Btrfs: only unlock and relock if we have to
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 74static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
75struct kmem_cache *btrfs_trans_handle_cachep;
76struct kmem_cache *btrfs_transaction_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
81static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
a41ad394
JB
91static int btrfs_setsize(struct inode *inode, loff_t newsize);
92static int btrfs_truncate(struct inode *inode);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
70c8a91c
JB
98static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
99 u64 len, u64 orig_start,
100 u64 block_start, u64 block_len,
101 u64 orig_block_len, int type);
7b128766 102
f34f57a3 103static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
104 struct inode *inode, struct inode *dir,
105 const struct qstr *qstr)
0279b4cd
JO
106{
107 int err;
108
f34f57a3 109 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 110 if (!err)
2a7dba39 111 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
112 return err;
113}
114
c8b97818
CM
115/*
116 * this does all the hard work for inserting an inline extent into
117 * the btree. The caller should have done a btrfs_drop_extents so that
118 * no overlapping inline items exist in the btree
119 */
d397712b 120static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
121 struct btrfs_root *root, struct inode *inode,
122 u64 start, size_t size, size_t compressed_size,
fe3f566c 123 int compress_type,
c8b97818
CM
124 struct page **compressed_pages)
125{
126 struct btrfs_key key;
127 struct btrfs_path *path;
128 struct extent_buffer *leaf;
129 struct page *page = NULL;
130 char *kaddr;
131 unsigned long ptr;
132 struct btrfs_file_extent_item *ei;
133 int err = 0;
134 int ret;
135 size_t cur_size = size;
136 size_t datasize;
137 unsigned long offset;
c8b97818 138
fe3f566c 139 if (compressed_size && compressed_pages)
c8b97818 140 cur_size = compressed_size;
c8b97818 141
d397712b
CM
142 path = btrfs_alloc_path();
143 if (!path)
c8b97818
CM
144 return -ENOMEM;
145
b9473439 146 path->leave_spinning = 1;
c8b97818 147
33345d01 148 key.objectid = btrfs_ino(inode);
c8b97818
CM
149 key.offset = start;
150 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
151 datasize = btrfs_file_extent_calc_inline_size(cur_size);
152
153 inode_add_bytes(inode, size);
154 ret = btrfs_insert_empty_item(trans, root, path, &key,
155 datasize);
c8b97818
CM
156 if (ret) {
157 err = ret;
c8b97818
CM
158 goto fail;
159 }
160 leaf = path->nodes[0];
161 ei = btrfs_item_ptr(leaf, path->slots[0],
162 struct btrfs_file_extent_item);
163 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
164 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
165 btrfs_set_file_extent_encryption(leaf, ei, 0);
166 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
167 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
168 ptr = btrfs_file_extent_inline_start(ei);
169
261507a0 170 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
171 struct page *cpage;
172 int i = 0;
d397712b 173 while (compressed_size > 0) {
c8b97818 174 cpage = compressed_pages[i];
5b050f04 175 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
176 PAGE_CACHE_SIZE);
177
7ac687d9 178 kaddr = kmap_atomic(cpage);
c8b97818 179 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 180 kunmap_atomic(kaddr);
c8b97818
CM
181
182 i++;
183 ptr += cur_size;
184 compressed_size -= cur_size;
185 }
186 btrfs_set_file_extent_compression(leaf, ei,
261507a0 187 compress_type);
c8b97818
CM
188 } else {
189 page = find_get_page(inode->i_mapping,
190 start >> PAGE_CACHE_SHIFT);
191 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 192 kaddr = kmap_atomic(page);
c8b97818
CM
193 offset = start & (PAGE_CACHE_SIZE - 1);
194 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196 page_cache_release(page);
197 }
198 btrfs_mark_buffer_dirty(leaf);
199 btrfs_free_path(path);
200
c2167754
YZ
201 /*
202 * we're an inline extent, so nobody can
203 * extend the file past i_size without locking
204 * a page we already have locked.
205 *
206 * We must do any isize and inode updates
207 * before we unlock the pages. Otherwise we
208 * could end up racing with unlink.
209 */
c8b97818 210 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 211 ret = btrfs_update_inode(trans, root, inode);
c2167754 212
79787eaa 213 return ret;
c8b97818
CM
214fail:
215 btrfs_free_path(path);
216 return err;
217}
218
219
220/*
221 * conditionally insert an inline extent into the file. This
222 * does the checks required to make sure the data is small enough
223 * to fit as an inline extent.
224 */
7f366cfe 225static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
226 struct btrfs_root *root,
227 struct inode *inode, u64 start, u64 end,
fe3f566c 228 size_t compressed_size, int compress_type,
c8b97818
CM
229 struct page **compressed_pages)
230{
231 u64 isize = i_size_read(inode);
232 u64 actual_end = min(end + 1, isize);
233 u64 inline_len = actual_end - start;
234 u64 aligned_end = (end + root->sectorsize - 1) &
235 ~((u64)root->sectorsize - 1);
c8b97818
CM
236 u64 data_len = inline_len;
237 int ret;
238
239 if (compressed_size)
240 data_len = compressed_size;
241
242 if (start > 0 ||
70b99e69 243 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
244 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
245 (!compressed_size &&
246 (actual_end & (root->sectorsize - 1)) == 0) ||
247 end + 1 < isize ||
248 data_len > root->fs_info->max_inline) {
249 return 1;
250 }
251
2671485d 252 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
253 if (ret)
254 return ret;
c8b97818
CM
255
256 if (isize > actual_end)
257 inline_len = min_t(u64, isize, actual_end);
258 ret = insert_inline_extent(trans, root, inode, start,
259 inline_len, compressed_size,
fe3f566c 260 compress_type, compressed_pages);
2adcac1a 261 if (ret && ret != -ENOSPC) {
79787eaa
JM
262 btrfs_abort_transaction(trans, root, ret);
263 return ret;
2adcac1a
JB
264 } else if (ret == -ENOSPC) {
265 return 1;
79787eaa 266 }
2adcac1a 267
0ca1f7ce 268 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 269 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
270 return 0;
271}
272
771ed689
CM
273struct async_extent {
274 u64 start;
275 u64 ram_size;
276 u64 compressed_size;
277 struct page **pages;
278 unsigned long nr_pages;
261507a0 279 int compress_type;
771ed689
CM
280 struct list_head list;
281};
282
283struct async_cow {
284 struct inode *inode;
285 struct btrfs_root *root;
286 struct page *locked_page;
287 u64 start;
288 u64 end;
289 struct list_head extents;
290 struct btrfs_work work;
291};
292
293static noinline int add_async_extent(struct async_cow *cow,
294 u64 start, u64 ram_size,
295 u64 compressed_size,
296 struct page **pages,
261507a0
LZ
297 unsigned long nr_pages,
298 int compress_type)
771ed689
CM
299{
300 struct async_extent *async_extent;
301
302 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 303 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
304 async_extent->start = start;
305 async_extent->ram_size = ram_size;
306 async_extent->compressed_size = compressed_size;
307 async_extent->pages = pages;
308 async_extent->nr_pages = nr_pages;
261507a0 309 async_extent->compress_type = compress_type;
771ed689
CM
310 list_add_tail(&async_extent->list, &cow->extents);
311 return 0;
312}
313
d352ac68 314/*
771ed689
CM
315 * we create compressed extents in two phases. The first
316 * phase compresses a range of pages that have already been
317 * locked (both pages and state bits are locked).
c8b97818 318 *
771ed689
CM
319 * This is done inside an ordered work queue, and the compression
320 * is spread across many cpus. The actual IO submission is step
321 * two, and the ordered work queue takes care of making sure that
322 * happens in the same order things were put onto the queue by
323 * writepages and friends.
c8b97818 324 *
771ed689
CM
325 * If this code finds it can't get good compression, it puts an
326 * entry onto the work queue to write the uncompressed bytes. This
327 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
328 * are written in the same order that the flusher thread sent them
329 * down.
d352ac68 330 */
771ed689
CM
331static noinline int compress_file_range(struct inode *inode,
332 struct page *locked_page,
333 u64 start, u64 end,
334 struct async_cow *async_cow,
335 int *num_added)
b888db2b
CM
336{
337 struct btrfs_root *root = BTRFS_I(inode)->root;
338 struct btrfs_trans_handle *trans;
db94535d 339 u64 num_bytes;
db94535d 340 u64 blocksize = root->sectorsize;
c8b97818 341 u64 actual_end;
42dc7bab 342 u64 isize = i_size_read(inode);
e6dcd2dc 343 int ret = 0;
c8b97818
CM
344 struct page **pages = NULL;
345 unsigned long nr_pages;
346 unsigned long nr_pages_ret = 0;
347 unsigned long total_compressed = 0;
348 unsigned long total_in = 0;
349 unsigned long max_compressed = 128 * 1024;
771ed689 350 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
351 int i;
352 int will_compress;
261507a0 353 int compress_type = root->fs_info->compress_type;
b888db2b 354
4cb13e5d
LB
355 /* if this is a small write inside eof, kick off a defrag */
356 if ((end - start + 1) < 16 * 1024 &&
357 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
358 btrfs_add_inode_defrag(NULL, inode);
359
42dc7bab 360 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
361again:
362 will_compress = 0;
363 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
364 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 365
f03d9301
CM
366 /*
367 * we don't want to send crud past the end of i_size through
368 * compression, that's just a waste of CPU time. So, if the
369 * end of the file is before the start of our current
370 * requested range of bytes, we bail out to the uncompressed
371 * cleanup code that can deal with all of this.
372 *
373 * It isn't really the fastest way to fix things, but this is a
374 * very uncommon corner.
375 */
376 if (actual_end <= start)
377 goto cleanup_and_bail_uncompressed;
378
c8b97818
CM
379 total_compressed = actual_end - start;
380
381 /* we want to make sure that amount of ram required to uncompress
382 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
383 * of a compressed extent to 128k. This is a crucial number
384 * because it also controls how easily we can spread reads across
385 * cpus for decompression.
386 *
387 * We also want to make sure the amount of IO required to do
388 * a random read is reasonably small, so we limit the size of
389 * a compressed extent to 128k.
c8b97818
CM
390 */
391 total_compressed = min(total_compressed, max_uncompressed);
db94535d 392 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 393 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
394 total_in = 0;
395 ret = 0;
db94535d 396
771ed689
CM
397 /*
398 * we do compression for mount -o compress and when the
399 * inode has not been flagged as nocompress. This flag can
400 * change at any time if we discover bad compression ratios.
c8b97818 401 */
6cbff00f 402 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 403 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
404 (BTRFS_I(inode)->force_compress) ||
405 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 406 WARN_ON(pages);
cfbc246e 407 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
408 if (!pages) {
409 /* just bail out to the uncompressed code */
410 goto cont;
411 }
c8b97818 412
261507a0
LZ
413 if (BTRFS_I(inode)->force_compress)
414 compress_type = BTRFS_I(inode)->force_compress;
415
416 ret = btrfs_compress_pages(compress_type,
417 inode->i_mapping, start,
418 total_compressed, pages,
419 nr_pages, &nr_pages_ret,
420 &total_in,
421 &total_compressed,
422 max_compressed);
c8b97818
CM
423
424 if (!ret) {
425 unsigned long offset = total_compressed &
426 (PAGE_CACHE_SIZE - 1);
427 struct page *page = pages[nr_pages_ret - 1];
428 char *kaddr;
429
430 /* zero the tail end of the last page, we might be
431 * sending it down to disk
432 */
433 if (offset) {
7ac687d9 434 kaddr = kmap_atomic(page);
c8b97818
CM
435 memset(kaddr + offset, 0,
436 PAGE_CACHE_SIZE - offset);
7ac687d9 437 kunmap_atomic(kaddr);
c8b97818
CM
438 }
439 will_compress = 1;
440 }
441 }
560f7d75 442cont:
c8b97818 443 if (start == 0) {
7a7eaa40 444 trans = btrfs_join_transaction(root);
79787eaa
JM
445 if (IS_ERR(trans)) {
446 ret = PTR_ERR(trans);
447 trans = NULL;
448 goto cleanup_and_out;
449 }
0ca1f7ce 450 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 451
c8b97818 452 /* lets try to make an inline extent */
771ed689 453 if (ret || total_in < (actual_end - start)) {
c8b97818 454 /* we didn't compress the entire range, try
771ed689 455 * to make an uncompressed inline extent.
c8b97818
CM
456 */
457 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 458 start, end, 0, 0, NULL);
c8b97818 459 } else {
771ed689 460 /* try making a compressed inline extent */
c8b97818
CM
461 ret = cow_file_range_inline(trans, root, inode,
462 start, end,
fe3f566c
LZ
463 total_compressed,
464 compress_type, pages);
c8b97818 465 }
79787eaa 466 if (ret <= 0) {
771ed689 467 /*
79787eaa
JM
468 * inline extent creation worked or returned error,
469 * we don't need to create any more async work items.
470 * Unlock and free up our temp pages.
771ed689 471 */
c8b97818 472 extent_clear_unlock_delalloc(inode,
a791e35e
CM
473 &BTRFS_I(inode)->io_tree,
474 start, end, NULL,
475 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 476 EXTENT_CLEAR_DELALLOC |
a791e35e 477 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
478
479 btrfs_end_transaction(trans, root);
c8b97818
CM
480 goto free_pages_out;
481 }
c2167754 482 btrfs_end_transaction(trans, root);
c8b97818
CM
483 }
484
485 if (will_compress) {
486 /*
487 * we aren't doing an inline extent round the compressed size
488 * up to a block size boundary so the allocator does sane
489 * things
490 */
491 total_compressed = (total_compressed + blocksize - 1) &
492 ~(blocksize - 1);
493
494 /*
495 * one last check to make sure the compression is really a
496 * win, compare the page count read with the blocks on disk
497 */
498 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
499 ~(PAGE_CACHE_SIZE - 1);
500 if (total_compressed >= total_in) {
501 will_compress = 0;
502 } else {
c8b97818
CM
503 num_bytes = total_in;
504 }
505 }
506 if (!will_compress && pages) {
507 /*
508 * the compression code ran but failed to make things smaller,
509 * free any pages it allocated and our page pointer array
510 */
511 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 512 WARN_ON(pages[i]->mapping);
c8b97818
CM
513 page_cache_release(pages[i]);
514 }
515 kfree(pages);
516 pages = NULL;
517 total_compressed = 0;
518 nr_pages_ret = 0;
519
520 /* flag the file so we don't compress in the future */
1e701a32
CM
521 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
522 !(BTRFS_I(inode)->force_compress)) {
a555f810 523 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 524 }
c8b97818 525 }
771ed689
CM
526 if (will_compress) {
527 *num_added += 1;
c8b97818 528
771ed689
CM
529 /* the async work queues will take care of doing actual
530 * allocation on disk for these compressed pages,
531 * and will submit them to the elevator.
532 */
533 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
534 total_compressed, pages, nr_pages_ret,
535 compress_type);
179e29e4 536
24ae6365 537 if (start + num_bytes < end) {
771ed689
CM
538 start += num_bytes;
539 pages = NULL;
540 cond_resched();
541 goto again;
542 }
543 } else {
f03d9301 544cleanup_and_bail_uncompressed:
771ed689
CM
545 /*
546 * No compression, but we still need to write the pages in
547 * the file we've been given so far. redirty the locked
548 * page if it corresponds to our extent and set things up
549 * for the async work queue to run cow_file_range to do
550 * the normal delalloc dance
551 */
552 if (page_offset(locked_page) >= start &&
553 page_offset(locked_page) <= end) {
554 __set_page_dirty_nobuffers(locked_page);
555 /* unlocked later on in the async handlers */
556 }
261507a0
LZ
557 add_async_extent(async_cow, start, end - start + 1,
558 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
559 *num_added += 1;
560 }
3b951516 561
771ed689 562out:
79787eaa 563 return ret;
771ed689
CM
564
565free_pages_out:
566 for (i = 0; i < nr_pages_ret; i++) {
567 WARN_ON(pages[i]->mapping);
568 page_cache_release(pages[i]);
569 }
d397712b 570 kfree(pages);
771ed689
CM
571
572 goto out;
79787eaa
JM
573
574cleanup_and_out:
575 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
576 start, end, NULL,
577 EXTENT_CLEAR_UNLOCK_PAGE |
578 EXTENT_CLEAR_DIRTY |
579 EXTENT_CLEAR_DELALLOC |
580 EXTENT_SET_WRITEBACK |
581 EXTENT_END_WRITEBACK);
582 if (!trans || IS_ERR(trans))
583 btrfs_error(root->fs_info, ret, "Failed to join transaction");
584 else
585 btrfs_abort_transaction(trans, root, ret);
586 goto free_pages_out;
771ed689
CM
587}
588
589/*
590 * phase two of compressed writeback. This is the ordered portion
591 * of the code, which only gets called in the order the work was
592 * queued. We walk all the async extents created by compress_file_range
593 * and send them down to the disk.
594 */
595static noinline int submit_compressed_extents(struct inode *inode,
596 struct async_cow *async_cow)
597{
598 struct async_extent *async_extent;
599 u64 alloc_hint = 0;
600 struct btrfs_trans_handle *trans;
601 struct btrfs_key ins;
602 struct extent_map *em;
603 struct btrfs_root *root = BTRFS_I(inode)->root;
604 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
605 struct extent_io_tree *io_tree;
f5a84ee3 606 int ret = 0;
771ed689
CM
607
608 if (list_empty(&async_cow->extents))
609 return 0;
610
771ed689 611
d397712b 612 while (!list_empty(&async_cow->extents)) {
771ed689
CM
613 async_extent = list_entry(async_cow->extents.next,
614 struct async_extent, list);
615 list_del(&async_extent->list);
c8b97818 616
771ed689
CM
617 io_tree = &BTRFS_I(inode)->io_tree;
618
f5a84ee3 619retry:
771ed689
CM
620 /* did the compression code fall back to uncompressed IO? */
621 if (!async_extent->pages) {
622 int page_started = 0;
623 unsigned long nr_written = 0;
624
625 lock_extent(io_tree, async_extent->start,
2ac55d41 626 async_extent->start +
d0082371 627 async_extent->ram_size - 1);
771ed689
CM
628
629 /* allocate blocks */
f5a84ee3
JB
630 ret = cow_file_range(inode, async_cow->locked_page,
631 async_extent->start,
632 async_extent->start +
633 async_extent->ram_size - 1,
634 &page_started, &nr_written, 0);
771ed689 635
79787eaa
JM
636 /* JDM XXX */
637
771ed689
CM
638 /*
639 * if page_started, cow_file_range inserted an
640 * inline extent and took care of all the unlocking
641 * and IO for us. Otherwise, we need to submit
642 * all those pages down to the drive.
643 */
f5a84ee3 644 if (!page_started && !ret)
771ed689
CM
645 extent_write_locked_range(io_tree,
646 inode, async_extent->start,
d397712b 647 async_extent->start +
771ed689
CM
648 async_extent->ram_size - 1,
649 btrfs_get_extent,
650 WB_SYNC_ALL);
651 kfree(async_extent);
652 cond_resched();
653 continue;
654 }
655
656 lock_extent(io_tree, async_extent->start,
d0082371 657 async_extent->start + async_extent->ram_size - 1);
771ed689 658
7a7eaa40 659 trans = btrfs_join_transaction(root);
79787eaa
JM
660 if (IS_ERR(trans)) {
661 ret = PTR_ERR(trans);
662 } else {
663 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
664 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
665 async_extent->compressed_size,
666 async_extent->compressed_size,
81c9ad23 667 0, alloc_hint, &ins, 1);
962197ba 668 if (ret && ret != -ENOSPC)
79787eaa
JM
669 btrfs_abort_transaction(trans, root, ret);
670 btrfs_end_transaction(trans, root);
671 }
c2167754 672
f5a84ee3
JB
673 if (ret) {
674 int i;
675 for (i = 0; i < async_extent->nr_pages; i++) {
676 WARN_ON(async_extent->pages[i]->mapping);
677 page_cache_release(async_extent->pages[i]);
678 }
679 kfree(async_extent->pages);
680 async_extent->nr_pages = 0;
681 async_extent->pages = NULL;
682 unlock_extent(io_tree, async_extent->start,
683 async_extent->start +
d0082371 684 async_extent->ram_size - 1);
79787eaa
JM
685 if (ret == -ENOSPC)
686 goto retry;
687 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
688 }
689
c2167754
YZ
690 /*
691 * here we're doing allocation and writeback of the
692 * compressed pages
693 */
694 btrfs_drop_extent_cache(inode, async_extent->start,
695 async_extent->start +
696 async_extent->ram_size - 1, 0);
697
172ddd60 698 em = alloc_extent_map();
79787eaa 699 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
700 em->start = async_extent->start;
701 em->len = async_extent->ram_size;
445a6944 702 em->orig_start = em->start;
c8b97818 703
771ed689
CM
704 em->block_start = ins.objectid;
705 em->block_len = ins.offset;
b4939680 706 em->orig_block_len = ins.offset;
771ed689 707 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 708 em->compress_type = async_extent->compress_type;
771ed689
CM
709 set_bit(EXTENT_FLAG_PINNED, &em->flags);
710 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 711 em->generation = -1;
771ed689 712
d397712b 713 while (1) {
890871be 714 write_lock(&em_tree->lock);
771ed689 715 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
716 if (!ret)
717 list_move(&em->list,
718 &em_tree->modified_extents);
890871be 719 write_unlock(&em_tree->lock);
771ed689
CM
720 if (ret != -EEXIST) {
721 free_extent_map(em);
722 break;
723 }
724 btrfs_drop_extent_cache(inode, async_extent->start,
725 async_extent->start +
726 async_extent->ram_size - 1, 0);
727 }
728
261507a0
LZ
729 ret = btrfs_add_ordered_extent_compress(inode,
730 async_extent->start,
731 ins.objectid,
732 async_extent->ram_size,
733 ins.offset,
734 BTRFS_ORDERED_COMPRESSED,
735 async_extent->compress_type);
79787eaa 736 BUG_ON(ret); /* -ENOMEM */
771ed689 737
771ed689
CM
738 /*
739 * clear dirty, set writeback and unlock the pages.
740 */
741 extent_clear_unlock_delalloc(inode,
a791e35e
CM
742 &BTRFS_I(inode)->io_tree,
743 async_extent->start,
744 async_extent->start +
745 async_extent->ram_size - 1,
746 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
747 EXTENT_CLEAR_UNLOCK |
a3429ab7 748 EXTENT_CLEAR_DELALLOC |
a791e35e 749 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
750
751 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
752 async_extent->start,
753 async_extent->ram_size,
754 ins.objectid,
755 ins.offset, async_extent->pages,
756 async_extent->nr_pages);
771ed689 757
79787eaa 758 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
759 alloc_hint = ins.objectid + ins.offset;
760 kfree(async_extent);
761 cond_resched();
762 }
79787eaa
JM
763 ret = 0;
764out:
765 return ret;
766out_free:
767 kfree(async_extent);
768 goto out;
771ed689
CM
769}
770
4b46fce2
JB
771static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
772 u64 num_bytes)
773{
774 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
775 struct extent_map *em;
776 u64 alloc_hint = 0;
777
778 read_lock(&em_tree->lock);
779 em = search_extent_mapping(em_tree, start, num_bytes);
780 if (em) {
781 /*
782 * if block start isn't an actual block number then find the
783 * first block in this inode and use that as a hint. If that
784 * block is also bogus then just don't worry about it.
785 */
786 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
787 free_extent_map(em);
788 em = search_extent_mapping(em_tree, 0, 0);
789 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
790 alloc_hint = em->block_start;
791 if (em)
792 free_extent_map(em);
793 } else {
794 alloc_hint = em->block_start;
795 free_extent_map(em);
796 }
797 }
798 read_unlock(&em_tree->lock);
799
800 return alloc_hint;
801}
802
771ed689
CM
803/*
804 * when extent_io.c finds a delayed allocation range in the file,
805 * the call backs end up in this code. The basic idea is to
806 * allocate extents on disk for the range, and create ordered data structs
807 * in ram to track those extents.
808 *
809 * locked_page is the page that writepage had locked already. We use
810 * it to make sure we don't do extra locks or unlocks.
811 *
812 * *page_started is set to one if we unlock locked_page and do everything
813 * required to start IO on it. It may be clean and already done with
814 * IO when we return.
815 */
b7d5b0a8
MX
816static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
817 struct inode *inode,
818 struct btrfs_root *root,
819 struct page *locked_page,
820 u64 start, u64 end, int *page_started,
821 unsigned long *nr_written,
822 int unlock)
771ed689 823{
771ed689
CM
824 u64 alloc_hint = 0;
825 u64 num_bytes;
826 unsigned long ram_size;
827 u64 disk_num_bytes;
828 u64 cur_alloc_size;
829 u64 blocksize = root->sectorsize;
771ed689
CM
830 struct btrfs_key ins;
831 struct extent_map *em;
832 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
833 int ret = 0;
834
83eea1f1 835 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 836
771ed689
CM
837 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
838 num_bytes = max(blocksize, num_bytes);
839 disk_num_bytes = num_bytes;
771ed689 840
4cb5300b 841 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
842 if (num_bytes < 64 * 1024 &&
843 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
844 btrfs_add_inode_defrag(trans, inode);
845
771ed689
CM
846 if (start == 0) {
847 /* lets try to make an inline extent */
848 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 849 start, end, 0, 0, NULL);
771ed689
CM
850 if (ret == 0) {
851 extent_clear_unlock_delalloc(inode,
a791e35e
CM
852 &BTRFS_I(inode)->io_tree,
853 start, end, NULL,
854 EXTENT_CLEAR_UNLOCK_PAGE |
855 EXTENT_CLEAR_UNLOCK |
856 EXTENT_CLEAR_DELALLOC |
857 EXTENT_CLEAR_DIRTY |
858 EXTENT_SET_WRITEBACK |
859 EXTENT_END_WRITEBACK);
c2167754 860
771ed689
CM
861 *nr_written = *nr_written +
862 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
863 *page_started = 1;
771ed689 864 goto out;
79787eaa
JM
865 } else if (ret < 0) {
866 btrfs_abort_transaction(trans, root, ret);
867 goto out_unlock;
771ed689
CM
868 }
869 }
870
871 BUG_ON(disk_num_bytes >
6c41761f 872 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 873
4b46fce2 874 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
875 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
876
d397712b 877 while (disk_num_bytes > 0) {
a791e35e
CM
878 unsigned long op;
879
287a0ab9 880 cur_alloc_size = disk_num_bytes;
e6dcd2dc 881 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 882 root->sectorsize, 0, alloc_hint,
81c9ad23 883 &ins, 1);
79787eaa
JM
884 if (ret < 0) {
885 btrfs_abort_transaction(trans, root, ret);
886 goto out_unlock;
887 }
d397712b 888
172ddd60 889 em = alloc_extent_map();
79787eaa 890 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 891 em->start = start;
445a6944 892 em->orig_start = em->start;
771ed689
CM
893 ram_size = ins.offset;
894 em->len = ins.offset;
c8b97818 895
e6dcd2dc 896 em->block_start = ins.objectid;
c8b97818 897 em->block_len = ins.offset;
b4939680 898 em->orig_block_len = ins.offset;
e6dcd2dc 899 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 900 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 901 em->generation = -1;
c8b97818 902
d397712b 903 while (1) {
890871be 904 write_lock(&em_tree->lock);
e6dcd2dc 905 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
906 if (!ret)
907 list_move(&em->list,
908 &em_tree->modified_extents);
890871be 909 write_unlock(&em_tree->lock);
e6dcd2dc
CM
910 if (ret != -EEXIST) {
911 free_extent_map(em);
912 break;
913 }
914 btrfs_drop_extent_cache(inode, start,
c8b97818 915 start + ram_size - 1, 0);
e6dcd2dc
CM
916 }
917
98d20f67 918 cur_alloc_size = ins.offset;
e6dcd2dc 919 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 920 ram_size, cur_alloc_size, 0);
79787eaa 921 BUG_ON(ret); /* -ENOMEM */
c8b97818 922
17d217fe
YZ
923 if (root->root_key.objectid ==
924 BTRFS_DATA_RELOC_TREE_OBJECTID) {
925 ret = btrfs_reloc_clone_csums(inode, start,
926 cur_alloc_size);
79787eaa
JM
927 if (ret) {
928 btrfs_abort_transaction(trans, root, ret);
929 goto out_unlock;
930 }
17d217fe
YZ
931 }
932
d397712b 933 if (disk_num_bytes < cur_alloc_size)
3b951516 934 break;
d397712b 935
c8b97818
CM
936 /* we're not doing compressed IO, don't unlock the first
937 * page (which the caller expects to stay locked), don't
938 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
939 *
940 * Do set the Private2 bit so we know this page was properly
941 * setup for writepage
c8b97818 942 */
a791e35e
CM
943 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
944 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
945 EXTENT_SET_PRIVATE2;
946
c8b97818
CM
947 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
948 start, start + ram_size - 1,
a791e35e 949 locked_page, op);
c8b97818 950 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
951 num_bytes -= cur_alloc_size;
952 alloc_hint = ins.objectid + ins.offset;
953 start += cur_alloc_size;
b888db2b 954 }
79787eaa 955out:
be20aa9d 956 return ret;
b7d5b0a8 957
79787eaa
JM
958out_unlock:
959 extent_clear_unlock_delalloc(inode,
960 &BTRFS_I(inode)->io_tree,
beb42dd7 961 start, end, locked_page,
79787eaa
JM
962 EXTENT_CLEAR_UNLOCK_PAGE |
963 EXTENT_CLEAR_UNLOCK |
964 EXTENT_CLEAR_DELALLOC |
965 EXTENT_CLEAR_DIRTY |
966 EXTENT_SET_WRITEBACK |
967 EXTENT_END_WRITEBACK);
968
969 goto out;
771ed689 970}
c8b97818 971
b7d5b0a8
MX
972static noinline int cow_file_range(struct inode *inode,
973 struct page *locked_page,
974 u64 start, u64 end, int *page_started,
975 unsigned long *nr_written,
976 int unlock)
977{
978 struct btrfs_trans_handle *trans;
979 struct btrfs_root *root = BTRFS_I(inode)->root;
980 int ret;
981
982 trans = btrfs_join_transaction(root);
983 if (IS_ERR(trans)) {
984 extent_clear_unlock_delalloc(inode,
985 &BTRFS_I(inode)->io_tree,
986 start, end, locked_page,
987 EXTENT_CLEAR_UNLOCK_PAGE |
988 EXTENT_CLEAR_UNLOCK |
989 EXTENT_CLEAR_DELALLOC |
990 EXTENT_CLEAR_DIRTY |
991 EXTENT_SET_WRITEBACK |
992 EXTENT_END_WRITEBACK);
993 return PTR_ERR(trans);
994 }
995 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
996
997 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
998 page_started, nr_written, unlock);
999
1000 btrfs_end_transaction(trans, root);
1001
1002 return ret;
1003}
1004
771ed689
CM
1005/*
1006 * work queue call back to started compression on a file and pages
1007 */
1008static noinline void async_cow_start(struct btrfs_work *work)
1009{
1010 struct async_cow *async_cow;
1011 int num_added = 0;
1012 async_cow = container_of(work, struct async_cow, work);
1013
1014 compress_file_range(async_cow->inode, async_cow->locked_page,
1015 async_cow->start, async_cow->end, async_cow,
1016 &num_added);
8180ef88 1017 if (num_added == 0) {
cb77fcd8 1018 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1019 async_cow->inode = NULL;
8180ef88 1020 }
771ed689
CM
1021}
1022
1023/*
1024 * work queue call back to submit previously compressed pages
1025 */
1026static noinline void async_cow_submit(struct btrfs_work *work)
1027{
1028 struct async_cow *async_cow;
1029 struct btrfs_root *root;
1030 unsigned long nr_pages;
1031
1032 async_cow = container_of(work, struct async_cow, work);
1033
1034 root = async_cow->root;
1035 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1036 PAGE_CACHE_SHIFT;
1037
66657b31 1038 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1039 5 * 1024 * 1024 &&
771ed689
CM
1040 waitqueue_active(&root->fs_info->async_submit_wait))
1041 wake_up(&root->fs_info->async_submit_wait);
1042
d397712b 1043 if (async_cow->inode)
771ed689 1044 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1045}
c8b97818 1046
771ed689
CM
1047static noinline void async_cow_free(struct btrfs_work *work)
1048{
1049 struct async_cow *async_cow;
1050 async_cow = container_of(work, struct async_cow, work);
8180ef88 1051 if (async_cow->inode)
cb77fcd8 1052 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1053 kfree(async_cow);
1054}
1055
1056static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1057 u64 start, u64 end, int *page_started,
1058 unsigned long *nr_written)
1059{
1060 struct async_cow *async_cow;
1061 struct btrfs_root *root = BTRFS_I(inode)->root;
1062 unsigned long nr_pages;
1063 u64 cur_end;
287082b0 1064 int limit = 10 * 1024 * 1024;
771ed689 1065
a3429ab7
CM
1066 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1067 1, 0, NULL, GFP_NOFS);
d397712b 1068 while (start < end) {
771ed689 1069 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1070 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1071 async_cow->inode = igrab(inode);
771ed689
CM
1072 async_cow->root = root;
1073 async_cow->locked_page = locked_page;
1074 async_cow->start = start;
1075
6cbff00f 1076 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1077 cur_end = end;
1078 else
1079 cur_end = min(end, start + 512 * 1024 - 1);
1080
1081 async_cow->end = cur_end;
1082 INIT_LIST_HEAD(&async_cow->extents);
1083
1084 async_cow->work.func = async_cow_start;
1085 async_cow->work.ordered_func = async_cow_submit;
1086 async_cow->work.ordered_free = async_cow_free;
1087 async_cow->work.flags = 0;
1088
771ed689
CM
1089 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1090 PAGE_CACHE_SHIFT;
1091 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1092
1093 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1094 &async_cow->work);
1095
1096 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1097 wait_event(root->fs_info->async_submit_wait,
1098 (atomic_read(&root->fs_info->async_delalloc_pages) <
1099 limit));
1100 }
1101
d397712b 1102 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1103 atomic_read(&root->fs_info->async_delalloc_pages)) {
1104 wait_event(root->fs_info->async_submit_wait,
1105 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1106 0));
1107 }
1108
1109 *nr_written += nr_pages;
1110 start = cur_end + 1;
1111 }
1112 *page_started = 1;
1113 return 0;
be20aa9d
CM
1114}
1115
d397712b 1116static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1117 u64 bytenr, u64 num_bytes)
1118{
1119 int ret;
1120 struct btrfs_ordered_sum *sums;
1121 LIST_HEAD(list);
1122
07d400a6 1123 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1124 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1125 if (ret == 0 && list_empty(&list))
1126 return 0;
1127
1128 while (!list_empty(&list)) {
1129 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1130 list_del(&sums->list);
1131 kfree(sums);
1132 }
1133 return 1;
1134}
1135
d352ac68
CM
1136/*
1137 * when nowcow writeback call back. This checks for snapshots or COW copies
1138 * of the extents that exist in the file, and COWs the file as required.
1139 *
1140 * If no cow copies or snapshots exist, we write directly to the existing
1141 * blocks on disk
1142 */
7f366cfe
CM
1143static noinline int run_delalloc_nocow(struct inode *inode,
1144 struct page *locked_page,
771ed689
CM
1145 u64 start, u64 end, int *page_started, int force,
1146 unsigned long *nr_written)
be20aa9d 1147{
be20aa9d 1148 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1149 struct btrfs_trans_handle *trans;
be20aa9d 1150 struct extent_buffer *leaf;
be20aa9d 1151 struct btrfs_path *path;
80ff3856 1152 struct btrfs_file_extent_item *fi;
be20aa9d 1153 struct btrfs_key found_key;
80ff3856
YZ
1154 u64 cow_start;
1155 u64 cur_offset;
1156 u64 extent_end;
5d4f98a2 1157 u64 extent_offset;
80ff3856
YZ
1158 u64 disk_bytenr;
1159 u64 num_bytes;
b4939680 1160 u64 disk_num_bytes;
80ff3856 1161 int extent_type;
79787eaa 1162 int ret, err;
d899e052 1163 int type;
80ff3856
YZ
1164 int nocow;
1165 int check_prev = 1;
82d5902d 1166 bool nolock;
33345d01 1167 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1168
1169 path = btrfs_alloc_path();
17ca04af
JB
1170 if (!path) {
1171 extent_clear_unlock_delalloc(inode,
1172 &BTRFS_I(inode)->io_tree,
1173 start, end, locked_page,
1174 EXTENT_CLEAR_UNLOCK_PAGE |
1175 EXTENT_CLEAR_UNLOCK |
1176 EXTENT_CLEAR_DELALLOC |
1177 EXTENT_CLEAR_DIRTY |
1178 EXTENT_SET_WRITEBACK |
1179 EXTENT_END_WRITEBACK);
d8926bb3 1180 return -ENOMEM;
17ca04af 1181 }
82d5902d 1182
83eea1f1 1183 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1184
1185 if (nolock)
7a7eaa40 1186 trans = btrfs_join_transaction_nolock(root);
82d5902d 1187 else
7a7eaa40 1188 trans = btrfs_join_transaction(root);
ff5714cc 1189
79787eaa 1190 if (IS_ERR(trans)) {
17ca04af
JB
1191 extent_clear_unlock_delalloc(inode,
1192 &BTRFS_I(inode)->io_tree,
1193 start, end, locked_page,
1194 EXTENT_CLEAR_UNLOCK_PAGE |
1195 EXTENT_CLEAR_UNLOCK |
1196 EXTENT_CLEAR_DELALLOC |
1197 EXTENT_CLEAR_DIRTY |
1198 EXTENT_SET_WRITEBACK |
1199 EXTENT_END_WRITEBACK);
79787eaa
JM
1200 btrfs_free_path(path);
1201 return PTR_ERR(trans);
1202 }
1203
74b21075 1204 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1205
80ff3856
YZ
1206 cow_start = (u64)-1;
1207 cur_offset = start;
1208 while (1) {
33345d01 1209 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1210 cur_offset, 0);
79787eaa
JM
1211 if (ret < 0) {
1212 btrfs_abort_transaction(trans, root, ret);
1213 goto error;
1214 }
80ff3856
YZ
1215 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1216 leaf = path->nodes[0];
1217 btrfs_item_key_to_cpu(leaf, &found_key,
1218 path->slots[0] - 1);
33345d01 1219 if (found_key.objectid == ino &&
80ff3856
YZ
1220 found_key.type == BTRFS_EXTENT_DATA_KEY)
1221 path->slots[0]--;
1222 }
1223 check_prev = 0;
1224next_slot:
1225 leaf = path->nodes[0];
1226 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1227 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1228 if (ret < 0) {
1229 btrfs_abort_transaction(trans, root, ret);
1230 goto error;
1231 }
80ff3856
YZ
1232 if (ret > 0)
1233 break;
1234 leaf = path->nodes[0];
1235 }
be20aa9d 1236
80ff3856
YZ
1237 nocow = 0;
1238 disk_bytenr = 0;
17d217fe 1239 num_bytes = 0;
80ff3856
YZ
1240 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1241
33345d01 1242 if (found_key.objectid > ino ||
80ff3856
YZ
1243 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1244 found_key.offset > end)
1245 break;
1246
1247 if (found_key.offset > cur_offset) {
1248 extent_end = found_key.offset;
e9061e21 1249 extent_type = 0;
80ff3856
YZ
1250 goto out_check;
1251 }
1252
1253 fi = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_file_extent_item);
1255 extent_type = btrfs_file_extent_type(leaf, fi);
1256
d899e052
YZ
1257 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1258 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1259 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1260 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1261 extent_end = found_key.offset +
1262 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1263 disk_num_bytes =
1264 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1265 if (extent_end <= start) {
1266 path->slots[0]++;
1267 goto next_slot;
1268 }
17d217fe
YZ
1269 if (disk_bytenr == 0)
1270 goto out_check;
80ff3856
YZ
1271 if (btrfs_file_extent_compression(leaf, fi) ||
1272 btrfs_file_extent_encryption(leaf, fi) ||
1273 btrfs_file_extent_other_encoding(leaf, fi))
1274 goto out_check;
d899e052
YZ
1275 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1276 goto out_check;
d2fb3437 1277 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1278 goto out_check;
33345d01 1279 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1280 found_key.offset -
1281 extent_offset, disk_bytenr))
17d217fe 1282 goto out_check;
5d4f98a2 1283 disk_bytenr += extent_offset;
17d217fe
YZ
1284 disk_bytenr += cur_offset - found_key.offset;
1285 num_bytes = min(end + 1, extent_end) - cur_offset;
1286 /*
1287 * force cow if csum exists in the range.
1288 * this ensure that csum for a given extent are
1289 * either valid or do not exist.
1290 */
1291 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1292 goto out_check;
80ff3856
YZ
1293 nocow = 1;
1294 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1295 extent_end = found_key.offset +
1296 btrfs_file_extent_inline_len(leaf, fi);
1297 extent_end = ALIGN(extent_end, root->sectorsize);
1298 } else {
1299 BUG_ON(1);
1300 }
1301out_check:
1302 if (extent_end <= start) {
1303 path->slots[0]++;
1304 goto next_slot;
1305 }
1306 if (!nocow) {
1307 if (cow_start == (u64)-1)
1308 cow_start = cur_offset;
1309 cur_offset = extent_end;
1310 if (cur_offset > end)
1311 break;
1312 path->slots[0]++;
1313 goto next_slot;
7ea394f1
YZ
1314 }
1315
b3b4aa74 1316 btrfs_release_path(path);
80ff3856 1317 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1318 ret = __cow_file_range(trans, inode, root, locked_page,
1319 cow_start, found_key.offset - 1,
1320 page_started, nr_written, 1);
79787eaa
JM
1321 if (ret) {
1322 btrfs_abort_transaction(trans, root, ret);
1323 goto error;
1324 }
80ff3856 1325 cow_start = (u64)-1;
7ea394f1 1326 }
80ff3856 1327
d899e052
YZ
1328 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1329 struct extent_map *em;
1330 struct extent_map_tree *em_tree;
1331 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1332 em = alloc_extent_map();
79787eaa 1333 BUG_ON(!em); /* -ENOMEM */
d899e052 1334 em->start = cur_offset;
70c8a91c 1335 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1336 em->len = num_bytes;
1337 em->block_len = num_bytes;
1338 em->block_start = disk_bytenr;
b4939680 1339 em->orig_block_len = disk_num_bytes;
d899e052
YZ
1340 em->bdev = root->fs_info->fs_devices->latest_bdev;
1341 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1342 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1343 em->generation = -1;
d899e052 1344 while (1) {
890871be 1345 write_lock(&em_tree->lock);
d899e052 1346 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
1347 if (!ret)
1348 list_move(&em->list,
1349 &em_tree->modified_extents);
890871be 1350 write_unlock(&em_tree->lock);
d899e052
YZ
1351 if (ret != -EEXIST) {
1352 free_extent_map(em);
1353 break;
1354 }
1355 btrfs_drop_extent_cache(inode, em->start,
1356 em->start + em->len - 1, 0);
1357 }
1358 type = BTRFS_ORDERED_PREALLOC;
1359 } else {
1360 type = BTRFS_ORDERED_NOCOW;
1361 }
80ff3856
YZ
1362
1363 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1364 num_bytes, num_bytes, type);
79787eaa 1365 BUG_ON(ret); /* -ENOMEM */
771ed689 1366
efa56464
YZ
1367 if (root->root_key.objectid ==
1368 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1369 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1370 num_bytes);
79787eaa
JM
1371 if (ret) {
1372 btrfs_abort_transaction(trans, root, ret);
1373 goto error;
1374 }
efa56464
YZ
1375 }
1376
d899e052 1377 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1378 cur_offset, cur_offset + num_bytes - 1,
1379 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1380 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1381 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1382 cur_offset = extent_end;
1383 if (cur_offset > end)
1384 break;
be20aa9d 1385 }
b3b4aa74 1386 btrfs_release_path(path);
80ff3856 1387
17ca04af 1388 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1389 cow_start = cur_offset;
17ca04af
JB
1390 cur_offset = end;
1391 }
1392
80ff3856 1393 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1394 ret = __cow_file_range(trans, inode, root, locked_page,
1395 cow_start, end,
1396 page_started, nr_written, 1);
79787eaa
JM
1397 if (ret) {
1398 btrfs_abort_transaction(trans, root, ret);
1399 goto error;
1400 }
80ff3856
YZ
1401 }
1402
79787eaa 1403error:
a698d075 1404 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1405 if (!ret)
1406 ret = err;
1407
17ca04af
JB
1408 if (ret && cur_offset < end)
1409 extent_clear_unlock_delalloc(inode,
1410 &BTRFS_I(inode)->io_tree,
1411 cur_offset, end, locked_page,
1412 EXTENT_CLEAR_UNLOCK_PAGE |
1413 EXTENT_CLEAR_UNLOCK |
1414 EXTENT_CLEAR_DELALLOC |
1415 EXTENT_CLEAR_DIRTY |
1416 EXTENT_SET_WRITEBACK |
1417 EXTENT_END_WRITEBACK);
1418
7ea394f1 1419 btrfs_free_path(path);
79787eaa 1420 return ret;
be20aa9d
CM
1421}
1422
d352ac68
CM
1423/*
1424 * extent_io.c call back to do delayed allocation processing
1425 */
c8b97818 1426static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1427 u64 start, u64 end, int *page_started,
1428 unsigned long *nr_written)
be20aa9d 1429{
be20aa9d 1430 int ret;
7f366cfe 1431 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1432
7ddf5a42 1433 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1434 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1435 page_started, 1, nr_written);
7ddf5a42 1436 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1437 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1438 page_started, 0, nr_written);
7ddf5a42
JB
1439 } else if (!btrfs_test_opt(root, COMPRESS) &&
1440 !(BTRFS_I(inode)->force_compress) &&
1441 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1442 ret = cow_file_range(inode, locked_page, start, end,
1443 page_started, nr_written, 1);
7ddf5a42
JB
1444 } else {
1445 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1446 &BTRFS_I(inode)->runtime_flags);
771ed689 1447 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1448 page_started, nr_written);
7ddf5a42 1449 }
b888db2b
CM
1450 return ret;
1451}
1452
1bf85046
JM
1453static void btrfs_split_extent_hook(struct inode *inode,
1454 struct extent_state *orig, u64 split)
9ed74f2d 1455{
0ca1f7ce 1456 /* not delalloc, ignore it */
9ed74f2d 1457 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1458 return;
9ed74f2d 1459
9e0baf60
JB
1460 spin_lock(&BTRFS_I(inode)->lock);
1461 BTRFS_I(inode)->outstanding_extents++;
1462 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1463}
1464
1465/*
1466 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1467 * extents so we can keep track of new extents that are just merged onto old
1468 * extents, such as when we are doing sequential writes, so we can properly
1469 * account for the metadata space we'll need.
1470 */
1bf85046
JM
1471static void btrfs_merge_extent_hook(struct inode *inode,
1472 struct extent_state *new,
1473 struct extent_state *other)
9ed74f2d 1474{
9ed74f2d
JB
1475 /* not delalloc, ignore it */
1476 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1477 return;
9ed74f2d 1478
9e0baf60
JB
1479 spin_lock(&BTRFS_I(inode)->lock);
1480 BTRFS_I(inode)->outstanding_extents--;
1481 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1482}
1483
d352ac68
CM
1484/*
1485 * extent_io.c set_bit_hook, used to track delayed allocation
1486 * bytes in this file, and to maintain the list of inodes that
1487 * have pending delalloc work to be done.
1488 */
1bf85046
JM
1489static void btrfs_set_bit_hook(struct inode *inode,
1490 struct extent_state *state, int *bits)
291d673e 1491{
9ed74f2d 1492
75eff68e
CM
1493 /*
1494 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1495 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1496 * bit, which is only set or cleared with irqs on
1497 */
0ca1f7ce 1498 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1499 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1500 u64 len = state->end + 1 - state->start;
83eea1f1 1501 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1502
9e0baf60 1503 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1504 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1505 } else {
1506 spin_lock(&BTRFS_I(inode)->lock);
1507 BTRFS_I(inode)->outstanding_extents++;
1508 spin_unlock(&BTRFS_I(inode)->lock);
1509 }
287a0ab9 1510
75eff68e 1511 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1512 BTRFS_I(inode)->delalloc_bytes += len;
1513 root->fs_info->delalloc_bytes += len;
0cb59c99 1514 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1515 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1516 &root->fs_info->delalloc_inodes);
1517 }
75eff68e 1518 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1519 }
291d673e
CM
1520}
1521
d352ac68
CM
1522/*
1523 * extent_io.c clear_bit_hook, see set_bit_hook for why
1524 */
1bf85046
JM
1525static void btrfs_clear_bit_hook(struct inode *inode,
1526 struct extent_state *state, int *bits)
291d673e 1527{
75eff68e
CM
1528 /*
1529 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1530 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1531 * bit, which is only set or cleared with irqs on
1532 */
0ca1f7ce 1533 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1534 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1535 u64 len = state->end + 1 - state->start;
83eea1f1 1536 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1537
9e0baf60 1538 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1539 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1540 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1541 spin_lock(&BTRFS_I(inode)->lock);
1542 BTRFS_I(inode)->outstanding_extents--;
1543 spin_unlock(&BTRFS_I(inode)->lock);
1544 }
0ca1f7ce
YZ
1545
1546 if (*bits & EXTENT_DO_ACCOUNTING)
1547 btrfs_delalloc_release_metadata(inode, len);
1548
0cb59c99
JB
1549 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1550 && do_list)
0ca1f7ce 1551 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1552
75eff68e 1553 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1554 root->fs_info->delalloc_bytes -= len;
1555 BTRFS_I(inode)->delalloc_bytes -= len;
1556
0cb59c99 1557 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1558 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1559 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1560 }
75eff68e 1561 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1562 }
291d673e
CM
1563}
1564
d352ac68
CM
1565/*
1566 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1567 * we don't create bios that span stripes or chunks
1568 */
239b14b3 1569int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1570 size_t size, struct bio *bio,
1571 unsigned long bio_flags)
239b14b3
CM
1572{
1573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1574 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1575 u64 length = 0;
1576 u64 map_length;
239b14b3
CM
1577 int ret;
1578
771ed689
CM
1579 if (bio_flags & EXTENT_BIO_COMPRESSED)
1580 return 0;
1581
f2d8d74d 1582 length = bio->bi_size;
239b14b3 1583 map_length = length;
3ec706c8 1584 ret = btrfs_map_block(root->fs_info, READ, logical,
f188591e 1585 &map_length, NULL, 0);
3ec706c8 1586 /* Will always return 0 with map_multi == NULL */
3444a972 1587 BUG_ON(ret < 0);
d397712b 1588 if (map_length < length + size)
239b14b3 1589 return 1;
3444a972 1590 return 0;
239b14b3
CM
1591}
1592
d352ac68
CM
1593/*
1594 * in order to insert checksums into the metadata in large chunks,
1595 * we wait until bio submission time. All the pages in the bio are
1596 * checksummed and sums are attached onto the ordered extent record.
1597 *
1598 * At IO completion time the cums attached on the ordered extent record
1599 * are inserted into the btree
1600 */
d397712b
CM
1601static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1602 struct bio *bio, int mirror_num,
eaf25d93
CM
1603 unsigned long bio_flags,
1604 u64 bio_offset)
065631f6 1605{
065631f6 1606 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1607 int ret = 0;
e015640f 1608
d20f7043 1609 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1610 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1611 return 0;
1612}
e015640f 1613
4a69a410
CM
1614/*
1615 * in order to insert checksums into the metadata in large chunks,
1616 * we wait until bio submission time. All the pages in the bio are
1617 * checksummed and sums are attached onto the ordered extent record.
1618 *
1619 * At IO completion time the cums attached on the ordered extent record
1620 * are inserted into the btree
1621 */
b2950863 1622static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1623 int mirror_num, unsigned long bio_flags,
1624 u64 bio_offset)
4a69a410
CM
1625{
1626 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1627 int ret;
1628
1629 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1630 if (ret)
1631 bio_endio(bio, ret);
1632 return ret;
44b8bd7e
CM
1633}
1634
d352ac68 1635/*
cad321ad
CM
1636 * extent_io.c submission hook. This does the right thing for csum calculation
1637 * on write, or reading the csums from the tree before a read
d352ac68 1638 */
b2950863 1639static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1640 int mirror_num, unsigned long bio_flags,
1641 u64 bio_offset)
44b8bd7e
CM
1642{
1643 struct btrfs_root *root = BTRFS_I(inode)->root;
1644 int ret = 0;
19b9bdb0 1645 int skip_sum;
0417341e 1646 int metadata = 0;
b812ce28 1647 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1648
6cbff00f 1649 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1650
83eea1f1 1651 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1652 metadata = 2;
1653
7b6d91da 1654 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1655 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1656 if (ret)
61891923 1657 goto out;
5fd02043 1658
d20f7043 1659 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1660 ret = btrfs_submit_compressed_read(inode, bio,
1661 mirror_num,
1662 bio_flags);
1663 goto out;
c2db1073
TI
1664 } else if (!skip_sum) {
1665 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1666 if (ret)
61891923 1667 goto out;
c2db1073 1668 }
4d1b5fb4 1669 goto mapit;
b812ce28 1670 } else if (async && !skip_sum) {
17d217fe
YZ
1671 /* csum items have already been cloned */
1672 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1673 goto mapit;
19b9bdb0 1674 /* we're doing a write, do the async checksumming */
61891923 1675 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1676 inode, rw, bio, mirror_num,
eaf25d93
CM
1677 bio_flags, bio_offset,
1678 __btrfs_submit_bio_start,
4a69a410 1679 __btrfs_submit_bio_done);
61891923 1680 goto out;
b812ce28
JB
1681 } else if (!skip_sum) {
1682 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1683 if (ret)
1684 goto out;
19b9bdb0
CM
1685 }
1686
0b86a832 1687mapit:
61891923
SB
1688 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1689
1690out:
1691 if (ret < 0)
1692 bio_endio(bio, ret);
1693 return ret;
065631f6 1694}
6885f308 1695
d352ac68
CM
1696/*
1697 * given a list of ordered sums record them in the inode. This happens
1698 * at IO completion time based on sums calculated at bio submission time.
1699 */
ba1da2f4 1700static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1701 struct inode *inode, u64 file_offset,
1702 struct list_head *list)
1703{
e6dcd2dc
CM
1704 struct btrfs_ordered_sum *sum;
1705
c6e30871 1706 list_for_each_entry(sum, list, list) {
d20f7043
CM
1707 btrfs_csum_file_blocks(trans,
1708 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1709 }
1710 return 0;
1711}
1712
2ac55d41
JB
1713int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1714 struct extent_state **cached_state)
ea8c2819 1715{
6c1500f2 1716 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1717 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1718 cached_state, GFP_NOFS);
ea8c2819
CM
1719}
1720
d352ac68 1721/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1722struct btrfs_writepage_fixup {
1723 struct page *page;
1724 struct btrfs_work work;
1725};
1726
b2950863 1727static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1728{
1729 struct btrfs_writepage_fixup *fixup;
1730 struct btrfs_ordered_extent *ordered;
2ac55d41 1731 struct extent_state *cached_state = NULL;
247e743c
CM
1732 struct page *page;
1733 struct inode *inode;
1734 u64 page_start;
1735 u64 page_end;
87826df0 1736 int ret;
247e743c
CM
1737
1738 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1739 page = fixup->page;
4a096752 1740again:
247e743c
CM
1741 lock_page(page);
1742 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1743 ClearPageChecked(page);
1744 goto out_page;
1745 }
1746
1747 inode = page->mapping->host;
1748 page_start = page_offset(page);
1749 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1750
2ac55d41 1751 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1752 &cached_state);
4a096752
CM
1753
1754 /* already ordered? We're done */
8b62b72b 1755 if (PagePrivate2(page))
247e743c 1756 goto out;
4a096752
CM
1757
1758 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1759 if (ordered) {
2ac55d41
JB
1760 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1761 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1762 unlock_page(page);
1763 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1764 btrfs_put_ordered_extent(ordered);
4a096752
CM
1765 goto again;
1766 }
247e743c 1767
87826df0
JM
1768 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1769 if (ret) {
1770 mapping_set_error(page->mapping, ret);
1771 end_extent_writepage(page, ret, page_start, page_end);
1772 ClearPageChecked(page);
1773 goto out;
1774 }
1775
2ac55d41 1776 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1777 ClearPageChecked(page);
87826df0 1778 set_page_dirty(page);
247e743c 1779out:
2ac55d41
JB
1780 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1781 &cached_state, GFP_NOFS);
247e743c
CM
1782out_page:
1783 unlock_page(page);
1784 page_cache_release(page);
b897abec 1785 kfree(fixup);
247e743c
CM
1786}
1787
1788/*
1789 * There are a few paths in the higher layers of the kernel that directly
1790 * set the page dirty bit without asking the filesystem if it is a
1791 * good idea. This causes problems because we want to make sure COW
1792 * properly happens and the data=ordered rules are followed.
1793 *
c8b97818 1794 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1795 * hasn't been properly setup for IO. We kick off an async process
1796 * to fix it up. The async helper will wait for ordered extents, set
1797 * the delalloc bit and make it safe to write the page.
1798 */
b2950863 1799static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1800{
1801 struct inode *inode = page->mapping->host;
1802 struct btrfs_writepage_fixup *fixup;
1803 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1804
8b62b72b
CM
1805 /* this page is properly in the ordered list */
1806 if (TestClearPagePrivate2(page))
247e743c
CM
1807 return 0;
1808
1809 if (PageChecked(page))
1810 return -EAGAIN;
1811
1812 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1813 if (!fixup)
1814 return -EAGAIN;
f421950f 1815
247e743c
CM
1816 SetPageChecked(page);
1817 page_cache_get(page);
1818 fixup->work.func = btrfs_writepage_fixup_worker;
1819 fixup->page = page;
1820 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1821 return -EBUSY;
247e743c
CM
1822}
1823
d899e052
YZ
1824static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1825 struct inode *inode, u64 file_pos,
1826 u64 disk_bytenr, u64 disk_num_bytes,
1827 u64 num_bytes, u64 ram_bytes,
1828 u8 compression, u8 encryption,
1829 u16 other_encoding, int extent_type)
1830{
1831 struct btrfs_root *root = BTRFS_I(inode)->root;
1832 struct btrfs_file_extent_item *fi;
1833 struct btrfs_path *path;
1834 struct extent_buffer *leaf;
1835 struct btrfs_key ins;
d899e052
YZ
1836 int ret;
1837
1838 path = btrfs_alloc_path();
d8926bb3
MF
1839 if (!path)
1840 return -ENOMEM;
d899e052 1841
b9473439 1842 path->leave_spinning = 1;
a1ed835e
CM
1843
1844 /*
1845 * we may be replacing one extent in the tree with another.
1846 * The new extent is pinned in the extent map, and we don't want
1847 * to drop it from the cache until it is completely in the btree.
1848 *
1849 * So, tell btrfs_drop_extents to leave this extent in the cache.
1850 * the caller is expected to unpin it and allow it to be merged
1851 * with the others.
1852 */
5dc562c5 1853 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1854 file_pos + num_bytes, 0);
79787eaa
JM
1855 if (ret)
1856 goto out;
d899e052 1857
33345d01 1858 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1859 ins.offset = file_pos;
1860 ins.type = BTRFS_EXTENT_DATA_KEY;
1861 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1862 if (ret)
1863 goto out;
d899e052
YZ
1864 leaf = path->nodes[0];
1865 fi = btrfs_item_ptr(leaf, path->slots[0],
1866 struct btrfs_file_extent_item);
1867 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1868 btrfs_set_file_extent_type(leaf, fi, extent_type);
1869 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1870 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1871 btrfs_set_file_extent_offset(leaf, fi, 0);
1872 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1873 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1874 btrfs_set_file_extent_compression(leaf, fi, compression);
1875 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1876 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1877
d899e052 1878 btrfs_mark_buffer_dirty(leaf);
ce195332 1879 btrfs_release_path(path);
d899e052
YZ
1880
1881 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1882
1883 ins.objectid = disk_bytenr;
1884 ins.offset = disk_num_bytes;
1885 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1886 ret = btrfs_alloc_reserved_file_extent(trans, root,
1887 root->root_key.objectid,
33345d01 1888 btrfs_ino(inode), file_pos, &ins);
79787eaa 1889out:
d899e052 1890 btrfs_free_path(path);
b9473439 1891
79787eaa 1892 return ret;
d899e052
YZ
1893}
1894
5d13a98f
CM
1895/*
1896 * helper function for btrfs_finish_ordered_io, this
1897 * just reads in some of the csum leaves to prime them into ram
1898 * before we start the transaction. It limits the amount of btree
1899 * reads required while inside the transaction.
1900 */
d352ac68
CM
1901/* as ordered data IO finishes, this gets called so we can finish
1902 * an ordered extent if the range of bytes in the file it covers are
1903 * fully written.
1904 */
5fd02043 1905static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 1906{
5fd02043 1907 struct inode *inode = ordered_extent->inode;
e6dcd2dc 1908 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1909 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 1910 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1911 struct extent_state *cached_state = NULL;
261507a0 1912 int compress_type = 0;
e6dcd2dc 1913 int ret;
82d5902d 1914 bool nolock;
e6dcd2dc 1915
83eea1f1 1916 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 1917
5fd02043
JB
1918 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1919 ret = -EIO;
1920 goto out;
1921 }
1922
c2167754 1923 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1924 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
c2167754
YZ
1925 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1926 if (!ret) {
0cb59c99 1927 if (nolock)
7a7eaa40 1928 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1929 else
7a7eaa40 1930 trans = btrfs_join_transaction(root);
d280e5be
LB
1931 if (IS_ERR(trans)) {
1932 ret = PTR_ERR(trans);
1933 trans = NULL;
1934 goto out;
1935 }
0ca1f7ce 1936 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1937 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1938 if (ret) /* -ENOMEM or corruption */
1939 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1940 }
1941 goto out;
1942 }
e6dcd2dc 1943
2ac55d41
JB
1944 lock_extent_bits(io_tree, ordered_extent->file_offset,
1945 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1946 0, &cached_state);
e6dcd2dc 1947
0cb59c99 1948 if (nolock)
7a7eaa40 1949 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1950 else
7a7eaa40 1951 trans = btrfs_join_transaction(root);
79787eaa
JM
1952 if (IS_ERR(trans)) {
1953 ret = PTR_ERR(trans);
1954 trans = NULL;
1955 goto out_unlock;
1956 }
0ca1f7ce 1957 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1958
c8b97818 1959 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1960 compress_type = ordered_extent->compress_type;
d899e052 1961 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1962 BUG_ON(compress_type);
920bbbfb 1963 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1964 ordered_extent->file_offset,
1965 ordered_extent->file_offset +
1966 ordered_extent->len);
d899e052 1967 } else {
0af3d00b 1968 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1969 ret = insert_reserved_file_extent(trans, inode,
1970 ordered_extent->file_offset,
1971 ordered_extent->start,
1972 ordered_extent->disk_len,
1973 ordered_extent->len,
1974 ordered_extent->len,
261507a0 1975 compress_type, 0, 0,
d899e052 1976 BTRFS_FILE_EXTENT_REG);
d899e052 1977 }
5dc562c5
JB
1978 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1979 ordered_extent->file_offset, ordered_extent->len,
1980 trans->transid);
79787eaa
JM
1981 if (ret < 0) {
1982 btrfs_abort_transaction(trans, root, ret);
5fd02043 1983 goto out_unlock;
79787eaa 1984 }
2ac55d41 1985
e6dcd2dc
CM
1986 add_pending_csums(trans, inode, ordered_extent->file_offset,
1987 &ordered_extent->list);
1988
1ef30be1 1989 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1990 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1991 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1992 if (ret) { /* -ENOMEM or corruption */
1993 btrfs_abort_transaction(trans, root, ret);
5fd02043 1994 goto out_unlock;
79787eaa 1995 }
7c735313
JB
1996 } else {
1997 btrfs_set_inode_last_trans(trans, inode);
1ef30be1
JB
1998 }
1999 ret = 0;
5fd02043
JB
2000out_unlock:
2001 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2002 ordered_extent->file_offset +
2003 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2004out:
5b0e95bf 2005 if (root != root->fs_info->tree_root)
0cb59c99 2006 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2007 if (trans)
2008 btrfs_end_transaction(trans, root);
0cb59c99 2009
5fd02043
JB
2010 if (ret)
2011 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2012 ordered_extent->file_offset +
2013 ordered_extent->len - 1, NULL, GFP_NOFS);
2014
2015 /*
8bad3c02
LB
2016 * This needs to be done to make sure anybody waiting knows we are done
2017 * updating everything for this ordered extent.
5fd02043
JB
2018 */
2019 btrfs_remove_ordered_extent(inode, ordered_extent);
2020
e6dcd2dc
CM
2021 /* once for us */
2022 btrfs_put_ordered_extent(ordered_extent);
2023 /* once for the tree */
2024 btrfs_put_ordered_extent(ordered_extent);
2025
5fd02043
JB
2026 return ret;
2027}
2028
2029static void finish_ordered_fn(struct btrfs_work *work)
2030{
2031 struct btrfs_ordered_extent *ordered_extent;
2032 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2033 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2034}
2035
b2950863 2036static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2037 struct extent_state *state, int uptodate)
2038{
5fd02043
JB
2039 struct inode *inode = page->mapping->host;
2040 struct btrfs_root *root = BTRFS_I(inode)->root;
2041 struct btrfs_ordered_extent *ordered_extent = NULL;
2042 struct btrfs_workers *workers;
2043
1abe9b8a 2044 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2045
8b62b72b 2046 ClearPagePrivate2(page);
5fd02043
JB
2047 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2048 end - start + 1, uptodate))
2049 return 0;
2050
2051 ordered_extent->work.func = finish_ordered_fn;
2052 ordered_extent->work.flags = 0;
2053
83eea1f1 2054 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2055 workers = &root->fs_info->endio_freespace_worker;
2056 else
2057 workers = &root->fs_info->endio_write_workers;
2058 btrfs_queue_worker(workers, &ordered_extent->work);
2059
2060 return 0;
211f90e6
CM
2061}
2062
d352ac68
CM
2063/*
2064 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2065 * if there's a match, we allow the bio to finish. If not, the code in
2066 * extent_io.c will try to find good copies for us.
d352ac68 2067 */
b2950863 2068static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2069 struct extent_state *state, int mirror)
07157aac 2070{
35ebb934 2071 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 2072 struct inode *inode = page->mapping->host;
d1310b2e 2073 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2074 char *kaddr;
aadfeb6e 2075 u64 private = ~(u32)0;
07157aac 2076 int ret;
ff79f819
CM
2077 struct btrfs_root *root = BTRFS_I(inode)->root;
2078 u32 csum = ~(u32)0;
d1310b2e 2079
d20f7043
CM
2080 if (PageChecked(page)) {
2081 ClearPageChecked(page);
2082 goto good;
2083 }
6cbff00f
CH
2084
2085 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2086 goto good;
17d217fe
YZ
2087
2088 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2089 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2090 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2091 GFP_NOFS);
b6cda9bc 2092 return 0;
17d217fe 2093 }
d20f7043 2094
c2e639f0 2095 if (state && state->start == start) {
70dec807
CM
2096 private = state->private;
2097 ret = 0;
2098 } else {
2099 ret = get_state_private(io_tree, start, &private);
2100 }
7ac687d9 2101 kaddr = kmap_atomic(page);
d397712b 2102 if (ret)
07157aac 2103 goto zeroit;
d397712b 2104
ff79f819
CM
2105 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2106 btrfs_csum_final(csum, (char *)&csum);
d397712b 2107 if (csum != private)
07157aac 2108 goto zeroit;
d397712b 2109
7ac687d9 2110 kunmap_atomic(kaddr);
d20f7043 2111good:
07157aac
CM
2112 return 0;
2113
2114zeroit:
945d8962 2115 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2116 "private %llu\n",
2117 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2118 (unsigned long long)start, csum,
2119 (unsigned long long)private);
db94535d
CM
2120 memset(kaddr + offset, 1, end - start + 1);
2121 flush_dcache_page(page);
7ac687d9 2122 kunmap_atomic(kaddr);
3b951516
CM
2123 if (private == 0)
2124 return 0;
7e38326f 2125 return -EIO;
07157aac 2126}
b888db2b 2127
24bbcf04
YZ
2128struct delayed_iput {
2129 struct list_head list;
2130 struct inode *inode;
2131};
2132
79787eaa
JM
2133/* JDM: If this is fs-wide, why can't we add a pointer to
2134 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2135void btrfs_add_delayed_iput(struct inode *inode)
2136{
2137 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2138 struct delayed_iput *delayed;
2139
2140 if (atomic_add_unless(&inode->i_count, -1, 1))
2141 return;
2142
2143 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2144 delayed->inode = inode;
2145
2146 spin_lock(&fs_info->delayed_iput_lock);
2147 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2148 spin_unlock(&fs_info->delayed_iput_lock);
2149}
2150
2151void btrfs_run_delayed_iputs(struct btrfs_root *root)
2152{
2153 LIST_HEAD(list);
2154 struct btrfs_fs_info *fs_info = root->fs_info;
2155 struct delayed_iput *delayed;
2156 int empty;
2157
2158 spin_lock(&fs_info->delayed_iput_lock);
2159 empty = list_empty(&fs_info->delayed_iputs);
2160 spin_unlock(&fs_info->delayed_iput_lock);
2161 if (empty)
2162 return;
2163
24bbcf04
YZ
2164 spin_lock(&fs_info->delayed_iput_lock);
2165 list_splice_init(&fs_info->delayed_iputs, &list);
2166 spin_unlock(&fs_info->delayed_iput_lock);
2167
2168 while (!list_empty(&list)) {
2169 delayed = list_entry(list.next, struct delayed_iput, list);
2170 list_del(&delayed->list);
2171 iput(delayed->inode);
2172 kfree(delayed);
2173 }
24bbcf04
YZ
2174}
2175
d68fc57b
YZ
2176enum btrfs_orphan_cleanup_state {
2177 ORPHAN_CLEANUP_STARTED = 1,
2178 ORPHAN_CLEANUP_DONE = 2,
2179};
2180
2181/*
42b2aa86 2182 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2183 * files in the subvolume, it removes orphan item and frees block_rsv
2184 * structure.
2185 */
2186void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2187 struct btrfs_root *root)
2188{
90290e19 2189 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2190 int ret;
2191
8a35d95f 2192 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2193 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2194 return;
2195
90290e19 2196 spin_lock(&root->orphan_lock);
8a35d95f 2197 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2198 spin_unlock(&root->orphan_lock);
2199 return;
2200 }
2201
2202 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2203 spin_unlock(&root->orphan_lock);
2204 return;
2205 }
2206
2207 block_rsv = root->orphan_block_rsv;
2208 root->orphan_block_rsv = NULL;
2209 spin_unlock(&root->orphan_lock);
2210
d68fc57b
YZ
2211 if (root->orphan_item_inserted &&
2212 btrfs_root_refs(&root->root_item) > 0) {
2213 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2214 root->root_key.objectid);
2215 BUG_ON(ret);
2216 root->orphan_item_inserted = 0;
2217 }
2218
90290e19
JB
2219 if (block_rsv) {
2220 WARN_ON(block_rsv->size > 0);
2221 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2222 }
2223}
2224
7b128766
JB
2225/*
2226 * This creates an orphan entry for the given inode in case something goes
2227 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2228 *
2229 * NOTE: caller of this function should reserve 5 units of metadata for
2230 * this function.
7b128766
JB
2231 */
2232int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2233{
2234 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2235 struct btrfs_block_rsv *block_rsv = NULL;
2236 int reserve = 0;
2237 int insert = 0;
2238 int ret;
7b128766 2239
d68fc57b 2240 if (!root->orphan_block_rsv) {
66d8f3dd 2241 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2242 if (!block_rsv)
2243 return -ENOMEM;
d68fc57b 2244 }
7b128766 2245
d68fc57b
YZ
2246 spin_lock(&root->orphan_lock);
2247 if (!root->orphan_block_rsv) {
2248 root->orphan_block_rsv = block_rsv;
2249 } else if (block_rsv) {
2250 btrfs_free_block_rsv(root, block_rsv);
2251 block_rsv = NULL;
7b128766 2252 }
7b128766 2253
8a35d95f
JB
2254 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2255 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2256#if 0
2257 /*
2258 * For proper ENOSPC handling, we should do orphan
2259 * cleanup when mounting. But this introduces backward
2260 * compatibility issue.
2261 */
2262 if (!xchg(&root->orphan_item_inserted, 1))
2263 insert = 2;
2264 else
2265 insert = 1;
2266#endif
2267 insert = 1;
321f0e70 2268 atomic_inc(&root->orphan_inodes);
7b128766
JB
2269 }
2270
72ac3c0d
JB
2271 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2272 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2273 reserve = 1;
d68fc57b 2274 spin_unlock(&root->orphan_lock);
7b128766 2275
d68fc57b
YZ
2276 /* grab metadata reservation from transaction handle */
2277 if (reserve) {
2278 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2279 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2280 }
7b128766 2281
d68fc57b
YZ
2282 /* insert an orphan item to track this unlinked/truncated file */
2283 if (insert >= 1) {
33345d01 2284 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2285 if (ret && ret != -EEXIST) {
8a35d95f
JB
2286 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2287 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2288 btrfs_abort_transaction(trans, root, ret);
2289 return ret;
2290 }
2291 ret = 0;
d68fc57b
YZ
2292 }
2293
2294 /* insert an orphan item to track subvolume contains orphan files */
2295 if (insert >= 2) {
2296 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2297 root->root_key.objectid);
79787eaa
JM
2298 if (ret && ret != -EEXIST) {
2299 btrfs_abort_transaction(trans, root, ret);
2300 return ret;
2301 }
d68fc57b
YZ
2302 }
2303 return 0;
7b128766
JB
2304}
2305
2306/*
2307 * We have done the truncate/delete so we can go ahead and remove the orphan
2308 * item for this particular inode.
2309 */
2310int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2311{
2312 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2313 int delete_item = 0;
2314 int release_rsv = 0;
7b128766
JB
2315 int ret = 0;
2316
d68fc57b 2317 spin_lock(&root->orphan_lock);
8a35d95f
JB
2318 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2319 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2320 delete_item = 1;
7b128766 2321
72ac3c0d
JB
2322 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2323 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2324 release_rsv = 1;
d68fc57b 2325 spin_unlock(&root->orphan_lock);
7b128766 2326
d68fc57b 2327 if (trans && delete_item) {
33345d01 2328 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2329 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2330 }
7b128766 2331
8a35d95f 2332 if (release_rsv) {
d68fc57b 2333 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
2334 atomic_dec(&root->orphan_inodes);
2335 }
7b128766 2336
d68fc57b 2337 return 0;
7b128766
JB
2338}
2339
2340/*
2341 * this cleans up any orphans that may be left on the list from the last use
2342 * of this root.
2343 */
66b4ffd1 2344int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2345{
2346 struct btrfs_path *path;
2347 struct extent_buffer *leaf;
7b128766
JB
2348 struct btrfs_key key, found_key;
2349 struct btrfs_trans_handle *trans;
2350 struct inode *inode;
8f6d7f4f 2351 u64 last_objectid = 0;
7b128766
JB
2352 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2353
d68fc57b 2354 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2355 return 0;
c71bf099
YZ
2356
2357 path = btrfs_alloc_path();
66b4ffd1
JB
2358 if (!path) {
2359 ret = -ENOMEM;
2360 goto out;
2361 }
7b128766
JB
2362 path->reada = -1;
2363
2364 key.objectid = BTRFS_ORPHAN_OBJECTID;
2365 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2366 key.offset = (u64)-1;
2367
7b128766
JB
2368 while (1) {
2369 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2370 if (ret < 0)
2371 goto out;
7b128766
JB
2372
2373 /*
2374 * if ret == 0 means we found what we were searching for, which
25985edc 2375 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2376 * find the key and see if we have stuff that matches
2377 */
2378 if (ret > 0) {
66b4ffd1 2379 ret = 0;
7b128766
JB
2380 if (path->slots[0] == 0)
2381 break;
2382 path->slots[0]--;
2383 }
2384
2385 /* pull out the item */
2386 leaf = path->nodes[0];
7b128766
JB
2387 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2388
2389 /* make sure the item matches what we want */
2390 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2391 break;
2392 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2393 break;
2394
2395 /* release the path since we're done with it */
b3b4aa74 2396 btrfs_release_path(path);
7b128766
JB
2397
2398 /*
2399 * this is where we are basically btrfs_lookup, without the
2400 * crossing root thing. we store the inode number in the
2401 * offset of the orphan item.
2402 */
8f6d7f4f
JB
2403
2404 if (found_key.offset == last_objectid) {
2405 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2406 "stopping orphan cleanup\n");
2407 ret = -EINVAL;
2408 goto out;
2409 }
2410
2411 last_objectid = found_key.offset;
2412
5d4f98a2
YZ
2413 found_key.objectid = found_key.offset;
2414 found_key.type = BTRFS_INODE_ITEM_KEY;
2415 found_key.offset = 0;
73f73415 2416 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2417 ret = PTR_RET(inode);
2418 if (ret && ret != -ESTALE)
66b4ffd1 2419 goto out;
7b128766 2420
f8e9e0b0
AJ
2421 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2422 struct btrfs_root *dead_root;
2423 struct btrfs_fs_info *fs_info = root->fs_info;
2424 int is_dead_root = 0;
2425
2426 /*
2427 * this is an orphan in the tree root. Currently these
2428 * could come from 2 sources:
2429 * a) a snapshot deletion in progress
2430 * b) a free space cache inode
2431 * We need to distinguish those two, as the snapshot
2432 * orphan must not get deleted.
2433 * find_dead_roots already ran before us, so if this
2434 * is a snapshot deletion, we should find the root
2435 * in the dead_roots list
2436 */
2437 spin_lock(&fs_info->trans_lock);
2438 list_for_each_entry(dead_root, &fs_info->dead_roots,
2439 root_list) {
2440 if (dead_root->root_key.objectid ==
2441 found_key.objectid) {
2442 is_dead_root = 1;
2443 break;
2444 }
2445 }
2446 spin_unlock(&fs_info->trans_lock);
2447 if (is_dead_root) {
2448 /* prevent this orphan from being found again */
2449 key.offset = found_key.objectid - 1;
2450 continue;
2451 }
2452 }
7b128766 2453 /*
a8c9e576
JB
2454 * Inode is already gone but the orphan item is still there,
2455 * kill the orphan item.
7b128766 2456 */
a8c9e576
JB
2457 if (ret == -ESTALE) {
2458 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2459 if (IS_ERR(trans)) {
2460 ret = PTR_ERR(trans);
2461 goto out;
2462 }
8a35d95f
JB
2463 printk(KERN_ERR "auto deleting %Lu\n",
2464 found_key.objectid);
a8c9e576
JB
2465 ret = btrfs_del_orphan_item(trans, root,
2466 found_key.objectid);
79787eaa 2467 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2468 btrfs_end_transaction(trans, root);
7b128766
JB
2469 continue;
2470 }
2471
a8c9e576
JB
2472 /*
2473 * add this inode to the orphan list so btrfs_orphan_del does
2474 * the proper thing when we hit it
2475 */
8a35d95f
JB
2476 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2477 &BTRFS_I(inode)->runtime_flags);
a8c9e576 2478
7b128766
JB
2479 /* if we have links, this was a truncate, lets do that */
2480 if (inode->i_nlink) {
a41ad394
JB
2481 if (!S_ISREG(inode->i_mode)) {
2482 WARN_ON(1);
2483 iput(inode);
2484 continue;
2485 }
7b128766 2486 nr_truncate++;
66b4ffd1 2487 ret = btrfs_truncate(inode);
7b128766
JB
2488 } else {
2489 nr_unlink++;
2490 }
2491
2492 /* this will do delete_inode and everything for us */
2493 iput(inode);
66b4ffd1
JB
2494 if (ret)
2495 goto out;
7b128766 2496 }
3254c876
MX
2497 /* release the path since we're done with it */
2498 btrfs_release_path(path);
2499
d68fc57b
YZ
2500 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2501
2502 if (root->orphan_block_rsv)
2503 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2504 (u64)-1);
2505
2506 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2507 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2508 if (!IS_ERR(trans))
2509 btrfs_end_transaction(trans, root);
d68fc57b 2510 }
7b128766
JB
2511
2512 if (nr_unlink)
2513 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2514 if (nr_truncate)
2515 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2516
2517out:
2518 if (ret)
2519 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2520 btrfs_free_path(path);
2521 return ret;
7b128766
JB
2522}
2523
46a53cca
CM
2524/*
2525 * very simple check to peek ahead in the leaf looking for xattrs. If we
2526 * don't find any xattrs, we know there can't be any acls.
2527 *
2528 * slot is the slot the inode is in, objectid is the objectid of the inode
2529 */
2530static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2531 int slot, u64 objectid)
2532{
2533 u32 nritems = btrfs_header_nritems(leaf);
2534 struct btrfs_key found_key;
2535 int scanned = 0;
2536
2537 slot++;
2538 while (slot < nritems) {
2539 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2540
2541 /* we found a different objectid, there must not be acls */
2542 if (found_key.objectid != objectid)
2543 return 0;
2544
2545 /* we found an xattr, assume we've got an acl */
2546 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2547 return 1;
2548
2549 /*
2550 * we found a key greater than an xattr key, there can't
2551 * be any acls later on
2552 */
2553 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2554 return 0;
2555
2556 slot++;
2557 scanned++;
2558
2559 /*
2560 * it goes inode, inode backrefs, xattrs, extents,
2561 * so if there are a ton of hard links to an inode there can
2562 * be a lot of backrefs. Don't waste time searching too hard,
2563 * this is just an optimization
2564 */
2565 if (scanned >= 8)
2566 break;
2567 }
2568 /* we hit the end of the leaf before we found an xattr or
2569 * something larger than an xattr. We have to assume the inode
2570 * has acls
2571 */
2572 return 1;
2573}
2574
d352ac68
CM
2575/*
2576 * read an inode from the btree into the in-memory inode
2577 */
5d4f98a2 2578static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2579{
2580 struct btrfs_path *path;
5f39d397 2581 struct extent_buffer *leaf;
39279cc3 2582 struct btrfs_inode_item *inode_item;
0b86a832 2583 struct btrfs_timespec *tspec;
39279cc3
CM
2584 struct btrfs_root *root = BTRFS_I(inode)->root;
2585 struct btrfs_key location;
46a53cca 2586 int maybe_acls;
618e21d5 2587 u32 rdev;
39279cc3 2588 int ret;
2f7e33d4
MX
2589 bool filled = false;
2590
2591 ret = btrfs_fill_inode(inode, &rdev);
2592 if (!ret)
2593 filled = true;
39279cc3
CM
2594
2595 path = btrfs_alloc_path();
1748f843
MF
2596 if (!path)
2597 goto make_bad;
2598
d90c7321 2599 path->leave_spinning = 1;
39279cc3 2600 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2601
39279cc3 2602 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2603 if (ret)
39279cc3 2604 goto make_bad;
39279cc3 2605
5f39d397 2606 leaf = path->nodes[0];
2f7e33d4
MX
2607
2608 if (filled)
2609 goto cache_acl;
2610
5f39d397
CM
2611 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2612 struct btrfs_inode_item);
5f39d397 2613 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2614 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
2615 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2616 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 2617 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2618
2619 tspec = btrfs_inode_atime(inode_item);
2620 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2621 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2622
2623 tspec = btrfs_inode_mtime(inode_item);
2624 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2625 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2626
2627 tspec = btrfs_inode_ctime(inode_item);
2628 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2629 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2630
a76a3cd4 2631 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2632 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
2633 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2634
2635 /*
2636 * If we were modified in the current generation and evicted from memory
2637 * and then re-read we need to do a full sync since we don't have any
2638 * idea about which extents were modified before we were evicted from
2639 * cache.
2640 */
2641 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2642 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2643 &BTRFS_I(inode)->runtime_flags);
2644
0c4d2d95 2645 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2646 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2647 inode->i_rdev = 0;
5f39d397
CM
2648 rdev = btrfs_inode_rdev(leaf, inode_item);
2649
aec7477b 2650 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2651 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2652cache_acl:
46a53cca
CM
2653 /*
2654 * try to precache a NULL acl entry for files that don't have
2655 * any xattrs or acls
2656 */
33345d01
LZ
2657 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2658 btrfs_ino(inode));
72c04902
AV
2659 if (!maybe_acls)
2660 cache_no_acl(inode);
46a53cca 2661
39279cc3 2662 btrfs_free_path(path);
39279cc3 2663
39279cc3 2664 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2665 case S_IFREG:
2666 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2667 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2668 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2669 inode->i_fop = &btrfs_file_operations;
2670 inode->i_op = &btrfs_file_inode_operations;
2671 break;
2672 case S_IFDIR:
2673 inode->i_fop = &btrfs_dir_file_operations;
2674 if (root == root->fs_info->tree_root)
2675 inode->i_op = &btrfs_dir_ro_inode_operations;
2676 else
2677 inode->i_op = &btrfs_dir_inode_operations;
2678 break;
2679 case S_IFLNK:
2680 inode->i_op = &btrfs_symlink_inode_operations;
2681 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2682 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2683 break;
618e21d5 2684 default:
0279b4cd 2685 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2686 init_special_inode(inode, inode->i_mode, rdev);
2687 break;
39279cc3 2688 }
6cbff00f
CH
2689
2690 btrfs_update_iflags(inode);
39279cc3
CM
2691 return;
2692
2693make_bad:
39279cc3 2694 btrfs_free_path(path);
39279cc3
CM
2695 make_bad_inode(inode);
2696}
2697
d352ac68
CM
2698/*
2699 * given a leaf and an inode, copy the inode fields into the leaf
2700 */
e02119d5
CM
2701static void fill_inode_item(struct btrfs_trans_handle *trans,
2702 struct extent_buffer *leaf,
5f39d397 2703 struct btrfs_inode_item *item,
39279cc3
CM
2704 struct inode *inode)
2705{
2f2f43d3
EB
2706 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2707 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
dbe674a9 2708 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2709 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2710 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2711
2712 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2713 inode->i_atime.tv_sec);
2714 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2715 inode->i_atime.tv_nsec);
2716
2717 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2718 inode->i_mtime.tv_sec);
2719 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2720 inode->i_mtime.tv_nsec);
2721
2722 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2723 inode->i_ctime.tv_sec);
2724 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2725 inode->i_ctime.tv_nsec);
2726
a76a3cd4 2727 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2728 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
0c4d2d95 2729 btrfs_set_inode_sequence(leaf, item, inode->i_version);
e02119d5 2730 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2731 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2732 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2733 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2734}
2735
d352ac68
CM
2736/*
2737 * copy everything in the in-memory inode into the btree.
2738 */
2115133f 2739static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2740 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2741{
2742 struct btrfs_inode_item *inode_item;
2743 struct btrfs_path *path;
5f39d397 2744 struct extent_buffer *leaf;
39279cc3
CM
2745 int ret;
2746
2747 path = btrfs_alloc_path();
16cdcec7
MX
2748 if (!path)
2749 return -ENOMEM;
2750
b9473439 2751 path->leave_spinning = 1;
16cdcec7
MX
2752 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2753 1);
39279cc3
CM
2754 if (ret) {
2755 if (ret > 0)
2756 ret = -ENOENT;
2757 goto failed;
2758 }
2759
b4ce94de 2760 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2761 leaf = path->nodes[0];
2762 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2763 struct btrfs_inode_item);
39279cc3 2764
e02119d5 2765 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2766 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2767 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2768 ret = 0;
2769failed:
39279cc3
CM
2770 btrfs_free_path(path);
2771 return ret;
2772}
2773
2115133f
CM
2774/*
2775 * copy everything in the in-memory inode into the btree.
2776 */
2777noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2778 struct btrfs_root *root, struct inode *inode)
2779{
2780 int ret;
2781
2782 /*
2783 * If the inode is a free space inode, we can deadlock during commit
2784 * if we put it into the delayed code.
2785 *
2786 * The data relocation inode should also be directly updated
2787 * without delay
2788 */
83eea1f1 2789 if (!btrfs_is_free_space_inode(inode)
2115133f 2790 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
2791 btrfs_update_root_times(trans, root);
2792
2115133f
CM
2793 ret = btrfs_delayed_update_inode(trans, root, inode);
2794 if (!ret)
2795 btrfs_set_inode_last_trans(trans, inode);
2796 return ret;
2797 }
2798
2799 return btrfs_update_inode_item(trans, root, inode);
2800}
2801
be6aef60
JB
2802noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2803 struct btrfs_root *root,
2804 struct inode *inode)
2115133f
CM
2805{
2806 int ret;
2807
2808 ret = btrfs_update_inode(trans, root, inode);
2809 if (ret == -ENOSPC)
2810 return btrfs_update_inode_item(trans, root, inode);
2811 return ret;
2812}
2813
d352ac68
CM
2814/*
2815 * unlink helper that gets used here in inode.c and in the tree logging
2816 * recovery code. It remove a link in a directory with a given name, and
2817 * also drops the back refs in the inode to the directory
2818 */
92986796
AV
2819static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2820 struct btrfs_root *root,
2821 struct inode *dir, struct inode *inode,
2822 const char *name, int name_len)
39279cc3
CM
2823{
2824 struct btrfs_path *path;
39279cc3 2825 int ret = 0;
5f39d397 2826 struct extent_buffer *leaf;
39279cc3 2827 struct btrfs_dir_item *di;
5f39d397 2828 struct btrfs_key key;
aec7477b 2829 u64 index;
33345d01
LZ
2830 u64 ino = btrfs_ino(inode);
2831 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2832
2833 path = btrfs_alloc_path();
54aa1f4d
CM
2834 if (!path) {
2835 ret = -ENOMEM;
554233a6 2836 goto out;
54aa1f4d
CM
2837 }
2838
b9473439 2839 path->leave_spinning = 1;
33345d01 2840 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2841 name, name_len, -1);
2842 if (IS_ERR(di)) {
2843 ret = PTR_ERR(di);
2844 goto err;
2845 }
2846 if (!di) {
2847 ret = -ENOENT;
2848 goto err;
2849 }
5f39d397
CM
2850 leaf = path->nodes[0];
2851 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2852 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2853 if (ret)
2854 goto err;
b3b4aa74 2855 btrfs_release_path(path);
39279cc3 2856
33345d01
LZ
2857 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2858 dir_ino, &index);
aec7477b 2859 if (ret) {
d397712b 2860 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2861 "inode %llu parent %llu\n", name_len, name,
2862 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2863 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2864 goto err;
2865 }
2866
16cdcec7 2867 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2868 if (ret) {
2869 btrfs_abort_transaction(trans, root, ret);
39279cc3 2870 goto err;
79787eaa 2871 }
39279cc3 2872
e02119d5 2873 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2874 inode, dir_ino);
79787eaa
JM
2875 if (ret != 0 && ret != -ENOENT) {
2876 btrfs_abort_transaction(trans, root, ret);
2877 goto err;
2878 }
e02119d5
CM
2879
2880 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2881 dir, index);
6418c961
CM
2882 if (ret == -ENOENT)
2883 ret = 0;
39279cc3
CM
2884err:
2885 btrfs_free_path(path);
e02119d5
CM
2886 if (ret)
2887 goto out;
2888
2889 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2890 inode_inc_iversion(inode);
2891 inode_inc_iversion(dir);
e02119d5 2892 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 2893 ret = btrfs_update_inode(trans, root, dir);
e02119d5 2894out:
39279cc3
CM
2895 return ret;
2896}
2897
92986796
AV
2898int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2899 struct btrfs_root *root,
2900 struct inode *dir, struct inode *inode,
2901 const char *name, int name_len)
2902{
2903 int ret;
2904 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2905 if (!ret) {
2906 btrfs_drop_nlink(inode);
2907 ret = btrfs_update_inode(trans, root, inode);
2908 }
2909 return ret;
2910}
2911
2912
a22285a6
YZ
2913/* helper to check if there is any shared block in the path */
2914static int check_path_shared(struct btrfs_root *root,
2915 struct btrfs_path *path)
39279cc3 2916{
a22285a6
YZ
2917 struct extent_buffer *eb;
2918 int level;
0e4dcbef 2919 u64 refs = 1;
5df6a9f6 2920
a22285a6 2921 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2922 int ret;
2923
a22285a6
YZ
2924 if (!path->nodes[level])
2925 break;
2926 eb = path->nodes[level];
2927 if (!btrfs_block_can_be_shared(root, eb))
2928 continue;
2929 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2930 &refs, NULL);
2931 if (refs > 1)
2932 return 1;
5df6a9f6 2933 }
dedefd72 2934 return 0;
39279cc3
CM
2935}
2936
a22285a6
YZ
2937/*
2938 * helper to start transaction for unlink and rmdir.
2939 *
2940 * unlink and rmdir are special in btrfs, they do not always free space.
2941 * so in enospc case, we should make sure they will free space before
2942 * allowing them to use the global metadata reservation.
2943 */
2944static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2945 struct dentry *dentry)
4df27c4d 2946{
39279cc3 2947 struct btrfs_trans_handle *trans;
a22285a6 2948 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2949 struct btrfs_path *path;
4df27c4d 2950 struct btrfs_dir_item *di;
7b128766 2951 struct inode *inode = dentry->d_inode;
4df27c4d 2952 u64 index;
a22285a6
YZ
2953 int check_link = 1;
2954 int err = -ENOSPC;
4df27c4d 2955 int ret;
33345d01
LZ
2956 u64 ino = btrfs_ino(inode);
2957 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2958
e70bea5f
JB
2959 /*
2960 * 1 for the possible orphan item
2961 * 1 for the dir item
2962 * 1 for the dir index
2963 * 1 for the inode ref
2964 * 1 for the inode ref in the tree log
2965 * 2 for the dir entries in the log
2966 * 1 for the inode
2967 */
2968 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2969 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2970 return trans;
4df27c4d 2971
33345d01 2972 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2973 return ERR_PTR(-ENOSPC);
4df27c4d 2974
a22285a6
YZ
2975 /* check if there is someone else holds reference */
2976 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2977 return ERR_PTR(-ENOSPC);
4df27c4d 2978
a22285a6
YZ
2979 if (atomic_read(&inode->i_count) > 2)
2980 return ERR_PTR(-ENOSPC);
4df27c4d 2981
a22285a6
YZ
2982 if (xchg(&root->fs_info->enospc_unlink, 1))
2983 return ERR_PTR(-ENOSPC);
2984
2985 path = btrfs_alloc_path();
2986 if (!path) {
2987 root->fs_info->enospc_unlink = 0;
2988 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2989 }
2990
3880a1b4
JB
2991 /* 1 for the orphan item */
2992 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2993 if (IS_ERR(trans)) {
a22285a6
YZ
2994 btrfs_free_path(path);
2995 root->fs_info->enospc_unlink = 0;
2996 return trans;
2997 }
4df27c4d 2998
a22285a6
YZ
2999 path->skip_locking = 1;
3000 path->search_commit_root = 1;
4df27c4d 3001
a22285a6
YZ
3002 ret = btrfs_lookup_inode(trans, root, path,
3003 &BTRFS_I(dir)->location, 0);
3004 if (ret < 0) {
3005 err = ret;
3006 goto out;
3007 }
3008 if (ret == 0) {
3009 if (check_path_shared(root, path))
3010 goto out;
3011 } else {
3012 check_link = 0;
5df6a9f6 3013 }
b3b4aa74 3014 btrfs_release_path(path);
a22285a6
YZ
3015
3016 ret = btrfs_lookup_inode(trans, root, path,
3017 &BTRFS_I(inode)->location, 0);
3018 if (ret < 0) {
3019 err = ret;
3020 goto out;
3021 }
3022 if (ret == 0) {
3023 if (check_path_shared(root, path))
3024 goto out;
3025 } else {
3026 check_link = 0;
3027 }
b3b4aa74 3028 btrfs_release_path(path);
a22285a6
YZ
3029
3030 if (ret == 0 && S_ISREG(inode->i_mode)) {
3031 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 3032 ino, (u64)-1, 0);
a22285a6
YZ
3033 if (ret < 0) {
3034 err = ret;
3035 goto out;
3036 }
79787eaa 3037 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
3038 if (check_path_shared(root, path))
3039 goto out;
b3b4aa74 3040 btrfs_release_path(path);
a22285a6
YZ
3041 }
3042
3043 if (!check_link) {
3044 err = 0;
3045 goto out;
3046 }
3047
33345d01 3048 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3049 dentry->d_name.name, dentry->d_name.len, 0);
3050 if (IS_ERR(di)) {
3051 err = PTR_ERR(di);
3052 goto out;
3053 }
3054 if (di) {
3055 if (check_path_shared(root, path))
3056 goto out;
3057 } else {
3058 err = 0;
3059 goto out;
3060 }
b3b4aa74 3061 btrfs_release_path(path);
a22285a6 3062
f186373f
MF
3063 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3064 dentry->d_name.len, ino, dir_ino, 0,
3065 &index);
3066 if (ret) {
3067 err = ret;
a22285a6
YZ
3068 goto out;
3069 }
f186373f 3070
a22285a6
YZ
3071 if (check_path_shared(root, path))
3072 goto out;
f186373f 3073
b3b4aa74 3074 btrfs_release_path(path);
a22285a6 3075
16cdcec7
MX
3076 /*
3077 * This is a commit root search, if we can lookup inode item and other
3078 * relative items in the commit root, it means the transaction of
3079 * dir/file creation has been committed, and the dir index item that we
3080 * delay to insert has also been inserted into the commit root. So
3081 * we needn't worry about the delayed insertion of the dir index item
3082 * here.
3083 */
33345d01 3084 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3085 dentry->d_name.name, dentry->d_name.len, 0);
3086 if (IS_ERR(di)) {
3087 err = PTR_ERR(di);
3088 goto out;
3089 }
3090 BUG_ON(ret == -ENOENT);
3091 if (check_path_shared(root, path))
3092 goto out;
3093
3094 err = 0;
3095out:
3096 btrfs_free_path(path);
3880a1b4
JB
3097 /* Migrate the orphan reservation over */
3098 if (!err)
3099 err = btrfs_block_rsv_migrate(trans->block_rsv,
3100 &root->fs_info->global_block_rsv,
5a77d76c 3101 trans->bytes_reserved);
3880a1b4 3102
a22285a6
YZ
3103 if (err) {
3104 btrfs_end_transaction(trans, root);
3105 root->fs_info->enospc_unlink = 0;
3106 return ERR_PTR(err);
3107 }
3108
3109 trans->block_rsv = &root->fs_info->global_block_rsv;
3110 return trans;
3111}
3112
3113static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3114 struct btrfs_root *root)
3115{
66d8f3dd 3116 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
5a77d76c
JB
3117 btrfs_block_rsv_release(root, trans->block_rsv,
3118 trans->bytes_reserved);
3119 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3120 BUG_ON(!root->fs_info->enospc_unlink);
3121 root->fs_info->enospc_unlink = 0;
3122 }
7ad85bb7 3123 btrfs_end_transaction(trans, root);
a22285a6
YZ
3124}
3125
3126static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3127{
3128 struct btrfs_root *root = BTRFS_I(dir)->root;
3129 struct btrfs_trans_handle *trans;
3130 struct inode *inode = dentry->d_inode;
3131 int ret;
a22285a6
YZ
3132
3133 trans = __unlink_start_trans(dir, dentry);
3134 if (IS_ERR(trans))
3135 return PTR_ERR(trans);
5f39d397 3136
12fcfd22
CM
3137 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3138
e02119d5
CM
3139 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3140 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3141 if (ret)
3142 goto out;
7b128766 3143
a22285a6 3144 if (inode->i_nlink == 0) {
7b128766 3145 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3146 if (ret)
3147 goto out;
a22285a6 3148 }
7b128766 3149
b532402e 3150out:
a22285a6 3151 __unlink_end_trans(trans, root);
b53d3f5d 3152 btrfs_btree_balance_dirty(root);
39279cc3
CM
3153 return ret;
3154}
3155
4df27c4d
YZ
3156int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3157 struct btrfs_root *root,
3158 struct inode *dir, u64 objectid,
3159 const char *name, int name_len)
3160{
3161 struct btrfs_path *path;
3162 struct extent_buffer *leaf;
3163 struct btrfs_dir_item *di;
3164 struct btrfs_key key;
3165 u64 index;
3166 int ret;
33345d01 3167 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3168
3169 path = btrfs_alloc_path();
3170 if (!path)
3171 return -ENOMEM;
3172
33345d01 3173 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3174 name, name_len, -1);
79787eaa
JM
3175 if (IS_ERR_OR_NULL(di)) {
3176 if (!di)
3177 ret = -ENOENT;
3178 else
3179 ret = PTR_ERR(di);
3180 goto out;
3181 }
4df27c4d
YZ
3182
3183 leaf = path->nodes[0];
3184 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3185 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3186 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3187 if (ret) {
3188 btrfs_abort_transaction(trans, root, ret);
3189 goto out;
3190 }
b3b4aa74 3191 btrfs_release_path(path);
4df27c4d
YZ
3192
3193 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3194 objectid, root->root_key.objectid,
33345d01 3195 dir_ino, &index, name, name_len);
4df27c4d 3196 if (ret < 0) {
79787eaa
JM
3197 if (ret != -ENOENT) {
3198 btrfs_abort_transaction(trans, root, ret);
3199 goto out;
3200 }
33345d01 3201 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3202 name, name_len);
79787eaa
JM
3203 if (IS_ERR_OR_NULL(di)) {
3204 if (!di)
3205 ret = -ENOENT;
3206 else
3207 ret = PTR_ERR(di);
3208 btrfs_abort_transaction(trans, root, ret);
3209 goto out;
3210 }
4df27c4d
YZ
3211
3212 leaf = path->nodes[0];
3213 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3214 btrfs_release_path(path);
4df27c4d
YZ
3215 index = key.offset;
3216 }
945d8962 3217 btrfs_release_path(path);
4df27c4d 3218
16cdcec7 3219 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3220 if (ret) {
3221 btrfs_abort_transaction(trans, root, ret);
3222 goto out;
3223 }
4df27c4d
YZ
3224
3225 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3226 inode_inc_iversion(dir);
4df27c4d 3227 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3228 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3229 if (ret)
3230 btrfs_abort_transaction(trans, root, ret);
3231out:
71d7aed0 3232 btrfs_free_path(path);
79787eaa 3233 return ret;
4df27c4d
YZ
3234}
3235
39279cc3
CM
3236static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3237{
3238 struct inode *inode = dentry->d_inode;
1832a6d5 3239 int err = 0;
39279cc3 3240 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3241 struct btrfs_trans_handle *trans;
39279cc3 3242
b3ae244e 3243 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3244 return -ENOTEMPTY;
b3ae244e
DS
3245 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3246 return -EPERM;
134d4512 3247
a22285a6
YZ
3248 trans = __unlink_start_trans(dir, dentry);
3249 if (IS_ERR(trans))
5df6a9f6 3250 return PTR_ERR(trans);
5df6a9f6 3251
33345d01 3252 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3253 err = btrfs_unlink_subvol(trans, root, dir,
3254 BTRFS_I(inode)->location.objectid,
3255 dentry->d_name.name,
3256 dentry->d_name.len);
3257 goto out;
3258 }
3259
7b128766
JB
3260 err = btrfs_orphan_add(trans, inode);
3261 if (err)
4df27c4d 3262 goto out;
7b128766 3263
39279cc3 3264 /* now the directory is empty */
e02119d5
CM
3265 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3266 dentry->d_name.name, dentry->d_name.len);
d397712b 3267 if (!err)
dbe674a9 3268 btrfs_i_size_write(inode, 0);
4df27c4d 3269out:
a22285a6 3270 __unlink_end_trans(trans, root);
b53d3f5d 3271 btrfs_btree_balance_dirty(root);
3954401f 3272
39279cc3
CM
3273 return err;
3274}
3275
39279cc3
CM
3276/*
3277 * this can truncate away extent items, csum items and directory items.
3278 * It starts at a high offset and removes keys until it can't find
d352ac68 3279 * any higher than new_size
39279cc3
CM
3280 *
3281 * csum items that cross the new i_size are truncated to the new size
3282 * as well.
7b128766
JB
3283 *
3284 * min_type is the minimum key type to truncate down to. If set to 0, this
3285 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3286 */
8082510e
YZ
3287int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3288 struct btrfs_root *root,
3289 struct inode *inode,
3290 u64 new_size, u32 min_type)
39279cc3 3291{
39279cc3 3292 struct btrfs_path *path;
5f39d397 3293 struct extent_buffer *leaf;
39279cc3 3294 struct btrfs_file_extent_item *fi;
8082510e
YZ
3295 struct btrfs_key key;
3296 struct btrfs_key found_key;
39279cc3 3297 u64 extent_start = 0;
db94535d 3298 u64 extent_num_bytes = 0;
5d4f98a2 3299 u64 extent_offset = 0;
39279cc3 3300 u64 item_end = 0;
8082510e
YZ
3301 u64 mask = root->sectorsize - 1;
3302 u32 found_type = (u8)-1;
39279cc3
CM
3303 int found_extent;
3304 int del_item;
85e21bac
CM
3305 int pending_del_nr = 0;
3306 int pending_del_slot = 0;
179e29e4 3307 int extent_type = -1;
8082510e
YZ
3308 int ret;
3309 int err = 0;
33345d01 3310 u64 ino = btrfs_ino(inode);
8082510e
YZ
3311
3312 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3313
0eb0e19c
MF
3314 path = btrfs_alloc_path();
3315 if (!path)
3316 return -ENOMEM;
3317 path->reada = -1;
3318
5dc562c5
JB
3319 /*
3320 * We want to drop from the next block forward in case this new size is
3321 * not block aligned since we will be keeping the last block of the
3322 * extent just the way it is.
3323 */
0af3d00b 3324 if (root->ref_cows || root == root->fs_info->tree_root)
5dc562c5 3325 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
8082510e 3326
16cdcec7
MX
3327 /*
3328 * This function is also used to drop the items in the log tree before
3329 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3330 * it is used to drop the loged items. So we shouldn't kill the delayed
3331 * items.
3332 */
3333 if (min_type == 0 && root == BTRFS_I(inode)->root)
3334 btrfs_kill_delayed_inode_items(inode);
3335
33345d01 3336 key.objectid = ino;
39279cc3 3337 key.offset = (u64)-1;
5f39d397
CM
3338 key.type = (u8)-1;
3339
85e21bac 3340search_again:
b9473439 3341 path->leave_spinning = 1;
85e21bac 3342 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3343 if (ret < 0) {
3344 err = ret;
3345 goto out;
3346 }
d397712b 3347
85e21bac 3348 if (ret > 0) {
e02119d5
CM
3349 /* there are no items in the tree for us to truncate, we're
3350 * done
3351 */
8082510e
YZ
3352 if (path->slots[0] == 0)
3353 goto out;
85e21bac
CM
3354 path->slots[0]--;
3355 }
3356
d397712b 3357 while (1) {
39279cc3 3358 fi = NULL;
5f39d397
CM
3359 leaf = path->nodes[0];
3360 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3361 found_type = btrfs_key_type(&found_key);
39279cc3 3362
33345d01 3363 if (found_key.objectid != ino)
39279cc3 3364 break;
5f39d397 3365
85e21bac 3366 if (found_type < min_type)
39279cc3
CM
3367 break;
3368
5f39d397 3369 item_end = found_key.offset;
39279cc3 3370 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3371 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3372 struct btrfs_file_extent_item);
179e29e4
CM
3373 extent_type = btrfs_file_extent_type(leaf, fi);
3374 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3375 item_end +=
db94535d 3376 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3377 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3378 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3379 fi);
39279cc3 3380 }
008630c1 3381 item_end--;
39279cc3 3382 }
8082510e
YZ
3383 if (found_type > min_type) {
3384 del_item = 1;
3385 } else {
3386 if (item_end < new_size)
b888db2b 3387 break;
8082510e
YZ
3388 if (found_key.offset >= new_size)
3389 del_item = 1;
3390 else
3391 del_item = 0;
39279cc3 3392 }
39279cc3 3393 found_extent = 0;
39279cc3 3394 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3395 if (found_type != BTRFS_EXTENT_DATA_KEY)
3396 goto delete;
3397
3398 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3399 u64 num_dec;
db94535d 3400 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3401 if (!del_item) {
db94535d
CM
3402 u64 orig_num_bytes =
3403 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3404 extent_num_bytes = new_size -
5f39d397 3405 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3406 extent_num_bytes = extent_num_bytes &
3407 ~((u64)root->sectorsize - 1);
db94535d
CM
3408 btrfs_set_file_extent_num_bytes(leaf, fi,
3409 extent_num_bytes);
3410 num_dec = (orig_num_bytes -
9069218d 3411 extent_num_bytes);
e02119d5 3412 if (root->ref_cows && extent_start != 0)
a76a3cd4 3413 inode_sub_bytes(inode, num_dec);
5f39d397 3414 btrfs_mark_buffer_dirty(leaf);
39279cc3 3415 } else {
db94535d
CM
3416 extent_num_bytes =
3417 btrfs_file_extent_disk_num_bytes(leaf,
3418 fi);
5d4f98a2
YZ
3419 extent_offset = found_key.offset -
3420 btrfs_file_extent_offset(leaf, fi);
3421
39279cc3 3422 /* FIXME blocksize != 4096 */
9069218d 3423 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3424 if (extent_start != 0) {
3425 found_extent = 1;
e02119d5 3426 if (root->ref_cows)
a76a3cd4 3427 inode_sub_bytes(inode, num_dec);
e02119d5 3428 }
39279cc3 3429 }
9069218d 3430 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3431 /*
3432 * we can't truncate inline items that have had
3433 * special encodings
3434 */
3435 if (!del_item &&
3436 btrfs_file_extent_compression(leaf, fi) == 0 &&
3437 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3438 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3439 u32 size = new_size - found_key.offset;
3440
3441 if (root->ref_cows) {
a76a3cd4
YZ
3442 inode_sub_bytes(inode, item_end + 1 -
3443 new_size);
e02119d5
CM
3444 }
3445 size =
3446 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3447 btrfs_truncate_item(trans, root, path,
3448 size, 1);
e02119d5 3449 } else if (root->ref_cows) {
a76a3cd4
YZ
3450 inode_sub_bytes(inode, item_end + 1 -
3451 found_key.offset);
9069218d 3452 }
39279cc3 3453 }
179e29e4 3454delete:
39279cc3 3455 if (del_item) {
85e21bac
CM
3456 if (!pending_del_nr) {
3457 /* no pending yet, add ourselves */
3458 pending_del_slot = path->slots[0];
3459 pending_del_nr = 1;
3460 } else if (pending_del_nr &&
3461 path->slots[0] + 1 == pending_del_slot) {
3462 /* hop on the pending chunk */
3463 pending_del_nr++;
3464 pending_del_slot = path->slots[0];
3465 } else {
d397712b 3466 BUG();
85e21bac 3467 }
39279cc3
CM
3468 } else {
3469 break;
3470 }
0af3d00b
JB
3471 if (found_extent && (root->ref_cows ||
3472 root == root->fs_info->tree_root)) {
b9473439 3473 btrfs_set_path_blocking(path);
39279cc3 3474 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3475 extent_num_bytes, 0,
3476 btrfs_header_owner(leaf),
66d7e7f0 3477 ino, extent_offset, 0);
39279cc3
CM
3478 BUG_ON(ret);
3479 }
85e21bac 3480
8082510e
YZ
3481 if (found_type == BTRFS_INODE_ITEM_KEY)
3482 break;
3483
3484 if (path->slots[0] == 0 ||
3485 path->slots[0] != pending_del_slot) {
8082510e
YZ
3486 if (pending_del_nr) {
3487 ret = btrfs_del_items(trans, root, path,
3488 pending_del_slot,
3489 pending_del_nr);
79787eaa
JM
3490 if (ret) {
3491 btrfs_abort_transaction(trans,
3492 root, ret);
3493 goto error;
3494 }
8082510e
YZ
3495 pending_del_nr = 0;
3496 }
b3b4aa74 3497 btrfs_release_path(path);
85e21bac 3498 goto search_again;
8082510e
YZ
3499 } else {
3500 path->slots[0]--;
85e21bac 3501 }
39279cc3 3502 }
8082510e 3503out:
85e21bac
CM
3504 if (pending_del_nr) {
3505 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3506 pending_del_nr);
79787eaa
JM
3507 if (ret)
3508 btrfs_abort_transaction(trans, root, ret);
85e21bac 3509 }
79787eaa 3510error:
39279cc3 3511 btrfs_free_path(path);
8082510e 3512 return err;
39279cc3
CM
3513}
3514
3515/*
2aaa6655
JB
3516 * btrfs_truncate_page - read, zero a chunk and write a page
3517 * @inode - inode that we're zeroing
3518 * @from - the offset to start zeroing
3519 * @len - the length to zero, 0 to zero the entire range respective to the
3520 * offset
3521 * @front - zero up to the offset instead of from the offset on
3522 *
3523 * This will find the page for the "from" offset and cow the page and zero the
3524 * part we want to zero. This is used with truncate and hole punching.
39279cc3 3525 */
2aaa6655
JB
3526int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3527 int front)
39279cc3 3528{
2aaa6655 3529 struct address_space *mapping = inode->i_mapping;
db94535d 3530 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3531 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3532 struct btrfs_ordered_extent *ordered;
2ac55d41 3533 struct extent_state *cached_state = NULL;
e6dcd2dc 3534 char *kaddr;
db94535d 3535 u32 blocksize = root->sectorsize;
39279cc3
CM
3536 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3537 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3538 struct page *page;
3b16a4e3 3539 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3540 int ret = 0;
a52d9a80 3541 u64 page_start;
e6dcd2dc 3542 u64 page_end;
39279cc3 3543
2aaa6655
JB
3544 if ((offset & (blocksize - 1)) == 0 &&
3545 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 3546 goto out;
0ca1f7ce 3547 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3548 if (ret)
3549 goto out;
39279cc3 3550
211c17f5 3551again:
3b16a4e3 3552 page = find_or_create_page(mapping, index, mask);
5d5e103a 3553 if (!page) {
0ca1f7ce 3554 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 3555 ret = -ENOMEM;
39279cc3 3556 goto out;
5d5e103a 3557 }
e6dcd2dc
CM
3558
3559 page_start = page_offset(page);
3560 page_end = page_start + PAGE_CACHE_SIZE - 1;
3561
39279cc3 3562 if (!PageUptodate(page)) {
9ebefb18 3563 ret = btrfs_readpage(NULL, page);
39279cc3 3564 lock_page(page);
211c17f5
CM
3565 if (page->mapping != mapping) {
3566 unlock_page(page);
3567 page_cache_release(page);
3568 goto again;
3569 }
39279cc3
CM
3570 if (!PageUptodate(page)) {
3571 ret = -EIO;
89642229 3572 goto out_unlock;
39279cc3
CM
3573 }
3574 }
211c17f5 3575 wait_on_page_writeback(page);
e6dcd2dc 3576
d0082371 3577 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3578 set_page_extent_mapped(page);
3579
3580 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3581 if (ordered) {
2ac55d41
JB
3582 unlock_extent_cached(io_tree, page_start, page_end,
3583 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3584 unlock_page(page);
3585 page_cache_release(page);
eb84ae03 3586 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3587 btrfs_put_ordered_extent(ordered);
3588 goto again;
3589 }
3590
2ac55d41 3591 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
3592 EXTENT_DIRTY | EXTENT_DELALLOC |
3593 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 3594 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3595
2ac55d41
JB
3596 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3597 &cached_state);
9ed74f2d 3598 if (ret) {
2ac55d41
JB
3599 unlock_extent_cached(io_tree, page_start, page_end,
3600 &cached_state, GFP_NOFS);
9ed74f2d
JB
3601 goto out_unlock;
3602 }
3603
e6dcd2dc 3604 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
3605 if (!len)
3606 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 3607 kaddr = kmap(page);
2aaa6655
JB
3608 if (front)
3609 memset(kaddr, 0, offset);
3610 else
3611 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
3612 flush_dcache_page(page);
3613 kunmap(page);
3614 }
247e743c 3615 ClearPageChecked(page);
e6dcd2dc 3616 set_page_dirty(page);
2ac55d41
JB
3617 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3618 GFP_NOFS);
39279cc3 3619
89642229 3620out_unlock:
5d5e103a 3621 if (ret)
0ca1f7ce 3622 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3623 unlock_page(page);
3624 page_cache_release(page);
3625out:
3626 return ret;
3627}
3628
695a0d0d
JB
3629/*
3630 * This function puts in dummy file extents for the area we're creating a hole
3631 * for. So if we are truncating this file to a larger size we need to insert
3632 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3633 * the range between oldsize and size
3634 */
a41ad394 3635int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3636{
9036c102
YZ
3637 struct btrfs_trans_handle *trans;
3638 struct btrfs_root *root = BTRFS_I(inode)->root;
3639 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3640 struct extent_map *em = NULL;
2ac55d41 3641 struct extent_state *cached_state = NULL;
5dc562c5 3642 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9036c102 3643 u64 mask = root->sectorsize - 1;
a41ad394 3644 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3645 u64 block_end = (size + mask) & ~mask;
3646 u64 last_byte;
3647 u64 cur_offset;
3648 u64 hole_size;
9ed74f2d 3649 int err = 0;
39279cc3 3650
9036c102
YZ
3651 if (size <= hole_start)
3652 return 0;
3653
9036c102
YZ
3654 while (1) {
3655 struct btrfs_ordered_extent *ordered;
3656 btrfs_wait_ordered_range(inode, hole_start,
3657 block_end - hole_start);
2ac55d41 3658 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3659 &cached_state);
9036c102
YZ
3660 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3661 if (!ordered)
3662 break;
2ac55d41
JB
3663 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3664 &cached_state, GFP_NOFS);
9036c102
YZ
3665 btrfs_put_ordered_extent(ordered);
3666 }
39279cc3 3667
9036c102
YZ
3668 cur_offset = hole_start;
3669 while (1) {
3670 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3671 block_end - cur_offset, 0);
79787eaa
JM
3672 if (IS_ERR(em)) {
3673 err = PTR_ERR(em);
3674 break;
3675 }
9036c102
YZ
3676 last_byte = min(extent_map_end(em), block_end);
3677 last_byte = (last_byte + mask) & ~mask;
8082510e 3678 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 3679 struct extent_map *hole_em;
9036c102 3680 hole_size = last_byte - cur_offset;
9ed74f2d 3681
3642320e 3682 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3683 if (IS_ERR(trans)) {
3684 err = PTR_ERR(trans);
9ed74f2d 3685 break;
a22285a6 3686 }
8082510e 3687
5dc562c5
JB
3688 err = btrfs_drop_extents(trans, root, inode,
3689 cur_offset,
2671485d 3690 cur_offset + hole_size, 1);
5b397377 3691 if (err) {
79787eaa 3692 btrfs_abort_transaction(trans, root, err);
5b397377 3693 btrfs_end_transaction(trans, root);
3893e33b 3694 break;
5b397377 3695 }
8082510e 3696
9036c102 3697 err = btrfs_insert_file_extent(trans, root,
33345d01 3698 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3699 0, hole_size, 0, hole_size,
3700 0, 0, 0);
5b397377 3701 if (err) {
79787eaa 3702 btrfs_abort_transaction(trans, root, err);
5b397377 3703 btrfs_end_transaction(trans, root);
3893e33b 3704 break;
5b397377 3705 }
8082510e 3706
5dc562c5
JB
3707 btrfs_drop_extent_cache(inode, cur_offset,
3708 cur_offset + hole_size - 1, 0);
3709 hole_em = alloc_extent_map();
3710 if (!hole_em) {
3711 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3712 &BTRFS_I(inode)->runtime_flags);
3713 goto next;
3714 }
3715 hole_em->start = cur_offset;
3716 hole_em->len = hole_size;
3717 hole_em->orig_start = cur_offset;
8082510e 3718
5dc562c5
JB
3719 hole_em->block_start = EXTENT_MAP_HOLE;
3720 hole_em->block_len = 0;
b4939680 3721 hole_em->orig_block_len = 0;
5dc562c5
JB
3722 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3723 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3724 hole_em->generation = trans->transid;
8082510e 3725
5dc562c5
JB
3726 while (1) {
3727 write_lock(&em_tree->lock);
3728 err = add_extent_mapping(em_tree, hole_em);
3729 if (!err)
3730 list_move(&hole_em->list,
3731 &em_tree->modified_extents);
3732 write_unlock(&em_tree->lock);
3733 if (err != -EEXIST)
3734 break;
3735 btrfs_drop_extent_cache(inode, cur_offset,
3736 cur_offset +
3737 hole_size - 1, 0);
3738 }
3739 free_extent_map(hole_em);
3740next:
3642320e 3741 btrfs_update_inode(trans, root, inode);
8082510e 3742 btrfs_end_transaction(trans, root);
9036c102
YZ
3743 }
3744 free_extent_map(em);
a22285a6 3745 em = NULL;
9036c102 3746 cur_offset = last_byte;
8082510e 3747 if (cur_offset >= block_end)
9036c102
YZ
3748 break;
3749 }
1832a6d5 3750
a22285a6 3751 free_extent_map(em);
2ac55d41
JB
3752 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3753 GFP_NOFS);
9036c102
YZ
3754 return err;
3755}
39279cc3 3756
a41ad394 3757static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3758{
f4a2f4c5
MX
3759 struct btrfs_root *root = BTRFS_I(inode)->root;
3760 struct btrfs_trans_handle *trans;
a41ad394 3761 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3762 int ret;
3763
a41ad394 3764 if (newsize == oldsize)
8082510e
YZ
3765 return 0;
3766
a41ad394 3767 if (newsize > oldsize) {
a41ad394
JB
3768 truncate_pagecache(inode, oldsize, newsize);
3769 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3770 if (ret)
8082510e 3771 return ret;
8082510e 3772
f4a2f4c5
MX
3773 trans = btrfs_start_transaction(root, 1);
3774 if (IS_ERR(trans))
3775 return PTR_ERR(trans);
3776
3777 i_size_write(inode, newsize);
3778 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3779 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3780 btrfs_end_transaction(trans, root);
a41ad394 3781 } else {
8082510e 3782
a41ad394
JB
3783 /*
3784 * We're truncating a file that used to have good data down to
3785 * zero. Make sure it gets into the ordered flush list so that
3786 * any new writes get down to disk quickly.
3787 */
3788 if (newsize == 0)
72ac3c0d
JB
3789 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3790 &BTRFS_I(inode)->runtime_flags);
8082510e 3791
a41ad394
JB
3792 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3793 truncate_setsize(inode, newsize);
3794 ret = btrfs_truncate(inode);
8082510e
YZ
3795 }
3796
a41ad394 3797 return ret;
8082510e
YZ
3798}
3799
9036c102
YZ
3800static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3801{
3802 struct inode *inode = dentry->d_inode;
b83cc969 3803 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3804 int err;
39279cc3 3805
b83cc969
LZ
3806 if (btrfs_root_readonly(root))
3807 return -EROFS;
3808
9036c102
YZ
3809 err = inode_change_ok(inode, attr);
3810 if (err)
3811 return err;
2bf5a725 3812
5a3f23d5 3813 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3814 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3815 if (err)
3816 return err;
39279cc3 3817 }
9036c102 3818
1025774c
CH
3819 if (attr->ia_valid) {
3820 setattr_copy(inode, attr);
0c4d2d95 3821 inode_inc_iversion(inode);
22c44fe6 3822 err = btrfs_dirty_inode(inode);
1025774c 3823
22c44fe6 3824 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3825 err = btrfs_acl_chmod(inode);
3826 }
33268eaf 3827
39279cc3
CM
3828 return err;
3829}
61295eb8 3830
bd555975 3831void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3832{
3833 struct btrfs_trans_handle *trans;
3834 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3835 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3836 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
3837 int ret;
3838
1abe9b8a 3839 trace_btrfs_inode_evict(inode);
3840
39279cc3 3841 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3842 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 3843 btrfs_is_free_space_inode(inode)))
bd555975
AV
3844 goto no_delete;
3845
39279cc3 3846 if (is_bad_inode(inode)) {
7b128766 3847 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3848 goto no_delete;
3849 }
bd555975 3850 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3851 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3852
c71bf099 3853 if (root->fs_info->log_root_recovering) {
6bf02314 3854 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 3855 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
3856 goto no_delete;
3857 }
3858
76dda93c
YZ
3859 if (inode->i_nlink > 0) {
3860 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3861 goto no_delete;
3862 }
3863
66d8f3dd 3864 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
3865 if (!rsv) {
3866 btrfs_orphan_del(NULL, inode);
3867 goto no_delete;
3868 }
4a338542 3869 rsv->size = min_size;
ca7e70f5 3870 rsv->failfast = 1;
726c35fa 3871 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3872
dbe674a9 3873 btrfs_i_size_write(inode, 0);
5f39d397 3874
4289a667 3875 /*
8407aa46
MX
3876 * This is a bit simpler than btrfs_truncate since we've already
3877 * reserved our space for our orphan item in the unlink, so we just
3878 * need to reserve some slack space in case we add bytes and update
3879 * inode item when doing the truncate.
4289a667 3880 */
8082510e 3881 while (1) {
08e007d2
MX
3882 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3883 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
3884
3885 /*
3886 * Try and steal from the global reserve since we will
3887 * likely not use this space anyway, we want to try as
3888 * hard as possible to get this to work.
3889 */
3890 if (ret)
3891 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3892
d68fc57b 3893 if (ret) {
4289a667 3894 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3895 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3896 btrfs_orphan_del(NULL, inode);
3897 btrfs_free_block_rsv(root, rsv);
3898 goto no_delete;
d68fc57b 3899 }
7b128766 3900
08e007d2 3901 trans = btrfs_start_transaction_lflush(root, 1);
4289a667
JB
3902 if (IS_ERR(trans)) {
3903 btrfs_orphan_del(NULL, inode);
3904 btrfs_free_block_rsv(root, rsv);
3905 goto no_delete;
d68fc57b 3906 }
7b128766 3907
4289a667
JB
3908 trans->block_rsv = rsv;
3909
d68fc57b 3910 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 3911 if (ret != -ENOSPC)
8082510e 3912 break;
85e21bac 3913
8407aa46
MX
3914 trans->block_rsv = &root->fs_info->trans_block_rsv;
3915 ret = btrfs_update_inode(trans, root, inode);
3916 BUG_ON(ret);
3917
8082510e
YZ
3918 btrfs_end_transaction(trans, root);
3919 trans = NULL;
b53d3f5d 3920 btrfs_btree_balance_dirty(root);
8082510e 3921 }
5f39d397 3922
4289a667
JB
3923 btrfs_free_block_rsv(root, rsv);
3924
8082510e 3925 if (ret == 0) {
4289a667 3926 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3927 ret = btrfs_orphan_del(trans, inode);
3928 BUG_ON(ret);
3929 }
54aa1f4d 3930
4289a667 3931 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3932 if (!(root == root->fs_info->tree_root ||
3933 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3934 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3935
54aa1f4d 3936 btrfs_end_transaction(trans, root);
b53d3f5d 3937 btrfs_btree_balance_dirty(root);
39279cc3 3938no_delete:
dbd5768f 3939 clear_inode(inode);
8082510e 3940 return;
39279cc3
CM
3941}
3942
3943/*
3944 * this returns the key found in the dir entry in the location pointer.
3945 * If no dir entries were found, location->objectid is 0.
3946 */
3947static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3948 struct btrfs_key *location)
3949{
3950 const char *name = dentry->d_name.name;
3951 int namelen = dentry->d_name.len;
3952 struct btrfs_dir_item *di;
3953 struct btrfs_path *path;
3954 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3955 int ret = 0;
39279cc3
CM
3956
3957 path = btrfs_alloc_path();
d8926bb3
MF
3958 if (!path)
3959 return -ENOMEM;
3954401f 3960
33345d01 3961 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3962 namelen, 0);
0d9f7f3e
Y
3963 if (IS_ERR(di))
3964 ret = PTR_ERR(di);
d397712b 3965
c704005d 3966 if (IS_ERR_OR_NULL(di))
3954401f 3967 goto out_err;
d397712b 3968
5f39d397 3969 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3970out:
39279cc3
CM
3971 btrfs_free_path(path);
3972 return ret;
3954401f
CM
3973out_err:
3974 location->objectid = 0;
3975 goto out;
39279cc3
CM
3976}
3977
3978/*
3979 * when we hit a tree root in a directory, the btrfs part of the inode
3980 * needs to be changed to reflect the root directory of the tree root. This
3981 * is kind of like crossing a mount point.
3982 */
3983static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3984 struct inode *dir,
3985 struct dentry *dentry,
3986 struct btrfs_key *location,
3987 struct btrfs_root **sub_root)
39279cc3 3988{
4df27c4d
YZ
3989 struct btrfs_path *path;
3990 struct btrfs_root *new_root;
3991 struct btrfs_root_ref *ref;
3992 struct extent_buffer *leaf;
3993 int ret;
3994 int err = 0;
39279cc3 3995
4df27c4d
YZ
3996 path = btrfs_alloc_path();
3997 if (!path) {
3998 err = -ENOMEM;
3999 goto out;
4000 }
39279cc3 4001
4df27c4d
YZ
4002 err = -ENOENT;
4003 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4004 BTRFS_I(dir)->root->root_key.objectid,
4005 location->objectid);
4006 if (ret) {
4007 if (ret < 0)
4008 err = ret;
4009 goto out;
4010 }
39279cc3 4011
4df27c4d
YZ
4012 leaf = path->nodes[0];
4013 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4014 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4015 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4016 goto out;
39279cc3 4017
4df27c4d
YZ
4018 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4019 (unsigned long)(ref + 1),
4020 dentry->d_name.len);
4021 if (ret)
4022 goto out;
4023
b3b4aa74 4024 btrfs_release_path(path);
4df27c4d
YZ
4025
4026 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4027 if (IS_ERR(new_root)) {
4028 err = PTR_ERR(new_root);
4029 goto out;
4030 }
4031
4032 if (btrfs_root_refs(&new_root->root_item) == 0) {
4033 err = -ENOENT;
4034 goto out;
4035 }
4036
4037 *sub_root = new_root;
4038 location->objectid = btrfs_root_dirid(&new_root->root_item);
4039 location->type = BTRFS_INODE_ITEM_KEY;
4040 location->offset = 0;
4041 err = 0;
4042out:
4043 btrfs_free_path(path);
4044 return err;
39279cc3
CM
4045}
4046
5d4f98a2
YZ
4047static void inode_tree_add(struct inode *inode)
4048{
4049 struct btrfs_root *root = BTRFS_I(inode)->root;
4050 struct btrfs_inode *entry;
03e860bd
FNP
4051 struct rb_node **p;
4052 struct rb_node *parent;
33345d01 4053 u64 ino = btrfs_ino(inode);
03e860bd
FNP
4054again:
4055 p = &root->inode_tree.rb_node;
4056 parent = NULL;
5d4f98a2 4057
1d3382cb 4058 if (inode_unhashed(inode))
76dda93c
YZ
4059 return;
4060
5d4f98a2
YZ
4061 spin_lock(&root->inode_lock);
4062 while (*p) {
4063 parent = *p;
4064 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4065
33345d01 4066 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4067 p = &parent->rb_left;
33345d01 4068 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4069 p = &parent->rb_right;
5d4f98a2
YZ
4070 else {
4071 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4072 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4073 rb_erase(parent, &root->inode_tree);
4074 RB_CLEAR_NODE(parent);
4075 spin_unlock(&root->inode_lock);
4076 goto again;
5d4f98a2
YZ
4077 }
4078 }
4079 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4080 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4081 spin_unlock(&root->inode_lock);
4082}
4083
4084static void inode_tree_del(struct inode *inode)
4085{
4086 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4087 int empty = 0;
5d4f98a2 4088
03e860bd 4089 spin_lock(&root->inode_lock);
5d4f98a2 4090 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4091 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4092 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4093 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4094 }
03e860bd 4095 spin_unlock(&root->inode_lock);
76dda93c 4096
0af3d00b
JB
4097 /*
4098 * Free space cache has inodes in the tree root, but the tree root has a
4099 * root_refs of 0, so this could end up dropping the tree root as a
4100 * snapshot, so we need the extra !root->fs_info->tree_root check to
4101 * make sure we don't drop it.
4102 */
4103 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4104 root != root->fs_info->tree_root) {
76dda93c
YZ
4105 synchronize_srcu(&root->fs_info->subvol_srcu);
4106 spin_lock(&root->inode_lock);
4107 empty = RB_EMPTY_ROOT(&root->inode_tree);
4108 spin_unlock(&root->inode_lock);
4109 if (empty)
4110 btrfs_add_dead_root(root);
4111 }
4112}
4113
143bede5 4114void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4115{
4116 struct rb_node *node;
4117 struct rb_node *prev;
4118 struct btrfs_inode *entry;
4119 struct inode *inode;
4120 u64 objectid = 0;
4121
4122 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4123
4124 spin_lock(&root->inode_lock);
4125again:
4126 node = root->inode_tree.rb_node;
4127 prev = NULL;
4128 while (node) {
4129 prev = node;
4130 entry = rb_entry(node, struct btrfs_inode, rb_node);
4131
33345d01 4132 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4133 node = node->rb_left;
33345d01 4134 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4135 node = node->rb_right;
4136 else
4137 break;
4138 }
4139 if (!node) {
4140 while (prev) {
4141 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4142 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4143 node = prev;
4144 break;
4145 }
4146 prev = rb_next(prev);
4147 }
4148 }
4149 while (node) {
4150 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4151 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4152 inode = igrab(&entry->vfs_inode);
4153 if (inode) {
4154 spin_unlock(&root->inode_lock);
4155 if (atomic_read(&inode->i_count) > 1)
4156 d_prune_aliases(inode);
4157 /*
45321ac5 4158 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4159 * the inode cache when its usage count
4160 * hits zero.
4161 */
4162 iput(inode);
4163 cond_resched();
4164 spin_lock(&root->inode_lock);
4165 goto again;
4166 }
4167
4168 if (cond_resched_lock(&root->inode_lock))
4169 goto again;
4170
4171 node = rb_next(node);
4172 }
4173 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4174}
4175
e02119d5
CM
4176static int btrfs_init_locked_inode(struct inode *inode, void *p)
4177{
4178 struct btrfs_iget_args *args = p;
4179 inode->i_ino = args->ino;
e02119d5 4180 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4181 return 0;
4182}
4183
4184static int btrfs_find_actor(struct inode *inode, void *opaque)
4185{
4186 struct btrfs_iget_args *args = opaque;
33345d01 4187 return args->ino == btrfs_ino(inode) &&
d397712b 4188 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4189}
4190
5d4f98a2
YZ
4191static struct inode *btrfs_iget_locked(struct super_block *s,
4192 u64 objectid,
4193 struct btrfs_root *root)
39279cc3
CM
4194{
4195 struct inode *inode;
4196 struct btrfs_iget_args args;
4197 args.ino = objectid;
4198 args.root = root;
4199
4200 inode = iget5_locked(s, objectid, btrfs_find_actor,
4201 btrfs_init_locked_inode,
4202 (void *)&args);
4203 return inode;
4204}
4205
1a54ef8c
BR
4206/* Get an inode object given its location and corresponding root.
4207 * Returns in *is_new if the inode was read from disk
4208 */
4209struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4210 struct btrfs_root *root, int *new)
1a54ef8c
BR
4211{
4212 struct inode *inode;
4213
4214 inode = btrfs_iget_locked(s, location->objectid, root);
4215 if (!inode)
5d4f98a2 4216 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4217
4218 if (inode->i_state & I_NEW) {
4219 BTRFS_I(inode)->root = root;
4220 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4221 btrfs_read_locked_inode(inode);
1748f843
MF
4222 if (!is_bad_inode(inode)) {
4223 inode_tree_add(inode);
4224 unlock_new_inode(inode);
4225 if (new)
4226 *new = 1;
4227 } else {
e0b6d65b
ST
4228 unlock_new_inode(inode);
4229 iput(inode);
4230 inode = ERR_PTR(-ESTALE);
1748f843
MF
4231 }
4232 }
4233
1a54ef8c
BR
4234 return inode;
4235}
4236
4df27c4d
YZ
4237static struct inode *new_simple_dir(struct super_block *s,
4238 struct btrfs_key *key,
4239 struct btrfs_root *root)
4240{
4241 struct inode *inode = new_inode(s);
4242
4243 if (!inode)
4244 return ERR_PTR(-ENOMEM);
4245
4df27c4d
YZ
4246 BTRFS_I(inode)->root = root;
4247 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4248 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4249
4250 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4251 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4252 inode->i_fop = &simple_dir_operations;
4253 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4254 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4255
4256 return inode;
4257}
4258
3de4586c 4259struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4260{
d397712b 4261 struct inode *inode;
4df27c4d 4262 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4263 struct btrfs_root *sub_root = root;
4264 struct btrfs_key location;
76dda93c 4265 int index;
b4aff1f8 4266 int ret = 0;
39279cc3
CM
4267
4268 if (dentry->d_name.len > BTRFS_NAME_LEN)
4269 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4270
b4aff1f8
JB
4271 if (unlikely(d_need_lookup(dentry))) {
4272 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4273 kfree(dentry->d_fsdata);
4274 dentry->d_fsdata = NULL;
a66e7cc6
JB
4275 /* This thing is hashed, drop it for now */
4276 d_drop(dentry);
b4aff1f8
JB
4277 } else {
4278 ret = btrfs_inode_by_name(dir, dentry, &location);
4279 }
5f39d397 4280
39279cc3
CM
4281 if (ret < 0)
4282 return ERR_PTR(ret);
5f39d397 4283
4df27c4d
YZ
4284 if (location.objectid == 0)
4285 return NULL;
4286
4287 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4288 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4289 return inode;
4290 }
4291
4292 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4293
76dda93c 4294 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4295 ret = fixup_tree_root_location(root, dir, dentry,
4296 &location, &sub_root);
4297 if (ret < 0) {
4298 if (ret != -ENOENT)
4299 inode = ERR_PTR(ret);
4300 else
4301 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4302 } else {
73f73415 4303 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4304 }
76dda93c
YZ
4305 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4306
34d19bad 4307 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4308 down_read(&root->fs_info->cleanup_work_sem);
4309 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4310 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4311 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4312 if (ret)
4313 inode = ERR_PTR(ret);
c71bf099
YZ
4314 }
4315
3de4586c
CM
4316 return inode;
4317}
4318
fe15ce44 4319static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4320{
4321 struct btrfs_root *root;
848cce0d 4322 struct inode *inode = dentry->d_inode;
76dda93c 4323
848cce0d
LZ
4324 if (!inode && !IS_ROOT(dentry))
4325 inode = dentry->d_parent->d_inode;
76dda93c 4326
848cce0d
LZ
4327 if (inode) {
4328 root = BTRFS_I(inode)->root;
efefb143
YZ
4329 if (btrfs_root_refs(&root->root_item) == 0)
4330 return 1;
848cce0d
LZ
4331
4332 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4333 return 1;
efefb143 4334 }
76dda93c
YZ
4335 return 0;
4336}
4337
b4aff1f8
JB
4338static void btrfs_dentry_release(struct dentry *dentry)
4339{
4340 if (dentry->d_fsdata)
4341 kfree(dentry->d_fsdata);
4342}
4343
3de4586c 4344static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4345 unsigned int flags)
3de4586c 4346{
a66e7cc6
JB
4347 struct dentry *ret;
4348
4349 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4350 if (unlikely(d_need_lookup(dentry))) {
4351 spin_lock(&dentry->d_lock);
4352 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4353 spin_unlock(&dentry->d_lock);
4354 }
4355 return ret;
39279cc3
CM
4356}
4357
16cdcec7 4358unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4359 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4360};
4361
cbdf5a24
DW
4362static int btrfs_real_readdir(struct file *filp, void *dirent,
4363 filldir_t filldir)
39279cc3 4364{
6da6abae 4365 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4366 struct btrfs_root *root = BTRFS_I(inode)->root;
4367 struct btrfs_item *item;
4368 struct btrfs_dir_item *di;
4369 struct btrfs_key key;
5f39d397 4370 struct btrfs_key found_key;
39279cc3 4371 struct btrfs_path *path;
16cdcec7
MX
4372 struct list_head ins_list;
4373 struct list_head del_list;
39279cc3 4374 int ret;
5f39d397 4375 struct extent_buffer *leaf;
39279cc3 4376 int slot;
39279cc3
CM
4377 unsigned char d_type;
4378 int over = 0;
4379 u32 di_cur;
4380 u32 di_total;
4381 u32 di_len;
4382 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4383 char tmp_name[32];
4384 char *name_ptr;
4385 int name_len;
16cdcec7 4386 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4387
4388 /* FIXME, use a real flag for deciding about the key type */
4389 if (root->fs_info->tree_root == root)
4390 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4391
3954401f
CM
4392 /* special case for "." */
4393 if (filp->f_pos == 0) {
3765fefa
HS
4394 over = filldir(dirent, ".", 1,
4395 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4396 if (over)
4397 return 0;
4398 filp->f_pos = 1;
4399 }
3954401f
CM
4400 /* special case for .., just use the back ref */
4401 if (filp->f_pos == 1) {
5ecc7e5d 4402 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4403 over = filldir(dirent, "..", 2,
3765fefa 4404 filp->f_pos, pino, DT_DIR);
3954401f 4405 if (over)
49593bfa 4406 return 0;
3954401f
CM
4407 filp->f_pos = 2;
4408 }
49593bfa 4409 path = btrfs_alloc_path();
16cdcec7
MX
4410 if (!path)
4411 return -ENOMEM;
ff5714cc 4412
026fd317 4413 path->reada = 1;
49593bfa 4414
16cdcec7
MX
4415 if (key_type == BTRFS_DIR_INDEX_KEY) {
4416 INIT_LIST_HEAD(&ins_list);
4417 INIT_LIST_HEAD(&del_list);
4418 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4419 }
4420
39279cc3
CM
4421 btrfs_set_key_type(&key, key_type);
4422 key.offset = filp->f_pos;
33345d01 4423 key.objectid = btrfs_ino(inode);
5f39d397 4424
39279cc3
CM
4425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4426 if (ret < 0)
4427 goto err;
49593bfa
DW
4428
4429 while (1) {
5f39d397 4430 leaf = path->nodes[0];
39279cc3 4431 slot = path->slots[0];
b9e03af0
LZ
4432 if (slot >= btrfs_header_nritems(leaf)) {
4433 ret = btrfs_next_leaf(root, path);
4434 if (ret < 0)
4435 goto err;
4436 else if (ret > 0)
4437 break;
4438 continue;
39279cc3 4439 }
3de4586c 4440
5f39d397
CM
4441 item = btrfs_item_nr(leaf, slot);
4442 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4443
4444 if (found_key.objectid != key.objectid)
39279cc3 4445 break;
5f39d397 4446 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4447 break;
5f39d397 4448 if (found_key.offset < filp->f_pos)
b9e03af0 4449 goto next;
16cdcec7
MX
4450 if (key_type == BTRFS_DIR_INDEX_KEY &&
4451 btrfs_should_delete_dir_index(&del_list,
4452 found_key.offset))
4453 goto next;
5f39d397
CM
4454
4455 filp->f_pos = found_key.offset;
16cdcec7 4456 is_curr = 1;
49593bfa 4457
39279cc3
CM
4458 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4459 di_cur = 0;
5f39d397 4460 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4461
4462 while (di_cur < di_total) {
5f39d397
CM
4463 struct btrfs_key location;
4464
22a94d44
JB
4465 if (verify_dir_item(root, leaf, di))
4466 break;
4467
5f39d397 4468 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4469 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4470 name_ptr = tmp_name;
4471 } else {
4472 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4473 if (!name_ptr) {
4474 ret = -ENOMEM;
4475 goto err;
4476 }
5f39d397
CM
4477 }
4478 read_extent_buffer(leaf, name_ptr,
4479 (unsigned long)(di + 1), name_len);
4480
4481 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4482 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4483
fede766f 4484
3de4586c 4485 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4486 * skip it.
4487 *
4488 * In contrast to old kernels, we insert the snapshot's
4489 * dir item and dir index after it has been created, so
4490 * we won't find a reference to our own snapshot. We
4491 * still keep the following code for backward
4492 * compatibility.
3de4586c
CM
4493 */
4494 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4495 location.objectid == root->root_key.objectid) {
4496 over = 0;
4497 goto skip;
4498 }
5f39d397 4499 over = filldir(dirent, name_ptr, name_len,
49593bfa 4500 found_key.offset, location.objectid,
39279cc3 4501 d_type);
5f39d397 4502
3de4586c 4503skip:
5f39d397
CM
4504 if (name_ptr != tmp_name)
4505 kfree(name_ptr);
4506
39279cc3
CM
4507 if (over)
4508 goto nopos;
5103e947 4509 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4510 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4511 di_cur += di_len;
4512 di = (struct btrfs_dir_item *)((char *)di + di_len);
4513 }
b9e03af0
LZ
4514next:
4515 path->slots[0]++;
39279cc3 4516 }
49593bfa 4517
16cdcec7
MX
4518 if (key_type == BTRFS_DIR_INDEX_KEY) {
4519 if (is_curr)
4520 filp->f_pos++;
4521 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4522 &ins_list);
4523 if (ret)
4524 goto nopos;
4525 }
4526
49593bfa 4527 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4528 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4529 /*
4530 * 32-bit glibc will use getdents64, but then strtol -
4531 * so the last number we can serve is this.
4532 */
4533 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4534 else
4535 filp->f_pos++;
39279cc3
CM
4536nopos:
4537 ret = 0;
4538err:
16cdcec7
MX
4539 if (key_type == BTRFS_DIR_INDEX_KEY)
4540 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4541 btrfs_free_path(path);
39279cc3
CM
4542 return ret;
4543}
4544
a9185b41 4545int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4546{
4547 struct btrfs_root *root = BTRFS_I(inode)->root;
4548 struct btrfs_trans_handle *trans;
4549 int ret = 0;
0af3d00b 4550 bool nolock = false;
39279cc3 4551
72ac3c0d 4552 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
4553 return 0;
4554
83eea1f1 4555 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 4556 nolock = true;
0af3d00b 4557
a9185b41 4558 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4559 if (nolock)
7a7eaa40 4560 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4561 else
7a7eaa40 4562 trans = btrfs_join_transaction(root);
3612b495
TI
4563 if (IS_ERR(trans))
4564 return PTR_ERR(trans);
a698d075 4565 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4566 }
4567 return ret;
4568}
4569
4570/*
54aa1f4d 4571 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4572 * inode changes. But, it is most likely to find the inode in cache.
4573 * FIXME, needs more benchmarking...there are no reasons other than performance
4574 * to keep or drop this code.
4575 */
22c44fe6 4576int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4577{
4578 struct btrfs_root *root = BTRFS_I(inode)->root;
4579 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4580 int ret;
4581
72ac3c0d 4582 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 4583 return 0;
39279cc3 4584
7a7eaa40 4585 trans = btrfs_join_transaction(root);
22c44fe6
JB
4586 if (IS_ERR(trans))
4587 return PTR_ERR(trans);
8929ecfa
YZ
4588
4589 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4590 if (ret && ret == -ENOSPC) {
4591 /* whoops, lets try again with the full transaction */
4592 btrfs_end_transaction(trans, root);
4593 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4594 if (IS_ERR(trans))
4595 return PTR_ERR(trans);
8929ecfa 4596
94b60442 4597 ret = btrfs_update_inode(trans, root, inode);
94b60442 4598 }
39279cc3 4599 btrfs_end_transaction(trans, root);
16cdcec7
MX
4600 if (BTRFS_I(inode)->delayed_node)
4601 btrfs_balance_delayed_items(root);
22c44fe6
JB
4602
4603 return ret;
4604}
4605
4606/*
4607 * This is a copy of file_update_time. We need this so we can return error on
4608 * ENOSPC for updating the inode in the case of file write and mmap writes.
4609 */
e41f941a
JB
4610static int btrfs_update_time(struct inode *inode, struct timespec *now,
4611 int flags)
22c44fe6 4612{
2bc55652
AB
4613 struct btrfs_root *root = BTRFS_I(inode)->root;
4614
4615 if (btrfs_root_readonly(root))
4616 return -EROFS;
4617
e41f941a 4618 if (flags & S_VERSION)
22c44fe6 4619 inode_inc_iversion(inode);
e41f941a
JB
4620 if (flags & S_CTIME)
4621 inode->i_ctime = *now;
4622 if (flags & S_MTIME)
4623 inode->i_mtime = *now;
4624 if (flags & S_ATIME)
4625 inode->i_atime = *now;
4626 return btrfs_dirty_inode(inode);
39279cc3
CM
4627}
4628
d352ac68
CM
4629/*
4630 * find the highest existing sequence number in a directory
4631 * and then set the in-memory index_cnt variable to reflect
4632 * free sequence numbers
4633 */
aec7477b
JB
4634static int btrfs_set_inode_index_count(struct inode *inode)
4635{
4636 struct btrfs_root *root = BTRFS_I(inode)->root;
4637 struct btrfs_key key, found_key;
4638 struct btrfs_path *path;
4639 struct extent_buffer *leaf;
4640 int ret;
4641
33345d01 4642 key.objectid = btrfs_ino(inode);
aec7477b
JB
4643 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4644 key.offset = (u64)-1;
4645
4646 path = btrfs_alloc_path();
4647 if (!path)
4648 return -ENOMEM;
4649
4650 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4651 if (ret < 0)
4652 goto out;
4653 /* FIXME: we should be able to handle this */
4654 if (ret == 0)
4655 goto out;
4656 ret = 0;
4657
4658 /*
4659 * MAGIC NUMBER EXPLANATION:
4660 * since we search a directory based on f_pos we have to start at 2
4661 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4662 * else has to start at 2
4663 */
4664 if (path->slots[0] == 0) {
4665 BTRFS_I(inode)->index_cnt = 2;
4666 goto out;
4667 }
4668
4669 path->slots[0]--;
4670
4671 leaf = path->nodes[0];
4672 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4673
33345d01 4674 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4675 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4676 BTRFS_I(inode)->index_cnt = 2;
4677 goto out;
4678 }
4679
4680 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4681out:
4682 btrfs_free_path(path);
4683 return ret;
4684}
4685
d352ac68
CM
4686/*
4687 * helper to find a free sequence number in a given directory. This current
4688 * code is very simple, later versions will do smarter things in the btree
4689 */
3de4586c 4690int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4691{
4692 int ret = 0;
4693
4694 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4695 ret = btrfs_inode_delayed_dir_index_count(dir);
4696 if (ret) {
4697 ret = btrfs_set_inode_index_count(dir);
4698 if (ret)
4699 return ret;
4700 }
aec7477b
JB
4701 }
4702
00e4e6b3 4703 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4704 BTRFS_I(dir)->index_cnt++;
4705
4706 return ret;
4707}
4708
39279cc3
CM
4709static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4710 struct btrfs_root *root,
aec7477b 4711 struct inode *dir,
9c58309d 4712 const char *name, int name_len,
175a4eb7
AV
4713 u64 ref_objectid, u64 objectid,
4714 umode_t mode, u64 *index)
39279cc3
CM
4715{
4716 struct inode *inode;
5f39d397 4717 struct btrfs_inode_item *inode_item;
39279cc3 4718 struct btrfs_key *location;
5f39d397 4719 struct btrfs_path *path;
9c58309d
CM
4720 struct btrfs_inode_ref *ref;
4721 struct btrfs_key key[2];
4722 u32 sizes[2];
4723 unsigned long ptr;
39279cc3
CM
4724 int ret;
4725 int owner;
4726
5f39d397 4727 path = btrfs_alloc_path();
d8926bb3
MF
4728 if (!path)
4729 return ERR_PTR(-ENOMEM);
5f39d397 4730
39279cc3 4731 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4732 if (!inode) {
4733 btrfs_free_path(path);
39279cc3 4734 return ERR_PTR(-ENOMEM);
8fb27640 4735 }
39279cc3 4736
581bb050
LZ
4737 /*
4738 * we have to initialize this early, so we can reclaim the inode
4739 * number if we fail afterwards in this function.
4740 */
4741 inode->i_ino = objectid;
4742
aec7477b 4743 if (dir) {
1abe9b8a 4744 trace_btrfs_inode_request(dir);
4745
3de4586c 4746 ret = btrfs_set_inode_index(dir, index);
09771430 4747 if (ret) {
8fb27640 4748 btrfs_free_path(path);
09771430 4749 iput(inode);
aec7477b 4750 return ERR_PTR(ret);
09771430 4751 }
aec7477b
JB
4752 }
4753 /*
4754 * index_cnt is ignored for everything but a dir,
4755 * btrfs_get_inode_index_count has an explanation for the magic
4756 * number
4757 */
4758 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4759 BTRFS_I(inode)->root = root;
e02119d5 4760 BTRFS_I(inode)->generation = trans->transid;
76195853 4761 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 4762
5dc562c5
JB
4763 /*
4764 * We could have gotten an inode number from somebody who was fsynced
4765 * and then removed in this same transaction, so let's just set full
4766 * sync since it will be a full sync anyway and this will blow away the
4767 * old info in the log.
4768 */
4769 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4770
569254b0 4771 if (S_ISDIR(mode))
39279cc3
CM
4772 owner = 0;
4773 else
4774 owner = 1;
9c58309d
CM
4775
4776 key[0].objectid = objectid;
4777 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4778 key[0].offset = 0;
4779
f186373f
MF
4780 /*
4781 * Start new inodes with an inode_ref. This is slightly more
4782 * efficient for small numbers of hard links since they will
4783 * be packed into one item. Extended refs will kick in if we
4784 * add more hard links than can fit in the ref item.
4785 */
9c58309d
CM
4786 key[1].objectid = objectid;
4787 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4788 key[1].offset = ref_objectid;
4789
4790 sizes[0] = sizeof(struct btrfs_inode_item);
4791 sizes[1] = name_len + sizeof(*ref);
4792
b9473439 4793 path->leave_spinning = 1;
9c58309d
CM
4794 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4795 if (ret != 0)
5f39d397
CM
4796 goto fail;
4797
ecc11fab 4798 inode_init_owner(inode, dir, mode);
a76a3cd4 4799 inode_set_bytes(inode, 0);
39279cc3 4800 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4801 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4802 struct btrfs_inode_item);
293f7e07
LZ
4803 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4804 sizeof(*inode_item));
e02119d5 4805 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4806
4807 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4808 struct btrfs_inode_ref);
4809 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4810 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4811 ptr = (unsigned long)(ref + 1);
4812 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4813
5f39d397
CM
4814 btrfs_mark_buffer_dirty(path->nodes[0]);
4815 btrfs_free_path(path);
4816
39279cc3
CM
4817 location = &BTRFS_I(inode)->location;
4818 location->objectid = objectid;
39279cc3
CM
4819 location->offset = 0;
4820 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4821
6cbff00f
CH
4822 btrfs_inherit_iflags(inode, dir);
4823
569254b0 4824 if (S_ISREG(mode)) {
94272164
CM
4825 if (btrfs_test_opt(root, NODATASUM))
4826 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4827 if (btrfs_test_opt(root, NODATACOW) ||
4828 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4829 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4830 }
4831
39279cc3 4832 insert_inode_hash(inode);
5d4f98a2 4833 inode_tree_add(inode);
1abe9b8a 4834
4835 trace_btrfs_inode_new(inode);
1973f0fa 4836 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4837
8ea05e3a
AB
4838 btrfs_update_root_times(trans, root);
4839
39279cc3 4840 return inode;
5f39d397 4841fail:
aec7477b
JB
4842 if (dir)
4843 BTRFS_I(dir)->index_cnt--;
5f39d397 4844 btrfs_free_path(path);
09771430 4845 iput(inode);
5f39d397 4846 return ERR_PTR(ret);
39279cc3
CM
4847}
4848
4849static inline u8 btrfs_inode_type(struct inode *inode)
4850{
4851 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4852}
4853
d352ac68
CM
4854/*
4855 * utility function to add 'inode' into 'parent_inode' with
4856 * a give name and a given sequence number.
4857 * if 'add_backref' is true, also insert a backref from the
4858 * inode to the parent directory.
4859 */
e02119d5
CM
4860int btrfs_add_link(struct btrfs_trans_handle *trans,
4861 struct inode *parent_inode, struct inode *inode,
4862 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4863{
4df27c4d 4864 int ret = 0;
39279cc3 4865 struct btrfs_key key;
e02119d5 4866 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4867 u64 ino = btrfs_ino(inode);
4868 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4869
33345d01 4870 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4871 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4872 } else {
33345d01 4873 key.objectid = ino;
4df27c4d
YZ
4874 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4875 key.offset = 0;
4876 }
4877
33345d01 4878 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4879 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4880 key.objectid, root->root_key.objectid,
33345d01 4881 parent_ino, index, name, name_len);
4df27c4d 4882 } else if (add_backref) {
33345d01
LZ
4883 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4884 parent_ino, index);
4df27c4d 4885 }
39279cc3 4886
79787eaa
JM
4887 /* Nothing to clean up yet */
4888 if (ret)
4889 return ret;
4df27c4d 4890
79787eaa
JM
4891 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4892 parent_inode, &key,
4893 btrfs_inode_type(inode), index);
4894 if (ret == -EEXIST)
4895 goto fail_dir_item;
4896 else if (ret) {
4897 btrfs_abort_transaction(trans, root, ret);
4898 return ret;
39279cc3 4899 }
79787eaa
JM
4900
4901 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4902 name_len * 2);
0c4d2d95 4903 inode_inc_iversion(parent_inode);
79787eaa
JM
4904 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4905 ret = btrfs_update_inode(trans, root, parent_inode);
4906 if (ret)
4907 btrfs_abort_transaction(trans, root, ret);
39279cc3 4908 return ret;
fe66a05a
CM
4909
4910fail_dir_item:
4911 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4912 u64 local_index;
4913 int err;
4914 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4915 key.objectid, root->root_key.objectid,
4916 parent_ino, &local_index, name, name_len);
4917
4918 } else if (add_backref) {
4919 u64 local_index;
4920 int err;
4921
4922 err = btrfs_del_inode_ref(trans, root, name, name_len,
4923 ino, parent_ino, &local_index);
4924 }
4925 return ret;
39279cc3
CM
4926}
4927
4928static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4929 struct inode *dir, struct dentry *dentry,
4930 struct inode *inode, int backref, u64 index)
39279cc3 4931{
a1b075d2
JB
4932 int err = btrfs_add_link(trans, dir, inode,
4933 dentry->d_name.name, dentry->d_name.len,
4934 backref, index);
39279cc3
CM
4935 if (err > 0)
4936 err = -EEXIST;
4937 return err;
4938}
4939
618e21d5 4940static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4941 umode_t mode, dev_t rdev)
618e21d5
JB
4942{
4943 struct btrfs_trans_handle *trans;
4944 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4945 struct inode *inode = NULL;
618e21d5
JB
4946 int err;
4947 int drop_inode = 0;
4948 u64 objectid;
00e4e6b3 4949 u64 index = 0;
618e21d5
JB
4950
4951 if (!new_valid_dev(rdev))
4952 return -EINVAL;
4953
9ed74f2d
JB
4954 /*
4955 * 2 for inode item and ref
4956 * 2 for dir items
4957 * 1 for xattr if selinux is on
4958 */
a22285a6
YZ
4959 trans = btrfs_start_transaction(root, 5);
4960 if (IS_ERR(trans))
4961 return PTR_ERR(trans);
1832a6d5 4962
581bb050
LZ
4963 err = btrfs_find_free_ino(root, &objectid);
4964 if (err)
4965 goto out_unlock;
4966
aec7477b 4967 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4968 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4969 mode, &index);
7cf96da3
TI
4970 if (IS_ERR(inode)) {
4971 err = PTR_ERR(inode);
618e21d5 4972 goto out_unlock;
7cf96da3 4973 }
618e21d5 4974
2a7dba39 4975 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4976 if (err) {
4977 drop_inode = 1;
4978 goto out_unlock;
4979 }
4980
2794ed01
FB
4981 err = btrfs_update_inode(trans, root, inode);
4982 if (err) {
4983 drop_inode = 1;
4984 goto out_unlock;
4985 }
4986
ad19db71
CS
4987 /*
4988 * If the active LSM wants to access the inode during
4989 * d_instantiate it needs these. Smack checks to see
4990 * if the filesystem supports xattrs by looking at the
4991 * ops vector.
4992 */
4993
4994 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4995 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4996 if (err)
4997 drop_inode = 1;
4998 else {
618e21d5 4999 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5000 btrfs_update_inode(trans, root, inode);
08c422c2 5001 d_instantiate(dentry, inode);
618e21d5 5002 }
618e21d5 5003out_unlock:
7ad85bb7 5004 btrfs_end_transaction(trans, root);
b53d3f5d 5005 btrfs_btree_balance_dirty(root);
618e21d5
JB
5006 if (drop_inode) {
5007 inode_dec_link_count(inode);
5008 iput(inode);
5009 }
618e21d5
JB
5010 return err;
5011}
5012
39279cc3 5013static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5014 umode_t mode, bool excl)
39279cc3
CM
5015{
5016 struct btrfs_trans_handle *trans;
5017 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5018 struct inode *inode = NULL;
43baa579 5019 int drop_inode_on_err = 0;
a22285a6 5020 int err;
39279cc3 5021 u64 objectid;
00e4e6b3 5022 u64 index = 0;
39279cc3 5023
9ed74f2d
JB
5024 /*
5025 * 2 for inode item and ref
5026 * 2 for dir items
5027 * 1 for xattr if selinux is on
5028 */
a22285a6
YZ
5029 trans = btrfs_start_transaction(root, 5);
5030 if (IS_ERR(trans))
5031 return PTR_ERR(trans);
9ed74f2d 5032
581bb050
LZ
5033 err = btrfs_find_free_ino(root, &objectid);
5034 if (err)
5035 goto out_unlock;
5036
aec7477b 5037 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5038 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5039 mode, &index);
7cf96da3
TI
5040 if (IS_ERR(inode)) {
5041 err = PTR_ERR(inode);
39279cc3 5042 goto out_unlock;
7cf96da3 5043 }
43baa579 5044 drop_inode_on_err = 1;
39279cc3 5045
2a7dba39 5046 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5047 if (err)
33268eaf 5048 goto out_unlock;
33268eaf 5049
ad19db71
CS
5050 /*
5051 * If the active LSM wants to access the inode during
5052 * d_instantiate it needs these. Smack checks to see
5053 * if the filesystem supports xattrs by looking at the
5054 * ops vector.
5055 */
5056 inode->i_fop = &btrfs_file_operations;
5057 inode->i_op = &btrfs_file_inode_operations;
5058
a1b075d2 5059 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5060 if (err)
43baa579
FB
5061 goto out_unlock;
5062
5063 inode->i_mapping->a_ops = &btrfs_aops;
5064 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5065 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5066 d_instantiate(dentry, inode);
5067
39279cc3 5068out_unlock:
7ad85bb7 5069 btrfs_end_transaction(trans, root);
43baa579 5070 if (err && drop_inode_on_err) {
39279cc3
CM
5071 inode_dec_link_count(inode);
5072 iput(inode);
5073 }
b53d3f5d 5074 btrfs_btree_balance_dirty(root);
39279cc3
CM
5075 return err;
5076}
5077
5078static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5079 struct dentry *dentry)
5080{
5081 struct btrfs_trans_handle *trans;
5082 struct btrfs_root *root = BTRFS_I(dir)->root;
5083 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5084 u64 index;
39279cc3
CM
5085 int err;
5086 int drop_inode = 0;
5087
4a8be425
TH
5088 /* do not allow sys_link's with other subvols of the same device */
5089 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5090 return -EXDEV;
4a8be425 5091
f186373f 5092 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5093 return -EMLINK;
4a8be425 5094
3de4586c 5095 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5096 if (err)
5097 goto fail;
5098
a22285a6 5099 /*
7e6b6465 5100 * 2 items for inode and inode ref
a22285a6 5101 * 2 items for dir items
7e6b6465 5102 * 1 item for parent inode
a22285a6 5103 */
7e6b6465 5104 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5105 if (IS_ERR(trans)) {
5106 err = PTR_ERR(trans);
5107 goto fail;
5108 }
5f39d397 5109
3153495d 5110 btrfs_inc_nlink(inode);
0c4d2d95 5111 inode_inc_iversion(inode);
3153495d 5112 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5113 ihold(inode);
e9976151 5114 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5115
a1b075d2 5116 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5117
a5719521 5118 if (err) {
54aa1f4d 5119 drop_inode = 1;
a5719521 5120 } else {
10d9f309 5121 struct dentry *parent = dentry->d_parent;
a5719521 5122 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5123 if (err)
5124 goto fail;
08c422c2 5125 d_instantiate(dentry, inode);
6a912213 5126 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5127 }
39279cc3 5128
7ad85bb7 5129 btrfs_end_transaction(trans, root);
1832a6d5 5130fail:
39279cc3
CM
5131 if (drop_inode) {
5132 inode_dec_link_count(inode);
5133 iput(inode);
5134 }
b53d3f5d 5135 btrfs_btree_balance_dirty(root);
39279cc3
CM
5136 return err;
5137}
5138
18bb1db3 5139static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5140{
b9d86667 5141 struct inode *inode = NULL;
39279cc3
CM
5142 struct btrfs_trans_handle *trans;
5143 struct btrfs_root *root = BTRFS_I(dir)->root;
5144 int err = 0;
5145 int drop_on_err = 0;
b9d86667 5146 u64 objectid = 0;
00e4e6b3 5147 u64 index = 0;
39279cc3 5148
9ed74f2d
JB
5149 /*
5150 * 2 items for inode and ref
5151 * 2 items for dir items
5152 * 1 for xattr if selinux is on
5153 */
a22285a6
YZ
5154 trans = btrfs_start_transaction(root, 5);
5155 if (IS_ERR(trans))
5156 return PTR_ERR(trans);
39279cc3 5157
581bb050
LZ
5158 err = btrfs_find_free_ino(root, &objectid);
5159 if (err)
5160 goto out_fail;
5161
aec7477b 5162 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5163 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5164 S_IFDIR | mode, &index);
39279cc3
CM
5165 if (IS_ERR(inode)) {
5166 err = PTR_ERR(inode);
5167 goto out_fail;
5168 }
5f39d397 5169
39279cc3 5170 drop_on_err = 1;
33268eaf 5171
2a7dba39 5172 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5173 if (err)
5174 goto out_fail;
5175
39279cc3
CM
5176 inode->i_op = &btrfs_dir_inode_operations;
5177 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5178
dbe674a9 5179 btrfs_i_size_write(inode, 0);
39279cc3
CM
5180 err = btrfs_update_inode(trans, root, inode);
5181 if (err)
5182 goto out_fail;
5f39d397 5183
a1b075d2
JB
5184 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5185 dentry->d_name.len, 0, index);
39279cc3
CM
5186 if (err)
5187 goto out_fail;
5f39d397 5188
39279cc3
CM
5189 d_instantiate(dentry, inode);
5190 drop_on_err = 0;
39279cc3
CM
5191
5192out_fail:
7ad85bb7 5193 btrfs_end_transaction(trans, root);
39279cc3
CM
5194 if (drop_on_err)
5195 iput(inode);
b53d3f5d 5196 btrfs_btree_balance_dirty(root);
39279cc3
CM
5197 return err;
5198}
5199
d352ac68
CM
5200/* helper for btfs_get_extent. Given an existing extent in the tree,
5201 * and an extent that you want to insert, deal with overlap and insert
5202 * the new extent into the tree.
5203 */
3b951516
CM
5204static int merge_extent_mapping(struct extent_map_tree *em_tree,
5205 struct extent_map *existing,
e6dcd2dc
CM
5206 struct extent_map *em,
5207 u64 map_start, u64 map_len)
3b951516
CM
5208{
5209 u64 start_diff;
3b951516 5210
e6dcd2dc
CM
5211 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5212 start_diff = map_start - em->start;
5213 em->start = map_start;
5214 em->len = map_len;
c8b97818
CM
5215 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5216 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5217 em->block_start += start_diff;
c8b97818
CM
5218 em->block_len -= start_diff;
5219 }
e6dcd2dc 5220 return add_extent_mapping(em_tree, em);
3b951516
CM
5221}
5222
c8b97818
CM
5223static noinline int uncompress_inline(struct btrfs_path *path,
5224 struct inode *inode, struct page *page,
5225 size_t pg_offset, u64 extent_offset,
5226 struct btrfs_file_extent_item *item)
5227{
5228 int ret;
5229 struct extent_buffer *leaf = path->nodes[0];
5230 char *tmp;
5231 size_t max_size;
5232 unsigned long inline_size;
5233 unsigned long ptr;
261507a0 5234 int compress_type;
c8b97818
CM
5235
5236 WARN_ON(pg_offset != 0);
261507a0 5237 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5238 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5239 inline_size = btrfs_file_extent_inline_item_len(leaf,
5240 btrfs_item_nr(leaf, path->slots[0]));
5241 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5242 if (!tmp)
5243 return -ENOMEM;
c8b97818
CM
5244 ptr = btrfs_file_extent_inline_start(item);
5245
5246 read_extent_buffer(leaf, tmp, ptr, inline_size);
5247
5b050f04 5248 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5249 ret = btrfs_decompress(compress_type, tmp, page,
5250 extent_offset, inline_size, max_size);
c8b97818 5251 if (ret) {
7ac687d9 5252 char *kaddr = kmap_atomic(page);
c8b97818
CM
5253 unsigned long copy_size = min_t(u64,
5254 PAGE_CACHE_SIZE - pg_offset,
5255 max_size - extent_offset);
5256 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5257 kunmap_atomic(kaddr);
c8b97818
CM
5258 }
5259 kfree(tmp);
5260 return 0;
5261}
5262
d352ac68
CM
5263/*
5264 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5265 * the ugly parts come from merging extents from the disk with the in-ram
5266 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5267 * where the in-ram extents might be locked pending data=ordered completion.
5268 *
5269 * This also copies inline extents directly into the page.
5270 */
d397712b 5271
a52d9a80 5272struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5273 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5274 int create)
5275{
5276 int ret;
5277 int err = 0;
db94535d 5278 u64 bytenr;
a52d9a80
CM
5279 u64 extent_start = 0;
5280 u64 extent_end = 0;
33345d01 5281 u64 objectid = btrfs_ino(inode);
a52d9a80 5282 u32 found_type;
f421950f 5283 struct btrfs_path *path = NULL;
a52d9a80
CM
5284 struct btrfs_root *root = BTRFS_I(inode)->root;
5285 struct btrfs_file_extent_item *item;
5f39d397
CM
5286 struct extent_buffer *leaf;
5287 struct btrfs_key found_key;
a52d9a80
CM
5288 struct extent_map *em = NULL;
5289 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5290 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5291 struct btrfs_trans_handle *trans = NULL;
261507a0 5292 int compress_type;
a52d9a80 5293
a52d9a80 5294again:
890871be 5295 read_lock(&em_tree->lock);
d1310b2e 5296 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5297 if (em)
5298 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5299 read_unlock(&em_tree->lock);
d1310b2e 5300
a52d9a80 5301 if (em) {
e1c4b745
CM
5302 if (em->start > start || em->start + em->len <= start)
5303 free_extent_map(em);
5304 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5305 free_extent_map(em);
5306 else
5307 goto out;
a52d9a80 5308 }
172ddd60 5309 em = alloc_extent_map();
a52d9a80 5310 if (!em) {
d1310b2e
CM
5311 err = -ENOMEM;
5312 goto out;
a52d9a80 5313 }
e6dcd2dc 5314 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5315 em->start = EXTENT_MAP_HOLE;
445a6944 5316 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5317 em->len = (u64)-1;
c8b97818 5318 em->block_len = (u64)-1;
f421950f
CM
5319
5320 if (!path) {
5321 path = btrfs_alloc_path();
026fd317
JB
5322 if (!path) {
5323 err = -ENOMEM;
5324 goto out;
5325 }
5326 /*
5327 * Chances are we'll be called again, so go ahead and do
5328 * readahead
5329 */
5330 path->reada = 1;
f421950f
CM
5331 }
5332
179e29e4
CM
5333 ret = btrfs_lookup_file_extent(trans, root, path,
5334 objectid, start, trans != NULL);
a52d9a80
CM
5335 if (ret < 0) {
5336 err = ret;
5337 goto out;
5338 }
5339
5340 if (ret != 0) {
5341 if (path->slots[0] == 0)
5342 goto not_found;
5343 path->slots[0]--;
5344 }
5345
5f39d397
CM
5346 leaf = path->nodes[0];
5347 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5348 struct btrfs_file_extent_item);
a52d9a80 5349 /* are we inside the extent that was found? */
5f39d397
CM
5350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5351 found_type = btrfs_key_type(&found_key);
5352 if (found_key.objectid != objectid ||
a52d9a80
CM
5353 found_type != BTRFS_EXTENT_DATA_KEY) {
5354 goto not_found;
5355 }
5356
5f39d397
CM
5357 found_type = btrfs_file_extent_type(leaf, item);
5358 extent_start = found_key.offset;
261507a0 5359 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5360 if (found_type == BTRFS_FILE_EXTENT_REG ||
5361 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5362 extent_end = extent_start +
db94535d 5363 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5364 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5365 size_t size;
5366 size = btrfs_file_extent_inline_len(leaf, item);
5367 extent_end = (extent_start + size + root->sectorsize - 1) &
5368 ~((u64)root->sectorsize - 1);
5369 }
5370
5371 if (start >= extent_end) {
5372 path->slots[0]++;
5373 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5374 ret = btrfs_next_leaf(root, path);
5375 if (ret < 0) {
5376 err = ret;
5377 goto out;
a52d9a80 5378 }
9036c102
YZ
5379 if (ret > 0)
5380 goto not_found;
5381 leaf = path->nodes[0];
a52d9a80 5382 }
9036c102
YZ
5383 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5384 if (found_key.objectid != objectid ||
5385 found_key.type != BTRFS_EXTENT_DATA_KEY)
5386 goto not_found;
5387 if (start + len <= found_key.offset)
5388 goto not_found;
5389 em->start = start;
70c8a91c 5390 em->orig_start = start;
9036c102
YZ
5391 em->len = found_key.offset - start;
5392 goto not_found_em;
5393 }
5394
d899e052
YZ
5395 if (found_type == BTRFS_FILE_EXTENT_REG ||
5396 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5397 em->start = extent_start;
5398 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5399 em->orig_start = extent_start -
5400 btrfs_file_extent_offset(leaf, item);
b4939680
JB
5401 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
5402 item);
db94535d
CM
5403 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5404 if (bytenr == 0) {
5f39d397 5405 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5406 goto insert;
5407 }
261507a0 5408 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5409 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5410 em->compress_type = compress_type;
c8b97818 5411 em->block_start = bytenr;
b4939680 5412 em->block_len = em->orig_block_len;
c8b97818
CM
5413 } else {
5414 bytenr += btrfs_file_extent_offset(leaf, item);
5415 em->block_start = bytenr;
5416 em->block_len = em->len;
d899e052
YZ
5417 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5418 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5419 }
a52d9a80
CM
5420 goto insert;
5421 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5422 unsigned long ptr;
a52d9a80 5423 char *map;
3326d1b0
CM
5424 size_t size;
5425 size_t extent_offset;
5426 size_t copy_size;
a52d9a80 5427
689f9346 5428 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5429 if (!page || create) {
689f9346 5430 em->start = extent_start;
9036c102 5431 em->len = extent_end - extent_start;
689f9346
Y
5432 goto out;
5433 }
5f39d397 5434
9036c102
YZ
5435 size = btrfs_file_extent_inline_len(leaf, item);
5436 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5437 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5438 size - extent_offset);
3326d1b0 5439 em->start = extent_start + extent_offset;
70dec807
CM
5440 em->len = (copy_size + root->sectorsize - 1) &
5441 ~((u64)root->sectorsize - 1);
b4939680 5442 em->orig_block_len = em->len;
70c8a91c 5443 em->orig_start = em->start;
261507a0 5444 if (compress_type) {
c8b97818 5445 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5446 em->compress_type = compress_type;
5447 }
689f9346 5448 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5449 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5450 if (btrfs_file_extent_compression(leaf, item) !=
5451 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5452 ret = uncompress_inline(path, inode, page,
5453 pg_offset,
5454 extent_offset, item);
79787eaa 5455 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5456 } else {
5457 map = kmap(page);
5458 read_extent_buffer(leaf, map + pg_offset, ptr,
5459 copy_size);
93c82d57
CM
5460 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5461 memset(map + pg_offset + copy_size, 0,
5462 PAGE_CACHE_SIZE - pg_offset -
5463 copy_size);
5464 }
c8b97818
CM
5465 kunmap(page);
5466 }
179e29e4
CM
5467 flush_dcache_page(page);
5468 } else if (create && PageUptodate(page)) {
6bf7e080 5469 BUG();
179e29e4
CM
5470 if (!trans) {
5471 kunmap(page);
5472 free_extent_map(em);
5473 em = NULL;
ff5714cc 5474
b3b4aa74 5475 btrfs_release_path(path);
7a7eaa40 5476 trans = btrfs_join_transaction(root);
ff5714cc 5477
3612b495
TI
5478 if (IS_ERR(trans))
5479 return ERR_CAST(trans);
179e29e4
CM
5480 goto again;
5481 }
c8b97818 5482 map = kmap(page);
70dec807 5483 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5484 copy_size);
c8b97818 5485 kunmap(page);
179e29e4 5486 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5487 }
d1310b2e 5488 set_extent_uptodate(io_tree, em->start,
507903b8 5489 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5490 goto insert;
5491 } else {
31b1a2bd 5492 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5493 }
5494not_found:
5495 em->start = start;
70c8a91c 5496 em->orig_start = start;
d1310b2e 5497 em->len = len;
a52d9a80 5498not_found_em:
5f39d397 5499 em->block_start = EXTENT_MAP_HOLE;
9036c102 5500 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5501insert:
b3b4aa74 5502 btrfs_release_path(path);
d1310b2e 5503 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5504 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5505 "[%llu %llu]\n", (unsigned long long)em->start,
5506 (unsigned long long)em->len,
5507 (unsigned long long)start,
5508 (unsigned long long)len);
a52d9a80
CM
5509 err = -EIO;
5510 goto out;
5511 }
d1310b2e
CM
5512
5513 err = 0;
890871be 5514 write_lock(&em_tree->lock);
a52d9a80 5515 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5516 /* it is possible that someone inserted the extent into the tree
5517 * while we had the lock dropped. It is also possible that
5518 * an overlapping map exists in the tree
5519 */
a52d9a80 5520 if (ret == -EEXIST) {
3b951516 5521 struct extent_map *existing;
e6dcd2dc
CM
5522
5523 ret = 0;
5524
3b951516 5525 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5526 if (existing && (existing->start > start ||
5527 existing->start + existing->len <= start)) {
5528 free_extent_map(existing);
5529 existing = NULL;
5530 }
3b951516
CM
5531 if (!existing) {
5532 existing = lookup_extent_mapping(em_tree, em->start,
5533 em->len);
5534 if (existing) {
5535 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5536 em, start,
5537 root->sectorsize);
3b951516
CM
5538 free_extent_map(existing);
5539 if (err) {
5540 free_extent_map(em);
5541 em = NULL;
5542 }
5543 } else {
5544 err = -EIO;
3b951516
CM
5545 free_extent_map(em);
5546 em = NULL;
5547 }
5548 } else {
5549 free_extent_map(em);
5550 em = existing;
e6dcd2dc 5551 err = 0;
a52d9a80 5552 }
a52d9a80 5553 }
890871be 5554 write_unlock(&em_tree->lock);
a52d9a80 5555out:
1abe9b8a 5556
f0bd95ea
TI
5557 if (em)
5558 trace_btrfs_get_extent(root, em);
1abe9b8a 5559
f421950f
CM
5560 if (path)
5561 btrfs_free_path(path);
a52d9a80
CM
5562 if (trans) {
5563 ret = btrfs_end_transaction(trans, root);
d397712b 5564 if (!err)
a52d9a80
CM
5565 err = ret;
5566 }
a52d9a80
CM
5567 if (err) {
5568 free_extent_map(em);
a52d9a80
CM
5569 return ERR_PTR(err);
5570 }
79787eaa 5571 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5572 return em;
5573}
5574
ec29ed5b
CM
5575struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5576 size_t pg_offset, u64 start, u64 len,
5577 int create)
5578{
5579 struct extent_map *em;
5580 struct extent_map *hole_em = NULL;
5581 u64 range_start = start;
5582 u64 end;
5583 u64 found;
5584 u64 found_end;
5585 int err = 0;
5586
5587 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5588 if (IS_ERR(em))
5589 return em;
5590 if (em) {
5591 /*
5592 * if our em maps to a hole, there might
5593 * actually be delalloc bytes behind it
5594 */
5595 if (em->block_start != EXTENT_MAP_HOLE)
5596 return em;
5597 else
5598 hole_em = em;
5599 }
5600
5601 /* check to see if we've wrapped (len == -1 or similar) */
5602 end = start + len;
5603 if (end < start)
5604 end = (u64)-1;
5605 else
5606 end -= 1;
5607
5608 em = NULL;
5609
5610 /* ok, we didn't find anything, lets look for delalloc */
5611 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5612 end, len, EXTENT_DELALLOC, 1);
5613 found_end = range_start + found;
5614 if (found_end < range_start)
5615 found_end = (u64)-1;
5616
5617 /*
5618 * we didn't find anything useful, return
5619 * the original results from get_extent()
5620 */
5621 if (range_start > end || found_end <= start) {
5622 em = hole_em;
5623 hole_em = NULL;
5624 goto out;
5625 }
5626
5627 /* adjust the range_start to make sure it doesn't
5628 * go backwards from the start they passed in
5629 */
5630 range_start = max(start,range_start);
5631 found = found_end - range_start;
5632
5633 if (found > 0) {
5634 u64 hole_start = start;
5635 u64 hole_len = len;
5636
172ddd60 5637 em = alloc_extent_map();
ec29ed5b
CM
5638 if (!em) {
5639 err = -ENOMEM;
5640 goto out;
5641 }
5642 /*
5643 * when btrfs_get_extent can't find anything it
5644 * returns one huge hole
5645 *
5646 * make sure what it found really fits our range, and
5647 * adjust to make sure it is based on the start from
5648 * the caller
5649 */
5650 if (hole_em) {
5651 u64 calc_end = extent_map_end(hole_em);
5652
5653 if (calc_end <= start || (hole_em->start > end)) {
5654 free_extent_map(hole_em);
5655 hole_em = NULL;
5656 } else {
5657 hole_start = max(hole_em->start, start);
5658 hole_len = calc_end - hole_start;
5659 }
5660 }
5661 em->bdev = NULL;
5662 if (hole_em && range_start > hole_start) {
5663 /* our hole starts before our delalloc, so we
5664 * have to return just the parts of the hole
5665 * that go until the delalloc starts
5666 */
5667 em->len = min(hole_len,
5668 range_start - hole_start);
5669 em->start = hole_start;
5670 em->orig_start = hole_start;
5671 /*
5672 * don't adjust block start at all,
5673 * it is fixed at EXTENT_MAP_HOLE
5674 */
5675 em->block_start = hole_em->block_start;
5676 em->block_len = hole_len;
5677 } else {
5678 em->start = range_start;
5679 em->len = found;
5680 em->orig_start = range_start;
5681 em->block_start = EXTENT_MAP_DELALLOC;
5682 em->block_len = found;
5683 }
5684 } else if (hole_em) {
5685 return hole_em;
5686 }
5687out:
5688
5689 free_extent_map(hole_em);
5690 if (err) {
5691 free_extent_map(em);
5692 return ERR_PTR(err);
5693 }
5694 return em;
5695}
5696
4b46fce2
JB
5697static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5698 u64 start, u64 len)
5699{
5700 struct btrfs_root *root = BTRFS_I(inode)->root;
5701 struct btrfs_trans_handle *trans;
70c8a91c 5702 struct extent_map *em;
4b46fce2
JB
5703 struct btrfs_key ins;
5704 u64 alloc_hint;
5705 int ret;
4b46fce2 5706
7a7eaa40 5707 trans = btrfs_join_transaction(root);
3612b495
TI
5708 if (IS_ERR(trans))
5709 return ERR_CAST(trans);
4b46fce2
JB
5710
5711 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5712
5713 alloc_hint = get_extent_allocation_hint(inode, start, len);
5714 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5715 alloc_hint, &ins, 1);
4b46fce2
JB
5716 if (ret) {
5717 em = ERR_PTR(ret);
5718 goto out;
5719 }
5720
70c8a91c
JB
5721 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
5722 ins.offset, ins.offset, 0);
5723 if (IS_ERR(em))
5724 goto out;
4b46fce2
JB
5725
5726 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5727 ins.offset, ins.offset, 0);
5728 if (ret) {
5729 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5730 em = ERR_PTR(ret);
5731 }
5732out:
5733 btrfs_end_transaction(trans, root);
5734 return em;
5735}
5736
46bfbb5c
CM
5737/*
5738 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5739 * block must be cow'd
5740 */
5741static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5742 struct inode *inode, u64 offset, u64 len)
5743{
5744 struct btrfs_path *path;
5745 int ret;
5746 struct extent_buffer *leaf;
5747 struct btrfs_root *root = BTRFS_I(inode)->root;
5748 struct btrfs_file_extent_item *fi;
5749 struct btrfs_key key;
5750 u64 disk_bytenr;
5751 u64 backref_offset;
5752 u64 extent_end;
5753 u64 num_bytes;
5754 int slot;
5755 int found_type;
5756
5757 path = btrfs_alloc_path();
5758 if (!path)
5759 return -ENOMEM;
5760
33345d01 5761 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5762 offset, 0);
5763 if (ret < 0)
5764 goto out;
5765
5766 slot = path->slots[0];
5767 if (ret == 1) {
5768 if (slot == 0) {
5769 /* can't find the item, must cow */
5770 ret = 0;
5771 goto out;
5772 }
5773 slot--;
5774 }
5775 ret = 0;
5776 leaf = path->nodes[0];
5777 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5778 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5779 key.type != BTRFS_EXTENT_DATA_KEY) {
5780 /* not our file or wrong item type, must cow */
5781 goto out;
5782 }
5783
5784 if (key.offset > offset) {
5785 /* Wrong offset, must cow */
5786 goto out;
5787 }
5788
5789 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5790 found_type = btrfs_file_extent_type(leaf, fi);
5791 if (found_type != BTRFS_FILE_EXTENT_REG &&
5792 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5793 /* not a regular extent, must cow */
5794 goto out;
5795 }
5796 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5797 backref_offset = btrfs_file_extent_offset(leaf, fi);
5798
5799 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5800 if (extent_end < offset + len) {
5801 /* extent doesn't include our full range, must cow */
5802 goto out;
5803 }
5804
5805 if (btrfs_extent_readonly(root, disk_bytenr))
5806 goto out;
5807
5808 /*
5809 * look for other files referencing this extent, if we
5810 * find any we must cow
5811 */
33345d01 5812 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5813 key.offset - backref_offset, disk_bytenr))
5814 goto out;
5815
5816 /*
5817 * adjust disk_bytenr and num_bytes to cover just the bytes
5818 * in this extent we are about to write. If there
5819 * are any csums in that range we have to cow in order
5820 * to keep the csums correct
5821 */
5822 disk_bytenr += backref_offset;
5823 disk_bytenr += offset - key.offset;
5824 num_bytes = min(offset + len, extent_end) - offset;
5825 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5826 goto out;
5827 /*
5828 * all of the above have passed, it is safe to overwrite this extent
5829 * without cow
5830 */
5831 ret = 1;
5832out:
5833 btrfs_free_path(path);
5834 return ret;
5835}
5836
eb838e73
JB
5837static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5838 struct extent_state **cached_state, int writing)
5839{
5840 struct btrfs_ordered_extent *ordered;
5841 int ret = 0;
5842
5843 while (1) {
5844 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5845 0, cached_state);
5846 /*
5847 * We're concerned with the entire range that we're going to be
5848 * doing DIO to, so we need to make sure theres no ordered
5849 * extents in this range.
5850 */
5851 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5852 lockend - lockstart + 1);
5853
5854 /*
5855 * We need to make sure there are no buffered pages in this
5856 * range either, we could have raced between the invalidate in
5857 * generic_file_direct_write and locking the extent. The
5858 * invalidate needs to happen so that reads after a write do not
5859 * get stale data.
5860 */
5861 if (!ordered && (!writing ||
5862 !test_range_bit(&BTRFS_I(inode)->io_tree,
5863 lockstart, lockend, EXTENT_UPTODATE, 0,
5864 *cached_state)))
5865 break;
5866
5867 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5868 cached_state, GFP_NOFS);
5869
5870 if (ordered) {
5871 btrfs_start_ordered_extent(inode, ordered, 1);
5872 btrfs_put_ordered_extent(ordered);
5873 } else {
5874 /* Screw you mmap */
5875 ret = filemap_write_and_wait_range(inode->i_mapping,
5876 lockstart,
5877 lockend);
5878 if (ret)
5879 break;
5880
5881 /*
5882 * If we found a page that couldn't be invalidated just
5883 * fall back to buffered.
5884 */
5885 ret = invalidate_inode_pages2_range(inode->i_mapping,
5886 lockstart >> PAGE_CACHE_SHIFT,
5887 lockend >> PAGE_CACHE_SHIFT);
5888 if (ret)
5889 break;
5890 }
5891
5892 cond_resched();
5893 }
5894
5895 return ret;
5896}
5897
69ffb543
JB
5898static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5899 u64 len, u64 orig_start,
5900 u64 block_start, u64 block_len,
b4939680 5901 u64 orig_block_len, int type)
69ffb543
JB
5902{
5903 struct extent_map_tree *em_tree;
5904 struct extent_map *em;
5905 struct btrfs_root *root = BTRFS_I(inode)->root;
5906 int ret;
5907
5908 em_tree = &BTRFS_I(inode)->extent_tree;
5909 em = alloc_extent_map();
5910 if (!em)
5911 return ERR_PTR(-ENOMEM);
5912
5913 em->start = start;
5914 em->orig_start = orig_start;
5915 em->len = len;
5916 em->block_len = block_len;
5917 em->block_start = block_start;
5918 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 5919 em->orig_block_len = orig_block_len;
70c8a91c 5920 em->generation = -1;
69ffb543
JB
5921 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5922 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 5923 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
5924
5925 do {
5926 btrfs_drop_extent_cache(inode, em->start,
5927 em->start + em->len - 1, 0);
5928 write_lock(&em_tree->lock);
5929 ret = add_extent_mapping(em_tree, em);
70c8a91c
JB
5930 if (!ret)
5931 list_move(&em->list,
5932 &em_tree->modified_extents);
69ffb543
JB
5933 write_unlock(&em_tree->lock);
5934 } while (ret == -EEXIST);
5935
5936 if (ret) {
5937 free_extent_map(em);
5938 return ERR_PTR(ret);
5939 }
5940
5941 return em;
5942}
5943
5944
4b46fce2
JB
5945static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5946 struct buffer_head *bh_result, int create)
5947{
5948 struct extent_map *em;
5949 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 5950 struct extent_state *cached_state = NULL;
4b46fce2 5951 u64 start = iblock << inode->i_blkbits;
eb838e73 5952 u64 lockstart, lockend;
4b46fce2 5953 u64 len = bh_result->b_size;
46bfbb5c 5954 struct btrfs_trans_handle *trans;
eb838e73
JB
5955 int unlock_bits = EXTENT_LOCKED;
5956 int ret;
5957
eb838e73
JB
5958 if (create) {
5959 ret = btrfs_delalloc_reserve_space(inode, len);
5960 if (ret)
5961 return ret;
5962 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
c329861d
JB
5963 } else {
5964 len = min_t(u64, len, root->sectorsize);
eb838e73
JB
5965 }
5966
c329861d
JB
5967 lockstart = start;
5968 lockend = start + len - 1;
5969
eb838e73
JB
5970 /*
5971 * If this errors out it's because we couldn't invalidate pagecache for
5972 * this range and we need to fallback to buffered.
5973 */
5974 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5975 return -ENOTBLK;
5976
5977 if (create) {
5978 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5979 lockend, EXTENT_DELALLOC, NULL,
5980 &cached_state, GFP_NOFS);
5981 if (ret)
5982 goto unlock_err;
5983 }
4b46fce2
JB
5984
5985 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
5986 if (IS_ERR(em)) {
5987 ret = PTR_ERR(em);
5988 goto unlock_err;
5989 }
4b46fce2
JB
5990
5991 /*
5992 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5993 * io. INLINE is special, and we could probably kludge it in here, but
5994 * it's still buffered so for safety lets just fall back to the generic
5995 * buffered path.
5996 *
5997 * For COMPRESSED we _have_ to read the entire extent in so we can
5998 * decompress it, so there will be buffering required no matter what we
5999 * do, so go ahead and fallback to buffered.
6000 *
6001 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6002 * to buffered IO. Don't blame me, this is the price we pay for using
6003 * the generic code.
6004 */
6005 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6006 em->block_start == EXTENT_MAP_INLINE) {
6007 free_extent_map(em);
eb838e73
JB
6008 ret = -ENOTBLK;
6009 goto unlock_err;
4b46fce2
JB
6010 }
6011
6012 /* Just a good old fashioned hole, return */
6013 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6014 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6015 free_extent_map(em);
eb838e73
JB
6016 ret = 0;
6017 goto unlock_err;
4b46fce2
JB
6018 }
6019
6020 /*
6021 * We don't allocate a new extent in the following cases
6022 *
6023 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6024 * existing extent.
6025 * 2) The extent is marked as PREALLOC. We're good to go here and can
6026 * just use the extent.
6027 *
6028 */
46bfbb5c 6029 if (!create) {
eb838e73
JB
6030 len = min(len, em->len - (start - em->start));
6031 lockstart = start + len;
6032 goto unlock;
46bfbb5c 6033 }
4b46fce2
JB
6034
6035 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6036 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6037 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6038 int type;
6039 int ret;
46bfbb5c 6040 u64 block_start;
4b46fce2
JB
6041
6042 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6043 type = BTRFS_ORDERED_PREALLOC;
6044 else
6045 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6046 len = min(len, em->len - (start - em->start));
4b46fce2 6047 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6048
6049 /*
6050 * we're not going to log anything, but we do need
6051 * to make sure the current transaction stays open
6052 * while we look for nocow cross refs
6053 */
7a7eaa40 6054 trans = btrfs_join_transaction(root);
3612b495 6055 if (IS_ERR(trans))
46bfbb5c
CM
6056 goto must_cow;
6057
6058 if (can_nocow_odirect(trans, inode, start, len) == 1) {
70c8a91c 6059 u64 orig_start = em->orig_start;
b4939680 6060 u64 orig_block_len = em->orig_block_len;
69ffb543
JB
6061
6062 if (type == BTRFS_ORDERED_PREALLOC) {
6063 free_extent_map(em);
6064 em = create_pinned_em(inode, start, len,
6065 orig_start,
b4939680
JB
6066 block_start, len,
6067 orig_block_len, type);
69ffb543
JB
6068 if (IS_ERR(em)) {
6069 btrfs_end_transaction(trans, root);
6070 goto unlock_err;
6071 }
6072 }
6073
46bfbb5c
CM
6074 ret = btrfs_add_ordered_extent_dio(inode, start,
6075 block_start, len, len, type);
6076 btrfs_end_transaction(trans, root);
6077 if (ret) {
6078 free_extent_map(em);
eb838e73 6079 goto unlock_err;
46bfbb5c
CM
6080 }
6081 goto unlock;
4b46fce2 6082 }
46bfbb5c 6083 btrfs_end_transaction(trans, root);
4b46fce2 6084 }
46bfbb5c
CM
6085must_cow:
6086 /*
6087 * this will cow the extent, reset the len in case we changed
6088 * it above
6089 */
6090 len = bh_result->b_size;
70c8a91c
JB
6091 free_extent_map(em);
6092 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6093 if (IS_ERR(em)) {
6094 ret = PTR_ERR(em);
6095 goto unlock_err;
6096 }
46bfbb5c
CM
6097 len = min(len, em->len - (start - em->start));
6098unlock:
4b46fce2
JB
6099 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6100 inode->i_blkbits;
46bfbb5c 6101 bh_result->b_size = len;
4b46fce2
JB
6102 bh_result->b_bdev = em->bdev;
6103 set_buffer_mapped(bh_result);
c3473e83
JB
6104 if (create) {
6105 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6106 set_buffer_new(bh_result);
6107
6108 /*
6109 * Need to update the i_size under the extent lock so buffered
6110 * readers will get the updated i_size when we unlock.
6111 */
6112 if (start + len > i_size_read(inode))
6113 i_size_write(inode, start + len);
6114 }
4b46fce2 6115
eb838e73
JB
6116 /*
6117 * In the case of write we need to clear and unlock the entire range,
6118 * in the case of read we need to unlock only the end area that we
6119 * aren't using if there is any left over space.
6120 */
24c03fa5
LB
6121 if (lockstart < lockend) {
6122 if (create && len < lockend - lockstart) {
6123 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
9e8a4a8b
LB
6124 lockstart + len - 1,
6125 unlock_bits | EXTENT_DEFRAG, 1, 0,
24c03fa5
LB
6126 &cached_state, GFP_NOFS);
6127 /*
6128 * Beside unlock, we also need to cleanup reserved space
6129 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6130 */
6131 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6132 lockstart + len, lockend,
9e8a4a8b
LB
6133 unlock_bits | EXTENT_DO_ACCOUNTING |
6134 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
24c03fa5
LB
6135 } else {
6136 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6137 lockend, unlock_bits, 1, 0,
6138 &cached_state, GFP_NOFS);
6139 }
6140 } else {
eb838e73 6141 free_extent_state(cached_state);
24c03fa5 6142 }
eb838e73 6143
4b46fce2
JB
6144 free_extent_map(em);
6145
6146 return 0;
eb838e73
JB
6147
6148unlock_err:
6149 if (create)
6150 unlock_bits |= EXTENT_DO_ACCOUNTING;
6151
6152 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6153 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6154 return ret;
4b46fce2
JB
6155}
6156
6157struct btrfs_dio_private {
6158 struct inode *inode;
6159 u64 logical_offset;
6160 u64 disk_bytenr;
6161 u64 bytes;
4b46fce2 6162 void *private;
e65e1535
MX
6163
6164 /* number of bios pending for this dio */
6165 atomic_t pending_bios;
6166
6167 /* IO errors */
6168 int errors;
6169
6170 struct bio *orig_bio;
4b46fce2
JB
6171};
6172
6173static void btrfs_endio_direct_read(struct bio *bio, int err)
6174{
e65e1535 6175 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6176 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6177 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6178 struct inode *inode = dip->inode;
6179 struct btrfs_root *root = BTRFS_I(inode)->root;
6180 u64 start;
4b46fce2
JB
6181
6182 start = dip->logical_offset;
6183 do {
6184 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6185 struct page *page = bvec->bv_page;
6186 char *kaddr;
6187 u32 csum = ~(u32)0;
c329861d 6188 u64 private = ~(u32)0;
4b46fce2
JB
6189 unsigned long flags;
6190
c329861d
JB
6191 if (get_state_private(&BTRFS_I(inode)->io_tree,
6192 start, &private))
6193 goto failed;
4b46fce2 6194 local_irq_save(flags);
7ac687d9 6195 kaddr = kmap_atomic(page);
4b46fce2
JB
6196 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6197 csum, bvec->bv_len);
6198 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6199 kunmap_atomic(kaddr);
4b46fce2
JB
6200 local_irq_restore(flags);
6201
6202 flush_dcache_page(bvec->bv_page);
c329861d
JB
6203 if (csum != private) {
6204failed:
33345d01 6205 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 6206 " %llu csum %u private %u\n",
33345d01
LZ
6207 (unsigned long long)btrfs_ino(inode),
6208 (unsigned long long)start,
c329861d 6209 csum, (unsigned)private);
4b46fce2
JB
6210 err = -EIO;
6211 }
6212 }
6213
6214 start += bvec->bv_len;
4b46fce2
JB
6215 bvec++;
6216 } while (bvec <= bvec_end);
6217
6218 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6219 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
6220 bio->bi_private = dip->private;
6221
4b46fce2 6222 kfree(dip);
c0da7aa1
JB
6223
6224 /* If we had a csum failure make sure to clear the uptodate flag */
6225 if (err)
6226 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6227 dio_end_io(bio, err);
6228}
6229
6230static void btrfs_endio_direct_write(struct bio *bio, int err)
6231{
6232 struct btrfs_dio_private *dip = bio->bi_private;
6233 struct inode *inode = dip->inode;
6234 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6235 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6236 u64 ordered_offset = dip->logical_offset;
6237 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
6238 int ret;
6239
6240 if (err)
6241 goto out_done;
163cf09c
CM
6242again:
6243 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6244 &ordered_offset,
5fd02043 6245 ordered_bytes, !err);
4b46fce2 6246 if (!ret)
163cf09c 6247 goto out_test;
4b46fce2 6248
5fd02043
JB
6249 ordered->work.func = finish_ordered_fn;
6250 ordered->work.flags = 0;
6251 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6252 &ordered->work);
163cf09c
CM
6253out_test:
6254 /*
6255 * our bio might span multiple ordered extents. If we haven't
6256 * completed the accounting for the whole dio, go back and try again
6257 */
6258 if (ordered_offset < dip->logical_offset + dip->bytes) {
6259 ordered_bytes = dip->logical_offset + dip->bytes -
6260 ordered_offset;
5fd02043 6261 ordered = NULL;
163cf09c
CM
6262 goto again;
6263 }
4b46fce2
JB
6264out_done:
6265 bio->bi_private = dip->private;
6266
4b46fce2 6267 kfree(dip);
c0da7aa1
JB
6268
6269 /* If we had an error make sure to clear the uptodate flag */
6270 if (err)
6271 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6272 dio_end_io(bio, err);
6273}
6274
eaf25d93
CM
6275static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6276 struct bio *bio, int mirror_num,
6277 unsigned long bio_flags, u64 offset)
6278{
6279 int ret;
6280 struct btrfs_root *root = BTRFS_I(inode)->root;
6281 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6282 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6283 return 0;
6284}
6285
e65e1535
MX
6286static void btrfs_end_dio_bio(struct bio *bio, int err)
6287{
6288 struct btrfs_dio_private *dip = bio->bi_private;
6289
6290 if (err) {
33345d01 6291 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6292 "sector %#Lx len %u err no %d\n",
33345d01 6293 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6294 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6295 dip->errors = 1;
6296
6297 /*
6298 * before atomic variable goto zero, we must make sure
6299 * dip->errors is perceived to be set.
6300 */
6301 smp_mb__before_atomic_dec();
6302 }
6303
6304 /* if there are more bios still pending for this dio, just exit */
6305 if (!atomic_dec_and_test(&dip->pending_bios))
6306 goto out;
6307
6308 if (dip->errors)
6309 bio_io_error(dip->orig_bio);
6310 else {
6311 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6312 bio_endio(dip->orig_bio, 0);
6313 }
6314out:
6315 bio_put(bio);
6316}
6317
6318static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6319 u64 first_sector, gfp_t gfp_flags)
6320{
6321 int nr_vecs = bio_get_nr_vecs(bdev);
6322 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6323}
6324
6325static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6326 int rw, u64 file_offset, int skip_sum,
c329861d 6327 int async_submit)
e65e1535
MX
6328{
6329 int write = rw & REQ_WRITE;
6330 struct btrfs_root *root = BTRFS_I(inode)->root;
6331 int ret;
6332
b812ce28
JB
6333 if (async_submit)
6334 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6335
e65e1535 6336 bio_get(bio);
5fd02043
JB
6337
6338 if (!write) {
6339 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6340 if (ret)
6341 goto err;
6342 }
e65e1535 6343
1ae39938
JB
6344 if (skip_sum)
6345 goto map;
6346
6347 if (write && async_submit) {
e65e1535
MX
6348 ret = btrfs_wq_submit_bio(root->fs_info,
6349 inode, rw, bio, 0, 0,
6350 file_offset,
6351 __btrfs_submit_bio_start_direct_io,
6352 __btrfs_submit_bio_done);
6353 goto err;
1ae39938
JB
6354 } else if (write) {
6355 /*
6356 * If we aren't doing async submit, calculate the csum of the
6357 * bio now.
6358 */
6359 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6360 if (ret)
6361 goto err;
c2db1073 6362 } else if (!skip_sum) {
c329861d 6363 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
6364 if (ret)
6365 goto err;
6366 }
e65e1535 6367
1ae39938
JB
6368map:
6369 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6370err:
6371 bio_put(bio);
6372 return ret;
6373}
6374
6375static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6376 int skip_sum)
6377{
6378 struct inode *inode = dip->inode;
6379 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6380 struct bio *bio;
6381 struct bio *orig_bio = dip->orig_bio;
6382 struct bio_vec *bvec = orig_bio->bi_io_vec;
6383 u64 start_sector = orig_bio->bi_sector;
6384 u64 file_offset = dip->logical_offset;
6385 u64 submit_len = 0;
6386 u64 map_length;
6387 int nr_pages = 0;
e65e1535 6388 int ret = 0;
1ae39938 6389 int async_submit = 0;
e65e1535 6390
e65e1535 6391 map_length = orig_bio->bi_size;
3ec706c8 6392 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
e65e1535
MX
6393 &map_length, NULL, 0);
6394 if (ret) {
64728bbb 6395 bio_put(orig_bio);
e65e1535
MX
6396 return -EIO;
6397 }
6398
02f57c7a
JB
6399 if (map_length >= orig_bio->bi_size) {
6400 bio = orig_bio;
6401 goto submit;
6402 }
6403
1ae39938 6404 async_submit = 1;
02f57c7a
JB
6405 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6406 if (!bio)
6407 return -ENOMEM;
6408 bio->bi_private = dip;
6409 bio->bi_end_io = btrfs_end_dio_bio;
6410 atomic_inc(&dip->pending_bios);
6411
e65e1535
MX
6412 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6413 if (unlikely(map_length < submit_len + bvec->bv_len ||
6414 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6415 bvec->bv_offset) < bvec->bv_len)) {
6416 /*
6417 * inc the count before we submit the bio so
6418 * we know the end IO handler won't happen before
6419 * we inc the count. Otherwise, the dip might get freed
6420 * before we're done setting it up
6421 */
6422 atomic_inc(&dip->pending_bios);
6423 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6424 file_offset, skip_sum,
c329861d 6425 async_submit);
e65e1535
MX
6426 if (ret) {
6427 bio_put(bio);
6428 atomic_dec(&dip->pending_bios);
6429 goto out_err;
6430 }
6431
e65e1535
MX
6432 start_sector += submit_len >> 9;
6433 file_offset += submit_len;
6434
6435 submit_len = 0;
6436 nr_pages = 0;
6437
6438 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6439 start_sector, GFP_NOFS);
6440 if (!bio)
6441 goto out_err;
6442 bio->bi_private = dip;
6443 bio->bi_end_io = btrfs_end_dio_bio;
6444
6445 map_length = orig_bio->bi_size;
3ec706c8
SB
6446 ret = btrfs_map_block(root->fs_info, READ,
6447 start_sector << 9,
e65e1535
MX
6448 &map_length, NULL, 0);
6449 if (ret) {
6450 bio_put(bio);
6451 goto out_err;
6452 }
6453 } else {
6454 submit_len += bvec->bv_len;
6455 nr_pages ++;
6456 bvec++;
6457 }
6458 }
6459
02f57c7a 6460submit:
e65e1535 6461 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 6462 async_submit);
e65e1535
MX
6463 if (!ret)
6464 return 0;
6465
6466 bio_put(bio);
6467out_err:
6468 dip->errors = 1;
6469 /*
6470 * before atomic variable goto zero, we must
6471 * make sure dip->errors is perceived to be set.
6472 */
6473 smp_mb__before_atomic_dec();
6474 if (atomic_dec_and_test(&dip->pending_bios))
6475 bio_io_error(dip->orig_bio);
6476
6477 /* bio_end_io() will handle error, so we needn't return it */
6478 return 0;
6479}
6480
4b46fce2
JB
6481static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6482 loff_t file_offset)
6483{
6484 struct btrfs_root *root = BTRFS_I(inode)->root;
6485 struct btrfs_dio_private *dip;
6486 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6487 int skip_sum;
7b6d91da 6488 int write = rw & REQ_WRITE;
4b46fce2
JB
6489 int ret = 0;
6490
6491 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6492
6493 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6494 if (!dip) {
6495 ret = -ENOMEM;
6496 goto free_ordered;
6497 }
4b46fce2
JB
6498
6499 dip->private = bio->bi_private;
6500 dip->inode = inode;
6501 dip->logical_offset = file_offset;
6502
4b46fce2
JB
6503 dip->bytes = 0;
6504 do {
6505 dip->bytes += bvec->bv_len;
6506 bvec++;
6507 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6508
46bfbb5c 6509 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6510 bio->bi_private = dip;
e65e1535
MX
6511 dip->errors = 0;
6512 dip->orig_bio = bio;
6513 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6514
6515 if (write)
6516 bio->bi_end_io = btrfs_endio_direct_write;
6517 else
6518 bio->bi_end_io = btrfs_endio_direct_read;
6519
e65e1535
MX
6520 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6521 if (!ret)
eaf25d93 6522 return;
4b46fce2
JB
6523free_ordered:
6524 /*
6525 * If this is a write, we need to clean up the reserved space and kill
6526 * the ordered extent.
6527 */
6528 if (write) {
6529 struct btrfs_ordered_extent *ordered;
955256f2 6530 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6531 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6532 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6533 btrfs_free_reserved_extent(root, ordered->start,
6534 ordered->disk_len);
6535 btrfs_put_ordered_extent(ordered);
6536 btrfs_put_ordered_extent(ordered);
6537 }
6538 bio_endio(bio, ret);
6539}
6540
5a5f79b5
CM
6541static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6542 const struct iovec *iov, loff_t offset,
6543 unsigned long nr_segs)
6544{
6545 int seg;
a1b75f7d 6546 int i;
5a5f79b5
CM
6547 size_t size;
6548 unsigned long addr;
6549 unsigned blocksize_mask = root->sectorsize - 1;
6550 ssize_t retval = -EINVAL;
6551 loff_t end = offset;
6552
6553 if (offset & blocksize_mask)
6554 goto out;
6555
6556 /* Check the memory alignment. Blocks cannot straddle pages */
6557 for (seg = 0; seg < nr_segs; seg++) {
6558 addr = (unsigned long)iov[seg].iov_base;
6559 size = iov[seg].iov_len;
6560 end += size;
a1b75f7d 6561 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6562 goto out;
a1b75f7d
JB
6563
6564 /* If this is a write we don't need to check anymore */
6565 if (rw & WRITE)
6566 continue;
6567
6568 /*
6569 * Check to make sure we don't have duplicate iov_base's in this
6570 * iovec, if so return EINVAL, otherwise we'll get csum errors
6571 * when reading back.
6572 */
6573 for (i = seg + 1; i < nr_segs; i++) {
6574 if (iov[seg].iov_base == iov[i].iov_base)
6575 goto out;
6576 }
5a5f79b5
CM
6577 }
6578 retval = 0;
6579out:
6580 return retval;
6581}
eb838e73 6582
16432985
CM
6583static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6584 const struct iovec *iov, loff_t offset,
6585 unsigned long nr_segs)
6586{
4b46fce2
JB
6587 struct file *file = iocb->ki_filp;
6588 struct inode *inode = file->f_mapping->host;
4b46fce2 6589
5a5f79b5 6590 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 6591 offset, nr_segs))
5a5f79b5 6592 return 0;
3f7c579c 6593
eb838e73 6594 return __blockdev_direct_IO(rw, iocb, inode,
5a5f79b5
CM
6595 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6596 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6597 btrfs_submit_direct, 0);
16432985
CM
6598}
6599
05dadc09
TI
6600#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6601
1506fcc8
YS
6602static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6603 __u64 start, __u64 len)
6604{
05dadc09
TI
6605 int ret;
6606
6607 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
6608 if (ret)
6609 return ret;
6610
ec29ed5b 6611 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6612}
6613
a52d9a80 6614int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6615{
d1310b2e
CM
6616 struct extent_io_tree *tree;
6617 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6618 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6619}
1832a6d5 6620
a52d9a80 6621static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6622{
d1310b2e 6623 struct extent_io_tree *tree;
b888db2b
CM
6624
6625
6626 if (current->flags & PF_MEMALLOC) {
6627 redirty_page_for_writepage(wbc, page);
6628 unlock_page(page);
6629 return 0;
6630 }
d1310b2e 6631 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6632 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6633}
6634
f421950f
CM
6635int btrfs_writepages(struct address_space *mapping,
6636 struct writeback_control *wbc)
b293f02e 6637{
d1310b2e 6638 struct extent_io_tree *tree;
771ed689 6639
d1310b2e 6640 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6641 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6642}
6643
3ab2fb5a
CM
6644static int
6645btrfs_readpages(struct file *file, struct address_space *mapping,
6646 struct list_head *pages, unsigned nr_pages)
6647{
d1310b2e
CM
6648 struct extent_io_tree *tree;
6649 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6650 return extent_readpages(tree, mapping, pages, nr_pages,
6651 btrfs_get_extent);
6652}
e6dcd2dc 6653static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6654{
d1310b2e
CM
6655 struct extent_io_tree *tree;
6656 struct extent_map_tree *map;
a52d9a80 6657 int ret;
8c2383c3 6658
d1310b2e
CM
6659 tree = &BTRFS_I(page->mapping->host)->io_tree;
6660 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6661 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6662 if (ret == 1) {
6663 ClearPagePrivate(page);
6664 set_page_private(page, 0);
6665 page_cache_release(page);
39279cc3 6666 }
a52d9a80 6667 return ret;
39279cc3
CM
6668}
6669
e6dcd2dc
CM
6670static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6671{
98509cfc
CM
6672 if (PageWriteback(page) || PageDirty(page))
6673 return 0;
b335b003 6674 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6675}
6676
a52d9a80 6677static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6678{
5fd02043 6679 struct inode *inode = page->mapping->host;
d1310b2e 6680 struct extent_io_tree *tree;
e6dcd2dc 6681 struct btrfs_ordered_extent *ordered;
2ac55d41 6682 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6683 u64 page_start = page_offset(page);
6684 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6685
8b62b72b
CM
6686 /*
6687 * we have the page locked, so new writeback can't start,
6688 * and the dirty bit won't be cleared while we are here.
6689 *
6690 * Wait for IO on this page so that we can safely clear
6691 * the PagePrivate2 bit and do ordered accounting
6692 */
e6dcd2dc 6693 wait_on_page_writeback(page);
8b62b72b 6694
5fd02043 6695 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
6696 if (offset) {
6697 btrfs_releasepage(page, GFP_NOFS);
6698 return;
6699 }
d0082371 6700 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
5fd02043 6701 ordered = btrfs_lookup_ordered_extent(inode,
e6dcd2dc
CM
6702 page_offset(page));
6703 if (ordered) {
eb84ae03
CM
6704 /*
6705 * IO on this page will never be started, so we need
6706 * to account for any ordered extents now
6707 */
e6dcd2dc
CM
6708 clear_extent_bit(tree, page_start, page_end,
6709 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6710 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6711 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
6712 /*
6713 * whoever cleared the private bit is responsible
6714 * for the finish_ordered_io
6715 */
5fd02043
JB
6716 if (TestClearPagePrivate2(page) &&
6717 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6718 PAGE_CACHE_SIZE, 1)) {
6719 btrfs_finish_ordered_io(ordered);
8b62b72b 6720 }
e6dcd2dc 6721 btrfs_put_ordered_extent(ordered);
2ac55d41 6722 cached_state = NULL;
d0082371 6723 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6724 }
6725 clear_extent_bit(tree, page_start, page_end,
32c00aff 6726 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6727 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6728 &cached_state, GFP_NOFS);
e6dcd2dc
CM
6729 __btrfs_releasepage(page, GFP_NOFS);
6730
4a096752 6731 ClearPageChecked(page);
9ad6b7bc 6732 if (PagePrivate(page)) {
9ad6b7bc
CM
6733 ClearPagePrivate(page);
6734 set_page_private(page, 0);
6735 page_cache_release(page);
6736 }
39279cc3
CM
6737}
6738
9ebefb18
CM
6739/*
6740 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6741 * called from a page fault handler when a page is first dirtied. Hence we must
6742 * be careful to check for EOF conditions here. We set the page up correctly
6743 * for a written page which means we get ENOSPC checking when writing into
6744 * holes and correct delalloc and unwritten extent mapping on filesystems that
6745 * support these features.
6746 *
6747 * We are not allowed to take the i_mutex here so we have to play games to
6748 * protect against truncate races as the page could now be beyond EOF. Because
6749 * vmtruncate() writes the inode size before removing pages, once we have the
6750 * page lock we can determine safely if the page is beyond EOF. If it is not
6751 * beyond EOF, then the page is guaranteed safe against truncation until we
6752 * unlock the page.
6753 */
c2ec175c 6754int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6755{
c2ec175c 6756 struct page *page = vmf->page;
6da6abae 6757 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6758 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6759 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6760 struct btrfs_ordered_extent *ordered;
2ac55d41 6761 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6762 char *kaddr;
6763 unsigned long zero_start;
9ebefb18 6764 loff_t size;
1832a6d5 6765 int ret;
9998eb70 6766 int reserved = 0;
a52d9a80 6767 u64 page_start;
e6dcd2dc 6768 u64 page_end;
9ebefb18 6769
b2b5ef5c 6770 sb_start_pagefault(inode->i_sb);
0ca1f7ce 6771 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6772 if (!ret) {
e41f941a 6773 ret = file_update_time(vma->vm_file);
9998eb70
CM
6774 reserved = 1;
6775 }
56a76f82
NP
6776 if (ret) {
6777 if (ret == -ENOMEM)
6778 ret = VM_FAULT_OOM;
6779 else /* -ENOSPC, -EIO, etc */
6780 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6781 if (reserved)
6782 goto out;
6783 goto out_noreserve;
56a76f82 6784 }
1832a6d5 6785
56a76f82 6786 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6787again:
9ebefb18 6788 lock_page(page);
9ebefb18 6789 size = i_size_read(inode);
e6dcd2dc
CM
6790 page_start = page_offset(page);
6791 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6792
9ebefb18 6793 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6794 (page_start >= size)) {
9ebefb18
CM
6795 /* page got truncated out from underneath us */
6796 goto out_unlock;
6797 }
e6dcd2dc
CM
6798 wait_on_page_writeback(page);
6799
d0082371 6800 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6801 set_page_extent_mapped(page);
6802
eb84ae03
CM
6803 /*
6804 * we can't set the delalloc bits if there are pending ordered
6805 * extents. Drop our locks and wait for them to finish
6806 */
e6dcd2dc
CM
6807 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6808 if (ordered) {
2ac55d41
JB
6809 unlock_extent_cached(io_tree, page_start, page_end,
6810 &cached_state, GFP_NOFS);
e6dcd2dc 6811 unlock_page(page);
eb84ae03 6812 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6813 btrfs_put_ordered_extent(ordered);
6814 goto again;
6815 }
6816
fbf19087
JB
6817 /*
6818 * XXX - page_mkwrite gets called every time the page is dirtied, even
6819 * if it was already dirty, so for space accounting reasons we need to
6820 * clear any delalloc bits for the range we are fixing to save. There
6821 * is probably a better way to do this, but for now keep consistent with
6822 * prepare_pages in the normal write path.
6823 */
2ac55d41 6824 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
6825 EXTENT_DIRTY | EXTENT_DELALLOC |
6826 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 6827 0, 0, &cached_state, GFP_NOFS);
fbf19087 6828
2ac55d41
JB
6829 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6830 &cached_state);
9ed74f2d 6831 if (ret) {
2ac55d41
JB
6832 unlock_extent_cached(io_tree, page_start, page_end,
6833 &cached_state, GFP_NOFS);
9ed74f2d
JB
6834 ret = VM_FAULT_SIGBUS;
6835 goto out_unlock;
6836 }
e6dcd2dc 6837 ret = 0;
9ebefb18
CM
6838
6839 /* page is wholly or partially inside EOF */
a52d9a80 6840 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6841 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6842 else
e6dcd2dc 6843 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6844
e6dcd2dc
CM
6845 if (zero_start != PAGE_CACHE_SIZE) {
6846 kaddr = kmap(page);
6847 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6848 flush_dcache_page(page);
6849 kunmap(page);
6850 }
247e743c 6851 ClearPageChecked(page);
e6dcd2dc 6852 set_page_dirty(page);
50a9b214 6853 SetPageUptodate(page);
5a3f23d5 6854
257c62e1
CM
6855 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6856 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 6857 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 6858
2ac55d41 6859 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6860
6861out_unlock:
b2b5ef5c
JK
6862 if (!ret) {
6863 sb_end_pagefault(inode->i_sb);
50a9b214 6864 return VM_FAULT_LOCKED;
b2b5ef5c 6865 }
9ebefb18 6866 unlock_page(page);
1832a6d5 6867out:
ec39e180 6868 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6869out_noreserve:
b2b5ef5c 6870 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
6871 return ret;
6872}
6873
a41ad394 6874static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6875{
6876 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6877 struct btrfs_block_rsv *rsv;
39279cc3 6878 int ret;
3893e33b 6879 int err = 0;
39279cc3 6880 struct btrfs_trans_handle *trans;
dbe674a9 6881 u64 mask = root->sectorsize - 1;
07127184 6882 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6883
2aaa6655 6884 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
5d5e103a 6885 if (ret)
a41ad394 6886 return ret;
8082510e 6887
4a096752 6888 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6889 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6890
fcb80c2a
JB
6891 /*
6892 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6893 * 3 things going on here
6894 *
6895 * 1) We need to reserve space for our orphan item and the space to
6896 * delete our orphan item. Lord knows we don't want to have a dangling
6897 * orphan item because we didn't reserve space to remove it.
6898 *
6899 * 2) We need to reserve space to update our inode.
6900 *
6901 * 3) We need to have something to cache all the space that is going to
6902 * be free'd up by the truncate operation, but also have some slack
6903 * space reserved in case it uses space during the truncate (thank you
6904 * very much snapshotting).
6905 *
6906 * And we need these to all be seperate. The fact is we can use alot of
6907 * space doing the truncate, and we have no earthly idea how much space
6908 * we will use, so we need the truncate reservation to be seperate so it
6909 * doesn't end up using space reserved for updating the inode or
6910 * removing the orphan item. We also need to be able to stop the
6911 * transaction and start a new one, which means we need to be able to
6912 * update the inode several times, and we have no idea of knowing how
6913 * many times that will be, so we can't just reserve 1 item for the
6914 * entirety of the opration, so that has to be done seperately as well.
6915 * Then there is the orphan item, which does indeed need to be held on
6916 * to for the whole operation, and we need nobody to touch this reserved
6917 * space except the orphan code.
6918 *
6919 * So that leaves us with
6920 *
6921 * 1) root->orphan_block_rsv - for the orphan deletion.
6922 * 2) rsv - for the truncate reservation, which we will steal from the
6923 * transaction reservation.
6924 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6925 * updating the inode.
6926 */
66d8f3dd 6927 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
6928 if (!rsv)
6929 return -ENOMEM;
4a338542 6930 rsv->size = min_size;
ca7e70f5 6931 rsv->failfast = 1;
f0cd846e 6932
907cbceb 6933 /*
07127184 6934 * 1 for the truncate slack space
907cbceb
JB
6935 * 1 for the orphan item we're going to add
6936 * 1 for the orphan item deletion
6937 * 1 for updating the inode.
6938 */
fcb80c2a
JB
6939 trans = btrfs_start_transaction(root, 4);
6940 if (IS_ERR(trans)) {
6941 err = PTR_ERR(trans);
6942 goto out;
6943 }
f0cd846e 6944
907cbceb
JB
6945 /* Migrate the slack space for the truncate to our reserve */
6946 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6947 min_size);
fcb80c2a 6948 BUG_ON(ret);
f0cd846e
JB
6949
6950 ret = btrfs_orphan_add(trans, inode);
6951 if (ret) {
6952 btrfs_end_transaction(trans, root);
fcb80c2a 6953 goto out;
f0cd846e
JB
6954 }
6955
5a3f23d5
CM
6956 /*
6957 * setattr is responsible for setting the ordered_data_close flag,
6958 * but that is only tested during the last file release. That
6959 * could happen well after the next commit, leaving a great big
6960 * window where new writes may get lost if someone chooses to write
6961 * to this file after truncating to zero
6962 *
6963 * The inode doesn't have any dirty data here, and so if we commit
6964 * this is a noop. If someone immediately starts writing to the inode
6965 * it is very likely we'll catch some of their writes in this
6966 * transaction, and the commit will find this file on the ordered
6967 * data list with good things to send down.
6968 *
6969 * This is a best effort solution, there is still a window where
6970 * using truncate to replace the contents of the file will
6971 * end up with a zero length file after a crash.
6972 */
72ac3c0d
JB
6973 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6974 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
6975 btrfs_add_ordered_operation(trans, root, inode);
6976
5dc562c5
JB
6977 /*
6978 * So if we truncate and then write and fsync we normally would just
6979 * write the extents that changed, which is a problem if we need to
6980 * first truncate that entire inode. So set this flag so we write out
6981 * all of the extents in the inode to the sync log so we're completely
6982 * safe.
6983 */
6984 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 6985 trans->block_rsv = rsv;
907cbceb 6986
8082510e
YZ
6987 while (1) {
6988 ret = btrfs_truncate_inode_items(trans, root, inode,
6989 inode->i_size,
6990 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 6991 if (ret != -ENOSPC) {
3893e33b 6992 err = ret;
8082510e 6993 break;
3893e33b 6994 }
39279cc3 6995
fcb80c2a 6996 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6997 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6998 if (ret) {
6999 err = ret;
7000 break;
7001 }
ca7e70f5 7002
8082510e 7003 btrfs_end_transaction(trans, root);
b53d3f5d 7004 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7005
7006 trans = btrfs_start_transaction(root, 2);
7007 if (IS_ERR(trans)) {
7008 ret = err = PTR_ERR(trans);
7009 trans = NULL;
7010 break;
7011 }
7012
7013 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7014 rsv, min_size);
7015 BUG_ON(ret); /* shouldn't happen */
7016 trans->block_rsv = rsv;
8082510e
YZ
7017 }
7018
7019 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7020 trans->block_rsv = root->orphan_block_rsv;
8082510e 7021 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7022 if (ret)
7023 err = ret;
ded5db9d
JB
7024 } else if (ret && inode->i_nlink > 0) {
7025 /*
7026 * Failed to do the truncate, remove us from the in memory
7027 * orphan list.
7028 */
7029 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
7030 }
7031
917c16b2
CM
7032 if (trans) {
7033 trans->block_rsv = &root->fs_info->trans_block_rsv;
7034 ret = btrfs_update_inode(trans, root, inode);
7035 if (ret && !err)
7036 err = ret;
7b128766 7037
7ad85bb7 7038 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7039 btrfs_btree_balance_dirty(root);
917c16b2 7040 }
fcb80c2a
JB
7041
7042out:
7043 btrfs_free_block_rsv(root, rsv);
7044
3893e33b
JB
7045 if (ret && !err)
7046 err = ret;
a41ad394 7047
3893e33b 7048 return err;
39279cc3
CM
7049}
7050
d352ac68
CM
7051/*
7052 * create a new subvolume directory/inode (helper for the ioctl).
7053 */
d2fb3437 7054int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7055 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7056{
39279cc3 7057 struct inode *inode;
76dda93c 7058 int err;
00e4e6b3 7059 u64 index = 0;
39279cc3 7060
12fc9d09
FA
7061 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7062 new_dirid, new_dirid,
7063 S_IFDIR | (~current_umask() & S_IRWXUGO),
7064 &index);
54aa1f4d 7065 if (IS_ERR(inode))
f46b5a66 7066 return PTR_ERR(inode);
39279cc3
CM
7067 inode->i_op = &btrfs_dir_inode_operations;
7068 inode->i_fop = &btrfs_dir_file_operations;
7069
bfe86848 7070 set_nlink(inode, 1);
dbe674a9 7071 btrfs_i_size_write(inode, 0);
3b96362c 7072
76dda93c 7073 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7074
76dda93c 7075 iput(inode);
ce598979 7076 return err;
39279cc3
CM
7077}
7078
39279cc3
CM
7079struct inode *btrfs_alloc_inode(struct super_block *sb)
7080{
7081 struct btrfs_inode *ei;
2ead6ae7 7082 struct inode *inode;
39279cc3
CM
7083
7084 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7085 if (!ei)
7086 return NULL;
2ead6ae7
YZ
7087
7088 ei->root = NULL;
2ead6ae7 7089 ei->generation = 0;
15ee9bc7 7090 ei->last_trans = 0;
257c62e1 7091 ei->last_sub_trans = 0;
e02119d5 7092 ei->logged_trans = 0;
2ead6ae7 7093 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7094 ei->disk_i_size = 0;
7095 ei->flags = 0;
7709cde3 7096 ei->csum_bytes = 0;
2ead6ae7
YZ
7097 ei->index_cnt = (u64)-1;
7098 ei->last_unlink_trans = 0;
46d8bc34 7099 ei->last_log_commit = 0;
2ead6ae7 7100
9e0baf60
JB
7101 spin_lock_init(&ei->lock);
7102 ei->outstanding_extents = 0;
7103 ei->reserved_extents = 0;
2ead6ae7 7104
72ac3c0d 7105 ei->runtime_flags = 0;
261507a0 7106 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7107
16cdcec7
MX
7108 ei->delayed_node = NULL;
7109
2ead6ae7 7110 inode = &ei->vfs_inode;
a8067e02 7111 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7112 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7113 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7114 ei->io_tree.track_uptodate = 1;
7115 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7116 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7117 mutex_init(&ei->log_mutex);
f248679e 7118 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7119 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7120 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7121 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7122 RB_CLEAR_NODE(&ei->rb_node);
7123
7124 return inode;
39279cc3
CM
7125}
7126
fa0d7e3d
NP
7127static void btrfs_i_callback(struct rcu_head *head)
7128{
7129 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7130 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7131}
7132
39279cc3
CM
7133void btrfs_destroy_inode(struct inode *inode)
7134{
e6dcd2dc 7135 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7136 struct btrfs_root *root = BTRFS_I(inode)->root;
7137
b3d9b7a3 7138 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7139 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7140 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7141 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7142 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7143 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7144
a6dbd429
JB
7145 /*
7146 * This can happen where we create an inode, but somebody else also
7147 * created the same inode and we need to destroy the one we already
7148 * created.
7149 */
7150 if (!root)
7151 goto free;
7152
5a3f23d5
CM
7153 /*
7154 * Make sure we're properly removed from the ordered operation
7155 * lists.
7156 */
7157 smp_mb();
7158 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7159 spin_lock(&root->fs_info->ordered_extent_lock);
7160 list_del_init(&BTRFS_I(inode)->ordered_operations);
7161 spin_unlock(&root->fs_info->ordered_extent_lock);
7162 }
7163
8a35d95f
JB
7164 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7165 &BTRFS_I(inode)->runtime_flags)) {
33345d01
LZ
7166 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7167 (unsigned long long)btrfs_ino(inode));
8a35d95f 7168 atomic_dec(&root->orphan_inodes);
7b128766 7169 }
7b128766 7170
d397712b 7171 while (1) {
e6dcd2dc
CM
7172 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7173 if (!ordered)
7174 break;
7175 else {
d397712b
CM
7176 printk(KERN_ERR "btrfs found ordered "
7177 "extent %llu %llu on inode cleanup\n",
7178 (unsigned long long)ordered->file_offset,
7179 (unsigned long long)ordered->len);
e6dcd2dc
CM
7180 btrfs_remove_ordered_extent(inode, ordered);
7181 btrfs_put_ordered_extent(ordered);
7182 btrfs_put_ordered_extent(ordered);
7183 }
7184 }
5d4f98a2 7185 inode_tree_del(inode);
5b21f2ed 7186 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7187free:
16cdcec7 7188 btrfs_remove_delayed_node(inode);
fa0d7e3d 7189 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7190}
7191
45321ac5 7192int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7193{
7194 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7195
0af3d00b 7196 if (btrfs_root_refs(&root->root_item) == 0 &&
83eea1f1 7197 !btrfs_is_free_space_inode(inode))
45321ac5 7198 return 1;
76dda93c 7199 else
45321ac5 7200 return generic_drop_inode(inode);
76dda93c
YZ
7201}
7202
0ee0fda0 7203static void init_once(void *foo)
39279cc3
CM
7204{
7205 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7206
7207 inode_init_once(&ei->vfs_inode);
7208}
7209
7210void btrfs_destroy_cachep(void)
7211{
8c0a8537
KS
7212 /*
7213 * Make sure all delayed rcu free inodes are flushed before we
7214 * destroy cache.
7215 */
7216 rcu_barrier();
39279cc3
CM
7217 if (btrfs_inode_cachep)
7218 kmem_cache_destroy(btrfs_inode_cachep);
7219 if (btrfs_trans_handle_cachep)
7220 kmem_cache_destroy(btrfs_trans_handle_cachep);
7221 if (btrfs_transaction_cachep)
7222 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7223 if (btrfs_path_cachep)
7224 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7225 if (btrfs_free_space_cachep)
7226 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7227 if (btrfs_delalloc_work_cachep)
7228 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7229}
7230
7231int btrfs_init_cachep(void)
7232{
837e1972 7233 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7234 sizeof(struct btrfs_inode), 0,
7235 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7236 if (!btrfs_inode_cachep)
7237 goto fail;
9601e3f6 7238
837e1972 7239 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7240 sizeof(struct btrfs_trans_handle), 0,
7241 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7242 if (!btrfs_trans_handle_cachep)
7243 goto fail;
9601e3f6 7244
837e1972 7245 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7246 sizeof(struct btrfs_transaction), 0,
7247 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7248 if (!btrfs_transaction_cachep)
7249 goto fail;
9601e3f6 7250
837e1972 7251 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7252 sizeof(struct btrfs_path), 0,
7253 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7254 if (!btrfs_path_cachep)
7255 goto fail;
9601e3f6 7256
837e1972 7257 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7258 sizeof(struct btrfs_free_space), 0,
7259 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7260 if (!btrfs_free_space_cachep)
7261 goto fail;
7262
8ccf6f19
MX
7263 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7264 sizeof(struct btrfs_delalloc_work), 0,
7265 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7266 NULL);
7267 if (!btrfs_delalloc_work_cachep)
7268 goto fail;
7269
39279cc3
CM
7270 return 0;
7271fail:
7272 btrfs_destroy_cachep();
7273 return -ENOMEM;
7274}
7275
7276static int btrfs_getattr(struct vfsmount *mnt,
7277 struct dentry *dentry, struct kstat *stat)
7278{
7279 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7280 u32 blocksize = inode->i_sb->s_blocksize;
7281
39279cc3 7282 generic_fillattr(inode, stat);
0ee5dc67 7283 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7284 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
7285 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7286 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7287 return 0;
7288}
7289
75e7cb7f
LB
7290/*
7291 * If a file is moved, it will inherit the cow and compression flags of the new
7292 * directory.
7293 */
7294static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7295{
7296 struct btrfs_inode *b_dir = BTRFS_I(dir);
7297 struct btrfs_inode *b_inode = BTRFS_I(inode);
7298
7299 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7300 b_inode->flags |= BTRFS_INODE_NODATACOW;
7301 else
7302 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7303
bc178237 7304 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
75e7cb7f 7305 b_inode->flags |= BTRFS_INODE_COMPRESS;
bc178237
LB
7306 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7307 } else {
7308 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7309 BTRFS_INODE_NOCOMPRESS);
7310 }
75e7cb7f
LB
7311}
7312
d397712b
CM
7313static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7314 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7315{
7316 struct btrfs_trans_handle *trans;
7317 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7318 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7319 struct inode *new_inode = new_dentry->d_inode;
7320 struct inode *old_inode = old_dentry->d_inode;
7321 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7322 u64 index = 0;
4df27c4d 7323 u64 root_objectid;
39279cc3 7324 int ret;
33345d01 7325 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7326
33345d01 7327 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7328 return -EPERM;
7329
4df27c4d 7330 /* we only allow rename subvolume link between subvolumes */
33345d01 7331 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7332 return -EXDEV;
7333
33345d01
LZ
7334 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7335 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7336 return -ENOTEMPTY;
5f39d397 7337
4df27c4d
YZ
7338 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7339 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7340 return -ENOTEMPTY;
5a3f23d5
CM
7341 /*
7342 * we're using rename to replace one file with another.
7343 * and the replacement file is large. Start IO on it now so
7344 * we don't add too much work to the end of the transaction
7345 */
4baf8c92 7346 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7347 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7348 filemap_flush(old_inode->i_mapping);
7349
76dda93c 7350 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7351 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7352 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7353 /*
7354 * We want to reserve the absolute worst case amount of items. So if
7355 * both inodes are subvols and we need to unlink them then that would
7356 * require 4 item modifications, but if they are both normal inodes it
7357 * would require 5 item modifications, so we'll assume their normal
7358 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7359 * should cover the worst case number of items we'll modify.
7360 */
7361 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7362 if (IS_ERR(trans)) {
7363 ret = PTR_ERR(trans);
7364 goto out_notrans;
7365 }
76dda93c 7366
4df27c4d
YZ
7367 if (dest != root)
7368 btrfs_record_root_in_trans(trans, dest);
5f39d397 7369
a5719521
YZ
7370 ret = btrfs_set_inode_index(new_dir, &index);
7371 if (ret)
7372 goto out_fail;
5a3f23d5 7373
33345d01 7374 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7375 /* force full log commit if subvolume involved. */
7376 root->fs_info->last_trans_log_full_commit = trans->transid;
7377 } else {
a5719521
YZ
7378 ret = btrfs_insert_inode_ref(trans, dest,
7379 new_dentry->d_name.name,
7380 new_dentry->d_name.len,
33345d01
LZ
7381 old_ino,
7382 btrfs_ino(new_dir), index);
a5719521
YZ
7383 if (ret)
7384 goto out_fail;
4df27c4d
YZ
7385 /*
7386 * this is an ugly little race, but the rename is required
7387 * to make sure that if we crash, the inode is either at the
7388 * old name or the new one. pinning the log transaction lets
7389 * us make sure we don't allow a log commit to come in after
7390 * we unlink the name but before we add the new name back in.
7391 */
7392 btrfs_pin_log_trans(root);
7393 }
5a3f23d5
CM
7394 /*
7395 * make sure the inode gets flushed if it is replacing
7396 * something.
7397 */
33345d01 7398 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7399 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7400
0c4d2d95
JB
7401 inode_inc_iversion(old_dir);
7402 inode_inc_iversion(new_dir);
7403 inode_inc_iversion(old_inode);
39279cc3
CM
7404 old_dir->i_ctime = old_dir->i_mtime = ctime;
7405 new_dir->i_ctime = new_dir->i_mtime = ctime;
7406 old_inode->i_ctime = ctime;
5f39d397 7407
12fcfd22
CM
7408 if (old_dentry->d_parent != new_dentry->d_parent)
7409 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7410
33345d01 7411 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7412 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7413 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7414 old_dentry->d_name.name,
7415 old_dentry->d_name.len);
7416 } else {
92986796
AV
7417 ret = __btrfs_unlink_inode(trans, root, old_dir,
7418 old_dentry->d_inode,
7419 old_dentry->d_name.name,
7420 old_dentry->d_name.len);
7421 if (!ret)
7422 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7423 }
79787eaa
JM
7424 if (ret) {
7425 btrfs_abort_transaction(trans, root, ret);
7426 goto out_fail;
7427 }
39279cc3
CM
7428
7429 if (new_inode) {
0c4d2d95 7430 inode_inc_iversion(new_inode);
39279cc3 7431 new_inode->i_ctime = CURRENT_TIME;
33345d01 7432 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7433 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7434 root_objectid = BTRFS_I(new_inode)->location.objectid;
7435 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7436 root_objectid,
7437 new_dentry->d_name.name,
7438 new_dentry->d_name.len);
7439 BUG_ON(new_inode->i_nlink == 0);
7440 } else {
7441 ret = btrfs_unlink_inode(trans, dest, new_dir,
7442 new_dentry->d_inode,
7443 new_dentry->d_name.name,
7444 new_dentry->d_name.len);
7445 }
79787eaa 7446 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7447 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7448 BUG_ON(ret);
7b128766 7449 }
79787eaa
JM
7450 if (ret) {
7451 btrfs_abort_transaction(trans, root, ret);
7452 goto out_fail;
7453 }
39279cc3 7454 }
aec7477b 7455
75e7cb7f
LB
7456 fixup_inode_flags(new_dir, old_inode);
7457
4df27c4d
YZ
7458 ret = btrfs_add_link(trans, new_dir, old_inode,
7459 new_dentry->d_name.name,
a5719521 7460 new_dentry->d_name.len, 0, index);
79787eaa
JM
7461 if (ret) {
7462 btrfs_abort_transaction(trans, root, ret);
7463 goto out_fail;
7464 }
39279cc3 7465
33345d01 7466 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7467 struct dentry *parent = new_dentry->d_parent;
6a912213 7468 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7469 btrfs_end_log_trans(root);
7470 }
39279cc3 7471out_fail:
7ad85bb7 7472 btrfs_end_transaction(trans, root);
b44c59a8 7473out_notrans:
33345d01 7474 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7475 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7476
39279cc3
CM
7477 return ret;
7478}
7479
8ccf6f19
MX
7480static void btrfs_run_delalloc_work(struct btrfs_work *work)
7481{
7482 struct btrfs_delalloc_work *delalloc_work;
7483
7484 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7485 work);
7486 if (delalloc_work->wait)
7487 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7488 else
7489 filemap_flush(delalloc_work->inode->i_mapping);
7490
7491 if (delalloc_work->delay_iput)
7492 btrfs_add_delayed_iput(delalloc_work->inode);
7493 else
7494 iput(delalloc_work->inode);
7495 complete(&delalloc_work->completion);
7496}
7497
7498struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7499 int wait, int delay_iput)
7500{
7501 struct btrfs_delalloc_work *work;
7502
7503 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7504 if (!work)
7505 return NULL;
7506
7507 init_completion(&work->completion);
7508 INIT_LIST_HEAD(&work->list);
7509 work->inode = inode;
7510 work->wait = wait;
7511 work->delay_iput = delay_iput;
7512 work->work.func = btrfs_run_delalloc_work;
7513
7514 return work;
7515}
7516
7517void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7518{
7519 wait_for_completion(&work->completion);
7520 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7521}
7522
d352ac68
CM
7523/*
7524 * some fairly slow code that needs optimization. This walks the list
7525 * of all the inodes with pending delalloc and forces them to disk.
7526 */
24bbcf04 7527int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7528{
7529 struct list_head *head = &root->fs_info->delalloc_inodes;
7530 struct btrfs_inode *binode;
5b21f2ed 7531 struct inode *inode;
8ccf6f19
MX
7532 struct btrfs_delalloc_work *work, *next;
7533 struct list_head works;
7534 int ret = 0;
ea8c2819 7535
c146afad
YZ
7536 if (root->fs_info->sb->s_flags & MS_RDONLY)
7537 return -EROFS;
7538
8ccf6f19
MX
7539 INIT_LIST_HEAD(&works);
7540
75eff68e 7541 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7542 while (!list_empty(head)) {
ea8c2819
CM
7543 binode = list_entry(head->next, struct btrfs_inode,
7544 delalloc_inodes);
5b21f2ed
ZY
7545 inode = igrab(&binode->vfs_inode);
7546 if (!inode)
7547 list_del_init(&binode->delalloc_inodes);
75eff68e 7548 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7549 if (inode) {
8ccf6f19
MX
7550 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7551 if (!work) {
7552 ret = -ENOMEM;
7553 goto out;
7554 }
7555 list_add_tail(&work->list, &works);
7556 btrfs_queue_worker(&root->fs_info->flush_workers,
7557 &work->work);
5b21f2ed
ZY
7558 }
7559 cond_resched();
75eff68e 7560 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7561 }
75eff68e 7562 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7563
7564 /* the filemap_flush will queue IO into the worker threads, but
7565 * we have to make sure the IO is actually started and that
7566 * ordered extents get created before we return
7567 */
7568 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7569 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7570 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7571 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7572 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7573 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7574 }
7575 atomic_dec(&root->fs_info->async_submit_draining);
8ccf6f19
MX
7576out:
7577 list_for_each_entry_safe(work, next, &works, list) {
7578 list_del_init(&work->list);
7579 btrfs_wait_and_free_delalloc_work(work);
7580 }
7581 return ret;
ea8c2819
CM
7582}
7583
39279cc3
CM
7584static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7585 const char *symname)
7586{
7587 struct btrfs_trans_handle *trans;
7588 struct btrfs_root *root = BTRFS_I(dir)->root;
7589 struct btrfs_path *path;
7590 struct btrfs_key key;
1832a6d5 7591 struct inode *inode = NULL;
39279cc3
CM
7592 int err;
7593 int drop_inode = 0;
7594 u64 objectid;
00e4e6b3 7595 u64 index = 0 ;
39279cc3
CM
7596 int name_len;
7597 int datasize;
5f39d397 7598 unsigned long ptr;
39279cc3 7599 struct btrfs_file_extent_item *ei;
5f39d397 7600 struct extent_buffer *leaf;
39279cc3
CM
7601
7602 name_len = strlen(symname) + 1;
7603 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7604 return -ENAMETOOLONG;
1832a6d5 7605
9ed74f2d
JB
7606 /*
7607 * 2 items for inode item and ref
7608 * 2 items for dir items
7609 * 1 item for xattr if selinux is on
7610 */
a22285a6
YZ
7611 trans = btrfs_start_transaction(root, 5);
7612 if (IS_ERR(trans))
7613 return PTR_ERR(trans);
1832a6d5 7614
581bb050
LZ
7615 err = btrfs_find_free_ino(root, &objectid);
7616 if (err)
7617 goto out_unlock;
7618
aec7477b 7619 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7620 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7621 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7622 if (IS_ERR(inode)) {
7623 err = PTR_ERR(inode);
39279cc3 7624 goto out_unlock;
7cf96da3 7625 }
39279cc3 7626
2a7dba39 7627 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7628 if (err) {
7629 drop_inode = 1;
7630 goto out_unlock;
7631 }
7632
ad19db71
CS
7633 /*
7634 * If the active LSM wants to access the inode during
7635 * d_instantiate it needs these. Smack checks to see
7636 * if the filesystem supports xattrs by looking at the
7637 * ops vector.
7638 */
7639 inode->i_fop = &btrfs_file_operations;
7640 inode->i_op = &btrfs_file_inode_operations;
7641
a1b075d2 7642 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7643 if (err)
7644 drop_inode = 1;
7645 else {
7646 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7647 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7648 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7649 }
39279cc3
CM
7650 if (drop_inode)
7651 goto out_unlock;
7652
7653 path = btrfs_alloc_path();
d8926bb3
MF
7654 if (!path) {
7655 err = -ENOMEM;
7656 drop_inode = 1;
7657 goto out_unlock;
7658 }
33345d01 7659 key.objectid = btrfs_ino(inode);
39279cc3 7660 key.offset = 0;
39279cc3
CM
7661 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7662 datasize = btrfs_file_extent_calc_inline_size(name_len);
7663 err = btrfs_insert_empty_item(trans, root, path, &key,
7664 datasize);
54aa1f4d
CM
7665 if (err) {
7666 drop_inode = 1;
b0839166 7667 btrfs_free_path(path);
54aa1f4d
CM
7668 goto out_unlock;
7669 }
5f39d397
CM
7670 leaf = path->nodes[0];
7671 ei = btrfs_item_ptr(leaf, path->slots[0],
7672 struct btrfs_file_extent_item);
7673 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7674 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7675 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7676 btrfs_set_file_extent_encryption(leaf, ei, 0);
7677 btrfs_set_file_extent_compression(leaf, ei, 0);
7678 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7679 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7680
39279cc3 7681 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7682 write_extent_buffer(leaf, symname, ptr, name_len);
7683 btrfs_mark_buffer_dirty(leaf);
39279cc3 7684 btrfs_free_path(path);
5f39d397 7685
39279cc3
CM
7686 inode->i_op = &btrfs_symlink_inode_operations;
7687 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7688 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7689 inode_set_bytes(inode, name_len);
dbe674a9 7690 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7691 err = btrfs_update_inode(trans, root, inode);
7692 if (err)
7693 drop_inode = 1;
39279cc3
CM
7694
7695out_unlock:
08c422c2
AV
7696 if (!err)
7697 d_instantiate(dentry, inode);
7ad85bb7 7698 btrfs_end_transaction(trans, root);
39279cc3
CM
7699 if (drop_inode) {
7700 inode_dec_link_count(inode);
7701 iput(inode);
7702 }
b53d3f5d 7703 btrfs_btree_balance_dirty(root);
39279cc3
CM
7704 return err;
7705}
16432985 7706
0af3d00b
JB
7707static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7708 u64 start, u64 num_bytes, u64 min_size,
7709 loff_t actual_len, u64 *alloc_hint,
7710 struct btrfs_trans_handle *trans)
d899e052 7711{
5dc562c5
JB
7712 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7713 struct extent_map *em;
d899e052
YZ
7714 struct btrfs_root *root = BTRFS_I(inode)->root;
7715 struct btrfs_key ins;
d899e052 7716 u64 cur_offset = start;
55a61d1d 7717 u64 i_size;
d899e052 7718 int ret = 0;
0af3d00b 7719 bool own_trans = true;
d899e052 7720
0af3d00b
JB
7721 if (trans)
7722 own_trans = false;
d899e052 7723 while (num_bytes > 0) {
0af3d00b
JB
7724 if (own_trans) {
7725 trans = btrfs_start_transaction(root, 3);
7726 if (IS_ERR(trans)) {
7727 ret = PTR_ERR(trans);
7728 break;
7729 }
5a303d5d
YZ
7730 }
7731
efa56464 7732 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7733 0, *alloc_hint, &ins, 1);
5a303d5d 7734 if (ret) {
0af3d00b
JB
7735 if (own_trans)
7736 btrfs_end_transaction(trans, root);
a22285a6 7737 break;
d899e052 7738 }
5a303d5d 7739
d899e052
YZ
7740 ret = insert_reserved_file_extent(trans, inode,
7741 cur_offset, ins.objectid,
7742 ins.offset, ins.offset,
920bbbfb 7743 ins.offset, 0, 0, 0,
d899e052 7744 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7745 if (ret) {
7746 btrfs_abort_transaction(trans, root, ret);
7747 if (own_trans)
7748 btrfs_end_transaction(trans, root);
7749 break;
7750 }
a1ed835e
CM
7751 btrfs_drop_extent_cache(inode, cur_offset,
7752 cur_offset + ins.offset -1, 0);
5a303d5d 7753
5dc562c5
JB
7754 em = alloc_extent_map();
7755 if (!em) {
7756 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7757 &BTRFS_I(inode)->runtime_flags);
7758 goto next;
7759 }
7760
7761 em->start = cur_offset;
7762 em->orig_start = cur_offset;
7763 em->len = ins.offset;
7764 em->block_start = ins.objectid;
7765 em->block_len = ins.offset;
b4939680 7766 em->orig_block_len = ins.offset;
5dc562c5
JB
7767 em->bdev = root->fs_info->fs_devices->latest_bdev;
7768 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7769 em->generation = trans->transid;
7770
7771 while (1) {
7772 write_lock(&em_tree->lock);
7773 ret = add_extent_mapping(em_tree, em);
7774 if (!ret)
7775 list_move(&em->list,
7776 &em_tree->modified_extents);
7777 write_unlock(&em_tree->lock);
7778 if (ret != -EEXIST)
7779 break;
7780 btrfs_drop_extent_cache(inode, cur_offset,
7781 cur_offset + ins.offset - 1,
7782 0);
7783 }
7784 free_extent_map(em);
7785next:
d899e052
YZ
7786 num_bytes -= ins.offset;
7787 cur_offset += ins.offset;
efa56464 7788 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7789
0c4d2d95 7790 inode_inc_iversion(inode);
d899e052 7791 inode->i_ctime = CURRENT_TIME;
6cbff00f 7792 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7793 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7794 (actual_len > inode->i_size) &&
7795 (cur_offset > inode->i_size)) {
d1ea6a61 7796 if (cur_offset > actual_len)
55a61d1d 7797 i_size = actual_len;
d1ea6a61 7798 else
55a61d1d
JB
7799 i_size = cur_offset;
7800 i_size_write(inode, i_size);
7801 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7802 }
7803
d899e052 7804 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7805
7806 if (ret) {
7807 btrfs_abort_transaction(trans, root, ret);
7808 if (own_trans)
7809 btrfs_end_transaction(trans, root);
7810 break;
7811 }
d899e052 7812
0af3d00b
JB
7813 if (own_trans)
7814 btrfs_end_transaction(trans, root);
5a303d5d 7815 }
d899e052
YZ
7816 return ret;
7817}
7818
0af3d00b
JB
7819int btrfs_prealloc_file_range(struct inode *inode, int mode,
7820 u64 start, u64 num_bytes, u64 min_size,
7821 loff_t actual_len, u64 *alloc_hint)
7822{
7823 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7824 min_size, actual_len, alloc_hint,
7825 NULL);
7826}
7827
7828int btrfs_prealloc_file_range_trans(struct inode *inode,
7829 struct btrfs_trans_handle *trans, int mode,
7830 u64 start, u64 num_bytes, u64 min_size,
7831 loff_t actual_len, u64 *alloc_hint)
7832{
7833 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7834 min_size, actual_len, alloc_hint, trans);
7835}
7836
e6dcd2dc
CM
7837static int btrfs_set_page_dirty(struct page *page)
7838{
e6dcd2dc
CM
7839 return __set_page_dirty_nobuffers(page);
7840}
7841
10556cb2 7842static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7843{
b83cc969 7844 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7845 umode_t mode = inode->i_mode;
b83cc969 7846
cb6db4e5
JM
7847 if (mask & MAY_WRITE &&
7848 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7849 if (btrfs_root_readonly(root))
7850 return -EROFS;
7851 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7852 return -EACCES;
7853 }
2830ba7f 7854 return generic_permission(inode, mask);
fdebe2bd 7855}
39279cc3 7856
6e1d5dcc 7857static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7858 .getattr = btrfs_getattr,
39279cc3
CM
7859 .lookup = btrfs_lookup,
7860 .create = btrfs_create,
7861 .unlink = btrfs_unlink,
7862 .link = btrfs_link,
7863 .mkdir = btrfs_mkdir,
7864 .rmdir = btrfs_rmdir,
7865 .rename = btrfs_rename,
7866 .symlink = btrfs_symlink,
7867 .setattr = btrfs_setattr,
618e21d5 7868 .mknod = btrfs_mknod,
95819c05
CH
7869 .setxattr = btrfs_setxattr,
7870 .getxattr = btrfs_getxattr,
5103e947 7871 .listxattr = btrfs_listxattr,
95819c05 7872 .removexattr = btrfs_removexattr,
fdebe2bd 7873 .permission = btrfs_permission,
4e34e719 7874 .get_acl = btrfs_get_acl,
39279cc3 7875};
6e1d5dcc 7876static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7877 .lookup = btrfs_lookup,
fdebe2bd 7878 .permission = btrfs_permission,
4e34e719 7879 .get_acl = btrfs_get_acl,
39279cc3 7880};
76dda93c 7881
828c0950 7882static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7883 .llseek = generic_file_llseek,
7884 .read = generic_read_dir,
cbdf5a24 7885 .readdir = btrfs_real_readdir,
34287aa3 7886 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7887#ifdef CONFIG_COMPAT
34287aa3 7888 .compat_ioctl = btrfs_ioctl,
39279cc3 7889#endif
6bf13c0c 7890 .release = btrfs_release_file,
e02119d5 7891 .fsync = btrfs_sync_file,
39279cc3
CM
7892};
7893
d1310b2e 7894static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7895 .fill_delalloc = run_delalloc_range,
065631f6 7896 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7897 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7898 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7899 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7900 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7901 .set_bit_hook = btrfs_set_bit_hook,
7902 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7903 .merge_extent_hook = btrfs_merge_extent_hook,
7904 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7905};
7906
35054394
CM
7907/*
7908 * btrfs doesn't support the bmap operation because swapfiles
7909 * use bmap to make a mapping of extents in the file. They assume
7910 * these extents won't change over the life of the file and they
7911 * use the bmap result to do IO directly to the drive.
7912 *
7913 * the btrfs bmap call would return logical addresses that aren't
7914 * suitable for IO and they also will change frequently as COW
7915 * operations happen. So, swapfile + btrfs == corruption.
7916 *
7917 * For now we're avoiding this by dropping bmap.
7918 */
7f09410b 7919static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7920 .readpage = btrfs_readpage,
7921 .writepage = btrfs_writepage,
b293f02e 7922 .writepages = btrfs_writepages,
3ab2fb5a 7923 .readpages = btrfs_readpages,
16432985 7924 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7925 .invalidatepage = btrfs_invalidatepage,
7926 .releasepage = btrfs_releasepage,
e6dcd2dc 7927 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7928 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7929};
7930
7f09410b 7931static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7932 .readpage = btrfs_readpage,
7933 .writepage = btrfs_writepage,
2bf5a725
CM
7934 .invalidatepage = btrfs_invalidatepage,
7935 .releasepage = btrfs_releasepage,
39279cc3
CM
7936};
7937
6e1d5dcc 7938static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7939 .getattr = btrfs_getattr,
7940 .setattr = btrfs_setattr,
95819c05
CH
7941 .setxattr = btrfs_setxattr,
7942 .getxattr = btrfs_getxattr,
5103e947 7943 .listxattr = btrfs_listxattr,
95819c05 7944 .removexattr = btrfs_removexattr,
fdebe2bd 7945 .permission = btrfs_permission,
1506fcc8 7946 .fiemap = btrfs_fiemap,
4e34e719 7947 .get_acl = btrfs_get_acl,
e41f941a 7948 .update_time = btrfs_update_time,
39279cc3 7949};
6e1d5dcc 7950static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7951 .getattr = btrfs_getattr,
7952 .setattr = btrfs_setattr,
fdebe2bd 7953 .permission = btrfs_permission,
95819c05
CH
7954 .setxattr = btrfs_setxattr,
7955 .getxattr = btrfs_getxattr,
33268eaf 7956 .listxattr = btrfs_listxattr,
95819c05 7957 .removexattr = btrfs_removexattr,
4e34e719 7958 .get_acl = btrfs_get_acl,
e41f941a 7959 .update_time = btrfs_update_time,
618e21d5 7960};
6e1d5dcc 7961static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7962 .readlink = generic_readlink,
7963 .follow_link = page_follow_link_light,
7964 .put_link = page_put_link,
f209561a 7965 .getattr = btrfs_getattr,
22c44fe6 7966 .setattr = btrfs_setattr,
fdebe2bd 7967 .permission = btrfs_permission,
0279b4cd
JO
7968 .setxattr = btrfs_setxattr,
7969 .getxattr = btrfs_getxattr,
7970 .listxattr = btrfs_listxattr,
7971 .removexattr = btrfs_removexattr,
4e34e719 7972 .get_acl = btrfs_get_acl,
e41f941a 7973 .update_time = btrfs_update_time,
39279cc3 7974};
76dda93c 7975
82d339d9 7976const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7977 .d_delete = btrfs_dentry_delete,
b4aff1f8 7978 .d_release = btrfs_dentry_release,
76dda93c 7979};