btrfs: fix double-free 'tree_root' in 'btrfs_mount()'
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
4b4e25f2 41#include "compat.h"
39279cc3
CM
42#include "ctree.h"
43#include "disk-io.h"
44#include "transaction.h"
45#include "btrfs_inode.h"
46#include "ioctl.h"
47#include "print-tree.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
4a54c8c1 51#include "volumes.h"
c8b97818 52#include "compression.h"
b4ce94de 53#include "locking.h"
dc89e982 54#include "free-space-cache.h"
581bb050 55#include "inode-map.h"
39279cc3
CM
56
57struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
60};
61
6e1d5dcc
AD
62static const struct inode_operations btrfs_dir_inode_operations;
63static const struct inode_operations btrfs_symlink_inode_operations;
64static const struct inode_operations btrfs_dir_ro_inode_operations;
65static const struct inode_operations btrfs_special_inode_operations;
66static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
67static const struct address_space_operations btrfs_aops;
68static const struct address_space_operations btrfs_symlink_aops;
828c0950 69static const struct file_operations btrfs_dir_file_operations;
d1310b2e 70static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
71
72static struct kmem_cache *btrfs_inode_cachep;
73struct kmem_cache *btrfs_trans_handle_cachep;
74struct kmem_cache *btrfs_transaction_cachep;
39279cc3 75struct kmem_cache *btrfs_path_cachep;
dc89e982 76struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
77
78#define S_SHIFT 12
79static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87};
88
a41ad394
JB
89static int btrfs_setsize(struct inode *inode, loff_t newsize);
90static int btrfs_truncate(struct inode *inode);
c8b97818 91static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
92static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
7b128766 96
f34f57a3 97static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
0279b4cd
JO
100{
101 int err;
102
f34f57a3 103 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 104 if (!err)
2a7dba39 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
106 return err;
107}
108
c8b97818
CM
109/*
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
113 */
d397712b 114static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
fe3f566c 117 int compress_type,
c8b97818
CM
118 struct page **compressed_pages)
119{
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
c8b97818 132
fe3f566c 133 if (compressed_size && compressed_pages)
c8b97818 134 cur_size = compressed_size;
c8b97818 135
d397712b
CM
136 path = btrfs_alloc_path();
137 if (!path)
c8b97818
CM
138 return -ENOMEM;
139
b9473439 140 path->leave_spinning = 1;
c8b97818 141
33345d01 142 key.objectid = btrfs_ino(inode);
c8b97818
CM
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
fe3f566c 223 size_t compressed_size, int compress_type,
c8b97818
CM
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
c8b97818 257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 293 BUG_ON(!async_extent);
771ed689
CM
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
261507a0 299 async_extent->compress_type = compress_type;
771ed689
CM
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302}
303
d352ac68 304/*
771ed689
CM
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
c8b97818 308 *
771ed689
CM
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
c8b97818 314 *
771ed689
CM
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
d352ac68 319 */
771ed689
CM
320static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
b888db2b
CM
325{
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
db94535d 328 u64 num_bytes;
db94535d 329 u64 blocksize = root->sectorsize;
c8b97818 330 u64 actual_end;
42dc7bab 331 u64 isize = i_size_read(inode);
e6dcd2dc 332 int ret = 0;
c8b97818
CM
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
771ed689 339 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
340 int i;
341 int will_compress;
261507a0 342 int compress_type = root->fs_info->compress_type;
b888db2b 343
4cb5300b
CM
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
347
42dc7bab 348 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
349again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 353
f03d9301
CM
354 /*
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
360 *
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
363 */
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
366
c8b97818
CM
367 total_compressed = actual_end - start;
368
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
374 *
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
c8b97818
CM
378 */
379 total_compressed = min(total_compressed, max_uncompressed);
db94535d 380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 381 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
382 total_in = 0;
383 ret = 0;
db94535d 384
771ed689
CM
385 /*
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
c8b97818 389 */
6cbff00f 390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 391 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 394 WARN_ON(pages);
cfbc246e 395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
396 if (!pages) {
397 /* just bail out to the uncompressed code */
398 goto cont;
399 }
c8b97818 400
261507a0
LZ
401 if (BTRFS_I(inode)->force_compress)
402 compress_type = BTRFS_I(inode)->force_compress;
403
404 ret = btrfs_compress_pages(compress_type,
405 inode->i_mapping, start,
406 total_compressed, pages,
407 nr_pages, &nr_pages_ret,
408 &total_in,
409 &total_compressed,
410 max_compressed);
c8b97818
CM
411
412 if (!ret) {
413 unsigned long offset = total_compressed &
414 (PAGE_CACHE_SIZE - 1);
415 struct page *page = pages[nr_pages_ret - 1];
416 char *kaddr;
417
418 /* zero the tail end of the last page, we might be
419 * sending it down to disk
420 */
421 if (offset) {
422 kaddr = kmap_atomic(page, KM_USER0);
423 memset(kaddr + offset, 0,
424 PAGE_CACHE_SIZE - offset);
425 kunmap_atomic(kaddr, KM_USER0);
426 }
427 will_compress = 1;
428 }
429 }
560f7d75 430cont:
c8b97818 431 if (start == 0) {
7a7eaa40 432 trans = btrfs_join_transaction(root);
3612b495 433 BUG_ON(IS_ERR(trans));
0ca1f7ce 434 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 435
c8b97818 436 /* lets try to make an inline extent */
771ed689 437 if (ret || total_in < (actual_end - start)) {
c8b97818 438 /* we didn't compress the entire range, try
771ed689 439 * to make an uncompressed inline extent.
c8b97818
CM
440 */
441 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 442 start, end, 0, 0, NULL);
c8b97818 443 } else {
771ed689 444 /* try making a compressed inline extent */
c8b97818
CM
445 ret = cow_file_range_inline(trans, root, inode,
446 start, end,
fe3f566c
LZ
447 total_compressed,
448 compress_type, pages);
c8b97818
CM
449 }
450 if (ret == 0) {
771ed689
CM
451 /*
452 * inline extent creation worked, we don't need
453 * to create any more async work items. Unlock
454 * and free up our temp pages.
455 */
c8b97818 456 extent_clear_unlock_delalloc(inode,
a791e35e
CM
457 &BTRFS_I(inode)->io_tree,
458 start, end, NULL,
459 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 460 EXTENT_CLEAR_DELALLOC |
a791e35e 461 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
462
463 btrfs_end_transaction(trans, root);
c8b97818
CM
464 goto free_pages_out;
465 }
c2167754 466 btrfs_end_transaction(trans, root);
c8b97818
CM
467 }
468
469 if (will_compress) {
470 /*
471 * we aren't doing an inline extent round the compressed size
472 * up to a block size boundary so the allocator does sane
473 * things
474 */
475 total_compressed = (total_compressed + blocksize - 1) &
476 ~(blocksize - 1);
477
478 /*
479 * one last check to make sure the compression is really a
480 * win, compare the page count read with the blocks on disk
481 */
482 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
483 ~(PAGE_CACHE_SIZE - 1);
484 if (total_compressed >= total_in) {
485 will_compress = 0;
486 } else {
c8b97818
CM
487 num_bytes = total_in;
488 }
489 }
490 if (!will_compress && pages) {
491 /*
492 * the compression code ran but failed to make things smaller,
493 * free any pages it allocated and our page pointer array
494 */
495 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 496 WARN_ON(pages[i]->mapping);
c8b97818
CM
497 page_cache_release(pages[i]);
498 }
499 kfree(pages);
500 pages = NULL;
501 total_compressed = 0;
502 nr_pages_ret = 0;
503
504 /* flag the file so we don't compress in the future */
1e701a32
CM
505 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
506 !(BTRFS_I(inode)->force_compress)) {
a555f810 507 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 508 }
c8b97818 509 }
771ed689
CM
510 if (will_compress) {
511 *num_added += 1;
c8b97818 512
771ed689
CM
513 /* the async work queues will take care of doing actual
514 * allocation on disk for these compressed pages,
515 * and will submit them to the elevator.
516 */
517 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
518 total_compressed, pages, nr_pages_ret,
519 compress_type);
179e29e4 520
24ae6365 521 if (start + num_bytes < end) {
771ed689
CM
522 start += num_bytes;
523 pages = NULL;
524 cond_resched();
525 goto again;
526 }
527 } else {
f03d9301 528cleanup_and_bail_uncompressed:
771ed689
CM
529 /*
530 * No compression, but we still need to write the pages in
531 * the file we've been given so far. redirty the locked
532 * page if it corresponds to our extent and set things up
533 * for the async work queue to run cow_file_range to do
534 * the normal delalloc dance
535 */
536 if (page_offset(locked_page) >= start &&
537 page_offset(locked_page) <= end) {
538 __set_page_dirty_nobuffers(locked_page);
539 /* unlocked later on in the async handlers */
540 }
261507a0
LZ
541 add_async_extent(async_cow, start, end - start + 1,
542 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
543 *num_added += 1;
544 }
3b951516 545
771ed689
CM
546out:
547 return 0;
548
549free_pages_out:
550 for (i = 0; i < nr_pages_ret; i++) {
551 WARN_ON(pages[i]->mapping);
552 page_cache_release(pages[i]);
553 }
d397712b 554 kfree(pages);
771ed689
CM
555
556 goto out;
557}
558
559/*
560 * phase two of compressed writeback. This is the ordered portion
561 * of the code, which only gets called in the order the work was
562 * queued. We walk all the async extents created by compress_file_range
563 * and send them down to the disk.
564 */
565static noinline int submit_compressed_extents(struct inode *inode,
566 struct async_cow *async_cow)
567{
568 struct async_extent *async_extent;
569 u64 alloc_hint = 0;
570 struct btrfs_trans_handle *trans;
571 struct btrfs_key ins;
572 struct extent_map *em;
573 struct btrfs_root *root = BTRFS_I(inode)->root;
574 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
575 struct extent_io_tree *io_tree;
f5a84ee3 576 int ret = 0;
771ed689
CM
577
578 if (list_empty(&async_cow->extents))
579 return 0;
580
771ed689 581
d397712b 582 while (!list_empty(&async_cow->extents)) {
771ed689
CM
583 async_extent = list_entry(async_cow->extents.next,
584 struct async_extent, list);
585 list_del(&async_extent->list);
c8b97818 586
771ed689
CM
587 io_tree = &BTRFS_I(inode)->io_tree;
588
f5a84ee3 589retry:
771ed689
CM
590 /* did the compression code fall back to uncompressed IO? */
591 if (!async_extent->pages) {
592 int page_started = 0;
593 unsigned long nr_written = 0;
594
595 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
596 async_extent->start +
597 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
598
599 /* allocate blocks */
f5a84ee3
JB
600 ret = cow_file_range(inode, async_cow->locked_page,
601 async_extent->start,
602 async_extent->start +
603 async_extent->ram_size - 1,
604 &page_started, &nr_written, 0);
771ed689
CM
605
606 /*
607 * if page_started, cow_file_range inserted an
608 * inline extent and took care of all the unlocking
609 * and IO for us. Otherwise, we need to submit
610 * all those pages down to the drive.
611 */
f5a84ee3 612 if (!page_started && !ret)
771ed689
CM
613 extent_write_locked_range(io_tree,
614 inode, async_extent->start,
d397712b 615 async_extent->start +
771ed689
CM
616 async_extent->ram_size - 1,
617 btrfs_get_extent,
618 WB_SYNC_ALL);
619 kfree(async_extent);
620 cond_resched();
621 continue;
622 }
623
624 lock_extent(io_tree, async_extent->start,
625 async_extent->start + async_extent->ram_size - 1,
626 GFP_NOFS);
771ed689 627
7a7eaa40 628 trans = btrfs_join_transaction(root);
3612b495 629 BUG_ON(IS_ERR(trans));
74b21075 630 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
631 ret = btrfs_reserve_extent(trans, root,
632 async_extent->compressed_size,
633 async_extent->compressed_size,
634 0, alloc_hint,
635 (u64)-1, &ins, 1);
c2167754
YZ
636 btrfs_end_transaction(trans, root);
637
f5a84ee3
JB
638 if (ret) {
639 int i;
640 for (i = 0; i < async_extent->nr_pages; i++) {
641 WARN_ON(async_extent->pages[i]->mapping);
642 page_cache_release(async_extent->pages[i]);
643 }
644 kfree(async_extent->pages);
645 async_extent->nr_pages = 0;
646 async_extent->pages = NULL;
647 unlock_extent(io_tree, async_extent->start,
648 async_extent->start +
649 async_extent->ram_size - 1, GFP_NOFS);
650 goto retry;
651 }
652
c2167754
YZ
653 /*
654 * here we're doing allocation and writeback of the
655 * compressed pages
656 */
657 btrfs_drop_extent_cache(inode, async_extent->start,
658 async_extent->start +
659 async_extent->ram_size - 1, 0);
660
172ddd60 661 em = alloc_extent_map();
c26a9203 662 BUG_ON(!em);
771ed689
CM
663 em->start = async_extent->start;
664 em->len = async_extent->ram_size;
445a6944 665 em->orig_start = em->start;
c8b97818 666
771ed689
CM
667 em->block_start = ins.objectid;
668 em->block_len = ins.offset;
669 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 670 em->compress_type = async_extent->compress_type;
771ed689
CM
671 set_bit(EXTENT_FLAG_PINNED, &em->flags);
672 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
673
d397712b 674 while (1) {
890871be 675 write_lock(&em_tree->lock);
771ed689 676 ret = add_extent_mapping(em_tree, em);
890871be 677 write_unlock(&em_tree->lock);
771ed689
CM
678 if (ret != -EEXIST) {
679 free_extent_map(em);
680 break;
681 }
682 btrfs_drop_extent_cache(inode, async_extent->start,
683 async_extent->start +
684 async_extent->ram_size - 1, 0);
685 }
686
261507a0
LZ
687 ret = btrfs_add_ordered_extent_compress(inode,
688 async_extent->start,
689 ins.objectid,
690 async_extent->ram_size,
691 ins.offset,
692 BTRFS_ORDERED_COMPRESSED,
693 async_extent->compress_type);
771ed689
CM
694 BUG_ON(ret);
695
771ed689
CM
696 /*
697 * clear dirty, set writeback and unlock the pages.
698 */
699 extent_clear_unlock_delalloc(inode,
a791e35e
CM
700 &BTRFS_I(inode)->io_tree,
701 async_extent->start,
702 async_extent->start +
703 async_extent->ram_size - 1,
704 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
705 EXTENT_CLEAR_UNLOCK |
a3429ab7 706 EXTENT_CLEAR_DELALLOC |
a791e35e 707 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
708
709 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
710 async_extent->start,
711 async_extent->ram_size,
712 ins.objectid,
713 ins.offset, async_extent->pages,
714 async_extent->nr_pages);
771ed689
CM
715
716 BUG_ON(ret);
771ed689
CM
717 alloc_hint = ins.objectid + ins.offset;
718 kfree(async_extent);
719 cond_resched();
720 }
721
771ed689
CM
722 return 0;
723}
724
4b46fce2
JB
725static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
726 u64 num_bytes)
727{
728 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
729 struct extent_map *em;
730 u64 alloc_hint = 0;
731
732 read_lock(&em_tree->lock);
733 em = search_extent_mapping(em_tree, start, num_bytes);
734 if (em) {
735 /*
736 * if block start isn't an actual block number then find the
737 * first block in this inode and use that as a hint. If that
738 * block is also bogus then just don't worry about it.
739 */
740 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
741 free_extent_map(em);
742 em = search_extent_mapping(em_tree, 0, 0);
743 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
744 alloc_hint = em->block_start;
745 if (em)
746 free_extent_map(em);
747 } else {
748 alloc_hint = em->block_start;
749 free_extent_map(em);
750 }
751 }
752 read_unlock(&em_tree->lock);
753
754 return alloc_hint;
755}
756
771ed689
CM
757/*
758 * when extent_io.c finds a delayed allocation range in the file,
759 * the call backs end up in this code. The basic idea is to
760 * allocate extents on disk for the range, and create ordered data structs
761 * in ram to track those extents.
762 *
763 * locked_page is the page that writepage had locked already. We use
764 * it to make sure we don't do extra locks or unlocks.
765 *
766 * *page_started is set to one if we unlock locked_page and do everything
767 * required to start IO on it. It may be clean and already done with
768 * IO when we return.
769 */
770static noinline int cow_file_range(struct inode *inode,
771 struct page *locked_page,
772 u64 start, u64 end, int *page_started,
773 unsigned long *nr_written,
774 int unlock)
775{
776 struct btrfs_root *root = BTRFS_I(inode)->root;
777 struct btrfs_trans_handle *trans;
778 u64 alloc_hint = 0;
779 u64 num_bytes;
780 unsigned long ram_size;
781 u64 disk_num_bytes;
782 u64 cur_alloc_size;
783 u64 blocksize = root->sectorsize;
771ed689
CM
784 struct btrfs_key ins;
785 struct extent_map *em;
786 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
787 int ret = 0;
788
2cf8572d 789 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 790 trans = btrfs_join_transaction(root);
3612b495 791 BUG_ON(IS_ERR(trans));
0ca1f7ce 792 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 793
771ed689
CM
794 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
795 num_bytes = max(blocksize, num_bytes);
796 disk_num_bytes = num_bytes;
797 ret = 0;
798
4cb5300b
CM
799 /* if this is a small write inside eof, kick off defrag */
800 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
801 btrfs_add_inode_defrag(trans, inode);
802
771ed689
CM
803 if (start == 0) {
804 /* lets try to make an inline extent */
805 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 806 start, end, 0, 0, NULL);
771ed689
CM
807 if (ret == 0) {
808 extent_clear_unlock_delalloc(inode,
a791e35e
CM
809 &BTRFS_I(inode)->io_tree,
810 start, end, NULL,
811 EXTENT_CLEAR_UNLOCK_PAGE |
812 EXTENT_CLEAR_UNLOCK |
813 EXTENT_CLEAR_DELALLOC |
814 EXTENT_CLEAR_DIRTY |
815 EXTENT_SET_WRITEBACK |
816 EXTENT_END_WRITEBACK);
c2167754 817
771ed689
CM
818 *nr_written = *nr_written +
819 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
820 *page_started = 1;
821 ret = 0;
822 goto out;
823 }
824 }
825
826 BUG_ON(disk_num_bytes >
6c41761f 827 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 828
4b46fce2 829 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
830 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
831
d397712b 832 while (disk_num_bytes > 0) {
a791e35e
CM
833 unsigned long op;
834
287a0ab9 835 cur_alloc_size = disk_num_bytes;
e6dcd2dc 836 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 837 root->sectorsize, 0, alloc_hint,
e6dcd2dc 838 (u64)-1, &ins, 1);
d397712b
CM
839 BUG_ON(ret);
840
172ddd60 841 em = alloc_extent_map();
c26a9203 842 BUG_ON(!em);
e6dcd2dc 843 em->start = start;
445a6944 844 em->orig_start = em->start;
771ed689
CM
845 ram_size = ins.offset;
846 em->len = ins.offset;
c8b97818 847
e6dcd2dc 848 em->block_start = ins.objectid;
c8b97818 849 em->block_len = ins.offset;
e6dcd2dc 850 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 851 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 852
d397712b 853 while (1) {
890871be 854 write_lock(&em_tree->lock);
e6dcd2dc 855 ret = add_extent_mapping(em_tree, em);
890871be 856 write_unlock(&em_tree->lock);
e6dcd2dc
CM
857 if (ret != -EEXIST) {
858 free_extent_map(em);
859 break;
860 }
861 btrfs_drop_extent_cache(inode, start,
c8b97818 862 start + ram_size - 1, 0);
e6dcd2dc
CM
863 }
864
98d20f67 865 cur_alloc_size = ins.offset;
e6dcd2dc 866 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 867 ram_size, cur_alloc_size, 0);
e6dcd2dc 868 BUG_ON(ret);
c8b97818 869
17d217fe
YZ
870 if (root->root_key.objectid ==
871 BTRFS_DATA_RELOC_TREE_OBJECTID) {
872 ret = btrfs_reloc_clone_csums(inode, start,
873 cur_alloc_size);
874 BUG_ON(ret);
875 }
876
d397712b 877 if (disk_num_bytes < cur_alloc_size)
3b951516 878 break;
d397712b 879
c8b97818
CM
880 /* we're not doing compressed IO, don't unlock the first
881 * page (which the caller expects to stay locked), don't
882 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
883 *
884 * Do set the Private2 bit so we know this page was properly
885 * setup for writepage
c8b97818 886 */
a791e35e
CM
887 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
888 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
889 EXTENT_SET_PRIVATE2;
890
c8b97818
CM
891 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
892 start, start + ram_size - 1,
a791e35e 893 locked_page, op);
c8b97818 894 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
895 num_bytes -= cur_alloc_size;
896 alloc_hint = ins.objectid + ins.offset;
897 start += cur_alloc_size;
b888db2b 898 }
b888db2b 899out:
771ed689 900 ret = 0;
b888db2b 901 btrfs_end_transaction(trans, root);
c8b97818 902
be20aa9d 903 return ret;
771ed689 904}
c8b97818 905
771ed689
CM
906/*
907 * work queue call back to started compression on a file and pages
908 */
909static noinline void async_cow_start(struct btrfs_work *work)
910{
911 struct async_cow *async_cow;
912 int num_added = 0;
913 async_cow = container_of(work, struct async_cow, work);
914
915 compress_file_range(async_cow->inode, async_cow->locked_page,
916 async_cow->start, async_cow->end, async_cow,
917 &num_added);
918 if (num_added == 0)
919 async_cow->inode = NULL;
920}
921
922/*
923 * work queue call back to submit previously compressed pages
924 */
925static noinline void async_cow_submit(struct btrfs_work *work)
926{
927 struct async_cow *async_cow;
928 struct btrfs_root *root;
929 unsigned long nr_pages;
930
931 async_cow = container_of(work, struct async_cow, work);
932
933 root = async_cow->root;
934 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
935 PAGE_CACHE_SHIFT;
936
937 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
938
939 if (atomic_read(&root->fs_info->async_delalloc_pages) <
940 5 * 1042 * 1024 &&
941 waitqueue_active(&root->fs_info->async_submit_wait))
942 wake_up(&root->fs_info->async_submit_wait);
943
d397712b 944 if (async_cow->inode)
771ed689 945 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 946}
c8b97818 947
771ed689
CM
948static noinline void async_cow_free(struct btrfs_work *work)
949{
950 struct async_cow *async_cow;
951 async_cow = container_of(work, struct async_cow, work);
952 kfree(async_cow);
953}
954
955static int cow_file_range_async(struct inode *inode, struct page *locked_page,
956 u64 start, u64 end, int *page_started,
957 unsigned long *nr_written)
958{
959 struct async_cow *async_cow;
960 struct btrfs_root *root = BTRFS_I(inode)->root;
961 unsigned long nr_pages;
962 u64 cur_end;
963 int limit = 10 * 1024 * 1042;
964
a3429ab7
CM
965 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
966 1, 0, NULL, GFP_NOFS);
d397712b 967 while (start < end) {
771ed689 968 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 969 BUG_ON(!async_cow);
771ed689
CM
970 async_cow->inode = inode;
971 async_cow->root = root;
972 async_cow->locked_page = locked_page;
973 async_cow->start = start;
974
6cbff00f 975 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
976 cur_end = end;
977 else
978 cur_end = min(end, start + 512 * 1024 - 1);
979
980 async_cow->end = cur_end;
981 INIT_LIST_HEAD(&async_cow->extents);
982
983 async_cow->work.func = async_cow_start;
984 async_cow->work.ordered_func = async_cow_submit;
985 async_cow->work.ordered_free = async_cow_free;
986 async_cow->work.flags = 0;
987
771ed689
CM
988 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
989 PAGE_CACHE_SHIFT;
990 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
991
992 btrfs_queue_worker(&root->fs_info->delalloc_workers,
993 &async_cow->work);
994
995 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
996 wait_event(root->fs_info->async_submit_wait,
997 (atomic_read(&root->fs_info->async_delalloc_pages) <
998 limit));
999 }
1000
d397712b 1001 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1002 atomic_read(&root->fs_info->async_delalloc_pages)) {
1003 wait_event(root->fs_info->async_submit_wait,
1004 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1005 0));
1006 }
1007
1008 *nr_written += nr_pages;
1009 start = cur_end + 1;
1010 }
1011 *page_started = 1;
1012 return 0;
be20aa9d
CM
1013}
1014
d397712b 1015static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1016 u64 bytenr, u64 num_bytes)
1017{
1018 int ret;
1019 struct btrfs_ordered_sum *sums;
1020 LIST_HEAD(list);
1021
07d400a6 1022 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1023 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1024 if (ret == 0 && list_empty(&list))
1025 return 0;
1026
1027 while (!list_empty(&list)) {
1028 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1029 list_del(&sums->list);
1030 kfree(sums);
1031 }
1032 return 1;
1033}
1034
d352ac68
CM
1035/*
1036 * when nowcow writeback call back. This checks for snapshots or COW copies
1037 * of the extents that exist in the file, and COWs the file as required.
1038 *
1039 * If no cow copies or snapshots exist, we write directly to the existing
1040 * blocks on disk
1041 */
7f366cfe
CM
1042static noinline int run_delalloc_nocow(struct inode *inode,
1043 struct page *locked_page,
771ed689
CM
1044 u64 start, u64 end, int *page_started, int force,
1045 unsigned long *nr_written)
be20aa9d 1046{
be20aa9d 1047 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1048 struct btrfs_trans_handle *trans;
be20aa9d 1049 struct extent_buffer *leaf;
be20aa9d 1050 struct btrfs_path *path;
80ff3856 1051 struct btrfs_file_extent_item *fi;
be20aa9d 1052 struct btrfs_key found_key;
80ff3856
YZ
1053 u64 cow_start;
1054 u64 cur_offset;
1055 u64 extent_end;
5d4f98a2 1056 u64 extent_offset;
80ff3856
YZ
1057 u64 disk_bytenr;
1058 u64 num_bytes;
1059 int extent_type;
1060 int ret;
d899e052 1061 int type;
80ff3856
YZ
1062 int nocow;
1063 int check_prev = 1;
82d5902d 1064 bool nolock;
33345d01 1065 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1066
1067 path = btrfs_alloc_path();
d8926bb3
MF
1068 if (!path)
1069 return -ENOMEM;
82d5902d 1070
2cf8572d 1071 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1072
1073 if (nolock)
7a7eaa40 1074 trans = btrfs_join_transaction_nolock(root);
82d5902d 1075 else
7a7eaa40 1076 trans = btrfs_join_transaction(root);
ff5714cc 1077
3612b495 1078 BUG_ON(IS_ERR(trans));
74b21075 1079 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1080
80ff3856
YZ
1081 cow_start = (u64)-1;
1082 cur_offset = start;
1083 while (1) {
33345d01 1084 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1085 cur_offset, 0);
1086 BUG_ON(ret < 0);
1087 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1088 leaf = path->nodes[0];
1089 btrfs_item_key_to_cpu(leaf, &found_key,
1090 path->slots[0] - 1);
33345d01 1091 if (found_key.objectid == ino &&
80ff3856
YZ
1092 found_key.type == BTRFS_EXTENT_DATA_KEY)
1093 path->slots[0]--;
1094 }
1095 check_prev = 0;
1096next_slot:
1097 leaf = path->nodes[0];
1098 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1099 ret = btrfs_next_leaf(root, path);
1100 if (ret < 0)
1101 BUG_ON(1);
1102 if (ret > 0)
1103 break;
1104 leaf = path->nodes[0];
1105 }
be20aa9d 1106
80ff3856
YZ
1107 nocow = 0;
1108 disk_bytenr = 0;
17d217fe 1109 num_bytes = 0;
80ff3856
YZ
1110 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1111
33345d01 1112 if (found_key.objectid > ino ||
80ff3856
YZ
1113 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1114 found_key.offset > end)
1115 break;
1116
1117 if (found_key.offset > cur_offset) {
1118 extent_end = found_key.offset;
e9061e21 1119 extent_type = 0;
80ff3856
YZ
1120 goto out_check;
1121 }
1122
1123 fi = btrfs_item_ptr(leaf, path->slots[0],
1124 struct btrfs_file_extent_item);
1125 extent_type = btrfs_file_extent_type(leaf, fi);
1126
d899e052
YZ
1127 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1128 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1129 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1130 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1131 extent_end = found_key.offset +
1132 btrfs_file_extent_num_bytes(leaf, fi);
1133 if (extent_end <= start) {
1134 path->slots[0]++;
1135 goto next_slot;
1136 }
17d217fe
YZ
1137 if (disk_bytenr == 0)
1138 goto out_check;
80ff3856
YZ
1139 if (btrfs_file_extent_compression(leaf, fi) ||
1140 btrfs_file_extent_encryption(leaf, fi) ||
1141 btrfs_file_extent_other_encoding(leaf, fi))
1142 goto out_check;
d899e052
YZ
1143 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1144 goto out_check;
d2fb3437 1145 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1146 goto out_check;
33345d01 1147 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1148 found_key.offset -
1149 extent_offset, disk_bytenr))
17d217fe 1150 goto out_check;
5d4f98a2 1151 disk_bytenr += extent_offset;
17d217fe
YZ
1152 disk_bytenr += cur_offset - found_key.offset;
1153 num_bytes = min(end + 1, extent_end) - cur_offset;
1154 /*
1155 * force cow if csum exists in the range.
1156 * this ensure that csum for a given extent are
1157 * either valid or do not exist.
1158 */
1159 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1160 goto out_check;
80ff3856
YZ
1161 nocow = 1;
1162 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1163 extent_end = found_key.offset +
1164 btrfs_file_extent_inline_len(leaf, fi);
1165 extent_end = ALIGN(extent_end, root->sectorsize);
1166 } else {
1167 BUG_ON(1);
1168 }
1169out_check:
1170 if (extent_end <= start) {
1171 path->slots[0]++;
1172 goto next_slot;
1173 }
1174 if (!nocow) {
1175 if (cow_start == (u64)-1)
1176 cow_start = cur_offset;
1177 cur_offset = extent_end;
1178 if (cur_offset > end)
1179 break;
1180 path->slots[0]++;
1181 goto next_slot;
7ea394f1
YZ
1182 }
1183
b3b4aa74 1184 btrfs_release_path(path);
80ff3856
YZ
1185 if (cow_start != (u64)-1) {
1186 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1187 found_key.offset - 1, page_started,
1188 nr_written, 1);
80ff3856
YZ
1189 BUG_ON(ret);
1190 cow_start = (u64)-1;
7ea394f1 1191 }
80ff3856 1192
d899e052
YZ
1193 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1194 struct extent_map *em;
1195 struct extent_map_tree *em_tree;
1196 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1197 em = alloc_extent_map();
c26a9203 1198 BUG_ON(!em);
d899e052 1199 em->start = cur_offset;
445a6944 1200 em->orig_start = em->start;
d899e052
YZ
1201 em->len = num_bytes;
1202 em->block_len = num_bytes;
1203 em->block_start = disk_bytenr;
1204 em->bdev = root->fs_info->fs_devices->latest_bdev;
1205 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1206 while (1) {
890871be 1207 write_lock(&em_tree->lock);
d899e052 1208 ret = add_extent_mapping(em_tree, em);
890871be 1209 write_unlock(&em_tree->lock);
d899e052
YZ
1210 if (ret != -EEXIST) {
1211 free_extent_map(em);
1212 break;
1213 }
1214 btrfs_drop_extent_cache(inode, em->start,
1215 em->start + em->len - 1, 0);
1216 }
1217 type = BTRFS_ORDERED_PREALLOC;
1218 } else {
1219 type = BTRFS_ORDERED_NOCOW;
1220 }
80ff3856
YZ
1221
1222 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1223 num_bytes, num_bytes, type);
1224 BUG_ON(ret);
771ed689 1225
efa56464
YZ
1226 if (root->root_key.objectid ==
1227 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1228 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1229 num_bytes);
1230 BUG_ON(ret);
1231 }
1232
d899e052 1233 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1234 cur_offset, cur_offset + num_bytes - 1,
1235 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1236 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1237 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1238 cur_offset = extent_end;
1239 if (cur_offset > end)
1240 break;
be20aa9d 1241 }
b3b4aa74 1242 btrfs_release_path(path);
80ff3856
YZ
1243
1244 if (cur_offset <= end && cow_start == (u64)-1)
1245 cow_start = cur_offset;
1246 if (cow_start != (u64)-1) {
1247 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1248 page_started, nr_written, 1);
80ff3856
YZ
1249 BUG_ON(ret);
1250 }
1251
0cb59c99
JB
1252 if (nolock) {
1253 ret = btrfs_end_transaction_nolock(trans, root);
1254 BUG_ON(ret);
1255 } else {
1256 ret = btrfs_end_transaction(trans, root);
1257 BUG_ON(ret);
1258 }
7ea394f1 1259 btrfs_free_path(path);
80ff3856 1260 return 0;
be20aa9d
CM
1261}
1262
d352ac68
CM
1263/*
1264 * extent_io.c call back to do delayed allocation processing
1265 */
c8b97818 1266static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1267 u64 start, u64 end, int *page_started,
1268 unsigned long *nr_written)
be20aa9d 1269{
be20aa9d 1270 int ret;
7f366cfe 1271 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1272
6cbff00f 1273 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1274 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1275 page_started, 1, nr_written);
6cbff00f 1276 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1277 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1278 page_started, 0, nr_written);
1e701a32 1279 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1280 !(BTRFS_I(inode)->force_compress) &&
1281 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1282 ret = cow_file_range(inode, locked_page, start, end,
1283 page_started, nr_written, 1);
be20aa9d 1284 else
771ed689 1285 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1286 page_started, nr_written);
b888db2b
CM
1287 return ret;
1288}
1289
1bf85046
JM
1290static void btrfs_split_extent_hook(struct inode *inode,
1291 struct extent_state *orig, u64 split)
9ed74f2d 1292{
0ca1f7ce 1293 /* not delalloc, ignore it */
9ed74f2d 1294 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1295 return;
9ed74f2d 1296
9e0baf60
JB
1297 spin_lock(&BTRFS_I(inode)->lock);
1298 BTRFS_I(inode)->outstanding_extents++;
1299 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1300}
1301
1302/*
1303 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1304 * extents so we can keep track of new extents that are just merged onto old
1305 * extents, such as when we are doing sequential writes, so we can properly
1306 * account for the metadata space we'll need.
1307 */
1bf85046
JM
1308static void btrfs_merge_extent_hook(struct inode *inode,
1309 struct extent_state *new,
1310 struct extent_state *other)
9ed74f2d 1311{
9ed74f2d
JB
1312 /* not delalloc, ignore it */
1313 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1314 return;
9ed74f2d 1315
9e0baf60
JB
1316 spin_lock(&BTRFS_I(inode)->lock);
1317 BTRFS_I(inode)->outstanding_extents--;
1318 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1319}
1320
d352ac68
CM
1321/*
1322 * extent_io.c set_bit_hook, used to track delayed allocation
1323 * bytes in this file, and to maintain the list of inodes that
1324 * have pending delalloc work to be done.
1325 */
1bf85046
JM
1326static void btrfs_set_bit_hook(struct inode *inode,
1327 struct extent_state *state, int *bits)
291d673e 1328{
9ed74f2d 1329
75eff68e
CM
1330 /*
1331 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1332 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1333 * bit, which is only set or cleared with irqs on
1334 */
0ca1f7ce 1335 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1336 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1337 u64 len = state->end + 1 - state->start;
2cf8572d 1338 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1339
9e0baf60 1340 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1341 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1342 } else {
1343 spin_lock(&BTRFS_I(inode)->lock);
1344 BTRFS_I(inode)->outstanding_extents++;
1345 spin_unlock(&BTRFS_I(inode)->lock);
1346 }
287a0ab9 1347
75eff68e 1348 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1349 BTRFS_I(inode)->delalloc_bytes += len;
1350 root->fs_info->delalloc_bytes += len;
0cb59c99 1351 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1352 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1353 &root->fs_info->delalloc_inodes);
1354 }
75eff68e 1355 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1356 }
291d673e
CM
1357}
1358
d352ac68
CM
1359/*
1360 * extent_io.c clear_bit_hook, see set_bit_hook for why
1361 */
1bf85046
JM
1362static void btrfs_clear_bit_hook(struct inode *inode,
1363 struct extent_state *state, int *bits)
291d673e 1364{
75eff68e
CM
1365 /*
1366 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1367 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1368 * bit, which is only set or cleared with irqs on
1369 */
0ca1f7ce 1370 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1371 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1372 u64 len = state->end + 1 - state->start;
2cf8572d 1373 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1374
9e0baf60 1375 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1376 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1377 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1378 spin_lock(&BTRFS_I(inode)->lock);
1379 BTRFS_I(inode)->outstanding_extents--;
1380 spin_unlock(&BTRFS_I(inode)->lock);
1381 }
0ca1f7ce
YZ
1382
1383 if (*bits & EXTENT_DO_ACCOUNTING)
1384 btrfs_delalloc_release_metadata(inode, len);
1385
0cb59c99
JB
1386 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1387 && do_list)
0ca1f7ce 1388 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1389
75eff68e 1390 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1391 root->fs_info->delalloc_bytes -= len;
1392 BTRFS_I(inode)->delalloc_bytes -= len;
1393
0cb59c99 1394 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1395 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1396 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1397 }
75eff68e 1398 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1399 }
291d673e
CM
1400}
1401
d352ac68
CM
1402/*
1403 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1404 * we don't create bios that span stripes or chunks
1405 */
239b14b3 1406int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1407 size_t size, struct bio *bio,
1408 unsigned long bio_flags)
239b14b3
CM
1409{
1410 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1411 struct btrfs_mapping_tree *map_tree;
a62b9401 1412 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1413 u64 length = 0;
1414 u64 map_length;
239b14b3
CM
1415 int ret;
1416
771ed689
CM
1417 if (bio_flags & EXTENT_BIO_COMPRESSED)
1418 return 0;
1419
f2d8d74d 1420 length = bio->bi_size;
239b14b3
CM
1421 map_tree = &root->fs_info->mapping_tree;
1422 map_length = length;
cea9e445 1423 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1424 &map_length, NULL, 0);
cea9e445 1425
d397712b 1426 if (map_length < length + size)
239b14b3 1427 return 1;
411fc6bc 1428 return ret;
239b14b3
CM
1429}
1430
d352ac68
CM
1431/*
1432 * in order to insert checksums into the metadata in large chunks,
1433 * we wait until bio submission time. All the pages in the bio are
1434 * checksummed and sums are attached onto the ordered extent record.
1435 *
1436 * At IO completion time the cums attached on the ordered extent record
1437 * are inserted into the btree
1438 */
d397712b
CM
1439static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1440 struct bio *bio, int mirror_num,
eaf25d93
CM
1441 unsigned long bio_flags,
1442 u64 bio_offset)
065631f6 1443{
065631f6 1444 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1445 int ret = 0;
e015640f 1446
d20f7043 1447 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1448 BUG_ON(ret);
4a69a410
CM
1449 return 0;
1450}
e015640f 1451
4a69a410
CM
1452/*
1453 * in order to insert checksums into the metadata in large chunks,
1454 * we wait until bio submission time. All the pages in the bio are
1455 * checksummed and sums are attached onto the ordered extent record.
1456 *
1457 * At IO completion time the cums attached on the ordered extent record
1458 * are inserted into the btree
1459 */
b2950863 1460static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1461 int mirror_num, unsigned long bio_flags,
1462 u64 bio_offset)
4a69a410
CM
1463{
1464 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1465 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1466}
1467
d352ac68 1468/*
cad321ad
CM
1469 * extent_io.c submission hook. This does the right thing for csum calculation
1470 * on write, or reading the csums from the tree before a read
d352ac68 1471 */
b2950863 1472static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1473 int mirror_num, unsigned long bio_flags,
1474 u64 bio_offset)
44b8bd7e
CM
1475{
1476 struct btrfs_root *root = BTRFS_I(inode)->root;
1477 int ret = 0;
19b9bdb0 1478 int skip_sum;
44b8bd7e 1479
6cbff00f 1480 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1481
2cf8572d 1482 if (btrfs_is_free_space_inode(root, inode))
0cb59c99
JB
1483 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1484 else
1485 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1486 BUG_ON(ret);
065631f6 1487
7b6d91da 1488 if (!(rw & REQ_WRITE)) {
d20f7043 1489 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1490 return btrfs_submit_compressed_read(inode, bio,
1491 mirror_num, bio_flags);
c2db1073
TI
1492 } else if (!skip_sum) {
1493 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1494 if (ret)
1495 return ret;
1496 }
4d1b5fb4 1497 goto mapit;
19b9bdb0 1498 } else if (!skip_sum) {
17d217fe
YZ
1499 /* csum items have already been cloned */
1500 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1501 goto mapit;
19b9bdb0
CM
1502 /* we're doing a write, do the async checksumming */
1503 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1504 inode, rw, bio, mirror_num,
eaf25d93
CM
1505 bio_flags, bio_offset,
1506 __btrfs_submit_bio_start,
4a69a410 1507 __btrfs_submit_bio_done);
19b9bdb0
CM
1508 }
1509
0b86a832 1510mapit:
8b712842 1511 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1512}
6885f308 1513
d352ac68
CM
1514/*
1515 * given a list of ordered sums record them in the inode. This happens
1516 * at IO completion time based on sums calculated at bio submission time.
1517 */
ba1da2f4 1518static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1519 struct inode *inode, u64 file_offset,
1520 struct list_head *list)
1521{
e6dcd2dc
CM
1522 struct btrfs_ordered_sum *sum;
1523
c6e30871 1524 list_for_each_entry(sum, list, list) {
d20f7043
CM
1525 btrfs_csum_file_blocks(trans,
1526 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1527 }
1528 return 0;
1529}
1530
2ac55d41
JB
1531int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1532 struct extent_state **cached_state)
ea8c2819 1533{
d397712b 1534 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1535 WARN_ON(1);
ea8c2819 1536 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1537 cached_state, GFP_NOFS);
ea8c2819
CM
1538}
1539
d352ac68 1540/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1541struct btrfs_writepage_fixup {
1542 struct page *page;
1543 struct btrfs_work work;
1544};
1545
b2950863 1546static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1547{
1548 struct btrfs_writepage_fixup *fixup;
1549 struct btrfs_ordered_extent *ordered;
2ac55d41 1550 struct extent_state *cached_state = NULL;
247e743c
CM
1551 struct page *page;
1552 struct inode *inode;
1553 u64 page_start;
1554 u64 page_end;
1555
1556 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1557 page = fixup->page;
4a096752 1558again:
247e743c
CM
1559 lock_page(page);
1560 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1561 ClearPageChecked(page);
1562 goto out_page;
1563 }
1564
1565 inode = page->mapping->host;
1566 page_start = page_offset(page);
1567 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1568
2ac55d41
JB
1569 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1570 &cached_state, GFP_NOFS);
4a096752
CM
1571
1572 /* already ordered? We're done */
8b62b72b 1573 if (PagePrivate2(page))
247e743c 1574 goto out;
4a096752
CM
1575
1576 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1577 if (ordered) {
2ac55d41
JB
1578 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1579 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1580 unlock_page(page);
1581 btrfs_start_ordered_extent(inode, ordered, 1);
1582 goto again;
1583 }
247e743c 1584
0ca1f7ce 1585 BUG();
2ac55d41 1586 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1587 ClearPageChecked(page);
1588out:
2ac55d41
JB
1589 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1590 &cached_state, GFP_NOFS);
247e743c
CM
1591out_page:
1592 unlock_page(page);
1593 page_cache_release(page);
b897abec 1594 kfree(fixup);
247e743c
CM
1595}
1596
1597/*
1598 * There are a few paths in the higher layers of the kernel that directly
1599 * set the page dirty bit without asking the filesystem if it is a
1600 * good idea. This causes problems because we want to make sure COW
1601 * properly happens and the data=ordered rules are followed.
1602 *
c8b97818 1603 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1604 * hasn't been properly setup for IO. We kick off an async process
1605 * to fix it up. The async helper will wait for ordered extents, set
1606 * the delalloc bit and make it safe to write the page.
1607 */
b2950863 1608static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1609{
1610 struct inode *inode = page->mapping->host;
1611 struct btrfs_writepage_fixup *fixup;
1612 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1613
8b62b72b
CM
1614 /* this page is properly in the ordered list */
1615 if (TestClearPagePrivate2(page))
247e743c
CM
1616 return 0;
1617
1618 if (PageChecked(page))
1619 return -EAGAIN;
1620
1621 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1622 if (!fixup)
1623 return -EAGAIN;
f421950f 1624
247e743c
CM
1625 SetPageChecked(page);
1626 page_cache_get(page);
1627 fixup->work.func = btrfs_writepage_fixup_worker;
1628 fixup->page = page;
1629 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1630 return -EAGAIN;
1631}
1632
d899e052
YZ
1633static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1634 struct inode *inode, u64 file_pos,
1635 u64 disk_bytenr, u64 disk_num_bytes,
1636 u64 num_bytes, u64 ram_bytes,
1637 u8 compression, u8 encryption,
1638 u16 other_encoding, int extent_type)
1639{
1640 struct btrfs_root *root = BTRFS_I(inode)->root;
1641 struct btrfs_file_extent_item *fi;
1642 struct btrfs_path *path;
1643 struct extent_buffer *leaf;
1644 struct btrfs_key ins;
1645 u64 hint;
1646 int ret;
1647
1648 path = btrfs_alloc_path();
d8926bb3
MF
1649 if (!path)
1650 return -ENOMEM;
d899e052 1651
b9473439 1652 path->leave_spinning = 1;
a1ed835e
CM
1653
1654 /*
1655 * we may be replacing one extent in the tree with another.
1656 * The new extent is pinned in the extent map, and we don't want
1657 * to drop it from the cache until it is completely in the btree.
1658 *
1659 * So, tell btrfs_drop_extents to leave this extent in the cache.
1660 * the caller is expected to unpin it and allow it to be merged
1661 * with the others.
1662 */
920bbbfb
YZ
1663 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1664 &hint, 0);
d899e052
YZ
1665 BUG_ON(ret);
1666
33345d01 1667 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1668 ins.offset = file_pos;
1669 ins.type = BTRFS_EXTENT_DATA_KEY;
1670 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1671 BUG_ON(ret);
1672 leaf = path->nodes[0];
1673 fi = btrfs_item_ptr(leaf, path->slots[0],
1674 struct btrfs_file_extent_item);
1675 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1676 btrfs_set_file_extent_type(leaf, fi, extent_type);
1677 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1678 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1679 btrfs_set_file_extent_offset(leaf, fi, 0);
1680 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1681 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1682 btrfs_set_file_extent_compression(leaf, fi, compression);
1683 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1684 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1685
1686 btrfs_unlock_up_safe(path, 1);
1687 btrfs_set_lock_blocking(leaf);
1688
d899e052
YZ
1689 btrfs_mark_buffer_dirty(leaf);
1690
1691 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1692
1693 ins.objectid = disk_bytenr;
1694 ins.offset = disk_num_bytes;
1695 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1696 ret = btrfs_alloc_reserved_file_extent(trans, root,
1697 root->root_key.objectid,
33345d01 1698 btrfs_ino(inode), file_pos, &ins);
d899e052 1699 BUG_ON(ret);
d899e052 1700 btrfs_free_path(path);
b9473439 1701
d899e052
YZ
1702 return 0;
1703}
1704
5d13a98f
CM
1705/*
1706 * helper function for btrfs_finish_ordered_io, this
1707 * just reads in some of the csum leaves to prime them into ram
1708 * before we start the transaction. It limits the amount of btree
1709 * reads required while inside the transaction.
1710 */
d352ac68
CM
1711/* as ordered data IO finishes, this gets called so we can finish
1712 * an ordered extent if the range of bytes in the file it covers are
1713 * fully written.
1714 */
211f90e6 1715static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1716{
e6dcd2dc 1717 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1718 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1719 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1720 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1721 struct extent_state *cached_state = NULL;
261507a0 1722 int compress_type = 0;
e6dcd2dc 1723 int ret;
82d5902d 1724 bool nolock;
e6dcd2dc 1725
5a1a3df1
JB
1726 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1727 end - start + 1);
ba1da2f4 1728 if (!ret)
e6dcd2dc 1729 return 0;
e6dcd2dc 1730 BUG_ON(!ordered_extent);
efd049fb 1731
2cf8572d 1732 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1733
c2167754
YZ
1734 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1735 BUG_ON(!list_empty(&ordered_extent->list));
1736 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1737 if (!ret) {
0cb59c99 1738 if (nolock)
7a7eaa40 1739 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1740 else
7a7eaa40 1741 trans = btrfs_join_transaction(root);
3612b495 1742 BUG_ON(IS_ERR(trans));
0ca1f7ce 1743 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1744 ret = btrfs_update_inode(trans, root, inode);
1745 BUG_ON(ret);
c2167754
YZ
1746 }
1747 goto out;
1748 }
e6dcd2dc 1749
2ac55d41
JB
1750 lock_extent_bits(io_tree, ordered_extent->file_offset,
1751 ordered_extent->file_offset + ordered_extent->len - 1,
1752 0, &cached_state, GFP_NOFS);
e6dcd2dc 1753
0cb59c99 1754 if (nolock)
7a7eaa40 1755 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1756 else
7a7eaa40 1757 trans = btrfs_join_transaction(root);
3612b495 1758 BUG_ON(IS_ERR(trans));
0ca1f7ce 1759 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1760
c8b97818 1761 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1762 compress_type = ordered_extent->compress_type;
d899e052 1763 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1764 BUG_ON(compress_type);
920bbbfb 1765 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1766 ordered_extent->file_offset,
1767 ordered_extent->file_offset +
1768 ordered_extent->len);
1769 BUG_ON(ret);
1770 } else {
0af3d00b 1771 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1772 ret = insert_reserved_file_extent(trans, inode,
1773 ordered_extent->file_offset,
1774 ordered_extent->start,
1775 ordered_extent->disk_len,
1776 ordered_extent->len,
1777 ordered_extent->len,
261507a0 1778 compress_type, 0, 0,
d899e052 1779 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1780 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1781 ordered_extent->file_offset,
1782 ordered_extent->len);
d899e052
YZ
1783 BUG_ON(ret);
1784 }
2ac55d41
JB
1785 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1786 ordered_extent->file_offset +
1787 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1788
e6dcd2dc
CM
1789 add_pending_csums(trans, inode, ordered_extent->file_offset,
1790 &ordered_extent->list);
1791
1ef30be1 1792 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1793 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1ef30be1
JB
1794 ret = btrfs_update_inode(trans, root, inode);
1795 BUG_ON(ret);
1796 }
1797 ret = 0;
c2167754 1798out:
5b0e95bf
JB
1799 if (root != root->fs_info->tree_root)
1800 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1801 if (trans) {
1802 if (nolock)
0cb59c99 1803 btrfs_end_transaction_nolock(trans, root);
5b0e95bf 1804 else
0cb59c99
JB
1805 btrfs_end_transaction(trans, root);
1806 }
1807
e6dcd2dc
CM
1808 /* once for us */
1809 btrfs_put_ordered_extent(ordered_extent);
1810 /* once for the tree */
1811 btrfs_put_ordered_extent(ordered_extent);
1812
e6dcd2dc
CM
1813 return 0;
1814}
1815
b2950863 1816static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1817 struct extent_state *state, int uptodate)
1818{
1abe9b8a 1819 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1820
8b62b72b 1821 ClearPagePrivate2(page);
211f90e6
CM
1822 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1823}
1824
d352ac68
CM
1825/*
1826 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
1827 * if there's a match, we allow the bio to finish. If not, the code in
1828 * extent_io.c will try to find good copies for us.
d352ac68 1829 */
b2950863 1830static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1831 struct extent_state *state)
07157aac 1832{
35ebb934 1833 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1834 struct inode *inode = page->mapping->host;
d1310b2e 1835 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1836 char *kaddr;
aadfeb6e 1837 u64 private = ~(u32)0;
07157aac 1838 int ret;
ff79f819
CM
1839 struct btrfs_root *root = BTRFS_I(inode)->root;
1840 u32 csum = ~(u32)0;
d1310b2e 1841
d20f7043
CM
1842 if (PageChecked(page)) {
1843 ClearPageChecked(page);
1844 goto good;
1845 }
6cbff00f
CH
1846
1847 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1848 goto good;
17d217fe
YZ
1849
1850 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1851 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1852 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1853 GFP_NOFS);
b6cda9bc 1854 return 0;
17d217fe 1855 }
d20f7043 1856
c2e639f0 1857 if (state && state->start == start) {
70dec807
CM
1858 private = state->private;
1859 ret = 0;
1860 } else {
1861 ret = get_state_private(io_tree, start, &private);
1862 }
9ab86c8e 1863 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1864 if (ret)
07157aac 1865 goto zeroit;
d397712b 1866
ff79f819
CM
1867 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1868 btrfs_csum_final(csum, (char *)&csum);
d397712b 1869 if (csum != private)
07157aac 1870 goto zeroit;
d397712b 1871
9ab86c8e 1872 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1873good:
07157aac
CM
1874 return 0;
1875
1876zeroit:
945d8962 1877 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
1878 "private %llu\n",
1879 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
1880 (unsigned long long)start, csum,
1881 (unsigned long long)private);
db94535d
CM
1882 memset(kaddr + offset, 1, end - start + 1);
1883 flush_dcache_page(page);
9ab86c8e 1884 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1885 if (private == 0)
1886 return 0;
7e38326f 1887 return -EIO;
07157aac 1888}
b888db2b 1889
24bbcf04
YZ
1890struct delayed_iput {
1891 struct list_head list;
1892 struct inode *inode;
1893};
1894
1895void btrfs_add_delayed_iput(struct inode *inode)
1896{
1897 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1898 struct delayed_iput *delayed;
1899
1900 if (atomic_add_unless(&inode->i_count, -1, 1))
1901 return;
1902
1903 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1904 delayed->inode = inode;
1905
1906 spin_lock(&fs_info->delayed_iput_lock);
1907 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1908 spin_unlock(&fs_info->delayed_iput_lock);
1909}
1910
1911void btrfs_run_delayed_iputs(struct btrfs_root *root)
1912{
1913 LIST_HEAD(list);
1914 struct btrfs_fs_info *fs_info = root->fs_info;
1915 struct delayed_iput *delayed;
1916 int empty;
1917
1918 spin_lock(&fs_info->delayed_iput_lock);
1919 empty = list_empty(&fs_info->delayed_iputs);
1920 spin_unlock(&fs_info->delayed_iput_lock);
1921 if (empty)
1922 return;
1923
1924 down_read(&root->fs_info->cleanup_work_sem);
1925 spin_lock(&fs_info->delayed_iput_lock);
1926 list_splice_init(&fs_info->delayed_iputs, &list);
1927 spin_unlock(&fs_info->delayed_iput_lock);
1928
1929 while (!list_empty(&list)) {
1930 delayed = list_entry(list.next, struct delayed_iput, list);
1931 list_del(&delayed->list);
1932 iput(delayed->inode);
1933 kfree(delayed);
1934 }
1935 up_read(&root->fs_info->cleanup_work_sem);
1936}
1937
d68fc57b
YZ
1938enum btrfs_orphan_cleanup_state {
1939 ORPHAN_CLEANUP_STARTED = 1,
1940 ORPHAN_CLEANUP_DONE = 2,
1941};
1942
1943/*
1944 * This is called in transaction commmit time. If there are no orphan
1945 * files in the subvolume, it removes orphan item and frees block_rsv
1946 * structure.
1947 */
1948void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1949 struct btrfs_root *root)
1950{
1951 int ret;
1952
1953 if (!list_empty(&root->orphan_list) ||
1954 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1955 return;
1956
1957 if (root->orphan_item_inserted &&
1958 btrfs_root_refs(&root->root_item) > 0) {
1959 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1960 root->root_key.objectid);
1961 BUG_ON(ret);
1962 root->orphan_item_inserted = 0;
1963 }
1964
1965 if (root->orphan_block_rsv) {
1966 WARN_ON(root->orphan_block_rsv->size > 0);
1967 btrfs_free_block_rsv(root, root->orphan_block_rsv);
1968 root->orphan_block_rsv = NULL;
1969 }
1970}
1971
7b128766
JB
1972/*
1973 * This creates an orphan entry for the given inode in case something goes
1974 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
1975 *
1976 * NOTE: caller of this function should reserve 5 units of metadata for
1977 * this function.
7b128766
JB
1978 */
1979int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1980{
1981 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
1982 struct btrfs_block_rsv *block_rsv = NULL;
1983 int reserve = 0;
1984 int insert = 0;
1985 int ret;
7b128766 1986
d68fc57b
YZ
1987 if (!root->orphan_block_rsv) {
1988 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
1989 if (!block_rsv)
1990 return -ENOMEM;
d68fc57b 1991 }
7b128766 1992
d68fc57b
YZ
1993 spin_lock(&root->orphan_lock);
1994 if (!root->orphan_block_rsv) {
1995 root->orphan_block_rsv = block_rsv;
1996 } else if (block_rsv) {
1997 btrfs_free_block_rsv(root, block_rsv);
1998 block_rsv = NULL;
7b128766 1999 }
7b128766 2000
d68fc57b
YZ
2001 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2002 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2003#if 0
2004 /*
2005 * For proper ENOSPC handling, we should do orphan
2006 * cleanup when mounting. But this introduces backward
2007 * compatibility issue.
2008 */
2009 if (!xchg(&root->orphan_item_inserted, 1))
2010 insert = 2;
2011 else
2012 insert = 1;
2013#endif
2014 insert = 1;
7b128766
JB
2015 }
2016
d68fc57b
YZ
2017 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2018 BTRFS_I(inode)->orphan_meta_reserved = 1;
2019 reserve = 1;
2020 }
2021 spin_unlock(&root->orphan_lock);
7b128766 2022
d68fc57b
YZ
2023 /* grab metadata reservation from transaction handle */
2024 if (reserve) {
2025 ret = btrfs_orphan_reserve_metadata(trans, inode);
2026 BUG_ON(ret);
2027 }
7b128766 2028
d68fc57b
YZ
2029 /* insert an orphan item to track this unlinked/truncated file */
2030 if (insert >= 1) {
33345d01 2031 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2032 BUG_ON(ret);
2033 }
2034
2035 /* insert an orphan item to track subvolume contains orphan files */
2036 if (insert >= 2) {
2037 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2038 root->root_key.objectid);
2039 BUG_ON(ret);
2040 }
2041 return 0;
7b128766
JB
2042}
2043
2044/*
2045 * We have done the truncate/delete so we can go ahead and remove the orphan
2046 * item for this particular inode.
2047 */
2048int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2049{
2050 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2051 int delete_item = 0;
2052 int release_rsv = 0;
7b128766
JB
2053 int ret = 0;
2054
d68fc57b
YZ
2055 spin_lock(&root->orphan_lock);
2056 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2057 list_del_init(&BTRFS_I(inode)->i_orphan);
2058 delete_item = 1;
7b128766
JB
2059 }
2060
d68fc57b
YZ
2061 if (BTRFS_I(inode)->orphan_meta_reserved) {
2062 BTRFS_I(inode)->orphan_meta_reserved = 0;
2063 release_rsv = 1;
7b128766 2064 }
d68fc57b 2065 spin_unlock(&root->orphan_lock);
7b128766 2066
d68fc57b 2067 if (trans && delete_item) {
33345d01 2068 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2069 BUG_ON(ret);
2070 }
7b128766 2071
d68fc57b
YZ
2072 if (release_rsv)
2073 btrfs_orphan_release_metadata(inode);
7b128766 2074
d68fc57b 2075 return 0;
7b128766
JB
2076}
2077
2078/*
2079 * this cleans up any orphans that may be left on the list from the last use
2080 * of this root.
2081 */
66b4ffd1 2082int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2083{
2084 struct btrfs_path *path;
2085 struct extent_buffer *leaf;
7b128766
JB
2086 struct btrfs_key key, found_key;
2087 struct btrfs_trans_handle *trans;
2088 struct inode *inode;
8f6d7f4f 2089 u64 last_objectid = 0;
7b128766
JB
2090 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2091
d68fc57b 2092 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2093 return 0;
c71bf099
YZ
2094
2095 path = btrfs_alloc_path();
66b4ffd1
JB
2096 if (!path) {
2097 ret = -ENOMEM;
2098 goto out;
2099 }
7b128766
JB
2100 path->reada = -1;
2101
2102 key.objectid = BTRFS_ORPHAN_OBJECTID;
2103 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2104 key.offset = (u64)-1;
2105
7b128766
JB
2106 while (1) {
2107 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2108 if (ret < 0)
2109 goto out;
7b128766
JB
2110
2111 /*
2112 * if ret == 0 means we found what we were searching for, which
25985edc 2113 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2114 * find the key and see if we have stuff that matches
2115 */
2116 if (ret > 0) {
66b4ffd1 2117 ret = 0;
7b128766
JB
2118 if (path->slots[0] == 0)
2119 break;
2120 path->slots[0]--;
2121 }
2122
2123 /* pull out the item */
2124 leaf = path->nodes[0];
7b128766
JB
2125 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2126
2127 /* make sure the item matches what we want */
2128 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2129 break;
2130 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2131 break;
2132
2133 /* release the path since we're done with it */
b3b4aa74 2134 btrfs_release_path(path);
7b128766
JB
2135
2136 /*
2137 * this is where we are basically btrfs_lookup, without the
2138 * crossing root thing. we store the inode number in the
2139 * offset of the orphan item.
2140 */
8f6d7f4f
JB
2141
2142 if (found_key.offset == last_objectid) {
2143 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2144 "stopping orphan cleanup\n");
2145 ret = -EINVAL;
2146 goto out;
2147 }
2148
2149 last_objectid = found_key.offset;
2150
5d4f98a2
YZ
2151 found_key.objectid = found_key.offset;
2152 found_key.type = BTRFS_INODE_ITEM_KEY;
2153 found_key.offset = 0;
73f73415 2154 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2155 ret = PTR_RET(inode);
2156 if (ret && ret != -ESTALE)
66b4ffd1 2157 goto out;
7b128766
JB
2158
2159 /*
a8c9e576
JB
2160 * Inode is already gone but the orphan item is still there,
2161 * kill the orphan item.
7b128766 2162 */
a8c9e576
JB
2163 if (ret == -ESTALE) {
2164 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2165 if (IS_ERR(trans)) {
2166 ret = PTR_ERR(trans);
2167 goto out;
2168 }
a8c9e576
JB
2169 ret = btrfs_del_orphan_item(trans, root,
2170 found_key.objectid);
2171 BUG_ON(ret);
5b21f2ed 2172 btrfs_end_transaction(trans, root);
7b128766
JB
2173 continue;
2174 }
2175
a8c9e576
JB
2176 /*
2177 * add this inode to the orphan list so btrfs_orphan_del does
2178 * the proper thing when we hit it
2179 */
2180 spin_lock(&root->orphan_lock);
2181 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2182 spin_unlock(&root->orphan_lock);
2183
7b128766
JB
2184 /* if we have links, this was a truncate, lets do that */
2185 if (inode->i_nlink) {
a41ad394
JB
2186 if (!S_ISREG(inode->i_mode)) {
2187 WARN_ON(1);
2188 iput(inode);
2189 continue;
2190 }
7b128766 2191 nr_truncate++;
66b4ffd1 2192 ret = btrfs_truncate(inode);
7b128766
JB
2193 } else {
2194 nr_unlink++;
2195 }
2196
2197 /* this will do delete_inode and everything for us */
2198 iput(inode);
66b4ffd1
JB
2199 if (ret)
2200 goto out;
7b128766 2201 }
d68fc57b
YZ
2202 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2203
2204 if (root->orphan_block_rsv)
2205 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2206 (u64)-1);
2207
2208 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2209 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2210 if (!IS_ERR(trans))
2211 btrfs_end_transaction(trans, root);
d68fc57b 2212 }
7b128766
JB
2213
2214 if (nr_unlink)
2215 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2216 if (nr_truncate)
2217 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2218
2219out:
2220 if (ret)
2221 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2222 btrfs_free_path(path);
2223 return ret;
7b128766
JB
2224}
2225
46a53cca
CM
2226/*
2227 * very simple check to peek ahead in the leaf looking for xattrs. If we
2228 * don't find any xattrs, we know there can't be any acls.
2229 *
2230 * slot is the slot the inode is in, objectid is the objectid of the inode
2231 */
2232static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2233 int slot, u64 objectid)
2234{
2235 u32 nritems = btrfs_header_nritems(leaf);
2236 struct btrfs_key found_key;
2237 int scanned = 0;
2238
2239 slot++;
2240 while (slot < nritems) {
2241 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2242
2243 /* we found a different objectid, there must not be acls */
2244 if (found_key.objectid != objectid)
2245 return 0;
2246
2247 /* we found an xattr, assume we've got an acl */
2248 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2249 return 1;
2250
2251 /*
2252 * we found a key greater than an xattr key, there can't
2253 * be any acls later on
2254 */
2255 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2256 return 0;
2257
2258 slot++;
2259 scanned++;
2260
2261 /*
2262 * it goes inode, inode backrefs, xattrs, extents,
2263 * so if there are a ton of hard links to an inode there can
2264 * be a lot of backrefs. Don't waste time searching too hard,
2265 * this is just an optimization
2266 */
2267 if (scanned >= 8)
2268 break;
2269 }
2270 /* we hit the end of the leaf before we found an xattr or
2271 * something larger than an xattr. We have to assume the inode
2272 * has acls
2273 */
2274 return 1;
2275}
2276
d352ac68
CM
2277/*
2278 * read an inode from the btree into the in-memory inode
2279 */
5d4f98a2 2280static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2281{
2282 struct btrfs_path *path;
5f39d397 2283 struct extent_buffer *leaf;
39279cc3 2284 struct btrfs_inode_item *inode_item;
0b86a832 2285 struct btrfs_timespec *tspec;
39279cc3
CM
2286 struct btrfs_root *root = BTRFS_I(inode)->root;
2287 struct btrfs_key location;
46a53cca 2288 int maybe_acls;
618e21d5 2289 u32 rdev;
39279cc3 2290 int ret;
2f7e33d4
MX
2291 bool filled = false;
2292
2293 ret = btrfs_fill_inode(inode, &rdev);
2294 if (!ret)
2295 filled = true;
39279cc3
CM
2296
2297 path = btrfs_alloc_path();
1748f843
MF
2298 if (!path)
2299 goto make_bad;
2300
d90c7321 2301 path->leave_spinning = 1;
39279cc3 2302 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2303
39279cc3 2304 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2305 if (ret)
39279cc3 2306 goto make_bad;
39279cc3 2307
5f39d397 2308 leaf = path->nodes[0];
2f7e33d4
MX
2309
2310 if (filled)
2311 goto cache_acl;
2312
5f39d397
CM
2313 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2314 struct btrfs_inode_item);
5f39d397
CM
2315 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2316 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2317 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2318 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2319 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2320
2321 tspec = btrfs_inode_atime(inode_item);
2322 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2323 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2324
2325 tspec = btrfs_inode_mtime(inode_item);
2326 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2327 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2328
2329 tspec = btrfs_inode_ctime(inode_item);
2330 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2331 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2332
a76a3cd4 2333 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2334 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2335 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2336 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2337 inode->i_rdev = 0;
5f39d397
CM
2338 rdev = btrfs_inode_rdev(leaf, inode_item);
2339
aec7477b 2340 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2341 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2342cache_acl:
46a53cca
CM
2343 /*
2344 * try to precache a NULL acl entry for files that don't have
2345 * any xattrs or acls
2346 */
33345d01
LZ
2347 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2348 btrfs_ino(inode));
72c04902
AV
2349 if (!maybe_acls)
2350 cache_no_acl(inode);
46a53cca 2351
39279cc3 2352 btrfs_free_path(path);
39279cc3 2353
39279cc3 2354 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2355 case S_IFREG:
2356 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2357 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2358 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2359 inode->i_fop = &btrfs_file_operations;
2360 inode->i_op = &btrfs_file_inode_operations;
2361 break;
2362 case S_IFDIR:
2363 inode->i_fop = &btrfs_dir_file_operations;
2364 if (root == root->fs_info->tree_root)
2365 inode->i_op = &btrfs_dir_ro_inode_operations;
2366 else
2367 inode->i_op = &btrfs_dir_inode_operations;
2368 break;
2369 case S_IFLNK:
2370 inode->i_op = &btrfs_symlink_inode_operations;
2371 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2372 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2373 break;
618e21d5 2374 default:
0279b4cd 2375 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2376 init_special_inode(inode, inode->i_mode, rdev);
2377 break;
39279cc3 2378 }
6cbff00f
CH
2379
2380 btrfs_update_iflags(inode);
39279cc3
CM
2381 return;
2382
2383make_bad:
39279cc3 2384 btrfs_free_path(path);
39279cc3
CM
2385 make_bad_inode(inode);
2386}
2387
d352ac68
CM
2388/*
2389 * given a leaf and an inode, copy the inode fields into the leaf
2390 */
e02119d5
CM
2391static void fill_inode_item(struct btrfs_trans_handle *trans,
2392 struct extent_buffer *leaf,
5f39d397 2393 struct btrfs_inode_item *item,
39279cc3
CM
2394 struct inode *inode)
2395{
5f39d397
CM
2396 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2397 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2398 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2399 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2400 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2401
2402 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2403 inode->i_atime.tv_sec);
2404 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2405 inode->i_atime.tv_nsec);
2406
2407 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2408 inode->i_mtime.tv_sec);
2409 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2410 inode->i_mtime.tv_nsec);
2411
2412 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2413 inode->i_ctime.tv_sec);
2414 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2415 inode->i_ctime.tv_nsec);
2416
a76a3cd4 2417 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2418 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2419 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2420 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2421 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2422 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2423 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2424}
2425
d352ac68
CM
2426/*
2427 * copy everything in the in-memory inode into the btree.
2428 */
d397712b
CM
2429noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2430 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2431{
2432 struct btrfs_inode_item *inode_item;
2433 struct btrfs_path *path;
5f39d397 2434 struct extent_buffer *leaf;
39279cc3
CM
2435 int ret;
2436
16cdcec7 2437 /*
149e2d76
MX
2438 * If the inode is a free space inode, we can deadlock during commit
2439 * if we put it into the delayed code.
2440 *
2441 * The data relocation inode should also be directly updated
2442 * without delay
16cdcec7 2443 */
2cf8572d 2444 if (!btrfs_is_free_space_inode(root, inode)
149e2d76 2445 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
16cdcec7
MX
2446 ret = btrfs_delayed_update_inode(trans, root, inode);
2447 if (!ret)
2448 btrfs_set_inode_last_trans(trans, inode);
2449 return ret;
2450 }
2451
39279cc3 2452 path = btrfs_alloc_path();
16cdcec7
MX
2453 if (!path)
2454 return -ENOMEM;
2455
b9473439 2456 path->leave_spinning = 1;
16cdcec7
MX
2457 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2458 1);
39279cc3
CM
2459 if (ret) {
2460 if (ret > 0)
2461 ret = -ENOENT;
2462 goto failed;
2463 }
2464
b4ce94de 2465 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2466 leaf = path->nodes[0];
2467 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2468 struct btrfs_inode_item);
39279cc3 2469
e02119d5 2470 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2471 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2472 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2473 ret = 0;
2474failed:
39279cc3
CM
2475 btrfs_free_path(path);
2476 return ret;
2477}
2478
d352ac68
CM
2479/*
2480 * unlink helper that gets used here in inode.c and in the tree logging
2481 * recovery code. It remove a link in a directory with a given name, and
2482 * also drops the back refs in the inode to the directory
2483 */
92986796
AV
2484static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2485 struct btrfs_root *root,
2486 struct inode *dir, struct inode *inode,
2487 const char *name, int name_len)
39279cc3
CM
2488{
2489 struct btrfs_path *path;
39279cc3 2490 int ret = 0;
5f39d397 2491 struct extent_buffer *leaf;
39279cc3 2492 struct btrfs_dir_item *di;
5f39d397 2493 struct btrfs_key key;
aec7477b 2494 u64 index;
33345d01
LZ
2495 u64 ino = btrfs_ino(inode);
2496 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2497
2498 path = btrfs_alloc_path();
54aa1f4d
CM
2499 if (!path) {
2500 ret = -ENOMEM;
554233a6 2501 goto out;
54aa1f4d
CM
2502 }
2503
b9473439 2504 path->leave_spinning = 1;
33345d01 2505 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2506 name, name_len, -1);
2507 if (IS_ERR(di)) {
2508 ret = PTR_ERR(di);
2509 goto err;
2510 }
2511 if (!di) {
2512 ret = -ENOENT;
2513 goto err;
2514 }
5f39d397
CM
2515 leaf = path->nodes[0];
2516 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2517 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2518 if (ret)
2519 goto err;
b3b4aa74 2520 btrfs_release_path(path);
39279cc3 2521
33345d01
LZ
2522 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2523 dir_ino, &index);
aec7477b 2524 if (ret) {
d397712b 2525 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2526 "inode %llu parent %llu\n", name_len, name,
2527 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2528 goto err;
2529 }
2530
16cdcec7
MX
2531 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2532 if (ret)
39279cc3 2533 goto err;
39279cc3 2534
e02119d5 2535 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2536 inode, dir_ino);
49eb7e46 2537 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2538
2539 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2540 dir, index);
6418c961
CM
2541 if (ret == -ENOENT)
2542 ret = 0;
39279cc3
CM
2543err:
2544 btrfs_free_path(path);
e02119d5
CM
2545 if (ret)
2546 goto out;
2547
2548 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2549 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2550 btrfs_update_inode(trans, root, dir);
e02119d5 2551out:
39279cc3
CM
2552 return ret;
2553}
2554
92986796
AV
2555int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2556 struct btrfs_root *root,
2557 struct inode *dir, struct inode *inode,
2558 const char *name, int name_len)
2559{
2560 int ret;
2561 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2562 if (!ret) {
2563 btrfs_drop_nlink(inode);
2564 ret = btrfs_update_inode(trans, root, inode);
2565 }
2566 return ret;
2567}
2568
2569
a22285a6
YZ
2570/* helper to check if there is any shared block in the path */
2571static int check_path_shared(struct btrfs_root *root,
2572 struct btrfs_path *path)
39279cc3 2573{
a22285a6
YZ
2574 struct extent_buffer *eb;
2575 int level;
0e4dcbef 2576 u64 refs = 1;
5df6a9f6 2577
a22285a6 2578 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2579 int ret;
2580
a22285a6
YZ
2581 if (!path->nodes[level])
2582 break;
2583 eb = path->nodes[level];
2584 if (!btrfs_block_can_be_shared(root, eb))
2585 continue;
2586 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2587 &refs, NULL);
2588 if (refs > 1)
2589 return 1;
5df6a9f6 2590 }
dedefd72 2591 return 0;
39279cc3
CM
2592}
2593
a22285a6
YZ
2594/*
2595 * helper to start transaction for unlink and rmdir.
2596 *
2597 * unlink and rmdir are special in btrfs, they do not always free space.
2598 * so in enospc case, we should make sure they will free space before
2599 * allowing them to use the global metadata reservation.
2600 */
2601static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2602 struct dentry *dentry)
4df27c4d 2603{
39279cc3 2604 struct btrfs_trans_handle *trans;
a22285a6 2605 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2606 struct btrfs_path *path;
a22285a6 2607 struct btrfs_inode_ref *ref;
4df27c4d 2608 struct btrfs_dir_item *di;
7b128766 2609 struct inode *inode = dentry->d_inode;
4df27c4d 2610 u64 index;
a22285a6
YZ
2611 int check_link = 1;
2612 int err = -ENOSPC;
4df27c4d 2613 int ret;
33345d01
LZ
2614 u64 ino = btrfs_ino(inode);
2615 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2616
e70bea5f
JB
2617 /*
2618 * 1 for the possible orphan item
2619 * 1 for the dir item
2620 * 1 for the dir index
2621 * 1 for the inode ref
2622 * 1 for the inode ref in the tree log
2623 * 2 for the dir entries in the log
2624 * 1 for the inode
2625 */
2626 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2627 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2628 return trans;
4df27c4d 2629
33345d01 2630 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2631 return ERR_PTR(-ENOSPC);
4df27c4d 2632
a22285a6
YZ
2633 /* check if there is someone else holds reference */
2634 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2635 return ERR_PTR(-ENOSPC);
4df27c4d 2636
a22285a6
YZ
2637 if (atomic_read(&inode->i_count) > 2)
2638 return ERR_PTR(-ENOSPC);
4df27c4d 2639
a22285a6
YZ
2640 if (xchg(&root->fs_info->enospc_unlink, 1))
2641 return ERR_PTR(-ENOSPC);
2642
2643 path = btrfs_alloc_path();
2644 if (!path) {
2645 root->fs_info->enospc_unlink = 0;
2646 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2647 }
2648
3880a1b4
JB
2649 /* 1 for the orphan item */
2650 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2651 if (IS_ERR(trans)) {
a22285a6
YZ
2652 btrfs_free_path(path);
2653 root->fs_info->enospc_unlink = 0;
2654 return trans;
2655 }
4df27c4d 2656
a22285a6
YZ
2657 path->skip_locking = 1;
2658 path->search_commit_root = 1;
4df27c4d 2659
a22285a6
YZ
2660 ret = btrfs_lookup_inode(trans, root, path,
2661 &BTRFS_I(dir)->location, 0);
2662 if (ret < 0) {
2663 err = ret;
2664 goto out;
2665 }
2666 if (ret == 0) {
2667 if (check_path_shared(root, path))
2668 goto out;
2669 } else {
2670 check_link = 0;
5df6a9f6 2671 }
b3b4aa74 2672 btrfs_release_path(path);
a22285a6
YZ
2673
2674 ret = btrfs_lookup_inode(trans, root, path,
2675 &BTRFS_I(inode)->location, 0);
2676 if (ret < 0) {
2677 err = ret;
2678 goto out;
2679 }
2680 if (ret == 0) {
2681 if (check_path_shared(root, path))
2682 goto out;
2683 } else {
2684 check_link = 0;
2685 }
b3b4aa74 2686 btrfs_release_path(path);
a22285a6
YZ
2687
2688 if (ret == 0 && S_ISREG(inode->i_mode)) {
2689 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2690 ino, (u64)-1, 0);
a22285a6
YZ
2691 if (ret < 0) {
2692 err = ret;
2693 goto out;
2694 }
2695 BUG_ON(ret == 0);
2696 if (check_path_shared(root, path))
2697 goto out;
b3b4aa74 2698 btrfs_release_path(path);
a22285a6
YZ
2699 }
2700
2701 if (!check_link) {
2702 err = 0;
2703 goto out;
2704 }
2705
33345d01 2706 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2707 dentry->d_name.name, dentry->d_name.len, 0);
2708 if (IS_ERR(di)) {
2709 err = PTR_ERR(di);
2710 goto out;
2711 }
2712 if (di) {
2713 if (check_path_shared(root, path))
2714 goto out;
2715 } else {
2716 err = 0;
2717 goto out;
2718 }
b3b4aa74 2719 btrfs_release_path(path);
a22285a6
YZ
2720
2721 ref = btrfs_lookup_inode_ref(trans, root, path,
2722 dentry->d_name.name, dentry->d_name.len,
33345d01 2723 ino, dir_ino, 0);
a22285a6
YZ
2724 if (IS_ERR(ref)) {
2725 err = PTR_ERR(ref);
2726 goto out;
2727 }
2728 BUG_ON(!ref);
2729 if (check_path_shared(root, path))
2730 goto out;
2731 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2732 btrfs_release_path(path);
a22285a6 2733
16cdcec7
MX
2734 /*
2735 * This is a commit root search, if we can lookup inode item and other
2736 * relative items in the commit root, it means the transaction of
2737 * dir/file creation has been committed, and the dir index item that we
2738 * delay to insert has also been inserted into the commit root. So
2739 * we needn't worry about the delayed insertion of the dir index item
2740 * here.
2741 */
33345d01 2742 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2743 dentry->d_name.name, dentry->d_name.len, 0);
2744 if (IS_ERR(di)) {
2745 err = PTR_ERR(di);
2746 goto out;
2747 }
2748 BUG_ON(ret == -ENOENT);
2749 if (check_path_shared(root, path))
2750 goto out;
2751
2752 err = 0;
2753out:
2754 btrfs_free_path(path);
3880a1b4
JB
2755 /* Migrate the orphan reservation over */
2756 if (!err)
2757 err = btrfs_block_rsv_migrate(trans->block_rsv,
2758 &root->fs_info->global_block_rsv,
5a77d76c 2759 trans->bytes_reserved);
3880a1b4 2760
a22285a6
YZ
2761 if (err) {
2762 btrfs_end_transaction(trans, root);
2763 root->fs_info->enospc_unlink = 0;
2764 return ERR_PTR(err);
2765 }
2766
2767 trans->block_rsv = &root->fs_info->global_block_rsv;
2768 return trans;
2769}
2770
2771static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2772 struct btrfs_root *root)
2773{
2774 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
5a77d76c
JB
2775 btrfs_block_rsv_release(root, trans->block_rsv,
2776 trans->bytes_reserved);
2777 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
2778 BUG_ON(!root->fs_info->enospc_unlink);
2779 root->fs_info->enospc_unlink = 0;
2780 }
2781 btrfs_end_transaction_throttle(trans, root);
2782}
2783
2784static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2785{
2786 struct btrfs_root *root = BTRFS_I(dir)->root;
2787 struct btrfs_trans_handle *trans;
2788 struct inode *inode = dentry->d_inode;
2789 int ret;
2790 unsigned long nr = 0;
2791
2792 trans = __unlink_start_trans(dir, dentry);
2793 if (IS_ERR(trans))
2794 return PTR_ERR(trans);
5f39d397 2795
12fcfd22
CM
2796 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2797
e02119d5
CM
2798 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2799 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
2800 if (ret)
2801 goto out;
7b128766 2802
a22285a6 2803 if (inode->i_nlink == 0) {
7b128766 2804 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
2805 if (ret)
2806 goto out;
a22285a6 2807 }
7b128766 2808
b532402e 2809out:
d3c2fdcf 2810 nr = trans->blocks_used;
a22285a6 2811 __unlink_end_trans(trans, root);
d3c2fdcf 2812 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2813 return ret;
2814}
2815
4df27c4d
YZ
2816int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2817 struct btrfs_root *root,
2818 struct inode *dir, u64 objectid,
2819 const char *name, int name_len)
2820{
2821 struct btrfs_path *path;
2822 struct extent_buffer *leaf;
2823 struct btrfs_dir_item *di;
2824 struct btrfs_key key;
2825 u64 index;
2826 int ret;
33345d01 2827 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
2828
2829 path = btrfs_alloc_path();
2830 if (!path)
2831 return -ENOMEM;
2832
33345d01 2833 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 2834 name, name_len, -1);
c704005d 2835 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2836
2837 leaf = path->nodes[0];
2838 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2839 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2840 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2841 BUG_ON(ret);
b3b4aa74 2842 btrfs_release_path(path);
4df27c4d
YZ
2843
2844 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2845 objectid, root->root_key.objectid,
33345d01 2846 dir_ino, &index, name, name_len);
4df27c4d
YZ
2847 if (ret < 0) {
2848 BUG_ON(ret != -ENOENT);
33345d01 2849 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 2850 name, name_len);
c704005d 2851 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2852
2853 leaf = path->nodes[0];
2854 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2855 btrfs_release_path(path);
4df27c4d
YZ
2856 index = key.offset;
2857 }
945d8962 2858 btrfs_release_path(path);
4df27c4d 2859
16cdcec7 2860 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 2861 BUG_ON(ret);
4df27c4d
YZ
2862
2863 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2864 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2865 ret = btrfs_update_inode(trans, root, dir);
2866 BUG_ON(ret);
4df27c4d 2867
71d7aed0 2868 btrfs_free_path(path);
4df27c4d
YZ
2869 return 0;
2870}
2871
39279cc3
CM
2872static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2873{
2874 struct inode *inode = dentry->d_inode;
1832a6d5 2875 int err = 0;
39279cc3 2876 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2877 struct btrfs_trans_handle *trans;
1832a6d5 2878 unsigned long nr = 0;
39279cc3 2879
3394e160 2880 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 2881 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2882 return -ENOTEMPTY;
2883
a22285a6
YZ
2884 trans = __unlink_start_trans(dir, dentry);
2885 if (IS_ERR(trans))
5df6a9f6 2886 return PTR_ERR(trans);
5df6a9f6 2887
33345d01 2888 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
2889 err = btrfs_unlink_subvol(trans, root, dir,
2890 BTRFS_I(inode)->location.objectid,
2891 dentry->d_name.name,
2892 dentry->d_name.len);
2893 goto out;
2894 }
2895
7b128766
JB
2896 err = btrfs_orphan_add(trans, inode);
2897 if (err)
4df27c4d 2898 goto out;
7b128766 2899
39279cc3 2900 /* now the directory is empty */
e02119d5
CM
2901 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2902 dentry->d_name.name, dentry->d_name.len);
d397712b 2903 if (!err)
dbe674a9 2904 btrfs_i_size_write(inode, 0);
4df27c4d 2905out:
d3c2fdcf 2906 nr = trans->blocks_used;
a22285a6 2907 __unlink_end_trans(trans, root);
d3c2fdcf 2908 btrfs_btree_balance_dirty(root, nr);
3954401f 2909
39279cc3
CM
2910 return err;
2911}
2912
39279cc3
CM
2913/*
2914 * this can truncate away extent items, csum items and directory items.
2915 * It starts at a high offset and removes keys until it can't find
d352ac68 2916 * any higher than new_size
39279cc3
CM
2917 *
2918 * csum items that cross the new i_size are truncated to the new size
2919 * as well.
7b128766
JB
2920 *
2921 * min_type is the minimum key type to truncate down to. If set to 0, this
2922 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2923 */
8082510e
YZ
2924int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2925 struct btrfs_root *root,
2926 struct inode *inode,
2927 u64 new_size, u32 min_type)
39279cc3 2928{
39279cc3 2929 struct btrfs_path *path;
5f39d397 2930 struct extent_buffer *leaf;
39279cc3 2931 struct btrfs_file_extent_item *fi;
8082510e
YZ
2932 struct btrfs_key key;
2933 struct btrfs_key found_key;
39279cc3 2934 u64 extent_start = 0;
db94535d 2935 u64 extent_num_bytes = 0;
5d4f98a2 2936 u64 extent_offset = 0;
39279cc3 2937 u64 item_end = 0;
8082510e
YZ
2938 u64 mask = root->sectorsize - 1;
2939 u32 found_type = (u8)-1;
39279cc3
CM
2940 int found_extent;
2941 int del_item;
85e21bac
CM
2942 int pending_del_nr = 0;
2943 int pending_del_slot = 0;
179e29e4 2944 int extent_type = -1;
771ed689 2945 int encoding;
8082510e
YZ
2946 int ret;
2947 int err = 0;
33345d01 2948 u64 ino = btrfs_ino(inode);
8082510e
YZ
2949
2950 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 2951
0eb0e19c
MF
2952 path = btrfs_alloc_path();
2953 if (!path)
2954 return -ENOMEM;
2955 path->reada = -1;
2956
0af3d00b 2957 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 2958 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 2959
16cdcec7
MX
2960 /*
2961 * This function is also used to drop the items in the log tree before
2962 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
2963 * it is used to drop the loged items. So we shouldn't kill the delayed
2964 * items.
2965 */
2966 if (min_type == 0 && root == BTRFS_I(inode)->root)
2967 btrfs_kill_delayed_inode_items(inode);
2968
33345d01 2969 key.objectid = ino;
39279cc3 2970 key.offset = (u64)-1;
5f39d397
CM
2971 key.type = (u8)-1;
2972
85e21bac 2973search_again:
b9473439 2974 path->leave_spinning = 1;
85e21bac 2975 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
2976 if (ret < 0) {
2977 err = ret;
2978 goto out;
2979 }
d397712b 2980
85e21bac 2981 if (ret > 0) {
e02119d5
CM
2982 /* there are no items in the tree for us to truncate, we're
2983 * done
2984 */
8082510e
YZ
2985 if (path->slots[0] == 0)
2986 goto out;
85e21bac
CM
2987 path->slots[0]--;
2988 }
2989
d397712b 2990 while (1) {
39279cc3 2991 fi = NULL;
5f39d397
CM
2992 leaf = path->nodes[0];
2993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2994 found_type = btrfs_key_type(&found_key);
771ed689 2995 encoding = 0;
39279cc3 2996
33345d01 2997 if (found_key.objectid != ino)
39279cc3 2998 break;
5f39d397 2999
85e21bac 3000 if (found_type < min_type)
39279cc3
CM
3001 break;
3002
5f39d397 3003 item_end = found_key.offset;
39279cc3 3004 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3005 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3006 struct btrfs_file_extent_item);
179e29e4 3007 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3008 encoding = btrfs_file_extent_compression(leaf, fi);
3009 encoding |= btrfs_file_extent_encryption(leaf, fi);
3010 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3011
179e29e4 3012 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3013 item_end +=
db94535d 3014 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3015 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3016 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3017 fi);
39279cc3 3018 }
008630c1 3019 item_end--;
39279cc3 3020 }
8082510e
YZ
3021 if (found_type > min_type) {
3022 del_item = 1;
3023 } else {
3024 if (item_end < new_size)
b888db2b 3025 break;
8082510e
YZ
3026 if (found_key.offset >= new_size)
3027 del_item = 1;
3028 else
3029 del_item = 0;
39279cc3 3030 }
39279cc3 3031 found_extent = 0;
39279cc3 3032 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3033 if (found_type != BTRFS_EXTENT_DATA_KEY)
3034 goto delete;
3035
3036 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3037 u64 num_dec;
db94535d 3038 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3039 if (!del_item && !encoding) {
db94535d
CM
3040 u64 orig_num_bytes =
3041 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3042 extent_num_bytes = new_size -
5f39d397 3043 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3044 extent_num_bytes = extent_num_bytes &
3045 ~((u64)root->sectorsize - 1);
db94535d
CM
3046 btrfs_set_file_extent_num_bytes(leaf, fi,
3047 extent_num_bytes);
3048 num_dec = (orig_num_bytes -
9069218d 3049 extent_num_bytes);
e02119d5 3050 if (root->ref_cows && extent_start != 0)
a76a3cd4 3051 inode_sub_bytes(inode, num_dec);
5f39d397 3052 btrfs_mark_buffer_dirty(leaf);
39279cc3 3053 } else {
db94535d
CM
3054 extent_num_bytes =
3055 btrfs_file_extent_disk_num_bytes(leaf,
3056 fi);
5d4f98a2
YZ
3057 extent_offset = found_key.offset -
3058 btrfs_file_extent_offset(leaf, fi);
3059
39279cc3 3060 /* FIXME blocksize != 4096 */
9069218d 3061 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3062 if (extent_start != 0) {
3063 found_extent = 1;
e02119d5 3064 if (root->ref_cows)
a76a3cd4 3065 inode_sub_bytes(inode, num_dec);
e02119d5 3066 }
39279cc3 3067 }
9069218d 3068 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3069 /*
3070 * we can't truncate inline items that have had
3071 * special encodings
3072 */
3073 if (!del_item &&
3074 btrfs_file_extent_compression(leaf, fi) == 0 &&
3075 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3076 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3077 u32 size = new_size - found_key.offset;
3078
3079 if (root->ref_cows) {
a76a3cd4
YZ
3080 inode_sub_bytes(inode, item_end + 1 -
3081 new_size);
e02119d5
CM
3082 }
3083 size =
3084 btrfs_file_extent_calc_inline_size(size);
9069218d 3085 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3086 size, 1);
e02119d5 3087 } else if (root->ref_cows) {
a76a3cd4
YZ
3088 inode_sub_bytes(inode, item_end + 1 -
3089 found_key.offset);
9069218d 3090 }
39279cc3 3091 }
179e29e4 3092delete:
39279cc3 3093 if (del_item) {
85e21bac
CM
3094 if (!pending_del_nr) {
3095 /* no pending yet, add ourselves */
3096 pending_del_slot = path->slots[0];
3097 pending_del_nr = 1;
3098 } else if (pending_del_nr &&
3099 path->slots[0] + 1 == pending_del_slot) {
3100 /* hop on the pending chunk */
3101 pending_del_nr++;
3102 pending_del_slot = path->slots[0];
3103 } else {
d397712b 3104 BUG();
85e21bac 3105 }
39279cc3
CM
3106 } else {
3107 break;
3108 }
0af3d00b
JB
3109 if (found_extent && (root->ref_cows ||
3110 root == root->fs_info->tree_root)) {
b9473439 3111 btrfs_set_path_blocking(path);
39279cc3 3112 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3113 extent_num_bytes, 0,
3114 btrfs_header_owner(leaf),
33345d01 3115 ino, extent_offset);
39279cc3
CM
3116 BUG_ON(ret);
3117 }
85e21bac 3118
8082510e
YZ
3119 if (found_type == BTRFS_INODE_ITEM_KEY)
3120 break;
3121
3122 if (path->slots[0] == 0 ||
3123 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3124 if (root->ref_cows &&
3125 BTRFS_I(inode)->location.objectid !=
3126 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3127 err = -EAGAIN;
3128 goto out;
3129 }
3130 if (pending_del_nr) {
3131 ret = btrfs_del_items(trans, root, path,
3132 pending_del_slot,
3133 pending_del_nr);
3134 BUG_ON(ret);
3135 pending_del_nr = 0;
3136 }
b3b4aa74 3137 btrfs_release_path(path);
85e21bac 3138 goto search_again;
8082510e
YZ
3139 } else {
3140 path->slots[0]--;
85e21bac 3141 }
39279cc3 3142 }
8082510e 3143out:
85e21bac
CM
3144 if (pending_del_nr) {
3145 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3146 pending_del_nr);
d68fc57b 3147 BUG_ON(ret);
85e21bac 3148 }
39279cc3 3149 btrfs_free_path(path);
8082510e 3150 return err;
39279cc3
CM
3151}
3152
3153/*
3154 * taken from block_truncate_page, but does cow as it zeros out
3155 * any bytes left in the last page in the file.
3156 */
3157static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3158{
3159 struct inode *inode = mapping->host;
db94535d 3160 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3161 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3162 struct btrfs_ordered_extent *ordered;
2ac55d41 3163 struct extent_state *cached_state = NULL;
e6dcd2dc 3164 char *kaddr;
db94535d 3165 u32 blocksize = root->sectorsize;
39279cc3
CM
3166 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3167 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3168 struct page *page;
3b16a4e3 3169 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3170 int ret = 0;
a52d9a80 3171 u64 page_start;
e6dcd2dc 3172 u64 page_end;
39279cc3
CM
3173
3174 if ((offset & (blocksize - 1)) == 0)
3175 goto out;
0ca1f7ce 3176 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3177 if (ret)
3178 goto out;
39279cc3
CM
3179
3180 ret = -ENOMEM;
211c17f5 3181again:
3b16a4e3 3182 page = find_or_create_page(mapping, index, mask);
5d5e103a 3183 if (!page) {
0ca1f7ce 3184 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3185 goto out;
5d5e103a 3186 }
e6dcd2dc
CM
3187
3188 page_start = page_offset(page);
3189 page_end = page_start + PAGE_CACHE_SIZE - 1;
3190
39279cc3 3191 if (!PageUptodate(page)) {
9ebefb18 3192 ret = btrfs_readpage(NULL, page);
39279cc3 3193 lock_page(page);
211c17f5
CM
3194 if (page->mapping != mapping) {
3195 unlock_page(page);
3196 page_cache_release(page);
3197 goto again;
3198 }
39279cc3
CM
3199 if (!PageUptodate(page)) {
3200 ret = -EIO;
89642229 3201 goto out_unlock;
39279cc3
CM
3202 }
3203 }
211c17f5 3204 wait_on_page_writeback(page);
e6dcd2dc 3205
2ac55d41
JB
3206 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3207 GFP_NOFS);
e6dcd2dc
CM
3208 set_page_extent_mapped(page);
3209
3210 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3211 if (ordered) {
2ac55d41
JB
3212 unlock_extent_cached(io_tree, page_start, page_end,
3213 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3214 unlock_page(page);
3215 page_cache_release(page);
eb84ae03 3216 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3217 btrfs_put_ordered_extent(ordered);
3218 goto again;
3219 }
3220
2ac55d41 3221 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3222 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3223 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3224
2ac55d41
JB
3225 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3226 &cached_state);
9ed74f2d 3227 if (ret) {
2ac55d41
JB
3228 unlock_extent_cached(io_tree, page_start, page_end,
3229 &cached_state, GFP_NOFS);
9ed74f2d
JB
3230 goto out_unlock;
3231 }
3232
e6dcd2dc
CM
3233 ret = 0;
3234 if (offset != PAGE_CACHE_SIZE) {
3235 kaddr = kmap(page);
3236 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3237 flush_dcache_page(page);
3238 kunmap(page);
3239 }
247e743c 3240 ClearPageChecked(page);
e6dcd2dc 3241 set_page_dirty(page);
2ac55d41
JB
3242 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3243 GFP_NOFS);
39279cc3 3244
89642229 3245out_unlock:
5d5e103a 3246 if (ret)
0ca1f7ce 3247 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3248 unlock_page(page);
3249 page_cache_release(page);
3250out:
3251 return ret;
3252}
3253
695a0d0d
JB
3254/*
3255 * This function puts in dummy file extents for the area we're creating a hole
3256 * for. So if we are truncating this file to a larger size we need to insert
3257 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3258 * the range between oldsize and size
3259 */
a41ad394 3260int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3261{
9036c102
YZ
3262 struct btrfs_trans_handle *trans;
3263 struct btrfs_root *root = BTRFS_I(inode)->root;
3264 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3265 struct extent_map *em = NULL;
2ac55d41 3266 struct extent_state *cached_state = NULL;
9036c102 3267 u64 mask = root->sectorsize - 1;
a41ad394 3268 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3269 u64 block_end = (size + mask) & ~mask;
3270 u64 last_byte;
3271 u64 cur_offset;
3272 u64 hole_size;
9ed74f2d 3273 int err = 0;
39279cc3 3274
9036c102
YZ
3275 if (size <= hole_start)
3276 return 0;
3277
9036c102
YZ
3278 while (1) {
3279 struct btrfs_ordered_extent *ordered;
3280 btrfs_wait_ordered_range(inode, hole_start,
3281 block_end - hole_start);
2ac55d41
JB
3282 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3283 &cached_state, GFP_NOFS);
9036c102
YZ
3284 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3285 if (!ordered)
3286 break;
2ac55d41
JB
3287 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3288 &cached_state, GFP_NOFS);
9036c102
YZ
3289 btrfs_put_ordered_extent(ordered);
3290 }
39279cc3 3291
9036c102
YZ
3292 cur_offset = hole_start;
3293 while (1) {
3294 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3295 block_end - cur_offset, 0);
c704005d 3296 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3297 last_byte = min(extent_map_end(em), block_end);
3298 last_byte = (last_byte + mask) & ~mask;
8082510e 3299 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3300 u64 hint_byte = 0;
9036c102 3301 hole_size = last_byte - cur_offset;
9ed74f2d 3302
a22285a6
YZ
3303 trans = btrfs_start_transaction(root, 2);
3304 if (IS_ERR(trans)) {
3305 err = PTR_ERR(trans);
9ed74f2d 3306 break;
a22285a6 3307 }
8082510e
YZ
3308
3309 err = btrfs_drop_extents(trans, inode, cur_offset,
3310 cur_offset + hole_size,
3311 &hint_byte, 1);
5b397377
MX
3312 if (err) {
3313 btrfs_end_transaction(trans, root);
3893e33b 3314 break;
5b397377 3315 }
8082510e 3316
9036c102 3317 err = btrfs_insert_file_extent(trans, root,
33345d01 3318 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3319 0, hole_size, 0, hole_size,
3320 0, 0, 0);
5b397377
MX
3321 if (err) {
3322 btrfs_end_transaction(trans, root);
3893e33b 3323 break;
5b397377 3324 }
8082510e 3325
9036c102
YZ
3326 btrfs_drop_extent_cache(inode, hole_start,
3327 last_byte - 1, 0);
8082510e
YZ
3328
3329 btrfs_end_transaction(trans, root);
9036c102
YZ
3330 }
3331 free_extent_map(em);
a22285a6 3332 em = NULL;
9036c102 3333 cur_offset = last_byte;
8082510e 3334 if (cur_offset >= block_end)
9036c102
YZ
3335 break;
3336 }
1832a6d5 3337
a22285a6 3338 free_extent_map(em);
2ac55d41
JB
3339 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3340 GFP_NOFS);
9036c102
YZ
3341 return err;
3342}
39279cc3 3343
a41ad394 3344static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3345{
a41ad394 3346 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3347 int ret;
3348
a41ad394 3349 if (newsize == oldsize)
8082510e
YZ
3350 return 0;
3351
a41ad394
JB
3352 if (newsize > oldsize) {
3353 i_size_write(inode, newsize);
3354 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3355 truncate_pagecache(inode, oldsize, newsize);
3356 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3357 if (ret) {
a41ad394 3358 btrfs_setsize(inode, oldsize);
8082510e
YZ
3359 return ret;
3360 }
3361
930f028a 3362 mark_inode_dirty(inode);
a41ad394 3363 } else {
8082510e 3364
a41ad394
JB
3365 /*
3366 * We're truncating a file that used to have good data down to
3367 * zero. Make sure it gets into the ordered flush list so that
3368 * any new writes get down to disk quickly.
3369 */
3370 if (newsize == 0)
3371 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3372
a41ad394
JB
3373 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3374 truncate_setsize(inode, newsize);
3375 ret = btrfs_truncate(inode);
8082510e
YZ
3376 }
3377
a41ad394 3378 return ret;
8082510e
YZ
3379}
3380
9036c102
YZ
3381static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3382{
3383 struct inode *inode = dentry->d_inode;
b83cc969 3384 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3385 int err;
39279cc3 3386
b83cc969
LZ
3387 if (btrfs_root_readonly(root))
3388 return -EROFS;
3389
9036c102
YZ
3390 err = inode_change_ok(inode, attr);
3391 if (err)
3392 return err;
2bf5a725 3393
5a3f23d5 3394 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3395 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3396 if (err)
3397 return err;
39279cc3 3398 }
9036c102 3399
1025774c
CH
3400 if (attr->ia_valid) {
3401 setattr_copy(inode, attr);
3402 mark_inode_dirty(inode);
3403
3404 if (attr->ia_valid & ATTR_MODE)
3405 err = btrfs_acl_chmod(inode);
3406 }
33268eaf 3407
39279cc3
CM
3408 return err;
3409}
61295eb8 3410
bd555975 3411void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3412{
3413 struct btrfs_trans_handle *trans;
3414 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3415 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3416 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3417 unsigned long nr;
39279cc3
CM
3418 int ret;
3419
1abe9b8a 3420 trace_btrfs_inode_evict(inode);
3421
39279cc3 3422 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3423 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3424 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3425 goto no_delete;
3426
39279cc3 3427 if (is_bad_inode(inode)) {
7b128766 3428 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3429 goto no_delete;
3430 }
bd555975 3431 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3432 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3433
c71bf099
YZ
3434 if (root->fs_info->log_root_recovering) {
3435 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3436 goto no_delete;
3437 }
3438
76dda93c
YZ
3439 if (inode->i_nlink > 0) {
3440 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3441 goto no_delete;
3442 }
3443
4289a667
JB
3444 rsv = btrfs_alloc_block_rsv(root);
3445 if (!rsv) {
3446 btrfs_orphan_del(NULL, inode);
3447 goto no_delete;
3448 }
4a338542 3449 rsv->size = min_size;
726c35fa 3450 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3451
dbe674a9 3452 btrfs_i_size_write(inode, 0);
5f39d397 3453
4289a667
JB
3454 /*
3455 * This is a bit simpler than btrfs_truncate since
3456 *
3457 * 1) We've already reserved our space for our orphan item in the
3458 * unlink.
3459 * 2) We're going to delete the inode item, so we don't need to update
3460 * it at all.
3461 *
3462 * So we just need to reserve some slack space in case we add bytes when
3463 * doing the truncate.
3464 */
8082510e 3465 while (1) {
36ba022a 3466 ret = btrfs_block_rsv_refill(root, rsv, min_size);
726c35fa
JB
3467
3468 /*
3469 * Try and steal from the global reserve since we will
3470 * likely not use this space anyway, we want to try as
3471 * hard as possible to get this to work.
3472 */
3473 if (ret)
3474 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3475
d68fc57b 3476 if (ret) {
4289a667 3477 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3478 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3479 btrfs_orphan_del(NULL, inode);
3480 btrfs_free_block_rsv(root, rsv);
3481 goto no_delete;
3482 }
3483
3484 trans = btrfs_start_transaction(root, 0);
3485 if (IS_ERR(trans)) {
3486 btrfs_orphan_del(NULL, inode);
3487 btrfs_free_block_rsv(root, rsv);
3488 goto no_delete;
d68fc57b 3489 }
7b128766 3490
4289a667
JB
3491 trans->block_rsv = rsv;
3492
d68fc57b 3493 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3494 if (ret != -EAGAIN)
3495 break;
85e21bac 3496
8082510e
YZ
3497 nr = trans->blocks_used;
3498 btrfs_end_transaction(trans, root);
3499 trans = NULL;
3500 btrfs_btree_balance_dirty(root, nr);
3501 }
5f39d397 3502
4289a667
JB
3503 btrfs_free_block_rsv(root, rsv);
3504
8082510e 3505 if (ret == 0) {
4289a667 3506 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3507 ret = btrfs_orphan_del(trans, inode);
3508 BUG_ON(ret);
3509 }
54aa1f4d 3510
4289a667 3511 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3512 if (!(root == root->fs_info->tree_root ||
3513 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3514 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3515
d3c2fdcf 3516 nr = trans->blocks_used;
54aa1f4d 3517 btrfs_end_transaction(trans, root);
d3c2fdcf 3518 btrfs_btree_balance_dirty(root, nr);
39279cc3 3519no_delete:
bd555975 3520 end_writeback(inode);
8082510e 3521 return;
39279cc3
CM
3522}
3523
3524/*
3525 * this returns the key found in the dir entry in the location pointer.
3526 * If no dir entries were found, location->objectid is 0.
3527 */
3528static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3529 struct btrfs_key *location)
3530{
3531 const char *name = dentry->d_name.name;
3532 int namelen = dentry->d_name.len;
3533 struct btrfs_dir_item *di;
3534 struct btrfs_path *path;
3535 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3536 int ret = 0;
39279cc3
CM
3537
3538 path = btrfs_alloc_path();
d8926bb3
MF
3539 if (!path)
3540 return -ENOMEM;
3954401f 3541
33345d01 3542 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3543 namelen, 0);
0d9f7f3e
Y
3544 if (IS_ERR(di))
3545 ret = PTR_ERR(di);
d397712b 3546
c704005d 3547 if (IS_ERR_OR_NULL(di))
3954401f 3548 goto out_err;
d397712b 3549
5f39d397 3550 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3551out:
39279cc3
CM
3552 btrfs_free_path(path);
3553 return ret;
3954401f
CM
3554out_err:
3555 location->objectid = 0;
3556 goto out;
39279cc3
CM
3557}
3558
3559/*
3560 * when we hit a tree root in a directory, the btrfs part of the inode
3561 * needs to be changed to reflect the root directory of the tree root. This
3562 * is kind of like crossing a mount point.
3563 */
3564static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3565 struct inode *dir,
3566 struct dentry *dentry,
3567 struct btrfs_key *location,
3568 struct btrfs_root **sub_root)
39279cc3 3569{
4df27c4d
YZ
3570 struct btrfs_path *path;
3571 struct btrfs_root *new_root;
3572 struct btrfs_root_ref *ref;
3573 struct extent_buffer *leaf;
3574 int ret;
3575 int err = 0;
39279cc3 3576
4df27c4d
YZ
3577 path = btrfs_alloc_path();
3578 if (!path) {
3579 err = -ENOMEM;
3580 goto out;
3581 }
39279cc3 3582
4df27c4d
YZ
3583 err = -ENOENT;
3584 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3585 BTRFS_I(dir)->root->root_key.objectid,
3586 location->objectid);
3587 if (ret) {
3588 if (ret < 0)
3589 err = ret;
3590 goto out;
3591 }
39279cc3 3592
4df27c4d
YZ
3593 leaf = path->nodes[0];
3594 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3595 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3596 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3597 goto out;
39279cc3 3598
4df27c4d
YZ
3599 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3600 (unsigned long)(ref + 1),
3601 dentry->d_name.len);
3602 if (ret)
3603 goto out;
3604
b3b4aa74 3605 btrfs_release_path(path);
4df27c4d
YZ
3606
3607 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3608 if (IS_ERR(new_root)) {
3609 err = PTR_ERR(new_root);
3610 goto out;
3611 }
3612
3613 if (btrfs_root_refs(&new_root->root_item) == 0) {
3614 err = -ENOENT;
3615 goto out;
3616 }
3617
3618 *sub_root = new_root;
3619 location->objectid = btrfs_root_dirid(&new_root->root_item);
3620 location->type = BTRFS_INODE_ITEM_KEY;
3621 location->offset = 0;
3622 err = 0;
3623out:
3624 btrfs_free_path(path);
3625 return err;
39279cc3
CM
3626}
3627
5d4f98a2
YZ
3628static void inode_tree_add(struct inode *inode)
3629{
3630 struct btrfs_root *root = BTRFS_I(inode)->root;
3631 struct btrfs_inode *entry;
03e860bd
FNP
3632 struct rb_node **p;
3633 struct rb_node *parent;
33345d01 3634 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3635again:
3636 p = &root->inode_tree.rb_node;
3637 parent = NULL;
5d4f98a2 3638
1d3382cb 3639 if (inode_unhashed(inode))
76dda93c
YZ
3640 return;
3641
5d4f98a2
YZ
3642 spin_lock(&root->inode_lock);
3643 while (*p) {
3644 parent = *p;
3645 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3646
33345d01 3647 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3648 p = &parent->rb_left;
33345d01 3649 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3650 p = &parent->rb_right;
5d4f98a2
YZ
3651 else {
3652 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3653 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3654 rb_erase(parent, &root->inode_tree);
3655 RB_CLEAR_NODE(parent);
3656 spin_unlock(&root->inode_lock);
3657 goto again;
5d4f98a2
YZ
3658 }
3659 }
3660 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3661 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3662 spin_unlock(&root->inode_lock);
3663}
3664
3665static void inode_tree_del(struct inode *inode)
3666{
3667 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3668 int empty = 0;
5d4f98a2 3669
03e860bd 3670 spin_lock(&root->inode_lock);
5d4f98a2 3671 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3672 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3673 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3674 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3675 }
03e860bd 3676 spin_unlock(&root->inode_lock);
76dda93c 3677
0af3d00b
JB
3678 /*
3679 * Free space cache has inodes in the tree root, but the tree root has a
3680 * root_refs of 0, so this could end up dropping the tree root as a
3681 * snapshot, so we need the extra !root->fs_info->tree_root check to
3682 * make sure we don't drop it.
3683 */
3684 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3685 root != root->fs_info->tree_root) {
76dda93c
YZ
3686 synchronize_srcu(&root->fs_info->subvol_srcu);
3687 spin_lock(&root->inode_lock);
3688 empty = RB_EMPTY_ROOT(&root->inode_tree);
3689 spin_unlock(&root->inode_lock);
3690 if (empty)
3691 btrfs_add_dead_root(root);
3692 }
3693}
3694
3695int btrfs_invalidate_inodes(struct btrfs_root *root)
3696{
3697 struct rb_node *node;
3698 struct rb_node *prev;
3699 struct btrfs_inode *entry;
3700 struct inode *inode;
3701 u64 objectid = 0;
3702
3703 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3704
3705 spin_lock(&root->inode_lock);
3706again:
3707 node = root->inode_tree.rb_node;
3708 prev = NULL;
3709 while (node) {
3710 prev = node;
3711 entry = rb_entry(node, struct btrfs_inode, rb_node);
3712
33345d01 3713 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3714 node = node->rb_left;
33345d01 3715 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3716 node = node->rb_right;
3717 else
3718 break;
3719 }
3720 if (!node) {
3721 while (prev) {
3722 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3723 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3724 node = prev;
3725 break;
3726 }
3727 prev = rb_next(prev);
3728 }
3729 }
3730 while (node) {
3731 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3732 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3733 inode = igrab(&entry->vfs_inode);
3734 if (inode) {
3735 spin_unlock(&root->inode_lock);
3736 if (atomic_read(&inode->i_count) > 1)
3737 d_prune_aliases(inode);
3738 /*
45321ac5 3739 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3740 * the inode cache when its usage count
3741 * hits zero.
3742 */
3743 iput(inode);
3744 cond_resched();
3745 spin_lock(&root->inode_lock);
3746 goto again;
3747 }
3748
3749 if (cond_resched_lock(&root->inode_lock))
3750 goto again;
3751
3752 node = rb_next(node);
3753 }
3754 spin_unlock(&root->inode_lock);
3755 return 0;
5d4f98a2
YZ
3756}
3757
e02119d5
CM
3758static int btrfs_init_locked_inode(struct inode *inode, void *p)
3759{
3760 struct btrfs_iget_args *args = p;
3761 inode->i_ino = args->ino;
e02119d5 3762 BTRFS_I(inode)->root = args->root;
6a63209f 3763 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3764 return 0;
3765}
3766
3767static int btrfs_find_actor(struct inode *inode, void *opaque)
3768{
3769 struct btrfs_iget_args *args = opaque;
33345d01 3770 return args->ino == btrfs_ino(inode) &&
d397712b 3771 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3772}
3773
5d4f98a2
YZ
3774static struct inode *btrfs_iget_locked(struct super_block *s,
3775 u64 objectid,
3776 struct btrfs_root *root)
39279cc3
CM
3777{
3778 struct inode *inode;
3779 struct btrfs_iget_args args;
3780 args.ino = objectid;
3781 args.root = root;
3782
3783 inode = iget5_locked(s, objectid, btrfs_find_actor,
3784 btrfs_init_locked_inode,
3785 (void *)&args);
3786 return inode;
3787}
3788
1a54ef8c
BR
3789/* Get an inode object given its location and corresponding root.
3790 * Returns in *is_new if the inode was read from disk
3791 */
3792struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3793 struct btrfs_root *root, int *new)
1a54ef8c
BR
3794{
3795 struct inode *inode;
3796
3797 inode = btrfs_iget_locked(s, location->objectid, root);
3798 if (!inode)
5d4f98a2 3799 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3800
3801 if (inode->i_state & I_NEW) {
3802 BTRFS_I(inode)->root = root;
3803 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3804 btrfs_read_locked_inode(inode);
1748f843
MF
3805 if (!is_bad_inode(inode)) {
3806 inode_tree_add(inode);
3807 unlock_new_inode(inode);
3808 if (new)
3809 *new = 1;
3810 } else {
e0b6d65b
ST
3811 unlock_new_inode(inode);
3812 iput(inode);
3813 inode = ERR_PTR(-ESTALE);
1748f843
MF
3814 }
3815 }
3816
1a54ef8c
BR
3817 return inode;
3818}
3819
4df27c4d
YZ
3820static struct inode *new_simple_dir(struct super_block *s,
3821 struct btrfs_key *key,
3822 struct btrfs_root *root)
3823{
3824 struct inode *inode = new_inode(s);
3825
3826 if (!inode)
3827 return ERR_PTR(-ENOMEM);
3828
4df27c4d
YZ
3829 BTRFS_I(inode)->root = root;
3830 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3831 BTRFS_I(inode)->dummy_inode = 1;
3832
3833 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3834 inode->i_op = &simple_dir_inode_operations;
3835 inode->i_fop = &simple_dir_operations;
3836 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3837 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3838
3839 return inode;
3840}
3841
3de4586c 3842struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3843{
d397712b 3844 struct inode *inode;
4df27c4d 3845 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3846 struct btrfs_root *sub_root = root;
3847 struct btrfs_key location;
76dda93c 3848 int index;
b4aff1f8 3849 int ret = 0;
39279cc3
CM
3850
3851 if (dentry->d_name.len > BTRFS_NAME_LEN)
3852 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3853
b4aff1f8
JB
3854 if (unlikely(d_need_lookup(dentry))) {
3855 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3856 kfree(dentry->d_fsdata);
3857 dentry->d_fsdata = NULL;
a66e7cc6
JB
3858 /* This thing is hashed, drop it for now */
3859 d_drop(dentry);
b4aff1f8
JB
3860 } else {
3861 ret = btrfs_inode_by_name(dir, dentry, &location);
3862 }
5f39d397 3863
39279cc3
CM
3864 if (ret < 0)
3865 return ERR_PTR(ret);
5f39d397 3866
4df27c4d
YZ
3867 if (location.objectid == 0)
3868 return NULL;
3869
3870 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 3871 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
3872 return inode;
3873 }
3874
3875 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3876
76dda93c 3877 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3878 ret = fixup_tree_root_location(root, dir, dentry,
3879 &location, &sub_root);
3880 if (ret < 0) {
3881 if (ret != -ENOENT)
3882 inode = ERR_PTR(ret);
3883 else
3884 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3885 } else {
73f73415 3886 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 3887 }
76dda93c
YZ
3888 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3889
34d19bad 3890 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
3891 down_read(&root->fs_info->cleanup_work_sem);
3892 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 3893 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 3894 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
3895 if (ret)
3896 inode = ERR_PTR(ret);
c71bf099
YZ
3897 }
3898
3de4586c
CM
3899 return inode;
3900}
3901
fe15ce44 3902static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
3903{
3904 struct btrfs_root *root;
3905
efefb143
YZ
3906 if (!dentry->d_inode && !IS_ROOT(dentry))
3907 dentry = dentry->d_parent;
76dda93c 3908
efefb143
YZ
3909 if (dentry->d_inode) {
3910 root = BTRFS_I(dentry->d_inode)->root;
3911 if (btrfs_root_refs(&root->root_item) == 0)
3912 return 1;
3913 }
76dda93c
YZ
3914 return 0;
3915}
3916
b4aff1f8
JB
3917static void btrfs_dentry_release(struct dentry *dentry)
3918{
3919 if (dentry->d_fsdata)
3920 kfree(dentry->d_fsdata);
3921}
3922
3de4586c
CM
3923static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3924 struct nameidata *nd)
3925{
a66e7cc6
JB
3926 struct dentry *ret;
3927
3928 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
3929 if (unlikely(d_need_lookup(dentry))) {
3930 spin_lock(&dentry->d_lock);
3931 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
3932 spin_unlock(&dentry->d_lock);
3933 }
3934 return ret;
39279cc3
CM
3935}
3936
16cdcec7 3937unsigned char btrfs_filetype_table[] = {
39279cc3
CM
3938 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3939};
3940
cbdf5a24
DW
3941static int btrfs_real_readdir(struct file *filp, void *dirent,
3942 filldir_t filldir)
39279cc3 3943{
6da6abae 3944 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3945 struct btrfs_root *root = BTRFS_I(inode)->root;
3946 struct btrfs_item *item;
3947 struct btrfs_dir_item *di;
3948 struct btrfs_key key;
5f39d397 3949 struct btrfs_key found_key;
39279cc3 3950 struct btrfs_path *path;
16cdcec7
MX
3951 struct list_head ins_list;
3952 struct list_head del_list;
b4aff1f8 3953 struct qstr q;
39279cc3 3954 int ret;
5f39d397 3955 struct extent_buffer *leaf;
39279cc3 3956 int slot;
39279cc3
CM
3957 unsigned char d_type;
3958 int over = 0;
3959 u32 di_cur;
3960 u32 di_total;
3961 u32 di_len;
3962 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3963 char tmp_name[32];
3964 char *name_ptr;
3965 int name_len;
16cdcec7 3966 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
3967
3968 /* FIXME, use a real flag for deciding about the key type */
3969 if (root->fs_info->tree_root == root)
3970 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3971
3954401f
CM
3972 /* special case for "." */
3973 if (filp->f_pos == 0) {
3765fefa
HS
3974 over = filldir(dirent, ".", 1,
3975 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
3976 if (over)
3977 return 0;
3978 filp->f_pos = 1;
3979 }
3954401f
CM
3980 /* special case for .., just use the back ref */
3981 if (filp->f_pos == 1) {
5ecc7e5d 3982 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3983 over = filldir(dirent, "..", 2,
3765fefa 3984 filp->f_pos, pino, DT_DIR);
3954401f 3985 if (over)
49593bfa 3986 return 0;
3954401f
CM
3987 filp->f_pos = 2;
3988 }
49593bfa 3989 path = btrfs_alloc_path();
16cdcec7
MX
3990 if (!path)
3991 return -ENOMEM;
ff5714cc 3992
026fd317 3993 path->reada = 1;
49593bfa 3994
16cdcec7
MX
3995 if (key_type == BTRFS_DIR_INDEX_KEY) {
3996 INIT_LIST_HEAD(&ins_list);
3997 INIT_LIST_HEAD(&del_list);
3998 btrfs_get_delayed_items(inode, &ins_list, &del_list);
3999 }
4000
39279cc3
CM
4001 btrfs_set_key_type(&key, key_type);
4002 key.offset = filp->f_pos;
33345d01 4003 key.objectid = btrfs_ino(inode);
5f39d397 4004
39279cc3
CM
4005 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4006 if (ret < 0)
4007 goto err;
49593bfa
DW
4008
4009 while (1) {
5f39d397 4010 leaf = path->nodes[0];
39279cc3 4011 slot = path->slots[0];
b9e03af0
LZ
4012 if (slot >= btrfs_header_nritems(leaf)) {
4013 ret = btrfs_next_leaf(root, path);
4014 if (ret < 0)
4015 goto err;
4016 else if (ret > 0)
4017 break;
4018 continue;
39279cc3 4019 }
3de4586c 4020
5f39d397
CM
4021 item = btrfs_item_nr(leaf, slot);
4022 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4023
4024 if (found_key.objectid != key.objectid)
39279cc3 4025 break;
5f39d397 4026 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4027 break;
5f39d397 4028 if (found_key.offset < filp->f_pos)
b9e03af0 4029 goto next;
16cdcec7
MX
4030 if (key_type == BTRFS_DIR_INDEX_KEY &&
4031 btrfs_should_delete_dir_index(&del_list,
4032 found_key.offset))
4033 goto next;
5f39d397
CM
4034
4035 filp->f_pos = found_key.offset;
16cdcec7 4036 is_curr = 1;
49593bfa 4037
39279cc3
CM
4038 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4039 di_cur = 0;
5f39d397 4040 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4041
4042 while (di_cur < di_total) {
5f39d397 4043 struct btrfs_key location;
b4aff1f8 4044 struct dentry *tmp;
5f39d397 4045
22a94d44
JB
4046 if (verify_dir_item(root, leaf, di))
4047 break;
4048
5f39d397 4049 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4050 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4051 name_ptr = tmp_name;
4052 } else {
4053 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4054 if (!name_ptr) {
4055 ret = -ENOMEM;
4056 goto err;
4057 }
5f39d397
CM
4058 }
4059 read_extent_buffer(leaf, name_ptr,
4060 (unsigned long)(di + 1), name_len);
4061
4062 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4063 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4064
b4aff1f8
JB
4065 q.name = name_ptr;
4066 q.len = name_len;
4067 q.hash = full_name_hash(q.name, q.len);
4068 tmp = d_lookup(filp->f_dentry, &q);
4069 if (!tmp) {
4070 struct btrfs_key *newkey;
4071
4072 newkey = kzalloc(sizeof(struct btrfs_key),
4073 GFP_NOFS);
4074 if (!newkey)
4075 goto no_dentry;
4076 tmp = d_alloc(filp->f_dentry, &q);
4077 if (!tmp) {
4078 kfree(newkey);
4079 dput(tmp);
4080 goto no_dentry;
4081 }
4082 memcpy(newkey, &location,
4083 sizeof(struct btrfs_key));
4084 tmp->d_fsdata = newkey;
4085 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4086 d_rehash(tmp);
4087 dput(tmp);
4088 } else {
4089 dput(tmp);
4090 }
4091no_dentry:
3de4586c
CM
4092 /* is this a reference to our own snapshot? If so
4093 * skip it
4094 */
4095 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4096 location.objectid == root->root_key.objectid) {
4097 over = 0;
4098 goto skip;
4099 }
5f39d397 4100 over = filldir(dirent, name_ptr, name_len,
49593bfa 4101 found_key.offset, location.objectid,
39279cc3 4102 d_type);
5f39d397 4103
3de4586c 4104skip:
5f39d397
CM
4105 if (name_ptr != tmp_name)
4106 kfree(name_ptr);
4107
39279cc3
CM
4108 if (over)
4109 goto nopos;
5103e947 4110 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4111 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4112 di_cur += di_len;
4113 di = (struct btrfs_dir_item *)((char *)di + di_len);
4114 }
b9e03af0
LZ
4115next:
4116 path->slots[0]++;
39279cc3 4117 }
49593bfa 4118
16cdcec7
MX
4119 if (key_type == BTRFS_DIR_INDEX_KEY) {
4120 if (is_curr)
4121 filp->f_pos++;
4122 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4123 &ins_list);
4124 if (ret)
4125 goto nopos;
4126 }
4127
49593bfa 4128 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4129 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4130 /*
4131 * 32-bit glibc will use getdents64, but then strtol -
4132 * so the last number we can serve is this.
4133 */
4134 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4135 else
4136 filp->f_pos++;
39279cc3
CM
4137nopos:
4138 ret = 0;
4139err:
16cdcec7
MX
4140 if (key_type == BTRFS_DIR_INDEX_KEY)
4141 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4142 btrfs_free_path(path);
39279cc3
CM
4143 return ret;
4144}
4145
a9185b41 4146int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4147{
4148 struct btrfs_root *root = BTRFS_I(inode)->root;
4149 struct btrfs_trans_handle *trans;
4150 int ret = 0;
0af3d00b 4151 bool nolock = false;
39279cc3 4152
8929ecfa 4153 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4154 return 0;
4155
2cf8572d 4156 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4157 nolock = true;
0af3d00b 4158
a9185b41 4159 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4160 if (nolock)
7a7eaa40 4161 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4162 else
7a7eaa40 4163 trans = btrfs_join_transaction(root);
3612b495
TI
4164 if (IS_ERR(trans))
4165 return PTR_ERR(trans);
0af3d00b
JB
4166 if (nolock)
4167 ret = btrfs_end_transaction_nolock(trans, root);
4168 else
4169 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4170 }
4171 return ret;
4172}
4173
4174/*
54aa1f4d 4175 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4176 * inode changes. But, it is most likely to find the inode in cache.
4177 * FIXME, needs more benchmarking...there are no reasons other than performance
4178 * to keep or drop this code.
4179 */
aa385729 4180void btrfs_dirty_inode(struct inode *inode, int flags)
39279cc3
CM
4181{
4182 struct btrfs_root *root = BTRFS_I(inode)->root;
4183 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4184 int ret;
4185
4186 if (BTRFS_I(inode)->dummy_inode)
4187 return;
39279cc3 4188
7a7eaa40 4189 trans = btrfs_join_transaction(root);
3612b495 4190 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
4191
4192 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4193 if (ret && ret == -ENOSPC) {
4194 /* whoops, lets try again with the full transaction */
4195 btrfs_end_transaction(trans, root);
4196 trans = btrfs_start_transaction(root, 1);
9aeead73 4197 if (IS_ERR(trans)) {
7a36ddec 4198 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4199 "dirty inode %llu error %ld\n",
4200 (unsigned long long)btrfs_ino(inode),
4201 PTR_ERR(trans));
9aeead73
CM
4202 return;
4203 }
8929ecfa 4204
94b60442
CM
4205 ret = btrfs_update_inode(trans, root, inode);
4206 if (ret) {
7a36ddec 4207 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4208 "dirty inode %llu error %d\n",
4209 (unsigned long long)btrfs_ino(inode),
4210 ret);
94b60442
CM
4211 }
4212 }
39279cc3 4213 btrfs_end_transaction(trans, root);
16cdcec7
MX
4214 if (BTRFS_I(inode)->delayed_node)
4215 btrfs_balance_delayed_items(root);
39279cc3
CM
4216}
4217
d352ac68
CM
4218/*
4219 * find the highest existing sequence number in a directory
4220 * and then set the in-memory index_cnt variable to reflect
4221 * free sequence numbers
4222 */
aec7477b
JB
4223static int btrfs_set_inode_index_count(struct inode *inode)
4224{
4225 struct btrfs_root *root = BTRFS_I(inode)->root;
4226 struct btrfs_key key, found_key;
4227 struct btrfs_path *path;
4228 struct extent_buffer *leaf;
4229 int ret;
4230
33345d01 4231 key.objectid = btrfs_ino(inode);
aec7477b
JB
4232 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4233 key.offset = (u64)-1;
4234
4235 path = btrfs_alloc_path();
4236 if (!path)
4237 return -ENOMEM;
4238
4239 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4240 if (ret < 0)
4241 goto out;
4242 /* FIXME: we should be able to handle this */
4243 if (ret == 0)
4244 goto out;
4245 ret = 0;
4246
4247 /*
4248 * MAGIC NUMBER EXPLANATION:
4249 * since we search a directory based on f_pos we have to start at 2
4250 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4251 * else has to start at 2
4252 */
4253 if (path->slots[0] == 0) {
4254 BTRFS_I(inode)->index_cnt = 2;
4255 goto out;
4256 }
4257
4258 path->slots[0]--;
4259
4260 leaf = path->nodes[0];
4261 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4262
33345d01 4263 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4264 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4265 BTRFS_I(inode)->index_cnt = 2;
4266 goto out;
4267 }
4268
4269 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4270out:
4271 btrfs_free_path(path);
4272 return ret;
4273}
4274
d352ac68
CM
4275/*
4276 * helper to find a free sequence number in a given directory. This current
4277 * code is very simple, later versions will do smarter things in the btree
4278 */
3de4586c 4279int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4280{
4281 int ret = 0;
4282
4283 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4284 ret = btrfs_inode_delayed_dir_index_count(dir);
4285 if (ret) {
4286 ret = btrfs_set_inode_index_count(dir);
4287 if (ret)
4288 return ret;
4289 }
aec7477b
JB
4290 }
4291
00e4e6b3 4292 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4293 BTRFS_I(dir)->index_cnt++;
4294
4295 return ret;
4296}
4297
39279cc3
CM
4298static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4299 struct btrfs_root *root,
aec7477b 4300 struct inode *dir,
9c58309d 4301 const char *name, int name_len,
d82a6f1d
JB
4302 u64 ref_objectid, u64 objectid, int mode,
4303 u64 *index)
39279cc3
CM
4304{
4305 struct inode *inode;
5f39d397 4306 struct btrfs_inode_item *inode_item;
39279cc3 4307 struct btrfs_key *location;
5f39d397 4308 struct btrfs_path *path;
9c58309d
CM
4309 struct btrfs_inode_ref *ref;
4310 struct btrfs_key key[2];
4311 u32 sizes[2];
4312 unsigned long ptr;
39279cc3
CM
4313 int ret;
4314 int owner;
4315
5f39d397 4316 path = btrfs_alloc_path();
d8926bb3
MF
4317 if (!path)
4318 return ERR_PTR(-ENOMEM);
5f39d397 4319
39279cc3 4320 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4321 if (!inode) {
4322 btrfs_free_path(path);
39279cc3 4323 return ERR_PTR(-ENOMEM);
8fb27640 4324 }
39279cc3 4325
581bb050
LZ
4326 /*
4327 * we have to initialize this early, so we can reclaim the inode
4328 * number if we fail afterwards in this function.
4329 */
4330 inode->i_ino = objectid;
4331
aec7477b 4332 if (dir) {
1abe9b8a 4333 trace_btrfs_inode_request(dir);
4334
3de4586c 4335 ret = btrfs_set_inode_index(dir, index);
09771430 4336 if (ret) {
8fb27640 4337 btrfs_free_path(path);
09771430 4338 iput(inode);
aec7477b 4339 return ERR_PTR(ret);
09771430 4340 }
aec7477b
JB
4341 }
4342 /*
4343 * index_cnt is ignored for everything but a dir,
4344 * btrfs_get_inode_index_count has an explanation for the magic
4345 * number
4346 */
4347 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4348 BTRFS_I(inode)->root = root;
e02119d5 4349 BTRFS_I(inode)->generation = trans->transid;
76195853 4350 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4351 btrfs_set_inode_space_info(root, inode);
b888db2b 4352
569254b0 4353 if (S_ISDIR(mode))
39279cc3
CM
4354 owner = 0;
4355 else
4356 owner = 1;
9c58309d
CM
4357
4358 key[0].objectid = objectid;
4359 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4360 key[0].offset = 0;
4361
4362 key[1].objectid = objectid;
4363 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4364 key[1].offset = ref_objectid;
4365
4366 sizes[0] = sizeof(struct btrfs_inode_item);
4367 sizes[1] = name_len + sizeof(*ref);
4368
b9473439 4369 path->leave_spinning = 1;
9c58309d
CM
4370 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4371 if (ret != 0)
5f39d397
CM
4372 goto fail;
4373
ecc11fab 4374 inode_init_owner(inode, dir, mode);
a76a3cd4 4375 inode_set_bytes(inode, 0);
39279cc3 4376 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4377 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4378 struct btrfs_inode_item);
e02119d5 4379 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4380
4381 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4382 struct btrfs_inode_ref);
4383 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4384 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4385 ptr = (unsigned long)(ref + 1);
4386 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4387
5f39d397
CM
4388 btrfs_mark_buffer_dirty(path->nodes[0]);
4389 btrfs_free_path(path);
4390
39279cc3
CM
4391 location = &BTRFS_I(inode)->location;
4392 location->objectid = objectid;
39279cc3
CM
4393 location->offset = 0;
4394 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4395
6cbff00f
CH
4396 btrfs_inherit_iflags(inode, dir);
4397
569254b0 4398 if (S_ISREG(mode)) {
94272164
CM
4399 if (btrfs_test_opt(root, NODATASUM))
4400 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4401 if (btrfs_test_opt(root, NODATACOW) ||
4402 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4403 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4404 }
4405
39279cc3 4406 insert_inode_hash(inode);
5d4f98a2 4407 inode_tree_add(inode);
1abe9b8a 4408
4409 trace_btrfs_inode_new(inode);
1973f0fa 4410 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4411
39279cc3 4412 return inode;
5f39d397 4413fail:
aec7477b
JB
4414 if (dir)
4415 BTRFS_I(dir)->index_cnt--;
5f39d397 4416 btrfs_free_path(path);
09771430 4417 iput(inode);
5f39d397 4418 return ERR_PTR(ret);
39279cc3
CM
4419}
4420
4421static inline u8 btrfs_inode_type(struct inode *inode)
4422{
4423 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4424}
4425
d352ac68
CM
4426/*
4427 * utility function to add 'inode' into 'parent_inode' with
4428 * a give name and a given sequence number.
4429 * if 'add_backref' is true, also insert a backref from the
4430 * inode to the parent directory.
4431 */
e02119d5
CM
4432int btrfs_add_link(struct btrfs_trans_handle *trans,
4433 struct inode *parent_inode, struct inode *inode,
4434 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4435{
4df27c4d 4436 int ret = 0;
39279cc3 4437 struct btrfs_key key;
e02119d5 4438 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4439 u64 ino = btrfs_ino(inode);
4440 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4441
33345d01 4442 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4443 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4444 } else {
33345d01 4445 key.objectid = ino;
4df27c4d
YZ
4446 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4447 key.offset = 0;
4448 }
4449
33345d01 4450 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4451 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4452 key.objectid, root->root_key.objectid,
33345d01 4453 parent_ino, index, name, name_len);
4df27c4d 4454 } else if (add_backref) {
33345d01
LZ
4455 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4456 parent_ino, index);
4df27c4d 4457 }
39279cc3 4458
39279cc3 4459 if (ret == 0) {
4df27c4d 4460 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4461 parent_inode, &key,
4df27c4d
YZ
4462 btrfs_inode_type(inode), index);
4463 BUG_ON(ret);
4464
dbe674a9 4465 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4466 name_len * 2);
79c44584 4467 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4468 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4469 }
4470 return ret;
4471}
4472
4473static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4474 struct inode *dir, struct dentry *dentry,
4475 struct inode *inode, int backref, u64 index)
39279cc3 4476{
a1b075d2
JB
4477 int err = btrfs_add_link(trans, dir, inode,
4478 dentry->d_name.name, dentry->d_name.len,
4479 backref, index);
39279cc3
CM
4480 if (!err) {
4481 d_instantiate(dentry, inode);
4482 return 0;
4483 }
4484 if (err > 0)
4485 err = -EEXIST;
4486 return err;
4487}
4488
618e21d5
JB
4489static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4490 int mode, dev_t rdev)
4491{
4492 struct btrfs_trans_handle *trans;
4493 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4494 struct inode *inode = NULL;
618e21d5
JB
4495 int err;
4496 int drop_inode = 0;
4497 u64 objectid;
1832a6d5 4498 unsigned long nr = 0;
00e4e6b3 4499 u64 index = 0;
618e21d5
JB
4500
4501 if (!new_valid_dev(rdev))
4502 return -EINVAL;
4503
9ed74f2d
JB
4504 /*
4505 * 2 for inode item and ref
4506 * 2 for dir items
4507 * 1 for xattr if selinux is on
4508 */
a22285a6
YZ
4509 trans = btrfs_start_transaction(root, 5);
4510 if (IS_ERR(trans))
4511 return PTR_ERR(trans);
1832a6d5 4512
581bb050
LZ
4513 err = btrfs_find_free_ino(root, &objectid);
4514 if (err)
4515 goto out_unlock;
4516
aec7477b 4517 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4518 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4519 mode, &index);
7cf96da3
TI
4520 if (IS_ERR(inode)) {
4521 err = PTR_ERR(inode);
618e21d5 4522 goto out_unlock;
7cf96da3 4523 }
618e21d5 4524
2a7dba39 4525 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4526 if (err) {
4527 drop_inode = 1;
4528 goto out_unlock;
4529 }
4530
a1b075d2 4531 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4532 if (err)
4533 drop_inode = 1;
4534 else {
4535 inode->i_op = &btrfs_special_inode_operations;
4536 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4537 btrfs_update_inode(trans, root, inode);
618e21d5 4538 }
618e21d5 4539out_unlock:
d3c2fdcf 4540 nr = trans->blocks_used;
89ce8a63 4541 btrfs_end_transaction_throttle(trans, root);
a22285a6 4542 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4543 if (drop_inode) {
4544 inode_dec_link_count(inode);
4545 iput(inode);
4546 }
618e21d5
JB
4547 return err;
4548}
4549
39279cc3
CM
4550static int btrfs_create(struct inode *dir, struct dentry *dentry,
4551 int mode, struct nameidata *nd)
4552{
4553 struct btrfs_trans_handle *trans;
4554 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4555 struct inode *inode = NULL;
39279cc3 4556 int drop_inode = 0;
a22285a6 4557 int err;
1832a6d5 4558 unsigned long nr = 0;
39279cc3 4559 u64 objectid;
00e4e6b3 4560 u64 index = 0;
39279cc3 4561
9ed74f2d
JB
4562 /*
4563 * 2 for inode item and ref
4564 * 2 for dir items
4565 * 1 for xattr if selinux is on
4566 */
a22285a6
YZ
4567 trans = btrfs_start_transaction(root, 5);
4568 if (IS_ERR(trans))
4569 return PTR_ERR(trans);
9ed74f2d 4570
581bb050
LZ
4571 err = btrfs_find_free_ino(root, &objectid);
4572 if (err)
4573 goto out_unlock;
4574
aec7477b 4575 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4576 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4577 mode, &index);
7cf96da3
TI
4578 if (IS_ERR(inode)) {
4579 err = PTR_ERR(inode);
39279cc3 4580 goto out_unlock;
7cf96da3 4581 }
39279cc3 4582
2a7dba39 4583 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4584 if (err) {
4585 drop_inode = 1;
4586 goto out_unlock;
4587 }
4588
a1b075d2 4589 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4590 if (err)
4591 drop_inode = 1;
4592 else {
4593 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4594 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4595 inode->i_fop = &btrfs_file_operations;
4596 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4597 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4598 }
39279cc3 4599out_unlock:
d3c2fdcf 4600 nr = trans->blocks_used;
ab78c84d 4601 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4602 if (drop_inode) {
4603 inode_dec_link_count(inode);
4604 iput(inode);
4605 }
d3c2fdcf 4606 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4607 return err;
4608}
4609
4610static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4611 struct dentry *dentry)
4612{
4613 struct btrfs_trans_handle *trans;
4614 struct btrfs_root *root = BTRFS_I(dir)->root;
4615 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4616 u64 index;
1832a6d5 4617 unsigned long nr = 0;
39279cc3
CM
4618 int err;
4619 int drop_inode = 0;
4620
4a8be425
TH
4621 /* do not allow sys_link's with other subvols of the same device */
4622 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4623 return -EXDEV;
4a8be425 4624
c055e99e
AV
4625 if (inode->i_nlink == ~0U)
4626 return -EMLINK;
4a8be425 4627
3de4586c 4628 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4629 if (err)
4630 goto fail;
4631
a22285a6 4632 /*
7e6b6465 4633 * 2 items for inode and inode ref
a22285a6 4634 * 2 items for dir items
7e6b6465 4635 * 1 item for parent inode
a22285a6 4636 */
7e6b6465 4637 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4638 if (IS_ERR(trans)) {
4639 err = PTR_ERR(trans);
4640 goto fail;
4641 }
5f39d397 4642
3153495d
MX
4643 btrfs_inc_nlink(inode);
4644 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4645 ihold(inode);
aec7477b 4646
a1b075d2 4647 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4648
a5719521 4649 if (err) {
54aa1f4d 4650 drop_inode = 1;
a5719521 4651 } else {
10d9f309 4652 struct dentry *parent = dentry->d_parent;
a5719521
YZ
4653 err = btrfs_update_inode(trans, root, inode);
4654 BUG_ON(err);
6a912213 4655 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 4656 }
39279cc3 4657
d3c2fdcf 4658 nr = trans->blocks_used;
ab78c84d 4659 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4660fail:
39279cc3
CM
4661 if (drop_inode) {
4662 inode_dec_link_count(inode);
4663 iput(inode);
4664 }
d3c2fdcf 4665 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4666 return err;
4667}
4668
39279cc3
CM
4669static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4670{
b9d86667 4671 struct inode *inode = NULL;
39279cc3
CM
4672 struct btrfs_trans_handle *trans;
4673 struct btrfs_root *root = BTRFS_I(dir)->root;
4674 int err = 0;
4675 int drop_on_err = 0;
b9d86667 4676 u64 objectid = 0;
00e4e6b3 4677 u64 index = 0;
d3c2fdcf 4678 unsigned long nr = 1;
39279cc3 4679
9ed74f2d
JB
4680 /*
4681 * 2 items for inode and ref
4682 * 2 items for dir items
4683 * 1 for xattr if selinux is on
4684 */
a22285a6
YZ
4685 trans = btrfs_start_transaction(root, 5);
4686 if (IS_ERR(trans))
4687 return PTR_ERR(trans);
39279cc3 4688
581bb050
LZ
4689 err = btrfs_find_free_ino(root, &objectid);
4690 if (err)
4691 goto out_fail;
4692
aec7477b 4693 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4694 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4695 S_IFDIR | mode, &index);
39279cc3
CM
4696 if (IS_ERR(inode)) {
4697 err = PTR_ERR(inode);
4698 goto out_fail;
4699 }
5f39d397 4700
39279cc3 4701 drop_on_err = 1;
33268eaf 4702
2a7dba39 4703 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4704 if (err)
4705 goto out_fail;
4706
39279cc3
CM
4707 inode->i_op = &btrfs_dir_inode_operations;
4708 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4709
dbe674a9 4710 btrfs_i_size_write(inode, 0);
39279cc3
CM
4711 err = btrfs_update_inode(trans, root, inode);
4712 if (err)
4713 goto out_fail;
5f39d397 4714
a1b075d2
JB
4715 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4716 dentry->d_name.len, 0, index);
39279cc3
CM
4717 if (err)
4718 goto out_fail;
5f39d397 4719
39279cc3
CM
4720 d_instantiate(dentry, inode);
4721 drop_on_err = 0;
39279cc3
CM
4722
4723out_fail:
d3c2fdcf 4724 nr = trans->blocks_used;
ab78c84d 4725 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4726 if (drop_on_err)
4727 iput(inode);
d3c2fdcf 4728 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4729 return err;
4730}
4731
d352ac68
CM
4732/* helper for btfs_get_extent. Given an existing extent in the tree,
4733 * and an extent that you want to insert, deal with overlap and insert
4734 * the new extent into the tree.
4735 */
3b951516
CM
4736static int merge_extent_mapping(struct extent_map_tree *em_tree,
4737 struct extent_map *existing,
e6dcd2dc
CM
4738 struct extent_map *em,
4739 u64 map_start, u64 map_len)
3b951516
CM
4740{
4741 u64 start_diff;
3b951516 4742
e6dcd2dc
CM
4743 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4744 start_diff = map_start - em->start;
4745 em->start = map_start;
4746 em->len = map_len;
c8b97818
CM
4747 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4748 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4749 em->block_start += start_diff;
c8b97818
CM
4750 em->block_len -= start_diff;
4751 }
e6dcd2dc 4752 return add_extent_mapping(em_tree, em);
3b951516
CM
4753}
4754
c8b97818
CM
4755static noinline int uncompress_inline(struct btrfs_path *path,
4756 struct inode *inode, struct page *page,
4757 size_t pg_offset, u64 extent_offset,
4758 struct btrfs_file_extent_item *item)
4759{
4760 int ret;
4761 struct extent_buffer *leaf = path->nodes[0];
4762 char *tmp;
4763 size_t max_size;
4764 unsigned long inline_size;
4765 unsigned long ptr;
261507a0 4766 int compress_type;
c8b97818
CM
4767
4768 WARN_ON(pg_offset != 0);
261507a0 4769 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4770 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4771 inline_size = btrfs_file_extent_inline_item_len(leaf,
4772 btrfs_item_nr(leaf, path->slots[0]));
4773 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4774 if (!tmp)
4775 return -ENOMEM;
c8b97818
CM
4776 ptr = btrfs_file_extent_inline_start(item);
4777
4778 read_extent_buffer(leaf, tmp, ptr, inline_size);
4779
5b050f04 4780 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4781 ret = btrfs_decompress(compress_type, tmp, page,
4782 extent_offset, inline_size, max_size);
c8b97818
CM
4783 if (ret) {
4784 char *kaddr = kmap_atomic(page, KM_USER0);
4785 unsigned long copy_size = min_t(u64,
4786 PAGE_CACHE_SIZE - pg_offset,
4787 max_size - extent_offset);
4788 memset(kaddr + pg_offset, 0, copy_size);
4789 kunmap_atomic(kaddr, KM_USER0);
4790 }
4791 kfree(tmp);
4792 return 0;
4793}
4794
d352ac68
CM
4795/*
4796 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4797 * the ugly parts come from merging extents from the disk with the in-ram
4798 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4799 * where the in-ram extents might be locked pending data=ordered completion.
4800 *
4801 * This also copies inline extents directly into the page.
4802 */
d397712b 4803
a52d9a80 4804struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4805 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4806 int create)
4807{
4808 int ret;
4809 int err = 0;
db94535d 4810 u64 bytenr;
a52d9a80
CM
4811 u64 extent_start = 0;
4812 u64 extent_end = 0;
33345d01 4813 u64 objectid = btrfs_ino(inode);
a52d9a80 4814 u32 found_type;
f421950f 4815 struct btrfs_path *path = NULL;
a52d9a80
CM
4816 struct btrfs_root *root = BTRFS_I(inode)->root;
4817 struct btrfs_file_extent_item *item;
5f39d397
CM
4818 struct extent_buffer *leaf;
4819 struct btrfs_key found_key;
a52d9a80
CM
4820 struct extent_map *em = NULL;
4821 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4822 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4823 struct btrfs_trans_handle *trans = NULL;
261507a0 4824 int compress_type;
a52d9a80 4825
a52d9a80 4826again:
890871be 4827 read_lock(&em_tree->lock);
d1310b2e 4828 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4829 if (em)
4830 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4831 read_unlock(&em_tree->lock);
d1310b2e 4832
a52d9a80 4833 if (em) {
e1c4b745
CM
4834 if (em->start > start || em->start + em->len <= start)
4835 free_extent_map(em);
4836 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4837 free_extent_map(em);
4838 else
4839 goto out;
a52d9a80 4840 }
172ddd60 4841 em = alloc_extent_map();
a52d9a80 4842 if (!em) {
d1310b2e
CM
4843 err = -ENOMEM;
4844 goto out;
a52d9a80 4845 }
e6dcd2dc 4846 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4847 em->start = EXTENT_MAP_HOLE;
445a6944 4848 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4849 em->len = (u64)-1;
c8b97818 4850 em->block_len = (u64)-1;
f421950f
CM
4851
4852 if (!path) {
4853 path = btrfs_alloc_path();
026fd317
JB
4854 if (!path) {
4855 err = -ENOMEM;
4856 goto out;
4857 }
4858 /*
4859 * Chances are we'll be called again, so go ahead and do
4860 * readahead
4861 */
4862 path->reada = 1;
f421950f
CM
4863 }
4864
179e29e4
CM
4865 ret = btrfs_lookup_file_extent(trans, root, path,
4866 objectid, start, trans != NULL);
a52d9a80
CM
4867 if (ret < 0) {
4868 err = ret;
4869 goto out;
4870 }
4871
4872 if (ret != 0) {
4873 if (path->slots[0] == 0)
4874 goto not_found;
4875 path->slots[0]--;
4876 }
4877
5f39d397
CM
4878 leaf = path->nodes[0];
4879 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4880 struct btrfs_file_extent_item);
a52d9a80 4881 /* are we inside the extent that was found? */
5f39d397
CM
4882 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4883 found_type = btrfs_key_type(&found_key);
4884 if (found_key.objectid != objectid ||
a52d9a80
CM
4885 found_type != BTRFS_EXTENT_DATA_KEY) {
4886 goto not_found;
4887 }
4888
5f39d397
CM
4889 found_type = btrfs_file_extent_type(leaf, item);
4890 extent_start = found_key.offset;
261507a0 4891 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4892 if (found_type == BTRFS_FILE_EXTENT_REG ||
4893 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4894 extent_end = extent_start +
db94535d 4895 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4896 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4897 size_t size;
4898 size = btrfs_file_extent_inline_len(leaf, item);
4899 extent_end = (extent_start + size + root->sectorsize - 1) &
4900 ~((u64)root->sectorsize - 1);
4901 }
4902
4903 if (start >= extent_end) {
4904 path->slots[0]++;
4905 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4906 ret = btrfs_next_leaf(root, path);
4907 if (ret < 0) {
4908 err = ret;
4909 goto out;
a52d9a80 4910 }
9036c102
YZ
4911 if (ret > 0)
4912 goto not_found;
4913 leaf = path->nodes[0];
a52d9a80 4914 }
9036c102
YZ
4915 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4916 if (found_key.objectid != objectid ||
4917 found_key.type != BTRFS_EXTENT_DATA_KEY)
4918 goto not_found;
4919 if (start + len <= found_key.offset)
4920 goto not_found;
4921 em->start = start;
4922 em->len = found_key.offset - start;
4923 goto not_found_em;
4924 }
4925
d899e052
YZ
4926 if (found_type == BTRFS_FILE_EXTENT_REG ||
4927 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4928 em->start = extent_start;
4929 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4930 em->orig_start = extent_start -
4931 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4932 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4933 if (bytenr == 0) {
5f39d397 4934 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4935 goto insert;
4936 }
261507a0 4937 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 4938 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 4939 em->compress_type = compress_type;
c8b97818
CM
4940 em->block_start = bytenr;
4941 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4942 item);
4943 } else {
4944 bytenr += btrfs_file_extent_offset(leaf, item);
4945 em->block_start = bytenr;
4946 em->block_len = em->len;
d899e052
YZ
4947 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4948 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4949 }
a52d9a80
CM
4950 goto insert;
4951 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4952 unsigned long ptr;
a52d9a80 4953 char *map;
3326d1b0
CM
4954 size_t size;
4955 size_t extent_offset;
4956 size_t copy_size;
a52d9a80 4957
689f9346 4958 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4959 if (!page || create) {
689f9346 4960 em->start = extent_start;
9036c102 4961 em->len = extent_end - extent_start;
689f9346
Y
4962 goto out;
4963 }
5f39d397 4964
9036c102
YZ
4965 size = btrfs_file_extent_inline_len(leaf, item);
4966 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4967 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4968 size - extent_offset);
3326d1b0 4969 em->start = extent_start + extent_offset;
70dec807
CM
4970 em->len = (copy_size + root->sectorsize - 1) &
4971 ~((u64)root->sectorsize - 1);
ff5b7ee3 4972 em->orig_start = EXTENT_MAP_INLINE;
261507a0 4973 if (compress_type) {
c8b97818 4974 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
4975 em->compress_type = compress_type;
4976 }
689f9346 4977 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4978 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
4979 if (btrfs_file_extent_compression(leaf, item) !=
4980 BTRFS_COMPRESS_NONE) {
c8b97818
CM
4981 ret = uncompress_inline(path, inode, page,
4982 pg_offset,
4983 extent_offset, item);
4984 BUG_ON(ret);
4985 } else {
4986 map = kmap(page);
4987 read_extent_buffer(leaf, map + pg_offset, ptr,
4988 copy_size);
93c82d57
CM
4989 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4990 memset(map + pg_offset + copy_size, 0,
4991 PAGE_CACHE_SIZE - pg_offset -
4992 copy_size);
4993 }
c8b97818
CM
4994 kunmap(page);
4995 }
179e29e4
CM
4996 flush_dcache_page(page);
4997 } else if (create && PageUptodate(page)) {
0ca1f7ce 4998 WARN_ON(1);
179e29e4
CM
4999 if (!trans) {
5000 kunmap(page);
5001 free_extent_map(em);
5002 em = NULL;
ff5714cc 5003
b3b4aa74 5004 btrfs_release_path(path);
7a7eaa40 5005 trans = btrfs_join_transaction(root);
ff5714cc 5006
3612b495
TI
5007 if (IS_ERR(trans))
5008 return ERR_CAST(trans);
179e29e4
CM
5009 goto again;
5010 }
c8b97818 5011 map = kmap(page);
70dec807 5012 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5013 copy_size);
c8b97818 5014 kunmap(page);
179e29e4 5015 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5016 }
d1310b2e 5017 set_extent_uptodate(io_tree, em->start,
507903b8 5018 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5019 goto insert;
5020 } else {
d397712b 5021 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5022 WARN_ON(1);
5023 }
5024not_found:
5025 em->start = start;
d1310b2e 5026 em->len = len;
a52d9a80 5027not_found_em:
5f39d397 5028 em->block_start = EXTENT_MAP_HOLE;
9036c102 5029 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5030insert:
b3b4aa74 5031 btrfs_release_path(path);
d1310b2e 5032 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5033 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5034 "[%llu %llu]\n", (unsigned long long)em->start,
5035 (unsigned long long)em->len,
5036 (unsigned long long)start,
5037 (unsigned long long)len);
a52d9a80
CM
5038 err = -EIO;
5039 goto out;
5040 }
d1310b2e
CM
5041
5042 err = 0;
890871be 5043 write_lock(&em_tree->lock);
a52d9a80 5044 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5045 /* it is possible that someone inserted the extent into the tree
5046 * while we had the lock dropped. It is also possible that
5047 * an overlapping map exists in the tree
5048 */
a52d9a80 5049 if (ret == -EEXIST) {
3b951516 5050 struct extent_map *existing;
e6dcd2dc
CM
5051
5052 ret = 0;
5053
3b951516 5054 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5055 if (existing && (existing->start > start ||
5056 existing->start + existing->len <= start)) {
5057 free_extent_map(existing);
5058 existing = NULL;
5059 }
3b951516
CM
5060 if (!existing) {
5061 existing = lookup_extent_mapping(em_tree, em->start,
5062 em->len);
5063 if (existing) {
5064 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5065 em, start,
5066 root->sectorsize);
3b951516
CM
5067 free_extent_map(existing);
5068 if (err) {
5069 free_extent_map(em);
5070 em = NULL;
5071 }
5072 } else {
5073 err = -EIO;
3b951516
CM
5074 free_extent_map(em);
5075 em = NULL;
5076 }
5077 } else {
5078 free_extent_map(em);
5079 em = existing;
e6dcd2dc 5080 err = 0;
a52d9a80 5081 }
a52d9a80 5082 }
890871be 5083 write_unlock(&em_tree->lock);
a52d9a80 5084out:
1abe9b8a 5085
5086 trace_btrfs_get_extent(root, em);
5087
f421950f
CM
5088 if (path)
5089 btrfs_free_path(path);
a52d9a80
CM
5090 if (trans) {
5091 ret = btrfs_end_transaction(trans, root);
d397712b 5092 if (!err)
a52d9a80
CM
5093 err = ret;
5094 }
a52d9a80
CM
5095 if (err) {
5096 free_extent_map(em);
a52d9a80
CM
5097 return ERR_PTR(err);
5098 }
5099 return em;
5100}
5101
ec29ed5b
CM
5102struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5103 size_t pg_offset, u64 start, u64 len,
5104 int create)
5105{
5106 struct extent_map *em;
5107 struct extent_map *hole_em = NULL;
5108 u64 range_start = start;
5109 u64 end;
5110 u64 found;
5111 u64 found_end;
5112 int err = 0;
5113
5114 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5115 if (IS_ERR(em))
5116 return em;
5117 if (em) {
5118 /*
5119 * if our em maps to a hole, there might
5120 * actually be delalloc bytes behind it
5121 */
5122 if (em->block_start != EXTENT_MAP_HOLE)
5123 return em;
5124 else
5125 hole_em = em;
5126 }
5127
5128 /* check to see if we've wrapped (len == -1 or similar) */
5129 end = start + len;
5130 if (end < start)
5131 end = (u64)-1;
5132 else
5133 end -= 1;
5134
5135 em = NULL;
5136
5137 /* ok, we didn't find anything, lets look for delalloc */
5138 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5139 end, len, EXTENT_DELALLOC, 1);
5140 found_end = range_start + found;
5141 if (found_end < range_start)
5142 found_end = (u64)-1;
5143
5144 /*
5145 * we didn't find anything useful, return
5146 * the original results from get_extent()
5147 */
5148 if (range_start > end || found_end <= start) {
5149 em = hole_em;
5150 hole_em = NULL;
5151 goto out;
5152 }
5153
5154 /* adjust the range_start to make sure it doesn't
5155 * go backwards from the start they passed in
5156 */
5157 range_start = max(start,range_start);
5158 found = found_end - range_start;
5159
5160 if (found > 0) {
5161 u64 hole_start = start;
5162 u64 hole_len = len;
5163
172ddd60 5164 em = alloc_extent_map();
ec29ed5b
CM
5165 if (!em) {
5166 err = -ENOMEM;
5167 goto out;
5168 }
5169 /*
5170 * when btrfs_get_extent can't find anything it
5171 * returns one huge hole
5172 *
5173 * make sure what it found really fits our range, and
5174 * adjust to make sure it is based on the start from
5175 * the caller
5176 */
5177 if (hole_em) {
5178 u64 calc_end = extent_map_end(hole_em);
5179
5180 if (calc_end <= start || (hole_em->start > end)) {
5181 free_extent_map(hole_em);
5182 hole_em = NULL;
5183 } else {
5184 hole_start = max(hole_em->start, start);
5185 hole_len = calc_end - hole_start;
5186 }
5187 }
5188 em->bdev = NULL;
5189 if (hole_em && range_start > hole_start) {
5190 /* our hole starts before our delalloc, so we
5191 * have to return just the parts of the hole
5192 * that go until the delalloc starts
5193 */
5194 em->len = min(hole_len,
5195 range_start - hole_start);
5196 em->start = hole_start;
5197 em->orig_start = hole_start;
5198 /*
5199 * don't adjust block start at all,
5200 * it is fixed at EXTENT_MAP_HOLE
5201 */
5202 em->block_start = hole_em->block_start;
5203 em->block_len = hole_len;
5204 } else {
5205 em->start = range_start;
5206 em->len = found;
5207 em->orig_start = range_start;
5208 em->block_start = EXTENT_MAP_DELALLOC;
5209 em->block_len = found;
5210 }
5211 } else if (hole_em) {
5212 return hole_em;
5213 }
5214out:
5215
5216 free_extent_map(hole_em);
5217 if (err) {
5218 free_extent_map(em);
5219 return ERR_PTR(err);
5220 }
5221 return em;
5222}
5223
4b46fce2 5224static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5225 struct extent_map *em,
4b46fce2
JB
5226 u64 start, u64 len)
5227{
5228 struct btrfs_root *root = BTRFS_I(inode)->root;
5229 struct btrfs_trans_handle *trans;
4b46fce2
JB
5230 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5231 struct btrfs_key ins;
5232 u64 alloc_hint;
5233 int ret;
16d299ac 5234 bool insert = false;
4b46fce2 5235
16d299ac
JB
5236 /*
5237 * Ok if the extent map we looked up is a hole and is for the exact
5238 * range we want, there is no reason to allocate a new one, however if
5239 * it is not right then we need to free this one and drop the cache for
5240 * our range.
5241 */
5242 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5243 em->len != len) {
5244 free_extent_map(em);
5245 em = NULL;
5246 insert = true;
5247 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5248 }
4b46fce2 5249
7a7eaa40 5250 trans = btrfs_join_transaction(root);
3612b495
TI
5251 if (IS_ERR(trans))
5252 return ERR_CAST(trans);
4b46fce2 5253
4cb5300b
CM
5254 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5255 btrfs_add_inode_defrag(trans, inode);
5256
4b46fce2
JB
5257 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5258
5259 alloc_hint = get_extent_allocation_hint(inode, start, len);
5260 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5261 alloc_hint, (u64)-1, &ins, 1);
5262 if (ret) {
5263 em = ERR_PTR(ret);
5264 goto out;
5265 }
5266
4b46fce2 5267 if (!em) {
172ddd60 5268 em = alloc_extent_map();
16d299ac
JB
5269 if (!em) {
5270 em = ERR_PTR(-ENOMEM);
5271 goto out;
5272 }
4b46fce2
JB
5273 }
5274
5275 em->start = start;
5276 em->orig_start = em->start;
5277 em->len = ins.offset;
5278
5279 em->block_start = ins.objectid;
5280 em->block_len = ins.offset;
5281 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5282
5283 /*
5284 * We need to do this because if we're using the original em we searched
5285 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5286 */
5287 em->flags = 0;
4b46fce2
JB
5288 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5289
16d299ac 5290 while (insert) {
4b46fce2
JB
5291 write_lock(&em_tree->lock);
5292 ret = add_extent_mapping(em_tree, em);
5293 write_unlock(&em_tree->lock);
5294 if (ret != -EEXIST)
5295 break;
5296 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5297 }
5298
5299 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5300 ins.offset, ins.offset, 0);
5301 if (ret) {
5302 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5303 em = ERR_PTR(ret);
5304 }
5305out:
5306 btrfs_end_transaction(trans, root);
5307 return em;
5308}
5309
46bfbb5c
CM
5310/*
5311 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5312 * block must be cow'd
5313 */
5314static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5315 struct inode *inode, u64 offset, u64 len)
5316{
5317 struct btrfs_path *path;
5318 int ret;
5319 struct extent_buffer *leaf;
5320 struct btrfs_root *root = BTRFS_I(inode)->root;
5321 struct btrfs_file_extent_item *fi;
5322 struct btrfs_key key;
5323 u64 disk_bytenr;
5324 u64 backref_offset;
5325 u64 extent_end;
5326 u64 num_bytes;
5327 int slot;
5328 int found_type;
5329
5330 path = btrfs_alloc_path();
5331 if (!path)
5332 return -ENOMEM;
5333
33345d01 5334 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5335 offset, 0);
5336 if (ret < 0)
5337 goto out;
5338
5339 slot = path->slots[0];
5340 if (ret == 1) {
5341 if (slot == 0) {
5342 /* can't find the item, must cow */
5343 ret = 0;
5344 goto out;
5345 }
5346 slot--;
5347 }
5348 ret = 0;
5349 leaf = path->nodes[0];
5350 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5351 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5352 key.type != BTRFS_EXTENT_DATA_KEY) {
5353 /* not our file or wrong item type, must cow */
5354 goto out;
5355 }
5356
5357 if (key.offset > offset) {
5358 /* Wrong offset, must cow */
5359 goto out;
5360 }
5361
5362 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5363 found_type = btrfs_file_extent_type(leaf, fi);
5364 if (found_type != BTRFS_FILE_EXTENT_REG &&
5365 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5366 /* not a regular extent, must cow */
5367 goto out;
5368 }
5369 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5370 backref_offset = btrfs_file_extent_offset(leaf, fi);
5371
5372 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5373 if (extent_end < offset + len) {
5374 /* extent doesn't include our full range, must cow */
5375 goto out;
5376 }
5377
5378 if (btrfs_extent_readonly(root, disk_bytenr))
5379 goto out;
5380
5381 /*
5382 * look for other files referencing this extent, if we
5383 * find any we must cow
5384 */
33345d01 5385 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5386 key.offset - backref_offset, disk_bytenr))
5387 goto out;
5388
5389 /*
5390 * adjust disk_bytenr and num_bytes to cover just the bytes
5391 * in this extent we are about to write. If there
5392 * are any csums in that range we have to cow in order
5393 * to keep the csums correct
5394 */
5395 disk_bytenr += backref_offset;
5396 disk_bytenr += offset - key.offset;
5397 num_bytes = min(offset + len, extent_end) - offset;
5398 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5399 goto out;
5400 /*
5401 * all of the above have passed, it is safe to overwrite this extent
5402 * without cow
5403 */
5404 ret = 1;
5405out:
5406 btrfs_free_path(path);
5407 return ret;
5408}
5409
4b46fce2
JB
5410static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5411 struct buffer_head *bh_result, int create)
5412{
5413 struct extent_map *em;
5414 struct btrfs_root *root = BTRFS_I(inode)->root;
5415 u64 start = iblock << inode->i_blkbits;
5416 u64 len = bh_result->b_size;
46bfbb5c 5417 struct btrfs_trans_handle *trans;
4b46fce2
JB
5418
5419 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5420 if (IS_ERR(em))
5421 return PTR_ERR(em);
5422
5423 /*
5424 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5425 * io. INLINE is special, and we could probably kludge it in here, but
5426 * it's still buffered so for safety lets just fall back to the generic
5427 * buffered path.
5428 *
5429 * For COMPRESSED we _have_ to read the entire extent in so we can
5430 * decompress it, so there will be buffering required no matter what we
5431 * do, so go ahead and fallback to buffered.
5432 *
5433 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5434 * to buffered IO. Don't blame me, this is the price we pay for using
5435 * the generic code.
5436 */
5437 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5438 em->block_start == EXTENT_MAP_INLINE) {
5439 free_extent_map(em);
5440 return -ENOTBLK;
5441 }
5442
5443 /* Just a good old fashioned hole, return */
5444 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5445 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5446 free_extent_map(em);
5447 /* DIO will do one hole at a time, so just unlock a sector */
5448 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5449 start + root->sectorsize - 1, GFP_NOFS);
5450 return 0;
5451 }
5452
5453 /*
5454 * We don't allocate a new extent in the following cases
5455 *
5456 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5457 * existing extent.
5458 * 2) The extent is marked as PREALLOC. We're good to go here and can
5459 * just use the extent.
5460 *
5461 */
46bfbb5c
CM
5462 if (!create) {
5463 len = em->len - (start - em->start);
4b46fce2 5464 goto map;
46bfbb5c 5465 }
4b46fce2
JB
5466
5467 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5468 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5469 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5470 int type;
5471 int ret;
46bfbb5c 5472 u64 block_start;
4b46fce2
JB
5473
5474 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5475 type = BTRFS_ORDERED_PREALLOC;
5476 else
5477 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5478 len = min(len, em->len - (start - em->start));
4b46fce2 5479 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5480
5481 /*
5482 * we're not going to log anything, but we do need
5483 * to make sure the current transaction stays open
5484 * while we look for nocow cross refs
5485 */
7a7eaa40 5486 trans = btrfs_join_transaction(root);
3612b495 5487 if (IS_ERR(trans))
46bfbb5c
CM
5488 goto must_cow;
5489
5490 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5491 ret = btrfs_add_ordered_extent_dio(inode, start,
5492 block_start, len, len, type);
5493 btrfs_end_transaction(trans, root);
5494 if (ret) {
5495 free_extent_map(em);
5496 return ret;
5497 }
5498 goto unlock;
4b46fce2 5499 }
46bfbb5c 5500 btrfs_end_transaction(trans, root);
4b46fce2 5501 }
46bfbb5c
CM
5502must_cow:
5503 /*
5504 * this will cow the extent, reset the len in case we changed
5505 * it above
5506 */
5507 len = bh_result->b_size;
16d299ac 5508 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5509 if (IS_ERR(em))
5510 return PTR_ERR(em);
5511 len = min(len, em->len - (start - em->start));
5512unlock:
4845e44f
CM
5513 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5514 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5515 0, NULL, GFP_NOFS);
4b46fce2
JB
5516map:
5517 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5518 inode->i_blkbits;
46bfbb5c 5519 bh_result->b_size = len;
4b46fce2
JB
5520 bh_result->b_bdev = em->bdev;
5521 set_buffer_mapped(bh_result);
5522 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5523 set_buffer_new(bh_result);
5524
5525 free_extent_map(em);
5526
5527 return 0;
5528}
5529
5530struct btrfs_dio_private {
5531 struct inode *inode;
5532 u64 logical_offset;
5533 u64 disk_bytenr;
5534 u64 bytes;
5535 u32 *csums;
5536 void *private;
e65e1535
MX
5537
5538 /* number of bios pending for this dio */
5539 atomic_t pending_bios;
5540
5541 /* IO errors */
5542 int errors;
5543
5544 struct bio *orig_bio;
4b46fce2
JB
5545};
5546
5547static void btrfs_endio_direct_read(struct bio *bio, int err)
5548{
e65e1535 5549 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5550 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5551 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5552 struct inode *inode = dip->inode;
5553 struct btrfs_root *root = BTRFS_I(inode)->root;
5554 u64 start;
5555 u32 *private = dip->csums;
5556
5557 start = dip->logical_offset;
5558 do {
5559 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5560 struct page *page = bvec->bv_page;
5561 char *kaddr;
5562 u32 csum = ~(u32)0;
5563 unsigned long flags;
5564
5565 local_irq_save(flags);
5566 kaddr = kmap_atomic(page, KM_IRQ0);
5567 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5568 csum, bvec->bv_len);
5569 btrfs_csum_final(csum, (char *)&csum);
5570 kunmap_atomic(kaddr, KM_IRQ0);
5571 local_irq_restore(flags);
5572
5573 flush_dcache_page(bvec->bv_page);
5574 if (csum != *private) {
33345d01 5575 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5576 " %llu csum %u private %u\n",
33345d01
LZ
5577 (unsigned long long)btrfs_ino(inode),
5578 (unsigned long long)start,
4b46fce2
JB
5579 csum, *private);
5580 err = -EIO;
5581 }
5582 }
5583
5584 start += bvec->bv_len;
5585 private++;
5586 bvec++;
5587 } while (bvec <= bvec_end);
5588
5589 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5590 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5591 bio->bi_private = dip->private;
5592
5593 kfree(dip->csums);
5594 kfree(dip);
c0da7aa1
JB
5595
5596 /* If we had a csum failure make sure to clear the uptodate flag */
5597 if (err)
5598 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5599 dio_end_io(bio, err);
5600}
5601
5602static void btrfs_endio_direct_write(struct bio *bio, int err)
5603{
5604 struct btrfs_dio_private *dip = bio->bi_private;
5605 struct inode *inode = dip->inode;
5606 struct btrfs_root *root = BTRFS_I(inode)->root;
5607 struct btrfs_trans_handle *trans;
5608 struct btrfs_ordered_extent *ordered = NULL;
5609 struct extent_state *cached_state = NULL;
163cf09c
CM
5610 u64 ordered_offset = dip->logical_offset;
5611 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5612 int ret;
5613
5614 if (err)
5615 goto out_done;
163cf09c
CM
5616again:
5617 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5618 &ordered_offset,
5619 ordered_bytes);
4b46fce2 5620 if (!ret)
163cf09c 5621 goto out_test;
4b46fce2
JB
5622
5623 BUG_ON(!ordered);
5624
7a7eaa40 5625 trans = btrfs_join_transaction(root);
3612b495 5626 if (IS_ERR(trans)) {
4b46fce2
JB
5627 err = -ENOMEM;
5628 goto out;
5629 }
5630 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5631
5632 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5633 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5634 if (!ret)
f0dd9592 5635 err = btrfs_update_inode(trans, root, inode);
4b46fce2
JB
5636 goto out;
5637 }
5638
5639 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5640 ordered->file_offset + ordered->len - 1, 0,
5641 &cached_state, GFP_NOFS);
5642
5643 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5644 ret = btrfs_mark_extent_written(trans, inode,
5645 ordered->file_offset,
5646 ordered->file_offset +
5647 ordered->len);
5648 if (ret) {
5649 err = ret;
5650 goto out_unlock;
5651 }
5652 } else {
5653 ret = insert_reserved_file_extent(trans, inode,
5654 ordered->file_offset,
5655 ordered->start,
5656 ordered->disk_len,
5657 ordered->len,
5658 ordered->len,
5659 0, 0, 0,
5660 BTRFS_FILE_EXTENT_REG);
5661 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5662 ordered->file_offset, ordered->len);
5663 if (ret) {
5664 err = ret;
5665 WARN_ON(1);
5666 goto out_unlock;
5667 }
5668 }
5669
5670 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1 5671 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
a39f7521 5672 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1ef30be1
JB
5673 btrfs_update_inode(trans, root, inode);
5674 ret = 0;
4b46fce2
JB
5675out_unlock:
5676 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5677 ordered->file_offset + ordered->len - 1,
5678 &cached_state, GFP_NOFS);
5679out:
5680 btrfs_delalloc_release_metadata(inode, ordered->len);
5681 btrfs_end_transaction(trans, root);
163cf09c 5682 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5683 btrfs_put_ordered_extent(ordered);
5684 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5685
5686out_test:
5687 /*
5688 * our bio might span multiple ordered extents. If we haven't
5689 * completed the accounting for the whole dio, go back and try again
5690 */
5691 if (ordered_offset < dip->logical_offset + dip->bytes) {
5692 ordered_bytes = dip->logical_offset + dip->bytes -
5693 ordered_offset;
5694 goto again;
5695 }
4b46fce2
JB
5696out_done:
5697 bio->bi_private = dip->private;
5698
5699 kfree(dip->csums);
5700 kfree(dip);
c0da7aa1
JB
5701
5702 /* If we had an error make sure to clear the uptodate flag */
5703 if (err)
5704 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5705 dio_end_io(bio, err);
5706}
5707
eaf25d93
CM
5708static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5709 struct bio *bio, int mirror_num,
5710 unsigned long bio_flags, u64 offset)
5711{
5712 int ret;
5713 struct btrfs_root *root = BTRFS_I(inode)->root;
5714 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5715 BUG_ON(ret);
5716 return 0;
5717}
5718
e65e1535
MX
5719static void btrfs_end_dio_bio(struct bio *bio, int err)
5720{
5721 struct btrfs_dio_private *dip = bio->bi_private;
5722
5723 if (err) {
33345d01 5724 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5725 "sector %#Lx len %u err no %d\n",
33345d01 5726 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5727 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5728 dip->errors = 1;
5729
5730 /*
5731 * before atomic variable goto zero, we must make sure
5732 * dip->errors is perceived to be set.
5733 */
5734 smp_mb__before_atomic_dec();
5735 }
5736
5737 /* if there are more bios still pending for this dio, just exit */
5738 if (!atomic_dec_and_test(&dip->pending_bios))
5739 goto out;
5740
5741 if (dip->errors)
5742 bio_io_error(dip->orig_bio);
5743 else {
5744 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5745 bio_endio(dip->orig_bio, 0);
5746 }
5747out:
5748 bio_put(bio);
5749}
5750
5751static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5752 u64 first_sector, gfp_t gfp_flags)
5753{
5754 int nr_vecs = bio_get_nr_vecs(bdev);
5755 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5756}
5757
5758static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5759 int rw, u64 file_offset, int skip_sum,
1ae39938 5760 u32 *csums, int async_submit)
e65e1535
MX
5761{
5762 int write = rw & REQ_WRITE;
5763 struct btrfs_root *root = BTRFS_I(inode)->root;
5764 int ret;
5765
5766 bio_get(bio);
5767 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5768 if (ret)
5769 goto err;
5770
1ae39938
JB
5771 if (skip_sum)
5772 goto map;
5773
5774 if (write && async_submit) {
e65e1535
MX
5775 ret = btrfs_wq_submit_bio(root->fs_info,
5776 inode, rw, bio, 0, 0,
5777 file_offset,
5778 __btrfs_submit_bio_start_direct_io,
5779 __btrfs_submit_bio_done);
5780 goto err;
1ae39938
JB
5781 } else if (write) {
5782 /*
5783 * If we aren't doing async submit, calculate the csum of the
5784 * bio now.
5785 */
5786 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5787 if (ret)
5788 goto err;
c2db1073
TI
5789 } else if (!skip_sum) {
5790 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5791 file_offset, csums);
c2db1073
TI
5792 if (ret)
5793 goto err;
5794 }
e65e1535 5795
1ae39938
JB
5796map:
5797 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5798err:
5799 bio_put(bio);
5800 return ret;
5801}
5802
5803static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5804 int skip_sum)
5805{
5806 struct inode *inode = dip->inode;
5807 struct btrfs_root *root = BTRFS_I(inode)->root;
5808 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5809 struct bio *bio;
5810 struct bio *orig_bio = dip->orig_bio;
5811 struct bio_vec *bvec = orig_bio->bi_io_vec;
5812 u64 start_sector = orig_bio->bi_sector;
5813 u64 file_offset = dip->logical_offset;
5814 u64 submit_len = 0;
5815 u64 map_length;
5816 int nr_pages = 0;
5817 u32 *csums = dip->csums;
5818 int ret = 0;
1ae39938 5819 int async_submit = 0;
98bc3149 5820 int write = rw & REQ_WRITE;
e65e1535 5821
e65e1535
MX
5822 map_length = orig_bio->bi_size;
5823 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5824 &map_length, NULL, 0);
5825 if (ret) {
64728bbb 5826 bio_put(orig_bio);
e65e1535
MX
5827 return -EIO;
5828 }
5829
02f57c7a
JB
5830 if (map_length >= orig_bio->bi_size) {
5831 bio = orig_bio;
5832 goto submit;
5833 }
5834
1ae39938 5835 async_submit = 1;
02f57c7a
JB
5836 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5837 if (!bio)
5838 return -ENOMEM;
5839 bio->bi_private = dip;
5840 bio->bi_end_io = btrfs_end_dio_bio;
5841 atomic_inc(&dip->pending_bios);
5842
e65e1535
MX
5843 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5844 if (unlikely(map_length < submit_len + bvec->bv_len ||
5845 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5846 bvec->bv_offset) < bvec->bv_len)) {
5847 /*
5848 * inc the count before we submit the bio so
5849 * we know the end IO handler won't happen before
5850 * we inc the count. Otherwise, the dip might get freed
5851 * before we're done setting it up
5852 */
5853 atomic_inc(&dip->pending_bios);
5854 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5855 file_offset, skip_sum,
1ae39938 5856 csums, async_submit);
e65e1535
MX
5857 if (ret) {
5858 bio_put(bio);
5859 atomic_dec(&dip->pending_bios);
5860 goto out_err;
5861 }
5862
98bc3149
JB
5863 /* Write's use the ordered csums */
5864 if (!write && !skip_sum)
e65e1535
MX
5865 csums = csums + nr_pages;
5866 start_sector += submit_len >> 9;
5867 file_offset += submit_len;
5868
5869 submit_len = 0;
5870 nr_pages = 0;
5871
5872 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5873 start_sector, GFP_NOFS);
5874 if (!bio)
5875 goto out_err;
5876 bio->bi_private = dip;
5877 bio->bi_end_io = btrfs_end_dio_bio;
5878
5879 map_length = orig_bio->bi_size;
5880 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5881 &map_length, NULL, 0);
5882 if (ret) {
5883 bio_put(bio);
5884 goto out_err;
5885 }
5886 } else {
5887 submit_len += bvec->bv_len;
5888 nr_pages ++;
5889 bvec++;
5890 }
5891 }
5892
02f57c7a 5893submit:
e65e1535 5894 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 5895 csums, async_submit);
e65e1535
MX
5896 if (!ret)
5897 return 0;
5898
5899 bio_put(bio);
5900out_err:
5901 dip->errors = 1;
5902 /*
5903 * before atomic variable goto zero, we must
5904 * make sure dip->errors is perceived to be set.
5905 */
5906 smp_mb__before_atomic_dec();
5907 if (atomic_dec_and_test(&dip->pending_bios))
5908 bio_io_error(dip->orig_bio);
5909
5910 /* bio_end_io() will handle error, so we needn't return it */
5911 return 0;
5912}
5913
4b46fce2
JB
5914static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5915 loff_t file_offset)
5916{
5917 struct btrfs_root *root = BTRFS_I(inode)->root;
5918 struct btrfs_dio_private *dip;
5919 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 5920 int skip_sum;
7b6d91da 5921 int write = rw & REQ_WRITE;
4b46fce2
JB
5922 int ret = 0;
5923
5924 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5925
5926 dip = kmalloc(sizeof(*dip), GFP_NOFS);
5927 if (!dip) {
5928 ret = -ENOMEM;
5929 goto free_ordered;
5930 }
5931 dip->csums = NULL;
5932
98bc3149
JB
5933 /* Write's use the ordered csum stuff, so we don't need dip->csums */
5934 if (!write && !skip_sum) {
4b46fce2
JB
5935 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5936 if (!dip->csums) {
b4966b77 5937 kfree(dip);
4b46fce2
JB
5938 ret = -ENOMEM;
5939 goto free_ordered;
5940 }
5941 }
5942
5943 dip->private = bio->bi_private;
5944 dip->inode = inode;
5945 dip->logical_offset = file_offset;
5946
4b46fce2
JB
5947 dip->bytes = 0;
5948 do {
5949 dip->bytes += bvec->bv_len;
5950 bvec++;
5951 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5952
46bfbb5c 5953 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 5954 bio->bi_private = dip;
e65e1535
MX
5955 dip->errors = 0;
5956 dip->orig_bio = bio;
5957 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
5958
5959 if (write)
5960 bio->bi_end_io = btrfs_endio_direct_write;
5961 else
5962 bio->bi_end_io = btrfs_endio_direct_read;
5963
e65e1535
MX
5964 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5965 if (!ret)
eaf25d93 5966 return;
4b46fce2
JB
5967free_ordered:
5968 /*
5969 * If this is a write, we need to clean up the reserved space and kill
5970 * the ordered extent.
5971 */
5972 if (write) {
5973 struct btrfs_ordered_extent *ordered;
955256f2 5974 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
5975 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5976 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5977 btrfs_free_reserved_extent(root, ordered->start,
5978 ordered->disk_len);
5979 btrfs_put_ordered_extent(ordered);
5980 btrfs_put_ordered_extent(ordered);
5981 }
5982 bio_endio(bio, ret);
5983}
5984
5a5f79b5
CM
5985static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5986 const struct iovec *iov, loff_t offset,
5987 unsigned long nr_segs)
5988{
5989 int seg;
a1b75f7d 5990 int i;
5a5f79b5
CM
5991 size_t size;
5992 unsigned long addr;
5993 unsigned blocksize_mask = root->sectorsize - 1;
5994 ssize_t retval = -EINVAL;
5995 loff_t end = offset;
5996
5997 if (offset & blocksize_mask)
5998 goto out;
5999
6000 /* Check the memory alignment. Blocks cannot straddle pages */
6001 for (seg = 0; seg < nr_segs; seg++) {
6002 addr = (unsigned long)iov[seg].iov_base;
6003 size = iov[seg].iov_len;
6004 end += size;
a1b75f7d 6005 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6006 goto out;
a1b75f7d
JB
6007
6008 /* If this is a write we don't need to check anymore */
6009 if (rw & WRITE)
6010 continue;
6011
6012 /*
6013 * Check to make sure we don't have duplicate iov_base's in this
6014 * iovec, if so return EINVAL, otherwise we'll get csum errors
6015 * when reading back.
6016 */
6017 for (i = seg + 1; i < nr_segs; i++) {
6018 if (iov[seg].iov_base == iov[i].iov_base)
6019 goto out;
6020 }
5a5f79b5
CM
6021 }
6022 retval = 0;
6023out:
6024 return retval;
6025}
16432985
CM
6026static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6027 const struct iovec *iov, loff_t offset,
6028 unsigned long nr_segs)
6029{
4b46fce2
JB
6030 struct file *file = iocb->ki_filp;
6031 struct inode *inode = file->f_mapping->host;
6032 struct btrfs_ordered_extent *ordered;
4845e44f 6033 struct extent_state *cached_state = NULL;
4b46fce2
JB
6034 u64 lockstart, lockend;
6035 ssize_t ret;
4845e44f
CM
6036 int writing = rw & WRITE;
6037 int write_bits = 0;
3f7c579c 6038 size_t count = iov_length(iov, nr_segs);
4b46fce2 6039
5a5f79b5
CM
6040 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6041 offset, nr_segs)) {
6042 return 0;
6043 }
6044
4b46fce2 6045 lockstart = offset;
3f7c579c
CM
6046 lockend = offset + count - 1;
6047
6048 if (writing) {
6049 ret = btrfs_delalloc_reserve_space(inode, count);
6050 if (ret)
6051 goto out;
6052 }
4845e44f 6053
4b46fce2 6054 while (1) {
4845e44f
CM
6055 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6056 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6057 /*
6058 * We're concerned with the entire range that we're going to be
6059 * doing DIO to, so we need to make sure theres no ordered
6060 * extents in this range.
6061 */
6062 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6063 lockend - lockstart + 1);
6064 if (!ordered)
6065 break;
4845e44f
CM
6066 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6067 &cached_state, GFP_NOFS);
4b46fce2
JB
6068 btrfs_start_ordered_extent(inode, ordered, 1);
6069 btrfs_put_ordered_extent(ordered);
6070 cond_resched();
6071 }
6072
4845e44f
CM
6073 /*
6074 * we don't use btrfs_set_extent_delalloc because we don't want
6075 * the dirty or uptodate bits
6076 */
6077 if (writing) {
6078 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6079 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6080 EXTENT_DELALLOC, 0, NULL, &cached_state,
6081 GFP_NOFS);
6082 if (ret) {
6083 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6084 lockend, EXTENT_LOCKED | write_bits,
6085 1, 0, &cached_state, GFP_NOFS);
6086 goto out;
6087 }
6088 }
6089
6090 free_extent_state(cached_state);
6091 cached_state = NULL;
6092
5a5f79b5
CM
6093 ret = __blockdev_direct_IO(rw, iocb, inode,
6094 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6095 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6096 btrfs_submit_direct, 0);
4b46fce2
JB
6097
6098 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6099 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6100 offset + iov_length(iov, nr_segs) - 1,
6101 EXTENT_LOCKED | write_bits, 1, 0,
6102 &cached_state, GFP_NOFS);
4b46fce2
JB
6103 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6104 /*
6105 * We're falling back to buffered, unlock the section we didn't
6106 * do IO on.
6107 */
4845e44f
CM
6108 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6109 offset + iov_length(iov, nr_segs) - 1,
6110 EXTENT_LOCKED | write_bits, 1, 0,
6111 &cached_state, GFP_NOFS);
4b46fce2 6112 }
4845e44f
CM
6113out:
6114 free_extent_state(cached_state);
4b46fce2 6115 return ret;
16432985
CM
6116}
6117
1506fcc8
YS
6118static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6119 __u64 start, __u64 len)
6120{
ec29ed5b 6121 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6122}
6123
a52d9a80 6124int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6125{
d1310b2e
CM
6126 struct extent_io_tree *tree;
6127 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6128 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6129}
1832a6d5 6130
a52d9a80 6131static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6132{
d1310b2e 6133 struct extent_io_tree *tree;
b888db2b
CM
6134
6135
6136 if (current->flags & PF_MEMALLOC) {
6137 redirty_page_for_writepage(wbc, page);
6138 unlock_page(page);
6139 return 0;
6140 }
d1310b2e 6141 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6142 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6143}
6144
f421950f
CM
6145int btrfs_writepages(struct address_space *mapping,
6146 struct writeback_control *wbc)
b293f02e 6147{
d1310b2e 6148 struct extent_io_tree *tree;
771ed689 6149
d1310b2e 6150 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6151 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6152}
6153
3ab2fb5a
CM
6154static int
6155btrfs_readpages(struct file *file, struct address_space *mapping,
6156 struct list_head *pages, unsigned nr_pages)
6157{
d1310b2e
CM
6158 struct extent_io_tree *tree;
6159 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6160 return extent_readpages(tree, mapping, pages, nr_pages,
6161 btrfs_get_extent);
6162}
e6dcd2dc 6163static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6164{
d1310b2e
CM
6165 struct extent_io_tree *tree;
6166 struct extent_map_tree *map;
a52d9a80 6167 int ret;
8c2383c3 6168
d1310b2e
CM
6169 tree = &BTRFS_I(page->mapping->host)->io_tree;
6170 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6171 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6172 if (ret == 1) {
6173 ClearPagePrivate(page);
6174 set_page_private(page, 0);
6175 page_cache_release(page);
39279cc3 6176 }
a52d9a80 6177 return ret;
39279cc3
CM
6178}
6179
e6dcd2dc
CM
6180static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6181{
98509cfc
CM
6182 if (PageWriteback(page) || PageDirty(page))
6183 return 0;
b335b003 6184 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6185}
6186
a52d9a80 6187static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6188{
d1310b2e 6189 struct extent_io_tree *tree;
e6dcd2dc 6190 struct btrfs_ordered_extent *ordered;
2ac55d41 6191 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6192 u64 page_start = page_offset(page);
6193 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6194
8b62b72b
CM
6195
6196 /*
6197 * we have the page locked, so new writeback can't start,
6198 * and the dirty bit won't be cleared while we are here.
6199 *
6200 * Wait for IO on this page so that we can safely clear
6201 * the PagePrivate2 bit and do ordered accounting
6202 */
e6dcd2dc 6203 wait_on_page_writeback(page);
8b62b72b 6204
d1310b2e 6205 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6206 if (offset) {
6207 btrfs_releasepage(page, GFP_NOFS);
6208 return;
6209 }
2ac55d41
JB
6210 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6211 GFP_NOFS);
e6dcd2dc
CM
6212 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6213 page_offset(page));
6214 if (ordered) {
eb84ae03
CM
6215 /*
6216 * IO on this page will never be started, so we need
6217 * to account for any ordered extents now
6218 */
e6dcd2dc
CM
6219 clear_extent_bit(tree, page_start, page_end,
6220 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6221 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6222 &cached_state, GFP_NOFS);
8b62b72b
CM
6223 /*
6224 * whoever cleared the private bit is responsible
6225 * for the finish_ordered_io
6226 */
6227 if (TestClearPagePrivate2(page)) {
6228 btrfs_finish_ordered_io(page->mapping->host,
6229 page_start, page_end);
6230 }
e6dcd2dc 6231 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6232 cached_state = NULL;
6233 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6234 GFP_NOFS);
e6dcd2dc
CM
6235 }
6236 clear_extent_bit(tree, page_start, page_end,
32c00aff 6237 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6238 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6239 __btrfs_releasepage(page, GFP_NOFS);
6240
4a096752 6241 ClearPageChecked(page);
9ad6b7bc 6242 if (PagePrivate(page)) {
9ad6b7bc
CM
6243 ClearPagePrivate(page);
6244 set_page_private(page, 0);
6245 page_cache_release(page);
6246 }
39279cc3
CM
6247}
6248
9ebefb18
CM
6249/*
6250 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6251 * called from a page fault handler when a page is first dirtied. Hence we must
6252 * be careful to check for EOF conditions here. We set the page up correctly
6253 * for a written page which means we get ENOSPC checking when writing into
6254 * holes and correct delalloc and unwritten extent mapping on filesystems that
6255 * support these features.
6256 *
6257 * We are not allowed to take the i_mutex here so we have to play games to
6258 * protect against truncate races as the page could now be beyond EOF. Because
6259 * vmtruncate() writes the inode size before removing pages, once we have the
6260 * page lock we can determine safely if the page is beyond EOF. If it is not
6261 * beyond EOF, then the page is guaranteed safe against truncation until we
6262 * unlock the page.
6263 */
c2ec175c 6264int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6265{
c2ec175c 6266 struct page *page = vmf->page;
6da6abae 6267 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6268 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6269 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6270 struct btrfs_ordered_extent *ordered;
2ac55d41 6271 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6272 char *kaddr;
6273 unsigned long zero_start;
9ebefb18 6274 loff_t size;
1832a6d5 6275 int ret;
a52d9a80 6276 u64 page_start;
e6dcd2dc 6277 u64 page_end;
9ebefb18 6278
0ca1f7ce 6279 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6280 if (ret) {
6281 if (ret == -ENOMEM)
6282 ret = VM_FAULT_OOM;
6283 else /* -ENOSPC, -EIO, etc */
6284 ret = VM_FAULT_SIGBUS;
1832a6d5 6285 goto out;
56a76f82 6286 }
1832a6d5 6287
56a76f82 6288 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6289again:
9ebefb18 6290 lock_page(page);
9ebefb18 6291 size = i_size_read(inode);
e6dcd2dc
CM
6292 page_start = page_offset(page);
6293 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6294
9ebefb18 6295 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6296 (page_start >= size)) {
9ebefb18
CM
6297 /* page got truncated out from underneath us */
6298 goto out_unlock;
6299 }
e6dcd2dc
CM
6300 wait_on_page_writeback(page);
6301
2ac55d41
JB
6302 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6303 GFP_NOFS);
e6dcd2dc
CM
6304 set_page_extent_mapped(page);
6305
eb84ae03
CM
6306 /*
6307 * we can't set the delalloc bits if there are pending ordered
6308 * extents. Drop our locks and wait for them to finish
6309 */
e6dcd2dc
CM
6310 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6311 if (ordered) {
2ac55d41
JB
6312 unlock_extent_cached(io_tree, page_start, page_end,
6313 &cached_state, GFP_NOFS);
e6dcd2dc 6314 unlock_page(page);
eb84ae03 6315 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6316 btrfs_put_ordered_extent(ordered);
6317 goto again;
6318 }
6319
fbf19087
JB
6320 /*
6321 * XXX - page_mkwrite gets called every time the page is dirtied, even
6322 * if it was already dirty, so for space accounting reasons we need to
6323 * clear any delalloc bits for the range we are fixing to save. There
6324 * is probably a better way to do this, but for now keep consistent with
6325 * prepare_pages in the normal write path.
6326 */
2ac55d41 6327 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6328 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6329 0, 0, &cached_state, GFP_NOFS);
fbf19087 6330
2ac55d41
JB
6331 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6332 &cached_state);
9ed74f2d 6333 if (ret) {
2ac55d41
JB
6334 unlock_extent_cached(io_tree, page_start, page_end,
6335 &cached_state, GFP_NOFS);
9ed74f2d
JB
6336 ret = VM_FAULT_SIGBUS;
6337 goto out_unlock;
6338 }
e6dcd2dc 6339 ret = 0;
9ebefb18
CM
6340
6341 /* page is wholly or partially inside EOF */
a52d9a80 6342 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6343 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6344 else
e6dcd2dc 6345 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6346
e6dcd2dc
CM
6347 if (zero_start != PAGE_CACHE_SIZE) {
6348 kaddr = kmap(page);
6349 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6350 flush_dcache_page(page);
6351 kunmap(page);
6352 }
247e743c 6353 ClearPageChecked(page);
e6dcd2dc 6354 set_page_dirty(page);
50a9b214 6355 SetPageUptodate(page);
5a3f23d5 6356
257c62e1
CM
6357 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6358 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6359
2ac55d41 6360 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6361
6362out_unlock:
50a9b214
CM
6363 if (!ret)
6364 return VM_FAULT_LOCKED;
9ebefb18 6365 unlock_page(page);
0ca1f7ce 6366 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6367out:
9ebefb18
CM
6368 return ret;
6369}
6370
a41ad394 6371static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6372{
6373 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6374 struct btrfs_block_rsv *rsv;
39279cc3 6375 int ret;
3893e33b 6376 int err = 0;
39279cc3 6377 struct btrfs_trans_handle *trans;
d3c2fdcf 6378 unsigned long nr;
dbe674a9 6379 u64 mask = root->sectorsize - 1;
07127184 6380 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6381
5d5e103a
JB
6382 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6383 if (ret)
a41ad394 6384 return ret;
8082510e 6385
4a096752 6386 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6387 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6388
fcb80c2a
JB
6389 /*
6390 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6391 * 3 things going on here
6392 *
6393 * 1) We need to reserve space for our orphan item and the space to
6394 * delete our orphan item. Lord knows we don't want to have a dangling
6395 * orphan item because we didn't reserve space to remove it.
6396 *
6397 * 2) We need to reserve space to update our inode.
6398 *
6399 * 3) We need to have something to cache all the space that is going to
6400 * be free'd up by the truncate operation, but also have some slack
6401 * space reserved in case it uses space during the truncate (thank you
6402 * very much snapshotting).
6403 *
6404 * And we need these to all be seperate. The fact is we can use alot of
6405 * space doing the truncate, and we have no earthly idea how much space
6406 * we will use, so we need the truncate reservation to be seperate so it
6407 * doesn't end up using space reserved for updating the inode or
6408 * removing the orphan item. We also need to be able to stop the
6409 * transaction and start a new one, which means we need to be able to
6410 * update the inode several times, and we have no idea of knowing how
6411 * many times that will be, so we can't just reserve 1 item for the
6412 * entirety of the opration, so that has to be done seperately as well.
6413 * Then there is the orphan item, which does indeed need to be held on
6414 * to for the whole operation, and we need nobody to touch this reserved
6415 * space except the orphan code.
6416 *
6417 * So that leaves us with
6418 *
6419 * 1) root->orphan_block_rsv - for the orphan deletion.
6420 * 2) rsv - for the truncate reservation, which we will steal from the
6421 * transaction reservation.
6422 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6423 * updating the inode.
6424 */
6425 rsv = btrfs_alloc_block_rsv(root);
6426 if (!rsv)
6427 return -ENOMEM;
4a338542 6428 rsv->size = min_size;
f0cd846e 6429
907cbceb 6430 /*
07127184 6431 * 1 for the truncate slack space
907cbceb
JB
6432 * 1 for the orphan item we're going to add
6433 * 1 for the orphan item deletion
6434 * 1 for updating the inode.
6435 */
07127184 6436 trans = btrfs_start_transaction(root, 4);
fcb80c2a
JB
6437 if (IS_ERR(trans)) {
6438 err = PTR_ERR(trans);
6439 goto out;
6440 }
f0cd846e 6441
907cbceb
JB
6442 /* Migrate the slack space for the truncate to our reserve */
6443 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6444 min_size);
fcb80c2a 6445 BUG_ON(ret);
f0cd846e
JB
6446
6447 ret = btrfs_orphan_add(trans, inode);
6448 if (ret) {
6449 btrfs_end_transaction(trans, root);
fcb80c2a 6450 goto out;
f0cd846e
JB
6451 }
6452
5a3f23d5
CM
6453 /*
6454 * setattr is responsible for setting the ordered_data_close flag,
6455 * but that is only tested during the last file release. That
6456 * could happen well after the next commit, leaving a great big
6457 * window where new writes may get lost if someone chooses to write
6458 * to this file after truncating to zero
6459 *
6460 * The inode doesn't have any dirty data here, and so if we commit
6461 * this is a noop. If someone immediately starts writing to the inode
6462 * it is very likely we'll catch some of their writes in this
6463 * transaction, and the commit will find this file on the ordered
6464 * data list with good things to send down.
6465 *
6466 * This is a best effort solution, there is still a window where
6467 * using truncate to replace the contents of the file will
6468 * end up with a zero length file after a crash.
6469 */
6470 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6471 btrfs_add_ordered_operation(trans, root, inode);
6472
8082510e 6473 while (1) {
36ba022a 6474 ret = btrfs_block_rsv_refill(root, rsv, min_size);
907cbceb
JB
6475 if (ret) {
6476 /*
6477 * This can only happen with the original transaction we
6478 * started above, every other time we shouldn't have a
6479 * transaction started yet.
6480 */
6481 if (ret == -EAGAIN)
6482 goto end_trans;
6483 err = ret;
6484 break;
6485 }
6486
d68fc57b 6487 if (!trans) {
907cbceb
JB
6488 /* Just need the 1 for updating the inode */
6489 trans = btrfs_start_transaction(root, 1);
fcb80c2a
JB
6490 if (IS_ERR(trans)) {
6491 err = PTR_ERR(trans);
6492 goto out;
6493 }
d68fc57b
YZ
6494 }
6495
907cbceb
JB
6496 trans->block_rsv = rsv;
6497
8082510e
YZ
6498 ret = btrfs_truncate_inode_items(trans, root, inode,
6499 inode->i_size,
6500 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6501 if (ret != -EAGAIN) {
6502 err = ret;
8082510e 6503 break;
3893e33b 6504 }
39279cc3 6505
fcb80c2a 6506 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6507 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6508 if (ret) {
6509 err = ret;
6510 break;
6511 }
907cbceb 6512end_trans:
8082510e
YZ
6513 nr = trans->blocks_used;
6514 btrfs_end_transaction(trans, root);
d68fc57b 6515 trans = NULL;
8082510e 6516 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6517 }
6518
6519 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6520 trans->block_rsv = root->orphan_block_rsv;
8082510e 6521 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6522 if (ret)
6523 err = ret;
ded5db9d
JB
6524 } else if (ret && inode->i_nlink > 0) {
6525 /*
6526 * Failed to do the truncate, remove us from the in memory
6527 * orphan list.
6528 */
6529 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6530 }
6531
fcb80c2a 6532 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6533 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6534 if (ret && !err)
6535 err = ret;
7b128766 6536
7b128766 6537 nr = trans->blocks_used;
89ce8a63 6538 ret = btrfs_end_transaction_throttle(trans, root);
fcb80c2a
JB
6539 btrfs_btree_balance_dirty(root, nr);
6540
6541out:
6542 btrfs_free_block_rsv(root, rsv);
6543
3893e33b
JB
6544 if (ret && !err)
6545 err = ret;
a41ad394 6546
3893e33b 6547 return err;
39279cc3
CM
6548}
6549
d352ac68
CM
6550/*
6551 * create a new subvolume directory/inode (helper for the ioctl).
6552 */
d2fb3437 6553int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6554 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6555{
39279cc3 6556 struct inode *inode;
76dda93c 6557 int err;
00e4e6b3 6558 u64 index = 0;
39279cc3 6559
aec7477b 6560 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d82a6f1d 6561 new_dirid, S_IFDIR | 0700, &index);
54aa1f4d 6562 if (IS_ERR(inode))
f46b5a66 6563 return PTR_ERR(inode);
39279cc3
CM
6564 inode->i_op = &btrfs_dir_inode_operations;
6565 inode->i_fop = &btrfs_dir_file_operations;
6566
39279cc3 6567 inode->i_nlink = 1;
dbe674a9 6568 btrfs_i_size_write(inode, 0);
3b96362c 6569
76dda93c
YZ
6570 err = btrfs_update_inode(trans, new_root, inode);
6571 BUG_ON(err);
cb8e7090 6572
76dda93c 6573 iput(inode);
cb8e7090 6574 return 0;
39279cc3
CM
6575}
6576
39279cc3
CM
6577struct inode *btrfs_alloc_inode(struct super_block *sb)
6578{
6579 struct btrfs_inode *ei;
2ead6ae7 6580 struct inode *inode;
39279cc3
CM
6581
6582 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6583 if (!ei)
6584 return NULL;
2ead6ae7
YZ
6585
6586 ei->root = NULL;
6587 ei->space_info = NULL;
6588 ei->generation = 0;
6589 ei->sequence = 0;
15ee9bc7 6590 ei->last_trans = 0;
257c62e1 6591 ei->last_sub_trans = 0;
e02119d5 6592 ei->logged_trans = 0;
2ead6ae7 6593 ei->delalloc_bytes = 0;
2ead6ae7
YZ
6594 ei->disk_i_size = 0;
6595 ei->flags = 0;
7709cde3 6596 ei->csum_bytes = 0;
2ead6ae7
YZ
6597 ei->index_cnt = (u64)-1;
6598 ei->last_unlink_trans = 0;
6599
9e0baf60
JB
6600 spin_lock_init(&ei->lock);
6601 ei->outstanding_extents = 0;
6602 ei->reserved_extents = 0;
2ead6ae7
YZ
6603
6604 ei->ordered_data_close = 0;
d68fc57b 6605 ei->orphan_meta_reserved = 0;
2ead6ae7 6606 ei->dummy_inode = 0;
4cb5300b 6607 ei->in_defrag = 0;
261507a0 6608 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6609
16cdcec7
MX
6610 ei->delayed_node = NULL;
6611
2ead6ae7 6612 inode = &ei->vfs_inode;
a8067e02 6613 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6614 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6615 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6616 mutex_init(&ei->log_mutex);
e6dcd2dc 6617 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6618 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6619 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6620 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6621 RB_CLEAR_NODE(&ei->rb_node);
6622
6623 return inode;
39279cc3
CM
6624}
6625
fa0d7e3d
NP
6626static void btrfs_i_callback(struct rcu_head *head)
6627{
6628 struct inode *inode = container_of(head, struct inode, i_rcu);
6629 INIT_LIST_HEAD(&inode->i_dentry);
6630 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6631}
6632
39279cc3
CM
6633void btrfs_destroy_inode(struct inode *inode)
6634{
e6dcd2dc 6635 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6636 struct btrfs_root *root = BTRFS_I(inode)->root;
6637
39279cc3
CM
6638 WARN_ON(!list_empty(&inode->i_dentry));
6639 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6640 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6641 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
6642 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6643 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 6644
a6dbd429
JB
6645 /*
6646 * This can happen where we create an inode, but somebody else also
6647 * created the same inode and we need to destroy the one we already
6648 * created.
6649 */
6650 if (!root)
6651 goto free;
6652
5a3f23d5
CM
6653 /*
6654 * Make sure we're properly removed from the ordered operation
6655 * lists.
6656 */
6657 smp_mb();
6658 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6659 spin_lock(&root->fs_info->ordered_extent_lock);
6660 list_del_init(&BTRFS_I(inode)->ordered_operations);
6661 spin_unlock(&root->fs_info->ordered_extent_lock);
6662 }
6663
d68fc57b 6664 spin_lock(&root->orphan_lock);
7b128766 6665 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6666 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6667 (unsigned long long)btrfs_ino(inode));
8082510e 6668 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6669 }
d68fc57b 6670 spin_unlock(&root->orphan_lock);
7b128766 6671
d397712b 6672 while (1) {
e6dcd2dc
CM
6673 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6674 if (!ordered)
6675 break;
6676 else {
d397712b
CM
6677 printk(KERN_ERR "btrfs found ordered "
6678 "extent %llu %llu on inode cleanup\n",
6679 (unsigned long long)ordered->file_offset,
6680 (unsigned long long)ordered->len);
e6dcd2dc
CM
6681 btrfs_remove_ordered_extent(inode, ordered);
6682 btrfs_put_ordered_extent(ordered);
6683 btrfs_put_ordered_extent(ordered);
6684 }
6685 }
5d4f98a2 6686 inode_tree_del(inode);
5b21f2ed 6687 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6688free:
16cdcec7 6689 btrfs_remove_delayed_node(inode);
fa0d7e3d 6690 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6691}
6692
45321ac5 6693int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6694{
6695 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6696
0af3d00b 6697 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 6698 !btrfs_is_free_space_inode(root, inode))
45321ac5 6699 return 1;
76dda93c 6700 else
45321ac5 6701 return generic_drop_inode(inode);
76dda93c
YZ
6702}
6703
0ee0fda0 6704static void init_once(void *foo)
39279cc3
CM
6705{
6706 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6707
6708 inode_init_once(&ei->vfs_inode);
6709}
6710
6711void btrfs_destroy_cachep(void)
6712{
6713 if (btrfs_inode_cachep)
6714 kmem_cache_destroy(btrfs_inode_cachep);
6715 if (btrfs_trans_handle_cachep)
6716 kmem_cache_destroy(btrfs_trans_handle_cachep);
6717 if (btrfs_transaction_cachep)
6718 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6719 if (btrfs_path_cachep)
6720 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6721 if (btrfs_free_space_cachep)
6722 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6723}
6724
6725int btrfs_init_cachep(void)
6726{
9601e3f6
CH
6727 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6728 sizeof(struct btrfs_inode), 0,
6729 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6730 if (!btrfs_inode_cachep)
6731 goto fail;
9601e3f6
CH
6732
6733 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6734 sizeof(struct btrfs_trans_handle), 0,
6735 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6736 if (!btrfs_trans_handle_cachep)
6737 goto fail;
9601e3f6
CH
6738
6739 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6740 sizeof(struct btrfs_transaction), 0,
6741 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6742 if (!btrfs_transaction_cachep)
6743 goto fail;
9601e3f6
CH
6744
6745 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6746 sizeof(struct btrfs_path), 0,
6747 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6748 if (!btrfs_path_cachep)
6749 goto fail;
9601e3f6 6750
dc89e982
JB
6751 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6752 sizeof(struct btrfs_free_space), 0,
6753 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6754 if (!btrfs_free_space_cachep)
6755 goto fail;
6756
39279cc3
CM
6757 return 0;
6758fail:
6759 btrfs_destroy_cachep();
6760 return -ENOMEM;
6761}
6762
6763static int btrfs_getattr(struct vfsmount *mnt,
6764 struct dentry *dentry, struct kstat *stat)
6765{
6766 struct inode *inode = dentry->d_inode;
6767 generic_fillattr(inode, stat);
0ee5dc67 6768 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 6769 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6770 stat->blocks = (inode_get_bytes(inode) +
6771 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6772 return 0;
6773}
6774
75e7cb7f
LB
6775/*
6776 * If a file is moved, it will inherit the cow and compression flags of the new
6777 * directory.
6778 */
6779static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6780{
6781 struct btrfs_inode *b_dir = BTRFS_I(dir);
6782 struct btrfs_inode *b_inode = BTRFS_I(inode);
6783
6784 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6785 b_inode->flags |= BTRFS_INODE_NODATACOW;
6786 else
6787 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6788
6789 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6790 b_inode->flags |= BTRFS_INODE_COMPRESS;
6791 else
6792 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6793}
6794
d397712b
CM
6795static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6796 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6797{
6798 struct btrfs_trans_handle *trans;
6799 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6800 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6801 struct inode *new_inode = new_dentry->d_inode;
6802 struct inode *old_inode = old_dentry->d_inode;
6803 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6804 u64 index = 0;
4df27c4d 6805 u64 root_objectid;
39279cc3 6806 int ret;
33345d01 6807 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6808
33345d01 6809 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6810 return -EPERM;
6811
4df27c4d 6812 /* we only allow rename subvolume link between subvolumes */
33345d01 6813 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6814 return -EXDEV;
6815
33345d01
LZ
6816 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6817 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6818 return -ENOTEMPTY;
5f39d397 6819
4df27c4d
YZ
6820 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6821 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6822 return -ENOTEMPTY;
5a3f23d5
CM
6823 /*
6824 * we're using rename to replace one file with another.
6825 * and the replacement file is large. Start IO on it now so
6826 * we don't add too much work to the end of the transaction
6827 */
4baf8c92 6828 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6829 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6830 filemap_flush(old_inode->i_mapping);
6831
76dda93c 6832 /* close the racy window with snapshot create/destroy ioctl */
33345d01 6833 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6834 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6835 /*
6836 * We want to reserve the absolute worst case amount of items. So if
6837 * both inodes are subvols and we need to unlink them then that would
6838 * require 4 item modifications, but if they are both normal inodes it
6839 * would require 5 item modifications, so we'll assume their normal
6840 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6841 * should cover the worst case number of items we'll modify.
6842 */
6843 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6844 if (IS_ERR(trans)) {
6845 ret = PTR_ERR(trans);
6846 goto out_notrans;
6847 }
76dda93c 6848
4df27c4d
YZ
6849 if (dest != root)
6850 btrfs_record_root_in_trans(trans, dest);
5f39d397 6851
a5719521
YZ
6852 ret = btrfs_set_inode_index(new_dir, &index);
6853 if (ret)
6854 goto out_fail;
5a3f23d5 6855
33345d01 6856 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6857 /* force full log commit if subvolume involved. */
6858 root->fs_info->last_trans_log_full_commit = trans->transid;
6859 } else {
a5719521
YZ
6860 ret = btrfs_insert_inode_ref(trans, dest,
6861 new_dentry->d_name.name,
6862 new_dentry->d_name.len,
33345d01
LZ
6863 old_ino,
6864 btrfs_ino(new_dir), index);
a5719521
YZ
6865 if (ret)
6866 goto out_fail;
4df27c4d
YZ
6867 /*
6868 * this is an ugly little race, but the rename is required
6869 * to make sure that if we crash, the inode is either at the
6870 * old name or the new one. pinning the log transaction lets
6871 * us make sure we don't allow a log commit to come in after
6872 * we unlink the name but before we add the new name back in.
6873 */
6874 btrfs_pin_log_trans(root);
6875 }
5a3f23d5
CM
6876 /*
6877 * make sure the inode gets flushed if it is replacing
6878 * something.
6879 */
33345d01 6880 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 6881 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 6882
39279cc3
CM
6883 old_dir->i_ctime = old_dir->i_mtime = ctime;
6884 new_dir->i_ctime = new_dir->i_mtime = ctime;
6885 old_inode->i_ctime = ctime;
5f39d397 6886
12fcfd22
CM
6887 if (old_dentry->d_parent != new_dentry->d_parent)
6888 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6889
33345d01 6890 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6891 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6892 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6893 old_dentry->d_name.name,
6894 old_dentry->d_name.len);
6895 } else {
92986796
AV
6896 ret = __btrfs_unlink_inode(trans, root, old_dir,
6897 old_dentry->d_inode,
6898 old_dentry->d_name.name,
6899 old_dentry->d_name.len);
6900 if (!ret)
6901 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
6902 }
6903 BUG_ON(ret);
39279cc3
CM
6904
6905 if (new_inode) {
6906 new_inode->i_ctime = CURRENT_TIME;
33345d01 6907 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
6908 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6909 root_objectid = BTRFS_I(new_inode)->location.objectid;
6910 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6911 root_objectid,
6912 new_dentry->d_name.name,
6913 new_dentry->d_name.len);
6914 BUG_ON(new_inode->i_nlink == 0);
6915 } else {
6916 ret = btrfs_unlink_inode(trans, dest, new_dir,
6917 new_dentry->d_inode,
6918 new_dentry->d_name.name,
6919 new_dentry->d_name.len);
6920 }
6921 BUG_ON(ret);
7b128766 6922 if (new_inode->i_nlink == 0) {
e02119d5 6923 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 6924 BUG_ON(ret);
7b128766 6925 }
39279cc3 6926 }
aec7477b 6927
75e7cb7f
LB
6928 fixup_inode_flags(new_dir, old_inode);
6929
4df27c4d
YZ
6930 ret = btrfs_add_link(trans, new_dir, old_inode,
6931 new_dentry->d_name.name,
a5719521 6932 new_dentry->d_name.len, 0, index);
4df27c4d 6933 BUG_ON(ret);
39279cc3 6934
33345d01 6935 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 6936 struct dentry *parent = new_dentry->d_parent;
6a912213 6937 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
6938 btrfs_end_log_trans(root);
6939 }
39279cc3 6940out_fail:
ab78c84d 6941 btrfs_end_transaction_throttle(trans, root);
b44c59a8 6942out_notrans:
33345d01 6943 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6944 up_read(&root->fs_info->subvol_sem);
9ed74f2d 6945
39279cc3
CM
6946 return ret;
6947}
6948
d352ac68
CM
6949/*
6950 * some fairly slow code that needs optimization. This walks the list
6951 * of all the inodes with pending delalloc and forces them to disk.
6952 */
24bbcf04 6953int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
6954{
6955 struct list_head *head = &root->fs_info->delalloc_inodes;
6956 struct btrfs_inode *binode;
5b21f2ed 6957 struct inode *inode;
ea8c2819 6958
c146afad
YZ
6959 if (root->fs_info->sb->s_flags & MS_RDONLY)
6960 return -EROFS;
6961
75eff68e 6962 spin_lock(&root->fs_info->delalloc_lock);
d397712b 6963 while (!list_empty(head)) {
ea8c2819
CM
6964 binode = list_entry(head->next, struct btrfs_inode,
6965 delalloc_inodes);
5b21f2ed
ZY
6966 inode = igrab(&binode->vfs_inode);
6967 if (!inode)
6968 list_del_init(&binode->delalloc_inodes);
75eff68e 6969 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 6970 if (inode) {
8c8bee1d 6971 filemap_flush(inode->i_mapping);
24bbcf04
YZ
6972 if (delay_iput)
6973 btrfs_add_delayed_iput(inode);
6974 else
6975 iput(inode);
5b21f2ed
ZY
6976 }
6977 cond_resched();
75eff68e 6978 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 6979 }
75eff68e 6980 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
6981
6982 /* the filemap_flush will queue IO into the worker threads, but
6983 * we have to make sure the IO is actually started and that
6984 * ordered extents get created before we return
6985 */
6986 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 6987 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 6988 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 6989 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
6990 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6991 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
6992 }
6993 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
6994 return 0;
6995}
6996
39279cc3
CM
6997static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6998 const char *symname)
6999{
7000 struct btrfs_trans_handle *trans;
7001 struct btrfs_root *root = BTRFS_I(dir)->root;
7002 struct btrfs_path *path;
7003 struct btrfs_key key;
1832a6d5 7004 struct inode *inode = NULL;
39279cc3
CM
7005 int err;
7006 int drop_inode = 0;
7007 u64 objectid;
00e4e6b3 7008 u64 index = 0 ;
39279cc3
CM
7009 int name_len;
7010 int datasize;
5f39d397 7011 unsigned long ptr;
39279cc3 7012 struct btrfs_file_extent_item *ei;
5f39d397 7013 struct extent_buffer *leaf;
1832a6d5 7014 unsigned long nr = 0;
39279cc3
CM
7015
7016 name_len = strlen(symname) + 1;
7017 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7018 return -ENAMETOOLONG;
1832a6d5 7019
9ed74f2d
JB
7020 /*
7021 * 2 items for inode item and ref
7022 * 2 items for dir items
7023 * 1 item for xattr if selinux is on
7024 */
a22285a6
YZ
7025 trans = btrfs_start_transaction(root, 5);
7026 if (IS_ERR(trans))
7027 return PTR_ERR(trans);
1832a6d5 7028
581bb050
LZ
7029 err = btrfs_find_free_ino(root, &objectid);
7030 if (err)
7031 goto out_unlock;
7032
aec7477b 7033 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7034 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7035 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7036 if (IS_ERR(inode)) {
7037 err = PTR_ERR(inode);
39279cc3 7038 goto out_unlock;
7cf96da3 7039 }
39279cc3 7040
2a7dba39 7041 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7042 if (err) {
7043 drop_inode = 1;
7044 goto out_unlock;
7045 }
7046
a1b075d2 7047 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7048 if (err)
7049 drop_inode = 1;
7050 else {
7051 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7052 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7053 inode->i_fop = &btrfs_file_operations;
7054 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7055 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7056 }
39279cc3
CM
7057 if (drop_inode)
7058 goto out_unlock;
7059
7060 path = btrfs_alloc_path();
d8926bb3
MF
7061 if (!path) {
7062 err = -ENOMEM;
7063 drop_inode = 1;
7064 goto out_unlock;
7065 }
33345d01 7066 key.objectid = btrfs_ino(inode);
39279cc3 7067 key.offset = 0;
39279cc3
CM
7068 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7069 datasize = btrfs_file_extent_calc_inline_size(name_len);
7070 err = btrfs_insert_empty_item(trans, root, path, &key,
7071 datasize);
54aa1f4d
CM
7072 if (err) {
7073 drop_inode = 1;
b0839166 7074 btrfs_free_path(path);
54aa1f4d
CM
7075 goto out_unlock;
7076 }
5f39d397
CM
7077 leaf = path->nodes[0];
7078 ei = btrfs_item_ptr(leaf, path->slots[0],
7079 struct btrfs_file_extent_item);
7080 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7081 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7082 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7083 btrfs_set_file_extent_encryption(leaf, ei, 0);
7084 btrfs_set_file_extent_compression(leaf, ei, 0);
7085 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7086 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7087
39279cc3 7088 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7089 write_extent_buffer(leaf, symname, ptr, name_len);
7090 btrfs_mark_buffer_dirty(leaf);
39279cc3 7091 btrfs_free_path(path);
5f39d397 7092
39279cc3
CM
7093 inode->i_op = &btrfs_symlink_inode_operations;
7094 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7095 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7096 inode_set_bytes(inode, name_len);
dbe674a9 7097 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7098 err = btrfs_update_inode(trans, root, inode);
7099 if (err)
7100 drop_inode = 1;
39279cc3
CM
7101
7102out_unlock:
d3c2fdcf 7103 nr = trans->blocks_used;
ab78c84d 7104 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7105 if (drop_inode) {
7106 inode_dec_link_count(inode);
7107 iput(inode);
7108 }
d3c2fdcf 7109 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7110 return err;
7111}
16432985 7112
0af3d00b
JB
7113static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7114 u64 start, u64 num_bytes, u64 min_size,
7115 loff_t actual_len, u64 *alloc_hint,
7116 struct btrfs_trans_handle *trans)
d899e052 7117{
d899e052
YZ
7118 struct btrfs_root *root = BTRFS_I(inode)->root;
7119 struct btrfs_key ins;
d899e052 7120 u64 cur_offset = start;
55a61d1d 7121 u64 i_size;
d899e052 7122 int ret = 0;
0af3d00b 7123 bool own_trans = true;
d899e052 7124
0af3d00b
JB
7125 if (trans)
7126 own_trans = false;
d899e052 7127 while (num_bytes > 0) {
0af3d00b
JB
7128 if (own_trans) {
7129 trans = btrfs_start_transaction(root, 3);
7130 if (IS_ERR(trans)) {
7131 ret = PTR_ERR(trans);
7132 break;
7133 }
5a303d5d
YZ
7134 }
7135
efa56464
YZ
7136 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7137 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7138 if (ret) {
0af3d00b
JB
7139 if (own_trans)
7140 btrfs_end_transaction(trans, root);
a22285a6 7141 break;
d899e052 7142 }
5a303d5d 7143
d899e052
YZ
7144 ret = insert_reserved_file_extent(trans, inode,
7145 cur_offset, ins.objectid,
7146 ins.offset, ins.offset,
920bbbfb 7147 ins.offset, 0, 0, 0,
d899e052
YZ
7148 BTRFS_FILE_EXTENT_PREALLOC);
7149 BUG_ON(ret);
a1ed835e
CM
7150 btrfs_drop_extent_cache(inode, cur_offset,
7151 cur_offset + ins.offset -1, 0);
5a303d5d 7152
d899e052
YZ
7153 num_bytes -= ins.offset;
7154 cur_offset += ins.offset;
efa56464 7155 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7156
d899e052 7157 inode->i_ctime = CURRENT_TIME;
6cbff00f 7158 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7159 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7160 (actual_len > inode->i_size) &&
7161 (cur_offset > inode->i_size)) {
d1ea6a61 7162 if (cur_offset > actual_len)
55a61d1d 7163 i_size = actual_len;
d1ea6a61 7164 else
55a61d1d
JB
7165 i_size = cur_offset;
7166 i_size_write(inode, i_size);
7167 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7168 }
7169
d899e052
YZ
7170 ret = btrfs_update_inode(trans, root, inode);
7171 BUG_ON(ret);
d899e052 7172
0af3d00b
JB
7173 if (own_trans)
7174 btrfs_end_transaction(trans, root);
5a303d5d 7175 }
d899e052
YZ
7176 return ret;
7177}
7178
0af3d00b
JB
7179int btrfs_prealloc_file_range(struct inode *inode, int mode,
7180 u64 start, u64 num_bytes, u64 min_size,
7181 loff_t actual_len, u64 *alloc_hint)
7182{
7183 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7184 min_size, actual_len, alloc_hint,
7185 NULL);
7186}
7187
7188int btrfs_prealloc_file_range_trans(struct inode *inode,
7189 struct btrfs_trans_handle *trans, int mode,
7190 u64 start, u64 num_bytes, u64 min_size,
7191 loff_t actual_len, u64 *alloc_hint)
7192{
7193 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7194 min_size, actual_len, alloc_hint, trans);
7195}
7196
e6dcd2dc
CM
7197static int btrfs_set_page_dirty(struct page *page)
7198{
e6dcd2dc
CM
7199 return __set_page_dirty_nobuffers(page);
7200}
7201
10556cb2 7202static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7203{
b83cc969 7204 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7205 umode_t mode = inode->i_mode;
b83cc969 7206
cb6db4e5
JM
7207 if (mask & MAY_WRITE &&
7208 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7209 if (btrfs_root_readonly(root))
7210 return -EROFS;
7211 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7212 return -EACCES;
7213 }
2830ba7f 7214 return generic_permission(inode, mask);
fdebe2bd 7215}
39279cc3 7216
6e1d5dcc 7217static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7218 .getattr = btrfs_getattr,
39279cc3
CM
7219 .lookup = btrfs_lookup,
7220 .create = btrfs_create,
7221 .unlink = btrfs_unlink,
7222 .link = btrfs_link,
7223 .mkdir = btrfs_mkdir,
7224 .rmdir = btrfs_rmdir,
7225 .rename = btrfs_rename,
7226 .symlink = btrfs_symlink,
7227 .setattr = btrfs_setattr,
618e21d5 7228 .mknod = btrfs_mknod,
95819c05
CH
7229 .setxattr = btrfs_setxattr,
7230 .getxattr = btrfs_getxattr,
5103e947 7231 .listxattr = btrfs_listxattr,
95819c05 7232 .removexattr = btrfs_removexattr,
fdebe2bd 7233 .permission = btrfs_permission,
4e34e719 7234 .get_acl = btrfs_get_acl,
39279cc3 7235};
6e1d5dcc 7236static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7237 .lookup = btrfs_lookup,
fdebe2bd 7238 .permission = btrfs_permission,
4e34e719 7239 .get_acl = btrfs_get_acl,
39279cc3 7240};
76dda93c 7241
828c0950 7242static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7243 .llseek = generic_file_llseek,
7244 .read = generic_read_dir,
cbdf5a24 7245 .readdir = btrfs_real_readdir,
34287aa3 7246 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7247#ifdef CONFIG_COMPAT
34287aa3 7248 .compat_ioctl = btrfs_ioctl,
39279cc3 7249#endif
6bf13c0c 7250 .release = btrfs_release_file,
e02119d5 7251 .fsync = btrfs_sync_file,
39279cc3
CM
7252};
7253
d1310b2e 7254static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7255 .fill_delalloc = run_delalloc_range,
065631f6 7256 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7257 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7258 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7259 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7260 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7261 .set_bit_hook = btrfs_set_bit_hook,
7262 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7263 .merge_extent_hook = btrfs_merge_extent_hook,
7264 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7265};
7266
35054394
CM
7267/*
7268 * btrfs doesn't support the bmap operation because swapfiles
7269 * use bmap to make a mapping of extents in the file. They assume
7270 * these extents won't change over the life of the file and they
7271 * use the bmap result to do IO directly to the drive.
7272 *
7273 * the btrfs bmap call would return logical addresses that aren't
7274 * suitable for IO and they also will change frequently as COW
7275 * operations happen. So, swapfile + btrfs == corruption.
7276 *
7277 * For now we're avoiding this by dropping bmap.
7278 */
7f09410b 7279static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7280 .readpage = btrfs_readpage,
7281 .writepage = btrfs_writepage,
b293f02e 7282 .writepages = btrfs_writepages,
3ab2fb5a 7283 .readpages = btrfs_readpages,
16432985 7284 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7285 .invalidatepage = btrfs_invalidatepage,
7286 .releasepage = btrfs_releasepage,
e6dcd2dc 7287 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7288 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7289};
7290
7f09410b 7291static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7292 .readpage = btrfs_readpage,
7293 .writepage = btrfs_writepage,
2bf5a725
CM
7294 .invalidatepage = btrfs_invalidatepage,
7295 .releasepage = btrfs_releasepage,
39279cc3
CM
7296};
7297
6e1d5dcc 7298static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7299 .getattr = btrfs_getattr,
7300 .setattr = btrfs_setattr,
95819c05
CH
7301 .setxattr = btrfs_setxattr,
7302 .getxattr = btrfs_getxattr,
5103e947 7303 .listxattr = btrfs_listxattr,
95819c05 7304 .removexattr = btrfs_removexattr,
fdebe2bd 7305 .permission = btrfs_permission,
1506fcc8 7306 .fiemap = btrfs_fiemap,
4e34e719 7307 .get_acl = btrfs_get_acl,
39279cc3 7308};
6e1d5dcc 7309static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7310 .getattr = btrfs_getattr,
7311 .setattr = btrfs_setattr,
fdebe2bd 7312 .permission = btrfs_permission,
95819c05
CH
7313 .setxattr = btrfs_setxattr,
7314 .getxattr = btrfs_getxattr,
33268eaf 7315 .listxattr = btrfs_listxattr,
95819c05 7316 .removexattr = btrfs_removexattr,
4e34e719 7317 .get_acl = btrfs_get_acl,
618e21d5 7318};
6e1d5dcc 7319static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7320 .readlink = generic_readlink,
7321 .follow_link = page_follow_link_light,
7322 .put_link = page_put_link,
f209561a 7323 .getattr = btrfs_getattr,
fdebe2bd 7324 .permission = btrfs_permission,
0279b4cd
JO
7325 .setxattr = btrfs_setxattr,
7326 .getxattr = btrfs_getxattr,
7327 .listxattr = btrfs_listxattr,
7328 .removexattr = btrfs_removexattr,
4e34e719 7329 .get_acl = btrfs_get_acl,
39279cc3 7330};
76dda93c 7331
82d339d9 7332const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7333 .d_delete = btrfs_dentry_delete,
b4aff1f8 7334 .d_release = btrfs_dentry_release,
76dda93c 7335};