btrfs: qgroup: Avoid calling btrfs_free_reserved_data_space in clear_bit_hook
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
6e1d5dcc
AD
69static const struct inode_operations btrfs_dir_inode_operations;
70static const struct inode_operations btrfs_symlink_inode_operations;
71static const struct inode_operations btrfs_dir_ro_inode_operations;
72static const struct inode_operations btrfs_special_inode_operations;
73static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
74static const struct address_space_operations btrfs_aops;
75static const struct address_space_operations btrfs_symlink_aops;
828c0950 76static const struct file_operations btrfs_dir_file_operations;
d1310b2e 77static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
78
79static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 80static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
81struct kmem_cache *btrfs_trans_handle_cachep;
82struct kmem_cache *btrfs_transaction_cachep;
39279cc3 83struct kmem_cache *btrfs_path_cachep;
dc89e982 84struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
85
86#define S_SHIFT 12
87static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95};
96
3972f260 97static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 98static int btrfs_truncate(struct inode *inode);
5fd02043 99static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
100static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
70c8a91c
JB
104static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
cc95bef6
JB
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
7b128766 109
48a3b636 110static int btrfs_dirty_inode(struct inode *inode);
7b128766 111
6a3891c5
JB
112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113void btrfs_test_inode_set_ops(struct inode *inode)
114{
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116}
117#endif
118
f34f57a3 119static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
0279b4cd
JO
122{
123 int err;
124
f34f57a3 125 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 126 if (!err)
2a7dba39 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
128 return err;
129}
130
c8b97818
CM
131/*
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
40f76580 136static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 137 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
fe3f566c 140 int compress_type,
c8b97818
CM
141 struct page **compressed_pages)
142{
c8b97818
CM
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
c8b97818 151 unsigned long offset;
c8b97818 152
fe3f566c 153 if (compressed_size && compressed_pages)
c8b97818 154 cur_size = compressed_size;
c8b97818 155
1acae57b 156 inode_add_bytes(inode, size);
c8b97818 157
1acae57b
FDBM
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
c8b97818 161
1acae57b
FDBM
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
962a298f 164 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 165
1acae57b
FDBM
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
173 }
c8b97818
CM
174 }
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
184
261507a0 185 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
186 struct page *cpage;
187 int i = 0;
d397712b 188 while (compressed_size > 0) {
c8b97818 189 cpage = compressed_pages[i];
5b050f04 190 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
191 PAGE_CACHE_SIZE);
192
7ac687d9 193 kaddr = kmap_atomic(cpage);
c8b97818 194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
200 }
201 btrfs_set_file_extent_compression(leaf, ei,
261507a0 202 compress_type);
c8b97818
CM
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 207 kaddr = kmap_atomic(page);
c8b97818
CM
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 210 kunmap_atomic(kaddr);
c8b97818
CM
211 page_cache_release(page);
212 }
213 btrfs_mark_buffer_dirty(leaf);
1acae57b 214 btrfs_release_path(path);
c8b97818 215
c2167754
YZ
216 /*
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
220 *
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
224 */
c8b97818 225 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 226 ret = btrfs_update_inode(trans, root, inode);
c2167754 227
79787eaa 228 return ret;
c8b97818 229fail:
c8b97818
CM
230 return err;
231}
232
233
234/*
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
00361589
JB
239static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
c8b97818 244{
00361589 245 struct btrfs_trans_handle *trans;
c8b97818
CM
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
fda2832f 249 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
250 u64 data_len = inline_len;
251 int ret;
1acae57b
FDBM
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
c8b97818
CM
255
256 if (compressed_size)
257 data_len = compressed_size;
258
259 if (start > 0 ||
354877be
WS
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
267 }
268
1acae57b
FDBM
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272
00361589 273 trans = btrfs_join_transaction(root);
1acae57b
FDBM
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
00361589 276 return PTR_ERR(trans);
1acae57b 277 }
00361589
JB
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
1acae57b
FDBM
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
286
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
00361589
JB
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
293 }
c8b97818
CM
294
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
c8b97818 299 inline_len, compressed_size,
fe3f566c 300 compress_type, compressed_pages);
2adcac1a 301 if (ret && ret != -ENOSPC) {
79787eaa 302 btrfs_abort_transaction(trans, root, ret);
00361589 303 goto out;
2adcac1a 304 } else if (ret == -ENOSPC) {
00361589
JB
305 ret = 1;
306 goto out;
79787eaa 307 }
2adcac1a 308
bdc20e67 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 312out:
94ed938a
QW
313 /*
314 * Don't forget to free the reserved space, as for inlined extent
315 * it won't count as data extent, free them directly here.
316 * And at reserve time, it's always aligned to page size, so
317 * just free one page here.
318 */
319 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
1acae57b 320 btrfs_free_path(path);
00361589
JB
321 btrfs_end_transaction(trans, root);
322 return ret;
c8b97818
CM
323}
324
771ed689
CM
325struct async_extent {
326 u64 start;
327 u64 ram_size;
328 u64 compressed_size;
329 struct page **pages;
330 unsigned long nr_pages;
261507a0 331 int compress_type;
771ed689
CM
332 struct list_head list;
333};
334
335struct async_cow {
336 struct inode *inode;
337 struct btrfs_root *root;
338 struct page *locked_page;
339 u64 start;
340 u64 end;
341 struct list_head extents;
342 struct btrfs_work work;
343};
344
345static noinline int add_async_extent(struct async_cow *cow,
346 u64 start, u64 ram_size,
347 u64 compressed_size,
348 struct page **pages,
261507a0
LZ
349 unsigned long nr_pages,
350 int compress_type)
771ed689
CM
351{
352 struct async_extent *async_extent;
353
354 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 355 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
356 async_extent->start = start;
357 async_extent->ram_size = ram_size;
358 async_extent->compressed_size = compressed_size;
359 async_extent->pages = pages;
360 async_extent->nr_pages = nr_pages;
261507a0 361 async_extent->compress_type = compress_type;
771ed689
CM
362 list_add_tail(&async_extent->list, &cow->extents);
363 return 0;
364}
365
f79707b0
WS
366static inline int inode_need_compress(struct inode *inode)
367{
368 struct btrfs_root *root = BTRFS_I(inode)->root;
369
370 /* force compress */
371 if (btrfs_test_opt(root, FORCE_COMPRESS))
372 return 1;
373 /* bad compression ratios */
374 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
375 return 0;
376 if (btrfs_test_opt(root, COMPRESS) ||
377 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
378 BTRFS_I(inode)->force_compress)
379 return 1;
380 return 0;
381}
382
d352ac68 383/*
771ed689
CM
384 * we create compressed extents in two phases. The first
385 * phase compresses a range of pages that have already been
386 * locked (both pages and state bits are locked).
c8b97818 387 *
771ed689
CM
388 * This is done inside an ordered work queue, and the compression
389 * is spread across many cpus. The actual IO submission is step
390 * two, and the ordered work queue takes care of making sure that
391 * happens in the same order things were put onto the queue by
392 * writepages and friends.
c8b97818 393 *
771ed689
CM
394 * If this code finds it can't get good compression, it puts an
395 * entry onto the work queue to write the uncompressed bytes. This
396 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
397 * are written in the same order that the flusher thread sent them
398 * down.
d352ac68 399 */
c44f649e 400static noinline void compress_file_range(struct inode *inode,
771ed689
CM
401 struct page *locked_page,
402 u64 start, u64 end,
403 struct async_cow *async_cow,
404 int *num_added)
b888db2b
CM
405{
406 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 407 u64 num_bytes;
db94535d 408 u64 blocksize = root->sectorsize;
c8b97818 409 u64 actual_end;
42dc7bab 410 u64 isize = i_size_read(inode);
e6dcd2dc 411 int ret = 0;
c8b97818
CM
412 struct page **pages = NULL;
413 unsigned long nr_pages;
414 unsigned long nr_pages_ret = 0;
415 unsigned long total_compressed = 0;
416 unsigned long total_in = 0;
417 unsigned long max_compressed = 128 * 1024;
771ed689 418 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
419 int i;
420 int will_compress;
261507a0 421 int compress_type = root->fs_info->compress_type;
4adaa611 422 int redirty = 0;
b888db2b 423
4cb13e5d
LB
424 /* if this is a small write inside eof, kick off a defrag */
425 if ((end - start + 1) < 16 * 1024 &&
426 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
427 btrfs_add_inode_defrag(NULL, inode);
428
42dc7bab 429 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
430again:
431 will_compress = 0;
432 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
433 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 434
f03d9301
CM
435 /*
436 * we don't want to send crud past the end of i_size through
437 * compression, that's just a waste of CPU time. So, if the
438 * end of the file is before the start of our current
439 * requested range of bytes, we bail out to the uncompressed
440 * cleanup code that can deal with all of this.
441 *
442 * It isn't really the fastest way to fix things, but this is a
443 * very uncommon corner.
444 */
445 if (actual_end <= start)
446 goto cleanup_and_bail_uncompressed;
447
c8b97818
CM
448 total_compressed = actual_end - start;
449
4bcbb332
SW
450 /*
451 * skip compression for a small file range(<=blocksize) that
452 * isn't an inline extent, since it dosen't save disk space at all.
453 */
454 if (total_compressed <= blocksize &&
455 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
456 goto cleanup_and_bail_uncompressed;
457
c8b97818
CM
458 /* we want to make sure that amount of ram required to uncompress
459 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
460 * of a compressed extent to 128k. This is a crucial number
461 * because it also controls how easily we can spread reads across
462 * cpus for decompression.
463 *
464 * We also want to make sure the amount of IO required to do
465 * a random read is reasonably small, so we limit the size of
466 * a compressed extent to 128k.
c8b97818
CM
467 */
468 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 469 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 470 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
471 total_in = 0;
472 ret = 0;
db94535d 473
771ed689
CM
474 /*
475 * we do compression for mount -o compress and when the
476 * inode has not been flagged as nocompress. This flag can
477 * change at any time if we discover bad compression ratios.
c8b97818 478 */
f79707b0 479 if (inode_need_compress(inode)) {
c8b97818 480 WARN_ON(pages);
31e818fe 481 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
482 if (!pages) {
483 /* just bail out to the uncompressed code */
484 goto cont;
485 }
c8b97818 486
261507a0
LZ
487 if (BTRFS_I(inode)->force_compress)
488 compress_type = BTRFS_I(inode)->force_compress;
489
4adaa611
CM
490 /*
491 * we need to call clear_page_dirty_for_io on each
492 * page in the range. Otherwise applications with the file
493 * mmap'd can wander in and change the page contents while
494 * we are compressing them.
495 *
496 * If the compression fails for any reason, we set the pages
497 * dirty again later on.
498 */
499 extent_range_clear_dirty_for_io(inode, start, end);
500 redirty = 1;
261507a0
LZ
501 ret = btrfs_compress_pages(compress_type,
502 inode->i_mapping, start,
503 total_compressed, pages,
504 nr_pages, &nr_pages_ret,
505 &total_in,
506 &total_compressed,
507 max_compressed);
c8b97818
CM
508
509 if (!ret) {
510 unsigned long offset = total_compressed &
511 (PAGE_CACHE_SIZE - 1);
512 struct page *page = pages[nr_pages_ret - 1];
513 char *kaddr;
514
515 /* zero the tail end of the last page, we might be
516 * sending it down to disk
517 */
518 if (offset) {
7ac687d9 519 kaddr = kmap_atomic(page);
c8b97818
CM
520 memset(kaddr + offset, 0,
521 PAGE_CACHE_SIZE - offset);
7ac687d9 522 kunmap_atomic(kaddr);
c8b97818
CM
523 }
524 will_compress = 1;
525 }
526 }
560f7d75 527cont:
c8b97818
CM
528 if (start == 0) {
529 /* lets try to make an inline extent */
771ed689 530 if (ret || total_in < (actual_end - start)) {
c8b97818 531 /* we didn't compress the entire range, try
771ed689 532 * to make an uncompressed inline extent.
c8b97818 533 */
00361589
JB
534 ret = cow_file_range_inline(root, inode, start, end,
535 0, 0, NULL);
c8b97818 536 } else {
771ed689 537 /* try making a compressed inline extent */
00361589 538 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
539 total_compressed,
540 compress_type, pages);
c8b97818 541 }
79787eaa 542 if (ret <= 0) {
151a41bc
JB
543 unsigned long clear_flags = EXTENT_DELALLOC |
544 EXTENT_DEFRAG;
e6eb4314
FM
545 unsigned long page_error_op;
546
151a41bc 547 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 548 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 549
771ed689 550 /*
79787eaa
JM
551 * inline extent creation worked or returned error,
552 * we don't need to create any more async work items.
553 * Unlock and free up our temp pages.
771ed689 554 */
c2790a2e 555 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 556 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
557 PAGE_CLEAR_DIRTY |
558 PAGE_SET_WRITEBACK |
e6eb4314 559 page_error_op |
c2790a2e 560 PAGE_END_WRITEBACK);
c8b97818
CM
561 goto free_pages_out;
562 }
563 }
564
565 if (will_compress) {
566 /*
567 * we aren't doing an inline extent round the compressed size
568 * up to a block size boundary so the allocator does sane
569 * things
570 */
fda2832f 571 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
572
573 /*
574 * one last check to make sure the compression is really a
575 * win, compare the page count read with the blocks on disk
576 */
fda2832f 577 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
578 if (total_compressed >= total_in) {
579 will_compress = 0;
580 } else {
c8b97818
CM
581 num_bytes = total_in;
582 }
583 }
584 if (!will_compress && pages) {
585 /*
586 * the compression code ran but failed to make things smaller,
587 * free any pages it allocated and our page pointer array
588 */
589 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 590 WARN_ON(pages[i]->mapping);
c8b97818
CM
591 page_cache_release(pages[i]);
592 }
593 kfree(pages);
594 pages = NULL;
595 total_compressed = 0;
596 nr_pages_ret = 0;
597
598 /* flag the file so we don't compress in the future */
1e701a32
CM
599 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
600 !(BTRFS_I(inode)->force_compress)) {
a555f810 601 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 602 }
c8b97818 603 }
771ed689
CM
604 if (will_compress) {
605 *num_added += 1;
c8b97818 606
771ed689
CM
607 /* the async work queues will take care of doing actual
608 * allocation on disk for these compressed pages,
609 * and will submit them to the elevator.
610 */
611 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
612 total_compressed, pages, nr_pages_ret,
613 compress_type);
179e29e4 614
24ae6365 615 if (start + num_bytes < end) {
771ed689
CM
616 start += num_bytes;
617 pages = NULL;
618 cond_resched();
619 goto again;
620 }
621 } else {
f03d9301 622cleanup_and_bail_uncompressed:
771ed689
CM
623 /*
624 * No compression, but we still need to write the pages in
625 * the file we've been given so far. redirty the locked
626 * page if it corresponds to our extent and set things up
627 * for the async work queue to run cow_file_range to do
628 * the normal delalloc dance
629 */
630 if (page_offset(locked_page) >= start &&
631 page_offset(locked_page) <= end) {
632 __set_page_dirty_nobuffers(locked_page);
633 /* unlocked later on in the async handlers */
634 }
4adaa611
CM
635 if (redirty)
636 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
637 add_async_extent(async_cow, start, end - start + 1,
638 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
639 *num_added += 1;
640 }
3b951516 641
c44f649e 642 return;
771ed689
CM
643
644free_pages_out:
645 for (i = 0; i < nr_pages_ret; i++) {
646 WARN_ON(pages[i]->mapping);
647 page_cache_release(pages[i]);
648 }
d397712b 649 kfree(pages);
771ed689 650}
771ed689 651
40ae837b
FM
652static void free_async_extent_pages(struct async_extent *async_extent)
653{
654 int i;
655
656 if (!async_extent->pages)
657 return;
658
659 for (i = 0; i < async_extent->nr_pages; i++) {
660 WARN_ON(async_extent->pages[i]->mapping);
661 page_cache_release(async_extent->pages[i]);
662 }
663 kfree(async_extent->pages);
664 async_extent->nr_pages = 0;
665 async_extent->pages = NULL;
771ed689
CM
666}
667
668/*
669 * phase two of compressed writeback. This is the ordered portion
670 * of the code, which only gets called in the order the work was
671 * queued. We walk all the async extents created by compress_file_range
672 * and send them down to the disk.
673 */
dec8f175 674static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
675 struct async_cow *async_cow)
676{
677 struct async_extent *async_extent;
678 u64 alloc_hint = 0;
771ed689
CM
679 struct btrfs_key ins;
680 struct extent_map *em;
681 struct btrfs_root *root = BTRFS_I(inode)->root;
682 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
683 struct extent_io_tree *io_tree;
f5a84ee3 684 int ret = 0;
771ed689 685
3e04e7f1 686again:
d397712b 687 while (!list_empty(&async_cow->extents)) {
771ed689
CM
688 async_extent = list_entry(async_cow->extents.next,
689 struct async_extent, list);
690 list_del(&async_extent->list);
c8b97818 691
771ed689
CM
692 io_tree = &BTRFS_I(inode)->io_tree;
693
f5a84ee3 694retry:
771ed689
CM
695 /* did the compression code fall back to uncompressed IO? */
696 if (!async_extent->pages) {
697 int page_started = 0;
698 unsigned long nr_written = 0;
699
700 lock_extent(io_tree, async_extent->start,
2ac55d41 701 async_extent->start +
d0082371 702 async_extent->ram_size - 1);
771ed689
CM
703
704 /* allocate blocks */
f5a84ee3
JB
705 ret = cow_file_range(inode, async_cow->locked_page,
706 async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1,
709 &page_started, &nr_written, 0);
771ed689 710
79787eaa
JM
711 /* JDM XXX */
712
771ed689
CM
713 /*
714 * if page_started, cow_file_range inserted an
715 * inline extent and took care of all the unlocking
716 * and IO for us. Otherwise, we need to submit
717 * all those pages down to the drive.
718 */
f5a84ee3 719 if (!page_started && !ret)
771ed689
CM
720 extent_write_locked_range(io_tree,
721 inode, async_extent->start,
d397712b 722 async_extent->start +
771ed689
CM
723 async_extent->ram_size - 1,
724 btrfs_get_extent,
725 WB_SYNC_ALL);
3e04e7f1
JB
726 else if (ret)
727 unlock_page(async_cow->locked_page);
771ed689
CM
728 kfree(async_extent);
729 cond_resched();
730 continue;
731 }
732
733 lock_extent(io_tree, async_extent->start,
d0082371 734 async_extent->start + async_extent->ram_size - 1);
771ed689 735
00361589 736 ret = btrfs_reserve_extent(root,
771ed689
CM
737 async_extent->compressed_size,
738 async_extent->compressed_size,
e570fd27 739 0, alloc_hint, &ins, 1, 1);
f5a84ee3 740 if (ret) {
40ae837b 741 free_async_extent_pages(async_extent);
3e04e7f1 742
fdf8e2ea
JB
743 if (ret == -ENOSPC) {
744 unlock_extent(io_tree, async_extent->start,
745 async_extent->start +
746 async_extent->ram_size - 1);
ce62003f
LB
747
748 /*
749 * we need to redirty the pages if we decide to
750 * fallback to uncompressed IO, otherwise we
751 * will not submit these pages down to lower
752 * layers.
753 */
754 extent_range_redirty_for_io(inode,
755 async_extent->start,
756 async_extent->start +
757 async_extent->ram_size - 1);
758
79787eaa 759 goto retry;
fdf8e2ea 760 }
3e04e7f1 761 goto out_free;
f5a84ee3 762 }
c2167754
YZ
763 /*
764 * here we're doing allocation and writeback of the
765 * compressed pages
766 */
767 btrfs_drop_extent_cache(inode, async_extent->start,
768 async_extent->start +
769 async_extent->ram_size - 1, 0);
770
172ddd60 771 em = alloc_extent_map();
b9aa55be
LB
772 if (!em) {
773 ret = -ENOMEM;
3e04e7f1 774 goto out_free_reserve;
b9aa55be 775 }
771ed689
CM
776 em->start = async_extent->start;
777 em->len = async_extent->ram_size;
445a6944 778 em->orig_start = em->start;
2ab28f32
JB
779 em->mod_start = em->start;
780 em->mod_len = em->len;
c8b97818 781
771ed689
CM
782 em->block_start = ins.objectid;
783 em->block_len = ins.offset;
b4939680 784 em->orig_block_len = ins.offset;
cc95bef6 785 em->ram_bytes = async_extent->ram_size;
771ed689 786 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 787 em->compress_type = async_extent->compress_type;
771ed689
CM
788 set_bit(EXTENT_FLAG_PINNED, &em->flags);
789 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 790 em->generation = -1;
771ed689 791
d397712b 792 while (1) {
890871be 793 write_lock(&em_tree->lock);
09a2a8f9 794 ret = add_extent_mapping(em_tree, em, 1);
890871be 795 write_unlock(&em_tree->lock);
771ed689
CM
796 if (ret != -EEXIST) {
797 free_extent_map(em);
798 break;
799 }
800 btrfs_drop_extent_cache(inode, async_extent->start,
801 async_extent->start +
802 async_extent->ram_size - 1, 0);
803 }
804
3e04e7f1
JB
805 if (ret)
806 goto out_free_reserve;
807
261507a0
LZ
808 ret = btrfs_add_ordered_extent_compress(inode,
809 async_extent->start,
810 ins.objectid,
811 async_extent->ram_size,
812 ins.offset,
813 BTRFS_ORDERED_COMPRESSED,
814 async_extent->compress_type);
d9f85963
FM
815 if (ret) {
816 btrfs_drop_extent_cache(inode, async_extent->start,
817 async_extent->start +
818 async_extent->ram_size - 1, 0);
3e04e7f1 819 goto out_free_reserve;
d9f85963 820 }
771ed689 821
771ed689
CM
822 /*
823 * clear dirty, set writeback and unlock the pages.
824 */
c2790a2e 825 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
826 async_extent->start +
827 async_extent->ram_size - 1,
151a41bc
JB
828 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
829 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 830 PAGE_SET_WRITEBACK);
771ed689 831 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
832 async_extent->start,
833 async_extent->ram_size,
834 ins.objectid,
835 ins.offset, async_extent->pages,
836 async_extent->nr_pages);
fce2a4e6
FM
837 if (ret) {
838 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
839 struct page *p = async_extent->pages[0];
840 const u64 start = async_extent->start;
841 const u64 end = start + async_extent->ram_size - 1;
842
843 p->mapping = inode->i_mapping;
844 tree->ops->writepage_end_io_hook(p, start, end,
845 NULL, 0);
846 p->mapping = NULL;
847 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
848 PAGE_END_WRITEBACK |
849 PAGE_SET_ERROR);
40ae837b 850 free_async_extent_pages(async_extent);
fce2a4e6 851 }
771ed689
CM
852 alloc_hint = ins.objectid + ins.offset;
853 kfree(async_extent);
854 cond_resched();
855 }
dec8f175 856 return;
3e04e7f1 857out_free_reserve:
e570fd27 858 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 859out_free:
c2790a2e 860 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
861 async_extent->start +
862 async_extent->ram_size - 1,
c2790a2e 863 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
864 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
865 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
866 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
867 PAGE_SET_ERROR);
40ae837b 868 free_async_extent_pages(async_extent);
79787eaa 869 kfree(async_extent);
3e04e7f1 870 goto again;
771ed689
CM
871}
872
4b46fce2
JB
873static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
874 u64 num_bytes)
875{
876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 struct extent_map *em;
878 u64 alloc_hint = 0;
879
880 read_lock(&em_tree->lock);
881 em = search_extent_mapping(em_tree, start, num_bytes);
882 if (em) {
883 /*
884 * if block start isn't an actual block number then find the
885 * first block in this inode and use that as a hint. If that
886 * block is also bogus then just don't worry about it.
887 */
888 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
889 free_extent_map(em);
890 em = search_extent_mapping(em_tree, 0, 0);
891 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
892 alloc_hint = em->block_start;
893 if (em)
894 free_extent_map(em);
895 } else {
896 alloc_hint = em->block_start;
897 free_extent_map(em);
898 }
899 }
900 read_unlock(&em_tree->lock);
901
902 return alloc_hint;
903}
904
771ed689
CM
905/*
906 * when extent_io.c finds a delayed allocation range in the file,
907 * the call backs end up in this code. The basic idea is to
908 * allocate extents on disk for the range, and create ordered data structs
909 * in ram to track those extents.
910 *
911 * locked_page is the page that writepage had locked already. We use
912 * it to make sure we don't do extra locks or unlocks.
913 *
914 * *page_started is set to one if we unlock locked_page and do everything
915 * required to start IO on it. It may be clean and already done with
916 * IO when we return.
917 */
00361589
JB
918static noinline int cow_file_range(struct inode *inode,
919 struct page *locked_page,
920 u64 start, u64 end, int *page_started,
921 unsigned long *nr_written,
922 int unlock)
771ed689 923{
00361589 924 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
925 u64 alloc_hint = 0;
926 u64 num_bytes;
927 unsigned long ram_size;
928 u64 disk_num_bytes;
929 u64 cur_alloc_size;
930 u64 blocksize = root->sectorsize;
771ed689
CM
931 struct btrfs_key ins;
932 struct extent_map *em;
933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 int ret = 0;
935
02ecd2c2
JB
936 if (btrfs_is_free_space_inode(inode)) {
937 WARN_ON_ONCE(1);
29bce2f3
JB
938 ret = -EINVAL;
939 goto out_unlock;
02ecd2c2 940 }
771ed689 941
fda2832f 942 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
943 num_bytes = max(blocksize, num_bytes);
944 disk_num_bytes = num_bytes;
771ed689 945
4cb5300b 946 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
947 if (num_bytes < 64 * 1024 &&
948 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 949 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 950
771ed689
CM
951 if (start == 0) {
952 /* lets try to make an inline extent */
00361589
JB
953 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
954 NULL);
771ed689 955 if (ret == 0) {
c2790a2e
JB
956 extent_clear_unlock_delalloc(inode, start, end, NULL,
957 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 958 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
959 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
960 PAGE_END_WRITEBACK);
c2167754 961
771ed689
CM
962 *nr_written = *nr_written +
963 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
964 *page_started = 1;
771ed689 965 goto out;
79787eaa 966 } else if (ret < 0) {
79787eaa 967 goto out_unlock;
771ed689
CM
968 }
969 }
970
971 BUG_ON(disk_num_bytes >
6c41761f 972 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 973
4b46fce2 974 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
975 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
976
d397712b 977 while (disk_num_bytes > 0) {
a791e35e
CM
978 unsigned long op;
979
287a0ab9 980 cur_alloc_size = disk_num_bytes;
00361589 981 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 982 root->sectorsize, 0, alloc_hint,
e570fd27 983 &ins, 1, 1);
00361589 984 if (ret < 0)
79787eaa 985 goto out_unlock;
d397712b 986
172ddd60 987 em = alloc_extent_map();
b9aa55be
LB
988 if (!em) {
989 ret = -ENOMEM;
ace68bac 990 goto out_reserve;
b9aa55be 991 }
e6dcd2dc 992 em->start = start;
445a6944 993 em->orig_start = em->start;
771ed689
CM
994 ram_size = ins.offset;
995 em->len = ins.offset;
2ab28f32
JB
996 em->mod_start = em->start;
997 em->mod_len = em->len;
c8b97818 998
e6dcd2dc 999 em->block_start = ins.objectid;
c8b97818 1000 em->block_len = ins.offset;
b4939680 1001 em->orig_block_len = ins.offset;
cc95bef6 1002 em->ram_bytes = ram_size;
e6dcd2dc 1003 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1004 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1005 em->generation = -1;
c8b97818 1006
d397712b 1007 while (1) {
890871be 1008 write_lock(&em_tree->lock);
09a2a8f9 1009 ret = add_extent_mapping(em_tree, em, 1);
890871be 1010 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1011 if (ret != -EEXIST) {
1012 free_extent_map(em);
1013 break;
1014 }
1015 btrfs_drop_extent_cache(inode, start,
c8b97818 1016 start + ram_size - 1, 0);
e6dcd2dc 1017 }
ace68bac
LB
1018 if (ret)
1019 goto out_reserve;
e6dcd2dc 1020
98d20f67 1021 cur_alloc_size = ins.offset;
e6dcd2dc 1022 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1023 ram_size, cur_alloc_size, 0);
ace68bac 1024 if (ret)
d9f85963 1025 goto out_drop_extent_cache;
c8b97818 1026
17d217fe
YZ
1027 if (root->root_key.objectid ==
1028 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 ret = btrfs_reloc_clone_csums(inode, start,
1030 cur_alloc_size);
00361589 1031 if (ret)
d9f85963 1032 goto out_drop_extent_cache;
17d217fe
YZ
1033 }
1034
d397712b 1035 if (disk_num_bytes < cur_alloc_size)
3b951516 1036 break;
d397712b 1037
c8b97818
CM
1038 /* we're not doing compressed IO, don't unlock the first
1039 * page (which the caller expects to stay locked), don't
1040 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1041 *
1042 * Do set the Private2 bit so we know this page was properly
1043 * setup for writepage
c8b97818 1044 */
c2790a2e
JB
1045 op = unlock ? PAGE_UNLOCK : 0;
1046 op |= PAGE_SET_PRIVATE2;
a791e35e 1047
c2790a2e
JB
1048 extent_clear_unlock_delalloc(inode, start,
1049 start + ram_size - 1, locked_page,
1050 EXTENT_LOCKED | EXTENT_DELALLOC,
1051 op);
c8b97818 1052 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1053 num_bytes -= cur_alloc_size;
1054 alloc_hint = ins.objectid + ins.offset;
1055 start += cur_alloc_size;
b888db2b 1056 }
79787eaa 1057out:
be20aa9d 1058 return ret;
b7d5b0a8 1059
d9f85963
FM
1060out_drop_extent_cache:
1061 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1062out_reserve:
e570fd27 1063 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1064out_unlock:
c2790a2e 1065 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1066 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1067 EXTENT_DELALLOC | EXTENT_DEFRAG,
1068 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1069 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1070 goto out;
771ed689 1071}
c8b97818 1072
771ed689
CM
1073/*
1074 * work queue call back to started compression on a file and pages
1075 */
1076static noinline void async_cow_start(struct btrfs_work *work)
1077{
1078 struct async_cow *async_cow;
1079 int num_added = 0;
1080 async_cow = container_of(work, struct async_cow, work);
1081
1082 compress_file_range(async_cow->inode, async_cow->locked_page,
1083 async_cow->start, async_cow->end, async_cow,
1084 &num_added);
8180ef88 1085 if (num_added == 0) {
cb77fcd8 1086 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1087 async_cow->inode = NULL;
8180ef88 1088 }
771ed689
CM
1089}
1090
1091/*
1092 * work queue call back to submit previously compressed pages
1093 */
1094static noinline void async_cow_submit(struct btrfs_work *work)
1095{
1096 struct async_cow *async_cow;
1097 struct btrfs_root *root;
1098 unsigned long nr_pages;
1099
1100 async_cow = container_of(work, struct async_cow, work);
1101
1102 root = async_cow->root;
1103 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1104 PAGE_CACHE_SHIFT;
1105
ee863954
DS
1106 /*
1107 * atomic_sub_return implies a barrier for waitqueue_active
1108 */
66657b31 1109 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1110 5 * 1024 * 1024 &&
771ed689
CM
1111 waitqueue_active(&root->fs_info->async_submit_wait))
1112 wake_up(&root->fs_info->async_submit_wait);
1113
d397712b 1114 if (async_cow->inode)
771ed689 1115 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1116}
c8b97818 1117
771ed689
CM
1118static noinline void async_cow_free(struct btrfs_work *work)
1119{
1120 struct async_cow *async_cow;
1121 async_cow = container_of(work, struct async_cow, work);
8180ef88 1122 if (async_cow->inode)
cb77fcd8 1123 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1124 kfree(async_cow);
1125}
1126
1127static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1128 u64 start, u64 end, int *page_started,
1129 unsigned long *nr_written)
1130{
1131 struct async_cow *async_cow;
1132 struct btrfs_root *root = BTRFS_I(inode)->root;
1133 unsigned long nr_pages;
1134 u64 cur_end;
287082b0 1135 int limit = 10 * 1024 * 1024;
771ed689 1136
a3429ab7
CM
1137 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1138 1, 0, NULL, GFP_NOFS);
d397712b 1139 while (start < end) {
771ed689 1140 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1141 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1142 async_cow->inode = igrab(inode);
771ed689
CM
1143 async_cow->root = root;
1144 async_cow->locked_page = locked_page;
1145 async_cow->start = start;
1146
f79707b0
WS
1147 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1148 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1149 cur_end = end;
1150 else
1151 cur_end = min(end, start + 512 * 1024 - 1);
1152
1153 async_cow->end = cur_end;
1154 INIT_LIST_HEAD(&async_cow->extents);
1155
9e0af237
LB
1156 btrfs_init_work(&async_cow->work,
1157 btrfs_delalloc_helper,
1158 async_cow_start, async_cow_submit,
1159 async_cow_free);
771ed689 1160
771ed689
CM
1161 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1162 PAGE_CACHE_SHIFT;
1163 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1164
afe3d242
QW
1165 btrfs_queue_work(root->fs_info->delalloc_workers,
1166 &async_cow->work);
771ed689
CM
1167
1168 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1169 wait_event(root->fs_info->async_submit_wait,
1170 (atomic_read(&root->fs_info->async_delalloc_pages) <
1171 limit));
1172 }
1173
d397712b 1174 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1175 atomic_read(&root->fs_info->async_delalloc_pages)) {
1176 wait_event(root->fs_info->async_submit_wait,
1177 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1178 0));
1179 }
1180
1181 *nr_written += nr_pages;
1182 start = cur_end + 1;
1183 }
1184 *page_started = 1;
1185 return 0;
be20aa9d
CM
1186}
1187
d397712b 1188static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1189 u64 bytenr, u64 num_bytes)
1190{
1191 int ret;
1192 struct btrfs_ordered_sum *sums;
1193 LIST_HEAD(list);
1194
07d400a6 1195 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1196 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1197 if (ret == 0 && list_empty(&list))
1198 return 0;
1199
1200 while (!list_empty(&list)) {
1201 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1202 list_del(&sums->list);
1203 kfree(sums);
1204 }
1205 return 1;
1206}
1207
d352ac68
CM
1208/*
1209 * when nowcow writeback call back. This checks for snapshots or COW copies
1210 * of the extents that exist in the file, and COWs the file as required.
1211 *
1212 * If no cow copies or snapshots exist, we write directly to the existing
1213 * blocks on disk
1214 */
7f366cfe
CM
1215static noinline int run_delalloc_nocow(struct inode *inode,
1216 struct page *locked_page,
771ed689
CM
1217 u64 start, u64 end, int *page_started, int force,
1218 unsigned long *nr_written)
be20aa9d 1219{
be20aa9d 1220 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1221 struct btrfs_trans_handle *trans;
be20aa9d 1222 struct extent_buffer *leaf;
be20aa9d 1223 struct btrfs_path *path;
80ff3856 1224 struct btrfs_file_extent_item *fi;
be20aa9d 1225 struct btrfs_key found_key;
80ff3856
YZ
1226 u64 cow_start;
1227 u64 cur_offset;
1228 u64 extent_end;
5d4f98a2 1229 u64 extent_offset;
80ff3856
YZ
1230 u64 disk_bytenr;
1231 u64 num_bytes;
b4939680 1232 u64 disk_num_bytes;
cc95bef6 1233 u64 ram_bytes;
80ff3856 1234 int extent_type;
79787eaa 1235 int ret, err;
d899e052 1236 int type;
80ff3856
YZ
1237 int nocow;
1238 int check_prev = 1;
82d5902d 1239 bool nolock;
33345d01 1240 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1241
1242 path = btrfs_alloc_path();
17ca04af 1243 if (!path) {
c2790a2e
JB
1244 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1245 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1246 EXTENT_DO_ACCOUNTING |
1247 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1248 PAGE_CLEAR_DIRTY |
1249 PAGE_SET_WRITEBACK |
1250 PAGE_END_WRITEBACK);
d8926bb3 1251 return -ENOMEM;
17ca04af 1252 }
82d5902d 1253
83eea1f1 1254 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1255
1256 if (nolock)
7a7eaa40 1257 trans = btrfs_join_transaction_nolock(root);
82d5902d 1258 else
7a7eaa40 1259 trans = btrfs_join_transaction(root);
ff5714cc 1260
79787eaa 1261 if (IS_ERR(trans)) {
c2790a2e
JB
1262 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1263 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1264 EXTENT_DO_ACCOUNTING |
1265 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1266 PAGE_CLEAR_DIRTY |
1267 PAGE_SET_WRITEBACK |
1268 PAGE_END_WRITEBACK);
79787eaa
JM
1269 btrfs_free_path(path);
1270 return PTR_ERR(trans);
1271 }
1272
74b21075 1273 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1274
80ff3856
YZ
1275 cow_start = (u64)-1;
1276 cur_offset = start;
1277 while (1) {
33345d01 1278 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1279 cur_offset, 0);
d788a349 1280 if (ret < 0)
79787eaa 1281 goto error;
80ff3856
YZ
1282 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &found_key,
1285 path->slots[0] - 1);
33345d01 1286 if (found_key.objectid == ino &&
80ff3856
YZ
1287 found_key.type == BTRFS_EXTENT_DATA_KEY)
1288 path->slots[0]--;
1289 }
1290 check_prev = 0;
1291next_slot:
1292 leaf = path->nodes[0];
1293 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1294 ret = btrfs_next_leaf(root, path);
d788a349 1295 if (ret < 0)
79787eaa 1296 goto error;
80ff3856
YZ
1297 if (ret > 0)
1298 break;
1299 leaf = path->nodes[0];
1300 }
be20aa9d 1301
80ff3856
YZ
1302 nocow = 0;
1303 disk_bytenr = 0;
17d217fe 1304 num_bytes = 0;
80ff3856
YZ
1305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1306
33345d01 1307 if (found_key.objectid > ino ||
80ff3856
YZ
1308 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1309 found_key.offset > end)
1310 break;
1311
1312 if (found_key.offset > cur_offset) {
1313 extent_end = found_key.offset;
e9061e21 1314 extent_type = 0;
80ff3856
YZ
1315 goto out_check;
1316 }
1317
1318 fi = btrfs_item_ptr(leaf, path->slots[0],
1319 struct btrfs_file_extent_item);
1320 extent_type = btrfs_file_extent_type(leaf, fi);
1321
cc95bef6 1322 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1323 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1324 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1325 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1326 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1327 extent_end = found_key.offset +
1328 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1329 disk_num_bytes =
1330 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1331 if (extent_end <= start) {
1332 path->slots[0]++;
1333 goto next_slot;
1334 }
17d217fe
YZ
1335 if (disk_bytenr == 0)
1336 goto out_check;
80ff3856
YZ
1337 if (btrfs_file_extent_compression(leaf, fi) ||
1338 btrfs_file_extent_encryption(leaf, fi) ||
1339 btrfs_file_extent_other_encoding(leaf, fi))
1340 goto out_check;
d899e052
YZ
1341 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1342 goto out_check;
d2fb3437 1343 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1344 goto out_check;
33345d01 1345 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1346 found_key.offset -
1347 extent_offset, disk_bytenr))
17d217fe 1348 goto out_check;
5d4f98a2 1349 disk_bytenr += extent_offset;
17d217fe
YZ
1350 disk_bytenr += cur_offset - found_key.offset;
1351 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1352 /*
1353 * if there are pending snapshots for this root,
1354 * we fall into common COW way.
1355 */
1356 if (!nolock) {
9ea24bbe 1357 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1358 if (!err)
1359 goto out_check;
1360 }
17d217fe
YZ
1361 /*
1362 * force cow if csum exists in the range.
1363 * this ensure that csum for a given extent are
1364 * either valid or do not exist.
1365 */
1366 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1367 goto out_check;
80ff3856
YZ
1368 nocow = 1;
1369 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1370 extent_end = found_key.offset +
514ac8ad
CM
1371 btrfs_file_extent_inline_len(leaf,
1372 path->slots[0], fi);
80ff3856
YZ
1373 extent_end = ALIGN(extent_end, root->sectorsize);
1374 } else {
1375 BUG_ON(1);
1376 }
1377out_check:
1378 if (extent_end <= start) {
1379 path->slots[0]++;
e9894fd3 1380 if (!nolock && nocow)
9ea24bbe 1381 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1382 goto next_slot;
1383 }
1384 if (!nocow) {
1385 if (cow_start == (u64)-1)
1386 cow_start = cur_offset;
1387 cur_offset = extent_end;
1388 if (cur_offset > end)
1389 break;
1390 path->slots[0]++;
1391 goto next_slot;
7ea394f1
YZ
1392 }
1393
b3b4aa74 1394 btrfs_release_path(path);
80ff3856 1395 if (cow_start != (u64)-1) {
00361589
JB
1396 ret = cow_file_range(inode, locked_page,
1397 cow_start, found_key.offset - 1,
1398 page_started, nr_written, 1);
e9894fd3
WS
1399 if (ret) {
1400 if (!nolock && nocow)
9ea24bbe 1401 btrfs_end_write_no_snapshoting(root);
79787eaa 1402 goto error;
e9894fd3 1403 }
80ff3856 1404 cow_start = (u64)-1;
7ea394f1 1405 }
80ff3856 1406
d899e052
YZ
1407 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1408 struct extent_map *em;
1409 struct extent_map_tree *em_tree;
1410 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1411 em = alloc_extent_map();
79787eaa 1412 BUG_ON(!em); /* -ENOMEM */
d899e052 1413 em->start = cur_offset;
70c8a91c 1414 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1415 em->len = num_bytes;
1416 em->block_len = num_bytes;
1417 em->block_start = disk_bytenr;
b4939680 1418 em->orig_block_len = disk_num_bytes;
cc95bef6 1419 em->ram_bytes = ram_bytes;
d899e052 1420 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1421 em->mod_start = em->start;
1422 em->mod_len = em->len;
d899e052 1423 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1424 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1425 em->generation = -1;
d899e052 1426 while (1) {
890871be 1427 write_lock(&em_tree->lock);
09a2a8f9 1428 ret = add_extent_mapping(em_tree, em, 1);
890871be 1429 write_unlock(&em_tree->lock);
d899e052
YZ
1430 if (ret != -EEXIST) {
1431 free_extent_map(em);
1432 break;
1433 }
1434 btrfs_drop_extent_cache(inode, em->start,
1435 em->start + em->len - 1, 0);
1436 }
1437 type = BTRFS_ORDERED_PREALLOC;
1438 } else {
1439 type = BTRFS_ORDERED_NOCOW;
1440 }
80ff3856
YZ
1441
1442 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1443 num_bytes, num_bytes, type);
79787eaa 1444 BUG_ON(ret); /* -ENOMEM */
771ed689 1445
efa56464
YZ
1446 if (root->root_key.objectid ==
1447 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1448 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1449 num_bytes);
e9894fd3
WS
1450 if (ret) {
1451 if (!nolock && nocow)
9ea24bbe 1452 btrfs_end_write_no_snapshoting(root);
79787eaa 1453 goto error;
e9894fd3 1454 }
efa56464
YZ
1455 }
1456
c2790a2e
JB
1457 extent_clear_unlock_delalloc(inode, cur_offset,
1458 cur_offset + num_bytes - 1,
1459 locked_page, EXTENT_LOCKED |
1460 EXTENT_DELALLOC, PAGE_UNLOCK |
1461 PAGE_SET_PRIVATE2);
e9894fd3 1462 if (!nolock && nocow)
9ea24bbe 1463 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1464 cur_offset = extent_end;
1465 if (cur_offset > end)
1466 break;
be20aa9d 1467 }
b3b4aa74 1468 btrfs_release_path(path);
80ff3856 1469
17ca04af 1470 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1471 cow_start = cur_offset;
17ca04af
JB
1472 cur_offset = end;
1473 }
1474
80ff3856 1475 if (cow_start != (u64)-1) {
00361589
JB
1476 ret = cow_file_range(inode, locked_page, cow_start, end,
1477 page_started, nr_written, 1);
d788a349 1478 if (ret)
79787eaa 1479 goto error;
80ff3856
YZ
1480 }
1481
79787eaa 1482error:
a698d075 1483 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1484 if (!ret)
1485 ret = err;
1486
17ca04af 1487 if (ret && cur_offset < end)
c2790a2e
JB
1488 extent_clear_unlock_delalloc(inode, cur_offset, end,
1489 locked_page, EXTENT_LOCKED |
151a41bc
JB
1490 EXTENT_DELALLOC | EXTENT_DEFRAG |
1491 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1492 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1493 PAGE_SET_WRITEBACK |
1494 PAGE_END_WRITEBACK);
7ea394f1 1495 btrfs_free_path(path);
79787eaa 1496 return ret;
be20aa9d
CM
1497}
1498
47059d93
WS
1499static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1500{
1501
1502 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1503 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1504 return 0;
1505
1506 /*
1507 * @defrag_bytes is a hint value, no spinlock held here,
1508 * if is not zero, it means the file is defragging.
1509 * Force cow if given extent needs to be defragged.
1510 */
1511 if (BTRFS_I(inode)->defrag_bytes &&
1512 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1513 EXTENT_DEFRAG, 0, NULL))
1514 return 1;
1515
1516 return 0;
1517}
1518
d352ac68
CM
1519/*
1520 * extent_io.c call back to do delayed allocation processing
1521 */
c8b97818 1522static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1523 u64 start, u64 end, int *page_started,
1524 unsigned long *nr_written)
be20aa9d 1525{
be20aa9d 1526 int ret;
47059d93 1527 int force_cow = need_force_cow(inode, start, end);
a2135011 1528
47059d93 1529 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1530 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1531 page_started, 1, nr_written);
47059d93 1532 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1533 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1534 page_started, 0, nr_written);
7816030e 1535 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1536 ret = cow_file_range(inode, locked_page, start, end,
1537 page_started, nr_written, 1);
7ddf5a42
JB
1538 } else {
1539 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1540 &BTRFS_I(inode)->runtime_flags);
771ed689 1541 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1542 page_started, nr_written);
7ddf5a42 1543 }
b888db2b
CM
1544 return ret;
1545}
1546
1bf85046
JM
1547static void btrfs_split_extent_hook(struct inode *inode,
1548 struct extent_state *orig, u64 split)
9ed74f2d 1549{
dcab6a3b
JB
1550 u64 size;
1551
0ca1f7ce 1552 /* not delalloc, ignore it */
9ed74f2d 1553 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1554 return;
9ed74f2d 1555
dcab6a3b
JB
1556 size = orig->end - orig->start + 1;
1557 if (size > BTRFS_MAX_EXTENT_SIZE) {
1558 u64 num_extents;
1559 u64 new_size;
1560
1561 /*
ba117213
JB
1562 * See the explanation in btrfs_merge_extent_hook, the same
1563 * applies here, just in reverse.
dcab6a3b
JB
1564 */
1565 new_size = orig->end - split + 1;
ba117213 1566 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1567 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1568 new_size = split - orig->start;
1569 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1570 BTRFS_MAX_EXTENT_SIZE);
1571 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1572 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1573 return;
1574 }
1575
9e0baf60
JB
1576 spin_lock(&BTRFS_I(inode)->lock);
1577 BTRFS_I(inode)->outstanding_extents++;
1578 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1579}
1580
1581/*
1582 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1583 * extents so we can keep track of new extents that are just merged onto old
1584 * extents, such as when we are doing sequential writes, so we can properly
1585 * account for the metadata space we'll need.
1586 */
1bf85046
JM
1587static void btrfs_merge_extent_hook(struct inode *inode,
1588 struct extent_state *new,
1589 struct extent_state *other)
9ed74f2d 1590{
dcab6a3b
JB
1591 u64 new_size, old_size;
1592 u64 num_extents;
1593
9ed74f2d
JB
1594 /* not delalloc, ignore it */
1595 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1596 return;
9ed74f2d 1597
8461a3de
JB
1598 if (new->start > other->start)
1599 new_size = new->end - other->start + 1;
1600 else
1601 new_size = other->end - new->start + 1;
dcab6a3b
JB
1602
1603 /* we're not bigger than the max, unreserve the space and go */
1604 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1605 spin_lock(&BTRFS_I(inode)->lock);
1606 BTRFS_I(inode)->outstanding_extents--;
1607 spin_unlock(&BTRFS_I(inode)->lock);
1608 return;
1609 }
1610
1611 /*
ba117213
JB
1612 * We have to add up either side to figure out how many extents were
1613 * accounted for before we merged into one big extent. If the number of
1614 * extents we accounted for is <= the amount we need for the new range
1615 * then we can return, otherwise drop. Think of it like this
1616 *
1617 * [ 4k][MAX_SIZE]
1618 *
1619 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1620 * need 2 outstanding extents, on one side we have 1 and the other side
1621 * we have 1 so they are == and we can return. But in this case
1622 *
1623 * [MAX_SIZE+4k][MAX_SIZE+4k]
1624 *
1625 * Each range on their own accounts for 2 extents, but merged together
1626 * they are only 3 extents worth of accounting, so we need to drop in
1627 * this case.
dcab6a3b 1628 */
ba117213 1629 old_size = other->end - other->start + 1;
dcab6a3b
JB
1630 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1631 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1632 old_size = new->end - new->start + 1;
1633 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1634 BTRFS_MAX_EXTENT_SIZE);
1635
dcab6a3b 1636 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1637 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1638 return;
1639
9e0baf60
JB
1640 spin_lock(&BTRFS_I(inode)->lock);
1641 BTRFS_I(inode)->outstanding_extents--;
1642 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1643}
1644
eb73c1b7
MX
1645static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1646 struct inode *inode)
1647{
1648 spin_lock(&root->delalloc_lock);
1649 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1650 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1651 &root->delalloc_inodes);
1652 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1653 &BTRFS_I(inode)->runtime_flags);
1654 root->nr_delalloc_inodes++;
1655 if (root->nr_delalloc_inodes == 1) {
1656 spin_lock(&root->fs_info->delalloc_root_lock);
1657 BUG_ON(!list_empty(&root->delalloc_root));
1658 list_add_tail(&root->delalloc_root,
1659 &root->fs_info->delalloc_roots);
1660 spin_unlock(&root->fs_info->delalloc_root_lock);
1661 }
1662 }
1663 spin_unlock(&root->delalloc_lock);
1664}
1665
1666static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1667 struct inode *inode)
1668{
1669 spin_lock(&root->delalloc_lock);
1670 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1671 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1672 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1673 &BTRFS_I(inode)->runtime_flags);
1674 root->nr_delalloc_inodes--;
1675 if (!root->nr_delalloc_inodes) {
1676 spin_lock(&root->fs_info->delalloc_root_lock);
1677 BUG_ON(list_empty(&root->delalloc_root));
1678 list_del_init(&root->delalloc_root);
1679 spin_unlock(&root->fs_info->delalloc_root_lock);
1680 }
1681 }
1682 spin_unlock(&root->delalloc_lock);
1683}
1684
d352ac68
CM
1685/*
1686 * extent_io.c set_bit_hook, used to track delayed allocation
1687 * bytes in this file, and to maintain the list of inodes that
1688 * have pending delalloc work to be done.
1689 */
1bf85046 1690static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1691 struct extent_state *state, unsigned *bits)
291d673e 1692{
9ed74f2d 1693
47059d93
WS
1694 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1695 WARN_ON(1);
75eff68e
CM
1696 /*
1697 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1698 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1699 * bit, which is only set or cleared with irqs on
1700 */
0ca1f7ce 1701 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1702 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1703 u64 len = state->end + 1 - state->start;
83eea1f1 1704 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1705
9e0baf60 1706 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1707 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1708 } else {
1709 spin_lock(&BTRFS_I(inode)->lock);
1710 BTRFS_I(inode)->outstanding_extents++;
1711 spin_unlock(&BTRFS_I(inode)->lock);
1712 }
287a0ab9 1713
6a3891c5
JB
1714 /* For sanity tests */
1715 if (btrfs_test_is_dummy_root(root))
1716 return;
1717
963d678b
MX
1718 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1719 root->fs_info->delalloc_batch);
df0af1a5 1720 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1721 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1722 if (*bits & EXTENT_DEFRAG)
1723 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1724 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1725 &BTRFS_I(inode)->runtime_flags))
1726 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1727 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1728 }
291d673e
CM
1729}
1730
d352ac68
CM
1731/*
1732 * extent_io.c clear_bit_hook, see set_bit_hook for why
1733 */
1bf85046 1734static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1735 struct extent_state *state,
9ee49a04 1736 unsigned *bits)
291d673e 1737{
47059d93 1738 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1739 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1740 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1741
1742 spin_lock(&BTRFS_I(inode)->lock);
1743 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1744 BTRFS_I(inode)->defrag_bytes -= len;
1745 spin_unlock(&BTRFS_I(inode)->lock);
1746
75eff68e
CM
1747 /*
1748 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1749 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1750 * bit, which is only set or cleared with irqs on
1751 */
0ca1f7ce 1752 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1753 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1754 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1755
9e0baf60 1756 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1757 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1758 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1759 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1760 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1761 spin_unlock(&BTRFS_I(inode)->lock);
1762 }
0ca1f7ce 1763
b6d08f06
JB
1764 /*
1765 * We don't reserve metadata space for space cache inodes so we
1766 * don't need to call dellalloc_release_metadata if there is an
1767 * error.
1768 */
1769 if (*bits & EXTENT_DO_ACCOUNTING &&
1770 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1771 btrfs_delalloc_release_metadata(inode, len);
1772
6a3891c5
JB
1773 /* For sanity tests. */
1774 if (btrfs_test_is_dummy_root(root))
1775 return;
1776
0cb59c99 1777 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1778 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1779 btrfs_free_reserved_data_space_noquota(inode,
1780 state->start, len);
9ed74f2d 1781
963d678b
MX
1782 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1783 root->fs_info->delalloc_batch);
df0af1a5 1784 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1785 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1786 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1787 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1788 &BTRFS_I(inode)->runtime_flags))
1789 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1790 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1791 }
291d673e
CM
1792}
1793
d352ac68
CM
1794/*
1795 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1796 * we don't create bios that span stripes or chunks
1797 */
64a16701 1798int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1799 size_t size, struct bio *bio,
1800 unsigned long bio_flags)
239b14b3
CM
1801{
1802 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1803 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1804 u64 length = 0;
1805 u64 map_length;
239b14b3
CM
1806 int ret;
1807
771ed689
CM
1808 if (bio_flags & EXTENT_BIO_COMPRESSED)
1809 return 0;
1810
4f024f37 1811 length = bio->bi_iter.bi_size;
239b14b3 1812 map_length = length;
64a16701 1813 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1814 &map_length, NULL, 0);
3ec706c8 1815 /* Will always return 0 with map_multi == NULL */
3444a972 1816 BUG_ON(ret < 0);
d397712b 1817 if (map_length < length + size)
239b14b3 1818 return 1;
3444a972 1819 return 0;
239b14b3
CM
1820}
1821
d352ac68
CM
1822/*
1823 * in order to insert checksums into the metadata in large chunks,
1824 * we wait until bio submission time. All the pages in the bio are
1825 * checksummed and sums are attached onto the ordered extent record.
1826 *
1827 * At IO completion time the cums attached on the ordered extent record
1828 * are inserted into the btree
1829 */
d397712b
CM
1830static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1831 struct bio *bio, int mirror_num,
eaf25d93
CM
1832 unsigned long bio_flags,
1833 u64 bio_offset)
065631f6 1834{
065631f6 1835 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1836 int ret = 0;
e015640f 1837
d20f7043 1838 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1839 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1840 return 0;
1841}
e015640f 1842
4a69a410
CM
1843/*
1844 * in order to insert checksums into the metadata in large chunks,
1845 * we wait until bio submission time. All the pages in the bio are
1846 * checksummed and sums are attached onto the ordered extent record.
1847 *
1848 * At IO completion time the cums attached on the ordered extent record
1849 * are inserted into the btree
1850 */
b2950863 1851static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1852 int mirror_num, unsigned long bio_flags,
1853 u64 bio_offset)
4a69a410
CM
1854{
1855 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1856 int ret;
1857
1858 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1859 if (ret) {
1860 bio->bi_error = ret;
1861 bio_endio(bio);
1862 }
61891923 1863 return ret;
44b8bd7e
CM
1864}
1865
d352ac68 1866/*
cad321ad
CM
1867 * extent_io.c submission hook. This does the right thing for csum calculation
1868 * on write, or reading the csums from the tree before a read
d352ac68 1869 */
b2950863 1870static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1871 int mirror_num, unsigned long bio_flags,
1872 u64 bio_offset)
44b8bd7e
CM
1873{
1874 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1875 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1876 int ret = 0;
19b9bdb0 1877 int skip_sum;
b812ce28 1878 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1879
6cbff00f 1880 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1881
83eea1f1 1882 if (btrfs_is_free_space_inode(inode))
0d51e28a 1883 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1884
7b6d91da 1885 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1886 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1887 if (ret)
61891923 1888 goto out;
5fd02043 1889
d20f7043 1890 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1891 ret = btrfs_submit_compressed_read(inode, bio,
1892 mirror_num,
1893 bio_flags);
1894 goto out;
c2db1073
TI
1895 } else if (!skip_sum) {
1896 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1897 if (ret)
61891923 1898 goto out;
c2db1073 1899 }
4d1b5fb4 1900 goto mapit;
b812ce28 1901 } else if (async && !skip_sum) {
17d217fe
YZ
1902 /* csum items have already been cloned */
1903 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1904 goto mapit;
19b9bdb0 1905 /* we're doing a write, do the async checksumming */
61891923 1906 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1907 inode, rw, bio, mirror_num,
eaf25d93
CM
1908 bio_flags, bio_offset,
1909 __btrfs_submit_bio_start,
4a69a410 1910 __btrfs_submit_bio_done);
61891923 1911 goto out;
b812ce28
JB
1912 } else if (!skip_sum) {
1913 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1914 if (ret)
1915 goto out;
19b9bdb0
CM
1916 }
1917
0b86a832 1918mapit:
61891923
SB
1919 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1920
1921out:
4246a0b6
CH
1922 if (ret < 0) {
1923 bio->bi_error = ret;
1924 bio_endio(bio);
1925 }
61891923 1926 return ret;
065631f6 1927}
6885f308 1928
d352ac68
CM
1929/*
1930 * given a list of ordered sums record them in the inode. This happens
1931 * at IO completion time based on sums calculated at bio submission time.
1932 */
ba1da2f4 1933static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1934 struct inode *inode, u64 file_offset,
1935 struct list_head *list)
1936{
e6dcd2dc
CM
1937 struct btrfs_ordered_sum *sum;
1938
c6e30871 1939 list_for_each_entry(sum, list, list) {
39847c4d 1940 trans->adding_csums = 1;
d20f7043
CM
1941 btrfs_csum_file_blocks(trans,
1942 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1943 trans->adding_csums = 0;
e6dcd2dc
CM
1944 }
1945 return 0;
1946}
1947
2ac55d41
JB
1948int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1949 struct extent_state **cached_state)
ea8c2819 1950{
6c1500f2 1951 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1952 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1953 cached_state, GFP_NOFS);
ea8c2819
CM
1954}
1955
d352ac68 1956/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1957struct btrfs_writepage_fixup {
1958 struct page *page;
1959 struct btrfs_work work;
1960};
1961
b2950863 1962static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1963{
1964 struct btrfs_writepage_fixup *fixup;
1965 struct btrfs_ordered_extent *ordered;
2ac55d41 1966 struct extent_state *cached_state = NULL;
247e743c
CM
1967 struct page *page;
1968 struct inode *inode;
1969 u64 page_start;
1970 u64 page_end;
87826df0 1971 int ret;
247e743c
CM
1972
1973 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1974 page = fixup->page;
4a096752 1975again:
247e743c
CM
1976 lock_page(page);
1977 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1978 ClearPageChecked(page);
1979 goto out_page;
1980 }
1981
1982 inode = page->mapping->host;
1983 page_start = page_offset(page);
1984 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1985
2ac55d41 1986 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1987 &cached_state);
4a096752
CM
1988
1989 /* already ordered? We're done */
8b62b72b 1990 if (PagePrivate2(page))
247e743c 1991 goto out;
4a096752
CM
1992
1993 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1994 if (ordered) {
2ac55d41
JB
1995 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1996 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1997 unlock_page(page);
1998 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1999 btrfs_put_ordered_extent(ordered);
4a096752
CM
2000 goto again;
2001 }
247e743c 2002
7cf5b976
QW
2003 ret = btrfs_delalloc_reserve_space(inode, page_start,
2004 PAGE_CACHE_SIZE);
87826df0
JM
2005 if (ret) {
2006 mapping_set_error(page->mapping, ret);
2007 end_extent_writepage(page, ret, page_start, page_end);
2008 ClearPageChecked(page);
2009 goto out;
2010 }
2011
2ac55d41 2012 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2013 ClearPageChecked(page);
87826df0 2014 set_page_dirty(page);
247e743c 2015out:
2ac55d41
JB
2016 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2017 &cached_state, GFP_NOFS);
247e743c
CM
2018out_page:
2019 unlock_page(page);
2020 page_cache_release(page);
b897abec 2021 kfree(fixup);
247e743c
CM
2022}
2023
2024/*
2025 * There are a few paths in the higher layers of the kernel that directly
2026 * set the page dirty bit without asking the filesystem if it is a
2027 * good idea. This causes problems because we want to make sure COW
2028 * properly happens and the data=ordered rules are followed.
2029 *
c8b97818 2030 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2031 * hasn't been properly setup for IO. We kick off an async process
2032 * to fix it up. The async helper will wait for ordered extents, set
2033 * the delalloc bit and make it safe to write the page.
2034 */
b2950863 2035static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2036{
2037 struct inode *inode = page->mapping->host;
2038 struct btrfs_writepage_fixup *fixup;
2039 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2040
8b62b72b
CM
2041 /* this page is properly in the ordered list */
2042 if (TestClearPagePrivate2(page))
247e743c
CM
2043 return 0;
2044
2045 if (PageChecked(page))
2046 return -EAGAIN;
2047
2048 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2049 if (!fixup)
2050 return -EAGAIN;
f421950f 2051
247e743c
CM
2052 SetPageChecked(page);
2053 page_cache_get(page);
9e0af237
LB
2054 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2055 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2056 fixup->page = page;
dc6e3209 2057 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2058 return -EBUSY;
247e743c
CM
2059}
2060
d899e052
YZ
2061static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2062 struct inode *inode, u64 file_pos,
2063 u64 disk_bytenr, u64 disk_num_bytes,
2064 u64 num_bytes, u64 ram_bytes,
2065 u8 compression, u8 encryption,
2066 u16 other_encoding, int extent_type)
2067{
2068 struct btrfs_root *root = BTRFS_I(inode)->root;
2069 struct btrfs_file_extent_item *fi;
2070 struct btrfs_path *path;
2071 struct extent_buffer *leaf;
2072 struct btrfs_key ins;
1acae57b 2073 int extent_inserted = 0;
d899e052
YZ
2074 int ret;
2075
2076 path = btrfs_alloc_path();
d8926bb3
MF
2077 if (!path)
2078 return -ENOMEM;
d899e052 2079
a1ed835e
CM
2080 /*
2081 * we may be replacing one extent in the tree with another.
2082 * The new extent is pinned in the extent map, and we don't want
2083 * to drop it from the cache until it is completely in the btree.
2084 *
2085 * So, tell btrfs_drop_extents to leave this extent in the cache.
2086 * the caller is expected to unpin it and allow it to be merged
2087 * with the others.
2088 */
1acae57b
FDBM
2089 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2090 file_pos + num_bytes, NULL, 0,
2091 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2092 if (ret)
2093 goto out;
d899e052 2094
1acae57b
FDBM
2095 if (!extent_inserted) {
2096 ins.objectid = btrfs_ino(inode);
2097 ins.offset = file_pos;
2098 ins.type = BTRFS_EXTENT_DATA_KEY;
2099
2100 path->leave_spinning = 1;
2101 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2102 sizeof(*fi));
2103 if (ret)
2104 goto out;
2105 }
d899e052
YZ
2106 leaf = path->nodes[0];
2107 fi = btrfs_item_ptr(leaf, path->slots[0],
2108 struct btrfs_file_extent_item);
2109 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2110 btrfs_set_file_extent_type(leaf, fi, extent_type);
2111 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2112 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2113 btrfs_set_file_extent_offset(leaf, fi, 0);
2114 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2115 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2116 btrfs_set_file_extent_compression(leaf, fi, compression);
2117 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2118 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2119
d899e052 2120 btrfs_mark_buffer_dirty(leaf);
ce195332 2121 btrfs_release_path(path);
d899e052
YZ
2122
2123 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2124
2125 ins.objectid = disk_bytenr;
2126 ins.offset = disk_num_bytes;
2127 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2128 ret = btrfs_alloc_reserved_file_extent(trans, root,
2129 root->root_key.objectid,
33345d01 2130 btrfs_ino(inode), file_pos, &ins);
297d750b
QW
2131 if (ret < 0)
2132 goto out;
2133 /*
2134 * Release the reserved range from inode dirty range map, and
2135 * move it to delayed ref codes, as now accounting only happens at
2136 * commit_transaction() time.
2137 */
2138 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2139 ret = btrfs_add_delayed_qgroup_reserve(root->fs_info, trans,
2140 root->objectid, disk_bytenr, ram_bytes);
79787eaa 2141out:
d899e052 2142 btrfs_free_path(path);
b9473439 2143
79787eaa 2144 return ret;
d899e052
YZ
2145}
2146
38c227d8
LB
2147/* snapshot-aware defrag */
2148struct sa_defrag_extent_backref {
2149 struct rb_node node;
2150 struct old_sa_defrag_extent *old;
2151 u64 root_id;
2152 u64 inum;
2153 u64 file_pos;
2154 u64 extent_offset;
2155 u64 num_bytes;
2156 u64 generation;
2157};
2158
2159struct old_sa_defrag_extent {
2160 struct list_head list;
2161 struct new_sa_defrag_extent *new;
2162
2163 u64 extent_offset;
2164 u64 bytenr;
2165 u64 offset;
2166 u64 len;
2167 int count;
2168};
2169
2170struct new_sa_defrag_extent {
2171 struct rb_root root;
2172 struct list_head head;
2173 struct btrfs_path *path;
2174 struct inode *inode;
2175 u64 file_pos;
2176 u64 len;
2177 u64 bytenr;
2178 u64 disk_len;
2179 u8 compress_type;
2180};
2181
2182static int backref_comp(struct sa_defrag_extent_backref *b1,
2183 struct sa_defrag_extent_backref *b2)
2184{
2185 if (b1->root_id < b2->root_id)
2186 return -1;
2187 else if (b1->root_id > b2->root_id)
2188 return 1;
2189
2190 if (b1->inum < b2->inum)
2191 return -1;
2192 else if (b1->inum > b2->inum)
2193 return 1;
2194
2195 if (b1->file_pos < b2->file_pos)
2196 return -1;
2197 else if (b1->file_pos > b2->file_pos)
2198 return 1;
2199
2200 /*
2201 * [------------------------------] ===> (a range of space)
2202 * |<--->| |<---->| =============> (fs/file tree A)
2203 * |<---------------------------->| ===> (fs/file tree B)
2204 *
2205 * A range of space can refer to two file extents in one tree while
2206 * refer to only one file extent in another tree.
2207 *
2208 * So we may process a disk offset more than one time(two extents in A)
2209 * and locate at the same extent(one extent in B), then insert two same
2210 * backrefs(both refer to the extent in B).
2211 */
2212 return 0;
2213}
2214
2215static void backref_insert(struct rb_root *root,
2216 struct sa_defrag_extent_backref *backref)
2217{
2218 struct rb_node **p = &root->rb_node;
2219 struct rb_node *parent = NULL;
2220 struct sa_defrag_extent_backref *entry;
2221 int ret;
2222
2223 while (*p) {
2224 parent = *p;
2225 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2226
2227 ret = backref_comp(backref, entry);
2228 if (ret < 0)
2229 p = &(*p)->rb_left;
2230 else
2231 p = &(*p)->rb_right;
2232 }
2233
2234 rb_link_node(&backref->node, parent, p);
2235 rb_insert_color(&backref->node, root);
2236}
2237
2238/*
2239 * Note the backref might has changed, and in this case we just return 0.
2240 */
2241static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2242 void *ctx)
2243{
2244 struct btrfs_file_extent_item *extent;
2245 struct btrfs_fs_info *fs_info;
2246 struct old_sa_defrag_extent *old = ctx;
2247 struct new_sa_defrag_extent *new = old->new;
2248 struct btrfs_path *path = new->path;
2249 struct btrfs_key key;
2250 struct btrfs_root *root;
2251 struct sa_defrag_extent_backref *backref;
2252 struct extent_buffer *leaf;
2253 struct inode *inode = new->inode;
2254 int slot;
2255 int ret;
2256 u64 extent_offset;
2257 u64 num_bytes;
2258
2259 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2260 inum == btrfs_ino(inode))
2261 return 0;
2262
2263 key.objectid = root_id;
2264 key.type = BTRFS_ROOT_ITEM_KEY;
2265 key.offset = (u64)-1;
2266
2267 fs_info = BTRFS_I(inode)->root->fs_info;
2268 root = btrfs_read_fs_root_no_name(fs_info, &key);
2269 if (IS_ERR(root)) {
2270 if (PTR_ERR(root) == -ENOENT)
2271 return 0;
2272 WARN_ON(1);
2273 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2274 inum, offset, root_id);
2275 return PTR_ERR(root);
2276 }
2277
2278 key.objectid = inum;
2279 key.type = BTRFS_EXTENT_DATA_KEY;
2280 if (offset > (u64)-1 << 32)
2281 key.offset = 0;
2282 else
2283 key.offset = offset;
2284
2285 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2286 if (WARN_ON(ret < 0))
38c227d8 2287 return ret;
50f1319c 2288 ret = 0;
38c227d8
LB
2289
2290 while (1) {
2291 cond_resched();
2292
2293 leaf = path->nodes[0];
2294 slot = path->slots[0];
2295
2296 if (slot >= btrfs_header_nritems(leaf)) {
2297 ret = btrfs_next_leaf(root, path);
2298 if (ret < 0) {
2299 goto out;
2300 } else if (ret > 0) {
2301 ret = 0;
2302 goto out;
2303 }
2304 continue;
2305 }
2306
2307 path->slots[0]++;
2308
2309 btrfs_item_key_to_cpu(leaf, &key, slot);
2310
2311 if (key.objectid > inum)
2312 goto out;
2313
2314 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2315 continue;
2316
2317 extent = btrfs_item_ptr(leaf, slot,
2318 struct btrfs_file_extent_item);
2319
2320 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2321 continue;
2322
e68afa49
LB
2323 /*
2324 * 'offset' refers to the exact key.offset,
2325 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2326 * (key.offset - extent_offset).
2327 */
2328 if (key.offset != offset)
38c227d8
LB
2329 continue;
2330
e68afa49 2331 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2332 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2333
38c227d8
LB
2334 if (extent_offset >= old->extent_offset + old->offset +
2335 old->len || extent_offset + num_bytes <=
2336 old->extent_offset + old->offset)
2337 continue;
38c227d8
LB
2338 break;
2339 }
2340
2341 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2342 if (!backref) {
2343 ret = -ENOENT;
2344 goto out;
2345 }
2346
2347 backref->root_id = root_id;
2348 backref->inum = inum;
e68afa49 2349 backref->file_pos = offset;
38c227d8
LB
2350 backref->num_bytes = num_bytes;
2351 backref->extent_offset = extent_offset;
2352 backref->generation = btrfs_file_extent_generation(leaf, extent);
2353 backref->old = old;
2354 backref_insert(&new->root, backref);
2355 old->count++;
2356out:
2357 btrfs_release_path(path);
2358 WARN_ON(ret);
2359 return ret;
2360}
2361
2362static noinline bool record_extent_backrefs(struct btrfs_path *path,
2363 struct new_sa_defrag_extent *new)
2364{
2365 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2366 struct old_sa_defrag_extent *old, *tmp;
2367 int ret;
2368
2369 new->path = path;
2370
2371 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2372 ret = iterate_inodes_from_logical(old->bytenr +
2373 old->extent_offset, fs_info,
38c227d8
LB
2374 path, record_one_backref,
2375 old);
4724b106
JB
2376 if (ret < 0 && ret != -ENOENT)
2377 return false;
38c227d8
LB
2378
2379 /* no backref to be processed for this extent */
2380 if (!old->count) {
2381 list_del(&old->list);
2382 kfree(old);
2383 }
2384 }
2385
2386 if (list_empty(&new->head))
2387 return false;
2388
2389 return true;
2390}
2391
2392static int relink_is_mergable(struct extent_buffer *leaf,
2393 struct btrfs_file_extent_item *fi,
116e0024 2394 struct new_sa_defrag_extent *new)
38c227d8 2395{
116e0024 2396 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2397 return 0;
2398
2399 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2400 return 0;
2401
116e0024
LB
2402 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2403 return 0;
2404
2405 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2406 btrfs_file_extent_other_encoding(leaf, fi))
2407 return 0;
2408
2409 return 1;
2410}
2411
2412/*
2413 * Note the backref might has changed, and in this case we just return 0.
2414 */
2415static noinline int relink_extent_backref(struct btrfs_path *path,
2416 struct sa_defrag_extent_backref *prev,
2417 struct sa_defrag_extent_backref *backref)
2418{
2419 struct btrfs_file_extent_item *extent;
2420 struct btrfs_file_extent_item *item;
2421 struct btrfs_ordered_extent *ordered;
2422 struct btrfs_trans_handle *trans;
2423 struct btrfs_fs_info *fs_info;
2424 struct btrfs_root *root;
2425 struct btrfs_key key;
2426 struct extent_buffer *leaf;
2427 struct old_sa_defrag_extent *old = backref->old;
2428 struct new_sa_defrag_extent *new = old->new;
2429 struct inode *src_inode = new->inode;
2430 struct inode *inode;
2431 struct extent_state *cached = NULL;
2432 int ret = 0;
2433 u64 start;
2434 u64 len;
2435 u64 lock_start;
2436 u64 lock_end;
2437 bool merge = false;
2438 int index;
2439
2440 if (prev && prev->root_id == backref->root_id &&
2441 prev->inum == backref->inum &&
2442 prev->file_pos + prev->num_bytes == backref->file_pos)
2443 merge = true;
2444
2445 /* step 1: get root */
2446 key.objectid = backref->root_id;
2447 key.type = BTRFS_ROOT_ITEM_KEY;
2448 key.offset = (u64)-1;
2449
2450 fs_info = BTRFS_I(src_inode)->root->fs_info;
2451 index = srcu_read_lock(&fs_info->subvol_srcu);
2452
2453 root = btrfs_read_fs_root_no_name(fs_info, &key);
2454 if (IS_ERR(root)) {
2455 srcu_read_unlock(&fs_info->subvol_srcu, index);
2456 if (PTR_ERR(root) == -ENOENT)
2457 return 0;
2458 return PTR_ERR(root);
2459 }
38c227d8 2460
bcbba5e6
WS
2461 if (btrfs_root_readonly(root)) {
2462 srcu_read_unlock(&fs_info->subvol_srcu, index);
2463 return 0;
2464 }
2465
38c227d8
LB
2466 /* step 2: get inode */
2467 key.objectid = backref->inum;
2468 key.type = BTRFS_INODE_ITEM_KEY;
2469 key.offset = 0;
2470
2471 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2472 if (IS_ERR(inode)) {
2473 srcu_read_unlock(&fs_info->subvol_srcu, index);
2474 return 0;
2475 }
2476
2477 srcu_read_unlock(&fs_info->subvol_srcu, index);
2478
2479 /* step 3: relink backref */
2480 lock_start = backref->file_pos;
2481 lock_end = backref->file_pos + backref->num_bytes - 1;
2482 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2483 0, &cached);
2484
2485 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2486 if (ordered) {
2487 btrfs_put_ordered_extent(ordered);
2488 goto out_unlock;
2489 }
2490
2491 trans = btrfs_join_transaction(root);
2492 if (IS_ERR(trans)) {
2493 ret = PTR_ERR(trans);
2494 goto out_unlock;
2495 }
2496
2497 key.objectid = backref->inum;
2498 key.type = BTRFS_EXTENT_DATA_KEY;
2499 key.offset = backref->file_pos;
2500
2501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502 if (ret < 0) {
2503 goto out_free_path;
2504 } else if (ret > 0) {
2505 ret = 0;
2506 goto out_free_path;
2507 }
2508
2509 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2510 struct btrfs_file_extent_item);
2511
2512 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2513 backref->generation)
2514 goto out_free_path;
2515
2516 btrfs_release_path(path);
2517
2518 start = backref->file_pos;
2519 if (backref->extent_offset < old->extent_offset + old->offset)
2520 start += old->extent_offset + old->offset -
2521 backref->extent_offset;
2522
2523 len = min(backref->extent_offset + backref->num_bytes,
2524 old->extent_offset + old->offset + old->len);
2525 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2526
2527 ret = btrfs_drop_extents(trans, root, inode, start,
2528 start + len, 1);
2529 if (ret)
2530 goto out_free_path;
2531again:
2532 key.objectid = btrfs_ino(inode);
2533 key.type = BTRFS_EXTENT_DATA_KEY;
2534 key.offset = start;
2535
a09a0a70 2536 path->leave_spinning = 1;
38c227d8
LB
2537 if (merge) {
2538 struct btrfs_file_extent_item *fi;
2539 u64 extent_len;
2540 struct btrfs_key found_key;
2541
3c9665df 2542 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2543 if (ret < 0)
2544 goto out_free_path;
2545
2546 path->slots[0]--;
2547 leaf = path->nodes[0];
2548 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2549
2550 fi = btrfs_item_ptr(leaf, path->slots[0],
2551 struct btrfs_file_extent_item);
2552 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2553
116e0024
LB
2554 if (extent_len + found_key.offset == start &&
2555 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2556 btrfs_set_file_extent_num_bytes(leaf, fi,
2557 extent_len + len);
2558 btrfs_mark_buffer_dirty(leaf);
2559 inode_add_bytes(inode, len);
2560
2561 ret = 1;
2562 goto out_free_path;
2563 } else {
2564 merge = false;
2565 btrfs_release_path(path);
2566 goto again;
2567 }
2568 }
2569
2570 ret = btrfs_insert_empty_item(trans, root, path, &key,
2571 sizeof(*extent));
2572 if (ret) {
2573 btrfs_abort_transaction(trans, root, ret);
2574 goto out_free_path;
2575 }
2576
2577 leaf = path->nodes[0];
2578 item = btrfs_item_ptr(leaf, path->slots[0],
2579 struct btrfs_file_extent_item);
2580 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2581 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2582 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2583 btrfs_set_file_extent_num_bytes(leaf, item, len);
2584 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2585 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2586 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2587 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2588 btrfs_set_file_extent_encryption(leaf, item, 0);
2589 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2590
2591 btrfs_mark_buffer_dirty(leaf);
2592 inode_add_bytes(inode, len);
a09a0a70 2593 btrfs_release_path(path);
38c227d8
LB
2594
2595 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2596 new->disk_len, 0,
2597 backref->root_id, backref->inum,
2598 new->file_pos, 0); /* start - extent_offset */
2599 if (ret) {
2600 btrfs_abort_transaction(trans, root, ret);
2601 goto out_free_path;
2602 }
2603
2604 ret = 1;
2605out_free_path:
2606 btrfs_release_path(path);
a09a0a70 2607 path->leave_spinning = 0;
38c227d8
LB
2608 btrfs_end_transaction(trans, root);
2609out_unlock:
2610 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2611 &cached, GFP_NOFS);
2612 iput(inode);
2613 return ret;
2614}
2615
6f519564
LB
2616static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2617{
2618 struct old_sa_defrag_extent *old, *tmp;
2619
2620 if (!new)
2621 return;
2622
2623 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2624 kfree(old);
2625 }
2626 kfree(new);
2627}
2628
38c227d8
LB
2629static void relink_file_extents(struct new_sa_defrag_extent *new)
2630{
2631 struct btrfs_path *path;
38c227d8
LB
2632 struct sa_defrag_extent_backref *backref;
2633 struct sa_defrag_extent_backref *prev = NULL;
2634 struct inode *inode;
2635 struct btrfs_root *root;
2636 struct rb_node *node;
2637 int ret;
2638
2639 inode = new->inode;
2640 root = BTRFS_I(inode)->root;
2641
2642 path = btrfs_alloc_path();
2643 if (!path)
2644 return;
2645
2646 if (!record_extent_backrefs(path, new)) {
2647 btrfs_free_path(path);
2648 goto out;
2649 }
2650 btrfs_release_path(path);
2651
2652 while (1) {
2653 node = rb_first(&new->root);
2654 if (!node)
2655 break;
2656 rb_erase(node, &new->root);
2657
2658 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2659
2660 ret = relink_extent_backref(path, prev, backref);
2661 WARN_ON(ret < 0);
2662
2663 kfree(prev);
2664
2665 if (ret == 1)
2666 prev = backref;
2667 else
2668 prev = NULL;
2669 cond_resched();
2670 }
2671 kfree(prev);
2672
2673 btrfs_free_path(path);
38c227d8 2674out:
6f519564
LB
2675 free_sa_defrag_extent(new);
2676
38c227d8
LB
2677 atomic_dec(&root->fs_info->defrag_running);
2678 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2679}
2680
2681static struct new_sa_defrag_extent *
2682record_old_file_extents(struct inode *inode,
2683 struct btrfs_ordered_extent *ordered)
2684{
2685 struct btrfs_root *root = BTRFS_I(inode)->root;
2686 struct btrfs_path *path;
2687 struct btrfs_key key;
6f519564 2688 struct old_sa_defrag_extent *old;
38c227d8
LB
2689 struct new_sa_defrag_extent *new;
2690 int ret;
2691
2692 new = kmalloc(sizeof(*new), GFP_NOFS);
2693 if (!new)
2694 return NULL;
2695
2696 new->inode = inode;
2697 new->file_pos = ordered->file_offset;
2698 new->len = ordered->len;
2699 new->bytenr = ordered->start;
2700 new->disk_len = ordered->disk_len;
2701 new->compress_type = ordered->compress_type;
2702 new->root = RB_ROOT;
2703 INIT_LIST_HEAD(&new->head);
2704
2705 path = btrfs_alloc_path();
2706 if (!path)
2707 goto out_kfree;
2708
2709 key.objectid = btrfs_ino(inode);
2710 key.type = BTRFS_EXTENT_DATA_KEY;
2711 key.offset = new->file_pos;
2712
2713 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2714 if (ret < 0)
2715 goto out_free_path;
2716 if (ret > 0 && path->slots[0] > 0)
2717 path->slots[0]--;
2718
2719 /* find out all the old extents for the file range */
2720 while (1) {
2721 struct btrfs_file_extent_item *extent;
2722 struct extent_buffer *l;
2723 int slot;
2724 u64 num_bytes;
2725 u64 offset;
2726 u64 end;
2727 u64 disk_bytenr;
2728 u64 extent_offset;
2729
2730 l = path->nodes[0];
2731 slot = path->slots[0];
2732
2733 if (slot >= btrfs_header_nritems(l)) {
2734 ret = btrfs_next_leaf(root, path);
2735 if (ret < 0)
6f519564 2736 goto out_free_path;
38c227d8
LB
2737 else if (ret > 0)
2738 break;
2739 continue;
2740 }
2741
2742 btrfs_item_key_to_cpu(l, &key, slot);
2743
2744 if (key.objectid != btrfs_ino(inode))
2745 break;
2746 if (key.type != BTRFS_EXTENT_DATA_KEY)
2747 break;
2748 if (key.offset >= new->file_pos + new->len)
2749 break;
2750
2751 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2752
2753 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2754 if (key.offset + num_bytes < new->file_pos)
2755 goto next;
2756
2757 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2758 if (!disk_bytenr)
2759 goto next;
2760
2761 extent_offset = btrfs_file_extent_offset(l, extent);
2762
2763 old = kmalloc(sizeof(*old), GFP_NOFS);
2764 if (!old)
6f519564 2765 goto out_free_path;
38c227d8
LB
2766
2767 offset = max(new->file_pos, key.offset);
2768 end = min(new->file_pos + new->len, key.offset + num_bytes);
2769
2770 old->bytenr = disk_bytenr;
2771 old->extent_offset = extent_offset;
2772 old->offset = offset - key.offset;
2773 old->len = end - offset;
2774 old->new = new;
2775 old->count = 0;
2776 list_add_tail(&old->list, &new->head);
2777next:
2778 path->slots[0]++;
2779 cond_resched();
2780 }
2781
2782 btrfs_free_path(path);
2783 atomic_inc(&root->fs_info->defrag_running);
2784
2785 return new;
2786
38c227d8
LB
2787out_free_path:
2788 btrfs_free_path(path);
2789out_kfree:
6f519564 2790 free_sa_defrag_extent(new);
38c227d8
LB
2791 return NULL;
2792}
2793
e570fd27
MX
2794static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2795 u64 start, u64 len)
2796{
2797 struct btrfs_block_group_cache *cache;
2798
2799 cache = btrfs_lookup_block_group(root->fs_info, start);
2800 ASSERT(cache);
2801
2802 spin_lock(&cache->lock);
2803 cache->delalloc_bytes -= len;
2804 spin_unlock(&cache->lock);
2805
2806 btrfs_put_block_group(cache);
2807}
2808
d352ac68
CM
2809/* as ordered data IO finishes, this gets called so we can finish
2810 * an ordered extent if the range of bytes in the file it covers are
2811 * fully written.
2812 */
5fd02043 2813static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2814{
5fd02043 2815 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2816 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2817 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2818 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2819 struct extent_state *cached_state = NULL;
38c227d8 2820 struct new_sa_defrag_extent *new = NULL;
261507a0 2821 int compress_type = 0;
77cef2ec
JB
2822 int ret = 0;
2823 u64 logical_len = ordered_extent->len;
82d5902d 2824 bool nolock;
77cef2ec 2825 bool truncated = false;
e6dcd2dc 2826
83eea1f1 2827 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2828
5fd02043
JB
2829 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2830 ret = -EIO;
2831 goto out;
2832 }
2833
f612496b
MX
2834 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2835 ordered_extent->file_offset +
2836 ordered_extent->len - 1);
2837
77cef2ec
JB
2838 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2839 truncated = true;
2840 logical_len = ordered_extent->truncated_len;
2841 /* Truncated the entire extent, don't bother adding */
2842 if (!logical_len)
2843 goto out;
2844 }
2845
c2167754 2846 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2847 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2848
2849 /*
2850 * For mwrite(mmap + memset to write) case, we still reserve
2851 * space for NOCOW range.
2852 * As NOCOW won't cause a new delayed ref, just free the space
2853 */
2854 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2855 ordered_extent->len);
6c760c07
JB
2856 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2857 if (nolock)
2858 trans = btrfs_join_transaction_nolock(root);
2859 else
2860 trans = btrfs_join_transaction(root);
2861 if (IS_ERR(trans)) {
2862 ret = PTR_ERR(trans);
2863 trans = NULL;
2864 goto out;
c2167754 2865 }
6c760c07
JB
2866 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2867 ret = btrfs_update_inode_fallback(trans, root, inode);
2868 if (ret) /* -ENOMEM or corruption */
2869 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2870 goto out;
2871 }
e6dcd2dc 2872
2ac55d41
JB
2873 lock_extent_bits(io_tree, ordered_extent->file_offset,
2874 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2875 0, &cached_state);
e6dcd2dc 2876
38c227d8
LB
2877 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2878 ordered_extent->file_offset + ordered_extent->len - 1,
2879 EXTENT_DEFRAG, 1, cached_state);
2880 if (ret) {
2881 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2882 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2883 /* the inode is shared */
2884 new = record_old_file_extents(inode, ordered_extent);
2885
2886 clear_extent_bit(io_tree, ordered_extent->file_offset,
2887 ordered_extent->file_offset + ordered_extent->len - 1,
2888 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2889 }
2890
0cb59c99 2891 if (nolock)
7a7eaa40 2892 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2893 else
7a7eaa40 2894 trans = btrfs_join_transaction(root);
79787eaa
JM
2895 if (IS_ERR(trans)) {
2896 ret = PTR_ERR(trans);
2897 trans = NULL;
2898 goto out_unlock;
2899 }
a79b7d4b 2900
0ca1f7ce 2901 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2902
c8b97818 2903 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2904 compress_type = ordered_extent->compress_type;
d899e052 2905 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2906 BUG_ON(compress_type);
920bbbfb 2907 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2908 ordered_extent->file_offset,
2909 ordered_extent->file_offset +
77cef2ec 2910 logical_len);
d899e052 2911 } else {
0af3d00b 2912 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2913 ret = insert_reserved_file_extent(trans, inode,
2914 ordered_extent->file_offset,
2915 ordered_extent->start,
2916 ordered_extent->disk_len,
77cef2ec 2917 logical_len, logical_len,
261507a0 2918 compress_type, 0, 0,
d899e052 2919 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2920 if (!ret)
2921 btrfs_release_delalloc_bytes(root,
2922 ordered_extent->start,
2923 ordered_extent->disk_len);
d899e052 2924 }
5dc562c5
JB
2925 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2926 ordered_extent->file_offset, ordered_extent->len,
2927 trans->transid);
79787eaa
JM
2928 if (ret < 0) {
2929 btrfs_abort_transaction(trans, root, ret);
5fd02043 2930 goto out_unlock;
79787eaa 2931 }
2ac55d41 2932
e6dcd2dc
CM
2933 add_pending_csums(trans, inode, ordered_extent->file_offset,
2934 &ordered_extent->list);
2935
6c760c07
JB
2936 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2937 ret = btrfs_update_inode_fallback(trans, root, inode);
2938 if (ret) { /* -ENOMEM or corruption */
2939 btrfs_abort_transaction(trans, root, ret);
2940 goto out_unlock;
1ef30be1
JB
2941 }
2942 ret = 0;
5fd02043
JB
2943out_unlock:
2944 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2945 ordered_extent->file_offset +
2946 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2947out:
5b0e95bf 2948 if (root != root->fs_info->tree_root)
0cb59c99 2949 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2950 if (trans)
2951 btrfs_end_transaction(trans, root);
0cb59c99 2952
77cef2ec
JB
2953 if (ret || truncated) {
2954 u64 start, end;
2955
2956 if (truncated)
2957 start = ordered_extent->file_offset + logical_len;
2958 else
2959 start = ordered_extent->file_offset;
2960 end = ordered_extent->file_offset + ordered_extent->len - 1;
2961 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2962
2963 /* Drop the cache for the part of the extent we didn't write. */
2964 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2965
0bec9ef5
JB
2966 /*
2967 * If the ordered extent had an IOERR or something else went
2968 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2969 * back to the allocator. We only free the extent in the
2970 * truncated case if we didn't write out the extent at all.
0bec9ef5 2971 */
77cef2ec
JB
2972 if ((ret || !logical_len) &&
2973 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2974 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2975 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2976 ordered_extent->disk_len, 1);
0bec9ef5
JB
2977 }
2978
2979
5fd02043 2980 /*
8bad3c02
LB
2981 * This needs to be done to make sure anybody waiting knows we are done
2982 * updating everything for this ordered extent.
5fd02043
JB
2983 */
2984 btrfs_remove_ordered_extent(inode, ordered_extent);
2985
38c227d8 2986 /* for snapshot-aware defrag */
6f519564
LB
2987 if (new) {
2988 if (ret) {
2989 free_sa_defrag_extent(new);
2990 atomic_dec(&root->fs_info->defrag_running);
2991 } else {
2992 relink_file_extents(new);
2993 }
2994 }
38c227d8 2995
e6dcd2dc
CM
2996 /* once for us */
2997 btrfs_put_ordered_extent(ordered_extent);
2998 /* once for the tree */
2999 btrfs_put_ordered_extent(ordered_extent);
3000
5fd02043
JB
3001 return ret;
3002}
3003
3004static void finish_ordered_fn(struct btrfs_work *work)
3005{
3006 struct btrfs_ordered_extent *ordered_extent;
3007 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3008 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3009}
3010
b2950863 3011static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3012 struct extent_state *state, int uptodate)
3013{
5fd02043
JB
3014 struct inode *inode = page->mapping->host;
3015 struct btrfs_root *root = BTRFS_I(inode)->root;
3016 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3017 struct btrfs_workqueue *wq;
3018 btrfs_work_func_t func;
5fd02043 3019
1abe9b8a 3020 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3021
8b62b72b 3022 ClearPagePrivate2(page);
5fd02043
JB
3023 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3024 end - start + 1, uptodate))
3025 return 0;
3026
9e0af237
LB
3027 if (btrfs_is_free_space_inode(inode)) {
3028 wq = root->fs_info->endio_freespace_worker;
3029 func = btrfs_freespace_write_helper;
3030 } else {
3031 wq = root->fs_info->endio_write_workers;
3032 func = btrfs_endio_write_helper;
3033 }
5fd02043 3034
9e0af237
LB
3035 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3036 NULL);
3037 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3038
3039 return 0;
211f90e6
CM
3040}
3041
dc380aea
MX
3042static int __readpage_endio_check(struct inode *inode,
3043 struct btrfs_io_bio *io_bio,
3044 int icsum, struct page *page,
3045 int pgoff, u64 start, size_t len)
3046{
3047 char *kaddr;
3048 u32 csum_expected;
3049 u32 csum = ~(u32)0;
dc380aea
MX
3050
3051 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3052
3053 kaddr = kmap_atomic(page);
3054 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3055 btrfs_csum_final(csum, (char *)&csum);
3056 if (csum != csum_expected)
3057 goto zeroit;
3058
3059 kunmap_atomic(kaddr);
3060 return 0;
3061zeroit:
94647322
DS
3062 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3063 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3064 btrfs_ino(inode), start, csum, csum_expected);
3065 memset(kaddr + pgoff, 1, len);
3066 flush_dcache_page(page);
3067 kunmap_atomic(kaddr);
3068 if (csum_expected == 0)
3069 return 0;
3070 return -EIO;
3071}
3072
d352ac68
CM
3073/*
3074 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3075 * if there's a match, we allow the bio to finish. If not, the code in
3076 * extent_io.c will try to find good copies for us.
d352ac68 3077 */
facc8a22
MX
3078static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3079 u64 phy_offset, struct page *page,
3080 u64 start, u64 end, int mirror)
07157aac 3081{
4eee4fa4 3082 size_t offset = start - page_offset(page);
07157aac 3083 struct inode *inode = page->mapping->host;
d1310b2e 3084 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3085 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3086
d20f7043
CM
3087 if (PageChecked(page)) {
3088 ClearPageChecked(page);
dc380aea 3089 return 0;
d20f7043 3090 }
6cbff00f
CH
3091
3092 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3093 return 0;
17d217fe
YZ
3094
3095 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3096 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
3097 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3098 GFP_NOFS);
b6cda9bc 3099 return 0;
17d217fe 3100 }
d20f7043 3101
facc8a22 3102 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3103 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3104 start, (size_t)(end - start + 1));
07157aac 3105}
b888db2b 3106
24bbcf04
YZ
3107struct delayed_iput {
3108 struct list_head list;
3109 struct inode *inode;
3110};
3111
79787eaa
JM
3112/* JDM: If this is fs-wide, why can't we add a pointer to
3113 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
3114void btrfs_add_delayed_iput(struct inode *inode)
3115{
3116 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3117 struct delayed_iput *delayed;
3118
3119 if (atomic_add_unless(&inode->i_count, -1, 1))
3120 return;
3121
3122 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3123 delayed->inode = inode;
3124
3125 spin_lock(&fs_info->delayed_iput_lock);
3126 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3127 spin_unlock(&fs_info->delayed_iput_lock);
3128}
3129
3130void btrfs_run_delayed_iputs(struct btrfs_root *root)
3131{
3132 LIST_HEAD(list);
3133 struct btrfs_fs_info *fs_info = root->fs_info;
3134 struct delayed_iput *delayed;
3135 int empty;
3136
3137 spin_lock(&fs_info->delayed_iput_lock);
3138 empty = list_empty(&fs_info->delayed_iputs);
3139 spin_unlock(&fs_info->delayed_iput_lock);
3140 if (empty)
3141 return;
3142
d7c15171
ZL
3143 down_read(&fs_info->delayed_iput_sem);
3144
24bbcf04
YZ
3145 spin_lock(&fs_info->delayed_iput_lock);
3146 list_splice_init(&fs_info->delayed_iputs, &list);
3147 spin_unlock(&fs_info->delayed_iput_lock);
3148
3149 while (!list_empty(&list)) {
3150 delayed = list_entry(list.next, struct delayed_iput, list);
3151 list_del(&delayed->list);
3152 iput(delayed->inode);
3153 kfree(delayed);
3154 }
d7c15171
ZL
3155
3156 up_read(&root->fs_info->delayed_iput_sem);
24bbcf04
YZ
3157}
3158
d68fc57b 3159/*
42b2aa86 3160 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3161 * files in the subvolume, it removes orphan item and frees block_rsv
3162 * structure.
3163 */
3164void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3165 struct btrfs_root *root)
3166{
90290e19 3167 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3168 int ret;
3169
8a35d95f 3170 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3171 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3172 return;
3173
90290e19 3174 spin_lock(&root->orphan_lock);
8a35d95f 3175 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3176 spin_unlock(&root->orphan_lock);
3177 return;
3178 }
3179
3180 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3181 spin_unlock(&root->orphan_lock);
3182 return;
3183 }
3184
3185 block_rsv = root->orphan_block_rsv;
3186 root->orphan_block_rsv = NULL;
3187 spin_unlock(&root->orphan_lock);
3188
27cdeb70 3189 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3190 btrfs_root_refs(&root->root_item) > 0) {
3191 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3192 root->root_key.objectid);
4ef31a45
JB
3193 if (ret)
3194 btrfs_abort_transaction(trans, root, ret);
3195 else
27cdeb70
MX
3196 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3197 &root->state);
d68fc57b
YZ
3198 }
3199
90290e19
JB
3200 if (block_rsv) {
3201 WARN_ON(block_rsv->size > 0);
3202 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3203 }
3204}
3205
7b128766
JB
3206/*
3207 * This creates an orphan entry for the given inode in case something goes
3208 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3209 *
3210 * NOTE: caller of this function should reserve 5 units of metadata for
3211 * this function.
7b128766
JB
3212 */
3213int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3214{
3215 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3216 struct btrfs_block_rsv *block_rsv = NULL;
3217 int reserve = 0;
3218 int insert = 0;
3219 int ret;
7b128766 3220
d68fc57b 3221 if (!root->orphan_block_rsv) {
66d8f3dd 3222 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3223 if (!block_rsv)
3224 return -ENOMEM;
d68fc57b 3225 }
7b128766 3226
d68fc57b
YZ
3227 spin_lock(&root->orphan_lock);
3228 if (!root->orphan_block_rsv) {
3229 root->orphan_block_rsv = block_rsv;
3230 } else if (block_rsv) {
3231 btrfs_free_block_rsv(root, block_rsv);
3232 block_rsv = NULL;
7b128766 3233 }
7b128766 3234
8a35d95f
JB
3235 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3236 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3237#if 0
3238 /*
3239 * For proper ENOSPC handling, we should do orphan
3240 * cleanup when mounting. But this introduces backward
3241 * compatibility issue.
3242 */
3243 if (!xchg(&root->orphan_item_inserted, 1))
3244 insert = 2;
3245 else
3246 insert = 1;
3247#endif
3248 insert = 1;
321f0e70 3249 atomic_inc(&root->orphan_inodes);
7b128766
JB
3250 }
3251
72ac3c0d
JB
3252 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3253 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3254 reserve = 1;
d68fc57b 3255 spin_unlock(&root->orphan_lock);
7b128766 3256
d68fc57b
YZ
3257 /* grab metadata reservation from transaction handle */
3258 if (reserve) {
3259 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3260 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3261 }
7b128766 3262
d68fc57b
YZ
3263 /* insert an orphan item to track this unlinked/truncated file */
3264 if (insert >= 1) {
33345d01 3265 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3266 if (ret) {
703c88e0 3267 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3268 if (reserve) {
3269 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3270 &BTRFS_I(inode)->runtime_flags);
3271 btrfs_orphan_release_metadata(inode);
3272 }
3273 if (ret != -EEXIST) {
e8e7cff6
JB
3274 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3275 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3276 btrfs_abort_transaction(trans, root, ret);
3277 return ret;
3278 }
79787eaa
JM
3279 }
3280 ret = 0;
d68fc57b
YZ
3281 }
3282
3283 /* insert an orphan item to track subvolume contains orphan files */
3284 if (insert >= 2) {
3285 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3286 root->root_key.objectid);
79787eaa
JM
3287 if (ret && ret != -EEXIST) {
3288 btrfs_abort_transaction(trans, root, ret);
3289 return ret;
3290 }
d68fc57b
YZ
3291 }
3292 return 0;
7b128766
JB
3293}
3294
3295/*
3296 * We have done the truncate/delete so we can go ahead and remove the orphan
3297 * item for this particular inode.
3298 */
48a3b636
ES
3299static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3300 struct inode *inode)
7b128766
JB
3301{
3302 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3303 int delete_item = 0;
3304 int release_rsv = 0;
7b128766
JB
3305 int ret = 0;
3306
d68fc57b 3307 spin_lock(&root->orphan_lock);
8a35d95f
JB
3308 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3309 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3310 delete_item = 1;
7b128766 3311
72ac3c0d
JB
3312 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3313 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3314 release_rsv = 1;
d68fc57b 3315 spin_unlock(&root->orphan_lock);
7b128766 3316
703c88e0 3317 if (delete_item) {
8a35d95f 3318 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3319 if (trans)
3320 ret = btrfs_del_orphan_item(trans, root,
3321 btrfs_ino(inode));
8a35d95f 3322 }
7b128766 3323
703c88e0
FDBM
3324 if (release_rsv)
3325 btrfs_orphan_release_metadata(inode);
3326
4ef31a45 3327 return ret;
7b128766
JB
3328}
3329
3330/*
3331 * this cleans up any orphans that may be left on the list from the last use
3332 * of this root.
3333 */
66b4ffd1 3334int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3335{
3336 struct btrfs_path *path;
3337 struct extent_buffer *leaf;
7b128766
JB
3338 struct btrfs_key key, found_key;
3339 struct btrfs_trans_handle *trans;
3340 struct inode *inode;
8f6d7f4f 3341 u64 last_objectid = 0;
7b128766
JB
3342 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3343
d68fc57b 3344 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3345 return 0;
c71bf099
YZ
3346
3347 path = btrfs_alloc_path();
66b4ffd1
JB
3348 if (!path) {
3349 ret = -ENOMEM;
3350 goto out;
3351 }
7b128766
JB
3352 path->reada = -1;
3353
3354 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3355 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3356 key.offset = (u64)-1;
3357
7b128766
JB
3358 while (1) {
3359 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3360 if (ret < 0)
3361 goto out;
7b128766
JB
3362
3363 /*
3364 * if ret == 0 means we found what we were searching for, which
25985edc 3365 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3366 * find the key and see if we have stuff that matches
3367 */
3368 if (ret > 0) {
66b4ffd1 3369 ret = 0;
7b128766
JB
3370 if (path->slots[0] == 0)
3371 break;
3372 path->slots[0]--;
3373 }
3374
3375 /* pull out the item */
3376 leaf = path->nodes[0];
7b128766
JB
3377 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3378
3379 /* make sure the item matches what we want */
3380 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3381 break;
962a298f 3382 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3383 break;
3384
3385 /* release the path since we're done with it */
b3b4aa74 3386 btrfs_release_path(path);
7b128766
JB
3387
3388 /*
3389 * this is where we are basically btrfs_lookup, without the
3390 * crossing root thing. we store the inode number in the
3391 * offset of the orphan item.
3392 */
8f6d7f4f
JB
3393
3394 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3395 btrfs_err(root->fs_info,
3396 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3397 ret = -EINVAL;
3398 goto out;
3399 }
3400
3401 last_objectid = found_key.offset;
3402
5d4f98a2
YZ
3403 found_key.objectid = found_key.offset;
3404 found_key.type = BTRFS_INODE_ITEM_KEY;
3405 found_key.offset = 0;
73f73415 3406 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3407 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3408 if (ret && ret != -ESTALE)
66b4ffd1 3409 goto out;
7b128766 3410
f8e9e0b0
AJ
3411 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3412 struct btrfs_root *dead_root;
3413 struct btrfs_fs_info *fs_info = root->fs_info;
3414 int is_dead_root = 0;
3415
3416 /*
3417 * this is an orphan in the tree root. Currently these
3418 * could come from 2 sources:
3419 * a) a snapshot deletion in progress
3420 * b) a free space cache inode
3421 * We need to distinguish those two, as the snapshot
3422 * orphan must not get deleted.
3423 * find_dead_roots already ran before us, so if this
3424 * is a snapshot deletion, we should find the root
3425 * in the dead_roots list
3426 */
3427 spin_lock(&fs_info->trans_lock);
3428 list_for_each_entry(dead_root, &fs_info->dead_roots,
3429 root_list) {
3430 if (dead_root->root_key.objectid ==
3431 found_key.objectid) {
3432 is_dead_root = 1;
3433 break;
3434 }
3435 }
3436 spin_unlock(&fs_info->trans_lock);
3437 if (is_dead_root) {
3438 /* prevent this orphan from being found again */
3439 key.offset = found_key.objectid - 1;
3440 continue;
3441 }
3442 }
7b128766 3443 /*
a8c9e576
JB
3444 * Inode is already gone but the orphan item is still there,
3445 * kill the orphan item.
7b128766 3446 */
a8c9e576
JB
3447 if (ret == -ESTALE) {
3448 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3449 if (IS_ERR(trans)) {
3450 ret = PTR_ERR(trans);
3451 goto out;
3452 }
c2cf52eb
SK
3453 btrfs_debug(root->fs_info, "auto deleting %Lu",
3454 found_key.objectid);
a8c9e576
JB
3455 ret = btrfs_del_orphan_item(trans, root,
3456 found_key.objectid);
5b21f2ed 3457 btrfs_end_transaction(trans, root);
4ef31a45
JB
3458 if (ret)
3459 goto out;
7b128766
JB
3460 continue;
3461 }
3462
a8c9e576
JB
3463 /*
3464 * add this inode to the orphan list so btrfs_orphan_del does
3465 * the proper thing when we hit it
3466 */
8a35d95f
JB
3467 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3468 &BTRFS_I(inode)->runtime_flags);
925396ec 3469 atomic_inc(&root->orphan_inodes);
a8c9e576 3470
7b128766
JB
3471 /* if we have links, this was a truncate, lets do that */
3472 if (inode->i_nlink) {
fae7f21c 3473 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3474 iput(inode);
3475 continue;
3476 }
7b128766 3477 nr_truncate++;
f3fe820c
JB
3478
3479 /* 1 for the orphan item deletion. */
3480 trans = btrfs_start_transaction(root, 1);
3481 if (IS_ERR(trans)) {
c69b26b0 3482 iput(inode);
f3fe820c
JB
3483 ret = PTR_ERR(trans);
3484 goto out;
3485 }
3486 ret = btrfs_orphan_add(trans, inode);
3487 btrfs_end_transaction(trans, root);
c69b26b0
JB
3488 if (ret) {
3489 iput(inode);
f3fe820c 3490 goto out;
c69b26b0 3491 }
f3fe820c 3492
66b4ffd1 3493 ret = btrfs_truncate(inode);
4a7d0f68
JB
3494 if (ret)
3495 btrfs_orphan_del(NULL, inode);
7b128766
JB
3496 } else {
3497 nr_unlink++;
3498 }
3499
3500 /* this will do delete_inode and everything for us */
3501 iput(inode);
66b4ffd1
JB
3502 if (ret)
3503 goto out;
7b128766 3504 }
3254c876
MX
3505 /* release the path since we're done with it */
3506 btrfs_release_path(path);
3507
d68fc57b
YZ
3508 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3509
3510 if (root->orphan_block_rsv)
3511 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3512 (u64)-1);
3513
27cdeb70
MX
3514 if (root->orphan_block_rsv ||
3515 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3516 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3517 if (!IS_ERR(trans))
3518 btrfs_end_transaction(trans, root);
d68fc57b 3519 }
7b128766
JB
3520
3521 if (nr_unlink)
4884b476 3522 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3523 if (nr_truncate)
4884b476 3524 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3525
3526out:
3527 if (ret)
68b663d1 3528 btrfs_err(root->fs_info,
c2cf52eb 3529 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3530 btrfs_free_path(path);
3531 return ret;
7b128766
JB
3532}
3533
46a53cca
CM
3534/*
3535 * very simple check to peek ahead in the leaf looking for xattrs. If we
3536 * don't find any xattrs, we know there can't be any acls.
3537 *
3538 * slot is the slot the inode is in, objectid is the objectid of the inode
3539 */
3540static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3541 int slot, u64 objectid,
3542 int *first_xattr_slot)
46a53cca
CM
3543{
3544 u32 nritems = btrfs_header_nritems(leaf);
3545 struct btrfs_key found_key;
f23b5a59
JB
3546 static u64 xattr_access = 0;
3547 static u64 xattr_default = 0;
46a53cca
CM
3548 int scanned = 0;
3549
f23b5a59
JB
3550 if (!xattr_access) {
3551 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3552 strlen(POSIX_ACL_XATTR_ACCESS));
3553 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3554 strlen(POSIX_ACL_XATTR_DEFAULT));
3555 }
3556
46a53cca 3557 slot++;
63541927 3558 *first_xattr_slot = -1;
46a53cca
CM
3559 while (slot < nritems) {
3560 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3561
3562 /* we found a different objectid, there must not be acls */
3563 if (found_key.objectid != objectid)
3564 return 0;
3565
3566 /* we found an xattr, assume we've got an acl */
f23b5a59 3567 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3568 if (*first_xattr_slot == -1)
3569 *first_xattr_slot = slot;
f23b5a59
JB
3570 if (found_key.offset == xattr_access ||
3571 found_key.offset == xattr_default)
3572 return 1;
3573 }
46a53cca
CM
3574
3575 /*
3576 * we found a key greater than an xattr key, there can't
3577 * be any acls later on
3578 */
3579 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3580 return 0;
3581
3582 slot++;
3583 scanned++;
3584
3585 /*
3586 * it goes inode, inode backrefs, xattrs, extents,
3587 * so if there are a ton of hard links to an inode there can
3588 * be a lot of backrefs. Don't waste time searching too hard,
3589 * this is just an optimization
3590 */
3591 if (scanned >= 8)
3592 break;
3593 }
3594 /* we hit the end of the leaf before we found an xattr or
3595 * something larger than an xattr. We have to assume the inode
3596 * has acls
3597 */
63541927
FDBM
3598 if (*first_xattr_slot == -1)
3599 *first_xattr_slot = slot;
46a53cca
CM
3600 return 1;
3601}
3602
d352ac68
CM
3603/*
3604 * read an inode from the btree into the in-memory inode
3605 */
5d4f98a2 3606static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3607{
3608 struct btrfs_path *path;
5f39d397 3609 struct extent_buffer *leaf;
39279cc3
CM
3610 struct btrfs_inode_item *inode_item;
3611 struct btrfs_root *root = BTRFS_I(inode)->root;
3612 struct btrfs_key location;
67de1176 3613 unsigned long ptr;
46a53cca 3614 int maybe_acls;
618e21d5 3615 u32 rdev;
39279cc3 3616 int ret;
2f7e33d4 3617 bool filled = false;
63541927 3618 int first_xattr_slot;
2f7e33d4
MX
3619
3620 ret = btrfs_fill_inode(inode, &rdev);
3621 if (!ret)
3622 filled = true;
39279cc3
CM
3623
3624 path = btrfs_alloc_path();
1748f843
MF
3625 if (!path)
3626 goto make_bad;
3627
39279cc3 3628 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3629
39279cc3 3630 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3631 if (ret)
39279cc3 3632 goto make_bad;
39279cc3 3633
5f39d397 3634 leaf = path->nodes[0];
2f7e33d4
MX
3635
3636 if (filled)
67de1176 3637 goto cache_index;
2f7e33d4 3638
5f39d397
CM
3639 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3640 struct btrfs_inode_item);
5f39d397 3641 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3642 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3643 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3644 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3645 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3646
a937b979
DS
3647 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3648 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3649
a937b979
DS
3650 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3651 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3652
a937b979
DS
3653 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3654 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3655
9cc97d64 3656 BTRFS_I(inode)->i_otime.tv_sec =
3657 btrfs_timespec_sec(leaf, &inode_item->otime);
3658 BTRFS_I(inode)->i_otime.tv_nsec =
3659 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3660
a76a3cd4 3661 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3662 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3663 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3664
6e17d30b
YD
3665 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3666 inode->i_generation = BTRFS_I(inode)->generation;
3667 inode->i_rdev = 0;
3668 rdev = btrfs_inode_rdev(leaf, inode_item);
3669
3670 BTRFS_I(inode)->index_cnt = (u64)-1;
3671 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3672
3673cache_index:
5dc562c5
JB
3674 /*
3675 * If we were modified in the current generation and evicted from memory
3676 * and then re-read we need to do a full sync since we don't have any
3677 * idea about which extents were modified before we were evicted from
3678 * cache.
6e17d30b
YD
3679 *
3680 * This is required for both inode re-read from disk and delayed inode
3681 * in delayed_nodes_tree.
5dc562c5
JB
3682 */
3683 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3684 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3685 &BTRFS_I(inode)->runtime_flags);
3686
bde6c242
FM
3687 /*
3688 * We don't persist the id of the transaction where an unlink operation
3689 * against the inode was last made. So here we assume the inode might
3690 * have been evicted, and therefore the exact value of last_unlink_trans
3691 * lost, and set it to last_trans to avoid metadata inconsistencies
3692 * between the inode and its parent if the inode is fsync'ed and the log
3693 * replayed. For example, in the scenario:
3694 *
3695 * touch mydir/foo
3696 * ln mydir/foo mydir/bar
3697 * sync
3698 * unlink mydir/bar
3699 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3700 * xfs_io -c fsync mydir/foo
3701 * <power failure>
3702 * mount fs, triggers fsync log replay
3703 *
3704 * We must make sure that when we fsync our inode foo we also log its
3705 * parent inode, otherwise after log replay the parent still has the
3706 * dentry with the "bar" name but our inode foo has a link count of 1
3707 * and doesn't have an inode ref with the name "bar" anymore.
3708 *
3709 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3710 * but it guarantees correctness at the expense of ocassional full
3711 * transaction commits on fsync if our inode is a directory, or if our
3712 * inode is not a directory, logging its parent unnecessarily.
3713 */
3714 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3715
67de1176
MX
3716 path->slots[0]++;
3717 if (inode->i_nlink != 1 ||
3718 path->slots[0] >= btrfs_header_nritems(leaf))
3719 goto cache_acl;
3720
3721 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3722 if (location.objectid != btrfs_ino(inode))
3723 goto cache_acl;
3724
3725 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3726 if (location.type == BTRFS_INODE_REF_KEY) {
3727 struct btrfs_inode_ref *ref;
3728
3729 ref = (struct btrfs_inode_ref *)ptr;
3730 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3731 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3732 struct btrfs_inode_extref *extref;
3733
3734 extref = (struct btrfs_inode_extref *)ptr;
3735 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3736 extref);
3737 }
2f7e33d4 3738cache_acl:
46a53cca
CM
3739 /*
3740 * try to precache a NULL acl entry for files that don't have
3741 * any xattrs or acls
3742 */
33345d01 3743 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3744 btrfs_ino(inode), &first_xattr_slot);
3745 if (first_xattr_slot != -1) {
3746 path->slots[0] = first_xattr_slot;
3747 ret = btrfs_load_inode_props(inode, path);
3748 if (ret)
3749 btrfs_err(root->fs_info,
351fd353 3750 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3751 btrfs_ino(inode),
3752 root->root_key.objectid, ret);
3753 }
3754 btrfs_free_path(path);
3755
72c04902
AV
3756 if (!maybe_acls)
3757 cache_no_acl(inode);
46a53cca 3758
39279cc3 3759 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3760 case S_IFREG:
3761 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3762 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3763 inode->i_fop = &btrfs_file_operations;
3764 inode->i_op = &btrfs_file_inode_operations;
3765 break;
3766 case S_IFDIR:
3767 inode->i_fop = &btrfs_dir_file_operations;
3768 if (root == root->fs_info->tree_root)
3769 inode->i_op = &btrfs_dir_ro_inode_operations;
3770 else
3771 inode->i_op = &btrfs_dir_inode_operations;
3772 break;
3773 case S_IFLNK:
3774 inode->i_op = &btrfs_symlink_inode_operations;
3775 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3776 break;
618e21d5 3777 default:
0279b4cd 3778 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3779 init_special_inode(inode, inode->i_mode, rdev);
3780 break;
39279cc3 3781 }
6cbff00f
CH
3782
3783 btrfs_update_iflags(inode);
39279cc3
CM
3784 return;
3785
3786make_bad:
39279cc3 3787 btrfs_free_path(path);
39279cc3
CM
3788 make_bad_inode(inode);
3789}
3790
d352ac68
CM
3791/*
3792 * given a leaf and an inode, copy the inode fields into the leaf
3793 */
e02119d5
CM
3794static void fill_inode_item(struct btrfs_trans_handle *trans,
3795 struct extent_buffer *leaf,
5f39d397 3796 struct btrfs_inode_item *item,
39279cc3
CM
3797 struct inode *inode)
3798{
51fab693
LB
3799 struct btrfs_map_token token;
3800
3801 btrfs_init_map_token(&token);
5f39d397 3802
51fab693
LB
3803 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3804 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3805 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3806 &token);
3807 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3808 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3809
a937b979 3810 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3811 inode->i_atime.tv_sec, &token);
a937b979 3812 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3813 inode->i_atime.tv_nsec, &token);
5f39d397 3814
a937b979 3815 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3816 inode->i_mtime.tv_sec, &token);
a937b979 3817 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3818 inode->i_mtime.tv_nsec, &token);
5f39d397 3819
a937b979 3820 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3821 inode->i_ctime.tv_sec, &token);
a937b979 3822 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3823 inode->i_ctime.tv_nsec, &token);
5f39d397 3824
9cc97d64 3825 btrfs_set_token_timespec_sec(leaf, &item->otime,
3826 BTRFS_I(inode)->i_otime.tv_sec, &token);
3827 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3828 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3829
51fab693
LB
3830 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3831 &token);
3832 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3833 &token);
3834 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3835 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3836 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3837 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3838 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3839}
3840
d352ac68
CM
3841/*
3842 * copy everything in the in-memory inode into the btree.
3843 */
2115133f 3844static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3845 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3846{
3847 struct btrfs_inode_item *inode_item;
3848 struct btrfs_path *path;
5f39d397 3849 struct extent_buffer *leaf;
39279cc3
CM
3850 int ret;
3851
3852 path = btrfs_alloc_path();
16cdcec7
MX
3853 if (!path)
3854 return -ENOMEM;
3855
b9473439 3856 path->leave_spinning = 1;
16cdcec7
MX
3857 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3858 1);
39279cc3
CM
3859 if (ret) {
3860 if (ret > 0)
3861 ret = -ENOENT;
3862 goto failed;
3863 }
3864
5f39d397
CM
3865 leaf = path->nodes[0];
3866 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3867 struct btrfs_inode_item);
39279cc3 3868
e02119d5 3869 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3870 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3871 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3872 ret = 0;
3873failed:
39279cc3
CM
3874 btrfs_free_path(path);
3875 return ret;
3876}
3877
2115133f
CM
3878/*
3879 * copy everything in the in-memory inode into the btree.
3880 */
3881noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3882 struct btrfs_root *root, struct inode *inode)
3883{
3884 int ret;
3885
3886 /*
3887 * If the inode is a free space inode, we can deadlock during commit
3888 * if we put it into the delayed code.
3889 *
3890 * The data relocation inode should also be directly updated
3891 * without delay
3892 */
83eea1f1 3893 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3894 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3895 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3896 btrfs_update_root_times(trans, root);
3897
2115133f
CM
3898 ret = btrfs_delayed_update_inode(trans, root, inode);
3899 if (!ret)
3900 btrfs_set_inode_last_trans(trans, inode);
3901 return ret;
3902 }
3903
3904 return btrfs_update_inode_item(trans, root, inode);
3905}
3906
be6aef60
JB
3907noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3908 struct btrfs_root *root,
3909 struct inode *inode)
2115133f
CM
3910{
3911 int ret;
3912
3913 ret = btrfs_update_inode(trans, root, inode);
3914 if (ret == -ENOSPC)
3915 return btrfs_update_inode_item(trans, root, inode);
3916 return ret;
3917}
3918
d352ac68
CM
3919/*
3920 * unlink helper that gets used here in inode.c and in the tree logging
3921 * recovery code. It remove a link in a directory with a given name, and
3922 * also drops the back refs in the inode to the directory
3923 */
92986796
AV
3924static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3925 struct btrfs_root *root,
3926 struct inode *dir, struct inode *inode,
3927 const char *name, int name_len)
39279cc3
CM
3928{
3929 struct btrfs_path *path;
39279cc3 3930 int ret = 0;
5f39d397 3931 struct extent_buffer *leaf;
39279cc3 3932 struct btrfs_dir_item *di;
5f39d397 3933 struct btrfs_key key;
aec7477b 3934 u64 index;
33345d01
LZ
3935 u64 ino = btrfs_ino(inode);
3936 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3937
3938 path = btrfs_alloc_path();
54aa1f4d
CM
3939 if (!path) {
3940 ret = -ENOMEM;
554233a6 3941 goto out;
54aa1f4d
CM
3942 }
3943
b9473439 3944 path->leave_spinning = 1;
33345d01 3945 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3946 name, name_len, -1);
3947 if (IS_ERR(di)) {
3948 ret = PTR_ERR(di);
3949 goto err;
3950 }
3951 if (!di) {
3952 ret = -ENOENT;
3953 goto err;
3954 }
5f39d397
CM
3955 leaf = path->nodes[0];
3956 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3957 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3958 if (ret)
3959 goto err;
b3b4aa74 3960 btrfs_release_path(path);
39279cc3 3961
67de1176
MX
3962 /*
3963 * If we don't have dir index, we have to get it by looking up
3964 * the inode ref, since we get the inode ref, remove it directly,
3965 * it is unnecessary to do delayed deletion.
3966 *
3967 * But if we have dir index, needn't search inode ref to get it.
3968 * Since the inode ref is close to the inode item, it is better
3969 * that we delay to delete it, and just do this deletion when
3970 * we update the inode item.
3971 */
3972 if (BTRFS_I(inode)->dir_index) {
3973 ret = btrfs_delayed_delete_inode_ref(inode);
3974 if (!ret) {
3975 index = BTRFS_I(inode)->dir_index;
3976 goto skip_backref;
3977 }
3978 }
3979
33345d01
LZ
3980 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3981 dir_ino, &index);
aec7477b 3982 if (ret) {
c2cf52eb
SK
3983 btrfs_info(root->fs_info,
3984 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3985 name_len, name, ino, dir_ino);
79787eaa 3986 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3987 goto err;
3988 }
67de1176 3989skip_backref:
16cdcec7 3990 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3991 if (ret) {
3992 btrfs_abort_transaction(trans, root, ret);
39279cc3 3993 goto err;
79787eaa 3994 }
39279cc3 3995
e02119d5 3996 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3997 inode, dir_ino);
79787eaa
JM
3998 if (ret != 0 && ret != -ENOENT) {
3999 btrfs_abort_transaction(trans, root, ret);
4000 goto err;
4001 }
e02119d5
CM
4002
4003 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4004 dir, index);
6418c961
CM
4005 if (ret == -ENOENT)
4006 ret = 0;
d4e3991b
ZB
4007 else if (ret)
4008 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4009err:
4010 btrfs_free_path(path);
e02119d5
CM
4011 if (ret)
4012 goto out;
4013
4014 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4015 inode_inc_iversion(inode);
4016 inode_inc_iversion(dir);
e02119d5 4017 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 4018 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4019out:
39279cc3
CM
4020 return ret;
4021}
4022
92986796
AV
4023int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4024 struct btrfs_root *root,
4025 struct inode *dir, struct inode *inode,
4026 const char *name, int name_len)
4027{
4028 int ret;
4029 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4030 if (!ret) {
8b558c5f 4031 drop_nlink(inode);
92986796
AV
4032 ret = btrfs_update_inode(trans, root, inode);
4033 }
4034 return ret;
4035}
39279cc3 4036
a22285a6
YZ
4037/*
4038 * helper to start transaction for unlink and rmdir.
4039 *
d52be818
JB
4040 * unlink and rmdir are special in btrfs, they do not always free space, so
4041 * if we cannot make our reservations the normal way try and see if there is
4042 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4043 * allow the unlink to occur.
a22285a6 4044 */
d52be818 4045static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4046{
39279cc3 4047 struct btrfs_trans_handle *trans;
a22285a6 4048 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4049 int ret;
4050
e70bea5f
JB
4051 /*
4052 * 1 for the possible orphan item
4053 * 1 for the dir item
4054 * 1 for the dir index
4055 * 1 for the inode ref
e70bea5f
JB
4056 * 1 for the inode
4057 */
6e137ed3 4058 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4059 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4060 return trans;
4df27c4d 4061
d52be818
JB
4062 if (PTR_ERR(trans) == -ENOSPC) {
4063 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 4064
d52be818
JB
4065 trans = btrfs_start_transaction(root, 0);
4066 if (IS_ERR(trans))
4067 return trans;
4068 ret = btrfs_cond_migrate_bytes(root->fs_info,
4069 &root->fs_info->trans_block_rsv,
4070 num_bytes, 5);
4071 if (ret) {
4072 btrfs_end_transaction(trans, root);
4073 return ERR_PTR(ret);
a22285a6 4074 }
5a77d76c 4075 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 4076 trans->bytes_reserved = num_bytes;
a22285a6 4077 }
d52be818 4078 return trans;
a22285a6
YZ
4079}
4080
4081static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4082{
4083 struct btrfs_root *root = BTRFS_I(dir)->root;
4084 struct btrfs_trans_handle *trans;
2b0143b5 4085 struct inode *inode = d_inode(dentry);
a22285a6 4086 int ret;
a22285a6 4087
d52be818 4088 trans = __unlink_start_trans(dir);
a22285a6
YZ
4089 if (IS_ERR(trans))
4090 return PTR_ERR(trans);
5f39d397 4091
2b0143b5 4092 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4093
2b0143b5 4094 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4095 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4096 if (ret)
4097 goto out;
7b128766 4098
a22285a6 4099 if (inode->i_nlink == 0) {
7b128766 4100 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4101 if (ret)
4102 goto out;
a22285a6 4103 }
7b128766 4104
b532402e 4105out:
d52be818 4106 btrfs_end_transaction(trans, root);
b53d3f5d 4107 btrfs_btree_balance_dirty(root);
39279cc3
CM
4108 return ret;
4109}
4110
4df27c4d
YZ
4111int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4112 struct btrfs_root *root,
4113 struct inode *dir, u64 objectid,
4114 const char *name, int name_len)
4115{
4116 struct btrfs_path *path;
4117 struct extent_buffer *leaf;
4118 struct btrfs_dir_item *di;
4119 struct btrfs_key key;
4120 u64 index;
4121 int ret;
33345d01 4122 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4123
4124 path = btrfs_alloc_path();
4125 if (!path)
4126 return -ENOMEM;
4127
33345d01 4128 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4129 name, name_len, -1);
79787eaa
JM
4130 if (IS_ERR_OR_NULL(di)) {
4131 if (!di)
4132 ret = -ENOENT;
4133 else
4134 ret = PTR_ERR(di);
4135 goto out;
4136 }
4df27c4d
YZ
4137
4138 leaf = path->nodes[0];
4139 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4140 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4141 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4142 if (ret) {
4143 btrfs_abort_transaction(trans, root, ret);
4144 goto out;
4145 }
b3b4aa74 4146 btrfs_release_path(path);
4df27c4d
YZ
4147
4148 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4149 objectid, root->root_key.objectid,
33345d01 4150 dir_ino, &index, name, name_len);
4df27c4d 4151 if (ret < 0) {
79787eaa
JM
4152 if (ret != -ENOENT) {
4153 btrfs_abort_transaction(trans, root, ret);
4154 goto out;
4155 }
33345d01 4156 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4157 name, name_len);
79787eaa
JM
4158 if (IS_ERR_OR_NULL(di)) {
4159 if (!di)
4160 ret = -ENOENT;
4161 else
4162 ret = PTR_ERR(di);
4163 btrfs_abort_transaction(trans, root, ret);
4164 goto out;
4165 }
4df27c4d
YZ
4166
4167 leaf = path->nodes[0];
4168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4169 btrfs_release_path(path);
4df27c4d
YZ
4170 index = key.offset;
4171 }
945d8962 4172 btrfs_release_path(path);
4df27c4d 4173
16cdcec7 4174 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4175 if (ret) {
4176 btrfs_abort_transaction(trans, root, ret);
4177 goto out;
4178 }
4df27c4d
YZ
4179
4180 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4181 inode_inc_iversion(dir);
4df27c4d 4182 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4183 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4184 if (ret)
4185 btrfs_abort_transaction(trans, root, ret);
4186out:
71d7aed0 4187 btrfs_free_path(path);
79787eaa 4188 return ret;
4df27c4d
YZ
4189}
4190
39279cc3
CM
4191static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4192{
2b0143b5 4193 struct inode *inode = d_inode(dentry);
1832a6d5 4194 int err = 0;
39279cc3 4195 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4196 struct btrfs_trans_handle *trans;
39279cc3 4197
b3ae244e 4198 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4199 return -ENOTEMPTY;
b3ae244e
DS
4200 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4201 return -EPERM;
134d4512 4202
d52be818 4203 trans = __unlink_start_trans(dir);
a22285a6 4204 if (IS_ERR(trans))
5df6a9f6 4205 return PTR_ERR(trans);
5df6a9f6 4206
33345d01 4207 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4208 err = btrfs_unlink_subvol(trans, root, dir,
4209 BTRFS_I(inode)->location.objectid,
4210 dentry->d_name.name,
4211 dentry->d_name.len);
4212 goto out;
4213 }
4214
7b128766
JB
4215 err = btrfs_orphan_add(trans, inode);
4216 if (err)
4df27c4d 4217 goto out;
7b128766 4218
39279cc3 4219 /* now the directory is empty */
2b0143b5 4220 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4221 dentry->d_name.name, dentry->d_name.len);
d397712b 4222 if (!err)
dbe674a9 4223 btrfs_i_size_write(inode, 0);
4df27c4d 4224out:
d52be818 4225 btrfs_end_transaction(trans, root);
b53d3f5d 4226 btrfs_btree_balance_dirty(root);
3954401f 4227
39279cc3
CM
4228 return err;
4229}
4230
28f75a0e
CM
4231static int truncate_space_check(struct btrfs_trans_handle *trans,
4232 struct btrfs_root *root,
4233 u64 bytes_deleted)
4234{
4235 int ret;
4236
4237 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4238 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4239 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4240 if (!ret)
4241 trans->bytes_reserved += bytes_deleted;
4242 return ret;
4243
4244}
4245
0305cd5f
FM
4246static int truncate_inline_extent(struct inode *inode,
4247 struct btrfs_path *path,
4248 struct btrfs_key *found_key,
4249 const u64 item_end,
4250 const u64 new_size)
4251{
4252 struct extent_buffer *leaf = path->nodes[0];
4253 int slot = path->slots[0];
4254 struct btrfs_file_extent_item *fi;
4255 u32 size = (u32)(new_size - found_key->offset);
4256 struct btrfs_root *root = BTRFS_I(inode)->root;
4257
4258 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4259
4260 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4261 loff_t offset = new_size;
4262 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4263
4264 /*
4265 * Zero out the remaining of the last page of our inline extent,
4266 * instead of directly truncating our inline extent here - that
4267 * would be much more complex (decompressing all the data, then
4268 * compressing the truncated data, which might be bigger than
4269 * the size of the inline extent, resize the extent, etc).
4270 * We release the path because to get the page we might need to
4271 * read the extent item from disk (data not in the page cache).
4272 */
4273 btrfs_release_path(path);
4274 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4275 }
4276
4277 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4278 size = btrfs_file_extent_calc_inline_size(size);
4279 btrfs_truncate_item(root, path, size, 1);
4280
4281 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4282 inode_sub_bytes(inode, item_end + 1 - new_size);
4283
4284 return 0;
4285}
4286
39279cc3
CM
4287/*
4288 * this can truncate away extent items, csum items and directory items.
4289 * It starts at a high offset and removes keys until it can't find
d352ac68 4290 * any higher than new_size
39279cc3
CM
4291 *
4292 * csum items that cross the new i_size are truncated to the new size
4293 * as well.
7b128766
JB
4294 *
4295 * min_type is the minimum key type to truncate down to. If set to 0, this
4296 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4297 */
8082510e
YZ
4298int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4299 struct btrfs_root *root,
4300 struct inode *inode,
4301 u64 new_size, u32 min_type)
39279cc3 4302{
39279cc3 4303 struct btrfs_path *path;
5f39d397 4304 struct extent_buffer *leaf;
39279cc3 4305 struct btrfs_file_extent_item *fi;
8082510e
YZ
4306 struct btrfs_key key;
4307 struct btrfs_key found_key;
39279cc3 4308 u64 extent_start = 0;
db94535d 4309 u64 extent_num_bytes = 0;
5d4f98a2 4310 u64 extent_offset = 0;
39279cc3 4311 u64 item_end = 0;
c1aa4575 4312 u64 last_size = new_size;
8082510e 4313 u32 found_type = (u8)-1;
39279cc3
CM
4314 int found_extent;
4315 int del_item;
85e21bac
CM
4316 int pending_del_nr = 0;
4317 int pending_del_slot = 0;
179e29e4 4318 int extent_type = -1;
8082510e
YZ
4319 int ret;
4320 int err = 0;
33345d01 4321 u64 ino = btrfs_ino(inode);
28ed1345 4322 u64 bytes_deleted = 0;
1262133b
JB
4323 bool be_nice = 0;
4324 bool should_throttle = 0;
28f75a0e 4325 bool should_end = 0;
8082510e
YZ
4326
4327 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4328
28ed1345
CM
4329 /*
4330 * for non-free space inodes and ref cows, we want to back off from
4331 * time to time
4332 */
4333 if (!btrfs_is_free_space_inode(inode) &&
4334 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4335 be_nice = 1;
4336
0eb0e19c
MF
4337 path = btrfs_alloc_path();
4338 if (!path)
4339 return -ENOMEM;
4340 path->reada = -1;
4341
5dc562c5
JB
4342 /*
4343 * We want to drop from the next block forward in case this new size is
4344 * not block aligned since we will be keeping the last block of the
4345 * extent just the way it is.
4346 */
27cdeb70
MX
4347 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4348 root == root->fs_info->tree_root)
fda2832f
QW
4349 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4350 root->sectorsize), (u64)-1, 0);
8082510e 4351
16cdcec7
MX
4352 /*
4353 * This function is also used to drop the items in the log tree before
4354 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4355 * it is used to drop the loged items. So we shouldn't kill the delayed
4356 * items.
4357 */
4358 if (min_type == 0 && root == BTRFS_I(inode)->root)
4359 btrfs_kill_delayed_inode_items(inode);
4360
33345d01 4361 key.objectid = ino;
39279cc3 4362 key.offset = (u64)-1;
5f39d397
CM
4363 key.type = (u8)-1;
4364
85e21bac 4365search_again:
28ed1345
CM
4366 /*
4367 * with a 16K leaf size and 128MB extents, you can actually queue
4368 * up a huge file in a single leaf. Most of the time that
4369 * bytes_deleted is > 0, it will be huge by the time we get here
4370 */
4371 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4372 if (btrfs_should_end_transaction(trans, root)) {
4373 err = -EAGAIN;
4374 goto error;
4375 }
4376 }
4377
4378
b9473439 4379 path->leave_spinning = 1;
85e21bac 4380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4381 if (ret < 0) {
4382 err = ret;
4383 goto out;
4384 }
d397712b 4385
85e21bac 4386 if (ret > 0) {
e02119d5
CM
4387 /* there are no items in the tree for us to truncate, we're
4388 * done
4389 */
8082510e
YZ
4390 if (path->slots[0] == 0)
4391 goto out;
85e21bac
CM
4392 path->slots[0]--;
4393 }
4394
d397712b 4395 while (1) {
39279cc3 4396 fi = NULL;
5f39d397
CM
4397 leaf = path->nodes[0];
4398 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4399 found_type = found_key.type;
39279cc3 4400
33345d01 4401 if (found_key.objectid != ino)
39279cc3 4402 break;
5f39d397 4403
85e21bac 4404 if (found_type < min_type)
39279cc3
CM
4405 break;
4406
5f39d397 4407 item_end = found_key.offset;
39279cc3 4408 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4409 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4410 struct btrfs_file_extent_item);
179e29e4
CM
4411 extent_type = btrfs_file_extent_type(leaf, fi);
4412 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4413 item_end +=
db94535d 4414 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4415 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4416 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4417 path->slots[0], fi);
39279cc3 4418 }
008630c1 4419 item_end--;
39279cc3 4420 }
8082510e
YZ
4421 if (found_type > min_type) {
4422 del_item = 1;
4423 } else {
4424 if (item_end < new_size)
b888db2b 4425 break;
8082510e
YZ
4426 if (found_key.offset >= new_size)
4427 del_item = 1;
4428 else
4429 del_item = 0;
39279cc3 4430 }
39279cc3 4431 found_extent = 0;
39279cc3 4432 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4433 if (found_type != BTRFS_EXTENT_DATA_KEY)
4434 goto delete;
4435
7f4f6e0a
JB
4436 if (del_item)
4437 last_size = found_key.offset;
4438 else
4439 last_size = new_size;
4440
179e29e4 4441 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4442 u64 num_dec;
db94535d 4443 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4444 if (!del_item) {
db94535d
CM
4445 u64 orig_num_bytes =
4446 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4447 extent_num_bytes = ALIGN(new_size -
4448 found_key.offset,
4449 root->sectorsize);
db94535d
CM
4450 btrfs_set_file_extent_num_bytes(leaf, fi,
4451 extent_num_bytes);
4452 num_dec = (orig_num_bytes -
9069218d 4453 extent_num_bytes);
27cdeb70
MX
4454 if (test_bit(BTRFS_ROOT_REF_COWS,
4455 &root->state) &&
4456 extent_start != 0)
a76a3cd4 4457 inode_sub_bytes(inode, num_dec);
5f39d397 4458 btrfs_mark_buffer_dirty(leaf);
39279cc3 4459 } else {
db94535d
CM
4460 extent_num_bytes =
4461 btrfs_file_extent_disk_num_bytes(leaf,
4462 fi);
5d4f98a2
YZ
4463 extent_offset = found_key.offset -
4464 btrfs_file_extent_offset(leaf, fi);
4465
39279cc3 4466 /* FIXME blocksize != 4096 */
9069218d 4467 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4468 if (extent_start != 0) {
4469 found_extent = 1;
27cdeb70
MX
4470 if (test_bit(BTRFS_ROOT_REF_COWS,
4471 &root->state))
a76a3cd4 4472 inode_sub_bytes(inode, num_dec);
e02119d5 4473 }
39279cc3 4474 }
9069218d 4475 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4476 /*
4477 * we can't truncate inline items that have had
4478 * special encodings
4479 */
4480 if (!del_item &&
c8b97818
CM
4481 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4482 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4483
4484 /*
0305cd5f
FM
4485 * Need to release path in order to truncate a
4486 * compressed extent. So delete any accumulated
4487 * extent items so far.
514ac8ad 4488 */
0305cd5f
FM
4489 if (btrfs_file_extent_compression(leaf, fi) !=
4490 BTRFS_COMPRESS_NONE && pending_del_nr) {
4491 err = btrfs_del_items(trans, root, path,
4492 pending_del_slot,
4493 pending_del_nr);
4494 if (err) {
4495 btrfs_abort_transaction(trans,
4496 root,
4497 err);
4498 goto error;
4499 }
4500 pending_del_nr = 0;
4501 }
4502
4503 err = truncate_inline_extent(inode, path,
4504 &found_key,
4505 item_end,
4506 new_size);
4507 if (err) {
4508 btrfs_abort_transaction(trans,
4509 root, err);
4510 goto error;
4511 }
27cdeb70
MX
4512 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4513 &root->state)) {
0305cd5f 4514 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4515 }
39279cc3 4516 }
179e29e4 4517delete:
39279cc3 4518 if (del_item) {
85e21bac
CM
4519 if (!pending_del_nr) {
4520 /* no pending yet, add ourselves */
4521 pending_del_slot = path->slots[0];
4522 pending_del_nr = 1;
4523 } else if (pending_del_nr &&
4524 path->slots[0] + 1 == pending_del_slot) {
4525 /* hop on the pending chunk */
4526 pending_del_nr++;
4527 pending_del_slot = path->slots[0];
4528 } else {
d397712b 4529 BUG();
85e21bac 4530 }
39279cc3
CM
4531 } else {
4532 break;
4533 }
28f75a0e
CM
4534 should_throttle = 0;
4535
27cdeb70
MX
4536 if (found_extent &&
4537 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4538 root == root->fs_info->tree_root)) {
b9473439 4539 btrfs_set_path_blocking(path);
28ed1345 4540 bytes_deleted += extent_num_bytes;
39279cc3 4541 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4542 extent_num_bytes, 0,
4543 btrfs_header_owner(leaf),
66d7e7f0 4544 ino, extent_offset, 0);
39279cc3 4545 BUG_ON(ret);
1262133b 4546 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4547 btrfs_async_run_delayed_refs(root,
4548 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4549 if (be_nice) {
4550 if (truncate_space_check(trans, root,
4551 extent_num_bytes)) {
4552 should_end = 1;
4553 }
4554 if (btrfs_should_throttle_delayed_refs(trans,
4555 root)) {
4556 should_throttle = 1;
4557 }
4558 }
39279cc3 4559 }
85e21bac 4560
8082510e
YZ
4561 if (found_type == BTRFS_INODE_ITEM_KEY)
4562 break;
4563
4564 if (path->slots[0] == 0 ||
1262133b 4565 path->slots[0] != pending_del_slot ||
28f75a0e 4566 should_throttle || should_end) {
8082510e
YZ
4567 if (pending_del_nr) {
4568 ret = btrfs_del_items(trans, root, path,
4569 pending_del_slot,
4570 pending_del_nr);
79787eaa
JM
4571 if (ret) {
4572 btrfs_abort_transaction(trans,
4573 root, ret);
4574 goto error;
4575 }
8082510e
YZ
4576 pending_del_nr = 0;
4577 }
b3b4aa74 4578 btrfs_release_path(path);
28f75a0e 4579 if (should_throttle) {
1262133b
JB
4580 unsigned long updates = trans->delayed_ref_updates;
4581 if (updates) {
4582 trans->delayed_ref_updates = 0;
4583 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4584 if (ret && !err)
4585 err = ret;
4586 }
4587 }
28f75a0e
CM
4588 /*
4589 * if we failed to refill our space rsv, bail out
4590 * and let the transaction restart
4591 */
4592 if (should_end) {
4593 err = -EAGAIN;
4594 goto error;
4595 }
85e21bac 4596 goto search_again;
8082510e
YZ
4597 } else {
4598 path->slots[0]--;
85e21bac 4599 }
39279cc3 4600 }
8082510e 4601out:
85e21bac
CM
4602 if (pending_del_nr) {
4603 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4604 pending_del_nr);
79787eaa
JM
4605 if (ret)
4606 btrfs_abort_transaction(trans, root, ret);
85e21bac 4607 }
79787eaa 4608error:
c1aa4575 4609 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4610 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4611
39279cc3 4612 btrfs_free_path(path);
28ed1345 4613
28f75a0e 4614 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
28ed1345
CM
4615 unsigned long updates = trans->delayed_ref_updates;
4616 if (updates) {
4617 trans->delayed_ref_updates = 0;
4618 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4619 if (ret && !err)
4620 err = ret;
4621 }
4622 }
8082510e 4623 return err;
39279cc3
CM
4624}
4625
4626/*
2aaa6655
JB
4627 * btrfs_truncate_page - read, zero a chunk and write a page
4628 * @inode - inode that we're zeroing
4629 * @from - the offset to start zeroing
4630 * @len - the length to zero, 0 to zero the entire range respective to the
4631 * offset
4632 * @front - zero up to the offset instead of from the offset on
4633 *
4634 * This will find the page for the "from" offset and cow the page and zero the
4635 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4636 */
2aaa6655
JB
4637int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4638 int front)
39279cc3 4639{
2aaa6655 4640 struct address_space *mapping = inode->i_mapping;
db94535d 4641 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4642 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4643 struct btrfs_ordered_extent *ordered;
2ac55d41 4644 struct extent_state *cached_state = NULL;
e6dcd2dc 4645 char *kaddr;
db94535d 4646 u32 blocksize = root->sectorsize;
39279cc3
CM
4647 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4648 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4649 struct page *page;
3b16a4e3 4650 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4651 int ret = 0;
a52d9a80 4652 u64 page_start;
e6dcd2dc 4653 u64 page_end;
39279cc3 4654
2aaa6655
JB
4655 if ((offset & (blocksize - 1)) == 0 &&
4656 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4657 goto out;
7cf5b976 4658 ret = btrfs_delalloc_reserve_space(inode,
df480633 4659 round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
5d5e103a
JB
4660 if (ret)
4661 goto out;
39279cc3 4662
211c17f5 4663again:
3b16a4e3 4664 page = find_or_create_page(mapping, index, mask);
5d5e103a 4665 if (!page) {
7cf5b976 4666 btrfs_delalloc_release_space(inode,
df480633
QW
4667 round_down(from, PAGE_CACHE_SIZE),
4668 PAGE_CACHE_SIZE);
ac6a2b36 4669 ret = -ENOMEM;
39279cc3 4670 goto out;
5d5e103a 4671 }
e6dcd2dc
CM
4672
4673 page_start = page_offset(page);
4674 page_end = page_start + PAGE_CACHE_SIZE - 1;
4675
39279cc3 4676 if (!PageUptodate(page)) {
9ebefb18 4677 ret = btrfs_readpage(NULL, page);
39279cc3 4678 lock_page(page);
211c17f5
CM
4679 if (page->mapping != mapping) {
4680 unlock_page(page);
4681 page_cache_release(page);
4682 goto again;
4683 }
39279cc3
CM
4684 if (!PageUptodate(page)) {
4685 ret = -EIO;
89642229 4686 goto out_unlock;
39279cc3
CM
4687 }
4688 }
211c17f5 4689 wait_on_page_writeback(page);
e6dcd2dc 4690
d0082371 4691 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4692 set_page_extent_mapped(page);
4693
4694 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4695 if (ordered) {
2ac55d41
JB
4696 unlock_extent_cached(io_tree, page_start, page_end,
4697 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4698 unlock_page(page);
4699 page_cache_release(page);
eb84ae03 4700 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4701 btrfs_put_ordered_extent(ordered);
4702 goto again;
4703 }
4704
2ac55d41 4705 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4706 EXTENT_DIRTY | EXTENT_DELALLOC |
4707 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4708 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4709
2ac55d41
JB
4710 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4711 &cached_state);
9ed74f2d 4712 if (ret) {
2ac55d41
JB
4713 unlock_extent_cached(io_tree, page_start, page_end,
4714 &cached_state, GFP_NOFS);
9ed74f2d
JB
4715 goto out_unlock;
4716 }
4717
e6dcd2dc 4718 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4719 if (!len)
4720 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4721 kaddr = kmap(page);
2aaa6655
JB
4722 if (front)
4723 memset(kaddr, 0, offset);
4724 else
4725 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4726 flush_dcache_page(page);
4727 kunmap(page);
4728 }
247e743c 4729 ClearPageChecked(page);
e6dcd2dc 4730 set_page_dirty(page);
2ac55d41
JB
4731 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4732 GFP_NOFS);
39279cc3 4733
89642229 4734out_unlock:
5d5e103a 4735 if (ret)
7cf5b976
QW
4736 btrfs_delalloc_release_space(inode, page_start,
4737 PAGE_CACHE_SIZE);
39279cc3
CM
4738 unlock_page(page);
4739 page_cache_release(page);
4740out:
4741 return ret;
4742}
4743
16e7549f
JB
4744static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4745 u64 offset, u64 len)
4746{
4747 struct btrfs_trans_handle *trans;
4748 int ret;
4749
4750 /*
4751 * Still need to make sure the inode looks like it's been updated so
4752 * that any holes get logged if we fsync.
4753 */
4754 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4755 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4756 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4757 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4758 return 0;
4759 }
4760
4761 /*
4762 * 1 - for the one we're dropping
4763 * 1 - for the one we're adding
4764 * 1 - for updating the inode.
4765 */
4766 trans = btrfs_start_transaction(root, 3);
4767 if (IS_ERR(trans))
4768 return PTR_ERR(trans);
4769
4770 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4771 if (ret) {
4772 btrfs_abort_transaction(trans, root, ret);
4773 btrfs_end_transaction(trans, root);
4774 return ret;
4775 }
4776
4777 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4778 0, 0, len, 0, len, 0, 0, 0);
4779 if (ret)
4780 btrfs_abort_transaction(trans, root, ret);
4781 else
4782 btrfs_update_inode(trans, root, inode);
4783 btrfs_end_transaction(trans, root);
4784 return ret;
4785}
4786
695a0d0d
JB
4787/*
4788 * This function puts in dummy file extents for the area we're creating a hole
4789 * for. So if we are truncating this file to a larger size we need to insert
4790 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4791 * the range between oldsize and size
4792 */
a41ad394 4793int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4794{
9036c102
YZ
4795 struct btrfs_root *root = BTRFS_I(inode)->root;
4796 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4797 struct extent_map *em = NULL;
2ac55d41 4798 struct extent_state *cached_state = NULL;
5dc562c5 4799 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4800 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4801 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4802 u64 last_byte;
4803 u64 cur_offset;
4804 u64 hole_size;
9ed74f2d 4805 int err = 0;
39279cc3 4806
a71754fc
JB
4807 /*
4808 * If our size started in the middle of a page we need to zero out the
4809 * rest of the page before we expand the i_size, otherwise we could
4810 * expose stale data.
4811 */
4812 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4813 if (err)
4814 return err;
4815
9036c102
YZ
4816 if (size <= hole_start)
4817 return 0;
4818
9036c102
YZ
4819 while (1) {
4820 struct btrfs_ordered_extent *ordered;
fa7c1494 4821
2ac55d41 4822 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4823 &cached_state);
fa7c1494
MX
4824 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4825 block_end - hole_start);
9036c102
YZ
4826 if (!ordered)
4827 break;
2ac55d41
JB
4828 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4829 &cached_state, GFP_NOFS);
fa7c1494 4830 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4831 btrfs_put_ordered_extent(ordered);
4832 }
39279cc3 4833
9036c102
YZ
4834 cur_offset = hole_start;
4835 while (1) {
4836 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4837 block_end - cur_offset, 0);
79787eaa
JM
4838 if (IS_ERR(em)) {
4839 err = PTR_ERR(em);
f2767956 4840 em = NULL;
79787eaa
JM
4841 break;
4842 }
9036c102 4843 last_byte = min(extent_map_end(em), block_end);
fda2832f 4844 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4845 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4846 struct extent_map *hole_em;
9036c102 4847 hole_size = last_byte - cur_offset;
9ed74f2d 4848
16e7549f
JB
4849 err = maybe_insert_hole(root, inode, cur_offset,
4850 hole_size);
4851 if (err)
3893e33b 4852 break;
5dc562c5
JB
4853 btrfs_drop_extent_cache(inode, cur_offset,
4854 cur_offset + hole_size - 1, 0);
4855 hole_em = alloc_extent_map();
4856 if (!hole_em) {
4857 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4858 &BTRFS_I(inode)->runtime_flags);
4859 goto next;
4860 }
4861 hole_em->start = cur_offset;
4862 hole_em->len = hole_size;
4863 hole_em->orig_start = cur_offset;
8082510e 4864
5dc562c5
JB
4865 hole_em->block_start = EXTENT_MAP_HOLE;
4866 hole_em->block_len = 0;
b4939680 4867 hole_em->orig_block_len = 0;
cc95bef6 4868 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4869 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4870 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4871 hole_em->generation = root->fs_info->generation;
8082510e 4872
5dc562c5
JB
4873 while (1) {
4874 write_lock(&em_tree->lock);
09a2a8f9 4875 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4876 write_unlock(&em_tree->lock);
4877 if (err != -EEXIST)
4878 break;
4879 btrfs_drop_extent_cache(inode, cur_offset,
4880 cur_offset +
4881 hole_size - 1, 0);
4882 }
4883 free_extent_map(hole_em);
9036c102 4884 }
16e7549f 4885next:
9036c102 4886 free_extent_map(em);
a22285a6 4887 em = NULL;
9036c102 4888 cur_offset = last_byte;
8082510e 4889 if (cur_offset >= block_end)
9036c102
YZ
4890 break;
4891 }
a22285a6 4892 free_extent_map(em);
2ac55d41
JB
4893 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4894 GFP_NOFS);
9036c102
YZ
4895 return err;
4896}
39279cc3 4897
9ea24bbe
FM
4898static int wait_snapshoting_atomic_t(atomic_t *a)
4899{
4900 schedule();
4901 return 0;
4902}
4903
4904static void wait_for_snapshot_creation(struct btrfs_root *root)
4905{
4906 while (true) {
4907 int ret;
4908
4909 ret = btrfs_start_write_no_snapshoting(root);
4910 if (ret)
4911 break;
4912 wait_on_atomic_t(&root->will_be_snapshoted,
4913 wait_snapshoting_atomic_t,
4914 TASK_UNINTERRUPTIBLE);
4915 }
4916}
4917
3972f260 4918static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4919{
f4a2f4c5
MX
4920 struct btrfs_root *root = BTRFS_I(inode)->root;
4921 struct btrfs_trans_handle *trans;
a41ad394 4922 loff_t oldsize = i_size_read(inode);
3972f260
ES
4923 loff_t newsize = attr->ia_size;
4924 int mask = attr->ia_valid;
8082510e
YZ
4925 int ret;
4926
3972f260
ES
4927 /*
4928 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4929 * special case where we need to update the times despite not having
4930 * these flags set. For all other operations the VFS set these flags
4931 * explicitly if it wants a timestamp update.
4932 */
dff6efc3
CH
4933 if (newsize != oldsize) {
4934 inode_inc_iversion(inode);
4935 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4936 inode->i_ctime = inode->i_mtime =
4937 current_fs_time(inode->i_sb);
4938 }
3972f260 4939
a41ad394 4940 if (newsize > oldsize) {
7caef267 4941 truncate_pagecache(inode, newsize);
9ea24bbe
FM
4942 /*
4943 * Don't do an expanding truncate while snapshoting is ongoing.
4944 * This is to ensure the snapshot captures a fully consistent
4945 * state of this file - if the snapshot captures this expanding
4946 * truncation, it must capture all writes that happened before
4947 * this truncation.
4948 */
4949 wait_for_snapshot_creation(root);
a41ad394 4950 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4951 if (ret) {
4952 btrfs_end_write_no_snapshoting(root);
8082510e 4953 return ret;
9ea24bbe 4954 }
8082510e 4955
f4a2f4c5 4956 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4957 if (IS_ERR(trans)) {
4958 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4959 return PTR_ERR(trans);
9ea24bbe 4960 }
f4a2f4c5
MX
4961
4962 i_size_write(inode, newsize);
4963 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4964 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4965 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4966 btrfs_end_transaction(trans, root);
a41ad394 4967 } else {
8082510e 4968
a41ad394
JB
4969 /*
4970 * We're truncating a file that used to have good data down to
4971 * zero. Make sure it gets into the ordered flush list so that
4972 * any new writes get down to disk quickly.
4973 */
4974 if (newsize == 0)
72ac3c0d
JB
4975 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4976 &BTRFS_I(inode)->runtime_flags);
8082510e 4977
f3fe820c
JB
4978 /*
4979 * 1 for the orphan item we're going to add
4980 * 1 for the orphan item deletion.
4981 */
4982 trans = btrfs_start_transaction(root, 2);
4983 if (IS_ERR(trans))
4984 return PTR_ERR(trans);
4985
4986 /*
4987 * We need to do this in case we fail at _any_ point during the
4988 * actual truncate. Once we do the truncate_setsize we could
4989 * invalidate pages which forces any outstanding ordered io to
4990 * be instantly completed which will give us extents that need
4991 * to be truncated. If we fail to get an orphan inode down we
4992 * could have left over extents that were never meant to live,
4993 * so we need to garuntee from this point on that everything
4994 * will be consistent.
4995 */
4996 ret = btrfs_orphan_add(trans, inode);
4997 btrfs_end_transaction(trans, root);
4998 if (ret)
4999 return ret;
5000
a41ad394
JB
5001 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5002 truncate_setsize(inode, newsize);
2e60a51e
MX
5003
5004 /* Disable nonlocked read DIO to avoid the end less truncate */
5005 btrfs_inode_block_unlocked_dio(inode);
5006 inode_dio_wait(inode);
5007 btrfs_inode_resume_unlocked_dio(inode);
5008
a41ad394 5009 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5010 if (ret && inode->i_nlink) {
5011 int err;
5012
5013 /*
5014 * failed to truncate, disk_i_size is only adjusted down
5015 * as we remove extents, so it should represent the true
5016 * size of the inode, so reset the in memory size and
5017 * delete our orphan entry.
5018 */
5019 trans = btrfs_join_transaction(root);
5020 if (IS_ERR(trans)) {
5021 btrfs_orphan_del(NULL, inode);
5022 return ret;
5023 }
5024 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5025 err = btrfs_orphan_del(trans, inode);
5026 if (err)
5027 btrfs_abort_transaction(trans, root, err);
5028 btrfs_end_transaction(trans, root);
5029 }
8082510e
YZ
5030 }
5031
a41ad394 5032 return ret;
8082510e
YZ
5033}
5034
9036c102
YZ
5035static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5036{
2b0143b5 5037 struct inode *inode = d_inode(dentry);
b83cc969 5038 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5039 int err;
39279cc3 5040
b83cc969
LZ
5041 if (btrfs_root_readonly(root))
5042 return -EROFS;
5043
9036c102
YZ
5044 err = inode_change_ok(inode, attr);
5045 if (err)
5046 return err;
2bf5a725 5047
5a3f23d5 5048 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5049 err = btrfs_setsize(inode, attr);
8082510e
YZ
5050 if (err)
5051 return err;
39279cc3 5052 }
9036c102 5053
1025774c
CH
5054 if (attr->ia_valid) {
5055 setattr_copy(inode, attr);
0c4d2d95 5056 inode_inc_iversion(inode);
22c44fe6 5057 err = btrfs_dirty_inode(inode);
1025774c 5058
22c44fe6 5059 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5060 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5061 }
33268eaf 5062
39279cc3
CM
5063 return err;
5064}
61295eb8 5065
131e404a
FDBM
5066/*
5067 * While truncating the inode pages during eviction, we get the VFS calling
5068 * btrfs_invalidatepage() against each page of the inode. This is slow because
5069 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5070 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5071 * extent_state structures over and over, wasting lots of time.
5072 *
5073 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5074 * those expensive operations on a per page basis and do only the ordered io
5075 * finishing, while we release here the extent_map and extent_state structures,
5076 * without the excessive merging and splitting.
5077 */
5078static void evict_inode_truncate_pages(struct inode *inode)
5079{
5080 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5081 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5082 struct rb_node *node;
5083
5084 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5085 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5086
5087 write_lock(&map_tree->lock);
5088 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5089 struct extent_map *em;
5090
5091 node = rb_first(&map_tree->map);
5092 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5093 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5094 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5095 remove_extent_mapping(map_tree, em);
5096 free_extent_map(em);
7064dd5c
FM
5097 if (need_resched()) {
5098 write_unlock(&map_tree->lock);
5099 cond_resched();
5100 write_lock(&map_tree->lock);
5101 }
131e404a
FDBM
5102 }
5103 write_unlock(&map_tree->lock);
5104
6ca07097
FM
5105 /*
5106 * Keep looping until we have no more ranges in the io tree.
5107 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5108 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5109 * still in progress (unlocked the pages in the bio but did not yet
5110 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5111 * ranges can still be locked and eviction started because before
5112 * submitting those bios, which are executed by a separate task (work
5113 * queue kthread), inode references (inode->i_count) were not taken
5114 * (which would be dropped in the end io callback of each bio).
5115 * Therefore here we effectively end up waiting for those bios and
5116 * anyone else holding locked ranges without having bumped the inode's
5117 * reference count - if we don't do it, when they access the inode's
5118 * io_tree to unlock a range it may be too late, leading to an
5119 * use-after-free issue.
5120 */
131e404a
FDBM
5121 spin_lock(&io_tree->lock);
5122 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5123 struct extent_state *state;
5124 struct extent_state *cached_state = NULL;
6ca07097
FM
5125 u64 start;
5126 u64 end;
131e404a
FDBM
5127
5128 node = rb_first(&io_tree->state);
5129 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5130 start = state->start;
5131 end = state->end;
131e404a
FDBM
5132 spin_unlock(&io_tree->lock);
5133
6ca07097 5134 lock_extent_bits(io_tree, start, end, 0, &cached_state);
b9d0b389
QW
5135
5136 /*
5137 * If still has DELALLOC flag, the extent didn't reach disk,
5138 * and its reserved space won't be freed by delayed_ref.
5139 * So we need to free its reserved space here.
5140 * (Refer to comment in btrfs_invalidatepage, case 2)
5141 *
5142 * Note, end is the bytenr of last byte, so we need + 1 here.
5143 */
5144 if (state->state & EXTENT_DELALLOC)
5145 btrfs_qgroup_free_data(inode, start, end - start + 1);
5146
6ca07097 5147 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5148 EXTENT_LOCKED | EXTENT_DIRTY |
5149 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5150 EXTENT_DEFRAG, 1, 1,
5151 &cached_state, GFP_NOFS);
131e404a 5152
7064dd5c 5153 cond_resched();
131e404a
FDBM
5154 spin_lock(&io_tree->lock);
5155 }
5156 spin_unlock(&io_tree->lock);
5157}
5158
bd555975 5159void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5160{
5161 struct btrfs_trans_handle *trans;
5162 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5163 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5164 int steal_from_global = 0;
07127184 5165 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5166 int ret;
5167
1abe9b8a 5168 trace_btrfs_inode_evict(inode);
5169
131e404a
FDBM
5170 evict_inode_truncate_pages(inode);
5171
69e9c6c6
SB
5172 if (inode->i_nlink &&
5173 ((btrfs_root_refs(&root->root_item) != 0 &&
5174 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5175 btrfs_is_free_space_inode(inode)))
bd555975
AV
5176 goto no_delete;
5177
39279cc3 5178 if (is_bad_inode(inode)) {
7b128766 5179 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5180 goto no_delete;
5181 }
bd555975 5182 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5183 if (!special_file(inode->i_mode))
5184 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5185
f612496b
MX
5186 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5187
c71bf099 5188 if (root->fs_info->log_root_recovering) {
6bf02314 5189 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5190 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5191 goto no_delete;
5192 }
5193
76dda93c 5194 if (inode->i_nlink > 0) {
69e9c6c6
SB
5195 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5196 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5197 goto no_delete;
5198 }
5199
0e8c36a9
MX
5200 ret = btrfs_commit_inode_delayed_inode(inode);
5201 if (ret) {
5202 btrfs_orphan_del(NULL, inode);
5203 goto no_delete;
5204 }
5205
66d8f3dd 5206 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5207 if (!rsv) {
5208 btrfs_orphan_del(NULL, inode);
5209 goto no_delete;
5210 }
4a338542 5211 rsv->size = min_size;
ca7e70f5 5212 rsv->failfast = 1;
726c35fa 5213 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5214
dbe674a9 5215 btrfs_i_size_write(inode, 0);
5f39d397 5216
4289a667 5217 /*
8407aa46
MX
5218 * This is a bit simpler than btrfs_truncate since we've already
5219 * reserved our space for our orphan item in the unlink, so we just
5220 * need to reserve some slack space in case we add bytes and update
5221 * inode item when doing the truncate.
4289a667 5222 */
8082510e 5223 while (1) {
08e007d2
MX
5224 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5225 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5226
5227 /*
5228 * Try and steal from the global reserve since we will
5229 * likely not use this space anyway, we want to try as
5230 * hard as possible to get this to work.
5231 */
5232 if (ret)
3bce876f
JB
5233 steal_from_global++;
5234 else
5235 steal_from_global = 0;
5236 ret = 0;
d68fc57b 5237
3bce876f
JB
5238 /*
5239 * steal_from_global == 0: we reserved stuff, hooray!
5240 * steal_from_global == 1: we didn't reserve stuff, boo!
5241 * steal_from_global == 2: we've committed, still not a lot of
5242 * room but maybe we'll have room in the global reserve this
5243 * time.
5244 * steal_from_global == 3: abandon all hope!
5245 */
5246 if (steal_from_global > 2) {
c2cf52eb
SK
5247 btrfs_warn(root->fs_info,
5248 "Could not get space for a delete, will truncate on mount %d",
5249 ret);
4289a667
JB
5250 btrfs_orphan_del(NULL, inode);
5251 btrfs_free_block_rsv(root, rsv);
5252 goto no_delete;
d68fc57b 5253 }
7b128766 5254
0e8c36a9 5255 trans = btrfs_join_transaction(root);
4289a667
JB
5256 if (IS_ERR(trans)) {
5257 btrfs_orphan_del(NULL, inode);
5258 btrfs_free_block_rsv(root, rsv);
5259 goto no_delete;
d68fc57b 5260 }
7b128766 5261
3bce876f
JB
5262 /*
5263 * We can't just steal from the global reserve, we need tomake
5264 * sure there is room to do it, if not we need to commit and try
5265 * again.
5266 */
5267 if (steal_from_global) {
5268 if (!btrfs_check_space_for_delayed_refs(trans, root))
5269 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5270 min_size);
5271 else
5272 ret = -ENOSPC;
5273 }
5274
5275 /*
5276 * Couldn't steal from the global reserve, we have too much
5277 * pending stuff built up, commit the transaction and try it
5278 * again.
5279 */
5280 if (ret) {
5281 ret = btrfs_commit_transaction(trans, root);
5282 if (ret) {
5283 btrfs_orphan_del(NULL, inode);
5284 btrfs_free_block_rsv(root, rsv);
5285 goto no_delete;
5286 }
5287 continue;
5288 } else {
5289 steal_from_global = 0;
5290 }
5291
4289a667
JB
5292 trans->block_rsv = rsv;
5293
d68fc57b 5294 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5295 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5296 break;
85e21bac 5297
8407aa46 5298 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5299 btrfs_end_transaction(trans, root);
5300 trans = NULL;
b53d3f5d 5301 btrfs_btree_balance_dirty(root);
8082510e 5302 }
5f39d397 5303
4289a667
JB
5304 btrfs_free_block_rsv(root, rsv);
5305
4ef31a45
JB
5306 /*
5307 * Errors here aren't a big deal, it just means we leave orphan items
5308 * in the tree. They will be cleaned up on the next mount.
5309 */
8082510e 5310 if (ret == 0) {
4289a667 5311 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5312 btrfs_orphan_del(trans, inode);
5313 } else {
5314 btrfs_orphan_del(NULL, inode);
8082510e 5315 }
54aa1f4d 5316
4289a667 5317 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5318 if (!(root == root->fs_info->tree_root ||
5319 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5320 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5321
54aa1f4d 5322 btrfs_end_transaction(trans, root);
b53d3f5d 5323 btrfs_btree_balance_dirty(root);
39279cc3 5324no_delete:
89042e5a 5325 btrfs_remove_delayed_node(inode);
dbd5768f 5326 clear_inode(inode);
8082510e 5327 return;
39279cc3
CM
5328}
5329
5330/*
5331 * this returns the key found in the dir entry in the location pointer.
5332 * If no dir entries were found, location->objectid is 0.
5333 */
5334static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5335 struct btrfs_key *location)
5336{
5337 const char *name = dentry->d_name.name;
5338 int namelen = dentry->d_name.len;
5339 struct btrfs_dir_item *di;
5340 struct btrfs_path *path;
5341 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5342 int ret = 0;
39279cc3
CM
5343
5344 path = btrfs_alloc_path();
d8926bb3
MF
5345 if (!path)
5346 return -ENOMEM;
3954401f 5347
33345d01 5348 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5349 namelen, 0);
0d9f7f3e
Y
5350 if (IS_ERR(di))
5351 ret = PTR_ERR(di);
d397712b 5352
c704005d 5353 if (IS_ERR_OR_NULL(di))
3954401f 5354 goto out_err;
d397712b 5355
5f39d397 5356 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5357out:
39279cc3
CM
5358 btrfs_free_path(path);
5359 return ret;
3954401f
CM
5360out_err:
5361 location->objectid = 0;
5362 goto out;
39279cc3
CM
5363}
5364
5365/*
5366 * when we hit a tree root in a directory, the btrfs part of the inode
5367 * needs to be changed to reflect the root directory of the tree root. This
5368 * is kind of like crossing a mount point.
5369 */
5370static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5371 struct inode *dir,
5372 struct dentry *dentry,
5373 struct btrfs_key *location,
5374 struct btrfs_root **sub_root)
39279cc3 5375{
4df27c4d
YZ
5376 struct btrfs_path *path;
5377 struct btrfs_root *new_root;
5378 struct btrfs_root_ref *ref;
5379 struct extent_buffer *leaf;
1d4c08e0 5380 struct btrfs_key key;
4df27c4d
YZ
5381 int ret;
5382 int err = 0;
39279cc3 5383
4df27c4d
YZ
5384 path = btrfs_alloc_path();
5385 if (!path) {
5386 err = -ENOMEM;
5387 goto out;
5388 }
39279cc3 5389
4df27c4d 5390 err = -ENOENT;
1d4c08e0
DS
5391 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5392 key.type = BTRFS_ROOT_REF_KEY;
5393 key.offset = location->objectid;
5394
5395 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5396 0, 0);
4df27c4d
YZ
5397 if (ret) {
5398 if (ret < 0)
5399 err = ret;
5400 goto out;
5401 }
39279cc3 5402
4df27c4d
YZ
5403 leaf = path->nodes[0];
5404 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5405 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5406 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5407 goto out;
39279cc3 5408
4df27c4d
YZ
5409 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5410 (unsigned long)(ref + 1),
5411 dentry->d_name.len);
5412 if (ret)
5413 goto out;
5414
b3b4aa74 5415 btrfs_release_path(path);
4df27c4d
YZ
5416
5417 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5418 if (IS_ERR(new_root)) {
5419 err = PTR_ERR(new_root);
5420 goto out;
5421 }
5422
4df27c4d
YZ
5423 *sub_root = new_root;
5424 location->objectid = btrfs_root_dirid(&new_root->root_item);
5425 location->type = BTRFS_INODE_ITEM_KEY;
5426 location->offset = 0;
5427 err = 0;
5428out:
5429 btrfs_free_path(path);
5430 return err;
39279cc3
CM
5431}
5432
5d4f98a2
YZ
5433static void inode_tree_add(struct inode *inode)
5434{
5435 struct btrfs_root *root = BTRFS_I(inode)->root;
5436 struct btrfs_inode *entry;
03e860bd
FNP
5437 struct rb_node **p;
5438 struct rb_node *parent;
cef21937 5439 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5440 u64 ino = btrfs_ino(inode);
5d4f98a2 5441
1d3382cb 5442 if (inode_unhashed(inode))
76dda93c 5443 return;
e1409cef 5444 parent = NULL;
5d4f98a2 5445 spin_lock(&root->inode_lock);
e1409cef 5446 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5447 while (*p) {
5448 parent = *p;
5449 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5450
33345d01 5451 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5452 p = &parent->rb_left;
33345d01 5453 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5454 p = &parent->rb_right;
5d4f98a2
YZ
5455 else {
5456 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5457 (I_WILL_FREE | I_FREEING)));
cef21937 5458 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5459 RB_CLEAR_NODE(parent);
5460 spin_unlock(&root->inode_lock);
cef21937 5461 return;
5d4f98a2
YZ
5462 }
5463 }
cef21937
FDBM
5464 rb_link_node(new, parent, p);
5465 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5466 spin_unlock(&root->inode_lock);
5467}
5468
5469static void inode_tree_del(struct inode *inode)
5470{
5471 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5472 int empty = 0;
5d4f98a2 5473
03e860bd 5474 spin_lock(&root->inode_lock);
5d4f98a2 5475 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5476 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5477 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5478 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5479 }
03e860bd 5480 spin_unlock(&root->inode_lock);
76dda93c 5481
69e9c6c6 5482 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5483 synchronize_srcu(&root->fs_info->subvol_srcu);
5484 spin_lock(&root->inode_lock);
5485 empty = RB_EMPTY_ROOT(&root->inode_tree);
5486 spin_unlock(&root->inode_lock);
5487 if (empty)
5488 btrfs_add_dead_root(root);
5489 }
5490}
5491
143bede5 5492void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5493{
5494 struct rb_node *node;
5495 struct rb_node *prev;
5496 struct btrfs_inode *entry;
5497 struct inode *inode;
5498 u64 objectid = 0;
5499
7813b3db
LB
5500 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5501 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5502
5503 spin_lock(&root->inode_lock);
5504again:
5505 node = root->inode_tree.rb_node;
5506 prev = NULL;
5507 while (node) {
5508 prev = node;
5509 entry = rb_entry(node, struct btrfs_inode, rb_node);
5510
33345d01 5511 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5512 node = node->rb_left;
33345d01 5513 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5514 node = node->rb_right;
5515 else
5516 break;
5517 }
5518 if (!node) {
5519 while (prev) {
5520 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5521 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5522 node = prev;
5523 break;
5524 }
5525 prev = rb_next(prev);
5526 }
5527 }
5528 while (node) {
5529 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5530 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5531 inode = igrab(&entry->vfs_inode);
5532 if (inode) {
5533 spin_unlock(&root->inode_lock);
5534 if (atomic_read(&inode->i_count) > 1)
5535 d_prune_aliases(inode);
5536 /*
45321ac5 5537 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5538 * the inode cache when its usage count
5539 * hits zero.
5540 */
5541 iput(inode);
5542 cond_resched();
5543 spin_lock(&root->inode_lock);
5544 goto again;
5545 }
5546
5547 if (cond_resched_lock(&root->inode_lock))
5548 goto again;
5549
5550 node = rb_next(node);
5551 }
5552 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5553}
5554
e02119d5
CM
5555static int btrfs_init_locked_inode(struct inode *inode, void *p)
5556{
5557 struct btrfs_iget_args *args = p;
90d3e592
CM
5558 inode->i_ino = args->location->objectid;
5559 memcpy(&BTRFS_I(inode)->location, args->location,
5560 sizeof(*args->location));
e02119d5 5561 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5562 return 0;
5563}
5564
5565static int btrfs_find_actor(struct inode *inode, void *opaque)
5566{
5567 struct btrfs_iget_args *args = opaque;
90d3e592 5568 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5569 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5570}
5571
5d4f98a2 5572static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5573 struct btrfs_key *location,
5d4f98a2 5574 struct btrfs_root *root)
39279cc3
CM
5575{
5576 struct inode *inode;
5577 struct btrfs_iget_args args;
90d3e592 5578 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5579
90d3e592 5580 args.location = location;
39279cc3
CM
5581 args.root = root;
5582
778ba82b 5583 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5584 btrfs_init_locked_inode,
5585 (void *)&args);
5586 return inode;
5587}
5588
1a54ef8c
BR
5589/* Get an inode object given its location and corresponding root.
5590 * Returns in *is_new if the inode was read from disk
5591 */
5592struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5593 struct btrfs_root *root, int *new)
1a54ef8c
BR
5594{
5595 struct inode *inode;
5596
90d3e592 5597 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5598 if (!inode)
5d4f98a2 5599 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5600
5601 if (inode->i_state & I_NEW) {
1a54ef8c 5602 btrfs_read_locked_inode(inode);
1748f843
MF
5603 if (!is_bad_inode(inode)) {
5604 inode_tree_add(inode);
5605 unlock_new_inode(inode);
5606 if (new)
5607 *new = 1;
5608 } else {
e0b6d65b
ST
5609 unlock_new_inode(inode);
5610 iput(inode);
5611 inode = ERR_PTR(-ESTALE);
1748f843
MF
5612 }
5613 }
5614
1a54ef8c
BR
5615 return inode;
5616}
5617
4df27c4d
YZ
5618static struct inode *new_simple_dir(struct super_block *s,
5619 struct btrfs_key *key,
5620 struct btrfs_root *root)
5621{
5622 struct inode *inode = new_inode(s);
5623
5624 if (!inode)
5625 return ERR_PTR(-ENOMEM);
5626
4df27c4d
YZ
5627 BTRFS_I(inode)->root = root;
5628 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5629 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5630
5631 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5632 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5633 inode->i_fop = &simple_dir_operations;
5634 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
9cc97d64 5635 inode->i_mtime = CURRENT_TIME;
5636 inode->i_atime = inode->i_mtime;
5637 inode->i_ctime = inode->i_mtime;
5638 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5639
5640 return inode;
5641}
5642
3de4586c 5643struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5644{
d397712b 5645 struct inode *inode;
4df27c4d 5646 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5647 struct btrfs_root *sub_root = root;
5648 struct btrfs_key location;
76dda93c 5649 int index;
b4aff1f8 5650 int ret = 0;
39279cc3
CM
5651
5652 if (dentry->d_name.len > BTRFS_NAME_LEN)
5653 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5654
39e3c955 5655 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5656 if (ret < 0)
5657 return ERR_PTR(ret);
5f39d397 5658
4df27c4d 5659 if (location.objectid == 0)
5662344b 5660 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5661
5662 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5663 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5664 return inode;
5665 }
5666
5667 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5668
76dda93c 5669 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5670 ret = fixup_tree_root_location(root, dir, dentry,
5671 &location, &sub_root);
5672 if (ret < 0) {
5673 if (ret != -ENOENT)
5674 inode = ERR_PTR(ret);
5675 else
5676 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5677 } else {
73f73415 5678 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5679 }
76dda93c
YZ
5680 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5681
34d19bad 5682 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5683 down_read(&root->fs_info->cleanup_work_sem);
5684 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5685 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5686 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5687 if (ret) {
5688 iput(inode);
66b4ffd1 5689 inode = ERR_PTR(ret);
01cd3367 5690 }
c71bf099
YZ
5691 }
5692
3de4586c
CM
5693 return inode;
5694}
5695
fe15ce44 5696static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5697{
5698 struct btrfs_root *root;
2b0143b5 5699 struct inode *inode = d_inode(dentry);
76dda93c 5700
848cce0d 5701 if (!inode && !IS_ROOT(dentry))
2b0143b5 5702 inode = d_inode(dentry->d_parent);
76dda93c 5703
848cce0d
LZ
5704 if (inode) {
5705 root = BTRFS_I(inode)->root;
efefb143
YZ
5706 if (btrfs_root_refs(&root->root_item) == 0)
5707 return 1;
848cce0d
LZ
5708
5709 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5710 return 1;
efefb143 5711 }
76dda93c
YZ
5712 return 0;
5713}
5714
b4aff1f8
JB
5715static void btrfs_dentry_release(struct dentry *dentry)
5716{
944a4515 5717 kfree(dentry->d_fsdata);
b4aff1f8
JB
5718}
5719
3de4586c 5720static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5721 unsigned int flags)
3de4586c 5722{
5662344b 5723 struct inode *inode;
a66e7cc6 5724
5662344b
TI
5725 inode = btrfs_lookup_dentry(dir, dentry);
5726 if (IS_ERR(inode)) {
5727 if (PTR_ERR(inode) == -ENOENT)
5728 inode = NULL;
5729 else
5730 return ERR_CAST(inode);
5731 }
5732
41d28bca 5733 return d_splice_alias(inode, dentry);
39279cc3
CM
5734}
5735
16cdcec7 5736unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5737 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5738};
5739
9cdda8d3 5740static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5741{
9cdda8d3 5742 struct inode *inode = file_inode(file);
39279cc3
CM
5743 struct btrfs_root *root = BTRFS_I(inode)->root;
5744 struct btrfs_item *item;
5745 struct btrfs_dir_item *di;
5746 struct btrfs_key key;
5f39d397 5747 struct btrfs_key found_key;
39279cc3 5748 struct btrfs_path *path;
16cdcec7
MX
5749 struct list_head ins_list;
5750 struct list_head del_list;
39279cc3 5751 int ret;
5f39d397 5752 struct extent_buffer *leaf;
39279cc3 5753 int slot;
39279cc3
CM
5754 unsigned char d_type;
5755 int over = 0;
5756 u32 di_cur;
5757 u32 di_total;
5758 u32 di_len;
5759 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5760 char tmp_name[32];
5761 char *name_ptr;
5762 int name_len;
9cdda8d3 5763 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5764
5765 /* FIXME, use a real flag for deciding about the key type */
5766 if (root->fs_info->tree_root == root)
5767 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5768
9cdda8d3
AV
5769 if (!dir_emit_dots(file, ctx))
5770 return 0;
5771
49593bfa 5772 path = btrfs_alloc_path();
16cdcec7
MX
5773 if (!path)
5774 return -ENOMEM;
ff5714cc 5775
026fd317 5776 path->reada = 1;
49593bfa 5777
16cdcec7
MX
5778 if (key_type == BTRFS_DIR_INDEX_KEY) {
5779 INIT_LIST_HEAD(&ins_list);
5780 INIT_LIST_HEAD(&del_list);
5781 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5782 }
5783
962a298f 5784 key.type = key_type;
9cdda8d3 5785 key.offset = ctx->pos;
33345d01 5786 key.objectid = btrfs_ino(inode);
5f39d397 5787
39279cc3
CM
5788 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5789 if (ret < 0)
5790 goto err;
49593bfa
DW
5791
5792 while (1) {
5f39d397 5793 leaf = path->nodes[0];
39279cc3 5794 slot = path->slots[0];
b9e03af0
LZ
5795 if (slot >= btrfs_header_nritems(leaf)) {
5796 ret = btrfs_next_leaf(root, path);
5797 if (ret < 0)
5798 goto err;
5799 else if (ret > 0)
5800 break;
5801 continue;
39279cc3 5802 }
3de4586c 5803
dd3cc16b 5804 item = btrfs_item_nr(slot);
5f39d397
CM
5805 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5806
5807 if (found_key.objectid != key.objectid)
39279cc3 5808 break;
962a298f 5809 if (found_key.type != key_type)
39279cc3 5810 break;
9cdda8d3 5811 if (found_key.offset < ctx->pos)
b9e03af0 5812 goto next;
16cdcec7
MX
5813 if (key_type == BTRFS_DIR_INDEX_KEY &&
5814 btrfs_should_delete_dir_index(&del_list,
5815 found_key.offset))
5816 goto next;
5f39d397 5817
9cdda8d3 5818 ctx->pos = found_key.offset;
16cdcec7 5819 is_curr = 1;
49593bfa 5820
39279cc3
CM
5821 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5822 di_cur = 0;
5f39d397 5823 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5824
5825 while (di_cur < di_total) {
5f39d397
CM
5826 struct btrfs_key location;
5827
22a94d44
JB
5828 if (verify_dir_item(root, leaf, di))
5829 break;
5830
5f39d397 5831 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5832 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5833 name_ptr = tmp_name;
5834 } else {
5835 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5836 if (!name_ptr) {
5837 ret = -ENOMEM;
5838 goto err;
5839 }
5f39d397
CM
5840 }
5841 read_extent_buffer(leaf, name_ptr,
5842 (unsigned long)(di + 1), name_len);
5843
5844 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5845 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5846
fede766f 5847
3de4586c 5848 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5849 * skip it.
5850 *
5851 * In contrast to old kernels, we insert the snapshot's
5852 * dir item and dir index after it has been created, so
5853 * we won't find a reference to our own snapshot. We
5854 * still keep the following code for backward
5855 * compatibility.
3de4586c
CM
5856 */
5857 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5858 location.objectid == root->root_key.objectid) {
5859 over = 0;
5860 goto skip;
5861 }
9cdda8d3
AV
5862 over = !dir_emit(ctx, name_ptr, name_len,
5863 location.objectid, d_type);
5f39d397 5864
3de4586c 5865skip:
5f39d397
CM
5866 if (name_ptr != tmp_name)
5867 kfree(name_ptr);
5868
39279cc3
CM
5869 if (over)
5870 goto nopos;
5103e947 5871 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5872 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5873 di_cur += di_len;
5874 di = (struct btrfs_dir_item *)((char *)di + di_len);
5875 }
b9e03af0
LZ
5876next:
5877 path->slots[0]++;
39279cc3 5878 }
49593bfa 5879
16cdcec7
MX
5880 if (key_type == BTRFS_DIR_INDEX_KEY) {
5881 if (is_curr)
9cdda8d3
AV
5882 ctx->pos++;
5883 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5884 if (ret)
5885 goto nopos;
5886 }
5887
49593bfa 5888 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5889 ctx->pos++;
5890
5891 /*
5892 * Stop new entries from being returned after we return the last
5893 * entry.
5894 *
5895 * New directory entries are assigned a strictly increasing
5896 * offset. This means that new entries created during readdir
5897 * are *guaranteed* to be seen in the future by that readdir.
5898 * This has broken buggy programs which operate on names as
5899 * they're returned by readdir. Until we re-use freed offsets
5900 * we have this hack to stop new entries from being returned
5901 * under the assumption that they'll never reach this huge
5902 * offset.
5903 *
5904 * This is being careful not to overflow 32bit loff_t unless the
5905 * last entry requires it because doing so has broken 32bit apps
5906 * in the past.
5907 */
5908 if (key_type == BTRFS_DIR_INDEX_KEY) {
5909 if (ctx->pos >= INT_MAX)
5910 ctx->pos = LLONG_MAX;
5911 else
5912 ctx->pos = INT_MAX;
5913 }
39279cc3
CM
5914nopos:
5915 ret = 0;
5916err:
16cdcec7
MX
5917 if (key_type == BTRFS_DIR_INDEX_KEY)
5918 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5919 btrfs_free_path(path);
39279cc3
CM
5920 return ret;
5921}
5922
a9185b41 5923int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5924{
5925 struct btrfs_root *root = BTRFS_I(inode)->root;
5926 struct btrfs_trans_handle *trans;
5927 int ret = 0;
0af3d00b 5928 bool nolock = false;
39279cc3 5929
72ac3c0d 5930 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5931 return 0;
5932
83eea1f1 5933 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5934 nolock = true;
0af3d00b 5935
a9185b41 5936 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5937 if (nolock)
7a7eaa40 5938 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5939 else
7a7eaa40 5940 trans = btrfs_join_transaction(root);
3612b495
TI
5941 if (IS_ERR(trans))
5942 return PTR_ERR(trans);
a698d075 5943 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5944 }
5945 return ret;
5946}
5947
5948/*
54aa1f4d 5949 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5950 * inode changes. But, it is most likely to find the inode in cache.
5951 * FIXME, needs more benchmarking...there are no reasons other than performance
5952 * to keep or drop this code.
5953 */
48a3b636 5954static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5955{
5956 struct btrfs_root *root = BTRFS_I(inode)->root;
5957 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5958 int ret;
5959
72ac3c0d 5960 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5961 return 0;
39279cc3 5962
7a7eaa40 5963 trans = btrfs_join_transaction(root);
22c44fe6
JB
5964 if (IS_ERR(trans))
5965 return PTR_ERR(trans);
8929ecfa
YZ
5966
5967 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5968 if (ret && ret == -ENOSPC) {
5969 /* whoops, lets try again with the full transaction */
5970 btrfs_end_transaction(trans, root);
5971 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5972 if (IS_ERR(trans))
5973 return PTR_ERR(trans);
8929ecfa 5974
94b60442 5975 ret = btrfs_update_inode(trans, root, inode);
94b60442 5976 }
39279cc3 5977 btrfs_end_transaction(trans, root);
16cdcec7
MX
5978 if (BTRFS_I(inode)->delayed_node)
5979 btrfs_balance_delayed_items(root);
22c44fe6
JB
5980
5981 return ret;
5982}
5983
5984/*
5985 * This is a copy of file_update_time. We need this so we can return error on
5986 * ENOSPC for updating the inode in the case of file write and mmap writes.
5987 */
e41f941a
JB
5988static int btrfs_update_time(struct inode *inode, struct timespec *now,
5989 int flags)
22c44fe6 5990{
2bc55652
AB
5991 struct btrfs_root *root = BTRFS_I(inode)->root;
5992
5993 if (btrfs_root_readonly(root))
5994 return -EROFS;
5995
e41f941a 5996 if (flags & S_VERSION)
22c44fe6 5997 inode_inc_iversion(inode);
e41f941a
JB
5998 if (flags & S_CTIME)
5999 inode->i_ctime = *now;
6000 if (flags & S_MTIME)
6001 inode->i_mtime = *now;
6002 if (flags & S_ATIME)
6003 inode->i_atime = *now;
6004 return btrfs_dirty_inode(inode);
39279cc3
CM
6005}
6006
d352ac68
CM
6007/*
6008 * find the highest existing sequence number in a directory
6009 * and then set the in-memory index_cnt variable to reflect
6010 * free sequence numbers
6011 */
aec7477b
JB
6012static int btrfs_set_inode_index_count(struct inode *inode)
6013{
6014 struct btrfs_root *root = BTRFS_I(inode)->root;
6015 struct btrfs_key key, found_key;
6016 struct btrfs_path *path;
6017 struct extent_buffer *leaf;
6018 int ret;
6019
33345d01 6020 key.objectid = btrfs_ino(inode);
962a298f 6021 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6022 key.offset = (u64)-1;
6023
6024 path = btrfs_alloc_path();
6025 if (!path)
6026 return -ENOMEM;
6027
6028 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6029 if (ret < 0)
6030 goto out;
6031 /* FIXME: we should be able to handle this */
6032 if (ret == 0)
6033 goto out;
6034 ret = 0;
6035
6036 /*
6037 * MAGIC NUMBER EXPLANATION:
6038 * since we search a directory based on f_pos we have to start at 2
6039 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6040 * else has to start at 2
6041 */
6042 if (path->slots[0] == 0) {
6043 BTRFS_I(inode)->index_cnt = 2;
6044 goto out;
6045 }
6046
6047 path->slots[0]--;
6048
6049 leaf = path->nodes[0];
6050 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6051
33345d01 6052 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6053 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6054 BTRFS_I(inode)->index_cnt = 2;
6055 goto out;
6056 }
6057
6058 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6059out:
6060 btrfs_free_path(path);
6061 return ret;
6062}
6063
d352ac68
CM
6064/*
6065 * helper to find a free sequence number in a given directory. This current
6066 * code is very simple, later versions will do smarter things in the btree
6067 */
3de4586c 6068int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6069{
6070 int ret = 0;
6071
6072 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6073 ret = btrfs_inode_delayed_dir_index_count(dir);
6074 if (ret) {
6075 ret = btrfs_set_inode_index_count(dir);
6076 if (ret)
6077 return ret;
6078 }
aec7477b
JB
6079 }
6080
00e4e6b3 6081 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6082 BTRFS_I(dir)->index_cnt++;
6083
6084 return ret;
6085}
6086
b0d5d10f
CM
6087static int btrfs_insert_inode_locked(struct inode *inode)
6088{
6089 struct btrfs_iget_args args;
6090 args.location = &BTRFS_I(inode)->location;
6091 args.root = BTRFS_I(inode)->root;
6092
6093 return insert_inode_locked4(inode,
6094 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6095 btrfs_find_actor, &args);
6096}
6097
39279cc3
CM
6098static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6099 struct btrfs_root *root,
aec7477b 6100 struct inode *dir,
9c58309d 6101 const char *name, int name_len,
175a4eb7
AV
6102 u64 ref_objectid, u64 objectid,
6103 umode_t mode, u64 *index)
39279cc3
CM
6104{
6105 struct inode *inode;
5f39d397 6106 struct btrfs_inode_item *inode_item;
39279cc3 6107 struct btrfs_key *location;
5f39d397 6108 struct btrfs_path *path;
9c58309d
CM
6109 struct btrfs_inode_ref *ref;
6110 struct btrfs_key key[2];
6111 u32 sizes[2];
ef3b9af5 6112 int nitems = name ? 2 : 1;
9c58309d 6113 unsigned long ptr;
39279cc3 6114 int ret;
39279cc3 6115
5f39d397 6116 path = btrfs_alloc_path();
d8926bb3
MF
6117 if (!path)
6118 return ERR_PTR(-ENOMEM);
5f39d397 6119
39279cc3 6120 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6121 if (!inode) {
6122 btrfs_free_path(path);
39279cc3 6123 return ERR_PTR(-ENOMEM);
8fb27640 6124 }
39279cc3 6125
5762b5c9
FM
6126 /*
6127 * O_TMPFILE, set link count to 0, so that after this point,
6128 * we fill in an inode item with the correct link count.
6129 */
6130 if (!name)
6131 set_nlink(inode, 0);
6132
581bb050
LZ
6133 /*
6134 * we have to initialize this early, so we can reclaim the inode
6135 * number if we fail afterwards in this function.
6136 */
6137 inode->i_ino = objectid;
6138
ef3b9af5 6139 if (dir && name) {
1abe9b8a 6140 trace_btrfs_inode_request(dir);
6141
3de4586c 6142 ret = btrfs_set_inode_index(dir, index);
09771430 6143 if (ret) {
8fb27640 6144 btrfs_free_path(path);
09771430 6145 iput(inode);
aec7477b 6146 return ERR_PTR(ret);
09771430 6147 }
ef3b9af5
FM
6148 } else if (dir) {
6149 *index = 0;
aec7477b
JB
6150 }
6151 /*
6152 * index_cnt is ignored for everything but a dir,
6153 * btrfs_get_inode_index_count has an explanation for the magic
6154 * number
6155 */
6156 BTRFS_I(inode)->index_cnt = 2;
67de1176 6157 BTRFS_I(inode)->dir_index = *index;
39279cc3 6158 BTRFS_I(inode)->root = root;
e02119d5 6159 BTRFS_I(inode)->generation = trans->transid;
76195853 6160 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6161
5dc562c5
JB
6162 /*
6163 * We could have gotten an inode number from somebody who was fsynced
6164 * and then removed in this same transaction, so let's just set full
6165 * sync since it will be a full sync anyway and this will blow away the
6166 * old info in the log.
6167 */
6168 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6169
9c58309d 6170 key[0].objectid = objectid;
962a298f 6171 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6172 key[0].offset = 0;
6173
9c58309d 6174 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6175
6176 if (name) {
6177 /*
6178 * Start new inodes with an inode_ref. This is slightly more
6179 * efficient for small numbers of hard links since they will
6180 * be packed into one item. Extended refs will kick in if we
6181 * add more hard links than can fit in the ref item.
6182 */
6183 key[1].objectid = objectid;
962a298f 6184 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6185 key[1].offset = ref_objectid;
6186
6187 sizes[1] = name_len + sizeof(*ref);
6188 }
9c58309d 6189
b0d5d10f
CM
6190 location = &BTRFS_I(inode)->location;
6191 location->objectid = objectid;
6192 location->offset = 0;
962a298f 6193 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6194
6195 ret = btrfs_insert_inode_locked(inode);
6196 if (ret < 0)
6197 goto fail;
6198
b9473439 6199 path->leave_spinning = 1;
ef3b9af5 6200 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6201 if (ret != 0)
b0d5d10f 6202 goto fail_unlock;
5f39d397 6203
ecc11fab 6204 inode_init_owner(inode, dir, mode);
a76a3cd4 6205 inode_set_bytes(inode, 0);
9cc97d64 6206
6207 inode->i_mtime = CURRENT_TIME;
6208 inode->i_atime = inode->i_mtime;
6209 inode->i_ctime = inode->i_mtime;
6210 BTRFS_I(inode)->i_otime = inode->i_mtime;
6211
5f39d397
CM
6212 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6213 struct btrfs_inode_item);
293f7e07
LZ
6214 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6215 sizeof(*inode_item));
e02119d5 6216 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6217
ef3b9af5
FM
6218 if (name) {
6219 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6220 struct btrfs_inode_ref);
6221 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6222 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6223 ptr = (unsigned long)(ref + 1);
6224 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6225 }
9c58309d 6226
5f39d397
CM
6227 btrfs_mark_buffer_dirty(path->nodes[0]);
6228 btrfs_free_path(path);
6229
6cbff00f
CH
6230 btrfs_inherit_iflags(inode, dir);
6231
569254b0 6232 if (S_ISREG(mode)) {
94272164
CM
6233 if (btrfs_test_opt(root, NODATASUM))
6234 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6235 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6236 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6237 BTRFS_INODE_NODATASUM;
94272164
CM
6238 }
6239
5d4f98a2 6240 inode_tree_add(inode);
1abe9b8a 6241
6242 trace_btrfs_inode_new(inode);
1973f0fa 6243 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6244
8ea05e3a
AB
6245 btrfs_update_root_times(trans, root);
6246
63541927
FDBM
6247 ret = btrfs_inode_inherit_props(trans, inode, dir);
6248 if (ret)
6249 btrfs_err(root->fs_info,
6250 "error inheriting props for ino %llu (root %llu): %d",
6251 btrfs_ino(inode), root->root_key.objectid, ret);
6252
39279cc3 6253 return inode;
b0d5d10f
CM
6254
6255fail_unlock:
6256 unlock_new_inode(inode);
5f39d397 6257fail:
ef3b9af5 6258 if (dir && name)
aec7477b 6259 BTRFS_I(dir)->index_cnt--;
5f39d397 6260 btrfs_free_path(path);
09771430 6261 iput(inode);
5f39d397 6262 return ERR_PTR(ret);
39279cc3
CM
6263}
6264
6265static inline u8 btrfs_inode_type(struct inode *inode)
6266{
6267 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6268}
6269
d352ac68
CM
6270/*
6271 * utility function to add 'inode' into 'parent_inode' with
6272 * a give name and a given sequence number.
6273 * if 'add_backref' is true, also insert a backref from the
6274 * inode to the parent directory.
6275 */
e02119d5
CM
6276int btrfs_add_link(struct btrfs_trans_handle *trans,
6277 struct inode *parent_inode, struct inode *inode,
6278 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6279{
4df27c4d 6280 int ret = 0;
39279cc3 6281 struct btrfs_key key;
e02119d5 6282 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6283 u64 ino = btrfs_ino(inode);
6284 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6285
33345d01 6286 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6287 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6288 } else {
33345d01 6289 key.objectid = ino;
962a298f 6290 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6291 key.offset = 0;
6292 }
6293
33345d01 6294 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6295 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6296 key.objectid, root->root_key.objectid,
33345d01 6297 parent_ino, index, name, name_len);
4df27c4d 6298 } else if (add_backref) {
33345d01
LZ
6299 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6300 parent_ino, index);
4df27c4d 6301 }
39279cc3 6302
79787eaa
JM
6303 /* Nothing to clean up yet */
6304 if (ret)
6305 return ret;
4df27c4d 6306
79787eaa
JM
6307 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6308 parent_inode, &key,
6309 btrfs_inode_type(inode), index);
9c52057c 6310 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6311 goto fail_dir_item;
6312 else if (ret) {
6313 btrfs_abort_transaction(trans, root, ret);
6314 return ret;
39279cc3 6315 }
79787eaa
JM
6316
6317 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6318 name_len * 2);
0c4d2d95 6319 inode_inc_iversion(parent_inode);
79787eaa
JM
6320 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6321 ret = btrfs_update_inode(trans, root, parent_inode);
6322 if (ret)
6323 btrfs_abort_transaction(trans, root, ret);
39279cc3 6324 return ret;
fe66a05a
CM
6325
6326fail_dir_item:
6327 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6328 u64 local_index;
6329 int err;
6330 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6331 key.objectid, root->root_key.objectid,
6332 parent_ino, &local_index, name, name_len);
6333
6334 } else if (add_backref) {
6335 u64 local_index;
6336 int err;
6337
6338 err = btrfs_del_inode_ref(trans, root, name, name_len,
6339 ino, parent_ino, &local_index);
6340 }
6341 return ret;
39279cc3
CM
6342}
6343
6344static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6345 struct inode *dir, struct dentry *dentry,
6346 struct inode *inode, int backref, u64 index)
39279cc3 6347{
a1b075d2
JB
6348 int err = btrfs_add_link(trans, dir, inode,
6349 dentry->d_name.name, dentry->d_name.len,
6350 backref, index);
39279cc3
CM
6351 if (err > 0)
6352 err = -EEXIST;
6353 return err;
6354}
6355
618e21d5 6356static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6357 umode_t mode, dev_t rdev)
618e21d5
JB
6358{
6359 struct btrfs_trans_handle *trans;
6360 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6361 struct inode *inode = NULL;
618e21d5
JB
6362 int err;
6363 int drop_inode = 0;
6364 u64 objectid;
00e4e6b3 6365 u64 index = 0;
618e21d5
JB
6366
6367 if (!new_valid_dev(rdev))
6368 return -EINVAL;
6369
9ed74f2d
JB
6370 /*
6371 * 2 for inode item and ref
6372 * 2 for dir items
6373 * 1 for xattr if selinux is on
6374 */
a22285a6
YZ
6375 trans = btrfs_start_transaction(root, 5);
6376 if (IS_ERR(trans))
6377 return PTR_ERR(trans);
1832a6d5 6378
581bb050
LZ
6379 err = btrfs_find_free_ino(root, &objectid);
6380 if (err)
6381 goto out_unlock;
6382
aec7477b 6383 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6384 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6385 mode, &index);
7cf96da3
TI
6386 if (IS_ERR(inode)) {
6387 err = PTR_ERR(inode);
618e21d5 6388 goto out_unlock;
7cf96da3 6389 }
618e21d5 6390
ad19db71
CS
6391 /*
6392 * If the active LSM wants to access the inode during
6393 * d_instantiate it needs these. Smack checks to see
6394 * if the filesystem supports xattrs by looking at the
6395 * ops vector.
6396 */
ad19db71 6397 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6398 init_special_inode(inode, inode->i_mode, rdev);
6399
6400 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6401 if (err)
b0d5d10f
CM
6402 goto out_unlock_inode;
6403
6404 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6405 if (err) {
6406 goto out_unlock_inode;
6407 } else {
1b4ab1bb 6408 btrfs_update_inode(trans, root, inode);
b0d5d10f 6409 unlock_new_inode(inode);
08c422c2 6410 d_instantiate(dentry, inode);
618e21d5 6411 }
b0d5d10f 6412
618e21d5 6413out_unlock:
7ad85bb7 6414 btrfs_end_transaction(trans, root);
c581afc8 6415 btrfs_balance_delayed_items(root);
b53d3f5d 6416 btrfs_btree_balance_dirty(root);
618e21d5
JB
6417 if (drop_inode) {
6418 inode_dec_link_count(inode);
6419 iput(inode);
6420 }
618e21d5 6421 return err;
b0d5d10f
CM
6422
6423out_unlock_inode:
6424 drop_inode = 1;
6425 unlock_new_inode(inode);
6426 goto out_unlock;
6427
618e21d5
JB
6428}
6429
39279cc3 6430static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6431 umode_t mode, bool excl)
39279cc3
CM
6432{
6433 struct btrfs_trans_handle *trans;
6434 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6435 struct inode *inode = NULL;
43baa579 6436 int drop_inode_on_err = 0;
a22285a6 6437 int err;
39279cc3 6438 u64 objectid;
00e4e6b3 6439 u64 index = 0;
39279cc3 6440
9ed74f2d
JB
6441 /*
6442 * 2 for inode item and ref
6443 * 2 for dir items
6444 * 1 for xattr if selinux is on
6445 */
a22285a6
YZ
6446 trans = btrfs_start_transaction(root, 5);
6447 if (IS_ERR(trans))
6448 return PTR_ERR(trans);
9ed74f2d 6449
581bb050
LZ
6450 err = btrfs_find_free_ino(root, &objectid);
6451 if (err)
6452 goto out_unlock;
6453
aec7477b 6454 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6455 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6456 mode, &index);
7cf96da3
TI
6457 if (IS_ERR(inode)) {
6458 err = PTR_ERR(inode);
39279cc3 6459 goto out_unlock;
7cf96da3 6460 }
43baa579 6461 drop_inode_on_err = 1;
ad19db71
CS
6462 /*
6463 * If the active LSM wants to access the inode during
6464 * d_instantiate it needs these. Smack checks to see
6465 * if the filesystem supports xattrs by looking at the
6466 * ops vector.
6467 */
6468 inode->i_fop = &btrfs_file_operations;
6469 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6470 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6471
6472 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6473 if (err)
6474 goto out_unlock_inode;
6475
6476 err = btrfs_update_inode(trans, root, inode);
6477 if (err)
6478 goto out_unlock_inode;
ad19db71 6479
a1b075d2 6480 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6481 if (err)
b0d5d10f 6482 goto out_unlock_inode;
43baa579 6483
43baa579 6484 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6485 unlock_new_inode(inode);
43baa579
FB
6486 d_instantiate(dentry, inode);
6487
39279cc3 6488out_unlock:
7ad85bb7 6489 btrfs_end_transaction(trans, root);
43baa579 6490 if (err && drop_inode_on_err) {
39279cc3
CM
6491 inode_dec_link_count(inode);
6492 iput(inode);
6493 }
c581afc8 6494 btrfs_balance_delayed_items(root);
b53d3f5d 6495 btrfs_btree_balance_dirty(root);
39279cc3 6496 return err;
b0d5d10f
CM
6497
6498out_unlock_inode:
6499 unlock_new_inode(inode);
6500 goto out_unlock;
6501
39279cc3
CM
6502}
6503
6504static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6505 struct dentry *dentry)
6506{
6507 struct btrfs_trans_handle *trans;
6508 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6509 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6510 u64 index;
39279cc3
CM
6511 int err;
6512 int drop_inode = 0;
6513
4a8be425
TH
6514 /* do not allow sys_link's with other subvols of the same device */
6515 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6516 return -EXDEV;
4a8be425 6517
f186373f 6518 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6519 return -EMLINK;
4a8be425 6520
3de4586c 6521 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6522 if (err)
6523 goto fail;
6524
a22285a6 6525 /*
7e6b6465 6526 * 2 items for inode and inode ref
a22285a6 6527 * 2 items for dir items
7e6b6465 6528 * 1 item for parent inode
a22285a6 6529 */
7e6b6465 6530 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6531 if (IS_ERR(trans)) {
6532 err = PTR_ERR(trans);
6533 goto fail;
6534 }
5f39d397 6535
67de1176
MX
6536 /* There are several dir indexes for this inode, clear the cache. */
6537 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6538 inc_nlink(inode);
0c4d2d95 6539 inode_inc_iversion(inode);
3153495d 6540 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6541 ihold(inode);
e9976151 6542 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6543
a1b075d2 6544 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6545
a5719521 6546 if (err) {
54aa1f4d 6547 drop_inode = 1;
a5719521 6548 } else {
10d9f309 6549 struct dentry *parent = dentry->d_parent;
a5719521 6550 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6551 if (err)
6552 goto fail;
ef3b9af5
FM
6553 if (inode->i_nlink == 1) {
6554 /*
6555 * If new hard link count is 1, it's a file created
6556 * with open(2) O_TMPFILE flag.
6557 */
6558 err = btrfs_orphan_del(trans, inode);
6559 if (err)
6560 goto fail;
6561 }
08c422c2 6562 d_instantiate(dentry, inode);
6a912213 6563 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6564 }
39279cc3 6565
7ad85bb7 6566 btrfs_end_transaction(trans, root);
c581afc8 6567 btrfs_balance_delayed_items(root);
1832a6d5 6568fail:
39279cc3
CM
6569 if (drop_inode) {
6570 inode_dec_link_count(inode);
6571 iput(inode);
6572 }
b53d3f5d 6573 btrfs_btree_balance_dirty(root);
39279cc3
CM
6574 return err;
6575}
6576
18bb1db3 6577static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6578{
b9d86667 6579 struct inode *inode = NULL;
39279cc3
CM
6580 struct btrfs_trans_handle *trans;
6581 struct btrfs_root *root = BTRFS_I(dir)->root;
6582 int err = 0;
6583 int drop_on_err = 0;
b9d86667 6584 u64 objectid = 0;
00e4e6b3 6585 u64 index = 0;
39279cc3 6586
9ed74f2d
JB
6587 /*
6588 * 2 items for inode and ref
6589 * 2 items for dir items
6590 * 1 for xattr if selinux is on
6591 */
a22285a6
YZ
6592 trans = btrfs_start_transaction(root, 5);
6593 if (IS_ERR(trans))
6594 return PTR_ERR(trans);
39279cc3 6595
581bb050
LZ
6596 err = btrfs_find_free_ino(root, &objectid);
6597 if (err)
6598 goto out_fail;
6599
aec7477b 6600 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6601 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6602 S_IFDIR | mode, &index);
39279cc3
CM
6603 if (IS_ERR(inode)) {
6604 err = PTR_ERR(inode);
6605 goto out_fail;
6606 }
5f39d397 6607
39279cc3 6608 drop_on_err = 1;
b0d5d10f
CM
6609 /* these must be set before we unlock the inode */
6610 inode->i_op = &btrfs_dir_inode_operations;
6611 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6612
2a7dba39 6613 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6614 if (err)
b0d5d10f 6615 goto out_fail_inode;
39279cc3 6616
dbe674a9 6617 btrfs_i_size_write(inode, 0);
39279cc3
CM
6618 err = btrfs_update_inode(trans, root, inode);
6619 if (err)
b0d5d10f 6620 goto out_fail_inode;
5f39d397 6621
a1b075d2
JB
6622 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6623 dentry->d_name.len, 0, index);
39279cc3 6624 if (err)
b0d5d10f 6625 goto out_fail_inode;
5f39d397 6626
39279cc3 6627 d_instantiate(dentry, inode);
b0d5d10f
CM
6628 /*
6629 * mkdir is special. We're unlocking after we call d_instantiate
6630 * to avoid a race with nfsd calling d_instantiate.
6631 */
6632 unlock_new_inode(inode);
39279cc3 6633 drop_on_err = 0;
39279cc3
CM
6634
6635out_fail:
7ad85bb7 6636 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6637 if (drop_on_err) {
6638 inode_dec_link_count(inode);
39279cc3 6639 iput(inode);
c7cfb8a5 6640 }
c581afc8 6641 btrfs_balance_delayed_items(root);
b53d3f5d 6642 btrfs_btree_balance_dirty(root);
39279cc3 6643 return err;
b0d5d10f
CM
6644
6645out_fail_inode:
6646 unlock_new_inode(inode);
6647 goto out_fail;
39279cc3
CM
6648}
6649
e6c4efd8
QW
6650/* Find next extent map of a given extent map, caller needs to ensure locks */
6651static struct extent_map *next_extent_map(struct extent_map *em)
6652{
6653 struct rb_node *next;
6654
6655 next = rb_next(&em->rb_node);
6656 if (!next)
6657 return NULL;
6658 return container_of(next, struct extent_map, rb_node);
6659}
6660
6661static struct extent_map *prev_extent_map(struct extent_map *em)
6662{
6663 struct rb_node *prev;
6664
6665 prev = rb_prev(&em->rb_node);
6666 if (!prev)
6667 return NULL;
6668 return container_of(prev, struct extent_map, rb_node);
6669}
6670
d352ac68 6671/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6672 * the existing extent is the nearest extent to map_start,
d352ac68 6673 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6674 * the best fitted new extent into the tree.
d352ac68 6675 */
3b951516
CM
6676static int merge_extent_mapping(struct extent_map_tree *em_tree,
6677 struct extent_map *existing,
e6dcd2dc 6678 struct extent_map *em,
51f395ad 6679 u64 map_start)
3b951516 6680{
e6c4efd8
QW
6681 struct extent_map *prev;
6682 struct extent_map *next;
6683 u64 start;
6684 u64 end;
3b951516 6685 u64 start_diff;
3b951516 6686
e6dcd2dc 6687 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6688
6689 if (existing->start > map_start) {
6690 next = existing;
6691 prev = prev_extent_map(next);
6692 } else {
6693 prev = existing;
6694 next = next_extent_map(prev);
6695 }
6696
6697 start = prev ? extent_map_end(prev) : em->start;
6698 start = max_t(u64, start, em->start);
6699 end = next ? next->start : extent_map_end(em);
6700 end = min_t(u64, end, extent_map_end(em));
6701 start_diff = start - em->start;
6702 em->start = start;
6703 em->len = end - start;
c8b97818
CM
6704 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6705 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6706 em->block_start += start_diff;
c8b97818
CM
6707 em->block_len -= start_diff;
6708 }
09a2a8f9 6709 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6710}
6711
c8b97818
CM
6712static noinline int uncompress_inline(struct btrfs_path *path,
6713 struct inode *inode, struct page *page,
6714 size_t pg_offset, u64 extent_offset,
6715 struct btrfs_file_extent_item *item)
6716{
6717 int ret;
6718 struct extent_buffer *leaf = path->nodes[0];
6719 char *tmp;
6720 size_t max_size;
6721 unsigned long inline_size;
6722 unsigned long ptr;
261507a0 6723 int compress_type;
c8b97818
CM
6724
6725 WARN_ON(pg_offset != 0);
261507a0 6726 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6727 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6728 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6729 btrfs_item_nr(path->slots[0]));
c8b97818 6730 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6731 if (!tmp)
6732 return -ENOMEM;
c8b97818
CM
6733 ptr = btrfs_file_extent_inline_start(item);
6734
6735 read_extent_buffer(leaf, tmp, ptr, inline_size);
6736
5b050f04 6737 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6738 ret = btrfs_decompress(compress_type, tmp, page,
6739 extent_offset, inline_size, max_size);
c8b97818 6740 kfree(tmp);
166ae5a4 6741 return ret;
c8b97818
CM
6742}
6743
d352ac68
CM
6744/*
6745 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6746 * the ugly parts come from merging extents from the disk with the in-ram
6747 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6748 * where the in-ram extents might be locked pending data=ordered completion.
6749 *
6750 * This also copies inline extents directly into the page.
6751 */
d397712b 6752
a52d9a80 6753struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6754 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6755 int create)
6756{
6757 int ret;
6758 int err = 0;
a52d9a80
CM
6759 u64 extent_start = 0;
6760 u64 extent_end = 0;
33345d01 6761 u64 objectid = btrfs_ino(inode);
a52d9a80 6762 u32 found_type;
f421950f 6763 struct btrfs_path *path = NULL;
a52d9a80
CM
6764 struct btrfs_root *root = BTRFS_I(inode)->root;
6765 struct btrfs_file_extent_item *item;
5f39d397
CM
6766 struct extent_buffer *leaf;
6767 struct btrfs_key found_key;
a52d9a80
CM
6768 struct extent_map *em = NULL;
6769 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6771 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6772 const bool new_inline = !page || create;
a52d9a80 6773
a52d9a80 6774again:
890871be 6775 read_lock(&em_tree->lock);
d1310b2e 6776 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6777 if (em)
6778 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6779 read_unlock(&em_tree->lock);
d1310b2e 6780
a52d9a80 6781 if (em) {
e1c4b745
CM
6782 if (em->start > start || em->start + em->len <= start)
6783 free_extent_map(em);
6784 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6785 free_extent_map(em);
6786 else
6787 goto out;
a52d9a80 6788 }
172ddd60 6789 em = alloc_extent_map();
a52d9a80 6790 if (!em) {
d1310b2e
CM
6791 err = -ENOMEM;
6792 goto out;
a52d9a80 6793 }
e6dcd2dc 6794 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6795 em->start = EXTENT_MAP_HOLE;
445a6944 6796 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6797 em->len = (u64)-1;
c8b97818 6798 em->block_len = (u64)-1;
f421950f
CM
6799
6800 if (!path) {
6801 path = btrfs_alloc_path();
026fd317
JB
6802 if (!path) {
6803 err = -ENOMEM;
6804 goto out;
6805 }
6806 /*
6807 * Chances are we'll be called again, so go ahead and do
6808 * readahead
6809 */
6810 path->reada = 1;
f421950f
CM
6811 }
6812
179e29e4
CM
6813 ret = btrfs_lookup_file_extent(trans, root, path,
6814 objectid, start, trans != NULL);
a52d9a80
CM
6815 if (ret < 0) {
6816 err = ret;
6817 goto out;
6818 }
6819
6820 if (ret != 0) {
6821 if (path->slots[0] == 0)
6822 goto not_found;
6823 path->slots[0]--;
6824 }
6825
5f39d397
CM
6826 leaf = path->nodes[0];
6827 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6828 struct btrfs_file_extent_item);
a52d9a80 6829 /* are we inside the extent that was found? */
5f39d397 6830 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6831 found_type = found_key.type;
5f39d397 6832 if (found_key.objectid != objectid ||
a52d9a80 6833 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6834 /*
6835 * If we backup past the first extent we want to move forward
6836 * and see if there is an extent in front of us, otherwise we'll
6837 * say there is a hole for our whole search range which can
6838 * cause problems.
6839 */
6840 extent_end = start;
6841 goto next;
a52d9a80
CM
6842 }
6843
5f39d397
CM
6844 found_type = btrfs_file_extent_type(leaf, item);
6845 extent_start = found_key.offset;
d899e052
YZ
6846 if (found_type == BTRFS_FILE_EXTENT_REG ||
6847 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6848 extent_end = extent_start +
db94535d 6849 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6850 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6851 size_t size;
514ac8ad 6852 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6853 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6854 }
25a50341 6855next:
9036c102
YZ
6856 if (start >= extent_end) {
6857 path->slots[0]++;
6858 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6859 ret = btrfs_next_leaf(root, path);
6860 if (ret < 0) {
6861 err = ret;
6862 goto out;
a52d9a80 6863 }
9036c102
YZ
6864 if (ret > 0)
6865 goto not_found;
6866 leaf = path->nodes[0];
a52d9a80 6867 }
9036c102
YZ
6868 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6869 if (found_key.objectid != objectid ||
6870 found_key.type != BTRFS_EXTENT_DATA_KEY)
6871 goto not_found;
6872 if (start + len <= found_key.offset)
6873 goto not_found;
e2eca69d
WS
6874 if (start > found_key.offset)
6875 goto next;
9036c102 6876 em->start = start;
70c8a91c 6877 em->orig_start = start;
9036c102
YZ
6878 em->len = found_key.offset - start;
6879 goto not_found_em;
6880 }
6881
7ffbb598
FM
6882 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6883
d899e052
YZ
6884 if (found_type == BTRFS_FILE_EXTENT_REG ||
6885 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6886 goto insert;
6887 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6888 unsigned long ptr;
a52d9a80 6889 char *map;
3326d1b0
CM
6890 size_t size;
6891 size_t extent_offset;
6892 size_t copy_size;
a52d9a80 6893
7ffbb598 6894 if (new_inline)
689f9346 6895 goto out;
5f39d397 6896
514ac8ad 6897 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6898 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6899 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6900 size - extent_offset);
3326d1b0 6901 em->start = extent_start + extent_offset;
fda2832f 6902 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6903 em->orig_block_len = em->len;
70c8a91c 6904 em->orig_start = em->start;
689f9346 6905 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6906 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6907 if (btrfs_file_extent_compression(leaf, item) !=
6908 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6909 ret = uncompress_inline(path, inode, page,
6910 pg_offset,
6911 extent_offset, item);
166ae5a4
ZB
6912 if (ret) {
6913 err = ret;
6914 goto out;
6915 }
c8b97818
CM
6916 } else {
6917 map = kmap(page);
6918 read_extent_buffer(leaf, map + pg_offset, ptr,
6919 copy_size);
93c82d57
CM
6920 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6921 memset(map + pg_offset + copy_size, 0,
6922 PAGE_CACHE_SIZE - pg_offset -
6923 copy_size);
6924 }
c8b97818
CM
6925 kunmap(page);
6926 }
179e29e4
CM
6927 flush_dcache_page(page);
6928 } else if (create && PageUptodate(page)) {
6bf7e080 6929 BUG();
179e29e4
CM
6930 if (!trans) {
6931 kunmap(page);
6932 free_extent_map(em);
6933 em = NULL;
ff5714cc 6934
b3b4aa74 6935 btrfs_release_path(path);
7a7eaa40 6936 trans = btrfs_join_transaction(root);
ff5714cc 6937
3612b495
TI
6938 if (IS_ERR(trans))
6939 return ERR_CAST(trans);
179e29e4
CM
6940 goto again;
6941 }
c8b97818 6942 map = kmap(page);
70dec807 6943 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6944 copy_size);
c8b97818 6945 kunmap(page);
179e29e4 6946 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6947 }
d1310b2e 6948 set_extent_uptodate(io_tree, em->start,
507903b8 6949 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6950 goto insert;
a52d9a80
CM
6951 }
6952not_found:
6953 em->start = start;
70c8a91c 6954 em->orig_start = start;
d1310b2e 6955 em->len = len;
a52d9a80 6956not_found_em:
5f39d397 6957 em->block_start = EXTENT_MAP_HOLE;
9036c102 6958 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6959insert:
b3b4aa74 6960 btrfs_release_path(path);
d1310b2e 6961 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6962 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6963 em->start, em->len, start, len);
a52d9a80
CM
6964 err = -EIO;
6965 goto out;
6966 }
d1310b2e
CM
6967
6968 err = 0;
890871be 6969 write_lock(&em_tree->lock);
09a2a8f9 6970 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6971 /* it is possible that someone inserted the extent into the tree
6972 * while we had the lock dropped. It is also possible that
6973 * an overlapping map exists in the tree
6974 */
a52d9a80 6975 if (ret == -EEXIST) {
3b951516 6976 struct extent_map *existing;
e6dcd2dc
CM
6977
6978 ret = 0;
6979
e6c4efd8
QW
6980 existing = search_extent_mapping(em_tree, start, len);
6981 /*
6982 * existing will always be non-NULL, since there must be
6983 * extent causing the -EEXIST.
6984 */
6985 if (start >= extent_map_end(existing) ||
32be3a1a 6986 start <= existing->start) {
e6c4efd8
QW
6987 /*
6988 * The existing extent map is the one nearest to
6989 * the [start, start + len) range which overlaps
6990 */
6991 err = merge_extent_mapping(em_tree, existing,
6992 em, start);
e1c4b745 6993 free_extent_map(existing);
e6c4efd8 6994 if (err) {
3b951516
CM
6995 free_extent_map(em);
6996 em = NULL;
6997 }
6998 } else {
6999 free_extent_map(em);
7000 em = existing;
e6dcd2dc 7001 err = 0;
a52d9a80 7002 }
a52d9a80 7003 }
890871be 7004 write_unlock(&em_tree->lock);
a52d9a80 7005out:
1abe9b8a 7006
4cd8587c 7007 trace_btrfs_get_extent(root, em);
1abe9b8a 7008
527afb44 7009 btrfs_free_path(path);
a52d9a80
CM
7010 if (trans) {
7011 ret = btrfs_end_transaction(trans, root);
d397712b 7012 if (!err)
a52d9a80
CM
7013 err = ret;
7014 }
a52d9a80
CM
7015 if (err) {
7016 free_extent_map(em);
a52d9a80
CM
7017 return ERR_PTR(err);
7018 }
79787eaa 7019 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7020 return em;
7021}
7022
ec29ed5b
CM
7023struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7024 size_t pg_offset, u64 start, u64 len,
7025 int create)
7026{
7027 struct extent_map *em;
7028 struct extent_map *hole_em = NULL;
7029 u64 range_start = start;
7030 u64 end;
7031 u64 found;
7032 u64 found_end;
7033 int err = 0;
7034
7035 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7036 if (IS_ERR(em))
7037 return em;
7038 if (em) {
7039 /*
f9e4fb53
LB
7040 * if our em maps to
7041 * - a hole or
7042 * - a pre-alloc extent,
7043 * there might actually be delalloc bytes behind it.
ec29ed5b 7044 */
f9e4fb53
LB
7045 if (em->block_start != EXTENT_MAP_HOLE &&
7046 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7047 return em;
7048 else
7049 hole_em = em;
7050 }
7051
7052 /* check to see if we've wrapped (len == -1 or similar) */
7053 end = start + len;
7054 if (end < start)
7055 end = (u64)-1;
7056 else
7057 end -= 1;
7058
7059 em = NULL;
7060
7061 /* ok, we didn't find anything, lets look for delalloc */
7062 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7063 end, len, EXTENT_DELALLOC, 1);
7064 found_end = range_start + found;
7065 if (found_end < range_start)
7066 found_end = (u64)-1;
7067
7068 /*
7069 * we didn't find anything useful, return
7070 * the original results from get_extent()
7071 */
7072 if (range_start > end || found_end <= start) {
7073 em = hole_em;
7074 hole_em = NULL;
7075 goto out;
7076 }
7077
7078 /* adjust the range_start to make sure it doesn't
7079 * go backwards from the start they passed in
7080 */
67871254 7081 range_start = max(start, range_start);
ec29ed5b
CM
7082 found = found_end - range_start;
7083
7084 if (found > 0) {
7085 u64 hole_start = start;
7086 u64 hole_len = len;
7087
172ddd60 7088 em = alloc_extent_map();
ec29ed5b
CM
7089 if (!em) {
7090 err = -ENOMEM;
7091 goto out;
7092 }
7093 /*
7094 * when btrfs_get_extent can't find anything it
7095 * returns one huge hole
7096 *
7097 * make sure what it found really fits our range, and
7098 * adjust to make sure it is based on the start from
7099 * the caller
7100 */
7101 if (hole_em) {
7102 u64 calc_end = extent_map_end(hole_em);
7103
7104 if (calc_end <= start || (hole_em->start > end)) {
7105 free_extent_map(hole_em);
7106 hole_em = NULL;
7107 } else {
7108 hole_start = max(hole_em->start, start);
7109 hole_len = calc_end - hole_start;
7110 }
7111 }
7112 em->bdev = NULL;
7113 if (hole_em && range_start > hole_start) {
7114 /* our hole starts before our delalloc, so we
7115 * have to return just the parts of the hole
7116 * that go until the delalloc starts
7117 */
7118 em->len = min(hole_len,
7119 range_start - hole_start);
7120 em->start = hole_start;
7121 em->orig_start = hole_start;
7122 /*
7123 * don't adjust block start at all,
7124 * it is fixed at EXTENT_MAP_HOLE
7125 */
7126 em->block_start = hole_em->block_start;
7127 em->block_len = hole_len;
f9e4fb53
LB
7128 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7129 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7130 } else {
7131 em->start = range_start;
7132 em->len = found;
7133 em->orig_start = range_start;
7134 em->block_start = EXTENT_MAP_DELALLOC;
7135 em->block_len = found;
7136 }
7137 } else if (hole_em) {
7138 return hole_em;
7139 }
7140out:
7141
7142 free_extent_map(hole_em);
7143 if (err) {
7144 free_extent_map(em);
7145 return ERR_PTR(err);
7146 }
7147 return em;
7148}
7149
4b46fce2
JB
7150static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7151 u64 start, u64 len)
7152{
7153 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7154 struct extent_map *em;
4b46fce2
JB
7155 struct btrfs_key ins;
7156 u64 alloc_hint;
7157 int ret;
4b46fce2 7158
4b46fce2 7159 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7160 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7161 alloc_hint, &ins, 1, 1);
00361589
JB
7162 if (ret)
7163 return ERR_PTR(ret);
4b46fce2 7164
70c8a91c 7165 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 7166 ins.offset, ins.offset, ins.offset, 0);
00361589 7167 if (IS_ERR(em)) {
e570fd27 7168 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7169 return em;
7170 }
4b46fce2
JB
7171
7172 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7173 ins.offset, ins.offset, 0);
7174 if (ret) {
e570fd27 7175 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7176 free_extent_map(em);
7177 return ERR_PTR(ret);
4b46fce2 7178 }
00361589 7179
4b46fce2
JB
7180 return em;
7181}
7182
46bfbb5c
CM
7183/*
7184 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7185 * block must be cow'd
7186 */
00361589 7187noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7188 u64 *orig_start, u64 *orig_block_len,
7189 u64 *ram_bytes)
46bfbb5c 7190{
00361589 7191 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7192 struct btrfs_path *path;
7193 int ret;
7194 struct extent_buffer *leaf;
7195 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7196 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7197 struct btrfs_file_extent_item *fi;
7198 struct btrfs_key key;
7199 u64 disk_bytenr;
7200 u64 backref_offset;
7201 u64 extent_end;
7202 u64 num_bytes;
7203 int slot;
7204 int found_type;
7ee9e440 7205 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7206
46bfbb5c
CM
7207 path = btrfs_alloc_path();
7208 if (!path)
7209 return -ENOMEM;
7210
00361589 7211 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7212 offset, 0);
7213 if (ret < 0)
7214 goto out;
7215
7216 slot = path->slots[0];
7217 if (ret == 1) {
7218 if (slot == 0) {
7219 /* can't find the item, must cow */
7220 ret = 0;
7221 goto out;
7222 }
7223 slot--;
7224 }
7225 ret = 0;
7226 leaf = path->nodes[0];
7227 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7228 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7229 key.type != BTRFS_EXTENT_DATA_KEY) {
7230 /* not our file or wrong item type, must cow */
7231 goto out;
7232 }
7233
7234 if (key.offset > offset) {
7235 /* Wrong offset, must cow */
7236 goto out;
7237 }
7238
7239 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7240 found_type = btrfs_file_extent_type(leaf, fi);
7241 if (found_type != BTRFS_FILE_EXTENT_REG &&
7242 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7243 /* not a regular extent, must cow */
7244 goto out;
7245 }
7ee9e440
JB
7246
7247 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7248 goto out;
7249
e77751aa
MX
7250 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7251 if (extent_end <= offset)
7252 goto out;
7253
46bfbb5c 7254 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7255 if (disk_bytenr == 0)
7256 goto out;
7257
7258 if (btrfs_file_extent_compression(leaf, fi) ||
7259 btrfs_file_extent_encryption(leaf, fi) ||
7260 btrfs_file_extent_other_encoding(leaf, fi))
7261 goto out;
7262
46bfbb5c
CM
7263 backref_offset = btrfs_file_extent_offset(leaf, fi);
7264
7ee9e440
JB
7265 if (orig_start) {
7266 *orig_start = key.offset - backref_offset;
7267 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7268 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7269 }
eb384b55 7270
46bfbb5c
CM
7271 if (btrfs_extent_readonly(root, disk_bytenr))
7272 goto out;
7b2b7085
MX
7273
7274 num_bytes = min(offset + *len, extent_end) - offset;
7275 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7276 u64 range_end;
7277
7278 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7279 ret = test_range_bit(io_tree, offset, range_end,
7280 EXTENT_DELALLOC, 0, NULL);
7281 if (ret) {
7282 ret = -EAGAIN;
7283 goto out;
7284 }
7285 }
7286
1bda19eb 7287 btrfs_release_path(path);
46bfbb5c
CM
7288
7289 /*
7290 * look for other files referencing this extent, if we
7291 * find any we must cow
7292 */
00361589
JB
7293 trans = btrfs_join_transaction(root);
7294 if (IS_ERR(trans)) {
7295 ret = 0;
46bfbb5c 7296 goto out;
00361589
JB
7297 }
7298
7299 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7300 key.offset - backref_offset, disk_bytenr);
7301 btrfs_end_transaction(trans, root);
7302 if (ret) {
7303 ret = 0;
7304 goto out;
7305 }
46bfbb5c
CM
7306
7307 /*
7308 * adjust disk_bytenr and num_bytes to cover just the bytes
7309 * in this extent we are about to write. If there
7310 * are any csums in that range we have to cow in order
7311 * to keep the csums correct
7312 */
7313 disk_bytenr += backref_offset;
7314 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7315 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7316 goto out;
7317 /*
7318 * all of the above have passed, it is safe to overwrite this extent
7319 * without cow
7320 */
eb384b55 7321 *len = num_bytes;
46bfbb5c
CM
7322 ret = 1;
7323out:
7324 btrfs_free_path(path);
7325 return ret;
7326}
7327
fc4adbff
AG
7328bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7329{
7330 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7331 int found = false;
7332 void **pagep = NULL;
7333 struct page *page = NULL;
7334 int start_idx;
7335 int end_idx;
7336
7337 start_idx = start >> PAGE_CACHE_SHIFT;
7338
7339 /*
7340 * end is the last byte in the last page. end == start is legal
7341 */
7342 end_idx = end >> PAGE_CACHE_SHIFT;
7343
7344 rcu_read_lock();
7345
7346 /* Most of the code in this while loop is lifted from
7347 * find_get_page. It's been modified to begin searching from a
7348 * page and return just the first page found in that range. If the
7349 * found idx is less than or equal to the end idx then we know that
7350 * a page exists. If no pages are found or if those pages are
7351 * outside of the range then we're fine (yay!) */
7352 while (page == NULL &&
7353 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7354 page = radix_tree_deref_slot(pagep);
7355 if (unlikely(!page))
7356 break;
7357
7358 if (radix_tree_exception(page)) {
809f9016
FM
7359 if (radix_tree_deref_retry(page)) {
7360 page = NULL;
fc4adbff 7361 continue;
809f9016 7362 }
fc4adbff
AG
7363 /*
7364 * Otherwise, shmem/tmpfs must be storing a swap entry
7365 * here as an exceptional entry: so return it without
7366 * attempting to raise page count.
7367 */
6fdef6d4 7368 page = NULL;
fc4adbff
AG
7369 break; /* TODO: Is this relevant for this use case? */
7370 }
7371
91405151
FM
7372 if (!page_cache_get_speculative(page)) {
7373 page = NULL;
fc4adbff 7374 continue;
91405151 7375 }
fc4adbff
AG
7376
7377 /*
7378 * Has the page moved?
7379 * This is part of the lockless pagecache protocol. See
7380 * include/linux/pagemap.h for details.
7381 */
7382 if (unlikely(page != *pagep)) {
7383 page_cache_release(page);
7384 page = NULL;
7385 }
7386 }
7387
7388 if (page) {
7389 if (page->index <= end_idx)
7390 found = true;
7391 page_cache_release(page);
7392 }
7393
7394 rcu_read_unlock();
7395 return found;
7396}
7397
eb838e73
JB
7398static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7399 struct extent_state **cached_state, int writing)
7400{
7401 struct btrfs_ordered_extent *ordered;
7402 int ret = 0;
7403
7404 while (1) {
7405 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7406 0, cached_state);
7407 /*
7408 * We're concerned with the entire range that we're going to be
7409 * doing DIO to, so we need to make sure theres no ordered
7410 * extents in this range.
7411 */
7412 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7413 lockend - lockstart + 1);
7414
7415 /*
7416 * We need to make sure there are no buffered pages in this
7417 * range either, we could have raced between the invalidate in
7418 * generic_file_direct_write and locking the extent. The
7419 * invalidate needs to happen so that reads after a write do not
7420 * get stale data.
7421 */
fc4adbff
AG
7422 if (!ordered &&
7423 (!writing ||
7424 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7425 break;
7426
7427 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7428 cached_state, GFP_NOFS);
7429
7430 if (ordered) {
7431 btrfs_start_ordered_extent(inode, ordered, 1);
7432 btrfs_put_ordered_extent(ordered);
7433 } else {
7434 /* Screw you mmap */
728404da 7435 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
075bdbdb
FM
7436 if (ret)
7437 break;
7438 ret = filemap_fdatawait_range(inode->i_mapping,
7439 lockstart,
7440 lockend);
eb838e73
JB
7441 if (ret)
7442 break;
7443
7444 /*
7445 * If we found a page that couldn't be invalidated just
7446 * fall back to buffered.
7447 */
7448 ret = invalidate_inode_pages2_range(inode->i_mapping,
7449 lockstart >> PAGE_CACHE_SHIFT,
7450 lockend >> PAGE_CACHE_SHIFT);
7451 if (ret)
7452 break;
7453 }
7454
7455 cond_resched();
7456 }
7457
7458 return ret;
7459}
7460
69ffb543
JB
7461static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7462 u64 len, u64 orig_start,
7463 u64 block_start, u64 block_len,
cc95bef6
JB
7464 u64 orig_block_len, u64 ram_bytes,
7465 int type)
69ffb543
JB
7466{
7467 struct extent_map_tree *em_tree;
7468 struct extent_map *em;
7469 struct btrfs_root *root = BTRFS_I(inode)->root;
7470 int ret;
7471
7472 em_tree = &BTRFS_I(inode)->extent_tree;
7473 em = alloc_extent_map();
7474 if (!em)
7475 return ERR_PTR(-ENOMEM);
7476
7477 em->start = start;
7478 em->orig_start = orig_start;
2ab28f32
JB
7479 em->mod_start = start;
7480 em->mod_len = len;
69ffb543
JB
7481 em->len = len;
7482 em->block_len = block_len;
7483 em->block_start = block_start;
7484 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7485 em->orig_block_len = orig_block_len;
cc95bef6 7486 em->ram_bytes = ram_bytes;
70c8a91c 7487 em->generation = -1;
69ffb543
JB
7488 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7489 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7490 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7491
7492 do {
7493 btrfs_drop_extent_cache(inode, em->start,
7494 em->start + em->len - 1, 0);
7495 write_lock(&em_tree->lock);
09a2a8f9 7496 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7497 write_unlock(&em_tree->lock);
7498 } while (ret == -EEXIST);
7499
7500 if (ret) {
7501 free_extent_map(em);
7502 return ERR_PTR(ret);
7503 }
7504
7505 return em;
7506}
7507
50745b0a 7508struct btrfs_dio_data {
7509 u64 outstanding_extents;
7510 u64 reserve;
7511};
69ffb543 7512
4b46fce2
JB
7513static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7514 struct buffer_head *bh_result, int create)
7515{
7516 struct extent_map *em;
7517 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7518 struct extent_state *cached_state = NULL;
50745b0a 7519 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7520 u64 start = iblock << inode->i_blkbits;
eb838e73 7521 u64 lockstart, lockend;
4b46fce2 7522 u64 len = bh_result->b_size;
eb838e73 7523 int unlock_bits = EXTENT_LOCKED;
0934856d 7524 int ret = 0;
eb838e73 7525
172a5049 7526 if (create)
3266789f 7527 unlock_bits |= EXTENT_DIRTY;
172a5049 7528 else
c329861d 7529 len = min_t(u64, len, root->sectorsize);
eb838e73 7530
c329861d
JB
7531 lockstart = start;
7532 lockend = start + len - 1;
7533
e1cbbfa5
JB
7534 if (current->journal_info) {
7535 /*
7536 * Need to pull our outstanding extents and set journal_info to NULL so
7537 * that anything that needs to check if there's a transction doesn't get
7538 * confused.
7539 */
50745b0a 7540 dio_data = current->journal_info;
e1cbbfa5
JB
7541 current->journal_info = NULL;
7542 }
7543
eb838e73
JB
7544 /*
7545 * If this errors out it's because we couldn't invalidate pagecache for
7546 * this range and we need to fallback to buffered.
7547 */
7548 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7549 return -ENOTBLK;
7550
4b46fce2 7551 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7552 if (IS_ERR(em)) {
7553 ret = PTR_ERR(em);
7554 goto unlock_err;
7555 }
4b46fce2
JB
7556
7557 /*
7558 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7559 * io. INLINE is special, and we could probably kludge it in here, but
7560 * it's still buffered so for safety lets just fall back to the generic
7561 * buffered path.
7562 *
7563 * For COMPRESSED we _have_ to read the entire extent in so we can
7564 * decompress it, so there will be buffering required no matter what we
7565 * do, so go ahead and fallback to buffered.
7566 *
7567 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7568 * to buffered IO. Don't blame me, this is the price we pay for using
7569 * the generic code.
7570 */
7571 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7572 em->block_start == EXTENT_MAP_INLINE) {
7573 free_extent_map(em);
eb838e73
JB
7574 ret = -ENOTBLK;
7575 goto unlock_err;
4b46fce2
JB
7576 }
7577
7578 /* Just a good old fashioned hole, return */
7579 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7580 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7581 free_extent_map(em);
eb838e73 7582 goto unlock_err;
4b46fce2
JB
7583 }
7584
7585 /*
7586 * We don't allocate a new extent in the following cases
7587 *
7588 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7589 * existing extent.
7590 * 2) The extent is marked as PREALLOC. We're good to go here and can
7591 * just use the extent.
7592 *
7593 */
46bfbb5c 7594 if (!create) {
eb838e73
JB
7595 len = min(len, em->len - (start - em->start));
7596 lockstart = start + len;
7597 goto unlock;
46bfbb5c 7598 }
4b46fce2
JB
7599
7600 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7601 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7602 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7603 int type;
eb384b55 7604 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7605
7606 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7607 type = BTRFS_ORDERED_PREALLOC;
7608 else
7609 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7610 len = min(len, em->len - (start - em->start));
4b46fce2 7611 block_start = em->block_start + (start - em->start);
46bfbb5c 7612
00361589 7613 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7614 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7615 if (type == BTRFS_ORDERED_PREALLOC) {
7616 free_extent_map(em);
7617 em = create_pinned_em(inode, start, len,
7618 orig_start,
b4939680 7619 block_start, len,
cc95bef6
JB
7620 orig_block_len,
7621 ram_bytes, type);
555e1286
FM
7622 if (IS_ERR(em)) {
7623 ret = PTR_ERR(em);
69ffb543 7624 goto unlock_err;
555e1286 7625 }
69ffb543
JB
7626 }
7627
46bfbb5c
CM
7628 ret = btrfs_add_ordered_extent_dio(inode, start,
7629 block_start, len, len, type);
46bfbb5c
CM
7630 if (ret) {
7631 free_extent_map(em);
eb838e73 7632 goto unlock_err;
46bfbb5c
CM
7633 }
7634 goto unlock;
4b46fce2 7635 }
4b46fce2 7636 }
00361589 7637
46bfbb5c
CM
7638 /*
7639 * this will cow the extent, reset the len in case we changed
7640 * it above
7641 */
7642 len = bh_result->b_size;
70c8a91c
JB
7643 free_extent_map(em);
7644 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7645 if (IS_ERR(em)) {
7646 ret = PTR_ERR(em);
7647 goto unlock_err;
7648 }
46bfbb5c
CM
7649 len = min(len, em->len - (start - em->start));
7650unlock:
4b46fce2
JB
7651 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7652 inode->i_blkbits;
46bfbb5c 7653 bh_result->b_size = len;
4b46fce2
JB
7654 bh_result->b_bdev = em->bdev;
7655 set_buffer_mapped(bh_result);
c3473e83
JB
7656 if (create) {
7657 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7658 set_buffer_new(bh_result);
7659
7660 /*
7661 * Need to update the i_size under the extent lock so buffered
7662 * readers will get the updated i_size when we unlock.
7663 */
7664 if (start + len > i_size_read(inode))
7665 i_size_write(inode, start + len);
0934856d 7666
e1cbbfa5
JB
7667 /*
7668 * If we have an outstanding_extents count still set then we're
7669 * within our reservation, otherwise we need to adjust our inode
7670 * counter appropriately.
7671 */
50745b0a 7672 if (dio_data->outstanding_extents) {
7673 (dio_data->outstanding_extents)--;
e1cbbfa5 7674 } else {
3e05bde8
JB
7675 spin_lock(&BTRFS_I(inode)->lock);
7676 BTRFS_I(inode)->outstanding_extents++;
7677 spin_unlock(&BTRFS_I(inode)->lock);
7678 }
e1cbbfa5 7679
7cf5b976 7680 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7681 WARN_ON(dio_data->reserve < len);
7682 dio_data->reserve -= len;
7683 current->journal_info = dio_data;
c3473e83 7684 }
4b46fce2 7685
eb838e73
JB
7686 /*
7687 * In the case of write we need to clear and unlock the entire range,
7688 * in the case of read we need to unlock only the end area that we
7689 * aren't using if there is any left over space.
7690 */
24c03fa5 7691 if (lockstart < lockend) {
0934856d
MX
7692 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7693 lockend, unlock_bits, 1, 0,
7694 &cached_state, GFP_NOFS);
24c03fa5 7695 } else {
eb838e73 7696 free_extent_state(cached_state);
24c03fa5 7697 }
eb838e73 7698
4b46fce2
JB
7699 free_extent_map(em);
7700
7701 return 0;
eb838e73
JB
7702
7703unlock_err:
eb838e73
JB
7704 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7705 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
50745b0a 7706 if (dio_data)
7707 current->journal_info = dio_data;
eb838e73 7708 return ret;
4b46fce2
JB
7709}
7710
8b110e39
MX
7711static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7712 int rw, int mirror_num)
7713{
7714 struct btrfs_root *root = BTRFS_I(inode)->root;
7715 int ret;
7716
7717 BUG_ON(rw & REQ_WRITE);
7718
7719 bio_get(bio);
7720
7721 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7722 BTRFS_WQ_ENDIO_DIO_REPAIR);
7723 if (ret)
7724 goto err;
7725
7726 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7727err:
7728 bio_put(bio);
7729 return ret;
7730}
7731
7732static int btrfs_check_dio_repairable(struct inode *inode,
7733 struct bio *failed_bio,
7734 struct io_failure_record *failrec,
7735 int failed_mirror)
7736{
7737 int num_copies;
7738
7739 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7740 failrec->logical, failrec->len);
7741 if (num_copies == 1) {
7742 /*
7743 * we only have a single copy of the data, so don't bother with
7744 * all the retry and error correction code that follows. no
7745 * matter what the error is, it is very likely to persist.
7746 */
7747 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7748 num_copies, failrec->this_mirror, failed_mirror);
7749 return 0;
7750 }
7751
7752 failrec->failed_mirror = failed_mirror;
7753 failrec->this_mirror++;
7754 if (failrec->this_mirror == failed_mirror)
7755 failrec->this_mirror++;
7756
7757 if (failrec->this_mirror > num_copies) {
7758 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7759 num_copies, failrec->this_mirror, failed_mirror);
7760 return 0;
7761 }
7762
7763 return 1;
7764}
7765
7766static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7767 struct page *page, u64 start, u64 end,
7768 int failed_mirror, bio_end_io_t *repair_endio,
7769 void *repair_arg)
7770{
7771 struct io_failure_record *failrec;
7772 struct bio *bio;
7773 int isector;
7774 int read_mode;
7775 int ret;
7776
7777 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7778
7779 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7780 if (ret)
7781 return ret;
7782
7783 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7784 failed_mirror);
7785 if (!ret) {
7786 free_io_failure(inode, failrec);
7787 return -EIO;
7788 }
7789
7790 if (failed_bio->bi_vcnt > 1)
7791 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7792 else
7793 read_mode = READ_SYNC;
7794
7795 isector = start - btrfs_io_bio(failed_bio)->logical;
7796 isector >>= inode->i_sb->s_blocksize_bits;
7797 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7798 0, isector, repair_endio, repair_arg);
7799 if (!bio) {
7800 free_io_failure(inode, failrec);
7801 return -EIO;
7802 }
7803
7804 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7805 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7806 read_mode, failrec->this_mirror, failrec->in_validation);
7807
7808 ret = submit_dio_repair_bio(inode, bio, read_mode,
7809 failrec->this_mirror);
7810 if (ret) {
7811 free_io_failure(inode, failrec);
7812 bio_put(bio);
7813 }
7814
7815 return ret;
7816}
7817
7818struct btrfs_retry_complete {
7819 struct completion done;
7820 struct inode *inode;
7821 u64 start;
7822 int uptodate;
7823};
7824
4246a0b6 7825static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7826{
7827 struct btrfs_retry_complete *done = bio->bi_private;
7828 struct bio_vec *bvec;
7829 int i;
7830
4246a0b6 7831 if (bio->bi_error)
8b110e39
MX
7832 goto end;
7833
7834 done->uptodate = 1;
7835 bio_for_each_segment_all(bvec, bio, i)
7836 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7837end:
7838 complete(&done->done);
7839 bio_put(bio);
7840}
7841
7842static int __btrfs_correct_data_nocsum(struct inode *inode,
7843 struct btrfs_io_bio *io_bio)
4b46fce2 7844{
2c30c71b 7845 struct bio_vec *bvec;
8b110e39 7846 struct btrfs_retry_complete done;
4b46fce2 7847 u64 start;
2c30c71b 7848 int i;
c1dc0896 7849 int ret;
4b46fce2 7850
8b110e39
MX
7851 start = io_bio->logical;
7852 done.inode = inode;
7853
7854 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7855try_again:
7856 done.uptodate = 0;
7857 done.start = start;
7858 init_completion(&done.done);
7859
7860 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7861 start + bvec->bv_len - 1,
7862 io_bio->mirror_num,
7863 btrfs_retry_endio_nocsum, &done);
7864 if (ret)
7865 return ret;
7866
7867 wait_for_completion(&done.done);
7868
7869 if (!done.uptodate) {
7870 /* We might have another mirror, so try again */
7871 goto try_again;
7872 }
7873
7874 start += bvec->bv_len;
7875 }
7876
7877 return 0;
7878}
7879
4246a0b6 7880static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7881{
7882 struct btrfs_retry_complete *done = bio->bi_private;
7883 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7884 struct bio_vec *bvec;
7885 int uptodate;
7886 int ret;
7887 int i;
7888
4246a0b6 7889 if (bio->bi_error)
8b110e39
MX
7890 goto end;
7891
7892 uptodate = 1;
7893 bio_for_each_segment_all(bvec, bio, i) {
7894 ret = __readpage_endio_check(done->inode, io_bio, i,
7895 bvec->bv_page, 0,
7896 done->start, bvec->bv_len);
7897 if (!ret)
7898 clean_io_failure(done->inode, done->start,
7899 bvec->bv_page, 0);
7900 else
7901 uptodate = 0;
7902 }
7903
7904 done->uptodate = uptodate;
7905end:
7906 complete(&done->done);
7907 bio_put(bio);
7908}
7909
7910static int __btrfs_subio_endio_read(struct inode *inode,
7911 struct btrfs_io_bio *io_bio, int err)
7912{
7913 struct bio_vec *bvec;
7914 struct btrfs_retry_complete done;
7915 u64 start;
7916 u64 offset = 0;
7917 int i;
7918 int ret;
dc380aea 7919
8b110e39 7920 err = 0;
c1dc0896 7921 start = io_bio->logical;
8b110e39
MX
7922 done.inode = inode;
7923
c1dc0896 7924 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7925 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7926 0, start, bvec->bv_len);
8b110e39
MX
7927 if (likely(!ret))
7928 goto next;
7929try_again:
7930 done.uptodate = 0;
7931 done.start = start;
7932 init_completion(&done.done);
7933
7934 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7935 start + bvec->bv_len - 1,
7936 io_bio->mirror_num,
7937 btrfs_retry_endio, &done);
7938 if (ret) {
7939 err = ret;
7940 goto next;
7941 }
7942
7943 wait_for_completion(&done.done);
7944
7945 if (!done.uptodate) {
7946 /* We might have another mirror, so try again */
7947 goto try_again;
7948 }
7949next:
7950 offset += bvec->bv_len;
4b46fce2 7951 start += bvec->bv_len;
2c30c71b 7952 }
c1dc0896
MX
7953
7954 return err;
7955}
7956
8b110e39
MX
7957static int btrfs_subio_endio_read(struct inode *inode,
7958 struct btrfs_io_bio *io_bio, int err)
7959{
7960 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7961
7962 if (skip_csum) {
7963 if (unlikely(err))
7964 return __btrfs_correct_data_nocsum(inode, io_bio);
7965 else
7966 return 0;
7967 } else {
7968 return __btrfs_subio_endio_read(inode, io_bio, err);
7969 }
7970}
7971
4246a0b6 7972static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
7973{
7974 struct btrfs_dio_private *dip = bio->bi_private;
7975 struct inode *inode = dip->inode;
7976 struct bio *dio_bio;
7977 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 7978 int err = bio->bi_error;
c1dc0896 7979
8b110e39
MX
7980 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7981 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 7982
4b46fce2 7983 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7984 dip->logical_offset + dip->bytes - 1);
9be3395b 7985 dio_bio = dip->dio_bio;
4b46fce2 7986
4b46fce2 7987 kfree(dip);
c0da7aa1 7988
4246a0b6 7989 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
7990
7991 if (io_bio->end_io)
7992 io_bio->end_io(io_bio, err);
9be3395b 7993 bio_put(bio);
4b46fce2
JB
7994}
7995
4246a0b6 7996static void btrfs_endio_direct_write(struct bio *bio)
4b46fce2
JB
7997{
7998 struct btrfs_dio_private *dip = bio->bi_private;
7999 struct inode *inode = dip->inode;
8000 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8001 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
8002 u64 ordered_offset = dip->logical_offset;
8003 u64 ordered_bytes = dip->bytes;
9be3395b 8004 struct bio *dio_bio;
4b46fce2
JB
8005 int ret;
8006
163cf09c
CM
8007again:
8008 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8009 &ordered_offset,
4246a0b6
CH
8010 ordered_bytes,
8011 !bio->bi_error);
4b46fce2 8012 if (!ret)
163cf09c 8013 goto out_test;
4b46fce2 8014
9e0af237
LB
8015 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8016 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8017 btrfs_queue_work(root->fs_info->endio_write_workers,
8018 &ordered->work);
163cf09c
CM
8019out_test:
8020 /*
8021 * our bio might span multiple ordered extents. If we haven't
8022 * completed the accounting for the whole dio, go back and try again
8023 */
8024 if (ordered_offset < dip->logical_offset + dip->bytes) {
8025 ordered_bytes = dip->logical_offset + dip->bytes -
8026 ordered_offset;
5fd02043 8027 ordered = NULL;
163cf09c
CM
8028 goto again;
8029 }
9be3395b 8030 dio_bio = dip->dio_bio;
4b46fce2 8031
4b46fce2 8032 kfree(dip);
c0da7aa1 8033
4246a0b6 8034 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8035 bio_put(bio);
4b46fce2
JB
8036}
8037
eaf25d93
CM
8038static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8039 struct bio *bio, int mirror_num,
8040 unsigned long bio_flags, u64 offset)
8041{
8042 int ret;
8043 struct btrfs_root *root = BTRFS_I(inode)->root;
8044 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8045 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8046 return 0;
8047}
8048
4246a0b6 8049static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8050{
8051 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8052 int err = bio->bi_error;
e65e1535 8053
8b110e39
MX
8054 if (err)
8055 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8056 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8057 btrfs_ino(dip->inode), bio->bi_rw,
8058 (unsigned long long)bio->bi_iter.bi_sector,
8059 bio->bi_iter.bi_size, err);
8060
8061 if (dip->subio_endio)
8062 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8063
8064 if (err) {
e65e1535
MX
8065 dip->errors = 1;
8066
8067 /*
8068 * before atomic variable goto zero, we must make sure
8069 * dip->errors is perceived to be set.
8070 */
4e857c58 8071 smp_mb__before_atomic();
e65e1535
MX
8072 }
8073
8074 /* if there are more bios still pending for this dio, just exit */
8075 if (!atomic_dec_and_test(&dip->pending_bios))
8076 goto out;
8077
9be3395b 8078 if (dip->errors) {
e65e1535 8079 bio_io_error(dip->orig_bio);
9be3395b 8080 } else {
4246a0b6
CH
8081 dip->dio_bio->bi_error = 0;
8082 bio_endio(dip->orig_bio);
e65e1535
MX
8083 }
8084out:
8085 bio_put(bio);
8086}
8087
8088static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8089 u64 first_sector, gfp_t gfp_flags)
8090{
da2f0f74 8091 struct bio *bio;
22365979 8092 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8093 if (bio)
8094 bio_associate_current(bio);
8095 return bio;
e65e1535
MX
8096}
8097
c1dc0896
MX
8098static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8099 struct inode *inode,
8100 struct btrfs_dio_private *dip,
8101 struct bio *bio,
8102 u64 file_offset)
8103{
8104 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8105 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8106 int ret;
8107
8108 /*
8109 * We load all the csum data we need when we submit
8110 * the first bio to reduce the csum tree search and
8111 * contention.
8112 */
8113 if (dip->logical_offset == file_offset) {
8114 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8115 file_offset);
8116 if (ret)
8117 return ret;
8118 }
8119
8120 if (bio == dip->orig_bio)
8121 return 0;
8122
8123 file_offset -= dip->logical_offset;
8124 file_offset >>= inode->i_sb->s_blocksize_bits;
8125 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8126
8127 return 0;
8128}
8129
e65e1535
MX
8130static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8131 int rw, u64 file_offset, int skip_sum,
c329861d 8132 int async_submit)
e65e1535 8133{
facc8a22 8134 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8135 int write = rw & REQ_WRITE;
8136 struct btrfs_root *root = BTRFS_I(inode)->root;
8137 int ret;
8138
b812ce28
JB
8139 if (async_submit)
8140 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8141
e65e1535 8142 bio_get(bio);
5fd02043
JB
8143
8144 if (!write) {
bfebd8b5
DS
8145 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8146 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8147 if (ret)
8148 goto err;
8149 }
e65e1535 8150
1ae39938
JB
8151 if (skip_sum)
8152 goto map;
8153
8154 if (write && async_submit) {
e65e1535
MX
8155 ret = btrfs_wq_submit_bio(root->fs_info,
8156 inode, rw, bio, 0, 0,
8157 file_offset,
8158 __btrfs_submit_bio_start_direct_io,
8159 __btrfs_submit_bio_done);
8160 goto err;
1ae39938
JB
8161 } else if (write) {
8162 /*
8163 * If we aren't doing async submit, calculate the csum of the
8164 * bio now.
8165 */
8166 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8167 if (ret)
8168 goto err;
23ea8e5a 8169 } else {
c1dc0896
MX
8170 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8171 file_offset);
c2db1073
TI
8172 if (ret)
8173 goto err;
8174 }
1ae39938
JB
8175map:
8176 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8177err:
8178 bio_put(bio);
8179 return ret;
8180}
8181
8182static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8183 int skip_sum)
8184{
8185 struct inode *inode = dip->inode;
8186 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8187 struct bio *bio;
8188 struct bio *orig_bio = dip->orig_bio;
8189 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8190 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8191 u64 file_offset = dip->logical_offset;
8192 u64 submit_len = 0;
8193 u64 map_length;
8194 int nr_pages = 0;
23ea8e5a 8195 int ret;
1ae39938 8196 int async_submit = 0;
e65e1535 8197
4f024f37 8198 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8199 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8200 &map_length, NULL, 0);
7a5c3c9b 8201 if (ret)
e65e1535 8202 return -EIO;
facc8a22 8203
4f024f37 8204 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8205 bio = orig_bio;
c1dc0896 8206 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8207 goto submit;
8208 }
8209
53b381b3 8210 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8211 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8212 async_submit = 0;
8213 else
8214 async_submit = 1;
8215
02f57c7a
JB
8216 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8217 if (!bio)
8218 return -ENOMEM;
7a5c3c9b 8219
02f57c7a
JB
8220 bio->bi_private = dip;
8221 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8222 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8223 atomic_inc(&dip->pending_bios);
8224
e65e1535 8225 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
ee39b432 8226 if (map_length < submit_len + bvec->bv_len ||
e65e1535 8227 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
ee39b432 8228 bvec->bv_offset) < bvec->bv_len) {
e65e1535
MX
8229 /*
8230 * inc the count before we submit the bio so
8231 * we know the end IO handler won't happen before
8232 * we inc the count. Otherwise, the dip might get freed
8233 * before we're done setting it up
8234 */
8235 atomic_inc(&dip->pending_bios);
8236 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8237 file_offset, skip_sum,
c329861d 8238 async_submit);
e65e1535
MX
8239 if (ret) {
8240 bio_put(bio);
8241 atomic_dec(&dip->pending_bios);
8242 goto out_err;
8243 }
8244
e65e1535
MX
8245 start_sector += submit_len >> 9;
8246 file_offset += submit_len;
8247
8248 submit_len = 0;
8249 nr_pages = 0;
8250
8251 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8252 start_sector, GFP_NOFS);
8253 if (!bio)
8254 goto out_err;
8255 bio->bi_private = dip;
8256 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8257 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8258
4f024f37 8259 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8260 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8261 start_sector << 9,
e65e1535
MX
8262 &map_length, NULL, 0);
8263 if (ret) {
8264 bio_put(bio);
8265 goto out_err;
8266 }
8267 } else {
8268 submit_len += bvec->bv_len;
67871254 8269 nr_pages++;
e65e1535
MX
8270 bvec++;
8271 }
8272 }
8273
02f57c7a 8274submit:
e65e1535 8275 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8276 async_submit);
e65e1535
MX
8277 if (!ret)
8278 return 0;
8279
8280 bio_put(bio);
8281out_err:
8282 dip->errors = 1;
8283 /*
8284 * before atomic variable goto zero, we must
8285 * make sure dip->errors is perceived to be set.
8286 */
4e857c58 8287 smp_mb__before_atomic();
e65e1535
MX
8288 if (atomic_dec_and_test(&dip->pending_bios))
8289 bio_io_error(dip->orig_bio);
8290
8291 /* bio_end_io() will handle error, so we needn't return it */
8292 return 0;
8293}
8294
9be3395b
CM
8295static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8296 struct inode *inode, loff_t file_offset)
4b46fce2 8297{
61de718f
FM
8298 struct btrfs_dio_private *dip = NULL;
8299 struct bio *io_bio = NULL;
23ea8e5a 8300 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8301 int skip_sum;
7b6d91da 8302 int write = rw & REQ_WRITE;
4b46fce2
JB
8303 int ret = 0;
8304
8305 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8306
9be3395b 8307 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8308 if (!io_bio) {
8309 ret = -ENOMEM;
8310 goto free_ordered;
8311 }
8312
c1dc0896 8313 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8314 if (!dip) {
8315 ret = -ENOMEM;
61de718f 8316 goto free_ordered;
4b46fce2 8317 }
4b46fce2 8318
9be3395b 8319 dip->private = dio_bio->bi_private;
4b46fce2
JB
8320 dip->inode = inode;
8321 dip->logical_offset = file_offset;
4f024f37
KO
8322 dip->bytes = dio_bio->bi_iter.bi_size;
8323 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8324 io_bio->bi_private = dip;
9be3395b
CM
8325 dip->orig_bio = io_bio;
8326 dip->dio_bio = dio_bio;
e65e1535 8327 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8328 btrfs_bio = btrfs_io_bio(io_bio);
8329 btrfs_bio->logical = file_offset;
4b46fce2 8330
c1dc0896 8331 if (write) {
9be3395b 8332 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8333 } else {
9be3395b 8334 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8335 dip->subio_endio = btrfs_subio_endio_read;
8336 }
4b46fce2 8337
e65e1535
MX
8338 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8339 if (!ret)
eaf25d93 8340 return;
9be3395b 8341
23ea8e5a
MX
8342 if (btrfs_bio->end_io)
8343 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8344
4b46fce2
JB
8345free_ordered:
8346 /*
61de718f
FM
8347 * If we arrived here it means either we failed to submit the dip
8348 * or we either failed to clone the dio_bio or failed to allocate the
8349 * dip. If we cloned the dio_bio and allocated the dip, we can just
8350 * call bio_endio against our io_bio so that we get proper resource
8351 * cleanup if we fail to submit the dip, otherwise, we must do the
8352 * same as btrfs_endio_direct_[write|read] because we can't call these
8353 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8354 */
61de718f 8355 if (io_bio && dip) {
4246a0b6
CH
8356 io_bio->bi_error = -EIO;
8357 bio_endio(io_bio);
61de718f
FM
8358 /*
8359 * The end io callbacks free our dip, do the final put on io_bio
8360 * and all the cleanup and final put for dio_bio (through
8361 * dio_end_io()).
8362 */
8363 dip = NULL;
8364 io_bio = NULL;
8365 } else {
8366 if (write) {
8367 struct btrfs_ordered_extent *ordered;
8368
8369 ordered = btrfs_lookup_ordered_extent(inode,
8370 file_offset);
8371 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8372 /*
8373 * Decrements our ref on the ordered extent and removes
8374 * the ordered extent from the inode's ordered tree,
8375 * doing all the proper resource cleanup such as for the
8376 * reserved space and waking up any waiters for this
8377 * ordered extent (through btrfs_remove_ordered_extent).
8378 */
8379 btrfs_finish_ordered_io(ordered);
8380 } else {
8381 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8382 file_offset + dio_bio->bi_iter.bi_size - 1);
8383 }
4246a0b6 8384 dio_bio->bi_error = -EIO;
61de718f
FM
8385 /*
8386 * Releases and cleans up our dio_bio, no need to bio_put()
8387 * nor bio_endio()/bio_io_error() against dio_bio.
8388 */
8389 dio_end_io(dio_bio, ret);
4b46fce2 8390 }
61de718f
FM
8391 if (io_bio)
8392 bio_put(io_bio);
8393 kfree(dip);
4b46fce2
JB
8394}
8395
6f673763 8396static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8397 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8398{
8399 int seg;
a1b75f7d 8400 int i;
5a5f79b5
CM
8401 unsigned blocksize_mask = root->sectorsize - 1;
8402 ssize_t retval = -EINVAL;
5a5f79b5
CM
8403
8404 if (offset & blocksize_mask)
8405 goto out;
8406
28060d5d
AV
8407 if (iov_iter_alignment(iter) & blocksize_mask)
8408 goto out;
a1b75f7d 8409
28060d5d 8410 /* If this is a write we don't need to check anymore */
6f673763 8411 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8412 return 0;
8413 /*
8414 * Check to make sure we don't have duplicate iov_base's in this
8415 * iovec, if so return EINVAL, otherwise we'll get csum errors
8416 * when reading back.
8417 */
8418 for (seg = 0; seg < iter->nr_segs; seg++) {
8419 for (i = seg + 1; i < iter->nr_segs; i++) {
8420 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8421 goto out;
8422 }
5a5f79b5
CM
8423 }
8424 retval = 0;
8425out:
8426 return retval;
8427}
eb838e73 8428
22c6186e
OS
8429static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8430 loff_t offset)
16432985 8431{
4b46fce2
JB
8432 struct file *file = iocb->ki_filp;
8433 struct inode *inode = file->f_mapping->host;
50745b0a 8434 struct btrfs_root *root = BTRFS_I(inode)->root;
8435 struct btrfs_dio_data dio_data = { 0 };
0934856d 8436 size_t count = 0;
2e60a51e 8437 int flags = 0;
38851cc1
MX
8438 bool wakeup = true;
8439 bool relock = false;
0934856d 8440 ssize_t ret;
4b46fce2 8441
6f673763 8442 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8443 return 0;
3f7c579c 8444
fe0f07d0 8445 inode_dio_begin(inode);
4e857c58 8446 smp_mb__after_atomic();
38851cc1 8447
0e267c44 8448 /*
41bd9ca4
MX
8449 * The generic stuff only does filemap_write_and_wait_range, which
8450 * isn't enough if we've written compressed pages to this area, so
8451 * we need to flush the dirty pages again to make absolutely sure
8452 * that any outstanding dirty pages are on disk.
0e267c44 8453 */
a6cbcd4a 8454 count = iov_iter_count(iter);
41bd9ca4
MX
8455 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8456 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8457 filemap_fdatawrite_range(inode->i_mapping, offset,
8458 offset + count - 1);
0e267c44 8459
6f673763 8460 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8461 /*
8462 * If the write DIO is beyond the EOF, we need update
8463 * the isize, but it is protected by i_mutex. So we can
8464 * not unlock the i_mutex at this case.
8465 */
8466 if (offset + count <= inode->i_size) {
8467 mutex_unlock(&inode->i_mutex);
8468 relock = true;
8469 }
7cf5b976 8470 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8471 if (ret)
38851cc1 8472 goto out;
50745b0a 8473 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8474 BTRFS_MAX_EXTENT_SIZE - 1,
8475 BTRFS_MAX_EXTENT_SIZE);
8476
8477 /*
8478 * We need to know how many extents we reserved so that we can
8479 * do the accounting properly if we go over the number we
8480 * originally calculated. Abuse current->journal_info for this.
8481 */
50745b0a 8482 dio_data.reserve = round_up(count, root->sectorsize);
8483 current->journal_info = &dio_data;
ee39b432
DS
8484 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8485 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8486 inode_dio_end(inode);
38851cc1
MX
8487 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8488 wakeup = false;
0934856d
MX
8489 }
8490
17f8c842
OS
8491 ret = __blockdev_direct_IO(iocb, inode,
8492 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8493 iter, offset, btrfs_get_blocks_direct, NULL,
8494 btrfs_submit_direct, flags);
6f673763 8495 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8496 current->journal_info = NULL;
ddba1bfc 8497 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8498 if (dio_data.reserve)
7cf5b976
QW
8499 btrfs_delalloc_release_space(inode, offset,
8500 dio_data.reserve);
ddba1bfc 8501 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8502 btrfs_delalloc_release_space(inode, offset,
8503 count - (size_t)ret);
0934856d 8504 }
38851cc1 8505out:
2e60a51e 8506 if (wakeup)
fe0f07d0 8507 inode_dio_end(inode);
38851cc1
MX
8508 if (relock)
8509 mutex_lock(&inode->i_mutex);
0934856d
MX
8510
8511 return ret;
16432985
CM
8512}
8513
05dadc09
TI
8514#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8515
1506fcc8
YS
8516static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8517 __u64 start, __u64 len)
8518{
05dadc09
TI
8519 int ret;
8520
8521 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8522 if (ret)
8523 return ret;
8524
ec29ed5b 8525 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8526}
8527
a52d9a80 8528int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8529{
d1310b2e
CM
8530 struct extent_io_tree *tree;
8531 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8532 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8533}
1832a6d5 8534
a52d9a80 8535static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8536{
d1310b2e 8537 struct extent_io_tree *tree;
b888db2b
CM
8538
8539
8540 if (current->flags & PF_MEMALLOC) {
8541 redirty_page_for_writepage(wbc, page);
8542 unlock_page(page);
8543 return 0;
8544 }
d1310b2e 8545 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8546 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8547}
8548
48a3b636
ES
8549static int btrfs_writepages(struct address_space *mapping,
8550 struct writeback_control *wbc)
b293f02e 8551{
d1310b2e 8552 struct extent_io_tree *tree;
771ed689 8553
d1310b2e 8554 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8555 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8556}
8557
3ab2fb5a
CM
8558static int
8559btrfs_readpages(struct file *file, struct address_space *mapping,
8560 struct list_head *pages, unsigned nr_pages)
8561{
d1310b2e
CM
8562 struct extent_io_tree *tree;
8563 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8564 return extent_readpages(tree, mapping, pages, nr_pages,
8565 btrfs_get_extent);
8566}
e6dcd2dc 8567static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8568{
d1310b2e
CM
8569 struct extent_io_tree *tree;
8570 struct extent_map_tree *map;
a52d9a80 8571 int ret;
8c2383c3 8572
d1310b2e
CM
8573 tree = &BTRFS_I(page->mapping->host)->io_tree;
8574 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8575 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8576 if (ret == 1) {
8577 ClearPagePrivate(page);
8578 set_page_private(page, 0);
8579 page_cache_release(page);
39279cc3 8580 }
a52d9a80 8581 return ret;
39279cc3
CM
8582}
8583
e6dcd2dc
CM
8584static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8585{
98509cfc
CM
8586 if (PageWriteback(page) || PageDirty(page))
8587 return 0;
b335b003 8588 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8589}
8590
d47992f8
LC
8591static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8592 unsigned int length)
39279cc3 8593{
5fd02043 8594 struct inode *inode = page->mapping->host;
d1310b2e 8595 struct extent_io_tree *tree;
e6dcd2dc 8596 struct btrfs_ordered_extent *ordered;
2ac55d41 8597 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8598 u64 page_start = page_offset(page);
8599 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8600 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8601
8b62b72b
CM
8602 /*
8603 * we have the page locked, so new writeback can't start,
8604 * and the dirty bit won't be cleared while we are here.
8605 *
8606 * Wait for IO on this page so that we can safely clear
8607 * the PagePrivate2 bit and do ordered accounting
8608 */
e6dcd2dc 8609 wait_on_page_writeback(page);
8b62b72b 8610
5fd02043 8611 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8612 if (offset) {
8613 btrfs_releasepage(page, GFP_NOFS);
8614 return;
8615 }
131e404a
FDBM
8616
8617 if (!inode_evicting)
8618 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8619 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8620 if (ordered) {
eb84ae03
CM
8621 /*
8622 * IO on this page will never be started, so we need
8623 * to account for any ordered extents now
8624 */
131e404a
FDBM
8625 if (!inode_evicting)
8626 clear_extent_bit(tree, page_start, page_end,
8627 EXTENT_DIRTY | EXTENT_DELALLOC |
8628 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8629 EXTENT_DEFRAG, 1, 0, &cached_state,
8630 GFP_NOFS);
8b62b72b
CM
8631 /*
8632 * whoever cleared the private bit is responsible
8633 * for the finish_ordered_io
8634 */
77cef2ec
JB
8635 if (TestClearPagePrivate2(page)) {
8636 struct btrfs_ordered_inode_tree *tree;
8637 u64 new_len;
8638
8639 tree = &BTRFS_I(inode)->ordered_tree;
8640
8641 spin_lock_irq(&tree->lock);
8642 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8643 new_len = page_start - ordered->file_offset;
8644 if (new_len < ordered->truncated_len)
8645 ordered->truncated_len = new_len;
8646 spin_unlock_irq(&tree->lock);
8647
8648 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8649 page_start,
8650 PAGE_CACHE_SIZE, 1))
8651 btrfs_finish_ordered_io(ordered);
8b62b72b 8652 }
e6dcd2dc 8653 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8654 if (!inode_evicting) {
8655 cached_state = NULL;
8656 lock_extent_bits(tree, page_start, page_end, 0,
8657 &cached_state);
8658 }
8659 }
8660
b9d0b389
QW
8661 /*
8662 * Qgroup reserved space handler
8663 * Page here will be either
8664 * 1) Already written to disk
8665 * In this case, its reserved space is released from data rsv map
8666 * and will be freed by delayed_ref handler finally.
8667 * So even we call qgroup_free_data(), it won't decrease reserved
8668 * space.
8669 * 2) Not written to disk
8670 * This means the reserved space should be freed here.
8671 */
8672 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
131e404a
FDBM
8673 if (!inode_evicting) {
8674 clear_extent_bit(tree, page_start, page_end,
8675 EXTENT_LOCKED | EXTENT_DIRTY |
8676 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8677 EXTENT_DEFRAG, 1, 1,
8678 &cached_state, GFP_NOFS);
8679
8680 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8681 }
e6dcd2dc 8682
4a096752 8683 ClearPageChecked(page);
9ad6b7bc 8684 if (PagePrivate(page)) {
9ad6b7bc
CM
8685 ClearPagePrivate(page);
8686 set_page_private(page, 0);
8687 page_cache_release(page);
8688 }
39279cc3
CM
8689}
8690
9ebefb18
CM
8691/*
8692 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8693 * called from a page fault handler when a page is first dirtied. Hence we must
8694 * be careful to check for EOF conditions here. We set the page up correctly
8695 * for a written page which means we get ENOSPC checking when writing into
8696 * holes and correct delalloc and unwritten extent mapping on filesystems that
8697 * support these features.
8698 *
8699 * We are not allowed to take the i_mutex here so we have to play games to
8700 * protect against truncate races as the page could now be beyond EOF. Because
8701 * vmtruncate() writes the inode size before removing pages, once we have the
8702 * page lock we can determine safely if the page is beyond EOF. If it is not
8703 * beyond EOF, then the page is guaranteed safe against truncation until we
8704 * unlock the page.
8705 */
c2ec175c 8706int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8707{
c2ec175c 8708 struct page *page = vmf->page;
496ad9aa 8709 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8710 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8711 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8712 struct btrfs_ordered_extent *ordered;
2ac55d41 8713 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8714 char *kaddr;
8715 unsigned long zero_start;
9ebefb18 8716 loff_t size;
1832a6d5 8717 int ret;
9998eb70 8718 int reserved = 0;
a52d9a80 8719 u64 page_start;
e6dcd2dc 8720 u64 page_end;
9ebefb18 8721
b2b5ef5c 8722 sb_start_pagefault(inode->i_sb);
df480633
QW
8723 page_start = page_offset(page);
8724 page_end = page_start + PAGE_CACHE_SIZE - 1;
8725
7cf5b976
QW
8726 ret = btrfs_delalloc_reserve_space(inode, page_start,
8727 PAGE_CACHE_SIZE);
9998eb70 8728 if (!ret) {
e41f941a 8729 ret = file_update_time(vma->vm_file);
9998eb70
CM
8730 reserved = 1;
8731 }
56a76f82
NP
8732 if (ret) {
8733 if (ret == -ENOMEM)
8734 ret = VM_FAULT_OOM;
8735 else /* -ENOSPC, -EIO, etc */
8736 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8737 if (reserved)
8738 goto out;
8739 goto out_noreserve;
56a76f82 8740 }
1832a6d5 8741
56a76f82 8742 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8743again:
9ebefb18 8744 lock_page(page);
9ebefb18 8745 size = i_size_read(inode);
a52d9a80 8746
9ebefb18 8747 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8748 (page_start >= size)) {
9ebefb18
CM
8749 /* page got truncated out from underneath us */
8750 goto out_unlock;
8751 }
e6dcd2dc
CM
8752 wait_on_page_writeback(page);
8753
d0082371 8754 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8755 set_page_extent_mapped(page);
8756
eb84ae03
CM
8757 /*
8758 * we can't set the delalloc bits if there are pending ordered
8759 * extents. Drop our locks and wait for them to finish
8760 */
e6dcd2dc
CM
8761 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8762 if (ordered) {
2ac55d41
JB
8763 unlock_extent_cached(io_tree, page_start, page_end,
8764 &cached_state, GFP_NOFS);
e6dcd2dc 8765 unlock_page(page);
eb84ae03 8766 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8767 btrfs_put_ordered_extent(ordered);
8768 goto again;
8769 }
8770
fbf19087
JB
8771 /*
8772 * XXX - page_mkwrite gets called every time the page is dirtied, even
8773 * if it was already dirty, so for space accounting reasons we need to
8774 * clear any delalloc bits for the range we are fixing to save. There
8775 * is probably a better way to do this, but for now keep consistent with
8776 * prepare_pages in the normal write path.
8777 */
2ac55d41 8778 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8779 EXTENT_DIRTY | EXTENT_DELALLOC |
8780 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8781 0, 0, &cached_state, GFP_NOFS);
fbf19087 8782
2ac55d41
JB
8783 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8784 &cached_state);
9ed74f2d 8785 if (ret) {
2ac55d41
JB
8786 unlock_extent_cached(io_tree, page_start, page_end,
8787 &cached_state, GFP_NOFS);
9ed74f2d
JB
8788 ret = VM_FAULT_SIGBUS;
8789 goto out_unlock;
8790 }
e6dcd2dc 8791 ret = 0;
9ebefb18
CM
8792
8793 /* page is wholly or partially inside EOF */
a52d9a80 8794 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8795 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8796 else
e6dcd2dc 8797 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8798
e6dcd2dc
CM
8799 if (zero_start != PAGE_CACHE_SIZE) {
8800 kaddr = kmap(page);
8801 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8802 flush_dcache_page(page);
8803 kunmap(page);
8804 }
247e743c 8805 ClearPageChecked(page);
e6dcd2dc 8806 set_page_dirty(page);
50a9b214 8807 SetPageUptodate(page);
5a3f23d5 8808
257c62e1
CM
8809 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8810 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8811 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8812
2ac55d41 8813 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8814
8815out_unlock:
b2b5ef5c
JK
8816 if (!ret) {
8817 sb_end_pagefault(inode->i_sb);
50a9b214 8818 return VM_FAULT_LOCKED;
b2b5ef5c 8819 }
9ebefb18 8820 unlock_page(page);
1832a6d5 8821out:
7cf5b976 8822 btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
9998eb70 8823out_noreserve:
b2b5ef5c 8824 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8825 return ret;
8826}
8827
a41ad394 8828static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8829{
8830 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8831 struct btrfs_block_rsv *rsv;
a71754fc 8832 int ret = 0;
3893e33b 8833 int err = 0;
39279cc3 8834 struct btrfs_trans_handle *trans;
dbe674a9 8835 u64 mask = root->sectorsize - 1;
07127184 8836 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8837
0ef8b726
JB
8838 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8839 (u64)-1);
8840 if (ret)
8841 return ret;
39279cc3 8842
fcb80c2a
JB
8843 /*
8844 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8845 * 3 things going on here
8846 *
8847 * 1) We need to reserve space for our orphan item and the space to
8848 * delete our orphan item. Lord knows we don't want to have a dangling
8849 * orphan item because we didn't reserve space to remove it.
8850 *
8851 * 2) We need to reserve space to update our inode.
8852 *
8853 * 3) We need to have something to cache all the space that is going to
8854 * be free'd up by the truncate operation, but also have some slack
8855 * space reserved in case it uses space during the truncate (thank you
8856 * very much snapshotting).
8857 *
8858 * And we need these to all be seperate. The fact is we can use alot of
8859 * space doing the truncate, and we have no earthly idea how much space
8860 * we will use, so we need the truncate reservation to be seperate so it
8861 * doesn't end up using space reserved for updating the inode or
8862 * removing the orphan item. We also need to be able to stop the
8863 * transaction and start a new one, which means we need to be able to
8864 * update the inode several times, and we have no idea of knowing how
8865 * many times that will be, so we can't just reserve 1 item for the
8866 * entirety of the opration, so that has to be done seperately as well.
8867 * Then there is the orphan item, which does indeed need to be held on
8868 * to for the whole operation, and we need nobody to touch this reserved
8869 * space except the orphan code.
8870 *
8871 * So that leaves us with
8872 *
8873 * 1) root->orphan_block_rsv - for the orphan deletion.
8874 * 2) rsv - for the truncate reservation, which we will steal from the
8875 * transaction reservation.
8876 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8877 * updating the inode.
8878 */
66d8f3dd 8879 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8880 if (!rsv)
8881 return -ENOMEM;
4a338542 8882 rsv->size = min_size;
ca7e70f5 8883 rsv->failfast = 1;
f0cd846e 8884
907cbceb 8885 /*
07127184 8886 * 1 for the truncate slack space
907cbceb
JB
8887 * 1 for updating the inode.
8888 */
f3fe820c 8889 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8890 if (IS_ERR(trans)) {
8891 err = PTR_ERR(trans);
8892 goto out;
8893 }
f0cd846e 8894
907cbceb
JB
8895 /* Migrate the slack space for the truncate to our reserve */
8896 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8897 min_size);
fcb80c2a 8898 BUG_ON(ret);
f0cd846e 8899
5dc562c5
JB
8900 /*
8901 * So if we truncate and then write and fsync we normally would just
8902 * write the extents that changed, which is a problem if we need to
8903 * first truncate that entire inode. So set this flag so we write out
8904 * all of the extents in the inode to the sync log so we're completely
8905 * safe.
8906 */
8907 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8908 trans->block_rsv = rsv;
907cbceb 8909
8082510e
YZ
8910 while (1) {
8911 ret = btrfs_truncate_inode_items(trans, root, inode,
8912 inode->i_size,
8913 BTRFS_EXTENT_DATA_KEY);
28ed1345 8914 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 8915 err = ret;
8082510e 8916 break;
3893e33b 8917 }
39279cc3 8918
fcb80c2a 8919 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8920 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8921 if (ret) {
8922 err = ret;
8923 break;
8924 }
ca7e70f5 8925
8082510e 8926 btrfs_end_transaction(trans, root);
b53d3f5d 8927 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8928
8929 trans = btrfs_start_transaction(root, 2);
8930 if (IS_ERR(trans)) {
8931 ret = err = PTR_ERR(trans);
8932 trans = NULL;
8933 break;
8934 }
8935
8936 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8937 rsv, min_size);
8938 BUG_ON(ret); /* shouldn't happen */
8939 trans->block_rsv = rsv;
8082510e
YZ
8940 }
8941
8942 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8943 trans->block_rsv = root->orphan_block_rsv;
8082510e 8944 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8945 if (ret)
8946 err = ret;
8082510e
YZ
8947 }
8948
917c16b2
CM
8949 if (trans) {
8950 trans->block_rsv = &root->fs_info->trans_block_rsv;
8951 ret = btrfs_update_inode(trans, root, inode);
8952 if (ret && !err)
8953 err = ret;
7b128766 8954
7ad85bb7 8955 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8956 btrfs_btree_balance_dirty(root);
917c16b2 8957 }
fcb80c2a
JB
8958
8959out:
8960 btrfs_free_block_rsv(root, rsv);
8961
3893e33b
JB
8962 if (ret && !err)
8963 err = ret;
a41ad394 8964
3893e33b 8965 return err;
39279cc3
CM
8966}
8967
d352ac68
CM
8968/*
8969 * create a new subvolume directory/inode (helper for the ioctl).
8970 */
d2fb3437 8971int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8972 struct btrfs_root *new_root,
8973 struct btrfs_root *parent_root,
8974 u64 new_dirid)
39279cc3 8975{
39279cc3 8976 struct inode *inode;
76dda93c 8977 int err;
00e4e6b3 8978 u64 index = 0;
39279cc3 8979
12fc9d09
FA
8980 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8981 new_dirid, new_dirid,
8982 S_IFDIR | (~current_umask() & S_IRWXUGO),
8983 &index);
54aa1f4d 8984 if (IS_ERR(inode))
f46b5a66 8985 return PTR_ERR(inode);
39279cc3
CM
8986 inode->i_op = &btrfs_dir_inode_operations;
8987 inode->i_fop = &btrfs_dir_file_operations;
8988
bfe86848 8989 set_nlink(inode, 1);
dbe674a9 8990 btrfs_i_size_write(inode, 0);
b0d5d10f 8991 unlock_new_inode(inode);
3b96362c 8992
63541927
FDBM
8993 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8994 if (err)
8995 btrfs_err(new_root->fs_info,
351fd353 8996 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8997 new_root->root_key.objectid, err);
8998
76dda93c 8999 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9000
76dda93c 9001 iput(inode);
ce598979 9002 return err;
39279cc3
CM
9003}
9004
39279cc3
CM
9005struct inode *btrfs_alloc_inode(struct super_block *sb)
9006{
9007 struct btrfs_inode *ei;
2ead6ae7 9008 struct inode *inode;
39279cc3
CM
9009
9010 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9011 if (!ei)
9012 return NULL;
2ead6ae7
YZ
9013
9014 ei->root = NULL;
2ead6ae7 9015 ei->generation = 0;
15ee9bc7 9016 ei->last_trans = 0;
257c62e1 9017 ei->last_sub_trans = 0;
e02119d5 9018 ei->logged_trans = 0;
2ead6ae7 9019 ei->delalloc_bytes = 0;
47059d93 9020 ei->defrag_bytes = 0;
2ead6ae7
YZ
9021 ei->disk_i_size = 0;
9022 ei->flags = 0;
7709cde3 9023 ei->csum_bytes = 0;
2ead6ae7 9024 ei->index_cnt = (u64)-1;
67de1176 9025 ei->dir_index = 0;
2ead6ae7 9026 ei->last_unlink_trans = 0;
46d8bc34 9027 ei->last_log_commit = 0;
2ead6ae7 9028
9e0baf60
JB
9029 spin_lock_init(&ei->lock);
9030 ei->outstanding_extents = 0;
9031 ei->reserved_extents = 0;
2ead6ae7 9032
72ac3c0d 9033 ei->runtime_flags = 0;
261507a0 9034 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9035
16cdcec7
MX
9036 ei->delayed_node = NULL;
9037
9cc97d64 9038 ei->i_otime.tv_sec = 0;
9039 ei->i_otime.tv_nsec = 0;
9040
2ead6ae7 9041 inode = &ei->vfs_inode;
a8067e02 9042 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9043 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9044 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9045 ei->io_tree.track_uptodate = 1;
9046 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9047 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9048 mutex_init(&ei->log_mutex);
f248679e 9049 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9050 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9051 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
9052 RB_CLEAR_NODE(&ei->rb_node);
9053
9054 return inode;
39279cc3
CM
9055}
9056
aaedb55b
JB
9057#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9058void btrfs_test_destroy_inode(struct inode *inode)
9059{
9060 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9061 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9062}
9063#endif
9064
fa0d7e3d
NP
9065static void btrfs_i_callback(struct rcu_head *head)
9066{
9067 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9068 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9069}
9070
39279cc3
CM
9071void btrfs_destroy_inode(struct inode *inode)
9072{
e6dcd2dc 9073 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9074 struct btrfs_root *root = BTRFS_I(inode)->root;
9075
b3d9b7a3 9076 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9077 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9078 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9079 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9080 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9081 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9082 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9083
a6dbd429
JB
9084 /*
9085 * This can happen where we create an inode, but somebody else also
9086 * created the same inode and we need to destroy the one we already
9087 * created.
9088 */
9089 if (!root)
9090 goto free;
9091
8a35d95f
JB
9092 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9093 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9094 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9095 btrfs_ino(inode));
8a35d95f 9096 atomic_dec(&root->orphan_inodes);
7b128766 9097 }
7b128766 9098
d397712b 9099 while (1) {
e6dcd2dc
CM
9100 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9101 if (!ordered)
9102 break;
9103 else {
c2cf52eb 9104 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9105 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9106 btrfs_remove_ordered_extent(inode, ordered);
9107 btrfs_put_ordered_extent(ordered);
9108 btrfs_put_ordered_extent(ordered);
9109 }
9110 }
5d4f98a2 9111 inode_tree_del(inode);
5b21f2ed 9112 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9113free:
fa0d7e3d 9114 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9115}
9116
45321ac5 9117int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9118{
9119 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9120
6379ef9f
NA
9121 if (root == NULL)
9122 return 1;
9123
fa6ac876 9124 /* the snap/subvol tree is on deleting */
69e9c6c6 9125 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9126 return 1;
76dda93c 9127 else
45321ac5 9128 return generic_drop_inode(inode);
76dda93c
YZ
9129}
9130
0ee0fda0 9131static void init_once(void *foo)
39279cc3
CM
9132{
9133 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9134
9135 inode_init_once(&ei->vfs_inode);
9136}
9137
9138void btrfs_destroy_cachep(void)
9139{
8c0a8537
KS
9140 /*
9141 * Make sure all delayed rcu free inodes are flushed before we
9142 * destroy cache.
9143 */
9144 rcu_barrier();
39279cc3
CM
9145 if (btrfs_inode_cachep)
9146 kmem_cache_destroy(btrfs_inode_cachep);
9147 if (btrfs_trans_handle_cachep)
9148 kmem_cache_destroy(btrfs_trans_handle_cachep);
9149 if (btrfs_transaction_cachep)
9150 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
9151 if (btrfs_path_cachep)
9152 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
9153 if (btrfs_free_space_cachep)
9154 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
9155 if (btrfs_delalloc_work_cachep)
9156 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
9157}
9158
9159int btrfs_init_cachep(void)
9160{
837e1972 9161 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
9162 sizeof(struct btrfs_inode), 0,
9163 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
9164 if (!btrfs_inode_cachep)
9165 goto fail;
9601e3f6 9166
837e1972 9167 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9168 sizeof(struct btrfs_trans_handle), 0,
9169 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9170 if (!btrfs_trans_handle_cachep)
9171 goto fail;
9601e3f6 9172
837e1972 9173 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9174 sizeof(struct btrfs_transaction), 0,
9175 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9176 if (!btrfs_transaction_cachep)
9177 goto fail;
9601e3f6 9178
837e1972 9179 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9180 sizeof(struct btrfs_path), 0,
9181 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9182 if (!btrfs_path_cachep)
9183 goto fail;
9601e3f6 9184
837e1972 9185 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9186 sizeof(struct btrfs_free_space), 0,
9187 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9188 if (!btrfs_free_space_cachep)
9189 goto fail;
9190
8ccf6f19
MX
9191 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9192 sizeof(struct btrfs_delalloc_work), 0,
9193 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9194 NULL);
9195 if (!btrfs_delalloc_work_cachep)
9196 goto fail;
9197
39279cc3
CM
9198 return 0;
9199fail:
9200 btrfs_destroy_cachep();
9201 return -ENOMEM;
9202}
9203
9204static int btrfs_getattr(struct vfsmount *mnt,
9205 struct dentry *dentry, struct kstat *stat)
9206{
df0af1a5 9207 u64 delalloc_bytes;
2b0143b5 9208 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9209 u32 blocksize = inode->i_sb->s_blocksize;
9210
39279cc3 9211 generic_fillattr(inode, stat);
0ee5dc67 9212 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 9213 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
9214
9215 spin_lock(&BTRFS_I(inode)->lock);
9216 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9217 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9218 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9219 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9220 return 0;
9221}
9222
d397712b
CM
9223static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9224 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
9225{
9226 struct btrfs_trans_handle *trans;
9227 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9228 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9229 struct inode *new_inode = d_inode(new_dentry);
9230 struct inode *old_inode = d_inode(old_dentry);
39279cc3 9231 struct timespec ctime = CURRENT_TIME;
00e4e6b3 9232 u64 index = 0;
4df27c4d 9233 u64 root_objectid;
39279cc3 9234 int ret;
33345d01 9235 u64 old_ino = btrfs_ino(old_inode);
39279cc3 9236
33345d01 9237 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9238 return -EPERM;
9239
4df27c4d 9240 /* we only allow rename subvolume link between subvolumes */
33345d01 9241 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9242 return -EXDEV;
9243
33345d01
LZ
9244 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9245 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9246 return -ENOTEMPTY;
5f39d397 9247
4df27c4d
YZ
9248 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9249 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9250 return -ENOTEMPTY;
9c52057c
CM
9251
9252
9253 /* check for collisions, even if the name isn't there */
4871c158 9254 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9255 new_dentry->d_name.name,
9256 new_dentry->d_name.len);
9257
9258 if (ret) {
9259 if (ret == -EEXIST) {
9260 /* we shouldn't get
9261 * eexist without a new_inode */
fae7f21c 9262 if (WARN_ON(!new_inode)) {
9c52057c
CM
9263 return ret;
9264 }
9265 } else {
9266 /* maybe -EOVERFLOW */
9267 return ret;
9268 }
9269 }
9270 ret = 0;
9271
5a3f23d5 9272 /*
8d875f95
CM
9273 * we're using rename to replace one file with another. Start IO on it
9274 * now so we don't add too much work to the end of the transaction
5a3f23d5 9275 */
8d875f95 9276 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9277 filemap_flush(old_inode->i_mapping);
9278
76dda93c 9279 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9280 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9281 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9282 /*
9283 * We want to reserve the absolute worst case amount of items. So if
9284 * both inodes are subvols and we need to unlink them then that would
9285 * require 4 item modifications, but if they are both normal inodes it
9286 * would require 5 item modifications, so we'll assume their normal
9287 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9288 * should cover the worst case number of items we'll modify.
9289 */
6e137ed3 9290 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
9291 if (IS_ERR(trans)) {
9292 ret = PTR_ERR(trans);
9293 goto out_notrans;
9294 }
76dda93c 9295
4df27c4d
YZ
9296 if (dest != root)
9297 btrfs_record_root_in_trans(trans, dest);
5f39d397 9298
a5719521
YZ
9299 ret = btrfs_set_inode_index(new_dir, &index);
9300 if (ret)
9301 goto out_fail;
5a3f23d5 9302
67de1176 9303 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9304 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9305 /* force full log commit if subvolume involved. */
995946dd 9306 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9307 } else {
a5719521
YZ
9308 ret = btrfs_insert_inode_ref(trans, dest,
9309 new_dentry->d_name.name,
9310 new_dentry->d_name.len,
33345d01
LZ
9311 old_ino,
9312 btrfs_ino(new_dir), index);
a5719521
YZ
9313 if (ret)
9314 goto out_fail;
4df27c4d
YZ
9315 /*
9316 * this is an ugly little race, but the rename is required
9317 * to make sure that if we crash, the inode is either at the
9318 * old name or the new one. pinning the log transaction lets
9319 * us make sure we don't allow a log commit to come in after
9320 * we unlink the name but before we add the new name back in.
9321 */
9322 btrfs_pin_log_trans(root);
9323 }
5a3f23d5 9324
0c4d2d95
JB
9325 inode_inc_iversion(old_dir);
9326 inode_inc_iversion(new_dir);
9327 inode_inc_iversion(old_inode);
39279cc3
CM
9328 old_dir->i_ctime = old_dir->i_mtime = ctime;
9329 new_dir->i_ctime = new_dir->i_mtime = ctime;
9330 old_inode->i_ctime = ctime;
5f39d397 9331
12fcfd22
CM
9332 if (old_dentry->d_parent != new_dentry->d_parent)
9333 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9334
33345d01 9335 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9336 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9337 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9338 old_dentry->d_name.name,
9339 old_dentry->d_name.len);
9340 } else {
92986796 9341 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9342 d_inode(old_dentry),
92986796
AV
9343 old_dentry->d_name.name,
9344 old_dentry->d_name.len);
9345 if (!ret)
9346 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9347 }
79787eaa
JM
9348 if (ret) {
9349 btrfs_abort_transaction(trans, root, ret);
9350 goto out_fail;
9351 }
39279cc3
CM
9352
9353 if (new_inode) {
0c4d2d95 9354 inode_inc_iversion(new_inode);
39279cc3 9355 new_inode->i_ctime = CURRENT_TIME;
33345d01 9356 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9357 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9358 root_objectid = BTRFS_I(new_inode)->location.objectid;
9359 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9360 root_objectid,
9361 new_dentry->d_name.name,
9362 new_dentry->d_name.len);
9363 BUG_ON(new_inode->i_nlink == 0);
9364 } else {
9365 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9366 d_inode(new_dentry),
4df27c4d
YZ
9367 new_dentry->d_name.name,
9368 new_dentry->d_name.len);
9369 }
4ef31a45 9370 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9371 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9372 if (ret) {
9373 btrfs_abort_transaction(trans, root, ret);
9374 goto out_fail;
9375 }
39279cc3 9376 }
aec7477b 9377
4df27c4d
YZ
9378 ret = btrfs_add_link(trans, new_dir, old_inode,
9379 new_dentry->d_name.name,
a5719521 9380 new_dentry->d_name.len, 0, index);
79787eaa
JM
9381 if (ret) {
9382 btrfs_abort_transaction(trans, root, ret);
9383 goto out_fail;
9384 }
39279cc3 9385
67de1176
MX
9386 if (old_inode->i_nlink == 1)
9387 BTRFS_I(old_inode)->dir_index = index;
9388
33345d01 9389 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 9390 struct dentry *parent = new_dentry->d_parent;
6a912213 9391 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
9392 btrfs_end_log_trans(root);
9393 }
39279cc3 9394out_fail:
7ad85bb7 9395 btrfs_end_transaction(trans, root);
b44c59a8 9396out_notrans:
33345d01 9397 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9398 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9399
39279cc3
CM
9400 return ret;
9401}
9402
80ace85c
MS
9403static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9404 struct inode *new_dir, struct dentry *new_dentry,
9405 unsigned int flags)
9406{
9407 if (flags & ~RENAME_NOREPLACE)
9408 return -EINVAL;
9409
9410 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9411}
9412
8ccf6f19
MX
9413static void btrfs_run_delalloc_work(struct btrfs_work *work)
9414{
9415 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9416 struct inode *inode;
8ccf6f19
MX
9417
9418 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9419 work);
9f23e289
JB
9420 inode = delalloc_work->inode;
9421 if (delalloc_work->wait) {
9422 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9423 } else {
9424 filemap_flush(inode->i_mapping);
9425 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9426 &BTRFS_I(inode)->runtime_flags))
9427 filemap_flush(inode->i_mapping);
9428 }
8ccf6f19
MX
9429
9430 if (delalloc_work->delay_iput)
9f23e289 9431 btrfs_add_delayed_iput(inode);
8ccf6f19 9432 else
9f23e289 9433 iput(inode);
8ccf6f19
MX
9434 complete(&delalloc_work->completion);
9435}
9436
9437struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9438 int wait, int delay_iput)
9439{
9440 struct btrfs_delalloc_work *work;
9441
9442 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9443 if (!work)
9444 return NULL;
9445
9446 init_completion(&work->completion);
9447 INIT_LIST_HEAD(&work->list);
9448 work->inode = inode;
9449 work->wait = wait;
9450 work->delay_iput = delay_iput;
9e0af237
LB
9451 WARN_ON_ONCE(!inode);
9452 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9453 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9454
9455 return work;
9456}
9457
9458void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9459{
9460 wait_for_completion(&work->completion);
9461 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9462}
9463
d352ac68
CM
9464/*
9465 * some fairly slow code that needs optimization. This walks the list
9466 * of all the inodes with pending delalloc and forces them to disk.
9467 */
6c255e67
MX
9468static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9469 int nr)
ea8c2819 9470{
ea8c2819 9471 struct btrfs_inode *binode;
5b21f2ed 9472 struct inode *inode;
8ccf6f19
MX
9473 struct btrfs_delalloc_work *work, *next;
9474 struct list_head works;
1eafa6c7 9475 struct list_head splice;
8ccf6f19 9476 int ret = 0;
ea8c2819 9477
8ccf6f19 9478 INIT_LIST_HEAD(&works);
1eafa6c7 9479 INIT_LIST_HEAD(&splice);
63607cc8 9480
573bfb72 9481 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9482 spin_lock(&root->delalloc_lock);
9483 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9484 while (!list_empty(&splice)) {
9485 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9486 delalloc_inodes);
1eafa6c7 9487
eb73c1b7
MX
9488 list_move_tail(&binode->delalloc_inodes,
9489 &root->delalloc_inodes);
5b21f2ed 9490 inode = igrab(&binode->vfs_inode);
df0af1a5 9491 if (!inode) {
eb73c1b7 9492 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9493 continue;
df0af1a5 9494 }
eb73c1b7 9495 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
9496
9497 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
5d99a998 9498 if (!work) {
f4ab9ea7
JB
9499 if (delay_iput)
9500 btrfs_add_delayed_iput(inode);
9501 else
9502 iput(inode);
1eafa6c7 9503 ret = -ENOMEM;
a1ecaabb 9504 goto out;
5b21f2ed 9505 }
1eafa6c7 9506 list_add_tail(&work->list, &works);
a44903ab
QW
9507 btrfs_queue_work(root->fs_info->flush_workers,
9508 &work->work);
6c255e67
MX
9509 ret++;
9510 if (nr != -1 && ret >= nr)
a1ecaabb 9511 goto out;
5b21f2ed 9512 cond_resched();
eb73c1b7 9513 spin_lock(&root->delalloc_lock);
ea8c2819 9514 }
eb73c1b7 9515 spin_unlock(&root->delalloc_lock);
8c8bee1d 9516
a1ecaabb 9517out:
eb73c1b7
MX
9518 list_for_each_entry_safe(work, next, &works, list) {
9519 list_del_init(&work->list);
9520 btrfs_wait_and_free_delalloc_work(work);
9521 }
9522
9523 if (!list_empty_careful(&splice)) {
9524 spin_lock(&root->delalloc_lock);
9525 list_splice_tail(&splice, &root->delalloc_inodes);
9526 spin_unlock(&root->delalloc_lock);
9527 }
573bfb72 9528 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9529 return ret;
9530}
1eafa6c7 9531
eb73c1b7
MX
9532int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9533{
9534 int ret;
1eafa6c7 9535
2c21b4d7 9536 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9537 return -EROFS;
9538
6c255e67
MX
9539 ret = __start_delalloc_inodes(root, delay_iput, -1);
9540 if (ret > 0)
9541 ret = 0;
eb73c1b7
MX
9542 /*
9543 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9544 * we have to make sure the IO is actually started and that
9545 * ordered extents get created before we return
9546 */
9547 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9548 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9549 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9550 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9551 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9552 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9553 }
9554 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9555 return ret;
9556}
9557
6c255e67
MX
9558int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9559 int nr)
eb73c1b7
MX
9560{
9561 struct btrfs_root *root;
9562 struct list_head splice;
9563 int ret;
9564
2c21b4d7 9565 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9566 return -EROFS;
9567
9568 INIT_LIST_HEAD(&splice);
9569
573bfb72 9570 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9571 spin_lock(&fs_info->delalloc_root_lock);
9572 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9573 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9574 root = list_first_entry(&splice, struct btrfs_root,
9575 delalloc_root);
9576 root = btrfs_grab_fs_root(root);
9577 BUG_ON(!root);
9578 list_move_tail(&root->delalloc_root,
9579 &fs_info->delalloc_roots);
9580 spin_unlock(&fs_info->delalloc_root_lock);
9581
6c255e67 9582 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9583 btrfs_put_fs_root(root);
6c255e67 9584 if (ret < 0)
eb73c1b7
MX
9585 goto out;
9586
6c255e67
MX
9587 if (nr != -1) {
9588 nr -= ret;
9589 WARN_ON(nr < 0);
9590 }
eb73c1b7 9591 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9592 }
eb73c1b7 9593 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9594
6c255e67 9595 ret = 0;
eb73c1b7
MX
9596 atomic_inc(&fs_info->async_submit_draining);
9597 while (atomic_read(&fs_info->nr_async_submits) ||
9598 atomic_read(&fs_info->async_delalloc_pages)) {
9599 wait_event(fs_info->async_submit_wait,
9600 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9601 atomic_read(&fs_info->async_delalloc_pages) == 0));
9602 }
9603 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9604out:
1eafa6c7 9605 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9606 spin_lock(&fs_info->delalloc_root_lock);
9607 list_splice_tail(&splice, &fs_info->delalloc_roots);
9608 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9609 }
573bfb72 9610 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9611 return ret;
ea8c2819
CM
9612}
9613
39279cc3
CM
9614static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9615 const char *symname)
9616{
9617 struct btrfs_trans_handle *trans;
9618 struct btrfs_root *root = BTRFS_I(dir)->root;
9619 struct btrfs_path *path;
9620 struct btrfs_key key;
1832a6d5 9621 struct inode *inode = NULL;
39279cc3
CM
9622 int err;
9623 int drop_inode = 0;
9624 u64 objectid;
67871254 9625 u64 index = 0;
39279cc3
CM
9626 int name_len;
9627 int datasize;
5f39d397 9628 unsigned long ptr;
39279cc3 9629 struct btrfs_file_extent_item *ei;
5f39d397 9630 struct extent_buffer *leaf;
39279cc3 9631
f06becc4 9632 name_len = strlen(symname);
39279cc3
CM
9633 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9634 return -ENAMETOOLONG;
1832a6d5 9635
9ed74f2d
JB
9636 /*
9637 * 2 items for inode item and ref
9638 * 2 items for dir items
9639 * 1 item for xattr if selinux is on
9640 */
a22285a6
YZ
9641 trans = btrfs_start_transaction(root, 5);
9642 if (IS_ERR(trans))
9643 return PTR_ERR(trans);
1832a6d5 9644
581bb050
LZ
9645 err = btrfs_find_free_ino(root, &objectid);
9646 if (err)
9647 goto out_unlock;
9648
aec7477b 9649 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9650 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9651 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9652 if (IS_ERR(inode)) {
9653 err = PTR_ERR(inode);
39279cc3 9654 goto out_unlock;
7cf96da3 9655 }
39279cc3 9656
ad19db71
CS
9657 /*
9658 * If the active LSM wants to access the inode during
9659 * d_instantiate it needs these. Smack checks to see
9660 * if the filesystem supports xattrs by looking at the
9661 * ops vector.
9662 */
9663 inode->i_fop = &btrfs_file_operations;
9664 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9665 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9666 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9667
9668 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9669 if (err)
9670 goto out_unlock_inode;
ad19db71 9671
a1b075d2 9672 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9673 if (err)
b0d5d10f 9674 goto out_unlock_inode;
39279cc3
CM
9675
9676 path = btrfs_alloc_path();
d8926bb3
MF
9677 if (!path) {
9678 err = -ENOMEM;
b0d5d10f 9679 goto out_unlock_inode;
d8926bb3 9680 }
33345d01 9681 key.objectid = btrfs_ino(inode);
39279cc3 9682 key.offset = 0;
962a298f 9683 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9684 datasize = btrfs_file_extent_calc_inline_size(name_len);
9685 err = btrfs_insert_empty_item(trans, root, path, &key,
9686 datasize);
54aa1f4d 9687 if (err) {
b0839166 9688 btrfs_free_path(path);
b0d5d10f 9689 goto out_unlock_inode;
54aa1f4d 9690 }
5f39d397
CM
9691 leaf = path->nodes[0];
9692 ei = btrfs_item_ptr(leaf, path->slots[0],
9693 struct btrfs_file_extent_item);
9694 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9695 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9696 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9697 btrfs_set_file_extent_encryption(leaf, ei, 0);
9698 btrfs_set_file_extent_compression(leaf, ei, 0);
9699 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9700 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9701
39279cc3 9702 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9703 write_extent_buffer(leaf, symname, ptr, name_len);
9704 btrfs_mark_buffer_dirty(leaf);
39279cc3 9705 btrfs_free_path(path);
5f39d397 9706
39279cc3
CM
9707 inode->i_op = &btrfs_symlink_inode_operations;
9708 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 9709 inode_set_bytes(inode, name_len);
f06becc4 9710 btrfs_i_size_write(inode, name_len);
54aa1f4d 9711 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9712 if (err) {
54aa1f4d 9713 drop_inode = 1;
b0d5d10f
CM
9714 goto out_unlock_inode;
9715 }
9716
9717 unlock_new_inode(inode);
9718 d_instantiate(dentry, inode);
39279cc3
CM
9719
9720out_unlock:
7ad85bb7 9721 btrfs_end_transaction(trans, root);
39279cc3
CM
9722 if (drop_inode) {
9723 inode_dec_link_count(inode);
9724 iput(inode);
9725 }
b53d3f5d 9726 btrfs_btree_balance_dirty(root);
39279cc3 9727 return err;
b0d5d10f
CM
9728
9729out_unlock_inode:
9730 drop_inode = 1;
9731 unlock_new_inode(inode);
9732 goto out_unlock;
39279cc3 9733}
16432985 9734
0af3d00b
JB
9735static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9736 u64 start, u64 num_bytes, u64 min_size,
9737 loff_t actual_len, u64 *alloc_hint,
9738 struct btrfs_trans_handle *trans)
d899e052 9739{
5dc562c5
JB
9740 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9741 struct extent_map *em;
d899e052
YZ
9742 struct btrfs_root *root = BTRFS_I(inode)->root;
9743 struct btrfs_key ins;
d899e052 9744 u64 cur_offset = start;
55a61d1d 9745 u64 i_size;
154ea289 9746 u64 cur_bytes;
d899e052 9747 int ret = 0;
0af3d00b 9748 bool own_trans = true;
d899e052 9749
0af3d00b
JB
9750 if (trans)
9751 own_trans = false;
d899e052 9752 while (num_bytes > 0) {
0af3d00b
JB
9753 if (own_trans) {
9754 trans = btrfs_start_transaction(root, 3);
9755 if (IS_ERR(trans)) {
9756 ret = PTR_ERR(trans);
9757 break;
9758 }
5a303d5d
YZ
9759 }
9760
154ea289
CM
9761 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9762 cur_bytes = max(cur_bytes, min_size);
00361589 9763 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9764 *alloc_hint, &ins, 1, 0);
5a303d5d 9765 if (ret) {
0af3d00b
JB
9766 if (own_trans)
9767 btrfs_end_transaction(trans, root);
a22285a6 9768 break;
d899e052 9769 }
5a303d5d 9770
d899e052
YZ
9771 ret = insert_reserved_file_extent(trans, inode,
9772 cur_offset, ins.objectid,
9773 ins.offset, ins.offset,
920bbbfb 9774 ins.offset, 0, 0, 0,
d899e052 9775 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9776 if (ret) {
857cc2fc 9777 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9778 ins.offset, 0);
79787eaa
JM
9779 btrfs_abort_transaction(trans, root, ret);
9780 if (own_trans)
9781 btrfs_end_transaction(trans, root);
9782 break;
9783 }
31193213 9784
a1ed835e
CM
9785 btrfs_drop_extent_cache(inode, cur_offset,
9786 cur_offset + ins.offset -1, 0);
5a303d5d 9787
5dc562c5
JB
9788 em = alloc_extent_map();
9789 if (!em) {
9790 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9791 &BTRFS_I(inode)->runtime_flags);
9792 goto next;
9793 }
9794
9795 em->start = cur_offset;
9796 em->orig_start = cur_offset;
9797 em->len = ins.offset;
9798 em->block_start = ins.objectid;
9799 em->block_len = ins.offset;
b4939680 9800 em->orig_block_len = ins.offset;
cc95bef6 9801 em->ram_bytes = ins.offset;
5dc562c5
JB
9802 em->bdev = root->fs_info->fs_devices->latest_bdev;
9803 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9804 em->generation = trans->transid;
9805
9806 while (1) {
9807 write_lock(&em_tree->lock);
09a2a8f9 9808 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9809 write_unlock(&em_tree->lock);
9810 if (ret != -EEXIST)
9811 break;
9812 btrfs_drop_extent_cache(inode, cur_offset,
9813 cur_offset + ins.offset - 1,
9814 0);
9815 }
9816 free_extent_map(em);
9817next:
d899e052
YZ
9818 num_bytes -= ins.offset;
9819 cur_offset += ins.offset;
efa56464 9820 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9821
0c4d2d95 9822 inode_inc_iversion(inode);
d899e052 9823 inode->i_ctime = CURRENT_TIME;
6cbff00f 9824 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9825 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9826 (actual_len > inode->i_size) &&
9827 (cur_offset > inode->i_size)) {
d1ea6a61 9828 if (cur_offset > actual_len)
55a61d1d 9829 i_size = actual_len;
d1ea6a61 9830 else
55a61d1d
JB
9831 i_size = cur_offset;
9832 i_size_write(inode, i_size);
9833 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9834 }
9835
d899e052 9836 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9837
9838 if (ret) {
9839 btrfs_abort_transaction(trans, root, ret);
9840 if (own_trans)
9841 btrfs_end_transaction(trans, root);
9842 break;
9843 }
d899e052 9844
0af3d00b
JB
9845 if (own_trans)
9846 btrfs_end_transaction(trans, root);
5a303d5d 9847 }
d899e052
YZ
9848 return ret;
9849}
9850
0af3d00b
JB
9851int btrfs_prealloc_file_range(struct inode *inode, int mode,
9852 u64 start, u64 num_bytes, u64 min_size,
9853 loff_t actual_len, u64 *alloc_hint)
9854{
9855 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9856 min_size, actual_len, alloc_hint,
9857 NULL);
9858}
9859
9860int btrfs_prealloc_file_range_trans(struct inode *inode,
9861 struct btrfs_trans_handle *trans, int mode,
9862 u64 start, u64 num_bytes, u64 min_size,
9863 loff_t actual_len, u64 *alloc_hint)
9864{
9865 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9866 min_size, actual_len, alloc_hint, trans);
9867}
9868
e6dcd2dc
CM
9869static int btrfs_set_page_dirty(struct page *page)
9870{
e6dcd2dc
CM
9871 return __set_page_dirty_nobuffers(page);
9872}
9873
10556cb2 9874static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9875{
b83cc969 9876 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9877 umode_t mode = inode->i_mode;
b83cc969 9878
cb6db4e5
JM
9879 if (mask & MAY_WRITE &&
9880 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9881 if (btrfs_root_readonly(root))
9882 return -EROFS;
9883 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9884 return -EACCES;
9885 }
2830ba7f 9886 return generic_permission(inode, mask);
fdebe2bd 9887}
39279cc3 9888
ef3b9af5
FM
9889static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9890{
9891 struct btrfs_trans_handle *trans;
9892 struct btrfs_root *root = BTRFS_I(dir)->root;
9893 struct inode *inode = NULL;
9894 u64 objectid;
9895 u64 index;
9896 int ret = 0;
9897
9898 /*
9899 * 5 units required for adding orphan entry
9900 */
9901 trans = btrfs_start_transaction(root, 5);
9902 if (IS_ERR(trans))
9903 return PTR_ERR(trans);
9904
9905 ret = btrfs_find_free_ino(root, &objectid);
9906 if (ret)
9907 goto out;
9908
9909 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9910 btrfs_ino(dir), objectid, mode, &index);
9911 if (IS_ERR(inode)) {
9912 ret = PTR_ERR(inode);
9913 inode = NULL;
9914 goto out;
9915 }
9916
ef3b9af5
FM
9917 inode->i_fop = &btrfs_file_operations;
9918 inode->i_op = &btrfs_file_inode_operations;
9919
9920 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9921 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9922
b0d5d10f
CM
9923 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9924 if (ret)
9925 goto out_inode;
9926
9927 ret = btrfs_update_inode(trans, root, inode);
9928 if (ret)
9929 goto out_inode;
ef3b9af5
FM
9930 ret = btrfs_orphan_add(trans, inode);
9931 if (ret)
b0d5d10f 9932 goto out_inode;
ef3b9af5 9933
5762b5c9
FM
9934 /*
9935 * We set number of links to 0 in btrfs_new_inode(), and here we set
9936 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9937 * through:
9938 *
9939 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9940 */
9941 set_nlink(inode, 1);
b0d5d10f 9942 unlock_new_inode(inode);
ef3b9af5
FM
9943 d_tmpfile(dentry, inode);
9944 mark_inode_dirty(inode);
9945
9946out:
9947 btrfs_end_transaction(trans, root);
9948 if (ret)
9949 iput(inode);
9950 btrfs_balance_delayed_items(root);
9951 btrfs_btree_balance_dirty(root);
ef3b9af5 9952 return ret;
b0d5d10f
CM
9953
9954out_inode:
9955 unlock_new_inode(inode);
9956 goto out;
9957
ef3b9af5
FM
9958}
9959
b38ef71c
FM
9960/* Inspired by filemap_check_errors() */
9961int btrfs_inode_check_errors(struct inode *inode)
9962{
9963 int ret = 0;
9964
9965 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9966 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9967 ret = -ENOSPC;
9968 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9969 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9970 ret = -EIO;
9971
9972 return ret;
9973}
9974
6e1d5dcc 9975static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9976 .getattr = btrfs_getattr,
39279cc3
CM
9977 .lookup = btrfs_lookup,
9978 .create = btrfs_create,
9979 .unlink = btrfs_unlink,
9980 .link = btrfs_link,
9981 .mkdir = btrfs_mkdir,
9982 .rmdir = btrfs_rmdir,
80ace85c 9983 .rename2 = btrfs_rename2,
39279cc3
CM
9984 .symlink = btrfs_symlink,
9985 .setattr = btrfs_setattr,
618e21d5 9986 .mknod = btrfs_mknod,
95819c05
CH
9987 .setxattr = btrfs_setxattr,
9988 .getxattr = btrfs_getxattr,
5103e947 9989 .listxattr = btrfs_listxattr,
95819c05 9990 .removexattr = btrfs_removexattr,
fdebe2bd 9991 .permission = btrfs_permission,
4e34e719 9992 .get_acl = btrfs_get_acl,
996a710d 9993 .set_acl = btrfs_set_acl,
93fd63c2 9994 .update_time = btrfs_update_time,
ef3b9af5 9995 .tmpfile = btrfs_tmpfile,
39279cc3 9996};
6e1d5dcc 9997static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 9998 .lookup = btrfs_lookup,
fdebe2bd 9999 .permission = btrfs_permission,
4e34e719 10000 .get_acl = btrfs_get_acl,
996a710d 10001 .set_acl = btrfs_set_acl,
93fd63c2 10002 .update_time = btrfs_update_time,
39279cc3 10003};
76dda93c 10004
828c0950 10005static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10006 .llseek = generic_file_llseek,
10007 .read = generic_read_dir,
9cdda8d3 10008 .iterate = btrfs_real_readdir,
34287aa3 10009 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10010#ifdef CONFIG_COMPAT
34287aa3 10011 .compat_ioctl = btrfs_ioctl,
39279cc3 10012#endif
6bf13c0c 10013 .release = btrfs_release_file,
e02119d5 10014 .fsync = btrfs_sync_file,
39279cc3
CM
10015};
10016
d1310b2e 10017static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10018 .fill_delalloc = run_delalloc_range,
065631f6 10019 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10020 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10021 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10022 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10023 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10024 .set_bit_hook = btrfs_set_bit_hook,
10025 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10026 .merge_extent_hook = btrfs_merge_extent_hook,
10027 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10028};
10029
35054394
CM
10030/*
10031 * btrfs doesn't support the bmap operation because swapfiles
10032 * use bmap to make a mapping of extents in the file. They assume
10033 * these extents won't change over the life of the file and they
10034 * use the bmap result to do IO directly to the drive.
10035 *
10036 * the btrfs bmap call would return logical addresses that aren't
10037 * suitable for IO and they also will change frequently as COW
10038 * operations happen. So, swapfile + btrfs == corruption.
10039 *
10040 * For now we're avoiding this by dropping bmap.
10041 */
7f09410b 10042static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10043 .readpage = btrfs_readpage,
10044 .writepage = btrfs_writepage,
b293f02e 10045 .writepages = btrfs_writepages,
3ab2fb5a 10046 .readpages = btrfs_readpages,
16432985 10047 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10048 .invalidatepage = btrfs_invalidatepage,
10049 .releasepage = btrfs_releasepage,
e6dcd2dc 10050 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10051 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10052};
10053
7f09410b 10054static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10055 .readpage = btrfs_readpage,
10056 .writepage = btrfs_writepage,
2bf5a725
CM
10057 .invalidatepage = btrfs_invalidatepage,
10058 .releasepage = btrfs_releasepage,
39279cc3
CM
10059};
10060
6e1d5dcc 10061static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10062 .getattr = btrfs_getattr,
10063 .setattr = btrfs_setattr,
95819c05
CH
10064 .setxattr = btrfs_setxattr,
10065 .getxattr = btrfs_getxattr,
5103e947 10066 .listxattr = btrfs_listxattr,
95819c05 10067 .removexattr = btrfs_removexattr,
fdebe2bd 10068 .permission = btrfs_permission,
1506fcc8 10069 .fiemap = btrfs_fiemap,
4e34e719 10070 .get_acl = btrfs_get_acl,
996a710d 10071 .set_acl = btrfs_set_acl,
e41f941a 10072 .update_time = btrfs_update_time,
39279cc3 10073};
6e1d5dcc 10074static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10075 .getattr = btrfs_getattr,
10076 .setattr = btrfs_setattr,
fdebe2bd 10077 .permission = btrfs_permission,
95819c05
CH
10078 .setxattr = btrfs_setxattr,
10079 .getxattr = btrfs_getxattr,
33268eaf 10080 .listxattr = btrfs_listxattr,
95819c05 10081 .removexattr = btrfs_removexattr,
4e34e719 10082 .get_acl = btrfs_get_acl,
996a710d 10083 .set_acl = btrfs_set_acl,
e41f941a 10084 .update_time = btrfs_update_time,
618e21d5 10085};
6e1d5dcc 10086static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
10087 .readlink = generic_readlink,
10088 .follow_link = page_follow_link_light,
10089 .put_link = page_put_link,
f209561a 10090 .getattr = btrfs_getattr,
22c44fe6 10091 .setattr = btrfs_setattr,
fdebe2bd 10092 .permission = btrfs_permission,
0279b4cd
JO
10093 .setxattr = btrfs_setxattr,
10094 .getxattr = btrfs_getxattr,
10095 .listxattr = btrfs_listxattr,
10096 .removexattr = btrfs_removexattr,
e41f941a 10097 .update_time = btrfs_update_time,
39279cc3 10098};
76dda93c 10099
82d339d9 10100const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10101 .d_delete = btrfs_dentry_delete,
b4aff1f8 10102 .d_release = btrfs_dentry_release,
76dda93c 10103};