Btrfs: rename root_times_lock to root_item_lock
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 74static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
75struct kmem_cache *btrfs_trans_handle_cachep;
76struct kmem_cache *btrfs_transaction_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
81static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
a41ad394
JB
91static int btrfs_setsize(struct inode *inode, loff_t newsize);
92static int btrfs_truncate(struct inode *inode);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
7b128766 98
f34f57a3 99static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
100 struct inode *inode, struct inode *dir,
101 const struct qstr *qstr)
0279b4cd
JO
102{
103 int err;
104
f34f57a3 105 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 106 if (!err)
2a7dba39 107 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
108 return err;
109}
110
c8b97818
CM
111/*
112 * this does all the hard work for inserting an inline extent into
113 * the btree. The caller should have done a btrfs_drop_extents so that
114 * no overlapping inline items exist in the btree
115 */
d397712b 116static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
117 struct btrfs_root *root, struct inode *inode,
118 u64 start, size_t size, size_t compressed_size,
fe3f566c 119 int compress_type,
c8b97818
CM
120 struct page **compressed_pages)
121{
122 struct btrfs_key key;
123 struct btrfs_path *path;
124 struct extent_buffer *leaf;
125 struct page *page = NULL;
126 char *kaddr;
127 unsigned long ptr;
128 struct btrfs_file_extent_item *ei;
129 int err = 0;
130 int ret;
131 size_t cur_size = size;
132 size_t datasize;
133 unsigned long offset;
c8b97818 134
fe3f566c 135 if (compressed_size && compressed_pages)
c8b97818 136 cur_size = compressed_size;
c8b97818 137
d397712b
CM
138 path = btrfs_alloc_path();
139 if (!path)
c8b97818
CM
140 return -ENOMEM;
141
b9473439 142 path->leave_spinning = 1;
c8b97818 143
33345d01 144 key.objectid = btrfs_ino(inode);
c8b97818
CM
145 key.offset = start;
146 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
147 datasize = btrfs_file_extent_calc_inline_size(cur_size);
148
149 inode_add_bytes(inode, size);
150 ret = btrfs_insert_empty_item(trans, root, path, &key,
151 datasize);
c8b97818
CM
152 if (ret) {
153 err = ret;
c8b97818
CM
154 goto fail;
155 }
156 leaf = path->nodes[0];
157 ei = btrfs_item_ptr(leaf, path->slots[0],
158 struct btrfs_file_extent_item);
159 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
160 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
161 btrfs_set_file_extent_encryption(leaf, ei, 0);
162 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
163 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
164 ptr = btrfs_file_extent_inline_start(ei);
165
261507a0 166 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
167 struct page *cpage;
168 int i = 0;
d397712b 169 while (compressed_size > 0) {
c8b97818 170 cpage = compressed_pages[i];
5b050f04 171 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
172 PAGE_CACHE_SIZE);
173
7ac687d9 174 kaddr = kmap_atomic(cpage);
c8b97818 175 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 176 kunmap_atomic(kaddr);
c8b97818
CM
177
178 i++;
179 ptr += cur_size;
180 compressed_size -= cur_size;
181 }
182 btrfs_set_file_extent_compression(leaf, ei,
261507a0 183 compress_type);
c8b97818
CM
184 } else {
185 page = find_get_page(inode->i_mapping,
186 start >> PAGE_CACHE_SHIFT);
187 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 188 kaddr = kmap_atomic(page);
c8b97818
CM
189 offset = start & (PAGE_CACHE_SIZE - 1);
190 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 191 kunmap_atomic(kaddr);
c8b97818
CM
192 page_cache_release(page);
193 }
194 btrfs_mark_buffer_dirty(leaf);
195 btrfs_free_path(path);
196
c2167754
YZ
197 /*
198 * we're an inline extent, so nobody can
199 * extend the file past i_size without locking
200 * a page we already have locked.
201 *
202 * We must do any isize and inode updates
203 * before we unlock the pages. Otherwise we
204 * could end up racing with unlink.
205 */
c8b97818 206 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 207 ret = btrfs_update_inode(trans, root, inode);
c2167754 208
79787eaa 209 return ret;
c8b97818
CM
210fail:
211 btrfs_free_path(path);
212 return err;
213}
214
215
216/*
217 * conditionally insert an inline extent into the file. This
218 * does the checks required to make sure the data is small enough
219 * to fit as an inline extent.
220 */
7f366cfe 221static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
222 struct btrfs_root *root,
223 struct inode *inode, u64 start, u64 end,
fe3f566c 224 size_t compressed_size, int compress_type,
c8b97818
CM
225 struct page **compressed_pages)
226{
227 u64 isize = i_size_read(inode);
228 u64 actual_end = min(end + 1, isize);
229 u64 inline_len = actual_end - start;
230 u64 aligned_end = (end + root->sectorsize - 1) &
231 ~((u64)root->sectorsize - 1);
c8b97818
CM
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
2671485d 248 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
249 if (ret)
250 return ret;
c8b97818
CM
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
2adcac1a 257 if (ret && ret != -ENOSPC) {
79787eaa
JM
258 btrfs_abort_transaction(trans, root, ret);
259 return ret;
2adcac1a
JB
260 } else if (ret == -ENOSPC) {
261 return 1;
79787eaa 262 }
2adcac1a 263
0ca1f7ce 264 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 265 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
266 return 0;
267}
268
771ed689
CM
269struct async_extent {
270 u64 start;
271 u64 ram_size;
272 u64 compressed_size;
273 struct page **pages;
274 unsigned long nr_pages;
261507a0 275 int compress_type;
771ed689
CM
276 struct list_head list;
277};
278
279struct async_cow {
280 struct inode *inode;
281 struct btrfs_root *root;
282 struct page *locked_page;
283 u64 start;
284 u64 end;
285 struct list_head extents;
286 struct btrfs_work work;
287};
288
289static noinline int add_async_extent(struct async_cow *cow,
290 u64 start, u64 ram_size,
291 u64 compressed_size,
292 struct page **pages,
261507a0
LZ
293 unsigned long nr_pages,
294 int compress_type)
771ed689
CM
295{
296 struct async_extent *async_extent;
297
298 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 299 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
300 async_extent->start = start;
301 async_extent->ram_size = ram_size;
302 async_extent->compressed_size = compressed_size;
303 async_extent->pages = pages;
304 async_extent->nr_pages = nr_pages;
261507a0 305 async_extent->compress_type = compress_type;
771ed689
CM
306 list_add_tail(&async_extent->list, &cow->extents);
307 return 0;
308}
309
d352ac68 310/*
771ed689
CM
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
c8b97818 314 *
771ed689
CM
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
c8b97818 320 *
771ed689
CM
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
324 * are written in the same order that the flusher thread sent them
325 * down.
d352ac68 326 */
771ed689
CM
327static noinline int compress_file_range(struct inode *inode,
328 struct page *locked_page,
329 u64 start, u64 end,
330 struct async_cow *async_cow,
331 int *num_added)
b888db2b
CM
332{
333 struct btrfs_root *root = BTRFS_I(inode)->root;
334 struct btrfs_trans_handle *trans;
db94535d 335 u64 num_bytes;
db94535d 336 u64 blocksize = root->sectorsize;
c8b97818 337 u64 actual_end;
42dc7bab 338 u64 isize = i_size_read(inode);
e6dcd2dc 339 int ret = 0;
c8b97818
CM
340 struct page **pages = NULL;
341 unsigned long nr_pages;
342 unsigned long nr_pages_ret = 0;
343 unsigned long total_compressed = 0;
344 unsigned long total_in = 0;
345 unsigned long max_compressed = 128 * 1024;
771ed689 346 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
347 int i;
348 int will_compress;
261507a0 349 int compress_type = root->fs_info->compress_type;
b888db2b 350
4cb13e5d
LB
351 /* if this is a small write inside eof, kick off a defrag */
352 if ((end - start + 1) < 16 * 1024 &&
353 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
354 btrfs_add_inode_defrag(NULL, inode);
355
42dc7bab 356 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
357again:
358 will_compress = 0;
359 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
360 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 361
f03d9301
CM
362 /*
363 * we don't want to send crud past the end of i_size through
364 * compression, that's just a waste of CPU time. So, if the
365 * end of the file is before the start of our current
366 * requested range of bytes, we bail out to the uncompressed
367 * cleanup code that can deal with all of this.
368 *
369 * It isn't really the fastest way to fix things, but this is a
370 * very uncommon corner.
371 */
372 if (actual_end <= start)
373 goto cleanup_and_bail_uncompressed;
374
c8b97818
CM
375 total_compressed = actual_end - start;
376
377 /* we want to make sure that amount of ram required to uncompress
378 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
379 * of a compressed extent to 128k. This is a crucial number
380 * because it also controls how easily we can spread reads across
381 * cpus for decompression.
382 *
383 * We also want to make sure the amount of IO required to do
384 * a random read is reasonably small, so we limit the size of
385 * a compressed extent to 128k.
c8b97818
CM
386 */
387 total_compressed = min(total_compressed, max_uncompressed);
db94535d 388 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 389 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
390 total_in = 0;
391 ret = 0;
db94535d 392
771ed689
CM
393 /*
394 * we do compression for mount -o compress and when the
395 * inode has not been flagged as nocompress. This flag can
396 * change at any time if we discover bad compression ratios.
c8b97818 397 */
6cbff00f 398 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 399 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
400 (BTRFS_I(inode)->force_compress) ||
401 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 402 WARN_ON(pages);
cfbc246e 403 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
404 if (!pages) {
405 /* just bail out to the uncompressed code */
406 goto cont;
407 }
c8b97818 408
261507a0
LZ
409 if (BTRFS_I(inode)->force_compress)
410 compress_type = BTRFS_I(inode)->force_compress;
411
412 ret = btrfs_compress_pages(compress_type,
413 inode->i_mapping, start,
414 total_compressed, pages,
415 nr_pages, &nr_pages_ret,
416 &total_in,
417 &total_compressed,
418 max_compressed);
c8b97818
CM
419
420 if (!ret) {
421 unsigned long offset = total_compressed &
422 (PAGE_CACHE_SIZE - 1);
423 struct page *page = pages[nr_pages_ret - 1];
424 char *kaddr;
425
426 /* zero the tail end of the last page, we might be
427 * sending it down to disk
428 */
429 if (offset) {
7ac687d9 430 kaddr = kmap_atomic(page);
c8b97818
CM
431 memset(kaddr + offset, 0,
432 PAGE_CACHE_SIZE - offset);
7ac687d9 433 kunmap_atomic(kaddr);
c8b97818
CM
434 }
435 will_compress = 1;
436 }
437 }
560f7d75 438cont:
c8b97818 439 if (start == 0) {
7a7eaa40 440 trans = btrfs_join_transaction(root);
79787eaa
JM
441 if (IS_ERR(trans)) {
442 ret = PTR_ERR(trans);
443 trans = NULL;
444 goto cleanup_and_out;
445 }
0ca1f7ce 446 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 447
c8b97818 448 /* lets try to make an inline extent */
771ed689 449 if (ret || total_in < (actual_end - start)) {
c8b97818 450 /* we didn't compress the entire range, try
771ed689 451 * to make an uncompressed inline extent.
c8b97818
CM
452 */
453 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 454 start, end, 0, 0, NULL);
c8b97818 455 } else {
771ed689 456 /* try making a compressed inline extent */
c8b97818
CM
457 ret = cow_file_range_inline(trans, root, inode,
458 start, end,
fe3f566c
LZ
459 total_compressed,
460 compress_type, pages);
c8b97818 461 }
79787eaa 462 if (ret <= 0) {
771ed689 463 /*
79787eaa
JM
464 * inline extent creation worked or returned error,
465 * we don't need to create any more async work items.
466 * Unlock and free up our temp pages.
771ed689 467 */
c8b97818 468 extent_clear_unlock_delalloc(inode,
a791e35e
CM
469 &BTRFS_I(inode)->io_tree,
470 start, end, NULL,
471 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 472 EXTENT_CLEAR_DELALLOC |
a791e35e 473 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
474
475 btrfs_end_transaction(trans, root);
c8b97818
CM
476 goto free_pages_out;
477 }
c2167754 478 btrfs_end_transaction(trans, root);
c8b97818
CM
479 }
480
481 if (will_compress) {
482 /*
483 * we aren't doing an inline extent round the compressed size
484 * up to a block size boundary so the allocator does sane
485 * things
486 */
487 total_compressed = (total_compressed + blocksize - 1) &
488 ~(blocksize - 1);
489
490 /*
491 * one last check to make sure the compression is really a
492 * win, compare the page count read with the blocks on disk
493 */
494 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
495 ~(PAGE_CACHE_SIZE - 1);
496 if (total_compressed >= total_in) {
497 will_compress = 0;
498 } else {
c8b97818
CM
499 num_bytes = total_in;
500 }
501 }
502 if (!will_compress && pages) {
503 /*
504 * the compression code ran but failed to make things smaller,
505 * free any pages it allocated and our page pointer array
506 */
507 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 508 WARN_ON(pages[i]->mapping);
c8b97818
CM
509 page_cache_release(pages[i]);
510 }
511 kfree(pages);
512 pages = NULL;
513 total_compressed = 0;
514 nr_pages_ret = 0;
515
516 /* flag the file so we don't compress in the future */
1e701a32
CM
517 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
518 !(BTRFS_I(inode)->force_compress)) {
a555f810 519 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 520 }
c8b97818 521 }
771ed689
CM
522 if (will_compress) {
523 *num_added += 1;
c8b97818 524
771ed689
CM
525 /* the async work queues will take care of doing actual
526 * allocation on disk for these compressed pages,
527 * and will submit them to the elevator.
528 */
529 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
530 total_compressed, pages, nr_pages_ret,
531 compress_type);
179e29e4 532
24ae6365 533 if (start + num_bytes < end) {
771ed689
CM
534 start += num_bytes;
535 pages = NULL;
536 cond_resched();
537 goto again;
538 }
539 } else {
f03d9301 540cleanup_and_bail_uncompressed:
771ed689
CM
541 /*
542 * No compression, but we still need to write the pages in
543 * the file we've been given so far. redirty the locked
544 * page if it corresponds to our extent and set things up
545 * for the async work queue to run cow_file_range to do
546 * the normal delalloc dance
547 */
548 if (page_offset(locked_page) >= start &&
549 page_offset(locked_page) <= end) {
550 __set_page_dirty_nobuffers(locked_page);
551 /* unlocked later on in the async handlers */
552 }
261507a0
LZ
553 add_async_extent(async_cow, start, end - start + 1,
554 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
555 *num_added += 1;
556 }
3b951516 557
771ed689 558out:
79787eaa 559 return ret;
771ed689
CM
560
561free_pages_out:
562 for (i = 0; i < nr_pages_ret; i++) {
563 WARN_ON(pages[i]->mapping);
564 page_cache_release(pages[i]);
565 }
d397712b 566 kfree(pages);
771ed689
CM
567
568 goto out;
79787eaa
JM
569
570cleanup_and_out:
571 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
572 start, end, NULL,
573 EXTENT_CLEAR_UNLOCK_PAGE |
574 EXTENT_CLEAR_DIRTY |
575 EXTENT_CLEAR_DELALLOC |
576 EXTENT_SET_WRITEBACK |
577 EXTENT_END_WRITEBACK);
578 if (!trans || IS_ERR(trans))
579 btrfs_error(root->fs_info, ret, "Failed to join transaction");
580 else
581 btrfs_abort_transaction(trans, root, ret);
582 goto free_pages_out;
771ed689
CM
583}
584
585/*
586 * phase two of compressed writeback. This is the ordered portion
587 * of the code, which only gets called in the order the work was
588 * queued. We walk all the async extents created by compress_file_range
589 * and send them down to the disk.
590 */
591static noinline int submit_compressed_extents(struct inode *inode,
592 struct async_cow *async_cow)
593{
594 struct async_extent *async_extent;
595 u64 alloc_hint = 0;
596 struct btrfs_trans_handle *trans;
597 struct btrfs_key ins;
598 struct extent_map *em;
599 struct btrfs_root *root = BTRFS_I(inode)->root;
600 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
601 struct extent_io_tree *io_tree;
f5a84ee3 602 int ret = 0;
771ed689
CM
603
604 if (list_empty(&async_cow->extents))
605 return 0;
606
771ed689 607
d397712b 608 while (!list_empty(&async_cow->extents)) {
771ed689
CM
609 async_extent = list_entry(async_cow->extents.next,
610 struct async_extent, list);
611 list_del(&async_extent->list);
c8b97818 612
771ed689
CM
613 io_tree = &BTRFS_I(inode)->io_tree;
614
f5a84ee3 615retry:
771ed689
CM
616 /* did the compression code fall back to uncompressed IO? */
617 if (!async_extent->pages) {
618 int page_started = 0;
619 unsigned long nr_written = 0;
620
621 lock_extent(io_tree, async_extent->start,
2ac55d41 622 async_extent->start +
d0082371 623 async_extent->ram_size - 1);
771ed689
CM
624
625 /* allocate blocks */
f5a84ee3
JB
626 ret = cow_file_range(inode, async_cow->locked_page,
627 async_extent->start,
628 async_extent->start +
629 async_extent->ram_size - 1,
630 &page_started, &nr_written, 0);
771ed689 631
79787eaa
JM
632 /* JDM XXX */
633
771ed689
CM
634 /*
635 * if page_started, cow_file_range inserted an
636 * inline extent and took care of all the unlocking
637 * and IO for us. Otherwise, we need to submit
638 * all those pages down to the drive.
639 */
f5a84ee3 640 if (!page_started && !ret)
771ed689
CM
641 extent_write_locked_range(io_tree,
642 inode, async_extent->start,
d397712b 643 async_extent->start +
771ed689
CM
644 async_extent->ram_size - 1,
645 btrfs_get_extent,
646 WB_SYNC_ALL);
647 kfree(async_extent);
648 cond_resched();
649 continue;
650 }
651
652 lock_extent(io_tree, async_extent->start,
d0082371 653 async_extent->start + async_extent->ram_size - 1);
771ed689 654
7a7eaa40 655 trans = btrfs_join_transaction(root);
79787eaa
JM
656 if (IS_ERR(trans)) {
657 ret = PTR_ERR(trans);
658 } else {
659 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
660 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
661 async_extent->compressed_size,
662 async_extent->compressed_size,
81c9ad23 663 0, alloc_hint, &ins, 1);
962197ba 664 if (ret && ret != -ENOSPC)
79787eaa
JM
665 btrfs_abort_transaction(trans, root, ret);
666 btrfs_end_transaction(trans, root);
667 }
c2167754 668
f5a84ee3
JB
669 if (ret) {
670 int i;
671 for (i = 0; i < async_extent->nr_pages; i++) {
672 WARN_ON(async_extent->pages[i]->mapping);
673 page_cache_release(async_extent->pages[i]);
674 }
675 kfree(async_extent->pages);
676 async_extent->nr_pages = 0;
677 async_extent->pages = NULL;
678 unlock_extent(io_tree, async_extent->start,
679 async_extent->start +
d0082371 680 async_extent->ram_size - 1);
79787eaa
JM
681 if (ret == -ENOSPC)
682 goto retry;
683 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
684 }
685
c2167754
YZ
686 /*
687 * here we're doing allocation and writeback of the
688 * compressed pages
689 */
690 btrfs_drop_extent_cache(inode, async_extent->start,
691 async_extent->start +
692 async_extent->ram_size - 1, 0);
693
172ddd60 694 em = alloc_extent_map();
79787eaa 695 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
696 em->start = async_extent->start;
697 em->len = async_extent->ram_size;
445a6944 698 em->orig_start = em->start;
c8b97818 699
771ed689
CM
700 em->block_start = ins.objectid;
701 em->block_len = ins.offset;
702 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 703 em->compress_type = async_extent->compress_type;
771ed689
CM
704 set_bit(EXTENT_FLAG_PINNED, &em->flags);
705 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
706
d397712b 707 while (1) {
890871be 708 write_lock(&em_tree->lock);
771ed689 709 ret = add_extent_mapping(em_tree, em);
890871be 710 write_unlock(&em_tree->lock);
771ed689
CM
711 if (ret != -EEXIST) {
712 free_extent_map(em);
713 break;
714 }
715 btrfs_drop_extent_cache(inode, async_extent->start,
716 async_extent->start +
717 async_extent->ram_size - 1, 0);
718 }
719
261507a0
LZ
720 ret = btrfs_add_ordered_extent_compress(inode,
721 async_extent->start,
722 ins.objectid,
723 async_extent->ram_size,
724 ins.offset,
725 BTRFS_ORDERED_COMPRESSED,
726 async_extent->compress_type);
79787eaa 727 BUG_ON(ret); /* -ENOMEM */
771ed689 728
771ed689
CM
729 /*
730 * clear dirty, set writeback and unlock the pages.
731 */
732 extent_clear_unlock_delalloc(inode,
a791e35e
CM
733 &BTRFS_I(inode)->io_tree,
734 async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1,
737 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
738 EXTENT_CLEAR_UNLOCK |
a3429ab7 739 EXTENT_CLEAR_DELALLOC |
a791e35e 740 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
741
742 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
743 async_extent->start,
744 async_extent->ram_size,
745 ins.objectid,
746 ins.offset, async_extent->pages,
747 async_extent->nr_pages);
771ed689 748
79787eaa 749 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
750 alloc_hint = ins.objectid + ins.offset;
751 kfree(async_extent);
752 cond_resched();
753 }
79787eaa
JM
754 ret = 0;
755out:
756 return ret;
757out_free:
758 kfree(async_extent);
759 goto out;
771ed689
CM
760}
761
4b46fce2
JB
762static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
763 u64 num_bytes)
764{
765 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
766 struct extent_map *em;
767 u64 alloc_hint = 0;
768
769 read_lock(&em_tree->lock);
770 em = search_extent_mapping(em_tree, start, num_bytes);
771 if (em) {
772 /*
773 * if block start isn't an actual block number then find the
774 * first block in this inode and use that as a hint. If that
775 * block is also bogus then just don't worry about it.
776 */
777 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
778 free_extent_map(em);
779 em = search_extent_mapping(em_tree, 0, 0);
780 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
781 alloc_hint = em->block_start;
782 if (em)
783 free_extent_map(em);
784 } else {
785 alloc_hint = em->block_start;
786 free_extent_map(em);
787 }
788 }
789 read_unlock(&em_tree->lock);
790
791 return alloc_hint;
792}
793
771ed689
CM
794/*
795 * when extent_io.c finds a delayed allocation range in the file,
796 * the call backs end up in this code. The basic idea is to
797 * allocate extents on disk for the range, and create ordered data structs
798 * in ram to track those extents.
799 *
800 * locked_page is the page that writepage had locked already. We use
801 * it to make sure we don't do extra locks or unlocks.
802 *
803 * *page_started is set to one if we unlock locked_page and do everything
804 * required to start IO on it. It may be clean and already done with
805 * IO when we return.
806 */
b7d5b0a8
MX
807static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
808 struct inode *inode,
809 struct btrfs_root *root,
810 struct page *locked_page,
811 u64 start, u64 end, int *page_started,
812 unsigned long *nr_written,
813 int unlock)
771ed689 814{
771ed689
CM
815 u64 alloc_hint = 0;
816 u64 num_bytes;
817 unsigned long ram_size;
818 u64 disk_num_bytes;
819 u64 cur_alloc_size;
820 u64 blocksize = root->sectorsize;
771ed689
CM
821 struct btrfs_key ins;
822 struct extent_map *em;
823 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
824 int ret = 0;
825
83eea1f1 826 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 827
771ed689
CM
828 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
829 num_bytes = max(blocksize, num_bytes);
830 disk_num_bytes = num_bytes;
771ed689 831
4cb5300b 832 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
833 if (num_bytes < 64 * 1024 &&
834 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
835 btrfs_add_inode_defrag(trans, inode);
836
771ed689
CM
837 if (start == 0) {
838 /* lets try to make an inline extent */
839 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 840 start, end, 0, 0, NULL);
771ed689
CM
841 if (ret == 0) {
842 extent_clear_unlock_delalloc(inode,
a791e35e
CM
843 &BTRFS_I(inode)->io_tree,
844 start, end, NULL,
845 EXTENT_CLEAR_UNLOCK_PAGE |
846 EXTENT_CLEAR_UNLOCK |
847 EXTENT_CLEAR_DELALLOC |
848 EXTENT_CLEAR_DIRTY |
849 EXTENT_SET_WRITEBACK |
850 EXTENT_END_WRITEBACK);
c2167754 851
771ed689
CM
852 *nr_written = *nr_written +
853 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
854 *page_started = 1;
771ed689 855 goto out;
79787eaa
JM
856 } else if (ret < 0) {
857 btrfs_abort_transaction(trans, root, ret);
858 goto out_unlock;
771ed689
CM
859 }
860 }
861
862 BUG_ON(disk_num_bytes >
6c41761f 863 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 864
4b46fce2 865 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
866 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
867
d397712b 868 while (disk_num_bytes > 0) {
a791e35e
CM
869 unsigned long op;
870
287a0ab9 871 cur_alloc_size = disk_num_bytes;
e6dcd2dc 872 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 873 root->sectorsize, 0, alloc_hint,
81c9ad23 874 &ins, 1);
79787eaa
JM
875 if (ret < 0) {
876 btrfs_abort_transaction(trans, root, ret);
877 goto out_unlock;
878 }
d397712b 879
172ddd60 880 em = alloc_extent_map();
79787eaa 881 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 882 em->start = start;
445a6944 883 em->orig_start = em->start;
771ed689
CM
884 ram_size = ins.offset;
885 em->len = ins.offset;
c8b97818 886
e6dcd2dc 887 em->block_start = ins.objectid;
c8b97818 888 em->block_len = ins.offset;
e6dcd2dc 889 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 890 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 891
d397712b 892 while (1) {
890871be 893 write_lock(&em_tree->lock);
e6dcd2dc 894 ret = add_extent_mapping(em_tree, em);
890871be 895 write_unlock(&em_tree->lock);
e6dcd2dc
CM
896 if (ret != -EEXIST) {
897 free_extent_map(em);
898 break;
899 }
900 btrfs_drop_extent_cache(inode, start,
c8b97818 901 start + ram_size - 1, 0);
e6dcd2dc
CM
902 }
903
98d20f67 904 cur_alloc_size = ins.offset;
e6dcd2dc 905 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 906 ram_size, cur_alloc_size, 0);
79787eaa 907 BUG_ON(ret); /* -ENOMEM */
c8b97818 908
17d217fe
YZ
909 if (root->root_key.objectid ==
910 BTRFS_DATA_RELOC_TREE_OBJECTID) {
911 ret = btrfs_reloc_clone_csums(inode, start,
912 cur_alloc_size);
79787eaa
JM
913 if (ret) {
914 btrfs_abort_transaction(trans, root, ret);
915 goto out_unlock;
916 }
17d217fe
YZ
917 }
918
d397712b 919 if (disk_num_bytes < cur_alloc_size)
3b951516 920 break;
d397712b 921
c8b97818
CM
922 /* we're not doing compressed IO, don't unlock the first
923 * page (which the caller expects to stay locked), don't
924 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
925 *
926 * Do set the Private2 bit so we know this page was properly
927 * setup for writepage
c8b97818 928 */
a791e35e
CM
929 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
930 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
931 EXTENT_SET_PRIVATE2;
932
c8b97818
CM
933 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
934 start, start + ram_size - 1,
a791e35e 935 locked_page, op);
c8b97818 936 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
937 num_bytes -= cur_alloc_size;
938 alloc_hint = ins.objectid + ins.offset;
939 start += cur_alloc_size;
b888db2b 940 }
79787eaa 941out:
be20aa9d 942 return ret;
b7d5b0a8 943
79787eaa
JM
944out_unlock:
945 extent_clear_unlock_delalloc(inode,
946 &BTRFS_I(inode)->io_tree,
beb42dd7 947 start, end, locked_page,
79787eaa
JM
948 EXTENT_CLEAR_UNLOCK_PAGE |
949 EXTENT_CLEAR_UNLOCK |
950 EXTENT_CLEAR_DELALLOC |
951 EXTENT_CLEAR_DIRTY |
952 EXTENT_SET_WRITEBACK |
953 EXTENT_END_WRITEBACK);
954
955 goto out;
771ed689 956}
c8b97818 957
b7d5b0a8
MX
958static noinline int cow_file_range(struct inode *inode,
959 struct page *locked_page,
960 u64 start, u64 end, int *page_started,
961 unsigned long *nr_written,
962 int unlock)
963{
964 struct btrfs_trans_handle *trans;
965 struct btrfs_root *root = BTRFS_I(inode)->root;
966 int ret;
967
968 trans = btrfs_join_transaction(root);
969 if (IS_ERR(trans)) {
970 extent_clear_unlock_delalloc(inode,
971 &BTRFS_I(inode)->io_tree,
972 start, end, locked_page,
973 EXTENT_CLEAR_UNLOCK_PAGE |
974 EXTENT_CLEAR_UNLOCK |
975 EXTENT_CLEAR_DELALLOC |
976 EXTENT_CLEAR_DIRTY |
977 EXTENT_SET_WRITEBACK |
978 EXTENT_END_WRITEBACK);
979 return PTR_ERR(trans);
980 }
981 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
982
983 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
984 page_started, nr_written, unlock);
985
986 btrfs_end_transaction(trans, root);
987
988 return ret;
989}
990
771ed689
CM
991/*
992 * work queue call back to started compression on a file and pages
993 */
994static noinline void async_cow_start(struct btrfs_work *work)
995{
996 struct async_cow *async_cow;
997 int num_added = 0;
998 async_cow = container_of(work, struct async_cow, work);
999
1000 compress_file_range(async_cow->inode, async_cow->locked_page,
1001 async_cow->start, async_cow->end, async_cow,
1002 &num_added);
8180ef88 1003 if (num_added == 0) {
cb77fcd8 1004 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1005 async_cow->inode = NULL;
8180ef88 1006 }
771ed689
CM
1007}
1008
1009/*
1010 * work queue call back to submit previously compressed pages
1011 */
1012static noinline void async_cow_submit(struct btrfs_work *work)
1013{
1014 struct async_cow *async_cow;
1015 struct btrfs_root *root;
1016 unsigned long nr_pages;
1017
1018 async_cow = container_of(work, struct async_cow, work);
1019
1020 root = async_cow->root;
1021 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1022 PAGE_CACHE_SHIFT;
1023
66657b31 1024 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1025 5 * 1024 * 1024 &&
771ed689
CM
1026 waitqueue_active(&root->fs_info->async_submit_wait))
1027 wake_up(&root->fs_info->async_submit_wait);
1028
d397712b 1029 if (async_cow->inode)
771ed689 1030 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1031}
c8b97818 1032
771ed689
CM
1033static noinline void async_cow_free(struct btrfs_work *work)
1034{
1035 struct async_cow *async_cow;
1036 async_cow = container_of(work, struct async_cow, work);
8180ef88 1037 if (async_cow->inode)
cb77fcd8 1038 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1039 kfree(async_cow);
1040}
1041
1042static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1043 u64 start, u64 end, int *page_started,
1044 unsigned long *nr_written)
1045{
1046 struct async_cow *async_cow;
1047 struct btrfs_root *root = BTRFS_I(inode)->root;
1048 unsigned long nr_pages;
1049 u64 cur_end;
287082b0 1050 int limit = 10 * 1024 * 1024;
771ed689 1051
a3429ab7
CM
1052 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1053 1, 0, NULL, GFP_NOFS);
d397712b 1054 while (start < end) {
771ed689 1055 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1056 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1057 async_cow->inode = igrab(inode);
771ed689
CM
1058 async_cow->root = root;
1059 async_cow->locked_page = locked_page;
1060 async_cow->start = start;
1061
6cbff00f 1062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1063 cur_end = end;
1064 else
1065 cur_end = min(end, start + 512 * 1024 - 1);
1066
1067 async_cow->end = cur_end;
1068 INIT_LIST_HEAD(&async_cow->extents);
1069
1070 async_cow->work.func = async_cow_start;
1071 async_cow->work.ordered_func = async_cow_submit;
1072 async_cow->work.ordered_free = async_cow_free;
1073 async_cow->work.flags = 0;
1074
771ed689
CM
1075 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1076 PAGE_CACHE_SHIFT;
1077 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1078
1079 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1080 &async_cow->work);
1081
1082 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1083 wait_event(root->fs_info->async_submit_wait,
1084 (atomic_read(&root->fs_info->async_delalloc_pages) <
1085 limit));
1086 }
1087
d397712b 1088 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1089 atomic_read(&root->fs_info->async_delalloc_pages)) {
1090 wait_event(root->fs_info->async_submit_wait,
1091 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1092 0));
1093 }
1094
1095 *nr_written += nr_pages;
1096 start = cur_end + 1;
1097 }
1098 *page_started = 1;
1099 return 0;
be20aa9d
CM
1100}
1101
d397712b 1102static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1103 u64 bytenr, u64 num_bytes)
1104{
1105 int ret;
1106 struct btrfs_ordered_sum *sums;
1107 LIST_HEAD(list);
1108
07d400a6 1109 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1110 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1111 if (ret == 0 && list_empty(&list))
1112 return 0;
1113
1114 while (!list_empty(&list)) {
1115 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1116 list_del(&sums->list);
1117 kfree(sums);
1118 }
1119 return 1;
1120}
1121
d352ac68
CM
1122/*
1123 * when nowcow writeback call back. This checks for snapshots or COW copies
1124 * of the extents that exist in the file, and COWs the file as required.
1125 *
1126 * If no cow copies or snapshots exist, we write directly to the existing
1127 * blocks on disk
1128 */
7f366cfe
CM
1129static noinline int run_delalloc_nocow(struct inode *inode,
1130 struct page *locked_page,
771ed689
CM
1131 u64 start, u64 end, int *page_started, int force,
1132 unsigned long *nr_written)
be20aa9d 1133{
be20aa9d 1134 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1135 struct btrfs_trans_handle *trans;
be20aa9d 1136 struct extent_buffer *leaf;
be20aa9d 1137 struct btrfs_path *path;
80ff3856 1138 struct btrfs_file_extent_item *fi;
be20aa9d 1139 struct btrfs_key found_key;
80ff3856
YZ
1140 u64 cow_start;
1141 u64 cur_offset;
1142 u64 extent_end;
5d4f98a2 1143 u64 extent_offset;
80ff3856
YZ
1144 u64 disk_bytenr;
1145 u64 num_bytes;
1146 int extent_type;
79787eaa 1147 int ret, err;
d899e052 1148 int type;
80ff3856
YZ
1149 int nocow;
1150 int check_prev = 1;
82d5902d 1151 bool nolock;
33345d01 1152 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1153
1154 path = btrfs_alloc_path();
17ca04af
JB
1155 if (!path) {
1156 extent_clear_unlock_delalloc(inode,
1157 &BTRFS_I(inode)->io_tree,
1158 start, end, locked_page,
1159 EXTENT_CLEAR_UNLOCK_PAGE |
1160 EXTENT_CLEAR_UNLOCK |
1161 EXTENT_CLEAR_DELALLOC |
1162 EXTENT_CLEAR_DIRTY |
1163 EXTENT_SET_WRITEBACK |
1164 EXTENT_END_WRITEBACK);
d8926bb3 1165 return -ENOMEM;
17ca04af 1166 }
82d5902d 1167
83eea1f1 1168 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1169
1170 if (nolock)
7a7eaa40 1171 trans = btrfs_join_transaction_nolock(root);
82d5902d 1172 else
7a7eaa40 1173 trans = btrfs_join_transaction(root);
ff5714cc 1174
79787eaa 1175 if (IS_ERR(trans)) {
17ca04af
JB
1176 extent_clear_unlock_delalloc(inode,
1177 &BTRFS_I(inode)->io_tree,
1178 start, end, locked_page,
1179 EXTENT_CLEAR_UNLOCK_PAGE |
1180 EXTENT_CLEAR_UNLOCK |
1181 EXTENT_CLEAR_DELALLOC |
1182 EXTENT_CLEAR_DIRTY |
1183 EXTENT_SET_WRITEBACK |
1184 EXTENT_END_WRITEBACK);
79787eaa
JM
1185 btrfs_free_path(path);
1186 return PTR_ERR(trans);
1187 }
1188
74b21075 1189 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1190
80ff3856
YZ
1191 cow_start = (u64)-1;
1192 cur_offset = start;
1193 while (1) {
33345d01 1194 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1195 cur_offset, 0);
79787eaa
JM
1196 if (ret < 0) {
1197 btrfs_abort_transaction(trans, root, ret);
1198 goto error;
1199 }
80ff3856
YZ
1200 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1201 leaf = path->nodes[0];
1202 btrfs_item_key_to_cpu(leaf, &found_key,
1203 path->slots[0] - 1);
33345d01 1204 if (found_key.objectid == ino &&
80ff3856
YZ
1205 found_key.type == BTRFS_EXTENT_DATA_KEY)
1206 path->slots[0]--;
1207 }
1208 check_prev = 0;
1209next_slot:
1210 leaf = path->nodes[0];
1211 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1212 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1213 if (ret < 0) {
1214 btrfs_abort_transaction(trans, root, ret);
1215 goto error;
1216 }
80ff3856
YZ
1217 if (ret > 0)
1218 break;
1219 leaf = path->nodes[0];
1220 }
be20aa9d 1221
80ff3856
YZ
1222 nocow = 0;
1223 disk_bytenr = 0;
17d217fe 1224 num_bytes = 0;
80ff3856
YZ
1225 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1226
33345d01 1227 if (found_key.objectid > ino ||
80ff3856
YZ
1228 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1229 found_key.offset > end)
1230 break;
1231
1232 if (found_key.offset > cur_offset) {
1233 extent_end = found_key.offset;
e9061e21 1234 extent_type = 0;
80ff3856
YZ
1235 goto out_check;
1236 }
1237
1238 fi = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_file_extent_item);
1240 extent_type = btrfs_file_extent_type(leaf, fi);
1241
d899e052
YZ
1242 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1243 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1244 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1245 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1246 extent_end = found_key.offset +
1247 btrfs_file_extent_num_bytes(leaf, fi);
1248 if (extent_end <= start) {
1249 path->slots[0]++;
1250 goto next_slot;
1251 }
17d217fe
YZ
1252 if (disk_bytenr == 0)
1253 goto out_check;
80ff3856
YZ
1254 if (btrfs_file_extent_compression(leaf, fi) ||
1255 btrfs_file_extent_encryption(leaf, fi) ||
1256 btrfs_file_extent_other_encoding(leaf, fi))
1257 goto out_check;
d899e052
YZ
1258 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1259 goto out_check;
d2fb3437 1260 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1261 goto out_check;
33345d01 1262 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1263 found_key.offset -
1264 extent_offset, disk_bytenr))
17d217fe 1265 goto out_check;
5d4f98a2 1266 disk_bytenr += extent_offset;
17d217fe
YZ
1267 disk_bytenr += cur_offset - found_key.offset;
1268 num_bytes = min(end + 1, extent_end) - cur_offset;
1269 /*
1270 * force cow if csum exists in the range.
1271 * this ensure that csum for a given extent are
1272 * either valid or do not exist.
1273 */
1274 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1275 goto out_check;
80ff3856
YZ
1276 nocow = 1;
1277 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1278 extent_end = found_key.offset +
1279 btrfs_file_extent_inline_len(leaf, fi);
1280 extent_end = ALIGN(extent_end, root->sectorsize);
1281 } else {
1282 BUG_ON(1);
1283 }
1284out_check:
1285 if (extent_end <= start) {
1286 path->slots[0]++;
1287 goto next_slot;
1288 }
1289 if (!nocow) {
1290 if (cow_start == (u64)-1)
1291 cow_start = cur_offset;
1292 cur_offset = extent_end;
1293 if (cur_offset > end)
1294 break;
1295 path->slots[0]++;
1296 goto next_slot;
7ea394f1
YZ
1297 }
1298
b3b4aa74 1299 btrfs_release_path(path);
80ff3856 1300 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1301 ret = __cow_file_range(trans, inode, root, locked_page,
1302 cow_start, found_key.offset - 1,
1303 page_started, nr_written, 1);
79787eaa
JM
1304 if (ret) {
1305 btrfs_abort_transaction(trans, root, ret);
1306 goto error;
1307 }
80ff3856 1308 cow_start = (u64)-1;
7ea394f1 1309 }
80ff3856 1310
d899e052
YZ
1311 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1312 struct extent_map *em;
1313 struct extent_map_tree *em_tree;
1314 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1315 em = alloc_extent_map();
79787eaa 1316 BUG_ON(!em); /* -ENOMEM */
d899e052 1317 em->start = cur_offset;
445a6944 1318 em->orig_start = em->start;
d899e052
YZ
1319 em->len = num_bytes;
1320 em->block_len = num_bytes;
1321 em->block_start = disk_bytenr;
1322 em->bdev = root->fs_info->fs_devices->latest_bdev;
1323 set_bit(EXTENT_FLAG_PINNED, &em->flags);
4e2f84e6 1324 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
d899e052 1325 while (1) {
890871be 1326 write_lock(&em_tree->lock);
d899e052 1327 ret = add_extent_mapping(em_tree, em);
890871be 1328 write_unlock(&em_tree->lock);
d899e052
YZ
1329 if (ret != -EEXIST) {
1330 free_extent_map(em);
1331 break;
1332 }
1333 btrfs_drop_extent_cache(inode, em->start,
1334 em->start + em->len - 1, 0);
1335 }
1336 type = BTRFS_ORDERED_PREALLOC;
1337 } else {
1338 type = BTRFS_ORDERED_NOCOW;
1339 }
80ff3856
YZ
1340
1341 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1342 num_bytes, num_bytes, type);
79787eaa 1343 BUG_ON(ret); /* -ENOMEM */
771ed689 1344
efa56464
YZ
1345 if (root->root_key.objectid ==
1346 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1347 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1348 num_bytes);
79787eaa
JM
1349 if (ret) {
1350 btrfs_abort_transaction(trans, root, ret);
1351 goto error;
1352 }
efa56464
YZ
1353 }
1354
d899e052 1355 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1356 cur_offset, cur_offset + num_bytes - 1,
1357 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1358 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1359 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1360 cur_offset = extent_end;
1361 if (cur_offset > end)
1362 break;
be20aa9d 1363 }
b3b4aa74 1364 btrfs_release_path(path);
80ff3856 1365
17ca04af 1366 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1367 cow_start = cur_offset;
17ca04af
JB
1368 cur_offset = end;
1369 }
1370
80ff3856 1371 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1372 ret = __cow_file_range(trans, inode, root, locked_page,
1373 cow_start, end,
1374 page_started, nr_written, 1);
79787eaa
JM
1375 if (ret) {
1376 btrfs_abort_transaction(trans, root, ret);
1377 goto error;
1378 }
80ff3856
YZ
1379 }
1380
79787eaa 1381error:
a698d075 1382 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1383 if (!ret)
1384 ret = err;
1385
17ca04af
JB
1386 if (ret && cur_offset < end)
1387 extent_clear_unlock_delalloc(inode,
1388 &BTRFS_I(inode)->io_tree,
1389 cur_offset, end, locked_page,
1390 EXTENT_CLEAR_UNLOCK_PAGE |
1391 EXTENT_CLEAR_UNLOCK |
1392 EXTENT_CLEAR_DELALLOC |
1393 EXTENT_CLEAR_DIRTY |
1394 EXTENT_SET_WRITEBACK |
1395 EXTENT_END_WRITEBACK);
1396
7ea394f1 1397 btrfs_free_path(path);
79787eaa 1398 return ret;
be20aa9d
CM
1399}
1400
d352ac68
CM
1401/*
1402 * extent_io.c call back to do delayed allocation processing
1403 */
c8b97818 1404static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1405 u64 start, u64 end, int *page_started,
1406 unsigned long *nr_written)
be20aa9d 1407{
be20aa9d 1408 int ret;
7f366cfe 1409 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1410
7ddf5a42 1411 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1412 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1413 page_started, 1, nr_written);
7ddf5a42 1414 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1415 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1416 page_started, 0, nr_written);
7ddf5a42
JB
1417 } else if (!btrfs_test_opt(root, COMPRESS) &&
1418 !(BTRFS_I(inode)->force_compress) &&
1419 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1420 ret = cow_file_range(inode, locked_page, start, end,
1421 page_started, nr_written, 1);
7ddf5a42
JB
1422 } else {
1423 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1424 &BTRFS_I(inode)->runtime_flags);
771ed689 1425 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1426 page_started, nr_written);
7ddf5a42 1427 }
b888db2b
CM
1428 return ret;
1429}
1430
1bf85046
JM
1431static void btrfs_split_extent_hook(struct inode *inode,
1432 struct extent_state *orig, u64 split)
9ed74f2d 1433{
0ca1f7ce 1434 /* not delalloc, ignore it */
9ed74f2d 1435 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1436 return;
9ed74f2d 1437
9e0baf60
JB
1438 spin_lock(&BTRFS_I(inode)->lock);
1439 BTRFS_I(inode)->outstanding_extents++;
1440 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1441}
1442
1443/*
1444 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1445 * extents so we can keep track of new extents that are just merged onto old
1446 * extents, such as when we are doing sequential writes, so we can properly
1447 * account for the metadata space we'll need.
1448 */
1bf85046
JM
1449static void btrfs_merge_extent_hook(struct inode *inode,
1450 struct extent_state *new,
1451 struct extent_state *other)
9ed74f2d 1452{
9ed74f2d
JB
1453 /* not delalloc, ignore it */
1454 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1455 return;
9ed74f2d 1456
9e0baf60
JB
1457 spin_lock(&BTRFS_I(inode)->lock);
1458 BTRFS_I(inode)->outstanding_extents--;
1459 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1460}
1461
d352ac68
CM
1462/*
1463 * extent_io.c set_bit_hook, used to track delayed allocation
1464 * bytes in this file, and to maintain the list of inodes that
1465 * have pending delalloc work to be done.
1466 */
1bf85046
JM
1467static void btrfs_set_bit_hook(struct inode *inode,
1468 struct extent_state *state, int *bits)
291d673e 1469{
9ed74f2d 1470
75eff68e
CM
1471 /*
1472 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1473 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1474 * bit, which is only set or cleared with irqs on
1475 */
0ca1f7ce 1476 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1477 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1478 u64 len = state->end + 1 - state->start;
83eea1f1 1479 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1480
9e0baf60 1481 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1482 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1483 } else {
1484 spin_lock(&BTRFS_I(inode)->lock);
1485 BTRFS_I(inode)->outstanding_extents++;
1486 spin_unlock(&BTRFS_I(inode)->lock);
1487 }
287a0ab9 1488
75eff68e 1489 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1490 BTRFS_I(inode)->delalloc_bytes += len;
1491 root->fs_info->delalloc_bytes += len;
0cb59c99 1492 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1493 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1494 &root->fs_info->delalloc_inodes);
1495 }
75eff68e 1496 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1497 }
291d673e
CM
1498}
1499
d352ac68
CM
1500/*
1501 * extent_io.c clear_bit_hook, see set_bit_hook for why
1502 */
1bf85046
JM
1503static void btrfs_clear_bit_hook(struct inode *inode,
1504 struct extent_state *state, int *bits)
291d673e 1505{
75eff68e
CM
1506 /*
1507 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1508 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1509 * bit, which is only set or cleared with irqs on
1510 */
0ca1f7ce 1511 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1512 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1513 u64 len = state->end + 1 - state->start;
83eea1f1 1514 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1515
9e0baf60 1516 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1517 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1518 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1519 spin_lock(&BTRFS_I(inode)->lock);
1520 BTRFS_I(inode)->outstanding_extents--;
1521 spin_unlock(&BTRFS_I(inode)->lock);
1522 }
0ca1f7ce
YZ
1523
1524 if (*bits & EXTENT_DO_ACCOUNTING)
1525 btrfs_delalloc_release_metadata(inode, len);
1526
0cb59c99
JB
1527 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1528 && do_list)
0ca1f7ce 1529 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1530
75eff68e 1531 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1532 root->fs_info->delalloc_bytes -= len;
1533 BTRFS_I(inode)->delalloc_bytes -= len;
1534
0cb59c99 1535 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1536 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1537 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1538 }
75eff68e 1539 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1540 }
291d673e
CM
1541}
1542
d352ac68
CM
1543/*
1544 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1545 * we don't create bios that span stripes or chunks
1546 */
239b14b3 1547int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1548 size_t size, struct bio *bio,
1549 unsigned long bio_flags)
239b14b3
CM
1550{
1551 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1552 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1553 u64 length = 0;
1554 u64 map_length;
239b14b3
CM
1555 int ret;
1556
771ed689
CM
1557 if (bio_flags & EXTENT_BIO_COMPRESSED)
1558 return 0;
1559
f2d8d74d 1560 length = bio->bi_size;
239b14b3 1561 map_length = length;
3ec706c8 1562 ret = btrfs_map_block(root->fs_info, READ, logical,
f188591e 1563 &map_length, NULL, 0);
3ec706c8 1564 /* Will always return 0 with map_multi == NULL */
3444a972 1565 BUG_ON(ret < 0);
d397712b 1566 if (map_length < length + size)
239b14b3 1567 return 1;
3444a972 1568 return 0;
239b14b3
CM
1569}
1570
d352ac68
CM
1571/*
1572 * in order to insert checksums into the metadata in large chunks,
1573 * we wait until bio submission time. All the pages in the bio are
1574 * checksummed and sums are attached onto the ordered extent record.
1575 *
1576 * At IO completion time the cums attached on the ordered extent record
1577 * are inserted into the btree
1578 */
d397712b
CM
1579static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1580 struct bio *bio, int mirror_num,
eaf25d93
CM
1581 unsigned long bio_flags,
1582 u64 bio_offset)
065631f6 1583{
065631f6 1584 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1585 int ret = 0;
e015640f 1586
d20f7043 1587 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1588 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1589 return 0;
1590}
e015640f 1591
4a69a410
CM
1592/*
1593 * in order to insert checksums into the metadata in large chunks,
1594 * we wait until bio submission time. All the pages in the bio are
1595 * checksummed and sums are attached onto the ordered extent record.
1596 *
1597 * At IO completion time the cums attached on the ordered extent record
1598 * are inserted into the btree
1599 */
b2950863 1600static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1601 int mirror_num, unsigned long bio_flags,
1602 u64 bio_offset)
4a69a410
CM
1603{
1604 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1605 int ret;
1606
1607 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1608 if (ret)
1609 bio_endio(bio, ret);
1610 return ret;
44b8bd7e
CM
1611}
1612
d352ac68 1613/*
cad321ad
CM
1614 * extent_io.c submission hook. This does the right thing for csum calculation
1615 * on write, or reading the csums from the tree before a read
d352ac68 1616 */
b2950863 1617static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1618 int mirror_num, unsigned long bio_flags,
1619 u64 bio_offset)
44b8bd7e
CM
1620{
1621 struct btrfs_root *root = BTRFS_I(inode)->root;
1622 int ret = 0;
19b9bdb0 1623 int skip_sum;
0417341e 1624 int metadata = 0;
44b8bd7e 1625
6cbff00f 1626 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1627
83eea1f1 1628 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1629 metadata = 2;
1630
7b6d91da 1631 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1632 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1633 if (ret)
61891923 1634 goto out;
5fd02043 1635
d20f7043 1636 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1637 ret = btrfs_submit_compressed_read(inode, bio,
1638 mirror_num,
1639 bio_flags);
1640 goto out;
c2db1073
TI
1641 } else if (!skip_sum) {
1642 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1643 if (ret)
61891923 1644 goto out;
c2db1073 1645 }
4d1b5fb4 1646 goto mapit;
19b9bdb0 1647 } else if (!skip_sum) {
17d217fe
YZ
1648 /* csum items have already been cloned */
1649 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1650 goto mapit;
19b9bdb0 1651 /* we're doing a write, do the async checksumming */
61891923 1652 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1653 inode, rw, bio, mirror_num,
eaf25d93
CM
1654 bio_flags, bio_offset,
1655 __btrfs_submit_bio_start,
4a69a410 1656 __btrfs_submit_bio_done);
61891923 1657 goto out;
19b9bdb0
CM
1658 }
1659
0b86a832 1660mapit:
61891923
SB
1661 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1662
1663out:
1664 if (ret < 0)
1665 bio_endio(bio, ret);
1666 return ret;
065631f6 1667}
6885f308 1668
d352ac68
CM
1669/*
1670 * given a list of ordered sums record them in the inode. This happens
1671 * at IO completion time based on sums calculated at bio submission time.
1672 */
ba1da2f4 1673static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1674 struct inode *inode, u64 file_offset,
1675 struct list_head *list)
1676{
e6dcd2dc
CM
1677 struct btrfs_ordered_sum *sum;
1678
c6e30871 1679 list_for_each_entry(sum, list, list) {
d20f7043
CM
1680 btrfs_csum_file_blocks(trans,
1681 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1682 }
1683 return 0;
1684}
1685
2ac55d41
JB
1686int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1687 struct extent_state **cached_state)
ea8c2819 1688{
6c1500f2 1689 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1690 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1691 cached_state, GFP_NOFS);
ea8c2819
CM
1692}
1693
d352ac68 1694/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1695struct btrfs_writepage_fixup {
1696 struct page *page;
1697 struct btrfs_work work;
1698};
1699
b2950863 1700static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1701{
1702 struct btrfs_writepage_fixup *fixup;
1703 struct btrfs_ordered_extent *ordered;
2ac55d41 1704 struct extent_state *cached_state = NULL;
247e743c
CM
1705 struct page *page;
1706 struct inode *inode;
1707 u64 page_start;
1708 u64 page_end;
87826df0 1709 int ret;
247e743c
CM
1710
1711 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1712 page = fixup->page;
4a096752 1713again:
247e743c
CM
1714 lock_page(page);
1715 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1716 ClearPageChecked(page);
1717 goto out_page;
1718 }
1719
1720 inode = page->mapping->host;
1721 page_start = page_offset(page);
1722 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1723
2ac55d41 1724 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1725 &cached_state);
4a096752
CM
1726
1727 /* already ordered? We're done */
8b62b72b 1728 if (PagePrivate2(page))
247e743c 1729 goto out;
4a096752
CM
1730
1731 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1732 if (ordered) {
2ac55d41
JB
1733 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1734 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1735 unlock_page(page);
1736 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1737 btrfs_put_ordered_extent(ordered);
4a096752
CM
1738 goto again;
1739 }
247e743c 1740
87826df0
JM
1741 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1742 if (ret) {
1743 mapping_set_error(page->mapping, ret);
1744 end_extent_writepage(page, ret, page_start, page_end);
1745 ClearPageChecked(page);
1746 goto out;
1747 }
1748
2ac55d41 1749 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1750 ClearPageChecked(page);
87826df0 1751 set_page_dirty(page);
247e743c 1752out:
2ac55d41
JB
1753 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1754 &cached_state, GFP_NOFS);
247e743c
CM
1755out_page:
1756 unlock_page(page);
1757 page_cache_release(page);
b897abec 1758 kfree(fixup);
247e743c
CM
1759}
1760
1761/*
1762 * There are a few paths in the higher layers of the kernel that directly
1763 * set the page dirty bit without asking the filesystem if it is a
1764 * good idea. This causes problems because we want to make sure COW
1765 * properly happens and the data=ordered rules are followed.
1766 *
c8b97818 1767 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1768 * hasn't been properly setup for IO. We kick off an async process
1769 * to fix it up. The async helper will wait for ordered extents, set
1770 * the delalloc bit and make it safe to write the page.
1771 */
b2950863 1772static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1773{
1774 struct inode *inode = page->mapping->host;
1775 struct btrfs_writepage_fixup *fixup;
1776 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1777
8b62b72b
CM
1778 /* this page is properly in the ordered list */
1779 if (TestClearPagePrivate2(page))
247e743c
CM
1780 return 0;
1781
1782 if (PageChecked(page))
1783 return -EAGAIN;
1784
1785 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1786 if (!fixup)
1787 return -EAGAIN;
f421950f 1788
247e743c
CM
1789 SetPageChecked(page);
1790 page_cache_get(page);
1791 fixup->work.func = btrfs_writepage_fixup_worker;
1792 fixup->page = page;
1793 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1794 return -EBUSY;
247e743c
CM
1795}
1796
d899e052
YZ
1797static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1798 struct inode *inode, u64 file_pos,
1799 u64 disk_bytenr, u64 disk_num_bytes,
1800 u64 num_bytes, u64 ram_bytes,
1801 u8 compression, u8 encryption,
1802 u16 other_encoding, int extent_type)
1803{
1804 struct btrfs_root *root = BTRFS_I(inode)->root;
1805 struct btrfs_file_extent_item *fi;
1806 struct btrfs_path *path;
1807 struct extent_buffer *leaf;
1808 struct btrfs_key ins;
d899e052
YZ
1809 int ret;
1810
1811 path = btrfs_alloc_path();
d8926bb3
MF
1812 if (!path)
1813 return -ENOMEM;
d899e052 1814
b9473439 1815 path->leave_spinning = 1;
a1ed835e
CM
1816
1817 /*
1818 * we may be replacing one extent in the tree with another.
1819 * The new extent is pinned in the extent map, and we don't want
1820 * to drop it from the cache until it is completely in the btree.
1821 *
1822 * So, tell btrfs_drop_extents to leave this extent in the cache.
1823 * the caller is expected to unpin it and allow it to be merged
1824 * with the others.
1825 */
5dc562c5 1826 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1827 file_pos + num_bytes, 0);
79787eaa
JM
1828 if (ret)
1829 goto out;
d899e052 1830
33345d01 1831 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1832 ins.offset = file_pos;
1833 ins.type = BTRFS_EXTENT_DATA_KEY;
1834 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1835 if (ret)
1836 goto out;
d899e052
YZ
1837 leaf = path->nodes[0];
1838 fi = btrfs_item_ptr(leaf, path->slots[0],
1839 struct btrfs_file_extent_item);
1840 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1841 btrfs_set_file_extent_type(leaf, fi, extent_type);
1842 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1843 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1844 btrfs_set_file_extent_offset(leaf, fi, 0);
1845 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1846 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1847 btrfs_set_file_extent_compression(leaf, fi, compression);
1848 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1849 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1850
d899e052 1851 btrfs_mark_buffer_dirty(leaf);
ce195332 1852 btrfs_release_path(path);
d899e052
YZ
1853
1854 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1855
1856 ins.objectid = disk_bytenr;
1857 ins.offset = disk_num_bytes;
1858 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1859 ret = btrfs_alloc_reserved_file_extent(trans, root,
1860 root->root_key.objectid,
33345d01 1861 btrfs_ino(inode), file_pos, &ins);
79787eaa 1862out:
d899e052 1863 btrfs_free_path(path);
b9473439 1864
79787eaa 1865 return ret;
d899e052
YZ
1866}
1867
5d13a98f
CM
1868/*
1869 * helper function for btrfs_finish_ordered_io, this
1870 * just reads in some of the csum leaves to prime them into ram
1871 * before we start the transaction. It limits the amount of btree
1872 * reads required while inside the transaction.
1873 */
d352ac68
CM
1874/* as ordered data IO finishes, this gets called so we can finish
1875 * an ordered extent if the range of bytes in the file it covers are
1876 * fully written.
1877 */
5fd02043 1878static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 1879{
5fd02043 1880 struct inode *inode = ordered_extent->inode;
e6dcd2dc 1881 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1882 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 1883 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1884 struct extent_state *cached_state = NULL;
261507a0 1885 int compress_type = 0;
e6dcd2dc 1886 int ret;
82d5902d 1887 bool nolock;
e6dcd2dc 1888
83eea1f1 1889 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 1890
5fd02043
JB
1891 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1892 ret = -EIO;
1893 goto out;
1894 }
1895
c2167754 1896 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1897 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
c2167754
YZ
1898 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1899 if (!ret) {
0cb59c99 1900 if (nolock)
7a7eaa40 1901 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1902 else
7a7eaa40 1903 trans = btrfs_join_transaction(root);
d280e5be
LB
1904 if (IS_ERR(trans)) {
1905 ret = PTR_ERR(trans);
1906 trans = NULL;
1907 goto out;
1908 }
0ca1f7ce 1909 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1910 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1911 if (ret) /* -ENOMEM or corruption */
1912 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1913 }
1914 goto out;
1915 }
e6dcd2dc 1916
2ac55d41
JB
1917 lock_extent_bits(io_tree, ordered_extent->file_offset,
1918 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1919 0, &cached_state);
e6dcd2dc 1920
0cb59c99 1921 if (nolock)
7a7eaa40 1922 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1923 else
7a7eaa40 1924 trans = btrfs_join_transaction(root);
79787eaa
JM
1925 if (IS_ERR(trans)) {
1926 ret = PTR_ERR(trans);
1927 trans = NULL;
1928 goto out_unlock;
1929 }
0ca1f7ce 1930 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1931
c8b97818 1932 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1933 compress_type = ordered_extent->compress_type;
d899e052 1934 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1935 BUG_ON(compress_type);
920bbbfb 1936 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1937 ordered_extent->file_offset,
1938 ordered_extent->file_offset +
1939 ordered_extent->len);
d899e052 1940 } else {
0af3d00b 1941 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1942 ret = insert_reserved_file_extent(trans, inode,
1943 ordered_extent->file_offset,
1944 ordered_extent->start,
1945 ordered_extent->disk_len,
1946 ordered_extent->len,
1947 ordered_extent->len,
261507a0 1948 compress_type, 0, 0,
d899e052 1949 BTRFS_FILE_EXTENT_REG);
d899e052 1950 }
5dc562c5
JB
1951 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1952 ordered_extent->file_offset, ordered_extent->len,
1953 trans->transid);
79787eaa
JM
1954 if (ret < 0) {
1955 btrfs_abort_transaction(trans, root, ret);
5fd02043 1956 goto out_unlock;
79787eaa 1957 }
2ac55d41 1958
e6dcd2dc
CM
1959 add_pending_csums(trans, inode, ordered_extent->file_offset,
1960 &ordered_extent->list);
1961
1ef30be1 1962 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1963 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1964 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1965 if (ret) { /* -ENOMEM or corruption */
1966 btrfs_abort_transaction(trans, root, ret);
5fd02043 1967 goto out_unlock;
79787eaa 1968 }
7c735313
JB
1969 } else {
1970 btrfs_set_inode_last_trans(trans, inode);
1ef30be1
JB
1971 }
1972 ret = 0;
5fd02043
JB
1973out_unlock:
1974 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1975 ordered_extent->file_offset +
1976 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 1977out:
5b0e95bf 1978 if (root != root->fs_info->tree_root)
0cb59c99 1979 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
1980 if (trans)
1981 btrfs_end_transaction(trans, root);
0cb59c99 1982
5fd02043
JB
1983 if (ret)
1984 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1985 ordered_extent->file_offset +
1986 ordered_extent->len - 1, NULL, GFP_NOFS);
1987
1988 /*
8bad3c02
LB
1989 * This needs to be done to make sure anybody waiting knows we are done
1990 * updating everything for this ordered extent.
5fd02043
JB
1991 */
1992 btrfs_remove_ordered_extent(inode, ordered_extent);
1993
e6dcd2dc
CM
1994 /* once for us */
1995 btrfs_put_ordered_extent(ordered_extent);
1996 /* once for the tree */
1997 btrfs_put_ordered_extent(ordered_extent);
1998
5fd02043
JB
1999 return ret;
2000}
2001
2002static void finish_ordered_fn(struct btrfs_work *work)
2003{
2004 struct btrfs_ordered_extent *ordered_extent;
2005 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2006 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2007}
2008
b2950863 2009static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2010 struct extent_state *state, int uptodate)
2011{
5fd02043
JB
2012 struct inode *inode = page->mapping->host;
2013 struct btrfs_root *root = BTRFS_I(inode)->root;
2014 struct btrfs_ordered_extent *ordered_extent = NULL;
2015 struct btrfs_workers *workers;
2016
1abe9b8a 2017 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2018
8b62b72b 2019 ClearPagePrivate2(page);
5fd02043
JB
2020 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2021 end - start + 1, uptodate))
2022 return 0;
2023
2024 ordered_extent->work.func = finish_ordered_fn;
2025 ordered_extent->work.flags = 0;
2026
83eea1f1 2027 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2028 workers = &root->fs_info->endio_freespace_worker;
2029 else
2030 workers = &root->fs_info->endio_write_workers;
2031 btrfs_queue_worker(workers, &ordered_extent->work);
2032
2033 return 0;
211f90e6
CM
2034}
2035
d352ac68
CM
2036/*
2037 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2038 * if there's a match, we allow the bio to finish. If not, the code in
2039 * extent_io.c will try to find good copies for us.
d352ac68 2040 */
b2950863 2041static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2042 struct extent_state *state, int mirror)
07157aac 2043{
35ebb934 2044 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 2045 struct inode *inode = page->mapping->host;
d1310b2e 2046 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2047 char *kaddr;
aadfeb6e 2048 u64 private = ~(u32)0;
07157aac 2049 int ret;
ff79f819
CM
2050 struct btrfs_root *root = BTRFS_I(inode)->root;
2051 u32 csum = ~(u32)0;
d1310b2e 2052
d20f7043
CM
2053 if (PageChecked(page)) {
2054 ClearPageChecked(page);
2055 goto good;
2056 }
6cbff00f
CH
2057
2058 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2059 goto good;
17d217fe
YZ
2060
2061 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2062 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2063 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2064 GFP_NOFS);
b6cda9bc 2065 return 0;
17d217fe 2066 }
d20f7043 2067
c2e639f0 2068 if (state && state->start == start) {
70dec807
CM
2069 private = state->private;
2070 ret = 0;
2071 } else {
2072 ret = get_state_private(io_tree, start, &private);
2073 }
7ac687d9 2074 kaddr = kmap_atomic(page);
d397712b 2075 if (ret)
07157aac 2076 goto zeroit;
d397712b 2077
ff79f819
CM
2078 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2079 btrfs_csum_final(csum, (char *)&csum);
d397712b 2080 if (csum != private)
07157aac 2081 goto zeroit;
d397712b 2082
7ac687d9 2083 kunmap_atomic(kaddr);
d20f7043 2084good:
07157aac
CM
2085 return 0;
2086
2087zeroit:
945d8962 2088 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2089 "private %llu\n",
2090 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2091 (unsigned long long)start, csum,
2092 (unsigned long long)private);
db94535d
CM
2093 memset(kaddr + offset, 1, end - start + 1);
2094 flush_dcache_page(page);
7ac687d9 2095 kunmap_atomic(kaddr);
3b951516
CM
2096 if (private == 0)
2097 return 0;
7e38326f 2098 return -EIO;
07157aac 2099}
b888db2b 2100
24bbcf04
YZ
2101struct delayed_iput {
2102 struct list_head list;
2103 struct inode *inode;
2104};
2105
79787eaa
JM
2106/* JDM: If this is fs-wide, why can't we add a pointer to
2107 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2108void btrfs_add_delayed_iput(struct inode *inode)
2109{
2110 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2111 struct delayed_iput *delayed;
2112
2113 if (atomic_add_unless(&inode->i_count, -1, 1))
2114 return;
2115
2116 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2117 delayed->inode = inode;
2118
2119 spin_lock(&fs_info->delayed_iput_lock);
2120 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2121 spin_unlock(&fs_info->delayed_iput_lock);
2122}
2123
2124void btrfs_run_delayed_iputs(struct btrfs_root *root)
2125{
2126 LIST_HEAD(list);
2127 struct btrfs_fs_info *fs_info = root->fs_info;
2128 struct delayed_iput *delayed;
2129 int empty;
2130
2131 spin_lock(&fs_info->delayed_iput_lock);
2132 empty = list_empty(&fs_info->delayed_iputs);
2133 spin_unlock(&fs_info->delayed_iput_lock);
2134 if (empty)
2135 return;
2136
24bbcf04
YZ
2137 spin_lock(&fs_info->delayed_iput_lock);
2138 list_splice_init(&fs_info->delayed_iputs, &list);
2139 spin_unlock(&fs_info->delayed_iput_lock);
2140
2141 while (!list_empty(&list)) {
2142 delayed = list_entry(list.next, struct delayed_iput, list);
2143 list_del(&delayed->list);
2144 iput(delayed->inode);
2145 kfree(delayed);
2146 }
24bbcf04
YZ
2147}
2148
d68fc57b
YZ
2149enum btrfs_orphan_cleanup_state {
2150 ORPHAN_CLEANUP_STARTED = 1,
2151 ORPHAN_CLEANUP_DONE = 2,
2152};
2153
2154/*
42b2aa86 2155 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2156 * files in the subvolume, it removes orphan item and frees block_rsv
2157 * structure.
2158 */
2159void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2160 struct btrfs_root *root)
2161{
90290e19 2162 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2163 int ret;
2164
8a35d95f 2165 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2166 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2167 return;
2168
90290e19 2169 spin_lock(&root->orphan_lock);
8a35d95f 2170 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2171 spin_unlock(&root->orphan_lock);
2172 return;
2173 }
2174
2175 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2176 spin_unlock(&root->orphan_lock);
2177 return;
2178 }
2179
2180 block_rsv = root->orphan_block_rsv;
2181 root->orphan_block_rsv = NULL;
2182 spin_unlock(&root->orphan_lock);
2183
d68fc57b
YZ
2184 if (root->orphan_item_inserted &&
2185 btrfs_root_refs(&root->root_item) > 0) {
2186 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2187 root->root_key.objectid);
2188 BUG_ON(ret);
2189 root->orphan_item_inserted = 0;
2190 }
2191
90290e19
JB
2192 if (block_rsv) {
2193 WARN_ON(block_rsv->size > 0);
2194 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2195 }
2196}
2197
7b128766
JB
2198/*
2199 * This creates an orphan entry for the given inode in case something goes
2200 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2201 *
2202 * NOTE: caller of this function should reserve 5 units of metadata for
2203 * this function.
7b128766
JB
2204 */
2205int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2206{
2207 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2208 struct btrfs_block_rsv *block_rsv = NULL;
2209 int reserve = 0;
2210 int insert = 0;
2211 int ret;
7b128766 2212
d68fc57b 2213 if (!root->orphan_block_rsv) {
66d8f3dd 2214 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2215 if (!block_rsv)
2216 return -ENOMEM;
d68fc57b 2217 }
7b128766 2218
d68fc57b
YZ
2219 spin_lock(&root->orphan_lock);
2220 if (!root->orphan_block_rsv) {
2221 root->orphan_block_rsv = block_rsv;
2222 } else if (block_rsv) {
2223 btrfs_free_block_rsv(root, block_rsv);
2224 block_rsv = NULL;
7b128766 2225 }
7b128766 2226
8a35d95f
JB
2227 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2228 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2229#if 0
2230 /*
2231 * For proper ENOSPC handling, we should do orphan
2232 * cleanup when mounting. But this introduces backward
2233 * compatibility issue.
2234 */
2235 if (!xchg(&root->orphan_item_inserted, 1))
2236 insert = 2;
2237 else
2238 insert = 1;
2239#endif
2240 insert = 1;
321f0e70 2241 atomic_inc(&root->orphan_inodes);
7b128766
JB
2242 }
2243
72ac3c0d
JB
2244 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2245 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2246 reserve = 1;
d68fc57b 2247 spin_unlock(&root->orphan_lock);
7b128766 2248
d68fc57b
YZ
2249 /* grab metadata reservation from transaction handle */
2250 if (reserve) {
2251 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2252 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2253 }
7b128766 2254
d68fc57b
YZ
2255 /* insert an orphan item to track this unlinked/truncated file */
2256 if (insert >= 1) {
33345d01 2257 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2258 if (ret && ret != -EEXIST) {
8a35d95f
JB
2259 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2260 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2261 btrfs_abort_transaction(trans, root, ret);
2262 return ret;
2263 }
2264 ret = 0;
d68fc57b
YZ
2265 }
2266
2267 /* insert an orphan item to track subvolume contains orphan files */
2268 if (insert >= 2) {
2269 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2270 root->root_key.objectid);
79787eaa
JM
2271 if (ret && ret != -EEXIST) {
2272 btrfs_abort_transaction(trans, root, ret);
2273 return ret;
2274 }
d68fc57b
YZ
2275 }
2276 return 0;
7b128766
JB
2277}
2278
2279/*
2280 * We have done the truncate/delete so we can go ahead and remove the orphan
2281 * item for this particular inode.
2282 */
2283int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2284{
2285 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2286 int delete_item = 0;
2287 int release_rsv = 0;
7b128766
JB
2288 int ret = 0;
2289
d68fc57b 2290 spin_lock(&root->orphan_lock);
8a35d95f
JB
2291 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2292 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2293 delete_item = 1;
7b128766 2294
72ac3c0d
JB
2295 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2296 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2297 release_rsv = 1;
d68fc57b 2298 spin_unlock(&root->orphan_lock);
7b128766 2299
d68fc57b 2300 if (trans && delete_item) {
33345d01 2301 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2302 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2303 }
7b128766 2304
8a35d95f 2305 if (release_rsv) {
d68fc57b 2306 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
2307 atomic_dec(&root->orphan_inodes);
2308 }
7b128766 2309
d68fc57b 2310 return 0;
7b128766
JB
2311}
2312
2313/*
2314 * this cleans up any orphans that may be left on the list from the last use
2315 * of this root.
2316 */
66b4ffd1 2317int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2318{
2319 struct btrfs_path *path;
2320 struct extent_buffer *leaf;
7b128766
JB
2321 struct btrfs_key key, found_key;
2322 struct btrfs_trans_handle *trans;
2323 struct inode *inode;
8f6d7f4f 2324 u64 last_objectid = 0;
7b128766
JB
2325 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2326
d68fc57b 2327 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2328 return 0;
c71bf099
YZ
2329
2330 path = btrfs_alloc_path();
66b4ffd1
JB
2331 if (!path) {
2332 ret = -ENOMEM;
2333 goto out;
2334 }
7b128766
JB
2335 path->reada = -1;
2336
2337 key.objectid = BTRFS_ORPHAN_OBJECTID;
2338 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2339 key.offset = (u64)-1;
2340
7b128766
JB
2341 while (1) {
2342 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2343 if (ret < 0)
2344 goto out;
7b128766
JB
2345
2346 /*
2347 * if ret == 0 means we found what we were searching for, which
25985edc 2348 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2349 * find the key and see if we have stuff that matches
2350 */
2351 if (ret > 0) {
66b4ffd1 2352 ret = 0;
7b128766
JB
2353 if (path->slots[0] == 0)
2354 break;
2355 path->slots[0]--;
2356 }
2357
2358 /* pull out the item */
2359 leaf = path->nodes[0];
7b128766
JB
2360 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2361
2362 /* make sure the item matches what we want */
2363 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2364 break;
2365 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2366 break;
2367
2368 /* release the path since we're done with it */
b3b4aa74 2369 btrfs_release_path(path);
7b128766
JB
2370
2371 /*
2372 * this is where we are basically btrfs_lookup, without the
2373 * crossing root thing. we store the inode number in the
2374 * offset of the orphan item.
2375 */
8f6d7f4f
JB
2376
2377 if (found_key.offset == last_objectid) {
2378 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2379 "stopping orphan cleanup\n");
2380 ret = -EINVAL;
2381 goto out;
2382 }
2383
2384 last_objectid = found_key.offset;
2385
5d4f98a2
YZ
2386 found_key.objectid = found_key.offset;
2387 found_key.type = BTRFS_INODE_ITEM_KEY;
2388 found_key.offset = 0;
73f73415 2389 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2390 ret = PTR_RET(inode);
2391 if (ret && ret != -ESTALE)
66b4ffd1 2392 goto out;
7b128766 2393
f8e9e0b0
AJ
2394 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2395 struct btrfs_root *dead_root;
2396 struct btrfs_fs_info *fs_info = root->fs_info;
2397 int is_dead_root = 0;
2398
2399 /*
2400 * this is an orphan in the tree root. Currently these
2401 * could come from 2 sources:
2402 * a) a snapshot deletion in progress
2403 * b) a free space cache inode
2404 * We need to distinguish those two, as the snapshot
2405 * orphan must not get deleted.
2406 * find_dead_roots already ran before us, so if this
2407 * is a snapshot deletion, we should find the root
2408 * in the dead_roots list
2409 */
2410 spin_lock(&fs_info->trans_lock);
2411 list_for_each_entry(dead_root, &fs_info->dead_roots,
2412 root_list) {
2413 if (dead_root->root_key.objectid ==
2414 found_key.objectid) {
2415 is_dead_root = 1;
2416 break;
2417 }
2418 }
2419 spin_unlock(&fs_info->trans_lock);
2420 if (is_dead_root) {
2421 /* prevent this orphan from being found again */
2422 key.offset = found_key.objectid - 1;
2423 continue;
2424 }
2425 }
7b128766 2426 /*
a8c9e576
JB
2427 * Inode is already gone but the orphan item is still there,
2428 * kill the orphan item.
7b128766 2429 */
a8c9e576
JB
2430 if (ret == -ESTALE) {
2431 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2432 if (IS_ERR(trans)) {
2433 ret = PTR_ERR(trans);
2434 goto out;
2435 }
8a35d95f
JB
2436 printk(KERN_ERR "auto deleting %Lu\n",
2437 found_key.objectid);
a8c9e576
JB
2438 ret = btrfs_del_orphan_item(trans, root,
2439 found_key.objectid);
79787eaa 2440 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2441 btrfs_end_transaction(trans, root);
7b128766
JB
2442 continue;
2443 }
2444
a8c9e576
JB
2445 /*
2446 * add this inode to the orphan list so btrfs_orphan_del does
2447 * the proper thing when we hit it
2448 */
8a35d95f
JB
2449 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2450 &BTRFS_I(inode)->runtime_flags);
a8c9e576 2451
7b128766
JB
2452 /* if we have links, this was a truncate, lets do that */
2453 if (inode->i_nlink) {
a41ad394
JB
2454 if (!S_ISREG(inode->i_mode)) {
2455 WARN_ON(1);
2456 iput(inode);
2457 continue;
2458 }
7b128766 2459 nr_truncate++;
66b4ffd1 2460 ret = btrfs_truncate(inode);
7b128766
JB
2461 } else {
2462 nr_unlink++;
2463 }
2464
2465 /* this will do delete_inode and everything for us */
2466 iput(inode);
66b4ffd1
JB
2467 if (ret)
2468 goto out;
7b128766 2469 }
3254c876
MX
2470 /* release the path since we're done with it */
2471 btrfs_release_path(path);
2472
d68fc57b
YZ
2473 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2474
2475 if (root->orphan_block_rsv)
2476 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2477 (u64)-1);
2478
2479 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2480 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2481 if (!IS_ERR(trans))
2482 btrfs_end_transaction(trans, root);
d68fc57b 2483 }
7b128766
JB
2484
2485 if (nr_unlink)
2486 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2487 if (nr_truncate)
2488 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2489
2490out:
2491 if (ret)
2492 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2493 btrfs_free_path(path);
2494 return ret;
7b128766
JB
2495}
2496
46a53cca
CM
2497/*
2498 * very simple check to peek ahead in the leaf looking for xattrs. If we
2499 * don't find any xattrs, we know there can't be any acls.
2500 *
2501 * slot is the slot the inode is in, objectid is the objectid of the inode
2502 */
2503static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2504 int slot, u64 objectid)
2505{
2506 u32 nritems = btrfs_header_nritems(leaf);
2507 struct btrfs_key found_key;
2508 int scanned = 0;
2509
2510 slot++;
2511 while (slot < nritems) {
2512 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2513
2514 /* we found a different objectid, there must not be acls */
2515 if (found_key.objectid != objectid)
2516 return 0;
2517
2518 /* we found an xattr, assume we've got an acl */
2519 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2520 return 1;
2521
2522 /*
2523 * we found a key greater than an xattr key, there can't
2524 * be any acls later on
2525 */
2526 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2527 return 0;
2528
2529 slot++;
2530 scanned++;
2531
2532 /*
2533 * it goes inode, inode backrefs, xattrs, extents,
2534 * so if there are a ton of hard links to an inode there can
2535 * be a lot of backrefs. Don't waste time searching too hard,
2536 * this is just an optimization
2537 */
2538 if (scanned >= 8)
2539 break;
2540 }
2541 /* we hit the end of the leaf before we found an xattr or
2542 * something larger than an xattr. We have to assume the inode
2543 * has acls
2544 */
2545 return 1;
2546}
2547
d352ac68
CM
2548/*
2549 * read an inode from the btree into the in-memory inode
2550 */
5d4f98a2 2551static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2552{
2553 struct btrfs_path *path;
5f39d397 2554 struct extent_buffer *leaf;
39279cc3 2555 struct btrfs_inode_item *inode_item;
0b86a832 2556 struct btrfs_timespec *tspec;
39279cc3
CM
2557 struct btrfs_root *root = BTRFS_I(inode)->root;
2558 struct btrfs_key location;
46a53cca 2559 int maybe_acls;
618e21d5 2560 u32 rdev;
39279cc3 2561 int ret;
2f7e33d4
MX
2562 bool filled = false;
2563
2564 ret = btrfs_fill_inode(inode, &rdev);
2565 if (!ret)
2566 filled = true;
39279cc3
CM
2567
2568 path = btrfs_alloc_path();
1748f843
MF
2569 if (!path)
2570 goto make_bad;
2571
d90c7321 2572 path->leave_spinning = 1;
39279cc3 2573 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2574
39279cc3 2575 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2576 if (ret)
39279cc3 2577 goto make_bad;
39279cc3 2578
5f39d397 2579 leaf = path->nodes[0];
2f7e33d4
MX
2580
2581 if (filled)
2582 goto cache_acl;
2583
5f39d397
CM
2584 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2585 struct btrfs_inode_item);
5f39d397 2586 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2587 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
2588 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2589 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 2590 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2591
2592 tspec = btrfs_inode_atime(inode_item);
2593 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2594 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2595
2596 tspec = btrfs_inode_mtime(inode_item);
2597 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2598 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2599
2600 tspec = btrfs_inode_ctime(inode_item);
2601 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2602 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2603
a76a3cd4 2604 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2605 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
2606 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2607
2608 /*
2609 * If we were modified in the current generation and evicted from memory
2610 * and then re-read we need to do a full sync since we don't have any
2611 * idea about which extents were modified before we were evicted from
2612 * cache.
2613 */
2614 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2615 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2616 &BTRFS_I(inode)->runtime_flags);
2617
0c4d2d95 2618 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2619 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2620 inode->i_rdev = 0;
5f39d397
CM
2621 rdev = btrfs_inode_rdev(leaf, inode_item);
2622
aec7477b 2623 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2624 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2625cache_acl:
46a53cca
CM
2626 /*
2627 * try to precache a NULL acl entry for files that don't have
2628 * any xattrs or acls
2629 */
33345d01
LZ
2630 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2631 btrfs_ino(inode));
72c04902
AV
2632 if (!maybe_acls)
2633 cache_no_acl(inode);
46a53cca 2634
39279cc3 2635 btrfs_free_path(path);
39279cc3 2636
39279cc3 2637 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2638 case S_IFREG:
2639 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2640 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2641 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2642 inode->i_fop = &btrfs_file_operations;
2643 inode->i_op = &btrfs_file_inode_operations;
2644 break;
2645 case S_IFDIR:
2646 inode->i_fop = &btrfs_dir_file_operations;
2647 if (root == root->fs_info->tree_root)
2648 inode->i_op = &btrfs_dir_ro_inode_operations;
2649 else
2650 inode->i_op = &btrfs_dir_inode_operations;
2651 break;
2652 case S_IFLNK:
2653 inode->i_op = &btrfs_symlink_inode_operations;
2654 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2655 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2656 break;
618e21d5 2657 default:
0279b4cd 2658 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2659 init_special_inode(inode, inode->i_mode, rdev);
2660 break;
39279cc3 2661 }
6cbff00f
CH
2662
2663 btrfs_update_iflags(inode);
39279cc3
CM
2664 return;
2665
2666make_bad:
39279cc3 2667 btrfs_free_path(path);
39279cc3
CM
2668 make_bad_inode(inode);
2669}
2670
d352ac68
CM
2671/*
2672 * given a leaf and an inode, copy the inode fields into the leaf
2673 */
e02119d5
CM
2674static void fill_inode_item(struct btrfs_trans_handle *trans,
2675 struct extent_buffer *leaf,
5f39d397 2676 struct btrfs_inode_item *item,
39279cc3
CM
2677 struct inode *inode)
2678{
2f2f43d3
EB
2679 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2680 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
dbe674a9 2681 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2682 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2683 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2684
2685 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2686 inode->i_atime.tv_sec);
2687 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2688 inode->i_atime.tv_nsec);
2689
2690 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2691 inode->i_mtime.tv_sec);
2692 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2693 inode->i_mtime.tv_nsec);
2694
2695 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2696 inode->i_ctime.tv_sec);
2697 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2698 inode->i_ctime.tv_nsec);
2699
a76a3cd4 2700 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2701 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
0c4d2d95 2702 btrfs_set_inode_sequence(leaf, item, inode->i_version);
e02119d5 2703 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2704 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2705 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2706 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2707}
2708
d352ac68
CM
2709/*
2710 * copy everything in the in-memory inode into the btree.
2711 */
2115133f 2712static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2713 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2714{
2715 struct btrfs_inode_item *inode_item;
2716 struct btrfs_path *path;
5f39d397 2717 struct extent_buffer *leaf;
39279cc3
CM
2718 int ret;
2719
2720 path = btrfs_alloc_path();
16cdcec7
MX
2721 if (!path)
2722 return -ENOMEM;
2723
b9473439 2724 path->leave_spinning = 1;
16cdcec7
MX
2725 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2726 1);
39279cc3
CM
2727 if (ret) {
2728 if (ret > 0)
2729 ret = -ENOENT;
2730 goto failed;
2731 }
2732
b4ce94de 2733 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2734 leaf = path->nodes[0];
2735 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2736 struct btrfs_inode_item);
39279cc3 2737
e02119d5 2738 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2739 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2740 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2741 ret = 0;
2742failed:
39279cc3
CM
2743 btrfs_free_path(path);
2744 return ret;
2745}
2746
2115133f
CM
2747/*
2748 * copy everything in the in-memory inode into the btree.
2749 */
2750noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2751 struct btrfs_root *root, struct inode *inode)
2752{
2753 int ret;
2754
2755 /*
2756 * If the inode is a free space inode, we can deadlock during commit
2757 * if we put it into the delayed code.
2758 *
2759 * The data relocation inode should also be directly updated
2760 * without delay
2761 */
83eea1f1 2762 if (!btrfs_is_free_space_inode(inode)
2115133f 2763 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
2764 btrfs_update_root_times(trans, root);
2765
2115133f
CM
2766 ret = btrfs_delayed_update_inode(trans, root, inode);
2767 if (!ret)
2768 btrfs_set_inode_last_trans(trans, inode);
2769 return ret;
2770 }
2771
2772 return btrfs_update_inode_item(trans, root, inode);
2773}
2774
be6aef60
JB
2775noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2776 struct btrfs_root *root,
2777 struct inode *inode)
2115133f
CM
2778{
2779 int ret;
2780
2781 ret = btrfs_update_inode(trans, root, inode);
2782 if (ret == -ENOSPC)
2783 return btrfs_update_inode_item(trans, root, inode);
2784 return ret;
2785}
2786
d352ac68
CM
2787/*
2788 * unlink helper that gets used here in inode.c and in the tree logging
2789 * recovery code. It remove a link in a directory with a given name, and
2790 * also drops the back refs in the inode to the directory
2791 */
92986796
AV
2792static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2793 struct btrfs_root *root,
2794 struct inode *dir, struct inode *inode,
2795 const char *name, int name_len)
39279cc3
CM
2796{
2797 struct btrfs_path *path;
39279cc3 2798 int ret = 0;
5f39d397 2799 struct extent_buffer *leaf;
39279cc3 2800 struct btrfs_dir_item *di;
5f39d397 2801 struct btrfs_key key;
aec7477b 2802 u64 index;
33345d01
LZ
2803 u64 ino = btrfs_ino(inode);
2804 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2805
2806 path = btrfs_alloc_path();
54aa1f4d
CM
2807 if (!path) {
2808 ret = -ENOMEM;
554233a6 2809 goto out;
54aa1f4d
CM
2810 }
2811
b9473439 2812 path->leave_spinning = 1;
33345d01 2813 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2814 name, name_len, -1);
2815 if (IS_ERR(di)) {
2816 ret = PTR_ERR(di);
2817 goto err;
2818 }
2819 if (!di) {
2820 ret = -ENOENT;
2821 goto err;
2822 }
5f39d397
CM
2823 leaf = path->nodes[0];
2824 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2825 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2826 if (ret)
2827 goto err;
b3b4aa74 2828 btrfs_release_path(path);
39279cc3 2829
33345d01
LZ
2830 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2831 dir_ino, &index);
aec7477b 2832 if (ret) {
d397712b 2833 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2834 "inode %llu parent %llu\n", name_len, name,
2835 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2836 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2837 goto err;
2838 }
2839
16cdcec7 2840 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2841 if (ret) {
2842 btrfs_abort_transaction(trans, root, ret);
39279cc3 2843 goto err;
79787eaa 2844 }
39279cc3 2845
e02119d5 2846 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2847 inode, dir_ino);
79787eaa
JM
2848 if (ret != 0 && ret != -ENOENT) {
2849 btrfs_abort_transaction(trans, root, ret);
2850 goto err;
2851 }
e02119d5
CM
2852
2853 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2854 dir, index);
6418c961
CM
2855 if (ret == -ENOENT)
2856 ret = 0;
39279cc3
CM
2857err:
2858 btrfs_free_path(path);
e02119d5
CM
2859 if (ret)
2860 goto out;
2861
2862 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2863 inode_inc_iversion(inode);
2864 inode_inc_iversion(dir);
e02119d5 2865 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 2866 ret = btrfs_update_inode(trans, root, dir);
e02119d5 2867out:
39279cc3
CM
2868 return ret;
2869}
2870
92986796
AV
2871int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2872 struct btrfs_root *root,
2873 struct inode *dir, struct inode *inode,
2874 const char *name, int name_len)
2875{
2876 int ret;
2877 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2878 if (!ret) {
2879 btrfs_drop_nlink(inode);
2880 ret = btrfs_update_inode(trans, root, inode);
2881 }
2882 return ret;
2883}
2884
2885
a22285a6
YZ
2886/* helper to check if there is any shared block in the path */
2887static int check_path_shared(struct btrfs_root *root,
2888 struct btrfs_path *path)
39279cc3 2889{
a22285a6
YZ
2890 struct extent_buffer *eb;
2891 int level;
0e4dcbef 2892 u64 refs = 1;
5df6a9f6 2893
a22285a6 2894 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2895 int ret;
2896
a22285a6
YZ
2897 if (!path->nodes[level])
2898 break;
2899 eb = path->nodes[level];
2900 if (!btrfs_block_can_be_shared(root, eb))
2901 continue;
2902 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2903 &refs, NULL);
2904 if (refs > 1)
2905 return 1;
5df6a9f6 2906 }
dedefd72 2907 return 0;
39279cc3
CM
2908}
2909
a22285a6
YZ
2910/*
2911 * helper to start transaction for unlink and rmdir.
2912 *
2913 * unlink and rmdir are special in btrfs, they do not always free space.
2914 * so in enospc case, we should make sure they will free space before
2915 * allowing them to use the global metadata reservation.
2916 */
2917static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2918 struct dentry *dentry)
4df27c4d 2919{
39279cc3 2920 struct btrfs_trans_handle *trans;
a22285a6 2921 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2922 struct btrfs_path *path;
4df27c4d 2923 struct btrfs_dir_item *di;
7b128766 2924 struct inode *inode = dentry->d_inode;
4df27c4d 2925 u64 index;
a22285a6
YZ
2926 int check_link = 1;
2927 int err = -ENOSPC;
4df27c4d 2928 int ret;
33345d01
LZ
2929 u64 ino = btrfs_ino(inode);
2930 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2931
e70bea5f
JB
2932 /*
2933 * 1 for the possible orphan item
2934 * 1 for the dir item
2935 * 1 for the dir index
2936 * 1 for the inode ref
2937 * 1 for the inode ref in the tree log
2938 * 2 for the dir entries in the log
2939 * 1 for the inode
2940 */
2941 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2942 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2943 return trans;
4df27c4d 2944
33345d01 2945 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2946 return ERR_PTR(-ENOSPC);
4df27c4d 2947
a22285a6
YZ
2948 /* check if there is someone else holds reference */
2949 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2950 return ERR_PTR(-ENOSPC);
4df27c4d 2951
a22285a6
YZ
2952 if (atomic_read(&inode->i_count) > 2)
2953 return ERR_PTR(-ENOSPC);
4df27c4d 2954
a22285a6
YZ
2955 if (xchg(&root->fs_info->enospc_unlink, 1))
2956 return ERR_PTR(-ENOSPC);
2957
2958 path = btrfs_alloc_path();
2959 if (!path) {
2960 root->fs_info->enospc_unlink = 0;
2961 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2962 }
2963
3880a1b4
JB
2964 /* 1 for the orphan item */
2965 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2966 if (IS_ERR(trans)) {
a22285a6
YZ
2967 btrfs_free_path(path);
2968 root->fs_info->enospc_unlink = 0;
2969 return trans;
2970 }
4df27c4d 2971
a22285a6
YZ
2972 path->skip_locking = 1;
2973 path->search_commit_root = 1;
4df27c4d 2974
a22285a6
YZ
2975 ret = btrfs_lookup_inode(trans, root, path,
2976 &BTRFS_I(dir)->location, 0);
2977 if (ret < 0) {
2978 err = ret;
2979 goto out;
2980 }
2981 if (ret == 0) {
2982 if (check_path_shared(root, path))
2983 goto out;
2984 } else {
2985 check_link = 0;
5df6a9f6 2986 }
b3b4aa74 2987 btrfs_release_path(path);
a22285a6
YZ
2988
2989 ret = btrfs_lookup_inode(trans, root, path,
2990 &BTRFS_I(inode)->location, 0);
2991 if (ret < 0) {
2992 err = ret;
2993 goto out;
2994 }
2995 if (ret == 0) {
2996 if (check_path_shared(root, path))
2997 goto out;
2998 } else {
2999 check_link = 0;
3000 }
b3b4aa74 3001 btrfs_release_path(path);
a22285a6
YZ
3002
3003 if (ret == 0 && S_ISREG(inode->i_mode)) {
3004 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 3005 ino, (u64)-1, 0);
a22285a6
YZ
3006 if (ret < 0) {
3007 err = ret;
3008 goto out;
3009 }
79787eaa 3010 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
3011 if (check_path_shared(root, path))
3012 goto out;
b3b4aa74 3013 btrfs_release_path(path);
a22285a6
YZ
3014 }
3015
3016 if (!check_link) {
3017 err = 0;
3018 goto out;
3019 }
3020
33345d01 3021 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3022 dentry->d_name.name, dentry->d_name.len, 0);
3023 if (IS_ERR(di)) {
3024 err = PTR_ERR(di);
3025 goto out;
3026 }
3027 if (di) {
3028 if (check_path_shared(root, path))
3029 goto out;
3030 } else {
3031 err = 0;
3032 goto out;
3033 }
b3b4aa74 3034 btrfs_release_path(path);
a22285a6 3035
f186373f
MF
3036 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3037 dentry->d_name.len, ino, dir_ino, 0,
3038 &index);
3039 if (ret) {
3040 err = ret;
a22285a6
YZ
3041 goto out;
3042 }
f186373f 3043
a22285a6
YZ
3044 if (check_path_shared(root, path))
3045 goto out;
f186373f 3046
b3b4aa74 3047 btrfs_release_path(path);
a22285a6 3048
16cdcec7
MX
3049 /*
3050 * This is a commit root search, if we can lookup inode item and other
3051 * relative items in the commit root, it means the transaction of
3052 * dir/file creation has been committed, and the dir index item that we
3053 * delay to insert has also been inserted into the commit root. So
3054 * we needn't worry about the delayed insertion of the dir index item
3055 * here.
3056 */
33345d01 3057 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3058 dentry->d_name.name, dentry->d_name.len, 0);
3059 if (IS_ERR(di)) {
3060 err = PTR_ERR(di);
3061 goto out;
3062 }
3063 BUG_ON(ret == -ENOENT);
3064 if (check_path_shared(root, path))
3065 goto out;
3066
3067 err = 0;
3068out:
3069 btrfs_free_path(path);
3880a1b4
JB
3070 /* Migrate the orphan reservation over */
3071 if (!err)
3072 err = btrfs_block_rsv_migrate(trans->block_rsv,
3073 &root->fs_info->global_block_rsv,
5a77d76c 3074 trans->bytes_reserved);
3880a1b4 3075
a22285a6
YZ
3076 if (err) {
3077 btrfs_end_transaction(trans, root);
3078 root->fs_info->enospc_unlink = 0;
3079 return ERR_PTR(err);
3080 }
3081
3082 trans->block_rsv = &root->fs_info->global_block_rsv;
3083 return trans;
3084}
3085
3086static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root)
3088{
66d8f3dd 3089 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
5a77d76c
JB
3090 btrfs_block_rsv_release(root, trans->block_rsv,
3091 trans->bytes_reserved);
3092 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3093 BUG_ON(!root->fs_info->enospc_unlink);
3094 root->fs_info->enospc_unlink = 0;
3095 }
7ad85bb7 3096 btrfs_end_transaction(trans, root);
a22285a6
YZ
3097}
3098
3099static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3100{
3101 struct btrfs_root *root = BTRFS_I(dir)->root;
3102 struct btrfs_trans_handle *trans;
3103 struct inode *inode = dentry->d_inode;
3104 int ret;
a22285a6
YZ
3105
3106 trans = __unlink_start_trans(dir, dentry);
3107 if (IS_ERR(trans))
3108 return PTR_ERR(trans);
5f39d397 3109
12fcfd22
CM
3110 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3111
e02119d5
CM
3112 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3113 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3114 if (ret)
3115 goto out;
7b128766 3116
a22285a6 3117 if (inode->i_nlink == 0) {
7b128766 3118 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3119 if (ret)
3120 goto out;
a22285a6 3121 }
7b128766 3122
b532402e 3123out:
a22285a6 3124 __unlink_end_trans(trans, root);
b53d3f5d 3125 btrfs_btree_balance_dirty(root);
39279cc3
CM
3126 return ret;
3127}
3128
4df27c4d
YZ
3129int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root,
3131 struct inode *dir, u64 objectid,
3132 const char *name, int name_len)
3133{
3134 struct btrfs_path *path;
3135 struct extent_buffer *leaf;
3136 struct btrfs_dir_item *di;
3137 struct btrfs_key key;
3138 u64 index;
3139 int ret;
33345d01 3140 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3141
3142 path = btrfs_alloc_path();
3143 if (!path)
3144 return -ENOMEM;
3145
33345d01 3146 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3147 name, name_len, -1);
79787eaa
JM
3148 if (IS_ERR_OR_NULL(di)) {
3149 if (!di)
3150 ret = -ENOENT;
3151 else
3152 ret = PTR_ERR(di);
3153 goto out;
3154 }
4df27c4d
YZ
3155
3156 leaf = path->nodes[0];
3157 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3158 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3159 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3160 if (ret) {
3161 btrfs_abort_transaction(trans, root, ret);
3162 goto out;
3163 }
b3b4aa74 3164 btrfs_release_path(path);
4df27c4d
YZ
3165
3166 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3167 objectid, root->root_key.objectid,
33345d01 3168 dir_ino, &index, name, name_len);
4df27c4d 3169 if (ret < 0) {
79787eaa
JM
3170 if (ret != -ENOENT) {
3171 btrfs_abort_transaction(trans, root, ret);
3172 goto out;
3173 }
33345d01 3174 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3175 name, name_len);
79787eaa
JM
3176 if (IS_ERR_OR_NULL(di)) {
3177 if (!di)
3178 ret = -ENOENT;
3179 else
3180 ret = PTR_ERR(di);
3181 btrfs_abort_transaction(trans, root, ret);
3182 goto out;
3183 }
4df27c4d
YZ
3184
3185 leaf = path->nodes[0];
3186 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3187 btrfs_release_path(path);
4df27c4d
YZ
3188 index = key.offset;
3189 }
945d8962 3190 btrfs_release_path(path);
4df27c4d 3191
16cdcec7 3192 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3193 if (ret) {
3194 btrfs_abort_transaction(trans, root, ret);
3195 goto out;
3196 }
4df27c4d
YZ
3197
3198 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3199 inode_inc_iversion(dir);
4df27c4d 3200 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3201 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3202 if (ret)
3203 btrfs_abort_transaction(trans, root, ret);
3204out:
71d7aed0 3205 btrfs_free_path(path);
79787eaa 3206 return ret;
4df27c4d
YZ
3207}
3208
39279cc3
CM
3209static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3210{
3211 struct inode *inode = dentry->d_inode;
1832a6d5 3212 int err = 0;
39279cc3 3213 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3214 struct btrfs_trans_handle *trans;
39279cc3 3215
b3ae244e 3216 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3217 return -ENOTEMPTY;
b3ae244e
DS
3218 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3219 return -EPERM;
134d4512 3220
a22285a6
YZ
3221 trans = __unlink_start_trans(dir, dentry);
3222 if (IS_ERR(trans))
5df6a9f6 3223 return PTR_ERR(trans);
5df6a9f6 3224
33345d01 3225 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3226 err = btrfs_unlink_subvol(trans, root, dir,
3227 BTRFS_I(inode)->location.objectid,
3228 dentry->d_name.name,
3229 dentry->d_name.len);
3230 goto out;
3231 }
3232
7b128766
JB
3233 err = btrfs_orphan_add(trans, inode);
3234 if (err)
4df27c4d 3235 goto out;
7b128766 3236
39279cc3 3237 /* now the directory is empty */
e02119d5
CM
3238 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3239 dentry->d_name.name, dentry->d_name.len);
d397712b 3240 if (!err)
dbe674a9 3241 btrfs_i_size_write(inode, 0);
4df27c4d 3242out:
a22285a6 3243 __unlink_end_trans(trans, root);
b53d3f5d 3244 btrfs_btree_balance_dirty(root);
3954401f 3245
39279cc3
CM
3246 return err;
3247}
3248
39279cc3
CM
3249/*
3250 * this can truncate away extent items, csum items and directory items.
3251 * It starts at a high offset and removes keys until it can't find
d352ac68 3252 * any higher than new_size
39279cc3
CM
3253 *
3254 * csum items that cross the new i_size are truncated to the new size
3255 * as well.
7b128766
JB
3256 *
3257 * min_type is the minimum key type to truncate down to. If set to 0, this
3258 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3259 */
8082510e
YZ
3260int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3261 struct btrfs_root *root,
3262 struct inode *inode,
3263 u64 new_size, u32 min_type)
39279cc3 3264{
39279cc3 3265 struct btrfs_path *path;
5f39d397 3266 struct extent_buffer *leaf;
39279cc3 3267 struct btrfs_file_extent_item *fi;
8082510e
YZ
3268 struct btrfs_key key;
3269 struct btrfs_key found_key;
39279cc3 3270 u64 extent_start = 0;
db94535d 3271 u64 extent_num_bytes = 0;
5d4f98a2 3272 u64 extent_offset = 0;
39279cc3 3273 u64 item_end = 0;
8082510e
YZ
3274 u64 mask = root->sectorsize - 1;
3275 u32 found_type = (u8)-1;
39279cc3
CM
3276 int found_extent;
3277 int del_item;
85e21bac
CM
3278 int pending_del_nr = 0;
3279 int pending_del_slot = 0;
179e29e4 3280 int extent_type = -1;
8082510e
YZ
3281 int ret;
3282 int err = 0;
33345d01 3283 u64 ino = btrfs_ino(inode);
8082510e
YZ
3284
3285 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3286
0eb0e19c
MF
3287 path = btrfs_alloc_path();
3288 if (!path)
3289 return -ENOMEM;
3290 path->reada = -1;
3291
5dc562c5
JB
3292 /*
3293 * We want to drop from the next block forward in case this new size is
3294 * not block aligned since we will be keeping the last block of the
3295 * extent just the way it is.
3296 */
0af3d00b 3297 if (root->ref_cows || root == root->fs_info->tree_root)
5dc562c5 3298 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
8082510e 3299
16cdcec7
MX
3300 /*
3301 * This function is also used to drop the items in the log tree before
3302 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3303 * it is used to drop the loged items. So we shouldn't kill the delayed
3304 * items.
3305 */
3306 if (min_type == 0 && root == BTRFS_I(inode)->root)
3307 btrfs_kill_delayed_inode_items(inode);
3308
33345d01 3309 key.objectid = ino;
39279cc3 3310 key.offset = (u64)-1;
5f39d397
CM
3311 key.type = (u8)-1;
3312
85e21bac 3313search_again:
b9473439 3314 path->leave_spinning = 1;
85e21bac 3315 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3316 if (ret < 0) {
3317 err = ret;
3318 goto out;
3319 }
d397712b 3320
85e21bac 3321 if (ret > 0) {
e02119d5
CM
3322 /* there are no items in the tree for us to truncate, we're
3323 * done
3324 */
8082510e
YZ
3325 if (path->slots[0] == 0)
3326 goto out;
85e21bac
CM
3327 path->slots[0]--;
3328 }
3329
d397712b 3330 while (1) {
39279cc3 3331 fi = NULL;
5f39d397
CM
3332 leaf = path->nodes[0];
3333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3334 found_type = btrfs_key_type(&found_key);
39279cc3 3335
33345d01 3336 if (found_key.objectid != ino)
39279cc3 3337 break;
5f39d397 3338
85e21bac 3339 if (found_type < min_type)
39279cc3
CM
3340 break;
3341
5f39d397 3342 item_end = found_key.offset;
39279cc3 3343 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3344 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3345 struct btrfs_file_extent_item);
179e29e4
CM
3346 extent_type = btrfs_file_extent_type(leaf, fi);
3347 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3348 item_end +=
db94535d 3349 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3350 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3351 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3352 fi);
39279cc3 3353 }
008630c1 3354 item_end--;
39279cc3 3355 }
8082510e
YZ
3356 if (found_type > min_type) {
3357 del_item = 1;
3358 } else {
3359 if (item_end < new_size)
b888db2b 3360 break;
8082510e
YZ
3361 if (found_key.offset >= new_size)
3362 del_item = 1;
3363 else
3364 del_item = 0;
39279cc3 3365 }
39279cc3 3366 found_extent = 0;
39279cc3 3367 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3368 if (found_type != BTRFS_EXTENT_DATA_KEY)
3369 goto delete;
3370
3371 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3372 u64 num_dec;
db94535d 3373 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3374 if (!del_item) {
db94535d
CM
3375 u64 orig_num_bytes =
3376 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3377 extent_num_bytes = new_size -
5f39d397 3378 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3379 extent_num_bytes = extent_num_bytes &
3380 ~((u64)root->sectorsize - 1);
db94535d
CM
3381 btrfs_set_file_extent_num_bytes(leaf, fi,
3382 extent_num_bytes);
3383 num_dec = (orig_num_bytes -
9069218d 3384 extent_num_bytes);
e02119d5 3385 if (root->ref_cows && extent_start != 0)
a76a3cd4 3386 inode_sub_bytes(inode, num_dec);
5f39d397 3387 btrfs_mark_buffer_dirty(leaf);
39279cc3 3388 } else {
db94535d
CM
3389 extent_num_bytes =
3390 btrfs_file_extent_disk_num_bytes(leaf,
3391 fi);
5d4f98a2
YZ
3392 extent_offset = found_key.offset -
3393 btrfs_file_extent_offset(leaf, fi);
3394
39279cc3 3395 /* FIXME blocksize != 4096 */
9069218d 3396 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3397 if (extent_start != 0) {
3398 found_extent = 1;
e02119d5 3399 if (root->ref_cows)
a76a3cd4 3400 inode_sub_bytes(inode, num_dec);
e02119d5 3401 }
39279cc3 3402 }
9069218d 3403 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3404 /*
3405 * we can't truncate inline items that have had
3406 * special encodings
3407 */
3408 if (!del_item &&
3409 btrfs_file_extent_compression(leaf, fi) == 0 &&
3410 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3411 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3412 u32 size = new_size - found_key.offset;
3413
3414 if (root->ref_cows) {
a76a3cd4
YZ
3415 inode_sub_bytes(inode, item_end + 1 -
3416 new_size);
e02119d5
CM
3417 }
3418 size =
3419 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3420 btrfs_truncate_item(trans, root, path,
3421 size, 1);
e02119d5 3422 } else if (root->ref_cows) {
a76a3cd4
YZ
3423 inode_sub_bytes(inode, item_end + 1 -
3424 found_key.offset);
9069218d 3425 }
39279cc3 3426 }
179e29e4 3427delete:
39279cc3 3428 if (del_item) {
85e21bac
CM
3429 if (!pending_del_nr) {
3430 /* no pending yet, add ourselves */
3431 pending_del_slot = path->slots[0];
3432 pending_del_nr = 1;
3433 } else if (pending_del_nr &&
3434 path->slots[0] + 1 == pending_del_slot) {
3435 /* hop on the pending chunk */
3436 pending_del_nr++;
3437 pending_del_slot = path->slots[0];
3438 } else {
d397712b 3439 BUG();
85e21bac 3440 }
39279cc3
CM
3441 } else {
3442 break;
3443 }
0af3d00b
JB
3444 if (found_extent && (root->ref_cows ||
3445 root == root->fs_info->tree_root)) {
b9473439 3446 btrfs_set_path_blocking(path);
39279cc3 3447 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3448 extent_num_bytes, 0,
3449 btrfs_header_owner(leaf),
66d7e7f0 3450 ino, extent_offset, 0);
39279cc3
CM
3451 BUG_ON(ret);
3452 }
85e21bac 3453
8082510e
YZ
3454 if (found_type == BTRFS_INODE_ITEM_KEY)
3455 break;
3456
3457 if (path->slots[0] == 0 ||
3458 path->slots[0] != pending_del_slot) {
8082510e
YZ
3459 if (pending_del_nr) {
3460 ret = btrfs_del_items(trans, root, path,
3461 pending_del_slot,
3462 pending_del_nr);
79787eaa
JM
3463 if (ret) {
3464 btrfs_abort_transaction(trans,
3465 root, ret);
3466 goto error;
3467 }
8082510e
YZ
3468 pending_del_nr = 0;
3469 }
b3b4aa74 3470 btrfs_release_path(path);
85e21bac 3471 goto search_again;
8082510e
YZ
3472 } else {
3473 path->slots[0]--;
85e21bac 3474 }
39279cc3 3475 }
8082510e 3476out:
85e21bac
CM
3477 if (pending_del_nr) {
3478 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3479 pending_del_nr);
79787eaa
JM
3480 if (ret)
3481 btrfs_abort_transaction(trans, root, ret);
85e21bac 3482 }
79787eaa 3483error:
39279cc3 3484 btrfs_free_path(path);
8082510e 3485 return err;
39279cc3
CM
3486}
3487
3488/*
2aaa6655
JB
3489 * btrfs_truncate_page - read, zero a chunk and write a page
3490 * @inode - inode that we're zeroing
3491 * @from - the offset to start zeroing
3492 * @len - the length to zero, 0 to zero the entire range respective to the
3493 * offset
3494 * @front - zero up to the offset instead of from the offset on
3495 *
3496 * This will find the page for the "from" offset and cow the page and zero the
3497 * part we want to zero. This is used with truncate and hole punching.
39279cc3 3498 */
2aaa6655
JB
3499int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3500 int front)
39279cc3 3501{
2aaa6655 3502 struct address_space *mapping = inode->i_mapping;
db94535d 3503 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3504 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3505 struct btrfs_ordered_extent *ordered;
2ac55d41 3506 struct extent_state *cached_state = NULL;
e6dcd2dc 3507 char *kaddr;
db94535d 3508 u32 blocksize = root->sectorsize;
39279cc3
CM
3509 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3510 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3511 struct page *page;
3b16a4e3 3512 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3513 int ret = 0;
a52d9a80 3514 u64 page_start;
e6dcd2dc 3515 u64 page_end;
39279cc3 3516
2aaa6655
JB
3517 if ((offset & (blocksize - 1)) == 0 &&
3518 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 3519 goto out;
0ca1f7ce 3520 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3521 if (ret)
3522 goto out;
39279cc3 3523
211c17f5 3524again:
3b16a4e3 3525 page = find_or_create_page(mapping, index, mask);
5d5e103a 3526 if (!page) {
0ca1f7ce 3527 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 3528 ret = -ENOMEM;
39279cc3 3529 goto out;
5d5e103a 3530 }
e6dcd2dc
CM
3531
3532 page_start = page_offset(page);
3533 page_end = page_start + PAGE_CACHE_SIZE - 1;
3534
39279cc3 3535 if (!PageUptodate(page)) {
9ebefb18 3536 ret = btrfs_readpage(NULL, page);
39279cc3 3537 lock_page(page);
211c17f5
CM
3538 if (page->mapping != mapping) {
3539 unlock_page(page);
3540 page_cache_release(page);
3541 goto again;
3542 }
39279cc3
CM
3543 if (!PageUptodate(page)) {
3544 ret = -EIO;
89642229 3545 goto out_unlock;
39279cc3
CM
3546 }
3547 }
211c17f5 3548 wait_on_page_writeback(page);
e6dcd2dc 3549
d0082371 3550 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3551 set_page_extent_mapped(page);
3552
3553 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3554 if (ordered) {
2ac55d41
JB
3555 unlock_extent_cached(io_tree, page_start, page_end,
3556 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3557 unlock_page(page);
3558 page_cache_release(page);
eb84ae03 3559 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3560 btrfs_put_ordered_extent(ordered);
3561 goto again;
3562 }
3563
2ac55d41 3564 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
3565 EXTENT_DIRTY | EXTENT_DELALLOC |
3566 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 3567 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3568
2ac55d41
JB
3569 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3570 &cached_state);
9ed74f2d 3571 if (ret) {
2ac55d41
JB
3572 unlock_extent_cached(io_tree, page_start, page_end,
3573 &cached_state, GFP_NOFS);
9ed74f2d
JB
3574 goto out_unlock;
3575 }
3576
e6dcd2dc 3577 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
3578 if (!len)
3579 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 3580 kaddr = kmap(page);
2aaa6655
JB
3581 if (front)
3582 memset(kaddr, 0, offset);
3583 else
3584 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
3585 flush_dcache_page(page);
3586 kunmap(page);
3587 }
247e743c 3588 ClearPageChecked(page);
e6dcd2dc 3589 set_page_dirty(page);
2ac55d41
JB
3590 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3591 GFP_NOFS);
39279cc3 3592
89642229 3593out_unlock:
5d5e103a 3594 if (ret)
0ca1f7ce 3595 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3596 unlock_page(page);
3597 page_cache_release(page);
3598out:
3599 return ret;
3600}
3601
695a0d0d
JB
3602/*
3603 * This function puts in dummy file extents for the area we're creating a hole
3604 * for. So if we are truncating this file to a larger size we need to insert
3605 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3606 * the range between oldsize and size
3607 */
a41ad394 3608int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3609{
9036c102
YZ
3610 struct btrfs_trans_handle *trans;
3611 struct btrfs_root *root = BTRFS_I(inode)->root;
3612 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3613 struct extent_map *em = NULL;
2ac55d41 3614 struct extent_state *cached_state = NULL;
5dc562c5 3615 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9036c102 3616 u64 mask = root->sectorsize - 1;
a41ad394 3617 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3618 u64 block_end = (size + mask) & ~mask;
3619 u64 last_byte;
3620 u64 cur_offset;
3621 u64 hole_size;
9ed74f2d 3622 int err = 0;
39279cc3 3623
9036c102
YZ
3624 if (size <= hole_start)
3625 return 0;
3626
9036c102
YZ
3627 while (1) {
3628 struct btrfs_ordered_extent *ordered;
3629 btrfs_wait_ordered_range(inode, hole_start,
3630 block_end - hole_start);
2ac55d41 3631 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3632 &cached_state);
9036c102
YZ
3633 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3634 if (!ordered)
3635 break;
2ac55d41
JB
3636 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3637 &cached_state, GFP_NOFS);
9036c102
YZ
3638 btrfs_put_ordered_extent(ordered);
3639 }
39279cc3 3640
9036c102
YZ
3641 cur_offset = hole_start;
3642 while (1) {
3643 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3644 block_end - cur_offset, 0);
79787eaa
JM
3645 if (IS_ERR(em)) {
3646 err = PTR_ERR(em);
3647 break;
3648 }
9036c102
YZ
3649 last_byte = min(extent_map_end(em), block_end);
3650 last_byte = (last_byte + mask) & ~mask;
8082510e 3651 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 3652 struct extent_map *hole_em;
9036c102 3653 hole_size = last_byte - cur_offset;
9ed74f2d 3654
3642320e 3655 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3656 if (IS_ERR(trans)) {
3657 err = PTR_ERR(trans);
9ed74f2d 3658 break;
a22285a6 3659 }
8082510e 3660
5dc562c5
JB
3661 err = btrfs_drop_extents(trans, root, inode,
3662 cur_offset,
2671485d 3663 cur_offset + hole_size, 1);
5b397377 3664 if (err) {
79787eaa 3665 btrfs_abort_transaction(trans, root, err);
5b397377 3666 btrfs_end_transaction(trans, root);
3893e33b 3667 break;
5b397377 3668 }
8082510e 3669
9036c102 3670 err = btrfs_insert_file_extent(trans, root,
33345d01 3671 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3672 0, hole_size, 0, hole_size,
3673 0, 0, 0);
5b397377 3674 if (err) {
79787eaa 3675 btrfs_abort_transaction(trans, root, err);
5b397377 3676 btrfs_end_transaction(trans, root);
3893e33b 3677 break;
5b397377 3678 }
8082510e 3679
5dc562c5
JB
3680 btrfs_drop_extent_cache(inode, cur_offset,
3681 cur_offset + hole_size - 1, 0);
3682 hole_em = alloc_extent_map();
3683 if (!hole_em) {
3684 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3685 &BTRFS_I(inode)->runtime_flags);
3686 goto next;
3687 }
3688 hole_em->start = cur_offset;
3689 hole_em->len = hole_size;
3690 hole_em->orig_start = cur_offset;
8082510e 3691
5dc562c5
JB
3692 hole_em->block_start = EXTENT_MAP_HOLE;
3693 hole_em->block_len = 0;
3694 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3695 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3696 hole_em->generation = trans->transid;
8082510e 3697
5dc562c5
JB
3698 while (1) {
3699 write_lock(&em_tree->lock);
3700 err = add_extent_mapping(em_tree, hole_em);
3701 if (!err)
3702 list_move(&hole_em->list,
3703 &em_tree->modified_extents);
3704 write_unlock(&em_tree->lock);
3705 if (err != -EEXIST)
3706 break;
3707 btrfs_drop_extent_cache(inode, cur_offset,
3708 cur_offset +
3709 hole_size - 1, 0);
3710 }
3711 free_extent_map(hole_em);
3712next:
3642320e 3713 btrfs_update_inode(trans, root, inode);
8082510e 3714 btrfs_end_transaction(trans, root);
9036c102
YZ
3715 }
3716 free_extent_map(em);
a22285a6 3717 em = NULL;
9036c102 3718 cur_offset = last_byte;
8082510e 3719 if (cur_offset >= block_end)
9036c102
YZ
3720 break;
3721 }
1832a6d5 3722
a22285a6 3723 free_extent_map(em);
2ac55d41
JB
3724 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3725 GFP_NOFS);
9036c102
YZ
3726 return err;
3727}
39279cc3 3728
a41ad394 3729static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3730{
f4a2f4c5
MX
3731 struct btrfs_root *root = BTRFS_I(inode)->root;
3732 struct btrfs_trans_handle *trans;
a41ad394 3733 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3734 int ret;
3735
a41ad394 3736 if (newsize == oldsize)
8082510e
YZ
3737 return 0;
3738
a41ad394 3739 if (newsize > oldsize) {
a41ad394
JB
3740 truncate_pagecache(inode, oldsize, newsize);
3741 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3742 if (ret)
8082510e 3743 return ret;
8082510e 3744
f4a2f4c5
MX
3745 trans = btrfs_start_transaction(root, 1);
3746 if (IS_ERR(trans))
3747 return PTR_ERR(trans);
3748
3749 i_size_write(inode, newsize);
3750 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3751 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3752 btrfs_end_transaction(trans, root);
a41ad394 3753 } else {
8082510e 3754
a41ad394
JB
3755 /*
3756 * We're truncating a file that used to have good data down to
3757 * zero. Make sure it gets into the ordered flush list so that
3758 * any new writes get down to disk quickly.
3759 */
3760 if (newsize == 0)
72ac3c0d
JB
3761 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3762 &BTRFS_I(inode)->runtime_flags);
8082510e 3763
a41ad394
JB
3764 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3765 truncate_setsize(inode, newsize);
3766 ret = btrfs_truncate(inode);
8082510e
YZ
3767 }
3768
a41ad394 3769 return ret;
8082510e
YZ
3770}
3771
9036c102
YZ
3772static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3773{
3774 struct inode *inode = dentry->d_inode;
b83cc969 3775 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3776 int err;
39279cc3 3777
b83cc969
LZ
3778 if (btrfs_root_readonly(root))
3779 return -EROFS;
3780
9036c102
YZ
3781 err = inode_change_ok(inode, attr);
3782 if (err)
3783 return err;
2bf5a725 3784
5a3f23d5 3785 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3786 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3787 if (err)
3788 return err;
39279cc3 3789 }
9036c102 3790
1025774c
CH
3791 if (attr->ia_valid) {
3792 setattr_copy(inode, attr);
0c4d2d95 3793 inode_inc_iversion(inode);
22c44fe6 3794 err = btrfs_dirty_inode(inode);
1025774c 3795
22c44fe6 3796 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3797 err = btrfs_acl_chmod(inode);
3798 }
33268eaf 3799
39279cc3
CM
3800 return err;
3801}
61295eb8 3802
bd555975 3803void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3804{
3805 struct btrfs_trans_handle *trans;
3806 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3807 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3808 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
3809 int ret;
3810
1abe9b8a 3811 trace_btrfs_inode_evict(inode);
3812
39279cc3 3813 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3814 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 3815 btrfs_is_free_space_inode(inode)))
bd555975
AV
3816 goto no_delete;
3817
39279cc3 3818 if (is_bad_inode(inode)) {
7b128766 3819 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3820 goto no_delete;
3821 }
bd555975 3822 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3823 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3824
c71bf099 3825 if (root->fs_info->log_root_recovering) {
6bf02314 3826 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 3827 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
3828 goto no_delete;
3829 }
3830
76dda93c
YZ
3831 if (inode->i_nlink > 0) {
3832 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3833 goto no_delete;
3834 }
3835
66d8f3dd 3836 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
3837 if (!rsv) {
3838 btrfs_orphan_del(NULL, inode);
3839 goto no_delete;
3840 }
4a338542 3841 rsv->size = min_size;
ca7e70f5 3842 rsv->failfast = 1;
726c35fa 3843 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3844
dbe674a9 3845 btrfs_i_size_write(inode, 0);
5f39d397 3846
4289a667 3847 /*
8407aa46
MX
3848 * This is a bit simpler than btrfs_truncate since we've already
3849 * reserved our space for our orphan item in the unlink, so we just
3850 * need to reserve some slack space in case we add bytes and update
3851 * inode item when doing the truncate.
4289a667 3852 */
8082510e 3853 while (1) {
08e007d2
MX
3854 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3855 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
3856
3857 /*
3858 * Try and steal from the global reserve since we will
3859 * likely not use this space anyway, we want to try as
3860 * hard as possible to get this to work.
3861 */
3862 if (ret)
3863 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3864
d68fc57b 3865 if (ret) {
4289a667 3866 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3867 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3868 btrfs_orphan_del(NULL, inode);
3869 btrfs_free_block_rsv(root, rsv);
3870 goto no_delete;
d68fc57b 3871 }
7b128766 3872
08e007d2 3873 trans = btrfs_start_transaction_lflush(root, 1);
4289a667
JB
3874 if (IS_ERR(trans)) {
3875 btrfs_orphan_del(NULL, inode);
3876 btrfs_free_block_rsv(root, rsv);
3877 goto no_delete;
d68fc57b 3878 }
7b128766 3879
4289a667
JB
3880 trans->block_rsv = rsv;
3881
d68fc57b 3882 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 3883 if (ret != -ENOSPC)
8082510e 3884 break;
85e21bac 3885
8407aa46
MX
3886 trans->block_rsv = &root->fs_info->trans_block_rsv;
3887 ret = btrfs_update_inode(trans, root, inode);
3888 BUG_ON(ret);
3889
8082510e
YZ
3890 btrfs_end_transaction(trans, root);
3891 trans = NULL;
b53d3f5d 3892 btrfs_btree_balance_dirty(root);
8082510e 3893 }
5f39d397 3894
4289a667
JB
3895 btrfs_free_block_rsv(root, rsv);
3896
8082510e 3897 if (ret == 0) {
4289a667 3898 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3899 ret = btrfs_orphan_del(trans, inode);
3900 BUG_ON(ret);
3901 }
54aa1f4d 3902
4289a667 3903 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3904 if (!(root == root->fs_info->tree_root ||
3905 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3906 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3907
54aa1f4d 3908 btrfs_end_transaction(trans, root);
b53d3f5d 3909 btrfs_btree_balance_dirty(root);
39279cc3 3910no_delete:
dbd5768f 3911 clear_inode(inode);
8082510e 3912 return;
39279cc3
CM
3913}
3914
3915/*
3916 * this returns the key found in the dir entry in the location pointer.
3917 * If no dir entries were found, location->objectid is 0.
3918 */
3919static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3920 struct btrfs_key *location)
3921{
3922 const char *name = dentry->d_name.name;
3923 int namelen = dentry->d_name.len;
3924 struct btrfs_dir_item *di;
3925 struct btrfs_path *path;
3926 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3927 int ret = 0;
39279cc3
CM
3928
3929 path = btrfs_alloc_path();
d8926bb3
MF
3930 if (!path)
3931 return -ENOMEM;
3954401f 3932
33345d01 3933 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3934 namelen, 0);
0d9f7f3e
Y
3935 if (IS_ERR(di))
3936 ret = PTR_ERR(di);
d397712b 3937
c704005d 3938 if (IS_ERR_OR_NULL(di))
3954401f 3939 goto out_err;
d397712b 3940
5f39d397 3941 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3942out:
39279cc3
CM
3943 btrfs_free_path(path);
3944 return ret;
3954401f
CM
3945out_err:
3946 location->objectid = 0;
3947 goto out;
39279cc3
CM
3948}
3949
3950/*
3951 * when we hit a tree root in a directory, the btrfs part of the inode
3952 * needs to be changed to reflect the root directory of the tree root. This
3953 * is kind of like crossing a mount point.
3954 */
3955static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3956 struct inode *dir,
3957 struct dentry *dentry,
3958 struct btrfs_key *location,
3959 struct btrfs_root **sub_root)
39279cc3 3960{
4df27c4d
YZ
3961 struct btrfs_path *path;
3962 struct btrfs_root *new_root;
3963 struct btrfs_root_ref *ref;
3964 struct extent_buffer *leaf;
3965 int ret;
3966 int err = 0;
39279cc3 3967
4df27c4d
YZ
3968 path = btrfs_alloc_path();
3969 if (!path) {
3970 err = -ENOMEM;
3971 goto out;
3972 }
39279cc3 3973
4df27c4d
YZ
3974 err = -ENOENT;
3975 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3976 BTRFS_I(dir)->root->root_key.objectid,
3977 location->objectid);
3978 if (ret) {
3979 if (ret < 0)
3980 err = ret;
3981 goto out;
3982 }
39279cc3 3983
4df27c4d
YZ
3984 leaf = path->nodes[0];
3985 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3986 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3987 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3988 goto out;
39279cc3 3989
4df27c4d
YZ
3990 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3991 (unsigned long)(ref + 1),
3992 dentry->d_name.len);
3993 if (ret)
3994 goto out;
3995
b3b4aa74 3996 btrfs_release_path(path);
4df27c4d
YZ
3997
3998 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3999 if (IS_ERR(new_root)) {
4000 err = PTR_ERR(new_root);
4001 goto out;
4002 }
4003
4004 if (btrfs_root_refs(&new_root->root_item) == 0) {
4005 err = -ENOENT;
4006 goto out;
4007 }
4008
4009 *sub_root = new_root;
4010 location->objectid = btrfs_root_dirid(&new_root->root_item);
4011 location->type = BTRFS_INODE_ITEM_KEY;
4012 location->offset = 0;
4013 err = 0;
4014out:
4015 btrfs_free_path(path);
4016 return err;
39279cc3
CM
4017}
4018
5d4f98a2
YZ
4019static void inode_tree_add(struct inode *inode)
4020{
4021 struct btrfs_root *root = BTRFS_I(inode)->root;
4022 struct btrfs_inode *entry;
03e860bd
FNP
4023 struct rb_node **p;
4024 struct rb_node *parent;
33345d01 4025 u64 ino = btrfs_ino(inode);
03e860bd
FNP
4026again:
4027 p = &root->inode_tree.rb_node;
4028 parent = NULL;
5d4f98a2 4029
1d3382cb 4030 if (inode_unhashed(inode))
76dda93c
YZ
4031 return;
4032
5d4f98a2
YZ
4033 spin_lock(&root->inode_lock);
4034 while (*p) {
4035 parent = *p;
4036 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4037
33345d01 4038 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4039 p = &parent->rb_left;
33345d01 4040 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4041 p = &parent->rb_right;
5d4f98a2
YZ
4042 else {
4043 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4044 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4045 rb_erase(parent, &root->inode_tree);
4046 RB_CLEAR_NODE(parent);
4047 spin_unlock(&root->inode_lock);
4048 goto again;
5d4f98a2
YZ
4049 }
4050 }
4051 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4052 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4053 spin_unlock(&root->inode_lock);
4054}
4055
4056static void inode_tree_del(struct inode *inode)
4057{
4058 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4059 int empty = 0;
5d4f98a2 4060
03e860bd 4061 spin_lock(&root->inode_lock);
5d4f98a2 4062 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4063 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4064 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4065 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4066 }
03e860bd 4067 spin_unlock(&root->inode_lock);
76dda93c 4068
0af3d00b
JB
4069 /*
4070 * Free space cache has inodes in the tree root, but the tree root has a
4071 * root_refs of 0, so this could end up dropping the tree root as a
4072 * snapshot, so we need the extra !root->fs_info->tree_root check to
4073 * make sure we don't drop it.
4074 */
4075 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4076 root != root->fs_info->tree_root) {
76dda93c
YZ
4077 synchronize_srcu(&root->fs_info->subvol_srcu);
4078 spin_lock(&root->inode_lock);
4079 empty = RB_EMPTY_ROOT(&root->inode_tree);
4080 spin_unlock(&root->inode_lock);
4081 if (empty)
4082 btrfs_add_dead_root(root);
4083 }
4084}
4085
143bede5 4086void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4087{
4088 struct rb_node *node;
4089 struct rb_node *prev;
4090 struct btrfs_inode *entry;
4091 struct inode *inode;
4092 u64 objectid = 0;
4093
4094 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4095
4096 spin_lock(&root->inode_lock);
4097again:
4098 node = root->inode_tree.rb_node;
4099 prev = NULL;
4100 while (node) {
4101 prev = node;
4102 entry = rb_entry(node, struct btrfs_inode, rb_node);
4103
33345d01 4104 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4105 node = node->rb_left;
33345d01 4106 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4107 node = node->rb_right;
4108 else
4109 break;
4110 }
4111 if (!node) {
4112 while (prev) {
4113 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4114 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4115 node = prev;
4116 break;
4117 }
4118 prev = rb_next(prev);
4119 }
4120 }
4121 while (node) {
4122 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4123 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4124 inode = igrab(&entry->vfs_inode);
4125 if (inode) {
4126 spin_unlock(&root->inode_lock);
4127 if (atomic_read(&inode->i_count) > 1)
4128 d_prune_aliases(inode);
4129 /*
45321ac5 4130 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4131 * the inode cache when its usage count
4132 * hits zero.
4133 */
4134 iput(inode);
4135 cond_resched();
4136 spin_lock(&root->inode_lock);
4137 goto again;
4138 }
4139
4140 if (cond_resched_lock(&root->inode_lock))
4141 goto again;
4142
4143 node = rb_next(node);
4144 }
4145 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4146}
4147
e02119d5
CM
4148static int btrfs_init_locked_inode(struct inode *inode, void *p)
4149{
4150 struct btrfs_iget_args *args = p;
4151 inode->i_ino = args->ino;
e02119d5 4152 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4153 return 0;
4154}
4155
4156static int btrfs_find_actor(struct inode *inode, void *opaque)
4157{
4158 struct btrfs_iget_args *args = opaque;
33345d01 4159 return args->ino == btrfs_ino(inode) &&
d397712b 4160 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4161}
4162
5d4f98a2
YZ
4163static struct inode *btrfs_iget_locked(struct super_block *s,
4164 u64 objectid,
4165 struct btrfs_root *root)
39279cc3
CM
4166{
4167 struct inode *inode;
4168 struct btrfs_iget_args args;
4169 args.ino = objectid;
4170 args.root = root;
4171
4172 inode = iget5_locked(s, objectid, btrfs_find_actor,
4173 btrfs_init_locked_inode,
4174 (void *)&args);
4175 return inode;
4176}
4177
1a54ef8c
BR
4178/* Get an inode object given its location and corresponding root.
4179 * Returns in *is_new if the inode was read from disk
4180 */
4181struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4182 struct btrfs_root *root, int *new)
1a54ef8c
BR
4183{
4184 struct inode *inode;
4185
4186 inode = btrfs_iget_locked(s, location->objectid, root);
4187 if (!inode)
5d4f98a2 4188 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4189
4190 if (inode->i_state & I_NEW) {
4191 BTRFS_I(inode)->root = root;
4192 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4193 btrfs_read_locked_inode(inode);
1748f843
MF
4194 if (!is_bad_inode(inode)) {
4195 inode_tree_add(inode);
4196 unlock_new_inode(inode);
4197 if (new)
4198 *new = 1;
4199 } else {
e0b6d65b
ST
4200 unlock_new_inode(inode);
4201 iput(inode);
4202 inode = ERR_PTR(-ESTALE);
1748f843
MF
4203 }
4204 }
4205
1a54ef8c
BR
4206 return inode;
4207}
4208
4df27c4d
YZ
4209static struct inode *new_simple_dir(struct super_block *s,
4210 struct btrfs_key *key,
4211 struct btrfs_root *root)
4212{
4213 struct inode *inode = new_inode(s);
4214
4215 if (!inode)
4216 return ERR_PTR(-ENOMEM);
4217
4df27c4d
YZ
4218 BTRFS_I(inode)->root = root;
4219 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4220 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4221
4222 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4223 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4224 inode->i_fop = &simple_dir_operations;
4225 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4226 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4227
4228 return inode;
4229}
4230
3de4586c 4231struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4232{
d397712b 4233 struct inode *inode;
4df27c4d 4234 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4235 struct btrfs_root *sub_root = root;
4236 struct btrfs_key location;
76dda93c 4237 int index;
b4aff1f8 4238 int ret = 0;
39279cc3
CM
4239
4240 if (dentry->d_name.len > BTRFS_NAME_LEN)
4241 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4242
b4aff1f8
JB
4243 if (unlikely(d_need_lookup(dentry))) {
4244 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4245 kfree(dentry->d_fsdata);
4246 dentry->d_fsdata = NULL;
a66e7cc6
JB
4247 /* This thing is hashed, drop it for now */
4248 d_drop(dentry);
b4aff1f8
JB
4249 } else {
4250 ret = btrfs_inode_by_name(dir, dentry, &location);
4251 }
5f39d397 4252
39279cc3
CM
4253 if (ret < 0)
4254 return ERR_PTR(ret);
5f39d397 4255
4df27c4d
YZ
4256 if (location.objectid == 0)
4257 return NULL;
4258
4259 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4260 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4261 return inode;
4262 }
4263
4264 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4265
76dda93c 4266 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4267 ret = fixup_tree_root_location(root, dir, dentry,
4268 &location, &sub_root);
4269 if (ret < 0) {
4270 if (ret != -ENOENT)
4271 inode = ERR_PTR(ret);
4272 else
4273 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4274 } else {
73f73415 4275 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4276 }
76dda93c
YZ
4277 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4278
34d19bad 4279 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4280 down_read(&root->fs_info->cleanup_work_sem);
4281 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4282 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4283 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4284 if (ret)
4285 inode = ERR_PTR(ret);
c71bf099
YZ
4286 }
4287
3de4586c
CM
4288 return inode;
4289}
4290
fe15ce44 4291static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4292{
4293 struct btrfs_root *root;
848cce0d 4294 struct inode *inode = dentry->d_inode;
76dda93c 4295
848cce0d
LZ
4296 if (!inode && !IS_ROOT(dentry))
4297 inode = dentry->d_parent->d_inode;
76dda93c 4298
848cce0d
LZ
4299 if (inode) {
4300 root = BTRFS_I(inode)->root;
efefb143
YZ
4301 if (btrfs_root_refs(&root->root_item) == 0)
4302 return 1;
848cce0d
LZ
4303
4304 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4305 return 1;
efefb143 4306 }
76dda93c
YZ
4307 return 0;
4308}
4309
b4aff1f8
JB
4310static void btrfs_dentry_release(struct dentry *dentry)
4311{
4312 if (dentry->d_fsdata)
4313 kfree(dentry->d_fsdata);
4314}
4315
3de4586c 4316static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4317 unsigned int flags)
3de4586c 4318{
a66e7cc6
JB
4319 struct dentry *ret;
4320
4321 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4322 if (unlikely(d_need_lookup(dentry))) {
4323 spin_lock(&dentry->d_lock);
4324 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4325 spin_unlock(&dentry->d_lock);
4326 }
4327 return ret;
39279cc3
CM
4328}
4329
16cdcec7 4330unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4331 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4332};
4333
cbdf5a24
DW
4334static int btrfs_real_readdir(struct file *filp, void *dirent,
4335 filldir_t filldir)
39279cc3 4336{
6da6abae 4337 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4338 struct btrfs_root *root = BTRFS_I(inode)->root;
4339 struct btrfs_item *item;
4340 struct btrfs_dir_item *di;
4341 struct btrfs_key key;
5f39d397 4342 struct btrfs_key found_key;
39279cc3 4343 struct btrfs_path *path;
16cdcec7
MX
4344 struct list_head ins_list;
4345 struct list_head del_list;
39279cc3 4346 int ret;
5f39d397 4347 struct extent_buffer *leaf;
39279cc3 4348 int slot;
39279cc3
CM
4349 unsigned char d_type;
4350 int over = 0;
4351 u32 di_cur;
4352 u32 di_total;
4353 u32 di_len;
4354 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4355 char tmp_name[32];
4356 char *name_ptr;
4357 int name_len;
16cdcec7 4358 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4359
4360 /* FIXME, use a real flag for deciding about the key type */
4361 if (root->fs_info->tree_root == root)
4362 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4363
3954401f
CM
4364 /* special case for "." */
4365 if (filp->f_pos == 0) {
3765fefa
HS
4366 over = filldir(dirent, ".", 1,
4367 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4368 if (over)
4369 return 0;
4370 filp->f_pos = 1;
4371 }
3954401f
CM
4372 /* special case for .., just use the back ref */
4373 if (filp->f_pos == 1) {
5ecc7e5d 4374 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4375 over = filldir(dirent, "..", 2,
3765fefa 4376 filp->f_pos, pino, DT_DIR);
3954401f 4377 if (over)
49593bfa 4378 return 0;
3954401f
CM
4379 filp->f_pos = 2;
4380 }
49593bfa 4381 path = btrfs_alloc_path();
16cdcec7
MX
4382 if (!path)
4383 return -ENOMEM;
ff5714cc 4384
026fd317 4385 path->reada = 1;
49593bfa 4386
16cdcec7
MX
4387 if (key_type == BTRFS_DIR_INDEX_KEY) {
4388 INIT_LIST_HEAD(&ins_list);
4389 INIT_LIST_HEAD(&del_list);
4390 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4391 }
4392
39279cc3
CM
4393 btrfs_set_key_type(&key, key_type);
4394 key.offset = filp->f_pos;
33345d01 4395 key.objectid = btrfs_ino(inode);
5f39d397 4396
39279cc3
CM
4397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4398 if (ret < 0)
4399 goto err;
49593bfa
DW
4400
4401 while (1) {
5f39d397 4402 leaf = path->nodes[0];
39279cc3 4403 slot = path->slots[0];
b9e03af0
LZ
4404 if (slot >= btrfs_header_nritems(leaf)) {
4405 ret = btrfs_next_leaf(root, path);
4406 if (ret < 0)
4407 goto err;
4408 else if (ret > 0)
4409 break;
4410 continue;
39279cc3 4411 }
3de4586c 4412
5f39d397
CM
4413 item = btrfs_item_nr(leaf, slot);
4414 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4415
4416 if (found_key.objectid != key.objectid)
39279cc3 4417 break;
5f39d397 4418 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4419 break;
5f39d397 4420 if (found_key.offset < filp->f_pos)
b9e03af0 4421 goto next;
16cdcec7
MX
4422 if (key_type == BTRFS_DIR_INDEX_KEY &&
4423 btrfs_should_delete_dir_index(&del_list,
4424 found_key.offset))
4425 goto next;
5f39d397
CM
4426
4427 filp->f_pos = found_key.offset;
16cdcec7 4428 is_curr = 1;
49593bfa 4429
39279cc3
CM
4430 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4431 di_cur = 0;
5f39d397 4432 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4433
4434 while (di_cur < di_total) {
5f39d397
CM
4435 struct btrfs_key location;
4436
22a94d44
JB
4437 if (verify_dir_item(root, leaf, di))
4438 break;
4439
5f39d397 4440 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4441 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4442 name_ptr = tmp_name;
4443 } else {
4444 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4445 if (!name_ptr) {
4446 ret = -ENOMEM;
4447 goto err;
4448 }
5f39d397
CM
4449 }
4450 read_extent_buffer(leaf, name_ptr,
4451 (unsigned long)(di + 1), name_len);
4452
4453 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4454 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4455
fede766f 4456
3de4586c 4457 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4458 * skip it.
4459 *
4460 * In contrast to old kernels, we insert the snapshot's
4461 * dir item and dir index after it has been created, so
4462 * we won't find a reference to our own snapshot. We
4463 * still keep the following code for backward
4464 * compatibility.
3de4586c
CM
4465 */
4466 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4467 location.objectid == root->root_key.objectid) {
4468 over = 0;
4469 goto skip;
4470 }
5f39d397 4471 over = filldir(dirent, name_ptr, name_len,
49593bfa 4472 found_key.offset, location.objectid,
39279cc3 4473 d_type);
5f39d397 4474
3de4586c 4475skip:
5f39d397
CM
4476 if (name_ptr != tmp_name)
4477 kfree(name_ptr);
4478
39279cc3
CM
4479 if (over)
4480 goto nopos;
5103e947 4481 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4482 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4483 di_cur += di_len;
4484 di = (struct btrfs_dir_item *)((char *)di + di_len);
4485 }
b9e03af0
LZ
4486next:
4487 path->slots[0]++;
39279cc3 4488 }
49593bfa 4489
16cdcec7
MX
4490 if (key_type == BTRFS_DIR_INDEX_KEY) {
4491 if (is_curr)
4492 filp->f_pos++;
4493 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4494 &ins_list);
4495 if (ret)
4496 goto nopos;
4497 }
4498
49593bfa 4499 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4500 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4501 /*
4502 * 32-bit glibc will use getdents64, but then strtol -
4503 * so the last number we can serve is this.
4504 */
4505 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4506 else
4507 filp->f_pos++;
39279cc3
CM
4508nopos:
4509 ret = 0;
4510err:
16cdcec7
MX
4511 if (key_type == BTRFS_DIR_INDEX_KEY)
4512 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4513 btrfs_free_path(path);
39279cc3
CM
4514 return ret;
4515}
4516
a9185b41 4517int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4518{
4519 struct btrfs_root *root = BTRFS_I(inode)->root;
4520 struct btrfs_trans_handle *trans;
4521 int ret = 0;
0af3d00b 4522 bool nolock = false;
39279cc3 4523
72ac3c0d 4524 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
4525 return 0;
4526
83eea1f1 4527 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 4528 nolock = true;
0af3d00b 4529
a9185b41 4530 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4531 if (nolock)
7a7eaa40 4532 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4533 else
7a7eaa40 4534 trans = btrfs_join_transaction(root);
3612b495
TI
4535 if (IS_ERR(trans))
4536 return PTR_ERR(trans);
a698d075 4537 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4538 }
4539 return ret;
4540}
4541
4542/*
54aa1f4d 4543 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4544 * inode changes. But, it is most likely to find the inode in cache.
4545 * FIXME, needs more benchmarking...there are no reasons other than performance
4546 * to keep or drop this code.
4547 */
22c44fe6 4548int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4549{
4550 struct btrfs_root *root = BTRFS_I(inode)->root;
4551 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4552 int ret;
4553
72ac3c0d 4554 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 4555 return 0;
39279cc3 4556
7a7eaa40 4557 trans = btrfs_join_transaction(root);
22c44fe6
JB
4558 if (IS_ERR(trans))
4559 return PTR_ERR(trans);
8929ecfa
YZ
4560
4561 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4562 if (ret && ret == -ENOSPC) {
4563 /* whoops, lets try again with the full transaction */
4564 btrfs_end_transaction(trans, root);
4565 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4566 if (IS_ERR(trans))
4567 return PTR_ERR(trans);
8929ecfa 4568
94b60442 4569 ret = btrfs_update_inode(trans, root, inode);
94b60442 4570 }
39279cc3 4571 btrfs_end_transaction(trans, root);
16cdcec7
MX
4572 if (BTRFS_I(inode)->delayed_node)
4573 btrfs_balance_delayed_items(root);
22c44fe6
JB
4574
4575 return ret;
4576}
4577
4578/*
4579 * This is a copy of file_update_time. We need this so we can return error on
4580 * ENOSPC for updating the inode in the case of file write and mmap writes.
4581 */
e41f941a
JB
4582static int btrfs_update_time(struct inode *inode, struct timespec *now,
4583 int flags)
22c44fe6 4584{
2bc55652
AB
4585 struct btrfs_root *root = BTRFS_I(inode)->root;
4586
4587 if (btrfs_root_readonly(root))
4588 return -EROFS;
4589
e41f941a 4590 if (flags & S_VERSION)
22c44fe6 4591 inode_inc_iversion(inode);
e41f941a
JB
4592 if (flags & S_CTIME)
4593 inode->i_ctime = *now;
4594 if (flags & S_MTIME)
4595 inode->i_mtime = *now;
4596 if (flags & S_ATIME)
4597 inode->i_atime = *now;
4598 return btrfs_dirty_inode(inode);
39279cc3
CM
4599}
4600
d352ac68
CM
4601/*
4602 * find the highest existing sequence number in a directory
4603 * and then set the in-memory index_cnt variable to reflect
4604 * free sequence numbers
4605 */
aec7477b
JB
4606static int btrfs_set_inode_index_count(struct inode *inode)
4607{
4608 struct btrfs_root *root = BTRFS_I(inode)->root;
4609 struct btrfs_key key, found_key;
4610 struct btrfs_path *path;
4611 struct extent_buffer *leaf;
4612 int ret;
4613
33345d01 4614 key.objectid = btrfs_ino(inode);
aec7477b
JB
4615 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4616 key.offset = (u64)-1;
4617
4618 path = btrfs_alloc_path();
4619 if (!path)
4620 return -ENOMEM;
4621
4622 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4623 if (ret < 0)
4624 goto out;
4625 /* FIXME: we should be able to handle this */
4626 if (ret == 0)
4627 goto out;
4628 ret = 0;
4629
4630 /*
4631 * MAGIC NUMBER EXPLANATION:
4632 * since we search a directory based on f_pos we have to start at 2
4633 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4634 * else has to start at 2
4635 */
4636 if (path->slots[0] == 0) {
4637 BTRFS_I(inode)->index_cnt = 2;
4638 goto out;
4639 }
4640
4641 path->slots[0]--;
4642
4643 leaf = path->nodes[0];
4644 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4645
33345d01 4646 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4647 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4648 BTRFS_I(inode)->index_cnt = 2;
4649 goto out;
4650 }
4651
4652 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4653out:
4654 btrfs_free_path(path);
4655 return ret;
4656}
4657
d352ac68
CM
4658/*
4659 * helper to find a free sequence number in a given directory. This current
4660 * code is very simple, later versions will do smarter things in the btree
4661 */
3de4586c 4662int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4663{
4664 int ret = 0;
4665
4666 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4667 ret = btrfs_inode_delayed_dir_index_count(dir);
4668 if (ret) {
4669 ret = btrfs_set_inode_index_count(dir);
4670 if (ret)
4671 return ret;
4672 }
aec7477b
JB
4673 }
4674
00e4e6b3 4675 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4676 BTRFS_I(dir)->index_cnt++;
4677
4678 return ret;
4679}
4680
39279cc3
CM
4681static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4682 struct btrfs_root *root,
aec7477b 4683 struct inode *dir,
9c58309d 4684 const char *name, int name_len,
175a4eb7
AV
4685 u64 ref_objectid, u64 objectid,
4686 umode_t mode, u64 *index)
39279cc3
CM
4687{
4688 struct inode *inode;
5f39d397 4689 struct btrfs_inode_item *inode_item;
39279cc3 4690 struct btrfs_key *location;
5f39d397 4691 struct btrfs_path *path;
9c58309d
CM
4692 struct btrfs_inode_ref *ref;
4693 struct btrfs_key key[2];
4694 u32 sizes[2];
4695 unsigned long ptr;
39279cc3
CM
4696 int ret;
4697 int owner;
4698
5f39d397 4699 path = btrfs_alloc_path();
d8926bb3
MF
4700 if (!path)
4701 return ERR_PTR(-ENOMEM);
5f39d397 4702
39279cc3 4703 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4704 if (!inode) {
4705 btrfs_free_path(path);
39279cc3 4706 return ERR_PTR(-ENOMEM);
8fb27640 4707 }
39279cc3 4708
581bb050
LZ
4709 /*
4710 * we have to initialize this early, so we can reclaim the inode
4711 * number if we fail afterwards in this function.
4712 */
4713 inode->i_ino = objectid;
4714
aec7477b 4715 if (dir) {
1abe9b8a 4716 trace_btrfs_inode_request(dir);
4717
3de4586c 4718 ret = btrfs_set_inode_index(dir, index);
09771430 4719 if (ret) {
8fb27640 4720 btrfs_free_path(path);
09771430 4721 iput(inode);
aec7477b 4722 return ERR_PTR(ret);
09771430 4723 }
aec7477b
JB
4724 }
4725 /*
4726 * index_cnt is ignored for everything but a dir,
4727 * btrfs_get_inode_index_count has an explanation for the magic
4728 * number
4729 */
4730 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4731 BTRFS_I(inode)->root = root;
e02119d5 4732 BTRFS_I(inode)->generation = trans->transid;
76195853 4733 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 4734
5dc562c5
JB
4735 /*
4736 * We could have gotten an inode number from somebody who was fsynced
4737 * and then removed in this same transaction, so let's just set full
4738 * sync since it will be a full sync anyway and this will blow away the
4739 * old info in the log.
4740 */
4741 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4742
569254b0 4743 if (S_ISDIR(mode))
39279cc3
CM
4744 owner = 0;
4745 else
4746 owner = 1;
9c58309d
CM
4747
4748 key[0].objectid = objectid;
4749 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4750 key[0].offset = 0;
4751
f186373f
MF
4752 /*
4753 * Start new inodes with an inode_ref. This is slightly more
4754 * efficient for small numbers of hard links since they will
4755 * be packed into one item. Extended refs will kick in if we
4756 * add more hard links than can fit in the ref item.
4757 */
9c58309d
CM
4758 key[1].objectid = objectid;
4759 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4760 key[1].offset = ref_objectid;
4761
4762 sizes[0] = sizeof(struct btrfs_inode_item);
4763 sizes[1] = name_len + sizeof(*ref);
4764
b9473439 4765 path->leave_spinning = 1;
9c58309d
CM
4766 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4767 if (ret != 0)
5f39d397
CM
4768 goto fail;
4769
ecc11fab 4770 inode_init_owner(inode, dir, mode);
a76a3cd4 4771 inode_set_bytes(inode, 0);
39279cc3 4772 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4773 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4774 struct btrfs_inode_item);
293f7e07
LZ
4775 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4776 sizeof(*inode_item));
e02119d5 4777 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4778
4779 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4780 struct btrfs_inode_ref);
4781 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4782 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4783 ptr = (unsigned long)(ref + 1);
4784 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4785
5f39d397
CM
4786 btrfs_mark_buffer_dirty(path->nodes[0]);
4787 btrfs_free_path(path);
4788
39279cc3
CM
4789 location = &BTRFS_I(inode)->location;
4790 location->objectid = objectid;
39279cc3
CM
4791 location->offset = 0;
4792 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4793
6cbff00f
CH
4794 btrfs_inherit_iflags(inode, dir);
4795
569254b0 4796 if (S_ISREG(mode)) {
94272164
CM
4797 if (btrfs_test_opt(root, NODATASUM))
4798 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4799 if (btrfs_test_opt(root, NODATACOW) ||
4800 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4801 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4802 }
4803
39279cc3 4804 insert_inode_hash(inode);
5d4f98a2 4805 inode_tree_add(inode);
1abe9b8a 4806
4807 trace_btrfs_inode_new(inode);
1973f0fa 4808 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4809
8ea05e3a
AB
4810 btrfs_update_root_times(trans, root);
4811
39279cc3 4812 return inode;
5f39d397 4813fail:
aec7477b
JB
4814 if (dir)
4815 BTRFS_I(dir)->index_cnt--;
5f39d397 4816 btrfs_free_path(path);
09771430 4817 iput(inode);
5f39d397 4818 return ERR_PTR(ret);
39279cc3
CM
4819}
4820
4821static inline u8 btrfs_inode_type(struct inode *inode)
4822{
4823 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4824}
4825
d352ac68
CM
4826/*
4827 * utility function to add 'inode' into 'parent_inode' with
4828 * a give name and a given sequence number.
4829 * if 'add_backref' is true, also insert a backref from the
4830 * inode to the parent directory.
4831 */
e02119d5
CM
4832int btrfs_add_link(struct btrfs_trans_handle *trans,
4833 struct inode *parent_inode, struct inode *inode,
4834 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4835{
4df27c4d 4836 int ret = 0;
39279cc3 4837 struct btrfs_key key;
e02119d5 4838 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4839 u64 ino = btrfs_ino(inode);
4840 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4841
33345d01 4842 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4843 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4844 } else {
33345d01 4845 key.objectid = ino;
4df27c4d
YZ
4846 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4847 key.offset = 0;
4848 }
4849
33345d01 4850 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4851 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4852 key.objectid, root->root_key.objectid,
33345d01 4853 parent_ino, index, name, name_len);
4df27c4d 4854 } else if (add_backref) {
33345d01
LZ
4855 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4856 parent_ino, index);
4df27c4d 4857 }
39279cc3 4858
79787eaa
JM
4859 /* Nothing to clean up yet */
4860 if (ret)
4861 return ret;
4df27c4d 4862
79787eaa
JM
4863 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4864 parent_inode, &key,
4865 btrfs_inode_type(inode), index);
4866 if (ret == -EEXIST)
4867 goto fail_dir_item;
4868 else if (ret) {
4869 btrfs_abort_transaction(trans, root, ret);
4870 return ret;
39279cc3 4871 }
79787eaa
JM
4872
4873 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4874 name_len * 2);
0c4d2d95 4875 inode_inc_iversion(parent_inode);
79787eaa
JM
4876 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4877 ret = btrfs_update_inode(trans, root, parent_inode);
4878 if (ret)
4879 btrfs_abort_transaction(trans, root, ret);
39279cc3 4880 return ret;
fe66a05a
CM
4881
4882fail_dir_item:
4883 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4884 u64 local_index;
4885 int err;
4886 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4887 key.objectid, root->root_key.objectid,
4888 parent_ino, &local_index, name, name_len);
4889
4890 } else if (add_backref) {
4891 u64 local_index;
4892 int err;
4893
4894 err = btrfs_del_inode_ref(trans, root, name, name_len,
4895 ino, parent_ino, &local_index);
4896 }
4897 return ret;
39279cc3
CM
4898}
4899
4900static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4901 struct inode *dir, struct dentry *dentry,
4902 struct inode *inode, int backref, u64 index)
39279cc3 4903{
a1b075d2
JB
4904 int err = btrfs_add_link(trans, dir, inode,
4905 dentry->d_name.name, dentry->d_name.len,
4906 backref, index);
39279cc3
CM
4907 if (err > 0)
4908 err = -EEXIST;
4909 return err;
4910}
4911
618e21d5 4912static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4913 umode_t mode, dev_t rdev)
618e21d5
JB
4914{
4915 struct btrfs_trans_handle *trans;
4916 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4917 struct inode *inode = NULL;
618e21d5
JB
4918 int err;
4919 int drop_inode = 0;
4920 u64 objectid;
00e4e6b3 4921 u64 index = 0;
618e21d5
JB
4922
4923 if (!new_valid_dev(rdev))
4924 return -EINVAL;
4925
9ed74f2d
JB
4926 /*
4927 * 2 for inode item and ref
4928 * 2 for dir items
4929 * 1 for xattr if selinux is on
4930 */
a22285a6
YZ
4931 trans = btrfs_start_transaction(root, 5);
4932 if (IS_ERR(trans))
4933 return PTR_ERR(trans);
1832a6d5 4934
581bb050
LZ
4935 err = btrfs_find_free_ino(root, &objectid);
4936 if (err)
4937 goto out_unlock;
4938
aec7477b 4939 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4940 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4941 mode, &index);
7cf96da3
TI
4942 if (IS_ERR(inode)) {
4943 err = PTR_ERR(inode);
618e21d5 4944 goto out_unlock;
7cf96da3 4945 }
618e21d5 4946
2a7dba39 4947 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4948 if (err) {
4949 drop_inode = 1;
4950 goto out_unlock;
4951 }
4952
2794ed01
FB
4953 err = btrfs_update_inode(trans, root, inode);
4954 if (err) {
4955 drop_inode = 1;
4956 goto out_unlock;
4957 }
4958
ad19db71
CS
4959 /*
4960 * If the active LSM wants to access the inode during
4961 * d_instantiate it needs these. Smack checks to see
4962 * if the filesystem supports xattrs by looking at the
4963 * ops vector.
4964 */
4965
4966 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4967 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4968 if (err)
4969 drop_inode = 1;
4970 else {
618e21d5 4971 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4972 btrfs_update_inode(trans, root, inode);
08c422c2 4973 d_instantiate(dentry, inode);
618e21d5 4974 }
618e21d5 4975out_unlock:
7ad85bb7 4976 btrfs_end_transaction(trans, root);
b53d3f5d 4977 btrfs_btree_balance_dirty(root);
618e21d5
JB
4978 if (drop_inode) {
4979 inode_dec_link_count(inode);
4980 iput(inode);
4981 }
618e21d5
JB
4982 return err;
4983}
4984
39279cc3 4985static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 4986 umode_t mode, bool excl)
39279cc3
CM
4987{
4988 struct btrfs_trans_handle *trans;
4989 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4990 struct inode *inode = NULL;
43baa579 4991 int drop_inode_on_err = 0;
a22285a6 4992 int err;
39279cc3 4993 u64 objectid;
00e4e6b3 4994 u64 index = 0;
39279cc3 4995
9ed74f2d
JB
4996 /*
4997 * 2 for inode item and ref
4998 * 2 for dir items
4999 * 1 for xattr if selinux is on
5000 */
a22285a6
YZ
5001 trans = btrfs_start_transaction(root, 5);
5002 if (IS_ERR(trans))
5003 return PTR_ERR(trans);
9ed74f2d 5004
581bb050
LZ
5005 err = btrfs_find_free_ino(root, &objectid);
5006 if (err)
5007 goto out_unlock;
5008
aec7477b 5009 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5010 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5011 mode, &index);
7cf96da3
TI
5012 if (IS_ERR(inode)) {
5013 err = PTR_ERR(inode);
39279cc3 5014 goto out_unlock;
7cf96da3 5015 }
43baa579 5016 drop_inode_on_err = 1;
39279cc3 5017
2a7dba39 5018 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5019 if (err)
33268eaf 5020 goto out_unlock;
33268eaf 5021
ad19db71
CS
5022 /*
5023 * If the active LSM wants to access the inode during
5024 * d_instantiate it needs these. Smack checks to see
5025 * if the filesystem supports xattrs by looking at the
5026 * ops vector.
5027 */
5028 inode->i_fop = &btrfs_file_operations;
5029 inode->i_op = &btrfs_file_inode_operations;
5030
a1b075d2 5031 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5032 if (err)
43baa579
FB
5033 goto out_unlock;
5034
5035 inode->i_mapping->a_ops = &btrfs_aops;
5036 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5037 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5038 d_instantiate(dentry, inode);
5039
39279cc3 5040out_unlock:
7ad85bb7 5041 btrfs_end_transaction(trans, root);
43baa579 5042 if (err && drop_inode_on_err) {
39279cc3
CM
5043 inode_dec_link_count(inode);
5044 iput(inode);
5045 }
b53d3f5d 5046 btrfs_btree_balance_dirty(root);
39279cc3
CM
5047 return err;
5048}
5049
5050static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5051 struct dentry *dentry)
5052{
5053 struct btrfs_trans_handle *trans;
5054 struct btrfs_root *root = BTRFS_I(dir)->root;
5055 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5056 u64 index;
39279cc3
CM
5057 int err;
5058 int drop_inode = 0;
5059
4a8be425
TH
5060 /* do not allow sys_link's with other subvols of the same device */
5061 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5062 return -EXDEV;
4a8be425 5063
f186373f 5064 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5065 return -EMLINK;
4a8be425 5066
3de4586c 5067 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5068 if (err)
5069 goto fail;
5070
a22285a6 5071 /*
7e6b6465 5072 * 2 items for inode and inode ref
a22285a6 5073 * 2 items for dir items
7e6b6465 5074 * 1 item for parent inode
a22285a6 5075 */
7e6b6465 5076 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5077 if (IS_ERR(trans)) {
5078 err = PTR_ERR(trans);
5079 goto fail;
5080 }
5f39d397 5081
3153495d 5082 btrfs_inc_nlink(inode);
0c4d2d95 5083 inode_inc_iversion(inode);
3153495d 5084 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5085 ihold(inode);
aec7477b 5086
a1b075d2 5087 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5088
a5719521 5089 if (err) {
54aa1f4d 5090 drop_inode = 1;
a5719521 5091 } else {
10d9f309 5092 struct dentry *parent = dentry->d_parent;
a5719521 5093 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5094 if (err)
5095 goto fail;
08c422c2 5096 d_instantiate(dentry, inode);
6a912213 5097 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5098 }
39279cc3 5099
7ad85bb7 5100 btrfs_end_transaction(trans, root);
1832a6d5 5101fail:
39279cc3
CM
5102 if (drop_inode) {
5103 inode_dec_link_count(inode);
5104 iput(inode);
5105 }
b53d3f5d 5106 btrfs_btree_balance_dirty(root);
39279cc3
CM
5107 return err;
5108}
5109
18bb1db3 5110static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5111{
b9d86667 5112 struct inode *inode = NULL;
39279cc3
CM
5113 struct btrfs_trans_handle *trans;
5114 struct btrfs_root *root = BTRFS_I(dir)->root;
5115 int err = 0;
5116 int drop_on_err = 0;
b9d86667 5117 u64 objectid = 0;
00e4e6b3 5118 u64 index = 0;
39279cc3 5119
9ed74f2d
JB
5120 /*
5121 * 2 items for inode and ref
5122 * 2 items for dir items
5123 * 1 for xattr if selinux is on
5124 */
a22285a6
YZ
5125 trans = btrfs_start_transaction(root, 5);
5126 if (IS_ERR(trans))
5127 return PTR_ERR(trans);
39279cc3 5128
581bb050
LZ
5129 err = btrfs_find_free_ino(root, &objectid);
5130 if (err)
5131 goto out_fail;
5132
aec7477b 5133 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5134 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5135 S_IFDIR | mode, &index);
39279cc3
CM
5136 if (IS_ERR(inode)) {
5137 err = PTR_ERR(inode);
5138 goto out_fail;
5139 }
5f39d397 5140
39279cc3 5141 drop_on_err = 1;
33268eaf 5142
2a7dba39 5143 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5144 if (err)
5145 goto out_fail;
5146
39279cc3
CM
5147 inode->i_op = &btrfs_dir_inode_operations;
5148 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5149
dbe674a9 5150 btrfs_i_size_write(inode, 0);
39279cc3
CM
5151 err = btrfs_update_inode(trans, root, inode);
5152 if (err)
5153 goto out_fail;
5f39d397 5154
a1b075d2
JB
5155 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5156 dentry->d_name.len, 0, index);
39279cc3
CM
5157 if (err)
5158 goto out_fail;
5f39d397 5159
39279cc3
CM
5160 d_instantiate(dentry, inode);
5161 drop_on_err = 0;
39279cc3
CM
5162
5163out_fail:
7ad85bb7 5164 btrfs_end_transaction(trans, root);
39279cc3
CM
5165 if (drop_on_err)
5166 iput(inode);
b53d3f5d 5167 btrfs_btree_balance_dirty(root);
39279cc3
CM
5168 return err;
5169}
5170
d352ac68
CM
5171/* helper for btfs_get_extent. Given an existing extent in the tree,
5172 * and an extent that you want to insert, deal with overlap and insert
5173 * the new extent into the tree.
5174 */
3b951516
CM
5175static int merge_extent_mapping(struct extent_map_tree *em_tree,
5176 struct extent_map *existing,
e6dcd2dc
CM
5177 struct extent_map *em,
5178 u64 map_start, u64 map_len)
3b951516
CM
5179{
5180 u64 start_diff;
3b951516 5181
e6dcd2dc
CM
5182 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5183 start_diff = map_start - em->start;
5184 em->start = map_start;
5185 em->len = map_len;
c8b97818
CM
5186 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5187 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5188 em->block_start += start_diff;
c8b97818
CM
5189 em->block_len -= start_diff;
5190 }
e6dcd2dc 5191 return add_extent_mapping(em_tree, em);
3b951516
CM
5192}
5193
c8b97818
CM
5194static noinline int uncompress_inline(struct btrfs_path *path,
5195 struct inode *inode, struct page *page,
5196 size_t pg_offset, u64 extent_offset,
5197 struct btrfs_file_extent_item *item)
5198{
5199 int ret;
5200 struct extent_buffer *leaf = path->nodes[0];
5201 char *tmp;
5202 size_t max_size;
5203 unsigned long inline_size;
5204 unsigned long ptr;
261507a0 5205 int compress_type;
c8b97818
CM
5206
5207 WARN_ON(pg_offset != 0);
261507a0 5208 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5209 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5210 inline_size = btrfs_file_extent_inline_item_len(leaf,
5211 btrfs_item_nr(leaf, path->slots[0]));
5212 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5213 if (!tmp)
5214 return -ENOMEM;
c8b97818
CM
5215 ptr = btrfs_file_extent_inline_start(item);
5216
5217 read_extent_buffer(leaf, tmp, ptr, inline_size);
5218
5b050f04 5219 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5220 ret = btrfs_decompress(compress_type, tmp, page,
5221 extent_offset, inline_size, max_size);
c8b97818 5222 if (ret) {
7ac687d9 5223 char *kaddr = kmap_atomic(page);
c8b97818
CM
5224 unsigned long copy_size = min_t(u64,
5225 PAGE_CACHE_SIZE - pg_offset,
5226 max_size - extent_offset);
5227 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5228 kunmap_atomic(kaddr);
c8b97818
CM
5229 }
5230 kfree(tmp);
5231 return 0;
5232}
5233
d352ac68
CM
5234/*
5235 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5236 * the ugly parts come from merging extents from the disk with the in-ram
5237 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5238 * where the in-ram extents might be locked pending data=ordered completion.
5239 *
5240 * This also copies inline extents directly into the page.
5241 */
d397712b 5242
a52d9a80 5243struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5244 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5245 int create)
5246{
5247 int ret;
5248 int err = 0;
db94535d 5249 u64 bytenr;
a52d9a80
CM
5250 u64 extent_start = 0;
5251 u64 extent_end = 0;
33345d01 5252 u64 objectid = btrfs_ino(inode);
a52d9a80 5253 u32 found_type;
f421950f 5254 struct btrfs_path *path = NULL;
a52d9a80
CM
5255 struct btrfs_root *root = BTRFS_I(inode)->root;
5256 struct btrfs_file_extent_item *item;
5f39d397
CM
5257 struct extent_buffer *leaf;
5258 struct btrfs_key found_key;
a52d9a80
CM
5259 struct extent_map *em = NULL;
5260 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5261 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5262 struct btrfs_trans_handle *trans = NULL;
261507a0 5263 int compress_type;
a52d9a80 5264
a52d9a80 5265again:
890871be 5266 read_lock(&em_tree->lock);
d1310b2e 5267 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5268 if (em)
5269 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5270 read_unlock(&em_tree->lock);
d1310b2e 5271
a52d9a80 5272 if (em) {
e1c4b745
CM
5273 if (em->start > start || em->start + em->len <= start)
5274 free_extent_map(em);
5275 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5276 free_extent_map(em);
5277 else
5278 goto out;
a52d9a80 5279 }
172ddd60 5280 em = alloc_extent_map();
a52d9a80 5281 if (!em) {
d1310b2e
CM
5282 err = -ENOMEM;
5283 goto out;
a52d9a80 5284 }
e6dcd2dc 5285 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5286 em->start = EXTENT_MAP_HOLE;
445a6944 5287 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5288 em->len = (u64)-1;
c8b97818 5289 em->block_len = (u64)-1;
f421950f
CM
5290
5291 if (!path) {
5292 path = btrfs_alloc_path();
026fd317
JB
5293 if (!path) {
5294 err = -ENOMEM;
5295 goto out;
5296 }
5297 /*
5298 * Chances are we'll be called again, so go ahead and do
5299 * readahead
5300 */
5301 path->reada = 1;
f421950f
CM
5302 }
5303
179e29e4
CM
5304 ret = btrfs_lookup_file_extent(trans, root, path,
5305 objectid, start, trans != NULL);
a52d9a80
CM
5306 if (ret < 0) {
5307 err = ret;
5308 goto out;
5309 }
5310
5311 if (ret != 0) {
5312 if (path->slots[0] == 0)
5313 goto not_found;
5314 path->slots[0]--;
5315 }
5316
5f39d397
CM
5317 leaf = path->nodes[0];
5318 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5319 struct btrfs_file_extent_item);
a52d9a80 5320 /* are we inside the extent that was found? */
5f39d397
CM
5321 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5322 found_type = btrfs_key_type(&found_key);
5323 if (found_key.objectid != objectid ||
a52d9a80
CM
5324 found_type != BTRFS_EXTENT_DATA_KEY) {
5325 goto not_found;
5326 }
5327
5f39d397
CM
5328 found_type = btrfs_file_extent_type(leaf, item);
5329 extent_start = found_key.offset;
261507a0 5330 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5331 if (found_type == BTRFS_FILE_EXTENT_REG ||
5332 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5333 extent_end = extent_start +
db94535d 5334 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5335 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5336 size_t size;
5337 size = btrfs_file_extent_inline_len(leaf, item);
5338 extent_end = (extent_start + size + root->sectorsize - 1) &
5339 ~((u64)root->sectorsize - 1);
5340 }
5341
5342 if (start >= extent_end) {
5343 path->slots[0]++;
5344 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5345 ret = btrfs_next_leaf(root, path);
5346 if (ret < 0) {
5347 err = ret;
5348 goto out;
a52d9a80 5349 }
9036c102
YZ
5350 if (ret > 0)
5351 goto not_found;
5352 leaf = path->nodes[0];
a52d9a80 5353 }
9036c102
YZ
5354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5355 if (found_key.objectid != objectid ||
5356 found_key.type != BTRFS_EXTENT_DATA_KEY)
5357 goto not_found;
5358 if (start + len <= found_key.offset)
5359 goto not_found;
5360 em->start = start;
5361 em->len = found_key.offset - start;
5362 goto not_found_em;
5363 }
5364
d899e052
YZ
5365 if (found_type == BTRFS_FILE_EXTENT_REG ||
5366 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5367 em->start = extent_start;
5368 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5369 em->orig_start = extent_start -
5370 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5371 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5372 if (bytenr == 0) {
5f39d397 5373 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5374 goto insert;
5375 }
261507a0 5376 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5377 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5378 em->compress_type = compress_type;
c8b97818
CM
5379 em->block_start = bytenr;
5380 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5381 item);
5382 } else {
5383 bytenr += btrfs_file_extent_offset(leaf, item);
5384 em->block_start = bytenr;
5385 em->block_len = em->len;
d899e052
YZ
5386 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5387 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5388 }
a52d9a80
CM
5389 goto insert;
5390 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5391 unsigned long ptr;
a52d9a80 5392 char *map;
3326d1b0
CM
5393 size_t size;
5394 size_t extent_offset;
5395 size_t copy_size;
a52d9a80 5396
689f9346 5397 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5398 if (!page || create) {
689f9346 5399 em->start = extent_start;
9036c102 5400 em->len = extent_end - extent_start;
689f9346
Y
5401 goto out;
5402 }
5f39d397 5403
9036c102
YZ
5404 size = btrfs_file_extent_inline_len(leaf, item);
5405 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5406 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5407 size - extent_offset);
3326d1b0 5408 em->start = extent_start + extent_offset;
70dec807
CM
5409 em->len = (copy_size + root->sectorsize - 1) &
5410 ~((u64)root->sectorsize - 1);
ff5b7ee3 5411 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5412 if (compress_type) {
c8b97818 5413 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5414 em->compress_type = compress_type;
5415 }
689f9346 5416 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5417 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5418 if (btrfs_file_extent_compression(leaf, item) !=
5419 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5420 ret = uncompress_inline(path, inode, page,
5421 pg_offset,
5422 extent_offset, item);
79787eaa 5423 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5424 } else {
5425 map = kmap(page);
5426 read_extent_buffer(leaf, map + pg_offset, ptr,
5427 copy_size);
93c82d57
CM
5428 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5429 memset(map + pg_offset + copy_size, 0,
5430 PAGE_CACHE_SIZE - pg_offset -
5431 copy_size);
5432 }
c8b97818
CM
5433 kunmap(page);
5434 }
179e29e4
CM
5435 flush_dcache_page(page);
5436 } else if (create && PageUptodate(page)) {
6bf7e080 5437 BUG();
179e29e4
CM
5438 if (!trans) {
5439 kunmap(page);
5440 free_extent_map(em);
5441 em = NULL;
ff5714cc 5442
b3b4aa74 5443 btrfs_release_path(path);
7a7eaa40 5444 trans = btrfs_join_transaction(root);
ff5714cc 5445
3612b495
TI
5446 if (IS_ERR(trans))
5447 return ERR_CAST(trans);
179e29e4
CM
5448 goto again;
5449 }
c8b97818 5450 map = kmap(page);
70dec807 5451 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5452 copy_size);
c8b97818 5453 kunmap(page);
179e29e4 5454 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5455 }
d1310b2e 5456 set_extent_uptodate(io_tree, em->start,
507903b8 5457 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5458 goto insert;
5459 } else {
31b1a2bd 5460 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5461 }
5462not_found:
5463 em->start = start;
d1310b2e 5464 em->len = len;
a52d9a80 5465not_found_em:
5f39d397 5466 em->block_start = EXTENT_MAP_HOLE;
9036c102 5467 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5468insert:
b3b4aa74 5469 btrfs_release_path(path);
d1310b2e 5470 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5471 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5472 "[%llu %llu]\n", (unsigned long long)em->start,
5473 (unsigned long long)em->len,
5474 (unsigned long long)start,
5475 (unsigned long long)len);
a52d9a80
CM
5476 err = -EIO;
5477 goto out;
5478 }
d1310b2e
CM
5479
5480 err = 0;
890871be 5481 write_lock(&em_tree->lock);
a52d9a80 5482 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5483 /* it is possible that someone inserted the extent into the tree
5484 * while we had the lock dropped. It is also possible that
5485 * an overlapping map exists in the tree
5486 */
a52d9a80 5487 if (ret == -EEXIST) {
3b951516 5488 struct extent_map *existing;
e6dcd2dc
CM
5489
5490 ret = 0;
5491
3b951516 5492 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5493 if (existing && (existing->start > start ||
5494 existing->start + existing->len <= start)) {
5495 free_extent_map(existing);
5496 existing = NULL;
5497 }
3b951516
CM
5498 if (!existing) {
5499 existing = lookup_extent_mapping(em_tree, em->start,
5500 em->len);
5501 if (existing) {
5502 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5503 em, start,
5504 root->sectorsize);
3b951516
CM
5505 free_extent_map(existing);
5506 if (err) {
5507 free_extent_map(em);
5508 em = NULL;
5509 }
5510 } else {
5511 err = -EIO;
3b951516
CM
5512 free_extent_map(em);
5513 em = NULL;
5514 }
5515 } else {
5516 free_extent_map(em);
5517 em = existing;
e6dcd2dc 5518 err = 0;
a52d9a80 5519 }
a52d9a80 5520 }
890871be 5521 write_unlock(&em_tree->lock);
a52d9a80 5522out:
1abe9b8a 5523
f0bd95ea
TI
5524 if (em)
5525 trace_btrfs_get_extent(root, em);
1abe9b8a 5526
f421950f
CM
5527 if (path)
5528 btrfs_free_path(path);
a52d9a80
CM
5529 if (trans) {
5530 ret = btrfs_end_transaction(trans, root);
d397712b 5531 if (!err)
a52d9a80
CM
5532 err = ret;
5533 }
a52d9a80
CM
5534 if (err) {
5535 free_extent_map(em);
a52d9a80
CM
5536 return ERR_PTR(err);
5537 }
79787eaa 5538 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5539 return em;
5540}
5541
ec29ed5b
CM
5542struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5543 size_t pg_offset, u64 start, u64 len,
5544 int create)
5545{
5546 struct extent_map *em;
5547 struct extent_map *hole_em = NULL;
5548 u64 range_start = start;
5549 u64 end;
5550 u64 found;
5551 u64 found_end;
5552 int err = 0;
5553
5554 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5555 if (IS_ERR(em))
5556 return em;
5557 if (em) {
5558 /*
5559 * if our em maps to a hole, there might
5560 * actually be delalloc bytes behind it
5561 */
5562 if (em->block_start != EXTENT_MAP_HOLE)
5563 return em;
5564 else
5565 hole_em = em;
5566 }
5567
5568 /* check to see if we've wrapped (len == -1 or similar) */
5569 end = start + len;
5570 if (end < start)
5571 end = (u64)-1;
5572 else
5573 end -= 1;
5574
5575 em = NULL;
5576
5577 /* ok, we didn't find anything, lets look for delalloc */
5578 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5579 end, len, EXTENT_DELALLOC, 1);
5580 found_end = range_start + found;
5581 if (found_end < range_start)
5582 found_end = (u64)-1;
5583
5584 /*
5585 * we didn't find anything useful, return
5586 * the original results from get_extent()
5587 */
5588 if (range_start > end || found_end <= start) {
5589 em = hole_em;
5590 hole_em = NULL;
5591 goto out;
5592 }
5593
5594 /* adjust the range_start to make sure it doesn't
5595 * go backwards from the start they passed in
5596 */
5597 range_start = max(start,range_start);
5598 found = found_end - range_start;
5599
5600 if (found > 0) {
5601 u64 hole_start = start;
5602 u64 hole_len = len;
5603
172ddd60 5604 em = alloc_extent_map();
ec29ed5b
CM
5605 if (!em) {
5606 err = -ENOMEM;
5607 goto out;
5608 }
5609 /*
5610 * when btrfs_get_extent can't find anything it
5611 * returns one huge hole
5612 *
5613 * make sure what it found really fits our range, and
5614 * adjust to make sure it is based on the start from
5615 * the caller
5616 */
5617 if (hole_em) {
5618 u64 calc_end = extent_map_end(hole_em);
5619
5620 if (calc_end <= start || (hole_em->start > end)) {
5621 free_extent_map(hole_em);
5622 hole_em = NULL;
5623 } else {
5624 hole_start = max(hole_em->start, start);
5625 hole_len = calc_end - hole_start;
5626 }
5627 }
5628 em->bdev = NULL;
5629 if (hole_em && range_start > hole_start) {
5630 /* our hole starts before our delalloc, so we
5631 * have to return just the parts of the hole
5632 * that go until the delalloc starts
5633 */
5634 em->len = min(hole_len,
5635 range_start - hole_start);
5636 em->start = hole_start;
5637 em->orig_start = hole_start;
5638 /*
5639 * don't adjust block start at all,
5640 * it is fixed at EXTENT_MAP_HOLE
5641 */
5642 em->block_start = hole_em->block_start;
5643 em->block_len = hole_len;
5644 } else {
5645 em->start = range_start;
5646 em->len = found;
5647 em->orig_start = range_start;
5648 em->block_start = EXTENT_MAP_DELALLOC;
5649 em->block_len = found;
5650 }
5651 } else if (hole_em) {
5652 return hole_em;
5653 }
5654out:
5655
5656 free_extent_map(hole_em);
5657 if (err) {
5658 free_extent_map(em);
5659 return ERR_PTR(err);
5660 }
5661 return em;
5662}
5663
4b46fce2 5664static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5665 struct extent_map *em,
4b46fce2
JB
5666 u64 start, u64 len)
5667{
5668 struct btrfs_root *root = BTRFS_I(inode)->root;
5669 struct btrfs_trans_handle *trans;
4b46fce2
JB
5670 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5671 struct btrfs_key ins;
5672 u64 alloc_hint;
5673 int ret;
16d299ac 5674 bool insert = false;
4b46fce2 5675
16d299ac
JB
5676 /*
5677 * Ok if the extent map we looked up is a hole and is for the exact
5678 * range we want, there is no reason to allocate a new one, however if
5679 * it is not right then we need to free this one and drop the cache for
5680 * our range.
5681 */
5682 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5683 em->len != len) {
5684 free_extent_map(em);
5685 em = NULL;
5686 insert = true;
5687 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5688 }
4b46fce2 5689
7a7eaa40 5690 trans = btrfs_join_transaction(root);
3612b495
TI
5691 if (IS_ERR(trans))
5692 return ERR_CAST(trans);
4b46fce2
JB
5693
5694 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5695
5696 alloc_hint = get_extent_allocation_hint(inode, start, len);
5697 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5698 alloc_hint, &ins, 1);
4b46fce2
JB
5699 if (ret) {
5700 em = ERR_PTR(ret);
5701 goto out;
5702 }
5703
4b46fce2 5704 if (!em) {
172ddd60 5705 em = alloc_extent_map();
16d299ac
JB
5706 if (!em) {
5707 em = ERR_PTR(-ENOMEM);
5708 goto out;
5709 }
4b46fce2
JB
5710 }
5711
5712 em->start = start;
5713 em->orig_start = em->start;
5714 em->len = ins.offset;
5715
5716 em->block_start = ins.objectid;
5717 em->block_len = ins.offset;
5718 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5719
5720 /*
5721 * We need to do this because if we're using the original em we searched
5722 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5723 */
5724 em->flags = 0;
4b46fce2
JB
5725 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5726
16d299ac 5727 while (insert) {
4b46fce2
JB
5728 write_lock(&em_tree->lock);
5729 ret = add_extent_mapping(em_tree, em);
5730 write_unlock(&em_tree->lock);
5731 if (ret != -EEXIST)
5732 break;
5733 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5734 }
5735
5736 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5737 ins.offset, ins.offset, 0);
5738 if (ret) {
5739 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5740 em = ERR_PTR(ret);
5741 }
5742out:
5743 btrfs_end_transaction(trans, root);
5744 return em;
5745}
5746
46bfbb5c
CM
5747/*
5748 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5749 * block must be cow'd
5750 */
5751static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5752 struct inode *inode, u64 offset, u64 len)
5753{
5754 struct btrfs_path *path;
5755 int ret;
5756 struct extent_buffer *leaf;
5757 struct btrfs_root *root = BTRFS_I(inode)->root;
5758 struct btrfs_file_extent_item *fi;
5759 struct btrfs_key key;
5760 u64 disk_bytenr;
5761 u64 backref_offset;
5762 u64 extent_end;
5763 u64 num_bytes;
5764 int slot;
5765 int found_type;
5766
5767 path = btrfs_alloc_path();
5768 if (!path)
5769 return -ENOMEM;
5770
33345d01 5771 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5772 offset, 0);
5773 if (ret < 0)
5774 goto out;
5775
5776 slot = path->slots[0];
5777 if (ret == 1) {
5778 if (slot == 0) {
5779 /* can't find the item, must cow */
5780 ret = 0;
5781 goto out;
5782 }
5783 slot--;
5784 }
5785 ret = 0;
5786 leaf = path->nodes[0];
5787 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5788 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5789 key.type != BTRFS_EXTENT_DATA_KEY) {
5790 /* not our file or wrong item type, must cow */
5791 goto out;
5792 }
5793
5794 if (key.offset > offset) {
5795 /* Wrong offset, must cow */
5796 goto out;
5797 }
5798
5799 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5800 found_type = btrfs_file_extent_type(leaf, fi);
5801 if (found_type != BTRFS_FILE_EXTENT_REG &&
5802 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5803 /* not a regular extent, must cow */
5804 goto out;
5805 }
5806 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5807 backref_offset = btrfs_file_extent_offset(leaf, fi);
5808
5809 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5810 if (extent_end < offset + len) {
5811 /* extent doesn't include our full range, must cow */
5812 goto out;
5813 }
5814
5815 if (btrfs_extent_readonly(root, disk_bytenr))
5816 goto out;
5817
5818 /*
5819 * look for other files referencing this extent, if we
5820 * find any we must cow
5821 */
33345d01 5822 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5823 key.offset - backref_offset, disk_bytenr))
5824 goto out;
5825
5826 /*
5827 * adjust disk_bytenr and num_bytes to cover just the bytes
5828 * in this extent we are about to write. If there
5829 * are any csums in that range we have to cow in order
5830 * to keep the csums correct
5831 */
5832 disk_bytenr += backref_offset;
5833 disk_bytenr += offset - key.offset;
5834 num_bytes = min(offset + len, extent_end) - offset;
5835 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5836 goto out;
5837 /*
5838 * all of the above have passed, it is safe to overwrite this extent
5839 * without cow
5840 */
5841 ret = 1;
5842out:
5843 btrfs_free_path(path);
5844 return ret;
5845}
5846
eb838e73
JB
5847static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5848 struct extent_state **cached_state, int writing)
5849{
5850 struct btrfs_ordered_extent *ordered;
5851 int ret = 0;
5852
5853 while (1) {
5854 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5855 0, cached_state);
5856 /*
5857 * We're concerned with the entire range that we're going to be
5858 * doing DIO to, so we need to make sure theres no ordered
5859 * extents in this range.
5860 */
5861 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5862 lockend - lockstart + 1);
5863
5864 /*
5865 * We need to make sure there are no buffered pages in this
5866 * range either, we could have raced between the invalidate in
5867 * generic_file_direct_write and locking the extent. The
5868 * invalidate needs to happen so that reads after a write do not
5869 * get stale data.
5870 */
5871 if (!ordered && (!writing ||
5872 !test_range_bit(&BTRFS_I(inode)->io_tree,
5873 lockstart, lockend, EXTENT_UPTODATE, 0,
5874 *cached_state)))
5875 break;
5876
5877 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5878 cached_state, GFP_NOFS);
5879
5880 if (ordered) {
5881 btrfs_start_ordered_extent(inode, ordered, 1);
5882 btrfs_put_ordered_extent(ordered);
5883 } else {
5884 /* Screw you mmap */
5885 ret = filemap_write_and_wait_range(inode->i_mapping,
5886 lockstart,
5887 lockend);
5888 if (ret)
5889 break;
5890
5891 /*
5892 * If we found a page that couldn't be invalidated just
5893 * fall back to buffered.
5894 */
5895 ret = invalidate_inode_pages2_range(inode->i_mapping,
5896 lockstart >> PAGE_CACHE_SHIFT,
5897 lockend >> PAGE_CACHE_SHIFT);
5898 if (ret)
5899 break;
5900 }
5901
5902 cond_resched();
5903 }
5904
5905 return ret;
5906}
5907
69ffb543
JB
5908static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5909 u64 len, u64 orig_start,
5910 u64 block_start, u64 block_len,
5911 int type)
5912{
5913 struct extent_map_tree *em_tree;
5914 struct extent_map *em;
5915 struct btrfs_root *root = BTRFS_I(inode)->root;
5916 int ret;
5917
5918 em_tree = &BTRFS_I(inode)->extent_tree;
5919 em = alloc_extent_map();
5920 if (!em)
5921 return ERR_PTR(-ENOMEM);
5922
5923 em->start = start;
5924 em->orig_start = orig_start;
5925 em->len = len;
5926 em->block_len = block_len;
5927 em->block_start = block_start;
5928 em->bdev = root->fs_info->fs_devices->latest_bdev;
5929 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5930 if (type == BTRFS_ORDERED_PREALLOC)
5931 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5932
5933 do {
5934 btrfs_drop_extent_cache(inode, em->start,
5935 em->start + em->len - 1, 0);
5936 write_lock(&em_tree->lock);
5937 ret = add_extent_mapping(em_tree, em);
5938 write_unlock(&em_tree->lock);
5939 } while (ret == -EEXIST);
5940
5941 if (ret) {
5942 free_extent_map(em);
5943 return ERR_PTR(ret);
5944 }
5945
5946 return em;
5947}
5948
5949
4b46fce2
JB
5950static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5951 struct buffer_head *bh_result, int create)
5952{
5953 struct extent_map *em;
5954 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 5955 struct extent_state *cached_state = NULL;
4b46fce2 5956 u64 start = iblock << inode->i_blkbits;
eb838e73 5957 u64 lockstart, lockend;
4b46fce2 5958 u64 len = bh_result->b_size;
46bfbb5c 5959 struct btrfs_trans_handle *trans;
eb838e73
JB
5960 int unlock_bits = EXTENT_LOCKED;
5961 int ret;
5962
eb838e73
JB
5963 if (create) {
5964 ret = btrfs_delalloc_reserve_space(inode, len);
5965 if (ret)
5966 return ret;
5967 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
c329861d
JB
5968 } else {
5969 len = min_t(u64, len, root->sectorsize);
eb838e73
JB
5970 }
5971
c329861d
JB
5972 lockstart = start;
5973 lockend = start + len - 1;
5974
eb838e73
JB
5975 /*
5976 * If this errors out it's because we couldn't invalidate pagecache for
5977 * this range and we need to fallback to buffered.
5978 */
5979 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5980 return -ENOTBLK;
5981
5982 if (create) {
5983 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5984 lockend, EXTENT_DELALLOC, NULL,
5985 &cached_state, GFP_NOFS);
5986 if (ret)
5987 goto unlock_err;
5988 }
4b46fce2
JB
5989
5990 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
5991 if (IS_ERR(em)) {
5992 ret = PTR_ERR(em);
5993 goto unlock_err;
5994 }
4b46fce2
JB
5995
5996 /*
5997 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5998 * io. INLINE is special, and we could probably kludge it in here, but
5999 * it's still buffered so for safety lets just fall back to the generic
6000 * buffered path.
6001 *
6002 * For COMPRESSED we _have_ to read the entire extent in so we can
6003 * decompress it, so there will be buffering required no matter what we
6004 * do, so go ahead and fallback to buffered.
6005 *
6006 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6007 * to buffered IO. Don't blame me, this is the price we pay for using
6008 * the generic code.
6009 */
6010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6011 em->block_start == EXTENT_MAP_INLINE) {
6012 free_extent_map(em);
eb838e73
JB
6013 ret = -ENOTBLK;
6014 goto unlock_err;
4b46fce2
JB
6015 }
6016
6017 /* Just a good old fashioned hole, return */
6018 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6019 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6020 free_extent_map(em);
eb838e73
JB
6021 ret = 0;
6022 goto unlock_err;
4b46fce2
JB
6023 }
6024
6025 /*
6026 * We don't allocate a new extent in the following cases
6027 *
6028 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6029 * existing extent.
6030 * 2) The extent is marked as PREALLOC. We're good to go here and can
6031 * just use the extent.
6032 *
6033 */
46bfbb5c 6034 if (!create) {
eb838e73
JB
6035 len = min(len, em->len - (start - em->start));
6036 lockstart = start + len;
6037 goto unlock;
46bfbb5c 6038 }
4b46fce2
JB
6039
6040 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6041 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6042 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6043 int type;
6044 int ret;
46bfbb5c 6045 u64 block_start;
4b46fce2
JB
6046
6047 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6048 type = BTRFS_ORDERED_PREALLOC;
6049 else
6050 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6051 len = min(len, em->len - (start - em->start));
4b46fce2 6052 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6053
6054 /*
6055 * we're not going to log anything, but we do need
6056 * to make sure the current transaction stays open
6057 * while we look for nocow cross refs
6058 */
7a7eaa40 6059 trans = btrfs_join_transaction(root);
3612b495 6060 if (IS_ERR(trans))
46bfbb5c
CM
6061 goto must_cow;
6062
6063 if (can_nocow_odirect(trans, inode, start, len) == 1) {
69ffb543
JB
6064 u64 orig_start = em->start;
6065
6066 if (type == BTRFS_ORDERED_PREALLOC) {
6067 free_extent_map(em);
6068 em = create_pinned_em(inode, start, len,
6069 orig_start,
6070 block_start, len, type);
6071 if (IS_ERR(em)) {
6072 btrfs_end_transaction(trans, root);
6073 goto unlock_err;
6074 }
6075 }
6076
46bfbb5c
CM
6077 ret = btrfs_add_ordered_extent_dio(inode, start,
6078 block_start, len, len, type);
6079 btrfs_end_transaction(trans, root);
6080 if (ret) {
6081 free_extent_map(em);
eb838e73 6082 goto unlock_err;
46bfbb5c
CM
6083 }
6084 goto unlock;
4b46fce2 6085 }
46bfbb5c 6086 btrfs_end_transaction(trans, root);
4b46fce2 6087 }
46bfbb5c
CM
6088must_cow:
6089 /*
6090 * this will cow the extent, reset the len in case we changed
6091 * it above
6092 */
6093 len = bh_result->b_size;
16d299ac 6094 em = btrfs_new_extent_direct(inode, em, start, len);
eb838e73
JB
6095 if (IS_ERR(em)) {
6096 ret = PTR_ERR(em);
6097 goto unlock_err;
6098 }
46bfbb5c
CM
6099 len = min(len, em->len - (start - em->start));
6100unlock:
4b46fce2
JB
6101 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6102 inode->i_blkbits;
46bfbb5c 6103 bh_result->b_size = len;
4b46fce2
JB
6104 bh_result->b_bdev = em->bdev;
6105 set_buffer_mapped(bh_result);
c3473e83
JB
6106 if (create) {
6107 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6108 set_buffer_new(bh_result);
6109
6110 /*
6111 * Need to update the i_size under the extent lock so buffered
6112 * readers will get the updated i_size when we unlock.
6113 */
6114 if (start + len > i_size_read(inode))
6115 i_size_write(inode, start + len);
6116 }
4b46fce2 6117
eb838e73
JB
6118 /*
6119 * In the case of write we need to clear and unlock the entire range,
6120 * in the case of read we need to unlock only the end area that we
6121 * aren't using if there is any left over space.
6122 */
24c03fa5
LB
6123 if (lockstart < lockend) {
6124 if (create && len < lockend - lockstart) {
6125 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
9e8a4a8b
LB
6126 lockstart + len - 1,
6127 unlock_bits | EXTENT_DEFRAG, 1, 0,
24c03fa5
LB
6128 &cached_state, GFP_NOFS);
6129 /*
6130 * Beside unlock, we also need to cleanup reserved space
6131 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6132 */
6133 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6134 lockstart + len, lockend,
9e8a4a8b
LB
6135 unlock_bits | EXTENT_DO_ACCOUNTING |
6136 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
24c03fa5
LB
6137 } else {
6138 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6139 lockend, unlock_bits, 1, 0,
6140 &cached_state, GFP_NOFS);
6141 }
6142 } else {
eb838e73 6143 free_extent_state(cached_state);
24c03fa5 6144 }
eb838e73 6145
4b46fce2
JB
6146 free_extent_map(em);
6147
6148 return 0;
eb838e73
JB
6149
6150unlock_err:
6151 if (create)
6152 unlock_bits |= EXTENT_DO_ACCOUNTING;
6153
6154 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6155 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6156 return ret;
4b46fce2
JB
6157}
6158
6159struct btrfs_dio_private {
6160 struct inode *inode;
6161 u64 logical_offset;
6162 u64 disk_bytenr;
6163 u64 bytes;
4b46fce2 6164 void *private;
e65e1535
MX
6165
6166 /* number of bios pending for this dio */
6167 atomic_t pending_bios;
6168
6169 /* IO errors */
6170 int errors;
6171
6172 struct bio *orig_bio;
4b46fce2
JB
6173};
6174
6175static void btrfs_endio_direct_read(struct bio *bio, int err)
6176{
e65e1535 6177 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6178 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6179 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6180 struct inode *inode = dip->inode;
6181 struct btrfs_root *root = BTRFS_I(inode)->root;
6182 u64 start;
4b46fce2
JB
6183
6184 start = dip->logical_offset;
6185 do {
6186 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6187 struct page *page = bvec->bv_page;
6188 char *kaddr;
6189 u32 csum = ~(u32)0;
c329861d 6190 u64 private = ~(u32)0;
4b46fce2
JB
6191 unsigned long flags;
6192
c329861d
JB
6193 if (get_state_private(&BTRFS_I(inode)->io_tree,
6194 start, &private))
6195 goto failed;
4b46fce2 6196 local_irq_save(flags);
7ac687d9 6197 kaddr = kmap_atomic(page);
4b46fce2
JB
6198 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6199 csum, bvec->bv_len);
6200 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6201 kunmap_atomic(kaddr);
4b46fce2
JB
6202 local_irq_restore(flags);
6203
6204 flush_dcache_page(bvec->bv_page);
c329861d
JB
6205 if (csum != private) {
6206failed:
33345d01 6207 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 6208 " %llu csum %u private %u\n",
33345d01
LZ
6209 (unsigned long long)btrfs_ino(inode),
6210 (unsigned long long)start,
c329861d 6211 csum, (unsigned)private);
4b46fce2
JB
6212 err = -EIO;
6213 }
6214 }
6215
6216 start += bvec->bv_len;
4b46fce2
JB
6217 bvec++;
6218 } while (bvec <= bvec_end);
6219
6220 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6221 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
6222 bio->bi_private = dip->private;
6223
4b46fce2 6224 kfree(dip);
c0da7aa1
JB
6225
6226 /* If we had a csum failure make sure to clear the uptodate flag */
6227 if (err)
6228 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6229 dio_end_io(bio, err);
6230}
6231
6232static void btrfs_endio_direct_write(struct bio *bio, int err)
6233{
6234 struct btrfs_dio_private *dip = bio->bi_private;
6235 struct inode *inode = dip->inode;
6236 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6237 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6238 u64 ordered_offset = dip->logical_offset;
6239 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
6240 int ret;
6241
6242 if (err)
6243 goto out_done;
163cf09c
CM
6244again:
6245 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6246 &ordered_offset,
5fd02043 6247 ordered_bytes, !err);
4b46fce2 6248 if (!ret)
163cf09c 6249 goto out_test;
4b46fce2 6250
5fd02043
JB
6251 ordered->work.func = finish_ordered_fn;
6252 ordered->work.flags = 0;
6253 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6254 &ordered->work);
163cf09c
CM
6255out_test:
6256 /*
6257 * our bio might span multiple ordered extents. If we haven't
6258 * completed the accounting for the whole dio, go back and try again
6259 */
6260 if (ordered_offset < dip->logical_offset + dip->bytes) {
6261 ordered_bytes = dip->logical_offset + dip->bytes -
6262 ordered_offset;
5fd02043 6263 ordered = NULL;
163cf09c
CM
6264 goto again;
6265 }
4b46fce2
JB
6266out_done:
6267 bio->bi_private = dip->private;
6268
4b46fce2 6269 kfree(dip);
c0da7aa1
JB
6270
6271 /* If we had an error make sure to clear the uptodate flag */
6272 if (err)
6273 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6274 dio_end_io(bio, err);
6275}
6276
eaf25d93
CM
6277static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6278 struct bio *bio, int mirror_num,
6279 unsigned long bio_flags, u64 offset)
6280{
6281 int ret;
6282 struct btrfs_root *root = BTRFS_I(inode)->root;
6283 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6284 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6285 return 0;
6286}
6287
e65e1535
MX
6288static void btrfs_end_dio_bio(struct bio *bio, int err)
6289{
6290 struct btrfs_dio_private *dip = bio->bi_private;
6291
6292 if (err) {
33345d01 6293 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6294 "sector %#Lx len %u err no %d\n",
33345d01 6295 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6296 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6297 dip->errors = 1;
6298
6299 /*
6300 * before atomic variable goto zero, we must make sure
6301 * dip->errors is perceived to be set.
6302 */
6303 smp_mb__before_atomic_dec();
6304 }
6305
6306 /* if there are more bios still pending for this dio, just exit */
6307 if (!atomic_dec_and_test(&dip->pending_bios))
6308 goto out;
6309
6310 if (dip->errors)
6311 bio_io_error(dip->orig_bio);
6312 else {
6313 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6314 bio_endio(dip->orig_bio, 0);
6315 }
6316out:
6317 bio_put(bio);
6318}
6319
6320static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6321 u64 first_sector, gfp_t gfp_flags)
6322{
6323 int nr_vecs = bio_get_nr_vecs(bdev);
6324 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6325}
6326
6327static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6328 int rw, u64 file_offset, int skip_sum,
c329861d 6329 int async_submit)
e65e1535
MX
6330{
6331 int write = rw & REQ_WRITE;
6332 struct btrfs_root *root = BTRFS_I(inode)->root;
6333 int ret;
6334
6335 bio_get(bio);
5fd02043
JB
6336
6337 if (!write) {
6338 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6339 if (ret)
6340 goto err;
6341 }
e65e1535 6342
1ae39938
JB
6343 if (skip_sum)
6344 goto map;
6345
6346 if (write && async_submit) {
e65e1535
MX
6347 ret = btrfs_wq_submit_bio(root->fs_info,
6348 inode, rw, bio, 0, 0,
6349 file_offset,
6350 __btrfs_submit_bio_start_direct_io,
6351 __btrfs_submit_bio_done);
6352 goto err;
1ae39938
JB
6353 } else if (write) {
6354 /*
6355 * If we aren't doing async submit, calculate the csum of the
6356 * bio now.
6357 */
6358 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6359 if (ret)
6360 goto err;
c2db1073 6361 } else if (!skip_sum) {
c329861d 6362 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
6363 if (ret)
6364 goto err;
6365 }
e65e1535 6366
1ae39938
JB
6367map:
6368 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6369err:
6370 bio_put(bio);
6371 return ret;
6372}
6373
6374static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6375 int skip_sum)
6376{
6377 struct inode *inode = dip->inode;
6378 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6379 struct bio *bio;
6380 struct bio *orig_bio = dip->orig_bio;
6381 struct bio_vec *bvec = orig_bio->bi_io_vec;
6382 u64 start_sector = orig_bio->bi_sector;
6383 u64 file_offset = dip->logical_offset;
6384 u64 submit_len = 0;
6385 u64 map_length;
6386 int nr_pages = 0;
e65e1535 6387 int ret = 0;
1ae39938 6388 int async_submit = 0;
e65e1535 6389
e65e1535 6390 map_length = orig_bio->bi_size;
3ec706c8 6391 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
e65e1535
MX
6392 &map_length, NULL, 0);
6393 if (ret) {
64728bbb 6394 bio_put(orig_bio);
e65e1535
MX
6395 return -EIO;
6396 }
6397
02f57c7a
JB
6398 if (map_length >= orig_bio->bi_size) {
6399 bio = orig_bio;
6400 goto submit;
6401 }
6402
1ae39938 6403 async_submit = 1;
02f57c7a
JB
6404 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6405 if (!bio)
6406 return -ENOMEM;
6407 bio->bi_private = dip;
6408 bio->bi_end_io = btrfs_end_dio_bio;
6409 atomic_inc(&dip->pending_bios);
6410
e65e1535
MX
6411 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6412 if (unlikely(map_length < submit_len + bvec->bv_len ||
6413 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6414 bvec->bv_offset) < bvec->bv_len)) {
6415 /*
6416 * inc the count before we submit the bio so
6417 * we know the end IO handler won't happen before
6418 * we inc the count. Otherwise, the dip might get freed
6419 * before we're done setting it up
6420 */
6421 atomic_inc(&dip->pending_bios);
6422 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6423 file_offset, skip_sum,
c329861d 6424 async_submit);
e65e1535
MX
6425 if (ret) {
6426 bio_put(bio);
6427 atomic_dec(&dip->pending_bios);
6428 goto out_err;
6429 }
6430
e65e1535
MX
6431 start_sector += submit_len >> 9;
6432 file_offset += submit_len;
6433
6434 submit_len = 0;
6435 nr_pages = 0;
6436
6437 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6438 start_sector, GFP_NOFS);
6439 if (!bio)
6440 goto out_err;
6441 bio->bi_private = dip;
6442 bio->bi_end_io = btrfs_end_dio_bio;
6443
6444 map_length = orig_bio->bi_size;
3ec706c8
SB
6445 ret = btrfs_map_block(root->fs_info, READ,
6446 start_sector << 9,
e65e1535
MX
6447 &map_length, NULL, 0);
6448 if (ret) {
6449 bio_put(bio);
6450 goto out_err;
6451 }
6452 } else {
6453 submit_len += bvec->bv_len;
6454 nr_pages ++;
6455 bvec++;
6456 }
6457 }
6458
02f57c7a 6459submit:
e65e1535 6460 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 6461 async_submit);
e65e1535
MX
6462 if (!ret)
6463 return 0;
6464
6465 bio_put(bio);
6466out_err:
6467 dip->errors = 1;
6468 /*
6469 * before atomic variable goto zero, we must
6470 * make sure dip->errors is perceived to be set.
6471 */
6472 smp_mb__before_atomic_dec();
6473 if (atomic_dec_and_test(&dip->pending_bios))
6474 bio_io_error(dip->orig_bio);
6475
6476 /* bio_end_io() will handle error, so we needn't return it */
6477 return 0;
6478}
6479
4b46fce2
JB
6480static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6481 loff_t file_offset)
6482{
6483 struct btrfs_root *root = BTRFS_I(inode)->root;
6484 struct btrfs_dio_private *dip;
6485 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6486 int skip_sum;
7b6d91da 6487 int write = rw & REQ_WRITE;
4b46fce2
JB
6488 int ret = 0;
6489
6490 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6491
6492 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6493 if (!dip) {
6494 ret = -ENOMEM;
6495 goto free_ordered;
6496 }
4b46fce2
JB
6497
6498 dip->private = bio->bi_private;
6499 dip->inode = inode;
6500 dip->logical_offset = file_offset;
6501
4b46fce2
JB
6502 dip->bytes = 0;
6503 do {
6504 dip->bytes += bvec->bv_len;
6505 bvec++;
6506 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6507
46bfbb5c 6508 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6509 bio->bi_private = dip;
e65e1535
MX
6510 dip->errors = 0;
6511 dip->orig_bio = bio;
6512 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6513
6514 if (write)
6515 bio->bi_end_io = btrfs_endio_direct_write;
6516 else
6517 bio->bi_end_io = btrfs_endio_direct_read;
6518
e65e1535
MX
6519 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6520 if (!ret)
eaf25d93 6521 return;
4b46fce2
JB
6522free_ordered:
6523 /*
6524 * If this is a write, we need to clean up the reserved space and kill
6525 * the ordered extent.
6526 */
6527 if (write) {
6528 struct btrfs_ordered_extent *ordered;
955256f2 6529 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6530 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6531 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6532 btrfs_free_reserved_extent(root, ordered->start,
6533 ordered->disk_len);
6534 btrfs_put_ordered_extent(ordered);
6535 btrfs_put_ordered_extent(ordered);
6536 }
6537 bio_endio(bio, ret);
6538}
6539
5a5f79b5
CM
6540static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6541 const struct iovec *iov, loff_t offset,
6542 unsigned long nr_segs)
6543{
6544 int seg;
a1b75f7d 6545 int i;
5a5f79b5
CM
6546 size_t size;
6547 unsigned long addr;
6548 unsigned blocksize_mask = root->sectorsize - 1;
6549 ssize_t retval = -EINVAL;
6550 loff_t end = offset;
6551
6552 if (offset & blocksize_mask)
6553 goto out;
6554
6555 /* Check the memory alignment. Blocks cannot straddle pages */
6556 for (seg = 0; seg < nr_segs; seg++) {
6557 addr = (unsigned long)iov[seg].iov_base;
6558 size = iov[seg].iov_len;
6559 end += size;
a1b75f7d 6560 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6561 goto out;
a1b75f7d
JB
6562
6563 /* If this is a write we don't need to check anymore */
6564 if (rw & WRITE)
6565 continue;
6566
6567 /*
6568 * Check to make sure we don't have duplicate iov_base's in this
6569 * iovec, if so return EINVAL, otherwise we'll get csum errors
6570 * when reading back.
6571 */
6572 for (i = seg + 1; i < nr_segs; i++) {
6573 if (iov[seg].iov_base == iov[i].iov_base)
6574 goto out;
6575 }
5a5f79b5
CM
6576 }
6577 retval = 0;
6578out:
6579 return retval;
6580}
eb838e73 6581
16432985
CM
6582static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6583 const struct iovec *iov, loff_t offset,
6584 unsigned long nr_segs)
6585{
4b46fce2
JB
6586 struct file *file = iocb->ki_filp;
6587 struct inode *inode = file->f_mapping->host;
4b46fce2 6588
5a5f79b5 6589 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 6590 offset, nr_segs))
5a5f79b5 6591 return 0;
3f7c579c 6592
eb838e73 6593 return __blockdev_direct_IO(rw, iocb, inode,
5a5f79b5
CM
6594 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6595 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6596 btrfs_submit_direct, 0);
16432985
CM
6597}
6598
05dadc09
TI
6599#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6600
1506fcc8
YS
6601static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6602 __u64 start, __u64 len)
6603{
05dadc09
TI
6604 int ret;
6605
6606 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
6607 if (ret)
6608 return ret;
6609
ec29ed5b 6610 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6611}
6612
a52d9a80 6613int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6614{
d1310b2e
CM
6615 struct extent_io_tree *tree;
6616 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6617 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6618}
1832a6d5 6619
a52d9a80 6620static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6621{
d1310b2e 6622 struct extent_io_tree *tree;
b888db2b
CM
6623
6624
6625 if (current->flags & PF_MEMALLOC) {
6626 redirty_page_for_writepage(wbc, page);
6627 unlock_page(page);
6628 return 0;
6629 }
d1310b2e 6630 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6631 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6632}
6633
f421950f
CM
6634int btrfs_writepages(struct address_space *mapping,
6635 struct writeback_control *wbc)
b293f02e 6636{
d1310b2e 6637 struct extent_io_tree *tree;
771ed689 6638
d1310b2e 6639 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6640 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6641}
6642
3ab2fb5a
CM
6643static int
6644btrfs_readpages(struct file *file, struct address_space *mapping,
6645 struct list_head *pages, unsigned nr_pages)
6646{
d1310b2e
CM
6647 struct extent_io_tree *tree;
6648 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6649 return extent_readpages(tree, mapping, pages, nr_pages,
6650 btrfs_get_extent);
6651}
e6dcd2dc 6652static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6653{
d1310b2e
CM
6654 struct extent_io_tree *tree;
6655 struct extent_map_tree *map;
a52d9a80 6656 int ret;
8c2383c3 6657
d1310b2e
CM
6658 tree = &BTRFS_I(page->mapping->host)->io_tree;
6659 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6660 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6661 if (ret == 1) {
6662 ClearPagePrivate(page);
6663 set_page_private(page, 0);
6664 page_cache_release(page);
39279cc3 6665 }
a52d9a80 6666 return ret;
39279cc3
CM
6667}
6668
e6dcd2dc
CM
6669static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6670{
98509cfc
CM
6671 if (PageWriteback(page) || PageDirty(page))
6672 return 0;
b335b003 6673 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6674}
6675
a52d9a80 6676static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6677{
5fd02043 6678 struct inode *inode = page->mapping->host;
d1310b2e 6679 struct extent_io_tree *tree;
e6dcd2dc 6680 struct btrfs_ordered_extent *ordered;
2ac55d41 6681 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6682 u64 page_start = page_offset(page);
6683 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6684
8b62b72b
CM
6685 /*
6686 * we have the page locked, so new writeback can't start,
6687 * and the dirty bit won't be cleared while we are here.
6688 *
6689 * Wait for IO on this page so that we can safely clear
6690 * the PagePrivate2 bit and do ordered accounting
6691 */
e6dcd2dc 6692 wait_on_page_writeback(page);
8b62b72b 6693
5fd02043 6694 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
6695 if (offset) {
6696 btrfs_releasepage(page, GFP_NOFS);
6697 return;
6698 }
d0082371 6699 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
5fd02043 6700 ordered = btrfs_lookup_ordered_extent(inode,
e6dcd2dc
CM
6701 page_offset(page));
6702 if (ordered) {
eb84ae03
CM
6703 /*
6704 * IO on this page will never be started, so we need
6705 * to account for any ordered extents now
6706 */
e6dcd2dc
CM
6707 clear_extent_bit(tree, page_start, page_end,
6708 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6709 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6710 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
6711 /*
6712 * whoever cleared the private bit is responsible
6713 * for the finish_ordered_io
6714 */
5fd02043
JB
6715 if (TestClearPagePrivate2(page) &&
6716 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6717 PAGE_CACHE_SIZE, 1)) {
6718 btrfs_finish_ordered_io(ordered);
8b62b72b 6719 }
e6dcd2dc 6720 btrfs_put_ordered_extent(ordered);
2ac55d41 6721 cached_state = NULL;
d0082371 6722 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6723 }
6724 clear_extent_bit(tree, page_start, page_end,
32c00aff 6725 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6726 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6727 &cached_state, GFP_NOFS);
e6dcd2dc
CM
6728 __btrfs_releasepage(page, GFP_NOFS);
6729
4a096752 6730 ClearPageChecked(page);
9ad6b7bc 6731 if (PagePrivate(page)) {
9ad6b7bc
CM
6732 ClearPagePrivate(page);
6733 set_page_private(page, 0);
6734 page_cache_release(page);
6735 }
39279cc3
CM
6736}
6737
9ebefb18
CM
6738/*
6739 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6740 * called from a page fault handler when a page is first dirtied. Hence we must
6741 * be careful to check for EOF conditions here. We set the page up correctly
6742 * for a written page which means we get ENOSPC checking when writing into
6743 * holes and correct delalloc and unwritten extent mapping on filesystems that
6744 * support these features.
6745 *
6746 * We are not allowed to take the i_mutex here so we have to play games to
6747 * protect against truncate races as the page could now be beyond EOF. Because
6748 * vmtruncate() writes the inode size before removing pages, once we have the
6749 * page lock we can determine safely if the page is beyond EOF. If it is not
6750 * beyond EOF, then the page is guaranteed safe against truncation until we
6751 * unlock the page.
6752 */
c2ec175c 6753int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6754{
c2ec175c 6755 struct page *page = vmf->page;
6da6abae 6756 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6757 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6758 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6759 struct btrfs_ordered_extent *ordered;
2ac55d41 6760 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6761 char *kaddr;
6762 unsigned long zero_start;
9ebefb18 6763 loff_t size;
1832a6d5 6764 int ret;
9998eb70 6765 int reserved = 0;
a52d9a80 6766 u64 page_start;
e6dcd2dc 6767 u64 page_end;
9ebefb18 6768
b2b5ef5c 6769 sb_start_pagefault(inode->i_sb);
0ca1f7ce 6770 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6771 if (!ret) {
e41f941a 6772 ret = file_update_time(vma->vm_file);
9998eb70
CM
6773 reserved = 1;
6774 }
56a76f82
NP
6775 if (ret) {
6776 if (ret == -ENOMEM)
6777 ret = VM_FAULT_OOM;
6778 else /* -ENOSPC, -EIO, etc */
6779 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6780 if (reserved)
6781 goto out;
6782 goto out_noreserve;
56a76f82 6783 }
1832a6d5 6784
56a76f82 6785 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6786again:
9ebefb18 6787 lock_page(page);
9ebefb18 6788 size = i_size_read(inode);
e6dcd2dc
CM
6789 page_start = page_offset(page);
6790 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6791
9ebefb18 6792 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6793 (page_start >= size)) {
9ebefb18
CM
6794 /* page got truncated out from underneath us */
6795 goto out_unlock;
6796 }
e6dcd2dc
CM
6797 wait_on_page_writeback(page);
6798
d0082371 6799 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6800 set_page_extent_mapped(page);
6801
eb84ae03
CM
6802 /*
6803 * we can't set the delalloc bits if there are pending ordered
6804 * extents. Drop our locks and wait for them to finish
6805 */
e6dcd2dc
CM
6806 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6807 if (ordered) {
2ac55d41
JB
6808 unlock_extent_cached(io_tree, page_start, page_end,
6809 &cached_state, GFP_NOFS);
e6dcd2dc 6810 unlock_page(page);
eb84ae03 6811 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6812 btrfs_put_ordered_extent(ordered);
6813 goto again;
6814 }
6815
fbf19087
JB
6816 /*
6817 * XXX - page_mkwrite gets called every time the page is dirtied, even
6818 * if it was already dirty, so for space accounting reasons we need to
6819 * clear any delalloc bits for the range we are fixing to save. There
6820 * is probably a better way to do this, but for now keep consistent with
6821 * prepare_pages in the normal write path.
6822 */
2ac55d41 6823 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
6824 EXTENT_DIRTY | EXTENT_DELALLOC |
6825 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 6826 0, 0, &cached_state, GFP_NOFS);
fbf19087 6827
2ac55d41
JB
6828 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6829 &cached_state);
9ed74f2d 6830 if (ret) {
2ac55d41
JB
6831 unlock_extent_cached(io_tree, page_start, page_end,
6832 &cached_state, GFP_NOFS);
9ed74f2d
JB
6833 ret = VM_FAULT_SIGBUS;
6834 goto out_unlock;
6835 }
e6dcd2dc 6836 ret = 0;
9ebefb18
CM
6837
6838 /* page is wholly or partially inside EOF */
a52d9a80 6839 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6840 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6841 else
e6dcd2dc 6842 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6843
e6dcd2dc
CM
6844 if (zero_start != PAGE_CACHE_SIZE) {
6845 kaddr = kmap(page);
6846 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6847 flush_dcache_page(page);
6848 kunmap(page);
6849 }
247e743c 6850 ClearPageChecked(page);
e6dcd2dc 6851 set_page_dirty(page);
50a9b214 6852 SetPageUptodate(page);
5a3f23d5 6853
257c62e1
CM
6854 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6855 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 6856 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 6857
2ac55d41 6858 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6859
6860out_unlock:
b2b5ef5c
JK
6861 if (!ret) {
6862 sb_end_pagefault(inode->i_sb);
50a9b214 6863 return VM_FAULT_LOCKED;
b2b5ef5c 6864 }
9ebefb18 6865 unlock_page(page);
1832a6d5 6866out:
ec39e180 6867 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6868out_noreserve:
b2b5ef5c 6869 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
6870 return ret;
6871}
6872
a41ad394 6873static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6874{
6875 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6876 struct btrfs_block_rsv *rsv;
39279cc3 6877 int ret;
3893e33b 6878 int err = 0;
39279cc3 6879 struct btrfs_trans_handle *trans;
dbe674a9 6880 u64 mask = root->sectorsize - 1;
07127184 6881 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6882
2aaa6655 6883 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
5d5e103a 6884 if (ret)
a41ad394 6885 return ret;
8082510e 6886
4a096752 6887 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6888 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6889
fcb80c2a
JB
6890 /*
6891 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6892 * 3 things going on here
6893 *
6894 * 1) We need to reserve space for our orphan item and the space to
6895 * delete our orphan item. Lord knows we don't want to have a dangling
6896 * orphan item because we didn't reserve space to remove it.
6897 *
6898 * 2) We need to reserve space to update our inode.
6899 *
6900 * 3) We need to have something to cache all the space that is going to
6901 * be free'd up by the truncate operation, but also have some slack
6902 * space reserved in case it uses space during the truncate (thank you
6903 * very much snapshotting).
6904 *
6905 * And we need these to all be seperate. The fact is we can use alot of
6906 * space doing the truncate, and we have no earthly idea how much space
6907 * we will use, so we need the truncate reservation to be seperate so it
6908 * doesn't end up using space reserved for updating the inode or
6909 * removing the orphan item. We also need to be able to stop the
6910 * transaction and start a new one, which means we need to be able to
6911 * update the inode several times, and we have no idea of knowing how
6912 * many times that will be, so we can't just reserve 1 item for the
6913 * entirety of the opration, so that has to be done seperately as well.
6914 * Then there is the orphan item, which does indeed need to be held on
6915 * to for the whole operation, and we need nobody to touch this reserved
6916 * space except the orphan code.
6917 *
6918 * So that leaves us with
6919 *
6920 * 1) root->orphan_block_rsv - for the orphan deletion.
6921 * 2) rsv - for the truncate reservation, which we will steal from the
6922 * transaction reservation.
6923 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6924 * updating the inode.
6925 */
66d8f3dd 6926 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
6927 if (!rsv)
6928 return -ENOMEM;
4a338542 6929 rsv->size = min_size;
ca7e70f5 6930 rsv->failfast = 1;
f0cd846e 6931
907cbceb 6932 /*
07127184 6933 * 1 for the truncate slack space
907cbceb
JB
6934 * 1 for the orphan item we're going to add
6935 * 1 for the orphan item deletion
6936 * 1 for updating the inode.
6937 */
fcb80c2a
JB
6938 trans = btrfs_start_transaction(root, 4);
6939 if (IS_ERR(trans)) {
6940 err = PTR_ERR(trans);
6941 goto out;
6942 }
f0cd846e 6943
907cbceb
JB
6944 /* Migrate the slack space for the truncate to our reserve */
6945 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6946 min_size);
fcb80c2a 6947 BUG_ON(ret);
f0cd846e
JB
6948
6949 ret = btrfs_orphan_add(trans, inode);
6950 if (ret) {
6951 btrfs_end_transaction(trans, root);
fcb80c2a 6952 goto out;
f0cd846e
JB
6953 }
6954
5a3f23d5
CM
6955 /*
6956 * setattr is responsible for setting the ordered_data_close flag,
6957 * but that is only tested during the last file release. That
6958 * could happen well after the next commit, leaving a great big
6959 * window where new writes may get lost if someone chooses to write
6960 * to this file after truncating to zero
6961 *
6962 * The inode doesn't have any dirty data here, and so if we commit
6963 * this is a noop. If someone immediately starts writing to the inode
6964 * it is very likely we'll catch some of their writes in this
6965 * transaction, and the commit will find this file on the ordered
6966 * data list with good things to send down.
6967 *
6968 * This is a best effort solution, there is still a window where
6969 * using truncate to replace the contents of the file will
6970 * end up with a zero length file after a crash.
6971 */
72ac3c0d
JB
6972 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6973 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
6974 btrfs_add_ordered_operation(trans, root, inode);
6975
5dc562c5
JB
6976 /*
6977 * So if we truncate and then write and fsync we normally would just
6978 * write the extents that changed, which is a problem if we need to
6979 * first truncate that entire inode. So set this flag so we write out
6980 * all of the extents in the inode to the sync log so we're completely
6981 * safe.
6982 */
6983 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 6984 trans->block_rsv = rsv;
907cbceb 6985
8082510e
YZ
6986 while (1) {
6987 ret = btrfs_truncate_inode_items(trans, root, inode,
6988 inode->i_size,
6989 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 6990 if (ret != -ENOSPC) {
3893e33b 6991 err = ret;
8082510e 6992 break;
3893e33b 6993 }
39279cc3 6994
fcb80c2a 6995 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6996 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6997 if (ret) {
6998 err = ret;
6999 break;
7000 }
ca7e70f5 7001
8082510e 7002 btrfs_end_transaction(trans, root);
b53d3f5d 7003 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7004
7005 trans = btrfs_start_transaction(root, 2);
7006 if (IS_ERR(trans)) {
7007 ret = err = PTR_ERR(trans);
7008 trans = NULL;
7009 break;
7010 }
7011
7012 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7013 rsv, min_size);
7014 BUG_ON(ret); /* shouldn't happen */
7015 trans->block_rsv = rsv;
8082510e
YZ
7016 }
7017
7018 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7019 trans->block_rsv = root->orphan_block_rsv;
8082510e 7020 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7021 if (ret)
7022 err = ret;
ded5db9d
JB
7023 } else if (ret && inode->i_nlink > 0) {
7024 /*
7025 * Failed to do the truncate, remove us from the in memory
7026 * orphan list.
7027 */
7028 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
7029 }
7030
917c16b2
CM
7031 if (trans) {
7032 trans->block_rsv = &root->fs_info->trans_block_rsv;
7033 ret = btrfs_update_inode(trans, root, inode);
7034 if (ret && !err)
7035 err = ret;
7b128766 7036
7ad85bb7 7037 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7038 btrfs_btree_balance_dirty(root);
917c16b2 7039 }
fcb80c2a
JB
7040
7041out:
7042 btrfs_free_block_rsv(root, rsv);
7043
3893e33b
JB
7044 if (ret && !err)
7045 err = ret;
a41ad394 7046
3893e33b 7047 return err;
39279cc3
CM
7048}
7049
d352ac68
CM
7050/*
7051 * create a new subvolume directory/inode (helper for the ioctl).
7052 */
d2fb3437 7053int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7054 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7055{
39279cc3 7056 struct inode *inode;
76dda93c 7057 int err;
00e4e6b3 7058 u64 index = 0;
39279cc3 7059
12fc9d09
FA
7060 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7061 new_dirid, new_dirid,
7062 S_IFDIR | (~current_umask() & S_IRWXUGO),
7063 &index);
54aa1f4d 7064 if (IS_ERR(inode))
f46b5a66 7065 return PTR_ERR(inode);
39279cc3
CM
7066 inode->i_op = &btrfs_dir_inode_operations;
7067 inode->i_fop = &btrfs_dir_file_operations;
7068
bfe86848 7069 set_nlink(inode, 1);
dbe674a9 7070 btrfs_i_size_write(inode, 0);
3b96362c 7071
76dda93c 7072 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7073
76dda93c 7074 iput(inode);
ce598979 7075 return err;
39279cc3
CM
7076}
7077
39279cc3
CM
7078struct inode *btrfs_alloc_inode(struct super_block *sb)
7079{
7080 struct btrfs_inode *ei;
2ead6ae7 7081 struct inode *inode;
39279cc3
CM
7082
7083 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7084 if (!ei)
7085 return NULL;
2ead6ae7
YZ
7086
7087 ei->root = NULL;
2ead6ae7 7088 ei->generation = 0;
15ee9bc7 7089 ei->last_trans = 0;
257c62e1 7090 ei->last_sub_trans = 0;
e02119d5 7091 ei->logged_trans = 0;
2ead6ae7 7092 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7093 ei->disk_i_size = 0;
7094 ei->flags = 0;
7709cde3 7095 ei->csum_bytes = 0;
2ead6ae7
YZ
7096 ei->index_cnt = (u64)-1;
7097 ei->last_unlink_trans = 0;
46d8bc34 7098 ei->last_log_commit = 0;
2ead6ae7 7099
9e0baf60
JB
7100 spin_lock_init(&ei->lock);
7101 ei->outstanding_extents = 0;
7102 ei->reserved_extents = 0;
2ead6ae7 7103
72ac3c0d 7104 ei->runtime_flags = 0;
261507a0 7105 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7106
16cdcec7
MX
7107 ei->delayed_node = NULL;
7108
2ead6ae7 7109 inode = &ei->vfs_inode;
a8067e02 7110 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7111 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7112 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7113 ei->io_tree.track_uptodate = 1;
7114 ei->io_failure_tree.track_uptodate = 1;
2ead6ae7 7115 mutex_init(&ei->log_mutex);
f248679e 7116 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7117 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7118 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7119 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7120 RB_CLEAR_NODE(&ei->rb_node);
7121
7122 return inode;
39279cc3
CM
7123}
7124
fa0d7e3d
NP
7125static void btrfs_i_callback(struct rcu_head *head)
7126{
7127 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7128 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7129}
7130
39279cc3
CM
7131void btrfs_destroy_inode(struct inode *inode)
7132{
e6dcd2dc 7133 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7134 struct btrfs_root *root = BTRFS_I(inode)->root;
7135
b3d9b7a3 7136 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7137 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7138 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7139 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7140 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7141 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7142
a6dbd429
JB
7143 /*
7144 * This can happen where we create an inode, but somebody else also
7145 * created the same inode and we need to destroy the one we already
7146 * created.
7147 */
7148 if (!root)
7149 goto free;
7150
5a3f23d5
CM
7151 /*
7152 * Make sure we're properly removed from the ordered operation
7153 * lists.
7154 */
7155 smp_mb();
7156 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7157 spin_lock(&root->fs_info->ordered_extent_lock);
7158 list_del_init(&BTRFS_I(inode)->ordered_operations);
7159 spin_unlock(&root->fs_info->ordered_extent_lock);
7160 }
7161
8a35d95f
JB
7162 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7163 &BTRFS_I(inode)->runtime_flags)) {
33345d01
LZ
7164 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7165 (unsigned long long)btrfs_ino(inode));
8a35d95f 7166 atomic_dec(&root->orphan_inodes);
7b128766 7167 }
7b128766 7168
d397712b 7169 while (1) {
e6dcd2dc
CM
7170 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7171 if (!ordered)
7172 break;
7173 else {
d397712b
CM
7174 printk(KERN_ERR "btrfs found ordered "
7175 "extent %llu %llu on inode cleanup\n",
7176 (unsigned long long)ordered->file_offset,
7177 (unsigned long long)ordered->len);
e6dcd2dc
CM
7178 btrfs_remove_ordered_extent(inode, ordered);
7179 btrfs_put_ordered_extent(ordered);
7180 btrfs_put_ordered_extent(ordered);
7181 }
7182 }
5d4f98a2 7183 inode_tree_del(inode);
5b21f2ed 7184 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7185free:
16cdcec7 7186 btrfs_remove_delayed_node(inode);
fa0d7e3d 7187 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7188}
7189
45321ac5 7190int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7191{
7192 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7193
0af3d00b 7194 if (btrfs_root_refs(&root->root_item) == 0 &&
83eea1f1 7195 !btrfs_is_free_space_inode(inode))
45321ac5 7196 return 1;
76dda93c 7197 else
45321ac5 7198 return generic_drop_inode(inode);
76dda93c
YZ
7199}
7200
0ee0fda0 7201static void init_once(void *foo)
39279cc3
CM
7202{
7203 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7204
7205 inode_init_once(&ei->vfs_inode);
7206}
7207
7208void btrfs_destroy_cachep(void)
7209{
8c0a8537
KS
7210 /*
7211 * Make sure all delayed rcu free inodes are flushed before we
7212 * destroy cache.
7213 */
7214 rcu_barrier();
39279cc3
CM
7215 if (btrfs_inode_cachep)
7216 kmem_cache_destroy(btrfs_inode_cachep);
7217 if (btrfs_trans_handle_cachep)
7218 kmem_cache_destroy(btrfs_trans_handle_cachep);
7219 if (btrfs_transaction_cachep)
7220 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7221 if (btrfs_path_cachep)
7222 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7223 if (btrfs_free_space_cachep)
7224 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7225 if (btrfs_delalloc_work_cachep)
7226 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7227}
7228
7229int btrfs_init_cachep(void)
7230{
837e1972 7231 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7232 sizeof(struct btrfs_inode), 0,
7233 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7234 if (!btrfs_inode_cachep)
7235 goto fail;
9601e3f6 7236
837e1972 7237 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7238 sizeof(struct btrfs_trans_handle), 0,
7239 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7240 if (!btrfs_trans_handle_cachep)
7241 goto fail;
9601e3f6 7242
837e1972 7243 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7244 sizeof(struct btrfs_transaction), 0,
7245 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7246 if (!btrfs_transaction_cachep)
7247 goto fail;
9601e3f6 7248
837e1972 7249 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7250 sizeof(struct btrfs_path), 0,
7251 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7252 if (!btrfs_path_cachep)
7253 goto fail;
9601e3f6 7254
837e1972 7255 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7256 sizeof(struct btrfs_free_space), 0,
7257 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7258 if (!btrfs_free_space_cachep)
7259 goto fail;
7260
8ccf6f19
MX
7261 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7262 sizeof(struct btrfs_delalloc_work), 0,
7263 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7264 NULL);
7265 if (!btrfs_delalloc_work_cachep)
7266 goto fail;
7267
39279cc3
CM
7268 return 0;
7269fail:
7270 btrfs_destroy_cachep();
7271 return -ENOMEM;
7272}
7273
7274static int btrfs_getattr(struct vfsmount *mnt,
7275 struct dentry *dentry, struct kstat *stat)
7276{
7277 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7278 u32 blocksize = inode->i_sb->s_blocksize;
7279
39279cc3 7280 generic_fillattr(inode, stat);
0ee5dc67 7281 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7282 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
7283 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7284 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7285 return 0;
7286}
7287
75e7cb7f
LB
7288/*
7289 * If a file is moved, it will inherit the cow and compression flags of the new
7290 * directory.
7291 */
7292static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7293{
7294 struct btrfs_inode *b_dir = BTRFS_I(dir);
7295 struct btrfs_inode *b_inode = BTRFS_I(inode);
7296
7297 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7298 b_inode->flags |= BTRFS_INODE_NODATACOW;
7299 else
7300 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7301
bc178237 7302 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
75e7cb7f 7303 b_inode->flags |= BTRFS_INODE_COMPRESS;
bc178237
LB
7304 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7305 } else {
7306 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7307 BTRFS_INODE_NOCOMPRESS);
7308 }
75e7cb7f
LB
7309}
7310
d397712b
CM
7311static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7312 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7313{
7314 struct btrfs_trans_handle *trans;
7315 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7316 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7317 struct inode *new_inode = new_dentry->d_inode;
7318 struct inode *old_inode = old_dentry->d_inode;
7319 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7320 u64 index = 0;
4df27c4d 7321 u64 root_objectid;
39279cc3 7322 int ret;
33345d01 7323 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7324
33345d01 7325 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7326 return -EPERM;
7327
4df27c4d 7328 /* we only allow rename subvolume link between subvolumes */
33345d01 7329 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7330 return -EXDEV;
7331
33345d01
LZ
7332 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7333 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7334 return -ENOTEMPTY;
5f39d397 7335
4df27c4d
YZ
7336 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7337 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7338 return -ENOTEMPTY;
5a3f23d5
CM
7339 /*
7340 * we're using rename to replace one file with another.
7341 * and the replacement file is large. Start IO on it now so
7342 * we don't add too much work to the end of the transaction
7343 */
4baf8c92 7344 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7345 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7346 filemap_flush(old_inode->i_mapping);
7347
76dda93c 7348 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7349 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7350 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7351 /*
7352 * We want to reserve the absolute worst case amount of items. So if
7353 * both inodes are subvols and we need to unlink them then that would
7354 * require 4 item modifications, but if they are both normal inodes it
7355 * would require 5 item modifications, so we'll assume their normal
7356 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7357 * should cover the worst case number of items we'll modify.
7358 */
7359 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7360 if (IS_ERR(trans)) {
7361 ret = PTR_ERR(trans);
7362 goto out_notrans;
7363 }
76dda93c 7364
4df27c4d
YZ
7365 if (dest != root)
7366 btrfs_record_root_in_trans(trans, dest);
5f39d397 7367
a5719521
YZ
7368 ret = btrfs_set_inode_index(new_dir, &index);
7369 if (ret)
7370 goto out_fail;
5a3f23d5 7371
33345d01 7372 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7373 /* force full log commit if subvolume involved. */
7374 root->fs_info->last_trans_log_full_commit = trans->transid;
7375 } else {
a5719521
YZ
7376 ret = btrfs_insert_inode_ref(trans, dest,
7377 new_dentry->d_name.name,
7378 new_dentry->d_name.len,
33345d01
LZ
7379 old_ino,
7380 btrfs_ino(new_dir), index);
a5719521
YZ
7381 if (ret)
7382 goto out_fail;
4df27c4d
YZ
7383 /*
7384 * this is an ugly little race, but the rename is required
7385 * to make sure that if we crash, the inode is either at the
7386 * old name or the new one. pinning the log transaction lets
7387 * us make sure we don't allow a log commit to come in after
7388 * we unlink the name but before we add the new name back in.
7389 */
7390 btrfs_pin_log_trans(root);
7391 }
5a3f23d5
CM
7392 /*
7393 * make sure the inode gets flushed if it is replacing
7394 * something.
7395 */
33345d01 7396 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7397 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7398
0c4d2d95
JB
7399 inode_inc_iversion(old_dir);
7400 inode_inc_iversion(new_dir);
7401 inode_inc_iversion(old_inode);
39279cc3
CM
7402 old_dir->i_ctime = old_dir->i_mtime = ctime;
7403 new_dir->i_ctime = new_dir->i_mtime = ctime;
7404 old_inode->i_ctime = ctime;
5f39d397 7405
12fcfd22
CM
7406 if (old_dentry->d_parent != new_dentry->d_parent)
7407 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7408
33345d01 7409 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7410 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7411 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7412 old_dentry->d_name.name,
7413 old_dentry->d_name.len);
7414 } else {
92986796
AV
7415 ret = __btrfs_unlink_inode(trans, root, old_dir,
7416 old_dentry->d_inode,
7417 old_dentry->d_name.name,
7418 old_dentry->d_name.len);
7419 if (!ret)
7420 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7421 }
79787eaa
JM
7422 if (ret) {
7423 btrfs_abort_transaction(trans, root, ret);
7424 goto out_fail;
7425 }
39279cc3
CM
7426
7427 if (new_inode) {
0c4d2d95 7428 inode_inc_iversion(new_inode);
39279cc3 7429 new_inode->i_ctime = CURRENT_TIME;
33345d01 7430 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7431 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7432 root_objectid = BTRFS_I(new_inode)->location.objectid;
7433 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7434 root_objectid,
7435 new_dentry->d_name.name,
7436 new_dentry->d_name.len);
7437 BUG_ON(new_inode->i_nlink == 0);
7438 } else {
7439 ret = btrfs_unlink_inode(trans, dest, new_dir,
7440 new_dentry->d_inode,
7441 new_dentry->d_name.name,
7442 new_dentry->d_name.len);
7443 }
79787eaa 7444 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7445 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7446 BUG_ON(ret);
7b128766 7447 }
79787eaa
JM
7448 if (ret) {
7449 btrfs_abort_transaction(trans, root, ret);
7450 goto out_fail;
7451 }
39279cc3 7452 }
aec7477b 7453
75e7cb7f
LB
7454 fixup_inode_flags(new_dir, old_inode);
7455
4df27c4d
YZ
7456 ret = btrfs_add_link(trans, new_dir, old_inode,
7457 new_dentry->d_name.name,
a5719521 7458 new_dentry->d_name.len, 0, index);
79787eaa
JM
7459 if (ret) {
7460 btrfs_abort_transaction(trans, root, ret);
7461 goto out_fail;
7462 }
39279cc3 7463
33345d01 7464 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7465 struct dentry *parent = new_dentry->d_parent;
6a912213 7466 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7467 btrfs_end_log_trans(root);
7468 }
39279cc3 7469out_fail:
7ad85bb7 7470 btrfs_end_transaction(trans, root);
b44c59a8 7471out_notrans:
33345d01 7472 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7473 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7474
39279cc3
CM
7475 return ret;
7476}
7477
8ccf6f19
MX
7478static void btrfs_run_delalloc_work(struct btrfs_work *work)
7479{
7480 struct btrfs_delalloc_work *delalloc_work;
7481
7482 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7483 work);
7484 if (delalloc_work->wait)
7485 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7486 else
7487 filemap_flush(delalloc_work->inode->i_mapping);
7488
7489 if (delalloc_work->delay_iput)
7490 btrfs_add_delayed_iput(delalloc_work->inode);
7491 else
7492 iput(delalloc_work->inode);
7493 complete(&delalloc_work->completion);
7494}
7495
7496struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7497 int wait, int delay_iput)
7498{
7499 struct btrfs_delalloc_work *work;
7500
7501 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7502 if (!work)
7503 return NULL;
7504
7505 init_completion(&work->completion);
7506 INIT_LIST_HEAD(&work->list);
7507 work->inode = inode;
7508 work->wait = wait;
7509 work->delay_iput = delay_iput;
7510 work->work.func = btrfs_run_delalloc_work;
7511
7512 return work;
7513}
7514
7515void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7516{
7517 wait_for_completion(&work->completion);
7518 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7519}
7520
d352ac68
CM
7521/*
7522 * some fairly slow code that needs optimization. This walks the list
7523 * of all the inodes with pending delalloc and forces them to disk.
7524 */
24bbcf04 7525int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7526{
7527 struct list_head *head = &root->fs_info->delalloc_inodes;
7528 struct btrfs_inode *binode;
5b21f2ed 7529 struct inode *inode;
8ccf6f19
MX
7530 struct btrfs_delalloc_work *work, *next;
7531 struct list_head works;
7532 int ret = 0;
ea8c2819 7533
c146afad
YZ
7534 if (root->fs_info->sb->s_flags & MS_RDONLY)
7535 return -EROFS;
7536
8ccf6f19
MX
7537 INIT_LIST_HEAD(&works);
7538
75eff68e 7539 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7540 while (!list_empty(head)) {
ea8c2819
CM
7541 binode = list_entry(head->next, struct btrfs_inode,
7542 delalloc_inodes);
5b21f2ed
ZY
7543 inode = igrab(&binode->vfs_inode);
7544 if (!inode)
7545 list_del_init(&binode->delalloc_inodes);
75eff68e 7546 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7547 if (inode) {
8ccf6f19
MX
7548 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7549 if (!work) {
7550 ret = -ENOMEM;
7551 goto out;
7552 }
7553 list_add_tail(&work->list, &works);
7554 btrfs_queue_worker(&root->fs_info->flush_workers,
7555 &work->work);
5b21f2ed
ZY
7556 }
7557 cond_resched();
75eff68e 7558 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7559 }
75eff68e 7560 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7561
7562 /* the filemap_flush will queue IO into the worker threads, but
7563 * we have to make sure the IO is actually started and that
7564 * ordered extents get created before we return
7565 */
7566 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7567 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7568 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7569 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7570 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7571 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7572 }
7573 atomic_dec(&root->fs_info->async_submit_draining);
8ccf6f19
MX
7574out:
7575 list_for_each_entry_safe(work, next, &works, list) {
7576 list_del_init(&work->list);
7577 btrfs_wait_and_free_delalloc_work(work);
7578 }
7579 return ret;
ea8c2819
CM
7580}
7581
39279cc3
CM
7582static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7583 const char *symname)
7584{
7585 struct btrfs_trans_handle *trans;
7586 struct btrfs_root *root = BTRFS_I(dir)->root;
7587 struct btrfs_path *path;
7588 struct btrfs_key key;
1832a6d5 7589 struct inode *inode = NULL;
39279cc3
CM
7590 int err;
7591 int drop_inode = 0;
7592 u64 objectid;
00e4e6b3 7593 u64 index = 0 ;
39279cc3
CM
7594 int name_len;
7595 int datasize;
5f39d397 7596 unsigned long ptr;
39279cc3 7597 struct btrfs_file_extent_item *ei;
5f39d397 7598 struct extent_buffer *leaf;
39279cc3
CM
7599
7600 name_len = strlen(symname) + 1;
7601 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7602 return -ENAMETOOLONG;
1832a6d5 7603
9ed74f2d
JB
7604 /*
7605 * 2 items for inode item and ref
7606 * 2 items for dir items
7607 * 1 item for xattr if selinux is on
7608 */
a22285a6
YZ
7609 trans = btrfs_start_transaction(root, 5);
7610 if (IS_ERR(trans))
7611 return PTR_ERR(trans);
1832a6d5 7612
581bb050
LZ
7613 err = btrfs_find_free_ino(root, &objectid);
7614 if (err)
7615 goto out_unlock;
7616
aec7477b 7617 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7618 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7619 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7620 if (IS_ERR(inode)) {
7621 err = PTR_ERR(inode);
39279cc3 7622 goto out_unlock;
7cf96da3 7623 }
39279cc3 7624
2a7dba39 7625 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7626 if (err) {
7627 drop_inode = 1;
7628 goto out_unlock;
7629 }
7630
ad19db71
CS
7631 /*
7632 * If the active LSM wants to access the inode during
7633 * d_instantiate it needs these. Smack checks to see
7634 * if the filesystem supports xattrs by looking at the
7635 * ops vector.
7636 */
7637 inode->i_fop = &btrfs_file_operations;
7638 inode->i_op = &btrfs_file_inode_operations;
7639
a1b075d2 7640 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7641 if (err)
7642 drop_inode = 1;
7643 else {
7644 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7645 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7646 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7647 }
39279cc3
CM
7648 if (drop_inode)
7649 goto out_unlock;
7650
7651 path = btrfs_alloc_path();
d8926bb3
MF
7652 if (!path) {
7653 err = -ENOMEM;
7654 drop_inode = 1;
7655 goto out_unlock;
7656 }
33345d01 7657 key.objectid = btrfs_ino(inode);
39279cc3 7658 key.offset = 0;
39279cc3
CM
7659 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7660 datasize = btrfs_file_extent_calc_inline_size(name_len);
7661 err = btrfs_insert_empty_item(trans, root, path, &key,
7662 datasize);
54aa1f4d
CM
7663 if (err) {
7664 drop_inode = 1;
b0839166 7665 btrfs_free_path(path);
54aa1f4d
CM
7666 goto out_unlock;
7667 }
5f39d397
CM
7668 leaf = path->nodes[0];
7669 ei = btrfs_item_ptr(leaf, path->slots[0],
7670 struct btrfs_file_extent_item);
7671 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7672 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7673 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7674 btrfs_set_file_extent_encryption(leaf, ei, 0);
7675 btrfs_set_file_extent_compression(leaf, ei, 0);
7676 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7677 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7678
39279cc3 7679 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7680 write_extent_buffer(leaf, symname, ptr, name_len);
7681 btrfs_mark_buffer_dirty(leaf);
39279cc3 7682 btrfs_free_path(path);
5f39d397 7683
39279cc3
CM
7684 inode->i_op = &btrfs_symlink_inode_operations;
7685 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7686 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7687 inode_set_bytes(inode, name_len);
dbe674a9 7688 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7689 err = btrfs_update_inode(trans, root, inode);
7690 if (err)
7691 drop_inode = 1;
39279cc3
CM
7692
7693out_unlock:
08c422c2
AV
7694 if (!err)
7695 d_instantiate(dentry, inode);
7ad85bb7 7696 btrfs_end_transaction(trans, root);
39279cc3
CM
7697 if (drop_inode) {
7698 inode_dec_link_count(inode);
7699 iput(inode);
7700 }
b53d3f5d 7701 btrfs_btree_balance_dirty(root);
39279cc3
CM
7702 return err;
7703}
16432985 7704
0af3d00b
JB
7705static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7706 u64 start, u64 num_bytes, u64 min_size,
7707 loff_t actual_len, u64 *alloc_hint,
7708 struct btrfs_trans_handle *trans)
d899e052 7709{
5dc562c5
JB
7710 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7711 struct extent_map *em;
d899e052
YZ
7712 struct btrfs_root *root = BTRFS_I(inode)->root;
7713 struct btrfs_key ins;
d899e052 7714 u64 cur_offset = start;
55a61d1d 7715 u64 i_size;
d899e052 7716 int ret = 0;
0af3d00b 7717 bool own_trans = true;
d899e052 7718
0af3d00b
JB
7719 if (trans)
7720 own_trans = false;
d899e052 7721 while (num_bytes > 0) {
0af3d00b
JB
7722 if (own_trans) {
7723 trans = btrfs_start_transaction(root, 3);
7724 if (IS_ERR(trans)) {
7725 ret = PTR_ERR(trans);
7726 break;
7727 }
5a303d5d
YZ
7728 }
7729
efa56464 7730 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7731 0, *alloc_hint, &ins, 1);
5a303d5d 7732 if (ret) {
0af3d00b
JB
7733 if (own_trans)
7734 btrfs_end_transaction(trans, root);
a22285a6 7735 break;
d899e052 7736 }
5a303d5d 7737
d899e052
YZ
7738 ret = insert_reserved_file_extent(trans, inode,
7739 cur_offset, ins.objectid,
7740 ins.offset, ins.offset,
920bbbfb 7741 ins.offset, 0, 0, 0,
d899e052 7742 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7743 if (ret) {
7744 btrfs_abort_transaction(trans, root, ret);
7745 if (own_trans)
7746 btrfs_end_transaction(trans, root);
7747 break;
7748 }
a1ed835e
CM
7749 btrfs_drop_extent_cache(inode, cur_offset,
7750 cur_offset + ins.offset -1, 0);
5a303d5d 7751
5dc562c5
JB
7752 em = alloc_extent_map();
7753 if (!em) {
7754 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7755 &BTRFS_I(inode)->runtime_flags);
7756 goto next;
7757 }
7758
7759 em->start = cur_offset;
7760 em->orig_start = cur_offset;
7761 em->len = ins.offset;
7762 em->block_start = ins.objectid;
7763 em->block_len = ins.offset;
7764 em->bdev = root->fs_info->fs_devices->latest_bdev;
7765 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7766 em->generation = trans->transid;
7767
7768 while (1) {
7769 write_lock(&em_tree->lock);
7770 ret = add_extent_mapping(em_tree, em);
7771 if (!ret)
7772 list_move(&em->list,
7773 &em_tree->modified_extents);
7774 write_unlock(&em_tree->lock);
7775 if (ret != -EEXIST)
7776 break;
7777 btrfs_drop_extent_cache(inode, cur_offset,
7778 cur_offset + ins.offset - 1,
7779 0);
7780 }
7781 free_extent_map(em);
7782next:
d899e052
YZ
7783 num_bytes -= ins.offset;
7784 cur_offset += ins.offset;
efa56464 7785 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7786
0c4d2d95 7787 inode_inc_iversion(inode);
d899e052 7788 inode->i_ctime = CURRENT_TIME;
6cbff00f 7789 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7790 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7791 (actual_len > inode->i_size) &&
7792 (cur_offset > inode->i_size)) {
d1ea6a61 7793 if (cur_offset > actual_len)
55a61d1d 7794 i_size = actual_len;
d1ea6a61 7795 else
55a61d1d
JB
7796 i_size = cur_offset;
7797 i_size_write(inode, i_size);
7798 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7799 }
7800
d899e052 7801 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7802
7803 if (ret) {
7804 btrfs_abort_transaction(trans, root, ret);
7805 if (own_trans)
7806 btrfs_end_transaction(trans, root);
7807 break;
7808 }
d899e052 7809
0af3d00b
JB
7810 if (own_trans)
7811 btrfs_end_transaction(trans, root);
5a303d5d 7812 }
d899e052
YZ
7813 return ret;
7814}
7815
0af3d00b
JB
7816int btrfs_prealloc_file_range(struct inode *inode, int mode,
7817 u64 start, u64 num_bytes, u64 min_size,
7818 loff_t actual_len, u64 *alloc_hint)
7819{
7820 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7821 min_size, actual_len, alloc_hint,
7822 NULL);
7823}
7824
7825int btrfs_prealloc_file_range_trans(struct inode *inode,
7826 struct btrfs_trans_handle *trans, int mode,
7827 u64 start, u64 num_bytes, u64 min_size,
7828 loff_t actual_len, u64 *alloc_hint)
7829{
7830 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7831 min_size, actual_len, alloc_hint, trans);
7832}
7833
e6dcd2dc
CM
7834static int btrfs_set_page_dirty(struct page *page)
7835{
e6dcd2dc
CM
7836 return __set_page_dirty_nobuffers(page);
7837}
7838
10556cb2 7839static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7840{
b83cc969 7841 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7842 umode_t mode = inode->i_mode;
b83cc969 7843
cb6db4e5
JM
7844 if (mask & MAY_WRITE &&
7845 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7846 if (btrfs_root_readonly(root))
7847 return -EROFS;
7848 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7849 return -EACCES;
7850 }
2830ba7f 7851 return generic_permission(inode, mask);
fdebe2bd 7852}
39279cc3 7853
6e1d5dcc 7854static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7855 .getattr = btrfs_getattr,
39279cc3
CM
7856 .lookup = btrfs_lookup,
7857 .create = btrfs_create,
7858 .unlink = btrfs_unlink,
7859 .link = btrfs_link,
7860 .mkdir = btrfs_mkdir,
7861 .rmdir = btrfs_rmdir,
7862 .rename = btrfs_rename,
7863 .symlink = btrfs_symlink,
7864 .setattr = btrfs_setattr,
618e21d5 7865 .mknod = btrfs_mknod,
95819c05
CH
7866 .setxattr = btrfs_setxattr,
7867 .getxattr = btrfs_getxattr,
5103e947 7868 .listxattr = btrfs_listxattr,
95819c05 7869 .removexattr = btrfs_removexattr,
fdebe2bd 7870 .permission = btrfs_permission,
4e34e719 7871 .get_acl = btrfs_get_acl,
39279cc3 7872};
6e1d5dcc 7873static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7874 .lookup = btrfs_lookup,
fdebe2bd 7875 .permission = btrfs_permission,
4e34e719 7876 .get_acl = btrfs_get_acl,
39279cc3 7877};
76dda93c 7878
828c0950 7879static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7880 .llseek = generic_file_llseek,
7881 .read = generic_read_dir,
cbdf5a24 7882 .readdir = btrfs_real_readdir,
34287aa3 7883 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7884#ifdef CONFIG_COMPAT
34287aa3 7885 .compat_ioctl = btrfs_ioctl,
39279cc3 7886#endif
6bf13c0c 7887 .release = btrfs_release_file,
e02119d5 7888 .fsync = btrfs_sync_file,
39279cc3
CM
7889};
7890
d1310b2e 7891static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7892 .fill_delalloc = run_delalloc_range,
065631f6 7893 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7894 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7895 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7896 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7897 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7898 .set_bit_hook = btrfs_set_bit_hook,
7899 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7900 .merge_extent_hook = btrfs_merge_extent_hook,
7901 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7902};
7903
35054394
CM
7904/*
7905 * btrfs doesn't support the bmap operation because swapfiles
7906 * use bmap to make a mapping of extents in the file. They assume
7907 * these extents won't change over the life of the file and they
7908 * use the bmap result to do IO directly to the drive.
7909 *
7910 * the btrfs bmap call would return logical addresses that aren't
7911 * suitable for IO and they also will change frequently as COW
7912 * operations happen. So, swapfile + btrfs == corruption.
7913 *
7914 * For now we're avoiding this by dropping bmap.
7915 */
7f09410b 7916static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7917 .readpage = btrfs_readpage,
7918 .writepage = btrfs_writepage,
b293f02e 7919 .writepages = btrfs_writepages,
3ab2fb5a 7920 .readpages = btrfs_readpages,
16432985 7921 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7922 .invalidatepage = btrfs_invalidatepage,
7923 .releasepage = btrfs_releasepage,
e6dcd2dc 7924 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7925 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7926};
7927
7f09410b 7928static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7929 .readpage = btrfs_readpage,
7930 .writepage = btrfs_writepage,
2bf5a725
CM
7931 .invalidatepage = btrfs_invalidatepage,
7932 .releasepage = btrfs_releasepage,
39279cc3
CM
7933};
7934
6e1d5dcc 7935static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7936 .getattr = btrfs_getattr,
7937 .setattr = btrfs_setattr,
95819c05
CH
7938 .setxattr = btrfs_setxattr,
7939 .getxattr = btrfs_getxattr,
5103e947 7940 .listxattr = btrfs_listxattr,
95819c05 7941 .removexattr = btrfs_removexattr,
fdebe2bd 7942 .permission = btrfs_permission,
1506fcc8 7943 .fiemap = btrfs_fiemap,
4e34e719 7944 .get_acl = btrfs_get_acl,
e41f941a 7945 .update_time = btrfs_update_time,
39279cc3 7946};
6e1d5dcc 7947static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7948 .getattr = btrfs_getattr,
7949 .setattr = btrfs_setattr,
fdebe2bd 7950 .permission = btrfs_permission,
95819c05
CH
7951 .setxattr = btrfs_setxattr,
7952 .getxattr = btrfs_getxattr,
33268eaf 7953 .listxattr = btrfs_listxattr,
95819c05 7954 .removexattr = btrfs_removexattr,
4e34e719 7955 .get_acl = btrfs_get_acl,
e41f941a 7956 .update_time = btrfs_update_time,
618e21d5 7957};
6e1d5dcc 7958static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7959 .readlink = generic_readlink,
7960 .follow_link = page_follow_link_light,
7961 .put_link = page_put_link,
f209561a 7962 .getattr = btrfs_getattr,
22c44fe6 7963 .setattr = btrfs_setattr,
fdebe2bd 7964 .permission = btrfs_permission,
0279b4cd
JO
7965 .setxattr = btrfs_setxattr,
7966 .getxattr = btrfs_getxattr,
7967 .listxattr = btrfs_listxattr,
7968 .removexattr = btrfs_removexattr,
4e34e719 7969 .get_acl = btrfs_get_acl,
e41f941a 7970 .update_time = btrfs_update_time,
39279cc3 7971};
76dda93c 7972
82d339d9 7973const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7974 .d_delete = btrfs_dentry_delete,
b4aff1f8 7975 .d_release = btrfs_dentry_release,
76dda93c 7976};