Btrfs: fix btrfs page_mkwrite to return locked page
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
29#include <linux/smp_lock.h>
30#include <linux/backing-dev.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
39279cc3
CM
53
54struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57};
58
59static struct inode_operations btrfs_dir_inode_operations;
60static struct inode_operations btrfs_symlink_inode_operations;
61static struct inode_operations btrfs_dir_ro_inode_operations;
618e21d5 62static struct inode_operations btrfs_special_inode_operations;
39279cc3
CM
63static struct inode_operations btrfs_file_inode_operations;
64static struct address_space_operations btrfs_aops;
65static struct address_space_operations btrfs_symlink_aops;
66static struct file_operations btrfs_dir_file_operations;
d1310b2e 67static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
68
69static struct kmem_cache *btrfs_inode_cachep;
70struct kmem_cache *btrfs_trans_handle_cachep;
71struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
72struct kmem_cache *btrfs_path_cachep;
73
74#define S_SHIFT 12
75static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83};
84
7b128766 85static void btrfs_truncate(struct inode *inode);
c8b97818 86static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
87static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
7b128766 91
0279b4cd
JO
92static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
93{
94 int err;
95
96 err = btrfs_init_acl(inode, dir);
97 if (!err)
98 err = btrfs_xattr_security_init(inode, dir);
99 return err;
100}
101
c8b97818
CM
102/*
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
106 */
d397712b 107static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
111{
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
116 char *kaddr;
117 unsigned long ptr;
118 struct btrfs_file_extent_item *ei;
119 int err = 0;
120 int ret;
121 size_t cur_size = size;
122 size_t datasize;
123 unsigned long offset;
124 int use_compress = 0;
125
126 if (compressed_size && compressed_pages) {
127 use_compress = 1;
128 cur_size = compressed_size;
129 }
130
d397712b
CM
131 path = btrfs_alloc_path();
132 if (!path)
c8b97818
CM
133 return -ENOMEM;
134
b9473439 135 path->leave_spinning = 1;
c8b97818
CM
136 btrfs_set_trans_block_group(trans, inode);
137
138 key.objectid = inode->i_ino;
139 key.offset = start;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
145 datasize);
146 BUG_ON(ret);
147 if (ret) {
148 err = ret;
c8b97818
CM
149 goto fail;
150 }
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
160
161 if (use_compress) {
162 struct page *cpage;
163 int i = 0;
d397712b 164 while (compressed_size > 0) {
c8b97818 165 cpage = compressed_pages[i];
5b050f04 166 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
167 PAGE_CACHE_SIZE);
168
b9473439 169 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 171 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
172
173 i++;
174 ptr += cur_size;
175 compressed_size -= cur_size;
176 }
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
179 } else {
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
188 }
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
191
192 BTRFS_I(inode)->disk_i_size = inode->i_size;
193 btrfs_update_inode(trans, root, inode);
194 return 0;
195fail:
196 btrfs_free_path(path);
197 return err;
198}
199
200
201/*
202 * conditionally insert an inline extent into the file. This
203 * does the checks required to make sure the data is small enough
204 * to fit as an inline extent.
205 */
7f366cfe 206static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
207 struct btrfs_root *root,
208 struct inode *inode, u64 start, u64 end,
209 size_t compressed_size,
210 struct page **compressed_pages)
211{
212 u64 isize = i_size_read(inode);
213 u64 actual_end = min(end + 1, isize);
214 u64 inline_len = actual_end - start;
215 u64 aligned_end = (end + root->sectorsize - 1) &
216 ~((u64)root->sectorsize - 1);
217 u64 hint_byte;
218 u64 data_len = inline_len;
219 int ret;
220
221 if (compressed_size)
222 data_len = compressed_size;
223
224 if (start > 0 ||
70b99e69 225 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
226 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
227 (!compressed_size &&
228 (actual_end & (root->sectorsize - 1)) == 0) ||
229 end + 1 < isize ||
230 data_len > root->fs_info->max_inline) {
231 return 1;
232 }
233
c8b97818 234 ret = btrfs_drop_extents(trans, root, inode, start,
a1ed835e
CM
235 aligned_end, aligned_end, start,
236 &hint_byte, 1);
c8b97818
CM
237 BUG_ON(ret);
238
239 if (isize > actual_end)
240 inline_len = min_t(u64, isize, actual_end);
241 ret = insert_inline_extent(trans, root, inode, start,
242 inline_len, compressed_size,
243 compressed_pages);
244 BUG_ON(ret);
a1ed835e 245 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
246 return 0;
247}
248
771ed689
CM
249struct async_extent {
250 u64 start;
251 u64 ram_size;
252 u64 compressed_size;
253 struct page **pages;
254 unsigned long nr_pages;
255 struct list_head list;
256};
257
258struct async_cow {
259 struct inode *inode;
260 struct btrfs_root *root;
261 struct page *locked_page;
262 u64 start;
263 u64 end;
264 struct list_head extents;
265 struct btrfs_work work;
266};
267
268static noinline int add_async_extent(struct async_cow *cow,
269 u64 start, u64 ram_size,
270 u64 compressed_size,
271 struct page **pages,
272 unsigned long nr_pages)
273{
274 struct async_extent *async_extent;
275
276 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
277 async_extent->start = start;
278 async_extent->ram_size = ram_size;
279 async_extent->compressed_size = compressed_size;
280 async_extent->pages = pages;
281 async_extent->nr_pages = nr_pages;
282 list_add_tail(&async_extent->list, &cow->extents);
283 return 0;
284}
285
d352ac68 286/*
771ed689
CM
287 * we create compressed extents in two phases. The first
288 * phase compresses a range of pages that have already been
289 * locked (both pages and state bits are locked).
c8b97818 290 *
771ed689
CM
291 * This is done inside an ordered work queue, and the compression
292 * is spread across many cpus. The actual IO submission is step
293 * two, and the ordered work queue takes care of making sure that
294 * happens in the same order things were put onto the queue by
295 * writepages and friends.
c8b97818 296 *
771ed689
CM
297 * If this code finds it can't get good compression, it puts an
298 * entry onto the work queue to write the uncompressed bytes. This
299 * makes sure that both compressed inodes and uncompressed inodes
300 * are written in the same order that pdflush sent them down.
d352ac68 301 */
771ed689
CM
302static noinline int compress_file_range(struct inode *inode,
303 struct page *locked_page,
304 u64 start, u64 end,
305 struct async_cow *async_cow,
306 int *num_added)
b888db2b
CM
307{
308 struct btrfs_root *root = BTRFS_I(inode)->root;
309 struct btrfs_trans_handle *trans;
db94535d 310 u64 num_bytes;
c8b97818
CM
311 u64 orig_start;
312 u64 disk_num_bytes;
db94535d 313 u64 blocksize = root->sectorsize;
c8b97818 314 u64 actual_end;
42dc7bab 315 u64 isize = i_size_read(inode);
e6dcd2dc 316 int ret = 0;
c8b97818
CM
317 struct page **pages = NULL;
318 unsigned long nr_pages;
319 unsigned long nr_pages_ret = 0;
320 unsigned long total_compressed = 0;
321 unsigned long total_in = 0;
322 unsigned long max_compressed = 128 * 1024;
771ed689 323 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
324 int i;
325 int will_compress;
b888db2b 326
c8b97818
CM
327 orig_start = start;
328
42dc7bab 329 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
330again:
331 will_compress = 0;
332 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
333 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 334
f03d9301
CM
335 /*
336 * we don't want to send crud past the end of i_size through
337 * compression, that's just a waste of CPU time. So, if the
338 * end of the file is before the start of our current
339 * requested range of bytes, we bail out to the uncompressed
340 * cleanup code that can deal with all of this.
341 *
342 * It isn't really the fastest way to fix things, but this is a
343 * very uncommon corner.
344 */
345 if (actual_end <= start)
346 goto cleanup_and_bail_uncompressed;
347
c8b97818
CM
348 total_compressed = actual_end - start;
349
350 /* we want to make sure that amount of ram required to uncompress
351 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
352 * of a compressed extent to 128k. This is a crucial number
353 * because it also controls how easily we can spread reads across
354 * cpus for decompression.
355 *
356 * We also want to make sure the amount of IO required to do
357 * a random read is reasonably small, so we limit the size of
358 * a compressed extent to 128k.
c8b97818
CM
359 */
360 total_compressed = min(total_compressed, max_uncompressed);
db94535d 361 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 362 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
363 disk_num_bytes = num_bytes;
364 total_in = 0;
365 ret = 0;
db94535d 366
771ed689
CM
367 /*
368 * we do compression for mount -o compress and when the
369 * inode has not been flagged as nocompress. This flag can
370 * change at any time if we discover bad compression ratios.
c8b97818 371 */
6cbff00f 372 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
c8b97818
CM
373 btrfs_test_opt(root, COMPRESS)) {
374 WARN_ON(pages);
cfbc246e 375 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 376
c8b97818
CM
377 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
378 total_compressed, pages,
379 nr_pages, &nr_pages_ret,
380 &total_in,
381 &total_compressed,
382 max_compressed);
383
384 if (!ret) {
385 unsigned long offset = total_compressed &
386 (PAGE_CACHE_SIZE - 1);
387 struct page *page = pages[nr_pages_ret - 1];
388 char *kaddr;
389
390 /* zero the tail end of the last page, we might be
391 * sending it down to disk
392 */
393 if (offset) {
394 kaddr = kmap_atomic(page, KM_USER0);
395 memset(kaddr + offset, 0,
396 PAGE_CACHE_SIZE - offset);
397 kunmap_atomic(kaddr, KM_USER0);
398 }
399 will_compress = 1;
400 }
401 }
402 if (start == 0) {
771ed689
CM
403 trans = btrfs_join_transaction(root, 1);
404 BUG_ON(!trans);
405 btrfs_set_trans_block_group(trans, inode);
406
c8b97818 407 /* lets try to make an inline extent */
771ed689 408 if (ret || total_in < (actual_end - start)) {
c8b97818 409 /* we didn't compress the entire range, try
771ed689 410 * to make an uncompressed inline extent.
c8b97818
CM
411 */
412 ret = cow_file_range_inline(trans, root, inode,
413 start, end, 0, NULL);
414 } else {
771ed689 415 /* try making a compressed inline extent */
c8b97818
CM
416 ret = cow_file_range_inline(trans, root, inode,
417 start, end,
418 total_compressed, pages);
419 }
771ed689 420 btrfs_end_transaction(trans, root);
c8b97818 421 if (ret == 0) {
771ed689
CM
422 /*
423 * inline extent creation worked, we don't need
424 * to create any more async work items. Unlock
425 * and free up our temp pages.
426 */
c8b97818
CM
427 extent_clear_unlock_delalloc(inode,
428 &BTRFS_I(inode)->io_tree,
771ed689 429 start, end, NULL, 1, 0,
8b62b72b 430 0, 1, 1, 1, 0);
c8b97818
CM
431 ret = 0;
432 goto free_pages_out;
433 }
434 }
435
436 if (will_compress) {
437 /*
438 * we aren't doing an inline extent round the compressed size
439 * up to a block size boundary so the allocator does sane
440 * things
441 */
442 total_compressed = (total_compressed + blocksize - 1) &
443 ~(blocksize - 1);
444
445 /*
446 * one last check to make sure the compression is really a
447 * win, compare the page count read with the blocks on disk
448 */
449 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
450 ~(PAGE_CACHE_SIZE - 1);
451 if (total_compressed >= total_in) {
452 will_compress = 0;
453 } else {
454 disk_num_bytes = total_compressed;
455 num_bytes = total_in;
456 }
457 }
458 if (!will_compress && pages) {
459 /*
460 * the compression code ran but failed to make things smaller,
461 * free any pages it allocated and our page pointer array
462 */
463 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 464 WARN_ON(pages[i]->mapping);
c8b97818
CM
465 page_cache_release(pages[i]);
466 }
467 kfree(pages);
468 pages = NULL;
469 total_compressed = 0;
470 nr_pages_ret = 0;
471
472 /* flag the file so we don't compress in the future */
6cbff00f 473 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
c8b97818 474 }
771ed689
CM
475 if (will_compress) {
476 *num_added += 1;
c8b97818 477
771ed689
CM
478 /* the async work queues will take care of doing actual
479 * allocation on disk for these compressed pages,
480 * and will submit them to the elevator.
481 */
482 add_async_extent(async_cow, start, num_bytes,
483 total_compressed, pages, nr_pages_ret);
179e29e4 484
42dc7bab 485 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
486 start += num_bytes;
487 pages = NULL;
488 cond_resched();
489 goto again;
490 }
491 } else {
f03d9301 492cleanup_and_bail_uncompressed:
771ed689
CM
493 /*
494 * No compression, but we still need to write the pages in
495 * the file we've been given so far. redirty the locked
496 * page if it corresponds to our extent and set things up
497 * for the async work queue to run cow_file_range to do
498 * the normal delalloc dance
499 */
500 if (page_offset(locked_page) >= start &&
501 page_offset(locked_page) <= end) {
502 __set_page_dirty_nobuffers(locked_page);
503 /* unlocked later on in the async handlers */
504 }
505 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
506 *num_added += 1;
507 }
3b951516 508
771ed689
CM
509out:
510 return 0;
511
512free_pages_out:
513 for (i = 0; i < nr_pages_ret; i++) {
514 WARN_ON(pages[i]->mapping);
515 page_cache_release(pages[i]);
516 }
d397712b 517 kfree(pages);
771ed689
CM
518
519 goto out;
520}
521
522/*
523 * phase two of compressed writeback. This is the ordered portion
524 * of the code, which only gets called in the order the work was
525 * queued. We walk all the async extents created by compress_file_range
526 * and send them down to the disk.
527 */
528static noinline int submit_compressed_extents(struct inode *inode,
529 struct async_cow *async_cow)
530{
531 struct async_extent *async_extent;
532 u64 alloc_hint = 0;
533 struct btrfs_trans_handle *trans;
534 struct btrfs_key ins;
535 struct extent_map *em;
536 struct btrfs_root *root = BTRFS_I(inode)->root;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 struct extent_io_tree *io_tree;
539 int ret;
540
541 if (list_empty(&async_cow->extents))
542 return 0;
543
544 trans = btrfs_join_transaction(root, 1);
545
d397712b 546 while (!list_empty(&async_cow->extents)) {
771ed689
CM
547 async_extent = list_entry(async_cow->extents.next,
548 struct async_extent, list);
549 list_del(&async_extent->list);
c8b97818 550
771ed689
CM
551 io_tree = &BTRFS_I(inode)->io_tree;
552
553 /* did the compression code fall back to uncompressed IO? */
554 if (!async_extent->pages) {
555 int page_started = 0;
556 unsigned long nr_written = 0;
557
558 lock_extent(io_tree, async_extent->start,
d397712b
CM
559 async_extent->start +
560 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
561
562 /* allocate blocks */
563 cow_file_range(inode, async_cow->locked_page,
564 async_extent->start,
565 async_extent->start +
566 async_extent->ram_size - 1,
567 &page_started, &nr_written, 0);
568
569 /*
570 * if page_started, cow_file_range inserted an
571 * inline extent and took care of all the unlocking
572 * and IO for us. Otherwise, we need to submit
573 * all those pages down to the drive.
574 */
575 if (!page_started)
576 extent_write_locked_range(io_tree,
577 inode, async_extent->start,
d397712b 578 async_extent->start +
771ed689
CM
579 async_extent->ram_size - 1,
580 btrfs_get_extent,
581 WB_SYNC_ALL);
582 kfree(async_extent);
583 cond_resched();
584 continue;
585 }
586
587 lock_extent(io_tree, async_extent->start,
588 async_extent->start + async_extent->ram_size - 1,
589 GFP_NOFS);
c8b97818 590 /*
771ed689
CM
591 * here we're doing allocation and writeback of the
592 * compressed pages
c8b97818 593 */
771ed689
CM
594 btrfs_drop_extent_cache(inode, async_extent->start,
595 async_extent->start +
596 async_extent->ram_size - 1, 0);
597
598 ret = btrfs_reserve_extent(trans, root,
599 async_extent->compressed_size,
600 async_extent->compressed_size,
601 0, alloc_hint,
602 (u64)-1, &ins, 1);
603 BUG_ON(ret);
604 em = alloc_extent_map(GFP_NOFS);
605 em->start = async_extent->start;
606 em->len = async_extent->ram_size;
445a6944 607 em->orig_start = em->start;
c8b97818 608
771ed689
CM
609 em->block_start = ins.objectid;
610 em->block_len = ins.offset;
611 em->bdev = root->fs_info->fs_devices->latest_bdev;
612 set_bit(EXTENT_FLAG_PINNED, &em->flags);
613 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
614
d397712b 615 while (1) {
890871be 616 write_lock(&em_tree->lock);
771ed689 617 ret = add_extent_mapping(em_tree, em);
890871be 618 write_unlock(&em_tree->lock);
771ed689
CM
619 if (ret != -EEXIST) {
620 free_extent_map(em);
621 break;
622 }
623 btrfs_drop_extent_cache(inode, async_extent->start,
624 async_extent->start +
625 async_extent->ram_size - 1, 0);
626 }
627
628 ret = btrfs_add_ordered_extent(inode, async_extent->start,
629 ins.objectid,
630 async_extent->ram_size,
631 ins.offset,
632 BTRFS_ORDERED_COMPRESSED);
633 BUG_ON(ret);
634
635 btrfs_end_transaction(trans, root);
636
637 /*
638 * clear dirty, set writeback and unlock the pages.
639 */
640 extent_clear_unlock_delalloc(inode,
641 &BTRFS_I(inode)->io_tree,
642 async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1,
8b62b72b 645 NULL, 1, 1, 0, 1, 1, 0, 0);
771ed689
CM
646
647 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
648 async_extent->start,
649 async_extent->ram_size,
650 ins.objectid,
651 ins.offset, async_extent->pages,
652 async_extent->nr_pages);
771ed689
CM
653
654 BUG_ON(ret);
655 trans = btrfs_join_transaction(root, 1);
656 alloc_hint = ins.objectid + ins.offset;
657 kfree(async_extent);
658 cond_resched();
659 }
660
661 btrfs_end_transaction(trans, root);
662 return 0;
663}
664
665/*
666 * when extent_io.c finds a delayed allocation range in the file,
667 * the call backs end up in this code. The basic idea is to
668 * allocate extents on disk for the range, and create ordered data structs
669 * in ram to track those extents.
670 *
671 * locked_page is the page that writepage had locked already. We use
672 * it to make sure we don't do extra locks or unlocks.
673 *
674 * *page_started is set to one if we unlock locked_page and do everything
675 * required to start IO on it. It may be clean and already done with
676 * IO when we return.
677 */
678static noinline int cow_file_range(struct inode *inode,
679 struct page *locked_page,
680 u64 start, u64 end, int *page_started,
681 unsigned long *nr_written,
682 int unlock)
683{
684 struct btrfs_root *root = BTRFS_I(inode)->root;
685 struct btrfs_trans_handle *trans;
686 u64 alloc_hint = 0;
687 u64 num_bytes;
688 unsigned long ram_size;
689 u64 disk_num_bytes;
690 u64 cur_alloc_size;
691 u64 blocksize = root->sectorsize;
692 u64 actual_end;
42dc7bab 693 u64 isize = i_size_read(inode);
771ed689
CM
694 struct btrfs_key ins;
695 struct extent_map *em;
696 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
697 int ret = 0;
698
699 trans = btrfs_join_transaction(root, 1);
700 BUG_ON(!trans);
701 btrfs_set_trans_block_group(trans, inode);
702
42dc7bab 703 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
704
705 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
706 num_bytes = max(blocksize, num_bytes);
707 disk_num_bytes = num_bytes;
708 ret = 0;
709
710 if (start == 0) {
711 /* lets try to make an inline extent */
712 ret = cow_file_range_inline(trans, root, inode,
713 start, end, 0, NULL);
714 if (ret == 0) {
715 extent_clear_unlock_delalloc(inode,
716 &BTRFS_I(inode)->io_tree,
717 start, end, NULL, 1, 1,
8b62b72b 718 1, 1, 1, 1, 0);
771ed689
CM
719 *nr_written = *nr_written +
720 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
721 *page_started = 1;
722 ret = 0;
723 goto out;
724 }
725 }
726
727 BUG_ON(disk_num_bytes >
728 btrfs_super_total_bytes(&root->fs_info->super_copy));
729
730 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
731
d397712b 732 while (disk_num_bytes > 0) {
c8b97818 733 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 734 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 735 root->sectorsize, 0, alloc_hint,
e6dcd2dc 736 (u64)-1, &ins, 1);
d397712b
CM
737 BUG_ON(ret);
738
e6dcd2dc
CM
739 em = alloc_extent_map(GFP_NOFS);
740 em->start = start;
445a6944 741 em->orig_start = em->start;
c8b97818 742
771ed689
CM
743 ram_size = ins.offset;
744 em->len = ins.offset;
c8b97818 745
e6dcd2dc 746 em->block_start = ins.objectid;
c8b97818 747 em->block_len = ins.offset;
e6dcd2dc 748 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 749 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 750
d397712b 751 while (1) {
890871be 752 write_lock(&em_tree->lock);
e6dcd2dc 753 ret = add_extent_mapping(em_tree, em);
890871be 754 write_unlock(&em_tree->lock);
e6dcd2dc
CM
755 if (ret != -EEXIST) {
756 free_extent_map(em);
757 break;
758 }
759 btrfs_drop_extent_cache(inode, start,
c8b97818 760 start + ram_size - 1, 0);
e6dcd2dc
CM
761 }
762
98d20f67 763 cur_alloc_size = ins.offset;
e6dcd2dc 764 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 765 ram_size, cur_alloc_size, 0);
e6dcd2dc 766 BUG_ON(ret);
c8b97818 767
17d217fe
YZ
768 if (root->root_key.objectid ==
769 BTRFS_DATA_RELOC_TREE_OBJECTID) {
770 ret = btrfs_reloc_clone_csums(inode, start,
771 cur_alloc_size);
772 BUG_ON(ret);
773 }
774
d397712b 775 if (disk_num_bytes < cur_alloc_size)
3b951516 776 break;
d397712b 777
c8b97818
CM
778 /* we're not doing compressed IO, don't unlock the first
779 * page (which the caller expects to stay locked), don't
780 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
781 *
782 * Do set the Private2 bit so we know this page was properly
783 * setup for writepage
c8b97818
CM
784 */
785 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
786 start, start + ram_size - 1,
771ed689 787 locked_page, unlock, 1,
8b62b72b 788 1, 0, 0, 0, 1);
c8b97818 789 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
790 num_bytes -= cur_alloc_size;
791 alloc_hint = ins.objectid + ins.offset;
792 start += cur_alloc_size;
b888db2b 793 }
b888db2b 794out:
771ed689 795 ret = 0;
b888db2b 796 btrfs_end_transaction(trans, root);
c8b97818 797
be20aa9d 798 return ret;
771ed689 799}
c8b97818 800
771ed689
CM
801/*
802 * work queue call back to started compression on a file and pages
803 */
804static noinline void async_cow_start(struct btrfs_work *work)
805{
806 struct async_cow *async_cow;
807 int num_added = 0;
808 async_cow = container_of(work, struct async_cow, work);
809
810 compress_file_range(async_cow->inode, async_cow->locked_page,
811 async_cow->start, async_cow->end, async_cow,
812 &num_added);
813 if (num_added == 0)
814 async_cow->inode = NULL;
815}
816
817/*
818 * work queue call back to submit previously compressed pages
819 */
820static noinline void async_cow_submit(struct btrfs_work *work)
821{
822 struct async_cow *async_cow;
823 struct btrfs_root *root;
824 unsigned long nr_pages;
825
826 async_cow = container_of(work, struct async_cow, work);
827
828 root = async_cow->root;
829 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
830 PAGE_CACHE_SHIFT;
831
832 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
833
834 if (atomic_read(&root->fs_info->async_delalloc_pages) <
835 5 * 1042 * 1024 &&
836 waitqueue_active(&root->fs_info->async_submit_wait))
837 wake_up(&root->fs_info->async_submit_wait);
838
d397712b 839 if (async_cow->inode)
771ed689 840 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 841}
c8b97818 842
771ed689
CM
843static noinline void async_cow_free(struct btrfs_work *work)
844{
845 struct async_cow *async_cow;
846 async_cow = container_of(work, struct async_cow, work);
847 kfree(async_cow);
848}
849
850static int cow_file_range_async(struct inode *inode, struct page *locked_page,
851 u64 start, u64 end, int *page_started,
852 unsigned long *nr_written)
853{
854 struct async_cow *async_cow;
855 struct btrfs_root *root = BTRFS_I(inode)->root;
856 unsigned long nr_pages;
857 u64 cur_end;
858 int limit = 10 * 1024 * 1042;
859
771ed689 860 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
2c64c53d 861 EXTENT_DELALLOC, 1, 0, NULL, GFP_NOFS);
d397712b 862 while (start < end) {
771ed689
CM
863 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
864 async_cow->inode = inode;
865 async_cow->root = root;
866 async_cow->locked_page = locked_page;
867 async_cow->start = start;
868
6cbff00f 869 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
870 cur_end = end;
871 else
872 cur_end = min(end, start + 512 * 1024 - 1);
873
874 async_cow->end = cur_end;
875 INIT_LIST_HEAD(&async_cow->extents);
876
877 async_cow->work.func = async_cow_start;
878 async_cow->work.ordered_func = async_cow_submit;
879 async_cow->work.ordered_free = async_cow_free;
880 async_cow->work.flags = 0;
881
771ed689
CM
882 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
883 PAGE_CACHE_SHIFT;
884 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
885
886 btrfs_queue_worker(&root->fs_info->delalloc_workers,
887 &async_cow->work);
888
889 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
890 wait_event(root->fs_info->async_submit_wait,
891 (atomic_read(&root->fs_info->async_delalloc_pages) <
892 limit));
893 }
894
d397712b 895 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
896 atomic_read(&root->fs_info->async_delalloc_pages)) {
897 wait_event(root->fs_info->async_submit_wait,
898 (atomic_read(&root->fs_info->async_delalloc_pages) ==
899 0));
900 }
901
902 *nr_written += nr_pages;
903 start = cur_end + 1;
904 }
905 *page_started = 1;
906 return 0;
be20aa9d
CM
907}
908
d397712b 909static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
910 u64 bytenr, u64 num_bytes)
911{
912 int ret;
913 struct btrfs_ordered_sum *sums;
914 LIST_HEAD(list);
915
07d400a6
YZ
916 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
917 bytenr + num_bytes - 1, &list);
17d217fe
YZ
918 if (ret == 0 && list_empty(&list))
919 return 0;
920
921 while (!list_empty(&list)) {
922 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
923 list_del(&sums->list);
924 kfree(sums);
925 }
926 return 1;
927}
928
d352ac68
CM
929/*
930 * when nowcow writeback call back. This checks for snapshots or COW copies
931 * of the extents that exist in the file, and COWs the file as required.
932 *
933 * If no cow copies or snapshots exist, we write directly to the existing
934 * blocks on disk
935 */
7f366cfe
CM
936static noinline int run_delalloc_nocow(struct inode *inode,
937 struct page *locked_page,
771ed689
CM
938 u64 start, u64 end, int *page_started, int force,
939 unsigned long *nr_written)
be20aa9d 940{
be20aa9d 941 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 942 struct btrfs_trans_handle *trans;
be20aa9d 943 struct extent_buffer *leaf;
be20aa9d 944 struct btrfs_path *path;
80ff3856 945 struct btrfs_file_extent_item *fi;
be20aa9d 946 struct btrfs_key found_key;
80ff3856
YZ
947 u64 cow_start;
948 u64 cur_offset;
949 u64 extent_end;
5d4f98a2 950 u64 extent_offset;
80ff3856
YZ
951 u64 disk_bytenr;
952 u64 num_bytes;
953 int extent_type;
954 int ret;
d899e052 955 int type;
80ff3856
YZ
956 int nocow;
957 int check_prev = 1;
be20aa9d
CM
958
959 path = btrfs_alloc_path();
960 BUG_ON(!path);
7ea394f1
YZ
961 trans = btrfs_join_transaction(root, 1);
962 BUG_ON(!trans);
be20aa9d 963
80ff3856
YZ
964 cow_start = (u64)-1;
965 cur_offset = start;
966 while (1) {
967 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
968 cur_offset, 0);
969 BUG_ON(ret < 0);
970 if (ret > 0 && path->slots[0] > 0 && check_prev) {
971 leaf = path->nodes[0];
972 btrfs_item_key_to_cpu(leaf, &found_key,
973 path->slots[0] - 1);
974 if (found_key.objectid == inode->i_ino &&
975 found_key.type == BTRFS_EXTENT_DATA_KEY)
976 path->slots[0]--;
977 }
978 check_prev = 0;
979next_slot:
980 leaf = path->nodes[0];
981 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982 ret = btrfs_next_leaf(root, path);
983 if (ret < 0)
984 BUG_ON(1);
985 if (ret > 0)
986 break;
987 leaf = path->nodes[0];
988 }
be20aa9d 989
80ff3856
YZ
990 nocow = 0;
991 disk_bytenr = 0;
17d217fe 992 num_bytes = 0;
80ff3856
YZ
993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
994
995 if (found_key.objectid > inode->i_ino ||
996 found_key.type > BTRFS_EXTENT_DATA_KEY ||
997 found_key.offset > end)
998 break;
999
1000 if (found_key.offset > cur_offset) {
1001 extent_end = found_key.offset;
1002 goto out_check;
1003 }
1004
1005 fi = btrfs_item_ptr(leaf, path->slots[0],
1006 struct btrfs_file_extent_item);
1007 extent_type = btrfs_file_extent_type(leaf, fi);
1008
d899e052
YZ
1009 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1010 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1011 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1012 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1013 extent_end = found_key.offset +
1014 btrfs_file_extent_num_bytes(leaf, fi);
1015 if (extent_end <= start) {
1016 path->slots[0]++;
1017 goto next_slot;
1018 }
17d217fe
YZ
1019 if (disk_bytenr == 0)
1020 goto out_check;
80ff3856
YZ
1021 if (btrfs_file_extent_compression(leaf, fi) ||
1022 btrfs_file_extent_encryption(leaf, fi) ||
1023 btrfs_file_extent_other_encoding(leaf, fi))
1024 goto out_check;
d899e052
YZ
1025 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1026 goto out_check;
d2fb3437 1027 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1028 goto out_check;
17d217fe 1029 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1030 found_key.offset -
1031 extent_offset, disk_bytenr))
17d217fe 1032 goto out_check;
5d4f98a2 1033 disk_bytenr += extent_offset;
17d217fe
YZ
1034 disk_bytenr += cur_offset - found_key.offset;
1035 num_bytes = min(end + 1, extent_end) - cur_offset;
1036 /*
1037 * force cow if csum exists in the range.
1038 * this ensure that csum for a given extent are
1039 * either valid or do not exist.
1040 */
1041 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1042 goto out_check;
80ff3856
YZ
1043 nocow = 1;
1044 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1045 extent_end = found_key.offset +
1046 btrfs_file_extent_inline_len(leaf, fi);
1047 extent_end = ALIGN(extent_end, root->sectorsize);
1048 } else {
1049 BUG_ON(1);
1050 }
1051out_check:
1052 if (extent_end <= start) {
1053 path->slots[0]++;
1054 goto next_slot;
1055 }
1056 if (!nocow) {
1057 if (cow_start == (u64)-1)
1058 cow_start = cur_offset;
1059 cur_offset = extent_end;
1060 if (cur_offset > end)
1061 break;
1062 path->slots[0]++;
1063 goto next_slot;
7ea394f1
YZ
1064 }
1065
1066 btrfs_release_path(root, path);
80ff3856
YZ
1067 if (cow_start != (u64)-1) {
1068 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1069 found_key.offset - 1, page_started,
1070 nr_written, 1);
80ff3856
YZ
1071 BUG_ON(ret);
1072 cow_start = (u64)-1;
7ea394f1 1073 }
80ff3856 1074
d899e052
YZ
1075 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1076 struct extent_map *em;
1077 struct extent_map_tree *em_tree;
1078 em_tree = &BTRFS_I(inode)->extent_tree;
1079 em = alloc_extent_map(GFP_NOFS);
1080 em->start = cur_offset;
445a6944 1081 em->orig_start = em->start;
d899e052
YZ
1082 em->len = num_bytes;
1083 em->block_len = num_bytes;
1084 em->block_start = disk_bytenr;
1085 em->bdev = root->fs_info->fs_devices->latest_bdev;
1086 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1087 while (1) {
890871be 1088 write_lock(&em_tree->lock);
d899e052 1089 ret = add_extent_mapping(em_tree, em);
890871be 1090 write_unlock(&em_tree->lock);
d899e052
YZ
1091 if (ret != -EEXIST) {
1092 free_extent_map(em);
1093 break;
1094 }
1095 btrfs_drop_extent_cache(inode, em->start,
1096 em->start + em->len - 1, 0);
1097 }
1098 type = BTRFS_ORDERED_PREALLOC;
1099 } else {
1100 type = BTRFS_ORDERED_NOCOW;
1101 }
80ff3856
YZ
1102
1103 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1104 num_bytes, num_bytes, type);
1105 BUG_ON(ret);
771ed689 1106
d899e052
YZ
1107 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1108 cur_offset, cur_offset + num_bytes - 1,
8b62b72b 1109 locked_page, 1, 1, 1, 0, 0, 0, 1);
80ff3856
YZ
1110 cur_offset = extent_end;
1111 if (cur_offset > end)
1112 break;
be20aa9d 1113 }
80ff3856
YZ
1114 btrfs_release_path(root, path);
1115
1116 if (cur_offset <= end && cow_start == (u64)-1)
1117 cow_start = cur_offset;
1118 if (cow_start != (u64)-1) {
1119 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1120 page_started, nr_written, 1);
80ff3856
YZ
1121 BUG_ON(ret);
1122 }
1123
1124 ret = btrfs_end_transaction(trans, root);
1125 BUG_ON(ret);
7ea394f1 1126 btrfs_free_path(path);
80ff3856 1127 return 0;
be20aa9d
CM
1128}
1129
d352ac68
CM
1130/*
1131 * extent_io.c call back to do delayed allocation processing
1132 */
c8b97818 1133static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1134 u64 start, u64 end, int *page_started,
1135 unsigned long *nr_written)
be20aa9d 1136{
be20aa9d 1137 int ret;
7f366cfe 1138 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1139
6cbff00f 1140 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1141 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1142 page_started, 1, nr_written);
6cbff00f 1143 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1144 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1145 page_started, 0, nr_written);
7f366cfe
CM
1146 else if (!btrfs_test_opt(root, COMPRESS))
1147 ret = cow_file_range(inode, locked_page, start, end,
1148 page_started, nr_written, 1);
be20aa9d 1149 else
771ed689 1150 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1151 page_started, nr_written);
b888db2b
CM
1152 return ret;
1153}
1154
d352ac68
CM
1155/*
1156 * extent_io.c set_bit_hook, used to track delayed allocation
1157 * bytes in this file, and to maintain the list of inodes that
1158 * have pending delalloc work to be done.
1159 */
b2950863 1160static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1161 unsigned long old, unsigned long bits)
291d673e 1162{
75eff68e
CM
1163 /*
1164 * set_bit and clear bit hooks normally require _irqsave/restore
1165 * but in this case, we are only testeing for the DELALLOC
1166 * bit, which is only set or cleared with irqs on
1167 */
b0c68f8b 1168 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1169 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 1170 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1171 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1172 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1173 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1174 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1175 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1176 &root->fs_info->delalloc_inodes);
1177 }
75eff68e 1178 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1179 }
1180 return 0;
1181}
1182
d352ac68
CM
1183/*
1184 * extent_io.c clear_bit_hook, see set_bit_hook for why
1185 */
b2950863 1186static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1187 unsigned long old, unsigned long bits)
291d673e 1188{
75eff68e
CM
1189 /*
1190 * set_bit and clear bit hooks normally require _irqsave/restore
1191 * but in this case, we are only testeing for the DELALLOC
1192 * bit, which is only set or cleared with irqs on
1193 */
b0c68f8b 1194 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1195 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1196
75eff68e 1197 spin_lock(&root->fs_info->delalloc_lock);
b0c68f8b 1198 if (end - start + 1 > root->fs_info->delalloc_bytes) {
d397712b
CM
1199 printk(KERN_INFO "btrfs warning: delalloc account "
1200 "%llu %llu\n",
1201 (unsigned long long)end - start + 1,
1202 (unsigned long long)
1203 root->fs_info->delalloc_bytes);
6a63209f 1204 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1205 root->fs_info->delalloc_bytes = 0;
9069218d 1206 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1207 } else {
6a63209f
JB
1208 btrfs_delalloc_free_space(root, inode,
1209 end - start + 1);
b0c68f8b 1210 root->fs_info->delalloc_bytes -= end - start + 1;
9069218d 1211 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
b0c68f8b 1212 }
ea8c2819
CM
1213 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1214 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1215 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1216 }
75eff68e 1217 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1218 }
1219 return 0;
1220}
1221
d352ac68
CM
1222/*
1223 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1224 * we don't create bios that span stripes or chunks
1225 */
239b14b3 1226int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1227 size_t size, struct bio *bio,
1228 unsigned long bio_flags)
239b14b3
CM
1229{
1230 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1231 struct btrfs_mapping_tree *map_tree;
a62b9401 1232 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1233 u64 length = 0;
1234 u64 map_length;
239b14b3
CM
1235 int ret;
1236
771ed689
CM
1237 if (bio_flags & EXTENT_BIO_COMPRESSED)
1238 return 0;
1239
f2d8d74d 1240 length = bio->bi_size;
239b14b3
CM
1241 map_tree = &root->fs_info->mapping_tree;
1242 map_length = length;
cea9e445 1243 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1244 &map_length, NULL, 0);
cea9e445 1245
d397712b 1246 if (map_length < length + size)
239b14b3 1247 return 1;
239b14b3
CM
1248 return 0;
1249}
1250
d352ac68
CM
1251/*
1252 * in order to insert checksums into the metadata in large chunks,
1253 * we wait until bio submission time. All the pages in the bio are
1254 * checksummed and sums are attached onto the ordered extent record.
1255 *
1256 * At IO completion time the cums attached on the ordered extent record
1257 * are inserted into the btree
1258 */
d397712b
CM
1259static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1260 struct bio *bio, int mirror_num,
1261 unsigned long bio_flags)
065631f6 1262{
065631f6 1263 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1264 int ret = 0;
e015640f 1265
d20f7043 1266 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1267 BUG_ON(ret);
4a69a410
CM
1268 return 0;
1269}
e015640f 1270
4a69a410
CM
1271/*
1272 * in order to insert checksums into the metadata in large chunks,
1273 * we wait until bio submission time. All the pages in the bio are
1274 * checksummed and sums are attached onto the ordered extent record.
1275 *
1276 * At IO completion time the cums attached on the ordered extent record
1277 * are inserted into the btree
1278 */
b2950863 1279static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1280 int mirror_num, unsigned long bio_flags)
1281{
1282 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1283 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1284}
1285
d352ac68 1286/*
cad321ad
CM
1287 * extent_io.c submission hook. This does the right thing for csum calculation
1288 * on write, or reading the csums from the tree before a read
d352ac68 1289 */
b2950863 1290static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1291 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1292{
1293 struct btrfs_root *root = BTRFS_I(inode)->root;
1294 int ret = 0;
19b9bdb0 1295 int skip_sum;
44b8bd7e 1296
6cbff00f 1297 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1298
e6dcd2dc
CM
1299 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1300 BUG_ON(ret);
065631f6 1301
4d1b5fb4 1302 if (!(rw & (1 << BIO_RW))) {
d20f7043 1303 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1304 return btrfs_submit_compressed_read(inode, bio,
1305 mirror_num, bio_flags);
d20f7043
CM
1306 } else if (!skip_sum)
1307 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1308 goto mapit;
19b9bdb0 1309 } else if (!skip_sum) {
17d217fe
YZ
1310 /* csum items have already been cloned */
1311 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1312 goto mapit;
19b9bdb0
CM
1313 /* we're doing a write, do the async checksumming */
1314 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1315 inode, rw, bio, mirror_num,
4a69a410
CM
1316 bio_flags, __btrfs_submit_bio_start,
1317 __btrfs_submit_bio_done);
19b9bdb0
CM
1318 }
1319
0b86a832 1320mapit:
8b712842 1321 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1322}
6885f308 1323
d352ac68
CM
1324/*
1325 * given a list of ordered sums record them in the inode. This happens
1326 * at IO completion time based on sums calculated at bio submission time.
1327 */
ba1da2f4 1328static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1329 struct inode *inode, u64 file_offset,
1330 struct list_head *list)
1331{
e6dcd2dc
CM
1332 struct btrfs_ordered_sum *sum;
1333
1334 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1335
1336 list_for_each_entry(sum, list, list) {
d20f7043
CM
1337 btrfs_csum_file_blocks(trans,
1338 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1339 }
1340 return 0;
1341}
1342
ea8c2819
CM
1343int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1344{
d397712b 1345 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1346 WARN_ON(1);
ea8c2819
CM
1347 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1348 GFP_NOFS);
1349}
1350
d352ac68 1351/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1352struct btrfs_writepage_fixup {
1353 struct page *page;
1354 struct btrfs_work work;
1355};
1356
b2950863 1357static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1358{
1359 struct btrfs_writepage_fixup *fixup;
1360 struct btrfs_ordered_extent *ordered;
1361 struct page *page;
1362 struct inode *inode;
1363 u64 page_start;
1364 u64 page_end;
1365
1366 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1367 page = fixup->page;
4a096752 1368again:
247e743c
CM
1369 lock_page(page);
1370 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1371 ClearPageChecked(page);
1372 goto out_page;
1373 }
1374
1375 inode = page->mapping->host;
1376 page_start = page_offset(page);
1377 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1378
1379 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1380
1381 /* already ordered? We're done */
8b62b72b 1382 if (PagePrivate2(page))
247e743c 1383 goto out;
4a096752
CM
1384
1385 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1386 if (ordered) {
1387 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1388 page_end, GFP_NOFS);
1389 unlock_page(page);
1390 btrfs_start_ordered_extent(inode, ordered, 1);
1391 goto again;
1392 }
247e743c 1393
ea8c2819 1394 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1395 ClearPageChecked(page);
1396out:
1397 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1398out_page:
1399 unlock_page(page);
1400 page_cache_release(page);
1401}
1402
1403/*
1404 * There are a few paths in the higher layers of the kernel that directly
1405 * set the page dirty bit without asking the filesystem if it is a
1406 * good idea. This causes problems because we want to make sure COW
1407 * properly happens and the data=ordered rules are followed.
1408 *
c8b97818 1409 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1410 * hasn't been properly setup for IO. We kick off an async process
1411 * to fix it up. The async helper will wait for ordered extents, set
1412 * the delalloc bit and make it safe to write the page.
1413 */
b2950863 1414static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1415{
1416 struct inode *inode = page->mapping->host;
1417 struct btrfs_writepage_fixup *fixup;
1418 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1419
8b62b72b
CM
1420 /* this page is properly in the ordered list */
1421 if (TestClearPagePrivate2(page))
247e743c
CM
1422 return 0;
1423
1424 if (PageChecked(page))
1425 return -EAGAIN;
1426
1427 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1428 if (!fixup)
1429 return -EAGAIN;
f421950f 1430
247e743c
CM
1431 SetPageChecked(page);
1432 page_cache_get(page);
1433 fixup->work.func = btrfs_writepage_fixup_worker;
1434 fixup->page = page;
1435 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1436 return -EAGAIN;
1437}
1438
d899e052
YZ
1439static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1440 struct inode *inode, u64 file_pos,
1441 u64 disk_bytenr, u64 disk_num_bytes,
1442 u64 num_bytes, u64 ram_bytes,
e980b50c 1443 u64 locked_end,
d899e052
YZ
1444 u8 compression, u8 encryption,
1445 u16 other_encoding, int extent_type)
1446{
1447 struct btrfs_root *root = BTRFS_I(inode)->root;
1448 struct btrfs_file_extent_item *fi;
1449 struct btrfs_path *path;
1450 struct extent_buffer *leaf;
1451 struct btrfs_key ins;
1452 u64 hint;
1453 int ret;
1454
1455 path = btrfs_alloc_path();
1456 BUG_ON(!path);
1457
b9473439 1458 path->leave_spinning = 1;
a1ed835e
CM
1459
1460 /*
1461 * we may be replacing one extent in the tree with another.
1462 * The new extent is pinned in the extent map, and we don't want
1463 * to drop it from the cache until it is completely in the btree.
1464 *
1465 * So, tell btrfs_drop_extents to leave this extent in the cache.
1466 * the caller is expected to unpin it and allow it to be merged
1467 * with the others.
1468 */
d899e052 1469 ret = btrfs_drop_extents(trans, root, inode, file_pos,
e980b50c 1470 file_pos + num_bytes, locked_end,
a1ed835e 1471 file_pos, &hint, 0);
d899e052
YZ
1472 BUG_ON(ret);
1473
1474 ins.objectid = inode->i_ino;
1475 ins.offset = file_pos;
1476 ins.type = BTRFS_EXTENT_DATA_KEY;
1477 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1478 BUG_ON(ret);
1479 leaf = path->nodes[0];
1480 fi = btrfs_item_ptr(leaf, path->slots[0],
1481 struct btrfs_file_extent_item);
1482 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1483 btrfs_set_file_extent_type(leaf, fi, extent_type);
1484 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1485 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1486 btrfs_set_file_extent_offset(leaf, fi, 0);
1487 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1488 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1489 btrfs_set_file_extent_compression(leaf, fi, compression);
1490 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1491 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1492
1493 btrfs_unlock_up_safe(path, 1);
1494 btrfs_set_lock_blocking(leaf);
1495
d899e052
YZ
1496 btrfs_mark_buffer_dirty(leaf);
1497
1498 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1499
1500 ins.objectid = disk_bytenr;
1501 ins.offset = disk_num_bytes;
1502 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1503 ret = btrfs_alloc_reserved_file_extent(trans, root,
1504 root->root_key.objectid,
1505 inode->i_ino, file_pos, &ins);
d899e052 1506 BUG_ON(ret);
d899e052 1507 btrfs_free_path(path);
b9473439 1508
d899e052
YZ
1509 return 0;
1510}
1511
5d13a98f
CM
1512/*
1513 * helper function for btrfs_finish_ordered_io, this
1514 * just reads in some of the csum leaves to prime them into ram
1515 * before we start the transaction. It limits the amount of btree
1516 * reads required while inside the transaction.
1517 */
1518static noinline void reada_csum(struct btrfs_root *root,
1519 struct btrfs_path *path,
1520 struct btrfs_ordered_extent *ordered_extent)
1521{
1522 struct btrfs_ordered_sum *sum;
1523 u64 bytenr;
1524
1525 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1526 list);
1527 bytenr = sum->sums[0].bytenr;
1528
1529 /*
1530 * we don't care about the results, the point of this search is
1531 * just to get the btree leaves into ram
1532 */
1533 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1534}
1535
d352ac68
CM
1536/* as ordered data IO finishes, this gets called so we can finish
1537 * an ordered extent if the range of bytes in the file it covers are
1538 * fully written.
1539 */
211f90e6 1540static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1541{
e6dcd2dc
CM
1542 struct btrfs_root *root = BTRFS_I(inode)->root;
1543 struct btrfs_trans_handle *trans;
5d13a98f 1544 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1545 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1546 struct btrfs_path *path;
d899e052 1547 int compressed = 0;
e6dcd2dc
CM
1548 int ret;
1549
1550 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1551 if (!ret)
e6dcd2dc 1552 return 0;
e6dcd2dc 1553
b7ec40d7
CM
1554 /*
1555 * before we join the transaction, try to do some of our IO.
1556 * This will limit the amount of IO that we have to do with
1557 * the transaction running. We're unlikely to need to do any
1558 * IO if the file extents are new, the disk_i_size checks
1559 * covers the most common case.
1560 */
1561 if (start < BTRFS_I(inode)->disk_i_size) {
1562 path = btrfs_alloc_path();
1563 if (path) {
1564 ret = btrfs_lookup_file_extent(NULL, root, path,
1565 inode->i_ino,
1566 start, 0);
5d13a98f
CM
1567 ordered_extent = btrfs_lookup_ordered_extent(inode,
1568 start);
1569 if (!list_empty(&ordered_extent->list)) {
1570 btrfs_release_path(root, path);
1571 reada_csum(root, path, ordered_extent);
1572 }
b7ec40d7
CM
1573 btrfs_free_path(path);
1574 }
1575 }
1576
f9295749 1577 trans = btrfs_join_transaction(root, 1);
e6dcd2dc 1578
5d13a98f
CM
1579 if (!ordered_extent)
1580 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1581 BUG_ON(!ordered_extent);
7ea394f1
YZ
1582 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1583 goto nocow;
e6dcd2dc
CM
1584
1585 lock_extent(io_tree, ordered_extent->file_offset,
1586 ordered_extent->file_offset + ordered_extent->len - 1,
1587 GFP_NOFS);
1588
c8b97818 1589 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1590 compressed = 1;
1591 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1592 BUG_ON(compressed);
1593 ret = btrfs_mark_extent_written(trans, root, inode,
1594 ordered_extent->file_offset,
1595 ordered_extent->file_offset +
1596 ordered_extent->len);
1597 BUG_ON(ret);
1598 } else {
1599 ret = insert_reserved_file_extent(trans, inode,
1600 ordered_extent->file_offset,
1601 ordered_extent->start,
1602 ordered_extent->disk_len,
1603 ordered_extent->len,
1604 ordered_extent->len,
e980b50c
CM
1605 ordered_extent->file_offset +
1606 ordered_extent->len,
d899e052
YZ
1607 compressed, 0, 0,
1608 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1609 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1610 ordered_extent->file_offset,
1611 ordered_extent->len);
d899e052
YZ
1612 BUG_ON(ret);
1613 }
e6dcd2dc
CM
1614 unlock_extent(io_tree, ordered_extent->file_offset,
1615 ordered_extent->file_offset + ordered_extent->len - 1,
1616 GFP_NOFS);
7ea394f1 1617nocow:
e6dcd2dc
CM
1618 add_pending_csums(trans, inode, ordered_extent->file_offset,
1619 &ordered_extent->list);
1620
34353029 1621 mutex_lock(&BTRFS_I(inode)->extent_mutex);
dbe674a9 1622 btrfs_ordered_update_i_size(inode, ordered_extent);
e02119d5 1623 btrfs_update_inode(trans, root, inode);
e6dcd2dc 1624 btrfs_remove_ordered_extent(inode, ordered_extent);
34353029 1625 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
7f3c74fb 1626
e6dcd2dc
CM
1627 /* once for us */
1628 btrfs_put_ordered_extent(ordered_extent);
1629 /* once for the tree */
1630 btrfs_put_ordered_extent(ordered_extent);
1631
e6dcd2dc
CM
1632 btrfs_end_transaction(trans, root);
1633 return 0;
1634}
1635
b2950863 1636static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1637 struct extent_state *state, int uptodate)
1638{
8b62b72b 1639 ClearPagePrivate2(page);
211f90e6
CM
1640 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1641}
1642
d352ac68
CM
1643/*
1644 * When IO fails, either with EIO or csum verification fails, we
1645 * try other mirrors that might have a good copy of the data. This
1646 * io_failure_record is used to record state as we go through all the
1647 * mirrors. If another mirror has good data, the page is set up to date
1648 * and things continue. If a good mirror can't be found, the original
1649 * bio end_io callback is called to indicate things have failed.
1650 */
7e38326f
CM
1651struct io_failure_record {
1652 struct page *page;
1653 u64 start;
1654 u64 len;
1655 u64 logical;
d20f7043 1656 unsigned long bio_flags;
7e38326f
CM
1657 int last_mirror;
1658};
1659
b2950863 1660static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1661 struct page *page, u64 start, u64 end,
1662 struct extent_state *state)
7e38326f
CM
1663{
1664 struct io_failure_record *failrec = NULL;
1665 u64 private;
1666 struct extent_map *em;
1667 struct inode *inode = page->mapping->host;
1668 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1669 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1670 struct bio *bio;
1671 int num_copies;
1672 int ret;
1259ab75 1673 int rw;
7e38326f
CM
1674 u64 logical;
1675
1676 ret = get_state_private(failure_tree, start, &private);
1677 if (ret) {
7e38326f
CM
1678 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1679 if (!failrec)
1680 return -ENOMEM;
1681 failrec->start = start;
1682 failrec->len = end - start + 1;
1683 failrec->last_mirror = 0;
d20f7043 1684 failrec->bio_flags = 0;
7e38326f 1685
890871be 1686 read_lock(&em_tree->lock);
3b951516
CM
1687 em = lookup_extent_mapping(em_tree, start, failrec->len);
1688 if (em->start > start || em->start + em->len < start) {
1689 free_extent_map(em);
1690 em = NULL;
1691 }
890871be 1692 read_unlock(&em_tree->lock);
7e38326f
CM
1693
1694 if (!em || IS_ERR(em)) {
1695 kfree(failrec);
1696 return -EIO;
1697 }
1698 logical = start - em->start;
1699 logical = em->block_start + logical;
d20f7043
CM
1700 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1701 logical = em->block_start;
1702 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1703 }
7e38326f
CM
1704 failrec->logical = logical;
1705 free_extent_map(em);
1706 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1707 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1708 set_state_private(failure_tree, start,
1709 (u64)(unsigned long)failrec);
7e38326f 1710 } else {
587f7704 1711 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1712 }
1713 num_copies = btrfs_num_copies(
1714 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1715 failrec->logical, failrec->len);
1716 failrec->last_mirror++;
1717 if (!state) {
cad321ad 1718 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1719 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1720 failrec->start,
1721 EXTENT_LOCKED);
1722 if (state && state->start != failrec->start)
1723 state = NULL;
cad321ad 1724 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1725 }
1726 if (!state || failrec->last_mirror > num_copies) {
1727 set_state_private(failure_tree, failrec->start, 0);
1728 clear_extent_bits(failure_tree, failrec->start,
1729 failrec->start + failrec->len - 1,
1730 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1731 kfree(failrec);
1732 return -EIO;
1733 }
1734 bio = bio_alloc(GFP_NOFS, 1);
1735 bio->bi_private = state;
1736 bio->bi_end_io = failed_bio->bi_end_io;
1737 bio->bi_sector = failrec->logical >> 9;
1738 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1739 bio->bi_size = 0;
d20f7043 1740
7e38326f 1741 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1742 if (failed_bio->bi_rw & (1 << BIO_RW))
1743 rw = WRITE;
1744 else
1745 rw = READ;
1746
1747 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1748 failrec->last_mirror,
d20f7043 1749 failrec->bio_flags);
1259ab75
CM
1750 return 0;
1751}
1752
d352ac68
CM
1753/*
1754 * each time an IO finishes, we do a fast check in the IO failure tree
1755 * to see if we need to process or clean up an io_failure_record
1756 */
b2950863 1757static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1758{
1759 u64 private;
1760 u64 private_failure;
1761 struct io_failure_record *failure;
1762 int ret;
1763
1764 private = 0;
1765 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1766 (u64)-1, 1, EXTENT_DIRTY)) {
1767 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1768 start, &private_failure);
1769 if (ret == 0) {
1770 failure = (struct io_failure_record *)(unsigned long)
1771 private_failure;
1772 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1773 failure->start, 0);
1774 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1775 failure->start,
1776 failure->start + failure->len - 1,
1777 EXTENT_DIRTY | EXTENT_LOCKED,
1778 GFP_NOFS);
1779 kfree(failure);
1780 }
1781 }
7e38326f
CM
1782 return 0;
1783}
1784
d352ac68
CM
1785/*
1786 * when reads are done, we need to check csums to verify the data is correct
1787 * if there's a match, we allow the bio to finish. If not, we go through
1788 * the io_failure_record routines to find good copies
1789 */
b2950863 1790static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1791 struct extent_state *state)
07157aac 1792{
35ebb934 1793 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1794 struct inode *inode = page->mapping->host;
d1310b2e 1795 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1796 char *kaddr;
aadfeb6e 1797 u64 private = ~(u32)0;
07157aac 1798 int ret;
ff79f819
CM
1799 struct btrfs_root *root = BTRFS_I(inode)->root;
1800 u32 csum = ~(u32)0;
d1310b2e 1801
d20f7043
CM
1802 if (PageChecked(page)) {
1803 ClearPageChecked(page);
1804 goto good;
1805 }
6cbff00f
CH
1806
1807 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1808 return 0;
1809
1810 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1811 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1812 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1813 GFP_NOFS);
b6cda9bc 1814 return 0;
17d217fe 1815 }
d20f7043 1816
c2e639f0 1817 if (state && state->start == start) {
70dec807
CM
1818 private = state->private;
1819 ret = 0;
1820 } else {
1821 ret = get_state_private(io_tree, start, &private);
1822 }
9ab86c8e 1823 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1824 if (ret)
07157aac 1825 goto zeroit;
d397712b 1826
ff79f819
CM
1827 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1828 btrfs_csum_final(csum, (char *)&csum);
d397712b 1829 if (csum != private)
07157aac 1830 goto zeroit;
d397712b 1831
9ab86c8e 1832 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1833good:
7e38326f
CM
1834 /* if the io failure tree for this inode is non-empty,
1835 * check to see if we've recovered from a failed IO
1836 */
1259ab75 1837 btrfs_clean_io_failures(inode, start);
07157aac
CM
1838 return 0;
1839
1840zeroit:
193f284d
CM
1841 if (printk_ratelimit()) {
1842 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1843 "private %llu\n", page->mapping->host->i_ino,
1844 (unsigned long long)start, csum,
1845 (unsigned long long)private);
1846 }
db94535d
CM
1847 memset(kaddr + offset, 1, end - start + 1);
1848 flush_dcache_page(page);
9ab86c8e 1849 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1850 if (private == 0)
1851 return 0;
7e38326f 1852 return -EIO;
07157aac 1853}
b888db2b 1854
7b128766
JB
1855/*
1856 * This creates an orphan entry for the given inode in case something goes
1857 * wrong in the middle of an unlink/truncate.
1858 */
1859int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1860{
1861 struct btrfs_root *root = BTRFS_I(inode)->root;
1862 int ret = 0;
1863
bcc63abb 1864 spin_lock(&root->list_lock);
7b128766
JB
1865
1866 /* already on the orphan list, we're good */
1867 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1868 spin_unlock(&root->list_lock);
7b128766
JB
1869 return 0;
1870 }
1871
1872 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1873
bcc63abb 1874 spin_unlock(&root->list_lock);
7b128766
JB
1875
1876 /*
1877 * insert an orphan item to track this unlinked/truncated file
1878 */
1879 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1880
1881 return ret;
1882}
1883
1884/*
1885 * We have done the truncate/delete so we can go ahead and remove the orphan
1886 * item for this particular inode.
1887 */
1888int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1889{
1890 struct btrfs_root *root = BTRFS_I(inode)->root;
1891 int ret = 0;
1892
bcc63abb 1893 spin_lock(&root->list_lock);
7b128766
JB
1894
1895 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1896 spin_unlock(&root->list_lock);
7b128766
JB
1897 return 0;
1898 }
1899
1900 list_del_init(&BTRFS_I(inode)->i_orphan);
1901 if (!trans) {
bcc63abb 1902 spin_unlock(&root->list_lock);
7b128766
JB
1903 return 0;
1904 }
1905
bcc63abb 1906 spin_unlock(&root->list_lock);
7b128766
JB
1907
1908 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1909
1910 return ret;
1911}
1912
1913/*
1914 * this cleans up any orphans that may be left on the list from the last use
1915 * of this root.
1916 */
1917void btrfs_orphan_cleanup(struct btrfs_root *root)
1918{
1919 struct btrfs_path *path;
1920 struct extent_buffer *leaf;
1921 struct btrfs_item *item;
1922 struct btrfs_key key, found_key;
1923 struct btrfs_trans_handle *trans;
1924 struct inode *inode;
1925 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1926
7b128766
JB
1927 path = btrfs_alloc_path();
1928 if (!path)
1929 return;
1930 path->reada = -1;
1931
1932 key.objectid = BTRFS_ORPHAN_OBJECTID;
1933 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1934 key.offset = (u64)-1;
1935
7b128766
JB
1936
1937 while (1) {
1938 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1939 if (ret < 0) {
1940 printk(KERN_ERR "Error searching slot for orphan: %d"
1941 "\n", ret);
1942 break;
1943 }
1944
1945 /*
1946 * if ret == 0 means we found what we were searching for, which
1947 * is weird, but possible, so only screw with path if we didnt
1948 * find the key and see if we have stuff that matches
1949 */
1950 if (ret > 0) {
1951 if (path->slots[0] == 0)
1952 break;
1953 path->slots[0]--;
1954 }
1955
1956 /* pull out the item */
1957 leaf = path->nodes[0];
1958 item = btrfs_item_nr(leaf, path->slots[0]);
1959 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1960
1961 /* make sure the item matches what we want */
1962 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1963 break;
1964 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1965 break;
1966
1967 /* release the path since we're done with it */
1968 btrfs_release_path(root, path);
1969
1970 /*
1971 * this is where we are basically btrfs_lookup, without the
1972 * crossing root thing. we store the inode number in the
1973 * offset of the orphan item.
1974 */
5d4f98a2
YZ
1975 found_key.objectid = found_key.offset;
1976 found_key.type = BTRFS_INODE_ITEM_KEY;
1977 found_key.offset = 0;
1978 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1979 if (IS_ERR(inode))
7b128766
JB
1980 break;
1981
7b128766
JB
1982 /*
1983 * add this inode to the orphan list so btrfs_orphan_del does
1984 * the proper thing when we hit it
1985 */
bcc63abb 1986 spin_lock(&root->list_lock);
7b128766 1987 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 1988 spin_unlock(&root->list_lock);
7b128766
JB
1989
1990 /*
1991 * if this is a bad inode, means we actually succeeded in
1992 * removing the inode, but not the orphan record, which means
1993 * we need to manually delete the orphan since iput will just
1994 * do a destroy_inode
1995 */
1996 if (is_bad_inode(inode)) {
5b21f2ed 1997 trans = btrfs_start_transaction(root, 1);
7b128766 1998 btrfs_orphan_del(trans, inode);
5b21f2ed 1999 btrfs_end_transaction(trans, root);
7b128766
JB
2000 iput(inode);
2001 continue;
2002 }
2003
2004 /* if we have links, this was a truncate, lets do that */
2005 if (inode->i_nlink) {
2006 nr_truncate++;
2007 btrfs_truncate(inode);
2008 } else {
2009 nr_unlink++;
2010 }
2011
2012 /* this will do delete_inode and everything for us */
2013 iput(inode);
2014 }
2015
2016 if (nr_unlink)
2017 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2018 if (nr_truncate)
2019 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2020
2021 btrfs_free_path(path);
7b128766
JB
2022}
2023
46a53cca
CM
2024/*
2025 * very simple check to peek ahead in the leaf looking for xattrs. If we
2026 * don't find any xattrs, we know there can't be any acls.
2027 *
2028 * slot is the slot the inode is in, objectid is the objectid of the inode
2029 */
2030static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2031 int slot, u64 objectid)
2032{
2033 u32 nritems = btrfs_header_nritems(leaf);
2034 struct btrfs_key found_key;
2035 int scanned = 0;
2036
2037 slot++;
2038 while (slot < nritems) {
2039 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2040
2041 /* we found a different objectid, there must not be acls */
2042 if (found_key.objectid != objectid)
2043 return 0;
2044
2045 /* we found an xattr, assume we've got an acl */
2046 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2047 return 1;
2048
2049 /*
2050 * we found a key greater than an xattr key, there can't
2051 * be any acls later on
2052 */
2053 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2054 return 0;
2055
2056 slot++;
2057 scanned++;
2058
2059 /*
2060 * it goes inode, inode backrefs, xattrs, extents,
2061 * so if there are a ton of hard links to an inode there can
2062 * be a lot of backrefs. Don't waste time searching too hard,
2063 * this is just an optimization
2064 */
2065 if (scanned >= 8)
2066 break;
2067 }
2068 /* we hit the end of the leaf before we found an xattr or
2069 * something larger than an xattr. We have to assume the inode
2070 * has acls
2071 */
2072 return 1;
2073}
2074
d352ac68
CM
2075/*
2076 * read an inode from the btree into the in-memory inode
2077 */
5d4f98a2 2078static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2079{
2080 struct btrfs_path *path;
5f39d397 2081 struct extent_buffer *leaf;
39279cc3 2082 struct btrfs_inode_item *inode_item;
0b86a832 2083 struct btrfs_timespec *tspec;
39279cc3
CM
2084 struct btrfs_root *root = BTRFS_I(inode)->root;
2085 struct btrfs_key location;
46a53cca 2086 int maybe_acls;
39279cc3 2087 u64 alloc_group_block;
618e21d5 2088 u32 rdev;
39279cc3
CM
2089 int ret;
2090
2091 path = btrfs_alloc_path();
2092 BUG_ON(!path);
39279cc3 2093 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2094
39279cc3 2095 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2096 if (ret)
39279cc3 2097 goto make_bad;
39279cc3 2098
5f39d397
CM
2099 leaf = path->nodes[0];
2100 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2101 struct btrfs_inode_item);
2102
2103 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2104 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2105 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2106 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2107 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2108
2109 tspec = btrfs_inode_atime(inode_item);
2110 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2111 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2112
2113 tspec = btrfs_inode_mtime(inode_item);
2114 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2115 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2116
2117 tspec = btrfs_inode_ctime(inode_item);
2118 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2119 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2120
a76a3cd4 2121 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2122 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2123 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2124 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2125 inode->i_rdev = 0;
5f39d397
CM
2126 rdev = btrfs_inode_rdev(leaf, inode_item);
2127
aec7477b 2128 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2129 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2130
5f39d397 2131 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2132
46a53cca
CM
2133 /*
2134 * try to precache a NULL acl entry for files that don't have
2135 * any xattrs or acls
2136 */
2137 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2138 if (!maybe_acls) {
2139 BTRFS_I(inode)->i_acl = NULL;
2140 BTRFS_I(inode)->i_default_acl = NULL;
2141 }
2142
d2fb3437
YZ
2143 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2144 alloc_group_block, 0);
39279cc3
CM
2145 btrfs_free_path(path);
2146 inode_item = NULL;
2147
39279cc3 2148 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2149 case S_IFREG:
2150 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2151 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2152 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2153 inode->i_fop = &btrfs_file_operations;
2154 inode->i_op = &btrfs_file_inode_operations;
2155 break;
2156 case S_IFDIR:
2157 inode->i_fop = &btrfs_dir_file_operations;
2158 if (root == root->fs_info->tree_root)
2159 inode->i_op = &btrfs_dir_ro_inode_operations;
2160 else
2161 inode->i_op = &btrfs_dir_inode_operations;
2162 break;
2163 case S_IFLNK:
2164 inode->i_op = &btrfs_symlink_inode_operations;
2165 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2166 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2167 break;
618e21d5 2168 default:
0279b4cd 2169 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2170 init_special_inode(inode, inode->i_mode, rdev);
2171 break;
39279cc3 2172 }
6cbff00f
CH
2173
2174 btrfs_update_iflags(inode);
39279cc3
CM
2175 return;
2176
2177make_bad:
39279cc3 2178 btrfs_free_path(path);
39279cc3
CM
2179 make_bad_inode(inode);
2180}
2181
d352ac68
CM
2182/*
2183 * given a leaf and an inode, copy the inode fields into the leaf
2184 */
e02119d5
CM
2185static void fill_inode_item(struct btrfs_trans_handle *trans,
2186 struct extent_buffer *leaf,
5f39d397 2187 struct btrfs_inode_item *item,
39279cc3
CM
2188 struct inode *inode)
2189{
5f39d397
CM
2190 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2191 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2192 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2193 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2194 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2195
2196 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2197 inode->i_atime.tv_sec);
2198 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2199 inode->i_atime.tv_nsec);
2200
2201 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2202 inode->i_mtime.tv_sec);
2203 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2204 inode->i_mtime.tv_nsec);
2205
2206 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2207 inode->i_ctime.tv_sec);
2208 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2209 inode->i_ctime.tv_nsec);
2210
a76a3cd4 2211 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2212 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2213 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2214 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2215 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2216 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2217 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2218}
2219
d352ac68
CM
2220/*
2221 * copy everything in the in-memory inode into the btree.
2222 */
d397712b
CM
2223noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2224 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2225{
2226 struct btrfs_inode_item *inode_item;
2227 struct btrfs_path *path;
5f39d397 2228 struct extent_buffer *leaf;
39279cc3
CM
2229 int ret;
2230
2231 path = btrfs_alloc_path();
2232 BUG_ON(!path);
b9473439 2233 path->leave_spinning = 1;
39279cc3
CM
2234 ret = btrfs_lookup_inode(trans, root, path,
2235 &BTRFS_I(inode)->location, 1);
2236 if (ret) {
2237 if (ret > 0)
2238 ret = -ENOENT;
2239 goto failed;
2240 }
2241
b4ce94de 2242 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2243 leaf = path->nodes[0];
2244 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2245 struct btrfs_inode_item);
2246
e02119d5 2247 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2248 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2249 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2250 ret = 0;
2251failed:
39279cc3
CM
2252 btrfs_free_path(path);
2253 return ret;
2254}
2255
2256
d352ac68
CM
2257/*
2258 * unlink helper that gets used here in inode.c and in the tree logging
2259 * recovery code. It remove a link in a directory with a given name, and
2260 * also drops the back refs in the inode to the directory
2261 */
e02119d5
CM
2262int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2263 struct btrfs_root *root,
2264 struct inode *dir, struct inode *inode,
2265 const char *name, int name_len)
39279cc3
CM
2266{
2267 struct btrfs_path *path;
39279cc3 2268 int ret = 0;
5f39d397 2269 struct extent_buffer *leaf;
39279cc3 2270 struct btrfs_dir_item *di;
5f39d397 2271 struct btrfs_key key;
aec7477b 2272 u64 index;
39279cc3
CM
2273
2274 path = btrfs_alloc_path();
54aa1f4d
CM
2275 if (!path) {
2276 ret = -ENOMEM;
2277 goto err;
2278 }
2279
b9473439 2280 path->leave_spinning = 1;
39279cc3
CM
2281 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2282 name, name_len, -1);
2283 if (IS_ERR(di)) {
2284 ret = PTR_ERR(di);
2285 goto err;
2286 }
2287 if (!di) {
2288 ret = -ENOENT;
2289 goto err;
2290 }
5f39d397
CM
2291 leaf = path->nodes[0];
2292 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2293 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2294 if (ret)
2295 goto err;
39279cc3
CM
2296 btrfs_release_path(root, path);
2297
aec7477b 2298 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2299 inode->i_ino,
2300 dir->i_ino, &index);
aec7477b 2301 if (ret) {
d397712b 2302 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2303 "inode %lu parent %lu\n", name_len, name,
e02119d5 2304 inode->i_ino, dir->i_ino);
aec7477b
JB
2305 goto err;
2306 }
2307
39279cc3 2308 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2309 index, name, name_len, -1);
39279cc3
CM
2310 if (IS_ERR(di)) {
2311 ret = PTR_ERR(di);
2312 goto err;
2313 }
2314 if (!di) {
2315 ret = -ENOENT;
2316 goto err;
2317 }
2318 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2319 btrfs_release_path(root, path);
39279cc3 2320
e02119d5
CM
2321 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2322 inode, dir->i_ino);
49eb7e46 2323 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2324
2325 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2326 dir, index);
2327 BUG_ON(ret);
39279cc3
CM
2328err:
2329 btrfs_free_path(path);
e02119d5
CM
2330 if (ret)
2331 goto out;
2332
2333 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2334 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2335 btrfs_update_inode(trans, root, dir);
2336 btrfs_drop_nlink(inode);
2337 ret = btrfs_update_inode(trans, root, inode);
2338 dir->i_sb->s_dirt = 1;
2339out:
39279cc3
CM
2340 return ret;
2341}
2342
2343static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2344{
2345 struct btrfs_root *root;
2346 struct btrfs_trans_handle *trans;
7b128766 2347 struct inode *inode = dentry->d_inode;
39279cc3 2348 int ret;
1832a6d5 2349 unsigned long nr = 0;
39279cc3
CM
2350
2351 root = BTRFS_I(dir)->root;
1832a6d5 2352
39279cc3 2353 trans = btrfs_start_transaction(root, 1);
5f39d397 2354
39279cc3 2355 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2356
2357 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2358
e02119d5
CM
2359 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2360 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2361
2362 if (inode->i_nlink == 0)
2363 ret = btrfs_orphan_add(trans, inode);
2364
d3c2fdcf 2365 nr = trans->blocks_used;
5f39d397 2366
89ce8a63 2367 btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2368 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2369 return ret;
2370}
2371
2372static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2373{
2374 struct inode *inode = dentry->d_inode;
1832a6d5 2375 int err = 0;
39279cc3
CM
2376 int ret;
2377 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2378 struct btrfs_trans_handle *trans;
1832a6d5 2379 unsigned long nr = 0;
39279cc3 2380
3394e160
CM
2381 /*
2382 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2383 * the root of a subvolume or snapshot
2384 */
2385 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2386 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
134d4512 2387 return -ENOTEMPTY;
925baedd 2388 }
134d4512 2389
39279cc3
CM
2390 trans = btrfs_start_transaction(root, 1);
2391 btrfs_set_trans_block_group(trans, dir);
39279cc3 2392
7b128766
JB
2393 err = btrfs_orphan_add(trans, inode);
2394 if (err)
2395 goto fail_trans;
2396
39279cc3 2397 /* now the directory is empty */
e02119d5
CM
2398 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2399 dentry->d_name.name, dentry->d_name.len);
d397712b 2400 if (!err)
dbe674a9 2401 btrfs_i_size_write(inode, 0);
3954401f 2402
7b128766 2403fail_trans:
d3c2fdcf 2404 nr = trans->blocks_used;
89ce8a63 2405 ret = btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2406 btrfs_btree_balance_dirty(root, nr);
3954401f 2407
39279cc3
CM
2408 if (ret && !err)
2409 err = ret;
2410 return err;
2411}
2412
d20f7043 2413#if 0
323ac95b
CM
2414/*
2415 * when truncating bytes in a file, it is possible to avoid reading
2416 * the leaves that contain only checksum items. This can be the
2417 * majority of the IO required to delete a large file, but it must
2418 * be done carefully.
2419 *
2420 * The keys in the level just above the leaves are checked to make sure
2421 * the lowest key in a given leaf is a csum key, and starts at an offset
2422 * after the new size.
2423 *
2424 * Then the key for the next leaf is checked to make sure it also has
2425 * a checksum item for the same file. If it does, we know our target leaf
2426 * contains only checksum items, and it can be safely freed without reading
2427 * it.
2428 *
2429 * This is just an optimization targeted at large files. It may do
2430 * nothing. It will return 0 unless things went badly.
2431 */
2432static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2433 struct btrfs_root *root,
2434 struct btrfs_path *path,
2435 struct inode *inode, u64 new_size)
2436{
2437 struct btrfs_key key;
2438 int ret;
2439 int nritems;
2440 struct btrfs_key found_key;
2441 struct btrfs_key other_key;
5b84e8d6
YZ
2442 struct btrfs_leaf_ref *ref;
2443 u64 leaf_gen;
2444 u64 leaf_start;
323ac95b
CM
2445
2446 path->lowest_level = 1;
2447 key.objectid = inode->i_ino;
2448 key.type = BTRFS_CSUM_ITEM_KEY;
2449 key.offset = new_size;
2450again:
2451 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2452 if (ret < 0)
2453 goto out;
2454
2455 if (path->nodes[1] == NULL) {
2456 ret = 0;
2457 goto out;
2458 }
2459 ret = 0;
2460 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2461 nritems = btrfs_header_nritems(path->nodes[1]);
2462
2463 if (!nritems)
2464 goto out;
2465
2466 if (path->slots[1] >= nritems)
2467 goto next_node;
2468
2469 /* did we find a key greater than anything we want to delete? */
2470 if (found_key.objectid > inode->i_ino ||
2471 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2472 goto out;
2473
2474 /* we check the next key in the node to make sure the leave contains
2475 * only checksum items. This comparison doesn't work if our
2476 * leaf is the last one in the node
2477 */
2478 if (path->slots[1] + 1 >= nritems) {
2479next_node:
2480 /* search forward from the last key in the node, this
2481 * will bring us into the next node in the tree
2482 */
2483 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2484
2485 /* unlikely, but we inc below, so check to be safe */
2486 if (found_key.offset == (u64)-1)
2487 goto out;
2488
2489 /* search_forward needs a path with locks held, do the
2490 * search again for the original key. It is possible
2491 * this will race with a balance and return a path that
2492 * we could modify, but this drop is just an optimization
2493 * and is allowed to miss some leaves.
2494 */
2495 btrfs_release_path(root, path);
2496 found_key.offset++;
2497
2498 /* setup a max key for search_forward */
2499 other_key.offset = (u64)-1;
2500 other_key.type = key.type;
2501 other_key.objectid = key.objectid;
2502
2503 path->keep_locks = 1;
2504 ret = btrfs_search_forward(root, &found_key, &other_key,
2505 path, 0, 0);
2506 path->keep_locks = 0;
2507 if (ret || found_key.objectid != key.objectid ||
2508 found_key.type != key.type) {
2509 ret = 0;
2510 goto out;
2511 }
2512
2513 key.offset = found_key.offset;
2514 btrfs_release_path(root, path);
2515 cond_resched();
2516 goto again;
2517 }
2518
2519 /* we know there's one more slot after us in the tree,
2520 * read that key so we can verify it is also a checksum item
2521 */
2522 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2523
2524 if (found_key.objectid < inode->i_ino)
2525 goto next_key;
2526
2527 if (found_key.type != key.type || found_key.offset < new_size)
2528 goto next_key;
2529
2530 /*
2531 * if the key for the next leaf isn't a csum key from this objectid,
2532 * we can't be sure there aren't good items inside this leaf.
2533 * Bail out
2534 */
2535 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2536 goto out;
2537
5b84e8d6
YZ
2538 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2539 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2540 /*
2541 * it is safe to delete this leaf, it contains only
2542 * csum items from this inode at an offset >= new_size
2543 */
5b84e8d6 2544 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2545 BUG_ON(ret);
2546
5b84e8d6
YZ
2547 if (root->ref_cows && leaf_gen < trans->transid) {
2548 ref = btrfs_alloc_leaf_ref(root, 0);
2549 if (ref) {
2550 ref->root_gen = root->root_key.offset;
2551 ref->bytenr = leaf_start;
2552 ref->owner = 0;
2553 ref->generation = leaf_gen;
2554 ref->nritems = 0;
2555
bd56b302
CM
2556 btrfs_sort_leaf_ref(ref);
2557
5b84e8d6
YZ
2558 ret = btrfs_add_leaf_ref(root, ref, 0);
2559 WARN_ON(ret);
2560 btrfs_free_leaf_ref(root, ref);
2561 } else {
2562 WARN_ON(1);
2563 }
2564 }
323ac95b
CM
2565next_key:
2566 btrfs_release_path(root, path);
2567
2568 if (other_key.objectid == inode->i_ino &&
2569 other_key.type == key.type && other_key.offset > key.offset) {
2570 key.offset = other_key.offset;
2571 cond_resched();
2572 goto again;
2573 }
2574 ret = 0;
2575out:
2576 /* fixup any changes we've made to the path */
2577 path->lowest_level = 0;
2578 path->keep_locks = 0;
2579 btrfs_release_path(root, path);
2580 return ret;
2581}
2582
d20f7043
CM
2583#endif
2584
39279cc3
CM
2585/*
2586 * this can truncate away extent items, csum items and directory items.
2587 * It starts at a high offset and removes keys until it can't find
d352ac68 2588 * any higher than new_size
39279cc3
CM
2589 *
2590 * csum items that cross the new i_size are truncated to the new size
2591 * as well.
7b128766
JB
2592 *
2593 * min_type is the minimum key type to truncate down to. If set to 0, this
2594 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2595 */
e02119d5
CM
2596noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2597 struct btrfs_root *root,
2598 struct inode *inode,
2599 u64 new_size, u32 min_type)
39279cc3
CM
2600{
2601 int ret;
2602 struct btrfs_path *path;
2603 struct btrfs_key key;
5f39d397 2604 struct btrfs_key found_key;
06d9a8d7 2605 u32 found_type = (u8)-1;
5f39d397 2606 struct extent_buffer *leaf;
39279cc3
CM
2607 struct btrfs_file_extent_item *fi;
2608 u64 extent_start = 0;
db94535d 2609 u64 extent_num_bytes = 0;
5d4f98a2 2610 u64 extent_offset = 0;
39279cc3
CM
2611 u64 item_end = 0;
2612 int found_extent;
2613 int del_item;
85e21bac
CM
2614 int pending_del_nr = 0;
2615 int pending_del_slot = 0;
179e29e4 2616 int extent_type = -1;
771ed689 2617 int encoding;
3b951516 2618 u64 mask = root->sectorsize - 1;
39279cc3 2619
e02119d5 2620 if (root->ref_cows)
5b21f2ed 2621 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
39279cc3
CM
2622 path = btrfs_alloc_path();
2623 BUG_ON(!path);
33c17ad5 2624 path->reada = -1;
5f39d397 2625
39279cc3
CM
2626 /* FIXME, add redo link to tree so we don't leak on crash */
2627 key.objectid = inode->i_ino;
2628 key.offset = (u64)-1;
5f39d397
CM
2629 key.type = (u8)-1;
2630
85e21bac 2631search_again:
b9473439 2632 path->leave_spinning = 1;
85e21bac 2633 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
d397712b 2634 if (ret < 0)
85e21bac 2635 goto error;
d397712b 2636
85e21bac 2637 if (ret > 0) {
e02119d5
CM
2638 /* there are no items in the tree for us to truncate, we're
2639 * done
2640 */
2641 if (path->slots[0] == 0) {
2642 ret = 0;
2643 goto error;
2644 }
85e21bac
CM
2645 path->slots[0]--;
2646 }
2647
d397712b 2648 while (1) {
39279cc3 2649 fi = NULL;
5f39d397
CM
2650 leaf = path->nodes[0];
2651 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2652 found_type = btrfs_key_type(&found_key);
771ed689 2653 encoding = 0;
39279cc3 2654
5f39d397 2655 if (found_key.objectid != inode->i_ino)
39279cc3 2656 break;
5f39d397 2657
85e21bac 2658 if (found_type < min_type)
39279cc3
CM
2659 break;
2660
5f39d397 2661 item_end = found_key.offset;
39279cc3 2662 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2663 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2664 struct btrfs_file_extent_item);
179e29e4 2665 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2666 encoding = btrfs_file_extent_compression(leaf, fi);
2667 encoding |= btrfs_file_extent_encryption(leaf, fi);
2668 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2669
179e29e4 2670 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2671 item_end +=
db94535d 2672 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2673 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2674 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2675 fi);
39279cc3 2676 }
008630c1 2677 item_end--;
39279cc3 2678 }
e02119d5 2679 if (item_end < new_size) {
d397712b 2680 if (found_type == BTRFS_DIR_ITEM_KEY)
b888db2b 2681 found_type = BTRFS_INODE_ITEM_KEY;
d397712b 2682 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
d20f7043 2683 found_type = BTRFS_EXTENT_DATA_KEY;
d397712b 2684 else if (found_type == BTRFS_EXTENT_DATA_KEY)
85e21bac 2685 found_type = BTRFS_XATTR_ITEM_KEY;
d397712b 2686 else if (found_type == BTRFS_XATTR_ITEM_KEY)
85e21bac 2687 found_type = BTRFS_INODE_REF_KEY;
d397712b 2688 else if (found_type)
b888db2b 2689 found_type--;
d397712b 2690 else
b888db2b 2691 break;
a61721d5 2692 btrfs_set_key_type(&key, found_type);
85e21bac 2693 goto next;
39279cc3 2694 }
e02119d5 2695 if (found_key.offset >= new_size)
39279cc3
CM
2696 del_item = 1;
2697 else
2698 del_item = 0;
2699 found_extent = 0;
2700
2701 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2702 if (found_type != BTRFS_EXTENT_DATA_KEY)
2703 goto delete;
2704
2705 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2706 u64 num_dec;
db94535d 2707 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2708 if (!del_item && !encoding) {
db94535d
CM
2709 u64 orig_num_bytes =
2710 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2711 extent_num_bytes = new_size -
5f39d397 2712 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2713 extent_num_bytes = extent_num_bytes &
2714 ~((u64)root->sectorsize - 1);
db94535d
CM
2715 btrfs_set_file_extent_num_bytes(leaf, fi,
2716 extent_num_bytes);
2717 num_dec = (orig_num_bytes -
9069218d 2718 extent_num_bytes);
e02119d5 2719 if (root->ref_cows && extent_start != 0)
a76a3cd4 2720 inode_sub_bytes(inode, num_dec);
5f39d397 2721 btrfs_mark_buffer_dirty(leaf);
39279cc3 2722 } else {
db94535d
CM
2723 extent_num_bytes =
2724 btrfs_file_extent_disk_num_bytes(leaf,
2725 fi);
5d4f98a2
YZ
2726 extent_offset = found_key.offset -
2727 btrfs_file_extent_offset(leaf, fi);
2728
39279cc3 2729 /* FIXME blocksize != 4096 */
9069218d 2730 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2731 if (extent_start != 0) {
2732 found_extent = 1;
e02119d5 2733 if (root->ref_cows)
a76a3cd4 2734 inode_sub_bytes(inode, num_dec);
e02119d5 2735 }
39279cc3 2736 }
9069218d 2737 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
2738 /*
2739 * we can't truncate inline items that have had
2740 * special encodings
2741 */
2742 if (!del_item &&
2743 btrfs_file_extent_compression(leaf, fi) == 0 &&
2744 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2745 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
2746 u32 size = new_size - found_key.offset;
2747
2748 if (root->ref_cows) {
a76a3cd4
YZ
2749 inode_sub_bytes(inode, item_end + 1 -
2750 new_size);
e02119d5
CM
2751 }
2752 size =
2753 btrfs_file_extent_calc_inline_size(size);
9069218d 2754 ret = btrfs_truncate_item(trans, root, path,
e02119d5 2755 size, 1);
9069218d 2756 BUG_ON(ret);
e02119d5 2757 } else if (root->ref_cows) {
a76a3cd4
YZ
2758 inode_sub_bytes(inode, item_end + 1 -
2759 found_key.offset);
9069218d 2760 }
39279cc3 2761 }
179e29e4 2762delete:
39279cc3 2763 if (del_item) {
85e21bac
CM
2764 if (!pending_del_nr) {
2765 /* no pending yet, add ourselves */
2766 pending_del_slot = path->slots[0];
2767 pending_del_nr = 1;
2768 } else if (pending_del_nr &&
2769 path->slots[0] + 1 == pending_del_slot) {
2770 /* hop on the pending chunk */
2771 pending_del_nr++;
2772 pending_del_slot = path->slots[0];
2773 } else {
d397712b 2774 BUG();
85e21bac 2775 }
39279cc3
CM
2776 } else {
2777 break;
2778 }
5d4f98a2 2779 if (found_extent && root->ref_cows) {
b9473439 2780 btrfs_set_path_blocking(path);
39279cc3 2781 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
2782 extent_num_bytes, 0,
2783 btrfs_header_owner(leaf),
2784 inode->i_ino, extent_offset);
39279cc3
CM
2785 BUG_ON(ret);
2786 }
85e21bac
CM
2787next:
2788 if (path->slots[0] == 0) {
2789 if (pending_del_nr)
2790 goto del_pending;
2791 btrfs_release_path(root, path);
06d9a8d7
CM
2792 if (found_type == BTRFS_INODE_ITEM_KEY)
2793 break;
85e21bac
CM
2794 goto search_again;
2795 }
2796
2797 path->slots[0]--;
2798 if (pending_del_nr &&
2799 path->slots[0] + 1 != pending_del_slot) {
2800 struct btrfs_key debug;
2801del_pending:
2802 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2803 pending_del_slot);
2804 ret = btrfs_del_items(trans, root, path,
2805 pending_del_slot,
2806 pending_del_nr);
2807 BUG_ON(ret);
2808 pending_del_nr = 0;
2809 btrfs_release_path(root, path);
06d9a8d7
CM
2810 if (found_type == BTRFS_INODE_ITEM_KEY)
2811 break;
85e21bac
CM
2812 goto search_again;
2813 }
39279cc3
CM
2814 }
2815 ret = 0;
2816error:
85e21bac
CM
2817 if (pending_del_nr) {
2818 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2819 pending_del_nr);
2820 }
39279cc3
CM
2821 btrfs_free_path(path);
2822 inode->i_sb->s_dirt = 1;
2823 return ret;
2824}
2825
2826/*
2827 * taken from block_truncate_page, but does cow as it zeros out
2828 * any bytes left in the last page in the file.
2829 */
2830static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2831{
2832 struct inode *inode = mapping->host;
db94535d 2833 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
2834 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2835 struct btrfs_ordered_extent *ordered;
2836 char *kaddr;
db94535d 2837 u32 blocksize = root->sectorsize;
39279cc3
CM
2838 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2839 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2840 struct page *page;
39279cc3 2841 int ret = 0;
a52d9a80 2842 u64 page_start;
e6dcd2dc 2843 u64 page_end;
39279cc3
CM
2844
2845 if ((offset & (blocksize - 1)) == 0)
2846 goto out;
2847
2848 ret = -ENOMEM;
211c17f5 2849again:
39279cc3
CM
2850 page = grab_cache_page(mapping, index);
2851 if (!page)
2852 goto out;
e6dcd2dc
CM
2853
2854 page_start = page_offset(page);
2855 page_end = page_start + PAGE_CACHE_SIZE - 1;
2856
39279cc3 2857 if (!PageUptodate(page)) {
9ebefb18 2858 ret = btrfs_readpage(NULL, page);
39279cc3 2859 lock_page(page);
211c17f5
CM
2860 if (page->mapping != mapping) {
2861 unlock_page(page);
2862 page_cache_release(page);
2863 goto again;
2864 }
39279cc3
CM
2865 if (!PageUptodate(page)) {
2866 ret = -EIO;
89642229 2867 goto out_unlock;
39279cc3
CM
2868 }
2869 }
211c17f5 2870 wait_on_page_writeback(page);
e6dcd2dc
CM
2871
2872 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2873 set_page_extent_mapped(page);
2874
2875 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2876 if (ordered) {
2877 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2878 unlock_page(page);
2879 page_cache_release(page);
eb84ae03 2880 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
2881 btrfs_put_ordered_extent(ordered);
2882 goto again;
2883 }
2884
ea8c2819 2885 btrfs_set_extent_delalloc(inode, page_start, page_end);
e6dcd2dc
CM
2886 ret = 0;
2887 if (offset != PAGE_CACHE_SIZE) {
2888 kaddr = kmap(page);
2889 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2890 flush_dcache_page(page);
2891 kunmap(page);
2892 }
247e743c 2893 ClearPageChecked(page);
e6dcd2dc
CM
2894 set_page_dirty(page);
2895 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 2896
89642229 2897out_unlock:
39279cc3
CM
2898 unlock_page(page);
2899 page_cache_release(page);
2900out:
2901 return ret;
2902}
2903
9036c102 2904int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 2905{
9036c102
YZ
2906 struct btrfs_trans_handle *trans;
2907 struct btrfs_root *root = BTRFS_I(inode)->root;
2908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2909 struct extent_map *em;
2910 u64 mask = root->sectorsize - 1;
2911 u64 hole_start = (inode->i_size + mask) & ~mask;
2912 u64 block_end = (size + mask) & ~mask;
2913 u64 last_byte;
2914 u64 cur_offset;
2915 u64 hole_size;
39279cc3
CM
2916 int err;
2917
9036c102
YZ
2918 if (size <= hole_start)
2919 return 0;
2920
6a63209f 2921 err = btrfs_check_metadata_free_space(root);
39279cc3
CM
2922 if (err)
2923 return err;
2924
9036c102 2925 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2bf5a725 2926
9036c102
YZ
2927 while (1) {
2928 struct btrfs_ordered_extent *ordered;
2929 btrfs_wait_ordered_range(inode, hole_start,
2930 block_end - hole_start);
2931 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2932 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2933 if (!ordered)
2934 break;
2935 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2936 btrfs_put_ordered_extent(ordered);
2937 }
39279cc3 2938
9036c102
YZ
2939 trans = btrfs_start_transaction(root, 1);
2940 btrfs_set_trans_block_group(trans, inode);
39279cc3 2941
9036c102
YZ
2942 cur_offset = hole_start;
2943 while (1) {
2944 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2945 block_end - cur_offset, 0);
2946 BUG_ON(IS_ERR(em) || !em);
2947 last_byte = min(extent_map_end(em), block_end);
2948 last_byte = (last_byte + mask) & ~mask;
2949 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
771ed689 2950 u64 hint_byte = 0;
9036c102 2951 hole_size = last_byte - cur_offset;
771ed689
CM
2952 err = btrfs_drop_extents(trans, root, inode,
2953 cur_offset,
2954 cur_offset + hole_size,
e980b50c 2955 block_end,
a1ed835e 2956 cur_offset, &hint_byte, 1);
771ed689
CM
2957 if (err)
2958 break;
9036c102
YZ
2959 err = btrfs_insert_file_extent(trans, root,
2960 inode->i_ino, cur_offset, 0,
2961 0, hole_size, 0, hole_size,
2962 0, 0, 0);
2963 btrfs_drop_extent_cache(inode, hole_start,
2964 last_byte - 1, 0);
2965 }
2966 free_extent_map(em);
2967 cur_offset = last_byte;
2968 if (err || cur_offset >= block_end)
2969 break;
2970 }
1832a6d5 2971
9036c102
YZ
2972 btrfs_end_transaction(trans, root);
2973 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2974 return err;
2975}
39279cc3 2976
9036c102
YZ
2977static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2978{
2979 struct inode *inode = dentry->d_inode;
2980 int err;
39279cc3 2981
9036c102
YZ
2982 err = inode_change_ok(inode, attr);
2983 if (err)
2984 return err;
2bf5a725 2985
5a3f23d5
CM
2986 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2987 if (attr->ia_size > inode->i_size) {
2988 err = btrfs_cont_expand(inode, attr->ia_size);
2989 if (err)
2990 return err;
2991 } else if (inode->i_size > 0 &&
2992 attr->ia_size == 0) {
2993
2994 /* we're truncating a file that used to have good
2995 * data down to zero. Make sure it gets into
2996 * the ordered flush list so that any new writes
2997 * get down to disk quickly.
2998 */
2999 BTRFS_I(inode)->ordered_data_close = 1;
3000 }
39279cc3 3001 }
9036c102 3002
39279cc3 3003 err = inode_setattr(inode, attr);
33268eaf
JB
3004
3005 if (!err && ((attr->ia_valid & ATTR_MODE)))
3006 err = btrfs_acl_chmod(inode);
39279cc3
CM
3007 return err;
3008}
61295eb8 3009
39279cc3
CM
3010void btrfs_delete_inode(struct inode *inode)
3011{
3012 struct btrfs_trans_handle *trans;
3013 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3014 unsigned long nr;
39279cc3
CM
3015 int ret;
3016
3017 truncate_inode_pages(&inode->i_data, 0);
3018 if (is_bad_inode(inode)) {
7b128766 3019 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3020 goto no_delete;
3021 }
4a096752 3022 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3023
dbe674a9 3024 btrfs_i_size_write(inode, 0);
180591bc 3025 trans = btrfs_join_transaction(root, 1);
5f39d397 3026
39279cc3 3027 btrfs_set_trans_block_group(trans, inode);
e02119d5 3028 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
7b128766
JB
3029 if (ret) {
3030 btrfs_orphan_del(NULL, inode);
54aa1f4d 3031 goto no_delete_lock;
7b128766
JB
3032 }
3033
3034 btrfs_orphan_del(trans, inode);
85e21bac 3035
d3c2fdcf 3036 nr = trans->blocks_used;
85e21bac 3037 clear_inode(inode);
5f39d397 3038
39279cc3 3039 btrfs_end_transaction(trans, root);
d3c2fdcf 3040 btrfs_btree_balance_dirty(root, nr);
39279cc3 3041 return;
54aa1f4d
CM
3042
3043no_delete_lock:
d3c2fdcf 3044 nr = trans->blocks_used;
54aa1f4d 3045 btrfs_end_transaction(trans, root);
d3c2fdcf 3046 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3047no_delete:
3048 clear_inode(inode);
3049}
3050
3051/*
3052 * this returns the key found in the dir entry in the location pointer.
3053 * If no dir entries were found, location->objectid is 0.
3054 */
3055static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3056 struct btrfs_key *location)
3057{
3058 const char *name = dentry->d_name.name;
3059 int namelen = dentry->d_name.len;
3060 struct btrfs_dir_item *di;
3061 struct btrfs_path *path;
3062 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3063 int ret = 0;
39279cc3
CM
3064
3065 path = btrfs_alloc_path();
3066 BUG_ON(!path);
3954401f 3067
39279cc3
CM
3068 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3069 namelen, 0);
0d9f7f3e
Y
3070 if (IS_ERR(di))
3071 ret = PTR_ERR(di);
d397712b
CM
3072
3073 if (!di || IS_ERR(di))
3954401f 3074 goto out_err;
d397712b 3075
5f39d397 3076 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3077out:
39279cc3
CM
3078 btrfs_free_path(path);
3079 return ret;
3954401f
CM
3080out_err:
3081 location->objectid = 0;
3082 goto out;
39279cc3
CM
3083}
3084
3085/*
3086 * when we hit a tree root in a directory, the btrfs part of the inode
3087 * needs to be changed to reflect the root directory of the tree root. This
3088 * is kind of like crossing a mount point.
3089 */
3090static int fixup_tree_root_location(struct btrfs_root *root,
3091 struct btrfs_key *location,
58176a96
JB
3092 struct btrfs_root **sub_root,
3093 struct dentry *dentry)
39279cc3 3094{
39279cc3
CM
3095 struct btrfs_root_item *ri;
3096
3097 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3098 return 0;
3099 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3100 return 0;
3101
58176a96
JB
3102 *sub_root = btrfs_read_fs_root(root->fs_info, location,
3103 dentry->d_name.name,
3104 dentry->d_name.len);
39279cc3
CM
3105 if (IS_ERR(*sub_root))
3106 return PTR_ERR(*sub_root);
3107
3108 ri = &(*sub_root)->root_item;
3109 location->objectid = btrfs_root_dirid(ri);
39279cc3
CM
3110 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3111 location->offset = 0;
3112
39279cc3
CM
3113 return 0;
3114}
3115
5d4f98a2
YZ
3116static void inode_tree_add(struct inode *inode)
3117{
3118 struct btrfs_root *root = BTRFS_I(inode)->root;
3119 struct btrfs_inode *entry;
3120 struct rb_node **p = &root->inode_tree.rb_node;
3121 struct rb_node *parent = NULL;
3122
3123 spin_lock(&root->inode_lock);
3124 while (*p) {
3125 parent = *p;
3126 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3127
3128 if (inode->i_ino < entry->vfs_inode.i_ino)
3129 p = &(*p)->rb_left;
3130 else if (inode->i_ino > entry->vfs_inode.i_ino)
3131 p = &(*p)->rb_right;
3132 else {
3133 WARN_ON(!(entry->vfs_inode.i_state &
3134 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3135 break;
3136 }
3137 }
3138 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3139 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3140 spin_unlock(&root->inode_lock);
3141}
3142
3143static void inode_tree_del(struct inode *inode)
3144{
3145 struct btrfs_root *root = BTRFS_I(inode)->root;
3146
3147 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3148 spin_lock(&root->inode_lock);
3149 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3150 spin_unlock(&root->inode_lock);
3151 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3152 }
3153}
3154
e02119d5 3155static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3156{
e02119d5
CM
3157 struct btrfs_inode *bi = BTRFS_I(inode);
3158
7b1a14bb
CM
3159 bi->i_acl = BTRFS_ACL_NOT_CACHED;
3160 bi->i_default_acl = BTRFS_ACL_NOT_CACHED;
e02119d5
CM
3161
3162 bi->generation = 0;
c3027eb5 3163 bi->sequence = 0;
e02119d5
CM
3164 bi->last_trans = 0;
3165 bi->logged_trans = 0;
3166 bi->delalloc_bytes = 0;
6a63209f 3167 bi->reserved_bytes = 0;
e02119d5
CM
3168 bi->disk_i_size = 0;
3169 bi->flags = 0;
3170 bi->index_cnt = (u64)-1;
12fcfd22 3171 bi->last_unlink_trans = 0;
2757495c 3172 bi->ordered_data_close = 0;
d1310b2e
CM
3173 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3174 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3175 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3176 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3177 inode->i_mapping, GFP_NOFS);
ea8c2819 3178 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3179 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3180 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3181 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
ee6e6504 3182 mutex_init(&BTRFS_I(inode)->extent_mutex);
e02119d5
CM
3183 mutex_init(&BTRFS_I(inode)->log_mutex);
3184}
3185
3186static int btrfs_init_locked_inode(struct inode *inode, void *p)
3187{
3188 struct btrfs_iget_args *args = p;
3189 inode->i_ino = args->ino;
3190 init_btrfs_i(inode);
3191 BTRFS_I(inode)->root = args->root;
6a63209f 3192 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3193 return 0;
3194}
3195
3196static int btrfs_find_actor(struct inode *inode, void *opaque)
3197{
3198 struct btrfs_iget_args *args = opaque;
d397712b
CM
3199 return args->ino == inode->i_ino &&
3200 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3201}
3202
5d4f98a2
YZ
3203static struct inode *btrfs_iget_locked(struct super_block *s,
3204 u64 objectid,
3205 struct btrfs_root *root)
39279cc3
CM
3206{
3207 struct inode *inode;
3208 struct btrfs_iget_args args;
3209 args.ino = objectid;
3210 args.root = root;
3211
3212 inode = iget5_locked(s, objectid, btrfs_find_actor,
3213 btrfs_init_locked_inode,
3214 (void *)&args);
3215 return inode;
3216}
3217
1a54ef8c
BR
3218/* Get an inode object given its location and corresponding root.
3219 * Returns in *is_new if the inode was read from disk
3220 */
3221struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3222 struct btrfs_root *root)
1a54ef8c
BR
3223{
3224 struct inode *inode;
3225
3226 inode = btrfs_iget_locked(s, location->objectid, root);
3227 if (!inode)
5d4f98a2 3228 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3229
3230 if (inode->i_state & I_NEW) {
3231 BTRFS_I(inode)->root = root;
3232 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3233 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3234
3235 inode_tree_add(inode);
1a54ef8c 3236 unlock_new_inode(inode);
1a54ef8c
BR
3237 }
3238
3239 return inode;
3240}
3241
3de4586c 3242struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3243{
d397712b 3244 struct inode *inode;
39279cc3
CM
3245 struct btrfs_inode *bi = BTRFS_I(dir);
3246 struct btrfs_root *root = bi->root;
3247 struct btrfs_root *sub_root = root;
3248 struct btrfs_key location;
5d4f98a2 3249 int ret;
39279cc3
CM
3250
3251 if (dentry->d_name.len > BTRFS_NAME_LEN)
3252 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3253
39279cc3 3254 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3255
39279cc3
CM
3256 if (ret < 0)
3257 return ERR_PTR(ret);
5f39d397 3258
39279cc3
CM
3259 inode = NULL;
3260 if (location.objectid) {
58176a96
JB
3261 ret = fixup_tree_root_location(root, &location, &sub_root,
3262 dentry);
39279cc3
CM
3263 if (ret < 0)
3264 return ERR_PTR(ret);
3265 if (ret > 0)
3266 return ERR_PTR(-ENOENT);
5d4f98a2 3267 inode = btrfs_iget(dir->i_sb, &location, sub_root);
1a54ef8c
BR
3268 if (IS_ERR(inode))
3269 return ERR_CAST(inode);
39279cc3 3270 }
3de4586c
CM
3271 return inode;
3272}
3273
3274static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3275 struct nameidata *nd)
3276{
3277 struct inode *inode;
3278
3279 if (dentry->d_name.len > BTRFS_NAME_LEN)
3280 return ERR_PTR(-ENAMETOOLONG);
3281
3282 inode = btrfs_lookup_dentry(dir, dentry);
3283 if (IS_ERR(inode))
3284 return ERR_CAST(inode);
7b128766 3285
39279cc3
CM
3286 return d_splice_alias(inode, dentry);
3287}
3288
39279cc3
CM
3289static unsigned char btrfs_filetype_table[] = {
3290 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3291};
3292
cbdf5a24
DW
3293static int btrfs_real_readdir(struct file *filp, void *dirent,
3294 filldir_t filldir)
39279cc3 3295{
6da6abae 3296 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3297 struct btrfs_root *root = BTRFS_I(inode)->root;
3298 struct btrfs_item *item;
3299 struct btrfs_dir_item *di;
3300 struct btrfs_key key;
5f39d397 3301 struct btrfs_key found_key;
39279cc3
CM
3302 struct btrfs_path *path;
3303 int ret;
3304 u32 nritems;
5f39d397 3305 struct extent_buffer *leaf;
39279cc3
CM
3306 int slot;
3307 int advance;
3308 unsigned char d_type;
3309 int over = 0;
3310 u32 di_cur;
3311 u32 di_total;
3312 u32 di_len;
3313 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3314 char tmp_name[32];
3315 char *name_ptr;
3316 int name_len;
39279cc3
CM
3317
3318 /* FIXME, use a real flag for deciding about the key type */
3319 if (root->fs_info->tree_root == root)
3320 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3321
3954401f
CM
3322 /* special case for "." */
3323 if (filp->f_pos == 0) {
3324 over = filldir(dirent, ".", 1,
3325 1, inode->i_ino,
3326 DT_DIR);
3327 if (over)
3328 return 0;
3329 filp->f_pos = 1;
3330 }
3954401f
CM
3331 /* special case for .., just use the back ref */
3332 if (filp->f_pos == 1) {
5ecc7e5d 3333 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3334 over = filldir(dirent, "..", 2,
5ecc7e5d 3335 2, pino, DT_DIR);
3954401f 3336 if (over)
49593bfa 3337 return 0;
3954401f
CM
3338 filp->f_pos = 2;
3339 }
49593bfa
DW
3340 path = btrfs_alloc_path();
3341 path->reada = 2;
3342
39279cc3
CM
3343 btrfs_set_key_type(&key, key_type);
3344 key.offset = filp->f_pos;
49593bfa 3345 key.objectid = inode->i_ino;
5f39d397 3346
39279cc3
CM
3347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348 if (ret < 0)
3349 goto err;
3350 advance = 0;
49593bfa
DW
3351
3352 while (1) {
5f39d397
CM
3353 leaf = path->nodes[0];
3354 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3355 slot = path->slots[0];
3356 if (advance || slot >= nritems) {
49593bfa 3357 if (slot >= nritems - 1) {
39279cc3
CM
3358 ret = btrfs_next_leaf(root, path);
3359 if (ret)
3360 break;
5f39d397
CM
3361 leaf = path->nodes[0];
3362 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3363 slot = path->slots[0];
3364 } else {
3365 slot++;
3366 path->slots[0]++;
3367 }
3368 }
3de4586c 3369
39279cc3 3370 advance = 1;
5f39d397
CM
3371 item = btrfs_item_nr(leaf, slot);
3372 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3373
3374 if (found_key.objectid != key.objectid)
39279cc3 3375 break;
5f39d397 3376 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3377 break;
5f39d397 3378 if (found_key.offset < filp->f_pos)
39279cc3 3379 continue;
5f39d397
CM
3380
3381 filp->f_pos = found_key.offset;
49593bfa 3382
39279cc3
CM
3383 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3384 di_cur = 0;
5f39d397 3385 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3386
3387 while (di_cur < di_total) {
5f39d397
CM
3388 struct btrfs_key location;
3389
3390 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3391 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3392 name_ptr = tmp_name;
3393 } else {
3394 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3395 if (!name_ptr) {
3396 ret = -ENOMEM;
3397 goto err;
3398 }
5f39d397
CM
3399 }
3400 read_extent_buffer(leaf, name_ptr,
3401 (unsigned long)(di + 1), name_len);
3402
3403 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3404 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3405
3406 /* is this a reference to our own snapshot? If so
3407 * skip it
3408 */
3409 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3410 location.objectid == root->root_key.objectid) {
3411 over = 0;
3412 goto skip;
3413 }
5f39d397 3414 over = filldir(dirent, name_ptr, name_len,
49593bfa 3415 found_key.offset, location.objectid,
39279cc3 3416 d_type);
5f39d397 3417
3de4586c 3418skip:
5f39d397
CM
3419 if (name_ptr != tmp_name)
3420 kfree(name_ptr);
3421
39279cc3
CM
3422 if (over)
3423 goto nopos;
5103e947 3424 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3425 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3426 di_cur += di_len;
3427 di = (struct btrfs_dir_item *)((char *)di + di_len);
3428 }
3429 }
49593bfa
DW
3430
3431 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3432 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3433 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3434 else
3435 filp->f_pos++;
39279cc3
CM
3436nopos:
3437 ret = 0;
3438err:
39279cc3 3439 btrfs_free_path(path);
39279cc3
CM
3440 return ret;
3441}
3442
3443int btrfs_write_inode(struct inode *inode, int wait)
3444{
3445 struct btrfs_root *root = BTRFS_I(inode)->root;
3446 struct btrfs_trans_handle *trans;
3447 int ret = 0;
3448
c146afad 3449 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
3450 return 0;
3451
39279cc3 3452 if (wait) {
f9295749 3453 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3454 btrfs_set_trans_block_group(trans, inode);
3455 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
3456 }
3457 return ret;
3458}
3459
3460/*
54aa1f4d 3461 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
3462 * inode changes. But, it is most likely to find the inode in cache.
3463 * FIXME, needs more benchmarking...there are no reasons other than performance
3464 * to keep or drop this code.
3465 */
3466void btrfs_dirty_inode(struct inode *inode)
3467{
3468 struct btrfs_root *root = BTRFS_I(inode)->root;
3469 struct btrfs_trans_handle *trans;
3470
f9295749 3471 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3472 btrfs_set_trans_block_group(trans, inode);
3473 btrfs_update_inode(trans, root, inode);
3474 btrfs_end_transaction(trans, root);
39279cc3
CM
3475}
3476
d352ac68
CM
3477/*
3478 * find the highest existing sequence number in a directory
3479 * and then set the in-memory index_cnt variable to reflect
3480 * free sequence numbers
3481 */
aec7477b
JB
3482static int btrfs_set_inode_index_count(struct inode *inode)
3483{
3484 struct btrfs_root *root = BTRFS_I(inode)->root;
3485 struct btrfs_key key, found_key;
3486 struct btrfs_path *path;
3487 struct extent_buffer *leaf;
3488 int ret;
3489
3490 key.objectid = inode->i_ino;
3491 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3492 key.offset = (u64)-1;
3493
3494 path = btrfs_alloc_path();
3495 if (!path)
3496 return -ENOMEM;
3497
3498 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3499 if (ret < 0)
3500 goto out;
3501 /* FIXME: we should be able to handle this */
3502 if (ret == 0)
3503 goto out;
3504 ret = 0;
3505
3506 /*
3507 * MAGIC NUMBER EXPLANATION:
3508 * since we search a directory based on f_pos we have to start at 2
3509 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3510 * else has to start at 2
3511 */
3512 if (path->slots[0] == 0) {
3513 BTRFS_I(inode)->index_cnt = 2;
3514 goto out;
3515 }
3516
3517 path->slots[0]--;
3518
3519 leaf = path->nodes[0];
3520 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3521
3522 if (found_key.objectid != inode->i_ino ||
3523 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3524 BTRFS_I(inode)->index_cnt = 2;
3525 goto out;
3526 }
3527
3528 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3529out:
3530 btrfs_free_path(path);
3531 return ret;
3532}
3533
d352ac68
CM
3534/*
3535 * helper to find a free sequence number in a given directory. This current
3536 * code is very simple, later versions will do smarter things in the btree
3537 */
3de4586c 3538int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
3539{
3540 int ret = 0;
3541
3542 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3543 ret = btrfs_set_inode_index_count(dir);
d397712b 3544 if (ret)
aec7477b
JB
3545 return ret;
3546 }
3547
00e4e6b3 3548 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
3549 BTRFS_I(dir)->index_cnt++;
3550
3551 return ret;
3552}
3553
39279cc3
CM
3554static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3555 struct btrfs_root *root,
aec7477b 3556 struct inode *dir,
9c58309d 3557 const char *name, int name_len,
d2fb3437
YZ
3558 u64 ref_objectid, u64 objectid,
3559 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
3560{
3561 struct inode *inode;
5f39d397 3562 struct btrfs_inode_item *inode_item;
39279cc3 3563 struct btrfs_key *location;
5f39d397 3564 struct btrfs_path *path;
9c58309d
CM
3565 struct btrfs_inode_ref *ref;
3566 struct btrfs_key key[2];
3567 u32 sizes[2];
3568 unsigned long ptr;
39279cc3
CM
3569 int ret;
3570 int owner;
3571
5f39d397
CM
3572 path = btrfs_alloc_path();
3573 BUG_ON(!path);
3574
39279cc3
CM
3575 inode = new_inode(root->fs_info->sb);
3576 if (!inode)
3577 return ERR_PTR(-ENOMEM);
3578
aec7477b 3579 if (dir) {
3de4586c 3580 ret = btrfs_set_inode_index(dir, index);
09771430
SF
3581 if (ret) {
3582 iput(inode);
aec7477b 3583 return ERR_PTR(ret);
09771430 3584 }
aec7477b
JB
3585 }
3586 /*
3587 * index_cnt is ignored for everything but a dir,
3588 * btrfs_get_inode_index_count has an explanation for the magic
3589 * number
3590 */
e02119d5 3591 init_btrfs_i(inode);
aec7477b 3592 BTRFS_I(inode)->index_cnt = 2;
39279cc3 3593 BTRFS_I(inode)->root = root;
e02119d5 3594 BTRFS_I(inode)->generation = trans->transid;
6a63209f 3595 btrfs_set_inode_space_info(root, inode);
b888db2b 3596
39279cc3
CM
3597 if (mode & S_IFDIR)
3598 owner = 0;
3599 else
3600 owner = 1;
d2fb3437
YZ
3601 BTRFS_I(inode)->block_group =
3602 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
3603
3604 key[0].objectid = objectid;
3605 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3606 key[0].offset = 0;
3607
3608 key[1].objectid = objectid;
3609 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3610 key[1].offset = ref_objectid;
3611
3612 sizes[0] = sizeof(struct btrfs_inode_item);
3613 sizes[1] = name_len + sizeof(*ref);
3614
b9473439 3615 path->leave_spinning = 1;
9c58309d
CM
3616 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3617 if (ret != 0)
5f39d397
CM
3618 goto fail;
3619
9c58309d
CM
3620 if (objectid > root->highest_inode)
3621 root->highest_inode = objectid;
3622
79683f2d 3623 inode->i_uid = current_fsuid();
8c087b51 3624
42f15d77 3625 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
3626 inode->i_gid = dir->i_gid;
3627 if (S_ISDIR(mode))
3628 mode |= S_ISGID;
3629 } else
3630 inode->i_gid = current_fsgid();
3631
39279cc3
CM
3632 inode->i_mode = mode;
3633 inode->i_ino = objectid;
a76a3cd4 3634 inode_set_bytes(inode, 0);
39279cc3 3635 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
3636 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3637 struct btrfs_inode_item);
e02119d5 3638 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
3639
3640 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3641 struct btrfs_inode_ref);
3642 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 3643 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
3644 ptr = (unsigned long)(ref + 1);
3645 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3646
5f39d397
CM
3647 btrfs_mark_buffer_dirty(path->nodes[0]);
3648 btrfs_free_path(path);
3649
39279cc3
CM
3650 location = &BTRFS_I(inode)->location;
3651 location->objectid = objectid;
39279cc3
CM
3652 location->offset = 0;
3653 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3654
6cbff00f
CH
3655 btrfs_inherit_iflags(inode, dir);
3656
94272164
CM
3657 if ((mode & S_IFREG)) {
3658 if (btrfs_test_opt(root, NODATASUM))
3659 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3660 if (btrfs_test_opt(root, NODATACOW))
3661 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3662 }
3663
39279cc3 3664 insert_inode_hash(inode);
5d4f98a2 3665 inode_tree_add(inode);
39279cc3 3666 return inode;
5f39d397 3667fail:
aec7477b
JB
3668 if (dir)
3669 BTRFS_I(dir)->index_cnt--;
5f39d397 3670 btrfs_free_path(path);
09771430 3671 iput(inode);
5f39d397 3672 return ERR_PTR(ret);
39279cc3
CM
3673}
3674
3675static inline u8 btrfs_inode_type(struct inode *inode)
3676{
3677 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3678}
3679
d352ac68
CM
3680/*
3681 * utility function to add 'inode' into 'parent_inode' with
3682 * a give name and a given sequence number.
3683 * if 'add_backref' is true, also insert a backref from the
3684 * inode to the parent directory.
3685 */
e02119d5
CM
3686int btrfs_add_link(struct btrfs_trans_handle *trans,
3687 struct inode *parent_inode, struct inode *inode,
3688 const char *name, int name_len, int add_backref, u64 index)
39279cc3
CM
3689{
3690 int ret;
3691 struct btrfs_key key;
e02119d5 3692 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 3693
39279cc3 3694 key.objectid = inode->i_ino;
39279cc3
CM
3695 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3696 key.offset = 0;
3697
e02119d5
CM
3698 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3699 parent_inode->i_ino,
aec7477b 3700 &key, btrfs_inode_type(inode),
00e4e6b3 3701 index);
39279cc3 3702 if (ret == 0) {
9c58309d
CM
3703 if (add_backref) {
3704 ret = btrfs_insert_inode_ref(trans, root,
e02119d5
CM
3705 name, name_len,
3706 inode->i_ino,
3707 parent_inode->i_ino,
3708 index);
9c58309d 3709 }
dbe674a9 3710 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 3711 name_len * 2);
79c44584 3712 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 3713 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
3714 }
3715 return ret;
3716}
3717
3718static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 3719 struct dentry *dentry, struct inode *inode,
00e4e6b3 3720 int backref, u64 index)
39279cc3 3721{
e02119d5
CM
3722 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3723 inode, dentry->d_name.name,
3724 dentry->d_name.len, backref, index);
39279cc3
CM
3725 if (!err) {
3726 d_instantiate(dentry, inode);
3727 return 0;
3728 }
3729 if (err > 0)
3730 err = -EEXIST;
3731 return err;
3732}
3733
618e21d5
JB
3734static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3735 int mode, dev_t rdev)
3736{
3737 struct btrfs_trans_handle *trans;
3738 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 3739 struct inode *inode = NULL;
618e21d5
JB
3740 int err;
3741 int drop_inode = 0;
3742 u64 objectid;
1832a6d5 3743 unsigned long nr = 0;
00e4e6b3 3744 u64 index = 0;
618e21d5
JB
3745
3746 if (!new_valid_dev(rdev))
3747 return -EINVAL;
3748
6a63209f 3749 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3750 if (err)
3751 goto fail;
3752
618e21d5
JB
3753 trans = btrfs_start_transaction(root, 1);
3754 btrfs_set_trans_block_group(trans, dir);
3755
3756 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3757 if (err) {
3758 err = -ENOSPC;
3759 goto out_unlock;
3760 }
3761
aec7477b 3762 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3763 dentry->d_name.len,
3764 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 3765 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
3766 err = PTR_ERR(inode);
3767 if (IS_ERR(inode))
3768 goto out_unlock;
3769
0279b4cd 3770 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3771 if (err) {
3772 drop_inode = 1;
3773 goto out_unlock;
3774 }
3775
618e21d5 3776 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 3777 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
3778 if (err)
3779 drop_inode = 1;
3780 else {
3781 inode->i_op = &btrfs_special_inode_operations;
3782 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 3783 btrfs_update_inode(trans, root, inode);
618e21d5
JB
3784 }
3785 dir->i_sb->s_dirt = 1;
3786 btrfs_update_inode_block_group(trans, inode);
3787 btrfs_update_inode_block_group(trans, dir);
3788out_unlock:
d3c2fdcf 3789 nr = trans->blocks_used;
89ce8a63 3790 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3791fail:
618e21d5
JB
3792 if (drop_inode) {
3793 inode_dec_link_count(inode);
3794 iput(inode);
3795 }
d3c2fdcf 3796 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
3797 return err;
3798}
3799
39279cc3
CM
3800static int btrfs_create(struct inode *dir, struct dentry *dentry,
3801 int mode, struct nameidata *nd)
3802{
3803 struct btrfs_trans_handle *trans;
3804 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 3805 struct inode *inode = NULL;
39279cc3
CM
3806 int err;
3807 int drop_inode = 0;
1832a6d5 3808 unsigned long nr = 0;
39279cc3 3809 u64 objectid;
00e4e6b3 3810 u64 index = 0;
39279cc3 3811
6a63209f 3812 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3813 if (err)
3814 goto fail;
39279cc3
CM
3815 trans = btrfs_start_transaction(root, 1);
3816 btrfs_set_trans_block_group(trans, dir);
3817
3818 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3819 if (err) {
3820 err = -ENOSPC;
3821 goto out_unlock;
3822 }
3823
aec7477b 3824 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3825 dentry->d_name.len,
3826 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
3827 objectid, BTRFS_I(dir)->block_group, mode,
3828 &index);
39279cc3
CM
3829 err = PTR_ERR(inode);
3830 if (IS_ERR(inode))
3831 goto out_unlock;
3832
0279b4cd 3833 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3834 if (err) {
3835 drop_inode = 1;
3836 goto out_unlock;
3837 }
3838
39279cc3 3839 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 3840 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
3841 if (err)
3842 drop_inode = 1;
3843 else {
3844 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3845 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
3846 inode->i_fop = &btrfs_file_operations;
3847 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 3848 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3849 }
3850 dir->i_sb->s_dirt = 1;
3851 btrfs_update_inode_block_group(trans, inode);
3852 btrfs_update_inode_block_group(trans, dir);
3853out_unlock:
d3c2fdcf 3854 nr = trans->blocks_used;
ab78c84d 3855 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3856fail:
39279cc3
CM
3857 if (drop_inode) {
3858 inode_dec_link_count(inode);
3859 iput(inode);
3860 }
d3c2fdcf 3861 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3862 return err;
3863}
3864
3865static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3866 struct dentry *dentry)
3867{
3868 struct btrfs_trans_handle *trans;
3869 struct btrfs_root *root = BTRFS_I(dir)->root;
3870 struct inode *inode = old_dentry->d_inode;
00e4e6b3 3871 u64 index;
1832a6d5 3872 unsigned long nr = 0;
39279cc3
CM
3873 int err;
3874 int drop_inode = 0;
3875
3876 if (inode->i_nlink == 0)
3877 return -ENOENT;
3878
e02119d5 3879 btrfs_inc_nlink(inode);
6a63209f 3880 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3881 if (err)
3882 goto fail;
3de4586c 3883 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
3884 if (err)
3885 goto fail;
3886
39279cc3 3887 trans = btrfs_start_transaction(root, 1);
5f39d397 3888
39279cc3
CM
3889 btrfs_set_trans_block_group(trans, dir);
3890 atomic_inc(&inode->i_count);
aec7477b 3891
00e4e6b3 3892 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 3893
39279cc3
CM
3894 if (err)
3895 drop_inode = 1;
5f39d397 3896
39279cc3
CM
3897 dir->i_sb->s_dirt = 1;
3898 btrfs_update_inode_block_group(trans, dir);
54aa1f4d 3899 err = btrfs_update_inode(trans, root, inode);
5f39d397 3900
54aa1f4d
CM
3901 if (err)
3902 drop_inode = 1;
39279cc3 3903
d3c2fdcf 3904 nr = trans->blocks_used;
12fcfd22
CM
3905
3906 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
ab78c84d 3907 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3908fail:
39279cc3
CM
3909 if (drop_inode) {
3910 inode_dec_link_count(inode);
3911 iput(inode);
3912 }
d3c2fdcf 3913 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3914 return err;
3915}
3916
39279cc3
CM
3917static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3918{
b9d86667 3919 struct inode *inode = NULL;
39279cc3
CM
3920 struct btrfs_trans_handle *trans;
3921 struct btrfs_root *root = BTRFS_I(dir)->root;
3922 int err = 0;
3923 int drop_on_err = 0;
b9d86667 3924 u64 objectid = 0;
00e4e6b3 3925 u64 index = 0;
d3c2fdcf 3926 unsigned long nr = 1;
39279cc3 3927
6a63209f 3928 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3929 if (err)
3930 goto out_unlock;
3931
39279cc3
CM
3932 trans = btrfs_start_transaction(root, 1);
3933 btrfs_set_trans_block_group(trans, dir);
5f39d397 3934
39279cc3
CM
3935 if (IS_ERR(trans)) {
3936 err = PTR_ERR(trans);
3937 goto out_unlock;
3938 }
3939
3940 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3941 if (err) {
3942 err = -ENOSPC;
3943 goto out_unlock;
3944 }
3945
aec7477b 3946 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3947 dentry->d_name.len,
3948 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
3949 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3950 &index);
39279cc3
CM
3951 if (IS_ERR(inode)) {
3952 err = PTR_ERR(inode);
3953 goto out_fail;
3954 }
5f39d397 3955
39279cc3 3956 drop_on_err = 1;
33268eaf 3957
0279b4cd 3958 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3959 if (err)
3960 goto out_fail;
3961
39279cc3
CM
3962 inode->i_op = &btrfs_dir_inode_operations;
3963 inode->i_fop = &btrfs_dir_file_operations;
3964 btrfs_set_trans_block_group(trans, inode);
3965
dbe674a9 3966 btrfs_i_size_write(inode, 0);
39279cc3
CM
3967 err = btrfs_update_inode(trans, root, inode);
3968 if (err)
3969 goto out_fail;
5f39d397 3970
e02119d5
CM
3971 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3972 inode, dentry->d_name.name,
3973 dentry->d_name.len, 0, index);
39279cc3
CM
3974 if (err)
3975 goto out_fail;
5f39d397 3976
39279cc3
CM
3977 d_instantiate(dentry, inode);
3978 drop_on_err = 0;
3979 dir->i_sb->s_dirt = 1;
3980 btrfs_update_inode_block_group(trans, inode);
3981 btrfs_update_inode_block_group(trans, dir);
3982
3983out_fail:
d3c2fdcf 3984 nr = trans->blocks_used;
ab78c84d 3985 btrfs_end_transaction_throttle(trans, root);
5f39d397 3986
39279cc3 3987out_unlock:
39279cc3
CM
3988 if (drop_on_err)
3989 iput(inode);
d3c2fdcf 3990 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3991 return err;
3992}
3993
d352ac68
CM
3994/* helper for btfs_get_extent. Given an existing extent in the tree,
3995 * and an extent that you want to insert, deal with overlap and insert
3996 * the new extent into the tree.
3997 */
3b951516
CM
3998static int merge_extent_mapping(struct extent_map_tree *em_tree,
3999 struct extent_map *existing,
e6dcd2dc
CM
4000 struct extent_map *em,
4001 u64 map_start, u64 map_len)
3b951516
CM
4002{
4003 u64 start_diff;
3b951516 4004
e6dcd2dc
CM
4005 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4006 start_diff = map_start - em->start;
4007 em->start = map_start;
4008 em->len = map_len;
c8b97818
CM
4009 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4010 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4011 em->block_start += start_diff;
c8b97818
CM
4012 em->block_len -= start_diff;
4013 }
e6dcd2dc 4014 return add_extent_mapping(em_tree, em);
3b951516
CM
4015}
4016
c8b97818
CM
4017static noinline int uncompress_inline(struct btrfs_path *path,
4018 struct inode *inode, struct page *page,
4019 size_t pg_offset, u64 extent_offset,
4020 struct btrfs_file_extent_item *item)
4021{
4022 int ret;
4023 struct extent_buffer *leaf = path->nodes[0];
4024 char *tmp;
4025 size_t max_size;
4026 unsigned long inline_size;
4027 unsigned long ptr;
4028
4029 WARN_ON(pg_offset != 0);
4030 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4031 inline_size = btrfs_file_extent_inline_item_len(leaf,
4032 btrfs_item_nr(leaf, path->slots[0]));
4033 tmp = kmalloc(inline_size, GFP_NOFS);
4034 ptr = btrfs_file_extent_inline_start(item);
4035
4036 read_extent_buffer(leaf, tmp, ptr, inline_size);
4037
5b050f04 4038 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4039 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4040 inline_size, max_size);
4041 if (ret) {
4042 char *kaddr = kmap_atomic(page, KM_USER0);
4043 unsigned long copy_size = min_t(u64,
4044 PAGE_CACHE_SIZE - pg_offset,
4045 max_size - extent_offset);
4046 memset(kaddr + pg_offset, 0, copy_size);
4047 kunmap_atomic(kaddr, KM_USER0);
4048 }
4049 kfree(tmp);
4050 return 0;
4051}
4052
d352ac68
CM
4053/*
4054 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4055 * the ugly parts come from merging extents from the disk with the in-ram
4056 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4057 * where the in-ram extents might be locked pending data=ordered completion.
4058 *
4059 * This also copies inline extents directly into the page.
4060 */
d397712b 4061
a52d9a80 4062struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4063 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4064 int create)
4065{
4066 int ret;
4067 int err = 0;
db94535d 4068 u64 bytenr;
a52d9a80
CM
4069 u64 extent_start = 0;
4070 u64 extent_end = 0;
4071 u64 objectid = inode->i_ino;
4072 u32 found_type;
f421950f 4073 struct btrfs_path *path = NULL;
a52d9a80
CM
4074 struct btrfs_root *root = BTRFS_I(inode)->root;
4075 struct btrfs_file_extent_item *item;
5f39d397
CM
4076 struct extent_buffer *leaf;
4077 struct btrfs_key found_key;
a52d9a80
CM
4078 struct extent_map *em = NULL;
4079 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4080 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4081 struct btrfs_trans_handle *trans = NULL;
c8b97818 4082 int compressed;
a52d9a80 4083
a52d9a80 4084again:
890871be 4085 read_lock(&em_tree->lock);
d1310b2e 4086 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4087 if (em)
4088 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4089 read_unlock(&em_tree->lock);
d1310b2e 4090
a52d9a80 4091 if (em) {
e1c4b745
CM
4092 if (em->start > start || em->start + em->len <= start)
4093 free_extent_map(em);
4094 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4095 free_extent_map(em);
4096 else
4097 goto out;
a52d9a80 4098 }
d1310b2e 4099 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4100 if (!em) {
d1310b2e
CM
4101 err = -ENOMEM;
4102 goto out;
a52d9a80 4103 }
e6dcd2dc 4104 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4105 em->start = EXTENT_MAP_HOLE;
445a6944 4106 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4107 em->len = (u64)-1;
c8b97818 4108 em->block_len = (u64)-1;
f421950f
CM
4109
4110 if (!path) {
4111 path = btrfs_alloc_path();
4112 BUG_ON(!path);
4113 }
4114
179e29e4
CM
4115 ret = btrfs_lookup_file_extent(trans, root, path,
4116 objectid, start, trans != NULL);
a52d9a80
CM
4117 if (ret < 0) {
4118 err = ret;
4119 goto out;
4120 }
4121
4122 if (ret != 0) {
4123 if (path->slots[0] == 0)
4124 goto not_found;
4125 path->slots[0]--;
4126 }
4127
5f39d397
CM
4128 leaf = path->nodes[0];
4129 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4130 struct btrfs_file_extent_item);
a52d9a80 4131 /* are we inside the extent that was found? */
5f39d397
CM
4132 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4133 found_type = btrfs_key_type(&found_key);
4134 if (found_key.objectid != objectid ||
a52d9a80
CM
4135 found_type != BTRFS_EXTENT_DATA_KEY) {
4136 goto not_found;
4137 }
4138
5f39d397
CM
4139 found_type = btrfs_file_extent_type(leaf, item);
4140 extent_start = found_key.offset;
c8b97818 4141 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4142 if (found_type == BTRFS_FILE_EXTENT_REG ||
4143 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4144 extent_end = extent_start +
db94535d 4145 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4146 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4147 size_t size;
4148 size = btrfs_file_extent_inline_len(leaf, item);
4149 extent_end = (extent_start + size + root->sectorsize - 1) &
4150 ~((u64)root->sectorsize - 1);
4151 }
4152
4153 if (start >= extent_end) {
4154 path->slots[0]++;
4155 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4156 ret = btrfs_next_leaf(root, path);
4157 if (ret < 0) {
4158 err = ret;
4159 goto out;
a52d9a80 4160 }
9036c102
YZ
4161 if (ret > 0)
4162 goto not_found;
4163 leaf = path->nodes[0];
a52d9a80 4164 }
9036c102
YZ
4165 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4166 if (found_key.objectid != objectid ||
4167 found_key.type != BTRFS_EXTENT_DATA_KEY)
4168 goto not_found;
4169 if (start + len <= found_key.offset)
4170 goto not_found;
4171 em->start = start;
4172 em->len = found_key.offset - start;
4173 goto not_found_em;
4174 }
4175
d899e052
YZ
4176 if (found_type == BTRFS_FILE_EXTENT_REG ||
4177 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4178 em->start = extent_start;
4179 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4180 em->orig_start = extent_start -
4181 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4182 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4183 if (bytenr == 0) {
5f39d397 4184 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4185 goto insert;
4186 }
c8b97818
CM
4187 if (compressed) {
4188 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4189 em->block_start = bytenr;
4190 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4191 item);
4192 } else {
4193 bytenr += btrfs_file_extent_offset(leaf, item);
4194 em->block_start = bytenr;
4195 em->block_len = em->len;
d899e052
YZ
4196 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4197 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4198 }
a52d9a80
CM
4199 goto insert;
4200 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4201 unsigned long ptr;
a52d9a80 4202 char *map;
3326d1b0
CM
4203 size_t size;
4204 size_t extent_offset;
4205 size_t copy_size;
a52d9a80 4206
689f9346 4207 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4208 if (!page || create) {
689f9346 4209 em->start = extent_start;
9036c102 4210 em->len = extent_end - extent_start;
689f9346
Y
4211 goto out;
4212 }
5f39d397 4213
9036c102
YZ
4214 size = btrfs_file_extent_inline_len(leaf, item);
4215 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4216 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4217 size - extent_offset);
3326d1b0 4218 em->start = extent_start + extent_offset;
70dec807
CM
4219 em->len = (copy_size + root->sectorsize - 1) &
4220 ~((u64)root->sectorsize - 1);
ff5b7ee3 4221 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4222 if (compressed)
4223 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4224 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4225 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4226 if (btrfs_file_extent_compression(leaf, item) ==
4227 BTRFS_COMPRESS_ZLIB) {
4228 ret = uncompress_inline(path, inode, page,
4229 pg_offset,
4230 extent_offset, item);
4231 BUG_ON(ret);
4232 } else {
4233 map = kmap(page);
4234 read_extent_buffer(leaf, map + pg_offset, ptr,
4235 copy_size);
4236 kunmap(page);
4237 }
179e29e4
CM
4238 flush_dcache_page(page);
4239 } else if (create && PageUptodate(page)) {
4240 if (!trans) {
4241 kunmap(page);
4242 free_extent_map(em);
4243 em = NULL;
4244 btrfs_release_path(root, path);
f9295749 4245 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4246 goto again;
4247 }
c8b97818 4248 map = kmap(page);
70dec807 4249 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4250 copy_size);
c8b97818 4251 kunmap(page);
179e29e4 4252 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4253 }
d1310b2e
CM
4254 set_extent_uptodate(io_tree, em->start,
4255 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4256 goto insert;
4257 } else {
d397712b 4258 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4259 WARN_ON(1);
4260 }
4261not_found:
4262 em->start = start;
d1310b2e 4263 em->len = len;
a52d9a80 4264not_found_em:
5f39d397 4265 em->block_start = EXTENT_MAP_HOLE;
9036c102 4266 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4267insert:
4268 btrfs_release_path(root, path);
d1310b2e 4269 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4270 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4271 "[%llu %llu]\n", (unsigned long long)em->start,
4272 (unsigned long long)em->len,
4273 (unsigned long long)start,
4274 (unsigned long long)len);
a52d9a80
CM
4275 err = -EIO;
4276 goto out;
4277 }
d1310b2e
CM
4278
4279 err = 0;
890871be 4280 write_lock(&em_tree->lock);
a52d9a80 4281 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4282 /* it is possible that someone inserted the extent into the tree
4283 * while we had the lock dropped. It is also possible that
4284 * an overlapping map exists in the tree
4285 */
a52d9a80 4286 if (ret == -EEXIST) {
3b951516 4287 struct extent_map *existing;
e6dcd2dc
CM
4288
4289 ret = 0;
4290
3b951516 4291 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4292 if (existing && (existing->start > start ||
4293 existing->start + existing->len <= start)) {
4294 free_extent_map(existing);
4295 existing = NULL;
4296 }
3b951516
CM
4297 if (!existing) {
4298 existing = lookup_extent_mapping(em_tree, em->start,
4299 em->len);
4300 if (existing) {
4301 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4302 em, start,
4303 root->sectorsize);
3b951516
CM
4304 free_extent_map(existing);
4305 if (err) {
4306 free_extent_map(em);
4307 em = NULL;
4308 }
4309 } else {
4310 err = -EIO;
3b951516
CM
4311 free_extent_map(em);
4312 em = NULL;
4313 }
4314 } else {
4315 free_extent_map(em);
4316 em = existing;
e6dcd2dc 4317 err = 0;
a52d9a80 4318 }
a52d9a80 4319 }
890871be 4320 write_unlock(&em_tree->lock);
a52d9a80 4321out:
f421950f
CM
4322 if (path)
4323 btrfs_free_path(path);
a52d9a80
CM
4324 if (trans) {
4325 ret = btrfs_end_transaction(trans, root);
d397712b 4326 if (!err)
a52d9a80
CM
4327 err = ret;
4328 }
a52d9a80
CM
4329 if (err) {
4330 free_extent_map(em);
a52d9a80
CM
4331 return ERR_PTR(err);
4332 }
4333 return em;
4334}
4335
16432985
CM
4336static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4337 const struct iovec *iov, loff_t offset,
4338 unsigned long nr_segs)
4339{
e1c4b745 4340 return -EINVAL;
16432985
CM
4341}
4342
1506fcc8
YS
4343static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4344 __u64 start, __u64 len)
4345{
4346 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4347}
4348
a52d9a80 4349int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4350{
d1310b2e
CM
4351 struct extent_io_tree *tree;
4352 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4353 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4354}
1832a6d5 4355
a52d9a80 4356static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4357{
d1310b2e 4358 struct extent_io_tree *tree;
b888db2b
CM
4359
4360
4361 if (current->flags & PF_MEMALLOC) {
4362 redirty_page_for_writepage(wbc, page);
4363 unlock_page(page);
4364 return 0;
4365 }
d1310b2e 4366 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4367 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4368}
4369
f421950f
CM
4370int btrfs_writepages(struct address_space *mapping,
4371 struct writeback_control *wbc)
b293f02e 4372{
d1310b2e 4373 struct extent_io_tree *tree;
771ed689 4374
d1310b2e 4375 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4376 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4377}
4378
3ab2fb5a
CM
4379static int
4380btrfs_readpages(struct file *file, struct address_space *mapping,
4381 struct list_head *pages, unsigned nr_pages)
4382{
d1310b2e
CM
4383 struct extent_io_tree *tree;
4384 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4385 return extent_readpages(tree, mapping, pages, nr_pages,
4386 btrfs_get_extent);
4387}
e6dcd2dc 4388static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4389{
d1310b2e
CM
4390 struct extent_io_tree *tree;
4391 struct extent_map_tree *map;
a52d9a80 4392 int ret;
8c2383c3 4393
d1310b2e
CM
4394 tree = &BTRFS_I(page->mapping->host)->io_tree;
4395 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4396 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4397 if (ret == 1) {
4398 ClearPagePrivate(page);
4399 set_page_private(page, 0);
4400 page_cache_release(page);
39279cc3 4401 }
a52d9a80 4402 return ret;
39279cc3
CM
4403}
4404
e6dcd2dc
CM
4405static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4406{
98509cfc
CM
4407 if (PageWriteback(page) || PageDirty(page))
4408 return 0;
b335b003 4409 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4410}
4411
a52d9a80 4412static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 4413{
d1310b2e 4414 struct extent_io_tree *tree;
e6dcd2dc
CM
4415 struct btrfs_ordered_extent *ordered;
4416 u64 page_start = page_offset(page);
4417 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 4418
8b62b72b
CM
4419
4420 /*
4421 * we have the page locked, so new writeback can't start,
4422 * and the dirty bit won't be cleared while we are here.
4423 *
4424 * Wait for IO on this page so that we can safely clear
4425 * the PagePrivate2 bit and do ordered accounting
4426 */
e6dcd2dc 4427 wait_on_page_writeback(page);
8b62b72b 4428
d1310b2e 4429 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
4430 if (offset) {
4431 btrfs_releasepage(page, GFP_NOFS);
4432 return;
4433 }
e6dcd2dc
CM
4434 lock_extent(tree, page_start, page_end, GFP_NOFS);
4435 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4436 page_offset(page));
4437 if (ordered) {
eb84ae03
CM
4438 /*
4439 * IO on this page will never be started, so we need
4440 * to account for any ordered extents now
4441 */
e6dcd2dc
CM
4442 clear_extent_bit(tree, page_start, page_end,
4443 EXTENT_DIRTY | EXTENT_DELALLOC |
2c64c53d 4444 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
8b62b72b
CM
4445 /*
4446 * whoever cleared the private bit is responsible
4447 * for the finish_ordered_io
4448 */
4449 if (TestClearPagePrivate2(page)) {
4450 btrfs_finish_ordered_io(page->mapping->host,
4451 page_start, page_end);
4452 }
e6dcd2dc
CM
4453 btrfs_put_ordered_extent(ordered);
4454 lock_extent(tree, page_start, page_end, GFP_NOFS);
4455 }
4456 clear_extent_bit(tree, page_start, page_end,
8b62b72b 4457 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2c64c53d 4458 1, 1, NULL, GFP_NOFS);
e6dcd2dc
CM
4459 __btrfs_releasepage(page, GFP_NOFS);
4460
4a096752 4461 ClearPageChecked(page);
9ad6b7bc 4462 if (PagePrivate(page)) {
9ad6b7bc
CM
4463 ClearPagePrivate(page);
4464 set_page_private(page, 0);
4465 page_cache_release(page);
4466 }
39279cc3
CM
4467}
4468
9ebefb18
CM
4469/*
4470 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4471 * called from a page fault handler when a page is first dirtied. Hence we must
4472 * be careful to check for EOF conditions here. We set the page up correctly
4473 * for a written page which means we get ENOSPC checking when writing into
4474 * holes and correct delalloc and unwritten extent mapping on filesystems that
4475 * support these features.
4476 *
4477 * We are not allowed to take the i_mutex here so we have to play games to
4478 * protect against truncate races as the page could now be beyond EOF. Because
4479 * vmtruncate() writes the inode size before removing pages, once we have the
4480 * page lock we can determine safely if the page is beyond EOF. If it is not
4481 * beyond EOF, then the page is guaranteed safe against truncation until we
4482 * unlock the page.
4483 */
c2ec175c 4484int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 4485{
c2ec175c 4486 struct page *page = vmf->page;
6da6abae 4487 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 4488 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4489 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4490 struct btrfs_ordered_extent *ordered;
4491 char *kaddr;
4492 unsigned long zero_start;
9ebefb18 4493 loff_t size;
1832a6d5 4494 int ret;
a52d9a80 4495 u64 page_start;
e6dcd2dc 4496 u64 page_end;
9ebefb18 4497
6a63209f 4498 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
4499 if (ret) {
4500 if (ret == -ENOMEM)
4501 ret = VM_FAULT_OOM;
4502 else /* -ENOSPC, -EIO, etc */
4503 ret = VM_FAULT_SIGBUS;
1832a6d5 4504 goto out;
56a76f82 4505 }
1832a6d5 4506
56a76f82 4507 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 4508again:
9ebefb18 4509 lock_page(page);
9ebefb18 4510 size = i_size_read(inode);
e6dcd2dc
CM
4511 page_start = page_offset(page);
4512 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 4513
9ebefb18 4514 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 4515 (page_start >= size)) {
6a63209f 4516 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
4517 /* page got truncated out from underneath us */
4518 goto out_unlock;
4519 }
e6dcd2dc
CM
4520 wait_on_page_writeback(page);
4521
4522 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4523 set_page_extent_mapped(page);
4524
eb84ae03
CM
4525 /*
4526 * we can't set the delalloc bits if there are pending ordered
4527 * extents. Drop our locks and wait for them to finish
4528 */
e6dcd2dc
CM
4529 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4530 if (ordered) {
4531 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4532 unlock_page(page);
eb84ae03 4533 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4534 btrfs_put_ordered_extent(ordered);
4535 goto again;
4536 }
4537
ea8c2819 4538 btrfs_set_extent_delalloc(inode, page_start, page_end);
e6dcd2dc 4539 ret = 0;
9ebefb18
CM
4540
4541 /* page is wholly or partially inside EOF */
a52d9a80 4542 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 4543 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 4544 else
e6dcd2dc 4545 zero_start = PAGE_CACHE_SIZE;
9ebefb18 4546
e6dcd2dc
CM
4547 if (zero_start != PAGE_CACHE_SIZE) {
4548 kaddr = kmap(page);
4549 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4550 flush_dcache_page(page);
4551 kunmap(page);
4552 }
247e743c 4553 ClearPageChecked(page);
e6dcd2dc 4554 set_page_dirty(page);
50a9b214 4555 SetPageUptodate(page);
5a3f23d5
CM
4556
4557 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
e6dcd2dc 4558 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
4559
4560out_unlock:
50a9b214
CM
4561 if (!ret)
4562 return VM_FAULT_LOCKED;
9ebefb18 4563 unlock_page(page);
1832a6d5 4564out:
9ebefb18
CM
4565 return ret;
4566}
4567
39279cc3
CM
4568static void btrfs_truncate(struct inode *inode)
4569{
4570 struct btrfs_root *root = BTRFS_I(inode)->root;
4571 int ret;
4572 struct btrfs_trans_handle *trans;
d3c2fdcf 4573 unsigned long nr;
dbe674a9 4574 u64 mask = root->sectorsize - 1;
39279cc3
CM
4575
4576 if (!S_ISREG(inode->i_mode))
4577 return;
4578 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4579 return;
4580
4581 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4a096752 4582 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 4583
39279cc3 4584 trans = btrfs_start_transaction(root, 1);
5a3f23d5
CM
4585
4586 /*
4587 * setattr is responsible for setting the ordered_data_close flag,
4588 * but that is only tested during the last file release. That
4589 * could happen well after the next commit, leaving a great big
4590 * window where new writes may get lost if someone chooses to write
4591 * to this file after truncating to zero
4592 *
4593 * The inode doesn't have any dirty data here, and so if we commit
4594 * this is a noop. If someone immediately starts writing to the inode
4595 * it is very likely we'll catch some of their writes in this
4596 * transaction, and the commit will find this file on the ordered
4597 * data list with good things to send down.
4598 *
4599 * This is a best effort solution, there is still a window where
4600 * using truncate to replace the contents of the file will
4601 * end up with a zero length file after a crash.
4602 */
4603 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4604 btrfs_add_ordered_operation(trans, root, inode);
4605
39279cc3 4606 btrfs_set_trans_block_group(trans, inode);
dbe674a9 4607 btrfs_i_size_write(inode, inode->i_size);
39279cc3 4608
7b128766
JB
4609 ret = btrfs_orphan_add(trans, inode);
4610 if (ret)
4611 goto out;
39279cc3 4612 /* FIXME, add redo link to tree so we don't leak on crash */
e02119d5 4613 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
85e21bac 4614 BTRFS_EXTENT_DATA_KEY);
39279cc3 4615 btrfs_update_inode(trans, root, inode);
5f39d397 4616
7b128766
JB
4617 ret = btrfs_orphan_del(trans, inode);
4618 BUG_ON(ret);
4619
4620out:
4621 nr = trans->blocks_used;
89ce8a63 4622 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 4623 BUG_ON(ret);
d3c2fdcf 4624 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4625}
4626
d352ac68
CM
4627/*
4628 * create a new subvolume directory/inode (helper for the ioctl).
4629 */
d2fb3437
YZ
4630int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4631 struct btrfs_root *new_root, struct dentry *dentry,
4632 u64 new_dirid, u64 alloc_hint)
39279cc3 4633{
39279cc3 4634 struct inode *inode;
cb8e7090 4635 int error;
00e4e6b3 4636 u64 index = 0;
39279cc3 4637
aec7477b 4638 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 4639 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 4640 if (IS_ERR(inode))
f46b5a66 4641 return PTR_ERR(inode);
39279cc3
CM
4642 inode->i_op = &btrfs_dir_inode_operations;
4643 inode->i_fop = &btrfs_dir_file_operations;
4644
39279cc3 4645 inode->i_nlink = 1;
dbe674a9 4646 btrfs_i_size_write(inode, 0);
3b96362c 4647
cb8e7090
CH
4648 error = btrfs_update_inode(trans, new_root, inode);
4649 if (error)
4650 return error;
4651
4652 d_instantiate(dentry, inode);
4653 return 0;
39279cc3
CM
4654}
4655
d352ac68
CM
4656/* helper function for file defrag and space balancing. This
4657 * forces readahead on a given range of bytes in an inode
4658 */
edbd8d4e 4659unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
4660 struct file_ra_state *ra, struct file *file,
4661 pgoff_t offset, pgoff_t last_index)
4662{
8e7bf94f 4663 pgoff_t req_size = last_index - offset + 1;
86479a04 4664
86479a04
CM
4665 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4666 return offset + req_size;
86479a04
CM
4667}
4668
39279cc3
CM
4669struct inode *btrfs_alloc_inode(struct super_block *sb)
4670{
4671 struct btrfs_inode *ei;
4672
4673 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4674 if (!ei)
4675 return NULL;
15ee9bc7 4676 ei->last_trans = 0;
e02119d5 4677 ei->logged_trans = 0;
e6dcd2dc 4678 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
33268eaf
JB
4679 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4680 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
7b128766 4681 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 4682 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
4683 return &ei->vfs_inode;
4684}
4685
4686void btrfs_destroy_inode(struct inode *inode)
4687{
e6dcd2dc 4688 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
4689 struct btrfs_root *root = BTRFS_I(inode)->root;
4690
39279cc3
CM
4691 WARN_ON(!list_empty(&inode->i_dentry));
4692 WARN_ON(inode->i_data.nrpages);
4693
33268eaf
JB
4694 if (BTRFS_I(inode)->i_acl &&
4695 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4696 posix_acl_release(BTRFS_I(inode)->i_acl);
4697 if (BTRFS_I(inode)->i_default_acl &&
4698 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4699 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4700
5a3f23d5
CM
4701 /*
4702 * Make sure we're properly removed from the ordered operation
4703 * lists.
4704 */
4705 smp_mb();
4706 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4707 spin_lock(&root->fs_info->ordered_extent_lock);
4708 list_del_init(&BTRFS_I(inode)->ordered_operations);
4709 spin_unlock(&root->fs_info->ordered_extent_lock);
4710 }
4711
4712 spin_lock(&root->list_lock);
7b128766
JB
4713 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4714 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4715 " list\n", inode->i_ino);
4716 dump_stack();
4717 }
5a3f23d5 4718 spin_unlock(&root->list_lock);
7b128766 4719
d397712b 4720 while (1) {
e6dcd2dc
CM
4721 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4722 if (!ordered)
4723 break;
4724 else {
d397712b
CM
4725 printk(KERN_ERR "btrfs found ordered "
4726 "extent %llu %llu on inode cleanup\n",
4727 (unsigned long long)ordered->file_offset,
4728 (unsigned long long)ordered->len);
e6dcd2dc
CM
4729 btrfs_remove_ordered_extent(inode, ordered);
4730 btrfs_put_ordered_extent(ordered);
4731 btrfs_put_ordered_extent(ordered);
4732 }
4733 }
5d4f98a2 4734 inode_tree_del(inode);
5b21f2ed 4735 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
39279cc3
CM
4736 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4737}
4738
0ee0fda0 4739static void init_once(void *foo)
39279cc3
CM
4740{
4741 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4742
4743 inode_init_once(&ei->vfs_inode);
4744}
4745
4746void btrfs_destroy_cachep(void)
4747{
4748 if (btrfs_inode_cachep)
4749 kmem_cache_destroy(btrfs_inode_cachep);
4750 if (btrfs_trans_handle_cachep)
4751 kmem_cache_destroy(btrfs_trans_handle_cachep);
4752 if (btrfs_transaction_cachep)
4753 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
4754 if (btrfs_path_cachep)
4755 kmem_cache_destroy(btrfs_path_cachep);
4756}
4757
4758int btrfs_init_cachep(void)
4759{
9601e3f6
CH
4760 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4761 sizeof(struct btrfs_inode), 0,
4762 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
4763 if (!btrfs_inode_cachep)
4764 goto fail;
9601e3f6
CH
4765
4766 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4767 sizeof(struct btrfs_trans_handle), 0,
4768 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4769 if (!btrfs_trans_handle_cachep)
4770 goto fail;
9601e3f6
CH
4771
4772 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4773 sizeof(struct btrfs_transaction), 0,
4774 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4775 if (!btrfs_transaction_cachep)
4776 goto fail;
9601e3f6
CH
4777
4778 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4779 sizeof(struct btrfs_path), 0,
4780 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4781 if (!btrfs_path_cachep)
4782 goto fail;
9601e3f6 4783
39279cc3
CM
4784 return 0;
4785fail:
4786 btrfs_destroy_cachep();
4787 return -ENOMEM;
4788}
4789
4790static int btrfs_getattr(struct vfsmount *mnt,
4791 struct dentry *dentry, struct kstat *stat)
4792{
4793 struct inode *inode = dentry->d_inode;
4794 generic_fillattr(inode, stat);
3394e160 4795 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 4796 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
4797 stat->blocks = (inode_get_bytes(inode) +
4798 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
4799 return 0;
4800}
4801
d397712b
CM
4802static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4803 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
4804{
4805 struct btrfs_trans_handle *trans;
4806 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4807 struct inode *new_inode = new_dentry->d_inode;
4808 struct inode *old_inode = old_dentry->d_inode;
4809 struct timespec ctime = CURRENT_TIME;
00e4e6b3 4810 u64 index = 0;
39279cc3
CM
4811 int ret;
4812
3394e160
CM
4813 /* we're not allowed to rename between subvolumes */
4814 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4815 BTRFS_I(new_dir)->root->root_key.objectid)
4816 return -EXDEV;
4817
39279cc3
CM
4818 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4819 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4820 return -ENOTEMPTY;
4821 }
5f39d397 4822
0660b5af
CM
4823 /* to rename a snapshot or subvolume, we need to juggle the
4824 * backrefs. This isn't coded yet
4825 */
4826 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4827 return -EXDEV;
4828
6a63209f 4829 ret = btrfs_check_metadata_free_space(root);
1832a6d5
CM
4830 if (ret)
4831 goto out_unlock;
4832
5a3f23d5
CM
4833 /*
4834 * we're using rename to replace one file with another.
4835 * and the replacement file is large. Start IO on it now so
4836 * we don't add too much work to the end of the transaction
4837 */
4baf8c92 4838 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
4839 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4840 filemap_flush(old_inode->i_mapping);
4841
39279cc3 4842 trans = btrfs_start_transaction(root, 1);
5f39d397 4843
5a3f23d5
CM
4844 /*
4845 * make sure the inode gets flushed if it is replacing
4846 * something.
4847 */
4848 if (new_inode && new_inode->i_size &&
4849 old_inode && S_ISREG(old_inode->i_mode)) {
4850 btrfs_add_ordered_operation(trans, root, old_inode);
4851 }
4852
12fcfd22
CM
4853 /*
4854 * this is an ugly little race, but the rename is required to make
4855 * sure that if we crash, the inode is either at the old name
4856 * or the new one. pinning the log transaction lets us make sure
4857 * we don't allow a log commit to come in after we unlink the
4858 * name but before we add the new name back in.
4859 */
4860 btrfs_pin_log_trans(root);
4861
39279cc3 4862 btrfs_set_trans_block_group(trans, new_dir);
39279cc3 4863
e02119d5 4864 btrfs_inc_nlink(old_dentry->d_inode);
39279cc3
CM
4865 old_dir->i_ctime = old_dir->i_mtime = ctime;
4866 new_dir->i_ctime = new_dir->i_mtime = ctime;
4867 old_inode->i_ctime = ctime;
5f39d397 4868
12fcfd22
CM
4869 if (old_dentry->d_parent != new_dentry->d_parent)
4870 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4871
e02119d5
CM
4872 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4873 old_dentry->d_name.name,
4874 old_dentry->d_name.len);
39279cc3
CM
4875 if (ret)
4876 goto out_fail;
4877
4878 if (new_inode) {
4879 new_inode->i_ctime = CURRENT_TIME;
e02119d5
CM
4880 ret = btrfs_unlink_inode(trans, root, new_dir,
4881 new_dentry->d_inode,
4882 new_dentry->d_name.name,
4883 new_dentry->d_name.len);
39279cc3
CM
4884 if (ret)
4885 goto out_fail;
7b128766 4886 if (new_inode->i_nlink == 0) {
e02119d5 4887 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7b128766
JB
4888 if (ret)
4889 goto out_fail;
4890 }
e02119d5 4891
39279cc3 4892 }
3de4586c 4893 ret = btrfs_set_inode_index(new_dir, &index);
aec7477b
JB
4894 if (ret)
4895 goto out_fail;
4896
e02119d5
CM
4897 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4898 old_inode, new_dentry->d_name.name,
4899 new_dentry->d_name.len, 1, index);
39279cc3
CM
4900 if (ret)
4901 goto out_fail;
4902
12fcfd22
CM
4903 btrfs_log_new_name(trans, old_inode, old_dir,
4904 new_dentry->d_parent);
39279cc3 4905out_fail:
12fcfd22
CM
4906
4907 /* this btrfs_end_log_trans just allows the current
4908 * log-sub transaction to complete
4909 */
4910 btrfs_end_log_trans(root);
ab78c84d 4911 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4912out_unlock:
39279cc3
CM
4913 return ret;
4914}
4915
d352ac68
CM
4916/*
4917 * some fairly slow code that needs optimization. This walks the list
4918 * of all the inodes with pending delalloc and forces them to disk.
4919 */
ea8c2819
CM
4920int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4921{
4922 struct list_head *head = &root->fs_info->delalloc_inodes;
4923 struct btrfs_inode *binode;
5b21f2ed 4924 struct inode *inode;
ea8c2819 4925
c146afad
YZ
4926 if (root->fs_info->sb->s_flags & MS_RDONLY)
4927 return -EROFS;
4928
75eff68e 4929 spin_lock(&root->fs_info->delalloc_lock);
d397712b 4930 while (!list_empty(head)) {
ea8c2819
CM
4931 binode = list_entry(head->next, struct btrfs_inode,
4932 delalloc_inodes);
5b21f2ed
ZY
4933 inode = igrab(&binode->vfs_inode);
4934 if (!inode)
4935 list_del_init(&binode->delalloc_inodes);
75eff68e 4936 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 4937 if (inode) {
8c8bee1d 4938 filemap_flush(inode->i_mapping);
5b21f2ed
ZY
4939 iput(inode);
4940 }
4941 cond_resched();
75eff68e 4942 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 4943 }
75eff68e 4944 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
4945
4946 /* the filemap_flush will queue IO into the worker threads, but
4947 * we have to make sure the IO is actually started and that
4948 * ordered extents get created before we return
4949 */
4950 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 4951 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 4952 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 4953 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
4954 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4955 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
4956 }
4957 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
4958 return 0;
4959}
4960
39279cc3
CM
4961static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4962 const char *symname)
4963{
4964 struct btrfs_trans_handle *trans;
4965 struct btrfs_root *root = BTRFS_I(dir)->root;
4966 struct btrfs_path *path;
4967 struct btrfs_key key;
1832a6d5 4968 struct inode *inode = NULL;
39279cc3
CM
4969 int err;
4970 int drop_inode = 0;
4971 u64 objectid;
00e4e6b3 4972 u64 index = 0 ;
39279cc3
CM
4973 int name_len;
4974 int datasize;
5f39d397 4975 unsigned long ptr;
39279cc3 4976 struct btrfs_file_extent_item *ei;
5f39d397 4977 struct extent_buffer *leaf;
1832a6d5 4978 unsigned long nr = 0;
39279cc3
CM
4979
4980 name_len = strlen(symname) + 1;
4981 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4982 return -ENAMETOOLONG;
1832a6d5 4983
6a63209f 4984 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
4985 if (err)
4986 goto out_fail;
4987
39279cc3
CM
4988 trans = btrfs_start_transaction(root, 1);
4989 btrfs_set_trans_block_group(trans, dir);
4990
4991 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4992 if (err) {
4993 err = -ENOSPC;
4994 goto out_unlock;
4995 }
4996
aec7477b 4997 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4998 dentry->d_name.len,
4999 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5000 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5001 &index);
39279cc3
CM
5002 err = PTR_ERR(inode);
5003 if (IS_ERR(inode))
5004 goto out_unlock;
5005
0279b4cd 5006 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
5007 if (err) {
5008 drop_inode = 1;
5009 goto out_unlock;
5010 }
5011
39279cc3 5012 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5013 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5014 if (err)
5015 drop_inode = 1;
5016 else {
5017 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5018 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5019 inode->i_fop = &btrfs_file_operations;
5020 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5021 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
5022 }
5023 dir->i_sb->s_dirt = 1;
5024 btrfs_update_inode_block_group(trans, inode);
5025 btrfs_update_inode_block_group(trans, dir);
5026 if (drop_inode)
5027 goto out_unlock;
5028
5029 path = btrfs_alloc_path();
5030 BUG_ON(!path);
5031 key.objectid = inode->i_ino;
5032 key.offset = 0;
39279cc3
CM
5033 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5034 datasize = btrfs_file_extent_calc_inline_size(name_len);
5035 err = btrfs_insert_empty_item(trans, root, path, &key,
5036 datasize);
54aa1f4d
CM
5037 if (err) {
5038 drop_inode = 1;
5039 goto out_unlock;
5040 }
5f39d397
CM
5041 leaf = path->nodes[0];
5042 ei = btrfs_item_ptr(leaf, path->slots[0],
5043 struct btrfs_file_extent_item);
5044 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5045 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5046 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5047 btrfs_set_file_extent_encryption(leaf, ei, 0);
5048 btrfs_set_file_extent_compression(leaf, ei, 0);
5049 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5050 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5051
39279cc3 5052 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5053 write_extent_buffer(leaf, symname, ptr, name_len);
5054 btrfs_mark_buffer_dirty(leaf);
39279cc3 5055 btrfs_free_path(path);
5f39d397 5056
39279cc3
CM
5057 inode->i_op = &btrfs_symlink_inode_operations;
5058 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5059 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5060 inode_set_bytes(inode, name_len);
dbe674a9 5061 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5062 err = btrfs_update_inode(trans, root, inode);
5063 if (err)
5064 drop_inode = 1;
39279cc3
CM
5065
5066out_unlock:
d3c2fdcf 5067 nr = trans->blocks_used;
ab78c84d 5068 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5069out_fail:
39279cc3
CM
5070 if (drop_inode) {
5071 inode_dec_link_count(inode);
5072 iput(inode);
5073 }
d3c2fdcf 5074 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5075 return err;
5076}
16432985 5077
546888da
CM
5078static int prealloc_file_range(struct btrfs_trans_handle *trans,
5079 struct inode *inode, u64 start, u64 end,
e980b50c 5080 u64 locked_end, u64 alloc_hint, int mode)
d899e052 5081{
d899e052
YZ
5082 struct btrfs_root *root = BTRFS_I(inode)->root;
5083 struct btrfs_key ins;
5084 u64 alloc_size;
5085 u64 cur_offset = start;
5086 u64 num_bytes = end - start;
5087 int ret = 0;
5088
d899e052
YZ
5089 while (num_bytes > 0) {
5090 alloc_size = min(num_bytes, root->fs_info->max_extent);
5091 ret = btrfs_reserve_extent(trans, root, alloc_size,
5092 root->sectorsize, 0, alloc_hint,
5093 (u64)-1, &ins, 1);
5094 if (ret) {
5095 WARN_ON(1);
5096 goto out;
5097 }
5098 ret = insert_reserved_file_extent(trans, inode,
5099 cur_offset, ins.objectid,
5100 ins.offset, ins.offset,
e980b50c
CM
5101 ins.offset, locked_end,
5102 0, 0, 0,
d899e052
YZ
5103 BTRFS_FILE_EXTENT_PREALLOC);
5104 BUG_ON(ret);
a1ed835e
CM
5105 btrfs_drop_extent_cache(inode, cur_offset,
5106 cur_offset + ins.offset -1, 0);
d899e052
YZ
5107 num_bytes -= ins.offset;
5108 cur_offset += ins.offset;
5109 alloc_hint = ins.objectid + ins.offset;
5110 }
5111out:
5112 if (cur_offset > start) {
5113 inode->i_ctime = CURRENT_TIME;
6cbff00f 5114 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052
YZ
5115 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5116 cur_offset > i_size_read(inode))
5117 btrfs_i_size_write(inode, cur_offset);
5118 ret = btrfs_update_inode(trans, root, inode);
5119 BUG_ON(ret);
5120 }
5121
d899e052
YZ
5122 return ret;
5123}
5124
5125static long btrfs_fallocate(struct inode *inode, int mode,
5126 loff_t offset, loff_t len)
5127{
5128 u64 cur_offset;
5129 u64 last_byte;
5130 u64 alloc_start;
5131 u64 alloc_end;
5132 u64 alloc_hint = 0;
e980b50c 5133 u64 locked_end;
d899e052
YZ
5134 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5135 struct extent_map *em;
546888da 5136 struct btrfs_trans_handle *trans;
a970b0a1 5137 struct btrfs_root *root;
d899e052
YZ
5138 int ret;
5139
5140 alloc_start = offset & ~mask;
5141 alloc_end = (offset + len + mask) & ~mask;
5142
546888da
CM
5143 /*
5144 * wait for ordered IO before we have any locks. We'll loop again
5145 * below with the locks held.
5146 */
5147 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5148
d899e052
YZ
5149 mutex_lock(&inode->i_mutex);
5150 if (alloc_start > inode->i_size) {
5151 ret = btrfs_cont_expand(inode, alloc_start);
5152 if (ret)
5153 goto out;
5154 }
5155
a970b0a1
JB
5156 root = BTRFS_I(inode)->root;
5157
5158 ret = btrfs_check_data_free_space(root, inode,
5159 alloc_end - alloc_start);
5160 if (ret)
5161 goto out;
5162
e980b50c 5163 locked_end = alloc_end - 1;
d899e052
YZ
5164 while (1) {
5165 struct btrfs_ordered_extent *ordered;
546888da
CM
5166
5167 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5168 if (!trans) {
5169 ret = -EIO;
a970b0a1 5170 goto out_free;
546888da
CM
5171 }
5172
5173 /* the extent lock is ordered inside the running
5174 * transaction
5175 */
e980b50c
CM
5176 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5177 GFP_NOFS);
d899e052
YZ
5178 ordered = btrfs_lookup_first_ordered_extent(inode,
5179 alloc_end - 1);
5180 if (ordered &&
5181 ordered->file_offset + ordered->len > alloc_start &&
5182 ordered->file_offset < alloc_end) {
5183 btrfs_put_ordered_extent(ordered);
5184 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5185 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5186 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5187
5188 /*
5189 * we can't wait on the range with the transaction
5190 * running or with the extent lock held
5191 */
d899e052
YZ
5192 btrfs_wait_ordered_range(inode, alloc_start,
5193 alloc_end - alloc_start);
5194 } else {
5195 if (ordered)
5196 btrfs_put_ordered_extent(ordered);
5197 break;
5198 }
5199 }
5200
5201 cur_offset = alloc_start;
5202 while (1) {
5203 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5204 alloc_end - cur_offset, 0);
5205 BUG_ON(IS_ERR(em) || !em);
5206 last_byte = min(extent_map_end(em), alloc_end);
5207 last_byte = (last_byte + mask) & ~mask;
5208 if (em->block_start == EXTENT_MAP_HOLE) {
546888da 5209 ret = prealloc_file_range(trans, inode, cur_offset,
e980b50c
CM
5210 last_byte, locked_end + 1,
5211 alloc_hint, mode);
d899e052
YZ
5212 if (ret < 0) {
5213 free_extent_map(em);
5214 break;
5215 }
5216 }
5217 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5218 alloc_hint = em->block_start;
5219 free_extent_map(em);
5220
5221 cur_offset = last_byte;
5222 if (cur_offset >= alloc_end) {
5223 ret = 0;
5224 break;
5225 }
5226 }
e980b50c 5227 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5228 GFP_NOFS);
546888da
CM
5229
5230 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
a970b0a1
JB
5231out_free:
5232 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
d899e052
YZ
5233out:
5234 mutex_unlock(&inode->i_mutex);
5235 return ret;
5236}
5237
e6dcd2dc
CM
5238static int btrfs_set_page_dirty(struct page *page)
5239{
e6dcd2dc
CM
5240 return __set_page_dirty_nobuffers(page);
5241}
5242
0ee0fda0 5243static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5244{
6cbff00f 5245 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5246 return -EACCES;
33268eaf 5247 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5248}
39279cc3
CM
5249
5250static struct inode_operations btrfs_dir_inode_operations = {
3394e160 5251 .getattr = btrfs_getattr,
39279cc3
CM
5252 .lookup = btrfs_lookup,
5253 .create = btrfs_create,
5254 .unlink = btrfs_unlink,
5255 .link = btrfs_link,
5256 .mkdir = btrfs_mkdir,
5257 .rmdir = btrfs_rmdir,
5258 .rename = btrfs_rename,
5259 .symlink = btrfs_symlink,
5260 .setattr = btrfs_setattr,
618e21d5 5261 .mknod = btrfs_mknod,
95819c05
CH
5262 .setxattr = btrfs_setxattr,
5263 .getxattr = btrfs_getxattr,
5103e947 5264 .listxattr = btrfs_listxattr,
95819c05 5265 .removexattr = btrfs_removexattr,
fdebe2bd 5266 .permission = btrfs_permission,
39279cc3 5267};
39279cc3
CM
5268static struct inode_operations btrfs_dir_ro_inode_operations = {
5269 .lookup = btrfs_lookup,
fdebe2bd 5270 .permission = btrfs_permission,
39279cc3 5271};
39279cc3
CM
5272static struct file_operations btrfs_dir_file_operations = {
5273 .llseek = generic_file_llseek,
5274 .read = generic_read_dir,
cbdf5a24 5275 .readdir = btrfs_real_readdir,
34287aa3 5276 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5277#ifdef CONFIG_COMPAT
34287aa3 5278 .compat_ioctl = btrfs_ioctl,
39279cc3 5279#endif
6bf13c0c 5280 .release = btrfs_release_file,
e02119d5 5281 .fsync = btrfs_sync_file,
39279cc3
CM
5282};
5283
d1310b2e 5284static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5285 .fill_delalloc = run_delalloc_range,
065631f6 5286 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 5287 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 5288 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 5289 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 5290 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 5291 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
5292 .set_bit_hook = btrfs_set_bit_hook,
5293 .clear_bit_hook = btrfs_clear_bit_hook,
07157aac
CM
5294};
5295
35054394
CM
5296/*
5297 * btrfs doesn't support the bmap operation because swapfiles
5298 * use bmap to make a mapping of extents in the file. They assume
5299 * these extents won't change over the life of the file and they
5300 * use the bmap result to do IO directly to the drive.
5301 *
5302 * the btrfs bmap call would return logical addresses that aren't
5303 * suitable for IO and they also will change frequently as COW
5304 * operations happen. So, swapfile + btrfs == corruption.
5305 *
5306 * For now we're avoiding this by dropping bmap.
5307 */
39279cc3
CM
5308static struct address_space_operations btrfs_aops = {
5309 .readpage = btrfs_readpage,
5310 .writepage = btrfs_writepage,
b293f02e 5311 .writepages = btrfs_writepages,
3ab2fb5a 5312 .readpages = btrfs_readpages,
39279cc3 5313 .sync_page = block_sync_page,
16432985 5314 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
5315 .invalidatepage = btrfs_invalidatepage,
5316 .releasepage = btrfs_releasepage,
e6dcd2dc 5317 .set_page_dirty = btrfs_set_page_dirty,
39279cc3
CM
5318};
5319
5320static struct address_space_operations btrfs_symlink_aops = {
5321 .readpage = btrfs_readpage,
5322 .writepage = btrfs_writepage,
2bf5a725
CM
5323 .invalidatepage = btrfs_invalidatepage,
5324 .releasepage = btrfs_releasepage,
39279cc3
CM
5325};
5326
5327static struct inode_operations btrfs_file_inode_operations = {
5328 .truncate = btrfs_truncate,
5329 .getattr = btrfs_getattr,
5330 .setattr = btrfs_setattr,
95819c05
CH
5331 .setxattr = btrfs_setxattr,
5332 .getxattr = btrfs_getxattr,
5103e947 5333 .listxattr = btrfs_listxattr,
95819c05 5334 .removexattr = btrfs_removexattr,
fdebe2bd 5335 .permission = btrfs_permission,
d899e052 5336 .fallocate = btrfs_fallocate,
1506fcc8 5337 .fiemap = btrfs_fiemap,
39279cc3 5338};
618e21d5
JB
5339static struct inode_operations btrfs_special_inode_operations = {
5340 .getattr = btrfs_getattr,
5341 .setattr = btrfs_setattr,
fdebe2bd 5342 .permission = btrfs_permission,
95819c05
CH
5343 .setxattr = btrfs_setxattr,
5344 .getxattr = btrfs_getxattr,
33268eaf 5345 .listxattr = btrfs_listxattr,
95819c05 5346 .removexattr = btrfs_removexattr,
618e21d5 5347};
39279cc3
CM
5348static struct inode_operations btrfs_symlink_inode_operations = {
5349 .readlink = generic_readlink,
5350 .follow_link = page_follow_link_light,
5351 .put_link = page_put_link,
fdebe2bd 5352 .permission = btrfs_permission,
0279b4cd
JO
5353 .setxattr = btrfs_setxattr,
5354 .getxattr = btrfs_getxattr,
5355 .listxattr = btrfs_listxattr,
5356 .removexattr = btrfs_removexattr,
39279cc3 5357};