Btrfs: change reserved_extents to an atomic_t
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
39279cc3
CM
53
54struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57};
58
6e1d5dcc
AD
59static const struct inode_operations btrfs_dir_inode_operations;
60static const struct inode_operations btrfs_symlink_inode_operations;
61static const struct inode_operations btrfs_dir_ro_inode_operations;
62static const struct inode_operations btrfs_special_inode_operations;
63static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
64static const struct address_space_operations btrfs_aops;
65static const struct address_space_operations btrfs_symlink_aops;
828c0950 66static const struct file_operations btrfs_dir_file_operations;
d1310b2e 67static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
68
69static struct kmem_cache *btrfs_inode_cachep;
70struct kmem_cache *btrfs_trans_handle_cachep;
71struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
72struct kmem_cache *btrfs_path_cachep;
73
74#define S_SHIFT 12
75static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83};
84
7b128766 85static void btrfs_truncate(struct inode *inode);
c8b97818 86static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
87static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
7b128766 91
f34f57a3
YZ
92static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
0279b4cd
JO
94{
95 int err;
96
f34f57a3 97 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 98 if (!err)
f34f57a3 99 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
100 return err;
101}
102
c8b97818
CM
103/*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
d397712b 108static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112{
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
261507a0 125 int compress_type = BTRFS_COMPRESS_NONE;
c8b97818
CM
126
127 if (compressed_size && compressed_pages) {
261507a0 128 compress_type = root->fs_info->compress_type;
c8b97818
CM
129 cur_size = compressed_size;
130 }
131
d397712b
CM
132 path = btrfs_alloc_path();
133 if (!path)
c8b97818
CM
134 return -ENOMEM;
135
b9473439 136 path->leave_spinning = 1;
c8b97818
CM
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
c8b97818
CM
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
261507a0 162 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
163 struct page *cpage;
164 int i = 0;
d397712b 165 while (compressed_size > 0) {
c8b97818 166 cpage = compressed_pages[i];
5b050f04 167 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
168 PAGE_CACHE_SIZE);
169
b9473439 170 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 172 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
261507a0 179 compress_type);
c8b97818
CM
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
c2167754
YZ
193 /*
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
197 *
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
201 */
c8b97818
CM
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
c2167754 204
c8b97818
CM
205 return 0;
206fail:
207 btrfs_free_path(path);
208 return err;
209}
210
211
212/*
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
216 */
7f366cfe 217static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
222{
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
231
232 if (compressed_size)
233 data_len = compressed_size;
234
235 if (start > 0 ||
70b99e69 236 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
243 }
244
920bbbfb 245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 246 &hint_byte, 1);
c8b97818
CM
247 BUG_ON(ret);
248
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
0ca1f7ce 255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
257 return 0;
258}
259
771ed689
CM
260struct async_extent {
261 u64 start;
262 u64 ram_size;
263 u64 compressed_size;
264 struct page **pages;
265 unsigned long nr_pages;
261507a0 266 int compress_type;
771ed689
CM
267 struct list_head list;
268};
269
270struct async_cow {
271 struct inode *inode;
272 struct btrfs_root *root;
273 struct page *locked_page;
274 u64 start;
275 u64 end;
276 struct list_head extents;
277 struct btrfs_work work;
278};
279
280static noinline int add_async_extent(struct async_cow *cow,
281 u64 start, u64 ram_size,
282 u64 compressed_size,
283 struct page **pages,
261507a0
LZ
284 unsigned long nr_pages,
285 int compress_type)
771ed689
CM
286{
287 struct async_extent *async_extent;
288
289 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
290 async_extent->start = start;
291 async_extent->ram_size = ram_size;
292 async_extent->compressed_size = compressed_size;
293 async_extent->pages = pages;
294 async_extent->nr_pages = nr_pages;
261507a0 295 async_extent->compress_type = compress_type;
771ed689
CM
296 list_add_tail(&async_extent->list, &cow->extents);
297 return 0;
298}
299
d352ac68 300/*
771ed689
CM
301 * we create compressed extents in two phases. The first
302 * phase compresses a range of pages that have already been
303 * locked (both pages and state bits are locked).
c8b97818 304 *
771ed689
CM
305 * This is done inside an ordered work queue, and the compression
306 * is spread across many cpus. The actual IO submission is step
307 * two, and the ordered work queue takes care of making sure that
308 * happens in the same order things were put onto the queue by
309 * writepages and friends.
c8b97818 310 *
771ed689
CM
311 * If this code finds it can't get good compression, it puts an
312 * entry onto the work queue to write the uncompressed bytes. This
313 * makes sure that both compressed inodes and uncompressed inodes
314 * are written in the same order that pdflush sent them down.
d352ac68 315 */
771ed689
CM
316static noinline int compress_file_range(struct inode *inode,
317 struct page *locked_page,
318 u64 start, u64 end,
319 struct async_cow *async_cow,
320 int *num_added)
b888db2b
CM
321{
322 struct btrfs_root *root = BTRFS_I(inode)->root;
323 struct btrfs_trans_handle *trans;
db94535d 324 u64 num_bytes;
db94535d 325 u64 blocksize = root->sectorsize;
c8b97818 326 u64 actual_end;
42dc7bab 327 u64 isize = i_size_read(inode);
e6dcd2dc 328 int ret = 0;
c8b97818
CM
329 struct page **pages = NULL;
330 unsigned long nr_pages;
331 unsigned long nr_pages_ret = 0;
332 unsigned long total_compressed = 0;
333 unsigned long total_in = 0;
334 unsigned long max_compressed = 128 * 1024;
771ed689 335 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
336 int i;
337 int will_compress;
261507a0 338 int compress_type = root->fs_info->compress_type;
b888db2b 339
42dc7bab 340 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
341again:
342 will_compress = 0;
343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 345
f03d9301
CM
346 /*
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
352 *
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
355 */
356 if (actual_end <= start)
357 goto cleanup_and_bail_uncompressed;
358
c8b97818
CM
359 total_compressed = actual_end - start;
360
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
366 *
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
c8b97818
CM
370 */
371 total_compressed = min(total_compressed, max_uncompressed);
db94535d 372 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 373 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
374 total_in = 0;
375 ret = 0;
db94535d 376
771ed689
CM
377 /*
378 * we do compression for mount -o compress and when the
379 * inode has not been flagged as nocompress. This flag can
380 * change at any time if we discover bad compression ratios.
c8b97818 381 */
6cbff00f 382 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32
CM
383 (btrfs_test_opt(root, COMPRESS) ||
384 (BTRFS_I(inode)->force_compress))) {
c8b97818 385 WARN_ON(pages);
cfbc246e 386 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 387
261507a0
LZ
388 if (BTRFS_I(inode)->force_compress)
389 compress_type = BTRFS_I(inode)->force_compress;
390
391 ret = btrfs_compress_pages(compress_type,
392 inode->i_mapping, start,
393 total_compressed, pages,
394 nr_pages, &nr_pages_ret,
395 &total_in,
396 &total_compressed,
397 max_compressed);
c8b97818
CM
398
399 if (!ret) {
400 unsigned long offset = total_compressed &
401 (PAGE_CACHE_SIZE - 1);
402 struct page *page = pages[nr_pages_ret - 1];
403 char *kaddr;
404
405 /* zero the tail end of the last page, we might be
406 * sending it down to disk
407 */
408 if (offset) {
409 kaddr = kmap_atomic(page, KM_USER0);
410 memset(kaddr + offset, 0,
411 PAGE_CACHE_SIZE - offset);
412 kunmap_atomic(kaddr, KM_USER0);
413 }
414 will_compress = 1;
415 }
416 }
417 if (start == 0) {
771ed689 418 trans = btrfs_join_transaction(root, 1);
3612b495 419 BUG_ON(IS_ERR(trans));
771ed689 420 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 421 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 422
c8b97818 423 /* lets try to make an inline extent */
771ed689 424 if (ret || total_in < (actual_end - start)) {
c8b97818 425 /* we didn't compress the entire range, try
771ed689 426 * to make an uncompressed inline extent.
c8b97818
CM
427 */
428 ret = cow_file_range_inline(trans, root, inode,
429 start, end, 0, NULL);
430 } else {
771ed689 431 /* try making a compressed inline extent */
c8b97818
CM
432 ret = cow_file_range_inline(trans, root, inode,
433 start, end,
434 total_compressed, pages);
435 }
436 if (ret == 0) {
771ed689
CM
437 /*
438 * inline extent creation worked, we don't need
439 * to create any more async work items. Unlock
440 * and free up our temp pages.
441 */
c8b97818 442 extent_clear_unlock_delalloc(inode,
a791e35e
CM
443 &BTRFS_I(inode)->io_tree,
444 start, end, NULL,
445 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 446 EXTENT_CLEAR_DELALLOC |
a791e35e 447 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
448
449 btrfs_end_transaction(trans, root);
c8b97818
CM
450 goto free_pages_out;
451 }
c2167754 452 btrfs_end_transaction(trans, root);
c8b97818
CM
453 }
454
455 if (will_compress) {
456 /*
457 * we aren't doing an inline extent round the compressed size
458 * up to a block size boundary so the allocator does sane
459 * things
460 */
461 total_compressed = (total_compressed + blocksize - 1) &
462 ~(blocksize - 1);
463
464 /*
465 * one last check to make sure the compression is really a
466 * win, compare the page count read with the blocks on disk
467 */
468 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
469 ~(PAGE_CACHE_SIZE - 1);
470 if (total_compressed >= total_in) {
471 will_compress = 0;
472 } else {
c8b97818
CM
473 num_bytes = total_in;
474 }
475 }
476 if (!will_compress && pages) {
477 /*
478 * the compression code ran but failed to make things smaller,
479 * free any pages it allocated and our page pointer array
480 */
481 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 482 WARN_ON(pages[i]->mapping);
c8b97818
CM
483 page_cache_release(pages[i]);
484 }
485 kfree(pages);
486 pages = NULL;
487 total_compressed = 0;
488 nr_pages_ret = 0;
489
490 /* flag the file so we don't compress in the future */
1e701a32
CM
491 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
492 !(BTRFS_I(inode)->force_compress)) {
a555f810 493 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 494 }
c8b97818 495 }
771ed689
CM
496 if (will_compress) {
497 *num_added += 1;
c8b97818 498
771ed689
CM
499 /* the async work queues will take care of doing actual
500 * allocation on disk for these compressed pages,
501 * and will submit them to the elevator.
502 */
503 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
504 total_compressed, pages, nr_pages_ret,
505 compress_type);
179e29e4 506
24ae6365 507 if (start + num_bytes < end) {
771ed689
CM
508 start += num_bytes;
509 pages = NULL;
510 cond_resched();
511 goto again;
512 }
513 } else {
f03d9301 514cleanup_and_bail_uncompressed:
771ed689
CM
515 /*
516 * No compression, but we still need to write the pages in
517 * the file we've been given so far. redirty the locked
518 * page if it corresponds to our extent and set things up
519 * for the async work queue to run cow_file_range to do
520 * the normal delalloc dance
521 */
522 if (page_offset(locked_page) >= start &&
523 page_offset(locked_page) <= end) {
524 __set_page_dirty_nobuffers(locked_page);
525 /* unlocked later on in the async handlers */
526 }
261507a0
LZ
527 add_async_extent(async_cow, start, end - start + 1,
528 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
529 *num_added += 1;
530 }
3b951516 531
771ed689
CM
532out:
533 return 0;
534
535free_pages_out:
536 for (i = 0; i < nr_pages_ret; i++) {
537 WARN_ON(pages[i]->mapping);
538 page_cache_release(pages[i]);
539 }
d397712b 540 kfree(pages);
771ed689
CM
541
542 goto out;
543}
544
545/*
546 * phase two of compressed writeback. This is the ordered portion
547 * of the code, which only gets called in the order the work was
548 * queued. We walk all the async extents created by compress_file_range
549 * and send them down to the disk.
550 */
551static noinline int submit_compressed_extents(struct inode *inode,
552 struct async_cow *async_cow)
553{
554 struct async_extent *async_extent;
555 u64 alloc_hint = 0;
556 struct btrfs_trans_handle *trans;
557 struct btrfs_key ins;
558 struct extent_map *em;
559 struct btrfs_root *root = BTRFS_I(inode)->root;
560 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
561 struct extent_io_tree *io_tree;
f5a84ee3 562 int ret = 0;
771ed689
CM
563
564 if (list_empty(&async_cow->extents))
565 return 0;
566
771ed689 567
d397712b 568 while (!list_empty(&async_cow->extents)) {
771ed689
CM
569 async_extent = list_entry(async_cow->extents.next,
570 struct async_extent, list);
571 list_del(&async_extent->list);
c8b97818 572
771ed689
CM
573 io_tree = &BTRFS_I(inode)->io_tree;
574
f5a84ee3 575retry:
771ed689
CM
576 /* did the compression code fall back to uncompressed IO? */
577 if (!async_extent->pages) {
578 int page_started = 0;
579 unsigned long nr_written = 0;
580
581 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
582 async_extent->start +
583 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
584
585 /* allocate blocks */
f5a84ee3
JB
586 ret = cow_file_range(inode, async_cow->locked_page,
587 async_extent->start,
588 async_extent->start +
589 async_extent->ram_size - 1,
590 &page_started, &nr_written, 0);
771ed689
CM
591
592 /*
593 * if page_started, cow_file_range inserted an
594 * inline extent and took care of all the unlocking
595 * and IO for us. Otherwise, we need to submit
596 * all those pages down to the drive.
597 */
f5a84ee3 598 if (!page_started && !ret)
771ed689
CM
599 extent_write_locked_range(io_tree,
600 inode, async_extent->start,
d397712b 601 async_extent->start +
771ed689
CM
602 async_extent->ram_size - 1,
603 btrfs_get_extent,
604 WB_SYNC_ALL);
605 kfree(async_extent);
606 cond_resched();
607 continue;
608 }
609
610 lock_extent(io_tree, async_extent->start,
611 async_extent->start + async_extent->ram_size - 1,
612 GFP_NOFS);
771ed689 613
c2167754 614 trans = btrfs_join_transaction(root, 1);
3612b495 615 BUG_ON(IS_ERR(trans));
771ed689
CM
616 ret = btrfs_reserve_extent(trans, root,
617 async_extent->compressed_size,
618 async_extent->compressed_size,
619 0, alloc_hint,
620 (u64)-1, &ins, 1);
c2167754
YZ
621 btrfs_end_transaction(trans, root);
622
f5a84ee3
JB
623 if (ret) {
624 int i;
625 for (i = 0; i < async_extent->nr_pages; i++) {
626 WARN_ON(async_extent->pages[i]->mapping);
627 page_cache_release(async_extent->pages[i]);
628 }
629 kfree(async_extent->pages);
630 async_extent->nr_pages = 0;
631 async_extent->pages = NULL;
632 unlock_extent(io_tree, async_extent->start,
633 async_extent->start +
634 async_extent->ram_size - 1, GFP_NOFS);
635 goto retry;
636 }
637
c2167754
YZ
638 /*
639 * here we're doing allocation and writeback of the
640 * compressed pages
641 */
642 btrfs_drop_extent_cache(inode, async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1, 0);
645
771ed689 646 em = alloc_extent_map(GFP_NOFS);
c26a9203 647 BUG_ON(!em);
771ed689
CM
648 em->start = async_extent->start;
649 em->len = async_extent->ram_size;
445a6944 650 em->orig_start = em->start;
c8b97818 651
771ed689
CM
652 em->block_start = ins.objectid;
653 em->block_len = ins.offset;
654 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 655 em->compress_type = async_extent->compress_type;
771ed689
CM
656 set_bit(EXTENT_FLAG_PINNED, &em->flags);
657 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
658
d397712b 659 while (1) {
890871be 660 write_lock(&em_tree->lock);
771ed689 661 ret = add_extent_mapping(em_tree, em);
890871be 662 write_unlock(&em_tree->lock);
771ed689
CM
663 if (ret != -EEXIST) {
664 free_extent_map(em);
665 break;
666 }
667 btrfs_drop_extent_cache(inode, async_extent->start,
668 async_extent->start +
669 async_extent->ram_size - 1, 0);
670 }
671
261507a0
LZ
672 ret = btrfs_add_ordered_extent_compress(inode,
673 async_extent->start,
674 ins.objectid,
675 async_extent->ram_size,
676 ins.offset,
677 BTRFS_ORDERED_COMPRESSED,
678 async_extent->compress_type);
771ed689
CM
679 BUG_ON(ret);
680
771ed689
CM
681 /*
682 * clear dirty, set writeback and unlock the pages.
683 */
684 extent_clear_unlock_delalloc(inode,
a791e35e
CM
685 &BTRFS_I(inode)->io_tree,
686 async_extent->start,
687 async_extent->start +
688 async_extent->ram_size - 1,
689 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
690 EXTENT_CLEAR_UNLOCK |
a3429ab7 691 EXTENT_CLEAR_DELALLOC |
a791e35e 692 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
693
694 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
695 async_extent->start,
696 async_extent->ram_size,
697 ins.objectid,
698 ins.offset, async_extent->pages,
699 async_extent->nr_pages);
771ed689
CM
700
701 BUG_ON(ret);
771ed689
CM
702 alloc_hint = ins.objectid + ins.offset;
703 kfree(async_extent);
704 cond_resched();
705 }
706
771ed689
CM
707 return 0;
708}
709
4b46fce2
JB
710static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
711 u64 num_bytes)
712{
713 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
714 struct extent_map *em;
715 u64 alloc_hint = 0;
716
717 read_lock(&em_tree->lock);
718 em = search_extent_mapping(em_tree, start, num_bytes);
719 if (em) {
720 /*
721 * if block start isn't an actual block number then find the
722 * first block in this inode and use that as a hint. If that
723 * block is also bogus then just don't worry about it.
724 */
725 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
726 free_extent_map(em);
727 em = search_extent_mapping(em_tree, 0, 0);
728 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
729 alloc_hint = em->block_start;
730 if (em)
731 free_extent_map(em);
732 } else {
733 alloc_hint = em->block_start;
734 free_extent_map(em);
735 }
736 }
737 read_unlock(&em_tree->lock);
738
739 return alloc_hint;
740}
741
771ed689
CM
742/*
743 * when extent_io.c finds a delayed allocation range in the file,
744 * the call backs end up in this code. The basic idea is to
745 * allocate extents on disk for the range, and create ordered data structs
746 * in ram to track those extents.
747 *
748 * locked_page is the page that writepage had locked already. We use
749 * it to make sure we don't do extra locks or unlocks.
750 *
751 * *page_started is set to one if we unlock locked_page and do everything
752 * required to start IO on it. It may be clean and already done with
753 * IO when we return.
754 */
755static noinline int cow_file_range(struct inode *inode,
756 struct page *locked_page,
757 u64 start, u64 end, int *page_started,
758 unsigned long *nr_written,
759 int unlock)
760{
761 struct btrfs_root *root = BTRFS_I(inode)->root;
762 struct btrfs_trans_handle *trans;
763 u64 alloc_hint = 0;
764 u64 num_bytes;
765 unsigned long ram_size;
766 u64 disk_num_bytes;
767 u64 cur_alloc_size;
768 u64 blocksize = root->sectorsize;
771ed689
CM
769 struct btrfs_key ins;
770 struct extent_map *em;
771 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
772 int ret = 0;
773
0cb59c99 774 BUG_ON(root == root->fs_info->tree_root);
771ed689 775 trans = btrfs_join_transaction(root, 1);
3612b495 776 BUG_ON(IS_ERR(trans));
771ed689 777 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 778 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 779
771ed689
CM
780 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
781 num_bytes = max(blocksize, num_bytes);
782 disk_num_bytes = num_bytes;
783 ret = 0;
784
785 if (start == 0) {
786 /* lets try to make an inline extent */
787 ret = cow_file_range_inline(trans, root, inode,
788 start, end, 0, NULL);
789 if (ret == 0) {
790 extent_clear_unlock_delalloc(inode,
a791e35e
CM
791 &BTRFS_I(inode)->io_tree,
792 start, end, NULL,
793 EXTENT_CLEAR_UNLOCK_PAGE |
794 EXTENT_CLEAR_UNLOCK |
795 EXTENT_CLEAR_DELALLOC |
796 EXTENT_CLEAR_DIRTY |
797 EXTENT_SET_WRITEBACK |
798 EXTENT_END_WRITEBACK);
c2167754 799
771ed689
CM
800 *nr_written = *nr_written +
801 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
802 *page_started = 1;
803 ret = 0;
804 goto out;
805 }
806 }
807
808 BUG_ON(disk_num_bytes >
809 btrfs_super_total_bytes(&root->fs_info->super_copy));
810
4b46fce2 811 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
812 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
813
d397712b 814 while (disk_num_bytes > 0) {
a791e35e
CM
815 unsigned long op;
816
287a0ab9 817 cur_alloc_size = disk_num_bytes;
e6dcd2dc 818 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 819 root->sectorsize, 0, alloc_hint,
e6dcd2dc 820 (u64)-1, &ins, 1);
d397712b
CM
821 BUG_ON(ret);
822
e6dcd2dc 823 em = alloc_extent_map(GFP_NOFS);
c26a9203 824 BUG_ON(!em);
e6dcd2dc 825 em->start = start;
445a6944 826 em->orig_start = em->start;
771ed689
CM
827 ram_size = ins.offset;
828 em->len = ins.offset;
c8b97818 829
e6dcd2dc 830 em->block_start = ins.objectid;
c8b97818 831 em->block_len = ins.offset;
e6dcd2dc 832 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 833 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 834
d397712b 835 while (1) {
890871be 836 write_lock(&em_tree->lock);
e6dcd2dc 837 ret = add_extent_mapping(em_tree, em);
890871be 838 write_unlock(&em_tree->lock);
e6dcd2dc
CM
839 if (ret != -EEXIST) {
840 free_extent_map(em);
841 break;
842 }
843 btrfs_drop_extent_cache(inode, start,
c8b97818 844 start + ram_size - 1, 0);
e6dcd2dc
CM
845 }
846
98d20f67 847 cur_alloc_size = ins.offset;
e6dcd2dc 848 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 849 ram_size, cur_alloc_size, 0);
e6dcd2dc 850 BUG_ON(ret);
c8b97818 851
17d217fe
YZ
852 if (root->root_key.objectid ==
853 BTRFS_DATA_RELOC_TREE_OBJECTID) {
854 ret = btrfs_reloc_clone_csums(inode, start,
855 cur_alloc_size);
856 BUG_ON(ret);
857 }
858
d397712b 859 if (disk_num_bytes < cur_alloc_size)
3b951516 860 break;
d397712b 861
c8b97818
CM
862 /* we're not doing compressed IO, don't unlock the first
863 * page (which the caller expects to stay locked), don't
864 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
865 *
866 * Do set the Private2 bit so we know this page was properly
867 * setup for writepage
c8b97818 868 */
a791e35e
CM
869 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
870 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
871 EXTENT_SET_PRIVATE2;
872
c8b97818
CM
873 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
874 start, start + ram_size - 1,
a791e35e 875 locked_page, op);
c8b97818 876 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
877 num_bytes -= cur_alloc_size;
878 alloc_hint = ins.objectid + ins.offset;
879 start += cur_alloc_size;
b888db2b 880 }
b888db2b 881out:
771ed689 882 ret = 0;
b888db2b 883 btrfs_end_transaction(trans, root);
c8b97818 884
be20aa9d 885 return ret;
771ed689 886}
c8b97818 887
771ed689
CM
888/*
889 * work queue call back to started compression on a file and pages
890 */
891static noinline void async_cow_start(struct btrfs_work *work)
892{
893 struct async_cow *async_cow;
894 int num_added = 0;
895 async_cow = container_of(work, struct async_cow, work);
896
897 compress_file_range(async_cow->inode, async_cow->locked_page,
898 async_cow->start, async_cow->end, async_cow,
899 &num_added);
900 if (num_added == 0)
901 async_cow->inode = NULL;
902}
903
904/*
905 * work queue call back to submit previously compressed pages
906 */
907static noinline void async_cow_submit(struct btrfs_work *work)
908{
909 struct async_cow *async_cow;
910 struct btrfs_root *root;
911 unsigned long nr_pages;
912
913 async_cow = container_of(work, struct async_cow, work);
914
915 root = async_cow->root;
916 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
917 PAGE_CACHE_SHIFT;
918
919 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
920
921 if (atomic_read(&root->fs_info->async_delalloc_pages) <
922 5 * 1042 * 1024 &&
923 waitqueue_active(&root->fs_info->async_submit_wait))
924 wake_up(&root->fs_info->async_submit_wait);
925
d397712b 926 if (async_cow->inode)
771ed689 927 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 928}
c8b97818 929
771ed689
CM
930static noinline void async_cow_free(struct btrfs_work *work)
931{
932 struct async_cow *async_cow;
933 async_cow = container_of(work, struct async_cow, work);
934 kfree(async_cow);
935}
936
937static int cow_file_range_async(struct inode *inode, struct page *locked_page,
938 u64 start, u64 end, int *page_started,
939 unsigned long *nr_written)
940{
941 struct async_cow *async_cow;
942 struct btrfs_root *root = BTRFS_I(inode)->root;
943 unsigned long nr_pages;
944 u64 cur_end;
945 int limit = 10 * 1024 * 1042;
946
a3429ab7
CM
947 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
948 1, 0, NULL, GFP_NOFS);
d397712b 949 while (start < end) {
771ed689
CM
950 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
951 async_cow->inode = inode;
952 async_cow->root = root;
953 async_cow->locked_page = locked_page;
954 async_cow->start = start;
955
6cbff00f 956 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
957 cur_end = end;
958 else
959 cur_end = min(end, start + 512 * 1024 - 1);
960
961 async_cow->end = cur_end;
962 INIT_LIST_HEAD(&async_cow->extents);
963
964 async_cow->work.func = async_cow_start;
965 async_cow->work.ordered_func = async_cow_submit;
966 async_cow->work.ordered_free = async_cow_free;
967 async_cow->work.flags = 0;
968
771ed689
CM
969 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
970 PAGE_CACHE_SHIFT;
971 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
972
973 btrfs_queue_worker(&root->fs_info->delalloc_workers,
974 &async_cow->work);
975
976 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
977 wait_event(root->fs_info->async_submit_wait,
978 (atomic_read(&root->fs_info->async_delalloc_pages) <
979 limit));
980 }
981
d397712b 982 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
983 atomic_read(&root->fs_info->async_delalloc_pages)) {
984 wait_event(root->fs_info->async_submit_wait,
985 (atomic_read(&root->fs_info->async_delalloc_pages) ==
986 0));
987 }
988
989 *nr_written += nr_pages;
990 start = cur_end + 1;
991 }
992 *page_started = 1;
993 return 0;
be20aa9d
CM
994}
995
d397712b 996static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
997 u64 bytenr, u64 num_bytes)
998{
999 int ret;
1000 struct btrfs_ordered_sum *sums;
1001 LIST_HEAD(list);
1002
07d400a6
YZ
1003 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1004 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1005 if (ret == 0 && list_empty(&list))
1006 return 0;
1007
1008 while (!list_empty(&list)) {
1009 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1010 list_del(&sums->list);
1011 kfree(sums);
1012 }
1013 return 1;
1014}
1015
d352ac68
CM
1016/*
1017 * when nowcow writeback call back. This checks for snapshots or COW copies
1018 * of the extents that exist in the file, and COWs the file as required.
1019 *
1020 * If no cow copies or snapshots exist, we write directly to the existing
1021 * blocks on disk
1022 */
7f366cfe
CM
1023static noinline int run_delalloc_nocow(struct inode *inode,
1024 struct page *locked_page,
771ed689
CM
1025 u64 start, u64 end, int *page_started, int force,
1026 unsigned long *nr_written)
be20aa9d 1027{
be20aa9d 1028 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1029 struct btrfs_trans_handle *trans;
be20aa9d 1030 struct extent_buffer *leaf;
be20aa9d 1031 struct btrfs_path *path;
80ff3856 1032 struct btrfs_file_extent_item *fi;
be20aa9d 1033 struct btrfs_key found_key;
80ff3856
YZ
1034 u64 cow_start;
1035 u64 cur_offset;
1036 u64 extent_end;
5d4f98a2 1037 u64 extent_offset;
80ff3856
YZ
1038 u64 disk_bytenr;
1039 u64 num_bytes;
1040 int extent_type;
1041 int ret;
d899e052 1042 int type;
80ff3856
YZ
1043 int nocow;
1044 int check_prev = 1;
0cb59c99 1045 bool nolock = false;
be20aa9d
CM
1046
1047 path = btrfs_alloc_path();
1048 BUG_ON(!path);
0cb59c99
JB
1049 if (root == root->fs_info->tree_root) {
1050 nolock = true;
1051 trans = btrfs_join_transaction_nolock(root, 1);
1052 } else {
1053 trans = btrfs_join_transaction(root, 1);
1054 }
3612b495 1055 BUG_ON(IS_ERR(trans));
be20aa9d 1056
80ff3856
YZ
1057 cow_start = (u64)-1;
1058 cur_offset = start;
1059 while (1) {
1060 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1061 cur_offset, 0);
1062 BUG_ON(ret < 0);
1063 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1064 leaf = path->nodes[0];
1065 btrfs_item_key_to_cpu(leaf, &found_key,
1066 path->slots[0] - 1);
1067 if (found_key.objectid == inode->i_ino &&
1068 found_key.type == BTRFS_EXTENT_DATA_KEY)
1069 path->slots[0]--;
1070 }
1071 check_prev = 0;
1072next_slot:
1073 leaf = path->nodes[0];
1074 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1075 ret = btrfs_next_leaf(root, path);
1076 if (ret < 0)
1077 BUG_ON(1);
1078 if (ret > 0)
1079 break;
1080 leaf = path->nodes[0];
1081 }
be20aa9d 1082
80ff3856
YZ
1083 nocow = 0;
1084 disk_bytenr = 0;
17d217fe 1085 num_bytes = 0;
80ff3856
YZ
1086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1087
1088 if (found_key.objectid > inode->i_ino ||
1089 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1090 found_key.offset > end)
1091 break;
1092
1093 if (found_key.offset > cur_offset) {
1094 extent_end = found_key.offset;
e9061e21 1095 extent_type = 0;
80ff3856
YZ
1096 goto out_check;
1097 }
1098
1099 fi = btrfs_item_ptr(leaf, path->slots[0],
1100 struct btrfs_file_extent_item);
1101 extent_type = btrfs_file_extent_type(leaf, fi);
1102
d899e052
YZ
1103 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1104 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1105 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1106 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1107 extent_end = found_key.offset +
1108 btrfs_file_extent_num_bytes(leaf, fi);
1109 if (extent_end <= start) {
1110 path->slots[0]++;
1111 goto next_slot;
1112 }
17d217fe
YZ
1113 if (disk_bytenr == 0)
1114 goto out_check;
80ff3856
YZ
1115 if (btrfs_file_extent_compression(leaf, fi) ||
1116 btrfs_file_extent_encryption(leaf, fi) ||
1117 btrfs_file_extent_other_encoding(leaf, fi))
1118 goto out_check;
d899e052
YZ
1119 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1120 goto out_check;
d2fb3437 1121 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1122 goto out_check;
17d217fe 1123 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1124 found_key.offset -
1125 extent_offset, disk_bytenr))
17d217fe 1126 goto out_check;
5d4f98a2 1127 disk_bytenr += extent_offset;
17d217fe
YZ
1128 disk_bytenr += cur_offset - found_key.offset;
1129 num_bytes = min(end + 1, extent_end) - cur_offset;
1130 /*
1131 * force cow if csum exists in the range.
1132 * this ensure that csum for a given extent are
1133 * either valid or do not exist.
1134 */
1135 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1136 goto out_check;
80ff3856
YZ
1137 nocow = 1;
1138 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1139 extent_end = found_key.offset +
1140 btrfs_file_extent_inline_len(leaf, fi);
1141 extent_end = ALIGN(extent_end, root->sectorsize);
1142 } else {
1143 BUG_ON(1);
1144 }
1145out_check:
1146 if (extent_end <= start) {
1147 path->slots[0]++;
1148 goto next_slot;
1149 }
1150 if (!nocow) {
1151 if (cow_start == (u64)-1)
1152 cow_start = cur_offset;
1153 cur_offset = extent_end;
1154 if (cur_offset > end)
1155 break;
1156 path->slots[0]++;
1157 goto next_slot;
7ea394f1
YZ
1158 }
1159
1160 btrfs_release_path(root, path);
80ff3856
YZ
1161 if (cow_start != (u64)-1) {
1162 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1163 found_key.offset - 1, page_started,
1164 nr_written, 1);
80ff3856
YZ
1165 BUG_ON(ret);
1166 cow_start = (u64)-1;
7ea394f1 1167 }
80ff3856 1168
d899e052
YZ
1169 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1170 struct extent_map *em;
1171 struct extent_map_tree *em_tree;
1172 em_tree = &BTRFS_I(inode)->extent_tree;
1173 em = alloc_extent_map(GFP_NOFS);
c26a9203 1174 BUG_ON(!em);
d899e052 1175 em->start = cur_offset;
445a6944 1176 em->orig_start = em->start;
d899e052
YZ
1177 em->len = num_bytes;
1178 em->block_len = num_bytes;
1179 em->block_start = disk_bytenr;
1180 em->bdev = root->fs_info->fs_devices->latest_bdev;
1181 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1182 while (1) {
890871be 1183 write_lock(&em_tree->lock);
d899e052 1184 ret = add_extent_mapping(em_tree, em);
890871be 1185 write_unlock(&em_tree->lock);
d899e052
YZ
1186 if (ret != -EEXIST) {
1187 free_extent_map(em);
1188 break;
1189 }
1190 btrfs_drop_extent_cache(inode, em->start,
1191 em->start + em->len - 1, 0);
1192 }
1193 type = BTRFS_ORDERED_PREALLOC;
1194 } else {
1195 type = BTRFS_ORDERED_NOCOW;
1196 }
80ff3856
YZ
1197
1198 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1199 num_bytes, num_bytes, type);
1200 BUG_ON(ret);
771ed689 1201
efa56464
YZ
1202 if (root->root_key.objectid ==
1203 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1204 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1205 num_bytes);
1206 BUG_ON(ret);
1207 }
1208
d899e052 1209 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1210 cur_offset, cur_offset + num_bytes - 1,
1211 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1212 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1213 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1214 cur_offset = extent_end;
1215 if (cur_offset > end)
1216 break;
be20aa9d 1217 }
80ff3856
YZ
1218 btrfs_release_path(root, path);
1219
1220 if (cur_offset <= end && cow_start == (u64)-1)
1221 cow_start = cur_offset;
1222 if (cow_start != (u64)-1) {
1223 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1224 page_started, nr_written, 1);
80ff3856
YZ
1225 BUG_ON(ret);
1226 }
1227
0cb59c99
JB
1228 if (nolock) {
1229 ret = btrfs_end_transaction_nolock(trans, root);
1230 BUG_ON(ret);
1231 } else {
1232 ret = btrfs_end_transaction(trans, root);
1233 BUG_ON(ret);
1234 }
7ea394f1 1235 btrfs_free_path(path);
80ff3856 1236 return 0;
be20aa9d
CM
1237}
1238
d352ac68
CM
1239/*
1240 * extent_io.c call back to do delayed allocation processing
1241 */
c8b97818 1242static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1243 u64 start, u64 end, int *page_started,
1244 unsigned long *nr_written)
be20aa9d 1245{
be20aa9d 1246 int ret;
7f366cfe 1247 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1248
6cbff00f 1249 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1250 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1251 page_started, 1, nr_written);
6cbff00f 1252 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1253 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1254 page_started, 0, nr_written);
1e701a32
CM
1255 else if (!btrfs_test_opt(root, COMPRESS) &&
1256 !(BTRFS_I(inode)->force_compress))
7f366cfe
CM
1257 ret = cow_file_range(inode, locked_page, start, end,
1258 page_started, nr_written, 1);
be20aa9d 1259 else
771ed689 1260 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1261 page_started, nr_written);
b888db2b
CM
1262 return ret;
1263}
1264
9ed74f2d 1265static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1266 struct extent_state *orig, u64 split)
9ed74f2d 1267{
0ca1f7ce 1268 /* not delalloc, ignore it */
9ed74f2d
JB
1269 if (!(orig->state & EXTENT_DELALLOC))
1270 return 0;
1271
0ca1f7ce 1272 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1273 return 0;
1274}
1275
1276/*
1277 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1278 * extents so we can keep track of new extents that are just merged onto old
1279 * extents, such as when we are doing sequential writes, so we can properly
1280 * account for the metadata space we'll need.
1281 */
1282static int btrfs_merge_extent_hook(struct inode *inode,
1283 struct extent_state *new,
1284 struct extent_state *other)
1285{
9ed74f2d
JB
1286 /* not delalloc, ignore it */
1287 if (!(other->state & EXTENT_DELALLOC))
1288 return 0;
1289
0ca1f7ce 1290 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1291 return 0;
1292}
1293
d352ac68
CM
1294/*
1295 * extent_io.c set_bit_hook, used to track delayed allocation
1296 * bytes in this file, and to maintain the list of inodes that
1297 * have pending delalloc work to be done.
1298 */
0ca1f7ce
YZ
1299static int btrfs_set_bit_hook(struct inode *inode,
1300 struct extent_state *state, int *bits)
291d673e 1301{
9ed74f2d 1302
75eff68e
CM
1303 /*
1304 * set_bit and clear bit hooks normally require _irqsave/restore
1305 * but in this case, we are only testeing for the DELALLOC
1306 * bit, which is only set or cleared with irqs on
1307 */
0ca1f7ce 1308 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1309 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1310 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1311 int do_list = (root->root_key.objectid !=
1312 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1313
0ca1f7ce
YZ
1314 if (*bits & EXTENT_FIRST_DELALLOC)
1315 *bits &= ~EXTENT_FIRST_DELALLOC;
1316 else
1317 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1318
75eff68e 1319 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1320 BTRFS_I(inode)->delalloc_bytes += len;
1321 root->fs_info->delalloc_bytes += len;
0cb59c99 1322 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1323 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1324 &root->fs_info->delalloc_inodes);
1325 }
75eff68e 1326 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1327 }
1328 return 0;
1329}
1330
d352ac68
CM
1331/*
1332 * extent_io.c clear_bit_hook, see set_bit_hook for why
1333 */
9ed74f2d 1334static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1335 struct extent_state *state, int *bits)
291d673e 1336{
75eff68e
CM
1337 /*
1338 * set_bit and clear bit hooks normally require _irqsave/restore
1339 * but in this case, we are only testeing for the DELALLOC
1340 * bit, which is only set or cleared with irqs on
1341 */
0ca1f7ce 1342 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1343 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1344 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1345 int do_list = (root->root_key.objectid !=
1346 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1347
0ca1f7ce
YZ
1348 if (*bits & EXTENT_FIRST_DELALLOC)
1349 *bits &= ~EXTENT_FIRST_DELALLOC;
1350 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1351 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1352
1353 if (*bits & EXTENT_DO_ACCOUNTING)
1354 btrfs_delalloc_release_metadata(inode, len);
1355
0cb59c99
JB
1356 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1357 && do_list)
0ca1f7ce 1358 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1359
75eff68e 1360 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1361 root->fs_info->delalloc_bytes -= len;
1362 BTRFS_I(inode)->delalloc_bytes -= len;
1363
0cb59c99 1364 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1365 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1366 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1367 }
75eff68e 1368 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1369 }
1370 return 0;
1371}
1372
d352ac68
CM
1373/*
1374 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1375 * we don't create bios that span stripes or chunks
1376 */
239b14b3 1377int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1378 size_t size, struct bio *bio,
1379 unsigned long bio_flags)
239b14b3
CM
1380{
1381 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1382 struct btrfs_mapping_tree *map_tree;
a62b9401 1383 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1384 u64 length = 0;
1385 u64 map_length;
239b14b3
CM
1386 int ret;
1387
771ed689
CM
1388 if (bio_flags & EXTENT_BIO_COMPRESSED)
1389 return 0;
1390
f2d8d74d 1391 length = bio->bi_size;
239b14b3
CM
1392 map_tree = &root->fs_info->mapping_tree;
1393 map_length = length;
cea9e445 1394 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1395 &map_length, NULL, 0);
cea9e445 1396
d397712b 1397 if (map_length < length + size)
239b14b3 1398 return 1;
411fc6bc 1399 return ret;
239b14b3
CM
1400}
1401
d352ac68
CM
1402/*
1403 * in order to insert checksums into the metadata in large chunks,
1404 * we wait until bio submission time. All the pages in the bio are
1405 * checksummed and sums are attached onto the ordered extent record.
1406 *
1407 * At IO completion time the cums attached on the ordered extent record
1408 * are inserted into the btree
1409 */
d397712b
CM
1410static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1411 struct bio *bio, int mirror_num,
eaf25d93
CM
1412 unsigned long bio_flags,
1413 u64 bio_offset)
065631f6 1414{
065631f6 1415 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1416 int ret = 0;
e015640f 1417
d20f7043 1418 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1419 BUG_ON(ret);
4a69a410
CM
1420 return 0;
1421}
e015640f 1422
4a69a410
CM
1423/*
1424 * in order to insert checksums into the metadata in large chunks,
1425 * we wait until bio submission time. All the pages in the bio are
1426 * checksummed and sums are attached onto the ordered extent record.
1427 *
1428 * At IO completion time the cums attached on the ordered extent record
1429 * are inserted into the btree
1430 */
b2950863 1431static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1432 int mirror_num, unsigned long bio_flags,
1433 u64 bio_offset)
4a69a410
CM
1434{
1435 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1436 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1437}
1438
d352ac68 1439/*
cad321ad
CM
1440 * extent_io.c submission hook. This does the right thing for csum calculation
1441 * on write, or reading the csums from the tree before a read
d352ac68 1442 */
b2950863 1443static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1444 int mirror_num, unsigned long bio_flags,
1445 u64 bio_offset)
44b8bd7e
CM
1446{
1447 struct btrfs_root *root = BTRFS_I(inode)->root;
1448 int ret = 0;
19b9bdb0 1449 int skip_sum;
44b8bd7e 1450
6cbff00f 1451 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1452
0cb59c99
JB
1453 if (root == root->fs_info->tree_root)
1454 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1455 else
1456 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1457 BUG_ON(ret);
065631f6 1458
7b6d91da 1459 if (!(rw & REQ_WRITE)) {
d20f7043 1460 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1461 return btrfs_submit_compressed_read(inode, bio,
1462 mirror_num, bio_flags);
d20f7043
CM
1463 } else if (!skip_sum)
1464 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1465 goto mapit;
19b9bdb0 1466 } else if (!skip_sum) {
17d217fe
YZ
1467 /* csum items have already been cloned */
1468 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1469 goto mapit;
19b9bdb0
CM
1470 /* we're doing a write, do the async checksumming */
1471 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1472 inode, rw, bio, mirror_num,
eaf25d93
CM
1473 bio_flags, bio_offset,
1474 __btrfs_submit_bio_start,
4a69a410 1475 __btrfs_submit_bio_done);
19b9bdb0
CM
1476 }
1477
0b86a832 1478mapit:
8b712842 1479 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1480}
6885f308 1481
d352ac68
CM
1482/*
1483 * given a list of ordered sums record them in the inode. This happens
1484 * at IO completion time based on sums calculated at bio submission time.
1485 */
ba1da2f4 1486static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1487 struct inode *inode, u64 file_offset,
1488 struct list_head *list)
1489{
e6dcd2dc
CM
1490 struct btrfs_ordered_sum *sum;
1491
1492 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1493
1494 list_for_each_entry(sum, list, list) {
d20f7043
CM
1495 btrfs_csum_file_blocks(trans,
1496 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1497 }
1498 return 0;
1499}
1500
2ac55d41
JB
1501int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1502 struct extent_state **cached_state)
ea8c2819 1503{
d397712b 1504 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1505 WARN_ON(1);
ea8c2819 1506 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1507 cached_state, GFP_NOFS);
ea8c2819
CM
1508}
1509
d352ac68 1510/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1511struct btrfs_writepage_fixup {
1512 struct page *page;
1513 struct btrfs_work work;
1514};
1515
b2950863 1516static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1517{
1518 struct btrfs_writepage_fixup *fixup;
1519 struct btrfs_ordered_extent *ordered;
2ac55d41 1520 struct extent_state *cached_state = NULL;
247e743c
CM
1521 struct page *page;
1522 struct inode *inode;
1523 u64 page_start;
1524 u64 page_end;
1525
1526 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1527 page = fixup->page;
4a096752 1528again:
247e743c
CM
1529 lock_page(page);
1530 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1531 ClearPageChecked(page);
1532 goto out_page;
1533 }
1534
1535 inode = page->mapping->host;
1536 page_start = page_offset(page);
1537 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1538
2ac55d41
JB
1539 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1540 &cached_state, GFP_NOFS);
4a096752
CM
1541
1542 /* already ordered? We're done */
8b62b72b 1543 if (PagePrivate2(page))
247e743c 1544 goto out;
4a096752
CM
1545
1546 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1547 if (ordered) {
2ac55d41
JB
1548 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1549 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1550 unlock_page(page);
1551 btrfs_start_ordered_extent(inode, ordered, 1);
1552 goto again;
1553 }
247e743c 1554
0ca1f7ce 1555 BUG();
2ac55d41 1556 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1557 ClearPageChecked(page);
1558out:
2ac55d41
JB
1559 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1560 &cached_state, GFP_NOFS);
247e743c
CM
1561out_page:
1562 unlock_page(page);
1563 page_cache_release(page);
b897abec 1564 kfree(fixup);
247e743c
CM
1565}
1566
1567/*
1568 * There are a few paths in the higher layers of the kernel that directly
1569 * set the page dirty bit without asking the filesystem if it is a
1570 * good idea. This causes problems because we want to make sure COW
1571 * properly happens and the data=ordered rules are followed.
1572 *
c8b97818 1573 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1574 * hasn't been properly setup for IO. We kick off an async process
1575 * to fix it up. The async helper will wait for ordered extents, set
1576 * the delalloc bit and make it safe to write the page.
1577 */
b2950863 1578static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1579{
1580 struct inode *inode = page->mapping->host;
1581 struct btrfs_writepage_fixup *fixup;
1582 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1583
8b62b72b
CM
1584 /* this page is properly in the ordered list */
1585 if (TestClearPagePrivate2(page))
247e743c
CM
1586 return 0;
1587
1588 if (PageChecked(page))
1589 return -EAGAIN;
1590
1591 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1592 if (!fixup)
1593 return -EAGAIN;
f421950f 1594
247e743c
CM
1595 SetPageChecked(page);
1596 page_cache_get(page);
1597 fixup->work.func = btrfs_writepage_fixup_worker;
1598 fixup->page = page;
1599 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1600 return -EAGAIN;
1601}
1602
d899e052
YZ
1603static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1604 struct inode *inode, u64 file_pos,
1605 u64 disk_bytenr, u64 disk_num_bytes,
1606 u64 num_bytes, u64 ram_bytes,
1607 u8 compression, u8 encryption,
1608 u16 other_encoding, int extent_type)
1609{
1610 struct btrfs_root *root = BTRFS_I(inode)->root;
1611 struct btrfs_file_extent_item *fi;
1612 struct btrfs_path *path;
1613 struct extent_buffer *leaf;
1614 struct btrfs_key ins;
1615 u64 hint;
1616 int ret;
1617
1618 path = btrfs_alloc_path();
1619 BUG_ON(!path);
1620
b9473439 1621 path->leave_spinning = 1;
a1ed835e
CM
1622
1623 /*
1624 * we may be replacing one extent in the tree with another.
1625 * The new extent is pinned in the extent map, and we don't want
1626 * to drop it from the cache until it is completely in the btree.
1627 *
1628 * So, tell btrfs_drop_extents to leave this extent in the cache.
1629 * the caller is expected to unpin it and allow it to be merged
1630 * with the others.
1631 */
920bbbfb
YZ
1632 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1633 &hint, 0);
d899e052
YZ
1634 BUG_ON(ret);
1635
1636 ins.objectid = inode->i_ino;
1637 ins.offset = file_pos;
1638 ins.type = BTRFS_EXTENT_DATA_KEY;
1639 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1640 BUG_ON(ret);
1641 leaf = path->nodes[0];
1642 fi = btrfs_item_ptr(leaf, path->slots[0],
1643 struct btrfs_file_extent_item);
1644 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1645 btrfs_set_file_extent_type(leaf, fi, extent_type);
1646 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1647 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1648 btrfs_set_file_extent_offset(leaf, fi, 0);
1649 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1650 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1651 btrfs_set_file_extent_compression(leaf, fi, compression);
1652 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1653 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1654
1655 btrfs_unlock_up_safe(path, 1);
1656 btrfs_set_lock_blocking(leaf);
1657
d899e052
YZ
1658 btrfs_mark_buffer_dirty(leaf);
1659
1660 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1661
1662 ins.objectid = disk_bytenr;
1663 ins.offset = disk_num_bytes;
1664 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1665 ret = btrfs_alloc_reserved_file_extent(trans, root,
1666 root->root_key.objectid,
1667 inode->i_ino, file_pos, &ins);
d899e052 1668 BUG_ON(ret);
d899e052 1669 btrfs_free_path(path);
b9473439 1670
d899e052
YZ
1671 return 0;
1672}
1673
5d13a98f
CM
1674/*
1675 * helper function for btrfs_finish_ordered_io, this
1676 * just reads in some of the csum leaves to prime them into ram
1677 * before we start the transaction. It limits the amount of btree
1678 * reads required while inside the transaction.
1679 */
d352ac68
CM
1680/* as ordered data IO finishes, this gets called so we can finish
1681 * an ordered extent if the range of bytes in the file it covers are
1682 * fully written.
1683 */
211f90e6 1684static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1685{
e6dcd2dc 1686 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1687 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1688 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1689 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1690 struct extent_state *cached_state = NULL;
261507a0 1691 int compress_type = 0;
e6dcd2dc 1692 int ret;
0cb59c99 1693 bool nolock = false;
e6dcd2dc 1694
5a1a3df1
JB
1695 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1696 end - start + 1);
ba1da2f4 1697 if (!ret)
e6dcd2dc 1698 return 0;
e6dcd2dc 1699 BUG_ON(!ordered_extent);
efd049fb 1700
0cb59c99
JB
1701 nolock = (root == root->fs_info->tree_root);
1702
c2167754
YZ
1703 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1704 BUG_ON(!list_empty(&ordered_extent->list));
1705 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1706 if (!ret) {
0cb59c99
JB
1707 if (nolock)
1708 trans = btrfs_join_transaction_nolock(root, 1);
1709 else
1710 trans = btrfs_join_transaction(root, 1);
3612b495 1711 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1712 btrfs_set_trans_block_group(trans, inode);
1713 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1714 ret = btrfs_update_inode(trans, root, inode);
1715 BUG_ON(ret);
c2167754
YZ
1716 }
1717 goto out;
1718 }
e6dcd2dc 1719
2ac55d41
JB
1720 lock_extent_bits(io_tree, ordered_extent->file_offset,
1721 ordered_extent->file_offset + ordered_extent->len - 1,
1722 0, &cached_state, GFP_NOFS);
e6dcd2dc 1723
0cb59c99
JB
1724 if (nolock)
1725 trans = btrfs_join_transaction_nolock(root, 1);
1726 else
1727 trans = btrfs_join_transaction(root, 1);
3612b495 1728 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1729 btrfs_set_trans_block_group(trans, inode);
1730 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1731
c8b97818 1732 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1733 compress_type = ordered_extent->compress_type;
d899e052 1734 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1735 BUG_ON(compress_type);
920bbbfb 1736 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1737 ordered_extent->file_offset,
1738 ordered_extent->file_offset +
1739 ordered_extent->len);
1740 BUG_ON(ret);
1741 } else {
0af3d00b 1742 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1743 ret = insert_reserved_file_extent(trans, inode,
1744 ordered_extent->file_offset,
1745 ordered_extent->start,
1746 ordered_extent->disk_len,
1747 ordered_extent->len,
1748 ordered_extent->len,
261507a0 1749 compress_type, 0, 0,
d899e052 1750 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1751 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1752 ordered_extent->file_offset,
1753 ordered_extent->len);
d899e052
YZ
1754 BUG_ON(ret);
1755 }
2ac55d41
JB
1756 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1757 ordered_extent->file_offset +
1758 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1759
e6dcd2dc
CM
1760 add_pending_csums(trans, inode, ordered_extent->file_offset,
1761 &ordered_extent->list);
1762
c2167754
YZ
1763 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1764 ret = btrfs_update_inode(trans, root, inode);
1765 BUG_ON(ret);
c2167754 1766out:
0cb59c99
JB
1767 if (nolock) {
1768 if (trans)
1769 btrfs_end_transaction_nolock(trans, root);
1770 } else {
1771 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1772 if (trans)
1773 btrfs_end_transaction(trans, root);
1774 }
1775
e6dcd2dc
CM
1776 /* once for us */
1777 btrfs_put_ordered_extent(ordered_extent);
1778 /* once for the tree */
1779 btrfs_put_ordered_extent(ordered_extent);
1780
e6dcd2dc
CM
1781 return 0;
1782}
1783
b2950863 1784static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1785 struct extent_state *state, int uptodate)
1786{
8b62b72b 1787 ClearPagePrivate2(page);
211f90e6
CM
1788 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1789}
1790
d352ac68
CM
1791/*
1792 * When IO fails, either with EIO or csum verification fails, we
1793 * try other mirrors that might have a good copy of the data. This
1794 * io_failure_record is used to record state as we go through all the
1795 * mirrors. If another mirror has good data, the page is set up to date
1796 * and things continue. If a good mirror can't be found, the original
1797 * bio end_io callback is called to indicate things have failed.
1798 */
7e38326f
CM
1799struct io_failure_record {
1800 struct page *page;
1801 u64 start;
1802 u64 len;
1803 u64 logical;
d20f7043 1804 unsigned long bio_flags;
7e38326f
CM
1805 int last_mirror;
1806};
1807
b2950863 1808static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1809 struct page *page, u64 start, u64 end,
1810 struct extent_state *state)
7e38326f
CM
1811{
1812 struct io_failure_record *failrec = NULL;
1813 u64 private;
1814 struct extent_map *em;
1815 struct inode *inode = page->mapping->host;
1816 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1817 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1818 struct bio *bio;
1819 int num_copies;
1820 int ret;
1259ab75 1821 int rw;
7e38326f
CM
1822 u64 logical;
1823
1824 ret = get_state_private(failure_tree, start, &private);
1825 if (ret) {
7e38326f
CM
1826 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1827 if (!failrec)
1828 return -ENOMEM;
1829 failrec->start = start;
1830 failrec->len = end - start + 1;
1831 failrec->last_mirror = 0;
d20f7043 1832 failrec->bio_flags = 0;
7e38326f 1833
890871be 1834 read_lock(&em_tree->lock);
3b951516
CM
1835 em = lookup_extent_mapping(em_tree, start, failrec->len);
1836 if (em->start > start || em->start + em->len < start) {
1837 free_extent_map(em);
1838 em = NULL;
1839 }
890871be 1840 read_unlock(&em_tree->lock);
7e38326f
CM
1841
1842 if (!em || IS_ERR(em)) {
1843 kfree(failrec);
1844 return -EIO;
1845 }
1846 logical = start - em->start;
1847 logical = em->block_start + logical;
d20f7043
CM
1848 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1849 logical = em->block_start;
1850 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1851 extent_set_compress_type(&failrec->bio_flags,
1852 em->compress_type);
d20f7043 1853 }
7e38326f
CM
1854 failrec->logical = logical;
1855 free_extent_map(em);
1856 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1857 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1858 set_state_private(failure_tree, start,
1859 (u64)(unsigned long)failrec);
7e38326f 1860 } else {
587f7704 1861 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1862 }
1863 num_copies = btrfs_num_copies(
1864 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1865 failrec->logical, failrec->len);
1866 failrec->last_mirror++;
1867 if (!state) {
cad321ad 1868 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1869 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1870 failrec->start,
1871 EXTENT_LOCKED);
1872 if (state && state->start != failrec->start)
1873 state = NULL;
cad321ad 1874 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1875 }
1876 if (!state || failrec->last_mirror > num_copies) {
1877 set_state_private(failure_tree, failrec->start, 0);
1878 clear_extent_bits(failure_tree, failrec->start,
1879 failrec->start + failrec->len - 1,
1880 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1881 kfree(failrec);
1882 return -EIO;
1883 }
1884 bio = bio_alloc(GFP_NOFS, 1);
1885 bio->bi_private = state;
1886 bio->bi_end_io = failed_bio->bi_end_io;
1887 bio->bi_sector = failrec->logical >> 9;
1888 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1889 bio->bi_size = 0;
d20f7043 1890
7e38326f 1891 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1892 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1893 rw = WRITE;
1894 else
1895 rw = READ;
1896
1897 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1898 failrec->last_mirror,
eaf25d93 1899 failrec->bio_flags, 0);
1259ab75
CM
1900 return 0;
1901}
1902
d352ac68
CM
1903/*
1904 * each time an IO finishes, we do a fast check in the IO failure tree
1905 * to see if we need to process or clean up an io_failure_record
1906 */
b2950863 1907static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1908{
1909 u64 private;
1910 u64 private_failure;
1911 struct io_failure_record *failure;
1912 int ret;
1913
1914 private = 0;
1915 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1916 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1917 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1918 start, &private_failure);
1919 if (ret == 0) {
1920 failure = (struct io_failure_record *)(unsigned long)
1921 private_failure;
1922 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1923 failure->start, 0);
1924 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1925 failure->start,
1926 failure->start + failure->len - 1,
1927 EXTENT_DIRTY | EXTENT_LOCKED,
1928 GFP_NOFS);
1929 kfree(failure);
1930 }
1931 }
7e38326f
CM
1932 return 0;
1933}
1934
d352ac68
CM
1935/*
1936 * when reads are done, we need to check csums to verify the data is correct
1937 * if there's a match, we allow the bio to finish. If not, we go through
1938 * the io_failure_record routines to find good copies
1939 */
b2950863 1940static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1941 struct extent_state *state)
07157aac 1942{
35ebb934 1943 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1944 struct inode *inode = page->mapping->host;
d1310b2e 1945 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1946 char *kaddr;
aadfeb6e 1947 u64 private = ~(u32)0;
07157aac 1948 int ret;
ff79f819
CM
1949 struct btrfs_root *root = BTRFS_I(inode)->root;
1950 u32 csum = ~(u32)0;
d1310b2e 1951
d20f7043
CM
1952 if (PageChecked(page)) {
1953 ClearPageChecked(page);
1954 goto good;
1955 }
6cbff00f
CH
1956
1957 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1958 return 0;
1959
1960 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1961 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1962 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1963 GFP_NOFS);
b6cda9bc 1964 return 0;
17d217fe 1965 }
d20f7043 1966
c2e639f0 1967 if (state && state->start == start) {
70dec807
CM
1968 private = state->private;
1969 ret = 0;
1970 } else {
1971 ret = get_state_private(io_tree, start, &private);
1972 }
9ab86c8e 1973 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1974 if (ret)
07157aac 1975 goto zeroit;
d397712b 1976
ff79f819
CM
1977 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1978 btrfs_csum_final(csum, (char *)&csum);
d397712b 1979 if (csum != private)
07157aac 1980 goto zeroit;
d397712b 1981
9ab86c8e 1982 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1983good:
7e38326f
CM
1984 /* if the io failure tree for this inode is non-empty,
1985 * check to see if we've recovered from a failed IO
1986 */
1259ab75 1987 btrfs_clean_io_failures(inode, start);
07157aac
CM
1988 return 0;
1989
1990zeroit:
193f284d
CM
1991 if (printk_ratelimit()) {
1992 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1993 "private %llu\n", page->mapping->host->i_ino,
1994 (unsigned long long)start, csum,
1995 (unsigned long long)private);
1996 }
db94535d
CM
1997 memset(kaddr + offset, 1, end - start + 1);
1998 flush_dcache_page(page);
9ab86c8e 1999 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2000 if (private == 0)
2001 return 0;
7e38326f 2002 return -EIO;
07157aac 2003}
b888db2b 2004
24bbcf04
YZ
2005struct delayed_iput {
2006 struct list_head list;
2007 struct inode *inode;
2008};
2009
2010void btrfs_add_delayed_iput(struct inode *inode)
2011{
2012 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2013 struct delayed_iput *delayed;
2014
2015 if (atomic_add_unless(&inode->i_count, -1, 1))
2016 return;
2017
2018 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2019 delayed->inode = inode;
2020
2021 spin_lock(&fs_info->delayed_iput_lock);
2022 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2023 spin_unlock(&fs_info->delayed_iput_lock);
2024}
2025
2026void btrfs_run_delayed_iputs(struct btrfs_root *root)
2027{
2028 LIST_HEAD(list);
2029 struct btrfs_fs_info *fs_info = root->fs_info;
2030 struct delayed_iput *delayed;
2031 int empty;
2032
2033 spin_lock(&fs_info->delayed_iput_lock);
2034 empty = list_empty(&fs_info->delayed_iputs);
2035 spin_unlock(&fs_info->delayed_iput_lock);
2036 if (empty)
2037 return;
2038
2039 down_read(&root->fs_info->cleanup_work_sem);
2040 spin_lock(&fs_info->delayed_iput_lock);
2041 list_splice_init(&fs_info->delayed_iputs, &list);
2042 spin_unlock(&fs_info->delayed_iput_lock);
2043
2044 while (!list_empty(&list)) {
2045 delayed = list_entry(list.next, struct delayed_iput, list);
2046 list_del(&delayed->list);
2047 iput(delayed->inode);
2048 kfree(delayed);
2049 }
2050 up_read(&root->fs_info->cleanup_work_sem);
2051}
2052
d68fc57b
YZ
2053/*
2054 * calculate extra metadata reservation when snapshotting a subvolume
2055 * contains orphan files.
2056 */
2057void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2058 struct btrfs_pending_snapshot *pending,
2059 u64 *bytes_to_reserve)
2060{
2061 struct btrfs_root *root;
2062 struct btrfs_block_rsv *block_rsv;
2063 u64 num_bytes;
2064 int index;
2065
2066 root = pending->root;
2067 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2068 return;
2069
2070 block_rsv = root->orphan_block_rsv;
2071
2072 /* orphan block reservation for the snapshot */
2073 num_bytes = block_rsv->size;
2074
2075 /*
2076 * after the snapshot is created, COWing tree blocks may use more
2077 * space than it frees. So we should make sure there is enough
2078 * reserved space.
2079 */
2080 index = trans->transid & 0x1;
2081 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2082 num_bytes += block_rsv->size -
2083 (block_rsv->reserved + block_rsv->freed[index]);
2084 }
2085
2086 *bytes_to_reserve += num_bytes;
2087}
2088
2089void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2090 struct btrfs_pending_snapshot *pending)
2091{
2092 struct btrfs_root *root = pending->root;
2093 struct btrfs_root *snap = pending->snap;
2094 struct btrfs_block_rsv *block_rsv;
2095 u64 num_bytes;
2096 int index;
2097 int ret;
2098
2099 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2100 return;
2101
2102 /* refill source subvolume's orphan block reservation */
2103 block_rsv = root->orphan_block_rsv;
2104 index = trans->transid & 0x1;
2105 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2106 num_bytes = block_rsv->size -
2107 (block_rsv->reserved + block_rsv->freed[index]);
2108 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2109 root->orphan_block_rsv,
2110 num_bytes);
2111 BUG_ON(ret);
2112 }
2113
2114 /* setup orphan block reservation for the snapshot */
2115 block_rsv = btrfs_alloc_block_rsv(snap);
2116 BUG_ON(!block_rsv);
2117
2118 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2119 snap->orphan_block_rsv = block_rsv;
2120
2121 num_bytes = root->orphan_block_rsv->size;
2122 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2123 block_rsv, num_bytes);
2124 BUG_ON(ret);
2125
2126#if 0
2127 /* insert orphan item for the snapshot */
2128 WARN_ON(!root->orphan_item_inserted);
2129 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2130 snap->root_key.objectid);
2131 BUG_ON(ret);
2132 snap->orphan_item_inserted = 1;
2133#endif
2134}
2135
2136enum btrfs_orphan_cleanup_state {
2137 ORPHAN_CLEANUP_STARTED = 1,
2138 ORPHAN_CLEANUP_DONE = 2,
2139};
2140
2141/*
2142 * This is called in transaction commmit time. If there are no orphan
2143 * files in the subvolume, it removes orphan item and frees block_rsv
2144 * structure.
2145 */
2146void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2147 struct btrfs_root *root)
2148{
2149 int ret;
2150
2151 if (!list_empty(&root->orphan_list) ||
2152 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2153 return;
2154
2155 if (root->orphan_item_inserted &&
2156 btrfs_root_refs(&root->root_item) > 0) {
2157 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2158 root->root_key.objectid);
2159 BUG_ON(ret);
2160 root->orphan_item_inserted = 0;
2161 }
2162
2163 if (root->orphan_block_rsv) {
2164 WARN_ON(root->orphan_block_rsv->size > 0);
2165 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2166 root->orphan_block_rsv = NULL;
2167 }
2168}
2169
7b128766
JB
2170/*
2171 * This creates an orphan entry for the given inode in case something goes
2172 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2173 *
2174 * NOTE: caller of this function should reserve 5 units of metadata for
2175 * this function.
7b128766
JB
2176 */
2177int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2178{
2179 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2180 struct btrfs_block_rsv *block_rsv = NULL;
2181 int reserve = 0;
2182 int insert = 0;
2183 int ret;
7b128766 2184
d68fc57b
YZ
2185 if (!root->orphan_block_rsv) {
2186 block_rsv = btrfs_alloc_block_rsv(root);
2187 BUG_ON(!block_rsv);
2188 }
7b128766 2189
d68fc57b
YZ
2190 spin_lock(&root->orphan_lock);
2191 if (!root->orphan_block_rsv) {
2192 root->orphan_block_rsv = block_rsv;
2193 } else if (block_rsv) {
2194 btrfs_free_block_rsv(root, block_rsv);
2195 block_rsv = NULL;
7b128766 2196 }
7b128766 2197
d68fc57b
YZ
2198 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2199 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2200#if 0
2201 /*
2202 * For proper ENOSPC handling, we should do orphan
2203 * cleanup when mounting. But this introduces backward
2204 * compatibility issue.
2205 */
2206 if (!xchg(&root->orphan_item_inserted, 1))
2207 insert = 2;
2208 else
2209 insert = 1;
2210#endif
2211 insert = 1;
2212 } else {
2213 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
7b128766
JB
2214 }
2215
d68fc57b
YZ
2216 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2217 BTRFS_I(inode)->orphan_meta_reserved = 1;
2218 reserve = 1;
2219 }
2220 spin_unlock(&root->orphan_lock);
7b128766 2221
d68fc57b
YZ
2222 if (block_rsv)
2223 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2224
d68fc57b
YZ
2225 /* grab metadata reservation from transaction handle */
2226 if (reserve) {
2227 ret = btrfs_orphan_reserve_metadata(trans, inode);
2228 BUG_ON(ret);
2229 }
7b128766 2230
d68fc57b
YZ
2231 /* insert an orphan item to track this unlinked/truncated file */
2232 if (insert >= 1) {
2233 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2234 BUG_ON(ret);
2235 }
2236
2237 /* insert an orphan item to track subvolume contains orphan files */
2238 if (insert >= 2) {
2239 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2240 root->root_key.objectid);
2241 BUG_ON(ret);
2242 }
2243 return 0;
7b128766
JB
2244}
2245
2246/*
2247 * We have done the truncate/delete so we can go ahead and remove the orphan
2248 * item for this particular inode.
2249 */
2250int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2251{
2252 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2253 int delete_item = 0;
2254 int release_rsv = 0;
7b128766
JB
2255 int ret = 0;
2256
d68fc57b
YZ
2257 spin_lock(&root->orphan_lock);
2258 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2259 list_del_init(&BTRFS_I(inode)->i_orphan);
2260 delete_item = 1;
7b128766
JB
2261 }
2262
d68fc57b
YZ
2263 if (BTRFS_I(inode)->orphan_meta_reserved) {
2264 BTRFS_I(inode)->orphan_meta_reserved = 0;
2265 release_rsv = 1;
7b128766 2266 }
d68fc57b 2267 spin_unlock(&root->orphan_lock);
7b128766 2268
d68fc57b
YZ
2269 if (trans && delete_item) {
2270 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2271 BUG_ON(ret);
2272 }
7b128766 2273
d68fc57b
YZ
2274 if (release_rsv)
2275 btrfs_orphan_release_metadata(inode);
7b128766 2276
d68fc57b 2277 return 0;
7b128766
JB
2278}
2279
2280/*
2281 * this cleans up any orphans that may be left on the list from the last use
2282 * of this root.
2283 */
2284void btrfs_orphan_cleanup(struct btrfs_root *root)
2285{
2286 struct btrfs_path *path;
2287 struct extent_buffer *leaf;
7b128766
JB
2288 struct btrfs_key key, found_key;
2289 struct btrfs_trans_handle *trans;
2290 struct inode *inode;
2291 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2292
d68fc57b 2293 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
7b128766 2294 return;
c71bf099
YZ
2295
2296 path = btrfs_alloc_path();
2297 BUG_ON(!path);
7b128766
JB
2298 path->reada = -1;
2299
2300 key.objectid = BTRFS_ORPHAN_OBJECTID;
2301 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2302 key.offset = (u64)-1;
2303
7b128766
JB
2304 while (1) {
2305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2306 if (ret < 0) {
2307 printk(KERN_ERR "Error searching slot for orphan: %d"
2308 "\n", ret);
2309 break;
2310 }
2311
2312 /*
2313 * if ret == 0 means we found what we were searching for, which
2314 * is weird, but possible, so only screw with path if we didnt
2315 * find the key and see if we have stuff that matches
2316 */
2317 if (ret > 0) {
2318 if (path->slots[0] == 0)
2319 break;
2320 path->slots[0]--;
2321 }
2322
2323 /* pull out the item */
2324 leaf = path->nodes[0];
7b128766
JB
2325 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2326
2327 /* make sure the item matches what we want */
2328 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2329 break;
2330 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2331 break;
2332
2333 /* release the path since we're done with it */
2334 btrfs_release_path(root, path);
2335
2336 /*
2337 * this is where we are basically btrfs_lookup, without the
2338 * crossing root thing. we store the inode number in the
2339 * offset of the orphan item.
2340 */
5d4f98a2
YZ
2341 found_key.objectid = found_key.offset;
2342 found_key.type = BTRFS_INODE_ITEM_KEY;
2343 found_key.offset = 0;
73f73415 2344 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
d68fc57b 2345 BUG_ON(IS_ERR(inode));
7b128766 2346
7b128766
JB
2347 /*
2348 * add this inode to the orphan list so btrfs_orphan_del does
2349 * the proper thing when we hit it
2350 */
d68fc57b 2351 spin_lock(&root->orphan_lock);
7b128766 2352 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2353 spin_unlock(&root->orphan_lock);
7b128766
JB
2354
2355 /*
2356 * if this is a bad inode, means we actually succeeded in
2357 * removing the inode, but not the orphan record, which means
2358 * we need to manually delete the orphan since iput will just
2359 * do a destroy_inode
2360 */
2361 if (is_bad_inode(inode)) {
a22285a6 2362 trans = btrfs_start_transaction(root, 0);
98d5dc13 2363 BUG_ON(IS_ERR(trans));
7b128766 2364 btrfs_orphan_del(trans, inode);
5b21f2ed 2365 btrfs_end_transaction(trans, root);
7b128766
JB
2366 iput(inode);
2367 continue;
2368 }
2369
2370 /* if we have links, this was a truncate, lets do that */
2371 if (inode->i_nlink) {
2372 nr_truncate++;
2373 btrfs_truncate(inode);
2374 } else {
2375 nr_unlink++;
2376 }
2377
2378 /* this will do delete_inode and everything for us */
2379 iput(inode);
2380 }
d68fc57b
YZ
2381 btrfs_free_path(path);
2382
2383 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2384
2385 if (root->orphan_block_rsv)
2386 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2387 (u64)-1);
2388
2389 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2390 trans = btrfs_join_transaction(root, 1);
3612b495 2391 BUG_ON(IS_ERR(trans));
d68fc57b
YZ
2392 btrfs_end_transaction(trans, root);
2393 }
7b128766
JB
2394
2395 if (nr_unlink)
2396 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2397 if (nr_truncate)
2398 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
7b128766
JB
2399}
2400
46a53cca
CM
2401/*
2402 * very simple check to peek ahead in the leaf looking for xattrs. If we
2403 * don't find any xattrs, we know there can't be any acls.
2404 *
2405 * slot is the slot the inode is in, objectid is the objectid of the inode
2406 */
2407static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2408 int slot, u64 objectid)
2409{
2410 u32 nritems = btrfs_header_nritems(leaf);
2411 struct btrfs_key found_key;
2412 int scanned = 0;
2413
2414 slot++;
2415 while (slot < nritems) {
2416 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2417
2418 /* we found a different objectid, there must not be acls */
2419 if (found_key.objectid != objectid)
2420 return 0;
2421
2422 /* we found an xattr, assume we've got an acl */
2423 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2424 return 1;
2425
2426 /*
2427 * we found a key greater than an xattr key, there can't
2428 * be any acls later on
2429 */
2430 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2431 return 0;
2432
2433 slot++;
2434 scanned++;
2435
2436 /*
2437 * it goes inode, inode backrefs, xattrs, extents,
2438 * so if there are a ton of hard links to an inode there can
2439 * be a lot of backrefs. Don't waste time searching too hard,
2440 * this is just an optimization
2441 */
2442 if (scanned >= 8)
2443 break;
2444 }
2445 /* we hit the end of the leaf before we found an xattr or
2446 * something larger than an xattr. We have to assume the inode
2447 * has acls
2448 */
2449 return 1;
2450}
2451
d352ac68
CM
2452/*
2453 * read an inode from the btree into the in-memory inode
2454 */
5d4f98a2 2455static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2456{
2457 struct btrfs_path *path;
5f39d397 2458 struct extent_buffer *leaf;
39279cc3 2459 struct btrfs_inode_item *inode_item;
0b86a832 2460 struct btrfs_timespec *tspec;
39279cc3
CM
2461 struct btrfs_root *root = BTRFS_I(inode)->root;
2462 struct btrfs_key location;
46a53cca 2463 int maybe_acls;
39279cc3 2464 u64 alloc_group_block;
618e21d5 2465 u32 rdev;
39279cc3
CM
2466 int ret;
2467
2468 path = btrfs_alloc_path();
2469 BUG_ON(!path);
39279cc3 2470 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2471
39279cc3 2472 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2473 if (ret)
39279cc3 2474 goto make_bad;
39279cc3 2475
5f39d397
CM
2476 leaf = path->nodes[0];
2477 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2478 struct btrfs_inode_item);
2479
2480 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2481 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2482 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2483 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2484 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2485
2486 tspec = btrfs_inode_atime(inode_item);
2487 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2488 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2489
2490 tspec = btrfs_inode_mtime(inode_item);
2491 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2492 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2493
2494 tspec = btrfs_inode_ctime(inode_item);
2495 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2496 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2497
a76a3cd4 2498 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2499 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2500 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2501 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2502 inode->i_rdev = 0;
5f39d397
CM
2503 rdev = btrfs_inode_rdev(leaf, inode_item);
2504
aec7477b 2505 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2506 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2507
5f39d397 2508 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2509
46a53cca
CM
2510 /*
2511 * try to precache a NULL acl entry for files that don't have
2512 * any xattrs or acls
2513 */
2514 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2515 if (!maybe_acls)
2516 cache_no_acl(inode);
46a53cca 2517
d2fb3437
YZ
2518 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2519 alloc_group_block, 0);
39279cc3
CM
2520 btrfs_free_path(path);
2521 inode_item = NULL;
2522
39279cc3 2523 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2524 case S_IFREG:
2525 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2526 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2527 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2528 inode->i_fop = &btrfs_file_operations;
2529 inode->i_op = &btrfs_file_inode_operations;
2530 break;
2531 case S_IFDIR:
2532 inode->i_fop = &btrfs_dir_file_operations;
2533 if (root == root->fs_info->tree_root)
2534 inode->i_op = &btrfs_dir_ro_inode_operations;
2535 else
2536 inode->i_op = &btrfs_dir_inode_operations;
2537 break;
2538 case S_IFLNK:
2539 inode->i_op = &btrfs_symlink_inode_operations;
2540 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2541 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2542 break;
618e21d5 2543 default:
0279b4cd 2544 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2545 init_special_inode(inode, inode->i_mode, rdev);
2546 break;
39279cc3 2547 }
6cbff00f
CH
2548
2549 btrfs_update_iflags(inode);
39279cc3
CM
2550 return;
2551
2552make_bad:
39279cc3 2553 btrfs_free_path(path);
39279cc3
CM
2554 make_bad_inode(inode);
2555}
2556
d352ac68
CM
2557/*
2558 * given a leaf and an inode, copy the inode fields into the leaf
2559 */
e02119d5
CM
2560static void fill_inode_item(struct btrfs_trans_handle *trans,
2561 struct extent_buffer *leaf,
5f39d397 2562 struct btrfs_inode_item *item,
39279cc3
CM
2563 struct inode *inode)
2564{
5f39d397
CM
2565 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2566 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2567 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2568 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2569 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2570
2571 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2572 inode->i_atime.tv_sec);
2573 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2574 inode->i_atime.tv_nsec);
2575
2576 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2577 inode->i_mtime.tv_sec);
2578 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2579 inode->i_mtime.tv_nsec);
2580
2581 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2582 inode->i_ctime.tv_sec);
2583 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2584 inode->i_ctime.tv_nsec);
2585
a76a3cd4 2586 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2587 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2588 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2589 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2590 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2591 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2592 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2593}
2594
d352ac68
CM
2595/*
2596 * copy everything in the in-memory inode into the btree.
2597 */
d397712b
CM
2598noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2599 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2600{
2601 struct btrfs_inode_item *inode_item;
2602 struct btrfs_path *path;
5f39d397 2603 struct extent_buffer *leaf;
39279cc3
CM
2604 int ret;
2605
2606 path = btrfs_alloc_path();
2607 BUG_ON(!path);
b9473439 2608 path->leave_spinning = 1;
39279cc3
CM
2609 ret = btrfs_lookup_inode(trans, root, path,
2610 &BTRFS_I(inode)->location, 1);
2611 if (ret) {
2612 if (ret > 0)
2613 ret = -ENOENT;
2614 goto failed;
2615 }
2616
b4ce94de 2617 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2618 leaf = path->nodes[0];
2619 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2620 struct btrfs_inode_item);
2621
e02119d5 2622 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2623 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2624 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2625 ret = 0;
2626failed:
39279cc3
CM
2627 btrfs_free_path(path);
2628 return ret;
2629}
2630
2631
d352ac68
CM
2632/*
2633 * unlink helper that gets used here in inode.c and in the tree logging
2634 * recovery code. It remove a link in a directory with a given name, and
2635 * also drops the back refs in the inode to the directory
2636 */
e02119d5
CM
2637int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2638 struct btrfs_root *root,
2639 struct inode *dir, struct inode *inode,
2640 const char *name, int name_len)
39279cc3
CM
2641{
2642 struct btrfs_path *path;
39279cc3 2643 int ret = 0;
5f39d397 2644 struct extent_buffer *leaf;
39279cc3 2645 struct btrfs_dir_item *di;
5f39d397 2646 struct btrfs_key key;
aec7477b 2647 u64 index;
39279cc3
CM
2648
2649 path = btrfs_alloc_path();
54aa1f4d
CM
2650 if (!path) {
2651 ret = -ENOMEM;
554233a6 2652 goto out;
54aa1f4d
CM
2653 }
2654
b9473439 2655 path->leave_spinning = 1;
39279cc3
CM
2656 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2657 name, name_len, -1);
2658 if (IS_ERR(di)) {
2659 ret = PTR_ERR(di);
2660 goto err;
2661 }
2662 if (!di) {
2663 ret = -ENOENT;
2664 goto err;
2665 }
5f39d397
CM
2666 leaf = path->nodes[0];
2667 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2668 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2669 if (ret)
2670 goto err;
39279cc3
CM
2671 btrfs_release_path(root, path);
2672
aec7477b 2673 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2674 inode->i_ino,
2675 dir->i_ino, &index);
aec7477b 2676 if (ret) {
d397712b 2677 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2678 "inode %lu parent %lu\n", name_len, name,
e02119d5 2679 inode->i_ino, dir->i_ino);
aec7477b
JB
2680 goto err;
2681 }
2682
39279cc3 2683 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2684 index, name, name_len, -1);
39279cc3
CM
2685 if (IS_ERR(di)) {
2686 ret = PTR_ERR(di);
2687 goto err;
2688 }
2689 if (!di) {
2690 ret = -ENOENT;
2691 goto err;
2692 }
2693 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2694 btrfs_release_path(root, path);
39279cc3 2695
e02119d5
CM
2696 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2697 inode, dir->i_ino);
49eb7e46 2698 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2699
2700 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2701 dir, index);
6418c961
CM
2702 if (ret == -ENOENT)
2703 ret = 0;
39279cc3
CM
2704err:
2705 btrfs_free_path(path);
e02119d5
CM
2706 if (ret)
2707 goto out;
2708
2709 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2710 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2711 btrfs_update_inode(trans, root, dir);
2712 btrfs_drop_nlink(inode);
2713 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2714out:
39279cc3
CM
2715 return ret;
2716}
2717
a22285a6
YZ
2718/* helper to check if there is any shared block in the path */
2719static int check_path_shared(struct btrfs_root *root,
2720 struct btrfs_path *path)
39279cc3 2721{
a22285a6
YZ
2722 struct extent_buffer *eb;
2723 int level;
0e4dcbef 2724 u64 refs = 1;
5df6a9f6 2725
a22285a6 2726 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2727 int ret;
2728
a22285a6
YZ
2729 if (!path->nodes[level])
2730 break;
2731 eb = path->nodes[level];
2732 if (!btrfs_block_can_be_shared(root, eb))
2733 continue;
2734 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2735 &refs, NULL);
2736 if (refs > 1)
2737 return 1;
5df6a9f6 2738 }
dedefd72 2739 return 0;
39279cc3
CM
2740}
2741
a22285a6
YZ
2742/*
2743 * helper to start transaction for unlink and rmdir.
2744 *
2745 * unlink and rmdir are special in btrfs, they do not always free space.
2746 * so in enospc case, we should make sure they will free space before
2747 * allowing them to use the global metadata reservation.
2748 */
2749static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2750 struct dentry *dentry)
4df27c4d 2751{
39279cc3 2752 struct btrfs_trans_handle *trans;
a22285a6 2753 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2754 struct btrfs_path *path;
a22285a6 2755 struct btrfs_inode_ref *ref;
4df27c4d 2756 struct btrfs_dir_item *di;
7b128766 2757 struct inode *inode = dentry->d_inode;
4df27c4d 2758 u64 index;
a22285a6
YZ
2759 int check_link = 1;
2760 int err = -ENOSPC;
4df27c4d
YZ
2761 int ret;
2762
a22285a6
YZ
2763 trans = btrfs_start_transaction(root, 10);
2764 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2765 return trans;
4df27c4d 2766
a22285a6
YZ
2767 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2768 return ERR_PTR(-ENOSPC);
4df27c4d 2769
a22285a6
YZ
2770 /* check if there is someone else holds reference */
2771 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2772 return ERR_PTR(-ENOSPC);
4df27c4d 2773
a22285a6
YZ
2774 if (atomic_read(&inode->i_count) > 2)
2775 return ERR_PTR(-ENOSPC);
4df27c4d 2776
a22285a6
YZ
2777 if (xchg(&root->fs_info->enospc_unlink, 1))
2778 return ERR_PTR(-ENOSPC);
2779
2780 path = btrfs_alloc_path();
2781 if (!path) {
2782 root->fs_info->enospc_unlink = 0;
2783 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2784 }
2785
a22285a6 2786 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2787 if (IS_ERR(trans)) {
a22285a6
YZ
2788 btrfs_free_path(path);
2789 root->fs_info->enospc_unlink = 0;
2790 return trans;
2791 }
4df27c4d 2792
a22285a6
YZ
2793 path->skip_locking = 1;
2794 path->search_commit_root = 1;
4df27c4d 2795
a22285a6
YZ
2796 ret = btrfs_lookup_inode(trans, root, path,
2797 &BTRFS_I(dir)->location, 0);
2798 if (ret < 0) {
2799 err = ret;
2800 goto out;
2801 }
2802 if (ret == 0) {
2803 if (check_path_shared(root, path))
2804 goto out;
2805 } else {
2806 check_link = 0;
5df6a9f6 2807 }
a22285a6
YZ
2808 btrfs_release_path(root, path);
2809
2810 ret = btrfs_lookup_inode(trans, root, path,
2811 &BTRFS_I(inode)->location, 0);
2812 if (ret < 0) {
2813 err = ret;
2814 goto out;
2815 }
2816 if (ret == 0) {
2817 if (check_path_shared(root, path))
2818 goto out;
2819 } else {
2820 check_link = 0;
2821 }
2822 btrfs_release_path(root, path);
2823
2824 if (ret == 0 && S_ISREG(inode->i_mode)) {
2825 ret = btrfs_lookup_file_extent(trans, root, path,
2826 inode->i_ino, (u64)-1, 0);
2827 if (ret < 0) {
2828 err = ret;
2829 goto out;
2830 }
2831 BUG_ON(ret == 0);
2832 if (check_path_shared(root, path))
2833 goto out;
2834 btrfs_release_path(root, path);
2835 }
2836
2837 if (!check_link) {
2838 err = 0;
2839 goto out;
2840 }
2841
2842 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2843 dentry->d_name.name, dentry->d_name.len, 0);
2844 if (IS_ERR(di)) {
2845 err = PTR_ERR(di);
2846 goto out;
2847 }
2848 if (di) {
2849 if (check_path_shared(root, path))
2850 goto out;
2851 } else {
2852 err = 0;
2853 goto out;
2854 }
2855 btrfs_release_path(root, path);
2856
2857 ref = btrfs_lookup_inode_ref(trans, root, path,
2858 dentry->d_name.name, dentry->d_name.len,
2859 inode->i_ino, dir->i_ino, 0);
2860 if (IS_ERR(ref)) {
2861 err = PTR_ERR(ref);
2862 goto out;
2863 }
2864 BUG_ON(!ref);
2865 if (check_path_shared(root, path))
2866 goto out;
2867 index = btrfs_inode_ref_index(path->nodes[0], ref);
2868 btrfs_release_path(root, path);
2869
2870 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2871 dentry->d_name.name, dentry->d_name.len, 0);
2872 if (IS_ERR(di)) {
2873 err = PTR_ERR(di);
2874 goto out;
2875 }
2876 BUG_ON(ret == -ENOENT);
2877 if (check_path_shared(root, path))
2878 goto out;
2879
2880 err = 0;
2881out:
2882 btrfs_free_path(path);
2883 if (err) {
2884 btrfs_end_transaction(trans, root);
2885 root->fs_info->enospc_unlink = 0;
2886 return ERR_PTR(err);
2887 }
2888
2889 trans->block_rsv = &root->fs_info->global_block_rsv;
2890 return trans;
2891}
2892
2893static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2894 struct btrfs_root *root)
2895{
2896 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2897 BUG_ON(!root->fs_info->enospc_unlink);
2898 root->fs_info->enospc_unlink = 0;
2899 }
2900 btrfs_end_transaction_throttle(trans, root);
2901}
2902
2903static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2904{
2905 struct btrfs_root *root = BTRFS_I(dir)->root;
2906 struct btrfs_trans_handle *trans;
2907 struct inode *inode = dentry->d_inode;
2908 int ret;
2909 unsigned long nr = 0;
2910
2911 trans = __unlink_start_trans(dir, dentry);
2912 if (IS_ERR(trans))
2913 return PTR_ERR(trans);
5f39d397 2914
39279cc3 2915 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2916
2917 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2918
e02119d5
CM
2919 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2920 dentry->d_name.name, dentry->d_name.len);
a22285a6 2921 BUG_ON(ret);
7b128766 2922
a22285a6 2923 if (inode->i_nlink == 0) {
7b128766 2924 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2925 BUG_ON(ret);
2926 }
7b128766 2927
d3c2fdcf 2928 nr = trans->blocks_used;
a22285a6 2929 __unlink_end_trans(trans, root);
d3c2fdcf 2930 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2931 return ret;
2932}
2933
4df27c4d
YZ
2934int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *root,
2936 struct inode *dir, u64 objectid,
2937 const char *name, int name_len)
2938{
2939 struct btrfs_path *path;
2940 struct extent_buffer *leaf;
2941 struct btrfs_dir_item *di;
2942 struct btrfs_key key;
2943 u64 index;
2944 int ret;
2945
2946 path = btrfs_alloc_path();
2947 if (!path)
2948 return -ENOMEM;
2949
2950 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2951 name, name_len, -1);
2952 BUG_ON(!di || IS_ERR(di));
2953
2954 leaf = path->nodes[0];
2955 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2956 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2957 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2958 BUG_ON(ret);
2959 btrfs_release_path(root, path);
2960
2961 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2962 objectid, root->root_key.objectid,
2963 dir->i_ino, &index, name, name_len);
2964 if (ret < 0) {
2965 BUG_ON(ret != -ENOENT);
2966 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2967 name, name_len);
2968 BUG_ON(!di || IS_ERR(di));
2969
2970 leaf = path->nodes[0];
2971 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2972 btrfs_release_path(root, path);
2973 index = key.offset;
2974 }
2975
2976 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2977 index, name, name_len, -1);
2978 BUG_ON(!di || IS_ERR(di));
2979
2980 leaf = path->nodes[0];
2981 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2982 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2983 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2984 BUG_ON(ret);
2985 btrfs_release_path(root, path);
2986
2987 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2988 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2989 ret = btrfs_update_inode(trans, root, dir);
2990 BUG_ON(ret);
4df27c4d
YZ
2991
2992 btrfs_free_path(path);
2993 return 0;
2994}
2995
39279cc3
CM
2996static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2997{
2998 struct inode *inode = dentry->d_inode;
1832a6d5 2999 int err = 0;
39279cc3 3000 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3001 struct btrfs_trans_handle *trans;
1832a6d5 3002 unsigned long nr = 0;
39279cc3 3003
3394e160 3004 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 3005 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3006 return -ENOTEMPTY;
3007
a22285a6
YZ
3008 trans = __unlink_start_trans(dir, dentry);
3009 if (IS_ERR(trans))
5df6a9f6 3010 return PTR_ERR(trans);
5df6a9f6 3011
39279cc3 3012 btrfs_set_trans_block_group(trans, dir);
39279cc3 3013
4df27c4d
YZ
3014 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3015 err = btrfs_unlink_subvol(trans, root, dir,
3016 BTRFS_I(inode)->location.objectid,
3017 dentry->d_name.name,
3018 dentry->d_name.len);
3019 goto out;
3020 }
3021
7b128766
JB
3022 err = btrfs_orphan_add(trans, inode);
3023 if (err)
4df27c4d 3024 goto out;
7b128766 3025
39279cc3 3026 /* now the directory is empty */
e02119d5
CM
3027 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3028 dentry->d_name.name, dentry->d_name.len);
d397712b 3029 if (!err)
dbe674a9 3030 btrfs_i_size_write(inode, 0);
4df27c4d 3031out:
d3c2fdcf 3032 nr = trans->blocks_used;
a22285a6 3033 __unlink_end_trans(trans, root);
d3c2fdcf 3034 btrfs_btree_balance_dirty(root, nr);
3954401f 3035
39279cc3
CM
3036 return err;
3037}
3038
d20f7043 3039#if 0
323ac95b
CM
3040/*
3041 * when truncating bytes in a file, it is possible to avoid reading
3042 * the leaves that contain only checksum items. This can be the
3043 * majority of the IO required to delete a large file, but it must
3044 * be done carefully.
3045 *
3046 * The keys in the level just above the leaves are checked to make sure
3047 * the lowest key in a given leaf is a csum key, and starts at an offset
3048 * after the new size.
3049 *
3050 * Then the key for the next leaf is checked to make sure it also has
3051 * a checksum item for the same file. If it does, we know our target leaf
3052 * contains only checksum items, and it can be safely freed without reading
3053 * it.
3054 *
3055 * This is just an optimization targeted at large files. It may do
3056 * nothing. It will return 0 unless things went badly.
3057 */
3058static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3059 struct btrfs_root *root,
3060 struct btrfs_path *path,
3061 struct inode *inode, u64 new_size)
3062{
3063 struct btrfs_key key;
3064 int ret;
3065 int nritems;
3066 struct btrfs_key found_key;
3067 struct btrfs_key other_key;
5b84e8d6
YZ
3068 struct btrfs_leaf_ref *ref;
3069 u64 leaf_gen;
3070 u64 leaf_start;
323ac95b
CM
3071
3072 path->lowest_level = 1;
3073 key.objectid = inode->i_ino;
3074 key.type = BTRFS_CSUM_ITEM_KEY;
3075 key.offset = new_size;
3076again:
3077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3078 if (ret < 0)
3079 goto out;
3080
3081 if (path->nodes[1] == NULL) {
3082 ret = 0;
3083 goto out;
3084 }
3085 ret = 0;
3086 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3087 nritems = btrfs_header_nritems(path->nodes[1]);
3088
3089 if (!nritems)
3090 goto out;
3091
3092 if (path->slots[1] >= nritems)
3093 goto next_node;
3094
3095 /* did we find a key greater than anything we want to delete? */
3096 if (found_key.objectid > inode->i_ino ||
3097 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3098 goto out;
3099
3100 /* we check the next key in the node to make sure the leave contains
3101 * only checksum items. This comparison doesn't work if our
3102 * leaf is the last one in the node
3103 */
3104 if (path->slots[1] + 1 >= nritems) {
3105next_node:
3106 /* search forward from the last key in the node, this
3107 * will bring us into the next node in the tree
3108 */
3109 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3110
3111 /* unlikely, but we inc below, so check to be safe */
3112 if (found_key.offset == (u64)-1)
3113 goto out;
3114
3115 /* search_forward needs a path with locks held, do the
3116 * search again for the original key. It is possible
3117 * this will race with a balance and return a path that
3118 * we could modify, but this drop is just an optimization
3119 * and is allowed to miss some leaves.
3120 */
3121 btrfs_release_path(root, path);
3122 found_key.offset++;
3123
3124 /* setup a max key for search_forward */
3125 other_key.offset = (u64)-1;
3126 other_key.type = key.type;
3127 other_key.objectid = key.objectid;
3128
3129 path->keep_locks = 1;
3130 ret = btrfs_search_forward(root, &found_key, &other_key,
3131 path, 0, 0);
3132 path->keep_locks = 0;
3133 if (ret || found_key.objectid != key.objectid ||
3134 found_key.type != key.type) {
3135 ret = 0;
3136 goto out;
3137 }
3138
3139 key.offset = found_key.offset;
3140 btrfs_release_path(root, path);
3141 cond_resched();
3142 goto again;
3143 }
3144
3145 /* we know there's one more slot after us in the tree,
3146 * read that key so we can verify it is also a checksum item
3147 */
3148 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3149
3150 if (found_key.objectid < inode->i_ino)
3151 goto next_key;
3152
3153 if (found_key.type != key.type || found_key.offset < new_size)
3154 goto next_key;
3155
3156 /*
3157 * if the key for the next leaf isn't a csum key from this objectid,
3158 * we can't be sure there aren't good items inside this leaf.
3159 * Bail out
3160 */
3161 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3162 goto out;
3163
5b84e8d6
YZ
3164 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3165 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3166 /*
3167 * it is safe to delete this leaf, it contains only
3168 * csum items from this inode at an offset >= new_size
3169 */
5b84e8d6 3170 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3171 BUG_ON(ret);
3172
5b84e8d6
YZ
3173 if (root->ref_cows && leaf_gen < trans->transid) {
3174 ref = btrfs_alloc_leaf_ref(root, 0);
3175 if (ref) {
3176 ref->root_gen = root->root_key.offset;
3177 ref->bytenr = leaf_start;
3178 ref->owner = 0;
3179 ref->generation = leaf_gen;
3180 ref->nritems = 0;
3181
bd56b302
CM
3182 btrfs_sort_leaf_ref(ref);
3183
5b84e8d6
YZ
3184 ret = btrfs_add_leaf_ref(root, ref, 0);
3185 WARN_ON(ret);
3186 btrfs_free_leaf_ref(root, ref);
3187 } else {
3188 WARN_ON(1);
3189 }
3190 }
323ac95b
CM
3191next_key:
3192 btrfs_release_path(root, path);
3193
3194 if (other_key.objectid == inode->i_ino &&
3195 other_key.type == key.type && other_key.offset > key.offset) {
3196 key.offset = other_key.offset;
3197 cond_resched();
3198 goto again;
3199 }
3200 ret = 0;
3201out:
3202 /* fixup any changes we've made to the path */
3203 path->lowest_level = 0;
3204 path->keep_locks = 0;
3205 btrfs_release_path(root, path);
3206 return ret;
3207}
3208
d20f7043
CM
3209#endif
3210
39279cc3
CM
3211/*
3212 * this can truncate away extent items, csum items and directory items.
3213 * It starts at a high offset and removes keys until it can't find
d352ac68 3214 * any higher than new_size
39279cc3
CM
3215 *
3216 * csum items that cross the new i_size are truncated to the new size
3217 * as well.
7b128766
JB
3218 *
3219 * min_type is the minimum key type to truncate down to. If set to 0, this
3220 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3221 */
8082510e
YZ
3222int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3223 struct btrfs_root *root,
3224 struct inode *inode,
3225 u64 new_size, u32 min_type)
39279cc3 3226{
39279cc3 3227 struct btrfs_path *path;
5f39d397 3228 struct extent_buffer *leaf;
39279cc3 3229 struct btrfs_file_extent_item *fi;
8082510e
YZ
3230 struct btrfs_key key;
3231 struct btrfs_key found_key;
39279cc3 3232 u64 extent_start = 0;
db94535d 3233 u64 extent_num_bytes = 0;
5d4f98a2 3234 u64 extent_offset = 0;
39279cc3 3235 u64 item_end = 0;
8082510e
YZ
3236 u64 mask = root->sectorsize - 1;
3237 u32 found_type = (u8)-1;
39279cc3
CM
3238 int found_extent;
3239 int del_item;
85e21bac
CM
3240 int pending_del_nr = 0;
3241 int pending_del_slot = 0;
179e29e4 3242 int extent_type = -1;
771ed689 3243 int encoding;
8082510e
YZ
3244 int ret;
3245 int err = 0;
3246
3247 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3248
0af3d00b 3249 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3250 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3251
39279cc3
CM
3252 path = btrfs_alloc_path();
3253 BUG_ON(!path);
33c17ad5 3254 path->reada = -1;
5f39d397 3255
39279cc3
CM
3256 key.objectid = inode->i_ino;
3257 key.offset = (u64)-1;
5f39d397
CM
3258 key.type = (u8)-1;
3259
85e21bac 3260search_again:
b9473439 3261 path->leave_spinning = 1;
85e21bac 3262 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3263 if (ret < 0) {
3264 err = ret;
3265 goto out;
3266 }
d397712b 3267
85e21bac 3268 if (ret > 0) {
e02119d5
CM
3269 /* there are no items in the tree for us to truncate, we're
3270 * done
3271 */
8082510e
YZ
3272 if (path->slots[0] == 0)
3273 goto out;
85e21bac
CM
3274 path->slots[0]--;
3275 }
3276
d397712b 3277 while (1) {
39279cc3 3278 fi = NULL;
5f39d397
CM
3279 leaf = path->nodes[0];
3280 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3281 found_type = btrfs_key_type(&found_key);
771ed689 3282 encoding = 0;
39279cc3 3283
5f39d397 3284 if (found_key.objectid != inode->i_ino)
39279cc3 3285 break;
5f39d397 3286
85e21bac 3287 if (found_type < min_type)
39279cc3
CM
3288 break;
3289
5f39d397 3290 item_end = found_key.offset;
39279cc3 3291 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3292 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3293 struct btrfs_file_extent_item);
179e29e4 3294 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3295 encoding = btrfs_file_extent_compression(leaf, fi);
3296 encoding |= btrfs_file_extent_encryption(leaf, fi);
3297 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3298
179e29e4 3299 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3300 item_end +=
db94535d 3301 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3303 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3304 fi);
39279cc3 3305 }
008630c1 3306 item_end--;
39279cc3 3307 }
8082510e
YZ
3308 if (found_type > min_type) {
3309 del_item = 1;
3310 } else {
3311 if (item_end < new_size)
b888db2b 3312 break;
8082510e
YZ
3313 if (found_key.offset >= new_size)
3314 del_item = 1;
3315 else
3316 del_item = 0;
39279cc3 3317 }
39279cc3 3318 found_extent = 0;
39279cc3 3319 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3320 if (found_type != BTRFS_EXTENT_DATA_KEY)
3321 goto delete;
3322
3323 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3324 u64 num_dec;
db94535d 3325 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3326 if (!del_item && !encoding) {
db94535d
CM
3327 u64 orig_num_bytes =
3328 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3329 extent_num_bytes = new_size -
5f39d397 3330 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3331 extent_num_bytes = extent_num_bytes &
3332 ~((u64)root->sectorsize - 1);
db94535d
CM
3333 btrfs_set_file_extent_num_bytes(leaf, fi,
3334 extent_num_bytes);
3335 num_dec = (orig_num_bytes -
9069218d 3336 extent_num_bytes);
e02119d5 3337 if (root->ref_cows && extent_start != 0)
a76a3cd4 3338 inode_sub_bytes(inode, num_dec);
5f39d397 3339 btrfs_mark_buffer_dirty(leaf);
39279cc3 3340 } else {
db94535d
CM
3341 extent_num_bytes =
3342 btrfs_file_extent_disk_num_bytes(leaf,
3343 fi);
5d4f98a2
YZ
3344 extent_offset = found_key.offset -
3345 btrfs_file_extent_offset(leaf, fi);
3346
39279cc3 3347 /* FIXME blocksize != 4096 */
9069218d 3348 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3349 if (extent_start != 0) {
3350 found_extent = 1;
e02119d5 3351 if (root->ref_cows)
a76a3cd4 3352 inode_sub_bytes(inode, num_dec);
e02119d5 3353 }
39279cc3 3354 }
9069218d 3355 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3356 /*
3357 * we can't truncate inline items that have had
3358 * special encodings
3359 */
3360 if (!del_item &&
3361 btrfs_file_extent_compression(leaf, fi) == 0 &&
3362 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3363 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3364 u32 size = new_size - found_key.offset;
3365
3366 if (root->ref_cows) {
a76a3cd4
YZ
3367 inode_sub_bytes(inode, item_end + 1 -
3368 new_size);
e02119d5
CM
3369 }
3370 size =
3371 btrfs_file_extent_calc_inline_size(size);
9069218d 3372 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3373 size, 1);
9069218d 3374 BUG_ON(ret);
e02119d5 3375 } else if (root->ref_cows) {
a76a3cd4
YZ
3376 inode_sub_bytes(inode, item_end + 1 -
3377 found_key.offset);
9069218d 3378 }
39279cc3 3379 }
179e29e4 3380delete:
39279cc3 3381 if (del_item) {
85e21bac
CM
3382 if (!pending_del_nr) {
3383 /* no pending yet, add ourselves */
3384 pending_del_slot = path->slots[0];
3385 pending_del_nr = 1;
3386 } else if (pending_del_nr &&
3387 path->slots[0] + 1 == pending_del_slot) {
3388 /* hop on the pending chunk */
3389 pending_del_nr++;
3390 pending_del_slot = path->slots[0];
3391 } else {
d397712b 3392 BUG();
85e21bac 3393 }
39279cc3
CM
3394 } else {
3395 break;
3396 }
0af3d00b
JB
3397 if (found_extent && (root->ref_cows ||
3398 root == root->fs_info->tree_root)) {
b9473439 3399 btrfs_set_path_blocking(path);
39279cc3 3400 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3401 extent_num_bytes, 0,
3402 btrfs_header_owner(leaf),
3403 inode->i_ino, extent_offset);
39279cc3
CM
3404 BUG_ON(ret);
3405 }
85e21bac 3406
8082510e
YZ
3407 if (found_type == BTRFS_INODE_ITEM_KEY)
3408 break;
3409
3410 if (path->slots[0] == 0 ||
3411 path->slots[0] != pending_del_slot) {
3412 if (root->ref_cows) {
3413 err = -EAGAIN;
3414 goto out;
3415 }
3416 if (pending_del_nr) {
3417 ret = btrfs_del_items(trans, root, path,
3418 pending_del_slot,
3419 pending_del_nr);
3420 BUG_ON(ret);
3421 pending_del_nr = 0;
3422 }
85e21bac
CM
3423 btrfs_release_path(root, path);
3424 goto search_again;
8082510e
YZ
3425 } else {
3426 path->slots[0]--;
85e21bac 3427 }
39279cc3 3428 }
8082510e 3429out:
85e21bac
CM
3430 if (pending_del_nr) {
3431 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3432 pending_del_nr);
d68fc57b 3433 BUG_ON(ret);
85e21bac 3434 }
39279cc3 3435 btrfs_free_path(path);
8082510e 3436 return err;
39279cc3
CM
3437}
3438
3439/*
3440 * taken from block_truncate_page, but does cow as it zeros out
3441 * any bytes left in the last page in the file.
3442 */
3443static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3444{
3445 struct inode *inode = mapping->host;
db94535d 3446 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3447 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3448 struct btrfs_ordered_extent *ordered;
2ac55d41 3449 struct extent_state *cached_state = NULL;
e6dcd2dc 3450 char *kaddr;
db94535d 3451 u32 blocksize = root->sectorsize;
39279cc3
CM
3452 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3453 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3454 struct page *page;
39279cc3 3455 int ret = 0;
a52d9a80 3456 u64 page_start;
e6dcd2dc 3457 u64 page_end;
39279cc3
CM
3458
3459 if ((offset & (blocksize - 1)) == 0)
3460 goto out;
0ca1f7ce 3461 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3462 if (ret)
3463 goto out;
39279cc3
CM
3464
3465 ret = -ENOMEM;
211c17f5 3466again:
39279cc3 3467 page = grab_cache_page(mapping, index);
5d5e103a 3468 if (!page) {
0ca1f7ce 3469 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3470 goto out;
5d5e103a 3471 }
e6dcd2dc
CM
3472
3473 page_start = page_offset(page);
3474 page_end = page_start + PAGE_CACHE_SIZE - 1;
3475
39279cc3 3476 if (!PageUptodate(page)) {
9ebefb18 3477 ret = btrfs_readpage(NULL, page);
39279cc3 3478 lock_page(page);
211c17f5
CM
3479 if (page->mapping != mapping) {
3480 unlock_page(page);
3481 page_cache_release(page);
3482 goto again;
3483 }
39279cc3
CM
3484 if (!PageUptodate(page)) {
3485 ret = -EIO;
89642229 3486 goto out_unlock;
39279cc3
CM
3487 }
3488 }
211c17f5 3489 wait_on_page_writeback(page);
e6dcd2dc 3490
2ac55d41
JB
3491 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3492 GFP_NOFS);
e6dcd2dc
CM
3493 set_page_extent_mapped(page);
3494
3495 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3496 if (ordered) {
2ac55d41
JB
3497 unlock_extent_cached(io_tree, page_start, page_end,
3498 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3499 unlock_page(page);
3500 page_cache_release(page);
eb84ae03 3501 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3502 btrfs_put_ordered_extent(ordered);
3503 goto again;
3504 }
3505
2ac55d41 3506 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3507 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3508 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3509
2ac55d41
JB
3510 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3511 &cached_state);
9ed74f2d 3512 if (ret) {
2ac55d41
JB
3513 unlock_extent_cached(io_tree, page_start, page_end,
3514 &cached_state, GFP_NOFS);
9ed74f2d
JB
3515 goto out_unlock;
3516 }
3517
e6dcd2dc
CM
3518 ret = 0;
3519 if (offset != PAGE_CACHE_SIZE) {
3520 kaddr = kmap(page);
3521 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3522 flush_dcache_page(page);
3523 kunmap(page);
3524 }
247e743c 3525 ClearPageChecked(page);
e6dcd2dc 3526 set_page_dirty(page);
2ac55d41
JB
3527 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3528 GFP_NOFS);
39279cc3 3529
89642229 3530out_unlock:
5d5e103a 3531 if (ret)
0ca1f7ce 3532 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3533 unlock_page(page);
3534 page_cache_release(page);
3535out:
3536 return ret;
3537}
3538
9036c102 3539int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3540{
9036c102
YZ
3541 struct btrfs_trans_handle *trans;
3542 struct btrfs_root *root = BTRFS_I(inode)->root;
3543 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3544 struct extent_map *em = NULL;
2ac55d41 3545 struct extent_state *cached_state = NULL;
9036c102
YZ
3546 u64 mask = root->sectorsize - 1;
3547 u64 hole_start = (inode->i_size + mask) & ~mask;
3548 u64 block_end = (size + mask) & ~mask;
3549 u64 last_byte;
3550 u64 cur_offset;
3551 u64 hole_size;
9ed74f2d 3552 int err = 0;
39279cc3 3553
9036c102
YZ
3554 if (size <= hole_start)
3555 return 0;
3556
9036c102
YZ
3557 while (1) {
3558 struct btrfs_ordered_extent *ordered;
3559 btrfs_wait_ordered_range(inode, hole_start,
3560 block_end - hole_start);
2ac55d41
JB
3561 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3562 &cached_state, GFP_NOFS);
9036c102
YZ
3563 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3564 if (!ordered)
3565 break;
2ac55d41
JB
3566 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3567 &cached_state, GFP_NOFS);
9036c102
YZ
3568 btrfs_put_ordered_extent(ordered);
3569 }
39279cc3 3570
9036c102
YZ
3571 cur_offset = hole_start;
3572 while (1) {
3573 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3574 block_end - cur_offset, 0);
3575 BUG_ON(IS_ERR(em) || !em);
3576 last_byte = min(extent_map_end(em), block_end);
3577 last_byte = (last_byte + mask) & ~mask;
8082510e 3578 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3579 u64 hint_byte = 0;
9036c102 3580 hole_size = last_byte - cur_offset;
9ed74f2d 3581
a22285a6
YZ
3582 trans = btrfs_start_transaction(root, 2);
3583 if (IS_ERR(trans)) {
3584 err = PTR_ERR(trans);
9ed74f2d 3585 break;
a22285a6 3586 }
8082510e
YZ
3587 btrfs_set_trans_block_group(trans, inode);
3588
3589 err = btrfs_drop_extents(trans, inode, cur_offset,
3590 cur_offset + hole_size,
3591 &hint_byte, 1);
3592 BUG_ON(err);
3593
9036c102
YZ
3594 err = btrfs_insert_file_extent(trans, root,
3595 inode->i_ino, cur_offset, 0,
3596 0, hole_size, 0, hole_size,
3597 0, 0, 0);
8082510e
YZ
3598 BUG_ON(err);
3599
9036c102
YZ
3600 btrfs_drop_extent_cache(inode, hole_start,
3601 last_byte - 1, 0);
8082510e
YZ
3602
3603 btrfs_end_transaction(trans, root);
9036c102
YZ
3604 }
3605 free_extent_map(em);
a22285a6 3606 em = NULL;
9036c102 3607 cur_offset = last_byte;
8082510e 3608 if (cur_offset >= block_end)
9036c102
YZ
3609 break;
3610 }
1832a6d5 3611
a22285a6 3612 free_extent_map(em);
2ac55d41
JB
3613 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3614 GFP_NOFS);
9036c102
YZ
3615 return err;
3616}
39279cc3 3617
8082510e
YZ
3618static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3619{
3620 struct btrfs_root *root = BTRFS_I(inode)->root;
3621 struct btrfs_trans_handle *trans;
3622 unsigned long nr;
3623 int ret;
3624
3625 if (attr->ia_size == inode->i_size)
3626 return 0;
3627
3628 if (attr->ia_size > inode->i_size) {
3629 unsigned long limit;
3630 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3631 if (attr->ia_size > inode->i_sb->s_maxbytes)
3632 return -EFBIG;
3633 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3634 send_sig(SIGXFSZ, current, 0);
3635 return -EFBIG;
3636 }
3637 }
3638
d68fc57b
YZ
3639 trans = btrfs_start_transaction(root, 5);
3640 if (IS_ERR(trans))
3641 return PTR_ERR(trans);
8082510e 3642
8082510e
YZ
3643 btrfs_set_trans_block_group(trans, inode);
3644
3645 ret = btrfs_orphan_add(trans, inode);
3646 BUG_ON(ret);
3647
3648 nr = trans->blocks_used;
3649 btrfs_end_transaction(trans, root);
8082510e
YZ
3650 btrfs_btree_balance_dirty(root, nr);
3651
3652 if (attr->ia_size > inode->i_size) {
3653 ret = btrfs_cont_expand(inode, attr->ia_size);
3654 if (ret) {
3655 btrfs_truncate(inode);
3656 return ret;
3657 }
3658
3659 i_size_write(inode, attr->ia_size);
3660 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3661
d68fc57b
YZ
3662 trans = btrfs_start_transaction(root, 0);
3663 BUG_ON(IS_ERR(trans));
8082510e 3664 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3665 trans->block_rsv = root->orphan_block_rsv;
3666 BUG_ON(!trans->block_rsv);
8082510e
YZ
3667
3668 ret = btrfs_update_inode(trans, root, inode);
3669 BUG_ON(ret);
3670 if (inode->i_nlink > 0) {
3671 ret = btrfs_orphan_del(trans, inode);
3672 BUG_ON(ret);
3673 }
3674 nr = trans->blocks_used;
3675 btrfs_end_transaction(trans, root);
3676 btrfs_btree_balance_dirty(root, nr);
3677 return 0;
3678 }
3679
3680 /*
3681 * We're truncating a file that used to have good data down to
3682 * zero. Make sure it gets into the ordered flush list so that
3683 * any new writes get down to disk quickly.
3684 */
3685 if (attr->ia_size == 0)
3686 BTRFS_I(inode)->ordered_data_close = 1;
3687
3688 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3689 ret = vmtruncate(inode, attr->ia_size);
3690 BUG_ON(ret);
3691
3692 return 0;
3693}
3694
9036c102
YZ
3695static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3696{
3697 struct inode *inode = dentry->d_inode;
b83cc969 3698 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3699 int err;
39279cc3 3700
b83cc969
LZ
3701 if (btrfs_root_readonly(root))
3702 return -EROFS;
3703
9036c102
YZ
3704 err = inode_change_ok(inode, attr);
3705 if (err)
3706 return err;
2bf5a725 3707
5a3f23d5 3708 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
8082510e
YZ
3709 err = btrfs_setattr_size(inode, attr);
3710 if (err)
3711 return err;
39279cc3 3712 }
9036c102 3713
1025774c
CH
3714 if (attr->ia_valid) {
3715 setattr_copy(inode, attr);
3716 mark_inode_dirty(inode);
3717
3718 if (attr->ia_valid & ATTR_MODE)
3719 err = btrfs_acl_chmod(inode);
3720 }
33268eaf 3721
39279cc3
CM
3722 return err;
3723}
61295eb8 3724
bd555975 3725void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3726{
3727 struct btrfs_trans_handle *trans;
3728 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3729 unsigned long nr;
39279cc3
CM
3730 int ret;
3731
3732 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3733 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3734 root == root->fs_info->tree_root))
bd555975
AV
3735 goto no_delete;
3736
39279cc3 3737 if (is_bad_inode(inode)) {
7b128766 3738 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3739 goto no_delete;
3740 }
bd555975 3741 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3742 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3743
c71bf099
YZ
3744 if (root->fs_info->log_root_recovering) {
3745 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3746 goto no_delete;
3747 }
3748
76dda93c
YZ
3749 if (inode->i_nlink > 0) {
3750 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3751 goto no_delete;
3752 }
3753
dbe674a9 3754 btrfs_i_size_write(inode, 0);
5f39d397 3755
8082510e 3756 while (1) {
d68fc57b
YZ
3757 trans = btrfs_start_transaction(root, 0);
3758 BUG_ON(IS_ERR(trans));
8082510e 3759 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3760 trans->block_rsv = root->orphan_block_rsv;
3761
3762 ret = btrfs_block_rsv_check(trans, root,
3763 root->orphan_block_rsv, 0, 5);
3764 if (ret) {
3765 BUG_ON(ret != -EAGAIN);
3766 ret = btrfs_commit_transaction(trans, root);
3767 BUG_ON(ret);
3768 continue;
3769 }
7b128766 3770
d68fc57b 3771 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3772 if (ret != -EAGAIN)
3773 break;
85e21bac 3774
8082510e
YZ
3775 nr = trans->blocks_used;
3776 btrfs_end_transaction(trans, root);
3777 trans = NULL;
3778 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3779
8082510e 3780 }
5f39d397 3781
8082510e
YZ
3782 if (ret == 0) {
3783 ret = btrfs_orphan_del(trans, inode);
3784 BUG_ON(ret);
3785 }
54aa1f4d 3786
d3c2fdcf 3787 nr = trans->blocks_used;
54aa1f4d 3788 btrfs_end_transaction(trans, root);
d3c2fdcf 3789 btrfs_btree_balance_dirty(root, nr);
39279cc3 3790no_delete:
bd555975 3791 end_writeback(inode);
8082510e 3792 return;
39279cc3
CM
3793}
3794
3795/*
3796 * this returns the key found in the dir entry in the location pointer.
3797 * If no dir entries were found, location->objectid is 0.
3798 */
3799static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3800 struct btrfs_key *location)
3801{
3802 const char *name = dentry->d_name.name;
3803 int namelen = dentry->d_name.len;
3804 struct btrfs_dir_item *di;
3805 struct btrfs_path *path;
3806 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3807 int ret = 0;
39279cc3
CM
3808
3809 path = btrfs_alloc_path();
3810 BUG_ON(!path);
3954401f 3811
39279cc3
CM
3812 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3813 namelen, 0);
0d9f7f3e
Y
3814 if (IS_ERR(di))
3815 ret = PTR_ERR(di);
d397712b
CM
3816
3817 if (!di || IS_ERR(di))
3954401f 3818 goto out_err;
d397712b 3819
5f39d397 3820 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3821out:
39279cc3
CM
3822 btrfs_free_path(path);
3823 return ret;
3954401f
CM
3824out_err:
3825 location->objectid = 0;
3826 goto out;
39279cc3
CM
3827}
3828
3829/*
3830 * when we hit a tree root in a directory, the btrfs part of the inode
3831 * needs to be changed to reflect the root directory of the tree root. This
3832 * is kind of like crossing a mount point.
3833 */
3834static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3835 struct inode *dir,
3836 struct dentry *dentry,
3837 struct btrfs_key *location,
3838 struct btrfs_root **sub_root)
39279cc3 3839{
4df27c4d
YZ
3840 struct btrfs_path *path;
3841 struct btrfs_root *new_root;
3842 struct btrfs_root_ref *ref;
3843 struct extent_buffer *leaf;
3844 int ret;
3845 int err = 0;
39279cc3 3846
4df27c4d
YZ
3847 path = btrfs_alloc_path();
3848 if (!path) {
3849 err = -ENOMEM;
3850 goto out;
3851 }
39279cc3 3852
4df27c4d
YZ
3853 err = -ENOENT;
3854 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3855 BTRFS_I(dir)->root->root_key.objectid,
3856 location->objectid);
3857 if (ret) {
3858 if (ret < 0)
3859 err = ret;
3860 goto out;
3861 }
39279cc3 3862
4df27c4d
YZ
3863 leaf = path->nodes[0];
3864 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3865 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3866 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3867 goto out;
39279cc3 3868
4df27c4d
YZ
3869 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3870 (unsigned long)(ref + 1),
3871 dentry->d_name.len);
3872 if (ret)
3873 goto out;
3874
3875 btrfs_release_path(root->fs_info->tree_root, path);
3876
3877 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3878 if (IS_ERR(new_root)) {
3879 err = PTR_ERR(new_root);
3880 goto out;
3881 }
3882
3883 if (btrfs_root_refs(&new_root->root_item) == 0) {
3884 err = -ENOENT;
3885 goto out;
3886 }
3887
3888 *sub_root = new_root;
3889 location->objectid = btrfs_root_dirid(&new_root->root_item);
3890 location->type = BTRFS_INODE_ITEM_KEY;
3891 location->offset = 0;
3892 err = 0;
3893out:
3894 btrfs_free_path(path);
3895 return err;
39279cc3
CM
3896}
3897
5d4f98a2
YZ
3898static void inode_tree_add(struct inode *inode)
3899{
3900 struct btrfs_root *root = BTRFS_I(inode)->root;
3901 struct btrfs_inode *entry;
03e860bd
FNP
3902 struct rb_node **p;
3903 struct rb_node *parent;
03e860bd
FNP
3904again:
3905 p = &root->inode_tree.rb_node;
3906 parent = NULL;
5d4f98a2 3907
1d3382cb 3908 if (inode_unhashed(inode))
76dda93c
YZ
3909 return;
3910
5d4f98a2
YZ
3911 spin_lock(&root->inode_lock);
3912 while (*p) {
3913 parent = *p;
3914 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3915
3916 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3917 p = &parent->rb_left;
5d4f98a2 3918 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3919 p = &parent->rb_right;
5d4f98a2
YZ
3920 else {
3921 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3922 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3923 rb_erase(parent, &root->inode_tree);
3924 RB_CLEAR_NODE(parent);
3925 spin_unlock(&root->inode_lock);
3926 goto again;
5d4f98a2
YZ
3927 }
3928 }
3929 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3930 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3931 spin_unlock(&root->inode_lock);
3932}
3933
3934static void inode_tree_del(struct inode *inode)
3935{
3936 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3937 int empty = 0;
5d4f98a2 3938
03e860bd 3939 spin_lock(&root->inode_lock);
5d4f98a2 3940 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3941 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3942 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3943 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3944 }
03e860bd 3945 spin_unlock(&root->inode_lock);
76dda93c 3946
0af3d00b
JB
3947 /*
3948 * Free space cache has inodes in the tree root, but the tree root has a
3949 * root_refs of 0, so this could end up dropping the tree root as a
3950 * snapshot, so we need the extra !root->fs_info->tree_root check to
3951 * make sure we don't drop it.
3952 */
3953 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3954 root != root->fs_info->tree_root) {
76dda93c
YZ
3955 synchronize_srcu(&root->fs_info->subvol_srcu);
3956 spin_lock(&root->inode_lock);
3957 empty = RB_EMPTY_ROOT(&root->inode_tree);
3958 spin_unlock(&root->inode_lock);
3959 if (empty)
3960 btrfs_add_dead_root(root);
3961 }
3962}
3963
3964int btrfs_invalidate_inodes(struct btrfs_root *root)
3965{
3966 struct rb_node *node;
3967 struct rb_node *prev;
3968 struct btrfs_inode *entry;
3969 struct inode *inode;
3970 u64 objectid = 0;
3971
3972 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3973
3974 spin_lock(&root->inode_lock);
3975again:
3976 node = root->inode_tree.rb_node;
3977 prev = NULL;
3978 while (node) {
3979 prev = node;
3980 entry = rb_entry(node, struct btrfs_inode, rb_node);
3981
3982 if (objectid < entry->vfs_inode.i_ino)
3983 node = node->rb_left;
3984 else if (objectid > entry->vfs_inode.i_ino)
3985 node = node->rb_right;
3986 else
3987 break;
3988 }
3989 if (!node) {
3990 while (prev) {
3991 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3992 if (objectid <= entry->vfs_inode.i_ino) {
3993 node = prev;
3994 break;
3995 }
3996 prev = rb_next(prev);
3997 }
3998 }
3999 while (node) {
4000 entry = rb_entry(node, struct btrfs_inode, rb_node);
4001 objectid = entry->vfs_inode.i_ino + 1;
4002 inode = igrab(&entry->vfs_inode);
4003 if (inode) {
4004 spin_unlock(&root->inode_lock);
4005 if (atomic_read(&inode->i_count) > 1)
4006 d_prune_aliases(inode);
4007 /*
45321ac5 4008 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4009 * the inode cache when its usage count
4010 * hits zero.
4011 */
4012 iput(inode);
4013 cond_resched();
4014 spin_lock(&root->inode_lock);
4015 goto again;
4016 }
4017
4018 if (cond_resched_lock(&root->inode_lock))
4019 goto again;
4020
4021 node = rb_next(node);
4022 }
4023 spin_unlock(&root->inode_lock);
4024 return 0;
5d4f98a2
YZ
4025}
4026
e02119d5
CM
4027static int btrfs_init_locked_inode(struct inode *inode, void *p)
4028{
4029 struct btrfs_iget_args *args = p;
4030 inode->i_ino = args->ino;
e02119d5 4031 BTRFS_I(inode)->root = args->root;
6a63209f 4032 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4033 return 0;
4034}
4035
4036static int btrfs_find_actor(struct inode *inode, void *opaque)
4037{
4038 struct btrfs_iget_args *args = opaque;
d397712b
CM
4039 return args->ino == inode->i_ino &&
4040 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4041}
4042
5d4f98a2
YZ
4043static struct inode *btrfs_iget_locked(struct super_block *s,
4044 u64 objectid,
4045 struct btrfs_root *root)
39279cc3
CM
4046{
4047 struct inode *inode;
4048 struct btrfs_iget_args args;
4049 args.ino = objectid;
4050 args.root = root;
4051
4052 inode = iget5_locked(s, objectid, btrfs_find_actor,
4053 btrfs_init_locked_inode,
4054 (void *)&args);
4055 return inode;
4056}
4057
1a54ef8c
BR
4058/* Get an inode object given its location and corresponding root.
4059 * Returns in *is_new if the inode was read from disk
4060 */
4061struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4062 struct btrfs_root *root, int *new)
1a54ef8c
BR
4063{
4064 struct inode *inode;
4065
4066 inode = btrfs_iget_locked(s, location->objectid, root);
4067 if (!inode)
5d4f98a2 4068 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4069
4070 if (inode->i_state & I_NEW) {
4071 BTRFS_I(inode)->root = root;
4072 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4073 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
4074
4075 inode_tree_add(inode);
1a54ef8c 4076 unlock_new_inode(inode);
73f73415
JB
4077 if (new)
4078 *new = 1;
1a54ef8c
BR
4079 }
4080
4081 return inode;
4082}
4083
4df27c4d
YZ
4084static struct inode *new_simple_dir(struct super_block *s,
4085 struct btrfs_key *key,
4086 struct btrfs_root *root)
4087{
4088 struct inode *inode = new_inode(s);
4089
4090 if (!inode)
4091 return ERR_PTR(-ENOMEM);
4092
4df27c4d
YZ
4093 BTRFS_I(inode)->root = root;
4094 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4095 BTRFS_I(inode)->dummy_inode = 1;
4096
4097 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4098 inode->i_op = &simple_dir_inode_operations;
4099 inode->i_fop = &simple_dir_operations;
4100 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4101 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4102
4103 return inode;
4104}
4105
3de4586c 4106struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4107{
d397712b 4108 struct inode *inode;
4df27c4d 4109 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4110 struct btrfs_root *sub_root = root;
4111 struct btrfs_key location;
76dda93c 4112 int index;
5d4f98a2 4113 int ret;
39279cc3
CM
4114
4115 if (dentry->d_name.len > BTRFS_NAME_LEN)
4116 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4117
39279cc3 4118 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4119
39279cc3
CM
4120 if (ret < 0)
4121 return ERR_PTR(ret);
5f39d397 4122
4df27c4d
YZ
4123 if (location.objectid == 0)
4124 return NULL;
4125
4126 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4127 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4128 return inode;
4129 }
4130
4131 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4132
76dda93c 4133 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4134 ret = fixup_tree_root_location(root, dir, dentry,
4135 &location, &sub_root);
4136 if (ret < 0) {
4137 if (ret != -ENOENT)
4138 inode = ERR_PTR(ret);
4139 else
4140 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4141 } else {
73f73415 4142 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4143 }
76dda93c
YZ
4144 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4145
34d19bad 4146 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4147 down_read(&root->fs_info->cleanup_work_sem);
4148 if (!(inode->i_sb->s_flags & MS_RDONLY))
4149 btrfs_orphan_cleanup(sub_root);
4150 up_read(&root->fs_info->cleanup_work_sem);
4151 }
4152
3de4586c
CM
4153 return inode;
4154}
4155
fe15ce44 4156static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4157{
4158 struct btrfs_root *root;
4159
efefb143
YZ
4160 if (!dentry->d_inode && !IS_ROOT(dentry))
4161 dentry = dentry->d_parent;
76dda93c 4162
efefb143
YZ
4163 if (dentry->d_inode) {
4164 root = BTRFS_I(dentry->d_inode)->root;
4165 if (btrfs_root_refs(&root->root_item) == 0)
4166 return 1;
4167 }
76dda93c
YZ
4168 return 0;
4169}
4170
3de4586c
CM
4171static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4172 struct nameidata *nd)
4173{
4174 struct inode *inode;
4175
3de4586c
CM
4176 inode = btrfs_lookup_dentry(dir, dentry);
4177 if (IS_ERR(inode))
4178 return ERR_CAST(inode);
7b128766 4179
39279cc3
CM
4180 return d_splice_alias(inode, dentry);
4181}
4182
39279cc3
CM
4183static unsigned char btrfs_filetype_table[] = {
4184 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4185};
4186
cbdf5a24
DW
4187static int btrfs_real_readdir(struct file *filp, void *dirent,
4188 filldir_t filldir)
39279cc3 4189{
6da6abae 4190 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4191 struct btrfs_root *root = BTRFS_I(inode)->root;
4192 struct btrfs_item *item;
4193 struct btrfs_dir_item *di;
4194 struct btrfs_key key;
5f39d397 4195 struct btrfs_key found_key;
39279cc3
CM
4196 struct btrfs_path *path;
4197 int ret;
4198 u32 nritems;
5f39d397 4199 struct extent_buffer *leaf;
39279cc3
CM
4200 int slot;
4201 int advance;
4202 unsigned char d_type;
4203 int over = 0;
4204 u32 di_cur;
4205 u32 di_total;
4206 u32 di_len;
4207 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4208 char tmp_name[32];
4209 char *name_ptr;
4210 int name_len;
39279cc3
CM
4211
4212 /* FIXME, use a real flag for deciding about the key type */
4213 if (root->fs_info->tree_root == root)
4214 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4215
3954401f
CM
4216 /* special case for "." */
4217 if (filp->f_pos == 0) {
4218 over = filldir(dirent, ".", 1,
4219 1, inode->i_ino,
4220 DT_DIR);
4221 if (over)
4222 return 0;
4223 filp->f_pos = 1;
4224 }
3954401f
CM
4225 /* special case for .., just use the back ref */
4226 if (filp->f_pos == 1) {
5ecc7e5d 4227 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4228 over = filldir(dirent, "..", 2,
5ecc7e5d 4229 2, pino, DT_DIR);
3954401f 4230 if (over)
49593bfa 4231 return 0;
3954401f
CM
4232 filp->f_pos = 2;
4233 }
49593bfa
DW
4234 path = btrfs_alloc_path();
4235 path->reada = 2;
4236
39279cc3
CM
4237 btrfs_set_key_type(&key, key_type);
4238 key.offset = filp->f_pos;
49593bfa 4239 key.objectid = inode->i_ino;
5f39d397 4240
39279cc3
CM
4241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4242 if (ret < 0)
4243 goto err;
4244 advance = 0;
49593bfa
DW
4245
4246 while (1) {
5f39d397
CM
4247 leaf = path->nodes[0];
4248 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4249 slot = path->slots[0];
4250 if (advance || slot >= nritems) {
49593bfa 4251 if (slot >= nritems - 1) {
39279cc3
CM
4252 ret = btrfs_next_leaf(root, path);
4253 if (ret)
4254 break;
5f39d397
CM
4255 leaf = path->nodes[0];
4256 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4257 slot = path->slots[0];
4258 } else {
4259 slot++;
4260 path->slots[0]++;
4261 }
4262 }
3de4586c 4263
39279cc3 4264 advance = 1;
5f39d397
CM
4265 item = btrfs_item_nr(leaf, slot);
4266 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4267
4268 if (found_key.objectid != key.objectid)
39279cc3 4269 break;
5f39d397 4270 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4271 break;
5f39d397 4272 if (found_key.offset < filp->f_pos)
39279cc3 4273 continue;
5f39d397
CM
4274
4275 filp->f_pos = found_key.offset;
49593bfa 4276
39279cc3
CM
4277 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4278 di_cur = 0;
5f39d397 4279 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4280
4281 while (di_cur < di_total) {
5f39d397
CM
4282 struct btrfs_key location;
4283
4284 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4285 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4286 name_ptr = tmp_name;
4287 } else {
4288 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4289 if (!name_ptr) {
4290 ret = -ENOMEM;
4291 goto err;
4292 }
5f39d397
CM
4293 }
4294 read_extent_buffer(leaf, name_ptr,
4295 (unsigned long)(di + 1), name_len);
4296
4297 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4298 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4299
4300 /* is this a reference to our own snapshot? If so
4301 * skip it
4302 */
4303 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4304 location.objectid == root->root_key.objectid) {
4305 over = 0;
4306 goto skip;
4307 }
5f39d397 4308 over = filldir(dirent, name_ptr, name_len,
49593bfa 4309 found_key.offset, location.objectid,
39279cc3 4310 d_type);
5f39d397 4311
3de4586c 4312skip:
5f39d397
CM
4313 if (name_ptr != tmp_name)
4314 kfree(name_ptr);
4315
39279cc3
CM
4316 if (over)
4317 goto nopos;
5103e947 4318 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4319 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4320 di_cur += di_len;
4321 di = (struct btrfs_dir_item *)((char *)di + di_len);
4322 }
4323 }
49593bfa
DW
4324
4325 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4326 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4327 /*
4328 * 32-bit glibc will use getdents64, but then strtol -
4329 * so the last number we can serve is this.
4330 */
4331 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4332 else
4333 filp->f_pos++;
39279cc3
CM
4334nopos:
4335 ret = 0;
4336err:
39279cc3 4337 btrfs_free_path(path);
39279cc3
CM
4338 return ret;
4339}
4340
a9185b41 4341int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4342{
4343 struct btrfs_root *root = BTRFS_I(inode)->root;
4344 struct btrfs_trans_handle *trans;
4345 int ret = 0;
0af3d00b 4346 bool nolock = false;
39279cc3 4347
8929ecfa 4348 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4349 return 0;
4350
0af3d00b
JB
4351 smp_mb();
4352 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4353
a9185b41 4354 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4355 if (nolock)
4356 trans = btrfs_join_transaction_nolock(root, 1);
4357 else
4358 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4359 if (IS_ERR(trans))
4360 return PTR_ERR(trans);
39279cc3 4361 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4362 if (nolock)
4363 ret = btrfs_end_transaction_nolock(trans, root);
4364 else
4365 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4366 }
4367 return ret;
4368}
4369
4370/*
54aa1f4d 4371 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4372 * inode changes. But, it is most likely to find the inode in cache.
4373 * FIXME, needs more benchmarking...there are no reasons other than performance
4374 * to keep or drop this code.
4375 */
4376void btrfs_dirty_inode(struct inode *inode)
4377{
4378 struct btrfs_root *root = BTRFS_I(inode)->root;
4379 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4380 int ret;
4381
4382 if (BTRFS_I(inode)->dummy_inode)
4383 return;
39279cc3 4384
f9295749 4385 trans = btrfs_join_transaction(root, 1);
3612b495 4386 BUG_ON(IS_ERR(trans));
39279cc3 4387 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4388
4389 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4390 if (ret && ret == -ENOSPC) {
4391 /* whoops, lets try again with the full transaction */
4392 btrfs_end_transaction(trans, root);
4393 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4394 if (IS_ERR(trans)) {
4395 if (printk_ratelimit()) {
4396 printk(KERN_ERR "btrfs: fail to "
4397 "dirty inode %lu error %ld\n",
4398 inode->i_ino, PTR_ERR(trans));
4399 }
4400 return;
4401 }
94b60442 4402 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4403
94b60442
CM
4404 ret = btrfs_update_inode(trans, root, inode);
4405 if (ret) {
9aeead73
CM
4406 if (printk_ratelimit()) {
4407 printk(KERN_ERR "btrfs: fail to "
4408 "dirty inode %lu error %d\n",
4409 inode->i_ino, ret);
4410 }
94b60442
CM
4411 }
4412 }
39279cc3 4413 btrfs_end_transaction(trans, root);
39279cc3
CM
4414}
4415
d352ac68
CM
4416/*
4417 * find the highest existing sequence number in a directory
4418 * and then set the in-memory index_cnt variable to reflect
4419 * free sequence numbers
4420 */
aec7477b
JB
4421static int btrfs_set_inode_index_count(struct inode *inode)
4422{
4423 struct btrfs_root *root = BTRFS_I(inode)->root;
4424 struct btrfs_key key, found_key;
4425 struct btrfs_path *path;
4426 struct extent_buffer *leaf;
4427 int ret;
4428
4429 key.objectid = inode->i_ino;
4430 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4431 key.offset = (u64)-1;
4432
4433 path = btrfs_alloc_path();
4434 if (!path)
4435 return -ENOMEM;
4436
4437 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4438 if (ret < 0)
4439 goto out;
4440 /* FIXME: we should be able to handle this */
4441 if (ret == 0)
4442 goto out;
4443 ret = 0;
4444
4445 /*
4446 * MAGIC NUMBER EXPLANATION:
4447 * since we search a directory based on f_pos we have to start at 2
4448 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4449 * else has to start at 2
4450 */
4451 if (path->slots[0] == 0) {
4452 BTRFS_I(inode)->index_cnt = 2;
4453 goto out;
4454 }
4455
4456 path->slots[0]--;
4457
4458 leaf = path->nodes[0];
4459 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4460
4461 if (found_key.objectid != inode->i_ino ||
4462 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4463 BTRFS_I(inode)->index_cnt = 2;
4464 goto out;
4465 }
4466
4467 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4468out:
4469 btrfs_free_path(path);
4470 return ret;
4471}
4472
d352ac68
CM
4473/*
4474 * helper to find a free sequence number in a given directory. This current
4475 * code is very simple, later versions will do smarter things in the btree
4476 */
3de4586c 4477int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4478{
4479 int ret = 0;
4480
4481 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4482 ret = btrfs_set_inode_index_count(dir);
d397712b 4483 if (ret)
aec7477b
JB
4484 return ret;
4485 }
4486
00e4e6b3 4487 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4488 BTRFS_I(dir)->index_cnt++;
4489
4490 return ret;
4491}
4492
39279cc3
CM
4493static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4494 struct btrfs_root *root,
aec7477b 4495 struct inode *dir,
9c58309d 4496 const char *name, int name_len,
d2fb3437
YZ
4497 u64 ref_objectid, u64 objectid,
4498 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4499{
4500 struct inode *inode;
5f39d397 4501 struct btrfs_inode_item *inode_item;
39279cc3 4502 struct btrfs_key *location;
5f39d397 4503 struct btrfs_path *path;
9c58309d
CM
4504 struct btrfs_inode_ref *ref;
4505 struct btrfs_key key[2];
4506 u32 sizes[2];
4507 unsigned long ptr;
39279cc3
CM
4508 int ret;
4509 int owner;
4510
5f39d397
CM
4511 path = btrfs_alloc_path();
4512 BUG_ON(!path);
4513
39279cc3
CM
4514 inode = new_inode(root->fs_info->sb);
4515 if (!inode)
4516 return ERR_PTR(-ENOMEM);
4517
aec7477b 4518 if (dir) {
3de4586c 4519 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4520 if (ret) {
4521 iput(inode);
aec7477b 4522 return ERR_PTR(ret);
09771430 4523 }
aec7477b
JB
4524 }
4525 /*
4526 * index_cnt is ignored for everything but a dir,
4527 * btrfs_get_inode_index_count has an explanation for the magic
4528 * number
4529 */
4530 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4531 BTRFS_I(inode)->root = root;
e02119d5 4532 BTRFS_I(inode)->generation = trans->transid;
76195853 4533 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4534 btrfs_set_inode_space_info(root, inode);
b888db2b 4535
39279cc3
CM
4536 if (mode & S_IFDIR)
4537 owner = 0;
4538 else
4539 owner = 1;
d2fb3437
YZ
4540 BTRFS_I(inode)->block_group =
4541 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4542
4543 key[0].objectid = objectid;
4544 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4545 key[0].offset = 0;
4546
4547 key[1].objectid = objectid;
4548 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4549 key[1].offset = ref_objectid;
4550
4551 sizes[0] = sizeof(struct btrfs_inode_item);
4552 sizes[1] = name_len + sizeof(*ref);
4553
b9473439 4554 path->leave_spinning = 1;
9c58309d
CM
4555 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4556 if (ret != 0)
5f39d397
CM
4557 goto fail;
4558
ecc11fab 4559 inode_init_owner(inode, dir, mode);
39279cc3 4560 inode->i_ino = objectid;
a76a3cd4 4561 inode_set_bytes(inode, 0);
39279cc3 4562 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4563 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4564 struct btrfs_inode_item);
e02119d5 4565 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4566
4567 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4568 struct btrfs_inode_ref);
4569 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4570 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4571 ptr = (unsigned long)(ref + 1);
4572 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4573
5f39d397
CM
4574 btrfs_mark_buffer_dirty(path->nodes[0]);
4575 btrfs_free_path(path);
4576
39279cc3
CM
4577 location = &BTRFS_I(inode)->location;
4578 location->objectid = objectid;
39279cc3
CM
4579 location->offset = 0;
4580 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4581
6cbff00f
CH
4582 btrfs_inherit_iflags(inode, dir);
4583
94272164
CM
4584 if ((mode & S_IFREG)) {
4585 if (btrfs_test_opt(root, NODATASUM))
4586 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4587 if (btrfs_test_opt(root, NODATACOW))
4588 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4589 }
4590
39279cc3 4591 insert_inode_hash(inode);
5d4f98a2 4592 inode_tree_add(inode);
39279cc3 4593 return inode;
5f39d397 4594fail:
aec7477b
JB
4595 if (dir)
4596 BTRFS_I(dir)->index_cnt--;
5f39d397 4597 btrfs_free_path(path);
09771430 4598 iput(inode);
5f39d397 4599 return ERR_PTR(ret);
39279cc3
CM
4600}
4601
4602static inline u8 btrfs_inode_type(struct inode *inode)
4603{
4604 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4605}
4606
d352ac68
CM
4607/*
4608 * utility function to add 'inode' into 'parent_inode' with
4609 * a give name and a given sequence number.
4610 * if 'add_backref' is true, also insert a backref from the
4611 * inode to the parent directory.
4612 */
e02119d5
CM
4613int btrfs_add_link(struct btrfs_trans_handle *trans,
4614 struct inode *parent_inode, struct inode *inode,
4615 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4616{
4df27c4d 4617 int ret = 0;
39279cc3 4618 struct btrfs_key key;
e02119d5 4619 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4620
4df27c4d
YZ
4621 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4622 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4623 } else {
4624 key.objectid = inode->i_ino;
4625 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4626 key.offset = 0;
4627 }
4628
4629 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4630 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4631 key.objectid, root->root_key.objectid,
4632 parent_inode->i_ino,
4633 index, name, name_len);
4634 } else if (add_backref) {
4635 ret = btrfs_insert_inode_ref(trans, root,
4636 name, name_len, inode->i_ino,
4637 parent_inode->i_ino, index);
4638 }
39279cc3 4639
39279cc3 4640 if (ret == 0) {
4df27c4d
YZ
4641 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4642 parent_inode->i_ino, &key,
4643 btrfs_inode_type(inode), index);
4644 BUG_ON(ret);
4645
dbe674a9 4646 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4647 name_len * 2);
79c44584 4648 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4649 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4650 }
4651 return ret;
4652}
4653
4654static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4655 struct inode *dir, struct dentry *dentry,
4656 struct inode *inode, int backref, u64 index)
39279cc3 4657{
a1b075d2
JB
4658 int err = btrfs_add_link(trans, dir, inode,
4659 dentry->d_name.name, dentry->d_name.len,
4660 backref, index);
39279cc3
CM
4661 if (!err) {
4662 d_instantiate(dentry, inode);
4663 return 0;
4664 }
4665 if (err > 0)
4666 err = -EEXIST;
4667 return err;
4668}
4669
618e21d5
JB
4670static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4671 int mode, dev_t rdev)
4672{
4673 struct btrfs_trans_handle *trans;
4674 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4675 struct inode *inode = NULL;
618e21d5
JB
4676 int err;
4677 int drop_inode = 0;
4678 u64 objectid;
1832a6d5 4679 unsigned long nr = 0;
00e4e6b3 4680 u64 index = 0;
618e21d5
JB
4681
4682 if (!new_valid_dev(rdev))
4683 return -EINVAL;
4684
a22285a6
YZ
4685 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4686 if (err)
4687 return err;
4688
9ed74f2d
JB
4689 /*
4690 * 2 for inode item and ref
4691 * 2 for dir items
4692 * 1 for xattr if selinux is on
4693 */
a22285a6
YZ
4694 trans = btrfs_start_transaction(root, 5);
4695 if (IS_ERR(trans))
4696 return PTR_ERR(trans);
1832a6d5 4697
618e21d5
JB
4698 btrfs_set_trans_block_group(trans, dir);
4699
aec7477b 4700 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4701 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4702 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4703 err = PTR_ERR(inode);
4704 if (IS_ERR(inode))
4705 goto out_unlock;
4706
f34f57a3 4707 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4708 if (err) {
4709 drop_inode = 1;
4710 goto out_unlock;
4711 }
4712
618e21d5 4713 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4714 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4715 if (err)
4716 drop_inode = 1;
4717 else {
4718 inode->i_op = &btrfs_special_inode_operations;
4719 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4720 btrfs_update_inode(trans, root, inode);
618e21d5 4721 }
618e21d5
JB
4722 btrfs_update_inode_block_group(trans, inode);
4723 btrfs_update_inode_block_group(trans, dir);
4724out_unlock:
d3c2fdcf 4725 nr = trans->blocks_used;
89ce8a63 4726 btrfs_end_transaction_throttle(trans, root);
a22285a6 4727 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4728 if (drop_inode) {
4729 inode_dec_link_count(inode);
4730 iput(inode);
4731 }
618e21d5
JB
4732 return err;
4733}
4734
39279cc3
CM
4735static int btrfs_create(struct inode *dir, struct dentry *dentry,
4736 int mode, struct nameidata *nd)
4737{
4738 struct btrfs_trans_handle *trans;
4739 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4740 struct inode *inode = NULL;
39279cc3 4741 int drop_inode = 0;
a22285a6 4742 int err;
1832a6d5 4743 unsigned long nr = 0;
39279cc3 4744 u64 objectid;
00e4e6b3 4745 u64 index = 0;
39279cc3 4746
a22285a6
YZ
4747 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4748 if (err)
4749 return err;
9ed74f2d
JB
4750 /*
4751 * 2 for inode item and ref
4752 * 2 for dir items
4753 * 1 for xattr if selinux is on
4754 */
a22285a6
YZ
4755 trans = btrfs_start_transaction(root, 5);
4756 if (IS_ERR(trans))
4757 return PTR_ERR(trans);
9ed74f2d 4758
39279cc3
CM
4759 btrfs_set_trans_block_group(trans, dir);
4760
aec7477b 4761 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4762 dentry->d_name.len, dir->i_ino, objectid,
4763 BTRFS_I(dir)->block_group, mode, &index);
39279cc3
CM
4764 err = PTR_ERR(inode);
4765 if (IS_ERR(inode))
4766 goto out_unlock;
4767
f34f57a3 4768 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4769 if (err) {
4770 drop_inode = 1;
4771 goto out_unlock;
4772 }
4773
39279cc3 4774 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4775 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4776 if (err)
4777 drop_inode = 1;
4778 else {
4779 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4780 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4781 inode->i_fop = &btrfs_file_operations;
4782 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4783 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4784 }
39279cc3
CM
4785 btrfs_update_inode_block_group(trans, inode);
4786 btrfs_update_inode_block_group(trans, dir);
4787out_unlock:
d3c2fdcf 4788 nr = trans->blocks_used;
ab78c84d 4789 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4790 if (drop_inode) {
4791 inode_dec_link_count(inode);
4792 iput(inode);
4793 }
d3c2fdcf 4794 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4795 return err;
4796}
4797
4798static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4799 struct dentry *dentry)
4800{
4801 struct btrfs_trans_handle *trans;
4802 struct btrfs_root *root = BTRFS_I(dir)->root;
4803 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4804 u64 index;
1832a6d5 4805 unsigned long nr = 0;
39279cc3
CM
4806 int err;
4807 int drop_inode = 0;
4808
4809 if (inode->i_nlink == 0)
4810 return -ENOENT;
4811
4a8be425
TH
4812 /* do not allow sys_link's with other subvols of the same device */
4813 if (root->objectid != BTRFS_I(inode)->root->objectid)
4814 return -EPERM;
4815
9ed74f2d 4816 btrfs_inc_nlink(inode);
bc1cbf1f 4817 inode->i_ctime = CURRENT_TIME;
9ed74f2d 4818
3de4586c 4819 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4820 if (err)
4821 goto fail;
4822
a22285a6 4823 /*
7e6b6465 4824 * 2 items for inode and inode ref
a22285a6 4825 * 2 items for dir items
7e6b6465 4826 * 1 item for parent inode
a22285a6 4827 */
7e6b6465 4828 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4829 if (IS_ERR(trans)) {
4830 err = PTR_ERR(trans);
4831 goto fail;
4832 }
5f39d397 4833
39279cc3 4834 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4835 ihold(inode);
aec7477b 4836
a1b075d2 4837 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4838
a5719521 4839 if (err) {
54aa1f4d 4840 drop_inode = 1;
a5719521 4841 } else {
6a912213 4842 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4843 btrfs_update_inode_block_group(trans, dir);
4844 err = btrfs_update_inode(trans, root, inode);
4845 BUG_ON(err);
6a912213
JB
4846 btrfs_log_new_name(trans, inode, NULL, parent);
4847 dput(parent);
a5719521 4848 }
39279cc3 4849
d3c2fdcf 4850 nr = trans->blocks_used;
ab78c84d 4851 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4852fail:
39279cc3
CM
4853 if (drop_inode) {
4854 inode_dec_link_count(inode);
4855 iput(inode);
4856 }
d3c2fdcf 4857 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4858 return err;
4859}
4860
39279cc3
CM
4861static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4862{
b9d86667 4863 struct inode *inode = NULL;
39279cc3
CM
4864 struct btrfs_trans_handle *trans;
4865 struct btrfs_root *root = BTRFS_I(dir)->root;
4866 int err = 0;
4867 int drop_on_err = 0;
b9d86667 4868 u64 objectid = 0;
00e4e6b3 4869 u64 index = 0;
d3c2fdcf 4870 unsigned long nr = 1;
39279cc3 4871
a22285a6
YZ
4872 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4873 if (err)
4874 return err;
4875
9ed74f2d
JB
4876 /*
4877 * 2 items for inode and ref
4878 * 2 items for dir items
4879 * 1 for xattr if selinux is on
4880 */
a22285a6
YZ
4881 trans = btrfs_start_transaction(root, 5);
4882 if (IS_ERR(trans))
4883 return PTR_ERR(trans);
9ed74f2d 4884 btrfs_set_trans_block_group(trans, dir);
39279cc3 4885
aec7477b 4886 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4887 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4888 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4889 &index);
39279cc3
CM
4890 if (IS_ERR(inode)) {
4891 err = PTR_ERR(inode);
4892 goto out_fail;
4893 }
5f39d397 4894
39279cc3 4895 drop_on_err = 1;
33268eaf 4896
f34f57a3 4897 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4898 if (err)
4899 goto out_fail;
4900
39279cc3
CM
4901 inode->i_op = &btrfs_dir_inode_operations;
4902 inode->i_fop = &btrfs_dir_file_operations;
4903 btrfs_set_trans_block_group(trans, inode);
4904
dbe674a9 4905 btrfs_i_size_write(inode, 0);
39279cc3
CM
4906 err = btrfs_update_inode(trans, root, inode);
4907 if (err)
4908 goto out_fail;
5f39d397 4909
a1b075d2
JB
4910 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4911 dentry->d_name.len, 0, index);
39279cc3
CM
4912 if (err)
4913 goto out_fail;
5f39d397 4914
39279cc3
CM
4915 d_instantiate(dentry, inode);
4916 drop_on_err = 0;
39279cc3
CM
4917 btrfs_update_inode_block_group(trans, inode);
4918 btrfs_update_inode_block_group(trans, dir);
4919
4920out_fail:
d3c2fdcf 4921 nr = trans->blocks_used;
ab78c84d 4922 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4923 if (drop_on_err)
4924 iput(inode);
d3c2fdcf 4925 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4926 return err;
4927}
4928
d352ac68
CM
4929/* helper for btfs_get_extent. Given an existing extent in the tree,
4930 * and an extent that you want to insert, deal with overlap and insert
4931 * the new extent into the tree.
4932 */
3b951516
CM
4933static int merge_extent_mapping(struct extent_map_tree *em_tree,
4934 struct extent_map *existing,
e6dcd2dc
CM
4935 struct extent_map *em,
4936 u64 map_start, u64 map_len)
3b951516
CM
4937{
4938 u64 start_diff;
3b951516 4939
e6dcd2dc
CM
4940 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4941 start_diff = map_start - em->start;
4942 em->start = map_start;
4943 em->len = map_len;
c8b97818
CM
4944 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4945 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4946 em->block_start += start_diff;
c8b97818
CM
4947 em->block_len -= start_diff;
4948 }
e6dcd2dc 4949 return add_extent_mapping(em_tree, em);
3b951516
CM
4950}
4951
c8b97818
CM
4952static noinline int uncompress_inline(struct btrfs_path *path,
4953 struct inode *inode, struct page *page,
4954 size_t pg_offset, u64 extent_offset,
4955 struct btrfs_file_extent_item *item)
4956{
4957 int ret;
4958 struct extent_buffer *leaf = path->nodes[0];
4959 char *tmp;
4960 size_t max_size;
4961 unsigned long inline_size;
4962 unsigned long ptr;
261507a0 4963 int compress_type;
c8b97818
CM
4964
4965 WARN_ON(pg_offset != 0);
261507a0 4966 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4967 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4968 inline_size = btrfs_file_extent_inline_item_len(leaf,
4969 btrfs_item_nr(leaf, path->slots[0]));
4970 tmp = kmalloc(inline_size, GFP_NOFS);
4971 ptr = btrfs_file_extent_inline_start(item);
4972
4973 read_extent_buffer(leaf, tmp, ptr, inline_size);
4974
5b050f04 4975 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4976 ret = btrfs_decompress(compress_type, tmp, page,
4977 extent_offset, inline_size, max_size);
c8b97818
CM
4978 if (ret) {
4979 char *kaddr = kmap_atomic(page, KM_USER0);
4980 unsigned long copy_size = min_t(u64,
4981 PAGE_CACHE_SIZE - pg_offset,
4982 max_size - extent_offset);
4983 memset(kaddr + pg_offset, 0, copy_size);
4984 kunmap_atomic(kaddr, KM_USER0);
4985 }
4986 kfree(tmp);
4987 return 0;
4988}
4989
d352ac68
CM
4990/*
4991 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4992 * the ugly parts come from merging extents from the disk with the in-ram
4993 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4994 * where the in-ram extents might be locked pending data=ordered completion.
4995 *
4996 * This also copies inline extents directly into the page.
4997 */
d397712b 4998
a52d9a80 4999struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5000 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5001 int create)
5002{
5003 int ret;
5004 int err = 0;
db94535d 5005 u64 bytenr;
a52d9a80
CM
5006 u64 extent_start = 0;
5007 u64 extent_end = 0;
5008 u64 objectid = inode->i_ino;
5009 u32 found_type;
f421950f 5010 struct btrfs_path *path = NULL;
a52d9a80
CM
5011 struct btrfs_root *root = BTRFS_I(inode)->root;
5012 struct btrfs_file_extent_item *item;
5f39d397
CM
5013 struct extent_buffer *leaf;
5014 struct btrfs_key found_key;
a52d9a80
CM
5015 struct extent_map *em = NULL;
5016 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5017 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5018 struct btrfs_trans_handle *trans = NULL;
261507a0 5019 int compress_type;
a52d9a80 5020
a52d9a80 5021again:
890871be 5022 read_lock(&em_tree->lock);
d1310b2e 5023 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5024 if (em)
5025 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5026 read_unlock(&em_tree->lock);
d1310b2e 5027
a52d9a80 5028 if (em) {
e1c4b745
CM
5029 if (em->start > start || em->start + em->len <= start)
5030 free_extent_map(em);
5031 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5032 free_extent_map(em);
5033 else
5034 goto out;
a52d9a80 5035 }
d1310b2e 5036 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5037 if (!em) {
d1310b2e
CM
5038 err = -ENOMEM;
5039 goto out;
a52d9a80 5040 }
e6dcd2dc 5041 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5042 em->start = EXTENT_MAP_HOLE;
445a6944 5043 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5044 em->len = (u64)-1;
c8b97818 5045 em->block_len = (u64)-1;
f421950f
CM
5046
5047 if (!path) {
5048 path = btrfs_alloc_path();
5049 BUG_ON(!path);
5050 }
5051
179e29e4
CM
5052 ret = btrfs_lookup_file_extent(trans, root, path,
5053 objectid, start, trans != NULL);
a52d9a80
CM
5054 if (ret < 0) {
5055 err = ret;
5056 goto out;
5057 }
5058
5059 if (ret != 0) {
5060 if (path->slots[0] == 0)
5061 goto not_found;
5062 path->slots[0]--;
5063 }
5064
5f39d397
CM
5065 leaf = path->nodes[0];
5066 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5067 struct btrfs_file_extent_item);
a52d9a80 5068 /* are we inside the extent that was found? */
5f39d397
CM
5069 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5070 found_type = btrfs_key_type(&found_key);
5071 if (found_key.objectid != objectid ||
a52d9a80
CM
5072 found_type != BTRFS_EXTENT_DATA_KEY) {
5073 goto not_found;
5074 }
5075
5f39d397
CM
5076 found_type = btrfs_file_extent_type(leaf, item);
5077 extent_start = found_key.offset;
261507a0 5078 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5079 if (found_type == BTRFS_FILE_EXTENT_REG ||
5080 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5081 extent_end = extent_start +
db94535d 5082 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5083 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5084 size_t size;
5085 size = btrfs_file_extent_inline_len(leaf, item);
5086 extent_end = (extent_start + size + root->sectorsize - 1) &
5087 ~((u64)root->sectorsize - 1);
5088 }
5089
5090 if (start >= extent_end) {
5091 path->slots[0]++;
5092 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5093 ret = btrfs_next_leaf(root, path);
5094 if (ret < 0) {
5095 err = ret;
5096 goto out;
a52d9a80 5097 }
9036c102
YZ
5098 if (ret > 0)
5099 goto not_found;
5100 leaf = path->nodes[0];
a52d9a80 5101 }
9036c102
YZ
5102 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5103 if (found_key.objectid != objectid ||
5104 found_key.type != BTRFS_EXTENT_DATA_KEY)
5105 goto not_found;
5106 if (start + len <= found_key.offset)
5107 goto not_found;
5108 em->start = start;
5109 em->len = found_key.offset - start;
5110 goto not_found_em;
5111 }
5112
d899e052
YZ
5113 if (found_type == BTRFS_FILE_EXTENT_REG ||
5114 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5115 em->start = extent_start;
5116 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5117 em->orig_start = extent_start -
5118 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5119 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5120 if (bytenr == 0) {
5f39d397 5121 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5122 goto insert;
5123 }
261507a0 5124 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5125 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5126 em->compress_type = compress_type;
c8b97818
CM
5127 em->block_start = bytenr;
5128 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5129 item);
5130 } else {
5131 bytenr += btrfs_file_extent_offset(leaf, item);
5132 em->block_start = bytenr;
5133 em->block_len = em->len;
d899e052
YZ
5134 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5135 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5136 }
a52d9a80
CM
5137 goto insert;
5138 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5139 unsigned long ptr;
a52d9a80 5140 char *map;
3326d1b0
CM
5141 size_t size;
5142 size_t extent_offset;
5143 size_t copy_size;
a52d9a80 5144
689f9346 5145 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5146 if (!page || create) {
689f9346 5147 em->start = extent_start;
9036c102 5148 em->len = extent_end - extent_start;
689f9346
Y
5149 goto out;
5150 }
5f39d397 5151
9036c102
YZ
5152 size = btrfs_file_extent_inline_len(leaf, item);
5153 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5154 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5155 size - extent_offset);
3326d1b0 5156 em->start = extent_start + extent_offset;
70dec807
CM
5157 em->len = (copy_size + root->sectorsize - 1) &
5158 ~((u64)root->sectorsize - 1);
ff5b7ee3 5159 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5160 if (compress_type) {
c8b97818 5161 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5162 em->compress_type = compress_type;
5163 }
689f9346 5164 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5165 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5166 if (btrfs_file_extent_compression(leaf, item) !=
5167 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5168 ret = uncompress_inline(path, inode, page,
5169 pg_offset,
5170 extent_offset, item);
5171 BUG_ON(ret);
5172 } else {
5173 map = kmap(page);
5174 read_extent_buffer(leaf, map + pg_offset, ptr,
5175 copy_size);
93c82d57
CM
5176 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5177 memset(map + pg_offset + copy_size, 0,
5178 PAGE_CACHE_SIZE - pg_offset -
5179 copy_size);
5180 }
c8b97818
CM
5181 kunmap(page);
5182 }
179e29e4
CM
5183 flush_dcache_page(page);
5184 } else if (create && PageUptodate(page)) {
0ca1f7ce 5185 WARN_ON(1);
179e29e4
CM
5186 if (!trans) {
5187 kunmap(page);
5188 free_extent_map(em);
5189 em = NULL;
5190 btrfs_release_path(root, path);
f9295749 5191 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5192 if (IS_ERR(trans))
5193 return ERR_CAST(trans);
179e29e4
CM
5194 goto again;
5195 }
c8b97818 5196 map = kmap(page);
70dec807 5197 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5198 copy_size);
c8b97818 5199 kunmap(page);
179e29e4 5200 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5201 }
d1310b2e
CM
5202 set_extent_uptodate(io_tree, em->start,
5203 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
5204 goto insert;
5205 } else {
d397712b 5206 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5207 WARN_ON(1);
5208 }
5209not_found:
5210 em->start = start;
d1310b2e 5211 em->len = len;
a52d9a80 5212not_found_em:
5f39d397 5213 em->block_start = EXTENT_MAP_HOLE;
9036c102 5214 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5215insert:
5216 btrfs_release_path(root, path);
d1310b2e 5217 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5218 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5219 "[%llu %llu]\n", (unsigned long long)em->start,
5220 (unsigned long long)em->len,
5221 (unsigned long long)start,
5222 (unsigned long long)len);
a52d9a80
CM
5223 err = -EIO;
5224 goto out;
5225 }
d1310b2e
CM
5226
5227 err = 0;
890871be 5228 write_lock(&em_tree->lock);
a52d9a80 5229 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5230 /* it is possible that someone inserted the extent into the tree
5231 * while we had the lock dropped. It is also possible that
5232 * an overlapping map exists in the tree
5233 */
a52d9a80 5234 if (ret == -EEXIST) {
3b951516 5235 struct extent_map *existing;
e6dcd2dc
CM
5236
5237 ret = 0;
5238
3b951516 5239 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5240 if (existing && (existing->start > start ||
5241 existing->start + existing->len <= start)) {
5242 free_extent_map(existing);
5243 existing = NULL;
5244 }
3b951516
CM
5245 if (!existing) {
5246 existing = lookup_extent_mapping(em_tree, em->start,
5247 em->len);
5248 if (existing) {
5249 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5250 em, start,
5251 root->sectorsize);
3b951516
CM
5252 free_extent_map(existing);
5253 if (err) {
5254 free_extent_map(em);
5255 em = NULL;
5256 }
5257 } else {
5258 err = -EIO;
3b951516
CM
5259 free_extent_map(em);
5260 em = NULL;
5261 }
5262 } else {
5263 free_extent_map(em);
5264 em = existing;
e6dcd2dc 5265 err = 0;
a52d9a80 5266 }
a52d9a80 5267 }
890871be 5268 write_unlock(&em_tree->lock);
a52d9a80 5269out:
f421950f
CM
5270 if (path)
5271 btrfs_free_path(path);
a52d9a80
CM
5272 if (trans) {
5273 ret = btrfs_end_transaction(trans, root);
d397712b 5274 if (!err)
a52d9a80
CM
5275 err = ret;
5276 }
a52d9a80
CM
5277 if (err) {
5278 free_extent_map(em);
a52d9a80
CM
5279 return ERR_PTR(err);
5280 }
5281 return em;
5282}
5283
ec29ed5b
CM
5284struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5285 size_t pg_offset, u64 start, u64 len,
5286 int create)
5287{
5288 struct extent_map *em;
5289 struct extent_map *hole_em = NULL;
5290 u64 range_start = start;
5291 u64 end;
5292 u64 found;
5293 u64 found_end;
5294 int err = 0;
5295
5296 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5297 if (IS_ERR(em))
5298 return em;
5299 if (em) {
5300 /*
5301 * if our em maps to a hole, there might
5302 * actually be delalloc bytes behind it
5303 */
5304 if (em->block_start != EXTENT_MAP_HOLE)
5305 return em;
5306 else
5307 hole_em = em;
5308 }
5309
5310 /* check to see if we've wrapped (len == -1 or similar) */
5311 end = start + len;
5312 if (end < start)
5313 end = (u64)-1;
5314 else
5315 end -= 1;
5316
5317 em = NULL;
5318
5319 /* ok, we didn't find anything, lets look for delalloc */
5320 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5321 end, len, EXTENT_DELALLOC, 1);
5322 found_end = range_start + found;
5323 if (found_end < range_start)
5324 found_end = (u64)-1;
5325
5326 /*
5327 * we didn't find anything useful, return
5328 * the original results from get_extent()
5329 */
5330 if (range_start > end || found_end <= start) {
5331 em = hole_em;
5332 hole_em = NULL;
5333 goto out;
5334 }
5335
5336 /* adjust the range_start to make sure it doesn't
5337 * go backwards from the start they passed in
5338 */
5339 range_start = max(start,range_start);
5340 found = found_end - range_start;
5341
5342 if (found > 0) {
5343 u64 hole_start = start;
5344 u64 hole_len = len;
5345
5346 em = alloc_extent_map(GFP_NOFS);
5347 if (!em) {
5348 err = -ENOMEM;
5349 goto out;
5350 }
5351 /*
5352 * when btrfs_get_extent can't find anything it
5353 * returns one huge hole
5354 *
5355 * make sure what it found really fits our range, and
5356 * adjust to make sure it is based on the start from
5357 * the caller
5358 */
5359 if (hole_em) {
5360 u64 calc_end = extent_map_end(hole_em);
5361
5362 if (calc_end <= start || (hole_em->start > end)) {
5363 free_extent_map(hole_em);
5364 hole_em = NULL;
5365 } else {
5366 hole_start = max(hole_em->start, start);
5367 hole_len = calc_end - hole_start;
5368 }
5369 }
5370 em->bdev = NULL;
5371 if (hole_em && range_start > hole_start) {
5372 /* our hole starts before our delalloc, so we
5373 * have to return just the parts of the hole
5374 * that go until the delalloc starts
5375 */
5376 em->len = min(hole_len,
5377 range_start - hole_start);
5378 em->start = hole_start;
5379 em->orig_start = hole_start;
5380 /*
5381 * don't adjust block start at all,
5382 * it is fixed at EXTENT_MAP_HOLE
5383 */
5384 em->block_start = hole_em->block_start;
5385 em->block_len = hole_len;
5386 } else {
5387 em->start = range_start;
5388 em->len = found;
5389 em->orig_start = range_start;
5390 em->block_start = EXTENT_MAP_DELALLOC;
5391 em->block_len = found;
5392 }
5393 } else if (hole_em) {
5394 return hole_em;
5395 }
5396out:
5397
5398 free_extent_map(hole_em);
5399 if (err) {
5400 free_extent_map(em);
5401 return ERR_PTR(err);
5402 }
5403 return em;
5404}
5405
4b46fce2
JB
5406static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5407 u64 start, u64 len)
5408{
5409 struct btrfs_root *root = BTRFS_I(inode)->root;
5410 struct btrfs_trans_handle *trans;
5411 struct extent_map *em;
5412 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5413 struct btrfs_key ins;
5414 u64 alloc_hint;
5415 int ret;
5416
5417 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5418
5419 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5420 if (IS_ERR(trans))
5421 return ERR_CAST(trans);
4b46fce2
JB
5422
5423 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5424
5425 alloc_hint = get_extent_allocation_hint(inode, start, len);
5426 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5427 alloc_hint, (u64)-1, &ins, 1);
5428 if (ret) {
5429 em = ERR_PTR(ret);
5430 goto out;
5431 }
5432
5433 em = alloc_extent_map(GFP_NOFS);
5434 if (!em) {
5435 em = ERR_PTR(-ENOMEM);
5436 goto out;
5437 }
5438
5439 em->start = start;
5440 em->orig_start = em->start;
5441 em->len = ins.offset;
5442
5443 em->block_start = ins.objectid;
5444 em->block_len = ins.offset;
5445 em->bdev = root->fs_info->fs_devices->latest_bdev;
5446 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5447
5448 while (1) {
5449 write_lock(&em_tree->lock);
5450 ret = add_extent_mapping(em_tree, em);
5451 write_unlock(&em_tree->lock);
5452 if (ret != -EEXIST)
5453 break;
5454 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5455 }
5456
5457 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5458 ins.offset, ins.offset, 0);
5459 if (ret) {
5460 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5461 em = ERR_PTR(ret);
5462 }
5463out:
5464 btrfs_end_transaction(trans, root);
5465 return em;
5466}
5467
46bfbb5c
CM
5468/*
5469 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5470 * block must be cow'd
5471 */
5472static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5473 struct inode *inode, u64 offset, u64 len)
5474{
5475 struct btrfs_path *path;
5476 int ret;
5477 struct extent_buffer *leaf;
5478 struct btrfs_root *root = BTRFS_I(inode)->root;
5479 struct btrfs_file_extent_item *fi;
5480 struct btrfs_key key;
5481 u64 disk_bytenr;
5482 u64 backref_offset;
5483 u64 extent_end;
5484 u64 num_bytes;
5485 int slot;
5486 int found_type;
5487
5488 path = btrfs_alloc_path();
5489 if (!path)
5490 return -ENOMEM;
5491
5492 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5493 offset, 0);
5494 if (ret < 0)
5495 goto out;
5496
5497 slot = path->slots[0];
5498 if (ret == 1) {
5499 if (slot == 0) {
5500 /* can't find the item, must cow */
5501 ret = 0;
5502 goto out;
5503 }
5504 slot--;
5505 }
5506 ret = 0;
5507 leaf = path->nodes[0];
5508 btrfs_item_key_to_cpu(leaf, &key, slot);
5509 if (key.objectid != inode->i_ino ||
5510 key.type != BTRFS_EXTENT_DATA_KEY) {
5511 /* not our file or wrong item type, must cow */
5512 goto out;
5513 }
5514
5515 if (key.offset > offset) {
5516 /* Wrong offset, must cow */
5517 goto out;
5518 }
5519
5520 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5521 found_type = btrfs_file_extent_type(leaf, fi);
5522 if (found_type != BTRFS_FILE_EXTENT_REG &&
5523 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5524 /* not a regular extent, must cow */
5525 goto out;
5526 }
5527 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5528 backref_offset = btrfs_file_extent_offset(leaf, fi);
5529
5530 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5531 if (extent_end < offset + len) {
5532 /* extent doesn't include our full range, must cow */
5533 goto out;
5534 }
5535
5536 if (btrfs_extent_readonly(root, disk_bytenr))
5537 goto out;
5538
5539 /*
5540 * look for other files referencing this extent, if we
5541 * find any we must cow
5542 */
5543 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5544 key.offset - backref_offset, disk_bytenr))
5545 goto out;
5546
5547 /*
5548 * adjust disk_bytenr and num_bytes to cover just the bytes
5549 * in this extent we are about to write. If there
5550 * are any csums in that range we have to cow in order
5551 * to keep the csums correct
5552 */
5553 disk_bytenr += backref_offset;
5554 disk_bytenr += offset - key.offset;
5555 num_bytes = min(offset + len, extent_end) - offset;
5556 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5557 goto out;
5558 /*
5559 * all of the above have passed, it is safe to overwrite this extent
5560 * without cow
5561 */
5562 ret = 1;
5563out:
5564 btrfs_free_path(path);
5565 return ret;
5566}
5567
4b46fce2
JB
5568static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5569 struct buffer_head *bh_result, int create)
5570{
5571 struct extent_map *em;
5572 struct btrfs_root *root = BTRFS_I(inode)->root;
5573 u64 start = iblock << inode->i_blkbits;
5574 u64 len = bh_result->b_size;
46bfbb5c 5575 struct btrfs_trans_handle *trans;
4b46fce2
JB
5576
5577 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5578 if (IS_ERR(em))
5579 return PTR_ERR(em);
5580
5581 /*
5582 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5583 * io. INLINE is special, and we could probably kludge it in here, but
5584 * it's still buffered so for safety lets just fall back to the generic
5585 * buffered path.
5586 *
5587 * For COMPRESSED we _have_ to read the entire extent in so we can
5588 * decompress it, so there will be buffering required no matter what we
5589 * do, so go ahead and fallback to buffered.
5590 *
5591 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5592 * to buffered IO. Don't blame me, this is the price we pay for using
5593 * the generic code.
5594 */
5595 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5596 em->block_start == EXTENT_MAP_INLINE) {
5597 free_extent_map(em);
5598 return -ENOTBLK;
5599 }
5600
5601 /* Just a good old fashioned hole, return */
5602 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5603 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5604 free_extent_map(em);
5605 /* DIO will do one hole at a time, so just unlock a sector */
5606 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5607 start + root->sectorsize - 1, GFP_NOFS);
5608 return 0;
5609 }
5610
5611 /*
5612 * We don't allocate a new extent in the following cases
5613 *
5614 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5615 * existing extent.
5616 * 2) The extent is marked as PREALLOC. We're good to go here and can
5617 * just use the extent.
5618 *
5619 */
46bfbb5c
CM
5620 if (!create) {
5621 len = em->len - (start - em->start);
4b46fce2 5622 goto map;
46bfbb5c 5623 }
4b46fce2
JB
5624
5625 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5626 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5627 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5628 int type;
5629 int ret;
46bfbb5c 5630 u64 block_start;
4b46fce2
JB
5631
5632 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5633 type = BTRFS_ORDERED_PREALLOC;
5634 else
5635 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5636 len = min(len, em->len - (start - em->start));
4b46fce2 5637 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5638
5639 /*
5640 * we're not going to log anything, but we do need
5641 * to make sure the current transaction stays open
5642 * while we look for nocow cross refs
5643 */
5644 trans = btrfs_join_transaction(root, 0);
3612b495 5645 if (IS_ERR(trans))
46bfbb5c
CM
5646 goto must_cow;
5647
5648 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5649 ret = btrfs_add_ordered_extent_dio(inode, start,
5650 block_start, len, len, type);
5651 btrfs_end_transaction(trans, root);
5652 if (ret) {
5653 free_extent_map(em);
5654 return ret;
5655 }
5656 goto unlock;
4b46fce2 5657 }
46bfbb5c 5658 btrfs_end_transaction(trans, root);
4b46fce2 5659 }
46bfbb5c
CM
5660must_cow:
5661 /*
5662 * this will cow the extent, reset the len in case we changed
5663 * it above
5664 */
5665 len = bh_result->b_size;
5666 free_extent_map(em);
5667 em = btrfs_new_extent_direct(inode, start, len);
5668 if (IS_ERR(em))
5669 return PTR_ERR(em);
5670 len = min(len, em->len - (start - em->start));
5671unlock:
4845e44f
CM
5672 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5673 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5674 0, NULL, GFP_NOFS);
4b46fce2
JB
5675map:
5676 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5677 inode->i_blkbits;
46bfbb5c 5678 bh_result->b_size = len;
4b46fce2
JB
5679 bh_result->b_bdev = em->bdev;
5680 set_buffer_mapped(bh_result);
5681 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5682 set_buffer_new(bh_result);
5683
5684 free_extent_map(em);
5685
5686 return 0;
5687}
5688
5689struct btrfs_dio_private {
5690 struct inode *inode;
5691 u64 logical_offset;
5692 u64 disk_bytenr;
5693 u64 bytes;
5694 u32 *csums;
5695 void *private;
e65e1535
MX
5696
5697 /* number of bios pending for this dio */
5698 atomic_t pending_bios;
5699
5700 /* IO errors */
5701 int errors;
5702
5703 struct bio *orig_bio;
4b46fce2
JB
5704};
5705
5706static void btrfs_endio_direct_read(struct bio *bio, int err)
5707{
e65e1535 5708 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5709 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5710 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5711 struct inode *inode = dip->inode;
5712 struct btrfs_root *root = BTRFS_I(inode)->root;
5713 u64 start;
5714 u32 *private = dip->csums;
5715
5716 start = dip->logical_offset;
5717 do {
5718 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5719 struct page *page = bvec->bv_page;
5720 char *kaddr;
5721 u32 csum = ~(u32)0;
5722 unsigned long flags;
5723
5724 local_irq_save(flags);
5725 kaddr = kmap_atomic(page, KM_IRQ0);
5726 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5727 csum, bvec->bv_len);
5728 btrfs_csum_final(csum, (char *)&csum);
5729 kunmap_atomic(kaddr, KM_IRQ0);
5730 local_irq_restore(flags);
5731
5732 flush_dcache_page(bvec->bv_page);
5733 if (csum != *private) {
5734 printk(KERN_ERR "btrfs csum failed ino %lu off"
5735 " %llu csum %u private %u\n",
5736 inode->i_ino, (unsigned long long)start,
5737 csum, *private);
5738 err = -EIO;
5739 }
5740 }
5741
5742 start += bvec->bv_len;
5743 private++;
5744 bvec++;
5745 } while (bvec <= bvec_end);
5746
5747 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5748 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5749 bio->bi_private = dip->private;
5750
5751 kfree(dip->csums);
5752 kfree(dip);
5753 dio_end_io(bio, err);
5754}
5755
5756static void btrfs_endio_direct_write(struct bio *bio, int err)
5757{
5758 struct btrfs_dio_private *dip = bio->bi_private;
5759 struct inode *inode = dip->inode;
5760 struct btrfs_root *root = BTRFS_I(inode)->root;
5761 struct btrfs_trans_handle *trans;
5762 struct btrfs_ordered_extent *ordered = NULL;
5763 struct extent_state *cached_state = NULL;
163cf09c
CM
5764 u64 ordered_offset = dip->logical_offset;
5765 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5766 int ret;
5767
5768 if (err)
5769 goto out_done;
163cf09c
CM
5770again:
5771 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5772 &ordered_offset,
5773 ordered_bytes);
4b46fce2 5774 if (!ret)
163cf09c 5775 goto out_test;
4b46fce2
JB
5776
5777 BUG_ON(!ordered);
5778
5779 trans = btrfs_join_transaction(root, 1);
3612b495 5780 if (IS_ERR(trans)) {
4b46fce2
JB
5781 err = -ENOMEM;
5782 goto out;
5783 }
5784 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5785
5786 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5787 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5788 if (!ret)
5789 ret = btrfs_update_inode(trans, root, inode);
5790 err = ret;
5791 goto out;
5792 }
5793
5794 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5795 ordered->file_offset + ordered->len - 1, 0,
5796 &cached_state, GFP_NOFS);
5797
5798 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5799 ret = btrfs_mark_extent_written(trans, inode,
5800 ordered->file_offset,
5801 ordered->file_offset +
5802 ordered->len);
5803 if (ret) {
5804 err = ret;
5805 goto out_unlock;
5806 }
5807 } else {
5808 ret = insert_reserved_file_extent(trans, inode,
5809 ordered->file_offset,
5810 ordered->start,
5811 ordered->disk_len,
5812 ordered->len,
5813 ordered->len,
5814 0, 0, 0,
5815 BTRFS_FILE_EXTENT_REG);
5816 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5817 ordered->file_offset, ordered->len);
5818 if (ret) {
5819 err = ret;
5820 WARN_ON(1);
5821 goto out_unlock;
5822 }
5823 }
5824
5825 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5826 btrfs_ordered_update_i_size(inode, 0, ordered);
5827 btrfs_update_inode(trans, root, inode);
5828out_unlock:
5829 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5830 ordered->file_offset + ordered->len - 1,
5831 &cached_state, GFP_NOFS);
5832out:
5833 btrfs_delalloc_release_metadata(inode, ordered->len);
5834 btrfs_end_transaction(trans, root);
163cf09c 5835 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5836 btrfs_put_ordered_extent(ordered);
5837 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5838
5839out_test:
5840 /*
5841 * our bio might span multiple ordered extents. If we haven't
5842 * completed the accounting for the whole dio, go back and try again
5843 */
5844 if (ordered_offset < dip->logical_offset + dip->bytes) {
5845 ordered_bytes = dip->logical_offset + dip->bytes -
5846 ordered_offset;
5847 goto again;
5848 }
4b46fce2
JB
5849out_done:
5850 bio->bi_private = dip->private;
5851
5852 kfree(dip->csums);
5853 kfree(dip);
5854 dio_end_io(bio, err);
5855}
5856
eaf25d93
CM
5857static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5858 struct bio *bio, int mirror_num,
5859 unsigned long bio_flags, u64 offset)
5860{
5861 int ret;
5862 struct btrfs_root *root = BTRFS_I(inode)->root;
5863 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5864 BUG_ON(ret);
5865 return 0;
5866}
5867
e65e1535
MX
5868static void btrfs_end_dio_bio(struct bio *bio, int err)
5869{
5870 struct btrfs_dio_private *dip = bio->bi_private;
5871
5872 if (err) {
5873 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5874 "sector %#Lx len %u err no %d\n",
5875 dip->inode->i_ino, bio->bi_rw,
5876 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5877 dip->errors = 1;
5878
5879 /*
5880 * before atomic variable goto zero, we must make sure
5881 * dip->errors is perceived to be set.
5882 */
5883 smp_mb__before_atomic_dec();
5884 }
5885
5886 /* if there are more bios still pending for this dio, just exit */
5887 if (!atomic_dec_and_test(&dip->pending_bios))
5888 goto out;
5889
5890 if (dip->errors)
5891 bio_io_error(dip->orig_bio);
5892 else {
5893 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5894 bio_endio(dip->orig_bio, 0);
5895 }
5896out:
5897 bio_put(bio);
5898}
5899
5900static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5901 u64 first_sector, gfp_t gfp_flags)
5902{
5903 int nr_vecs = bio_get_nr_vecs(bdev);
5904 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5905}
5906
5907static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5908 int rw, u64 file_offset, int skip_sum,
5909 u32 *csums)
5910{
5911 int write = rw & REQ_WRITE;
5912 struct btrfs_root *root = BTRFS_I(inode)->root;
5913 int ret;
5914
5915 bio_get(bio);
5916 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5917 if (ret)
5918 goto err;
5919
5920 if (write && !skip_sum) {
5921 ret = btrfs_wq_submit_bio(root->fs_info,
5922 inode, rw, bio, 0, 0,
5923 file_offset,
5924 __btrfs_submit_bio_start_direct_io,
5925 __btrfs_submit_bio_done);
5926 goto err;
5927 } else if (!skip_sum)
5928 btrfs_lookup_bio_sums_dio(root, inode, bio,
5929 file_offset, csums);
5930
5931 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5932err:
5933 bio_put(bio);
5934 return ret;
5935}
5936
5937static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5938 int skip_sum)
5939{
5940 struct inode *inode = dip->inode;
5941 struct btrfs_root *root = BTRFS_I(inode)->root;
5942 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5943 struct bio *bio;
5944 struct bio *orig_bio = dip->orig_bio;
5945 struct bio_vec *bvec = orig_bio->bi_io_vec;
5946 u64 start_sector = orig_bio->bi_sector;
5947 u64 file_offset = dip->logical_offset;
5948 u64 submit_len = 0;
5949 u64 map_length;
5950 int nr_pages = 0;
5951 u32 *csums = dip->csums;
5952 int ret = 0;
5953
5954 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5955 if (!bio)
5956 return -ENOMEM;
5957 bio->bi_private = dip;
5958 bio->bi_end_io = btrfs_end_dio_bio;
5959 atomic_inc(&dip->pending_bios);
5960
5961 map_length = orig_bio->bi_size;
5962 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5963 &map_length, NULL, 0);
5964 if (ret) {
5965 bio_put(bio);
5966 return -EIO;
5967 }
5968
5969 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5970 if (unlikely(map_length < submit_len + bvec->bv_len ||
5971 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5972 bvec->bv_offset) < bvec->bv_len)) {
5973 /*
5974 * inc the count before we submit the bio so
5975 * we know the end IO handler won't happen before
5976 * we inc the count. Otherwise, the dip might get freed
5977 * before we're done setting it up
5978 */
5979 atomic_inc(&dip->pending_bios);
5980 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5981 file_offset, skip_sum,
5982 csums);
5983 if (ret) {
5984 bio_put(bio);
5985 atomic_dec(&dip->pending_bios);
5986 goto out_err;
5987 }
5988
5989 if (!skip_sum)
5990 csums = csums + nr_pages;
5991 start_sector += submit_len >> 9;
5992 file_offset += submit_len;
5993
5994 submit_len = 0;
5995 nr_pages = 0;
5996
5997 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5998 start_sector, GFP_NOFS);
5999 if (!bio)
6000 goto out_err;
6001 bio->bi_private = dip;
6002 bio->bi_end_io = btrfs_end_dio_bio;
6003
6004 map_length = orig_bio->bi_size;
6005 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6006 &map_length, NULL, 0);
6007 if (ret) {
6008 bio_put(bio);
6009 goto out_err;
6010 }
6011 } else {
6012 submit_len += bvec->bv_len;
6013 nr_pages ++;
6014 bvec++;
6015 }
6016 }
6017
6018 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6019 csums);
6020 if (!ret)
6021 return 0;
6022
6023 bio_put(bio);
6024out_err:
6025 dip->errors = 1;
6026 /*
6027 * before atomic variable goto zero, we must
6028 * make sure dip->errors is perceived to be set.
6029 */
6030 smp_mb__before_atomic_dec();
6031 if (atomic_dec_and_test(&dip->pending_bios))
6032 bio_io_error(dip->orig_bio);
6033
6034 /* bio_end_io() will handle error, so we needn't return it */
6035 return 0;
6036}
6037
4b46fce2
JB
6038static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6039 loff_t file_offset)
6040{
6041 struct btrfs_root *root = BTRFS_I(inode)->root;
6042 struct btrfs_dio_private *dip;
6043 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6044 int skip_sum;
7b6d91da 6045 int write = rw & REQ_WRITE;
4b46fce2
JB
6046 int ret = 0;
6047
6048 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6049
6050 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6051 if (!dip) {
6052 ret = -ENOMEM;
6053 goto free_ordered;
6054 }
6055 dip->csums = NULL;
6056
6057 if (!skip_sum) {
6058 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6059 if (!dip->csums) {
b4966b77 6060 kfree(dip);
4b46fce2
JB
6061 ret = -ENOMEM;
6062 goto free_ordered;
6063 }
6064 }
6065
6066 dip->private = bio->bi_private;
6067 dip->inode = inode;
6068 dip->logical_offset = file_offset;
6069
4b46fce2
JB
6070 dip->bytes = 0;
6071 do {
6072 dip->bytes += bvec->bv_len;
6073 bvec++;
6074 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6075
46bfbb5c 6076 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6077 bio->bi_private = dip;
e65e1535
MX
6078 dip->errors = 0;
6079 dip->orig_bio = bio;
6080 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6081
6082 if (write)
6083 bio->bi_end_io = btrfs_endio_direct_write;
6084 else
6085 bio->bi_end_io = btrfs_endio_direct_read;
6086
e65e1535
MX
6087 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6088 if (!ret)
eaf25d93 6089 return;
4b46fce2
JB
6090free_ordered:
6091 /*
6092 * If this is a write, we need to clean up the reserved space and kill
6093 * the ordered extent.
6094 */
6095 if (write) {
6096 struct btrfs_ordered_extent *ordered;
955256f2 6097 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6098 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6099 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6100 btrfs_free_reserved_extent(root, ordered->start,
6101 ordered->disk_len);
6102 btrfs_put_ordered_extent(ordered);
6103 btrfs_put_ordered_extent(ordered);
6104 }
6105 bio_endio(bio, ret);
6106}
6107
5a5f79b5
CM
6108static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6109 const struct iovec *iov, loff_t offset,
6110 unsigned long nr_segs)
6111{
6112 int seg;
6113 size_t size;
6114 unsigned long addr;
6115 unsigned blocksize_mask = root->sectorsize - 1;
6116 ssize_t retval = -EINVAL;
6117 loff_t end = offset;
6118
6119 if (offset & blocksize_mask)
6120 goto out;
6121
6122 /* Check the memory alignment. Blocks cannot straddle pages */
6123 for (seg = 0; seg < nr_segs; seg++) {
6124 addr = (unsigned long)iov[seg].iov_base;
6125 size = iov[seg].iov_len;
6126 end += size;
6127 if ((addr & blocksize_mask) || (size & blocksize_mask))
6128 goto out;
6129 }
6130 retval = 0;
6131out:
6132 return retval;
6133}
16432985
CM
6134static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6135 const struct iovec *iov, loff_t offset,
6136 unsigned long nr_segs)
6137{
4b46fce2
JB
6138 struct file *file = iocb->ki_filp;
6139 struct inode *inode = file->f_mapping->host;
6140 struct btrfs_ordered_extent *ordered;
4845e44f 6141 struct extent_state *cached_state = NULL;
4b46fce2
JB
6142 u64 lockstart, lockend;
6143 ssize_t ret;
4845e44f
CM
6144 int writing = rw & WRITE;
6145 int write_bits = 0;
3f7c579c 6146 size_t count = iov_length(iov, nr_segs);
4b46fce2 6147
5a5f79b5
CM
6148 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6149 offset, nr_segs)) {
6150 return 0;
6151 }
6152
4b46fce2 6153 lockstart = offset;
3f7c579c
CM
6154 lockend = offset + count - 1;
6155
6156 if (writing) {
6157 ret = btrfs_delalloc_reserve_space(inode, count);
6158 if (ret)
6159 goto out;
6160 }
4845e44f 6161
4b46fce2 6162 while (1) {
4845e44f
CM
6163 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6164 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6165 /*
6166 * We're concerned with the entire range that we're going to be
6167 * doing DIO to, so we need to make sure theres no ordered
6168 * extents in this range.
6169 */
6170 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6171 lockend - lockstart + 1);
6172 if (!ordered)
6173 break;
4845e44f
CM
6174 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6175 &cached_state, GFP_NOFS);
4b46fce2
JB
6176 btrfs_start_ordered_extent(inode, ordered, 1);
6177 btrfs_put_ordered_extent(ordered);
6178 cond_resched();
6179 }
6180
4845e44f
CM
6181 /*
6182 * we don't use btrfs_set_extent_delalloc because we don't want
6183 * the dirty or uptodate bits
6184 */
6185 if (writing) {
6186 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6187 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6188 EXTENT_DELALLOC, 0, NULL, &cached_state,
6189 GFP_NOFS);
6190 if (ret) {
6191 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6192 lockend, EXTENT_LOCKED | write_bits,
6193 1, 0, &cached_state, GFP_NOFS);
6194 goto out;
6195 }
6196 }
6197
6198 free_extent_state(cached_state);
6199 cached_state = NULL;
6200
5a5f79b5
CM
6201 ret = __blockdev_direct_IO(rw, iocb, inode,
6202 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6203 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6204 btrfs_submit_direct, 0);
4b46fce2
JB
6205
6206 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6207 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6208 offset + iov_length(iov, nr_segs) - 1,
6209 EXTENT_LOCKED | write_bits, 1, 0,
6210 &cached_state, GFP_NOFS);
4b46fce2
JB
6211 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6212 /*
6213 * We're falling back to buffered, unlock the section we didn't
6214 * do IO on.
6215 */
4845e44f
CM
6216 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6217 offset + iov_length(iov, nr_segs) - 1,
6218 EXTENT_LOCKED | write_bits, 1, 0,
6219 &cached_state, GFP_NOFS);
4b46fce2 6220 }
4845e44f
CM
6221out:
6222 free_extent_state(cached_state);
4b46fce2 6223 return ret;
16432985
CM
6224}
6225
1506fcc8
YS
6226static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6227 __u64 start, __u64 len)
6228{
ec29ed5b 6229 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6230}
6231
a52d9a80 6232int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6233{
d1310b2e
CM
6234 struct extent_io_tree *tree;
6235 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6236 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6237}
1832a6d5 6238
a52d9a80 6239static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6240{
d1310b2e 6241 struct extent_io_tree *tree;
b888db2b
CM
6242
6243
6244 if (current->flags & PF_MEMALLOC) {
6245 redirty_page_for_writepage(wbc, page);
6246 unlock_page(page);
6247 return 0;
6248 }
d1310b2e 6249 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6250 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6251}
6252
f421950f
CM
6253int btrfs_writepages(struct address_space *mapping,
6254 struct writeback_control *wbc)
b293f02e 6255{
d1310b2e 6256 struct extent_io_tree *tree;
771ed689 6257
d1310b2e 6258 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6259 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6260}
6261
3ab2fb5a
CM
6262static int
6263btrfs_readpages(struct file *file, struct address_space *mapping,
6264 struct list_head *pages, unsigned nr_pages)
6265{
d1310b2e
CM
6266 struct extent_io_tree *tree;
6267 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6268 return extent_readpages(tree, mapping, pages, nr_pages,
6269 btrfs_get_extent);
6270}
e6dcd2dc 6271static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6272{
d1310b2e
CM
6273 struct extent_io_tree *tree;
6274 struct extent_map_tree *map;
a52d9a80 6275 int ret;
8c2383c3 6276
d1310b2e
CM
6277 tree = &BTRFS_I(page->mapping->host)->io_tree;
6278 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6279 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6280 if (ret == 1) {
6281 ClearPagePrivate(page);
6282 set_page_private(page, 0);
6283 page_cache_release(page);
39279cc3 6284 }
a52d9a80 6285 return ret;
39279cc3
CM
6286}
6287
e6dcd2dc
CM
6288static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6289{
98509cfc
CM
6290 if (PageWriteback(page) || PageDirty(page))
6291 return 0;
b335b003 6292 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6293}
6294
a52d9a80 6295static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6296{
d1310b2e 6297 struct extent_io_tree *tree;
e6dcd2dc 6298 struct btrfs_ordered_extent *ordered;
2ac55d41 6299 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6300 u64 page_start = page_offset(page);
6301 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6302
8b62b72b
CM
6303
6304 /*
6305 * we have the page locked, so new writeback can't start,
6306 * and the dirty bit won't be cleared while we are here.
6307 *
6308 * Wait for IO on this page so that we can safely clear
6309 * the PagePrivate2 bit and do ordered accounting
6310 */
e6dcd2dc 6311 wait_on_page_writeback(page);
8b62b72b 6312
d1310b2e 6313 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6314 if (offset) {
6315 btrfs_releasepage(page, GFP_NOFS);
6316 return;
6317 }
2ac55d41
JB
6318 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6319 GFP_NOFS);
e6dcd2dc
CM
6320 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6321 page_offset(page));
6322 if (ordered) {
eb84ae03
CM
6323 /*
6324 * IO on this page will never be started, so we need
6325 * to account for any ordered extents now
6326 */
e6dcd2dc
CM
6327 clear_extent_bit(tree, page_start, page_end,
6328 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6329 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6330 &cached_state, GFP_NOFS);
8b62b72b
CM
6331 /*
6332 * whoever cleared the private bit is responsible
6333 * for the finish_ordered_io
6334 */
6335 if (TestClearPagePrivate2(page)) {
6336 btrfs_finish_ordered_io(page->mapping->host,
6337 page_start, page_end);
6338 }
e6dcd2dc 6339 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6340 cached_state = NULL;
6341 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6342 GFP_NOFS);
e6dcd2dc
CM
6343 }
6344 clear_extent_bit(tree, page_start, page_end,
32c00aff 6345 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6346 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6347 __btrfs_releasepage(page, GFP_NOFS);
6348
4a096752 6349 ClearPageChecked(page);
9ad6b7bc 6350 if (PagePrivate(page)) {
9ad6b7bc
CM
6351 ClearPagePrivate(page);
6352 set_page_private(page, 0);
6353 page_cache_release(page);
6354 }
39279cc3
CM
6355}
6356
9ebefb18
CM
6357/*
6358 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6359 * called from a page fault handler when a page is first dirtied. Hence we must
6360 * be careful to check for EOF conditions here. We set the page up correctly
6361 * for a written page which means we get ENOSPC checking when writing into
6362 * holes and correct delalloc and unwritten extent mapping on filesystems that
6363 * support these features.
6364 *
6365 * We are not allowed to take the i_mutex here so we have to play games to
6366 * protect against truncate races as the page could now be beyond EOF. Because
6367 * vmtruncate() writes the inode size before removing pages, once we have the
6368 * page lock we can determine safely if the page is beyond EOF. If it is not
6369 * beyond EOF, then the page is guaranteed safe against truncation until we
6370 * unlock the page.
6371 */
c2ec175c 6372int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6373{
c2ec175c 6374 struct page *page = vmf->page;
6da6abae 6375 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6376 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6377 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6378 struct btrfs_ordered_extent *ordered;
2ac55d41 6379 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6380 char *kaddr;
6381 unsigned long zero_start;
9ebefb18 6382 loff_t size;
1832a6d5 6383 int ret;
a52d9a80 6384 u64 page_start;
e6dcd2dc 6385 u64 page_end;
9ebefb18 6386
0ca1f7ce 6387 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6388 if (ret) {
6389 if (ret == -ENOMEM)
6390 ret = VM_FAULT_OOM;
6391 else /* -ENOSPC, -EIO, etc */
6392 ret = VM_FAULT_SIGBUS;
1832a6d5 6393 goto out;
56a76f82 6394 }
1832a6d5 6395
56a76f82 6396 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6397again:
9ebefb18 6398 lock_page(page);
9ebefb18 6399 size = i_size_read(inode);
e6dcd2dc
CM
6400 page_start = page_offset(page);
6401 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6402
9ebefb18 6403 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6404 (page_start >= size)) {
9ebefb18
CM
6405 /* page got truncated out from underneath us */
6406 goto out_unlock;
6407 }
e6dcd2dc
CM
6408 wait_on_page_writeback(page);
6409
2ac55d41
JB
6410 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6411 GFP_NOFS);
e6dcd2dc
CM
6412 set_page_extent_mapped(page);
6413
eb84ae03
CM
6414 /*
6415 * we can't set the delalloc bits if there are pending ordered
6416 * extents. Drop our locks and wait for them to finish
6417 */
e6dcd2dc
CM
6418 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6419 if (ordered) {
2ac55d41
JB
6420 unlock_extent_cached(io_tree, page_start, page_end,
6421 &cached_state, GFP_NOFS);
e6dcd2dc 6422 unlock_page(page);
eb84ae03 6423 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6424 btrfs_put_ordered_extent(ordered);
6425 goto again;
6426 }
6427
fbf19087
JB
6428 /*
6429 * XXX - page_mkwrite gets called every time the page is dirtied, even
6430 * if it was already dirty, so for space accounting reasons we need to
6431 * clear any delalloc bits for the range we are fixing to save. There
6432 * is probably a better way to do this, but for now keep consistent with
6433 * prepare_pages in the normal write path.
6434 */
2ac55d41 6435 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6436 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6437 0, 0, &cached_state, GFP_NOFS);
fbf19087 6438
2ac55d41
JB
6439 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6440 &cached_state);
9ed74f2d 6441 if (ret) {
2ac55d41
JB
6442 unlock_extent_cached(io_tree, page_start, page_end,
6443 &cached_state, GFP_NOFS);
9ed74f2d
JB
6444 ret = VM_FAULT_SIGBUS;
6445 goto out_unlock;
6446 }
e6dcd2dc 6447 ret = 0;
9ebefb18
CM
6448
6449 /* page is wholly or partially inside EOF */
a52d9a80 6450 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6451 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6452 else
e6dcd2dc 6453 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6454
e6dcd2dc
CM
6455 if (zero_start != PAGE_CACHE_SIZE) {
6456 kaddr = kmap(page);
6457 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6458 flush_dcache_page(page);
6459 kunmap(page);
6460 }
247e743c 6461 ClearPageChecked(page);
e6dcd2dc 6462 set_page_dirty(page);
50a9b214 6463 SetPageUptodate(page);
5a3f23d5 6464
257c62e1
CM
6465 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6466 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6467
2ac55d41 6468 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6469
6470out_unlock:
50a9b214
CM
6471 if (!ret)
6472 return VM_FAULT_LOCKED;
9ebefb18 6473 unlock_page(page);
0ca1f7ce 6474 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6475out:
9ebefb18
CM
6476 return ret;
6477}
6478
39279cc3
CM
6479static void btrfs_truncate(struct inode *inode)
6480{
6481 struct btrfs_root *root = BTRFS_I(inode)->root;
6482 int ret;
6483 struct btrfs_trans_handle *trans;
d3c2fdcf 6484 unsigned long nr;
dbe674a9 6485 u64 mask = root->sectorsize - 1;
39279cc3 6486
8082510e
YZ
6487 if (!S_ISREG(inode->i_mode)) {
6488 WARN_ON(1);
39279cc3 6489 return;
8082510e 6490 }
39279cc3 6491
5d5e103a
JB
6492 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6493 if (ret)
6494 return;
8082510e 6495
4a096752 6496 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6497 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6498
d68fc57b
YZ
6499 trans = btrfs_start_transaction(root, 0);
6500 BUG_ON(IS_ERR(trans));
8082510e 6501 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6502 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6503
6504 /*
6505 * setattr is responsible for setting the ordered_data_close flag,
6506 * but that is only tested during the last file release. That
6507 * could happen well after the next commit, leaving a great big
6508 * window where new writes may get lost if someone chooses to write
6509 * to this file after truncating to zero
6510 *
6511 * The inode doesn't have any dirty data here, and so if we commit
6512 * this is a noop. If someone immediately starts writing to the inode
6513 * it is very likely we'll catch some of their writes in this
6514 * transaction, and the commit will find this file on the ordered
6515 * data list with good things to send down.
6516 *
6517 * This is a best effort solution, there is still a window where
6518 * using truncate to replace the contents of the file will
6519 * end up with a zero length file after a crash.
6520 */
6521 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6522 btrfs_add_ordered_operation(trans, root, inode);
6523
8082510e 6524 while (1) {
d68fc57b
YZ
6525 if (!trans) {
6526 trans = btrfs_start_transaction(root, 0);
6527 BUG_ON(IS_ERR(trans));
6528 btrfs_set_trans_block_group(trans, inode);
6529 trans->block_rsv = root->orphan_block_rsv;
6530 }
6531
6532 ret = btrfs_block_rsv_check(trans, root,
6533 root->orphan_block_rsv, 0, 5);
6534 if (ret) {
6535 BUG_ON(ret != -EAGAIN);
6536 ret = btrfs_commit_transaction(trans, root);
6537 BUG_ON(ret);
6538 trans = NULL;
6539 continue;
6540 }
6541
8082510e
YZ
6542 ret = btrfs_truncate_inode_items(trans, root, inode,
6543 inode->i_size,
6544 BTRFS_EXTENT_DATA_KEY);
6545 if (ret != -EAGAIN)
6546 break;
39279cc3 6547
8082510e
YZ
6548 ret = btrfs_update_inode(trans, root, inode);
6549 BUG_ON(ret);
5f39d397 6550
8082510e
YZ
6551 nr = trans->blocks_used;
6552 btrfs_end_transaction(trans, root);
d68fc57b 6553 trans = NULL;
8082510e 6554 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6555 }
6556
6557 if (ret == 0 && inode->i_nlink > 0) {
6558 ret = btrfs_orphan_del(trans, inode);
6559 BUG_ON(ret);
6560 }
6561
6562 ret = btrfs_update_inode(trans, root, inode);
7b128766
JB
6563 BUG_ON(ret);
6564
7b128766 6565 nr = trans->blocks_used;
89ce8a63 6566 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 6567 BUG_ON(ret);
d3c2fdcf 6568 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
6569}
6570
d352ac68
CM
6571/*
6572 * create a new subvolume directory/inode (helper for the ioctl).
6573 */
d2fb3437 6574int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6575 struct btrfs_root *new_root,
d2fb3437 6576 u64 new_dirid, u64 alloc_hint)
39279cc3 6577{
39279cc3 6578 struct inode *inode;
76dda93c 6579 int err;
00e4e6b3 6580 u64 index = 0;
39279cc3 6581
aec7477b 6582 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6583 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6584 if (IS_ERR(inode))
f46b5a66 6585 return PTR_ERR(inode);
39279cc3
CM
6586 inode->i_op = &btrfs_dir_inode_operations;
6587 inode->i_fop = &btrfs_dir_file_operations;
6588
39279cc3 6589 inode->i_nlink = 1;
dbe674a9 6590 btrfs_i_size_write(inode, 0);
3b96362c 6591
76dda93c
YZ
6592 err = btrfs_update_inode(trans, new_root, inode);
6593 BUG_ON(err);
cb8e7090 6594
76dda93c 6595 iput(inode);
cb8e7090 6596 return 0;
39279cc3
CM
6597}
6598
d352ac68
CM
6599/* helper function for file defrag and space balancing. This
6600 * forces readahead on a given range of bytes in an inode
6601 */
edbd8d4e 6602unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6603 struct file_ra_state *ra, struct file *file,
6604 pgoff_t offset, pgoff_t last_index)
6605{
8e7bf94f 6606 pgoff_t req_size = last_index - offset + 1;
86479a04 6607
86479a04
CM
6608 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6609 return offset + req_size;
86479a04
CM
6610}
6611
39279cc3
CM
6612struct inode *btrfs_alloc_inode(struct super_block *sb)
6613{
6614 struct btrfs_inode *ei;
2ead6ae7 6615 struct inode *inode;
39279cc3
CM
6616
6617 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6618 if (!ei)
6619 return NULL;
2ead6ae7
YZ
6620
6621 ei->root = NULL;
6622 ei->space_info = NULL;
6623 ei->generation = 0;
6624 ei->sequence = 0;
15ee9bc7 6625 ei->last_trans = 0;
257c62e1 6626 ei->last_sub_trans = 0;
e02119d5 6627 ei->logged_trans = 0;
2ead6ae7
YZ
6628 ei->delalloc_bytes = 0;
6629 ei->reserved_bytes = 0;
6630 ei->disk_i_size = 0;
6631 ei->flags = 0;
6632 ei->index_cnt = (u64)-1;
6633 ei->last_unlink_trans = 0;
6634
0ca1f7ce 6635 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6636 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6637
6638 ei->ordered_data_close = 0;
d68fc57b 6639 ei->orphan_meta_reserved = 0;
2ead6ae7 6640 ei->dummy_inode = 0;
261507a0 6641 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7
YZ
6642
6643 inode = &ei->vfs_inode;
6644 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6645 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6646 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6647 mutex_init(&ei->log_mutex);
e6dcd2dc 6648 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6649 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6650 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6651 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6652 RB_CLEAR_NODE(&ei->rb_node);
6653
6654 return inode;
39279cc3
CM
6655}
6656
fa0d7e3d
NP
6657static void btrfs_i_callback(struct rcu_head *head)
6658{
6659 struct inode *inode = container_of(head, struct inode, i_rcu);
6660 INIT_LIST_HEAD(&inode->i_dentry);
6661 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6662}
6663
39279cc3
CM
6664void btrfs_destroy_inode(struct inode *inode)
6665{
e6dcd2dc 6666 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6667 struct btrfs_root *root = BTRFS_I(inode)->root;
6668
39279cc3
CM
6669 WARN_ON(!list_empty(&inode->i_dentry));
6670 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6671 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6672 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6673
a6dbd429
JB
6674 /*
6675 * This can happen where we create an inode, but somebody else also
6676 * created the same inode and we need to destroy the one we already
6677 * created.
6678 */
6679 if (!root)
6680 goto free;
6681
5a3f23d5
CM
6682 /*
6683 * Make sure we're properly removed from the ordered operation
6684 * lists.
6685 */
6686 smp_mb();
6687 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6688 spin_lock(&root->fs_info->ordered_extent_lock);
6689 list_del_init(&BTRFS_I(inode)->ordered_operations);
6690 spin_unlock(&root->fs_info->ordered_extent_lock);
6691 }
6692
0af3d00b
JB
6693 if (root == root->fs_info->tree_root) {
6694 struct btrfs_block_group_cache *block_group;
6695
6696 block_group = btrfs_lookup_block_group(root->fs_info,
6697 BTRFS_I(inode)->block_group);
6698 if (block_group && block_group->inode == inode) {
6699 spin_lock(&block_group->lock);
6700 block_group->inode = NULL;
6701 spin_unlock(&block_group->lock);
6702 btrfs_put_block_group(block_group);
6703 } else if (block_group) {
6704 btrfs_put_block_group(block_group);
6705 }
6706 }
6707
d68fc57b 6708 spin_lock(&root->orphan_lock);
7b128766 6709 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6710 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6711 inode->i_ino);
6712 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6713 }
d68fc57b 6714 spin_unlock(&root->orphan_lock);
7b128766 6715
d397712b 6716 while (1) {
e6dcd2dc
CM
6717 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6718 if (!ordered)
6719 break;
6720 else {
d397712b
CM
6721 printk(KERN_ERR "btrfs found ordered "
6722 "extent %llu %llu on inode cleanup\n",
6723 (unsigned long long)ordered->file_offset,
6724 (unsigned long long)ordered->len);
e6dcd2dc
CM
6725 btrfs_remove_ordered_extent(inode, ordered);
6726 btrfs_put_ordered_extent(ordered);
6727 btrfs_put_ordered_extent(ordered);
6728 }
6729 }
5d4f98a2 6730 inode_tree_del(inode);
5b21f2ed 6731 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6732free:
fa0d7e3d 6733 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6734}
6735
45321ac5 6736int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6737{
6738 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6739
0af3d00b
JB
6740 if (btrfs_root_refs(&root->root_item) == 0 &&
6741 root != root->fs_info->tree_root)
45321ac5 6742 return 1;
76dda93c 6743 else
45321ac5 6744 return generic_drop_inode(inode);
76dda93c
YZ
6745}
6746
0ee0fda0 6747static void init_once(void *foo)
39279cc3
CM
6748{
6749 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6750
6751 inode_init_once(&ei->vfs_inode);
6752}
6753
6754void btrfs_destroy_cachep(void)
6755{
6756 if (btrfs_inode_cachep)
6757 kmem_cache_destroy(btrfs_inode_cachep);
6758 if (btrfs_trans_handle_cachep)
6759 kmem_cache_destroy(btrfs_trans_handle_cachep);
6760 if (btrfs_transaction_cachep)
6761 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6762 if (btrfs_path_cachep)
6763 kmem_cache_destroy(btrfs_path_cachep);
6764}
6765
6766int btrfs_init_cachep(void)
6767{
9601e3f6
CH
6768 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6769 sizeof(struct btrfs_inode), 0,
6770 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6771 if (!btrfs_inode_cachep)
6772 goto fail;
9601e3f6
CH
6773
6774 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6775 sizeof(struct btrfs_trans_handle), 0,
6776 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6777 if (!btrfs_trans_handle_cachep)
6778 goto fail;
9601e3f6
CH
6779
6780 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6781 sizeof(struct btrfs_transaction), 0,
6782 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6783 if (!btrfs_transaction_cachep)
6784 goto fail;
9601e3f6
CH
6785
6786 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6787 sizeof(struct btrfs_path), 0,
6788 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6789 if (!btrfs_path_cachep)
6790 goto fail;
9601e3f6 6791
39279cc3
CM
6792 return 0;
6793fail:
6794 btrfs_destroy_cachep();
6795 return -ENOMEM;
6796}
6797
6798static int btrfs_getattr(struct vfsmount *mnt,
6799 struct dentry *dentry, struct kstat *stat)
6800{
6801 struct inode *inode = dentry->d_inode;
6802 generic_fillattr(inode, stat);
3394e160 6803 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6804 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6805 stat->blocks = (inode_get_bytes(inode) +
6806 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6807 return 0;
6808}
6809
d397712b
CM
6810static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6811 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6812{
6813 struct btrfs_trans_handle *trans;
6814 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6815 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6816 struct inode *new_inode = new_dentry->d_inode;
6817 struct inode *old_inode = old_dentry->d_inode;
6818 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6819 u64 index = 0;
4df27c4d 6820 u64 root_objectid;
39279cc3
CM
6821 int ret;
6822
f679a840
YZ
6823 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6824 return -EPERM;
6825
4df27c4d
YZ
6826 /* we only allow rename subvolume link between subvolumes */
6827 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6828 return -EXDEV;
6829
4df27c4d
YZ
6830 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6831 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6832 return -ENOTEMPTY;
5f39d397 6833
4df27c4d
YZ
6834 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6835 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6836 return -ENOTEMPTY;
5a3f23d5
CM
6837 /*
6838 * we're using rename to replace one file with another.
6839 * and the replacement file is large. Start IO on it now so
6840 * we don't add too much work to the end of the transaction
6841 */
4baf8c92 6842 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6843 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6844 filemap_flush(old_inode->i_mapping);
6845
76dda93c
YZ
6846 /* close the racy window with snapshot create/destroy ioctl */
6847 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6848 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6849 /*
6850 * We want to reserve the absolute worst case amount of items. So if
6851 * both inodes are subvols and we need to unlink them then that would
6852 * require 4 item modifications, but if they are both normal inodes it
6853 * would require 5 item modifications, so we'll assume their normal
6854 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6855 * should cover the worst case number of items we'll modify.
6856 */
6857 trans = btrfs_start_transaction(root, 20);
6858 if (IS_ERR(trans))
6859 return PTR_ERR(trans);
76dda93c 6860
a5719521 6861 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 6862
4df27c4d
YZ
6863 if (dest != root)
6864 btrfs_record_root_in_trans(trans, dest);
5f39d397 6865
a5719521
YZ
6866 ret = btrfs_set_inode_index(new_dir, &index);
6867 if (ret)
6868 goto out_fail;
5a3f23d5 6869
a5719521 6870 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6871 /* force full log commit if subvolume involved. */
6872 root->fs_info->last_trans_log_full_commit = trans->transid;
6873 } else {
a5719521
YZ
6874 ret = btrfs_insert_inode_ref(trans, dest,
6875 new_dentry->d_name.name,
6876 new_dentry->d_name.len,
6877 old_inode->i_ino,
6878 new_dir->i_ino, index);
6879 if (ret)
6880 goto out_fail;
4df27c4d
YZ
6881 /*
6882 * this is an ugly little race, but the rename is required
6883 * to make sure that if we crash, the inode is either at the
6884 * old name or the new one. pinning the log transaction lets
6885 * us make sure we don't allow a log commit to come in after
6886 * we unlink the name but before we add the new name back in.
6887 */
6888 btrfs_pin_log_trans(root);
6889 }
5a3f23d5
CM
6890 /*
6891 * make sure the inode gets flushed if it is replacing
6892 * something.
6893 */
6894 if (new_inode && new_inode->i_size &&
6895 old_inode && S_ISREG(old_inode->i_mode)) {
6896 btrfs_add_ordered_operation(trans, root, old_inode);
6897 }
6898
39279cc3
CM
6899 old_dir->i_ctime = old_dir->i_mtime = ctime;
6900 new_dir->i_ctime = new_dir->i_mtime = ctime;
6901 old_inode->i_ctime = ctime;
5f39d397 6902
12fcfd22
CM
6903 if (old_dentry->d_parent != new_dentry->d_parent)
6904 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6905
4df27c4d
YZ
6906 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6907 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6908 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6909 old_dentry->d_name.name,
6910 old_dentry->d_name.len);
6911 } else {
6912 btrfs_inc_nlink(old_dentry->d_inode);
6913 ret = btrfs_unlink_inode(trans, root, old_dir,
6914 old_dentry->d_inode,
6915 old_dentry->d_name.name,
6916 old_dentry->d_name.len);
6917 }
6918 BUG_ON(ret);
39279cc3
CM
6919
6920 if (new_inode) {
6921 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
6922 if (unlikely(new_inode->i_ino ==
6923 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6924 root_objectid = BTRFS_I(new_inode)->location.objectid;
6925 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6926 root_objectid,
6927 new_dentry->d_name.name,
6928 new_dentry->d_name.len);
6929 BUG_ON(new_inode->i_nlink == 0);
6930 } else {
6931 ret = btrfs_unlink_inode(trans, dest, new_dir,
6932 new_dentry->d_inode,
6933 new_dentry->d_name.name,
6934 new_dentry->d_name.len);
6935 }
6936 BUG_ON(ret);
7b128766 6937 if (new_inode->i_nlink == 0) {
e02119d5 6938 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 6939 BUG_ON(ret);
7b128766 6940 }
39279cc3 6941 }
aec7477b 6942
4df27c4d
YZ
6943 ret = btrfs_add_link(trans, new_dir, old_inode,
6944 new_dentry->d_name.name,
a5719521 6945 new_dentry->d_name.len, 0, index);
4df27c4d 6946 BUG_ON(ret);
39279cc3 6947
4df27c4d 6948 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
6949 struct dentry *parent = dget_parent(new_dentry);
6950 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6951 dput(parent);
4df27c4d
YZ
6952 btrfs_end_log_trans(root);
6953 }
39279cc3 6954out_fail:
ab78c84d 6955 btrfs_end_transaction_throttle(trans, root);
4df27c4d 6956
76dda93c
YZ
6957 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6958 up_read(&root->fs_info->subvol_sem);
9ed74f2d 6959
39279cc3
CM
6960 return ret;
6961}
6962
d352ac68
CM
6963/*
6964 * some fairly slow code that needs optimization. This walks the list
6965 * of all the inodes with pending delalloc and forces them to disk.
6966 */
24bbcf04 6967int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
6968{
6969 struct list_head *head = &root->fs_info->delalloc_inodes;
6970 struct btrfs_inode *binode;
5b21f2ed 6971 struct inode *inode;
ea8c2819 6972
c146afad
YZ
6973 if (root->fs_info->sb->s_flags & MS_RDONLY)
6974 return -EROFS;
6975
75eff68e 6976 spin_lock(&root->fs_info->delalloc_lock);
d397712b 6977 while (!list_empty(head)) {
ea8c2819
CM
6978 binode = list_entry(head->next, struct btrfs_inode,
6979 delalloc_inodes);
5b21f2ed
ZY
6980 inode = igrab(&binode->vfs_inode);
6981 if (!inode)
6982 list_del_init(&binode->delalloc_inodes);
75eff68e 6983 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 6984 if (inode) {
8c8bee1d 6985 filemap_flush(inode->i_mapping);
24bbcf04
YZ
6986 if (delay_iput)
6987 btrfs_add_delayed_iput(inode);
6988 else
6989 iput(inode);
5b21f2ed
ZY
6990 }
6991 cond_resched();
75eff68e 6992 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 6993 }
75eff68e 6994 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
6995
6996 /* the filemap_flush will queue IO into the worker threads, but
6997 * we have to make sure the IO is actually started and that
6998 * ordered extents get created before we return
6999 */
7000 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7001 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7002 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7003 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7004 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7005 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7006 }
7007 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7008 return 0;
7009}
7010
0019f10d
JB
7011int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7012 int sync)
5da9d01b
YZ
7013{
7014 struct btrfs_inode *binode;
7015 struct inode *inode = NULL;
7016
7017 spin_lock(&root->fs_info->delalloc_lock);
7018 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7019 binode = list_entry(root->fs_info->delalloc_inodes.next,
7020 struct btrfs_inode, delalloc_inodes);
7021 inode = igrab(&binode->vfs_inode);
7022 if (inode) {
7023 list_move_tail(&binode->delalloc_inodes,
7024 &root->fs_info->delalloc_inodes);
7025 break;
7026 }
7027
7028 list_del_init(&binode->delalloc_inodes);
7029 cond_resched_lock(&root->fs_info->delalloc_lock);
7030 }
7031 spin_unlock(&root->fs_info->delalloc_lock);
7032
7033 if (inode) {
0019f10d
JB
7034 if (sync) {
7035 filemap_write_and_wait(inode->i_mapping);
7036 /*
7037 * We have to do this because compression doesn't
7038 * actually set PG_writeback until it submits the pages
7039 * for IO, which happens in an async thread, so we could
7040 * race and not actually wait for any writeback pages
7041 * because they've not been submitted yet. Technically
7042 * this could still be the case for the ordered stuff
7043 * since the async thread may not have started to do its
7044 * work yet. If this becomes the case then we need to
7045 * figure out a way to make sure that in writepage we
7046 * wait for any async pages to be submitted before
7047 * returning so that fdatawait does what its supposed to
7048 * do.
7049 */
7050 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7051 } else {
7052 filemap_flush(inode->i_mapping);
7053 }
5da9d01b
YZ
7054 if (delay_iput)
7055 btrfs_add_delayed_iput(inode);
7056 else
7057 iput(inode);
7058 return 1;
7059 }
7060 return 0;
7061}
7062
39279cc3
CM
7063static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7064 const char *symname)
7065{
7066 struct btrfs_trans_handle *trans;
7067 struct btrfs_root *root = BTRFS_I(dir)->root;
7068 struct btrfs_path *path;
7069 struct btrfs_key key;
1832a6d5 7070 struct inode *inode = NULL;
39279cc3
CM
7071 int err;
7072 int drop_inode = 0;
7073 u64 objectid;
00e4e6b3 7074 u64 index = 0 ;
39279cc3
CM
7075 int name_len;
7076 int datasize;
5f39d397 7077 unsigned long ptr;
39279cc3 7078 struct btrfs_file_extent_item *ei;
5f39d397 7079 struct extent_buffer *leaf;
1832a6d5 7080 unsigned long nr = 0;
39279cc3
CM
7081
7082 name_len = strlen(symname) + 1;
7083 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7084 return -ENAMETOOLONG;
1832a6d5 7085
a22285a6
YZ
7086 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7087 if (err)
7088 return err;
9ed74f2d
JB
7089 /*
7090 * 2 items for inode item and ref
7091 * 2 items for dir items
7092 * 1 item for xattr if selinux is on
7093 */
a22285a6
YZ
7094 trans = btrfs_start_transaction(root, 5);
7095 if (IS_ERR(trans))
7096 return PTR_ERR(trans);
1832a6d5 7097
39279cc3
CM
7098 btrfs_set_trans_block_group(trans, dir);
7099
aec7477b 7100 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 7101 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
7102 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7103 &index);
39279cc3
CM
7104 err = PTR_ERR(inode);
7105 if (IS_ERR(inode))
7106 goto out_unlock;
7107
f34f57a3 7108 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
7109 if (err) {
7110 drop_inode = 1;
7111 goto out_unlock;
7112 }
7113
39279cc3 7114 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7115 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7116 if (err)
7117 drop_inode = 1;
7118 else {
7119 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7120 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7121 inode->i_fop = &btrfs_file_operations;
7122 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7124 }
39279cc3
CM
7125 btrfs_update_inode_block_group(trans, inode);
7126 btrfs_update_inode_block_group(trans, dir);
7127 if (drop_inode)
7128 goto out_unlock;
7129
7130 path = btrfs_alloc_path();
7131 BUG_ON(!path);
7132 key.objectid = inode->i_ino;
7133 key.offset = 0;
39279cc3
CM
7134 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7135 datasize = btrfs_file_extent_calc_inline_size(name_len);
7136 err = btrfs_insert_empty_item(trans, root, path, &key,
7137 datasize);
54aa1f4d
CM
7138 if (err) {
7139 drop_inode = 1;
7140 goto out_unlock;
7141 }
5f39d397
CM
7142 leaf = path->nodes[0];
7143 ei = btrfs_item_ptr(leaf, path->slots[0],
7144 struct btrfs_file_extent_item);
7145 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7146 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7147 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7148 btrfs_set_file_extent_encryption(leaf, ei, 0);
7149 btrfs_set_file_extent_compression(leaf, ei, 0);
7150 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7151 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7152
39279cc3 7153 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7154 write_extent_buffer(leaf, symname, ptr, name_len);
7155 btrfs_mark_buffer_dirty(leaf);
39279cc3 7156 btrfs_free_path(path);
5f39d397 7157
39279cc3
CM
7158 inode->i_op = &btrfs_symlink_inode_operations;
7159 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7160 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7161 inode_set_bytes(inode, name_len);
dbe674a9 7162 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7163 err = btrfs_update_inode(trans, root, inode);
7164 if (err)
7165 drop_inode = 1;
39279cc3
CM
7166
7167out_unlock:
d3c2fdcf 7168 nr = trans->blocks_used;
ab78c84d 7169 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7170 if (drop_inode) {
7171 inode_dec_link_count(inode);
7172 iput(inode);
7173 }
d3c2fdcf 7174 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7175 return err;
7176}
16432985 7177
0af3d00b
JB
7178static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7179 u64 start, u64 num_bytes, u64 min_size,
7180 loff_t actual_len, u64 *alloc_hint,
7181 struct btrfs_trans_handle *trans)
d899e052 7182{
d899e052
YZ
7183 struct btrfs_root *root = BTRFS_I(inode)->root;
7184 struct btrfs_key ins;
d899e052 7185 u64 cur_offset = start;
55a61d1d 7186 u64 i_size;
d899e052 7187 int ret = 0;
0af3d00b 7188 bool own_trans = true;
d899e052 7189
0af3d00b
JB
7190 if (trans)
7191 own_trans = false;
d899e052 7192 while (num_bytes > 0) {
0af3d00b
JB
7193 if (own_trans) {
7194 trans = btrfs_start_transaction(root, 3);
7195 if (IS_ERR(trans)) {
7196 ret = PTR_ERR(trans);
7197 break;
7198 }
5a303d5d
YZ
7199 }
7200
efa56464
YZ
7201 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7202 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7203 if (ret) {
0af3d00b
JB
7204 if (own_trans)
7205 btrfs_end_transaction(trans, root);
a22285a6 7206 break;
d899e052 7207 }
5a303d5d 7208
d899e052
YZ
7209 ret = insert_reserved_file_extent(trans, inode,
7210 cur_offset, ins.objectid,
7211 ins.offset, ins.offset,
920bbbfb 7212 ins.offset, 0, 0, 0,
d899e052
YZ
7213 BTRFS_FILE_EXTENT_PREALLOC);
7214 BUG_ON(ret);
a1ed835e
CM
7215 btrfs_drop_extent_cache(inode, cur_offset,
7216 cur_offset + ins.offset -1, 0);
5a303d5d 7217
d899e052
YZ
7218 num_bytes -= ins.offset;
7219 cur_offset += ins.offset;
efa56464 7220 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7221
d899e052 7222 inode->i_ctime = CURRENT_TIME;
6cbff00f 7223 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7224 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7225 (actual_len > inode->i_size) &&
7226 (cur_offset > inode->i_size)) {
d1ea6a61 7227 if (cur_offset > actual_len)
55a61d1d 7228 i_size = actual_len;
d1ea6a61 7229 else
55a61d1d
JB
7230 i_size = cur_offset;
7231 i_size_write(inode, i_size);
7232 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7233 }
7234
d899e052
YZ
7235 ret = btrfs_update_inode(trans, root, inode);
7236 BUG_ON(ret);
d899e052 7237
0af3d00b
JB
7238 if (own_trans)
7239 btrfs_end_transaction(trans, root);
5a303d5d 7240 }
d899e052
YZ
7241 return ret;
7242}
7243
0af3d00b
JB
7244int btrfs_prealloc_file_range(struct inode *inode, int mode,
7245 u64 start, u64 num_bytes, u64 min_size,
7246 loff_t actual_len, u64 *alloc_hint)
7247{
7248 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7249 min_size, actual_len, alloc_hint,
7250 NULL);
7251}
7252
7253int btrfs_prealloc_file_range_trans(struct inode *inode,
7254 struct btrfs_trans_handle *trans, int mode,
7255 u64 start, u64 num_bytes, u64 min_size,
7256 loff_t actual_len, u64 *alloc_hint)
7257{
7258 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7259 min_size, actual_len, alloc_hint, trans);
7260}
7261
e6dcd2dc
CM
7262static int btrfs_set_page_dirty(struct page *page)
7263{
e6dcd2dc
CM
7264 return __set_page_dirty_nobuffers(page);
7265}
7266
b74c79e9 7267static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7268{
b83cc969
LZ
7269 struct btrfs_root *root = BTRFS_I(inode)->root;
7270
7271 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7272 return -EROFS;
6cbff00f 7273 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7274 return -EACCES;
b74c79e9 7275 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7276}
39279cc3 7277
6e1d5dcc 7278static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7279 .getattr = btrfs_getattr,
39279cc3
CM
7280 .lookup = btrfs_lookup,
7281 .create = btrfs_create,
7282 .unlink = btrfs_unlink,
7283 .link = btrfs_link,
7284 .mkdir = btrfs_mkdir,
7285 .rmdir = btrfs_rmdir,
7286 .rename = btrfs_rename,
7287 .symlink = btrfs_symlink,
7288 .setattr = btrfs_setattr,
618e21d5 7289 .mknod = btrfs_mknod,
95819c05
CH
7290 .setxattr = btrfs_setxattr,
7291 .getxattr = btrfs_getxattr,
5103e947 7292 .listxattr = btrfs_listxattr,
95819c05 7293 .removexattr = btrfs_removexattr,
fdebe2bd 7294 .permission = btrfs_permission,
39279cc3 7295};
6e1d5dcc 7296static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7297 .lookup = btrfs_lookup,
fdebe2bd 7298 .permission = btrfs_permission,
39279cc3 7299};
76dda93c 7300
828c0950 7301static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7302 .llseek = generic_file_llseek,
7303 .read = generic_read_dir,
cbdf5a24 7304 .readdir = btrfs_real_readdir,
34287aa3 7305 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7306#ifdef CONFIG_COMPAT
34287aa3 7307 .compat_ioctl = btrfs_ioctl,
39279cc3 7308#endif
6bf13c0c 7309 .release = btrfs_release_file,
e02119d5 7310 .fsync = btrfs_sync_file,
39279cc3
CM
7311};
7312
d1310b2e 7313static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7314 .fill_delalloc = run_delalloc_range,
065631f6 7315 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7316 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7317 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7318 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7319 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7320 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7321 .set_bit_hook = btrfs_set_bit_hook,
7322 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7323 .merge_extent_hook = btrfs_merge_extent_hook,
7324 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7325};
7326
35054394
CM
7327/*
7328 * btrfs doesn't support the bmap operation because swapfiles
7329 * use bmap to make a mapping of extents in the file. They assume
7330 * these extents won't change over the life of the file and they
7331 * use the bmap result to do IO directly to the drive.
7332 *
7333 * the btrfs bmap call would return logical addresses that aren't
7334 * suitable for IO and they also will change frequently as COW
7335 * operations happen. So, swapfile + btrfs == corruption.
7336 *
7337 * For now we're avoiding this by dropping bmap.
7338 */
7f09410b 7339static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7340 .readpage = btrfs_readpage,
7341 .writepage = btrfs_writepage,
b293f02e 7342 .writepages = btrfs_writepages,
3ab2fb5a 7343 .readpages = btrfs_readpages,
39279cc3 7344 .sync_page = block_sync_page,
16432985 7345 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7346 .invalidatepage = btrfs_invalidatepage,
7347 .releasepage = btrfs_releasepage,
e6dcd2dc 7348 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7349 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7350};
7351
7f09410b 7352static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7353 .readpage = btrfs_readpage,
7354 .writepage = btrfs_writepage,
2bf5a725
CM
7355 .invalidatepage = btrfs_invalidatepage,
7356 .releasepage = btrfs_releasepage,
39279cc3
CM
7357};
7358
6e1d5dcc 7359static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7360 .truncate = btrfs_truncate,
7361 .getattr = btrfs_getattr,
7362 .setattr = btrfs_setattr,
95819c05
CH
7363 .setxattr = btrfs_setxattr,
7364 .getxattr = btrfs_getxattr,
5103e947 7365 .listxattr = btrfs_listxattr,
95819c05 7366 .removexattr = btrfs_removexattr,
fdebe2bd 7367 .permission = btrfs_permission,
1506fcc8 7368 .fiemap = btrfs_fiemap,
39279cc3 7369};
6e1d5dcc 7370static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7371 .getattr = btrfs_getattr,
7372 .setattr = btrfs_setattr,
fdebe2bd 7373 .permission = btrfs_permission,
95819c05
CH
7374 .setxattr = btrfs_setxattr,
7375 .getxattr = btrfs_getxattr,
33268eaf 7376 .listxattr = btrfs_listxattr,
95819c05 7377 .removexattr = btrfs_removexattr,
618e21d5 7378};
6e1d5dcc 7379static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7380 .readlink = generic_readlink,
7381 .follow_link = page_follow_link_light,
7382 .put_link = page_put_link,
f209561a 7383 .getattr = btrfs_getattr,
fdebe2bd 7384 .permission = btrfs_permission,
0279b4cd
JO
7385 .setxattr = btrfs_setxattr,
7386 .getxattr = btrfs_getxattr,
7387 .listxattr = btrfs_listxattr,
7388 .removexattr = btrfs_removexattr,
39279cc3 7389};
76dda93c 7390
82d339d9 7391const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7392 .d_delete = btrfs_dentry_delete,
7393};