btrfs: Check read-only status of roots during send
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
39279cc3
CM
61
62struct btrfs_iget_args {
63 u64 ino;
64 struct btrfs_root *root;
65};
66
6e1d5dcc
AD
67static const struct inode_operations btrfs_dir_inode_operations;
68static const struct inode_operations btrfs_symlink_inode_operations;
69static const struct inode_operations btrfs_dir_ro_inode_operations;
70static const struct inode_operations btrfs_special_inode_operations;
71static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
72static const struct address_space_operations btrfs_aops;
73static const struct address_space_operations btrfs_symlink_aops;
828c0950 74static const struct file_operations btrfs_dir_file_operations;
d1310b2e 75static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
76
77static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 78static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
79struct kmem_cache *btrfs_trans_handle_cachep;
80struct kmem_cache *btrfs_transaction_cachep;
39279cc3 81struct kmem_cache *btrfs_path_cachep;
dc89e982 82struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
83
84#define S_SHIFT 12
85static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
86 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
87 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
88 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
89 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
90 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
91 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
92 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
93};
94
3972f260 95static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 96static int btrfs_truncate(struct inode *inode);
5fd02043 97static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
98static noinline int cow_file_range(struct inode *inode,
99 struct page *locked_page,
100 u64 start, u64 end, int *page_started,
101 unsigned long *nr_written, int unlock);
70c8a91c
JB
102static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
103 u64 len, u64 orig_start,
104 u64 block_start, u64 block_len,
cc95bef6
JB
105 u64 orig_block_len, u64 ram_bytes,
106 int type);
7b128766 107
48a3b636 108static int btrfs_dirty_inode(struct inode *inode);
7b128766 109
f34f57a3 110static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
111 struct inode *inode, struct inode *dir,
112 const struct qstr *qstr)
0279b4cd
JO
113{
114 int err;
115
f34f57a3 116 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 117 if (!err)
2a7dba39 118 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
119 return err;
120}
121
c8b97818
CM
122/*
123 * this does all the hard work for inserting an inline extent into
124 * the btree. The caller should have done a btrfs_drop_extents so that
125 * no overlapping inline items exist in the btree
126 */
d397712b 127static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
128 struct btrfs_root *root, struct inode *inode,
129 u64 start, size_t size, size_t compressed_size,
fe3f566c 130 int compress_type,
c8b97818
CM
131 struct page **compressed_pages)
132{
133 struct btrfs_key key;
134 struct btrfs_path *path;
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
143 size_t datasize;
144 unsigned long offset;
c8b97818 145
fe3f566c 146 if (compressed_size && compressed_pages)
c8b97818 147 cur_size = compressed_size;
c8b97818 148
d397712b
CM
149 path = btrfs_alloc_path();
150 if (!path)
c8b97818
CM
151 return -ENOMEM;
152
b9473439 153 path->leave_spinning = 1;
c8b97818 154
33345d01 155 key.objectid = btrfs_ino(inode);
c8b97818
CM
156 key.offset = start;
157 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159
160 inode_add_bytes(inode, size);
161 ret = btrfs_insert_empty_item(trans, root, path, &key,
162 datasize);
c8b97818
CM
163 if (ret) {
164 err = ret;
c8b97818
CM
165 goto fail;
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
206 btrfs_free_path(path);
207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818
CM
221fail:
222 btrfs_free_path(path);
223 return err;
224}
225
226
227/*
228 * conditionally insert an inline extent into the file. This
229 * does the checks required to make sure the data is small enough
230 * to fit as an inline extent.
231 */
00361589
JB
232static noinline int cow_file_range_inline(struct btrfs_root *root,
233 struct inode *inode, u64 start,
234 u64 end, size_t compressed_size,
235 int compress_type,
236 struct page **compressed_pages)
c8b97818 237{
00361589 238 struct btrfs_trans_handle *trans;
c8b97818
CM
239 u64 isize = i_size_read(inode);
240 u64 actual_end = min(end + 1, isize);
241 u64 inline_len = actual_end - start;
fda2832f 242 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
243 u64 data_len = inline_len;
244 int ret;
245
246 if (compressed_size)
247 data_len = compressed_size;
248
249 if (start > 0 ||
70b99e69 250 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
251 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
252 (!compressed_size &&
253 (actual_end & (root->sectorsize - 1)) == 0) ||
254 end + 1 < isize ||
255 data_len > root->fs_info->max_inline) {
256 return 1;
257 }
258
00361589
JB
259 trans = btrfs_join_transaction(root);
260 if (IS_ERR(trans))
261 return PTR_ERR(trans);
262 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
263
2671485d 264 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
00361589
JB
265 if (ret) {
266 btrfs_abort_transaction(trans, root, ret);
267 goto out;
268 }
c8b97818
CM
269
270 if (isize > actual_end)
271 inline_len = min_t(u64, isize, actual_end);
272 ret = insert_inline_extent(trans, root, inode, start,
273 inline_len, compressed_size,
fe3f566c 274 compress_type, compressed_pages);
2adcac1a 275 if (ret && ret != -ENOSPC) {
79787eaa 276 btrfs_abort_transaction(trans, root, ret);
00361589 277 goto out;
2adcac1a 278 } else if (ret == -ENOSPC) {
00361589
JB
279 ret = 1;
280 goto out;
79787eaa 281 }
2adcac1a 282
bdc20e67 283 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 284 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 285 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589
JB
286out:
287 btrfs_end_transaction(trans, root);
288 return ret;
c8b97818
CM
289}
290
771ed689
CM
291struct async_extent {
292 u64 start;
293 u64 ram_size;
294 u64 compressed_size;
295 struct page **pages;
296 unsigned long nr_pages;
261507a0 297 int compress_type;
771ed689
CM
298 struct list_head list;
299};
300
301struct async_cow {
302 struct inode *inode;
303 struct btrfs_root *root;
304 struct page *locked_page;
305 u64 start;
306 u64 end;
307 struct list_head extents;
308 struct btrfs_work work;
309};
310
311static noinline int add_async_extent(struct async_cow *cow,
312 u64 start, u64 ram_size,
313 u64 compressed_size,
314 struct page **pages,
261507a0
LZ
315 unsigned long nr_pages,
316 int compress_type)
771ed689
CM
317{
318 struct async_extent *async_extent;
319
320 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 321 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
322 async_extent->start = start;
323 async_extent->ram_size = ram_size;
324 async_extent->compressed_size = compressed_size;
325 async_extent->pages = pages;
326 async_extent->nr_pages = nr_pages;
261507a0 327 async_extent->compress_type = compress_type;
771ed689
CM
328 list_add_tail(&async_extent->list, &cow->extents);
329 return 0;
330}
331
d352ac68 332/*
771ed689
CM
333 * we create compressed extents in two phases. The first
334 * phase compresses a range of pages that have already been
335 * locked (both pages and state bits are locked).
c8b97818 336 *
771ed689
CM
337 * This is done inside an ordered work queue, and the compression
338 * is spread across many cpus. The actual IO submission is step
339 * two, and the ordered work queue takes care of making sure that
340 * happens in the same order things were put onto the queue by
341 * writepages and friends.
c8b97818 342 *
771ed689
CM
343 * If this code finds it can't get good compression, it puts an
344 * entry onto the work queue to write the uncompressed bytes. This
345 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
346 * are written in the same order that the flusher thread sent them
347 * down.
d352ac68 348 */
771ed689
CM
349static noinline int compress_file_range(struct inode *inode,
350 struct page *locked_page,
351 u64 start, u64 end,
352 struct async_cow *async_cow,
353 int *num_added)
b888db2b
CM
354{
355 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 356 u64 num_bytes;
db94535d 357 u64 blocksize = root->sectorsize;
c8b97818 358 u64 actual_end;
42dc7bab 359 u64 isize = i_size_read(inode);
e6dcd2dc 360 int ret = 0;
c8b97818
CM
361 struct page **pages = NULL;
362 unsigned long nr_pages;
363 unsigned long nr_pages_ret = 0;
364 unsigned long total_compressed = 0;
365 unsigned long total_in = 0;
366 unsigned long max_compressed = 128 * 1024;
771ed689 367 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
368 int i;
369 int will_compress;
261507a0 370 int compress_type = root->fs_info->compress_type;
4adaa611 371 int redirty = 0;
b888db2b 372
4cb13e5d
LB
373 /* if this is a small write inside eof, kick off a defrag */
374 if ((end - start + 1) < 16 * 1024 &&
375 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
376 btrfs_add_inode_defrag(NULL, inode);
377
42dc7bab 378 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
379again:
380 will_compress = 0;
381 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
382 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 383
f03d9301
CM
384 /*
385 * we don't want to send crud past the end of i_size through
386 * compression, that's just a waste of CPU time. So, if the
387 * end of the file is before the start of our current
388 * requested range of bytes, we bail out to the uncompressed
389 * cleanup code that can deal with all of this.
390 *
391 * It isn't really the fastest way to fix things, but this is a
392 * very uncommon corner.
393 */
394 if (actual_end <= start)
395 goto cleanup_and_bail_uncompressed;
396
c8b97818
CM
397 total_compressed = actual_end - start;
398
399 /* we want to make sure that amount of ram required to uncompress
400 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
401 * of a compressed extent to 128k. This is a crucial number
402 * because it also controls how easily we can spread reads across
403 * cpus for decompression.
404 *
405 * We also want to make sure the amount of IO required to do
406 * a random read is reasonably small, so we limit the size of
407 * a compressed extent to 128k.
c8b97818
CM
408 */
409 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 410 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 411 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
412 total_in = 0;
413 ret = 0;
db94535d 414
771ed689
CM
415 /*
416 * we do compression for mount -o compress and when the
417 * inode has not been flagged as nocompress. This flag can
418 * change at any time if we discover bad compression ratios.
c8b97818 419 */
6cbff00f 420 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 421 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
422 (BTRFS_I(inode)->force_compress) ||
423 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 424 WARN_ON(pages);
cfbc246e 425 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
426 if (!pages) {
427 /* just bail out to the uncompressed code */
428 goto cont;
429 }
c8b97818 430
261507a0
LZ
431 if (BTRFS_I(inode)->force_compress)
432 compress_type = BTRFS_I(inode)->force_compress;
433
4adaa611
CM
434 /*
435 * we need to call clear_page_dirty_for_io on each
436 * page in the range. Otherwise applications with the file
437 * mmap'd can wander in and change the page contents while
438 * we are compressing them.
439 *
440 * If the compression fails for any reason, we set the pages
441 * dirty again later on.
442 */
443 extent_range_clear_dirty_for_io(inode, start, end);
444 redirty = 1;
261507a0
LZ
445 ret = btrfs_compress_pages(compress_type,
446 inode->i_mapping, start,
447 total_compressed, pages,
448 nr_pages, &nr_pages_ret,
449 &total_in,
450 &total_compressed,
451 max_compressed);
c8b97818
CM
452
453 if (!ret) {
454 unsigned long offset = total_compressed &
455 (PAGE_CACHE_SIZE - 1);
456 struct page *page = pages[nr_pages_ret - 1];
457 char *kaddr;
458
459 /* zero the tail end of the last page, we might be
460 * sending it down to disk
461 */
462 if (offset) {
7ac687d9 463 kaddr = kmap_atomic(page);
c8b97818
CM
464 memset(kaddr + offset, 0,
465 PAGE_CACHE_SIZE - offset);
7ac687d9 466 kunmap_atomic(kaddr);
c8b97818
CM
467 }
468 will_compress = 1;
469 }
470 }
560f7d75 471cont:
c8b97818
CM
472 if (start == 0) {
473 /* lets try to make an inline extent */
771ed689 474 if (ret || total_in < (actual_end - start)) {
c8b97818 475 /* we didn't compress the entire range, try
771ed689 476 * to make an uncompressed inline extent.
c8b97818 477 */
00361589
JB
478 ret = cow_file_range_inline(root, inode, start, end,
479 0, 0, NULL);
c8b97818 480 } else {
771ed689 481 /* try making a compressed inline extent */
00361589 482 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
483 total_compressed,
484 compress_type, pages);
c8b97818 485 }
79787eaa 486 if (ret <= 0) {
151a41bc
JB
487 unsigned long clear_flags = EXTENT_DELALLOC |
488 EXTENT_DEFRAG;
489 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
490
771ed689 491 /*
79787eaa
JM
492 * inline extent creation worked or returned error,
493 * we don't need to create any more async work items.
494 * Unlock and free up our temp pages.
771ed689 495 */
c2790a2e 496 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 497 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
498 PAGE_CLEAR_DIRTY |
499 PAGE_SET_WRITEBACK |
500 PAGE_END_WRITEBACK);
c8b97818
CM
501 goto free_pages_out;
502 }
503 }
504
505 if (will_compress) {
506 /*
507 * we aren't doing an inline extent round the compressed size
508 * up to a block size boundary so the allocator does sane
509 * things
510 */
fda2832f 511 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
512
513 /*
514 * one last check to make sure the compression is really a
515 * win, compare the page count read with the blocks on disk
516 */
fda2832f 517 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
518 if (total_compressed >= total_in) {
519 will_compress = 0;
520 } else {
c8b97818
CM
521 num_bytes = total_in;
522 }
523 }
524 if (!will_compress && pages) {
525 /*
526 * the compression code ran but failed to make things smaller,
527 * free any pages it allocated and our page pointer array
528 */
529 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 530 WARN_ON(pages[i]->mapping);
c8b97818
CM
531 page_cache_release(pages[i]);
532 }
533 kfree(pages);
534 pages = NULL;
535 total_compressed = 0;
536 nr_pages_ret = 0;
537
538 /* flag the file so we don't compress in the future */
1e701a32
CM
539 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
540 !(BTRFS_I(inode)->force_compress)) {
a555f810 541 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 542 }
c8b97818 543 }
771ed689
CM
544 if (will_compress) {
545 *num_added += 1;
c8b97818 546
771ed689
CM
547 /* the async work queues will take care of doing actual
548 * allocation on disk for these compressed pages,
549 * and will submit them to the elevator.
550 */
551 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
552 total_compressed, pages, nr_pages_ret,
553 compress_type);
179e29e4 554
24ae6365 555 if (start + num_bytes < end) {
771ed689
CM
556 start += num_bytes;
557 pages = NULL;
558 cond_resched();
559 goto again;
560 }
561 } else {
f03d9301 562cleanup_and_bail_uncompressed:
771ed689
CM
563 /*
564 * No compression, but we still need to write the pages in
565 * the file we've been given so far. redirty the locked
566 * page if it corresponds to our extent and set things up
567 * for the async work queue to run cow_file_range to do
568 * the normal delalloc dance
569 */
570 if (page_offset(locked_page) >= start &&
571 page_offset(locked_page) <= end) {
572 __set_page_dirty_nobuffers(locked_page);
573 /* unlocked later on in the async handlers */
574 }
4adaa611
CM
575 if (redirty)
576 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
577 add_async_extent(async_cow, start, end - start + 1,
578 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
579 *num_added += 1;
580 }
3b951516 581
771ed689 582out:
79787eaa 583 return ret;
771ed689
CM
584
585free_pages_out:
586 for (i = 0; i < nr_pages_ret; i++) {
587 WARN_ON(pages[i]->mapping);
588 page_cache_release(pages[i]);
589 }
d397712b 590 kfree(pages);
771ed689
CM
591
592 goto out;
593}
594
595/*
596 * phase two of compressed writeback. This is the ordered portion
597 * of the code, which only gets called in the order the work was
598 * queued. We walk all the async extents created by compress_file_range
599 * and send them down to the disk.
600 */
601static noinline int submit_compressed_extents(struct inode *inode,
602 struct async_cow *async_cow)
603{
604 struct async_extent *async_extent;
605 u64 alloc_hint = 0;
771ed689
CM
606 struct btrfs_key ins;
607 struct extent_map *em;
608 struct btrfs_root *root = BTRFS_I(inode)->root;
609 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
610 struct extent_io_tree *io_tree;
f5a84ee3 611 int ret = 0;
771ed689
CM
612
613 if (list_empty(&async_cow->extents))
614 return 0;
615
3e04e7f1 616again:
d397712b 617 while (!list_empty(&async_cow->extents)) {
771ed689
CM
618 async_extent = list_entry(async_cow->extents.next,
619 struct async_extent, list);
620 list_del(&async_extent->list);
c8b97818 621
771ed689
CM
622 io_tree = &BTRFS_I(inode)->io_tree;
623
f5a84ee3 624retry:
771ed689
CM
625 /* did the compression code fall back to uncompressed IO? */
626 if (!async_extent->pages) {
627 int page_started = 0;
628 unsigned long nr_written = 0;
629
630 lock_extent(io_tree, async_extent->start,
2ac55d41 631 async_extent->start +
d0082371 632 async_extent->ram_size - 1);
771ed689
CM
633
634 /* allocate blocks */
f5a84ee3
JB
635 ret = cow_file_range(inode, async_cow->locked_page,
636 async_extent->start,
637 async_extent->start +
638 async_extent->ram_size - 1,
639 &page_started, &nr_written, 0);
771ed689 640
79787eaa
JM
641 /* JDM XXX */
642
771ed689
CM
643 /*
644 * if page_started, cow_file_range inserted an
645 * inline extent and took care of all the unlocking
646 * and IO for us. Otherwise, we need to submit
647 * all those pages down to the drive.
648 */
f5a84ee3 649 if (!page_started && !ret)
771ed689
CM
650 extent_write_locked_range(io_tree,
651 inode, async_extent->start,
d397712b 652 async_extent->start +
771ed689
CM
653 async_extent->ram_size - 1,
654 btrfs_get_extent,
655 WB_SYNC_ALL);
3e04e7f1
JB
656 else if (ret)
657 unlock_page(async_cow->locked_page);
771ed689
CM
658 kfree(async_extent);
659 cond_resched();
660 continue;
661 }
662
663 lock_extent(io_tree, async_extent->start,
d0082371 664 async_extent->start + async_extent->ram_size - 1);
771ed689 665
00361589 666 ret = btrfs_reserve_extent(root,
771ed689
CM
667 async_extent->compressed_size,
668 async_extent->compressed_size,
81c9ad23 669 0, alloc_hint, &ins, 1);
f5a84ee3
JB
670 if (ret) {
671 int i;
3e04e7f1 672
f5a84ee3
JB
673 for (i = 0; i < async_extent->nr_pages; i++) {
674 WARN_ON(async_extent->pages[i]->mapping);
675 page_cache_release(async_extent->pages[i]);
676 }
677 kfree(async_extent->pages);
678 async_extent->nr_pages = 0;
679 async_extent->pages = NULL;
3e04e7f1 680
fdf8e2ea
JB
681 if (ret == -ENOSPC) {
682 unlock_extent(io_tree, async_extent->start,
683 async_extent->start +
684 async_extent->ram_size - 1);
79787eaa 685 goto retry;
fdf8e2ea 686 }
3e04e7f1 687 goto out_free;
f5a84ee3
JB
688 }
689
c2167754
YZ
690 /*
691 * here we're doing allocation and writeback of the
692 * compressed pages
693 */
694 btrfs_drop_extent_cache(inode, async_extent->start,
695 async_extent->start +
696 async_extent->ram_size - 1, 0);
697
172ddd60 698 em = alloc_extent_map();
b9aa55be
LB
699 if (!em) {
700 ret = -ENOMEM;
3e04e7f1 701 goto out_free_reserve;
b9aa55be 702 }
771ed689
CM
703 em->start = async_extent->start;
704 em->len = async_extent->ram_size;
445a6944 705 em->orig_start = em->start;
2ab28f32
JB
706 em->mod_start = em->start;
707 em->mod_len = em->len;
c8b97818 708
771ed689
CM
709 em->block_start = ins.objectid;
710 em->block_len = ins.offset;
b4939680 711 em->orig_block_len = ins.offset;
cc95bef6 712 em->ram_bytes = async_extent->ram_size;
771ed689 713 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 714 em->compress_type = async_extent->compress_type;
771ed689
CM
715 set_bit(EXTENT_FLAG_PINNED, &em->flags);
716 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 717 em->generation = -1;
771ed689 718
d397712b 719 while (1) {
890871be 720 write_lock(&em_tree->lock);
09a2a8f9 721 ret = add_extent_mapping(em_tree, em, 1);
890871be 722 write_unlock(&em_tree->lock);
771ed689
CM
723 if (ret != -EEXIST) {
724 free_extent_map(em);
725 break;
726 }
727 btrfs_drop_extent_cache(inode, async_extent->start,
728 async_extent->start +
729 async_extent->ram_size - 1, 0);
730 }
731
3e04e7f1
JB
732 if (ret)
733 goto out_free_reserve;
734
261507a0
LZ
735 ret = btrfs_add_ordered_extent_compress(inode,
736 async_extent->start,
737 ins.objectid,
738 async_extent->ram_size,
739 ins.offset,
740 BTRFS_ORDERED_COMPRESSED,
741 async_extent->compress_type);
3e04e7f1
JB
742 if (ret)
743 goto out_free_reserve;
771ed689 744
771ed689
CM
745 /*
746 * clear dirty, set writeback and unlock the pages.
747 */
c2790a2e 748 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
749 async_extent->start +
750 async_extent->ram_size - 1,
151a41bc
JB
751 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
752 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 753 PAGE_SET_WRITEBACK);
771ed689 754 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
755 async_extent->start,
756 async_extent->ram_size,
757 ins.objectid,
758 ins.offset, async_extent->pages,
759 async_extent->nr_pages);
771ed689
CM
760 alloc_hint = ins.objectid + ins.offset;
761 kfree(async_extent);
3e04e7f1
JB
762 if (ret)
763 goto out;
771ed689
CM
764 cond_resched();
765 }
79787eaa
JM
766 ret = 0;
767out:
768 return ret;
3e04e7f1
JB
769out_free_reserve:
770 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 771out_free:
c2790a2e 772 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
773 async_extent->start +
774 async_extent->ram_size - 1,
c2790a2e 775 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
776 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
777 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
778 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 779 kfree(async_extent);
3e04e7f1 780 goto again;
771ed689
CM
781}
782
4b46fce2
JB
783static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
784 u64 num_bytes)
785{
786 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
787 struct extent_map *em;
788 u64 alloc_hint = 0;
789
790 read_lock(&em_tree->lock);
791 em = search_extent_mapping(em_tree, start, num_bytes);
792 if (em) {
793 /*
794 * if block start isn't an actual block number then find the
795 * first block in this inode and use that as a hint. If that
796 * block is also bogus then just don't worry about it.
797 */
798 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
799 free_extent_map(em);
800 em = search_extent_mapping(em_tree, 0, 0);
801 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
802 alloc_hint = em->block_start;
803 if (em)
804 free_extent_map(em);
805 } else {
806 alloc_hint = em->block_start;
807 free_extent_map(em);
808 }
809 }
810 read_unlock(&em_tree->lock);
811
812 return alloc_hint;
813}
814
771ed689
CM
815/*
816 * when extent_io.c finds a delayed allocation range in the file,
817 * the call backs end up in this code. The basic idea is to
818 * allocate extents on disk for the range, and create ordered data structs
819 * in ram to track those extents.
820 *
821 * locked_page is the page that writepage had locked already. We use
822 * it to make sure we don't do extra locks or unlocks.
823 *
824 * *page_started is set to one if we unlock locked_page and do everything
825 * required to start IO on it. It may be clean and already done with
826 * IO when we return.
827 */
00361589
JB
828static noinline int cow_file_range(struct inode *inode,
829 struct page *locked_page,
830 u64 start, u64 end, int *page_started,
831 unsigned long *nr_written,
832 int unlock)
771ed689 833{
00361589 834 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
835 u64 alloc_hint = 0;
836 u64 num_bytes;
837 unsigned long ram_size;
838 u64 disk_num_bytes;
839 u64 cur_alloc_size;
840 u64 blocksize = root->sectorsize;
771ed689
CM
841 struct btrfs_key ins;
842 struct extent_map *em;
843 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
844 int ret = 0;
845
02ecd2c2
JB
846 if (btrfs_is_free_space_inode(inode)) {
847 WARN_ON_ONCE(1);
848 return -EINVAL;
849 }
771ed689 850
fda2832f 851 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
852 num_bytes = max(blocksize, num_bytes);
853 disk_num_bytes = num_bytes;
771ed689 854
4cb5300b 855 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
856 if (num_bytes < 64 * 1024 &&
857 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 858 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 859
771ed689
CM
860 if (start == 0) {
861 /* lets try to make an inline extent */
00361589
JB
862 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
863 NULL);
771ed689 864 if (ret == 0) {
c2790a2e
JB
865 extent_clear_unlock_delalloc(inode, start, end, NULL,
866 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 867 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
868 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
869 PAGE_END_WRITEBACK);
c2167754 870
771ed689
CM
871 *nr_written = *nr_written +
872 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
873 *page_started = 1;
771ed689 874 goto out;
79787eaa 875 } else if (ret < 0) {
79787eaa 876 goto out_unlock;
771ed689
CM
877 }
878 }
879
880 BUG_ON(disk_num_bytes >
6c41761f 881 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 882
4b46fce2 883 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
884 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
885
d397712b 886 while (disk_num_bytes > 0) {
a791e35e
CM
887 unsigned long op;
888
287a0ab9 889 cur_alloc_size = disk_num_bytes;
00361589 890 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 891 root->sectorsize, 0, alloc_hint,
81c9ad23 892 &ins, 1);
00361589 893 if (ret < 0)
79787eaa 894 goto out_unlock;
d397712b 895
172ddd60 896 em = alloc_extent_map();
b9aa55be
LB
897 if (!em) {
898 ret = -ENOMEM;
ace68bac 899 goto out_reserve;
b9aa55be 900 }
e6dcd2dc 901 em->start = start;
445a6944 902 em->orig_start = em->start;
771ed689
CM
903 ram_size = ins.offset;
904 em->len = ins.offset;
2ab28f32
JB
905 em->mod_start = em->start;
906 em->mod_len = em->len;
c8b97818 907
e6dcd2dc 908 em->block_start = ins.objectid;
c8b97818 909 em->block_len = ins.offset;
b4939680 910 em->orig_block_len = ins.offset;
cc95bef6 911 em->ram_bytes = ram_size;
e6dcd2dc 912 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 913 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 914 em->generation = -1;
c8b97818 915
d397712b 916 while (1) {
890871be 917 write_lock(&em_tree->lock);
09a2a8f9 918 ret = add_extent_mapping(em_tree, em, 1);
890871be 919 write_unlock(&em_tree->lock);
e6dcd2dc
CM
920 if (ret != -EEXIST) {
921 free_extent_map(em);
922 break;
923 }
924 btrfs_drop_extent_cache(inode, start,
c8b97818 925 start + ram_size - 1, 0);
e6dcd2dc 926 }
ace68bac
LB
927 if (ret)
928 goto out_reserve;
e6dcd2dc 929
98d20f67 930 cur_alloc_size = ins.offset;
e6dcd2dc 931 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 932 ram_size, cur_alloc_size, 0);
ace68bac
LB
933 if (ret)
934 goto out_reserve;
c8b97818 935
17d217fe
YZ
936 if (root->root_key.objectid ==
937 BTRFS_DATA_RELOC_TREE_OBJECTID) {
938 ret = btrfs_reloc_clone_csums(inode, start,
939 cur_alloc_size);
00361589 940 if (ret)
ace68bac 941 goto out_reserve;
17d217fe
YZ
942 }
943
d397712b 944 if (disk_num_bytes < cur_alloc_size)
3b951516 945 break;
d397712b 946
c8b97818
CM
947 /* we're not doing compressed IO, don't unlock the first
948 * page (which the caller expects to stay locked), don't
949 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
950 *
951 * Do set the Private2 bit so we know this page was properly
952 * setup for writepage
c8b97818 953 */
c2790a2e
JB
954 op = unlock ? PAGE_UNLOCK : 0;
955 op |= PAGE_SET_PRIVATE2;
a791e35e 956
c2790a2e
JB
957 extent_clear_unlock_delalloc(inode, start,
958 start + ram_size - 1, locked_page,
959 EXTENT_LOCKED | EXTENT_DELALLOC,
960 op);
c8b97818 961 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
962 num_bytes -= cur_alloc_size;
963 alloc_hint = ins.objectid + ins.offset;
964 start += cur_alloc_size;
b888db2b 965 }
79787eaa 966out:
be20aa9d 967 return ret;
b7d5b0a8 968
ace68bac
LB
969out_reserve:
970 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 971out_unlock:
c2790a2e 972 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
973 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
974 EXTENT_DELALLOC | EXTENT_DEFRAG,
975 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
976 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 977 goto out;
771ed689 978}
c8b97818 979
771ed689
CM
980/*
981 * work queue call back to started compression on a file and pages
982 */
983static noinline void async_cow_start(struct btrfs_work *work)
984{
985 struct async_cow *async_cow;
986 int num_added = 0;
987 async_cow = container_of(work, struct async_cow, work);
988
989 compress_file_range(async_cow->inode, async_cow->locked_page,
990 async_cow->start, async_cow->end, async_cow,
991 &num_added);
8180ef88 992 if (num_added == 0) {
cb77fcd8 993 btrfs_add_delayed_iput(async_cow->inode);
771ed689 994 async_cow->inode = NULL;
8180ef88 995 }
771ed689
CM
996}
997
998/*
999 * work queue call back to submit previously compressed pages
1000 */
1001static noinline void async_cow_submit(struct btrfs_work *work)
1002{
1003 struct async_cow *async_cow;
1004 struct btrfs_root *root;
1005 unsigned long nr_pages;
1006
1007 async_cow = container_of(work, struct async_cow, work);
1008
1009 root = async_cow->root;
1010 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1011 PAGE_CACHE_SHIFT;
1012
66657b31 1013 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1014 5 * 1024 * 1024 &&
771ed689
CM
1015 waitqueue_active(&root->fs_info->async_submit_wait))
1016 wake_up(&root->fs_info->async_submit_wait);
1017
d397712b 1018 if (async_cow->inode)
771ed689 1019 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1020}
c8b97818 1021
771ed689
CM
1022static noinline void async_cow_free(struct btrfs_work *work)
1023{
1024 struct async_cow *async_cow;
1025 async_cow = container_of(work, struct async_cow, work);
8180ef88 1026 if (async_cow->inode)
cb77fcd8 1027 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1028 kfree(async_cow);
1029}
1030
1031static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1032 u64 start, u64 end, int *page_started,
1033 unsigned long *nr_written)
1034{
1035 struct async_cow *async_cow;
1036 struct btrfs_root *root = BTRFS_I(inode)->root;
1037 unsigned long nr_pages;
1038 u64 cur_end;
287082b0 1039 int limit = 10 * 1024 * 1024;
771ed689 1040
a3429ab7
CM
1041 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1042 1, 0, NULL, GFP_NOFS);
d397712b 1043 while (start < end) {
771ed689 1044 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1045 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1046 async_cow->inode = igrab(inode);
771ed689
CM
1047 async_cow->root = root;
1048 async_cow->locked_page = locked_page;
1049 async_cow->start = start;
1050
6cbff00f 1051 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1052 cur_end = end;
1053 else
1054 cur_end = min(end, start + 512 * 1024 - 1);
1055
1056 async_cow->end = cur_end;
1057 INIT_LIST_HEAD(&async_cow->extents);
1058
1059 async_cow->work.func = async_cow_start;
1060 async_cow->work.ordered_func = async_cow_submit;
1061 async_cow->work.ordered_free = async_cow_free;
1062 async_cow->work.flags = 0;
1063
771ed689
CM
1064 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1065 PAGE_CACHE_SHIFT;
1066 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1067
1068 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1069 &async_cow->work);
1070
1071 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1072 wait_event(root->fs_info->async_submit_wait,
1073 (atomic_read(&root->fs_info->async_delalloc_pages) <
1074 limit));
1075 }
1076
d397712b 1077 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1078 atomic_read(&root->fs_info->async_delalloc_pages)) {
1079 wait_event(root->fs_info->async_submit_wait,
1080 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1081 0));
1082 }
1083
1084 *nr_written += nr_pages;
1085 start = cur_end + 1;
1086 }
1087 *page_started = 1;
1088 return 0;
be20aa9d
CM
1089}
1090
d397712b 1091static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1092 u64 bytenr, u64 num_bytes)
1093{
1094 int ret;
1095 struct btrfs_ordered_sum *sums;
1096 LIST_HEAD(list);
1097
07d400a6 1098 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1099 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1100 if (ret == 0 && list_empty(&list))
1101 return 0;
1102
1103 while (!list_empty(&list)) {
1104 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1105 list_del(&sums->list);
1106 kfree(sums);
1107 }
1108 return 1;
1109}
1110
d352ac68
CM
1111/*
1112 * when nowcow writeback call back. This checks for snapshots or COW copies
1113 * of the extents that exist in the file, and COWs the file as required.
1114 *
1115 * If no cow copies or snapshots exist, we write directly to the existing
1116 * blocks on disk
1117 */
7f366cfe
CM
1118static noinline int run_delalloc_nocow(struct inode *inode,
1119 struct page *locked_page,
771ed689
CM
1120 u64 start, u64 end, int *page_started, int force,
1121 unsigned long *nr_written)
be20aa9d 1122{
be20aa9d 1123 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1124 struct btrfs_trans_handle *trans;
be20aa9d 1125 struct extent_buffer *leaf;
be20aa9d 1126 struct btrfs_path *path;
80ff3856 1127 struct btrfs_file_extent_item *fi;
be20aa9d 1128 struct btrfs_key found_key;
80ff3856
YZ
1129 u64 cow_start;
1130 u64 cur_offset;
1131 u64 extent_end;
5d4f98a2 1132 u64 extent_offset;
80ff3856
YZ
1133 u64 disk_bytenr;
1134 u64 num_bytes;
b4939680 1135 u64 disk_num_bytes;
cc95bef6 1136 u64 ram_bytes;
80ff3856 1137 int extent_type;
79787eaa 1138 int ret, err;
d899e052 1139 int type;
80ff3856
YZ
1140 int nocow;
1141 int check_prev = 1;
82d5902d 1142 bool nolock;
33345d01 1143 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1144
1145 path = btrfs_alloc_path();
17ca04af 1146 if (!path) {
c2790a2e
JB
1147 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1148 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1149 EXTENT_DO_ACCOUNTING |
1150 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1151 PAGE_CLEAR_DIRTY |
1152 PAGE_SET_WRITEBACK |
1153 PAGE_END_WRITEBACK);
d8926bb3 1154 return -ENOMEM;
17ca04af 1155 }
82d5902d 1156
83eea1f1 1157 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1158
1159 if (nolock)
7a7eaa40 1160 trans = btrfs_join_transaction_nolock(root);
82d5902d 1161 else
7a7eaa40 1162 trans = btrfs_join_transaction(root);
ff5714cc 1163
79787eaa 1164 if (IS_ERR(trans)) {
c2790a2e
JB
1165 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1166 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1167 EXTENT_DO_ACCOUNTING |
1168 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1169 PAGE_CLEAR_DIRTY |
1170 PAGE_SET_WRITEBACK |
1171 PAGE_END_WRITEBACK);
79787eaa
JM
1172 btrfs_free_path(path);
1173 return PTR_ERR(trans);
1174 }
1175
74b21075 1176 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1177
80ff3856
YZ
1178 cow_start = (u64)-1;
1179 cur_offset = start;
1180 while (1) {
33345d01 1181 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1182 cur_offset, 0);
d788a349 1183 if (ret < 0)
79787eaa 1184 goto error;
80ff3856
YZ
1185 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186 leaf = path->nodes[0];
1187 btrfs_item_key_to_cpu(leaf, &found_key,
1188 path->slots[0] - 1);
33345d01 1189 if (found_key.objectid == ino &&
80ff3856
YZ
1190 found_key.type == BTRFS_EXTENT_DATA_KEY)
1191 path->slots[0]--;
1192 }
1193 check_prev = 0;
1194next_slot:
1195 leaf = path->nodes[0];
1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197 ret = btrfs_next_leaf(root, path);
d788a349 1198 if (ret < 0)
79787eaa 1199 goto error;
80ff3856
YZ
1200 if (ret > 0)
1201 break;
1202 leaf = path->nodes[0];
1203 }
be20aa9d 1204
80ff3856
YZ
1205 nocow = 0;
1206 disk_bytenr = 0;
17d217fe 1207 num_bytes = 0;
80ff3856
YZ
1208 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1209
33345d01 1210 if (found_key.objectid > ino ||
80ff3856
YZ
1211 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1212 found_key.offset > end)
1213 break;
1214
1215 if (found_key.offset > cur_offset) {
1216 extent_end = found_key.offset;
e9061e21 1217 extent_type = 0;
80ff3856
YZ
1218 goto out_check;
1219 }
1220
1221 fi = btrfs_item_ptr(leaf, path->slots[0],
1222 struct btrfs_file_extent_item);
1223 extent_type = btrfs_file_extent_type(leaf, fi);
1224
cc95bef6 1225 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1226 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1227 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1228 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1229 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1230 extent_end = found_key.offset +
1231 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1232 disk_num_bytes =
1233 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1234 if (extent_end <= start) {
1235 path->slots[0]++;
1236 goto next_slot;
1237 }
17d217fe
YZ
1238 if (disk_bytenr == 0)
1239 goto out_check;
80ff3856
YZ
1240 if (btrfs_file_extent_compression(leaf, fi) ||
1241 btrfs_file_extent_encryption(leaf, fi) ||
1242 btrfs_file_extent_other_encoding(leaf, fi))
1243 goto out_check;
d899e052
YZ
1244 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1245 goto out_check;
d2fb3437 1246 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1247 goto out_check;
33345d01 1248 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1249 found_key.offset -
1250 extent_offset, disk_bytenr))
17d217fe 1251 goto out_check;
5d4f98a2 1252 disk_bytenr += extent_offset;
17d217fe
YZ
1253 disk_bytenr += cur_offset - found_key.offset;
1254 num_bytes = min(end + 1, extent_end) - cur_offset;
1255 /*
1256 * force cow if csum exists in the range.
1257 * this ensure that csum for a given extent are
1258 * either valid or do not exist.
1259 */
1260 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1261 goto out_check;
80ff3856
YZ
1262 nocow = 1;
1263 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1264 extent_end = found_key.offset +
1265 btrfs_file_extent_inline_len(leaf, fi);
1266 extent_end = ALIGN(extent_end, root->sectorsize);
1267 } else {
1268 BUG_ON(1);
1269 }
1270out_check:
1271 if (extent_end <= start) {
1272 path->slots[0]++;
1273 goto next_slot;
1274 }
1275 if (!nocow) {
1276 if (cow_start == (u64)-1)
1277 cow_start = cur_offset;
1278 cur_offset = extent_end;
1279 if (cur_offset > end)
1280 break;
1281 path->slots[0]++;
1282 goto next_slot;
7ea394f1
YZ
1283 }
1284
b3b4aa74 1285 btrfs_release_path(path);
80ff3856 1286 if (cow_start != (u64)-1) {
00361589
JB
1287 ret = cow_file_range(inode, locked_page,
1288 cow_start, found_key.offset - 1,
1289 page_started, nr_written, 1);
d788a349 1290 if (ret)
79787eaa 1291 goto error;
80ff3856 1292 cow_start = (u64)-1;
7ea394f1 1293 }
80ff3856 1294
d899e052
YZ
1295 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1296 struct extent_map *em;
1297 struct extent_map_tree *em_tree;
1298 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1299 em = alloc_extent_map();
79787eaa 1300 BUG_ON(!em); /* -ENOMEM */
d899e052 1301 em->start = cur_offset;
70c8a91c 1302 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1303 em->len = num_bytes;
1304 em->block_len = num_bytes;
1305 em->block_start = disk_bytenr;
b4939680 1306 em->orig_block_len = disk_num_bytes;
cc95bef6 1307 em->ram_bytes = ram_bytes;
d899e052 1308 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1309 em->mod_start = em->start;
1310 em->mod_len = em->len;
d899e052 1311 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1312 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1313 em->generation = -1;
d899e052 1314 while (1) {
890871be 1315 write_lock(&em_tree->lock);
09a2a8f9 1316 ret = add_extent_mapping(em_tree, em, 1);
890871be 1317 write_unlock(&em_tree->lock);
d899e052
YZ
1318 if (ret != -EEXIST) {
1319 free_extent_map(em);
1320 break;
1321 }
1322 btrfs_drop_extent_cache(inode, em->start,
1323 em->start + em->len - 1, 0);
1324 }
1325 type = BTRFS_ORDERED_PREALLOC;
1326 } else {
1327 type = BTRFS_ORDERED_NOCOW;
1328 }
80ff3856
YZ
1329
1330 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1331 num_bytes, num_bytes, type);
79787eaa 1332 BUG_ON(ret); /* -ENOMEM */
771ed689 1333
efa56464
YZ
1334 if (root->root_key.objectid ==
1335 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1336 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1337 num_bytes);
d788a349 1338 if (ret)
79787eaa 1339 goto error;
efa56464
YZ
1340 }
1341
c2790a2e
JB
1342 extent_clear_unlock_delalloc(inode, cur_offset,
1343 cur_offset + num_bytes - 1,
1344 locked_page, EXTENT_LOCKED |
1345 EXTENT_DELALLOC, PAGE_UNLOCK |
1346 PAGE_SET_PRIVATE2);
80ff3856
YZ
1347 cur_offset = extent_end;
1348 if (cur_offset > end)
1349 break;
be20aa9d 1350 }
b3b4aa74 1351 btrfs_release_path(path);
80ff3856 1352
17ca04af 1353 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1354 cow_start = cur_offset;
17ca04af
JB
1355 cur_offset = end;
1356 }
1357
80ff3856 1358 if (cow_start != (u64)-1) {
00361589
JB
1359 ret = cow_file_range(inode, locked_page, cow_start, end,
1360 page_started, nr_written, 1);
d788a349 1361 if (ret)
79787eaa 1362 goto error;
80ff3856
YZ
1363 }
1364
79787eaa 1365error:
a698d075 1366 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1367 if (!ret)
1368 ret = err;
1369
17ca04af 1370 if (ret && cur_offset < end)
c2790a2e
JB
1371 extent_clear_unlock_delalloc(inode, cur_offset, end,
1372 locked_page, EXTENT_LOCKED |
151a41bc
JB
1373 EXTENT_DELALLOC | EXTENT_DEFRAG |
1374 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1375 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1376 PAGE_SET_WRITEBACK |
1377 PAGE_END_WRITEBACK);
7ea394f1 1378 btrfs_free_path(path);
79787eaa 1379 return ret;
be20aa9d
CM
1380}
1381
d352ac68
CM
1382/*
1383 * extent_io.c call back to do delayed allocation processing
1384 */
c8b97818 1385static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1386 u64 start, u64 end, int *page_started,
1387 unsigned long *nr_written)
be20aa9d 1388{
be20aa9d 1389 int ret;
7f366cfe 1390 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1391
7ddf5a42 1392 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1393 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1394 page_started, 1, nr_written);
7ddf5a42 1395 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1396 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1397 page_started, 0, nr_written);
7ddf5a42
JB
1398 } else if (!btrfs_test_opt(root, COMPRESS) &&
1399 !(BTRFS_I(inode)->force_compress) &&
1400 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1401 ret = cow_file_range(inode, locked_page, start, end,
1402 page_started, nr_written, 1);
7ddf5a42
JB
1403 } else {
1404 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1405 &BTRFS_I(inode)->runtime_flags);
771ed689 1406 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1407 page_started, nr_written);
7ddf5a42 1408 }
b888db2b
CM
1409 return ret;
1410}
1411
1bf85046
JM
1412static void btrfs_split_extent_hook(struct inode *inode,
1413 struct extent_state *orig, u64 split)
9ed74f2d 1414{
0ca1f7ce 1415 /* not delalloc, ignore it */
9ed74f2d 1416 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1417 return;
9ed74f2d 1418
9e0baf60
JB
1419 spin_lock(&BTRFS_I(inode)->lock);
1420 BTRFS_I(inode)->outstanding_extents++;
1421 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1422}
1423
1424/*
1425 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1426 * extents so we can keep track of new extents that are just merged onto old
1427 * extents, such as when we are doing sequential writes, so we can properly
1428 * account for the metadata space we'll need.
1429 */
1bf85046
JM
1430static void btrfs_merge_extent_hook(struct inode *inode,
1431 struct extent_state *new,
1432 struct extent_state *other)
9ed74f2d 1433{
9ed74f2d
JB
1434 /* not delalloc, ignore it */
1435 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1436 return;
9ed74f2d 1437
9e0baf60
JB
1438 spin_lock(&BTRFS_I(inode)->lock);
1439 BTRFS_I(inode)->outstanding_extents--;
1440 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1441}
1442
eb73c1b7
MX
1443static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1444 struct inode *inode)
1445{
1446 spin_lock(&root->delalloc_lock);
1447 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1448 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1449 &root->delalloc_inodes);
1450 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1451 &BTRFS_I(inode)->runtime_flags);
1452 root->nr_delalloc_inodes++;
1453 if (root->nr_delalloc_inodes == 1) {
1454 spin_lock(&root->fs_info->delalloc_root_lock);
1455 BUG_ON(!list_empty(&root->delalloc_root));
1456 list_add_tail(&root->delalloc_root,
1457 &root->fs_info->delalloc_roots);
1458 spin_unlock(&root->fs_info->delalloc_root_lock);
1459 }
1460 }
1461 spin_unlock(&root->delalloc_lock);
1462}
1463
1464static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1465 struct inode *inode)
1466{
1467 spin_lock(&root->delalloc_lock);
1468 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1469 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1470 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1471 &BTRFS_I(inode)->runtime_flags);
1472 root->nr_delalloc_inodes--;
1473 if (!root->nr_delalloc_inodes) {
1474 spin_lock(&root->fs_info->delalloc_root_lock);
1475 BUG_ON(list_empty(&root->delalloc_root));
1476 list_del_init(&root->delalloc_root);
1477 spin_unlock(&root->fs_info->delalloc_root_lock);
1478 }
1479 }
1480 spin_unlock(&root->delalloc_lock);
1481}
1482
d352ac68
CM
1483/*
1484 * extent_io.c set_bit_hook, used to track delayed allocation
1485 * bytes in this file, and to maintain the list of inodes that
1486 * have pending delalloc work to be done.
1487 */
1bf85046 1488static void btrfs_set_bit_hook(struct inode *inode,
41074888 1489 struct extent_state *state, unsigned long *bits)
291d673e 1490{
9ed74f2d 1491
75eff68e
CM
1492 /*
1493 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1494 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1495 * bit, which is only set or cleared with irqs on
1496 */
0ca1f7ce 1497 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1498 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1499 u64 len = state->end + 1 - state->start;
83eea1f1 1500 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1501
9e0baf60 1502 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1503 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1504 } else {
1505 spin_lock(&BTRFS_I(inode)->lock);
1506 BTRFS_I(inode)->outstanding_extents++;
1507 spin_unlock(&BTRFS_I(inode)->lock);
1508 }
287a0ab9 1509
963d678b
MX
1510 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1511 root->fs_info->delalloc_batch);
df0af1a5 1512 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1513 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1514 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1515 &BTRFS_I(inode)->runtime_flags))
1516 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1517 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1518 }
291d673e
CM
1519}
1520
d352ac68
CM
1521/*
1522 * extent_io.c clear_bit_hook, see set_bit_hook for why
1523 */
1bf85046 1524static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1525 struct extent_state *state,
1526 unsigned long *bits)
291d673e 1527{
75eff68e
CM
1528 /*
1529 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1530 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1531 * bit, which is only set or cleared with irqs on
1532 */
0ca1f7ce 1533 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1534 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1535 u64 len = state->end + 1 - state->start;
83eea1f1 1536 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1537
9e0baf60 1538 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1539 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1540 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1541 spin_lock(&BTRFS_I(inode)->lock);
1542 BTRFS_I(inode)->outstanding_extents--;
1543 spin_unlock(&BTRFS_I(inode)->lock);
1544 }
0ca1f7ce 1545
b6d08f06
JB
1546 /*
1547 * We don't reserve metadata space for space cache inodes so we
1548 * don't need to call dellalloc_release_metadata if there is an
1549 * error.
1550 */
1551 if (*bits & EXTENT_DO_ACCOUNTING &&
1552 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1553 btrfs_delalloc_release_metadata(inode, len);
1554
0cb59c99 1555 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1556 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1557 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1558
963d678b
MX
1559 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1560 root->fs_info->delalloc_batch);
df0af1a5 1561 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1562 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1563 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1564 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1565 &BTRFS_I(inode)->runtime_flags))
1566 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1567 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1568 }
291d673e
CM
1569}
1570
d352ac68
CM
1571/*
1572 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1573 * we don't create bios that span stripes or chunks
1574 */
64a16701 1575int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1576 size_t size, struct bio *bio,
1577 unsigned long bio_flags)
239b14b3
CM
1578{
1579 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1580 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1581 u64 length = 0;
1582 u64 map_length;
239b14b3
CM
1583 int ret;
1584
771ed689
CM
1585 if (bio_flags & EXTENT_BIO_COMPRESSED)
1586 return 0;
1587
f2d8d74d 1588 length = bio->bi_size;
239b14b3 1589 map_length = length;
64a16701 1590 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1591 &map_length, NULL, 0);
3ec706c8 1592 /* Will always return 0 with map_multi == NULL */
3444a972 1593 BUG_ON(ret < 0);
d397712b 1594 if (map_length < length + size)
239b14b3 1595 return 1;
3444a972 1596 return 0;
239b14b3
CM
1597}
1598
d352ac68
CM
1599/*
1600 * in order to insert checksums into the metadata in large chunks,
1601 * we wait until bio submission time. All the pages in the bio are
1602 * checksummed and sums are attached onto the ordered extent record.
1603 *
1604 * At IO completion time the cums attached on the ordered extent record
1605 * are inserted into the btree
1606 */
d397712b
CM
1607static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1608 struct bio *bio, int mirror_num,
eaf25d93
CM
1609 unsigned long bio_flags,
1610 u64 bio_offset)
065631f6 1611{
065631f6 1612 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1613 int ret = 0;
e015640f 1614
d20f7043 1615 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1616 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1617 return 0;
1618}
e015640f 1619
4a69a410
CM
1620/*
1621 * in order to insert checksums into the metadata in large chunks,
1622 * we wait until bio submission time. All the pages in the bio are
1623 * checksummed and sums are attached onto the ordered extent record.
1624 *
1625 * At IO completion time the cums attached on the ordered extent record
1626 * are inserted into the btree
1627 */
b2950863 1628static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1629 int mirror_num, unsigned long bio_flags,
1630 u64 bio_offset)
4a69a410
CM
1631{
1632 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1633 int ret;
1634
1635 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1636 if (ret)
1637 bio_endio(bio, ret);
1638 return ret;
44b8bd7e
CM
1639}
1640
d352ac68 1641/*
cad321ad
CM
1642 * extent_io.c submission hook. This does the right thing for csum calculation
1643 * on write, or reading the csums from the tree before a read
d352ac68 1644 */
b2950863 1645static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1646 int mirror_num, unsigned long bio_flags,
1647 u64 bio_offset)
44b8bd7e
CM
1648{
1649 struct btrfs_root *root = BTRFS_I(inode)->root;
1650 int ret = 0;
19b9bdb0 1651 int skip_sum;
0417341e 1652 int metadata = 0;
b812ce28 1653 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1654
6cbff00f 1655 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1656
83eea1f1 1657 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1658 metadata = 2;
1659
7b6d91da 1660 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1661 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1662 if (ret)
61891923 1663 goto out;
5fd02043 1664
d20f7043 1665 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1666 ret = btrfs_submit_compressed_read(inode, bio,
1667 mirror_num,
1668 bio_flags);
1669 goto out;
c2db1073
TI
1670 } else if (!skip_sum) {
1671 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1672 if (ret)
61891923 1673 goto out;
c2db1073 1674 }
4d1b5fb4 1675 goto mapit;
b812ce28 1676 } else if (async && !skip_sum) {
17d217fe
YZ
1677 /* csum items have already been cloned */
1678 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1679 goto mapit;
19b9bdb0 1680 /* we're doing a write, do the async checksumming */
61891923 1681 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1682 inode, rw, bio, mirror_num,
eaf25d93
CM
1683 bio_flags, bio_offset,
1684 __btrfs_submit_bio_start,
4a69a410 1685 __btrfs_submit_bio_done);
61891923 1686 goto out;
b812ce28
JB
1687 } else if (!skip_sum) {
1688 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1689 if (ret)
1690 goto out;
19b9bdb0
CM
1691 }
1692
0b86a832 1693mapit:
61891923
SB
1694 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1695
1696out:
1697 if (ret < 0)
1698 bio_endio(bio, ret);
1699 return ret;
065631f6 1700}
6885f308 1701
d352ac68
CM
1702/*
1703 * given a list of ordered sums record them in the inode. This happens
1704 * at IO completion time based on sums calculated at bio submission time.
1705 */
ba1da2f4 1706static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1707 struct inode *inode, u64 file_offset,
1708 struct list_head *list)
1709{
e6dcd2dc
CM
1710 struct btrfs_ordered_sum *sum;
1711
c6e30871 1712 list_for_each_entry(sum, list, list) {
39847c4d 1713 trans->adding_csums = 1;
d20f7043
CM
1714 btrfs_csum_file_blocks(trans,
1715 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1716 trans->adding_csums = 0;
e6dcd2dc
CM
1717 }
1718 return 0;
1719}
1720
2ac55d41
JB
1721int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1722 struct extent_state **cached_state)
ea8c2819 1723{
6c1500f2 1724 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1725 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1726 cached_state, GFP_NOFS);
ea8c2819
CM
1727}
1728
d352ac68 1729/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1730struct btrfs_writepage_fixup {
1731 struct page *page;
1732 struct btrfs_work work;
1733};
1734
b2950863 1735static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1736{
1737 struct btrfs_writepage_fixup *fixup;
1738 struct btrfs_ordered_extent *ordered;
2ac55d41 1739 struct extent_state *cached_state = NULL;
247e743c
CM
1740 struct page *page;
1741 struct inode *inode;
1742 u64 page_start;
1743 u64 page_end;
87826df0 1744 int ret;
247e743c
CM
1745
1746 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1747 page = fixup->page;
4a096752 1748again:
247e743c
CM
1749 lock_page(page);
1750 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1751 ClearPageChecked(page);
1752 goto out_page;
1753 }
1754
1755 inode = page->mapping->host;
1756 page_start = page_offset(page);
1757 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1758
2ac55d41 1759 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1760 &cached_state);
4a096752
CM
1761
1762 /* already ordered? We're done */
8b62b72b 1763 if (PagePrivate2(page))
247e743c 1764 goto out;
4a096752
CM
1765
1766 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1767 if (ordered) {
2ac55d41
JB
1768 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1769 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1770 unlock_page(page);
1771 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1772 btrfs_put_ordered_extent(ordered);
4a096752
CM
1773 goto again;
1774 }
247e743c 1775
87826df0
JM
1776 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1777 if (ret) {
1778 mapping_set_error(page->mapping, ret);
1779 end_extent_writepage(page, ret, page_start, page_end);
1780 ClearPageChecked(page);
1781 goto out;
1782 }
1783
2ac55d41 1784 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1785 ClearPageChecked(page);
87826df0 1786 set_page_dirty(page);
247e743c 1787out:
2ac55d41
JB
1788 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1789 &cached_state, GFP_NOFS);
247e743c
CM
1790out_page:
1791 unlock_page(page);
1792 page_cache_release(page);
b897abec 1793 kfree(fixup);
247e743c
CM
1794}
1795
1796/*
1797 * There are a few paths in the higher layers of the kernel that directly
1798 * set the page dirty bit without asking the filesystem if it is a
1799 * good idea. This causes problems because we want to make sure COW
1800 * properly happens and the data=ordered rules are followed.
1801 *
c8b97818 1802 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1803 * hasn't been properly setup for IO. We kick off an async process
1804 * to fix it up. The async helper will wait for ordered extents, set
1805 * the delalloc bit and make it safe to write the page.
1806 */
b2950863 1807static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1808{
1809 struct inode *inode = page->mapping->host;
1810 struct btrfs_writepage_fixup *fixup;
1811 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1812
8b62b72b
CM
1813 /* this page is properly in the ordered list */
1814 if (TestClearPagePrivate2(page))
247e743c
CM
1815 return 0;
1816
1817 if (PageChecked(page))
1818 return -EAGAIN;
1819
1820 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1821 if (!fixup)
1822 return -EAGAIN;
f421950f 1823
247e743c
CM
1824 SetPageChecked(page);
1825 page_cache_get(page);
1826 fixup->work.func = btrfs_writepage_fixup_worker;
1827 fixup->page = page;
1828 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1829 return -EBUSY;
247e743c
CM
1830}
1831
d899e052
YZ
1832static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1833 struct inode *inode, u64 file_pos,
1834 u64 disk_bytenr, u64 disk_num_bytes,
1835 u64 num_bytes, u64 ram_bytes,
1836 u8 compression, u8 encryption,
1837 u16 other_encoding, int extent_type)
1838{
1839 struct btrfs_root *root = BTRFS_I(inode)->root;
1840 struct btrfs_file_extent_item *fi;
1841 struct btrfs_path *path;
1842 struct extent_buffer *leaf;
1843 struct btrfs_key ins;
d899e052
YZ
1844 int ret;
1845
1846 path = btrfs_alloc_path();
d8926bb3
MF
1847 if (!path)
1848 return -ENOMEM;
d899e052 1849
b9473439 1850 path->leave_spinning = 1;
a1ed835e
CM
1851
1852 /*
1853 * we may be replacing one extent in the tree with another.
1854 * The new extent is pinned in the extent map, and we don't want
1855 * to drop it from the cache until it is completely in the btree.
1856 *
1857 * So, tell btrfs_drop_extents to leave this extent in the cache.
1858 * the caller is expected to unpin it and allow it to be merged
1859 * with the others.
1860 */
5dc562c5 1861 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1862 file_pos + num_bytes, 0);
79787eaa
JM
1863 if (ret)
1864 goto out;
d899e052 1865
33345d01 1866 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1867 ins.offset = file_pos;
1868 ins.type = BTRFS_EXTENT_DATA_KEY;
1869 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1870 if (ret)
1871 goto out;
d899e052
YZ
1872 leaf = path->nodes[0];
1873 fi = btrfs_item_ptr(leaf, path->slots[0],
1874 struct btrfs_file_extent_item);
1875 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1876 btrfs_set_file_extent_type(leaf, fi, extent_type);
1877 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1878 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1879 btrfs_set_file_extent_offset(leaf, fi, 0);
1880 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1881 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1882 btrfs_set_file_extent_compression(leaf, fi, compression);
1883 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1884 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1885
d899e052 1886 btrfs_mark_buffer_dirty(leaf);
ce195332 1887 btrfs_release_path(path);
d899e052
YZ
1888
1889 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1890
1891 ins.objectid = disk_bytenr;
1892 ins.offset = disk_num_bytes;
1893 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1894 ret = btrfs_alloc_reserved_file_extent(trans, root,
1895 root->root_key.objectid,
33345d01 1896 btrfs_ino(inode), file_pos, &ins);
79787eaa 1897out:
d899e052 1898 btrfs_free_path(path);
b9473439 1899
79787eaa 1900 return ret;
d899e052
YZ
1901}
1902
38c227d8
LB
1903/* snapshot-aware defrag */
1904struct sa_defrag_extent_backref {
1905 struct rb_node node;
1906 struct old_sa_defrag_extent *old;
1907 u64 root_id;
1908 u64 inum;
1909 u64 file_pos;
1910 u64 extent_offset;
1911 u64 num_bytes;
1912 u64 generation;
1913};
1914
1915struct old_sa_defrag_extent {
1916 struct list_head list;
1917 struct new_sa_defrag_extent *new;
1918
1919 u64 extent_offset;
1920 u64 bytenr;
1921 u64 offset;
1922 u64 len;
1923 int count;
1924};
1925
1926struct new_sa_defrag_extent {
1927 struct rb_root root;
1928 struct list_head head;
1929 struct btrfs_path *path;
1930 struct inode *inode;
1931 u64 file_pos;
1932 u64 len;
1933 u64 bytenr;
1934 u64 disk_len;
1935 u8 compress_type;
1936};
1937
1938static int backref_comp(struct sa_defrag_extent_backref *b1,
1939 struct sa_defrag_extent_backref *b2)
1940{
1941 if (b1->root_id < b2->root_id)
1942 return -1;
1943 else if (b1->root_id > b2->root_id)
1944 return 1;
1945
1946 if (b1->inum < b2->inum)
1947 return -1;
1948 else if (b1->inum > b2->inum)
1949 return 1;
1950
1951 if (b1->file_pos < b2->file_pos)
1952 return -1;
1953 else if (b1->file_pos > b2->file_pos)
1954 return 1;
1955
1956 /*
1957 * [------------------------------] ===> (a range of space)
1958 * |<--->| |<---->| =============> (fs/file tree A)
1959 * |<---------------------------->| ===> (fs/file tree B)
1960 *
1961 * A range of space can refer to two file extents in one tree while
1962 * refer to only one file extent in another tree.
1963 *
1964 * So we may process a disk offset more than one time(two extents in A)
1965 * and locate at the same extent(one extent in B), then insert two same
1966 * backrefs(both refer to the extent in B).
1967 */
1968 return 0;
1969}
1970
1971static void backref_insert(struct rb_root *root,
1972 struct sa_defrag_extent_backref *backref)
1973{
1974 struct rb_node **p = &root->rb_node;
1975 struct rb_node *parent = NULL;
1976 struct sa_defrag_extent_backref *entry;
1977 int ret;
1978
1979 while (*p) {
1980 parent = *p;
1981 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1982
1983 ret = backref_comp(backref, entry);
1984 if (ret < 0)
1985 p = &(*p)->rb_left;
1986 else
1987 p = &(*p)->rb_right;
1988 }
1989
1990 rb_link_node(&backref->node, parent, p);
1991 rb_insert_color(&backref->node, root);
1992}
1993
1994/*
1995 * Note the backref might has changed, and in this case we just return 0.
1996 */
1997static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
1998 void *ctx)
1999{
2000 struct btrfs_file_extent_item *extent;
2001 struct btrfs_fs_info *fs_info;
2002 struct old_sa_defrag_extent *old = ctx;
2003 struct new_sa_defrag_extent *new = old->new;
2004 struct btrfs_path *path = new->path;
2005 struct btrfs_key key;
2006 struct btrfs_root *root;
2007 struct sa_defrag_extent_backref *backref;
2008 struct extent_buffer *leaf;
2009 struct inode *inode = new->inode;
2010 int slot;
2011 int ret;
2012 u64 extent_offset;
2013 u64 num_bytes;
2014
2015 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2016 inum == btrfs_ino(inode))
2017 return 0;
2018
2019 key.objectid = root_id;
2020 key.type = BTRFS_ROOT_ITEM_KEY;
2021 key.offset = (u64)-1;
2022
2023 fs_info = BTRFS_I(inode)->root->fs_info;
2024 root = btrfs_read_fs_root_no_name(fs_info, &key);
2025 if (IS_ERR(root)) {
2026 if (PTR_ERR(root) == -ENOENT)
2027 return 0;
2028 WARN_ON(1);
2029 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2030 inum, offset, root_id);
2031 return PTR_ERR(root);
2032 }
2033
2034 key.objectid = inum;
2035 key.type = BTRFS_EXTENT_DATA_KEY;
2036 if (offset > (u64)-1 << 32)
2037 key.offset = 0;
2038 else
2039 key.offset = offset;
2040
2041 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2042 if (WARN_ON(ret < 0))
38c227d8 2043 return ret;
50f1319c 2044 ret = 0;
38c227d8
LB
2045
2046 while (1) {
2047 cond_resched();
2048
2049 leaf = path->nodes[0];
2050 slot = path->slots[0];
2051
2052 if (slot >= btrfs_header_nritems(leaf)) {
2053 ret = btrfs_next_leaf(root, path);
2054 if (ret < 0) {
2055 goto out;
2056 } else if (ret > 0) {
2057 ret = 0;
2058 goto out;
2059 }
2060 continue;
2061 }
2062
2063 path->slots[0]++;
2064
2065 btrfs_item_key_to_cpu(leaf, &key, slot);
2066
2067 if (key.objectid > inum)
2068 goto out;
2069
2070 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2071 continue;
2072
2073 extent = btrfs_item_ptr(leaf, slot,
2074 struct btrfs_file_extent_item);
2075
2076 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2077 continue;
2078
e68afa49
LB
2079 /*
2080 * 'offset' refers to the exact key.offset,
2081 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2082 * (key.offset - extent_offset).
2083 */
2084 if (key.offset != offset)
38c227d8
LB
2085 continue;
2086
e68afa49 2087 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2088 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2089
38c227d8
LB
2090 if (extent_offset >= old->extent_offset + old->offset +
2091 old->len || extent_offset + num_bytes <=
2092 old->extent_offset + old->offset)
2093 continue;
38c227d8
LB
2094 break;
2095 }
2096
2097 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2098 if (!backref) {
2099 ret = -ENOENT;
2100 goto out;
2101 }
2102
2103 backref->root_id = root_id;
2104 backref->inum = inum;
e68afa49 2105 backref->file_pos = offset;
38c227d8
LB
2106 backref->num_bytes = num_bytes;
2107 backref->extent_offset = extent_offset;
2108 backref->generation = btrfs_file_extent_generation(leaf, extent);
2109 backref->old = old;
2110 backref_insert(&new->root, backref);
2111 old->count++;
2112out:
2113 btrfs_release_path(path);
2114 WARN_ON(ret);
2115 return ret;
2116}
2117
2118static noinline bool record_extent_backrefs(struct btrfs_path *path,
2119 struct new_sa_defrag_extent *new)
2120{
2121 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2122 struct old_sa_defrag_extent *old, *tmp;
2123 int ret;
2124
2125 new->path = path;
2126
2127 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2128 ret = iterate_inodes_from_logical(old->bytenr +
2129 old->extent_offset, fs_info,
38c227d8
LB
2130 path, record_one_backref,
2131 old);
4724b106
JB
2132 if (ret < 0 && ret != -ENOENT)
2133 return false;
38c227d8
LB
2134
2135 /* no backref to be processed for this extent */
2136 if (!old->count) {
2137 list_del(&old->list);
2138 kfree(old);
2139 }
2140 }
2141
2142 if (list_empty(&new->head))
2143 return false;
2144
2145 return true;
2146}
2147
2148static int relink_is_mergable(struct extent_buffer *leaf,
2149 struct btrfs_file_extent_item *fi,
116e0024 2150 struct new_sa_defrag_extent *new)
38c227d8 2151{
116e0024 2152 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2153 return 0;
2154
2155 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2156 return 0;
2157
116e0024
LB
2158 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2159 return 0;
2160
2161 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2162 btrfs_file_extent_other_encoding(leaf, fi))
2163 return 0;
2164
2165 return 1;
2166}
2167
2168/*
2169 * Note the backref might has changed, and in this case we just return 0.
2170 */
2171static noinline int relink_extent_backref(struct btrfs_path *path,
2172 struct sa_defrag_extent_backref *prev,
2173 struct sa_defrag_extent_backref *backref)
2174{
2175 struct btrfs_file_extent_item *extent;
2176 struct btrfs_file_extent_item *item;
2177 struct btrfs_ordered_extent *ordered;
2178 struct btrfs_trans_handle *trans;
2179 struct btrfs_fs_info *fs_info;
2180 struct btrfs_root *root;
2181 struct btrfs_key key;
2182 struct extent_buffer *leaf;
2183 struct old_sa_defrag_extent *old = backref->old;
2184 struct new_sa_defrag_extent *new = old->new;
2185 struct inode *src_inode = new->inode;
2186 struct inode *inode;
2187 struct extent_state *cached = NULL;
2188 int ret = 0;
2189 u64 start;
2190 u64 len;
2191 u64 lock_start;
2192 u64 lock_end;
2193 bool merge = false;
2194 int index;
2195
2196 if (prev && prev->root_id == backref->root_id &&
2197 prev->inum == backref->inum &&
2198 prev->file_pos + prev->num_bytes == backref->file_pos)
2199 merge = true;
2200
2201 /* step 1: get root */
2202 key.objectid = backref->root_id;
2203 key.type = BTRFS_ROOT_ITEM_KEY;
2204 key.offset = (u64)-1;
2205
2206 fs_info = BTRFS_I(src_inode)->root->fs_info;
2207 index = srcu_read_lock(&fs_info->subvol_srcu);
2208
2209 root = btrfs_read_fs_root_no_name(fs_info, &key);
2210 if (IS_ERR(root)) {
2211 srcu_read_unlock(&fs_info->subvol_srcu, index);
2212 if (PTR_ERR(root) == -ENOENT)
2213 return 0;
2214 return PTR_ERR(root);
2215 }
38c227d8
LB
2216
2217 /* step 2: get inode */
2218 key.objectid = backref->inum;
2219 key.type = BTRFS_INODE_ITEM_KEY;
2220 key.offset = 0;
2221
2222 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2223 if (IS_ERR(inode)) {
2224 srcu_read_unlock(&fs_info->subvol_srcu, index);
2225 return 0;
2226 }
2227
2228 srcu_read_unlock(&fs_info->subvol_srcu, index);
2229
2230 /* step 3: relink backref */
2231 lock_start = backref->file_pos;
2232 lock_end = backref->file_pos + backref->num_bytes - 1;
2233 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2234 0, &cached);
2235
2236 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2237 if (ordered) {
2238 btrfs_put_ordered_extent(ordered);
2239 goto out_unlock;
2240 }
2241
2242 trans = btrfs_join_transaction(root);
2243 if (IS_ERR(trans)) {
2244 ret = PTR_ERR(trans);
2245 goto out_unlock;
2246 }
2247
2248 key.objectid = backref->inum;
2249 key.type = BTRFS_EXTENT_DATA_KEY;
2250 key.offset = backref->file_pos;
2251
2252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2253 if (ret < 0) {
2254 goto out_free_path;
2255 } else if (ret > 0) {
2256 ret = 0;
2257 goto out_free_path;
2258 }
2259
2260 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2261 struct btrfs_file_extent_item);
2262
2263 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2264 backref->generation)
2265 goto out_free_path;
2266
2267 btrfs_release_path(path);
2268
2269 start = backref->file_pos;
2270 if (backref->extent_offset < old->extent_offset + old->offset)
2271 start += old->extent_offset + old->offset -
2272 backref->extent_offset;
2273
2274 len = min(backref->extent_offset + backref->num_bytes,
2275 old->extent_offset + old->offset + old->len);
2276 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2277
2278 ret = btrfs_drop_extents(trans, root, inode, start,
2279 start + len, 1);
2280 if (ret)
2281 goto out_free_path;
2282again:
2283 key.objectid = btrfs_ino(inode);
2284 key.type = BTRFS_EXTENT_DATA_KEY;
2285 key.offset = start;
2286
a09a0a70 2287 path->leave_spinning = 1;
38c227d8
LB
2288 if (merge) {
2289 struct btrfs_file_extent_item *fi;
2290 u64 extent_len;
2291 struct btrfs_key found_key;
2292
2293 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2294 if (ret < 0)
2295 goto out_free_path;
2296
2297 path->slots[0]--;
2298 leaf = path->nodes[0];
2299 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2300
2301 fi = btrfs_item_ptr(leaf, path->slots[0],
2302 struct btrfs_file_extent_item);
2303 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2304
116e0024
LB
2305 if (extent_len + found_key.offset == start &&
2306 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2307 btrfs_set_file_extent_num_bytes(leaf, fi,
2308 extent_len + len);
2309 btrfs_mark_buffer_dirty(leaf);
2310 inode_add_bytes(inode, len);
2311
2312 ret = 1;
2313 goto out_free_path;
2314 } else {
2315 merge = false;
2316 btrfs_release_path(path);
2317 goto again;
2318 }
2319 }
2320
2321 ret = btrfs_insert_empty_item(trans, root, path, &key,
2322 sizeof(*extent));
2323 if (ret) {
2324 btrfs_abort_transaction(trans, root, ret);
2325 goto out_free_path;
2326 }
2327
2328 leaf = path->nodes[0];
2329 item = btrfs_item_ptr(leaf, path->slots[0],
2330 struct btrfs_file_extent_item);
2331 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2332 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2333 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2334 btrfs_set_file_extent_num_bytes(leaf, item, len);
2335 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2336 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2337 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2338 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2339 btrfs_set_file_extent_encryption(leaf, item, 0);
2340 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2341
2342 btrfs_mark_buffer_dirty(leaf);
2343 inode_add_bytes(inode, len);
a09a0a70 2344 btrfs_release_path(path);
38c227d8
LB
2345
2346 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2347 new->disk_len, 0,
2348 backref->root_id, backref->inum,
2349 new->file_pos, 0); /* start - extent_offset */
2350 if (ret) {
2351 btrfs_abort_transaction(trans, root, ret);
2352 goto out_free_path;
2353 }
2354
2355 ret = 1;
2356out_free_path:
2357 btrfs_release_path(path);
a09a0a70 2358 path->leave_spinning = 0;
38c227d8
LB
2359 btrfs_end_transaction(trans, root);
2360out_unlock:
2361 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2362 &cached, GFP_NOFS);
2363 iput(inode);
2364 return ret;
2365}
2366
6f519564
LB
2367static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2368{
2369 struct old_sa_defrag_extent *old, *tmp;
2370
2371 if (!new)
2372 return;
2373
2374 list_for_each_entry_safe(old, tmp, &new->head, list) {
2375 list_del(&old->list);
2376 kfree(old);
2377 }
2378 kfree(new);
2379}
2380
38c227d8
LB
2381static void relink_file_extents(struct new_sa_defrag_extent *new)
2382{
2383 struct btrfs_path *path;
38c227d8
LB
2384 struct sa_defrag_extent_backref *backref;
2385 struct sa_defrag_extent_backref *prev = NULL;
2386 struct inode *inode;
2387 struct btrfs_root *root;
2388 struct rb_node *node;
2389 int ret;
2390
2391 inode = new->inode;
2392 root = BTRFS_I(inode)->root;
2393
2394 path = btrfs_alloc_path();
2395 if (!path)
2396 return;
2397
2398 if (!record_extent_backrefs(path, new)) {
2399 btrfs_free_path(path);
2400 goto out;
2401 }
2402 btrfs_release_path(path);
2403
2404 while (1) {
2405 node = rb_first(&new->root);
2406 if (!node)
2407 break;
2408 rb_erase(node, &new->root);
2409
2410 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2411
2412 ret = relink_extent_backref(path, prev, backref);
2413 WARN_ON(ret < 0);
2414
2415 kfree(prev);
2416
2417 if (ret == 1)
2418 prev = backref;
2419 else
2420 prev = NULL;
2421 cond_resched();
2422 }
2423 kfree(prev);
2424
2425 btrfs_free_path(path);
38c227d8 2426out:
6f519564
LB
2427 free_sa_defrag_extent(new);
2428
38c227d8
LB
2429 atomic_dec(&root->fs_info->defrag_running);
2430 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2431}
2432
2433static struct new_sa_defrag_extent *
2434record_old_file_extents(struct inode *inode,
2435 struct btrfs_ordered_extent *ordered)
2436{
2437 struct btrfs_root *root = BTRFS_I(inode)->root;
2438 struct btrfs_path *path;
2439 struct btrfs_key key;
6f519564 2440 struct old_sa_defrag_extent *old;
38c227d8
LB
2441 struct new_sa_defrag_extent *new;
2442 int ret;
2443
2444 new = kmalloc(sizeof(*new), GFP_NOFS);
2445 if (!new)
2446 return NULL;
2447
2448 new->inode = inode;
2449 new->file_pos = ordered->file_offset;
2450 new->len = ordered->len;
2451 new->bytenr = ordered->start;
2452 new->disk_len = ordered->disk_len;
2453 new->compress_type = ordered->compress_type;
2454 new->root = RB_ROOT;
2455 INIT_LIST_HEAD(&new->head);
2456
2457 path = btrfs_alloc_path();
2458 if (!path)
2459 goto out_kfree;
2460
2461 key.objectid = btrfs_ino(inode);
2462 key.type = BTRFS_EXTENT_DATA_KEY;
2463 key.offset = new->file_pos;
2464
2465 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2466 if (ret < 0)
2467 goto out_free_path;
2468 if (ret > 0 && path->slots[0] > 0)
2469 path->slots[0]--;
2470
2471 /* find out all the old extents for the file range */
2472 while (1) {
2473 struct btrfs_file_extent_item *extent;
2474 struct extent_buffer *l;
2475 int slot;
2476 u64 num_bytes;
2477 u64 offset;
2478 u64 end;
2479 u64 disk_bytenr;
2480 u64 extent_offset;
2481
2482 l = path->nodes[0];
2483 slot = path->slots[0];
2484
2485 if (slot >= btrfs_header_nritems(l)) {
2486 ret = btrfs_next_leaf(root, path);
2487 if (ret < 0)
6f519564 2488 goto out_free_path;
38c227d8
LB
2489 else if (ret > 0)
2490 break;
2491 continue;
2492 }
2493
2494 btrfs_item_key_to_cpu(l, &key, slot);
2495
2496 if (key.objectid != btrfs_ino(inode))
2497 break;
2498 if (key.type != BTRFS_EXTENT_DATA_KEY)
2499 break;
2500 if (key.offset >= new->file_pos + new->len)
2501 break;
2502
2503 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2504
2505 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2506 if (key.offset + num_bytes < new->file_pos)
2507 goto next;
2508
2509 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2510 if (!disk_bytenr)
2511 goto next;
2512
2513 extent_offset = btrfs_file_extent_offset(l, extent);
2514
2515 old = kmalloc(sizeof(*old), GFP_NOFS);
2516 if (!old)
6f519564 2517 goto out_free_path;
38c227d8
LB
2518
2519 offset = max(new->file_pos, key.offset);
2520 end = min(new->file_pos + new->len, key.offset + num_bytes);
2521
2522 old->bytenr = disk_bytenr;
2523 old->extent_offset = extent_offset;
2524 old->offset = offset - key.offset;
2525 old->len = end - offset;
2526 old->new = new;
2527 old->count = 0;
2528 list_add_tail(&old->list, &new->head);
2529next:
2530 path->slots[0]++;
2531 cond_resched();
2532 }
2533
2534 btrfs_free_path(path);
2535 atomic_inc(&root->fs_info->defrag_running);
2536
2537 return new;
2538
38c227d8
LB
2539out_free_path:
2540 btrfs_free_path(path);
2541out_kfree:
6f519564 2542 free_sa_defrag_extent(new);
38c227d8
LB
2543 return NULL;
2544}
2545
d352ac68
CM
2546/* as ordered data IO finishes, this gets called so we can finish
2547 * an ordered extent if the range of bytes in the file it covers are
2548 * fully written.
2549 */
5fd02043 2550static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2551{
5fd02043 2552 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2553 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2554 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2555 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2556 struct extent_state *cached_state = NULL;
38c227d8 2557 struct new_sa_defrag_extent *new = NULL;
261507a0 2558 int compress_type = 0;
77cef2ec
JB
2559 int ret = 0;
2560 u64 logical_len = ordered_extent->len;
82d5902d 2561 bool nolock;
77cef2ec 2562 bool truncated = false;
e6dcd2dc 2563
83eea1f1 2564 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2565
5fd02043
JB
2566 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2567 ret = -EIO;
2568 goto out;
2569 }
2570
77cef2ec
JB
2571 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2572 truncated = true;
2573 logical_len = ordered_extent->truncated_len;
2574 /* Truncated the entire extent, don't bother adding */
2575 if (!logical_len)
2576 goto out;
2577 }
2578
c2167754 2579 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2580 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2581 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2582 if (nolock)
2583 trans = btrfs_join_transaction_nolock(root);
2584 else
2585 trans = btrfs_join_transaction(root);
2586 if (IS_ERR(trans)) {
2587 ret = PTR_ERR(trans);
2588 trans = NULL;
2589 goto out;
c2167754 2590 }
6c760c07
JB
2591 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2592 ret = btrfs_update_inode_fallback(trans, root, inode);
2593 if (ret) /* -ENOMEM or corruption */
2594 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2595 goto out;
2596 }
e6dcd2dc 2597
2ac55d41
JB
2598 lock_extent_bits(io_tree, ordered_extent->file_offset,
2599 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2600 0, &cached_state);
e6dcd2dc 2601
38c227d8
LB
2602 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2603 ordered_extent->file_offset + ordered_extent->len - 1,
2604 EXTENT_DEFRAG, 1, cached_state);
2605 if (ret) {
2606 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2607 if (last_snapshot >= BTRFS_I(inode)->generation)
2608 /* the inode is shared */
2609 new = record_old_file_extents(inode, ordered_extent);
2610
2611 clear_extent_bit(io_tree, ordered_extent->file_offset,
2612 ordered_extent->file_offset + ordered_extent->len - 1,
2613 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2614 }
2615
0cb59c99 2616 if (nolock)
7a7eaa40 2617 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2618 else
7a7eaa40 2619 trans = btrfs_join_transaction(root);
79787eaa
JM
2620 if (IS_ERR(trans)) {
2621 ret = PTR_ERR(trans);
2622 trans = NULL;
2623 goto out_unlock;
2624 }
0ca1f7ce 2625 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2626
c8b97818 2627 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2628 compress_type = ordered_extent->compress_type;
d899e052 2629 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2630 BUG_ON(compress_type);
920bbbfb 2631 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2632 ordered_extent->file_offset,
2633 ordered_extent->file_offset +
77cef2ec 2634 logical_len);
d899e052 2635 } else {
0af3d00b 2636 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2637 ret = insert_reserved_file_extent(trans, inode,
2638 ordered_extent->file_offset,
2639 ordered_extent->start,
2640 ordered_extent->disk_len,
77cef2ec 2641 logical_len, logical_len,
261507a0 2642 compress_type, 0, 0,
d899e052 2643 BTRFS_FILE_EXTENT_REG);
d899e052 2644 }
5dc562c5
JB
2645 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2646 ordered_extent->file_offset, ordered_extent->len,
2647 trans->transid);
79787eaa
JM
2648 if (ret < 0) {
2649 btrfs_abort_transaction(trans, root, ret);
5fd02043 2650 goto out_unlock;
79787eaa 2651 }
2ac55d41 2652
e6dcd2dc
CM
2653 add_pending_csums(trans, inode, ordered_extent->file_offset,
2654 &ordered_extent->list);
2655
6c760c07
JB
2656 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2657 ret = btrfs_update_inode_fallback(trans, root, inode);
2658 if (ret) { /* -ENOMEM or corruption */
2659 btrfs_abort_transaction(trans, root, ret);
2660 goto out_unlock;
1ef30be1
JB
2661 }
2662 ret = 0;
5fd02043
JB
2663out_unlock:
2664 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2665 ordered_extent->file_offset +
2666 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2667out:
5b0e95bf 2668 if (root != root->fs_info->tree_root)
0cb59c99 2669 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2670 if (trans)
2671 btrfs_end_transaction(trans, root);
0cb59c99 2672
77cef2ec
JB
2673 if (ret || truncated) {
2674 u64 start, end;
2675
2676 if (truncated)
2677 start = ordered_extent->file_offset + logical_len;
2678 else
2679 start = ordered_extent->file_offset;
2680 end = ordered_extent->file_offset + ordered_extent->len - 1;
2681 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2682
2683 /* Drop the cache for the part of the extent we didn't write. */
2684 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2685
0bec9ef5
JB
2686 /*
2687 * If the ordered extent had an IOERR or something else went
2688 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2689 * back to the allocator. We only free the extent in the
2690 * truncated case if we didn't write out the extent at all.
0bec9ef5 2691 */
77cef2ec
JB
2692 if ((ret || !logical_len) &&
2693 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2694 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2695 btrfs_free_reserved_extent(root, ordered_extent->start,
2696 ordered_extent->disk_len);
2697 }
2698
2699
5fd02043 2700 /*
8bad3c02
LB
2701 * This needs to be done to make sure anybody waiting knows we are done
2702 * updating everything for this ordered extent.
5fd02043
JB
2703 */
2704 btrfs_remove_ordered_extent(inode, ordered_extent);
2705
38c227d8 2706 /* for snapshot-aware defrag */
6f519564
LB
2707 if (new) {
2708 if (ret) {
2709 free_sa_defrag_extent(new);
2710 atomic_dec(&root->fs_info->defrag_running);
2711 } else {
2712 relink_file_extents(new);
2713 }
2714 }
38c227d8 2715
e6dcd2dc
CM
2716 /* once for us */
2717 btrfs_put_ordered_extent(ordered_extent);
2718 /* once for the tree */
2719 btrfs_put_ordered_extent(ordered_extent);
2720
5fd02043
JB
2721 return ret;
2722}
2723
2724static void finish_ordered_fn(struct btrfs_work *work)
2725{
2726 struct btrfs_ordered_extent *ordered_extent;
2727 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2728 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2729}
2730
b2950863 2731static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2732 struct extent_state *state, int uptodate)
2733{
5fd02043
JB
2734 struct inode *inode = page->mapping->host;
2735 struct btrfs_root *root = BTRFS_I(inode)->root;
2736 struct btrfs_ordered_extent *ordered_extent = NULL;
2737 struct btrfs_workers *workers;
2738
1abe9b8a 2739 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2740
8b62b72b 2741 ClearPagePrivate2(page);
5fd02043
JB
2742 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2743 end - start + 1, uptodate))
2744 return 0;
2745
2746 ordered_extent->work.func = finish_ordered_fn;
2747 ordered_extent->work.flags = 0;
2748
83eea1f1 2749 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2750 workers = &root->fs_info->endio_freespace_worker;
2751 else
2752 workers = &root->fs_info->endio_write_workers;
2753 btrfs_queue_worker(workers, &ordered_extent->work);
2754
2755 return 0;
211f90e6
CM
2756}
2757
d352ac68
CM
2758/*
2759 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2760 * if there's a match, we allow the bio to finish. If not, the code in
2761 * extent_io.c will try to find good copies for us.
d352ac68 2762 */
facc8a22
MX
2763static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2764 u64 phy_offset, struct page *page,
2765 u64 start, u64 end, int mirror)
07157aac 2766{
4eee4fa4 2767 size_t offset = start - page_offset(page);
07157aac 2768 struct inode *inode = page->mapping->host;
d1310b2e 2769 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2770 char *kaddr;
ff79f819 2771 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2772 u32 csum_expected;
ff79f819 2773 u32 csum = ~(u32)0;
c2cf52eb
SK
2774 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2775 DEFAULT_RATELIMIT_BURST);
d1310b2e 2776
d20f7043
CM
2777 if (PageChecked(page)) {
2778 ClearPageChecked(page);
2779 goto good;
2780 }
6cbff00f
CH
2781
2782 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2783 goto good;
17d217fe
YZ
2784
2785 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2786 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2787 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2788 GFP_NOFS);
b6cda9bc 2789 return 0;
17d217fe 2790 }
d20f7043 2791
facc8a22
MX
2792 phy_offset >>= inode->i_sb->s_blocksize_bits;
2793 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2794
facc8a22 2795 kaddr = kmap_atomic(page);
b0496686 2796 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2797 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2798 if (csum != csum_expected)
07157aac 2799 goto zeroit;
d397712b 2800
7ac687d9 2801 kunmap_atomic(kaddr);
d20f7043 2802good:
07157aac
CM
2803 return 0;
2804
2805zeroit:
c2cf52eb 2806 if (__ratelimit(&_rs))
facc8a22 2807 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2808 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2809 memset(kaddr + offset, 1, end - start + 1);
2810 flush_dcache_page(page);
7ac687d9 2811 kunmap_atomic(kaddr);
facc8a22 2812 if (csum_expected == 0)
3b951516 2813 return 0;
7e38326f 2814 return -EIO;
07157aac 2815}
b888db2b 2816
24bbcf04
YZ
2817struct delayed_iput {
2818 struct list_head list;
2819 struct inode *inode;
2820};
2821
79787eaa
JM
2822/* JDM: If this is fs-wide, why can't we add a pointer to
2823 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2824void btrfs_add_delayed_iput(struct inode *inode)
2825{
2826 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2827 struct delayed_iput *delayed;
2828
2829 if (atomic_add_unless(&inode->i_count, -1, 1))
2830 return;
2831
2832 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2833 delayed->inode = inode;
2834
2835 spin_lock(&fs_info->delayed_iput_lock);
2836 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2837 spin_unlock(&fs_info->delayed_iput_lock);
2838}
2839
2840void btrfs_run_delayed_iputs(struct btrfs_root *root)
2841{
2842 LIST_HEAD(list);
2843 struct btrfs_fs_info *fs_info = root->fs_info;
2844 struct delayed_iput *delayed;
2845 int empty;
2846
2847 spin_lock(&fs_info->delayed_iput_lock);
2848 empty = list_empty(&fs_info->delayed_iputs);
2849 spin_unlock(&fs_info->delayed_iput_lock);
2850 if (empty)
2851 return;
2852
24bbcf04
YZ
2853 spin_lock(&fs_info->delayed_iput_lock);
2854 list_splice_init(&fs_info->delayed_iputs, &list);
2855 spin_unlock(&fs_info->delayed_iput_lock);
2856
2857 while (!list_empty(&list)) {
2858 delayed = list_entry(list.next, struct delayed_iput, list);
2859 list_del(&delayed->list);
2860 iput(delayed->inode);
2861 kfree(delayed);
2862 }
24bbcf04
YZ
2863}
2864
d68fc57b 2865/*
42b2aa86 2866 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2867 * files in the subvolume, it removes orphan item and frees block_rsv
2868 * structure.
2869 */
2870void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2871 struct btrfs_root *root)
2872{
90290e19 2873 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2874 int ret;
2875
8a35d95f 2876 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2877 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2878 return;
2879
90290e19 2880 spin_lock(&root->orphan_lock);
8a35d95f 2881 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2882 spin_unlock(&root->orphan_lock);
2883 return;
2884 }
2885
2886 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2887 spin_unlock(&root->orphan_lock);
2888 return;
2889 }
2890
2891 block_rsv = root->orphan_block_rsv;
2892 root->orphan_block_rsv = NULL;
2893 spin_unlock(&root->orphan_lock);
2894
d68fc57b
YZ
2895 if (root->orphan_item_inserted &&
2896 btrfs_root_refs(&root->root_item) > 0) {
2897 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2898 root->root_key.objectid);
4ef31a45
JB
2899 if (ret)
2900 btrfs_abort_transaction(trans, root, ret);
2901 else
2902 root->orphan_item_inserted = 0;
d68fc57b
YZ
2903 }
2904
90290e19
JB
2905 if (block_rsv) {
2906 WARN_ON(block_rsv->size > 0);
2907 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2908 }
2909}
2910
7b128766
JB
2911/*
2912 * This creates an orphan entry for the given inode in case something goes
2913 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2914 *
2915 * NOTE: caller of this function should reserve 5 units of metadata for
2916 * this function.
7b128766
JB
2917 */
2918int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2919{
2920 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2921 struct btrfs_block_rsv *block_rsv = NULL;
2922 int reserve = 0;
2923 int insert = 0;
2924 int ret;
7b128766 2925
d68fc57b 2926 if (!root->orphan_block_rsv) {
66d8f3dd 2927 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2928 if (!block_rsv)
2929 return -ENOMEM;
d68fc57b 2930 }
7b128766 2931
d68fc57b
YZ
2932 spin_lock(&root->orphan_lock);
2933 if (!root->orphan_block_rsv) {
2934 root->orphan_block_rsv = block_rsv;
2935 } else if (block_rsv) {
2936 btrfs_free_block_rsv(root, block_rsv);
2937 block_rsv = NULL;
7b128766 2938 }
7b128766 2939
8a35d95f
JB
2940 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2941 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2942#if 0
2943 /*
2944 * For proper ENOSPC handling, we should do orphan
2945 * cleanup when mounting. But this introduces backward
2946 * compatibility issue.
2947 */
2948 if (!xchg(&root->orphan_item_inserted, 1))
2949 insert = 2;
2950 else
2951 insert = 1;
2952#endif
2953 insert = 1;
321f0e70 2954 atomic_inc(&root->orphan_inodes);
7b128766
JB
2955 }
2956
72ac3c0d
JB
2957 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2958 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2959 reserve = 1;
d68fc57b 2960 spin_unlock(&root->orphan_lock);
7b128766 2961
d68fc57b
YZ
2962 /* grab metadata reservation from transaction handle */
2963 if (reserve) {
2964 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2965 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2966 }
7b128766 2967
d68fc57b
YZ
2968 /* insert an orphan item to track this unlinked/truncated file */
2969 if (insert >= 1) {
33345d01 2970 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 2971 if (ret) {
703c88e0 2972 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
2973 if (reserve) {
2974 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2975 &BTRFS_I(inode)->runtime_flags);
2976 btrfs_orphan_release_metadata(inode);
2977 }
2978 if (ret != -EEXIST) {
e8e7cff6
JB
2979 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2980 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
2981 btrfs_abort_transaction(trans, root, ret);
2982 return ret;
2983 }
79787eaa
JM
2984 }
2985 ret = 0;
d68fc57b
YZ
2986 }
2987
2988 /* insert an orphan item to track subvolume contains orphan files */
2989 if (insert >= 2) {
2990 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2991 root->root_key.objectid);
79787eaa
JM
2992 if (ret && ret != -EEXIST) {
2993 btrfs_abort_transaction(trans, root, ret);
2994 return ret;
2995 }
d68fc57b
YZ
2996 }
2997 return 0;
7b128766
JB
2998}
2999
3000/*
3001 * We have done the truncate/delete so we can go ahead and remove the orphan
3002 * item for this particular inode.
3003 */
48a3b636
ES
3004static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3005 struct inode *inode)
7b128766
JB
3006{
3007 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3008 int delete_item = 0;
3009 int release_rsv = 0;
7b128766
JB
3010 int ret = 0;
3011
d68fc57b 3012 spin_lock(&root->orphan_lock);
8a35d95f
JB
3013 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3014 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3015 delete_item = 1;
7b128766 3016
72ac3c0d
JB
3017 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3018 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3019 release_rsv = 1;
d68fc57b 3020 spin_unlock(&root->orphan_lock);
7b128766 3021
703c88e0 3022 if (delete_item) {
8a35d95f 3023 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3024 if (trans)
3025 ret = btrfs_del_orphan_item(trans, root,
3026 btrfs_ino(inode));
8a35d95f 3027 }
7b128766 3028
703c88e0
FDBM
3029 if (release_rsv)
3030 btrfs_orphan_release_metadata(inode);
3031
4ef31a45 3032 return ret;
7b128766
JB
3033}
3034
3035/*
3036 * this cleans up any orphans that may be left on the list from the last use
3037 * of this root.
3038 */
66b4ffd1 3039int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3040{
3041 struct btrfs_path *path;
3042 struct extent_buffer *leaf;
7b128766
JB
3043 struct btrfs_key key, found_key;
3044 struct btrfs_trans_handle *trans;
3045 struct inode *inode;
8f6d7f4f 3046 u64 last_objectid = 0;
7b128766
JB
3047 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3048
d68fc57b 3049 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3050 return 0;
c71bf099
YZ
3051
3052 path = btrfs_alloc_path();
66b4ffd1
JB
3053 if (!path) {
3054 ret = -ENOMEM;
3055 goto out;
3056 }
7b128766
JB
3057 path->reada = -1;
3058
3059 key.objectid = BTRFS_ORPHAN_OBJECTID;
3060 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3061 key.offset = (u64)-1;
3062
7b128766
JB
3063 while (1) {
3064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3065 if (ret < 0)
3066 goto out;
7b128766
JB
3067
3068 /*
3069 * if ret == 0 means we found what we were searching for, which
25985edc 3070 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3071 * find the key and see if we have stuff that matches
3072 */
3073 if (ret > 0) {
66b4ffd1 3074 ret = 0;
7b128766
JB
3075 if (path->slots[0] == 0)
3076 break;
3077 path->slots[0]--;
3078 }
3079
3080 /* pull out the item */
3081 leaf = path->nodes[0];
7b128766
JB
3082 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3083
3084 /* make sure the item matches what we want */
3085 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3086 break;
3087 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3088 break;
3089
3090 /* release the path since we're done with it */
b3b4aa74 3091 btrfs_release_path(path);
7b128766
JB
3092
3093 /*
3094 * this is where we are basically btrfs_lookup, without the
3095 * crossing root thing. we store the inode number in the
3096 * offset of the orphan item.
3097 */
8f6d7f4f
JB
3098
3099 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3100 btrfs_err(root->fs_info,
3101 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3102 ret = -EINVAL;
3103 goto out;
3104 }
3105
3106 last_objectid = found_key.offset;
3107
5d4f98a2
YZ
3108 found_key.objectid = found_key.offset;
3109 found_key.type = BTRFS_INODE_ITEM_KEY;
3110 found_key.offset = 0;
73f73415 3111 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3112 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3113 if (ret && ret != -ESTALE)
66b4ffd1 3114 goto out;
7b128766 3115
f8e9e0b0
AJ
3116 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3117 struct btrfs_root *dead_root;
3118 struct btrfs_fs_info *fs_info = root->fs_info;
3119 int is_dead_root = 0;
3120
3121 /*
3122 * this is an orphan in the tree root. Currently these
3123 * could come from 2 sources:
3124 * a) a snapshot deletion in progress
3125 * b) a free space cache inode
3126 * We need to distinguish those two, as the snapshot
3127 * orphan must not get deleted.
3128 * find_dead_roots already ran before us, so if this
3129 * is a snapshot deletion, we should find the root
3130 * in the dead_roots list
3131 */
3132 spin_lock(&fs_info->trans_lock);
3133 list_for_each_entry(dead_root, &fs_info->dead_roots,
3134 root_list) {
3135 if (dead_root->root_key.objectid ==
3136 found_key.objectid) {
3137 is_dead_root = 1;
3138 break;
3139 }
3140 }
3141 spin_unlock(&fs_info->trans_lock);
3142 if (is_dead_root) {
3143 /* prevent this orphan from being found again */
3144 key.offset = found_key.objectid - 1;
3145 continue;
3146 }
3147 }
7b128766 3148 /*
a8c9e576
JB
3149 * Inode is already gone but the orphan item is still there,
3150 * kill the orphan item.
7b128766 3151 */
a8c9e576
JB
3152 if (ret == -ESTALE) {
3153 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3154 if (IS_ERR(trans)) {
3155 ret = PTR_ERR(trans);
3156 goto out;
3157 }
c2cf52eb
SK
3158 btrfs_debug(root->fs_info, "auto deleting %Lu",
3159 found_key.objectid);
a8c9e576
JB
3160 ret = btrfs_del_orphan_item(trans, root,
3161 found_key.objectid);
5b21f2ed 3162 btrfs_end_transaction(trans, root);
4ef31a45
JB
3163 if (ret)
3164 goto out;
7b128766
JB
3165 continue;
3166 }
3167
a8c9e576
JB
3168 /*
3169 * add this inode to the orphan list so btrfs_orphan_del does
3170 * the proper thing when we hit it
3171 */
8a35d95f
JB
3172 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3173 &BTRFS_I(inode)->runtime_flags);
925396ec 3174 atomic_inc(&root->orphan_inodes);
a8c9e576 3175
7b128766
JB
3176 /* if we have links, this was a truncate, lets do that */
3177 if (inode->i_nlink) {
fae7f21c 3178 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3179 iput(inode);
3180 continue;
3181 }
7b128766 3182 nr_truncate++;
f3fe820c
JB
3183
3184 /* 1 for the orphan item deletion. */
3185 trans = btrfs_start_transaction(root, 1);
3186 if (IS_ERR(trans)) {
c69b26b0 3187 iput(inode);
f3fe820c
JB
3188 ret = PTR_ERR(trans);
3189 goto out;
3190 }
3191 ret = btrfs_orphan_add(trans, inode);
3192 btrfs_end_transaction(trans, root);
c69b26b0
JB
3193 if (ret) {
3194 iput(inode);
f3fe820c 3195 goto out;
c69b26b0 3196 }
f3fe820c 3197
66b4ffd1 3198 ret = btrfs_truncate(inode);
4a7d0f68
JB
3199 if (ret)
3200 btrfs_orphan_del(NULL, inode);
7b128766
JB
3201 } else {
3202 nr_unlink++;
3203 }
3204
3205 /* this will do delete_inode and everything for us */
3206 iput(inode);
66b4ffd1
JB
3207 if (ret)
3208 goto out;
7b128766 3209 }
3254c876
MX
3210 /* release the path since we're done with it */
3211 btrfs_release_path(path);
3212
d68fc57b
YZ
3213 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3214
3215 if (root->orphan_block_rsv)
3216 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3217 (u64)-1);
3218
3219 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3220 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3221 if (!IS_ERR(trans))
3222 btrfs_end_transaction(trans, root);
d68fc57b 3223 }
7b128766
JB
3224
3225 if (nr_unlink)
4884b476 3226 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3227 if (nr_truncate)
4884b476 3228 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3229
3230out:
3231 if (ret)
c2cf52eb
SK
3232 btrfs_crit(root->fs_info,
3233 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3234 btrfs_free_path(path);
3235 return ret;
7b128766
JB
3236}
3237
46a53cca
CM
3238/*
3239 * very simple check to peek ahead in the leaf looking for xattrs. If we
3240 * don't find any xattrs, we know there can't be any acls.
3241 *
3242 * slot is the slot the inode is in, objectid is the objectid of the inode
3243 */
3244static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3245 int slot, u64 objectid)
3246{
3247 u32 nritems = btrfs_header_nritems(leaf);
3248 struct btrfs_key found_key;
f23b5a59
JB
3249 static u64 xattr_access = 0;
3250 static u64 xattr_default = 0;
46a53cca
CM
3251 int scanned = 0;
3252
f23b5a59
JB
3253 if (!xattr_access) {
3254 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3255 strlen(POSIX_ACL_XATTR_ACCESS));
3256 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3257 strlen(POSIX_ACL_XATTR_DEFAULT));
3258 }
3259
46a53cca
CM
3260 slot++;
3261 while (slot < nritems) {
3262 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3263
3264 /* we found a different objectid, there must not be acls */
3265 if (found_key.objectid != objectid)
3266 return 0;
3267
3268 /* we found an xattr, assume we've got an acl */
f23b5a59
JB
3269 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3270 if (found_key.offset == xattr_access ||
3271 found_key.offset == xattr_default)
3272 return 1;
3273 }
46a53cca
CM
3274
3275 /*
3276 * we found a key greater than an xattr key, there can't
3277 * be any acls later on
3278 */
3279 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3280 return 0;
3281
3282 slot++;
3283 scanned++;
3284
3285 /*
3286 * it goes inode, inode backrefs, xattrs, extents,
3287 * so if there are a ton of hard links to an inode there can
3288 * be a lot of backrefs. Don't waste time searching too hard,
3289 * this is just an optimization
3290 */
3291 if (scanned >= 8)
3292 break;
3293 }
3294 /* we hit the end of the leaf before we found an xattr or
3295 * something larger than an xattr. We have to assume the inode
3296 * has acls
3297 */
3298 return 1;
3299}
3300
d352ac68
CM
3301/*
3302 * read an inode from the btree into the in-memory inode
3303 */
5d4f98a2 3304static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3305{
3306 struct btrfs_path *path;
5f39d397 3307 struct extent_buffer *leaf;
39279cc3 3308 struct btrfs_inode_item *inode_item;
0b86a832 3309 struct btrfs_timespec *tspec;
39279cc3
CM
3310 struct btrfs_root *root = BTRFS_I(inode)->root;
3311 struct btrfs_key location;
46a53cca 3312 int maybe_acls;
618e21d5 3313 u32 rdev;
39279cc3 3314 int ret;
2f7e33d4
MX
3315 bool filled = false;
3316
3317 ret = btrfs_fill_inode(inode, &rdev);
3318 if (!ret)
3319 filled = true;
39279cc3
CM
3320
3321 path = btrfs_alloc_path();
1748f843
MF
3322 if (!path)
3323 goto make_bad;
3324
d90c7321 3325 path->leave_spinning = 1;
39279cc3 3326 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3327
39279cc3 3328 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3329 if (ret)
39279cc3 3330 goto make_bad;
39279cc3 3331
5f39d397 3332 leaf = path->nodes[0];
2f7e33d4
MX
3333
3334 if (filled)
3335 goto cache_acl;
3336
5f39d397
CM
3337 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3338 struct btrfs_inode_item);
5f39d397 3339 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3340 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3341 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3342 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3343 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3344
3345 tspec = btrfs_inode_atime(inode_item);
3346 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3347 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3348
3349 tspec = btrfs_inode_mtime(inode_item);
3350 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3351 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3352
3353 tspec = btrfs_inode_ctime(inode_item);
3354 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3355 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3356
a76a3cd4 3357 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3358 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3359 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3360
3361 /*
3362 * If we were modified in the current generation and evicted from memory
3363 * and then re-read we need to do a full sync since we don't have any
3364 * idea about which extents were modified before we were evicted from
3365 * cache.
3366 */
3367 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3368 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3369 &BTRFS_I(inode)->runtime_flags);
3370
0c4d2d95 3371 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3372 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3373 inode->i_rdev = 0;
5f39d397
CM
3374 rdev = btrfs_inode_rdev(leaf, inode_item);
3375
aec7477b 3376 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3377 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3378cache_acl:
46a53cca
CM
3379 /*
3380 * try to precache a NULL acl entry for files that don't have
3381 * any xattrs or acls
3382 */
33345d01
LZ
3383 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3384 btrfs_ino(inode));
72c04902
AV
3385 if (!maybe_acls)
3386 cache_no_acl(inode);
46a53cca 3387
39279cc3 3388 btrfs_free_path(path);
39279cc3 3389
39279cc3 3390 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3391 case S_IFREG:
3392 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3393 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3394 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3395 inode->i_fop = &btrfs_file_operations;
3396 inode->i_op = &btrfs_file_inode_operations;
3397 break;
3398 case S_IFDIR:
3399 inode->i_fop = &btrfs_dir_file_operations;
3400 if (root == root->fs_info->tree_root)
3401 inode->i_op = &btrfs_dir_ro_inode_operations;
3402 else
3403 inode->i_op = &btrfs_dir_inode_operations;
3404 break;
3405 case S_IFLNK:
3406 inode->i_op = &btrfs_symlink_inode_operations;
3407 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3408 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3409 break;
618e21d5 3410 default:
0279b4cd 3411 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3412 init_special_inode(inode, inode->i_mode, rdev);
3413 break;
39279cc3 3414 }
6cbff00f
CH
3415
3416 btrfs_update_iflags(inode);
39279cc3
CM
3417 return;
3418
3419make_bad:
39279cc3 3420 btrfs_free_path(path);
39279cc3
CM
3421 make_bad_inode(inode);
3422}
3423
d352ac68
CM
3424/*
3425 * given a leaf and an inode, copy the inode fields into the leaf
3426 */
e02119d5
CM
3427static void fill_inode_item(struct btrfs_trans_handle *trans,
3428 struct extent_buffer *leaf,
5f39d397 3429 struct btrfs_inode_item *item,
39279cc3
CM
3430 struct inode *inode)
3431{
51fab693
LB
3432 struct btrfs_map_token token;
3433
3434 btrfs_init_map_token(&token);
5f39d397 3435
51fab693
LB
3436 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3437 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3438 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3439 &token);
3440 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3441 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3442
51fab693
LB
3443 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3444 inode->i_atime.tv_sec, &token);
3445 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3446 inode->i_atime.tv_nsec, &token);
5f39d397 3447
51fab693
LB
3448 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3449 inode->i_mtime.tv_sec, &token);
3450 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3451 inode->i_mtime.tv_nsec, &token);
5f39d397 3452
51fab693
LB
3453 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3454 inode->i_ctime.tv_sec, &token);
3455 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3456 inode->i_ctime.tv_nsec, &token);
5f39d397 3457
51fab693
LB
3458 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3459 &token);
3460 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3461 &token);
3462 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3463 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3464 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3465 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3466 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3467}
3468
d352ac68
CM
3469/*
3470 * copy everything in the in-memory inode into the btree.
3471 */
2115133f 3472static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3473 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3474{
3475 struct btrfs_inode_item *inode_item;
3476 struct btrfs_path *path;
5f39d397 3477 struct extent_buffer *leaf;
39279cc3
CM
3478 int ret;
3479
3480 path = btrfs_alloc_path();
16cdcec7
MX
3481 if (!path)
3482 return -ENOMEM;
3483
b9473439 3484 path->leave_spinning = 1;
16cdcec7
MX
3485 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3486 1);
39279cc3
CM
3487 if (ret) {
3488 if (ret > 0)
3489 ret = -ENOENT;
3490 goto failed;
3491 }
3492
b4ce94de 3493 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3494 leaf = path->nodes[0];
3495 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3496 struct btrfs_inode_item);
39279cc3 3497
e02119d5 3498 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3499 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3500 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3501 ret = 0;
3502failed:
39279cc3
CM
3503 btrfs_free_path(path);
3504 return ret;
3505}
3506
2115133f
CM
3507/*
3508 * copy everything in the in-memory inode into the btree.
3509 */
3510noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3511 struct btrfs_root *root, struct inode *inode)
3512{
3513 int ret;
3514
3515 /*
3516 * If the inode is a free space inode, we can deadlock during commit
3517 * if we put it into the delayed code.
3518 *
3519 * The data relocation inode should also be directly updated
3520 * without delay
3521 */
83eea1f1 3522 if (!btrfs_is_free_space_inode(inode)
2115133f 3523 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3524 btrfs_update_root_times(trans, root);
3525
2115133f
CM
3526 ret = btrfs_delayed_update_inode(trans, root, inode);
3527 if (!ret)
3528 btrfs_set_inode_last_trans(trans, inode);
3529 return ret;
3530 }
3531
3532 return btrfs_update_inode_item(trans, root, inode);
3533}
3534
be6aef60
JB
3535noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *root,
3537 struct inode *inode)
2115133f
CM
3538{
3539 int ret;
3540
3541 ret = btrfs_update_inode(trans, root, inode);
3542 if (ret == -ENOSPC)
3543 return btrfs_update_inode_item(trans, root, inode);
3544 return ret;
3545}
3546
d352ac68
CM
3547/*
3548 * unlink helper that gets used here in inode.c and in the tree logging
3549 * recovery code. It remove a link in a directory with a given name, and
3550 * also drops the back refs in the inode to the directory
3551 */
92986796
AV
3552static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3553 struct btrfs_root *root,
3554 struct inode *dir, struct inode *inode,
3555 const char *name, int name_len)
39279cc3
CM
3556{
3557 struct btrfs_path *path;
39279cc3 3558 int ret = 0;
5f39d397 3559 struct extent_buffer *leaf;
39279cc3 3560 struct btrfs_dir_item *di;
5f39d397 3561 struct btrfs_key key;
aec7477b 3562 u64 index;
33345d01
LZ
3563 u64 ino = btrfs_ino(inode);
3564 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3565
3566 path = btrfs_alloc_path();
54aa1f4d
CM
3567 if (!path) {
3568 ret = -ENOMEM;
554233a6 3569 goto out;
54aa1f4d
CM
3570 }
3571
b9473439 3572 path->leave_spinning = 1;
33345d01 3573 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3574 name, name_len, -1);
3575 if (IS_ERR(di)) {
3576 ret = PTR_ERR(di);
3577 goto err;
3578 }
3579 if (!di) {
3580 ret = -ENOENT;
3581 goto err;
3582 }
5f39d397
CM
3583 leaf = path->nodes[0];
3584 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3585 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3586 if (ret)
3587 goto err;
b3b4aa74 3588 btrfs_release_path(path);
39279cc3 3589
33345d01
LZ
3590 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3591 dir_ino, &index);
aec7477b 3592 if (ret) {
c2cf52eb
SK
3593 btrfs_info(root->fs_info,
3594 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3595 name_len, name, ino, dir_ino);
79787eaa 3596 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3597 goto err;
3598 }
3599
16cdcec7 3600 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3601 if (ret) {
3602 btrfs_abort_transaction(trans, root, ret);
39279cc3 3603 goto err;
79787eaa 3604 }
39279cc3 3605
e02119d5 3606 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3607 inode, dir_ino);
79787eaa
JM
3608 if (ret != 0 && ret != -ENOENT) {
3609 btrfs_abort_transaction(trans, root, ret);
3610 goto err;
3611 }
e02119d5
CM
3612
3613 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3614 dir, index);
6418c961
CM
3615 if (ret == -ENOENT)
3616 ret = 0;
d4e3991b
ZB
3617 else if (ret)
3618 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3619err:
3620 btrfs_free_path(path);
e02119d5
CM
3621 if (ret)
3622 goto out;
3623
3624 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3625 inode_inc_iversion(inode);
3626 inode_inc_iversion(dir);
e02119d5 3627 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3628 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3629out:
39279cc3
CM
3630 return ret;
3631}
3632
92986796
AV
3633int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3634 struct btrfs_root *root,
3635 struct inode *dir, struct inode *inode,
3636 const char *name, int name_len)
3637{
3638 int ret;
3639 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3640 if (!ret) {
8b558c5f 3641 drop_nlink(inode);
92986796
AV
3642 ret = btrfs_update_inode(trans, root, inode);
3643 }
3644 return ret;
3645}
39279cc3 3646
a22285a6
YZ
3647/*
3648 * helper to start transaction for unlink and rmdir.
3649 *
d52be818
JB
3650 * unlink and rmdir are special in btrfs, they do not always free space, so
3651 * if we cannot make our reservations the normal way try and see if there is
3652 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3653 * allow the unlink to occur.
a22285a6 3654 */
d52be818 3655static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3656{
39279cc3 3657 struct btrfs_trans_handle *trans;
a22285a6 3658 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3659 int ret;
3660
e70bea5f
JB
3661 /*
3662 * 1 for the possible orphan item
3663 * 1 for the dir item
3664 * 1 for the dir index
3665 * 1 for the inode ref
e70bea5f
JB
3666 * 1 for the inode
3667 */
6e137ed3 3668 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3669 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3670 return trans;
4df27c4d 3671
d52be818
JB
3672 if (PTR_ERR(trans) == -ENOSPC) {
3673 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3674
d52be818
JB
3675 trans = btrfs_start_transaction(root, 0);
3676 if (IS_ERR(trans))
3677 return trans;
3678 ret = btrfs_cond_migrate_bytes(root->fs_info,
3679 &root->fs_info->trans_block_rsv,
3680 num_bytes, 5);
3681 if (ret) {
3682 btrfs_end_transaction(trans, root);
3683 return ERR_PTR(ret);
a22285a6 3684 }
5a77d76c 3685 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3686 trans->bytes_reserved = num_bytes;
a22285a6 3687 }
d52be818 3688 return trans;
a22285a6
YZ
3689}
3690
3691static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3692{
3693 struct btrfs_root *root = BTRFS_I(dir)->root;
3694 struct btrfs_trans_handle *trans;
3695 struct inode *inode = dentry->d_inode;
3696 int ret;
a22285a6 3697
d52be818 3698 trans = __unlink_start_trans(dir);
a22285a6
YZ
3699 if (IS_ERR(trans))
3700 return PTR_ERR(trans);
5f39d397 3701
12fcfd22
CM
3702 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3703
e02119d5
CM
3704 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3705 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3706 if (ret)
3707 goto out;
7b128766 3708
a22285a6 3709 if (inode->i_nlink == 0) {
7b128766 3710 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3711 if (ret)
3712 goto out;
a22285a6 3713 }
7b128766 3714
b532402e 3715out:
d52be818 3716 btrfs_end_transaction(trans, root);
b53d3f5d 3717 btrfs_btree_balance_dirty(root);
39279cc3
CM
3718 return ret;
3719}
3720
4df27c4d
YZ
3721int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3722 struct btrfs_root *root,
3723 struct inode *dir, u64 objectid,
3724 const char *name, int name_len)
3725{
3726 struct btrfs_path *path;
3727 struct extent_buffer *leaf;
3728 struct btrfs_dir_item *di;
3729 struct btrfs_key key;
3730 u64 index;
3731 int ret;
33345d01 3732 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3733
3734 path = btrfs_alloc_path();
3735 if (!path)
3736 return -ENOMEM;
3737
33345d01 3738 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3739 name, name_len, -1);
79787eaa
JM
3740 if (IS_ERR_OR_NULL(di)) {
3741 if (!di)
3742 ret = -ENOENT;
3743 else
3744 ret = PTR_ERR(di);
3745 goto out;
3746 }
4df27c4d
YZ
3747
3748 leaf = path->nodes[0];
3749 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3750 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3751 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3752 if (ret) {
3753 btrfs_abort_transaction(trans, root, ret);
3754 goto out;
3755 }
b3b4aa74 3756 btrfs_release_path(path);
4df27c4d
YZ
3757
3758 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3759 objectid, root->root_key.objectid,
33345d01 3760 dir_ino, &index, name, name_len);
4df27c4d 3761 if (ret < 0) {
79787eaa
JM
3762 if (ret != -ENOENT) {
3763 btrfs_abort_transaction(trans, root, ret);
3764 goto out;
3765 }
33345d01 3766 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3767 name, name_len);
79787eaa
JM
3768 if (IS_ERR_OR_NULL(di)) {
3769 if (!di)
3770 ret = -ENOENT;
3771 else
3772 ret = PTR_ERR(di);
3773 btrfs_abort_transaction(trans, root, ret);
3774 goto out;
3775 }
4df27c4d
YZ
3776
3777 leaf = path->nodes[0];
3778 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3779 btrfs_release_path(path);
4df27c4d
YZ
3780 index = key.offset;
3781 }
945d8962 3782 btrfs_release_path(path);
4df27c4d 3783
16cdcec7 3784 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3785 if (ret) {
3786 btrfs_abort_transaction(trans, root, ret);
3787 goto out;
3788 }
4df27c4d
YZ
3789
3790 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3791 inode_inc_iversion(dir);
4df27c4d 3792 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3793 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3794 if (ret)
3795 btrfs_abort_transaction(trans, root, ret);
3796out:
71d7aed0 3797 btrfs_free_path(path);
79787eaa 3798 return ret;
4df27c4d
YZ
3799}
3800
39279cc3
CM
3801static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3802{
3803 struct inode *inode = dentry->d_inode;
1832a6d5 3804 int err = 0;
39279cc3 3805 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3806 struct btrfs_trans_handle *trans;
39279cc3 3807
b3ae244e 3808 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3809 return -ENOTEMPTY;
b3ae244e
DS
3810 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3811 return -EPERM;
134d4512 3812
d52be818 3813 trans = __unlink_start_trans(dir);
a22285a6 3814 if (IS_ERR(trans))
5df6a9f6 3815 return PTR_ERR(trans);
5df6a9f6 3816
33345d01 3817 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3818 err = btrfs_unlink_subvol(trans, root, dir,
3819 BTRFS_I(inode)->location.objectid,
3820 dentry->d_name.name,
3821 dentry->d_name.len);
3822 goto out;
3823 }
3824
7b128766
JB
3825 err = btrfs_orphan_add(trans, inode);
3826 if (err)
4df27c4d 3827 goto out;
7b128766 3828
39279cc3 3829 /* now the directory is empty */
e02119d5
CM
3830 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3831 dentry->d_name.name, dentry->d_name.len);
d397712b 3832 if (!err)
dbe674a9 3833 btrfs_i_size_write(inode, 0);
4df27c4d 3834out:
d52be818 3835 btrfs_end_transaction(trans, root);
b53d3f5d 3836 btrfs_btree_balance_dirty(root);
3954401f 3837
39279cc3
CM
3838 return err;
3839}
3840
39279cc3
CM
3841/*
3842 * this can truncate away extent items, csum items and directory items.
3843 * It starts at a high offset and removes keys until it can't find
d352ac68 3844 * any higher than new_size
39279cc3
CM
3845 *
3846 * csum items that cross the new i_size are truncated to the new size
3847 * as well.
7b128766
JB
3848 *
3849 * min_type is the minimum key type to truncate down to. If set to 0, this
3850 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3851 */
8082510e
YZ
3852int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3853 struct btrfs_root *root,
3854 struct inode *inode,
3855 u64 new_size, u32 min_type)
39279cc3 3856{
39279cc3 3857 struct btrfs_path *path;
5f39d397 3858 struct extent_buffer *leaf;
39279cc3 3859 struct btrfs_file_extent_item *fi;
8082510e
YZ
3860 struct btrfs_key key;
3861 struct btrfs_key found_key;
39279cc3 3862 u64 extent_start = 0;
db94535d 3863 u64 extent_num_bytes = 0;
5d4f98a2 3864 u64 extent_offset = 0;
39279cc3 3865 u64 item_end = 0;
7f4f6e0a 3866 u64 last_size = (u64)-1;
8082510e 3867 u32 found_type = (u8)-1;
39279cc3
CM
3868 int found_extent;
3869 int del_item;
85e21bac
CM
3870 int pending_del_nr = 0;
3871 int pending_del_slot = 0;
179e29e4 3872 int extent_type = -1;
8082510e
YZ
3873 int ret;
3874 int err = 0;
33345d01 3875 u64 ino = btrfs_ino(inode);
8082510e
YZ
3876
3877 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3878
0eb0e19c
MF
3879 path = btrfs_alloc_path();
3880 if (!path)
3881 return -ENOMEM;
3882 path->reada = -1;
3883
5dc562c5
JB
3884 /*
3885 * We want to drop from the next block forward in case this new size is
3886 * not block aligned since we will be keeping the last block of the
3887 * extent just the way it is.
3888 */
0af3d00b 3889 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3890 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3891 root->sectorsize), (u64)-1, 0);
8082510e 3892
16cdcec7
MX
3893 /*
3894 * This function is also used to drop the items in the log tree before
3895 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3896 * it is used to drop the loged items. So we shouldn't kill the delayed
3897 * items.
3898 */
3899 if (min_type == 0 && root == BTRFS_I(inode)->root)
3900 btrfs_kill_delayed_inode_items(inode);
3901
33345d01 3902 key.objectid = ino;
39279cc3 3903 key.offset = (u64)-1;
5f39d397
CM
3904 key.type = (u8)-1;
3905
85e21bac 3906search_again:
b9473439 3907 path->leave_spinning = 1;
85e21bac 3908 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3909 if (ret < 0) {
3910 err = ret;
3911 goto out;
3912 }
d397712b 3913
85e21bac 3914 if (ret > 0) {
e02119d5
CM
3915 /* there are no items in the tree for us to truncate, we're
3916 * done
3917 */
8082510e
YZ
3918 if (path->slots[0] == 0)
3919 goto out;
85e21bac
CM
3920 path->slots[0]--;
3921 }
3922
d397712b 3923 while (1) {
39279cc3 3924 fi = NULL;
5f39d397
CM
3925 leaf = path->nodes[0];
3926 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3927 found_type = btrfs_key_type(&found_key);
39279cc3 3928
33345d01 3929 if (found_key.objectid != ino)
39279cc3 3930 break;
5f39d397 3931
85e21bac 3932 if (found_type < min_type)
39279cc3
CM
3933 break;
3934
5f39d397 3935 item_end = found_key.offset;
39279cc3 3936 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3937 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3938 struct btrfs_file_extent_item);
179e29e4
CM
3939 extent_type = btrfs_file_extent_type(leaf, fi);
3940 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3941 item_end +=
db94535d 3942 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3943 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3944 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3945 fi);
39279cc3 3946 }
008630c1 3947 item_end--;
39279cc3 3948 }
8082510e
YZ
3949 if (found_type > min_type) {
3950 del_item = 1;
3951 } else {
3952 if (item_end < new_size)
b888db2b 3953 break;
8082510e
YZ
3954 if (found_key.offset >= new_size)
3955 del_item = 1;
3956 else
3957 del_item = 0;
39279cc3 3958 }
39279cc3 3959 found_extent = 0;
39279cc3 3960 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3961 if (found_type != BTRFS_EXTENT_DATA_KEY)
3962 goto delete;
3963
7f4f6e0a
JB
3964 if (del_item)
3965 last_size = found_key.offset;
3966 else
3967 last_size = new_size;
3968
179e29e4 3969 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3970 u64 num_dec;
db94535d 3971 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3972 if (!del_item) {
db94535d
CM
3973 u64 orig_num_bytes =
3974 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
3975 extent_num_bytes = ALIGN(new_size -
3976 found_key.offset,
3977 root->sectorsize);
db94535d
CM
3978 btrfs_set_file_extent_num_bytes(leaf, fi,
3979 extent_num_bytes);
3980 num_dec = (orig_num_bytes -
9069218d 3981 extent_num_bytes);
e02119d5 3982 if (root->ref_cows && extent_start != 0)
a76a3cd4 3983 inode_sub_bytes(inode, num_dec);
5f39d397 3984 btrfs_mark_buffer_dirty(leaf);
39279cc3 3985 } else {
db94535d
CM
3986 extent_num_bytes =
3987 btrfs_file_extent_disk_num_bytes(leaf,
3988 fi);
5d4f98a2
YZ
3989 extent_offset = found_key.offset -
3990 btrfs_file_extent_offset(leaf, fi);
3991
39279cc3 3992 /* FIXME blocksize != 4096 */
9069218d 3993 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3994 if (extent_start != 0) {
3995 found_extent = 1;
e02119d5 3996 if (root->ref_cows)
a76a3cd4 3997 inode_sub_bytes(inode, num_dec);
e02119d5 3998 }
39279cc3 3999 }
9069218d 4000 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4001 /*
4002 * we can't truncate inline items that have had
4003 * special encodings
4004 */
4005 if (!del_item &&
4006 btrfs_file_extent_compression(leaf, fi) == 0 &&
4007 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4008 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4009 u32 size = new_size - found_key.offset;
4010
4011 if (root->ref_cows) {
a76a3cd4
YZ
4012 inode_sub_bytes(inode, item_end + 1 -
4013 new_size);
e02119d5
CM
4014 }
4015 size =
4016 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4017 btrfs_truncate_item(root, path, size, 1);
e02119d5 4018 } else if (root->ref_cows) {
a76a3cd4
YZ
4019 inode_sub_bytes(inode, item_end + 1 -
4020 found_key.offset);
9069218d 4021 }
39279cc3 4022 }
179e29e4 4023delete:
39279cc3 4024 if (del_item) {
85e21bac
CM
4025 if (!pending_del_nr) {
4026 /* no pending yet, add ourselves */
4027 pending_del_slot = path->slots[0];
4028 pending_del_nr = 1;
4029 } else if (pending_del_nr &&
4030 path->slots[0] + 1 == pending_del_slot) {
4031 /* hop on the pending chunk */
4032 pending_del_nr++;
4033 pending_del_slot = path->slots[0];
4034 } else {
d397712b 4035 BUG();
85e21bac 4036 }
39279cc3
CM
4037 } else {
4038 break;
4039 }
0af3d00b
JB
4040 if (found_extent && (root->ref_cows ||
4041 root == root->fs_info->tree_root)) {
b9473439 4042 btrfs_set_path_blocking(path);
39279cc3 4043 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4044 extent_num_bytes, 0,
4045 btrfs_header_owner(leaf),
66d7e7f0 4046 ino, extent_offset, 0);
39279cc3
CM
4047 BUG_ON(ret);
4048 }
85e21bac 4049
8082510e
YZ
4050 if (found_type == BTRFS_INODE_ITEM_KEY)
4051 break;
4052
4053 if (path->slots[0] == 0 ||
4054 path->slots[0] != pending_del_slot) {
8082510e
YZ
4055 if (pending_del_nr) {
4056 ret = btrfs_del_items(trans, root, path,
4057 pending_del_slot,
4058 pending_del_nr);
79787eaa
JM
4059 if (ret) {
4060 btrfs_abort_transaction(trans,
4061 root, ret);
4062 goto error;
4063 }
8082510e
YZ
4064 pending_del_nr = 0;
4065 }
b3b4aa74 4066 btrfs_release_path(path);
85e21bac 4067 goto search_again;
8082510e
YZ
4068 } else {
4069 path->slots[0]--;
85e21bac 4070 }
39279cc3 4071 }
8082510e 4072out:
85e21bac
CM
4073 if (pending_del_nr) {
4074 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4075 pending_del_nr);
79787eaa
JM
4076 if (ret)
4077 btrfs_abort_transaction(trans, root, ret);
85e21bac 4078 }
79787eaa 4079error:
7f4f6e0a
JB
4080 if (last_size != (u64)-1)
4081 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4082 btrfs_free_path(path);
8082510e 4083 return err;
39279cc3
CM
4084}
4085
4086/*
2aaa6655
JB
4087 * btrfs_truncate_page - read, zero a chunk and write a page
4088 * @inode - inode that we're zeroing
4089 * @from - the offset to start zeroing
4090 * @len - the length to zero, 0 to zero the entire range respective to the
4091 * offset
4092 * @front - zero up to the offset instead of from the offset on
4093 *
4094 * This will find the page for the "from" offset and cow the page and zero the
4095 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4096 */
2aaa6655
JB
4097int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4098 int front)
39279cc3 4099{
2aaa6655 4100 struct address_space *mapping = inode->i_mapping;
db94535d 4101 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4102 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4103 struct btrfs_ordered_extent *ordered;
2ac55d41 4104 struct extent_state *cached_state = NULL;
e6dcd2dc 4105 char *kaddr;
db94535d 4106 u32 blocksize = root->sectorsize;
39279cc3
CM
4107 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4108 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4109 struct page *page;
3b16a4e3 4110 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4111 int ret = 0;
a52d9a80 4112 u64 page_start;
e6dcd2dc 4113 u64 page_end;
39279cc3 4114
2aaa6655
JB
4115 if ((offset & (blocksize - 1)) == 0 &&
4116 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4117 goto out;
0ca1f7ce 4118 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4119 if (ret)
4120 goto out;
39279cc3 4121
211c17f5 4122again:
3b16a4e3 4123 page = find_or_create_page(mapping, index, mask);
5d5e103a 4124 if (!page) {
0ca1f7ce 4125 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4126 ret = -ENOMEM;
39279cc3 4127 goto out;
5d5e103a 4128 }
e6dcd2dc
CM
4129
4130 page_start = page_offset(page);
4131 page_end = page_start + PAGE_CACHE_SIZE - 1;
4132
39279cc3 4133 if (!PageUptodate(page)) {
9ebefb18 4134 ret = btrfs_readpage(NULL, page);
39279cc3 4135 lock_page(page);
211c17f5
CM
4136 if (page->mapping != mapping) {
4137 unlock_page(page);
4138 page_cache_release(page);
4139 goto again;
4140 }
39279cc3
CM
4141 if (!PageUptodate(page)) {
4142 ret = -EIO;
89642229 4143 goto out_unlock;
39279cc3
CM
4144 }
4145 }
211c17f5 4146 wait_on_page_writeback(page);
e6dcd2dc 4147
d0082371 4148 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4149 set_page_extent_mapped(page);
4150
4151 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4152 if (ordered) {
2ac55d41
JB
4153 unlock_extent_cached(io_tree, page_start, page_end,
4154 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4155 unlock_page(page);
4156 page_cache_release(page);
eb84ae03 4157 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4158 btrfs_put_ordered_extent(ordered);
4159 goto again;
4160 }
4161
2ac55d41 4162 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4163 EXTENT_DIRTY | EXTENT_DELALLOC |
4164 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4165 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4166
2ac55d41
JB
4167 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4168 &cached_state);
9ed74f2d 4169 if (ret) {
2ac55d41
JB
4170 unlock_extent_cached(io_tree, page_start, page_end,
4171 &cached_state, GFP_NOFS);
9ed74f2d
JB
4172 goto out_unlock;
4173 }
4174
e6dcd2dc 4175 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4176 if (!len)
4177 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4178 kaddr = kmap(page);
2aaa6655
JB
4179 if (front)
4180 memset(kaddr, 0, offset);
4181 else
4182 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4183 flush_dcache_page(page);
4184 kunmap(page);
4185 }
247e743c 4186 ClearPageChecked(page);
e6dcd2dc 4187 set_page_dirty(page);
2ac55d41
JB
4188 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4189 GFP_NOFS);
39279cc3 4190
89642229 4191out_unlock:
5d5e103a 4192 if (ret)
0ca1f7ce 4193 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4194 unlock_page(page);
4195 page_cache_release(page);
4196out:
4197 return ret;
4198}
4199
16e7549f
JB
4200static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4201 u64 offset, u64 len)
4202{
4203 struct btrfs_trans_handle *trans;
4204 int ret;
4205
4206 /*
4207 * Still need to make sure the inode looks like it's been updated so
4208 * that any holes get logged if we fsync.
4209 */
4210 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4211 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4212 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4213 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4214 return 0;
4215 }
4216
4217 /*
4218 * 1 - for the one we're dropping
4219 * 1 - for the one we're adding
4220 * 1 - for updating the inode.
4221 */
4222 trans = btrfs_start_transaction(root, 3);
4223 if (IS_ERR(trans))
4224 return PTR_ERR(trans);
4225
4226 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4227 if (ret) {
4228 btrfs_abort_transaction(trans, root, ret);
4229 btrfs_end_transaction(trans, root);
4230 return ret;
4231 }
4232
4233 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4234 0, 0, len, 0, len, 0, 0, 0);
4235 if (ret)
4236 btrfs_abort_transaction(trans, root, ret);
4237 else
4238 btrfs_update_inode(trans, root, inode);
4239 btrfs_end_transaction(trans, root);
4240 return ret;
4241}
4242
695a0d0d
JB
4243/*
4244 * This function puts in dummy file extents for the area we're creating a hole
4245 * for. So if we are truncating this file to a larger size we need to insert
4246 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4247 * the range between oldsize and size
4248 */
a41ad394 4249int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4250{
9036c102
YZ
4251 struct btrfs_root *root = BTRFS_I(inode)->root;
4252 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4253 struct extent_map *em = NULL;
2ac55d41 4254 struct extent_state *cached_state = NULL;
5dc562c5 4255 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4256 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4257 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4258 u64 last_byte;
4259 u64 cur_offset;
4260 u64 hole_size;
9ed74f2d 4261 int err = 0;
39279cc3 4262
a71754fc
JB
4263 /*
4264 * If our size started in the middle of a page we need to zero out the
4265 * rest of the page before we expand the i_size, otherwise we could
4266 * expose stale data.
4267 */
4268 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4269 if (err)
4270 return err;
4271
9036c102
YZ
4272 if (size <= hole_start)
4273 return 0;
4274
9036c102
YZ
4275 while (1) {
4276 struct btrfs_ordered_extent *ordered;
fa7c1494 4277
2ac55d41 4278 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4279 &cached_state);
fa7c1494
MX
4280 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4281 block_end - hole_start);
9036c102
YZ
4282 if (!ordered)
4283 break;
2ac55d41
JB
4284 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4285 &cached_state, GFP_NOFS);
fa7c1494 4286 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4287 btrfs_put_ordered_extent(ordered);
4288 }
39279cc3 4289
9036c102
YZ
4290 cur_offset = hole_start;
4291 while (1) {
4292 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4293 block_end - cur_offset, 0);
79787eaa
JM
4294 if (IS_ERR(em)) {
4295 err = PTR_ERR(em);
f2767956 4296 em = NULL;
79787eaa
JM
4297 break;
4298 }
9036c102 4299 last_byte = min(extent_map_end(em), block_end);
fda2832f 4300 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4301 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4302 struct extent_map *hole_em;
9036c102 4303 hole_size = last_byte - cur_offset;
9ed74f2d 4304
16e7549f
JB
4305 err = maybe_insert_hole(root, inode, cur_offset,
4306 hole_size);
4307 if (err)
3893e33b 4308 break;
5dc562c5
JB
4309 btrfs_drop_extent_cache(inode, cur_offset,
4310 cur_offset + hole_size - 1, 0);
4311 hole_em = alloc_extent_map();
4312 if (!hole_em) {
4313 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4314 &BTRFS_I(inode)->runtime_flags);
4315 goto next;
4316 }
4317 hole_em->start = cur_offset;
4318 hole_em->len = hole_size;
4319 hole_em->orig_start = cur_offset;
8082510e 4320
5dc562c5
JB
4321 hole_em->block_start = EXTENT_MAP_HOLE;
4322 hole_em->block_len = 0;
b4939680 4323 hole_em->orig_block_len = 0;
cc95bef6 4324 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4325 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4326 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4327 hole_em->generation = root->fs_info->generation;
8082510e 4328
5dc562c5
JB
4329 while (1) {
4330 write_lock(&em_tree->lock);
09a2a8f9 4331 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4332 write_unlock(&em_tree->lock);
4333 if (err != -EEXIST)
4334 break;
4335 btrfs_drop_extent_cache(inode, cur_offset,
4336 cur_offset +
4337 hole_size - 1, 0);
4338 }
4339 free_extent_map(hole_em);
9036c102 4340 }
16e7549f 4341next:
9036c102 4342 free_extent_map(em);
a22285a6 4343 em = NULL;
9036c102 4344 cur_offset = last_byte;
8082510e 4345 if (cur_offset >= block_end)
9036c102
YZ
4346 break;
4347 }
a22285a6 4348 free_extent_map(em);
2ac55d41
JB
4349 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4350 GFP_NOFS);
9036c102
YZ
4351 return err;
4352}
39279cc3 4353
3972f260 4354static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4355{
f4a2f4c5
MX
4356 struct btrfs_root *root = BTRFS_I(inode)->root;
4357 struct btrfs_trans_handle *trans;
a41ad394 4358 loff_t oldsize = i_size_read(inode);
3972f260
ES
4359 loff_t newsize = attr->ia_size;
4360 int mask = attr->ia_valid;
8082510e
YZ
4361 int ret;
4362
3972f260
ES
4363 /*
4364 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4365 * special case where we need to update the times despite not having
4366 * these flags set. For all other operations the VFS set these flags
4367 * explicitly if it wants a timestamp update.
4368 */
4369 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4370 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4371
a41ad394 4372 if (newsize > oldsize) {
7caef267 4373 truncate_pagecache(inode, newsize);
a41ad394 4374 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4375 if (ret)
8082510e 4376 return ret;
8082510e 4377
f4a2f4c5
MX
4378 trans = btrfs_start_transaction(root, 1);
4379 if (IS_ERR(trans))
4380 return PTR_ERR(trans);
4381
4382 i_size_write(inode, newsize);
4383 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4384 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4385 btrfs_end_transaction(trans, root);
a41ad394 4386 } else {
8082510e 4387
a41ad394
JB
4388 /*
4389 * We're truncating a file that used to have good data down to
4390 * zero. Make sure it gets into the ordered flush list so that
4391 * any new writes get down to disk quickly.
4392 */
4393 if (newsize == 0)
72ac3c0d
JB
4394 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4395 &BTRFS_I(inode)->runtime_flags);
8082510e 4396
f3fe820c
JB
4397 /*
4398 * 1 for the orphan item we're going to add
4399 * 1 for the orphan item deletion.
4400 */
4401 trans = btrfs_start_transaction(root, 2);
4402 if (IS_ERR(trans))
4403 return PTR_ERR(trans);
4404
4405 /*
4406 * We need to do this in case we fail at _any_ point during the
4407 * actual truncate. Once we do the truncate_setsize we could
4408 * invalidate pages which forces any outstanding ordered io to
4409 * be instantly completed which will give us extents that need
4410 * to be truncated. If we fail to get an orphan inode down we
4411 * could have left over extents that were never meant to live,
4412 * so we need to garuntee from this point on that everything
4413 * will be consistent.
4414 */
4415 ret = btrfs_orphan_add(trans, inode);
4416 btrfs_end_transaction(trans, root);
4417 if (ret)
4418 return ret;
4419
a41ad394
JB
4420 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4421 truncate_setsize(inode, newsize);
2e60a51e
MX
4422
4423 /* Disable nonlocked read DIO to avoid the end less truncate */
4424 btrfs_inode_block_unlocked_dio(inode);
4425 inode_dio_wait(inode);
4426 btrfs_inode_resume_unlocked_dio(inode);
4427
a41ad394 4428 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4429 if (ret && inode->i_nlink) {
4430 int err;
4431
4432 /*
4433 * failed to truncate, disk_i_size is only adjusted down
4434 * as we remove extents, so it should represent the true
4435 * size of the inode, so reset the in memory size and
4436 * delete our orphan entry.
4437 */
4438 trans = btrfs_join_transaction(root);
4439 if (IS_ERR(trans)) {
4440 btrfs_orphan_del(NULL, inode);
4441 return ret;
4442 }
4443 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4444 err = btrfs_orphan_del(trans, inode);
4445 if (err)
4446 btrfs_abort_transaction(trans, root, err);
4447 btrfs_end_transaction(trans, root);
4448 }
8082510e
YZ
4449 }
4450
a41ad394 4451 return ret;
8082510e
YZ
4452}
4453
9036c102
YZ
4454static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4455{
4456 struct inode *inode = dentry->d_inode;
b83cc969 4457 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4458 int err;
39279cc3 4459
b83cc969
LZ
4460 if (btrfs_root_readonly(root))
4461 return -EROFS;
4462
9036c102
YZ
4463 err = inode_change_ok(inode, attr);
4464 if (err)
4465 return err;
2bf5a725 4466
5a3f23d5 4467 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4468 err = btrfs_setsize(inode, attr);
8082510e
YZ
4469 if (err)
4470 return err;
39279cc3 4471 }
9036c102 4472
1025774c
CH
4473 if (attr->ia_valid) {
4474 setattr_copy(inode, attr);
0c4d2d95 4475 inode_inc_iversion(inode);
22c44fe6 4476 err = btrfs_dirty_inode(inode);
1025774c 4477
22c44fe6 4478 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4479 err = btrfs_acl_chmod(inode);
4480 }
33268eaf 4481
39279cc3
CM
4482 return err;
4483}
61295eb8 4484
131e404a
FDBM
4485/*
4486 * While truncating the inode pages during eviction, we get the VFS calling
4487 * btrfs_invalidatepage() against each page of the inode. This is slow because
4488 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4489 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4490 * extent_state structures over and over, wasting lots of time.
4491 *
4492 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4493 * those expensive operations on a per page basis and do only the ordered io
4494 * finishing, while we release here the extent_map and extent_state structures,
4495 * without the excessive merging and splitting.
4496 */
4497static void evict_inode_truncate_pages(struct inode *inode)
4498{
4499 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4500 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4501 struct rb_node *node;
4502
4503 ASSERT(inode->i_state & I_FREEING);
4504 truncate_inode_pages(&inode->i_data, 0);
4505
4506 write_lock(&map_tree->lock);
4507 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4508 struct extent_map *em;
4509
4510 node = rb_first(&map_tree->map);
4511 em = rb_entry(node, struct extent_map, rb_node);
4512 remove_extent_mapping(map_tree, em);
4513 free_extent_map(em);
4514 }
4515 write_unlock(&map_tree->lock);
4516
4517 spin_lock(&io_tree->lock);
4518 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4519 struct extent_state *state;
4520 struct extent_state *cached_state = NULL;
4521
4522 node = rb_first(&io_tree->state);
4523 state = rb_entry(node, struct extent_state, rb_node);
4524 atomic_inc(&state->refs);
4525 spin_unlock(&io_tree->lock);
4526
4527 lock_extent_bits(io_tree, state->start, state->end,
4528 0, &cached_state);
4529 clear_extent_bit(io_tree, state->start, state->end,
4530 EXTENT_LOCKED | EXTENT_DIRTY |
4531 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4532 EXTENT_DEFRAG, 1, 1,
4533 &cached_state, GFP_NOFS);
4534 free_extent_state(state);
4535
4536 spin_lock(&io_tree->lock);
4537 }
4538 spin_unlock(&io_tree->lock);
4539}
4540
bd555975 4541void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4542{
4543 struct btrfs_trans_handle *trans;
4544 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4545 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4546 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4547 int ret;
4548
1abe9b8a 4549 trace_btrfs_inode_evict(inode);
4550
131e404a
FDBM
4551 evict_inode_truncate_pages(inode);
4552
69e9c6c6
SB
4553 if (inode->i_nlink &&
4554 ((btrfs_root_refs(&root->root_item) != 0 &&
4555 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4556 btrfs_is_free_space_inode(inode)))
bd555975
AV
4557 goto no_delete;
4558
39279cc3 4559 if (is_bad_inode(inode)) {
7b128766 4560 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4561 goto no_delete;
4562 }
bd555975 4563 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4564 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4565
c71bf099 4566 if (root->fs_info->log_root_recovering) {
6bf02314 4567 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4568 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4569 goto no_delete;
4570 }
4571
76dda93c 4572 if (inode->i_nlink > 0) {
69e9c6c6
SB
4573 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4574 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4575 goto no_delete;
4576 }
4577
0e8c36a9
MX
4578 ret = btrfs_commit_inode_delayed_inode(inode);
4579 if (ret) {
4580 btrfs_orphan_del(NULL, inode);
4581 goto no_delete;
4582 }
4583
66d8f3dd 4584 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4585 if (!rsv) {
4586 btrfs_orphan_del(NULL, inode);
4587 goto no_delete;
4588 }
4a338542 4589 rsv->size = min_size;
ca7e70f5 4590 rsv->failfast = 1;
726c35fa 4591 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4592
dbe674a9 4593 btrfs_i_size_write(inode, 0);
5f39d397 4594
4289a667 4595 /*
8407aa46
MX
4596 * This is a bit simpler than btrfs_truncate since we've already
4597 * reserved our space for our orphan item in the unlink, so we just
4598 * need to reserve some slack space in case we add bytes and update
4599 * inode item when doing the truncate.
4289a667 4600 */
8082510e 4601 while (1) {
08e007d2
MX
4602 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4603 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4604
4605 /*
4606 * Try and steal from the global reserve since we will
4607 * likely not use this space anyway, we want to try as
4608 * hard as possible to get this to work.
4609 */
4610 if (ret)
4611 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4612
d68fc57b 4613 if (ret) {
c2cf52eb
SK
4614 btrfs_warn(root->fs_info,
4615 "Could not get space for a delete, will truncate on mount %d",
4616 ret);
4289a667
JB
4617 btrfs_orphan_del(NULL, inode);
4618 btrfs_free_block_rsv(root, rsv);
4619 goto no_delete;
d68fc57b 4620 }
7b128766 4621
0e8c36a9 4622 trans = btrfs_join_transaction(root);
4289a667
JB
4623 if (IS_ERR(trans)) {
4624 btrfs_orphan_del(NULL, inode);
4625 btrfs_free_block_rsv(root, rsv);
4626 goto no_delete;
d68fc57b 4627 }
7b128766 4628
4289a667
JB
4629 trans->block_rsv = rsv;
4630
d68fc57b 4631 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4632 if (ret != -ENOSPC)
8082510e 4633 break;
85e21bac 4634
8407aa46 4635 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4636 btrfs_end_transaction(trans, root);
4637 trans = NULL;
b53d3f5d 4638 btrfs_btree_balance_dirty(root);
8082510e 4639 }
5f39d397 4640
4289a667
JB
4641 btrfs_free_block_rsv(root, rsv);
4642
4ef31a45
JB
4643 /*
4644 * Errors here aren't a big deal, it just means we leave orphan items
4645 * in the tree. They will be cleaned up on the next mount.
4646 */
8082510e 4647 if (ret == 0) {
4289a667 4648 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4649 btrfs_orphan_del(trans, inode);
4650 } else {
4651 btrfs_orphan_del(NULL, inode);
8082510e 4652 }
54aa1f4d 4653
4289a667 4654 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4655 if (!(root == root->fs_info->tree_root ||
4656 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4657 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4658
54aa1f4d 4659 btrfs_end_transaction(trans, root);
b53d3f5d 4660 btrfs_btree_balance_dirty(root);
39279cc3 4661no_delete:
89042e5a 4662 btrfs_remove_delayed_node(inode);
dbd5768f 4663 clear_inode(inode);
8082510e 4664 return;
39279cc3
CM
4665}
4666
4667/*
4668 * this returns the key found in the dir entry in the location pointer.
4669 * If no dir entries were found, location->objectid is 0.
4670 */
4671static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4672 struct btrfs_key *location)
4673{
4674 const char *name = dentry->d_name.name;
4675 int namelen = dentry->d_name.len;
4676 struct btrfs_dir_item *di;
4677 struct btrfs_path *path;
4678 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4679 int ret = 0;
39279cc3
CM
4680
4681 path = btrfs_alloc_path();
d8926bb3
MF
4682 if (!path)
4683 return -ENOMEM;
3954401f 4684
33345d01 4685 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4686 namelen, 0);
0d9f7f3e
Y
4687 if (IS_ERR(di))
4688 ret = PTR_ERR(di);
d397712b 4689
c704005d 4690 if (IS_ERR_OR_NULL(di))
3954401f 4691 goto out_err;
d397712b 4692
5f39d397 4693 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4694out:
39279cc3
CM
4695 btrfs_free_path(path);
4696 return ret;
3954401f
CM
4697out_err:
4698 location->objectid = 0;
4699 goto out;
39279cc3
CM
4700}
4701
4702/*
4703 * when we hit a tree root in a directory, the btrfs part of the inode
4704 * needs to be changed to reflect the root directory of the tree root. This
4705 * is kind of like crossing a mount point.
4706 */
4707static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4708 struct inode *dir,
4709 struct dentry *dentry,
4710 struct btrfs_key *location,
4711 struct btrfs_root **sub_root)
39279cc3 4712{
4df27c4d
YZ
4713 struct btrfs_path *path;
4714 struct btrfs_root *new_root;
4715 struct btrfs_root_ref *ref;
4716 struct extent_buffer *leaf;
4717 int ret;
4718 int err = 0;
39279cc3 4719
4df27c4d
YZ
4720 path = btrfs_alloc_path();
4721 if (!path) {
4722 err = -ENOMEM;
4723 goto out;
4724 }
39279cc3 4725
4df27c4d 4726 err = -ENOENT;
75ac2dd9
KN
4727 ret = btrfs_find_item(root->fs_info->tree_root, path,
4728 BTRFS_I(dir)->root->root_key.objectid,
4729 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4df27c4d
YZ
4730 if (ret) {
4731 if (ret < 0)
4732 err = ret;
4733 goto out;
4734 }
39279cc3 4735
4df27c4d
YZ
4736 leaf = path->nodes[0];
4737 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4738 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4739 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4740 goto out;
39279cc3 4741
4df27c4d
YZ
4742 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4743 (unsigned long)(ref + 1),
4744 dentry->d_name.len);
4745 if (ret)
4746 goto out;
4747
b3b4aa74 4748 btrfs_release_path(path);
4df27c4d
YZ
4749
4750 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4751 if (IS_ERR(new_root)) {
4752 err = PTR_ERR(new_root);
4753 goto out;
4754 }
4755
4df27c4d
YZ
4756 *sub_root = new_root;
4757 location->objectid = btrfs_root_dirid(&new_root->root_item);
4758 location->type = BTRFS_INODE_ITEM_KEY;
4759 location->offset = 0;
4760 err = 0;
4761out:
4762 btrfs_free_path(path);
4763 return err;
39279cc3
CM
4764}
4765
5d4f98a2
YZ
4766static void inode_tree_add(struct inode *inode)
4767{
4768 struct btrfs_root *root = BTRFS_I(inode)->root;
4769 struct btrfs_inode *entry;
03e860bd
FNP
4770 struct rb_node **p;
4771 struct rb_node *parent;
cef21937 4772 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 4773 u64 ino = btrfs_ino(inode);
5d4f98a2 4774
1d3382cb 4775 if (inode_unhashed(inode))
76dda93c 4776 return;
e1409cef 4777 parent = NULL;
5d4f98a2 4778 spin_lock(&root->inode_lock);
e1409cef 4779 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4780 while (*p) {
4781 parent = *p;
4782 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4783
33345d01 4784 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4785 p = &parent->rb_left;
33345d01 4786 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4787 p = &parent->rb_right;
5d4f98a2
YZ
4788 else {
4789 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4790 (I_WILL_FREE | I_FREEING)));
cef21937 4791 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
4792 RB_CLEAR_NODE(parent);
4793 spin_unlock(&root->inode_lock);
cef21937 4794 return;
5d4f98a2
YZ
4795 }
4796 }
cef21937
FDBM
4797 rb_link_node(new, parent, p);
4798 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
4799 spin_unlock(&root->inode_lock);
4800}
4801
4802static void inode_tree_del(struct inode *inode)
4803{
4804 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4805 int empty = 0;
5d4f98a2 4806
03e860bd 4807 spin_lock(&root->inode_lock);
5d4f98a2 4808 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4809 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4810 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4811 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4812 }
03e860bd 4813 spin_unlock(&root->inode_lock);
76dda93c 4814
69e9c6c6 4815 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
4816 synchronize_srcu(&root->fs_info->subvol_srcu);
4817 spin_lock(&root->inode_lock);
4818 empty = RB_EMPTY_ROOT(&root->inode_tree);
4819 spin_unlock(&root->inode_lock);
4820 if (empty)
4821 btrfs_add_dead_root(root);
4822 }
4823}
4824
143bede5 4825void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4826{
4827 struct rb_node *node;
4828 struct rb_node *prev;
4829 struct btrfs_inode *entry;
4830 struct inode *inode;
4831 u64 objectid = 0;
4832
4833 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4834
4835 spin_lock(&root->inode_lock);
4836again:
4837 node = root->inode_tree.rb_node;
4838 prev = NULL;
4839 while (node) {
4840 prev = node;
4841 entry = rb_entry(node, struct btrfs_inode, rb_node);
4842
33345d01 4843 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4844 node = node->rb_left;
33345d01 4845 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4846 node = node->rb_right;
4847 else
4848 break;
4849 }
4850 if (!node) {
4851 while (prev) {
4852 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4853 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4854 node = prev;
4855 break;
4856 }
4857 prev = rb_next(prev);
4858 }
4859 }
4860 while (node) {
4861 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4862 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4863 inode = igrab(&entry->vfs_inode);
4864 if (inode) {
4865 spin_unlock(&root->inode_lock);
4866 if (atomic_read(&inode->i_count) > 1)
4867 d_prune_aliases(inode);
4868 /*
45321ac5 4869 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4870 * the inode cache when its usage count
4871 * hits zero.
4872 */
4873 iput(inode);
4874 cond_resched();
4875 spin_lock(&root->inode_lock);
4876 goto again;
4877 }
4878
4879 if (cond_resched_lock(&root->inode_lock))
4880 goto again;
4881
4882 node = rb_next(node);
4883 }
4884 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4885}
4886
e02119d5
CM
4887static int btrfs_init_locked_inode(struct inode *inode, void *p)
4888{
4889 struct btrfs_iget_args *args = p;
4890 inode->i_ino = args->ino;
e02119d5 4891 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4892 return 0;
4893}
4894
4895static int btrfs_find_actor(struct inode *inode, void *opaque)
4896{
4897 struct btrfs_iget_args *args = opaque;
33345d01 4898 return args->ino == btrfs_ino(inode) &&
d397712b 4899 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4900}
4901
5d4f98a2
YZ
4902static struct inode *btrfs_iget_locked(struct super_block *s,
4903 u64 objectid,
4904 struct btrfs_root *root)
39279cc3
CM
4905{
4906 struct inode *inode;
4907 struct btrfs_iget_args args;
778ba82b
FDBM
4908 unsigned long hashval = btrfs_inode_hash(objectid, root);
4909
39279cc3
CM
4910 args.ino = objectid;
4911 args.root = root;
4912
778ba82b 4913 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
4914 btrfs_init_locked_inode,
4915 (void *)&args);
4916 return inode;
4917}
4918
1a54ef8c
BR
4919/* Get an inode object given its location and corresponding root.
4920 * Returns in *is_new if the inode was read from disk
4921 */
4922struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4923 struct btrfs_root *root, int *new)
1a54ef8c
BR
4924{
4925 struct inode *inode;
4926
4927 inode = btrfs_iget_locked(s, location->objectid, root);
4928 if (!inode)
5d4f98a2 4929 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4930
4931 if (inode->i_state & I_NEW) {
4932 BTRFS_I(inode)->root = root;
4933 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4934 btrfs_read_locked_inode(inode);
1748f843
MF
4935 if (!is_bad_inode(inode)) {
4936 inode_tree_add(inode);
4937 unlock_new_inode(inode);
4938 if (new)
4939 *new = 1;
4940 } else {
e0b6d65b
ST
4941 unlock_new_inode(inode);
4942 iput(inode);
4943 inode = ERR_PTR(-ESTALE);
1748f843
MF
4944 }
4945 }
4946
1a54ef8c
BR
4947 return inode;
4948}
4949
4df27c4d
YZ
4950static struct inode *new_simple_dir(struct super_block *s,
4951 struct btrfs_key *key,
4952 struct btrfs_root *root)
4953{
4954 struct inode *inode = new_inode(s);
4955
4956 if (!inode)
4957 return ERR_PTR(-ENOMEM);
4958
4df27c4d
YZ
4959 BTRFS_I(inode)->root = root;
4960 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4961 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4962
4963 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4964 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4965 inode->i_fop = &simple_dir_operations;
4966 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4967 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4968
4969 return inode;
4970}
4971
3de4586c 4972struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4973{
d397712b 4974 struct inode *inode;
4df27c4d 4975 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4976 struct btrfs_root *sub_root = root;
4977 struct btrfs_key location;
76dda93c 4978 int index;
b4aff1f8 4979 int ret = 0;
39279cc3
CM
4980
4981 if (dentry->d_name.len > BTRFS_NAME_LEN)
4982 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4983
39e3c955 4984 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
4985 if (ret < 0)
4986 return ERR_PTR(ret);
5f39d397 4987
4df27c4d 4988 if (location.objectid == 0)
5662344b 4989 return ERR_PTR(-ENOENT);
4df27c4d
YZ
4990
4991 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4992 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4993 return inode;
4994 }
4995
4996 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4997
76dda93c 4998 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4999 ret = fixup_tree_root_location(root, dir, dentry,
5000 &location, &sub_root);
5001 if (ret < 0) {
5002 if (ret != -ENOENT)
5003 inode = ERR_PTR(ret);
5004 else
5005 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5006 } else {
73f73415 5007 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5008 }
76dda93c
YZ
5009 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5010
34d19bad 5011 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5012 down_read(&root->fs_info->cleanup_work_sem);
5013 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5014 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5015 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5016 if (ret) {
5017 iput(inode);
66b4ffd1 5018 inode = ERR_PTR(ret);
01cd3367 5019 }
c71bf099
YZ
5020 }
5021
3de4586c
CM
5022 return inode;
5023}
5024
fe15ce44 5025static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5026{
5027 struct btrfs_root *root;
848cce0d 5028 struct inode *inode = dentry->d_inode;
76dda93c 5029
848cce0d
LZ
5030 if (!inode && !IS_ROOT(dentry))
5031 inode = dentry->d_parent->d_inode;
76dda93c 5032
848cce0d
LZ
5033 if (inode) {
5034 root = BTRFS_I(inode)->root;
efefb143
YZ
5035 if (btrfs_root_refs(&root->root_item) == 0)
5036 return 1;
848cce0d
LZ
5037
5038 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5039 return 1;
efefb143 5040 }
76dda93c
YZ
5041 return 0;
5042}
5043
b4aff1f8
JB
5044static void btrfs_dentry_release(struct dentry *dentry)
5045{
5046 if (dentry->d_fsdata)
5047 kfree(dentry->d_fsdata);
5048}
5049
3de4586c 5050static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5051 unsigned int flags)
3de4586c 5052{
5662344b 5053 struct inode *inode;
a66e7cc6 5054
5662344b
TI
5055 inode = btrfs_lookup_dentry(dir, dentry);
5056 if (IS_ERR(inode)) {
5057 if (PTR_ERR(inode) == -ENOENT)
5058 inode = NULL;
5059 else
5060 return ERR_CAST(inode);
5061 }
5062
5063 return d_splice_alias(inode, dentry);
39279cc3
CM
5064}
5065
16cdcec7 5066unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5067 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5068};
5069
9cdda8d3 5070static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5071{
9cdda8d3 5072 struct inode *inode = file_inode(file);
39279cc3
CM
5073 struct btrfs_root *root = BTRFS_I(inode)->root;
5074 struct btrfs_item *item;
5075 struct btrfs_dir_item *di;
5076 struct btrfs_key key;
5f39d397 5077 struct btrfs_key found_key;
39279cc3 5078 struct btrfs_path *path;
16cdcec7
MX
5079 struct list_head ins_list;
5080 struct list_head del_list;
39279cc3 5081 int ret;
5f39d397 5082 struct extent_buffer *leaf;
39279cc3 5083 int slot;
39279cc3
CM
5084 unsigned char d_type;
5085 int over = 0;
5086 u32 di_cur;
5087 u32 di_total;
5088 u32 di_len;
5089 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5090 char tmp_name[32];
5091 char *name_ptr;
5092 int name_len;
9cdda8d3 5093 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5094
5095 /* FIXME, use a real flag for deciding about the key type */
5096 if (root->fs_info->tree_root == root)
5097 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5098
9cdda8d3
AV
5099 if (!dir_emit_dots(file, ctx))
5100 return 0;
5101
49593bfa 5102 path = btrfs_alloc_path();
16cdcec7
MX
5103 if (!path)
5104 return -ENOMEM;
ff5714cc 5105
026fd317 5106 path->reada = 1;
49593bfa 5107
16cdcec7
MX
5108 if (key_type == BTRFS_DIR_INDEX_KEY) {
5109 INIT_LIST_HEAD(&ins_list);
5110 INIT_LIST_HEAD(&del_list);
5111 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5112 }
5113
39279cc3 5114 btrfs_set_key_type(&key, key_type);
9cdda8d3 5115 key.offset = ctx->pos;
33345d01 5116 key.objectid = btrfs_ino(inode);
5f39d397 5117
39279cc3
CM
5118 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5119 if (ret < 0)
5120 goto err;
49593bfa
DW
5121
5122 while (1) {
5f39d397 5123 leaf = path->nodes[0];
39279cc3 5124 slot = path->slots[0];
b9e03af0
LZ
5125 if (slot >= btrfs_header_nritems(leaf)) {
5126 ret = btrfs_next_leaf(root, path);
5127 if (ret < 0)
5128 goto err;
5129 else if (ret > 0)
5130 break;
5131 continue;
39279cc3 5132 }
3de4586c 5133
dd3cc16b 5134 item = btrfs_item_nr(slot);
5f39d397
CM
5135 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5136
5137 if (found_key.objectid != key.objectid)
39279cc3 5138 break;
5f39d397 5139 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5140 break;
9cdda8d3 5141 if (found_key.offset < ctx->pos)
b9e03af0 5142 goto next;
16cdcec7
MX
5143 if (key_type == BTRFS_DIR_INDEX_KEY &&
5144 btrfs_should_delete_dir_index(&del_list,
5145 found_key.offset))
5146 goto next;
5f39d397 5147
9cdda8d3 5148 ctx->pos = found_key.offset;
16cdcec7 5149 is_curr = 1;
49593bfa 5150
39279cc3
CM
5151 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5152 di_cur = 0;
5f39d397 5153 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5154
5155 while (di_cur < di_total) {
5f39d397
CM
5156 struct btrfs_key location;
5157
22a94d44
JB
5158 if (verify_dir_item(root, leaf, di))
5159 break;
5160
5f39d397 5161 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5162 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5163 name_ptr = tmp_name;
5164 } else {
5165 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5166 if (!name_ptr) {
5167 ret = -ENOMEM;
5168 goto err;
5169 }
5f39d397
CM
5170 }
5171 read_extent_buffer(leaf, name_ptr,
5172 (unsigned long)(di + 1), name_len);
5173
5174 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5175 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5176
fede766f 5177
3de4586c 5178 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5179 * skip it.
5180 *
5181 * In contrast to old kernels, we insert the snapshot's
5182 * dir item and dir index after it has been created, so
5183 * we won't find a reference to our own snapshot. We
5184 * still keep the following code for backward
5185 * compatibility.
3de4586c
CM
5186 */
5187 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5188 location.objectid == root->root_key.objectid) {
5189 over = 0;
5190 goto skip;
5191 }
9cdda8d3
AV
5192 over = !dir_emit(ctx, name_ptr, name_len,
5193 location.objectid, d_type);
5f39d397 5194
3de4586c 5195skip:
5f39d397
CM
5196 if (name_ptr != tmp_name)
5197 kfree(name_ptr);
5198
39279cc3
CM
5199 if (over)
5200 goto nopos;
5103e947 5201 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5202 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5203 di_cur += di_len;
5204 di = (struct btrfs_dir_item *)((char *)di + di_len);
5205 }
b9e03af0
LZ
5206next:
5207 path->slots[0]++;
39279cc3 5208 }
49593bfa 5209
16cdcec7
MX
5210 if (key_type == BTRFS_DIR_INDEX_KEY) {
5211 if (is_curr)
9cdda8d3
AV
5212 ctx->pos++;
5213 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5214 if (ret)
5215 goto nopos;
5216 }
5217
49593bfa 5218 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5219 ctx->pos++;
5220
5221 /*
5222 * Stop new entries from being returned after we return the last
5223 * entry.
5224 *
5225 * New directory entries are assigned a strictly increasing
5226 * offset. This means that new entries created during readdir
5227 * are *guaranteed* to be seen in the future by that readdir.
5228 * This has broken buggy programs which operate on names as
5229 * they're returned by readdir. Until we re-use freed offsets
5230 * we have this hack to stop new entries from being returned
5231 * under the assumption that they'll never reach this huge
5232 * offset.
5233 *
5234 * This is being careful not to overflow 32bit loff_t unless the
5235 * last entry requires it because doing so has broken 32bit apps
5236 * in the past.
5237 */
5238 if (key_type == BTRFS_DIR_INDEX_KEY) {
5239 if (ctx->pos >= INT_MAX)
5240 ctx->pos = LLONG_MAX;
5241 else
5242 ctx->pos = INT_MAX;
5243 }
39279cc3
CM
5244nopos:
5245 ret = 0;
5246err:
16cdcec7
MX
5247 if (key_type == BTRFS_DIR_INDEX_KEY)
5248 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5249 btrfs_free_path(path);
39279cc3
CM
5250 return ret;
5251}
5252
a9185b41 5253int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5254{
5255 struct btrfs_root *root = BTRFS_I(inode)->root;
5256 struct btrfs_trans_handle *trans;
5257 int ret = 0;
0af3d00b 5258 bool nolock = false;
39279cc3 5259
72ac3c0d 5260 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5261 return 0;
5262
83eea1f1 5263 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5264 nolock = true;
0af3d00b 5265
a9185b41 5266 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5267 if (nolock)
7a7eaa40 5268 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5269 else
7a7eaa40 5270 trans = btrfs_join_transaction(root);
3612b495
TI
5271 if (IS_ERR(trans))
5272 return PTR_ERR(trans);
a698d075 5273 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5274 }
5275 return ret;
5276}
5277
5278/*
54aa1f4d 5279 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5280 * inode changes. But, it is most likely to find the inode in cache.
5281 * FIXME, needs more benchmarking...there are no reasons other than performance
5282 * to keep or drop this code.
5283 */
48a3b636 5284static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5285{
5286 struct btrfs_root *root = BTRFS_I(inode)->root;
5287 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5288 int ret;
5289
72ac3c0d 5290 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5291 return 0;
39279cc3 5292
7a7eaa40 5293 trans = btrfs_join_transaction(root);
22c44fe6
JB
5294 if (IS_ERR(trans))
5295 return PTR_ERR(trans);
8929ecfa
YZ
5296
5297 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5298 if (ret && ret == -ENOSPC) {
5299 /* whoops, lets try again with the full transaction */
5300 btrfs_end_transaction(trans, root);
5301 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5302 if (IS_ERR(trans))
5303 return PTR_ERR(trans);
8929ecfa 5304
94b60442 5305 ret = btrfs_update_inode(trans, root, inode);
94b60442 5306 }
39279cc3 5307 btrfs_end_transaction(trans, root);
16cdcec7
MX
5308 if (BTRFS_I(inode)->delayed_node)
5309 btrfs_balance_delayed_items(root);
22c44fe6
JB
5310
5311 return ret;
5312}
5313
5314/*
5315 * This is a copy of file_update_time. We need this so we can return error on
5316 * ENOSPC for updating the inode in the case of file write and mmap writes.
5317 */
e41f941a
JB
5318static int btrfs_update_time(struct inode *inode, struct timespec *now,
5319 int flags)
22c44fe6 5320{
2bc55652
AB
5321 struct btrfs_root *root = BTRFS_I(inode)->root;
5322
5323 if (btrfs_root_readonly(root))
5324 return -EROFS;
5325
e41f941a 5326 if (flags & S_VERSION)
22c44fe6 5327 inode_inc_iversion(inode);
e41f941a
JB
5328 if (flags & S_CTIME)
5329 inode->i_ctime = *now;
5330 if (flags & S_MTIME)
5331 inode->i_mtime = *now;
5332 if (flags & S_ATIME)
5333 inode->i_atime = *now;
5334 return btrfs_dirty_inode(inode);
39279cc3
CM
5335}
5336
d352ac68
CM
5337/*
5338 * find the highest existing sequence number in a directory
5339 * and then set the in-memory index_cnt variable to reflect
5340 * free sequence numbers
5341 */
aec7477b
JB
5342static int btrfs_set_inode_index_count(struct inode *inode)
5343{
5344 struct btrfs_root *root = BTRFS_I(inode)->root;
5345 struct btrfs_key key, found_key;
5346 struct btrfs_path *path;
5347 struct extent_buffer *leaf;
5348 int ret;
5349
33345d01 5350 key.objectid = btrfs_ino(inode);
aec7477b
JB
5351 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5352 key.offset = (u64)-1;
5353
5354 path = btrfs_alloc_path();
5355 if (!path)
5356 return -ENOMEM;
5357
5358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5359 if (ret < 0)
5360 goto out;
5361 /* FIXME: we should be able to handle this */
5362 if (ret == 0)
5363 goto out;
5364 ret = 0;
5365
5366 /*
5367 * MAGIC NUMBER EXPLANATION:
5368 * since we search a directory based on f_pos we have to start at 2
5369 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5370 * else has to start at 2
5371 */
5372 if (path->slots[0] == 0) {
5373 BTRFS_I(inode)->index_cnt = 2;
5374 goto out;
5375 }
5376
5377 path->slots[0]--;
5378
5379 leaf = path->nodes[0];
5380 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5381
33345d01 5382 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5383 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5384 BTRFS_I(inode)->index_cnt = 2;
5385 goto out;
5386 }
5387
5388 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5389out:
5390 btrfs_free_path(path);
5391 return ret;
5392}
5393
d352ac68
CM
5394/*
5395 * helper to find a free sequence number in a given directory. This current
5396 * code is very simple, later versions will do smarter things in the btree
5397 */
3de4586c 5398int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5399{
5400 int ret = 0;
5401
5402 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5403 ret = btrfs_inode_delayed_dir_index_count(dir);
5404 if (ret) {
5405 ret = btrfs_set_inode_index_count(dir);
5406 if (ret)
5407 return ret;
5408 }
aec7477b
JB
5409 }
5410
00e4e6b3 5411 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5412 BTRFS_I(dir)->index_cnt++;
5413
5414 return ret;
5415}
5416
39279cc3
CM
5417static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5418 struct btrfs_root *root,
aec7477b 5419 struct inode *dir,
9c58309d 5420 const char *name, int name_len,
175a4eb7
AV
5421 u64 ref_objectid, u64 objectid,
5422 umode_t mode, u64 *index)
39279cc3
CM
5423{
5424 struct inode *inode;
5f39d397 5425 struct btrfs_inode_item *inode_item;
39279cc3 5426 struct btrfs_key *location;
5f39d397 5427 struct btrfs_path *path;
9c58309d
CM
5428 struct btrfs_inode_ref *ref;
5429 struct btrfs_key key[2];
5430 u32 sizes[2];
5431 unsigned long ptr;
39279cc3 5432 int ret;
39279cc3 5433
5f39d397 5434 path = btrfs_alloc_path();
d8926bb3
MF
5435 if (!path)
5436 return ERR_PTR(-ENOMEM);
5f39d397 5437
39279cc3 5438 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5439 if (!inode) {
5440 btrfs_free_path(path);
39279cc3 5441 return ERR_PTR(-ENOMEM);
8fb27640 5442 }
39279cc3 5443
581bb050
LZ
5444 /*
5445 * we have to initialize this early, so we can reclaim the inode
5446 * number if we fail afterwards in this function.
5447 */
5448 inode->i_ino = objectid;
5449
aec7477b 5450 if (dir) {
1abe9b8a 5451 trace_btrfs_inode_request(dir);
5452
3de4586c 5453 ret = btrfs_set_inode_index(dir, index);
09771430 5454 if (ret) {
8fb27640 5455 btrfs_free_path(path);
09771430 5456 iput(inode);
aec7477b 5457 return ERR_PTR(ret);
09771430 5458 }
aec7477b
JB
5459 }
5460 /*
5461 * index_cnt is ignored for everything but a dir,
5462 * btrfs_get_inode_index_count has an explanation for the magic
5463 * number
5464 */
5465 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5466 BTRFS_I(inode)->root = root;
e02119d5 5467 BTRFS_I(inode)->generation = trans->transid;
76195853 5468 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5469
5dc562c5
JB
5470 /*
5471 * We could have gotten an inode number from somebody who was fsynced
5472 * and then removed in this same transaction, so let's just set full
5473 * sync since it will be a full sync anyway and this will blow away the
5474 * old info in the log.
5475 */
5476 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5477
9c58309d
CM
5478 key[0].objectid = objectid;
5479 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5480 key[0].offset = 0;
5481
f186373f
MF
5482 /*
5483 * Start new inodes with an inode_ref. This is slightly more
5484 * efficient for small numbers of hard links since they will
5485 * be packed into one item. Extended refs will kick in if we
5486 * add more hard links than can fit in the ref item.
5487 */
9c58309d
CM
5488 key[1].objectid = objectid;
5489 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5490 key[1].offset = ref_objectid;
5491
5492 sizes[0] = sizeof(struct btrfs_inode_item);
5493 sizes[1] = name_len + sizeof(*ref);
5494
b9473439 5495 path->leave_spinning = 1;
9c58309d
CM
5496 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5497 if (ret != 0)
5f39d397
CM
5498 goto fail;
5499
ecc11fab 5500 inode_init_owner(inode, dir, mode);
a76a3cd4 5501 inode_set_bytes(inode, 0);
39279cc3 5502 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5503 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5504 struct btrfs_inode_item);
293f7e07
LZ
5505 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5506 sizeof(*inode_item));
e02119d5 5507 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5508
5509 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5510 struct btrfs_inode_ref);
5511 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5512 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5513 ptr = (unsigned long)(ref + 1);
5514 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5515
5f39d397
CM
5516 btrfs_mark_buffer_dirty(path->nodes[0]);
5517 btrfs_free_path(path);
5518
39279cc3
CM
5519 location = &BTRFS_I(inode)->location;
5520 location->objectid = objectid;
39279cc3
CM
5521 location->offset = 0;
5522 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5523
6cbff00f
CH
5524 btrfs_inherit_iflags(inode, dir);
5525
569254b0 5526 if (S_ISREG(mode)) {
94272164
CM
5527 if (btrfs_test_opt(root, NODATASUM))
5528 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5529 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5530 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5531 BTRFS_INODE_NODATASUM;
94272164
CM
5532 }
5533
778ba82b 5534 btrfs_insert_inode_hash(inode);
5d4f98a2 5535 inode_tree_add(inode);
1abe9b8a 5536
5537 trace_btrfs_inode_new(inode);
1973f0fa 5538 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5539
8ea05e3a
AB
5540 btrfs_update_root_times(trans, root);
5541
39279cc3 5542 return inode;
5f39d397 5543fail:
aec7477b
JB
5544 if (dir)
5545 BTRFS_I(dir)->index_cnt--;
5f39d397 5546 btrfs_free_path(path);
09771430 5547 iput(inode);
5f39d397 5548 return ERR_PTR(ret);
39279cc3
CM
5549}
5550
5551static inline u8 btrfs_inode_type(struct inode *inode)
5552{
5553 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5554}
5555
d352ac68
CM
5556/*
5557 * utility function to add 'inode' into 'parent_inode' with
5558 * a give name and a given sequence number.
5559 * if 'add_backref' is true, also insert a backref from the
5560 * inode to the parent directory.
5561 */
e02119d5
CM
5562int btrfs_add_link(struct btrfs_trans_handle *trans,
5563 struct inode *parent_inode, struct inode *inode,
5564 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5565{
4df27c4d 5566 int ret = 0;
39279cc3 5567 struct btrfs_key key;
e02119d5 5568 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5569 u64 ino = btrfs_ino(inode);
5570 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5571
33345d01 5572 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5573 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5574 } else {
33345d01 5575 key.objectid = ino;
4df27c4d
YZ
5576 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5577 key.offset = 0;
5578 }
5579
33345d01 5580 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5581 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5582 key.objectid, root->root_key.objectid,
33345d01 5583 parent_ino, index, name, name_len);
4df27c4d 5584 } else if (add_backref) {
33345d01
LZ
5585 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5586 parent_ino, index);
4df27c4d 5587 }
39279cc3 5588
79787eaa
JM
5589 /* Nothing to clean up yet */
5590 if (ret)
5591 return ret;
4df27c4d 5592
79787eaa
JM
5593 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5594 parent_inode, &key,
5595 btrfs_inode_type(inode), index);
9c52057c 5596 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5597 goto fail_dir_item;
5598 else if (ret) {
5599 btrfs_abort_transaction(trans, root, ret);
5600 return ret;
39279cc3 5601 }
79787eaa
JM
5602
5603 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5604 name_len * 2);
0c4d2d95 5605 inode_inc_iversion(parent_inode);
79787eaa
JM
5606 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5607 ret = btrfs_update_inode(trans, root, parent_inode);
5608 if (ret)
5609 btrfs_abort_transaction(trans, root, ret);
39279cc3 5610 return ret;
fe66a05a
CM
5611
5612fail_dir_item:
5613 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5614 u64 local_index;
5615 int err;
5616 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5617 key.objectid, root->root_key.objectid,
5618 parent_ino, &local_index, name, name_len);
5619
5620 } else if (add_backref) {
5621 u64 local_index;
5622 int err;
5623
5624 err = btrfs_del_inode_ref(trans, root, name, name_len,
5625 ino, parent_ino, &local_index);
5626 }
5627 return ret;
39279cc3
CM
5628}
5629
5630static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5631 struct inode *dir, struct dentry *dentry,
5632 struct inode *inode, int backref, u64 index)
39279cc3 5633{
a1b075d2
JB
5634 int err = btrfs_add_link(trans, dir, inode,
5635 dentry->d_name.name, dentry->d_name.len,
5636 backref, index);
39279cc3
CM
5637 if (err > 0)
5638 err = -EEXIST;
5639 return err;
5640}
5641
618e21d5 5642static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5643 umode_t mode, dev_t rdev)
618e21d5
JB
5644{
5645 struct btrfs_trans_handle *trans;
5646 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5647 struct inode *inode = NULL;
618e21d5
JB
5648 int err;
5649 int drop_inode = 0;
5650 u64 objectid;
00e4e6b3 5651 u64 index = 0;
618e21d5
JB
5652
5653 if (!new_valid_dev(rdev))
5654 return -EINVAL;
5655
9ed74f2d
JB
5656 /*
5657 * 2 for inode item and ref
5658 * 2 for dir items
5659 * 1 for xattr if selinux is on
5660 */
a22285a6
YZ
5661 trans = btrfs_start_transaction(root, 5);
5662 if (IS_ERR(trans))
5663 return PTR_ERR(trans);
1832a6d5 5664
581bb050
LZ
5665 err = btrfs_find_free_ino(root, &objectid);
5666 if (err)
5667 goto out_unlock;
5668
aec7477b 5669 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5670 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5671 mode, &index);
7cf96da3
TI
5672 if (IS_ERR(inode)) {
5673 err = PTR_ERR(inode);
618e21d5 5674 goto out_unlock;
7cf96da3 5675 }
618e21d5 5676
2a7dba39 5677 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5678 if (err) {
5679 drop_inode = 1;
5680 goto out_unlock;
5681 }
5682
ad19db71
CS
5683 /*
5684 * If the active LSM wants to access the inode during
5685 * d_instantiate it needs these. Smack checks to see
5686 * if the filesystem supports xattrs by looking at the
5687 * ops vector.
5688 */
5689
5690 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5691 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5692 if (err)
5693 drop_inode = 1;
5694 else {
618e21d5 5695 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5696 btrfs_update_inode(trans, root, inode);
08c422c2 5697 d_instantiate(dentry, inode);
618e21d5 5698 }
618e21d5 5699out_unlock:
7ad85bb7 5700 btrfs_end_transaction(trans, root);
b53d3f5d 5701 btrfs_btree_balance_dirty(root);
618e21d5
JB
5702 if (drop_inode) {
5703 inode_dec_link_count(inode);
5704 iput(inode);
5705 }
618e21d5
JB
5706 return err;
5707}
5708
39279cc3 5709static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5710 umode_t mode, bool excl)
39279cc3
CM
5711{
5712 struct btrfs_trans_handle *trans;
5713 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5714 struct inode *inode = NULL;
43baa579 5715 int drop_inode_on_err = 0;
a22285a6 5716 int err;
39279cc3 5717 u64 objectid;
00e4e6b3 5718 u64 index = 0;
39279cc3 5719
9ed74f2d
JB
5720 /*
5721 * 2 for inode item and ref
5722 * 2 for dir items
5723 * 1 for xattr if selinux is on
5724 */
a22285a6
YZ
5725 trans = btrfs_start_transaction(root, 5);
5726 if (IS_ERR(trans))
5727 return PTR_ERR(trans);
9ed74f2d 5728
581bb050
LZ
5729 err = btrfs_find_free_ino(root, &objectid);
5730 if (err)
5731 goto out_unlock;
5732
aec7477b 5733 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5734 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5735 mode, &index);
7cf96da3
TI
5736 if (IS_ERR(inode)) {
5737 err = PTR_ERR(inode);
39279cc3 5738 goto out_unlock;
7cf96da3 5739 }
43baa579 5740 drop_inode_on_err = 1;
39279cc3 5741
2a7dba39 5742 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5743 if (err)
33268eaf 5744 goto out_unlock;
33268eaf 5745
9185aa58
FB
5746 err = btrfs_update_inode(trans, root, inode);
5747 if (err)
5748 goto out_unlock;
5749
ad19db71
CS
5750 /*
5751 * If the active LSM wants to access the inode during
5752 * d_instantiate it needs these. Smack checks to see
5753 * if the filesystem supports xattrs by looking at the
5754 * ops vector.
5755 */
5756 inode->i_fop = &btrfs_file_operations;
5757 inode->i_op = &btrfs_file_inode_operations;
5758
a1b075d2 5759 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5760 if (err)
43baa579
FB
5761 goto out_unlock;
5762
5763 inode->i_mapping->a_ops = &btrfs_aops;
5764 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5765 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5766 d_instantiate(dentry, inode);
5767
39279cc3 5768out_unlock:
7ad85bb7 5769 btrfs_end_transaction(trans, root);
43baa579 5770 if (err && drop_inode_on_err) {
39279cc3
CM
5771 inode_dec_link_count(inode);
5772 iput(inode);
5773 }
b53d3f5d 5774 btrfs_btree_balance_dirty(root);
39279cc3
CM
5775 return err;
5776}
5777
5778static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5779 struct dentry *dentry)
5780{
5781 struct btrfs_trans_handle *trans;
5782 struct btrfs_root *root = BTRFS_I(dir)->root;
5783 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5784 u64 index;
39279cc3
CM
5785 int err;
5786 int drop_inode = 0;
5787
4a8be425
TH
5788 /* do not allow sys_link's with other subvols of the same device */
5789 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5790 return -EXDEV;
4a8be425 5791
f186373f 5792 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5793 return -EMLINK;
4a8be425 5794
3de4586c 5795 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5796 if (err)
5797 goto fail;
5798
a22285a6 5799 /*
7e6b6465 5800 * 2 items for inode and inode ref
a22285a6 5801 * 2 items for dir items
7e6b6465 5802 * 1 item for parent inode
a22285a6 5803 */
7e6b6465 5804 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5805 if (IS_ERR(trans)) {
5806 err = PTR_ERR(trans);
5807 goto fail;
5808 }
5f39d397 5809
8b558c5f 5810 inc_nlink(inode);
0c4d2d95 5811 inode_inc_iversion(inode);
3153495d 5812 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5813 ihold(inode);
e9976151 5814 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5815
a1b075d2 5816 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5817
a5719521 5818 if (err) {
54aa1f4d 5819 drop_inode = 1;
a5719521 5820 } else {
10d9f309 5821 struct dentry *parent = dentry->d_parent;
a5719521 5822 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5823 if (err)
5824 goto fail;
08c422c2 5825 d_instantiate(dentry, inode);
6a912213 5826 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5827 }
39279cc3 5828
7ad85bb7 5829 btrfs_end_transaction(trans, root);
1832a6d5 5830fail:
39279cc3
CM
5831 if (drop_inode) {
5832 inode_dec_link_count(inode);
5833 iput(inode);
5834 }
b53d3f5d 5835 btrfs_btree_balance_dirty(root);
39279cc3
CM
5836 return err;
5837}
5838
18bb1db3 5839static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5840{
b9d86667 5841 struct inode *inode = NULL;
39279cc3
CM
5842 struct btrfs_trans_handle *trans;
5843 struct btrfs_root *root = BTRFS_I(dir)->root;
5844 int err = 0;
5845 int drop_on_err = 0;
b9d86667 5846 u64 objectid = 0;
00e4e6b3 5847 u64 index = 0;
39279cc3 5848
9ed74f2d
JB
5849 /*
5850 * 2 items for inode and ref
5851 * 2 items for dir items
5852 * 1 for xattr if selinux is on
5853 */
a22285a6
YZ
5854 trans = btrfs_start_transaction(root, 5);
5855 if (IS_ERR(trans))
5856 return PTR_ERR(trans);
39279cc3 5857
581bb050
LZ
5858 err = btrfs_find_free_ino(root, &objectid);
5859 if (err)
5860 goto out_fail;
5861
aec7477b 5862 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5863 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5864 S_IFDIR | mode, &index);
39279cc3
CM
5865 if (IS_ERR(inode)) {
5866 err = PTR_ERR(inode);
5867 goto out_fail;
5868 }
5f39d397 5869
39279cc3 5870 drop_on_err = 1;
33268eaf 5871
2a7dba39 5872 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5873 if (err)
5874 goto out_fail;
5875
39279cc3
CM
5876 inode->i_op = &btrfs_dir_inode_operations;
5877 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5878
dbe674a9 5879 btrfs_i_size_write(inode, 0);
39279cc3
CM
5880 err = btrfs_update_inode(trans, root, inode);
5881 if (err)
5882 goto out_fail;
5f39d397 5883
a1b075d2
JB
5884 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5885 dentry->d_name.len, 0, index);
39279cc3
CM
5886 if (err)
5887 goto out_fail;
5f39d397 5888
39279cc3
CM
5889 d_instantiate(dentry, inode);
5890 drop_on_err = 0;
39279cc3
CM
5891
5892out_fail:
7ad85bb7 5893 btrfs_end_transaction(trans, root);
39279cc3
CM
5894 if (drop_on_err)
5895 iput(inode);
b53d3f5d 5896 btrfs_btree_balance_dirty(root);
39279cc3
CM
5897 return err;
5898}
5899
d352ac68
CM
5900/* helper for btfs_get_extent. Given an existing extent in the tree,
5901 * and an extent that you want to insert, deal with overlap and insert
5902 * the new extent into the tree.
5903 */
3b951516
CM
5904static int merge_extent_mapping(struct extent_map_tree *em_tree,
5905 struct extent_map *existing,
e6dcd2dc
CM
5906 struct extent_map *em,
5907 u64 map_start, u64 map_len)
3b951516
CM
5908{
5909 u64 start_diff;
3b951516 5910
e6dcd2dc
CM
5911 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5912 start_diff = map_start - em->start;
5913 em->start = map_start;
5914 em->len = map_len;
c8b97818
CM
5915 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5916 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5917 em->block_start += start_diff;
c8b97818
CM
5918 em->block_len -= start_diff;
5919 }
09a2a8f9 5920 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5921}
5922
c8b97818
CM
5923static noinline int uncompress_inline(struct btrfs_path *path,
5924 struct inode *inode, struct page *page,
5925 size_t pg_offset, u64 extent_offset,
5926 struct btrfs_file_extent_item *item)
5927{
5928 int ret;
5929 struct extent_buffer *leaf = path->nodes[0];
5930 char *tmp;
5931 size_t max_size;
5932 unsigned long inline_size;
5933 unsigned long ptr;
261507a0 5934 int compress_type;
c8b97818
CM
5935
5936 WARN_ON(pg_offset != 0);
261507a0 5937 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5938 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5939 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 5940 btrfs_item_nr(path->slots[0]));
c8b97818 5941 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5942 if (!tmp)
5943 return -ENOMEM;
c8b97818
CM
5944 ptr = btrfs_file_extent_inline_start(item);
5945
5946 read_extent_buffer(leaf, tmp, ptr, inline_size);
5947
5b050f04 5948 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5949 ret = btrfs_decompress(compress_type, tmp, page,
5950 extent_offset, inline_size, max_size);
c8b97818 5951 if (ret) {
7ac687d9 5952 char *kaddr = kmap_atomic(page);
c8b97818
CM
5953 unsigned long copy_size = min_t(u64,
5954 PAGE_CACHE_SIZE - pg_offset,
5955 max_size - extent_offset);
5956 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5957 kunmap_atomic(kaddr);
c8b97818
CM
5958 }
5959 kfree(tmp);
5960 return 0;
5961}
5962
d352ac68
CM
5963/*
5964 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5965 * the ugly parts come from merging extents from the disk with the in-ram
5966 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5967 * where the in-ram extents might be locked pending data=ordered completion.
5968 *
5969 * This also copies inline extents directly into the page.
5970 */
d397712b 5971
a52d9a80 5972struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5973 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5974 int create)
5975{
5976 int ret;
5977 int err = 0;
db94535d 5978 u64 bytenr;
a52d9a80
CM
5979 u64 extent_start = 0;
5980 u64 extent_end = 0;
33345d01 5981 u64 objectid = btrfs_ino(inode);
a52d9a80 5982 u32 found_type;
f421950f 5983 struct btrfs_path *path = NULL;
a52d9a80
CM
5984 struct btrfs_root *root = BTRFS_I(inode)->root;
5985 struct btrfs_file_extent_item *item;
5f39d397
CM
5986 struct extent_buffer *leaf;
5987 struct btrfs_key found_key;
a52d9a80
CM
5988 struct extent_map *em = NULL;
5989 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5990 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5991 struct btrfs_trans_handle *trans = NULL;
261507a0 5992 int compress_type;
a52d9a80 5993
a52d9a80 5994again:
890871be 5995 read_lock(&em_tree->lock);
d1310b2e 5996 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5997 if (em)
5998 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5999 read_unlock(&em_tree->lock);
d1310b2e 6000
a52d9a80 6001 if (em) {
e1c4b745
CM
6002 if (em->start > start || em->start + em->len <= start)
6003 free_extent_map(em);
6004 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6005 free_extent_map(em);
6006 else
6007 goto out;
a52d9a80 6008 }
172ddd60 6009 em = alloc_extent_map();
a52d9a80 6010 if (!em) {
d1310b2e
CM
6011 err = -ENOMEM;
6012 goto out;
a52d9a80 6013 }
e6dcd2dc 6014 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6015 em->start = EXTENT_MAP_HOLE;
445a6944 6016 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6017 em->len = (u64)-1;
c8b97818 6018 em->block_len = (u64)-1;
f421950f
CM
6019
6020 if (!path) {
6021 path = btrfs_alloc_path();
026fd317
JB
6022 if (!path) {
6023 err = -ENOMEM;
6024 goto out;
6025 }
6026 /*
6027 * Chances are we'll be called again, so go ahead and do
6028 * readahead
6029 */
6030 path->reada = 1;
f421950f
CM
6031 }
6032
179e29e4
CM
6033 ret = btrfs_lookup_file_extent(trans, root, path,
6034 objectid, start, trans != NULL);
a52d9a80
CM
6035 if (ret < 0) {
6036 err = ret;
6037 goto out;
6038 }
6039
6040 if (ret != 0) {
6041 if (path->slots[0] == 0)
6042 goto not_found;
6043 path->slots[0]--;
6044 }
6045
5f39d397
CM
6046 leaf = path->nodes[0];
6047 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6048 struct btrfs_file_extent_item);
a52d9a80 6049 /* are we inside the extent that was found? */
5f39d397
CM
6050 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6051 found_type = btrfs_key_type(&found_key);
6052 if (found_key.objectid != objectid ||
a52d9a80 6053 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6054 /*
6055 * If we backup past the first extent we want to move forward
6056 * and see if there is an extent in front of us, otherwise we'll
6057 * say there is a hole for our whole search range which can
6058 * cause problems.
6059 */
6060 extent_end = start;
6061 goto next;
a52d9a80
CM
6062 }
6063
5f39d397
CM
6064 found_type = btrfs_file_extent_type(leaf, item);
6065 extent_start = found_key.offset;
261507a0 6066 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
6067 if (found_type == BTRFS_FILE_EXTENT_REG ||
6068 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6069 extent_end = extent_start +
db94535d 6070 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6071 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6072 size_t size;
6073 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 6074 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6075 }
25a50341 6076next:
9036c102
YZ
6077 if (start >= extent_end) {
6078 path->slots[0]++;
6079 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6080 ret = btrfs_next_leaf(root, path);
6081 if (ret < 0) {
6082 err = ret;
6083 goto out;
a52d9a80 6084 }
9036c102
YZ
6085 if (ret > 0)
6086 goto not_found;
6087 leaf = path->nodes[0];
a52d9a80 6088 }
9036c102
YZ
6089 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6090 if (found_key.objectid != objectid ||
6091 found_key.type != BTRFS_EXTENT_DATA_KEY)
6092 goto not_found;
6093 if (start + len <= found_key.offset)
6094 goto not_found;
6095 em->start = start;
70c8a91c 6096 em->orig_start = start;
9036c102
YZ
6097 em->len = found_key.offset - start;
6098 goto not_found_em;
6099 }
6100
cc95bef6 6101 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6102 if (found_type == BTRFS_FILE_EXTENT_REG ||
6103 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6104 em->start = extent_start;
6105 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6106 em->orig_start = extent_start -
6107 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6108 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6109 item);
db94535d
CM
6110 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6111 if (bytenr == 0) {
5f39d397 6112 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6113 goto insert;
6114 }
261507a0 6115 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6116 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6117 em->compress_type = compress_type;
c8b97818 6118 em->block_start = bytenr;
b4939680 6119 em->block_len = em->orig_block_len;
c8b97818
CM
6120 } else {
6121 bytenr += btrfs_file_extent_offset(leaf, item);
6122 em->block_start = bytenr;
6123 em->block_len = em->len;
d899e052
YZ
6124 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6125 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6126 }
a52d9a80
CM
6127 goto insert;
6128 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6129 unsigned long ptr;
a52d9a80 6130 char *map;
3326d1b0
CM
6131 size_t size;
6132 size_t extent_offset;
6133 size_t copy_size;
a52d9a80 6134
689f9346 6135 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6136 if (!page || create) {
689f9346 6137 em->start = extent_start;
9036c102 6138 em->len = extent_end - extent_start;
689f9346
Y
6139 goto out;
6140 }
5f39d397 6141
9036c102
YZ
6142 size = btrfs_file_extent_inline_len(leaf, item);
6143 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6144 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6145 size - extent_offset);
3326d1b0 6146 em->start = extent_start + extent_offset;
fda2832f 6147 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6148 em->orig_block_len = em->len;
70c8a91c 6149 em->orig_start = em->start;
261507a0 6150 if (compress_type) {
c8b97818 6151 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6152 em->compress_type = compress_type;
6153 }
689f9346 6154 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6155 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6156 if (btrfs_file_extent_compression(leaf, item) !=
6157 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6158 ret = uncompress_inline(path, inode, page,
6159 pg_offset,
6160 extent_offset, item);
79787eaa 6161 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6162 } else {
6163 map = kmap(page);
6164 read_extent_buffer(leaf, map + pg_offset, ptr,
6165 copy_size);
93c82d57
CM
6166 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6167 memset(map + pg_offset + copy_size, 0,
6168 PAGE_CACHE_SIZE - pg_offset -
6169 copy_size);
6170 }
c8b97818
CM
6171 kunmap(page);
6172 }
179e29e4
CM
6173 flush_dcache_page(page);
6174 } else if (create && PageUptodate(page)) {
6bf7e080 6175 BUG();
179e29e4
CM
6176 if (!trans) {
6177 kunmap(page);
6178 free_extent_map(em);
6179 em = NULL;
ff5714cc 6180
b3b4aa74 6181 btrfs_release_path(path);
7a7eaa40 6182 trans = btrfs_join_transaction(root);
ff5714cc 6183
3612b495
TI
6184 if (IS_ERR(trans))
6185 return ERR_CAST(trans);
179e29e4
CM
6186 goto again;
6187 }
c8b97818 6188 map = kmap(page);
70dec807 6189 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6190 copy_size);
c8b97818 6191 kunmap(page);
179e29e4 6192 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6193 }
d1310b2e 6194 set_extent_uptodate(io_tree, em->start,
507903b8 6195 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6196 goto insert;
6197 } else {
31b1a2bd 6198 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6199 }
6200not_found:
6201 em->start = start;
70c8a91c 6202 em->orig_start = start;
d1310b2e 6203 em->len = len;
a52d9a80 6204not_found_em:
5f39d397 6205 em->block_start = EXTENT_MAP_HOLE;
9036c102 6206 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6207insert:
b3b4aa74 6208 btrfs_release_path(path);
d1310b2e 6209 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6210 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6211 em->start, em->len, start, len);
a52d9a80
CM
6212 err = -EIO;
6213 goto out;
6214 }
d1310b2e
CM
6215
6216 err = 0;
890871be 6217 write_lock(&em_tree->lock);
09a2a8f9 6218 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6219 /* it is possible that someone inserted the extent into the tree
6220 * while we had the lock dropped. It is also possible that
6221 * an overlapping map exists in the tree
6222 */
a52d9a80 6223 if (ret == -EEXIST) {
3b951516 6224 struct extent_map *existing;
e6dcd2dc
CM
6225
6226 ret = 0;
6227
3b951516 6228 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6229 if (existing && (existing->start > start ||
6230 existing->start + existing->len <= start)) {
6231 free_extent_map(existing);
6232 existing = NULL;
6233 }
3b951516
CM
6234 if (!existing) {
6235 existing = lookup_extent_mapping(em_tree, em->start,
6236 em->len);
6237 if (existing) {
6238 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6239 em, start,
6240 root->sectorsize);
3b951516
CM
6241 free_extent_map(existing);
6242 if (err) {
6243 free_extent_map(em);
6244 em = NULL;
6245 }
6246 } else {
6247 err = -EIO;
3b951516
CM
6248 free_extent_map(em);
6249 em = NULL;
6250 }
6251 } else {
6252 free_extent_map(em);
6253 em = existing;
e6dcd2dc 6254 err = 0;
a52d9a80 6255 }
a52d9a80 6256 }
890871be 6257 write_unlock(&em_tree->lock);
a52d9a80 6258out:
1abe9b8a 6259
4cd8587c 6260 trace_btrfs_get_extent(root, em);
1abe9b8a 6261
f421950f
CM
6262 if (path)
6263 btrfs_free_path(path);
a52d9a80
CM
6264 if (trans) {
6265 ret = btrfs_end_transaction(trans, root);
d397712b 6266 if (!err)
a52d9a80
CM
6267 err = ret;
6268 }
a52d9a80
CM
6269 if (err) {
6270 free_extent_map(em);
a52d9a80
CM
6271 return ERR_PTR(err);
6272 }
79787eaa 6273 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6274 return em;
6275}
6276
ec29ed5b
CM
6277struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6278 size_t pg_offset, u64 start, u64 len,
6279 int create)
6280{
6281 struct extent_map *em;
6282 struct extent_map *hole_em = NULL;
6283 u64 range_start = start;
6284 u64 end;
6285 u64 found;
6286 u64 found_end;
6287 int err = 0;
6288
6289 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6290 if (IS_ERR(em))
6291 return em;
6292 if (em) {
6293 /*
f9e4fb53
LB
6294 * if our em maps to
6295 * - a hole or
6296 * - a pre-alloc extent,
6297 * there might actually be delalloc bytes behind it.
ec29ed5b 6298 */
f9e4fb53
LB
6299 if (em->block_start != EXTENT_MAP_HOLE &&
6300 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6301 return em;
6302 else
6303 hole_em = em;
6304 }
6305
6306 /* check to see if we've wrapped (len == -1 or similar) */
6307 end = start + len;
6308 if (end < start)
6309 end = (u64)-1;
6310 else
6311 end -= 1;
6312
6313 em = NULL;
6314
6315 /* ok, we didn't find anything, lets look for delalloc */
6316 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6317 end, len, EXTENT_DELALLOC, 1);
6318 found_end = range_start + found;
6319 if (found_end < range_start)
6320 found_end = (u64)-1;
6321
6322 /*
6323 * we didn't find anything useful, return
6324 * the original results from get_extent()
6325 */
6326 if (range_start > end || found_end <= start) {
6327 em = hole_em;
6328 hole_em = NULL;
6329 goto out;
6330 }
6331
6332 /* adjust the range_start to make sure it doesn't
6333 * go backwards from the start they passed in
6334 */
67871254 6335 range_start = max(start, range_start);
ec29ed5b
CM
6336 found = found_end - range_start;
6337
6338 if (found > 0) {
6339 u64 hole_start = start;
6340 u64 hole_len = len;
6341
172ddd60 6342 em = alloc_extent_map();
ec29ed5b
CM
6343 if (!em) {
6344 err = -ENOMEM;
6345 goto out;
6346 }
6347 /*
6348 * when btrfs_get_extent can't find anything it
6349 * returns one huge hole
6350 *
6351 * make sure what it found really fits our range, and
6352 * adjust to make sure it is based on the start from
6353 * the caller
6354 */
6355 if (hole_em) {
6356 u64 calc_end = extent_map_end(hole_em);
6357
6358 if (calc_end <= start || (hole_em->start > end)) {
6359 free_extent_map(hole_em);
6360 hole_em = NULL;
6361 } else {
6362 hole_start = max(hole_em->start, start);
6363 hole_len = calc_end - hole_start;
6364 }
6365 }
6366 em->bdev = NULL;
6367 if (hole_em && range_start > hole_start) {
6368 /* our hole starts before our delalloc, so we
6369 * have to return just the parts of the hole
6370 * that go until the delalloc starts
6371 */
6372 em->len = min(hole_len,
6373 range_start - hole_start);
6374 em->start = hole_start;
6375 em->orig_start = hole_start;
6376 /*
6377 * don't adjust block start at all,
6378 * it is fixed at EXTENT_MAP_HOLE
6379 */
6380 em->block_start = hole_em->block_start;
6381 em->block_len = hole_len;
f9e4fb53
LB
6382 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6383 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6384 } else {
6385 em->start = range_start;
6386 em->len = found;
6387 em->orig_start = range_start;
6388 em->block_start = EXTENT_MAP_DELALLOC;
6389 em->block_len = found;
6390 }
6391 } else if (hole_em) {
6392 return hole_em;
6393 }
6394out:
6395
6396 free_extent_map(hole_em);
6397 if (err) {
6398 free_extent_map(em);
6399 return ERR_PTR(err);
6400 }
6401 return em;
6402}
6403
4b46fce2
JB
6404static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6405 u64 start, u64 len)
6406{
6407 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6408 struct extent_map *em;
4b46fce2
JB
6409 struct btrfs_key ins;
6410 u64 alloc_hint;
6411 int ret;
4b46fce2 6412
4b46fce2 6413 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6414 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
81c9ad23 6415 alloc_hint, &ins, 1);
00361589
JB
6416 if (ret)
6417 return ERR_PTR(ret);
4b46fce2 6418
70c8a91c 6419 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6420 ins.offset, ins.offset, ins.offset, 0);
00361589
JB
6421 if (IS_ERR(em)) {
6422 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6423 return em;
6424 }
4b46fce2
JB
6425
6426 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6427 ins.offset, ins.offset, 0);
6428 if (ret) {
6429 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
00361589
JB
6430 free_extent_map(em);
6431 return ERR_PTR(ret);
4b46fce2 6432 }
00361589 6433
4b46fce2
JB
6434 return em;
6435}
6436
46bfbb5c
CM
6437/*
6438 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6439 * block must be cow'd
6440 */
00361589 6441noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6442 u64 *orig_start, u64 *orig_block_len,
6443 u64 *ram_bytes)
46bfbb5c 6444{
00361589 6445 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6446 struct btrfs_path *path;
6447 int ret;
6448 struct extent_buffer *leaf;
6449 struct btrfs_root *root = BTRFS_I(inode)->root;
6450 struct btrfs_file_extent_item *fi;
6451 struct btrfs_key key;
6452 u64 disk_bytenr;
6453 u64 backref_offset;
6454 u64 extent_end;
6455 u64 num_bytes;
6456 int slot;
6457 int found_type;
7ee9e440 6458 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
46bfbb5c
CM
6459 path = btrfs_alloc_path();
6460 if (!path)
6461 return -ENOMEM;
6462
00361589 6463 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6464 offset, 0);
6465 if (ret < 0)
6466 goto out;
6467
6468 slot = path->slots[0];
6469 if (ret == 1) {
6470 if (slot == 0) {
6471 /* can't find the item, must cow */
6472 ret = 0;
6473 goto out;
6474 }
6475 slot--;
6476 }
6477 ret = 0;
6478 leaf = path->nodes[0];
6479 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6480 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6481 key.type != BTRFS_EXTENT_DATA_KEY) {
6482 /* not our file or wrong item type, must cow */
6483 goto out;
6484 }
6485
6486 if (key.offset > offset) {
6487 /* Wrong offset, must cow */
6488 goto out;
6489 }
6490
6491 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6492 found_type = btrfs_file_extent_type(leaf, fi);
6493 if (found_type != BTRFS_FILE_EXTENT_REG &&
6494 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6495 /* not a regular extent, must cow */
6496 goto out;
6497 }
7ee9e440
JB
6498
6499 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6500 goto out;
6501
46bfbb5c 6502 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6503 if (disk_bytenr == 0)
6504 goto out;
6505
6506 if (btrfs_file_extent_compression(leaf, fi) ||
6507 btrfs_file_extent_encryption(leaf, fi) ||
6508 btrfs_file_extent_other_encoding(leaf, fi))
6509 goto out;
6510
46bfbb5c
CM
6511 backref_offset = btrfs_file_extent_offset(leaf, fi);
6512
7ee9e440
JB
6513 if (orig_start) {
6514 *orig_start = key.offset - backref_offset;
6515 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6516 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6517 }
eb384b55 6518
46bfbb5c 6519 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
46bfbb5c
CM
6520
6521 if (btrfs_extent_readonly(root, disk_bytenr))
6522 goto out;
1bda19eb 6523 btrfs_release_path(path);
46bfbb5c
CM
6524
6525 /*
6526 * look for other files referencing this extent, if we
6527 * find any we must cow
6528 */
00361589
JB
6529 trans = btrfs_join_transaction(root);
6530 if (IS_ERR(trans)) {
6531 ret = 0;
46bfbb5c 6532 goto out;
00361589
JB
6533 }
6534
6535 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6536 key.offset - backref_offset, disk_bytenr);
6537 btrfs_end_transaction(trans, root);
6538 if (ret) {
6539 ret = 0;
6540 goto out;
6541 }
46bfbb5c
CM
6542
6543 /*
6544 * adjust disk_bytenr and num_bytes to cover just the bytes
6545 * in this extent we are about to write. If there
6546 * are any csums in that range we have to cow in order
6547 * to keep the csums correct
6548 */
6549 disk_bytenr += backref_offset;
6550 disk_bytenr += offset - key.offset;
eb384b55 6551 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6552 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6553 goto out;
6554 /*
6555 * all of the above have passed, it is safe to overwrite this extent
6556 * without cow
6557 */
eb384b55 6558 *len = num_bytes;
46bfbb5c
CM
6559 ret = 1;
6560out:
6561 btrfs_free_path(path);
6562 return ret;
6563}
6564
eb838e73
JB
6565static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6566 struct extent_state **cached_state, int writing)
6567{
6568 struct btrfs_ordered_extent *ordered;
6569 int ret = 0;
6570
6571 while (1) {
6572 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6573 0, cached_state);
6574 /*
6575 * We're concerned with the entire range that we're going to be
6576 * doing DIO to, so we need to make sure theres no ordered
6577 * extents in this range.
6578 */
6579 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6580 lockend - lockstart + 1);
6581
6582 /*
6583 * We need to make sure there are no buffered pages in this
6584 * range either, we could have raced between the invalidate in
6585 * generic_file_direct_write and locking the extent. The
6586 * invalidate needs to happen so that reads after a write do not
6587 * get stale data.
6588 */
6589 if (!ordered && (!writing ||
6590 !test_range_bit(&BTRFS_I(inode)->io_tree,
6591 lockstart, lockend, EXTENT_UPTODATE, 0,
6592 *cached_state)))
6593 break;
6594
6595 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6596 cached_state, GFP_NOFS);
6597
6598 if (ordered) {
6599 btrfs_start_ordered_extent(inode, ordered, 1);
6600 btrfs_put_ordered_extent(ordered);
6601 } else {
6602 /* Screw you mmap */
6603 ret = filemap_write_and_wait_range(inode->i_mapping,
6604 lockstart,
6605 lockend);
6606 if (ret)
6607 break;
6608
6609 /*
6610 * If we found a page that couldn't be invalidated just
6611 * fall back to buffered.
6612 */
6613 ret = invalidate_inode_pages2_range(inode->i_mapping,
6614 lockstart >> PAGE_CACHE_SHIFT,
6615 lockend >> PAGE_CACHE_SHIFT);
6616 if (ret)
6617 break;
6618 }
6619
6620 cond_resched();
6621 }
6622
6623 return ret;
6624}
6625
69ffb543
JB
6626static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6627 u64 len, u64 orig_start,
6628 u64 block_start, u64 block_len,
cc95bef6
JB
6629 u64 orig_block_len, u64 ram_bytes,
6630 int type)
69ffb543
JB
6631{
6632 struct extent_map_tree *em_tree;
6633 struct extent_map *em;
6634 struct btrfs_root *root = BTRFS_I(inode)->root;
6635 int ret;
6636
6637 em_tree = &BTRFS_I(inode)->extent_tree;
6638 em = alloc_extent_map();
6639 if (!em)
6640 return ERR_PTR(-ENOMEM);
6641
6642 em->start = start;
6643 em->orig_start = orig_start;
2ab28f32
JB
6644 em->mod_start = start;
6645 em->mod_len = len;
69ffb543
JB
6646 em->len = len;
6647 em->block_len = block_len;
6648 em->block_start = block_start;
6649 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6650 em->orig_block_len = orig_block_len;
cc95bef6 6651 em->ram_bytes = ram_bytes;
70c8a91c 6652 em->generation = -1;
69ffb543
JB
6653 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6654 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6655 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6656
6657 do {
6658 btrfs_drop_extent_cache(inode, em->start,
6659 em->start + em->len - 1, 0);
6660 write_lock(&em_tree->lock);
09a2a8f9 6661 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6662 write_unlock(&em_tree->lock);
6663 } while (ret == -EEXIST);
6664
6665 if (ret) {
6666 free_extent_map(em);
6667 return ERR_PTR(ret);
6668 }
6669
6670 return em;
6671}
6672
6673
4b46fce2
JB
6674static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6675 struct buffer_head *bh_result, int create)
6676{
6677 struct extent_map *em;
6678 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6679 struct extent_state *cached_state = NULL;
4b46fce2 6680 u64 start = iblock << inode->i_blkbits;
eb838e73 6681 u64 lockstart, lockend;
4b46fce2 6682 u64 len = bh_result->b_size;
eb838e73 6683 int unlock_bits = EXTENT_LOCKED;
0934856d 6684 int ret = 0;
eb838e73 6685
172a5049 6686 if (create)
eb838e73 6687 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6688 else
c329861d 6689 len = min_t(u64, len, root->sectorsize);
eb838e73 6690
c329861d
JB
6691 lockstart = start;
6692 lockend = start + len - 1;
6693
eb838e73
JB
6694 /*
6695 * If this errors out it's because we couldn't invalidate pagecache for
6696 * this range and we need to fallback to buffered.
6697 */
6698 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6699 return -ENOTBLK;
6700
4b46fce2 6701 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6702 if (IS_ERR(em)) {
6703 ret = PTR_ERR(em);
6704 goto unlock_err;
6705 }
4b46fce2
JB
6706
6707 /*
6708 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6709 * io. INLINE is special, and we could probably kludge it in here, but
6710 * it's still buffered so for safety lets just fall back to the generic
6711 * buffered path.
6712 *
6713 * For COMPRESSED we _have_ to read the entire extent in so we can
6714 * decompress it, so there will be buffering required no matter what we
6715 * do, so go ahead and fallback to buffered.
6716 *
6717 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6718 * to buffered IO. Don't blame me, this is the price we pay for using
6719 * the generic code.
6720 */
6721 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6722 em->block_start == EXTENT_MAP_INLINE) {
6723 free_extent_map(em);
eb838e73
JB
6724 ret = -ENOTBLK;
6725 goto unlock_err;
4b46fce2
JB
6726 }
6727
6728 /* Just a good old fashioned hole, return */
6729 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6730 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6731 free_extent_map(em);
eb838e73 6732 goto unlock_err;
4b46fce2
JB
6733 }
6734
6735 /*
6736 * We don't allocate a new extent in the following cases
6737 *
6738 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6739 * existing extent.
6740 * 2) The extent is marked as PREALLOC. We're good to go here and can
6741 * just use the extent.
6742 *
6743 */
46bfbb5c 6744 if (!create) {
eb838e73
JB
6745 len = min(len, em->len - (start - em->start));
6746 lockstart = start + len;
6747 goto unlock;
46bfbb5c 6748 }
4b46fce2
JB
6749
6750 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6751 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6752 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6753 int type;
6754 int ret;
eb384b55 6755 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6756
6757 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6758 type = BTRFS_ORDERED_PREALLOC;
6759 else
6760 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6761 len = min(len, em->len - (start - em->start));
4b46fce2 6762 block_start = em->block_start + (start - em->start);
46bfbb5c 6763
00361589 6764 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 6765 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6766 if (type == BTRFS_ORDERED_PREALLOC) {
6767 free_extent_map(em);
6768 em = create_pinned_em(inode, start, len,
6769 orig_start,
b4939680 6770 block_start, len,
cc95bef6
JB
6771 orig_block_len,
6772 ram_bytes, type);
00361589 6773 if (IS_ERR(em))
69ffb543 6774 goto unlock_err;
69ffb543
JB
6775 }
6776
46bfbb5c
CM
6777 ret = btrfs_add_ordered_extent_dio(inode, start,
6778 block_start, len, len, type);
46bfbb5c
CM
6779 if (ret) {
6780 free_extent_map(em);
eb838e73 6781 goto unlock_err;
46bfbb5c
CM
6782 }
6783 goto unlock;
4b46fce2 6784 }
4b46fce2 6785 }
00361589 6786
46bfbb5c
CM
6787 /*
6788 * this will cow the extent, reset the len in case we changed
6789 * it above
6790 */
6791 len = bh_result->b_size;
70c8a91c
JB
6792 free_extent_map(em);
6793 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6794 if (IS_ERR(em)) {
6795 ret = PTR_ERR(em);
6796 goto unlock_err;
6797 }
46bfbb5c
CM
6798 len = min(len, em->len - (start - em->start));
6799unlock:
4b46fce2
JB
6800 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6801 inode->i_blkbits;
46bfbb5c 6802 bh_result->b_size = len;
4b46fce2
JB
6803 bh_result->b_bdev = em->bdev;
6804 set_buffer_mapped(bh_result);
c3473e83
JB
6805 if (create) {
6806 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6807 set_buffer_new(bh_result);
6808
6809 /*
6810 * Need to update the i_size under the extent lock so buffered
6811 * readers will get the updated i_size when we unlock.
6812 */
6813 if (start + len > i_size_read(inode))
6814 i_size_write(inode, start + len);
0934856d 6815
172a5049
MX
6816 spin_lock(&BTRFS_I(inode)->lock);
6817 BTRFS_I(inode)->outstanding_extents++;
6818 spin_unlock(&BTRFS_I(inode)->lock);
6819
0934856d
MX
6820 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6821 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6822 &cached_state, GFP_NOFS);
6823 BUG_ON(ret);
c3473e83 6824 }
4b46fce2 6825
eb838e73
JB
6826 /*
6827 * In the case of write we need to clear and unlock the entire range,
6828 * in the case of read we need to unlock only the end area that we
6829 * aren't using if there is any left over space.
6830 */
24c03fa5 6831 if (lockstart < lockend) {
0934856d
MX
6832 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6833 lockend, unlock_bits, 1, 0,
6834 &cached_state, GFP_NOFS);
24c03fa5 6835 } else {
eb838e73 6836 free_extent_state(cached_state);
24c03fa5 6837 }
eb838e73 6838
4b46fce2
JB
6839 free_extent_map(em);
6840
6841 return 0;
eb838e73
JB
6842
6843unlock_err:
eb838e73
JB
6844 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6845 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6846 return ret;
4b46fce2
JB
6847}
6848
4b46fce2
JB
6849static void btrfs_endio_direct_read(struct bio *bio, int err)
6850{
e65e1535 6851 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6852 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6853 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6854 struct inode *inode = dip->inode;
6855 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6856 struct bio *dio_bio;
facc8a22
MX
6857 u32 *csums = (u32 *)dip->csum;
6858 int index = 0;
4b46fce2 6859 u64 start;
4b46fce2
JB
6860
6861 start = dip->logical_offset;
6862 do {
6863 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6864 struct page *page = bvec->bv_page;
6865 char *kaddr;
6866 u32 csum = ~(u32)0;
6867 unsigned long flags;
6868
6869 local_irq_save(flags);
7ac687d9 6870 kaddr = kmap_atomic(page);
b0496686 6871 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6872 csum, bvec->bv_len);
6873 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6874 kunmap_atomic(kaddr);
4b46fce2
JB
6875 local_irq_restore(flags);
6876
6877 flush_dcache_page(bvec->bv_page);
facc8a22
MX
6878 if (csum != csums[index]) {
6879 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c
GU
6880 btrfs_ino(inode), start, csum,
6881 csums[index]);
4b46fce2
JB
6882 err = -EIO;
6883 }
6884 }
6885
6886 start += bvec->bv_len;
4b46fce2 6887 bvec++;
facc8a22 6888 index++;
4b46fce2
JB
6889 } while (bvec <= bvec_end);
6890
6891 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6892 dip->logical_offset + dip->bytes - 1);
9be3395b 6893 dio_bio = dip->dio_bio;
4b46fce2 6894
4b46fce2 6895 kfree(dip);
c0da7aa1
JB
6896
6897 /* If we had a csum failure make sure to clear the uptodate flag */
6898 if (err)
9be3395b
CM
6899 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6900 dio_end_io(dio_bio, err);
6901 bio_put(bio);
4b46fce2
JB
6902}
6903
6904static void btrfs_endio_direct_write(struct bio *bio, int err)
6905{
6906 struct btrfs_dio_private *dip = bio->bi_private;
6907 struct inode *inode = dip->inode;
6908 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6909 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6910 u64 ordered_offset = dip->logical_offset;
6911 u64 ordered_bytes = dip->bytes;
9be3395b 6912 struct bio *dio_bio;
4b46fce2
JB
6913 int ret;
6914
6915 if (err)
6916 goto out_done;
163cf09c
CM
6917again:
6918 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6919 &ordered_offset,
5fd02043 6920 ordered_bytes, !err);
4b46fce2 6921 if (!ret)
163cf09c 6922 goto out_test;
4b46fce2 6923
5fd02043
JB
6924 ordered->work.func = finish_ordered_fn;
6925 ordered->work.flags = 0;
6926 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6927 &ordered->work);
163cf09c
CM
6928out_test:
6929 /*
6930 * our bio might span multiple ordered extents. If we haven't
6931 * completed the accounting for the whole dio, go back and try again
6932 */
6933 if (ordered_offset < dip->logical_offset + dip->bytes) {
6934 ordered_bytes = dip->logical_offset + dip->bytes -
6935 ordered_offset;
5fd02043 6936 ordered = NULL;
163cf09c
CM
6937 goto again;
6938 }
4b46fce2 6939out_done:
9be3395b 6940 dio_bio = dip->dio_bio;
4b46fce2 6941
4b46fce2 6942 kfree(dip);
c0da7aa1
JB
6943
6944 /* If we had an error make sure to clear the uptodate flag */
6945 if (err)
9be3395b
CM
6946 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6947 dio_end_io(dio_bio, err);
6948 bio_put(bio);
4b46fce2
JB
6949}
6950
eaf25d93
CM
6951static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6952 struct bio *bio, int mirror_num,
6953 unsigned long bio_flags, u64 offset)
6954{
6955 int ret;
6956 struct btrfs_root *root = BTRFS_I(inode)->root;
6957 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6958 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6959 return 0;
6960}
6961
e65e1535
MX
6962static void btrfs_end_dio_bio(struct bio *bio, int err)
6963{
6964 struct btrfs_dio_private *dip = bio->bi_private;
6965
6966 if (err) {
33345d01 6967 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6968 "sector %#Lx len %u err no %d\n",
c1c9ff7c 6969 btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6970 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6971 dip->errors = 1;
6972
6973 /*
6974 * before atomic variable goto zero, we must make sure
6975 * dip->errors is perceived to be set.
6976 */
6977 smp_mb__before_atomic_dec();
6978 }
6979
6980 /* if there are more bios still pending for this dio, just exit */
6981 if (!atomic_dec_and_test(&dip->pending_bios))
6982 goto out;
6983
9be3395b 6984 if (dip->errors) {
e65e1535 6985 bio_io_error(dip->orig_bio);
9be3395b
CM
6986 } else {
6987 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
6988 bio_endio(dip->orig_bio, 0);
6989 }
6990out:
6991 bio_put(bio);
6992}
6993
6994static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6995 u64 first_sector, gfp_t gfp_flags)
6996{
6997 int nr_vecs = bio_get_nr_vecs(bdev);
6998 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6999}
7000
7001static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7002 int rw, u64 file_offset, int skip_sum,
c329861d 7003 int async_submit)
e65e1535 7004{
facc8a22 7005 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7006 int write = rw & REQ_WRITE;
7007 struct btrfs_root *root = BTRFS_I(inode)->root;
7008 int ret;
7009
b812ce28
JB
7010 if (async_submit)
7011 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7012
e65e1535 7013 bio_get(bio);
5fd02043
JB
7014
7015 if (!write) {
7016 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7017 if (ret)
7018 goto err;
7019 }
e65e1535 7020
1ae39938
JB
7021 if (skip_sum)
7022 goto map;
7023
7024 if (write && async_submit) {
e65e1535
MX
7025 ret = btrfs_wq_submit_bio(root->fs_info,
7026 inode, rw, bio, 0, 0,
7027 file_offset,
7028 __btrfs_submit_bio_start_direct_io,
7029 __btrfs_submit_bio_done);
7030 goto err;
1ae39938
JB
7031 } else if (write) {
7032 /*
7033 * If we aren't doing async submit, calculate the csum of the
7034 * bio now.
7035 */
7036 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7037 if (ret)
7038 goto err;
c2db1073 7039 } else if (!skip_sum) {
facc8a22
MX
7040 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7041 file_offset);
c2db1073
TI
7042 if (ret)
7043 goto err;
7044 }
e65e1535 7045
1ae39938
JB
7046map:
7047 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7048err:
7049 bio_put(bio);
7050 return ret;
7051}
7052
7053static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7054 int skip_sum)
7055{
7056 struct inode *inode = dip->inode;
7057 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7058 struct bio *bio;
7059 struct bio *orig_bio = dip->orig_bio;
7060 struct bio_vec *bvec = orig_bio->bi_io_vec;
7061 u64 start_sector = orig_bio->bi_sector;
7062 u64 file_offset = dip->logical_offset;
7063 u64 submit_len = 0;
7064 u64 map_length;
7065 int nr_pages = 0;
e65e1535 7066 int ret = 0;
1ae39938 7067 int async_submit = 0;
e65e1535 7068
e65e1535 7069 map_length = orig_bio->bi_size;
53b381b3 7070 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7071 &map_length, NULL, 0);
7072 if (ret) {
64728bbb 7073 bio_put(orig_bio);
e65e1535
MX
7074 return -EIO;
7075 }
facc8a22 7076
02f57c7a
JB
7077 if (map_length >= orig_bio->bi_size) {
7078 bio = orig_bio;
7079 goto submit;
7080 }
7081
53b381b3
DW
7082 /* async crcs make it difficult to collect full stripe writes. */
7083 if (btrfs_get_alloc_profile(root, 1) &
7084 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7085 async_submit = 0;
7086 else
7087 async_submit = 1;
7088
02f57c7a
JB
7089 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7090 if (!bio)
7091 return -ENOMEM;
7092 bio->bi_private = dip;
7093 bio->bi_end_io = btrfs_end_dio_bio;
7094 atomic_inc(&dip->pending_bios);
7095
e65e1535
MX
7096 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7097 if (unlikely(map_length < submit_len + bvec->bv_len ||
7098 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7099 bvec->bv_offset) < bvec->bv_len)) {
7100 /*
7101 * inc the count before we submit the bio so
7102 * we know the end IO handler won't happen before
7103 * we inc the count. Otherwise, the dip might get freed
7104 * before we're done setting it up
7105 */
7106 atomic_inc(&dip->pending_bios);
7107 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7108 file_offset, skip_sum,
c329861d 7109 async_submit);
e65e1535
MX
7110 if (ret) {
7111 bio_put(bio);
7112 atomic_dec(&dip->pending_bios);
7113 goto out_err;
7114 }
7115
e65e1535
MX
7116 start_sector += submit_len >> 9;
7117 file_offset += submit_len;
7118
7119 submit_len = 0;
7120 nr_pages = 0;
7121
7122 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7123 start_sector, GFP_NOFS);
7124 if (!bio)
7125 goto out_err;
7126 bio->bi_private = dip;
7127 bio->bi_end_io = btrfs_end_dio_bio;
7128
7129 map_length = orig_bio->bi_size;
53b381b3 7130 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7131 start_sector << 9,
e65e1535
MX
7132 &map_length, NULL, 0);
7133 if (ret) {
7134 bio_put(bio);
7135 goto out_err;
7136 }
7137 } else {
7138 submit_len += bvec->bv_len;
67871254 7139 nr_pages++;
e65e1535
MX
7140 bvec++;
7141 }
7142 }
7143
02f57c7a 7144submit:
e65e1535 7145 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7146 async_submit);
e65e1535
MX
7147 if (!ret)
7148 return 0;
7149
7150 bio_put(bio);
7151out_err:
7152 dip->errors = 1;
7153 /*
7154 * before atomic variable goto zero, we must
7155 * make sure dip->errors is perceived to be set.
7156 */
7157 smp_mb__before_atomic_dec();
7158 if (atomic_dec_and_test(&dip->pending_bios))
7159 bio_io_error(dip->orig_bio);
7160
7161 /* bio_end_io() will handle error, so we needn't return it */
7162 return 0;
7163}
7164
9be3395b
CM
7165static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7166 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7167{
7168 struct btrfs_root *root = BTRFS_I(inode)->root;
7169 struct btrfs_dio_private *dip;
9be3395b 7170 struct bio *io_bio;
4b46fce2 7171 int skip_sum;
facc8a22 7172 int sum_len;
7b6d91da 7173 int write = rw & REQ_WRITE;
4b46fce2 7174 int ret = 0;
facc8a22 7175 u16 csum_size;
4b46fce2
JB
7176
7177 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7178
9be3395b 7179 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7180 if (!io_bio) {
7181 ret = -ENOMEM;
7182 goto free_ordered;
7183 }
7184
facc8a22
MX
7185 if (!skip_sum && !write) {
7186 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7187 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7188 sum_len *= csum_size;
7189 } else {
7190 sum_len = 0;
7191 }
7192
7193 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7194 if (!dip) {
7195 ret = -ENOMEM;
9be3395b 7196 goto free_io_bio;
4b46fce2 7197 }
4b46fce2 7198
9be3395b 7199 dip->private = dio_bio->bi_private;
4b46fce2
JB
7200 dip->inode = inode;
7201 dip->logical_offset = file_offset;
e6da5d2e 7202 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7203 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7204 io_bio->bi_private = dip;
e65e1535 7205 dip->errors = 0;
9be3395b
CM
7206 dip->orig_bio = io_bio;
7207 dip->dio_bio = dio_bio;
e65e1535 7208 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7209
7210 if (write)
9be3395b 7211 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7212 else
9be3395b 7213 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7214
e65e1535
MX
7215 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7216 if (!ret)
eaf25d93 7217 return;
9be3395b
CM
7218
7219free_io_bio:
7220 bio_put(io_bio);
7221
4b46fce2
JB
7222free_ordered:
7223 /*
7224 * If this is a write, we need to clean up the reserved space and kill
7225 * the ordered extent.
7226 */
7227 if (write) {
7228 struct btrfs_ordered_extent *ordered;
955256f2 7229 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7230 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7231 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7232 btrfs_free_reserved_extent(root, ordered->start,
7233 ordered->disk_len);
7234 btrfs_put_ordered_extent(ordered);
7235 btrfs_put_ordered_extent(ordered);
7236 }
9be3395b 7237 bio_endio(dio_bio, ret);
4b46fce2
JB
7238}
7239
5a5f79b5
CM
7240static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7241 const struct iovec *iov, loff_t offset,
7242 unsigned long nr_segs)
7243{
7244 int seg;
a1b75f7d 7245 int i;
5a5f79b5
CM
7246 size_t size;
7247 unsigned long addr;
7248 unsigned blocksize_mask = root->sectorsize - 1;
7249 ssize_t retval = -EINVAL;
7250 loff_t end = offset;
7251
7252 if (offset & blocksize_mask)
7253 goto out;
7254
7255 /* Check the memory alignment. Blocks cannot straddle pages */
7256 for (seg = 0; seg < nr_segs; seg++) {
7257 addr = (unsigned long)iov[seg].iov_base;
7258 size = iov[seg].iov_len;
7259 end += size;
a1b75f7d 7260 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7261 goto out;
a1b75f7d
JB
7262
7263 /* If this is a write we don't need to check anymore */
7264 if (rw & WRITE)
7265 continue;
7266
7267 /*
7268 * Check to make sure we don't have duplicate iov_base's in this
7269 * iovec, if so return EINVAL, otherwise we'll get csum errors
7270 * when reading back.
7271 */
7272 for (i = seg + 1; i < nr_segs; i++) {
7273 if (iov[seg].iov_base == iov[i].iov_base)
7274 goto out;
7275 }
5a5f79b5
CM
7276 }
7277 retval = 0;
7278out:
7279 return retval;
7280}
eb838e73 7281
16432985
CM
7282static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7283 const struct iovec *iov, loff_t offset,
7284 unsigned long nr_segs)
7285{
4b46fce2
JB
7286 struct file *file = iocb->ki_filp;
7287 struct inode *inode = file->f_mapping->host;
0934856d 7288 size_t count = 0;
2e60a51e 7289 int flags = 0;
38851cc1
MX
7290 bool wakeup = true;
7291 bool relock = false;
0934856d 7292 ssize_t ret;
4b46fce2 7293
5a5f79b5 7294 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7295 offset, nr_segs))
5a5f79b5 7296 return 0;
3f7c579c 7297
38851cc1
MX
7298 atomic_inc(&inode->i_dio_count);
7299 smp_mb__after_atomic_inc();
7300
0e267c44
JB
7301 /*
7302 * The generic stuff only does filemap_write_and_wait_range, which isn't
7303 * enough if we've written compressed pages to this area, so we need to
7304 * call btrfs_wait_ordered_range to make absolutely sure that any
7305 * outstanding dirty pages are on disk.
7306 */
7307 count = iov_length(iov, nr_segs);
0ef8b726
JB
7308 ret = btrfs_wait_ordered_range(inode, offset, count);
7309 if (ret)
7310 return ret;
0e267c44 7311
0934856d 7312 if (rw & WRITE) {
38851cc1
MX
7313 /*
7314 * If the write DIO is beyond the EOF, we need update
7315 * the isize, but it is protected by i_mutex. So we can
7316 * not unlock the i_mutex at this case.
7317 */
7318 if (offset + count <= inode->i_size) {
7319 mutex_unlock(&inode->i_mutex);
7320 relock = true;
7321 }
0934856d
MX
7322 ret = btrfs_delalloc_reserve_space(inode, count);
7323 if (ret)
38851cc1
MX
7324 goto out;
7325 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7326 &BTRFS_I(inode)->runtime_flags))) {
7327 inode_dio_done(inode);
7328 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7329 wakeup = false;
0934856d
MX
7330 }
7331
7332 ret = __blockdev_direct_IO(rw, iocb, inode,
7333 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7334 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7335 btrfs_submit_direct, flags);
0934856d
MX
7336 if (rw & WRITE) {
7337 if (ret < 0 && ret != -EIOCBQUEUED)
7338 btrfs_delalloc_release_space(inode, count);
172a5049 7339 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7340 btrfs_delalloc_release_space(inode,
7341 count - (size_t)ret);
172a5049
MX
7342 else
7343 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7344 }
38851cc1 7345out:
2e60a51e
MX
7346 if (wakeup)
7347 inode_dio_done(inode);
38851cc1
MX
7348 if (relock)
7349 mutex_lock(&inode->i_mutex);
0934856d
MX
7350
7351 return ret;
16432985
CM
7352}
7353
05dadc09
TI
7354#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7355
1506fcc8
YS
7356static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7357 __u64 start, __u64 len)
7358{
05dadc09
TI
7359 int ret;
7360
7361 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7362 if (ret)
7363 return ret;
7364
ec29ed5b 7365 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7366}
7367
a52d9a80 7368int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7369{
d1310b2e
CM
7370 struct extent_io_tree *tree;
7371 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7372 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7373}
1832a6d5 7374
a52d9a80 7375static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7376{
d1310b2e 7377 struct extent_io_tree *tree;
b888db2b
CM
7378
7379
7380 if (current->flags & PF_MEMALLOC) {
7381 redirty_page_for_writepage(wbc, page);
7382 unlock_page(page);
7383 return 0;
7384 }
d1310b2e 7385 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7386 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7387}
7388
48a3b636
ES
7389static int btrfs_writepages(struct address_space *mapping,
7390 struct writeback_control *wbc)
b293f02e 7391{
d1310b2e 7392 struct extent_io_tree *tree;
771ed689 7393
d1310b2e 7394 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7395 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7396}
7397
3ab2fb5a
CM
7398static int
7399btrfs_readpages(struct file *file, struct address_space *mapping,
7400 struct list_head *pages, unsigned nr_pages)
7401{
d1310b2e
CM
7402 struct extent_io_tree *tree;
7403 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7404 return extent_readpages(tree, mapping, pages, nr_pages,
7405 btrfs_get_extent);
7406}
e6dcd2dc 7407static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7408{
d1310b2e
CM
7409 struct extent_io_tree *tree;
7410 struct extent_map_tree *map;
a52d9a80 7411 int ret;
8c2383c3 7412
d1310b2e
CM
7413 tree = &BTRFS_I(page->mapping->host)->io_tree;
7414 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7415 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7416 if (ret == 1) {
7417 ClearPagePrivate(page);
7418 set_page_private(page, 0);
7419 page_cache_release(page);
39279cc3 7420 }
a52d9a80 7421 return ret;
39279cc3
CM
7422}
7423
e6dcd2dc
CM
7424static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7425{
98509cfc
CM
7426 if (PageWriteback(page) || PageDirty(page))
7427 return 0;
b335b003 7428 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7429}
7430
d47992f8
LC
7431static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7432 unsigned int length)
39279cc3 7433{
5fd02043 7434 struct inode *inode = page->mapping->host;
d1310b2e 7435 struct extent_io_tree *tree;
e6dcd2dc 7436 struct btrfs_ordered_extent *ordered;
2ac55d41 7437 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7438 u64 page_start = page_offset(page);
7439 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 7440 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 7441
8b62b72b
CM
7442 /*
7443 * we have the page locked, so new writeback can't start,
7444 * and the dirty bit won't be cleared while we are here.
7445 *
7446 * Wait for IO on this page so that we can safely clear
7447 * the PagePrivate2 bit and do ordered accounting
7448 */
e6dcd2dc 7449 wait_on_page_writeback(page);
8b62b72b 7450
5fd02043 7451 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7452 if (offset) {
7453 btrfs_releasepage(page, GFP_NOFS);
7454 return;
7455 }
131e404a
FDBM
7456
7457 if (!inode_evicting)
7458 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7459 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 7460 if (ordered) {
eb84ae03
CM
7461 /*
7462 * IO on this page will never be started, so we need
7463 * to account for any ordered extents now
7464 */
131e404a
FDBM
7465 if (!inode_evicting)
7466 clear_extent_bit(tree, page_start, page_end,
7467 EXTENT_DIRTY | EXTENT_DELALLOC |
7468 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7469 EXTENT_DEFRAG, 1, 0, &cached_state,
7470 GFP_NOFS);
8b62b72b
CM
7471 /*
7472 * whoever cleared the private bit is responsible
7473 * for the finish_ordered_io
7474 */
77cef2ec
JB
7475 if (TestClearPagePrivate2(page)) {
7476 struct btrfs_ordered_inode_tree *tree;
7477 u64 new_len;
7478
7479 tree = &BTRFS_I(inode)->ordered_tree;
7480
7481 spin_lock_irq(&tree->lock);
7482 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7483 new_len = page_start - ordered->file_offset;
7484 if (new_len < ordered->truncated_len)
7485 ordered->truncated_len = new_len;
7486 spin_unlock_irq(&tree->lock);
7487
7488 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7489 page_start,
7490 PAGE_CACHE_SIZE, 1))
7491 btrfs_finish_ordered_io(ordered);
8b62b72b 7492 }
e6dcd2dc 7493 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
7494 if (!inode_evicting) {
7495 cached_state = NULL;
7496 lock_extent_bits(tree, page_start, page_end, 0,
7497 &cached_state);
7498 }
7499 }
7500
7501 if (!inode_evicting) {
7502 clear_extent_bit(tree, page_start, page_end,
7503 EXTENT_LOCKED | EXTENT_DIRTY |
7504 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7505 EXTENT_DEFRAG, 1, 1,
7506 &cached_state, GFP_NOFS);
7507
7508 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 7509 }
e6dcd2dc 7510
4a096752 7511 ClearPageChecked(page);
9ad6b7bc 7512 if (PagePrivate(page)) {
9ad6b7bc
CM
7513 ClearPagePrivate(page);
7514 set_page_private(page, 0);
7515 page_cache_release(page);
7516 }
39279cc3
CM
7517}
7518
9ebefb18
CM
7519/*
7520 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7521 * called from a page fault handler when a page is first dirtied. Hence we must
7522 * be careful to check for EOF conditions here. We set the page up correctly
7523 * for a written page which means we get ENOSPC checking when writing into
7524 * holes and correct delalloc and unwritten extent mapping on filesystems that
7525 * support these features.
7526 *
7527 * We are not allowed to take the i_mutex here so we have to play games to
7528 * protect against truncate races as the page could now be beyond EOF. Because
7529 * vmtruncate() writes the inode size before removing pages, once we have the
7530 * page lock we can determine safely if the page is beyond EOF. If it is not
7531 * beyond EOF, then the page is guaranteed safe against truncation until we
7532 * unlock the page.
7533 */
c2ec175c 7534int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7535{
c2ec175c 7536 struct page *page = vmf->page;
496ad9aa 7537 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7538 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7539 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7540 struct btrfs_ordered_extent *ordered;
2ac55d41 7541 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7542 char *kaddr;
7543 unsigned long zero_start;
9ebefb18 7544 loff_t size;
1832a6d5 7545 int ret;
9998eb70 7546 int reserved = 0;
a52d9a80 7547 u64 page_start;
e6dcd2dc 7548 u64 page_end;
9ebefb18 7549
b2b5ef5c 7550 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7551 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7552 if (!ret) {
e41f941a 7553 ret = file_update_time(vma->vm_file);
9998eb70
CM
7554 reserved = 1;
7555 }
56a76f82
NP
7556 if (ret) {
7557 if (ret == -ENOMEM)
7558 ret = VM_FAULT_OOM;
7559 else /* -ENOSPC, -EIO, etc */
7560 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7561 if (reserved)
7562 goto out;
7563 goto out_noreserve;
56a76f82 7564 }
1832a6d5 7565
56a76f82 7566 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7567again:
9ebefb18 7568 lock_page(page);
9ebefb18 7569 size = i_size_read(inode);
e6dcd2dc
CM
7570 page_start = page_offset(page);
7571 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7572
9ebefb18 7573 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7574 (page_start >= size)) {
9ebefb18
CM
7575 /* page got truncated out from underneath us */
7576 goto out_unlock;
7577 }
e6dcd2dc
CM
7578 wait_on_page_writeback(page);
7579
d0082371 7580 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7581 set_page_extent_mapped(page);
7582
eb84ae03
CM
7583 /*
7584 * we can't set the delalloc bits if there are pending ordered
7585 * extents. Drop our locks and wait for them to finish
7586 */
e6dcd2dc
CM
7587 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7588 if (ordered) {
2ac55d41
JB
7589 unlock_extent_cached(io_tree, page_start, page_end,
7590 &cached_state, GFP_NOFS);
e6dcd2dc 7591 unlock_page(page);
eb84ae03 7592 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7593 btrfs_put_ordered_extent(ordered);
7594 goto again;
7595 }
7596
fbf19087
JB
7597 /*
7598 * XXX - page_mkwrite gets called every time the page is dirtied, even
7599 * if it was already dirty, so for space accounting reasons we need to
7600 * clear any delalloc bits for the range we are fixing to save. There
7601 * is probably a better way to do this, but for now keep consistent with
7602 * prepare_pages in the normal write path.
7603 */
2ac55d41 7604 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7605 EXTENT_DIRTY | EXTENT_DELALLOC |
7606 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7607 0, 0, &cached_state, GFP_NOFS);
fbf19087 7608
2ac55d41
JB
7609 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7610 &cached_state);
9ed74f2d 7611 if (ret) {
2ac55d41
JB
7612 unlock_extent_cached(io_tree, page_start, page_end,
7613 &cached_state, GFP_NOFS);
9ed74f2d
JB
7614 ret = VM_FAULT_SIGBUS;
7615 goto out_unlock;
7616 }
e6dcd2dc 7617 ret = 0;
9ebefb18
CM
7618
7619 /* page is wholly or partially inside EOF */
a52d9a80 7620 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7621 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7622 else
e6dcd2dc 7623 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7624
e6dcd2dc
CM
7625 if (zero_start != PAGE_CACHE_SIZE) {
7626 kaddr = kmap(page);
7627 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7628 flush_dcache_page(page);
7629 kunmap(page);
7630 }
247e743c 7631 ClearPageChecked(page);
e6dcd2dc 7632 set_page_dirty(page);
50a9b214 7633 SetPageUptodate(page);
5a3f23d5 7634
257c62e1
CM
7635 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7636 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7637 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7638
2ac55d41 7639 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7640
7641out_unlock:
b2b5ef5c
JK
7642 if (!ret) {
7643 sb_end_pagefault(inode->i_sb);
50a9b214 7644 return VM_FAULT_LOCKED;
b2b5ef5c 7645 }
9ebefb18 7646 unlock_page(page);
1832a6d5 7647out:
ec39e180 7648 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7649out_noreserve:
b2b5ef5c 7650 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7651 return ret;
7652}
7653
a41ad394 7654static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7655{
7656 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7657 struct btrfs_block_rsv *rsv;
a71754fc 7658 int ret = 0;
3893e33b 7659 int err = 0;
39279cc3 7660 struct btrfs_trans_handle *trans;
dbe674a9 7661 u64 mask = root->sectorsize - 1;
07127184 7662 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7663
0ef8b726
JB
7664 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7665 (u64)-1);
7666 if (ret)
7667 return ret;
39279cc3 7668
fcb80c2a
JB
7669 /*
7670 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7671 * 3 things going on here
7672 *
7673 * 1) We need to reserve space for our orphan item and the space to
7674 * delete our orphan item. Lord knows we don't want to have a dangling
7675 * orphan item because we didn't reserve space to remove it.
7676 *
7677 * 2) We need to reserve space to update our inode.
7678 *
7679 * 3) We need to have something to cache all the space that is going to
7680 * be free'd up by the truncate operation, but also have some slack
7681 * space reserved in case it uses space during the truncate (thank you
7682 * very much snapshotting).
7683 *
7684 * And we need these to all be seperate. The fact is we can use alot of
7685 * space doing the truncate, and we have no earthly idea how much space
7686 * we will use, so we need the truncate reservation to be seperate so it
7687 * doesn't end up using space reserved for updating the inode or
7688 * removing the orphan item. We also need to be able to stop the
7689 * transaction and start a new one, which means we need to be able to
7690 * update the inode several times, and we have no idea of knowing how
7691 * many times that will be, so we can't just reserve 1 item for the
7692 * entirety of the opration, so that has to be done seperately as well.
7693 * Then there is the orphan item, which does indeed need to be held on
7694 * to for the whole operation, and we need nobody to touch this reserved
7695 * space except the orphan code.
7696 *
7697 * So that leaves us with
7698 *
7699 * 1) root->orphan_block_rsv - for the orphan deletion.
7700 * 2) rsv - for the truncate reservation, which we will steal from the
7701 * transaction reservation.
7702 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7703 * updating the inode.
7704 */
66d8f3dd 7705 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7706 if (!rsv)
7707 return -ENOMEM;
4a338542 7708 rsv->size = min_size;
ca7e70f5 7709 rsv->failfast = 1;
f0cd846e 7710
907cbceb 7711 /*
07127184 7712 * 1 for the truncate slack space
907cbceb
JB
7713 * 1 for updating the inode.
7714 */
f3fe820c 7715 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7716 if (IS_ERR(trans)) {
7717 err = PTR_ERR(trans);
7718 goto out;
7719 }
f0cd846e 7720
907cbceb
JB
7721 /* Migrate the slack space for the truncate to our reserve */
7722 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7723 min_size);
fcb80c2a 7724 BUG_ON(ret);
f0cd846e 7725
5a3f23d5
CM
7726 /*
7727 * setattr is responsible for setting the ordered_data_close flag,
7728 * but that is only tested during the last file release. That
7729 * could happen well after the next commit, leaving a great big
7730 * window where new writes may get lost if someone chooses to write
7731 * to this file after truncating to zero
7732 *
7733 * The inode doesn't have any dirty data here, and so if we commit
7734 * this is a noop. If someone immediately starts writing to the inode
7735 * it is very likely we'll catch some of their writes in this
7736 * transaction, and the commit will find this file on the ordered
7737 * data list with good things to send down.
7738 *
7739 * This is a best effort solution, there is still a window where
7740 * using truncate to replace the contents of the file will
7741 * end up with a zero length file after a crash.
7742 */
72ac3c0d
JB
7743 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7744 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7745 btrfs_add_ordered_operation(trans, root, inode);
7746
5dc562c5
JB
7747 /*
7748 * So if we truncate and then write and fsync we normally would just
7749 * write the extents that changed, which is a problem if we need to
7750 * first truncate that entire inode. So set this flag so we write out
7751 * all of the extents in the inode to the sync log so we're completely
7752 * safe.
7753 */
7754 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7755 trans->block_rsv = rsv;
907cbceb 7756
8082510e
YZ
7757 while (1) {
7758 ret = btrfs_truncate_inode_items(trans, root, inode,
7759 inode->i_size,
7760 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7761 if (ret != -ENOSPC) {
3893e33b 7762 err = ret;
8082510e 7763 break;
3893e33b 7764 }
39279cc3 7765
fcb80c2a 7766 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7767 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7768 if (ret) {
7769 err = ret;
7770 break;
7771 }
ca7e70f5 7772
8082510e 7773 btrfs_end_transaction(trans, root);
b53d3f5d 7774 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7775
7776 trans = btrfs_start_transaction(root, 2);
7777 if (IS_ERR(trans)) {
7778 ret = err = PTR_ERR(trans);
7779 trans = NULL;
7780 break;
7781 }
7782
7783 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7784 rsv, min_size);
7785 BUG_ON(ret); /* shouldn't happen */
7786 trans->block_rsv = rsv;
8082510e
YZ
7787 }
7788
7789 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7790 trans->block_rsv = root->orphan_block_rsv;
8082510e 7791 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7792 if (ret)
7793 err = ret;
8082510e
YZ
7794 }
7795
917c16b2
CM
7796 if (trans) {
7797 trans->block_rsv = &root->fs_info->trans_block_rsv;
7798 ret = btrfs_update_inode(trans, root, inode);
7799 if (ret && !err)
7800 err = ret;
7b128766 7801
7ad85bb7 7802 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7803 btrfs_btree_balance_dirty(root);
917c16b2 7804 }
fcb80c2a
JB
7805
7806out:
7807 btrfs_free_block_rsv(root, rsv);
7808
3893e33b
JB
7809 if (ret && !err)
7810 err = ret;
a41ad394 7811
3893e33b 7812 return err;
39279cc3
CM
7813}
7814
d352ac68
CM
7815/*
7816 * create a new subvolume directory/inode (helper for the ioctl).
7817 */
d2fb3437 7818int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7819 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7820{
39279cc3 7821 struct inode *inode;
76dda93c 7822 int err;
00e4e6b3 7823 u64 index = 0;
39279cc3 7824
12fc9d09
FA
7825 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7826 new_dirid, new_dirid,
7827 S_IFDIR | (~current_umask() & S_IRWXUGO),
7828 &index);
54aa1f4d 7829 if (IS_ERR(inode))
f46b5a66 7830 return PTR_ERR(inode);
39279cc3
CM
7831 inode->i_op = &btrfs_dir_inode_operations;
7832 inode->i_fop = &btrfs_dir_file_operations;
7833
bfe86848 7834 set_nlink(inode, 1);
dbe674a9 7835 btrfs_i_size_write(inode, 0);
3b96362c 7836
76dda93c 7837 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7838
76dda93c 7839 iput(inode);
ce598979 7840 return err;
39279cc3
CM
7841}
7842
39279cc3
CM
7843struct inode *btrfs_alloc_inode(struct super_block *sb)
7844{
7845 struct btrfs_inode *ei;
2ead6ae7 7846 struct inode *inode;
39279cc3
CM
7847
7848 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7849 if (!ei)
7850 return NULL;
2ead6ae7
YZ
7851
7852 ei->root = NULL;
2ead6ae7 7853 ei->generation = 0;
15ee9bc7 7854 ei->last_trans = 0;
257c62e1 7855 ei->last_sub_trans = 0;
e02119d5 7856 ei->logged_trans = 0;
2ead6ae7 7857 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7858 ei->disk_i_size = 0;
7859 ei->flags = 0;
7709cde3 7860 ei->csum_bytes = 0;
2ead6ae7
YZ
7861 ei->index_cnt = (u64)-1;
7862 ei->last_unlink_trans = 0;
46d8bc34 7863 ei->last_log_commit = 0;
2ead6ae7 7864
9e0baf60
JB
7865 spin_lock_init(&ei->lock);
7866 ei->outstanding_extents = 0;
7867 ei->reserved_extents = 0;
2ead6ae7 7868
72ac3c0d 7869 ei->runtime_flags = 0;
261507a0 7870 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7871
16cdcec7
MX
7872 ei->delayed_node = NULL;
7873
2ead6ae7 7874 inode = &ei->vfs_inode;
a8067e02 7875 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7876 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7877 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7878 ei->io_tree.track_uptodate = 1;
7879 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7880 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7881 mutex_init(&ei->log_mutex);
f248679e 7882 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7883 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7884 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7885 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7886 RB_CLEAR_NODE(&ei->rb_node);
7887
7888 return inode;
39279cc3
CM
7889}
7890
aaedb55b
JB
7891#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7892void btrfs_test_destroy_inode(struct inode *inode)
7893{
7894 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7895 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7896}
7897#endif
7898
fa0d7e3d
NP
7899static void btrfs_i_callback(struct rcu_head *head)
7900{
7901 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7902 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7903}
7904
39279cc3
CM
7905void btrfs_destroy_inode(struct inode *inode)
7906{
e6dcd2dc 7907 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7908 struct btrfs_root *root = BTRFS_I(inode)->root;
7909
b3d9b7a3 7910 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7911 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7912 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7913 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7914 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7915 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7916
a6dbd429
JB
7917 /*
7918 * This can happen where we create an inode, but somebody else also
7919 * created the same inode and we need to destroy the one we already
7920 * created.
7921 */
7922 if (!root)
7923 goto free;
7924
5a3f23d5
CM
7925 /*
7926 * Make sure we're properly removed from the ordered operation
7927 * lists.
7928 */
7929 smp_mb();
7930 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 7931 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 7932 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 7933 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
7934 }
7935
8a35d95f
JB
7936 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7937 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 7938 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 7939 btrfs_ino(inode));
8a35d95f 7940 atomic_dec(&root->orphan_inodes);
7b128766 7941 }
7b128766 7942
d397712b 7943 while (1) {
e6dcd2dc
CM
7944 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7945 if (!ordered)
7946 break;
7947 else {
c2cf52eb 7948 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 7949 ordered->file_offset, ordered->len);
e6dcd2dc
CM
7950 btrfs_remove_ordered_extent(inode, ordered);
7951 btrfs_put_ordered_extent(ordered);
7952 btrfs_put_ordered_extent(ordered);
7953 }
7954 }
5d4f98a2 7955 inode_tree_del(inode);
5b21f2ed 7956 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7957free:
fa0d7e3d 7958 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7959}
7960
45321ac5 7961int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7962{
7963 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7964
6379ef9f
NA
7965 if (root == NULL)
7966 return 1;
7967
fa6ac876 7968 /* the snap/subvol tree is on deleting */
69e9c6c6 7969 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 7970 return 1;
76dda93c 7971 else
45321ac5 7972 return generic_drop_inode(inode);
76dda93c
YZ
7973}
7974
0ee0fda0 7975static void init_once(void *foo)
39279cc3
CM
7976{
7977 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7978
7979 inode_init_once(&ei->vfs_inode);
7980}
7981
7982void btrfs_destroy_cachep(void)
7983{
8c0a8537
KS
7984 /*
7985 * Make sure all delayed rcu free inodes are flushed before we
7986 * destroy cache.
7987 */
7988 rcu_barrier();
39279cc3
CM
7989 if (btrfs_inode_cachep)
7990 kmem_cache_destroy(btrfs_inode_cachep);
7991 if (btrfs_trans_handle_cachep)
7992 kmem_cache_destroy(btrfs_trans_handle_cachep);
7993 if (btrfs_transaction_cachep)
7994 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7995 if (btrfs_path_cachep)
7996 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7997 if (btrfs_free_space_cachep)
7998 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7999 if (btrfs_delalloc_work_cachep)
8000 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8001}
8002
8003int btrfs_init_cachep(void)
8004{
837e1972 8005 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8006 sizeof(struct btrfs_inode), 0,
8007 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8008 if (!btrfs_inode_cachep)
8009 goto fail;
9601e3f6 8010
837e1972 8011 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8012 sizeof(struct btrfs_trans_handle), 0,
8013 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8014 if (!btrfs_trans_handle_cachep)
8015 goto fail;
9601e3f6 8016
837e1972 8017 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8018 sizeof(struct btrfs_transaction), 0,
8019 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8020 if (!btrfs_transaction_cachep)
8021 goto fail;
9601e3f6 8022
837e1972 8023 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8024 sizeof(struct btrfs_path), 0,
8025 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8026 if (!btrfs_path_cachep)
8027 goto fail;
9601e3f6 8028
837e1972 8029 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8030 sizeof(struct btrfs_free_space), 0,
8031 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8032 if (!btrfs_free_space_cachep)
8033 goto fail;
8034
8ccf6f19
MX
8035 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8036 sizeof(struct btrfs_delalloc_work), 0,
8037 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8038 NULL);
8039 if (!btrfs_delalloc_work_cachep)
8040 goto fail;
8041
39279cc3
CM
8042 return 0;
8043fail:
8044 btrfs_destroy_cachep();
8045 return -ENOMEM;
8046}
8047
8048static int btrfs_getattr(struct vfsmount *mnt,
8049 struct dentry *dentry, struct kstat *stat)
8050{
df0af1a5 8051 u64 delalloc_bytes;
39279cc3 8052 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8053 u32 blocksize = inode->i_sb->s_blocksize;
8054
39279cc3 8055 generic_fillattr(inode, stat);
0ee5dc67 8056 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8057 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8058
8059 spin_lock(&BTRFS_I(inode)->lock);
8060 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8061 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8062 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8063 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8064 return 0;
8065}
8066
d397712b
CM
8067static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8068 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8069{
8070 struct btrfs_trans_handle *trans;
8071 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8072 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8073 struct inode *new_inode = new_dentry->d_inode;
8074 struct inode *old_inode = old_dentry->d_inode;
8075 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8076 u64 index = 0;
4df27c4d 8077 u64 root_objectid;
39279cc3 8078 int ret;
33345d01 8079 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8080
33345d01 8081 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8082 return -EPERM;
8083
4df27c4d 8084 /* we only allow rename subvolume link between subvolumes */
33345d01 8085 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8086 return -EXDEV;
8087
33345d01
LZ
8088 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8089 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8090 return -ENOTEMPTY;
5f39d397 8091
4df27c4d
YZ
8092 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8093 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8094 return -ENOTEMPTY;
9c52057c
CM
8095
8096
8097 /* check for collisions, even if the name isn't there */
4871c158 8098 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8099 new_dentry->d_name.name,
8100 new_dentry->d_name.len);
8101
8102 if (ret) {
8103 if (ret == -EEXIST) {
8104 /* we shouldn't get
8105 * eexist without a new_inode */
fae7f21c 8106 if (WARN_ON(!new_inode)) {
9c52057c
CM
8107 return ret;
8108 }
8109 } else {
8110 /* maybe -EOVERFLOW */
8111 return ret;
8112 }
8113 }
8114 ret = 0;
8115
5a3f23d5
CM
8116 /*
8117 * we're using rename to replace one file with another.
8118 * and the replacement file is large. Start IO on it now so
8119 * we don't add too much work to the end of the transaction
8120 */
4baf8c92 8121 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8122 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8123 filemap_flush(old_inode->i_mapping);
8124
76dda93c 8125 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8126 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8127 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8128 /*
8129 * We want to reserve the absolute worst case amount of items. So if
8130 * both inodes are subvols and we need to unlink them then that would
8131 * require 4 item modifications, but if they are both normal inodes it
8132 * would require 5 item modifications, so we'll assume their normal
8133 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8134 * should cover the worst case number of items we'll modify.
8135 */
6e137ed3 8136 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8137 if (IS_ERR(trans)) {
8138 ret = PTR_ERR(trans);
8139 goto out_notrans;
8140 }
76dda93c 8141
4df27c4d
YZ
8142 if (dest != root)
8143 btrfs_record_root_in_trans(trans, dest);
5f39d397 8144
a5719521
YZ
8145 ret = btrfs_set_inode_index(new_dir, &index);
8146 if (ret)
8147 goto out_fail;
5a3f23d5 8148
33345d01 8149 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8150 /* force full log commit if subvolume involved. */
8151 root->fs_info->last_trans_log_full_commit = trans->transid;
8152 } else {
a5719521
YZ
8153 ret = btrfs_insert_inode_ref(trans, dest,
8154 new_dentry->d_name.name,
8155 new_dentry->d_name.len,
33345d01
LZ
8156 old_ino,
8157 btrfs_ino(new_dir), index);
a5719521
YZ
8158 if (ret)
8159 goto out_fail;
4df27c4d
YZ
8160 /*
8161 * this is an ugly little race, but the rename is required
8162 * to make sure that if we crash, the inode is either at the
8163 * old name or the new one. pinning the log transaction lets
8164 * us make sure we don't allow a log commit to come in after
8165 * we unlink the name but before we add the new name back in.
8166 */
8167 btrfs_pin_log_trans(root);
8168 }
5a3f23d5
CM
8169 /*
8170 * make sure the inode gets flushed if it is replacing
8171 * something.
8172 */
33345d01 8173 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8174 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8175
0c4d2d95
JB
8176 inode_inc_iversion(old_dir);
8177 inode_inc_iversion(new_dir);
8178 inode_inc_iversion(old_inode);
39279cc3
CM
8179 old_dir->i_ctime = old_dir->i_mtime = ctime;
8180 new_dir->i_ctime = new_dir->i_mtime = ctime;
8181 old_inode->i_ctime = ctime;
5f39d397 8182
12fcfd22
CM
8183 if (old_dentry->d_parent != new_dentry->d_parent)
8184 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8185
33345d01 8186 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8187 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8188 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8189 old_dentry->d_name.name,
8190 old_dentry->d_name.len);
8191 } else {
92986796
AV
8192 ret = __btrfs_unlink_inode(trans, root, old_dir,
8193 old_dentry->d_inode,
8194 old_dentry->d_name.name,
8195 old_dentry->d_name.len);
8196 if (!ret)
8197 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8198 }
79787eaa
JM
8199 if (ret) {
8200 btrfs_abort_transaction(trans, root, ret);
8201 goto out_fail;
8202 }
39279cc3
CM
8203
8204 if (new_inode) {
0c4d2d95 8205 inode_inc_iversion(new_inode);
39279cc3 8206 new_inode->i_ctime = CURRENT_TIME;
33345d01 8207 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8208 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8209 root_objectid = BTRFS_I(new_inode)->location.objectid;
8210 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8211 root_objectid,
8212 new_dentry->d_name.name,
8213 new_dentry->d_name.len);
8214 BUG_ON(new_inode->i_nlink == 0);
8215 } else {
8216 ret = btrfs_unlink_inode(trans, dest, new_dir,
8217 new_dentry->d_inode,
8218 new_dentry->d_name.name,
8219 new_dentry->d_name.len);
8220 }
4ef31a45 8221 if (!ret && new_inode->i_nlink == 0)
e02119d5 8222 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8223 if (ret) {
8224 btrfs_abort_transaction(trans, root, ret);
8225 goto out_fail;
8226 }
39279cc3 8227 }
aec7477b 8228
4df27c4d
YZ
8229 ret = btrfs_add_link(trans, new_dir, old_inode,
8230 new_dentry->d_name.name,
a5719521 8231 new_dentry->d_name.len, 0, index);
79787eaa
JM
8232 if (ret) {
8233 btrfs_abort_transaction(trans, root, ret);
8234 goto out_fail;
8235 }
39279cc3 8236
33345d01 8237 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8238 struct dentry *parent = new_dentry->d_parent;
6a912213 8239 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8240 btrfs_end_log_trans(root);
8241 }
39279cc3 8242out_fail:
7ad85bb7 8243 btrfs_end_transaction(trans, root);
b44c59a8 8244out_notrans:
33345d01 8245 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8246 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8247
39279cc3
CM
8248 return ret;
8249}
8250
8ccf6f19
MX
8251static void btrfs_run_delalloc_work(struct btrfs_work *work)
8252{
8253 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8254 struct inode *inode;
8ccf6f19
MX
8255
8256 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8257 work);
9f23e289
JB
8258 inode = delalloc_work->inode;
8259 if (delalloc_work->wait) {
8260 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8261 } else {
8262 filemap_flush(inode->i_mapping);
8263 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8264 &BTRFS_I(inode)->runtime_flags))
8265 filemap_flush(inode->i_mapping);
8266 }
8ccf6f19
MX
8267
8268 if (delalloc_work->delay_iput)
9f23e289 8269 btrfs_add_delayed_iput(inode);
8ccf6f19 8270 else
9f23e289 8271 iput(inode);
8ccf6f19
MX
8272 complete(&delalloc_work->completion);
8273}
8274
8275struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8276 int wait, int delay_iput)
8277{
8278 struct btrfs_delalloc_work *work;
8279
8280 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8281 if (!work)
8282 return NULL;
8283
8284 init_completion(&work->completion);
8285 INIT_LIST_HEAD(&work->list);
8286 work->inode = inode;
8287 work->wait = wait;
8288 work->delay_iput = delay_iput;
8289 work->work.func = btrfs_run_delalloc_work;
8290
8291 return work;
8292}
8293
8294void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8295{
8296 wait_for_completion(&work->completion);
8297 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8298}
8299
d352ac68
CM
8300/*
8301 * some fairly slow code that needs optimization. This walks the list
8302 * of all the inodes with pending delalloc and forces them to disk.
8303 */
eb73c1b7 8304static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8305{
ea8c2819 8306 struct btrfs_inode *binode;
5b21f2ed 8307 struct inode *inode;
8ccf6f19
MX
8308 struct btrfs_delalloc_work *work, *next;
8309 struct list_head works;
1eafa6c7 8310 struct list_head splice;
8ccf6f19 8311 int ret = 0;
ea8c2819 8312
8ccf6f19 8313 INIT_LIST_HEAD(&works);
1eafa6c7 8314 INIT_LIST_HEAD(&splice);
63607cc8 8315
eb73c1b7
MX
8316 spin_lock(&root->delalloc_lock);
8317 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8318 while (!list_empty(&splice)) {
8319 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8320 delalloc_inodes);
1eafa6c7 8321
eb73c1b7
MX
8322 list_move_tail(&binode->delalloc_inodes,
8323 &root->delalloc_inodes);
5b21f2ed 8324 inode = igrab(&binode->vfs_inode);
df0af1a5 8325 if (!inode) {
eb73c1b7 8326 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8327 continue;
df0af1a5 8328 }
eb73c1b7 8329 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8330
8331 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8332 if (unlikely(!work)) {
f4ab9ea7
JB
8333 if (delay_iput)
8334 btrfs_add_delayed_iput(inode);
8335 else
8336 iput(inode);
1eafa6c7
MX
8337 ret = -ENOMEM;
8338 goto out;
5b21f2ed 8339 }
1eafa6c7
MX
8340 list_add_tail(&work->list, &works);
8341 btrfs_queue_worker(&root->fs_info->flush_workers,
8342 &work->work);
8343
5b21f2ed 8344 cond_resched();
eb73c1b7 8345 spin_lock(&root->delalloc_lock);
ea8c2819 8346 }
eb73c1b7 8347 spin_unlock(&root->delalloc_lock);
8c8bee1d 8348
1eafa6c7
MX
8349 list_for_each_entry_safe(work, next, &works, list) {
8350 list_del_init(&work->list);
8351 btrfs_wait_and_free_delalloc_work(work);
8352 }
eb73c1b7
MX
8353 return 0;
8354out:
8355 list_for_each_entry_safe(work, next, &works, list) {
8356 list_del_init(&work->list);
8357 btrfs_wait_and_free_delalloc_work(work);
8358 }
8359
8360 if (!list_empty_careful(&splice)) {
8361 spin_lock(&root->delalloc_lock);
8362 list_splice_tail(&splice, &root->delalloc_inodes);
8363 spin_unlock(&root->delalloc_lock);
8364 }
8365 return ret;
8366}
1eafa6c7 8367
eb73c1b7
MX
8368int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8369{
8370 int ret;
1eafa6c7 8371
eb73c1b7
MX
8372 if (root->fs_info->sb->s_flags & MS_RDONLY)
8373 return -EROFS;
8374
8375 ret = __start_delalloc_inodes(root, delay_iput);
8376 /*
8377 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8378 * we have to make sure the IO is actually started and that
8379 * ordered extents get created before we return
8380 */
8381 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8382 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8383 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8384 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8385 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8386 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8387 }
8388 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8389 return ret;
8390}
8391
91aef86f 8392int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput)
eb73c1b7
MX
8393{
8394 struct btrfs_root *root;
8395 struct list_head splice;
8396 int ret;
8397
8398 if (fs_info->sb->s_flags & MS_RDONLY)
8399 return -EROFS;
8400
8401 INIT_LIST_HEAD(&splice);
8402
8403 spin_lock(&fs_info->delalloc_root_lock);
8404 list_splice_init(&fs_info->delalloc_roots, &splice);
8405 while (!list_empty(&splice)) {
8406 root = list_first_entry(&splice, struct btrfs_root,
8407 delalloc_root);
8408 root = btrfs_grab_fs_root(root);
8409 BUG_ON(!root);
8410 list_move_tail(&root->delalloc_root,
8411 &fs_info->delalloc_roots);
8412 spin_unlock(&fs_info->delalloc_root_lock);
8413
8414 ret = __start_delalloc_inodes(root, delay_iput);
8415 btrfs_put_fs_root(root);
8416 if (ret)
8417 goto out;
8418
8419 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8420 }
eb73c1b7 8421 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8422
eb73c1b7
MX
8423 atomic_inc(&fs_info->async_submit_draining);
8424 while (atomic_read(&fs_info->nr_async_submits) ||
8425 atomic_read(&fs_info->async_delalloc_pages)) {
8426 wait_event(fs_info->async_submit_wait,
8427 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8428 atomic_read(&fs_info->async_delalloc_pages) == 0));
8429 }
8430 atomic_dec(&fs_info->async_submit_draining);
8431 return 0;
8432out:
1eafa6c7 8433 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8434 spin_lock(&fs_info->delalloc_root_lock);
8435 list_splice_tail(&splice, &fs_info->delalloc_roots);
8436 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8437 }
8ccf6f19 8438 return ret;
ea8c2819
CM
8439}
8440
39279cc3
CM
8441static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8442 const char *symname)
8443{
8444 struct btrfs_trans_handle *trans;
8445 struct btrfs_root *root = BTRFS_I(dir)->root;
8446 struct btrfs_path *path;
8447 struct btrfs_key key;
1832a6d5 8448 struct inode *inode = NULL;
39279cc3
CM
8449 int err;
8450 int drop_inode = 0;
8451 u64 objectid;
67871254 8452 u64 index = 0;
39279cc3
CM
8453 int name_len;
8454 int datasize;
5f39d397 8455 unsigned long ptr;
39279cc3 8456 struct btrfs_file_extent_item *ei;
5f39d397 8457 struct extent_buffer *leaf;
39279cc3 8458
f06becc4 8459 name_len = strlen(symname);
39279cc3
CM
8460 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8461 return -ENAMETOOLONG;
1832a6d5 8462
9ed74f2d
JB
8463 /*
8464 * 2 items for inode item and ref
8465 * 2 items for dir items
8466 * 1 item for xattr if selinux is on
8467 */
a22285a6
YZ
8468 trans = btrfs_start_transaction(root, 5);
8469 if (IS_ERR(trans))
8470 return PTR_ERR(trans);
1832a6d5 8471
581bb050
LZ
8472 err = btrfs_find_free_ino(root, &objectid);
8473 if (err)
8474 goto out_unlock;
8475
aec7477b 8476 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8477 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8478 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8479 if (IS_ERR(inode)) {
8480 err = PTR_ERR(inode);
39279cc3 8481 goto out_unlock;
7cf96da3 8482 }
39279cc3 8483
2a7dba39 8484 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8485 if (err) {
8486 drop_inode = 1;
8487 goto out_unlock;
8488 }
8489
ad19db71
CS
8490 /*
8491 * If the active LSM wants to access the inode during
8492 * d_instantiate it needs these. Smack checks to see
8493 * if the filesystem supports xattrs by looking at the
8494 * ops vector.
8495 */
8496 inode->i_fop = &btrfs_file_operations;
8497 inode->i_op = &btrfs_file_inode_operations;
8498
a1b075d2 8499 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8500 if (err)
8501 drop_inode = 1;
8502 else {
8503 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8504 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8505 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8506 }
39279cc3
CM
8507 if (drop_inode)
8508 goto out_unlock;
8509
8510 path = btrfs_alloc_path();
d8926bb3
MF
8511 if (!path) {
8512 err = -ENOMEM;
8513 drop_inode = 1;
8514 goto out_unlock;
8515 }
33345d01 8516 key.objectid = btrfs_ino(inode);
39279cc3 8517 key.offset = 0;
39279cc3
CM
8518 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8519 datasize = btrfs_file_extent_calc_inline_size(name_len);
8520 err = btrfs_insert_empty_item(trans, root, path, &key,
8521 datasize);
54aa1f4d
CM
8522 if (err) {
8523 drop_inode = 1;
b0839166 8524 btrfs_free_path(path);
54aa1f4d
CM
8525 goto out_unlock;
8526 }
5f39d397
CM
8527 leaf = path->nodes[0];
8528 ei = btrfs_item_ptr(leaf, path->slots[0],
8529 struct btrfs_file_extent_item);
8530 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8531 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8532 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8533 btrfs_set_file_extent_encryption(leaf, ei, 0);
8534 btrfs_set_file_extent_compression(leaf, ei, 0);
8535 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8536 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8537
39279cc3 8538 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8539 write_extent_buffer(leaf, symname, ptr, name_len);
8540 btrfs_mark_buffer_dirty(leaf);
39279cc3 8541 btrfs_free_path(path);
5f39d397 8542
39279cc3
CM
8543 inode->i_op = &btrfs_symlink_inode_operations;
8544 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8545 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8546 inode_set_bytes(inode, name_len);
f06becc4 8547 btrfs_i_size_write(inode, name_len);
54aa1f4d
CM
8548 err = btrfs_update_inode(trans, root, inode);
8549 if (err)
8550 drop_inode = 1;
39279cc3
CM
8551
8552out_unlock:
08c422c2
AV
8553 if (!err)
8554 d_instantiate(dentry, inode);
7ad85bb7 8555 btrfs_end_transaction(trans, root);
39279cc3
CM
8556 if (drop_inode) {
8557 inode_dec_link_count(inode);
8558 iput(inode);
8559 }
b53d3f5d 8560 btrfs_btree_balance_dirty(root);
39279cc3
CM
8561 return err;
8562}
16432985 8563
0af3d00b
JB
8564static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8565 u64 start, u64 num_bytes, u64 min_size,
8566 loff_t actual_len, u64 *alloc_hint,
8567 struct btrfs_trans_handle *trans)
d899e052 8568{
5dc562c5
JB
8569 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8570 struct extent_map *em;
d899e052
YZ
8571 struct btrfs_root *root = BTRFS_I(inode)->root;
8572 struct btrfs_key ins;
d899e052 8573 u64 cur_offset = start;
55a61d1d 8574 u64 i_size;
154ea289 8575 u64 cur_bytes;
d899e052 8576 int ret = 0;
0af3d00b 8577 bool own_trans = true;
d899e052 8578
0af3d00b
JB
8579 if (trans)
8580 own_trans = false;
d899e052 8581 while (num_bytes > 0) {
0af3d00b
JB
8582 if (own_trans) {
8583 trans = btrfs_start_transaction(root, 3);
8584 if (IS_ERR(trans)) {
8585 ret = PTR_ERR(trans);
8586 break;
8587 }
5a303d5d
YZ
8588 }
8589
154ea289
CM
8590 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8591 cur_bytes = max(cur_bytes, min_size);
00361589
JB
8592 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8593 *alloc_hint, &ins, 1);
5a303d5d 8594 if (ret) {
0af3d00b
JB
8595 if (own_trans)
8596 btrfs_end_transaction(trans, root);
a22285a6 8597 break;
d899e052 8598 }
5a303d5d 8599
d899e052
YZ
8600 ret = insert_reserved_file_extent(trans, inode,
8601 cur_offset, ins.objectid,
8602 ins.offset, ins.offset,
920bbbfb 8603 ins.offset, 0, 0, 0,
d899e052 8604 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 8605 if (ret) {
857cc2fc
JB
8606 btrfs_free_reserved_extent(root, ins.objectid,
8607 ins.offset);
79787eaa
JM
8608 btrfs_abort_transaction(trans, root, ret);
8609 if (own_trans)
8610 btrfs_end_transaction(trans, root);
8611 break;
8612 }
a1ed835e
CM
8613 btrfs_drop_extent_cache(inode, cur_offset,
8614 cur_offset + ins.offset -1, 0);
5a303d5d 8615
5dc562c5
JB
8616 em = alloc_extent_map();
8617 if (!em) {
8618 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8619 &BTRFS_I(inode)->runtime_flags);
8620 goto next;
8621 }
8622
8623 em->start = cur_offset;
8624 em->orig_start = cur_offset;
8625 em->len = ins.offset;
8626 em->block_start = ins.objectid;
8627 em->block_len = ins.offset;
b4939680 8628 em->orig_block_len = ins.offset;
cc95bef6 8629 em->ram_bytes = ins.offset;
5dc562c5
JB
8630 em->bdev = root->fs_info->fs_devices->latest_bdev;
8631 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8632 em->generation = trans->transid;
8633
8634 while (1) {
8635 write_lock(&em_tree->lock);
09a2a8f9 8636 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8637 write_unlock(&em_tree->lock);
8638 if (ret != -EEXIST)
8639 break;
8640 btrfs_drop_extent_cache(inode, cur_offset,
8641 cur_offset + ins.offset - 1,
8642 0);
8643 }
8644 free_extent_map(em);
8645next:
d899e052
YZ
8646 num_bytes -= ins.offset;
8647 cur_offset += ins.offset;
efa56464 8648 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8649
0c4d2d95 8650 inode_inc_iversion(inode);
d899e052 8651 inode->i_ctime = CURRENT_TIME;
6cbff00f 8652 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8653 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8654 (actual_len > inode->i_size) &&
8655 (cur_offset > inode->i_size)) {
d1ea6a61 8656 if (cur_offset > actual_len)
55a61d1d 8657 i_size = actual_len;
d1ea6a61 8658 else
55a61d1d
JB
8659 i_size = cur_offset;
8660 i_size_write(inode, i_size);
8661 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8662 }
8663
d899e052 8664 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8665
8666 if (ret) {
8667 btrfs_abort_transaction(trans, root, ret);
8668 if (own_trans)
8669 btrfs_end_transaction(trans, root);
8670 break;
8671 }
d899e052 8672
0af3d00b
JB
8673 if (own_trans)
8674 btrfs_end_transaction(trans, root);
5a303d5d 8675 }
d899e052
YZ
8676 return ret;
8677}
8678
0af3d00b
JB
8679int btrfs_prealloc_file_range(struct inode *inode, int mode,
8680 u64 start, u64 num_bytes, u64 min_size,
8681 loff_t actual_len, u64 *alloc_hint)
8682{
8683 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8684 min_size, actual_len, alloc_hint,
8685 NULL);
8686}
8687
8688int btrfs_prealloc_file_range_trans(struct inode *inode,
8689 struct btrfs_trans_handle *trans, int mode,
8690 u64 start, u64 num_bytes, u64 min_size,
8691 loff_t actual_len, u64 *alloc_hint)
8692{
8693 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8694 min_size, actual_len, alloc_hint, trans);
8695}
8696
e6dcd2dc
CM
8697static int btrfs_set_page_dirty(struct page *page)
8698{
e6dcd2dc
CM
8699 return __set_page_dirty_nobuffers(page);
8700}
8701
10556cb2 8702static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8703{
b83cc969 8704 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8705 umode_t mode = inode->i_mode;
b83cc969 8706
cb6db4e5
JM
8707 if (mask & MAY_WRITE &&
8708 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8709 if (btrfs_root_readonly(root))
8710 return -EROFS;
8711 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8712 return -EACCES;
8713 }
2830ba7f 8714 return generic_permission(inode, mask);
fdebe2bd 8715}
39279cc3 8716
6e1d5dcc 8717static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8718 .getattr = btrfs_getattr,
39279cc3
CM
8719 .lookup = btrfs_lookup,
8720 .create = btrfs_create,
8721 .unlink = btrfs_unlink,
8722 .link = btrfs_link,
8723 .mkdir = btrfs_mkdir,
8724 .rmdir = btrfs_rmdir,
8725 .rename = btrfs_rename,
8726 .symlink = btrfs_symlink,
8727 .setattr = btrfs_setattr,
618e21d5 8728 .mknod = btrfs_mknod,
95819c05
CH
8729 .setxattr = btrfs_setxattr,
8730 .getxattr = btrfs_getxattr,
5103e947 8731 .listxattr = btrfs_listxattr,
95819c05 8732 .removexattr = btrfs_removexattr,
fdebe2bd 8733 .permission = btrfs_permission,
4e34e719 8734 .get_acl = btrfs_get_acl,
93fd63c2 8735 .update_time = btrfs_update_time,
39279cc3 8736};
6e1d5dcc 8737static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8738 .lookup = btrfs_lookup,
fdebe2bd 8739 .permission = btrfs_permission,
4e34e719 8740 .get_acl = btrfs_get_acl,
93fd63c2 8741 .update_time = btrfs_update_time,
39279cc3 8742};
76dda93c 8743
828c0950 8744static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8745 .llseek = generic_file_llseek,
8746 .read = generic_read_dir,
9cdda8d3 8747 .iterate = btrfs_real_readdir,
34287aa3 8748 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8749#ifdef CONFIG_COMPAT
34287aa3 8750 .compat_ioctl = btrfs_ioctl,
39279cc3 8751#endif
6bf13c0c 8752 .release = btrfs_release_file,
e02119d5 8753 .fsync = btrfs_sync_file,
39279cc3
CM
8754};
8755
d1310b2e 8756static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8757 .fill_delalloc = run_delalloc_range,
065631f6 8758 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8759 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8760 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8761 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8762 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8763 .set_bit_hook = btrfs_set_bit_hook,
8764 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8765 .merge_extent_hook = btrfs_merge_extent_hook,
8766 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8767};
8768
35054394
CM
8769/*
8770 * btrfs doesn't support the bmap operation because swapfiles
8771 * use bmap to make a mapping of extents in the file. They assume
8772 * these extents won't change over the life of the file and they
8773 * use the bmap result to do IO directly to the drive.
8774 *
8775 * the btrfs bmap call would return logical addresses that aren't
8776 * suitable for IO and they also will change frequently as COW
8777 * operations happen. So, swapfile + btrfs == corruption.
8778 *
8779 * For now we're avoiding this by dropping bmap.
8780 */
7f09410b 8781static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8782 .readpage = btrfs_readpage,
8783 .writepage = btrfs_writepage,
b293f02e 8784 .writepages = btrfs_writepages,
3ab2fb5a 8785 .readpages = btrfs_readpages,
16432985 8786 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8787 .invalidatepage = btrfs_invalidatepage,
8788 .releasepage = btrfs_releasepage,
e6dcd2dc 8789 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8790 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8791};
8792
7f09410b 8793static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8794 .readpage = btrfs_readpage,
8795 .writepage = btrfs_writepage,
2bf5a725
CM
8796 .invalidatepage = btrfs_invalidatepage,
8797 .releasepage = btrfs_releasepage,
39279cc3
CM
8798};
8799
6e1d5dcc 8800static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8801 .getattr = btrfs_getattr,
8802 .setattr = btrfs_setattr,
95819c05
CH
8803 .setxattr = btrfs_setxattr,
8804 .getxattr = btrfs_getxattr,
5103e947 8805 .listxattr = btrfs_listxattr,
95819c05 8806 .removexattr = btrfs_removexattr,
fdebe2bd 8807 .permission = btrfs_permission,
1506fcc8 8808 .fiemap = btrfs_fiemap,
4e34e719 8809 .get_acl = btrfs_get_acl,
e41f941a 8810 .update_time = btrfs_update_time,
39279cc3 8811};
6e1d5dcc 8812static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8813 .getattr = btrfs_getattr,
8814 .setattr = btrfs_setattr,
fdebe2bd 8815 .permission = btrfs_permission,
95819c05
CH
8816 .setxattr = btrfs_setxattr,
8817 .getxattr = btrfs_getxattr,
33268eaf 8818 .listxattr = btrfs_listxattr,
95819c05 8819 .removexattr = btrfs_removexattr,
4e34e719 8820 .get_acl = btrfs_get_acl,
e41f941a 8821 .update_time = btrfs_update_time,
618e21d5 8822};
6e1d5dcc 8823static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8824 .readlink = generic_readlink,
8825 .follow_link = page_follow_link_light,
8826 .put_link = page_put_link,
f209561a 8827 .getattr = btrfs_getattr,
22c44fe6 8828 .setattr = btrfs_setattr,
fdebe2bd 8829 .permission = btrfs_permission,
0279b4cd
JO
8830 .setxattr = btrfs_setxattr,
8831 .getxattr = btrfs_getxattr,
8832 .listxattr = btrfs_listxattr,
8833 .removexattr = btrfs_removexattr,
4e34e719 8834 .get_acl = btrfs_get_acl,
e41f941a 8835 .update_time = btrfs_update_time,
39279cc3 8836};
76dda93c 8837
82d339d9 8838const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8839 .d_delete = btrfs_dentry_delete,
b4aff1f8 8840 .d_release = btrfs_dentry_release,
76dda93c 8841};