
2942 spin_unlock(&fs_info->delayed_iput_lock);
2943
2944 while (!list_empty(&list)) {
2945 delayed = list_entry(list.next, struct delayed_iput, list);
2946 list_del(&delayed->list);
2947 iput(delayed->inode);
2948 kfree(delayed);
2949 }
24bbcf04
YZ
2950}
2951
d68fc57b 2952/*
42b2aa86 2953 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2954 * files in the subvolume, it removes orphan item and frees block_rsv
2955 * structure.
2956 */
2957void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2958 struct btrfs_root *root)
2959{
90290e19 2960 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2961 int ret;
2962
8a35d95f 2963 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2964 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2965 return;
2966
90290e19 2967 spin_lock(&root->orphan_lock);
8a35d95f 2968 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2969 spin_unlock(&root->orphan_lock);
2970 return;
2971 }
2972
2973 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2974 spin_unlock(&root->orphan_lock);
2975 return;
2976 }
2977
2978 block_rsv = root->orphan_block_rsv;
2979 root->orphan_block_rsv = NULL;
2980 spin_unlock(&root->orphan_lock);
2981
27cdeb70 2982 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
2983 btrfs_root_refs(&root->root_item) > 0) {
2984 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2985 root->root_key.objectid);
4ef31a45
JB
2986 if (ret)
2987 btrfs_abort_transaction(trans, root, ret);
2988 else
27cdeb70
MX
2989 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
2990 &root->state);
d68fc57b
YZ
2991 }
2992
90290e19
JB
2993 if (block_rsv) {
2994 WARN_ON(block_rsv->size > 0);
2995 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2996 }
2997}
2998
7b128766
JB
2999/*
3000 * This creates an orphan entry for the given inode in case something goes
3001 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3002 *
3003 * NOTE: caller of this function should reserve 5 units of metadata for
3004 * this function.
7b128766
JB
3005 */
3006int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3007{
3008 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3009 struct btrfs_block_rsv *block_rsv = NULL;
3010 int reserve = 0;
3011 int insert = 0;
3012 int ret;
7b128766 3013
d68fc57b 3014 if (!root->orphan_block_rsv) {
66d8f3dd 3015 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3016 if (!block_rsv)
3017 return -ENOMEM;
d68fc57b 3018 }
7b128766 3019
d68fc57b
YZ
3020 spin_lock(&root->orphan_lock);
3021 if (!root->orphan_block_rsv) {
3022 root->orphan_block_rsv = block_rsv;
3023 } else if (block_rsv) {
3024 btrfs_free_block_rsv(root, block_rsv);
3025 block_rsv = NULL;
7b128766 3026 }
7b128766 3027
8a35d95f
JB
3028 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3029 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3030#if 0
3031 /*
3032 * For proper ENOSPC handling, we should do orphan
3033 * cleanup when mounting. But this introduces backward
3034 * compatibility issue.
3035 */
3036 if (!xchg(&root->orphan_item_inserted, 1))
3037 insert = 2;
3038 else
3039 insert = 1;
3040#endif
3041 insert = 1;
321f0e70 3042 atomic_inc(&root->orphan_inodes);
7b128766
JB
3043 }
3044
72ac3c0d
JB
3045 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3046 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3047 reserve = 1;
d68fc57b 3048 spin_unlock(&root->orphan_lock);
7b128766 3049
d68fc57b
YZ
3050 /* grab metadata reservation from transaction handle */
3051 if (reserve) {
3052 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3053 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3054 }
7b128766 3055
d68fc57b
YZ
3056 /* insert an orphan item to track this unlinked/truncated file */
3057 if (insert >= 1) {
33345d01 3058 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3059 if (ret) {
703c88e0 3060 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3061 if (reserve) {
3062 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3063 &BTRFS_I(inode)->runtime_flags);
3064 btrfs_orphan_release_metadata(inode);
3065 }
3066 if (ret != -EEXIST) {
e8e7cff6
JB
3067 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3068 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3069 btrfs_abort_transaction(trans, root, ret);
3070 return ret;
3071 }
79787eaa
JM
3072 }
3073 ret = 0;
d68fc57b
YZ
3074 }
3075
3076 /* insert an orphan item to track subvolume contains orphan files */
3077 if (insert >= 2) {
3078 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3079 root->root_key.objectid);
79787eaa
JM
3080 if (ret && ret != -EEXIST) {
3081 btrfs_abort_transaction(trans, root, ret);
3082 return ret;
3083 }
d68fc57b
YZ
3084 }
3085 return 0;
7b128766
JB
3086}
3087
3088/*
3089 * We have done the truncate/delete so we can go ahead and remove the orphan
3090 * item for this particular inode.
3091 */
48a3b636
ES
3092static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3093 struct inode *inode)
7b128766
JB
3094{
3095 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3096 int delete_item = 0;
3097 int release_rsv = 0;
7b128766
JB
3098 int ret = 0;
3099
d68fc57b 3100 spin_lock(&root->orphan_lock);
8a35d95f
JB
3101 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3102 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3103 delete_item = 1;
7b128766 3104
72ac3c0d
JB
3105 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3106 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3107 release_rsv = 1;
d68fc57b 3108 spin_unlock(&root->orphan_lock);
7b128766 3109
703c88e0 3110 if (delete_item) {
8a35d95f 3111 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3112 if (trans)
3113 ret = btrfs_del_orphan_item(trans, root,
3114 btrfs_ino(inode));
8a35d95f 3115 }
7b128766 3116
703c88e0
FDBM
3117 if (release_rsv)
3118 btrfs_orphan_release_metadata(inode);
3119
4ef31a45 3120 return ret;
7b128766
JB
3121}
3122
3123/*
3124 * this cleans up any orphans that may be left on the list from the last use
3125 * of this root.
3126 */
66b4ffd1 3127int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3128{
3129 struct btrfs_path *path;
3130 struct extent_buffer *leaf;
7b128766
JB
3131 struct btrfs_key key, found_key;
3132 struct btrfs_trans_handle *trans;
3133 struct inode *inode;
8f6d7f4f 3134 u64 last_objectid = 0;
7b128766
JB
3135 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3136
d68fc57b 3137 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3138 return 0;
c71bf099
YZ
3139
3140 path = btrfs_alloc_path();
66b4ffd1
JB
3141 if (!path) {
3142 ret = -ENOMEM;
3143 goto out;
3144 }
7b128766
JB
3145 path->reada = -1;
3146
3147 key.objectid = BTRFS_ORPHAN_OBJECTID;
3148 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3149 key.offset = (u64)-1;
3150
7b128766
JB
3151 while (1) {
3152 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3153 if (ret < 0)
3154 goto out;
7b128766
JB
3155
3156 /*
3157 * if ret == 0 means we found what we were searching for, which
25985edc 3158 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3159 * find the key and see if we have stuff that matches
3160 */
3161 if (ret > 0) {
66b4ffd1 3162 ret = 0;
7b128766
JB
3163 if (path->slots[0] == 0)
3164 break;
3165 path->slots[0]--;
3166 }
3167
3168 /* pull out the item */
3169 leaf = path->nodes[0];
7b128766
JB
3170 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3171
3172 /* make sure the item matches what we want */
3173 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3174 break;
3175 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3176 break;
3177
3178 /* release the path since we're done with it */
b3b4aa74 3179 btrfs_release_path(path);
7b128766
JB
3180
3181 /*
3182 * this is where we are basically btrfs_lookup, without the
3183 * crossing root thing. we store the inode number in the
3184 * offset of the orphan item.
3185 */
8f6d7f4f
JB
3186
3187 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3188 btrfs_err(root->fs_info,
3189 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3190 ret = -EINVAL;
3191 goto out;
3192 }
3193
3194 last_objectid = found_key.offset;
3195
5d4f98a2
YZ
3196 found_key.objectid = found_key.offset;
3197 found_key.type = BTRFS_INODE_ITEM_KEY;
3198 found_key.offset = 0;
73f73415 3199 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3200 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3201 if (ret && ret != -ESTALE)
66b4ffd1 3202 goto out;
7b128766 3203
f8e9e0b0
AJ
3204 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3205 struct btrfs_root *dead_root;
3206 struct btrfs_fs_info *fs_info = root->fs_info;
3207 int is_dead_root = 0;
3208
3209 /*
3210 * this is an orphan in the tree root. Currently these
3211 * could come from 2 sources:
3212 * a) a snapshot deletion in progress
3213 * b) a free space cache inode
3214 * We need to distinguish those two, as the snapshot
3215 * orphan must not get deleted.
3216 * find_dead_roots already ran before us, so if this
3217 * is a snapshot deletion, we should find the root
3218 * in the dead_roots list
3219 */
3220 spin_lock(&fs_info->trans_lock);
3221 list_for_each_entry(dead_root, &fs_info->dead_roots,
3222 root_list) {
3223 if (dead_root->root_key.objectid ==
3224 found_key.objectid) {
3225 is_dead_root = 1;
3226 break;
3227 }
3228 }
3229 spin_unlock(&fs_info->trans_lock);
3230 if (is_dead_root) {
3231 /* prevent this orphan from being found again */
3232 key.offset = found_key.objectid - 1;
3233 continue;
3234 }
3235 }
7b128766 3236 /*
a8c9e576
JB
3237 * Inode is already gone but the orphan item is still there,
3238 * kill the orphan item.
7b128766 3239 */
a8c9e576
JB
3240 if (ret == -ESTALE) {
3241 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3242 if (IS_ERR(trans)) {
3243 ret = PTR_ERR(trans);
3244 goto out;
3245 }
c2cf52eb
SK
3246 btrfs_debug(root->fs_info, "auto deleting %Lu",
3247 found_key.objectid);
a8c9e576
JB
3248 ret = btrfs_del_orphan_item(trans, root,
3249 found_key.objectid);
5b21f2ed 3250 btrfs_end_transaction(trans, root);
4ef31a45
JB
3251 if (ret)
3252 goto out;
7b128766
JB
3253 continue;
3254 }
3255
a8c9e576
JB
3256 /*
3257 * add this inode to the orphan list so btrfs_orphan_del does
3258 * the proper thing when we hit it
3259 */
8a35d95f
JB
3260 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3261 &BTRFS_I(inode)->runtime_flags);
925396ec 3262 atomic_inc(&root->orphan_inodes);
a8c9e576 3263
7b128766
JB
3264 /* if we have links, this was a truncate, lets do that */
3265 if (inode->i_nlink) {
fae7f21c 3266 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3267 iput(inode);
3268 continue;
3269 }
7b128766 3270 nr_truncate++;
f3fe820c
JB
3271
3272 /* 1 for the orphan item deletion. */
3273 trans = btrfs_start_transaction(root, 1);
3274 if (IS_ERR(trans)) {
c69b26b0 3275 iput(inode);
f3fe820c
JB
3276 ret = PTR_ERR(trans);
3277 goto out;
3278 }
3279 ret = btrfs_orphan_add(trans, inode);
3280 btrfs_end_transaction(trans, root);
c69b26b0
JB
3281 if (ret) {
3282 iput(inode);
f3fe820c 3283 goto out;
c69b26b0 3284 }
f3fe820c 3285
66b4ffd1 3286 ret = btrfs_truncate(inode);
4a7d0f68
JB
3287 if (ret)
3288 btrfs_orphan_del(NULL, inode);
7b128766
JB
3289 } else {
3290 nr_unlink++;
3291 }
3292
3293 /* this will do delete_inode and everything for us */
3294 iput(inode);
66b4ffd1
JB
3295 if (ret)
3296 goto out;
7b128766 3297 }
3254c876
MX
3298 /* release the path since we're done with it */
3299 btrfs_release_path(path);
3300
d68fc57b
YZ
3301 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3302
3303 if (root->orphan_block_rsv)
3304 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3305 (u64)-1);
3306
27cdeb70
MX
3307 if (root->orphan_block_rsv ||
3308 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3309 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3310 if (!IS_ERR(trans))
3311 btrfs_end_transaction(trans, root);
d68fc57b 3312 }
7b128766
JB
3313
3314 if (nr_unlink)
4884b476 3315 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3316 if (nr_truncate)
4884b476 3317 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3318
3319out:
3320 if (ret)
c2cf52eb
SK
3321 btrfs_crit(root->fs_info,
3322 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3323 btrfs_free_path(path);
3324 return ret;
7b128766
JB
3325}
3326
46a53cca
CM
3327/*
3328 * very simple check to peek ahead in the leaf looking for xattrs. If we
3329 * don't find any xattrs, we know there can't be any acls.
3330 *
3331 * slot is the slot the inode is in, objectid is the objectid of the inode
3332 */
3333static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3334 int slot, u64 objectid,
3335 int *first_xattr_slot)
46a53cca
CM
3336{
3337 u32 nritems = btrfs_header_nritems(leaf);
3338 struct btrfs_key found_key;
f23b5a59
JB
3339 static u64 xattr_access = 0;
3340 static u64 xattr_default = 0;
46a53cca
CM
3341 int scanned = 0;
3342
f23b5a59
JB
3343 if (!xattr_access) {
3344 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3345 strlen(POSIX_ACL_XATTR_ACCESS));
3346 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3347 strlen(POSIX_ACL_XATTR_DEFAULT));
3348 }
3349
46a53cca 3350 slot++;
63541927 3351 *first_xattr_slot = -1;
46a53cca
CM
3352 while (slot < nritems) {
3353 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3354
3355 /* we found a different objectid, there must not be acls */
3356 if (found_key.objectid != objectid)
3357 return 0;
3358
3359 /* we found an xattr, assume we've got an acl */
f23b5a59 3360 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3361 if (*first_xattr_slot == -1)
3362 *first_xattr_slot = slot;
f23b5a59
JB
3363 if (found_key.offset == xattr_access ||
3364 found_key.offset == xattr_default)
3365 return 1;
3366 }
46a53cca
CM
3367
3368 /*
3369 * we found a key greater than an xattr key, there can't
3370 * be any acls later on
3371 */
3372 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3373 return 0;
3374
3375 slot++;
3376 scanned++;
3377
3378 /*
3379 * it goes inode, inode backrefs, xattrs, extents,
3380 * so if there are a ton of hard links to an inode there can
3381 * be a lot of backrefs. Don't waste time searching too hard,
3382 * this is just an optimization
3383 */
3384 if (scanned >= 8)
3385 break;
3386 }
3387 /* we hit the end of the leaf before we found an xattr or
3388 * something larger than an xattr. We have to assume the inode
3389 * has acls
3390 */
63541927
FDBM
3391 if (*first_xattr_slot == -1)
3392 *first_xattr_slot = slot;
46a53cca
CM
3393 return 1;
3394}
3395
d352ac68
CM
3396/*
3397 * read an inode from the btree into the in-memory inode
3398 */
5d4f98a2 3399static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3400{
3401 struct btrfs_path *path;
5f39d397 3402 struct extent_buffer *leaf;
39279cc3 3403 struct btrfs_inode_item *inode_item;
0b86a832 3404 struct btrfs_timespec *tspec;
39279cc3
CM
3405 struct btrfs_root *root = BTRFS_I(inode)->root;
3406 struct btrfs_key location;
67de1176 3407 unsigned long ptr;
46a53cca 3408 int maybe_acls;
618e21d5 3409 u32 rdev;
39279cc3 3410 int ret;
2f7e33d4 3411 bool filled = false;
63541927 3412 int first_xattr_slot;
2f7e33d4
MX
3413
3414 ret = btrfs_fill_inode(inode, &rdev);
3415 if (!ret)
3416 filled = true;
39279cc3
CM
3417
3418 path = btrfs_alloc_path();
1748f843
MF
3419 if (!path)
3420 goto make_bad;
3421
39279cc3 3422 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3423
39279cc3 3424 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3425 if (ret)
39279cc3 3426 goto make_bad;
39279cc3 3427
5f39d397 3428 leaf = path->nodes[0];
2f7e33d4
MX
3429
3430 if (filled)
67de1176 3431 goto cache_index;
2f7e33d4 3432
5f39d397
CM
3433 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3434 struct btrfs_inode_item);
5f39d397 3435 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3436 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3437 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3438 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3439 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3440
3441 tspec = btrfs_inode_atime(inode_item);
3442 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3443 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3444
3445 tspec = btrfs_inode_mtime(inode_item);
3446 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3447 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3448
3449 tspec = btrfs_inode_ctime(inode_item);
3450 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3451 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3452
a76a3cd4 3453 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3454 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3455 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3456
3457 /*
3458 * If we were modified in the current generation and evicted from memory
3459 * and then re-read we need to do a full sync since we don't have any
3460 * idea about which extents were modified before we were evicted from
3461 * cache.
3462 */
3463 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3464 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3465 &BTRFS_I(inode)->runtime_flags);
3466
0c4d2d95 3467 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3468 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3469 inode->i_rdev = 0;
5f39d397
CM
3470 rdev = btrfs_inode_rdev(leaf, inode_item);
3471
aec7477b 3472 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3473 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3474
3475cache_index:
3476 path->slots[0]++;
3477 if (inode->i_nlink != 1 ||
3478 path->slots[0] >= btrfs_header_nritems(leaf))
3479 goto cache_acl;
3480
3481 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3482 if (location.objectid != btrfs_ino(inode))
3483 goto cache_acl;
3484
3485 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3486 if (location.type == BTRFS_INODE_REF_KEY) {
3487 struct btrfs_inode_ref *ref;
3488
3489 ref = (struct btrfs_inode_ref *)ptr;
3490 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3491 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3492 struct btrfs_inode_extref *extref;
3493
3494 extref = (struct btrfs_inode_extref *)ptr;
3495 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3496 extref);
3497 }
2f7e33d4 3498cache_acl:
46a53cca
CM
3499 /*
3500 * try to precache a NULL acl entry for files that don't have
3501 * any xattrs or acls
3502 */
33345d01 3503 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3504 btrfs_ino(inode), &first_xattr_slot);
3505 if (first_xattr_slot != -1) {
3506 path->slots[0] = first_xattr_slot;
3507 ret = btrfs_load_inode_props(inode, path);
3508 if (ret)
3509 btrfs_err(root->fs_info,
351fd353 3510 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3511 btrfs_ino(inode),
3512 root->root_key.objectid, ret);
3513 }
3514 btrfs_free_path(path);
3515
72c04902
AV
3516 if (!maybe_acls)
3517 cache_no_acl(inode);
46a53cca 3518
39279cc3 3519 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3520 case S_IFREG:
3521 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3522 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3523 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3524 inode->i_fop = &btrfs_file_operations;
3525 inode->i_op = &btrfs_file_inode_operations;
3526 break;
3527 case S_IFDIR:
3528 inode->i_fop = &btrfs_dir_file_operations;
3529 if (root == root->fs_info->tree_root)
3530 inode->i_op = &btrfs_dir_ro_inode_operations;
3531 else
3532 inode->i_op = &btrfs_dir_inode_operations;
3533 break;
3534 case S_IFLNK:
3535 inode->i_op = &btrfs_symlink_inode_operations;
3536 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3537 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3538 break;
618e21d5 3539 default:
0279b4cd 3540 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3541 init_special_inode(inode, inode->i_mode, rdev);
3542 break;
39279cc3 3543 }
6cbff00f
CH
3544
3545 btrfs_update_iflags(inode);
39279cc3
CM
3546 return;
3547
3548make_bad:
39279cc3 3549 btrfs_free_path(path);
39279cc3
CM
3550 make_bad_inode(inode);
3551}
3552
d352ac68
CM
3553/*
3554 * given a leaf and an inode, copy the inode fields into the leaf
3555 */
e02119d5
CM
3556static void fill_inode_item(struct btrfs_trans_handle *trans,
3557 struct extent_buffer *leaf,
5f39d397 3558 struct btrfs_inode_item *item,
39279cc3
CM
3559 struct inode *inode)
3560{
51fab693
LB
3561 struct btrfs_map_token token;
3562
3563 btrfs_init_map_token(&token);
5f39d397 3564
51fab693
LB
3565 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3566 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3567 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3568 &token);
3569 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3570 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3571
51fab693
LB
3572 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3573 inode->i_atime.tv_sec, &token);
3574 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3575 inode->i_atime.tv_nsec, &token);
5f39d397 3576
51fab693
LB
3577 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3578 inode->i_mtime.tv_sec, &token);
3579 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3580 inode->i_mtime.tv_nsec, &token);
5f39d397 3581
51fab693
LB
3582 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3583 inode->i_ctime.tv_sec, &token);
3584 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3585 inode->i_ctime.tv_nsec, &token);
5f39d397 3586
51fab693
LB
3587 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3588 &token);
3589 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3590 &token);
3591 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3592 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3593 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3594 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3595 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3596}
3597
d352ac68
CM
3598/*
3599 * copy everything in the in-memory inode into the btree.
3600 */
2115133f 3601static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3602 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3603{
3604 struct btrfs_inode_item *inode_item;
3605 struct btrfs_path *path;
5f39d397 3606 struct extent_buffer *leaf;
39279cc3
CM
3607 int ret;
3608
3609 path = btrfs_alloc_path();
16cdcec7
MX
3610 if (!path)
3611 return -ENOMEM;
3612
b9473439 3613 path->leave_spinning = 1;
16cdcec7
MX
3614 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3615 1);
39279cc3
CM
3616 if (ret) {
3617 if (ret > 0)
3618 ret = -ENOENT;
3619 goto failed;
3620 }
3621
5f39d397
CM
3622 leaf = path->nodes[0];
3623 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3624 struct btrfs_inode_item);
39279cc3 3625
e02119d5 3626 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3627 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3628 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3629 ret = 0;
3630failed:
39279cc3
CM
3631 btrfs_free_path(path);
3632 return ret;
3633}
3634
2115133f
CM
3635/*
3636 * copy everything in the in-memory inode into the btree.
3637 */
3638noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3639 struct btrfs_root *root, struct inode *inode)
3640{
3641 int ret;
3642
3643 /*
3644 * If the inode is a free space inode, we can deadlock during commit
3645 * if we put it into the delayed code.
3646 *
3647 * The data relocation inode should also be directly updated
3648 * without delay
3649 */
83eea1f1 3650 if (!btrfs_is_free_space_inode(inode)
2115133f 3651 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3652 btrfs_update_root_times(trans, root);
3653
2115133f
CM
3654 ret = btrfs_delayed_update_inode(trans, root, inode);
3655 if (!ret)
3656 btrfs_set_inode_last_trans(trans, inode);
3657 return ret;
3658 }
3659
3660 return btrfs_update_inode_item(trans, root, inode);
3661}
3662
be6aef60
JB
3663noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3664 struct btrfs_root *root,
3665 struct inode *inode)
2115133f
CM
3666{
3667 int ret;
3668
3669 ret = btrfs_update_inode(trans, root, inode);
3670 if (ret == -ENOSPC)
3671 return btrfs_update_inode_item(trans, root, inode);
3672 return ret;
3673}
3674
d352ac68
CM
3675/*
3676 * unlink helper that gets used here in inode.c and in the tree logging
3677 * recovery code. It remove a link in a directory with a given name, and
3678 * also drops the back refs in the inode to the directory
3679 */
92986796
AV
3680static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3681 struct btrfs_root *root,
3682 struct inode *dir, struct inode *inode,
3683 const char *name, int name_len)
39279cc3
CM
3684{
3685 struct btrfs_path *path;
39279cc3 3686 int ret = 0;
5f39d397 3687 struct extent_buffer *leaf;
39279cc3 3688 struct btrfs_dir_item *di;
5f39d397 3689 struct btrfs_key key;
aec7477b 3690 u64 index;
33345d01
LZ
3691 u64 ino = btrfs_ino(inode);
3692 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3693
3694 path = btrfs_alloc_path();
54aa1f4d
CM
3695 if (!path) {
3696 ret = -ENOMEM;
554233a6 3697 goto out;
54aa1f4d
CM
3698 }
3699
b9473439 3700 path->leave_spinning = 1;
33345d01 3701 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3702 name, name_len, -1);
3703 if (IS_ERR(di)) {
3704 ret = PTR_ERR(di);
3705 goto err;
3706 }
3707 if (!di) {
3708 ret = -ENOENT;
3709 goto err;
3710 }
5f39d397
CM
3711 leaf = path->nodes[0];
3712 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3713 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3714 if (ret)
3715 goto err;
b3b4aa74 3716 btrfs_release_path(path);
39279cc3 3717
67de1176
MX
3718 /*
3719 * If we don't have dir index, we have to get it by looking up
3720 * the inode ref, since we get the inode ref, remove it directly,
3721 * it is unnecessary to do delayed deletion.
3722 *
3723 * But if we have dir index, needn't search inode ref to get it.
3724 * Since the inode ref is close to the inode item, it is better
3725 * that we delay to delete it, and just do this deletion when
3726 * we update the inode item.
3727 */
3728 if (BTRFS_I(inode)->dir_index) {
3729 ret = btrfs_delayed_delete_inode_ref(inode);
3730 if (!ret) {
3731 index = BTRFS_I(inode)->dir_index;
3732 goto skip_backref;
3733 }
3734 }
3735
33345d01
LZ
3736 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3737 dir_ino, &index);
aec7477b 3738 if (ret) {
c2cf52eb
SK
3739 btrfs_info(root->fs_info,
3740 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3741 name_len, name, ino, dir_ino);
79787eaa 3742 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3743 goto err;
3744 }
67de1176 3745skip_backref:
16cdcec7 3746 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3747 if (ret) {
3748 btrfs_abort_transaction(trans, root, ret);
39279cc3 3749 goto err;
79787eaa 3750 }
39279cc3 3751
e02119d5 3752 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3753 inode, dir_ino);
79787eaa
JM
3754 if (ret != 0 && ret != -ENOENT) {
3755 btrfs_abort_transaction(trans, root, ret);
3756 goto err;
3757 }
e02119d5
CM
3758
3759 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3760 dir, index);
6418c961
CM
3761 if (ret == -ENOENT)
3762 ret = 0;
d4e3991b
ZB
3763 else if (ret)
3764 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3765err:
3766 btrfs_free_path(path);
e02119d5
CM
3767 if (ret)
3768 goto out;
3769
3770 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3771 inode_inc_iversion(inode);
3772 inode_inc_iversion(dir);
e02119d5 3773 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3774 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3775out:
39279cc3
CM
3776 return ret;
3777}
3778
92986796
AV
3779int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3780 struct btrfs_root *root,
3781 struct inode *dir, struct inode *inode,
3782 const char *name, int name_len)
3783{
3784 int ret;
3785 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3786 if (!ret) {
8b558c5f 3787 drop_nlink(inode);
92986796
AV
3788 ret = btrfs_update_inode(trans, root, inode);
3789 }
3790 return ret;
3791}
39279cc3 3792
a22285a6
YZ
3793/*
3794 * helper to start transaction for unlink and rmdir.
3795 *
d52be818
JB
3796 * unlink and rmdir are special in btrfs, they do not always free space, so
3797 * if we cannot make our reservations the normal way try and see if there is
3798 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3799 * allow the unlink to occur.
a22285a6 3800 */
d52be818 3801static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3802{
39279cc3 3803 struct btrfs_trans_handle *trans;
a22285a6 3804 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3805 int ret;
3806
e70bea5f
JB
3807 /*
3808 * 1 for the possible orphan item
3809 * 1 for the dir item
3810 * 1 for the dir index
3811 * 1 for the inode ref
e70bea5f
JB
3812 * 1 for the inode
3813 */
6e137ed3 3814 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3815 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3816 return trans;
4df27c4d 3817
d52be818
JB
3818 if (PTR_ERR(trans) == -ENOSPC) {
3819 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3820
d52be818
JB
3821 trans = btrfs_start_transaction(root, 0);
3822 if (IS_ERR(trans))
3823 return trans;
3824 ret = btrfs_cond_migrate_bytes(root->fs_info,
3825 &root->fs_info->trans_block_rsv,
3826 num_bytes, 5);
3827 if (ret) {
3828 btrfs_end_transaction(trans, root);
3829 return ERR_PTR(ret);
a22285a6 3830 }
5a77d76c 3831 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3832 trans->bytes_reserved = num_bytes;
a22285a6 3833 }
d52be818 3834 return trans;
a22285a6
YZ
3835}
3836
3837static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3838{
3839 struct btrfs_root *root = BTRFS_I(dir)->root;
3840 struct btrfs_trans_handle *trans;
3841 struct inode *inode = dentry->d_inode;
3842 int ret;
a22285a6 3843
d52be818 3844 trans = __unlink_start_trans(dir);
a22285a6
YZ
3845 if (IS_ERR(trans))
3846 return PTR_ERR(trans);
5f39d397 3847
12fcfd22
CM
3848 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3849
e02119d5
CM
3850 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3851 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3852 if (ret)
3853 goto out;
7b128766 3854
a22285a6 3855 if (inode->i_nlink == 0) {
7b128766 3856 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3857 if (ret)
3858 goto out;
a22285a6 3859 }
7b128766 3860
b532402e 3861out:
d52be818 3862 btrfs_end_transaction(trans, root);
b53d3f5d 3863 btrfs_btree_balance_dirty(root);
39279cc3
CM
3864 return ret;
3865}
3866
4df27c4d
YZ
3867int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3868 struct btrfs_root *root,
3869 struct inode *dir, u64 objectid,
3870 const char *name, int name_len)
3871{
3872 struct btrfs_path *path;
3873 struct extent_buffer *leaf;
3874 struct btrfs_dir_item *di;
3875 struct btrfs_key key;
3876 u64 index;
3877 int ret;
33345d01 3878 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3879
3880 path = btrfs_alloc_path();
3881 if (!path)
3882 return -ENOMEM;
3883
33345d01 3884 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3885 name, name_len, -1);
79787eaa
JM
3886 if (IS_ERR_OR_NULL(di)) {
3887 if (!di)
3888 ret = -ENOENT;
3889 else
3890 ret = PTR_ERR(di);
3891 goto out;
3892 }
4df27c4d
YZ
3893
3894 leaf = path->nodes[0];
3895 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3896 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3897 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3898 if (ret) {
3899 btrfs_abort_transaction(trans, root, ret);
3900 goto out;
3901 }
b3b4aa74 3902 btrfs_release_path(path);
4df27c4d
YZ
3903
3904 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3905 objectid, root->root_key.objectid,
33345d01 3906 dir_ino, &index, name, name_len);
4df27c4d 3907 if (ret < 0) {
79787eaa
JM
3908 if (ret != -ENOENT) {
3909 btrfs_abort_transaction(trans, root, ret);
3910 goto out;
3911 }
33345d01 3912 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3913 name, name_len);
79787eaa
JM
3914 if (IS_ERR_OR_NULL(di)) {
3915 if (!di)
3916 ret = -ENOENT;
3917 else
3918 ret = PTR_ERR(di);
3919 btrfs_abort_transaction(trans, root, ret);
3920 goto out;
3921 }
4df27c4d
YZ
3922
3923 leaf = path->nodes[0];
3924 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3925 btrfs_release_path(path);
4df27c4d
YZ
3926 index = key.offset;
3927 }
945d8962 3928 btrfs_release_path(path);
4df27c4d 3929
16cdcec7 3930 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3931 if (ret) {
3932 btrfs_abort_transaction(trans, root, ret);
3933 goto out;
3934 }
4df27c4d
YZ
3935
3936 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3937 inode_inc_iversion(dir);
4df27c4d 3938 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3939 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3940 if (ret)
3941 btrfs_abort_transaction(trans, root, ret);
3942out:
71d7aed0 3943 btrfs_free_path(path);
79787eaa 3944 return ret;
4df27c4d
YZ
3945}
3946
39279cc3
CM
3947static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3948{
3949 struct inode *inode = dentry->d_inode;
1832a6d5 3950 int err = 0;
39279cc3 3951 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3952 struct btrfs_trans_handle *trans;
39279cc3 3953
b3ae244e 3954 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3955 return -ENOTEMPTY;
b3ae244e
DS
3956 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3957 return -EPERM;
134d4512 3958
d52be818 3959 trans = __unlink_start_trans(dir);
a22285a6 3960 if (IS_ERR(trans))
5df6a9f6 3961 return PTR_ERR(trans);
5df6a9f6 3962
33345d01 3963 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3964 err = btrfs_unlink_subvol(trans, root, dir,
3965 BTRFS_I(inode)->location.objectid,
3966 dentry->d_name.name,
3967 dentry->d_name.len);
3968 goto out;
3969 }
3970
7b128766
JB
3971 err = btrfs_orphan_add(trans, inode);
3972 if (err)
4df27c4d 3973 goto out;
7b128766 3974
39279cc3 3975 /* now the directory is empty */
e02119d5
CM
3976 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3977 dentry->d_name.name, dentry->d_name.len);
d397712b 3978 if (!err)
dbe674a9 3979 btrfs_i_size_write(inode, 0);
4df27c4d 3980out:
d52be818 3981 btrfs_end_transaction(trans, root);
b53d3f5d 3982 btrfs_btree_balance_dirty(root);
3954401f 3983
39279cc3
CM
3984 return err;
3985}
3986
39279cc3
CM
3987/*
3988 * this can truncate away extent items, csum items and directory items.
3989 * It starts at a high offset and removes keys until it can't find
d352ac68 3990 * any higher than new_size
39279cc3
CM
3991 *
3992 * csum items that cross the new i_size are truncated to the new size
3993 * as well.
7b128766
JB
3994 *
3995 * min_type is the minimum key type to truncate down to. If set to 0, this
3996 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3997 */
8082510e
YZ
3998int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3999 struct btrfs_root *root,
4000 struct inode *inode,
4001 u64 new_size, u32 min_type)
39279cc3 4002{
39279cc3 4003 struct btrfs_path *path;
5f39d397 4004 struct extent_buffer *leaf;
39279cc3 4005 struct btrfs_file_extent_item *fi;
8082510e
YZ
4006 struct btrfs_key key;
4007 struct btrfs_key found_key;
39279cc3 4008 u64 extent_start = 0;
db94535d 4009 u64 extent_num_bytes = 0;
5d4f98a2 4010 u64 extent_offset = 0;
39279cc3 4011 u64 item_end = 0;
7f4f6e0a 4012 u64 last_size = (u64)-1;
8082510e 4013 u32 found_type = (u8)-1;
39279cc3
CM
4014 int found_extent;
4015 int del_item;
85e21bac
CM
4016 int pending_del_nr = 0;
4017 int pending_del_slot = 0;
179e29e4 4018 int extent_type = -1;
8082510e
YZ
4019 int ret;
4020 int err = 0;
33345d01 4021 u64 ino = btrfs_ino(inode);
8082510e
YZ
4022
4023 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4024
0eb0e19c
MF
4025 path = btrfs_alloc_path();
4026 if (!path)
4027 return -ENOMEM;
4028 path->reada = -1;
4029
5dc562c5
JB
4030 /*
4031 * We want to drop from the next block forward in case this new size is
4032 * not block aligned since we will be keeping the last block of the
4033 * extent just the way it is.
4034 */
27cdeb70
MX
4035 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4036 root == root->fs_info->tree_root)
fda2832f
QW
4037 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4038 root->sectorsize), (u64)-1, 0);
8082510e 4039
16cdcec7
MX
4040 /*
4041 * This function is also used to drop the items in the log tree before
4042 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4043 * it is used to drop the loged items. So we shouldn't kill the delayed
4044 * items.
4045 */
4046 if (min_type == 0 && root == BTRFS_I(inode)->root)
4047 btrfs_kill_delayed_inode_items(inode);
4048
33345d01 4049 key.objectid = ino;
39279cc3 4050 key.offset = (u64)-1;
5f39d397
CM
4051 key.type = (u8)-1;
4052
85e21bac 4053search_again:
b9473439 4054 path->leave_spinning = 1;
85e21bac 4055 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4056 if (ret < 0) {
4057 err = ret;
4058 goto out;
4059 }
d397712b 4060
85e21bac 4061 if (ret > 0) {
e02119d5
CM
4062 /* there are no items in the tree for us to truncate, we're
4063 * done
4064 */
8082510e
YZ
4065 if (path->slots[0] == 0)
4066 goto out;
85e21bac
CM
4067 path->slots[0]--;
4068 }
4069
d397712b 4070 while (1) {
39279cc3 4071 fi = NULL;
5f39d397
CM
4072 leaf = path->nodes[0];
4073 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4074 found_type = btrfs_key_type(&found_key);
39279cc3 4075
33345d01 4076 if (found_key.objectid != ino)
39279cc3 4077 break;
5f39d397 4078
85e21bac 4079 if (found_type < min_type)
39279cc3
CM
4080 break;
4081
5f39d397 4082 item_end = found_key.offset;
39279cc3 4083 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4084 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4085 struct btrfs_file_extent_item);
179e29e4
CM
4086 extent_type = btrfs_file_extent_type(leaf, fi);
4087 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4088 item_end +=
db94535d 4089 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4090 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4091 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4092 path->slots[0], fi);
39279cc3 4093 }
008630c1 4094 item_end--;
39279cc3 4095 }
8082510e
YZ
4096 if (found_type > min_type) {
4097 del_item = 1;
4098 } else {
4099 if (item_end < new_size)
b888db2b 4100 break;
8082510e
YZ
4101 if (found_key.offset >= new_size)
4102 del_item = 1;
4103 else
4104 del_item = 0;
39279cc3 4105 }
39279cc3 4106 found_extent = 0;
39279cc3 4107 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4108 if (found_type != BTRFS_EXTENT_DATA_KEY)
4109 goto delete;
4110
7f4f6e0a
JB
4111 if (del_item)
4112 last_size = found_key.offset;
4113 else
4114 last_size = new_size;
4115
179e29e4 4116 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4117 u64 num_dec;
db94535d 4118 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4119 if (!del_item) {
db94535d
CM
4120 u64 orig_num_bytes =
4121 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4122 extent_num_bytes = ALIGN(new_size -
4123 found_key.offset,
4124 root->sectorsize);
db94535d
CM
4125 btrfs_set_file_extent_num_bytes(leaf, fi,
4126 extent_num_bytes);
4127 num_dec = (orig_num_bytes -
9069218d 4128 extent_num_bytes);
27cdeb70
MX
4129 if (test_bit(BTRFS_ROOT_REF_COWS,
4130 &root->state) &&
4131 extent_start != 0)
a76a3cd4 4132 inode_sub_bytes(inode, num_dec);
5f39d397 4133 btrfs_mark_buffer_dirty(leaf);
39279cc3 4134 } else {
db94535d
CM
4135 extent_num_bytes =
4136 btrfs_file_extent_disk_num_bytes(leaf,
4137 fi);
5d4f98a2
YZ
4138 extent_offset = found_key.offset -
4139 btrfs_file_extent_offset(leaf, fi);
4140
39279cc3 4141 /* FIXME blocksize != 4096 */
9069218d 4142 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4143 if (extent_start != 0) {
4144 found_extent = 1;
27cdeb70
MX
4145 if (test_bit(BTRFS_ROOT_REF_COWS,
4146 &root->state))
a76a3cd4 4147 inode_sub_bytes(inode, num_dec);
e02119d5 4148 }
39279cc3 4149 }
9069218d 4150 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4151 /*
4152 * we can't truncate inline items that have had
4153 * special encodings
4154 */
4155 if (!del_item &&
4156 btrfs_file_extent_compression(leaf, fi) == 0 &&
4157 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4158 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4159 u32 size = new_size - found_key.offset;
4160
27cdeb70 4161 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
a76a3cd4
YZ
4162 inode_sub_bytes(inode, item_end + 1 -
4163 new_size);
514ac8ad
CM
4164
4165 /*
4166 * update the ram bytes to properly reflect
4167 * the new size of our item
4168 */
4169 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4170 size =
4171 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4172 btrfs_truncate_item(root, path, size, 1);
27cdeb70
MX
4173 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4174 &root->state)) {
a76a3cd4
YZ
4175 inode_sub_bytes(inode, item_end + 1 -
4176 found_key.offset);
9069218d 4177 }
39279cc3 4178 }
179e29e4 4179delete:
39279cc3 4180 if (del_item) {
85e21bac
CM
4181 if (!pending_del_nr) {
4182 /* no pending yet, add ourselves */
4183 pending_del_slot = path->slots[0];
4184 pending_del_nr = 1;
4185 } else if (pending_del_nr &&
4186 path->slots[0] + 1 == pending_del_slot) {
4187 /* hop on the pending chunk */
4188 pending_del_nr++;
4189 pending_del_slot = path->slots[0];
4190 } else {
d397712b 4191 BUG();
85e21bac 4192 }
39279cc3
CM
4193 } else {
4194 break;
4195 }
27cdeb70
MX
4196 if (found_extent &&
4197 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4198 root == root->fs_info->tree_root)) {
b9473439 4199 btrfs_set_path_blocking(path);
39279cc3 4200 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4201 extent_num_bytes, 0,
4202 btrfs_header_owner(leaf),
66d7e7f0 4203 ino, extent_offset, 0);
39279cc3
CM
4204 BUG_ON(ret);
4205 }
85e21bac 4206
8082510e
YZ
4207 if (found_type == BTRFS_INODE_ITEM_KEY)
4208 break;
4209
4210 if (path->slots[0] == 0 ||
4211 path->slots[0] != pending_del_slot) {
8082510e
YZ
4212 if (pending_del_nr) {
4213 ret = btrfs_del_items(trans, root, path,
4214 pending_del_slot,
4215 pending_del_nr);
79787eaa
JM
4216 if (ret) {
4217 btrfs_abort_transaction(trans,
4218 root, ret);
4219 goto error;
4220 }
8082510e
YZ
4221 pending_del_nr = 0;
4222 }
b3b4aa74 4223 btrfs_release_path(path);
85e21bac 4224 goto search_again;
8082510e
YZ
4225 } else {
4226 path->slots[0]--;
85e21bac 4227 }
39279cc3 4228 }
8082510e 4229out:
85e21bac
CM
4230 if (pending_del_nr) {
4231 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4232 pending_del_nr);
79787eaa
JM
4233 if (ret)
4234 btrfs_abort_transaction(trans, root, ret);
85e21bac 4235 }
79787eaa 4236error:
7f4f6e0a
JB
4237 if (last_size != (u64)-1)
4238 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4239 btrfs_free_path(path);
8082510e 4240 return err;
39279cc3
CM
4241}
4242
4243/*
2aaa6655
JB
4244 * btrfs_truncate_page - read, zero a chunk and write a page
4245 * @inode - inode that we're zeroing
4246 * @from - the offset to start zeroing
4247 * @len - the length to zero, 0 to zero the entire range respective to the
4248 * offset
4249 * @front - zero up to the offset instead of from the offset on
4250 *
4251 * This will find the page for the "from" offset and cow the page and zero the
4252 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4253 */
2aaa6655
JB
4254int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4255 int front)
39279cc3 4256{
2aaa6655 4257 struct address_space *mapping = inode->i_mapping;
db94535d 4258 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4259 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4260 struct btrfs_ordered_extent *ordered;
2ac55d41 4261 struct extent_state *cached_state = NULL;
e6dcd2dc 4262 char *kaddr;
db94535d 4263 u32 blocksize = root->sectorsize;
39279cc3
CM
4264 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4265 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4266 struct page *page;
3b16a4e3 4267 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4268 int ret = 0;
a52d9a80 4269 u64 page_start;
e6dcd2dc 4270 u64 page_end;
39279cc3 4271
2aaa6655
JB
4272 if ((offset & (blocksize - 1)) == 0 &&
4273 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4274 goto out;
0ca1f7ce 4275 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4276 if (ret)
4277 goto out;
39279cc3 4278
211c17f5 4279again:
3b16a4e3 4280 page = find_or_create_page(mapping, index, mask);
5d5e103a 4281 if (!page) {
0ca1f7ce 4282 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4283 ret = -ENOMEM;
39279cc3 4284 goto out;
5d5e103a 4285 }
e6dcd2dc
CM
4286
4287 page_start = page_offset(page);
4288 page_end = page_start + PAGE_CACHE_SIZE - 1;
4289
39279cc3 4290 if (!PageUptodate(page)) {
9ebefb18 4291 ret = btrfs_readpage(NULL, page);
39279cc3 4292 lock_page(page);
211c17f5
CM
4293 if (page->mapping != mapping) {
4294 unlock_page(page);
4295 page_cache_release(page);
4296 goto again;
4297 }
39279cc3
CM
4298 if (!PageUptodate(page)) {
4299 ret = -EIO;
89642229 4300 goto out_unlock;
39279cc3
CM
4301 }
4302 }
211c17f5 4303 wait_on_page_writeback(page);
e6dcd2dc 4304
d0082371 4305 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4306 set_page_extent_mapped(page);
4307
4308 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4309 if (ordered) {
2ac55d41
JB
4310 unlock_extent_cached(io_tree, page_start, page_end,
4311 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4312 unlock_page(page);
4313 page_cache_release(page);
eb84ae03 4314 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4315 btrfs_put_ordered_extent(ordered);
4316 goto again;
4317 }
4318
2ac55d41 4319 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4320 EXTENT_DIRTY | EXTENT_DELALLOC |
4321 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4322 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4323
2ac55d41
JB
4324 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4325 &cached_state);
9ed74f2d 4326 if (ret) {
2ac55d41
JB
4327 unlock_extent_cached(io_tree, page_start, page_end,
4328 &cached_state, GFP_NOFS);
9ed74f2d
JB
4329 goto out_unlock;
4330 }
4331
e6dcd2dc 4332 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4333 if (!len)
4334 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4335 kaddr = kmap(page);
2aaa6655
JB
4336 if (front)
4337 memset(kaddr, 0, offset);
4338 else
4339 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4340 flush_dcache_page(page);
4341 kunmap(page);
4342 }
247e743c 4343 ClearPageChecked(page);
e6dcd2dc 4344 set_page_dirty(page);
2ac55d41
JB
4345 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4346 GFP_NOFS);
39279cc3 4347
89642229 4348out_unlock:
5d5e103a 4349 if (ret)
0ca1f7ce 4350 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4351 unlock_page(page);
4352 page_cache_release(page);
4353out:
4354 return ret;
4355}
4356
16e7549f
JB
4357static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4358 u64 offset, u64 len)
4359{
4360 struct btrfs_trans_handle *trans;
4361 int ret;
4362
4363 /*
4364 * Still need to make sure the inode looks like it's been updated so
4365 * that any holes get logged if we fsync.
4366 */
4367 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4368 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4369 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4370 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4371 return 0;
4372 }
4373
4374 /*
4375 * 1 - for the one we're dropping
4376 * 1 - for the one we're adding
4377 * 1 - for updating the inode.
4378 */
4379 trans = btrfs_start_transaction(root, 3);
4380 if (IS_ERR(trans))
4381 return PTR_ERR(trans);
4382
4383 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4384 if (ret) {
4385 btrfs_abort_transaction(trans, root, ret);
4386 btrfs_end_transaction(trans, root);
4387 return ret;
4388 }
4389
4390 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4391 0, 0, len, 0, len, 0, 0, 0);
4392 if (ret)
4393 btrfs_abort_transaction(trans, root, ret);
4394 else
4395 btrfs_update_inode(trans, root, inode);
4396 btrfs_end_transaction(trans, root);
4397 return ret;
4398}
4399
695a0d0d
JB
4400/*
4401 * This function puts in dummy file extents for the area we're creating a hole
4402 * for. So if we are truncating this file to a larger size we need to insert
4403 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4404 * the range between oldsize and size
4405 */
a41ad394 4406int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4407{
9036c102
YZ
4408 struct btrfs_root *root = BTRFS_I(inode)->root;
4409 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4410 struct extent_map *em = NULL;
2ac55d41 4411 struct extent_state *cached_state = NULL;
5dc562c5 4412 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4413 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4414 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4415 u64 last_byte;
4416 u64 cur_offset;
4417 u64 hole_size;
9ed74f2d 4418 int err = 0;
39279cc3 4419
a71754fc
JB
4420 /*
4421 * If our size started in the middle of a page we need to zero out the
4422 * rest of the page before we expand the i_size, otherwise we could
4423 * expose stale data.
4424 */
4425 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4426 if (err)
4427 return err;
4428
9036c102
YZ
4429 if (size <= hole_start)
4430 return 0;
4431
9036c102
YZ
4432 while (1) {
4433 struct btrfs_ordered_extent *ordered;
fa7c1494 4434
2ac55d41 4435 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4436 &cached_state);
fa7c1494
MX
4437 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4438 block_end - hole_start);
9036c102
YZ
4439 if (!ordered)
4440 break;
2ac55d41
JB
4441 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4442 &cached_state, GFP_NOFS);
fa7c1494 4443 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4444 btrfs_put_ordered_extent(ordered);
4445 }
39279cc3 4446
9036c102
YZ
4447 cur_offset = hole_start;
4448 while (1) {
4449 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4450 block_end - cur_offset, 0);
79787eaa
JM
4451 if (IS_ERR(em)) {
4452 err = PTR_ERR(em);
f2767956 4453 em = NULL;
79787eaa
JM
4454 break;
4455 }
9036c102 4456 last_byte = min(extent_map_end(em), block_end);
fda2832f 4457 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4458 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4459 struct extent_map *hole_em;
9036c102 4460 hole_size = last_byte - cur_offset;
9ed74f2d 4461
16e7549f
JB
4462 err = maybe_insert_hole(root, inode, cur_offset,
4463 hole_size);
4464 if (err)
3893e33b 4465 break;
5dc562c5
JB
4466 btrfs_drop_extent_cache(inode, cur_offset,
4467 cur_offset + hole_size - 1, 0);
4468 hole_em = alloc_extent_map();
4469 if (!hole_em) {
4470 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4471 &BTRFS_I(inode)->runtime_flags);
4472 goto next;
4473 }
4474 hole_em->start = cur_offset;
4475 hole_em->len = hole_size;
4476 hole_em->orig_start = cur_offset;
8082510e 4477
5dc562c5
JB
4478 hole_em->block_start = EXTENT_MAP_HOLE;
4479 hole_em->block_len = 0;
b4939680 4480 hole_em->orig_block_len = 0;
cc95bef6 4481 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4482 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4483 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4484 hole_em->generation = root->fs_info->generation;
8082510e 4485
5dc562c5
JB
4486 while (1) {
4487 write_lock(&em_tree->lock);
09a2a8f9 4488 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4489 write_unlock(&em_tree->lock);
4490 if (err != -EEXIST)
4491 break;
4492 btrfs_drop_extent_cache(inode, cur_offset,
4493 cur_offset +
4494 hole_size - 1, 0);
4495 }
4496 free_extent_map(hole_em);
9036c102 4497 }
16e7549f 4498next:
9036c102 4499 free_extent_map(em);
a22285a6 4500 em = NULL;
9036c102 4501 cur_offset = last_byte;
8082510e 4502 if (cur_offset >= block_end)
9036c102
YZ
4503 break;
4504 }
a22285a6 4505 free_extent_map(em);
2ac55d41
JB
4506 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4507 GFP_NOFS);
9036c102
YZ
4508 return err;
4509}
39279cc3 4510
3972f260 4511static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4512{
f4a2f4c5
MX
4513 struct btrfs_root *root = BTRFS_I(inode)->root;
4514 struct btrfs_trans_handle *trans;
a41ad394 4515 loff_t oldsize = i_size_read(inode);
3972f260
ES
4516 loff_t newsize = attr->ia_size;
4517 int mask = attr->ia_valid;
8082510e
YZ
4518 int ret;
4519
3972f260
ES
4520 /*
4521 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4522 * special case where we need to update the times despite not having
4523 * these flags set. For all other operations the VFS set these flags
4524 * explicitly if it wants a timestamp update.
4525 */
dff6efc3
CH
4526 if (newsize != oldsize) {
4527 inode_inc_iversion(inode);
4528 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4529 inode->i_ctime = inode->i_mtime =
4530 current_fs_time(inode->i_sb);
4531 }
3972f260 4532
a41ad394 4533 if (newsize > oldsize) {
7caef267 4534 truncate_pagecache(inode, newsize);
a41ad394 4535 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4536 if (ret)
8082510e 4537 return ret;
8082510e 4538
f4a2f4c5
MX
4539 trans = btrfs_start_transaction(root, 1);
4540 if (IS_ERR(trans))
4541 return PTR_ERR(trans);
4542
4543 i_size_write(inode, newsize);
4544 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4545 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4546 btrfs_end_transaction(trans, root);
a41ad394 4547 } else {
8082510e 4548
a41ad394
JB
4549 /*
4550 * We're truncating a file that used to have good data down to
4551 * zero. Make sure it gets into the ordered flush list so that
4552 * any new writes get down to disk quickly.
4553 */
4554 if (newsize == 0)
72ac3c0d
JB
4555 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4556 &BTRFS_I(inode)->runtime_flags);
8082510e 4557
f3fe820c
JB
4558 /*
4559 * 1 for the orphan item we're going to add
4560 * 1 for the orphan item deletion.
4561 */
4562 trans = btrfs_start_transaction(root, 2);
4563 if (IS_ERR(trans))
4564 return PTR_ERR(trans);
4565
4566 /*
4567 * We need to do this in case we fail at _any_ point during the
4568 * actual truncate. Once we do the truncate_setsize we could
4569 * invalidate pages which forces any outstanding ordered io to
4570 * be instantly completed which will give us extents that need
4571 * to be truncated. If we fail to get an orphan inode down we
4572 * could have left over extents that were never meant to live,
4573 * so we need to garuntee from this point on that everything
4574 * will be consistent.
4575 */
4576 ret = btrfs_orphan_add(trans, inode);
4577 btrfs_end_transaction(trans, root);
4578 if (ret)
4579 return ret;
4580
a41ad394
JB
4581 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4582 truncate_setsize(inode, newsize);
2e60a51e
MX
4583
4584 /* Disable nonlocked read DIO to avoid the end less truncate */
4585 btrfs_inode_block_unlocked_dio(inode);
4586 inode_dio_wait(inode);
4587 btrfs_inode_resume_unlocked_dio(inode);
4588
a41ad394 4589 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4590 if (ret && inode->i_nlink) {
4591 int err;
4592
4593 /*
4594 * failed to truncate, disk_i_size is only adjusted down
4595 * as we remove extents, so it should represent the true
4596 * size of the inode, so reset the in memory size and
4597 * delete our orphan entry.
4598 */
4599 trans = btrfs_join_transaction(root);
4600 if (IS_ERR(trans)) {
4601 btrfs_orphan_del(NULL, inode);
4602 return ret;
4603 }
4604 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4605 err = btrfs_orphan_del(trans, inode);
4606 if (err)
4607 btrfs_abort_transaction(trans, root, err);
4608 btrfs_end_transaction(trans, root);
4609 }
8082510e
YZ
4610 }
4611
a41ad394 4612 return ret;
8082510e
YZ
4613}
4614
9036c102
YZ
4615static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4616{
4617 struct inode *inode = dentry->d_inode;
b83cc969 4618 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4619 int err;
39279cc3 4620
b83cc969
LZ
4621 if (btrfs_root_readonly(root))
4622 return -EROFS;
4623
9036c102
YZ
4624 err = inode_change_ok(inode, attr);
4625 if (err)
4626 return err;
2bf5a725 4627
5a3f23d5 4628 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4629 err = btrfs_setsize(inode, attr);
8082510e
YZ
4630 if (err)
4631 return err;
39279cc3 4632 }
9036c102 4633
1025774c
CH
4634 if (attr->ia_valid) {
4635 setattr_copy(inode, attr);
0c4d2d95 4636 inode_inc_iversion(inode);
22c44fe6 4637 err = btrfs_dirty_inode(inode);
1025774c 4638
22c44fe6 4639 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4640 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4641 }
33268eaf 4642
39279cc3
CM
4643 return err;
4644}
61295eb8 4645
131e404a
FDBM
4646/*
4647 * While truncating the inode pages during eviction, we get the VFS calling
4648 * btrfs_invalidatepage() against each page of the inode. This is slow because
4649 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4650 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4651 * extent_state structures over and over, wasting lots of time.
4652 *
4653 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4654 * those expensive operations on a per page basis and do only the ordered io
4655 * finishing, while we release here the extent_map and extent_state structures,
4656 * without the excessive merging and splitting.
4657 */
4658static void evict_inode_truncate_pages(struct inode *inode)
4659{
4660 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4661 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4662 struct rb_node *node;
4663
4664 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4665 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4666
4667 write_lock(&map_tree->lock);
4668 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4669 struct extent_map *em;
4670
4671 node = rb_first(&map_tree->map);
4672 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4673 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4674 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4675 remove_extent_mapping(map_tree, em);
4676 free_extent_map(em);
7064dd5c
FM
4677 if (need_resched()) {
4678 write_unlock(&map_tree->lock);
4679 cond_resched();
4680 write_lock(&map_tree->lock);
4681 }
131e404a
FDBM
4682 }
4683 write_unlock(&map_tree->lock);
4684
4685 spin_lock(&io_tree->lock);
4686 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4687 struct extent_state *state;
4688 struct extent_state *cached_state = NULL;
4689
4690 node = rb_first(&io_tree->state);
4691 state = rb_entry(node, struct extent_state, rb_node);
4692 atomic_inc(&state->refs);
4693 spin_unlock(&io_tree->lock);
4694
4695 lock_extent_bits(io_tree, state->start, state->end,
4696 0, &cached_state);
4697 clear_extent_bit(io_tree, state->start, state->end,
4698 EXTENT_LOCKED | EXTENT_DIRTY |
4699 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4700 EXTENT_DEFRAG, 1, 1,
4701 &cached_state, GFP_NOFS);
4702 free_extent_state(state);
4703
7064dd5c 4704 cond_resched();
131e404a
FDBM
4705 spin_lock(&io_tree->lock);
4706 }
4707 spin_unlock(&io_tree->lock);
4708}
4709
bd555975 4710void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4711{
4712 struct btrfs_trans_handle *trans;
4713 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4714 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4715 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4716 int ret;
4717
1abe9b8a 4718 trace_btrfs_inode_evict(inode);
4719
131e404a
FDBM
4720 evict_inode_truncate_pages(inode);
4721
69e9c6c6
SB
4722 if (inode->i_nlink &&
4723 ((btrfs_root_refs(&root->root_item) != 0 &&
4724 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4725 btrfs_is_free_space_inode(inode)))
bd555975
AV
4726 goto no_delete;
4727
39279cc3 4728 if (is_bad_inode(inode)) {
7b128766 4729 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4730 goto no_delete;
4731 }
bd555975 4732 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4733 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4734
c71bf099 4735 if (root->fs_info->log_root_recovering) {
6bf02314 4736 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4737 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4738 goto no_delete;
4739 }
4740
76dda93c 4741 if (inode->i_nlink > 0) {
69e9c6c6
SB
4742 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4743 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4744 goto no_delete;
4745 }
4746
0e8c36a9
MX
4747 ret = btrfs_commit_inode_delayed_inode(inode);
4748 if (ret) {
4749 btrfs_orphan_del(NULL, inode);
4750 goto no_delete;
4751 }
4752
66d8f3dd 4753 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4754 if (!rsv) {
4755 btrfs_orphan_del(NULL, inode);
4756 goto no_delete;
4757 }
4a338542 4758 rsv->size = min_size;
ca7e70f5 4759 rsv->failfast = 1;
726c35fa 4760 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4761
dbe674a9 4762 btrfs_i_size_write(inode, 0);
5f39d397 4763
4289a667 4764 /*
8407aa46
MX
4765 * This is a bit simpler than btrfs_truncate since we've already
4766 * reserved our space for our orphan item in the unlink, so we just
4767 * need to reserve some slack space in case we add bytes and update
4768 * inode item when doing the truncate.
4289a667 4769 */
8082510e 4770 while (1) {
08e007d2
MX
4771 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4772 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4773
4774 /*
4775 * Try and steal from the global reserve since we will
4776 * likely not use this space anyway, we want to try as
4777 * hard as possible to get this to work.
4778 */
4779 if (ret)
4780 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4781
d68fc57b 4782 if (ret) {
c2cf52eb
SK
4783 btrfs_warn(root->fs_info,
4784 "Could not get space for a delete, will truncate on mount %d",
4785 ret);
4289a667
JB
4786 btrfs_orphan_del(NULL, inode);
4787 btrfs_free_block_rsv(root, rsv);
4788 goto no_delete;
d68fc57b 4789 }
7b128766 4790
0e8c36a9 4791 trans = btrfs_join_transaction(root);
4289a667
JB
4792 if (IS_ERR(trans)) {
4793 btrfs_orphan_del(NULL, inode);
4794 btrfs_free_block_rsv(root, rsv);
4795 goto no_delete;
d68fc57b 4796 }
7b128766 4797
4289a667
JB
4798 trans->block_rsv = rsv;
4799
d68fc57b 4800 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4801 if (ret != -ENOSPC)
8082510e 4802 break;
85e21bac 4803
8407aa46 4804 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4805 btrfs_end_transaction(trans, root);
4806 trans = NULL;
b53d3f5d 4807 btrfs_btree_balance_dirty(root);
8082510e 4808 }
5f39d397 4809
4289a667
JB
4810 btrfs_free_block_rsv(root, rsv);
4811
4ef31a45
JB
4812 /*
4813 * Errors here aren't a big deal, it just means we leave orphan items
4814 * in the tree. They will be cleaned up on the next mount.
4815 */
8082510e 4816 if (ret == 0) {
4289a667 4817 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4818 btrfs_orphan_del(trans, inode);
4819 } else {
4820 btrfs_orphan_del(NULL, inode);
8082510e 4821 }
54aa1f4d 4822
4289a667 4823 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4824 if (!(root == root->fs_info->tree_root ||
4825 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4826 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4827
54aa1f4d 4828 btrfs_end_transaction(trans, root);
b53d3f5d 4829 btrfs_btree_balance_dirty(root);
39279cc3 4830no_delete:
89042e5a 4831 btrfs_remove_delayed_node(inode);
dbd5768f 4832 clear_inode(inode);
8082510e 4833 return;
39279cc3
CM
4834}
4835
4836/*
4837 * this returns the key found in the dir entry in the location pointer.
4838 * If no dir entries were found, location->objectid is 0.
4839 */
4840static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4841 struct btrfs_key *location)
4842{
4843 const char *name = dentry->d_name.name;
4844 int namelen = dentry->d_name.len;
4845 struct btrfs_dir_item *di;
4846 struct btrfs_path *path;
4847 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4848 int ret = 0;
39279cc3
CM
4849
4850 path = btrfs_alloc_path();
d8926bb3
MF
4851 if (!path)
4852 return -ENOMEM;
3954401f 4853
33345d01 4854 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4855 namelen, 0);
0d9f7f3e
Y
4856 if (IS_ERR(di))
4857 ret = PTR_ERR(di);
d397712b 4858
c704005d 4859 if (IS_ERR_OR_NULL(di))
3954401f 4860 goto out_err;
d397712b 4861
5f39d397 4862 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4863out:
39279cc3
CM
4864 btrfs_free_path(path);
4865 return ret;
3954401f
CM
4866out_err:
4867 location->objectid = 0;
4868 goto out;
39279cc3
CM
4869}
4870
4871/*
4872 * when we hit a tree root in a directory, the btrfs part of the inode
4873 * needs to be changed to reflect the root directory of the tree root. This
4874 * is kind of like crossing a mount point.
4875 */
4876static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4877 struct inode *dir,
4878 struct dentry *dentry,
4879 struct btrfs_key *location,
4880 struct btrfs_root **sub_root)
39279cc3 4881{
4df27c4d
YZ
4882 struct btrfs_path *path;
4883 struct btrfs_root *new_root;
4884 struct btrfs_root_ref *ref;
4885 struct extent_buffer *leaf;
4886 int ret;
4887 int err = 0;
39279cc3 4888
4df27c4d
YZ
4889 path = btrfs_alloc_path();
4890 if (!path) {
4891 err = -ENOMEM;
4892 goto out;
4893 }
39279cc3 4894
4df27c4d 4895 err = -ENOENT;
75ac2dd9
KN
4896 ret = btrfs_find_item(root->fs_info->tree_root, path,
4897 BTRFS_I(dir)->root->root_key.objectid,
4898 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4df27c4d
YZ
4899 if (ret) {
4900 if (ret < 0)
4901 err = ret;
4902 goto out;
4903 }
39279cc3 4904
4df27c4d
YZ
4905 leaf = path->nodes[0];
4906 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4907 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4908 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4909 goto out;
39279cc3 4910
4df27c4d
YZ
4911 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4912 (unsigned long)(ref + 1),
4913 dentry->d_name.len);
4914 if (ret)
4915 goto out;
4916
b3b4aa74 4917 btrfs_release_path(path);
4df27c4d
YZ
4918
4919 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4920 if (IS_ERR(new_root)) {
4921 err = PTR_ERR(new_root);
4922 goto out;
4923 }
4924
4df27c4d
YZ
4925 *sub_root = new_root;
4926 location->objectid = btrfs_root_dirid(&new_root->root_item);
4927 location->type = BTRFS_INODE_ITEM_KEY;
4928 location->offset = 0;
4929 err = 0;
4930out:
4931 btrfs_free_path(path);
4932 return err;
39279cc3
CM
4933}
4934
5d4f98a2
YZ
4935static void inode_tree_add(struct inode *inode)
4936{
4937 struct btrfs_root *root = BTRFS_I(inode)->root;
4938 struct btrfs_inode *entry;
03e860bd
FNP
4939 struct rb_node **p;
4940 struct rb_node *parent;
cef21937 4941 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 4942 u64 ino = btrfs_ino(inode);
5d4f98a2 4943
1d3382cb 4944 if (inode_unhashed(inode))
76dda93c 4945 return;
e1409cef 4946 parent = NULL;
5d4f98a2 4947 spin_lock(&root->inode_lock);
e1409cef 4948 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4949 while (*p) {
4950 parent = *p;
4951 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4952
33345d01 4953 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4954 p = &parent->rb_left;
33345d01 4955 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4956 p = &parent->rb_right;
5d4f98a2
YZ
4957 else {
4958 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4959 (I_WILL_FREE | I_FREEING)));
cef21937 4960 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
4961 RB_CLEAR_NODE(parent);
4962 spin_unlock(&root->inode_lock);
cef21937 4963 return;
5d4f98a2
YZ
4964 }
4965 }
cef21937
FDBM
4966 rb_link_node(new, parent, p);
4967 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
4968 spin_unlock(&root->inode_lock);
4969}
4970
4971static void inode_tree_del(struct inode *inode)
4972{
4973 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4974 int empty = 0;
5d4f98a2 4975
03e860bd 4976 spin_lock(&root->inode_lock);
5d4f98a2 4977 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4978 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4979 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4980 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4981 }
03e860bd 4982 spin_unlock(&root->inode_lock);
76dda93c 4983
69e9c6c6 4984 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
4985 synchronize_srcu(&root->fs_info->subvol_srcu);
4986 spin_lock(&root->inode_lock);
4987 empty = RB_EMPTY_ROOT(&root->inode_tree);
4988 spin_unlock(&root->inode_lock);
4989 if (empty)
4990 btrfs_add_dead_root(root);
4991 }
4992}
4993
143bede5 4994void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4995{
4996 struct rb_node *node;
4997 struct rb_node *prev;
4998 struct btrfs_inode *entry;
4999 struct inode *inode;
5000 u64 objectid = 0;
5001
7813b3db
LB
5002 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5003 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5004
5005 spin_lock(&root->inode_lock);
5006again:
5007 node = root->inode_tree.rb_node;
5008 prev = NULL;
5009 while (node) {
5010 prev = node;
5011 entry = rb_entry(node, struct btrfs_inode, rb_node);
5012
33345d01 5013 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5014 node = node->rb_left;
33345d01 5015 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5016 node = node->rb_right;
5017 else
5018 break;
5019 }
5020 if (!node) {
5021 while (prev) {
5022 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5023 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5024 node = prev;
5025 break;
5026 }
5027 prev = rb_next(prev);
5028 }
5029 }
5030 while (node) {
5031 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5032 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5033 inode = igrab(&entry->vfs_inode);
5034 if (inode) {
5035 spin_unlock(&root->inode_lock);
5036 if (atomic_read(&inode->i_count) > 1)
5037 d_prune_aliases(inode);
5038 /*
45321ac5 5039 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5040 * the inode cache when its usage count
5041 * hits zero.
5042 */
5043 iput(inode);
5044 cond_resched();
5045 spin_lock(&root->inode_lock);
5046 goto again;
5047 }
5048
5049 if (cond_resched_lock(&root->inode_lock))
5050 goto again;
5051
5052 node = rb_next(node);
5053 }
5054 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5055}
5056
e02119d5
CM
5057static int btrfs_init_locked_inode(struct inode *inode, void *p)
5058{
5059 struct btrfs_iget_args *args = p;
90d3e592
CM
5060 inode->i_ino = args->location->objectid;
5061 memcpy(&BTRFS_I(inode)->location, args->location,
5062 sizeof(*args->location));
e02119d5 5063 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5064 return 0;
5065}
5066
5067static int btrfs_find_actor(struct inode *inode, void *opaque)
5068{
5069 struct btrfs_iget_args *args = opaque;
90d3e592 5070 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5071 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5072}
5073
5d4f98a2 5074static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5075 struct btrfs_key *location,
5d4f98a2 5076 struct btrfs_root *root)
39279cc3
CM
5077{
5078 struct inode *inode;
5079 struct btrfs_iget_args args;
90d3e592 5080 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5081
90d3e592 5082 args.location = location;
39279cc3
CM
5083 args.root = root;
5084
778ba82b 5085 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5086 btrfs_init_locked_inode,
5087 (void *)&args);
5088 return inode;
5089}
5090
1a54ef8c
BR
5091/* Get an inode object given its location and corresponding root.
5092 * Returns in *is_new if the inode was read from disk
5093 */
5094struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5095 struct btrfs_root *root, int *new)
1a54ef8c
BR
5096{
5097 struct inode *inode;
5098
90d3e592 5099 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5100 if (!inode)
5d4f98a2 5101 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5102
5103 if (inode->i_state & I_NEW) {
1a54ef8c 5104 btrfs_read_locked_inode(inode);
1748f843
MF
5105 if (!is_bad_inode(inode)) {
5106 inode_tree_add(inode);
5107 unlock_new_inode(inode);
5108 if (new)
5109 *new = 1;
5110 } else {
e0b6d65b
ST
5111 unlock_new_inode(inode);
5112 iput(inode);
5113 inode = ERR_PTR(-ESTALE);
1748f843
MF
5114 }
5115 }
5116
1a54ef8c
BR
5117 return inode;
5118}
5119
4df27c4d
YZ
5120static struct inode *new_simple_dir(struct super_block *s,
5121 struct btrfs_key *key,
5122 struct btrfs_root *root)
5123{
5124 struct inode *inode = new_inode(s);
5125
5126 if (!inode)
5127 return ERR_PTR(-ENOMEM);
5128
4df27c4d
YZ
5129 BTRFS_I(inode)->root = root;
5130 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5131 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5132
5133 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5134 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5135 inode->i_fop = &simple_dir_operations;
5136 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5137 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5138
5139 return inode;
5140}
5141
3de4586c 5142struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5143{
d397712b 5144 struct inode *inode;
4df27c4d 5145 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5146 struct btrfs_root *sub_root = root;
5147 struct btrfs_key location;
76dda93c 5148 int index;
b4aff1f8 5149 int ret = 0;
39279cc3
CM
5150
5151 if (dentry->d_name.len > BTRFS_NAME_LEN)
5152 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5153
39e3c955 5154 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5155 if (ret < 0)
5156 return ERR_PTR(ret);
5f39d397 5157
4df27c4d 5158 if (location.objectid == 0)
5662344b 5159 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5160
5161 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5162 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5163 return inode;
5164 }
5165
5166 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5167
76dda93c 5168 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5169 ret = fixup_tree_root_location(root, dir, dentry,
5170 &location, &sub_root);
5171 if (ret < 0) {
5172 if (ret != -ENOENT)
5173 inode = ERR_PTR(ret);
5174 else
5175 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5176 } else {
73f73415 5177 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5178 }
76dda93c
YZ
5179 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5180
34d19bad 5181 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5182 down_read(&root->fs_info->cleanup_work_sem);
5183 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5184 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5185 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5186 if (ret) {
5187 iput(inode);
66b4ffd1 5188 inode = ERR_PTR(ret);
01cd3367 5189 }
9c3b306e
FM
5190 /*
5191 * If orphan cleanup did remove any orphans, it means the tree
5192 * was modified and therefore the commit root is not the same as
5193 * the current root anymore. This is a problem, because send
5194 * uses the commit root and therefore can see inode items that
5195 * don't exist in the current root anymore, and for example make
5196 * calls to btrfs_iget, which will do tree lookups based on the
5197 * current root and not on the commit root. Those lookups will
5198 * fail, returning a -ESTALE error, and making send fail with
5199 * that error. So make sure a send does not see any orphans we
5200 * have just removed, and that it will see the same inodes
5201 * regardless of whether a transaction commit happened before
5202 * it started (meaning that the commit root will be the same as
5203 * the current root) or not.
5204 */
5205 if (sub_root->node != sub_root->commit_root) {
5206 u64 sub_flags = btrfs_root_flags(&sub_root->root_item);
5207
5208 if (sub_flags & BTRFS_ROOT_SUBVOL_RDONLY) {
5209 struct extent_buffer *eb;
5210
5211 /*
5212 * Assert we can't have races between dentry
5213 * lookup called through the snapshot creation
5214 * ioctl and the VFS.
5215 */
5216 ASSERT(mutex_is_locked(&dir->i_mutex));
5217
5218 down_write(&root->fs_info->commit_root_sem);
5219 eb = sub_root->commit_root;
5220 sub_root->commit_root =
5221 btrfs_root_node(sub_root);
5222 up_write(&root->fs_info->commit_root_sem);
5223 free_extent_buffer(eb);
5224 }
5225 }
c71bf099
YZ
5226 }
5227
3de4586c
CM
5228 return inode;
5229}
5230
fe15ce44 5231static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5232{
5233 struct btrfs_root *root;
848cce0d 5234 struct inode *inode = dentry->d_inode;
76dda93c 5235
848cce0d
LZ
5236 if (!inode && !IS_ROOT(dentry))
5237 inode = dentry->d_parent->d_inode;
76dda93c 5238
848cce0d
LZ
5239 if (inode) {
5240 root = BTRFS_I(inode)->root;
efefb143
YZ
5241 if (btrfs_root_refs(&root->root_item) == 0)
5242 return 1;
848cce0d
LZ
5243
5244 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5245 return 1;
efefb143 5246 }
76dda93c
YZ
5247 return 0;
5248}
5249
b4aff1f8
JB
5250static void btrfs_dentry_release(struct dentry *dentry)
5251{
944a4515 5252 kfree(dentry->d_fsdata);
b4aff1f8
JB
5253}
5254
3de4586c 5255static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5256 unsigned int flags)
3de4586c 5257{
5662344b 5258 struct inode *inode;
a66e7cc6 5259
5662344b
TI
5260 inode = btrfs_lookup_dentry(dir, dentry);
5261 if (IS_ERR(inode)) {
5262 if (PTR_ERR(inode) == -ENOENT)
5263 inode = NULL;
5264 else
5265 return ERR_CAST(inode);
5266 }
5267
3a0dfa6a 5268 return d_materialise_unique(dentry, inode);
39279cc3
CM
5269}
5270
16cdcec7 5271unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5272 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5273};
5274
9cdda8d3 5275static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5276{
9cdda8d3 5277 struct inode *inode = file_inode(file);
39279cc3
CM
5278 struct btrfs_root *root = BTRFS_I(inode)->root;
5279 struct btrfs_item *item;
5280 struct btrfs_dir_item *di;
5281 struct btrfs_key key;
5f39d397 5282 struct btrfs_key found_key;
39279cc3 5283 struct btrfs_path *path;
16cdcec7
MX
5284 struct list_head ins_list;
5285 struct list_head del_list;
39279cc3 5286 int ret;
5f39d397 5287 struct extent_buffer *leaf;
39279cc3 5288 int slot;
39279cc3
CM
5289 unsigned char d_type;
5290 int over = 0;
5291 u32 di_cur;
5292 u32 di_total;
5293 u32 di_len;
5294 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5295 char tmp_name[32];
5296 char *name_ptr;
5297 int name_len;
9cdda8d3 5298 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5299
5300 /* FIXME, use a real flag for deciding about the key type */
5301 if (root->fs_info->tree_root == root)
5302 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5303
9cdda8d3
AV
5304 if (!dir_emit_dots(file, ctx))
5305 return 0;
5306
49593bfa 5307 path = btrfs_alloc_path();
16cdcec7
MX
5308 if (!path)
5309 return -ENOMEM;
ff5714cc 5310
026fd317 5311 path->reada = 1;
49593bfa 5312
16cdcec7
MX
5313 if (key_type == BTRFS_DIR_INDEX_KEY) {
5314 INIT_LIST_HEAD(&ins_list);
5315 INIT_LIST_HEAD(&del_list);
5316 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5317 }
5318
39279cc3 5319 btrfs_set_key_type(&key, key_type);
9cdda8d3 5320 key.offset = ctx->pos;
33345d01 5321 key.objectid = btrfs_ino(inode);
5f39d397 5322
39279cc3
CM
5323 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5324 if (ret < 0)
5325 goto err;
49593bfa
DW
5326
5327 while (1) {
5f39d397 5328 leaf = path->nodes[0];
39279cc3 5329 slot = path->slots[0];
b9e03af0
LZ
5330 if (slot >= btrfs_header_nritems(leaf)) {
5331 ret = btrfs_next_leaf(root, path);
5332 if (ret < 0)
5333 goto err;
5334 else if (ret > 0)
5335 break;
5336 continue;
39279cc3 5337 }
3de4586c 5338
dd3cc16b 5339 item = btrfs_item_nr(slot);
5f39d397
CM
5340 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5341
5342 if (found_key.objectid != key.objectid)
39279cc3 5343 break;
5f39d397 5344 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5345 break;
9cdda8d3 5346 if (found_key.offset < ctx->pos)
b9e03af0 5347 goto next;
16cdcec7
MX
5348 if (key_type == BTRFS_DIR_INDEX_KEY &&
5349 btrfs_should_delete_dir_index(&del_list,
5350 found_key.offset))
5351 goto next;
5f39d397 5352
9cdda8d3 5353 ctx->pos = found_key.offset;
16cdcec7 5354 is_curr = 1;
49593bfa 5355
39279cc3
CM
5356 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5357 di_cur = 0;
5f39d397 5358 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5359
5360 while (di_cur < di_total) {
5f39d397
CM
5361 struct btrfs_key location;
5362
22a94d44
JB
5363 if (verify_dir_item(root, leaf, di))
5364 break;
5365
5f39d397 5366 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5367 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5368 name_ptr = tmp_name;
5369 } else {
5370 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5371 if (!name_ptr) {
5372 ret = -ENOMEM;
5373 goto err;
5374 }
5f39d397
CM
5375 }
5376 read_extent_buffer(leaf, name_ptr,
5377 (unsigned long)(di + 1), name_len);
5378
5379 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5380 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5381
fede766f 5382
3de4586c 5383 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5384 * skip it.
5385 *
5386 * In contrast to old kernels, we insert the snapshot's
5387 * dir item and dir index after it has been created, so
5388 * we won't find a reference to our own snapshot. We
5389 * still keep the following code for backward
5390 * compatibility.
3de4586c
CM
5391 */
5392 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5393 location.objectid == root->root_key.objectid) {
5394 over = 0;
5395 goto skip;
5396 }
9cdda8d3
AV
5397 over = !dir_emit(ctx, name_ptr, name_len,
5398 location.objectid, d_type);
5f39d397 5399
3de4586c 5400skip:
5f39d397
CM
5401 if (name_ptr != tmp_name)
5402 kfree(name_ptr);
5403
39279cc3
CM
5404 if (over)
5405 goto nopos;
5103e947 5406 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5407 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5408 di_cur += di_len;
5409 di = (struct btrfs_dir_item *)((char *)di + di_len);
5410 }
b9e03af0
LZ
5411next:
5412 path->slots[0]++;
39279cc3 5413 }
49593bfa 5414
16cdcec7
MX
5415 if (key_type == BTRFS_DIR_INDEX_KEY) {
5416 if (is_curr)
9cdda8d3
AV
5417 ctx->pos++;
5418 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5419 if (ret)
5420 goto nopos;
5421 }
5422
49593bfa 5423 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5424 ctx->pos++;
5425
5426 /*
5427 * Stop new entries from being returned after we return the last
5428 * entry.
5429 *
5430 * New directory entries are assigned a strictly increasing
5431 * offset. This means that new entries created during readdir
5432 * are *guaranteed* to be seen in the future by that readdir.
5433 * This has broken buggy programs which operate on names as
5434 * they're returned by readdir. Until we re-use freed offsets
5435 * we have this hack to stop new entries from being returned
5436 * under the assumption that they'll never reach this huge
5437 * offset.
5438 *
5439 * This is being careful not to overflow 32bit loff_t unless the
5440 * last entry requires it because doing so has broken 32bit apps
5441 * in the past.
5442 */
5443 if (key_type == BTRFS_DIR_INDEX_KEY) {
5444 if (ctx->pos >= INT_MAX)
5445 ctx->pos = LLONG_MAX;
5446 else
5447 ctx->pos = INT_MAX;
5448 }
39279cc3
CM
5449nopos:
5450 ret = 0;
5451err:
16cdcec7
MX
5452 if (key_type == BTRFS_DIR_INDEX_KEY)
5453 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5454 btrfs_free_path(path);
39279cc3
CM
5455 return ret;
5456}
5457
a9185b41 5458int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5459{
5460 struct btrfs_root *root = BTRFS_I(inode)->root;
5461 struct btrfs_trans_handle *trans;
5462 int ret = 0;
0af3d00b 5463 bool nolock = false;
39279cc3 5464
72ac3c0d 5465 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5466 return 0;
5467
83eea1f1 5468 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5469 nolock = true;
0af3d00b 5470
a9185b41 5471 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5472 if (nolock)
7a7eaa40 5473 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5474 else
7a7eaa40 5475 trans = btrfs_join_transaction(root);
3612b495
TI
5476 if (IS_ERR(trans))
5477 return PTR_ERR(trans);
a698d075 5478 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5479 }
5480 return ret;
5481}
5482
5483/*
54aa1f4d 5484 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5485 * inode changes. But, it is most likely to find the inode in cache.
5486 * FIXME, needs more benchmarking...there are no reasons other than performance
5487 * to keep or drop this code.
5488 */
48a3b636 5489static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5490{
5491 struct btrfs_root *root = BTRFS_I(inode)->root;
5492 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5493 int ret;
5494
72ac3c0d 5495 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5496 return 0;
39279cc3 5497
7a7eaa40 5498 trans = btrfs_join_transaction(root);
22c44fe6
JB
5499 if (IS_ERR(trans))
5500 return PTR_ERR(trans);
8929ecfa
YZ
5501
5502 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5503 if (ret && ret == -ENOSPC) {
5504 /* whoops, lets try again with the full transaction */
5505 btrfs_end_transaction(trans, root);
5506 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5507 if (IS_ERR(trans))
5508 return PTR_ERR(trans);
8929ecfa 5509
94b60442 5510 ret = btrfs_update_inode(trans, root, inode);
94b60442 5511 }
39279cc3 5512 btrfs_end_transaction(trans, root);
16cdcec7
MX
5513 if (BTRFS_I(inode)->delayed_node)
5514 btrfs_balance_delayed_items(root);
22c44fe6
JB
5515
5516 return ret;
5517}
5518
5519/*
5520 * This is a copy of file_update_time. We need this so we can return error on
5521 * ENOSPC for updating the inode in the case of file write and mmap writes.
5522 */
e41f941a
JB
5523static int btrfs_update_time(struct inode *inode, struct timespec *now,
5524 int flags)
22c44fe6 5525{
2bc55652
AB
5526 struct btrfs_root *root = BTRFS_I(inode)->root;
5527
5528 if (btrfs_root_readonly(root))
5529 return -EROFS;
5530
e41f941a 5531 if (flags & S_VERSION)
22c44fe6 5532 inode_inc_iversion(inode);
e41f941a
JB
5533 if (flags & S_CTIME)
5534 inode->i_ctime = *now;
5535 if (flags & S_MTIME)
5536 inode->i_mtime = *now;
5537 if (flags & S_ATIME)
5538 inode->i_atime = *now;
5539 return btrfs_dirty_inode(inode);
39279cc3
CM
5540}
5541
d352ac68
CM
5542/*
5543 * find the highest existing sequence number in a directory
5544 * and then set the in-memory index_cnt variable to reflect
5545 * free sequence numbers
5546 */
aec7477b
JB
5547static int btrfs_set_inode_index_count(struct inode *inode)
5548{
5549 struct btrfs_root *root = BTRFS_I(inode)->root;
5550 struct btrfs_key key, found_key;
5551 struct btrfs_path *path;
5552 struct extent_buffer *leaf;
5553 int ret;
5554
33345d01 5555 key.objectid = btrfs_ino(inode);
aec7477b
JB
5556 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5557 key.offset = (u64)-1;
5558
5559 path = btrfs_alloc_path();
5560 if (!path)
5561 return -ENOMEM;
5562
5563 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5564 if (ret < 0)
5565 goto out;
5566 /* FIXME: we should be able to handle this */
5567 if (ret == 0)
5568 goto out;
5569 ret = 0;
5570
5571 /*
5572 * MAGIC NUMBER EXPLANATION:
5573 * since we search a directory based on f_pos we have to start at 2
5574 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5575 * else has to start at 2
5576 */
5577 if (path->slots[0] == 0) {
5578 BTRFS_I(inode)->index_cnt = 2;
5579 goto out;
5580 }
5581
5582 path->slots[0]--;
5583
5584 leaf = path->nodes[0];
5585 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5586
33345d01 5587 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5588 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5589 BTRFS_I(inode)->index_cnt = 2;
5590 goto out;
5591 }
5592
5593 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5594out:
5595 btrfs_free_path(path);
5596 return ret;
5597}
5598
d352ac68
CM
5599/*
5600 * helper to find a free sequence number in a given directory. This current
5601 * code is very simple, later versions will do smarter things in the btree
5602 */
3de4586c 5603int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5604{
5605 int ret = 0;
5606
5607 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5608 ret = btrfs_inode_delayed_dir_index_count(dir);
5609 if (ret) {
5610 ret = btrfs_set_inode_index_count(dir);
5611 if (ret)
5612 return ret;
5613 }
aec7477b
JB
5614 }
5615
00e4e6b3 5616 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5617 BTRFS_I(dir)->index_cnt++;
5618
5619 return ret;
5620}
5621
39279cc3
CM
5622static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5623 struct btrfs_root *root,
aec7477b 5624 struct inode *dir,
9c58309d 5625 const char *name, int name_len,
175a4eb7
AV
5626 u64 ref_objectid, u64 objectid,
5627 umode_t mode, u64 *index)
39279cc3
CM
5628{
5629 struct inode *inode;
5f39d397 5630 struct btrfs_inode_item *inode_item;
39279cc3 5631 struct btrfs_key *location;
5f39d397 5632 struct btrfs_path *path;
9c58309d
CM
5633 struct btrfs_inode_ref *ref;
5634 struct btrfs_key key[2];
5635 u32 sizes[2];
ef3b9af5 5636 int nitems = name ? 2 : 1;
9c58309d 5637 unsigned long ptr;
39279cc3 5638 int ret;
39279cc3 5639
5f39d397 5640 path = btrfs_alloc_path();
d8926bb3
MF
5641 if (!path)
5642 return ERR_PTR(-ENOMEM);
5f39d397 5643
39279cc3 5644 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5645 if (!inode) {
5646 btrfs_free_path(path);
39279cc3 5647 return ERR_PTR(-ENOMEM);
8fb27640 5648 }
39279cc3 5649
5762b5c9
FM
5650 /*
5651 * O_TMPFILE, set link count to 0, so that after this point,
5652 * we fill in an inode item with the correct link count.
5653 */
5654 if (!name)
5655 set_nlink(inode, 0);
5656
581bb050
LZ
5657 /*
5658 * we have to initialize this early, so we can reclaim the inode
5659 * number if we fail afterwards in this function.
5660 */
5661 inode->i_ino = objectid;
5662
ef3b9af5 5663 if (dir && name) {
1abe9b8a 5664 trace_btrfs_inode_request(dir);
5665
3de4586c 5666 ret = btrfs_set_inode_index(dir, index);
09771430 5667 if (ret) {
8fb27640 5668 btrfs_free_path(path);
09771430 5669 iput(inode);
aec7477b 5670 return ERR_PTR(ret);
09771430 5671 }
ef3b9af5
FM
5672 } else if (dir) {
5673 *index = 0;
aec7477b
JB
5674 }
5675 /*
5676 * index_cnt is ignored for everything but a dir,
5677 * btrfs_get_inode_index_count has an explanation for the magic
5678 * number
5679 */
5680 BTRFS_I(inode)->index_cnt = 2;
67de1176 5681 BTRFS_I(inode)->dir_index = *index;
39279cc3 5682 BTRFS_I(inode)->root = root;
e02119d5 5683 BTRFS_I(inode)->generation = trans->transid;
76195853 5684 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5685
5dc562c5
JB
5686 /*
5687 * We could have gotten an inode number from somebody who was fsynced
5688 * and then removed in this same transaction, so let's just set full
5689 * sync since it will be a full sync anyway and this will blow away the
5690 * old info in the log.
5691 */
5692 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5693
9c58309d
CM
5694 key[0].objectid = objectid;
5695 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5696 key[0].offset = 0;
5697
9c58309d 5698 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5699
5700 if (name) {
5701 /*
5702 * Start new inodes with an inode_ref. This is slightly more
5703 * efficient for small numbers of hard links since they will
5704 * be packed into one item. Extended refs will kick in if we
5705 * add more hard links than can fit in the ref item.
5706 */
5707 key[1].objectid = objectid;
5708 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5709 key[1].offset = ref_objectid;
5710
5711 sizes[1] = name_len + sizeof(*ref);
5712 }
9c58309d 5713
b9473439 5714 path->leave_spinning = 1;
ef3b9af5 5715 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 5716 if (ret != 0)
5f39d397
CM
5717 goto fail;
5718
ecc11fab 5719 inode_init_owner(inode, dir, mode);
a76a3cd4 5720 inode_set_bytes(inode, 0);
39279cc3 5721 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5722 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5723 struct btrfs_inode_item);
293f7e07
LZ
5724 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5725 sizeof(*inode_item));
e02119d5 5726 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 5727
ef3b9af5
FM
5728 if (name) {
5729 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5730 struct btrfs_inode_ref);
5731 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5732 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5733 ptr = (unsigned long)(ref + 1);
5734 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5735 }
9c58309d 5736
5f39d397
CM
5737 btrfs_mark_buffer_dirty(path->nodes[0]);
5738 btrfs_free_path(path);
5739
39279cc3
CM
5740 location = &BTRFS_I(inode)->location;
5741 location->objectid = objectid;
39279cc3
CM
5742 location->offset = 0;
5743 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5744
6cbff00f
CH
5745 btrfs_inherit_iflags(inode, dir);
5746
569254b0 5747 if (S_ISREG(mode)) {
94272164
CM
5748 if (btrfs_test_opt(root, NODATASUM))
5749 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5750 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5751 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5752 BTRFS_INODE_NODATASUM;
94272164
CM
5753 }
5754
778ba82b 5755 btrfs_insert_inode_hash(inode);
5d4f98a2 5756 inode_tree_add(inode);
1abe9b8a 5757
5758 trace_btrfs_inode_new(inode);
1973f0fa 5759 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5760
8ea05e3a
AB
5761 btrfs_update_root_times(trans, root);
5762
63541927
FDBM
5763 ret = btrfs_inode_inherit_props(trans, inode, dir);
5764 if (ret)
5765 btrfs_err(root->fs_info,
5766 "error inheriting props for ino %llu (root %llu): %d",
5767 btrfs_ino(inode), root->root_key.objectid, ret);
5768
39279cc3 5769 return inode;
5f39d397 5770fail:
ef3b9af5 5771 if (dir && name)
aec7477b 5772 BTRFS_I(dir)->index_cnt--;
5f39d397 5773 btrfs_free_path(path);
09771430 5774 iput(inode);
5f39d397 5775 return ERR_PTR(ret);
39279cc3
CM
5776}
5777
5778static inline u8 btrfs_inode_type(struct inode *inode)
5779{
5780 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5781}
5782
d352ac68
CM
5783/*
5784 * utility function to add 'inode' into 'parent_inode' with
5785 * a give name and a given sequence number.
5786 * if 'add_backref' is true, also insert a backref from the
5787 * inode to the parent directory.
5788 */
e02119d5
CM
5789int btrfs_add_link(struct btrfs_trans_handle *trans,
5790 struct inode *parent_inode, struct inode *inode,
5791 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5792{
4df27c4d 5793 int ret = 0;
39279cc3 5794 struct btrfs_key key;
e02119d5 5795 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5796 u64 ino = btrfs_ino(inode);
5797 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5798
33345d01 5799 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5800 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5801 } else {
33345d01 5802 key.objectid = ino;
4df27c4d
YZ
5803 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5804 key.offset = 0;
5805 }
5806
33345d01 5807 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5808 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5809 key.objectid, root->root_key.objectid,
33345d01 5810 parent_ino, index, name, name_len);
4df27c4d 5811 } else if (add_backref) {
33345d01
LZ
5812 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5813 parent_ino, index);
4df27c4d 5814 }
39279cc3 5815
79787eaa
JM
5816 /* Nothing to clean up yet */
5817 if (ret)
5818 return ret;
4df27c4d 5819
79787eaa
JM
5820 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5821 parent_inode, &key,
5822 btrfs_inode_type(inode), index);
9c52057c 5823 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5824 goto fail_dir_item;
5825 else if (ret) {
5826 btrfs_abort_transaction(trans, root, ret);
5827 return ret;
39279cc3 5828 }
79787eaa
JM
5829
5830 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5831 name_len * 2);
0c4d2d95 5832 inode_inc_iversion(parent_inode);
79787eaa
JM
5833 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5834 ret = btrfs_update_inode(trans, root, parent_inode);
5835 if (ret)
5836 btrfs_abort_transaction(trans, root, ret);
39279cc3 5837 return ret;
fe66a05a
CM
5838
5839fail_dir_item:
5840 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5841 u64 local_index;
5842 int err;
5843 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5844 key.objectid, root->root_key.objectid,
5845 parent_ino, &local_index, name, name_len);
5846
5847 } else if (add_backref) {
5848 u64 local_index;
5849 int err;
5850
5851 err = btrfs_del_inode_ref(trans, root, name, name_len,
5852 ino, parent_ino, &local_index);
5853 }
5854 return ret;
39279cc3
CM
5855}
5856
5857static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5858 struct inode *dir, struct dentry *dentry,
5859 struct inode *inode, int backref, u64 index)
39279cc3 5860{
a1b075d2
JB
5861 int err = btrfs_add_link(trans, dir, inode,
5862 dentry->d_name.name, dentry->d_name.len,
5863 backref, index);
39279cc3
CM
5864 if (err > 0)
5865 err = -EEXIST;
5866 return err;
5867}
5868
618e21d5 5869static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5870 umode_t mode, dev_t rdev)
618e21d5
JB
5871{
5872 struct btrfs_trans_handle *trans;
5873 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5874 struct inode *inode = NULL;
618e21d5
JB
5875 int err;
5876 int drop_inode = 0;
5877 u64 objectid;
00e4e6b3 5878 u64 index = 0;
618e21d5
JB
5879
5880 if (!new_valid_dev(rdev))
5881 return -EINVAL;
5882
9ed74f2d
JB
5883 /*
5884 * 2 for inode item and ref
5885 * 2 for dir items
5886 * 1 for xattr if selinux is on
5887 */
a22285a6
YZ
5888 trans = btrfs_start_transaction(root, 5);
5889 if (IS_ERR(trans))
5890 return PTR_ERR(trans);
1832a6d5 5891
581bb050
LZ
5892 err = btrfs_find_free_ino(root, &objectid);
5893 if (err)
5894 goto out_unlock;
5895
aec7477b 5896 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5897 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5898 mode, &index);
7cf96da3
TI
5899 if (IS_ERR(inode)) {
5900 err = PTR_ERR(inode);
618e21d5 5901 goto out_unlock;
7cf96da3 5902 }
618e21d5 5903
2a7dba39 5904 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5905 if (err) {
5906 drop_inode = 1;
5907 goto out_unlock;
5908 }
5909
ad19db71
CS
5910 /*
5911 * If the active LSM wants to access the inode during
5912 * d_instantiate it needs these. Smack checks to see
5913 * if the filesystem supports xattrs by looking at the
5914 * ops vector.
5915 */
5916
5917 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5918 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5919 if (err)
5920 drop_inode = 1;
5921 else {
618e21d5 5922 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5923 btrfs_update_inode(trans, root, inode);
08c422c2 5924 d_instantiate(dentry, inode);
618e21d5 5925 }
618e21d5 5926out_unlock:
7ad85bb7 5927 btrfs_end_transaction(trans, root);
c581afc8 5928 btrfs_balance_delayed_items(root);
b53d3f5d 5929 btrfs_btree_balance_dirty(root);
618e21d5
JB
5930 if (drop_inode) {
5931 inode_dec_link_count(inode);
5932 iput(inode);
5933 }
618e21d5
JB
5934 return err;
5935}
5936
39279cc3 5937static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5938 umode_t mode, bool excl)
39279cc3
CM
5939{
5940 struct btrfs_trans_handle *trans;
5941 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5942 struct inode *inode = NULL;
43baa579 5943 int drop_inode_on_err = 0;
a22285a6 5944 int err;
39279cc3 5945 u64 objectid;
00e4e6b3 5946 u64 index = 0;
39279cc3 5947
9ed74f2d
JB
5948 /*
5949 * 2 for inode item and ref
5950 * 2 for dir items
5951 * 1 for xattr if selinux is on
5952 */
a22285a6
YZ
5953 trans = btrfs_start_transaction(root, 5);
5954 if (IS_ERR(trans))
5955 return PTR_ERR(trans);
9ed74f2d 5956
581bb050
LZ
5957 err = btrfs_find_free_ino(root, &objectid);
5958 if (err)
5959 goto out_unlock;
5960
aec7477b 5961 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5962 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5963 mode, &index);
7cf96da3
TI
5964 if (IS_ERR(inode)) {
5965 err = PTR_ERR(inode);
39279cc3 5966 goto out_unlock;
7cf96da3 5967 }
43baa579 5968 drop_inode_on_err = 1;
39279cc3 5969
2a7dba39 5970 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5971 if (err)
33268eaf 5972 goto out_unlock;
33268eaf 5973
9185aa58
FB
5974 err = btrfs_update_inode(trans, root, inode);
5975 if (err)
5976 goto out_unlock;
5977
ad19db71
CS
5978 /*
5979 * If the active LSM wants to access the inode during
5980 * d_instantiate it needs these. Smack checks to see
5981 * if the filesystem supports xattrs by looking at the
5982 * ops vector.
5983 */
5984 inode->i_fop = &btrfs_file_operations;
5985 inode->i_op = &btrfs_file_inode_operations;
5986
a1b075d2 5987 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5988 if (err)
43baa579
FB
5989 goto out_unlock;
5990
5991 inode->i_mapping->a_ops = &btrfs_aops;
5992 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5993 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5994 d_instantiate(dentry, inode);
5995
39279cc3 5996out_unlock:
7ad85bb7 5997 btrfs_end_transaction(trans, root);
43baa579 5998 if (err && drop_inode_on_err) {
39279cc3
CM
5999 inode_dec_link_count(inode);
6000 iput(inode);
6001 }
c581afc8 6002 btrfs_balance_delayed_items(root);
b53d3f5d 6003 btrfs_btree_balance_dirty(root);
39279cc3
CM
6004 return err;
6005}
6006
6007static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6008 struct dentry *dentry)
6009{
6010 struct btrfs_trans_handle *trans;
6011 struct btrfs_root *root = BTRFS_I(dir)->root;
6012 struct inode *inode = old_dentry->d_inode;
00e4e6b3 6013 u64 index;
39279cc3
CM
6014 int err;
6015 int drop_inode = 0;
6016
4a8be425
TH
6017 /* do not allow sys_link's with other subvols of the same device */
6018 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6019 return -EXDEV;
4a8be425 6020
f186373f 6021 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6022 return -EMLINK;
4a8be425 6023
3de4586c 6024 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6025 if (err)
6026 goto fail;
6027
a22285a6 6028 /*
7e6b6465 6029 * 2 items for inode and inode ref
a22285a6 6030 * 2 items for dir items
7e6b6465 6031 * 1 item for parent inode
a22285a6 6032 */
7e6b6465 6033 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6034 if (IS_ERR(trans)) {
6035 err = PTR_ERR(trans);
6036 goto fail;
6037 }
5f39d397 6038
67de1176
MX
6039 /* There are several dir indexes for this inode, clear the cache. */
6040 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6041 inc_nlink(inode);
0c4d2d95 6042 inode_inc_iversion(inode);
3153495d 6043 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6044 ihold(inode);
e9976151 6045 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6046
a1b075d2 6047 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6048
a5719521 6049 if (err) {
54aa1f4d 6050 drop_inode = 1;
a5719521 6051 } else {
10d9f309 6052 struct dentry *parent = dentry->d_parent;
a5719521 6053 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6054 if (err)
6055 goto fail;
ef3b9af5
FM
6056 if (inode->i_nlink == 1) {
6057 /*
6058 * If new hard link count is 1, it's a file created
6059 * with open(2) O_TMPFILE flag.
6060 */
6061 err = btrfs_orphan_del(trans, inode);
6062 if (err)
6063 goto fail;
6064 }
08c422c2 6065 d_instantiate(dentry, inode);
6a912213 6066 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6067 }
39279cc3 6068
7ad85bb7 6069 btrfs_end_transaction(trans, root);
c581afc8 6070 btrfs_balance_delayed_items(root);
1832a6d5 6071fail:
39279cc3
CM
6072 if (drop_inode) {
6073 inode_dec_link_count(inode);
6074 iput(inode);
6075 }
b53d3f5d 6076 btrfs_btree_balance_dirty(root);
39279cc3
CM
6077 return err;
6078}
6079
18bb1db3 6080static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6081{
b9d86667 6082 struct inode *inode = NULL;
39279cc3
CM
6083 struct btrfs_trans_handle *trans;
6084 struct btrfs_root *root = BTRFS_I(dir)->root;
6085 int err = 0;
6086 int drop_on_err = 0;
b9d86667 6087 u64 objectid = 0;
00e4e6b3 6088 u64 index = 0;
39279cc3 6089
9ed74f2d
JB
6090 /*
6091 * 2 items for inode and ref
6092 * 2 items for dir items
6093 * 1 for xattr if selinux is on
6094 */
a22285a6
YZ
6095 trans = btrfs_start_transaction(root, 5);
6096 if (IS_ERR(trans))
6097 return PTR_ERR(trans);
39279cc3 6098
581bb050
LZ
6099 err = btrfs_find_free_ino(root, &objectid);
6100 if (err)
6101 goto out_fail;
6102
aec7477b 6103 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6104 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6105 S_IFDIR | mode, &index);
39279cc3
CM
6106 if (IS_ERR(inode)) {
6107 err = PTR_ERR(inode);
6108 goto out_fail;
6109 }
5f39d397 6110
39279cc3 6111 drop_on_err = 1;
33268eaf 6112
2a7dba39 6113 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
6114 if (err)
6115 goto out_fail;
6116
39279cc3
CM
6117 inode->i_op = &btrfs_dir_inode_operations;
6118 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 6119
dbe674a9 6120 btrfs_i_size_write(inode, 0);
39279cc3
CM
6121 err = btrfs_update_inode(trans, root, inode);
6122 if (err)
6123 goto out_fail;
5f39d397 6124
a1b075d2
JB
6125 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6126 dentry->d_name.len, 0, index);
39279cc3
CM
6127 if (err)
6128 goto out_fail;
5f39d397 6129
39279cc3
CM
6130 d_instantiate(dentry, inode);
6131 drop_on_err = 0;
39279cc3
CM
6132
6133out_fail:
7ad85bb7 6134 btrfs_end_transaction(trans, root);
39279cc3
CM
6135 if (drop_on_err)
6136 iput(inode);
c581afc8 6137 btrfs_balance_delayed_items(root);
b53d3f5d 6138 btrfs_btree_balance_dirty(root);
39279cc3
CM
6139 return err;
6140}
6141
d352ac68
CM
6142/* helper for btfs_get_extent. Given an existing extent in the tree,
6143 * and an extent that you want to insert, deal with overlap and insert
6144 * the new extent into the tree.
6145 */
3b951516
CM
6146static int merge_extent_mapping(struct extent_map_tree *em_tree,
6147 struct extent_map *existing,
e6dcd2dc
CM
6148 struct extent_map *em,
6149 u64 map_start, u64 map_len)
3b951516
CM
6150{
6151 u64 start_diff;
3b951516 6152
e6dcd2dc
CM
6153 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6154 start_diff = map_start - em->start;
6155 em->start = map_start;
6156 em->len = map_len;
c8b97818
CM
6157 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6158 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6159 em->block_start += start_diff;
c8b97818
CM
6160 em->block_len -= start_diff;
6161 }
09a2a8f9 6162 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6163}
6164
c8b97818
CM
6165static noinline int uncompress_inline(struct btrfs_path *path,
6166 struct inode *inode, struct page *page,
6167 size_t pg_offset, u64 extent_offset,
6168 struct btrfs_file_extent_item *item)
6169{
6170 int ret;
6171 struct extent_buffer *leaf = path->nodes[0];
6172 char *tmp;
6173 size_t max_size;
6174 unsigned long inline_size;
6175 unsigned long ptr;
261507a0 6176 int compress_type;
c8b97818
CM
6177
6178 WARN_ON(pg_offset != 0);
261507a0 6179 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6180 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6181 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6182 btrfs_item_nr(path->slots[0]));
c8b97818 6183 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6184 if (!tmp)
6185 return -ENOMEM;
c8b97818
CM
6186 ptr = btrfs_file_extent_inline_start(item);
6187
6188 read_extent_buffer(leaf, tmp, ptr, inline_size);
6189
5b050f04 6190 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6191 ret = btrfs_decompress(compress_type, tmp, page,
6192 extent_offset, inline_size, max_size);
c8b97818 6193 kfree(tmp);
166ae5a4 6194 return ret;
c8b97818
CM
6195}
6196
d352ac68
CM
6197/*
6198 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6199 * the ugly parts come from merging extents from the disk with the in-ram
6200 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6201 * where the in-ram extents might be locked pending data=ordered completion.
6202 *
6203 * This also copies inline extents directly into the page.
6204 */
d397712b 6205
a52d9a80 6206struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6207 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6208 int create)
6209{
6210 int ret;
6211 int err = 0;
a52d9a80
CM
6212 u64 extent_start = 0;
6213 u64 extent_end = 0;
33345d01 6214 u64 objectid = btrfs_ino(inode);
a52d9a80 6215 u32 found_type;
f421950f 6216 struct btrfs_path *path = NULL;
a52d9a80
CM
6217 struct btrfs_root *root = BTRFS_I(inode)->root;
6218 struct btrfs_file_extent_item *item;
5f39d397
CM
6219 struct extent_buffer *leaf;
6220 struct btrfs_key found_key;
a52d9a80
CM
6221 struct extent_map *em = NULL;
6222 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6223 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6224 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6225 const bool new_inline = !page || create;
a52d9a80 6226
a52d9a80 6227again:
890871be 6228 read_lock(&em_tree->lock);
d1310b2e 6229 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6230 if (em)
6231 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6232 read_unlock(&em_tree->lock);
d1310b2e 6233
a52d9a80 6234 if (em) {
e1c4b745
CM
6235 if (em->start > start || em->start + em->len <= start)
6236 free_extent_map(em);
6237 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6238 free_extent_map(em);
6239 else
6240 goto out;
a52d9a80 6241 }
172ddd60 6242 em = alloc_extent_map();
a52d9a80 6243 if (!em) {
d1310b2e
CM
6244 err = -ENOMEM;
6245 goto out;
a52d9a80 6246 }
e6dcd2dc 6247 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6248 em->start = EXTENT_MAP_HOLE;
445a6944 6249 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6250 em->len = (u64)-1;
c8b97818 6251 em->block_len = (u64)-1;
f421950f
CM
6252
6253 if (!path) {
6254 path = btrfs_alloc_path();
026fd317
JB
6255 if (!path) {
6256 err = -ENOMEM;
6257 goto out;
6258 }
6259 /*
6260 * Chances are we'll be called again, so go ahead and do
6261 * readahead
6262 */
6263 path->reada = 1;
f421950f
CM
6264 }
6265
179e29e4
CM
6266 ret = btrfs_lookup_file_extent(trans, root, path,
6267 objectid, start, trans != NULL);
a52d9a80
CM
6268 if (ret < 0) {
6269 err = ret;
6270 goto out;
6271 }
6272
6273 if (ret != 0) {
6274 if (path->slots[0] == 0)
6275 goto not_found;
6276 path->slots[0]--;
6277 }
6278
5f39d397
CM
6279 leaf = path->nodes[0];
6280 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6281 struct btrfs_file_extent_item);
a52d9a80 6282 /* are we inside the extent that was found? */
5f39d397
CM
6283 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6284 found_type = btrfs_key_type(&found_key);
6285 if (found_key.objectid != objectid ||
a52d9a80 6286 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6287 /*
6288 * If we backup past the first extent we want to move forward
6289 * and see if there is an extent in front of us, otherwise we'll
6290 * say there is a hole for our whole search range which can
6291 * cause problems.
6292 */
6293 extent_end = start;
6294 goto next;
a52d9a80
CM
6295 }
6296
5f39d397
CM
6297 found_type = btrfs_file_extent_type(leaf, item);
6298 extent_start = found_key.offset;
d899e052
YZ
6299 if (found_type == BTRFS_FILE_EXTENT_REG ||
6300 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6301 extent_end = extent_start +
db94535d 6302 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6303 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6304 size_t size;
514ac8ad 6305 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6306 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6307 }
25a50341 6308next:
9036c102
YZ
6309 if (start >= extent_end) {
6310 path->slots[0]++;
6311 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6312 ret = btrfs_next_leaf(root, path);
6313 if (ret < 0) {
6314 err = ret;
6315 goto out;
a52d9a80 6316 }
9036c102
YZ
6317 if (ret > 0)
6318 goto not_found;
6319 leaf = path->nodes[0];
a52d9a80 6320 }
9036c102
YZ
6321 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6322 if (found_key.objectid != objectid ||
6323 found_key.type != BTRFS_EXTENT_DATA_KEY)
6324 goto not_found;
6325 if (start + len <= found_key.offset)
6326 goto not_found;
e2eca69d
WS
6327 if (start > found_key.offset)
6328 goto next;
9036c102 6329 em->start = start;
70c8a91c 6330 em->orig_start = start;
9036c102
YZ
6331 em->len = found_key.offset - start;
6332 goto not_found_em;
6333 }
6334
7ffbb598
FM
6335 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6336
d899e052
YZ
6337 if (found_type == BTRFS_FILE_EXTENT_REG ||
6338 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6339 goto insert;
6340 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6341 unsigned long ptr;
a52d9a80 6342 char *map;
3326d1b0
CM
6343 size_t size;
6344 size_t extent_offset;
6345 size_t copy_size;
a52d9a80 6346
7ffbb598 6347 if (new_inline)
689f9346 6348 goto out;
5f39d397 6349
514ac8ad 6350 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6351 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6352 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6353 size - extent_offset);
3326d1b0 6354 em->start = extent_start + extent_offset;
fda2832f 6355 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6356 em->orig_block_len = em->len;
70c8a91c 6357 em->orig_start = em->start;
689f9346 6358 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6359 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6360 if (btrfs_file_extent_compression(leaf, item) !=
6361 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6362 ret = uncompress_inline(path, inode, page,
6363 pg_offset,
6364 extent_offset, item);
166ae5a4
ZB
6365 if (ret) {
6366 err = ret;
6367 goto out;
6368 }
c8b97818
CM
6369 } else {
6370 map = kmap(page);
6371 read_extent_buffer(leaf, map + pg_offset, ptr,
6372 copy_size);
93c82d57
CM
6373 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6374 memset(map + pg_offset + copy_size, 0,
6375 PAGE_CACHE_SIZE - pg_offset -
6376 copy_size);
6377 }
c8b97818
CM
6378 kunmap(page);
6379 }
179e29e4
CM
6380 flush_dcache_page(page);
6381 } else if (create && PageUptodate(page)) {
6bf7e080 6382 BUG();
179e29e4
CM
6383 if (!trans) {
6384 kunmap(page);
6385 free_extent_map(em);
6386 em = NULL;
ff5714cc 6387
b3b4aa74 6388 btrfs_release_path(path);
7a7eaa40 6389 trans = btrfs_join_transaction(root);
ff5714cc 6390
3612b495
TI
6391 if (IS_ERR(trans))
6392 return ERR_CAST(trans);
179e29e4
CM
6393 goto again;
6394 }
c8b97818 6395 map = kmap(page);
70dec807 6396 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6397 copy_size);
c8b97818 6398 kunmap(page);
179e29e4 6399 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6400 }
d1310b2e 6401 set_extent_uptodate(io_tree, em->start,
507903b8 6402 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6403 goto insert;
a52d9a80
CM
6404 }
6405not_found:
6406 em->start = start;
70c8a91c 6407 em->orig_start = start;
d1310b2e 6408 em->len = len;
a52d9a80 6409not_found_em:
5f39d397 6410 em->block_start = EXTENT_MAP_HOLE;
9036c102 6411 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6412insert:
b3b4aa74 6413 btrfs_release_path(path);
d1310b2e 6414 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6415 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6416 em->start, em->len, start, len);
a52d9a80
CM
6417 err = -EIO;
6418 goto out;
6419 }
d1310b2e
CM
6420
6421 err = 0;
890871be 6422 write_lock(&em_tree->lock);
09a2a8f9 6423 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6424 /* it is possible that someone inserted the extent into the tree
6425 * while we had the lock dropped. It is also possible that
6426 * an overlapping map exists in the tree
6427 */
a52d9a80 6428 if (ret == -EEXIST) {
3b951516 6429 struct extent_map *existing;
e6dcd2dc
CM
6430
6431 ret = 0;
6432
3b951516 6433 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6434 if (existing && (existing->start > start ||
6435 existing->start + existing->len <= start)) {
6436 free_extent_map(existing);
6437 existing = NULL;
6438 }
3b951516
CM
6439 if (!existing) {
6440 existing = lookup_extent_mapping(em_tree, em->start,
6441 em->len);
6442 if (existing) {
6443 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6444 em, start,
6445 root->sectorsize);
3b951516
CM
6446 free_extent_map(existing);
6447 if (err) {
6448 free_extent_map(em);
6449 em = NULL;
6450 }
6451 } else {
6452 err = -EIO;
3b951516
CM
6453 free_extent_map(em);
6454 em = NULL;
6455 }
6456 } else {
6457 free_extent_map(em);
6458 em = existing;
e6dcd2dc 6459 err = 0;
a52d9a80 6460 }
a52d9a80 6461 }
890871be 6462 write_unlock(&em_tree->lock);
a52d9a80 6463out:
1abe9b8a 6464
4cd8587c 6465 trace_btrfs_get_extent(root, em);
1abe9b8a 6466
f421950f
CM
6467 if (path)
6468 btrfs_free_path(path);
a52d9a80
CM
6469 if (trans) {
6470 ret = btrfs_end_transaction(trans, root);
d397712b 6471 if (!err)
a52d9a80
CM
6472 err = ret;
6473 }
a52d9a80
CM
6474 if (err) {
6475 free_extent_map(em);
a52d9a80
CM
6476 return ERR_PTR(err);
6477 }
79787eaa 6478 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6479 return em;
6480}
6481
ec29ed5b
CM
6482struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6483 size_t pg_offset, u64 start, u64 len,
6484 int create)
6485{
6486 struct extent_map *em;
6487 struct extent_map *hole_em = NULL;
6488 u64 range_start = start;
6489 u64 end;
6490 u64 found;
6491 u64 found_end;
6492 int err = 0;
6493
6494 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6495 if (IS_ERR(em))
6496 return em;
6497 if (em) {
6498 /*
f9e4fb53
LB
6499 * if our em maps to
6500 * - a hole or
6501 * - a pre-alloc extent,
6502 * there might actually be delalloc bytes behind it.
ec29ed5b 6503 */
f9e4fb53
LB
6504 if (em->block_start != EXTENT_MAP_HOLE &&
6505 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6506 return em;
6507 else
6508 hole_em = em;
6509 }
6510
6511 /* check to see if we've wrapped (len == -1 or similar) */
6512 end = start + len;
6513 if (end < start)
6514 end = (u64)-1;
6515 else
6516 end -= 1;
6517
6518 em = NULL;
6519
6520 /* ok, we didn't find anything, lets look for delalloc */
6521 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6522 end, len, EXTENT_DELALLOC, 1);
6523 found_end = range_start + found;
6524 if (found_end < range_start)
6525 found_end = (u64)-1;
6526
6527 /*
6528 * we didn't find anything useful, return
6529 * the original results from get_extent()
6530 */
6531 if (range_start > end || found_end <= start) {
6532 em = hole_em;
6533 hole_em = NULL;
6534 goto out;
6535 }
6536
6537 /* adjust the range_start to make sure it doesn't
6538 * go backwards from the start they passed in
6539 */
67871254 6540 range_start = max(start, range_start);
ec29ed5b
CM
6541 found = found_end - range_start;
6542
6543 if (found > 0) {
6544 u64 hole_start = start;
6545 u64 hole_len = len;
6546
172ddd60 6547 em = alloc_extent_map();
ec29ed5b
CM
6548 if (!em) {
6549 err = -ENOMEM;
6550 goto out;
6551 }
6552 /*
6553 * when btrfs_get_extent can't find anything it
6554 * returns one huge hole
6555 *
6556 * make sure what it found really fits our range, and
6557 * adjust to make sure it is based on the start from
6558 * the caller
6559 */
6560 if (hole_em) {
6561 u64 calc_end = extent_map_end(hole_em);
6562
6563 if (calc_end <= start || (hole_em->start > end)) {
6564 free_extent_map(hole_em);
6565 hole_em = NULL;
6566 } else {
6567 hole_start = max(hole_em->start, start);
6568 hole_len = calc_end - hole_start;
6569 }
6570 }
6571 em->bdev = NULL;
6572 if (hole_em && range_start > hole_start) {
6573 /* our hole starts before our delalloc, so we
6574 * have to return just the parts of the hole
6575 * that go until the delalloc starts
6576 */
6577 em->len = min(hole_len,
6578 range_start - hole_start);
6579 em->start = hole_start;
6580 em->orig_start = hole_start;
6581 /*
6582 * don't adjust block start at all,
6583 * it is fixed at EXTENT_MAP_HOLE
6584 */
6585 em->block_start = hole_em->block_start;
6586 em->block_len = hole_len;
f9e4fb53
LB
6587 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6588 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6589 } else {
6590 em->start = range_start;
6591 em->len = found;
6592 em->orig_start = range_start;
6593 em->block_start = EXTENT_MAP_DELALLOC;
6594 em->block_len = found;
6595 }
6596 } else if (hole_em) {
6597 return hole_em;
6598 }
6599out:
6600
6601 free_extent_map(hole_em);
6602 if (err) {
6603 free_extent_map(em);
6604 return ERR_PTR(err);
6605 }
6606 return em;
6607}
6608
4b46fce2
JB
6609static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6610 u64 start, u64 len)
6611{
6612 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6613 struct extent_map *em;
4b46fce2
JB
6614 struct btrfs_key ins;
6615 u64 alloc_hint;
6616 int ret;
4b46fce2 6617
4b46fce2 6618 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6619 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 6620 alloc_hint, &ins, 1, 1);
00361589
JB
6621 if (ret)
6622 return ERR_PTR(ret);
4b46fce2 6623
70c8a91c 6624 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6625 ins.offset, ins.offset, ins.offset, 0);
00361589 6626 if (IS_ERR(em)) {
e570fd27 6627 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6628 return em;
6629 }
4b46fce2
JB
6630
6631 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6632 ins.offset, ins.offset, 0);
6633 if (ret) {
e570fd27 6634 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6635 free_extent_map(em);
6636 return ERR_PTR(ret);
4b46fce2 6637 }
00361589 6638
4b46fce2
JB
6639 return em;
6640}
6641
46bfbb5c
CM
6642/*
6643 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6644 * block must be cow'd
6645 */
00361589 6646noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6647 u64 *orig_start, u64 *orig_block_len,
6648 u64 *ram_bytes)
46bfbb5c 6649{
00361589 6650 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6651 struct btrfs_path *path;
6652 int ret;
6653 struct extent_buffer *leaf;
6654 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6655 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6656 struct btrfs_file_extent_item *fi;
6657 struct btrfs_key key;
6658 u64 disk_bytenr;
6659 u64 backref_offset;
6660 u64 extent_end;
6661 u64 num_bytes;
6662 int slot;
6663 int found_type;
7ee9e440 6664 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6665
46bfbb5c
CM
6666 path = btrfs_alloc_path();
6667 if (!path)
6668 return -ENOMEM;
6669
00361589 6670 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6671 offset, 0);
6672 if (ret < 0)
6673 goto out;
6674
6675 slot = path->slots[0];
6676 if (ret == 1) {
6677 if (slot == 0) {
6678 /* can't find the item, must cow */
6679 ret = 0;
6680 goto out;
6681 }
6682 slot--;
6683 }
6684 ret = 0;
6685 leaf = path->nodes[0];
6686 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6687 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6688 key.type != BTRFS_EXTENT_DATA_KEY) {
6689 /* not our file or wrong item type, must cow */
6690 goto out;
6691 }
6692
6693 if (key.offset > offset) {
6694 /* Wrong offset, must cow */
6695 goto out;
6696 }
6697
6698 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6699 found_type = btrfs_file_extent_type(leaf, fi);
6700 if (found_type != BTRFS_FILE_EXTENT_REG &&
6701 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6702 /* not a regular extent, must cow */
6703 goto out;
6704 }
7ee9e440
JB
6705
6706 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6707 goto out;
6708
e77751aa
MX
6709 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6710 if (extent_end <= offset)
6711 goto out;
6712
46bfbb5c 6713 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6714 if (disk_bytenr == 0)
6715 goto out;
6716
6717 if (btrfs_file_extent_compression(leaf, fi) ||
6718 btrfs_file_extent_encryption(leaf, fi) ||
6719 btrfs_file_extent_other_encoding(leaf, fi))
6720 goto out;
6721
46bfbb5c
CM
6722 backref_offset = btrfs_file_extent_offset(leaf, fi);
6723
7ee9e440
JB
6724 if (orig_start) {
6725 *orig_start = key.offset - backref_offset;
6726 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6727 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6728 }
eb384b55 6729
46bfbb5c
CM
6730 if (btrfs_extent_readonly(root, disk_bytenr))
6731 goto out;
7b2b7085
MX
6732
6733 num_bytes = min(offset + *len, extent_end) - offset;
6734 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6735 u64 range_end;
6736
6737 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6738 ret = test_range_bit(io_tree, offset, range_end,
6739 EXTENT_DELALLOC, 0, NULL);
6740 if (ret) {
6741 ret = -EAGAIN;
6742 goto out;
6743 }
6744 }
6745
1bda19eb 6746 btrfs_release_path(path);
46bfbb5c
CM
6747
6748 /*
6749 * look for other files referencing this extent, if we
6750 * find any we must cow
6751 */
00361589
JB
6752 trans = btrfs_join_transaction(root);
6753 if (IS_ERR(trans)) {
6754 ret = 0;
46bfbb5c 6755 goto out;
00361589
JB
6756 }
6757
6758 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6759 key.offset - backref_offset, disk_bytenr);
6760 btrfs_end_transaction(trans, root);
6761 if (ret) {
6762 ret = 0;
6763 goto out;
6764 }
46bfbb5c
CM
6765
6766 /*
6767 * adjust disk_bytenr and num_bytes to cover just the bytes
6768 * in this extent we are about to write. If there
6769 * are any csums in that range we have to cow in order
6770 * to keep the csums correct
6771 */
6772 disk_bytenr += backref_offset;
6773 disk_bytenr += offset - key.offset;
46bfbb5c
CM
6774 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6775 goto out;
6776 /*
6777 * all of the above have passed, it is safe to overwrite this extent
6778 * without cow
6779 */
eb384b55 6780 *len = num_bytes;
46bfbb5c
CM
6781 ret = 1;
6782out:
6783 btrfs_free_path(path);
6784 return ret;
6785}
6786
fc4adbff
AG
6787bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6788{
6789 struct radix_tree_root *root = &inode->i_mapping->page_tree;
6790 int found = false;
6791 void **pagep = NULL;
6792 struct page *page = NULL;
6793 int start_idx;
6794 int end_idx;
6795
6796 start_idx = start >> PAGE_CACHE_SHIFT;
6797
6798 /*
6799 * end is the last byte in the last page. end == start is legal
6800 */
6801 end_idx = end >> PAGE_CACHE_SHIFT;
6802
6803 rcu_read_lock();
6804
6805 /* Most of the code in this while loop is lifted from
6806 * find_get_page. It's been modified to begin searching from a
6807 * page and return just the first page found in that range. If the
6808 * found idx is less than or equal to the end idx then we know that
6809 * a page exists. If no pages are found or if those pages are
6810 * outside of the range then we're fine (yay!) */
6811 while (page == NULL &&
6812 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6813 page = radix_tree_deref_slot(pagep);
6814 if (unlikely(!page))
6815 break;
6816
6817 if (radix_tree_exception(page)) {
809f9016
FM
6818 if (radix_tree_deref_retry(page)) {
6819 page = NULL;
fc4adbff 6820 continue;
809f9016 6821 }
fc4adbff
AG
6822 /*
6823 * Otherwise, shmem/tmpfs must be storing a swap entry
6824 * here as an exceptional entry: so return it without
6825 * attempting to raise page count.
6826 */
6fdef6d4 6827 page = NULL;
fc4adbff
AG
6828 break; /* TODO: Is this relevant for this use case? */
6829 }
6830
91405151
FM
6831 if (!page_cache_get_speculative(page)) {
6832 page = NULL;
fc4adbff 6833 continue;
91405151 6834 }
fc4adbff
AG
6835
6836 /*
6837 * Has the page moved?
6838 * This is part of the lockless pagecache protocol. See
6839 * include/linux/pagemap.h for details.
6840 */
6841 if (unlikely(page != *pagep)) {
6842 page_cache_release(page);
6843 page = NULL;
6844 }
6845 }
6846
6847 if (page) {
6848 if (page->index <= end_idx)
6849 found = true;
6850 page_cache_release(page);
6851 }
6852
6853 rcu_read_unlock();
6854 return found;
6855}
6856
eb838e73
JB
6857static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6858 struct extent_state **cached_state, int writing)
6859{
6860 struct btrfs_ordered_extent *ordered;
6861 int ret = 0;
6862
6863 while (1) {
6864 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6865 0, cached_state);
6866 /*
6867 * We're concerned with the entire range that we're going to be
6868 * doing DIO to, so we need to make sure theres no ordered
6869 * extents in this range.
6870 */
6871 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6872 lockend - lockstart + 1);
6873
6874 /*
6875 * We need to make sure there are no buffered pages in this
6876 * range either, we could have raced between the invalidate in
6877 * generic_file_direct_write and locking the extent. The
6878 * invalidate needs to happen so that reads after a write do not
6879 * get stale data.
6880 */
fc4adbff
AG
6881 if (!ordered &&
6882 (!writing ||
6883 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
6884 break;
6885
6886 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6887 cached_state, GFP_NOFS);
6888
6889 if (ordered) {
6890 btrfs_start_ordered_extent(inode, ordered, 1);
6891 btrfs_put_ordered_extent(ordered);
6892 } else {
6893 /* Screw you mmap */
6894 ret = filemap_write_and_wait_range(inode->i_mapping,
6895 lockstart,
6896 lockend);
6897 if (ret)
6898 break;
6899
6900 /*
6901 * If we found a page that couldn't be invalidated just
6902 * fall back to buffered.
6903 */
6904 ret = invalidate_inode_pages2_range(inode->i_mapping,
6905 lockstart >> PAGE_CACHE_SHIFT,
6906 lockend >> PAGE_CACHE_SHIFT);
6907 if (ret)
6908 break;
6909 }
6910
6911 cond_resched();
6912 }
6913
6914 return ret;
6915}
6916
69ffb543
JB
6917static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6918 u64 len, u64 orig_start,
6919 u64 block_start, u64 block_len,
cc95bef6
JB
6920 u64 orig_block_len, u64 ram_bytes,
6921 int type)
69ffb543
JB
6922{
6923 struct extent_map_tree *em_tree;
6924 struct extent_map *em;
6925 struct btrfs_root *root = BTRFS_I(inode)->root;
6926 int ret;
6927
6928 em_tree = &BTRFS_I(inode)->extent_tree;
6929 em = alloc_extent_map();
6930 if (!em)
6931 return ERR_PTR(-ENOMEM);
6932
6933 em->start = start;
6934 em->orig_start = orig_start;
2ab28f32
JB
6935 em->mod_start = start;
6936 em->mod_len = len;
69ffb543
JB
6937 em->len = len;
6938 em->block_len = block_len;
6939 em->block_start = block_start;
6940 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6941 em->orig_block_len = orig_block_len;
cc95bef6 6942 em->ram_bytes = ram_bytes;
70c8a91c 6943 em->generation = -1;
69ffb543
JB
6944 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6945 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6946 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6947
6948 do {
6949 btrfs_drop_extent_cache(inode, em->start,
6950 em->start + em->len - 1, 0);
6951 write_lock(&em_tree->lock);
09a2a8f9 6952 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6953 write_unlock(&em_tree->lock);
6954 } while (ret == -EEXIST);
6955
6956 if (ret) {
6957 free_extent_map(em);
6958 return ERR_PTR(ret);
6959 }
6960
6961 return em;
6962}
6963
6964
4b46fce2
JB
6965static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6966 struct buffer_head *bh_result, int create)
6967{
6968 struct extent_map *em;
6969 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6970 struct extent_state *cached_state = NULL;
4b46fce2 6971 u64 start = iblock << inode->i_blkbits;
eb838e73 6972 u64 lockstart, lockend;
4b46fce2 6973 u64 len = bh_result->b_size;
eb838e73 6974 int unlock_bits = EXTENT_LOCKED;
0934856d 6975 int ret = 0;
eb838e73 6976
172a5049 6977 if (create)
eb838e73 6978 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6979 else
c329861d 6980 len = min_t(u64, len, root->sectorsize);
eb838e73 6981
c329861d
JB
6982 lockstart = start;
6983 lockend = start + len - 1;
6984
eb838e73
JB
6985 /*
6986 * If this errors out it's because we couldn't invalidate pagecache for
6987 * this range and we need to fallback to buffered.
6988 */
6989 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6990 return -ENOTBLK;
6991
4b46fce2 6992 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6993 if (IS_ERR(em)) {
6994 ret = PTR_ERR(em);
6995 goto unlock_err;
6996 }
4b46fce2
JB
6997
6998 /*
6999 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7000 * io. INLINE is special, and we could probably kludge it in here, but
7001 * it's still buffered so for safety lets just fall back to the generic
7002 * buffered path.
7003 *
7004 * For COMPRESSED we _have_ to read the entire extent in so we can
7005 * decompress it, so there will be buffering required no matter what we
7006 * do, so go ahead and fallback to buffered.
7007 *
7008 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7009 * to buffered IO. Don't blame me, this is the price we pay for using
7010 * the generic code.
7011 */
7012 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7013 em->block_start == EXTENT_MAP_INLINE) {
7014 free_extent_map(em);
eb838e73
JB
7015 ret = -ENOTBLK;
7016 goto unlock_err;
4b46fce2
JB
7017 }
7018
7019 /* Just a good old fashioned hole, return */
7020 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7021 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7022 free_extent_map(em);
eb838e73 7023 goto unlock_err;
4b46fce2
JB
7024 }
7025
7026 /*
7027 * We don't allocate a new extent in the following cases
7028 *
7029 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7030 * existing extent.
7031 * 2) The extent is marked as PREALLOC. We're good to go here and can
7032 * just use the extent.
7033 *
7034 */
46bfbb5c 7035 if (!create) {
eb838e73
JB
7036 len = min(len, em->len - (start - em->start));
7037 lockstart = start + len;
7038 goto unlock;
46bfbb5c 7039 }
4b46fce2
JB
7040
7041 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7042 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7043 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
7044 int type;
7045 int ret;
eb384b55 7046 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7047
7048 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7049 type = BTRFS_ORDERED_PREALLOC;
7050 else
7051 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7052 len = min(len, em->len - (start - em->start));
4b46fce2 7053 block_start = em->block_start + (start - em->start);
46bfbb5c 7054
00361589 7055 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7056 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7057 if (type == BTRFS_ORDERED_PREALLOC) {
7058 free_extent_map(em);
7059 em = create_pinned_em(inode, start, len,
7060 orig_start,
b4939680 7061 block_start, len,
cc95bef6
JB
7062 orig_block_len,
7063 ram_bytes, type);
00361589 7064 if (IS_ERR(em))
69ffb543 7065 goto unlock_err;
69ffb543
JB
7066 }
7067
46bfbb5c
CM
7068 ret = btrfs_add_ordered_extent_dio(inode, start,
7069 block_start, len, len, type);
46bfbb5c
CM
7070 if (ret) {
7071 free_extent_map(em);
eb838e73 7072 goto unlock_err;
46bfbb5c
CM
7073 }
7074 goto unlock;
4b46fce2 7075 }
4b46fce2 7076 }
00361589 7077
46bfbb5c
CM
7078 /*
7079 * this will cow the extent, reset the len in case we changed
7080 * it above
7081 */
7082 len = bh_result->b_size;
70c8a91c
JB
7083 free_extent_map(em);
7084 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7085 if (IS_ERR(em)) {
7086 ret = PTR_ERR(em);
7087 goto unlock_err;
7088 }
46bfbb5c
CM
7089 len = min(len, em->len - (start - em->start));
7090unlock:
4b46fce2
JB
7091 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7092 inode->i_blkbits;
46bfbb5c 7093 bh_result->b_size = len;
4b46fce2
JB
7094 bh_result->b_bdev = em->bdev;
7095 set_buffer_mapped(bh_result);
c3473e83
JB
7096 if (create) {
7097 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7098 set_buffer_new(bh_result);
7099
7100 /*
7101 * Need to update the i_size under the extent lock so buffered
7102 * readers will get the updated i_size when we unlock.
7103 */
7104 if (start + len > i_size_read(inode))
7105 i_size_write(inode, start + len);
0934856d 7106
172a5049
MX
7107 spin_lock(&BTRFS_I(inode)->lock);
7108 BTRFS_I(inode)->outstanding_extents++;
7109 spin_unlock(&BTRFS_I(inode)->lock);
7110
0934856d
MX
7111 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7112 lockstart + len - 1, EXTENT_DELALLOC, NULL,
7113 &cached_state, GFP_NOFS);
7114 BUG_ON(ret);
c3473e83 7115 }
4b46fce2 7116
eb838e73
JB
7117 /*
7118 * In the case of write we need to clear and unlock the entire range,
7119 * in the case of read we need to unlock only the end area that we
7120 * aren't using if there is any left over space.
7121 */
24c03fa5 7122 if (lockstart < lockend) {
0934856d
MX
7123 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7124 lockend, unlock_bits, 1, 0,
7125 &cached_state, GFP_NOFS);
24c03fa5 7126 } else {
eb838e73 7127 free_extent_state(cached_state);
24c03fa5 7128 }
eb838e73 7129
4b46fce2
JB
7130 free_extent_map(em);
7131
7132 return 0;
eb838e73
JB
7133
7134unlock_err:
eb838e73
JB
7135 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7136 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7137 return ret;
4b46fce2
JB
7138}
7139
4b46fce2
JB
7140static void btrfs_endio_direct_read(struct bio *bio, int err)
7141{
e65e1535 7142 struct btrfs_dio_private *dip = bio->bi_private;
2c30c71b 7143 struct bio_vec *bvec;
4b46fce2
JB
7144 struct inode *inode = dip->inode;
7145 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 7146 struct bio *dio_bio;
facc8a22 7147 u32 *csums = (u32 *)dip->csum;
4b46fce2 7148 u64 start;
2c30c71b 7149 int i;
4b46fce2
JB
7150
7151 start = dip->logical_offset;
2c30c71b 7152 bio_for_each_segment_all(bvec, bio, i) {
4b46fce2
JB
7153 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
7154 struct page *page = bvec->bv_page;
7155 char *kaddr;
7156 u32 csum = ~(u32)0;
7157 unsigned long flags;
7158
7159 local_irq_save(flags);
7ac687d9 7160 kaddr = kmap_atomic(page);
b0496686 7161 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
7162 csum, bvec->bv_len);
7163 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 7164 kunmap_atomic(kaddr);
4b46fce2
JB
7165 local_irq_restore(flags);
7166
7167 flush_dcache_page(bvec->bv_page);
2c30c71b 7168 if (csum != csums[i]) {
facc8a22 7169 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 7170 btrfs_ino(inode), start, csum,
2c30c71b 7171 csums[i]);
4b46fce2
JB
7172 err = -EIO;
7173 }
7174 }
7175
7176 start += bvec->bv_len;
2c30c71b 7177 }
4b46fce2
JB
7178
7179 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7180 dip->logical_offset + dip->bytes - 1);
9be3395b 7181 dio_bio = dip->dio_bio;
4b46fce2 7182
4b46fce2 7183 kfree(dip);
c0da7aa1
JB
7184
7185 /* If we had a csum failure make sure to clear the uptodate flag */
7186 if (err)
9be3395b
CM
7187 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7188 dio_end_io(dio_bio, err);
7189 bio_put(bio);
4b46fce2
JB
7190}
7191
7192static void btrfs_endio_direct_write(struct bio *bio, int err)
7193{
7194 struct btrfs_dio_private *dip = bio->bi_private;
7195 struct inode *inode = dip->inode;
7196 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7197 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7198 u64 ordered_offset = dip->logical_offset;
7199 u64 ordered_bytes = dip->bytes;
9be3395b 7200 struct bio *dio_bio;
4b46fce2
JB
7201 int ret;
7202
7203 if (err)
7204 goto out_done;
163cf09c
CM
7205again:
7206 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7207 &ordered_offset,
5fd02043 7208 ordered_bytes, !err);
4b46fce2 7209 if (!ret)
163cf09c 7210 goto out_test;
4b46fce2 7211
fccb5d86
QW
7212 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
7213 btrfs_queue_work(root->fs_info->endio_write_workers,
7214 &ordered->work);
163cf09c
CM
7215out_test:
7216 /*
7217 * our bio might span multiple ordered extents. If we haven't
7218 * completed the accounting for the whole dio, go back and try again
7219 */
7220 if (ordered_offset < dip->logical_offset + dip->bytes) {
7221 ordered_bytes = dip->logical_offset + dip->bytes -
7222 ordered_offset;
5fd02043 7223 ordered = NULL;
163cf09c
CM
7224 goto again;
7225 }
4b46fce2 7226out_done:
9be3395b 7227 dio_bio = dip->dio_bio;
4b46fce2 7228
4b46fce2 7229 kfree(dip);
c0da7aa1
JB
7230
7231 /* If we had an error make sure to clear the uptodate flag */
7232 if (err)
9be3395b
CM
7233 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7234 dio_end_io(dio_bio, err);
7235 bio_put(bio);
4b46fce2
JB
7236}
7237
eaf25d93
CM
7238static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7239 struct bio *bio, int mirror_num,
7240 unsigned long bio_flags, u64 offset)
7241{
7242 int ret;
7243 struct btrfs_root *root = BTRFS_I(inode)->root;
7244 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7245 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7246 return 0;
7247}
7248
e65e1535
MX
7249static void btrfs_end_dio_bio(struct bio *bio, int err)
7250{
7251 struct btrfs_dio_private *dip = bio->bi_private;
7252
7253 if (err) {
efe120a0
FH
7254 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7255 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
c1c9ff7c 7256 btrfs_ino(dip->inode), bio->bi_rw,
4f024f37
KO
7257 (unsigned long long)bio->bi_iter.bi_sector,
7258 bio->bi_iter.bi_size, err);
e65e1535
MX
7259 dip->errors = 1;
7260
7261 /*
7262 * before atomic variable goto zero, we must make sure
7263 * dip->errors is perceived to be set.
7264 */
4e857c58 7265 smp_mb__before_atomic();
e65e1535
MX
7266 }
7267
7268 /* if there are more bios still pending for this dio, just exit */
7269 if (!atomic_dec_and_test(&dip->pending_bios))
7270 goto out;
7271
9be3395b 7272 if (dip->errors) {
e65e1535 7273 bio_io_error(dip->orig_bio);
9be3395b
CM
7274 } else {
7275 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7276 bio_endio(dip->orig_bio, 0);
7277 }
7278out:
7279 bio_put(bio);
7280}
7281
7282static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7283 u64 first_sector, gfp_t gfp_flags)
7284{
7285 int nr_vecs = bio_get_nr_vecs(bdev);
7286 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7287}
7288
7289static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7290 int rw, u64 file_offset, int skip_sum,
c329861d 7291 int async_submit)
e65e1535 7292{
facc8a22 7293 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7294 int write = rw & REQ_WRITE;
7295 struct btrfs_root *root = BTRFS_I(inode)->root;
7296 int ret;
7297
b812ce28
JB
7298 if (async_submit)
7299 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7300
e65e1535 7301 bio_get(bio);
5fd02043
JB
7302
7303 if (!write) {
7304 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7305 if (ret)
7306 goto err;
7307 }
e65e1535 7308
1ae39938
JB
7309 if (skip_sum)
7310 goto map;
7311
7312 if (write && async_submit) {
e65e1535
MX
7313 ret = btrfs_wq_submit_bio(root->fs_info,
7314 inode, rw, bio, 0, 0,
7315 file_offset,
7316 __btrfs_submit_bio_start_direct_io,
7317 __btrfs_submit_bio_done);
7318 goto err;
1ae39938
JB
7319 } else if (write) {
7320 /*
7321 * If we aren't doing async submit, calculate the csum of the
7322 * bio now.
7323 */
7324 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7325 if (ret)
7326 goto err;
c2db1073 7327 } else if (!skip_sum) {
facc8a22
MX
7328 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7329 file_offset);
c2db1073
TI
7330 if (ret)
7331 goto err;
7332 }
e65e1535 7333
1ae39938
JB
7334map:
7335 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7336err:
7337 bio_put(bio);
7338 return ret;
7339}
7340
7341static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7342 int skip_sum)
7343{
7344 struct inode *inode = dip->inode;
7345 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7346 struct bio *bio;
7347 struct bio *orig_bio = dip->orig_bio;
7348 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 7349 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
7350 u64 file_offset = dip->logical_offset;
7351 u64 submit_len = 0;
7352 u64 map_length;
7353 int nr_pages = 0;
e65e1535 7354 int ret = 0;
1ae39938 7355 int async_submit = 0;
e65e1535 7356
4f024f37 7357 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7358 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 7359 &map_length, NULL, 0);
7a5c3c9b 7360 if (ret)
e65e1535 7361 return -EIO;
facc8a22 7362
4f024f37 7363 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a
JB
7364 bio = orig_bio;
7365 goto submit;
7366 }
7367
53b381b3
DW
7368 /* async crcs make it difficult to collect full stripe writes. */
7369 if (btrfs_get_alloc_profile(root, 1) &
7370 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7371 async_submit = 0;
7372 else
7373 async_submit = 1;
7374
02f57c7a
JB
7375 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7376 if (!bio)
7377 return -ENOMEM;
7a5c3c9b 7378
02f57c7a
JB
7379 bio->bi_private = dip;
7380 bio->bi_end_io = btrfs_end_dio_bio;
7381 atomic_inc(&dip->pending_bios);
7382
e65e1535
MX
7383 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7384 if (unlikely(map_length < submit_len + bvec->bv_len ||
7385 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7386 bvec->bv_offset) < bvec->bv_len)) {
7387 /*
7388 * inc the count before we submit the bio so
7389 * we know the end IO handler won't happen before
7390 * we inc the count. Otherwise, the dip might get freed
7391 * before we're done setting it up
7392 */
7393 atomic_inc(&dip->pending_bios);
7394 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7395 file_offset, skip_sum,
c329861d 7396 async_submit);
e65e1535
MX
7397 if (ret) {
7398 bio_put(bio);
7399 atomic_dec(&dip->pending_bios);
7400 goto out_err;
7401 }
7402
e65e1535
MX
7403 start_sector += submit_len >> 9;
7404 file_offset += submit_len;
7405
7406 submit_len = 0;
7407 nr_pages = 0;
7408
7409 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7410 start_sector, GFP_NOFS);
7411 if (!bio)
7412 goto out_err;
7413 bio->bi_private = dip;
7414 bio->bi_end_io = btrfs_end_dio_bio;
7415
4f024f37 7416 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7417 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7418 start_sector << 9,
e65e1535
MX
7419 &map_length, NULL, 0);
7420 if (ret) {
7421 bio_put(bio);
7422 goto out_err;
7423 }
7424 } else {
7425 submit_len += bvec->bv_len;
67871254 7426 nr_pages++;
e65e1535
MX
7427 bvec++;
7428 }
7429 }
7430
02f57c7a 7431submit:
e65e1535 7432 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7433 async_submit);
e65e1535
MX
7434 if (!ret)
7435 return 0;
7436
7437 bio_put(bio);
7438out_err:
7439 dip->errors = 1;
7440 /*
7441 * before atomic variable goto zero, we must
7442 * make sure dip->errors is perceived to be set.
7443 */
4e857c58 7444 smp_mb__before_atomic();
e65e1535
MX
7445 if (atomic_dec_and_test(&dip->pending_bios))
7446 bio_io_error(dip->orig_bio);
7447
7448 /* bio_end_io() will handle error, so we needn't return it */
7449 return 0;
7450}
7451
9be3395b
CM
7452static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7453 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7454{
7455 struct btrfs_root *root = BTRFS_I(inode)->root;
7456 struct btrfs_dio_private *dip;
9be3395b 7457 struct bio *io_bio;
4b46fce2 7458 int skip_sum;
facc8a22 7459 int sum_len;
7b6d91da 7460 int write = rw & REQ_WRITE;
4b46fce2 7461 int ret = 0;
facc8a22 7462 u16 csum_size;
4b46fce2
JB
7463
7464 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7465
9be3395b 7466 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7467 if (!io_bio) {
7468 ret = -ENOMEM;
7469 goto free_ordered;
7470 }
7471
facc8a22
MX
7472 if (!skip_sum && !write) {
7473 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
4f024f37
KO
7474 sum_len = dio_bio->bi_iter.bi_size >>
7475 inode->i_sb->s_blocksize_bits;
facc8a22
MX
7476 sum_len *= csum_size;
7477 } else {
7478 sum_len = 0;
7479 }
7480
7481 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7482 if (!dip) {
7483 ret = -ENOMEM;
9be3395b 7484 goto free_io_bio;
4b46fce2 7485 }
4b46fce2 7486
9be3395b 7487 dip->private = dio_bio->bi_private;
4b46fce2
JB
7488 dip->inode = inode;
7489 dip->logical_offset = file_offset;
4f024f37
KO
7490 dip->bytes = dio_bio->bi_iter.bi_size;
7491 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 7492 io_bio->bi_private = dip;
e65e1535 7493 dip->errors = 0;
9be3395b
CM
7494 dip->orig_bio = io_bio;
7495 dip->dio_bio = dio_bio;
e65e1535 7496 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7497
7498 if (write)
9be3395b 7499 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7500 else
9be3395b 7501 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7502
e65e1535
MX
7503 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7504 if (!ret)
eaf25d93 7505 return;
9be3395b
CM
7506
7507free_io_bio:
7508 bio_put(io_bio);
7509
4b46fce2
JB
7510free_ordered:
7511 /*
7512 * If this is a write, we need to clean up the reserved space and kill
7513 * the ordered extent.
7514 */
7515 if (write) {
7516 struct btrfs_ordered_extent *ordered;
955256f2 7517 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7518 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7519 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7520 btrfs_free_reserved_extent(root, ordered->start,
e570fd27 7521 ordered->disk_len, 1);
4b46fce2
JB
7522 btrfs_put_ordered_extent(ordered);
7523 btrfs_put_ordered_extent(ordered);
7524 }
9be3395b 7525 bio_endio(dio_bio, ret);
4b46fce2
JB
7526}
7527
5a5f79b5 7528static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
28060d5d 7529 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
7530{
7531 int seg;
a1b75f7d 7532 int i;
5a5f79b5
CM
7533 unsigned blocksize_mask = root->sectorsize - 1;
7534 ssize_t retval = -EINVAL;
5a5f79b5
CM
7535
7536 if (offset & blocksize_mask)
7537 goto out;
7538
28060d5d
AV
7539 if (iov_iter_alignment(iter) & blocksize_mask)
7540 goto out;
a1b75f7d 7541
28060d5d
AV
7542 /* If this is a write we don't need to check anymore */
7543 if (rw & WRITE)
7544 return 0;
7545 /*
7546 * Check to make sure we don't have duplicate iov_base's in this
7547 * iovec, if so return EINVAL, otherwise we'll get csum errors
7548 * when reading back.
7549 */
7550 for (seg = 0; seg < iter->nr_segs; seg++) {
7551 for (i = seg + 1; i < iter->nr_segs; i++) {
7552 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
7553 goto out;
7554 }
5a5f79b5
CM
7555 }
7556 retval = 0;
7557out:
7558 return retval;
7559}
eb838e73 7560
16432985 7561static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 7562 struct iov_iter *iter, loff_t offset)
16432985 7563{
4b46fce2
JB
7564 struct file *file = iocb->ki_filp;
7565 struct inode *inode = file->f_mapping->host;
0934856d 7566 size_t count = 0;
2e60a51e 7567 int flags = 0;
38851cc1
MX
7568 bool wakeup = true;
7569 bool relock = false;
0934856d 7570 ssize_t ret;
4b46fce2 7571
28060d5d 7572 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
5a5f79b5 7573 return 0;
3f7c579c 7574
38851cc1 7575 atomic_inc(&inode->i_dio_count);
4e857c58 7576 smp_mb__after_atomic();
38851cc1 7577
0e267c44 7578 /*
41bd9ca4
MX
7579 * The generic stuff only does filemap_write_and_wait_range, which
7580 * isn't enough if we've written compressed pages to this area, so
7581 * we need to flush the dirty pages again to make absolutely sure
7582 * that any outstanding dirty pages are on disk.
0e267c44 7583 */
a6cbcd4a 7584 count = iov_iter_count(iter);
41bd9ca4
MX
7585 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7586 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
7587 filemap_fdatawrite_range(inode->i_mapping, offset,
7588 offset + count - 1);
0e267c44 7589
0934856d 7590 if (rw & WRITE) {
38851cc1
MX
7591 /*
7592 * If the write DIO is beyond the EOF, we need update
7593 * the isize, but it is protected by i_mutex. So we can
7594 * not unlock the i_mutex at this case.
7595 */
7596 if (offset + count <= inode->i_size) {
7597 mutex_unlock(&inode->i_mutex);
7598 relock = true;
7599 }
0934856d
MX
7600 ret = btrfs_delalloc_reserve_space(inode, count);
7601 if (ret)
38851cc1
MX
7602 goto out;
7603 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7604 &BTRFS_I(inode)->runtime_flags))) {
7605 inode_dio_done(inode);
7606 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7607 wakeup = false;
0934856d
MX
7608 }
7609
7610 ret = __blockdev_direct_IO(rw, iocb, inode,
7611 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
31b14039 7612 iter, offset, btrfs_get_blocks_direct, NULL,
2e60a51e 7613 btrfs_submit_direct, flags);
0934856d
MX
7614 if (rw & WRITE) {
7615 if (ret < 0 && ret != -EIOCBQUEUED)
7616 btrfs_delalloc_release_space(inode, count);
172a5049 7617 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7618 btrfs_delalloc_release_space(inode,
7619 count - (size_t)ret);
172a5049
MX
7620 else
7621 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7622 }
38851cc1 7623out:
2e60a51e
MX
7624 if (wakeup)
7625 inode_dio_done(inode);
38851cc1
MX
7626 if (relock)
7627 mutex_lock(&inode->i_mutex);
0934856d
MX
7628
7629 return ret;
16432985
CM
7630}
7631
05dadc09
TI
7632#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7633
1506fcc8
YS
7634static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7635 __u64 start, __u64 len)
7636{
05dadc09
TI
7637 int ret;
7638
7639 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7640 if (ret)
7641 return ret;
7642
ec29ed5b 7643 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7644}
7645
a52d9a80 7646int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7647{
d1310b2e
CM
7648 struct extent_io_tree *tree;
7649 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7650 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7651}
1832a6d5 7652
a52d9a80 7653static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7654{
d1310b2e 7655 struct extent_io_tree *tree;
b888db2b
CM
7656
7657
7658 if (current->flags & PF_MEMALLOC) {
7659 redirty_page_for_writepage(wbc, page);
7660 unlock_page(page);
7661 return 0;
7662 }
d1310b2e 7663 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7664 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7665}
7666
48a3b636
ES
7667static int btrfs_writepages(struct address_space *mapping,
7668 struct writeback_control *wbc)
b293f02e 7669{
d1310b2e 7670 struct extent_io_tree *tree;
771ed689 7671
d1310b2e 7672 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7673 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7674}
7675
3ab2fb5a
CM
7676static int
7677btrfs_readpages(struct file *file, struct address_space *mapping,
7678 struct list_head *pages, unsigned nr_pages)
7679{
d1310b2e
CM
7680 struct extent_io_tree *tree;
7681 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7682 return extent_readpages(tree, mapping, pages, nr_pages,
7683 btrfs_get_extent);
7684}
e6dcd2dc 7685static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7686{
d1310b2e
CM
7687 struct extent_io_tree *tree;
7688 struct extent_map_tree *map;
a52d9a80 7689 int ret;
8c2383c3 7690
d1310b2e
CM
7691 tree = &BTRFS_I(page->mapping->host)->io_tree;
7692 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7693 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7694 if (ret == 1) {
7695 ClearPagePrivate(page);
7696 set_page_private(page, 0);
7697 page_cache_release(page);
39279cc3 7698 }
a52d9a80 7699 return ret;
39279cc3
CM
7700}
7701
e6dcd2dc
CM
7702static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7703{
98509cfc
CM
7704 if (PageWriteback(page) || PageDirty(page))
7705 return 0;
b335b003 7706 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7707}
7708
d47992f8
LC
7709static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7710 unsigned int length)
39279cc3 7711{
5fd02043 7712 struct inode *inode = page->mapping->host;
d1310b2e 7713 struct extent_io_tree *tree;
e6dcd2dc 7714 struct btrfs_ordered_extent *ordered;
2ac55d41 7715 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7716 u64 page_start = page_offset(page);
7717 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 7718 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 7719
8b62b72b
CM
7720 /*
7721 * we have the page locked, so new writeback can't start,
7722 * and the dirty bit won't be cleared while we are here.
7723 *
7724 * Wait for IO on this page so that we can safely clear
7725 * the PagePrivate2 bit and do ordered accounting
7726 */
e6dcd2dc 7727 wait_on_page_writeback(page);
8b62b72b 7728
5fd02043 7729 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7730 if (offset) {
7731 btrfs_releasepage(page, GFP_NOFS);
7732 return;
7733 }
131e404a
FDBM
7734
7735 if (!inode_evicting)
7736 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7737 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 7738 if (ordered) {
eb84ae03
CM
7739 /*
7740 * IO on this page will never be started, so we need
7741 * to account for any ordered extents now
7742 */
131e404a
FDBM
7743 if (!inode_evicting)
7744 clear_extent_bit(tree, page_start, page_end,
7745 EXTENT_DIRTY | EXTENT_DELALLOC |
7746 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7747 EXTENT_DEFRAG, 1, 0, &cached_state,
7748 GFP_NOFS);
8b62b72b
CM
7749 /*
7750 * whoever cleared the private bit is responsible
7751 * for the finish_ordered_io
7752 */
77cef2ec
JB
7753 if (TestClearPagePrivate2(page)) {
7754 struct btrfs_ordered_inode_tree *tree;
7755 u64 new_len;
7756
7757 tree = &BTRFS_I(inode)->ordered_tree;
7758
7759 spin_lock_irq(&tree->lock);
7760 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7761 new_len = page_start - ordered->file_offset;
7762 if (new_len < ordered->truncated_len)
7763 ordered->truncated_len = new_len;
7764 spin_unlock_irq(&tree->lock);
7765
7766 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7767 page_start,
7768 PAGE_CACHE_SIZE, 1))
7769 btrfs_finish_ordered_io(ordered);
8b62b72b 7770 }
e6dcd2dc 7771 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
7772 if (!inode_evicting) {
7773 cached_state = NULL;
7774 lock_extent_bits(tree, page_start, page_end, 0,
7775 &cached_state);
7776 }
7777 }
7778
7779 if (!inode_evicting) {
7780 clear_extent_bit(tree, page_start, page_end,
7781 EXTENT_LOCKED | EXTENT_DIRTY |
7782 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7783 EXTENT_DEFRAG, 1, 1,
7784 &cached_state, GFP_NOFS);
7785
7786 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 7787 }
e6dcd2dc 7788
4a096752 7789 ClearPageChecked(page);
9ad6b7bc 7790 if (PagePrivate(page)) {
9ad6b7bc
CM
7791 ClearPagePrivate(page);
7792 set_page_private(page, 0);
7793 page_cache_release(page);
7794 }
39279cc3
CM
7795}
7796
9ebefb18
CM
7797/*
7798 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7799 * called from a page fault handler when a page is first dirtied. Hence we must
7800 * be careful to check for EOF conditions here. We set the page up correctly
7801 * for a written page which means we get ENOSPC checking when writing into
7802 * holes and correct delalloc and unwritten extent mapping on filesystems that
7803 * support these features.
7804 *
7805 * We are not allowed to take the i_mutex here so we have to play games to
7806 * protect against truncate races as the page could now be beyond EOF. Because
7807 * vmtruncate() writes the inode size before removing pages, once we have the
7808 * page lock we can determine safely if the page is beyond EOF. If it is not
7809 * beyond EOF, then the page is guaranteed safe against truncation until we
7810 * unlock the page.
7811 */
c2ec175c 7812int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7813{
c2ec175c 7814 struct page *page = vmf->page;
496ad9aa 7815 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7816 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7817 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7818 struct btrfs_ordered_extent *ordered;
2ac55d41 7819 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7820 char *kaddr;
7821 unsigned long zero_start;
9ebefb18 7822 loff_t size;
1832a6d5 7823 int ret;
9998eb70 7824 int reserved = 0;
a52d9a80 7825 u64 page_start;
e6dcd2dc 7826 u64 page_end;
9ebefb18 7827
b2b5ef5c 7828 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7829 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7830 if (!ret) {
e41f941a 7831 ret = file_update_time(vma->vm_file);
9998eb70
CM
7832 reserved = 1;
7833 }
56a76f82
NP
7834 if (ret) {
7835 if (ret == -ENOMEM)
7836 ret = VM_FAULT_OOM;
7837 else /* -ENOSPC, -EIO, etc */
7838 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7839 if (reserved)
7840 goto out;
7841 goto out_noreserve;
56a76f82 7842 }
1832a6d5 7843
56a76f82 7844 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7845again:
9ebefb18 7846 lock_page(page);
9ebefb18 7847 size = i_size_read(inode);
e6dcd2dc
CM
7848 page_start = page_offset(page);
7849 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7850
9ebefb18 7851 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7852 (page_start >= size)) {
9ebefb18
CM
7853 /* page got truncated out from underneath us */
7854 goto out_unlock;
7855 }
e6dcd2dc
CM
7856 wait_on_page_writeback(page);
7857
d0082371 7858 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7859 set_page_extent_mapped(page);
7860
eb84ae03
CM
7861 /*
7862 * we can't set the delalloc bits if there are pending ordered
7863 * extents. Drop our locks and wait for them to finish
7864 */
e6dcd2dc
CM
7865 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7866 if (ordered) {
2ac55d41
JB
7867 unlock_extent_cached(io_tree, page_start, page_end,
7868 &cached_state, GFP_NOFS);
e6dcd2dc 7869 unlock_page(page);
eb84ae03 7870 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7871 btrfs_put_ordered_extent(ordered);
7872 goto again;
7873 }
7874
fbf19087
JB
7875 /*
7876 * XXX - page_mkwrite gets called every time the page is dirtied, even
7877 * if it was already dirty, so for space accounting reasons we need to
7878 * clear any delalloc bits for the range we are fixing to save. There
7879 * is probably a better way to do this, but for now keep consistent with
7880 * prepare_pages in the normal write path.
7881 */
2ac55d41 7882 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7883 EXTENT_DIRTY | EXTENT_DELALLOC |
7884 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7885 0, 0, &cached_state, GFP_NOFS);
fbf19087 7886
2ac55d41
JB
7887 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7888 &cached_state);
9ed74f2d 7889 if (ret) {
2ac55d41
JB
7890 unlock_extent_cached(io_tree, page_start, page_end,
7891 &cached_state, GFP_NOFS);
9ed74f2d
JB
7892 ret = VM_FAULT_SIGBUS;
7893 goto out_unlock;
7894 }
e6dcd2dc 7895 ret = 0;
9ebefb18
CM
7896
7897 /* page is wholly or partially inside EOF */
a52d9a80 7898 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7899 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7900 else
e6dcd2dc 7901 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7902
e6dcd2dc
CM
7903 if (zero_start != PAGE_CACHE_SIZE) {
7904 kaddr = kmap(page);
7905 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7906 flush_dcache_page(page);
7907 kunmap(page);
7908 }
247e743c 7909 ClearPageChecked(page);
e6dcd2dc 7910 set_page_dirty(page);
50a9b214 7911 SetPageUptodate(page);
5a3f23d5 7912
257c62e1
CM
7913 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7914 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7915 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7916
2ac55d41 7917 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7918
7919out_unlock:
b2b5ef5c
JK
7920 if (!ret) {
7921 sb_end_pagefault(inode->i_sb);
50a9b214 7922 return VM_FAULT_LOCKED;
b2b5ef5c 7923 }
9ebefb18 7924 unlock_page(page);
1832a6d5 7925out:
ec39e180 7926 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7927out_noreserve:
b2b5ef5c 7928 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7929 return ret;
7930}
7931
a41ad394 7932static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7933{
7934 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7935 struct btrfs_block_rsv *rsv;
a71754fc 7936 int ret = 0;
3893e33b 7937 int err = 0;
39279cc3 7938 struct btrfs_trans_handle *trans;
dbe674a9 7939 u64 mask = root->sectorsize - 1;
07127184 7940 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7941
0ef8b726
JB
7942 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7943 (u64)-1);
7944 if (ret)
7945 return ret;
39279cc3 7946
fcb80c2a
JB
7947 /*
7948 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7949 * 3 things going on here
7950 *
7951 * 1) We need to reserve space for our orphan item and the space to
7952 * delete our orphan item. Lord knows we don't want to have a dangling
7953 * orphan item because we didn't reserve space to remove it.
7954 *
7955 * 2) We need to reserve space to update our inode.
7956 *
7957 * 3) We need to have something to cache all the space that is going to
7958 * be free'd up by the truncate operation, but also have some slack
7959 * space reserved in case it uses space during the truncate (thank you
7960 * very much snapshotting).
7961 *
7962 * And we need these to all be seperate. The fact is we can use alot of
7963 * space doing the truncate, and we have no earthly idea how much space
7964 * we will use, so we need the truncate reservation to be seperate so it
7965 * doesn't end up using space reserved for updating the inode or
7966 * removing the orphan item. We also need to be able to stop the
7967 * transaction and start a new one, which means we need to be able to
7968 * update the inode several times, and we have no idea of knowing how
7969 * many times that will be, so we can't just reserve 1 item for the
7970 * entirety of the opration, so that has to be done seperately as well.
7971 * Then there is the orphan item, which does indeed need to be held on
7972 * to for the whole operation, and we need nobody to touch this reserved
7973 * space except the orphan code.
7974 *
7975 * So that leaves us with
7976 *
7977 * 1) root->orphan_block_rsv - for the orphan deletion.
7978 * 2) rsv - for the truncate reservation, which we will steal from the
7979 * transaction reservation.
7980 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7981 * updating the inode.
7982 */
66d8f3dd 7983 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7984 if (!rsv)
7985 return -ENOMEM;
4a338542 7986 rsv->size = min_size;
ca7e70f5 7987 rsv->failfast = 1;
f0cd846e 7988
907cbceb 7989 /*
07127184 7990 * 1 for the truncate slack space
907cbceb
JB
7991 * 1 for updating the inode.
7992 */
f3fe820c 7993 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7994 if (IS_ERR(trans)) {
7995 err = PTR_ERR(trans);
7996 goto out;
7997 }
f0cd846e 7998
907cbceb
JB
7999 /* Migrate the slack space for the truncate to our reserve */
8000 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8001 min_size);
fcb80c2a 8002 BUG_ON(ret);
f0cd846e 8003
5dc562c5
JB
8004 /*
8005 * So if we truncate and then write and fsync we normally would just
8006 * write the extents that changed, which is a problem if we need to
8007 * first truncate that entire inode. So set this flag so we write out
8008 * all of the extents in the inode to the sync log so we're completely
8009 * safe.
8010 */
8011 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8012 trans->block_rsv = rsv;
907cbceb 8013
8082510e
YZ
8014 while (1) {
8015 ret = btrfs_truncate_inode_items(trans, root, inode,
8016 inode->i_size,
8017 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 8018 if (ret != -ENOSPC) {
3893e33b 8019 err = ret;
8082510e 8020 break;
3893e33b 8021 }
39279cc3 8022
fcb80c2a 8023 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8024 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8025 if (ret) {
8026 err = ret;
8027 break;
8028 }
ca7e70f5 8029
8082510e 8030 btrfs_end_transaction(trans, root);
b53d3f5d 8031 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8032
8033 trans = btrfs_start_transaction(root, 2);
8034 if (IS_ERR(trans)) {
8035 ret = err = PTR_ERR(trans);
8036 trans = NULL;
8037 break;
8038 }
8039
8040 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8041 rsv, min_size);
8042 BUG_ON(ret); /* shouldn't happen */
8043 trans->block_rsv = rsv;
8082510e
YZ
8044 }
8045
8046 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8047 trans->block_rsv = root->orphan_block_rsv;
8082510e 8048 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8049 if (ret)
8050 err = ret;
8082510e
YZ
8051 }
8052
917c16b2
CM
8053 if (trans) {
8054 trans->block_rsv = &root->fs_info->trans_block_rsv;
8055 ret = btrfs_update_inode(trans, root, inode);
8056 if (ret && !err)
8057 err = ret;
7b128766 8058
7ad85bb7 8059 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8060 btrfs_btree_balance_dirty(root);
917c16b2 8061 }
fcb80c2a
JB
8062
8063out:
8064 btrfs_free_block_rsv(root, rsv);
8065
3893e33b
JB
8066 if (ret && !err)
8067 err = ret;
a41ad394 8068
3893e33b 8069 return err;
39279cc3
CM
8070}
8071
d352ac68
CM
8072/*
8073 * create a new subvolume directory/inode (helper for the ioctl).
8074 */
d2fb3437 8075int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8076 struct btrfs_root *new_root,
8077 struct btrfs_root *parent_root,
8078 u64 new_dirid)
39279cc3 8079{
39279cc3 8080 struct inode *inode;
76dda93c 8081 int err;
00e4e6b3 8082 u64 index = 0;
39279cc3 8083
12fc9d09
FA
8084 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8085 new_dirid, new_dirid,
8086 S_IFDIR | (~current_umask() & S_IRWXUGO),
8087 &index);
54aa1f4d 8088 if (IS_ERR(inode))
f46b5a66 8089 return PTR_ERR(inode);
39279cc3
CM
8090 inode->i_op = &btrfs_dir_inode_operations;
8091 inode->i_fop = &btrfs_dir_file_operations;
8092
bfe86848 8093 set_nlink(inode, 1);
dbe674a9 8094 btrfs_i_size_write(inode, 0);
3b96362c 8095
63541927
FDBM
8096 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8097 if (err)
8098 btrfs_err(new_root->fs_info,
351fd353 8099 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8100 new_root->root_key.objectid, err);
8101
76dda93c 8102 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8103
76dda93c 8104 iput(inode);
ce598979 8105 return err;
39279cc3
CM
8106}
8107
39279cc3
CM
8108struct inode *btrfs_alloc_inode(struct super_block *sb)
8109{
8110 struct btrfs_inode *ei;
2ead6ae7 8111 struct inode *inode;
39279cc3
CM
8112
8113 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8114 if (!ei)
8115 return NULL;
2ead6ae7
YZ
8116
8117 ei->root = NULL;
2ead6ae7 8118 ei->generation = 0;
15ee9bc7 8119 ei->last_trans = 0;
257c62e1 8120 ei->last_sub_trans = 0;
e02119d5 8121 ei->logged_trans = 0;
2ead6ae7 8122 ei->delalloc_bytes = 0;
2ead6ae7
YZ
8123 ei->disk_i_size = 0;
8124 ei->flags = 0;
7709cde3 8125 ei->csum_bytes = 0;
2ead6ae7 8126 ei->index_cnt = (u64)-1;
67de1176 8127 ei->dir_index = 0;
2ead6ae7 8128 ei->last_unlink_trans = 0;
46d8bc34 8129 ei->last_log_commit = 0;
2ead6ae7 8130
9e0baf60
JB
8131 spin_lock_init(&ei->lock);
8132 ei->outstanding_extents = 0;
8133 ei->reserved_extents = 0;
2ead6ae7 8134
72ac3c0d 8135 ei->runtime_flags = 0;
261507a0 8136 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8137
16cdcec7
MX
8138 ei->delayed_node = NULL;
8139
2ead6ae7 8140 inode = &ei->vfs_inode;
a8067e02 8141 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8142 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8143 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8144 ei->io_tree.track_uptodate = 1;
8145 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8146 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8147 mutex_init(&ei->log_mutex);
f248679e 8148 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8149 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8150 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
8151 RB_CLEAR_NODE(&ei->rb_node);
8152
8153 return inode;
39279cc3
CM
8154}
8155
aaedb55b
JB
8156#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8157void btrfs_test_destroy_inode(struct inode *inode)
8158{
8159 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8160 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8161}
8162#endif
8163
fa0d7e3d
NP
8164static void btrfs_i_callback(struct rcu_head *head)
8165{
8166 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8167 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8168}
8169
39279cc3
CM
8170void btrfs_destroy_inode(struct inode *inode)
8171{
e6dcd2dc 8172 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8173 struct btrfs_root *root = BTRFS_I(inode)->root;
8174
b3d9b7a3 8175 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8176 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8177 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8178 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8179 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8180 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 8181
a6dbd429
JB
8182 /*
8183 * This can happen where we create an inode, but somebody else also
8184 * created the same inode and we need to destroy the one we already
8185 * created.
8186 */
8187 if (!root)
8188 goto free;
8189
8a35d95f
JB
8190 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8191 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8192 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8193 btrfs_ino(inode));
8a35d95f 8194 atomic_dec(&root->orphan_inodes);
7b128766 8195 }
7b128766 8196
d397712b 8197 while (1) {
e6dcd2dc
CM
8198 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8199 if (!ordered)
8200 break;
8201 else {
c2cf52eb 8202 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8203 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8204 btrfs_remove_ordered_extent(inode, ordered);
8205 btrfs_put_ordered_extent(ordered);
8206 btrfs_put_ordered_extent(ordered);
8207 }
8208 }
5d4f98a2 8209 inode_tree_del(inode);
5b21f2ed 8210 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8211free:
fa0d7e3d 8212 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8213}
8214
45321ac5 8215int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8216{
8217 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8218
6379ef9f
NA
8219 if (root == NULL)
8220 return 1;
8221
fa6ac876 8222 /* the snap/subvol tree is on deleting */
69e9c6c6 8223 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8224 return 1;
76dda93c 8225 else
45321ac5 8226 return generic_drop_inode(inode);
76dda93c
YZ
8227}
8228
0ee0fda0 8229static void init_once(void *foo)
39279cc3
CM
8230{
8231 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8232
8233 inode_init_once(&ei->vfs_inode);
8234}
8235
8236void btrfs_destroy_cachep(void)
8237{
8c0a8537
KS
8238 /*
8239 * Make sure all delayed rcu free inodes are flushed before we
8240 * destroy cache.
8241 */
8242 rcu_barrier();
39279cc3
CM
8243 if (btrfs_inode_cachep)
8244 kmem_cache_destroy(btrfs_inode_cachep);
8245 if (btrfs_trans_handle_cachep)
8246 kmem_cache_destroy(btrfs_trans_handle_cachep);
8247 if (btrfs_transaction_cachep)
8248 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8249 if (btrfs_path_cachep)
8250 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8251 if (btrfs_free_space_cachep)
8252 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8253 if (btrfs_delalloc_work_cachep)
8254 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8255}
8256
8257int btrfs_init_cachep(void)
8258{
837e1972 8259 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8260 sizeof(struct btrfs_inode), 0,
8261 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8262 if (!btrfs_inode_cachep)
8263 goto fail;
9601e3f6 8264
837e1972 8265 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8266 sizeof(struct btrfs_trans_handle), 0,
8267 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8268 if (!btrfs_trans_handle_cachep)
8269 goto fail;
9601e3f6 8270
837e1972 8271 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8272 sizeof(struct btrfs_transaction), 0,
8273 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8274 if (!btrfs_transaction_cachep)
8275 goto fail;
9601e3f6 8276
837e1972 8277 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8278 sizeof(struct btrfs_path), 0,
8279 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8280 if (!btrfs_path_cachep)
8281 goto fail;
9601e3f6 8282
837e1972 8283 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8284 sizeof(struct btrfs_free_space), 0,
8285 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8286 if (!btrfs_free_space_cachep)
8287 goto fail;
8288
8ccf6f19
MX
8289 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8290 sizeof(struct btrfs_delalloc_work), 0,
8291 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8292 NULL);
8293 if (!btrfs_delalloc_work_cachep)
8294 goto fail;
8295
39279cc3
CM
8296 return 0;
8297fail:
8298 btrfs_destroy_cachep();
8299 return -ENOMEM;
8300}
8301
8302static int btrfs_getattr(struct vfsmount *mnt,
8303 struct dentry *dentry, struct kstat *stat)
8304{
df0af1a5 8305 u64 delalloc_bytes;
39279cc3 8306 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8307 u32 blocksize = inode->i_sb->s_blocksize;
8308
39279cc3 8309 generic_fillattr(inode, stat);
0ee5dc67 8310 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8311 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8312
8313 spin_lock(&BTRFS_I(inode)->lock);
8314 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8315 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8316 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8317 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8318 return 0;
8319}
8320
d397712b
CM
8321static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8322 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8323{
8324 struct btrfs_trans_handle *trans;
8325 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8326 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8327 struct inode *new_inode = new_dentry->d_inode;
8328 struct inode *old_inode = old_dentry->d_inode;
8329 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8330 u64 index = 0;
4df27c4d 8331 u64 root_objectid;
39279cc3 8332 int ret;
33345d01 8333 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8334
33345d01 8335 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8336 return -EPERM;
8337
4df27c4d 8338 /* we only allow rename subvolume link between subvolumes */
33345d01 8339 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8340 return -EXDEV;
8341
33345d01
LZ
8342 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8343 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8344 return -ENOTEMPTY;
5f39d397 8345
4df27c4d
YZ
8346 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8347 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8348 return -ENOTEMPTY;
9c52057c
CM
8349
8350
8351 /* check for collisions, even if the name isn't there */
4871c158 8352 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8353 new_dentry->d_name.name,
8354 new_dentry->d_name.len);
8355
8356 if (ret) {
8357 if (ret == -EEXIST) {
8358 /* we shouldn't get
8359 * eexist without a new_inode */
fae7f21c 8360 if (WARN_ON(!new_inode)) {
9c52057c
CM
8361 return ret;
8362 }
8363 } else {
8364 /* maybe -EOVERFLOW */
8365 return ret;
8366 }
8367 }
8368 ret = 0;
8369
5a3f23d5 8370 /*
8d875f95
CM
8371 * we're using rename to replace one file with another. Start IO on it
8372 * now so we don't add too much work to the end of the transaction
5a3f23d5 8373 */
8d875f95 8374 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
8375 filemap_flush(old_inode->i_mapping);
8376
76dda93c 8377 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8378 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8379 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8380 /*
8381 * We want to reserve the absolute worst case amount of items. So if
8382 * both inodes are subvols and we need to unlink them then that would
8383 * require 4 item modifications, but if they are both normal inodes it
8384 * would require 5 item modifications, so we'll assume their normal
8385 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8386 * should cover the worst case number of items we'll modify.
8387 */
6e137ed3 8388 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8389 if (IS_ERR(trans)) {
8390 ret = PTR_ERR(trans);
8391 goto out_notrans;
8392 }
76dda93c 8393
4df27c4d
YZ
8394 if (dest != root)
8395 btrfs_record_root_in_trans(trans, dest);
5f39d397 8396
a5719521
YZ
8397 ret = btrfs_set_inode_index(new_dir, &index);
8398 if (ret)
8399 goto out_fail;
5a3f23d5 8400
67de1176 8401 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8402 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 8403 /* force full log commit if subvolume involved. */
995946dd 8404 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 8405 } else {
a5719521
YZ
8406 ret = btrfs_insert_inode_ref(trans, dest,
8407 new_dentry->d_name.name,
8408 new_dentry->d_name.len,
33345d01
LZ
8409 old_ino,
8410 btrfs_ino(new_dir), index);
a5719521
YZ
8411 if (ret)
8412 goto out_fail;
4df27c4d
YZ
8413 /*
8414 * this is an ugly little race, but the rename is required
8415 * to make sure that if we crash, the inode is either at the
8416 * old name or the new one. pinning the log transaction lets
8417 * us make sure we don't allow a log commit to come in after
8418 * we unlink the name but before we add the new name back in.
8419 */
8420 btrfs_pin_log_trans(root);
8421 }
5a3f23d5 8422
0c4d2d95
JB
8423 inode_inc_iversion(old_dir);
8424 inode_inc_iversion(new_dir);
8425 inode_inc_iversion(old_inode);
39279cc3
CM
8426 old_dir->i_ctime = old_dir->i_mtime = ctime;
8427 new_dir->i_ctime = new_dir->i_mtime = ctime;
8428 old_inode->i_ctime = ctime;
5f39d397 8429
12fcfd22
CM
8430 if (old_dentry->d_parent != new_dentry->d_parent)
8431 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8432
33345d01 8433 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8434 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8435 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8436 old_dentry->d_name.name,
8437 old_dentry->d_name.len);
8438 } else {
92986796
AV
8439 ret = __btrfs_unlink_inode(trans, root, old_dir,
8440 old_dentry->d_inode,
8441 old_dentry->d_name.name,
8442 old_dentry->d_name.len);
8443 if (!ret)
8444 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8445 }
79787eaa
JM
8446 if (ret) {
8447 btrfs_abort_transaction(trans, root, ret);
8448 goto out_fail;
8449 }
39279cc3
CM
8450
8451 if (new_inode) {
0c4d2d95 8452 inode_inc_iversion(new_inode);
39279cc3 8453 new_inode->i_ctime = CURRENT_TIME;
33345d01 8454 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8455 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8456 root_objectid = BTRFS_I(new_inode)->location.objectid;
8457 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8458 root_objectid,
8459 new_dentry->d_name.name,
8460 new_dentry->d_name.len);
8461 BUG_ON(new_inode->i_nlink == 0);
8462 } else {
8463 ret = btrfs_unlink_inode(trans, dest, new_dir,
8464 new_dentry->d_inode,
8465 new_dentry->d_name.name,
8466 new_dentry->d_name.len);
8467 }
4ef31a45 8468 if (!ret && new_inode->i_nlink == 0)
e02119d5 8469 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8470 if (ret) {
8471 btrfs_abort_transaction(trans, root, ret);
8472 goto out_fail;
8473 }
39279cc3 8474 }
aec7477b 8475
4df27c4d
YZ
8476 ret = btrfs_add_link(trans, new_dir, old_inode,
8477 new_dentry->d_name.name,
a5719521 8478 new_dentry->d_name.len, 0, index);
79787eaa
JM
8479 if (ret) {
8480 btrfs_abort_transaction(trans, root, ret);
8481 goto out_fail;
8482 }
39279cc3 8483
67de1176
MX
8484 if (old_inode->i_nlink == 1)
8485 BTRFS_I(old_inode)->dir_index = index;
8486
33345d01 8487 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8488 struct dentry *parent = new_dentry->d_parent;
6a912213 8489 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8490 btrfs_end_log_trans(root);
8491 }
39279cc3 8492out_fail:
7ad85bb7 8493 btrfs_end_transaction(trans, root);
b44c59a8 8494out_notrans:
33345d01 8495 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8496 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8497
39279cc3
CM
8498 return ret;
8499}
8500
8ccf6f19
MX
8501static void btrfs_run_delalloc_work(struct btrfs_work *work)
8502{
8503 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8504 struct inode *inode;
8ccf6f19
MX
8505
8506 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8507 work);
9f23e289
JB
8508 inode = delalloc_work->inode;
8509 if (delalloc_work->wait) {
8510 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8511 } else {
8512 filemap_flush(inode->i_mapping);
8513 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8514 &BTRFS_I(inode)->runtime_flags))
8515 filemap_flush(inode->i_mapping);
8516 }
8ccf6f19
MX
8517
8518 if (delalloc_work->delay_iput)
9f23e289 8519 btrfs_add_delayed_iput(inode);
8ccf6f19 8520 else
9f23e289 8521 iput(inode);
8ccf6f19
MX
8522 complete(&delalloc_work->completion);
8523}
8524
8525struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8526 int wait, int delay_iput)
8527{
8528 struct btrfs_delalloc_work *work;
8529
8530 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8531 if (!work)
8532 return NULL;
8533
8534 init_completion(&work->completion);
8535 INIT_LIST_HEAD(&work->list);
8536 work->inode = inode;
8537 work->wait = wait;
8538 work->delay_iput = delay_iput;
a44903ab 8539 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
8540
8541 return work;
8542}
8543
8544void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8545{
8546 wait_for_completion(&work->completion);
8547 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8548}
8549
d352ac68
CM
8550/*
8551 * some fairly slow code that needs optimization. This walks the list
8552 * of all the inodes with pending delalloc and forces them to disk.
8553 */
6c255e67
MX
8554static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8555 int nr)
ea8c2819 8556{
ea8c2819 8557 struct btrfs_inode *binode;
5b21f2ed 8558 struct inode *inode;
8ccf6f19
MX
8559 struct btrfs_delalloc_work *work, *next;
8560 struct list_head works;
1eafa6c7 8561 struct list_head splice;
8ccf6f19 8562 int ret = 0;
ea8c2819 8563
8ccf6f19 8564 INIT_LIST_HEAD(&works);
1eafa6c7 8565 INIT_LIST_HEAD(&splice);
63607cc8 8566
573bfb72 8567 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
8568 spin_lock(&root->delalloc_lock);
8569 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8570 while (!list_empty(&splice)) {
8571 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8572 delalloc_inodes);
1eafa6c7 8573
eb73c1b7
MX
8574 list_move_tail(&binode->delalloc_inodes,
8575 &root->delalloc_inodes);
5b21f2ed 8576 inode = igrab(&binode->vfs_inode);
df0af1a5 8577 if (!inode) {
eb73c1b7 8578 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8579 continue;
df0af1a5 8580 }
eb73c1b7 8581 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8582
8583 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8584 if (unlikely(!work)) {
f4ab9ea7
JB
8585 if (delay_iput)
8586 btrfs_add_delayed_iput(inode);
8587 else
8588 iput(inode);
1eafa6c7 8589 ret = -ENOMEM;
a1ecaabb 8590 goto out;
5b21f2ed 8591 }
1eafa6c7 8592 list_add_tail(&work->list, &works);
a44903ab
QW
8593 btrfs_queue_work(root->fs_info->flush_workers,
8594 &work->work);
6c255e67
MX
8595 ret++;
8596 if (nr != -1 && ret >= nr)
a1ecaabb 8597 goto out;
5b21f2ed 8598 cond_resched();
eb73c1b7 8599 spin_lock(&root->delalloc_lock);
ea8c2819 8600 }
eb73c1b7 8601 spin_unlock(&root->delalloc_lock);
8c8bee1d 8602
a1ecaabb 8603out:
eb73c1b7
MX
8604 list_for_each_entry_safe(work, next, &works, list) {
8605 list_del_init(&work->list);
8606 btrfs_wait_and_free_delalloc_work(work);
8607 }
8608
8609 if (!list_empty_careful(&splice)) {
8610 spin_lock(&root->delalloc_lock);
8611 list_splice_tail(&splice, &root->delalloc_inodes);
8612 spin_unlock(&root->delalloc_lock);
8613 }
573bfb72 8614 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
8615 return ret;
8616}
1eafa6c7 8617
eb73c1b7
MX
8618int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8619{
8620 int ret;
1eafa6c7 8621
2c21b4d7 8622 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
8623 return -EROFS;
8624
6c255e67
MX
8625 ret = __start_delalloc_inodes(root, delay_iput, -1);
8626 if (ret > 0)
8627 ret = 0;
eb73c1b7
MX
8628 /*
8629 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8630 * we have to make sure the IO is actually started and that
8631 * ordered extents get created before we return
8632 */
8633 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8634 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8635 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8636 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8637 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8638 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8639 }
8640 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8641 return ret;
8642}
8643
6c255e67
MX
8644int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
8645 int nr)
eb73c1b7
MX
8646{
8647 struct btrfs_root *root;
8648 struct list_head splice;
8649 int ret;
8650
2c21b4d7 8651 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
8652 return -EROFS;
8653
8654 INIT_LIST_HEAD(&splice);
8655
573bfb72 8656 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
8657 spin_lock(&fs_info->delalloc_root_lock);
8658 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 8659 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
8660 root = list_first_entry(&splice, struct btrfs_root,
8661 delalloc_root);
8662 root = btrfs_grab_fs_root(root);
8663 BUG_ON(!root);
8664 list_move_tail(&root->delalloc_root,
8665 &fs_info->delalloc_roots);
8666 spin_unlock(&fs_info->delalloc_root_lock);
8667
6c255e67 8668 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 8669 btrfs_put_fs_root(root);
6c255e67 8670 if (ret < 0)
eb73c1b7
MX
8671 goto out;
8672
6c255e67
MX
8673 if (nr != -1) {
8674 nr -= ret;
8675 WARN_ON(nr < 0);
8676 }
eb73c1b7 8677 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8678 }
eb73c1b7 8679 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8680
6c255e67 8681 ret = 0;
eb73c1b7
MX
8682 atomic_inc(&fs_info->async_submit_draining);
8683 while (atomic_read(&fs_info->nr_async_submits) ||
8684 atomic_read(&fs_info->async_delalloc_pages)) {
8685 wait_event(fs_info->async_submit_wait,
8686 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8687 atomic_read(&fs_info->async_delalloc_pages) == 0));
8688 }
8689 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 8690out:
1eafa6c7 8691 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8692 spin_lock(&fs_info->delalloc_root_lock);
8693 list_splice_tail(&splice, &fs_info->delalloc_roots);
8694 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8695 }
573bfb72 8696 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 8697 return ret;
ea8c2819
CM
8698}
8699
39279cc3
CM
8700static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8701 const char *symname)
8702{
8703 struct btrfs_trans_handle *trans;
8704 struct btrfs_root *root = BTRFS_I(dir)->root;
8705 struct btrfs_path *path;
8706 struct btrfs_key key;
1832a6d5 8707 struct inode *inode = NULL;
39279cc3
CM
8708 int err;
8709 int drop_inode = 0;
8710 u64 objectid;
67871254 8711 u64 index = 0;
39279cc3
CM
8712 int name_len;
8713 int datasize;
5f39d397 8714 unsigned long ptr;
39279cc3 8715 struct btrfs_file_extent_item *ei;
5f39d397 8716 struct extent_buffer *leaf;
39279cc3 8717
f06becc4 8718 name_len = strlen(symname);
39279cc3
CM
8719 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8720 return -ENAMETOOLONG;
1832a6d5 8721
9ed74f2d
JB
8722 /*
8723 * 2 items for inode item and ref
8724 * 2 items for dir items
8725 * 1 item for xattr if selinux is on
8726 */
a22285a6
YZ
8727 trans = btrfs_start_transaction(root, 5);
8728 if (IS_ERR(trans))
8729 return PTR_ERR(trans);
1832a6d5 8730
581bb050
LZ
8731 err = btrfs_find_free_ino(root, &objectid);
8732 if (err)
8733 goto out_unlock;
8734
aec7477b 8735 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8736 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8737 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8738 if (IS_ERR(inode)) {
8739 err = PTR_ERR(inode);
39279cc3 8740 goto out_unlock;
7cf96da3 8741 }
39279cc3 8742
2a7dba39 8743 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8744 if (err) {
8745 drop_inode = 1;
8746 goto out_unlock;
8747 }
8748
ad19db71
CS
8749 /*
8750 * If the active LSM wants to access the inode during
8751 * d_instantiate it needs these. Smack checks to see
8752 * if the filesystem supports xattrs by looking at the
8753 * ops vector.
8754 */
8755 inode->i_fop = &btrfs_file_operations;
8756 inode->i_op = &btrfs_file_inode_operations;
8757
a1b075d2 8758 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8759 if (err)
8760 drop_inode = 1;
8761 else {
8762 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8763 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8764 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8765 }
39279cc3
CM
8766 if (drop_inode)
8767 goto out_unlock;
8768
8769 path = btrfs_alloc_path();
d8926bb3
MF
8770 if (!path) {
8771 err = -ENOMEM;
8772 drop_inode = 1;
8773 goto out_unlock;
8774 }
33345d01 8775 key.objectid = btrfs_ino(inode);
39279cc3 8776 key.offset = 0;
39279cc3
CM
8777 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8778 datasize = btrfs_file_extent_calc_inline_size(name_len);
8779 err = btrfs_insert_empty_item(trans, root, path, &key,
8780 datasize);
54aa1f4d
CM
8781 if (err) {
8782 drop_inode = 1;
b0839166 8783 btrfs_free_path(path);
54aa1f4d
CM
8784 goto out_unlock;
8785 }
5f39d397
CM
8786 leaf = path->nodes[0];
8787 ei = btrfs_item_ptr(leaf, path->slots[0],
8788 struct btrfs_file_extent_item);
8789 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8790 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8791 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8792 btrfs_set_file_extent_encryption(leaf, ei, 0);
8793 btrfs_set_file_extent_compression(leaf, ei, 0);
8794 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8795 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8796
39279cc3 8797 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8798 write_extent_buffer(leaf, symname, ptr, name_len);
8799 btrfs_mark_buffer_dirty(leaf);
39279cc3 8800 btrfs_free_path(path);
5f39d397 8801
39279cc3
CM
8802 inode->i_op = &btrfs_symlink_inode_operations;
8803 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8804 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8805 inode_set_bytes(inode, name_len);
f06becc4 8806 btrfs_i_size_write(inode, name_len);
54aa1f4d
CM
8807 err = btrfs_update_inode(trans, root, inode);
8808 if (err)
8809 drop_inode = 1;
39279cc3
CM
8810
8811out_unlock:
08c422c2
AV
8812 if (!err)
8813 d_instantiate(dentry, inode);
7ad85bb7 8814 btrfs_end_transaction(trans, root);
39279cc3
CM
8815 if (drop_inode) {
8816 inode_dec_link_count(inode);
8817 iput(inode);
8818 }
b53d3f5d 8819 btrfs_btree_balance_dirty(root);
39279cc3
CM
8820 return err;
8821}
16432985 8822
0af3d00b
JB
8823static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8824 u64 start, u64 num_bytes, u64 min_size,
8825 loff_t actual_len, u64 *alloc_hint,
8826 struct btrfs_trans_handle *trans)
d899e052 8827{
5dc562c5
JB
8828 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8829 struct extent_map *em;
d899e052
YZ
8830 struct btrfs_root *root = BTRFS_I(inode)->root;
8831 struct btrfs_key ins;
d899e052 8832 u64 cur_offset = start;
55a61d1d 8833 u64 i_size;
154ea289 8834 u64 cur_bytes;
d899e052 8835 int ret = 0;
0af3d00b 8836 bool own_trans = true;
d899e052 8837
0af3d00b
JB
8838 if (trans)
8839 own_trans = false;
d899e052 8840 while (num_bytes > 0) {
0af3d00b
JB
8841 if (own_trans) {
8842 trans = btrfs_start_transaction(root, 3);
8843 if (IS_ERR(trans)) {
8844 ret = PTR_ERR(trans);
8845 break;
8846 }
5a303d5d
YZ
8847 }
8848
154ea289
CM
8849 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8850 cur_bytes = max(cur_bytes, min_size);
00361589 8851 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 8852 *alloc_hint, &ins, 1, 0);
5a303d5d 8853 if (ret) {
0af3d00b
JB
8854 if (own_trans)
8855 btrfs_end_transaction(trans, root);
a22285a6 8856 break;
d899e052 8857 }
5a303d5d 8858
d899e052
YZ
8859 ret = insert_reserved_file_extent(trans, inode,
8860 cur_offset, ins.objectid,
8861 ins.offset, ins.offset,
920bbbfb 8862 ins.offset, 0, 0, 0,
d899e052 8863 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 8864 if (ret) {
857cc2fc 8865 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 8866 ins.offset, 0);
79787eaa
JM
8867 btrfs_abort_transaction(trans, root, ret);
8868 if (own_trans)
8869 btrfs_end_transaction(trans, root);
8870 break;
8871 }
a1ed835e
CM
8872 btrfs_drop_extent_cache(inode, cur_offset,
8873 cur_offset + ins.offset -1, 0);
5a303d5d 8874
5dc562c5
JB
8875 em = alloc_extent_map();
8876 if (!em) {
8877 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8878 &BTRFS_I(inode)->runtime_flags);
8879 goto next;
8880 }
8881
8882 em->start = cur_offset;
8883 em->orig_start = cur_offset;
8884 em->len = ins.offset;
8885 em->block_start = ins.objectid;
8886 em->block_len = ins.offset;
b4939680 8887 em->orig_block_len = ins.offset;
cc95bef6 8888 em->ram_bytes = ins.offset;
5dc562c5
JB
8889 em->bdev = root->fs_info->fs_devices->latest_bdev;
8890 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8891 em->generation = trans->transid;
8892
8893 while (1) {
8894 write_lock(&em_tree->lock);
09a2a8f9 8895 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8896 write_unlock(&em_tree->lock);
8897 if (ret != -EEXIST)
8898 break;
8899 btrfs_drop_extent_cache(inode, cur_offset,
8900 cur_offset + ins.offset - 1,
8901 0);
8902 }
8903 free_extent_map(em);
8904next:
d899e052
YZ
8905 num_bytes -= ins.offset;
8906 cur_offset += ins.offset;
efa56464 8907 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8908
0c4d2d95 8909 inode_inc_iversion(inode);
d899e052 8910 inode->i_ctime = CURRENT_TIME;
6cbff00f 8911 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8912 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8913 (actual_len > inode->i_size) &&
8914 (cur_offset > inode->i_size)) {
d1ea6a61 8915 if (cur_offset > actual_len)
55a61d1d 8916 i_size = actual_len;
d1ea6a61 8917 else
55a61d1d
JB
8918 i_size = cur_offset;
8919 i_size_write(inode, i_size);
8920 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8921 }
8922
d899e052 8923 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8924
8925 if (ret) {
8926 btrfs_abort_transaction(trans, root, ret);
8927 if (own_trans)
8928 btrfs_end_transaction(trans, root);
8929 break;
8930 }
d899e052 8931
0af3d00b
JB
8932 if (own_trans)
8933 btrfs_end_transaction(trans, root);
5a303d5d 8934 }
d899e052
YZ
8935 return ret;
8936}
8937
0af3d00b
JB
8938int btrfs_prealloc_file_range(struct inode *inode, int mode,
8939 u64 start, u64 num_bytes, u64 min_size,
8940 loff_t actual_len, u64 *alloc_hint)
8941{
8942 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8943 min_size, actual_len, alloc_hint,
8944 NULL);
8945}
8946
8947int btrfs_prealloc_file_range_trans(struct inode *inode,
8948 struct btrfs_trans_handle *trans, int mode,
8949 u64 start, u64 num_bytes, u64 min_size,
8950 loff_t actual_len, u64 *alloc_hint)
8951{
8952 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8953 min_size, actual_len, alloc_hint, trans);
8954}
8955
e6dcd2dc
CM
8956static int btrfs_set_page_dirty(struct page *page)
8957{
e6dcd2dc
CM
8958 return __set_page_dirty_nobuffers(page);
8959}
8960
10556cb2 8961static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8962{
b83cc969 8963 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8964 umode_t mode = inode->i_mode;
b83cc969 8965
cb6db4e5
JM
8966 if (mask & MAY_WRITE &&
8967 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8968 if (btrfs_root_readonly(root))
8969 return -EROFS;
8970 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8971 return -EACCES;
8972 }
2830ba7f 8973 return generic_permission(inode, mask);
fdebe2bd 8974}
39279cc3 8975
ef3b9af5
FM
8976static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
8977{
8978 struct btrfs_trans_handle *trans;
8979 struct btrfs_root *root = BTRFS_I(dir)->root;
8980 struct inode *inode = NULL;
8981 u64 objectid;
8982 u64 index;
8983 int ret = 0;
8984
8985 /*
8986 * 5 units required for adding orphan entry
8987 */
8988 trans = btrfs_start_transaction(root, 5);
8989 if (IS_ERR(trans))
8990 return PTR_ERR(trans);
8991
8992 ret = btrfs_find_free_ino(root, &objectid);
8993 if (ret)
8994 goto out;
8995
8996 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
8997 btrfs_ino(dir), objectid, mode, &index);
8998 if (IS_ERR(inode)) {
8999 ret = PTR_ERR(inode);
9000 inode = NULL;
9001 goto out;
9002 }
9003
9004 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9005 if (ret)
9006 goto out;
9007
9008 ret = btrfs_update_inode(trans, root, inode);
9009 if (ret)
9010 goto out;
9011
9012 inode->i_fop = &btrfs_file_operations;
9013 inode->i_op = &btrfs_file_inode_operations;
9014
9015 inode->i_mapping->a_ops = &btrfs_aops;
9016 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9017 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9018
9019 ret = btrfs_orphan_add(trans, inode);
9020 if (ret)
9021 goto out;
9022
5762b5c9
FM
9023 /*
9024 * We set number of links to 0 in btrfs_new_inode(), and here we set
9025 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9026 * through:
9027 *
9028 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9029 */
9030 set_nlink(inode, 1);
ef3b9af5
FM
9031 d_tmpfile(dentry, inode);
9032 mark_inode_dirty(inode);
9033
9034out:
9035 btrfs_end_transaction(trans, root);
9036 if (ret)
9037 iput(inode);
9038 btrfs_balance_delayed_items(root);
9039 btrfs_btree_balance_dirty(root);
9040
9041 return ret;
9042}
9043
6e1d5dcc 9044static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9045 .getattr = btrfs_getattr,
39279cc3
CM
9046 .lookup = btrfs_lookup,
9047 .create = btrfs_create,
9048 .unlink = btrfs_unlink,
9049 .link = btrfs_link,
9050 .mkdir = btrfs_mkdir,
9051 .rmdir = btrfs_rmdir,
9052 .rename = btrfs_rename,
9053 .symlink = btrfs_symlink,
9054 .setattr = btrfs_setattr,
618e21d5 9055 .mknod = btrfs_mknod,
95819c05
CH
9056 .setxattr = btrfs_setxattr,
9057 .getxattr = btrfs_getxattr,
5103e947 9058 .listxattr = btrfs_listxattr,
95819c05 9059 .removexattr = btrfs_removexattr,
fdebe2bd 9060 .permission = btrfs_permission,
4e34e719 9061 .get_acl = btrfs_get_acl,
996a710d 9062 .set_acl = btrfs_set_acl,
93fd63c2 9063 .update_time = btrfs_update_time,
ef3b9af5 9064 .tmpfile = btrfs_tmpfile,
39279cc3 9065};
6e1d5dcc 9066static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 9067 .lookup = btrfs_lookup,
fdebe2bd 9068 .permission = btrfs_permission,
4e34e719 9069 .get_acl = btrfs_get_acl,
996a710d 9070 .set_acl = btrfs_set_acl,
93fd63c2 9071 .update_time = btrfs_update_time,
39279cc3 9072};
76dda93c 9073
828c0950 9074static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
9075 .llseek = generic_file_llseek,
9076 .read = generic_read_dir,
9cdda8d3 9077 .iterate = btrfs_real_readdir,
34287aa3 9078 .unlocked_ioctl = btrfs_ioctl,
39279cc3 9079#ifdef CONFIG_COMPAT
34287aa3 9080 .compat_ioctl = btrfs_ioctl,
39279cc3 9081#endif
6bf13c0c 9082 .release = btrfs_release_file,
e02119d5 9083 .fsync = btrfs_sync_file,
39279cc3
CM
9084};
9085
d1310b2e 9086static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 9087 .fill_delalloc = run_delalloc_range,
065631f6 9088 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 9089 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 9090 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 9091 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 9092 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
9093 .set_bit_hook = btrfs_set_bit_hook,
9094 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
9095 .merge_extent_hook = btrfs_merge_extent_hook,
9096 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
9097};
9098
35054394
CM
9099/*
9100 * btrfs doesn't support the bmap operation because swapfiles
9101 * use bmap to make a mapping of extents in the file. They assume
9102 * these extents won't change over the life of the file and they
9103 * use the bmap result to do IO directly to the drive.
9104 *
9105 * the btrfs bmap call would return logical addresses that aren't
9106 * suitable for IO and they also will change frequently as COW
9107 * operations happen. So, swapfile + btrfs == corruption.
9108 *
9109 * For now we're avoiding this by dropping bmap.
9110 */
7f09410b 9111static const struct address_space_operations btrfs_aops = {
39279cc3
CM
9112 .readpage = btrfs_readpage,
9113 .writepage = btrfs_writepage,
b293f02e 9114 .writepages = btrfs_writepages,
3ab2fb5a 9115 .readpages = btrfs_readpages,
16432985 9116 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
9117 .invalidatepage = btrfs_invalidatepage,
9118 .releasepage = btrfs_releasepage,
e6dcd2dc 9119 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 9120 .error_remove_page = generic_error_remove_page,
39279cc3
CM
9121};
9122
7f09410b 9123static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
9124 .readpage = btrfs_readpage,
9125 .writepage = btrfs_writepage,
2bf5a725
CM
9126 .invalidatepage = btrfs_invalidatepage,
9127 .releasepage = btrfs_releasepage,
39279cc3
CM
9128};
9129
6e1d5dcc 9130static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
9131 .getattr = btrfs_getattr,
9132 .setattr = btrfs_setattr,
95819c05
CH
9133 .setxattr = btrfs_setxattr,
9134 .getxattr = btrfs_getxattr,
5103e947 9135 .listxattr = btrfs_listxattr,
95819c05 9136 .removexattr = btrfs_removexattr,
fdebe2bd 9137 .permission = btrfs_permission,
1506fcc8 9138 .fiemap = btrfs_fiemap,
4e34e719 9139 .get_acl = btrfs_get_acl,
996a710d 9140 .set_acl = btrfs_set_acl,
e41f941a 9141 .update_time = btrfs_update_time,
39279cc3 9142};
6e1d5dcc 9143static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
9144 .getattr = btrfs_getattr,
9145 .setattr = btrfs_setattr,
fdebe2bd 9146 .permission = btrfs_permission,
95819c05
CH
9147 .setxattr = btrfs_setxattr,
9148 .getxattr = btrfs_getxattr,
33268eaf 9149 .listxattr = btrfs_listxattr,
95819c05 9150 .removexattr = btrfs_removexattr,
4e34e719 9151 .get_acl = btrfs_get_acl,
996a710d 9152 .set_acl = btrfs_set_acl,
e41f941a 9153 .update_time = btrfs_update_time,
618e21d5 9154};
6e1d5dcc 9155static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
9156 .readlink = generic_readlink,
9157 .follow_link = page_follow_link_light,
9158 .put_link = page_put_link,
f209561a 9159 .getattr = btrfs_getattr,
22c44fe6 9160 .setattr = btrfs_setattr,
fdebe2bd 9161 .permission = btrfs_permission,
0279b4cd
JO
9162 .setxattr = btrfs_setxattr,
9163 .getxattr = btrfs_getxattr,
9164 .listxattr = btrfs_listxattr,
9165 .removexattr = btrfs_removexattr,
e41f941a 9166 .update_time = btrfs_update_time,
39279cc3 9167};
76dda93c 9168
82d339d9 9169const struct dentry_operations btrfs_dentry_operations = {
76dda93c 9170 .d_delete = btrfs_dentry_delete,
b4aff1f8 9171 .d_release = btrfs_dentry_release,
76dda93c 9172};