Btrfs: make free space cache write out functions more readable
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
39279cc3
CM
62
63struct btrfs_iget_args {
90d3e592 64 struct btrfs_key *location;
39279cc3
CM
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
40f76580 128static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 129 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
fe3f566c 132 int compress_type,
c8b97818
CM
133 struct page **compressed_pages)
134{
c8b97818
CM
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
c8b97818 143 unsigned long offset;
c8b97818 144
fe3f566c 145 if (compressed_size && compressed_pages)
c8b97818 146 cur_size = compressed_size;
c8b97818 147
1acae57b 148 inode_add_bytes(inode, size);
c8b97818 149
1acae57b
FDBM
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
c8b97818 153
1acae57b
FDBM
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818 157
1acae57b
FDBM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
c8b97818
CM
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
1acae57b 206 btrfs_release_path(path);
c8b97818 207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818 221fail:
c8b97818
CM
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
00361589
JB
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
c8b97818 236{
00361589 237 struct btrfs_trans_handle *trans;
c8b97818
CM
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
fda2832f 241 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
242 u64 data_len = inline_len;
243 int ret;
1acae57b
FDBM
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
c8b97818
CM
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
70b99e69 252 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
1acae57b
FDBM
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
00361589 265 trans = btrfs_join_transaction(root);
1acae57b
FDBM
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
00361589 268 return PTR_ERR(trans);
1acae57b 269 }
00361589
JB
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
1acae57b
FDBM
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
00361589
JB
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
c8b97818
CM
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
c8b97818 291 inline_len, compressed_size,
fe3f566c 292 compress_type, compressed_pages);
2adcac1a 293 if (ret && ret != -ENOSPC) {
79787eaa 294 btrfs_abort_transaction(trans, root, ret);
00361589 295 goto out;
2adcac1a 296 } else if (ret == -ENOSPC) {
00361589
JB
297 ret = 1;
298 goto out;
79787eaa 299 }
2adcac1a 300
bdc20e67 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 304out:
1acae57b 305 btrfs_free_path(path);
00361589
JB
306 btrfs_end_transaction(trans, root);
307 return ret;
c8b97818
CM
308}
309
771ed689
CM
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
261507a0 316 int compress_type;
771ed689
CM
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
261507a0
LZ
334 unsigned long nr_pages,
335 int compress_type)
771ed689
CM
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 340 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
261507a0 346 async_extent->compress_type = compress_type;
771ed689
CM
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
d352ac68 351/*
771ed689
CM
352 * we create compressed extents in two phases. The first
353 * phase compresses a range of pages that have already been
354 * locked (both pages and state bits are locked).
c8b97818 355 *
771ed689
CM
356 * This is done inside an ordered work queue, and the compression
357 * is spread across many cpus. The actual IO submission is step
358 * two, and the ordered work queue takes care of making sure that
359 * happens in the same order things were put onto the queue by
360 * writepages and friends.
c8b97818 361 *
771ed689
CM
362 * If this code finds it can't get good compression, it puts an
363 * entry onto the work queue to write the uncompressed bytes. This
364 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
365 * are written in the same order that the flusher thread sent them
366 * down.
d352ac68 367 */
771ed689
CM
368static noinline int compress_file_range(struct inode *inode,
369 struct page *locked_page,
370 u64 start, u64 end,
371 struct async_cow *async_cow,
372 int *num_added)
b888db2b
CM
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 375 u64 num_bytes;
db94535d 376 u64 blocksize = root->sectorsize;
c8b97818 377 u64 actual_end;
42dc7bab 378 u64 isize = i_size_read(inode);
e6dcd2dc 379 int ret = 0;
c8b97818
CM
380 struct page **pages = NULL;
381 unsigned long nr_pages;
382 unsigned long nr_pages_ret = 0;
383 unsigned long total_compressed = 0;
384 unsigned long total_in = 0;
385 unsigned long max_compressed = 128 * 1024;
771ed689 386 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
387 int i;
388 int will_compress;
261507a0 389 int compress_type = root->fs_info->compress_type;
4adaa611 390 int redirty = 0;
b888db2b 391
4cb13e5d
LB
392 /* if this is a small write inside eof, kick off a defrag */
393 if ((end - start + 1) < 16 * 1024 &&
394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
395 btrfs_add_inode_defrag(NULL, inode);
396
68bb462d
WS
397 /*
398 * skip compression for a small file range(<=blocksize) that
399 * isn't an inline extent, since it dosen't save disk space at all.
400 */
401 if ((end - start + 1) <= blocksize &&
402 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
403 goto cleanup_and_bail_uncompressed;
404
42dc7bab 405 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
406again:
407 will_compress = 0;
408 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
409 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 410
f03d9301
CM
411 /*
412 * we don't want to send crud past the end of i_size through
413 * compression, that's just a waste of CPU time. So, if the
414 * end of the file is before the start of our current
415 * requested range of bytes, we bail out to the uncompressed
416 * cleanup code that can deal with all of this.
417 *
418 * It isn't really the fastest way to fix things, but this is a
419 * very uncommon corner.
420 */
421 if (actual_end <= start)
422 goto cleanup_and_bail_uncompressed;
423
c8b97818
CM
424 total_compressed = actual_end - start;
425
426 /* we want to make sure that amount of ram required to uncompress
427 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
428 * of a compressed extent to 128k. This is a crucial number
429 * because it also controls how easily we can spread reads across
430 * cpus for decompression.
431 *
432 * We also want to make sure the amount of IO required to do
433 * a random read is reasonably small, so we limit the size of
434 * a compressed extent to 128k.
c8b97818
CM
435 */
436 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 437 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 438 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
439 total_in = 0;
440 ret = 0;
db94535d 441
771ed689
CM
442 /*
443 * we do compression for mount -o compress and when the
444 * inode has not been flagged as nocompress. This flag can
445 * change at any time if we discover bad compression ratios.
c8b97818 446 */
6cbff00f 447 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 448 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
449 (BTRFS_I(inode)->force_compress) ||
450 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 451 WARN_ON(pages);
cfbc246e 452 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
453 if (!pages) {
454 /* just bail out to the uncompressed code */
455 goto cont;
456 }
c8b97818 457
261507a0
LZ
458 if (BTRFS_I(inode)->force_compress)
459 compress_type = BTRFS_I(inode)->force_compress;
460
4adaa611
CM
461 /*
462 * we need to call clear_page_dirty_for_io on each
463 * page in the range. Otherwise applications with the file
464 * mmap'd can wander in and change the page contents while
465 * we are compressing them.
466 *
467 * If the compression fails for any reason, we set the pages
468 * dirty again later on.
469 */
470 extent_range_clear_dirty_for_io(inode, start, end);
471 redirty = 1;
261507a0
LZ
472 ret = btrfs_compress_pages(compress_type,
473 inode->i_mapping, start,
474 total_compressed, pages,
475 nr_pages, &nr_pages_ret,
476 &total_in,
477 &total_compressed,
478 max_compressed);
c8b97818
CM
479
480 if (!ret) {
481 unsigned long offset = total_compressed &
482 (PAGE_CACHE_SIZE - 1);
483 struct page *page = pages[nr_pages_ret - 1];
484 char *kaddr;
485
486 /* zero the tail end of the last page, we might be
487 * sending it down to disk
488 */
489 if (offset) {
7ac687d9 490 kaddr = kmap_atomic(page);
c8b97818
CM
491 memset(kaddr + offset, 0,
492 PAGE_CACHE_SIZE - offset);
7ac687d9 493 kunmap_atomic(kaddr);
c8b97818
CM
494 }
495 will_compress = 1;
496 }
497 }
560f7d75 498cont:
c8b97818
CM
499 if (start == 0) {
500 /* lets try to make an inline extent */
771ed689 501 if (ret || total_in < (actual_end - start)) {
c8b97818 502 /* we didn't compress the entire range, try
771ed689 503 * to make an uncompressed inline extent.
c8b97818 504 */
00361589
JB
505 ret = cow_file_range_inline(root, inode, start, end,
506 0, 0, NULL);
c8b97818 507 } else {
771ed689 508 /* try making a compressed inline extent */
00361589 509 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
510 total_compressed,
511 compress_type, pages);
c8b97818 512 }
79787eaa 513 if (ret <= 0) {
151a41bc
JB
514 unsigned long clear_flags = EXTENT_DELALLOC |
515 EXTENT_DEFRAG;
516 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
517
771ed689 518 /*
79787eaa
JM
519 * inline extent creation worked or returned error,
520 * we don't need to create any more async work items.
521 * Unlock and free up our temp pages.
771ed689 522 */
c2790a2e 523 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 524 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
525 PAGE_CLEAR_DIRTY |
526 PAGE_SET_WRITEBACK |
527 PAGE_END_WRITEBACK);
c8b97818
CM
528 goto free_pages_out;
529 }
530 }
531
532 if (will_compress) {
533 /*
534 * we aren't doing an inline extent round the compressed size
535 * up to a block size boundary so the allocator does sane
536 * things
537 */
fda2832f 538 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
539
540 /*
541 * one last check to make sure the compression is really a
542 * win, compare the page count read with the blocks on disk
543 */
fda2832f 544 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
545 if (total_compressed >= total_in) {
546 will_compress = 0;
547 } else {
c8b97818
CM
548 num_bytes = total_in;
549 }
550 }
551 if (!will_compress && pages) {
552 /*
553 * the compression code ran but failed to make things smaller,
554 * free any pages it allocated and our page pointer array
555 */
556 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 557 WARN_ON(pages[i]->mapping);
c8b97818
CM
558 page_cache_release(pages[i]);
559 }
560 kfree(pages);
561 pages = NULL;
562 total_compressed = 0;
563 nr_pages_ret = 0;
564
565 /* flag the file so we don't compress in the future */
1e701a32
CM
566 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
567 !(BTRFS_I(inode)->force_compress)) {
a555f810 568 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 569 }
c8b97818 570 }
771ed689
CM
571 if (will_compress) {
572 *num_added += 1;
c8b97818 573
771ed689
CM
574 /* the async work queues will take care of doing actual
575 * allocation on disk for these compressed pages,
576 * and will submit them to the elevator.
577 */
578 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
579 total_compressed, pages, nr_pages_ret,
580 compress_type);
179e29e4 581
24ae6365 582 if (start + num_bytes < end) {
771ed689
CM
583 start += num_bytes;
584 pages = NULL;
585 cond_resched();
586 goto again;
587 }
588 } else {
f03d9301 589cleanup_and_bail_uncompressed:
771ed689
CM
590 /*
591 * No compression, but we still need to write the pages in
592 * the file we've been given so far. redirty the locked
593 * page if it corresponds to our extent and set things up
594 * for the async work queue to run cow_file_range to do
595 * the normal delalloc dance
596 */
597 if (page_offset(locked_page) >= start &&
598 page_offset(locked_page) <= end) {
599 __set_page_dirty_nobuffers(locked_page);
600 /* unlocked later on in the async handlers */
601 }
4adaa611
CM
602 if (redirty)
603 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
604 add_async_extent(async_cow, start, end - start + 1,
605 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
606 *num_added += 1;
607 }
3b951516 608
771ed689 609out:
79787eaa 610 return ret;
771ed689
CM
611
612free_pages_out:
613 for (i = 0; i < nr_pages_ret; i++) {
614 WARN_ON(pages[i]->mapping);
615 page_cache_release(pages[i]);
616 }
d397712b 617 kfree(pages);
771ed689
CM
618
619 goto out;
620}
621
622/*
623 * phase two of compressed writeback. This is the ordered portion
624 * of the code, which only gets called in the order the work was
625 * queued. We walk all the async extents created by compress_file_range
626 * and send them down to the disk.
627 */
628static noinline int submit_compressed_extents(struct inode *inode,
629 struct async_cow *async_cow)
630{
631 struct async_extent *async_extent;
632 u64 alloc_hint = 0;
771ed689
CM
633 struct btrfs_key ins;
634 struct extent_map *em;
635 struct btrfs_root *root = BTRFS_I(inode)->root;
636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
637 struct extent_io_tree *io_tree;
f5a84ee3 638 int ret = 0;
771ed689
CM
639
640 if (list_empty(&async_cow->extents))
641 return 0;
642
3e04e7f1 643again:
d397712b 644 while (!list_empty(&async_cow->extents)) {
771ed689
CM
645 async_extent = list_entry(async_cow->extents.next,
646 struct async_extent, list);
647 list_del(&async_extent->list);
c8b97818 648
771ed689
CM
649 io_tree = &BTRFS_I(inode)->io_tree;
650
f5a84ee3 651retry:
771ed689
CM
652 /* did the compression code fall back to uncompressed IO? */
653 if (!async_extent->pages) {
654 int page_started = 0;
655 unsigned long nr_written = 0;
656
657 lock_extent(io_tree, async_extent->start,
2ac55d41 658 async_extent->start +
d0082371 659 async_extent->ram_size - 1);
771ed689
CM
660
661 /* allocate blocks */
f5a84ee3
JB
662 ret = cow_file_range(inode, async_cow->locked_page,
663 async_extent->start,
664 async_extent->start +
665 async_extent->ram_size - 1,
666 &page_started, &nr_written, 0);
771ed689 667
79787eaa
JM
668 /* JDM XXX */
669
771ed689
CM
670 /*
671 * if page_started, cow_file_range inserted an
672 * inline extent and took care of all the unlocking
673 * and IO for us. Otherwise, we need to submit
674 * all those pages down to the drive.
675 */
f5a84ee3 676 if (!page_started && !ret)
771ed689
CM
677 extent_write_locked_range(io_tree,
678 inode, async_extent->start,
d397712b 679 async_extent->start +
771ed689
CM
680 async_extent->ram_size - 1,
681 btrfs_get_extent,
682 WB_SYNC_ALL);
3e04e7f1
JB
683 else if (ret)
684 unlock_page(async_cow->locked_page);
771ed689
CM
685 kfree(async_extent);
686 cond_resched();
687 continue;
688 }
689
690 lock_extent(io_tree, async_extent->start,
d0082371 691 async_extent->start + async_extent->ram_size - 1);
771ed689 692
00361589 693 ret = btrfs_reserve_extent(root,
771ed689
CM
694 async_extent->compressed_size,
695 async_extent->compressed_size,
81c9ad23 696 0, alloc_hint, &ins, 1);
f5a84ee3
JB
697 if (ret) {
698 int i;
3e04e7f1 699
f5a84ee3
JB
700 for (i = 0; i < async_extent->nr_pages; i++) {
701 WARN_ON(async_extent->pages[i]->mapping);
702 page_cache_release(async_extent->pages[i]);
703 }
704 kfree(async_extent->pages);
705 async_extent->nr_pages = 0;
706 async_extent->pages = NULL;
3e04e7f1 707
fdf8e2ea
JB
708 if (ret == -ENOSPC) {
709 unlock_extent(io_tree, async_extent->start,
710 async_extent->start +
711 async_extent->ram_size - 1);
79787eaa 712 goto retry;
fdf8e2ea 713 }
3e04e7f1 714 goto out_free;
f5a84ee3
JB
715 }
716
c2167754
YZ
717 /*
718 * here we're doing allocation and writeback of the
719 * compressed pages
720 */
721 btrfs_drop_extent_cache(inode, async_extent->start,
722 async_extent->start +
723 async_extent->ram_size - 1, 0);
724
172ddd60 725 em = alloc_extent_map();
b9aa55be
LB
726 if (!em) {
727 ret = -ENOMEM;
3e04e7f1 728 goto out_free_reserve;
b9aa55be 729 }
771ed689
CM
730 em->start = async_extent->start;
731 em->len = async_extent->ram_size;
445a6944 732 em->orig_start = em->start;
2ab28f32
JB
733 em->mod_start = em->start;
734 em->mod_len = em->len;
c8b97818 735
771ed689
CM
736 em->block_start = ins.objectid;
737 em->block_len = ins.offset;
b4939680 738 em->orig_block_len = ins.offset;
cc95bef6 739 em->ram_bytes = async_extent->ram_size;
771ed689 740 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 741 em->compress_type = async_extent->compress_type;
771ed689
CM
742 set_bit(EXTENT_FLAG_PINNED, &em->flags);
743 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 744 em->generation = -1;
771ed689 745
d397712b 746 while (1) {
890871be 747 write_lock(&em_tree->lock);
09a2a8f9 748 ret = add_extent_mapping(em_tree, em, 1);
890871be 749 write_unlock(&em_tree->lock);
771ed689
CM
750 if (ret != -EEXIST) {
751 free_extent_map(em);
752 break;
753 }
754 btrfs_drop_extent_cache(inode, async_extent->start,
755 async_extent->start +
756 async_extent->ram_size - 1, 0);
757 }
758
3e04e7f1
JB
759 if (ret)
760 goto out_free_reserve;
761
261507a0
LZ
762 ret = btrfs_add_ordered_extent_compress(inode,
763 async_extent->start,
764 ins.objectid,
765 async_extent->ram_size,
766 ins.offset,
767 BTRFS_ORDERED_COMPRESSED,
768 async_extent->compress_type);
3e04e7f1
JB
769 if (ret)
770 goto out_free_reserve;
771ed689 771
771ed689
CM
772 /*
773 * clear dirty, set writeback and unlock the pages.
774 */
c2790a2e 775 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
776 async_extent->start +
777 async_extent->ram_size - 1,
151a41bc
JB
778 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
779 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 780 PAGE_SET_WRITEBACK);
771ed689 781 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
782 async_extent->start,
783 async_extent->ram_size,
784 ins.objectid,
785 ins.offset, async_extent->pages,
786 async_extent->nr_pages);
771ed689
CM
787 alloc_hint = ins.objectid + ins.offset;
788 kfree(async_extent);
3e04e7f1
JB
789 if (ret)
790 goto out;
771ed689
CM
791 cond_resched();
792 }
79787eaa
JM
793 ret = 0;
794out:
795 return ret;
3e04e7f1
JB
796out_free_reserve:
797 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 798out_free:
c2790a2e 799 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
800 async_extent->start +
801 async_extent->ram_size - 1,
c2790a2e 802 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
803 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
804 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
805 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 806 kfree(async_extent);
3e04e7f1 807 goto again;
771ed689
CM
808}
809
4b46fce2
JB
810static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
811 u64 num_bytes)
812{
813 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
814 struct extent_map *em;
815 u64 alloc_hint = 0;
816
817 read_lock(&em_tree->lock);
818 em = search_extent_mapping(em_tree, start, num_bytes);
819 if (em) {
820 /*
821 * if block start isn't an actual block number then find the
822 * first block in this inode and use that as a hint. If that
823 * block is also bogus then just don't worry about it.
824 */
825 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
826 free_extent_map(em);
827 em = search_extent_mapping(em_tree, 0, 0);
828 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
829 alloc_hint = em->block_start;
830 if (em)
831 free_extent_map(em);
832 } else {
833 alloc_hint = em->block_start;
834 free_extent_map(em);
835 }
836 }
837 read_unlock(&em_tree->lock);
838
839 return alloc_hint;
840}
841
771ed689
CM
842/*
843 * when extent_io.c finds a delayed allocation range in the file,
844 * the call backs end up in this code. The basic idea is to
845 * allocate extents on disk for the range, and create ordered data structs
846 * in ram to track those extents.
847 *
848 * locked_page is the page that writepage had locked already. We use
849 * it to make sure we don't do extra locks or unlocks.
850 *
851 * *page_started is set to one if we unlock locked_page and do everything
852 * required to start IO on it. It may be clean and already done with
853 * IO when we return.
854 */
00361589
JB
855static noinline int cow_file_range(struct inode *inode,
856 struct page *locked_page,
857 u64 start, u64 end, int *page_started,
858 unsigned long *nr_written,
859 int unlock)
771ed689 860{
00361589 861 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
862 u64 alloc_hint = 0;
863 u64 num_bytes;
864 unsigned long ram_size;
865 u64 disk_num_bytes;
866 u64 cur_alloc_size;
867 u64 blocksize = root->sectorsize;
771ed689
CM
868 struct btrfs_key ins;
869 struct extent_map *em;
870 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
871 int ret = 0;
872
02ecd2c2
JB
873 if (btrfs_is_free_space_inode(inode)) {
874 WARN_ON_ONCE(1);
29bce2f3
JB
875 ret = -EINVAL;
876 goto out_unlock;
02ecd2c2 877 }
771ed689 878
fda2832f 879 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
880 num_bytes = max(blocksize, num_bytes);
881 disk_num_bytes = num_bytes;
771ed689 882
4cb5300b 883 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
884 if (num_bytes < 64 * 1024 &&
885 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 886 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 887
771ed689
CM
888 if (start == 0) {
889 /* lets try to make an inline extent */
00361589
JB
890 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
891 NULL);
771ed689 892 if (ret == 0) {
c2790a2e
JB
893 extent_clear_unlock_delalloc(inode, start, end, NULL,
894 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 895 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
896 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
897 PAGE_END_WRITEBACK);
c2167754 898
771ed689
CM
899 *nr_written = *nr_written +
900 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
901 *page_started = 1;
771ed689 902 goto out;
79787eaa 903 } else if (ret < 0) {
79787eaa 904 goto out_unlock;
771ed689
CM
905 }
906 }
907
908 BUG_ON(disk_num_bytes >
6c41761f 909 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 910
4b46fce2 911 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
912 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
913
d397712b 914 while (disk_num_bytes > 0) {
a791e35e
CM
915 unsigned long op;
916
287a0ab9 917 cur_alloc_size = disk_num_bytes;
00361589 918 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 919 root->sectorsize, 0, alloc_hint,
81c9ad23 920 &ins, 1);
00361589 921 if (ret < 0)
79787eaa 922 goto out_unlock;
d397712b 923
172ddd60 924 em = alloc_extent_map();
b9aa55be
LB
925 if (!em) {
926 ret = -ENOMEM;
ace68bac 927 goto out_reserve;
b9aa55be 928 }
e6dcd2dc 929 em->start = start;
445a6944 930 em->orig_start = em->start;
771ed689
CM
931 ram_size = ins.offset;
932 em->len = ins.offset;
2ab28f32
JB
933 em->mod_start = em->start;
934 em->mod_len = em->len;
c8b97818 935
e6dcd2dc 936 em->block_start = ins.objectid;
c8b97818 937 em->block_len = ins.offset;
b4939680 938 em->orig_block_len = ins.offset;
cc95bef6 939 em->ram_bytes = ram_size;
e6dcd2dc 940 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 941 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 942 em->generation = -1;
c8b97818 943
d397712b 944 while (1) {
890871be 945 write_lock(&em_tree->lock);
09a2a8f9 946 ret = add_extent_mapping(em_tree, em, 1);
890871be 947 write_unlock(&em_tree->lock);
e6dcd2dc
CM
948 if (ret != -EEXIST) {
949 free_extent_map(em);
950 break;
951 }
952 btrfs_drop_extent_cache(inode, start,
c8b97818 953 start + ram_size - 1, 0);
e6dcd2dc 954 }
ace68bac
LB
955 if (ret)
956 goto out_reserve;
e6dcd2dc 957
98d20f67 958 cur_alloc_size = ins.offset;
e6dcd2dc 959 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 960 ram_size, cur_alloc_size, 0);
ace68bac
LB
961 if (ret)
962 goto out_reserve;
c8b97818 963
17d217fe
YZ
964 if (root->root_key.objectid ==
965 BTRFS_DATA_RELOC_TREE_OBJECTID) {
966 ret = btrfs_reloc_clone_csums(inode, start,
967 cur_alloc_size);
00361589 968 if (ret)
ace68bac 969 goto out_reserve;
17d217fe
YZ
970 }
971
d397712b 972 if (disk_num_bytes < cur_alloc_size)
3b951516 973 break;
d397712b 974
c8b97818
CM
975 /* we're not doing compressed IO, don't unlock the first
976 * page (which the caller expects to stay locked), don't
977 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
978 *
979 * Do set the Private2 bit so we know this page was properly
980 * setup for writepage
c8b97818 981 */
c2790a2e
JB
982 op = unlock ? PAGE_UNLOCK : 0;
983 op |= PAGE_SET_PRIVATE2;
a791e35e 984
c2790a2e
JB
985 extent_clear_unlock_delalloc(inode, start,
986 start + ram_size - 1, locked_page,
987 EXTENT_LOCKED | EXTENT_DELALLOC,
988 op);
c8b97818 989 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
990 num_bytes -= cur_alloc_size;
991 alloc_hint = ins.objectid + ins.offset;
992 start += cur_alloc_size;
b888db2b 993 }
79787eaa 994out:
be20aa9d 995 return ret;
b7d5b0a8 996
ace68bac
LB
997out_reserve:
998 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 999out_unlock:
c2790a2e 1000 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1001 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1002 EXTENT_DELALLOC | EXTENT_DEFRAG,
1003 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1004 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1005 goto out;
771ed689 1006}
c8b97818 1007
771ed689
CM
1008/*
1009 * work queue call back to started compression on a file and pages
1010 */
1011static noinline void async_cow_start(struct btrfs_work *work)
1012{
1013 struct async_cow *async_cow;
1014 int num_added = 0;
1015 async_cow = container_of(work, struct async_cow, work);
1016
1017 compress_file_range(async_cow->inode, async_cow->locked_page,
1018 async_cow->start, async_cow->end, async_cow,
1019 &num_added);
8180ef88 1020 if (num_added == 0) {
cb77fcd8 1021 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1022 async_cow->inode = NULL;
8180ef88 1023 }
771ed689
CM
1024}
1025
1026/*
1027 * work queue call back to submit previously compressed pages
1028 */
1029static noinline void async_cow_submit(struct btrfs_work *work)
1030{
1031 struct async_cow *async_cow;
1032 struct btrfs_root *root;
1033 unsigned long nr_pages;
1034
1035 async_cow = container_of(work, struct async_cow, work);
1036
1037 root = async_cow->root;
1038 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1039 PAGE_CACHE_SHIFT;
1040
66657b31 1041 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1042 5 * 1024 * 1024 &&
771ed689
CM
1043 waitqueue_active(&root->fs_info->async_submit_wait))
1044 wake_up(&root->fs_info->async_submit_wait);
1045
d397712b 1046 if (async_cow->inode)
771ed689 1047 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1048}
c8b97818 1049
771ed689
CM
1050static noinline void async_cow_free(struct btrfs_work *work)
1051{
1052 struct async_cow *async_cow;
1053 async_cow = container_of(work, struct async_cow, work);
8180ef88 1054 if (async_cow->inode)
cb77fcd8 1055 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1056 kfree(async_cow);
1057}
1058
1059static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1060 u64 start, u64 end, int *page_started,
1061 unsigned long *nr_written)
1062{
1063 struct async_cow *async_cow;
1064 struct btrfs_root *root = BTRFS_I(inode)->root;
1065 unsigned long nr_pages;
1066 u64 cur_end;
287082b0 1067 int limit = 10 * 1024 * 1024;
771ed689 1068
a3429ab7
CM
1069 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1070 1, 0, NULL, GFP_NOFS);
d397712b 1071 while (start < end) {
771ed689 1072 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1073 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1074 async_cow->inode = igrab(inode);
771ed689
CM
1075 async_cow->root = root;
1076 async_cow->locked_page = locked_page;
1077 async_cow->start = start;
1078
6cbff00f 1079 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1080 cur_end = end;
1081 else
1082 cur_end = min(end, start + 512 * 1024 - 1);
1083
1084 async_cow->end = cur_end;
1085 INIT_LIST_HEAD(&async_cow->extents);
1086
afe3d242
QW
1087 btrfs_init_work(&async_cow->work, async_cow_start,
1088 async_cow_submit, async_cow_free);
771ed689 1089
771ed689
CM
1090 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1091 PAGE_CACHE_SHIFT;
1092 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1093
afe3d242
QW
1094 btrfs_queue_work(root->fs_info->delalloc_workers,
1095 &async_cow->work);
771ed689
CM
1096
1097 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1098 wait_event(root->fs_info->async_submit_wait,
1099 (atomic_read(&root->fs_info->async_delalloc_pages) <
1100 limit));
1101 }
1102
d397712b 1103 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1104 atomic_read(&root->fs_info->async_delalloc_pages)) {
1105 wait_event(root->fs_info->async_submit_wait,
1106 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1107 0));
1108 }
1109
1110 *nr_written += nr_pages;
1111 start = cur_end + 1;
1112 }
1113 *page_started = 1;
1114 return 0;
be20aa9d
CM
1115}
1116
d397712b 1117static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1118 u64 bytenr, u64 num_bytes)
1119{
1120 int ret;
1121 struct btrfs_ordered_sum *sums;
1122 LIST_HEAD(list);
1123
07d400a6 1124 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1125 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1126 if (ret == 0 && list_empty(&list))
1127 return 0;
1128
1129 while (!list_empty(&list)) {
1130 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1131 list_del(&sums->list);
1132 kfree(sums);
1133 }
1134 return 1;
1135}
1136
d352ac68
CM
1137/*
1138 * when nowcow writeback call back. This checks for snapshots or COW copies
1139 * of the extents that exist in the file, and COWs the file as required.
1140 *
1141 * If no cow copies or snapshots exist, we write directly to the existing
1142 * blocks on disk
1143 */
7f366cfe
CM
1144static noinline int run_delalloc_nocow(struct inode *inode,
1145 struct page *locked_page,
771ed689
CM
1146 u64 start, u64 end, int *page_started, int force,
1147 unsigned long *nr_written)
be20aa9d 1148{
be20aa9d 1149 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1150 struct btrfs_trans_handle *trans;
be20aa9d 1151 struct extent_buffer *leaf;
be20aa9d 1152 struct btrfs_path *path;
80ff3856 1153 struct btrfs_file_extent_item *fi;
be20aa9d 1154 struct btrfs_key found_key;
80ff3856
YZ
1155 u64 cow_start;
1156 u64 cur_offset;
1157 u64 extent_end;
5d4f98a2 1158 u64 extent_offset;
80ff3856
YZ
1159 u64 disk_bytenr;
1160 u64 num_bytes;
b4939680 1161 u64 disk_num_bytes;
cc95bef6 1162 u64 ram_bytes;
80ff3856 1163 int extent_type;
79787eaa 1164 int ret, err;
d899e052 1165 int type;
80ff3856
YZ
1166 int nocow;
1167 int check_prev = 1;
82d5902d 1168 bool nolock;
33345d01 1169 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1170
1171 path = btrfs_alloc_path();
17ca04af 1172 if (!path) {
c2790a2e
JB
1173 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1174 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1175 EXTENT_DO_ACCOUNTING |
1176 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1177 PAGE_CLEAR_DIRTY |
1178 PAGE_SET_WRITEBACK |
1179 PAGE_END_WRITEBACK);
d8926bb3 1180 return -ENOMEM;
17ca04af 1181 }
82d5902d 1182
83eea1f1 1183 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1184
1185 if (nolock)
7a7eaa40 1186 trans = btrfs_join_transaction_nolock(root);
82d5902d 1187 else
7a7eaa40 1188 trans = btrfs_join_transaction(root);
ff5714cc 1189
79787eaa 1190 if (IS_ERR(trans)) {
c2790a2e
JB
1191 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1192 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1193 EXTENT_DO_ACCOUNTING |
1194 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1195 PAGE_CLEAR_DIRTY |
1196 PAGE_SET_WRITEBACK |
1197 PAGE_END_WRITEBACK);
79787eaa
JM
1198 btrfs_free_path(path);
1199 return PTR_ERR(trans);
1200 }
1201
74b21075 1202 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1203
80ff3856
YZ
1204 cow_start = (u64)-1;
1205 cur_offset = start;
1206 while (1) {
33345d01 1207 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1208 cur_offset, 0);
d788a349 1209 if (ret < 0)
79787eaa 1210 goto error;
80ff3856
YZ
1211 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1212 leaf = path->nodes[0];
1213 btrfs_item_key_to_cpu(leaf, &found_key,
1214 path->slots[0] - 1);
33345d01 1215 if (found_key.objectid == ino &&
80ff3856
YZ
1216 found_key.type == BTRFS_EXTENT_DATA_KEY)
1217 path->slots[0]--;
1218 }
1219 check_prev = 0;
1220next_slot:
1221 leaf = path->nodes[0];
1222 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1223 ret = btrfs_next_leaf(root, path);
d788a349 1224 if (ret < 0)
79787eaa 1225 goto error;
80ff3856
YZ
1226 if (ret > 0)
1227 break;
1228 leaf = path->nodes[0];
1229 }
be20aa9d 1230
80ff3856
YZ
1231 nocow = 0;
1232 disk_bytenr = 0;
17d217fe 1233 num_bytes = 0;
80ff3856
YZ
1234 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1235
33345d01 1236 if (found_key.objectid > ino ||
80ff3856
YZ
1237 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1238 found_key.offset > end)
1239 break;
1240
1241 if (found_key.offset > cur_offset) {
1242 extent_end = found_key.offset;
e9061e21 1243 extent_type = 0;
80ff3856
YZ
1244 goto out_check;
1245 }
1246
1247 fi = btrfs_item_ptr(leaf, path->slots[0],
1248 struct btrfs_file_extent_item);
1249 extent_type = btrfs_file_extent_type(leaf, fi);
1250
cc95bef6 1251 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1252 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1253 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1254 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1255 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1256 extent_end = found_key.offset +
1257 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1258 disk_num_bytes =
1259 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1260 if (extent_end <= start) {
1261 path->slots[0]++;
1262 goto next_slot;
1263 }
17d217fe
YZ
1264 if (disk_bytenr == 0)
1265 goto out_check;
80ff3856
YZ
1266 if (btrfs_file_extent_compression(leaf, fi) ||
1267 btrfs_file_extent_encryption(leaf, fi) ||
1268 btrfs_file_extent_other_encoding(leaf, fi))
1269 goto out_check;
d899e052
YZ
1270 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1271 goto out_check;
d2fb3437 1272 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1273 goto out_check;
33345d01 1274 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1275 found_key.offset -
1276 extent_offset, disk_bytenr))
17d217fe 1277 goto out_check;
5d4f98a2 1278 disk_bytenr += extent_offset;
17d217fe
YZ
1279 disk_bytenr += cur_offset - found_key.offset;
1280 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1281 /*
1282 * if there are pending snapshots for this root,
1283 * we fall into common COW way.
1284 */
1285 if (!nolock) {
1286 err = btrfs_start_nocow_write(root);
1287 if (!err)
1288 goto out_check;
1289 }
17d217fe
YZ
1290 /*
1291 * force cow if csum exists in the range.
1292 * this ensure that csum for a given extent are
1293 * either valid or do not exist.
1294 */
1295 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1296 goto out_check;
80ff3856
YZ
1297 nocow = 1;
1298 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1299 extent_end = found_key.offset +
514ac8ad
CM
1300 btrfs_file_extent_inline_len(leaf,
1301 path->slots[0], fi);
80ff3856
YZ
1302 extent_end = ALIGN(extent_end, root->sectorsize);
1303 } else {
1304 BUG_ON(1);
1305 }
1306out_check:
1307 if (extent_end <= start) {
1308 path->slots[0]++;
e9894fd3
WS
1309 if (!nolock && nocow)
1310 btrfs_end_nocow_write(root);
80ff3856
YZ
1311 goto next_slot;
1312 }
1313 if (!nocow) {
1314 if (cow_start == (u64)-1)
1315 cow_start = cur_offset;
1316 cur_offset = extent_end;
1317 if (cur_offset > end)
1318 break;
1319 path->slots[0]++;
1320 goto next_slot;
7ea394f1
YZ
1321 }
1322
b3b4aa74 1323 btrfs_release_path(path);
80ff3856 1324 if (cow_start != (u64)-1) {
00361589
JB
1325 ret = cow_file_range(inode, locked_page,
1326 cow_start, found_key.offset - 1,
1327 page_started, nr_written, 1);
e9894fd3
WS
1328 if (ret) {
1329 if (!nolock && nocow)
1330 btrfs_end_nocow_write(root);
79787eaa 1331 goto error;
e9894fd3 1332 }
80ff3856 1333 cow_start = (u64)-1;
7ea394f1 1334 }
80ff3856 1335
d899e052
YZ
1336 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1337 struct extent_map *em;
1338 struct extent_map_tree *em_tree;
1339 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1340 em = alloc_extent_map();
79787eaa 1341 BUG_ON(!em); /* -ENOMEM */
d899e052 1342 em->start = cur_offset;
70c8a91c 1343 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1344 em->len = num_bytes;
1345 em->block_len = num_bytes;
1346 em->block_start = disk_bytenr;
b4939680 1347 em->orig_block_len = disk_num_bytes;
cc95bef6 1348 em->ram_bytes = ram_bytes;
d899e052 1349 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1350 em->mod_start = em->start;
1351 em->mod_len = em->len;
d899e052 1352 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1353 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1354 em->generation = -1;
d899e052 1355 while (1) {
890871be 1356 write_lock(&em_tree->lock);
09a2a8f9 1357 ret = add_extent_mapping(em_tree, em, 1);
890871be 1358 write_unlock(&em_tree->lock);
d899e052
YZ
1359 if (ret != -EEXIST) {
1360 free_extent_map(em);
1361 break;
1362 }
1363 btrfs_drop_extent_cache(inode, em->start,
1364 em->start + em->len - 1, 0);
1365 }
1366 type = BTRFS_ORDERED_PREALLOC;
1367 } else {
1368 type = BTRFS_ORDERED_NOCOW;
1369 }
80ff3856
YZ
1370
1371 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1372 num_bytes, num_bytes, type);
79787eaa 1373 BUG_ON(ret); /* -ENOMEM */
771ed689 1374
efa56464
YZ
1375 if (root->root_key.objectid ==
1376 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1377 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1378 num_bytes);
e9894fd3
WS
1379 if (ret) {
1380 if (!nolock && nocow)
1381 btrfs_end_nocow_write(root);
79787eaa 1382 goto error;
e9894fd3 1383 }
efa56464
YZ
1384 }
1385
c2790a2e
JB
1386 extent_clear_unlock_delalloc(inode, cur_offset,
1387 cur_offset + num_bytes - 1,
1388 locked_page, EXTENT_LOCKED |
1389 EXTENT_DELALLOC, PAGE_UNLOCK |
1390 PAGE_SET_PRIVATE2);
e9894fd3
WS
1391 if (!nolock && nocow)
1392 btrfs_end_nocow_write(root);
80ff3856
YZ
1393 cur_offset = extent_end;
1394 if (cur_offset > end)
1395 break;
be20aa9d 1396 }
b3b4aa74 1397 btrfs_release_path(path);
80ff3856 1398
17ca04af 1399 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1400 cow_start = cur_offset;
17ca04af
JB
1401 cur_offset = end;
1402 }
1403
80ff3856 1404 if (cow_start != (u64)-1) {
00361589
JB
1405 ret = cow_file_range(inode, locked_page, cow_start, end,
1406 page_started, nr_written, 1);
d788a349 1407 if (ret)
79787eaa 1408 goto error;
80ff3856
YZ
1409 }
1410
79787eaa 1411error:
a698d075 1412 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1413 if (!ret)
1414 ret = err;
1415
17ca04af 1416 if (ret && cur_offset < end)
c2790a2e
JB
1417 extent_clear_unlock_delalloc(inode, cur_offset, end,
1418 locked_page, EXTENT_LOCKED |
151a41bc
JB
1419 EXTENT_DELALLOC | EXTENT_DEFRAG |
1420 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1421 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1422 PAGE_SET_WRITEBACK |
1423 PAGE_END_WRITEBACK);
7ea394f1 1424 btrfs_free_path(path);
79787eaa 1425 return ret;
be20aa9d
CM
1426}
1427
d352ac68
CM
1428/*
1429 * extent_io.c call back to do delayed allocation processing
1430 */
c8b97818 1431static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1432 u64 start, u64 end, int *page_started,
1433 unsigned long *nr_written)
be20aa9d 1434{
be20aa9d 1435 int ret;
7f366cfe 1436 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1437
7ddf5a42 1438 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1439 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1440 page_started, 1, nr_written);
7ddf5a42 1441 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1442 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1443 page_started, 0, nr_written);
7ddf5a42
JB
1444 } else if (!btrfs_test_opt(root, COMPRESS) &&
1445 !(BTRFS_I(inode)->force_compress) &&
1446 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1447 ret = cow_file_range(inode, locked_page, start, end,
1448 page_started, nr_written, 1);
7ddf5a42
JB
1449 } else {
1450 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1451 &BTRFS_I(inode)->runtime_flags);
771ed689 1452 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1453 page_started, nr_written);
7ddf5a42 1454 }
b888db2b
CM
1455 return ret;
1456}
1457
1bf85046
JM
1458static void btrfs_split_extent_hook(struct inode *inode,
1459 struct extent_state *orig, u64 split)
9ed74f2d 1460{
0ca1f7ce 1461 /* not delalloc, ignore it */
9ed74f2d 1462 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1463 return;
9ed74f2d 1464
9e0baf60
JB
1465 spin_lock(&BTRFS_I(inode)->lock);
1466 BTRFS_I(inode)->outstanding_extents++;
1467 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1468}
1469
1470/*
1471 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1472 * extents so we can keep track of new extents that are just merged onto old
1473 * extents, such as when we are doing sequential writes, so we can properly
1474 * account for the metadata space we'll need.
1475 */
1bf85046
JM
1476static void btrfs_merge_extent_hook(struct inode *inode,
1477 struct extent_state *new,
1478 struct extent_state *other)
9ed74f2d 1479{
9ed74f2d
JB
1480 /* not delalloc, ignore it */
1481 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1482 return;
9ed74f2d 1483
9e0baf60
JB
1484 spin_lock(&BTRFS_I(inode)->lock);
1485 BTRFS_I(inode)->outstanding_extents--;
1486 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1487}
1488
eb73c1b7
MX
1489static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1490 struct inode *inode)
1491{
1492 spin_lock(&root->delalloc_lock);
1493 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1494 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1495 &root->delalloc_inodes);
1496 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1497 &BTRFS_I(inode)->runtime_flags);
1498 root->nr_delalloc_inodes++;
1499 if (root->nr_delalloc_inodes == 1) {
1500 spin_lock(&root->fs_info->delalloc_root_lock);
1501 BUG_ON(!list_empty(&root->delalloc_root));
1502 list_add_tail(&root->delalloc_root,
1503 &root->fs_info->delalloc_roots);
1504 spin_unlock(&root->fs_info->delalloc_root_lock);
1505 }
1506 }
1507 spin_unlock(&root->delalloc_lock);
1508}
1509
1510static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1511 struct inode *inode)
1512{
1513 spin_lock(&root->delalloc_lock);
1514 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1515 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1516 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1517 &BTRFS_I(inode)->runtime_flags);
1518 root->nr_delalloc_inodes--;
1519 if (!root->nr_delalloc_inodes) {
1520 spin_lock(&root->fs_info->delalloc_root_lock);
1521 BUG_ON(list_empty(&root->delalloc_root));
1522 list_del_init(&root->delalloc_root);
1523 spin_unlock(&root->fs_info->delalloc_root_lock);
1524 }
1525 }
1526 spin_unlock(&root->delalloc_lock);
1527}
1528
d352ac68
CM
1529/*
1530 * extent_io.c set_bit_hook, used to track delayed allocation
1531 * bytes in this file, and to maintain the list of inodes that
1532 * have pending delalloc work to be done.
1533 */
1bf85046 1534static void btrfs_set_bit_hook(struct inode *inode,
41074888 1535 struct extent_state *state, unsigned long *bits)
291d673e 1536{
9ed74f2d 1537
75eff68e
CM
1538 /*
1539 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1540 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1541 * bit, which is only set or cleared with irqs on
1542 */
0ca1f7ce 1543 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1544 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1545 u64 len = state->end + 1 - state->start;
83eea1f1 1546 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1547
9e0baf60 1548 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1549 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1550 } else {
1551 spin_lock(&BTRFS_I(inode)->lock);
1552 BTRFS_I(inode)->outstanding_extents++;
1553 spin_unlock(&BTRFS_I(inode)->lock);
1554 }
287a0ab9 1555
963d678b
MX
1556 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1557 root->fs_info->delalloc_batch);
df0af1a5 1558 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1559 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1560 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1561 &BTRFS_I(inode)->runtime_flags))
1562 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1563 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1564 }
291d673e
CM
1565}
1566
d352ac68
CM
1567/*
1568 * extent_io.c clear_bit_hook, see set_bit_hook for why
1569 */
1bf85046 1570static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1571 struct extent_state *state,
1572 unsigned long *bits)
291d673e 1573{
75eff68e
CM
1574 /*
1575 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1576 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1577 * bit, which is only set or cleared with irqs on
1578 */
0ca1f7ce 1579 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1580 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1581 u64 len = state->end + 1 - state->start;
83eea1f1 1582 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1583
9e0baf60 1584 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1585 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1586 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1587 spin_lock(&BTRFS_I(inode)->lock);
1588 BTRFS_I(inode)->outstanding_extents--;
1589 spin_unlock(&BTRFS_I(inode)->lock);
1590 }
0ca1f7ce 1591
b6d08f06
JB
1592 /*
1593 * We don't reserve metadata space for space cache inodes so we
1594 * don't need to call dellalloc_release_metadata if there is an
1595 * error.
1596 */
1597 if (*bits & EXTENT_DO_ACCOUNTING &&
1598 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1599 btrfs_delalloc_release_metadata(inode, len);
1600
0cb59c99 1601 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1602 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1603 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1604
963d678b
MX
1605 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1606 root->fs_info->delalloc_batch);
df0af1a5 1607 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1608 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1609 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1610 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1611 &BTRFS_I(inode)->runtime_flags))
1612 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1613 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1614 }
291d673e
CM
1615}
1616
d352ac68
CM
1617/*
1618 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1619 * we don't create bios that span stripes or chunks
1620 */
64a16701 1621int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1622 size_t size, struct bio *bio,
1623 unsigned long bio_flags)
239b14b3
CM
1624{
1625 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1626 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1627 u64 length = 0;
1628 u64 map_length;
239b14b3
CM
1629 int ret;
1630
771ed689
CM
1631 if (bio_flags & EXTENT_BIO_COMPRESSED)
1632 return 0;
1633
4f024f37 1634 length = bio->bi_iter.bi_size;
239b14b3 1635 map_length = length;
64a16701 1636 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1637 &map_length, NULL, 0);
3ec706c8 1638 /* Will always return 0 with map_multi == NULL */
3444a972 1639 BUG_ON(ret < 0);
d397712b 1640 if (map_length < length + size)
239b14b3 1641 return 1;
3444a972 1642 return 0;
239b14b3
CM
1643}
1644
d352ac68
CM
1645/*
1646 * in order to insert checksums into the metadata in large chunks,
1647 * we wait until bio submission time. All the pages in the bio are
1648 * checksummed and sums are attached onto the ordered extent record.
1649 *
1650 * At IO completion time the cums attached on the ordered extent record
1651 * are inserted into the btree
1652 */
d397712b
CM
1653static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1654 struct bio *bio, int mirror_num,
eaf25d93
CM
1655 unsigned long bio_flags,
1656 u64 bio_offset)
065631f6 1657{
065631f6 1658 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1659 int ret = 0;
e015640f 1660
d20f7043 1661 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1662 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1663 return 0;
1664}
e015640f 1665
4a69a410
CM
1666/*
1667 * in order to insert checksums into the metadata in large chunks,
1668 * we wait until bio submission time. All the pages in the bio are
1669 * checksummed and sums are attached onto the ordered extent record.
1670 *
1671 * At IO completion time the cums attached on the ordered extent record
1672 * are inserted into the btree
1673 */
b2950863 1674static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1675 int mirror_num, unsigned long bio_flags,
1676 u64 bio_offset)
4a69a410
CM
1677{
1678 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1679 int ret;
1680
1681 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1682 if (ret)
1683 bio_endio(bio, ret);
1684 return ret;
44b8bd7e
CM
1685}
1686
d352ac68 1687/*
cad321ad
CM
1688 * extent_io.c submission hook. This does the right thing for csum calculation
1689 * on write, or reading the csums from the tree before a read
d352ac68 1690 */
b2950863 1691static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1692 int mirror_num, unsigned long bio_flags,
1693 u64 bio_offset)
44b8bd7e
CM
1694{
1695 struct btrfs_root *root = BTRFS_I(inode)->root;
1696 int ret = 0;
19b9bdb0 1697 int skip_sum;
0417341e 1698 int metadata = 0;
b812ce28 1699 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1700
6cbff00f 1701 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1702
83eea1f1 1703 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1704 metadata = 2;
1705
7b6d91da 1706 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1707 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1708 if (ret)
61891923 1709 goto out;
5fd02043 1710
d20f7043 1711 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1712 ret = btrfs_submit_compressed_read(inode, bio,
1713 mirror_num,
1714 bio_flags);
1715 goto out;
c2db1073
TI
1716 } else if (!skip_sum) {
1717 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1718 if (ret)
61891923 1719 goto out;
c2db1073 1720 }
4d1b5fb4 1721 goto mapit;
b812ce28 1722 } else if (async && !skip_sum) {
17d217fe
YZ
1723 /* csum items have already been cloned */
1724 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1725 goto mapit;
19b9bdb0 1726 /* we're doing a write, do the async checksumming */
61891923 1727 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1728 inode, rw, bio, mirror_num,
eaf25d93
CM
1729 bio_flags, bio_offset,
1730 __btrfs_submit_bio_start,
4a69a410 1731 __btrfs_submit_bio_done);
61891923 1732 goto out;
b812ce28
JB
1733 } else if (!skip_sum) {
1734 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1735 if (ret)
1736 goto out;
19b9bdb0
CM
1737 }
1738
0b86a832 1739mapit:
61891923
SB
1740 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1741
1742out:
1743 if (ret < 0)
1744 bio_endio(bio, ret);
1745 return ret;
065631f6 1746}
6885f308 1747
d352ac68
CM
1748/*
1749 * given a list of ordered sums record them in the inode. This happens
1750 * at IO completion time based on sums calculated at bio submission time.
1751 */
ba1da2f4 1752static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1753 struct inode *inode, u64 file_offset,
1754 struct list_head *list)
1755{
e6dcd2dc
CM
1756 struct btrfs_ordered_sum *sum;
1757
c6e30871 1758 list_for_each_entry(sum, list, list) {
39847c4d 1759 trans->adding_csums = 1;
d20f7043
CM
1760 btrfs_csum_file_blocks(trans,
1761 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1762 trans->adding_csums = 0;
e6dcd2dc
CM
1763 }
1764 return 0;
1765}
1766
2ac55d41
JB
1767int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1768 struct extent_state **cached_state)
ea8c2819 1769{
6c1500f2 1770 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1771 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1772 cached_state, GFP_NOFS);
ea8c2819
CM
1773}
1774
d352ac68 1775/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1776struct btrfs_writepage_fixup {
1777 struct page *page;
1778 struct btrfs_work work;
1779};
1780
b2950863 1781static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1782{
1783 struct btrfs_writepage_fixup *fixup;
1784 struct btrfs_ordered_extent *ordered;
2ac55d41 1785 struct extent_state *cached_state = NULL;
247e743c
CM
1786 struct page *page;
1787 struct inode *inode;
1788 u64 page_start;
1789 u64 page_end;
87826df0 1790 int ret;
247e743c
CM
1791
1792 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1793 page = fixup->page;
4a096752 1794again:
247e743c
CM
1795 lock_page(page);
1796 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1797 ClearPageChecked(page);
1798 goto out_page;
1799 }
1800
1801 inode = page->mapping->host;
1802 page_start = page_offset(page);
1803 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1804
2ac55d41 1805 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1806 &cached_state);
4a096752
CM
1807
1808 /* already ordered? We're done */
8b62b72b 1809 if (PagePrivate2(page))
247e743c 1810 goto out;
4a096752
CM
1811
1812 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1813 if (ordered) {
2ac55d41
JB
1814 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1815 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1816 unlock_page(page);
1817 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1818 btrfs_put_ordered_extent(ordered);
4a096752
CM
1819 goto again;
1820 }
247e743c 1821
87826df0
JM
1822 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1823 if (ret) {
1824 mapping_set_error(page->mapping, ret);
1825 end_extent_writepage(page, ret, page_start, page_end);
1826 ClearPageChecked(page);
1827 goto out;
1828 }
1829
2ac55d41 1830 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1831 ClearPageChecked(page);
87826df0 1832 set_page_dirty(page);
247e743c 1833out:
2ac55d41
JB
1834 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1835 &cached_state, GFP_NOFS);
247e743c
CM
1836out_page:
1837 unlock_page(page);
1838 page_cache_release(page);
b897abec 1839 kfree(fixup);
247e743c
CM
1840}
1841
1842/*
1843 * There are a few paths in the higher layers of the kernel that directly
1844 * set the page dirty bit without asking the filesystem if it is a
1845 * good idea. This causes problems because we want to make sure COW
1846 * properly happens and the data=ordered rules are followed.
1847 *
c8b97818 1848 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1849 * hasn't been properly setup for IO. We kick off an async process
1850 * to fix it up. The async helper will wait for ordered extents, set
1851 * the delalloc bit and make it safe to write the page.
1852 */
b2950863 1853static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1854{
1855 struct inode *inode = page->mapping->host;
1856 struct btrfs_writepage_fixup *fixup;
1857 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1858
8b62b72b
CM
1859 /* this page is properly in the ordered list */
1860 if (TestClearPagePrivate2(page))
247e743c
CM
1861 return 0;
1862
1863 if (PageChecked(page))
1864 return -EAGAIN;
1865
1866 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1867 if (!fixup)
1868 return -EAGAIN;
f421950f 1869
247e743c
CM
1870 SetPageChecked(page);
1871 page_cache_get(page);
dc6e3209 1872 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 1873 fixup->page = page;
dc6e3209 1874 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 1875 return -EBUSY;
247e743c
CM
1876}
1877
d899e052
YZ
1878static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1879 struct inode *inode, u64 file_pos,
1880 u64 disk_bytenr, u64 disk_num_bytes,
1881 u64 num_bytes, u64 ram_bytes,
1882 u8 compression, u8 encryption,
1883 u16 other_encoding, int extent_type)
1884{
1885 struct btrfs_root *root = BTRFS_I(inode)->root;
1886 struct btrfs_file_extent_item *fi;
1887 struct btrfs_path *path;
1888 struct extent_buffer *leaf;
1889 struct btrfs_key ins;
1acae57b 1890 int extent_inserted = 0;
d899e052
YZ
1891 int ret;
1892
1893 path = btrfs_alloc_path();
d8926bb3
MF
1894 if (!path)
1895 return -ENOMEM;
d899e052 1896
a1ed835e
CM
1897 /*
1898 * we may be replacing one extent in the tree with another.
1899 * The new extent is pinned in the extent map, and we don't want
1900 * to drop it from the cache until it is completely in the btree.
1901 *
1902 * So, tell btrfs_drop_extents to leave this extent in the cache.
1903 * the caller is expected to unpin it and allow it to be merged
1904 * with the others.
1905 */
1acae57b
FDBM
1906 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1907 file_pos + num_bytes, NULL, 0,
1908 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
1909 if (ret)
1910 goto out;
d899e052 1911
1acae57b
FDBM
1912 if (!extent_inserted) {
1913 ins.objectid = btrfs_ino(inode);
1914 ins.offset = file_pos;
1915 ins.type = BTRFS_EXTENT_DATA_KEY;
1916
1917 path->leave_spinning = 1;
1918 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1919 sizeof(*fi));
1920 if (ret)
1921 goto out;
1922 }
d899e052
YZ
1923 leaf = path->nodes[0];
1924 fi = btrfs_item_ptr(leaf, path->slots[0],
1925 struct btrfs_file_extent_item);
1926 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1927 btrfs_set_file_extent_type(leaf, fi, extent_type);
1928 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1929 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1930 btrfs_set_file_extent_offset(leaf, fi, 0);
1931 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1932 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1933 btrfs_set_file_extent_compression(leaf, fi, compression);
1934 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1935 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1936
d899e052 1937 btrfs_mark_buffer_dirty(leaf);
ce195332 1938 btrfs_release_path(path);
d899e052
YZ
1939
1940 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1941
1942 ins.objectid = disk_bytenr;
1943 ins.offset = disk_num_bytes;
1944 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1945 ret = btrfs_alloc_reserved_file_extent(trans, root,
1946 root->root_key.objectid,
33345d01 1947 btrfs_ino(inode), file_pos, &ins);
79787eaa 1948out:
d899e052 1949 btrfs_free_path(path);
b9473439 1950
79787eaa 1951 return ret;
d899e052
YZ
1952}
1953
38c227d8
LB
1954/* snapshot-aware defrag */
1955struct sa_defrag_extent_backref {
1956 struct rb_node node;
1957 struct old_sa_defrag_extent *old;
1958 u64 root_id;
1959 u64 inum;
1960 u64 file_pos;
1961 u64 extent_offset;
1962 u64 num_bytes;
1963 u64 generation;
1964};
1965
1966struct old_sa_defrag_extent {
1967 struct list_head list;
1968 struct new_sa_defrag_extent *new;
1969
1970 u64 extent_offset;
1971 u64 bytenr;
1972 u64 offset;
1973 u64 len;
1974 int count;
1975};
1976
1977struct new_sa_defrag_extent {
1978 struct rb_root root;
1979 struct list_head head;
1980 struct btrfs_path *path;
1981 struct inode *inode;
1982 u64 file_pos;
1983 u64 len;
1984 u64 bytenr;
1985 u64 disk_len;
1986 u8 compress_type;
1987};
1988
1989static int backref_comp(struct sa_defrag_extent_backref *b1,
1990 struct sa_defrag_extent_backref *b2)
1991{
1992 if (b1->root_id < b2->root_id)
1993 return -1;
1994 else if (b1->root_id > b2->root_id)
1995 return 1;
1996
1997 if (b1->inum < b2->inum)
1998 return -1;
1999 else if (b1->inum > b2->inum)
2000 return 1;
2001
2002 if (b1->file_pos < b2->file_pos)
2003 return -1;
2004 else if (b1->file_pos > b2->file_pos)
2005 return 1;
2006
2007 /*
2008 * [------------------------------] ===> (a range of space)
2009 * |<--->| |<---->| =============> (fs/file tree A)
2010 * |<---------------------------->| ===> (fs/file tree B)
2011 *
2012 * A range of space can refer to two file extents in one tree while
2013 * refer to only one file extent in another tree.
2014 *
2015 * So we may process a disk offset more than one time(two extents in A)
2016 * and locate at the same extent(one extent in B), then insert two same
2017 * backrefs(both refer to the extent in B).
2018 */
2019 return 0;
2020}
2021
2022static void backref_insert(struct rb_root *root,
2023 struct sa_defrag_extent_backref *backref)
2024{
2025 struct rb_node **p = &root->rb_node;
2026 struct rb_node *parent = NULL;
2027 struct sa_defrag_extent_backref *entry;
2028 int ret;
2029
2030 while (*p) {
2031 parent = *p;
2032 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2033
2034 ret = backref_comp(backref, entry);
2035 if (ret < 0)
2036 p = &(*p)->rb_left;
2037 else
2038 p = &(*p)->rb_right;
2039 }
2040
2041 rb_link_node(&backref->node, parent, p);
2042 rb_insert_color(&backref->node, root);
2043}
2044
2045/*
2046 * Note the backref might has changed, and in this case we just return 0.
2047 */
2048static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2049 void *ctx)
2050{
2051 struct btrfs_file_extent_item *extent;
2052 struct btrfs_fs_info *fs_info;
2053 struct old_sa_defrag_extent *old = ctx;
2054 struct new_sa_defrag_extent *new = old->new;
2055 struct btrfs_path *path = new->path;
2056 struct btrfs_key key;
2057 struct btrfs_root *root;
2058 struct sa_defrag_extent_backref *backref;
2059 struct extent_buffer *leaf;
2060 struct inode *inode = new->inode;
2061 int slot;
2062 int ret;
2063 u64 extent_offset;
2064 u64 num_bytes;
2065
2066 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2067 inum == btrfs_ino(inode))
2068 return 0;
2069
2070 key.objectid = root_id;
2071 key.type = BTRFS_ROOT_ITEM_KEY;
2072 key.offset = (u64)-1;
2073
2074 fs_info = BTRFS_I(inode)->root->fs_info;
2075 root = btrfs_read_fs_root_no_name(fs_info, &key);
2076 if (IS_ERR(root)) {
2077 if (PTR_ERR(root) == -ENOENT)
2078 return 0;
2079 WARN_ON(1);
2080 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2081 inum, offset, root_id);
2082 return PTR_ERR(root);
2083 }
2084
2085 key.objectid = inum;
2086 key.type = BTRFS_EXTENT_DATA_KEY;
2087 if (offset > (u64)-1 << 32)
2088 key.offset = 0;
2089 else
2090 key.offset = offset;
2091
2092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2093 if (WARN_ON(ret < 0))
38c227d8 2094 return ret;
50f1319c 2095 ret = 0;
38c227d8
LB
2096
2097 while (1) {
2098 cond_resched();
2099
2100 leaf = path->nodes[0];
2101 slot = path->slots[0];
2102
2103 if (slot >= btrfs_header_nritems(leaf)) {
2104 ret = btrfs_next_leaf(root, path);
2105 if (ret < 0) {
2106 goto out;
2107 } else if (ret > 0) {
2108 ret = 0;
2109 goto out;
2110 }
2111 continue;
2112 }
2113
2114 path->slots[0]++;
2115
2116 btrfs_item_key_to_cpu(leaf, &key, slot);
2117
2118 if (key.objectid > inum)
2119 goto out;
2120
2121 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2122 continue;
2123
2124 extent = btrfs_item_ptr(leaf, slot,
2125 struct btrfs_file_extent_item);
2126
2127 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2128 continue;
2129
e68afa49
LB
2130 /*
2131 * 'offset' refers to the exact key.offset,
2132 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2133 * (key.offset - extent_offset).
2134 */
2135 if (key.offset != offset)
38c227d8
LB
2136 continue;
2137
e68afa49 2138 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2139 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2140
38c227d8
LB
2141 if (extent_offset >= old->extent_offset + old->offset +
2142 old->len || extent_offset + num_bytes <=
2143 old->extent_offset + old->offset)
2144 continue;
38c227d8
LB
2145 break;
2146 }
2147
2148 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2149 if (!backref) {
2150 ret = -ENOENT;
2151 goto out;
2152 }
2153
2154 backref->root_id = root_id;
2155 backref->inum = inum;
e68afa49 2156 backref->file_pos = offset;
38c227d8
LB
2157 backref->num_bytes = num_bytes;
2158 backref->extent_offset = extent_offset;
2159 backref->generation = btrfs_file_extent_generation(leaf, extent);
2160 backref->old = old;
2161 backref_insert(&new->root, backref);
2162 old->count++;
2163out:
2164 btrfs_release_path(path);
2165 WARN_ON(ret);
2166 return ret;
2167}
2168
2169static noinline bool record_extent_backrefs(struct btrfs_path *path,
2170 struct new_sa_defrag_extent *new)
2171{
2172 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2173 struct old_sa_defrag_extent *old, *tmp;
2174 int ret;
2175
2176 new->path = path;
2177
2178 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2179 ret = iterate_inodes_from_logical(old->bytenr +
2180 old->extent_offset, fs_info,
38c227d8
LB
2181 path, record_one_backref,
2182 old);
4724b106
JB
2183 if (ret < 0 && ret != -ENOENT)
2184 return false;
38c227d8
LB
2185
2186 /* no backref to be processed for this extent */
2187 if (!old->count) {
2188 list_del(&old->list);
2189 kfree(old);
2190 }
2191 }
2192
2193 if (list_empty(&new->head))
2194 return false;
2195
2196 return true;
2197}
2198
2199static int relink_is_mergable(struct extent_buffer *leaf,
2200 struct btrfs_file_extent_item *fi,
116e0024 2201 struct new_sa_defrag_extent *new)
38c227d8 2202{
116e0024 2203 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2204 return 0;
2205
2206 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2207 return 0;
2208
116e0024
LB
2209 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2210 return 0;
2211
2212 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2213 btrfs_file_extent_other_encoding(leaf, fi))
2214 return 0;
2215
2216 return 1;
2217}
2218
2219/*
2220 * Note the backref might has changed, and in this case we just return 0.
2221 */
2222static noinline int relink_extent_backref(struct btrfs_path *path,
2223 struct sa_defrag_extent_backref *prev,
2224 struct sa_defrag_extent_backref *backref)
2225{
2226 struct btrfs_file_extent_item *extent;
2227 struct btrfs_file_extent_item *item;
2228 struct btrfs_ordered_extent *ordered;
2229 struct btrfs_trans_handle *trans;
2230 struct btrfs_fs_info *fs_info;
2231 struct btrfs_root *root;
2232 struct btrfs_key key;
2233 struct extent_buffer *leaf;
2234 struct old_sa_defrag_extent *old = backref->old;
2235 struct new_sa_defrag_extent *new = old->new;
2236 struct inode *src_inode = new->inode;
2237 struct inode *inode;
2238 struct extent_state *cached = NULL;
2239 int ret = 0;
2240 u64 start;
2241 u64 len;
2242 u64 lock_start;
2243 u64 lock_end;
2244 bool merge = false;
2245 int index;
2246
2247 if (prev && prev->root_id == backref->root_id &&
2248 prev->inum == backref->inum &&
2249 prev->file_pos + prev->num_bytes == backref->file_pos)
2250 merge = true;
2251
2252 /* step 1: get root */
2253 key.objectid = backref->root_id;
2254 key.type = BTRFS_ROOT_ITEM_KEY;
2255 key.offset = (u64)-1;
2256
2257 fs_info = BTRFS_I(src_inode)->root->fs_info;
2258 index = srcu_read_lock(&fs_info->subvol_srcu);
2259
2260 root = btrfs_read_fs_root_no_name(fs_info, &key);
2261 if (IS_ERR(root)) {
2262 srcu_read_unlock(&fs_info->subvol_srcu, index);
2263 if (PTR_ERR(root) == -ENOENT)
2264 return 0;
2265 return PTR_ERR(root);
2266 }
38c227d8 2267
bcbba5e6
WS
2268 if (btrfs_root_readonly(root)) {
2269 srcu_read_unlock(&fs_info->subvol_srcu, index);
2270 return 0;
2271 }
2272
38c227d8
LB
2273 /* step 2: get inode */
2274 key.objectid = backref->inum;
2275 key.type = BTRFS_INODE_ITEM_KEY;
2276 key.offset = 0;
2277
2278 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2279 if (IS_ERR(inode)) {
2280 srcu_read_unlock(&fs_info->subvol_srcu, index);
2281 return 0;
2282 }
2283
2284 srcu_read_unlock(&fs_info->subvol_srcu, index);
2285
2286 /* step 3: relink backref */
2287 lock_start = backref->file_pos;
2288 lock_end = backref->file_pos + backref->num_bytes - 1;
2289 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2290 0, &cached);
2291
2292 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2293 if (ordered) {
2294 btrfs_put_ordered_extent(ordered);
2295 goto out_unlock;
2296 }
2297
2298 trans = btrfs_join_transaction(root);
2299 if (IS_ERR(trans)) {
2300 ret = PTR_ERR(trans);
2301 goto out_unlock;
2302 }
2303
2304 key.objectid = backref->inum;
2305 key.type = BTRFS_EXTENT_DATA_KEY;
2306 key.offset = backref->file_pos;
2307
2308 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2309 if (ret < 0) {
2310 goto out_free_path;
2311 } else if (ret > 0) {
2312 ret = 0;
2313 goto out_free_path;
2314 }
2315
2316 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2317 struct btrfs_file_extent_item);
2318
2319 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2320 backref->generation)
2321 goto out_free_path;
2322
2323 btrfs_release_path(path);
2324
2325 start = backref->file_pos;
2326 if (backref->extent_offset < old->extent_offset + old->offset)
2327 start += old->extent_offset + old->offset -
2328 backref->extent_offset;
2329
2330 len = min(backref->extent_offset + backref->num_bytes,
2331 old->extent_offset + old->offset + old->len);
2332 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2333
2334 ret = btrfs_drop_extents(trans, root, inode, start,
2335 start + len, 1);
2336 if (ret)
2337 goto out_free_path;
2338again:
2339 key.objectid = btrfs_ino(inode);
2340 key.type = BTRFS_EXTENT_DATA_KEY;
2341 key.offset = start;
2342
a09a0a70 2343 path->leave_spinning = 1;
38c227d8
LB
2344 if (merge) {
2345 struct btrfs_file_extent_item *fi;
2346 u64 extent_len;
2347 struct btrfs_key found_key;
2348
3c9665df 2349 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2350 if (ret < 0)
2351 goto out_free_path;
2352
2353 path->slots[0]--;
2354 leaf = path->nodes[0];
2355 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2356
2357 fi = btrfs_item_ptr(leaf, path->slots[0],
2358 struct btrfs_file_extent_item);
2359 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2360
116e0024
LB
2361 if (extent_len + found_key.offset == start &&
2362 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2363 btrfs_set_file_extent_num_bytes(leaf, fi,
2364 extent_len + len);
2365 btrfs_mark_buffer_dirty(leaf);
2366 inode_add_bytes(inode, len);
2367
2368 ret = 1;
2369 goto out_free_path;
2370 } else {
2371 merge = false;
2372 btrfs_release_path(path);
2373 goto again;
2374 }
2375 }
2376
2377 ret = btrfs_insert_empty_item(trans, root, path, &key,
2378 sizeof(*extent));
2379 if (ret) {
2380 btrfs_abort_transaction(trans, root, ret);
2381 goto out_free_path;
2382 }
2383
2384 leaf = path->nodes[0];
2385 item = btrfs_item_ptr(leaf, path->slots[0],
2386 struct btrfs_file_extent_item);
2387 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2388 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2389 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2390 btrfs_set_file_extent_num_bytes(leaf, item, len);
2391 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2392 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2393 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2394 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2395 btrfs_set_file_extent_encryption(leaf, item, 0);
2396 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2397
2398 btrfs_mark_buffer_dirty(leaf);
2399 inode_add_bytes(inode, len);
a09a0a70 2400 btrfs_release_path(path);
38c227d8
LB
2401
2402 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2403 new->disk_len, 0,
2404 backref->root_id, backref->inum,
2405 new->file_pos, 0); /* start - extent_offset */
2406 if (ret) {
2407 btrfs_abort_transaction(trans, root, ret);
2408 goto out_free_path;
2409 }
2410
2411 ret = 1;
2412out_free_path:
2413 btrfs_release_path(path);
a09a0a70 2414 path->leave_spinning = 0;
38c227d8
LB
2415 btrfs_end_transaction(trans, root);
2416out_unlock:
2417 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2418 &cached, GFP_NOFS);
2419 iput(inode);
2420 return ret;
2421}
2422
6f519564
LB
2423static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2424{
2425 struct old_sa_defrag_extent *old, *tmp;
2426
2427 if (!new)
2428 return;
2429
2430 list_for_each_entry_safe(old, tmp, &new->head, list) {
2431 list_del(&old->list);
2432 kfree(old);
2433 }
2434 kfree(new);
2435}
2436
38c227d8
LB
2437static void relink_file_extents(struct new_sa_defrag_extent *new)
2438{
2439 struct btrfs_path *path;
38c227d8
LB
2440 struct sa_defrag_extent_backref *backref;
2441 struct sa_defrag_extent_backref *prev = NULL;
2442 struct inode *inode;
2443 struct btrfs_root *root;
2444 struct rb_node *node;
2445 int ret;
2446
2447 inode = new->inode;
2448 root = BTRFS_I(inode)->root;
2449
2450 path = btrfs_alloc_path();
2451 if (!path)
2452 return;
2453
2454 if (!record_extent_backrefs(path, new)) {
2455 btrfs_free_path(path);
2456 goto out;
2457 }
2458 btrfs_release_path(path);
2459
2460 while (1) {
2461 node = rb_first(&new->root);
2462 if (!node)
2463 break;
2464 rb_erase(node, &new->root);
2465
2466 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2467
2468 ret = relink_extent_backref(path, prev, backref);
2469 WARN_ON(ret < 0);
2470
2471 kfree(prev);
2472
2473 if (ret == 1)
2474 prev = backref;
2475 else
2476 prev = NULL;
2477 cond_resched();
2478 }
2479 kfree(prev);
2480
2481 btrfs_free_path(path);
38c227d8 2482out:
6f519564
LB
2483 free_sa_defrag_extent(new);
2484
38c227d8
LB
2485 atomic_dec(&root->fs_info->defrag_running);
2486 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2487}
2488
2489static struct new_sa_defrag_extent *
2490record_old_file_extents(struct inode *inode,
2491 struct btrfs_ordered_extent *ordered)
2492{
2493 struct btrfs_root *root = BTRFS_I(inode)->root;
2494 struct btrfs_path *path;
2495 struct btrfs_key key;
6f519564 2496 struct old_sa_defrag_extent *old;
38c227d8
LB
2497 struct new_sa_defrag_extent *new;
2498 int ret;
2499
2500 new = kmalloc(sizeof(*new), GFP_NOFS);
2501 if (!new)
2502 return NULL;
2503
2504 new->inode = inode;
2505 new->file_pos = ordered->file_offset;
2506 new->len = ordered->len;
2507 new->bytenr = ordered->start;
2508 new->disk_len = ordered->disk_len;
2509 new->compress_type = ordered->compress_type;
2510 new->root = RB_ROOT;
2511 INIT_LIST_HEAD(&new->head);
2512
2513 path = btrfs_alloc_path();
2514 if (!path)
2515 goto out_kfree;
2516
2517 key.objectid = btrfs_ino(inode);
2518 key.type = BTRFS_EXTENT_DATA_KEY;
2519 key.offset = new->file_pos;
2520
2521 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2522 if (ret < 0)
2523 goto out_free_path;
2524 if (ret > 0 && path->slots[0] > 0)
2525 path->slots[0]--;
2526
2527 /* find out all the old extents for the file range */
2528 while (1) {
2529 struct btrfs_file_extent_item *extent;
2530 struct extent_buffer *l;
2531 int slot;
2532 u64 num_bytes;
2533 u64 offset;
2534 u64 end;
2535 u64 disk_bytenr;
2536 u64 extent_offset;
2537
2538 l = path->nodes[0];
2539 slot = path->slots[0];
2540
2541 if (slot >= btrfs_header_nritems(l)) {
2542 ret = btrfs_next_leaf(root, path);
2543 if (ret < 0)
6f519564 2544 goto out_free_path;
38c227d8
LB
2545 else if (ret > 0)
2546 break;
2547 continue;
2548 }
2549
2550 btrfs_item_key_to_cpu(l, &key, slot);
2551
2552 if (key.objectid != btrfs_ino(inode))
2553 break;
2554 if (key.type != BTRFS_EXTENT_DATA_KEY)
2555 break;
2556 if (key.offset >= new->file_pos + new->len)
2557 break;
2558
2559 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2560
2561 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2562 if (key.offset + num_bytes < new->file_pos)
2563 goto next;
2564
2565 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2566 if (!disk_bytenr)
2567 goto next;
2568
2569 extent_offset = btrfs_file_extent_offset(l, extent);
2570
2571 old = kmalloc(sizeof(*old), GFP_NOFS);
2572 if (!old)
6f519564 2573 goto out_free_path;
38c227d8
LB
2574
2575 offset = max(new->file_pos, key.offset);
2576 end = min(new->file_pos + new->len, key.offset + num_bytes);
2577
2578 old->bytenr = disk_bytenr;
2579 old->extent_offset = extent_offset;
2580 old->offset = offset - key.offset;
2581 old->len = end - offset;
2582 old->new = new;
2583 old->count = 0;
2584 list_add_tail(&old->list, &new->head);
2585next:
2586 path->slots[0]++;
2587 cond_resched();
2588 }
2589
2590 btrfs_free_path(path);
2591 atomic_inc(&root->fs_info->defrag_running);
2592
2593 return new;
2594
38c227d8
LB
2595out_free_path:
2596 btrfs_free_path(path);
2597out_kfree:
6f519564 2598 free_sa_defrag_extent(new);
38c227d8
LB
2599 return NULL;
2600}
2601
d352ac68
CM
2602/* as ordered data IO finishes, this gets called so we can finish
2603 * an ordered extent if the range of bytes in the file it covers are
2604 * fully written.
2605 */
5fd02043 2606static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2607{
5fd02043 2608 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2609 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2610 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2611 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2612 struct extent_state *cached_state = NULL;
38c227d8 2613 struct new_sa_defrag_extent *new = NULL;
261507a0 2614 int compress_type = 0;
77cef2ec
JB
2615 int ret = 0;
2616 u64 logical_len = ordered_extent->len;
82d5902d 2617 bool nolock;
77cef2ec 2618 bool truncated = false;
e6dcd2dc 2619
83eea1f1 2620 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2621
5fd02043
JB
2622 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2623 ret = -EIO;
2624 goto out;
2625 }
2626
77cef2ec
JB
2627 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2628 truncated = true;
2629 logical_len = ordered_extent->truncated_len;
2630 /* Truncated the entire extent, don't bother adding */
2631 if (!logical_len)
2632 goto out;
2633 }
2634
c2167754 2635 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2636 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2637 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2638 if (nolock)
2639 trans = btrfs_join_transaction_nolock(root);
2640 else
2641 trans = btrfs_join_transaction(root);
2642 if (IS_ERR(trans)) {
2643 ret = PTR_ERR(trans);
2644 trans = NULL;
2645 goto out;
c2167754 2646 }
6c760c07
JB
2647 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2648 ret = btrfs_update_inode_fallback(trans, root, inode);
2649 if (ret) /* -ENOMEM or corruption */
2650 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2651 goto out;
2652 }
e6dcd2dc 2653
2ac55d41
JB
2654 lock_extent_bits(io_tree, ordered_extent->file_offset,
2655 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2656 0, &cached_state);
e6dcd2dc 2657
38c227d8
LB
2658 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2659 ordered_extent->file_offset + ordered_extent->len - 1,
2660 EXTENT_DEFRAG, 1, cached_state);
2661 if (ret) {
2662 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2663 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2664 /* the inode is shared */
2665 new = record_old_file_extents(inode, ordered_extent);
2666
2667 clear_extent_bit(io_tree, ordered_extent->file_offset,
2668 ordered_extent->file_offset + ordered_extent->len - 1,
2669 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2670 }
2671
0cb59c99 2672 if (nolock)
7a7eaa40 2673 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2674 else
7a7eaa40 2675 trans = btrfs_join_transaction(root);
79787eaa
JM
2676 if (IS_ERR(trans)) {
2677 ret = PTR_ERR(trans);
2678 trans = NULL;
2679 goto out_unlock;
2680 }
a79b7d4b 2681
0ca1f7ce 2682 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2683
c8b97818 2684 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2685 compress_type = ordered_extent->compress_type;
d899e052 2686 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2687 BUG_ON(compress_type);
920bbbfb 2688 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2689 ordered_extent->file_offset,
2690 ordered_extent->file_offset +
77cef2ec 2691 logical_len);
d899e052 2692 } else {
0af3d00b 2693 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2694 ret = insert_reserved_file_extent(trans, inode,
2695 ordered_extent->file_offset,
2696 ordered_extent->start,
2697 ordered_extent->disk_len,
77cef2ec 2698 logical_len, logical_len,
261507a0 2699 compress_type, 0, 0,
d899e052 2700 BTRFS_FILE_EXTENT_REG);
d899e052 2701 }
5dc562c5
JB
2702 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2703 ordered_extent->file_offset, ordered_extent->len,
2704 trans->transid);
79787eaa
JM
2705 if (ret < 0) {
2706 btrfs_abort_transaction(trans, root, ret);
5fd02043 2707 goto out_unlock;
79787eaa 2708 }
2ac55d41 2709
e6dcd2dc
CM
2710 add_pending_csums(trans, inode, ordered_extent->file_offset,
2711 &ordered_extent->list);
2712
6c760c07
JB
2713 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2714 ret = btrfs_update_inode_fallback(trans, root, inode);
2715 if (ret) { /* -ENOMEM or corruption */
2716 btrfs_abort_transaction(trans, root, ret);
2717 goto out_unlock;
1ef30be1
JB
2718 }
2719 ret = 0;
5fd02043
JB
2720out_unlock:
2721 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2722 ordered_extent->file_offset +
2723 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2724out:
5b0e95bf 2725 if (root != root->fs_info->tree_root)
0cb59c99 2726 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2727 if (trans)
2728 btrfs_end_transaction(trans, root);
0cb59c99 2729
77cef2ec
JB
2730 if (ret || truncated) {
2731 u64 start, end;
2732
2733 if (truncated)
2734 start = ordered_extent->file_offset + logical_len;
2735 else
2736 start = ordered_extent->file_offset;
2737 end = ordered_extent->file_offset + ordered_extent->len - 1;
2738 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2739
2740 /* Drop the cache for the part of the extent we didn't write. */
2741 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2742
0bec9ef5
JB
2743 /*
2744 * If the ordered extent had an IOERR or something else went
2745 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2746 * back to the allocator. We only free the extent in the
2747 * truncated case if we didn't write out the extent at all.
0bec9ef5 2748 */
77cef2ec
JB
2749 if ((ret || !logical_len) &&
2750 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2751 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2752 btrfs_free_reserved_extent(root, ordered_extent->start,
2753 ordered_extent->disk_len);
2754 }
2755
2756
5fd02043 2757 /*
8bad3c02
LB
2758 * This needs to be done to make sure anybody waiting knows we are done
2759 * updating everything for this ordered extent.
5fd02043
JB
2760 */
2761 btrfs_remove_ordered_extent(inode, ordered_extent);
2762
38c227d8 2763 /* for snapshot-aware defrag */
6f519564
LB
2764 if (new) {
2765 if (ret) {
2766 free_sa_defrag_extent(new);
2767 atomic_dec(&root->fs_info->defrag_running);
2768 } else {
2769 relink_file_extents(new);
2770 }
2771 }
38c227d8 2772
e6dcd2dc
CM
2773 /* once for us */
2774 btrfs_put_ordered_extent(ordered_extent);
2775 /* once for the tree */
2776 btrfs_put_ordered_extent(ordered_extent);
2777
5fd02043
JB
2778 return ret;
2779}
2780
2781static void finish_ordered_fn(struct btrfs_work *work)
2782{
2783 struct btrfs_ordered_extent *ordered_extent;
2784 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2785 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2786}
2787
b2950863 2788static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2789 struct extent_state *state, int uptodate)
2790{
5fd02043
JB
2791 struct inode *inode = page->mapping->host;
2792 struct btrfs_root *root = BTRFS_I(inode)->root;
2793 struct btrfs_ordered_extent *ordered_extent = NULL;
d458b054 2794 struct btrfs_workqueue *workers;
5fd02043 2795
1abe9b8a 2796 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2797
8b62b72b 2798 ClearPagePrivate2(page);
5fd02043
JB
2799 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2800 end - start + 1, uptodate))
2801 return 0;
2802
fccb5d86 2803 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
5fd02043 2804
83eea1f1 2805 if (btrfs_is_free_space_inode(inode))
fccb5d86 2806 workers = root->fs_info->endio_freespace_worker;
5fd02043 2807 else
fccb5d86
QW
2808 workers = root->fs_info->endio_write_workers;
2809 btrfs_queue_work(workers, &ordered_extent->work);
5fd02043
JB
2810
2811 return 0;
211f90e6
CM
2812}
2813
d352ac68
CM
2814/*
2815 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2816 * if there's a match, we allow the bio to finish. If not, the code in
2817 * extent_io.c will try to find good copies for us.
d352ac68 2818 */
facc8a22
MX
2819static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2820 u64 phy_offset, struct page *page,
2821 u64 start, u64 end, int mirror)
07157aac 2822{
4eee4fa4 2823 size_t offset = start - page_offset(page);
07157aac 2824 struct inode *inode = page->mapping->host;
d1310b2e 2825 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2826 char *kaddr;
ff79f819 2827 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2828 u32 csum_expected;
ff79f819 2829 u32 csum = ~(u32)0;
c2cf52eb
SK
2830 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2831 DEFAULT_RATELIMIT_BURST);
d1310b2e 2832
d20f7043
CM
2833 if (PageChecked(page)) {
2834 ClearPageChecked(page);
2835 goto good;
2836 }
6cbff00f
CH
2837
2838 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2839 goto good;
17d217fe
YZ
2840
2841 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2842 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2843 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2844 GFP_NOFS);
b6cda9bc 2845 return 0;
17d217fe 2846 }
d20f7043 2847
facc8a22
MX
2848 phy_offset >>= inode->i_sb->s_blocksize_bits;
2849 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2850
facc8a22 2851 kaddr = kmap_atomic(page);
b0496686 2852 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2853 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2854 if (csum != csum_expected)
07157aac 2855 goto zeroit;
d397712b 2856
7ac687d9 2857 kunmap_atomic(kaddr);
d20f7043 2858good:
07157aac
CM
2859 return 0;
2860
2861zeroit:
c2cf52eb 2862 if (__ratelimit(&_rs))
facc8a22 2863 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2864 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2865 memset(kaddr + offset, 1, end - start + 1);
2866 flush_dcache_page(page);
7ac687d9 2867 kunmap_atomic(kaddr);
facc8a22 2868 if (csum_expected == 0)
3b951516 2869 return 0;
7e38326f 2870 return -EIO;
07157aac 2871}
b888db2b 2872
24bbcf04
YZ
2873struct delayed_iput {
2874 struct list_head list;
2875 struct inode *inode;
2876};
2877
79787eaa
JM
2878/* JDM: If this is fs-wide, why can't we add a pointer to
2879 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2880void btrfs_add_delayed_iput(struct inode *inode)
2881{
2882 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2883 struct delayed_iput *delayed;
2884
2885 if (atomic_add_unless(&inode->i_count, -1, 1))
2886 return;
2887
2888 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2889 delayed->inode = inode;
2890
2891 spin_lock(&fs_info->delayed_iput_lock);
2892 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2893 spin_unlock(&fs_info->delayed_iput_lock);
2894}
2895
2896void btrfs_run_delayed_iputs(struct btrfs_root *root)
2897{
2898 LIST_HEAD(list);
2899 struct btrfs_fs_info *fs_info = root->fs_info;
2900 struct delayed_iput *delayed;
2901 int empty;
2902
2903 spin_lock(&fs_info->delayed_iput_lock);
2904 empty = list_empty(&fs_info->delayed_iputs);
2905 spin_unlock(&fs_info->delayed_iput_lock);
2906 if (empty)
2907 return;
2908
24bbcf04
YZ
2909 spin_lock(&fs_info->delayed_iput_lock);
2910 list_splice_init(&fs_info->delayed_iputs, &list);
2911 spin_unlock(&fs_info->delayed_iput_lock);
2912
2913 while (!list_empty(&list)) {
2914 delayed = list_entry(list.next, struct delayed_iput, list);
2915 list_del(&delayed->list);
2916 iput(delayed->inode);
2917 kfree(delayed);
2918 }
24bbcf04
YZ
2919}
2920
d68fc57b 2921/*
42b2aa86 2922 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2923 * files in the subvolume, it removes orphan item and frees block_rsv
2924 * structure.
2925 */
2926void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2927 struct btrfs_root *root)
2928{
90290e19 2929 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2930 int ret;
2931
8a35d95f 2932 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2933 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2934 return;
2935
90290e19 2936 spin_lock(&root->orphan_lock);
8a35d95f 2937 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2938 spin_unlock(&root->orphan_lock);
2939 return;
2940 }
2941
2942 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2943 spin_unlock(&root->orphan_lock);
2944 return;
2945 }
2946
2947 block_rsv = root->orphan_block_rsv;
2948 root->orphan_block_rsv = NULL;
2949 spin_unlock(&root->orphan_lock);
2950
27cdeb70 2951 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
2952 btrfs_root_refs(&root->root_item) > 0) {
2953 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2954 root->root_key.objectid);
4ef31a45
JB
2955 if (ret)
2956 btrfs_abort_transaction(trans, root, ret);
2957 else
27cdeb70
MX
2958 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
2959 &root->state);
d68fc57b
YZ
2960 }
2961
90290e19
JB
2962 if (block_rsv) {
2963 WARN_ON(block_rsv->size > 0);
2964 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2965 }
2966}
2967
7b128766
JB
2968/*
2969 * This creates an orphan entry for the given inode in case something goes
2970 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2971 *
2972 * NOTE: caller of this function should reserve 5 units of metadata for
2973 * this function.
7b128766
JB
2974 */
2975int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2976{
2977 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2978 struct btrfs_block_rsv *block_rsv = NULL;
2979 int reserve = 0;
2980 int insert = 0;
2981 int ret;
7b128766 2982
d68fc57b 2983 if (!root->orphan_block_rsv) {
66d8f3dd 2984 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2985 if (!block_rsv)
2986 return -ENOMEM;
d68fc57b 2987 }
7b128766 2988
d68fc57b
YZ
2989 spin_lock(&root->orphan_lock);
2990 if (!root->orphan_block_rsv) {
2991 root->orphan_block_rsv = block_rsv;
2992 } else if (block_rsv) {
2993 btrfs_free_block_rsv(root, block_rsv);
2994 block_rsv = NULL;
7b128766 2995 }
7b128766 2996
8a35d95f
JB
2997 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2998 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2999#if 0
3000 /*
3001 * For proper ENOSPC handling, we should do orphan
3002 * cleanup when mounting. But this introduces backward
3003 * compatibility issue.
3004 */
3005 if (!xchg(&root->orphan_item_inserted, 1))
3006 insert = 2;
3007 else
3008 insert = 1;
3009#endif
3010 insert = 1;
321f0e70 3011 atomic_inc(&root->orphan_inodes);
7b128766
JB
3012 }
3013
72ac3c0d
JB
3014 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3015 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3016 reserve = 1;
d68fc57b 3017 spin_unlock(&root->orphan_lock);
7b128766 3018
d68fc57b
YZ
3019 /* grab metadata reservation from transaction handle */
3020 if (reserve) {
3021 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3022 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3023 }
7b128766 3024
d68fc57b
YZ
3025 /* insert an orphan item to track this unlinked/truncated file */
3026 if (insert >= 1) {
33345d01 3027 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3028 if (ret) {
703c88e0 3029 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3030 if (reserve) {
3031 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3032 &BTRFS_I(inode)->runtime_flags);
3033 btrfs_orphan_release_metadata(inode);
3034 }
3035 if (ret != -EEXIST) {
e8e7cff6
JB
3036 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3037 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3038 btrfs_abort_transaction(trans, root, ret);
3039 return ret;
3040 }
79787eaa
JM
3041 }
3042 ret = 0;
d68fc57b
YZ
3043 }
3044
3045 /* insert an orphan item to track subvolume contains orphan files */
3046 if (insert >= 2) {
3047 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3048 root->root_key.objectid);
79787eaa
JM
3049 if (ret && ret != -EEXIST) {
3050 btrfs_abort_transaction(trans, root, ret);
3051 return ret;
3052 }
d68fc57b
YZ
3053 }
3054 return 0;
7b128766
JB
3055}
3056
3057/*
3058 * We have done the truncate/delete so we can go ahead and remove the orphan
3059 * item for this particular inode.
3060 */
48a3b636
ES
3061static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3062 struct inode *inode)
7b128766
JB
3063{
3064 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3065 int delete_item = 0;
3066 int release_rsv = 0;
7b128766
JB
3067 int ret = 0;
3068
d68fc57b 3069 spin_lock(&root->orphan_lock);
8a35d95f
JB
3070 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3071 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3072 delete_item = 1;
7b128766 3073
72ac3c0d
JB
3074 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3075 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3076 release_rsv = 1;
d68fc57b 3077 spin_unlock(&root->orphan_lock);
7b128766 3078
703c88e0 3079 if (delete_item) {
8a35d95f 3080 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3081 if (trans)
3082 ret = btrfs_del_orphan_item(trans, root,
3083 btrfs_ino(inode));
8a35d95f 3084 }
7b128766 3085
703c88e0
FDBM
3086 if (release_rsv)
3087 btrfs_orphan_release_metadata(inode);
3088
4ef31a45 3089 return ret;
7b128766
JB
3090}
3091
3092/*
3093 * this cleans up any orphans that may be left on the list from the last use
3094 * of this root.
3095 */
66b4ffd1 3096int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3097{
3098 struct btrfs_path *path;
3099 struct extent_buffer *leaf;
7b128766
JB
3100 struct btrfs_key key, found_key;
3101 struct btrfs_trans_handle *trans;
3102 struct inode *inode;
8f6d7f4f 3103 u64 last_objectid = 0;
7b128766
JB
3104 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3105
d68fc57b 3106 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3107 return 0;
c71bf099
YZ
3108
3109 path = btrfs_alloc_path();
66b4ffd1
JB
3110 if (!path) {
3111 ret = -ENOMEM;
3112 goto out;
3113 }
7b128766
JB
3114 path->reada = -1;
3115
3116 key.objectid = BTRFS_ORPHAN_OBJECTID;
3117 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3118 key.offset = (u64)-1;
3119
7b128766
JB
3120 while (1) {
3121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3122 if (ret < 0)
3123 goto out;
7b128766
JB
3124
3125 /*
3126 * if ret == 0 means we found what we were searching for, which
25985edc 3127 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3128 * find the key and see if we have stuff that matches
3129 */
3130 if (ret > 0) {
66b4ffd1 3131 ret = 0;
7b128766
JB
3132 if (path->slots[0] == 0)
3133 break;
3134 path->slots[0]--;
3135 }
3136
3137 /* pull out the item */
3138 leaf = path->nodes[0];
7b128766
JB
3139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3140
3141 /* make sure the item matches what we want */
3142 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3143 break;
3144 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3145 break;
3146
3147 /* release the path since we're done with it */
b3b4aa74 3148 btrfs_release_path(path);
7b128766
JB
3149
3150 /*
3151 * this is where we are basically btrfs_lookup, without the
3152 * crossing root thing. we store the inode number in the
3153 * offset of the orphan item.
3154 */
8f6d7f4f
JB
3155
3156 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3157 btrfs_err(root->fs_info,
3158 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3159 ret = -EINVAL;
3160 goto out;
3161 }
3162
3163 last_objectid = found_key.offset;
3164
5d4f98a2
YZ
3165 found_key.objectid = found_key.offset;
3166 found_key.type = BTRFS_INODE_ITEM_KEY;
3167 found_key.offset = 0;
73f73415 3168 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3169 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3170 if (ret && ret != -ESTALE)
66b4ffd1 3171 goto out;
7b128766 3172
f8e9e0b0
AJ
3173 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3174 struct btrfs_root *dead_root;
3175 struct btrfs_fs_info *fs_info = root->fs_info;
3176 int is_dead_root = 0;
3177
3178 /*
3179 * this is an orphan in the tree root. Currently these
3180 * could come from 2 sources:
3181 * a) a snapshot deletion in progress
3182 * b) a free space cache inode
3183 * We need to distinguish those two, as the snapshot
3184 * orphan must not get deleted.
3185 * find_dead_roots already ran before us, so if this
3186 * is a snapshot deletion, we should find the root
3187 * in the dead_roots list
3188 */
3189 spin_lock(&fs_info->trans_lock);
3190 list_for_each_entry(dead_root, &fs_info->dead_roots,
3191 root_list) {
3192 if (dead_root->root_key.objectid ==
3193 found_key.objectid) {
3194 is_dead_root = 1;
3195 break;
3196 }
3197 }
3198 spin_unlock(&fs_info->trans_lock);
3199 if (is_dead_root) {
3200 /* prevent this orphan from being found again */
3201 key.offset = found_key.objectid - 1;
3202 continue;
3203 }
3204 }
7b128766 3205 /*
a8c9e576
JB
3206 * Inode is already gone but the orphan item is still there,
3207 * kill the orphan item.
7b128766 3208 */
a8c9e576
JB
3209 if (ret == -ESTALE) {
3210 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3211 if (IS_ERR(trans)) {
3212 ret = PTR_ERR(trans);
3213 goto out;
3214 }
c2cf52eb
SK
3215 btrfs_debug(root->fs_info, "auto deleting %Lu",
3216 found_key.objectid);
a8c9e576
JB
3217 ret = btrfs_del_orphan_item(trans, root,
3218 found_key.objectid);
5b21f2ed 3219 btrfs_end_transaction(trans, root);
4ef31a45
JB
3220 if (ret)
3221 goto out;
7b128766
JB
3222 continue;
3223 }
3224
a8c9e576
JB
3225 /*
3226 * add this inode to the orphan list so btrfs_orphan_del does
3227 * the proper thing when we hit it
3228 */
8a35d95f
JB
3229 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3230 &BTRFS_I(inode)->runtime_flags);
925396ec 3231 atomic_inc(&root->orphan_inodes);
a8c9e576 3232
7b128766
JB
3233 /* if we have links, this was a truncate, lets do that */
3234 if (inode->i_nlink) {
fae7f21c 3235 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3236 iput(inode);
3237 continue;
3238 }
7b128766 3239 nr_truncate++;
f3fe820c
JB
3240
3241 /* 1 for the orphan item deletion. */
3242 trans = btrfs_start_transaction(root, 1);
3243 if (IS_ERR(trans)) {
c69b26b0 3244 iput(inode);
f3fe820c
JB
3245 ret = PTR_ERR(trans);
3246 goto out;
3247 }
3248 ret = btrfs_orphan_add(trans, inode);
3249 btrfs_end_transaction(trans, root);
c69b26b0
JB
3250 if (ret) {
3251 iput(inode);
f3fe820c 3252 goto out;
c69b26b0 3253 }
f3fe820c 3254
66b4ffd1 3255 ret = btrfs_truncate(inode);
4a7d0f68
JB
3256 if (ret)
3257 btrfs_orphan_del(NULL, inode);
7b128766
JB
3258 } else {
3259 nr_unlink++;
3260 }
3261
3262 /* this will do delete_inode and everything for us */
3263 iput(inode);
66b4ffd1
JB
3264 if (ret)
3265 goto out;
7b128766 3266 }
3254c876
MX
3267 /* release the path since we're done with it */
3268 btrfs_release_path(path);
3269
d68fc57b
YZ
3270 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3271
3272 if (root->orphan_block_rsv)
3273 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3274 (u64)-1);
3275
27cdeb70
MX
3276 if (root->orphan_block_rsv ||
3277 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3278 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3279 if (!IS_ERR(trans))
3280 btrfs_end_transaction(trans, root);
d68fc57b 3281 }
7b128766
JB
3282
3283 if (nr_unlink)
4884b476 3284 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3285 if (nr_truncate)
4884b476 3286 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3287
3288out:
3289 if (ret)
c2cf52eb
SK
3290 btrfs_crit(root->fs_info,
3291 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3292 btrfs_free_path(path);
3293 return ret;
7b128766
JB
3294}
3295
46a53cca
CM
3296/*
3297 * very simple check to peek ahead in the leaf looking for xattrs. If we
3298 * don't find any xattrs, we know there can't be any acls.
3299 *
3300 * slot is the slot the inode is in, objectid is the objectid of the inode
3301 */
3302static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3303 int slot, u64 objectid,
3304 int *first_xattr_slot)
46a53cca
CM
3305{
3306 u32 nritems = btrfs_header_nritems(leaf);
3307 struct btrfs_key found_key;
f23b5a59
JB
3308 static u64 xattr_access = 0;
3309 static u64 xattr_default = 0;
46a53cca
CM
3310 int scanned = 0;
3311
f23b5a59
JB
3312 if (!xattr_access) {
3313 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3314 strlen(POSIX_ACL_XATTR_ACCESS));
3315 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3316 strlen(POSIX_ACL_XATTR_DEFAULT));
3317 }
3318
46a53cca 3319 slot++;
63541927 3320 *first_xattr_slot = -1;
46a53cca
CM
3321 while (slot < nritems) {
3322 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3323
3324 /* we found a different objectid, there must not be acls */
3325 if (found_key.objectid != objectid)
3326 return 0;
3327
3328 /* we found an xattr, assume we've got an acl */
f23b5a59 3329 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3330 if (*first_xattr_slot == -1)
3331 *first_xattr_slot = slot;
f23b5a59
JB
3332 if (found_key.offset == xattr_access ||
3333 found_key.offset == xattr_default)
3334 return 1;
3335 }
46a53cca
CM
3336
3337 /*
3338 * we found a key greater than an xattr key, there can't
3339 * be any acls later on
3340 */
3341 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3342 return 0;
3343
3344 slot++;
3345 scanned++;
3346
3347 /*
3348 * it goes inode, inode backrefs, xattrs, extents,
3349 * so if there are a ton of hard links to an inode there can
3350 * be a lot of backrefs. Don't waste time searching too hard,
3351 * this is just an optimization
3352 */
3353 if (scanned >= 8)
3354 break;
3355 }
3356 /* we hit the end of the leaf before we found an xattr or
3357 * something larger than an xattr. We have to assume the inode
3358 * has acls
3359 */
63541927
FDBM
3360 if (*first_xattr_slot == -1)
3361 *first_xattr_slot = slot;
46a53cca
CM
3362 return 1;
3363}
3364
d352ac68
CM
3365/*
3366 * read an inode from the btree into the in-memory inode
3367 */
5d4f98a2 3368static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3369{
3370 struct btrfs_path *path;
5f39d397 3371 struct extent_buffer *leaf;
39279cc3 3372 struct btrfs_inode_item *inode_item;
0b86a832 3373 struct btrfs_timespec *tspec;
39279cc3
CM
3374 struct btrfs_root *root = BTRFS_I(inode)->root;
3375 struct btrfs_key location;
67de1176 3376 unsigned long ptr;
46a53cca 3377 int maybe_acls;
618e21d5 3378 u32 rdev;
39279cc3 3379 int ret;
2f7e33d4 3380 bool filled = false;
63541927 3381 int first_xattr_slot;
2f7e33d4
MX
3382
3383 ret = btrfs_fill_inode(inode, &rdev);
3384 if (!ret)
3385 filled = true;
39279cc3
CM
3386
3387 path = btrfs_alloc_path();
1748f843
MF
3388 if (!path)
3389 goto make_bad;
3390
39279cc3 3391 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3392
39279cc3 3393 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3394 if (ret)
39279cc3 3395 goto make_bad;
39279cc3 3396
5f39d397 3397 leaf = path->nodes[0];
2f7e33d4
MX
3398
3399 if (filled)
67de1176 3400 goto cache_index;
2f7e33d4 3401
5f39d397
CM
3402 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3403 struct btrfs_inode_item);
5f39d397 3404 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3405 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3406 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3407 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3408 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3409
3410 tspec = btrfs_inode_atime(inode_item);
3411 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3412 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3413
3414 tspec = btrfs_inode_mtime(inode_item);
3415 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3416 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3417
3418 tspec = btrfs_inode_ctime(inode_item);
3419 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3420 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3421
a76a3cd4 3422 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3423 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3424 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3425
3426 /*
3427 * If we were modified in the current generation and evicted from memory
3428 * and then re-read we need to do a full sync since we don't have any
3429 * idea about which extents were modified before we were evicted from
3430 * cache.
3431 */
3432 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3433 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3434 &BTRFS_I(inode)->runtime_flags);
3435
0c4d2d95 3436 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3437 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3438 inode->i_rdev = 0;
5f39d397
CM
3439 rdev = btrfs_inode_rdev(leaf, inode_item);
3440
aec7477b 3441 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3442 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3443
3444cache_index:
3445 path->slots[0]++;
3446 if (inode->i_nlink != 1 ||
3447 path->slots[0] >= btrfs_header_nritems(leaf))
3448 goto cache_acl;
3449
3450 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3451 if (location.objectid != btrfs_ino(inode))
3452 goto cache_acl;
3453
3454 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3455 if (location.type == BTRFS_INODE_REF_KEY) {
3456 struct btrfs_inode_ref *ref;
3457
3458 ref = (struct btrfs_inode_ref *)ptr;
3459 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3460 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3461 struct btrfs_inode_extref *extref;
3462
3463 extref = (struct btrfs_inode_extref *)ptr;
3464 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3465 extref);
3466 }
2f7e33d4 3467cache_acl:
46a53cca
CM
3468 /*
3469 * try to precache a NULL acl entry for files that don't have
3470 * any xattrs or acls
3471 */
33345d01 3472 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3473 btrfs_ino(inode), &first_xattr_slot);
3474 if (first_xattr_slot != -1) {
3475 path->slots[0] = first_xattr_slot;
3476 ret = btrfs_load_inode_props(inode, path);
3477 if (ret)
3478 btrfs_err(root->fs_info,
351fd353 3479 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3480 btrfs_ino(inode),
3481 root->root_key.objectid, ret);
3482 }
3483 btrfs_free_path(path);
3484
72c04902
AV
3485 if (!maybe_acls)
3486 cache_no_acl(inode);
46a53cca 3487
39279cc3 3488 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3489 case S_IFREG:
3490 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3491 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3492 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3493 inode->i_fop = &btrfs_file_operations;
3494 inode->i_op = &btrfs_file_inode_operations;
3495 break;
3496 case S_IFDIR:
3497 inode->i_fop = &btrfs_dir_file_operations;
3498 if (root == root->fs_info->tree_root)
3499 inode->i_op = &btrfs_dir_ro_inode_operations;
3500 else
3501 inode->i_op = &btrfs_dir_inode_operations;
3502 break;
3503 case S_IFLNK:
3504 inode->i_op = &btrfs_symlink_inode_operations;
3505 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3506 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3507 break;
618e21d5 3508 default:
0279b4cd 3509 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3510 init_special_inode(inode, inode->i_mode, rdev);
3511 break;
39279cc3 3512 }
6cbff00f
CH
3513
3514 btrfs_update_iflags(inode);
39279cc3
CM
3515 return;
3516
3517make_bad:
39279cc3 3518 btrfs_free_path(path);
39279cc3
CM
3519 make_bad_inode(inode);
3520}
3521
d352ac68
CM
3522/*
3523 * given a leaf and an inode, copy the inode fields into the leaf
3524 */
e02119d5
CM
3525static void fill_inode_item(struct btrfs_trans_handle *trans,
3526 struct extent_buffer *leaf,
5f39d397 3527 struct btrfs_inode_item *item,
39279cc3
CM
3528 struct inode *inode)
3529{
51fab693
LB
3530 struct btrfs_map_token token;
3531
3532 btrfs_init_map_token(&token);
5f39d397 3533
51fab693
LB
3534 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3535 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3536 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3537 &token);
3538 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3539 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3540
51fab693
LB
3541 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3542 inode->i_atime.tv_sec, &token);
3543 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3544 inode->i_atime.tv_nsec, &token);
5f39d397 3545
51fab693
LB
3546 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3547 inode->i_mtime.tv_sec, &token);
3548 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3549 inode->i_mtime.tv_nsec, &token);
5f39d397 3550
51fab693
LB
3551 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3552 inode->i_ctime.tv_sec, &token);
3553 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3554 inode->i_ctime.tv_nsec, &token);
5f39d397 3555
51fab693
LB
3556 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3557 &token);
3558 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3559 &token);
3560 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3561 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3562 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3563 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3564 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3565}
3566
d352ac68
CM
3567/*
3568 * copy everything in the in-memory inode into the btree.
3569 */
2115133f 3570static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3571 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3572{
3573 struct btrfs_inode_item *inode_item;
3574 struct btrfs_path *path;
5f39d397 3575 struct extent_buffer *leaf;
39279cc3
CM
3576 int ret;
3577
3578 path = btrfs_alloc_path();
16cdcec7
MX
3579 if (!path)
3580 return -ENOMEM;
3581
b9473439 3582 path->leave_spinning = 1;
16cdcec7
MX
3583 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3584 1);
39279cc3
CM
3585 if (ret) {
3586 if (ret > 0)
3587 ret = -ENOENT;
3588 goto failed;
3589 }
3590
5f39d397
CM
3591 leaf = path->nodes[0];
3592 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3593 struct btrfs_inode_item);
39279cc3 3594
e02119d5 3595 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3596 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3597 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3598 ret = 0;
3599failed:
39279cc3
CM
3600 btrfs_free_path(path);
3601 return ret;
3602}
3603
2115133f
CM
3604/*
3605 * copy everything in the in-memory inode into the btree.
3606 */
3607noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3608 struct btrfs_root *root, struct inode *inode)
3609{
3610 int ret;
3611
3612 /*
3613 * If the inode is a free space inode, we can deadlock during commit
3614 * if we put it into the delayed code.
3615 *
3616 * The data relocation inode should also be directly updated
3617 * without delay
3618 */
83eea1f1 3619 if (!btrfs_is_free_space_inode(inode)
2115133f 3620 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3621 btrfs_update_root_times(trans, root);
3622
2115133f
CM
3623 ret = btrfs_delayed_update_inode(trans, root, inode);
3624 if (!ret)
3625 btrfs_set_inode_last_trans(trans, inode);
3626 return ret;
3627 }
3628
3629 return btrfs_update_inode_item(trans, root, inode);
3630}
3631
be6aef60
JB
3632noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3633 struct btrfs_root *root,
3634 struct inode *inode)
2115133f
CM
3635{
3636 int ret;
3637
3638 ret = btrfs_update_inode(trans, root, inode);
3639 if (ret == -ENOSPC)
3640 return btrfs_update_inode_item(trans, root, inode);
3641 return ret;
3642}
3643
d352ac68
CM
3644/*
3645 * unlink helper that gets used here in inode.c and in the tree logging
3646 * recovery code. It remove a link in a directory with a given name, and
3647 * also drops the back refs in the inode to the directory
3648 */
92986796
AV
3649static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3650 struct btrfs_root *root,
3651 struct inode *dir, struct inode *inode,
3652 const char *name, int name_len)
39279cc3
CM
3653{
3654 struct btrfs_path *path;
39279cc3 3655 int ret = 0;
5f39d397 3656 struct extent_buffer *leaf;
39279cc3 3657 struct btrfs_dir_item *di;
5f39d397 3658 struct btrfs_key key;
aec7477b 3659 u64 index;
33345d01
LZ
3660 u64 ino = btrfs_ino(inode);
3661 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3662
3663 path = btrfs_alloc_path();
54aa1f4d
CM
3664 if (!path) {
3665 ret = -ENOMEM;
554233a6 3666 goto out;
54aa1f4d
CM
3667 }
3668
b9473439 3669 path->leave_spinning = 1;
33345d01 3670 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3671 name, name_len, -1);
3672 if (IS_ERR(di)) {
3673 ret = PTR_ERR(di);
3674 goto err;
3675 }
3676 if (!di) {
3677 ret = -ENOENT;
3678 goto err;
3679 }
5f39d397
CM
3680 leaf = path->nodes[0];
3681 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3682 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3683 if (ret)
3684 goto err;
b3b4aa74 3685 btrfs_release_path(path);
39279cc3 3686
67de1176
MX
3687 /*
3688 * If we don't have dir index, we have to get it by looking up
3689 * the inode ref, since we get the inode ref, remove it directly,
3690 * it is unnecessary to do delayed deletion.
3691 *
3692 * But if we have dir index, needn't search inode ref to get it.
3693 * Since the inode ref is close to the inode item, it is better
3694 * that we delay to delete it, and just do this deletion when
3695 * we update the inode item.
3696 */
3697 if (BTRFS_I(inode)->dir_index) {
3698 ret = btrfs_delayed_delete_inode_ref(inode);
3699 if (!ret) {
3700 index = BTRFS_I(inode)->dir_index;
3701 goto skip_backref;
3702 }
3703 }
3704
33345d01
LZ
3705 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3706 dir_ino, &index);
aec7477b 3707 if (ret) {
c2cf52eb
SK
3708 btrfs_info(root->fs_info,
3709 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3710 name_len, name, ino, dir_ino);
79787eaa 3711 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3712 goto err;
3713 }
67de1176 3714skip_backref:
16cdcec7 3715 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3716 if (ret) {
3717 btrfs_abort_transaction(trans, root, ret);
39279cc3 3718 goto err;
79787eaa 3719 }
39279cc3 3720
e02119d5 3721 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3722 inode, dir_ino);
79787eaa
JM
3723 if (ret != 0 && ret != -ENOENT) {
3724 btrfs_abort_transaction(trans, root, ret);
3725 goto err;
3726 }
e02119d5
CM
3727
3728 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3729 dir, index);
6418c961
CM
3730 if (ret == -ENOENT)
3731 ret = 0;
d4e3991b
ZB
3732 else if (ret)
3733 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3734err:
3735 btrfs_free_path(path);
e02119d5
CM
3736 if (ret)
3737 goto out;
3738
3739 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3740 inode_inc_iversion(inode);
3741 inode_inc_iversion(dir);
e02119d5 3742 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3743 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3744out:
39279cc3
CM
3745 return ret;
3746}
3747
92986796
AV
3748int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3749 struct btrfs_root *root,
3750 struct inode *dir, struct inode *inode,
3751 const char *name, int name_len)
3752{
3753 int ret;
3754 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3755 if (!ret) {
8b558c5f 3756 drop_nlink(inode);
92986796
AV
3757 ret = btrfs_update_inode(trans, root, inode);
3758 }
3759 return ret;
3760}
39279cc3 3761
a22285a6
YZ
3762/*
3763 * helper to start transaction for unlink and rmdir.
3764 *
d52be818
JB
3765 * unlink and rmdir are special in btrfs, they do not always free space, so
3766 * if we cannot make our reservations the normal way try and see if there is
3767 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3768 * allow the unlink to occur.
a22285a6 3769 */
d52be818 3770static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3771{
39279cc3 3772 struct btrfs_trans_handle *trans;
a22285a6 3773 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3774 int ret;
3775
e70bea5f
JB
3776 /*
3777 * 1 for the possible orphan item
3778 * 1 for the dir item
3779 * 1 for the dir index
3780 * 1 for the inode ref
e70bea5f
JB
3781 * 1 for the inode
3782 */
6e137ed3 3783 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3784 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3785 return trans;
4df27c4d 3786
d52be818
JB
3787 if (PTR_ERR(trans) == -ENOSPC) {
3788 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3789
d52be818
JB
3790 trans = btrfs_start_transaction(root, 0);
3791 if (IS_ERR(trans))
3792 return trans;
3793 ret = btrfs_cond_migrate_bytes(root->fs_info,
3794 &root->fs_info->trans_block_rsv,
3795 num_bytes, 5);
3796 if (ret) {
3797 btrfs_end_transaction(trans, root);
3798 return ERR_PTR(ret);
a22285a6 3799 }
5a77d76c 3800 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3801 trans->bytes_reserved = num_bytes;
a22285a6 3802 }
d52be818 3803 return trans;
a22285a6
YZ
3804}
3805
3806static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3807{
3808 struct btrfs_root *root = BTRFS_I(dir)->root;
3809 struct btrfs_trans_handle *trans;
3810 struct inode *inode = dentry->d_inode;
3811 int ret;
a22285a6 3812
d52be818 3813 trans = __unlink_start_trans(dir);
a22285a6
YZ
3814 if (IS_ERR(trans))
3815 return PTR_ERR(trans);
5f39d397 3816
12fcfd22
CM
3817 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3818
e02119d5
CM
3819 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3820 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3821 if (ret)
3822 goto out;
7b128766 3823
a22285a6 3824 if (inode->i_nlink == 0) {
7b128766 3825 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3826 if (ret)
3827 goto out;
a22285a6 3828 }
7b128766 3829
b532402e 3830out:
d52be818 3831 btrfs_end_transaction(trans, root);
b53d3f5d 3832 btrfs_btree_balance_dirty(root);
39279cc3
CM
3833 return ret;
3834}
3835
4df27c4d
YZ
3836int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3837 struct btrfs_root *root,
3838 struct inode *dir, u64 objectid,
3839 const char *name, int name_len)
3840{
3841 struct btrfs_path *path;
3842 struct extent_buffer *leaf;
3843 struct btrfs_dir_item *di;
3844 struct btrfs_key key;
3845 u64 index;
3846 int ret;
33345d01 3847 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3848
3849 path = btrfs_alloc_path();
3850 if (!path)
3851 return -ENOMEM;
3852
33345d01 3853 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3854 name, name_len, -1);
79787eaa
JM
3855 if (IS_ERR_OR_NULL(di)) {
3856 if (!di)
3857 ret = -ENOENT;
3858 else
3859 ret = PTR_ERR(di);
3860 goto out;
3861 }
4df27c4d
YZ
3862
3863 leaf = path->nodes[0];
3864 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3865 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3866 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3867 if (ret) {
3868 btrfs_abort_transaction(trans, root, ret);
3869 goto out;
3870 }
b3b4aa74 3871 btrfs_release_path(path);
4df27c4d
YZ
3872
3873 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3874 objectid, root->root_key.objectid,
33345d01 3875 dir_ino, &index, name, name_len);
4df27c4d 3876 if (ret < 0) {
79787eaa
JM
3877 if (ret != -ENOENT) {
3878 btrfs_abort_transaction(trans, root, ret);
3879 goto out;
3880 }
33345d01 3881 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3882 name, name_len);
79787eaa
JM
3883 if (IS_ERR_OR_NULL(di)) {
3884 if (!di)
3885 ret = -ENOENT;
3886 else
3887 ret = PTR_ERR(di);
3888 btrfs_abort_transaction(trans, root, ret);
3889 goto out;
3890 }
4df27c4d
YZ
3891
3892 leaf = path->nodes[0];
3893 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3894 btrfs_release_path(path);
4df27c4d
YZ
3895 index = key.offset;
3896 }
945d8962 3897 btrfs_release_path(path);
4df27c4d 3898
16cdcec7 3899 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3900 if (ret) {
3901 btrfs_abort_transaction(trans, root, ret);
3902 goto out;
3903 }
4df27c4d
YZ
3904
3905 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3906 inode_inc_iversion(dir);
4df27c4d 3907 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3908 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3909 if (ret)
3910 btrfs_abort_transaction(trans, root, ret);
3911out:
71d7aed0 3912 btrfs_free_path(path);
79787eaa 3913 return ret;
4df27c4d
YZ
3914}
3915
39279cc3
CM
3916static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3917{
3918 struct inode *inode = dentry->d_inode;
1832a6d5 3919 int err = 0;
39279cc3 3920 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3921 struct btrfs_trans_handle *trans;
39279cc3 3922
b3ae244e 3923 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3924 return -ENOTEMPTY;
b3ae244e
DS
3925 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3926 return -EPERM;
134d4512 3927
d52be818 3928 trans = __unlink_start_trans(dir);
a22285a6 3929 if (IS_ERR(trans))
5df6a9f6 3930 return PTR_ERR(trans);
5df6a9f6 3931
33345d01 3932 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3933 err = btrfs_unlink_subvol(trans, root, dir,
3934 BTRFS_I(inode)->location.objectid,
3935 dentry->d_name.name,
3936 dentry->d_name.len);
3937 goto out;
3938 }
3939
7b128766
JB
3940 err = btrfs_orphan_add(trans, inode);
3941 if (err)
4df27c4d 3942 goto out;
7b128766 3943
39279cc3 3944 /* now the directory is empty */
e02119d5
CM
3945 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3946 dentry->d_name.name, dentry->d_name.len);
d397712b 3947 if (!err)
dbe674a9 3948 btrfs_i_size_write(inode, 0);
4df27c4d 3949out:
d52be818 3950 btrfs_end_transaction(trans, root);
b53d3f5d 3951 btrfs_btree_balance_dirty(root);
3954401f 3952
39279cc3
CM
3953 return err;
3954}
3955
39279cc3
CM
3956/*
3957 * this can truncate away extent items, csum items and directory items.
3958 * It starts at a high offset and removes keys until it can't find
d352ac68 3959 * any higher than new_size
39279cc3
CM
3960 *
3961 * csum items that cross the new i_size are truncated to the new size
3962 * as well.
7b128766
JB
3963 *
3964 * min_type is the minimum key type to truncate down to. If set to 0, this
3965 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3966 */
8082510e
YZ
3967int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3968 struct btrfs_root *root,
3969 struct inode *inode,
3970 u64 new_size, u32 min_type)
39279cc3 3971{
39279cc3 3972 struct btrfs_path *path;
5f39d397 3973 struct extent_buffer *leaf;
39279cc3 3974 struct btrfs_file_extent_item *fi;
8082510e
YZ
3975 struct btrfs_key key;
3976 struct btrfs_key found_key;
39279cc3 3977 u64 extent_start = 0;
db94535d 3978 u64 extent_num_bytes = 0;
5d4f98a2 3979 u64 extent_offset = 0;
39279cc3 3980 u64 item_end = 0;
7f4f6e0a 3981 u64 last_size = (u64)-1;
8082510e 3982 u32 found_type = (u8)-1;
39279cc3
CM
3983 int found_extent;
3984 int del_item;
85e21bac
CM
3985 int pending_del_nr = 0;
3986 int pending_del_slot = 0;
179e29e4 3987 int extent_type = -1;
8082510e
YZ
3988 int ret;
3989 int err = 0;
33345d01 3990 u64 ino = btrfs_ino(inode);
8082510e
YZ
3991
3992 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3993
0eb0e19c
MF
3994 path = btrfs_alloc_path();
3995 if (!path)
3996 return -ENOMEM;
3997 path->reada = -1;
3998
5dc562c5
JB
3999 /*
4000 * We want to drop from the next block forward in case this new size is
4001 * not block aligned since we will be keeping the last block of the
4002 * extent just the way it is.
4003 */
27cdeb70
MX
4004 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4005 root == root->fs_info->tree_root)
fda2832f
QW
4006 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4007 root->sectorsize), (u64)-1, 0);
8082510e 4008
16cdcec7
MX
4009 /*
4010 * This function is also used to drop the items in the log tree before
4011 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4012 * it is used to drop the loged items. So we shouldn't kill the delayed
4013 * items.
4014 */
4015 if (min_type == 0 && root == BTRFS_I(inode)->root)
4016 btrfs_kill_delayed_inode_items(inode);
4017
33345d01 4018 key.objectid = ino;
39279cc3 4019 key.offset = (u64)-1;
5f39d397
CM
4020 key.type = (u8)-1;
4021
85e21bac 4022search_again:
b9473439 4023 path->leave_spinning = 1;
85e21bac 4024 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4025 if (ret < 0) {
4026 err = ret;
4027 goto out;
4028 }
d397712b 4029
85e21bac 4030 if (ret > 0) {
e02119d5
CM
4031 /* there are no items in the tree for us to truncate, we're
4032 * done
4033 */
8082510e
YZ
4034 if (path->slots[0] == 0)
4035 goto out;
85e21bac
CM
4036 path->slots[0]--;
4037 }
4038
d397712b 4039 while (1) {
39279cc3 4040 fi = NULL;
5f39d397
CM
4041 leaf = path->nodes[0];
4042 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4043 found_type = btrfs_key_type(&found_key);
39279cc3 4044
33345d01 4045 if (found_key.objectid != ino)
39279cc3 4046 break;
5f39d397 4047
85e21bac 4048 if (found_type < min_type)
39279cc3
CM
4049 break;
4050
5f39d397 4051 item_end = found_key.offset;
39279cc3 4052 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4053 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4054 struct btrfs_file_extent_item);
179e29e4
CM
4055 extent_type = btrfs_file_extent_type(leaf, fi);
4056 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4057 item_end +=
db94535d 4058 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4059 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4060 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4061 path->slots[0], fi);
39279cc3 4062 }
008630c1 4063 item_end--;
39279cc3 4064 }
8082510e
YZ
4065 if (found_type > min_type) {
4066 del_item = 1;
4067 } else {
4068 if (item_end < new_size)
b888db2b 4069 break;
8082510e
YZ
4070 if (found_key.offset >= new_size)
4071 del_item = 1;
4072 else
4073 del_item = 0;
39279cc3 4074 }
39279cc3 4075 found_extent = 0;
39279cc3 4076 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4077 if (found_type != BTRFS_EXTENT_DATA_KEY)
4078 goto delete;
4079
7f4f6e0a
JB
4080 if (del_item)
4081 last_size = found_key.offset;
4082 else
4083 last_size = new_size;
4084
179e29e4 4085 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4086 u64 num_dec;
db94535d 4087 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4088 if (!del_item) {
db94535d
CM
4089 u64 orig_num_bytes =
4090 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4091 extent_num_bytes = ALIGN(new_size -
4092 found_key.offset,
4093 root->sectorsize);
db94535d
CM
4094 btrfs_set_file_extent_num_bytes(leaf, fi,
4095 extent_num_bytes);
4096 num_dec = (orig_num_bytes -
9069218d 4097 extent_num_bytes);
27cdeb70
MX
4098 if (test_bit(BTRFS_ROOT_REF_COWS,
4099 &root->state) &&
4100 extent_start != 0)
a76a3cd4 4101 inode_sub_bytes(inode, num_dec);
5f39d397 4102 btrfs_mark_buffer_dirty(leaf);
39279cc3 4103 } else {
db94535d
CM
4104 extent_num_bytes =
4105 btrfs_file_extent_disk_num_bytes(leaf,
4106 fi);
5d4f98a2
YZ
4107 extent_offset = found_key.offset -
4108 btrfs_file_extent_offset(leaf, fi);
4109
39279cc3 4110 /* FIXME blocksize != 4096 */
9069218d 4111 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4112 if (extent_start != 0) {
4113 found_extent = 1;
27cdeb70
MX
4114 if (test_bit(BTRFS_ROOT_REF_COWS,
4115 &root->state))
a76a3cd4 4116 inode_sub_bytes(inode, num_dec);
e02119d5 4117 }
39279cc3 4118 }
9069218d 4119 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4120 /*
4121 * we can't truncate inline items that have had
4122 * special encodings
4123 */
4124 if (!del_item &&
4125 btrfs_file_extent_compression(leaf, fi) == 0 &&
4126 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4127 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4128 u32 size = new_size - found_key.offset;
4129
27cdeb70 4130 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
a76a3cd4
YZ
4131 inode_sub_bytes(inode, item_end + 1 -
4132 new_size);
514ac8ad
CM
4133
4134 /*
4135 * update the ram bytes to properly reflect
4136 * the new size of our item
4137 */
4138 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4139 size =
4140 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4141 btrfs_truncate_item(root, path, size, 1);
27cdeb70
MX
4142 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4143 &root->state)) {
a76a3cd4
YZ
4144 inode_sub_bytes(inode, item_end + 1 -
4145 found_key.offset);
9069218d 4146 }
39279cc3 4147 }
179e29e4 4148delete:
39279cc3 4149 if (del_item) {
85e21bac
CM
4150 if (!pending_del_nr) {
4151 /* no pending yet, add ourselves */
4152 pending_del_slot = path->slots[0];
4153 pending_del_nr = 1;
4154 } else if (pending_del_nr &&
4155 path->slots[0] + 1 == pending_del_slot) {
4156 /* hop on the pending chunk */
4157 pending_del_nr++;
4158 pending_del_slot = path->slots[0];
4159 } else {
d397712b 4160 BUG();
85e21bac 4161 }
39279cc3
CM
4162 } else {
4163 break;
4164 }
27cdeb70
MX
4165 if (found_extent &&
4166 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4167 root == root->fs_info->tree_root)) {
b9473439 4168 btrfs_set_path_blocking(path);
39279cc3 4169 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4170 extent_num_bytes, 0,
4171 btrfs_header_owner(leaf),
66d7e7f0 4172 ino, extent_offset, 0);
39279cc3
CM
4173 BUG_ON(ret);
4174 }
85e21bac 4175
8082510e
YZ
4176 if (found_type == BTRFS_INODE_ITEM_KEY)
4177 break;
4178
4179 if (path->slots[0] == 0 ||
4180 path->slots[0] != pending_del_slot) {
8082510e
YZ
4181 if (pending_del_nr) {
4182 ret = btrfs_del_items(trans, root, path,
4183 pending_del_slot,
4184 pending_del_nr);
79787eaa
JM
4185 if (ret) {
4186 btrfs_abort_transaction(trans,
4187 root, ret);
4188 goto error;
4189 }
8082510e
YZ
4190 pending_del_nr = 0;
4191 }
b3b4aa74 4192 btrfs_release_path(path);
85e21bac 4193 goto search_again;
8082510e
YZ
4194 } else {
4195 path->slots[0]--;
85e21bac 4196 }
39279cc3 4197 }
8082510e 4198out:
85e21bac
CM
4199 if (pending_del_nr) {
4200 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4201 pending_del_nr);
79787eaa
JM
4202 if (ret)
4203 btrfs_abort_transaction(trans, root, ret);
85e21bac 4204 }
79787eaa 4205error:
7f4f6e0a
JB
4206 if (last_size != (u64)-1)
4207 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4208 btrfs_free_path(path);
8082510e 4209 return err;
39279cc3
CM
4210}
4211
4212/*
2aaa6655
JB
4213 * btrfs_truncate_page - read, zero a chunk and write a page
4214 * @inode - inode that we're zeroing
4215 * @from - the offset to start zeroing
4216 * @len - the length to zero, 0 to zero the entire range respective to the
4217 * offset
4218 * @front - zero up to the offset instead of from the offset on
4219 *
4220 * This will find the page for the "from" offset and cow the page and zero the
4221 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4222 */
2aaa6655
JB
4223int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4224 int front)
39279cc3 4225{
2aaa6655 4226 struct address_space *mapping = inode->i_mapping;
db94535d 4227 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4228 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4229 struct btrfs_ordered_extent *ordered;
2ac55d41 4230 struct extent_state *cached_state = NULL;
e6dcd2dc 4231 char *kaddr;
db94535d 4232 u32 blocksize = root->sectorsize;
39279cc3
CM
4233 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4234 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4235 struct page *page;
3b16a4e3 4236 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4237 int ret = 0;
a52d9a80 4238 u64 page_start;
e6dcd2dc 4239 u64 page_end;
39279cc3 4240
2aaa6655
JB
4241 if ((offset & (blocksize - 1)) == 0 &&
4242 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4243 goto out;
0ca1f7ce 4244 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4245 if (ret)
4246 goto out;
39279cc3 4247
211c17f5 4248again:
3b16a4e3 4249 page = find_or_create_page(mapping, index, mask);
5d5e103a 4250 if (!page) {
0ca1f7ce 4251 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4252 ret = -ENOMEM;
39279cc3 4253 goto out;
5d5e103a 4254 }
e6dcd2dc
CM
4255
4256 page_start = page_offset(page);
4257 page_end = page_start + PAGE_CACHE_SIZE - 1;
4258
39279cc3 4259 if (!PageUptodate(page)) {
9ebefb18 4260 ret = btrfs_readpage(NULL, page);
39279cc3 4261 lock_page(page);
211c17f5
CM
4262 if (page->mapping != mapping) {
4263 unlock_page(page);
4264 page_cache_release(page);
4265 goto again;
4266 }
39279cc3
CM
4267 if (!PageUptodate(page)) {
4268 ret = -EIO;
89642229 4269 goto out_unlock;
39279cc3
CM
4270 }
4271 }
211c17f5 4272 wait_on_page_writeback(page);
e6dcd2dc 4273
d0082371 4274 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4275 set_page_extent_mapped(page);
4276
4277 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4278 if (ordered) {
2ac55d41
JB
4279 unlock_extent_cached(io_tree, page_start, page_end,
4280 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4281 unlock_page(page);
4282 page_cache_release(page);
eb84ae03 4283 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4284 btrfs_put_ordered_extent(ordered);
4285 goto again;
4286 }
4287
2ac55d41 4288 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4289 EXTENT_DIRTY | EXTENT_DELALLOC |
4290 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4291 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4292
2ac55d41
JB
4293 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4294 &cached_state);
9ed74f2d 4295 if (ret) {
2ac55d41
JB
4296 unlock_extent_cached(io_tree, page_start, page_end,
4297 &cached_state, GFP_NOFS);
9ed74f2d
JB
4298 goto out_unlock;
4299 }
4300
e6dcd2dc 4301 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4302 if (!len)
4303 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4304 kaddr = kmap(page);
2aaa6655
JB
4305 if (front)
4306 memset(kaddr, 0, offset);
4307 else
4308 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4309 flush_dcache_page(page);
4310 kunmap(page);
4311 }
247e743c 4312 ClearPageChecked(page);
e6dcd2dc 4313 set_page_dirty(page);
2ac55d41
JB
4314 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4315 GFP_NOFS);
39279cc3 4316
89642229 4317out_unlock:
5d5e103a 4318 if (ret)
0ca1f7ce 4319 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4320 unlock_page(page);
4321 page_cache_release(page);
4322out:
4323 return ret;
4324}
4325
16e7549f
JB
4326static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4327 u64 offset, u64 len)
4328{
4329 struct btrfs_trans_handle *trans;
4330 int ret;
4331
4332 /*
4333 * Still need to make sure the inode looks like it's been updated so
4334 * that any holes get logged if we fsync.
4335 */
4336 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4337 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4338 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4339 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4340 return 0;
4341 }
4342
4343 /*
4344 * 1 - for the one we're dropping
4345 * 1 - for the one we're adding
4346 * 1 - for updating the inode.
4347 */
4348 trans = btrfs_start_transaction(root, 3);
4349 if (IS_ERR(trans))
4350 return PTR_ERR(trans);
4351
4352 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4353 if (ret) {
4354 btrfs_abort_transaction(trans, root, ret);
4355 btrfs_end_transaction(trans, root);
4356 return ret;
4357 }
4358
4359 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4360 0, 0, len, 0, len, 0, 0, 0);
4361 if (ret)
4362 btrfs_abort_transaction(trans, root, ret);
4363 else
4364 btrfs_update_inode(trans, root, inode);
4365 btrfs_end_transaction(trans, root);
4366 return ret;
4367}
4368
695a0d0d
JB
4369/*
4370 * This function puts in dummy file extents for the area we're creating a hole
4371 * for. So if we are truncating this file to a larger size we need to insert
4372 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4373 * the range between oldsize and size
4374 */
a41ad394 4375int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4376{
9036c102
YZ
4377 struct btrfs_root *root = BTRFS_I(inode)->root;
4378 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4379 struct extent_map *em = NULL;
2ac55d41 4380 struct extent_state *cached_state = NULL;
5dc562c5 4381 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4382 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4383 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4384 u64 last_byte;
4385 u64 cur_offset;
4386 u64 hole_size;
9ed74f2d 4387 int err = 0;
39279cc3 4388
a71754fc
JB
4389 /*
4390 * If our size started in the middle of a page we need to zero out the
4391 * rest of the page before we expand the i_size, otherwise we could
4392 * expose stale data.
4393 */
4394 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4395 if (err)
4396 return err;
4397
9036c102
YZ
4398 if (size <= hole_start)
4399 return 0;
4400
9036c102
YZ
4401 while (1) {
4402 struct btrfs_ordered_extent *ordered;
fa7c1494 4403
2ac55d41 4404 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4405 &cached_state);
fa7c1494
MX
4406 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4407 block_end - hole_start);
9036c102
YZ
4408 if (!ordered)
4409 break;
2ac55d41
JB
4410 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4411 &cached_state, GFP_NOFS);
fa7c1494 4412 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4413 btrfs_put_ordered_extent(ordered);
4414 }
39279cc3 4415
9036c102
YZ
4416 cur_offset = hole_start;
4417 while (1) {
4418 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4419 block_end - cur_offset, 0);
79787eaa
JM
4420 if (IS_ERR(em)) {
4421 err = PTR_ERR(em);
f2767956 4422 em = NULL;
79787eaa
JM
4423 break;
4424 }
9036c102 4425 last_byte = min(extent_map_end(em), block_end);
fda2832f 4426 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4427 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4428 struct extent_map *hole_em;
9036c102 4429 hole_size = last_byte - cur_offset;
9ed74f2d 4430
16e7549f
JB
4431 err = maybe_insert_hole(root, inode, cur_offset,
4432 hole_size);
4433 if (err)
3893e33b 4434 break;
5dc562c5
JB
4435 btrfs_drop_extent_cache(inode, cur_offset,
4436 cur_offset + hole_size - 1, 0);
4437 hole_em = alloc_extent_map();
4438 if (!hole_em) {
4439 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4440 &BTRFS_I(inode)->runtime_flags);
4441 goto next;
4442 }
4443 hole_em->start = cur_offset;
4444 hole_em->len = hole_size;
4445 hole_em->orig_start = cur_offset;
8082510e 4446
5dc562c5
JB
4447 hole_em->block_start = EXTENT_MAP_HOLE;
4448 hole_em->block_len = 0;
b4939680 4449 hole_em->orig_block_len = 0;
cc95bef6 4450 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4451 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4452 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4453 hole_em->generation = root->fs_info->generation;
8082510e 4454
5dc562c5
JB
4455 while (1) {
4456 write_lock(&em_tree->lock);
09a2a8f9 4457 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4458 write_unlock(&em_tree->lock);
4459 if (err != -EEXIST)
4460 break;
4461 btrfs_drop_extent_cache(inode, cur_offset,
4462 cur_offset +
4463 hole_size - 1, 0);
4464 }
4465 free_extent_map(hole_em);
9036c102 4466 }
16e7549f 4467next:
9036c102 4468 free_extent_map(em);
a22285a6 4469 em = NULL;
9036c102 4470 cur_offset = last_byte;
8082510e 4471 if (cur_offset >= block_end)
9036c102
YZ
4472 break;
4473 }
a22285a6 4474 free_extent_map(em);
2ac55d41
JB
4475 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4476 GFP_NOFS);
9036c102
YZ
4477 return err;
4478}
39279cc3 4479
3972f260 4480static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4481{
f4a2f4c5
MX
4482 struct btrfs_root *root = BTRFS_I(inode)->root;
4483 struct btrfs_trans_handle *trans;
a41ad394 4484 loff_t oldsize = i_size_read(inode);
3972f260
ES
4485 loff_t newsize = attr->ia_size;
4486 int mask = attr->ia_valid;
8082510e
YZ
4487 int ret;
4488
3972f260
ES
4489 /*
4490 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4491 * special case where we need to update the times despite not having
4492 * these flags set. For all other operations the VFS set these flags
4493 * explicitly if it wants a timestamp update.
4494 */
dff6efc3
CH
4495 if (newsize != oldsize) {
4496 inode_inc_iversion(inode);
4497 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4498 inode->i_ctime = inode->i_mtime =
4499 current_fs_time(inode->i_sb);
4500 }
3972f260 4501
a41ad394 4502 if (newsize > oldsize) {
7caef267 4503 truncate_pagecache(inode, newsize);
a41ad394 4504 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4505 if (ret)
8082510e 4506 return ret;
8082510e 4507
f4a2f4c5
MX
4508 trans = btrfs_start_transaction(root, 1);
4509 if (IS_ERR(trans))
4510 return PTR_ERR(trans);
4511
4512 i_size_write(inode, newsize);
4513 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4514 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4515 btrfs_end_transaction(trans, root);
a41ad394 4516 } else {
8082510e 4517
a41ad394
JB
4518 /*
4519 * We're truncating a file that used to have good data down to
4520 * zero. Make sure it gets into the ordered flush list so that
4521 * any new writes get down to disk quickly.
4522 */
4523 if (newsize == 0)
72ac3c0d
JB
4524 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4525 &BTRFS_I(inode)->runtime_flags);
8082510e 4526
f3fe820c
JB
4527 /*
4528 * 1 for the orphan item we're going to add
4529 * 1 for the orphan item deletion.
4530 */
4531 trans = btrfs_start_transaction(root, 2);
4532 if (IS_ERR(trans))
4533 return PTR_ERR(trans);
4534
4535 /*
4536 * We need to do this in case we fail at _any_ point during the
4537 * actual truncate. Once we do the truncate_setsize we could
4538 * invalidate pages which forces any outstanding ordered io to
4539 * be instantly completed which will give us extents that need
4540 * to be truncated. If we fail to get an orphan inode down we
4541 * could have left over extents that were never meant to live,
4542 * so we need to garuntee from this point on that everything
4543 * will be consistent.
4544 */
4545 ret = btrfs_orphan_add(trans, inode);
4546 btrfs_end_transaction(trans, root);
4547 if (ret)
4548 return ret;
4549
a41ad394
JB
4550 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4551 truncate_setsize(inode, newsize);
2e60a51e
MX
4552
4553 /* Disable nonlocked read DIO to avoid the end less truncate */
4554 btrfs_inode_block_unlocked_dio(inode);
4555 inode_dio_wait(inode);
4556 btrfs_inode_resume_unlocked_dio(inode);
4557
a41ad394 4558 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4559 if (ret && inode->i_nlink) {
4560 int err;
4561
4562 /*
4563 * failed to truncate, disk_i_size is only adjusted down
4564 * as we remove extents, so it should represent the true
4565 * size of the inode, so reset the in memory size and
4566 * delete our orphan entry.
4567 */
4568 trans = btrfs_join_transaction(root);
4569 if (IS_ERR(trans)) {
4570 btrfs_orphan_del(NULL, inode);
4571 return ret;
4572 }
4573 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4574 err = btrfs_orphan_del(trans, inode);
4575 if (err)
4576 btrfs_abort_transaction(trans, root, err);
4577 btrfs_end_transaction(trans, root);
4578 }
8082510e
YZ
4579 }
4580
a41ad394 4581 return ret;
8082510e
YZ
4582}
4583
9036c102
YZ
4584static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4585{
4586 struct inode *inode = dentry->d_inode;
b83cc969 4587 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4588 int err;
39279cc3 4589
b83cc969
LZ
4590 if (btrfs_root_readonly(root))
4591 return -EROFS;
4592
9036c102
YZ
4593 err = inode_change_ok(inode, attr);
4594 if (err)
4595 return err;
2bf5a725 4596
5a3f23d5 4597 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4598 err = btrfs_setsize(inode, attr);
8082510e
YZ
4599 if (err)
4600 return err;
39279cc3 4601 }
9036c102 4602
1025774c
CH
4603 if (attr->ia_valid) {
4604 setattr_copy(inode, attr);
0c4d2d95 4605 inode_inc_iversion(inode);
22c44fe6 4606 err = btrfs_dirty_inode(inode);
1025774c 4607
22c44fe6 4608 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4609 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4610 }
33268eaf 4611
39279cc3
CM
4612 return err;
4613}
61295eb8 4614
131e404a
FDBM
4615/*
4616 * While truncating the inode pages during eviction, we get the VFS calling
4617 * btrfs_invalidatepage() against each page of the inode. This is slow because
4618 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4619 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4620 * extent_state structures over and over, wasting lots of time.
4621 *
4622 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4623 * those expensive operations on a per page basis and do only the ordered io
4624 * finishing, while we release here the extent_map and extent_state structures,
4625 * without the excessive merging and splitting.
4626 */
4627static void evict_inode_truncate_pages(struct inode *inode)
4628{
4629 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4630 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4631 struct rb_node *node;
4632
4633 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4634 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4635
4636 write_lock(&map_tree->lock);
4637 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4638 struct extent_map *em;
4639
4640 node = rb_first(&map_tree->map);
4641 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4642 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4643 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4644 remove_extent_mapping(map_tree, em);
4645 free_extent_map(em);
4646 }
4647 write_unlock(&map_tree->lock);
4648
4649 spin_lock(&io_tree->lock);
4650 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4651 struct extent_state *state;
4652 struct extent_state *cached_state = NULL;
4653
4654 node = rb_first(&io_tree->state);
4655 state = rb_entry(node, struct extent_state, rb_node);
4656 atomic_inc(&state->refs);
4657 spin_unlock(&io_tree->lock);
4658
4659 lock_extent_bits(io_tree, state->start, state->end,
4660 0, &cached_state);
4661 clear_extent_bit(io_tree, state->start, state->end,
4662 EXTENT_LOCKED | EXTENT_DIRTY |
4663 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4664 EXTENT_DEFRAG, 1, 1,
4665 &cached_state, GFP_NOFS);
4666 free_extent_state(state);
4667
4668 spin_lock(&io_tree->lock);
4669 }
4670 spin_unlock(&io_tree->lock);
4671}
4672
bd555975 4673void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4674{
4675 struct btrfs_trans_handle *trans;
4676 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4677 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4678 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4679 int ret;
4680
1abe9b8a 4681 trace_btrfs_inode_evict(inode);
4682
131e404a
FDBM
4683 evict_inode_truncate_pages(inode);
4684
69e9c6c6
SB
4685 if (inode->i_nlink &&
4686 ((btrfs_root_refs(&root->root_item) != 0 &&
4687 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4688 btrfs_is_free_space_inode(inode)))
bd555975
AV
4689 goto no_delete;
4690
39279cc3 4691 if (is_bad_inode(inode)) {
7b128766 4692 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4693 goto no_delete;
4694 }
bd555975 4695 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4696 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4697
c71bf099 4698 if (root->fs_info->log_root_recovering) {
6bf02314 4699 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4700 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4701 goto no_delete;
4702 }
4703
76dda93c 4704 if (inode->i_nlink > 0) {
69e9c6c6
SB
4705 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4706 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4707 goto no_delete;
4708 }
4709
0e8c36a9
MX
4710 ret = btrfs_commit_inode_delayed_inode(inode);
4711 if (ret) {
4712 btrfs_orphan_del(NULL, inode);
4713 goto no_delete;
4714 }
4715
66d8f3dd 4716 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4717 if (!rsv) {
4718 btrfs_orphan_del(NULL, inode);
4719 goto no_delete;
4720 }
4a338542 4721 rsv->size = min_size;
ca7e70f5 4722 rsv->failfast = 1;
726c35fa 4723 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4724
dbe674a9 4725 btrfs_i_size_write(inode, 0);
5f39d397 4726
4289a667 4727 /*
8407aa46
MX
4728 * This is a bit simpler than btrfs_truncate since we've already
4729 * reserved our space for our orphan item in the unlink, so we just
4730 * need to reserve some slack space in case we add bytes and update
4731 * inode item when doing the truncate.
4289a667 4732 */
8082510e 4733 while (1) {
08e007d2
MX
4734 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4735 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4736
4737 /*
4738 * Try and steal from the global reserve since we will
4739 * likely not use this space anyway, we want to try as
4740 * hard as possible to get this to work.
4741 */
4742 if (ret)
4743 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4744
d68fc57b 4745 if (ret) {
c2cf52eb
SK
4746 btrfs_warn(root->fs_info,
4747 "Could not get space for a delete, will truncate on mount %d",
4748 ret);
4289a667
JB
4749 btrfs_orphan_del(NULL, inode);
4750 btrfs_free_block_rsv(root, rsv);
4751 goto no_delete;
d68fc57b 4752 }
7b128766 4753
0e8c36a9 4754 trans = btrfs_join_transaction(root);
4289a667
JB
4755 if (IS_ERR(trans)) {
4756 btrfs_orphan_del(NULL, inode);
4757 btrfs_free_block_rsv(root, rsv);
4758 goto no_delete;
d68fc57b 4759 }
7b128766 4760
4289a667
JB
4761 trans->block_rsv = rsv;
4762
d68fc57b 4763 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4764 if (ret != -ENOSPC)
8082510e 4765 break;
85e21bac 4766
8407aa46 4767 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4768 btrfs_end_transaction(trans, root);
4769 trans = NULL;
b53d3f5d 4770 btrfs_btree_balance_dirty(root);
8082510e 4771 }
5f39d397 4772
4289a667
JB
4773 btrfs_free_block_rsv(root, rsv);
4774
4ef31a45
JB
4775 /*
4776 * Errors here aren't a big deal, it just means we leave orphan items
4777 * in the tree. They will be cleaned up on the next mount.
4778 */
8082510e 4779 if (ret == 0) {
4289a667 4780 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4781 btrfs_orphan_del(trans, inode);
4782 } else {
4783 btrfs_orphan_del(NULL, inode);
8082510e 4784 }
54aa1f4d 4785
4289a667 4786 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4787 if (!(root == root->fs_info->tree_root ||
4788 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4789 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4790
54aa1f4d 4791 btrfs_end_transaction(trans, root);
b53d3f5d 4792 btrfs_btree_balance_dirty(root);
39279cc3 4793no_delete:
89042e5a 4794 btrfs_remove_delayed_node(inode);
dbd5768f 4795 clear_inode(inode);
8082510e 4796 return;
39279cc3
CM
4797}
4798
4799/*
4800 * this returns the key found in the dir entry in the location pointer.
4801 * If no dir entries were found, location->objectid is 0.
4802 */
4803static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4804 struct btrfs_key *location)
4805{
4806 const char *name = dentry->d_name.name;
4807 int namelen = dentry->d_name.len;
4808 struct btrfs_dir_item *di;
4809 struct btrfs_path *path;
4810 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4811 int ret = 0;
39279cc3
CM
4812
4813 path = btrfs_alloc_path();
d8926bb3
MF
4814 if (!path)
4815 return -ENOMEM;
3954401f 4816
33345d01 4817 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4818 namelen, 0);
0d9f7f3e
Y
4819 if (IS_ERR(di))
4820 ret = PTR_ERR(di);
d397712b 4821
c704005d 4822 if (IS_ERR_OR_NULL(di))
3954401f 4823 goto out_err;
d397712b 4824
5f39d397 4825 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4826out:
39279cc3
CM
4827 btrfs_free_path(path);
4828 return ret;
3954401f
CM
4829out_err:
4830 location->objectid = 0;
4831 goto out;
39279cc3
CM
4832}
4833
4834/*
4835 * when we hit a tree root in a directory, the btrfs part of the inode
4836 * needs to be changed to reflect the root directory of the tree root. This
4837 * is kind of like crossing a mount point.
4838 */
4839static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4840 struct inode *dir,
4841 struct dentry *dentry,
4842 struct btrfs_key *location,
4843 struct btrfs_root **sub_root)
39279cc3 4844{
4df27c4d
YZ
4845 struct btrfs_path *path;
4846 struct btrfs_root *new_root;
4847 struct btrfs_root_ref *ref;
4848 struct extent_buffer *leaf;
4849 int ret;
4850 int err = 0;
39279cc3 4851
4df27c4d
YZ
4852 path = btrfs_alloc_path();
4853 if (!path) {
4854 err = -ENOMEM;
4855 goto out;
4856 }
39279cc3 4857
4df27c4d 4858 err = -ENOENT;
75ac2dd9
KN
4859 ret = btrfs_find_item(root->fs_info->tree_root, path,
4860 BTRFS_I(dir)->root->root_key.objectid,
4861 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4df27c4d
YZ
4862 if (ret) {
4863 if (ret < 0)
4864 err = ret;
4865 goto out;
4866 }
39279cc3 4867
4df27c4d
YZ
4868 leaf = path->nodes[0];
4869 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4870 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4871 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4872 goto out;
39279cc3 4873
4df27c4d
YZ
4874 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4875 (unsigned long)(ref + 1),
4876 dentry->d_name.len);
4877 if (ret)
4878 goto out;
4879
b3b4aa74 4880 btrfs_release_path(path);
4df27c4d
YZ
4881
4882 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4883 if (IS_ERR(new_root)) {
4884 err = PTR_ERR(new_root);
4885 goto out;
4886 }
4887
4df27c4d
YZ
4888 *sub_root = new_root;
4889 location->objectid = btrfs_root_dirid(&new_root->root_item);
4890 location->type = BTRFS_INODE_ITEM_KEY;
4891 location->offset = 0;
4892 err = 0;
4893out:
4894 btrfs_free_path(path);
4895 return err;
39279cc3
CM
4896}
4897
5d4f98a2
YZ
4898static void inode_tree_add(struct inode *inode)
4899{
4900 struct btrfs_root *root = BTRFS_I(inode)->root;
4901 struct btrfs_inode *entry;
03e860bd
FNP
4902 struct rb_node **p;
4903 struct rb_node *parent;
cef21937 4904 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 4905 u64 ino = btrfs_ino(inode);
5d4f98a2 4906
1d3382cb 4907 if (inode_unhashed(inode))
76dda93c 4908 return;
e1409cef 4909 parent = NULL;
5d4f98a2 4910 spin_lock(&root->inode_lock);
e1409cef 4911 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4912 while (*p) {
4913 parent = *p;
4914 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4915
33345d01 4916 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4917 p = &parent->rb_left;
33345d01 4918 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4919 p = &parent->rb_right;
5d4f98a2
YZ
4920 else {
4921 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4922 (I_WILL_FREE | I_FREEING)));
cef21937 4923 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
4924 RB_CLEAR_NODE(parent);
4925 spin_unlock(&root->inode_lock);
cef21937 4926 return;
5d4f98a2
YZ
4927 }
4928 }
cef21937
FDBM
4929 rb_link_node(new, parent, p);
4930 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
4931 spin_unlock(&root->inode_lock);
4932}
4933
4934static void inode_tree_del(struct inode *inode)
4935{
4936 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4937 int empty = 0;
5d4f98a2 4938
03e860bd 4939 spin_lock(&root->inode_lock);
5d4f98a2 4940 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4941 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4942 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4943 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4944 }
03e860bd 4945 spin_unlock(&root->inode_lock);
76dda93c 4946
69e9c6c6 4947 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
4948 synchronize_srcu(&root->fs_info->subvol_srcu);
4949 spin_lock(&root->inode_lock);
4950 empty = RB_EMPTY_ROOT(&root->inode_tree);
4951 spin_unlock(&root->inode_lock);
4952 if (empty)
4953 btrfs_add_dead_root(root);
4954 }
4955}
4956
143bede5 4957void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4958{
4959 struct rb_node *node;
4960 struct rb_node *prev;
4961 struct btrfs_inode *entry;
4962 struct inode *inode;
4963 u64 objectid = 0;
4964
7813b3db
LB
4965 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
4966 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
4967
4968 spin_lock(&root->inode_lock);
4969again:
4970 node = root->inode_tree.rb_node;
4971 prev = NULL;
4972 while (node) {
4973 prev = node;
4974 entry = rb_entry(node, struct btrfs_inode, rb_node);
4975
33345d01 4976 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4977 node = node->rb_left;
33345d01 4978 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4979 node = node->rb_right;
4980 else
4981 break;
4982 }
4983 if (!node) {
4984 while (prev) {
4985 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4986 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4987 node = prev;
4988 break;
4989 }
4990 prev = rb_next(prev);
4991 }
4992 }
4993 while (node) {
4994 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4995 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4996 inode = igrab(&entry->vfs_inode);
4997 if (inode) {
4998 spin_unlock(&root->inode_lock);
4999 if (atomic_read(&inode->i_count) > 1)
5000 d_prune_aliases(inode);
5001 /*
45321ac5 5002 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5003 * the inode cache when its usage count
5004 * hits zero.
5005 */
5006 iput(inode);
5007 cond_resched();
5008 spin_lock(&root->inode_lock);
5009 goto again;
5010 }
5011
5012 if (cond_resched_lock(&root->inode_lock))
5013 goto again;
5014
5015 node = rb_next(node);
5016 }
5017 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5018}
5019
e02119d5
CM
5020static int btrfs_init_locked_inode(struct inode *inode, void *p)
5021{
5022 struct btrfs_iget_args *args = p;
90d3e592
CM
5023 inode->i_ino = args->location->objectid;
5024 memcpy(&BTRFS_I(inode)->location, args->location,
5025 sizeof(*args->location));
e02119d5 5026 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5027 return 0;
5028}
5029
5030static int btrfs_find_actor(struct inode *inode, void *opaque)
5031{
5032 struct btrfs_iget_args *args = opaque;
90d3e592 5033 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5034 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5035}
5036
5d4f98a2 5037static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5038 struct btrfs_key *location,
5d4f98a2 5039 struct btrfs_root *root)
39279cc3
CM
5040{
5041 struct inode *inode;
5042 struct btrfs_iget_args args;
90d3e592 5043 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5044
90d3e592 5045 args.location = location;
39279cc3
CM
5046 args.root = root;
5047
778ba82b 5048 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5049 btrfs_init_locked_inode,
5050 (void *)&args);
5051 return inode;
5052}
5053
1a54ef8c
BR
5054/* Get an inode object given its location and corresponding root.
5055 * Returns in *is_new if the inode was read from disk
5056 */
5057struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5058 struct btrfs_root *root, int *new)
1a54ef8c
BR
5059{
5060 struct inode *inode;
5061
90d3e592 5062 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5063 if (!inode)
5d4f98a2 5064 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5065
5066 if (inode->i_state & I_NEW) {
1a54ef8c 5067 btrfs_read_locked_inode(inode);
1748f843
MF
5068 if (!is_bad_inode(inode)) {
5069 inode_tree_add(inode);
5070 unlock_new_inode(inode);
5071 if (new)
5072 *new = 1;
5073 } else {
e0b6d65b
ST
5074 unlock_new_inode(inode);
5075 iput(inode);
5076 inode = ERR_PTR(-ESTALE);
1748f843
MF
5077 }
5078 }
5079
1a54ef8c
BR
5080 return inode;
5081}
5082
4df27c4d
YZ
5083static struct inode *new_simple_dir(struct super_block *s,
5084 struct btrfs_key *key,
5085 struct btrfs_root *root)
5086{
5087 struct inode *inode = new_inode(s);
5088
5089 if (!inode)
5090 return ERR_PTR(-ENOMEM);
5091
4df27c4d
YZ
5092 BTRFS_I(inode)->root = root;
5093 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5094 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5095
5096 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5097 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5098 inode->i_fop = &simple_dir_operations;
5099 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5100 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5101
5102 return inode;
5103}
5104
3de4586c 5105struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5106{
d397712b 5107 struct inode *inode;
4df27c4d 5108 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5109 struct btrfs_root *sub_root = root;
5110 struct btrfs_key location;
76dda93c 5111 int index;
b4aff1f8 5112 int ret = 0;
39279cc3
CM
5113
5114 if (dentry->d_name.len > BTRFS_NAME_LEN)
5115 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5116
39e3c955 5117 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5118 if (ret < 0)
5119 return ERR_PTR(ret);
5f39d397 5120
4df27c4d 5121 if (location.objectid == 0)
5662344b 5122 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5123
5124 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5125 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5126 return inode;
5127 }
5128
5129 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5130
76dda93c 5131 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5132 ret = fixup_tree_root_location(root, dir, dentry,
5133 &location, &sub_root);
5134 if (ret < 0) {
5135 if (ret != -ENOENT)
5136 inode = ERR_PTR(ret);
5137 else
5138 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5139 } else {
73f73415 5140 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5141 }
76dda93c
YZ
5142 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5143
34d19bad 5144 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5145 down_read(&root->fs_info->cleanup_work_sem);
5146 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5147 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5148 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5149 if (ret) {
5150 iput(inode);
66b4ffd1 5151 inode = ERR_PTR(ret);
01cd3367 5152 }
c71bf099
YZ
5153 }
5154
3de4586c
CM
5155 return inode;
5156}
5157
fe15ce44 5158static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5159{
5160 struct btrfs_root *root;
848cce0d 5161 struct inode *inode = dentry->d_inode;
76dda93c 5162
848cce0d
LZ
5163 if (!inode && !IS_ROOT(dentry))
5164 inode = dentry->d_parent->d_inode;
76dda93c 5165
848cce0d
LZ
5166 if (inode) {
5167 root = BTRFS_I(inode)->root;
efefb143
YZ
5168 if (btrfs_root_refs(&root->root_item) == 0)
5169 return 1;
848cce0d
LZ
5170
5171 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5172 return 1;
efefb143 5173 }
76dda93c
YZ
5174 return 0;
5175}
5176
b4aff1f8
JB
5177static void btrfs_dentry_release(struct dentry *dentry)
5178{
944a4515 5179 kfree(dentry->d_fsdata);
b4aff1f8
JB
5180}
5181
3de4586c 5182static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5183 unsigned int flags)
3de4586c 5184{
5662344b 5185 struct inode *inode;
a66e7cc6 5186
5662344b
TI
5187 inode = btrfs_lookup_dentry(dir, dentry);
5188 if (IS_ERR(inode)) {
5189 if (PTR_ERR(inode) == -ENOENT)
5190 inode = NULL;
5191 else
5192 return ERR_CAST(inode);
5193 }
5194
3a0dfa6a 5195 return d_materialise_unique(dentry, inode);
39279cc3
CM
5196}
5197
16cdcec7 5198unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5199 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5200};
5201
9cdda8d3 5202static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5203{
9cdda8d3 5204 struct inode *inode = file_inode(file);
39279cc3
CM
5205 struct btrfs_root *root = BTRFS_I(inode)->root;
5206 struct btrfs_item *item;
5207 struct btrfs_dir_item *di;
5208 struct btrfs_key key;
5f39d397 5209 struct btrfs_key found_key;
39279cc3 5210 struct btrfs_path *path;
16cdcec7
MX
5211 struct list_head ins_list;
5212 struct list_head del_list;
39279cc3 5213 int ret;
5f39d397 5214 struct extent_buffer *leaf;
39279cc3 5215 int slot;
39279cc3
CM
5216 unsigned char d_type;
5217 int over = 0;
5218 u32 di_cur;
5219 u32 di_total;
5220 u32 di_len;
5221 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5222 char tmp_name[32];
5223 char *name_ptr;
5224 int name_len;
9cdda8d3 5225 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5226
5227 /* FIXME, use a real flag for deciding about the key type */
5228 if (root->fs_info->tree_root == root)
5229 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5230
9cdda8d3
AV
5231 if (!dir_emit_dots(file, ctx))
5232 return 0;
5233
49593bfa 5234 path = btrfs_alloc_path();
16cdcec7
MX
5235 if (!path)
5236 return -ENOMEM;
ff5714cc 5237
026fd317 5238 path->reada = 1;
49593bfa 5239
16cdcec7
MX
5240 if (key_type == BTRFS_DIR_INDEX_KEY) {
5241 INIT_LIST_HEAD(&ins_list);
5242 INIT_LIST_HEAD(&del_list);
5243 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5244 }
5245
39279cc3 5246 btrfs_set_key_type(&key, key_type);
9cdda8d3 5247 key.offset = ctx->pos;
33345d01 5248 key.objectid = btrfs_ino(inode);
5f39d397 5249
39279cc3
CM
5250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5251 if (ret < 0)
5252 goto err;
49593bfa
DW
5253
5254 while (1) {
5f39d397 5255 leaf = path->nodes[0];
39279cc3 5256 slot = path->slots[0];
b9e03af0
LZ
5257 if (slot >= btrfs_header_nritems(leaf)) {
5258 ret = btrfs_next_leaf(root, path);
5259 if (ret < 0)
5260 goto err;
5261 else if (ret > 0)
5262 break;
5263 continue;
39279cc3 5264 }
3de4586c 5265
dd3cc16b 5266 item = btrfs_item_nr(slot);
5f39d397
CM
5267 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5268
5269 if (found_key.objectid != key.objectid)
39279cc3 5270 break;
5f39d397 5271 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5272 break;
9cdda8d3 5273 if (found_key.offset < ctx->pos)
b9e03af0 5274 goto next;
16cdcec7
MX
5275 if (key_type == BTRFS_DIR_INDEX_KEY &&
5276 btrfs_should_delete_dir_index(&del_list,
5277 found_key.offset))
5278 goto next;
5f39d397 5279
9cdda8d3 5280 ctx->pos = found_key.offset;
16cdcec7 5281 is_curr = 1;
49593bfa 5282
39279cc3
CM
5283 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5284 di_cur = 0;
5f39d397 5285 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5286
5287 while (di_cur < di_total) {
5f39d397
CM
5288 struct btrfs_key location;
5289
22a94d44
JB
5290 if (verify_dir_item(root, leaf, di))
5291 break;
5292
5f39d397 5293 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5294 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5295 name_ptr = tmp_name;
5296 } else {
5297 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5298 if (!name_ptr) {
5299 ret = -ENOMEM;
5300 goto err;
5301 }
5f39d397
CM
5302 }
5303 read_extent_buffer(leaf, name_ptr,
5304 (unsigned long)(di + 1), name_len);
5305
5306 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5307 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5308
fede766f 5309
3de4586c 5310 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5311 * skip it.
5312 *
5313 * In contrast to old kernels, we insert the snapshot's
5314 * dir item and dir index after it has been created, so
5315 * we won't find a reference to our own snapshot. We
5316 * still keep the following code for backward
5317 * compatibility.
3de4586c
CM
5318 */
5319 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5320 location.objectid == root->root_key.objectid) {
5321 over = 0;
5322 goto skip;
5323 }
9cdda8d3
AV
5324 over = !dir_emit(ctx, name_ptr, name_len,
5325 location.objectid, d_type);
5f39d397 5326
3de4586c 5327skip:
5f39d397
CM
5328 if (name_ptr != tmp_name)
5329 kfree(name_ptr);
5330
39279cc3
CM
5331 if (over)
5332 goto nopos;
5103e947 5333 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5334 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5335 di_cur += di_len;
5336 di = (struct btrfs_dir_item *)((char *)di + di_len);
5337 }
b9e03af0
LZ
5338next:
5339 path->slots[0]++;
39279cc3 5340 }
49593bfa 5341
16cdcec7
MX
5342 if (key_type == BTRFS_DIR_INDEX_KEY) {
5343 if (is_curr)
9cdda8d3
AV
5344 ctx->pos++;
5345 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5346 if (ret)
5347 goto nopos;
5348 }
5349
49593bfa 5350 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5351 ctx->pos++;
5352
5353 /*
5354 * Stop new entries from being returned after we return the last
5355 * entry.
5356 *
5357 * New directory entries are assigned a strictly increasing
5358 * offset. This means that new entries created during readdir
5359 * are *guaranteed* to be seen in the future by that readdir.
5360 * This has broken buggy programs which operate on names as
5361 * they're returned by readdir. Until we re-use freed offsets
5362 * we have this hack to stop new entries from being returned
5363 * under the assumption that they'll never reach this huge
5364 * offset.
5365 *
5366 * This is being careful not to overflow 32bit loff_t unless the
5367 * last entry requires it because doing so has broken 32bit apps
5368 * in the past.
5369 */
5370 if (key_type == BTRFS_DIR_INDEX_KEY) {
5371 if (ctx->pos >= INT_MAX)
5372 ctx->pos = LLONG_MAX;
5373 else
5374 ctx->pos = INT_MAX;
5375 }
39279cc3
CM
5376nopos:
5377 ret = 0;
5378err:
16cdcec7
MX
5379 if (key_type == BTRFS_DIR_INDEX_KEY)
5380 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5381 btrfs_free_path(path);
39279cc3
CM
5382 return ret;
5383}
5384
a9185b41 5385int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5386{
5387 struct btrfs_root *root = BTRFS_I(inode)->root;
5388 struct btrfs_trans_handle *trans;
5389 int ret = 0;
0af3d00b 5390 bool nolock = false;
39279cc3 5391
72ac3c0d 5392 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5393 return 0;
5394
83eea1f1 5395 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5396 nolock = true;
0af3d00b 5397
a9185b41 5398 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5399 if (nolock)
7a7eaa40 5400 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5401 else
7a7eaa40 5402 trans = btrfs_join_transaction(root);
3612b495
TI
5403 if (IS_ERR(trans))
5404 return PTR_ERR(trans);
a698d075 5405 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5406 }
5407 return ret;
5408}
5409
5410/*
54aa1f4d 5411 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5412 * inode changes. But, it is most likely to find the inode in cache.
5413 * FIXME, needs more benchmarking...there are no reasons other than performance
5414 * to keep or drop this code.
5415 */
48a3b636 5416static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5417{
5418 struct btrfs_root *root = BTRFS_I(inode)->root;
5419 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5420 int ret;
5421
72ac3c0d 5422 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5423 return 0;
39279cc3 5424
7a7eaa40 5425 trans = btrfs_join_transaction(root);
22c44fe6
JB
5426 if (IS_ERR(trans))
5427 return PTR_ERR(trans);
8929ecfa
YZ
5428
5429 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5430 if (ret && ret == -ENOSPC) {
5431 /* whoops, lets try again with the full transaction */
5432 btrfs_end_transaction(trans, root);
5433 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5434 if (IS_ERR(trans))
5435 return PTR_ERR(trans);
8929ecfa 5436
94b60442 5437 ret = btrfs_update_inode(trans, root, inode);
94b60442 5438 }
39279cc3 5439 btrfs_end_transaction(trans, root);
16cdcec7
MX
5440 if (BTRFS_I(inode)->delayed_node)
5441 btrfs_balance_delayed_items(root);
22c44fe6
JB
5442
5443 return ret;
5444}
5445
5446/*
5447 * This is a copy of file_update_time. We need this so we can return error on
5448 * ENOSPC for updating the inode in the case of file write and mmap writes.
5449 */
e41f941a
JB
5450static int btrfs_update_time(struct inode *inode, struct timespec *now,
5451 int flags)
22c44fe6 5452{
2bc55652
AB
5453 struct btrfs_root *root = BTRFS_I(inode)->root;
5454
5455 if (btrfs_root_readonly(root))
5456 return -EROFS;
5457
e41f941a 5458 if (flags & S_VERSION)
22c44fe6 5459 inode_inc_iversion(inode);
e41f941a
JB
5460 if (flags & S_CTIME)
5461 inode->i_ctime = *now;
5462 if (flags & S_MTIME)
5463 inode->i_mtime = *now;
5464 if (flags & S_ATIME)
5465 inode->i_atime = *now;
5466 return btrfs_dirty_inode(inode);
39279cc3
CM
5467}
5468
d352ac68
CM
5469/*
5470 * find the highest existing sequence number in a directory
5471 * and then set the in-memory index_cnt variable to reflect
5472 * free sequence numbers
5473 */
aec7477b
JB
5474static int btrfs_set_inode_index_count(struct inode *inode)
5475{
5476 struct btrfs_root *root = BTRFS_I(inode)->root;
5477 struct btrfs_key key, found_key;
5478 struct btrfs_path *path;
5479 struct extent_buffer *leaf;
5480 int ret;
5481
33345d01 5482 key.objectid = btrfs_ino(inode);
aec7477b
JB
5483 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5484 key.offset = (u64)-1;
5485
5486 path = btrfs_alloc_path();
5487 if (!path)
5488 return -ENOMEM;
5489
5490 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5491 if (ret < 0)
5492 goto out;
5493 /* FIXME: we should be able to handle this */
5494 if (ret == 0)
5495 goto out;
5496 ret = 0;
5497
5498 /*
5499 * MAGIC NUMBER EXPLANATION:
5500 * since we search a directory based on f_pos we have to start at 2
5501 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5502 * else has to start at 2
5503 */
5504 if (path->slots[0] == 0) {
5505 BTRFS_I(inode)->index_cnt = 2;
5506 goto out;
5507 }
5508
5509 path->slots[0]--;
5510
5511 leaf = path->nodes[0];
5512 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5513
33345d01 5514 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5515 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5516 BTRFS_I(inode)->index_cnt = 2;
5517 goto out;
5518 }
5519
5520 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5521out:
5522 btrfs_free_path(path);
5523 return ret;
5524}
5525
d352ac68
CM
5526/*
5527 * helper to find a free sequence number in a given directory. This current
5528 * code is very simple, later versions will do smarter things in the btree
5529 */
3de4586c 5530int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5531{
5532 int ret = 0;
5533
5534 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5535 ret = btrfs_inode_delayed_dir_index_count(dir);
5536 if (ret) {
5537 ret = btrfs_set_inode_index_count(dir);
5538 if (ret)
5539 return ret;
5540 }
aec7477b
JB
5541 }
5542
00e4e6b3 5543 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5544 BTRFS_I(dir)->index_cnt++;
5545
5546 return ret;
5547}
5548
39279cc3
CM
5549static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5550 struct btrfs_root *root,
aec7477b 5551 struct inode *dir,
9c58309d 5552 const char *name, int name_len,
175a4eb7
AV
5553 u64 ref_objectid, u64 objectid,
5554 umode_t mode, u64 *index)
39279cc3
CM
5555{
5556 struct inode *inode;
5f39d397 5557 struct btrfs_inode_item *inode_item;
39279cc3 5558 struct btrfs_key *location;
5f39d397 5559 struct btrfs_path *path;
9c58309d
CM
5560 struct btrfs_inode_ref *ref;
5561 struct btrfs_key key[2];
5562 u32 sizes[2];
ef3b9af5 5563 int nitems = name ? 2 : 1;
9c58309d 5564 unsigned long ptr;
39279cc3 5565 int ret;
39279cc3 5566
5f39d397 5567 path = btrfs_alloc_path();
d8926bb3
MF
5568 if (!path)
5569 return ERR_PTR(-ENOMEM);
5f39d397 5570
39279cc3 5571 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5572 if (!inode) {
5573 btrfs_free_path(path);
39279cc3 5574 return ERR_PTR(-ENOMEM);
8fb27640 5575 }
39279cc3 5576
581bb050
LZ
5577 /*
5578 * we have to initialize this early, so we can reclaim the inode
5579 * number if we fail afterwards in this function.
5580 */
5581 inode->i_ino = objectid;
5582
ef3b9af5 5583 if (dir && name) {
1abe9b8a 5584 trace_btrfs_inode_request(dir);
5585
3de4586c 5586 ret = btrfs_set_inode_index(dir, index);
09771430 5587 if (ret) {
8fb27640 5588 btrfs_free_path(path);
09771430 5589 iput(inode);
aec7477b 5590 return ERR_PTR(ret);
09771430 5591 }
ef3b9af5
FM
5592 } else if (dir) {
5593 *index = 0;
aec7477b
JB
5594 }
5595 /*
5596 * index_cnt is ignored for everything but a dir,
5597 * btrfs_get_inode_index_count has an explanation for the magic
5598 * number
5599 */
5600 BTRFS_I(inode)->index_cnt = 2;
67de1176 5601 BTRFS_I(inode)->dir_index = *index;
39279cc3 5602 BTRFS_I(inode)->root = root;
e02119d5 5603 BTRFS_I(inode)->generation = trans->transid;
76195853 5604 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5605
5dc562c5
JB
5606 /*
5607 * We could have gotten an inode number from somebody who was fsynced
5608 * and then removed in this same transaction, so let's just set full
5609 * sync since it will be a full sync anyway and this will blow away the
5610 * old info in the log.
5611 */
5612 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5613
9c58309d
CM
5614 key[0].objectid = objectid;
5615 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5616 key[0].offset = 0;
5617
9c58309d 5618 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5619
5620 if (name) {
5621 /*
5622 * Start new inodes with an inode_ref. This is slightly more
5623 * efficient for small numbers of hard links since they will
5624 * be packed into one item. Extended refs will kick in if we
5625 * add more hard links than can fit in the ref item.
5626 */
5627 key[1].objectid = objectid;
5628 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5629 key[1].offset = ref_objectid;
5630
5631 sizes[1] = name_len + sizeof(*ref);
5632 }
9c58309d 5633
b9473439 5634 path->leave_spinning = 1;
ef3b9af5 5635 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 5636 if (ret != 0)
5f39d397
CM
5637 goto fail;
5638
ecc11fab 5639 inode_init_owner(inode, dir, mode);
a76a3cd4 5640 inode_set_bytes(inode, 0);
39279cc3 5641 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5642 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5643 struct btrfs_inode_item);
293f7e07
LZ
5644 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5645 sizeof(*inode_item));
e02119d5 5646 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 5647
ef3b9af5
FM
5648 if (name) {
5649 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5650 struct btrfs_inode_ref);
5651 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5652 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5653 ptr = (unsigned long)(ref + 1);
5654 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5655 }
9c58309d 5656
5f39d397
CM
5657 btrfs_mark_buffer_dirty(path->nodes[0]);
5658 btrfs_free_path(path);
5659
39279cc3
CM
5660 location = &BTRFS_I(inode)->location;
5661 location->objectid = objectid;
39279cc3
CM
5662 location->offset = 0;
5663 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5664
6cbff00f
CH
5665 btrfs_inherit_iflags(inode, dir);
5666
569254b0 5667 if (S_ISREG(mode)) {
94272164
CM
5668 if (btrfs_test_opt(root, NODATASUM))
5669 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5670 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5671 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5672 BTRFS_INODE_NODATASUM;
94272164
CM
5673 }
5674
778ba82b 5675 btrfs_insert_inode_hash(inode);
5d4f98a2 5676 inode_tree_add(inode);
1abe9b8a 5677
5678 trace_btrfs_inode_new(inode);
1973f0fa 5679 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5680
8ea05e3a
AB
5681 btrfs_update_root_times(trans, root);
5682
63541927
FDBM
5683 ret = btrfs_inode_inherit_props(trans, inode, dir);
5684 if (ret)
5685 btrfs_err(root->fs_info,
5686 "error inheriting props for ino %llu (root %llu): %d",
5687 btrfs_ino(inode), root->root_key.objectid, ret);
5688
39279cc3 5689 return inode;
5f39d397 5690fail:
ef3b9af5 5691 if (dir && name)
aec7477b 5692 BTRFS_I(dir)->index_cnt--;
5f39d397 5693 btrfs_free_path(path);
09771430 5694 iput(inode);
5f39d397 5695 return ERR_PTR(ret);
39279cc3
CM
5696}
5697
5698static inline u8 btrfs_inode_type(struct inode *inode)
5699{
5700 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5701}
5702
d352ac68
CM
5703/*
5704 * utility function to add 'inode' into 'parent_inode' with
5705 * a give name and a given sequence number.
5706 * if 'add_backref' is true, also insert a backref from the
5707 * inode to the parent directory.
5708 */
e02119d5
CM
5709int btrfs_add_link(struct btrfs_trans_handle *trans,
5710 struct inode *parent_inode, struct inode *inode,
5711 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5712{
4df27c4d 5713 int ret = 0;
39279cc3 5714 struct btrfs_key key;
e02119d5 5715 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5716 u64 ino = btrfs_ino(inode);
5717 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5718
33345d01 5719 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5720 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5721 } else {
33345d01 5722 key.objectid = ino;
4df27c4d
YZ
5723 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5724 key.offset = 0;
5725 }
5726
33345d01 5727 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5728 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5729 key.objectid, root->root_key.objectid,
33345d01 5730 parent_ino, index, name, name_len);
4df27c4d 5731 } else if (add_backref) {
33345d01
LZ
5732 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5733 parent_ino, index);
4df27c4d 5734 }
39279cc3 5735
79787eaa
JM
5736 /* Nothing to clean up yet */
5737 if (ret)
5738 return ret;
4df27c4d 5739
79787eaa
JM
5740 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5741 parent_inode, &key,
5742 btrfs_inode_type(inode), index);
9c52057c 5743 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5744 goto fail_dir_item;
5745 else if (ret) {
5746 btrfs_abort_transaction(trans, root, ret);
5747 return ret;
39279cc3 5748 }
79787eaa
JM
5749
5750 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5751 name_len * 2);
0c4d2d95 5752 inode_inc_iversion(parent_inode);
79787eaa
JM
5753 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5754 ret = btrfs_update_inode(trans, root, parent_inode);
5755 if (ret)
5756 btrfs_abort_transaction(trans, root, ret);
39279cc3 5757 return ret;
fe66a05a
CM
5758
5759fail_dir_item:
5760 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5761 u64 local_index;
5762 int err;
5763 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5764 key.objectid, root->root_key.objectid,
5765 parent_ino, &local_index, name, name_len);
5766
5767 } else if (add_backref) {
5768 u64 local_index;
5769 int err;
5770
5771 err = btrfs_del_inode_ref(trans, root, name, name_len,
5772 ino, parent_ino, &local_index);
5773 }
5774 return ret;
39279cc3
CM
5775}
5776
5777static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5778 struct inode *dir, struct dentry *dentry,
5779 struct inode *inode, int backref, u64 index)
39279cc3 5780{
a1b075d2
JB
5781 int err = btrfs_add_link(trans, dir, inode,
5782 dentry->d_name.name, dentry->d_name.len,
5783 backref, index);
39279cc3
CM
5784 if (err > 0)
5785 err = -EEXIST;
5786 return err;
5787}
5788
618e21d5 5789static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5790 umode_t mode, dev_t rdev)
618e21d5
JB
5791{
5792 struct btrfs_trans_handle *trans;
5793 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5794 struct inode *inode = NULL;
618e21d5
JB
5795 int err;
5796 int drop_inode = 0;
5797 u64 objectid;
00e4e6b3 5798 u64 index = 0;
618e21d5
JB
5799
5800 if (!new_valid_dev(rdev))
5801 return -EINVAL;
5802
9ed74f2d
JB
5803 /*
5804 * 2 for inode item and ref
5805 * 2 for dir items
5806 * 1 for xattr if selinux is on
5807 */
a22285a6
YZ
5808 trans = btrfs_start_transaction(root, 5);
5809 if (IS_ERR(trans))
5810 return PTR_ERR(trans);
1832a6d5 5811
581bb050
LZ
5812 err = btrfs_find_free_ino(root, &objectid);
5813 if (err)
5814 goto out_unlock;
5815
aec7477b 5816 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5817 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5818 mode, &index);
7cf96da3
TI
5819 if (IS_ERR(inode)) {
5820 err = PTR_ERR(inode);
618e21d5 5821 goto out_unlock;
7cf96da3 5822 }
618e21d5 5823
2a7dba39 5824 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5825 if (err) {
5826 drop_inode = 1;
5827 goto out_unlock;
5828 }
5829
ad19db71
CS
5830 /*
5831 * If the active LSM wants to access the inode during
5832 * d_instantiate it needs these. Smack checks to see
5833 * if the filesystem supports xattrs by looking at the
5834 * ops vector.
5835 */
5836
5837 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5838 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5839 if (err)
5840 drop_inode = 1;
5841 else {
618e21d5 5842 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5843 btrfs_update_inode(trans, root, inode);
08c422c2 5844 d_instantiate(dentry, inode);
618e21d5 5845 }
618e21d5 5846out_unlock:
7ad85bb7 5847 btrfs_end_transaction(trans, root);
c581afc8 5848 btrfs_balance_delayed_items(root);
b53d3f5d 5849 btrfs_btree_balance_dirty(root);
618e21d5
JB
5850 if (drop_inode) {
5851 inode_dec_link_count(inode);
5852 iput(inode);
5853 }
618e21d5
JB
5854 return err;
5855}
5856
39279cc3 5857static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5858 umode_t mode, bool excl)
39279cc3
CM
5859{
5860 struct btrfs_trans_handle *trans;
5861 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5862 struct inode *inode = NULL;
43baa579 5863 int drop_inode_on_err = 0;
a22285a6 5864 int err;
39279cc3 5865 u64 objectid;
00e4e6b3 5866 u64 index = 0;
39279cc3 5867
9ed74f2d
JB
5868 /*
5869 * 2 for inode item and ref
5870 * 2 for dir items
5871 * 1 for xattr if selinux is on
5872 */
a22285a6
YZ
5873 trans = btrfs_start_transaction(root, 5);
5874 if (IS_ERR(trans))
5875 return PTR_ERR(trans);
9ed74f2d 5876
581bb050
LZ
5877 err = btrfs_find_free_ino(root, &objectid);
5878 if (err)
5879 goto out_unlock;
5880
aec7477b 5881 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5882 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5883 mode, &index);
7cf96da3
TI
5884 if (IS_ERR(inode)) {
5885 err = PTR_ERR(inode);
39279cc3 5886 goto out_unlock;
7cf96da3 5887 }
43baa579 5888 drop_inode_on_err = 1;
39279cc3 5889
2a7dba39 5890 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5891 if (err)
33268eaf 5892 goto out_unlock;
33268eaf 5893
9185aa58
FB
5894 err = btrfs_update_inode(trans, root, inode);
5895 if (err)
5896 goto out_unlock;
5897
ad19db71
CS
5898 /*
5899 * If the active LSM wants to access the inode during
5900 * d_instantiate it needs these. Smack checks to see
5901 * if the filesystem supports xattrs by looking at the
5902 * ops vector.
5903 */
5904 inode->i_fop = &btrfs_file_operations;
5905 inode->i_op = &btrfs_file_inode_operations;
5906
a1b075d2 5907 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5908 if (err)
43baa579
FB
5909 goto out_unlock;
5910
5911 inode->i_mapping->a_ops = &btrfs_aops;
5912 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5913 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5914 d_instantiate(dentry, inode);
5915
39279cc3 5916out_unlock:
7ad85bb7 5917 btrfs_end_transaction(trans, root);
43baa579 5918 if (err && drop_inode_on_err) {
39279cc3
CM
5919 inode_dec_link_count(inode);
5920 iput(inode);
5921 }
c581afc8 5922 btrfs_balance_delayed_items(root);
b53d3f5d 5923 btrfs_btree_balance_dirty(root);
39279cc3
CM
5924 return err;
5925}
5926
5927static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5928 struct dentry *dentry)
5929{
5930 struct btrfs_trans_handle *trans;
5931 struct btrfs_root *root = BTRFS_I(dir)->root;
5932 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5933 u64 index;
39279cc3
CM
5934 int err;
5935 int drop_inode = 0;
5936
4a8be425
TH
5937 /* do not allow sys_link's with other subvols of the same device */
5938 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5939 return -EXDEV;
4a8be425 5940
f186373f 5941 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5942 return -EMLINK;
4a8be425 5943
3de4586c 5944 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5945 if (err)
5946 goto fail;
5947
a22285a6 5948 /*
7e6b6465 5949 * 2 items for inode and inode ref
a22285a6 5950 * 2 items for dir items
7e6b6465 5951 * 1 item for parent inode
a22285a6 5952 */
7e6b6465 5953 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5954 if (IS_ERR(trans)) {
5955 err = PTR_ERR(trans);
5956 goto fail;
5957 }
5f39d397 5958
67de1176
MX
5959 /* There are several dir indexes for this inode, clear the cache. */
5960 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 5961 inc_nlink(inode);
0c4d2d95 5962 inode_inc_iversion(inode);
3153495d 5963 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5964 ihold(inode);
e9976151 5965 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5966
a1b075d2 5967 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5968
a5719521 5969 if (err) {
54aa1f4d 5970 drop_inode = 1;
a5719521 5971 } else {
10d9f309 5972 struct dentry *parent = dentry->d_parent;
a5719521 5973 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5974 if (err)
5975 goto fail;
ef3b9af5
FM
5976 if (inode->i_nlink == 1) {
5977 /*
5978 * If new hard link count is 1, it's a file created
5979 * with open(2) O_TMPFILE flag.
5980 */
5981 err = btrfs_orphan_del(trans, inode);
5982 if (err)
5983 goto fail;
5984 }
08c422c2 5985 d_instantiate(dentry, inode);
6a912213 5986 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5987 }
39279cc3 5988
7ad85bb7 5989 btrfs_end_transaction(trans, root);
c581afc8 5990 btrfs_balance_delayed_items(root);
1832a6d5 5991fail:
39279cc3
CM
5992 if (drop_inode) {
5993 inode_dec_link_count(inode);
5994 iput(inode);
5995 }
b53d3f5d 5996 btrfs_btree_balance_dirty(root);
39279cc3
CM
5997 return err;
5998}
5999
18bb1db3 6000static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6001{
b9d86667 6002 struct inode *inode = NULL;
39279cc3
CM
6003 struct btrfs_trans_handle *trans;
6004 struct btrfs_root *root = BTRFS_I(dir)->root;
6005 int err = 0;
6006 int drop_on_err = 0;
b9d86667 6007 u64 objectid = 0;
00e4e6b3 6008 u64 index = 0;
39279cc3 6009
9ed74f2d
JB
6010 /*
6011 * 2 items for inode and ref
6012 * 2 items for dir items
6013 * 1 for xattr if selinux is on
6014 */
a22285a6
YZ
6015 trans = btrfs_start_transaction(root, 5);
6016 if (IS_ERR(trans))
6017 return PTR_ERR(trans);
39279cc3 6018
581bb050
LZ
6019 err = btrfs_find_free_ino(root, &objectid);
6020 if (err)
6021 goto out_fail;
6022
aec7477b 6023 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6024 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6025 S_IFDIR | mode, &index);
39279cc3
CM
6026 if (IS_ERR(inode)) {
6027 err = PTR_ERR(inode);
6028 goto out_fail;
6029 }
5f39d397 6030
39279cc3 6031 drop_on_err = 1;
33268eaf 6032
2a7dba39 6033 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
6034 if (err)
6035 goto out_fail;
6036
39279cc3
CM
6037 inode->i_op = &btrfs_dir_inode_operations;
6038 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 6039
dbe674a9 6040 btrfs_i_size_write(inode, 0);
39279cc3
CM
6041 err = btrfs_update_inode(trans, root, inode);
6042 if (err)
6043 goto out_fail;
5f39d397 6044
a1b075d2
JB
6045 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6046 dentry->d_name.len, 0, index);
39279cc3
CM
6047 if (err)
6048 goto out_fail;
5f39d397 6049
39279cc3
CM
6050 d_instantiate(dentry, inode);
6051 drop_on_err = 0;
39279cc3
CM
6052
6053out_fail:
7ad85bb7 6054 btrfs_end_transaction(trans, root);
39279cc3
CM
6055 if (drop_on_err)
6056 iput(inode);
c581afc8 6057 btrfs_balance_delayed_items(root);
b53d3f5d 6058 btrfs_btree_balance_dirty(root);
39279cc3
CM
6059 return err;
6060}
6061
d352ac68
CM
6062/* helper for btfs_get_extent. Given an existing extent in the tree,
6063 * and an extent that you want to insert, deal with overlap and insert
6064 * the new extent into the tree.
6065 */
3b951516
CM
6066static int merge_extent_mapping(struct extent_map_tree *em_tree,
6067 struct extent_map *existing,
e6dcd2dc
CM
6068 struct extent_map *em,
6069 u64 map_start, u64 map_len)
3b951516
CM
6070{
6071 u64 start_diff;
3b951516 6072
e6dcd2dc
CM
6073 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6074 start_diff = map_start - em->start;
6075 em->start = map_start;
6076 em->len = map_len;
c8b97818
CM
6077 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6078 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6079 em->block_start += start_diff;
c8b97818
CM
6080 em->block_len -= start_diff;
6081 }
09a2a8f9 6082 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6083}
6084
c8b97818
CM
6085static noinline int uncompress_inline(struct btrfs_path *path,
6086 struct inode *inode, struct page *page,
6087 size_t pg_offset, u64 extent_offset,
6088 struct btrfs_file_extent_item *item)
6089{
6090 int ret;
6091 struct extent_buffer *leaf = path->nodes[0];
6092 char *tmp;
6093 size_t max_size;
6094 unsigned long inline_size;
6095 unsigned long ptr;
261507a0 6096 int compress_type;
c8b97818
CM
6097
6098 WARN_ON(pg_offset != 0);
261507a0 6099 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6100 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6101 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6102 btrfs_item_nr(path->slots[0]));
c8b97818 6103 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6104 if (!tmp)
6105 return -ENOMEM;
c8b97818
CM
6106 ptr = btrfs_file_extent_inline_start(item);
6107
6108 read_extent_buffer(leaf, tmp, ptr, inline_size);
6109
5b050f04 6110 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6111 ret = btrfs_decompress(compress_type, tmp, page,
6112 extent_offset, inline_size, max_size);
c8b97818 6113 kfree(tmp);
166ae5a4 6114 return ret;
c8b97818
CM
6115}
6116
d352ac68
CM
6117/*
6118 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6119 * the ugly parts come from merging extents from the disk with the in-ram
6120 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6121 * where the in-ram extents might be locked pending data=ordered completion.
6122 *
6123 * This also copies inline extents directly into the page.
6124 */
d397712b 6125
a52d9a80 6126struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6127 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6128 int create)
6129{
6130 int ret;
6131 int err = 0;
a52d9a80
CM
6132 u64 extent_start = 0;
6133 u64 extent_end = 0;
33345d01 6134 u64 objectid = btrfs_ino(inode);
a52d9a80 6135 u32 found_type;
f421950f 6136 struct btrfs_path *path = NULL;
a52d9a80
CM
6137 struct btrfs_root *root = BTRFS_I(inode)->root;
6138 struct btrfs_file_extent_item *item;
5f39d397
CM
6139 struct extent_buffer *leaf;
6140 struct btrfs_key found_key;
a52d9a80
CM
6141 struct extent_map *em = NULL;
6142 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6143 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6144 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6145 const bool new_inline = !page || create;
a52d9a80 6146
a52d9a80 6147again:
890871be 6148 read_lock(&em_tree->lock);
d1310b2e 6149 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6150 if (em)
6151 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6152 read_unlock(&em_tree->lock);
d1310b2e 6153
a52d9a80 6154 if (em) {
e1c4b745
CM
6155 if (em->start > start || em->start + em->len <= start)
6156 free_extent_map(em);
6157 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6158 free_extent_map(em);
6159 else
6160 goto out;
a52d9a80 6161 }
172ddd60 6162 em = alloc_extent_map();
a52d9a80 6163 if (!em) {
d1310b2e
CM
6164 err = -ENOMEM;
6165 goto out;
a52d9a80 6166 }
e6dcd2dc 6167 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6168 em->start = EXTENT_MAP_HOLE;
445a6944 6169 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6170 em->len = (u64)-1;
c8b97818 6171 em->block_len = (u64)-1;
f421950f
CM
6172
6173 if (!path) {
6174 path = btrfs_alloc_path();
026fd317
JB
6175 if (!path) {
6176 err = -ENOMEM;
6177 goto out;
6178 }
6179 /*
6180 * Chances are we'll be called again, so go ahead and do
6181 * readahead
6182 */
6183 path->reada = 1;
f421950f
CM
6184 }
6185
179e29e4
CM
6186 ret = btrfs_lookup_file_extent(trans, root, path,
6187 objectid, start, trans != NULL);
a52d9a80
CM
6188 if (ret < 0) {
6189 err = ret;
6190 goto out;
6191 }
6192
6193 if (ret != 0) {
6194 if (path->slots[0] == 0)
6195 goto not_found;
6196 path->slots[0]--;
6197 }
6198
5f39d397
CM
6199 leaf = path->nodes[0];
6200 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6201 struct btrfs_file_extent_item);
a52d9a80 6202 /* are we inside the extent that was found? */
5f39d397
CM
6203 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6204 found_type = btrfs_key_type(&found_key);
6205 if (found_key.objectid != objectid ||
a52d9a80 6206 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6207 /*
6208 * If we backup past the first extent we want to move forward
6209 * and see if there is an extent in front of us, otherwise we'll
6210 * say there is a hole for our whole search range which can
6211 * cause problems.
6212 */
6213 extent_end = start;
6214 goto next;
a52d9a80
CM
6215 }
6216
5f39d397
CM
6217 found_type = btrfs_file_extent_type(leaf, item);
6218 extent_start = found_key.offset;
d899e052
YZ
6219 if (found_type == BTRFS_FILE_EXTENT_REG ||
6220 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6221 extent_end = extent_start +
db94535d 6222 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6223 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6224 size_t size;
514ac8ad 6225 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6226 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6227 }
25a50341 6228next:
9036c102
YZ
6229 if (start >= extent_end) {
6230 path->slots[0]++;
6231 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6232 ret = btrfs_next_leaf(root, path);
6233 if (ret < 0) {
6234 err = ret;
6235 goto out;
a52d9a80 6236 }
9036c102
YZ
6237 if (ret > 0)
6238 goto not_found;
6239 leaf = path->nodes[0];
a52d9a80 6240 }
9036c102
YZ
6241 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6242 if (found_key.objectid != objectid ||
6243 found_key.type != BTRFS_EXTENT_DATA_KEY)
6244 goto not_found;
6245 if (start + len <= found_key.offset)
6246 goto not_found;
6247 em->start = start;
70c8a91c 6248 em->orig_start = start;
9036c102
YZ
6249 em->len = found_key.offset - start;
6250 goto not_found_em;
6251 }
6252
7ffbb598
FM
6253 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6254
d899e052
YZ
6255 if (found_type == BTRFS_FILE_EXTENT_REG ||
6256 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6257 goto insert;
6258 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6259 unsigned long ptr;
a52d9a80 6260 char *map;
3326d1b0
CM
6261 size_t size;
6262 size_t extent_offset;
6263 size_t copy_size;
a52d9a80 6264
7ffbb598 6265 if (new_inline)
689f9346 6266 goto out;
5f39d397 6267
514ac8ad 6268 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6269 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6270 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6271 size - extent_offset);
3326d1b0 6272 em->start = extent_start + extent_offset;
fda2832f 6273 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6274 em->orig_block_len = em->len;
70c8a91c 6275 em->orig_start = em->start;
689f9346 6276 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6277 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6278 if (btrfs_file_extent_compression(leaf, item) !=
6279 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6280 ret = uncompress_inline(path, inode, page,
6281 pg_offset,
6282 extent_offset, item);
166ae5a4
ZB
6283 if (ret) {
6284 err = ret;
6285 goto out;
6286 }
c8b97818
CM
6287 } else {
6288 map = kmap(page);
6289 read_extent_buffer(leaf, map + pg_offset, ptr,
6290 copy_size);
93c82d57
CM
6291 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6292 memset(map + pg_offset + copy_size, 0,
6293 PAGE_CACHE_SIZE - pg_offset -
6294 copy_size);
6295 }
c8b97818
CM
6296 kunmap(page);
6297 }
179e29e4
CM
6298 flush_dcache_page(page);
6299 } else if (create && PageUptodate(page)) {
6bf7e080 6300 BUG();
179e29e4
CM
6301 if (!trans) {
6302 kunmap(page);
6303 free_extent_map(em);
6304 em = NULL;
ff5714cc 6305
b3b4aa74 6306 btrfs_release_path(path);
7a7eaa40 6307 trans = btrfs_join_transaction(root);
ff5714cc 6308
3612b495
TI
6309 if (IS_ERR(trans))
6310 return ERR_CAST(trans);
179e29e4
CM
6311 goto again;
6312 }
c8b97818 6313 map = kmap(page);
70dec807 6314 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6315 copy_size);
c8b97818 6316 kunmap(page);
179e29e4 6317 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6318 }
d1310b2e 6319 set_extent_uptodate(io_tree, em->start,
507903b8 6320 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6321 goto insert;
a52d9a80
CM
6322 }
6323not_found:
6324 em->start = start;
70c8a91c 6325 em->orig_start = start;
d1310b2e 6326 em->len = len;
a52d9a80 6327not_found_em:
5f39d397 6328 em->block_start = EXTENT_MAP_HOLE;
9036c102 6329 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6330insert:
b3b4aa74 6331 btrfs_release_path(path);
d1310b2e 6332 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6333 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6334 em->start, em->len, start, len);
a52d9a80
CM
6335 err = -EIO;
6336 goto out;
6337 }
d1310b2e
CM
6338
6339 err = 0;
890871be 6340 write_lock(&em_tree->lock);
09a2a8f9 6341 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6342 /* it is possible that someone inserted the extent into the tree
6343 * while we had the lock dropped. It is also possible that
6344 * an overlapping map exists in the tree
6345 */
a52d9a80 6346 if (ret == -EEXIST) {
3b951516 6347 struct extent_map *existing;
e6dcd2dc
CM
6348
6349 ret = 0;
6350
3b951516 6351 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6352 if (existing && (existing->start > start ||
6353 existing->start + existing->len <= start)) {
6354 free_extent_map(existing);
6355 existing = NULL;
6356 }
3b951516
CM
6357 if (!existing) {
6358 existing = lookup_extent_mapping(em_tree, em->start,
6359 em->len);
6360 if (existing) {
6361 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6362 em, start,
6363 root->sectorsize);
3b951516
CM
6364 free_extent_map(existing);
6365 if (err) {
6366 free_extent_map(em);
6367 em = NULL;
6368 }
6369 } else {
6370 err = -EIO;
3b951516
CM
6371 free_extent_map(em);
6372 em = NULL;
6373 }
6374 } else {
6375 free_extent_map(em);
6376 em = existing;
e6dcd2dc 6377 err = 0;
a52d9a80 6378 }
a52d9a80 6379 }
890871be 6380 write_unlock(&em_tree->lock);
a52d9a80 6381out:
1abe9b8a 6382
4cd8587c 6383 trace_btrfs_get_extent(root, em);
1abe9b8a 6384
f421950f
CM
6385 if (path)
6386 btrfs_free_path(path);
a52d9a80
CM
6387 if (trans) {
6388 ret = btrfs_end_transaction(trans, root);
d397712b 6389 if (!err)
a52d9a80
CM
6390 err = ret;
6391 }
a52d9a80
CM
6392 if (err) {
6393 free_extent_map(em);
a52d9a80
CM
6394 return ERR_PTR(err);
6395 }
79787eaa 6396 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6397 return em;
6398}
6399
ec29ed5b
CM
6400struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6401 size_t pg_offset, u64 start, u64 len,
6402 int create)
6403{
6404 struct extent_map *em;
6405 struct extent_map *hole_em = NULL;
6406 u64 range_start = start;
6407 u64 end;
6408 u64 found;
6409 u64 found_end;
6410 int err = 0;
6411
6412 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6413 if (IS_ERR(em))
6414 return em;
6415 if (em) {
6416 /*
f9e4fb53
LB
6417 * if our em maps to
6418 * - a hole or
6419 * - a pre-alloc extent,
6420 * there might actually be delalloc bytes behind it.
ec29ed5b 6421 */
f9e4fb53
LB
6422 if (em->block_start != EXTENT_MAP_HOLE &&
6423 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6424 return em;
6425 else
6426 hole_em = em;
6427 }
6428
6429 /* check to see if we've wrapped (len == -1 or similar) */
6430 end = start + len;
6431 if (end < start)
6432 end = (u64)-1;
6433 else
6434 end -= 1;
6435
6436 em = NULL;
6437
6438 /* ok, we didn't find anything, lets look for delalloc */
6439 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6440 end, len, EXTENT_DELALLOC, 1);
6441 found_end = range_start + found;
6442 if (found_end < range_start)
6443 found_end = (u64)-1;
6444
6445 /*
6446 * we didn't find anything useful, return
6447 * the original results from get_extent()
6448 */
6449 if (range_start > end || found_end <= start) {
6450 em = hole_em;
6451 hole_em = NULL;
6452 goto out;
6453 }
6454
6455 /* adjust the range_start to make sure it doesn't
6456 * go backwards from the start they passed in
6457 */
67871254 6458 range_start = max(start, range_start);
ec29ed5b
CM
6459 found = found_end - range_start;
6460
6461 if (found > 0) {
6462 u64 hole_start = start;
6463 u64 hole_len = len;
6464
172ddd60 6465 em = alloc_extent_map();
ec29ed5b
CM
6466 if (!em) {
6467 err = -ENOMEM;
6468 goto out;
6469 }
6470 /*
6471 * when btrfs_get_extent can't find anything it
6472 * returns one huge hole
6473 *
6474 * make sure what it found really fits our range, and
6475 * adjust to make sure it is based on the start from
6476 * the caller
6477 */
6478 if (hole_em) {
6479 u64 calc_end = extent_map_end(hole_em);
6480
6481 if (calc_end <= start || (hole_em->start > end)) {
6482 free_extent_map(hole_em);
6483 hole_em = NULL;
6484 } else {
6485 hole_start = max(hole_em->start, start);
6486 hole_len = calc_end - hole_start;
6487 }
6488 }
6489 em->bdev = NULL;
6490 if (hole_em && range_start > hole_start) {
6491 /* our hole starts before our delalloc, so we
6492 * have to return just the parts of the hole
6493 * that go until the delalloc starts
6494 */
6495 em->len = min(hole_len,
6496 range_start - hole_start);
6497 em->start = hole_start;
6498 em->orig_start = hole_start;
6499 /*
6500 * don't adjust block start at all,
6501 * it is fixed at EXTENT_MAP_HOLE
6502 */
6503 em->block_start = hole_em->block_start;
6504 em->block_len = hole_len;
f9e4fb53
LB
6505 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6506 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6507 } else {
6508 em->start = range_start;
6509 em->len = found;
6510 em->orig_start = range_start;
6511 em->block_start = EXTENT_MAP_DELALLOC;
6512 em->block_len = found;
6513 }
6514 } else if (hole_em) {
6515 return hole_em;
6516 }
6517out:
6518
6519 free_extent_map(hole_em);
6520 if (err) {
6521 free_extent_map(em);
6522 return ERR_PTR(err);
6523 }
6524 return em;
6525}
6526
4b46fce2
JB
6527static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6528 u64 start, u64 len)
6529{
6530 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6531 struct extent_map *em;
4b46fce2
JB
6532 struct btrfs_key ins;
6533 u64 alloc_hint;
6534 int ret;
4b46fce2 6535
4b46fce2 6536 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6537 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
81c9ad23 6538 alloc_hint, &ins, 1);
00361589
JB
6539 if (ret)
6540 return ERR_PTR(ret);
4b46fce2 6541
70c8a91c 6542 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6543 ins.offset, ins.offset, ins.offset, 0);
00361589
JB
6544 if (IS_ERR(em)) {
6545 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6546 return em;
6547 }
4b46fce2
JB
6548
6549 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6550 ins.offset, ins.offset, 0);
6551 if (ret) {
6552 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
00361589
JB
6553 free_extent_map(em);
6554 return ERR_PTR(ret);
4b46fce2 6555 }
00361589 6556
4b46fce2
JB
6557 return em;
6558}
6559
46bfbb5c
CM
6560/*
6561 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6562 * block must be cow'd
6563 */
00361589 6564noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6565 u64 *orig_start, u64 *orig_block_len,
6566 u64 *ram_bytes)
46bfbb5c 6567{
00361589 6568 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6569 struct btrfs_path *path;
6570 int ret;
6571 struct extent_buffer *leaf;
6572 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6573 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6574 struct btrfs_file_extent_item *fi;
6575 struct btrfs_key key;
6576 u64 disk_bytenr;
6577 u64 backref_offset;
6578 u64 extent_end;
6579 u64 num_bytes;
6580 int slot;
6581 int found_type;
7ee9e440 6582 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6583
46bfbb5c
CM
6584 path = btrfs_alloc_path();
6585 if (!path)
6586 return -ENOMEM;
6587
00361589 6588 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6589 offset, 0);
6590 if (ret < 0)
6591 goto out;
6592
6593 slot = path->slots[0];
6594 if (ret == 1) {
6595 if (slot == 0) {
6596 /* can't find the item, must cow */
6597 ret = 0;
6598 goto out;
6599 }
6600 slot--;
6601 }
6602 ret = 0;
6603 leaf = path->nodes[0];
6604 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6605 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6606 key.type != BTRFS_EXTENT_DATA_KEY) {
6607 /* not our file or wrong item type, must cow */
6608 goto out;
6609 }
6610
6611 if (key.offset > offset) {
6612 /* Wrong offset, must cow */
6613 goto out;
6614 }
6615
6616 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6617 found_type = btrfs_file_extent_type(leaf, fi);
6618 if (found_type != BTRFS_FILE_EXTENT_REG &&
6619 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6620 /* not a regular extent, must cow */
6621 goto out;
6622 }
7ee9e440
JB
6623
6624 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6625 goto out;
6626
e77751aa
MX
6627 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6628 if (extent_end <= offset)
6629 goto out;
6630
46bfbb5c 6631 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6632 if (disk_bytenr == 0)
6633 goto out;
6634
6635 if (btrfs_file_extent_compression(leaf, fi) ||
6636 btrfs_file_extent_encryption(leaf, fi) ||
6637 btrfs_file_extent_other_encoding(leaf, fi))
6638 goto out;
6639
46bfbb5c
CM
6640 backref_offset = btrfs_file_extent_offset(leaf, fi);
6641
7ee9e440
JB
6642 if (orig_start) {
6643 *orig_start = key.offset - backref_offset;
6644 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6645 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6646 }
eb384b55 6647
46bfbb5c
CM
6648 if (btrfs_extent_readonly(root, disk_bytenr))
6649 goto out;
7b2b7085
MX
6650
6651 num_bytes = min(offset + *len, extent_end) - offset;
6652 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6653 u64 range_end;
6654
6655 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6656 ret = test_range_bit(io_tree, offset, range_end,
6657 EXTENT_DELALLOC, 0, NULL);
6658 if (ret) {
6659 ret = -EAGAIN;
6660 goto out;
6661 }
6662 }
6663
1bda19eb 6664 btrfs_release_path(path);
46bfbb5c
CM
6665
6666 /*
6667 * look for other files referencing this extent, if we
6668 * find any we must cow
6669 */
00361589
JB
6670 trans = btrfs_join_transaction(root);
6671 if (IS_ERR(trans)) {
6672 ret = 0;
46bfbb5c 6673 goto out;
00361589
JB
6674 }
6675
6676 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6677 key.offset - backref_offset, disk_bytenr);
6678 btrfs_end_transaction(trans, root);
6679 if (ret) {
6680 ret = 0;
6681 goto out;
6682 }
46bfbb5c
CM
6683
6684 /*
6685 * adjust disk_bytenr and num_bytes to cover just the bytes
6686 * in this extent we are about to write. If there
6687 * are any csums in that range we have to cow in order
6688 * to keep the csums correct
6689 */
6690 disk_bytenr += backref_offset;
6691 disk_bytenr += offset - key.offset;
46bfbb5c
CM
6692 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6693 goto out;
6694 /*
6695 * all of the above have passed, it is safe to overwrite this extent
6696 * without cow
6697 */
eb384b55 6698 *len = num_bytes;
46bfbb5c
CM
6699 ret = 1;
6700out:
6701 btrfs_free_path(path);
6702 return ret;
6703}
6704
fc4adbff
AG
6705bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6706{
6707 struct radix_tree_root *root = &inode->i_mapping->page_tree;
6708 int found = false;
6709 void **pagep = NULL;
6710 struct page *page = NULL;
6711 int start_idx;
6712 int end_idx;
6713
6714 start_idx = start >> PAGE_CACHE_SHIFT;
6715
6716 /*
6717 * end is the last byte in the last page. end == start is legal
6718 */
6719 end_idx = end >> PAGE_CACHE_SHIFT;
6720
6721 rcu_read_lock();
6722
6723 /* Most of the code in this while loop is lifted from
6724 * find_get_page. It's been modified to begin searching from a
6725 * page and return just the first page found in that range. If the
6726 * found idx is less than or equal to the end idx then we know that
6727 * a page exists. If no pages are found or if those pages are
6728 * outside of the range then we're fine (yay!) */
6729 while (page == NULL &&
6730 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6731 page = radix_tree_deref_slot(pagep);
6732 if (unlikely(!page))
6733 break;
6734
6735 if (radix_tree_exception(page)) {
809f9016
FM
6736 if (radix_tree_deref_retry(page)) {
6737 page = NULL;
fc4adbff 6738 continue;
809f9016 6739 }
fc4adbff
AG
6740 /*
6741 * Otherwise, shmem/tmpfs must be storing a swap entry
6742 * here as an exceptional entry: so return it without
6743 * attempting to raise page count.
6744 */
6fdef6d4 6745 page = NULL;
fc4adbff
AG
6746 break; /* TODO: Is this relevant for this use case? */
6747 }
6748
91405151
FM
6749 if (!page_cache_get_speculative(page)) {
6750 page = NULL;
fc4adbff 6751 continue;
91405151 6752 }
fc4adbff
AG
6753
6754 /*
6755 * Has the page moved?
6756 * This is part of the lockless pagecache protocol. See
6757 * include/linux/pagemap.h for details.
6758 */
6759 if (unlikely(page != *pagep)) {
6760 page_cache_release(page);
6761 page = NULL;
6762 }
6763 }
6764
6765 if (page) {
6766 if (page->index <= end_idx)
6767 found = true;
6768 page_cache_release(page);
6769 }
6770
6771 rcu_read_unlock();
6772 return found;
6773}
6774
eb838e73
JB
6775static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6776 struct extent_state **cached_state, int writing)
6777{
6778 struct btrfs_ordered_extent *ordered;
6779 int ret = 0;
6780
6781 while (1) {
6782 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6783 0, cached_state);
6784 /*
6785 * We're concerned with the entire range that we're going to be
6786 * doing DIO to, so we need to make sure theres no ordered
6787 * extents in this range.
6788 */
6789 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6790 lockend - lockstart + 1);
6791
6792 /*
6793 * We need to make sure there are no buffered pages in this
6794 * range either, we could have raced between the invalidate in
6795 * generic_file_direct_write and locking the extent. The
6796 * invalidate needs to happen so that reads after a write do not
6797 * get stale data.
6798 */
fc4adbff
AG
6799 if (!ordered &&
6800 (!writing ||
6801 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
6802 break;
6803
6804 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6805 cached_state, GFP_NOFS);
6806
6807 if (ordered) {
6808 btrfs_start_ordered_extent(inode, ordered, 1);
6809 btrfs_put_ordered_extent(ordered);
6810 } else {
6811 /* Screw you mmap */
6812 ret = filemap_write_and_wait_range(inode->i_mapping,
6813 lockstart,
6814 lockend);
6815 if (ret)
6816 break;
6817
6818 /*
6819 * If we found a page that couldn't be invalidated just
6820 * fall back to buffered.
6821 */
6822 ret = invalidate_inode_pages2_range(inode->i_mapping,
6823 lockstart >> PAGE_CACHE_SHIFT,
6824 lockend >> PAGE_CACHE_SHIFT);
6825 if (ret)
6826 break;
6827 }
6828
6829 cond_resched();
6830 }
6831
6832 return ret;
6833}
6834
69ffb543
JB
6835static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6836 u64 len, u64 orig_start,
6837 u64 block_start, u64 block_len,
cc95bef6
JB
6838 u64 orig_block_len, u64 ram_bytes,
6839 int type)
69ffb543
JB
6840{
6841 struct extent_map_tree *em_tree;
6842 struct extent_map *em;
6843 struct btrfs_root *root = BTRFS_I(inode)->root;
6844 int ret;
6845
6846 em_tree = &BTRFS_I(inode)->extent_tree;
6847 em = alloc_extent_map();
6848 if (!em)
6849 return ERR_PTR(-ENOMEM);
6850
6851 em->start = start;
6852 em->orig_start = orig_start;
2ab28f32
JB
6853 em->mod_start = start;
6854 em->mod_len = len;
69ffb543
JB
6855 em->len = len;
6856 em->block_len = block_len;
6857 em->block_start = block_start;
6858 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6859 em->orig_block_len = orig_block_len;
cc95bef6 6860 em->ram_bytes = ram_bytes;
70c8a91c 6861 em->generation = -1;
69ffb543
JB
6862 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6863 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6864 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6865
6866 do {
6867 btrfs_drop_extent_cache(inode, em->start,
6868 em->start + em->len - 1, 0);
6869 write_lock(&em_tree->lock);
09a2a8f9 6870 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6871 write_unlock(&em_tree->lock);
6872 } while (ret == -EEXIST);
6873
6874 if (ret) {
6875 free_extent_map(em);
6876 return ERR_PTR(ret);
6877 }
6878
6879 return em;
6880}
6881
6882
4b46fce2
JB
6883static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6884 struct buffer_head *bh_result, int create)
6885{
6886 struct extent_map *em;
6887 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6888 struct extent_state *cached_state = NULL;
4b46fce2 6889 u64 start = iblock << inode->i_blkbits;
eb838e73 6890 u64 lockstart, lockend;
4b46fce2 6891 u64 len = bh_result->b_size;
eb838e73 6892 int unlock_bits = EXTENT_LOCKED;
0934856d 6893 int ret = 0;
eb838e73 6894
172a5049 6895 if (create)
eb838e73 6896 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6897 else
c329861d 6898 len = min_t(u64, len, root->sectorsize);
eb838e73 6899
c329861d
JB
6900 lockstart = start;
6901 lockend = start + len - 1;
6902
eb838e73
JB
6903 /*
6904 * If this errors out it's because we couldn't invalidate pagecache for
6905 * this range and we need to fallback to buffered.
6906 */
6907 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6908 return -ENOTBLK;
6909
4b46fce2 6910 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6911 if (IS_ERR(em)) {
6912 ret = PTR_ERR(em);
6913 goto unlock_err;
6914 }
4b46fce2
JB
6915
6916 /*
6917 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6918 * io. INLINE is special, and we could probably kludge it in here, but
6919 * it's still buffered so for safety lets just fall back to the generic
6920 * buffered path.
6921 *
6922 * For COMPRESSED we _have_ to read the entire extent in so we can
6923 * decompress it, so there will be buffering required no matter what we
6924 * do, so go ahead and fallback to buffered.
6925 *
6926 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6927 * to buffered IO. Don't blame me, this is the price we pay for using
6928 * the generic code.
6929 */
6930 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6931 em->block_start == EXTENT_MAP_INLINE) {
6932 free_extent_map(em);
eb838e73
JB
6933 ret = -ENOTBLK;
6934 goto unlock_err;
4b46fce2
JB
6935 }
6936
6937 /* Just a good old fashioned hole, return */
6938 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6939 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6940 free_extent_map(em);
eb838e73 6941 goto unlock_err;
4b46fce2
JB
6942 }
6943
6944 /*
6945 * We don't allocate a new extent in the following cases
6946 *
6947 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6948 * existing extent.
6949 * 2) The extent is marked as PREALLOC. We're good to go here and can
6950 * just use the extent.
6951 *
6952 */
46bfbb5c 6953 if (!create) {
eb838e73
JB
6954 len = min(len, em->len - (start - em->start));
6955 lockstart = start + len;
6956 goto unlock;
46bfbb5c 6957 }
4b46fce2
JB
6958
6959 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6960 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6961 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6962 int type;
6963 int ret;
eb384b55 6964 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6965
6966 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6967 type = BTRFS_ORDERED_PREALLOC;
6968 else
6969 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6970 len = min(len, em->len - (start - em->start));
4b46fce2 6971 block_start = em->block_start + (start - em->start);
46bfbb5c 6972
00361589 6973 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 6974 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6975 if (type == BTRFS_ORDERED_PREALLOC) {
6976 free_extent_map(em);
6977 em = create_pinned_em(inode, start, len,
6978 orig_start,
b4939680 6979 block_start, len,
cc95bef6
JB
6980 orig_block_len,
6981 ram_bytes, type);
00361589 6982 if (IS_ERR(em))
69ffb543 6983 goto unlock_err;
69ffb543
JB
6984 }
6985
46bfbb5c
CM
6986 ret = btrfs_add_ordered_extent_dio(inode, start,
6987 block_start, len, len, type);
46bfbb5c
CM
6988 if (ret) {
6989 free_extent_map(em);
eb838e73 6990 goto unlock_err;
46bfbb5c
CM
6991 }
6992 goto unlock;
4b46fce2 6993 }
4b46fce2 6994 }
00361589 6995
46bfbb5c
CM
6996 /*
6997 * this will cow the extent, reset the len in case we changed
6998 * it above
6999 */
7000 len = bh_result->b_size;
70c8a91c
JB
7001 free_extent_map(em);
7002 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7003 if (IS_ERR(em)) {
7004 ret = PTR_ERR(em);
7005 goto unlock_err;
7006 }
46bfbb5c
CM
7007 len = min(len, em->len - (start - em->start));
7008unlock:
4b46fce2
JB
7009 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7010 inode->i_blkbits;
46bfbb5c 7011 bh_result->b_size = len;
4b46fce2
JB
7012 bh_result->b_bdev = em->bdev;
7013 set_buffer_mapped(bh_result);
c3473e83
JB
7014 if (create) {
7015 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7016 set_buffer_new(bh_result);
7017
7018 /*
7019 * Need to update the i_size under the extent lock so buffered
7020 * readers will get the updated i_size when we unlock.
7021 */
7022 if (start + len > i_size_read(inode))
7023 i_size_write(inode, start + len);
0934856d 7024
172a5049
MX
7025 spin_lock(&BTRFS_I(inode)->lock);
7026 BTRFS_I(inode)->outstanding_extents++;
7027 spin_unlock(&BTRFS_I(inode)->lock);
7028
0934856d
MX
7029 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7030 lockstart + len - 1, EXTENT_DELALLOC, NULL,
7031 &cached_state, GFP_NOFS);
7032 BUG_ON(ret);
c3473e83 7033 }
4b46fce2 7034
eb838e73
JB
7035 /*
7036 * In the case of write we need to clear and unlock the entire range,
7037 * in the case of read we need to unlock only the end area that we
7038 * aren't using if there is any left over space.
7039 */
24c03fa5 7040 if (lockstart < lockend) {
0934856d
MX
7041 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7042 lockend, unlock_bits, 1, 0,
7043 &cached_state, GFP_NOFS);
24c03fa5 7044 } else {
eb838e73 7045 free_extent_state(cached_state);
24c03fa5 7046 }
eb838e73 7047
4b46fce2
JB
7048 free_extent_map(em);
7049
7050 return 0;
eb838e73
JB
7051
7052unlock_err:
eb838e73
JB
7053 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7054 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7055 return ret;
4b46fce2
JB
7056}
7057
4b46fce2
JB
7058static void btrfs_endio_direct_read(struct bio *bio, int err)
7059{
e65e1535 7060 struct btrfs_dio_private *dip = bio->bi_private;
2c30c71b 7061 struct bio_vec *bvec;
4b46fce2
JB
7062 struct inode *inode = dip->inode;
7063 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 7064 struct bio *dio_bio;
facc8a22 7065 u32 *csums = (u32 *)dip->csum;
4b46fce2 7066 u64 start;
2c30c71b 7067 int i;
4b46fce2
JB
7068
7069 start = dip->logical_offset;
2c30c71b 7070 bio_for_each_segment_all(bvec, bio, i) {
4b46fce2
JB
7071 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
7072 struct page *page = bvec->bv_page;
7073 char *kaddr;
7074 u32 csum = ~(u32)0;
7075 unsigned long flags;
7076
7077 local_irq_save(flags);
7ac687d9 7078 kaddr = kmap_atomic(page);
b0496686 7079 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
7080 csum, bvec->bv_len);
7081 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 7082 kunmap_atomic(kaddr);
4b46fce2
JB
7083 local_irq_restore(flags);
7084
7085 flush_dcache_page(bvec->bv_page);
2c30c71b 7086 if (csum != csums[i]) {
facc8a22 7087 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 7088 btrfs_ino(inode), start, csum,
2c30c71b 7089 csums[i]);
4b46fce2
JB
7090 err = -EIO;
7091 }
7092 }
7093
7094 start += bvec->bv_len;
2c30c71b 7095 }
4b46fce2
JB
7096
7097 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7098 dip->logical_offset + dip->bytes - 1);
9be3395b 7099 dio_bio = dip->dio_bio;
4b46fce2 7100
4b46fce2 7101 kfree(dip);
c0da7aa1
JB
7102
7103 /* If we had a csum failure make sure to clear the uptodate flag */
7104 if (err)
9be3395b
CM
7105 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7106 dio_end_io(dio_bio, err);
7107 bio_put(bio);
4b46fce2
JB
7108}
7109
7110static void btrfs_endio_direct_write(struct bio *bio, int err)
7111{
7112 struct btrfs_dio_private *dip = bio->bi_private;
7113 struct inode *inode = dip->inode;
7114 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7115 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7116 u64 ordered_offset = dip->logical_offset;
7117 u64 ordered_bytes = dip->bytes;
9be3395b 7118 struct bio *dio_bio;
4b46fce2
JB
7119 int ret;
7120
7121 if (err)
7122 goto out_done;
163cf09c
CM
7123again:
7124 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7125 &ordered_offset,
5fd02043 7126 ordered_bytes, !err);
4b46fce2 7127 if (!ret)
163cf09c 7128 goto out_test;
4b46fce2 7129
fccb5d86
QW
7130 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
7131 btrfs_queue_work(root->fs_info->endio_write_workers,
7132 &ordered->work);
163cf09c
CM
7133out_test:
7134 /*
7135 * our bio might span multiple ordered extents. If we haven't
7136 * completed the accounting for the whole dio, go back and try again
7137 */
7138 if (ordered_offset < dip->logical_offset + dip->bytes) {
7139 ordered_bytes = dip->logical_offset + dip->bytes -
7140 ordered_offset;
5fd02043 7141 ordered = NULL;
163cf09c
CM
7142 goto again;
7143 }
4b46fce2 7144out_done:
9be3395b 7145 dio_bio = dip->dio_bio;
4b46fce2 7146
4b46fce2 7147 kfree(dip);
c0da7aa1
JB
7148
7149 /* If we had an error make sure to clear the uptodate flag */
7150 if (err)
9be3395b
CM
7151 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7152 dio_end_io(dio_bio, err);
7153 bio_put(bio);
4b46fce2
JB
7154}
7155
eaf25d93
CM
7156static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7157 struct bio *bio, int mirror_num,
7158 unsigned long bio_flags, u64 offset)
7159{
7160 int ret;
7161 struct btrfs_root *root = BTRFS_I(inode)->root;
7162 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7163 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7164 return 0;
7165}
7166
e65e1535
MX
7167static void btrfs_end_dio_bio(struct bio *bio, int err)
7168{
7169 struct btrfs_dio_private *dip = bio->bi_private;
7170
7171 if (err) {
efe120a0
FH
7172 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7173 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
c1c9ff7c 7174 btrfs_ino(dip->inode), bio->bi_rw,
4f024f37
KO
7175 (unsigned long long)bio->bi_iter.bi_sector,
7176 bio->bi_iter.bi_size, err);
e65e1535
MX
7177 dip->errors = 1;
7178
7179 /*
7180 * before atomic variable goto zero, we must make sure
7181 * dip->errors is perceived to be set.
7182 */
7183 smp_mb__before_atomic_dec();
7184 }
7185
7186 /* if there are more bios still pending for this dio, just exit */
7187 if (!atomic_dec_and_test(&dip->pending_bios))
7188 goto out;
7189
9be3395b 7190 if (dip->errors) {
e65e1535 7191 bio_io_error(dip->orig_bio);
9be3395b
CM
7192 } else {
7193 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7194 bio_endio(dip->orig_bio, 0);
7195 }
7196out:
7197 bio_put(bio);
7198}
7199
7200static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7201 u64 first_sector, gfp_t gfp_flags)
7202{
7203 int nr_vecs = bio_get_nr_vecs(bdev);
7204 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7205}
7206
7207static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7208 int rw, u64 file_offset, int skip_sum,
c329861d 7209 int async_submit)
e65e1535 7210{
facc8a22 7211 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7212 int write = rw & REQ_WRITE;
7213 struct btrfs_root *root = BTRFS_I(inode)->root;
7214 int ret;
7215
b812ce28
JB
7216 if (async_submit)
7217 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7218
e65e1535 7219 bio_get(bio);
5fd02043
JB
7220
7221 if (!write) {
7222 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7223 if (ret)
7224 goto err;
7225 }
e65e1535 7226
1ae39938
JB
7227 if (skip_sum)
7228 goto map;
7229
7230 if (write && async_submit) {
e65e1535
MX
7231 ret = btrfs_wq_submit_bio(root->fs_info,
7232 inode, rw, bio, 0, 0,
7233 file_offset,
7234 __btrfs_submit_bio_start_direct_io,
7235 __btrfs_submit_bio_done);
7236 goto err;
1ae39938
JB
7237 } else if (write) {
7238 /*
7239 * If we aren't doing async submit, calculate the csum of the
7240 * bio now.
7241 */
7242 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7243 if (ret)
7244 goto err;
c2db1073 7245 } else if (!skip_sum) {
facc8a22
MX
7246 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7247 file_offset);
c2db1073
TI
7248 if (ret)
7249 goto err;
7250 }
e65e1535 7251
1ae39938
JB
7252map:
7253 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7254err:
7255 bio_put(bio);
7256 return ret;
7257}
7258
7259static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7260 int skip_sum)
7261{
7262 struct inode *inode = dip->inode;
7263 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7264 struct bio *bio;
7265 struct bio *orig_bio = dip->orig_bio;
7266 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 7267 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
7268 u64 file_offset = dip->logical_offset;
7269 u64 submit_len = 0;
7270 u64 map_length;
7271 int nr_pages = 0;
e65e1535 7272 int ret = 0;
1ae39938 7273 int async_submit = 0;
e65e1535 7274
4f024f37 7275 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7276 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7277 &map_length, NULL, 0);
7278 if (ret) {
64728bbb 7279 bio_put(orig_bio);
e65e1535
MX
7280 return -EIO;
7281 }
facc8a22 7282
4f024f37 7283 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a
JB
7284 bio = orig_bio;
7285 goto submit;
7286 }
7287
53b381b3
DW
7288 /* async crcs make it difficult to collect full stripe writes. */
7289 if (btrfs_get_alloc_profile(root, 1) &
7290 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7291 async_submit = 0;
7292 else
7293 async_submit = 1;
7294
02f57c7a
JB
7295 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7296 if (!bio)
7297 return -ENOMEM;
7298 bio->bi_private = dip;
7299 bio->bi_end_io = btrfs_end_dio_bio;
7300 atomic_inc(&dip->pending_bios);
7301
e65e1535
MX
7302 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7303 if (unlikely(map_length < submit_len + bvec->bv_len ||
7304 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7305 bvec->bv_offset) < bvec->bv_len)) {
7306 /*
7307 * inc the count before we submit the bio so
7308 * we know the end IO handler won't happen before
7309 * we inc the count. Otherwise, the dip might get freed
7310 * before we're done setting it up
7311 */
7312 atomic_inc(&dip->pending_bios);
7313 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7314 file_offset, skip_sum,
c329861d 7315 async_submit);
e65e1535
MX
7316 if (ret) {
7317 bio_put(bio);
7318 atomic_dec(&dip->pending_bios);
7319 goto out_err;
7320 }
7321
e65e1535
MX
7322 start_sector += submit_len >> 9;
7323 file_offset += submit_len;
7324
7325 submit_len = 0;
7326 nr_pages = 0;
7327
7328 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7329 start_sector, GFP_NOFS);
7330 if (!bio)
7331 goto out_err;
7332 bio->bi_private = dip;
7333 bio->bi_end_io = btrfs_end_dio_bio;
7334
4f024f37 7335 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7336 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7337 start_sector << 9,
e65e1535
MX
7338 &map_length, NULL, 0);
7339 if (ret) {
7340 bio_put(bio);
7341 goto out_err;
7342 }
7343 } else {
7344 submit_len += bvec->bv_len;
67871254 7345 nr_pages++;
e65e1535
MX
7346 bvec++;
7347 }
7348 }
7349
02f57c7a 7350submit:
e65e1535 7351 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7352 async_submit);
e65e1535
MX
7353 if (!ret)
7354 return 0;
7355
7356 bio_put(bio);
7357out_err:
7358 dip->errors = 1;
7359 /*
7360 * before atomic variable goto zero, we must
7361 * make sure dip->errors is perceived to be set.
7362 */
7363 smp_mb__before_atomic_dec();
7364 if (atomic_dec_and_test(&dip->pending_bios))
7365 bio_io_error(dip->orig_bio);
7366
7367 /* bio_end_io() will handle error, so we needn't return it */
7368 return 0;
7369}
7370
9be3395b
CM
7371static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7372 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7373{
7374 struct btrfs_root *root = BTRFS_I(inode)->root;
7375 struct btrfs_dio_private *dip;
9be3395b 7376 struct bio *io_bio;
4b46fce2 7377 int skip_sum;
facc8a22 7378 int sum_len;
7b6d91da 7379 int write = rw & REQ_WRITE;
4b46fce2 7380 int ret = 0;
facc8a22 7381 u16 csum_size;
4b46fce2
JB
7382
7383 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7384
9be3395b 7385 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7386 if (!io_bio) {
7387 ret = -ENOMEM;
7388 goto free_ordered;
7389 }
7390
facc8a22
MX
7391 if (!skip_sum && !write) {
7392 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
4f024f37
KO
7393 sum_len = dio_bio->bi_iter.bi_size >>
7394 inode->i_sb->s_blocksize_bits;
facc8a22
MX
7395 sum_len *= csum_size;
7396 } else {
7397 sum_len = 0;
7398 }
7399
7400 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7401 if (!dip) {
7402 ret = -ENOMEM;
9be3395b 7403 goto free_io_bio;
4b46fce2 7404 }
4b46fce2 7405
9be3395b 7406 dip->private = dio_bio->bi_private;
4b46fce2
JB
7407 dip->inode = inode;
7408 dip->logical_offset = file_offset;
4f024f37
KO
7409 dip->bytes = dio_bio->bi_iter.bi_size;
7410 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 7411 io_bio->bi_private = dip;
e65e1535 7412 dip->errors = 0;
9be3395b
CM
7413 dip->orig_bio = io_bio;
7414 dip->dio_bio = dio_bio;
e65e1535 7415 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7416
7417 if (write)
9be3395b 7418 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7419 else
9be3395b 7420 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7421
e65e1535
MX
7422 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7423 if (!ret)
eaf25d93 7424 return;
9be3395b
CM
7425
7426free_io_bio:
7427 bio_put(io_bio);
7428
4b46fce2
JB
7429free_ordered:
7430 /*
7431 * If this is a write, we need to clean up the reserved space and kill
7432 * the ordered extent.
7433 */
7434 if (write) {
7435 struct btrfs_ordered_extent *ordered;
955256f2 7436 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7437 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7438 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7439 btrfs_free_reserved_extent(root, ordered->start,
7440 ordered->disk_len);
7441 btrfs_put_ordered_extent(ordered);
7442 btrfs_put_ordered_extent(ordered);
7443 }
9be3395b 7444 bio_endio(dio_bio, ret);
4b46fce2
JB
7445}
7446
5a5f79b5
CM
7447static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7448 const struct iovec *iov, loff_t offset,
7449 unsigned long nr_segs)
7450{
7451 int seg;
a1b75f7d 7452 int i;
5a5f79b5
CM
7453 size_t size;
7454 unsigned long addr;
7455 unsigned blocksize_mask = root->sectorsize - 1;
7456 ssize_t retval = -EINVAL;
7457 loff_t end = offset;
7458
7459 if (offset & blocksize_mask)
7460 goto out;
7461
7462 /* Check the memory alignment. Blocks cannot straddle pages */
7463 for (seg = 0; seg < nr_segs; seg++) {
7464 addr = (unsigned long)iov[seg].iov_base;
7465 size = iov[seg].iov_len;
7466 end += size;
a1b75f7d 7467 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7468 goto out;
a1b75f7d
JB
7469
7470 /* If this is a write we don't need to check anymore */
7471 if (rw & WRITE)
7472 continue;
7473
7474 /*
7475 * Check to make sure we don't have duplicate iov_base's in this
7476 * iovec, if so return EINVAL, otherwise we'll get csum errors
7477 * when reading back.
7478 */
7479 for (i = seg + 1; i < nr_segs; i++) {
7480 if (iov[seg].iov_base == iov[i].iov_base)
7481 goto out;
7482 }
5a5f79b5
CM
7483 }
7484 retval = 0;
7485out:
7486 return retval;
7487}
eb838e73 7488
16432985
CM
7489static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7490 const struct iovec *iov, loff_t offset,
7491 unsigned long nr_segs)
7492{
4b46fce2
JB
7493 struct file *file = iocb->ki_filp;
7494 struct inode *inode = file->f_mapping->host;
0934856d 7495 size_t count = 0;
2e60a51e 7496 int flags = 0;
38851cc1
MX
7497 bool wakeup = true;
7498 bool relock = false;
0934856d 7499 ssize_t ret;
4b46fce2 7500
5a5f79b5 7501 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7502 offset, nr_segs))
5a5f79b5 7503 return 0;
3f7c579c 7504
38851cc1
MX
7505 atomic_inc(&inode->i_dio_count);
7506 smp_mb__after_atomic_inc();
7507
0e267c44 7508 /*
41bd9ca4
MX
7509 * The generic stuff only does filemap_write_and_wait_range, which
7510 * isn't enough if we've written compressed pages to this area, so
7511 * we need to flush the dirty pages again to make absolutely sure
7512 * that any outstanding dirty pages are on disk.
0e267c44
JB
7513 */
7514 count = iov_length(iov, nr_segs);
41bd9ca4
MX
7515 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7516 &BTRFS_I(inode)->runtime_flags))
7517 filemap_fdatawrite_range(inode->i_mapping, offset, count);
0e267c44 7518
0934856d 7519 if (rw & WRITE) {
38851cc1
MX
7520 /*
7521 * If the write DIO is beyond the EOF, we need update
7522 * the isize, but it is protected by i_mutex. So we can
7523 * not unlock the i_mutex at this case.
7524 */
7525 if (offset + count <= inode->i_size) {
7526 mutex_unlock(&inode->i_mutex);
7527 relock = true;
7528 }
0934856d
MX
7529 ret = btrfs_delalloc_reserve_space(inode, count);
7530 if (ret)
38851cc1
MX
7531 goto out;
7532 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7533 &BTRFS_I(inode)->runtime_flags))) {
7534 inode_dio_done(inode);
7535 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7536 wakeup = false;
0934856d
MX
7537 }
7538
7539 ret = __blockdev_direct_IO(rw, iocb, inode,
7540 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7541 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7542 btrfs_submit_direct, flags);
0934856d
MX
7543 if (rw & WRITE) {
7544 if (ret < 0 && ret != -EIOCBQUEUED)
7545 btrfs_delalloc_release_space(inode, count);
172a5049 7546 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7547 btrfs_delalloc_release_space(inode,
7548 count - (size_t)ret);
172a5049
MX
7549 else
7550 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7551 }
38851cc1 7552out:
2e60a51e
MX
7553 if (wakeup)
7554 inode_dio_done(inode);
38851cc1
MX
7555 if (relock)
7556 mutex_lock(&inode->i_mutex);
0934856d
MX
7557
7558 return ret;
16432985
CM
7559}
7560
05dadc09
TI
7561#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7562
1506fcc8
YS
7563static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7564 __u64 start, __u64 len)
7565{
05dadc09
TI
7566 int ret;
7567
7568 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7569 if (ret)
7570 return ret;
7571
ec29ed5b 7572 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7573}
7574
a52d9a80 7575int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7576{
d1310b2e
CM
7577 struct extent_io_tree *tree;
7578 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7579 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7580}
1832a6d5 7581
a52d9a80 7582static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7583{
d1310b2e 7584 struct extent_io_tree *tree;
b888db2b
CM
7585
7586
7587 if (current->flags & PF_MEMALLOC) {
7588 redirty_page_for_writepage(wbc, page);
7589 unlock_page(page);
7590 return 0;
7591 }
d1310b2e 7592 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7593 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7594}
7595
48a3b636
ES
7596static int btrfs_writepages(struct address_space *mapping,
7597 struct writeback_control *wbc)
b293f02e 7598{
d1310b2e 7599 struct extent_io_tree *tree;
771ed689 7600
d1310b2e 7601 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7602 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7603}
7604
3ab2fb5a
CM
7605static int
7606btrfs_readpages(struct file *file, struct address_space *mapping,
7607 struct list_head *pages, unsigned nr_pages)
7608{
d1310b2e
CM
7609 struct extent_io_tree *tree;
7610 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7611 return extent_readpages(tree, mapping, pages, nr_pages,
7612 btrfs_get_extent);
7613}
e6dcd2dc 7614static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7615{
d1310b2e
CM
7616 struct extent_io_tree *tree;
7617 struct extent_map_tree *map;
a52d9a80 7618 int ret;
8c2383c3 7619
d1310b2e
CM
7620 tree = &BTRFS_I(page->mapping->host)->io_tree;
7621 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7622 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7623 if (ret == 1) {
7624 ClearPagePrivate(page);
7625 set_page_private(page, 0);
7626 page_cache_release(page);
39279cc3 7627 }
a52d9a80 7628 return ret;
39279cc3
CM
7629}
7630
e6dcd2dc
CM
7631static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7632{
98509cfc
CM
7633 if (PageWriteback(page) || PageDirty(page))
7634 return 0;
b335b003 7635 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7636}
7637
d47992f8
LC
7638static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7639 unsigned int length)
39279cc3 7640{
5fd02043 7641 struct inode *inode = page->mapping->host;
d1310b2e 7642 struct extent_io_tree *tree;
e6dcd2dc 7643 struct btrfs_ordered_extent *ordered;
2ac55d41 7644 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7645 u64 page_start = page_offset(page);
7646 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 7647 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 7648
8b62b72b
CM
7649 /*
7650 * we have the page locked, so new writeback can't start,
7651 * and the dirty bit won't be cleared while we are here.
7652 *
7653 * Wait for IO on this page so that we can safely clear
7654 * the PagePrivate2 bit and do ordered accounting
7655 */
e6dcd2dc 7656 wait_on_page_writeback(page);
8b62b72b 7657
5fd02043 7658 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7659 if (offset) {
7660 btrfs_releasepage(page, GFP_NOFS);
7661 return;
7662 }
131e404a
FDBM
7663
7664 if (!inode_evicting)
7665 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7666 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 7667 if (ordered) {
eb84ae03
CM
7668 /*
7669 * IO on this page will never be started, so we need
7670 * to account for any ordered extents now
7671 */
131e404a
FDBM
7672 if (!inode_evicting)
7673 clear_extent_bit(tree, page_start, page_end,
7674 EXTENT_DIRTY | EXTENT_DELALLOC |
7675 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7676 EXTENT_DEFRAG, 1, 0, &cached_state,
7677 GFP_NOFS);
8b62b72b
CM
7678 /*
7679 * whoever cleared the private bit is responsible
7680 * for the finish_ordered_io
7681 */
77cef2ec
JB
7682 if (TestClearPagePrivate2(page)) {
7683 struct btrfs_ordered_inode_tree *tree;
7684 u64 new_len;
7685
7686 tree = &BTRFS_I(inode)->ordered_tree;
7687
7688 spin_lock_irq(&tree->lock);
7689 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7690 new_len = page_start - ordered->file_offset;
7691 if (new_len < ordered->truncated_len)
7692 ordered->truncated_len = new_len;
7693 spin_unlock_irq(&tree->lock);
7694
7695 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7696 page_start,
7697 PAGE_CACHE_SIZE, 1))
7698 btrfs_finish_ordered_io(ordered);
8b62b72b 7699 }
e6dcd2dc 7700 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
7701 if (!inode_evicting) {
7702 cached_state = NULL;
7703 lock_extent_bits(tree, page_start, page_end, 0,
7704 &cached_state);
7705 }
7706 }
7707
7708 if (!inode_evicting) {
7709 clear_extent_bit(tree, page_start, page_end,
7710 EXTENT_LOCKED | EXTENT_DIRTY |
7711 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7712 EXTENT_DEFRAG, 1, 1,
7713 &cached_state, GFP_NOFS);
7714
7715 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 7716 }
e6dcd2dc 7717
4a096752 7718 ClearPageChecked(page);
9ad6b7bc 7719 if (PagePrivate(page)) {
9ad6b7bc
CM
7720 ClearPagePrivate(page);
7721 set_page_private(page, 0);
7722 page_cache_release(page);
7723 }
39279cc3
CM
7724}
7725
9ebefb18
CM
7726/*
7727 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7728 * called from a page fault handler when a page is first dirtied. Hence we must
7729 * be careful to check for EOF conditions here. We set the page up correctly
7730 * for a written page which means we get ENOSPC checking when writing into
7731 * holes and correct delalloc and unwritten extent mapping on filesystems that
7732 * support these features.
7733 *
7734 * We are not allowed to take the i_mutex here so we have to play games to
7735 * protect against truncate races as the page could now be beyond EOF. Because
7736 * vmtruncate() writes the inode size before removing pages, once we have the
7737 * page lock we can determine safely if the page is beyond EOF. If it is not
7738 * beyond EOF, then the page is guaranteed safe against truncation until we
7739 * unlock the page.
7740 */
c2ec175c 7741int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7742{
c2ec175c 7743 struct page *page = vmf->page;
496ad9aa 7744 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7745 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7746 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7747 struct btrfs_ordered_extent *ordered;
2ac55d41 7748 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7749 char *kaddr;
7750 unsigned long zero_start;
9ebefb18 7751 loff_t size;
1832a6d5 7752 int ret;
9998eb70 7753 int reserved = 0;
a52d9a80 7754 u64 page_start;
e6dcd2dc 7755 u64 page_end;
9ebefb18 7756
b2b5ef5c 7757 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7758 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7759 if (!ret) {
e41f941a 7760 ret = file_update_time(vma->vm_file);
9998eb70
CM
7761 reserved = 1;
7762 }
56a76f82
NP
7763 if (ret) {
7764 if (ret == -ENOMEM)
7765 ret = VM_FAULT_OOM;
7766 else /* -ENOSPC, -EIO, etc */
7767 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7768 if (reserved)
7769 goto out;
7770 goto out_noreserve;
56a76f82 7771 }
1832a6d5 7772
56a76f82 7773 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7774again:
9ebefb18 7775 lock_page(page);
9ebefb18 7776 size = i_size_read(inode);
e6dcd2dc
CM
7777 page_start = page_offset(page);
7778 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7779
9ebefb18 7780 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7781 (page_start >= size)) {
9ebefb18
CM
7782 /* page got truncated out from underneath us */
7783 goto out_unlock;
7784 }
e6dcd2dc
CM
7785 wait_on_page_writeback(page);
7786
d0082371 7787 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7788 set_page_extent_mapped(page);
7789
eb84ae03
CM
7790 /*
7791 * we can't set the delalloc bits if there are pending ordered
7792 * extents. Drop our locks and wait for them to finish
7793 */
e6dcd2dc
CM
7794 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7795 if (ordered) {
2ac55d41
JB
7796 unlock_extent_cached(io_tree, page_start, page_end,
7797 &cached_state, GFP_NOFS);
e6dcd2dc 7798 unlock_page(page);
eb84ae03 7799 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7800 btrfs_put_ordered_extent(ordered);
7801 goto again;
7802 }
7803
fbf19087
JB
7804 /*
7805 * XXX - page_mkwrite gets called every time the page is dirtied, even
7806 * if it was already dirty, so for space accounting reasons we need to
7807 * clear any delalloc bits for the range we are fixing to save. There
7808 * is probably a better way to do this, but for now keep consistent with
7809 * prepare_pages in the normal write path.
7810 */
2ac55d41 7811 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7812 EXTENT_DIRTY | EXTENT_DELALLOC |
7813 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7814 0, 0, &cached_state, GFP_NOFS);
fbf19087 7815
2ac55d41
JB
7816 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7817 &cached_state);
9ed74f2d 7818 if (ret) {
2ac55d41
JB
7819 unlock_extent_cached(io_tree, page_start, page_end,
7820 &cached_state, GFP_NOFS);
9ed74f2d
JB
7821 ret = VM_FAULT_SIGBUS;
7822 goto out_unlock;
7823 }
e6dcd2dc 7824 ret = 0;
9ebefb18
CM
7825
7826 /* page is wholly or partially inside EOF */
a52d9a80 7827 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7828 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7829 else
e6dcd2dc 7830 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7831
e6dcd2dc
CM
7832 if (zero_start != PAGE_CACHE_SIZE) {
7833 kaddr = kmap(page);
7834 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7835 flush_dcache_page(page);
7836 kunmap(page);
7837 }
247e743c 7838 ClearPageChecked(page);
e6dcd2dc 7839 set_page_dirty(page);
50a9b214 7840 SetPageUptodate(page);
5a3f23d5 7841
257c62e1
CM
7842 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7843 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7844 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7845
2ac55d41 7846 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7847
7848out_unlock:
b2b5ef5c
JK
7849 if (!ret) {
7850 sb_end_pagefault(inode->i_sb);
50a9b214 7851 return VM_FAULT_LOCKED;
b2b5ef5c 7852 }
9ebefb18 7853 unlock_page(page);
1832a6d5 7854out:
ec39e180 7855 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7856out_noreserve:
b2b5ef5c 7857 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7858 return ret;
7859}
7860
a41ad394 7861static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7862{
7863 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7864 struct btrfs_block_rsv *rsv;
a71754fc 7865 int ret = 0;
3893e33b 7866 int err = 0;
39279cc3 7867 struct btrfs_trans_handle *trans;
dbe674a9 7868 u64 mask = root->sectorsize - 1;
07127184 7869 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7870
0ef8b726
JB
7871 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7872 (u64)-1);
7873 if (ret)
7874 return ret;
39279cc3 7875
fcb80c2a
JB
7876 /*
7877 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7878 * 3 things going on here
7879 *
7880 * 1) We need to reserve space for our orphan item and the space to
7881 * delete our orphan item. Lord knows we don't want to have a dangling
7882 * orphan item because we didn't reserve space to remove it.
7883 *
7884 * 2) We need to reserve space to update our inode.
7885 *
7886 * 3) We need to have something to cache all the space that is going to
7887 * be free'd up by the truncate operation, but also have some slack
7888 * space reserved in case it uses space during the truncate (thank you
7889 * very much snapshotting).
7890 *
7891 * And we need these to all be seperate. The fact is we can use alot of
7892 * space doing the truncate, and we have no earthly idea how much space
7893 * we will use, so we need the truncate reservation to be seperate so it
7894 * doesn't end up using space reserved for updating the inode or
7895 * removing the orphan item. We also need to be able to stop the
7896 * transaction and start a new one, which means we need to be able to
7897 * update the inode several times, and we have no idea of knowing how
7898 * many times that will be, so we can't just reserve 1 item for the
7899 * entirety of the opration, so that has to be done seperately as well.
7900 * Then there is the orphan item, which does indeed need to be held on
7901 * to for the whole operation, and we need nobody to touch this reserved
7902 * space except the orphan code.
7903 *
7904 * So that leaves us with
7905 *
7906 * 1) root->orphan_block_rsv - for the orphan deletion.
7907 * 2) rsv - for the truncate reservation, which we will steal from the
7908 * transaction reservation.
7909 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7910 * updating the inode.
7911 */
66d8f3dd 7912 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7913 if (!rsv)
7914 return -ENOMEM;
4a338542 7915 rsv->size = min_size;
ca7e70f5 7916 rsv->failfast = 1;
f0cd846e 7917
907cbceb 7918 /*
07127184 7919 * 1 for the truncate slack space
907cbceb
JB
7920 * 1 for updating the inode.
7921 */
f3fe820c 7922 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7923 if (IS_ERR(trans)) {
7924 err = PTR_ERR(trans);
7925 goto out;
7926 }
f0cd846e 7927
907cbceb
JB
7928 /* Migrate the slack space for the truncate to our reserve */
7929 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7930 min_size);
fcb80c2a 7931 BUG_ON(ret);
f0cd846e 7932
5a3f23d5
CM
7933 /*
7934 * setattr is responsible for setting the ordered_data_close flag,
7935 * but that is only tested during the last file release. That
7936 * could happen well after the next commit, leaving a great big
7937 * window where new writes may get lost if someone chooses to write
7938 * to this file after truncating to zero
7939 *
7940 * The inode doesn't have any dirty data here, and so if we commit
7941 * this is a noop. If someone immediately starts writing to the inode
7942 * it is very likely we'll catch some of their writes in this
7943 * transaction, and the commit will find this file on the ordered
7944 * data list with good things to send down.
7945 *
7946 * This is a best effort solution, there is still a window where
7947 * using truncate to replace the contents of the file will
7948 * end up with a zero length file after a crash.
7949 */
72ac3c0d
JB
7950 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7951 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7952 btrfs_add_ordered_operation(trans, root, inode);
7953
5dc562c5
JB
7954 /*
7955 * So if we truncate and then write and fsync we normally would just
7956 * write the extents that changed, which is a problem if we need to
7957 * first truncate that entire inode. So set this flag so we write out
7958 * all of the extents in the inode to the sync log so we're completely
7959 * safe.
7960 */
7961 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7962 trans->block_rsv = rsv;
907cbceb 7963
8082510e
YZ
7964 while (1) {
7965 ret = btrfs_truncate_inode_items(trans, root, inode,
7966 inode->i_size,
7967 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7968 if (ret != -ENOSPC) {
3893e33b 7969 err = ret;
8082510e 7970 break;
3893e33b 7971 }
39279cc3 7972
fcb80c2a 7973 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7974 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7975 if (ret) {
7976 err = ret;
7977 break;
7978 }
ca7e70f5 7979
8082510e 7980 btrfs_end_transaction(trans, root);
b53d3f5d 7981 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7982
7983 trans = btrfs_start_transaction(root, 2);
7984 if (IS_ERR(trans)) {
7985 ret = err = PTR_ERR(trans);
7986 trans = NULL;
7987 break;
7988 }
7989
7990 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7991 rsv, min_size);
7992 BUG_ON(ret); /* shouldn't happen */
7993 trans->block_rsv = rsv;
8082510e
YZ
7994 }
7995
7996 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7997 trans->block_rsv = root->orphan_block_rsv;
8082510e 7998 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7999 if (ret)
8000 err = ret;
8082510e
YZ
8001 }
8002
917c16b2
CM
8003 if (trans) {
8004 trans->block_rsv = &root->fs_info->trans_block_rsv;
8005 ret = btrfs_update_inode(trans, root, inode);
8006 if (ret && !err)
8007 err = ret;
7b128766 8008
7ad85bb7 8009 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8010 btrfs_btree_balance_dirty(root);
917c16b2 8011 }
fcb80c2a
JB
8012
8013out:
8014 btrfs_free_block_rsv(root, rsv);
8015
3893e33b
JB
8016 if (ret && !err)
8017 err = ret;
a41ad394 8018
3893e33b 8019 return err;
39279cc3
CM
8020}
8021
d352ac68
CM
8022/*
8023 * create a new subvolume directory/inode (helper for the ioctl).
8024 */
d2fb3437 8025int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8026 struct btrfs_root *new_root,
8027 struct btrfs_root *parent_root,
8028 u64 new_dirid)
39279cc3 8029{
39279cc3 8030 struct inode *inode;
76dda93c 8031 int err;
00e4e6b3 8032 u64 index = 0;
39279cc3 8033
12fc9d09
FA
8034 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8035 new_dirid, new_dirid,
8036 S_IFDIR | (~current_umask() & S_IRWXUGO),
8037 &index);
54aa1f4d 8038 if (IS_ERR(inode))
f46b5a66 8039 return PTR_ERR(inode);
39279cc3
CM
8040 inode->i_op = &btrfs_dir_inode_operations;
8041 inode->i_fop = &btrfs_dir_file_operations;
8042
bfe86848 8043 set_nlink(inode, 1);
dbe674a9 8044 btrfs_i_size_write(inode, 0);
3b96362c 8045
63541927
FDBM
8046 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8047 if (err)
8048 btrfs_err(new_root->fs_info,
351fd353 8049 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8050 new_root->root_key.objectid, err);
8051
76dda93c 8052 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8053
76dda93c 8054 iput(inode);
ce598979 8055 return err;
39279cc3
CM
8056}
8057
39279cc3
CM
8058struct inode *btrfs_alloc_inode(struct super_block *sb)
8059{
8060 struct btrfs_inode *ei;
2ead6ae7 8061 struct inode *inode;
39279cc3
CM
8062
8063 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8064 if (!ei)
8065 return NULL;
2ead6ae7
YZ
8066
8067 ei->root = NULL;
2ead6ae7 8068 ei->generation = 0;
15ee9bc7 8069 ei->last_trans = 0;
257c62e1 8070 ei->last_sub_trans = 0;
e02119d5 8071 ei->logged_trans = 0;
2ead6ae7 8072 ei->delalloc_bytes = 0;
2ead6ae7
YZ
8073 ei->disk_i_size = 0;
8074 ei->flags = 0;
7709cde3 8075 ei->csum_bytes = 0;
2ead6ae7 8076 ei->index_cnt = (u64)-1;
67de1176 8077 ei->dir_index = 0;
2ead6ae7 8078 ei->last_unlink_trans = 0;
46d8bc34 8079 ei->last_log_commit = 0;
2ead6ae7 8080
9e0baf60
JB
8081 spin_lock_init(&ei->lock);
8082 ei->outstanding_extents = 0;
8083 ei->reserved_extents = 0;
2ead6ae7 8084
72ac3c0d 8085 ei->runtime_flags = 0;
261507a0 8086 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8087
16cdcec7
MX
8088 ei->delayed_node = NULL;
8089
2ead6ae7 8090 inode = &ei->vfs_inode;
a8067e02 8091 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8092 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8093 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8094 ei->io_tree.track_uptodate = 1;
8095 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8096 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8097 mutex_init(&ei->log_mutex);
f248679e 8098 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8099 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8100 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 8101 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
8102 RB_CLEAR_NODE(&ei->rb_node);
8103
8104 return inode;
39279cc3
CM
8105}
8106
aaedb55b
JB
8107#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8108void btrfs_test_destroy_inode(struct inode *inode)
8109{
8110 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8111 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8112}
8113#endif
8114
fa0d7e3d
NP
8115static void btrfs_i_callback(struct rcu_head *head)
8116{
8117 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8118 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8119}
8120
39279cc3
CM
8121void btrfs_destroy_inode(struct inode *inode)
8122{
e6dcd2dc 8123 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8124 struct btrfs_root *root = BTRFS_I(inode)->root;
8125
b3d9b7a3 8126 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8127 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8128 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8129 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8130 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8131 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 8132
a6dbd429
JB
8133 /*
8134 * This can happen where we create an inode, but somebody else also
8135 * created the same inode and we need to destroy the one we already
8136 * created.
8137 */
8138 if (!root)
8139 goto free;
8140
5a3f23d5
CM
8141 /*
8142 * Make sure we're properly removed from the ordered operation
8143 * lists.
8144 */
8145 smp_mb();
8146 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 8147 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 8148 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 8149 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
8150 }
8151
8a35d95f
JB
8152 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8153 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8154 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8155 btrfs_ino(inode));
8a35d95f 8156 atomic_dec(&root->orphan_inodes);
7b128766 8157 }
7b128766 8158
d397712b 8159 while (1) {
e6dcd2dc
CM
8160 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8161 if (!ordered)
8162 break;
8163 else {
c2cf52eb 8164 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8165 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8166 btrfs_remove_ordered_extent(inode, ordered);
8167 btrfs_put_ordered_extent(ordered);
8168 btrfs_put_ordered_extent(ordered);
8169 }
8170 }
5d4f98a2 8171 inode_tree_del(inode);
5b21f2ed 8172 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8173free:
fa0d7e3d 8174 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8175}
8176
45321ac5 8177int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8178{
8179 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8180
6379ef9f
NA
8181 if (root == NULL)
8182 return 1;
8183
fa6ac876 8184 /* the snap/subvol tree is on deleting */
69e9c6c6 8185 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8186 return 1;
76dda93c 8187 else
45321ac5 8188 return generic_drop_inode(inode);
76dda93c
YZ
8189}
8190
0ee0fda0 8191static void init_once(void *foo)
39279cc3
CM
8192{
8193 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8194
8195 inode_init_once(&ei->vfs_inode);
8196}
8197
8198void btrfs_destroy_cachep(void)
8199{
8c0a8537
KS
8200 /*
8201 * Make sure all delayed rcu free inodes are flushed before we
8202 * destroy cache.
8203 */
8204 rcu_barrier();
39279cc3
CM
8205 if (btrfs_inode_cachep)
8206 kmem_cache_destroy(btrfs_inode_cachep);
8207 if (btrfs_trans_handle_cachep)
8208 kmem_cache_destroy(btrfs_trans_handle_cachep);
8209 if (btrfs_transaction_cachep)
8210 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8211 if (btrfs_path_cachep)
8212 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8213 if (btrfs_free_space_cachep)
8214 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8215 if (btrfs_delalloc_work_cachep)
8216 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8217}
8218
8219int btrfs_init_cachep(void)
8220{
837e1972 8221 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8222 sizeof(struct btrfs_inode), 0,
8223 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8224 if (!btrfs_inode_cachep)
8225 goto fail;
9601e3f6 8226
837e1972 8227 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8228 sizeof(struct btrfs_trans_handle), 0,
8229 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8230 if (!btrfs_trans_handle_cachep)
8231 goto fail;
9601e3f6 8232
837e1972 8233 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8234 sizeof(struct btrfs_transaction), 0,
8235 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8236 if (!btrfs_transaction_cachep)
8237 goto fail;
9601e3f6 8238
837e1972 8239 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8240 sizeof(struct btrfs_path), 0,
8241 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8242 if (!btrfs_path_cachep)
8243 goto fail;
9601e3f6 8244
837e1972 8245 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8246 sizeof(struct btrfs_free_space), 0,
8247 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8248 if (!btrfs_free_space_cachep)
8249 goto fail;
8250
8ccf6f19
MX
8251 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8252 sizeof(struct btrfs_delalloc_work), 0,
8253 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8254 NULL);
8255 if (!btrfs_delalloc_work_cachep)
8256 goto fail;
8257
39279cc3
CM
8258 return 0;
8259fail:
8260 btrfs_destroy_cachep();
8261 return -ENOMEM;
8262}
8263
8264static int btrfs_getattr(struct vfsmount *mnt,
8265 struct dentry *dentry, struct kstat *stat)
8266{
df0af1a5 8267 u64 delalloc_bytes;
39279cc3 8268 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8269 u32 blocksize = inode->i_sb->s_blocksize;
8270
39279cc3 8271 generic_fillattr(inode, stat);
0ee5dc67 8272 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8273 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8274
8275 spin_lock(&BTRFS_I(inode)->lock);
8276 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8277 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8278 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8279 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8280 return 0;
8281}
8282
d397712b
CM
8283static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8284 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8285{
8286 struct btrfs_trans_handle *trans;
8287 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8288 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8289 struct inode *new_inode = new_dentry->d_inode;
8290 struct inode *old_inode = old_dentry->d_inode;
8291 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8292 u64 index = 0;
4df27c4d 8293 u64 root_objectid;
39279cc3 8294 int ret;
33345d01 8295 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8296
33345d01 8297 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8298 return -EPERM;
8299
4df27c4d 8300 /* we only allow rename subvolume link between subvolumes */
33345d01 8301 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8302 return -EXDEV;
8303
33345d01
LZ
8304 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8305 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8306 return -ENOTEMPTY;
5f39d397 8307
4df27c4d
YZ
8308 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8309 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8310 return -ENOTEMPTY;
9c52057c
CM
8311
8312
8313 /* check for collisions, even if the name isn't there */
4871c158 8314 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8315 new_dentry->d_name.name,
8316 new_dentry->d_name.len);
8317
8318 if (ret) {
8319 if (ret == -EEXIST) {
8320 /* we shouldn't get
8321 * eexist without a new_inode */
fae7f21c 8322 if (WARN_ON(!new_inode)) {
9c52057c
CM
8323 return ret;
8324 }
8325 } else {
8326 /* maybe -EOVERFLOW */
8327 return ret;
8328 }
8329 }
8330 ret = 0;
8331
5a3f23d5
CM
8332 /*
8333 * we're using rename to replace one file with another.
8334 * and the replacement file is large. Start IO on it now so
8335 * we don't add too much work to the end of the transaction
8336 */
4baf8c92 8337 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8338 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8339 filemap_flush(old_inode->i_mapping);
8340
76dda93c 8341 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8342 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8343 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8344 /*
8345 * We want to reserve the absolute worst case amount of items. So if
8346 * both inodes are subvols and we need to unlink them then that would
8347 * require 4 item modifications, but if they are both normal inodes it
8348 * would require 5 item modifications, so we'll assume their normal
8349 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8350 * should cover the worst case number of items we'll modify.
8351 */
6e137ed3 8352 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8353 if (IS_ERR(trans)) {
8354 ret = PTR_ERR(trans);
8355 goto out_notrans;
8356 }
76dda93c 8357
4df27c4d
YZ
8358 if (dest != root)
8359 btrfs_record_root_in_trans(trans, dest);
5f39d397 8360
a5719521
YZ
8361 ret = btrfs_set_inode_index(new_dir, &index);
8362 if (ret)
8363 goto out_fail;
5a3f23d5 8364
67de1176 8365 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8366 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 8367 /* force full log commit if subvolume involved. */
995946dd 8368 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 8369 } else {
a5719521
YZ
8370 ret = btrfs_insert_inode_ref(trans, dest,
8371 new_dentry->d_name.name,
8372 new_dentry->d_name.len,
33345d01
LZ
8373 old_ino,
8374 btrfs_ino(new_dir), index);
a5719521
YZ
8375 if (ret)
8376 goto out_fail;
4df27c4d
YZ
8377 /*
8378 * this is an ugly little race, but the rename is required
8379 * to make sure that if we crash, the inode is either at the
8380 * old name or the new one. pinning the log transaction lets
8381 * us make sure we don't allow a log commit to come in after
8382 * we unlink the name but before we add the new name back in.
8383 */
8384 btrfs_pin_log_trans(root);
8385 }
5a3f23d5
CM
8386 /*
8387 * make sure the inode gets flushed if it is replacing
8388 * something.
8389 */
33345d01 8390 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8391 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8392
0c4d2d95
JB
8393 inode_inc_iversion(old_dir);
8394 inode_inc_iversion(new_dir);
8395 inode_inc_iversion(old_inode);
39279cc3
CM
8396 old_dir->i_ctime = old_dir->i_mtime = ctime;
8397 new_dir->i_ctime = new_dir->i_mtime = ctime;
8398 old_inode->i_ctime = ctime;
5f39d397 8399
12fcfd22
CM
8400 if (old_dentry->d_parent != new_dentry->d_parent)
8401 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8402
33345d01 8403 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8404 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8405 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8406 old_dentry->d_name.name,
8407 old_dentry->d_name.len);
8408 } else {
92986796
AV
8409 ret = __btrfs_unlink_inode(trans, root, old_dir,
8410 old_dentry->d_inode,
8411 old_dentry->d_name.name,
8412 old_dentry->d_name.len);
8413 if (!ret)
8414 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8415 }
79787eaa
JM
8416 if (ret) {
8417 btrfs_abort_transaction(trans, root, ret);
8418 goto out_fail;
8419 }
39279cc3
CM
8420
8421 if (new_inode) {
0c4d2d95 8422 inode_inc_iversion(new_inode);
39279cc3 8423 new_inode->i_ctime = CURRENT_TIME;
33345d01 8424 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8425 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8426 root_objectid = BTRFS_I(new_inode)->location.objectid;
8427 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8428 root_objectid,
8429 new_dentry->d_name.name,
8430 new_dentry->d_name.len);
8431 BUG_ON(new_inode->i_nlink == 0);
8432 } else {
8433 ret = btrfs_unlink_inode(trans, dest, new_dir,
8434 new_dentry->d_inode,
8435 new_dentry->d_name.name,
8436 new_dentry->d_name.len);
8437 }
4ef31a45 8438 if (!ret && new_inode->i_nlink == 0)
e02119d5 8439 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8440 if (ret) {
8441 btrfs_abort_transaction(trans, root, ret);
8442 goto out_fail;
8443 }
39279cc3 8444 }
aec7477b 8445
4df27c4d
YZ
8446 ret = btrfs_add_link(trans, new_dir, old_inode,
8447 new_dentry->d_name.name,
a5719521 8448 new_dentry->d_name.len, 0, index);
79787eaa
JM
8449 if (ret) {
8450 btrfs_abort_transaction(trans, root, ret);
8451 goto out_fail;
8452 }
39279cc3 8453
67de1176
MX
8454 if (old_inode->i_nlink == 1)
8455 BTRFS_I(old_inode)->dir_index = index;
8456
33345d01 8457 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8458 struct dentry *parent = new_dentry->d_parent;
6a912213 8459 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8460 btrfs_end_log_trans(root);
8461 }
39279cc3 8462out_fail:
7ad85bb7 8463 btrfs_end_transaction(trans, root);
b44c59a8 8464out_notrans:
33345d01 8465 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8466 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8467
39279cc3
CM
8468 return ret;
8469}
8470
8ccf6f19
MX
8471static void btrfs_run_delalloc_work(struct btrfs_work *work)
8472{
8473 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8474 struct inode *inode;
8ccf6f19
MX
8475
8476 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8477 work);
9f23e289
JB
8478 inode = delalloc_work->inode;
8479 if (delalloc_work->wait) {
8480 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8481 } else {
8482 filemap_flush(inode->i_mapping);
8483 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8484 &BTRFS_I(inode)->runtime_flags))
8485 filemap_flush(inode->i_mapping);
8486 }
8ccf6f19
MX
8487
8488 if (delalloc_work->delay_iput)
9f23e289 8489 btrfs_add_delayed_iput(inode);
8ccf6f19 8490 else
9f23e289 8491 iput(inode);
8ccf6f19
MX
8492 complete(&delalloc_work->completion);
8493}
8494
8495struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8496 int wait, int delay_iput)
8497{
8498 struct btrfs_delalloc_work *work;
8499
8500 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8501 if (!work)
8502 return NULL;
8503
8504 init_completion(&work->completion);
8505 INIT_LIST_HEAD(&work->list);
8506 work->inode = inode;
8507 work->wait = wait;
8508 work->delay_iput = delay_iput;
a44903ab 8509 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
8510
8511 return work;
8512}
8513
8514void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8515{
8516 wait_for_completion(&work->completion);
8517 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8518}
8519
d352ac68
CM
8520/*
8521 * some fairly slow code that needs optimization. This walks the list
8522 * of all the inodes with pending delalloc and forces them to disk.
8523 */
6c255e67
MX
8524static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8525 int nr)
ea8c2819 8526{
ea8c2819 8527 struct btrfs_inode *binode;
5b21f2ed 8528 struct inode *inode;
8ccf6f19
MX
8529 struct btrfs_delalloc_work *work, *next;
8530 struct list_head works;
1eafa6c7 8531 struct list_head splice;
8ccf6f19 8532 int ret = 0;
ea8c2819 8533
8ccf6f19 8534 INIT_LIST_HEAD(&works);
1eafa6c7 8535 INIT_LIST_HEAD(&splice);
63607cc8 8536
573bfb72 8537 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
8538 spin_lock(&root->delalloc_lock);
8539 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8540 while (!list_empty(&splice)) {
8541 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8542 delalloc_inodes);
1eafa6c7 8543
eb73c1b7
MX
8544 list_move_tail(&binode->delalloc_inodes,
8545 &root->delalloc_inodes);
5b21f2ed 8546 inode = igrab(&binode->vfs_inode);
df0af1a5 8547 if (!inode) {
eb73c1b7 8548 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8549 continue;
df0af1a5 8550 }
eb73c1b7 8551 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8552
8553 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8554 if (unlikely(!work)) {
f4ab9ea7
JB
8555 if (delay_iput)
8556 btrfs_add_delayed_iput(inode);
8557 else
8558 iput(inode);
1eafa6c7 8559 ret = -ENOMEM;
a1ecaabb 8560 goto out;
5b21f2ed 8561 }
1eafa6c7 8562 list_add_tail(&work->list, &works);
a44903ab
QW
8563 btrfs_queue_work(root->fs_info->flush_workers,
8564 &work->work);
6c255e67
MX
8565 ret++;
8566 if (nr != -1 && ret >= nr)
a1ecaabb 8567 goto out;
5b21f2ed 8568 cond_resched();
eb73c1b7 8569 spin_lock(&root->delalloc_lock);
ea8c2819 8570 }
eb73c1b7 8571 spin_unlock(&root->delalloc_lock);
8c8bee1d 8572
a1ecaabb 8573out:
eb73c1b7
MX
8574 list_for_each_entry_safe(work, next, &works, list) {
8575 list_del_init(&work->list);
8576 btrfs_wait_and_free_delalloc_work(work);
8577 }
8578
8579 if (!list_empty_careful(&splice)) {
8580 spin_lock(&root->delalloc_lock);
8581 list_splice_tail(&splice, &root->delalloc_inodes);
8582 spin_unlock(&root->delalloc_lock);
8583 }
573bfb72 8584 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
8585 return ret;
8586}
1eafa6c7 8587
eb73c1b7
MX
8588int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8589{
8590 int ret;
1eafa6c7 8591
2c21b4d7 8592 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
8593 return -EROFS;
8594
6c255e67
MX
8595 ret = __start_delalloc_inodes(root, delay_iput, -1);
8596 if (ret > 0)
8597 ret = 0;
eb73c1b7
MX
8598 /*
8599 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8600 * we have to make sure the IO is actually started and that
8601 * ordered extents get created before we return
8602 */
8603 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8604 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8605 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8606 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8607 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8608 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8609 }
8610 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8611 return ret;
8612}
8613
6c255e67
MX
8614int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
8615 int nr)
eb73c1b7
MX
8616{
8617 struct btrfs_root *root;
8618 struct list_head splice;
8619 int ret;
8620
2c21b4d7 8621 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
8622 return -EROFS;
8623
8624 INIT_LIST_HEAD(&splice);
8625
573bfb72 8626 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
8627 spin_lock(&fs_info->delalloc_root_lock);
8628 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 8629 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
8630 root = list_first_entry(&splice, struct btrfs_root,
8631 delalloc_root);
8632 root = btrfs_grab_fs_root(root);
8633 BUG_ON(!root);
8634 list_move_tail(&root->delalloc_root,
8635 &fs_info->delalloc_roots);
8636 spin_unlock(&fs_info->delalloc_root_lock);
8637
6c255e67 8638 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 8639 btrfs_put_fs_root(root);
6c255e67 8640 if (ret < 0)
eb73c1b7
MX
8641 goto out;
8642
6c255e67
MX
8643 if (nr != -1) {
8644 nr -= ret;
8645 WARN_ON(nr < 0);
8646 }
eb73c1b7 8647 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8648 }
eb73c1b7 8649 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8650
6c255e67 8651 ret = 0;
eb73c1b7
MX
8652 atomic_inc(&fs_info->async_submit_draining);
8653 while (atomic_read(&fs_info->nr_async_submits) ||
8654 atomic_read(&fs_info->async_delalloc_pages)) {
8655 wait_event(fs_info->async_submit_wait,
8656 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8657 atomic_read(&fs_info->async_delalloc_pages) == 0));
8658 }
8659 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 8660out:
1eafa6c7 8661 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8662 spin_lock(&fs_info->delalloc_root_lock);
8663 list_splice_tail(&splice, &fs_info->delalloc_roots);
8664 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8665 }
573bfb72 8666 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 8667 return ret;
ea8c2819
CM
8668}
8669
39279cc3
CM
8670static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8671 const char *symname)
8672{
8673 struct btrfs_trans_handle *trans;
8674 struct btrfs_root *root = BTRFS_I(dir)->root;
8675 struct btrfs_path *path;
8676 struct btrfs_key key;
1832a6d5 8677 struct inode *inode = NULL;
39279cc3
CM
8678 int err;
8679 int drop_inode = 0;
8680 u64 objectid;
67871254 8681 u64 index = 0;
39279cc3
CM
8682 int name_len;
8683 int datasize;
5f39d397 8684 unsigned long ptr;
39279cc3 8685 struct btrfs_file_extent_item *ei;
5f39d397 8686 struct extent_buffer *leaf;
39279cc3 8687
f06becc4 8688 name_len = strlen(symname);
39279cc3
CM
8689 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8690 return -ENAMETOOLONG;
1832a6d5 8691
9ed74f2d
JB
8692 /*
8693 * 2 items for inode item and ref
8694 * 2 items for dir items
8695 * 1 item for xattr if selinux is on
8696 */
a22285a6
YZ
8697 trans = btrfs_start_transaction(root, 5);
8698 if (IS_ERR(trans))
8699 return PTR_ERR(trans);
1832a6d5 8700
581bb050
LZ
8701 err = btrfs_find_free_ino(root, &objectid);
8702 if (err)
8703 goto out_unlock;
8704
aec7477b 8705 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8706 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8707 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8708 if (IS_ERR(inode)) {
8709 err = PTR_ERR(inode);
39279cc3 8710 goto out_unlock;
7cf96da3 8711 }
39279cc3 8712
2a7dba39 8713 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8714 if (err) {
8715 drop_inode = 1;
8716 goto out_unlock;
8717 }
8718
ad19db71
CS
8719 /*
8720 * If the active LSM wants to access the inode during
8721 * d_instantiate it needs these. Smack checks to see
8722 * if the filesystem supports xattrs by looking at the
8723 * ops vector.
8724 */
8725 inode->i_fop = &btrfs_file_operations;
8726 inode->i_op = &btrfs_file_inode_operations;
8727
a1b075d2 8728 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8729 if (err)
8730 drop_inode = 1;
8731 else {
8732 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8733 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8734 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8735 }
39279cc3
CM
8736 if (drop_inode)
8737 goto out_unlock;
8738
8739 path = btrfs_alloc_path();
d8926bb3
MF
8740 if (!path) {
8741 err = -ENOMEM;
8742 drop_inode = 1;
8743 goto out_unlock;
8744 }
33345d01 8745 key.objectid = btrfs_ino(inode);
39279cc3 8746 key.offset = 0;
39279cc3
CM
8747 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8748 datasize = btrfs_file_extent_calc_inline_size(name_len);
8749 err = btrfs_insert_empty_item(trans, root, path, &key,
8750 datasize);
54aa1f4d
CM
8751 if (err) {
8752 drop_inode = 1;
b0839166 8753 btrfs_free_path(path);
54aa1f4d
CM
8754 goto out_unlock;
8755 }
5f39d397
CM
8756 leaf = path->nodes[0];
8757 ei = btrfs_item_ptr(leaf, path->slots[0],
8758 struct btrfs_file_extent_item);
8759 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8760 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8761 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8762 btrfs_set_file_extent_encryption(leaf, ei, 0);
8763 btrfs_set_file_extent_compression(leaf, ei, 0);
8764 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8765 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8766
39279cc3 8767 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8768 write_extent_buffer(leaf, symname, ptr, name_len);
8769 btrfs_mark_buffer_dirty(leaf);
39279cc3 8770 btrfs_free_path(path);
5f39d397 8771
39279cc3
CM
8772 inode->i_op = &btrfs_symlink_inode_operations;
8773 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8774 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8775 inode_set_bytes(inode, name_len);
f06becc4 8776 btrfs_i_size_write(inode, name_len);
54aa1f4d
CM
8777 err = btrfs_update_inode(trans, root, inode);
8778 if (err)
8779 drop_inode = 1;
39279cc3
CM
8780
8781out_unlock:
08c422c2
AV
8782 if (!err)
8783 d_instantiate(dentry, inode);
7ad85bb7 8784 btrfs_end_transaction(trans, root);
39279cc3
CM
8785 if (drop_inode) {
8786 inode_dec_link_count(inode);
8787 iput(inode);
8788 }
b53d3f5d 8789 btrfs_btree_balance_dirty(root);
39279cc3
CM
8790 return err;
8791}
16432985 8792
0af3d00b
JB
8793static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8794 u64 start, u64 num_bytes, u64 min_size,
8795 loff_t actual_len, u64 *alloc_hint,
8796 struct btrfs_trans_handle *trans)
d899e052 8797{
5dc562c5
JB
8798 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8799 struct extent_map *em;
d899e052
YZ
8800 struct btrfs_root *root = BTRFS_I(inode)->root;
8801 struct btrfs_key ins;
d899e052 8802 u64 cur_offset = start;
55a61d1d 8803 u64 i_size;
154ea289 8804 u64 cur_bytes;
d899e052 8805 int ret = 0;
0af3d00b 8806 bool own_trans = true;
d899e052 8807
0af3d00b
JB
8808 if (trans)
8809 own_trans = false;
d899e052 8810 while (num_bytes > 0) {
0af3d00b
JB
8811 if (own_trans) {
8812 trans = btrfs_start_transaction(root, 3);
8813 if (IS_ERR(trans)) {
8814 ret = PTR_ERR(trans);
8815 break;
8816 }
5a303d5d
YZ
8817 }
8818
154ea289
CM
8819 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8820 cur_bytes = max(cur_bytes, min_size);
00361589
JB
8821 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8822 *alloc_hint, &ins, 1);
5a303d5d 8823 if (ret) {
0af3d00b
JB
8824 if (own_trans)
8825 btrfs_end_transaction(trans, root);
a22285a6 8826 break;
d899e052 8827 }
5a303d5d 8828
d899e052
YZ
8829 ret = insert_reserved_file_extent(trans, inode,
8830 cur_offset, ins.objectid,
8831 ins.offset, ins.offset,
920bbbfb 8832 ins.offset, 0, 0, 0,
d899e052 8833 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 8834 if (ret) {
857cc2fc
JB
8835 btrfs_free_reserved_extent(root, ins.objectid,
8836 ins.offset);
79787eaa
JM
8837 btrfs_abort_transaction(trans, root, ret);
8838 if (own_trans)
8839 btrfs_end_transaction(trans, root);
8840 break;
8841 }
a1ed835e
CM
8842 btrfs_drop_extent_cache(inode, cur_offset,
8843 cur_offset + ins.offset -1, 0);
5a303d5d 8844
5dc562c5
JB
8845 em = alloc_extent_map();
8846 if (!em) {
8847 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8848 &BTRFS_I(inode)->runtime_flags);
8849 goto next;
8850 }
8851
8852 em->start = cur_offset;
8853 em->orig_start = cur_offset;
8854 em->len = ins.offset;
8855 em->block_start = ins.objectid;
8856 em->block_len = ins.offset;
b4939680 8857 em->orig_block_len = ins.offset;
cc95bef6 8858 em->ram_bytes = ins.offset;
5dc562c5
JB
8859 em->bdev = root->fs_info->fs_devices->latest_bdev;
8860 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8861 em->generation = trans->transid;
8862
8863 while (1) {
8864 write_lock(&em_tree->lock);
09a2a8f9 8865 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8866 write_unlock(&em_tree->lock);
8867 if (ret != -EEXIST)
8868 break;
8869 btrfs_drop_extent_cache(inode, cur_offset,
8870 cur_offset + ins.offset - 1,
8871 0);
8872 }
8873 free_extent_map(em);
8874next:
d899e052
YZ
8875 num_bytes -= ins.offset;
8876 cur_offset += ins.offset;
efa56464 8877 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8878
0c4d2d95 8879 inode_inc_iversion(inode);
d899e052 8880 inode->i_ctime = CURRENT_TIME;
6cbff00f 8881 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8882 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8883 (actual_len > inode->i_size) &&
8884 (cur_offset > inode->i_size)) {
d1ea6a61 8885 if (cur_offset > actual_len)
55a61d1d 8886 i_size = actual_len;
d1ea6a61 8887 else
55a61d1d
JB
8888 i_size = cur_offset;
8889 i_size_write(inode, i_size);
8890 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8891 }
8892
d899e052 8893 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8894
8895 if (ret) {
8896 btrfs_abort_transaction(trans, root, ret);
8897 if (own_trans)
8898 btrfs_end_transaction(trans, root);
8899 break;
8900 }
d899e052 8901
0af3d00b
JB
8902 if (own_trans)
8903 btrfs_end_transaction(trans, root);
5a303d5d 8904 }
d899e052
YZ
8905 return ret;
8906}
8907
0af3d00b
JB
8908int btrfs_prealloc_file_range(struct inode *inode, int mode,
8909 u64 start, u64 num_bytes, u64 min_size,
8910 loff_t actual_len, u64 *alloc_hint)
8911{
8912 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8913 min_size, actual_len, alloc_hint,
8914 NULL);
8915}
8916
8917int btrfs_prealloc_file_range_trans(struct inode *inode,
8918 struct btrfs_trans_handle *trans, int mode,
8919 u64 start, u64 num_bytes, u64 min_size,
8920 loff_t actual_len, u64 *alloc_hint)
8921{
8922 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8923 min_size, actual_len, alloc_hint, trans);
8924}
8925
e6dcd2dc
CM
8926static int btrfs_set_page_dirty(struct page *page)
8927{
e6dcd2dc
CM
8928 return __set_page_dirty_nobuffers(page);
8929}
8930
10556cb2 8931static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8932{
b83cc969 8933 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8934 umode_t mode = inode->i_mode;
b83cc969 8935
cb6db4e5
JM
8936 if (mask & MAY_WRITE &&
8937 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8938 if (btrfs_root_readonly(root))
8939 return -EROFS;
8940 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8941 return -EACCES;
8942 }
2830ba7f 8943 return generic_permission(inode, mask);
fdebe2bd 8944}
39279cc3 8945
ef3b9af5
FM
8946static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
8947{
8948 struct btrfs_trans_handle *trans;
8949 struct btrfs_root *root = BTRFS_I(dir)->root;
8950 struct inode *inode = NULL;
8951 u64 objectid;
8952 u64 index;
8953 int ret = 0;
8954
8955 /*
8956 * 5 units required for adding orphan entry
8957 */
8958 trans = btrfs_start_transaction(root, 5);
8959 if (IS_ERR(trans))
8960 return PTR_ERR(trans);
8961
8962 ret = btrfs_find_free_ino(root, &objectid);
8963 if (ret)
8964 goto out;
8965
8966 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
8967 btrfs_ino(dir), objectid, mode, &index);
8968 if (IS_ERR(inode)) {
8969 ret = PTR_ERR(inode);
8970 inode = NULL;
8971 goto out;
8972 }
8973
8974 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
8975 if (ret)
8976 goto out;
8977
8978 ret = btrfs_update_inode(trans, root, inode);
8979 if (ret)
8980 goto out;
8981
8982 inode->i_fop = &btrfs_file_operations;
8983 inode->i_op = &btrfs_file_inode_operations;
8984
8985 inode->i_mapping->a_ops = &btrfs_aops;
8986 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8987 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8988
8989 ret = btrfs_orphan_add(trans, inode);
8990 if (ret)
8991 goto out;
8992
8993 d_tmpfile(dentry, inode);
8994 mark_inode_dirty(inode);
8995
8996out:
8997 btrfs_end_transaction(trans, root);
8998 if (ret)
8999 iput(inode);
9000 btrfs_balance_delayed_items(root);
9001 btrfs_btree_balance_dirty(root);
9002
9003 return ret;
9004}
9005
6e1d5dcc 9006static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9007 .getattr = btrfs_getattr,
39279cc3
CM
9008 .lookup = btrfs_lookup,
9009 .create = btrfs_create,
9010 .unlink = btrfs_unlink,
9011 .link = btrfs_link,
9012 .mkdir = btrfs_mkdir,
9013 .rmdir = btrfs_rmdir,
9014 .rename = btrfs_rename,
9015 .symlink = btrfs_symlink,
9016 .setattr = btrfs_setattr,
618e21d5 9017 .mknod = btrfs_mknod,
95819c05
CH
9018 .setxattr = btrfs_setxattr,
9019 .getxattr = btrfs_getxattr,
5103e947 9020 .listxattr = btrfs_listxattr,
95819c05 9021 .removexattr = btrfs_removexattr,
fdebe2bd 9022 .permission = btrfs_permission,
4e34e719 9023 .get_acl = btrfs_get_acl,
996a710d 9024 .set_acl = btrfs_set_acl,
93fd63c2 9025 .update_time = btrfs_update_time,
ef3b9af5 9026 .tmpfile = btrfs_tmpfile,
39279cc3 9027};
6e1d5dcc 9028static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 9029 .lookup = btrfs_lookup,
fdebe2bd 9030 .permission = btrfs_permission,
4e34e719 9031 .get_acl = btrfs_get_acl,
996a710d 9032 .set_acl = btrfs_set_acl,
93fd63c2 9033 .update_time = btrfs_update_time,
39279cc3 9034};
76dda93c 9035
828c0950 9036static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
9037 .llseek = generic_file_llseek,
9038 .read = generic_read_dir,
9cdda8d3 9039 .iterate = btrfs_real_readdir,
34287aa3 9040 .unlocked_ioctl = btrfs_ioctl,
39279cc3 9041#ifdef CONFIG_COMPAT
34287aa3 9042 .compat_ioctl = btrfs_ioctl,
39279cc3 9043#endif
6bf13c0c 9044 .release = btrfs_release_file,
e02119d5 9045 .fsync = btrfs_sync_file,
39279cc3
CM
9046};
9047
d1310b2e 9048static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 9049 .fill_delalloc = run_delalloc_range,
065631f6 9050 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 9051 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 9052 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 9053 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 9054 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
9055 .set_bit_hook = btrfs_set_bit_hook,
9056 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
9057 .merge_extent_hook = btrfs_merge_extent_hook,
9058 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
9059};
9060
35054394
CM
9061/*
9062 * btrfs doesn't support the bmap operation because swapfiles
9063 * use bmap to make a mapping of extents in the file. They assume
9064 * these extents won't change over the life of the file and they
9065 * use the bmap result to do IO directly to the drive.
9066 *
9067 * the btrfs bmap call would return logical addresses that aren't
9068 * suitable for IO and they also will change frequently as COW
9069 * operations happen. So, swapfile + btrfs == corruption.
9070 *
9071 * For now we're avoiding this by dropping bmap.
9072 */
7f09410b 9073static const struct address_space_operations btrfs_aops = {
39279cc3
CM
9074 .readpage = btrfs_readpage,
9075 .writepage = btrfs_writepage,
b293f02e 9076 .writepages = btrfs_writepages,
3ab2fb5a 9077 .readpages = btrfs_readpages,
16432985 9078 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
9079 .invalidatepage = btrfs_invalidatepage,
9080 .releasepage = btrfs_releasepage,
e6dcd2dc 9081 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 9082 .error_remove_page = generic_error_remove_page,
39279cc3
CM
9083};
9084
7f09410b 9085static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
9086 .readpage = btrfs_readpage,
9087 .writepage = btrfs_writepage,
2bf5a725
CM
9088 .invalidatepage = btrfs_invalidatepage,
9089 .releasepage = btrfs_releasepage,
39279cc3
CM
9090};
9091
6e1d5dcc 9092static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
9093 .getattr = btrfs_getattr,
9094 .setattr = btrfs_setattr,
95819c05
CH
9095 .setxattr = btrfs_setxattr,
9096 .getxattr = btrfs_getxattr,
5103e947 9097 .listxattr = btrfs_listxattr,
95819c05 9098 .removexattr = btrfs_removexattr,
fdebe2bd 9099 .permission = btrfs_permission,
1506fcc8 9100 .fiemap = btrfs_fiemap,
4e34e719 9101 .get_acl = btrfs_get_acl,
996a710d 9102 .set_acl = btrfs_set_acl,
e41f941a 9103 .update_time = btrfs_update_time,
39279cc3 9104};
6e1d5dcc 9105static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
9106 .getattr = btrfs_getattr,
9107 .setattr = btrfs_setattr,
fdebe2bd 9108 .permission = btrfs_permission,
95819c05
CH
9109 .setxattr = btrfs_setxattr,
9110 .getxattr = btrfs_getxattr,
33268eaf 9111 .listxattr = btrfs_listxattr,
95819c05 9112 .removexattr = btrfs_removexattr,
4e34e719 9113 .get_acl = btrfs_get_acl,
996a710d 9114 .set_acl = btrfs_set_acl,
e41f941a 9115 .update_time = btrfs_update_time,
618e21d5 9116};
6e1d5dcc 9117static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
9118 .readlink = generic_readlink,
9119 .follow_link = page_follow_link_light,
9120 .put_link = page_put_link,
f209561a 9121 .getattr = btrfs_getattr,
22c44fe6 9122 .setattr = btrfs_setattr,
fdebe2bd 9123 .permission = btrfs_permission,
0279b4cd
JO
9124 .setxattr = btrfs_setxattr,
9125 .getxattr = btrfs_getxattr,
9126 .listxattr = btrfs_listxattr,
9127 .removexattr = btrfs_removexattr,
e41f941a 9128 .update_time = btrfs_update_time,
39279cc3 9129};
76dda93c 9130
82d339d9 9131const struct dentry_operations btrfs_dentry_operations = {
76dda93c 9132 .d_delete = btrfs_dentry_delete,
b4aff1f8 9133 .d_release = btrfs_dentry_release,
76dda93c 9134};