Btrfs: fix wrong orphan count of the fs/file tree
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
74struct kmem_cache *btrfs_trans_handle_cachep;
75struct kmem_cache *btrfs_transaction_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
78
79#define S_SHIFT 12
80static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88};
89
a41ad394
JB
90static int btrfs_setsize(struct inode *inode, loff_t newsize);
91static int btrfs_truncate(struct inode *inode);
5fd02043 92static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
93static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
2115133f
CM
97static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
7b128766 99
f34f57a3 100static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
0279b4cd
JO
103{
104 int err;
105
f34f57a3 106 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 107 if (!err)
2a7dba39 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
109 return err;
110}
111
c8b97818
CM
112/*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
d397712b 117static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
fe3f566c 120 int compress_type,
c8b97818
CM
121 struct page **compressed_pages)
122{
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
c8b97818 135
fe3f566c 136 if (compressed_size && compressed_pages)
c8b97818 137 cur_size = compressed_size;
c8b97818 138
d397712b
CM
139 path = btrfs_alloc_path();
140 if (!path)
c8b97818
CM
141 return -ENOMEM;
142
b9473439 143 path->leave_spinning = 1;
c8b97818 144
33345d01 145 key.objectid = btrfs_ino(inode);
c8b97818
CM
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
c8b97818
CM
153 if (ret) {
154 err = ret;
c8b97818
CM
155 goto fail;
156 }
157 leaf = path->nodes[0];
158 ei = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 btrfs_set_file_extent_encryption(leaf, ei, 0);
163 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 ptr = btrfs_file_extent_inline_start(ei);
166
261507a0 167 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
168 struct page *cpage;
169 int i = 0;
d397712b 170 while (compressed_size > 0) {
c8b97818 171 cpage = compressed_pages[i];
5b050f04 172 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
173 PAGE_CACHE_SIZE);
174
7ac687d9 175 kaddr = kmap_atomic(cpage);
c8b97818 176 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 177 kunmap_atomic(kaddr);
c8b97818
CM
178
179 i++;
180 ptr += cur_size;
181 compressed_size -= cur_size;
182 }
183 btrfs_set_file_extent_compression(leaf, ei,
261507a0 184 compress_type);
c8b97818
CM
185 } else {
186 page = find_get_page(inode->i_mapping,
187 start >> PAGE_CACHE_SHIFT);
188 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 189 kaddr = kmap_atomic(page);
c8b97818
CM
190 offset = start & (PAGE_CACHE_SIZE - 1);
191 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 192 kunmap_atomic(kaddr);
c8b97818
CM
193 page_cache_release(page);
194 }
195 btrfs_mark_buffer_dirty(leaf);
196 btrfs_free_path(path);
197
c2167754
YZ
198 /*
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
202 *
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
206 */
c8b97818 207 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 208 ret = btrfs_update_inode(trans, root, inode);
c2167754 209
79787eaa 210 return ret;
c8b97818
CM
211fail:
212 btrfs_free_path(path);
213 return err;
214}
215
216
217/*
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
221 */
7f366cfe 222static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
fe3f566c 225 size_t compressed_size, int compress_type,
c8b97818
CM
226 struct page **compressed_pages)
227{
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
233 u64 hint_byte;
234 u64 data_len = inline_len;
235 int ret;
236
237 if (compressed_size)
238 data_len = compressed_size;
239
240 if (start > 0 ||
70b99e69 241 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
242 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243 (!compressed_size &&
244 (actual_end & (root->sectorsize - 1)) == 0) ||
245 end + 1 < isize ||
246 data_len > root->fs_info->max_inline) {
247 return 1;
248 }
249
5dc562c5 250 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end,
a1ed835e 251 &hint_byte, 1);
79787eaa
JM
252 if (ret)
253 return ret;
c8b97818
CM
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
fe3f566c 259 compress_type, compressed_pages);
2adcac1a 260 if (ret && ret != -ENOSPC) {
79787eaa
JM
261 btrfs_abort_transaction(trans, root, ret);
262 return ret;
2adcac1a
JB
263 } else if (ret == -ENOSPC) {
264 return 1;
79787eaa 265 }
2adcac1a 266
0ca1f7ce 267 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 268 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
269 return 0;
270}
271
771ed689
CM
272struct async_extent {
273 u64 start;
274 u64 ram_size;
275 u64 compressed_size;
276 struct page **pages;
277 unsigned long nr_pages;
261507a0 278 int compress_type;
771ed689
CM
279 struct list_head list;
280};
281
282struct async_cow {
283 struct inode *inode;
284 struct btrfs_root *root;
285 struct page *locked_page;
286 u64 start;
287 u64 end;
288 struct list_head extents;
289 struct btrfs_work work;
290};
291
292static noinline int add_async_extent(struct async_cow *cow,
293 u64 start, u64 ram_size,
294 u64 compressed_size,
295 struct page **pages,
261507a0
LZ
296 unsigned long nr_pages,
297 int compress_type)
771ed689
CM
298{
299 struct async_extent *async_extent;
300
301 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 302 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
303 async_extent->start = start;
304 async_extent->ram_size = ram_size;
305 async_extent->compressed_size = compressed_size;
306 async_extent->pages = pages;
307 async_extent->nr_pages = nr_pages;
261507a0 308 async_extent->compress_type = compress_type;
771ed689
CM
309 list_add_tail(&async_extent->list, &cow->extents);
310 return 0;
311}
312
d352ac68 313/*
771ed689
CM
314 * we create compressed extents in two phases. The first
315 * phase compresses a range of pages that have already been
316 * locked (both pages and state bits are locked).
c8b97818 317 *
771ed689
CM
318 * This is done inside an ordered work queue, and the compression
319 * is spread across many cpus. The actual IO submission is step
320 * two, and the ordered work queue takes care of making sure that
321 * happens in the same order things were put onto the queue by
322 * writepages and friends.
c8b97818 323 *
771ed689
CM
324 * If this code finds it can't get good compression, it puts an
325 * entry onto the work queue to write the uncompressed bytes. This
326 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
327 * are written in the same order that the flusher thread sent them
328 * down.
d352ac68 329 */
771ed689
CM
330static noinline int compress_file_range(struct inode *inode,
331 struct page *locked_page,
332 u64 start, u64 end,
333 struct async_cow *async_cow,
334 int *num_added)
b888db2b
CM
335{
336 struct btrfs_root *root = BTRFS_I(inode)->root;
337 struct btrfs_trans_handle *trans;
db94535d 338 u64 num_bytes;
db94535d 339 u64 blocksize = root->sectorsize;
c8b97818 340 u64 actual_end;
42dc7bab 341 u64 isize = i_size_read(inode);
e6dcd2dc 342 int ret = 0;
c8b97818
CM
343 struct page **pages = NULL;
344 unsigned long nr_pages;
345 unsigned long nr_pages_ret = 0;
346 unsigned long total_compressed = 0;
347 unsigned long total_in = 0;
348 unsigned long max_compressed = 128 * 1024;
771ed689 349 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
350 int i;
351 int will_compress;
261507a0 352 int compress_type = root->fs_info->compress_type;
b888db2b 353
4cb13e5d
LB
354 /* if this is a small write inside eof, kick off a defrag */
355 if ((end - start + 1) < 16 * 1024 &&
356 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
357 btrfs_add_inode_defrag(NULL, inode);
358
42dc7bab 359 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
360again:
361 will_compress = 0;
362 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
363 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 364
f03d9301
CM
365 /*
366 * we don't want to send crud past the end of i_size through
367 * compression, that's just a waste of CPU time. So, if the
368 * end of the file is before the start of our current
369 * requested range of bytes, we bail out to the uncompressed
370 * cleanup code that can deal with all of this.
371 *
372 * It isn't really the fastest way to fix things, but this is a
373 * very uncommon corner.
374 */
375 if (actual_end <= start)
376 goto cleanup_and_bail_uncompressed;
377
c8b97818
CM
378 total_compressed = actual_end - start;
379
380 /* we want to make sure that amount of ram required to uncompress
381 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
382 * of a compressed extent to 128k. This is a crucial number
383 * because it also controls how easily we can spread reads across
384 * cpus for decompression.
385 *
386 * We also want to make sure the amount of IO required to do
387 * a random read is reasonably small, so we limit the size of
388 * a compressed extent to 128k.
c8b97818
CM
389 */
390 total_compressed = min(total_compressed, max_uncompressed);
db94535d 391 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 392 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
393 total_in = 0;
394 ret = 0;
db94535d 395
771ed689
CM
396 /*
397 * we do compression for mount -o compress and when the
398 * inode has not been flagged as nocompress. This flag can
399 * change at any time if we discover bad compression ratios.
c8b97818 400 */
6cbff00f 401 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 402 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
403 (BTRFS_I(inode)->force_compress) ||
404 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 405 WARN_ON(pages);
cfbc246e 406 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
407 if (!pages) {
408 /* just bail out to the uncompressed code */
409 goto cont;
410 }
c8b97818 411
261507a0
LZ
412 if (BTRFS_I(inode)->force_compress)
413 compress_type = BTRFS_I(inode)->force_compress;
414
415 ret = btrfs_compress_pages(compress_type,
416 inode->i_mapping, start,
417 total_compressed, pages,
418 nr_pages, &nr_pages_ret,
419 &total_in,
420 &total_compressed,
421 max_compressed);
c8b97818
CM
422
423 if (!ret) {
424 unsigned long offset = total_compressed &
425 (PAGE_CACHE_SIZE - 1);
426 struct page *page = pages[nr_pages_ret - 1];
427 char *kaddr;
428
429 /* zero the tail end of the last page, we might be
430 * sending it down to disk
431 */
432 if (offset) {
7ac687d9 433 kaddr = kmap_atomic(page);
c8b97818
CM
434 memset(kaddr + offset, 0,
435 PAGE_CACHE_SIZE - offset);
7ac687d9 436 kunmap_atomic(kaddr);
c8b97818
CM
437 }
438 will_compress = 1;
439 }
440 }
560f7d75 441cont:
c8b97818 442 if (start == 0) {
7a7eaa40 443 trans = btrfs_join_transaction(root);
79787eaa
JM
444 if (IS_ERR(trans)) {
445 ret = PTR_ERR(trans);
446 trans = NULL;
447 goto cleanup_and_out;
448 }
0ca1f7ce 449 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 450
c8b97818 451 /* lets try to make an inline extent */
771ed689 452 if (ret || total_in < (actual_end - start)) {
c8b97818 453 /* we didn't compress the entire range, try
771ed689 454 * to make an uncompressed inline extent.
c8b97818
CM
455 */
456 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 457 start, end, 0, 0, NULL);
c8b97818 458 } else {
771ed689 459 /* try making a compressed inline extent */
c8b97818
CM
460 ret = cow_file_range_inline(trans, root, inode,
461 start, end,
fe3f566c
LZ
462 total_compressed,
463 compress_type, pages);
c8b97818 464 }
79787eaa 465 if (ret <= 0) {
771ed689 466 /*
79787eaa
JM
467 * inline extent creation worked or returned error,
468 * we don't need to create any more async work items.
469 * Unlock and free up our temp pages.
771ed689 470 */
c8b97818 471 extent_clear_unlock_delalloc(inode,
a791e35e
CM
472 &BTRFS_I(inode)->io_tree,
473 start, end, NULL,
474 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 475 EXTENT_CLEAR_DELALLOC |
a791e35e 476 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
477
478 btrfs_end_transaction(trans, root);
c8b97818
CM
479 goto free_pages_out;
480 }
c2167754 481 btrfs_end_transaction(trans, root);
c8b97818
CM
482 }
483
484 if (will_compress) {
485 /*
486 * we aren't doing an inline extent round the compressed size
487 * up to a block size boundary so the allocator does sane
488 * things
489 */
490 total_compressed = (total_compressed + blocksize - 1) &
491 ~(blocksize - 1);
492
493 /*
494 * one last check to make sure the compression is really a
495 * win, compare the page count read with the blocks on disk
496 */
497 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
498 ~(PAGE_CACHE_SIZE - 1);
499 if (total_compressed >= total_in) {
500 will_compress = 0;
501 } else {
c8b97818
CM
502 num_bytes = total_in;
503 }
504 }
505 if (!will_compress && pages) {
506 /*
507 * the compression code ran but failed to make things smaller,
508 * free any pages it allocated and our page pointer array
509 */
510 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 511 WARN_ON(pages[i]->mapping);
c8b97818
CM
512 page_cache_release(pages[i]);
513 }
514 kfree(pages);
515 pages = NULL;
516 total_compressed = 0;
517 nr_pages_ret = 0;
518
519 /* flag the file so we don't compress in the future */
1e701a32
CM
520 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
521 !(BTRFS_I(inode)->force_compress)) {
a555f810 522 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 523 }
c8b97818 524 }
771ed689
CM
525 if (will_compress) {
526 *num_added += 1;
c8b97818 527
771ed689
CM
528 /* the async work queues will take care of doing actual
529 * allocation on disk for these compressed pages,
530 * and will submit them to the elevator.
531 */
532 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
533 total_compressed, pages, nr_pages_ret,
534 compress_type);
179e29e4 535
24ae6365 536 if (start + num_bytes < end) {
771ed689
CM
537 start += num_bytes;
538 pages = NULL;
539 cond_resched();
540 goto again;
541 }
542 } else {
f03d9301 543cleanup_and_bail_uncompressed:
771ed689
CM
544 /*
545 * No compression, but we still need to write the pages in
546 * the file we've been given so far. redirty the locked
547 * page if it corresponds to our extent and set things up
548 * for the async work queue to run cow_file_range to do
549 * the normal delalloc dance
550 */
551 if (page_offset(locked_page) >= start &&
552 page_offset(locked_page) <= end) {
553 __set_page_dirty_nobuffers(locked_page);
554 /* unlocked later on in the async handlers */
555 }
261507a0
LZ
556 add_async_extent(async_cow, start, end - start + 1,
557 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
558 *num_added += 1;
559 }
3b951516 560
771ed689 561out:
79787eaa 562 return ret;
771ed689
CM
563
564free_pages_out:
565 for (i = 0; i < nr_pages_ret; i++) {
566 WARN_ON(pages[i]->mapping);
567 page_cache_release(pages[i]);
568 }
d397712b 569 kfree(pages);
771ed689
CM
570
571 goto out;
79787eaa
JM
572
573cleanup_and_out:
574 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
575 start, end, NULL,
576 EXTENT_CLEAR_UNLOCK_PAGE |
577 EXTENT_CLEAR_DIRTY |
578 EXTENT_CLEAR_DELALLOC |
579 EXTENT_SET_WRITEBACK |
580 EXTENT_END_WRITEBACK);
581 if (!trans || IS_ERR(trans))
582 btrfs_error(root->fs_info, ret, "Failed to join transaction");
583 else
584 btrfs_abort_transaction(trans, root, ret);
585 goto free_pages_out;
771ed689
CM
586}
587
588/*
589 * phase two of compressed writeback. This is the ordered portion
590 * of the code, which only gets called in the order the work was
591 * queued. We walk all the async extents created by compress_file_range
592 * and send them down to the disk.
593 */
594static noinline int submit_compressed_extents(struct inode *inode,
595 struct async_cow *async_cow)
596{
597 struct async_extent *async_extent;
598 u64 alloc_hint = 0;
599 struct btrfs_trans_handle *trans;
600 struct btrfs_key ins;
601 struct extent_map *em;
602 struct btrfs_root *root = BTRFS_I(inode)->root;
603 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
604 struct extent_io_tree *io_tree;
f5a84ee3 605 int ret = 0;
771ed689
CM
606
607 if (list_empty(&async_cow->extents))
608 return 0;
609
771ed689 610
d397712b 611 while (!list_empty(&async_cow->extents)) {
771ed689
CM
612 async_extent = list_entry(async_cow->extents.next,
613 struct async_extent, list);
614 list_del(&async_extent->list);
c8b97818 615
771ed689
CM
616 io_tree = &BTRFS_I(inode)->io_tree;
617
f5a84ee3 618retry:
771ed689
CM
619 /* did the compression code fall back to uncompressed IO? */
620 if (!async_extent->pages) {
621 int page_started = 0;
622 unsigned long nr_written = 0;
623
624 lock_extent(io_tree, async_extent->start,
2ac55d41 625 async_extent->start +
d0082371 626 async_extent->ram_size - 1);
771ed689
CM
627
628 /* allocate blocks */
f5a84ee3
JB
629 ret = cow_file_range(inode, async_cow->locked_page,
630 async_extent->start,
631 async_extent->start +
632 async_extent->ram_size - 1,
633 &page_started, &nr_written, 0);
771ed689 634
79787eaa
JM
635 /* JDM XXX */
636
771ed689
CM
637 /*
638 * if page_started, cow_file_range inserted an
639 * inline extent and took care of all the unlocking
640 * and IO for us. Otherwise, we need to submit
641 * all those pages down to the drive.
642 */
f5a84ee3 643 if (!page_started && !ret)
771ed689
CM
644 extent_write_locked_range(io_tree,
645 inode, async_extent->start,
d397712b 646 async_extent->start +
771ed689
CM
647 async_extent->ram_size - 1,
648 btrfs_get_extent,
649 WB_SYNC_ALL);
650 kfree(async_extent);
651 cond_resched();
652 continue;
653 }
654
655 lock_extent(io_tree, async_extent->start,
d0082371 656 async_extent->start + async_extent->ram_size - 1);
771ed689 657
7a7eaa40 658 trans = btrfs_join_transaction(root);
79787eaa
JM
659 if (IS_ERR(trans)) {
660 ret = PTR_ERR(trans);
661 } else {
662 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
663 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
664 async_extent->compressed_size,
665 async_extent->compressed_size,
81c9ad23 666 0, alloc_hint, &ins, 1);
79787eaa
JM
667 if (ret)
668 btrfs_abort_transaction(trans, root, ret);
669 btrfs_end_transaction(trans, root);
670 }
c2167754 671
f5a84ee3
JB
672 if (ret) {
673 int i;
674 for (i = 0; i < async_extent->nr_pages; i++) {
675 WARN_ON(async_extent->pages[i]->mapping);
676 page_cache_release(async_extent->pages[i]);
677 }
678 kfree(async_extent->pages);
679 async_extent->nr_pages = 0;
680 async_extent->pages = NULL;
681 unlock_extent(io_tree, async_extent->start,
682 async_extent->start +
d0082371 683 async_extent->ram_size - 1);
79787eaa
JM
684 if (ret == -ENOSPC)
685 goto retry;
686 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
687 }
688
c2167754
YZ
689 /*
690 * here we're doing allocation and writeback of the
691 * compressed pages
692 */
693 btrfs_drop_extent_cache(inode, async_extent->start,
694 async_extent->start +
695 async_extent->ram_size - 1, 0);
696
172ddd60 697 em = alloc_extent_map();
79787eaa 698 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
699 em->start = async_extent->start;
700 em->len = async_extent->ram_size;
445a6944 701 em->orig_start = em->start;
c8b97818 702
771ed689
CM
703 em->block_start = ins.objectid;
704 em->block_len = ins.offset;
705 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 706 em->compress_type = async_extent->compress_type;
771ed689
CM
707 set_bit(EXTENT_FLAG_PINNED, &em->flags);
708 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
709
d397712b 710 while (1) {
890871be 711 write_lock(&em_tree->lock);
771ed689 712 ret = add_extent_mapping(em_tree, em);
890871be 713 write_unlock(&em_tree->lock);
771ed689
CM
714 if (ret != -EEXIST) {
715 free_extent_map(em);
716 break;
717 }
718 btrfs_drop_extent_cache(inode, async_extent->start,
719 async_extent->start +
720 async_extent->ram_size - 1, 0);
721 }
722
261507a0
LZ
723 ret = btrfs_add_ordered_extent_compress(inode,
724 async_extent->start,
725 ins.objectid,
726 async_extent->ram_size,
727 ins.offset,
728 BTRFS_ORDERED_COMPRESSED,
729 async_extent->compress_type);
79787eaa 730 BUG_ON(ret); /* -ENOMEM */
771ed689 731
771ed689
CM
732 /*
733 * clear dirty, set writeback and unlock the pages.
734 */
735 extent_clear_unlock_delalloc(inode,
a791e35e
CM
736 &BTRFS_I(inode)->io_tree,
737 async_extent->start,
738 async_extent->start +
739 async_extent->ram_size - 1,
740 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
741 EXTENT_CLEAR_UNLOCK |
a3429ab7 742 EXTENT_CLEAR_DELALLOC |
a791e35e 743 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
744
745 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
746 async_extent->start,
747 async_extent->ram_size,
748 ins.objectid,
749 ins.offset, async_extent->pages,
750 async_extent->nr_pages);
771ed689 751
79787eaa 752 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
753 alloc_hint = ins.objectid + ins.offset;
754 kfree(async_extent);
755 cond_resched();
756 }
79787eaa
JM
757 ret = 0;
758out:
759 return ret;
760out_free:
761 kfree(async_extent);
762 goto out;
771ed689
CM
763}
764
4b46fce2
JB
765static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
766 u64 num_bytes)
767{
768 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
769 struct extent_map *em;
770 u64 alloc_hint = 0;
771
772 read_lock(&em_tree->lock);
773 em = search_extent_mapping(em_tree, start, num_bytes);
774 if (em) {
775 /*
776 * if block start isn't an actual block number then find the
777 * first block in this inode and use that as a hint. If that
778 * block is also bogus then just don't worry about it.
779 */
780 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
781 free_extent_map(em);
782 em = search_extent_mapping(em_tree, 0, 0);
783 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
784 alloc_hint = em->block_start;
785 if (em)
786 free_extent_map(em);
787 } else {
788 alloc_hint = em->block_start;
789 free_extent_map(em);
790 }
791 }
792 read_unlock(&em_tree->lock);
793
794 return alloc_hint;
795}
796
771ed689
CM
797/*
798 * when extent_io.c finds a delayed allocation range in the file,
799 * the call backs end up in this code. The basic idea is to
800 * allocate extents on disk for the range, and create ordered data structs
801 * in ram to track those extents.
802 *
803 * locked_page is the page that writepage had locked already. We use
804 * it to make sure we don't do extra locks or unlocks.
805 *
806 * *page_started is set to one if we unlock locked_page and do everything
807 * required to start IO on it. It may be clean and already done with
808 * IO when we return.
809 */
810static noinline int cow_file_range(struct inode *inode,
811 struct page *locked_page,
812 u64 start, u64 end, int *page_started,
813 unsigned long *nr_written,
814 int unlock)
815{
816 struct btrfs_root *root = BTRFS_I(inode)->root;
817 struct btrfs_trans_handle *trans;
818 u64 alloc_hint = 0;
819 u64 num_bytes;
820 unsigned long ram_size;
821 u64 disk_num_bytes;
822 u64 cur_alloc_size;
823 u64 blocksize = root->sectorsize;
771ed689
CM
824 struct btrfs_key ins;
825 struct extent_map *em;
826 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
827 int ret = 0;
828
83eea1f1 829 BUG_ON(btrfs_is_free_space_inode(inode));
7a7eaa40 830 trans = btrfs_join_transaction(root);
79787eaa
JM
831 if (IS_ERR(trans)) {
832 extent_clear_unlock_delalloc(inode,
833 &BTRFS_I(inode)->io_tree,
beb42dd7 834 start, end, locked_page,
79787eaa
JM
835 EXTENT_CLEAR_UNLOCK_PAGE |
836 EXTENT_CLEAR_UNLOCK |
837 EXTENT_CLEAR_DELALLOC |
838 EXTENT_CLEAR_DIRTY |
839 EXTENT_SET_WRITEBACK |
840 EXTENT_END_WRITEBACK);
841 return PTR_ERR(trans);
842 }
0ca1f7ce 843 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 844
771ed689
CM
845 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
846 num_bytes = max(blocksize, num_bytes);
847 disk_num_bytes = num_bytes;
848 ret = 0;
849
4cb5300b 850 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
851 if (num_bytes < 64 * 1024 &&
852 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
853 btrfs_add_inode_defrag(trans, inode);
854
771ed689
CM
855 if (start == 0) {
856 /* lets try to make an inline extent */
857 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 858 start, end, 0, 0, NULL);
771ed689
CM
859 if (ret == 0) {
860 extent_clear_unlock_delalloc(inode,
a791e35e
CM
861 &BTRFS_I(inode)->io_tree,
862 start, end, NULL,
863 EXTENT_CLEAR_UNLOCK_PAGE |
864 EXTENT_CLEAR_UNLOCK |
865 EXTENT_CLEAR_DELALLOC |
866 EXTENT_CLEAR_DIRTY |
867 EXTENT_SET_WRITEBACK |
868 EXTENT_END_WRITEBACK);
c2167754 869
771ed689
CM
870 *nr_written = *nr_written +
871 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
872 *page_started = 1;
771ed689 873 goto out;
79787eaa
JM
874 } else if (ret < 0) {
875 btrfs_abort_transaction(trans, root, ret);
876 goto out_unlock;
771ed689
CM
877 }
878 }
879
880 BUG_ON(disk_num_bytes >
6c41761f 881 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 882
4b46fce2 883 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
884 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
885
d397712b 886 while (disk_num_bytes > 0) {
a791e35e
CM
887 unsigned long op;
888
287a0ab9 889 cur_alloc_size = disk_num_bytes;
e6dcd2dc 890 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 891 root->sectorsize, 0, alloc_hint,
81c9ad23 892 &ins, 1);
79787eaa
JM
893 if (ret < 0) {
894 btrfs_abort_transaction(trans, root, ret);
895 goto out_unlock;
896 }
d397712b 897
172ddd60 898 em = alloc_extent_map();
79787eaa 899 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 900 em->start = start;
445a6944 901 em->orig_start = em->start;
771ed689
CM
902 ram_size = ins.offset;
903 em->len = ins.offset;
c8b97818 904
e6dcd2dc 905 em->block_start = ins.objectid;
c8b97818 906 em->block_len = ins.offset;
e6dcd2dc 907 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 908 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 909
d397712b 910 while (1) {
890871be 911 write_lock(&em_tree->lock);
e6dcd2dc 912 ret = add_extent_mapping(em_tree, em);
890871be 913 write_unlock(&em_tree->lock);
e6dcd2dc
CM
914 if (ret != -EEXIST) {
915 free_extent_map(em);
916 break;
917 }
918 btrfs_drop_extent_cache(inode, start,
c8b97818 919 start + ram_size - 1, 0);
e6dcd2dc
CM
920 }
921
98d20f67 922 cur_alloc_size = ins.offset;
e6dcd2dc 923 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 924 ram_size, cur_alloc_size, 0);
79787eaa 925 BUG_ON(ret); /* -ENOMEM */
c8b97818 926
17d217fe
YZ
927 if (root->root_key.objectid ==
928 BTRFS_DATA_RELOC_TREE_OBJECTID) {
929 ret = btrfs_reloc_clone_csums(inode, start,
930 cur_alloc_size);
79787eaa
JM
931 if (ret) {
932 btrfs_abort_transaction(trans, root, ret);
933 goto out_unlock;
934 }
17d217fe
YZ
935 }
936
d397712b 937 if (disk_num_bytes < cur_alloc_size)
3b951516 938 break;
d397712b 939
c8b97818
CM
940 /* we're not doing compressed IO, don't unlock the first
941 * page (which the caller expects to stay locked), don't
942 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
943 *
944 * Do set the Private2 bit so we know this page was properly
945 * setup for writepage
c8b97818 946 */
a791e35e
CM
947 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
948 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
949 EXTENT_SET_PRIVATE2;
950
c8b97818
CM
951 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
952 start, start + ram_size - 1,
a791e35e 953 locked_page, op);
c8b97818 954 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
955 num_bytes -= cur_alloc_size;
956 alloc_hint = ins.objectid + ins.offset;
957 start += cur_alloc_size;
b888db2b 958 }
771ed689 959 ret = 0;
79787eaa 960out:
b888db2b 961 btrfs_end_transaction(trans, root);
c8b97818 962
be20aa9d 963 return ret;
79787eaa
JM
964out_unlock:
965 extent_clear_unlock_delalloc(inode,
966 &BTRFS_I(inode)->io_tree,
beb42dd7 967 start, end, locked_page,
79787eaa
JM
968 EXTENT_CLEAR_UNLOCK_PAGE |
969 EXTENT_CLEAR_UNLOCK |
970 EXTENT_CLEAR_DELALLOC |
971 EXTENT_CLEAR_DIRTY |
972 EXTENT_SET_WRITEBACK |
973 EXTENT_END_WRITEBACK);
974
975 goto out;
771ed689 976}
c8b97818 977
771ed689
CM
978/*
979 * work queue call back to started compression on a file and pages
980 */
981static noinline void async_cow_start(struct btrfs_work *work)
982{
983 struct async_cow *async_cow;
984 int num_added = 0;
985 async_cow = container_of(work, struct async_cow, work);
986
987 compress_file_range(async_cow->inode, async_cow->locked_page,
988 async_cow->start, async_cow->end, async_cow,
989 &num_added);
8180ef88 990 if (num_added == 0) {
cb77fcd8 991 btrfs_add_delayed_iput(async_cow->inode);
771ed689 992 async_cow->inode = NULL;
8180ef88 993 }
771ed689
CM
994}
995
996/*
997 * work queue call back to submit previously compressed pages
998 */
999static noinline void async_cow_submit(struct btrfs_work *work)
1000{
1001 struct async_cow *async_cow;
1002 struct btrfs_root *root;
1003 unsigned long nr_pages;
1004
1005 async_cow = container_of(work, struct async_cow, work);
1006
1007 root = async_cow->root;
1008 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1009 PAGE_CACHE_SHIFT;
1010
66657b31 1011 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1012 5 * 1024 * 1024 &&
771ed689
CM
1013 waitqueue_active(&root->fs_info->async_submit_wait))
1014 wake_up(&root->fs_info->async_submit_wait);
1015
d397712b 1016 if (async_cow->inode)
771ed689 1017 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1018}
c8b97818 1019
771ed689
CM
1020static noinline void async_cow_free(struct btrfs_work *work)
1021{
1022 struct async_cow *async_cow;
1023 async_cow = container_of(work, struct async_cow, work);
8180ef88 1024 if (async_cow->inode)
cb77fcd8 1025 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1026 kfree(async_cow);
1027}
1028
1029static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1030 u64 start, u64 end, int *page_started,
1031 unsigned long *nr_written)
1032{
1033 struct async_cow *async_cow;
1034 struct btrfs_root *root = BTRFS_I(inode)->root;
1035 unsigned long nr_pages;
1036 u64 cur_end;
287082b0 1037 int limit = 10 * 1024 * 1024;
771ed689 1038
a3429ab7
CM
1039 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1040 1, 0, NULL, GFP_NOFS);
d397712b 1041 while (start < end) {
771ed689 1042 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1043 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1044 async_cow->inode = igrab(inode);
771ed689
CM
1045 async_cow->root = root;
1046 async_cow->locked_page = locked_page;
1047 async_cow->start = start;
1048
6cbff00f 1049 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1050 cur_end = end;
1051 else
1052 cur_end = min(end, start + 512 * 1024 - 1);
1053
1054 async_cow->end = cur_end;
1055 INIT_LIST_HEAD(&async_cow->extents);
1056
1057 async_cow->work.func = async_cow_start;
1058 async_cow->work.ordered_func = async_cow_submit;
1059 async_cow->work.ordered_free = async_cow_free;
1060 async_cow->work.flags = 0;
1061
771ed689
CM
1062 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1063 PAGE_CACHE_SHIFT;
1064 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1065
1066 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1067 &async_cow->work);
1068
1069 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1070 wait_event(root->fs_info->async_submit_wait,
1071 (atomic_read(&root->fs_info->async_delalloc_pages) <
1072 limit));
1073 }
1074
d397712b 1075 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1076 atomic_read(&root->fs_info->async_delalloc_pages)) {
1077 wait_event(root->fs_info->async_submit_wait,
1078 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1079 0));
1080 }
1081
1082 *nr_written += nr_pages;
1083 start = cur_end + 1;
1084 }
1085 *page_started = 1;
1086 return 0;
be20aa9d
CM
1087}
1088
d397712b 1089static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1090 u64 bytenr, u64 num_bytes)
1091{
1092 int ret;
1093 struct btrfs_ordered_sum *sums;
1094 LIST_HEAD(list);
1095
07d400a6 1096 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1097 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1098 if (ret == 0 && list_empty(&list))
1099 return 0;
1100
1101 while (!list_empty(&list)) {
1102 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1103 list_del(&sums->list);
1104 kfree(sums);
1105 }
1106 return 1;
1107}
1108
d352ac68
CM
1109/*
1110 * when nowcow writeback call back. This checks for snapshots or COW copies
1111 * of the extents that exist in the file, and COWs the file as required.
1112 *
1113 * If no cow copies or snapshots exist, we write directly to the existing
1114 * blocks on disk
1115 */
7f366cfe
CM
1116static noinline int run_delalloc_nocow(struct inode *inode,
1117 struct page *locked_page,
771ed689
CM
1118 u64 start, u64 end, int *page_started, int force,
1119 unsigned long *nr_written)
be20aa9d 1120{
be20aa9d 1121 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1122 struct btrfs_trans_handle *trans;
be20aa9d 1123 struct extent_buffer *leaf;
be20aa9d 1124 struct btrfs_path *path;
80ff3856 1125 struct btrfs_file_extent_item *fi;
be20aa9d 1126 struct btrfs_key found_key;
80ff3856
YZ
1127 u64 cow_start;
1128 u64 cur_offset;
1129 u64 extent_end;
5d4f98a2 1130 u64 extent_offset;
80ff3856
YZ
1131 u64 disk_bytenr;
1132 u64 num_bytes;
1133 int extent_type;
79787eaa 1134 int ret, err;
d899e052 1135 int type;
80ff3856
YZ
1136 int nocow;
1137 int check_prev = 1;
82d5902d 1138 bool nolock;
33345d01 1139 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1140
1141 path = btrfs_alloc_path();
17ca04af
JB
1142 if (!path) {
1143 extent_clear_unlock_delalloc(inode,
1144 &BTRFS_I(inode)->io_tree,
1145 start, end, locked_page,
1146 EXTENT_CLEAR_UNLOCK_PAGE |
1147 EXTENT_CLEAR_UNLOCK |
1148 EXTENT_CLEAR_DELALLOC |
1149 EXTENT_CLEAR_DIRTY |
1150 EXTENT_SET_WRITEBACK |
1151 EXTENT_END_WRITEBACK);
d8926bb3 1152 return -ENOMEM;
17ca04af 1153 }
82d5902d 1154
83eea1f1 1155 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1156
1157 if (nolock)
7a7eaa40 1158 trans = btrfs_join_transaction_nolock(root);
82d5902d 1159 else
7a7eaa40 1160 trans = btrfs_join_transaction(root);
ff5714cc 1161
79787eaa 1162 if (IS_ERR(trans)) {
17ca04af
JB
1163 extent_clear_unlock_delalloc(inode,
1164 &BTRFS_I(inode)->io_tree,
1165 start, end, locked_page,
1166 EXTENT_CLEAR_UNLOCK_PAGE |
1167 EXTENT_CLEAR_UNLOCK |
1168 EXTENT_CLEAR_DELALLOC |
1169 EXTENT_CLEAR_DIRTY |
1170 EXTENT_SET_WRITEBACK |
1171 EXTENT_END_WRITEBACK);
79787eaa
JM
1172 btrfs_free_path(path);
1173 return PTR_ERR(trans);
1174 }
1175
74b21075 1176 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1177
80ff3856
YZ
1178 cow_start = (u64)-1;
1179 cur_offset = start;
1180 while (1) {
33345d01 1181 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1182 cur_offset, 0);
79787eaa
JM
1183 if (ret < 0) {
1184 btrfs_abort_transaction(trans, root, ret);
1185 goto error;
1186 }
80ff3856
YZ
1187 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1188 leaf = path->nodes[0];
1189 btrfs_item_key_to_cpu(leaf, &found_key,
1190 path->slots[0] - 1);
33345d01 1191 if (found_key.objectid == ino &&
80ff3856
YZ
1192 found_key.type == BTRFS_EXTENT_DATA_KEY)
1193 path->slots[0]--;
1194 }
1195 check_prev = 0;
1196next_slot:
1197 leaf = path->nodes[0];
1198 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1199 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1200 if (ret < 0) {
1201 btrfs_abort_transaction(trans, root, ret);
1202 goto error;
1203 }
80ff3856
YZ
1204 if (ret > 0)
1205 break;
1206 leaf = path->nodes[0];
1207 }
be20aa9d 1208
80ff3856
YZ
1209 nocow = 0;
1210 disk_bytenr = 0;
17d217fe 1211 num_bytes = 0;
80ff3856
YZ
1212 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1213
33345d01 1214 if (found_key.objectid > ino ||
80ff3856
YZ
1215 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1216 found_key.offset > end)
1217 break;
1218
1219 if (found_key.offset > cur_offset) {
1220 extent_end = found_key.offset;
e9061e21 1221 extent_type = 0;
80ff3856
YZ
1222 goto out_check;
1223 }
1224
1225 fi = btrfs_item_ptr(leaf, path->slots[0],
1226 struct btrfs_file_extent_item);
1227 extent_type = btrfs_file_extent_type(leaf, fi);
1228
d899e052
YZ
1229 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1230 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1231 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1232 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1233 extent_end = found_key.offset +
1234 btrfs_file_extent_num_bytes(leaf, fi);
1235 if (extent_end <= start) {
1236 path->slots[0]++;
1237 goto next_slot;
1238 }
17d217fe
YZ
1239 if (disk_bytenr == 0)
1240 goto out_check;
80ff3856
YZ
1241 if (btrfs_file_extent_compression(leaf, fi) ||
1242 btrfs_file_extent_encryption(leaf, fi) ||
1243 btrfs_file_extent_other_encoding(leaf, fi))
1244 goto out_check;
d899e052
YZ
1245 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1246 goto out_check;
d2fb3437 1247 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1248 goto out_check;
33345d01 1249 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1250 found_key.offset -
1251 extent_offset, disk_bytenr))
17d217fe 1252 goto out_check;
5d4f98a2 1253 disk_bytenr += extent_offset;
17d217fe
YZ
1254 disk_bytenr += cur_offset - found_key.offset;
1255 num_bytes = min(end + 1, extent_end) - cur_offset;
1256 /*
1257 * force cow if csum exists in the range.
1258 * this ensure that csum for a given extent are
1259 * either valid or do not exist.
1260 */
1261 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1262 goto out_check;
80ff3856
YZ
1263 nocow = 1;
1264 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1265 extent_end = found_key.offset +
1266 btrfs_file_extent_inline_len(leaf, fi);
1267 extent_end = ALIGN(extent_end, root->sectorsize);
1268 } else {
1269 BUG_ON(1);
1270 }
1271out_check:
1272 if (extent_end <= start) {
1273 path->slots[0]++;
1274 goto next_slot;
1275 }
1276 if (!nocow) {
1277 if (cow_start == (u64)-1)
1278 cow_start = cur_offset;
1279 cur_offset = extent_end;
1280 if (cur_offset > end)
1281 break;
1282 path->slots[0]++;
1283 goto next_slot;
7ea394f1
YZ
1284 }
1285
b3b4aa74 1286 btrfs_release_path(path);
80ff3856
YZ
1287 if (cow_start != (u64)-1) {
1288 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1289 found_key.offset - 1, page_started,
1290 nr_written, 1);
79787eaa
JM
1291 if (ret) {
1292 btrfs_abort_transaction(trans, root, ret);
1293 goto error;
1294 }
80ff3856 1295 cow_start = (u64)-1;
7ea394f1 1296 }
80ff3856 1297
d899e052
YZ
1298 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1299 struct extent_map *em;
1300 struct extent_map_tree *em_tree;
1301 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1302 em = alloc_extent_map();
79787eaa 1303 BUG_ON(!em); /* -ENOMEM */
d899e052 1304 em->start = cur_offset;
445a6944 1305 em->orig_start = em->start;
d899e052
YZ
1306 em->len = num_bytes;
1307 em->block_len = num_bytes;
1308 em->block_start = disk_bytenr;
1309 em->bdev = root->fs_info->fs_devices->latest_bdev;
1310 set_bit(EXTENT_FLAG_PINNED, &em->flags);
4e2f84e6 1311 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
d899e052 1312 while (1) {
890871be 1313 write_lock(&em_tree->lock);
d899e052 1314 ret = add_extent_mapping(em_tree, em);
890871be 1315 write_unlock(&em_tree->lock);
d899e052
YZ
1316 if (ret != -EEXIST) {
1317 free_extent_map(em);
1318 break;
1319 }
1320 btrfs_drop_extent_cache(inode, em->start,
1321 em->start + em->len - 1, 0);
1322 }
1323 type = BTRFS_ORDERED_PREALLOC;
1324 } else {
1325 type = BTRFS_ORDERED_NOCOW;
1326 }
80ff3856
YZ
1327
1328 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1329 num_bytes, num_bytes, type);
79787eaa 1330 BUG_ON(ret); /* -ENOMEM */
771ed689 1331
efa56464
YZ
1332 if (root->root_key.objectid ==
1333 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1334 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1335 num_bytes);
79787eaa
JM
1336 if (ret) {
1337 btrfs_abort_transaction(trans, root, ret);
1338 goto error;
1339 }
efa56464
YZ
1340 }
1341
d899e052 1342 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1343 cur_offset, cur_offset + num_bytes - 1,
1344 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1345 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1346 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1347 cur_offset = extent_end;
1348 if (cur_offset > end)
1349 break;
be20aa9d 1350 }
b3b4aa74 1351 btrfs_release_path(path);
80ff3856 1352
17ca04af 1353 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1354 cow_start = cur_offset;
17ca04af
JB
1355 cur_offset = end;
1356 }
1357
80ff3856
YZ
1358 if (cow_start != (u64)-1) {
1359 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1360 page_started, nr_written, 1);
79787eaa
JM
1361 if (ret) {
1362 btrfs_abort_transaction(trans, root, ret);
1363 goto error;
1364 }
80ff3856
YZ
1365 }
1366
79787eaa 1367error:
0cb59c99 1368 if (nolock) {
79787eaa 1369 err = btrfs_end_transaction_nolock(trans, root);
0cb59c99 1370 } else {
79787eaa 1371 err = btrfs_end_transaction(trans, root);
0cb59c99 1372 }
79787eaa
JM
1373 if (!ret)
1374 ret = err;
1375
17ca04af
JB
1376 if (ret && cur_offset < end)
1377 extent_clear_unlock_delalloc(inode,
1378 &BTRFS_I(inode)->io_tree,
1379 cur_offset, end, locked_page,
1380 EXTENT_CLEAR_UNLOCK_PAGE |
1381 EXTENT_CLEAR_UNLOCK |
1382 EXTENT_CLEAR_DELALLOC |
1383 EXTENT_CLEAR_DIRTY |
1384 EXTENT_SET_WRITEBACK |
1385 EXTENT_END_WRITEBACK);
1386
7ea394f1 1387 btrfs_free_path(path);
79787eaa 1388 return ret;
be20aa9d
CM
1389}
1390
d352ac68
CM
1391/*
1392 * extent_io.c call back to do delayed allocation processing
1393 */
c8b97818 1394static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1395 u64 start, u64 end, int *page_started,
1396 unsigned long *nr_written)
be20aa9d 1397{
be20aa9d 1398 int ret;
7f366cfe 1399 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1400
7ddf5a42 1401 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1402 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1403 page_started, 1, nr_written);
7ddf5a42 1404 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1405 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1406 page_started, 0, nr_written);
7ddf5a42
JB
1407 } else if (!btrfs_test_opt(root, COMPRESS) &&
1408 !(BTRFS_I(inode)->force_compress) &&
1409 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1410 ret = cow_file_range(inode, locked_page, start, end,
1411 page_started, nr_written, 1);
7ddf5a42
JB
1412 } else {
1413 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1414 &BTRFS_I(inode)->runtime_flags);
771ed689 1415 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1416 page_started, nr_written);
7ddf5a42 1417 }
b888db2b
CM
1418 return ret;
1419}
1420
1bf85046
JM
1421static void btrfs_split_extent_hook(struct inode *inode,
1422 struct extent_state *orig, u64 split)
9ed74f2d 1423{
0ca1f7ce 1424 /* not delalloc, ignore it */
9ed74f2d 1425 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1426 return;
9ed74f2d 1427
9e0baf60
JB
1428 spin_lock(&BTRFS_I(inode)->lock);
1429 BTRFS_I(inode)->outstanding_extents++;
1430 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1431}
1432
1433/*
1434 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1435 * extents so we can keep track of new extents that are just merged onto old
1436 * extents, such as when we are doing sequential writes, so we can properly
1437 * account for the metadata space we'll need.
1438 */
1bf85046
JM
1439static void btrfs_merge_extent_hook(struct inode *inode,
1440 struct extent_state *new,
1441 struct extent_state *other)
9ed74f2d 1442{
9ed74f2d
JB
1443 /* not delalloc, ignore it */
1444 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1445 return;
9ed74f2d 1446
9e0baf60
JB
1447 spin_lock(&BTRFS_I(inode)->lock);
1448 BTRFS_I(inode)->outstanding_extents--;
1449 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1450}
1451
d352ac68
CM
1452/*
1453 * extent_io.c set_bit_hook, used to track delayed allocation
1454 * bytes in this file, and to maintain the list of inodes that
1455 * have pending delalloc work to be done.
1456 */
1bf85046
JM
1457static void btrfs_set_bit_hook(struct inode *inode,
1458 struct extent_state *state, int *bits)
291d673e 1459{
9ed74f2d 1460
75eff68e
CM
1461 /*
1462 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1463 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1464 * bit, which is only set or cleared with irqs on
1465 */
0ca1f7ce 1466 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1467 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1468 u64 len = state->end + 1 - state->start;
83eea1f1 1469 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1470
9e0baf60 1471 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1472 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1473 } else {
1474 spin_lock(&BTRFS_I(inode)->lock);
1475 BTRFS_I(inode)->outstanding_extents++;
1476 spin_unlock(&BTRFS_I(inode)->lock);
1477 }
287a0ab9 1478
75eff68e 1479 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1480 BTRFS_I(inode)->delalloc_bytes += len;
1481 root->fs_info->delalloc_bytes += len;
0cb59c99 1482 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1483 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1484 &root->fs_info->delalloc_inodes);
1485 }
75eff68e 1486 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1487 }
291d673e
CM
1488}
1489
d352ac68
CM
1490/*
1491 * extent_io.c clear_bit_hook, see set_bit_hook for why
1492 */
1bf85046
JM
1493static void btrfs_clear_bit_hook(struct inode *inode,
1494 struct extent_state *state, int *bits)
291d673e 1495{
75eff68e
CM
1496 /*
1497 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1498 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1499 * bit, which is only set or cleared with irqs on
1500 */
0ca1f7ce 1501 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1502 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1503 u64 len = state->end + 1 - state->start;
83eea1f1 1504 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1505
9e0baf60 1506 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1507 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1508 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1509 spin_lock(&BTRFS_I(inode)->lock);
1510 BTRFS_I(inode)->outstanding_extents--;
1511 spin_unlock(&BTRFS_I(inode)->lock);
1512 }
0ca1f7ce
YZ
1513
1514 if (*bits & EXTENT_DO_ACCOUNTING)
1515 btrfs_delalloc_release_metadata(inode, len);
1516
0cb59c99
JB
1517 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1518 && do_list)
0ca1f7ce 1519 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1520
75eff68e 1521 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1522 root->fs_info->delalloc_bytes -= len;
1523 BTRFS_I(inode)->delalloc_bytes -= len;
1524
0cb59c99 1525 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1526 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1527 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1528 }
75eff68e 1529 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1530 }
291d673e
CM
1531}
1532
d352ac68
CM
1533/*
1534 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1535 * we don't create bios that span stripes or chunks
1536 */
239b14b3 1537int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1538 size_t size, struct bio *bio,
1539 unsigned long bio_flags)
239b14b3
CM
1540{
1541 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1542 struct btrfs_mapping_tree *map_tree;
a62b9401 1543 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1544 u64 length = 0;
1545 u64 map_length;
239b14b3
CM
1546 int ret;
1547
771ed689
CM
1548 if (bio_flags & EXTENT_BIO_COMPRESSED)
1549 return 0;
1550
f2d8d74d 1551 length = bio->bi_size;
239b14b3
CM
1552 map_tree = &root->fs_info->mapping_tree;
1553 map_length = length;
cea9e445 1554 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1555 &map_length, NULL, 0);
3444a972
JM
1556 /* Will always return 0 or 1 with map_multi == NULL */
1557 BUG_ON(ret < 0);
d397712b 1558 if (map_length < length + size)
239b14b3 1559 return 1;
3444a972 1560 return 0;
239b14b3
CM
1561}
1562
d352ac68
CM
1563/*
1564 * in order to insert checksums into the metadata in large chunks,
1565 * we wait until bio submission time. All the pages in the bio are
1566 * checksummed and sums are attached onto the ordered extent record.
1567 *
1568 * At IO completion time the cums attached on the ordered extent record
1569 * are inserted into the btree
1570 */
d397712b
CM
1571static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1572 struct bio *bio, int mirror_num,
eaf25d93
CM
1573 unsigned long bio_flags,
1574 u64 bio_offset)
065631f6 1575{
065631f6 1576 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1577 int ret = 0;
e015640f 1578
d20f7043 1579 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1580 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1581 return 0;
1582}
e015640f 1583
4a69a410
CM
1584/*
1585 * in order to insert checksums into the metadata in large chunks,
1586 * we wait until bio submission time. All the pages in the bio are
1587 * checksummed and sums are attached onto the ordered extent record.
1588 *
1589 * At IO completion time the cums attached on the ordered extent record
1590 * are inserted into the btree
1591 */
b2950863 1592static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1593 int mirror_num, unsigned long bio_flags,
1594 u64 bio_offset)
4a69a410
CM
1595{
1596 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1597 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1598}
1599
d352ac68 1600/*
cad321ad
CM
1601 * extent_io.c submission hook. This does the right thing for csum calculation
1602 * on write, or reading the csums from the tree before a read
d352ac68 1603 */
b2950863 1604static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1605 int mirror_num, unsigned long bio_flags,
1606 u64 bio_offset)
44b8bd7e
CM
1607{
1608 struct btrfs_root *root = BTRFS_I(inode)->root;
1609 int ret = 0;
19b9bdb0 1610 int skip_sum;
0417341e 1611 int metadata = 0;
44b8bd7e 1612
6cbff00f 1613 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1614
83eea1f1 1615 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1616 metadata = 2;
1617
7b6d91da 1618 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1619 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1620 if (ret)
1621 return ret;
1622
d20f7043 1623 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1624 return btrfs_submit_compressed_read(inode, bio,
1625 mirror_num, bio_flags);
c2db1073
TI
1626 } else if (!skip_sum) {
1627 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1628 if (ret)
1629 return ret;
1630 }
4d1b5fb4 1631 goto mapit;
19b9bdb0 1632 } else if (!skip_sum) {
17d217fe
YZ
1633 /* csum items have already been cloned */
1634 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1635 goto mapit;
19b9bdb0
CM
1636 /* we're doing a write, do the async checksumming */
1637 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1638 inode, rw, bio, mirror_num,
eaf25d93
CM
1639 bio_flags, bio_offset,
1640 __btrfs_submit_bio_start,
4a69a410 1641 __btrfs_submit_bio_done);
19b9bdb0
CM
1642 }
1643
0b86a832 1644mapit:
8b712842 1645 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1646}
6885f308 1647
d352ac68
CM
1648/*
1649 * given a list of ordered sums record them in the inode. This happens
1650 * at IO completion time based on sums calculated at bio submission time.
1651 */
ba1da2f4 1652static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1653 struct inode *inode, u64 file_offset,
1654 struct list_head *list)
1655{
e6dcd2dc
CM
1656 struct btrfs_ordered_sum *sum;
1657
c6e30871 1658 list_for_each_entry(sum, list, list) {
d20f7043
CM
1659 btrfs_csum_file_blocks(trans,
1660 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1661 }
1662 return 0;
1663}
1664
2ac55d41
JB
1665int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1666 struct extent_state **cached_state)
ea8c2819 1667{
d397712b 1668 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1669 WARN_ON(1);
ea8c2819 1670 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1671 cached_state, GFP_NOFS);
ea8c2819
CM
1672}
1673
d352ac68 1674/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1675struct btrfs_writepage_fixup {
1676 struct page *page;
1677 struct btrfs_work work;
1678};
1679
b2950863 1680static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1681{
1682 struct btrfs_writepage_fixup *fixup;
1683 struct btrfs_ordered_extent *ordered;
2ac55d41 1684 struct extent_state *cached_state = NULL;
247e743c
CM
1685 struct page *page;
1686 struct inode *inode;
1687 u64 page_start;
1688 u64 page_end;
87826df0 1689 int ret;
247e743c
CM
1690
1691 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1692 page = fixup->page;
4a096752 1693again:
247e743c
CM
1694 lock_page(page);
1695 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1696 ClearPageChecked(page);
1697 goto out_page;
1698 }
1699
1700 inode = page->mapping->host;
1701 page_start = page_offset(page);
1702 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1703
2ac55d41 1704 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1705 &cached_state);
4a096752
CM
1706
1707 /* already ordered? We're done */
8b62b72b 1708 if (PagePrivate2(page))
247e743c 1709 goto out;
4a096752
CM
1710
1711 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1712 if (ordered) {
2ac55d41
JB
1713 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1714 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1715 unlock_page(page);
1716 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1717 btrfs_put_ordered_extent(ordered);
4a096752
CM
1718 goto again;
1719 }
247e743c 1720
87826df0
JM
1721 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1722 if (ret) {
1723 mapping_set_error(page->mapping, ret);
1724 end_extent_writepage(page, ret, page_start, page_end);
1725 ClearPageChecked(page);
1726 goto out;
1727 }
1728
2ac55d41 1729 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1730 ClearPageChecked(page);
87826df0 1731 set_page_dirty(page);
247e743c 1732out:
2ac55d41
JB
1733 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1734 &cached_state, GFP_NOFS);
247e743c
CM
1735out_page:
1736 unlock_page(page);
1737 page_cache_release(page);
b897abec 1738 kfree(fixup);
247e743c
CM
1739}
1740
1741/*
1742 * There are a few paths in the higher layers of the kernel that directly
1743 * set the page dirty bit without asking the filesystem if it is a
1744 * good idea. This causes problems because we want to make sure COW
1745 * properly happens and the data=ordered rules are followed.
1746 *
c8b97818 1747 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1748 * hasn't been properly setup for IO. We kick off an async process
1749 * to fix it up. The async helper will wait for ordered extents, set
1750 * the delalloc bit and make it safe to write the page.
1751 */
b2950863 1752static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1753{
1754 struct inode *inode = page->mapping->host;
1755 struct btrfs_writepage_fixup *fixup;
1756 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1757
8b62b72b
CM
1758 /* this page is properly in the ordered list */
1759 if (TestClearPagePrivate2(page))
247e743c
CM
1760 return 0;
1761
1762 if (PageChecked(page))
1763 return -EAGAIN;
1764
1765 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1766 if (!fixup)
1767 return -EAGAIN;
f421950f 1768
247e743c
CM
1769 SetPageChecked(page);
1770 page_cache_get(page);
1771 fixup->work.func = btrfs_writepage_fixup_worker;
1772 fixup->page = page;
1773 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1774 return -EBUSY;
247e743c
CM
1775}
1776
d899e052
YZ
1777static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1778 struct inode *inode, u64 file_pos,
1779 u64 disk_bytenr, u64 disk_num_bytes,
1780 u64 num_bytes, u64 ram_bytes,
1781 u8 compression, u8 encryption,
1782 u16 other_encoding, int extent_type)
1783{
1784 struct btrfs_root *root = BTRFS_I(inode)->root;
1785 struct btrfs_file_extent_item *fi;
1786 struct btrfs_path *path;
1787 struct extent_buffer *leaf;
1788 struct btrfs_key ins;
1789 u64 hint;
1790 int ret;
1791
1792 path = btrfs_alloc_path();
d8926bb3
MF
1793 if (!path)
1794 return -ENOMEM;
d899e052 1795
b9473439 1796 path->leave_spinning = 1;
a1ed835e
CM
1797
1798 /*
1799 * we may be replacing one extent in the tree with another.
1800 * The new extent is pinned in the extent map, and we don't want
1801 * to drop it from the cache until it is completely in the btree.
1802 *
1803 * So, tell btrfs_drop_extents to leave this extent in the cache.
1804 * the caller is expected to unpin it and allow it to be merged
1805 * with the others.
1806 */
5dc562c5
JB
1807 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1808 file_pos + num_bytes,
920bbbfb 1809 &hint, 0);
79787eaa
JM
1810 if (ret)
1811 goto out;
d899e052 1812
33345d01 1813 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1814 ins.offset = file_pos;
1815 ins.type = BTRFS_EXTENT_DATA_KEY;
1816 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1817 if (ret)
1818 goto out;
d899e052
YZ
1819 leaf = path->nodes[0];
1820 fi = btrfs_item_ptr(leaf, path->slots[0],
1821 struct btrfs_file_extent_item);
1822 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1823 btrfs_set_file_extent_type(leaf, fi, extent_type);
1824 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1825 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1826 btrfs_set_file_extent_offset(leaf, fi, 0);
1827 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1828 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1829 btrfs_set_file_extent_compression(leaf, fi, compression);
1830 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1831 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1832
1833 btrfs_unlock_up_safe(path, 1);
1834 btrfs_set_lock_blocking(leaf);
1835
d899e052
YZ
1836 btrfs_mark_buffer_dirty(leaf);
1837
1838 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1839
1840 ins.objectid = disk_bytenr;
1841 ins.offset = disk_num_bytes;
1842 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1843 ret = btrfs_alloc_reserved_file_extent(trans, root,
1844 root->root_key.objectid,
33345d01 1845 btrfs_ino(inode), file_pos, &ins);
79787eaa 1846out:
d899e052 1847 btrfs_free_path(path);
b9473439 1848
79787eaa 1849 return ret;
d899e052
YZ
1850}
1851
5d13a98f
CM
1852/*
1853 * helper function for btrfs_finish_ordered_io, this
1854 * just reads in some of the csum leaves to prime them into ram
1855 * before we start the transaction. It limits the amount of btree
1856 * reads required while inside the transaction.
1857 */
d352ac68
CM
1858/* as ordered data IO finishes, this gets called so we can finish
1859 * an ordered extent if the range of bytes in the file it covers are
1860 * fully written.
1861 */
5fd02043 1862static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 1863{
5fd02043 1864 struct inode *inode = ordered_extent->inode;
e6dcd2dc 1865 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1866 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 1867 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1868 struct extent_state *cached_state = NULL;
261507a0 1869 int compress_type = 0;
e6dcd2dc 1870 int ret;
82d5902d 1871 bool nolock;
e6dcd2dc 1872
83eea1f1 1873 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 1874
5fd02043
JB
1875 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1876 ret = -EIO;
1877 goto out;
1878 }
1879
c2167754 1880 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1881 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
c2167754
YZ
1882 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1883 if (!ret) {
0cb59c99 1884 if (nolock)
7a7eaa40 1885 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1886 else
7a7eaa40 1887 trans = btrfs_join_transaction(root);
d280e5be
LB
1888 if (IS_ERR(trans)) {
1889 ret = PTR_ERR(trans);
1890 trans = NULL;
1891 goto out;
1892 }
0ca1f7ce 1893 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1894 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1895 if (ret) /* -ENOMEM or corruption */
1896 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1897 }
1898 goto out;
1899 }
e6dcd2dc 1900
2ac55d41
JB
1901 lock_extent_bits(io_tree, ordered_extent->file_offset,
1902 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1903 0, &cached_state);
e6dcd2dc 1904
0cb59c99 1905 if (nolock)
7a7eaa40 1906 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1907 else
7a7eaa40 1908 trans = btrfs_join_transaction(root);
79787eaa
JM
1909 if (IS_ERR(trans)) {
1910 ret = PTR_ERR(trans);
1911 trans = NULL;
1912 goto out_unlock;
1913 }
0ca1f7ce 1914 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1915
c8b97818 1916 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1917 compress_type = ordered_extent->compress_type;
d899e052 1918 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1919 BUG_ON(compress_type);
920bbbfb 1920 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1921 ordered_extent->file_offset,
1922 ordered_extent->file_offset +
1923 ordered_extent->len);
d899e052 1924 } else {
0af3d00b 1925 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1926 ret = insert_reserved_file_extent(trans, inode,
1927 ordered_extent->file_offset,
1928 ordered_extent->start,
1929 ordered_extent->disk_len,
1930 ordered_extent->len,
1931 ordered_extent->len,
261507a0 1932 compress_type, 0, 0,
d899e052 1933 BTRFS_FILE_EXTENT_REG);
d899e052 1934 }
5dc562c5
JB
1935 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1936 ordered_extent->file_offset, ordered_extent->len,
1937 trans->transid);
79787eaa
JM
1938 if (ret < 0) {
1939 btrfs_abort_transaction(trans, root, ret);
5fd02043 1940 goto out_unlock;
79787eaa 1941 }
2ac55d41 1942
e6dcd2dc
CM
1943 add_pending_csums(trans, inode, ordered_extent->file_offset,
1944 &ordered_extent->list);
1945
1ef30be1 1946 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1947 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1948 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1949 if (ret) { /* -ENOMEM or corruption */
1950 btrfs_abort_transaction(trans, root, ret);
5fd02043 1951 goto out_unlock;
79787eaa 1952 }
7c735313
JB
1953 } else {
1954 btrfs_set_inode_last_trans(trans, inode);
1ef30be1
JB
1955 }
1956 ret = 0;
5fd02043
JB
1957out_unlock:
1958 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1959 ordered_extent->file_offset +
1960 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 1961out:
5b0e95bf 1962 if (root != root->fs_info->tree_root)
0cb59c99 1963 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
5b0e95bf
JB
1964 if (trans) {
1965 if (nolock)
0cb59c99 1966 btrfs_end_transaction_nolock(trans, root);
5b0e95bf 1967 else
0cb59c99
JB
1968 btrfs_end_transaction(trans, root);
1969 }
1970
5fd02043
JB
1971 if (ret)
1972 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1973 ordered_extent->file_offset +
1974 ordered_extent->len - 1, NULL, GFP_NOFS);
1975
1976 /*
1977 * This needs to be dont to make sure anybody waiting knows we are done
1978 * upating everything for this ordered extent.
1979 */
1980 btrfs_remove_ordered_extent(inode, ordered_extent);
1981
e6dcd2dc
CM
1982 /* once for us */
1983 btrfs_put_ordered_extent(ordered_extent);
1984 /* once for the tree */
1985 btrfs_put_ordered_extent(ordered_extent);
1986
5fd02043
JB
1987 return ret;
1988}
1989
1990static void finish_ordered_fn(struct btrfs_work *work)
1991{
1992 struct btrfs_ordered_extent *ordered_extent;
1993 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1994 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
1995}
1996
b2950863 1997static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1998 struct extent_state *state, int uptodate)
1999{
5fd02043
JB
2000 struct inode *inode = page->mapping->host;
2001 struct btrfs_root *root = BTRFS_I(inode)->root;
2002 struct btrfs_ordered_extent *ordered_extent = NULL;
2003 struct btrfs_workers *workers;
2004
1abe9b8a 2005 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2006
8b62b72b 2007 ClearPagePrivate2(page);
5fd02043
JB
2008 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2009 end - start + 1, uptodate))
2010 return 0;
2011
2012 ordered_extent->work.func = finish_ordered_fn;
2013 ordered_extent->work.flags = 0;
2014
83eea1f1 2015 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2016 workers = &root->fs_info->endio_freespace_worker;
2017 else
2018 workers = &root->fs_info->endio_write_workers;
2019 btrfs_queue_worker(workers, &ordered_extent->work);
2020
2021 return 0;
211f90e6
CM
2022}
2023
d352ac68
CM
2024/*
2025 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2026 * if there's a match, we allow the bio to finish. If not, the code in
2027 * extent_io.c will try to find good copies for us.
d352ac68 2028 */
b2950863 2029static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2030 struct extent_state *state, int mirror)
07157aac 2031{
35ebb934 2032 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 2033 struct inode *inode = page->mapping->host;
d1310b2e 2034 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2035 char *kaddr;
aadfeb6e 2036 u64 private = ~(u32)0;
07157aac 2037 int ret;
ff79f819
CM
2038 struct btrfs_root *root = BTRFS_I(inode)->root;
2039 u32 csum = ~(u32)0;
d1310b2e 2040
d20f7043
CM
2041 if (PageChecked(page)) {
2042 ClearPageChecked(page);
2043 goto good;
2044 }
6cbff00f
CH
2045
2046 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2047 goto good;
17d217fe
YZ
2048
2049 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2050 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2051 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2052 GFP_NOFS);
b6cda9bc 2053 return 0;
17d217fe 2054 }
d20f7043 2055
c2e639f0 2056 if (state && state->start == start) {
70dec807
CM
2057 private = state->private;
2058 ret = 0;
2059 } else {
2060 ret = get_state_private(io_tree, start, &private);
2061 }
7ac687d9 2062 kaddr = kmap_atomic(page);
d397712b 2063 if (ret)
07157aac 2064 goto zeroit;
d397712b 2065
ff79f819
CM
2066 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2067 btrfs_csum_final(csum, (char *)&csum);
d397712b 2068 if (csum != private)
07157aac 2069 goto zeroit;
d397712b 2070
7ac687d9 2071 kunmap_atomic(kaddr);
d20f7043 2072good:
07157aac
CM
2073 return 0;
2074
2075zeroit:
945d8962 2076 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2077 "private %llu\n",
2078 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2079 (unsigned long long)start, csum,
2080 (unsigned long long)private);
db94535d
CM
2081 memset(kaddr + offset, 1, end - start + 1);
2082 flush_dcache_page(page);
7ac687d9 2083 kunmap_atomic(kaddr);
3b951516
CM
2084 if (private == 0)
2085 return 0;
7e38326f 2086 return -EIO;
07157aac 2087}
b888db2b 2088
24bbcf04
YZ
2089struct delayed_iput {
2090 struct list_head list;
2091 struct inode *inode;
2092};
2093
79787eaa
JM
2094/* JDM: If this is fs-wide, why can't we add a pointer to
2095 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2096void btrfs_add_delayed_iput(struct inode *inode)
2097{
2098 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2099 struct delayed_iput *delayed;
2100
2101 if (atomic_add_unless(&inode->i_count, -1, 1))
2102 return;
2103
2104 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2105 delayed->inode = inode;
2106
2107 spin_lock(&fs_info->delayed_iput_lock);
2108 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2109 spin_unlock(&fs_info->delayed_iput_lock);
2110}
2111
2112void btrfs_run_delayed_iputs(struct btrfs_root *root)
2113{
2114 LIST_HEAD(list);
2115 struct btrfs_fs_info *fs_info = root->fs_info;
2116 struct delayed_iput *delayed;
2117 int empty;
2118
2119 spin_lock(&fs_info->delayed_iput_lock);
2120 empty = list_empty(&fs_info->delayed_iputs);
2121 spin_unlock(&fs_info->delayed_iput_lock);
2122 if (empty)
2123 return;
2124
2125 down_read(&root->fs_info->cleanup_work_sem);
2126 spin_lock(&fs_info->delayed_iput_lock);
2127 list_splice_init(&fs_info->delayed_iputs, &list);
2128 spin_unlock(&fs_info->delayed_iput_lock);
2129
2130 while (!list_empty(&list)) {
2131 delayed = list_entry(list.next, struct delayed_iput, list);
2132 list_del(&delayed->list);
2133 iput(delayed->inode);
2134 kfree(delayed);
2135 }
2136 up_read(&root->fs_info->cleanup_work_sem);
2137}
2138
d68fc57b
YZ
2139enum btrfs_orphan_cleanup_state {
2140 ORPHAN_CLEANUP_STARTED = 1,
2141 ORPHAN_CLEANUP_DONE = 2,
2142};
2143
2144/*
42b2aa86 2145 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2146 * files in the subvolume, it removes orphan item and frees block_rsv
2147 * structure.
2148 */
2149void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2150 struct btrfs_root *root)
2151{
90290e19 2152 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2153 int ret;
2154
8a35d95f 2155 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2156 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2157 return;
2158
90290e19 2159 spin_lock(&root->orphan_lock);
8a35d95f 2160 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2161 spin_unlock(&root->orphan_lock);
2162 return;
2163 }
2164
2165 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2166 spin_unlock(&root->orphan_lock);
2167 return;
2168 }
2169
2170 block_rsv = root->orphan_block_rsv;
2171 root->orphan_block_rsv = NULL;
2172 spin_unlock(&root->orphan_lock);
2173
d68fc57b
YZ
2174 if (root->orphan_item_inserted &&
2175 btrfs_root_refs(&root->root_item) > 0) {
2176 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2177 root->root_key.objectid);
2178 BUG_ON(ret);
2179 root->orphan_item_inserted = 0;
2180 }
2181
90290e19
JB
2182 if (block_rsv) {
2183 WARN_ON(block_rsv->size > 0);
2184 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2185 }
2186}
2187
7b128766
JB
2188/*
2189 * This creates an orphan entry for the given inode in case something goes
2190 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2191 *
2192 * NOTE: caller of this function should reserve 5 units of metadata for
2193 * this function.
7b128766
JB
2194 */
2195int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2196{
2197 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2198 struct btrfs_block_rsv *block_rsv = NULL;
2199 int reserve = 0;
2200 int insert = 0;
2201 int ret;
7b128766 2202
d68fc57b
YZ
2203 if (!root->orphan_block_rsv) {
2204 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2205 if (!block_rsv)
2206 return -ENOMEM;
d68fc57b 2207 }
7b128766 2208
d68fc57b
YZ
2209 spin_lock(&root->orphan_lock);
2210 if (!root->orphan_block_rsv) {
2211 root->orphan_block_rsv = block_rsv;
2212 } else if (block_rsv) {
2213 btrfs_free_block_rsv(root, block_rsv);
2214 block_rsv = NULL;
7b128766 2215 }
7b128766 2216
8a35d95f
JB
2217 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2218 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2219#if 0
2220 /*
2221 * For proper ENOSPC handling, we should do orphan
2222 * cleanup when mounting. But this introduces backward
2223 * compatibility issue.
2224 */
2225 if (!xchg(&root->orphan_item_inserted, 1))
2226 insert = 2;
2227 else
2228 insert = 1;
2229#endif
2230 insert = 1;
321f0e70 2231 atomic_inc(&root->orphan_inodes);
7b128766
JB
2232 }
2233
72ac3c0d
JB
2234 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2235 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2236 reserve = 1;
d68fc57b 2237 spin_unlock(&root->orphan_lock);
7b128766 2238
d68fc57b
YZ
2239 /* grab metadata reservation from transaction handle */
2240 if (reserve) {
2241 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2242 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2243 }
7b128766 2244
d68fc57b
YZ
2245 /* insert an orphan item to track this unlinked/truncated file */
2246 if (insert >= 1) {
33345d01 2247 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2248 if (ret && ret != -EEXIST) {
8a35d95f
JB
2249 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2250 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2251 btrfs_abort_transaction(trans, root, ret);
2252 return ret;
2253 }
2254 ret = 0;
d68fc57b
YZ
2255 }
2256
2257 /* insert an orphan item to track subvolume contains orphan files */
2258 if (insert >= 2) {
2259 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2260 root->root_key.objectid);
79787eaa
JM
2261 if (ret && ret != -EEXIST) {
2262 btrfs_abort_transaction(trans, root, ret);
2263 return ret;
2264 }
d68fc57b
YZ
2265 }
2266 return 0;
7b128766
JB
2267}
2268
2269/*
2270 * We have done the truncate/delete so we can go ahead and remove the orphan
2271 * item for this particular inode.
2272 */
2273int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2274{
2275 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2276 int delete_item = 0;
2277 int release_rsv = 0;
7b128766
JB
2278 int ret = 0;
2279
d68fc57b 2280 spin_lock(&root->orphan_lock);
8a35d95f
JB
2281 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2282 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2283 delete_item = 1;
7b128766 2284
72ac3c0d
JB
2285 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2286 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2287 release_rsv = 1;
d68fc57b 2288 spin_unlock(&root->orphan_lock);
7b128766 2289
d68fc57b 2290 if (trans && delete_item) {
33345d01 2291 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2292 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2293 }
7b128766 2294
8a35d95f 2295 if (release_rsv) {
d68fc57b 2296 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
2297 atomic_dec(&root->orphan_inodes);
2298 }
7b128766 2299
d68fc57b 2300 return 0;
7b128766
JB
2301}
2302
2303/*
2304 * this cleans up any orphans that may be left on the list from the last use
2305 * of this root.
2306 */
66b4ffd1 2307int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2308{
2309 struct btrfs_path *path;
2310 struct extent_buffer *leaf;
7b128766
JB
2311 struct btrfs_key key, found_key;
2312 struct btrfs_trans_handle *trans;
2313 struct inode *inode;
8f6d7f4f 2314 u64 last_objectid = 0;
7b128766
JB
2315 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2316
d68fc57b 2317 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2318 return 0;
c71bf099
YZ
2319
2320 path = btrfs_alloc_path();
66b4ffd1
JB
2321 if (!path) {
2322 ret = -ENOMEM;
2323 goto out;
2324 }
7b128766
JB
2325 path->reada = -1;
2326
2327 key.objectid = BTRFS_ORPHAN_OBJECTID;
2328 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2329 key.offset = (u64)-1;
2330
7b128766
JB
2331 while (1) {
2332 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2333 if (ret < 0)
2334 goto out;
7b128766
JB
2335
2336 /*
2337 * if ret == 0 means we found what we were searching for, which
25985edc 2338 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2339 * find the key and see if we have stuff that matches
2340 */
2341 if (ret > 0) {
66b4ffd1 2342 ret = 0;
7b128766
JB
2343 if (path->slots[0] == 0)
2344 break;
2345 path->slots[0]--;
2346 }
2347
2348 /* pull out the item */
2349 leaf = path->nodes[0];
7b128766
JB
2350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2351
2352 /* make sure the item matches what we want */
2353 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2354 break;
2355 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2356 break;
2357
2358 /* release the path since we're done with it */
b3b4aa74 2359 btrfs_release_path(path);
7b128766
JB
2360
2361 /*
2362 * this is where we are basically btrfs_lookup, without the
2363 * crossing root thing. we store the inode number in the
2364 * offset of the orphan item.
2365 */
8f6d7f4f
JB
2366
2367 if (found_key.offset == last_objectid) {
2368 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2369 "stopping orphan cleanup\n");
2370 ret = -EINVAL;
2371 goto out;
2372 }
2373
2374 last_objectid = found_key.offset;
2375
5d4f98a2
YZ
2376 found_key.objectid = found_key.offset;
2377 found_key.type = BTRFS_INODE_ITEM_KEY;
2378 found_key.offset = 0;
73f73415 2379 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2380 ret = PTR_RET(inode);
2381 if (ret && ret != -ESTALE)
66b4ffd1 2382 goto out;
7b128766 2383
f8e9e0b0
AJ
2384 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2385 struct btrfs_root *dead_root;
2386 struct btrfs_fs_info *fs_info = root->fs_info;
2387 int is_dead_root = 0;
2388
2389 /*
2390 * this is an orphan in the tree root. Currently these
2391 * could come from 2 sources:
2392 * a) a snapshot deletion in progress
2393 * b) a free space cache inode
2394 * We need to distinguish those two, as the snapshot
2395 * orphan must not get deleted.
2396 * find_dead_roots already ran before us, so if this
2397 * is a snapshot deletion, we should find the root
2398 * in the dead_roots list
2399 */
2400 spin_lock(&fs_info->trans_lock);
2401 list_for_each_entry(dead_root, &fs_info->dead_roots,
2402 root_list) {
2403 if (dead_root->root_key.objectid ==
2404 found_key.objectid) {
2405 is_dead_root = 1;
2406 break;
2407 }
2408 }
2409 spin_unlock(&fs_info->trans_lock);
2410 if (is_dead_root) {
2411 /* prevent this orphan from being found again */
2412 key.offset = found_key.objectid - 1;
2413 continue;
2414 }
2415 }
7b128766 2416 /*
a8c9e576
JB
2417 * Inode is already gone but the orphan item is still there,
2418 * kill the orphan item.
7b128766 2419 */
a8c9e576
JB
2420 if (ret == -ESTALE) {
2421 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2422 if (IS_ERR(trans)) {
2423 ret = PTR_ERR(trans);
2424 goto out;
2425 }
8a35d95f
JB
2426 printk(KERN_ERR "auto deleting %Lu\n",
2427 found_key.objectid);
a8c9e576
JB
2428 ret = btrfs_del_orphan_item(trans, root,
2429 found_key.objectid);
79787eaa 2430 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2431 btrfs_end_transaction(trans, root);
7b128766
JB
2432 continue;
2433 }
2434
a8c9e576
JB
2435 /*
2436 * add this inode to the orphan list so btrfs_orphan_del does
2437 * the proper thing when we hit it
2438 */
8a35d95f
JB
2439 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2440 &BTRFS_I(inode)->runtime_flags);
a8c9e576 2441
7b128766
JB
2442 /* if we have links, this was a truncate, lets do that */
2443 if (inode->i_nlink) {
a41ad394
JB
2444 if (!S_ISREG(inode->i_mode)) {
2445 WARN_ON(1);
2446 iput(inode);
2447 continue;
2448 }
7b128766 2449 nr_truncate++;
66b4ffd1 2450 ret = btrfs_truncate(inode);
7b128766
JB
2451 } else {
2452 nr_unlink++;
2453 }
2454
2455 /* this will do delete_inode and everything for us */
2456 iput(inode);
66b4ffd1
JB
2457 if (ret)
2458 goto out;
7b128766 2459 }
3254c876
MX
2460 /* release the path since we're done with it */
2461 btrfs_release_path(path);
2462
d68fc57b
YZ
2463 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2464
2465 if (root->orphan_block_rsv)
2466 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2467 (u64)-1);
2468
2469 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2470 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2471 if (!IS_ERR(trans))
2472 btrfs_end_transaction(trans, root);
d68fc57b 2473 }
7b128766
JB
2474
2475 if (nr_unlink)
2476 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2477 if (nr_truncate)
2478 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2479
2480out:
2481 if (ret)
2482 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2483 btrfs_free_path(path);
2484 return ret;
7b128766
JB
2485}
2486
46a53cca
CM
2487/*
2488 * very simple check to peek ahead in the leaf looking for xattrs. If we
2489 * don't find any xattrs, we know there can't be any acls.
2490 *
2491 * slot is the slot the inode is in, objectid is the objectid of the inode
2492 */
2493static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2494 int slot, u64 objectid)
2495{
2496 u32 nritems = btrfs_header_nritems(leaf);
2497 struct btrfs_key found_key;
2498 int scanned = 0;
2499
2500 slot++;
2501 while (slot < nritems) {
2502 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2503
2504 /* we found a different objectid, there must not be acls */
2505 if (found_key.objectid != objectid)
2506 return 0;
2507
2508 /* we found an xattr, assume we've got an acl */
2509 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2510 return 1;
2511
2512 /*
2513 * we found a key greater than an xattr key, there can't
2514 * be any acls later on
2515 */
2516 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2517 return 0;
2518
2519 slot++;
2520 scanned++;
2521
2522 /*
2523 * it goes inode, inode backrefs, xattrs, extents,
2524 * so if there are a ton of hard links to an inode there can
2525 * be a lot of backrefs. Don't waste time searching too hard,
2526 * this is just an optimization
2527 */
2528 if (scanned >= 8)
2529 break;
2530 }
2531 /* we hit the end of the leaf before we found an xattr or
2532 * something larger than an xattr. We have to assume the inode
2533 * has acls
2534 */
2535 return 1;
2536}
2537
d352ac68
CM
2538/*
2539 * read an inode from the btree into the in-memory inode
2540 */
5d4f98a2 2541static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2542{
2543 struct btrfs_path *path;
5f39d397 2544 struct extent_buffer *leaf;
39279cc3 2545 struct btrfs_inode_item *inode_item;
0b86a832 2546 struct btrfs_timespec *tspec;
39279cc3
CM
2547 struct btrfs_root *root = BTRFS_I(inode)->root;
2548 struct btrfs_key location;
46a53cca 2549 int maybe_acls;
618e21d5 2550 u32 rdev;
39279cc3 2551 int ret;
2f7e33d4
MX
2552 bool filled = false;
2553
2554 ret = btrfs_fill_inode(inode, &rdev);
2555 if (!ret)
2556 filled = true;
39279cc3
CM
2557
2558 path = btrfs_alloc_path();
1748f843
MF
2559 if (!path)
2560 goto make_bad;
2561
d90c7321 2562 path->leave_spinning = 1;
39279cc3 2563 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2564
39279cc3 2565 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2566 if (ret)
39279cc3 2567 goto make_bad;
39279cc3 2568
5f39d397 2569 leaf = path->nodes[0];
2f7e33d4
MX
2570
2571 if (filled)
2572 goto cache_acl;
2573
5f39d397
CM
2574 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2575 struct btrfs_inode_item);
5f39d397 2576 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2577 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
5f39d397
CM
2578 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2579 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2580 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2581
2582 tspec = btrfs_inode_atime(inode_item);
2583 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2584 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2585
2586 tspec = btrfs_inode_mtime(inode_item);
2587 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2588 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2589
2590 tspec = btrfs_inode_ctime(inode_item);
2591 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2592 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2593
a76a3cd4 2594 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2595 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
2596 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2597
2598 /*
2599 * If we were modified in the current generation and evicted from memory
2600 * and then re-read we need to do a full sync since we don't have any
2601 * idea about which extents were modified before we were evicted from
2602 * cache.
2603 */
2604 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2605 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2606 &BTRFS_I(inode)->runtime_flags);
2607
0c4d2d95 2608 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2609 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2610 inode->i_rdev = 0;
5f39d397
CM
2611 rdev = btrfs_inode_rdev(leaf, inode_item);
2612
aec7477b 2613 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2614 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2615cache_acl:
46a53cca
CM
2616 /*
2617 * try to precache a NULL acl entry for files that don't have
2618 * any xattrs or acls
2619 */
33345d01
LZ
2620 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2621 btrfs_ino(inode));
72c04902
AV
2622 if (!maybe_acls)
2623 cache_no_acl(inode);
46a53cca 2624
39279cc3 2625 btrfs_free_path(path);
39279cc3 2626
39279cc3 2627 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2628 case S_IFREG:
2629 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2630 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2631 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2632 inode->i_fop = &btrfs_file_operations;
2633 inode->i_op = &btrfs_file_inode_operations;
2634 break;
2635 case S_IFDIR:
2636 inode->i_fop = &btrfs_dir_file_operations;
2637 if (root == root->fs_info->tree_root)
2638 inode->i_op = &btrfs_dir_ro_inode_operations;
2639 else
2640 inode->i_op = &btrfs_dir_inode_operations;
2641 break;
2642 case S_IFLNK:
2643 inode->i_op = &btrfs_symlink_inode_operations;
2644 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2645 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2646 break;
618e21d5 2647 default:
0279b4cd 2648 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2649 init_special_inode(inode, inode->i_mode, rdev);
2650 break;
39279cc3 2651 }
6cbff00f
CH
2652
2653 btrfs_update_iflags(inode);
39279cc3
CM
2654 return;
2655
2656make_bad:
39279cc3 2657 btrfs_free_path(path);
39279cc3
CM
2658 make_bad_inode(inode);
2659}
2660
d352ac68
CM
2661/*
2662 * given a leaf and an inode, copy the inode fields into the leaf
2663 */
e02119d5
CM
2664static void fill_inode_item(struct btrfs_trans_handle *trans,
2665 struct extent_buffer *leaf,
5f39d397 2666 struct btrfs_inode_item *item,
39279cc3
CM
2667 struct inode *inode)
2668{
5f39d397
CM
2669 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2670 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2671 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2672 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2673 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2674
2675 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2676 inode->i_atime.tv_sec);
2677 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2678 inode->i_atime.tv_nsec);
2679
2680 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2681 inode->i_mtime.tv_sec);
2682 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2683 inode->i_mtime.tv_nsec);
2684
2685 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2686 inode->i_ctime.tv_sec);
2687 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2688 inode->i_ctime.tv_nsec);
2689
a76a3cd4 2690 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2691 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
0c4d2d95 2692 btrfs_set_inode_sequence(leaf, item, inode->i_version);
e02119d5 2693 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2694 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2695 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2696 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2697}
2698
d352ac68
CM
2699/*
2700 * copy everything in the in-memory inode into the btree.
2701 */
2115133f 2702static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2703 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2704{
2705 struct btrfs_inode_item *inode_item;
2706 struct btrfs_path *path;
5f39d397 2707 struct extent_buffer *leaf;
39279cc3
CM
2708 int ret;
2709
2710 path = btrfs_alloc_path();
16cdcec7
MX
2711 if (!path)
2712 return -ENOMEM;
2713
b9473439 2714 path->leave_spinning = 1;
16cdcec7
MX
2715 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2716 1);
39279cc3
CM
2717 if (ret) {
2718 if (ret > 0)
2719 ret = -ENOENT;
2720 goto failed;
2721 }
2722
b4ce94de 2723 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2724 leaf = path->nodes[0];
2725 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2726 struct btrfs_inode_item);
39279cc3 2727
e02119d5 2728 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2729 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2730 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2731 ret = 0;
2732failed:
39279cc3
CM
2733 btrfs_free_path(path);
2734 return ret;
2735}
2736
2115133f
CM
2737/*
2738 * copy everything in the in-memory inode into the btree.
2739 */
2740noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2741 struct btrfs_root *root, struct inode *inode)
2742{
2743 int ret;
2744
2745 /*
2746 * If the inode is a free space inode, we can deadlock during commit
2747 * if we put it into the delayed code.
2748 *
2749 * The data relocation inode should also be directly updated
2750 * without delay
2751 */
83eea1f1 2752 if (!btrfs_is_free_space_inode(inode)
2115133f 2753 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
2754 btrfs_update_root_times(trans, root);
2755
2115133f
CM
2756 ret = btrfs_delayed_update_inode(trans, root, inode);
2757 if (!ret)
2758 btrfs_set_inode_last_trans(trans, inode);
2759 return ret;
2760 }
2761
2762 return btrfs_update_inode_item(trans, root, inode);
2763}
2764
2765static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *root, struct inode *inode)
2767{
2768 int ret;
2769
2770 ret = btrfs_update_inode(trans, root, inode);
2771 if (ret == -ENOSPC)
2772 return btrfs_update_inode_item(trans, root, inode);
2773 return ret;
2774}
2775
d352ac68
CM
2776/*
2777 * unlink helper that gets used here in inode.c and in the tree logging
2778 * recovery code. It remove a link in a directory with a given name, and
2779 * also drops the back refs in the inode to the directory
2780 */
92986796
AV
2781static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2782 struct btrfs_root *root,
2783 struct inode *dir, struct inode *inode,
2784 const char *name, int name_len)
39279cc3
CM
2785{
2786 struct btrfs_path *path;
39279cc3 2787 int ret = 0;
5f39d397 2788 struct extent_buffer *leaf;
39279cc3 2789 struct btrfs_dir_item *di;
5f39d397 2790 struct btrfs_key key;
aec7477b 2791 u64 index;
33345d01
LZ
2792 u64 ino = btrfs_ino(inode);
2793 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2794
2795 path = btrfs_alloc_path();
54aa1f4d
CM
2796 if (!path) {
2797 ret = -ENOMEM;
554233a6 2798 goto out;
54aa1f4d
CM
2799 }
2800
b9473439 2801 path->leave_spinning = 1;
33345d01 2802 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2803 name, name_len, -1);
2804 if (IS_ERR(di)) {
2805 ret = PTR_ERR(di);
2806 goto err;
2807 }
2808 if (!di) {
2809 ret = -ENOENT;
2810 goto err;
2811 }
5f39d397
CM
2812 leaf = path->nodes[0];
2813 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2814 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2815 if (ret)
2816 goto err;
b3b4aa74 2817 btrfs_release_path(path);
39279cc3 2818
33345d01
LZ
2819 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2820 dir_ino, &index);
aec7477b 2821 if (ret) {
d397712b 2822 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2823 "inode %llu parent %llu\n", name_len, name,
2824 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2825 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2826 goto err;
2827 }
2828
16cdcec7 2829 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2830 if (ret) {
2831 btrfs_abort_transaction(trans, root, ret);
39279cc3 2832 goto err;
79787eaa 2833 }
39279cc3 2834
e02119d5 2835 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2836 inode, dir_ino);
79787eaa
JM
2837 if (ret != 0 && ret != -ENOENT) {
2838 btrfs_abort_transaction(trans, root, ret);
2839 goto err;
2840 }
e02119d5
CM
2841
2842 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2843 dir, index);
6418c961
CM
2844 if (ret == -ENOENT)
2845 ret = 0;
39279cc3
CM
2846err:
2847 btrfs_free_path(path);
e02119d5
CM
2848 if (ret)
2849 goto out;
2850
2851 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2852 inode_inc_iversion(inode);
2853 inode_inc_iversion(dir);
e02119d5 2854 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 2855 ret = btrfs_update_inode(trans, root, dir);
e02119d5 2856out:
39279cc3
CM
2857 return ret;
2858}
2859
92986796
AV
2860int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2861 struct btrfs_root *root,
2862 struct inode *dir, struct inode *inode,
2863 const char *name, int name_len)
2864{
2865 int ret;
2866 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2867 if (!ret) {
2868 btrfs_drop_nlink(inode);
2869 ret = btrfs_update_inode(trans, root, inode);
2870 }
2871 return ret;
2872}
2873
2874
a22285a6
YZ
2875/* helper to check if there is any shared block in the path */
2876static int check_path_shared(struct btrfs_root *root,
2877 struct btrfs_path *path)
39279cc3 2878{
a22285a6
YZ
2879 struct extent_buffer *eb;
2880 int level;
0e4dcbef 2881 u64 refs = 1;
5df6a9f6 2882
a22285a6 2883 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2884 int ret;
2885
a22285a6
YZ
2886 if (!path->nodes[level])
2887 break;
2888 eb = path->nodes[level];
2889 if (!btrfs_block_can_be_shared(root, eb))
2890 continue;
2891 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2892 &refs, NULL);
2893 if (refs > 1)
2894 return 1;
5df6a9f6 2895 }
dedefd72 2896 return 0;
39279cc3
CM
2897}
2898
a22285a6
YZ
2899/*
2900 * helper to start transaction for unlink and rmdir.
2901 *
2902 * unlink and rmdir are special in btrfs, they do not always free space.
2903 * so in enospc case, we should make sure they will free space before
2904 * allowing them to use the global metadata reservation.
2905 */
2906static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2907 struct dentry *dentry)
4df27c4d 2908{
39279cc3 2909 struct btrfs_trans_handle *trans;
a22285a6 2910 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2911 struct btrfs_path *path;
a22285a6 2912 struct btrfs_inode_ref *ref;
4df27c4d 2913 struct btrfs_dir_item *di;
7b128766 2914 struct inode *inode = dentry->d_inode;
4df27c4d 2915 u64 index;
a22285a6
YZ
2916 int check_link = 1;
2917 int err = -ENOSPC;
4df27c4d 2918 int ret;
33345d01
LZ
2919 u64 ino = btrfs_ino(inode);
2920 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2921
e70bea5f
JB
2922 /*
2923 * 1 for the possible orphan item
2924 * 1 for the dir item
2925 * 1 for the dir index
2926 * 1 for the inode ref
2927 * 1 for the inode ref in the tree log
2928 * 2 for the dir entries in the log
2929 * 1 for the inode
2930 */
2931 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2932 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2933 return trans;
4df27c4d 2934
33345d01 2935 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2936 return ERR_PTR(-ENOSPC);
4df27c4d 2937
a22285a6
YZ
2938 /* check if there is someone else holds reference */
2939 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2940 return ERR_PTR(-ENOSPC);
4df27c4d 2941
a22285a6
YZ
2942 if (atomic_read(&inode->i_count) > 2)
2943 return ERR_PTR(-ENOSPC);
4df27c4d 2944
a22285a6
YZ
2945 if (xchg(&root->fs_info->enospc_unlink, 1))
2946 return ERR_PTR(-ENOSPC);
2947
2948 path = btrfs_alloc_path();
2949 if (!path) {
2950 root->fs_info->enospc_unlink = 0;
2951 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2952 }
2953
3880a1b4
JB
2954 /* 1 for the orphan item */
2955 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2956 if (IS_ERR(trans)) {
a22285a6
YZ
2957 btrfs_free_path(path);
2958 root->fs_info->enospc_unlink = 0;
2959 return trans;
2960 }
4df27c4d 2961
a22285a6
YZ
2962 path->skip_locking = 1;
2963 path->search_commit_root = 1;
4df27c4d 2964
a22285a6
YZ
2965 ret = btrfs_lookup_inode(trans, root, path,
2966 &BTRFS_I(dir)->location, 0);
2967 if (ret < 0) {
2968 err = ret;
2969 goto out;
2970 }
2971 if (ret == 0) {
2972 if (check_path_shared(root, path))
2973 goto out;
2974 } else {
2975 check_link = 0;
5df6a9f6 2976 }
b3b4aa74 2977 btrfs_release_path(path);
a22285a6
YZ
2978
2979 ret = btrfs_lookup_inode(trans, root, path,
2980 &BTRFS_I(inode)->location, 0);
2981 if (ret < 0) {
2982 err = ret;
2983 goto out;
2984 }
2985 if (ret == 0) {
2986 if (check_path_shared(root, path))
2987 goto out;
2988 } else {
2989 check_link = 0;
2990 }
b3b4aa74 2991 btrfs_release_path(path);
a22285a6
YZ
2992
2993 if (ret == 0 && S_ISREG(inode->i_mode)) {
2994 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2995 ino, (u64)-1, 0);
a22285a6
YZ
2996 if (ret < 0) {
2997 err = ret;
2998 goto out;
2999 }
79787eaa 3000 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
3001 if (check_path_shared(root, path))
3002 goto out;
b3b4aa74 3003 btrfs_release_path(path);
a22285a6
YZ
3004 }
3005
3006 if (!check_link) {
3007 err = 0;
3008 goto out;
3009 }
3010
33345d01 3011 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3012 dentry->d_name.name, dentry->d_name.len, 0);
3013 if (IS_ERR(di)) {
3014 err = PTR_ERR(di);
3015 goto out;
3016 }
3017 if (di) {
3018 if (check_path_shared(root, path))
3019 goto out;
3020 } else {
3021 err = 0;
3022 goto out;
3023 }
b3b4aa74 3024 btrfs_release_path(path);
a22285a6
YZ
3025
3026 ref = btrfs_lookup_inode_ref(trans, root, path,
3027 dentry->d_name.name, dentry->d_name.len,
33345d01 3028 ino, dir_ino, 0);
a22285a6
YZ
3029 if (IS_ERR(ref)) {
3030 err = PTR_ERR(ref);
3031 goto out;
3032 }
79787eaa 3033 BUG_ON(!ref); /* Logic error */
a22285a6
YZ
3034 if (check_path_shared(root, path))
3035 goto out;
3036 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 3037 btrfs_release_path(path);
a22285a6 3038
16cdcec7
MX
3039 /*
3040 * This is a commit root search, if we can lookup inode item and other
3041 * relative items in the commit root, it means the transaction of
3042 * dir/file creation has been committed, and the dir index item that we
3043 * delay to insert has also been inserted into the commit root. So
3044 * we needn't worry about the delayed insertion of the dir index item
3045 * here.
3046 */
33345d01 3047 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3048 dentry->d_name.name, dentry->d_name.len, 0);
3049 if (IS_ERR(di)) {
3050 err = PTR_ERR(di);
3051 goto out;
3052 }
3053 BUG_ON(ret == -ENOENT);
3054 if (check_path_shared(root, path))
3055 goto out;
3056
3057 err = 0;
3058out:
3059 btrfs_free_path(path);
3880a1b4
JB
3060 /* Migrate the orphan reservation over */
3061 if (!err)
3062 err = btrfs_block_rsv_migrate(trans->block_rsv,
3063 &root->fs_info->global_block_rsv,
5a77d76c 3064 trans->bytes_reserved);
3880a1b4 3065
a22285a6
YZ
3066 if (err) {
3067 btrfs_end_transaction(trans, root);
3068 root->fs_info->enospc_unlink = 0;
3069 return ERR_PTR(err);
3070 }
3071
3072 trans->block_rsv = &root->fs_info->global_block_rsv;
3073 return trans;
3074}
3075
3076static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3077 struct btrfs_root *root)
3078{
3079 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
5a77d76c
JB
3080 btrfs_block_rsv_release(root, trans->block_rsv,
3081 trans->bytes_reserved);
3082 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3083 BUG_ON(!root->fs_info->enospc_unlink);
3084 root->fs_info->enospc_unlink = 0;
3085 }
7ad85bb7 3086 btrfs_end_transaction(trans, root);
a22285a6
YZ
3087}
3088
3089static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3090{
3091 struct btrfs_root *root = BTRFS_I(dir)->root;
3092 struct btrfs_trans_handle *trans;
3093 struct inode *inode = dentry->d_inode;
3094 int ret;
3095 unsigned long nr = 0;
3096
3097 trans = __unlink_start_trans(dir, dentry);
3098 if (IS_ERR(trans))
3099 return PTR_ERR(trans);
5f39d397 3100
12fcfd22
CM
3101 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3102
e02119d5
CM
3103 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3104 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3105 if (ret)
3106 goto out;
7b128766 3107
a22285a6 3108 if (inode->i_nlink == 0) {
7b128766 3109 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3110 if (ret)
3111 goto out;
a22285a6 3112 }
7b128766 3113
b532402e 3114out:
d3c2fdcf 3115 nr = trans->blocks_used;
a22285a6 3116 __unlink_end_trans(trans, root);
d3c2fdcf 3117 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3118 return ret;
3119}
3120
4df27c4d
YZ
3121int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3122 struct btrfs_root *root,
3123 struct inode *dir, u64 objectid,
3124 const char *name, int name_len)
3125{
3126 struct btrfs_path *path;
3127 struct extent_buffer *leaf;
3128 struct btrfs_dir_item *di;
3129 struct btrfs_key key;
3130 u64 index;
3131 int ret;
33345d01 3132 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3133
3134 path = btrfs_alloc_path();
3135 if (!path)
3136 return -ENOMEM;
3137
33345d01 3138 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3139 name, name_len, -1);
79787eaa
JM
3140 if (IS_ERR_OR_NULL(di)) {
3141 if (!di)
3142 ret = -ENOENT;
3143 else
3144 ret = PTR_ERR(di);
3145 goto out;
3146 }
4df27c4d
YZ
3147
3148 leaf = path->nodes[0];
3149 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3150 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3151 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3152 if (ret) {
3153 btrfs_abort_transaction(trans, root, ret);
3154 goto out;
3155 }
b3b4aa74 3156 btrfs_release_path(path);
4df27c4d
YZ
3157
3158 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3159 objectid, root->root_key.objectid,
33345d01 3160 dir_ino, &index, name, name_len);
4df27c4d 3161 if (ret < 0) {
79787eaa
JM
3162 if (ret != -ENOENT) {
3163 btrfs_abort_transaction(trans, root, ret);
3164 goto out;
3165 }
33345d01 3166 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3167 name, name_len);
79787eaa
JM
3168 if (IS_ERR_OR_NULL(di)) {
3169 if (!di)
3170 ret = -ENOENT;
3171 else
3172 ret = PTR_ERR(di);
3173 btrfs_abort_transaction(trans, root, ret);
3174 goto out;
3175 }
4df27c4d
YZ
3176
3177 leaf = path->nodes[0];
3178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3179 btrfs_release_path(path);
4df27c4d
YZ
3180 index = key.offset;
3181 }
945d8962 3182 btrfs_release_path(path);
4df27c4d 3183
16cdcec7 3184 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3185 if (ret) {
3186 btrfs_abort_transaction(trans, root, ret);
3187 goto out;
3188 }
4df27c4d
YZ
3189
3190 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3191 inode_inc_iversion(dir);
4df27c4d 3192 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3193 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3194 if (ret)
3195 btrfs_abort_transaction(trans, root, ret);
3196out:
71d7aed0 3197 btrfs_free_path(path);
79787eaa 3198 return ret;
4df27c4d
YZ
3199}
3200
39279cc3
CM
3201static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3202{
3203 struct inode *inode = dentry->d_inode;
1832a6d5 3204 int err = 0;
39279cc3 3205 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3206 struct btrfs_trans_handle *trans;
1832a6d5 3207 unsigned long nr = 0;
39279cc3 3208
3394e160 3209 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3210 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3211 return -ENOTEMPTY;
3212
a22285a6
YZ
3213 trans = __unlink_start_trans(dir, dentry);
3214 if (IS_ERR(trans))
5df6a9f6 3215 return PTR_ERR(trans);
5df6a9f6 3216
33345d01 3217 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3218 err = btrfs_unlink_subvol(trans, root, dir,
3219 BTRFS_I(inode)->location.objectid,
3220 dentry->d_name.name,
3221 dentry->d_name.len);
3222 goto out;
3223 }
3224
7b128766
JB
3225 err = btrfs_orphan_add(trans, inode);
3226 if (err)
4df27c4d 3227 goto out;
7b128766 3228
39279cc3 3229 /* now the directory is empty */
e02119d5
CM
3230 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3231 dentry->d_name.name, dentry->d_name.len);
d397712b 3232 if (!err)
dbe674a9 3233 btrfs_i_size_write(inode, 0);
4df27c4d 3234out:
d3c2fdcf 3235 nr = trans->blocks_used;
a22285a6 3236 __unlink_end_trans(trans, root);
d3c2fdcf 3237 btrfs_btree_balance_dirty(root, nr);
3954401f 3238
39279cc3
CM
3239 return err;
3240}
3241
39279cc3
CM
3242/*
3243 * this can truncate away extent items, csum items and directory items.
3244 * It starts at a high offset and removes keys until it can't find
d352ac68 3245 * any higher than new_size
39279cc3
CM
3246 *
3247 * csum items that cross the new i_size are truncated to the new size
3248 * as well.
7b128766
JB
3249 *
3250 * min_type is the minimum key type to truncate down to. If set to 0, this
3251 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3252 */
8082510e
YZ
3253int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3254 struct btrfs_root *root,
3255 struct inode *inode,
3256 u64 new_size, u32 min_type)
39279cc3 3257{
39279cc3 3258 struct btrfs_path *path;
5f39d397 3259 struct extent_buffer *leaf;
39279cc3 3260 struct btrfs_file_extent_item *fi;
8082510e
YZ
3261 struct btrfs_key key;
3262 struct btrfs_key found_key;
39279cc3 3263 u64 extent_start = 0;
db94535d 3264 u64 extent_num_bytes = 0;
5d4f98a2 3265 u64 extent_offset = 0;
39279cc3 3266 u64 item_end = 0;
8082510e
YZ
3267 u64 mask = root->sectorsize - 1;
3268 u32 found_type = (u8)-1;
39279cc3
CM
3269 int found_extent;
3270 int del_item;
85e21bac
CM
3271 int pending_del_nr = 0;
3272 int pending_del_slot = 0;
179e29e4 3273 int extent_type = -1;
8082510e
YZ
3274 int ret;
3275 int err = 0;
33345d01 3276 u64 ino = btrfs_ino(inode);
8082510e
YZ
3277
3278 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3279
0eb0e19c
MF
3280 path = btrfs_alloc_path();
3281 if (!path)
3282 return -ENOMEM;
3283 path->reada = -1;
3284
5dc562c5
JB
3285 /*
3286 * We want to drop from the next block forward in case this new size is
3287 * not block aligned since we will be keeping the last block of the
3288 * extent just the way it is.
3289 */
0af3d00b 3290 if (root->ref_cows || root == root->fs_info->tree_root)
5dc562c5 3291 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
8082510e 3292
16cdcec7
MX
3293 /*
3294 * This function is also used to drop the items in the log tree before
3295 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3296 * it is used to drop the loged items. So we shouldn't kill the delayed
3297 * items.
3298 */
3299 if (min_type == 0 && root == BTRFS_I(inode)->root)
3300 btrfs_kill_delayed_inode_items(inode);
3301
33345d01 3302 key.objectid = ino;
39279cc3 3303 key.offset = (u64)-1;
5f39d397
CM
3304 key.type = (u8)-1;
3305
85e21bac 3306search_again:
b9473439 3307 path->leave_spinning = 1;
85e21bac 3308 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3309 if (ret < 0) {
3310 err = ret;
3311 goto out;
3312 }
d397712b 3313
85e21bac 3314 if (ret > 0) {
e02119d5
CM
3315 /* there are no items in the tree for us to truncate, we're
3316 * done
3317 */
8082510e
YZ
3318 if (path->slots[0] == 0)
3319 goto out;
85e21bac
CM
3320 path->slots[0]--;
3321 }
3322
d397712b 3323 while (1) {
39279cc3 3324 fi = NULL;
5f39d397
CM
3325 leaf = path->nodes[0];
3326 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3327 found_type = btrfs_key_type(&found_key);
39279cc3 3328
33345d01 3329 if (found_key.objectid != ino)
39279cc3 3330 break;
5f39d397 3331
85e21bac 3332 if (found_type < min_type)
39279cc3
CM
3333 break;
3334
5f39d397 3335 item_end = found_key.offset;
39279cc3 3336 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3337 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3338 struct btrfs_file_extent_item);
179e29e4
CM
3339 extent_type = btrfs_file_extent_type(leaf, fi);
3340 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3341 item_end +=
db94535d 3342 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3343 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3344 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3345 fi);
39279cc3 3346 }
008630c1 3347 item_end--;
39279cc3 3348 }
8082510e
YZ
3349 if (found_type > min_type) {
3350 del_item = 1;
3351 } else {
3352 if (item_end < new_size)
b888db2b 3353 break;
8082510e
YZ
3354 if (found_key.offset >= new_size)
3355 del_item = 1;
3356 else
3357 del_item = 0;
39279cc3 3358 }
39279cc3 3359 found_extent = 0;
39279cc3 3360 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3361 if (found_type != BTRFS_EXTENT_DATA_KEY)
3362 goto delete;
3363
3364 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3365 u64 num_dec;
db94535d 3366 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3367 if (!del_item) {
db94535d
CM
3368 u64 orig_num_bytes =
3369 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3370 extent_num_bytes = new_size -
5f39d397 3371 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3372 extent_num_bytes = extent_num_bytes &
3373 ~((u64)root->sectorsize - 1);
db94535d
CM
3374 btrfs_set_file_extent_num_bytes(leaf, fi,
3375 extent_num_bytes);
3376 num_dec = (orig_num_bytes -
9069218d 3377 extent_num_bytes);
e02119d5 3378 if (root->ref_cows && extent_start != 0)
a76a3cd4 3379 inode_sub_bytes(inode, num_dec);
5f39d397 3380 btrfs_mark_buffer_dirty(leaf);
39279cc3 3381 } else {
db94535d
CM
3382 extent_num_bytes =
3383 btrfs_file_extent_disk_num_bytes(leaf,
3384 fi);
5d4f98a2
YZ
3385 extent_offset = found_key.offset -
3386 btrfs_file_extent_offset(leaf, fi);
3387
39279cc3 3388 /* FIXME blocksize != 4096 */
9069218d 3389 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3390 if (extent_start != 0) {
3391 found_extent = 1;
e02119d5 3392 if (root->ref_cows)
a76a3cd4 3393 inode_sub_bytes(inode, num_dec);
e02119d5 3394 }
39279cc3 3395 }
9069218d 3396 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3397 /*
3398 * we can't truncate inline items that have had
3399 * special encodings
3400 */
3401 if (!del_item &&
3402 btrfs_file_extent_compression(leaf, fi) == 0 &&
3403 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3404 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3405 u32 size = new_size - found_key.offset;
3406
3407 if (root->ref_cows) {
a76a3cd4
YZ
3408 inode_sub_bytes(inode, item_end + 1 -
3409 new_size);
e02119d5
CM
3410 }
3411 size =
3412 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3413 btrfs_truncate_item(trans, root, path,
3414 size, 1);
e02119d5 3415 } else if (root->ref_cows) {
a76a3cd4
YZ
3416 inode_sub_bytes(inode, item_end + 1 -
3417 found_key.offset);
9069218d 3418 }
39279cc3 3419 }
179e29e4 3420delete:
39279cc3 3421 if (del_item) {
85e21bac
CM
3422 if (!pending_del_nr) {
3423 /* no pending yet, add ourselves */
3424 pending_del_slot = path->slots[0];
3425 pending_del_nr = 1;
3426 } else if (pending_del_nr &&
3427 path->slots[0] + 1 == pending_del_slot) {
3428 /* hop on the pending chunk */
3429 pending_del_nr++;
3430 pending_del_slot = path->slots[0];
3431 } else {
d397712b 3432 BUG();
85e21bac 3433 }
39279cc3
CM
3434 } else {
3435 break;
3436 }
0af3d00b
JB
3437 if (found_extent && (root->ref_cows ||
3438 root == root->fs_info->tree_root)) {
b9473439 3439 btrfs_set_path_blocking(path);
39279cc3 3440 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3441 extent_num_bytes, 0,
3442 btrfs_header_owner(leaf),
66d7e7f0 3443 ino, extent_offset, 0);
39279cc3
CM
3444 BUG_ON(ret);
3445 }
85e21bac 3446
8082510e
YZ
3447 if (found_type == BTRFS_INODE_ITEM_KEY)
3448 break;
3449
3450 if (path->slots[0] == 0 ||
3451 path->slots[0] != pending_del_slot) {
8082510e
YZ
3452 if (pending_del_nr) {
3453 ret = btrfs_del_items(trans, root, path,
3454 pending_del_slot,
3455 pending_del_nr);
79787eaa
JM
3456 if (ret) {
3457 btrfs_abort_transaction(trans,
3458 root, ret);
3459 goto error;
3460 }
8082510e
YZ
3461 pending_del_nr = 0;
3462 }
b3b4aa74 3463 btrfs_release_path(path);
85e21bac 3464 goto search_again;
8082510e
YZ
3465 } else {
3466 path->slots[0]--;
85e21bac 3467 }
39279cc3 3468 }
8082510e 3469out:
85e21bac
CM
3470 if (pending_del_nr) {
3471 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3472 pending_del_nr);
79787eaa
JM
3473 if (ret)
3474 btrfs_abort_transaction(trans, root, ret);
85e21bac 3475 }
79787eaa 3476error:
39279cc3 3477 btrfs_free_path(path);
8082510e 3478 return err;
39279cc3
CM
3479}
3480
3481/*
3482 * taken from block_truncate_page, but does cow as it zeros out
3483 * any bytes left in the last page in the file.
3484 */
3485static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3486{
3487 struct inode *inode = mapping->host;
db94535d 3488 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3489 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3490 struct btrfs_ordered_extent *ordered;
2ac55d41 3491 struct extent_state *cached_state = NULL;
e6dcd2dc 3492 char *kaddr;
db94535d 3493 u32 blocksize = root->sectorsize;
39279cc3
CM
3494 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3495 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3496 struct page *page;
3b16a4e3 3497 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3498 int ret = 0;
a52d9a80 3499 u64 page_start;
e6dcd2dc 3500 u64 page_end;
39279cc3
CM
3501
3502 if ((offset & (blocksize - 1)) == 0)
3503 goto out;
0ca1f7ce 3504 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3505 if (ret)
3506 goto out;
39279cc3
CM
3507
3508 ret = -ENOMEM;
211c17f5 3509again:
3b16a4e3 3510 page = find_or_create_page(mapping, index, mask);
5d5e103a 3511 if (!page) {
0ca1f7ce 3512 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3513 goto out;
5d5e103a 3514 }
e6dcd2dc
CM
3515
3516 page_start = page_offset(page);
3517 page_end = page_start + PAGE_CACHE_SIZE - 1;
3518
39279cc3 3519 if (!PageUptodate(page)) {
9ebefb18 3520 ret = btrfs_readpage(NULL, page);
39279cc3 3521 lock_page(page);
211c17f5
CM
3522 if (page->mapping != mapping) {
3523 unlock_page(page);
3524 page_cache_release(page);
3525 goto again;
3526 }
39279cc3
CM
3527 if (!PageUptodate(page)) {
3528 ret = -EIO;
89642229 3529 goto out_unlock;
39279cc3
CM
3530 }
3531 }
211c17f5 3532 wait_on_page_writeback(page);
e6dcd2dc 3533
d0082371 3534 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3535 set_page_extent_mapped(page);
3536
3537 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3538 if (ordered) {
2ac55d41
JB
3539 unlock_extent_cached(io_tree, page_start, page_end,
3540 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3541 unlock_page(page);
3542 page_cache_release(page);
eb84ae03 3543 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3544 btrfs_put_ordered_extent(ordered);
3545 goto again;
3546 }
3547
2ac55d41 3548 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3549 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3550 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3551
2ac55d41
JB
3552 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3553 &cached_state);
9ed74f2d 3554 if (ret) {
2ac55d41
JB
3555 unlock_extent_cached(io_tree, page_start, page_end,
3556 &cached_state, GFP_NOFS);
9ed74f2d
JB
3557 goto out_unlock;
3558 }
3559
e6dcd2dc
CM
3560 ret = 0;
3561 if (offset != PAGE_CACHE_SIZE) {
3562 kaddr = kmap(page);
3563 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3564 flush_dcache_page(page);
3565 kunmap(page);
3566 }
247e743c 3567 ClearPageChecked(page);
e6dcd2dc 3568 set_page_dirty(page);
2ac55d41
JB
3569 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3570 GFP_NOFS);
39279cc3 3571
89642229 3572out_unlock:
5d5e103a 3573 if (ret)
0ca1f7ce 3574 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3575 unlock_page(page);
3576 page_cache_release(page);
3577out:
3578 return ret;
3579}
3580
695a0d0d
JB
3581/*
3582 * This function puts in dummy file extents for the area we're creating a hole
3583 * for. So if we are truncating this file to a larger size we need to insert
3584 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3585 * the range between oldsize and size
3586 */
a41ad394 3587int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3588{
9036c102
YZ
3589 struct btrfs_trans_handle *trans;
3590 struct btrfs_root *root = BTRFS_I(inode)->root;
3591 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3592 struct extent_map *em = NULL;
2ac55d41 3593 struct extent_state *cached_state = NULL;
5dc562c5 3594 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9036c102 3595 u64 mask = root->sectorsize - 1;
a41ad394 3596 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3597 u64 block_end = (size + mask) & ~mask;
3598 u64 last_byte;
3599 u64 cur_offset;
3600 u64 hole_size;
9ed74f2d 3601 int err = 0;
39279cc3 3602
9036c102
YZ
3603 if (size <= hole_start)
3604 return 0;
3605
9036c102
YZ
3606 while (1) {
3607 struct btrfs_ordered_extent *ordered;
3608 btrfs_wait_ordered_range(inode, hole_start,
3609 block_end - hole_start);
2ac55d41 3610 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3611 &cached_state);
9036c102
YZ
3612 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3613 if (!ordered)
3614 break;
2ac55d41
JB
3615 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3616 &cached_state, GFP_NOFS);
9036c102
YZ
3617 btrfs_put_ordered_extent(ordered);
3618 }
39279cc3 3619
9036c102
YZ
3620 cur_offset = hole_start;
3621 while (1) {
3622 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3623 block_end - cur_offset, 0);
79787eaa
JM
3624 if (IS_ERR(em)) {
3625 err = PTR_ERR(em);
3626 break;
3627 }
9036c102
YZ
3628 last_byte = min(extent_map_end(em), block_end);
3629 last_byte = (last_byte + mask) & ~mask;
8082510e 3630 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 3631 struct extent_map *hole_em;
771ed689 3632 u64 hint_byte = 0;
9036c102 3633 hole_size = last_byte - cur_offset;
9ed74f2d 3634
3642320e 3635 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3636 if (IS_ERR(trans)) {
3637 err = PTR_ERR(trans);
9ed74f2d 3638 break;
a22285a6 3639 }
8082510e 3640
5dc562c5
JB
3641 err = btrfs_drop_extents(trans, root, inode,
3642 cur_offset,
8082510e
YZ
3643 cur_offset + hole_size,
3644 &hint_byte, 1);
5b397377 3645 if (err) {
79787eaa 3646 btrfs_abort_transaction(trans, root, err);
5b397377 3647 btrfs_end_transaction(trans, root);
3893e33b 3648 break;
5b397377 3649 }
8082510e 3650
9036c102 3651 err = btrfs_insert_file_extent(trans, root,
33345d01 3652 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3653 0, hole_size, 0, hole_size,
3654 0, 0, 0);
5b397377 3655 if (err) {
79787eaa 3656 btrfs_abort_transaction(trans, root, err);
5b397377 3657 btrfs_end_transaction(trans, root);
3893e33b 3658 break;
5b397377 3659 }
8082510e 3660
5dc562c5
JB
3661 btrfs_drop_extent_cache(inode, cur_offset,
3662 cur_offset + hole_size - 1, 0);
3663 hole_em = alloc_extent_map();
3664 if (!hole_em) {
3665 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3666 &BTRFS_I(inode)->runtime_flags);
3667 goto next;
3668 }
3669 hole_em->start = cur_offset;
3670 hole_em->len = hole_size;
3671 hole_em->orig_start = cur_offset;
3672
3673 hole_em->block_start = EXTENT_MAP_HOLE;
3674 hole_em->block_len = 0;
3675 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3676 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3677 hole_em->generation = trans->transid;
8082510e 3678
5dc562c5
JB
3679 while (1) {
3680 write_lock(&em_tree->lock);
3681 err = add_extent_mapping(em_tree, hole_em);
3682 if (!err)
3683 list_move(&hole_em->list,
3684 &em_tree->modified_extents);
3685 write_unlock(&em_tree->lock);
3686 if (err != -EEXIST)
3687 break;
3688 btrfs_drop_extent_cache(inode, cur_offset,
3689 cur_offset +
3690 hole_size - 1, 0);
3691 }
3692 free_extent_map(hole_em);
3693next:
3642320e 3694 btrfs_update_inode(trans, root, inode);
8082510e 3695 btrfs_end_transaction(trans, root);
9036c102
YZ
3696 }
3697 free_extent_map(em);
a22285a6 3698 em = NULL;
9036c102 3699 cur_offset = last_byte;
8082510e 3700 if (cur_offset >= block_end)
9036c102
YZ
3701 break;
3702 }
1832a6d5 3703
a22285a6 3704 free_extent_map(em);
2ac55d41
JB
3705 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3706 GFP_NOFS);
9036c102
YZ
3707 return err;
3708}
39279cc3 3709
a41ad394 3710static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3711{
f4a2f4c5
MX
3712 struct btrfs_root *root = BTRFS_I(inode)->root;
3713 struct btrfs_trans_handle *trans;
a41ad394 3714 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3715 int ret;
3716
a41ad394 3717 if (newsize == oldsize)
8082510e
YZ
3718 return 0;
3719
a41ad394 3720 if (newsize > oldsize) {
a41ad394
JB
3721 truncate_pagecache(inode, oldsize, newsize);
3722 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3723 if (ret)
8082510e 3724 return ret;
8082510e 3725
f4a2f4c5
MX
3726 trans = btrfs_start_transaction(root, 1);
3727 if (IS_ERR(trans))
3728 return PTR_ERR(trans);
3729
3730 i_size_write(inode, newsize);
3731 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3732 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3733 btrfs_end_transaction(trans, root);
a41ad394 3734 } else {
8082510e 3735
a41ad394
JB
3736 /*
3737 * We're truncating a file that used to have good data down to
3738 * zero. Make sure it gets into the ordered flush list so that
3739 * any new writes get down to disk quickly.
3740 */
3741 if (newsize == 0)
72ac3c0d
JB
3742 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3743 &BTRFS_I(inode)->runtime_flags);
8082510e 3744
a41ad394
JB
3745 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3746 truncate_setsize(inode, newsize);
3747 ret = btrfs_truncate(inode);
8082510e
YZ
3748 }
3749
a41ad394 3750 return ret;
8082510e
YZ
3751}
3752
9036c102
YZ
3753static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3754{
3755 struct inode *inode = dentry->d_inode;
b83cc969 3756 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3757 int err;
39279cc3 3758
b83cc969
LZ
3759 if (btrfs_root_readonly(root))
3760 return -EROFS;
3761
9036c102
YZ
3762 err = inode_change_ok(inode, attr);
3763 if (err)
3764 return err;
2bf5a725 3765
5a3f23d5 3766 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3767 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3768 if (err)
3769 return err;
39279cc3 3770 }
9036c102 3771
1025774c
CH
3772 if (attr->ia_valid) {
3773 setattr_copy(inode, attr);
0c4d2d95 3774 inode_inc_iversion(inode);
22c44fe6 3775 err = btrfs_dirty_inode(inode);
1025774c 3776
22c44fe6 3777 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3778 err = btrfs_acl_chmod(inode);
3779 }
33268eaf 3780
39279cc3
CM
3781 return err;
3782}
61295eb8 3783
bd555975 3784void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3785{
3786 struct btrfs_trans_handle *trans;
3787 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3788 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3789 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3790 unsigned long nr;
39279cc3
CM
3791 int ret;
3792
1abe9b8a 3793 trace_btrfs_inode_evict(inode);
3794
39279cc3 3795 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3796 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 3797 btrfs_is_free_space_inode(inode)))
bd555975
AV
3798 goto no_delete;
3799
39279cc3 3800 if (is_bad_inode(inode)) {
7b128766 3801 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3802 goto no_delete;
3803 }
bd555975 3804 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3805 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3806
c71bf099 3807 if (root->fs_info->log_root_recovering) {
6bf02314 3808 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 3809 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
3810 goto no_delete;
3811 }
3812
76dda93c
YZ
3813 if (inode->i_nlink > 0) {
3814 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3815 goto no_delete;
3816 }
3817
4289a667
JB
3818 rsv = btrfs_alloc_block_rsv(root);
3819 if (!rsv) {
3820 btrfs_orphan_del(NULL, inode);
3821 goto no_delete;
3822 }
4a338542 3823 rsv->size = min_size;
ca7e70f5 3824 rsv->failfast = 1;
726c35fa 3825 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3826
dbe674a9 3827 btrfs_i_size_write(inode, 0);
5f39d397 3828
4289a667
JB
3829 /*
3830 * This is a bit simpler than btrfs_truncate since
3831 *
3832 * 1) We've already reserved our space for our orphan item in the
3833 * unlink.
3834 * 2) We're going to delete the inode item, so we don't need to update
3835 * it at all.
3836 *
3837 * So we just need to reserve some slack space in case we add bytes when
3838 * doing the truncate.
3839 */
8082510e 3840 while (1) {
aa38a711 3841 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
726c35fa
JB
3842
3843 /*
3844 * Try and steal from the global reserve since we will
3845 * likely not use this space anyway, we want to try as
3846 * hard as possible to get this to work.
3847 */
3848 if (ret)
3849 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3850
d68fc57b 3851 if (ret) {
4289a667 3852 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3853 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3854 btrfs_orphan_del(NULL, inode);
3855 btrfs_free_block_rsv(root, rsv);
3856 goto no_delete;
d68fc57b 3857 }
7b128766 3858
4289a667
JB
3859 trans = btrfs_start_transaction(root, 0);
3860 if (IS_ERR(trans)) {
3861 btrfs_orphan_del(NULL, inode);
3862 btrfs_free_block_rsv(root, rsv);
3863 goto no_delete;
d68fc57b 3864 }
7b128766 3865
4289a667
JB
3866 trans->block_rsv = rsv;
3867
d68fc57b 3868 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 3869 if (ret != -ENOSPC)
8082510e 3870 break;
85e21bac 3871
8082510e
YZ
3872 nr = trans->blocks_used;
3873 btrfs_end_transaction(trans, root);
3874 trans = NULL;
3875 btrfs_btree_balance_dirty(root, nr);
3876 }
5f39d397 3877
4289a667
JB
3878 btrfs_free_block_rsv(root, rsv);
3879
8082510e 3880 if (ret == 0) {
4289a667 3881 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3882 ret = btrfs_orphan_del(trans, inode);
3883 BUG_ON(ret);
3884 }
54aa1f4d 3885
4289a667 3886 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3887 if (!(root == root->fs_info->tree_root ||
3888 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3889 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3890
d3c2fdcf 3891 nr = trans->blocks_used;
54aa1f4d 3892 btrfs_end_transaction(trans, root);
d3c2fdcf 3893 btrfs_btree_balance_dirty(root, nr);
39279cc3 3894no_delete:
dbd5768f 3895 clear_inode(inode);
8082510e 3896 return;
39279cc3
CM
3897}
3898
3899/*
3900 * this returns the key found in the dir entry in the location pointer.
3901 * If no dir entries were found, location->objectid is 0.
3902 */
3903static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3904 struct btrfs_key *location)
3905{
3906 const char *name = dentry->d_name.name;
3907 int namelen = dentry->d_name.len;
3908 struct btrfs_dir_item *di;
3909 struct btrfs_path *path;
3910 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3911 int ret = 0;
39279cc3
CM
3912
3913 path = btrfs_alloc_path();
d8926bb3
MF
3914 if (!path)
3915 return -ENOMEM;
3954401f 3916
33345d01 3917 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3918 namelen, 0);
0d9f7f3e
Y
3919 if (IS_ERR(di))
3920 ret = PTR_ERR(di);
d397712b 3921
c704005d 3922 if (IS_ERR_OR_NULL(di))
3954401f 3923 goto out_err;
d397712b 3924
5f39d397 3925 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3926out:
39279cc3
CM
3927 btrfs_free_path(path);
3928 return ret;
3954401f
CM
3929out_err:
3930 location->objectid = 0;
3931 goto out;
39279cc3
CM
3932}
3933
3934/*
3935 * when we hit a tree root in a directory, the btrfs part of the inode
3936 * needs to be changed to reflect the root directory of the tree root. This
3937 * is kind of like crossing a mount point.
3938 */
3939static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3940 struct inode *dir,
3941 struct dentry *dentry,
3942 struct btrfs_key *location,
3943 struct btrfs_root **sub_root)
39279cc3 3944{
4df27c4d
YZ
3945 struct btrfs_path *path;
3946 struct btrfs_root *new_root;
3947 struct btrfs_root_ref *ref;
3948 struct extent_buffer *leaf;
3949 int ret;
3950 int err = 0;
39279cc3 3951
4df27c4d
YZ
3952 path = btrfs_alloc_path();
3953 if (!path) {
3954 err = -ENOMEM;
3955 goto out;
3956 }
39279cc3 3957
4df27c4d
YZ
3958 err = -ENOENT;
3959 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3960 BTRFS_I(dir)->root->root_key.objectid,
3961 location->objectid);
3962 if (ret) {
3963 if (ret < 0)
3964 err = ret;
3965 goto out;
3966 }
39279cc3 3967
4df27c4d
YZ
3968 leaf = path->nodes[0];
3969 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3970 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3971 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3972 goto out;
39279cc3 3973
4df27c4d
YZ
3974 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3975 (unsigned long)(ref + 1),
3976 dentry->d_name.len);
3977 if (ret)
3978 goto out;
3979
b3b4aa74 3980 btrfs_release_path(path);
4df27c4d
YZ
3981
3982 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3983 if (IS_ERR(new_root)) {
3984 err = PTR_ERR(new_root);
3985 goto out;
3986 }
3987
3988 if (btrfs_root_refs(&new_root->root_item) == 0) {
3989 err = -ENOENT;
3990 goto out;
3991 }
3992
3993 *sub_root = new_root;
3994 location->objectid = btrfs_root_dirid(&new_root->root_item);
3995 location->type = BTRFS_INODE_ITEM_KEY;
3996 location->offset = 0;
3997 err = 0;
3998out:
3999 btrfs_free_path(path);
4000 return err;
39279cc3
CM
4001}
4002
5d4f98a2
YZ
4003static void inode_tree_add(struct inode *inode)
4004{
4005 struct btrfs_root *root = BTRFS_I(inode)->root;
4006 struct btrfs_inode *entry;
03e860bd
FNP
4007 struct rb_node **p;
4008 struct rb_node *parent;
33345d01 4009 u64 ino = btrfs_ino(inode);
03e860bd
FNP
4010again:
4011 p = &root->inode_tree.rb_node;
4012 parent = NULL;
5d4f98a2 4013
1d3382cb 4014 if (inode_unhashed(inode))
76dda93c
YZ
4015 return;
4016
5d4f98a2
YZ
4017 spin_lock(&root->inode_lock);
4018 while (*p) {
4019 parent = *p;
4020 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4021
33345d01 4022 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4023 p = &parent->rb_left;
33345d01 4024 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4025 p = &parent->rb_right;
5d4f98a2
YZ
4026 else {
4027 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4028 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4029 rb_erase(parent, &root->inode_tree);
4030 RB_CLEAR_NODE(parent);
4031 spin_unlock(&root->inode_lock);
4032 goto again;
5d4f98a2
YZ
4033 }
4034 }
4035 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4036 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4037 spin_unlock(&root->inode_lock);
4038}
4039
4040static void inode_tree_del(struct inode *inode)
4041{
4042 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4043 int empty = 0;
5d4f98a2 4044
03e860bd 4045 spin_lock(&root->inode_lock);
5d4f98a2 4046 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4047 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4048 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4049 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4050 }
03e860bd 4051 spin_unlock(&root->inode_lock);
76dda93c 4052
0af3d00b
JB
4053 /*
4054 * Free space cache has inodes in the tree root, but the tree root has a
4055 * root_refs of 0, so this could end up dropping the tree root as a
4056 * snapshot, so we need the extra !root->fs_info->tree_root check to
4057 * make sure we don't drop it.
4058 */
4059 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4060 root != root->fs_info->tree_root) {
76dda93c
YZ
4061 synchronize_srcu(&root->fs_info->subvol_srcu);
4062 spin_lock(&root->inode_lock);
4063 empty = RB_EMPTY_ROOT(&root->inode_tree);
4064 spin_unlock(&root->inode_lock);
4065 if (empty)
4066 btrfs_add_dead_root(root);
4067 }
4068}
4069
143bede5 4070void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4071{
4072 struct rb_node *node;
4073 struct rb_node *prev;
4074 struct btrfs_inode *entry;
4075 struct inode *inode;
4076 u64 objectid = 0;
4077
4078 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4079
4080 spin_lock(&root->inode_lock);
4081again:
4082 node = root->inode_tree.rb_node;
4083 prev = NULL;
4084 while (node) {
4085 prev = node;
4086 entry = rb_entry(node, struct btrfs_inode, rb_node);
4087
33345d01 4088 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4089 node = node->rb_left;
33345d01 4090 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4091 node = node->rb_right;
4092 else
4093 break;
4094 }
4095 if (!node) {
4096 while (prev) {
4097 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4098 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4099 node = prev;
4100 break;
4101 }
4102 prev = rb_next(prev);
4103 }
4104 }
4105 while (node) {
4106 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4107 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4108 inode = igrab(&entry->vfs_inode);
4109 if (inode) {
4110 spin_unlock(&root->inode_lock);
4111 if (atomic_read(&inode->i_count) > 1)
4112 d_prune_aliases(inode);
4113 /*
45321ac5 4114 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4115 * the inode cache when its usage count
4116 * hits zero.
4117 */
4118 iput(inode);
4119 cond_resched();
4120 spin_lock(&root->inode_lock);
4121 goto again;
4122 }
4123
4124 if (cond_resched_lock(&root->inode_lock))
4125 goto again;
4126
4127 node = rb_next(node);
4128 }
4129 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4130}
4131
e02119d5
CM
4132static int btrfs_init_locked_inode(struct inode *inode, void *p)
4133{
4134 struct btrfs_iget_args *args = p;
4135 inode->i_ino = args->ino;
e02119d5 4136 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4137 return 0;
4138}
4139
4140static int btrfs_find_actor(struct inode *inode, void *opaque)
4141{
4142 struct btrfs_iget_args *args = opaque;
33345d01 4143 return args->ino == btrfs_ino(inode) &&
d397712b 4144 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4145}
4146
5d4f98a2
YZ
4147static struct inode *btrfs_iget_locked(struct super_block *s,
4148 u64 objectid,
4149 struct btrfs_root *root)
39279cc3
CM
4150{
4151 struct inode *inode;
4152 struct btrfs_iget_args args;
4153 args.ino = objectid;
4154 args.root = root;
4155
4156 inode = iget5_locked(s, objectid, btrfs_find_actor,
4157 btrfs_init_locked_inode,
4158 (void *)&args);
4159 return inode;
4160}
4161
1a54ef8c
BR
4162/* Get an inode object given its location and corresponding root.
4163 * Returns in *is_new if the inode was read from disk
4164 */
4165struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4166 struct btrfs_root *root, int *new)
1a54ef8c
BR
4167{
4168 struct inode *inode;
4169
4170 inode = btrfs_iget_locked(s, location->objectid, root);
4171 if (!inode)
5d4f98a2 4172 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4173
4174 if (inode->i_state & I_NEW) {
4175 BTRFS_I(inode)->root = root;
4176 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4177 btrfs_read_locked_inode(inode);
1748f843
MF
4178 if (!is_bad_inode(inode)) {
4179 inode_tree_add(inode);
4180 unlock_new_inode(inode);
4181 if (new)
4182 *new = 1;
4183 } else {
e0b6d65b
ST
4184 unlock_new_inode(inode);
4185 iput(inode);
4186 inode = ERR_PTR(-ESTALE);
1748f843
MF
4187 }
4188 }
4189
1a54ef8c
BR
4190 return inode;
4191}
4192
4df27c4d
YZ
4193static struct inode *new_simple_dir(struct super_block *s,
4194 struct btrfs_key *key,
4195 struct btrfs_root *root)
4196{
4197 struct inode *inode = new_inode(s);
4198
4199 if (!inode)
4200 return ERR_PTR(-ENOMEM);
4201
4df27c4d
YZ
4202 BTRFS_I(inode)->root = root;
4203 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4204 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4205
4206 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4207 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4208 inode->i_fop = &simple_dir_operations;
4209 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4210 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4211
4212 return inode;
4213}
4214
3de4586c 4215struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4216{
d397712b 4217 struct inode *inode;
4df27c4d 4218 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4219 struct btrfs_root *sub_root = root;
4220 struct btrfs_key location;
76dda93c 4221 int index;
b4aff1f8 4222 int ret = 0;
39279cc3
CM
4223
4224 if (dentry->d_name.len > BTRFS_NAME_LEN)
4225 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4226
b4aff1f8
JB
4227 if (unlikely(d_need_lookup(dentry))) {
4228 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4229 kfree(dentry->d_fsdata);
4230 dentry->d_fsdata = NULL;
a66e7cc6
JB
4231 /* This thing is hashed, drop it for now */
4232 d_drop(dentry);
b4aff1f8
JB
4233 } else {
4234 ret = btrfs_inode_by_name(dir, dentry, &location);
4235 }
5f39d397 4236
39279cc3
CM
4237 if (ret < 0)
4238 return ERR_PTR(ret);
5f39d397 4239
4df27c4d
YZ
4240 if (location.objectid == 0)
4241 return NULL;
4242
4243 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4244 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4245 return inode;
4246 }
4247
4248 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4249
76dda93c 4250 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4251 ret = fixup_tree_root_location(root, dir, dentry,
4252 &location, &sub_root);
4253 if (ret < 0) {
4254 if (ret != -ENOENT)
4255 inode = ERR_PTR(ret);
4256 else
4257 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4258 } else {
73f73415 4259 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4260 }
76dda93c
YZ
4261 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4262
34d19bad 4263 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4264 down_read(&root->fs_info->cleanup_work_sem);
4265 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4266 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4267 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4268 if (ret)
4269 inode = ERR_PTR(ret);
c71bf099
YZ
4270 }
4271
3de4586c
CM
4272 return inode;
4273}
4274
fe15ce44 4275static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4276{
4277 struct btrfs_root *root;
848cce0d 4278 struct inode *inode = dentry->d_inode;
76dda93c 4279
848cce0d
LZ
4280 if (!inode && !IS_ROOT(dentry))
4281 inode = dentry->d_parent->d_inode;
76dda93c 4282
848cce0d
LZ
4283 if (inode) {
4284 root = BTRFS_I(inode)->root;
efefb143
YZ
4285 if (btrfs_root_refs(&root->root_item) == 0)
4286 return 1;
848cce0d
LZ
4287
4288 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4289 return 1;
efefb143 4290 }
76dda93c
YZ
4291 return 0;
4292}
4293
b4aff1f8
JB
4294static void btrfs_dentry_release(struct dentry *dentry)
4295{
4296 if (dentry->d_fsdata)
4297 kfree(dentry->d_fsdata);
4298}
4299
3de4586c 4300static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4301 unsigned int flags)
3de4586c 4302{
a66e7cc6
JB
4303 struct dentry *ret;
4304
4305 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4306 if (unlikely(d_need_lookup(dentry))) {
4307 spin_lock(&dentry->d_lock);
4308 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4309 spin_unlock(&dentry->d_lock);
4310 }
4311 return ret;
39279cc3
CM
4312}
4313
16cdcec7 4314unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4315 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4316};
4317
cbdf5a24
DW
4318static int btrfs_real_readdir(struct file *filp, void *dirent,
4319 filldir_t filldir)
39279cc3 4320{
6da6abae 4321 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4322 struct btrfs_root *root = BTRFS_I(inode)->root;
4323 struct btrfs_item *item;
4324 struct btrfs_dir_item *di;
4325 struct btrfs_key key;
5f39d397 4326 struct btrfs_key found_key;
39279cc3 4327 struct btrfs_path *path;
16cdcec7
MX
4328 struct list_head ins_list;
4329 struct list_head del_list;
39279cc3 4330 int ret;
5f39d397 4331 struct extent_buffer *leaf;
39279cc3 4332 int slot;
39279cc3
CM
4333 unsigned char d_type;
4334 int over = 0;
4335 u32 di_cur;
4336 u32 di_total;
4337 u32 di_len;
4338 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4339 char tmp_name[32];
4340 char *name_ptr;
4341 int name_len;
16cdcec7 4342 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4343
4344 /* FIXME, use a real flag for deciding about the key type */
4345 if (root->fs_info->tree_root == root)
4346 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4347
3954401f
CM
4348 /* special case for "." */
4349 if (filp->f_pos == 0) {
3765fefa
HS
4350 over = filldir(dirent, ".", 1,
4351 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4352 if (over)
4353 return 0;
4354 filp->f_pos = 1;
4355 }
3954401f
CM
4356 /* special case for .., just use the back ref */
4357 if (filp->f_pos == 1) {
5ecc7e5d 4358 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4359 over = filldir(dirent, "..", 2,
3765fefa 4360 filp->f_pos, pino, DT_DIR);
3954401f 4361 if (over)
49593bfa 4362 return 0;
3954401f
CM
4363 filp->f_pos = 2;
4364 }
49593bfa 4365 path = btrfs_alloc_path();
16cdcec7
MX
4366 if (!path)
4367 return -ENOMEM;
ff5714cc 4368
026fd317 4369 path->reada = 1;
49593bfa 4370
16cdcec7
MX
4371 if (key_type == BTRFS_DIR_INDEX_KEY) {
4372 INIT_LIST_HEAD(&ins_list);
4373 INIT_LIST_HEAD(&del_list);
4374 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4375 }
4376
39279cc3
CM
4377 btrfs_set_key_type(&key, key_type);
4378 key.offset = filp->f_pos;
33345d01 4379 key.objectid = btrfs_ino(inode);
5f39d397 4380
39279cc3
CM
4381 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4382 if (ret < 0)
4383 goto err;
49593bfa
DW
4384
4385 while (1) {
5f39d397 4386 leaf = path->nodes[0];
39279cc3 4387 slot = path->slots[0];
b9e03af0
LZ
4388 if (slot >= btrfs_header_nritems(leaf)) {
4389 ret = btrfs_next_leaf(root, path);
4390 if (ret < 0)
4391 goto err;
4392 else if (ret > 0)
4393 break;
4394 continue;
39279cc3 4395 }
3de4586c 4396
5f39d397
CM
4397 item = btrfs_item_nr(leaf, slot);
4398 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4399
4400 if (found_key.objectid != key.objectid)
39279cc3 4401 break;
5f39d397 4402 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4403 break;
5f39d397 4404 if (found_key.offset < filp->f_pos)
b9e03af0 4405 goto next;
16cdcec7
MX
4406 if (key_type == BTRFS_DIR_INDEX_KEY &&
4407 btrfs_should_delete_dir_index(&del_list,
4408 found_key.offset))
4409 goto next;
5f39d397
CM
4410
4411 filp->f_pos = found_key.offset;
16cdcec7 4412 is_curr = 1;
49593bfa 4413
39279cc3
CM
4414 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4415 di_cur = 0;
5f39d397 4416 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4417
4418 while (di_cur < di_total) {
5f39d397
CM
4419 struct btrfs_key location;
4420
22a94d44
JB
4421 if (verify_dir_item(root, leaf, di))
4422 break;
4423
5f39d397 4424 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4425 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4426 name_ptr = tmp_name;
4427 } else {
4428 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4429 if (!name_ptr) {
4430 ret = -ENOMEM;
4431 goto err;
4432 }
5f39d397
CM
4433 }
4434 read_extent_buffer(leaf, name_ptr,
4435 (unsigned long)(di + 1), name_len);
4436
4437 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4438 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4439
fede766f 4440
3de4586c 4441 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4442 * skip it.
4443 *
4444 * In contrast to old kernels, we insert the snapshot's
4445 * dir item and dir index after it has been created, so
4446 * we won't find a reference to our own snapshot. We
4447 * still keep the following code for backward
4448 * compatibility.
3de4586c
CM
4449 */
4450 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4451 location.objectid == root->root_key.objectid) {
4452 over = 0;
4453 goto skip;
4454 }
5f39d397 4455 over = filldir(dirent, name_ptr, name_len,
49593bfa 4456 found_key.offset, location.objectid,
39279cc3 4457 d_type);
5f39d397 4458
3de4586c 4459skip:
5f39d397
CM
4460 if (name_ptr != tmp_name)
4461 kfree(name_ptr);
4462
39279cc3
CM
4463 if (over)
4464 goto nopos;
5103e947 4465 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4466 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4467 di_cur += di_len;
4468 di = (struct btrfs_dir_item *)((char *)di + di_len);
4469 }
b9e03af0
LZ
4470next:
4471 path->slots[0]++;
39279cc3 4472 }
49593bfa 4473
16cdcec7
MX
4474 if (key_type == BTRFS_DIR_INDEX_KEY) {
4475 if (is_curr)
4476 filp->f_pos++;
4477 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4478 &ins_list);
4479 if (ret)
4480 goto nopos;
4481 }
4482
49593bfa 4483 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4484 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4485 /*
4486 * 32-bit glibc will use getdents64, but then strtol -
4487 * so the last number we can serve is this.
4488 */
4489 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4490 else
4491 filp->f_pos++;
39279cc3
CM
4492nopos:
4493 ret = 0;
4494err:
16cdcec7
MX
4495 if (key_type == BTRFS_DIR_INDEX_KEY)
4496 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4497 btrfs_free_path(path);
39279cc3
CM
4498 return ret;
4499}
4500
a9185b41 4501int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4502{
4503 struct btrfs_root *root = BTRFS_I(inode)->root;
4504 struct btrfs_trans_handle *trans;
4505 int ret = 0;
0af3d00b 4506 bool nolock = false;
39279cc3 4507
72ac3c0d 4508 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
4509 return 0;
4510
83eea1f1 4511 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 4512 nolock = true;
0af3d00b 4513
a9185b41 4514 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4515 if (nolock)
7a7eaa40 4516 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4517 else
7a7eaa40 4518 trans = btrfs_join_transaction(root);
3612b495
TI
4519 if (IS_ERR(trans))
4520 return PTR_ERR(trans);
0af3d00b
JB
4521 if (nolock)
4522 ret = btrfs_end_transaction_nolock(trans, root);
4523 else
4524 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4525 }
4526 return ret;
4527}
4528
4529/*
54aa1f4d 4530 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4531 * inode changes. But, it is most likely to find the inode in cache.
4532 * FIXME, needs more benchmarking...there are no reasons other than performance
4533 * to keep or drop this code.
4534 */
22c44fe6 4535int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4536{
4537 struct btrfs_root *root = BTRFS_I(inode)->root;
4538 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4539 int ret;
4540
72ac3c0d 4541 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 4542 return 0;
39279cc3 4543
7a7eaa40 4544 trans = btrfs_join_transaction(root);
22c44fe6
JB
4545 if (IS_ERR(trans))
4546 return PTR_ERR(trans);
8929ecfa
YZ
4547
4548 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4549 if (ret && ret == -ENOSPC) {
4550 /* whoops, lets try again with the full transaction */
4551 btrfs_end_transaction(trans, root);
4552 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4553 if (IS_ERR(trans))
4554 return PTR_ERR(trans);
8929ecfa 4555
94b60442 4556 ret = btrfs_update_inode(trans, root, inode);
94b60442 4557 }
39279cc3 4558 btrfs_end_transaction(trans, root);
16cdcec7
MX
4559 if (BTRFS_I(inode)->delayed_node)
4560 btrfs_balance_delayed_items(root);
22c44fe6
JB
4561
4562 return ret;
4563}
4564
4565/*
4566 * This is a copy of file_update_time. We need this so we can return error on
4567 * ENOSPC for updating the inode in the case of file write and mmap writes.
4568 */
e41f941a
JB
4569static int btrfs_update_time(struct inode *inode, struct timespec *now,
4570 int flags)
22c44fe6 4571{
2bc55652
AB
4572 struct btrfs_root *root = BTRFS_I(inode)->root;
4573
4574 if (btrfs_root_readonly(root))
4575 return -EROFS;
4576
e41f941a 4577 if (flags & S_VERSION)
22c44fe6 4578 inode_inc_iversion(inode);
e41f941a
JB
4579 if (flags & S_CTIME)
4580 inode->i_ctime = *now;
4581 if (flags & S_MTIME)
4582 inode->i_mtime = *now;
4583 if (flags & S_ATIME)
4584 inode->i_atime = *now;
4585 return btrfs_dirty_inode(inode);
39279cc3
CM
4586}
4587
d352ac68
CM
4588/*
4589 * find the highest existing sequence number in a directory
4590 * and then set the in-memory index_cnt variable to reflect
4591 * free sequence numbers
4592 */
aec7477b
JB
4593static int btrfs_set_inode_index_count(struct inode *inode)
4594{
4595 struct btrfs_root *root = BTRFS_I(inode)->root;
4596 struct btrfs_key key, found_key;
4597 struct btrfs_path *path;
4598 struct extent_buffer *leaf;
4599 int ret;
4600
33345d01 4601 key.objectid = btrfs_ino(inode);
aec7477b
JB
4602 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4603 key.offset = (u64)-1;
4604
4605 path = btrfs_alloc_path();
4606 if (!path)
4607 return -ENOMEM;
4608
4609 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4610 if (ret < 0)
4611 goto out;
4612 /* FIXME: we should be able to handle this */
4613 if (ret == 0)
4614 goto out;
4615 ret = 0;
4616
4617 /*
4618 * MAGIC NUMBER EXPLANATION:
4619 * since we search a directory based on f_pos we have to start at 2
4620 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4621 * else has to start at 2
4622 */
4623 if (path->slots[0] == 0) {
4624 BTRFS_I(inode)->index_cnt = 2;
4625 goto out;
4626 }
4627
4628 path->slots[0]--;
4629
4630 leaf = path->nodes[0];
4631 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4632
33345d01 4633 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4634 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4635 BTRFS_I(inode)->index_cnt = 2;
4636 goto out;
4637 }
4638
4639 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4640out:
4641 btrfs_free_path(path);
4642 return ret;
4643}
4644
d352ac68
CM
4645/*
4646 * helper to find a free sequence number in a given directory. This current
4647 * code is very simple, later versions will do smarter things in the btree
4648 */
3de4586c 4649int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4650{
4651 int ret = 0;
4652
4653 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4654 ret = btrfs_inode_delayed_dir_index_count(dir);
4655 if (ret) {
4656 ret = btrfs_set_inode_index_count(dir);
4657 if (ret)
4658 return ret;
4659 }
aec7477b
JB
4660 }
4661
00e4e6b3 4662 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4663 BTRFS_I(dir)->index_cnt++;
4664
4665 return ret;
4666}
4667
39279cc3
CM
4668static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4669 struct btrfs_root *root,
aec7477b 4670 struct inode *dir,
9c58309d 4671 const char *name, int name_len,
175a4eb7
AV
4672 u64 ref_objectid, u64 objectid,
4673 umode_t mode, u64 *index)
39279cc3
CM
4674{
4675 struct inode *inode;
5f39d397 4676 struct btrfs_inode_item *inode_item;
39279cc3 4677 struct btrfs_key *location;
5f39d397 4678 struct btrfs_path *path;
9c58309d
CM
4679 struct btrfs_inode_ref *ref;
4680 struct btrfs_key key[2];
4681 u32 sizes[2];
4682 unsigned long ptr;
39279cc3
CM
4683 int ret;
4684 int owner;
4685
5f39d397 4686 path = btrfs_alloc_path();
d8926bb3
MF
4687 if (!path)
4688 return ERR_PTR(-ENOMEM);
5f39d397 4689
39279cc3 4690 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4691 if (!inode) {
4692 btrfs_free_path(path);
39279cc3 4693 return ERR_PTR(-ENOMEM);
8fb27640 4694 }
39279cc3 4695
581bb050
LZ
4696 /*
4697 * we have to initialize this early, so we can reclaim the inode
4698 * number if we fail afterwards in this function.
4699 */
4700 inode->i_ino = objectid;
4701
aec7477b 4702 if (dir) {
1abe9b8a 4703 trace_btrfs_inode_request(dir);
4704
3de4586c 4705 ret = btrfs_set_inode_index(dir, index);
09771430 4706 if (ret) {
8fb27640 4707 btrfs_free_path(path);
09771430 4708 iput(inode);
aec7477b 4709 return ERR_PTR(ret);
09771430 4710 }
aec7477b
JB
4711 }
4712 /*
4713 * index_cnt is ignored for everything but a dir,
4714 * btrfs_get_inode_index_count has an explanation for the magic
4715 * number
4716 */
4717 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4718 BTRFS_I(inode)->root = root;
e02119d5 4719 BTRFS_I(inode)->generation = trans->transid;
76195853 4720 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 4721
5dc562c5
JB
4722 /*
4723 * We could have gotten an inode number from somebody who was fsynced
4724 * and then removed in this same transaction, so let's just set full
4725 * sync since it will be a full sync anyway and this will blow away the
4726 * old info in the log.
4727 */
4728 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4729
569254b0 4730 if (S_ISDIR(mode))
39279cc3
CM
4731 owner = 0;
4732 else
4733 owner = 1;
9c58309d
CM
4734
4735 key[0].objectid = objectid;
4736 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4737 key[0].offset = 0;
4738
4739 key[1].objectid = objectid;
4740 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4741 key[1].offset = ref_objectid;
4742
4743 sizes[0] = sizeof(struct btrfs_inode_item);
4744 sizes[1] = name_len + sizeof(*ref);
4745
b9473439 4746 path->leave_spinning = 1;
9c58309d
CM
4747 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4748 if (ret != 0)
5f39d397
CM
4749 goto fail;
4750
ecc11fab 4751 inode_init_owner(inode, dir, mode);
a76a3cd4 4752 inode_set_bytes(inode, 0);
39279cc3 4753 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4754 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4755 struct btrfs_inode_item);
293f7e07
LZ
4756 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4757 sizeof(*inode_item));
e02119d5 4758 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4759
4760 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4761 struct btrfs_inode_ref);
4762 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4763 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4764 ptr = (unsigned long)(ref + 1);
4765 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4766
5f39d397
CM
4767 btrfs_mark_buffer_dirty(path->nodes[0]);
4768 btrfs_free_path(path);
4769
39279cc3
CM
4770 location = &BTRFS_I(inode)->location;
4771 location->objectid = objectid;
39279cc3
CM
4772 location->offset = 0;
4773 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4774
6cbff00f
CH
4775 btrfs_inherit_iflags(inode, dir);
4776
569254b0 4777 if (S_ISREG(mode)) {
94272164
CM
4778 if (btrfs_test_opt(root, NODATASUM))
4779 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4780 if (btrfs_test_opt(root, NODATACOW) ||
4781 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4782 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4783 }
4784
39279cc3 4785 insert_inode_hash(inode);
5d4f98a2 4786 inode_tree_add(inode);
1abe9b8a 4787
4788 trace_btrfs_inode_new(inode);
1973f0fa 4789 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4790
8ea05e3a
AB
4791 btrfs_update_root_times(trans, root);
4792
39279cc3 4793 return inode;
5f39d397 4794fail:
aec7477b
JB
4795 if (dir)
4796 BTRFS_I(dir)->index_cnt--;
5f39d397 4797 btrfs_free_path(path);
09771430 4798 iput(inode);
5f39d397 4799 return ERR_PTR(ret);
39279cc3
CM
4800}
4801
4802static inline u8 btrfs_inode_type(struct inode *inode)
4803{
4804 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4805}
4806
d352ac68
CM
4807/*
4808 * utility function to add 'inode' into 'parent_inode' with
4809 * a give name and a given sequence number.
4810 * if 'add_backref' is true, also insert a backref from the
4811 * inode to the parent directory.
4812 */
e02119d5
CM
4813int btrfs_add_link(struct btrfs_trans_handle *trans,
4814 struct inode *parent_inode, struct inode *inode,
4815 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4816{
4df27c4d 4817 int ret = 0;
39279cc3 4818 struct btrfs_key key;
e02119d5 4819 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4820 u64 ino = btrfs_ino(inode);
4821 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4822
33345d01 4823 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4824 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4825 } else {
33345d01 4826 key.objectid = ino;
4df27c4d
YZ
4827 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4828 key.offset = 0;
4829 }
4830
33345d01 4831 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4832 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4833 key.objectid, root->root_key.objectid,
33345d01 4834 parent_ino, index, name, name_len);
4df27c4d 4835 } else if (add_backref) {
33345d01
LZ
4836 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4837 parent_ino, index);
4df27c4d 4838 }
39279cc3 4839
79787eaa
JM
4840 /* Nothing to clean up yet */
4841 if (ret)
4842 return ret;
4df27c4d 4843
79787eaa
JM
4844 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4845 parent_inode, &key,
4846 btrfs_inode_type(inode), index);
4847 if (ret == -EEXIST)
4848 goto fail_dir_item;
4849 else if (ret) {
4850 btrfs_abort_transaction(trans, root, ret);
4851 return ret;
39279cc3 4852 }
79787eaa
JM
4853
4854 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4855 name_len * 2);
0c4d2d95 4856 inode_inc_iversion(parent_inode);
79787eaa
JM
4857 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4858 ret = btrfs_update_inode(trans, root, parent_inode);
4859 if (ret)
4860 btrfs_abort_transaction(trans, root, ret);
39279cc3 4861 return ret;
fe66a05a
CM
4862
4863fail_dir_item:
4864 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4865 u64 local_index;
4866 int err;
4867 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4868 key.objectid, root->root_key.objectid,
4869 parent_ino, &local_index, name, name_len);
4870
4871 } else if (add_backref) {
4872 u64 local_index;
4873 int err;
4874
4875 err = btrfs_del_inode_ref(trans, root, name, name_len,
4876 ino, parent_ino, &local_index);
4877 }
4878 return ret;
39279cc3
CM
4879}
4880
4881static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4882 struct inode *dir, struct dentry *dentry,
4883 struct inode *inode, int backref, u64 index)
39279cc3 4884{
a1b075d2
JB
4885 int err = btrfs_add_link(trans, dir, inode,
4886 dentry->d_name.name, dentry->d_name.len,
4887 backref, index);
39279cc3
CM
4888 if (err > 0)
4889 err = -EEXIST;
4890 return err;
4891}
4892
618e21d5 4893static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4894 umode_t mode, dev_t rdev)
618e21d5
JB
4895{
4896 struct btrfs_trans_handle *trans;
4897 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4898 struct inode *inode = NULL;
618e21d5
JB
4899 int err;
4900 int drop_inode = 0;
4901 u64 objectid;
1832a6d5 4902 unsigned long nr = 0;
00e4e6b3 4903 u64 index = 0;
618e21d5
JB
4904
4905 if (!new_valid_dev(rdev))
4906 return -EINVAL;
4907
9ed74f2d
JB
4908 /*
4909 * 2 for inode item and ref
4910 * 2 for dir items
4911 * 1 for xattr if selinux is on
4912 */
a22285a6
YZ
4913 trans = btrfs_start_transaction(root, 5);
4914 if (IS_ERR(trans))
4915 return PTR_ERR(trans);
1832a6d5 4916
581bb050
LZ
4917 err = btrfs_find_free_ino(root, &objectid);
4918 if (err)
4919 goto out_unlock;
4920
aec7477b 4921 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4922 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4923 mode, &index);
7cf96da3
TI
4924 if (IS_ERR(inode)) {
4925 err = PTR_ERR(inode);
618e21d5 4926 goto out_unlock;
7cf96da3 4927 }
618e21d5 4928
2a7dba39 4929 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4930 if (err) {
4931 drop_inode = 1;
4932 goto out_unlock;
4933 }
4934
ad19db71
CS
4935 /*
4936 * If the active LSM wants to access the inode during
4937 * d_instantiate it needs these. Smack checks to see
4938 * if the filesystem supports xattrs by looking at the
4939 * ops vector.
4940 */
4941
4942 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4943 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4944 if (err)
4945 drop_inode = 1;
4946 else {
618e21d5 4947 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4948 btrfs_update_inode(trans, root, inode);
08c422c2 4949 d_instantiate(dentry, inode);
618e21d5 4950 }
618e21d5 4951out_unlock:
d3c2fdcf 4952 nr = trans->blocks_used;
7ad85bb7 4953 btrfs_end_transaction(trans, root);
a22285a6 4954 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4955 if (drop_inode) {
4956 inode_dec_link_count(inode);
4957 iput(inode);
4958 }
618e21d5
JB
4959 return err;
4960}
4961
39279cc3 4962static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 4963 umode_t mode, bool excl)
39279cc3
CM
4964{
4965 struct btrfs_trans_handle *trans;
4966 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4967 struct inode *inode = NULL;
39279cc3 4968 int drop_inode = 0;
a22285a6 4969 int err;
1832a6d5 4970 unsigned long nr = 0;
39279cc3 4971 u64 objectid;
00e4e6b3 4972 u64 index = 0;
39279cc3 4973
9ed74f2d
JB
4974 /*
4975 * 2 for inode item and ref
4976 * 2 for dir items
4977 * 1 for xattr if selinux is on
4978 */
a22285a6
YZ
4979 trans = btrfs_start_transaction(root, 5);
4980 if (IS_ERR(trans))
4981 return PTR_ERR(trans);
9ed74f2d 4982
581bb050
LZ
4983 err = btrfs_find_free_ino(root, &objectid);
4984 if (err)
4985 goto out_unlock;
4986
aec7477b 4987 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4988 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4989 mode, &index);
7cf96da3
TI
4990 if (IS_ERR(inode)) {
4991 err = PTR_ERR(inode);
39279cc3 4992 goto out_unlock;
7cf96da3 4993 }
39279cc3 4994
2a7dba39 4995 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4996 if (err) {
4997 drop_inode = 1;
4998 goto out_unlock;
4999 }
5000
ad19db71
CS
5001 /*
5002 * If the active LSM wants to access the inode during
5003 * d_instantiate it needs these. Smack checks to see
5004 * if the filesystem supports xattrs by looking at the
5005 * ops vector.
5006 */
5007 inode->i_fop = &btrfs_file_operations;
5008 inode->i_op = &btrfs_file_inode_operations;
5009
a1b075d2 5010 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
5011 if (err)
5012 drop_inode = 1;
5013 else {
5014 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5015 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 5016 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
08c422c2 5017 d_instantiate(dentry, inode);
39279cc3 5018 }
39279cc3 5019out_unlock:
d3c2fdcf 5020 nr = trans->blocks_used;
7ad85bb7 5021 btrfs_end_transaction(trans, root);
39279cc3
CM
5022 if (drop_inode) {
5023 inode_dec_link_count(inode);
5024 iput(inode);
5025 }
d3c2fdcf 5026 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5027 return err;
5028}
5029
5030static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5031 struct dentry *dentry)
5032{
5033 struct btrfs_trans_handle *trans;
5034 struct btrfs_root *root = BTRFS_I(dir)->root;
5035 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5036 u64 index;
1832a6d5 5037 unsigned long nr = 0;
39279cc3
CM
5038 int err;
5039 int drop_inode = 0;
5040
4a8be425
TH
5041 /* do not allow sys_link's with other subvols of the same device */
5042 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5043 return -EXDEV;
4a8be425 5044
c055e99e
AV
5045 if (inode->i_nlink == ~0U)
5046 return -EMLINK;
4a8be425 5047
3de4586c 5048 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5049 if (err)
5050 goto fail;
5051
a22285a6 5052 /*
7e6b6465 5053 * 2 items for inode and inode ref
a22285a6 5054 * 2 items for dir items
7e6b6465 5055 * 1 item for parent inode
a22285a6 5056 */
7e6b6465 5057 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5058 if (IS_ERR(trans)) {
5059 err = PTR_ERR(trans);
5060 goto fail;
5061 }
5f39d397 5062
3153495d 5063 btrfs_inc_nlink(inode);
0c4d2d95 5064 inode_inc_iversion(inode);
3153495d 5065 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5066 ihold(inode);
aec7477b 5067
a1b075d2 5068 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5069
a5719521 5070 if (err) {
54aa1f4d 5071 drop_inode = 1;
a5719521 5072 } else {
10d9f309 5073 struct dentry *parent = dentry->d_parent;
a5719521 5074 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5075 if (err)
5076 goto fail;
08c422c2 5077 d_instantiate(dentry, inode);
6a912213 5078 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5079 }
39279cc3 5080
d3c2fdcf 5081 nr = trans->blocks_used;
7ad85bb7 5082 btrfs_end_transaction(trans, root);
1832a6d5 5083fail:
39279cc3
CM
5084 if (drop_inode) {
5085 inode_dec_link_count(inode);
5086 iput(inode);
5087 }
d3c2fdcf 5088 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5089 return err;
5090}
5091
18bb1db3 5092static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5093{
b9d86667 5094 struct inode *inode = NULL;
39279cc3
CM
5095 struct btrfs_trans_handle *trans;
5096 struct btrfs_root *root = BTRFS_I(dir)->root;
5097 int err = 0;
5098 int drop_on_err = 0;
b9d86667 5099 u64 objectid = 0;
00e4e6b3 5100 u64 index = 0;
d3c2fdcf 5101 unsigned long nr = 1;
39279cc3 5102
9ed74f2d
JB
5103 /*
5104 * 2 items for inode and ref
5105 * 2 items for dir items
5106 * 1 for xattr if selinux is on
5107 */
a22285a6
YZ
5108 trans = btrfs_start_transaction(root, 5);
5109 if (IS_ERR(trans))
5110 return PTR_ERR(trans);
39279cc3 5111
581bb050
LZ
5112 err = btrfs_find_free_ino(root, &objectid);
5113 if (err)
5114 goto out_fail;
5115
aec7477b 5116 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5117 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5118 S_IFDIR | mode, &index);
39279cc3
CM
5119 if (IS_ERR(inode)) {
5120 err = PTR_ERR(inode);
5121 goto out_fail;
5122 }
5f39d397 5123
39279cc3 5124 drop_on_err = 1;
33268eaf 5125
2a7dba39 5126 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5127 if (err)
5128 goto out_fail;
5129
39279cc3
CM
5130 inode->i_op = &btrfs_dir_inode_operations;
5131 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5132
dbe674a9 5133 btrfs_i_size_write(inode, 0);
39279cc3
CM
5134 err = btrfs_update_inode(trans, root, inode);
5135 if (err)
5136 goto out_fail;
5f39d397 5137
a1b075d2
JB
5138 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5139 dentry->d_name.len, 0, index);
39279cc3
CM
5140 if (err)
5141 goto out_fail;
5f39d397 5142
39279cc3
CM
5143 d_instantiate(dentry, inode);
5144 drop_on_err = 0;
39279cc3
CM
5145
5146out_fail:
d3c2fdcf 5147 nr = trans->blocks_used;
7ad85bb7 5148 btrfs_end_transaction(trans, root);
39279cc3
CM
5149 if (drop_on_err)
5150 iput(inode);
d3c2fdcf 5151 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5152 return err;
5153}
5154
d352ac68
CM
5155/* helper for btfs_get_extent. Given an existing extent in the tree,
5156 * and an extent that you want to insert, deal with overlap and insert
5157 * the new extent into the tree.
5158 */
3b951516
CM
5159static int merge_extent_mapping(struct extent_map_tree *em_tree,
5160 struct extent_map *existing,
e6dcd2dc
CM
5161 struct extent_map *em,
5162 u64 map_start, u64 map_len)
3b951516
CM
5163{
5164 u64 start_diff;
3b951516 5165
e6dcd2dc
CM
5166 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5167 start_diff = map_start - em->start;
5168 em->start = map_start;
5169 em->len = map_len;
c8b97818
CM
5170 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5171 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5172 em->block_start += start_diff;
c8b97818
CM
5173 em->block_len -= start_diff;
5174 }
e6dcd2dc 5175 return add_extent_mapping(em_tree, em);
3b951516
CM
5176}
5177
c8b97818
CM
5178static noinline int uncompress_inline(struct btrfs_path *path,
5179 struct inode *inode, struct page *page,
5180 size_t pg_offset, u64 extent_offset,
5181 struct btrfs_file_extent_item *item)
5182{
5183 int ret;
5184 struct extent_buffer *leaf = path->nodes[0];
5185 char *tmp;
5186 size_t max_size;
5187 unsigned long inline_size;
5188 unsigned long ptr;
261507a0 5189 int compress_type;
c8b97818
CM
5190
5191 WARN_ON(pg_offset != 0);
261507a0 5192 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5193 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5194 inline_size = btrfs_file_extent_inline_item_len(leaf,
5195 btrfs_item_nr(leaf, path->slots[0]));
5196 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5197 if (!tmp)
5198 return -ENOMEM;
c8b97818
CM
5199 ptr = btrfs_file_extent_inline_start(item);
5200
5201 read_extent_buffer(leaf, tmp, ptr, inline_size);
5202
5b050f04 5203 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5204 ret = btrfs_decompress(compress_type, tmp, page,
5205 extent_offset, inline_size, max_size);
c8b97818 5206 if (ret) {
7ac687d9 5207 char *kaddr = kmap_atomic(page);
c8b97818
CM
5208 unsigned long copy_size = min_t(u64,
5209 PAGE_CACHE_SIZE - pg_offset,
5210 max_size - extent_offset);
5211 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5212 kunmap_atomic(kaddr);
c8b97818
CM
5213 }
5214 kfree(tmp);
5215 return 0;
5216}
5217
d352ac68
CM
5218/*
5219 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5220 * the ugly parts come from merging extents from the disk with the in-ram
5221 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5222 * where the in-ram extents might be locked pending data=ordered completion.
5223 *
5224 * This also copies inline extents directly into the page.
5225 */
d397712b 5226
a52d9a80 5227struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5228 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5229 int create)
5230{
5231 int ret;
5232 int err = 0;
db94535d 5233 u64 bytenr;
a52d9a80
CM
5234 u64 extent_start = 0;
5235 u64 extent_end = 0;
33345d01 5236 u64 objectid = btrfs_ino(inode);
a52d9a80 5237 u32 found_type;
f421950f 5238 struct btrfs_path *path = NULL;
a52d9a80
CM
5239 struct btrfs_root *root = BTRFS_I(inode)->root;
5240 struct btrfs_file_extent_item *item;
5f39d397
CM
5241 struct extent_buffer *leaf;
5242 struct btrfs_key found_key;
a52d9a80
CM
5243 struct extent_map *em = NULL;
5244 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5245 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5246 struct btrfs_trans_handle *trans = NULL;
261507a0 5247 int compress_type;
a52d9a80 5248
a52d9a80 5249again:
890871be 5250 read_lock(&em_tree->lock);
d1310b2e 5251 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5252 if (em)
5253 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5254 read_unlock(&em_tree->lock);
d1310b2e 5255
a52d9a80 5256 if (em) {
e1c4b745
CM
5257 if (em->start > start || em->start + em->len <= start)
5258 free_extent_map(em);
5259 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5260 free_extent_map(em);
5261 else
5262 goto out;
a52d9a80 5263 }
172ddd60 5264 em = alloc_extent_map();
a52d9a80 5265 if (!em) {
d1310b2e
CM
5266 err = -ENOMEM;
5267 goto out;
a52d9a80 5268 }
e6dcd2dc 5269 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5270 em->start = EXTENT_MAP_HOLE;
445a6944 5271 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5272 em->len = (u64)-1;
c8b97818 5273 em->block_len = (u64)-1;
f421950f
CM
5274
5275 if (!path) {
5276 path = btrfs_alloc_path();
026fd317
JB
5277 if (!path) {
5278 err = -ENOMEM;
5279 goto out;
5280 }
5281 /*
5282 * Chances are we'll be called again, so go ahead and do
5283 * readahead
5284 */
5285 path->reada = 1;
f421950f
CM
5286 }
5287
179e29e4
CM
5288 ret = btrfs_lookup_file_extent(trans, root, path,
5289 objectid, start, trans != NULL);
a52d9a80
CM
5290 if (ret < 0) {
5291 err = ret;
5292 goto out;
5293 }
5294
5295 if (ret != 0) {
5296 if (path->slots[0] == 0)
5297 goto not_found;
5298 path->slots[0]--;
5299 }
5300
5f39d397
CM
5301 leaf = path->nodes[0];
5302 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5303 struct btrfs_file_extent_item);
a52d9a80 5304 /* are we inside the extent that was found? */
5f39d397
CM
5305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5306 found_type = btrfs_key_type(&found_key);
5307 if (found_key.objectid != objectid ||
a52d9a80
CM
5308 found_type != BTRFS_EXTENT_DATA_KEY) {
5309 goto not_found;
5310 }
5311
5f39d397
CM
5312 found_type = btrfs_file_extent_type(leaf, item);
5313 extent_start = found_key.offset;
261507a0 5314 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5315 if (found_type == BTRFS_FILE_EXTENT_REG ||
5316 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5317 extent_end = extent_start +
db94535d 5318 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5319 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5320 size_t size;
5321 size = btrfs_file_extent_inline_len(leaf, item);
5322 extent_end = (extent_start + size + root->sectorsize - 1) &
5323 ~((u64)root->sectorsize - 1);
5324 }
5325
5326 if (start >= extent_end) {
5327 path->slots[0]++;
5328 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5329 ret = btrfs_next_leaf(root, path);
5330 if (ret < 0) {
5331 err = ret;
5332 goto out;
a52d9a80 5333 }
9036c102
YZ
5334 if (ret > 0)
5335 goto not_found;
5336 leaf = path->nodes[0];
a52d9a80 5337 }
9036c102
YZ
5338 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5339 if (found_key.objectid != objectid ||
5340 found_key.type != BTRFS_EXTENT_DATA_KEY)
5341 goto not_found;
5342 if (start + len <= found_key.offset)
5343 goto not_found;
5344 em->start = start;
5345 em->len = found_key.offset - start;
5346 goto not_found_em;
5347 }
5348
d899e052
YZ
5349 if (found_type == BTRFS_FILE_EXTENT_REG ||
5350 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5351 em->start = extent_start;
5352 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5353 em->orig_start = extent_start -
5354 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5355 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5356 if (bytenr == 0) {
5f39d397 5357 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5358 goto insert;
5359 }
261507a0 5360 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5361 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5362 em->compress_type = compress_type;
c8b97818
CM
5363 em->block_start = bytenr;
5364 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5365 item);
5366 } else {
5367 bytenr += btrfs_file_extent_offset(leaf, item);
5368 em->block_start = bytenr;
5369 em->block_len = em->len;
d899e052
YZ
5370 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5371 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5372 }
a52d9a80
CM
5373 goto insert;
5374 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5375 unsigned long ptr;
a52d9a80 5376 char *map;
3326d1b0
CM
5377 size_t size;
5378 size_t extent_offset;
5379 size_t copy_size;
a52d9a80 5380
689f9346 5381 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5382 if (!page || create) {
689f9346 5383 em->start = extent_start;
9036c102 5384 em->len = extent_end - extent_start;
689f9346
Y
5385 goto out;
5386 }
5f39d397 5387
9036c102
YZ
5388 size = btrfs_file_extent_inline_len(leaf, item);
5389 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5390 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5391 size - extent_offset);
3326d1b0 5392 em->start = extent_start + extent_offset;
70dec807
CM
5393 em->len = (copy_size + root->sectorsize - 1) &
5394 ~((u64)root->sectorsize - 1);
ff5b7ee3 5395 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5396 if (compress_type) {
c8b97818 5397 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5398 em->compress_type = compress_type;
5399 }
689f9346 5400 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5401 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5402 if (btrfs_file_extent_compression(leaf, item) !=
5403 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5404 ret = uncompress_inline(path, inode, page,
5405 pg_offset,
5406 extent_offset, item);
79787eaa 5407 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5408 } else {
5409 map = kmap(page);
5410 read_extent_buffer(leaf, map + pg_offset, ptr,
5411 copy_size);
93c82d57
CM
5412 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5413 memset(map + pg_offset + copy_size, 0,
5414 PAGE_CACHE_SIZE - pg_offset -
5415 copy_size);
5416 }
c8b97818
CM
5417 kunmap(page);
5418 }
179e29e4
CM
5419 flush_dcache_page(page);
5420 } else if (create && PageUptodate(page)) {
6bf7e080 5421 BUG();
179e29e4
CM
5422 if (!trans) {
5423 kunmap(page);
5424 free_extent_map(em);
5425 em = NULL;
ff5714cc 5426
b3b4aa74 5427 btrfs_release_path(path);
7a7eaa40 5428 trans = btrfs_join_transaction(root);
ff5714cc 5429
3612b495
TI
5430 if (IS_ERR(trans))
5431 return ERR_CAST(trans);
179e29e4
CM
5432 goto again;
5433 }
c8b97818 5434 map = kmap(page);
70dec807 5435 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5436 copy_size);
c8b97818 5437 kunmap(page);
179e29e4 5438 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5439 }
d1310b2e 5440 set_extent_uptodate(io_tree, em->start,
507903b8 5441 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5442 goto insert;
5443 } else {
d397712b 5444 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5445 WARN_ON(1);
5446 }
5447not_found:
5448 em->start = start;
d1310b2e 5449 em->len = len;
a52d9a80 5450not_found_em:
5f39d397 5451 em->block_start = EXTENT_MAP_HOLE;
9036c102 5452 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5453insert:
b3b4aa74 5454 btrfs_release_path(path);
d1310b2e 5455 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5456 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5457 "[%llu %llu]\n", (unsigned long long)em->start,
5458 (unsigned long long)em->len,
5459 (unsigned long long)start,
5460 (unsigned long long)len);
a52d9a80
CM
5461 err = -EIO;
5462 goto out;
5463 }
d1310b2e
CM
5464
5465 err = 0;
890871be 5466 write_lock(&em_tree->lock);
a52d9a80 5467 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5468 /* it is possible that someone inserted the extent into the tree
5469 * while we had the lock dropped. It is also possible that
5470 * an overlapping map exists in the tree
5471 */
a52d9a80 5472 if (ret == -EEXIST) {
3b951516 5473 struct extent_map *existing;
e6dcd2dc
CM
5474
5475 ret = 0;
5476
3b951516 5477 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5478 if (existing && (existing->start > start ||
5479 existing->start + existing->len <= start)) {
5480 free_extent_map(existing);
5481 existing = NULL;
5482 }
3b951516
CM
5483 if (!existing) {
5484 existing = lookup_extent_mapping(em_tree, em->start,
5485 em->len);
5486 if (existing) {
5487 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5488 em, start,
5489 root->sectorsize);
3b951516
CM
5490 free_extent_map(existing);
5491 if (err) {
5492 free_extent_map(em);
5493 em = NULL;
5494 }
5495 } else {
5496 err = -EIO;
3b951516
CM
5497 free_extent_map(em);
5498 em = NULL;
5499 }
5500 } else {
5501 free_extent_map(em);
5502 em = existing;
e6dcd2dc 5503 err = 0;
a52d9a80 5504 }
a52d9a80 5505 }
890871be 5506 write_unlock(&em_tree->lock);
a52d9a80 5507out:
1abe9b8a 5508
5509 trace_btrfs_get_extent(root, em);
5510
f421950f
CM
5511 if (path)
5512 btrfs_free_path(path);
a52d9a80
CM
5513 if (trans) {
5514 ret = btrfs_end_transaction(trans, root);
d397712b 5515 if (!err)
a52d9a80
CM
5516 err = ret;
5517 }
a52d9a80
CM
5518 if (err) {
5519 free_extent_map(em);
a52d9a80
CM
5520 return ERR_PTR(err);
5521 }
79787eaa 5522 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5523 return em;
5524}
5525
ec29ed5b
CM
5526struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5527 size_t pg_offset, u64 start, u64 len,
5528 int create)
5529{
5530 struct extent_map *em;
5531 struct extent_map *hole_em = NULL;
5532 u64 range_start = start;
5533 u64 end;
5534 u64 found;
5535 u64 found_end;
5536 int err = 0;
5537
5538 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5539 if (IS_ERR(em))
5540 return em;
5541 if (em) {
5542 /*
5543 * if our em maps to a hole, there might
5544 * actually be delalloc bytes behind it
5545 */
5546 if (em->block_start != EXTENT_MAP_HOLE)
5547 return em;
5548 else
5549 hole_em = em;
5550 }
5551
5552 /* check to see if we've wrapped (len == -1 or similar) */
5553 end = start + len;
5554 if (end < start)
5555 end = (u64)-1;
5556 else
5557 end -= 1;
5558
5559 em = NULL;
5560
5561 /* ok, we didn't find anything, lets look for delalloc */
5562 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5563 end, len, EXTENT_DELALLOC, 1);
5564 found_end = range_start + found;
5565 if (found_end < range_start)
5566 found_end = (u64)-1;
5567
5568 /*
5569 * we didn't find anything useful, return
5570 * the original results from get_extent()
5571 */
5572 if (range_start > end || found_end <= start) {
5573 em = hole_em;
5574 hole_em = NULL;
5575 goto out;
5576 }
5577
5578 /* adjust the range_start to make sure it doesn't
5579 * go backwards from the start they passed in
5580 */
5581 range_start = max(start,range_start);
5582 found = found_end - range_start;
5583
5584 if (found > 0) {
5585 u64 hole_start = start;
5586 u64 hole_len = len;
5587
172ddd60 5588 em = alloc_extent_map();
ec29ed5b
CM
5589 if (!em) {
5590 err = -ENOMEM;
5591 goto out;
5592 }
5593 /*
5594 * when btrfs_get_extent can't find anything it
5595 * returns one huge hole
5596 *
5597 * make sure what it found really fits our range, and
5598 * adjust to make sure it is based on the start from
5599 * the caller
5600 */
5601 if (hole_em) {
5602 u64 calc_end = extent_map_end(hole_em);
5603
5604 if (calc_end <= start || (hole_em->start > end)) {
5605 free_extent_map(hole_em);
5606 hole_em = NULL;
5607 } else {
5608 hole_start = max(hole_em->start, start);
5609 hole_len = calc_end - hole_start;
5610 }
5611 }
5612 em->bdev = NULL;
5613 if (hole_em && range_start > hole_start) {
5614 /* our hole starts before our delalloc, so we
5615 * have to return just the parts of the hole
5616 * that go until the delalloc starts
5617 */
5618 em->len = min(hole_len,
5619 range_start - hole_start);
5620 em->start = hole_start;
5621 em->orig_start = hole_start;
5622 /*
5623 * don't adjust block start at all,
5624 * it is fixed at EXTENT_MAP_HOLE
5625 */
5626 em->block_start = hole_em->block_start;
5627 em->block_len = hole_len;
5628 } else {
5629 em->start = range_start;
5630 em->len = found;
5631 em->orig_start = range_start;
5632 em->block_start = EXTENT_MAP_DELALLOC;
5633 em->block_len = found;
5634 }
5635 } else if (hole_em) {
5636 return hole_em;
5637 }
5638out:
5639
5640 free_extent_map(hole_em);
5641 if (err) {
5642 free_extent_map(em);
5643 return ERR_PTR(err);
5644 }
5645 return em;
5646}
5647
4b46fce2 5648static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5649 struct extent_map *em,
4b46fce2
JB
5650 u64 start, u64 len)
5651{
5652 struct btrfs_root *root = BTRFS_I(inode)->root;
5653 struct btrfs_trans_handle *trans;
4b46fce2
JB
5654 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5655 struct btrfs_key ins;
5656 u64 alloc_hint;
5657 int ret;
16d299ac 5658 bool insert = false;
4b46fce2 5659
16d299ac
JB
5660 /*
5661 * Ok if the extent map we looked up is a hole and is for the exact
5662 * range we want, there is no reason to allocate a new one, however if
5663 * it is not right then we need to free this one and drop the cache for
5664 * our range.
5665 */
5666 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5667 em->len != len) {
5668 free_extent_map(em);
5669 em = NULL;
5670 insert = true;
5671 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5672 }
4b46fce2 5673
7a7eaa40 5674 trans = btrfs_join_transaction(root);
3612b495
TI
5675 if (IS_ERR(trans))
5676 return ERR_CAST(trans);
4b46fce2 5677
4cb5300b
CM
5678 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5679 btrfs_add_inode_defrag(trans, inode);
5680
4b46fce2
JB
5681 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5682
5683 alloc_hint = get_extent_allocation_hint(inode, start, len);
5684 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5685 alloc_hint, &ins, 1);
4b46fce2
JB
5686 if (ret) {
5687 em = ERR_PTR(ret);
5688 goto out;
5689 }
5690
4b46fce2 5691 if (!em) {
172ddd60 5692 em = alloc_extent_map();
16d299ac
JB
5693 if (!em) {
5694 em = ERR_PTR(-ENOMEM);
5695 goto out;
5696 }
4b46fce2
JB
5697 }
5698
5699 em->start = start;
5700 em->orig_start = em->start;
5701 em->len = ins.offset;
5702
5703 em->block_start = ins.objectid;
5704 em->block_len = ins.offset;
5705 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5706
5707 /*
5708 * We need to do this because if we're using the original em we searched
5709 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5710 */
5711 em->flags = 0;
4b46fce2
JB
5712 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5713
16d299ac 5714 while (insert) {
4b46fce2
JB
5715 write_lock(&em_tree->lock);
5716 ret = add_extent_mapping(em_tree, em);
5717 write_unlock(&em_tree->lock);
5718 if (ret != -EEXIST)
5719 break;
5720 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5721 }
5722
5723 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5724 ins.offset, ins.offset, 0);
5725 if (ret) {
5726 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5727 em = ERR_PTR(ret);
5728 }
5729out:
5730 btrfs_end_transaction(trans, root);
5731 return em;
5732}
5733
46bfbb5c
CM
5734/*
5735 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5736 * block must be cow'd
5737 */
5738static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5739 struct inode *inode, u64 offset, u64 len)
5740{
5741 struct btrfs_path *path;
5742 int ret;
5743 struct extent_buffer *leaf;
5744 struct btrfs_root *root = BTRFS_I(inode)->root;
5745 struct btrfs_file_extent_item *fi;
5746 struct btrfs_key key;
5747 u64 disk_bytenr;
5748 u64 backref_offset;
5749 u64 extent_end;
5750 u64 num_bytes;
5751 int slot;
5752 int found_type;
5753
5754 path = btrfs_alloc_path();
5755 if (!path)
5756 return -ENOMEM;
5757
33345d01 5758 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5759 offset, 0);
5760 if (ret < 0)
5761 goto out;
5762
5763 slot = path->slots[0];
5764 if (ret == 1) {
5765 if (slot == 0) {
5766 /* can't find the item, must cow */
5767 ret = 0;
5768 goto out;
5769 }
5770 slot--;
5771 }
5772 ret = 0;
5773 leaf = path->nodes[0];
5774 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5775 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5776 key.type != BTRFS_EXTENT_DATA_KEY) {
5777 /* not our file or wrong item type, must cow */
5778 goto out;
5779 }
5780
5781 if (key.offset > offset) {
5782 /* Wrong offset, must cow */
5783 goto out;
5784 }
5785
5786 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5787 found_type = btrfs_file_extent_type(leaf, fi);
5788 if (found_type != BTRFS_FILE_EXTENT_REG &&
5789 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5790 /* not a regular extent, must cow */
5791 goto out;
5792 }
5793 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5794 backref_offset = btrfs_file_extent_offset(leaf, fi);
5795
5796 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5797 if (extent_end < offset + len) {
5798 /* extent doesn't include our full range, must cow */
5799 goto out;
5800 }
5801
5802 if (btrfs_extent_readonly(root, disk_bytenr))
5803 goto out;
5804
5805 /*
5806 * look for other files referencing this extent, if we
5807 * find any we must cow
5808 */
33345d01 5809 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5810 key.offset - backref_offset, disk_bytenr))
5811 goto out;
5812
5813 /*
5814 * adjust disk_bytenr and num_bytes to cover just the bytes
5815 * in this extent we are about to write. If there
5816 * are any csums in that range we have to cow in order
5817 * to keep the csums correct
5818 */
5819 disk_bytenr += backref_offset;
5820 disk_bytenr += offset - key.offset;
5821 num_bytes = min(offset + len, extent_end) - offset;
5822 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5823 goto out;
5824 /*
5825 * all of the above have passed, it is safe to overwrite this extent
5826 * without cow
5827 */
5828 ret = 1;
5829out:
5830 btrfs_free_path(path);
5831 return ret;
5832}
5833
eb838e73
JB
5834static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5835 struct extent_state **cached_state, int writing)
5836{
5837 struct btrfs_ordered_extent *ordered;
5838 int ret = 0;
5839
5840 while (1) {
5841 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5842 0, cached_state);
5843 /*
5844 * We're concerned with the entire range that we're going to be
5845 * doing DIO to, so we need to make sure theres no ordered
5846 * extents in this range.
5847 */
5848 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5849 lockend - lockstart + 1);
5850
5851 /*
5852 * We need to make sure there are no buffered pages in this
5853 * range either, we could have raced between the invalidate in
5854 * generic_file_direct_write and locking the extent. The
5855 * invalidate needs to happen so that reads after a write do not
5856 * get stale data.
5857 */
5858 if (!ordered && (!writing ||
5859 !test_range_bit(&BTRFS_I(inode)->io_tree,
5860 lockstart, lockend, EXTENT_UPTODATE, 0,
5861 *cached_state)))
5862 break;
5863
5864 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5865 cached_state, GFP_NOFS);
5866
5867 if (ordered) {
5868 btrfs_start_ordered_extent(inode, ordered, 1);
5869 btrfs_put_ordered_extent(ordered);
5870 } else {
5871 /* Screw you mmap */
5872 ret = filemap_write_and_wait_range(inode->i_mapping,
5873 lockstart,
5874 lockend);
5875 if (ret)
5876 break;
5877
5878 /*
5879 * If we found a page that couldn't be invalidated just
5880 * fall back to buffered.
5881 */
5882 ret = invalidate_inode_pages2_range(inode->i_mapping,
5883 lockstart >> PAGE_CACHE_SHIFT,
5884 lockend >> PAGE_CACHE_SHIFT);
5885 if (ret)
5886 break;
5887 }
5888
5889 cond_resched();
5890 }
5891
5892 return ret;
5893}
5894
4b46fce2
JB
5895static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5896 struct buffer_head *bh_result, int create)
5897{
5898 struct extent_map *em;
5899 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 5900 struct extent_state *cached_state = NULL;
4b46fce2 5901 u64 start = iblock << inode->i_blkbits;
eb838e73 5902 u64 lockstart, lockend;
4b46fce2 5903 u64 len = bh_result->b_size;
46bfbb5c 5904 struct btrfs_trans_handle *trans;
eb838e73
JB
5905 int unlock_bits = EXTENT_LOCKED;
5906 int ret;
5907
eb838e73
JB
5908 if (create) {
5909 ret = btrfs_delalloc_reserve_space(inode, len);
5910 if (ret)
5911 return ret;
5912 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
c329861d
JB
5913 } else {
5914 len = min_t(u64, len, root->sectorsize);
eb838e73
JB
5915 }
5916
c329861d
JB
5917 lockstart = start;
5918 lockend = start + len - 1;
5919
eb838e73
JB
5920 /*
5921 * If this errors out it's because we couldn't invalidate pagecache for
5922 * this range and we need to fallback to buffered.
5923 */
5924 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5925 return -ENOTBLK;
5926
5927 if (create) {
5928 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5929 lockend, EXTENT_DELALLOC, NULL,
5930 &cached_state, GFP_NOFS);
5931 if (ret)
5932 goto unlock_err;
5933 }
4b46fce2
JB
5934
5935 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
5936 if (IS_ERR(em)) {
5937 ret = PTR_ERR(em);
5938 goto unlock_err;
5939 }
4b46fce2
JB
5940
5941 /*
5942 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5943 * io. INLINE is special, and we could probably kludge it in here, but
5944 * it's still buffered so for safety lets just fall back to the generic
5945 * buffered path.
5946 *
5947 * For COMPRESSED we _have_ to read the entire extent in so we can
5948 * decompress it, so there will be buffering required no matter what we
5949 * do, so go ahead and fallback to buffered.
5950 *
5951 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5952 * to buffered IO. Don't blame me, this is the price we pay for using
5953 * the generic code.
5954 */
5955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5956 em->block_start == EXTENT_MAP_INLINE) {
5957 free_extent_map(em);
eb838e73
JB
5958 ret = -ENOTBLK;
5959 goto unlock_err;
4b46fce2
JB
5960 }
5961
5962 /* Just a good old fashioned hole, return */
5963 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5964 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5965 free_extent_map(em);
eb838e73
JB
5966 ret = 0;
5967 goto unlock_err;
4b46fce2
JB
5968 }
5969
5970 /*
5971 * We don't allocate a new extent in the following cases
5972 *
5973 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5974 * existing extent.
5975 * 2) The extent is marked as PREALLOC. We're good to go here and can
5976 * just use the extent.
5977 *
5978 */
46bfbb5c 5979 if (!create) {
eb838e73
JB
5980 len = min(len, em->len - (start - em->start));
5981 lockstart = start + len;
5982 goto unlock;
46bfbb5c 5983 }
4b46fce2
JB
5984
5985 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5986 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5987 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5988 int type;
5989 int ret;
46bfbb5c 5990 u64 block_start;
4b46fce2
JB
5991
5992 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5993 type = BTRFS_ORDERED_PREALLOC;
5994 else
5995 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5996 len = min(len, em->len - (start - em->start));
4b46fce2 5997 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5998
5999 /*
6000 * we're not going to log anything, but we do need
6001 * to make sure the current transaction stays open
6002 * while we look for nocow cross refs
6003 */
7a7eaa40 6004 trans = btrfs_join_transaction(root);
3612b495 6005 if (IS_ERR(trans))
46bfbb5c
CM
6006 goto must_cow;
6007
6008 if (can_nocow_odirect(trans, inode, start, len) == 1) {
6009 ret = btrfs_add_ordered_extent_dio(inode, start,
6010 block_start, len, len, type);
6011 btrfs_end_transaction(trans, root);
6012 if (ret) {
6013 free_extent_map(em);
eb838e73 6014 goto unlock_err;
46bfbb5c
CM
6015 }
6016 goto unlock;
4b46fce2 6017 }
46bfbb5c 6018 btrfs_end_transaction(trans, root);
4b46fce2 6019 }
46bfbb5c
CM
6020must_cow:
6021 /*
6022 * this will cow the extent, reset the len in case we changed
6023 * it above
6024 */
6025 len = bh_result->b_size;
16d299ac 6026 em = btrfs_new_extent_direct(inode, em, start, len);
eb838e73
JB
6027 if (IS_ERR(em)) {
6028 ret = PTR_ERR(em);
6029 goto unlock_err;
6030 }
46bfbb5c
CM
6031 len = min(len, em->len - (start - em->start));
6032unlock:
4b46fce2
JB
6033 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6034 inode->i_blkbits;
46bfbb5c 6035 bh_result->b_size = len;
4b46fce2
JB
6036 bh_result->b_bdev = em->bdev;
6037 set_buffer_mapped(bh_result);
c3473e83
JB
6038 if (create) {
6039 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6040 set_buffer_new(bh_result);
6041
6042 /*
6043 * Need to update the i_size under the extent lock so buffered
6044 * readers will get the updated i_size when we unlock.
6045 */
6046 if (start + len > i_size_read(inode))
6047 i_size_write(inode, start + len);
6048 }
4b46fce2 6049
eb838e73
JB
6050 /*
6051 * In the case of write we need to clear and unlock the entire range,
6052 * in the case of read we need to unlock only the end area that we
6053 * aren't using if there is any left over space.
6054 */
24c03fa5
LB
6055 if (lockstart < lockend) {
6056 if (create && len < lockend - lockstart) {
6057 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6058 lockstart + len - 1, unlock_bits, 1, 0,
6059 &cached_state, GFP_NOFS);
6060 /*
6061 * Beside unlock, we also need to cleanup reserved space
6062 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6063 */
6064 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6065 lockstart + len, lockend,
6066 unlock_bits | EXTENT_DO_ACCOUNTING,
6067 1, 0, NULL, GFP_NOFS);
6068 } else {
6069 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6070 lockend, unlock_bits, 1, 0,
6071 &cached_state, GFP_NOFS);
6072 }
6073 } else {
eb838e73 6074 free_extent_state(cached_state);
24c03fa5 6075 }
eb838e73 6076
4b46fce2
JB
6077 free_extent_map(em);
6078
6079 return 0;
eb838e73
JB
6080
6081unlock_err:
6082 if (create)
6083 unlock_bits |= EXTENT_DO_ACCOUNTING;
6084
6085 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6086 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6087 return ret;
4b46fce2
JB
6088}
6089
6090struct btrfs_dio_private {
6091 struct inode *inode;
6092 u64 logical_offset;
6093 u64 disk_bytenr;
6094 u64 bytes;
4b46fce2 6095 void *private;
e65e1535
MX
6096
6097 /* number of bios pending for this dio */
6098 atomic_t pending_bios;
6099
6100 /* IO errors */
6101 int errors;
6102
6103 struct bio *orig_bio;
4b46fce2
JB
6104};
6105
6106static void btrfs_endio_direct_read(struct bio *bio, int err)
6107{
e65e1535 6108 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6109 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6110 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6111 struct inode *inode = dip->inode;
6112 struct btrfs_root *root = BTRFS_I(inode)->root;
6113 u64 start;
4b46fce2
JB
6114
6115 start = dip->logical_offset;
6116 do {
6117 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6118 struct page *page = bvec->bv_page;
6119 char *kaddr;
6120 u32 csum = ~(u32)0;
c329861d 6121 u64 private = ~(u32)0;
4b46fce2
JB
6122 unsigned long flags;
6123
c329861d
JB
6124 if (get_state_private(&BTRFS_I(inode)->io_tree,
6125 start, &private))
6126 goto failed;
4b46fce2 6127 local_irq_save(flags);
7ac687d9 6128 kaddr = kmap_atomic(page);
4b46fce2
JB
6129 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6130 csum, bvec->bv_len);
6131 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6132 kunmap_atomic(kaddr);
4b46fce2
JB
6133 local_irq_restore(flags);
6134
6135 flush_dcache_page(bvec->bv_page);
c329861d
JB
6136 if (csum != private) {
6137failed:
33345d01 6138 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 6139 " %llu csum %u private %u\n",
33345d01
LZ
6140 (unsigned long long)btrfs_ino(inode),
6141 (unsigned long long)start,
c329861d 6142 csum, (unsigned)private);
4b46fce2
JB
6143 err = -EIO;
6144 }
6145 }
6146
6147 start += bvec->bv_len;
4b46fce2
JB
6148 bvec++;
6149 } while (bvec <= bvec_end);
6150
6151 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6152 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
6153 bio->bi_private = dip->private;
6154
4b46fce2 6155 kfree(dip);
c0da7aa1
JB
6156
6157 /* If we had a csum failure make sure to clear the uptodate flag */
6158 if (err)
6159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6160 dio_end_io(bio, err);
6161}
6162
6163static void btrfs_endio_direct_write(struct bio *bio, int err)
6164{
6165 struct btrfs_dio_private *dip = bio->bi_private;
6166 struct inode *inode = dip->inode;
6167 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6168 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6169 u64 ordered_offset = dip->logical_offset;
6170 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
6171 int ret;
6172
6173 if (err)
6174 goto out_done;
163cf09c
CM
6175again:
6176 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6177 &ordered_offset,
5fd02043 6178 ordered_bytes, !err);
4b46fce2 6179 if (!ret)
163cf09c 6180 goto out_test;
4b46fce2 6181
5fd02043
JB
6182 ordered->work.func = finish_ordered_fn;
6183 ordered->work.flags = 0;
6184 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6185 &ordered->work);
163cf09c
CM
6186out_test:
6187 /*
6188 * our bio might span multiple ordered extents. If we haven't
6189 * completed the accounting for the whole dio, go back and try again
6190 */
6191 if (ordered_offset < dip->logical_offset + dip->bytes) {
6192 ordered_bytes = dip->logical_offset + dip->bytes -
6193 ordered_offset;
5fd02043 6194 ordered = NULL;
163cf09c
CM
6195 goto again;
6196 }
4b46fce2
JB
6197out_done:
6198 bio->bi_private = dip->private;
6199
4b46fce2 6200 kfree(dip);
c0da7aa1
JB
6201
6202 /* If we had an error make sure to clear the uptodate flag */
6203 if (err)
6204 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6205 dio_end_io(bio, err);
6206}
6207
eaf25d93
CM
6208static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6209 struct bio *bio, int mirror_num,
6210 unsigned long bio_flags, u64 offset)
6211{
6212 int ret;
6213 struct btrfs_root *root = BTRFS_I(inode)->root;
6214 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6215 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6216 return 0;
6217}
6218
e65e1535
MX
6219static void btrfs_end_dio_bio(struct bio *bio, int err)
6220{
6221 struct btrfs_dio_private *dip = bio->bi_private;
6222
6223 if (err) {
33345d01 6224 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6225 "sector %#Lx len %u err no %d\n",
33345d01 6226 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6227 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6228 dip->errors = 1;
6229
6230 /*
6231 * before atomic variable goto zero, we must make sure
6232 * dip->errors is perceived to be set.
6233 */
6234 smp_mb__before_atomic_dec();
6235 }
6236
6237 /* if there are more bios still pending for this dio, just exit */
6238 if (!atomic_dec_and_test(&dip->pending_bios))
6239 goto out;
6240
6241 if (dip->errors)
6242 bio_io_error(dip->orig_bio);
6243 else {
6244 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6245 bio_endio(dip->orig_bio, 0);
6246 }
6247out:
6248 bio_put(bio);
6249}
6250
6251static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6252 u64 first_sector, gfp_t gfp_flags)
6253{
6254 int nr_vecs = bio_get_nr_vecs(bdev);
6255 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6256}
6257
6258static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6259 int rw, u64 file_offset, int skip_sum,
c329861d 6260 int async_submit)
e65e1535
MX
6261{
6262 int write = rw & REQ_WRITE;
6263 struct btrfs_root *root = BTRFS_I(inode)->root;
6264 int ret;
6265
6266 bio_get(bio);
5fd02043
JB
6267
6268 if (!write) {
6269 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6270 if (ret)
6271 goto err;
6272 }
e65e1535 6273
1ae39938
JB
6274 if (skip_sum)
6275 goto map;
6276
6277 if (write && async_submit) {
e65e1535
MX
6278 ret = btrfs_wq_submit_bio(root->fs_info,
6279 inode, rw, bio, 0, 0,
6280 file_offset,
6281 __btrfs_submit_bio_start_direct_io,
6282 __btrfs_submit_bio_done);
6283 goto err;
1ae39938
JB
6284 } else if (write) {
6285 /*
6286 * If we aren't doing async submit, calculate the csum of the
6287 * bio now.
6288 */
6289 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6290 if (ret)
6291 goto err;
c2db1073 6292 } else if (!skip_sum) {
c329861d 6293 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
6294 if (ret)
6295 goto err;
6296 }
e65e1535 6297
1ae39938
JB
6298map:
6299 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6300err:
6301 bio_put(bio);
6302 return ret;
6303}
6304
6305static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6306 int skip_sum)
6307{
6308 struct inode *inode = dip->inode;
6309 struct btrfs_root *root = BTRFS_I(inode)->root;
6310 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6311 struct bio *bio;
6312 struct bio *orig_bio = dip->orig_bio;
6313 struct bio_vec *bvec = orig_bio->bi_io_vec;
6314 u64 start_sector = orig_bio->bi_sector;
6315 u64 file_offset = dip->logical_offset;
6316 u64 submit_len = 0;
6317 u64 map_length;
6318 int nr_pages = 0;
e65e1535 6319 int ret = 0;
1ae39938 6320 int async_submit = 0;
e65e1535 6321
e65e1535
MX
6322 map_length = orig_bio->bi_size;
6323 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6324 &map_length, NULL, 0);
6325 if (ret) {
64728bbb 6326 bio_put(orig_bio);
e65e1535
MX
6327 return -EIO;
6328 }
6329
02f57c7a
JB
6330 if (map_length >= orig_bio->bi_size) {
6331 bio = orig_bio;
6332 goto submit;
6333 }
6334
1ae39938 6335 async_submit = 1;
02f57c7a
JB
6336 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6337 if (!bio)
6338 return -ENOMEM;
6339 bio->bi_private = dip;
6340 bio->bi_end_io = btrfs_end_dio_bio;
6341 atomic_inc(&dip->pending_bios);
6342
e65e1535
MX
6343 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6344 if (unlikely(map_length < submit_len + bvec->bv_len ||
6345 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6346 bvec->bv_offset) < bvec->bv_len)) {
6347 /*
6348 * inc the count before we submit the bio so
6349 * we know the end IO handler won't happen before
6350 * we inc the count. Otherwise, the dip might get freed
6351 * before we're done setting it up
6352 */
6353 atomic_inc(&dip->pending_bios);
6354 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6355 file_offset, skip_sum,
c329861d 6356 async_submit);
e65e1535
MX
6357 if (ret) {
6358 bio_put(bio);
6359 atomic_dec(&dip->pending_bios);
6360 goto out_err;
6361 }
6362
e65e1535
MX
6363 start_sector += submit_len >> 9;
6364 file_offset += submit_len;
6365
6366 submit_len = 0;
6367 nr_pages = 0;
6368
6369 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6370 start_sector, GFP_NOFS);
6371 if (!bio)
6372 goto out_err;
6373 bio->bi_private = dip;
6374 bio->bi_end_io = btrfs_end_dio_bio;
6375
6376 map_length = orig_bio->bi_size;
6377 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6378 &map_length, NULL, 0);
6379 if (ret) {
6380 bio_put(bio);
6381 goto out_err;
6382 }
6383 } else {
6384 submit_len += bvec->bv_len;
6385 nr_pages ++;
6386 bvec++;
6387 }
6388 }
6389
02f57c7a 6390submit:
e65e1535 6391 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 6392 async_submit);
e65e1535
MX
6393 if (!ret)
6394 return 0;
6395
6396 bio_put(bio);
6397out_err:
6398 dip->errors = 1;
6399 /*
6400 * before atomic variable goto zero, we must
6401 * make sure dip->errors is perceived to be set.
6402 */
6403 smp_mb__before_atomic_dec();
6404 if (atomic_dec_and_test(&dip->pending_bios))
6405 bio_io_error(dip->orig_bio);
6406
6407 /* bio_end_io() will handle error, so we needn't return it */
6408 return 0;
6409}
6410
4b46fce2
JB
6411static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6412 loff_t file_offset)
6413{
6414 struct btrfs_root *root = BTRFS_I(inode)->root;
6415 struct btrfs_dio_private *dip;
6416 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6417 int skip_sum;
7b6d91da 6418 int write = rw & REQ_WRITE;
4b46fce2
JB
6419 int ret = 0;
6420
6421 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6422
6423 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6424 if (!dip) {
6425 ret = -ENOMEM;
6426 goto free_ordered;
6427 }
4b46fce2
JB
6428
6429 dip->private = bio->bi_private;
6430 dip->inode = inode;
6431 dip->logical_offset = file_offset;
6432
4b46fce2
JB
6433 dip->bytes = 0;
6434 do {
6435 dip->bytes += bvec->bv_len;
6436 bvec++;
6437 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6438
46bfbb5c 6439 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6440 bio->bi_private = dip;
e65e1535
MX
6441 dip->errors = 0;
6442 dip->orig_bio = bio;
6443 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6444
6445 if (write)
6446 bio->bi_end_io = btrfs_endio_direct_write;
6447 else
6448 bio->bi_end_io = btrfs_endio_direct_read;
6449
e65e1535
MX
6450 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6451 if (!ret)
eaf25d93 6452 return;
4b46fce2
JB
6453free_ordered:
6454 /*
6455 * If this is a write, we need to clean up the reserved space and kill
6456 * the ordered extent.
6457 */
6458 if (write) {
6459 struct btrfs_ordered_extent *ordered;
955256f2 6460 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6461 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6462 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6463 btrfs_free_reserved_extent(root, ordered->start,
6464 ordered->disk_len);
6465 btrfs_put_ordered_extent(ordered);
6466 btrfs_put_ordered_extent(ordered);
6467 }
6468 bio_endio(bio, ret);
6469}
6470
5a5f79b5
CM
6471static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6472 const struct iovec *iov, loff_t offset,
6473 unsigned long nr_segs)
6474{
6475 int seg;
a1b75f7d 6476 int i;
5a5f79b5
CM
6477 size_t size;
6478 unsigned long addr;
6479 unsigned blocksize_mask = root->sectorsize - 1;
6480 ssize_t retval = -EINVAL;
6481 loff_t end = offset;
6482
6483 if (offset & blocksize_mask)
6484 goto out;
6485
6486 /* Check the memory alignment. Blocks cannot straddle pages */
6487 for (seg = 0; seg < nr_segs; seg++) {
6488 addr = (unsigned long)iov[seg].iov_base;
6489 size = iov[seg].iov_len;
6490 end += size;
a1b75f7d 6491 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6492 goto out;
a1b75f7d
JB
6493
6494 /* If this is a write we don't need to check anymore */
6495 if (rw & WRITE)
6496 continue;
6497
6498 /*
6499 * Check to make sure we don't have duplicate iov_base's in this
6500 * iovec, if so return EINVAL, otherwise we'll get csum errors
6501 * when reading back.
6502 */
6503 for (i = seg + 1; i < nr_segs; i++) {
6504 if (iov[seg].iov_base == iov[i].iov_base)
6505 goto out;
6506 }
5a5f79b5
CM
6507 }
6508 retval = 0;
6509out:
6510 return retval;
6511}
eb838e73 6512
16432985
CM
6513static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6514 const struct iovec *iov, loff_t offset,
6515 unsigned long nr_segs)
6516{
4b46fce2
JB
6517 struct file *file = iocb->ki_filp;
6518 struct inode *inode = file->f_mapping->host;
4b46fce2 6519
5a5f79b5 6520 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 6521 offset, nr_segs))
5a5f79b5 6522 return 0;
3f7c579c 6523
eb838e73 6524 return __blockdev_direct_IO(rw, iocb, inode,
5a5f79b5
CM
6525 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6526 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6527 btrfs_submit_direct, 0);
16432985
CM
6528}
6529
1506fcc8
YS
6530static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6531 __u64 start, __u64 len)
6532{
ec29ed5b 6533 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6534}
6535
a52d9a80 6536int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6537{
d1310b2e
CM
6538 struct extent_io_tree *tree;
6539 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6540 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6541}
1832a6d5 6542
a52d9a80 6543static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6544{
d1310b2e 6545 struct extent_io_tree *tree;
b888db2b
CM
6546
6547
6548 if (current->flags & PF_MEMALLOC) {
6549 redirty_page_for_writepage(wbc, page);
6550 unlock_page(page);
6551 return 0;
6552 }
d1310b2e 6553 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6554 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6555}
6556
f421950f
CM
6557int btrfs_writepages(struct address_space *mapping,
6558 struct writeback_control *wbc)
b293f02e 6559{
d1310b2e 6560 struct extent_io_tree *tree;
771ed689 6561
d1310b2e 6562 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6563 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6564}
6565
3ab2fb5a
CM
6566static int
6567btrfs_readpages(struct file *file, struct address_space *mapping,
6568 struct list_head *pages, unsigned nr_pages)
6569{
d1310b2e
CM
6570 struct extent_io_tree *tree;
6571 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6572 return extent_readpages(tree, mapping, pages, nr_pages,
6573 btrfs_get_extent);
6574}
e6dcd2dc 6575static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6576{
d1310b2e
CM
6577 struct extent_io_tree *tree;
6578 struct extent_map_tree *map;
a52d9a80 6579 int ret;
8c2383c3 6580
d1310b2e
CM
6581 tree = &BTRFS_I(page->mapping->host)->io_tree;
6582 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6583 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6584 if (ret == 1) {
6585 ClearPagePrivate(page);
6586 set_page_private(page, 0);
6587 page_cache_release(page);
39279cc3 6588 }
a52d9a80 6589 return ret;
39279cc3
CM
6590}
6591
e6dcd2dc
CM
6592static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6593{
98509cfc
CM
6594 if (PageWriteback(page) || PageDirty(page))
6595 return 0;
b335b003 6596 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6597}
6598
a52d9a80 6599static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6600{
5fd02043 6601 struct inode *inode = page->mapping->host;
d1310b2e 6602 struct extent_io_tree *tree;
e6dcd2dc 6603 struct btrfs_ordered_extent *ordered;
2ac55d41 6604 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6605 u64 page_start = page_offset(page);
6606 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6607
8b62b72b
CM
6608 /*
6609 * we have the page locked, so new writeback can't start,
6610 * and the dirty bit won't be cleared while we are here.
6611 *
6612 * Wait for IO on this page so that we can safely clear
6613 * the PagePrivate2 bit and do ordered accounting
6614 */
e6dcd2dc 6615 wait_on_page_writeback(page);
8b62b72b 6616
5fd02043 6617 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
6618 if (offset) {
6619 btrfs_releasepage(page, GFP_NOFS);
6620 return;
6621 }
d0082371 6622 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
5fd02043 6623 ordered = btrfs_lookup_ordered_extent(inode,
e6dcd2dc
CM
6624 page_offset(page));
6625 if (ordered) {
eb84ae03
CM
6626 /*
6627 * IO on this page will never be started, so we need
6628 * to account for any ordered extents now
6629 */
e6dcd2dc
CM
6630 clear_extent_bit(tree, page_start, page_end,
6631 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6632 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6633 &cached_state, GFP_NOFS);
8b62b72b
CM
6634 /*
6635 * whoever cleared the private bit is responsible
6636 * for the finish_ordered_io
6637 */
5fd02043
JB
6638 if (TestClearPagePrivate2(page) &&
6639 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6640 PAGE_CACHE_SIZE, 1)) {
6641 btrfs_finish_ordered_io(ordered);
8b62b72b 6642 }
e6dcd2dc 6643 btrfs_put_ordered_extent(ordered);
2ac55d41 6644 cached_state = NULL;
d0082371 6645 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6646 }
6647 clear_extent_bit(tree, page_start, page_end,
32c00aff 6648 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6649 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6650 __btrfs_releasepage(page, GFP_NOFS);
6651
4a096752 6652 ClearPageChecked(page);
9ad6b7bc 6653 if (PagePrivate(page)) {
9ad6b7bc
CM
6654 ClearPagePrivate(page);
6655 set_page_private(page, 0);
6656 page_cache_release(page);
6657 }
39279cc3
CM
6658}
6659
9ebefb18
CM
6660/*
6661 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6662 * called from a page fault handler when a page is first dirtied. Hence we must
6663 * be careful to check for EOF conditions here. We set the page up correctly
6664 * for a written page which means we get ENOSPC checking when writing into
6665 * holes and correct delalloc and unwritten extent mapping on filesystems that
6666 * support these features.
6667 *
6668 * We are not allowed to take the i_mutex here so we have to play games to
6669 * protect against truncate races as the page could now be beyond EOF. Because
6670 * vmtruncate() writes the inode size before removing pages, once we have the
6671 * page lock we can determine safely if the page is beyond EOF. If it is not
6672 * beyond EOF, then the page is guaranteed safe against truncation until we
6673 * unlock the page.
6674 */
c2ec175c 6675int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6676{
c2ec175c 6677 struct page *page = vmf->page;
6da6abae 6678 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6679 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6680 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6681 struct btrfs_ordered_extent *ordered;
2ac55d41 6682 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6683 char *kaddr;
6684 unsigned long zero_start;
9ebefb18 6685 loff_t size;
1832a6d5 6686 int ret;
9998eb70 6687 int reserved = 0;
a52d9a80 6688 u64 page_start;
e6dcd2dc 6689 u64 page_end;
9ebefb18 6690
b2b5ef5c 6691 sb_start_pagefault(inode->i_sb);
0ca1f7ce 6692 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6693 if (!ret) {
e41f941a 6694 ret = file_update_time(vma->vm_file);
9998eb70
CM
6695 reserved = 1;
6696 }
56a76f82
NP
6697 if (ret) {
6698 if (ret == -ENOMEM)
6699 ret = VM_FAULT_OOM;
6700 else /* -ENOSPC, -EIO, etc */
6701 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6702 if (reserved)
6703 goto out;
6704 goto out_noreserve;
56a76f82 6705 }
1832a6d5 6706
56a76f82 6707 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6708again:
9ebefb18 6709 lock_page(page);
9ebefb18 6710 size = i_size_read(inode);
e6dcd2dc
CM
6711 page_start = page_offset(page);
6712 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6713
9ebefb18 6714 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6715 (page_start >= size)) {
9ebefb18
CM
6716 /* page got truncated out from underneath us */
6717 goto out_unlock;
6718 }
e6dcd2dc
CM
6719 wait_on_page_writeback(page);
6720
d0082371 6721 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6722 set_page_extent_mapped(page);
6723
eb84ae03
CM
6724 /*
6725 * we can't set the delalloc bits if there are pending ordered
6726 * extents. Drop our locks and wait for them to finish
6727 */
e6dcd2dc
CM
6728 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6729 if (ordered) {
2ac55d41
JB
6730 unlock_extent_cached(io_tree, page_start, page_end,
6731 &cached_state, GFP_NOFS);
e6dcd2dc 6732 unlock_page(page);
eb84ae03 6733 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6734 btrfs_put_ordered_extent(ordered);
6735 goto again;
6736 }
6737
fbf19087
JB
6738 /*
6739 * XXX - page_mkwrite gets called every time the page is dirtied, even
6740 * if it was already dirty, so for space accounting reasons we need to
6741 * clear any delalloc bits for the range we are fixing to save. There
6742 * is probably a better way to do this, but for now keep consistent with
6743 * prepare_pages in the normal write path.
6744 */
2ac55d41 6745 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6746 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6747 0, 0, &cached_state, GFP_NOFS);
fbf19087 6748
2ac55d41
JB
6749 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6750 &cached_state);
9ed74f2d 6751 if (ret) {
2ac55d41
JB
6752 unlock_extent_cached(io_tree, page_start, page_end,
6753 &cached_state, GFP_NOFS);
9ed74f2d
JB
6754 ret = VM_FAULT_SIGBUS;
6755 goto out_unlock;
6756 }
e6dcd2dc 6757 ret = 0;
9ebefb18
CM
6758
6759 /* page is wholly or partially inside EOF */
a52d9a80 6760 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6761 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6762 else
e6dcd2dc 6763 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6764
e6dcd2dc
CM
6765 if (zero_start != PAGE_CACHE_SIZE) {
6766 kaddr = kmap(page);
6767 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6768 flush_dcache_page(page);
6769 kunmap(page);
6770 }
247e743c 6771 ClearPageChecked(page);
e6dcd2dc 6772 set_page_dirty(page);
50a9b214 6773 SetPageUptodate(page);
5a3f23d5 6774
257c62e1
CM
6775 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6776 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6777
2ac55d41 6778 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6779
6780out_unlock:
b2b5ef5c
JK
6781 if (!ret) {
6782 sb_end_pagefault(inode->i_sb);
50a9b214 6783 return VM_FAULT_LOCKED;
b2b5ef5c 6784 }
9ebefb18 6785 unlock_page(page);
1832a6d5 6786out:
ec39e180 6787 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6788out_noreserve:
b2b5ef5c 6789 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
6790 return ret;
6791}
6792
a41ad394 6793static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6794{
6795 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6796 struct btrfs_block_rsv *rsv;
39279cc3 6797 int ret;
3893e33b 6798 int err = 0;
39279cc3 6799 struct btrfs_trans_handle *trans;
d3c2fdcf 6800 unsigned long nr;
dbe674a9 6801 u64 mask = root->sectorsize - 1;
07127184 6802 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6803
5d5e103a
JB
6804 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6805 if (ret)
a41ad394 6806 return ret;
8082510e 6807
4a096752 6808 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6809 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6810
fcb80c2a
JB
6811 /*
6812 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6813 * 3 things going on here
6814 *
6815 * 1) We need to reserve space for our orphan item and the space to
6816 * delete our orphan item. Lord knows we don't want to have a dangling
6817 * orphan item because we didn't reserve space to remove it.
6818 *
6819 * 2) We need to reserve space to update our inode.
6820 *
6821 * 3) We need to have something to cache all the space that is going to
6822 * be free'd up by the truncate operation, but also have some slack
6823 * space reserved in case it uses space during the truncate (thank you
6824 * very much snapshotting).
6825 *
6826 * And we need these to all be seperate. The fact is we can use alot of
6827 * space doing the truncate, and we have no earthly idea how much space
6828 * we will use, so we need the truncate reservation to be seperate so it
6829 * doesn't end up using space reserved for updating the inode or
6830 * removing the orphan item. We also need to be able to stop the
6831 * transaction and start a new one, which means we need to be able to
6832 * update the inode several times, and we have no idea of knowing how
6833 * many times that will be, so we can't just reserve 1 item for the
6834 * entirety of the opration, so that has to be done seperately as well.
6835 * Then there is the orphan item, which does indeed need to be held on
6836 * to for the whole operation, and we need nobody to touch this reserved
6837 * space except the orphan code.
6838 *
6839 * So that leaves us with
6840 *
6841 * 1) root->orphan_block_rsv - for the orphan deletion.
6842 * 2) rsv - for the truncate reservation, which we will steal from the
6843 * transaction reservation.
6844 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6845 * updating the inode.
6846 */
6847 rsv = btrfs_alloc_block_rsv(root);
6848 if (!rsv)
6849 return -ENOMEM;
4a338542 6850 rsv->size = min_size;
ca7e70f5 6851 rsv->failfast = 1;
f0cd846e 6852
907cbceb 6853 /*
07127184 6854 * 1 for the truncate slack space
907cbceb
JB
6855 * 1 for the orphan item we're going to add
6856 * 1 for the orphan item deletion
6857 * 1 for updating the inode.
6858 */
fcb80c2a
JB
6859 trans = btrfs_start_transaction(root, 4);
6860 if (IS_ERR(trans)) {
6861 err = PTR_ERR(trans);
6862 goto out;
6863 }
f0cd846e 6864
907cbceb
JB
6865 /* Migrate the slack space for the truncate to our reserve */
6866 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6867 min_size);
fcb80c2a 6868 BUG_ON(ret);
f0cd846e
JB
6869
6870 ret = btrfs_orphan_add(trans, inode);
6871 if (ret) {
6872 btrfs_end_transaction(trans, root);
fcb80c2a 6873 goto out;
f0cd846e
JB
6874 }
6875
5a3f23d5
CM
6876 /*
6877 * setattr is responsible for setting the ordered_data_close flag,
6878 * but that is only tested during the last file release. That
6879 * could happen well after the next commit, leaving a great big
6880 * window where new writes may get lost if someone chooses to write
6881 * to this file after truncating to zero
6882 *
6883 * The inode doesn't have any dirty data here, and so if we commit
6884 * this is a noop. If someone immediately starts writing to the inode
6885 * it is very likely we'll catch some of their writes in this
6886 * transaction, and the commit will find this file on the ordered
6887 * data list with good things to send down.
6888 *
6889 * This is a best effort solution, there is still a window where
6890 * using truncate to replace the contents of the file will
6891 * end up with a zero length file after a crash.
6892 */
72ac3c0d
JB
6893 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6894 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
6895 btrfs_add_ordered_operation(trans, root, inode);
6896
5dc562c5
JB
6897 /*
6898 * So if we truncate and then write and fsync we normally would just
6899 * write the extents that changed, which is a problem if we need to
6900 * first truncate that entire inode. So set this flag so we write out
6901 * all of the extents in the inode to the sync log so we're completely
6902 * safe.
6903 */
6904 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 6905 trans->block_rsv = rsv;
5dc562c5 6906
8082510e
YZ
6907 while (1) {
6908 ret = btrfs_truncate_inode_items(trans, root, inode,
6909 inode->i_size,
6910 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 6911 if (ret != -ENOSPC) {
3893e33b 6912 err = ret;
8082510e 6913 break;
3893e33b 6914 }
39279cc3 6915
fcb80c2a 6916 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6917 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6918 if (ret) {
6919 err = ret;
6920 break;
6921 }
ca7e70f5 6922
8082510e
YZ
6923 nr = trans->blocks_used;
6924 btrfs_end_transaction(trans, root);
6925 btrfs_btree_balance_dirty(root, nr);
ca7e70f5
JB
6926
6927 trans = btrfs_start_transaction(root, 2);
6928 if (IS_ERR(trans)) {
6929 ret = err = PTR_ERR(trans);
6930 trans = NULL;
6931 break;
6932 }
6933
6934 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
6935 rsv, min_size);
6936 BUG_ON(ret); /* shouldn't happen */
6937 trans->block_rsv = rsv;
8082510e
YZ
6938 }
6939
6940 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6941 trans->block_rsv = root->orphan_block_rsv;
8082510e 6942 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6943 if (ret)
6944 err = ret;
ded5db9d
JB
6945 } else if (ret && inode->i_nlink > 0) {
6946 /*
6947 * Failed to do the truncate, remove us from the in memory
6948 * orphan list.
6949 */
6950 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6951 }
6952
917c16b2
CM
6953 if (trans) {
6954 trans->block_rsv = &root->fs_info->trans_block_rsv;
6955 ret = btrfs_update_inode(trans, root, inode);
6956 if (ret && !err)
6957 err = ret;
7b128766 6958
917c16b2 6959 nr = trans->blocks_used;
7ad85bb7 6960 ret = btrfs_end_transaction(trans, root);
917c16b2
CM
6961 btrfs_btree_balance_dirty(root, nr);
6962 }
fcb80c2a
JB
6963
6964out:
6965 btrfs_free_block_rsv(root, rsv);
6966
3893e33b
JB
6967 if (ret && !err)
6968 err = ret;
a41ad394 6969
3893e33b 6970 return err;
39279cc3
CM
6971}
6972
d352ac68
CM
6973/*
6974 * create a new subvolume directory/inode (helper for the ioctl).
6975 */
d2fb3437 6976int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6977 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6978{
39279cc3 6979 struct inode *inode;
76dda93c 6980 int err;
00e4e6b3 6981 u64 index = 0;
39279cc3 6982
12fc9d09
FA
6983 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6984 new_dirid, new_dirid,
6985 S_IFDIR | (~current_umask() & S_IRWXUGO),
6986 &index);
54aa1f4d 6987 if (IS_ERR(inode))
f46b5a66 6988 return PTR_ERR(inode);
39279cc3
CM
6989 inode->i_op = &btrfs_dir_inode_operations;
6990 inode->i_fop = &btrfs_dir_file_operations;
6991
bfe86848 6992 set_nlink(inode, 1);
dbe674a9 6993 btrfs_i_size_write(inode, 0);
3b96362c 6994
76dda93c 6995 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 6996
76dda93c 6997 iput(inode);
ce598979 6998 return err;
39279cc3
CM
6999}
7000
39279cc3
CM
7001struct inode *btrfs_alloc_inode(struct super_block *sb)
7002{
7003 struct btrfs_inode *ei;
2ead6ae7 7004 struct inode *inode;
39279cc3
CM
7005
7006 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7007 if (!ei)
7008 return NULL;
2ead6ae7
YZ
7009
7010 ei->root = NULL;
2ead6ae7 7011 ei->generation = 0;
15ee9bc7 7012 ei->last_trans = 0;
257c62e1 7013 ei->last_sub_trans = 0;
e02119d5 7014 ei->logged_trans = 0;
2ead6ae7 7015 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7016 ei->disk_i_size = 0;
7017 ei->flags = 0;
7709cde3 7018 ei->csum_bytes = 0;
2ead6ae7
YZ
7019 ei->index_cnt = (u64)-1;
7020 ei->last_unlink_trans = 0;
7021
9e0baf60
JB
7022 spin_lock_init(&ei->lock);
7023 ei->outstanding_extents = 0;
7024 ei->reserved_extents = 0;
2ead6ae7 7025
72ac3c0d 7026 ei->runtime_flags = 0;
261507a0 7027 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7028
16cdcec7
MX
7029 ei->delayed_node = NULL;
7030
2ead6ae7 7031 inode = &ei->vfs_inode;
a8067e02 7032 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7033 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7034 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7035 ei->io_tree.track_uptodate = 1;
7036 ei->io_failure_tree.track_uptodate = 1;
2ead6ae7 7037 mutex_init(&ei->log_mutex);
f248679e 7038 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7039 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7040 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7041 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7042 RB_CLEAR_NODE(&ei->rb_node);
7043
7044 return inode;
39279cc3
CM
7045}
7046
fa0d7e3d
NP
7047static void btrfs_i_callback(struct rcu_head *head)
7048{
7049 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7050 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7051}
7052
39279cc3
CM
7053void btrfs_destroy_inode(struct inode *inode)
7054{
e6dcd2dc 7055 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7056 struct btrfs_root *root = BTRFS_I(inode)->root;
7057
b3d9b7a3 7058 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7059 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7060 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7061 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7062 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7063 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7064
a6dbd429
JB
7065 /*
7066 * This can happen where we create an inode, but somebody else also
7067 * created the same inode and we need to destroy the one we already
7068 * created.
7069 */
7070 if (!root)
7071 goto free;
7072
5a3f23d5
CM
7073 /*
7074 * Make sure we're properly removed from the ordered operation
7075 * lists.
7076 */
7077 smp_mb();
7078 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7079 spin_lock(&root->fs_info->ordered_extent_lock);
7080 list_del_init(&BTRFS_I(inode)->ordered_operations);
7081 spin_unlock(&root->fs_info->ordered_extent_lock);
7082 }
7083
8a35d95f
JB
7084 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7085 &BTRFS_I(inode)->runtime_flags)) {
33345d01
LZ
7086 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7087 (unsigned long long)btrfs_ino(inode));
8a35d95f 7088 atomic_dec(&root->orphan_inodes);
7b128766 7089 }
7b128766 7090
d397712b 7091 while (1) {
e6dcd2dc
CM
7092 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7093 if (!ordered)
7094 break;
7095 else {
d397712b
CM
7096 printk(KERN_ERR "btrfs found ordered "
7097 "extent %llu %llu on inode cleanup\n",
7098 (unsigned long long)ordered->file_offset,
7099 (unsigned long long)ordered->len);
e6dcd2dc
CM
7100 btrfs_remove_ordered_extent(inode, ordered);
7101 btrfs_put_ordered_extent(ordered);
7102 btrfs_put_ordered_extent(ordered);
7103 }
7104 }
5d4f98a2 7105 inode_tree_del(inode);
5b21f2ed 7106 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7107free:
16cdcec7 7108 btrfs_remove_delayed_node(inode);
fa0d7e3d 7109 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7110}
7111
45321ac5 7112int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7113{
7114 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7115
0af3d00b 7116 if (btrfs_root_refs(&root->root_item) == 0 &&
83eea1f1 7117 !btrfs_is_free_space_inode(inode))
45321ac5 7118 return 1;
76dda93c 7119 else
45321ac5 7120 return generic_drop_inode(inode);
76dda93c
YZ
7121}
7122
0ee0fda0 7123static void init_once(void *foo)
39279cc3
CM
7124{
7125 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7126
7127 inode_init_once(&ei->vfs_inode);
7128}
7129
7130void btrfs_destroy_cachep(void)
7131{
7132 if (btrfs_inode_cachep)
7133 kmem_cache_destroy(btrfs_inode_cachep);
7134 if (btrfs_trans_handle_cachep)
7135 kmem_cache_destroy(btrfs_trans_handle_cachep);
7136 if (btrfs_transaction_cachep)
7137 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7138 if (btrfs_path_cachep)
7139 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7140 if (btrfs_free_space_cachep)
7141 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
7142}
7143
7144int btrfs_init_cachep(void)
7145{
9601e3f6
CH
7146 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7147 sizeof(struct btrfs_inode), 0,
7148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7149 if (!btrfs_inode_cachep)
7150 goto fail;
9601e3f6
CH
7151
7152 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7153 sizeof(struct btrfs_trans_handle), 0,
7154 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7155 if (!btrfs_trans_handle_cachep)
7156 goto fail;
9601e3f6
CH
7157
7158 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7159 sizeof(struct btrfs_transaction), 0,
7160 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7161 if (!btrfs_transaction_cachep)
7162 goto fail;
9601e3f6
CH
7163
7164 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7165 sizeof(struct btrfs_path), 0,
7166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7167 if (!btrfs_path_cachep)
7168 goto fail;
9601e3f6 7169
dc89e982
JB
7170 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7171 sizeof(struct btrfs_free_space), 0,
7172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7173 if (!btrfs_free_space_cachep)
7174 goto fail;
7175
39279cc3
CM
7176 return 0;
7177fail:
7178 btrfs_destroy_cachep();
7179 return -ENOMEM;
7180}
7181
7182static int btrfs_getattr(struct vfsmount *mnt,
7183 struct dentry *dentry, struct kstat *stat)
7184{
7185 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7186 u32 blocksize = inode->i_sb->s_blocksize;
7187
39279cc3 7188 generic_fillattr(inode, stat);
0ee5dc67 7189 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7190 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
7191 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7192 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7193 return 0;
7194}
7195
75e7cb7f
LB
7196/*
7197 * If a file is moved, it will inherit the cow and compression flags of the new
7198 * directory.
7199 */
7200static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7201{
7202 struct btrfs_inode *b_dir = BTRFS_I(dir);
7203 struct btrfs_inode *b_inode = BTRFS_I(inode);
7204
7205 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7206 b_inode->flags |= BTRFS_INODE_NODATACOW;
7207 else
7208 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7209
bc178237 7210 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
75e7cb7f 7211 b_inode->flags |= BTRFS_INODE_COMPRESS;
bc178237
LB
7212 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7213 } else {
7214 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7215 BTRFS_INODE_NOCOMPRESS);
7216 }
75e7cb7f
LB
7217}
7218
d397712b
CM
7219static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7220 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7221{
7222 struct btrfs_trans_handle *trans;
7223 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7224 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7225 struct inode *new_inode = new_dentry->d_inode;
7226 struct inode *old_inode = old_dentry->d_inode;
7227 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7228 u64 index = 0;
4df27c4d 7229 u64 root_objectid;
39279cc3 7230 int ret;
33345d01 7231 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7232
33345d01 7233 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7234 return -EPERM;
7235
4df27c4d 7236 /* we only allow rename subvolume link between subvolumes */
33345d01 7237 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7238 return -EXDEV;
7239
33345d01
LZ
7240 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7241 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7242 return -ENOTEMPTY;
5f39d397 7243
4df27c4d
YZ
7244 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7245 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7246 return -ENOTEMPTY;
5a3f23d5
CM
7247 /*
7248 * we're using rename to replace one file with another.
7249 * and the replacement file is large. Start IO on it now so
7250 * we don't add too much work to the end of the transaction
7251 */
4baf8c92 7252 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7253 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7254 filemap_flush(old_inode->i_mapping);
7255
76dda93c 7256 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7257 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7258 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7259 /*
7260 * We want to reserve the absolute worst case amount of items. So if
7261 * both inodes are subvols and we need to unlink them then that would
7262 * require 4 item modifications, but if they are both normal inodes it
7263 * would require 5 item modifications, so we'll assume their normal
7264 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7265 * should cover the worst case number of items we'll modify.
7266 */
7267 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7268 if (IS_ERR(trans)) {
7269 ret = PTR_ERR(trans);
7270 goto out_notrans;
7271 }
76dda93c 7272
4df27c4d
YZ
7273 if (dest != root)
7274 btrfs_record_root_in_trans(trans, dest);
5f39d397 7275
a5719521
YZ
7276 ret = btrfs_set_inode_index(new_dir, &index);
7277 if (ret)
7278 goto out_fail;
5a3f23d5 7279
33345d01 7280 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7281 /* force full log commit if subvolume involved. */
7282 root->fs_info->last_trans_log_full_commit = trans->transid;
7283 } else {
a5719521
YZ
7284 ret = btrfs_insert_inode_ref(trans, dest,
7285 new_dentry->d_name.name,
7286 new_dentry->d_name.len,
33345d01
LZ
7287 old_ino,
7288 btrfs_ino(new_dir), index);
a5719521
YZ
7289 if (ret)
7290 goto out_fail;
4df27c4d
YZ
7291 /*
7292 * this is an ugly little race, but the rename is required
7293 * to make sure that if we crash, the inode is either at the
7294 * old name or the new one. pinning the log transaction lets
7295 * us make sure we don't allow a log commit to come in after
7296 * we unlink the name but before we add the new name back in.
7297 */
7298 btrfs_pin_log_trans(root);
7299 }
5a3f23d5
CM
7300 /*
7301 * make sure the inode gets flushed if it is replacing
7302 * something.
7303 */
33345d01 7304 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7305 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7306
0c4d2d95
JB
7307 inode_inc_iversion(old_dir);
7308 inode_inc_iversion(new_dir);
7309 inode_inc_iversion(old_inode);
39279cc3
CM
7310 old_dir->i_ctime = old_dir->i_mtime = ctime;
7311 new_dir->i_ctime = new_dir->i_mtime = ctime;
7312 old_inode->i_ctime = ctime;
5f39d397 7313
12fcfd22
CM
7314 if (old_dentry->d_parent != new_dentry->d_parent)
7315 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7316
33345d01 7317 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7318 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7319 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7320 old_dentry->d_name.name,
7321 old_dentry->d_name.len);
7322 } else {
92986796
AV
7323 ret = __btrfs_unlink_inode(trans, root, old_dir,
7324 old_dentry->d_inode,
7325 old_dentry->d_name.name,
7326 old_dentry->d_name.len);
7327 if (!ret)
7328 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7329 }
79787eaa
JM
7330 if (ret) {
7331 btrfs_abort_transaction(trans, root, ret);
7332 goto out_fail;
7333 }
39279cc3
CM
7334
7335 if (new_inode) {
0c4d2d95 7336 inode_inc_iversion(new_inode);
39279cc3 7337 new_inode->i_ctime = CURRENT_TIME;
33345d01 7338 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7339 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7340 root_objectid = BTRFS_I(new_inode)->location.objectid;
7341 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7342 root_objectid,
7343 new_dentry->d_name.name,
7344 new_dentry->d_name.len);
7345 BUG_ON(new_inode->i_nlink == 0);
7346 } else {
7347 ret = btrfs_unlink_inode(trans, dest, new_dir,
7348 new_dentry->d_inode,
7349 new_dentry->d_name.name,
7350 new_dentry->d_name.len);
7351 }
79787eaa 7352 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7353 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7354 BUG_ON(ret);
7b128766 7355 }
79787eaa
JM
7356 if (ret) {
7357 btrfs_abort_transaction(trans, root, ret);
7358 goto out_fail;
7359 }
39279cc3 7360 }
aec7477b 7361
75e7cb7f
LB
7362 fixup_inode_flags(new_dir, old_inode);
7363
4df27c4d
YZ
7364 ret = btrfs_add_link(trans, new_dir, old_inode,
7365 new_dentry->d_name.name,
a5719521 7366 new_dentry->d_name.len, 0, index);
79787eaa
JM
7367 if (ret) {
7368 btrfs_abort_transaction(trans, root, ret);
7369 goto out_fail;
7370 }
39279cc3 7371
33345d01 7372 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7373 struct dentry *parent = new_dentry->d_parent;
6a912213 7374 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7375 btrfs_end_log_trans(root);
7376 }
39279cc3 7377out_fail:
7ad85bb7 7378 btrfs_end_transaction(trans, root);
b44c59a8 7379out_notrans:
33345d01 7380 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7381 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7382
39279cc3
CM
7383 return ret;
7384}
7385
d352ac68
CM
7386/*
7387 * some fairly slow code that needs optimization. This walks the list
7388 * of all the inodes with pending delalloc and forces them to disk.
7389 */
24bbcf04 7390int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7391{
7392 struct list_head *head = &root->fs_info->delalloc_inodes;
7393 struct btrfs_inode *binode;
5b21f2ed 7394 struct inode *inode;
ea8c2819 7395
c146afad
YZ
7396 if (root->fs_info->sb->s_flags & MS_RDONLY)
7397 return -EROFS;
7398
75eff68e 7399 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7400 while (!list_empty(head)) {
ea8c2819
CM
7401 binode = list_entry(head->next, struct btrfs_inode,
7402 delalloc_inodes);
5b21f2ed
ZY
7403 inode = igrab(&binode->vfs_inode);
7404 if (!inode)
7405 list_del_init(&binode->delalloc_inodes);
75eff68e 7406 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7407 if (inode) {
8c8bee1d 7408 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7409 if (delay_iput)
7410 btrfs_add_delayed_iput(inode);
7411 else
7412 iput(inode);
5b21f2ed
ZY
7413 }
7414 cond_resched();
75eff68e 7415 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7416 }
75eff68e 7417 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7418
7419 /* the filemap_flush will queue IO into the worker threads, but
7420 * we have to make sure the IO is actually started and that
7421 * ordered extents get created before we return
7422 */
7423 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7424 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7425 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7426 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7427 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7428 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7429 }
7430 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7431 return 0;
7432}
7433
39279cc3
CM
7434static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7435 const char *symname)
7436{
7437 struct btrfs_trans_handle *trans;
7438 struct btrfs_root *root = BTRFS_I(dir)->root;
7439 struct btrfs_path *path;
7440 struct btrfs_key key;
1832a6d5 7441 struct inode *inode = NULL;
39279cc3
CM
7442 int err;
7443 int drop_inode = 0;
7444 u64 objectid;
00e4e6b3 7445 u64 index = 0 ;
39279cc3
CM
7446 int name_len;
7447 int datasize;
5f39d397 7448 unsigned long ptr;
39279cc3 7449 struct btrfs_file_extent_item *ei;
5f39d397 7450 struct extent_buffer *leaf;
1832a6d5 7451 unsigned long nr = 0;
39279cc3
CM
7452
7453 name_len = strlen(symname) + 1;
7454 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7455 return -ENAMETOOLONG;
1832a6d5 7456
9ed74f2d
JB
7457 /*
7458 * 2 items for inode item and ref
7459 * 2 items for dir items
7460 * 1 item for xattr if selinux is on
7461 */
a22285a6
YZ
7462 trans = btrfs_start_transaction(root, 5);
7463 if (IS_ERR(trans))
7464 return PTR_ERR(trans);
1832a6d5 7465
581bb050
LZ
7466 err = btrfs_find_free_ino(root, &objectid);
7467 if (err)
7468 goto out_unlock;
7469
aec7477b 7470 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7471 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7472 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7473 if (IS_ERR(inode)) {
7474 err = PTR_ERR(inode);
39279cc3 7475 goto out_unlock;
7cf96da3 7476 }
39279cc3 7477
2a7dba39 7478 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7479 if (err) {
7480 drop_inode = 1;
7481 goto out_unlock;
7482 }
7483
ad19db71
CS
7484 /*
7485 * If the active LSM wants to access the inode during
7486 * d_instantiate it needs these. Smack checks to see
7487 * if the filesystem supports xattrs by looking at the
7488 * ops vector.
7489 */
7490 inode->i_fop = &btrfs_file_operations;
7491 inode->i_op = &btrfs_file_inode_operations;
7492
a1b075d2 7493 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7494 if (err)
7495 drop_inode = 1;
7496 else {
7497 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7498 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7499 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7500 }
39279cc3
CM
7501 if (drop_inode)
7502 goto out_unlock;
7503
7504 path = btrfs_alloc_path();
d8926bb3
MF
7505 if (!path) {
7506 err = -ENOMEM;
7507 drop_inode = 1;
7508 goto out_unlock;
7509 }
33345d01 7510 key.objectid = btrfs_ino(inode);
39279cc3 7511 key.offset = 0;
39279cc3
CM
7512 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7513 datasize = btrfs_file_extent_calc_inline_size(name_len);
7514 err = btrfs_insert_empty_item(trans, root, path, &key,
7515 datasize);
54aa1f4d
CM
7516 if (err) {
7517 drop_inode = 1;
b0839166 7518 btrfs_free_path(path);
54aa1f4d
CM
7519 goto out_unlock;
7520 }
5f39d397
CM
7521 leaf = path->nodes[0];
7522 ei = btrfs_item_ptr(leaf, path->slots[0],
7523 struct btrfs_file_extent_item);
7524 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7525 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7526 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7527 btrfs_set_file_extent_encryption(leaf, ei, 0);
7528 btrfs_set_file_extent_compression(leaf, ei, 0);
7529 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7530 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7531
39279cc3 7532 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7533 write_extent_buffer(leaf, symname, ptr, name_len);
7534 btrfs_mark_buffer_dirty(leaf);
39279cc3 7535 btrfs_free_path(path);
5f39d397 7536
39279cc3
CM
7537 inode->i_op = &btrfs_symlink_inode_operations;
7538 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7539 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7540 inode_set_bytes(inode, name_len);
dbe674a9 7541 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7542 err = btrfs_update_inode(trans, root, inode);
7543 if (err)
7544 drop_inode = 1;
39279cc3
CM
7545
7546out_unlock:
08c422c2
AV
7547 if (!err)
7548 d_instantiate(dentry, inode);
d3c2fdcf 7549 nr = trans->blocks_used;
7ad85bb7 7550 btrfs_end_transaction(trans, root);
39279cc3
CM
7551 if (drop_inode) {
7552 inode_dec_link_count(inode);
7553 iput(inode);
7554 }
d3c2fdcf 7555 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7556 return err;
7557}
16432985 7558
0af3d00b
JB
7559static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7560 u64 start, u64 num_bytes, u64 min_size,
7561 loff_t actual_len, u64 *alloc_hint,
7562 struct btrfs_trans_handle *trans)
d899e052 7563{
5dc562c5
JB
7564 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7565 struct extent_map *em;
d899e052
YZ
7566 struct btrfs_root *root = BTRFS_I(inode)->root;
7567 struct btrfs_key ins;
d899e052 7568 u64 cur_offset = start;
55a61d1d 7569 u64 i_size;
d899e052 7570 int ret = 0;
0af3d00b 7571 bool own_trans = true;
d899e052 7572
0af3d00b
JB
7573 if (trans)
7574 own_trans = false;
d899e052 7575 while (num_bytes > 0) {
0af3d00b
JB
7576 if (own_trans) {
7577 trans = btrfs_start_transaction(root, 3);
7578 if (IS_ERR(trans)) {
7579 ret = PTR_ERR(trans);
7580 break;
7581 }
5a303d5d
YZ
7582 }
7583
efa56464 7584 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7585 0, *alloc_hint, &ins, 1);
5a303d5d 7586 if (ret) {
0af3d00b
JB
7587 if (own_trans)
7588 btrfs_end_transaction(trans, root);
a22285a6 7589 break;
d899e052 7590 }
5a303d5d 7591
d899e052
YZ
7592 ret = insert_reserved_file_extent(trans, inode,
7593 cur_offset, ins.objectid,
7594 ins.offset, ins.offset,
920bbbfb 7595 ins.offset, 0, 0, 0,
d899e052 7596 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7597 if (ret) {
7598 btrfs_abort_transaction(trans, root, ret);
7599 if (own_trans)
7600 btrfs_end_transaction(trans, root);
7601 break;
7602 }
a1ed835e
CM
7603 btrfs_drop_extent_cache(inode, cur_offset,
7604 cur_offset + ins.offset -1, 0);
5a303d5d 7605
5dc562c5
JB
7606 em = alloc_extent_map();
7607 if (!em) {
7608 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7609 &BTRFS_I(inode)->runtime_flags);
7610 goto next;
7611 }
7612
7613 em->start = cur_offset;
7614 em->orig_start = cur_offset;
7615 em->len = ins.offset;
7616 em->block_start = ins.objectid;
7617 em->block_len = ins.offset;
7618 em->bdev = root->fs_info->fs_devices->latest_bdev;
7619 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7620 em->generation = trans->transid;
7621
7622 while (1) {
7623 write_lock(&em_tree->lock);
7624 ret = add_extent_mapping(em_tree, em);
7625 if (!ret)
7626 list_move(&em->list,
7627 &em_tree->modified_extents);
7628 write_unlock(&em_tree->lock);
7629 if (ret != -EEXIST)
7630 break;
7631 btrfs_drop_extent_cache(inode, cur_offset,
7632 cur_offset + ins.offset - 1,
7633 0);
7634 }
7635 free_extent_map(em);
7636next:
d899e052
YZ
7637 num_bytes -= ins.offset;
7638 cur_offset += ins.offset;
efa56464 7639 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7640
0c4d2d95 7641 inode_inc_iversion(inode);
d899e052 7642 inode->i_ctime = CURRENT_TIME;
6cbff00f 7643 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7644 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7645 (actual_len > inode->i_size) &&
7646 (cur_offset > inode->i_size)) {
d1ea6a61 7647 if (cur_offset > actual_len)
55a61d1d 7648 i_size = actual_len;
d1ea6a61 7649 else
55a61d1d
JB
7650 i_size = cur_offset;
7651 i_size_write(inode, i_size);
7652 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7653 }
7654
d899e052 7655 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7656
7657 if (ret) {
7658 btrfs_abort_transaction(trans, root, ret);
7659 if (own_trans)
7660 btrfs_end_transaction(trans, root);
7661 break;
7662 }
d899e052 7663
0af3d00b
JB
7664 if (own_trans)
7665 btrfs_end_transaction(trans, root);
5a303d5d 7666 }
d899e052
YZ
7667 return ret;
7668}
7669
0af3d00b
JB
7670int btrfs_prealloc_file_range(struct inode *inode, int mode,
7671 u64 start, u64 num_bytes, u64 min_size,
7672 loff_t actual_len, u64 *alloc_hint)
7673{
7674 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7675 min_size, actual_len, alloc_hint,
7676 NULL);
7677}
7678
7679int btrfs_prealloc_file_range_trans(struct inode *inode,
7680 struct btrfs_trans_handle *trans, int mode,
7681 u64 start, u64 num_bytes, u64 min_size,
7682 loff_t actual_len, u64 *alloc_hint)
7683{
7684 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7685 min_size, actual_len, alloc_hint, trans);
7686}
7687
e6dcd2dc
CM
7688static int btrfs_set_page_dirty(struct page *page)
7689{
e6dcd2dc
CM
7690 return __set_page_dirty_nobuffers(page);
7691}
7692
10556cb2 7693static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7694{
b83cc969 7695 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7696 umode_t mode = inode->i_mode;
b83cc969 7697
cb6db4e5
JM
7698 if (mask & MAY_WRITE &&
7699 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7700 if (btrfs_root_readonly(root))
7701 return -EROFS;
7702 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7703 return -EACCES;
7704 }
2830ba7f 7705 return generic_permission(inode, mask);
fdebe2bd 7706}
39279cc3 7707
6e1d5dcc 7708static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7709 .getattr = btrfs_getattr,
39279cc3
CM
7710 .lookup = btrfs_lookup,
7711 .create = btrfs_create,
7712 .unlink = btrfs_unlink,
7713 .link = btrfs_link,
7714 .mkdir = btrfs_mkdir,
7715 .rmdir = btrfs_rmdir,
7716 .rename = btrfs_rename,
7717 .symlink = btrfs_symlink,
7718 .setattr = btrfs_setattr,
618e21d5 7719 .mknod = btrfs_mknod,
95819c05
CH
7720 .setxattr = btrfs_setxattr,
7721 .getxattr = btrfs_getxattr,
5103e947 7722 .listxattr = btrfs_listxattr,
95819c05 7723 .removexattr = btrfs_removexattr,
fdebe2bd 7724 .permission = btrfs_permission,
4e34e719 7725 .get_acl = btrfs_get_acl,
39279cc3 7726};
6e1d5dcc 7727static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7728 .lookup = btrfs_lookup,
fdebe2bd 7729 .permission = btrfs_permission,
4e34e719 7730 .get_acl = btrfs_get_acl,
39279cc3 7731};
76dda93c 7732
828c0950 7733static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7734 .llseek = generic_file_llseek,
7735 .read = generic_read_dir,
cbdf5a24 7736 .readdir = btrfs_real_readdir,
34287aa3 7737 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7738#ifdef CONFIG_COMPAT
34287aa3 7739 .compat_ioctl = btrfs_ioctl,
39279cc3 7740#endif
6bf13c0c 7741 .release = btrfs_release_file,
e02119d5 7742 .fsync = btrfs_sync_file,
39279cc3
CM
7743};
7744
d1310b2e 7745static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7746 .fill_delalloc = run_delalloc_range,
065631f6 7747 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7748 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7749 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7750 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7751 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7752 .set_bit_hook = btrfs_set_bit_hook,
7753 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7754 .merge_extent_hook = btrfs_merge_extent_hook,
7755 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7756};
7757
35054394
CM
7758/*
7759 * btrfs doesn't support the bmap operation because swapfiles
7760 * use bmap to make a mapping of extents in the file. They assume
7761 * these extents won't change over the life of the file and they
7762 * use the bmap result to do IO directly to the drive.
7763 *
7764 * the btrfs bmap call would return logical addresses that aren't
7765 * suitable for IO and they also will change frequently as COW
7766 * operations happen. So, swapfile + btrfs == corruption.
7767 *
7768 * For now we're avoiding this by dropping bmap.
7769 */
7f09410b 7770static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7771 .readpage = btrfs_readpage,
7772 .writepage = btrfs_writepage,
b293f02e 7773 .writepages = btrfs_writepages,
3ab2fb5a 7774 .readpages = btrfs_readpages,
16432985 7775 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7776 .invalidatepage = btrfs_invalidatepage,
7777 .releasepage = btrfs_releasepage,
e6dcd2dc 7778 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7779 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7780};
7781
7f09410b 7782static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7783 .readpage = btrfs_readpage,
7784 .writepage = btrfs_writepage,
2bf5a725
CM
7785 .invalidatepage = btrfs_invalidatepage,
7786 .releasepage = btrfs_releasepage,
39279cc3
CM
7787};
7788
6e1d5dcc 7789static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7790 .getattr = btrfs_getattr,
7791 .setattr = btrfs_setattr,
95819c05
CH
7792 .setxattr = btrfs_setxattr,
7793 .getxattr = btrfs_getxattr,
5103e947 7794 .listxattr = btrfs_listxattr,
95819c05 7795 .removexattr = btrfs_removexattr,
fdebe2bd 7796 .permission = btrfs_permission,
1506fcc8 7797 .fiemap = btrfs_fiemap,
4e34e719 7798 .get_acl = btrfs_get_acl,
e41f941a 7799 .update_time = btrfs_update_time,
39279cc3 7800};
6e1d5dcc 7801static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7802 .getattr = btrfs_getattr,
7803 .setattr = btrfs_setattr,
fdebe2bd 7804 .permission = btrfs_permission,
95819c05
CH
7805 .setxattr = btrfs_setxattr,
7806 .getxattr = btrfs_getxattr,
33268eaf 7807 .listxattr = btrfs_listxattr,
95819c05 7808 .removexattr = btrfs_removexattr,
4e34e719 7809 .get_acl = btrfs_get_acl,
e41f941a 7810 .update_time = btrfs_update_time,
618e21d5 7811};
6e1d5dcc 7812static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7813 .readlink = generic_readlink,
7814 .follow_link = page_follow_link_light,
7815 .put_link = page_put_link,
f209561a 7816 .getattr = btrfs_getattr,
22c44fe6 7817 .setattr = btrfs_setattr,
fdebe2bd 7818 .permission = btrfs_permission,
0279b4cd
JO
7819 .setxattr = btrfs_setxattr,
7820 .getxattr = btrfs_getxattr,
7821 .listxattr = btrfs_listxattr,
7822 .removexattr = btrfs_removexattr,
4e34e719 7823 .get_acl = btrfs_get_acl,
e41f941a 7824 .update_time = btrfs_update_time,
39279cc3 7825};
76dda93c 7826
82d339d9 7827const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7828 .d_delete = btrfs_dentry_delete,
b4aff1f8 7829 .d_release = btrfs_dentry_release,
76dda93c 7830};