Btrfs: add allocator tracepoints
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
74struct kmem_cache *btrfs_trans_handle_cachep;
75struct kmem_cache *btrfs_transaction_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
78
79#define S_SHIFT 12
80static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88};
89
a41ad394
JB
90static int btrfs_setsize(struct inode *inode, loff_t newsize);
91static int btrfs_truncate(struct inode *inode);
c8b97818 92static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
93static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
2115133f
CM
97static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
7b128766 99
f34f57a3 100static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
0279b4cd
JO
103{
104 int err;
105
f34f57a3 106 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 107 if (!err)
2a7dba39 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
109 return err;
110}
111
c8b97818
CM
112/*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
d397712b 117static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
fe3f566c 120 int compress_type,
c8b97818
CM
121 struct page **compressed_pages)
122{
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
c8b97818 135
fe3f566c 136 if (compressed_size && compressed_pages)
c8b97818 137 cur_size = compressed_size;
c8b97818 138
d397712b
CM
139 path = btrfs_alloc_path();
140 if (!path)
c8b97818
CM
141 return -ENOMEM;
142
b9473439 143 path->leave_spinning = 1;
c8b97818 144
33345d01 145 key.objectid = btrfs_ino(inode);
c8b97818
CM
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
153 BUG_ON(ret);
154 if (ret) {
155 err = ret;
c8b97818
CM
156 goto fail;
157 }
158 leaf = path->nodes[0];
159 ei = btrfs_item_ptr(leaf, path->slots[0],
160 struct btrfs_file_extent_item);
161 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
162 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
163 btrfs_set_file_extent_encryption(leaf, ei, 0);
164 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
165 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
166 ptr = btrfs_file_extent_inline_start(ei);
167
261507a0 168 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
169 struct page *cpage;
170 int i = 0;
d397712b 171 while (compressed_size > 0) {
c8b97818 172 cpage = compressed_pages[i];
5b050f04 173 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
174 PAGE_CACHE_SIZE);
175
b9473439 176 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 177 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 178 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
179
180 i++;
181 ptr += cur_size;
182 compressed_size -= cur_size;
183 }
184 btrfs_set_file_extent_compression(leaf, ei,
261507a0 185 compress_type);
c8b97818
CM
186 } else {
187 page = find_get_page(inode->i_mapping,
188 start >> PAGE_CACHE_SHIFT);
189 btrfs_set_file_extent_compression(leaf, ei, 0);
190 kaddr = kmap_atomic(page, KM_USER0);
191 offset = start & (PAGE_CACHE_SIZE - 1);
192 write_extent_buffer(leaf, kaddr + offset, ptr, size);
193 kunmap_atomic(kaddr, KM_USER0);
194 page_cache_release(page);
195 }
196 btrfs_mark_buffer_dirty(leaf);
197 btrfs_free_path(path);
198
c2167754
YZ
199 /*
200 * we're an inline extent, so nobody can
201 * extend the file past i_size without locking
202 * a page we already have locked.
203 *
204 * We must do any isize and inode updates
205 * before we unlock the pages. Otherwise we
206 * could end up racing with unlink.
207 */
c8b97818
CM
208 BTRFS_I(inode)->disk_i_size = inode->i_size;
209 btrfs_update_inode(trans, root, inode);
c2167754 210
c8b97818
CM
211 return 0;
212fail:
213 btrfs_free_path(path);
214 return err;
215}
216
217
218/*
219 * conditionally insert an inline extent into the file. This
220 * does the checks required to make sure the data is small enough
221 * to fit as an inline extent.
222 */
7f366cfe 223static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
224 struct btrfs_root *root,
225 struct inode *inode, u64 start, u64 end,
fe3f566c 226 size_t compressed_size, int compress_type,
c8b97818
CM
227 struct page **compressed_pages)
228{
229 u64 isize = i_size_read(inode);
230 u64 actual_end = min(end + 1, isize);
231 u64 inline_len = actual_end - start;
232 u64 aligned_end = (end + root->sectorsize - 1) &
233 ~((u64)root->sectorsize - 1);
234 u64 hint_byte;
235 u64 data_len = inline_len;
236 int ret;
237
238 if (compressed_size)
239 data_len = compressed_size;
240
241 if (start > 0 ||
70b99e69 242 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
243 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
244 (!compressed_size &&
245 (actual_end & (root->sectorsize - 1)) == 0) ||
246 end + 1 < isize ||
247 data_len > root->fs_info->max_inline) {
248 return 1;
249 }
250
920bbbfb 251 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 252 &hint_byte, 1);
c8b97818
CM
253 BUG_ON(ret);
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
fe3f566c 259 compress_type, compressed_pages);
c8b97818 260 BUG_ON(ret);
0ca1f7ce 261 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 262 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
263 return 0;
264}
265
771ed689
CM
266struct async_extent {
267 u64 start;
268 u64 ram_size;
269 u64 compressed_size;
270 struct page **pages;
271 unsigned long nr_pages;
261507a0 272 int compress_type;
771ed689
CM
273 struct list_head list;
274};
275
276struct async_cow {
277 struct inode *inode;
278 struct btrfs_root *root;
279 struct page *locked_page;
280 u64 start;
281 u64 end;
282 struct list_head extents;
283 struct btrfs_work work;
284};
285
286static noinline int add_async_extent(struct async_cow *cow,
287 u64 start, u64 ram_size,
288 u64 compressed_size,
289 struct page **pages,
261507a0
LZ
290 unsigned long nr_pages,
291 int compress_type)
771ed689
CM
292{
293 struct async_extent *async_extent;
294
295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 296 BUG_ON(!async_extent);
771ed689
CM
297 async_extent->start = start;
298 async_extent->ram_size = ram_size;
299 async_extent->compressed_size = compressed_size;
300 async_extent->pages = pages;
301 async_extent->nr_pages = nr_pages;
261507a0 302 async_extent->compress_type = compress_type;
771ed689
CM
303 list_add_tail(&async_extent->list, &cow->extents);
304 return 0;
305}
306
d352ac68 307/*
771ed689
CM
308 * we create compressed extents in two phases. The first
309 * phase compresses a range of pages that have already been
310 * locked (both pages and state bits are locked).
c8b97818 311 *
771ed689
CM
312 * This is done inside an ordered work queue, and the compression
313 * is spread across many cpus. The actual IO submission is step
314 * two, and the ordered work queue takes care of making sure that
315 * happens in the same order things were put onto the queue by
316 * writepages and friends.
c8b97818 317 *
771ed689
CM
318 * If this code finds it can't get good compression, it puts an
319 * entry onto the work queue to write the uncompressed bytes. This
320 * makes sure that both compressed inodes and uncompressed inodes
321 * are written in the same order that pdflush sent them down.
d352ac68 322 */
771ed689
CM
323static noinline int compress_file_range(struct inode *inode,
324 struct page *locked_page,
325 u64 start, u64 end,
326 struct async_cow *async_cow,
327 int *num_added)
b888db2b
CM
328{
329 struct btrfs_root *root = BTRFS_I(inode)->root;
330 struct btrfs_trans_handle *trans;
db94535d 331 u64 num_bytes;
db94535d 332 u64 blocksize = root->sectorsize;
c8b97818 333 u64 actual_end;
42dc7bab 334 u64 isize = i_size_read(inode);
e6dcd2dc 335 int ret = 0;
c8b97818
CM
336 struct page **pages = NULL;
337 unsigned long nr_pages;
338 unsigned long nr_pages_ret = 0;
339 unsigned long total_compressed = 0;
340 unsigned long total_in = 0;
341 unsigned long max_compressed = 128 * 1024;
771ed689 342 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
343 int i;
344 int will_compress;
261507a0 345 int compress_type = root->fs_info->compress_type;
b888db2b 346
4cb5300b
CM
347 /* if this is a small write inside eof, kick off a defragbot */
348 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
349 btrfs_add_inode_defrag(NULL, inode);
350
42dc7bab 351 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
352again:
353 will_compress = 0;
354 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
355 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 356
f03d9301
CM
357 /*
358 * we don't want to send crud past the end of i_size through
359 * compression, that's just a waste of CPU time. So, if the
360 * end of the file is before the start of our current
361 * requested range of bytes, we bail out to the uncompressed
362 * cleanup code that can deal with all of this.
363 *
364 * It isn't really the fastest way to fix things, but this is a
365 * very uncommon corner.
366 */
367 if (actual_end <= start)
368 goto cleanup_and_bail_uncompressed;
369
c8b97818
CM
370 total_compressed = actual_end - start;
371
372 /* we want to make sure that amount of ram required to uncompress
373 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
374 * of a compressed extent to 128k. This is a crucial number
375 * because it also controls how easily we can spread reads across
376 * cpus for decompression.
377 *
378 * We also want to make sure the amount of IO required to do
379 * a random read is reasonably small, so we limit the size of
380 * a compressed extent to 128k.
c8b97818
CM
381 */
382 total_compressed = min(total_compressed, max_uncompressed);
db94535d 383 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 384 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
385 total_in = 0;
386 ret = 0;
db94535d 387
771ed689
CM
388 /*
389 * we do compression for mount -o compress and when the
390 * inode has not been flagged as nocompress. This flag can
391 * change at any time if we discover bad compression ratios.
c8b97818 392 */
6cbff00f 393 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 394 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
395 (BTRFS_I(inode)->force_compress) ||
396 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 397 WARN_ON(pages);
cfbc246e 398 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
399 if (!pages) {
400 /* just bail out to the uncompressed code */
401 goto cont;
402 }
c8b97818 403
261507a0
LZ
404 if (BTRFS_I(inode)->force_compress)
405 compress_type = BTRFS_I(inode)->force_compress;
406
407 ret = btrfs_compress_pages(compress_type,
408 inode->i_mapping, start,
409 total_compressed, pages,
410 nr_pages, &nr_pages_ret,
411 &total_in,
412 &total_compressed,
413 max_compressed);
c8b97818
CM
414
415 if (!ret) {
416 unsigned long offset = total_compressed &
417 (PAGE_CACHE_SIZE - 1);
418 struct page *page = pages[nr_pages_ret - 1];
419 char *kaddr;
420
421 /* zero the tail end of the last page, we might be
422 * sending it down to disk
423 */
424 if (offset) {
425 kaddr = kmap_atomic(page, KM_USER0);
426 memset(kaddr + offset, 0,
427 PAGE_CACHE_SIZE - offset);
428 kunmap_atomic(kaddr, KM_USER0);
429 }
430 will_compress = 1;
431 }
432 }
560f7d75 433cont:
c8b97818 434 if (start == 0) {
7a7eaa40 435 trans = btrfs_join_transaction(root);
3612b495 436 BUG_ON(IS_ERR(trans));
0ca1f7ce 437 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 438
c8b97818 439 /* lets try to make an inline extent */
771ed689 440 if (ret || total_in < (actual_end - start)) {
c8b97818 441 /* we didn't compress the entire range, try
771ed689 442 * to make an uncompressed inline extent.
c8b97818
CM
443 */
444 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 445 start, end, 0, 0, NULL);
c8b97818 446 } else {
771ed689 447 /* try making a compressed inline extent */
c8b97818
CM
448 ret = cow_file_range_inline(trans, root, inode,
449 start, end,
fe3f566c
LZ
450 total_compressed,
451 compress_type, pages);
c8b97818
CM
452 }
453 if (ret == 0) {
771ed689
CM
454 /*
455 * inline extent creation worked, we don't need
456 * to create any more async work items. Unlock
457 * and free up our temp pages.
458 */
c8b97818 459 extent_clear_unlock_delalloc(inode,
a791e35e
CM
460 &BTRFS_I(inode)->io_tree,
461 start, end, NULL,
462 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 463 EXTENT_CLEAR_DELALLOC |
a791e35e 464 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
465
466 btrfs_end_transaction(trans, root);
c8b97818
CM
467 goto free_pages_out;
468 }
c2167754 469 btrfs_end_transaction(trans, root);
c8b97818
CM
470 }
471
472 if (will_compress) {
473 /*
474 * we aren't doing an inline extent round the compressed size
475 * up to a block size boundary so the allocator does sane
476 * things
477 */
478 total_compressed = (total_compressed + blocksize - 1) &
479 ~(blocksize - 1);
480
481 /*
482 * one last check to make sure the compression is really a
483 * win, compare the page count read with the blocks on disk
484 */
485 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
486 ~(PAGE_CACHE_SIZE - 1);
487 if (total_compressed >= total_in) {
488 will_compress = 0;
489 } else {
c8b97818
CM
490 num_bytes = total_in;
491 }
492 }
493 if (!will_compress && pages) {
494 /*
495 * the compression code ran but failed to make things smaller,
496 * free any pages it allocated and our page pointer array
497 */
498 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 499 WARN_ON(pages[i]->mapping);
c8b97818
CM
500 page_cache_release(pages[i]);
501 }
502 kfree(pages);
503 pages = NULL;
504 total_compressed = 0;
505 nr_pages_ret = 0;
506
507 /* flag the file so we don't compress in the future */
1e701a32
CM
508 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
509 !(BTRFS_I(inode)->force_compress)) {
a555f810 510 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 511 }
c8b97818 512 }
771ed689
CM
513 if (will_compress) {
514 *num_added += 1;
c8b97818 515
771ed689
CM
516 /* the async work queues will take care of doing actual
517 * allocation on disk for these compressed pages,
518 * and will submit them to the elevator.
519 */
520 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
521 total_compressed, pages, nr_pages_ret,
522 compress_type);
179e29e4 523
24ae6365 524 if (start + num_bytes < end) {
771ed689
CM
525 start += num_bytes;
526 pages = NULL;
527 cond_resched();
528 goto again;
529 }
530 } else {
f03d9301 531cleanup_and_bail_uncompressed:
771ed689
CM
532 /*
533 * No compression, but we still need to write the pages in
534 * the file we've been given so far. redirty the locked
535 * page if it corresponds to our extent and set things up
536 * for the async work queue to run cow_file_range to do
537 * the normal delalloc dance
538 */
539 if (page_offset(locked_page) >= start &&
540 page_offset(locked_page) <= end) {
541 __set_page_dirty_nobuffers(locked_page);
542 /* unlocked later on in the async handlers */
543 }
261507a0
LZ
544 add_async_extent(async_cow, start, end - start + 1,
545 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
546 *num_added += 1;
547 }
3b951516 548
771ed689
CM
549out:
550 return 0;
551
552free_pages_out:
553 for (i = 0; i < nr_pages_ret; i++) {
554 WARN_ON(pages[i]->mapping);
555 page_cache_release(pages[i]);
556 }
d397712b 557 kfree(pages);
771ed689
CM
558
559 goto out;
560}
561
562/*
563 * phase two of compressed writeback. This is the ordered portion
564 * of the code, which only gets called in the order the work was
565 * queued. We walk all the async extents created by compress_file_range
566 * and send them down to the disk.
567 */
568static noinline int submit_compressed_extents(struct inode *inode,
569 struct async_cow *async_cow)
570{
571 struct async_extent *async_extent;
572 u64 alloc_hint = 0;
573 struct btrfs_trans_handle *trans;
574 struct btrfs_key ins;
575 struct extent_map *em;
576 struct btrfs_root *root = BTRFS_I(inode)->root;
577 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
578 struct extent_io_tree *io_tree;
f5a84ee3 579 int ret = 0;
771ed689
CM
580
581 if (list_empty(&async_cow->extents))
582 return 0;
583
771ed689 584
d397712b 585 while (!list_empty(&async_cow->extents)) {
771ed689
CM
586 async_extent = list_entry(async_cow->extents.next,
587 struct async_extent, list);
588 list_del(&async_extent->list);
c8b97818 589
771ed689
CM
590 io_tree = &BTRFS_I(inode)->io_tree;
591
f5a84ee3 592retry:
771ed689
CM
593 /* did the compression code fall back to uncompressed IO? */
594 if (!async_extent->pages) {
595 int page_started = 0;
596 unsigned long nr_written = 0;
597
598 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
599 async_extent->start +
600 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
601
602 /* allocate blocks */
f5a84ee3
JB
603 ret = cow_file_range(inode, async_cow->locked_page,
604 async_extent->start,
605 async_extent->start +
606 async_extent->ram_size - 1,
607 &page_started, &nr_written, 0);
771ed689
CM
608
609 /*
610 * if page_started, cow_file_range inserted an
611 * inline extent and took care of all the unlocking
612 * and IO for us. Otherwise, we need to submit
613 * all those pages down to the drive.
614 */
f5a84ee3 615 if (!page_started && !ret)
771ed689
CM
616 extent_write_locked_range(io_tree,
617 inode, async_extent->start,
d397712b 618 async_extent->start +
771ed689
CM
619 async_extent->ram_size - 1,
620 btrfs_get_extent,
621 WB_SYNC_ALL);
622 kfree(async_extent);
623 cond_resched();
624 continue;
625 }
626
627 lock_extent(io_tree, async_extent->start,
628 async_extent->start + async_extent->ram_size - 1,
629 GFP_NOFS);
771ed689 630
7a7eaa40 631 trans = btrfs_join_transaction(root);
3612b495 632 BUG_ON(IS_ERR(trans));
74b21075 633 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
634 ret = btrfs_reserve_extent(trans, root,
635 async_extent->compressed_size,
636 async_extent->compressed_size,
637 0, alloc_hint,
638 (u64)-1, &ins, 1);
c2167754
YZ
639 btrfs_end_transaction(trans, root);
640
f5a84ee3
JB
641 if (ret) {
642 int i;
643 for (i = 0; i < async_extent->nr_pages; i++) {
644 WARN_ON(async_extent->pages[i]->mapping);
645 page_cache_release(async_extent->pages[i]);
646 }
647 kfree(async_extent->pages);
648 async_extent->nr_pages = 0;
649 async_extent->pages = NULL;
650 unlock_extent(io_tree, async_extent->start,
651 async_extent->start +
652 async_extent->ram_size - 1, GFP_NOFS);
653 goto retry;
654 }
655
c2167754
YZ
656 /*
657 * here we're doing allocation and writeback of the
658 * compressed pages
659 */
660 btrfs_drop_extent_cache(inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1, 0);
663
172ddd60 664 em = alloc_extent_map();
c26a9203 665 BUG_ON(!em);
771ed689
CM
666 em->start = async_extent->start;
667 em->len = async_extent->ram_size;
445a6944 668 em->orig_start = em->start;
c8b97818 669
771ed689
CM
670 em->block_start = ins.objectid;
671 em->block_len = ins.offset;
672 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 673 em->compress_type = async_extent->compress_type;
771ed689
CM
674 set_bit(EXTENT_FLAG_PINNED, &em->flags);
675 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
676
d397712b 677 while (1) {
890871be 678 write_lock(&em_tree->lock);
771ed689 679 ret = add_extent_mapping(em_tree, em);
890871be 680 write_unlock(&em_tree->lock);
771ed689
CM
681 if (ret != -EEXIST) {
682 free_extent_map(em);
683 break;
684 }
685 btrfs_drop_extent_cache(inode, async_extent->start,
686 async_extent->start +
687 async_extent->ram_size - 1, 0);
688 }
689
261507a0
LZ
690 ret = btrfs_add_ordered_extent_compress(inode,
691 async_extent->start,
692 ins.objectid,
693 async_extent->ram_size,
694 ins.offset,
695 BTRFS_ORDERED_COMPRESSED,
696 async_extent->compress_type);
771ed689
CM
697 BUG_ON(ret);
698
771ed689
CM
699 /*
700 * clear dirty, set writeback and unlock the pages.
701 */
702 extent_clear_unlock_delalloc(inode,
a791e35e
CM
703 &BTRFS_I(inode)->io_tree,
704 async_extent->start,
705 async_extent->start +
706 async_extent->ram_size - 1,
707 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
708 EXTENT_CLEAR_UNLOCK |
a3429ab7 709 EXTENT_CLEAR_DELALLOC |
a791e35e 710 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
711
712 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
713 async_extent->start,
714 async_extent->ram_size,
715 ins.objectid,
716 ins.offset, async_extent->pages,
717 async_extent->nr_pages);
771ed689
CM
718
719 BUG_ON(ret);
771ed689
CM
720 alloc_hint = ins.objectid + ins.offset;
721 kfree(async_extent);
722 cond_resched();
723 }
724
771ed689
CM
725 return 0;
726}
727
4b46fce2
JB
728static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
729 u64 num_bytes)
730{
731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732 struct extent_map *em;
733 u64 alloc_hint = 0;
734
735 read_lock(&em_tree->lock);
736 em = search_extent_mapping(em_tree, start, num_bytes);
737 if (em) {
738 /*
739 * if block start isn't an actual block number then find the
740 * first block in this inode and use that as a hint. If that
741 * block is also bogus then just don't worry about it.
742 */
743 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
744 free_extent_map(em);
745 em = search_extent_mapping(em_tree, 0, 0);
746 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
747 alloc_hint = em->block_start;
748 if (em)
749 free_extent_map(em);
750 } else {
751 alloc_hint = em->block_start;
752 free_extent_map(em);
753 }
754 }
755 read_unlock(&em_tree->lock);
756
757 return alloc_hint;
758}
759
771ed689
CM
760/*
761 * when extent_io.c finds a delayed allocation range in the file,
762 * the call backs end up in this code. The basic idea is to
763 * allocate extents on disk for the range, and create ordered data structs
764 * in ram to track those extents.
765 *
766 * locked_page is the page that writepage had locked already. We use
767 * it to make sure we don't do extra locks or unlocks.
768 *
769 * *page_started is set to one if we unlock locked_page and do everything
770 * required to start IO on it. It may be clean and already done with
771 * IO when we return.
772 */
773static noinline int cow_file_range(struct inode *inode,
774 struct page *locked_page,
775 u64 start, u64 end, int *page_started,
776 unsigned long *nr_written,
777 int unlock)
778{
779 struct btrfs_root *root = BTRFS_I(inode)->root;
780 struct btrfs_trans_handle *trans;
781 u64 alloc_hint = 0;
782 u64 num_bytes;
783 unsigned long ram_size;
784 u64 disk_num_bytes;
785 u64 cur_alloc_size;
786 u64 blocksize = root->sectorsize;
771ed689
CM
787 struct btrfs_key ins;
788 struct extent_map *em;
789 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
790 int ret = 0;
791
2cf8572d 792 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 793 trans = btrfs_join_transaction(root);
3612b495 794 BUG_ON(IS_ERR(trans));
0ca1f7ce 795 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 796
771ed689
CM
797 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
798 num_bytes = max(blocksize, num_bytes);
799 disk_num_bytes = num_bytes;
800 ret = 0;
801
4cb5300b
CM
802 /* if this is a small write inside eof, kick off defrag */
803 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
804 btrfs_add_inode_defrag(trans, inode);
805
771ed689
CM
806 if (start == 0) {
807 /* lets try to make an inline extent */
808 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 809 start, end, 0, 0, NULL);
771ed689
CM
810 if (ret == 0) {
811 extent_clear_unlock_delalloc(inode,
a791e35e
CM
812 &BTRFS_I(inode)->io_tree,
813 start, end, NULL,
814 EXTENT_CLEAR_UNLOCK_PAGE |
815 EXTENT_CLEAR_UNLOCK |
816 EXTENT_CLEAR_DELALLOC |
817 EXTENT_CLEAR_DIRTY |
818 EXTENT_SET_WRITEBACK |
819 EXTENT_END_WRITEBACK);
c2167754 820
771ed689
CM
821 *nr_written = *nr_written +
822 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
823 *page_started = 1;
824 ret = 0;
825 goto out;
826 }
827 }
828
829 BUG_ON(disk_num_bytes >
6c41761f 830 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 831
4b46fce2 832 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
833 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
834
d397712b 835 while (disk_num_bytes > 0) {
a791e35e
CM
836 unsigned long op;
837
287a0ab9 838 cur_alloc_size = disk_num_bytes;
e6dcd2dc 839 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 840 root->sectorsize, 0, alloc_hint,
e6dcd2dc 841 (u64)-1, &ins, 1);
d397712b
CM
842 BUG_ON(ret);
843
172ddd60 844 em = alloc_extent_map();
c26a9203 845 BUG_ON(!em);
e6dcd2dc 846 em->start = start;
445a6944 847 em->orig_start = em->start;
771ed689
CM
848 ram_size = ins.offset;
849 em->len = ins.offset;
c8b97818 850
e6dcd2dc 851 em->block_start = ins.objectid;
c8b97818 852 em->block_len = ins.offset;
e6dcd2dc 853 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 854 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 855
d397712b 856 while (1) {
890871be 857 write_lock(&em_tree->lock);
e6dcd2dc 858 ret = add_extent_mapping(em_tree, em);
890871be 859 write_unlock(&em_tree->lock);
e6dcd2dc
CM
860 if (ret != -EEXIST) {
861 free_extent_map(em);
862 break;
863 }
864 btrfs_drop_extent_cache(inode, start,
c8b97818 865 start + ram_size - 1, 0);
e6dcd2dc
CM
866 }
867
98d20f67 868 cur_alloc_size = ins.offset;
e6dcd2dc 869 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 870 ram_size, cur_alloc_size, 0);
e6dcd2dc 871 BUG_ON(ret);
c8b97818 872
17d217fe
YZ
873 if (root->root_key.objectid ==
874 BTRFS_DATA_RELOC_TREE_OBJECTID) {
875 ret = btrfs_reloc_clone_csums(inode, start,
876 cur_alloc_size);
877 BUG_ON(ret);
878 }
879
d397712b 880 if (disk_num_bytes < cur_alloc_size)
3b951516 881 break;
d397712b 882
c8b97818
CM
883 /* we're not doing compressed IO, don't unlock the first
884 * page (which the caller expects to stay locked), don't
885 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
886 *
887 * Do set the Private2 bit so we know this page was properly
888 * setup for writepage
c8b97818 889 */
a791e35e
CM
890 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
891 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
892 EXTENT_SET_PRIVATE2;
893
c8b97818
CM
894 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
895 start, start + ram_size - 1,
a791e35e 896 locked_page, op);
c8b97818 897 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
898 num_bytes -= cur_alloc_size;
899 alloc_hint = ins.objectid + ins.offset;
900 start += cur_alloc_size;
b888db2b 901 }
b888db2b 902out:
771ed689 903 ret = 0;
b888db2b 904 btrfs_end_transaction(trans, root);
c8b97818 905
be20aa9d 906 return ret;
771ed689 907}
c8b97818 908
771ed689
CM
909/*
910 * work queue call back to started compression on a file and pages
911 */
912static noinline void async_cow_start(struct btrfs_work *work)
913{
914 struct async_cow *async_cow;
915 int num_added = 0;
916 async_cow = container_of(work, struct async_cow, work);
917
918 compress_file_range(async_cow->inode, async_cow->locked_page,
919 async_cow->start, async_cow->end, async_cow,
920 &num_added);
921 if (num_added == 0)
922 async_cow->inode = NULL;
923}
924
925/*
926 * work queue call back to submit previously compressed pages
927 */
928static noinline void async_cow_submit(struct btrfs_work *work)
929{
930 struct async_cow *async_cow;
931 struct btrfs_root *root;
932 unsigned long nr_pages;
933
934 async_cow = container_of(work, struct async_cow, work);
935
936 root = async_cow->root;
937 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
938 PAGE_CACHE_SHIFT;
939
940 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
941
942 if (atomic_read(&root->fs_info->async_delalloc_pages) <
943 5 * 1042 * 1024 &&
944 waitqueue_active(&root->fs_info->async_submit_wait))
945 wake_up(&root->fs_info->async_submit_wait);
946
d397712b 947 if (async_cow->inode)
771ed689 948 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 949}
c8b97818 950
771ed689
CM
951static noinline void async_cow_free(struct btrfs_work *work)
952{
953 struct async_cow *async_cow;
954 async_cow = container_of(work, struct async_cow, work);
955 kfree(async_cow);
956}
957
958static int cow_file_range_async(struct inode *inode, struct page *locked_page,
959 u64 start, u64 end, int *page_started,
960 unsigned long *nr_written)
961{
962 struct async_cow *async_cow;
963 struct btrfs_root *root = BTRFS_I(inode)->root;
964 unsigned long nr_pages;
965 u64 cur_end;
966 int limit = 10 * 1024 * 1042;
967
a3429ab7
CM
968 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
969 1, 0, NULL, GFP_NOFS);
d397712b 970 while (start < end) {
771ed689 971 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 972 BUG_ON(!async_cow);
771ed689
CM
973 async_cow->inode = inode;
974 async_cow->root = root;
975 async_cow->locked_page = locked_page;
976 async_cow->start = start;
977
6cbff00f 978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
979 cur_end = end;
980 else
981 cur_end = min(end, start + 512 * 1024 - 1);
982
983 async_cow->end = cur_end;
984 INIT_LIST_HEAD(&async_cow->extents);
985
986 async_cow->work.func = async_cow_start;
987 async_cow->work.ordered_func = async_cow_submit;
988 async_cow->work.ordered_free = async_cow_free;
989 async_cow->work.flags = 0;
990
771ed689
CM
991 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
992 PAGE_CACHE_SHIFT;
993 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
994
995 btrfs_queue_worker(&root->fs_info->delalloc_workers,
996 &async_cow->work);
997
998 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) <
1001 limit));
1002 }
1003
d397712b 1004 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1005 atomic_read(&root->fs_info->async_delalloc_pages)) {
1006 wait_event(root->fs_info->async_submit_wait,
1007 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1008 0));
1009 }
1010
1011 *nr_written += nr_pages;
1012 start = cur_end + 1;
1013 }
1014 *page_started = 1;
1015 return 0;
be20aa9d
CM
1016}
1017
d397712b 1018static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1019 u64 bytenr, u64 num_bytes)
1020{
1021 int ret;
1022 struct btrfs_ordered_sum *sums;
1023 LIST_HEAD(list);
1024
07d400a6 1025 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1026 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1027 if (ret == 0 && list_empty(&list))
1028 return 0;
1029
1030 while (!list_empty(&list)) {
1031 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1032 list_del(&sums->list);
1033 kfree(sums);
1034 }
1035 return 1;
1036}
1037
d352ac68
CM
1038/*
1039 * when nowcow writeback call back. This checks for snapshots or COW copies
1040 * of the extents that exist in the file, and COWs the file as required.
1041 *
1042 * If no cow copies or snapshots exist, we write directly to the existing
1043 * blocks on disk
1044 */
7f366cfe
CM
1045static noinline int run_delalloc_nocow(struct inode *inode,
1046 struct page *locked_page,
771ed689
CM
1047 u64 start, u64 end, int *page_started, int force,
1048 unsigned long *nr_written)
be20aa9d 1049{
be20aa9d 1050 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1051 struct btrfs_trans_handle *trans;
be20aa9d 1052 struct extent_buffer *leaf;
be20aa9d 1053 struct btrfs_path *path;
80ff3856 1054 struct btrfs_file_extent_item *fi;
be20aa9d 1055 struct btrfs_key found_key;
80ff3856
YZ
1056 u64 cow_start;
1057 u64 cur_offset;
1058 u64 extent_end;
5d4f98a2 1059 u64 extent_offset;
80ff3856
YZ
1060 u64 disk_bytenr;
1061 u64 num_bytes;
1062 int extent_type;
1063 int ret;
d899e052 1064 int type;
80ff3856
YZ
1065 int nocow;
1066 int check_prev = 1;
82d5902d 1067 bool nolock;
33345d01 1068 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1069
1070 path = btrfs_alloc_path();
d8926bb3
MF
1071 if (!path)
1072 return -ENOMEM;
82d5902d 1073
2cf8572d 1074 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1075
1076 if (nolock)
7a7eaa40 1077 trans = btrfs_join_transaction_nolock(root);
82d5902d 1078 else
7a7eaa40 1079 trans = btrfs_join_transaction(root);
ff5714cc 1080
3612b495 1081 BUG_ON(IS_ERR(trans));
74b21075 1082 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1083
80ff3856
YZ
1084 cow_start = (u64)-1;
1085 cur_offset = start;
1086 while (1) {
33345d01 1087 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1088 cur_offset, 0);
1089 BUG_ON(ret < 0);
1090 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1091 leaf = path->nodes[0];
1092 btrfs_item_key_to_cpu(leaf, &found_key,
1093 path->slots[0] - 1);
33345d01 1094 if (found_key.objectid == ino &&
80ff3856
YZ
1095 found_key.type == BTRFS_EXTENT_DATA_KEY)
1096 path->slots[0]--;
1097 }
1098 check_prev = 0;
1099next_slot:
1100 leaf = path->nodes[0];
1101 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1102 ret = btrfs_next_leaf(root, path);
1103 if (ret < 0)
1104 BUG_ON(1);
1105 if (ret > 0)
1106 break;
1107 leaf = path->nodes[0];
1108 }
be20aa9d 1109
80ff3856
YZ
1110 nocow = 0;
1111 disk_bytenr = 0;
17d217fe 1112 num_bytes = 0;
80ff3856
YZ
1113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1114
33345d01 1115 if (found_key.objectid > ino ||
80ff3856
YZ
1116 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1117 found_key.offset > end)
1118 break;
1119
1120 if (found_key.offset > cur_offset) {
1121 extent_end = found_key.offset;
e9061e21 1122 extent_type = 0;
80ff3856
YZ
1123 goto out_check;
1124 }
1125
1126 fi = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_file_extent_item);
1128 extent_type = btrfs_file_extent_type(leaf, fi);
1129
d899e052
YZ
1130 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1131 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1132 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1133 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1134 extent_end = found_key.offset +
1135 btrfs_file_extent_num_bytes(leaf, fi);
1136 if (extent_end <= start) {
1137 path->slots[0]++;
1138 goto next_slot;
1139 }
17d217fe
YZ
1140 if (disk_bytenr == 0)
1141 goto out_check;
80ff3856
YZ
1142 if (btrfs_file_extent_compression(leaf, fi) ||
1143 btrfs_file_extent_encryption(leaf, fi) ||
1144 btrfs_file_extent_other_encoding(leaf, fi))
1145 goto out_check;
d899e052
YZ
1146 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1147 goto out_check;
d2fb3437 1148 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1149 goto out_check;
33345d01 1150 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1151 found_key.offset -
1152 extent_offset, disk_bytenr))
17d217fe 1153 goto out_check;
5d4f98a2 1154 disk_bytenr += extent_offset;
17d217fe
YZ
1155 disk_bytenr += cur_offset - found_key.offset;
1156 num_bytes = min(end + 1, extent_end) - cur_offset;
1157 /*
1158 * force cow if csum exists in the range.
1159 * this ensure that csum for a given extent are
1160 * either valid or do not exist.
1161 */
1162 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1163 goto out_check;
80ff3856
YZ
1164 nocow = 1;
1165 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1166 extent_end = found_key.offset +
1167 btrfs_file_extent_inline_len(leaf, fi);
1168 extent_end = ALIGN(extent_end, root->sectorsize);
1169 } else {
1170 BUG_ON(1);
1171 }
1172out_check:
1173 if (extent_end <= start) {
1174 path->slots[0]++;
1175 goto next_slot;
1176 }
1177 if (!nocow) {
1178 if (cow_start == (u64)-1)
1179 cow_start = cur_offset;
1180 cur_offset = extent_end;
1181 if (cur_offset > end)
1182 break;
1183 path->slots[0]++;
1184 goto next_slot;
7ea394f1
YZ
1185 }
1186
b3b4aa74 1187 btrfs_release_path(path);
80ff3856
YZ
1188 if (cow_start != (u64)-1) {
1189 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1190 found_key.offset - 1, page_started,
1191 nr_written, 1);
80ff3856
YZ
1192 BUG_ON(ret);
1193 cow_start = (u64)-1;
7ea394f1 1194 }
80ff3856 1195
d899e052
YZ
1196 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1197 struct extent_map *em;
1198 struct extent_map_tree *em_tree;
1199 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1200 em = alloc_extent_map();
c26a9203 1201 BUG_ON(!em);
d899e052 1202 em->start = cur_offset;
445a6944 1203 em->orig_start = em->start;
d899e052
YZ
1204 em->len = num_bytes;
1205 em->block_len = num_bytes;
1206 em->block_start = disk_bytenr;
1207 em->bdev = root->fs_info->fs_devices->latest_bdev;
1208 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1209 while (1) {
890871be 1210 write_lock(&em_tree->lock);
d899e052 1211 ret = add_extent_mapping(em_tree, em);
890871be 1212 write_unlock(&em_tree->lock);
d899e052
YZ
1213 if (ret != -EEXIST) {
1214 free_extent_map(em);
1215 break;
1216 }
1217 btrfs_drop_extent_cache(inode, em->start,
1218 em->start + em->len - 1, 0);
1219 }
1220 type = BTRFS_ORDERED_PREALLOC;
1221 } else {
1222 type = BTRFS_ORDERED_NOCOW;
1223 }
80ff3856
YZ
1224
1225 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1226 num_bytes, num_bytes, type);
1227 BUG_ON(ret);
771ed689 1228
efa56464
YZ
1229 if (root->root_key.objectid ==
1230 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1231 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1232 num_bytes);
1233 BUG_ON(ret);
1234 }
1235
d899e052 1236 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1237 cur_offset, cur_offset + num_bytes - 1,
1238 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1239 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1240 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1241 cur_offset = extent_end;
1242 if (cur_offset > end)
1243 break;
be20aa9d 1244 }
b3b4aa74 1245 btrfs_release_path(path);
80ff3856
YZ
1246
1247 if (cur_offset <= end && cow_start == (u64)-1)
1248 cow_start = cur_offset;
1249 if (cow_start != (u64)-1) {
1250 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1251 page_started, nr_written, 1);
80ff3856
YZ
1252 BUG_ON(ret);
1253 }
1254
0cb59c99
JB
1255 if (nolock) {
1256 ret = btrfs_end_transaction_nolock(trans, root);
1257 BUG_ON(ret);
1258 } else {
1259 ret = btrfs_end_transaction(trans, root);
1260 BUG_ON(ret);
1261 }
7ea394f1 1262 btrfs_free_path(path);
80ff3856 1263 return 0;
be20aa9d
CM
1264}
1265
d352ac68
CM
1266/*
1267 * extent_io.c call back to do delayed allocation processing
1268 */
c8b97818 1269static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1270 u64 start, u64 end, int *page_started,
1271 unsigned long *nr_written)
be20aa9d 1272{
be20aa9d 1273 int ret;
7f366cfe 1274 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1275
6cbff00f 1276 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1277 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1278 page_started, 1, nr_written);
6cbff00f 1279 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1280 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1281 page_started, 0, nr_written);
1e701a32 1282 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1283 !(BTRFS_I(inode)->force_compress) &&
1284 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1285 ret = cow_file_range(inode, locked_page, start, end,
1286 page_started, nr_written, 1);
be20aa9d 1287 else
771ed689 1288 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1289 page_started, nr_written);
b888db2b
CM
1290 return ret;
1291}
1292
1bf85046
JM
1293static void btrfs_split_extent_hook(struct inode *inode,
1294 struct extent_state *orig, u64 split)
9ed74f2d 1295{
0ca1f7ce 1296 /* not delalloc, ignore it */
9ed74f2d 1297 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1298 return;
9ed74f2d 1299
9e0baf60
JB
1300 spin_lock(&BTRFS_I(inode)->lock);
1301 BTRFS_I(inode)->outstanding_extents++;
1302 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1303}
1304
1305/*
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1310 */
1bf85046
JM
1311static void btrfs_merge_extent_hook(struct inode *inode,
1312 struct extent_state *new,
1313 struct extent_state *other)
9ed74f2d 1314{
9ed74f2d
JB
1315 /* not delalloc, ignore it */
1316 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1317 return;
9ed74f2d 1318
9e0baf60
JB
1319 spin_lock(&BTRFS_I(inode)->lock);
1320 BTRFS_I(inode)->outstanding_extents--;
1321 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1322}
1323
d352ac68
CM
1324/*
1325 * extent_io.c set_bit_hook, used to track delayed allocation
1326 * bytes in this file, and to maintain the list of inodes that
1327 * have pending delalloc work to be done.
1328 */
1bf85046
JM
1329static void btrfs_set_bit_hook(struct inode *inode,
1330 struct extent_state *state, int *bits)
291d673e 1331{
9ed74f2d 1332
75eff68e
CM
1333 /*
1334 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1335 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1336 * bit, which is only set or cleared with irqs on
1337 */
0ca1f7ce 1338 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1339 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1340 u64 len = state->end + 1 - state->start;
2cf8572d 1341 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1342
9e0baf60 1343 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1344 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1345 } else {
1346 spin_lock(&BTRFS_I(inode)->lock);
1347 BTRFS_I(inode)->outstanding_extents++;
1348 spin_unlock(&BTRFS_I(inode)->lock);
1349 }
287a0ab9 1350
75eff68e 1351 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1352 BTRFS_I(inode)->delalloc_bytes += len;
1353 root->fs_info->delalloc_bytes += len;
0cb59c99 1354 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1355 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1356 &root->fs_info->delalloc_inodes);
1357 }
75eff68e 1358 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1359 }
291d673e
CM
1360}
1361
d352ac68
CM
1362/*
1363 * extent_io.c clear_bit_hook, see set_bit_hook for why
1364 */
1bf85046
JM
1365static void btrfs_clear_bit_hook(struct inode *inode,
1366 struct extent_state *state, int *bits)
291d673e 1367{
75eff68e
CM
1368 /*
1369 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1370 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1371 * bit, which is only set or cleared with irqs on
1372 */
0ca1f7ce 1373 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1374 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1375 u64 len = state->end + 1 - state->start;
2cf8572d 1376 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1377
9e0baf60 1378 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1379 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1380 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1381 spin_lock(&BTRFS_I(inode)->lock);
1382 BTRFS_I(inode)->outstanding_extents--;
1383 spin_unlock(&BTRFS_I(inode)->lock);
1384 }
0ca1f7ce
YZ
1385
1386 if (*bits & EXTENT_DO_ACCOUNTING)
1387 btrfs_delalloc_release_metadata(inode, len);
1388
0cb59c99
JB
1389 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1390 && do_list)
0ca1f7ce 1391 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1392
75eff68e 1393 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1394 root->fs_info->delalloc_bytes -= len;
1395 BTRFS_I(inode)->delalloc_bytes -= len;
1396
0cb59c99 1397 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1398 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1399 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1400 }
75eff68e 1401 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1402 }
291d673e
CM
1403}
1404
d352ac68
CM
1405/*
1406 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1407 * we don't create bios that span stripes or chunks
1408 */
239b14b3 1409int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1410 size_t size, struct bio *bio,
1411 unsigned long bio_flags)
239b14b3
CM
1412{
1413 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1414 struct btrfs_mapping_tree *map_tree;
a62b9401 1415 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1416 u64 length = 0;
1417 u64 map_length;
239b14b3
CM
1418 int ret;
1419
771ed689
CM
1420 if (bio_flags & EXTENT_BIO_COMPRESSED)
1421 return 0;
1422
f2d8d74d 1423 length = bio->bi_size;
239b14b3
CM
1424 map_tree = &root->fs_info->mapping_tree;
1425 map_length = length;
cea9e445 1426 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1427 &map_length, NULL, 0);
cea9e445 1428
d397712b 1429 if (map_length < length + size)
239b14b3 1430 return 1;
411fc6bc 1431 return ret;
239b14b3
CM
1432}
1433
d352ac68
CM
1434/*
1435 * in order to insert checksums into the metadata in large chunks,
1436 * we wait until bio submission time. All the pages in the bio are
1437 * checksummed and sums are attached onto the ordered extent record.
1438 *
1439 * At IO completion time the cums attached on the ordered extent record
1440 * are inserted into the btree
1441 */
d397712b
CM
1442static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1443 struct bio *bio, int mirror_num,
eaf25d93
CM
1444 unsigned long bio_flags,
1445 u64 bio_offset)
065631f6 1446{
065631f6 1447 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1448 int ret = 0;
e015640f 1449
d20f7043 1450 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1451 BUG_ON(ret);
4a69a410
CM
1452 return 0;
1453}
e015640f 1454
4a69a410
CM
1455/*
1456 * in order to insert checksums into the metadata in large chunks,
1457 * we wait until bio submission time. All the pages in the bio are
1458 * checksummed and sums are attached onto the ordered extent record.
1459 *
1460 * At IO completion time the cums attached on the ordered extent record
1461 * are inserted into the btree
1462 */
b2950863 1463static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1464 int mirror_num, unsigned long bio_flags,
1465 u64 bio_offset)
4a69a410
CM
1466{
1467 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1468 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1469}
1470
d352ac68 1471/*
cad321ad
CM
1472 * extent_io.c submission hook. This does the right thing for csum calculation
1473 * on write, or reading the csums from the tree before a read
d352ac68 1474 */
b2950863 1475static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1476 int mirror_num, unsigned long bio_flags,
1477 u64 bio_offset)
44b8bd7e
CM
1478{
1479 struct btrfs_root *root = BTRFS_I(inode)->root;
1480 int ret = 0;
19b9bdb0 1481 int skip_sum;
44b8bd7e 1482
6cbff00f 1483 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1484
2cf8572d 1485 if (btrfs_is_free_space_inode(root, inode))
0cb59c99
JB
1486 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1487 else
1488 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1489 BUG_ON(ret);
065631f6 1490
7b6d91da 1491 if (!(rw & REQ_WRITE)) {
d20f7043 1492 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1493 return btrfs_submit_compressed_read(inode, bio,
1494 mirror_num, bio_flags);
c2db1073
TI
1495 } else if (!skip_sum) {
1496 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1497 if (ret)
1498 return ret;
1499 }
4d1b5fb4 1500 goto mapit;
19b9bdb0 1501 } else if (!skip_sum) {
17d217fe
YZ
1502 /* csum items have already been cloned */
1503 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1504 goto mapit;
19b9bdb0
CM
1505 /* we're doing a write, do the async checksumming */
1506 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1507 inode, rw, bio, mirror_num,
eaf25d93
CM
1508 bio_flags, bio_offset,
1509 __btrfs_submit_bio_start,
4a69a410 1510 __btrfs_submit_bio_done);
19b9bdb0
CM
1511 }
1512
0b86a832 1513mapit:
8b712842 1514 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1515}
6885f308 1516
d352ac68
CM
1517/*
1518 * given a list of ordered sums record them in the inode. This happens
1519 * at IO completion time based on sums calculated at bio submission time.
1520 */
ba1da2f4 1521static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1522 struct inode *inode, u64 file_offset,
1523 struct list_head *list)
1524{
e6dcd2dc
CM
1525 struct btrfs_ordered_sum *sum;
1526
c6e30871 1527 list_for_each_entry(sum, list, list) {
d20f7043
CM
1528 btrfs_csum_file_blocks(trans,
1529 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1530 }
1531 return 0;
1532}
1533
2ac55d41
JB
1534int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1535 struct extent_state **cached_state)
ea8c2819 1536{
d397712b 1537 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1538 WARN_ON(1);
ea8c2819 1539 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1540 cached_state, GFP_NOFS);
ea8c2819
CM
1541}
1542
d352ac68 1543/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1544struct btrfs_writepage_fixup {
1545 struct page *page;
1546 struct btrfs_work work;
1547};
1548
b2950863 1549static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1550{
1551 struct btrfs_writepage_fixup *fixup;
1552 struct btrfs_ordered_extent *ordered;
2ac55d41 1553 struct extent_state *cached_state = NULL;
247e743c
CM
1554 struct page *page;
1555 struct inode *inode;
1556 u64 page_start;
1557 u64 page_end;
1558
1559 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1560 page = fixup->page;
4a096752 1561again:
247e743c
CM
1562 lock_page(page);
1563 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1564 ClearPageChecked(page);
1565 goto out_page;
1566 }
1567
1568 inode = page->mapping->host;
1569 page_start = page_offset(page);
1570 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1571
2ac55d41
JB
1572 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1573 &cached_state, GFP_NOFS);
4a096752
CM
1574
1575 /* already ordered? We're done */
8b62b72b 1576 if (PagePrivate2(page))
247e743c 1577 goto out;
4a096752
CM
1578
1579 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1580 if (ordered) {
2ac55d41
JB
1581 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1582 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1583 unlock_page(page);
1584 btrfs_start_ordered_extent(inode, ordered, 1);
1585 goto again;
1586 }
247e743c 1587
0ca1f7ce 1588 BUG();
2ac55d41 1589 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1590 ClearPageChecked(page);
1591out:
2ac55d41
JB
1592 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1593 &cached_state, GFP_NOFS);
247e743c
CM
1594out_page:
1595 unlock_page(page);
1596 page_cache_release(page);
b897abec 1597 kfree(fixup);
247e743c
CM
1598}
1599
1600/*
1601 * There are a few paths in the higher layers of the kernel that directly
1602 * set the page dirty bit without asking the filesystem if it is a
1603 * good idea. This causes problems because we want to make sure COW
1604 * properly happens and the data=ordered rules are followed.
1605 *
c8b97818 1606 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1607 * hasn't been properly setup for IO. We kick off an async process
1608 * to fix it up. The async helper will wait for ordered extents, set
1609 * the delalloc bit and make it safe to write the page.
1610 */
b2950863 1611static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1612{
1613 struct inode *inode = page->mapping->host;
1614 struct btrfs_writepage_fixup *fixup;
1615 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1616
8b62b72b
CM
1617 /* this page is properly in the ordered list */
1618 if (TestClearPagePrivate2(page))
247e743c
CM
1619 return 0;
1620
1621 if (PageChecked(page))
1622 return -EAGAIN;
1623
1624 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1625 if (!fixup)
1626 return -EAGAIN;
f421950f 1627
247e743c
CM
1628 SetPageChecked(page);
1629 page_cache_get(page);
1630 fixup->work.func = btrfs_writepage_fixup_worker;
1631 fixup->page = page;
1632 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1633 return -EAGAIN;
1634}
1635
d899e052
YZ
1636static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1637 struct inode *inode, u64 file_pos,
1638 u64 disk_bytenr, u64 disk_num_bytes,
1639 u64 num_bytes, u64 ram_bytes,
1640 u8 compression, u8 encryption,
1641 u16 other_encoding, int extent_type)
1642{
1643 struct btrfs_root *root = BTRFS_I(inode)->root;
1644 struct btrfs_file_extent_item *fi;
1645 struct btrfs_path *path;
1646 struct extent_buffer *leaf;
1647 struct btrfs_key ins;
1648 u64 hint;
1649 int ret;
1650
1651 path = btrfs_alloc_path();
d8926bb3
MF
1652 if (!path)
1653 return -ENOMEM;
d899e052 1654
b9473439 1655 path->leave_spinning = 1;
a1ed835e
CM
1656
1657 /*
1658 * we may be replacing one extent in the tree with another.
1659 * The new extent is pinned in the extent map, and we don't want
1660 * to drop it from the cache until it is completely in the btree.
1661 *
1662 * So, tell btrfs_drop_extents to leave this extent in the cache.
1663 * the caller is expected to unpin it and allow it to be merged
1664 * with the others.
1665 */
920bbbfb
YZ
1666 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1667 &hint, 0);
d899e052
YZ
1668 BUG_ON(ret);
1669
33345d01 1670 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1671 ins.offset = file_pos;
1672 ins.type = BTRFS_EXTENT_DATA_KEY;
1673 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1674 BUG_ON(ret);
1675 leaf = path->nodes[0];
1676 fi = btrfs_item_ptr(leaf, path->slots[0],
1677 struct btrfs_file_extent_item);
1678 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1679 btrfs_set_file_extent_type(leaf, fi, extent_type);
1680 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1681 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1682 btrfs_set_file_extent_offset(leaf, fi, 0);
1683 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1684 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1685 btrfs_set_file_extent_compression(leaf, fi, compression);
1686 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1687 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1688
1689 btrfs_unlock_up_safe(path, 1);
1690 btrfs_set_lock_blocking(leaf);
1691
d899e052
YZ
1692 btrfs_mark_buffer_dirty(leaf);
1693
1694 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1695
1696 ins.objectid = disk_bytenr;
1697 ins.offset = disk_num_bytes;
1698 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1699 ret = btrfs_alloc_reserved_file_extent(trans, root,
1700 root->root_key.objectid,
33345d01 1701 btrfs_ino(inode), file_pos, &ins);
d899e052 1702 BUG_ON(ret);
d899e052 1703 btrfs_free_path(path);
b9473439 1704
d899e052
YZ
1705 return 0;
1706}
1707
5d13a98f
CM
1708/*
1709 * helper function for btrfs_finish_ordered_io, this
1710 * just reads in some of the csum leaves to prime them into ram
1711 * before we start the transaction. It limits the amount of btree
1712 * reads required while inside the transaction.
1713 */
d352ac68
CM
1714/* as ordered data IO finishes, this gets called so we can finish
1715 * an ordered extent if the range of bytes in the file it covers are
1716 * fully written.
1717 */
211f90e6 1718static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1719{
e6dcd2dc 1720 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1721 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1722 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1723 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1724 struct extent_state *cached_state = NULL;
261507a0 1725 int compress_type = 0;
e6dcd2dc 1726 int ret;
82d5902d 1727 bool nolock;
e6dcd2dc 1728
5a1a3df1
JB
1729 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1730 end - start + 1);
ba1da2f4 1731 if (!ret)
e6dcd2dc 1732 return 0;
e6dcd2dc 1733 BUG_ON(!ordered_extent);
efd049fb 1734
2cf8572d 1735 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1736
c2167754
YZ
1737 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1738 BUG_ON(!list_empty(&ordered_extent->list));
1739 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1740 if (!ret) {
0cb59c99 1741 if (nolock)
7a7eaa40 1742 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1743 else
7a7eaa40 1744 trans = btrfs_join_transaction(root);
3612b495 1745 BUG_ON(IS_ERR(trans));
0ca1f7ce 1746 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1747 ret = btrfs_update_inode_fallback(trans, root, inode);
c2167754 1748 BUG_ON(ret);
c2167754
YZ
1749 }
1750 goto out;
1751 }
e6dcd2dc 1752
2ac55d41
JB
1753 lock_extent_bits(io_tree, ordered_extent->file_offset,
1754 ordered_extent->file_offset + ordered_extent->len - 1,
1755 0, &cached_state, GFP_NOFS);
e6dcd2dc 1756
0cb59c99 1757 if (nolock)
7a7eaa40 1758 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1759 else
7a7eaa40 1760 trans = btrfs_join_transaction(root);
3612b495 1761 BUG_ON(IS_ERR(trans));
0ca1f7ce 1762 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1763
c8b97818 1764 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1765 compress_type = ordered_extent->compress_type;
d899e052 1766 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1767 BUG_ON(compress_type);
920bbbfb 1768 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1769 ordered_extent->file_offset,
1770 ordered_extent->file_offset +
1771 ordered_extent->len);
1772 BUG_ON(ret);
1773 } else {
0af3d00b 1774 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1775 ret = insert_reserved_file_extent(trans, inode,
1776 ordered_extent->file_offset,
1777 ordered_extent->start,
1778 ordered_extent->disk_len,
1779 ordered_extent->len,
1780 ordered_extent->len,
261507a0 1781 compress_type, 0, 0,
d899e052 1782 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1783 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1784 ordered_extent->file_offset,
1785 ordered_extent->len);
d899e052
YZ
1786 BUG_ON(ret);
1787 }
2ac55d41
JB
1788 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1789 ordered_extent->file_offset +
1790 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1791
e6dcd2dc
CM
1792 add_pending_csums(trans, inode, ordered_extent->file_offset,
1793 &ordered_extent->list);
1794
1ef30be1 1795 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1796 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1797 ret = btrfs_update_inode_fallback(trans, root, inode);
1ef30be1
JB
1798 BUG_ON(ret);
1799 }
1800 ret = 0;
c2167754 1801out:
5b0e95bf 1802 if (root != root->fs_info->tree_root)
0cb59c99 1803 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
5b0e95bf
JB
1804 if (trans) {
1805 if (nolock)
0cb59c99 1806 btrfs_end_transaction_nolock(trans, root);
5b0e95bf 1807 else
0cb59c99
JB
1808 btrfs_end_transaction(trans, root);
1809 }
1810
e6dcd2dc
CM
1811 /* once for us */
1812 btrfs_put_ordered_extent(ordered_extent);
1813 /* once for the tree */
1814 btrfs_put_ordered_extent(ordered_extent);
1815
e6dcd2dc
CM
1816 return 0;
1817}
1818
b2950863 1819static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1820 struct extent_state *state, int uptodate)
1821{
1abe9b8a 1822 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1823
8b62b72b 1824 ClearPagePrivate2(page);
211f90e6
CM
1825 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1826}
1827
d352ac68
CM
1828/*
1829 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
1830 * if there's a match, we allow the bio to finish. If not, the code in
1831 * extent_io.c will try to find good copies for us.
d352ac68 1832 */
b2950863 1833static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1834 struct extent_state *state)
07157aac 1835{
35ebb934 1836 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1837 struct inode *inode = page->mapping->host;
d1310b2e 1838 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1839 char *kaddr;
aadfeb6e 1840 u64 private = ~(u32)0;
07157aac 1841 int ret;
ff79f819
CM
1842 struct btrfs_root *root = BTRFS_I(inode)->root;
1843 u32 csum = ~(u32)0;
d1310b2e 1844
d20f7043
CM
1845 if (PageChecked(page)) {
1846 ClearPageChecked(page);
1847 goto good;
1848 }
6cbff00f
CH
1849
1850 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1851 goto good;
17d217fe
YZ
1852
1853 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1854 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1855 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1856 GFP_NOFS);
b6cda9bc 1857 return 0;
17d217fe 1858 }
d20f7043 1859
c2e639f0 1860 if (state && state->start == start) {
70dec807
CM
1861 private = state->private;
1862 ret = 0;
1863 } else {
1864 ret = get_state_private(io_tree, start, &private);
1865 }
9ab86c8e 1866 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1867 if (ret)
07157aac 1868 goto zeroit;
d397712b 1869
ff79f819
CM
1870 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1871 btrfs_csum_final(csum, (char *)&csum);
d397712b 1872 if (csum != private)
07157aac 1873 goto zeroit;
d397712b 1874
9ab86c8e 1875 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1876good:
07157aac
CM
1877 return 0;
1878
1879zeroit:
945d8962 1880 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
1881 "private %llu\n",
1882 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
1883 (unsigned long long)start, csum,
1884 (unsigned long long)private);
db94535d
CM
1885 memset(kaddr + offset, 1, end - start + 1);
1886 flush_dcache_page(page);
9ab86c8e 1887 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1888 if (private == 0)
1889 return 0;
7e38326f 1890 return -EIO;
07157aac 1891}
b888db2b 1892
24bbcf04
YZ
1893struct delayed_iput {
1894 struct list_head list;
1895 struct inode *inode;
1896};
1897
1898void btrfs_add_delayed_iput(struct inode *inode)
1899{
1900 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1901 struct delayed_iput *delayed;
1902
1903 if (atomic_add_unless(&inode->i_count, -1, 1))
1904 return;
1905
1906 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1907 delayed->inode = inode;
1908
1909 spin_lock(&fs_info->delayed_iput_lock);
1910 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1911 spin_unlock(&fs_info->delayed_iput_lock);
1912}
1913
1914void btrfs_run_delayed_iputs(struct btrfs_root *root)
1915{
1916 LIST_HEAD(list);
1917 struct btrfs_fs_info *fs_info = root->fs_info;
1918 struct delayed_iput *delayed;
1919 int empty;
1920
1921 spin_lock(&fs_info->delayed_iput_lock);
1922 empty = list_empty(&fs_info->delayed_iputs);
1923 spin_unlock(&fs_info->delayed_iput_lock);
1924 if (empty)
1925 return;
1926
1927 down_read(&root->fs_info->cleanup_work_sem);
1928 spin_lock(&fs_info->delayed_iput_lock);
1929 list_splice_init(&fs_info->delayed_iputs, &list);
1930 spin_unlock(&fs_info->delayed_iput_lock);
1931
1932 while (!list_empty(&list)) {
1933 delayed = list_entry(list.next, struct delayed_iput, list);
1934 list_del(&delayed->list);
1935 iput(delayed->inode);
1936 kfree(delayed);
1937 }
1938 up_read(&root->fs_info->cleanup_work_sem);
1939}
1940
d68fc57b
YZ
1941enum btrfs_orphan_cleanup_state {
1942 ORPHAN_CLEANUP_STARTED = 1,
1943 ORPHAN_CLEANUP_DONE = 2,
1944};
1945
1946/*
1947 * This is called in transaction commmit time. If there are no orphan
1948 * files in the subvolume, it removes orphan item and frees block_rsv
1949 * structure.
1950 */
1951void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1952 struct btrfs_root *root)
1953{
1954 int ret;
1955
1956 if (!list_empty(&root->orphan_list) ||
1957 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1958 return;
1959
1960 if (root->orphan_item_inserted &&
1961 btrfs_root_refs(&root->root_item) > 0) {
1962 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1963 root->root_key.objectid);
1964 BUG_ON(ret);
1965 root->orphan_item_inserted = 0;
1966 }
1967
1968 if (root->orphan_block_rsv) {
1969 WARN_ON(root->orphan_block_rsv->size > 0);
1970 btrfs_free_block_rsv(root, root->orphan_block_rsv);
1971 root->orphan_block_rsv = NULL;
1972 }
1973}
1974
7b128766
JB
1975/*
1976 * This creates an orphan entry for the given inode in case something goes
1977 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
1978 *
1979 * NOTE: caller of this function should reserve 5 units of metadata for
1980 * this function.
7b128766
JB
1981 */
1982int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1983{
1984 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
1985 struct btrfs_block_rsv *block_rsv = NULL;
1986 int reserve = 0;
1987 int insert = 0;
1988 int ret;
7b128766 1989
d68fc57b
YZ
1990 if (!root->orphan_block_rsv) {
1991 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
1992 if (!block_rsv)
1993 return -ENOMEM;
d68fc57b 1994 }
7b128766 1995
d68fc57b
YZ
1996 spin_lock(&root->orphan_lock);
1997 if (!root->orphan_block_rsv) {
1998 root->orphan_block_rsv = block_rsv;
1999 } else if (block_rsv) {
2000 btrfs_free_block_rsv(root, block_rsv);
2001 block_rsv = NULL;
7b128766 2002 }
7b128766 2003
d68fc57b
YZ
2004 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2005 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2006#if 0
2007 /*
2008 * For proper ENOSPC handling, we should do orphan
2009 * cleanup when mounting. But this introduces backward
2010 * compatibility issue.
2011 */
2012 if (!xchg(&root->orphan_item_inserted, 1))
2013 insert = 2;
2014 else
2015 insert = 1;
2016#endif
2017 insert = 1;
7b128766
JB
2018 }
2019
d68fc57b
YZ
2020 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2021 BTRFS_I(inode)->orphan_meta_reserved = 1;
2022 reserve = 1;
2023 }
2024 spin_unlock(&root->orphan_lock);
7b128766 2025
d68fc57b
YZ
2026 /* grab metadata reservation from transaction handle */
2027 if (reserve) {
2028 ret = btrfs_orphan_reserve_metadata(trans, inode);
2029 BUG_ON(ret);
2030 }
7b128766 2031
d68fc57b
YZ
2032 /* insert an orphan item to track this unlinked/truncated file */
2033 if (insert >= 1) {
33345d01 2034 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
ee4d89f0 2035 BUG_ON(ret && ret != -EEXIST);
d68fc57b
YZ
2036 }
2037
2038 /* insert an orphan item to track subvolume contains orphan files */
2039 if (insert >= 2) {
2040 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2041 root->root_key.objectid);
2042 BUG_ON(ret);
2043 }
2044 return 0;
7b128766
JB
2045}
2046
2047/*
2048 * We have done the truncate/delete so we can go ahead and remove the orphan
2049 * item for this particular inode.
2050 */
2051int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2052{
2053 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2054 int delete_item = 0;
2055 int release_rsv = 0;
7b128766
JB
2056 int ret = 0;
2057
d68fc57b
YZ
2058 spin_lock(&root->orphan_lock);
2059 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2060 list_del_init(&BTRFS_I(inode)->i_orphan);
2061 delete_item = 1;
7b128766
JB
2062 }
2063
d68fc57b
YZ
2064 if (BTRFS_I(inode)->orphan_meta_reserved) {
2065 BTRFS_I(inode)->orphan_meta_reserved = 0;
2066 release_rsv = 1;
7b128766 2067 }
d68fc57b 2068 spin_unlock(&root->orphan_lock);
7b128766 2069
d68fc57b 2070 if (trans && delete_item) {
33345d01 2071 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2072 BUG_ON(ret);
2073 }
7b128766 2074
d68fc57b
YZ
2075 if (release_rsv)
2076 btrfs_orphan_release_metadata(inode);
7b128766 2077
d68fc57b 2078 return 0;
7b128766
JB
2079}
2080
2081/*
2082 * this cleans up any orphans that may be left on the list from the last use
2083 * of this root.
2084 */
66b4ffd1 2085int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2086{
2087 struct btrfs_path *path;
2088 struct extent_buffer *leaf;
7b128766
JB
2089 struct btrfs_key key, found_key;
2090 struct btrfs_trans_handle *trans;
2091 struct inode *inode;
8f6d7f4f 2092 u64 last_objectid = 0;
7b128766
JB
2093 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2094
d68fc57b 2095 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2096 return 0;
c71bf099
YZ
2097
2098 path = btrfs_alloc_path();
66b4ffd1
JB
2099 if (!path) {
2100 ret = -ENOMEM;
2101 goto out;
2102 }
7b128766
JB
2103 path->reada = -1;
2104
2105 key.objectid = BTRFS_ORPHAN_OBJECTID;
2106 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2107 key.offset = (u64)-1;
2108
7b128766
JB
2109 while (1) {
2110 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2111 if (ret < 0)
2112 goto out;
7b128766
JB
2113
2114 /*
2115 * if ret == 0 means we found what we were searching for, which
25985edc 2116 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2117 * find the key and see if we have stuff that matches
2118 */
2119 if (ret > 0) {
66b4ffd1 2120 ret = 0;
7b128766
JB
2121 if (path->slots[0] == 0)
2122 break;
2123 path->slots[0]--;
2124 }
2125
2126 /* pull out the item */
2127 leaf = path->nodes[0];
7b128766
JB
2128 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2129
2130 /* make sure the item matches what we want */
2131 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2132 break;
2133 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2134 break;
2135
2136 /* release the path since we're done with it */
b3b4aa74 2137 btrfs_release_path(path);
7b128766
JB
2138
2139 /*
2140 * this is where we are basically btrfs_lookup, without the
2141 * crossing root thing. we store the inode number in the
2142 * offset of the orphan item.
2143 */
8f6d7f4f
JB
2144
2145 if (found_key.offset == last_objectid) {
2146 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2147 "stopping orphan cleanup\n");
2148 ret = -EINVAL;
2149 goto out;
2150 }
2151
2152 last_objectid = found_key.offset;
2153
5d4f98a2
YZ
2154 found_key.objectid = found_key.offset;
2155 found_key.type = BTRFS_INODE_ITEM_KEY;
2156 found_key.offset = 0;
73f73415 2157 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2158 ret = PTR_RET(inode);
2159 if (ret && ret != -ESTALE)
66b4ffd1 2160 goto out;
7b128766 2161
f8e9e0b0
AJ
2162 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2163 struct btrfs_root *dead_root;
2164 struct btrfs_fs_info *fs_info = root->fs_info;
2165 int is_dead_root = 0;
2166
2167 /*
2168 * this is an orphan in the tree root. Currently these
2169 * could come from 2 sources:
2170 * a) a snapshot deletion in progress
2171 * b) a free space cache inode
2172 * We need to distinguish those two, as the snapshot
2173 * orphan must not get deleted.
2174 * find_dead_roots already ran before us, so if this
2175 * is a snapshot deletion, we should find the root
2176 * in the dead_roots list
2177 */
2178 spin_lock(&fs_info->trans_lock);
2179 list_for_each_entry(dead_root, &fs_info->dead_roots,
2180 root_list) {
2181 if (dead_root->root_key.objectid ==
2182 found_key.objectid) {
2183 is_dead_root = 1;
2184 break;
2185 }
2186 }
2187 spin_unlock(&fs_info->trans_lock);
2188 if (is_dead_root) {
2189 /* prevent this orphan from being found again */
2190 key.offset = found_key.objectid - 1;
2191 continue;
2192 }
2193 }
7b128766 2194 /*
a8c9e576
JB
2195 * Inode is already gone but the orphan item is still there,
2196 * kill the orphan item.
7b128766 2197 */
a8c9e576
JB
2198 if (ret == -ESTALE) {
2199 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2200 if (IS_ERR(trans)) {
2201 ret = PTR_ERR(trans);
2202 goto out;
2203 }
a8c9e576
JB
2204 ret = btrfs_del_orphan_item(trans, root,
2205 found_key.objectid);
2206 BUG_ON(ret);
5b21f2ed 2207 btrfs_end_transaction(trans, root);
7b128766
JB
2208 continue;
2209 }
2210
a8c9e576
JB
2211 /*
2212 * add this inode to the orphan list so btrfs_orphan_del does
2213 * the proper thing when we hit it
2214 */
2215 spin_lock(&root->orphan_lock);
2216 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2217 spin_unlock(&root->orphan_lock);
2218
7b128766
JB
2219 /* if we have links, this was a truncate, lets do that */
2220 if (inode->i_nlink) {
a41ad394
JB
2221 if (!S_ISREG(inode->i_mode)) {
2222 WARN_ON(1);
2223 iput(inode);
2224 continue;
2225 }
7b128766 2226 nr_truncate++;
660d3f6c
JB
2227 /*
2228 * Need to hold the imutex for reservation purposes, not
2229 * a huge deal here but I have a WARN_ON in
2230 * btrfs_delalloc_reserve_space to catch offenders.
2231 */
2232 mutex_lock(&inode->i_mutex);
66b4ffd1 2233 ret = btrfs_truncate(inode);
660d3f6c 2234 mutex_unlock(&inode->i_mutex);
7b128766
JB
2235 } else {
2236 nr_unlink++;
2237 }
2238
2239 /* this will do delete_inode and everything for us */
2240 iput(inode);
66b4ffd1
JB
2241 if (ret)
2242 goto out;
7b128766 2243 }
3254c876
MX
2244 /* release the path since we're done with it */
2245 btrfs_release_path(path);
2246
d68fc57b
YZ
2247 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2248
2249 if (root->orphan_block_rsv)
2250 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2251 (u64)-1);
2252
2253 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2254 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2255 if (!IS_ERR(trans))
2256 btrfs_end_transaction(trans, root);
d68fc57b 2257 }
7b128766
JB
2258
2259 if (nr_unlink)
2260 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2261 if (nr_truncate)
2262 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2263
2264out:
2265 if (ret)
2266 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2267 btrfs_free_path(path);
2268 return ret;
7b128766
JB
2269}
2270
46a53cca
CM
2271/*
2272 * very simple check to peek ahead in the leaf looking for xattrs. If we
2273 * don't find any xattrs, we know there can't be any acls.
2274 *
2275 * slot is the slot the inode is in, objectid is the objectid of the inode
2276 */
2277static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2278 int slot, u64 objectid)
2279{
2280 u32 nritems = btrfs_header_nritems(leaf);
2281 struct btrfs_key found_key;
2282 int scanned = 0;
2283
2284 slot++;
2285 while (slot < nritems) {
2286 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2287
2288 /* we found a different objectid, there must not be acls */
2289 if (found_key.objectid != objectid)
2290 return 0;
2291
2292 /* we found an xattr, assume we've got an acl */
2293 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2294 return 1;
2295
2296 /*
2297 * we found a key greater than an xattr key, there can't
2298 * be any acls later on
2299 */
2300 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2301 return 0;
2302
2303 slot++;
2304 scanned++;
2305
2306 /*
2307 * it goes inode, inode backrefs, xattrs, extents,
2308 * so if there are a ton of hard links to an inode there can
2309 * be a lot of backrefs. Don't waste time searching too hard,
2310 * this is just an optimization
2311 */
2312 if (scanned >= 8)
2313 break;
2314 }
2315 /* we hit the end of the leaf before we found an xattr or
2316 * something larger than an xattr. We have to assume the inode
2317 * has acls
2318 */
2319 return 1;
2320}
2321
d352ac68
CM
2322/*
2323 * read an inode from the btree into the in-memory inode
2324 */
5d4f98a2 2325static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2326{
2327 struct btrfs_path *path;
5f39d397 2328 struct extent_buffer *leaf;
39279cc3 2329 struct btrfs_inode_item *inode_item;
0b86a832 2330 struct btrfs_timespec *tspec;
39279cc3
CM
2331 struct btrfs_root *root = BTRFS_I(inode)->root;
2332 struct btrfs_key location;
46a53cca 2333 int maybe_acls;
618e21d5 2334 u32 rdev;
39279cc3 2335 int ret;
2f7e33d4
MX
2336 bool filled = false;
2337
2338 ret = btrfs_fill_inode(inode, &rdev);
2339 if (!ret)
2340 filled = true;
39279cc3
CM
2341
2342 path = btrfs_alloc_path();
1748f843
MF
2343 if (!path)
2344 goto make_bad;
2345
d90c7321 2346 path->leave_spinning = 1;
39279cc3 2347 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2348
39279cc3 2349 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2350 if (ret)
39279cc3 2351 goto make_bad;
39279cc3 2352
5f39d397 2353 leaf = path->nodes[0];
2f7e33d4
MX
2354
2355 if (filled)
2356 goto cache_acl;
2357
5f39d397
CM
2358 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2359 struct btrfs_inode_item);
5f39d397 2360 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2361 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
5f39d397
CM
2362 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2363 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2364 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2365
2366 tspec = btrfs_inode_atime(inode_item);
2367 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2368 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2369
2370 tspec = btrfs_inode_mtime(inode_item);
2371 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2372 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2373
2374 tspec = btrfs_inode_ctime(inode_item);
2375 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2376 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2377
a76a3cd4 2378 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2379 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2380 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2381 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2382 inode->i_rdev = 0;
5f39d397
CM
2383 rdev = btrfs_inode_rdev(leaf, inode_item);
2384
aec7477b 2385 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2386 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2387cache_acl:
46a53cca
CM
2388 /*
2389 * try to precache a NULL acl entry for files that don't have
2390 * any xattrs or acls
2391 */
33345d01
LZ
2392 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2393 btrfs_ino(inode));
72c04902
AV
2394 if (!maybe_acls)
2395 cache_no_acl(inode);
46a53cca 2396
39279cc3 2397 btrfs_free_path(path);
39279cc3 2398
39279cc3 2399 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2400 case S_IFREG:
2401 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2402 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2403 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2404 inode->i_fop = &btrfs_file_operations;
2405 inode->i_op = &btrfs_file_inode_operations;
2406 break;
2407 case S_IFDIR:
2408 inode->i_fop = &btrfs_dir_file_operations;
2409 if (root == root->fs_info->tree_root)
2410 inode->i_op = &btrfs_dir_ro_inode_operations;
2411 else
2412 inode->i_op = &btrfs_dir_inode_operations;
2413 break;
2414 case S_IFLNK:
2415 inode->i_op = &btrfs_symlink_inode_operations;
2416 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2417 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2418 break;
618e21d5 2419 default:
0279b4cd 2420 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2421 init_special_inode(inode, inode->i_mode, rdev);
2422 break;
39279cc3 2423 }
6cbff00f
CH
2424
2425 btrfs_update_iflags(inode);
39279cc3
CM
2426 return;
2427
2428make_bad:
39279cc3 2429 btrfs_free_path(path);
39279cc3
CM
2430 make_bad_inode(inode);
2431}
2432
d352ac68
CM
2433/*
2434 * given a leaf and an inode, copy the inode fields into the leaf
2435 */
e02119d5
CM
2436static void fill_inode_item(struct btrfs_trans_handle *trans,
2437 struct extent_buffer *leaf,
5f39d397 2438 struct btrfs_inode_item *item,
39279cc3
CM
2439 struct inode *inode)
2440{
5f39d397
CM
2441 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2442 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2443 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2444 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2445 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2446
2447 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2448 inode->i_atime.tv_sec);
2449 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2450 inode->i_atime.tv_nsec);
2451
2452 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2453 inode->i_mtime.tv_sec);
2454 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2455 inode->i_mtime.tv_nsec);
2456
2457 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2458 inode->i_ctime.tv_sec);
2459 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2460 inode->i_ctime.tv_nsec);
2461
a76a3cd4 2462 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2463 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2464 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2465 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2466 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2467 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2468 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2469}
2470
d352ac68
CM
2471/*
2472 * copy everything in the in-memory inode into the btree.
2473 */
2115133f 2474static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2475 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2476{
2477 struct btrfs_inode_item *inode_item;
2478 struct btrfs_path *path;
5f39d397 2479 struct extent_buffer *leaf;
39279cc3
CM
2480 int ret;
2481
2482 path = btrfs_alloc_path();
16cdcec7
MX
2483 if (!path)
2484 return -ENOMEM;
2485
b9473439 2486 path->leave_spinning = 1;
16cdcec7
MX
2487 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2488 1);
39279cc3
CM
2489 if (ret) {
2490 if (ret > 0)
2491 ret = -ENOENT;
2492 goto failed;
2493 }
2494
b4ce94de 2495 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2496 leaf = path->nodes[0];
2497 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2498 struct btrfs_inode_item);
39279cc3 2499
e02119d5 2500 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2501 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2502 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2503 ret = 0;
2504failed:
39279cc3
CM
2505 btrfs_free_path(path);
2506 return ret;
2507}
2508
2115133f
CM
2509/*
2510 * copy everything in the in-memory inode into the btree.
2511 */
2512noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2513 struct btrfs_root *root, struct inode *inode)
2514{
2515 int ret;
2516
2517 /*
2518 * If the inode is a free space inode, we can deadlock during commit
2519 * if we put it into the delayed code.
2520 *
2521 * The data relocation inode should also be directly updated
2522 * without delay
2523 */
2524 if (!btrfs_is_free_space_inode(root, inode)
2525 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2526 ret = btrfs_delayed_update_inode(trans, root, inode);
2527 if (!ret)
2528 btrfs_set_inode_last_trans(trans, inode);
2529 return ret;
2530 }
2531
2532 return btrfs_update_inode_item(trans, root, inode);
2533}
2534
2535static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2536 struct btrfs_root *root, struct inode *inode)
2537{
2538 int ret;
2539
2540 ret = btrfs_update_inode(trans, root, inode);
2541 if (ret == -ENOSPC)
2542 return btrfs_update_inode_item(trans, root, inode);
2543 return ret;
2544}
2545
d352ac68
CM
2546/*
2547 * unlink helper that gets used here in inode.c and in the tree logging
2548 * recovery code. It remove a link in a directory with a given name, and
2549 * also drops the back refs in the inode to the directory
2550 */
92986796
AV
2551static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2552 struct btrfs_root *root,
2553 struct inode *dir, struct inode *inode,
2554 const char *name, int name_len)
39279cc3
CM
2555{
2556 struct btrfs_path *path;
39279cc3 2557 int ret = 0;
5f39d397 2558 struct extent_buffer *leaf;
39279cc3 2559 struct btrfs_dir_item *di;
5f39d397 2560 struct btrfs_key key;
aec7477b 2561 u64 index;
33345d01
LZ
2562 u64 ino = btrfs_ino(inode);
2563 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2564
2565 path = btrfs_alloc_path();
54aa1f4d
CM
2566 if (!path) {
2567 ret = -ENOMEM;
554233a6 2568 goto out;
54aa1f4d
CM
2569 }
2570
b9473439 2571 path->leave_spinning = 1;
33345d01 2572 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2573 name, name_len, -1);
2574 if (IS_ERR(di)) {
2575 ret = PTR_ERR(di);
2576 goto err;
2577 }
2578 if (!di) {
2579 ret = -ENOENT;
2580 goto err;
2581 }
5f39d397
CM
2582 leaf = path->nodes[0];
2583 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2584 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2585 if (ret)
2586 goto err;
b3b4aa74 2587 btrfs_release_path(path);
39279cc3 2588
33345d01
LZ
2589 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2590 dir_ino, &index);
aec7477b 2591 if (ret) {
d397712b 2592 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2593 "inode %llu parent %llu\n", name_len, name,
2594 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2595 goto err;
2596 }
2597
16cdcec7
MX
2598 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2599 if (ret)
39279cc3 2600 goto err;
39279cc3 2601
e02119d5 2602 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2603 inode, dir_ino);
49eb7e46 2604 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2605
2606 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2607 dir, index);
6418c961
CM
2608 if (ret == -ENOENT)
2609 ret = 0;
39279cc3
CM
2610err:
2611 btrfs_free_path(path);
e02119d5
CM
2612 if (ret)
2613 goto out;
2614
2615 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2616 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2617 btrfs_update_inode(trans, root, dir);
e02119d5 2618out:
39279cc3
CM
2619 return ret;
2620}
2621
92986796
AV
2622int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2623 struct btrfs_root *root,
2624 struct inode *dir, struct inode *inode,
2625 const char *name, int name_len)
2626{
2627 int ret;
2628 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2629 if (!ret) {
2630 btrfs_drop_nlink(inode);
2631 ret = btrfs_update_inode(trans, root, inode);
2632 }
2633 return ret;
2634}
2635
2636
a22285a6
YZ
2637/* helper to check if there is any shared block in the path */
2638static int check_path_shared(struct btrfs_root *root,
2639 struct btrfs_path *path)
39279cc3 2640{
a22285a6
YZ
2641 struct extent_buffer *eb;
2642 int level;
0e4dcbef 2643 u64 refs = 1;
5df6a9f6 2644
a22285a6 2645 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2646 int ret;
2647
a22285a6
YZ
2648 if (!path->nodes[level])
2649 break;
2650 eb = path->nodes[level];
2651 if (!btrfs_block_can_be_shared(root, eb))
2652 continue;
2653 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2654 &refs, NULL);
2655 if (refs > 1)
2656 return 1;
5df6a9f6 2657 }
dedefd72 2658 return 0;
39279cc3
CM
2659}
2660
a22285a6
YZ
2661/*
2662 * helper to start transaction for unlink and rmdir.
2663 *
2664 * unlink and rmdir are special in btrfs, they do not always free space.
2665 * so in enospc case, we should make sure they will free space before
2666 * allowing them to use the global metadata reservation.
2667 */
2668static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2669 struct dentry *dentry)
4df27c4d 2670{
39279cc3 2671 struct btrfs_trans_handle *trans;
a22285a6 2672 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2673 struct btrfs_path *path;
a22285a6 2674 struct btrfs_inode_ref *ref;
4df27c4d 2675 struct btrfs_dir_item *di;
7b128766 2676 struct inode *inode = dentry->d_inode;
4df27c4d 2677 u64 index;
a22285a6
YZ
2678 int check_link = 1;
2679 int err = -ENOSPC;
4df27c4d 2680 int ret;
33345d01
LZ
2681 u64 ino = btrfs_ino(inode);
2682 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2683
e70bea5f
JB
2684 /*
2685 * 1 for the possible orphan item
2686 * 1 for the dir item
2687 * 1 for the dir index
2688 * 1 for the inode ref
2689 * 1 for the inode ref in the tree log
2690 * 2 for the dir entries in the log
2691 * 1 for the inode
2692 */
2693 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2694 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2695 return trans;
4df27c4d 2696
33345d01 2697 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2698 return ERR_PTR(-ENOSPC);
4df27c4d 2699
a22285a6
YZ
2700 /* check if there is someone else holds reference */
2701 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2702 return ERR_PTR(-ENOSPC);
4df27c4d 2703
a22285a6
YZ
2704 if (atomic_read(&inode->i_count) > 2)
2705 return ERR_PTR(-ENOSPC);
4df27c4d 2706
a22285a6
YZ
2707 if (xchg(&root->fs_info->enospc_unlink, 1))
2708 return ERR_PTR(-ENOSPC);
2709
2710 path = btrfs_alloc_path();
2711 if (!path) {
2712 root->fs_info->enospc_unlink = 0;
2713 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2714 }
2715
3880a1b4
JB
2716 /* 1 for the orphan item */
2717 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2718 if (IS_ERR(trans)) {
a22285a6
YZ
2719 btrfs_free_path(path);
2720 root->fs_info->enospc_unlink = 0;
2721 return trans;
2722 }
4df27c4d 2723
a22285a6
YZ
2724 path->skip_locking = 1;
2725 path->search_commit_root = 1;
4df27c4d 2726
a22285a6
YZ
2727 ret = btrfs_lookup_inode(trans, root, path,
2728 &BTRFS_I(dir)->location, 0);
2729 if (ret < 0) {
2730 err = ret;
2731 goto out;
2732 }
2733 if (ret == 0) {
2734 if (check_path_shared(root, path))
2735 goto out;
2736 } else {
2737 check_link = 0;
5df6a9f6 2738 }
b3b4aa74 2739 btrfs_release_path(path);
a22285a6
YZ
2740
2741 ret = btrfs_lookup_inode(trans, root, path,
2742 &BTRFS_I(inode)->location, 0);
2743 if (ret < 0) {
2744 err = ret;
2745 goto out;
2746 }
2747 if (ret == 0) {
2748 if (check_path_shared(root, path))
2749 goto out;
2750 } else {
2751 check_link = 0;
2752 }
b3b4aa74 2753 btrfs_release_path(path);
a22285a6
YZ
2754
2755 if (ret == 0 && S_ISREG(inode->i_mode)) {
2756 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2757 ino, (u64)-1, 0);
a22285a6
YZ
2758 if (ret < 0) {
2759 err = ret;
2760 goto out;
2761 }
2762 BUG_ON(ret == 0);
2763 if (check_path_shared(root, path))
2764 goto out;
b3b4aa74 2765 btrfs_release_path(path);
a22285a6
YZ
2766 }
2767
2768 if (!check_link) {
2769 err = 0;
2770 goto out;
2771 }
2772
33345d01 2773 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2774 dentry->d_name.name, dentry->d_name.len, 0);
2775 if (IS_ERR(di)) {
2776 err = PTR_ERR(di);
2777 goto out;
2778 }
2779 if (di) {
2780 if (check_path_shared(root, path))
2781 goto out;
2782 } else {
2783 err = 0;
2784 goto out;
2785 }
b3b4aa74 2786 btrfs_release_path(path);
a22285a6
YZ
2787
2788 ref = btrfs_lookup_inode_ref(trans, root, path,
2789 dentry->d_name.name, dentry->d_name.len,
33345d01 2790 ino, dir_ino, 0);
a22285a6
YZ
2791 if (IS_ERR(ref)) {
2792 err = PTR_ERR(ref);
2793 goto out;
2794 }
2795 BUG_ON(!ref);
2796 if (check_path_shared(root, path))
2797 goto out;
2798 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2799 btrfs_release_path(path);
a22285a6 2800
16cdcec7
MX
2801 /*
2802 * This is a commit root search, if we can lookup inode item and other
2803 * relative items in the commit root, it means the transaction of
2804 * dir/file creation has been committed, and the dir index item that we
2805 * delay to insert has also been inserted into the commit root. So
2806 * we needn't worry about the delayed insertion of the dir index item
2807 * here.
2808 */
33345d01 2809 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2810 dentry->d_name.name, dentry->d_name.len, 0);
2811 if (IS_ERR(di)) {
2812 err = PTR_ERR(di);
2813 goto out;
2814 }
2815 BUG_ON(ret == -ENOENT);
2816 if (check_path_shared(root, path))
2817 goto out;
2818
2819 err = 0;
2820out:
2821 btrfs_free_path(path);
3880a1b4
JB
2822 /* Migrate the orphan reservation over */
2823 if (!err)
2824 err = btrfs_block_rsv_migrate(trans->block_rsv,
2825 &root->fs_info->global_block_rsv,
5a77d76c 2826 trans->bytes_reserved);
3880a1b4 2827
a22285a6
YZ
2828 if (err) {
2829 btrfs_end_transaction(trans, root);
2830 root->fs_info->enospc_unlink = 0;
2831 return ERR_PTR(err);
2832 }
2833
2834 trans->block_rsv = &root->fs_info->global_block_rsv;
2835 return trans;
2836}
2837
2838static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *root)
2840{
2841 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
5a77d76c
JB
2842 btrfs_block_rsv_release(root, trans->block_rsv,
2843 trans->bytes_reserved);
2844 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
2845 BUG_ON(!root->fs_info->enospc_unlink);
2846 root->fs_info->enospc_unlink = 0;
2847 }
7ad85bb7 2848 btrfs_end_transaction(trans, root);
a22285a6
YZ
2849}
2850
2851static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2852{
2853 struct btrfs_root *root = BTRFS_I(dir)->root;
2854 struct btrfs_trans_handle *trans;
2855 struct inode *inode = dentry->d_inode;
2856 int ret;
2857 unsigned long nr = 0;
2858
2859 trans = __unlink_start_trans(dir, dentry);
2860 if (IS_ERR(trans))
2861 return PTR_ERR(trans);
5f39d397 2862
12fcfd22
CM
2863 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2864
e02119d5
CM
2865 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2866 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
2867 if (ret)
2868 goto out;
7b128766 2869
a22285a6 2870 if (inode->i_nlink == 0) {
7b128766 2871 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
2872 if (ret)
2873 goto out;
a22285a6 2874 }
7b128766 2875
b532402e 2876out:
d3c2fdcf 2877 nr = trans->blocks_used;
a22285a6 2878 __unlink_end_trans(trans, root);
d3c2fdcf 2879 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2880 return ret;
2881}
2882
4df27c4d
YZ
2883int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2884 struct btrfs_root *root,
2885 struct inode *dir, u64 objectid,
2886 const char *name, int name_len)
2887{
2888 struct btrfs_path *path;
2889 struct extent_buffer *leaf;
2890 struct btrfs_dir_item *di;
2891 struct btrfs_key key;
2892 u64 index;
2893 int ret;
33345d01 2894 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
2895
2896 path = btrfs_alloc_path();
2897 if (!path)
2898 return -ENOMEM;
2899
33345d01 2900 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 2901 name, name_len, -1);
c704005d 2902 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2903
2904 leaf = path->nodes[0];
2905 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2906 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2907 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2908 BUG_ON(ret);
b3b4aa74 2909 btrfs_release_path(path);
4df27c4d
YZ
2910
2911 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2912 objectid, root->root_key.objectid,
33345d01 2913 dir_ino, &index, name, name_len);
4df27c4d
YZ
2914 if (ret < 0) {
2915 BUG_ON(ret != -ENOENT);
33345d01 2916 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 2917 name, name_len);
c704005d 2918 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2919
2920 leaf = path->nodes[0];
2921 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2922 btrfs_release_path(path);
4df27c4d
YZ
2923 index = key.offset;
2924 }
945d8962 2925 btrfs_release_path(path);
4df27c4d 2926
16cdcec7 2927 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 2928 BUG_ON(ret);
4df27c4d
YZ
2929
2930 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2931 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2932 ret = btrfs_update_inode(trans, root, dir);
2933 BUG_ON(ret);
4df27c4d 2934
71d7aed0 2935 btrfs_free_path(path);
4df27c4d
YZ
2936 return 0;
2937}
2938
39279cc3
CM
2939static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2940{
2941 struct inode *inode = dentry->d_inode;
1832a6d5 2942 int err = 0;
39279cc3 2943 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2944 struct btrfs_trans_handle *trans;
1832a6d5 2945 unsigned long nr = 0;
39279cc3 2946
3394e160 2947 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 2948 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2949 return -ENOTEMPTY;
2950
a22285a6
YZ
2951 trans = __unlink_start_trans(dir, dentry);
2952 if (IS_ERR(trans))
5df6a9f6 2953 return PTR_ERR(trans);
5df6a9f6 2954
33345d01 2955 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
2956 err = btrfs_unlink_subvol(trans, root, dir,
2957 BTRFS_I(inode)->location.objectid,
2958 dentry->d_name.name,
2959 dentry->d_name.len);
2960 goto out;
2961 }
2962
7b128766
JB
2963 err = btrfs_orphan_add(trans, inode);
2964 if (err)
4df27c4d 2965 goto out;
7b128766 2966
39279cc3 2967 /* now the directory is empty */
e02119d5
CM
2968 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2969 dentry->d_name.name, dentry->d_name.len);
d397712b 2970 if (!err)
dbe674a9 2971 btrfs_i_size_write(inode, 0);
4df27c4d 2972out:
d3c2fdcf 2973 nr = trans->blocks_used;
a22285a6 2974 __unlink_end_trans(trans, root);
d3c2fdcf 2975 btrfs_btree_balance_dirty(root, nr);
3954401f 2976
39279cc3
CM
2977 return err;
2978}
2979
39279cc3
CM
2980/*
2981 * this can truncate away extent items, csum items and directory items.
2982 * It starts at a high offset and removes keys until it can't find
d352ac68 2983 * any higher than new_size
39279cc3
CM
2984 *
2985 * csum items that cross the new i_size are truncated to the new size
2986 * as well.
7b128766
JB
2987 *
2988 * min_type is the minimum key type to truncate down to. If set to 0, this
2989 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2990 */
8082510e
YZ
2991int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2992 struct btrfs_root *root,
2993 struct inode *inode,
2994 u64 new_size, u32 min_type)
39279cc3 2995{
39279cc3 2996 struct btrfs_path *path;
5f39d397 2997 struct extent_buffer *leaf;
39279cc3 2998 struct btrfs_file_extent_item *fi;
8082510e
YZ
2999 struct btrfs_key key;
3000 struct btrfs_key found_key;
39279cc3 3001 u64 extent_start = 0;
db94535d 3002 u64 extent_num_bytes = 0;
5d4f98a2 3003 u64 extent_offset = 0;
39279cc3 3004 u64 item_end = 0;
8082510e
YZ
3005 u64 mask = root->sectorsize - 1;
3006 u32 found_type = (u8)-1;
39279cc3
CM
3007 int found_extent;
3008 int del_item;
85e21bac
CM
3009 int pending_del_nr = 0;
3010 int pending_del_slot = 0;
179e29e4 3011 int extent_type = -1;
8082510e
YZ
3012 int ret;
3013 int err = 0;
33345d01 3014 u64 ino = btrfs_ino(inode);
8082510e
YZ
3015
3016 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3017
0eb0e19c
MF
3018 path = btrfs_alloc_path();
3019 if (!path)
3020 return -ENOMEM;
3021 path->reada = -1;
3022
0af3d00b 3023 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3024 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3025
16cdcec7
MX
3026 /*
3027 * This function is also used to drop the items in the log tree before
3028 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3029 * it is used to drop the loged items. So we shouldn't kill the delayed
3030 * items.
3031 */
3032 if (min_type == 0 && root == BTRFS_I(inode)->root)
3033 btrfs_kill_delayed_inode_items(inode);
3034
33345d01 3035 key.objectid = ino;
39279cc3 3036 key.offset = (u64)-1;
5f39d397
CM
3037 key.type = (u8)-1;
3038
85e21bac 3039search_again:
b9473439 3040 path->leave_spinning = 1;
85e21bac 3041 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3042 if (ret < 0) {
3043 err = ret;
3044 goto out;
3045 }
d397712b 3046
85e21bac 3047 if (ret > 0) {
e02119d5
CM
3048 /* there are no items in the tree for us to truncate, we're
3049 * done
3050 */
8082510e
YZ
3051 if (path->slots[0] == 0)
3052 goto out;
85e21bac
CM
3053 path->slots[0]--;
3054 }
3055
d397712b 3056 while (1) {
39279cc3 3057 fi = NULL;
5f39d397
CM
3058 leaf = path->nodes[0];
3059 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3060 found_type = btrfs_key_type(&found_key);
39279cc3 3061
33345d01 3062 if (found_key.objectid != ino)
39279cc3 3063 break;
5f39d397 3064
85e21bac 3065 if (found_type < min_type)
39279cc3
CM
3066 break;
3067
5f39d397 3068 item_end = found_key.offset;
39279cc3 3069 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3070 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3071 struct btrfs_file_extent_item);
179e29e4
CM
3072 extent_type = btrfs_file_extent_type(leaf, fi);
3073 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3074 item_end +=
db94535d 3075 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3076 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3077 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3078 fi);
39279cc3 3079 }
008630c1 3080 item_end--;
39279cc3 3081 }
8082510e
YZ
3082 if (found_type > min_type) {
3083 del_item = 1;
3084 } else {
3085 if (item_end < new_size)
b888db2b 3086 break;
8082510e
YZ
3087 if (found_key.offset >= new_size)
3088 del_item = 1;
3089 else
3090 del_item = 0;
39279cc3 3091 }
39279cc3 3092 found_extent = 0;
39279cc3 3093 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3094 if (found_type != BTRFS_EXTENT_DATA_KEY)
3095 goto delete;
3096
3097 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3098 u64 num_dec;
db94535d 3099 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3100 if (!del_item) {
db94535d
CM
3101 u64 orig_num_bytes =
3102 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3103 extent_num_bytes = new_size -
5f39d397 3104 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3105 extent_num_bytes = extent_num_bytes &
3106 ~((u64)root->sectorsize - 1);
db94535d
CM
3107 btrfs_set_file_extent_num_bytes(leaf, fi,
3108 extent_num_bytes);
3109 num_dec = (orig_num_bytes -
9069218d 3110 extent_num_bytes);
e02119d5 3111 if (root->ref_cows && extent_start != 0)
a76a3cd4 3112 inode_sub_bytes(inode, num_dec);
5f39d397 3113 btrfs_mark_buffer_dirty(leaf);
39279cc3 3114 } else {
db94535d
CM
3115 extent_num_bytes =
3116 btrfs_file_extent_disk_num_bytes(leaf,
3117 fi);
5d4f98a2
YZ
3118 extent_offset = found_key.offset -
3119 btrfs_file_extent_offset(leaf, fi);
3120
39279cc3 3121 /* FIXME blocksize != 4096 */
9069218d 3122 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3123 if (extent_start != 0) {
3124 found_extent = 1;
e02119d5 3125 if (root->ref_cows)
a76a3cd4 3126 inode_sub_bytes(inode, num_dec);
e02119d5 3127 }
39279cc3 3128 }
9069218d 3129 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3130 /*
3131 * we can't truncate inline items that have had
3132 * special encodings
3133 */
3134 if (!del_item &&
3135 btrfs_file_extent_compression(leaf, fi) == 0 &&
3136 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3137 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3138 u32 size = new_size - found_key.offset;
3139
3140 if (root->ref_cows) {
a76a3cd4
YZ
3141 inode_sub_bytes(inode, item_end + 1 -
3142 new_size);
e02119d5
CM
3143 }
3144 size =
3145 btrfs_file_extent_calc_inline_size(size);
9069218d 3146 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3147 size, 1);
e02119d5 3148 } else if (root->ref_cows) {
a76a3cd4
YZ
3149 inode_sub_bytes(inode, item_end + 1 -
3150 found_key.offset);
9069218d 3151 }
39279cc3 3152 }
179e29e4 3153delete:
39279cc3 3154 if (del_item) {
85e21bac
CM
3155 if (!pending_del_nr) {
3156 /* no pending yet, add ourselves */
3157 pending_del_slot = path->slots[0];
3158 pending_del_nr = 1;
3159 } else if (pending_del_nr &&
3160 path->slots[0] + 1 == pending_del_slot) {
3161 /* hop on the pending chunk */
3162 pending_del_nr++;
3163 pending_del_slot = path->slots[0];
3164 } else {
d397712b 3165 BUG();
85e21bac 3166 }
39279cc3
CM
3167 } else {
3168 break;
3169 }
0af3d00b
JB
3170 if (found_extent && (root->ref_cows ||
3171 root == root->fs_info->tree_root)) {
b9473439 3172 btrfs_set_path_blocking(path);
39279cc3 3173 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3174 extent_num_bytes, 0,
3175 btrfs_header_owner(leaf),
66d7e7f0 3176 ino, extent_offset, 0);
39279cc3
CM
3177 BUG_ON(ret);
3178 }
85e21bac 3179
8082510e
YZ
3180 if (found_type == BTRFS_INODE_ITEM_KEY)
3181 break;
3182
3183 if (path->slots[0] == 0 ||
3184 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3185 if (root->ref_cows &&
3186 BTRFS_I(inode)->location.objectid !=
3187 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3188 err = -EAGAIN;
3189 goto out;
3190 }
3191 if (pending_del_nr) {
3192 ret = btrfs_del_items(trans, root, path,
3193 pending_del_slot,
3194 pending_del_nr);
3195 BUG_ON(ret);
3196 pending_del_nr = 0;
3197 }
b3b4aa74 3198 btrfs_release_path(path);
85e21bac 3199 goto search_again;
8082510e
YZ
3200 } else {
3201 path->slots[0]--;
85e21bac 3202 }
39279cc3 3203 }
8082510e 3204out:
85e21bac
CM
3205 if (pending_del_nr) {
3206 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3207 pending_del_nr);
d68fc57b 3208 BUG_ON(ret);
85e21bac 3209 }
39279cc3 3210 btrfs_free_path(path);
8082510e 3211 return err;
39279cc3
CM
3212}
3213
3214/*
3215 * taken from block_truncate_page, but does cow as it zeros out
3216 * any bytes left in the last page in the file.
3217 */
3218static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3219{
3220 struct inode *inode = mapping->host;
db94535d 3221 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3222 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3223 struct btrfs_ordered_extent *ordered;
2ac55d41 3224 struct extent_state *cached_state = NULL;
e6dcd2dc 3225 char *kaddr;
db94535d 3226 u32 blocksize = root->sectorsize;
39279cc3
CM
3227 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3228 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3229 struct page *page;
3b16a4e3 3230 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3231 int ret = 0;
a52d9a80 3232 u64 page_start;
e6dcd2dc 3233 u64 page_end;
39279cc3
CM
3234
3235 if ((offset & (blocksize - 1)) == 0)
3236 goto out;
0ca1f7ce 3237 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3238 if (ret)
3239 goto out;
39279cc3
CM
3240
3241 ret = -ENOMEM;
211c17f5 3242again:
3b16a4e3 3243 page = find_or_create_page(mapping, index, mask);
5d5e103a 3244 if (!page) {
0ca1f7ce 3245 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3246 goto out;
5d5e103a 3247 }
e6dcd2dc
CM
3248
3249 page_start = page_offset(page);
3250 page_end = page_start + PAGE_CACHE_SIZE - 1;
3251
39279cc3 3252 if (!PageUptodate(page)) {
9ebefb18 3253 ret = btrfs_readpage(NULL, page);
39279cc3 3254 lock_page(page);
211c17f5
CM
3255 if (page->mapping != mapping) {
3256 unlock_page(page);
3257 page_cache_release(page);
3258 goto again;
3259 }
39279cc3
CM
3260 if (!PageUptodate(page)) {
3261 ret = -EIO;
89642229 3262 goto out_unlock;
39279cc3
CM
3263 }
3264 }
211c17f5 3265 wait_on_page_writeback(page);
e6dcd2dc 3266
2ac55d41
JB
3267 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3268 GFP_NOFS);
e6dcd2dc
CM
3269 set_page_extent_mapped(page);
3270
3271 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3272 if (ordered) {
2ac55d41
JB
3273 unlock_extent_cached(io_tree, page_start, page_end,
3274 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3275 unlock_page(page);
3276 page_cache_release(page);
eb84ae03 3277 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3278 btrfs_put_ordered_extent(ordered);
3279 goto again;
3280 }
3281
2ac55d41 3282 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3283 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3284 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3285
2ac55d41
JB
3286 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3287 &cached_state);
9ed74f2d 3288 if (ret) {
2ac55d41
JB
3289 unlock_extent_cached(io_tree, page_start, page_end,
3290 &cached_state, GFP_NOFS);
9ed74f2d
JB
3291 goto out_unlock;
3292 }
3293
e6dcd2dc
CM
3294 ret = 0;
3295 if (offset != PAGE_CACHE_SIZE) {
3296 kaddr = kmap(page);
3297 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3298 flush_dcache_page(page);
3299 kunmap(page);
3300 }
247e743c 3301 ClearPageChecked(page);
e6dcd2dc 3302 set_page_dirty(page);
2ac55d41
JB
3303 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3304 GFP_NOFS);
39279cc3 3305
89642229 3306out_unlock:
5d5e103a 3307 if (ret)
0ca1f7ce 3308 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3309 unlock_page(page);
3310 page_cache_release(page);
3311out:
3312 return ret;
3313}
3314
695a0d0d
JB
3315/*
3316 * This function puts in dummy file extents for the area we're creating a hole
3317 * for. So if we are truncating this file to a larger size we need to insert
3318 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3319 * the range between oldsize and size
3320 */
a41ad394 3321int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3322{
9036c102
YZ
3323 struct btrfs_trans_handle *trans;
3324 struct btrfs_root *root = BTRFS_I(inode)->root;
3325 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3326 struct extent_map *em = NULL;
2ac55d41 3327 struct extent_state *cached_state = NULL;
9036c102 3328 u64 mask = root->sectorsize - 1;
a41ad394 3329 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3330 u64 block_end = (size + mask) & ~mask;
3331 u64 last_byte;
3332 u64 cur_offset;
3333 u64 hole_size;
9ed74f2d 3334 int err = 0;
39279cc3 3335
9036c102
YZ
3336 if (size <= hole_start)
3337 return 0;
3338
9036c102
YZ
3339 while (1) {
3340 struct btrfs_ordered_extent *ordered;
3341 btrfs_wait_ordered_range(inode, hole_start,
3342 block_end - hole_start);
2ac55d41
JB
3343 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3344 &cached_state, GFP_NOFS);
9036c102
YZ
3345 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3346 if (!ordered)
3347 break;
2ac55d41
JB
3348 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3349 &cached_state, GFP_NOFS);
9036c102
YZ
3350 btrfs_put_ordered_extent(ordered);
3351 }
39279cc3 3352
9036c102
YZ
3353 cur_offset = hole_start;
3354 while (1) {
3355 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3356 block_end - cur_offset, 0);
c704005d 3357 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3358 last_byte = min(extent_map_end(em), block_end);
3359 last_byte = (last_byte + mask) & ~mask;
8082510e 3360 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3361 u64 hint_byte = 0;
9036c102 3362 hole_size = last_byte - cur_offset;
9ed74f2d 3363
3642320e 3364 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3365 if (IS_ERR(trans)) {
3366 err = PTR_ERR(trans);
9ed74f2d 3367 break;
a22285a6 3368 }
8082510e
YZ
3369
3370 err = btrfs_drop_extents(trans, inode, cur_offset,
3371 cur_offset + hole_size,
3372 &hint_byte, 1);
5b397377 3373 if (err) {
3642320e 3374 btrfs_update_inode(trans, root, inode);
5b397377 3375 btrfs_end_transaction(trans, root);
3893e33b 3376 break;
5b397377 3377 }
8082510e 3378
9036c102 3379 err = btrfs_insert_file_extent(trans, root,
33345d01 3380 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3381 0, hole_size, 0, hole_size,
3382 0, 0, 0);
5b397377 3383 if (err) {
3642320e 3384 btrfs_update_inode(trans, root, inode);
5b397377 3385 btrfs_end_transaction(trans, root);
3893e33b 3386 break;
5b397377 3387 }
8082510e 3388
9036c102
YZ
3389 btrfs_drop_extent_cache(inode, hole_start,
3390 last_byte - 1, 0);
8082510e 3391
3642320e 3392 btrfs_update_inode(trans, root, inode);
8082510e 3393 btrfs_end_transaction(trans, root);
9036c102
YZ
3394 }
3395 free_extent_map(em);
a22285a6 3396 em = NULL;
9036c102 3397 cur_offset = last_byte;
8082510e 3398 if (cur_offset >= block_end)
9036c102
YZ
3399 break;
3400 }
1832a6d5 3401
a22285a6 3402 free_extent_map(em);
2ac55d41
JB
3403 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3404 GFP_NOFS);
9036c102
YZ
3405 return err;
3406}
39279cc3 3407
a41ad394 3408static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3409{
f4a2f4c5
MX
3410 struct btrfs_root *root = BTRFS_I(inode)->root;
3411 struct btrfs_trans_handle *trans;
a41ad394 3412 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3413 int ret;
3414
a41ad394 3415 if (newsize == oldsize)
8082510e
YZ
3416 return 0;
3417
a41ad394 3418 if (newsize > oldsize) {
a41ad394
JB
3419 truncate_pagecache(inode, oldsize, newsize);
3420 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3421 if (ret)
8082510e 3422 return ret;
8082510e 3423
f4a2f4c5
MX
3424 trans = btrfs_start_transaction(root, 1);
3425 if (IS_ERR(trans))
3426 return PTR_ERR(trans);
3427
3428 i_size_write(inode, newsize);
3429 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3430 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3431 btrfs_end_transaction(trans, root);
a41ad394 3432 } else {
8082510e 3433
a41ad394
JB
3434 /*
3435 * We're truncating a file that used to have good data down to
3436 * zero. Make sure it gets into the ordered flush list so that
3437 * any new writes get down to disk quickly.
3438 */
3439 if (newsize == 0)
3440 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3441
a41ad394
JB
3442 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3443 truncate_setsize(inode, newsize);
3444 ret = btrfs_truncate(inode);
8082510e
YZ
3445 }
3446
a41ad394 3447 return ret;
8082510e
YZ
3448}
3449
9036c102
YZ
3450static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3451{
3452 struct inode *inode = dentry->d_inode;
b83cc969 3453 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3454 int err;
39279cc3 3455
b83cc969
LZ
3456 if (btrfs_root_readonly(root))
3457 return -EROFS;
3458
9036c102
YZ
3459 err = inode_change_ok(inode, attr);
3460 if (err)
3461 return err;
2bf5a725 3462
5a3f23d5 3463 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3464 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3465 if (err)
3466 return err;
39279cc3 3467 }
9036c102 3468
1025774c
CH
3469 if (attr->ia_valid) {
3470 setattr_copy(inode, attr);
22c44fe6 3471 err = btrfs_dirty_inode(inode);
1025774c 3472
22c44fe6 3473 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3474 err = btrfs_acl_chmod(inode);
3475 }
33268eaf 3476
39279cc3
CM
3477 return err;
3478}
61295eb8 3479
bd555975 3480void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3481{
3482 struct btrfs_trans_handle *trans;
3483 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3484 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3485 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3486 unsigned long nr;
39279cc3
CM
3487 int ret;
3488
1abe9b8a 3489 trace_btrfs_inode_evict(inode);
3490
39279cc3 3491 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3492 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3493 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3494 goto no_delete;
3495
39279cc3 3496 if (is_bad_inode(inode)) {
7b128766 3497 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3498 goto no_delete;
3499 }
bd555975 3500 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3501 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3502
c71bf099
YZ
3503 if (root->fs_info->log_root_recovering) {
3504 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3505 goto no_delete;
3506 }
3507
76dda93c
YZ
3508 if (inode->i_nlink > 0) {
3509 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3510 goto no_delete;
3511 }
3512
4289a667
JB
3513 rsv = btrfs_alloc_block_rsv(root);
3514 if (!rsv) {
3515 btrfs_orphan_del(NULL, inode);
3516 goto no_delete;
3517 }
4a338542 3518 rsv->size = min_size;
726c35fa 3519 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3520
dbe674a9 3521 btrfs_i_size_write(inode, 0);
5f39d397 3522
4289a667
JB
3523 /*
3524 * This is a bit simpler than btrfs_truncate since
3525 *
3526 * 1) We've already reserved our space for our orphan item in the
3527 * unlink.
3528 * 2) We're going to delete the inode item, so we don't need to update
3529 * it at all.
3530 *
3531 * So we just need to reserve some slack space in case we add bytes when
3532 * doing the truncate.
3533 */
8082510e 3534 while (1) {
aa38a711 3535 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
726c35fa
JB
3536
3537 /*
3538 * Try and steal from the global reserve since we will
3539 * likely not use this space anyway, we want to try as
3540 * hard as possible to get this to work.
3541 */
3542 if (ret)
3543 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3544
d68fc57b 3545 if (ret) {
4289a667 3546 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3547 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3548 btrfs_orphan_del(NULL, inode);
3549 btrfs_free_block_rsv(root, rsv);
3550 goto no_delete;
d68fc57b 3551 }
7b128766 3552
4289a667
JB
3553 trans = btrfs_start_transaction(root, 0);
3554 if (IS_ERR(trans)) {
3555 btrfs_orphan_del(NULL, inode);
3556 btrfs_free_block_rsv(root, rsv);
3557 goto no_delete;
d68fc57b 3558 }
7b128766 3559
4289a667
JB
3560 trans->block_rsv = rsv;
3561
d68fc57b 3562 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3563 if (ret != -EAGAIN)
3564 break;
85e21bac 3565
8082510e
YZ
3566 nr = trans->blocks_used;
3567 btrfs_end_transaction(trans, root);
3568 trans = NULL;
3569 btrfs_btree_balance_dirty(root, nr);
3570 }
5f39d397 3571
4289a667
JB
3572 btrfs_free_block_rsv(root, rsv);
3573
8082510e 3574 if (ret == 0) {
4289a667 3575 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3576 ret = btrfs_orphan_del(trans, inode);
3577 BUG_ON(ret);
3578 }
54aa1f4d 3579
4289a667 3580 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3581 if (!(root == root->fs_info->tree_root ||
3582 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3583 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3584
d3c2fdcf 3585 nr = trans->blocks_used;
54aa1f4d 3586 btrfs_end_transaction(trans, root);
d3c2fdcf 3587 btrfs_btree_balance_dirty(root, nr);
39279cc3 3588no_delete:
bd555975 3589 end_writeback(inode);
8082510e 3590 return;
39279cc3
CM
3591}
3592
3593/*
3594 * this returns the key found in the dir entry in the location pointer.
3595 * If no dir entries were found, location->objectid is 0.
3596 */
3597static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3598 struct btrfs_key *location)
3599{
3600 const char *name = dentry->d_name.name;
3601 int namelen = dentry->d_name.len;
3602 struct btrfs_dir_item *di;
3603 struct btrfs_path *path;
3604 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3605 int ret = 0;
39279cc3
CM
3606
3607 path = btrfs_alloc_path();
d8926bb3
MF
3608 if (!path)
3609 return -ENOMEM;
3954401f 3610
33345d01 3611 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3612 namelen, 0);
0d9f7f3e
Y
3613 if (IS_ERR(di))
3614 ret = PTR_ERR(di);
d397712b 3615
c704005d 3616 if (IS_ERR_OR_NULL(di))
3954401f 3617 goto out_err;
d397712b 3618
5f39d397 3619 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3620out:
39279cc3
CM
3621 btrfs_free_path(path);
3622 return ret;
3954401f
CM
3623out_err:
3624 location->objectid = 0;
3625 goto out;
39279cc3
CM
3626}
3627
3628/*
3629 * when we hit a tree root in a directory, the btrfs part of the inode
3630 * needs to be changed to reflect the root directory of the tree root. This
3631 * is kind of like crossing a mount point.
3632 */
3633static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3634 struct inode *dir,
3635 struct dentry *dentry,
3636 struct btrfs_key *location,
3637 struct btrfs_root **sub_root)
39279cc3 3638{
4df27c4d
YZ
3639 struct btrfs_path *path;
3640 struct btrfs_root *new_root;
3641 struct btrfs_root_ref *ref;
3642 struct extent_buffer *leaf;
3643 int ret;
3644 int err = 0;
39279cc3 3645
4df27c4d
YZ
3646 path = btrfs_alloc_path();
3647 if (!path) {
3648 err = -ENOMEM;
3649 goto out;
3650 }
39279cc3 3651
4df27c4d
YZ
3652 err = -ENOENT;
3653 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3654 BTRFS_I(dir)->root->root_key.objectid,
3655 location->objectid);
3656 if (ret) {
3657 if (ret < 0)
3658 err = ret;
3659 goto out;
3660 }
39279cc3 3661
4df27c4d
YZ
3662 leaf = path->nodes[0];
3663 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3664 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3665 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3666 goto out;
39279cc3 3667
4df27c4d
YZ
3668 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3669 (unsigned long)(ref + 1),
3670 dentry->d_name.len);
3671 if (ret)
3672 goto out;
3673
b3b4aa74 3674 btrfs_release_path(path);
4df27c4d
YZ
3675
3676 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3677 if (IS_ERR(new_root)) {
3678 err = PTR_ERR(new_root);
3679 goto out;
3680 }
3681
3682 if (btrfs_root_refs(&new_root->root_item) == 0) {
3683 err = -ENOENT;
3684 goto out;
3685 }
3686
3687 *sub_root = new_root;
3688 location->objectid = btrfs_root_dirid(&new_root->root_item);
3689 location->type = BTRFS_INODE_ITEM_KEY;
3690 location->offset = 0;
3691 err = 0;
3692out:
3693 btrfs_free_path(path);
3694 return err;
39279cc3
CM
3695}
3696
5d4f98a2
YZ
3697static void inode_tree_add(struct inode *inode)
3698{
3699 struct btrfs_root *root = BTRFS_I(inode)->root;
3700 struct btrfs_inode *entry;
03e860bd
FNP
3701 struct rb_node **p;
3702 struct rb_node *parent;
33345d01 3703 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3704again:
3705 p = &root->inode_tree.rb_node;
3706 parent = NULL;
5d4f98a2 3707
1d3382cb 3708 if (inode_unhashed(inode))
76dda93c
YZ
3709 return;
3710
5d4f98a2
YZ
3711 spin_lock(&root->inode_lock);
3712 while (*p) {
3713 parent = *p;
3714 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3715
33345d01 3716 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3717 p = &parent->rb_left;
33345d01 3718 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3719 p = &parent->rb_right;
5d4f98a2
YZ
3720 else {
3721 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3722 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3723 rb_erase(parent, &root->inode_tree);
3724 RB_CLEAR_NODE(parent);
3725 spin_unlock(&root->inode_lock);
3726 goto again;
5d4f98a2
YZ
3727 }
3728 }
3729 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3730 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3731 spin_unlock(&root->inode_lock);
3732}
3733
3734static void inode_tree_del(struct inode *inode)
3735{
3736 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3737 int empty = 0;
5d4f98a2 3738
03e860bd 3739 spin_lock(&root->inode_lock);
5d4f98a2 3740 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3741 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3742 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3743 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3744 }
03e860bd 3745 spin_unlock(&root->inode_lock);
76dda93c 3746
0af3d00b
JB
3747 /*
3748 * Free space cache has inodes in the tree root, but the tree root has a
3749 * root_refs of 0, so this could end up dropping the tree root as a
3750 * snapshot, so we need the extra !root->fs_info->tree_root check to
3751 * make sure we don't drop it.
3752 */
3753 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3754 root != root->fs_info->tree_root) {
76dda93c
YZ
3755 synchronize_srcu(&root->fs_info->subvol_srcu);
3756 spin_lock(&root->inode_lock);
3757 empty = RB_EMPTY_ROOT(&root->inode_tree);
3758 spin_unlock(&root->inode_lock);
3759 if (empty)
3760 btrfs_add_dead_root(root);
3761 }
3762}
3763
3764int btrfs_invalidate_inodes(struct btrfs_root *root)
3765{
3766 struct rb_node *node;
3767 struct rb_node *prev;
3768 struct btrfs_inode *entry;
3769 struct inode *inode;
3770 u64 objectid = 0;
3771
3772 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3773
3774 spin_lock(&root->inode_lock);
3775again:
3776 node = root->inode_tree.rb_node;
3777 prev = NULL;
3778 while (node) {
3779 prev = node;
3780 entry = rb_entry(node, struct btrfs_inode, rb_node);
3781
33345d01 3782 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3783 node = node->rb_left;
33345d01 3784 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3785 node = node->rb_right;
3786 else
3787 break;
3788 }
3789 if (!node) {
3790 while (prev) {
3791 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3792 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3793 node = prev;
3794 break;
3795 }
3796 prev = rb_next(prev);
3797 }
3798 }
3799 while (node) {
3800 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3801 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3802 inode = igrab(&entry->vfs_inode);
3803 if (inode) {
3804 spin_unlock(&root->inode_lock);
3805 if (atomic_read(&inode->i_count) > 1)
3806 d_prune_aliases(inode);
3807 /*
45321ac5 3808 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3809 * the inode cache when its usage count
3810 * hits zero.
3811 */
3812 iput(inode);
3813 cond_resched();
3814 spin_lock(&root->inode_lock);
3815 goto again;
3816 }
3817
3818 if (cond_resched_lock(&root->inode_lock))
3819 goto again;
3820
3821 node = rb_next(node);
3822 }
3823 spin_unlock(&root->inode_lock);
3824 return 0;
5d4f98a2
YZ
3825}
3826
e02119d5
CM
3827static int btrfs_init_locked_inode(struct inode *inode, void *p)
3828{
3829 struct btrfs_iget_args *args = p;
3830 inode->i_ino = args->ino;
e02119d5 3831 BTRFS_I(inode)->root = args->root;
6a63209f 3832 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3833 return 0;
3834}
3835
3836static int btrfs_find_actor(struct inode *inode, void *opaque)
3837{
3838 struct btrfs_iget_args *args = opaque;
33345d01 3839 return args->ino == btrfs_ino(inode) &&
d397712b 3840 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3841}
3842
5d4f98a2
YZ
3843static struct inode *btrfs_iget_locked(struct super_block *s,
3844 u64 objectid,
3845 struct btrfs_root *root)
39279cc3
CM
3846{
3847 struct inode *inode;
3848 struct btrfs_iget_args args;
3849 args.ino = objectid;
3850 args.root = root;
3851
3852 inode = iget5_locked(s, objectid, btrfs_find_actor,
3853 btrfs_init_locked_inode,
3854 (void *)&args);
3855 return inode;
3856}
3857
1a54ef8c
BR
3858/* Get an inode object given its location and corresponding root.
3859 * Returns in *is_new if the inode was read from disk
3860 */
3861struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3862 struct btrfs_root *root, int *new)
1a54ef8c
BR
3863{
3864 struct inode *inode;
3865
3866 inode = btrfs_iget_locked(s, location->objectid, root);
3867 if (!inode)
5d4f98a2 3868 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3869
3870 if (inode->i_state & I_NEW) {
3871 BTRFS_I(inode)->root = root;
3872 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3873 btrfs_read_locked_inode(inode);
1748f843
MF
3874 if (!is_bad_inode(inode)) {
3875 inode_tree_add(inode);
3876 unlock_new_inode(inode);
3877 if (new)
3878 *new = 1;
3879 } else {
e0b6d65b
ST
3880 unlock_new_inode(inode);
3881 iput(inode);
3882 inode = ERR_PTR(-ESTALE);
1748f843
MF
3883 }
3884 }
3885
1a54ef8c
BR
3886 return inode;
3887}
3888
4df27c4d
YZ
3889static struct inode *new_simple_dir(struct super_block *s,
3890 struct btrfs_key *key,
3891 struct btrfs_root *root)
3892{
3893 struct inode *inode = new_inode(s);
3894
3895 if (!inode)
3896 return ERR_PTR(-ENOMEM);
3897
4df27c4d
YZ
3898 BTRFS_I(inode)->root = root;
3899 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3900 BTRFS_I(inode)->dummy_inode = 1;
3901
3902 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3903 inode->i_op = &simple_dir_inode_operations;
3904 inode->i_fop = &simple_dir_operations;
3905 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3906 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3907
3908 return inode;
3909}
3910
3de4586c 3911struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3912{
d397712b 3913 struct inode *inode;
4df27c4d 3914 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3915 struct btrfs_root *sub_root = root;
3916 struct btrfs_key location;
76dda93c 3917 int index;
b4aff1f8 3918 int ret = 0;
39279cc3
CM
3919
3920 if (dentry->d_name.len > BTRFS_NAME_LEN)
3921 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3922
b4aff1f8
JB
3923 if (unlikely(d_need_lookup(dentry))) {
3924 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3925 kfree(dentry->d_fsdata);
3926 dentry->d_fsdata = NULL;
a66e7cc6
JB
3927 /* This thing is hashed, drop it for now */
3928 d_drop(dentry);
b4aff1f8
JB
3929 } else {
3930 ret = btrfs_inode_by_name(dir, dentry, &location);
3931 }
5f39d397 3932
39279cc3
CM
3933 if (ret < 0)
3934 return ERR_PTR(ret);
5f39d397 3935
4df27c4d
YZ
3936 if (location.objectid == 0)
3937 return NULL;
3938
3939 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 3940 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
3941 return inode;
3942 }
3943
3944 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3945
76dda93c 3946 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3947 ret = fixup_tree_root_location(root, dir, dentry,
3948 &location, &sub_root);
3949 if (ret < 0) {
3950 if (ret != -ENOENT)
3951 inode = ERR_PTR(ret);
3952 else
3953 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3954 } else {
73f73415 3955 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 3956 }
76dda93c
YZ
3957 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3958
34d19bad 3959 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
3960 down_read(&root->fs_info->cleanup_work_sem);
3961 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 3962 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 3963 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
3964 if (ret)
3965 inode = ERR_PTR(ret);
c71bf099
YZ
3966 }
3967
3de4586c
CM
3968 return inode;
3969}
3970
fe15ce44 3971static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
3972{
3973 struct btrfs_root *root;
3974
efefb143
YZ
3975 if (!dentry->d_inode && !IS_ROOT(dentry))
3976 dentry = dentry->d_parent;
76dda93c 3977
efefb143
YZ
3978 if (dentry->d_inode) {
3979 root = BTRFS_I(dentry->d_inode)->root;
3980 if (btrfs_root_refs(&root->root_item) == 0)
3981 return 1;
3982 }
76dda93c
YZ
3983 return 0;
3984}
3985
b4aff1f8
JB
3986static void btrfs_dentry_release(struct dentry *dentry)
3987{
3988 if (dentry->d_fsdata)
3989 kfree(dentry->d_fsdata);
3990}
3991
3de4586c
CM
3992static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3993 struct nameidata *nd)
3994{
a66e7cc6
JB
3995 struct dentry *ret;
3996
3997 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
3998 if (unlikely(d_need_lookup(dentry))) {
3999 spin_lock(&dentry->d_lock);
4000 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4001 spin_unlock(&dentry->d_lock);
4002 }
4003 return ret;
39279cc3
CM
4004}
4005
16cdcec7 4006unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4007 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4008};
4009
cbdf5a24
DW
4010static int btrfs_real_readdir(struct file *filp, void *dirent,
4011 filldir_t filldir)
39279cc3 4012{
6da6abae 4013 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4014 struct btrfs_root *root = BTRFS_I(inode)->root;
4015 struct btrfs_item *item;
4016 struct btrfs_dir_item *di;
4017 struct btrfs_key key;
5f39d397 4018 struct btrfs_key found_key;
39279cc3 4019 struct btrfs_path *path;
16cdcec7
MX
4020 struct list_head ins_list;
4021 struct list_head del_list;
b4aff1f8 4022 struct qstr q;
39279cc3 4023 int ret;
5f39d397 4024 struct extent_buffer *leaf;
39279cc3 4025 int slot;
39279cc3
CM
4026 unsigned char d_type;
4027 int over = 0;
4028 u32 di_cur;
4029 u32 di_total;
4030 u32 di_len;
4031 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4032 char tmp_name[32];
4033 char *name_ptr;
4034 int name_len;
16cdcec7 4035 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4036
4037 /* FIXME, use a real flag for deciding about the key type */
4038 if (root->fs_info->tree_root == root)
4039 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4040
3954401f
CM
4041 /* special case for "." */
4042 if (filp->f_pos == 0) {
3765fefa
HS
4043 over = filldir(dirent, ".", 1,
4044 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4045 if (over)
4046 return 0;
4047 filp->f_pos = 1;
4048 }
3954401f
CM
4049 /* special case for .., just use the back ref */
4050 if (filp->f_pos == 1) {
5ecc7e5d 4051 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4052 over = filldir(dirent, "..", 2,
3765fefa 4053 filp->f_pos, pino, DT_DIR);
3954401f 4054 if (over)
49593bfa 4055 return 0;
3954401f
CM
4056 filp->f_pos = 2;
4057 }
49593bfa 4058 path = btrfs_alloc_path();
16cdcec7
MX
4059 if (!path)
4060 return -ENOMEM;
ff5714cc 4061
026fd317 4062 path->reada = 1;
49593bfa 4063
16cdcec7
MX
4064 if (key_type == BTRFS_DIR_INDEX_KEY) {
4065 INIT_LIST_HEAD(&ins_list);
4066 INIT_LIST_HEAD(&del_list);
4067 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4068 }
4069
39279cc3
CM
4070 btrfs_set_key_type(&key, key_type);
4071 key.offset = filp->f_pos;
33345d01 4072 key.objectid = btrfs_ino(inode);
5f39d397 4073
39279cc3
CM
4074 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4075 if (ret < 0)
4076 goto err;
49593bfa
DW
4077
4078 while (1) {
5f39d397 4079 leaf = path->nodes[0];
39279cc3 4080 slot = path->slots[0];
b9e03af0
LZ
4081 if (slot >= btrfs_header_nritems(leaf)) {
4082 ret = btrfs_next_leaf(root, path);
4083 if (ret < 0)
4084 goto err;
4085 else if (ret > 0)
4086 break;
4087 continue;
39279cc3 4088 }
3de4586c 4089
5f39d397
CM
4090 item = btrfs_item_nr(leaf, slot);
4091 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4092
4093 if (found_key.objectid != key.objectid)
39279cc3 4094 break;
5f39d397 4095 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4096 break;
5f39d397 4097 if (found_key.offset < filp->f_pos)
b9e03af0 4098 goto next;
16cdcec7
MX
4099 if (key_type == BTRFS_DIR_INDEX_KEY &&
4100 btrfs_should_delete_dir_index(&del_list,
4101 found_key.offset))
4102 goto next;
5f39d397
CM
4103
4104 filp->f_pos = found_key.offset;
16cdcec7 4105 is_curr = 1;
49593bfa 4106
39279cc3
CM
4107 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4108 di_cur = 0;
5f39d397 4109 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4110
4111 while (di_cur < di_total) {
5f39d397 4112 struct btrfs_key location;
b4aff1f8 4113 struct dentry *tmp;
5f39d397 4114
22a94d44
JB
4115 if (verify_dir_item(root, leaf, di))
4116 break;
4117
5f39d397 4118 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4119 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4120 name_ptr = tmp_name;
4121 } else {
4122 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4123 if (!name_ptr) {
4124 ret = -ENOMEM;
4125 goto err;
4126 }
5f39d397
CM
4127 }
4128 read_extent_buffer(leaf, name_ptr,
4129 (unsigned long)(di + 1), name_len);
4130
4131 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4132 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4133
b4aff1f8
JB
4134 q.name = name_ptr;
4135 q.len = name_len;
4136 q.hash = full_name_hash(q.name, q.len);
4137 tmp = d_lookup(filp->f_dentry, &q);
4138 if (!tmp) {
4139 struct btrfs_key *newkey;
4140
4141 newkey = kzalloc(sizeof(struct btrfs_key),
4142 GFP_NOFS);
4143 if (!newkey)
4144 goto no_dentry;
4145 tmp = d_alloc(filp->f_dentry, &q);
4146 if (!tmp) {
4147 kfree(newkey);
4148 dput(tmp);
4149 goto no_dentry;
4150 }
4151 memcpy(newkey, &location,
4152 sizeof(struct btrfs_key));
4153 tmp->d_fsdata = newkey;
4154 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4155 d_rehash(tmp);
4156 dput(tmp);
4157 } else {
4158 dput(tmp);
4159 }
4160no_dentry:
3de4586c
CM
4161 /* is this a reference to our own snapshot? If so
4162 * skip it
4163 */
4164 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4165 location.objectid == root->root_key.objectid) {
4166 over = 0;
4167 goto skip;
4168 }
5f39d397 4169 over = filldir(dirent, name_ptr, name_len,
49593bfa 4170 found_key.offset, location.objectid,
39279cc3 4171 d_type);
5f39d397 4172
3de4586c 4173skip:
5f39d397
CM
4174 if (name_ptr != tmp_name)
4175 kfree(name_ptr);
4176
39279cc3
CM
4177 if (over)
4178 goto nopos;
5103e947 4179 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4180 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4181 di_cur += di_len;
4182 di = (struct btrfs_dir_item *)((char *)di + di_len);
4183 }
b9e03af0
LZ
4184next:
4185 path->slots[0]++;
39279cc3 4186 }
49593bfa 4187
16cdcec7
MX
4188 if (key_type == BTRFS_DIR_INDEX_KEY) {
4189 if (is_curr)
4190 filp->f_pos++;
4191 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4192 &ins_list);
4193 if (ret)
4194 goto nopos;
4195 }
4196
49593bfa 4197 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4198 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4199 /*
4200 * 32-bit glibc will use getdents64, but then strtol -
4201 * so the last number we can serve is this.
4202 */
4203 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4204 else
4205 filp->f_pos++;
39279cc3
CM
4206nopos:
4207 ret = 0;
4208err:
16cdcec7
MX
4209 if (key_type == BTRFS_DIR_INDEX_KEY)
4210 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4211 btrfs_free_path(path);
39279cc3
CM
4212 return ret;
4213}
4214
a9185b41 4215int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4216{
4217 struct btrfs_root *root = BTRFS_I(inode)->root;
4218 struct btrfs_trans_handle *trans;
4219 int ret = 0;
0af3d00b 4220 bool nolock = false;
39279cc3 4221
8929ecfa 4222 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4223 return 0;
4224
2cf8572d 4225 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4226 nolock = true;
0af3d00b 4227
a9185b41 4228 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4229 if (nolock)
7a7eaa40 4230 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4231 else
7a7eaa40 4232 trans = btrfs_join_transaction(root);
3612b495
TI
4233 if (IS_ERR(trans))
4234 return PTR_ERR(trans);
0af3d00b
JB
4235 if (nolock)
4236 ret = btrfs_end_transaction_nolock(trans, root);
4237 else
4238 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4239 }
4240 return ret;
4241}
4242
4243/*
54aa1f4d 4244 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4245 * inode changes. But, it is most likely to find the inode in cache.
4246 * FIXME, needs more benchmarking...there are no reasons other than performance
4247 * to keep or drop this code.
4248 */
22c44fe6 4249int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4250{
4251 struct btrfs_root *root = BTRFS_I(inode)->root;
4252 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4253 int ret;
4254
4255 if (BTRFS_I(inode)->dummy_inode)
22c44fe6 4256 return 0;
39279cc3 4257
7a7eaa40 4258 trans = btrfs_join_transaction(root);
22c44fe6
JB
4259 if (IS_ERR(trans))
4260 return PTR_ERR(trans);
8929ecfa
YZ
4261
4262 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4263 if (ret && ret == -ENOSPC) {
4264 /* whoops, lets try again with the full transaction */
4265 btrfs_end_transaction(trans, root);
4266 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4267 if (IS_ERR(trans))
4268 return PTR_ERR(trans);
8929ecfa 4269
94b60442 4270 ret = btrfs_update_inode(trans, root, inode);
94b60442 4271 }
39279cc3 4272 btrfs_end_transaction(trans, root);
16cdcec7
MX
4273 if (BTRFS_I(inode)->delayed_node)
4274 btrfs_balance_delayed_items(root);
22c44fe6
JB
4275
4276 return ret;
4277}
4278
4279/*
4280 * This is a copy of file_update_time. We need this so we can return error on
4281 * ENOSPC for updating the inode in the case of file write and mmap writes.
4282 */
4283int btrfs_update_time(struct file *file)
4284{
4285 struct inode *inode = file->f_path.dentry->d_inode;
4286 struct timespec now;
4287 int ret;
4288 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4289
4290 /* First try to exhaust all avenues to not sync */
4291 if (IS_NOCMTIME(inode))
4292 return 0;
4293
4294 now = current_fs_time(inode->i_sb);
4295 if (!timespec_equal(&inode->i_mtime, &now))
4296 sync_it = S_MTIME;
4297
4298 if (!timespec_equal(&inode->i_ctime, &now))
4299 sync_it |= S_CTIME;
4300
4301 if (IS_I_VERSION(inode))
4302 sync_it |= S_VERSION;
4303
4304 if (!sync_it)
4305 return 0;
4306
4307 /* Finally allowed to write? Takes lock. */
4308 if (mnt_want_write_file(file))
4309 return 0;
4310
4311 /* Only change inode inside the lock region */
4312 if (sync_it & S_VERSION)
4313 inode_inc_iversion(inode);
4314 if (sync_it & S_CTIME)
4315 inode->i_ctime = now;
4316 if (sync_it & S_MTIME)
4317 inode->i_mtime = now;
4318 ret = btrfs_dirty_inode(inode);
4319 if (!ret)
4320 mark_inode_dirty_sync(inode);
4321 mnt_drop_write(file->f_path.mnt);
4322 return ret;
39279cc3
CM
4323}
4324
d352ac68
CM
4325/*
4326 * find the highest existing sequence number in a directory
4327 * and then set the in-memory index_cnt variable to reflect
4328 * free sequence numbers
4329 */
aec7477b
JB
4330static int btrfs_set_inode_index_count(struct inode *inode)
4331{
4332 struct btrfs_root *root = BTRFS_I(inode)->root;
4333 struct btrfs_key key, found_key;
4334 struct btrfs_path *path;
4335 struct extent_buffer *leaf;
4336 int ret;
4337
33345d01 4338 key.objectid = btrfs_ino(inode);
aec7477b
JB
4339 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4340 key.offset = (u64)-1;
4341
4342 path = btrfs_alloc_path();
4343 if (!path)
4344 return -ENOMEM;
4345
4346 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4347 if (ret < 0)
4348 goto out;
4349 /* FIXME: we should be able to handle this */
4350 if (ret == 0)
4351 goto out;
4352 ret = 0;
4353
4354 /*
4355 * MAGIC NUMBER EXPLANATION:
4356 * since we search a directory based on f_pos we have to start at 2
4357 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4358 * else has to start at 2
4359 */
4360 if (path->slots[0] == 0) {
4361 BTRFS_I(inode)->index_cnt = 2;
4362 goto out;
4363 }
4364
4365 path->slots[0]--;
4366
4367 leaf = path->nodes[0];
4368 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4369
33345d01 4370 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4371 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4372 BTRFS_I(inode)->index_cnt = 2;
4373 goto out;
4374 }
4375
4376 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4377out:
4378 btrfs_free_path(path);
4379 return ret;
4380}
4381
d352ac68
CM
4382/*
4383 * helper to find a free sequence number in a given directory. This current
4384 * code is very simple, later versions will do smarter things in the btree
4385 */
3de4586c 4386int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4387{
4388 int ret = 0;
4389
4390 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4391 ret = btrfs_inode_delayed_dir_index_count(dir);
4392 if (ret) {
4393 ret = btrfs_set_inode_index_count(dir);
4394 if (ret)
4395 return ret;
4396 }
aec7477b
JB
4397 }
4398
00e4e6b3 4399 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4400 BTRFS_I(dir)->index_cnt++;
4401
4402 return ret;
4403}
4404
39279cc3
CM
4405static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4406 struct btrfs_root *root,
aec7477b 4407 struct inode *dir,
9c58309d 4408 const char *name, int name_len,
d82a6f1d
JB
4409 u64 ref_objectid, u64 objectid, int mode,
4410 u64 *index)
39279cc3
CM
4411{
4412 struct inode *inode;
5f39d397 4413 struct btrfs_inode_item *inode_item;
39279cc3 4414 struct btrfs_key *location;
5f39d397 4415 struct btrfs_path *path;
9c58309d
CM
4416 struct btrfs_inode_ref *ref;
4417 struct btrfs_key key[2];
4418 u32 sizes[2];
4419 unsigned long ptr;
39279cc3
CM
4420 int ret;
4421 int owner;
4422
5f39d397 4423 path = btrfs_alloc_path();
d8926bb3
MF
4424 if (!path)
4425 return ERR_PTR(-ENOMEM);
5f39d397 4426
39279cc3 4427 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4428 if (!inode) {
4429 btrfs_free_path(path);
39279cc3 4430 return ERR_PTR(-ENOMEM);
8fb27640 4431 }
39279cc3 4432
581bb050
LZ
4433 /*
4434 * we have to initialize this early, so we can reclaim the inode
4435 * number if we fail afterwards in this function.
4436 */
4437 inode->i_ino = objectid;
4438
aec7477b 4439 if (dir) {
1abe9b8a 4440 trace_btrfs_inode_request(dir);
4441
3de4586c 4442 ret = btrfs_set_inode_index(dir, index);
09771430 4443 if (ret) {
8fb27640 4444 btrfs_free_path(path);
09771430 4445 iput(inode);
aec7477b 4446 return ERR_PTR(ret);
09771430 4447 }
aec7477b
JB
4448 }
4449 /*
4450 * index_cnt is ignored for everything but a dir,
4451 * btrfs_get_inode_index_count has an explanation for the magic
4452 * number
4453 */
4454 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4455 BTRFS_I(inode)->root = root;
e02119d5 4456 BTRFS_I(inode)->generation = trans->transid;
76195853 4457 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4458 btrfs_set_inode_space_info(root, inode);
b888db2b 4459
569254b0 4460 if (S_ISDIR(mode))
39279cc3
CM
4461 owner = 0;
4462 else
4463 owner = 1;
9c58309d
CM
4464
4465 key[0].objectid = objectid;
4466 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4467 key[0].offset = 0;
4468
4469 key[1].objectid = objectid;
4470 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4471 key[1].offset = ref_objectid;
4472
4473 sizes[0] = sizeof(struct btrfs_inode_item);
4474 sizes[1] = name_len + sizeof(*ref);
4475
b9473439 4476 path->leave_spinning = 1;
9c58309d
CM
4477 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4478 if (ret != 0)
5f39d397
CM
4479 goto fail;
4480
ecc11fab 4481 inode_init_owner(inode, dir, mode);
a76a3cd4 4482 inode_set_bytes(inode, 0);
39279cc3 4483 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4484 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4485 struct btrfs_inode_item);
e02119d5 4486 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4487
4488 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4489 struct btrfs_inode_ref);
4490 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4491 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4492 ptr = (unsigned long)(ref + 1);
4493 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4494
5f39d397
CM
4495 btrfs_mark_buffer_dirty(path->nodes[0]);
4496 btrfs_free_path(path);
4497
39279cc3
CM
4498 location = &BTRFS_I(inode)->location;
4499 location->objectid = objectid;
39279cc3
CM
4500 location->offset = 0;
4501 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4502
6cbff00f
CH
4503 btrfs_inherit_iflags(inode, dir);
4504
569254b0 4505 if (S_ISREG(mode)) {
94272164
CM
4506 if (btrfs_test_opt(root, NODATASUM))
4507 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4508 if (btrfs_test_opt(root, NODATACOW) ||
4509 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4510 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4511 }
4512
39279cc3 4513 insert_inode_hash(inode);
5d4f98a2 4514 inode_tree_add(inode);
1abe9b8a 4515
4516 trace_btrfs_inode_new(inode);
1973f0fa 4517 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4518
39279cc3 4519 return inode;
5f39d397 4520fail:
aec7477b
JB
4521 if (dir)
4522 BTRFS_I(dir)->index_cnt--;
5f39d397 4523 btrfs_free_path(path);
09771430 4524 iput(inode);
5f39d397 4525 return ERR_PTR(ret);
39279cc3
CM
4526}
4527
4528static inline u8 btrfs_inode_type(struct inode *inode)
4529{
4530 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4531}
4532
d352ac68
CM
4533/*
4534 * utility function to add 'inode' into 'parent_inode' with
4535 * a give name and a given sequence number.
4536 * if 'add_backref' is true, also insert a backref from the
4537 * inode to the parent directory.
4538 */
e02119d5
CM
4539int btrfs_add_link(struct btrfs_trans_handle *trans,
4540 struct inode *parent_inode, struct inode *inode,
4541 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4542{
4df27c4d 4543 int ret = 0;
39279cc3 4544 struct btrfs_key key;
e02119d5 4545 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4546 u64 ino = btrfs_ino(inode);
4547 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4548
33345d01 4549 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4550 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4551 } else {
33345d01 4552 key.objectid = ino;
4df27c4d
YZ
4553 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4554 key.offset = 0;
4555 }
4556
33345d01 4557 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4558 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4559 key.objectid, root->root_key.objectid,
33345d01 4560 parent_ino, index, name, name_len);
4df27c4d 4561 } else if (add_backref) {
33345d01
LZ
4562 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4563 parent_ino, index);
4df27c4d 4564 }
39279cc3 4565
39279cc3 4566 if (ret == 0) {
4df27c4d 4567 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4568 parent_inode, &key,
4df27c4d
YZ
4569 btrfs_inode_type(inode), index);
4570 BUG_ON(ret);
4571
dbe674a9 4572 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4573 name_len * 2);
79c44584 4574 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4575 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4576 }
4577 return ret;
4578}
4579
4580static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4581 struct inode *dir, struct dentry *dentry,
4582 struct inode *inode, int backref, u64 index)
39279cc3 4583{
a1b075d2
JB
4584 int err = btrfs_add_link(trans, dir, inode,
4585 dentry->d_name.name, dentry->d_name.len,
4586 backref, index);
39279cc3
CM
4587 if (err > 0)
4588 err = -EEXIST;
4589 return err;
4590}
4591
618e21d5
JB
4592static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4593 int mode, dev_t rdev)
4594{
4595 struct btrfs_trans_handle *trans;
4596 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4597 struct inode *inode = NULL;
618e21d5
JB
4598 int err;
4599 int drop_inode = 0;
4600 u64 objectid;
1832a6d5 4601 unsigned long nr = 0;
00e4e6b3 4602 u64 index = 0;
618e21d5
JB
4603
4604 if (!new_valid_dev(rdev))
4605 return -EINVAL;
4606
9ed74f2d
JB
4607 /*
4608 * 2 for inode item and ref
4609 * 2 for dir items
4610 * 1 for xattr if selinux is on
4611 */
a22285a6
YZ
4612 trans = btrfs_start_transaction(root, 5);
4613 if (IS_ERR(trans))
4614 return PTR_ERR(trans);
1832a6d5 4615
581bb050
LZ
4616 err = btrfs_find_free_ino(root, &objectid);
4617 if (err)
4618 goto out_unlock;
4619
aec7477b 4620 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4621 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4622 mode, &index);
7cf96da3
TI
4623 if (IS_ERR(inode)) {
4624 err = PTR_ERR(inode);
618e21d5 4625 goto out_unlock;
7cf96da3 4626 }
618e21d5 4627
2a7dba39 4628 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4629 if (err) {
4630 drop_inode = 1;
4631 goto out_unlock;
4632 }
4633
ad19db71
CS
4634 /*
4635 * If the active LSM wants to access the inode during
4636 * d_instantiate it needs these. Smack checks to see
4637 * if the filesystem supports xattrs by looking at the
4638 * ops vector.
4639 */
4640
4641 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4642 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4643 if (err)
4644 drop_inode = 1;
4645 else {
618e21d5 4646 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4647 btrfs_update_inode(trans, root, inode);
08c422c2 4648 d_instantiate(dentry, inode);
618e21d5 4649 }
618e21d5 4650out_unlock:
d3c2fdcf 4651 nr = trans->blocks_used;
7ad85bb7 4652 btrfs_end_transaction(trans, root);
a22285a6 4653 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4654 if (drop_inode) {
4655 inode_dec_link_count(inode);
4656 iput(inode);
4657 }
618e21d5
JB
4658 return err;
4659}
4660
39279cc3
CM
4661static int btrfs_create(struct inode *dir, struct dentry *dentry,
4662 int mode, struct nameidata *nd)
4663{
4664 struct btrfs_trans_handle *trans;
4665 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4666 struct inode *inode = NULL;
39279cc3 4667 int drop_inode = 0;
a22285a6 4668 int err;
1832a6d5 4669 unsigned long nr = 0;
39279cc3 4670 u64 objectid;
00e4e6b3 4671 u64 index = 0;
39279cc3 4672
9ed74f2d
JB
4673 /*
4674 * 2 for inode item and ref
4675 * 2 for dir items
4676 * 1 for xattr if selinux is on
4677 */
a22285a6
YZ
4678 trans = btrfs_start_transaction(root, 5);
4679 if (IS_ERR(trans))
4680 return PTR_ERR(trans);
9ed74f2d 4681
581bb050
LZ
4682 err = btrfs_find_free_ino(root, &objectid);
4683 if (err)
4684 goto out_unlock;
4685
aec7477b 4686 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4687 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4688 mode, &index);
7cf96da3
TI
4689 if (IS_ERR(inode)) {
4690 err = PTR_ERR(inode);
39279cc3 4691 goto out_unlock;
7cf96da3 4692 }
39279cc3 4693
2a7dba39 4694 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4695 if (err) {
4696 drop_inode = 1;
4697 goto out_unlock;
4698 }
4699
ad19db71
CS
4700 /*
4701 * If the active LSM wants to access the inode during
4702 * d_instantiate it needs these. Smack checks to see
4703 * if the filesystem supports xattrs by looking at the
4704 * ops vector.
4705 */
4706 inode->i_fop = &btrfs_file_operations;
4707 inode->i_op = &btrfs_file_inode_operations;
4708
a1b075d2 4709 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4710 if (err)
4711 drop_inode = 1;
4712 else {
4713 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4714 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 4715 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
08c422c2 4716 d_instantiate(dentry, inode);
39279cc3 4717 }
39279cc3 4718out_unlock:
d3c2fdcf 4719 nr = trans->blocks_used;
7ad85bb7 4720 btrfs_end_transaction(trans, root);
39279cc3
CM
4721 if (drop_inode) {
4722 inode_dec_link_count(inode);
4723 iput(inode);
4724 }
d3c2fdcf 4725 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4726 return err;
4727}
4728
4729static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4730 struct dentry *dentry)
4731{
4732 struct btrfs_trans_handle *trans;
4733 struct btrfs_root *root = BTRFS_I(dir)->root;
4734 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4735 u64 index;
1832a6d5 4736 unsigned long nr = 0;
39279cc3
CM
4737 int err;
4738 int drop_inode = 0;
4739
4a8be425
TH
4740 /* do not allow sys_link's with other subvols of the same device */
4741 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4742 return -EXDEV;
4a8be425 4743
c055e99e
AV
4744 if (inode->i_nlink == ~0U)
4745 return -EMLINK;
4a8be425 4746
3de4586c 4747 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4748 if (err)
4749 goto fail;
4750
a22285a6 4751 /*
7e6b6465 4752 * 2 items for inode and inode ref
a22285a6 4753 * 2 items for dir items
7e6b6465 4754 * 1 item for parent inode
a22285a6 4755 */
7e6b6465 4756 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4757 if (IS_ERR(trans)) {
4758 err = PTR_ERR(trans);
4759 goto fail;
4760 }
5f39d397 4761
3153495d
MX
4762 btrfs_inc_nlink(inode);
4763 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4764 ihold(inode);
aec7477b 4765
a1b075d2 4766 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4767
a5719521 4768 if (err) {
54aa1f4d 4769 drop_inode = 1;
a5719521 4770 } else {
10d9f309 4771 struct dentry *parent = dentry->d_parent;
a5719521
YZ
4772 err = btrfs_update_inode(trans, root, inode);
4773 BUG_ON(err);
08c422c2 4774 d_instantiate(dentry, inode);
6a912213 4775 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 4776 }
39279cc3 4777
d3c2fdcf 4778 nr = trans->blocks_used;
7ad85bb7 4779 btrfs_end_transaction(trans, root);
1832a6d5 4780fail:
39279cc3
CM
4781 if (drop_inode) {
4782 inode_dec_link_count(inode);
4783 iput(inode);
4784 }
d3c2fdcf 4785 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4786 return err;
4787}
4788
39279cc3
CM
4789static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4790{
b9d86667 4791 struct inode *inode = NULL;
39279cc3
CM
4792 struct btrfs_trans_handle *trans;
4793 struct btrfs_root *root = BTRFS_I(dir)->root;
4794 int err = 0;
4795 int drop_on_err = 0;
b9d86667 4796 u64 objectid = 0;
00e4e6b3 4797 u64 index = 0;
d3c2fdcf 4798 unsigned long nr = 1;
39279cc3 4799
9ed74f2d
JB
4800 /*
4801 * 2 items for inode and ref
4802 * 2 items for dir items
4803 * 1 for xattr if selinux is on
4804 */
a22285a6
YZ
4805 trans = btrfs_start_transaction(root, 5);
4806 if (IS_ERR(trans))
4807 return PTR_ERR(trans);
39279cc3 4808
581bb050
LZ
4809 err = btrfs_find_free_ino(root, &objectid);
4810 if (err)
4811 goto out_fail;
4812
aec7477b 4813 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4814 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4815 S_IFDIR | mode, &index);
39279cc3
CM
4816 if (IS_ERR(inode)) {
4817 err = PTR_ERR(inode);
4818 goto out_fail;
4819 }
5f39d397 4820
39279cc3 4821 drop_on_err = 1;
33268eaf 4822
2a7dba39 4823 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4824 if (err)
4825 goto out_fail;
4826
39279cc3
CM
4827 inode->i_op = &btrfs_dir_inode_operations;
4828 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4829
dbe674a9 4830 btrfs_i_size_write(inode, 0);
39279cc3
CM
4831 err = btrfs_update_inode(trans, root, inode);
4832 if (err)
4833 goto out_fail;
5f39d397 4834
a1b075d2
JB
4835 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4836 dentry->d_name.len, 0, index);
39279cc3
CM
4837 if (err)
4838 goto out_fail;
5f39d397 4839
39279cc3
CM
4840 d_instantiate(dentry, inode);
4841 drop_on_err = 0;
39279cc3
CM
4842
4843out_fail:
d3c2fdcf 4844 nr = trans->blocks_used;
7ad85bb7 4845 btrfs_end_transaction(trans, root);
39279cc3
CM
4846 if (drop_on_err)
4847 iput(inode);
d3c2fdcf 4848 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4849 return err;
4850}
4851
d352ac68
CM
4852/* helper for btfs_get_extent. Given an existing extent in the tree,
4853 * and an extent that you want to insert, deal with overlap and insert
4854 * the new extent into the tree.
4855 */
3b951516
CM
4856static int merge_extent_mapping(struct extent_map_tree *em_tree,
4857 struct extent_map *existing,
e6dcd2dc
CM
4858 struct extent_map *em,
4859 u64 map_start, u64 map_len)
3b951516
CM
4860{
4861 u64 start_diff;
3b951516 4862
e6dcd2dc
CM
4863 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4864 start_diff = map_start - em->start;
4865 em->start = map_start;
4866 em->len = map_len;
c8b97818
CM
4867 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4868 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4869 em->block_start += start_diff;
c8b97818
CM
4870 em->block_len -= start_diff;
4871 }
e6dcd2dc 4872 return add_extent_mapping(em_tree, em);
3b951516
CM
4873}
4874
c8b97818
CM
4875static noinline int uncompress_inline(struct btrfs_path *path,
4876 struct inode *inode, struct page *page,
4877 size_t pg_offset, u64 extent_offset,
4878 struct btrfs_file_extent_item *item)
4879{
4880 int ret;
4881 struct extent_buffer *leaf = path->nodes[0];
4882 char *tmp;
4883 size_t max_size;
4884 unsigned long inline_size;
4885 unsigned long ptr;
261507a0 4886 int compress_type;
c8b97818
CM
4887
4888 WARN_ON(pg_offset != 0);
261507a0 4889 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4890 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4891 inline_size = btrfs_file_extent_inline_item_len(leaf,
4892 btrfs_item_nr(leaf, path->slots[0]));
4893 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4894 if (!tmp)
4895 return -ENOMEM;
c8b97818
CM
4896 ptr = btrfs_file_extent_inline_start(item);
4897
4898 read_extent_buffer(leaf, tmp, ptr, inline_size);
4899
5b050f04 4900 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4901 ret = btrfs_decompress(compress_type, tmp, page,
4902 extent_offset, inline_size, max_size);
c8b97818
CM
4903 if (ret) {
4904 char *kaddr = kmap_atomic(page, KM_USER0);
4905 unsigned long copy_size = min_t(u64,
4906 PAGE_CACHE_SIZE - pg_offset,
4907 max_size - extent_offset);
4908 memset(kaddr + pg_offset, 0, copy_size);
4909 kunmap_atomic(kaddr, KM_USER0);
4910 }
4911 kfree(tmp);
4912 return 0;
4913}
4914
d352ac68
CM
4915/*
4916 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4917 * the ugly parts come from merging extents from the disk with the in-ram
4918 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4919 * where the in-ram extents might be locked pending data=ordered completion.
4920 *
4921 * This also copies inline extents directly into the page.
4922 */
d397712b 4923
a52d9a80 4924struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4925 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4926 int create)
4927{
4928 int ret;
4929 int err = 0;
db94535d 4930 u64 bytenr;
a52d9a80
CM
4931 u64 extent_start = 0;
4932 u64 extent_end = 0;
33345d01 4933 u64 objectid = btrfs_ino(inode);
a52d9a80 4934 u32 found_type;
f421950f 4935 struct btrfs_path *path = NULL;
a52d9a80
CM
4936 struct btrfs_root *root = BTRFS_I(inode)->root;
4937 struct btrfs_file_extent_item *item;
5f39d397
CM
4938 struct extent_buffer *leaf;
4939 struct btrfs_key found_key;
a52d9a80
CM
4940 struct extent_map *em = NULL;
4941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4942 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4943 struct btrfs_trans_handle *trans = NULL;
261507a0 4944 int compress_type;
a52d9a80 4945
a52d9a80 4946again:
890871be 4947 read_lock(&em_tree->lock);
d1310b2e 4948 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4949 if (em)
4950 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4951 read_unlock(&em_tree->lock);
d1310b2e 4952
a52d9a80 4953 if (em) {
e1c4b745
CM
4954 if (em->start > start || em->start + em->len <= start)
4955 free_extent_map(em);
4956 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4957 free_extent_map(em);
4958 else
4959 goto out;
a52d9a80 4960 }
172ddd60 4961 em = alloc_extent_map();
a52d9a80 4962 if (!em) {
d1310b2e
CM
4963 err = -ENOMEM;
4964 goto out;
a52d9a80 4965 }
e6dcd2dc 4966 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4967 em->start = EXTENT_MAP_HOLE;
445a6944 4968 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4969 em->len = (u64)-1;
c8b97818 4970 em->block_len = (u64)-1;
f421950f
CM
4971
4972 if (!path) {
4973 path = btrfs_alloc_path();
026fd317
JB
4974 if (!path) {
4975 err = -ENOMEM;
4976 goto out;
4977 }
4978 /*
4979 * Chances are we'll be called again, so go ahead and do
4980 * readahead
4981 */
4982 path->reada = 1;
f421950f
CM
4983 }
4984
179e29e4
CM
4985 ret = btrfs_lookup_file_extent(trans, root, path,
4986 objectid, start, trans != NULL);
a52d9a80
CM
4987 if (ret < 0) {
4988 err = ret;
4989 goto out;
4990 }
4991
4992 if (ret != 0) {
4993 if (path->slots[0] == 0)
4994 goto not_found;
4995 path->slots[0]--;
4996 }
4997
5f39d397
CM
4998 leaf = path->nodes[0];
4999 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5000 struct btrfs_file_extent_item);
a52d9a80 5001 /* are we inside the extent that was found? */
5f39d397
CM
5002 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5003 found_type = btrfs_key_type(&found_key);
5004 if (found_key.objectid != objectid ||
a52d9a80
CM
5005 found_type != BTRFS_EXTENT_DATA_KEY) {
5006 goto not_found;
5007 }
5008
5f39d397
CM
5009 found_type = btrfs_file_extent_type(leaf, item);
5010 extent_start = found_key.offset;
261507a0 5011 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5012 if (found_type == BTRFS_FILE_EXTENT_REG ||
5013 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5014 extent_end = extent_start +
db94535d 5015 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5016 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5017 size_t size;
5018 size = btrfs_file_extent_inline_len(leaf, item);
5019 extent_end = (extent_start + size + root->sectorsize - 1) &
5020 ~((u64)root->sectorsize - 1);
5021 }
5022
5023 if (start >= extent_end) {
5024 path->slots[0]++;
5025 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5026 ret = btrfs_next_leaf(root, path);
5027 if (ret < 0) {
5028 err = ret;
5029 goto out;
a52d9a80 5030 }
9036c102
YZ
5031 if (ret > 0)
5032 goto not_found;
5033 leaf = path->nodes[0];
a52d9a80 5034 }
9036c102
YZ
5035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5036 if (found_key.objectid != objectid ||
5037 found_key.type != BTRFS_EXTENT_DATA_KEY)
5038 goto not_found;
5039 if (start + len <= found_key.offset)
5040 goto not_found;
5041 em->start = start;
5042 em->len = found_key.offset - start;
5043 goto not_found_em;
5044 }
5045
d899e052
YZ
5046 if (found_type == BTRFS_FILE_EXTENT_REG ||
5047 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5048 em->start = extent_start;
5049 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5050 em->orig_start = extent_start -
5051 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5052 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5053 if (bytenr == 0) {
5f39d397 5054 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5055 goto insert;
5056 }
261507a0 5057 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5058 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5059 em->compress_type = compress_type;
c8b97818
CM
5060 em->block_start = bytenr;
5061 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5062 item);
5063 } else {
5064 bytenr += btrfs_file_extent_offset(leaf, item);
5065 em->block_start = bytenr;
5066 em->block_len = em->len;
d899e052
YZ
5067 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5068 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5069 }
a52d9a80
CM
5070 goto insert;
5071 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5072 unsigned long ptr;
a52d9a80 5073 char *map;
3326d1b0
CM
5074 size_t size;
5075 size_t extent_offset;
5076 size_t copy_size;
a52d9a80 5077
689f9346 5078 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5079 if (!page || create) {
689f9346 5080 em->start = extent_start;
9036c102 5081 em->len = extent_end - extent_start;
689f9346
Y
5082 goto out;
5083 }
5f39d397 5084
9036c102
YZ
5085 size = btrfs_file_extent_inline_len(leaf, item);
5086 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5087 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5088 size - extent_offset);
3326d1b0 5089 em->start = extent_start + extent_offset;
70dec807
CM
5090 em->len = (copy_size + root->sectorsize - 1) &
5091 ~((u64)root->sectorsize - 1);
ff5b7ee3 5092 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5093 if (compress_type) {
c8b97818 5094 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5095 em->compress_type = compress_type;
5096 }
689f9346 5097 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5098 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5099 if (btrfs_file_extent_compression(leaf, item) !=
5100 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5101 ret = uncompress_inline(path, inode, page,
5102 pg_offset,
5103 extent_offset, item);
5104 BUG_ON(ret);
5105 } else {
5106 map = kmap(page);
5107 read_extent_buffer(leaf, map + pg_offset, ptr,
5108 copy_size);
93c82d57
CM
5109 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5110 memset(map + pg_offset + copy_size, 0,
5111 PAGE_CACHE_SIZE - pg_offset -
5112 copy_size);
5113 }
c8b97818
CM
5114 kunmap(page);
5115 }
179e29e4
CM
5116 flush_dcache_page(page);
5117 } else if (create && PageUptodate(page)) {
6bf7e080 5118 BUG();
179e29e4
CM
5119 if (!trans) {
5120 kunmap(page);
5121 free_extent_map(em);
5122 em = NULL;
ff5714cc 5123
b3b4aa74 5124 btrfs_release_path(path);
7a7eaa40 5125 trans = btrfs_join_transaction(root);
ff5714cc 5126
3612b495
TI
5127 if (IS_ERR(trans))
5128 return ERR_CAST(trans);
179e29e4
CM
5129 goto again;
5130 }
c8b97818 5131 map = kmap(page);
70dec807 5132 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5133 copy_size);
c8b97818 5134 kunmap(page);
179e29e4 5135 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5136 }
d1310b2e 5137 set_extent_uptodate(io_tree, em->start,
507903b8 5138 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5139 goto insert;
5140 } else {
d397712b 5141 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5142 WARN_ON(1);
5143 }
5144not_found:
5145 em->start = start;
d1310b2e 5146 em->len = len;
a52d9a80 5147not_found_em:
5f39d397 5148 em->block_start = EXTENT_MAP_HOLE;
9036c102 5149 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5150insert:
b3b4aa74 5151 btrfs_release_path(path);
d1310b2e 5152 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5153 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5154 "[%llu %llu]\n", (unsigned long long)em->start,
5155 (unsigned long long)em->len,
5156 (unsigned long long)start,
5157 (unsigned long long)len);
a52d9a80
CM
5158 err = -EIO;
5159 goto out;
5160 }
d1310b2e
CM
5161
5162 err = 0;
890871be 5163 write_lock(&em_tree->lock);
a52d9a80 5164 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5165 /* it is possible that someone inserted the extent into the tree
5166 * while we had the lock dropped. It is also possible that
5167 * an overlapping map exists in the tree
5168 */
a52d9a80 5169 if (ret == -EEXIST) {
3b951516 5170 struct extent_map *existing;
e6dcd2dc
CM
5171
5172 ret = 0;
5173
3b951516 5174 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5175 if (existing && (existing->start > start ||
5176 existing->start + existing->len <= start)) {
5177 free_extent_map(existing);
5178 existing = NULL;
5179 }
3b951516
CM
5180 if (!existing) {
5181 existing = lookup_extent_mapping(em_tree, em->start,
5182 em->len);
5183 if (existing) {
5184 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5185 em, start,
5186 root->sectorsize);
3b951516
CM
5187 free_extent_map(existing);
5188 if (err) {
5189 free_extent_map(em);
5190 em = NULL;
5191 }
5192 } else {
5193 err = -EIO;
3b951516
CM
5194 free_extent_map(em);
5195 em = NULL;
5196 }
5197 } else {
5198 free_extent_map(em);
5199 em = existing;
e6dcd2dc 5200 err = 0;
a52d9a80 5201 }
a52d9a80 5202 }
890871be 5203 write_unlock(&em_tree->lock);
a52d9a80 5204out:
1abe9b8a 5205
5206 trace_btrfs_get_extent(root, em);
5207
f421950f
CM
5208 if (path)
5209 btrfs_free_path(path);
a52d9a80
CM
5210 if (trans) {
5211 ret = btrfs_end_transaction(trans, root);
d397712b 5212 if (!err)
a52d9a80
CM
5213 err = ret;
5214 }
a52d9a80
CM
5215 if (err) {
5216 free_extent_map(em);
a52d9a80
CM
5217 return ERR_PTR(err);
5218 }
5219 return em;
5220}
5221
ec29ed5b
CM
5222struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5223 size_t pg_offset, u64 start, u64 len,
5224 int create)
5225{
5226 struct extent_map *em;
5227 struct extent_map *hole_em = NULL;
5228 u64 range_start = start;
5229 u64 end;
5230 u64 found;
5231 u64 found_end;
5232 int err = 0;
5233
5234 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5235 if (IS_ERR(em))
5236 return em;
5237 if (em) {
5238 /*
5239 * if our em maps to a hole, there might
5240 * actually be delalloc bytes behind it
5241 */
5242 if (em->block_start != EXTENT_MAP_HOLE)
5243 return em;
5244 else
5245 hole_em = em;
5246 }
5247
5248 /* check to see if we've wrapped (len == -1 or similar) */
5249 end = start + len;
5250 if (end < start)
5251 end = (u64)-1;
5252 else
5253 end -= 1;
5254
5255 em = NULL;
5256
5257 /* ok, we didn't find anything, lets look for delalloc */
5258 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5259 end, len, EXTENT_DELALLOC, 1);
5260 found_end = range_start + found;
5261 if (found_end < range_start)
5262 found_end = (u64)-1;
5263
5264 /*
5265 * we didn't find anything useful, return
5266 * the original results from get_extent()
5267 */
5268 if (range_start > end || found_end <= start) {
5269 em = hole_em;
5270 hole_em = NULL;
5271 goto out;
5272 }
5273
5274 /* adjust the range_start to make sure it doesn't
5275 * go backwards from the start they passed in
5276 */
5277 range_start = max(start,range_start);
5278 found = found_end - range_start;
5279
5280 if (found > 0) {
5281 u64 hole_start = start;
5282 u64 hole_len = len;
5283
172ddd60 5284 em = alloc_extent_map();
ec29ed5b
CM
5285 if (!em) {
5286 err = -ENOMEM;
5287 goto out;
5288 }
5289 /*
5290 * when btrfs_get_extent can't find anything it
5291 * returns one huge hole
5292 *
5293 * make sure what it found really fits our range, and
5294 * adjust to make sure it is based on the start from
5295 * the caller
5296 */
5297 if (hole_em) {
5298 u64 calc_end = extent_map_end(hole_em);
5299
5300 if (calc_end <= start || (hole_em->start > end)) {
5301 free_extent_map(hole_em);
5302 hole_em = NULL;
5303 } else {
5304 hole_start = max(hole_em->start, start);
5305 hole_len = calc_end - hole_start;
5306 }
5307 }
5308 em->bdev = NULL;
5309 if (hole_em && range_start > hole_start) {
5310 /* our hole starts before our delalloc, so we
5311 * have to return just the parts of the hole
5312 * that go until the delalloc starts
5313 */
5314 em->len = min(hole_len,
5315 range_start - hole_start);
5316 em->start = hole_start;
5317 em->orig_start = hole_start;
5318 /*
5319 * don't adjust block start at all,
5320 * it is fixed at EXTENT_MAP_HOLE
5321 */
5322 em->block_start = hole_em->block_start;
5323 em->block_len = hole_len;
5324 } else {
5325 em->start = range_start;
5326 em->len = found;
5327 em->orig_start = range_start;
5328 em->block_start = EXTENT_MAP_DELALLOC;
5329 em->block_len = found;
5330 }
5331 } else if (hole_em) {
5332 return hole_em;
5333 }
5334out:
5335
5336 free_extent_map(hole_em);
5337 if (err) {
5338 free_extent_map(em);
5339 return ERR_PTR(err);
5340 }
5341 return em;
5342}
5343
4b46fce2 5344static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5345 struct extent_map *em,
4b46fce2
JB
5346 u64 start, u64 len)
5347{
5348 struct btrfs_root *root = BTRFS_I(inode)->root;
5349 struct btrfs_trans_handle *trans;
4b46fce2
JB
5350 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5351 struct btrfs_key ins;
5352 u64 alloc_hint;
5353 int ret;
16d299ac 5354 bool insert = false;
4b46fce2 5355
16d299ac
JB
5356 /*
5357 * Ok if the extent map we looked up is a hole and is for the exact
5358 * range we want, there is no reason to allocate a new one, however if
5359 * it is not right then we need to free this one and drop the cache for
5360 * our range.
5361 */
5362 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5363 em->len != len) {
5364 free_extent_map(em);
5365 em = NULL;
5366 insert = true;
5367 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5368 }
4b46fce2 5369
7a7eaa40 5370 trans = btrfs_join_transaction(root);
3612b495
TI
5371 if (IS_ERR(trans))
5372 return ERR_CAST(trans);
4b46fce2 5373
4cb5300b
CM
5374 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5375 btrfs_add_inode_defrag(trans, inode);
5376
4b46fce2
JB
5377 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5378
5379 alloc_hint = get_extent_allocation_hint(inode, start, len);
5380 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5381 alloc_hint, (u64)-1, &ins, 1);
5382 if (ret) {
5383 em = ERR_PTR(ret);
5384 goto out;
5385 }
5386
4b46fce2 5387 if (!em) {
172ddd60 5388 em = alloc_extent_map();
16d299ac
JB
5389 if (!em) {
5390 em = ERR_PTR(-ENOMEM);
5391 goto out;
5392 }
4b46fce2
JB
5393 }
5394
5395 em->start = start;
5396 em->orig_start = em->start;
5397 em->len = ins.offset;
5398
5399 em->block_start = ins.objectid;
5400 em->block_len = ins.offset;
5401 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5402
5403 /*
5404 * We need to do this because if we're using the original em we searched
5405 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5406 */
5407 em->flags = 0;
4b46fce2
JB
5408 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5409
16d299ac 5410 while (insert) {
4b46fce2
JB
5411 write_lock(&em_tree->lock);
5412 ret = add_extent_mapping(em_tree, em);
5413 write_unlock(&em_tree->lock);
5414 if (ret != -EEXIST)
5415 break;
5416 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5417 }
5418
5419 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5420 ins.offset, ins.offset, 0);
5421 if (ret) {
5422 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5423 em = ERR_PTR(ret);
5424 }
5425out:
5426 btrfs_end_transaction(trans, root);
5427 return em;
5428}
5429
46bfbb5c
CM
5430/*
5431 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5432 * block must be cow'd
5433 */
5434static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5435 struct inode *inode, u64 offset, u64 len)
5436{
5437 struct btrfs_path *path;
5438 int ret;
5439 struct extent_buffer *leaf;
5440 struct btrfs_root *root = BTRFS_I(inode)->root;
5441 struct btrfs_file_extent_item *fi;
5442 struct btrfs_key key;
5443 u64 disk_bytenr;
5444 u64 backref_offset;
5445 u64 extent_end;
5446 u64 num_bytes;
5447 int slot;
5448 int found_type;
5449
5450 path = btrfs_alloc_path();
5451 if (!path)
5452 return -ENOMEM;
5453
33345d01 5454 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5455 offset, 0);
5456 if (ret < 0)
5457 goto out;
5458
5459 slot = path->slots[0];
5460 if (ret == 1) {
5461 if (slot == 0) {
5462 /* can't find the item, must cow */
5463 ret = 0;
5464 goto out;
5465 }
5466 slot--;
5467 }
5468 ret = 0;
5469 leaf = path->nodes[0];
5470 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5471 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5472 key.type != BTRFS_EXTENT_DATA_KEY) {
5473 /* not our file or wrong item type, must cow */
5474 goto out;
5475 }
5476
5477 if (key.offset > offset) {
5478 /* Wrong offset, must cow */
5479 goto out;
5480 }
5481
5482 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5483 found_type = btrfs_file_extent_type(leaf, fi);
5484 if (found_type != BTRFS_FILE_EXTENT_REG &&
5485 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5486 /* not a regular extent, must cow */
5487 goto out;
5488 }
5489 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5490 backref_offset = btrfs_file_extent_offset(leaf, fi);
5491
5492 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5493 if (extent_end < offset + len) {
5494 /* extent doesn't include our full range, must cow */
5495 goto out;
5496 }
5497
5498 if (btrfs_extent_readonly(root, disk_bytenr))
5499 goto out;
5500
5501 /*
5502 * look for other files referencing this extent, if we
5503 * find any we must cow
5504 */
33345d01 5505 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5506 key.offset - backref_offset, disk_bytenr))
5507 goto out;
5508
5509 /*
5510 * adjust disk_bytenr and num_bytes to cover just the bytes
5511 * in this extent we are about to write. If there
5512 * are any csums in that range we have to cow in order
5513 * to keep the csums correct
5514 */
5515 disk_bytenr += backref_offset;
5516 disk_bytenr += offset - key.offset;
5517 num_bytes = min(offset + len, extent_end) - offset;
5518 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5519 goto out;
5520 /*
5521 * all of the above have passed, it is safe to overwrite this extent
5522 * without cow
5523 */
5524 ret = 1;
5525out:
5526 btrfs_free_path(path);
5527 return ret;
5528}
5529
4b46fce2
JB
5530static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5531 struct buffer_head *bh_result, int create)
5532{
5533 struct extent_map *em;
5534 struct btrfs_root *root = BTRFS_I(inode)->root;
5535 u64 start = iblock << inode->i_blkbits;
5536 u64 len = bh_result->b_size;
46bfbb5c 5537 struct btrfs_trans_handle *trans;
4b46fce2
JB
5538
5539 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5540 if (IS_ERR(em))
5541 return PTR_ERR(em);
5542
5543 /*
5544 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5545 * io. INLINE is special, and we could probably kludge it in here, but
5546 * it's still buffered so for safety lets just fall back to the generic
5547 * buffered path.
5548 *
5549 * For COMPRESSED we _have_ to read the entire extent in so we can
5550 * decompress it, so there will be buffering required no matter what we
5551 * do, so go ahead and fallback to buffered.
5552 *
5553 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5554 * to buffered IO. Don't blame me, this is the price we pay for using
5555 * the generic code.
5556 */
5557 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5558 em->block_start == EXTENT_MAP_INLINE) {
5559 free_extent_map(em);
5560 return -ENOTBLK;
5561 }
5562
5563 /* Just a good old fashioned hole, return */
5564 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5565 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5566 free_extent_map(em);
5567 /* DIO will do one hole at a time, so just unlock a sector */
5568 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5569 start + root->sectorsize - 1, GFP_NOFS);
5570 return 0;
5571 }
5572
5573 /*
5574 * We don't allocate a new extent in the following cases
5575 *
5576 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5577 * existing extent.
5578 * 2) The extent is marked as PREALLOC. We're good to go here and can
5579 * just use the extent.
5580 *
5581 */
46bfbb5c
CM
5582 if (!create) {
5583 len = em->len - (start - em->start);
4b46fce2 5584 goto map;
46bfbb5c 5585 }
4b46fce2
JB
5586
5587 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5588 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5589 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5590 int type;
5591 int ret;
46bfbb5c 5592 u64 block_start;
4b46fce2
JB
5593
5594 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5595 type = BTRFS_ORDERED_PREALLOC;
5596 else
5597 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5598 len = min(len, em->len - (start - em->start));
4b46fce2 5599 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5600
5601 /*
5602 * we're not going to log anything, but we do need
5603 * to make sure the current transaction stays open
5604 * while we look for nocow cross refs
5605 */
7a7eaa40 5606 trans = btrfs_join_transaction(root);
3612b495 5607 if (IS_ERR(trans))
46bfbb5c
CM
5608 goto must_cow;
5609
5610 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5611 ret = btrfs_add_ordered_extent_dio(inode, start,
5612 block_start, len, len, type);
5613 btrfs_end_transaction(trans, root);
5614 if (ret) {
5615 free_extent_map(em);
5616 return ret;
5617 }
5618 goto unlock;
4b46fce2 5619 }
46bfbb5c 5620 btrfs_end_transaction(trans, root);
4b46fce2 5621 }
46bfbb5c
CM
5622must_cow:
5623 /*
5624 * this will cow the extent, reset the len in case we changed
5625 * it above
5626 */
5627 len = bh_result->b_size;
16d299ac 5628 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5629 if (IS_ERR(em))
5630 return PTR_ERR(em);
5631 len = min(len, em->len - (start - em->start));
5632unlock:
4845e44f
CM
5633 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5634 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5635 0, NULL, GFP_NOFS);
4b46fce2
JB
5636map:
5637 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5638 inode->i_blkbits;
46bfbb5c 5639 bh_result->b_size = len;
4b46fce2
JB
5640 bh_result->b_bdev = em->bdev;
5641 set_buffer_mapped(bh_result);
5642 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5643 set_buffer_new(bh_result);
5644
5645 free_extent_map(em);
5646
5647 return 0;
5648}
5649
5650struct btrfs_dio_private {
5651 struct inode *inode;
5652 u64 logical_offset;
5653 u64 disk_bytenr;
5654 u64 bytes;
5655 u32 *csums;
5656 void *private;
e65e1535
MX
5657
5658 /* number of bios pending for this dio */
5659 atomic_t pending_bios;
5660
5661 /* IO errors */
5662 int errors;
5663
5664 struct bio *orig_bio;
4b46fce2
JB
5665};
5666
5667static void btrfs_endio_direct_read(struct bio *bio, int err)
5668{
e65e1535 5669 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5670 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5671 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5672 struct inode *inode = dip->inode;
5673 struct btrfs_root *root = BTRFS_I(inode)->root;
5674 u64 start;
5675 u32 *private = dip->csums;
5676
5677 start = dip->logical_offset;
5678 do {
5679 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5680 struct page *page = bvec->bv_page;
5681 char *kaddr;
5682 u32 csum = ~(u32)0;
5683 unsigned long flags;
5684
5685 local_irq_save(flags);
5686 kaddr = kmap_atomic(page, KM_IRQ0);
5687 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5688 csum, bvec->bv_len);
5689 btrfs_csum_final(csum, (char *)&csum);
5690 kunmap_atomic(kaddr, KM_IRQ0);
5691 local_irq_restore(flags);
5692
5693 flush_dcache_page(bvec->bv_page);
5694 if (csum != *private) {
33345d01 5695 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5696 " %llu csum %u private %u\n",
33345d01
LZ
5697 (unsigned long long)btrfs_ino(inode),
5698 (unsigned long long)start,
4b46fce2
JB
5699 csum, *private);
5700 err = -EIO;
5701 }
5702 }
5703
5704 start += bvec->bv_len;
5705 private++;
5706 bvec++;
5707 } while (bvec <= bvec_end);
5708
5709 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5710 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5711 bio->bi_private = dip->private;
5712
5713 kfree(dip->csums);
5714 kfree(dip);
c0da7aa1
JB
5715
5716 /* If we had a csum failure make sure to clear the uptodate flag */
5717 if (err)
5718 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5719 dio_end_io(bio, err);
5720}
5721
5722static void btrfs_endio_direct_write(struct bio *bio, int err)
5723{
5724 struct btrfs_dio_private *dip = bio->bi_private;
5725 struct inode *inode = dip->inode;
5726 struct btrfs_root *root = BTRFS_I(inode)->root;
5727 struct btrfs_trans_handle *trans;
5728 struct btrfs_ordered_extent *ordered = NULL;
5729 struct extent_state *cached_state = NULL;
163cf09c
CM
5730 u64 ordered_offset = dip->logical_offset;
5731 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5732 int ret;
5733
5734 if (err)
5735 goto out_done;
163cf09c
CM
5736again:
5737 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5738 &ordered_offset,
5739 ordered_bytes);
4b46fce2 5740 if (!ret)
163cf09c 5741 goto out_test;
4b46fce2
JB
5742
5743 BUG_ON(!ordered);
5744
7a7eaa40 5745 trans = btrfs_join_transaction(root);
3612b495 5746 if (IS_ERR(trans)) {
4b46fce2
JB
5747 err = -ENOMEM;
5748 goto out;
5749 }
5750 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5751
5752 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5753 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5754 if (!ret)
2115133f 5755 err = btrfs_update_inode_fallback(trans, root, inode);
4b46fce2
JB
5756 goto out;
5757 }
5758
5759 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5760 ordered->file_offset + ordered->len - 1, 0,
5761 &cached_state, GFP_NOFS);
5762
5763 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5764 ret = btrfs_mark_extent_written(trans, inode,
5765 ordered->file_offset,
5766 ordered->file_offset +
5767 ordered->len);
5768 if (ret) {
5769 err = ret;
5770 goto out_unlock;
5771 }
5772 } else {
5773 ret = insert_reserved_file_extent(trans, inode,
5774 ordered->file_offset,
5775 ordered->start,
5776 ordered->disk_len,
5777 ordered->len,
5778 ordered->len,
5779 0, 0, 0,
5780 BTRFS_FILE_EXTENT_REG);
5781 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5782 ordered->file_offset, ordered->len);
5783 if (ret) {
5784 err = ret;
5785 WARN_ON(1);
5786 goto out_unlock;
5787 }
5788 }
5789
5790 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1 5791 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
a39f7521 5792 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
2115133f 5793 btrfs_update_inode_fallback(trans, root, inode);
1ef30be1 5794 ret = 0;
4b46fce2
JB
5795out_unlock:
5796 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5797 ordered->file_offset + ordered->len - 1,
5798 &cached_state, GFP_NOFS);
5799out:
5800 btrfs_delalloc_release_metadata(inode, ordered->len);
5801 btrfs_end_transaction(trans, root);
163cf09c 5802 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5803 btrfs_put_ordered_extent(ordered);
5804 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5805
5806out_test:
5807 /*
5808 * our bio might span multiple ordered extents. If we haven't
5809 * completed the accounting for the whole dio, go back and try again
5810 */
5811 if (ordered_offset < dip->logical_offset + dip->bytes) {
5812 ordered_bytes = dip->logical_offset + dip->bytes -
5813 ordered_offset;
5814 goto again;
5815 }
4b46fce2
JB
5816out_done:
5817 bio->bi_private = dip->private;
5818
5819 kfree(dip->csums);
5820 kfree(dip);
c0da7aa1
JB
5821
5822 /* If we had an error make sure to clear the uptodate flag */
5823 if (err)
5824 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5825 dio_end_io(bio, err);
5826}
5827
eaf25d93
CM
5828static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5829 struct bio *bio, int mirror_num,
5830 unsigned long bio_flags, u64 offset)
5831{
5832 int ret;
5833 struct btrfs_root *root = BTRFS_I(inode)->root;
5834 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5835 BUG_ON(ret);
5836 return 0;
5837}
5838
e65e1535
MX
5839static void btrfs_end_dio_bio(struct bio *bio, int err)
5840{
5841 struct btrfs_dio_private *dip = bio->bi_private;
5842
5843 if (err) {
33345d01 5844 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5845 "sector %#Lx len %u err no %d\n",
33345d01 5846 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5847 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5848 dip->errors = 1;
5849
5850 /*
5851 * before atomic variable goto zero, we must make sure
5852 * dip->errors is perceived to be set.
5853 */
5854 smp_mb__before_atomic_dec();
5855 }
5856
5857 /* if there are more bios still pending for this dio, just exit */
5858 if (!atomic_dec_and_test(&dip->pending_bios))
5859 goto out;
5860
5861 if (dip->errors)
5862 bio_io_error(dip->orig_bio);
5863 else {
5864 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5865 bio_endio(dip->orig_bio, 0);
5866 }
5867out:
5868 bio_put(bio);
5869}
5870
5871static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5872 u64 first_sector, gfp_t gfp_flags)
5873{
5874 int nr_vecs = bio_get_nr_vecs(bdev);
5875 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5876}
5877
5878static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5879 int rw, u64 file_offset, int skip_sum,
1ae39938 5880 u32 *csums, int async_submit)
e65e1535
MX
5881{
5882 int write = rw & REQ_WRITE;
5883 struct btrfs_root *root = BTRFS_I(inode)->root;
5884 int ret;
5885
5886 bio_get(bio);
5887 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5888 if (ret)
5889 goto err;
5890
1ae39938
JB
5891 if (skip_sum)
5892 goto map;
5893
5894 if (write && async_submit) {
e65e1535
MX
5895 ret = btrfs_wq_submit_bio(root->fs_info,
5896 inode, rw, bio, 0, 0,
5897 file_offset,
5898 __btrfs_submit_bio_start_direct_io,
5899 __btrfs_submit_bio_done);
5900 goto err;
1ae39938
JB
5901 } else if (write) {
5902 /*
5903 * If we aren't doing async submit, calculate the csum of the
5904 * bio now.
5905 */
5906 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5907 if (ret)
5908 goto err;
c2db1073
TI
5909 } else if (!skip_sum) {
5910 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5911 file_offset, csums);
c2db1073
TI
5912 if (ret)
5913 goto err;
5914 }
e65e1535 5915
1ae39938
JB
5916map:
5917 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5918err:
5919 bio_put(bio);
5920 return ret;
5921}
5922
5923static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5924 int skip_sum)
5925{
5926 struct inode *inode = dip->inode;
5927 struct btrfs_root *root = BTRFS_I(inode)->root;
5928 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5929 struct bio *bio;
5930 struct bio *orig_bio = dip->orig_bio;
5931 struct bio_vec *bvec = orig_bio->bi_io_vec;
5932 u64 start_sector = orig_bio->bi_sector;
5933 u64 file_offset = dip->logical_offset;
5934 u64 submit_len = 0;
5935 u64 map_length;
5936 int nr_pages = 0;
5937 u32 *csums = dip->csums;
5938 int ret = 0;
1ae39938 5939 int async_submit = 0;
98bc3149 5940 int write = rw & REQ_WRITE;
e65e1535 5941
e65e1535
MX
5942 map_length = orig_bio->bi_size;
5943 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5944 &map_length, NULL, 0);
5945 if (ret) {
64728bbb 5946 bio_put(orig_bio);
e65e1535
MX
5947 return -EIO;
5948 }
5949
02f57c7a
JB
5950 if (map_length >= orig_bio->bi_size) {
5951 bio = orig_bio;
5952 goto submit;
5953 }
5954
1ae39938 5955 async_submit = 1;
02f57c7a
JB
5956 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5957 if (!bio)
5958 return -ENOMEM;
5959 bio->bi_private = dip;
5960 bio->bi_end_io = btrfs_end_dio_bio;
5961 atomic_inc(&dip->pending_bios);
5962
e65e1535
MX
5963 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5964 if (unlikely(map_length < submit_len + bvec->bv_len ||
5965 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5966 bvec->bv_offset) < bvec->bv_len)) {
5967 /*
5968 * inc the count before we submit the bio so
5969 * we know the end IO handler won't happen before
5970 * we inc the count. Otherwise, the dip might get freed
5971 * before we're done setting it up
5972 */
5973 atomic_inc(&dip->pending_bios);
5974 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5975 file_offset, skip_sum,
1ae39938 5976 csums, async_submit);
e65e1535
MX
5977 if (ret) {
5978 bio_put(bio);
5979 atomic_dec(&dip->pending_bios);
5980 goto out_err;
5981 }
5982
98bc3149
JB
5983 /* Write's use the ordered csums */
5984 if (!write && !skip_sum)
e65e1535
MX
5985 csums = csums + nr_pages;
5986 start_sector += submit_len >> 9;
5987 file_offset += submit_len;
5988
5989 submit_len = 0;
5990 nr_pages = 0;
5991
5992 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5993 start_sector, GFP_NOFS);
5994 if (!bio)
5995 goto out_err;
5996 bio->bi_private = dip;
5997 bio->bi_end_io = btrfs_end_dio_bio;
5998
5999 map_length = orig_bio->bi_size;
6000 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6001 &map_length, NULL, 0);
6002 if (ret) {
6003 bio_put(bio);
6004 goto out_err;
6005 }
6006 } else {
6007 submit_len += bvec->bv_len;
6008 nr_pages ++;
6009 bvec++;
6010 }
6011 }
6012
02f57c7a 6013submit:
e65e1535 6014 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6015 csums, async_submit);
e65e1535
MX
6016 if (!ret)
6017 return 0;
6018
6019 bio_put(bio);
6020out_err:
6021 dip->errors = 1;
6022 /*
6023 * before atomic variable goto zero, we must
6024 * make sure dip->errors is perceived to be set.
6025 */
6026 smp_mb__before_atomic_dec();
6027 if (atomic_dec_and_test(&dip->pending_bios))
6028 bio_io_error(dip->orig_bio);
6029
6030 /* bio_end_io() will handle error, so we needn't return it */
6031 return 0;
6032}
6033
4b46fce2
JB
6034static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6035 loff_t file_offset)
6036{
6037 struct btrfs_root *root = BTRFS_I(inode)->root;
6038 struct btrfs_dio_private *dip;
6039 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6040 int skip_sum;
7b6d91da 6041 int write = rw & REQ_WRITE;
4b46fce2
JB
6042 int ret = 0;
6043
6044 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6045
6046 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6047 if (!dip) {
6048 ret = -ENOMEM;
6049 goto free_ordered;
6050 }
6051 dip->csums = NULL;
6052
98bc3149
JB
6053 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6054 if (!write && !skip_sum) {
4b46fce2
JB
6055 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6056 if (!dip->csums) {
b4966b77 6057 kfree(dip);
4b46fce2
JB
6058 ret = -ENOMEM;
6059 goto free_ordered;
6060 }
6061 }
6062
6063 dip->private = bio->bi_private;
6064 dip->inode = inode;
6065 dip->logical_offset = file_offset;
6066
4b46fce2
JB
6067 dip->bytes = 0;
6068 do {
6069 dip->bytes += bvec->bv_len;
6070 bvec++;
6071 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6072
46bfbb5c 6073 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6074 bio->bi_private = dip;
e65e1535
MX
6075 dip->errors = 0;
6076 dip->orig_bio = bio;
6077 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6078
6079 if (write)
6080 bio->bi_end_io = btrfs_endio_direct_write;
6081 else
6082 bio->bi_end_io = btrfs_endio_direct_read;
6083
e65e1535
MX
6084 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6085 if (!ret)
eaf25d93 6086 return;
4b46fce2
JB
6087free_ordered:
6088 /*
6089 * If this is a write, we need to clean up the reserved space and kill
6090 * the ordered extent.
6091 */
6092 if (write) {
6093 struct btrfs_ordered_extent *ordered;
955256f2 6094 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6095 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6096 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6097 btrfs_free_reserved_extent(root, ordered->start,
6098 ordered->disk_len);
6099 btrfs_put_ordered_extent(ordered);
6100 btrfs_put_ordered_extent(ordered);
6101 }
6102 bio_endio(bio, ret);
6103}
6104
5a5f79b5
CM
6105static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6106 const struct iovec *iov, loff_t offset,
6107 unsigned long nr_segs)
6108{
6109 int seg;
a1b75f7d 6110 int i;
5a5f79b5
CM
6111 size_t size;
6112 unsigned long addr;
6113 unsigned blocksize_mask = root->sectorsize - 1;
6114 ssize_t retval = -EINVAL;
6115 loff_t end = offset;
6116
6117 if (offset & blocksize_mask)
6118 goto out;
6119
6120 /* Check the memory alignment. Blocks cannot straddle pages */
6121 for (seg = 0; seg < nr_segs; seg++) {
6122 addr = (unsigned long)iov[seg].iov_base;
6123 size = iov[seg].iov_len;
6124 end += size;
a1b75f7d 6125 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6126 goto out;
a1b75f7d
JB
6127
6128 /* If this is a write we don't need to check anymore */
6129 if (rw & WRITE)
6130 continue;
6131
6132 /*
6133 * Check to make sure we don't have duplicate iov_base's in this
6134 * iovec, if so return EINVAL, otherwise we'll get csum errors
6135 * when reading back.
6136 */
6137 for (i = seg + 1; i < nr_segs; i++) {
6138 if (iov[seg].iov_base == iov[i].iov_base)
6139 goto out;
6140 }
5a5f79b5
CM
6141 }
6142 retval = 0;
6143out:
6144 return retval;
6145}
16432985
CM
6146static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6147 const struct iovec *iov, loff_t offset,
6148 unsigned long nr_segs)
6149{
4b46fce2
JB
6150 struct file *file = iocb->ki_filp;
6151 struct inode *inode = file->f_mapping->host;
6152 struct btrfs_ordered_extent *ordered;
4845e44f 6153 struct extent_state *cached_state = NULL;
4b46fce2
JB
6154 u64 lockstart, lockend;
6155 ssize_t ret;
4845e44f
CM
6156 int writing = rw & WRITE;
6157 int write_bits = 0;
3f7c579c 6158 size_t count = iov_length(iov, nr_segs);
4b46fce2 6159
5a5f79b5
CM
6160 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6161 offset, nr_segs)) {
6162 return 0;
6163 }
6164
4b46fce2 6165 lockstart = offset;
3f7c579c
CM
6166 lockend = offset + count - 1;
6167
6168 if (writing) {
6169 ret = btrfs_delalloc_reserve_space(inode, count);
6170 if (ret)
6171 goto out;
6172 }
4845e44f 6173
4b46fce2 6174 while (1) {
4845e44f
CM
6175 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6176 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6177 /*
6178 * We're concerned with the entire range that we're going to be
6179 * doing DIO to, so we need to make sure theres no ordered
6180 * extents in this range.
6181 */
6182 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6183 lockend - lockstart + 1);
6184 if (!ordered)
6185 break;
4845e44f
CM
6186 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6187 &cached_state, GFP_NOFS);
4b46fce2
JB
6188 btrfs_start_ordered_extent(inode, ordered, 1);
6189 btrfs_put_ordered_extent(ordered);
6190 cond_resched();
6191 }
6192
4845e44f
CM
6193 /*
6194 * we don't use btrfs_set_extent_delalloc because we don't want
6195 * the dirty or uptodate bits
6196 */
6197 if (writing) {
6198 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6199 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6200 EXTENT_DELALLOC, 0, NULL, &cached_state,
6201 GFP_NOFS);
6202 if (ret) {
6203 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6204 lockend, EXTENT_LOCKED | write_bits,
6205 1, 0, &cached_state, GFP_NOFS);
6206 goto out;
6207 }
6208 }
6209
6210 free_extent_state(cached_state);
6211 cached_state = NULL;
6212
5a5f79b5
CM
6213 ret = __blockdev_direct_IO(rw, iocb, inode,
6214 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6215 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6216 btrfs_submit_direct, 0);
4b46fce2
JB
6217
6218 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6219 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6220 offset + iov_length(iov, nr_segs) - 1,
6221 EXTENT_LOCKED | write_bits, 1, 0,
6222 &cached_state, GFP_NOFS);
4b46fce2
JB
6223 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6224 /*
6225 * We're falling back to buffered, unlock the section we didn't
6226 * do IO on.
6227 */
4845e44f
CM
6228 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6229 offset + iov_length(iov, nr_segs) - 1,
6230 EXTENT_LOCKED | write_bits, 1, 0,
6231 &cached_state, GFP_NOFS);
4b46fce2 6232 }
4845e44f
CM
6233out:
6234 free_extent_state(cached_state);
4b46fce2 6235 return ret;
16432985
CM
6236}
6237
1506fcc8
YS
6238static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6239 __u64 start, __u64 len)
6240{
ec29ed5b 6241 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6242}
6243
a52d9a80 6244int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6245{
d1310b2e
CM
6246 struct extent_io_tree *tree;
6247 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6248 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6249}
1832a6d5 6250
a52d9a80 6251static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6252{
d1310b2e 6253 struct extent_io_tree *tree;
b888db2b
CM
6254
6255
6256 if (current->flags & PF_MEMALLOC) {
6257 redirty_page_for_writepage(wbc, page);
6258 unlock_page(page);
6259 return 0;
6260 }
d1310b2e 6261 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6262 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6263}
6264
f421950f
CM
6265int btrfs_writepages(struct address_space *mapping,
6266 struct writeback_control *wbc)
b293f02e 6267{
d1310b2e 6268 struct extent_io_tree *tree;
771ed689 6269
d1310b2e 6270 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6271 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6272}
6273
3ab2fb5a
CM
6274static int
6275btrfs_readpages(struct file *file, struct address_space *mapping,
6276 struct list_head *pages, unsigned nr_pages)
6277{
d1310b2e
CM
6278 struct extent_io_tree *tree;
6279 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6280 return extent_readpages(tree, mapping, pages, nr_pages,
6281 btrfs_get_extent);
6282}
e6dcd2dc 6283static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6284{
d1310b2e
CM
6285 struct extent_io_tree *tree;
6286 struct extent_map_tree *map;
a52d9a80 6287 int ret;
8c2383c3 6288
d1310b2e
CM
6289 tree = &BTRFS_I(page->mapping->host)->io_tree;
6290 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6291 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6292 if (ret == 1) {
6293 ClearPagePrivate(page);
6294 set_page_private(page, 0);
6295 page_cache_release(page);
39279cc3 6296 }
a52d9a80 6297 return ret;
39279cc3
CM
6298}
6299
e6dcd2dc
CM
6300static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6301{
98509cfc
CM
6302 if (PageWriteback(page) || PageDirty(page))
6303 return 0;
b335b003 6304 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6305}
6306
a52d9a80 6307static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6308{
d1310b2e 6309 struct extent_io_tree *tree;
e6dcd2dc 6310 struct btrfs_ordered_extent *ordered;
2ac55d41 6311 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6312 u64 page_start = page_offset(page);
6313 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6314
8b62b72b
CM
6315
6316 /*
6317 * we have the page locked, so new writeback can't start,
6318 * and the dirty bit won't be cleared while we are here.
6319 *
6320 * Wait for IO on this page so that we can safely clear
6321 * the PagePrivate2 bit and do ordered accounting
6322 */
e6dcd2dc 6323 wait_on_page_writeback(page);
8b62b72b 6324
d1310b2e 6325 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6326 if (offset) {
6327 btrfs_releasepage(page, GFP_NOFS);
6328 return;
6329 }
2ac55d41
JB
6330 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6331 GFP_NOFS);
e6dcd2dc
CM
6332 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6333 page_offset(page));
6334 if (ordered) {
eb84ae03
CM
6335 /*
6336 * IO on this page will never be started, so we need
6337 * to account for any ordered extents now
6338 */
e6dcd2dc
CM
6339 clear_extent_bit(tree, page_start, page_end,
6340 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6341 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6342 &cached_state, GFP_NOFS);
8b62b72b
CM
6343 /*
6344 * whoever cleared the private bit is responsible
6345 * for the finish_ordered_io
6346 */
6347 if (TestClearPagePrivate2(page)) {
6348 btrfs_finish_ordered_io(page->mapping->host,
6349 page_start, page_end);
6350 }
e6dcd2dc 6351 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6352 cached_state = NULL;
6353 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6354 GFP_NOFS);
e6dcd2dc
CM
6355 }
6356 clear_extent_bit(tree, page_start, page_end,
32c00aff 6357 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6358 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6359 __btrfs_releasepage(page, GFP_NOFS);
6360
4a096752 6361 ClearPageChecked(page);
9ad6b7bc 6362 if (PagePrivate(page)) {
9ad6b7bc
CM
6363 ClearPagePrivate(page);
6364 set_page_private(page, 0);
6365 page_cache_release(page);
6366 }
39279cc3
CM
6367}
6368
9ebefb18
CM
6369/*
6370 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6371 * called from a page fault handler when a page is first dirtied. Hence we must
6372 * be careful to check for EOF conditions here. We set the page up correctly
6373 * for a written page which means we get ENOSPC checking when writing into
6374 * holes and correct delalloc and unwritten extent mapping on filesystems that
6375 * support these features.
6376 *
6377 * We are not allowed to take the i_mutex here so we have to play games to
6378 * protect against truncate races as the page could now be beyond EOF. Because
6379 * vmtruncate() writes the inode size before removing pages, once we have the
6380 * page lock we can determine safely if the page is beyond EOF. If it is not
6381 * beyond EOF, then the page is guaranteed safe against truncation until we
6382 * unlock the page.
6383 */
c2ec175c 6384int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6385{
c2ec175c 6386 struct page *page = vmf->page;
6da6abae 6387 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6388 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6389 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6390 struct btrfs_ordered_extent *ordered;
2ac55d41 6391 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6392 char *kaddr;
6393 unsigned long zero_start;
9ebefb18 6394 loff_t size;
1832a6d5 6395 int ret;
a52d9a80 6396 u64 page_start;
e6dcd2dc 6397 u64 page_end;
9ebefb18 6398
660d3f6c
JB
6399 /* Need this to keep space reservations serialized */
6400 mutex_lock(&inode->i_mutex);
0ca1f7ce 6401 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
660d3f6c 6402 mutex_unlock(&inode->i_mutex);
22c44fe6
JB
6403 if (!ret)
6404 ret = btrfs_update_time(vma->vm_file);
56a76f82
NP
6405 if (ret) {
6406 if (ret == -ENOMEM)
6407 ret = VM_FAULT_OOM;
6408 else /* -ENOSPC, -EIO, etc */
6409 ret = VM_FAULT_SIGBUS;
1832a6d5 6410 goto out;
56a76f82 6411 }
1832a6d5 6412
56a76f82 6413 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6414again:
9ebefb18 6415 lock_page(page);
9ebefb18 6416 size = i_size_read(inode);
e6dcd2dc
CM
6417 page_start = page_offset(page);
6418 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6419
9ebefb18 6420 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6421 (page_start >= size)) {
9ebefb18
CM
6422 /* page got truncated out from underneath us */
6423 goto out_unlock;
6424 }
e6dcd2dc
CM
6425 wait_on_page_writeback(page);
6426
2ac55d41
JB
6427 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6428 GFP_NOFS);
e6dcd2dc
CM
6429 set_page_extent_mapped(page);
6430
eb84ae03
CM
6431 /*
6432 * we can't set the delalloc bits if there are pending ordered
6433 * extents. Drop our locks and wait for them to finish
6434 */
e6dcd2dc
CM
6435 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6436 if (ordered) {
2ac55d41
JB
6437 unlock_extent_cached(io_tree, page_start, page_end,
6438 &cached_state, GFP_NOFS);
e6dcd2dc 6439 unlock_page(page);
eb84ae03 6440 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6441 btrfs_put_ordered_extent(ordered);
6442 goto again;
6443 }
6444
fbf19087
JB
6445 /*
6446 * XXX - page_mkwrite gets called every time the page is dirtied, even
6447 * if it was already dirty, so for space accounting reasons we need to
6448 * clear any delalloc bits for the range we are fixing to save. There
6449 * is probably a better way to do this, but for now keep consistent with
6450 * prepare_pages in the normal write path.
6451 */
2ac55d41 6452 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6453 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6454 0, 0, &cached_state, GFP_NOFS);
fbf19087 6455
2ac55d41
JB
6456 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6457 &cached_state);
9ed74f2d 6458 if (ret) {
2ac55d41
JB
6459 unlock_extent_cached(io_tree, page_start, page_end,
6460 &cached_state, GFP_NOFS);
9ed74f2d
JB
6461 ret = VM_FAULT_SIGBUS;
6462 goto out_unlock;
6463 }
e6dcd2dc 6464 ret = 0;
9ebefb18
CM
6465
6466 /* page is wholly or partially inside EOF */
a52d9a80 6467 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6468 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6469 else
e6dcd2dc 6470 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6471
e6dcd2dc
CM
6472 if (zero_start != PAGE_CACHE_SIZE) {
6473 kaddr = kmap(page);
6474 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6475 flush_dcache_page(page);
6476 kunmap(page);
6477 }
247e743c 6478 ClearPageChecked(page);
e6dcd2dc 6479 set_page_dirty(page);
50a9b214 6480 SetPageUptodate(page);
5a3f23d5 6481
257c62e1
CM
6482 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6483 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6484
2ac55d41 6485 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6486
6487out_unlock:
50a9b214
CM
6488 if (!ret)
6489 return VM_FAULT_LOCKED;
9ebefb18 6490 unlock_page(page);
1832a6d5 6491out:
ec39e180 6492 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9ebefb18
CM
6493 return ret;
6494}
6495
a41ad394 6496static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6497{
6498 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6499 struct btrfs_block_rsv *rsv;
39279cc3 6500 int ret;
3893e33b 6501 int err = 0;
39279cc3 6502 struct btrfs_trans_handle *trans;
d3c2fdcf 6503 unsigned long nr;
dbe674a9 6504 u64 mask = root->sectorsize - 1;
07127184 6505 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6506
5d5e103a
JB
6507 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6508 if (ret)
a41ad394 6509 return ret;
8082510e 6510
4a096752 6511 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6512 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6513
fcb80c2a
JB
6514 /*
6515 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6516 * 3 things going on here
6517 *
6518 * 1) We need to reserve space for our orphan item and the space to
6519 * delete our orphan item. Lord knows we don't want to have a dangling
6520 * orphan item because we didn't reserve space to remove it.
6521 *
6522 * 2) We need to reserve space to update our inode.
6523 *
6524 * 3) We need to have something to cache all the space that is going to
6525 * be free'd up by the truncate operation, but also have some slack
6526 * space reserved in case it uses space during the truncate (thank you
6527 * very much snapshotting).
6528 *
6529 * And we need these to all be seperate. The fact is we can use alot of
6530 * space doing the truncate, and we have no earthly idea how much space
6531 * we will use, so we need the truncate reservation to be seperate so it
6532 * doesn't end up using space reserved for updating the inode or
6533 * removing the orphan item. We also need to be able to stop the
6534 * transaction and start a new one, which means we need to be able to
6535 * update the inode several times, and we have no idea of knowing how
6536 * many times that will be, so we can't just reserve 1 item for the
6537 * entirety of the opration, so that has to be done seperately as well.
6538 * Then there is the orphan item, which does indeed need to be held on
6539 * to for the whole operation, and we need nobody to touch this reserved
6540 * space except the orphan code.
6541 *
6542 * So that leaves us with
6543 *
6544 * 1) root->orphan_block_rsv - for the orphan deletion.
6545 * 2) rsv - for the truncate reservation, which we will steal from the
6546 * transaction reservation.
6547 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6548 * updating the inode.
6549 */
6550 rsv = btrfs_alloc_block_rsv(root);
6551 if (!rsv)
6552 return -ENOMEM;
4a338542 6553 rsv->size = min_size;
f0cd846e 6554
907cbceb 6555 /*
07127184 6556 * 1 for the truncate slack space
907cbceb
JB
6557 * 1 for the orphan item we're going to add
6558 * 1 for the orphan item deletion
6559 * 1 for updating the inode.
6560 */
fcb80c2a
JB
6561 trans = btrfs_start_transaction(root, 4);
6562 if (IS_ERR(trans)) {
6563 err = PTR_ERR(trans);
6564 goto out;
6565 }
f0cd846e 6566
907cbceb
JB
6567 /* Migrate the slack space for the truncate to our reserve */
6568 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6569 min_size);
fcb80c2a 6570 BUG_ON(ret);
f0cd846e
JB
6571
6572 ret = btrfs_orphan_add(trans, inode);
6573 if (ret) {
6574 btrfs_end_transaction(trans, root);
fcb80c2a 6575 goto out;
f0cd846e
JB
6576 }
6577
5a3f23d5
CM
6578 /*
6579 * setattr is responsible for setting the ordered_data_close flag,
6580 * but that is only tested during the last file release. That
6581 * could happen well after the next commit, leaving a great big
6582 * window where new writes may get lost if someone chooses to write
6583 * to this file after truncating to zero
6584 *
6585 * The inode doesn't have any dirty data here, and so if we commit
6586 * this is a noop. If someone immediately starts writing to the inode
6587 * it is very likely we'll catch some of their writes in this
6588 * transaction, and the commit will find this file on the ordered
6589 * data list with good things to send down.
6590 *
6591 * This is a best effort solution, there is still a window where
6592 * using truncate to replace the contents of the file will
6593 * end up with a zero length file after a crash.
6594 */
6595 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6596 btrfs_add_ordered_operation(trans, root, inode);
6597
8082510e 6598 while (1) {
36ba022a 6599 ret = btrfs_block_rsv_refill(root, rsv, min_size);
907cbceb
JB
6600 if (ret) {
6601 /*
6602 * This can only happen with the original transaction we
6603 * started above, every other time we shouldn't have a
6604 * transaction started yet.
6605 */
6606 if (ret == -EAGAIN)
6607 goto end_trans;
6608 err = ret;
6609 break;
6610 }
6611
d68fc57b 6612 if (!trans) {
907cbceb
JB
6613 /* Just need the 1 for updating the inode */
6614 trans = btrfs_start_transaction(root, 1);
fcb80c2a 6615 if (IS_ERR(trans)) {
7041ee97
JB
6616 ret = err = PTR_ERR(trans);
6617 trans = NULL;
6618 break;
fcb80c2a 6619 }
d68fc57b
YZ
6620 }
6621
907cbceb
JB
6622 trans->block_rsv = rsv;
6623
8082510e
YZ
6624 ret = btrfs_truncate_inode_items(trans, root, inode,
6625 inode->i_size,
6626 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6627 if (ret != -EAGAIN) {
6628 err = ret;
8082510e 6629 break;
3893e33b 6630 }
39279cc3 6631
fcb80c2a 6632 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6633 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6634 if (ret) {
6635 err = ret;
6636 break;
6637 }
907cbceb 6638end_trans:
8082510e
YZ
6639 nr = trans->blocks_used;
6640 btrfs_end_transaction(trans, root);
d68fc57b 6641 trans = NULL;
8082510e 6642 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6643 }
6644
6645 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6646 trans->block_rsv = root->orphan_block_rsv;
8082510e 6647 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6648 if (ret)
6649 err = ret;
ded5db9d
JB
6650 } else if (ret && inode->i_nlink > 0) {
6651 /*
6652 * Failed to do the truncate, remove us from the in memory
6653 * orphan list.
6654 */
6655 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6656 }
6657
917c16b2
CM
6658 if (trans) {
6659 trans->block_rsv = &root->fs_info->trans_block_rsv;
6660 ret = btrfs_update_inode(trans, root, inode);
6661 if (ret && !err)
6662 err = ret;
7b128766 6663
917c16b2 6664 nr = trans->blocks_used;
7ad85bb7 6665 ret = btrfs_end_transaction(trans, root);
917c16b2
CM
6666 btrfs_btree_balance_dirty(root, nr);
6667 }
fcb80c2a
JB
6668
6669out:
6670 btrfs_free_block_rsv(root, rsv);
6671
3893e33b
JB
6672 if (ret && !err)
6673 err = ret;
a41ad394 6674
3893e33b 6675 return err;
39279cc3
CM
6676}
6677
d352ac68
CM
6678/*
6679 * create a new subvolume directory/inode (helper for the ioctl).
6680 */
d2fb3437 6681int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6682 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6683{
39279cc3 6684 struct inode *inode;
76dda93c 6685 int err;
00e4e6b3 6686 u64 index = 0;
39279cc3 6687
aec7477b 6688 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d82a6f1d 6689 new_dirid, S_IFDIR | 0700, &index);
54aa1f4d 6690 if (IS_ERR(inode))
f46b5a66 6691 return PTR_ERR(inode);
39279cc3
CM
6692 inode->i_op = &btrfs_dir_inode_operations;
6693 inode->i_fop = &btrfs_dir_file_operations;
6694
bfe86848 6695 set_nlink(inode, 1);
dbe674a9 6696 btrfs_i_size_write(inode, 0);
3b96362c 6697
76dda93c
YZ
6698 err = btrfs_update_inode(trans, new_root, inode);
6699 BUG_ON(err);
cb8e7090 6700
76dda93c 6701 iput(inode);
cb8e7090 6702 return 0;
39279cc3
CM
6703}
6704
39279cc3
CM
6705struct inode *btrfs_alloc_inode(struct super_block *sb)
6706{
6707 struct btrfs_inode *ei;
2ead6ae7 6708 struct inode *inode;
39279cc3
CM
6709
6710 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6711 if (!ei)
6712 return NULL;
2ead6ae7
YZ
6713
6714 ei->root = NULL;
6715 ei->space_info = NULL;
6716 ei->generation = 0;
6717 ei->sequence = 0;
15ee9bc7 6718 ei->last_trans = 0;
257c62e1 6719 ei->last_sub_trans = 0;
e02119d5 6720 ei->logged_trans = 0;
2ead6ae7 6721 ei->delalloc_bytes = 0;
2ead6ae7
YZ
6722 ei->disk_i_size = 0;
6723 ei->flags = 0;
7709cde3 6724 ei->csum_bytes = 0;
2ead6ae7
YZ
6725 ei->index_cnt = (u64)-1;
6726 ei->last_unlink_trans = 0;
6727
9e0baf60
JB
6728 spin_lock_init(&ei->lock);
6729 ei->outstanding_extents = 0;
6730 ei->reserved_extents = 0;
2ead6ae7
YZ
6731
6732 ei->ordered_data_close = 0;
d68fc57b 6733 ei->orphan_meta_reserved = 0;
2ead6ae7 6734 ei->dummy_inode = 0;
4cb5300b 6735 ei->in_defrag = 0;
7fd2ae21 6736 ei->delalloc_meta_reserved = 0;
261507a0 6737 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6738
16cdcec7
MX
6739 ei->delayed_node = NULL;
6740
2ead6ae7 6741 inode = &ei->vfs_inode;
a8067e02 6742 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6743 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6744 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6745 mutex_init(&ei->log_mutex);
e6dcd2dc 6746 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6747 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6748 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6749 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6750 RB_CLEAR_NODE(&ei->rb_node);
6751
6752 return inode;
39279cc3
CM
6753}
6754
fa0d7e3d
NP
6755static void btrfs_i_callback(struct rcu_head *head)
6756{
6757 struct inode *inode = container_of(head, struct inode, i_rcu);
6758 INIT_LIST_HEAD(&inode->i_dentry);
6759 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6760}
6761
39279cc3
CM
6762void btrfs_destroy_inode(struct inode *inode)
6763{
e6dcd2dc 6764 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6765 struct btrfs_root *root = BTRFS_I(inode)->root;
6766
39279cc3
CM
6767 WARN_ON(!list_empty(&inode->i_dentry));
6768 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6769 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6770 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
6771 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6772 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 6773
a6dbd429
JB
6774 /*
6775 * This can happen where we create an inode, but somebody else also
6776 * created the same inode and we need to destroy the one we already
6777 * created.
6778 */
6779 if (!root)
6780 goto free;
6781
5a3f23d5
CM
6782 /*
6783 * Make sure we're properly removed from the ordered operation
6784 * lists.
6785 */
6786 smp_mb();
6787 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6788 spin_lock(&root->fs_info->ordered_extent_lock);
6789 list_del_init(&BTRFS_I(inode)->ordered_operations);
6790 spin_unlock(&root->fs_info->ordered_extent_lock);
6791 }
6792
d68fc57b 6793 spin_lock(&root->orphan_lock);
7b128766 6794 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6795 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6796 (unsigned long long)btrfs_ino(inode));
8082510e 6797 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6798 }
d68fc57b 6799 spin_unlock(&root->orphan_lock);
7b128766 6800
d397712b 6801 while (1) {
e6dcd2dc
CM
6802 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6803 if (!ordered)
6804 break;
6805 else {
d397712b
CM
6806 printk(KERN_ERR "btrfs found ordered "
6807 "extent %llu %llu on inode cleanup\n",
6808 (unsigned long long)ordered->file_offset,
6809 (unsigned long long)ordered->len);
e6dcd2dc
CM
6810 btrfs_remove_ordered_extent(inode, ordered);
6811 btrfs_put_ordered_extent(ordered);
6812 btrfs_put_ordered_extent(ordered);
6813 }
6814 }
5d4f98a2 6815 inode_tree_del(inode);
5b21f2ed 6816 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6817free:
16cdcec7 6818 btrfs_remove_delayed_node(inode);
fa0d7e3d 6819 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6820}
6821
45321ac5 6822int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6823{
6824 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6825
0af3d00b 6826 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 6827 !btrfs_is_free_space_inode(root, inode))
45321ac5 6828 return 1;
76dda93c 6829 else
45321ac5 6830 return generic_drop_inode(inode);
76dda93c
YZ
6831}
6832
0ee0fda0 6833static void init_once(void *foo)
39279cc3
CM
6834{
6835 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6836
6837 inode_init_once(&ei->vfs_inode);
6838}
6839
6840void btrfs_destroy_cachep(void)
6841{
6842 if (btrfs_inode_cachep)
6843 kmem_cache_destroy(btrfs_inode_cachep);
6844 if (btrfs_trans_handle_cachep)
6845 kmem_cache_destroy(btrfs_trans_handle_cachep);
6846 if (btrfs_transaction_cachep)
6847 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6848 if (btrfs_path_cachep)
6849 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6850 if (btrfs_free_space_cachep)
6851 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6852}
6853
6854int btrfs_init_cachep(void)
6855{
9601e3f6
CH
6856 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6857 sizeof(struct btrfs_inode), 0,
6858 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6859 if (!btrfs_inode_cachep)
6860 goto fail;
9601e3f6
CH
6861
6862 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6863 sizeof(struct btrfs_trans_handle), 0,
6864 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6865 if (!btrfs_trans_handle_cachep)
6866 goto fail;
9601e3f6
CH
6867
6868 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6869 sizeof(struct btrfs_transaction), 0,
6870 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6871 if (!btrfs_transaction_cachep)
6872 goto fail;
9601e3f6
CH
6873
6874 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6875 sizeof(struct btrfs_path), 0,
6876 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6877 if (!btrfs_path_cachep)
6878 goto fail;
9601e3f6 6879
dc89e982
JB
6880 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6881 sizeof(struct btrfs_free_space), 0,
6882 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6883 if (!btrfs_free_space_cachep)
6884 goto fail;
6885
39279cc3
CM
6886 return 0;
6887fail:
6888 btrfs_destroy_cachep();
6889 return -ENOMEM;
6890}
6891
6892static int btrfs_getattr(struct vfsmount *mnt,
6893 struct dentry *dentry, struct kstat *stat)
6894{
6895 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
6896 u32 blocksize = inode->i_sb->s_blocksize;
6897
39279cc3 6898 generic_fillattr(inode, stat);
0ee5dc67 6899 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 6900 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
6901 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
6902 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
6903 return 0;
6904}
6905
75e7cb7f
LB
6906/*
6907 * If a file is moved, it will inherit the cow and compression flags of the new
6908 * directory.
6909 */
6910static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6911{
6912 struct btrfs_inode *b_dir = BTRFS_I(dir);
6913 struct btrfs_inode *b_inode = BTRFS_I(inode);
6914
6915 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6916 b_inode->flags |= BTRFS_INODE_NODATACOW;
6917 else
6918 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6919
6920 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6921 b_inode->flags |= BTRFS_INODE_COMPRESS;
6922 else
6923 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6924}
6925
d397712b
CM
6926static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6927 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6928{
6929 struct btrfs_trans_handle *trans;
6930 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6931 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6932 struct inode *new_inode = new_dentry->d_inode;
6933 struct inode *old_inode = old_dentry->d_inode;
6934 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6935 u64 index = 0;
4df27c4d 6936 u64 root_objectid;
39279cc3 6937 int ret;
33345d01 6938 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6939
33345d01 6940 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6941 return -EPERM;
6942
4df27c4d 6943 /* we only allow rename subvolume link between subvolumes */
33345d01 6944 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6945 return -EXDEV;
6946
33345d01
LZ
6947 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6948 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6949 return -ENOTEMPTY;
5f39d397 6950
4df27c4d
YZ
6951 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6952 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6953 return -ENOTEMPTY;
5a3f23d5
CM
6954 /*
6955 * we're using rename to replace one file with another.
6956 * and the replacement file is large. Start IO on it now so
6957 * we don't add too much work to the end of the transaction
6958 */
4baf8c92 6959 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6960 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6961 filemap_flush(old_inode->i_mapping);
6962
76dda93c 6963 /* close the racy window with snapshot create/destroy ioctl */
33345d01 6964 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6965 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6966 /*
6967 * We want to reserve the absolute worst case amount of items. So if
6968 * both inodes are subvols and we need to unlink them then that would
6969 * require 4 item modifications, but if they are both normal inodes it
6970 * would require 5 item modifications, so we'll assume their normal
6971 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6972 * should cover the worst case number of items we'll modify.
6973 */
6974 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6975 if (IS_ERR(trans)) {
6976 ret = PTR_ERR(trans);
6977 goto out_notrans;
6978 }
76dda93c 6979
4df27c4d
YZ
6980 if (dest != root)
6981 btrfs_record_root_in_trans(trans, dest);
5f39d397 6982
a5719521
YZ
6983 ret = btrfs_set_inode_index(new_dir, &index);
6984 if (ret)
6985 goto out_fail;
5a3f23d5 6986
33345d01 6987 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6988 /* force full log commit if subvolume involved. */
6989 root->fs_info->last_trans_log_full_commit = trans->transid;
6990 } else {
a5719521
YZ
6991 ret = btrfs_insert_inode_ref(trans, dest,
6992 new_dentry->d_name.name,
6993 new_dentry->d_name.len,
33345d01
LZ
6994 old_ino,
6995 btrfs_ino(new_dir), index);
a5719521
YZ
6996 if (ret)
6997 goto out_fail;
4df27c4d
YZ
6998 /*
6999 * this is an ugly little race, but the rename is required
7000 * to make sure that if we crash, the inode is either at the
7001 * old name or the new one. pinning the log transaction lets
7002 * us make sure we don't allow a log commit to come in after
7003 * we unlink the name but before we add the new name back in.
7004 */
7005 btrfs_pin_log_trans(root);
7006 }
5a3f23d5
CM
7007 /*
7008 * make sure the inode gets flushed if it is replacing
7009 * something.
7010 */
33345d01 7011 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7012 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7013
39279cc3
CM
7014 old_dir->i_ctime = old_dir->i_mtime = ctime;
7015 new_dir->i_ctime = new_dir->i_mtime = ctime;
7016 old_inode->i_ctime = ctime;
5f39d397 7017
12fcfd22
CM
7018 if (old_dentry->d_parent != new_dentry->d_parent)
7019 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7020
33345d01 7021 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7022 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7023 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7024 old_dentry->d_name.name,
7025 old_dentry->d_name.len);
7026 } else {
92986796
AV
7027 ret = __btrfs_unlink_inode(trans, root, old_dir,
7028 old_dentry->d_inode,
7029 old_dentry->d_name.name,
7030 old_dentry->d_name.len);
7031 if (!ret)
7032 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7033 }
7034 BUG_ON(ret);
39279cc3
CM
7035
7036 if (new_inode) {
7037 new_inode->i_ctime = CURRENT_TIME;
33345d01 7038 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7039 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7040 root_objectid = BTRFS_I(new_inode)->location.objectid;
7041 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7042 root_objectid,
7043 new_dentry->d_name.name,
7044 new_dentry->d_name.len);
7045 BUG_ON(new_inode->i_nlink == 0);
7046 } else {
7047 ret = btrfs_unlink_inode(trans, dest, new_dir,
7048 new_dentry->d_inode,
7049 new_dentry->d_name.name,
7050 new_dentry->d_name.len);
7051 }
7052 BUG_ON(ret);
7b128766 7053 if (new_inode->i_nlink == 0) {
e02119d5 7054 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7055 BUG_ON(ret);
7b128766 7056 }
39279cc3 7057 }
aec7477b 7058
75e7cb7f
LB
7059 fixup_inode_flags(new_dir, old_inode);
7060
4df27c4d
YZ
7061 ret = btrfs_add_link(trans, new_dir, old_inode,
7062 new_dentry->d_name.name,
a5719521 7063 new_dentry->d_name.len, 0, index);
4df27c4d 7064 BUG_ON(ret);
39279cc3 7065
33345d01 7066 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7067 struct dentry *parent = new_dentry->d_parent;
6a912213 7068 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7069 btrfs_end_log_trans(root);
7070 }
39279cc3 7071out_fail:
7ad85bb7 7072 btrfs_end_transaction(trans, root);
b44c59a8 7073out_notrans:
33345d01 7074 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7075 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7076
39279cc3
CM
7077 return ret;
7078}
7079
d352ac68
CM
7080/*
7081 * some fairly slow code that needs optimization. This walks the list
7082 * of all the inodes with pending delalloc and forces them to disk.
7083 */
24bbcf04 7084int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7085{
7086 struct list_head *head = &root->fs_info->delalloc_inodes;
7087 struct btrfs_inode *binode;
5b21f2ed 7088 struct inode *inode;
ea8c2819 7089
c146afad
YZ
7090 if (root->fs_info->sb->s_flags & MS_RDONLY)
7091 return -EROFS;
7092
75eff68e 7093 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7094 while (!list_empty(head)) {
ea8c2819
CM
7095 binode = list_entry(head->next, struct btrfs_inode,
7096 delalloc_inodes);
5b21f2ed
ZY
7097 inode = igrab(&binode->vfs_inode);
7098 if (!inode)
7099 list_del_init(&binode->delalloc_inodes);
75eff68e 7100 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7101 if (inode) {
8c8bee1d 7102 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7103 if (delay_iput)
7104 btrfs_add_delayed_iput(inode);
7105 else
7106 iput(inode);
5b21f2ed
ZY
7107 }
7108 cond_resched();
75eff68e 7109 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7110 }
75eff68e 7111 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7112
7113 /* the filemap_flush will queue IO into the worker threads, but
7114 * we have to make sure the IO is actually started and that
7115 * ordered extents get created before we return
7116 */
7117 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7118 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7119 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7120 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7121 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7122 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7123 }
7124 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7125 return 0;
7126}
7127
39279cc3
CM
7128static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7129 const char *symname)
7130{
7131 struct btrfs_trans_handle *trans;
7132 struct btrfs_root *root = BTRFS_I(dir)->root;
7133 struct btrfs_path *path;
7134 struct btrfs_key key;
1832a6d5 7135 struct inode *inode = NULL;
39279cc3
CM
7136 int err;
7137 int drop_inode = 0;
7138 u64 objectid;
00e4e6b3 7139 u64 index = 0 ;
39279cc3
CM
7140 int name_len;
7141 int datasize;
5f39d397 7142 unsigned long ptr;
39279cc3 7143 struct btrfs_file_extent_item *ei;
5f39d397 7144 struct extent_buffer *leaf;
1832a6d5 7145 unsigned long nr = 0;
39279cc3
CM
7146
7147 name_len = strlen(symname) + 1;
7148 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7149 return -ENAMETOOLONG;
1832a6d5 7150
9ed74f2d
JB
7151 /*
7152 * 2 items for inode item and ref
7153 * 2 items for dir items
7154 * 1 item for xattr if selinux is on
7155 */
a22285a6
YZ
7156 trans = btrfs_start_transaction(root, 5);
7157 if (IS_ERR(trans))
7158 return PTR_ERR(trans);
1832a6d5 7159
581bb050
LZ
7160 err = btrfs_find_free_ino(root, &objectid);
7161 if (err)
7162 goto out_unlock;
7163
aec7477b 7164 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7165 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7166 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7167 if (IS_ERR(inode)) {
7168 err = PTR_ERR(inode);
39279cc3 7169 goto out_unlock;
7cf96da3 7170 }
39279cc3 7171
2a7dba39 7172 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7173 if (err) {
7174 drop_inode = 1;
7175 goto out_unlock;
7176 }
7177
ad19db71
CS
7178 /*
7179 * If the active LSM wants to access the inode during
7180 * d_instantiate it needs these. Smack checks to see
7181 * if the filesystem supports xattrs by looking at the
7182 * ops vector.
7183 */
7184 inode->i_fop = &btrfs_file_operations;
7185 inode->i_op = &btrfs_file_inode_operations;
7186
a1b075d2 7187 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7188 if (err)
7189 drop_inode = 1;
7190 else {
7191 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7192 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7193 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7194 }
39279cc3
CM
7195 if (drop_inode)
7196 goto out_unlock;
7197
7198 path = btrfs_alloc_path();
d8926bb3
MF
7199 if (!path) {
7200 err = -ENOMEM;
7201 drop_inode = 1;
7202 goto out_unlock;
7203 }
33345d01 7204 key.objectid = btrfs_ino(inode);
39279cc3 7205 key.offset = 0;
39279cc3
CM
7206 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7207 datasize = btrfs_file_extent_calc_inline_size(name_len);
7208 err = btrfs_insert_empty_item(trans, root, path, &key,
7209 datasize);
54aa1f4d
CM
7210 if (err) {
7211 drop_inode = 1;
b0839166 7212 btrfs_free_path(path);
54aa1f4d
CM
7213 goto out_unlock;
7214 }
5f39d397
CM
7215 leaf = path->nodes[0];
7216 ei = btrfs_item_ptr(leaf, path->slots[0],
7217 struct btrfs_file_extent_item);
7218 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7219 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7220 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7221 btrfs_set_file_extent_encryption(leaf, ei, 0);
7222 btrfs_set_file_extent_compression(leaf, ei, 0);
7223 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7224 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7225
39279cc3 7226 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7227 write_extent_buffer(leaf, symname, ptr, name_len);
7228 btrfs_mark_buffer_dirty(leaf);
39279cc3 7229 btrfs_free_path(path);
5f39d397 7230
39279cc3
CM
7231 inode->i_op = &btrfs_symlink_inode_operations;
7232 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7233 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7234 inode_set_bytes(inode, name_len);
dbe674a9 7235 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7236 err = btrfs_update_inode(trans, root, inode);
7237 if (err)
7238 drop_inode = 1;
39279cc3
CM
7239
7240out_unlock:
08c422c2
AV
7241 if (!err)
7242 d_instantiate(dentry, inode);
d3c2fdcf 7243 nr = trans->blocks_used;
7ad85bb7 7244 btrfs_end_transaction(trans, root);
39279cc3
CM
7245 if (drop_inode) {
7246 inode_dec_link_count(inode);
7247 iput(inode);
7248 }
d3c2fdcf 7249 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7250 return err;
7251}
16432985 7252
0af3d00b
JB
7253static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7254 u64 start, u64 num_bytes, u64 min_size,
7255 loff_t actual_len, u64 *alloc_hint,
7256 struct btrfs_trans_handle *trans)
d899e052 7257{
d899e052
YZ
7258 struct btrfs_root *root = BTRFS_I(inode)->root;
7259 struct btrfs_key ins;
d899e052 7260 u64 cur_offset = start;
55a61d1d 7261 u64 i_size;
d899e052 7262 int ret = 0;
0af3d00b 7263 bool own_trans = true;
d899e052 7264
0af3d00b
JB
7265 if (trans)
7266 own_trans = false;
d899e052 7267 while (num_bytes > 0) {
0af3d00b
JB
7268 if (own_trans) {
7269 trans = btrfs_start_transaction(root, 3);
7270 if (IS_ERR(trans)) {
7271 ret = PTR_ERR(trans);
7272 break;
7273 }
5a303d5d
YZ
7274 }
7275
efa56464
YZ
7276 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7277 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7278 if (ret) {
0af3d00b
JB
7279 if (own_trans)
7280 btrfs_end_transaction(trans, root);
a22285a6 7281 break;
d899e052 7282 }
5a303d5d 7283
d899e052
YZ
7284 ret = insert_reserved_file_extent(trans, inode,
7285 cur_offset, ins.objectid,
7286 ins.offset, ins.offset,
920bbbfb 7287 ins.offset, 0, 0, 0,
d899e052
YZ
7288 BTRFS_FILE_EXTENT_PREALLOC);
7289 BUG_ON(ret);
a1ed835e
CM
7290 btrfs_drop_extent_cache(inode, cur_offset,
7291 cur_offset + ins.offset -1, 0);
5a303d5d 7292
d899e052
YZ
7293 num_bytes -= ins.offset;
7294 cur_offset += ins.offset;
efa56464 7295 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7296
d899e052 7297 inode->i_ctime = CURRENT_TIME;
6cbff00f 7298 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7299 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7300 (actual_len > inode->i_size) &&
7301 (cur_offset > inode->i_size)) {
d1ea6a61 7302 if (cur_offset > actual_len)
55a61d1d 7303 i_size = actual_len;
d1ea6a61 7304 else
55a61d1d
JB
7305 i_size = cur_offset;
7306 i_size_write(inode, i_size);
7307 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7308 }
7309
d899e052
YZ
7310 ret = btrfs_update_inode(trans, root, inode);
7311 BUG_ON(ret);
d899e052 7312
0af3d00b
JB
7313 if (own_trans)
7314 btrfs_end_transaction(trans, root);
5a303d5d 7315 }
d899e052
YZ
7316 return ret;
7317}
7318
0af3d00b
JB
7319int btrfs_prealloc_file_range(struct inode *inode, int mode,
7320 u64 start, u64 num_bytes, u64 min_size,
7321 loff_t actual_len, u64 *alloc_hint)
7322{
7323 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7324 min_size, actual_len, alloc_hint,
7325 NULL);
7326}
7327
7328int btrfs_prealloc_file_range_trans(struct inode *inode,
7329 struct btrfs_trans_handle *trans, int mode,
7330 u64 start, u64 num_bytes, u64 min_size,
7331 loff_t actual_len, u64 *alloc_hint)
7332{
7333 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7334 min_size, actual_len, alloc_hint, trans);
7335}
7336
e6dcd2dc
CM
7337static int btrfs_set_page_dirty(struct page *page)
7338{
e6dcd2dc
CM
7339 return __set_page_dirty_nobuffers(page);
7340}
7341
10556cb2 7342static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7343{
b83cc969 7344 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7345 umode_t mode = inode->i_mode;
b83cc969 7346
cb6db4e5
JM
7347 if (mask & MAY_WRITE &&
7348 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7349 if (btrfs_root_readonly(root))
7350 return -EROFS;
7351 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7352 return -EACCES;
7353 }
2830ba7f 7354 return generic_permission(inode, mask);
fdebe2bd 7355}
39279cc3 7356
6e1d5dcc 7357static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7358 .getattr = btrfs_getattr,
39279cc3
CM
7359 .lookup = btrfs_lookup,
7360 .create = btrfs_create,
7361 .unlink = btrfs_unlink,
7362 .link = btrfs_link,
7363 .mkdir = btrfs_mkdir,
7364 .rmdir = btrfs_rmdir,
7365 .rename = btrfs_rename,
7366 .symlink = btrfs_symlink,
7367 .setattr = btrfs_setattr,
618e21d5 7368 .mknod = btrfs_mknod,
95819c05
CH
7369 .setxattr = btrfs_setxattr,
7370 .getxattr = btrfs_getxattr,
5103e947 7371 .listxattr = btrfs_listxattr,
95819c05 7372 .removexattr = btrfs_removexattr,
fdebe2bd 7373 .permission = btrfs_permission,
4e34e719 7374 .get_acl = btrfs_get_acl,
39279cc3 7375};
6e1d5dcc 7376static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7377 .lookup = btrfs_lookup,
fdebe2bd 7378 .permission = btrfs_permission,
4e34e719 7379 .get_acl = btrfs_get_acl,
39279cc3 7380};
76dda93c 7381
828c0950 7382static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7383 .llseek = generic_file_llseek,
7384 .read = generic_read_dir,
cbdf5a24 7385 .readdir = btrfs_real_readdir,
34287aa3 7386 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7387#ifdef CONFIG_COMPAT
34287aa3 7388 .compat_ioctl = btrfs_ioctl,
39279cc3 7389#endif
6bf13c0c 7390 .release = btrfs_release_file,
e02119d5 7391 .fsync = btrfs_sync_file,
39279cc3
CM
7392};
7393
d1310b2e 7394static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7395 .fill_delalloc = run_delalloc_range,
065631f6 7396 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7397 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7398 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7399 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7400 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7401 .set_bit_hook = btrfs_set_bit_hook,
7402 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7403 .merge_extent_hook = btrfs_merge_extent_hook,
7404 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7405};
7406
35054394
CM
7407/*
7408 * btrfs doesn't support the bmap operation because swapfiles
7409 * use bmap to make a mapping of extents in the file. They assume
7410 * these extents won't change over the life of the file and they
7411 * use the bmap result to do IO directly to the drive.
7412 *
7413 * the btrfs bmap call would return logical addresses that aren't
7414 * suitable for IO and they also will change frequently as COW
7415 * operations happen. So, swapfile + btrfs == corruption.
7416 *
7417 * For now we're avoiding this by dropping bmap.
7418 */
7f09410b 7419static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7420 .readpage = btrfs_readpage,
7421 .writepage = btrfs_writepage,
b293f02e 7422 .writepages = btrfs_writepages,
3ab2fb5a 7423 .readpages = btrfs_readpages,
16432985 7424 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7425 .invalidatepage = btrfs_invalidatepage,
7426 .releasepage = btrfs_releasepage,
e6dcd2dc 7427 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7428 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7429};
7430
7f09410b 7431static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7432 .readpage = btrfs_readpage,
7433 .writepage = btrfs_writepage,
2bf5a725
CM
7434 .invalidatepage = btrfs_invalidatepage,
7435 .releasepage = btrfs_releasepage,
39279cc3
CM
7436};
7437
6e1d5dcc 7438static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7439 .getattr = btrfs_getattr,
7440 .setattr = btrfs_setattr,
95819c05
CH
7441 .setxattr = btrfs_setxattr,
7442 .getxattr = btrfs_getxattr,
5103e947 7443 .listxattr = btrfs_listxattr,
95819c05 7444 .removexattr = btrfs_removexattr,
fdebe2bd 7445 .permission = btrfs_permission,
1506fcc8 7446 .fiemap = btrfs_fiemap,
4e34e719 7447 .get_acl = btrfs_get_acl,
39279cc3 7448};
6e1d5dcc 7449static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7450 .getattr = btrfs_getattr,
7451 .setattr = btrfs_setattr,
fdebe2bd 7452 .permission = btrfs_permission,
95819c05
CH
7453 .setxattr = btrfs_setxattr,
7454 .getxattr = btrfs_getxattr,
33268eaf 7455 .listxattr = btrfs_listxattr,
95819c05 7456 .removexattr = btrfs_removexattr,
4e34e719 7457 .get_acl = btrfs_get_acl,
618e21d5 7458};
6e1d5dcc 7459static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7460 .readlink = generic_readlink,
7461 .follow_link = page_follow_link_light,
7462 .put_link = page_put_link,
f209561a 7463 .getattr = btrfs_getattr,
22c44fe6 7464 .setattr = btrfs_setattr,
fdebe2bd 7465 .permission = btrfs_permission,
0279b4cd
JO
7466 .setxattr = btrfs_setxattr,
7467 .getxattr = btrfs_getxattr,
7468 .listxattr = btrfs_listxattr,
7469 .removexattr = btrfs_removexattr,
4e34e719 7470 .get_acl = btrfs_get_acl,
39279cc3 7471};
76dda93c 7472
82d339d9 7473const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7474 .d_delete = btrfs_dentry_delete,
b4aff1f8 7475 .d_release = btrfs_dentry_release,
76dda93c 7476};