Btrfs: i386 fixes from axboe
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/module.h>
20#include <linux/buffer_head.h>
21#include <linux/fs.h>
22#include <linux/pagemap.h>
23#include <linux/highmem.h>
24#include <linux/time.h>
25#include <linux/init.h>
26#include <linux/string.h>
27#include <linux/smp_lock.h>
28#include <linux/backing-dev.h>
29#include <linux/mpage.h>
30#include <linux/swap.h>
31#include <linux/writeback.h>
32#include <linux/statfs.h>
33#include <linux/compat.h>
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
38#include "ioctl.h"
39#include "print-tree.h"
40
41struct btrfs_iget_args {
42 u64 ino;
43 struct btrfs_root *root;
44};
45
46static struct inode_operations btrfs_dir_inode_operations;
47static struct inode_operations btrfs_symlink_inode_operations;
48static struct inode_operations btrfs_dir_ro_inode_operations;
49static struct inode_operations btrfs_file_inode_operations;
50static struct address_space_operations btrfs_aops;
51static struct address_space_operations btrfs_symlink_aops;
52static struct file_operations btrfs_dir_file_operations;
53
54static struct kmem_cache *btrfs_inode_cachep;
55struct kmem_cache *btrfs_trans_handle_cachep;
56struct kmem_cache *btrfs_transaction_cachep;
57struct kmem_cache *btrfs_bit_radix_cachep;
58struct kmem_cache *btrfs_path_cachep;
59
60#define S_SHIFT 12
61static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
62 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
63 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
64 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
65 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
66 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
67 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
68 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
69};
70
71void btrfs_read_locked_inode(struct inode *inode)
72{
73 struct btrfs_path *path;
74 struct btrfs_inode_item *inode_item;
75 struct btrfs_root *root = BTRFS_I(inode)->root;
76 struct btrfs_key location;
77 u64 alloc_group_block;
78 int ret;
79
80 path = btrfs_alloc_path();
81 BUG_ON(!path);
82 btrfs_init_path(path);
83 mutex_lock(&root->fs_info->fs_mutex);
84
85 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
86 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
87 if (ret) {
88 btrfs_free_path(path);
89 goto make_bad;
90 }
91 inode_item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
92 path->slots[0],
93 struct btrfs_inode_item);
94
95 inode->i_mode = btrfs_inode_mode(inode_item);
96 inode->i_nlink = btrfs_inode_nlink(inode_item);
97 inode->i_uid = btrfs_inode_uid(inode_item);
98 inode->i_gid = btrfs_inode_gid(inode_item);
99 inode->i_size = btrfs_inode_size(inode_item);
100 inode->i_atime.tv_sec = btrfs_timespec_sec(&inode_item->atime);
101 inode->i_atime.tv_nsec = btrfs_timespec_nsec(&inode_item->atime);
102 inode->i_mtime.tv_sec = btrfs_timespec_sec(&inode_item->mtime);
103 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(&inode_item->mtime);
104 inode->i_ctime.tv_sec = btrfs_timespec_sec(&inode_item->ctime);
105 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(&inode_item->ctime);
106 inode->i_blocks = btrfs_inode_nblocks(inode_item);
107 inode->i_generation = btrfs_inode_generation(inode_item);
108 alloc_group_block = btrfs_inode_block_group(inode_item);
109 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
110 alloc_group_block);
111
112 btrfs_free_path(path);
113 inode_item = NULL;
114
115 mutex_unlock(&root->fs_info->fs_mutex);
116
117 switch (inode->i_mode & S_IFMT) {
118#if 0
119 default:
120 init_special_inode(inode, inode->i_mode,
121 btrfs_inode_rdev(inode_item));
122 break;
123#endif
124 case S_IFREG:
125 inode->i_mapping->a_ops = &btrfs_aops;
126 inode->i_fop = &btrfs_file_operations;
127 inode->i_op = &btrfs_file_inode_operations;
128 break;
129 case S_IFDIR:
130 inode->i_fop = &btrfs_dir_file_operations;
131 if (root == root->fs_info->tree_root)
132 inode->i_op = &btrfs_dir_ro_inode_operations;
133 else
134 inode->i_op = &btrfs_dir_inode_operations;
135 break;
136 case S_IFLNK:
137 inode->i_op = &btrfs_symlink_inode_operations;
138 inode->i_mapping->a_ops = &btrfs_symlink_aops;
139 break;
140 }
141 return;
142
143make_bad:
144 btrfs_release_path(root, path);
145 btrfs_free_path(path);
146 mutex_unlock(&root->fs_info->fs_mutex);
147 make_bad_inode(inode);
148}
149
150static void fill_inode_item(struct btrfs_inode_item *item,
151 struct inode *inode)
152{
153 btrfs_set_inode_uid(item, inode->i_uid);
154 btrfs_set_inode_gid(item, inode->i_gid);
155 btrfs_set_inode_size(item, inode->i_size);
156 btrfs_set_inode_mode(item, inode->i_mode);
157 btrfs_set_inode_nlink(item, inode->i_nlink);
158 btrfs_set_timespec_sec(&item->atime, inode->i_atime.tv_sec);
159 btrfs_set_timespec_nsec(&item->atime, inode->i_atime.tv_nsec);
160 btrfs_set_timespec_sec(&item->mtime, inode->i_mtime.tv_sec);
161 btrfs_set_timespec_nsec(&item->mtime, inode->i_mtime.tv_nsec);
162 btrfs_set_timespec_sec(&item->ctime, inode->i_ctime.tv_sec);
163 btrfs_set_timespec_nsec(&item->ctime, inode->i_ctime.tv_nsec);
164 btrfs_set_inode_nblocks(item, inode->i_blocks);
165 btrfs_set_inode_generation(item, inode->i_generation);
166 btrfs_set_inode_block_group(item,
167 BTRFS_I(inode)->block_group->key.objectid);
168}
169
170static int btrfs_update_inode(struct btrfs_trans_handle *trans,
171 struct btrfs_root *root,
172 struct inode *inode)
173{
174 struct btrfs_inode_item *inode_item;
175 struct btrfs_path *path;
176 int ret;
177
178 path = btrfs_alloc_path();
179 BUG_ON(!path);
180 btrfs_init_path(path);
181 ret = btrfs_lookup_inode(trans, root, path,
182 &BTRFS_I(inode)->location, 1);
183 if (ret) {
184 if (ret > 0)
185 ret = -ENOENT;
186 goto failed;
187 }
188
189 inode_item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
190 path->slots[0],
191 struct btrfs_inode_item);
192
193 fill_inode_item(inode_item, inode);
194 btrfs_mark_buffer_dirty(path->nodes[0]);
195 ret = 0;
196failed:
197 btrfs_release_path(root, path);
198 btrfs_free_path(path);
199 return ret;
200}
201
202
203static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
204 struct btrfs_root *root,
205 struct inode *dir,
206 struct dentry *dentry)
207{
208 struct btrfs_path *path;
209 const char *name = dentry->d_name.name;
210 int name_len = dentry->d_name.len;
211 int ret = 0;
212 u64 objectid;
213 struct btrfs_dir_item *di;
214
215 path = btrfs_alloc_path();
216 BUG_ON(!path);
217 btrfs_init_path(path);
218 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
219 name, name_len, -1);
220 if (IS_ERR(di)) {
221 ret = PTR_ERR(di);
222 goto err;
223 }
224 if (!di) {
225 ret = -ENOENT;
226 goto err;
227 }
228 objectid = btrfs_disk_key_objectid(&di->location);
229 ret = btrfs_delete_one_dir_name(trans, root, path, di);
230 BUG_ON(ret);
231 btrfs_release_path(root, path);
232
233 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
234 objectid, name, name_len, -1);
235 if (IS_ERR(di)) {
236 ret = PTR_ERR(di);
237 goto err;
238 }
239 if (!di) {
240 ret = -ENOENT;
241 goto err;
242 }
243 ret = btrfs_delete_one_dir_name(trans, root, path, di);
244 BUG_ON(ret);
245
246 dentry->d_inode->i_ctime = dir->i_ctime;
247err:
248 btrfs_free_path(path);
249 if (!ret) {
250 dir->i_size -= name_len * 2;
251 btrfs_update_inode(trans, root, dir);
252 drop_nlink(dentry->d_inode);
253 btrfs_update_inode(trans, root, dentry->d_inode);
254 dir->i_sb->s_dirt = 1;
255 }
256 return ret;
257}
258
259static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
260{
261 struct btrfs_root *root;
262 struct btrfs_trans_handle *trans;
263 int ret;
264
265 root = BTRFS_I(dir)->root;
266 mutex_lock(&root->fs_info->fs_mutex);
267 trans = btrfs_start_transaction(root, 1);
268 btrfs_set_trans_block_group(trans, dir);
269 ret = btrfs_unlink_trans(trans, root, dir, dentry);
270 btrfs_end_transaction(trans, root);
271 mutex_unlock(&root->fs_info->fs_mutex);
272 btrfs_btree_balance_dirty(root);
273 return ret;
274}
275
276static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
277{
278 struct inode *inode = dentry->d_inode;
279 int err;
280 int ret;
281 struct btrfs_root *root = BTRFS_I(dir)->root;
282 struct btrfs_path *path;
283 struct btrfs_key key;
284 struct btrfs_trans_handle *trans;
285 struct btrfs_key found_key;
286 int found_type;
287 struct btrfs_leaf *leaf;
288 char *goodnames = "..";
289
290 path = btrfs_alloc_path();
291 BUG_ON(!path);
292 btrfs_init_path(path);
293 mutex_lock(&root->fs_info->fs_mutex);
294 trans = btrfs_start_transaction(root, 1);
295 btrfs_set_trans_block_group(trans, dir);
296 key.objectid = inode->i_ino;
297 key.offset = (u64)-1;
298 key.flags = (u32)-1;
299 while(1) {
300 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
301 if (ret < 0) {
302 err = ret;
303 goto out;
304 }
305 BUG_ON(ret == 0);
306 if (path->slots[0] == 0) {
307 err = -ENOENT;
308 goto out;
309 }
310 path->slots[0]--;
311 leaf = btrfs_buffer_leaf(path->nodes[0]);
312 btrfs_disk_key_to_cpu(&found_key,
313 &leaf->items[path->slots[0]].key);
314 found_type = btrfs_key_type(&found_key);
315 if (found_key.objectid != inode->i_ino) {
316 err = -ENOENT;
317 goto out;
318 }
319 if ((found_type != BTRFS_DIR_ITEM_KEY &&
320 found_type != BTRFS_DIR_INDEX_KEY) ||
321 (!btrfs_match_dir_item_name(root, path, goodnames, 2) &&
322 !btrfs_match_dir_item_name(root, path, goodnames, 1))) {
323 err = -ENOTEMPTY;
324 goto out;
325 }
326 ret = btrfs_del_item(trans, root, path);
327 BUG_ON(ret);
328
329 if (found_type == BTRFS_DIR_ITEM_KEY && found_key.offset == 1)
330 break;
331 btrfs_release_path(root, path);
332 }
333 ret = 0;
334 btrfs_release_path(root, path);
335
336 /* now the directory is empty */
337 err = btrfs_unlink_trans(trans, root, dir, dentry);
338 if (!err) {
339 inode->i_size = 0;
340 }
341out:
342 btrfs_release_path(root, path);
343 btrfs_free_path(path);
344 mutex_unlock(&root->fs_info->fs_mutex);
345 ret = btrfs_end_transaction(trans, root);
346 btrfs_btree_balance_dirty(root);
347 if (ret && !err)
348 err = ret;
349 return err;
350}
351
352static int btrfs_free_inode(struct btrfs_trans_handle *trans,
353 struct btrfs_root *root,
354 struct inode *inode)
355{
356 struct btrfs_path *path;
357 int ret;
358
359 clear_inode(inode);
360
361 path = btrfs_alloc_path();
362 BUG_ON(!path);
363 btrfs_init_path(path);
364 ret = btrfs_lookup_inode(trans, root, path,
365 &BTRFS_I(inode)->location, -1);
366 BUG_ON(ret);
367 ret = btrfs_del_item(trans, root, path);
368 BUG_ON(ret);
369 btrfs_free_path(path);
370 return ret;
371}
372
373/*
374 * truncates go from a high offset to a low offset. So, walk
375 * from hi to lo in the node and issue readas. Stop when you find
376 * keys from a different objectid
377 */
378static void reada_truncate(struct btrfs_root *root, struct btrfs_path *path,
379 u64 objectid)
380{
381 struct btrfs_node *node;
382 int i;
383 int nritems;
384 u64 item_objectid;
385 u64 blocknr;
386 int slot;
387 int ret;
388
389 if (!path->nodes[1])
390 return;
391 node = btrfs_buffer_node(path->nodes[1]);
392 slot = path->slots[1];
393 if (slot == 0)
394 return;
395 nritems = btrfs_header_nritems(&node->header);
396 for (i = slot - 1; i >= 0; i--) {
397 item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
398 if (item_objectid != objectid)
399 break;
400 blocknr = btrfs_node_blockptr(node, i);
401 ret = readahead_tree_block(root, blocknr);
402 if (ret)
403 break;
404 }
405}
406
407/*
408 * this can truncate away extent items, csum items and directory items.
409 * It starts at a high offset and removes keys until it can't find
410 * any higher than i_size.
411 *
412 * csum items that cross the new i_size are truncated to the new size
413 * as well.
414 */
415static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
416 struct btrfs_root *root,
417 struct inode *inode)
418{
419 int ret;
420 struct btrfs_path *path;
421 struct btrfs_key key;
422 struct btrfs_disk_key *found_key;
423 u32 found_type;
424 struct btrfs_leaf *leaf;
425 struct btrfs_file_extent_item *fi;
426 u64 extent_start = 0;
427 u64 extent_num_blocks = 0;
428 u64 item_end = 0;
429 int found_extent;
430 int del_item;
431
432 path = btrfs_alloc_path();
433 BUG_ON(!path);
434 /* FIXME, add redo link to tree so we don't leak on crash */
435 key.objectid = inode->i_ino;
436 key.offset = (u64)-1;
437 key.flags = (u32)-1;
438 while(1) {
439 btrfs_init_path(path);
440 fi = NULL;
441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
442 if (ret < 0) {
443 goto error;
444 }
445 if (ret > 0) {
446 BUG_ON(path->slots[0] == 0);
447 path->slots[0]--;
448 }
449 reada_truncate(root, path, inode->i_ino);
450 leaf = btrfs_buffer_leaf(path->nodes[0]);
451 found_key = &leaf->items[path->slots[0]].key;
452 found_type = btrfs_disk_key_type(found_key);
453
454 if (btrfs_disk_key_objectid(found_key) != inode->i_ino)
455 break;
456 if (found_type != BTRFS_CSUM_ITEM_KEY &&
457 found_type != BTRFS_DIR_ITEM_KEY &&
458 found_type != BTRFS_DIR_INDEX_KEY &&
459 found_type != BTRFS_EXTENT_DATA_KEY)
460 break;
461
462 item_end = btrfs_disk_key_offset(found_key);
463 if (found_type == BTRFS_EXTENT_DATA_KEY) {
464 fi = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
465 path->slots[0],
466 struct btrfs_file_extent_item);
467 if (btrfs_file_extent_type(fi) !=
468 BTRFS_FILE_EXTENT_INLINE) {
469 item_end += btrfs_file_extent_num_blocks(fi) <<
470 inode->i_blkbits;
471 }
472 }
473 if (found_type == BTRFS_CSUM_ITEM_KEY) {
474 ret = btrfs_csum_truncate(trans, root, path,
475 inode->i_size);
476 BUG_ON(ret);
477 }
478 if (item_end < inode->i_size) {
479 if (found_type) {
480 btrfs_set_key_type(&key, found_type - 1);
481 continue;
482 }
483 break;
484 }
485 if (btrfs_disk_key_offset(found_key) >= inode->i_size)
486 del_item = 1;
487 else
488 del_item = 0;
489 found_extent = 0;
490
491 /* FIXME, shrink the extent if the ref count is only 1 */
492 if (found_type == BTRFS_EXTENT_DATA_KEY &&
493 btrfs_file_extent_type(fi) !=
494 BTRFS_FILE_EXTENT_INLINE) {
495 u64 num_dec;
496 if (!del_item) {
497 u64 orig_num_blocks =
498 btrfs_file_extent_num_blocks(fi);
499 extent_num_blocks = inode->i_size -
500 btrfs_disk_key_offset(found_key) +
501 root->blocksize - 1;
502 extent_num_blocks >>= inode->i_blkbits;
503 btrfs_set_file_extent_num_blocks(fi,
504 extent_num_blocks);
505 inode->i_blocks -= (orig_num_blocks -
506 extent_num_blocks) << 3;
507 mark_buffer_dirty(path->nodes[0]);
508 } else {
509 extent_start =
510 btrfs_file_extent_disk_blocknr(fi);
511 extent_num_blocks =
512 btrfs_file_extent_disk_num_blocks(fi);
513 /* FIXME blocksize != 4096 */
514 num_dec = btrfs_file_extent_num_blocks(fi) << 3;
515 if (extent_start != 0) {
516 found_extent = 1;
517 inode->i_blocks -= num_dec;
518 }
519 }
520 }
521 if (del_item) {
522 ret = btrfs_del_item(trans, root, path);
523 BUG_ON(ret);
524 } else {
525 break;
526 }
527 btrfs_release_path(root, path);
528 if (found_extent) {
529 ret = btrfs_free_extent(trans, root, extent_start,
530 extent_num_blocks, 0);
531 BUG_ON(ret);
532 }
533 }
534 ret = 0;
535error:
536 btrfs_release_path(root, path);
537 btrfs_free_path(path);
538 inode->i_sb->s_dirt = 1;
539 return ret;
540}
541
542/*
543 * taken from block_truncate_page, but does cow as it zeros out
544 * any bytes left in the last page in the file.
545 */
546static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
547{
548 struct inode *inode = mapping->host;
549 unsigned blocksize = 1 << inode->i_blkbits;
550 pgoff_t index = from >> PAGE_CACHE_SHIFT;
551 unsigned offset = from & (PAGE_CACHE_SIZE-1);
552 struct page *page;
553 char *kaddr;
554 int ret = 0;
555 struct btrfs_root *root = BTRFS_I(inode)->root;
556 u64 alloc_hint = 0;
557 struct btrfs_key ins;
558 struct btrfs_trans_handle *trans;
559
560 if ((offset & (blocksize - 1)) == 0)
561 goto out;
562
563 ret = -ENOMEM;
564 page = grab_cache_page(mapping, index);
565 if (!page)
566 goto out;
567
568 if (!PageUptodate(page)) {
569 ret = mpage_readpage(page, btrfs_get_block);
570 lock_page(page);
571 if (!PageUptodate(page)) {
572 ret = -EIO;
573 goto out;
574 }
575 }
576 mutex_lock(&root->fs_info->fs_mutex);
577 trans = btrfs_start_transaction(root, 1);
578 btrfs_set_trans_block_group(trans, inode);
579
580 ret = btrfs_drop_extents(trans, root, inode,
581 page->index << PAGE_CACHE_SHIFT,
582 (page->index + 1) << PAGE_CACHE_SHIFT,
583 &alloc_hint);
584 BUG_ON(ret);
585 ret = btrfs_alloc_extent(trans, root, inode->i_ino, 1,
586 alloc_hint, (u64)-1, &ins, 1);
587 BUG_ON(ret);
588 ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
589 page->index << PAGE_CACHE_SHIFT,
590 ins.objectid, 1, 1);
591 BUG_ON(ret);
592 SetPageChecked(page);
593 kaddr = kmap(page);
594 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
595 flush_dcache_page(page);
596 btrfs_csum_file_block(trans, root, inode->i_ino,
597 page->index << PAGE_CACHE_SHIFT,
598 kaddr, PAGE_CACHE_SIZE);
599 kunmap(page);
600 btrfs_end_transaction(trans, root);
601 mutex_unlock(&root->fs_info->fs_mutex);
602
603 set_page_dirty(page);
604 unlock_page(page);
605 page_cache_release(page);
606out:
607 return ret;
608}
609
610static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
611{
612 struct inode *inode = dentry->d_inode;
613 int err;
614
615 err = inode_change_ok(inode, attr);
616 if (err)
617 return err;
618
619 if (S_ISREG(inode->i_mode) &&
620 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
621 struct btrfs_trans_handle *trans;
622 struct btrfs_root *root = BTRFS_I(inode)->root;
623 u64 mask = root->blocksize - 1;
624 u64 pos = (inode->i_size + mask) & ~mask;
625 u64 hole_size;
626
627 if (attr->ia_size <= pos)
628 goto out;
629
630 btrfs_truncate_page(inode->i_mapping, inode->i_size);
631
632 hole_size = (attr->ia_size - pos + mask) & ~mask;
633 hole_size >>= inode->i_blkbits;
634
635 mutex_lock(&root->fs_info->fs_mutex);
636 trans = btrfs_start_transaction(root, 1);
637 btrfs_set_trans_block_group(trans, inode);
638 err = btrfs_insert_file_extent(trans, root, inode->i_ino,
639 pos, 0, 0, hole_size);
640 BUG_ON(err);
641 btrfs_end_transaction(trans, root);
642 mutex_unlock(&root->fs_info->fs_mutex);
643 }
644out:
645 err = inode_setattr(inode, attr);
646
647 return err;
648}
649void btrfs_delete_inode(struct inode *inode)
650{
651 struct btrfs_trans_handle *trans;
652 struct btrfs_root *root = BTRFS_I(inode)->root;
653 int ret;
654
655 truncate_inode_pages(&inode->i_data, 0);
656 if (is_bad_inode(inode)) {
657 goto no_delete;
658 }
659 inode->i_size = 0;
660 mutex_lock(&root->fs_info->fs_mutex);
661 trans = btrfs_start_transaction(root, 1);
662 btrfs_set_trans_block_group(trans, inode);
663 ret = btrfs_truncate_in_trans(trans, root, inode);
664 BUG_ON(ret);
665 btrfs_free_inode(trans, root, inode);
666 btrfs_end_transaction(trans, root);
667 mutex_unlock(&root->fs_info->fs_mutex);
668 btrfs_btree_balance_dirty(root);
669 return;
670no_delete:
671 clear_inode(inode);
672}
673
674/*
675 * this returns the key found in the dir entry in the location pointer.
676 * If no dir entries were found, location->objectid is 0.
677 */
678static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
679 struct btrfs_key *location)
680{
681 const char *name = dentry->d_name.name;
682 int namelen = dentry->d_name.len;
683 struct btrfs_dir_item *di;
684 struct btrfs_path *path;
685 struct btrfs_root *root = BTRFS_I(dir)->root;
686 int ret;
687
688 path = btrfs_alloc_path();
689 BUG_ON(!path);
690 btrfs_init_path(path);
691 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
692 namelen, 0);
693 if (!di || IS_ERR(di)) {
694 location->objectid = 0;
695 ret = 0;
696 goto out;
697 }
698 btrfs_disk_key_to_cpu(location, &di->location);
699out:
700 btrfs_release_path(root, path);
701 btrfs_free_path(path);
702 return ret;
703}
704
705/*
706 * when we hit a tree root in a directory, the btrfs part of the inode
707 * needs to be changed to reflect the root directory of the tree root. This
708 * is kind of like crossing a mount point.
709 */
710static int fixup_tree_root_location(struct btrfs_root *root,
711 struct btrfs_key *location,
712 struct btrfs_root **sub_root)
713{
714 struct btrfs_path *path;
715 struct btrfs_root_item *ri;
716
717 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
718 return 0;
719 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
720 return 0;
721
722 path = btrfs_alloc_path();
723 BUG_ON(!path);
724 mutex_lock(&root->fs_info->fs_mutex);
725
726 *sub_root = btrfs_read_fs_root(root->fs_info, location);
727 if (IS_ERR(*sub_root))
728 return PTR_ERR(*sub_root);
729
730 ri = &(*sub_root)->root_item;
731 location->objectid = btrfs_root_dirid(ri);
732 location->flags = 0;
733 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
734 location->offset = 0;
735
736 btrfs_free_path(path);
737 mutex_unlock(&root->fs_info->fs_mutex);
738 return 0;
739}
740
741static int btrfs_init_locked_inode(struct inode *inode, void *p)
742{
743 struct btrfs_iget_args *args = p;
744 inode->i_ino = args->ino;
745 BTRFS_I(inode)->root = args->root;
746 return 0;
747}
748
749static int btrfs_find_actor(struct inode *inode, void *opaque)
750{
751 struct btrfs_iget_args *args = opaque;
752 return (args->ino == inode->i_ino &&
753 args->root == BTRFS_I(inode)->root);
754}
755
756struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
757 struct btrfs_root *root)
758{
759 struct inode *inode;
760 struct btrfs_iget_args args;
761 args.ino = objectid;
762 args.root = root;
763
764 inode = iget5_locked(s, objectid, btrfs_find_actor,
765 btrfs_init_locked_inode,
766 (void *)&args);
767 return inode;
768}
769
770static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
771 struct nameidata *nd)
772{
773 struct inode * inode;
774 struct btrfs_inode *bi = BTRFS_I(dir);
775 struct btrfs_root *root = bi->root;
776 struct btrfs_root *sub_root = root;
777 struct btrfs_key location;
778 int ret;
779
780 if (dentry->d_name.len > BTRFS_NAME_LEN)
781 return ERR_PTR(-ENAMETOOLONG);
782 mutex_lock(&root->fs_info->fs_mutex);
783 ret = btrfs_inode_by_name(dir, dentry, &location);
784 mutex_unlock(&root->fs_info->fs_mutex);
785 if (ret < 0)
786 return ERR_PTR(ret);
787 inode = NULL;
788 if (location.objectid) {
789 ret = fixup_tree_root_location(root, &location, &sub_root);
790 if (ret < 0)
791 return ERR_PTR(ret);
792 if (ret > 0)
793 return ERR_PTR(-ENOENT);
794 inode = btrfs_iget_locked(dir->i_sb, location.objectid,
795 sub_root);
796 if (!inode)
797 return ERR_PTR(-EACCES);
798 if (inode->i_state & I_NEW) {
799 /* the inode and parent dir are two different roots */
800 if (sub_root != root) {
801 igrab(inode);
802 sub_root->inode = inode;
803 }
804 BTRFS_I(inode)->root = sub_root;
805 memcpy(&BTRFS_I(inode)->location, &location,
806 sizeof(location));
807 btrfs_read_locked_inode(inode);
808 unlock_new_inode(inode);
809 }
810 }
811 return d_splice_alias(inode, dentry);
812}
813
814/*
815 * readahead one full node of leaves as long as their keys include
816 * the objectid supplied
817 */
818static void reada_leaves(struct btrfs_root *root, struct btrfs_path *path,
819 u64 objectid)
820{
821 struct btrfs_node *node;
822 int i;
823 u32 nritems;
824 u64 item_objectid;
825 u64 blocknr;
826 int slot;
827 int ret;
828
829 if (!path->nodes[1])
830 return;
831 node = btrfs_buffer_node(path->nodes[1]);
832 slot = path->slots[1];
833 nritems = btrfs_header_nritems(&node->header);
834 for (i = slot + 1; i < nritems; i++) {
835 item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
836 if (item_objectid != objectid)
837 break;
838 blocknr = btrfs_node_blockptr(node, i);
839 ret = readahead_tree_block(root, blocknr);
840 if (ret)
841 break;
842 }
843}
844static unsigned char btrfs_filetype_table[] = {
845 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
846};
847
848static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
849{
850 struct inode *inode = filp->f_path.dentry->d_inode;
851 struct btrfs_root *root = BTRFS_I(inode)->root;
852 struct btrfs_item *item;
853 struct btrfs_dir_item *di;
854 struct btrfs_key key;
855 struct btrfs_path *path;
856 int ret;
857 u32 nritems;
858 struct btrfs_leaf *leaf;
859 int slot;
860 int advance;
861 unsigned char d_type;
862 int over = 0;
863 u32 di_cur;
864 u32 di_total;
865 u32 di_len;
866 int key_type = BTRFS_DIR_INDEX_KEY;
867
868 /* FIXME, use a real flag for deciding about the key type */
869 if (root->fs_info->tree_root == root)
870 key_type = BTRFS_DIR_ITEM_KEY;
871 mutex_lock(&root->fs_info->fs_mutex);
872 key.objectid = inode->i_ino;
873 key.flags = 0;
874 btrfs_set_key_type(&key, key_type);
875 key.offset = filp->f_pos;
876 path = btrfs_alloc_path();
877 btrfs_init_path(path);
878 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
879 if (ret < 0)
880 goto err;
881 advance = 0;
882 reada_leaves(root, path, inode->i_ino);
883 while(1) {
884 leaf = btrfs_buffer_leaf(path->nodes[0]);
885 nritems = btrfs_header_nritems(&leaf->header);
886 slot = path->slots[0];
887 if (advance || slot >= nritems) {
888 if (slot >= nritems -1) {
889 reada_leaves(root, path, inode->i_ino);
890 ret = btrfs_next_leaf(root, path);
891 if (ret)
892 break;
893 leaf = btrfs_buffer_leaf(path->nodes[0]);
894 nritems = btrfs_header_nritems(&leaf->header);
895 slot = path->slots[0];
896 } else {
897 slot++;
898 path->slots[0]++;
899 }
900 }
901 advance = 1;
902 item = leaf->items + slot;
903 if (btrfs_disk_key_objectid(&item->key) != key.objectid)
904 break;
905 if (btrfs_disk_key_type(&item->key) != key_type)
906 break;
907 if (btrfs_disk_key_offset(&item->key) < filp->f_pos)
908 continue;
909 filp->f_pos = btrfs_disk_key_offset(&item->key);
910 advance = 1;
911 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
912 di_cur = 0;
913 di_total = btrfs_item_size(leaf->items + slot);
914 while(di_cur < di_total) {
915 d_type = btrfs_filetype_table[btrfs_dir_type(di)];
916 over = filldir(dirent, (const char *)(di + 1),
917 btrfs_dir_name_len(di),
918 btrfs_disk_key_offset(&item->key),
919 btrfs_disk_key_objectid(&di->location),
920 d_type);
921 if (over)
922 goto nopos;
923 di_len = btrfs_dir_name_len(di) + sizeof(*di);
924 di_cur += di_len;
925 di = (struct btrfs_dir_item *)((char *)di + di_len);
926 }
927 }
928 filp->f_pos++;
929nopos:
930 ret = 0;
931err:
932 btrfs_release_path(root, path);
933 btrfs_free_path(path);
934 mutex_unlock(&root->fs_info->fs_mutex);
935 return ret;
936}
937
938int btrfs_write_inode(struct inode *inode, int wait)
939{
940 struct btrfs_root *root = BTRFS_I(inode)->root;
941 struct btrfs_trans_handle *trans;
942 int ret = 0;
943
944 if (wait) {
945 mutex_lock(&root->fs_info->fs_mutex);
946 trans = btrfs_start_transaction(root, 1);
947 btrfs_set_trans_block_group(trans, inode);
948 ret = btrfs_commit_transaction(trans, root);
949 mutex_unlock(&root->fs_info->fs_mutex);
950 }
951 return ret;
952}
953
954/*
955 * This is somewhat expense, updating the tree every time the
956 * inode changes. But, it is most likely to find the inode in cache.
957 * FIXME, needs more benchmarking...there are no reasons other than performance
958 * to keep or drop this code.
959 */
960void btrfs_dirty_inode(struct inode *inode)
961{
962 struct btrfs_root *root = BTRFS_I(inode)->root;
963 struct btrfs_trans_handle *trans;
964
965 mutex_lock(&root->fs_info->fs_mutex);
966 trans = btrfs_start_transaction(root, 1);
967 btrfs_set_trans_block_group(trans, inode);
968 btrfs_update_inode(trans, root, inode);
969 btrfs_end_transaction(trans, root);
970 mutex_unlock(&root->fs_info->fs_mutex);
971 btrfs_btree_balance_dirty(root);
972}
973
974static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
975 struct btrfs_root *root,
976 u64 objectid,
977 struct btrfs_block_group_cache *group,
978 int mode)
979{
980 struct inode *inode;
981 struct btrfs_inode_item inode_item;
982 struct btrfs_key *location;
983 int ret;
984 int owner;
985
986 inode = new_inode(root->fs_info->sb);
987 if (!inode)
988 return ERR_PTR(-ENOMEM);
989
990 BTRFS_I(inode)->root = root;
991 if (mode & S_IFDIR)
992 owner = 0;
993 else
994 owner = 1;
995 group = btrfs_find_block_group(root, group, 0, 0, owner);
996 BTRFS_I(inode)->block_group = group;
997
998 inode->i_uid = current->fsuid;
999 inode->i_gid = current->fsgid;
1000 inode->i_mode = mode;
1001 inode->i_ino = objectid;
1002 inode->i_blocks = 0;
1003 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1004 fill_inode_item(&inode_item, inode);
1005 location = &BTRFS_I(inode)->location;
1006 location->objectid = objectid;
1007 location->flags = 0;
1008 location->offset = 0;
1009 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1010
1011 ret = btrfs_insert_inode(trans, root, objectid, &inode_item);
1012 BUG_ON(ret);
1013
1014 insert_inode_hash(inode);
1015 return inode;
1016}
1017
1018static inline u8 btrfs_inode_type(struct inode *inode)
1019{
1020 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
1021}
1022
1023static int btrfs_add_link(struct btrfs_trans_handle *trans,
1024 struct dentry *dentry, struct inode *inode)
1025{
1026 int ret;
1027 struct btrfs_key key;
1028 struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
1029 key.objectid = inode->i_ino;
1030 key.flags = 0;
1031 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1032 key.offset = 0;
1033
1034 ret = btrfs_insert_dir_item(trans, root,
1035 dentry->d_name.name, dentry->d_name.len,
1036 dentry->d_parent->d_inode->i_ino,
1037 &key, btrfs_inode_type(inode));
1038 if (ret == 0) {
1039 dentry->d_parent->d_inode->i_size += dentry->d_name.len * 2;
1040 ret = btrfs_update_inode(trans, root,
1041 dentry->d_parent->d_inode);
1042 }
1043 return ret;
1044}
1045
1046static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
1047 struct dentry *dentry, struct inode *inode)
1048{
1049 int err = btrfs_add_link(trans, dentry, inode);
1050 if (!err) {
1051 d_instantiate(dentry, inode);
1052 return 0;
1053 }
1054 if (err > 0)
1055 err = -EEXIST;
1056 return err;
1057}
1058
1059static int btrfs_create(struct inode *dir, struct dentry *dentry,
1060 int mode, struct nameidata *nd)
1061{
1062 struct btrfs_trans_handle *trans;
1063 struct btrfs_root *root = BTRFS_I(dir)->root;
1064 struct inode *inode;
1065 int err;
1066 int drop_inode = 0;
1067 u64 objectid;
1068
1069 mutex_lock(&root->fs_info->fs_mutex);
1070 trans = btrfs_start_transaction(root, 1);
1071 btrfs_set_trans_block_group(trans, dir);
1072
1073 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
1074 if (err) {
1075 err = -ENOSPC;
1076 goto out_unlock;
1077 }
1078
1079 inode = btrfs_new_inode(trans, root, objectid,
1080 BTRFS_I(dir)->block_group, mode);
1081 err = PTR_ERR(inode);
1082 if (IS_ERR(inode))
1083 goto out_unlock;
1084
1085 btrfs_set_trans_block_group(trans, inode);
1086 err = btrfs_add_nondir(trans, dentry, inode);
1087 if (err)
1088 drop_inode = 1;
1089 else {
1090 inode->i_mapping->a_ops = &btrfs_aops;
1091 inode->i_fop = &btrfs_file_operations;
1092 inode->i_op = &btrfs_file_inode_operations;
1093 }
1094 dir->i_sb->s_dirt = 1;
1095 btrfs_update_inode_block_group(trans, inode);
1096 btrfs_update_inode_block_group(trans, dir);
1097out_unlock:
1098 btrfs_end_transaction(trans, root);
1099 mutex_unlock(&root->fs_info->fs_mutex);
1100
1101 if (drop_inode) {
1102 inode_dec_link_count(inode);
1103 iput(inode);
1104 }
1105 btrfs_btree_balance_dirty(root);
1106 return err;
1107}
1108
1109static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
1110 struct dentry *dentry)
1111{
1112 struct btrfs_trans_handle *trans;
1113 struct btrfs_root *root = BTRFS_I(dir)->root;
1114 struct inode *inode = old_dentry->d_inode;
1115 int err;
1116 int drop_inode = 0;
1117
1118 if (inode->i_nlink == 0)
1119 return -ENOENT;
1120
1121 inc_nlink(inode);
1122 mutex_lock(&root->fs_info->fs_mutex);
1123 trans = btrfs_start_transaction(root, 1);
1124 btrfs_set_trans_block_group(trans, dir);
1125 atomic_inc(&inode->i_count);
1126 err = btrfs_add_nondir(trans, dentry, inode);
1127 if (err)
1128 drop_inode = 1;
1129 dir->i_sb->s_dirt = 1;
1130 btrfs_update_inode_block_group(trans, dir);
1131 btrfs_update_inode(trans, root, inode);
1132
1133 btrfs_end_transaction(trans, root);
1134 mutex_unlock(&root->fs_info->fs_mutex);
1135
1136 if (drop_inode) {
1137 inode_dec_link_count(inode);
1138 iput(inode);
1139 }
1140 btrfs_btree_balance_dirty(root);
1141 return err;
1142}
1143
1144static int btrfs_make_empty_dir(struct btrfs_trans_handle *trans,
1145 struct btrfs_root *root,
1146 u64 objectid, u64 dirid)
1147{
1148 int ret;
1149 char buf[2];
1150 struct btrfs_key key;
1151
1152 buf[0] = '.';
1153 buf[1] = '.';
1154
1155 key.objectid = objectid;
1156 key.offset = 0;
1157 key.flags = 0;
1158 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1159
1160 ret = btrfs_insert_dir_item(trans, root, buf, 1, objectid,
1161 &key, BTRFS_FT_DIR);
1162 if (ret)
1163 goto error;
1164 key.objectid = dirid;
1165 ret = btrfs_insert_dir_item(trans, root, buf, 2, objectid,
1166 &key, BTRFS_FT_DIR);
1167 if (ret)
1168 goto error;
1169error:
1170 return ret;
1171}
1172
1173static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1174{
1175 struct inode *inode;
1176 struct btrfs_trans_handle *trans;
1177 struct btrfs_root *root = BTRFS_I(dir)->root;
1178 int err = 0;
1179 int drop_on_err = 0;
1180 u64 objectid;
1181
1182 mutex_lock(&root->fs_info->fs_mutex);
1183 trans = btrfs_start_transaction(root, 1);
1184 btrfs_set_trans_block_group(trans, dir);
1185 if (IS_ERR(trans)) {
1186 err = PTR_ERR(trans);
1187 goto out_unlock;
1188 }
1189
1190 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
1191 if (err) {
1192 err = -ENOSPC;
1193 goto out_unlock;
1194 }
1195
1196 inode = btrfs_new_inode(trans, root, objectid,
1197 BTRFS_I(dir)->block_group, S_IFDIR | mode);
1198 if (IS_ERR(inode)) {
1199 err = PTR_ERR(inode);
1200 goto out_fail;
1201 }
1202 drop_on_err = 1;
1203 inode->i_op = &btrfs_dir_inode_operations;
1204 inode->i_fop = &btrfs_dir_file_operations;
1205 btrfs_set_trans_block_group(trans, inode);
1206
1207 err = btrfs_make_empty_dir(trans, root, inode->i_ino, dir->i_ino);
1208 if (err)
1209 goto out_fail;
1210
1211 inode->i_size = 6;
1212 err = btrfs_update_inode(trans, root, inode);
1213 if (err)
1214 goto out_fail;
1215 err = btrfs_add_link(trans, dentry, inode);
1216 if (err)
1217 goto out_fail;
1218 d_instantiate(dentry, inode);
1219 drop_on_err = 0;
1220 dir->i_sb->s_dirt = 1;
1221 btrfs_update_inode_block_group(trans, inode);
1222 btrfs_update_inode_block_group(trans, dir);
1223
1224out_fail:
1225 btrfs_end_transaction(trans, root);
1226out_unlock:
1227 mutex_unlock(&root->fs_info->fs_mutex);
1228 if (drop_on_err)
1229 iput(inode);
1230 btrfs_btree_balance_dirty(root);
1231 return err;
1232}
1233
1234/*
1235 * FIBMAP and others want to pass in a fake buffer head. They need to
1236 * use BTRFS_GET_BLOCK_NO_DIRECT to make sure we don't try to memcpy
1237 * any packed file data into the fake bh
1238 */
1239#define BTRFS_GET_BLOCK_NO_CREATE 0
1240#define BTRFS_GET_BLOCK_CREATE 1
1241#define BTRFS_GET_BLOCK_NO_DIRECT 2
1242
1243/*
1244 * FIXME create==1 doe not work.
1245 */
1246static int btrfs_get_block_lock(struct inode *inode, sector_t iblock,
1247 struct buffer_head *result, int create)
1248{
1249 int ret;
1250 int err = 0;
1251 u64 blocknr;
1252 u64 extent_start = 0;
1253 u64 extent_end = 0;
1254 u64 objectid = inode->i_ino;
1255 u32 found_type;
1256 u64 alloc_hint = 0;
1257 struct btrfs_path *path;
1258 struct btrfs_root *root = BTRFS_I(inode)->root;
1259 struct btrfs_file_extent_item *item;
1260 struct btrfs_leaf *leaf;
1261 struct btrfs_disk_key *found_key;
1262 struct btrfs_trans_handle *trans = NULL;
1263
1264 path = btrfs_alloc_path();
1265 BUG_ON(!path);
1266 btrfs_init_path(path);
1267 if (create & BTRFS_GET_BLOCK_CREATE) {
1268 WARN_ON(1);
1269 /* this almost but not quite works */
1270 trans = btrfs_start_transaction(root, 1);
1271 if (!trans) {
1272 err = -ENOMEM;
1273 goto out;
1274 }
1275 ret = btrfs_drop_extents(trans, root, inode,
1276 iblock << inode->i_blkbits,
1277 (iblock + 1) << inode->i_blkbits,
1278 &alloc_hint);
1279 BUG_ON(ret);
1280 }
1281
1282 ret = btrfs_lookup_file_extent(NULL, root, path,
1283 inode->i_ino,
1284 iblock << inode->i_blkbits, 0);
1285 if (ret < 0) {
1286 err = ret;
1287 goto out;
1288 }
1289
1290 if (ret != 0) {
1291 if (path->slots[0] == 0) {
1292 btrfs_release_path(root, path);
1293 goto not_found;
1294 }
1295 path->slots[0]--;
1296 }
1297
1298 item = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]), path->slots[0],
1299 struct btrfs_file_extent_item);
1300 leaf = btrfs_buffer_leaf(path->nodes[0]);
1301 blocknr = btrfs_file_extent_disk_blocknr(item);
1302 blocknr += btrfs_file_extent_offset(item);
1303
1304 /* are we inside the extent that was found? */
1305 found_key = &leaf->items[path->slots[0]].key;
1306 found_type = btrfs_disk_key_type(found_key);
1307 if (btrfs_disk_key_objectid(found_key) != objectid ||
1308 found_type != BTRFS_EXTENT_DATA_KEY) {
1309 extent_end = 0;
1310 extent_start = 0;
1311 goto not_found;
1312 }
1313 found_type = btrfs_file_extent_type(item);
1314 extent_start = btrfs_disk_key_offset(&leaf->items[path->slots[0]].key);
1315 if (found_type == BTRFS_FILE_EXTENT_REG) {
1316 extent_start = extent_start >> inode->i_blkbits;
1317 extent_end = extent_start + btrfs_file_extent_num_blocks(item);
1318 err = 0;
1319 if (btrfs_file_extent_disk_blocknr(item) == 0)
1320 goto out;
1321 if (iblock >= extent_start && iblock < extent_end) {
1322 btrfs_map_bh_to_logical(root, result, blocknr +
1323 iblock - extent_start);
1324 goto out;
1325 }
1326 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
1327 char *ptr;
1328 char *map;
1329 u32 size;
1330
1331 if (create & BTRFS_GET_BLOCK_NO_DIRECT) {
1332 err = -EINVAL;
1333 goto out;
1334 }
1335 size = btrfs_file_extent_inline_len(leaf->items +
1336 path->slots[0]);
1337 extent_end = (extent_start + size) >> inode->i_blkbits;
1338 extent_start >>= inode->i_blkbits;
1339 if (iblock < extent_start || iblock > extent_end) {
1340 goto not_found;
1341 }
1342 ptr = btrfs_file_extent_inline_start(item);
1343 map = kmap(result->b_page);
1344 memcpy(map, ptr, size);
1345 memset(map + size, 0, PAGE_CACHE_SIZE - size);
1346 flush_dcache_page(result->b_page);
1347 kunmap(result->b_page);
1348 set_buffer_uptodate(result);
1349 SetPageChecked(result->b_page);
1350 btrfs_map_bh_to_logical(root, result, 0);
1351 }
1352not_found:
1353 if (create & BTRFS_GET_BLOCK_CREATE) {
1354 struct btrfs_key ins;
1355 ret = btrfs_alloc_extent(trans, root, inode->i_ino,
1356 1, alloc_hint, (u64)-1,
1357 &ins, 1);
1358 BUG_ON(ret);
1359 ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
1360 iblock << inode->i_blkbits,
1361 ins.objectid, ins.offset,
1362 ins.offset);
1363 BUG_ON(ret);
1364 SetPageChecked(result->b_page);
1365 btrfs_map_bh_to_logical(root, result, ins.objectid);
1366 }
1367out:
1368 if (trans)
1369 err = btrfs_end_transaction(trans, root);
1370 btrfs_free_path(path);
1371 return err;
1372}
1373
1374int btrfs_get_block(struct inode *inode, sector_t iblock,
1375 struct buffer_head *result, int create)
1376{
1377 int err;
1378 struct btrfs_root *root = BTRFS_I(inode)->root;
1379 mutex_lock(&root->fs_info->fs_mutex);
1380 err = btrfs_get_block_lock(inode, iblock, result, create);
1381 mutex_unlock(&root->fs_info->fs_mutex);
1382 return err;
1383}
1384
1385static int btrfs_get_block_bmap(struct inode *inode, sector_t iblock,
1386 struct buffer_head *result, int create)
1387{
1388 struct btrfs_root *root = BTRFS_I(inode)->root;
1389 mutex_lock(&root->fs_info->fs_mutex);
1390 btrfs_get_block_lock(inode, iblock, result, BTRFS_GET_BLOCK_NO_DIRECT);
1391 mutex_unlock(&root->fs_info->fs_mutex);
1392 return 0;
1393}
1394
1395static sector_t btrfs_bmap(struct address_space *as, sector_t block)
1396{
1397 return generic_block_bmap(as, block, btrfs_get_block_bmap);
1398}
1399
1400static int btrfs_prepare_write(struct file *file, struct page *page,
1401 unsigned from, unsigned to)
1402{
1403 return block_prepare_write(page, from, to, btrfs_get_block);
1404}
1405
1406static int btrfs_readpage(struct file *file, struct page *page)
1407{
1408 return mpage_readpage(page, btrfs_get_block);
1409}
1410
1411/*
1412 * Aside from a tiny bit of packed file data handling, this is the
1413 * same as the generic code.
1414 *
1415 * While block_write_full_page is writing back the dirty buffers under
1416 * the page lock, whoever dirtied the buffers may decide to clean them
1417 * again at any time. We handle that by only looking at the buffer
1418 * state inside lock_buffer().
1419 *
1420 * If block_write_full_page() is called for regular writeback
1421 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1422 * locked buffer. This only can happen if someone has written the buffer
1423 * directly, with submit_bh(). At the address_space level PageWriteback
1424 * prevents this contention from occurring.
1425 */
1426static int __btrfs_write_full_page(struct inode *inode, struct page *page,
1427 struct writeback_control *wbc)
1428{
1429 int err;
1430 sector_t block;
1431 sector_t last_block;
1432 struct buffer_head *bh, *head;
1433 const unsigned blocksize = 1 << inode->i_blkbits;
1434 int nr_underway = 0;
1435
1436 BUG_ON(!PageLocked(page));
1437
1438 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1439
1440 if (!page_has_buffers(page)) {
1441 create_empty_buffers(page, blocksize,
1442 (1 << BH_Dirty)|(1 << BH_Uptodate));
1443 }
1444
1445 /*
1446 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1447 * here, and the (potentially unmapped) buffers may become dirty at
1448 * any time. If a buffer becomes dirty here after we've inspected it
1449 * then we just miss that fact, and the page stays dirty.
1450 *
1451 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1452 * handle that here by just cleaning them.
1453 */
1454
1455 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1456 head = page_buffers(page);
1457 bh = head;
1458
1459 /*
1460 * Get all the dirty buffers mapped to disk addresses and
1461 * handle any aliases from the underlying blockdev's mapping.
1462 */
1463 do {
1464 if (block > last_block) {
1465 /*
1466 * mapped buffers outside i_size will occur, because
1467 * this page can be outside i_size when there is a
1468 * truncate in progress.
1469 */
1470 /*
1471 * The buffer was zeroed by block_write_full_page()
1472 */
1473 clear_buffer_dirty(bh);
1474 set_buffer_uptodate(bh);
1475 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1476 WARN_ON(bh->b_size != blocksize);
1477 err = btrfs_get_block(inode, block, bh, 0);
1478 if (err) {
1479 goto recover;
1480 }
1481 if (buffer_new(bh)) {
1482 /* blockdev mappings never come here */
1483 clear_buffer_new(bh);
1484 }
1485 }
1486 bh = bh->b_this_page;
1487 block++;
1488 } while (bh != head);
1489
1490 do {
1491 if (!buffer_mapped(bh))
1492 continue;
1493 /*
1494 * If it's a fully non-blocking write attempt and we cannot
1495 * lock the buffer then redirty the page. Note that this can
1496 * potentially cause a busy-wait loop from pdflush and kswapd
1497 * activity, but those code paths have their own higher-level
1498 * throttling.
1499 */
1500 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1501 lock_buffer(bh);
1502 } else if (test_set_buffer_locked(bh)) {
1503 redirty_page_for_writepage(wbc, page);
1504 continue;
1505 }
1506 if (test_clear_buffer_dirty(bh) && bh->b_blocknr != 0) {
1507 mark_buffer_async_write(bh);
1508 } else {
1509 unlock_buffer(bh);
1510 }
1511 } while ((bh = bh->b_this_page) != head);
1512
1513 /*
1514 * The page and its buffers are protected by PageWriteback(), so we can
1515 * drop the bh refcounts early.
1516 */
1517 BUG_ON(PageWriteback(page));
1518 set_page_writeback(page);
1519
1520 do {
1521 struct buffer_head *next = bh->b_this_page;
1522 if (buffer_async_write(bh)) {
1523 submit_bh(WRITE, bh);
1524 nr_underway++;
1525 }
1526 bh = next;
1527 } while (bh != head);
1528 unlock_page(page);
1529
1530 err = 0;
1531done:
1532 if (nr_underway == 0) {
1533 /*
1534 * The page was marked dirty, but the buffers were
1535 * clean. Someone wrote them back by hand with
1536 * ll_rw_block/submit_bh. A rare case.
1537 */
1538 int uptodate = 1;
1539 do {
1540 if (!buffer_uptodate(bh)) {
1541 uptodate = 0;
1542 break;
1543 }
1544 bh = bh->b_this_page;
1545 } while (bh != head);
1546 if (uptodate)
1547 SetPageUptodate(page);
1548 end_page_writeback(page);
1549 }
1550 return err;
1551
1552recover:
1553 /*
1554 * ENOSPC, or some other error. We may already have added some
1555 * blocks to the file, so we need to write these out to avoid
1556 * exposing stale data.
1557 * The page is currently locked and not marked for writeback
1558 */
1559 bh = head;
1560 /* Recovery: lock and submit the mapped buffers */
1561 do {
1562 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1563 lock_buffer(bh);
1564 mark_buffer_async_write(bh);
1565 } else {
1566 /*
1567 * The buffer may have been set dirty during
1568 * attachment to a dirty page.
1569 */
1570 clear_buffer_dirty(bh);
1571 }
1572 } while ((bh = bh->b_this_page) != head);
1573 SetPageError(page);
1574 BUG_ON(PageWriteback(page));
1575 set_page_writeback(page);
1576 do {
1577 struct buffer_head *next = bh->b_this_page;
1578 if (buffer_async_write(bh)) {
1579 clear_buffer_dirty(bh);
1580 submit_bh(WRITE, bh);
1581 nr_underway++;
1582 }
1583 bh = next;
1584 } while (bh != head);
1585 unlock_page(page);
1586 goto done;
1587}
1588
1589static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
1590{
1591 struct inode * const inode = page->mapping->host;
1592 loff_t i_size = i_size_read(inode);
1593 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
1594 unsigned offset;
1595 void *kaddr;
1596
1597 /* Is the page fully inside i_size? */
1598 if (page->index < end_index)
1599 return __btrfs_write_full_page(inode, page, wbc);
1600
1601 /* Is the page fully outside i_size? (truncate in progress) */
1602 offset = i_size & (PAGE_CACHE_SIZE-1);
1603 if (page->index >= end_index+1 || !offset) {
1604 /*
1605 * The page may have dirty, unmapped buffers. For example,
1606 * they may have been added in ext3_writepage(). Make them
1607 * freeable here, so the page does not leak.
1608 */
1609 block_invalidatepage(page, 0);
1610 unlock_page(page);
1611 return 0; /* don't care */
1612 }
1613
1614 /*
1615 * The page straddles i_size. It must be zeroed out on each and every
1616 * writepage invokation because it may be mmapped. "A file is mapped
1617 * in multiples of the page size. For a file that is not a multiple of
1618 * the page size, the remaining memory is zeroed when mapped, and
1619 * writes to that region are not written out to the file."
1620 */
1621 kaddr = kmap_atomic(page, KM_USER0);
1622 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1623 flush_dcache_page(page);
1624 kunmap_atomic(kaddr, KM_USER0);
1625 return __btrfs_write_full_page(inode, page, wbc);
1626}
1627
1628static void btrfs_truncate(struct inode *inode)
1629{
1630 struct btrfs_root *root = BTRFS_I(inode)->root;
1631 int ret;
1632 struct btrfs_trans_handle *trans;
1633
1634 if (!S_ISREG(inode->i_mode))
1635 return;
1636 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1637 return;
1638
1639 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1640
1641 mutex_lock(&root->fs_info->fs_mutex);
1642 trans = btrfs_start_transaction(root, 1);
1643 btrfs_set_trans_block_group(trans, inode);
1644
1645 /* FIXME, add redo link to tree so we don't leak on crash */
1646 ret = btrfs_truncate_in_trans(trans, root, inode);
1647 BUG_ON(ret);
1648 btrfs_update_inode(trans, root, inode);
1649 ret = btrfs_end_transaction(trans, root);
1650 BUG_ON(ret);
1651 mutex_unlock(&root->fs_info->fs_mutex);
1652 btrfs_btree_balance_dirty(root);
1653}
1654
1655int btrfs_commit_write(struct file *file, struct page *page,
1656 unsigned from, unsigned to)
1657{
1658 struct inode *inode = page->mapping->host;
1659 struct buffer_head *bh;
1660 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1661
1662 SetPageUptodate(page);
1663 bh = page_buffers(page);
1664 set_buffer_uptodate(bh);
1665 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
1666 set_page_dirty(page);
1667 }
1668 if (pos > inode->i_size) {
1669 i_size_write(inode, pos);
1670 mark_inode_dirty(inode);
1671 }
1672 return 0;
1673}
1674
1675static int create_subvol(struct btrfs_root *root, char *name, int namelen)
1676{
1677 struct btrfs_trans_handle *trans;
1678 struct btrfs_key key;
1679 struct btrfs_root_item root_item;
1680 struct btrfs_inode_item *inode_item;
1681 struct buffer_head *subvol;
1682 struct btrfs_leaf *leaf;
1683 struct btrfs_root *new_root;
1684 struct inode *inode;
1685 struct inode *dir;
1686 int ret;
1687 u64 objectid;
1688 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
1689
1690 mutex_lock(&root->fs_info->fs_mutex);
1691 trans = btrfs_start_transaction(root, 1);
1692 BUG_ON(!trans);
1693
1694 subvol = btrfs_alloc_free_block(trans, root, 0);
1695 if (subvol == NULL)
1696 return -ENOSPC;
1697 leaf = btrfs_buffer_leaf(subvol);
1698 btrfs_set_header_nritems(&leaf->header, 0);
1699 btrfs_set_header_level(&leaf->header, 0);
1700 btrfs_set_header_blocknr(&leaf->header, bh_blocknr(subvol));
1701 btrfs_set_header_generation(&leaf->header, trans->transid);
1702 btrfs_set_header_owner(&leaf->header, root->root_key.objectid);
1703 memcpy(leaf->header.fsid, root->fs_info->disk_super->fsid,
1704 sizeof(leaf->header.fsid));
1705 mark_buffer_dirty(subvol);
1706
1707 inode_item = &root_item.inode;
1708 memset(inode_item, 0, sizeof(*inode_item));
1709 btrfs_set_inode_generation(inode_item, 1);
1710 btrfs_set_inode_size(inode_item, 3);
1711 btrfs_set_inode_nlink(inode_item, 1);
1712 btrfs_set_inode_nblocks(inode_item, 1);
1713 btrfs_set_inode_mode(inode_item, S_IFDIR | 0755);
1714
1715 btrfs_set_root_blocknr(&root_item, bh_blocknr(subvol));
1716 btrfs_set_root_refs(&root_item, 1);
1717 brelse(subvol);
1718 subvol = NULL;
1719
1720 ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root,
1721 0, &objectid);
1722 BUG_ON(ret);
1723
1724 btrfs_set_root_dirid(&root_item, new_dirid);
1725
1726 key.objectid = objectid;
1727 key.offset = 1;
1728 key.flags = 0;
1729 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
1730 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
1731 &root_item);
1732 BUG_ON(ret);
1733
1734 /*
1735 * insert the directory item
1736 */
1737 key.offset = (u64)-1;
1738 dir = root->fs_info->sb->s_root->d_inode;
1739 ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
1740 name, namelen, dir->i_ino, &key,
1741 BTRFS_FT_DIR);
1742 BUG_ON(ret);
1743
1744 ret = btrfs_commit_transaction(trans, root);
1745 BUG_ON(ret);
1746
1747 new_root = btrfs_read_fs_root(root->fs_info, &key);
1748 BUG_ON(!new_root);
1749
1750 trans = btrfs_start_transaction(new_root, 1);
1751 BUG_ON(!trans);
1752
1753 inode = btrfs_new_inode(trans, new_root, new_dirid,
1754 BTRFS_I(dir)->block_group, S_IFDIR | 0700);
1755 inode->i_op = &btrfs_dir_inode_operations;
1756 inode->i_fop = &btrfs_dir_file_operations;
34088780 1757 new_root->inode = inode;
39279cc3
CM
1758
1759 ret = btrfs_make_empty_dir(trans, new_root, new_dirid, new_dirid);
1760 BUG_ON(ret);
1761
1762 inode->i_nlink = 1;
1763 inode->i_size = 6;
1764 ret = btrfs_update_inode(trans, new_root, inode);
1765 BUG_ON(ret);
1766
1767 ret = btrfs_commit_transaction(trans, new_root);
1768 BUG_ON(ret);
1769
39279cc3
CM
1770 mutex_unlock(&root->fs_info->fs_mutex);
1771 btrfs_btree_balance_dirty(root);
1772 return 0;
1773}
1774
1775static int create_snapshot(struct btrfs_root *root, char *name, int namelen)
1776{
1777 struct btrfs_trans_handle *trans;
1778 struct btrfs_key key;
1779 struct btrfs_root_item new_root_item;
1780 int ret;
1781 u64 objectid;
1782
1783 if (!root->ref_cows)
1784 return -EINVAL;
1785
1786 mutex_lock(&root->fs_info->fs_mutex);
1787 trans = btrfs_start_transaction(root, 1);
1788 BUG_ON(!trans);
1789
1790 ret = btrfs_update_inode(trans, root, root->inode);
1791 BUG_ON(ret);
1792
1793 ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root,
1794 0, &objectid);
1795 BUG_ON(ret);
1796
1797 memcpy(&new_root_item, &root->root_item,
1798 sizeof(new_root_item));
1799
1800 key.objectid = objectid;
1801 key.offset = 1;
1802 key.flags = 0;
1803 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
1804 btrfs_set_root_blocknr(&new_root_item, bh_blocknr(root->node));
1805
1806 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
1807 &new_root_item);
1808 BUG_ON(ret);
1809
1810 /*
1811 * insert the directory item
1812 */
1813 key.offset = (u64)-1;
1814 ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
1815 name, namelen,
1816 root->fs_info->sb->s_root->d_inode->i_ino,
1817 &key, BTRFS_FT_DIR);
1818
1819 BUG_ON(ret);
1820
1821 ret = btrfs_inc_root_ref(trans, root);
1822 BUG_ON(ret);
1823
1824 ret = btrfs_commit_transaction(trans, root);
1825 BUG_ON(ret);
1826 mutex_unlock(&root->fs_info->fs_mutex);
1827 btrfs_btree_balance_dirty(root);
1828 return 0;
1829}
1830
1831int btrfs_ioctl(struct inode *inode, struct file *filp, unsigned int
1832 cmd, unsigned long arg)
1833{
1834 struct btrfs_root *root = BTRFS_I(inode)->root;
1835 struct btrfs_ioctl_vol_args vol_args;
1836 int ret = 0;
1837 struct btrfs_dir_item *di;
1838 int namelen;
1839 struct btrfs_path *path;
1840 u64 root_dirid;
1841
1842 switch (cmd) {
1843 case BTRFS_IOC_SNAP_CREATE:
1844 if (copy_from_user(&vol_args,
1845 (struct btrfs_ioctl_vol_args __user *)arg,
1846 sizeof(vol_args)))
1847 return -EFAULT;
1848 namelen = strlen(vol_args.name);
1849 if (namelen > BTRFS_VOL_NAME_MAX)
1850 return -EINVAL;
8a712645
CM
1851 if (strchr(vol_args.name, '/'))
1852 return -EINVAL;
39279cc3
CM
1853 path = btrfs_alloc_path();
1854 if (!path)
1855 return -ENOMEM;
1856 root_dirid = root->fs_info->sb->s_root->d_inode->i_ino,
1857 mutex_lock(&root->fs_info->fs_mutex);
1858 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root,
1859 path, root_dirid,
1860 vol_args.name, namelen, 0);
1861 mutex_unlock(&root->fs_info->fs_mutex);
1862 btrfs_free_path(path);
1863 if (di && !IS_ERR(di))
1864 return -EEXIST;
1865
1866 if (root == root->fs_info->tree_root)
1867 ret = create_subvol(root, vol_args.name, namelen);
1868 else
1869 ret = create_snapshot(root, vol_args.name, namelen);
1870 WARN_ON(ret);
1871 break;
1872 default:
1873 return -ENOTTY;
1874 }
1875 return ret;
1876}
1877
1878#ifdef CONFIG_COMPAT
1879long btrfs_compat_ioctl(struct file *file, unsigned int cmd,
1880 unsigned long arg)
1881{
1882 struct inode *inode = file->f_path.dentry->d_inode;
1883 int ret;
1884 lock_kernel();
1885 ret = btrfs_ioctl(inode, file, cmd, (unsigned long) compat_ptr(arg));
1886 unlock_kernel();
1887 return ret;
1888
1889}
1890#endif
1891
1892/*
1893 * Called inside transaction, so use GFP_NOFS
1894 */
1895struct inode *btrfs_alloc_inode(struct super_block *sb)
1896{
1897 struct btrfs_inode *ei;
1898
1899 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
1900 if (!ei)
1901 return NULL;
1902 return &ei->vfs_inode;
1903}
1904
1905void btrfs_destroy_inode(struct inode *inode)
1906{
1907 WARN_ON(!list_empty(&inode->i_dentry));
1908 WARN_ON(inode->i_data.nrpages);
1909
1910 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
1911}
1912
1913static void init_once(void * foo, struct kmem_cache * cachep,
1914 unsigned long flags)
1915{
1916 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
1917
1918 inode_init_once(&ei->vfs_inode);
1919}
1920
1921void btrfs_destroy_cachep(void)
1922{
1923 if (btrfs_inode_cachep)
1924 kmem_cache_destroy(btrfs_inode_cachep);
1925 if (btrfs_trans_handle_cachep)
1926 kmem_cache_destroy(btrfs_trans_handle_cachep);
1927 if (btrfs_transaction_cachep)
1928 kmem_cache_destroy(btrfs_transaction_cachep);
1929 if (btrfs_bit_radix_cachep)
1930 kmem_cache_destroy(btrfs_bit_radix_cachep);
1931 if (btrfs_path_cachep)
1932 kmem_cache_destroy(btrfs_path_cachep);
1933}
1934
1935int btrfs_init_cachep(void)
1936{
1937 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
1938 sizeof(struct btrfs_inode),
1939 0, (SLAB_RECLAIM_ACCOUNT|
1940 SLAB_MEM_SPREAD),
1941 init_once, NULL);
1942 if (!btrfs_inode_cachep)
1943 goto fail;
1944 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
1945 sizeof(struct btrfs_trans_handle),
1946 0, (SLAB_RECLAIM_ACCOUNT|
1947 SLAB_MEM_SPREAD),
1948 NULL, NULL);
1949 if (!btrfs_trans_handle_cachep)
1950 goto fail;
1951 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
1952 sizeof(struct btrfs_transaction),
1953 0, (SLAB_RECLAIM_ACCOUNT|
1954 SLAB_MEM_SPREAD),
1955 NULL, NULL);
1956 if (!btrfs_transaction_cachep)
1957 goto fail;
1958 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
1959 sizeof(struct btrfs_transaction),
1960 0, (SLAB_RECLAIM_ACCOUNT|
1961 SLAB_MEM_SPREAD),
1962 NULL, NULL);
1963 if (!btrfs_path_cachep)
1964 goto fail;
1965 btrfs_bit_radix_cachep = kmem_cache_create("btrfs_radix",
1966 256,
1967 0, (SLAB_RECLAIM_ACCOUNT|
1968 SLAB_MEM_SPREAD |
1969 SLAB_DESTROY_BY_RCU),
1970 NULL, NULL);
1971 if (!btrfs_bit_radix_cachep)
1972 goto fail;
1973 return 0;
1974fail:
1975 btrfs_destroy_cachep();
1976 return -ENOMEM;
1977}
1978
1979static int btrfs_getattr(struct vfsmount *mnt,
1980 struct dentry *dentry, struct kstat *stat)
1981{
1982 struct inode *inode = dentry->d_inode;
1983 generic_fillattr(inode, stat);
1984 stat->blksize = 256 * 1024;
1985 return 0;
1986}
1987
1988static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
1989 struct inode * new_dir,struct dentry *new_dentry)
1990{
1991 struct btrfs_trans_handle *trans;
1992 struct btrfs_root *root = BTRFS_I(old_dir)->root;
1993 struct inode *new_inode = new_dentry->d_inode;
1994 struct inode *old_inode = old_dentry->d_inode;
1995 struct timespec ctime = CURRENT_TIME;
1996 struct btrfs_path *path;
1997 struct btrfs_dir_item *di;
1998 int ret;
1999
2000 if (S_ISDIR(old_inode->i_mode) && new_inode &&
2001 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
2002 return -ENOTEMPTY;
2003 }
2004 mutex_lock(&root->fs_info->fs_mutex);
2005 trans = btrfs_start_transaction(root, 1);
2006 btrfs_set_trans_block_group(trans, new_dir);
2007 path = btrfs_alloc_path();
2008 if (!path) {
2009 ret = -ENOMEM;
2010 goto out_fail;
2011 }
2012
2013 old_dentry->d_inode->i_nlink++;
2014 old_dir->i_ctime = old_dir->i_mtime = ctime;
2015 new_dir->i_ctime = new_dir->i_mtime = ctime;
2016 old_inode->i_ctime = ctime;
2017 if (S_ISDIR(old_inode->i_mode) && old_dir != new_dir) {
2018 struct btrfs_key *location = &BTRFS_I(new_dir)->location;
2019 u64 old_parent_oid;
2020 di = btrfs_lookup_dir_item(trans, root, path, old_inode->i_ino,
2021 "..", 2, -1);
2022 if (IS_ERR(di)) {
2023 ret = PTR_ERR(di);
2024 goto out_fail;
2025 }
2026 if (!di) {
2027 ret = -ENOENT;
2028 goto out_fail;
2029 }
2030 old_parent_oid = btrfs_disk_key_objectid(&di->location);
2031 ret = btrfs_del_item(trans, root, path);
2032 if (ret) {
2033 ret = -EIO;
2034 goto out_fail;
2035 }
2036 btrfs_release_path(root, path);
2037
2038 di = btrfs_lookup_dir_index_item(trans, root, path,
2039 old_inode->i_ino,
2040 old_parent_oid,
2041 "..", 2, -1);
2042 if (IS_ERR(di)) {
2043 ret = PTR_ERR(di);
2044 goto out_fail;
2045 }
2046 if (!di) {
2047 ret = -ENOENT;
2048 goto out_fail;
2049 }
2050 ret = btrfs_del_item(trans, root, path);
2051 if (ret) {
2052 ret = -EIO;
2053 goto out_fail;
2054 }
2055 btrfs_release_path(root, path);
2056
2057 ret = btrfs_insert_dir_item(trans, root, "..", 2,
2058 old_inode->i_ino, location,
2059 BTRFS_FT_DIR);
2060 if (ret)
2061 goto out_fail;
2062 }
2063
2064
2065 ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
2066 if (ret)
2067 goto out_fail;
2068
2069 if (new_inode) {
2070 new_inode->i_ctime = CURRENT_TIME;
2071 ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
2072 if (ret)
2073 goto out_fail;
2074 if (S_ISDIR(new_inode->i_mode))
2075 clear_nlink(new_inode);
2076 else
2077 drop_nlink(new_inode);
2078 btrfs_update_inode(trans, root, new_inode);
2079 }
2080 ret = btrfs_add_link(trans, new_dentry, old_inode);
2081 if (ret)
2082 goto out_fail;
2083
2084out_fail:
2085 btrfs_free_path(path);
2086 btrfs_end_transaction(trans, root);
2087 mutex_unlock(&root->fs_info->fs_mutex);
2088 return ret;
2089}
2090
2091static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
2092 const char *symname)
2093{
2094 struct btrfs_trans_handle *trans;
2095 struct btrfs_root *root = BTRFS_I(dir)->root;
2096 struct btrfs_path *path;
2097 struct btrfs_key key;
2098 struct inode *inode;
2099 int err;
2100 int drop_inode = 0;
2101 u64 objectid;
2102 int name_len;
2103 int datasize;
2104 char *ptr;
2105 struct btrfs_file_extent_item *ei;
2106
2107 name_len = strlen(symname) + 1;
2108 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
2109 return -ENAMETOOLONG;
2110 mutex_lock(&root->fs_info->fs_mutex);
2111 trans = btrfs_start_transaction(root, 1);
2112 btrfs_set_trans_block_group(trans, dir);
2113
2114 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2115 if (err) {
2116 err = -ENOSPC;
2117 goto out_unlock;
2118 }
2119
2120 inode = btrfs_new_inode(trans, root, objectid,
2121 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO);
2122 err = PTR_ERR(inode);
2123 if (IS_ERR(inode))
2124 goto out_unlock;
2125
2126 btrfs_set_trans_block_group(trans, inode);
2127 err = btrfs_add_nondir(trans, dentry, inode);
2128 if (err)
2129 drop_inode = 1;
2130 else {
2131 inode->i_mapping->a_ops = &btrfs_aops;
2132 inode->i_fop = &btrfs_file_operations;
2133 inode->i_op = &btrfs_file_inode_operations;
2134 }
2135 dir->i_sb->s_dirt = 1;
2136 btrfs_update_inode_block_group(trans, inode);
2137 btrfs_update_inode_block_group(trans, dir);
2138 if (drop_inode)
2139 goto out_unlock;
2140
2141 path = btrfs_alloc_path();
2142 BUG_ON(!path);
2143 key.objectid = inode->i_ino;
2144 key.offset = 0;
2145 key.flags = 0;
2146 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
2147 datasize = btrfs_file_extent_calc_inline_size(name_len);
2148 err = btrfs_insert_empty_item(trans, root, path, &key,
2149 datasize);
2150 BUG_ON(err);
2151 ei = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
2152 path->slots[0], struct btrfs_file_extent_item);
2153 btrfs_set_file_extent_generation(ei, trans->transid);
2154 btrfs_set_file_extent_type(ei,
2155 BTRFS_FILE_EXTENT_INLINE);
2156 ptr = btrfs_file_extent_inline_start(ei);
2157 btrfs_memcpy(root, path->nodes[0]->b_data,
2158 ptr, symname, name_len);
2159 mark_buffer_dirty(path->nodes[0]);
2160 btrfs_free_path(path);
2161 inode->i_op = &btrfs_symlink_inode_operations;
2162 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2163 inode->i_size = name_len - 1;
2164 btrfs_update_inode(trans, root, inode);
2165 err = 0;
2166
2167out_unlock:
2168 btrfs_end_transaction(trans, root);
2169 mutex_unlock(&root->fs_info->fs_mutex);
2170
2171 if (drop_inode) {
2172 inode_dec_link_count(inode);
2173 iput(inode);
2174 }
2175 btrfs_btree_balance_dirty(root);
2176 return err;
2177}
2178
2179static struct inode_operations btrfs_dir_inode_operations = {
2180 .lookup = btrfs_lookup,
2181 .create = btrfs_create,
2182 .unlink = btrfs_unlink,
2183 .link = btrfs_link,
2184 .mkdir = btrfs_mkdir,
2185 .rmdir = btrfs_rmdir,
2186 .rename = btrfs_rename,
2187 .symlink = btrfs_symlink,
2188 .setattr = btrfs_setattr,
2189};
2190
2191static struct inode_operations btrfs_dir_ro_inode_operations = {
2192 .lookup = btrfs_lookup,
2193};
2194
2195static struct file_operations btrfs_dir_file_operations = {
2196 .llseek = generic_file_llseek,
2197 .read = generic_read_dir,
2198 .readdir = btrfs_readdir,
2199 .ioctl = btrfs_ioctl,
2200#ifdef CONFIG_COMPAT
2201 .compat_ioctl = btrfs_compat_ioctl,
2202#endif
2203};
2204
2205static struct address_space_operations btrfs_aops = {
2206 .readpage = btrfs_readpage,
2207 .writepage = btrfs_writepage,
2208 .sync_page = block_sync_page,
2209 .prepare_write = btrfs_prepare_write,
2210 .commit_write = btrfs_commit_write,
2211 .bmap = btrfs_bmap,
2212};
2213
2214static struct address_space_operations btrfs_symlink_aops = {
2215 .readpage = btrfs_readpage,
2216 .writepage = btrfs_writepage,
2217};
2218
2219static struct inode_operations btrfs_file_inode_operations = {
2220 .truncate = btrfs_truncate,
2221 .getattr = btrfs_getattr,
2222 .setattr = btrfs_setattr,
2223};
2224
2225static struct inode_operations btrfs_symlink_inode_operations = {
2226 .readlink = generic_readlink,
2227 .follow_link = page_follow_link_light,
2228 .put_link = page_put_link,
2229};