Btrfs: Always use 64bit inode number
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
581bb050 54#include "inode-map.h"
39279cc3
CM
55
56struct btrfs_iget_args {
57 u64 ino;
58 struct btrfs_root *root;
59};
60
6e1d5dcc
AD
61static const struct inode_operations btrfs_dir_inode_operations;
62static const struct inode_operations btrfs_symlink_inode_operations;
63static const struct inode_operations btrfs_dir_ro_inode_operations;
64static const struct inode_operations btrfs_special_inode_operations;
65static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
66static const struct address_space_operations btrfs_aops;
67static const struct address_space_operations btrfs_symlink_aops;
828c0950 68static const struct file_operations btrfs_dir_file_operations;
d1310b2e 69static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
70
71static struct kmem_cache *btrfs_inode_cachep;
72struct kmem_cache *btrfs_trans_handle_cachep;
73struct kmem_cache *btrfs_transaction_cachep;
39279cc3 74struct kmem_cache *btrfs_path_cachep;
dc89e982 75struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
76
77#define S_SHIFT 12
78static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
79 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
80 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
81 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
82 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
83 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
84 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
85 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
86};
87
a41ad394
JB
88static int btrfs_setsize(struct inode *inode, loff_t newsize);
89static int btrfs_truncate(struct inode *inode);
c8b97818 90static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
91static noinline int cow_file_range(struct inode *inode,
92 struct page *locked_page,
93 u64 start, u64 end, int *page_started,
94 unsigned long *nr_written, int unlock);
7b128766 95
f34f57a3
YZ
96static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
97 struct inode *inode, struct inode *dir)
0279b4cd
JO
98{
99 int err;
100
f34f57a3 101 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 102 if (!err)
f34f57a3 103 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
104 return err;
105}
106
c8b97818
CM
107/*
108 * this does all the hard work for inserting an inline extent into
109 * the btree. The caller should have done a btrfs_drop_extents so that
110 * no overlapping inline items exist in the btree
111 */
d397712b 112static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
113 struct btrfs_root *root, struct inode *inode,
114 u64 start, size_t size, size_t compressed_size,
fe3f566c 115 int compress_type,
c8b97818
CM
116 struct page **compressed_pages)
117{
118 struct btrfs_key key;
119 struct btrfs_path *path;
120 struct extent_buffer *leaf;
121 struct page *page = NULL;
122 char *kaddr;
123 unsigned long ptr;
124 struct btrfs_file_extent_item *ei;
125 int err = 0;
126 int ret;
127 size_t cur_size = size;
128 size_t datasize;
129 unsigned long offset;
c8b97818 130
fe3f566c 131 if (compressed_size && compressed_pages)
c8b97818 132 cur_size = compressed_size;
c8b97818 133
d397712b
CM
134 path = btrfs_alloc_path();
135 if (!path)
c8b97818
CM
136 return -ENOMEM;
137
b9473439 138 path->leave_spinning = 1;
c8b97818
CM
139 btrfs_set_trans_block_group(trans, inode);
140
33345d01 141 key.objectid = btrfs_ino(inode);
c8b97818
CM
142 key.offset = start;
143 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
144 datasize = btrfs_file_extent_calc_inline_size(cur_size);
145
146 inode_add_bytes(inode, size);
147 ret = btrfs_insert_empty_item(trans, root, path, &key,
148 datasize);
149 BUG_ON(ret);
150 if (ret) {
151 err = ret;
c8b97818
CM
152 goto fail;
153 }
154 leaf = path->nodes[0];
155 ei = btrfs_item_ptr(leaf, path->slots[0],
156 struct btrfs_file_extent_item);
157 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
158 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
159 btrfs_set_file_extent_encryption(leaf, ei, 0);
160 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
161 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
162 ptr = btrfs_file_extent_inline_start(ei);
163
261507a0 164 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
165 struct page *cpage;
166 int i = 0;
d397712b 167 while (compressed_size > 0) {
c8b97818 168 cpage = compressed_pages[i];
5b050f04 169 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
170 PAGE_CACHE_SIZE);
171
b9473439 172 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 173 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 174 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
175
176 i++;
177 ptr += cur_size;
178 compressed_size -= cur_size;
179 }
180 btrfs_set_file_extent_compression(leaf, ei,
261507a0 181 compress_type);
c8b97818
CM
182 } else {
183 page = find_get_page(inode->i_mapping,
184 start >> PAGE_CACHE_SHIFT);
185 btrfs_set_file_extent_compression(leaf, ei, 0);
186 kaddr = kmap_atomic(page, KM_USER0);
187 offset = start & (PAGE_CACHE_SIZE - 1);
188 write_extent_buffer(leaf, kaddr + offset, ptr, size);
189 kunmap_atomic(kaddr, KM_USER0);
190 page_cache_release(page);
191 }
192 btrfs_mark_buffer_dirty(leaf);
193 btrfs_free_path(path);
194
c2167754
YZ
195 /*
196 * we're an inline extent, so nobody can
197 * extend the file past i_size without locking
198 * a page we already have locked.
199 *
200 * We must do any isize and inode updates
201 * before we unlock the pages. Otherwise we
202 * could end up racing with unlink.
203 */
c8b97818
CM
204 BTRFS_I(inode)->disk_i_size = inode->i_size;
205 btrfs_update_inode(trans, root, inode);
c2167754 206
c8b97818
CM
207 return 0;
208fail:
209 btrfs_free_path(path);
210 return err;
211}
212
213
214/*
215 * conditionally insert an inline extent into the file. This
216 * does the checks required to make sure the data is small enough
217 * to fit as an inline extent.
218 */
7f366cfe 219static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
220 struct btrfs_root *root,
221 struct inode *inode, u64 start, u64 end,
fe3f566c 222 size_t compressed_size, int compress_type,
c8b97818
CM
223 struct page **compressed_pages)
224{
225 u64 isize = i_size_read(inode);
226 u64 actual_end = min(end + 1, isize);
227 u64 inline_len = actual_end - start;
228 u64 aligned_end = (end + root->sectorsize - 1) &
229 ~((u64)root->sectorsize - 1);
230 u64 hint_byte;
231 u64 data_len = inline_len;
232 int ret;
233
234 if (compressed_size)
235 data_len = compressed_size;
236
237 if (start > 0 ||
70b99e69 238 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
239 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
240 (!compressed_size &&
241 (actual_end & (root->sectorsize - 1)) == 0) ||
242 end + 1 < isize ||
243 data_len > root->fs_info->max_inline) {
244 return 1;
245 }
246
920bbbfb 247 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 248 &hint_byte, 1);
c8b97818
CM
249 BUG_ON(ret);
250
251 if (isize > actual_end)
252 inline_len = min_t(u64, isize, actual_end);
253 ret = insert_inline_extent(trans, root, inode, start,
254 inline_len, compressed_size,
fe3f566c 255 compress_type, compressed_pages);
c8b97818 256 BUG_ON(ret);
0ca1f7ce 257 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 258 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
259 return 0;
260}
261
771ed689
CM
262struct async_extent {
263 u64 start;
264 u64 ram_size;
265 u64 compressed_size;
266 struct page **pages;
267 unsigned long nr_pages;
261507a0 268 int compress_type;
771ed689
CM
269 struct list_head list;
270};
271
272struct async_cow {
273 struct inode *inode;
274 struct btrfs_root *root;
275 struct page *locked_page;
276 u64 start;
277 u64 end;
278 struct list_head extents;
279 struct btrfs_work work;
280};
281
282static noinline int add_async_extent(struct async_cow *cow,
283 u64 start, u64 ram_size,
284 u64 compressed_size,
285 struct page **pages,
261507a0
LZ
286 unsigned long nr_pages,
287 int compress_type)
771ed689
CM
288{
289 struct async_extent *async_extent;
290
291 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 292 BUG_ON(!async_extent);
771ed689
CM
293 async_extent->start = start;
294 async_extent->ram_size = ram_size;
295 async_extent->compressed_size = compressed_size;
296 async_extent->pages = pages;
297 async_extent->nr_pages = nr_pages;
261507a0 298 async_extent->compress_type = compress_type;
771ed689
CM
299 list_add_tail(&async_extent->list, &cow->extents);
300 return 0;
301}
302
d352ac68 303/*
771ed689
CM
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
c8b97818 307 *
771ed689
CM
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
c8b97818 313 *
771ed689
CM
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
d352ac68 318 */
771ed689
CM
319static noinline int compress_file_range(struct inode *inode,
320 struct page *locked_page,
321 u64 start, u64 end,
322 struct async_cow *async_cow,
323 int *num_added)
b888db2b
CM
324{
325 struct btrfs_root *root = BTRFS_I(inode)->root;
326 struct btrfs_trans_handle *trans;
db94535d 327 u64 num_bytes;
db94535d 328 u64 blocksize = root->sectorsize;
c8b97818 329 u64 actual_end;
42dc7bab 330 u64 isize = i_size_read(inode);
e6dcd2dc 331 int ret = 0;
c8b97818
CM
332 struct page **pages = NULL;
333 unsigned long nr_pages;
334 unsigned long nr_pages_ret = 0;
335 unsigned long total_compressed = 0;
336 unsigned long total_in = 0;
337 unsigned long max_compressed = 128 * 1024;
771ed689 338 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
339 int i;
340 int will_compress;
261507a0 341 int compress_type = root->fs_info->compress_type;
b888db2b 342
42dc7bab 343 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
344again:
345 will_compress = 0;
346 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 348
f03d9301
CM
349 /*
350 * we don't want to send crud past the end of i_size through
351 * compression, that's just a waste of CPU time. So, if the
352 * end of the file is before the start of our current
353 * requested range of bytes, we bail out to the uncompressed
354 * cleanup code that can deal with all of this.
355 *
356 * It isn't really the fastest way to fix things, but this is a
357 * very uncommon corner.
358 */
359 if (actual_end <= start)
360 goto cleanup_and_bail_uncompressed;
361
c8b97818
CM
362 total_compressed = actual_end - start;
363
364 /* we want to make sure that amount of ram required to uncompress
365 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
366 * of a compressed extent to 128k. This is a crucial number
367 * because it also controls how easily we can spread reads across
368 * cpus for decompression.
369 *
370 * We also want to make sure the amount of IO required to do
371 * a random read is reasonably small, so we limit the size of
372 * a compressed extent to 128k.
c8b97818
CM
373 */
374 total_compressed = min(total_compressed, max_uncompressed);
db94535d 375 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 376 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
377 total_in = 0;
378 ret = 0;
db94535d 379
771ed689
CM
380 /*
381 * we do compression for mount -o compress and when the
382 * inode has not been flagged as nocompress. This flag can
383 * change at any time if we discover bad compression ratios.
c8b97818 384 */
6cbff00f 385 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 386 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
387 (BTRFS_I(inode)->force_compress) ||
388 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 389 WARN_ON(pages);
cfbc246e 390 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 391 BUG_ON(!pages);
c8b97818 392
261507a0
LZ
393 if (BTRFS_I(inode)->force_compress)
394 compress_type = BTRFS_I(inode)->force_compress;
395
396 ret = btrfs_compress_pages(compress_type,
397 inode->i_mapping, start,
398 total_compressed, pages,
399 nr_pages, &nr_pages_ret,
400 &total_in,
401 &total_compressed,
402 max_compressed);
c8b97818
CM
403
404 if (!ret) {
405 unsigned long offset = total_compressed &
406 (PAGE_CACHE_SIZE - 1);
407 struct page *page = pages[nr_pages_ret - 1];
408 char *kaddr;
409
410 /* zero the tail end of the last page, we might be
411 * sending it down to disk
412 */
413 if (offset) {
414 kaddr = kmap_atomic(page, KM_USER0);
415 memset(kaddr + offset, 0,
416 PAGE_CACHE_SIZE - offset);
417 kunmap_atomic(kaddr, KM_USER0);
418 }
419 will_compress = 1;
420 }
421 }
422 if (start == 0) {
771ed689 423 trans = btrfs_join_transaction(root, 1);
3612b495 424 BUG_ON(IS_ERR(trans));
771ed689 425 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 426 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 427
c8b97818 428 /* lets try to make an inline extent */
771ed689 429 if (ret || total_in < (actual_end - start)) {
c8b97818 430 /* we didn't compress the entire range, try
771ed689 431 * to make an uncompressed inline extent.
c8b97818
CM
432 */
433 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 434 start, end, 0, 0, NULL);
c8b97818 435 } else {
771ed689 436 /* try making a compressed inline extent */
c8b97818
CM
437 ret = cow_file_range_inline(trans, root, inode,
438 start, end,
fe3f566c
LZ
439 total_compressed,
440 compress_type, pages);
c8b97818
CM
441 }
442 if (ret == 0) {
771ed689
CM
443 /*
444 * inline extent creation worked, we don't need
445 * to create any more async work items. Unlock
446 * and free up our temp pages.
447 */
c8b97818 448 extent_clear_unlock_delalloc(inode,
a791e35e
CM
449 &BTRFS_I(inode)->io_tree,
450 start, end, NULL,
451 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 452 EXTENT_CLEAR_DELALLOC |
a791e35e 453 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
454
455 btrfs_end_transaction(trans, root);
c8b97818
CM
456 goto free_pages_out;
457 }
c2167754 458 btrfs_end_transaction(trans, root);
c8b97818
CM
459 }
460
461 if (will_compress) {
462 /*
463 * we aren't doing an inline extent round the compressed size
464 * up to a block size boundary so the allocator does sane
465 * things
466 */
467 total_compressed = (total_compressed + blocksize - 1) &
468 ~(blocksize - 1);
469
470 /*
471 * one last check to make sure the compression is really a
472 * win, compare the page count read with the blocks on disk
473 */
474 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475 ~(PAGE_CACHE_SIZE - 1);
476 if (total_compressed >= total_in) {
477 will_compress = 0;
478 } else {
c8b97818
CM
479 num_bytes = total_in;
480 }
481 }
482 if (!will_compress && pages) {
483 /*
484 * the compression code ran but failed to make things smaller,
485 * free any pages it allocated and our page pointer array
486 */
487 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 488 WARN_ON(pages[i]->mapping);
c8b97818
CM
489 page_cache_release(pages[i]);
490 }
491 kfree(pages);
492 pages = NULL;
493 total_compressed = 0;
494 nr_pages_ret = 0;
495
496 /* flag the file so we don't compress in the future */
1e701a32
CM
497 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498 !(BTRFS_I(inode)->force_compress)) {
a555f810 499 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 500 }
c8b97818 501 }
771ed689
CM
502 if (will_compress) {
503 *num_added += 1;
c8b97818 504
771ed689
CM
505 /* the async work queues will take care of doing actual
506 * allocation on disk for these compressed pages,
507 * and will submit them to the elevator.
508 */
509 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
510 total_compressed, pages, nr_pages_ret,
511 compress_type);
179e29e4 512
24ae6365 513 if (start + num_bytes < end) {
771ed689
CM
514 start += num_bytes;
515 pages = NULL;
516 cond_resched();
517 goto again;
518 }
519 } else {
f03d9301 520cleanup_and_bail_uncompressed:
771ed689
CM
521 /*
522 * No compression, but we still need to write the pages in
523 * the file we've been given so far. redirty the locked
524 * page if it corresponds to our extent and set things up
525 * for the async work queue to run cow_file_range to do
526 * the normal delalloc dance
527 */
528 if (page_offset(locked_page) >= start &&
529 page_offset(locked_page) <= end) {
530 __set_page_dirty_nobuffers(locked_page);
531 /* unlocked later on in the async handlers */
532 }
261507a0
LZ
533 add_async_extent(async_cow, start, end - start + 1,
534 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
535 *num_added += 1;
536 }
3b951516 537
771ed689
CM
538out:
539 return 0;
540
541free_pages_out:
542 for (i = 0; i < nr_pages_ret; i++) {
543 WARN_ON(pages[i]->mapping);
544 page_cache_release(pages[i]);
545 }
d397712b 546 kfree(pages);
771ed689
CM
547
548 goto out;
549}
550
551/*
552 * phase two of compressed writeback. This is the ordered portion
553 * of the code, which only gets called in the order the work was
554 * queued. We walk all the async extents created by compress_file_range
555 * and send them down to the disk.
556 */
557static noinline int submit_compressed_extents(struct inode *inode,
558 struct async_cow *async_cow)
559{
560 struct async_extent *async_extent;
561 u64 alloc_hint = 0;
562 struct btrfs_trans_handle *trans;
563 struct btrfs_key ins;
564 struct extent_map *em;
565 struct btrfs_root *root = BTRFS_I(inode)->root;
566 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567 struct extent_io_tree *io_tree;
f5a84ee3 568 int ret = 0;
771ed689
CM
569
570 if (list_empty(&async_cow->extents))
571 return 0;
572
771ed689 573
d397712b 574 while (!list_empty(&async_cow->extents)) {
771ed689
CM
575 async_extent = list_entry(async_cow->extents.next,
576 struct async_extent, list);
577 list_del(&async_extent->list);
c8b97818 578
771ed689
CM
579 io_tree = &BTRFS_I(inode)->io_tree;
580
f5a84ee3 581retry:
771ed689
CM
582 /* did the compression code fall back to uncompressed IO? */
583 if (!async_extent->pages) {
584 int page_started = 0;
585 unsigned long nr_written = 0;
586
587 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
588 async_extent->start +
589 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
590
591 /* allocate blocks */
f5a84ee3
JB
592 ret = cow_file_range(inode, async_cow->locked_page,
593 async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1,
596 &page_started, &nr_written, 0);
771ed689
CM
597
598 /*
599 * if page_started, cow_file_range inserted an
600 * inline extent and took care of all the unlocking
601 * and IO for us. Otherwise, we need to submit
602 * all those pages down to the drive.
603 */
f5a84ee3 604 if (!page_started && !ret)
771ed689
CM
605 extent_write_locked_range(io_tree,
606 inode, async_extent->start,
d397712b 607 async_extent->start +
771ed689
CM
608 async_extent->ram_size - 1,
609 btrfs_get_extent,
610 WB_SYNC_ALL);
611 kfree(async_extent);
612 cond_resched();
613 continue;
614 }
615
616 lock_extent(io_tree, async_extent->start,
617 async_extent->start + async_extent->ram_size - 1,
618 GFP_NOFS);
771ed689 619
c2167754 620 trans = btrfs_join_transaction(root, 1);
3612b495 621 BUG_ON(IS_ERR(trans));
771ed689
CM
622 ret = btrfs_reserve_extent(trans, root,
623 async_extent->compressed_size,
624 async_extent->compressed_size,
625 0, alloc_hint,
626 (u64)-1, &ins, 1);
c2167754
YZ
627 btrfs_end_transaction(trans, root);
628
f5a84ee3
JB
629 if (ret) {
630 int i;
631 for (i = 0; i < async_extent->nr_pages; i++) {
632 WARN_ON(async_extent->pages[i]->mapping);
633 page_cache_release(async_extent->pages[i]);
634 }
635 kfree(async_extent->pages);
636 async_extent->nr_pages = 0;
637 async_extent->pages = NULL;
638 unlock_extent(io_tree, async_extent->start,
639 async_extent->start +
640 async_extent->ram_size - 1, GFP_NOFS);
641 goto retry;
642 }
643
c2167754
YZ
644 /*
645 * here we're doing allocation and writeback of the
646 * compressed pages
647 */
648 btrfs_drop_extent_cache(inode, async_extent->start,
649 async_extent->start +
650 async_extent->ram_size - 1, 0);
651
771ed689 652 em = alloc_extent_map(GFP_NOFS);
c26a9203 653 BUG_ON(!em);
771ed689
CM
654 em->start = async_extent->start;
655 em->len = async_extent->ram_size;
445a6944 656 em->orig_start = em->start;
c8b97818 657
771ed689
CM
658 em->block_start = ins.objectid;
659 em->block_len = ins.offset;
660 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 661 em->compress_type = async_extent->compress_type;
771ed689
CM
662 set_bit(EXTENT_FLAG_PINNED, &em->flags);
663 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
664
d397712b 665 while (1) {
890871be 666 write_lock(&em_tree->lock);
771ed689 667 ret = add_extent_mapping(em_tree, em);
890871be 668 write_unlock(&em_tree->lock);
771ed689
CM
669 if (ret != -EEXIST) {
670 free_extent_map(em);
671 break;
672 }
673 btrfs_drop_extent_cache(inode, async_extent->start,
674 async_extent->start +
675 async_extent->ram_size - 1, 0);
676 }
677
261507a0
LZ
678 ret = btrfs_add_ordered_extent_compress(inode,
679 async_extent->start,
680 ins.objectid,
681 async_extent->ram_size,
682 ins.offset,
683 BTRFS_ORDERED_COMPRESSED,
684 async_extent->compress_type);
771ed689
CM
685 BUG_ON(ret);
686
771ed689
CM
687 /*
688 * clear dirty, set writeback and unlock the pages.
689 */
690 extent_clear_unlock_delalloc(inode,
a791e35e
CM
691 &BTRFS_I(inode)->io_tree,
692 async_extent->start,
693 async_extent->start +
694 async_extent->ram_size - 1,
695 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
696 EXTENT_CLEAR_UNLOCK |
a3429ab7 697 EXTENT_CLEAR_DELALLOC |
a791e35e 698 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
699
700 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
701 async_extent->start,
702 async_extent->ram_size,
703 ins.objectid,
704 ins.offset, async_extent->pages,
705 async_extent->nr_pages);
771ed689
CM
706
707 BUG_ON(ret);
771ed689
CM
708 alloc_hint = ins.objectid + ins.offset;
709 kfree(async_extent);
710 cond_resched();
711 }
712
771ed689
CM
713 return 0;
714}
715
4b46fce2
JB
716static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
717 u64 num_bytes)
718{
719 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
720 struct extent_map *em;
721 u64 alloc_hint = 0;
722
723 read_lock(&em_tree->lock);
724 em = search_extent_mapping(em_tree, start, num_bytes);
725 if (em) {
726 /*
727 * if block start isn't an actual block number then find the
728 * first block in this inode and use that as a hint. If that
729 * block is also bogus then just don't worry about it.
730 */
731 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
732 free_extent_map(em);
733 em = search_extent_mapping(em_tree, 0, 0);
734 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
735 alloc_hint = em->block_start;
736 if (em)
737 free_extent_map(em);
738 } else {
739 alloc_hint = em->block_start;
740 free_extent_map(em);
741 }
742 }
743 read_unlock(&em_tree->lock);
744
745 return alloc_hint;
746}
747
771ed689
CM
748/*
749 * when extent_io.c finds a delayed allocation range in the file,
750 * the call backs end up in this code. The basic idea is to
751 * allocate extents on disk for the range, and create ordered data structs
752 * in ram to track those extents.
753 *
754 * locked_page is the page that writepage had locked already. We use
755 * it to make sure we don't do extra locks or unlocks.
756 *
757 * *page_started is set to one if we unlock locked_page and do everything
758 * required to start IO on it. It may be clean and already done with
759 * IO when we return.
760 */
761static noinline int cow_file_range(struct inode *inode,
762 struct page *locked_page,
763 u64 start, u64 end, int *page_started,
764 unsigned long *nr_written,
765 int unlock)
766{
767 struct btrfs_root *root = BTRFS_I(inode)->root;
768 struct btrfs_trans_handle *trans;
769 u64 alloc_hint = 0;
770 u64 num_bytes;
771 unsigned long ram_size;
772 u64 disk_num_bytes;
773 u64 cur_alloc_size;
774 u64 blocksize = root->sectorsize;
771ed689
CM
775 struct btrfs_key ins;
776 struct extent_map *em;
777 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
778 int ret = 0;
779
0cb59c99 780 BUG_ON(root == root->fs_info->tree_root);
771ed689 781 trans = btrfs_join_transaction(root, 1);
3612b495 782 BUG_ON(IS_ERR(trans));
771ed689 783 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 784 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 785
771ed689
CM
786 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
787 num_bytes = max(blocksize, num_bytes);
788 disk_num_bytes = num_bytes;
789 ret = 0;
790
791 if (start == 0) {
792 /* lets try to make an inline extent */
793 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 794 start, end, 0, 0, NULL);
771ed689
CM
795 if (ret == 0) {
796 extent_clear_unlock_delalloc(inode,
a791e35e
CM
797 &BTRFS_I(inode)->io_tree,
798 start, end, NULL,
799 EXTENT_CLEAR_UNLOCK_PAGE |
800 EXTENT_CLEAR_UNLOCK |
801 EXTENT_CLEAR_DELALLOC |
802 EXTENT_CLEAR_DIRTY |
803 EXTENT_SET_WRITEBACK |
804 EXTENT_END_WRITEBACK);
c2167754 805
771ed689
CM
806 *nr_written = *nr_written +
807 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
808 *page_started = 1;
809 ret = 0;
810 goto out;
811 }
812 }
813
814 BUG_ON(disk_num_bytes >
815 btrfs_super_total_bytes(&root->fs_info->super_copy));
816
4b46fce2 817 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
818 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
819
d397712b 820 while (disk_num_bytes > 0) {
a791e35e
CM
821 unsigned long op;
822
287a0ab9 823 cur_alloc_size = disk_num_bytes;
e6dcd2dc 824 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 825 root->sectorsize, 0, alloc_hint,
e6dcd2dc 826 (u64)-1, &ins, 1);
d397712b
CM
827 BUG_ON(ret);
828
e6dcd2dc 829 em = alloc_extent_map(GFP_NOFS);
c26a9203 830 BUG_ON(!em);
e6dcd2dc 831 em->start = start;
445a6944 832 em->orig_start = em->start;
771ed689
CM
833 ram_size = ins.offset;
834 em->len = ins.offset;
c8b97818 835
e6dcd2dc 836 em->block_start = ins.objectid;
c8b97818 837 em->block_len = ins.offset;
e6dcd2dc 838 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 839 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 840
d397712b 841 while (1) {
890871be 842 write_lock(&em_tree->lock);
e6dcd2dc 843 ret = add_extent_mapping(em_tree, em);
890871be 844 write_unlock(&em_tree->lock);
e6dcd2dc
CM
845 if (ret != -EEXIST) {
846 free_extent_map(em);
847 break;
848 }
849 btrfs_drop_extent_cache(inode, start,
c8b97818 850 start + ram_size - 1, 0);
e6dcd2dc
CM
851 }
852
98d20f67 853 cur_alloc_size = ins.offset;
e6dcd2dc 854 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 855 ram_size, cur_alloc_size, 0);
e6dcd2dc 856 BUG_ON(ret);
c8b97818 857
17d217fe
YZ
858 if (root->root_key.objectid ==
859 BTRFS_DATA_RELOC_TREE_OBJECTID) {
860 ret = btrfs_reloc_clone_csums(inode, start,
861 cur_alloc_size);
862 BUG_ON(ret);
863 }
864
d397712b 865 if (disk_num_bytes < cur_alloc_size)
3b951516 866 break;
d397712b 867
c8b97818
CM
868 /* we're not doing compressed IO, don't unlock the first
869 * page (which the caller expects to stay locked), don't
870 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
871 *
872 * Do set the Private2 bit so we know this page was properly
873 * setup for writepage
c8b97818 874 */
a791e35e
CM
875 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
876 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
877 EXTENT_SET_PRIVATE2;
878
c8b97818
CM
879 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
880 start, start + ram_size - 1,
a791e35e 881 locked_page, op);
c8b97818 882 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
883 num_bytes -= cur_alloc_size;
884 alloc_hint = ins.objectid + ins.offset;
885 start += cur_alloc_size;
b888db2b 886 }
b888db2b 887out:
771ed689 888 ret = 0;
b888db2b 889 btrfs_end_transaction(trans, root);
c8b97818 890
be20aa9d 891 return ret;
771ed689 892}
c8b97818 893
771ed689
CM
894/*
895 * work queue call back to started compression on a file and pages
896 */
897static noinline void async_cow_start(struct btrfs_work *work)
898{
899 struct async_cow *async_cow;
900 int num_added = 0;
901 async_cow = container_of(work, struct async_cow, work);
902
903 compress_file_range(async_cow->inode, async_cow->locked_page,
904 async_cow->start, async_cow->end, async_cow,
905 &num_added);
906 if (num_added == 0)
907 async_cow->inode = NULL;
908}
909
910/*
911 * work queue call back to submit previously compressed pages
912 */
913static noinline void async_cow_submit(struct btrfs_work *work)
914{
915 struct async_cow *async_cow;
916 struct btrfs_root *root;
917 unsigned long nr_pages;
918
919 async_cow = container_of(work, struct async_cow, work);
920
921 root = async_cow->root;
922 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
923 PAGE_CACHE_SHIFT;
924
925 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
926
927 if (atomic_read(&root->fs_info->async_delalloc_pages) <
928 5 * 1042 * 1024 &&
929 waitqueue_active(&root->fs_info->async_submit_wait))
930 wake_up(&root->fs_info->async_submit_wait);
931
d397712b 932 if (async_cow->inode)
771ed689 933 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 934}
c8b97818 935
771ed689
CM
936static noinline void async_cow_free(struct btrfs_work *work)
937{
938 struct async_cow *async_cow;
939 async_cow = container_of(work, struct async_cow, work);
940 kfree(async_cow);
941}
942
943static int cow_file_range_async(struct inode *inode, struct page *locked_page,
944 u64 start, u64 end, int *page_started,
945 unsigned long *nr_written)
946{
947 struct async_cow *async_cow;
948 struct btrfs_root *root = BTRFS_I(inode)->root;
949 unsigned long nr_pages;
950 u64 cur_end;
951 int limit = 10 * 1024 * 1042;
952
a3429ab7
CM
953 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
954 1, 0, NULL, GFP_NOFS);
d397712b 955 while (start < end) {
771ed689
CM
956 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
957 async_cow->inode = inode;
958 async_cow->root = root;
959 async_cow->locked_page = locked_page;
960 async_cow->start = start;
961
6cbff00f 962 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
963 cur_end = end;
964 else
965 cur_end = min(end, start + 512 * 1024 - 1);
966
967 async_cow->end = cur_end;
968 INIT_LIST_HEAD(&async_cow->extents);
969
970 async_cow->work.func = async_cow_start;
971 async_cow->work.ordered_func = async_cow_submit;
972 async_cow->work.ordered_free = async_cow_free;
973 async_cow->work.flags = 0;
974
771ed689
CM
975 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
976 PAGE_CACHE_SHIFT;
977 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
978
979 btrfs_queue_worker(&root->fs_info->delalloc_workers,
980 &async_cow->work);
981
982 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
983 wait_event(root->fs_info->async_submit_wait,
984 (atomic_read(&root->fs_info->async_delalloc_pages) <
985 limit));
986 }
987
d397712b 988 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
989 atomic_read(&root->fs_info->async_delalloc_pages)) {
990 wait_event(root->fs_info->async_submit_wait,
991 (atomic_read(&root->fs_info->async_delalloc_pages) ==
992 0));
993 }
994
995 *nr_written += nr_pages;
996 start = cur_end + 1;
997 }
998 *page_started = 1;
999 return 0;
be20aa9d
CM
1000}
1001
d397712b 1002static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1003 u64 bytenr, u64 num_bytes)
1004{
1005 int ret;
1006 struct btrfs_ordered_sum *sums;
1007 LIST_HEAD(list);
1008
07d400a6
YZ
1009 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1010 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1011 if (ret == 0 && list_empty(&list))
1012 return 0;
1013
1014 while (!list_empty(&list)) {
1015 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1016 list_del(&sums->list);
1017 kfree(sums);
1018 }
1019 return 1;
1020}
1021
d352ac68
CM
1022/*
1023 * when nowcow writeback call back. This checks for snapshots or COW copies
1024 * of the extents that exist in the file, and COWs the file as required.
1025 *
1026 * If no cow copies or snapshots exist, we write directly to the existing
1027 * blocks on disk
1028 */
7f366cfe
CM
1029static noinline int run_delalloc_nocow(struct inode *inode,
1030 struct page *locked_page,
771ed689
CM
1031 u64 start, u64 end, int *page_started, int force,
1032 unsigned long *nr_written)
be20aa9d 1033{
be20aa9d 1034 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1035 struct btrfs_trans_handle *trans;
be20aa9d 1036 struct extent_buffer *leaf;
be20aa9d 1037 struct btrfs_path *path;
80ff3856 1038 struct btrfs_file_extent_item *fi;
be20aa9d 1039 struct btrfs_key found_key;
80ff3856
YZ
1040 u64 cow_start;
1041 u64 cur_offset;
1042 u64 extent_end;
5d4f98a2 1043 u64 extent_offset;
80ff3856
YZ
1044 u64 disk_bytenr;
1045 u64 num_bytes;
1046 int extent_type;
1047 int ret;
d899e052 1048 int type;
80ff3856
YZ
1049 int nocow;
1050 int check_prev = 1;
0cb59c99 1051 bool nolock = false;
33345d01 1052 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1053
1054 path = btrfs_alloc_path();
1055 BUG_ON(!path);
0cb59c99
JB
1056 if (root == root->fs_info->tree_root) {
1057 nolock = true;
1058 trans = btrfs_join_transaction_nolock(root, 1);
1059 } else {
1060 trans = btrfs_join_transaction(root, 1);
1061 }
3612b495 1062 BUG_ON(IS_ERR(trans));
be20aa9d 1063
80ff3856
YZ
1064 cow_start = (u64)-1;
1065 cur_offset = start;
1066 while (1) {
33345d01 1067 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1068 cur_offset, 0);
1069 BUG_ON(ret < 0);
1070 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1071 leaf = path->nodes[0];
1072 btrfs_item_key_to_cpu(leaf, &found_key,
1073 path->slots[0] - 1);
33345d01 1074 if (found_key.objectid == ino &&
80ff3856
YZ
1075 found_key.type == BTRFS_EXTENT_DATA_KEY)
1076 path->slots[0]--;
1077 }
1078 check_prev = 0;
1079next_slot:
1080 leaf = path->nodes[0];
1081 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1082 ret = btrfs_next_leaf(root, path);
1083 if (ret < 0)
1084 BUG_ON(1);
1085 if (ret > 0)
1086 break;
1087 leaf = path->nodes[0];
1088 }
be20aa9d 1089
80ff3856
YZ
1090 nocow = 0;
1091 disk_bytenr = 0;
17d217fe 1092 num_bytes = 0;
80ff3856
YZ
1093 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1094
33345d01 1095 if (found_key.objectid > ino ||
80ff3856
YZ
1096 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1097 found_key.offset > end)
1098 break;
1099
1100 if (found_key.offset > cur_offset) {
1101 extent_end = found_key.offset;
e9061e21 1102 extent_type = 0;
80ff3856
YZ
1103 goto out_check;
1104 }
1105
1106 fi = btrfs_item_ptr(leaf, path->slots[0],
1107 struct btrfs_file_extent_item);
1108 extent_type = btrfs_file_extent_type(leaf, fi);
1109
d899e052
YZ
1110 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1111 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1112 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1113 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1114 extent_end = found_key.offset +
1115 btrfs_file_extent_num_bytes(leaf, fi);
1116 if (extent_end <= start) {
1117 path->slots[0]++;
1118 goto next_slot;
1119 }
17d217fe
YZ
1120 if (disk_bytenr == 0)
1121 goto out_check;
80ff3856
YZ
1122 if (btrfs_file_extent_compression(leaf, fi) ||
1123 btrfs_file_extent_encryption(leaf, fi) ||
1124 btrfs_file_extent_other_encoding(leaf, fi))
1125 goto out_check;
d899e052
YZ
1126 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1127 goto out_check;
d2fb3437 1128 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1129 goto out_check;
33345d01 1130 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1131 found_key.offset -
1132 extent_offset, disk_bytenr))
17d217fe 1133 goto out_check;
5d4f98a2 1134 disk_bytenr += extent_offset;
17d217fe
YZ
1135 disk_bytenr += cur_offset - found_key.offset;
1136 num_bytes = min(end + 1, extent_end) - cur_offset;
1137 /*
1138 * force cow if csum exists in the range.
1139 * this ensure that csum for a given extent are
1140 * either valid or do not exist.
1141 */
1142 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1143 goto out_check;
80ff3856
YZ
1144 nocow = 1;
1145 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1146 extent_end = found_key.offset +
1147 btrfs_file_extent_inline_len(leaf, fi);
1148 extent_end = ALIGN(extent_end, root->sectorsize);
1149 } else {
1150 BUG_ON(1);
1151 }
1152out_check:
1153 if (extent_end <= start) {
1154 path->slots[0]++;
1155 goto next_slot;
1156 }
1157 if (!nocow) {
1158 if (cow_start == (u64)-1)
1159 cow_start = cur_offset;
1160 cur_offset = extent_end;
1161 if (cur_offset > end)
1162 break;
1163 path->slots[0]++;
1164 goto next_slot;
7ea394f1
YZ
1165 }
1166
1167 btrfs_release_path(root, path);
80ff3856
YZ
1168 if (cow_start != (u64)-1) {
1169 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1170 found_key.offset - 1, page_started,
1171 nr_written, 1);
80ff3856
YZ
1172 BUG_ON(ret);
1173 cow_start = (u64)-1;
7ea394f1 1174 }
80ff3856 1175
d899e052
YZ
1176 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1177 struct extent_map *em;
1178 struct extent_map_tree *em_tree;
1179 em_tree = &BTRFS_I(inode)->extent_tree;
1180 em = alloc_extent_map(GFP_NOFS);
c26a9203 1181 BUG_ON(!em);
d899e052 1182 em->start = cur_offset;
445a6944 1183 em->orig_start = em->start;
d899e052
YZ
1184 em->len = num_bytes;
1185 em->block_len = num_bytes;
1186 em->block_start = disk_bytenr;
1187 em->bdev = root->fs_info->fs_devices->latest_bdev;
1188 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1189 while (1) {
890871be 1190 write_lock(&em_tree->lock);
d899e052 1191 ret = add_extent_mapping(em_tree, em);
890871be 1192 write_unlock(&em_tree->lock);
d899e052
YZ
1193 if (ret != -EEXIST) {
1194 free_extent_map(em);
1195 break;
1196 }
1197 btrfs_drop_extent_cache(inode, em->start,
1198 em->start + em->len - 1, 0);
1199 }
1200 type = BTRFS_ORDERED_PREALLOC;
1201 } else {
1202 type = BTRFS_ORDERED_NOCOW;
1203 }
80ff3856
YZ
1204
1205 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1206 num_bytes, num_bytes, type);
1207 BUG_ON(ret);
771ed689 1208
efa56464
YZ
1209 if (root->root_key.objectid ==
1210 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1211 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1212 num_bytes);
1213 BUG_ON(ret);
1214 }
1215
d899e052 1216 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1217 cur_offset, cur_offset + num_bytes - 1,
1218 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1219 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1220 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1221 cur_offset = extent_end;
1222 if (cur_offset > end)
1223 break;
be20aa9d 1224 }
80ff3856
YZ
1225 btrfs_release_path(root, path);
1226
1227 if (cur_offset <= end && cow_start == (u64)-1)
1228 cow_start = cur_offset;
1229 if (cow_start != (u64)-1) {
1230 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1231 page_started, nr_written, 1);
80ff3856
YZ
1232 BUG_ON(ret);
1233 }
1234
0cb59c99
JB
1235 if (nolock) {
1236 ret = btrfs_end_transaction_nolock(trans, root);
1237 BUG_ON(ret);
1238 } else {
1239 ret = btrfs_end_transaction(trans, root);
1240 BUG_ON(ret);
1241 }
7ea394f1 1242 btrfs_free_path(path);
80ff3856 1243 return 0;
be20aa9d
CM
1244}
1245
d352ac68
CM
1246/*
1247 * extent_io.c call back to do delayed allocation processing
1248 */
c8b97818 1249static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1250 u64 start, u64 end, int *page_started,
1251 unsigned long *nr_written)
be20aa9d 1252{
be20aa9d 1253 int ret;
7f366cfe 1254 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1255
6cbff00f 1256 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1257 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1258 page_started, 1, nr_written);
6cbff00f 1259 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1260 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1261 page_started, 0, nr_written);
1e701a32 1262 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1263 !(BTRFS_I(inode)->force_compress) &&
1264 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1265 ret = cow_file_range(inode, locked_page, start, end,
1266 page_started, nr_written, 1);
be20aa9d 1267 else
771ed689 1268 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1269 page_started, nr_written);
b888db2b
CM
1270 return ret;
1271}
1272
9ed74f2d 1273static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1274 struct extent_state *orig, u64 split)
9ed74f2d 1275{
0ca1f7ce 1276 /* not delalloc, ignore it */
9ed74f2d
JB
1277 if (!(orig->state & EXTENT_DELALLOC))
1278 return 0;
1279
0ca1f7ce 1280 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1281 return 0;
1282}
1283
1284/*
1285 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1286 * extents so we can keep track of new extents that are just merged onto old
1287 * extents, such as when we are doing sequential writes, so we can properly
1288 * account for the metadata space we'll need.
1289 */
1290static int btrfs_merge_extent_hook(struct inode *inode,
1291 struct extent_state *new,
1292 struct extent_state *other)
1293{
9ed74f2d
JB
1294 /* not delalloc, ignore it */
1295 if (!(other->state & EXTENT_DELALLOC))
1296 return 0;
1297
0ca1f7ce 1298 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1299 return 0;
1300}
1301
d352ac68
CM
1302/*
1303 * extent_io.c set_bit_hook, used to track delayed allocation
1304 * bytes in this file, and to maintain the list of inodes that
1305 * have pending delalloc work to be done.
1306 */
0ca1f7ce
YZ
1307static int btrfs_set_bit_hook(struct inode *inode,
1308 struct extent_state *state, int *bits)
291d673e 1309{
9ed74f2d 1310
75eff68e
CM
1311 /*
1312 * set_bit and clear bit hooks normally require _irqsave/restore
1313 * but in this case, we are only testeing for the DELALLOC
1314 * bit, which is only set or cleared with irqs on
1315 */
0ca1f7ce 1316 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1317 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1318 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1319 int do_list = (root->root_key.objectid !=
1320 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1321
0ca1f7ce
YZ
1322 if (*bits & EXTENT_FIRST_DELALLOC)
1323 *bits &= ~EXTENT_FIRST_DELALLOC;
1324 else
1325 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1326
75eff68e 1327 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1328 BTRFS_I(inode)->delalloc_bytes += len;
1329 root->fs_info->delalloc_bytes += len;
0cb59c99 1330 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1331 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1332 &root->fs_info->delalloc_inodes);
1333 }
75eff68e 1334 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1335 }
1336 return 0;
1337}
1338
d352ac68
CM
1339/*
1340 * extent_io.c clear_bit_hook, see set_bit_hook for why
1341 */
9ed74f2d 1342static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1343 struct extent_state *state, int *bits)
291d673e 1344{
75eff68e
CM
1345 /*
1346 * set_bit and clear bit hooks normally require _irqsave/restore
1347 * but in this case, we are only testeing for the DELALLOC
1348 * bit, which is only set or cleared with irqs on
1349 */
0ca1f7ce 1350 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1351 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1352 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1353 int do_list = (root->root_key.objectid !=
1354 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1355
0ca1f7ce
YZ
1356 if (*bits & EXTENT_FIRST_DELALLOC)
1357 *bits &= ~EXTENT_FIRST_DELALLOC;
1358 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1359 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1360
1361 if (*bits & EXTENT_DO_ACCOUNTING)
1362 btrfs_delalloc_release_metadata(inode, len);
1363
0cb59c99
JB
1364 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1365 && do_list)
0ca1f7ce 1366 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1367
75eff68e 1368 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1369 root->fs_info->delalloc_bytes -= len;
1370 BTRFS_I(inode)->delalloc_bytes -= len;
1371
0cb59c99 1372 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1373 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1374 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1375 }
75eff68e 1376 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1377 }
1378 return 0;
1379}
1380
d352ac68
CM
1381/*
1382 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1383 * we don't create bios that span stripes or chunks
1384 */
239b14b3 1385int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1386 size_t size, struct bio *bio,
1387 unsigned long bio_flags)
239b14b3
CM
1388{
1389 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1390 struct btrfs_mapping_tree *map_tree;
a62b9401 1391 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1392 u64 length = 0;
1393 u64 map_length;
239b14b3
CM
1394 int ret;
1395
771ed689
CM
1396 if (bio_flags & EXTENT_BIO_COMPRESSED)
1397 return 0;
1398
f2d8d74d 1399 length = bio->bi_size;
239b14b3
CM
1400 map_tree = &root->fs_info->mapping_tree;
1401 map_length = length;
cea9e445 1402 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1403 &map_length, NULL, 0);
cea9e445 1404
d397712b 1405 if (map_length < length + size)
239b14b3 1406 return 1;
411fc6bc 1407 return ret;
239b14b3
CM
1408}
1409
d352ac68
CM
1410/*
1411 * in order to insert checksums into the metadata in large chunks,
1412 * we wait until bio submission time. All the pages in the bio are
1413 * checksummed and sums are attached onto the ordered extent record.
1414 *
1415 * At IO completion time the cums attached on the ordered extent record
1416 * are inserted into the btree
1417 */
d397712b
CM
1418static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1419 struct bio *bio, int mirror_num,
eaf25d93
CM
1420 unsigned long bio_flags,
1421 u64 bio_offset)
065631f6 1422{
065631f6 1423 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1424 int ret = 0;
e015640f 1425
d20f7043 1426 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1427 BUG_ON(ret);
4a69a410
CM
1428 return 0;
1429}
e015640f 1430
4a69a410
CM
1431/*
1432 * in order to insert checksums into the metadata in large chunks,
1433 * we wait until bio submission time. All the pages in the bio are
1434 * checksummed and sums are attached onto the ordered extent record.
1435 *
1436 * At IO completion time the cums attached on the ordered extent record
1437 * are inserted into the btree
1438 */
b2950863 1439static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1440 int mirror_num, unsigned long bio_flags,
1441 u64 bio_offset)
4a69a410
CM
1442{
1443 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1444 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1445}
1446
d352ac68 1447/*
cad321ad
CM
1448 * extent_io.c submission hook. This does the right thing for csum calculation
1449 * on write, or reading the csums from the tree before a read
d352ac68 1450 */
b2950863 1451static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1452 int mirror_num, unsigned long bio_flags,
1453 u64 bio_offset)
44b8bd7e
CM
1454{
1455 struct btrfs_root *root = BTRFS_I(inode)->root;
1456 int ret = 0;
19b9bdb0 1457 int skip_sum;
44b8bd7e 1458
6cbff00f 1459 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1460
0cb59c99
JB
1461 if (root == root->fs_info->tree_root)
1462 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1463 else
1464 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1465 BUG_ON(ret);
065631f6 1466
7b6d91da 1467 if (!(rw & REQ_WRITE)) {
d20f7043 1468 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1469 return btrfs_submit_compressed_read(inode, bio,
1470 mirror_num, bio_flags);
c2db1073
TI
1471 } else if (!skip_sum) {
1472 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1473 if (ret)
1474 return ret;
1475 }
4d1b5fb4 1476 goto mapit;
19b9bdb0 1477 } else if (!skip_sum) {
17d217fe
YZ
1478 /* csum items have already been cloned */
1479 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1480 goto mapit;
19b9bdb0
CM
1481 /* we're doing a write, do the async checksumming */
1482 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1483 inode, rw, bio, mirror_num,
eaf25d93
CM
1484 bio_flags, bio_offset,
1485 __btrfs_submit_bio_start,
4a69a410 1486 __btrfs_submit_bio_done);
19b9bdb0
CM
1487 }
1488
0b86a832 1489mapit:
8b712842 1490 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1491}
6885f308 1492
d352ac68
CM
1493/*
1494 * given a list of ordered sums record them in the inode. This happens
1495 * at IO completion time based on sums calculated at bio submission time.
1496 */
ba1da2f4 1497static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1498 struct inode *inode, u64 file_offset,
1499 struct list_head *list)
1500{
e6dcd2dc
CM
1501 struct btrfs_ordered_sum *sum;
1502
1503 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1504
1505 list_for_each_entry(sum, list, list) {
d20f7043
CM
1506 btrfs_csum_file_blocks(trans,
1507 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1508 }
1509 return 0;
1510}
1511
2ac55d41
JB
1512int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1513 struct extent_state **cached_state)
ea8c2819 1514{
d397712b 1515 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1516 WARN_ON(1);
ea8c2819 1517 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1518 cached_state, GFP_NOFS);
ea8c2819
CM
1519}
1520
d352ac68 1521/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1522struct btrfs_writepage_fixup {
1523 struct page *page;
1524 struct btrfs_work work;
1525};
1526
b2950863 1527static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1528{
1529 struct btrfs_writepage_fixup *fixup;
1530 struct btrfs_ordered_extent *ordered;
2ac55d41 1531 struct extent_state *cached_state = NULL;
247e743c
CM
1532 struct page *page;
1533 struct inode *inode;
1534 u64 page_start;
1535 u64 page_end;
1536
1537 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1538 page = fixup->page;
4a096752 1539again:
247e743c
CM
1540 lock_page(page);
1541 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1542 ClearPageChecked(page);
1543 goto out_page;
1544 }
1545
1546 inode = page->mapping->host;
1547 page_start = page_offset(page);
1548 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1549
2ac55d41
JB
1550 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1551 &cached_state, GFP_NOFS);
4a096752
CM
1552
1553 /* already ordered? We're done */
8b62b72b 1554 if (PagePrivate2(page))
247e743c 1555 goto out;
4a096752
CM
1556
1557 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1558 if (ordered) {
2ac55d41
JB
1559 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1560 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1561 unlock_page(page);
1562 btrfs_start_ordered_extent(inode, ordered, 1);
1563 goto again;
1564 }
247e743c 1565
0ca1f7ce 1566 BUG();
2ac55d41 1567 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1568 ClearPageChecked(page);
1569out:
2ac55d41
JB
1570 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1571 &cached_state, GFP_NOFS);
247e743c
CM
1572out_page:
1573 unlock_page(page);
1574 page_cache_release(page);
b897abec 1575 kfree(fixup);
247e743c
CM
1576}
1577
1578/*
1579 * There are a few paths in the higher layers of the kernel that directly
1580 * set the page dirty bit without asking the filesystem if it is a
1581 * good idea. This causes problems because we want to make sure COW
1582 * properly happens and the data=ordered rules are followed.
1583 *
c8b97818 1584 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1585 * hasn't been properly setup for IO. We kick off an async process
1586 * to fix it up. The async helper will wait for ordered extents, set
1587 * the delalloc bit and make it safe to write the page.
1588 */
b2950863 1589static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1590{
1591 struct inode *inode = page->mapping->host;
1592 struct btrfs_writepage_fixup *fixup;
1593 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1594
8b62b72b
CM
1595 /* this page is properly in the ordered list */
1596 if (TestClearPagePrivate2(page))
247e743c
CM
1597 return 0;
1598
1599 if (PageChecked(page))
1600 return -EAGAIN;
1601
1602 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1603 if (!fixup)
1604 return -EAGAIN;
f421950f 1605
247e743c
CM
1606 SetPageChecked(page);
1607 page_cache_get(page);
1608 fixup->work.func = btrfs_writepage_fixup_worker;
1609 fixup->page = page;
1610 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1611 return -EAGAIN;
1612}
1613
d899e052
YZ
1614static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1615 struct inode *inode, u64 file_pos,
1616 u64 disk_bytenr, u64 disk_num_bytes,
1617 u64 num_bytes, u64 ram_bytes,
1618 u8 compression, u8 encryption,
1619 u16 other_encoding, int extent_type)
1620{
1621 struct btrfs_root *root = BTRFS_I(inode)->root;
1622 struct btrfs_file_extent_item *fi;
1623 struct btrfs_path *path;
1624 struct extent_buffer *leaf;
1625 struct btrfs_key ins;
1626 u64 hint;
1627 int ret;
1628
1629 path = btrfs_alloc_path();
1630 BUG_ON(!path);
1631
b9473439 1632 path->leave_spinning = 1;
a1ed835e
CM
1633
1634 /*
1635 * we may be replacing one extent in the tree with another.
1636 * The new extent is pinned in the extent map, and we don't want
1637 * to drop it from the cache until it is completely in the btree.
1638 *
1639 * So, tell btrfs_drop_extents to leave this extent in the cache.
1640 * the caller is expected to unpin it and allow it to be merged
1641 * with the others.
1642 */
920bbbfb
YZ
1643 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1644 &hint, 0);
d899e052
YZ
1645 BUG_ON(ret);
1646
33345d01 1647 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1648 ins.offset = file_pos;
1649 ins.type = BTRFS_EXTENT_DATA_KEY;
1650 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1651 BUG_ON(ret);
1652 leaf = path->nodes[0];
1653 fi = btrfs_item_ptr(leaf, path->slots[0],
1654 struct btrfs_file_extent_item);
1655 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1656 btrfs_set_file_extent_type(leaf, fi, extent_type);
1657 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1658 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1659 btrfs_set_file_extent_offset(leaf, fi, 0);
1660 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1661 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1662 btrfs_set_file_extent_compression(leaf, fi, compression);
1663 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1664 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1665
1666 btrfs_unlock_up_safe(path, 1);
1667 btrfs_set_lock_blocking(leaf);
1668
d899e052
YZ
1669 btrfs_mark_buffer_dirty(leaf);
1670
1671 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1672
1673 ins.objectid = disk_bytenr;
1674 ins.offset = disk_num_bytes;
1675 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1676 ret = btrfs_alloc_reserved_file_extent(trans, root,
1677 root->root_key.objectid,
33345d01 1678 btrfs_ino(inode), file_pos, &ins);
d899e052 1679 BUG_ON(ret);
d899e052 1680 btrfs_free_path(path);
b9473439 1681
d899e052
YZ
1682 return 0;
1683}
1684
5d13a98f
CM
1685/*
1686 * helper function for btrfs_finish_ordered_io, this
1687 * just reads in some of the csum leaves to prime them into ram
1688 * before we start the transaction. It limits the amount of btree
1689 * reads required while inside the transaction.
1690 */
d352ac68
CM
1691/* as ordered data IO finishes, this gets called so we can finish
1692 * an ordered extent if the range of bytes in the file it covers are
1693 * fully written.
1694 */
211f90e6 1695static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1696{
e6dcd2dc 1697 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1698 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1699 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1700 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1701 struct extent_state *cached_state = NULL;
261507a0 1702 int compress_type = 0;
e6dcd2dc 1703 int ret;
0cb59c99 1704 bool nolock = false;
e6dcd2dc 1705
5a1a3df1
JB
1706 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1707 end - start + 1);
ba1da2f4 1708 if (!ret)
e6dcd2dc 1709 return 0;
e6dcd2dc 1710 BUG_ON(!ordered_extent);
efd049fb 1711
0cb59c99
JB
1712 nolock = (root == root->fs_info->tree_root);
1713
c2167754
YZ
1714 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1715 BUG_ON(!list_empty(&ordered_extent->list));
1716 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1717 if (!ret) {
0cb59c99
JB
1718 if (nolock)
1719 trans = btrfs_join_transaction_nolock(root, 1);
1720 else
1721 trans = btrfs_join_transaction(root, 1);
3612b495 1722 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1723 btrfs_set_trans_block_group(trans, inode);
1724 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1725 ret = btrfs_update_inode(trans, root, inode);
1726 BUG_ON(ret);
c2167754
YZ
1727 }
1728 goto out;
1729 }
e6dcd2dc 1730
2ac55d41
JB
1731 lock_extent_bits(io_tree, ordered_extent->file_offset,
1732 ordered_extent->file_offset + ordered_extent->len - 1,
1733 0, &cached_state, GFP_NOFS);
e6dcd2dc 1734
0cb59c99
JB
1735 if (nolock)
1736 trans = btrfs_join_transaction_nolock(root, 1);
1737 else
1738 trans = btrfs_join_transaction(root, 1);
3612b495 1739 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1740 btrfs_set_trans_block_group(trans, inode);
1741 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1742
c8b97818 1743 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1744 compress_type = ordered_extent->compress_type;
d899e052 1745 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1746 BUG_ON(compress_type);
920bbbfb 1747 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1748 ordered_extent->file_offset,
1749 ordered_extent->file_offset +
1750 ordered_extent->len);
1751 BUG_ON(ret);
1752 } else {
0af3d00b 1753 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1754 ret = insert_reserved_file_extent(trans, inode,
1755 ordered_extent->file_offset,
1756 ordered_extent->start,
1757 ordered_extent->disk_len,
1758 ordered_extent->len,
1759 ordered_extent->len,
261507a0 1760 compress_type, 0, 0,
d899e052 1761 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1762 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1763 ordered_extent->file_offset,
1764 ordered_extent->len);
d899e052
YZ
1765 BUG_ON(ret);
1766 }
2ac55d41
JB
1767 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1768 ordered_extent->file_offset +
1769 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1770
e6dcd2dc
CM
1771 add_pending_csums(trans, inode, ordered_extent->file_offset,
1772 &ordered_extent->list);
1773
1ef30be1
JB
1774 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1775 if (!ret) {
1776 ret = btrfs_update_inode(trans, root, inode);
1777 BUG_ON(ret);
1778 }
1779 ret = 0;
c2167754 1780out:
0cb59c99
JB
1781 if (nolock) {
1782 if (trans)
1783 btrfs_end_transaction_nolock(trans, root);
1784 } else {
1785 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1786 if (trans)
1787 btrfs_end_transaction(trans, root);
1788 }
1789
e6dcd2dc
CM
1790 /* once for us */
1791 btrfs_put_ordered_extent(ordered_extent);
1792 /* once for the tree */
1793 btrfs_put_ordered_extent(ordered_extent);
1794
e6dcd2dc
CM
1795 return 0;
1796}
1797
b2950863 1798static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1799 struct extent_state *state, int uptodate)
1800{
1abe9b8a 1801 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1802
8b62b72b 1803 ClearPagePrivate2(page);
211f90e6
CM
1804 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1805}
1806
d352ac68
CM
1807/*
1808 * When IO fails, either with EIO or csum verification fails, we
1809 * try other mirrors that might have a good copy of the data. This
1810 * io_failure_record is used to record state as we go through all the
1811 * mirrors. If another mirror has good data, the page is set up to date
1812 * and things continue. If a good mirror can't be found, the original
1813 * bio end_io callback is called to indicate things have failed.
1814 */
7e38326f
CM
1815struct io_failure_record {
1816 struct page *page;
1817 u64 start;
1818 u64 len;
1819 u64 logical;
d20f7043 1820 unsigned long bio_flags;
7e38326f
CM
1821 int last_mirror;
1822};
1823
b2950863 1824static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1825 struct page *page, u64 start, u64 end,
1826 struct extent_state *state)
7e38326f
CM
1827{
1828 struct io_failure_record *failrec = NULL;
1829 u64 private;
1830 struct extent_map *em;
1831 struct inode *inode = page->mapping->host;
1832 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1833 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1834 struct bio *bio;
1835 int num_copies;
1836 int ret;
1259ab75 1837 int rw;
7e38326f
CM
1838 u64 logical;
1839
1840 ret = get_state_private(failure_tree, start, &private);
1841 if (ret) {
7e38326f
CM
1842 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1843 if (!failrec)
1844 return -ENOMEM;
1845 failrec->start = start;
1846 failrec->len = end - start + 1;
1847 failrec->last_mirror = 0;
d20f7043 1848 failrec->bio_flags = 0;
7e38326f 1849
890871be 1850 read_lock(&em_tree->lock);
3b951516
CM
1851 em = lookup_extent_mapping(em_tree, start, failrec->len);
1852 if (em->start > start || em->start + em->len < start) {
1853 free_extent_map(em);
1854 em = NULL;
1855 }
890871be 1856 read_unlock(&em_tree->lock);
7e38326f
CM
1857
1858 if (!em || IS_ERR(em)) {
1859 kfree(failrec);
1860 return -EIO;
1861 }
1862 logical = start - em->start;
1863 logical = em->block_start + logical;
d20f7043
CM
1864 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1865 logical = em->block_start;
1866 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1867 extent_set_compress_type(&failrec->bio_flags,
1868 em->compress_type);
d20f7043 1869 }
7e38326f
CM
1870 failrec->logical = logical;
1871 free_extent_map(em);
1872 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1873 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1874 set_state_private(failure_tree, start,
1875 (u64)(unsigned long)failrec);
7e38326f 1876 } else {
587f7704 1877 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1878 }
1879 num_copies = btrfs_num_copies(
1880 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1881 failrec->logical, failrec->len);
1882 failrec->last_mirror++;
1883 if (!state) {
cad321ad 1884 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1885 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1886 failrec->start,
1887 EXTENT_LOCKED);
1888 if (state && state->start != failrec->start)
1889 state = NULL;
cad321ad 1890 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1891 }
1892 if (!state || failrec->last_mirror > num_copies) {
1893 set_state_private(failure_tree, failrec->start, 0);
1894 clear_extent_bits(failure_tree, failrec->start,
1895 failrec->start + failrec->len - 1,
1896 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1897 kfree(failrec);
1898 return -EIO;
1899 }
1900 bio = bio_alloc(GFP_NOFS, 1);
1901 bio->bi_private = state;
1902 bio->bi_end_io = failed_bio->bi_end_io;
1903 bio->bi_sector = failrec->logical >> 9;
1904 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1905 bio->bi_size = 0;
d20f7043 1906
7e38326f 1907 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1908 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1909 rw = WRITE;
1910 else
1911 rw = READ;
1912
c2db1073 1913 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1914 failrec->last_mirror,
eaf25d93 1915 failrec->bio_flags, 0);
c2db1073 1916 return ret;
1259ab75
CM
1917}
1918
d352ac68
CM
1919/*
1920 * each time an IO finishes, we do a fast check in the IO failure tree
1921 * to see if we need to process or clean up an io_failure_record
1922 */
b2950863 1923static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1924{
1925 u64 private;
1926 u64 private_failure;
1927 struct io_failure_record *failure;
1928 int ret;
1929
1930 private = 0;
1931 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1932 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1933 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1934 start, &private_failure);
1935 if (ret == 0) {
1936 failure = (struct io_failure_record *)(unsigned long)
1937 private_failure;
1938 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1939 failure->start, 0);
1940 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1941 failure->start,
1942 failure->start + failure->len - 1,
1943 EXTENT_DIRTY | EXTENT_LOCKED,
1944 GFP_NOFS);
1945 kfree(failure);
1946 }
1947 }
7e38326f
CM
1948 return 0;
1949}
1950
d352ac68
CM
1951/*
1952 * when reads are done, we need to check csums to verify the data is correct
1953 * if there's a match, we allow the bio to finish. If not, we go through
1954 * the io_failure_record routines to find good copies
1955 */
b2950863 1956static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1957 struct extent_state *state)
07157aac 1958{
35ebb934 1959 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1960 struct inode *inode = page->mapping->host;
d1310b2e 1961 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1962 char *kaddr;
aadfeb6e 1963 u64 private = ~(u32)0;
07157aac 1964 int ret;
ff79f819
CM
1965 struct btrfs_root *root = BTRFS_I(inode)->root;
1966 u32 csum = ~(u32)0;
d1310b2e 1967
d20f7043
CM
1968 if (PageChecked(page)) {
1969 ClearPageChecked(page);
1970 goto good;
1971 }
6cbff00f
CH
1972
1973 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1974 return 0;
1975
1976 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1977 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1978 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1979 GFP_NOFS);
b6cda9bc 1980 return 0;
17d217fe 1981 }
d20f7043 1982
c2e639f0 1983 if (state && state->start == start) {
70dec807
CM
1984 private = state->private;
1985 ret = 0;
1986 } else {
1987 ret = get_state_private(io_tree, start, &private);
1988 }
9ab86c8e 1989 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1990 if (ret)
07157aac 1991 goto zeroit;
d397712b 1992
ff79f819
CM
1993 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1994 btrfs_csum_final(csum, (char *)&csum);
d397712b 1995 if (csum != private)
07157aac 1996 goto zeroit;
d397712b 1997
9ab86c8e 1998 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1999good:
7e38326f
CM
2000 /* if the io failure tree for this inode is non-empty,
2001 * check to see if we've recovered from a failed IO
2002 */
1259ab75 2003 btrfs_clean_io_failures(inode, start);
07157aac
CM
2004 return 0;
2005
2006zeroit:
193f284d 2007 if (printk_ratelimit()) {
33345d01
LZ
2008 printk(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2009 "private %llu\n",
2010 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2011 (unsigned long long)start, csum,
2012 (unsigned long long)private);
2013 }
db94535d
CM
2014 memset(kaddr + offset, 1, end - start + 1);
2015 flush_dcache_page(page);
9ab86c8e 2016 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2017 if (private == 0)
2018 return 0;
7e38326f 2019 return -EIO;
07157aac 2020}
b888db2b 2021
24bbcf04
YZ
2022struct delayed_iput {
2023 struct list_head list;
2024 struct inode *inode;
2025};
2026
2027void btrfs_add_delayed_iput(struct inode *inode)
2028{
2029 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2030 struct delayed_iput *delayed;
2031
2032 if (atomic_add_unless(&inode->i_count, -1, 1))
2033 return;
2034
2035 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2036 delayed->inode = inode;
2037
2038 spin_lock(&fs_info->delayed_iput_lock);
2039 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2040 spin_unlock(&fs_info->delayed_iput_lock);
2041}
2042
2043void btrfs_run_delayed_iputs(struct btrfs_root *root)
2044{
2045 LIST_HEAD(list);
2046 struct btrfs_fs_info *fs_info = root->fs_info;
2047 struct delayed_iput *delayed;
2048 int empty;
2049
2050 spin_lock(&fs_info->delayed_iput_lock);
2051 empty = list_empty(&fs_info->delayed_iputs);
2052 spin_unlock(&fs_info->delayed_iput_lock);
2053 if (empty)
2054 return;
2055
2056 down_read(&root->fs_info->cleanup_work_sem);
2057 spin_lock(&fs_info->delayed_iput_lock);
2058 list_splice_init(&fs_info->delayed_iputs, &list);
2059 spin_unlock(&fs_info->delayed_iput_lock);
2060
2061 while (!list_empty(&list)) {
2062 delayed = list_entry(list.next, struct delayed_iput, list);
2063 list_del(&delayed->list);
2064 iput(delayed->inode);
2065 kfree(delayed);
2066 }
2067 up_read(&root->fs_info->cleanup_work_sem);
2068}
2069
d68fc57b
YZ
2070/*
2071 * calculate extra metadata reservation when snapshotting a subvolume
2072 * contains orphan files.
2073 */
2074void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2075 struct btrfs_pending_snapshot *pending,
2076 u64 *bytes_to_reserve)
2077{
2078 struct btrfs_root *root;
2079 struct btrfs_block_rsv *block_rsv;
2080 u64 num_bytes;
2081 int index;
2082
2083 root = pending->root;
2084 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2085 return;
2086
2087 block_rsv = root->orphan_block_rsv;
2088
2089 /* orphan block reservation for the snapshot */
2090 num_bytes = block_rsv->size;
2091
2092 /*
2093 * after the snapshot is created, COWing tree blocks may use more
2094 * space than it frees. So we should make sure there is enough
2095 * reserved space.
2096 */
2097 index = trans->transid & 0x1;
2098 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2099 num_bytes += block_rsv->size -
2100 (block_rsv->reserved + block_rsv->freed[index]);
2101 }
2102
2103 *bytes_to_reserve += num_bytes;
2104}
2105
2106void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2107 struct btrfs_pending_snapshot *pending)
2108{
2109 struct btrfs_root *root = pending->root;
2110 struct btrfs_root *snap = pending->snap;
2111 struct btrfs_block_rsv *block_rsv;
2112 u64 num_bytes;
2113 int index;
2114 int ret;
2115
2116 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2117 return;
2118
2119 /* refill source subvolume's orphan block reservation */
2120 block_rsv = root->orphan_block_rsv;
2121 index = trans->transid & 0x1;
2122 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2123 num_bytes = block_rsv->size -
2124 (block_rsv->reserved + block_rsv->freed[index]);
2125 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2126 root->orphan_block_rsv,
2127 num_bytes);
2128 BUG_ON(ret);
2129 }
2130
2131 /* setup orphan block reservation for the snapshot */
2132 block_rsv = btrfs_alloc_block_rsv(snap);
2133 BUG_ON(!block_rsv);
2134
2135 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2136 snap->orphan_block_rsv = block_rsv;
2137
2138 num_bytes = root->orphan_block_rsv->size;
2139 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2140 block_rsv, num_bytes);
2141 BUG_ON(ret);
2142
2143#if 0
2144 /* insert orphan item for the snapshot */
2145 WARN_ON(!root->orphan_item_inserted);
2146 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2147 snap->root_key.objectid);
2148 BUG_ON(ret);
2149 snap->orphan_item_inserted = 1;
2150#endif
2151}
2152
2153enum btrfs_orphan_cleanup_state {
2154 ORPHAN_CLEANUP_STARTED = 1,
2155 ORPHAN_CLEANUP_DONE = 2,
2156};
2157
2158/*
2159 * This is called in transaction commmit time. If there are no orphan
2160 * files in the subvolume, it removes orphan item and frees block_rsv
2161 * structure.
2162 */
2163void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2164 struct btrfs_root *root)
2165{
2166 int ret;
2167
2168 if (!list_empty(&root->orphan_list) ||
2169 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2170 return;
2171
2172 if (root->orphan_item_inserted &&
2173 btrfs_root_refs(&root->root_item) > 0) {
2174 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2175 root->root_key.objectid);
2176 BUG_ON(ret);
2177 root->orphan_item_inserted = 0;
2178 }
2179
2180 if (root->orphan_block_rsv) {
2181 WARN_ON(root->orphan_block_rsv->size > 0);
2182 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2183 root->orphan_block_rsv = NULL;
2184 }
2185}
2186
7b128766
JB
2187/*
2188 * This creates an orphan entry for the given inode in case something goes
2189 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2190 *
2191 * NOTE: caller of this function should reserve 5 units of metadata for
2192 * this function.
7b128766
JB
2193 */
2194int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2195{
2196 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2197 struct btrfs_block_rsv *block_rsv = NULL;
2198 int reserve = 0;
2199 int insert = 0;
2200 int ret;
7b128766 2201
d68fc57b
YZ
2202 if (!root->orphan_block_rsv) {
2203 block_rsv = btrfs_alloc_block_rsv(root);
2204 BUG_ON(!block_rsv);
2205 }
7b128766 2206
d68fc57b
YZ
2207 spin_lock(&root->orphan_lock);
2208 if (!root->orphan_block_rsv) {
2209 root->orphan_block_rsv = block_rsv;
2210 } else if (block_rsv) {
2211 btrfs_free_block_rsv(root, block_rsv);
2212 block_rsv = NULL;
7b128766 2213 }
7b128766 2214
d68fc57b
YZ
2215 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2216 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2217#if 0
2218 /*
2219 * For proper ENOSPC handling, we should do orphan
2220 * cleanup when mounting. But this introduces backward
2221 * compatibility issue.
2222 */
2223 if (!xchg(&root->orphan_item_inserted, 1))
2224 insert = 2;
2225 else
2226 insert = 1;
2227#endif
2228 insert = 1;
7b128766
JB
2229 }
2230
d68fc57b
YZ
2231 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2232 BTRFS_I(inode)->orphan_meta_reserved = 1;
2233 reserve = 1;
2234 }
2235 spin_unlock(&root->orphan_lock);
7b128766 2236
d68fc57b
YZ
2237 if (block_rsv)
2238 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2239
d68fc57b
YZ
2240 /* grab metadata reservation from transaction handle */
2241 if (reserve) {
2242 ret = btrfs_orphan_reserve_metadata(trans, inode);
2243 BUG_ON(ret);
2244 }
7b128766 2245
d68fc57b
YZ
2246 /* insert an orphan item to track this unlinked/truncated file */
2247 if (insert >= 1) {
33345d01 2248 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2249 BUG_ON(ret);
2250 }
2251
2252 /* insert an orphan item to track subvolume contains orphan files */
2253 if (insert >= 2) {
2254 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2255 root->root_key.objectid);
2256 BUG_ON(ret);
2257 }
2258 return 0;
7b128766
JB
2259}
2260
2261/*
2262 * We have done the truncate/delete so we can go ahead and remove the orphan
2263 * item for this particular inode.
2264 */
2265int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2266{
2267 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2268 int delete_item = 0;
2269 int release_rsv = 0;
7b128766
JB
2270 int ret = 0;
2271
d68fc57b
YZ
2272 spin_lock(&root->orphan_lock);
2273 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2274 list_del_init(&BTRFS_I(inode)->i_orphan);
2275 delete_item = 1;
7b128766
JB
2276 }
2277
d68fc57b
YZ
2278 if (BTRFS_I(inode)->orphan_meta_reserved) {
2279 BTRFS_I(inode)->orphan_meta_reserved = 0;
2280 release_rsv = 1;
7b128766 2281 }
d68fc57b 2282 spin_unlock(&root->orphan_lock);
7b128766 2283
d68fc57b 2284 if (trans && delete_item) {
33345d01 2285 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2286 BUG_ON(ret);
2287 }
7b128766 2288
d68fc57b
YZ
2289 if (release_rsv)
2290 btrfs_orphan_release_metadata(inode);
7b128766 2291
d68fc57b 2292 return 0;
7b128766
JB
2293}
2294
2295/*
2296 * this cleans up any orphans that may be left on the list from the last use
2297 * of this root.
2298 */
66b4ffd1 2299int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2300{
2301 struct btrfs_path *path;
2302 struct extent_buffer *leaf;
7b128766
JB
2303 struct btrfs_key key, found_key;
2304 struct btrfs_trans_handle *trans;
2305 struct inode *inode;
2306 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2307
d68fc57b 2308 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2309 return 0;
c71bf099
YZ
2310
2311 path = btrfs_alloc_path();
66b4ffd1
JB
2312 if (!path) {
2313 ret = -ENOMEM;
2314 goto out;
2315 }
7b128766
JB
2316 path->reada = -1;
2317
2318 key.objectid = BTRFS_ORPHAN_OBJECTID;
2319 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2320 key.offset = (u64)-1;
2321
7b128766
JB
2322 while (1) {
2323 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2324 if (ret < 0)
2325 goto out;
7b128766
JB
2326
2327 /*
2328 * if ret == 0 means we found what we were searching for, which
2329 * is weird, but possible, so only screw with path if we didnt
2330 * find the key and see if we have stuff that matches
2331 */
2332 if (ret > 0) {
66b4ffd1 2333 ret = 0;
7b128766
JB
2334 if (path->slots[0] == 0)
2335 break;
2336 path->slots[0]--;
2337 }
2338
2339 /* pull out the item */
2340 leaf = path->nodes[0];
7b128766
JB
2341 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2342
2343 /* make sure the item matches what we want */
2344 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2345 break;
2346 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2347 break;
2348
2349 /* release the path since we're done with it */
2350 btrfs_release_path(root, path);
2351
2352 /*
2353 * this is where we are basically btrfs_lookup, without the
2354 * crossing root thing. we store the inode number in the
2355 * offset of the orphan item.
2356 */
5d4f98a2
YZ
2357 found_key.objectid = found_key.offset;
2358 found_key.type = BTRFS_INODE_ITEM_KEY;
2359 found_key.offset = 0;
73f73415 2360 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2361 if (IS_ERR(inode)) {
2362 ret = PTR_ERR(inode);
2363 goto out;
2364 }
7b128766 2365
7b128766
JB
2366 /*
2367 * add this inode to the orphan list so btrfs_orphan_del does
2368 * the proper thing when we hit it
2369 */
d68fc57b 2370 spin_lock(&root->orphan_lock);
7b128766 2371 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2372 spin_unlock(&root->orphan_lock);
7b128766
JB
2373
2374 /*
2375 * if this is a bad inode, means we actually succeeded in
2376 * removing the inode, but not the orphan record, which means
2377 * we need to manually delete the orphan since iput will just
2378 * do a destroy_inode
2379 */
2380 if (is_bad_inode(inode)) {
a22285a6 2381 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2382 if (IS_ERR(trans)) {
2383 ret = PTR_ERR(trans);
2384 goto out;
2385 }
7b128766 2386 btrfs_orphan_del(trans, inode);
5b21f2ed 2387 btrfs_end_transaction(trans, root);
7b128766
JB
2388 iput(inode);
2389 continue;
2390 }
2391
2392 /* if we have links, this was a truncate, lets do that */
2393 if (inode->i_nlink) {
a41ad394
JB
2394 if (!S_ISREG(inode->i_mode)) {
2395 WARN_ON(1);
2396 iput(inode);
2397 continue;
2398 }
7b128766 2399 nr_truncate++;
66b4ffd1 2400 ret = btrfs_truncate(inode);
7b128766
JB
2401 } else {
2402 nr_unlink++;
2403 }
2404
2405 /* this will do delete_inode and everything for us */
2406 iput(inode);
66b4ffd1
JB
2407 if (ret)
2408 goto out;
7b128766 2409 }
d68fc57b
YZ
2410 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2411
2412 if (root->orphan_block_rsv)
2413 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2414 (u64)-1);
2415
2416 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2417 trans = btrfs_join_transaction(root, 1);
66b4ffd1
JB
2418 if (!IS_ERR(trans))
2419 btrfs_end_transaction(trans, root);
d68fc57b 2420 }
7b128766
JB
2421
2422 if (nr_unlink)
2423 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2424 if (nr_truncate)
2425 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2426
2427out:
2428 if (ret)
2429 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2430 btrfs_free_path(path);
2431 return ret;
7b128766
JB
2432}
2433
46a53cca
CM
2434/*
2435 * very simple check to peek ahead in the leaf looking for xattrs. If we
2436 * don't find any xattrs, we know there can't be any acls.
2437 *
2438 * slot is the slot the inode is in, objectid is the objectid of the inode
2439 */
2440static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2441 int slot, u64 objectid)
2442{
2443 u32 nritems = btrfs_header_nritems(leaf);
2444 struct btrfs_key found_key;
2445 int scanned = 0;
2446
2447 slot++;
2448 while (slot < nritems) {
2449 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2450
2451 /* we found a different objectid, there must not be acls */
2452 if (found_key.objectid != objectid)
2453 return 0;
2454
2455 /* we found an xattr, assume we've got an acl */
2456 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2457 return 1;
2458
2459 /*
2460 * we found a key greater than an xattr key, there can't
2461 * be any acls later on
2462 */
2463 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2464 return 0;
2465
2466 slot++;
2467 scanned++;
2468
2469 /*
2470 * it goes inode, inode backrefs, xattrs, extents,
2471 * so if there are a ton of hard links to an inode there can
2472 * be a lot of backrefs. Don't waste time searching too hard,
2473 * this is just an optimization
2474 */
2475 if (scanned >= 8)
2476 break;
2477 }
2478 /* we hit the end of the leaf before we found an xattr or
2479 * something larger than an xattr. We have to assume the inode
2480 * has acls
2481 */
2482 return 1;
2483}
2484
d352ac68
CM
2485/*
2486 * read an inode from the btree into the in-memory inode
2487 */
5d4f98a2 2488static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2489{
2490 struct btrfs_path *path;
5f39d397 2491 struct extent_buffer *leaf;
39279cc3 2492 struct btrfs_inode_item *inode_item;
0b86a832 2493 struct btrfs_timespec *tspec;
39279cc3
CM
2494 struct btrfs_root *root = BTRFS_I(inode)->root;
2495 struct btrfs_key location;
46a53cca 2496 int maybe_acls;
39279cc3 2497 u64 alloc_group_block;
618e21d5 2498 u32 rdev;
39279cc3
CM
2499 int ret;
2500
2501 path = btrfs_alloc_path();
2502 BUG_ON(!path);
39279cc3 2503 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2504
39279cc3 2505 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2506 if (ret)
39279cc3 2507 goto make_bad;
39279cc3 2508
5f39d397
CM
2509 leaf = path->nodes[0];
2510 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2511 struct btrfs_inode_item);
2512
2513 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2514 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2515 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2516 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2517 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2518
2519 tspec = btrfs_inode_atime(inode_item);
2520 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2521 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2522
2523 tspec = btrfs_inode_mtime(inode_item);
2524 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2525 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2526
2527 tspec = btrfs_inode_ctime(inode_item);
2528 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2529 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2530
a76a3cd4 2531 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2532 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2533 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2534 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2535 inode->i_rdev = 0;
5f39d397
CM
2536 rdev = btrfs_inode_rdev(leaf, inode_item);
2537
aec7477b 2538 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2539 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2540
5f39d397 2541 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2542
46a53cca
CM
2543 /*
2544 * try to precache a NULL acl entry for files that don't have
2545 * any xattrs or acls
2546 */
33345d01
LZ
2547 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2548 btrfs_ino(inode));
72c04902
AV
2549 if (!maybe_acls)
2550 cache_no_acl(inode);
46a53cca 2551
d2fb3437
YZ
2552 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2553 alloc_group_block, 0);
39279cc3
CM
2554 btrfs_free_path(path);
2555 inode_item = NULL;
2556
39279cc3 2557 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2558 case S_IFREG:
2559 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2560 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2561 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2562 inode->i_fop = &btrfs_file_operations;
2563 inode->i_op = &btrfs_file_inode_operations;
2564 break;
2565 case S_IFDIR:
2566 inode->i_fop = &btrfs_dir_file_operations;
2567 if (root == root->fs_info->tree_root)
2568 inode->i_op = &btrfs_dir_ro_inode_operations;
2569 else
2570 inode->i_op = &btrfs_dir_inode_operations;
2571 break;
2572 case S_IFLNK:
2573 inode->i_op = &btrfs_symlink_inode_operations;
2574 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2575 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2576 break;
618e21d5 2577 default:
0279b4cd 2578 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2579 init_special_inode(inode, inode->i_mode, rdev);
2580 break;
39279cc3 2581 }
6cbff00f
CH
2582
2583 btrfs_update_iflags(inode);
39279cc3
CM
2584 return;
2585
2586make_bad:
39279cc3 2587 btrfs_free_path(path);
39279cc3
CM
2588 make_bad_inode(inode);
2589}
2590
d352ac68
CM
2591/*
2592 * given a leaf and an inode, copy the inode fields into the leaf
2593 */
e02119d5
CM
2594static void fill_inode_item(struct btrfs_trans_handle *trans,
2595 struct extent_buffer *leaf,
5f39d397 2596 struct btrfs_inode_item *item,
39279cc3
CM
2597 struct inode *inode)
2598{
12ddb96c
JB
2599 if (!leaf->map_token)
2600 map_private_extent_buffer(leaf, (unsigned long)item,
2601 sizeof(struct btrfs_inode_item),
2602 &leaf->map_token, &leaf->kaddr,
2603 &leaf->map_start, &leaf->map_len,
2604 KM_USER1);
2605
5f39d397
CM
2606 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2607 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2608 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2609 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2610 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2611
2612 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2613 inode->i_atime.tv_sec);
2614 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2615 inode->i_atime.tv_nsec);
2616
2617 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2618 inode->i_mtime.tv_sec);
2619 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2620 inode->i_mtime.tv_nsec);
2621
2622 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2623 inode->i_ctime.tv_sec);
2624 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2625 inode->i_ctime.tv_nsec);
2626
a76a3cd4 2627 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2628 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2629 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2630 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2631 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2632 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2633 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
12ddb96c
JB
2634
2635 if (leaf->map_token) {
2636 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2637 leaf->map_token = NULL;
2638 }
39279cc3
CM
2639}
2640
d352ac68
CM
2641/*
2642 * copy everything in the in-memory inode into the btree.
2643 */
d397712b
CM
2644noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2645 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2646{
2647 struct btrfs_inode_item *inode_item;
2648 struct btrfs_path *path;
5f39d397 2649 struct extent_buffer *leaf;
39279cc3
CM
2650 int ret;
2651
2652 path = btrfs_alloc_path();
2653 BUG_ON(!path);
b9473439 2654 path->leave_spinning = 1;
39279cc3
CM
2655 ret = btrfs_lookup_inode(trans, root, path,
2656 &BTRFS_I(inode)->location, 1);
2657 if (ret) {
2658 if (ret > 0)
2659 ret = -ENOENT;
2660 goto failed;
2661 }
2662
b4ce94de 2663 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2664 leaf = path->nodes[0];
2665 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2666 struct btrfs_inode_item);
2667
e02119d5 2668 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2669 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2670 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2671 ret = 0;
2672failed:
39279cc3
CM
2673 btrfs_free_path(path);
2674 return ret;
2675}
2676
2677
d352ac68
CM
2678/*
2679 * unlink helper that gets used here in inode.c and in the tree logging
2680 * recovery code. It remove a link in a directory with a given name, and
2681 * also drops the back refs in the inode to the directory
2682 */
92986796
AV
2683static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2684 struct btrfs_root *root,
2685 struct inode *dir, struct inode *inode,
2686 const char *name, int name_len)
39279cc3
CM
2687{
2688 struct btrfs_path *path;
39279cc3 2689 int ret = 0;
5f39d397 2690 struct extent_buffer *leaf;
39279cc3 2691 struct btrfs_dir_item *di;
5f39d397 2692 struct btrfs_key key;
aec7477b 2693 u64 index;
33345d01
LZ
2694 u64 ino = btrfs_ino(inode);
2695 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2696
2697 path = btrfs_alloc_path();
54aa1f4d
CM
2698 if (!path) {
2699 ret = -ENOMEM;
554233a6 2700 goto out;
54aa1f4d
CM
2701 }
2702
b9473439 2703 path->leave_spinning = 1;
33345d01 2704 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2705 name, name_len, -1);
2706 if (IS_ERR(di)) {
2707 ret = PTR_ERR(di);
2708 goto err;
2709 }
2710 if (!di) {
2711 ret = -ENOENT;
2712 goto err;
2713 }
5f39d397
CM
2714 leaf = path->nodes[0];
2715 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2716 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2717 if (ret)
2718 goto err;
39279cc3
CM
2719 btrfs_release_path(root, path);
2720
33345d01
LZ
2721 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2722 dir_ino, &index);
aec7477b 2723 if (ret) {
d397712b 2724 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2725 "inode %llu parent %llu\n", name_len, name,
2726 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2727 goto err;
2728 }
2729
33345d01 2730 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino,
aec7477b 2731 index, name, name_len, -1);
39279cc3
CM
2732 if (IS_ERR(di)) {
2733 ret = PTR_ERR(di);
2734 goto err;
2735 }
2736 if (!di) {
2737 ret = -ENOENT;
2738 goto err;
2739 }
2740 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2741 btrfs_release_path(root, path);
39279cc3 2742
e02119d5 2743 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2744 inode, dir_ino);
49eb7e46 2745 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2746
2747 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2748 dir, index);
6418c961
CM
2749 if (ret == -ENOENT)
2750 ret = 0;
39279cc3
CM
2751err:
2752 btrfs_free_path(path);
e02119d5
CM
2753 if (ret)
2754 goto out;
2755
2756 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2757 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2758 btrfs_update_inode(trans, root, dir);
e02119d5 2759out:
39279cc3
CM
2760 return ret;
2761}
2762
92986796
AV
2763int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2764 struct btrfs_root *root,
2765 struct inode *dir, struct inode *inode,
2766 const char *name, int name_len)
2767{
2768 int ret;
2769 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2770 if (!ret) {
2771 btrfs_drop_nlink(inode);
2772 ret = btrfs_update_inode(trans, root, inode);
2773 }
2774 return ret;
2775}
2776
2777
a22285a6
YZ
2778/* helper to check if there is any shared block in the path */
2779static int check_path_shared(struct btrfs_root *root,
2780 struct btrfs_path *path)
39279cc3 2781{
a22285a6
YZ
2782 struct extent_buffer *eb;
2783 int level;
0e4dcbef 2784 u64 refs = 1;
5df6a9f6 2785
a22285a6 2786 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2787 int ret;
2788
a22285a6
YZ
2789 if (!path->nodes[level])
2790 break;
2791 eb = path->nodes[level];
2792 if (!btrfs_block_can_be_shared(root, eb))
2793 continue;
2794 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2795 &refs, NULL);
2796 if (refs > 1)
2797 return 1;
5df6a9f6 2798 }
dedefd72 2799 return 0;
39279cc3
CM
2800}
2801
a22285a6
YZ
2802/*
2803 * helper to start transaction for unlink and rmdir.
2804 *
2805 * unlink and rmdir are special in btrfs, they do not always free space.
2806 * so in enospc case, we should make sure they will free space before
2807 * allowing them to use the global metadata reservation.
2808 */
2809static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2810 struct dentry *dentry)
4df27c4d 2811{
39279cc3 2812 struct btrfs_trans_handle *trans;
a22285a6 2813 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2814 struct btrfs_path *path;
a22285a6 2815 struct btrfs_inode_ref *ref;
4df27c4d 2816 struct btrfs_dir_item *di;
7b128766 2817 struct inode *inode = dentry->d_inode;
4df27c4d 2818 u64 index;
a22285a6
YZ
2819 int check_link = 1;
2820 int err = -ENOSPC;
4df27c4d 2821 int ret;
33345d01
LZ
2822 u64 ino = btrfs_ino(inode);
2823 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2824
a22285a6
YZ
2825 trans = btrfs_start_transaction(root, 10);
2826 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2827 return trans;
4df27c4d 2828
33345d01 2829 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2830 return ERR_PTR(-ENOSPC);
4df27c4d 2831
a22285a6
YZ
2832 /* check if there is someone else holds reference */
2833 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2834 return ERR_PTR(-ENOSPC);
4df27c4d 2835
a22285a6
YZ
2836 if (atomic_read(&inode->i_count) > 2)
2837 return ERR_PTR(-ENOSPC);
4df27c4d 2838
a22285a6
YZ
2839 if (xchg(&root->fs_info->enospc_unlink, 1))
2840 return ERR_PTR(-ENOSPC);
2841
2842 path = btrfs_alloc_path();
2843 if (!path) {
2844 root->fs_info->enospc_unlink = 0;
2845 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2846 }
2847
a22285a6 2848 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2849 if (IS_ERR(trans)) {
a22285a6
YZ
2850 btrfs_free_path(path);
2851 root->fs_info->enospc_unlink = 0;
2852 return trans;
2853 }
4df27c4d 2854
a22285a6
YZ
2855 path->skip_locking = 1;
2856 path->search_commit_root = 1;
4df27c4d 2857
a22285a6
YZ
2858 ret = btrfs_lookup_inode(trans, root, path,
2859 &BTRFS_I(dir)->location, 0);
2860 if (ret < 0) {
2861 err = ret;
2862 goto out;
2863 }
2864 if (ret == 0) {
2865 if (check_path_shared(root, path))
2866 goto out;
2867 } else {
2868 check_link = 0;
5df6a9f6 2869 }
a22285a6
YZ
2870 btrfs_release_path(root, path);
2871
2872 ret = btrfs_lookup_inode(trans, root, path,
2873 &BTRFS_I(inode)->location, 0);
2874 if (ret < 0) {
2875 err = ret;
2876 goto out;
2877 }
2878 if (ret == 0) {
2879 if (check_path_shared(root, path))
2880 goto out;
2881 } else {
2882 check_link = 0;
2883 }
2884 btrfs_release_path(root, path);
2885
2886 if (ret == 0 && S_ISREG(inode->i_mode)) {
2887 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2888 ino, (u64)-1, 0);
a22285a6
YZ
2889 if (ret < 0) {
2890 err = ret;
2891 goto out;
2892 }
2893 BUG_ON(ret == 0);
2894 if (check_path_shared(root, path))
2895 goto out;
2896 btrfs_release_path(root, path);
2897 }
2898
2899 if (!check_link) {
2900 err = 0;
2901 goto out;
2902 }
2903
33345d01 2904 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2905 dentry->d_name.name, dentry->d_name.len, 0);
2906 if (IS_ERR(di)) {
2907 err = PTR_ERR(di);
2908 goto out;
2909 }
2910 if (di) {
2911 if (check_path_shared(root, path))
2912 goto out;
2913 } else {
2914 err = 0;
2915 goto out;
2916 }
2917 btrfs_release_path(root, path);
2918
2919 ref = btrfs_lookup_inode_ref(trans, root, path,
2920 dentry->d_name.name, dentry->d_name.len,
33345d01 2921 ino, dir_ino, 0);
a22285a6
YZ
2922 if (IS_ERR(ref)) {
2923 err = PTR_ERR(ref);
2924 goto out;
2925 }
2926 BUG_ON(!ref);
2927 if (check_path_shared(root, path))
2928 goto out;
2929 index = btrfs_inode_ref_index(path->nodes[0], ref);
2930 btrfs_release_path(root, path);
2931
33345d01 2932 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2933 dentry->d_name.name, dentry->d_name.len, 0);
2934 if (IS_ERR(di)) {
2935 err = PTR_ERR(di);
2936 goto out;
2937 }
2938 BUG_ON(ret == -ENOENT);
2939 if (check_path_shared(root, path))
2940 goto out;
2941
2942 err = 0;
2943out:
2944 btrfs_free_path(path);
2945 if (err) {
2946 btrfs_end_transaction(trans, root);
2947 root->fs_info->enospc_unlink = 0;
2948 return ERR_PTR(err);
2949 }
2950
2951 trans->block_rsv = &root->fs_info->global_block_rsv;
2952 return trans;
2953}
2954
2955static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2956 struct btrfs_root *root)
2957{
2958 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2959 BUG_ON(!root->fs_info->enospc_unlink);
2960 root->fs_info->enospc_unlink = 0;
2961 }
2962 btrfs_end_transaction_throttle(trans, root);
2963}
2964
2965static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2966{
2967 struct btrfs_root *root = BTRFS_I(dir)->root;
2968 struct btrfs_trans_handle *trans;
2969 struct inode *inode = dentry->d_inode;
2970 int ret;
2971 unsigned long nr = 0;
2972
2973 trans = __unlink_start_trans(dir, dentry);
2974 if (IS_ERR(trans))
2975 return PTR_ERR(trans);
5f39d397 2976
39279cc3 2977 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2978
2979 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2980
e02119d5
CM
2981 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2982 dentry->d_name.name, dentry->d_name.len);
a22285a6 2983 BUG_ON(ret);
7b128766 2984
a22285a6 2985 if (inode->i_nlink == 0) {
7b128766 2986 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2987 BUG_ON(ret);
2988 }
7b128766 2989
d3c2fdcf 2990 nr = trans->blocks_used;
a22285a6 2991 __unlink_end_trans(trans, root);
d3c2fdcf 2992 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2993 return ret;
2994}
2995
4df27c4d
YZ
2996int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2997 struct btrfs_root *root,
2998 struct inode *dir, u64 objectid,
2999 const char *name, int name_len)
3000{
3001 struct btrfs_path *path;
3002 struct extent_buffer *leaf;
3003 struct btrfs_dir_item *di;
3004 struct btrfs_key key;
3005 u64 index;
3006 int ret;
33345d01 3007 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3008
3009 path = btrfs_alloc_path();
3010 if (!path)
3011 return -ENOMEM;
3012
33345d01 3013 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d
YZ
3014 name, name_len, -1);
3015 BUG_ON(!di || IS_ERR(di));
3016
3017 leaf = path->nodes[0];
3018 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3019 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3020 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3021 BUG_ON(ret);
3022 btrfs_release_path(root, path);
3023
3024 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3025 objectid, root->root_key.objectid,
33345d01 3026 dir_ino, &index, name, name_len);
4df27c4d
YZ
3027 if (ret < 0) {
3028 BUG_ON(ret != -ENOENT);
33345d01 3029 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d
YZ
3030 name, name_len);
3031 BUG_ON(!di || IS_ERR(di));
3032
3033 leaf = path->nodes[0];
3034 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3035 btrfs_release_path(root, path);
3036 index = key.offset;
3037 }
3038
33345d01 3039 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino,
4df27c4d
YZ
3040 index, name, name_len, -1);
3041 BUG_ON(!di || IS_ERR(di));
3042
3043 leaf = path->nodes[0];
3044 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3045 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3046 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3047 BUG_ON(ret);
3048 btrfs_release_path(root, path);
3049
3050 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3051 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3052 ret = btrfs_update_inode(trans, root, dir);
3053 BUG_ON(ret);
4df27c4d
YZ
3054
3055 btrfs_free_path(path);
3056 return 0;
3057}
3058
39279cc3
CM
3059static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3060{
3061 struct inode *inode = dentry->d_inode;
1832a6d5 3062 int err = 0;
39279cc3 3063 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3064 struct btrfs_trans_handle *trans;
1832a6d5 3065 unsigned long nr = 0;
39279cc3 3066
3394e160 3067 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3068 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3069 return -ENOTEMPTY;
3070
a22285a6
YZ
3071 trans = __unlink_start_trans(dir, dentry);
3072 if (IS_ERR(trans))
5df6a9f6 3073 return PTR_ERR(trans);
5df6a9f6 3074
39279cc3 3075 btrfs_set_trans_block_group(trans, dir);
39279cc3 3076
33345d01 3077 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3078 err = btrfs_unlink_subvol(trans, root, dir,
3079 BTRFS_I(inode)->location.objectid,
3080 dentry->d_name.name,
3081 dentry->d_name.len);
3082 goto out;
3083 }
3084
7b128766
JB
3085 err = btrfs_orphan_add(trans, inode);
3086 if (err)
4df27c4d 3087 goto out;
7b128766 3088
39279cc3 3089 /* now the directory is empty */
e02119d5
CM
3090 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3091 dentry->d_name.name, dentry->d_name.len);
d397712b 3092 if (!err)
dbe674a9 3093 btrfs_i_size_write(inode, 0);
4df27c4d 3094out:
d3c2fdcf 3095 nr = trans->blocks_used;
a22285a6 3096 __unlink_end_trans(trans, root);
d3c2fdcf 3097 btrfs_btree_balance_dirty(root, nr);
3954401f 3098
39279cc3
CM
3099 return err;
3100}
3101
d20f7043 3102#if 0
323ac95b
CM
3103/*
3104 * when truncating bytes in a file, it is possible to avoid reading
3105 * the leaves that contain only checksum items. This can be the
3106 * majority of the IO required to delete a large file, but it must
3107 * be done carefully.
3108 *
3109 * The keys in the level just above the leaves are checked to make sure
3110 * the lowest key in a given leaf is a csum key, and starts at an offset
3111 * after the new size.
3112 *
3113 * Then the key for the next leaf is checked to make sure it also has
3114 * a checksum item for the same file. If it does, we know our target leaf
3115 * contains only checksum items, and it can be safely freed without reading
3116 * it.
3117 *
3118 * This is just an optimization targeted at large files. It may do
3119 * nothing. It will return 0 unless things went badly.
3120 */
3121static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3122 struct btrfs_root *root,
3123 struct btrfs_path *path,
3124 struct inode *inode, u64 new_size)
3125{
3126 struct btrfs_key key;
3127 int ret;
3128 int nritems;
3129 struct btrfs_key found_key;
3130 struct btrfs_key other_key;
5b84e8d6
YZ
3131 struct btrfs_leaf_ref *ref;
3132 u64 leaf_gen;
3133 u64 leaf_start;
323ac95b
CM
3134
3135 path->lowest_level = 1;
3136 key.objectid = inode->i_ino;
3137 key.type = BTRFS_CSUM_ITEM_KEY;
3138 key.offset = new_size;
3139again:
3140 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3141 if (ret < 0)
3142 goto out;
3143
3144 if (path->nodes[1] == NULL) {
3145 ret = 0;
3146 goto out;
3147 }
3148 ret = 0;
3149 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3150 nritems = btrfs_header_nritems(path->nodes[1]);
3151
3152 if (!nritems)
3153 goto out;
3154
3155 if (path->slots[1] >= nritems)
3156 goto next_node;
3157
3158 /* did we find a key greater than anything we want to delete? */
3159 if (found_key.objectid > inode->i_ino ||
3160 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3161 goto out;
3162
3163 /* we check the next key in the node to make sure the leave contains
3164 * only checksum items. This comparison doesn't work if our
3165 * leaf is the last one in the node
3166 */
3167 if (path->slots[1] + 1 >= nritems) {
3168next_node:
3169 /* search forward from the last key in the node, this
3170 * will bring us into the next node in the tree
3171 */
3172 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3173
3174 /* unlikely, but we inc below, so check to be safe */
3175 if (found_key.offset == (u64)-1)
3176 goto out;
3177
3178 /* search_forward needs a path with locks held, do the
3179 * search again for the original key. It is possible
3180 * this will race with a balance and return a path that
3181 * we could modify, but this drop is just an optimization
3182 * and is allowed to miss some leaves.
3183 */
3184 btrfs_release_path(root, path);
3185 found_key.offset++;
3186
3187 /* setup a max key for search_forward */
3188 other_key.offset = (u64)-1;
3189 other_key.type = key.type;
3190 other_key.objectid = key.objectid;
3191
3192 path->keep_locks = 1;
3193 ret = btrfs_search_forward(root, &found_key, &other_key,
3194 path, 0, 0);
3195 path->keep_locks = 0;
3196 if (ret || found_key.objectid != key.objectid ||
3197 found_key.type != key.type) {
3198 ret = 0;
3199 goto out;
3200 }
3201
3202 key.offset = found_key.offset;
3203 btrfs_release_path(root, path);
3204 cond_resched();
3205 goto again;
3206 }
3207
3208 /* we know there's one more slot after us in the tree,
3209 * read that key so we can verify it is also a checksum item
3210 */
3211 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3212
3213 if (found_key.objectid < inode->i_ino)
3214 goto next_key;
3215
3216 if (found_key.type != key.type || found_key.offset < new_size)
3217 goto next_key;
3218
3219 /*
3220 * if the key for the next leaf isn't a csum key from this objectid,
3221 * we can't be sure there aren't good items inside this leaf.
3222 * Bail out
3223 */
3224 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3225 goto out;
3226
5b84e8d6
YZ
3227 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3228 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3229 /*
3230 * it is safe to delete this leaf, it contains only
3231 * csum items from this inode at an offset >= new_size
3232 */
5b84e8d6 3233 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3234 BUG_ON(ret);
3235
5b84e8d6
YZ
3236 if (root->ref_cows && leaf_gen < trans->transid) {
3237 ref = btrfs_alloc_leaf_ref(root, 0);
3238 if (ref) {
3239 ref->root_gen = root->root_key.offset;
3240 ref->bytenr = leaf_start;
3241 ref->owner = 0;
3242 ref->generation = leaf_gen;
3243 ref->nritems = 0;
3244
bd56b302
CM
3245 btrfs_sort_leaf_ref(ref);
3246
5b84e8d6
YZ
3247 ret = btrfs_add_leaf_ref(root, ref, 0);
3248 WARN_ON(ret);
3249 btrfs_free_leaf_ref(root, ref);
3250 } else {
3251 WARN_ON(1);
3252 }
3253 }
323ac95b
CM
3254next_key:
3255 btrfs_release_path(root, path);
3256
3257 if (other_key.objectid == inode->i_ino &&
3258 other_key.type == key.type && other_key.offset > key.offset) {
3259 key.offset = other_key.offset;
3260 cond_resched();
3261 goto again;
3262 }
3263 ret = 0;
3264out:
3265 /* fixup any changes we've made to the path */
3266 path->lowest_level = 0;
3267 path->keep_locks = 0;
3268 btrfs_release_path(root, path);
3269 return ret;
3270}
3271
d20f7043
CM
3272#endif
3273
39279cc3
CM
3274/*
3275 * this can truncate away extent items, csum items and directory items.
3276 * It starts at a high offset and removes keys until it can't find
d352ac68 3277 * any higher than new_size
39279cc3
CM
3278 *
3279 * csum items that cross the new i_size are truncated to the new size
3280 * as well.
7b128766
JB
3281 *
3282 * min_type is the minimum key type to truncate down to. If set to 0, this
3283 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3284 */
8082510e
YZ
3285int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3286 struct btrfs_root *root,
3287 struct inode *inode,
3288 u64 new_size, u32 min_type)
39279cc3 3289{
39279cc3 3290 struct btrfs_path *path;
5f39d397 3291 struct extent_buffer *leaf;
39279cc3 3292 struct btrfs_file_extent_item *fi;
8082510e
YZ
3293 struct btrfs_key key;
3294 struct btrfs_key found_key;
39279cc3 3295 u64 extent_start = 0;
db94535d 3296 u64 extent_num_bytes = 0;
5d4f98a2 3297 u64 extent_offset = 0;
39279cc3 3298 u64 item_end = 0;
8082510e
YZ
3299 u64 mask = root->sectorsize - 1;
3300 u32 found_type = (u8)-1;
39279cc3
CM
3301 int found_extent;
3302 int del_item;
85e21bac
CM
3303 int pending_del_nr = 0;
3304 int pending_del_slot = 0;
179e29e4 3305 int extent_type = -1;
771ed689 3306 int encoding;
8082510e
YZ
3307 int ret;
3308 int err = 0;
33345d01 3309 u64 ino = btrfs_ino(inode);
8082510e
YZ
3310
3311 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3312
0af3d00b 3313 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3314 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3315
39279cc3
CM
3316 path = btrfs_alloc_path();
3317 BUG_ON(!path);
33c17ad5 3318 path->reada = -1;
5f39d397 3319
33345d01 3320 key.objectid = ino;
39279cc3 3321 key.offset = (u64)-1;
5f39d397
CM
3322 key.type = (u8)-1;
3323
85e21bac 3324search_again:
b9473439 3325 path->leave_spinning = 1;
85e21bac 3326 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3327 if (ret < 0) {
3328 err = ret;
3329 goto out;
3330 }
d397712b 3331
85e21bac 3332 if (ret > 0) {
e02119d5
CM
3333 /* there are no items in the tree for us to truncate, we're
3334 * done
3335 */
8082510e
YZ
3336 if (path->slots[0] == 0)
3337 goto out;
85e21bac
CM
3338 path->slots[0]--;
3339 }
3340
d397712b 3341 while (1) {
39279cc3 3342 fi = NULL;
5f39d397
CM
3343 leaf = path->nodes[0];
3344 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3345 found_type = btrfs_key_type(&found_key);
771ed689 3346 encoding = 0;
39279cc3 3347
33345d01 3348 if (found_key.objectid != ino)
39279cc3 3349 break;
5f39d397 3350
85e21bac 3351 if (found_type < min_type)
39279cc3
CM
3352 break;
3353
5f39d397 3354 item_end = found_key.offset;
39279cc3 3355 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3356 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3357 struct btrfs_file_extent_item);
179e29e4 3358 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3359 encoding = btrfs_file_extent_compression(leaf, fi);
3360 encoding |= btrfs_file_extent_encryption(leaf, fi);
3361 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3362
179e29e4 3363 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3364 item_end +=
db94535d 3365 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3366 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3367 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3368 fi);
39279cc3 3369 }
008630c1 3370 item_end--;
39279cc3 3371 }
8082510e
YZ
3372 if (found_type > min_type) {
3373 del_item = 1;
3374 } else {
3375 if (item_end < new_size)
b888db2b 3376 break;
8082510e
YZ
3377 if (found_key.offset >= new_size)
3378 del_item = 1;
3379 else
3380 del_item = 0;
39279cc3 3381 }
39279cc3 3382 found_extent = 0;
39279cc3 3383 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3384 if (found_type != BTRFS_EXTENT_DATA_KEY)
3385 goto delete;
3386
3387 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3388 u64 num_dec;
db94535d 3389 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3390 if (!del_item && !encoding) {
db94535d
CM
3391 u64 orig_num_bytes =
3392 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3393 extent_num_bytes = new_size -
5f39d397 3394 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3395 extent_num_bytes = extent_num_bytes &
3396 ~((u64)root->sectorsize - 1);
db94535d
CM
3397 btrfs_set_file_extent_num_bytes(leaf, fi,
3398 extent_num_bytes);
3399 num_dec = (orig_num_bytes -
9069218d 3400 extent_num_bytes);
e02119d5 3401 if (root->ref_cows && extent_start != 0)
a76a3cd4 3402 inode_sub_bytes(inode, num_dec);
5f39d397 3403 btrfs_mark_buffer_dirty(leaf);
39279cc3 3404 } else {
db94535d
CM
3405 extent_num_bytes =
3406 btrfs_file_extent_disk_num_bytes(leaf,
3407 fi);
5d4f98a2
YZ
3408 extent_offset = found_key.offset -
3409 btrfs_file_extent_offset(leaf, fi);
3410
39279cc3 3411 /* FIXME blocksize != 4096 */
9069218d 3412 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3413 if (extent_start != 0) {
3414 found_extent = 1;
e02119d5 3415 if (root->ref_cows)
a76a3cd4 3416 inode_sub_bytes(inode, num_dec);
e02119d5 3417 }
39279cc3 3418 }
9069218d 3419 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3420 /*
3421 * we can't truncate inline items that have had
3422 * special encodings
3423 */
3424 if (!del_item &&
3425 btrfs_file_extent_compression(leaf, fi) == 0 &&
3426 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3427 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3428 u32 size = new_size - found_key.offset;
3429
3430 if (root->ref_cows) {
a76a3cd4
YZ
3431 inode_sub_bytes(inode, item_end + 1 -
3432 new_size);
e02119d5
CM
3433 }
3434 size =
3435 btrfs_file_extent_calc_inline_size(size);
9069218d 3436 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3437 size, 1);
9069218d 3438 BUG_ON(ret);
e02119d5 3439 } else if (root->ref_cows) {
a76a3cd4
YZ
3440 inode_sub_bytes(inode, item_end + 1 -
3441 found_key.offset);
9069218d 3442 }
39279cc3 3443 }
179e29e4 3444delete:
39279cc3 3445 if (del_item) {
85e21bac
CM
3446 if (!pending_del_nr) {
3447 /* no pending yet, add ourselves */
3448 pending_del_slot = path->slots[0];
3449 pending_del_nr = 1;
3450 } else if (pending_del_nr &&
3451 path->slots[0] + 1 == pending_del_slot) {
3452 /* hop on the pending chunk */
3453 pending_del_nr++;
3454 pending_del_slot = path->slots[0];
3455 } else {
d397712b 3456 BUG();
85e21bac 3457 }
39279cc3
CM
3458 } else {
3459 break;
3460 }
0af3d00b
JB
3461 if (found_extent && (root->ref_cows ||
3462 root == root->fs_info->tree_root)) {
b9473439 3463 btrfs_set_path_blocking(path);
39279cc3 3464 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3465 extent_num_bytes, 0,
3466 btrfs_header_owner(leaf),
33345d01 3467 ino, extent_offset);
39279cc3
CM
3468 BUG_ON(ret);
3469 }
85e21bac 3470
8082510e
YZ
3471 if (found_type == BTRFS_INODE_ITEM_KEY)
3472 break;
3473
3474 if (path->slots[0] == 0 ||
3475 path->slots[0] != pending_del_slot) {
3476 if (root->ref_cows) {
3477 err = -EAGAIN;
3478 goto out;
3479 }
3480 if (pending_del_nr) {
3481 ret = btrfs_del_items(trans, root, path,
3482 pending_del_slot,
3483 pending_del_nr);
3484 BUG_ON(ret);
3485 pending_del_nr = 0;
3486 }
85e21bac
CM
3487 btrfs_release_path(root, path);
3488 goto search_again;
8082510e
YZ
3489 } else {
3490 path->slots[0]--;
85e21bac 3491 }
39279cc3 3492 }
8082510e 3493out:
85e21bac
CM
3494 if (pending_del_nr) {
3495 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3496 pending_del_nr);
d68fc57b 3497 BUG_ON(ret);
85e21bac 3498 }
39279cc3 3499 btrfs_free_path(path);
8082510e 3500 return err;
39279cc3
CM
3501}
3502
3503/*
3504 * taken from block_truncate_page, but does cow as it zeros out
3505 * any bytes left in the last page in the file.
3506 */
3507static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3508{
3509 struct inode *inode = mapping->host;
db94535d 3510 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3511 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3512 struct btrfs_ordered_extent *ordered;
2ac55d41 3513 struct extent_state *cached_state = NULL;
e6dcd2dc 3514 char *kaddr;
db94535d 3515 u32 blocksize = root->sectorsize;
39279cc3
CM
3516 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3517 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3518 struct page *page;
39279cc3 3519 int ret = 0;
a52d9a80 3520 u64 page_start;
e6dcd2dc 3521 u64 page_end;
39279cc3
CM
3522
3523 if ((offset & (blocksize - 1)) == 0)
3524 goto out;
0ca1f7ce 3525 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3526 if (ret)
3527 goto out;
39279cc3
CM
3528
3529 ret = -ENOMEM;
211c17f5 3530again:
39279cc3 3531 page = grab_cache_page(mapping, index);
5d5e103a 3532 if (!page) {
0ca1f7ce 3533 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3534 goto out;
5d5e103a 3535 }
e6dcd2dc
CM
3536
3537 page_start = page_offset(page);
3538 page_end = page_start + PAGE_CACHE_SIZE - 1;
3539
39279cc3 3540 if (!PageUptodate(page)) {
9ebefb18 3541 ret = btrfs_readpage(NULL, page);
39279cc3 3542 lock_page(page);
211c17f5
CM
3543 if (page->mapping != mapping) {
3544 unlock_page(page);
3545 page_cache_release(page);
3546 goto again;
3547 }
39279cc3
CM
3548 if (!PageUptodate(page)) {
3549 ret = -EIO;
89642229 3550 goto out_unlock;
39279cc3
CM
3551 }
3552 }
211c17f5 3553 wait_on_page_writeback(page);
e6dcd2dc 3554
2ac55d41
JB
3555 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3556 GFP_NOFS);
e6dcd2dc
CM
3557 set_page_extent_mapped(page);
3558
3559 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3560 if (ordered) {
2ac55d41
JB
3561 unlock_extent_cached(io_tree, page_start, page_end,
3562 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3563 unlock_page(page);
3564 page_cache_release(page);
eb84ae03 3565 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3566 btrfs_put_ordered_extent(ordered);
3567 goto again;
3568 }
3569
2ac55d41 3570 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3571 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3572 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3573
2ac55d41
JB
3574 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3575 &cached_state);
9ed74f2d 3576 if (ret) {
2ac55d41
JB
3577 unlock_extent_cached(io_tree, page_start, page_end,
3578 &cached_state, GFP_NOFS);
9ed74f2d
JB
3579 goto out_unlock;
3580 }
3581
e6dcd2dc
CM
3582 ret = 0;
3583 if (offset != PAGE_CACHE_SIZE) {
3584 kaddr = kmap(page);
3585 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3586 flush_dcache_page(page);
3587 kunmap(page);
3588 }
247e743c 3589 ClearPageChecked(page);
e6dcd2dc 3590 set_page_dirty(page);
2ac55d41
JB
3591 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3592 GFP_NOFS);
39279cc3 3593
89642229 3594out_unlock:
5d5e103a 3595 if (ret)
0ca1f7ce 3596 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3597 unlock_page(page);
3598 page_cache_release(page);
3599out:
3600 return ret;
3601}
3602
695a0d0d
JB
3603/*
3604 * This function puts in dummy file extents for the area we're creating a hole
3605 * for. So if we are truncating this file to a larger size we need to insert
3606 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3607 * the range between oldsize and size
3608 */
a41ad394 3609int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3610{
9036c102
YZ
3611 struct btrfs_trans_handle *trans;
3612 struct btrfs_root *root = BTRFS_I(inode)->root;
3613 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3614 struct extent_map *em = NULL;
2ac55d41 3615 struct extent_state *cached_state = NULL;
9036c102 3616 u64 mask = root->sectorsize - 1;
a41ad394 3617 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3618 u64 block_end = (size + mask) & ~mask;
3619 u64 last_byte;
3620 u64 cur_offset;
3621 u64 hole_size;
9ed74f2d 3622 int err = 0;
39279cc3 3623
9036c102
YZ
3624 if (size <= hole_start)
3625 return 0;
3626
9036c102
YZ
3627 while (1) {
3628 struct btrfs_ordered_extent *ordered;
3629 btrfs_wait_ordered_range(inode, hole_start,
3630 block_end - hole_start);
2ac55d41
JB
3631 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3632 &cached_state, GFP_NOFS);
9036c102
YZ
3633 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3634 if (!ordered)
3635 break;
2ac55d41
JB
3636 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3637 &cached_state, GFP_NOFS);
9036c102
YZ
3638 btrfs_put_ordered_extent(ordered);
3639 }
39279cc3 3640
9036c102
YZ
3641 cur_offset = hole_start;
3642 while (1) {
3643 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3644 block_end - cur_offset, 0);
3645 BUG_ON(IS_ERR(em) || !em);
3646 last_byte = min(extent_map_end(em), block_end);
3647 last_byte = (last_byte + mask) & ~mask;
8082510e 3648 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3649 u64 hint_byte = 0;
9036c102 3650 hole_size = last_byte - cur_offset;
9ed74f2d 3651
a22285a6
YZ
3652 trans = btrfs_start_transaction(root, 2);
3653 if (IS_ERR(trans)) {
3654 err = PTR_ERR(trans);
9ed74f2d 3655 break;
a22285a6 3656 }
8082510e
YZ
3657 btrfs_set_trans_block_group(trans, inode);
3658
3659 err = btrfs_drop_extents(trans, inode, cur_offset,
3660 cur_offset + hole_size,
3661 &hint_byte, 1);
3893e33b
JB
3662 if (err)
3663 break;
8082510e 3664
9036c102 3665 err = btrfs_insert_file_extent(trans, root,
33345d01 3666 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3667 0, hole_size, 0, hole_size,
3668 0, 0, 0);
3893e33b
JB
3669 if (err)
3670 break;
8082510e 3671
9036c102
YZ
3672 btrfs_drop_extent_cache(inode, hole_start,
3673 last_byte - 1, 0);
8082510e
YZ
3674
3675 btrfs_end_transaction(trans, root);
9036c102
YZ
3676 }
3677 free_extent_map(em);
a22285a6 3678 em = NULL;
9036c102 3679 cur_offset = last_byte;
8082510e 3680 if (cur_offset >= block_end)
9036c102
YZ
3681 break;
3682 }
1832a6d5 3683
a22285a6 3684 free_extent_map(em);
2ac55d41
JB
3685 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3686 GFP_NOFS);
9036c102
YZ
3687 return err;
3688}
39279cc3 3689
a41ad394 3690static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3691{
a41ad394 3692 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3693 int ret;
3694
a41ad394 3695 if (newsize == oldsize)
8082510e
YZ
3696 return 0;
3697
a41ad394
JB
3698 if (newsize > oldsize) {
3699 i_size_write(inode, newsize);
3700 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3701 truncate_pagecache(inode, oldsize, newsize);
3702 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3703 if (ret) {
a41ad394 3704 btrfs_setsize(inode, oldsize);
8082510e
YZ
3705 return ret;
3706 }
3707
930f028a 3708 mark_inode_dirty(inode);
a41ad394 3709 } else {
8082510e 3710
a41ad394
JB
3711 /*
3712 * We're truncating a file that used to have good data down to
3713 * zero. Make sure it gets into the ordered flush list so that
3714 * any new writes get down to disk quickly.
3715 */
3716 if (newsize == 0)
3717 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3718
a41ad394
JB
3719 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3720 truncate_setsize(inode, newsize);
3721 ret = btrfs_truncate(inode);
3722 }
8082510e 3723
a41ad394 3724 return ret;
8082510e
YZ
3725}
3726
9036c102
YZ
3727static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3728{
3729 struct inode *inode = dentry->d_inode;
b83cc969 3730 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3731 int err;
39279cc3 3732
b83cc969
LZ
3733 if (btrfs_root_readonly(root))
3734 return -EROFS;
3735
9036c102
YZ
3736 err = inode_change_ok(inode, attr);
3737 if (err)
3738 return err;
2bf5a725 3739
5a3f23d5 3740 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3741 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3742 if (err)
3743 return err;
39279cc3 3744 }
9036c102 3745
1025774c
CH
3746 if (attr->ia_valid) {
3747 setattr_copy(inode, attr);
3748 mark_inode_dirty(inode);
3749
3750 if (attr->ia_valid & ATTR_MODE)
3751 err = btrfs_acl_chmod(inode);
3752 }
33268eaf 3753
39279cc3
CM
3754 return err;
3755}
61295eb8 3756
bd555975 3757void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3758{
3759 struct btrfs_trans_handle *trans;
3760 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3761 unsigned long nr;
39279cc3
CM
3762 int ret;
3763
1abe9b8a 3764 trace_btrfs_inode_evict(inode);
3765
39279cc3 3766 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3767 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3768 root == root->fs_info->tree_root))
bd555975
AV
3769 goto no_delete;
3770
39279cc3 3771 if (is_bad_inode(inode)) {
7b128766 3772 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3773 goto no_delete;
3774 }
bd555975 3775 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3776 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3777
c71bf099
YZ
3778 if (root->fs_info->log_root_recovering) {
3779 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3780 goto no_delete;
3781 }
3782
76dda93c
YZ
3783 if (inode->i_nlink > 0) {
3784 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3785 goto no_delete;
3786 }
3787
dbe674a9 3788 btrfs_i_size_write(inode, 0);
5f39d397 3789
8082510e 3790 while (1) {
d68fc57b
YZ
3791 trans = btrfs_start_transaction(root, 0);
3792 BUG_ON(IS_ERR(trans));
8082510e 3793 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3794 trans->block_rsv = root->orphan_block_rsv;
3795
3796 ret = btrfs_block_rsv_check(trans, root,
3797 root->orphan_block_rsv, 0, 5);
3798 if (ret) {
3799 BUG_ON(ret != -EAGAIN);
3800 ret = btrfs_commit_transaction(trans, root);
3801 BUG_ON(ret);
3802 continue;
3803 }
7b128766 3804
d68fc57b 3805 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3806 if (ret != -EAGAIN)
3807 break;
85e21bac 3808
8082510e
YZ
3809 nr = trans->blocks_used;
3810 btrfs_end_transaction(trans, root);
3811 trans = NULL;
3812 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3813
8082510e 3814 }
5f39d397 3815
8082510e
YZ
3816 if (ret == 0) {
3817 ret = btrfs_orphan_del(trans, inode);
3818 BUG_ON(ret);
3819 }
54aa1f4d 3820
581bb050
LZ
3821 if (!(root == root->fs_info->tree_root ||
3822 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3823 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3824
d3c2fdcf 3825 nr = trans->blocks_used;
54aa1f4d 3826 btrfs_end_transaction(trans, root);
d3c2fdcf 3827 btrfs_btree_balance_dirty(root, nr);
39279cc3 3828no_delete:
bd555975 3829 end_writeback(inode);
8082510e 3830 return;
39279cc3
CM
3831}
3832
3833/*
3834 * this returns the key found in the dir entry in the location pointer.
3835 * If no dir entries were found, location->objectid is 0.
3836 */
3837static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3838 struct btrfs_key *location)
3839{
3840 const char *name = dentry->d_name.name;
3841 int namelen = dentry->d_name.len;
3842 struct btrfs_dir_item *di;
3843 struct btrfs_path *path;
3844 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3845 int ret = 0;
39279cc3
CM
3846
3847 path = btrfs_alloc_path();
3848 BUG_ON(!path);
3954401f 3849
33345d01 3850 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3851 namelen, 0);
0d9f7f3e
Y
3852 if (IS_ERR(di))
3853 ret = PTR_ERR(di);
d397712b
CM
3854
3855 if (!di || IS_ERR(di))
3954401f 3856 goto out_err;
d397712b 3857
5f39d397 3858 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3859out:
39279cc3
CM
3860 btrfs_free_path(path);
3861 return ret;
3954401f
CM
3862out_err:
3863 location->objectid = 0;
3864 goto out;
39279cc3
CM
3865}
3866
3867/*
3868 * when we hit a tree root in a directory, the btrfs part of the inode
3869 * needs to be changed to reflect the root directory of the tree root. This
3870 * is kind of like crossing a mount point.
3871 */
3872static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3873 struct inode *dir,
3874 struct dentry *dentry,
3875 struct btrfs_key *location,
3876 struct btrfs_root **sub_root)
39279cc3 3877{
4df27c4d
YZ
3878 struct btrfs_path *path;
3879 struct btrfs_root *new_root;
3880 struct btrfs_root_ref *ref;
3881 struct extent_buffer *leaf;
3882 int ret;
3883 int err = 0;
39279cc3 3884
4df27c4d
YZ
3885 path = btrfs_alloc_path();
3886 if (!path) {
3887 err = -ENOMEM;
3888 goto out;
3889 }
39279cc3 3890
4df27c4d
YZ
3891 err = -ENOENT;
3892 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3893 BTRFS_I(dir)->root->root_key.objectid,
3894 location->objectid);
3895 if (ret) {
3896 if (ret < 0)
3897 err = ret;
3898 goto out;
3899 }
39279cc3 3900
4df27c4d
YZ
3901 leaf = path->nodes[0];
3902 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3903 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3904 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3905 goto out;
39279cc3 3906
4df27c4d
YZ
3907 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3908 (unsigned long)(ref + 1),
3909 dentry->d_name.len);
3910 if (ret)
3911 goto out;
3912
3913 btrfs_release_path(root->fs_info->tree_root, path);
3914
3915 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3916 if (IS_ERR(new_root)) {
3917 err = PTR_ERR(new_root);
3918 goto out;
3919 }
3920
3921 if (btrfs_root_refs(&new_root->root_item) == 0) {
3922 err = -ENOENT;
3923 goto out;
3924 }
3925
3926 *sub_root = new_root;
3927 location->objectid = btrfs_root_dirid(&new_root->root_item);
3928 location->type = BTRFS_INODE_ITEM_KEY;
3929 location->offset = 0;
3930 err = 0;
3931out:
3932 btrfs_free_path(path);
3933 return err;
39279cc3
CM
3934}
3935
5d4f98a2
YZ
3936static void inode_tree_add(struct inode *inode)
3937{
3938 struct btrfs_root *root = BTRFS_I(inode)->root;
3939 struct btrfs_inode *entry;
03e860bd
FNP
3940 struct rb_node **p;
3941 struct rb_node *parent;
33345d01 3942 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3943again:
3944 p = &root->inode_tree.rb_node;
3945 parent = NULL;
5d4f98a2 3946
1d3382cb 3947 if (inode_unhashed(inode))
76dda93c
YZ
3948 return;
3949
5d4f98a2
YZ
3950 spin_lock(&root->inode_lock);
3951 while (*p) {
3952 parent = *p;
3953 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3954
33345d01 3955 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3956 p = &parent->rb_left;
33345d01 3957 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3958 p = &parent->rb_right;
5d4f98a2
YZ
3959 else {
3960 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3961 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3962 rb_erase(parent, &root->inode_tree);
3963 RB_CLEAR_NODE(parent);
3964 spin_unlock(&root->inode_lock);
3965 goto again;
5d4f98a2
YZ
3966 }
3967 }
3968 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3969 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3970 spin_unlock(&root->inode_lock);
3971}
3972
3973static void inode_tree_del(struct inode *inode)
3974{
3975 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3976 int empty = 0;
5d4f98a2 3977
03e860bd 3978 spin_lock(&root->inode_lock);
5d4f98a2 3979 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3980 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3981 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3982 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3983 }
03e860bd 3984 spin_unlock(&root->inode_lock);
76dda93c 3985
0af3d00b
JB
3986 /*
3987 * Free space cache has inodes in the tree root, but the tree root has a
3988 * root_refs of 0, so this could end up dropping the tree root as a
3989 * snapshot, so we need the extra !root->fs_info->tree_root check to
3990 * make sure we don't drop it.
3991 */
3992 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3993 root != root->fs_info->tree_root) {
76dda93c
YZ
3994 synchronize_srcu(&root->fs_info->subvol_srcu);
3995 spin_lock(&root->inode_lock);
3996 empty = RB_EMPTY_ROOT(&root->inode_tree);
3997 spin_unlock(&root->inode_lock);
3998 if (empty)
3999 btrfs_add_dead_root(root);
4000 }
4001}
4002
4003int btrfs_invalidate_inodes(struct btrfs_root *root)
4004{
4005 struct rb_node *node;
4006 struct rb_node *prev;
4007 struct btrfs_inode *entry;
4008 struct inode *inode;
4009 u64 objectid = 0;
4010
4011 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4012
4013 spin_lock(&root->inode_lock);
4014again:
4015 node = root->inode_tree.rb_node;
4016 prev = NULL;
4017 while (node) {
4018 prev = node;
4019 entry = rb_entry(node, struct btrfs_inode, rb_node);
4020
33345d01 4021 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4022 node = node->rb_left;
33345d01 4023 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4024 node = node->rb_right;
4025 else
4026 break;
4027 }
4028 if (!node) {
4029 while (prev) {
4030 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4031 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4032 node = prev;
4033 break;
4034 }
4035 prev = rb_next(prev);
4036 }
4037 }
4038 while (node) {
4039 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4040 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4041 inode = igrab(&entry->vfs_inode);
4042 if (inode) {
4043 spin_unlock(&root->inode_lock);
4044 if (atomic_read(&inode->i_count) > 1)
4045 d_prune_aliases(inode);
4046 /*
45321ac5 4047 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4048 * the inode cache when its usage count
4049 * hits zero.
4050 */
4051 iput(inode);
4052 cond_resched();
4053 spin_lock(&root->inode_lock);
4054 goto again;
4055 }
4056
4057 if (cond_resched_lock(&root->inode_lock))
4058 goto again;
4059
4060 node = rb_next(node);
4061 }
4062 spin_unlock(&root->inode_lock);
4063 return 0;
5d4f98a2
YZ
4064}
4065
e02119d5
CM
4066static int btrfs_init_locked_inode(struct inode *inode, void *p)
4067{
4068 struct btrfs_iget_args *args = p;
4069 inode->i_ino = args->ino;
e02119d5 4070 BTRFS_I(inode)->root = args->root;
6a63209f 4071 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4072 return 0;
4073}
4074
4075static int btrfs_find_actor(struct inode *inode, void *opaque)
4076{
4077 struct btrfs_iget_args *args = opaque;
33345d01 4078 return args->ino == btrfs_ino(inode) &&
d397712b 4079 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4080}
4081
5d4f98a2
YZ
4082static struct inode *btrfs_iget_locked(struct super_block *s,
4083 u64 objectid,
4084 struct btrfs_root *root)
39279cc3
CM
4085{
4086 struct inode *inode;
4087 struct btrfs_iget_args args;
4088 args.ino = objectid;
4089 args.root = root;
4090
4091 inode = iget5_locked(s, objectid, btrfs_find_actor,
4092 btrfs_init_locked_inode,
4093 (void *)&args);
4094 return inode;
4095}
4096
1a54ef8c
BR
4097/* Get an inode object given its location and corresponding root.
4098 * Returns in *is_new if the inode was read from disk
4099 */
4100struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4101 struct btrfs_root *root, int *new)
1a54ef8c
BR
4102{
4103 struct inode *inode;
4104
4105 inode = btrfs_iget_locked(s, location->objectid, root);
4106 if (!inode)
5d4f98a2 4107 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4108
4109 if (inode->i_state & I_NEW) {
4110 BTRFS_I(inode)->root = root;
4111 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4112 btrfs_read_locked_inode(inode);
5d4f98a2 4113 inode_tree_add(inode);
1a54ef8c 4114 unlock_new_inode(inode);
73f73415
JB
4115 if (new)
4116 *new = 1;
1a54ef8c
BR
4117 }
4118
4119 return inode;
4120}
4121
4df27c4d
YZ
4122static struct inode *new_simple_dir(struct super_block *s,
4123 struct btrfs_key *key,
4124 struct btrfs_root *root)
4125{
4126 struct inode *inode = new_inode(s);
4127
4128 if (!inode)
4129 return ERR_PTR(-ENOMEM);
4130
4df27c4d
YZ
4131 BTRFS_I(inode)->root = root;
4132 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4133 BTRFS_I(inode)->dummy_inode = 1;
4134
4135 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4136 inode->i_op = &simple_dir_inode_operations;
4137 inode->i_fop = &simple_dir_operations;
4138 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4139 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4140
4141 return inode;
4142}
4143
3de4586c 4144struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4145{
d397712b 4146 struct inode *inode;
4df27c4d 4147 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4148 struct btrfs_root *sub_root = root;
4149 struct btrfs_key location;
76dda93c 4150 int index;
5d4f98a2 4151 int ret;
39279cc3
CM
4152
4153 if (dentry->d_name.len > BTRFS_NAME_LEN)
4154 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4155
39279cc3 4156 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4157
39279cc3
CM
4158 if (ret < 0)
4159 return ERR_PTR(ret);
5f39d397 4160
4df27c4d
YZ
4161 if (location.objectid == 0)
4162 return NULL;
4163
4164 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4165 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4166 return inode;
4167 }
4168
4169 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4170
76dda93c 4171 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4172 ret = fixup_tree_root_location(root, dir, dentry,
4173 &location, &sub_root);
4174 if (ret < 0) {
4175 if (ret != -ENOENT)
4176 inode = ERR_PTR(ret);
4177 else
4178 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4179 } else {
73f73415 4180 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4181 }
76dda93c
YZ
4182 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4183
34d19bad 4184 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4185 down_read(&root->fs_info->cleanup_work_sem);
4186 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4187 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4188 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4189 if (ret)
4190 inode = ERR_PTR(ret);
c71bf099
YZ
4191 }
4192
3de4586c
CM
4193 return inode;
4194}
4195
fe15ce44 4196static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4197{
4198 struct btrfs_root *root;
4199
efefb143
YZ
4200 if (!dentry->d_inode && !IS_ROOT(dentry))
4201 dentry = dentry->d_parent;
76dda93c 4202
efefb143
YZ
4203 if (dentry->d_inode) {
4204 root = BTRFS_I(dentry->d_inode)->root;
4205 if (btrfs_root_refs(&root->root_item) == 0)
4206 return 1;
4207 }
76dda93c
YZ
4208 return 0;
4209}
4210
3de4586c
CM
4211static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4212 struct nameidata *nd)
4213{
4214 struct inode *inode;
4215
3de4586c
CM
4216 inode = btrfs_lookup_dentry(dir, dentry);
4217 if (IS_ERR(inode))
4218 return ERR_CAST(inode);
7b128766 4219
39279cc3
CM
4220 return d_splice_alias(inode, dentry);
4221}
4222
39279cc3
CM
4223static unsigned char btrfs_filetype_table[] = {
4224 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4225};
4226
cbdf5a24
DW
4227static int btrfs_real_readdir(struct file *filp, void *dirent,
4228 filldir_t filldir)
39279cc3 4229{
6da6abae 4230 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4231 struct btrfs_root *root = BTRFS_I(inode)->root;
4232 struct btrfs_item *item;
4233 struct btrfs_dir_item *di;
4234 struct btrfs_key key;
5f39d397 4235 struct btrfs_key found_key;
39279cc3
CM
4236 struct btrfs_path *path;
4237 int ret;
5f39d397 4238 struct extent_buffer *leaf;
39279cc3 4239 int slot;
39279cc3
CM
4240 unsigned char d_type;
4241 int over = 0;
4242 u32 di_cur;
4243 u32 di_total;
4244 u32 di_len;
4245 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4246 char tmp_name[32];
4247 char *name_ptr;
4248 int name_len;
39279cc3
CM
4249
4250 /* FIXME, use a real flag for deciding about the key type */
4251 if (root->fs_info->tree_root == root)
4252 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4253
3954401f
CM
4254 /* special case for "." */
4255 if (filp->f_pos == 0) {
33345d01 4256 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
3954401f
CM
4257 if (over)
4258 return 0;
4259 filp->f_pos = 1;
4260 }
3954401f
CM
4261 /* special case for .., just use the back ref */
4262 if (filp->f_pos == 1) {
5ecc7e5d 4263 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4264 over = filldir(dirent, "..", 2,
5ecc7e5d 4265 2, pino, DT_DIR);
3954401f 4266 if (over)
49593bfa 4267 return 0;
3954401f
CM
4268 filp->f_pos = 2;
4269 }
49593bfa
DW
4270 path = btrfs_alloc_path();
4271 path->reada = 2;
4272
39279cc3
CM
4273 btrfs_set_key_type(&key, key_type);
4274 key.offset = filp->f_pos;
33345d01 4275 key.objectid = btrfs_ino(inode);
5f39d397 4276
39279cc3
CM
4277 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4278 if (ret < 0)
4279 goto err;
49593bfa
DW
4280
4281 while (1) {
5f39d397 4282 leaf = path->nodes[0];
39279cc3 4283 slot = path->slots[0];
b9e03af0
LZ
4284 if (slot >= btrfs_header_nritems(leaf)) {
4285 ret = btrfs_next_leaf(root, path);
4286 if (ret < 0)
4287 goto err;
4288 else if (ret > 0)
4289 break;
4290 continue;
39279cc3 4291 }
3de4586c 4292
5f39d397
CM
4293 item = btrfs_item_nr(leaf, slot);
4294 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4295
4296 if (found_key.objectid != key.objectid)
39279cc3 4297 break;
5f39d397 4298 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4299 break;
5f39d397 4300 if (found_key.offset < filp->f_pos)
b9e03af0 4301 goto next;
5f39d397
CM
4302
4303 filp->f_pos = found_key.offset;
49593bfa 4304
39279cc3
CM
4305 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4306 di_cur = 0;
5f39d397 4307 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4308
4309 while (di_cur < di_total) {
5f39d397
CM
4310 struct btrfs_key location;
4311
22a94d44
JB
4312 if (verify_dir_item(root, leaf, di))
4313 break;
4314
5f39d397 4315 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4316 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4317 name_ptr = tmp_name;
4318 } else {
4319 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4320 if (!name_ptr) {
4321 ret = -ENOMEM;
4322 goto err;
4323 }
5f39d397
CM
4324 }
4325 read_extent_buffer(leaf, name_ptr,
4326 (unsigned long)(di + 1), name_len);
4327
4328 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4329 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4330
4331 /* is this a reference to our own snapshot? If so
4332 * skip it
4333 */
4334 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4335 location.objectid == root->root_key.objectid) {
4336 over = 0;
4337 goto skip;
4338 }
5f39d397 4339 over = filldir(dirent, name_ptr, name_len,
49593bfa 4340 found_key.offset, location.objectid,
39279cc3 4341 d_type);
5f39d397 4342
3de4586c 4343skip:
5f39d397
CM
4344 if (name_ptr != tmp_name)
4345 kfree(name_ptr);
4346
39279cc3
CM
4347 if (over)
4348 goto nopos;
5103e947 4349 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4350 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4351 di_cur += di_len;
4352 di = (struct btrfs_dir_item *)((char *)di + di_len);
4353 }
b9e03af0
LZ
4354next:
4355 path->slots[0]++;
39279cc3 4356 }
49593bfa
DW
4357
4358 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4359 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4360 /*
4361 * 32-bit glibc will use getdents64, but then strtol -
4362 * so the last number we can serve is this.
4363 */
4364 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4365 else
4366 filp->f_pos++;
39279cc3
CM
4367nopos:
4368 ret = 0;
4369err:
39279cc3 4370 btrfs_free_path(path);
39279cc3
CM
4371 return ret;
4372}
4373
a9185b41 4374int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4375{
4376 struct btrfs_root *root = BTRFS_I(inode)->root;
4377 struct btrfs_trans_handle *trans;
4378 int ret = 0;
0af3d00b 4379 bool nolock = false;
39279cc3 4380
8929ecfa 4381 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4382 return 0;
4383
0af3d00b
JB
4384 smp_mb();
4385 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4386
a9185b41 4387 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4388 if (nolock)
4389 trans = btrfs_join_transaction_nolock(root, 1);
4390 else
4391 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4392 if (IS_ERR(trans))
4393 return PTR_ERR(trans);
39279cc3 4394 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4395 if (nolock)
4396 ret = btrfs_end_transaction_nolock(trans, root);
4397 else
4398 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4399 }
4400 return ret;
4401}
4402
4403/*
54aa1f4d 4404 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4405 * inode changes. But, it is most likely to find the inode in cache.
4406 * FIXME, needs more benchmarking...there are no reasons other than performance
4407 * to keep or drop this code.
4408 */
4409void btrfs_dirty_inode(struct inode *inode)
4410{
4411 struct btrfs_root *root = BTRFS_I(inode)->root;
4412 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4413 int ret;
4414
4415 if (BTRFS_I(inode)->dummy_inode)
4416 return;
39279cc3 4417
f9295749 4418 trans = btrfs_join_transaction(root, 1);
3612b495 4419 BUG_ON(IS_ERR(trans));
39279cc3 4420 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4421
4422 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4423 if (ret && ret == -ENOSPC) {
4424 /* whoops, lets try again with the full transaction */
4425 btrfs_end_transaction(trans, root);
4426 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4427 if (IS_ERR(trans)) {
4428 if (printk_ratelimit()) {
4429 printk(KERN_ERR "btrfs: fail to "
33345d01
LZ
4430 "dirty inode %llu error %ld\n",
4431 (unsigned long long)btrfs_ino(inode),
4432 PTR_ERR(trans));
9aeead73
CM
4433 }
4434 return;
4435 }
94b60442 4436 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4437
94b60442
CM
4438 ret = btrfs_update_inode(trans, root, inode);
4439 if (ret) {
9aeead73
CM
4440 if (printk_ratelimit()) {
4441 printk(KERN_ERR "btrfs: fail to "
33345d01
LZ
4442 "dirty inode %llu error %d\n",
4443 (unsigned long long)btrfs_ino(inode),
4444 ret);
9aeead73 4445 }
94b60442
CM
4446 }
4447 }
39279cc3 4448 btrfs_end_transaction(trans, root);
39279cc3
CM
4449}
4450
d352ac68
CM
4451/*
4452 * find the highest existing sequence number in a directory
4453 * and then set the in-memory index_cnt variable to reflect
4454 * free sequence numbers
4455 */
aec7477b
JB
4456static int btrfs_set_inode_index_count(struct inode *inode)
4457{
4458 struct btrfs_root *root = BTRFS_I(inode)->root;
4459 struct btrfs_key key, found_key;
4460 struct btrfs_path *path;
4461 struct extent_buffer *leaf;
4462 int ret;
4463
33345d01 4464 key.objectid = btrfs_ino(inode);
aec7477b
JB
4465 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4466 key.offset = (u64)-1;
4467
4468 path = btrfs_alloc_path();
4469 if (!path)
4470 return -ENOMEM;
4471
4472 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4473 if (ret < 0)
4474 goto out;
4475 /* FIXME: we should be able to handle this */
4476 if (ret == 0)
4477 goto out;
4478 ret = 0;
4479
4480 /*
4481 * MAGIC NUMBER EXPLANATION:
4482 * since we search a directory based on f_pos we have to start at 2
4483 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4484 * else has to start at 2
4485 */
4486 if (path->slots[0] == 0) {
4487 BTRFS_I(inode)->index_cnt = 2;
4488 goto out;
4489 }
4490
4491 path->slots[0]--;
4492
4493 leaf = path->nodes[0];
4494 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4495
33345d01 4496 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4497 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4498 BTRFS_I(inode)->index_cnt = 2;
4499 goto out;
4500 }
4501
4502 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4503out:
4504 btrfs_free_path(path);
4505 return ret;
4506}
4507
d352ac68
CM
4508/*
4509 * helper to find a free sequence number in a given directory. This current
4510 * code is very simple, later versions will do smarter things in the btree
4511 */
3de4586c 4512int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4513{
4514 int ret = 0;
4515
4516 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4517 ret = btrfs_set_inode_index_count(dir);
d397712b 4518 if (ret)
aec7477b
JB
4519 return ret;
4520 }
4521
00e4e6b3 4522 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4523 BTRFS_I(dir)->index_cnt++;
4524
4525 return ret;
4526}
4527
39279cc3
CM
4528static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4529 struct btrfs_root *root,
aec7477b 4530 struct inode *dir,
9c58309d 4531 const char *name, int name_len,
d2fb3437
YZ
4532 u64 ref_objectid, u64 objectid,
4533 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4534{
4535 struct inode *inode;
5f39d397 4536 struct btrfs_inode_item *inode_item;
39279cc3 4537 struct btrfs_key *location;
5f39d397 4538 struct btrfs_path *path;
9c58309d
CM
4539 struct btrfs_inode_ref *ref;
4540 struct btrfs_key key[2];
4541 u32 sizes[2];
4542 unsigned long ptr;
39279cc3
CM
4543 int ret;
4544 int owner;
4545
5f39d397
CM
4546 path = btrfs_alloc_path();
4547 BUG_ON(!path);
4548
39279cc3 4549 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4550 if (!inode) {
4551 btrfs_free_path(path);
39279cc3 4552 return ERR_PTR(-ENOMEM);
8fb27640 4553 }
39279cc3 4554
581bb050
LZ
4555 /*
4556 * we have to initialize this early, so we can reclaim the inode
4557 * number if we fail afterwards in this function.
4558 */
4559 inode->i_ino = objectid;
4560
aec7477b 4561 if (dir) {
1abe9b8a 4562 trace_btrfs_inode_request(dir);
4563
3de4586c 4564 ret = btrfs_set_inode_index(dir, index);
09771430 4565 if (ret) {
8fb27640 4566 btrfs_free_path(path);
09771430 4567 iput(inode);
aec7477b 4568 return ERR_PTR(ret);
09771430 4569 }
aec7477b
JB
4570 }
4571 /*
4572 * index_cnt is ignored for everything but a dir,
4573 * btrfs_get_inode_index_count has an explanation for the magic
4574 * number
4575 */
4576 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4577 BTRFS_I(inode)->root = root;
e02119d5 4578 BTRFS_I(inode)->generation = trans->transid;
76195853 4579 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4580 btrfs_set_inode_space_info(root, inode);
b888db2b 4581
39279cc3
CM
4582 if (mode & S_IFDIR)
4583 owner = 0;
4584 else
4585 owner = 1;
d2fb3437
YZ
4586 BTRFS_I(inode)->block_group =
4587 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4588
4589 key[0].objectid = objectid;
4590 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4591 key[0].offset = 0;
4592
4593 key[1].objectid = objectid;
4594 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4595 key[1].offset = ref_objectid;
4596
4597 sizes[0] = sizeof(struct btrfs_inode_item);
4598 sizes[1] = name_len + sizeof(*ref);
4599
b9473439 4600 path->leave_spinning = 1;
9c58309d
CM
4601 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4602 if (ret != 0)
5f39d397
CM
4603 goto fail;
4604
ecc11fab 4605 inode_init_owner(inode, dir, mode);
a76a3cd4 4606 inode_set_bytes(inode, 0);
39279cc3 4607 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4608 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4609 struct btrfs_inode_item);
e02119d5 4610 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4611
4612 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4613 struct btrfs_inode_ref);
4614 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4615 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4616 ptr = (unsigned long)(ref + 1);
4617 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4618
5f39d397
CM
4619 btrfs_mark_buffer_dirty(path->nodes[0]);
4620 btrfs_free_path(path);
4621
39279cc3
CM
4622 location = &BTRFS_I(inode)->location;
4623 location->objectid = objectid;
39279cc3
CM
4624 location->offset = 0;
4625 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4626
6cbff00f
CH
4627 btrfs_inherit_iflags(inode, dir);
4628
94272164
CM
4629 if ((mode & S_IFREG)) {
4630 if (btrfs_test_opt(root, NODATASUM))
4631 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4632 if (btrfs_test_opt(root, NODATACOW) ||
4633 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4634 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4635 }
4636
39279cc3 4637 insert_inode_hash(inode);
5d4f98a2 4638 inode_tree_add(inode);
1abe9b8a 4639
4640 trace_btrfs_inode_new(inode);
4641
39279cc3 4642 return inode;
5f39d397 4643fail:
aec7477b
JB
4644 if (dir)
4645 BTRFS_I(dir)->index_cnt--;
5f39d397 4646 btrfs_free_path(path);
09771430 4647 iput(inode);
5f39d397 4648 return ERR_PTR(ret);
39279cc3
CM
4649}
4650
4651static inline u8 btrfs_inode_type(struct inode *inode)
4652{
4653 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4654}
4655
d352ac68
CM
4656/*
4657 * utility function to add 'inode' into 'parent_inode' with
4658 * a give name and a given sequence number.
4659 * if 'add_backref' is true, also insert a backref from the
4660 * inode to the parent directory.
4661 */
e02119d5
CM
4662int btrfs_add_link(struct btrfs_trans_handle *trans,
4663 struct inode *parent_inode, struct inode *inode,
4664 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4665{
4df27c4d 4666 int ret = 0;
39279cc3 4667 struct btrfs_key key;
e02119d5 4668 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4669 u64 ino = btrfs_ino(inode);
4670 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4671
33345d01 4672 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4673 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4674 } else {
33345d01 4675 key.objectid = ino;
4df27c4d
YZ
4676 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4677 key.offset = 0;
4678 }
4679
33345d01 4680 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4681 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4682 key.objectid, root->root_key.objectid,
33345d01 4683 parent_ino, index, name, name_len);
4df27c4d 4684 } else if (add_backref) {
33345d01
LZ
4685 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4686 parent_ino, index);
4df27c4d 4687 }
39279cc3 4688
39279cc3 4689 if (ret == 0) {
4df27c4d 4690 ret = btrfs_insert_dir_item(trans, root, name, name_len,
33345d01 4691 parent_ino, &key,
4df27c4d
YZ
4692 btrfs_inode_type(inode), index);
4693 BUG_ON(ret);
4694
dbe674a9 4695 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4696 name_len * 2);
79c44584 4697 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4698 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4699 }
4700 return ret;
4701}
4702
4703static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4704 struct inode *dir, struct dentry *dentry,
4705 struct inode *inode, int backref, u64 index)
39279cc3 4706{
a1b075d2
JB
4707 int err = btrfs_add_link(trans, dir, inode,
4708 dentry->d_name.name, dentry->d_name.len,
4709 backref, index);
39279cc3
CM
4710 if (!err) {
4711 d_instantiate(dentry, inode);
4712 return 0;
4713 }
4714 if (err > 0)
4715 err = -EEXIST;
4716 return err;
4717}
4718
618e21d5
JB
4719static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4720 int mode, dev_t rdev)
4721{
4722 struct btrfs_trans_handle *trans;
4723 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4724 struct inode *inode = NULL;
618e21d5
JB
4725 int err;
4726 int drop_inode = 0;
4727 u64 objectid;
1832a6d5 4728 unsigned long nr = 0;
00e4e6b3 4729 u64 index = 0;
618e21d5
JB
4730
4731 if (!new_valid_dev(rdev))
4732 return -EINVAL;
4733
9ed74f2d
JB
4734 /*
4735 * 2 for inode item and ref
4736 * 2 for dir items
4737 * 1 for xattr if selinux is on
4738 */
a22285a6
YZ
4739 trans = btrfs_start_transaction(root, 5);
4740 if (IS_ERR(trans))
4741 return PTR_ERR(trans);
1832a6d5 4742
618e21d5
JB
4743 btrfs_set_trans_block_group(trans, dir);
4744
581bb050
LZ
4745 err = btrfs_find_free_ino(root, &objectid);
4746 if (err)
4747 goto out_unlock;
4748
aec7477b 4749 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4750 dentry->d_name.len, btrfs_ino(dir), objectid,
00e4e6b3 4751 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4752 err = PTR_ERR(inode);
4753 if (IS_ERR(inode))
4754 goto out_unlock;
4755
f34f57a3 4756 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4757 if (err) {
4758 drop_inode = 1;
4759 goto out_unlock;
4760 }
4761
618e21d5 4762 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4763 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4764 if (err)
4765 drop_inode = 1;
4766 else {
4767 inode->i_op = &btrfs_special_inode_operations;
4768 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4769 btrfs_update_inode(trans, root, inode);
618e21d5 4770 }
618e21d5
JB
4771 btrfs_update_inode_block_group(trans, inode);
4772 btrfs_update_inode_block_group(trans, dir);
4773out_unlock:
d3c2fdcf 4774 nr = trans->blocks_used;
89ce8a63 4775 btrfs_end_transaction_throttle(trans, root);
a22285a6 4776 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4777 if (drop_inode) {
4778 inode_dec_link_count(inode);
4779 iput(inode);
4780 }
618e21d5
JB
4781 return err;
4782}
4783
39279cc3
CM
4784static int btrfs_create(struct inode *dir, struct dentry *dentry,
4785 int mode, struct nameidata *nd)
4786{
4787 struct btrfs_trans_handle *trans;
4788 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4789 struct inode *inode = NULL;
39279cc3 4790 int drop_inode = 0;
a22285a6 4791 int err;
1832a6d5 4792 unsigned long nr = 0;
39279cc3 4793 u64 objectid;
00e4e6b3 4794 u64 index = 0;
39279cc3 4795
9ed74f2d
JB
4796 /*
4797 * 2 for inode item and ref
4798 * 2 for dir items
4799 * 1 for xattr if selinux is on
4800 */
a22285a6
YZ
4801 trans = btrfs_start_transaction(root, 5);
4802 if (IS_ERR(trans))
4803 return PTR_ERR(trans);
9ed74f2d 4804
39279cc3
CM
4805 btrfs_set_trans_block_group(trans, dir);
4806
581bb050
LZ
4807 err = btrfs_find_free_ino(root, &objectid);
4808 if (err)
4809 goto out_unlock;
4810
aec7477b 4811 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4812 dentry->d_name.len, btrfs_ino(dir), objectid,
a1b075d2 4813 BTRFS_I(dir)->block_group, mode, &index);
39279cc3
CM
4814 err = PTR_ERR(inode);
4815 if (IS_ERR(inode))
4816 goto out_unlock;
4817
f34f57a3 4818 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4819 if (err) {
4820 drop_inode = 1;
4821 goto out_unlock;
4822 }
4823
39279cc3 4824 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4825 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4826 if (err)
4827 drop_inode = 1;
4828 else {
4829 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4830 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4831 inode->i_fop = &btrfs_file_operations;
4832 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4833 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4834 }
39279cc3
CM
4835 btrfs_update_inode_block_group(trans, inode);
4836 btrfs_update_inode_block_group(trans, dir);
4837out_unlock:
d3c2fdcf 4838 nr = trans->blocks_used;
ab78c84d 4839 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4840 if (drop_inode) {
4841 inode_dec_link_count(inode);
4842 iput(inode);
4843 }
d3c2fdcf 4844 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4845 return err;
4846}
4847
4848static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4849 struct dentry *dentry)
4850{
4851 struct btrfs_trans_handle *trans;
4852 struct btrfs_root *root = BTRFS_I(dir)->root;
4853 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4854 u64 index;
1832a6d5 4855 unsigned long nr = 0;
39279cc3
CM
4856 int err;
4857 int drop_inode = 0;
4858
4859 if (inode->i_nlink == 0)
4860 return -ENOENT;
4861
4a8be425
TH
4862 /* do not allow sys_link's with other subvols of the same device */
4863 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4864 return -EXDEV;
4a8be425 4865
c055e99e
AV
4866 if (inode->i_nlink == ~0U)
4867 return -EMLINK;
4868
3de4586c 4869 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4870 if (err)
4871 goto fail;
4872
a22285a6 4873 /*
7e6b6465 4874 * 2 items for inode and inode ref
a22285a6 4875 * 2 items for dir items
7e6b6465 4876 * 1 item for parent inode
a22285a6 4877 */
7e6b6465 4878 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4879 if (IS_ERR(trans)) {
4880 err = PTR_ERR(trans);
4881 goto fail;
4882 }
5f39d397 4883
3153495d
MX
4884 btrfs_inc_nlink(inode);
4885 inode->i_ctime = CURRENT_TIME;
4886
39279cc3 4887 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4888 ihold(inode);
aec7477b 4889
a1b075d2 4890 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4891
a5719521 4892 if (err) {
54aa1f4d 4893 drop_inode = 1;
a5719521 4894 } else {
6a912213 4895 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4896 btrfs_update_inode_block_group(trans, dir);
4897 err = btrfs_update_inode(trans, root, inode);
4898 BUG_ON(err);
6a912213
JB
4899 btrfs_log_new_name(trans, inode, NULL, parent);
4900 dput(parent);
a5719521 4901 }
39279cc3 4902
d3c2fdcf 4903 nr = trans->blocks_used;
ab78c84d 4904 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4905fail:
39279cc3
CM
4906 if (drop_inode) {
4907 inode_dec_link_count(inode);
4908 iput(inode);
4909 }
d3c2fdcf 4910 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4911 return err;
4912}
4913
39279cc3
CM
4914static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4915{
b9d86667 4916 struct inode *inode = NULL;
39279cc3
CM
4917 struct btrfs_trans_handle *trans;
4918 struct btrfs_root *root = BTRFS_I(dir)->root;
4919 int err = 0;
4920 int drop_on_err = 0;
b9d86667 4921 u64 objectid = 0;
00e4e6b3 4922 u64 index = 0;
d3c2fdcf 4923 unsigned long nr = 1;
39279cc3 4924
9ed74f2d
JB
4925 /*
4926 * 2 items for inode and ref
4927 * 2 items for dir items
4928 * 1 for xattr if selinux is on
4929 */
a22285a6
YZ
4930 trans = btrfs_start_transaction(root, 5);
4931 if (IS_ERR(trans))
4932 return PTR_ERR(trans);
9ed74f2d 4933 btrfs_set_trans_block_group(trans, dir);
39279cc3 4934
581bb050
LZ
4935 err = btrfs_find_free_ino(root, &objectid);
4936 if (err)
4937 goto out_fail;
4938
aec7477b 4939 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4940 dentry->d_name.len, btrfs_ino(dir), objectid,
00e4e6b3
CM
4941 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4942 &index);
39279cc3
CM
4943 if (IS_ERR(inode)) {
4944 err = PTR_ERR(inode);
4945 goto out_fail;
4946 }
5f39d397 4947
39279cc3 4948 drop_on_err = 1;
33268eaf 4949
f34f57a3 4950 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4951 if (err)
4952 goto out_fail;
4953
39279cc3
CM
4954 inode->i_op = &btrfs_dir_inode_operations;
4955 inode->i_fop = &btrfs_dir_file_operations;
4956 btrfs_set_trans_block_group(trans, inode);
4957
dbe674a9 4958 btrfs_i_size_write(inode, 0);
39279cc3
CM
4959 err = btrfs_update_inode(trans, root, inode);
4960 if (err)
4961 goto out_fail;
5f39d397 4962
a1b075d2
JB
4963 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4964 dentry->d_name.len, 0, index);
39279cc3
CM
4965 if (err)
4966 goto out_fail;
5f39d397 4967
39279cc3
CM
4968 d_instantiate(dentry, inode);
4969 drop_on_err = 0;
39279cc3
CM
4970 btrfs_update_inode_block_group(trans, inode);
4971 btrfs_update_inode_block_group(trans, dir);
4972
4973out_fail:
d3c2fdcf 4974 nr = trans->blocks_used;
ab78c84d 4975 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4976 if (drop_on_err)
4977 iput(inode);
d3c2fdcf 4978 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4979 return err;
4980}
4981
d352ac68
CM
4982/* helper for btfs_get_extent. Given an existing extent in the tree,
4983 * and an extent that you want to insert, deal with overlap and insert
4984 * the new extent into the tree.
4985 */
3b951516
CM
4986static int merge_extent_mapping(struct extent_map_tree *em_tree,
4987 struct extent_map *existing,
e6dcd2dc
CM
4988 struct extent_map *em,
4989 u64 map_start, u64 map_len)
3b951516
CM
4990{
4991 u64 start_diff;
3b951516 4992
e6dcd2dc
CM
4993 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4994 start_diff = map_start - em->start;
4995 em->start = map_start;
4996 em->len = map_len;
c8b97818
CM
4997 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4998 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4999 em->block_start += start_diff;
c8b97818
CM
5000 em->block_len -= start_diff;
5001 }
e6dcd2dc 5002 return add_extent_mapping(em_tree, em);
3b951516
CM
5003}
5004
c8b97818
CM
5005static noinline int uncompress_inline(struct btrfs_path *path,
5006 struct inode *inode, struct page *page,
5007 size_t pg_offset, u64 extent_offset,
5008 struct btrfs_file_extent_item *item)
5009{
5010 int ret;
5011 struct extent_buffer *leaf = path->nodes[0];
5012 char *tmp;
5013 size_t max_size;
5014 unsigned long inline_size;
5015 unsigned long ptr;
261507a0 5016 int compress_type;
c8b97818
CM
5017
5018 WARN_ON(pg_offset != 0);
261507a0 5019 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5020 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5021 inline_size = btrfs_file_extent_inline_item_len(leaf,
5022 btrfs_item_nr(leaf, path->slots[0]));
5023 tmp = kmalloc(inline_size, GFP_NOFS);
5024 ptr = btrfs_file_extent_inline_start(item);
5025
5026 read_extent_buffer(leaf, tmp, ptr, inline_size);
5027
5b050f04 5028 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5029 ret = btrfs_decompress(compress_type, tmp, page,
5030 extent_offset, inline_size, max_size);
c8b97818
CM
5031 if (ret) {
5032 char *kaddr = kmap_atomic(page, KM_USER0);
5033 unsigned long copy_size = min_t(u64,
5034 PAGE_CACHE_SIZE - pg_offset,
5035 max_size - extent_offset);
5036 memset(kaddr + pg_offset, 0, copy_size);
5037 kunmap_atomic(kaddr, KM_USER0);
5038 }
5039 kfree(tmp);
5040 return 0;
5041}
5042
d352ac68
CM
5043/*
5044 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5045 * the ugly parts come from merging extents from the disk with the in-ram
5046 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5047 * where the in-ram extents might be locked pending data=ordered completion.
5048 *
5049 * This also copies inline extents directly into the page.
5050 */
d397712b 5051
a52d9a80 5052struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5053 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5054 int create)
5055{
5056 int ret;
5057 int err = 0;
db94535d 5058 u64 bytenr;
a52d9a80
CM
5059 u64 extent_start = 0;
5060 u64 extent_end = 0;
33345d01 5061 u64 objectid = btrfs_ino(inode);
a52d9a80 5062 u32 found_type;
f421950f 5063 struct btrfs_path *path = NULL;
a52d9a80
CM
5064 struct btrfs_root *root = BTRFS_I(inode)->root;
5065 struct btrfs_file_extent_item *item;
5f39d397
CM
5066 struct extent_buffer *leaf;
5067 struct btrfs_key found_key;
a52d9a80
CM
5068 struct extent_map *em = NULL;
5069 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5070 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5071 struct btrfs_trans_handle *trans = NULL;
261507a0 5072 int compress_type;
a52d9a80 5073
a52d9a80 5074again:
890871be 5075 read_lock(&em_tree->lock);
d1310b2e 5076 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5077 if (em)
5078 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5079 read_unlock(&em_tree->lock);
d1310b2e 5080
a52d9a80 5081 if (em) {
e1c4b745
CM
5082 if (em->start > start || em->start + em->len <= start)
5083 free_extent_map(em);
5084 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5085 free_extent_map(em);
5086 else
5087 goto out;
a52d9a80 5088 }
d1310b2e 5089 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5090 if (!em) {
d1310b2e
CM
5091 err = -ENOMEM;
5092 goto out;
a52d9a80 5093 }
e6dcd2dc 5094 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5095 em->start = EXTENT_MAP_HOLE;
445a6944 5096 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5097 em->len = (u64)-1;
c8b97818 5098 em->block_len = (u64)-1;
f421950f
CM
5099
5100 if (!path) {
5101 path = btrfs_alloc_path();
5102 BUG_ON(!path);
5103 }
5104
179e29e4
CM
5105 ret = btrfs_lookup_file_extent(trans, root, path,
5106 objectid, start, trans != NULL);
a52d9a80
CM
5107 if (ret < 0) {
5108 err = ret;
5109 goto out;
5110 }
5111
5112 if (ret != 0) {
5113 if (path->slots[0] == 0)
5114 goto not_found;
5115 path->slots[0]--;
5116 }
5117
5f39d397
CM
5118 leaf = path->nodes[0];
5119 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5120 struct btrfs_file_extent_item);
a52d9a80 5121 /* are we inside the extent that was found? */
5f39d397
CM
5122 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5123 found_type = btrfs_key_type(&found_key);
5124 if (found_key.objectid != objectid ||
a52d9a80
CM
5125 found_type != BTRFS_EXTENT_DATA_KEY) {
5126 goto not_found;
5127 }
5128
5f39d397
CM
5129 found_type = btrfs_file_extent_type(leaf, item);
5130 extent_start = found_key.offset;
261507a0 5131 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5132 if (found_type == BTRFS_FILE_EXTENT_REG ||
5133 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5134 extent_end = extent_start +
db94535d 5135 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5136 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5137 size_t size;
5138 size = btrfs_file_extent_inline_len(leaf, item);
5139 extent_end = (extent_start + size + root->sectorsize - 1) &
5140 ~((u64)root->sectorsize - 1);
5141 }
5142
5143 if (start >= extent_end) {
5144 path->slots[0]++;
5145 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5146 ret = btrfs_next_leaf(root, path);
5147 if (ret < 0) {
5148 err = ret;
5149 goto out;
a52d9a80 5150 }
9036c102
YZ
5151 if (ret > 0)
5152 goto not_found;
5153 leaf = path->nodes[0];
a52d9a80 5154 }
9036c102
YZ
5155 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5156 if (found_key.objectid != objectid ||
5157 found_key.type != BTRFS_EXTENT_DATA_KEY)
5158 goto not_found;
5159 if (start + len <= found_key.offset)
5160 goto not_found;
5161 em->start = start;
5162 em->len = found_key.offset - start;
5163 goto not_found_em;
5164 }
5165
d899e052
YZ
5166 if (found_type == BTRFS_FILE_EXTENT_REG ||
5167 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5168 em->start = extent_start;
5169 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5170 em->orig_start = extent_start -
5171 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5172 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5173 if (bytenr == 0) {
5f39d397 5174 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5175 goto insert;
5176 }
261507a0 5177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5178 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5179 em->compress_type = compress_type;
c8b97818
CM
5180 em->block_start = bytenr;
5181 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5182 item);
5183 } else {
5184 bytenr += btrfs_file_extent_offset(leaf, item);
5185 em->block_start = bytenr;
5186 em->block_len = em->len;
d899e052
YZ
5187 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5188 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5189 }
a52d9a80
CM
5190 goto insert;
5191 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5192 unsigned long ptr;
a52d9a80 5193 char *map;
3326d1b0
CM
5194 size_t size;
5195 size_t extent_offset;
5196 size_t copy_size;
a52d9a80 5197
689f9346 5198 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5199 if (!page || create) {
689f9346 5200 em->start = extent_start;
9036c102 5201 em->len = extent_end - extent_start;
689f9346
Y
5202 goto out;
5203 }
5f39d397 5204
9036c102
YZ
5205 size = btrfs_file_extent_inline_len(leaf, item);
5206 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5207 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5208 size - extent_offset);
3326d1b0 5209 em->start = extent_start + extent_offset;
70dec807
CM
5210 em->len = (copy_size + root->sectorsize - 1) &
5211 ~((u64)root->sectorsize - 1);
ff5b7ee3 5212 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5213 if (compress_type) {
c8b97818 5214 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5215 em->compress_type = compress_type;
5216 }
689f9346 5217 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5218 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5219 if (btrfs_file_extent_compression(leaf, item) !=
5220 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5221 ret = uncompress_inline(path, inode, page,
5222 pg_offset,
5223 extent_offset, item);
5224 BUG_ON(ret);
5225 } else {
5226 map = kmap(page);
5227 read_extent_buffer(leaf, map + pg_offset, ptr,
5228 copy_size);
93c82d57
CM
5229 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5230 memset(map + pg_offset + copy_size, 0,
5231 PAGE_CACHE_SIZE - pg_offset -
5232 copy_size);
5233 }
c8b97818
CM
5234 kunmap(page);
5235 }
179e29e4
CM
5236 flush_dcache_page(page);
5237 } else if (create && PageUptodate(page)) {
0ca1f7ce 5238 WARN_ON(1);
179e29e4
CM
5239 if (!trans) {
5240 kunmap(page);
5241 free_extent_map(em);
5242 em = NULL;
5243 btrfs_release_path(root, path);
f9295749 5244 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5245 if (IS_ERR(trans))
5246 return ERR_CAST(trans);
179e29e4
CM
5247 goto again;
5248 }
c8b97818 5249 map = kmap(page);
70dec807 5250 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5251 copy_size);
c8b97818 5252 kunmap(page);
179e29e4 5253 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5254 }
d1310b2e 5255 set_extent_uptodate(io_tree, em->start,
507903b8 5256 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5257 goto insert;
5258 } else {
d397712b 5259 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5260 WARN_ON(1);
5261 }
5262not_found:
5263 em->start = start;
d1310b2e 5264 em->len = len;
a52d9a80 5265not_found_em:
5f39d397 5266 em->block_start = EXTENT_MAP_HOLE;
9036c102 5267 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5268insert:
5269 btrfs_release_path(root, path);
d1310b2e 5270 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5271 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5272 "[%llu %llu]\n", (unsigned long long)em->start,
5273 (unsigned long long)em->len,
5274 (unsigned long long)start,
5275 (unsigned long long)len);
a52d9a80
CM
5276 err = -EIO;
5277 goto out;
5278 }
d1310b2e
CM
5279
5280 err = 0;
890871be 5281 write_lock(&em_tree->lock);
a52d9a80 5282 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5283 /* it is possible that someone inserted the extent into the tree
5284 * while we had the lock dropped. It is also possible that
5285 * an overlapping map exists in the tree
5286 */
a52d9a80 5287 if (ret == -EEXIST) {
3b951516 5288 struct extent_map *existing;
e6dcd2dc
CM
5289
5290 ret = 0;
5291
3b951516 5292 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5293 if (existing && (existing->start > start ||
5294 existing->start + existing->len <= start)) {
5295 free_extent_map(existing);
5296 existing = NULL;
5297 }
3b951516
CM
5298 if (!existing) {
5299 existing = lookup_extent_mapping(em_tree, em->start,
5300 em->len);
5301 if (existing) {
5302 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5303 em, start,
5304 root->sectorsize);
3b951516
CM
5305 free_extent_map(existing);
5306 if (err) {
5307 free_extent_map(em);
5308 em = NULL;
5309 }
5310 } else {
5311 err = -EIO;
3b951516
CM
5312 free_extent_map(em);
5313 em = NULL;
5314 }
5315 } else {
5316 free_extent_map(em);
5317 em = existing;
e6dcd2dc 5318 err = 0;
a52d9a80 5319 }
a52d9a80 5320 }
890871be 5321 write_unlock(&em_tree->lock);
a52d9a80 5322out:
1abe9b8a 5323
5324 trace_btrfs_get_extent(root, em);
5325
f421950f
CM
5326 if (path)
5327 btrfs_free_path(path);
a52d9a80
CM
5328 if (trans) {
5329 ret = btrfs_end_transaction(trans, root);
d397712b 5330 if (!err)
a52d9a80
CM
5331 err = ret;
5332 }
a52d9a80
CM
5333 if (err) {
5334 free_extent_map(em);
a52d9a80
CM
5335 return ERR_PTR(err);
5336 }
5337 return em;
5338}
5339
ec29ed5b
CM
5340struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5341 size_t pg_offset, u64 start, u64 len,
5342 int create)
5343{
5344 struct extent_map *em;
5345 struct extent_map *hole_em = NULL;
5346 u64 range_start = start;
5347 u64 end;
5348 u64 found;
5349 u64 found_end;
5350 int err = 0;
5351
5352 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5353 if (IS_ERR(em))
5354 return em;
5355 if (em) {
5356 /*
5357 * if our em maps to a hole, there might
5358 * actually be delalloc bytes behind it
5359 */
5360 if (em->block_start != EXTENT_MAP_HOLE)
5361 return em;
5362 else
5363 hole_em = em;
5364 }
5365
5366 /* check to see if we've wrapped (len == -1 or similar) */
5367 end = start + len;
5368 if (end < start)
5369 end = (u64)-1;
5370 else
5371 end -= 1;
5372
5373 em = NULL;
5374
5375 /* ok, we didn't find anything, lets look for delalloc */
5376 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5377 end, len, EXTENT_DELALLOC, 1);
5378 found_end = range_start + found;
5379 if (found_end < range_start)
5380 found_end = (u64)-1;
5381
5382 /*
5383 * we didn't find anything useful, return
5384 * the original results from get_extent()
5385 */
5386 if (range_start > end || found_end <= start) {
5387 em = hole_em;
5388 hole_em = NULL;
5389 goto out;
5390 }
5391
5392 /* adjust the range_start to make sure it doesn't
5393 * go backwards from the start they passed in
5394 */
5395 range_start = max(start,range_start);
5396 found = found_end - range_start;
5397
5398 if (found > 0) {
5399 u64 hole_start = start;
5400 u64 hole_len = len;
5401
5402 em = alloc_extent_map(GFP_NOFS);
5403 if (!em) {
5404 err = -ENOMEM;
5405 goto out;
5406 }
5407 /*
5408 * when btrfs_get_extent can't find anything it
5409 * returns one huge hole
5410 *
5411 * make sure what it found really fits our range, and
5412 * adjust to make sure it is based on the start from
5413 * the caller
5414 */
5415 if (hole_em) {
5416 u64 calc_end = extent_map_end(hole_em);
5417
5418 if (calc_end <= start || (hole_em->start > end)) {
5419 free_extent_map(hole_em);
5420 hole_em = NULL;
5421 } else {
5422 hole_start = max(hole_em->start, start);
5423 hole_len = calc_end - hole_start;
5424 }
5425 }
5426 em->bdev = NULL;
5427 if (hole_em && range_start > hole_start) {
5428 /* our hole starts before our delalloc, so we
5429 * have to return just the parts of the hole
5430 * that go until the delalloc starts
5431 */
5432 em->len = min(hole_len,
5433 range_start - hole_start);
5434 em->start = hole_start;
5435 em->orig_start = hole_start;
5436 /*
5437 * don't adjust block start at all,
5438 * it is fixed at EXTENT_MAP_HOLE
5439 */
5440 em->block_start = hole_em->block_start;
5441 em->block_len = hole_len;
5442 } else {
5443 em->start = range_start;
5444 em->len = found;
5445 em->orig_start = range_start;
5446 em->block_start = EXTENT_MAP_DELALLOC;
5447 em->block_len = found;
5448 }
5449 } else if (hole_em) {
5450 return hole_em;
5451 }
5452out:
5453
5454 free_extent_map(hole_em);
5455 if (err) {
5456 free_extent_map(em);
5457 return ERR_PTR(err);
5458 }
5459 return em;
5460}
5461
4b46fce2 5462static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5463 struct extent_map *em,
4b46fce2
JB
5464 u64 start, u64 len)
5465{
5466 struct btrfs_root *root = BTRFS_I(inode)->root;
5467 struct btrfs_trans_handle *trans;
4b46fce2
JB
5468 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5469 struct btrfs_key ins;
5470 u64 alloc_hint;
5471 int ret;
16d299ac 5472 bool insert = false;
4b46fce2 5473
16d299ac
JB
5474 /*
5475 * Ok if the extent map we looked up is a hole and is for the exact
5476 * range we want, there is no reason to allocate a new one, however if
5477 * it is not right then we need to free this one and drop the cache for
5478 * our range.
5479 */
5480 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5481 em->len != len) {
5482 free_extent_map(em);
5483 em = NULL;
5484 insert = true;
5485 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5486 }
4b46fce2
JB
5487
5488 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5489 if (IS_ERR(trans))
5490 return ERR_CAST(trans);
4b46fce2
JB
5491
5492 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5493
5494 alloc_hint = get_extent_allocation_hint(inode, start, len);
5495 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5496 alloc_hint, (u64)-1, &ins, 1);
5497 if (ret) {
5498 em = ERR_PTR(ret);
5499 goto out;
5500 }
5501
4b46fce2 5502 if (!em) {
16d299ac
JB
5503 em = alloc_extent_map(GFP_NOFS);
5504 if (!em) {
5505 em = ERR_PTR(-ENOMEM);
5506 goto out;
5507 }
4b46fce2
JB
5508 }
5509
5510 em->start = start;
5511 em->orig_start = em->start;
5512 em->len = ins.offset;
5513
5514 em->block_start = ins.objectid;
5515 em->block_len = ins.offset;
5516 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5517
5518 /*
5519 * We need to do this because if we're using the original em we searched
5520 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5521 */
5522 em->flags = 0;
4b46fce2
JB
5523 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5524
16d299ac 5525 while (insert) {
4b46fce2
JB
5526 write_lock(&em_tree->lock);
5527 ret = add_extent_mapping(em_tree, em);
5528 write_unlock(&em_tree->lock);
5529 if (ret != -EEXIST)
5530 break;
5531 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5532 }
5533
5534 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5535 ins.offset, ins.offset, 0);
5536 if (ret) {
5537 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5538 em = ERR_PTR(ret);
5539 }
5540out:
5541 btrfs_end_transaction(trans, root);
5542 return em;
5543}
5544
46bfbb5c
CM
5545/*
5546 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5547 * block must be cow'd
5548 */
5549static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5550 struct inode *inode, u64 offset, u64 len)
5551{
5552 struct btrfs_path *path;
5553 int ret;
5554 struct extent_buffer *leaf;
5555 struct btrfs_root *root = BTRFS_I(inode)->root;
5556 struct btrfs_file_extent_item *fi;
5557 struct btrfs_key key;
5558 u64 disk_bytenr;
5559 u64 backref_offset;
5560 u64 extent_end;
5561 u64 num_bytes;
5562 int slot;
5563 int found_type;
5564
5565 path = btrfs_alloc_path();
5566 if (!path)
5567 return -ENOMEM;
5568
33345d01 5569 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5570 offset, 0);
5571 if (ret < 0)
5572 goto out;
5573
5574 slot = path->slots[0];
5575 if (ret == 1) {
5576 if (slot == 0) {
5577 /* can't find the item, must cow */
5578 ret = 0;
5579 goto out;
5580 }
5581 slot--;
5582 }
5583 ret = 0;
5584 leaf = path->nodes[0];
5585 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5586 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5587 key.type != BTRFS_EXTENT_DATA_KEY) {
5588 /* not our file or wrong item type, must cow */
5589 goto out;
5590 }
5591
5592 if (key.offset > offset) {
5593 /* Wrong offset, must cow */
5594 goto out;
5595 }
5596
5597 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5598 found_type = btrfs_file_extent_type(leaf, fi);
5599 if (found_type != BTRFS_FILE_EXTENT_REG &&
5600 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5601 /* not a regular extent, must cow */
5602 goto out;
5603 }
5604 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5605 backref_offset = btrfs_file_extent_offset(leaf, fi);
5606
5607 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5608 if (extent_end < offset + len) {
5609 /* extent doesn't include our full range, must cow */
5610 goto out;
5611 }
5612
5613 if (btrfs_extent_readonly(root, disk_bytenr))
5614 goto out;
5615
5616 /*
5617 * look for other files referencing this extent, if we
5618 * find any we must cow
5619 */
33345d01 5620 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5621 key.offset - backref_offset, disk_bytenr))
5622 goto out;
5623
5624 /*
5625 * adjust disk_bytenr and num_bytes to cover just the bytes
5626 * in this extent we are about to write. If there
5627 * are any csums in that range we have to cow in order
5628 * to keep the csums correct
5629 */
5630 disk_bytenr += backref_offset;
5631 disk_bytenr += offset - key.offset;
5632 num_bytes = min(offset + len, extent_end) - offset;
5633 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5634 goto out;
5635 /*
5636 * all of the above have passed, it is safe to overwrite this extent
5637 * without cow
5638 */
5639 ret = 1;
5640out:
5641 btrfs_free_path(path);
5642 return ret;
5643}
5644
4b46fce2
JB
5645static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5646 struct buffer_head *bh_result, int create)
5647{
5648 struct extent_map *em;
5649 struct btrfs_root *root = BTRFS_I(inode)->root;
5650 u64 start = iblock << inode->i_blkbits;
5651 u64 len = bh_result->b_size;
46bfbb5c 5652 struct btrfs_trans_handle *trans;
4b46fce2
JB
5653
5654 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5655 if (IS_ERR(em))
5656 return PTR_ERR(em);
5657
5658 /*
5659 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5660 * io. INLINE is special, and we could probably kludge it in here, but
5661 * it's still buffered so for safety lets just fall back to the generic
5662 * buffered path.
5663 *
5664 * For COMPRESSED we _have_ to read the entire extent in so we can
5665 * decompress it, so there will be buffering required no matter what we
5666 * do, so go ahead and fallback to buffered.
5667 *
5668 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5669 * to buffered IO. Don't blame me, this is the price we pay for using
5670 * the generic code.
5671 */
5672 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5673 em->block_start == EXTENT_MAP_INLINE) {
5674 free_extent_map(em);
5675 return -ENOTBLK;
5676 }
5677
5678 /* Just a good old fashioned hole, return */
5679 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5680 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5681 free_extent_map(em);
5682 /* DIO will do one hole at a time, so just unlock a sector */
5683 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5684 start + root->sectorsize - 1, GFP_NOFS);
5685 return 0;
5686 }
5687
5688 /*
5689 * We don't allocate a new extent in the following cases
5690 *
5691 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5692 * existing extent.
5693 * 2) The extent is marked as PREALLOC. We're good to go here and can
5694 * just use the extent.
5695 *
5696 */
46bfbb5c
CM
5697 if (!create) {
5698 len = em->len - (start - em->start);
4b46fce2 5699 goto map;
46bfbb5c 5700 }
4b46fce2
JB
5701
5702 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5703 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5704 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5705 int type;
5706 int ret;
46bfbb5c 5707 u64 block_start;
4b46fce2
JB
5708
5709 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5710 type = BTRFS_ORDERED_PREALLOC;
5711 else
5712 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5713 len = min(len, em->len - (start - em->start));
4b46fce2 5714 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5715
5716 /*
5717 * we're not going to log anything, but we do need
5718 * to make sure the current transaction stays open
5719 * while we look for nocow cross refs
5720 */
5721 trans = btrfs_join_transaction(root, 0);
3612b495 5722 if (IS_ERR(trans))
46bfbb5c
CM
5723 goto must_cow;
5724
5725 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5726 ret = btrfs_add_ordered_extent_dio(inode, start,
5727 block_start, len, len, type);
5728 btrfs_end_transaction(trans, root);
5729 if (ret) {
5730 free_extent_map(em);
5731 return ret;
5732 }
5733 goto unlock;
4b46fce2 5734 }
46bfbb5c 5735 btrfs_end_transaction(trans, root);
4b46fce2 5736 }
46bfbb5c
CM
5737must_cow:
5738 /*
5739 * this will cow the extent, reset the len in case we changed
5740 * it above
5741 */
5742 len = bh_result->b_size;
16d299ac 5743 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5744 if (IS_ERR(em))
5745 return PTR_ERR(em);
5746 len = min(len, em->len - (start - em->start));
5747unlock:
4845e44f
CM
5748 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5749 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5750 0, NULL, GFP_NOFS);
4b46fce2
JB
5751map:
5752 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5753 inode->i_blkbits;
46bfbb5c 5754 bh_result->b_size = len;
4b46fce2
JB
5755 bh_result->b_bdev = em->bdev;
5756 set_buffer_mapped(bh_result);
5757 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5758 set_buffer_new(bh_result);
5759
5760 free_extent_map(em);
5761
5762 return 0;
5763}
5764
5765struct btrfs_dio_private {
5766 struct inode *inode;
5767 u64 logical_offset;
5768 u64 disk_bytenr;
5769 u64 bytes;
5770 u32 *csums;
5771 void *private;
e65e1535
MX
5772
5773 /* number of bios pending for this dio */
5774 atomic_t pending_bios;
5775
5776 /* IO errors */
5777 int errors;
5778
5779 struct bio *orig_bio;
4b46fce2
JB
5780};
5781
5782static void btrfs_endio_direct_read(struct bio *bio, int err)
5783{
e65e1535 5784 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5785 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5786 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5787 struct inode *inode = dip->inode;
5788 struct btrfs_root *root = BTRFS_I(inode)->root;
5789 u64 start;
5790 u32 *private = dip->csums;
5791
5792 start = dip->logical_offset;
5793 do {
5794 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5795 struct page *page = bvec->bv_page;
5796 char *kaddr;
5797 u32 csum = ~(u32)0;
5798 unsigned long flags;
5799
5800 local_irq_save(flags);
5801 kaddr = kmap_atomic(page, KM_IRQ0);
5802 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5803 csum, bvec->bv_len);
5804 btrfs_csum_final(csum, (char *)&csum);
5805 kunmap_atomic(kaddr, KM_IRQ0);
5806 local_irq_restore(flags);
5807
5808 flush_dcache_page(bvec->bv_page);
5809 if (csum != *private) {
33345d01 5810 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5811 " %llu csum %u private %u\n",
33345d01
LZ
5812 (unsigned long long)btrfs_ino(inode),
5813 (unsigned long long)start,
4b46fce2
JB
5814 csum, *private);
5815 err = -EIO;
5816 }
5817 }
5818
5819 start += bvec->bv_len;
5820 private++;
5821 bvec++;
5822 } while (bvec <= bvec_end);
5823
5824 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5825 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5826 bio->bi_private = dip->private;
5827
5828 kfree(dip->csums);
5829 kfree(dip);
c0da7aa1
JB
5830
5831 /* If we had a csum failure make sure to clear the uptodate flag */
5832 if (err)
5833 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5834 dio_end_io(bio, err);
5835}
5836
5837static void btrfs_endio_direct_write(struct bio *bio, int err)
5838{
5839 struct btrfs_dio_private *dip = bio->bi_private;
5840 struct inode *inode = dip->inode;
5841 struct btrfs_root *root = BTRFS_I(inode)->root;
5842 struct btrfs_trans_handle *trans;
5843 struct btrfs_ordered_extent *ordered = NULL;
5844 struct extent_state *cached_state = NULL;
163cf09c
CM
5845 u64 ordered_offset = dip->logical_offset;
5846 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5847 int ret;
5848
5849 if (err)
5850 goto out_done;
163cf09c
CM
5851again:
5852 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5853 &ordered_offset,
5854 ordered_bytes);
4b46fce2 5855 if (!ret)
163cf09c 5856 goto out_test;
4b46fce2
JB
5857
5858 BUG_ON(!ordered);
5859
5860 trans = btrfs_join_transaction(root, 1);
3612b495 5861 if (IS_ERR(trans)) {
4b46fce2
JB
5862 err = -ENOMEM;
5863 goto out;
5864 }
5865 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5866
5867 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5868 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5869 if (!ret)
5870 ret = btrfs_update_inode(trans, root, inode);
5871 err = ret;
5872 goto out;
5873 }
5874
5875 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5876 ordered->file_offset + ordered->len - 1, 0,
5877 &cached_state, GFP_NOFS);
5878
5879 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5880 ret = btrfs_mark_extent_written(trans, inode,
5881 ordered->file_offset,
5882 ordered->file_offset +
5883 ordered->len);
5884 if (ret) {
5885 err = ret;
5886 goto out_unlock;
5887 }
5888 } else {
5889 ret = insert_reserved_file_extent(trans, inode,
5890 ordered->file_offset,
5891 ordered->start,
5892 ordered->disk_len,
5893 ordered->len,
5894 ordered->len,
5895 0, 0, 0,
5896 BTRFS_FILE_EXTENT_REG);
5897 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5898 ordered->file_offset, ordered->len);
5899 if (ret) {
5900 err = ret;
5901 WARN_ON(1);
5902 goto out_unlock;
5903 }
5904 }
5905
5906 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1
JB
5907 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5908 if (!ret)
5909 btrfs_update_inode(trans, root, inode);
5910 ret = 0;
4b46fce2
JB
5911out_unlock:
5912 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5913 ordered->file_offset + ordered->len - 1,
5914 &cached_state, GFP_NOFS);
5915out:
5916 btrfs_delalloc_release_metadata(inode, ordered->len);
5917 btrfs_end_transaction(trans, root);
163cf09c 5918 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5919 btrfs_put_ordered_extent(ordered);
5920 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5921
5922out_test:
5923 /*
5924 * our bio might span multiple ordered extents. If we haven't
5925 * completed the accounting for the whole dio, go back and try again
5926 */
5927 if (ordered_offset < dip->logical_offset + dip->bytes) {
5928 ordered_bytes = dip->logical_offset + dip->bytes -
5929 ordered_offset;
5930 goto again;
5931 }
4b46fce2
JB
5932out_done:
5933 bio->bi_private = dip->private;
5934
5935 kfree(dip->csums);
5936 kfree(dip);
c0da7aa1
JB
5937
5938 /* If we had an error make sure to clear the uptodate flag */
5939 if (err)
5940 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5941 dio_end_io(bio, err);
5942}
5943
eaf25d93
CM
5944static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5945 struct bio *bio, int mirror_num,
5946 unsigned long bio_flags, u64 offset)
5947{
5948 int ret;
5949 struct btrfs_root *root = BTRFS_I(inode)->root;
5950 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5951 BUG_ON(ret);
5952 return 0;
5953}
5954
e65e1535
MX
5955static void btrfs_end_dio_bio(struct bio *bio, int err)
5956{
5957 struct btrfs_dio_private *dip = bio->bi_private;
5958
5959 if (err) {
33345d01 5960 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5961 "sector %#Lx len %u err no %d\n",
33345d01 5962 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5963 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5964 dip->errors = 1;
5965
5966 /*
5967 * before atomic variable goto zero, we must make sure
5968 * dip->errors is perceived to be set.
5969 */
5970 smp_mb__before_atomic_dec();
5971 }
5972
5973 /* if there are more bios still pending for this dio, just exit */
5974 if (!atomic_dec_and_test(&dip->pending_bios))
5975 goto out;
5976
5977 if (dip->errors)
5978 bio_io_error(dip->orig_bio);
5979 else {
5980 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5981 bio_endio(dip->orig_bio, 0);
5982 }
5983out:
5984 bio_put(bio);
5985}
5986
5987static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5988 u64 first_sector, gfp_t gfp_flags)
5989{
5990 int nr_vecs = bio_get_nr_vecs(bdev);
5991 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5992}
5993
5994static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5995 int rw, u64 file_offset, int skip_sum,
1ae39938 5996 u32 *csums, int async_submit)
e65e1535
MX
5997{
5998 int write = rw & REQ_WRITE;
5999 struct btrfs_root *root = BTRFS_I(inode)->root;
6000 int ret;
6001
6002 bio_get(bio);
6003 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6004 if (ret)
6005 goto err;
6006
1ae39938
JB
6007 if (skip_sum)
6008 goto map;
6009
6010 if (write && async_submit) {
e65e1535
MX
6011 ret = btrfs_wq_submit_bio(root->fs_info,
6012 inode, rw, bio, 0, 0,
6013 file_offset,
6014 __btrfs_submit_bio_start_direct_io,
6015 __btrfs_submit_bio_done);
6016 goto err;
1ae39938
JB
6017 } else if (write) {
6018 /*
6019 * If we aren't doing async submit, calculate the csum of the
6020 * bio now.
6021 */
6022 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6023 if (ret)
6024 goto err;
c2db1073
TI
6025 } else if (!skip_sum) {
6026 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 6027 file_offset, csums);
c2db1073
TI
6028 if (ret)
6029 goto err;
6030 }
e65e1535 6031
1ae39938
JB
6032map:
6033 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6034err:
6035 bio_put(bio);
6036 return ret;
6037}
6038
6039static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6040 int skip_sum)
6041{
6042 struct inode *inode = dip->inode;
6043 struct btrfs_root *root = BTRFS_I(inode)->root;
6044 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6045 struct bio *bio;
6046 struct bio *orig_bio = dip->orig_bio;
6047 struct bio_vec *bvec = orig_bio->bi_io_vec;
6048 u64 start_sector = orig_bio->bi_sector;
6049 u64 file_offset = dip->logical_offset;
6050 u64 submit_len = 0;
6051 u64 map_length;
6052 int nr_pages = 0;
6053 u32 *csums = dip->csums;
6054 int ret = 0;
1ae39938 6055 int async_submit = 0;
98bc3149 6056 int write = rw & REQ_WRITE;
e65e1535 6057
e65e1535
MX
6058 map_length = orig_bio->bi_size;
6059 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6060 &map_length, NULL, 0);
6061 if (ret) {
6062 bio_put(bio);
6063 return -EIO;
6064 }
6065
02f57c7a
JB
6066 if (map_length >= orig_bio->bi_size) {
6067 bio = orig_bio;
6068 goto submit;
6069 }
6070
1ae39938 6071 async_submit = 1;
02f57c7a
JB
6072 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6073 if (!bio)
6074 return -ENOMEM;
6075 bio->bi_private = dip;
6076 bio->bi_end_io = btrfs_end_dio_bio;
6077 atomic_inc(&dip->pending_bios);
6078
e65e1535
MX
6079 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6080 if (unlikely(map_length < submit_len + bvec->bv_len ||
6081 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6082 bvec->bv_offset) < bvec->bv_len)) {
6083 /*
6084 * inc the count before we submit the bio so
6085 * we know the end IO handler won't happen before
6086 * we inc the count. Otherwise, the dip might get freed
6087 * before we're done setting it up
6088 */
6089 atomic_inc(&dip->pending_bios);
6090 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6091 file_offset, skip_sum,
1ae39938 6092 csums, async_submit);
e65e1535
MX
6093 if (ret) {
6094 bio_put(bio);
6095 atomic_dec(&dip->pending_bios);
6096 goto out_err;
6097 }
6098
98bc3149
JB
6099 /* Write's use the ordered csums */
6100 if (!write && !skip_sum)
e65e1535
MX
6101 csums = csums + nr_pages;
6102 start_sector += submit_len >> 9;
6103 file_offset += submit_len;
6104
6105 submit_len = 0;
6106 nr_pages = 0;
6107
6108 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6109 start_sector, GFP_NOFS);
6110 if (!bio)
6111 goto out_err;
6112 bio->bi_private = dip;
6113 bio->bi_end_io = btrfs_end_dio_bio;
6114
6115 map_length = orig_bio->bi_size;
6116 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6117 &map_length, NULL, 0);
6118 if (ret) {
6119 bio_put(bio);
6120 goto out_err;
6121 }
6122 } else {
6123 submit_len += bvec->bv_len;
6124 nr_pages ++;
6125 bvec++;
6126 }
6127 }
6128
02f57c7a 6129submit:
e65e1535 6130 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6131 csums, async_submit);
e65e1535
MX
6132 if (!ret)
6133 return 0;
6134
6135 bio_put(bio);
6136out_err:
6137 dip->errors = 1;
6138 /*
6139 * before atomic variable goto zero, we must
6140 * make sure dip->errors is perceived to be set.
6141 */
6142 smp_mb__before_atomic_dec();
6143 if (atomic_dec_and_test(&dip->pending_bios))
6144 bio_io_error(dip->orig_bio);
6145
6146 /* bio_end_io() will handle error, so we needn't return it */
6147 return 0;
6148}
6149
4b46fce2
JB
6150static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6151 loff_t file_offset)
6152{
6153 struct btrfs_root *root = BTRFS_I(inode)->root;
6154 struct btrfs_dio_private *dip;
6155 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6156 int skip_sum;
7b6d91da 6157 int write = rw & REQ_WRITE;
4b46fce2
JB
6158 int ret = 0;
6159
6160 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6161
6162 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6163 if (!dip) {
6164 ret = -ENOMEM;
6165 goto free_ordered;
6166 }
6167 dip->csums = NULL;
6168
98bc3149
JB
6169 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6170 if (!write && !skip_sum) {
4b46fce2
JB
6171 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6172 if (!dip->csums) {
b4966b77 6173 kfree(dip);
4b46fce2
JB
6174 ret = -ENOMEM;
6175 goto free_ordered;
6176 }
6177 }
6178
6179 dip->private = bio->bi_private;
6180 dip->inode = inode;
6181 dip->logical_offset = file_offset;
6182
4b46fce2
JB
6183 dip->bytes = 0;
6184 do {
6185 dip->bytes += bvec->bv_len;
6186 bvec++;
6187 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6188
46bfbb5c 6189 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6190 bio->bi_private = dip;
e65e1535
MX
6191 dip->errors = 0;
6192 dip->orig_bio = bio;
6193 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6194
6195 if (write)
6196 bio->bi_end_io = btrfs_endio_direct_write;
6197 else
6198 bio->bi_end_io = btrfs_endio_direct_read;
6199
e65e1535
MX
6200 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6201 if (!ret)
eaf25d93 6202 return;
4b46fce2
JB
6203free_ordered:
6204 /*
6205 * If this is a write, we need to clean up the reserved space and kill
6206 * the ordered extent.
6207 */
6208 if (write) {
6209 struct btrfs_ordered_extent *ordered;
955256f2 6210 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6211 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6212 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6213 btrfs_free_reserved_extent(root, ordered->start,
6214 ordered->disk_len);
6215 btrfs_put_ordered_extent(ordered);
6216 btrfs_put_ordered_extent(ordered);
6217 }
6218 bio_endio(bio, ret);
6219}
6220
5a5f79b5
CM
6221static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6222 const struct iovec *iov, loff_t offset,
6223 unsigned long nr_segs)
6224{
6225 int seg;
a1b75f7d 6226 int i;
5a5f79b5
CM
6227 size_t size;
6228 unsigned long addr;
6229 unsigned blocksize_mask = root->sectorsize - 1;
6230 ssize_t retval = -EINVAL;
6231 loff_t end = offset;
6232
6233 if (offset & blocksize_mask)
6234 goto out;
6235
6236 /* Check the memory alignment. Blocks cannot straddle pages */
6237 for (seg = 0; seg < nr_segs; seg++) {
6238 addr = (unsigned long)iov[seg].iov_base;
6239 size = iov[seg].iov_len;
6240 end += size;
a1b75f7d 6241 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6242 goto out;
a1b75f7d
JB
6243
6244 /* If this is a write we don't need to check anymore */
6245 if (rw & WRITE)
6246 continue;
6247
6248 /*
6249 * Check to make sure we don't have duplicate iov_base's in this
6250 * iovec, if so return EINVAL, otherwise we'll get csum errors
6251 * when reading back.
6252 */
6253 for (i = seg + 1; i < nr_segs; i++) {
6254 if (iov[seg].iov_base == iov[i].iov_base)
6255 goto out;
6256 }
5a5f79b5
CM
6257 }
6258 retval = 0;
6259out:
6260 return retval;
6261}
16432985
CM
6262static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6263 const struct iovec *iov, loff_t offset,
6264 unsigned long nr_segs)
6265{
4b46fce2
JB
6266 struct file *file = iocb->ki_filp;
6267 struct inode *inode = file->f_mapping->host;
6268 struct btrfs_ordered_extent *ordered;
4845e44f 6269 struct extent_state *cached_state = NULL;
4b46fce2
JB
6270 u64 lockstart, lockend;
6271 ssize_t ret;
4845e44f
CM
6272 int writing = rw & WRITE;
6273 int write_bits = 0;
3f7c579c 6274 size_t count = iov_length(iov, nr_segs);
4b46fce2 6275
5a5f79b5
CM
6276 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6277 offset, nr_segs)) {
6278 return 0;
6279 }
6280
4b46fce2 6281 lockstart = offset;
3f7c579c
CM
6282 lockend = offset + count - 1;
6283
6284 if (writing) {
6285 ret = btrfs_delalloc_reserve_space(inode, count);
6286 if (ret)
6287 goto out;
6288 }
4845e44f 6289
4b46fce2 6290 while (1) {
4845e44f
CM
6291 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6292 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6293 /*
6294 * We're concerned with the entire range that we're going to be
6295 * doing DIO to, so we need to make sure theres no ordered
6296 * extents in this range.
6297 */
6298 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6299 lockend - lockstart + 1);
6300 if (!ordered)
6301 break;
4845e44f
CM
6302 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6303 &cached_state, GFP_NOFS);
4b46fce2
JB
6304 btrfs_start_ordered_extent(inode, ordered, 1);
6305 btrfs_put_ordered_extent(ordered);
6306 cond_resched();
6307 }
6308
4845e44f
CM
6309 /*
6310 * we don't use btrfs_set_extent_delalloc because we don't want
6311 * the dirty or uptodate bits
6312 */
6313 if (writing) {
6314 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6315 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6316 EXTENT_DELALLOC, 0, NULL, &cached_state,
6317 GFP_NOFS);
6318 if (ret) {
6319 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6320 lockend, EXTENT_LOCKED | write_bits,
6321 1, 0, &cached_state, GFP_NOFS);
6322 goto out;
6323 }
6324 }
6325
6326 free_extent_state(cached_state);
6327 cached_state = NULL;
6328
5a5f79b5
CM
6329 ret = __blockdev_direct_IO(rw, iocb, inode,
6330 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6331 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6332 btrfs_submit_direct, 0);
4b46fce2
JB
6333
6334 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6335 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6336 offset + iov_length(iov, nr_segs) - 1,
6337 EXTENT_LOCKED | write_bits, 1, 0,
6338 &cached_state, GFP_NOFS);
4b46fce2
JB
6339 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6340 /*
6341 * We're falling back to buffered, unlock the section we didn't
6342 * do IO on.
6343 */
4845e44f
CM
6344 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6345 offset + iov_length(iov, nr_segs) - 1,
6346 EXTENT_LOCKED | write_bits, 1, 0,
6347 &cached_state, GFP_NOFS);
4b46fce2 6348 }
4845e44f
CM
6349out:
6350 free_extent_state(cached_state);
4b46fce2 6351 return ret;
16432985
CM
6352}
6353
1506fcc8
YS
6354static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6355 __u64 start, __u64 len)
6356{
ec29ed5b 6357 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6358}
6359
a52d9a80 6360int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6361{
d1310b2e
CM
6362 struct extent_io_tree *tree;
6363 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6364 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6365}
1832a6d5 6366
a52d9a80 6367static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6368{
d1310b2e 6369 struct extent_io_tree *tree;
b888db2b
CM
6370
6371
6372 if (current->flags & PF_MEMALLOC) {
6373 redirty_page_for_writepage(wbc, page);
6374 unlock_page(page);
6375 return 0;
6376 }
d1310b2e 6377 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6378 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6379}
6380
f421950f
CM
6381int btrfs_writepages(struct address_space *mapping,
6382 struct writeback_control *wbc)
b293f02e 6383{
d1310b2e 6384 struct extent_io_tree *tree;
771ed689 6385
d1310b2e 6386 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6387 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6388}
6389
3ab2fb5a
CM
6390static int
6391btrfs_readpages(struct file *file, struct address_space *mapping,
6392 struct list_head *pages, unsigned nr_pages)
6393{
d1310b2e
CM
6394 struct extent_io_tree *tree;
6395 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6396 return extent_readpages(tree, mapping, pages, nr_pages,
6397 btrfs_get_extent);
6398}
e6dcd2dc 6399static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6400{
d1310b2e
CM
6401 struct extent_io_tree *tree;
6402 struct extent_map_tree *map;
a52d9a80 6403 int ret;
8c2383c3 6404
d1310b2e
CM
6405 tree = &BTRFS_I(page->mapping->host)->io_tree;
6406 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6407 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6408 if (ret == 1) {
6409 ClearPagePrivate(page);
6410 set_page_private(page, 0);
6411 page_cache_release(page);
39279cc3 6412 }
a52d9a80 6413 return ret;
39279cc3
CM
6414}
6415
e6dcd2dc
CM
6416static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6417{
98509cfc
CM
6418 if (PageWriteback(page) || PageDirty(page))
6419 return 0;
b335b003 6420 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6421}
6422
a52d9a80 6423static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6424{
d1310b2e 6425 struct extent_io_tree *tree;
e6dcd2dc 6426 struct btrfs_ordered_extent *ordered;
2ac55d41 6427 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6428 u64 page_start = page_offset(page);
6429 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6430
8b62b72b
CM
6431
6432 /*
6433 * we have the page locked, so new writeback can't start,
6434 * and the dirty bit won't be cleared while we are here.
6435 *
6436 * Wait for IO on this page so that we can safely clear
6437 * the PagePrivate2 bit and do ordered accounting
6438 */
e6dcd2dc 6439 wait_on_page_writeback(page);
8b62b72b 6440
d1310b2e 6441 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6442 if (offset) {
6443 btrfs_releasepage(page, GFP_NOFS);
6444 return;
6445 }
2ac55d41
JB
6446 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6447 GFP_NOFS);
e6dcd2dc
CM
6448 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6449 page_offset(page));
6450 if (ordered) {
eb84ae03
CM
6451 /*
6452 * IO on this page will never be started, so we need
6453 * to account for any ordered extents now
6454 */
e6dcd2dc
CM
6455 clear_extent_bit(tree, page_start, page_end,
6456 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6457 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6458 &cached_state, GFP_NOFS);
8b62b72b
CM
6459 /*
6460 * whoever cleared the private bit is responsible
6461 * for the finish_ordered_io
6462 */
6463 if (TestClearPagePrivate2(page)) {
6464 btrfs_finish_ordered_io(page->mapping->host,
6465 page_start, page_end);
6466 }
e6dcd2dc 6467 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6468 cached_state = NULL;
6469 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6470 GFP_NOFS);
e6dcd2dc
CM
6471 }
6472 clear_extent_bit(tree, page_start, page_end,
32c00aff 6473 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6474 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6475 __btrfs_releasepage(page, GFP_NOFS);
6476
4a096752 6477 ClearPageChecked(page);
9ad6b7bc 6478 if (PagePrivate(page)) {
9ad6b7bc
CM
6479 ClearPagePrivate(page);
6480 set_page_private(page, 0);
6481 page_cache_release(page);
6482 }
39279cc3
CM
6483}
6484
9ebefb18
CM
6485/*
6486 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6487 * called from a page fault handler when a page is first dirtied. Hence we must
6488 * be careful to check for EOF conditions here. We set the page up correctly
6489 * for a written page which means we get ENOSPC checking when writing into
6490 * holes and correct delalloc and unwritten extent mapping on filesystems that
6491 * support these features.
6492 *
6493 * We are not allowed to take the i_mutex here so we have to play games to
6494 * protect against truncate races as the page could now be beyond EOF. Because
6495 * vmtruncate() writes the inode size before removing pages, once we have the
6496 * page lock we can determine safely if the page is beyond EOF. If it is not
6497 * beyond EOF, then the page is guaranteed safe against truncation until we
6498 * unlock the page.
6499 */
c2ec175c 6500int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6501{
c2ec175c 6502 struct page *page = vmf->page;
6da6abae 6503 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6504 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6505 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6506 struct btrfs_ordered_extent *ordered;
2ac55d41 6507 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6508 char *kaddr;
6509 unsigned long zero_start;
9ebefb18 6510 loff_t size;
1832a6d5 6511 int ret;
a52d9a80 6512 u64 page_start;
e6dcd2dc 6513 u64 page_end;
9ebefb18 6514
0ca1f7ce 6515 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6516 if (ret) {
6517 if (ret == -ENOMEM)
6518 ret = VM_FAULT_OOM;
6519 else /* -ENOSPC, -EIO, etc */
6520 ret = VM_FAULT_SIGBUS;
1832a6d5 6521 goto out;
56a76f82 6522 }
1832a6d5 6523
56a76f82 6524 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6525again:
9ebefb18 6526 lock_page(page);
9ebefb18 6527 size = i_size_read(inode);
e6dcd2dc
CM
6528 page_start = page_offset(page);
6529 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6530
9ebefb18 6531 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6532 (page_start >= size)) {
9ebefb18
CM
6533 /* page got truncated out from underneath us */
6534 goto out_unlock;
6535 }
e6dcd2dc
CM
6536 wait_on_page_writeback(page);
6537
2ac55d41
JB
6538 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6539 GFP_NOFS);
e6dcd2dc
CM
6540 set_page_extent_mapped(page);
6541
eb84ae03
CM
6542 /*
6543 * we can't set the delalloc bits if there are pending ordered
6544 * extents. Drop our locks and wait for them to finish
6545 */
e6dcd2dc
CM
6546 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6547 if (ordered) {
2ac55d41
JB
6548 unlock_extent_cached(io_tree, page_start, page_end,
6549 &cached_state, GFP_NOFS);
e6dcd2dc 6550 unlock_page(page);
eb84ae03 6551 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6552 btrfs_put_ordered_extent(ordered);
6553 goto again;
6554 }
6555
fbf19087
JB
6556 /*
6557 * XXX - page_mkwrite gets called every time the page is dirtied, even
6558 * if it was already dirty, so for space accounting reasons we need to
6559 * clear any delalloc bits for the range we are fixing to save. There
6560 * is probably a better way to do this, but for now keep consistent with
6561 * prepare_pages in the normal write path.
6562 */
2ac55d41 6563 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6564 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6565 0, 0, &cached_state, GFP_NOFS);
fbf19087 6566
2ac55d41
JB
6567 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6568 &cached_state);
9ed74f2d 6569 if (ret) {
2ac55d41
JB
6570 unlock_extent_cached(io_tree, page_start, page_end,
6571 &cached_state, GFP_NOFS);
9ed74f2d
JB
6572 ret = VM_FAULT_SIGBUS;
6573 goto out_unlock;
6574 }
e6dcd2dc 6575 ret = 0;
9ebefb18
CM
6576
6577 /* page is wholly or partially inside EOF */
a52d9a80 6578 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6579 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6580 else
e6dcd2dc 6581 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6582
e6dcd2dc
CM
6583 if (zero_start != PAGE_CACHE_SIZE) {
6584 kaddr = kmap(page);
6585 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6586 flush_dcache_page(page);
6587 kunmap(page);
6588 }
247e743c 6589 ClearPageChecked(page);
e6dcd2dc 6590 set_page_dirty(page);
50a9b214 6591 SetPageUptodate(page);
5a3f23d5 6592
257c62e1
CM
6593 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6594 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6595
2ac55d41 6596 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6597
6598out_unlock:
50a9b214
CM
6599 if (!ret)
6600 return VM_FAULT_LOCKED;
9ebefb18 6601 unlock_page(page);
0ca1f7ce 6602 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6603out:
9ebefb18
CM
6604 return ret;
6605}
6606
a41ad394 6607static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6608{
6609 struct btrfs_root *root = BTRFS_I(inode)->root;
6610 int ret;
3893e33b 6611 int err = 0;
39279cc3 6612 struct btrfs_trans_handle *trans;
d3c2fdcf 6613 unsigned long nr;
dbe674a9 6614 u64 mask = root->sectorsize - 1;
39279cc3 6615
5d5e103a
JB
6616 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6617 if (ret)
a41ad394 6618 return ret;
8082510e 6619
4a096752 6620 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6621 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6622
f0cd846e
JB
6623 trans = btrfs_start_transaction(root, 5);
6624 if (IS_ERR(trans))
6625 return PTR_ERR(trans);
6626
6627 btrfs_set_trans_block_group(trans, inode);
6628
6629 ret = btrfs_orphan_add(trans, inode);
6630 if (ret) {
6631 btrfs_end_transaction(trans, root);
6632 return ret;
6633 }
6634
6635 nr = trans->blocks_used;
6636 btrfs_end_transaction(trans, root);
6637 btrfs_btree_balance_dirty(root, nr);
6638
6639 /* Now start a transaction for the truncate */
d68fc57b 6640 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6641 if (IS_ERR(trans))
6642 return PTR_ERR(trans);
8082510e 6643 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6644 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6645
6646 /*
6647 * setattr is responsible for setting the ordered_data_close flag,
6648 * but that is only tested during the last file release. That
6649 * could happen well after the next commit, leaving a great big
6650 * window where new writes may get lost if someone chooses to write
6651 * to this file after truncating to zero
6652 *
6653 * The inode doesn't have any dirty data here, and so if we commit
6654 * this is a noop. If someone immediately starts writing to the inode
6655 * it is very likely we'll catch some of their writes in this
6656 * transaction, and the commit will find this file on the ordered
6657 * data list with good things to send down.
6658 *
6659 * This is a best effort solution, there is still a window where
6660 * using truncate to replace the contents of the file will
6661 * end up with a zero length file after a crash.
6662 */
6663 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6664 btrfs_add_ordered_operation(trans, root, inode);
6665
8082510e 6666 while (1) {
d68fc57b
YZ
6667 if (!trans) {
6668 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6669 if (IS_ERR(trans))
6670 return PTR_ERR(trans);
d68fc57b
YZ
6671 btrfs_set_trans_block_group(trans, inode);
6672 trans->block_rsv = root->orphan_block_rsv;
6673 }
6674
6675 ret = btrfs_block_rsv_check(trans, root,
6676 root->orphan_block_rsv, 0, 5);
3893e33b 6677 if (ret == -EAGAIN) {
d68fc57b 6678 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6679 if (ret)
6680 return ret;
d68fc57b
YZ
6681 trans = NULL;
6682 continue;
3893e33b
JB
6683 } else if (ret) {
6684 err = ret;
6685 break;
d68fc57b
YZ
6686 }
6687
8082510e
YZ
6688 ret = btrfs_truncate_inode_items(trans, root, inode,
6689 inode->i_size,
6690 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6691 if (ret != -EAGAIN) {
6692 err = ret;
8082510e 6693 break;
3893e33b 6694 }
39279cc3 6695
8082510e 6696 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6697 if (ret) {
6698 err = ret;
6699 break;
6700 }
5f39d397 6701
8082510e
YZ
6702 nr = trans->blocks_used;
6703 btrfs_end_transaction(trans, root);
d68fc57b 6704 trans = NULL;
8082510e 6705 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6706 }
6707
6708 if (ret == 0 && inode->i_nlink > 0) {
6709 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6710 if (ret)
6711 err = ret;
ded5db9d
JB
6712 } else if (ret && inode->i_nlink > 0) {
6713 /*
6714 * Failed to do the truncate, remove us from the in memory
6715 * orphan list.
6716 */
6717 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6718 }
6719
6720 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6721 if (ret && !err)
6722 err = ret;
7b128766 6723
7b128766 6724 nr = trans->blocks_used;
89ce8a63 6725 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6726 if (ret && !err)
6727 err = ret;
d3c2fdcf 6728 btrfs_btree_balance_dirty(root, nr);
a41ad394 6729
3893e33b 6730 return err;
39279cc3
CM
6731}
6732
d352ac68
CM
6733/*
6734 * create a new subvolume directory/inode (helper for the ioctl).
6735 */
d2fb3437 6736int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6737 struct btrfs_root *new_root,
d2fb3437 6738 u64 new_dirid, u64 alloc_hint)
39279cc3 6739{
39279cc3 6740 struct inode *inode;
76dda93c 6741 int err;
00e4e6b3 6742 u64 index = 0;
39279cc3 6743
aec7477b 6744 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6745 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6746 if (IS_ERR(inode))
f46b5a66 6747 return PTR_ERR(inode);
39279cc3
CM
6748 inode->i_op = &btrfs_dir_inode_operations;
6749 inode->i_fop = &btrfs_dir_file_operations;
6750
39279cc3 6751 inode->i_nlink = 1;
dbe674a9 6752 btrfs_i_size_write(inode, 0);
3b96362c 6753
76dda93c
YZ
6754 err = btrfs_update_inode(trans, new_root, inode);
6755 BUG_ON(err);
cb8e7090 6756
76dda93c 6757 iput(inode);
cb8e7090 6758 return 0;
39279cc3
CM
6759}
6760
d352ac68
CM
6761/* helper function for file defrag and space balancing. This
6762 * forces readahead on a given range of bytes in an inode
6763 */
edbd8d4e 6764unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6765 struct file_ra_state *ra, struct file *file,
6766 pgoff_t offset, pgoff_t last_index)
6767{
8e7bf94f 6768 pgoff_t req_size = last_index - offset + 1;
86479a04 6769
86479a04
CM
6770 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6771 return offset + req_size;
86479a04
CM
6772}
6773
39279cc3
CM
6774struct inode *btrfs_alloc_inode(struct super_block *sb)
6775{
6776 struct btrfs_inode *ei;
2ead6ae7 6777 struct inode *inode;
39279cc3
CM
6778
6779 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6780 if (!ei)
6781 return NULL;
2ead6ae7
YZ
6782
6783 ei->root = NULL;
6784 ei->space_info = NULL;
6785 ei->generation = 0;
6786 ei->sequence = 0;
15ee9bc7 6787 ei->last_trans = 0;
257c62e1 6788 ei->last_sub_trans = 0;
e02119d5 6789 ei->logged_trans = 0;
2ead6ae7
YZ
6790 ei->delalloc_bytes = 0;
6791 ei->reserved_bytes = 0;
6792 ei->disk_i_size = 0;
6793 ei->flags = 0;
6794 ei->index_cnt = (u64)-1;
6795 ei->last_unlink_trans = 0;
6796
0ca1f7ce 6797 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6798 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6799
6800 ei->ordered_data_close = 0;
d68fc57b 6801 ei->orphan_meta_reserved = 0;
2ead6ae7 6802 ei->dummy_inode = 0;
261507a0 6803 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7
YZ
6804
6805 inode = &ei->vfs_inode;
6806 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6807 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6808 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6809 mutex_init(&ei->log_mutex);
e6dcd2dc 6810 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6811 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6812 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6813 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6814 RB_CLEAR_NODE(&ei->rb_node);
6815
6816 return inode;
39279cc3
CM
6817}
6818
fa0d7e3d
NP
6819static void btrfs_i_callback(struct rcu_head *head)
6820{
6821 struct inode *inode = container_of(head, struct inode, i_rcu);
6822 INIT_LIST_HEAD(&inode->i_dentry);
6823 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6824}
6825
39279cc3
CM
6826void btrfs_destroy_inode(struct inode *inode)
6827{
e6dcd2dc 6828 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6829 struct btrfs_root *root = BTRFS_I(inode)->root;
6830
39279cc3
CM
6831 WARN_ON(!list_empty(&inode->i_dentry));
6832 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6833 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6834 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6835
a6dbd429
JB
6836 /*
6837 * This can happen where we create an inode, but somebody else also
6838 * created the same inode and we need to destroy the one we already
6839 * created.
6840 */
6841 if (!root)
6842 goto free;
6843
5a3f23d5
CM
6844 /*
6845 * Make sure we're properly removed from the ordered operation
6846 * lists.
6847 */
6848 smp_mb();
6849 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6850 spin_lock(&root->fs_info->ordered_extent_lock);
6851 list_del_init(&BTRFS_I(inode)->ordered_operations);
6852 spin_unlock(&root->fs_info->ordered_extent_lock);
6853 }
6854
0af3d00b
JB
6855 if (root == root->fs_info->tree_root) {
6856 struct btrfs_block_group_cache *block_group;
6857
6858 block_group = btrfs_lookup_block_group(root->fs_info,
6859 BTRFS_I(inode)->block_group);
6860 if (block_group && block_group->inode == inode) {
6861 spin_lock(&block_group->lock);
6862 block_group->inode = NULL;
6863 spin_unlock(&block_group->lock);
6864 btrfs_put_block_group(block_group);
6865 } else if (block_group) {
6866 btrfs_put_block_group(block_group);
6867 }
6868 }
6869
d68fc57b 6870 spin_lock(&root->orphan_lock);
7b128766 6871 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6872 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6873 (unsigned long long)btrfs_ino(inode));
8082510e 6874 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6875 }
d68fc57b 6876 spin_unlock(&root->orphan_lock);
7b128766 6877
d397712b 6878 while (1) {
e6dcd2dc
CM
6879 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6880 if (!ordered)
6881 break;
6882 else {
d397712b
CM
6883 printk(KERN_ERR "btrfs found ordered "
6884 "extent %llu %llu on inode cleanup\n",
6885 (unsigned long long)ordered->file_offset,
6886 (unsigned long long)ordered->len);
e6dcd2dc
CM
6887 btrfs_remove_ordered_extent(inode, ordered);
6888 btrfs_put_ordered_extent(ordered);
6889 btrfs_put_ordered_extent(ordered);
6890 }
6891 }
5d4f98a2 6892 inode_tree_del(inode);
5b21f2ed 6893 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6894free:
fa0d7e3d 6895 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6896}
6897
45321ac5 6898int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6899{
6900 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6901
0af3d00b
JB
6902 if (btrfs_root_refs(&root->root_item) == 0 &&
6903 root != root->fs_info->tree_root)
45321ac5 6904 return 1;
76dda93c 6905 else
45321ac5 6906 return generic_drop_inode(inode);
76dda93c
YZ
6907}
6908
0ee0fda0 6909static void init_once(void *foo)
39279cc3
CM
6910{
6911 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6912
6913 inode_init_once(&ei->vfs_inode);
6914}
6915
6916void btrfs_destroy_cachep(void)
6917{
6918 if (btrfs_inode_cachep)
6919 kmem_cache_destroy(btrfs_inode_cachep);
6920 if (btrfs_trans_handle_cachep)
6921 kmem_cache_destroy(btrfs_trans_handle_cachep);
6922 if (btrfs_transaction_cachep)
6923 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6924 if (btrfs_path_cachep)
6925 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6926 if (btrfs_free_space_cachep)
6927 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6928}
6929
6930int btrfs_init_cachep(void)
6931{
9601e3f6
CH
6932 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6933 sizeof(struct btrfs_inode), 0,
6934 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6935 if (!btrfs_inode_cachep)
6936 goto fail;
9601e3f6
CH
6937
6938 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6939 sizeof(struct btrfs_trans_handle), 0,
6940 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6941 if (!btrfs_trans_handle_cachep)
6942 goto fail;
9601e3f6
CH
6943
6944 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6945 sizeof(struct btrfs_transaction), 0,
6946 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6947 if (!btrfs_transaction_cachep)
6948 goto fail;
9601e3f6
CH
6949
6950 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6951 sizeof(struct btrfs_path), 0,
6952 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6953 if (!btrfs_path_cachep)
6954 goto fail;
9601e3f6 6955
dc89e982
JB
6956 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6957 sizeof(struct btrfs_free_space), 0,
6958 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6959 if (!btrfs_free_space_cachep)
6960 goto fail;
6961
39279cc3
CM
6962 return 0;
6963fail:
6964 btrfs_destroy_cachep();
6965 return -ENOMEM;
6966}
6967
6968static int btrfs_getattr(struct vfsmount *mnt,
6969 struct dentry *dentry, struct kstat *stat)
6970{
6971 struct inode *inode = dentry->d_inode;
6972 generic_fillattr(inode, stat);
3394e160 6973 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6974 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6975 stat->blocks = (inode_get_bytes(inode) +
6976 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6977 return 0;
6978}
6979
75e7cb7f
LB
6980/*
6981 * If a file is moved, it will inherit the cow and compression flags of the new
6982 * directory.
6983 */
6984static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6985{
6986 struct btrfs_inode *b_dir = BTRFS_I(dir);
6987 struct btrfs_inode *b_inode = BTRFS_I(inode);
6988
6989 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6990 b_inode->flags |= BTRFS_INODE_NODATACOW;
6991 else
6992 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6993
6994 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6995 b_inode->flags |= BTRFS_INODE_COMPRESS;
6996 else
6997 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6998}
6999
d397712b
CM
7000static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7001 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7002{
7003 struct btrfs_trans_handle *trans;
7004 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7005 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7006 struct inode *new_inode = new_dentry->d_inode;
7007 struct inode *old_inode = old_dentry->d_inode;
7008 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7009 u64 index = 0;
4df27c4d 7010 u64 root_objectid;
39279cc3 7011 int ret;
33345d01 7012 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7013
33345d01 7014 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7015 return -EPERM;
7016
4df27c4d 7017 /* we only allow rename subvolume link between subvolumes */
33345d01 7018 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7019 return -EXDEV;
7020
33345d01
LZ
7021 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7022 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7023 return -ENOTEMPTY;
5f39d397 7024
4df27c4d
YZ
7025 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7026 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7027 return -ENOTEMPTY;
5a3f23d5
CM
7028 /*
7029 * we're using rename to replace one file with another.
7030 * and the replacement file is large. Start IO on it now so
7031 * we don't add too much work to the end of the transaction
7032 */
4baf8c92 7033 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7034 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7035 filemap_flush(old_inode->i_mapping);
7036
76dda93c 7037 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7038 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7039 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7040 /*
7041 * We want to reserve the absolute worst case amount of items. So if
7042 * both inodes are subvols and we need to unlink them then that would
7043 * require 4 item modifications, but if they are both normal inodes it
7044 * would require 5 item modifications, so we'll assume their normal
7045 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7046 * should cover the worst case number of items we'll modify.
7047 */
7048 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7049 if (IS_ERR(trans)) {
7050 ret = PTR_ERR(trans);
7051 goto out_notrans;
7052 }
76dda93c 7053
a5719521 7054 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 7055
4df27c4d
YZ
7056 if (dest != root)
7057 btrfs_record_root_in_trans(trans, dest);
5f39d397 7058
a5719521
YZ
7059 ret = btrfs_set_inode_index(new_dir, &index);
7060 if (ret)
7061 goto out_fail;
5a3f23d5 7062
33345d01 7063 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7064 /* force full log commit if subvolume involved. */
7065 root->fs_info->last_trans_log_full_commit = trans->transid;
7066 } else {
a5719521
YZ
7067 ret = btrfs_insert_inode_ref(trans, dest,
7068 new_dentry->d_name.name,
7069 new_dentry->d_name.len,
33345d01
LZ
7070 old_ino,
7071 btrfs_ino(new_dir), index);
a5719521
YZ
7072 if (ret)
7073 goto out_fail;
4df27c4d
YZ
7074 /*
7075 * this is an ugly little race, but the rename is required
7076 * to make sure that if we crash, the inode is either at the
7077 * old name or the new one. pinning the log transaction lets
7078 * us make sure we don't allow a log commit to come in after
7079 * we unlink the name but before we add the new name back in.
7080 */
7081 btrfs_pin_log_trans(root);
7082 }
5a3f23d5
CM
7083 /*
7084 * make sure the inode gets flushed if it is replacing
7085 * something.
7086 */
33345d01 7087 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7088 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7089
39279cc3
CM
7090 old_dir->i_ctime = old_dir->i_mtime = ctime;
7091 new_dir->i_ctime = new_dir->i_mtime = ctime;
7092 old_inode->i_ctime = ctime;
5f39d397 7093
12fcfd22
CM
7094 if (old_dentry->d_parent != new_dentry->d_parent)
7095 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7096
33345d01 7097 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7098 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7099 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7100 old_dentry->d_name.name,
7101 old_dentry->d_name.len);
7102 } else {
92986796
AV
7103 ret = __btrfs_unlink_inode(trans, root, old_dir,
7104 old_dentry->d_inode,
7105 old_dentry->d_name.name,
7106 old_dentry->d_name.len);
7107 if (!ret)
7108 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7109 }
7110 BUG_ON(ret);
39279cc3
CM
7111
7112 if (new_inode) {
7113 new_inode->i_ctime = CURRENT_TIME;
33345d01 7114 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7115 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7116 root_objectid = BTRFS_I(new_inode)->location.objectid;
7117 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7118 root_objectid,
7119 new_dentry->d_name.name,
7120 new_dentry->d_name.len);
7121 BUG_ON(new_inode->i_nlink == 0);
7122 } else {
7123 ret = btrfs_unlink_inode(trans, dest, new_dir,
7124 new_dentry->d_inode,
7125 new_dentry->d_name.name,
7126 new_dentry->d_name.len);
7127 }
7128 BUG_ON(ret);
7b128766 7129 if (new_inode->i_nlink == 0) {
e02119d5 7130 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7131 BUG_ON(ret);
7b128766 7132 }
39279cc3 7133 }
aec7477b 7134
75e7cb7f
LB
7135 fixup_inode_flags(new_dir, old_inode);
7136
4df27c4d
YZ
7137 ret = btrfs_add_link(trans, new_dir, old_inode,
7138 new_dentry->d_name.name,
a5719521 7139 new_dentry->d_name.len, 0, index);
4df27c4d 7140 BUG_ON(ret);
39279cc3 7141
33345d01 7142 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7143 struct dentry *parent = dget_parent(new_dentry);
7144 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7145 dput(parent);
4df27c4d
YZ
7146 btrfs_end_log_trans(root);
7147 }
39279cc3 7148out_fail:
ab78c84d 7149 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7150out_notrans:
33345d01 7151 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7152 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7153
39279cc3
CM
7154 return ret;
7155}
7156
d352ac68
CM
7157/*
7158 * some fairly slow code that needs optimization. This walks the list
7159 * of all the inodes with pending delalloc and forces them to disk.
7160 */
24bbcf04 7161int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7162{
7163 struct list_head *head = &root->fs_info->delalloc_inodes;
7164 struct btrfs_inode *binode;
5b21f2ed 7165 struct inode *inode;
ea8c2819 7166
c146afad
YZ
7167 if (root->fs_info->sb->s_flags & MS_RDONLY)
7168 return -EROFS;
7169
75eff68e 7170 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7171 while (!list_empty(head)) {
ea8c2819
CM
7172 binode = list_entry(head->next, struct btrfs_inode,
7173 delalloc_inodes);
5b21f2ed
ZY
7174 inode = igrab(&binode->vfs_inode);
7175 if (!inode)
7176 list_del_init(&binode->delalloc_inodes);
75eff68e 7177 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7178 if (inode) {
8c8bee1d 7179 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7180 if (delay_iput)
7181 btrfs_add_delayed_iput(inode);
7182 else
7183 iput(inode);
5b21f2ed
ZY
7184 }
7185 cond_resched();
75eff68e 7186 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7187 }
75eff68e 7188 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7189
7190 /* the filemap_flush will queue IO into the worker threads, but
7191 * we have to make sure the IO is actually started and that
7192 * ordered extents get created before we return
7193 */
7194 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7195 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7196 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7197 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7198 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7199 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7200 }
7201 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7202 return 0;
7203}
7204
0019f10d
JB
7205int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7206 int sync)
5da9d01b
YZ
7207{
7208 struct btrfs_inode *binode;
7209 struct inode *inode = NULL;
7210
7211 spin_lock(&root->fs_info->delalloc_lock);
7212 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7213 binode = list_entry(root->fs_info->delalloc_inodes.next,
7214 struct btrfs_inode, delalloc_inodes);
7215 inode = igrab(&binode->vfs_inode);
7216 if (inode) {
7217 list_move_tail(&binode->delalloc_inodes,
7218 &root->fs_info->delalloc_inodes);
7219 break;
7220 }
7221
7222 list_del_init(&binode->delalloc_inodes);
7223 cond_resched_lock(&root->fs_info->delalloc_lock);
7224 }
7225 spin_unlock(&root->fs_info->delalloc_lock);
7226
7227 if (inode) {
0019f10d
JB
7228 if (sync) {
7229 filemap_write_and_wait(inode->i_mapping);
7230 /*
7231 * We have to do this because compression doesn't
7232 * actually set PG_writeback until it submits the pages
7233 * for IO, which happens in an async thread, so we could
7234 * race and not actually wait for any writeback pages
7235 * because they've not been submitted yet. Technically
7236 * this could still be the case for the ordered stuff
7237 * since the async thread may not have started to do its
7238 * work yet. If this becomes the case then we need to
7239 * figure out a way to make sure that in writepage we
7240 * wait for any async pages to be submitted before
7241 * returning so that fdatawait does what its supposed to
7242 * do.
7243 */
7244 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7245 } else {
7246 filemap_flush(inode->i_mapping);
7247 }
5da9d01b
YZ
7248 if (delay_iput)
7249 btrfs_add_delayed_iput(inode);
7250 else
7251 iput(inode);
7252 return 1;
7253 }
7254 return 0;
7255}
7256
39279cc3
CM
7257static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7258 const char *symname)
7259{
7260 struct btrfs_trans_handle *trans;
7261 struct btrfs_root *root = BTRFS_I(dir)->root;
7262 struct btrfs_path *path;
7263 struct btrfs_key key;
1832a6d5 7264 struct inode *inode = NULL;
39279cc3
CM
7265 int err;
7266 int drop_inode = 0;
7267 u64 objectid;
00e4e6b3 7268 u64 index = 0 ;
39279cc3
CM
7269 int name_len;
7270 int datasize;
5f39d397 7271 unsigned long ptr;
39279cc3 7272 struct btrfs_file_extent_item *ei;
5f39d397 7273 struct extent_buffer *leaf;
1832a6d5 7274 unsigned long nr = 0;
39279cc3
CM
7275
7276 name_len = strlen(symname) + 1;
7277 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7278 return -ENAMETOOLONG;
1832a6d5 7279
9ed74f2d
JB
7280 /*
7281 * 2 items for inode item and ref
7282 * 2 items for dir items
7283 * 1 item for xattr if selinux is on
7284 */
a22285a6
YZ
7285 trans = btrfs_start_transaction(root, 5);
7286 if (IS_ERR(trans))
7287 return PTR_ERR(trans);
1832a6d5 7288
39279cc3
CM
7289 btrfs_set_trans_block_group(trans, dir);
7290
581bb050
LZ
7291 err = btrfs_find_free_ino(root, &objectid);
7292 if (err)
7293 goto out_unlock;
7294
aec7477b 7295 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7296 dentry->d_name.len, btrfs_ino(dir), objectid,
00e4e6b3
CM
7297 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7298 &index);
39279cc3
CM
7299 err = PTR_ERR(inode);
7300 if (IS_ERR(inode))
7301 goto out_unlock;
7302
f34f57a3 7303 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
7304 if (err) {
7305 drop_inode = 1;
7306 goto out_unlock;
7307 }
7308
39279cc3 7309 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7310 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7311 if (err)
7312 drop_inode = 1;
7313 else {
7314 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7315 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7316 inode->i_fop = &btrfs_file_operations;
7317 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7318 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7319 }
39279cc3
CM
7320 btrfs_update_inode_block_group(trans, inode);
7321 btrfs_update_inode_block_group(trans, dir);
7322 if (drop_inode)
7323 goto out_unlock;
7324
7325 path = btrfs_alloc_path();
7326 BUG_ON(!path);
33345d01 7327 key.objectid = btrfs_ino(inode);
39279cc3 7328 key.offset = 0;
39279cc3
CM
7329 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7330 datasize = btrfs_file_extent_calc_inline_size(name_len);
7331 err = btrfs_insert_empty_item(trans, root, path, &key,
7332 datasize);
54aa1f4d
CM
7333 if (err) {
7334 drop_inode = 1;
7335 goto out_unlock;
7336 }
5f39d397
CM
7337 leaf = path->nodes[0];
7338 ei = btrfs_item_ptr(leaf, path->slots[0],
7339 struct btrfs_file_extent_item);
7340 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7341 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7342 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7343 btrfs_set_file_extent_encryption(leaf, ei, 0);
7344 btrfs_set_file_extent_compression(leaf, ei, 0);
7345 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7346 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7347
39279cc3 7348 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7349 write_extent_buffer(leaf, symname, ptr, name_len);
7350 btrfs_mark_buffer_dirty(leaf);
39279cc3 7351 btrfs_free_path(path);
5f39d397 7352
39279cc3
CM
7353 inode->i_op = &btrfs_symlink_inode_operations;
7354 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7355 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7356 inode_set_bytes(inode, name_len);
dbe674a9 7357 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7358 err = btrfs_update_inode(trans, root, inode);
7359 if (err)
7360 drop_inode = 1;
39279cc3
CM
7361
7362out_unlock:
d3c2fdcf 7363 nr = trans->blocks_used;
ab78c84d 7364 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7365 if (drop_inode) {
7366 inode_dec_link_count(inode);
7367 iput(inode);
7368 }
d3c2fdcf 7369 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7370 return err;
7371}
16432985 7372
0af3d00b
JB
7373static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7374 u64 start, u64 num_bytes, u64 min_size,
7375 loff_t actual_len, u64 *alloc_hint,
7376 struct btrfs_trans_handle *trans)
d899e052 7377{
d899e052
YZ
7378 struct btrfs_root *root = BTRFS_I(inode)->root;
7379 struct btrfs_key ins;
d899e052 7380 u64 cur_offset = start;
55a61d1d 7381 u64 i_size;
d899e052 7382 int ret = 0;
0af3d00b 7383 bool own_trans = true;
d899e052 7384
0af3d00b
JB
7385 if (trans)
7386 own_trans = false;
d899e052 7387 while (num_bytes > 0) {
0af3d00b
JB
7388 if (own_trans) {
7389 trans = btrfs_start_transaction(root, 3);
7390 if (IS_ERR(trans)) {
7391 ret = PTR_ERR(trans);
7392 break;
7393 }
5a303d5d
YZ
7394 }
7395
efa56464
YZ
7396 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7397 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7398 if (ret) {
0af3d00b
JB
7399 if (own_trans)
7400 btrfs_end_transaction(trans, root);
a22285a6 7401 break;
d899e052 7402 }
5a303d5d 7403
d899e052
YZ
7404 ret = insert_reserved_file_extent(trans, inode,
7405 cur_offset, ins.objectid,
7406 ins.offset, ins.offset,
920bbbfb 7407 ins.offset, 0, 0, 0,
d899e052
YZ
7408 BTRFS_FILE_EXTENT_PREALLOC);
7409 BUG_ON(ret);
a1ed835e
CM
7410 btrfs_drop_extent_cache(inode, cur_offset,
7411 cur_offset + ins.offset -1, 0);
5a303d5d 7412
d899e052
YZ
7413 num_bytes -= ins.offset;
7414 cur_offset += ins.offset;
efa56464 7415 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7416
d899e052 7417 inode->i_ctime = CURRENT_TIME;
6cbff00f 7418 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7419 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7420 (actual_len > inode->i_size) &&
7421 (cur_offset > inode->i_size)) {
d1ea6a61 7422 if (cur_offset > actual_len)
55a61d1d 7423 i_size = actual_len;
d1ea6a61 7424 else
55a61d1d
JB
7425 i_size = cur_offset;
7426 i_size_write(inode, i_size);
7427 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7428 }
7429
d899e052
YZ
7430 ret = btrfs_update_inode(trans, root, inode);
7431 BUG_ON(ret);
d899e052 7432
0af3d00b
JB
7433 if (own_trans)
7434 btrfs_end_transaction(trans, root);
5a303d5d 7435 }
d899e052
YZ
7436 return ret;
7437}
7438
0af3d00b
JB
7439int btrfs_prealloc_file_range(struct inode *inode, int mode,
7440 u64 start, u64 num_bytes, u64 min_size,
7441 loff_t actual_len, u64 *alloc_hint)
7442{
7443 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7444 min_size, actual_len, alloc_hint,
7445 NULL);
7446}
7447
7448int btrfs_prealloc_file_range_trans(struct inode *inode,
7449 struct btrfs_trans_handle *trans, int mode,
7450 u64 start, u64 num_bytes, u64 min_size,
7451 loff_t actual_len, u64 *alloc_hint)
7452{
7453 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7454 min_size, actual_len, alloc_hint, trans);
7455}
7456
e6dcd2dc
CM
7457static int btrfs_set_page_dirty(struct page *page)
7458{
e6dcd2dc
CM
7459 return __set_page_dirty_nobuffers(page);
7460}
7461
b74c79e9 7462static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7463{
b83cc969
LZ
7464 struct btrfs_root *root = BTRFS_I(inode)->root;
7465
7466 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7467 return -EROFS;
6cbff00f 7468 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7469 return -EACCES;
b74c79e9 7470 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7471}
39279cc3 7472
6e1d5dcc 7473static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7474 .getattr = btrfs_getattr,
39279cc3
CM
7475 .lookup = btrfs_lookup,
7476 .create = btrfs_create,
7477 .unlink = btrfs_unlink,
7478 .link = btrfs_link,
7479 .mkdir = btrfs_mkdir,
7480 .rmdir = btrfs_rmdir,
7481 .rename = btrfs_rename,
7482 .symlink = btrfs_symlink,
7483 .setattr = btrfs_setattr,
618e21d5 7484 .mknod = btrfs_mknod,
95819c05
CH
7485 .setxattr = btrfs_setxattr,
7486 .getxattr = btrfs_getxattr,
5103e947 7487 .listxattr = btrfs_listxattr,
95819c05 7488 .removexattr = btrfs_removexattr,
fdebe2bd 7489 .permission = btrfs_permission,
39279cc3 7490};
6e1d5dcc 7491static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7492 .lookup = btrfs_lookup,
fdebe2bd 7493 .permission = btrfs_permission,
39279cc3 7494};
76dda93c 7495
828c0950 7496static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7497 .llseek = generic_file_llseek,
7498 .read = generic_read_dir,
cbdf5a24 7499 .readdir = btrfs_real_readdir,
34287aa3 7500 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7501#ifdef CONFIG_COMPAT
34287aa3 7502 .compat_ioctl = btrfs_ioctl,
39279cc3 7503#endif
6bf13c0c 7504 .release = btrfs_release_file,
e02119d5 7505 .fsync = btrfs_sync_file,
39279cc3
CM
7506};
7507
d1310b2e 7508static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7509 .fill_delalloc = run_delalloc_range,
065631f6 7510 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7511 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7512 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7513 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7514 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7515 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7516 .set_bit_hook = btrfs_set_bit_hook,
7517 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7518 .merge_extent_hook = btrfs_merge_extent_hook,
7519 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7520};
7521
35054394
CM
7522/*
7523 * btrfs doesn't support the bmap operation because swapfiles
7524 * use bmap to make a mapping of extents in the file. They assume
7525 * these extents won't change over the life of the file and they
7526 * use the bmap result to do IO directly to the drive.
7527 *
7528 * the btrfs bmap call would return logical addresses that aren't
7529 * suitable for IO and they also will change frequently as COW
7530 * operations happen. So, swapfile + btrfs == corruption.
7531 *
7532 * For now we're avoiding this by dropping bmap.
7533 */
7f09410b 7534static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7535 .readpage = btrfs_readpage,
7536 .writepage = btrfs_writepage,
b293f02e 7537 .writepages = btrfs_writepages,
3ab2fb5a 7538 .readpages = btrfs_readpages,
39279cc3 7539 .sync_page = block_sync_page,
16432985 7540 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7541 .invalidatepage = btrfs_invalidatepage,
7542 .releasepage = btrfs_releasepage,
e6dcd2dc 7543 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7544 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7545};
7546
7f09410b 7547static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7548 .readpage = btrfs_readpage,
7549 .writepage = btrfs_writepage,
2bf5a725
CM
7550 .invalidatepage = btrfs_invalidatepage,
7551 .releasepage = btrfs_releasepage,
39279cc3
CM
7552};
7553
6e1d5dcc 7554static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7555 .getattr = btrfs_getattr,
7556 .setattr = btrfs_setattr,
95819c05
CH
7557 .setxattr = btrfs_setxattr,
7558 .getxattr = btrfs_getxattr,
5103e947 7559 .listxattr = btrfs_listxattr,
95819c05 7560 .removexattr = btrfs_removexattr,
fdebe2bd 7561 .permission = btrfs_permission,
1506fcc8 7562 .fiemap = btrfs_fiemap,
39279cc3 7563};
6e1d5dcc 7564static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7565 .getattr = btrfs_getattr,
7566 .setattr = btrfs_setattr,
fdebe2bd 7567 .permission = btrfs_permission,
95819c05
CH
7568 .setxattr = btrfs_setxattr,
7569 .getxattr = btrfs_getxattr,
33268eaf 7570 .listxattr = btrfs_listxattr,
95819c05 7571 .removexattr = btrfs_removexattr,
618e21d5 7572};
6e1d5dcc 7573static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7574 .readlink = generic_readlink,
7575 .follow_link = page_follow_link_light,
7576 .put_link = page_put_link,
f209561a 7577 .getattr = btrfs_getattr,
fdebe2bd 7578 .permission = btrfs_permission,
0279b4cd
JO
7579 .setxattr = btrfs_setxattr,
7580 .getxattr = btrfs_getxattr,
7581 .listxattr = btrfs_listxattr,
7582 .removexattr = btrfs_removexattr,
39279cc3 7583};
76dda93c 7584
82d339d9 7585const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7586 .d_delete = btrfs_dentry_delete,
7587};