btrfs: btrfs_drop_snapshot should return int
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
74struct kmem_cache *btrfs_trans_handle_cachep;
75struct kmem_cache *btrfs_transaction_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
78
79#define S_SHIFT 12
80static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88};
89
a41ad394
JB
90static int btrfs_setsize(struct inode *inode, loff_t newsize);
91static int btrfs_truncate(struct inode *inode);
c8b97818 92static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
93static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
2115133f
CM
97static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
7b128766 99
f34f57a3 100static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
0279b4cd
JO
103{
104 int err;
105
f34f57a3 106 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 107 if (!err)
2a7dba39 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
109 return err;
110}
111
c8b97818
CM
112/*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
d397712b 117static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
fe3f566c 120 int compress_type,
c8b97818
CM
121 struct page **compressed_pages)
122{
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
c8b97818 135
fe3f566c 136 if (compressed_size && compressed_pages)
c8b97818 137 cur_size = compressed_size;
c8b97818 138
d397712b
CM
139 path = btrfs_alloc_path();
140 if (!path)
c8b97818
CM
141 return -ENOMEM;
142
b9473439 143 path->leave_spinning = 1;
c8b97818 144
33345d01 145 key.objectid = btrfs_ino(inode);
c8b97818
CM
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
153 BUG_ON(ret);
154 if (ret) {
155 err = ret;
c8b97818
CM
156 goto fail;
157 }
158 leaf = path->nodes[0];
159 ei = btrfs_item_ptr(leaf, path->slots[0],
160 struct btrfs_file_extent_item);
161 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
162 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
163 btrfs_set_file_extent_encryption(leaf, ei, 0);
164 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
165 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
166 ptr = btrfs_file_extent_inline_start(ei);
167
261507a0 168 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
169 struct page *cpage;
170 int i = 0;
d397712b 171 while (compressed_size > 0) {
c8b97818 172 cpage = compressed_pages[i];
5b050f04 173 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
174 PAGE_CACHE_SIZE);
175
b9473439 176 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 177 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 178 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
179
180 i++;
181 ptr += cur_size;
182 compressed_size -= cur_size;
183 }
184 btrfs_set_file_extent_compression(leaf, ei,
261507a0 185 compress_type);
c8b97818
CM
186 } else {
187 page = find_get_page(inode->i_mapping,
188 start >> PAGE_CACHE_SHIFT);
189 btrfs_set_file_extent_compression(leaf, ei, 0);
190 kaddr = kmap_atomic(page, KM_USER0);
191 offset = start & (PAGE_CACHE_SIZE - 1);
192 write_extent_buffer(leaf, kaddr + offset, ptr, size);
193 kunmap_atomic(kaddr, KM_USER0);
194 page_cache_release(page);
195 }
196 btrfs_mark_buffer_dirty(leaf);
197 btrfs_free_path(path);
198
c2167754
YZ
199 /*
200 * we're an inline extent, so nobody can
201 * extend the file past i_size without locking
202 * a page we already have locked.
203 *
204 * We must do any isize and inode updates
205 * before we unlock the pages. Otherwise we
206 * could end up racing with unlink.
207 */
c8b97818
CM
208 BTRFS_I(inode)->disk_i_size = inode->i_size;
209 btrfs_update_inode(trans, root, inode);
c2167754 210
c8b97818
CM
211 return 0;
212fail:
213 btrfs_free_path(path);
214 return err;
215}
216
217
218/*
219 * conditionally insert an inline extent into the file. This
220 * does the checks required to make sure the data is small enough
221 * to fit as an inline extent.
222 */
7f366cfe 223static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
224 struct btrfs_root *root,
225 struct inode *inode, u64 start, u64 end,
fe3f566c 226 size_t compressed_size, int compress_type,
c8b97818
CM
227 struct page **compressed_pages)
228{
229 u64 isize = i_size_read(inode);
230 u64 actual_end = min(end + 1, isize);
231 u64 inline_len = actual_end - start;
232 u64 aligned_end = (end + root->sectorsize - 1) &
233 ~((u64)root->sectorsize - 1);
234 u64 hint_byte;
235 u64 data_len = inline_len;
236 int ret;
237
238 if (compressed_size)
239 data_len = compressed_size;
240
241 if (start > 0 ||
70b99e69 242 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
243 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
244 (!compressed_size &&
245 (actual_end & (root->sectorsize - 1)) == 0) ||
246 end + 1 < isize ||
247 data_len > root->fs_info->max_inline) {
248 return 1;
249 }
250
920bbbfb 251 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 252 &hint_byte, 1);
c8b97818
CM
253 BUG_ON(ret);
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
fe3f566c 259 compress_type, compressed_pages);
c8b97818 260 BUG_ON(ret);
0ca1f7ce 261 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 262 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
263 return 0;
264}
265
771ed689
CM
266struct async_extent {
267 u64 start;
268 u64 ram_size;
269 u64 compressed_size;
270 struct page **pages;
271 unsigned long nr_pages;
261507a0 272 int compress_type;
771ed689
CM
273 struct list_head list;
274};
275
276struct async_cow {
277 struct inode *inode;
278 struct btrfs_root *root;
279 struct page *locked_page;
280 u64 start;
281 u64 end;
282 struct list_head extents;
283 struct btrfs_work work;
284};
285
286static noinline int add_async_extent(struct async_cow *cow,
287 u64 start, u64 ram_size,
288 u64 compressed_size,
289 struct page **pages,
261507a0
LZ
290 unsigned long nr_pages,
291 int compress_type)
771ed689
CM
292{
293 struct async_extent *async_extent;
294
295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 296 BUG_ON(!async_extent);
771ed689
CM
297 async_extent->start = start;
298 async_extent->ram_size = ram_size;
299 async_extent->compressed_size = compressed_size;
300 async_extent->pages = pages;
301 async_extent->nr_pages = nr_pages;
261507a0 302 async_extent->compress_type = compress_type;
771ed689
CM
303 list_add_tail(&async_extent->list, &cow->extents);
304 return 0;
305}
306
d352ac68 307/*
771ed689
CM
308 * we create compressed extents in two phases. The first
309 * phase compresses a range of pages that have already been
310 * locked (both pages and state bits are locked).
c8b97818 311 *
771ed689
CM
312 * This is done inside an ordered work queue, and the compression
313 * is spread across many cpus. The actual IO submission is step
314 * two, and the ordered work queue takes care of making sure that
315 * happens in the same order things were put onto the queue by
316 * writepages and friends.
c8b97818 317 *
771ed689
CM
318 * If this code finds it can't get good compression, it puts an
319 * entry onto the work queue to write the uncompressed bytes. This
320 * makes sure that both compressed inodes and uncompressed inodes
321 * are written in the same order that pdflush sent them down.
d352ac68 322 */
771ed689
CM
323static noinline int compress_file_range(struct inode *inode,
324 struct page *locked_page,
325 u64 start, u64 end,
326 struct async_cow *async_cow,
327 int *num_added)
b888db2b
CM
328{
329 struct btrfs_root *root = BTRFS_I(inode)->root;
330 struct btrfs_trans_handle *trans;
db94535d 331 u64 num_bytes;
db94535d 332 u64 blocksize = root->sectorsize;
c8b97818 333 u64 actual_end;
42dc7bab 334 u64 isize = i_size_read(inode);
e6dcd2dc 335 int ret = 0;
c8b97818
CM
336 struct page **pages = NULL;
337 unsigned long nr_pages;
338 unsigned long nr_pages_ret = 0;
339 unsigned long total_compressed = 0;
340 unsigned long total_in = 0;
341 unsigned long max_compressed = 128 * 1024;
771ed689 342 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
343 int i;
344 int will_compress;
261507a0 345 int compress_type = root->fs_info->compress_type;
b888db2b 346
4cb5300b
CM
347 /* if this is a small write inside eof, kick off a defragbot */
348 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
349 btrfs_add_inode_defrag(NULL, inode);
350
42dc7bab 351 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
352again:
353 will_compress = 0;
354 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
355 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 356
f03d9301
CM
357 /*
358 * we don't want to send crud past the end of i_size through
359 * compression, that's just a waste of CPU time. So, if the
360 * end of the file is before the start of our current
361 * requested range of bytes, we bail out to the uncompressed
362 * cleanup code that can deal with all of this.
363 *
364 * It isn't really the fastest way to fix things, but this is a
365 * very uncommon corner.
366 */
367 if (actual_end <= start)
368 goto cleanup_and_bail_uncompressed;
369
c8b97818
CM
370 total_compressed = actual_end - start;
371
372 /* we want to make sure that amount of ram required to uncompress
373 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
374 * of a compressed extent to 128k. This is a crucial number
375 * because it also controls how easily we can spread reads across
376 * cpus for decompression.
377 *
378 * We also want to make sure the amount of IO required to do
379 * a random read is reasonably small, so we limit the size of
380 * a compressed extent to 128k.
c8b97818
CM
381 */
382 total_compressed = min(total_compressed, max_uncompressed);
db94535d 383 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 384 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
385 total_in = 0;
386 ret = 0;
db94535d 387
771ed689
CM
388 /*
389 * we do compression for mount -o compress and when the
390 * inode has not been flagged as nocompress. This flag can
391 * change at any time if we discover bad compression ratios.
c8b97818 392 */
6cbff00f 393 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 394 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
395 (BTRFS_I(inode)->force_compress) ||
396 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 397 WARN_ON(pages);
cfbc246e 398 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
399 if (!pages) {
400 /* just bail out to the uncompressed code */
401 goto cont;
402 }
c8b97818 403
261507a0
LZ
404 if (BTRFS_I(inode)->force_compress)
405 compress_type = BTRFS_I(inode)->force_compress;
406
407 ret = btrfs_compress_pages(compress_type,
408 inode->i_mapping, start,
409 total_compressed, pages,
410 nr_pages, &nr_pages_ret,
411 &total_in,
412 &total_compressed,
413 max_compressed);
c8b97818
CM
414
415 if (!ret) {
416 unsigned long offset = total_compressed &
417 (PAGE_CACHE_SIZE - 1);
418 struct page *page = pages[nr_pages_ret - 1];
419 char *kaddr;
420
421 /* zero the tail end of the last page, we might be
422 * sending it down to disk
423 */
424 if (offset) {
425 kaddr = kmap_atomic(page, KM_USER0);
426 memset(kaddr + offset, 0,
427 PAGE_CACHE_SIZE - offset);
428 kunmap_atomic(kaddr, KM_USER0);
429 }
430 will_compress = 1;
431 }
432 }
560f7d75 433cont:
c8b97818 434 if (start == 0) {
7a7eaa40 435 trans = btrfs_join_transaction(root);
3612b495 436 BUG_ON(IS_ERR(trans));
0ca1f7ce 437 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 438
c8b97818 439 /* lets try to make an inline extent */
771ed689 440 if (ret || total_in < (actual_end - start)) {
c8b97818 441 /* we didn't compress the entire range, try
771ed689 442 * to make an uncompressed inline extent.
c8b97818
CM
443 */
444 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 445 start, end, 0, 0, NULL);
c8b97818 446 } else {
771ed689 447 /* try making a compressed inline extent */
c8b97818
CM
448 ret = cow_file_range_inline(trans, root, inode,
449 start, end,
fe3f566c
LZ
450 total_compressed,
451 compress_type, pages);
c8b97818
CM
452 }
453 if (ret == 0) {
771ed689
CM
454 /*
455 * inline extent creation worked, we don't need
456 * to create any more async work items. Unlock
457 * and free up our temp pages.
458 */
c8b97818 459 extent_clear_unlock_delalloc(inode,
a791e35e
CM
460 &BTRFS_I(inode)->io_tree,
461 start, end, NULL,
462 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 463 EXTENT_CLEAR_DELALLOC |
a791e35e 464 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
465
466 btrfs_end_transaction(trans, root);
c8b97818
CM
467 goto free_pages_out;
468 }
c2167754 469 btrfs_end_transaction(trans, root);
c8b97818
CM
470 }
471
472 if (will_compress) {
473 /*
474 * we aren't doing an inline extent round the compressed size
475 * up to a block size boundary so the allocator does sane
476 * things
477 */
478 total_compressed = (total_compressed + blocksize - 1) &
479 ~(blocksize - 1);
480
481 /*
482 * one last check to make sure the compression is really a
483 * win, compare the page count read with the blocks on disk
484 */
485 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
486 ~(PAGE_CACHE_SIZE - 1);
487 if (total_compressed >= total_in) {
488 will_compress = 0;
489 } else {
c8b97818
CM
490 num_bytes = total_in;
491 }
492 }
493 if (!will_compress && pages) {
494 /*
495 * the compression code ran but failed to make things smaller,
496 * free any pages it allocated and our page pointer array
497 */
498 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 499 WARN_ON(pages[i]->mapping);
c8b97818
CM
500 page_cache_release(pages[i]);
501 }
502 kfree(pages);
503 pages = NULL;
504 total_compressed = 0;
505 nr_pages_ret = 0;
506
507 /* flag the file so we don't compress in the future */
1e701a32
CM
508 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
509 !(BTRFS_I(inode)->force_compress)) {
a555f810 510 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 511 }
c8b97818 512 }
771ed689
CM
513 if (will_compress) {
514 *num_added += 1;
c8b97818 515
771ed689
CM
516 /* the async work queues will take care of doing actual
517 * allocation on disk for these compressed pages,
518 * and will submit them to the elevator.
519 */
520 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
521 total_compressed, pages, nr_pages_ret,
522 compress_type);
179e29e4 523
24ae6365 524 if (start + num_bytes < end) {
771ed689
CM
525 start += num_bytes;
526 pages = NULL;
527 cond_resched();
528 goto again;
529 }
530 } else {
f03d9301 531cleanup_and_bail_uncompressed:
771ed689
CM
532 /*
533 * No compression, but we still need to write the pages in
534 * the file we've been given so far. redirty the locked
535 * page if it corresponds to our extent and set things up
536 * for the async work queue to run cow_file_range to do
537 * the normal delalloc dance
538 */
539 if (page_offset(locked_page) >= start &&
540 page_offset(locked_page) <= end) {
541 __set_page_dirty_nobuffers(locked_page);
542 /* unlocked later on in the async handlers */
543 }
261507a0
LZ
544 add_async_extent(async_cow, start, end - start + 1,
545 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
546 *num_added += 1;
547 }
3b951516 548
771ed689
CM
549out:
550 return 0;
551
552free_pages_out:
553 for (i = 0; i < nr_pages_ret; i++) {
554 WARN_ON(pages[i]->mapping);
555 page_cache_release(pages[i]);
556 }
d397712b 557 kfree(pages);
771ed689
CM
558
559 goto out;
560}
561
562/*
563 * phase two of compressed writeback. This is the ordered portion
564 * of the code, which only gets called in the order the work was
565 * queued. We walk all the async extents created by compress_file_range
566 * and send them down to the disk.
567 */
568static noinline int submit_compressed_extents(struct inode *inode,
569 struct async_cow *async_cow)
570{
571 struct async_extent *async_extent;
572 u64 alloc_hint = 0;
573 struct btrfs_trans_handle *trans;
574 struct btrfs_key ins;
575 struct extent_map *em;
576 struct btrfs_root *root = BTRFS_I(inode)->root;
577 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
578 struct extent_io_tree *io_tree;
f5a84ee3 579 int ret = 0;
771ed689
CM
580
581 if (list_empty(&async_cow->extents))
582 return 0;
583
771ed689 584
d397712b 585 while (!list_empty(&async_cow->extents)) {
771ed689
CM
586 async_extent = list_entry(async_cow->extents.next,
587 struct async_extent, list);
588 list_del(&async_extent->list);
c8b97818 589
771ed689
CM
590 io_tree = &BTRFS_I(inode)->io_tree;
591
f5a84ee3 592retry:
771ed689
CM
593 /* did the compression code fall back to uncompressed IO? */
594 if (!async_extent->pages) {
595 int page_started = 0;
596 unsigned long nr_written = 0;
597
598 lock_extent(io_tree, async_extent->start,
2ac55d41 599 async_extent->start +
d0082371 600 async_extent->ram_size - 1);
771ed689
CM
601
602 /* allocate blocks */
f5a84ee3
JB
603 ret = cow_file_range(inode, async_cow->locked_page,
604 async_extent->start,
605 async_extent->start +
606 async_extent->ram_size - 1,
607 &page_started, &nr_written, 0);
771ed689
CM
608
609 /*
610 * if page_started, cow_file_range inserted an
611 * inline extent and took care of all the unlocking
612 * and IO for us. Otherwise, we need to submit
613 * all those pages down to the drive.
614 */
f5a84ee3 615 if (!page_started && !ret)
771ed689
CM
616 extent_write_locked_range(io_tree,
617 inode, async_extent->start,
d397712b 618 async_extent->start +
771ed689
CM
619 async_extent->ram_size - 1,
620 btrfs_get_extent,
621 WB_SYNC_ALL);
622 kfree(async_extent);
623 cond_resched();
624 continue;
625 }
626
627 lock_extent(io_tree, async_extent->start,
d0082371 628 async_extent->start + async_extent->ram_size - 1);
771ed689 629
7a7eaa40 630 trans = btrfs_join_transaction(root);
3612b495 631 BUG_ON(IS_ERR(trans));
74b21075 632 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
633 ret = btrfs_reserve_extent(trans, root,
634 async_extent->compressed_size,
635 async_extent->compressed_size,
636 0, alloc_hint,
637 (u64)-1, &ins, 1);
c2167754
YZ
638 btrfs_end_transaction(trans, root);
639
f5a84ee3
JB
640 if (ret) {
641 int i;
642 for (i = 0; i < async_extent->nr_pages; i++) {
643 WARN_ON(async_extent->pages[i]->mapping);
644 page_cache_release(async_extent->pages[i]);
645 }
646 kfree(async_extent->pages);
647 async_extent->nr_pages = 0;
648 async_extent->pages = NULL;
649 unlock_extent(io_tree, async_extent->start,
650 async_extent->start +
d0082371 651 async_extent->ram_size - 1);
f5a84ee3
JB
652 goto retry;
653 }
654
c2167754
YZ
655 /*
656 * here we're doing allocation and writeback of the
657 * compressed pages
658 */
659 btrfs_drop_extent_cache(inode, async_extent->start,
660 async_extent->start +
661 async_extent->ram_size - 1, 0);
662
172ddd60 663 em = alloc_extent_map();
c26a9203 664 BUG_ON(!em);
771ed689
CM
665 em->start = async_extent->start;
666 em->len = async_extent->ram_size;
445a6944 667 em->orig_start = em->start;
c8b97818 668
771ed689
CM
669 em->block_start = ins.objectid;
670 em->block_len = ins.offset;
671 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 672 em->compress_type = async_extent->compress_type;
771ed689
CM
673 set_bit(EXTENT_FLAG_PINNED, &em->flags);
674 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
675
d397712b 676 while (1) {
890871be 677 write_lock(&em_tree->lock);
771ed689 678 ret = add_extent_mapping(em_tree, em);
890871be 679 write_unlock(&em_tree->lock);
771ed689
CM
680 if (ret != -EEXIST) {
681 free_extent_map(em);
682 break;
683 }
684 btrfs_drop_extent_cache(inode, async_extent->start,
685 async_extent->start +
686 async_extent->ram_size - 1, 0);
687 }
688
261507a0
LZ
689 ret = btrfs_add_ordered_extent_compress(inode,
690 async_extent->start,
691 ins.objectid,
692 async_extent->ram_size,
693 ins.offset,
694 BTRFS_ORDERED_COMPRESSED,
695 async_extent->compress_type);
771ed689
CM
696 BUG_ON(ret);
697
771ed689
CM
698 /*
699 * clear dirty, set writeback and unlock the pages.
700 */
701 extent_clear_unlock_delalloc(inode,
a791e35e
CM
702 &BTRFS_I(inode)->io_tree,
703 async_extent->start,
704 async_extent->start +
705 async_extent->ram_size - 1,
706 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
707 EXTENT_CLEAR_UNLOCK |
a3429ab7 708 EXTENT_CLEAR_DELALLOC |
a791e35e 709 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
710
711 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
712 async_extent->start,
713 async_extent->ram_size,
714 ins.objectid,
715 ins.offset, async_extent->pages,
716 async_extent->nr_pages);
771ed689
CM
717
718 BUG_ON(ret);
771ed689
CM
719 alloc_hint = ins.objectid + ins.offset;
720 kfree(async_extent);
721 cond_resched();
722 }
723
771ed689
CM
724 return 0;
725}
726
4b46fce2
JB
727static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
728 u64 num_bytes)
729{
730 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
731 struct extent_map *em;
732 u64 alloc_hint = 0;
733
734 read_lock(&em_tree->lock);
735 em = search_extent_mapping(em_tree, start, num_bytes);
736 if (em) {
737 /*
738 * if block start isn't an actual block number then find the
739 * first block in this inode and use that as a hint. If that
740 * block is also bogus then just don't worry about it.
741 */
742 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
743 free_extent_map(em);
744 em = search_extent_mapping(em_tree, 0, 0);
745 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
746 alloc_hint = em->block_start;
747 if (em)
748 free_extent_map(em);
749 } else {
750 alloc_hint = em->block_start;
751 free_extent_map(em);
752 }
753 }
754 read_unlock(&em_tree->lock);
755
756 return alloc_hint;
757}
758
771ed689
CM
759/*
760 * when extent_io.c finds a delayed allocation range in the file,
761 * the call backs end up in this code. The basic idea is to
762 * allocate extents on disk for the range, and create ordered data structs
763 * in ram to track those extents.
764 *
765 * locked_page is the page that writepage had locked already. We use
766 * it to make sure we don't do extra locks or unlocks.
767 *
768 * *page_started is set to one if we unlock locked_page and do everything
769 * required to start IO on it. It may be clean and already done with
770 * IO when we return.
771 */
772static noinline int cow_file_range(struct inode *inode,
773 struct page *locked_page,
774 u64 start, u64 end, int *page_started,
775 unsigned long *nr_written,
776 int unlock)
777{
778 struct btrfs_root *root = BTRFS_I(inode)->root;
779 struct btrfs_trans_handle *trans;
780 u64 alloc_hint = 0;
781 u64 num_bytes;
782 unsigned long ram_size;
783 u64 disk_num_bytes;
784 u64 cur_alloc_size;
785 u64 blocksize = root->sectorsize;
771ed689
CM
786 struct btrfs_key ins;
787 struct extent_map *em;
788 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
789 int ret = 0;
790
2cf8572d 791 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 792 trans = btrfs_join_transaction(root);
3612b495 793 BUG_ON(IS_ERR(trans));
0ca1f7ce 794 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 795
771ed689
CM
796 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
797 num_bytes = max(blocksize, num_bytes);
798 disk_num_bytes = num_bytes;
799 ret = 0;
800
4cb5300b
CM
801 /* if this is a small write inside eof, kick off defrag */
802 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
803 btrfs_add_inode_defrag(trans, inode);
804
771ed689
CM
805 if (start == 0) {
806 /* lets try to make an inline extent */
807 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 808 start, end, 0, 0, NULL);
771ed689
CM
809 if (ret == 0) {
810 extent_clear_unlock_delalloc(inode,
a791e35e
CM
811 &BTRFS_I(inode)->io_tree,
812 start, end, NULL,
813 EXTENT_CLEAR_UNLOCK_PAGE |
814 EXTENT_CLEAR_UNLOCK |
815 EXTENT_CLEAR_DELALLOC |
816 EXTENT_CLEAR_DIRTY |
817 EXTENT_SET_WRITEBACK |
818 EXTENT_END_WRITEBACK);
c2167754 819
771ed689
CM
820 *nr_written = *nr_written +
821 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
822 *page_started = 1;
823 ret = 0;
824 goto out;
825 }
826 }
827
828 BUG_ON(disk_num_bytes >
6c41761f 829 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 830
4b46fce2 831 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
832 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
833
d397712b 834 while (disk_num_bytes > 0) {
a791e35e
CM
835 unsigned long op;
836
287a0ab9 837 cur_alloc_size = disk_num_bytes;
e6dcd2dc 838 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 839 root->sectorsize, 0, alloc_hint,
e6dcd2dc 840 (u64)-1, &ins, 1);
d397712b
CM
841 BUG_ON(ret);
842
172ddd60 843 em = alloc_extent_map();
c26a9203 844 BUG_ON(!em);
e6dcd2dc 845 em->start = start;
445a6944 846 em->orig_start = em->start;
771ed689
CM
847 ram_size = ins.offset;
848 em->len = ins.offset;
c8b97818 849
e6dcd2dc 850 em->block_start = ins.objectid;
c8b97818 851 em->block_len = ins.offset;
e6dcd2dc 852 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 853 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 854
d397712b 855 while (1) {
890871be 856 write_lock(&em_tree->lock);
e6dcd2dc 857 ret = add_extent_mapping(em_tree, em);
890871be 858 write_unlock(&em_tree->lock);
e6dcd2dc
CM
859 if (ret != -EEXIST) {
860 free_extent_map(em);
861 break;
862 }
863 btrfs_drop_extent_cache(inode, start,
c8b97818 864 start + ram_size - 1, 0);
e6dcd2dc
CM
865 }
866
98d20f67 867 cur_alloc_size = ins.offset;
e6dcd2dc 868 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 869 ram_size, cur_alloc_size, 0);
e6dcd2dc 870 BUG_ON(ret);
c8b97818 871
17d217fe
YZ
872 if (root->root_key.objectid ==
873 BTRFS_DATA_RELOC_TREE_OBJECTID) {
874 ret = btrfs_reloc_clone_csums(inode, start,
875 cur_alloc_size);
876 BUG_ON(ret);
877 }
878
d397712b 879 if (disk_num_bytes < cur_alloc_size)
3b951516 880 break;
d397712b 881
c8b97818
CM
882 /* we're not doing compressed IO, don't unlock the first
883 * page (which the caller expects to stay locked), don't
884 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
885 *
886 * Do set the Private2 bit so we know this page was properly
887 * setup for writepage
c8b97818 888 */
a791e35e
CM
889 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
890 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
891 EXTENT_SET_PRIVATE2;
892
c8b97818
CM
893 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
894 start, start + ram_size - 1,
a791e35e 895 locked_page, op);
c8b97818 896 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
897 num_bytes -= cur_alloc_size;
898 alloc_hint = ins.objectid + ins.offset;
899 start += cur_alloc_size;
b888db2b 900 }
b888db2b 901out:
771ed689 902 ret = 0;
b888db2b 903 btrfs_end_transaction(trans, root);
c8b97818 904
be20aa9d 905 return ret;
771ed689 906}
c8b97818 907
771ed689
CM
908/*
909 * work queue call back to started compression on a file and pages
910 */
911static noinline void async_cow_start(struct btrfs_work *work)
912{
913 struct async_cow *async_cow;
914 int num_added = 0;
915 async_cow = container_of(work, struct async_cow, work);
916
917 compress_file_range(async_cow->inode, async_cow->locked_page,
918 async_cow->start, async_cow->end, async_cow,
919 &num_added);
920 if (num_added == 0)
921 async_cow->inode = NULL;
922}
923
924/*
925 * work queue call back to submit previously compressed pages
926 */
927static noinline void async_cow_submit(struct btrfs_work *work)
928{
929 struct async_cow *async_cow;
930 struct btrfs_root *root;
931 unsigned long nr_pages;
932
933 async_cow = container_of(work, struct async_cow, work);
934
935 root = async_cow->root;
936 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
937 PAGE_CACHE_SHIFT;
938
939 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
940
941 if (atomic_read(&root->fs_info->async_delalloc_pages) <
942 5 * 1042 * 1024 &&
943 waitqueue_active(&root->fs_info->async_submit_wait))
944 wake_up(&root->fs_info->async_submit_wait);
945
d397712b 946 if (async_cow->inode)
771ed689 947 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 948}
c8b97818 949
771ed689
CM
950static noinline void async_cow_free(struct btrfs_work *work)
951{
952 struct async_cow *async_cow;
953 async_cow = container_of(work, struct async_cow, work);
954 kfree(async_cow);
955}
956
957static int cow_file_range_async(struct inode *inode, struct page *locked_page,
958 u64 start, u64 end, int *page_started,
959 unsigned long *nr_written)
960{
961 struct async_cow *async_cow;
962 struct btrfs_root *root = BTRFS_I(inode)->root;
963 unsigned long nr_pages;
964 u64 cur_end;
965 int limit = 10 * 1024 * 1042;
966
a3429ab7
CM
967 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
968 1, 0, NULL, GFP_NOFS);
d397712b 969 while (start < end) {
771ed689 970 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 971 BUG_ON(!async_cow);
771ed689
CM
972 async_cow->inode = inode;
973 async_cow->root = root;
974 async_cow->locked_page = locked_page;
975 async_cow->start = start;
976
6cbff00f 977 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
978 cur_end = end;
979 else
980 cur_end = min(end, start + 512 * 1024 - 1);
981
982 async_cow->end = cur_end;
983 INIT_LIST_HEAD(&async_cow->extents);
984
985 async_cow->work.func = async_cow_start;
986 async_cow->work.ordered_func = async_cow_submit;
987 async_cow->work.ordered_free = async_cow_free;
988 async_cow->work.flags = 0;
989
771ed689
CM
990 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
991 PAGE_CACHE_SHIFT;
992 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
993
994 btrfs_queue_worker(&root->fs_info->delalloc_workers,
995 &async_cow->work);
996
997 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
998 wait_event(root->fs_info->async_submit_wait,
999 (atomic_read(&root->fs_info->async_delalloc_pages) <
1000 limit));
1001 }
1002
d397712b 1003 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1004 atomic_read(&root->fs_info->async_delalloc_pages)) {
1005 wait_event(root->fs_info->async_submit_wait,
1006 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1007 0));
1008 }
1009
1010 *nr_written += nr_pages;
1011 start = cur_end + 1;
1012 }
1013 *page_started = 1;
1014 return 0;
be20aa9d
CM
1015}
1016
d397712b 1017static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1018 u64 bytenr, u64 num_bytes)
1019{
1020 int ret;
1021 struct btrfs_ordered_sum *sums;
1022 LIST_HEAD(list);
1023
07d400a6 1024 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1025 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1026 if (ret == 0 && list_empty(&list))
1027 return 0;
1028
1029 while (!list_empty(&list)) {
1030 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1031 list_del(&sums->list);
1032 kfree(sums);
1033 }
1034 return 1;
1035}
1036
d352ac68
CM
1037/*
1038 * when nowcow writeback call back. This checks for snapshots or COW copies
1039 * of the extents that exist in the file, and COWs the file as required.
1040 *
1041 * If no cow copies or snapshots exist, we write directly to the existing
1042 * blocks on disk
1043 */
7f366cfe
CM
1044static noinline int run_delalloc_nocow(struct inode *inode,
1045 struct page *locked_page,
771ed689
CM
1046 u64 start, u64 end, int *page_started, int force,
1047 unsigned long *nr_written)
be20aa9d 1048{
be20aa9d 1049 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1050 struct btrfs_trans_handle *trans;
be20aa9d 1051 struct extent_buffer *leaf;
be20aa9d 1052 struct btrfs_path *path;
80ff3856 1053 struct btrfs_file_extent_item *fi;
be20aa9d 1054 struct btrfs_key found_key;
80ff3856
YZ
1055 u64 cow_start;
1056 u64 cur_offset;
1057 u64 extent_end;
5d4f98a2 1058 u64 extent_offset;
80ff3856
YZ
1059 u64 disk_bytenr;
1060 u64 num_bytes;
1061 int extent_type;
1062 int ret;
d899e052 1063 int type;
80ff3856
YZ
1064 int nocow;
1065 int check_prev = 1;
82d5902d 1066 bool nolock;
33345d01 1067 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1068
1069 path = btrfs_alloc_path();
d8926bb3
MF
1070 if (!path)
1071 return -ENOMEM;
82d5902d 1072
2cf8572d 1073 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1074
1075 if (nolock)
7a7eaa40 1076 trans = btrfs_join_transaction_nolock(root);
82d5902d 1077 else
7a7eaa40 1078 trans = btrfs_join_transaction(root);
ff5714cc 1079
3612b495 1080 BUG_ON(IS_ERR(trans));
74b21075 1081 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1082
80ff3856
YZ
1083 cow_start = (u64)-1;
1084 cur_offset = start;
1085 while (1) {
33345d01 1086 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1087 cur_offset, 0);
1088 BUG_ON(ret < 0);
1089 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1090 leaf = path->nodes[0];
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0] - 1);
33345d01 1093 if (found_key.objectid == ino &&
80ff3856
YZ
1094 found_key.type == BTRFS_EXTENT_DATA_KEY)
1095 path->slots[0]--;
1096 }
1097 check_prev = 0;
1098next_slot:
1099 leaf = path->nodes[0];
1100 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1101 ret = btrfs_next_leaf(root, path);
1102 if (ret < 0)
1103 BUG_ON(1);
1104 if (ret > 0)
1105 break;
1106 leaf = path->nodes[0];
1107 }
be20aa9d 1108
80ff3856
YZ
1109 nocow = 0;
1110 disk_bytenr = 0;
17d217fe 1111 num_bytes = 0;
80ff3856
YZ
1112 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1113
33345d01 1114 if (found_key.objectid > ino ||
80ff3856
YZ
1115 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1116 found_key.offset > end)
1117 break;
1118
1119 if (found_key.offset > cur_offset) {
1120 extent_end = found_key.offset;
e9061e21 1121 extent_type = 0;
80ff3856
YZ
1122 goto out_check;
1123 }
1124
1125 fi = btrfs_item_ptr(leaf, path->slots[0],
1126 struct btrfs_file_extent_item);
1127 extent_type = btrfs_file_extent_type(leaf, fi);
1128
d899e052
YZ
1129 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1130 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1131 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1132 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1133 extent_end = found_key.offset +
1134 btrfs_file_extent_num_bytes(leaf, fi);
1135 if (extent_end <= start) {
1136 path->slots[0]++;
1137 goto next_slot;
1138 }
17d217fe
YZ
1139 if (disk_bytenr == 0)
1140 goto out_check;
80ff3856
YZ
1141 if (btrfs_file_extent_compression(leaf, fi) ||
1142 btrfs_file_extent_encryption(leaf, fi) ||
1143 btrfs_file_extent_other_encoding(leaf, fi))
1144 goto out_check;
d899e052
YZ
1145 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1146 goto out_check;
d2fb3437 1147 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1148 goto out_check;
33345d01 1149 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1150 found_key.offset -
1151 extent_offset, disk_bytenr))
17d217fe 1152 goto out_check;
5d4f98a2 1153 disk_bytenr += extent_offset;
17d217fe
YZ
1154 disk_bytenr += cur_offset - found_key.offset;
1155 num_bytes = min(end + 1, extent_end) - cur_offset;
1156 /*
1157 * force cow if csum exists in the range.
1158 * this ensure that csum for a given extent are
1159 * either valid or do not exist.
1160 */
1161 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1162 goto out_check;
80ff3856
YZ
1163 nocow = 1;
1164 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1165 extent_end = found_key.offset +
1166 btrfs_file_extent_inline_len(leaf, fi);
1167 extent_end = ALIGN(extent_end, root->sectorsize);
1168 } else {
1169 BUG_ON(1);
1170 }
1171out_check:
1172 if (extent_end <= start) {
1173 path->slots[0]++;
1174 goto next_slot;
1175 }
1176 if (!nocow) {
1177 if (cow_start == (u64)-1)
1178 cow_start = cur_offset;
1179 cur_offset = extent_end;
1180 if (cur_offset > end)
1181 break;
1182 path->slots[0]++;
1183 goto next_slot;
7ea394f1
YZ
1184 }
1185
b3b4aa74 1186 btrfs_release_path(path);
80ff3856
YZ
1187 if (cow_start != (u64)-1) {
1188 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1189 found_key.offset - 1, page_started,
1190 nr_written, 1);
80ff3856
YZ
1191 BUG_ON(ret);
1192 cow_start = (u64)-1;
7ea394f1 1193 }
80ff3856 1194
d899e052
YZ
1195 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1196 struct extent_map *em;
1197 struct extent_map_tree *em_tree;
1198 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1199 em = alloc_extent_map();
c26a9203 1200 BUG_ON(!em);
d899e052 1201 em->start = cur_offset;
445a6944 1202 em->orig_start = em->start;
d899e052
YZ
1203 em->len = num_bytes;
1204 em->block_len = num_bytes;
1205 em->block_start = disk_bytenr;
1206 em->bdev = root->fs_info->fs_devices->latest_bdev;
1207 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1208 while (1) {
890871be 1209 write_lock(&em_tree->lock);
d899e052 1210 ret = add_extent_mapping(em_tree, em);
890871be 1211 write_unlock(&em_tree->lock);
d899e052
YZ
1212 if (ret != -EEXIST) {
1213 free_extent_map(em);
1214 break;
1215 }
1216 btrfs_drop_extent_cache(inode, em->start,
1217 em->start + em->len - 1, 0);
1218 }
1219 type = BTRFS_ORDERED_PREALLOC;
1220 } else {
1221 type = BTRFS_ORDERED_NOCOW;
1222 }
80ff3856
YZ
1223
1224 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1225 num_bytes, num_bytes, type);
1226 BUG_ON(ret);
771ed689 1227
efa56464
YZ
1228 if (root->root_key.objectid ==
1229 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1230 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1231 num_bytes);
1232 BUG_ON(ret);
1233 }
1234
d899e052 1235 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1236 cur_offset, cur_offset + num_bytes - 1,
1237 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1238 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1239 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1240 cur_offset = extent_end;
1241 if (cur_offset > end)
1242 break;
be20aa9d 1243 }
b3b4aa74 1244 btrfs_release_path(path);
80ff3856
YZ
1245
1246 if (cur_offset <= end && cow_start == (u64)-1)
1247 cow_start = cur_offset;
1248 if (cow_start != (u64)-1) {
1249 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1250 page_started, nr_written, 1);
80ff3856
YZ
1251 BUG_ON(ret);
1252 }
1253
0cb59c99
JB
1254 if (nolock) {
1255 ret = btrfs_end_transaction_nolock(trans, root);
1256 BUG_ON(ret);
1257 } else {
1258 ret = btrfs_end_transaction(trans, root);
1259 BUG_ON(ret);
1260 }
7ea394f1 1261 btrfs_free_path(path);
80ff3856 1262 return 0;
be20aa9d
CM
1263}
1264
d352ac68
CM
1265/*
1266 * extent_io.c call back to do delayed allocation processing
1267 */
c8b97818 1268static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1269 u64 start, u64 end, int *page_started,
1270 unsigned long *nr_written)
be20aa9d 1271{
be20aa9d 1272 int ret;
7f366cfe 1273 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1274
6cbff00f 1275 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1276 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1277 page_started, 1, nr_written);
6cbff00f 1278 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1279 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1280 page_started, 0, nr_written);
1e701a32 1281 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1282 !(BTRFS_I(inode)->force_compress) &&
1283 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1284 ret = cow_file_range(inode, locked_page, start, end,
1285 page_started, nr_written, 1);
be20aa9d 1286 else
771ed689 1287 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1288 page_started, nr_written);
b888db2b
CM
1289 return ret;
1290}
1291
1bf85046
JM
1292static void btrfs_split_extent_hook(struct inode *inode,
1293 struct extent_state *orig, u64 split)
9ed74f2d 1294{
0ca1f7ce 1295 /* not delalloc, ignore it */
9ed74f2d 1296 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1297 return;
9ed74f2d 1298
9e0baf60
JB
1299 spin_lock(&BTRFS_I(inode)->lock);
1300 BTRFS_I(inode)->outstanding_extents++;
1301 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1302}
1303
1304/*
1305 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1306 * extents so we can keep track of new extents that are just merged onto old
1307 * extents, such as when we are doing sequential writes, so we can properly
1308 * account for the metadata space we'll need.
1309 */
1bf85046
JM
1310static void btrfs_merge_extent_hook(struct inode *inode,
1311 struct extent_state *new,
1312 struct extent_state *other)
9ed74f2d 1313{
9ed74f2d
JB
1314 /* not delalloc, ignore it */
1315 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1316 return;
9ed74f2d 1317
9e0baf60
JB
1318 spin_lock(&BTRFS_I(inode)->lock);
1319 BTRFS_I(inode)->outstanding_extents--;
1320 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1321}
1322
d352ac68
CM
1323/*
1324 * extent_io.c set_bit_hook, used to track delayed allocation
1325 * bytes in this file, and to maintain the list of inodes that
1326 * have pending delalloc work to be done.
1327 */
1bf85046
JM
1328static void btrfs_set_bit_hook(struct inode *inode,
1329 struct extent_state *state, int *bits)
291d673e 1330{
9ed74f2d 1331
75eff68e
CM
1332 /*
1333 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1334 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1335 * bit, which is only set or cleared with irqs on
1336 */
0ca1f7ce 1337 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1338 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1339 u64 len = state->end + 1 - state->start;
2cf8572d 1340 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1341
9e0baf60 1342 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1343 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1344 } else {
1345 spin_lock(&BTRFS_I(inode)->lock);
1346 BTRFS_I(inode)->outstanding_extents++;
1347 spin_unlock(&BTRFS_I(inode)->lock);
1348 }
287a0ab9 1349
75eff68e 1350 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1351 BTRFS_I(inode)->delalloc_bytes += len;
1352 root->fs_info->delalloc_bytes += len;
0cb59c99 1353 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1354 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1355 &root->fs_info->delalloc_inodes);
1356 }
75eff68e 1357 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1358 }
291d673e
CM
1359}
1360
d352ac68
CM
1361/*
1362 * extent_io.c clear_bit_hook, see set_bit_hook for why
1363 */
1bf85046
JM
1364static void btrfs_clear_bit_hook(struct inode *inode,
1365 struct extent_state *state, int *bits)
291d673e 1366{
75eff68e
CM
1367 /*
1368 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1369 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1370 * bit, which is only set or cleared with irqs on
1371 */
0ca1f7ce 1372 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1373 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1374 u64 len = state->end + 1 - state->start;
2cf8572d 1375 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1376
9e0baf60 1377 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1378 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1379 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1380 spin_lock(&BTRFS_I(inode)->lock);
1381 BTRFS_I(inode)->outstanding_extents--;
1382 spin_unlock(&BTRFS_I(inode)->lock);
1383 }
0ca1f7ce
YZ
1384
1385 if (*bits & EXTENT_DO_ACCOUNTING)
1386 btrfs_delalloc_release_metadata(inode, len);
1387
0cb59c99
JB
1388 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1389 && do_list)
0ca1f7ce 1390 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1391
75eff68e 1392 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1393 root->fs_info->delalloc_bytes -= len;
1394 BTRFS_I(inode)->delalloc_bytes -= len;
1395
0cb59c99 1396 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1397 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1398 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1399 }
75eff68e 1400 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1401 }
291d673e
CM
1402}
1403
d352ac68
CM
1404/*
1405 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1406 * we don't create bios that span stripes or chunks
1407 */
239b14b3 1408int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1409 size_t size, struct bio *bio,
1410 unsigned long bio_flags)
239b14b3
CM
1411{
1412 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1413 struct btrfs_mapping_tree *map_tree;
a62b9401 1414 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1415 u64 length = 0;
1416 u64 map_length;
239b14b3
CM
1417 int ret;
1418
771ed689
CM
1419 if (bio_flags & EXTENT_BIO_COMPRESSED)
1420 return 0;
1421
f2d8d74d 1422 length = bio->bi_size;
239b14b3
CM
1423 map_tree = &root->fs_info->mapping_tree;
1424 map_length = length;
cea9e445 1425 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1426 &map_length, NULL, 0);
3444a972
JM
1427 /* Will always return 0 or 1 with map_multi == NULL */
1428 BUG_ON(ret < 0);
d397712b 1429 if (map_length < length + size)
239b14b3 1430 return 1;
3444a972 1431 return 0;
239b14b3
CM
1432}
1433
d352ac68
CM
1434/*
1435 * in order to insert checksums into the metadata in large chunks,
1436 * we wait until bio submission time. All the pages in the bio are
1437 * checksummed and sums are attached onto the ordered extent record.
1438 *
1439 * At IO completion time the cums attached on the ordered extent record
1440 * are inserted into the btree
1441 */
d397712b
CM
1442static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1443 struct bio *bio, int mirror_num,
eaf25d93
CM
1444 unsigned long bio_flags,
1445 u64 bio_offset)
065631f6 1446{
065631f6 1447 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1448 int ret = 0;
e015640f 1449
d20f7043 1450 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1451 BUG_ON(ret);
4a69a410
CM
1452 return 0;
1453}
e015640f 1454
4a69a410
CM
1455/*
1456 * in order to insert checksums into the metadata in large chunks,
1457 * we wait until bio submission time. All the pages in the bio are
1458 * checksummed and sums are attached onto the ordered extent record.
1459 *
1460 * At IO completion time the cums attached on the ordered extent record
1461 * are inserted into the btree
1462 */
b2950863 1463static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1464 int mirror_num, unsigned long bio_flags,
1465 u64 bio_offset)
4a69a410
CM
1466{
1467 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1468 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1469}
1470
d352ac68 1471/*
cad321ad
CM
1472 * extent_io.c submission hook. This does the right thing for csum calculation
1473 * on write, or reading the csums from the tree before a read
d352ac68 1474 */
b2950863 1475static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1476 int mirror_num, unsigned long bio_flags,
1477 u64 bio_offset)
44b8bd7e
CM
1478{
1479 struct btrfs_root *root = BTRFS_I(inode)->root;
1480 int ret = 0;
19b9bdb0 1481 int skip_sum;
0417341e 1482 int metadata = 0;
44b8bd7e 1483
6cbff00f 1484 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1485
2cf8572d 1486 if (btrfs_is_free_space_inode(root, inode))
0417341e
JM
1487 metadata = 2;
1488
1489 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
355808c2
JM
1490 if (ret)
1491 return ret;
065631f6 1492
7b6d91da 1493 if (!(rw & REQ_WRITE)) {
d20f7043 1494 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1495 return btrfs_submit_compressed_read(inode, bio,
1496 mirror_num, bio_flags);
c2db1073
TI
1497 } else if (!skip_sum) {
1498 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1499 if (ret)
1500 return ret;
1501 }
4d1b5fb4 1502 goto mapit;
19b9bdb0 1503 } else if (!skip_sum) {
17d217fe
YZ
1504 /* csum items have already been cloned */
1505 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1506 goto mapit;
19b9bdb0
CM
1507 /* we're doing a write, do the async checksumming */
1508 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1509 inode, rw, bio, mirror_num,
eaf25d93
CM
1510 bio_flags, bio_offset,
1511 __btrfs_submit_bio_start,
4a69a410 1512 __btrfs_submit_bio_done);
19b9bdb0
CM
1513 }
1514
0b86a832 1515mapit:
8b712842 1516 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1517}
6885f308 1518
d352ac68
CM
1519/*
1520 * given a list of ordered sums record them in the inode. This happens
1521 * at IO completion time based on sums calculated at bio submission time.
1522 */
ba1da2f4 1523static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1524 struct inode *inode, u64 file_offset,
1525 struct list_head *list)
1526{
e6dcd2dc
CM
1527 struct btrfs_ordered_sum *sum;
1528
c6e30871 1529 list_for_each_entry(sum, list, list) {
d20f7043
CM
1530 btrfs_csum_file_blocks(trans,
1531 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1532 }
1533 return 0;
1534}
1535
2ac55d41
JB
1536int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1537 struct extent_state **cached_state)
ea8c2819 1538{
d397712b 1539 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1540 WARN_ON(1);
ea8c2819 1541 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1542 cached_state, GFP_NOFS);
ea8c2819
CM
1543}
1544
d352ac68 1545/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1546struct btrfs_writepage_fixup {
1547 struct page *page;
1548 struct btrfs_work work;
1549};
1550
b2950863 1551static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1552{
1553 struct btrfs_writepage_fixup *fixup;
1554 struct btrfs_ordered_extent *ordered;
2ac55d41 1555 struct extent_state *cached_state = NULL;
247e743c
CM
1556 struct page *page;
1557 struct inode *inode;
1558 u64 page_start;
1559 u64 page_end;
87826df0 1560 int ret;
247e743c
CM
1561
1562 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1563 page = fixup->page;
4a096752 1564again:
247e743c
CM
1565 lock_page(page);
1566 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1567 ClearPageChecked(page);
1568 goto out_page;
1569 }
1570
1571 inode = page->mapping->host;
1572 page_start = page_offset(page);
1573 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1574
2ac55d41 1575 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1576 &cached_state);
4a096752
CM
1577
1578 /* already ordered? We're done */
8b62b72b 1579 if (PagePrivate2(page))
247e743c 1580 goto out;
4a096752
CM
1581
1582 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1583 if (ordered) {
2ac55d41
JB
1584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1585 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1586 unlock_page(page);
1587 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1588 btrfs_put_ordered_extent(ordered);
4a096752
CM
1589 goto again;
1590 }
247e743c 1591
87826df0
JM
1592 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1593 if (ret) {
1594 mapping_set_error(page->mapping, ret);
1595 end_extent_writepage(page, ret, page_start, page_end);
1596 ClearPageChecked(page);
1597 goto out;
1598 }
1599
2ac55d41 1600 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1601 ClearPageChecked(page);
87826df0 1602 set_page_dirty(page);
247e743c 1603out:
2ac55d41
JB
1604 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1605 &cached_state, GFP_NOFS);
247e743c
CM
1606out_page:
1607 unlock_page(page);
1608 page_cache_release(page);
b897abec 1609 kfree(fixup);
247e743c
CM
1610}
1611
1612/*
1613 * There are a few paths in the higher layers of the kernel that directly
1614 * set the page dirty bit without asking the filesystem if it is a
1615 * good idea. This causes problems because we want to make sure COW
1616 * properly happens and the data=ordered rules are followed.
1617 *
c8b97818 1618 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1619 * hasn't been properly setup for IO. We kick off an async process
1620 * to fix it up. The async helper will wait for ordered extents, set
1621 * the delalloc bit and make it safe to write the page.
1622 */
b2950863 1623static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1624{
1625 struct inode *inode = page->mapping->host;
1626 struct btrfs_writepage_fixup *fixup;
1627 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1628
8b62b72b
CM
1629 /* this page is properly in the ordered list */
1630 if (TestClearPagePrivate2(page))
247e743c
CM
1631 return 0;
1632
1633 if (PageChecked(page))
1634 return -EAGAIN;
1635
1636 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1637 if (!fixup)
1638 return -EAGAIN;
f421950f 1639
247e743c
CM
1640 SetPageChecked(page);
1641 page_cache_get(page);
1642 fixup->work.func = btrfs_writepage_fixup_worker;
1643 fixup->page = page;
1644 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1645 return -EBUSY;
247e743c
CM
1646}
1647
d899e052
YZ
1648static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1649 struct inode *inode, u64 file_pos,
1650 u64 disk_bytenr, u64 disk_num_bytes,
1651 u64 num_bytes, u64 ram_bytes,
1652 u8 compression, u8 encryption,
1653 u16 other_encoding, int extent_type)
1654{
1655 struct btrfs_root *root = BTRFS_I(inode)->root;
1656 struct btrfs_file_extent_item *fi;
1657 struct btrfs_path *path;
1658 struct extent_buffer *leaf;
1659 struct btrfs_key ins;
1660 u64 hint;
1661 int ret;
1662
1663 path = btrfs_alloc_path();
d8926bb3
MF
1664 if (!path)
1665 return -ENOMEM;
d899e052 1666
b9473439 1667 path->leave_spinning = 1;
a1ed835e
CM
1668
1669 /*
1670 * we may be replacing one extent in the tree with another.
1671 * The new extent is pinned in the extent map, and we don't want
1672 * to drop it from the cache until it is completely in the btree.
1673 *
1674 * So, tell btrfs_drop_extents to leave this extent in the cache.
1675 * the caller is expected to unpin it and allow it to be merged
1676 * with the others.
1677 */
920bbbfb
YZ
1678 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1679 &hint, 0);
d899e052
YZ
1680 BUG_ON(ret);
1681
33345d01 1682 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1683 ins.offset = file_pos;
1684 ins.type = BTRFS_EXTENT_DATA_KEY;
1685 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1686 BUG_ON(ret);
1687 leaf = path->nodes[0];
1688 fi = btrfs_item_ptr(leaf, path->slots[0],
1689 struct btrfs_file_extent_item);
1690 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1691 btrfs_set_file_extent_type(leaf, fi, extent_type);
1692 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1693 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1694 btrfs_set_file_extent_offset(leaf, fi, 0);
1695 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1696 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1697 btrfs_set_file_extent_compression(leaf, fi, compression);
1698 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1699 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1700
1701 btrfs_unlock_up_safe(path, 1);
1702 btrfs_set_lock_blocking(leaf);
1703
d899e052
YZ
1704 btrfs_mark_buffer_dirty(leaf);
1705
1706 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1707
1708 ins.objectid = disk_bytenr;
1709 ins.offset = disk_num_bytes;
1710 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1711 ret = btrfs_alloc_reserved_file_extent(trans, root,
1712 root->root_key.objectid,
33345d01 1713 btrfs_ino(inode), file_pos, &ins);
d899e052 1714 BUG_ON(ret);
d899e052 1715 btrfs_free_path(path);
b9473439 1716
d899e052
YZ
1717 return 0;
1718}
1719
5d13a98f
CM
1720/*
1721 * helper function for btrfs_finish_ordered_io, this
1722 * just reads in some of the csum leaves to prime them into ram
1723 * before we start the transaction. It limits the amount of btree
1724 * reads required while inside the transaction.
1725 */
d352ac68
CM
1726/* as ordered data IO finishes, this gets called so we can finish
1727 * an ordered extent if the range of bytes in the file it covers are
1728 * fully written.
1729 */
211f90e6 1730static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1731{
e6dcd2dc 1732 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1733 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1734 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1735 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1736 struct extent_state *cached_state = NULL;
261507a0 1737 int compress_type = 0;
e6dcd2dc 1738 int ret;
82d5902d 1739 bool nolock;
e6dcd2dc 1740
5a1a3df1
JB
1741 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1742 end - start + 1);
ba1da2f4 1743 if (!ret)
e6dcd2dc 1744 return 0;
e6dcd2dc 1745 BUG_ON(!ordered_extent);
efd049fb 1746
2cf8572d 1747 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1748
c2167754
YZ
1749 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1750 BUG_ON(!list_empty(&ordered_extent->list));
1751 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1752 if (!ret) {
0cb59c99 1753 if (nolock)
7a7eaa40 1754 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1755 else
7a7eaa40 1756 trans = btrfs_join_transaction(root);
3612b495 1757 BUG_ON(IS_ERR(trans));
0ca1f7ce 1758 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1759 ret = btrfs_update_inode_fallback(trans, root, inode);
c2167754 1760 BUG_ON(ret);
c2167754
YZ
1761 }
1762 goto out;
1763 }
e6dcd2dc 1764
2ac55d41
JB
1765 lock_extent_bits(io_tree, ordered_extent->file_offset,
1766 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1767 0, &cached_state);
e6dcd2dc 1768
0cb59c99 1769 if (nolock)
7a7eaa40 1770 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1771 else
7a7eaa40 1772 trans = btrfs_join_transaction(root);
3612b495 1773 BUG_ON(IS_ERR(trans));
0ca1f7ce 1774 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1775
c8b97818 1776 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1777 compress_type = ordered_extent->compress_type;
d899e052 1778 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1779 BUG_ON(compress_type);
920bbbfb 1780 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1781 ordered_extent->file_offset,
1782 ordered_extent->file_offset +
1783 ordered_extent->len);
1784 BUG_ON(ret);
1785 } else {
0af3d00b 1786 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1787 ret = insert_reserved_file_extent(trans, inode,
1788 ordered_extent->file_offset,
1789 ordered_extent->start,
1790 ordered_extent->disk_len,
1791 ordered_extent->len,
1792 ordered_extent->len,
261507a0 1793 compress_type, 0, 0,
d899e052 1794 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1795 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1796 ordered_extent->file_offset,
1797 ordered_extent->len);
d899e052
YZ
1798 BUG_ON(ret);
1799 }
2ac55d41
JB
1800 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1801 ordered_extent->file_offset +
1802 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1803
e6dcd2dc
CM
1804 add_pending_csums(trans, inode, ordered_extent->file_offset,
1805 &ordered_extent->list);
1806
1ef30be1 1807 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1808 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1809 ret = btrfs_update_inode_fallback(trans, root, inode);
1ef30be1
JB
1810 BUG_ON(ret);
1811 }
1812 ret = 0;
c2167754 1813out:
5b0e95bf 1814 if (root != root->fs_info->tree_root)
0cb59c99 1815 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
5b0e95bf
JB
1816 if (trans) {
1817 if (nolock)
0cb59c99 1818 btrfs_end_transaction_nolock(trans, root);
5b0e95bf 1819 else
0cb59c99
JB
1820 btrfs_end_transaction(trans, root);
1821 }
1822
e6dcd2dc
CM
1823 /* once for us */
1824 btrfs_put_ordered_extent(ordered_extent);
1825 /* once for the tree */
1826 btrfs_put_ordered_extent(ordered_extent);
1827
e6dcd2dc
CM
1828 return 0;
1829}
1830
b2950863 1831static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1832 struct extent_state *state, int uptodate)
1833{
1abe9b8a 1834 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1835
8b62b72b 1836 ClearPagePrivate2(page);
211f90e6
CM
1837 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1838}
1839
d352ac68
CM
1840/*
1841 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
1842 * if there's a match, we allow the bio to finish. If not, the code in
1843 * extent_io.c will try to find good copies for us.
d352ac68 1844 */
b2950863 1845static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1846 struct extent_state *state)
07157aac 1847{
35ebb934 1848 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1849 struct inode *inode = page->mapping->host;
d1310b2e 1850 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1851 char *kaddr;
aadfeb6e 1852 u64 private = ~(u32)0;
07157aac 1853 int ret;
ff79f819
CM
1854 struct btrfs_root *root = BTRFS_I(inode)->root;
1855 u32 csum = ~(u32)0;
d1310b2e 1856
d20f7043
CM
1857 if (PageChecked(page)) {
1858 ClearPageChecked(page);
1859 goto good;
1860 }
6cbff00f
CH
1861
1862 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1863 goto good;
17d217fe
YZ
1864
1865 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1866 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1867 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1868 GFP_NOFS);
b6cda9bc 1869 return 0;
17d217fe 1870 }
d20f7043 1871
c2e639f0 1872 if (state && state->start == start) {
70dec807
CM
1873 private = state->private;
1874 ret = 0;
1875 } else {
1876 ret = get_state_private(io_tree, start, &private);
1877 }
9ab86c8e 1878 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1879 if (ret)
07157aac 1880 goto zeroit;
d397712b 1881
ff79f819
CM
1882 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1883 btrfs_csum_final(csum, (char *)&csum);
d397712b 1884 if (csum != private)
07157aac 1885 goto zeroit;
d397712b 1886
9ab86c8e 1887 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1888good:
07157aac
CM
1889 return 0;
1890
1891zeroit:
945d8962 1892 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
1893 "private %llu\n",
1894 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
1895 (unsigned long long)start, csum,
1896 (unsigned long long)private);
db94535d
CM
1897 memset(kaddr + offset, 1, end - start + 1);
1898 flush_dcache_page(page);
9ab86c8e 1899 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1900 if (private == 0)
1901 return 0;
7e38326f 1902 return -EIO;
07157aac 1903}
b888db2b 1904
24bbcf04
YZ
1905struct delayed_iput {
1906 struct list_head list;
1907 struct inode *inode;
1908};
1909
1910void btrfs_add_delayed_iput(struct inode *inode)
1911{
1912 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1913 struct delayed_iput *delayed;
1914
1915 if (atomic_add_unless(&inode->i_count, -1, 1))
1916 return;
1917
1918 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1919 delayed->inode = inode;
1920
1921 spin_lock(&fs_info->delayed_iput_lock);
1922 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1923 spin_unlock(&fs_info->delayed_iput_lock);
1924}
1925
1926void btrfs_run_delayed_iputs(struct btrfs_root *root)
1927{
1928 LIST_HEAD(list);
1929 struct btrfs_fs_info *fs_info = root->fs_info;
1930 struct delayed_iput *delayed;
1931 int empty;
1932
1933 spin_lock(&fs_info->delayed_iput_lock);
1934 empty = list_empty(&fs_info->delayed_iputs);
1935 spin_unlock(&fs_info->delayed_iput_lock);
1936 if (empty)
1937 return;
1938
1939 down_read(&root->fs_info->cleanup_work_sem);
1940 spin_lock(&fs_info->delayed_iput_lock);
1941 list_splice_init(&fs_info->delayed_iputs, &list);
1942 spin_unlock(&fs_info->delayed_iput_lock);
1943
1944 while (!list_empty(&list)) {
1945 delayed = list_entry(list.next, struct delayed_iput, list);
1946 list_del(&delayed->list);
1947 iput(delayed->inode);
1948 kfree(delayed);
1949 }
1950 up_read(&root->fs_info->cleanup_work_sem);
1951}
1952
d68fc57b
YZ
1953enum btrfs_orphan_cleanup_state {
1954 ORPHAN_CLEANUP_STARTED = 1,
1955 ORPHAN_CLEANUP_DONE = 2,
1956};
1957
1958/*
42b2aa86 1959 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
1960 * files in the subvolume, it removes orphan item and frees block_rsv
1961 * structure.
1962 */
1963void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1964 struct btrfs_root *root)
1965{
90290e19 1966 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
1967 int ret;
1968
1969 if (!list_empty(&root->orphan_list) ||
1970 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1971 return;
1972
90290e19
JB
1973 spin_lock(&root->orphan_lock);
1974 if (!list_empty(&root->orphan_list)) {
1975 spin_unlock(&root->orphan_lock);
1976 return;
1977 }
1978
1979 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
1980 spin_unlock(&root->orphan_lock);
1981 return;
1982 }
1983
1984 block_rsv = root->orphan_block_rsv;
1985 root->orphan_block_rsv = NULL;
1986 spin_unlock(&root->orphan_lock);
1987
d68fc57b
YZ
1988 if (root->orphan_item_inserted &&
1989 btrfs_root_refs(&root->root_item) > 0) {
1990 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1991 root->root_key.objectid);
1992 BUG_ON(ret);
1993 root->orphan_item_inserted = 0;
1994 }
1995
90290e19
JB
1996 if (block_rsv) {
1997 WARN_ON(block_rsv->size > 0);
1998 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
1999 }
2000}
2001
7b128766
JB
2002/*
2003 * This creates an orphan entry for the given inode in case something goes
2004 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2005 *
2006 * NOTE: caller of this function should reserve 5 units of metadata for
2007 * this function.
7b128766
JB
2008 */
2009int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2010{
2011 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2012 struct btrfs_block_rsv *block_rsv = NULL;
2013 int reserve = 0;
2014 int insert = 0;
2015 int ret;
7b128766 2016
d68fc57b
YZ
2017 if (!root->orphan_block_rsv) {
2018 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2019 if (!block_rsv)
2020 return -ENOMEM;
d68fc57b 2021 }
7b128766 2022
d68fc57b
YZ
2023 spin_lock(&root->orphan_lock);
2024 if (!root->orphan_block_rsv) {
2025 root->orphan_block_rsv = block_rsv;
2026 } else if (block_rsv) {
2027 btrfs_free_block_rsv(root, block_rsv);
2028 block_rsv = NULL;
7b128766 2029 }
7b128766 2030
d68fc57b
YZ
2031 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2032 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2033#if 0
2034 /*
2035 * For proper ENOSPC handling, we should do orphan
2036 * cleanup when mounting. But this introduces backward
2037 * compatibility issue.
2038 */
2039 if (!xchg(&root->orphan_item_inserted, 1))
2040 insert = 2;
2041 else
2042 insert = 1;
2043#endif
2044 insert = 1;
7b128766
JB
2045 }
2046
d68fc57b
YZ
2047 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2048 BTRFS_I(inode)->orphan_meta_reserved = 1;
2049 reserve = 1;
2050 }
2051 spin_unlock(&root->orphan_lock);
7b128766 2052
d68fc57b
YZ
2053 /* grab metadata reservation from transaction handle */
2054 if (reserve) {
2055 ret = btrfs_orphan_reserve_metadata(trans, inode);
2056 BUG_ON(ret);
2057 }
7b128766 2058
d68fc57b
YZ
2059 /* insert an orphan item to track this unlinked/truncated file */
2060 if (insert >= 1) {
33345d01 2061 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
ee4d89f0 2062 BUG_ON(ret && ret != -EEXIST);
d68fc57b
YZ
2063 }
2064
2065 /* insert an orphan item to track subvolume contains orphan files */
2066 if (insert >= 2) {
2067 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2068 root->root_key.objectid);
2069 BUG_ON(ret);
2070 }
2071 return 0;
7b128766
JB
2072}
2073
2074/*
2075 * We have done the truncate/delete so we can go ahead and remove the orphan
2076 * item for this particular inode.
2077 */
2078int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2079{
2080 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2081 int delete_item = 0;
2082 int release_rsv = 0;
7b128766
JB
2083 int ret = 0;
2084
d68fc57b
YZ
2085 spin_lock(&root->orphan_lock);
2086 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2087 list_del_init(&BTRFS_I(inode)->i_orphan);
2088 delete_item = 1;
7b128766
JB
2089 }
2090
d68fc57b
YZ
2091 if (BTRFS_I(inode)->orphan_meta_reserved) {
2092 BTRFS_I(inode)->orphan_meta_reserved = 0;
2093 release_rsv = 1;
7b128766 2094 }
d68fc57b 2095 spin_unlock(&root->orphan_lock);
7b128766 2096
d68fc57b 2097 if (trans && delete_item) {
33345d01 2098 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2099 BUG_ON(ret);
2100 }
7b128766 2101
d68fc57b
YZ
2102 if (release_rsv)
2103 btrfs_orphan_release_metadata(inode);
7b128766 2104
d68fc57b 2105 return 0;
7b128766
JB
2106}
2107
2108/*
2109 * this cleans up any orphans that may be left on the list from the last use
2110 * of this root.
2111 */
66b4ffd1 2112int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2113{
2114 struct btrfs_path *path;
2115 struct extent_buffer *leaf;
7b128766
JB
2116 struct btrfs_key key, found_key;
2117 struct btrfs_trans_handle *trans;
2118 struct inode *inode;
8f6d7f4f 2119 u64 last_objectid = 0;
7b128766
JB
2120 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2121
d68fc57b 2122 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2123 return 0;
c71bf099
YZ
2124
2125 path = btrfs_alloc_path();
66b4ffd1
JB
2126 if (!path) {
2127 ret = -ENOMEM;
2128 goto out;
2129 }
7b128766
JB
2130 path->reada = -1;
2131
2132 key.objectid = BTRFS_ORPHAN_OBJECTID;
2133 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2134 key.offset = (u64)-1;
2135
7b128766
JB
2136 while (1) {
2137 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2138 if (ret < 0)
2139 goto out;
7b128766
JB
2140
2141 /*
2142 * if ret == 0 means we found what we were searching for, which
25985edc 2143 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2144 * find the key and see if we have stuff that matches
2145 */
2146 if (ret > 0) {
66b4ffd1 2147 ret = 0;
7b128766
JB
2148 if (path->slots[0] == 0)
2149 break;
2150 path->slots[0]--;
2151 }
2152
2153 /* pull out the item */
2154 leaf = path->nodes[0];
7b128766
JB
2155 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2156
2157 /* make sure the item matches what we want */
2158 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2159 break;
2160 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2161 break;
2162
2163 /* release the path since we're done with it */
b3b4aa74 2164 btrfs_release_path(path);
7b128766
JB
2165
2166 /*
2167 * this is where we are basically btrfs_lookup, without the
2168 * crossing root thing. we store the inode number in the
2169 * offset of the orphan item.
2170 */
8f6d7f4f
JB
2171
2172 if (found_key.offset == last_objectid) {
2173 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2174 "stopping orphan cleanup\n");
2175 ret = -EINVAL;
2176 goto out;
2177 }
2178
2179 last_objectid = found_key.offset;
2180
5d4f98a2
YZ
2181 found_key.objectid = found_key.offset;
2182 found_key.type = BTRFS_INODE_ITEM_KEY;
2183 found_key.offset = 0;
73f73415 2184 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2185 ret = PTR_RET(inode);
2186 if (ret && ret != -ESTALE)
66b4ffd1 2187 goto out;
7b128766 2188
f8e9e0b0
AJ
2189 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2190 struct btrfs_root *dead_root;
2191 struct btrfs_fs_info *fs_info = root->fs_info;
2192 int is_dead_root = 0;
2193
2194 /*
2195 * this is an orphan in the tree root. Currently these
2196 * could come from 2 sources:
2197 * a) a snapshot deletion in progress
2198 * b) a free space cache inode
2199 * We need to distinguish those two, as the snapshot
2200 * orphan must not get deleted.
2201 * find_dead_roots already ran before us, so if this
2202 * is a snapshot deletion, we should find the root
2203 * in the dead_roots list
2204 */
2205 spin_lock(&fs_info->trans_lock);
2206 list_for_each_entry(dead_root, &fs_info->dead_roots,
2207 root_list) {
2208 if (dead_root->root_key.objectid ==
2209 found_key.objectid) {
2210 is_dead_root = 1;
2211 break;
2212 }
2213 }
2214 spin_unlock(&fs_info->trans_lock);
2215 if (is_dead_root) {
2216 /* prevent this orphan from being found again */
2217 key.offset = found_key.objectid - 1;
2218 continue;
2219 }
2220 }
7b128766 2221 /*
a8c9e576
JB
2222 * Inode is already gone but the orphan item is still there,
2223 * kill the orphan item.
7b128766 2224 */
a8c9e576
JB
2225 if (ret == -ESTALE) {
2226 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2227 if (IS_ERR(trans)) {
2228 ret = PTR_ERR(trans);
2229 goto out;
2230 }
a8c9e576
JB
2231 ret = btrfs_del_orphan_item(trans, root,
2232 found_key.objectid);
2233 BUG_ON(ret);
5b21f2ed 2234 btrfs_end_transaction(trans, root);
7b128766
JB
2235 continue;
2236 }
2237
a8c9e576
JB
2238 /*
2239 * add this inode to the orphan list so btrfs_orphan_del does
2240 * the proper thing when we hit it
2241 */
2242 spin_lock(&root->orphan_lock);
2243 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2244 spin_unlock(&root->orphan_lock);
2245
7b128766
JB
2246 /* if we have links, this was a truncate, lets do that */
2247 if (inode->i_nlink) {
a41ad394
JB
2248 if (!S_ISREG(inode->i_mode)) {
2249 WARN_ON(1);
2250 iput(inode);
2251 continue;
2252 }
7b128766 2253 nr_truncate++;
66b4ffd1 2254 ret = btrfs_truncate(inode);
7b128766
JB
2255 } else {
2256 nr_unlink++;
2257 }
2258
2259 /* this will do delete_inode and everything for us */
2260 iput(inode);
66b4ffd1
JB
2261 if (ret)
2262 goto out;
7b128766 2263 }
3254c876
MX
2264 /* release the path since we're done with it */
2265 btrfs_release_path(path);
2266
d68fc57b
YZ
2267 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2268
2269 if (root->orphan_block_rsv)
2270 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2271 (u64)-1);
2272
2273 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2274 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2275 if (!IS_ERR(trans))
2276 btrfs_end_transaction(trans, root);
d68fc57b 2277 }
7b128766
JB
2278
2279 if (nr_unlink)
2280 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2281 if (nr_truncate)
2282 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2283
2284out:
2285 if (ret)
2286 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2287 btrfs_free_path(path);
2288 return ret;
7b128766
JB
2289}
2290
46a53cca
CM
2291/*
2292 * very simple check to peek ahead in the leaf looking for xattrs. If we
2293 * don't find any xattrs, we know there can't be any acls.
2294 *
2295 * slot is the slot the inode is in, objectid is the objectid of the inode
2296 */
2297static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2298 int slot, u64 objectid)
2299{
2300 u32 nritems = btrfs_header_nritems(leaf);
2301 struct btrfs_key found_key;
2302 int scanned = 0;
2303
2304 slot++;
2305 while (slot < nritems) {
2306 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2307
2308 /* we found a different objectid, there must not be acls */
2309 if (found_key.objectid != objectid)
2310 return 0;
2311
2312 /* we found an xattr, assume we've got an acl */
2313 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2314 return 1;
2315
2316 /*
2317 * we found a key greater than an xattr key, there can't
2318 * be any acls later on
2319 */
2320 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2321 return 0;
2322
2323 slot++;
2324 scanned++;
2325
2326 /*
2327 * it goes inode, inode backrefs, xattrs, extents,
2328 * so if there are a ton of hard links to an inode there can
2329 * be a lot of backrefs. Don't waste time searching too hard,
2330 * this is just an optimization
2331 */
2332 if (scanned >= 8)
2333 break;
2334 }
2335 /* we hit the end of the leaf before we found an xattr or
2336 * something larger than an xattr. We have to assume the inode
2337 * has acls
2338 */
2339 return 1;
2340}
2341
d352ac68
CM
2342/*
2343 * read an inode from the btree into the in-memory inode
2344 */
5d4f98a2 2345static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2346{
2347 struct btrfs_path *path;
5f39d397 2348 struct extent_buffer *leaf;
39279cc3 2349 struct btrfs_inode_item *inode_item;
0b86a832 2350 struct btrfs_timespec *tspec;
39279cc3
CM
2351 struct btrfs_root *root = BTRFS_I(inode)->root;
2352 struct btrfs_key location;
46a53cca 2353 int maybe_acls;
618e21d5 2354 u32 rdev;
39279cc3 2355 int ret;
2f7e33d4
MX
2356 bool filled = false;
2357
2358 ret = btrfs_fill_inode(inode, &rdev);
2359 if (!ret)
2360 filled = true;
39279cc3
CM
2361
2362 path = btrfs_alloc_path();
1748f843
MF
2363 if (!path)
2364 goto make_bad;
2365
d90c7321 2366 path->leave_spinning = 1;
39279cc3 2367 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2368
39279cc3 2369 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2370 if (ret)
39279cc3 2371 goto make_bad;
39279cc3 2372
5f39d397 2373 leaf = path->nodes[0];
2f7e33d4
MX
2374
2375 if (filled)
2376 goto cache_acl;
2377
5f39d397
CM
2378 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2379 struct btrfs_inode_item);
5f39d397 2380 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2381 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
5f39d397
CM
2382 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2383 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2384 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2385
2386 tspec = btrfs_inode_atime(inode_item);
2387 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2388 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2389
2390 tspec = btrfs_inode_mtime(inode_item);
2391 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2392 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2393
2394 tspec = btrfs_inode_ctime(inode_item);
2395 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2396 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2397
a76a3cd4 2398 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2399 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2400 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2401 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2402 inode->i_rdev = 0;
5f39d397
CM
2403 rdev = btrfs_inode_rdev(leaf, inode_item);
2404
aec7477b 2405 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2406 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2407cache_acl:
46a53cca
CM
2408 /*
2409 * try to precache a NULL acl entry for files that don't have
2410 * any xattrs or acls
2411 */
33345d01
LZ
2412 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2413 btrfs_ino(inode));
72c04902
AV
2414 if (!maybe_acls)
2415 cache_no_acl(inode);
46a53cca 2416
39279cc3 2417 btrfs_free_path(path);
39279cc3 2418
39279cc3 2419 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2420 case S_IFREG:
2421 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2422 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2423 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2424 inode->i_fop = &btrfs_file_operations;
2425 inode->i_op = &btrfs_file_inode_operations;
2426 break;
2427 case S_IFDIR:
2428 inode->i_fop = &btrfs_dir_file_operations;
2429 if (root == root->fs_info->tree_root)
2430 inode->i_op = &btrfs_dir_ro_inode_operations;
2431 else
2432 inode->i_op = &btrfs_dir_inode_operations;
2433 break;
2434 case S_IFLNK:
2435 inode->i_op = &btrfs_symlink_inode_operations;
2436 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2437 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2438 break;
618e21d5 2439 default:
0279b4cd 2440 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2441 init_special_inode(inode, inode->i_mode, rdev);
2442 break;
39279cc3 2443 }
6cbff00f
CH
2444
2445 btrfs_update_iflags(inode);
39279cc3
CM
2446 return;
2447
2448make_bad:
39279cc3 2449 btrfs_free_path(path);
39279cc3
CM
2450 make_bad_inode(inode);
2451}
2452
d352ac68
CM
2453/*
2454 * given a leaf and an inode, copy the inode fields into the leaf
2455 */
e02119d5
CM
2456static void fill_inode_item(struct btrfs_trans_handle *trans,
2457 struct extent_buffer *leaf,
5f39d397 2458 struct btrfs_inode_item *item,
39279cc3
CM
2459 struct inode *inode)
2460{
5f39d397
CM
2461 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2462 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2463 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2464 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2465 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2466
2467 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2468 inode->i_atime.tv_sec);
2469 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2470 inode->i_atime.tv_nsec);
2471
2472 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2473 inode->i_mtime.tv_sec);
2474 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2475 inode->i_mtime.tv_nsec);
2476
2477 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2478 inode->i_ctime.tv_sec);
2479 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2480 inode->i_ctime.tv_nsec);
2481
a76a3cd4 2482 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2483 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2484 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2485 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2486 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2487 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2488 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2489}
2490
d352ac68
CM
2491/*
2492 * copy everything in the in-memory inode into the btree.
2493 */
2115133f 2494static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2495 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2496{
2497 struct btrfs_inode_item *inode_item;
2498 struct btrfs_path *path;
5f39d397 2499 struct extent_buffer *leaf;
39279cc3
CM
2500 int ret;
2501
2502 path = btrfs_alloc_path();
16cdcec7
MX
2503 if (!path)
2504 return -ENOMEM;
2505
b9473439 2506 path->leave_spinning = 1;
16cdcec7
MX
2507 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2508 1);
39279cc3
CM
2509 if (ret) {
2510 if (ret > 0)
2511 ret = -ENOENT;
2512 goto failed;
2513 }
2514
b4ce94de 2515 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2516 leaf = path->nodes[0];
2517 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2518 struct btrfs_inode_item);
39279cc3 2519
e02119d5 2520 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2521 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2522 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2523 ret = 0;
2524failed:
39279cc3
CM
2525 btrfs_free_path(path);
2526 return ret;
2527}
2528
2115133f
CM
2529/*
2530 * copy everything in the in-memory inode into the btree.
2531 */
2532noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2533 struct btrfs_root *root, struct inode *inode)
2534{
2535 int ret;
2536
2537 /*
2538 * If the inode is a free space inode, we can deadlock during commit
2539 * if we put it into the delayed code.
2540 *
2541 * The data relocation inode should also be directly updated
2542 * without delay
2543 */
2544 if (!btrfs_is_free_space_inode(root, inode)
2545 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2546 ret = btrfs_delayed_update_inode(trans, root, inode);
2547 if (!ret)
2548 btrfs_set_inode_last_trans(trans, inode);
2549 return ret;
2550 }
2551
2552 return btrfs_update_inode_item(trans, root, inode);
2553}
2554
2555static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2556 struct btrfs_root *root, struct inode *inode)
2557{
2558 int ret;
2559
2560 ret = btrfs_update_inode(trans, root, inode);
2561 if (ret == -ENOSPC)
2562 return btrfs_update_inode_item(trans, root, inode);
2563 return ret;
2564}
2565
d352ac68
CM
2566/*
2567 * unlink helper that gets used here in inode.c and in the tree logging
2568 * recovery code. It remove a link in a directory with a given name, and
2569 * also drops the back refs in the inode to the directory
2570 */
92986796
AV
2571static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2572 struct btrfs_root *root,
2573 struct inode *dir, struct inode *inode,
2574 const char *name, int name_len)
39279cc3
CM
2575{
2576 struct btrfs_path *path;
39279cc3 2577 int ret = 0;
5f39d397 2578 struct extent_buffer *leaf;
39279cc3 2579 struct btrfs_dir_item *di;
5f39d397 2580 struct btrfs_key key;
aec7477b 2581 u64 index;
33345d01
LZ
2582 u64 ino = btrfs_ino(inode);
2583 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2584
2585 path = btrfs_alloc_path();
54aa1f4d
CM
2586 if (!path) {
2587 ret = -ENOMEM;
554233a6 2588 goto out;
54aa1f4d
CM
2589 }
2590
b9473439 2591 path->leave_spinning = 1;
33345d01 2592 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2593 name, name_len, -1);
2594 if (IS_ERR(di)) {
2595 ret = PTR_ERR(di);
2596 goto err;
2597 }
2598 if (!di) {
2599 ret = -ENOENT;
2600 goto err;
2601 }
5f39d397
CM
2602 leaf = path->nodes[0];
2603 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2604 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2605 if (ret)
2606 goto err;
b3b4aa74 2607 btrfs_release_path(path);
39279cc3 2608
33345d01
LZ
2609 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2610 dir_ino, &index);
aec7477b 2611 if (ret) {
d397712b 2612 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2613 "inode %llu parent %llu\n", name_len, name,
2614 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2615 goto err;
2616 }
2617
16cdcec7
MX
2618 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2619 if (ret)
39279cc3 2620 goto err;
39279cc3 2621
e02119d5 2622 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2623 inode, dir_ino);
49eb7e46 2624 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2625
2626 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2627 dir, index);
6418c961
CM
2628 if (ret == -ENOENT)
2629 ret = 0;
39279cc3
CM
2630err:
2631 btrfs_free_path(path);
e02119d5
CM
2632 if (ret)
2633 goto out;
2634
2635 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2636 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2637 btrfs_update_inode(trans, root, dir);
e02119d5 2638out:
39279cc3
CM
2639 return ret;
2640}
2641
92986796
AV
2642int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2643 struct btrfs_root *root,
2644 struct inode *dir, struct inode *inode,
2645 const char *name, int name_len)
2646{
2647 int ret;
2648 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2649 if (!ret) {
2650 btrfs_drop_nlink(inode);
2651 ret = btrfs_update_inode(trans, root, inode);
2652 }
2653 return ret;
2654}
2655
2656
a22285a6
YZ
2657/* helper to check if there is any shared block in the path */
2658static int check_path_shared(struct btrfs_root *root,
2659 struct btrfs_path *path)
39279cc3 2660{
a22285a6
YZ
2661 struct extent_buffer *eb;
2662 int level;
0e4dcbef 2663 u64 refs = 1;
5df6a9f6 2664
a22285a6 2665 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2666 int ret;
2667
a22285a6
YZ
2668 if (!path->nodes[level])
2669 break;
2670 eb = path->nodes[level];
2671 if (!btrfs_block_can_be_shared(root, eb))
2672 continue;
2673 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2674 &refs, NULL);
2675 if (refs > 1)
2676 return 1;
5df6a9f6 2677 }
dedefd72 2678 return 0;
39279cc3
CM
2679}
2680
a22285a6
YZ
2681/*
2682 * helper to start transaction for unlink and rmdir.
2683 *
2684 * unlink and rmdir are special in btrfs, they do not always free space.
2685 * so in enospc case, we should make sure they will free space before
2686 * allowing them to use the global metadata reservation.
2687 */
2688static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2689 struct dentry *dentry)
4df27c4d 2690{
39279cc3 2691 struct btrfs_trans_handle *trans;
a22285a6 2692 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2693 struct btrfs_path *path;
a22285a6 2694 struct btrfs_inode_ref *ref;
4df27c4d 2695 struct btrfs_dir_item *di;
7b128766 2696 struct inode *inode = dentry->d_inode;
4df27c4d 2697 u64 index;
a22285a6
YZ
2698 int check_link = 1;
2699 int err = -ENOSPC;
4df27c4d 2700 int ret;
33345d01
LZ
2701 u64 ino = btrfs_ino(inode);
2702 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2703
e70bea5f
JB
2704 /*
2705 * 1 for the possible orphan item
2706 * 1 for the dir item
2707 * 1 for the dir index
2708 * 1 for the inode ref
2709 * 1 for the inode ref in the tree log
2710 * 2 for the dir entries in the log
2711 * 1 for the inode
2712 */
2713 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2714 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2715 return trans;
4df27c4d 2716
33345d01 2717 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2718 return ERR_PTR(-ENOSPC);
4df27c4d 2719
a22285a6
YZ
2720 /* check if there is someone else holds reference */
2721 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2722 return ERR_PTR(-ENOSPC);
4df27c4d 2723
a22285a6
YZ
2724 if (atomic_read(&inode->i_count) > 2)
2725 return ERR_PTR(-ENOSPC);
4df27c4d 2726
a22285a6
YZ
2727 if (xchg(&root->fs_info->enospc_unlink, 1))
2728 return ERR_PTR(-ENOSPC);
2729
2730 path = btrfs_alloc_path();
2731 if (!path) {
2732 root->fs_info->enospc_unlink = 0;
2733 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2734 }
2735
3880a1b4
JB
2736 /* 1 for the orphan item */
2737 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2738 if (IS_ERR(trans)) {
a22285a6
YZ
2739 btrfs_free_path(path);
2740 root->fs_info->enospc_unlink = 0;
2741 return trans;
2742 }
4df27c4d 2743
a22285a6
YZ
2744 path->skip_locking = 1;
2745 path->search_commit_root = 1;
4df27c4d 2746
a22285a6
YZ
2747 ret = btrfs_lookup_inode(trans, root, path,
2748 &BTRFS_I(dir)->location, 0);
2749 if (ret < 0) {
2750 err = ret;
2751 goto out;
2752 }
2753 if (ret == 0) {
2754 if (check_path_shared(root, path))
2755 goto out;
2756 } else {
2757 check_link = 0;
5df6a9f6 2758 }
b3b4aa74 2759 btrfs_release_path(path);
a22285a6
YZ
2760
2761 ret = btrfs_lookup_inode(trans, root, path,
2762 &BTRFS_I(inode)->location, 0);
2763 if (ret < 0) {
2764 err = ret;
2765 goto out;
2766 }
2767 if (ret == 0) {
2768 if (check_path_shared(root, path))
2769 goto out;
2770 } else {
2771 check_link = 0;
2772 }
b3b4aa74 2773 btrfs_release_path(path);
a22285a6
YZ
2774
2775 if (ret == 0 && S_ISREG(inode->i_mode)) {
2776 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2777 ino, (u64)-1, 0);
a22285a6
YZ
2778 if (ret < 0) {
2779 err = ret;
2780 goto out;
2781 }
2782 BUG_ON(ret == 0);
2783 if (check_path_shared(root, path))
2784 goto out;
b3b4aa74 2785 btrfs_release_path(path);
a22285a6
YZ
2786 }
2787
2788 if (!check_link) {
2789 err = 0;
2790 goto out;
2791 }
2792
33345d01 2793 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2794 dentry->d_name.name, dentry->d_name.len, 0);
2795 if (IS_ERR(di)) {
2796 err = PTR_ERR(di);
2797 goto out;
2798 }
2799 if (di) {
2800 if (check_path_shared(root, path))
2801 goto out;
2802 } else {
2803 err = 0;
2804 goto out;
2805 }
b3b4aa74 2806 btrfs_release_path(path);
a22285a6
YZ
2807
2808 ref = btrfs_lookup_inode_ref(trans, root, path,
2809 dentry->d_name.name, dentry->d_name.len,
33345d01 2810 ino, dir_ino, 0);
a22285a6
YZ
2811 if (IS_ERR(ref)) {
2812 err = PTR_ERR(ref);
2813 goto out;
2814 }
2815 BUG_ON(!ref);
2816 if (check_path_shared(root, path))
2817 goto out;
2818 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2819 btrfs_release_path(path);
a22285a6 2820
16cdcec7
MX
2821 /*
2822 * This is a commit root search, if we can lookup inode item and other
2823 * relative items in the commit root, it means the transaction of
2824 * dir/file creation has been committed, and the dir index item that we
2825 * delay to insert has also been inserted into the commit root. So
2826 * we needn't worry about the delayed insertion of the dir index item
2827 * here.
2828 */
33345d01 2829 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2830 dentry->d_name.name, dentry->d_name.len, 0);
2831 if (IS_ERR(di)) {
2832 err = PTR_ERR(di);
2833 goto out;
2834 }
2835 BUG_ON(ret == -ENOENT);
2836 if (check_path_shared(root, path))
2837 goto out;
2838
2839 err = 0;
2840out:
2841 btrfs_free_path(path);
3880a1b4
JB
2842 /* Migrate the orphan reservation over */
2843 if (!err)
2844 err = btrfs_block_rsv_migrate(trans->block_rsv,
2845 &root->fs_info->global_block_rsv,
5a77d76c 2846 trans->bytes_reserved);
3880a1b4 2847
a22285a6
YZ
2848 if (err) {
2849 btrfs_end_transaction(trans, root);
2850 root->fs_info->enospc_unlink = 0;
2851 return ERR_PTR(err);
2852 }
2853
2854 trans->block_rsv = &root->fs_info->global_block_rsv;
2855 return trans;
2856}
2857
2858static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2859 struct btrfs_root *root)
2860{
2861 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
5a77d76c
JB
2862 btrfs_block_rsv_release(root, trans->block_rsv,
2863 trans->bytes_reserved);
2864 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
2865 BUG_ON(!root->fs_info->enospc_unlink);
2866 root->fs_info->enospc_unlink = 0;
2867 }
7ad85bb7 2868 btrfs_end_transaction(trans, root);
a22285a6
YZ
2869}
2870
2871static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2872{
2873 struct btrfs_root *root = BTRFS_I(dir)->root;
2874 struct btrfs_trans_handle *trans;
2875 struct inode *inode = dentry->d_inode;
2876 int ret;
2877 unsigned long nr = 0;
2878
2879 trans = __unlink_start_trans(dir, dentry);
2880 if (IS_ERR(trans))
2881 return PTR_ERR(trans);
5f39d397 2882
12fcfd22
CM
2883 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2884
e02119d5
CM
2885 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2886 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
2887 if (ret)
2888 goto out;
7b128766 2889
a22285a6 2890 if (inode->i_nlink == 0) {
7b128766 2891 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
2892 if (ret)
2893 goto out;
a22285a6 2894 }
7b128766 2895
b532402e 2896out:
d3c2fdcf 2897 nr = trans->blocks_used;
a22285a6 2898 __unlink_end_trans(trans, root);
d3c2fdcf 2899 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2900 return ret;
2901}
2902
4df27c4d
YZ
2903int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2904 struct btrfs_root *root,
2905 struct inode *dir, u64 objectid,
2906 const char *name, int name_len)
2907{
2908 struct btrfs_path *path;
2909 struct extent_buffer *leaf;
2910 struct btrfs_dir_item *di;
2911 struct btrfs_key key;
2912 u64 index;
2913 int ret;
33345d01 2914 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
2915
2916 path = btrfs_alloc_path();
2917 if (!path)
2918 return -ENOMEM;
2919
33345d01 2920 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 2921 name, name_len, -1);
c704005d 2922 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2923
2924 leaf = path->nodes[0];
2925 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2926 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2927 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2928 BUG_ON(ret);
b3b4aa74 2929 btrfs_release_path(path);
4df27c4d
YZ
2930
2931 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2932 objectid, root->root_key.objectid,
33345d01 2933 dir_ino, &index, name, name_len);
4df27c4d
YZ
2934 if (ret < 0) {
2935 BUG_ON(ret != -ENOENT);
33345d01 2936 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 2937 name, name_len);
c704005d 2938 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2939
2940 leaf = path->nodes[0];
2941 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2942 btrfs_release_path(path);
4df27c4d
YZ
2943 index = key.offset;
2944 }
945d8962 2945 btrfs_release_path(path);
4df27c4d 2946
16cdcec7 2947 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 2948 BUG_ON(ret);
4df27c4d
YZ
2949
2950 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2951 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2952 ret = btrfs_update_inode(trans, root, dir);
2953 BUG_ON(ret);
4df27c4d 2954
71d7aed0 2955 btrfs_free_path(path);
4df27c4d
YZ
2956 return 0;
2957}
2958
39279cc3
CM
2959static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2960{
2961 struct inode *inode = dentry->d_inode;
1832a6d5 2962 int err = 0;
39279cc3 2963 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2964 struct btrfs_trans_handle *trans;
1832a6d5 2965 unsigned long nr = 0;
39279cc3 2966
3394e160 2967 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 2968 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2969 return -ENOTEMPTY;
2970
a22285a6
YZ
2971 trans = __unlink_start_trans(dir, dentry);
2972 if (IS_ERR(trans))
5df6a9f6 2973 return PTR_ERR(trans);
5df6a9f6 2974
33345d01 2975 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
2976 err = btrfs_unlink_subvol(trans, root, dir,
2977 BTRFS_I(inode)->location.objectid,
2978 dentry->d_name.name,
2979 dentry->d_name.len);
2980 goto out;
2981 }
2982
7b128766
JB
2983 err = btrfs_orphan_add(trans, inode);
2984 if (err)
4df27c4d 2985 goto out;
7b128766 2986
39279cc3 2987 /* now the directory is empty */
e02119d5
CM
2988 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2989 dentry->d_name.name, dentry->d_name.len);
d397712b 2990 if (!err)
dbe674a9 2991 btrfs_i_size_write(inode, 0);
4df27c4d 2992out:
d3c2fdcf 2993 nr = trans->blocks_used;
a22285a6 2994 __unlink_end_trans(trans, root);
d3c2fdcf 2995 btrfs_btree_balance_dirty(root, nr);
3954401f 2996
39279cc3
CM
2997 return err;
2998}
2999
39279cc3
CM
3000/*
3001 * this can truncate away extent items, csum items and directory items.
3002 * It starts at a high offset and removes keys until it can't find
d352ac68 3003 * any higher than new_size
39279cc3
CM
3004 *
3005 * csum items that cross the new i_size are truncated to the new size
3006 * as well.
7b128766
JB
3007 *
3008 * min_type is the minimum key type to truncate down to. If set to 0, this
3009 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3010 */
8082510e
YZ
3011int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3012 struct btrfs_root *root,
3013 struct inode *inode,
3014 u64 new_size, u32 min_type)
39279cc3 3015{
39279cc3 3016 struct btrfs_path *path;
5f39d397 3017 struct extent_buffer *leaf;
39279cc3 3018 struct btrfs_file_extent_item *fi;
8082510e
YZ
3019 struct btrfs_key key;
3020 struct btrfs_key found_key;
39279cc3 3021 u64 extent_start = 0;
db94535d 3022 u64 extent_num_bytes = 0;
5d4f98a2 3023 u64 extent_offset = 0;
39279cc3 3024 u64 item_end = 0;
8082510e
YZ
3025 u64 mask = root->sectorsize - 1;
3026 u32 found_type = (u8)-1;
39279cc3
CM
3027 int found_extent;
3028 int del_item;
85e21bac
CM
3029 int pending_del_nr = 0;
3030 int pending_del_slot = 0;
179e29e4 3031 int extent_type = -1;
8082510e
YZ
3032 int ret;
3033 int err = 0;
33345d01 3034 u64 ino = btrfs_ino(inode);
8082510e
YZ
3035
3036 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3037
0eb0e19c
MF
3038 path = btrfs_alloc_path();
3039 if (!path)
3040 return -ENOMEM;
3041 path->reada = -1;
3042
0af3d00b 3043 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3044 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3045
16cdcec7
MX
3046 /*
3047 * This function is also used to drop the items in the log tree before
3048 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3049 * it is used to drop the loged items. So we shouldn't kill the delayed
3050 * items.
3051 */
3052 if (min_type == 0 && root == BTRFS_I(inode)->root)
3053 btrfs_kill_delayed_inode_items(inode);
3054
33345d01 3055 key.objectid = ino;
39279cc3 3056 key.offset = (u64)-1;
5f39d397
CM
3057 key.type = (u8)-1;
3058
85e21bac 3059search_again:
b9473439 3060 path->leave_spinning = 1;
85e21bac 3061 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3062 if (ret < 0) {
3063 err = ret;
3064 goto out;
3065 }
d397712b 3066
85e21bac 3067 if (ret > 0) {
e02119d5
CM
3068 /* there are no items in the tree for us to truncate, we're
3069 * done
3070 */
8082510e
YZ
3071 if (path->slots[0] == 0)
3072 goto out;
85e21bac
CM
3073 path->slots[0]--;
3074 }
3075
d397712b 3076 while (1) {
39279cc3 3077 fi = NULL;
5f39d397
CM
3078 leaf = path->nodes[0];
3079 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3080 found_type = btrfs_key_type(&found_key);
39279cc3 3081
33345d01 3082 if (found_key.objectid != ino)
39279cc3 3083 break;
5f39d397 3084
85e21bac 3085 if (found_type < min_type)
39279cc3
CM
3086 break;
3087
5f39d397 3088 item_end = found_key.offset;
39279cc3 3089 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3090 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3091 struct btrfs_file_extent_item);
179e29e4
CM
3092 extent_type = btrfs_file_extent_type(leaf, fi);
3093 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3094 item_end +=
db94535d 3095 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3096 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3097 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3098 fi);
39279cc3 3099 }
008630c1 3100 item_end--;
39279cc3 3101 }
8082510e
YZ
3102 if (found_type > min_type) {
3103 del_item = 1;
3104 } else {
3105 if (item_end < new_size)
b888db2b 3106 break;
8082510e
YZ
3107 if (found_key.offset >= new_size)
3108 del_item = 1;
3109 else
3110 del_item = 0;
39279cc3 3111 }
39279cc3 3112 found_extent = 0;
39279cc3 3113 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3114 if (found_type != BTRFS_EXTENT_DATA_KEY)
3115 goto delete;
3116
3117 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3118 u64 num_dec;
db94535d 3119 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3120 if (!del_item) {
db94535d
CM
3121 u64 orig_num_bytes =
3122 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3123 extent_num_bytes = new_size -
5f39d397 3124 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3125 extent_num_bytes = extent_num_bytes &
3126 ~((u64)root->sectorsize - 1);
db94535d
CM
3127 btrfs_set_file_extent_num_bytes(leaf, fi,
3128 extent_num_bytes);
3129 num_dec = (orig_num_bytes -
9069218d 3130 extent_num_bytes);
e02119d5 3131 if (root->ref_cows && extent_start != 0)
a76a3cd4 3132 inode_sub_bytes(inode, num_dec);
5f39d397 3133 btrfs_mark_buffer_dirty(leaf);
39279cc3 3134 } else {
db94535d
CM
3135 extent_num_bytes =
3136 btrfs_file_extent_disk_num_bytes(leaf,
3137 fi);
5d4f98a2
YZ
3138 extent_offset = found_key.offset -
3139 btrfs_file_extent_offset(leaf, fi);
3140
39279cc3 3141 /* FIXME blocksize != 4096 */
9069218d 3142 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3143 if (extent_start != 0) {
3144 found_extent = 1;
e02119d5 3145 if (root->ref_cows)
a76a3cd4 3146 inode_sub_bytes(inode, num_dec);
e02119d5 3147 }
39279cc3 3148 }
9069218d 3149 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3150 /*
3151 * we can't truncate inline items that have had
3152 * special encodings
3153 */
3154 if (!del_item &&
3155 btrfs_file_extent_compression(leaf, fi) == 0 &&
3156 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3157 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3158 u32 size = new_size - found_key.offset;
3159
3160 if (root->ref_cows) {
a76a3cd4
YZ
3161 inode_sub_bytes(inode, item_end + 1 -
3162 new_size);
e02119d5
CM
3163 }
3164 size =
3165 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3166 btrfs_truncate_item(trans, root, path,
3167 size, 1);
e02119d5 3168 } else if (root->ref_cows) {
a76a3cd4
YZ
3169 inode_sub_bytes(inode, item_end + 1 -
3170 found_key.offset);
9069218d 3171 }
39279cc3 3172 }
179e29e4 3173delete:
39279cc3 3174 if (del_item) {
85e21bac
CM
3175 if (!pending_del_nr) {
3176 /* no pending yet, add ourselves */
3177 pending_del_slot = path->slots[0];
3178 pending_del_nr = 1;
3179 } else if (pending_del_nr &&
3180 path->slots[0] + 1 == pending_del_slot) {
3181 /* hop on the pending chunk */
3182 pending_del_nr++;
3183 pending_del_slot = path->slots[0];
3184 } else {
d397712b 3185 BUG();
85e21bac 3186 }
39279cc3
CM
3187 } else {
3188 break;
3189 }
0af3d00b
JB
3190 if (found_extent && (root->ref_cows ||
3191 root == root->fs_info->tree_root)) {
b9473439 3192 btrfs_set_path_blocking(path);
39279cc3 3193 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3194 extent_num_bytes, 0,
3195 btrfs_header_owner(leaf),
66d7e7f0 3196 ino, extent_offset, 0);
39279cc3
CM
3197 BUG_ON(ret);
3198 }
85e21bac 3199
8082510e
YZ
3200 if (found_type == BTRFS_INODE_ITEM_KEY)
3201 break;
3202
3203 if (path->slots[0] == 0 ||
3204 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3205 if (root->ref_cows &&
3206 BTRFS_I(inode)->location.objectid !=
3207 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3208 err = -EAGAIN;
3209 goto out;
3210 }
3211 if (pending_del_nr) {
3212 ret = btrfs_del_items(trans, root, path,
3213 pending_del_slot,
3214 pending_del_nr);
3215 BUG_ON(ret);
3216 pending_del_nr = 0;
3217 }
b3b4aa74 3218 btrfs_release_path(path);
85e21bac 3219 goto search_again;
8082510e
YZ
3220 } else {
3221 path->slots[0]--;
85e21bac 3222 }
39279cc3 3223 }
8082510e 3224out:
85e21bac
CM
3225 if (pending_del_nr) {
3226 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3227 pending_del_nr);
d68fc57b 3228 BUG_ON(ret);
85e21bac 3229 }
39279cc3 3230 btrfs_free_path(path);
8082510e 3231 return err;
39279cc3
CM
3232}
3233
3234/*
3235 * taken from block_truncate_page, but does cow as it zeros out
3236 * any bytes left in the last page in the file.
3237 */
3238static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3239{
3240 struct inode *inode = mapping->host;
db94535d 3241 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3242 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3243 struct btrfs_ordered_extent *ordered;
2ac55d41 3244 struct extent_state *cached_state = NULL;
e6dcd2dc 3245 char *kaddr;
db94535d 3246 u32 blocksize = root->sectorsize;
39279cc3
CM
3247 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3248 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3249 struct page *page;
3b16a4e3 3250 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3251 int ret = 0;
a52d9a80 3252 u64 page_start;
e6dcd2dc 3253 u64 page_end;
39279cc3
CM
3254
3255 if ((offset & (blocksize - 1)) == 0)
3256 goto out;
0ca1f7ce 3257 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3258 if (ret)
3259 goto out;
39279cc3
CM
3260
3261 ret = -ENOMEM;
211c17f5 3262again:
3b16a4e3 3263 page = find_or_create_page(mapping, index, mask);
5d5e103a 3264 if (!page) {
0ca1f7ce 3265 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3266 goto out;
5d5e103a 3267 }
e6dcd2dc
CM
3268
3269 page_start = page_offset(page);
3270 page_end = page_start + PAGE_CACHE_SIZE - 1;
3271
39279cc3 3272 if (!PageUptodate(page)) {
9ebefb18 3273 ret = btrfs_readpage(NULL, page);
39279cc3 3274 lock_page(page);
211c17f5
CM
3275 if (page->mapping != mapping) {
3276 unlock_page(page);
3277 page_cache_release(page);
3278 goto again;
3279 }
39279cc3
CM
3280 if (!PageUptodate(page)) {
3281 ret = -EIO;
89642229 3282 goto out_unlock;
39279cc3
CM
3283 }
3284 }
211c17f5 3285 wait_on_page_writeback(page);
e6dcd2dc 3286
d0082371 3287 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3288 set_page_extent_mapped(page);
3289
3290 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3291 if (ordered) {
2ac55d41
JB
3292 unlock_extent_cached(io_tree, page_start, page_end,
3293 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3294 unlock_page(page);
3295 page_cache_release(page);
eb84ae03 3296 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3297 btrfs_put_ordered_extent(ordered);
3298 goto again;
3299 }
3300
2ac55d41 3301 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3302 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3303 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3304
2ac55d41
JB
3305 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3306 &cached_state);
9ed74f2d 3307 if (ret) {
2ac55d41
JB
3308 unlock_extent_cached(io_tree, page_start, page_end,
3309 &cached_state, GFP_NOFS);
9ed74f2d
JB
3310 goto out_unlock;
3311 }
3312
e6dcd2dc
CM
3313 ret = 0;
3314 if (offset != PAGE_CACHE_SIZE) {
3315 kaddr = kmap(page);
3316 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3317 flush_dcache_page(page);
3318 kunmap(page);
3319 }
247e743c 3320 ClearPageChecked(page);
e6dcd2dc 3321 set_page_dirty(page);
2ac55d41
JB
3322 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3323 GFP_NOFS);
39279cc3 3324
89642229 3325out_unlock:
5d5e103a 3326 if (ret)
0ca1f7ce 3327 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3328 unlock_page(page);
3329 page_cache_release(page);
3330out:
3331 return ret;
3332}
3333
695a0d0d
JB
3334/*
3335 * This function puts in dummy file extents for the area we're creating a hole
3336 * for. So if we are truncating this file to a larger size we need to insert
3337 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3338 * the range between oldsize and size
3339 */
a41ad394 3340int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3341{
9036c102
YZ
3342 struct btrfs_trans_handle *trans;
3343 struct btrfs_root *root = BTRFS_I(inode)->root;
3344 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3345 struct extent_map *em = NULL;
2ac55d41 3346 struct extent_state *cached_state = NULL;
9036c102 3347 u64 mask = root->sectorsize - 1;
a41ad394 3348 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3349 u64 block_end = (size + mask) & ~mask;
3350 u64 last_byte;
3351 u64 cur_offset;
3352 u64 hole_size;
9ed74f2d 3353 int err = 0;
39279cc3 3354
9036c102
YZ
3355 if (size <= hole_start)
3356 return 0;
3357
9036c102
YZ
3358 while (1) {
3359 struct btrfs_ordered_extent *ordered;
3360 btrfs_wait_ordered_range(inode, hole_start,
3361 block_end - hole_start);
2ac55d41 3362 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3363 &cached_state);
9036c102
YZ
3364 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3365 if (!ordered)
3366 break;
2ac55d41
JB
3367 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3368 &cached_state, GFP_NOFS);
9036c102
YZ
3369 btrfs_put_ordered_extent(ordered);
3370 }
39279cc3 3371
9036c102
YZ
3372 cur_offset = hole_start;
3373 while (1) {
3374 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3375 block_end - cur_offset, 0);
c704005d 3376 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3377 last_byte = min(extent_map_end(em), block_end);
3378 last_byte = (last_byte + mask) & ~mask;
8082510e 3379 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3380 u64 hint_byte = 0;
9036c102 3381 hole_size = last_byte - cur_offset;
9ed74f2d 3382
3642320e 3383 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3384 if (IS_ERR(trans)) {
3385 err = PTR_ERR(trans);
9ed74f2d 3386 break;
a22285a6 3387 }
8082510e
YZ
3388
3389 err = btrfs_drop_extents(trans, inode, cur_offset,
3390 cur_offset + hole_size,
3391 &hint_byte, 1);
5b397377 3392 if (err) {
3642320e 3393 btrfs_update_inode(trans, root, inode);
5b397377 3394 btrfs_end_transaction(trans, root);
3893e33b 3395 break;
5b397377 3396 }
8082510e 3397
9036c102 3398 err = btrfs_insert_file_extent(trans, root,
33345d01 3399 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3400 0, hole_size, 0, hole_size,
3401 0, 0, 0);
5b397377 3402 if (err) {
3642320e 3403 btrfs_update_inode(trans, root, inode);
5b397377 3404 btrfs_end_transaction(trans, root);
3893e33b 3405 break;
5b397377 3406 }
8082510e 3407
9036c102
YZ
3408 btrfs_drop_extent_cache(inode, hole_start,
3409 last_byte - 1, 0);
8082510e 3410
3642320e 3411 btrfs_update_inode(trans, root, inode);
8082510e 3412 btrfs_end_transaction(trans, root);
9036c102
YZ
3413 }
3414 free_extent_map(em);
a22285a6 3415 em = NULL;
9036c102 3416 cur_offset = last_byte;
8082510e 3417 if (cur_offset >= block_end)
9036c102
YZ
3418 break;
3419 }
1832a6d5 3420
a22285a6 3421 free_extent_map(em);
2ac55d41
JB
3422 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3423 GFP_NOFS);
9036c102
YZ
3424 return err;
3425}
39279cc3 3426
a41ad394 3427static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3428{
f4a2f4c5
MX
3429 struct btrfs_root *root = BTRFS_I(inode)->root;
3430 struct btrfs_trans_handle *trans;
a41ad394 3431 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3432 int ret;
3433
a41ad394 3434 if (newsize == oldsize)
8082510e
YZ
3435 return 0;
3436
a41ad394 3437 if (newsize > oldsize) {
a41ad394
JB
3438 truncate_pagecache(inode, oldsize, newsize);
3439 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3440 if (ret)
8082510e 3441 return ret;
8082510e 3442
f4a2f4c5
MX
3443 trans = btrfs_start_transaction(root, 1);
3444 if (IS_ERR(trans))
3445 return PTR_ERR(trans);
3446
3447 i_size_write(inode, newsize);
3448 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3449 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3450 btrfs_end_transaction(trans, root);
a41ad394 3451 } else {
8082510e 3452
a41ad394
JB
3453 /*
3454 * We're truncating a file that used to have good data down to
3455 * zero. Make sure it gets into the ordered flush list so that
3456 * any new writes get down to disk quickly.
3457 */
3458 if (newsize == 0)
3459 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3460
a41ad394
JB
3461 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3462 truncate_setsize(inode, newsize);
3463 ret = btrfs_truncate(inode);
8082510e
YZ
3464 }
3465
a41ad394 3466 return ret;
8082510e
YZ
3467}
3468
9036c102
YZ
3469static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3470{
3471 struct inode *inode = dentry->d_inode;
b83cc969 3472 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3473 int err;
39279cc3 3474
b83cc969
LZ
3475 if (btrfs_root_readonly(root))
3476 return -EROFS;
3477
9036c102
YZ
3478 err = inode_change_ok(inode, attr);
3479 if (err)
3480 return err;
2bf5a725 3481
5a3f23d5 3482 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3483 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3484 if (err)
3485 return err;
39279cc3 3486 }
9036c102 3487
1025774c
CH
3488 if (attr->ia_valid) {
3489 setattr_copy(inode, attr);
22c44fe6 3490 err = btrfs_dirty_inode(inode);
1025774c 3491
22c44fe6 3492 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3493 err = btrfs_acl_chmod(inode);
3494 }
33268eaf 3495
39279cc3
CM
3496 return err;
3497}
61295eb8 3498
bd555975 3499void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3500{
3501 struct btrfs_trans_handle *trans;
3502 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3503 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3504 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3505 unsigned long nr;
39279cc3
CM
3506 int ret;
3507
1abe9b8a 3508 trace_btrfs_inode_evict(inode);
3509
39279cc3 3510 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3511 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3512 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3513 goto no_delete;
3514
39279cc3 3515 if (is_bad_inode(inode)) {
7b128766 3516 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3517 goto no_delete;
3518 }
bd555975 3519 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3520 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3521
c71bf099
YZ
3522 if (root->fs_info->log_root_recovering) {
3523 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3524 goto no_delete;
3525 }
3526
76dda93c
YZ
3527 if (inode->i_nlink > 0) {
3528 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3529 goto no_delete;
3530 }
3531
4289a667
JB
3532 rsv = btrfs_alloc_block_rsv(root);
3533 if (!rsv) {
3534 btrfs_orphan_del(NULL, inode);
3535 goto no_delete;
3536 }
4a338542 3537 rsv->size = min_size;
726c35fa 3538 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3539
dbe674a9 3540 btrfs_i_size_write(inode, 0);
5f39d397 3541
4289a667
JB
3542 /*
3543 * This is a bit simpler than btrfs_truncate since
3544 *
3545 * 1) We've already reserved our space for our orphan item in the
3546 * unlink.
3547 * 2) We're going to delete the inode item, so we don't need to update
3548 * it at all.
3549 *
3550 * So we just need to reserve some slack space in case we add bytes when
3551 * doing the truncate.
3552 */
8082510e 3553 while (1) {
aa38a711 3554 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
726c35fa
JB
3555
3556 /*
3557 * Try and steal from the global reserve since we will
3558 * likely not use this space anyway, we want to try as
3559 * hard as possible to get this to work.
3560 */
3561 if (ret)
3562 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3563
d68fc57b 3564 if (ret) {
4289a667 3565 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3566 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3567 btrfs_orphan_del(NULL, inode);
3568 btrfs_free_block_rsv(root, rsv);
3569 goto no_delete;
d68fc57b 3570 }
7b128766 3571
4289a667
JB
3572 trans = btrfs_start_transaction(root, 0);
3573 if (IS_ERR(trans)) {
3574 btrfs_orphan_del(NULL, inode);
3575 btrfs_free_block_rsv(root, rsv);
3576 goto no_delete;
d68fc57b 3577 }
7b128766 3578
4289a667
JB
3579 trans->block_rsv = rsv;
3580
d68fc57b 3581 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3582 if (ret != -EAGAIN)
3583 break;
85e21bac 3584
8082510e
YZ
3585 nr = trans->blocks_used;
3586 btrfs_end_transaction(trans, root);
3587 trans = NULL;
3588 btrfs_btree_balance_dirty(root, nr);
3589 }
5f39d397 3590
4289a667
JB
3591 btrfs_free_block_rsv(root, rsv);
3592
8082510e 3593 if (ret == 0) {
4289a667 3594 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3595 ret = btrfs_orphan_del(trans, inode);
3596 BUG_ON(ret);
3597 }
54aa1f4d 3598
4289a667 3599 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3600 if (!(root == root->fs_info->tree_root ||
3601 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3602 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3603
d3c2fdcf 3604 nr = trans->blocks_used;
54aa1f4d 3605 btrfs_end_transaction(trans, root);
d3c2fdcf 3606 btrfs_btree_balance_dirty(root, nr);
39279cc3 3607no_delete:
bd555975 3608 end_writeback(inode);
8082510e 3609 return;
39279cc3
CM
3610}
3611
3612/*
3613 * this returns the key found in the dir entry in the location pointer.
3614 * If no dir entries were found, location->objectid is 0.
3615 */
3616static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3617 struct btrfs_key *location)
3618{
3619 const char *name = dentry->d_name.name;
3620 int namelen = dentry->d_name.len;
3621 struct btrfs_dir_item *di;
3622 struct btrfs_path *path;
3623 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3624 int ret = 0;
39279cc3
CM
3625
3626 path = btrfs_alloc_path();
d8926bb3
MF
3627 if (!path)
3628 return -ENOMEM;
3954401f 3629
33345d01 3630 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3631 namelen, 0);
0d9f7f3e
Y
3632 if (IS_ERR(di))
3633 ret = PTR_ERR(di);
d397712b 3634
c704005d 3635 if (IS_ERR_OR_NULL(di))
3954401f 3636 goto out_err;
d397712b 3637
5f39d397 3638 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3639out:
39279cc3
CM
3640 btrfs_free_path(path);
3641 return ret;
3954401f
CM
3642out_err:
3643 location->objectid = 0;
3644 goto out;
39279cc3
CM
3645}
3646
3647/*
3648 * when we hit a tree root in a directory, the btrfs part of the inode
3649 * needs to be changed to reflect the root directory of the tree root. This
3650 * is kind of like crossing a mount point.
3651 */
3652static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3653 struct inode *dir,
3654 struct dentry *dentry,
3655 struct btrfs_key *location,
3656 struct btrfs_root **sub_root)
39279cc3 3657{
4df27c4d
YZ
3658 struct btrfs_path *path;
3659 struct btrfs_root *new_root;
3660 struct btrfs_root_ref *ref;
3661 struct extent_buffer *leaf;
3662 int ret;
3663 int err = 0;
39279cc3 3664
4df27c4d
YZ
3665 path = btrfs_alloc_path();
3666 if (!path) {
3667 err = -ENOMEM;
3668 goto out;
3669 }
39279cc3 3670
4df27c4d
YZ
3671 err = -ENOENT;
3672 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3673 BTRFS_I(dir)->root->root_key.objectid,
3674 location->objectid);
3675 if (ret) {
3676 if (ret < 0)
3677 err = ret;
3678 goto out;
3679 }
39279cc3 3680
4df27c4d
YZ
3681 leaf = path->nodes[0];
3682 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3683 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3684 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3685 goto out;
39279cc3 3686
4df27c4d
YZ
3687 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3688 (unsigned long)(ref + 1),
3689 dentry->d_name.len);
3690 if (ret)
3691 goto out;
3692
b3b4aa74 3693 btrfs_release_path(path);
4df27c4d
YZ
3694
3695 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3696 if (IS_ERR(new_root)) {
3697 err = PTR_ERR(new_root);
3698 goto out;
3699 }
3700
3701 if (btrfs_root_refs(&new_root->root_item) == 0) {
3702 err = -ENOENT;
3703 goto out;
3704 }
3705
3706 *sub_root = new_root;
3707 location->objectid = btrfs_root_dirid(&new_root->root_item);
3708 location->type = BTRFS_INODE_ITEM_KEY;
3709 location->offset = 0;
3710 err = 0;
3711out:
3712 btrfs_free_path(path);
3713 return err;
39279cc3
CM
3714}
3715
5d4f98a2
YZ
3716static void inode_tree_add(struct inode *inode)
3717{
3718 struct btrfs_root *root = BTRFS_I(inode)->root;
3719 struct btrfs_inode *entry;
03e860bd
FNP
3720 struct rb_node **p;
3721 struct rb_node *parent;
33345d01 3722 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3723again:
3724 p = &root->inode_tree.rb_node;
3725 parent = NULL;
5d4f98a2 3726
1d3382cb 3727 if (inode_unhashed(inode))
76dda93c
YZ
3728 return;
3729
5d4f98a2
YZ
3730 spin_lock(&root->inode_lock);
3731 while (*p) {
3732 parent = *p;
3733 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3734
33345d01 3735 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3736 p = &parent->rb_left;
33345d01 3737 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3738 p = &parent->rb_right;
5d4f98a2
YZ
3739 else {
3740 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3741 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3742 rb_erase(parent, &root->inode_tree);
3743 RB_CLEAR_NODE(parent);
3744 spin_unlock(&root->inode_lock);
3745 goto again;
5d4f98a2
YZ
3746 }
3747 }
3748 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3749 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3750 spin_unlock(&root->inode_lock);
3751}
3752
3753static void inode_tree_del(struct inode *inode)
3754{
3755 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3756 int empty = 0;
5d4f98a2 3757
03e860bd 3758 spin_lock(&root->inode_lock);
5d4f98a2 3759 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3760 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3761 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3762 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3763 }
03e860bd 3764 spin_unlock(&root->inode_lock);
76dda93c 3765
0af3d00b
JB
3766 /*
3767 * Free space cache has inodes in the tree root, but the tree root has a
3768 * root_refs of 0, so this could end up dropping the tree root as a
3769 * snapshot, so we need the extra !root->fs_info->tree_root check to
3770 * make sure we don't drop it.
3771 */
3772 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3773 root != root->fs_info->tree_root) {
76dda93c
YZ
3774 synchronize_srcu(&root->fs_info->subvol_srcu);
3775 spin_lock(&root->inode_lock);
3776 empty = RB_EMPTY_ROOT(&root->inode_tree);
3777 spin_unlock(&root->inode_lock);
3778 if (empty)
3779 btrfs_add_dead_root(root);
3780 }
3781}
3782
143bede5 3783void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
3784{
3785 struct rb_node *node;
3786 struct rb_node *prev;
3787 struct btrfs_inode *entry;
3788 struct inode *inode;
3789 u64 objectid = 0;
3790
3791 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3792
3793 spin_lock(&root->inode_lock);
3794again:
3795 node = root->inode_tree.rb_node;
3796 prev = NULL;
3797 while (node) {
3798 prev = node;
3799 entry = rb_entry(node, struct btrfs_inode, rb_node);
3800
33345d01 3801 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3802 node = node->rb_left;
33345d01 3803 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3804 node = node->rb_right;
3805 else
3806 break;
3807 }
3808 if (!node) {
3809 while (prev) {
3810 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3811 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3812 node = prev;
3813 break;
3814 }
3815 prev = rb_next(prev);
3816 }
3817 }
3818 while (node) {
3819 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3820 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3821 inode = igrab(&entry->vfs_inode);
3822 if (inode) {
3823 spin_unlock(&root->inode_lock);
3824 if (atomic_read(&inode->i_count) > 1)
3825 d_prune_aliases(inode);
3826 /*
45321ac5 3827 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3828 * the inode cache when its usage count
3829 * hits zero.
3830 */
3831 iput(inode);
3832 cond_resched();
3833 spin_lock(&root->inode_lock);
3834 goto again;
3835 }
3836
3837 if (cond_resched_lock(&root->inode_lock))
3838 goto again;
3839
3840 node = rb_next(node);
3841 }
3842 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
3843}
3844
e02119d5
CM
3845static int btrfs_init_locked_inode(struct inode *inode, void *p)
3846{
3847 struct btrfs_iget_args *args = p;
3848 inode->i_ino = args->ino;
e02119d5 3849 BTRFS_I(inode)->root = args->root;
6a63209f 3850 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3851 return 0;
3852}
3853
3854static int btrfs_find_actor(struct inode *inode, void *opaque)
3855{
3856 struct btrfs_iget_args *args = opaque;
33345d01 3857 return args->ino == btrfs_ino(inode) &&
d397712b 3858 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3859}
3860
5d4f98a2
YZ
3861static struct inode *btrfs_iget_locked(struct super_block *s,
3862 u64 objectid,
3863 struct btrfs_root *root)
39279cc3
CM
3864{
3865 struct inode *inode;
3866 struct btrfs_iget_args args;
3867 args.ino = objectid;
3868 args.root = root;
3869
3870 inode = iget5_locked(s, objectid, btrfs_find_actor,
3871 btrfs_init_locked_inode,
3872 (void *)&args);
3873 return inode;
3874}
3875
1a54ef8c
BR
3876/* Get an inode object given its location and corresponding root.
3877 * Returns in *is_new if the inode was read from disk
3878 */
3879struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3880 struct btrfs_root *root, int *new)
1a54ef8c
BR
3881{
3882 struct inode *inode;
3883
3884 inode = btrfs_iget_locked(s, location->objectid, root);
3885 if (!inode)
5d4f98a2 3886 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3887
3888 if (inode->i_state & I_NEW) {
3889 BTRFS_I(inode)->root = root;
3890 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3891 btrfs_read_locked_inode(inode);
1748f843
MF
3892 if (!is_bad_inode(inode)) {
3893 inode_tree_add(inode);
3894 unlock_new_inode(inode);
3895 if (new)
3896 *new = 1;
3897 } else {
e0b6d65b
ST
3898 unlock_new_inode(inode);
3899 iput(inode);
3900 inode = ERR_PTR(-ESTALE);
1748f843
MF
3901 }
3902 }
3903
1a54ef8c
BR
3904 return inode;
3905}
3906
4df27c4d
YZ
3907static struct inode *new_simple_dir(struct super_block *s,
3908 struct btrfs_key *key,
3909 struct btrfs_root *root)
3910{
3911 struct inode *inode = new_inode(s);
3912
3913 if (!inode)
3914 return ERR_PTR(-ENOMEM);
3915
4df27c4d
YZ
3916 BTRFS_I(inode)->root = root;
3917 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3918 BTRFS_I(inode)->dummy_inode = 1;
3919
3920 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3921 inode->i_op = &simple_dir_inode_operations;
3922 inode->i_fop = &simple_dir_operations;
3923 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3924 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3925
3926 return inode;
3927}
3928
3de4586c 3929struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3930{
d397712b 3931 struct inode *inode;
4df27c4d 3932 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3933 struct btrfs_root *sub_root = root;
3934 struct btrfs_key location;
76dda93c 3935 int index;
b4aff1f8 3936 int ret = 0;
39279cc3
CM
3937
3938 if (dentry->d_name.len > BTRFS_NAME_LEN)
3939 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3940
b4aff1f8
JB
3941 if (unlikely(d_need_lookup(dentry))) {
3942 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3943 kfree(dentry->d_fsdata);
3944 dentry->d_fsdata = NULL;
a66e7cc6
JB
3945 /* This thing is hashed, drop it for now */
3946 d_drop(dentry);
b4aff1f8
JB
3947 } else {
3948 ret = btrfs_inode_by_name(dir, dentry, &location);
3949 }
5f39d397 3950
39279cc3
CM
3951 if (ret < 0)
3952 return ERR_PTR(ret);
5f39d397 3953
4df27c4d
YZ
3954 if (location.objectid == 0)
3955 return NULL;
3956
3957 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 3958 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
3959 return inode;
3960 }
3961
3962 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3963
76dda93c 3964 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3965 ret = fixup_tree_root_location(root, dir, dentry,
3966 &location, &sub_root);
3967 if (ret < 0) {
3968 if (ret != -ENOENT)
3969 inode = ERR_PTR(ret);
3970 else
3971 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3972 } else {
73f73415 3973 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 3974 }
76dda93c
YZ
3975 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3976
34d19bad 3977 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
3978 down_read(&root->fs_info->cleanup_work_sem);
3979 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 3980 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 3981 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
3982 if (ret)
3983 inode = ERR_PTR(ret);
c71bf099
YZ
3984 }
3985
3de4586c
CM
3986 return inode;
3987}
3988
fe15ce44 3989static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
3990{
3991 struct btrfs_root *root;
3992
efefb143
YZ
3993 if (!dentry->d_inode && !IS_ROOT(dentry))
3994 dentry = dentry->d_parent;
76dda93c 3995
efefb143
YZ
3996 if (dentry->d_inode) {
3997 root = BTRFS_I(dentry->d_inode)->root;
3998 if (btrfs_root_refs(&root->root_item) == 0)
3999 return 1;
4000 }
76dda93c
YZ
4001 return 0;
4002}
4003
b4aff1f8
JB
4004static void btrfs_dentry_release(struct dentry *dentry)
4005{
4006 if (dentry->d_fsdata)
4007 kfree(dentry->d_fsdata);
4008}
4009
3de4586c
CM
4010static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4011 struct nameidata *nd)
4012{
a66e7cc6
JB
4013 struct dentry *ret;
4014
4015 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4016 if (unlikely(d_need_lookup(dentry))) {
4017 spin_lock(&dentry->d_lock);
4018 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4019 spin_unlock(&dentry->d_lock);
4020 }
4021 return ret;
39279cc3
CM
4022}
4023
16cdcec7 4024unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4025 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4026};
4027
cbdf5a24
DW
4028static int btrfs_real_readdir(struct file *filp, void *dirent,
4029 filldir_t filldir)
39279cc3 4030{
6da6abae 4031 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4032 struct btrfs_root *root = BTRFS_I(inode)->root;
4033 struct btrfs_item *item;
4034 struct btrfs_dir_item *di;
4035 struct btrfs_key key;
5f39d397 4036 struct btrfs_key found_key;
39279cc3 4037 struct btrfs_path *path;
16cdcec7
MX
4038 struct list_head ins_list;
4039 struct list_head del_list;
b4aff1f8 4040 struct qstr q;
39279cc3 4041 int ret;
5f39d397 4042 struct extent_buffer *leaf;
39279cc3 4043 int slot;
39279cc3
CM
4044 unsigned char d_type;
4045 int over = 0;
4046 u32 di_cur;
4047 u32 di_total;
4048 u32 di_len;
4049 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4050 char tmp_name[32];
4051 char *name_ptr;
4052 int name_len;
16cdcec7 4053 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4054
4055 /* FIXME, use a real flag for deciding about the key type */
4056 if (root->fs_info->tree_root == root)
4057 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4058
3954401f
CM
4059 /* special case for "." */
4060 if (filp->f_pos == 0) {
3765fefa
HS
4061 over = filldir(dirent, ".", 1,
4062 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4063 if (over)
4064 return 0;
4065 filp->f_pos = 1;
4066 }
3954401f
CM
4067 /* special case for .., just use the back ref */
4068 if (filp->f_pos == 1) {
5ecc7e5d 4069 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4070 over = filldir(dirent, "..", 2,
3765fefa 4071 filp->f_pos, pino, DT_DIR);
3954401f 4072 if (over)
49593bfa 4073 return 0;
3954401f
CM
4074 filp->f_pos = 2;
4075 }
49593bfa 4076 path = btrfs_alloc_path();
16cdcec7
MX
4077 if (!path)
4078 return -ENOMEM;
ff5714cc 4079
026fd317 4080 path->reada = 1;
49593bfa 4081
16cdcec7
MX
4082 if (key_type == BTRFS_DIR_INDEX_KEY) {
4083 INIT_LIST_HEAD(&ins_list);
4084 INIT_LIST_HEAD(&del_list);
4085 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4086 }
4087
39279cc3
CM
4088 btrfs_set_key_type(&key, key_type);
4089 key.offset = filp->f_pos;
33345d01 4090 key.objectid = btrfs_ino(inode);
5f39d397 4091
39279cc3
CM
4092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4093 if (ret < 0)
4094 goto err;
49593bfa
DW
4095
4096 while (1) {
5f39d397 4097 leaf = path->nodes[0];
39279cc3 4098 slot = path->slots[0];
b9e03af0
LZ
4099 if (slot >= btrfs_header_nritems(leaf)) {
4100 ret = btrfs_next_leaf(root, path);
4101 if (ret < 0)
4102 goto err;
4103 else if (ret > 0)
4104 break;
4105 continue;
39279cc3 4106 }
3de4586c 4107
5f39d397
CM
4108 item = btrfs_item_nr(leaf, slot);
4109 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4110
4111 if (found_key.objectid != key.objectid)
39279cc3 4112 break;
5f39d397 4113 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4114 break;
5f39d397 4115 if (found_key.offset < filp->f_pos)
b9e03af0 4116 goto next;
16cdcec7
MX
4117 if (key_type == BTRFS_DIR_INDEX_KEY &&
4118 btrfs_should_delete_dir_index(&del_list,
4119 found_key.offset))
4120 goto next;
5f39d397
CM
4121
4122 filp->f_pos = found_key.offset;
16cdcec7 4123 is_curr = 1;
49593bfa 4124
39279cc3
CM
4125 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4126 di_cur = 0;
5f39d397 4127 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4128
4129 while (di_cur < di_total) {
5f39d397 4130 struct btrfs_key location;
b4aff1f8 4131 struct dentry *tmp;
5f39d397 4132
22a94d44
JB
4133 if (verify_dir_item(root, leaf, di))
4134 break;
4135
5f39d397 4136 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4137 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4138 name_ptr = tmp_name;
4139 } else {
4140 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4141 if (!name_ptr) {
4142 ret = -ENOMEM;
4143 goto err;
4144 }
5f39d397
CM
4145 }
4146 read_extent_buffer(leaf, name_ptr,
4147 (unsigned long)(di + 1), name_len);
4148
4149 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4150 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4151
b4aff1f8
JB
4152 q.name = name_ptr;
4153 q.len = name_len;
4154 q.hash = full_name_hash(q.name, q.len);
4155 tmp = d_lookup(filp->f_dentry, &q);
4156 if (!tmp) {
4157 struct btrfs_key *newkey;
4158
4159 newkey = kzalloc(sizeof(struct btrfs_key),
4160 GFP_NOFS);
4161 if (!newkey)
4162 goto no_dentry;
4163 tmp = d_alloc(filp->f_dentry, &q);
4164 if (!tmp) {
4165 kfree(newkey);
4166 dput(tmp);
4167 goto no_dentry;
4168 }
4169 memcpy(newkey, &location,
4170 sizeof(struct btrfs_key));
4171 tmp->d_fsdata = newkey;
4172 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4173 d_rehash(tmp);
4174 dput(tmp);
4175 } else {
4176 dput(tmp);
4177 }
4178no_dentry:
3de4586c
CM
4179 /* is this a reference to our own snapshot? If so
4180 * skip it
4181 */
4182 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4183 location.objectid == root->root_key.objectid) {
4184 over = 0;
4185 goto skip;
4186 }
5f39d397 4187 over = filldir(dirent, name_ptr, name_len,
49593bfa 4188 found_key.offset, location.objectid,
39279cc3 4189 d_type);
5f39d397 4190
3de4586c 4191skip:
5f39d397
CM
4192 if (name_ptr != tmp_name)
4193 kfree(name_ptr);
4194
39279cc3
CM
4195 if (over)
4196 goto nopos;
5103e947 4197 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4198 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4199 di_cur += di_len;
4200 di = (struct btrfs_dir_item *)((char *)di + di_len);
4201 }
b9e03af0
LZ
4202next:
4203 path->slots[0]++;
39279cc3 4204 }
49593bfa 4205
16cdcec7
MX
4206 if (key_type == BTRFS_DIR_INDEX_KEY) {
4207 if (is_curr)
4208 filp->f_pos++;
4209 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4210 &ins_list);
4211 if (ret)
4212 goto nopos;
4213 }
4214
49593bfa 4215 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4216 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4217 /*
4218 * 32-bit glibc will use getdents64, but then strtol -
4219 * so the last number we can serve is this.
4220 */
4221 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4222 else
4223 filp->f_pos++;
39279cc3
CM
4224nopos:
4225 ret = 0;
4226err:
16cdcec7
MX
4227 if (key_type == BTRFS_DIR_INDEX_KEY)
4228 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4229 btrfs_free_path(path);
39279cc3
CM
4230 return ret;
4231}
4232
a9185b41 4233int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4234{
4235 struct btrfs_root *root = BTRFS_I(inode)->root;
4236 struct btrfs_trans_handle *trans;
4237 int ret = 0;
0af3d00b 4238 bool nolock = false;
39279cc3 4239
8929ecfa 4240 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4241 return 0;
4242
2cf8572d 4243 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4244 nolock = true;
0af3d00b 4245
a9185b41 4246 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4247 if (nolock)
7a7eaa40 4248 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4249 else
7a7eaa40 4250 trans = btrfs_join_transaction(root);
3612b495
TI
4251 if (IS_ERR(trans))
4252 return PTR_ERR(trans);
0af3d00b
JB
4253 if (nolock)
4254 ret = btrfs_end_transaction_nolock(trans, root);
4255 else
4256 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4257 }
4258 return ret;
4259}
4260
4261/*
54aa1f4d 4262 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4263 * inode changes. But, it is most likely to find the inode in cache.
4264 * FIXME, needs more benchmarking...there are no reasons other than performance
4265 * to keep or drop this code.
4266 */
22c44fe6 4267int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4268{
4269 struct btrfs_root *root = BTRFS_I(inode)->root;
4270 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4271 int ret;
4272
4273 if (BTRFS_I(inode)->dummy_inode)
22c44fe6 4274 return 0;
39279cc3 4275
7a7eaa40 4276 trans = btrfs_join_transaction(root);
22c44fe6
JB
4277 if (IS_ERR(trans))
4278 return PTR_ERR(trans);
8929ecfa
YZ
4279
4280 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4281 if (ret && ret == -ENOSPC) {
4282 /* whoops, lets try again with the full transaction */
4283 btrfs_end_transaction(trans, root);
4284 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4285 if (IS_ERR(trans))
4286 return PTR_ERR(trans);
8929ecfa 4287
94b60442 4288 ret = btrfs_update_inode(trans, root, inode);
94b60442 4289 }
39279cc3 4290 btrfs_end_transaction(trans, root);
16cdcec7
MX
4291 if (BTRFS_I(inode)->delayed_node)
4292 btrfs_balance_delayed_items(root);
22c44fe6
JB
4293
4294 return ret;
4295}
4296
4297/*
4298 * This is a copy of file_update_time. We need this so we can return error on
4299 * ENOSPC for updating the inode in the case of file write and mmap writes.
4300 */
4301int btrfs_update_time(struct file *file)
4302{
4303 struct inode *inode = file->f_path.dentry->d_inode;
4304 struct timespec now;
4305 int ret;
4306 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4307
4308 /* First try to exhaust all avenues to not sync */
4309 if (IS_NOCMTIME(inode))
4310 return 0;
4311
4312 now = current_fs_time(inode->i_sb);
4313 if (!timespec_equal(&inode->i_mtime, &now))
4314 sync_it = S_MTIME;
4315
4316 if (!timespec_equal(&inode->i_ctime, &now))
4317 sync_it |= S_CTIME;
4318
4319 if (IS_I_VERSION(inode))
4320 sync_it |= S_VERSION;
4321
4322 if (!sync_it)
4323 return 0;
4324
4325 /* Finally allowed to write? Takes lock. */
4326 if (mnt_want_write_file(file))
4327 return 0;
4328
4329 /* Only change inode inside the lock region */
4330 if (sync_it & S_VERSION)
4331 inode_inc_iversion(inode);
4332 if (sync_it & S_CTIME)
4333 inode->i_ctime = now;
4334 if (sync_it & S_MTIME)
4335 inode->i_mtime = now;
4336 ret = btrfs_dirty_inode(inode);
4337 if (!ret)
4338 mark_inode_dirty_sync(inode);
4339 mnt_drop_write(file->f_path.mnt);
4340 return ret;
39279cc3
CM
4341}
4342
d352ac68
CM
4343/*
4344 * find the highest existing sequence number in a directory
4345 * and then set the in-memory index_cnt variable to reflect
4346 * free sequence numbers
4347 */
aec7477b
JB
4348static int btrfs_set_inode_index_count(struct inode *inode)
4349{
4350 struct btrfs_root *root = BTRFS_I(inode)->root;
4351 struct btrfs_key key, found_key;
4352 struct btrfs_path *path;
4353 struct extent_buffer *leaf;
4354 int ret;
4355
33345d01 4356 key.objectid = btrfs_ino(inode);
aec7477b
JB
4357 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4358 key.offset = (u64)-1;
4359
4360 path = btrfs_alloc_path();
4361 if (!path)
4362 return -ENOMEM;
4363
4364 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4365 if (ret < 0)
4366 goto out;
4367 /* FIXME: we should be able to handle this */
4368 if (ret == 0)
4369 goto out;
4370 ret = 0;
4371
4372 /*
4373 * MAGIC NUMBER EXPLANATION:
4374 * since we search a directory based on f_pos we have to start at 2
4375 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4376 * else has to start at 2
4377 */
4378 if (path->slots[0] == 0) {
4379 BTRFS_I(inode)->index_cnt = 2;
4380 goto out;
4381 }
4382
4383 path->slots[0]--;
4384
4385 leaf = path->nodes[0];
4386 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4387
33345d01 4388 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4389 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4390 BTRFS_I(inode)->index_cnt = 2;
4391 goto out;
4392 }
4393
4394 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4395out:
4396 btrfs_free_path(path);
4397 return ret;
4398}
4399
d352ac68
CM
4400/*
4401 * helper to find a free sequence number in a given directory. This current
4402 * code is very simple, later versions will do smarter things in the btree
4403 */
3de4586c 4404int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4405{
4406 int ret = 0;
4407
4408 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4409 ret = btrfs_inode_delayed_dir_index_count(dir);
4410 if (ret) {
4411 ret = btrfs_set_inode_index_count(dir);
4412 if (ret)
4413 return ret;
4414 }
aec7477b
JB
4415 }
4416
00e4e6b3 4417 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4418 BTRFS_I(dir)->index_cnt++;
4419
4420 return ret;
4421}
4422
39279cc3
CM
4423static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4424 struct btrfs_root *root,
aec7477b 4425 struct inode *dir,
9c58309d 4426 const char *name, int name_len,
175a4eb7
AV
4427 u64 ref_objectid, u64 objectid,
4428 umode_t mode, u64 *index)
39279cc3
CM
4429{
4430 struct inode *inode;
5f39d397 4431 struct btrfs_inode_item *inode_item;
39279cc3 4432 struct btrfs_key *location;
5f39d397 4433 struct btrfs_path *path;
9c58309d
CM
4434 struct btrfs_inode_ref *ref;
4435 struct btrfs_key key[2];
4436 u32 sizes[2];
4437 unsigned long ptr;
39279cc3
CM
4438 int ret;
4439 int owner;
4440
5f39d397 4441 path = btrfs_alloc_path();
d8926bb3
MF
4442 if (!path)
4443 return ERR_PTR(-ENOMEM);
5f39d397 4444
39279cc3 4445 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4446 if (!inode) {
4447 btrfs_free_path(path);
39279cc3 4448 return ERR_PTR(-ENOMEM);
8fb27640 4449 }
39279cc3 4450
581bb050
LZ
4451 /*
4452 * we have to initialize this early, so we can reclaim the inode
4453 * number if we fail afterwards in this function.
4454 */
4455 inode->i_ino = objectid;
4456
aec7477b 4457 if (dir) {
1abe9b8a 4458 trace_btrfs_inode_request(dir);
4459
3de4586c 4460 ret = btrfs_set_inode_index(dir, index);
09771430 4461 if (ret) {
8fb27640 4462 btrfs_free_path(path);
09771430 4463 iput(inode);
aec7477b 4464 return ERR_PTR(ret);
09771430 4465 }
aec7477b
JB
4466 }
4467 /*
4468 * index_cnt is ignored for everything but a dir,
4469 * btrfs_get_inode_index_count has an explanation for the magic
4470 * number
4471 */
4472 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4473 BTRFS_I(inode)->root = root;
e02119d5 4474 BTRFS_I(inode)->generation = trans->transid;
76195853 4475 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4476 btrfs_set_inode_space_info(root, inode);
b888db2b 4477
569254b0 4478 if (S_ISDIR(mode))
39279cc3
CM
4479 owner = 0;
4480 else
4481 owner = 1;
9c58309d
CM
4482
4483 key[0].objectid = objectid;
4484 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4485 key[0].offset = 0;
4486
4487 key[1].objectid = objectid;
4488 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4489 key[1].offset = ref_objectid;
4490
4491 sizes[0] = sizeof(struct btrfs_inode_item);
4492 sizes[1] = name_len + sizeof(*ref);
4493
b9473439 4494 path->leave_spinning = 1;
9c58309d
CM
4495 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4496 if (ret != 0)
5f39d397
CM
4497 goto fail;
4498
ecc11fab 4499 inode_init_owner(inode, dir, mode);
a76a3cd4 4500 inode_set_bytes(inode, 0);
39279cc3 4501 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4502 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4503 struct btrfs_inode_item);
e02119d5 4504 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4505
4506 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4507 struct btrfs_inode_ref);
4508 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4509 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4510 ptr = (unsigned long)(ref + 1);
4511 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4512
5f39d397
CM
4513 btrfs_mark_buffer_dirty(path->nodes[0]);
4514 btrfs_free_path(path);
4515
39279cc3
CM
4516 location = &BTRFS_I(inode)->location;
4517 location->objectid = objectid;
39279cc3
CM
4518 location->offset = 0;
4519 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4520
6cbff00f
CH
4521 btrfs_inherit_iflags(inode, dir);
4522
569254b0 4523 if (S_ISREG(mode)) {
94272164
CM
4524 if (btrfs_test_opt(root, NODATASUM))
4525 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4526 if (btrfs_test_opt(root, NODATACOW) ||
4527 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4528 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4529 }
4530
39279cc3 4531 insert_inode_hash(inode);
5d4f98a2 4532 inode_tree_add(inode);
1abe9b8a 4533
4534 trace_btrfs_inode_new(inode);
1973f0fa 4535 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4536
39279cc3 4537 return inode;
5f39d397 4538fail:
aec7477b
JB
4539 if (dir)
4540 BTRFS_I(dir)->index_cnt--;
5f39d397 4541 btrfs_free_path(path);
09771430 4542 iput(inode);
5f39d397 4543 return ERR_PTR(ret);
39279cc3
CM
4544}
4545
4546static inline u8 btrfs_inode_type(struct inode *inode)
4547{
4548 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4549}
4550
d352ac68
CM
4551/*
4552 * utility function to add 'inode' into 'parent_inode' with
4553 * a give name and a given sequence number.
4554 * if 'add_backref' is true, also insert a backref from the
4555 * inode to the parent directory.
4556 */
e02119d5
CM
4557int btrfs_add_link(struct btrfs_trans_handle *trans,
4558 struct inode *parent_inode, struct inode *inode,
4559 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4560{
4df27c4d 4561 int ret = 0;
39279cc3 4562 struct btrfs_key key;
e02119d5 4563 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4564 u64 ino = btrfs_ino(inode);
4565 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4566
33345d01 4567 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4568 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4569 } else {
33345d01 4570 key.objectid = ino;
4df27c4d
YZ
4571 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4572 key.offset = 0;
4573 }
4574
33345d01 4575 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4576 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4577 key.objectid, root->root_key.objectid,
33345d01 4578 parent_ino, index, name, name_len);
4df27c4d 4579 } else if (add_backref) {
33345d01
LZ
4580 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4581 parent_ino, index);
4df27c4d 4582 }
39279cc3 4583
39279cc3 4584 if (ret == 0) {
4df27c4d 4585 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4586 parent_inode, &key,
4df27c4d 4587 btrfs_inode_type(inode), index);
fe66a05a
CM
4588 if (ret)
4589 goto fail_dir_item;
4df27c4d 4590
dbe674a9 4591 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4592 name_len * 2);
79c44584 4593 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4594 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4595 }
4596 return ret;
fe66a05a
CM
4597
4598fail_dir_item:
4599 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4600 u64 local_index;
4601 int err;
4602 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4603 key.objectid, root->root_key.objectid,
4604 parent_ino, &local_index, name, name_len);
4605
4606 } else if (add_backref) {
4607 u64 local_index;
4608 int err;
4609
4610 err = btrfs_del_inode_ref(trans, root, name, name_len,
4611 ino, parent_ino, &local_index);
4612 }
4613 return ret;
39279cc3
CM
4614}
4615
4616static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4617 struct inode *dir, struct dentry *dentry,
4618 struct inode *inode, int backref, u64 index)
39279cc3 4619{
a1b075d2
JB
4620 int err = btrfs_add_link(trans, dir, inode,
4621 dentry->d_name.name, dentry->d_name.len,
4622 backref, index);
39279cc3
CM
4623 if (err > 0)
4624 err = -EEXIST;
4625 return err;
4626}
4627
618e21d5 4628static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4629 umode_t mode, dev_t rdev)
618e21d5
JB
4630{
4631 struct btrfs_trans_handle *trans;
4632 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4633 struct inode *inode = NULL;
618e21d5
JB
4634 int err;
4635 int drop_inode = 0;
4636 u64 objectid;
1832a6d5 4637 unsigned long nr = 0;
00e4e6b3 4638 u64 index = 0;
618e21d5
JB
4639
4640 if (!new_valid_dev(rdev))
4641 return -EINVAL;
4642
9ed74f2d
JB
4643 /*
4644 * 2 for inode item and ref
4645 * 2 for dir items
4646 * 1 for xattr if selinux is on
4647 */
a22285a6
YZ
4648 trans = btrfs_start_transaction(root, 5);
4649 if (IS_ERR(trans))
4650 return PTR_ERR(trans);
1832a6d5 4651
581bb050
LZ
4652 err = btrfs_find_free_ino(root, &objectid);
4653 if (err)
4654 goto out_unlock;
4655
aec7477b 4656 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4657 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4658 mode, &index);
7cf96da3
TI
4659 if (IS_ERR(inode)) {
4660 err = PTR_ERR(inode);
618e21d5 4661 goto out_unlock;
7cf96da3 4662 }
618e21d5 4663
2a7dba39 4664 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4665 if (err) {
4666 drop_inode = 1;
4667 goto out_unlock;
4668 }
4669
ad19db71
CS
4670 /*
4671 * If the active LSM wants to access the inode during
4672 * d_instantiate it needs these. Smack checks to see
4673 * if the filesystem supports xattrs by looking at the
4674 * ops vector.
4675 */
4676
4677 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4678 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4679 if (err)
4680 drop_inode = 1;
4681 else {
618e21d5 4682 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4683 btrfs_update_inode(trans, root, inode);
08c422c2 4684 d_instantiate(dentry, inode);
618e21d5 4685 }
618e21d5 4686out_unlock:
d3c2fdcf 4687 nr = trans->blocks_used;
7ad85bb7 4688 btrfs_end_transaction(trans, root);
a22285a6 4689 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4690 if (drop_inode) {
4691 inode_dec_link_count(inode);
4692 iput(inode);
4693 }
618e21d5
JB
4694 return err;
4695}
4696
39279cc3 4697static int btrfs_create(struct inode *dir, struct dentry *dentry,
4acdaf27 4698 umode_t mode, struct nameidata *nd)
39279cc3
CM
4699{
4700 struct btrfs_trans_handle *trans;
4701 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4702 struct inode *inode = NULL;
39279cc3 4703 int drop_inode = 0;
a22285a6 4704 int err;
1832a6d5 4705 unsigned long nr = 0;
39279cc3 4706 u64 objectid;
00e4e6b3 4707 u64 index = 0;
39279cc3 4708
9ed74f2d
JB
4709 /*
4710 * 2 for inode item and ref
4711 * 2 for dir items
4712 * 1 for xattr if selinux is on
4713 */
a22285a6
YZ
4714 trans = btrfs_start_transaction(root, 5);
4715 if (IS_ERR(trans))
4716 return PTR_ERR(trans);
9ed74f2d 4717
581bb050
LZ
4718 err = btrfs_find_free_ino(root, &objectid);
4719 if (err)
4720 goto out_unlock;
4721
aec7477b 4722 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4723 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4724 mode, &index);
7cf96da3
TI
4725 if (IS_ERR(inode)) {
4726 err = PTR_ERR(inode);
39279cc3 4727 goto out_unlock;
7cf96da3 4728 }
39279cc3 4729
2a7dba39 4730 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4731 if (err) {
4732 drop_inode = 1;
4733 goto out_unlock;
4734 }
4735
ad19db71
CS
4736 /*
4737 * If the active LSM wants to access the inode during
4738 * d_instantiate it needs these. Smack checks to see
4739 * if the filesystem supports xattrs by looking at the
4740 * ops vector.
4741 */
4742 inode->i_fop = &btrfs_file_operations;
4743 inode->i_op = &btrfs_file_inode_operations;
4744
a1b075d2 4745 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4746 if (err)
4747 drop_inode = 1;
4748 else {
4749 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4750 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 4751 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
08c422c2 4752 d_instantiate(dentry, inode);
39279cc3 4753 }
39279cc3 4754out_unlock:
d3c2fdcf 4755 nr = trans->blocks_used;
7ad85bb7 4756 btrfs_end_transaction(trans, root);
39279cc3
CM
4757 if (drop_inode) {
4758 inode_dec_link_count(inode);
4759 iput(inode);
4760 }
d3c2fdcf 4761 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4762 return err;
4763}
4764
4765static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4766 struct dentry *dentry)
4767{
4768 struct btrfs_trans_handle *trans;
4769 struct btrfs_root *root = BTRFS_I(dir)->root;
4770 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4771 u64 index;
1832a6d5 4772 unsigned long nr = 0;
39279cc3
CM
4773 int err;
4774 int drop_inode = 0;
4775
4a8be425
TH
4776 /* do not allow sys_link's with other subvols of the same device */
4777 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4778 return -EXDEV;
4a8be425 4779
c055e99e
AV
4780 if (inode->i_nlink == ~0U)
4781 return -EMLINK;
4a8be425 4782
3de4586c 4783 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4784 if (err)
4785 goto fail;
4786
a22285a6 4787 /*
7e6b6465 4788 * 2 items for inode and inode ref
a22285a6 4789 * 2 items for dir items
7e6b6465 4790 * 1 item for parent inode
a22285a6 4791 */
7e6b6465 4792 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4793 if (IS_ERR(trans)) {
4794 err = PTR_ERR(trans);
4795 goto fail;
4796 }
5f39d397 4797
3153495d
MX
4798 btrfs_inc_nlink(inode);
4799 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4800 ihold(inode);
aec7477b 4801
a1b075d2 4802 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4803
a5719521 4804 if (err) {
54aa1f4d 4805 drop_inode = 1;
a5719521 4806 } else {
10d9f309 4807 struct dentry *parent = dentry->d_parent;
a5719521
YZ
4808 err = btrfs_update_inode(trans, root, inode);
4809 BUG_ON(err);
08c422c2 4810 d_instantiate(dentry, inode);
6a912213 4811 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 4812 }
39279cc3 4813
d3c2fdcf 4814 nr = trans->blocks_used;
7ad85bb7 4815 btrfs_end_transaction(trans, root);
1832a6d5 4816fail:
39279cc3
CM
4817 if (drop_inode) {
4818 inode_dec_link_count(inode);
4819 iput(inode);
4820 }
d3c2fdcf 4821 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4822 return err;
4823}
4824
18bb1db3 4825static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 4826{
b9d86667 4827 struct inode *inode = NULL;
39279cc3
CM
4828 struct btrfs_trans_handle *trans;
4829 struct btrfs_root *root = BTRFS_I(dir)->root;
4830 int err = 0;
4831 int drop_on_err = 0;
b9d86667 4832 u64 objectid = 0;
00e4e6b3 4833 u64 index = 0;
d3c2fdcf 4834 unsigned long nr = 1;
39279cc3 4835
9ed74f2d
JB
4836 /*
4837 * 2 items for inode and ref
4838 * 2 items for dir items
4839 * 1 for xattr if selinux is on
4840 */
a22285a6
YZ
4841 trans = btrfs_start_transaction(root, 5);
4842 if (IS_ERR(trans))
4843 return PTR_ERR(trans);
39279cc3 4844
581bb050
LZ
4845 err = btrfs_find_free_ino(root, &objectid);
4846 if (err)
4847 goto out_fail;
4848
aec7477b 4849 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4850 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4851 S_IFDIR | mode, &index);
39279cc3
CM
4852 if (IS_ERR(inode)) {
4853 err = PTR_ERR(inode);
4854 goto out_fail;
4855 }
5f39d397 4856
39279cc3 4857 drop_on_err = 1;
33268eaf 4858
2a7dba39 4859 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4860 if (err)
4861 goto out_fail;
4862
39279cc3
CM
4863 inode->i_op = &btrfs_dir_inode_operations;
4864 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4865
dbe674a9 4866 btrfs_i_size_write(inode, 0);
39279cc3
CM
4867 err = btrfs_update_inode(trans, root, inode);
4868 if (err)
4869 goto out_fail;
5f39d397 4870
a1b075d2
JB
4871 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4872 dentry->d_name.len, 0, index);
39279cc3
CM
4873 if (err)
4874 goto out_fail;
5f39d397 4875
39279cc3
CM
4876 d_instantiate(dentry, inode);
4877 drop_on_err = 0;
39279cc3
CM
4878
4879out_fail:
d3c2fdcf 4880 nr = trans->blocks_used;
7ad85bb7 4881 btrfs_end_transaction(trans, root);
39279cc3
CM
4882 if (drop_on_err)
4883 iput(inode);
d3c2fdcf 4884 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4885 return err;
4886}
4887
d352ac68
CM
4888/* helper for btfs_get_extent. Given an existing extent in the tree,
4889 * and an extent that you want to insert, deal with overlap and insert
4890 * the new extent into the tree.
4891 */
3b951516
CM
4892static int merge_extent_mapping(struct extent_map_tree *em_tree,
4893 struct extent_map *existing,
e6dcd2dc
CM
4894 struct extent_map *em,
4895 u64 map_start, u64 map_len)
3b951516
CM
4896{
4897 u64 start_diff;
3b951516 4898
e6dcd2dc
CM
4899 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4900 start_diff = map_start - em->start;
4901 em->start = map_start;
4902 em->len = map_len;
c8b97818
CM
4903 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4904 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4905 em->block_start += start_diff;
c8b97818
CM
4906 em->block_len -= start_diff;
4907 }
e6dcd2dc 4908 return add_extent_mapping(em_tree, em);
3b951516
CM
4909}
4910
c8b97818
CM
4911static noinline int uncompress_inline(struct btrfs_path *path,
4912 struct inode *inode, struct page *page,
4913 size_t pg_offset, u64 extent_offset,
4914 struct btrfs_file_extent_item *item)
4915{
4916 int ret;
4917 struct extent_buffer *leaf = path->nodes[0];
4918 char *tmp;
4919 size_t max_size;
4920 unsigned long inline_size;
4921 unsigned long ptr;
261507a0 4922 int compress_type;
c8b97818
CM
4923
4924 WARN_ON(pg_offset != 0);
261507a0 4925 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4926 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4927 inline_size = btrfs_file_extent_inline_item_len(leaf,
4928 btrfs_item_nr(leaf, path->slots[0]));
4929 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4930 if (!tmp)
4931 return -ENOMEM;
c8b97818
CM
4932 ptr = btrfs_file_extent_inline_start(item);
4933
4934 read_extent_buffer(leaf, tmp, ptr, inline_size);
4935
5b050f04 4936 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4937 ret = btrfs_decompress(compress_type, tmp, page,
4938 extent_offset, inline_size, max_size);
c8b97818
CM
4939 if (ret) {
4940 char *kaddr = kmap_atomic(page, KM_USER0);
4941 unsigned long copy_size = min_t(u64,
4942 PAGE_CACHE_SIZE - pg_offset,
4943 max_size - extent_offset);
4944 memset(kaddr + pg_offset, 0, copy_size);
4945 kunmap_atomic(kaddr, KM_USER0);
4946 }
4947 kfree(tmp);
4948 return 0;
4949}
4950
d352ac68
CM
4951/*
4952 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4953 * the ugly parts come from merging extents from the disk with the in-ram
4954 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4955 * where the in-ram extents might be locked pending data=ordered completion.
4956 *
4957 * This also copies inline extents directly into the page.
4958 */
d397712b 4959
a52d9a80 4960struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4961 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4962 int create)
4963{
4964 int ret;
4965 int err = 0;
db94535d 4966 u64 bytenr;
a52d9a80
CM
4967 u64 extent_start = 0;
4968 u64 extent_end = 0;
33345d01 4969 u64 objectid = btrfs_ino(inode);
a52d9a80 4970 u32 found_type;
f421950f 4971 struct btrfs_path *path = NULL;
a52d9a80
CM
4972 struct btrfs_root *root = BTRFS_I(inode)->root;
4973 struct btrfs_file_extent_item *item;
5f39d397
CM
4974 struct extent_buffer *leaf;
4975 struct btrfs_key found_key;
a52d9a80
CM
4976 struct extent_map *em = NULL;
4977 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4978 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4979 struct btrfs_trans_handle *trans = NULL;
261507a0 4980 int compress_type;
a52d9a80 4981
a52d9a80 4982again:
890871be 4983 read_lock(&em_tree->lock);
d1310b2e 4984 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4985 if (em)
4986 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4987 read_unlock(&em_tree->lock);
d1310b2e 4988
a52d9a80 4989 if (em) {
e1c4b745
CM
4990 if (em->start > start || em->start + em->len <= start)
4991 free_extent_map(em);
4992 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4993 free_extent_map(em);
4994 else
4995 goto out;
a52d9a80 4996 }
172ddd60 4997 em = alloc_extent_map();
a52d9a80 4998 if (!em) {
d1310b2e
CM
4999 err = -ENOMEM;
5000 goto out;
a52d9a80 5001 }
e6dcd2dc 5002 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5003 em->start = EXTENT_MAP_HOLE;
445a6944 5004 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5005 em->len = (u64)-1;
c8b97818 5006 em->block_len = (u64)-1;
f421950f
CM
5007
5008 if (!path) {
5009 path = btrfs_alloc_path();
026fd317
JB
5010 if (!path) {
5011 err = -ENOMEM;
5012 goto out;
5013 }
5014 /*
5015 * Chances are we'll be called again, so go ahead and do
5016 * readahead
5017 */
5018 path->reada = 1;
f421950f
CM
5019 }
5020
179e29e4
CM
5021 ret = btrfs_lookup_file_extent(trans, root, path,
5022 objectid, start, trans != NULL);
a52d9a80
CM
5023 if (ret < 0) {
5024 err = ret;
5025 goto out;
5026 }
5027
5028 if (ret != 0) {
5029 if (path->slots[0] == 0)
5030 goto not_found;
5031 path->slots[0]--;
5032 }
5033
5f39d397
CM
5034 leaf = path->nodes[0];
5035 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5036 struct btrfs_file_extent_item);
a52d9a80 5037 /* are we inside the extent that was found? */
5f39d397
CM
5038 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5039 found_type = btrfs_key_type(&found_key);
5040 if (found_key.objectid != objectid ||
a52d9a80
CM
5041 found_type != BTRFS_EXTENT_DATA_KEY) {
5042 goto not_found;
5043 }
5044
5f39d397
CM
5045 found_type = btrfs_file_extent_type(leaf, item);
5046 extent_start = found_key.offset;
261507a0 5047 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5048 if (found_type == BTRFS_FILE_EXTENT_REG ||
5049 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5050 extent_end = extent_start +
db94535d 5051 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5052 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5053 size_t size;
5054 size = btrfs_file_extent_inline_len(leaf, item);
5055 extent_end = (extent_start + size + root->sectorsize - 1) &
5056 ~((u64)root->sectorsize - 1);
5057 }
5058
5059 if (start >= extent_end) {
5060 path->slots[0]++;
5061 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5062 ret = btrfs_next_leaf(root, path);
5063 if (ret < 0) {
5064 err = ret;
5065 goto out;
a52d9a80 5066 }
9036c102
YZ
5067 if (ret > 0)
5068 goto not_found;
5069 leaf = path->nodes[0];
a52d9a80 5070 }
9036c102
YZ
5071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5072 if (found_key.objectid != objectid ||
5073 found_key.type != BTRFS_EXTENT_DATA_KEY)
5074 goto not_found;
5075 if (start + len <= found_key.offset)
5076 goto not_found;
5077 em->start = start;
5078 em->len = found_key.offset - start;
5079 goto not_found_em;
5080 }
5081
d899e052
YZ
5082 if (found_type == BTRFS_FILE_EXTENT_REG ||
5083 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5084 em->start = extent_start;
5085 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5086 em->orig_start = extent_start -
5087 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5088 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5089 if (bytenr == 0) {
5f39d397 5090 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5091 goto insert;
5092 }
261507a0 5093 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5094 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5095 em->compress_type = compress_type;
c8b97818
CM
5096 em->block_start = bytenr;
5097 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5098 item);
5099 } else {
5100 bytenr += btrfs_file_extent_offset(leaf, item);
5101 em->block_start = bytenr;
5102 em->block_len = em->len;
d899e052
YZ
5103 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5104 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5105 }
a52d9a80
CM
5106 goto insert;
5107 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5108 unsigned long ptr;
a52d9a80 5109 char *map;
3326d1b0
CM
5110 size_t size;
5111 size_t extent_offset;
5112 size_t copy_size;
a52d9a80 5113
689f9346 5114 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5115 if (!page || create) {
689f9346 5116 em->start = extent_start;
9036c102 5117 em->len = extent_end - extent_start;
689f9346
Y
5118 goto out;
5119 }
5f39d397 5120
9036c102
YZ
5121 size = btrfs_file_extent_inline_len(leaf, item);
5122 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5123 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5124 size - extent_offset);
3326d1b0 5125 em->start = extent_start + extent_offset;
70dec807
CM
5126 em->len = (copy_size + root->sectorsize - 1) &
5127 ~((u64)root->sectorsize - 1);
ff5b7ee3 5128 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5129 if (compress_type) {
c8b97818 5130 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5131 em->compress_type = compress_type;
5132 }
689f9346 5133 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5134 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5135 if (btrfs_file_extent_compression(leaf, item) !=
5136 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5137 ret = uncompress_inline(path, inode, page,
5138 pg_offset,
5139 extent_offset, item);
5140 BUG_ON(ret);
5141 } else {
5142 map = kmap(page);
5143 read_extent_buffer(leaf, map + pg_offset, ptr,
5144 copy_size);
93c82d57
CM
5145 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5146 memset(map + pg_offset + copy_size, 0,
5147 PAGE_CACHE_SIZE - pg_offset -
5148 copy_size);
5149 }
c8b97818
CM
5150 kunmap(page);
5151 }
179e29e4
CM
5152 flush_dcache_page(page);
5153 } else if (create && PageUptodate(page)) {
6bf7e080 5154 BUG();
179e29e4
CM
5155 if (!trans) {
5156 kunmap(page);
5157 free_extent_map(em);
5158 em = NULL;
ff5714cc 5159
b3b4aa74 5160 btrfs_release_path(path);
7a7eaa40 5161 trans = btrfs_join_transaction(root);
ff5714cc 5162
3612b495
TI
5163 if (IS_ERR(trans))
5164 return ERR_CAST(trans);
179e29e4
CM
5165 goto again;
5166 }
c8b97818 5167 map = kmap(page);
70dec807 5168 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5169 copy_size);
c8b97818 5170 kunmap(page);
179e29e4 5171 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5172 }
d1310b2e 5173 set_extent_uptodate(io_tree, em->start,
507903b8 5174 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5175 goto insert;
5176 } else {
d397712b 5177 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5178 WARN_ON(1);
5179 }
5180not_found:
5181 em->start = start;
d1310b2e 5182 em->len = len;
a52d9a80 5183not_found_em:
5f39d397 5184 em->block_start = EXTENT_MAP_HOLE;
9036c102 5185 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5186insert:
b3b4aa74 5187 btrfs_release_path(path);
d1310b2e 5188 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5189 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5190 "[%llu %llu]\n", (unsigned long long)em->start,
5191 (unsigned long long)em->len,
5192 (unsigned long long)start,
5193 (unsigned long long)len);
a52d9a80
CM
5194 err = -EIO;
5195 goto out;
5196 }
d1310b2e
CM
5197
5198 err = 0;
890871be 5199 write_lock(&em_tree->lock);
a52d9a80 5200 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5201 /* it is possible that someone inserted the extent into the tree
5202 * while we had the lock dropped. It is also possible that
5203 * an overlapping map exists in the tree
5204 */
a52d9a80 5205 if (ret == -EEXIST) {
3b951516 5206 struct extent_map *existing;
e6dcd2dc
CM
5207
5208 ret = 0;
5209
3b951516 5210 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5211 if (existing && (existing->start > start ||
5212 existing->start + existing->len <= start)) {
5213 free_extent_map(existing);
5214 existing = NULL;
5215 }
3b951516
CM
5216 if (!existing) {
5217 existing = lookup_extent_mapping(em_tree, em->start,
5218 em->len);
5219 if (existing) {
5220 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5221 em, start,
5222 root->sectorsize);
3b951516
CM
5223 free_extent_map(existing);
5224 if (err) {
5225 free_extent_map(em);
5226 em = NULL;
5227 }
5228 } else {
5229 err = -EIO;
3b951516
CM
5230 free_extent_map(em);
5231 em = NULL;
5232 }
5233 } else {
5234 free_extent_map(em);
5235 em = existing;
e6dcd2dc 5236 err = 0;
a52d9a80 5237 }
a52d9a80 5238 }
890871be 5239 write_unlock(&em_tree->lock);
a52d9a80 5240out:
1abe9b8a 5241
5242 trace_btrfs_get_extent(root, em);
5243
f421950f
CM
5244 if (path)
5245 btrfs_free_path(path);
a52d9a80
CM
5246 if (trans) {
5247 ret = btrfs_end_transaction(trans, root);
d397712b 5248 if (!err)
a52d9a80
CM
5249 err = ret;
5250 }
a52d9a80
CM
5251 if (err) {
5252 free_extent_map(em);
a52d9a80
CM
5253 return ERR_PTR(err);
5254 }
5255 return em;
5256}
5257
ec29ed5b
CM
5258struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5259 size_t pg_offset, u64 start, u64 len,
5260 int create)
5261{
5262 struct extent_map *em;
5263 struct extent_map *hole_em = NULL;
5264 u64 range_start = start;
5265 u64 end;
5266 u64 found;
5267 u64 found_end;
5268 int err = 0;
5269
5270 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5271 if (IS_ERR(em))
5272 return em;
5273 if (em) {
5274 /*
5275 * if our em maps to a hole, there might
5276 * actually be delalloc bytes behind it
5277 */
5278 if (em->block_start != EXTENT_MAP_HOLE)
5279 return em;
5280 else
5281 hole_em = em;
5282 }
5283
5284 /* check to see if we've wrapped (len == -1 or similar) */
5285 end = start + len;
5286 if (end < start)
5287 end = (u64)-1;
5288 else
5289 end -= 1;
5290
5291 em = NULL;
5292
5293 /* ok, we didn't find anything, lets look for delalloc */
5294 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5295 end, len, EXTENT_DELALLOC, 1);
5296 found_end = range_start + found;
5297 if (found_end < range_start)
5298 found_end = (u64)-1;
5299
5300 /*
5301 * we didn't find anything useful, return
5302 * the original results from get_extent()
5303 */
5304 if (range_start > end || found_end <= start) {
5305 em = hole_em;
5306 hole_em = NULL;
5307 goto out;
5308 }
5309
5310 /* adjust the range_start to make sure it doesn't
5311 * go backwards from the start they passed in
5312 */
5313 range_start = max(start,range_start);
5314 found = found_end - range_start;
5315
5316 if (found > 0) {
5317 u64 hole_start = start;
5318 u64 hole_len = len;
5319
172ddd60 5320 em = alloc_extent_map();
ec29ed5b
CM
5321 if (!em) {
5322 err = -ENOMEM;
5323 goto out;
5324 }
5325 /*
5326 * when btrfs_get_extent can't find anything it
5327 * returns one huge hole
5328 *
5329 * make sure what it found really fits our range, and
5330 * adjust to make sure it is based on the start from
5331 * the caller
5332 */
5333 if (hole_em) {
5334 u64 calc_end = extent_map_end(hole_em);
5335
5336 if (calc_end <= start || (hole_em->start > end)) {
5337 free_extent_map(hole_em);
5338 hole_em = NULL;
5339 } else {
5340 hole_start = max(hole_em->start, start);
5341 hole_len = calc_end - hole_start;
5342 }
5343 }
5344 em->bdev = NULL;
5345 if (hole_em && range_start > hole_start) {
5346 /* our hole starts before our delalloc, so we
5347 * have to return just the parts of the hole
5348 * that go until the delalloc starts
5349 */
5350 em->len = min(hole_len,
5351 range_start - hole_start);
5352 em->start = hole_start;
5353 em->orig_start = hole_start;
5354 /*
5355 * don't adjust block start at all,
5356 * it is fixed at EXTENT_MAP_HOLE
5357 */
5358 em->block_start = hole_em->block_start;
5359 em->block_len = hole_len;
5360 } else {
5361 em->start = range_start;
5362 em->len = found;
5363 em->orig_start = range_start;
5364 em->block_start = EXTENT_MAP_DELALLOC;
5365 em->block_len = found;
5366 }
5367 } else if (hole_em) {
5368 return hole_em;
5369 }
5370out:
5371
5372 free_extent_map(hole_em);
5373 if (err) {
5374 free_extent_map(em);
5375 return ERR_PTR(err);
5376 }
5377 return em;
5378}
5379
4b46fce2 5380static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5381 struct extent_map *em,
4b46fce2
JB
5382 u64 start, u64 len)
5383{
5384 struct btrfs_root *root = BTRFS_I(inode)->root;
5385 struct btrfs_trans_handle *trans;
4b46fce2
JB
5386 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5387 struct btrfs_key ins;
5388 u64 alloc_hint;
5389 int ret;
16d299ac 5390 bool insert = false;
4b46fce2 5391
16d299ac
JB
5392 /*
5393 * Ok if the extent map we looked up is a hole and is for the exact
5394 * range we want, there is no reason to allocate a new one, however if
5395 * it is not right then we need to free this one and drop the cache for
5396 * our range.
5397 */
5398 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5399 em->len != len) {
5400 free_extent_map(em);
5401 em = NULL;
5402 insert = true;
5403 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5404 }
4b46fce2 5405
7a7eaa40 5406 trans = btrfs_join_transaction(root);
3612b495
TI
5407 if (IS_ERR(trans))
5408 return ERR_CAST(trans);
4b46fce2 5409
4cb5300b
CM
5410 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5411 btrfs_add_inode_defrag(trans, inode);
5412
4b46fce2
JB
5413 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5414
5415 alloc_hint = get_extent_allocation_hint(inode, start, len);
5416 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5417 alloc_hint, (u64)-1, &ins, 1);
5418 if (ret) {
5419 em = ERR_PTR(ret);
5420 goto out;
5421 }
5422
4b46fce2 5423 if (!em) {
172ddd60 5424 em = alloc_extent_map();
16d299ac
JB
5425 if (!em) {
5426 em = ERR_PTR(-ENOMEM);
5427 goto out;
5428 }
4b46fce2
JB
5429 }
5430
5431 em->start = start;
5432 em->orig_start = em->start;
5433 em->len = ins.offset;
5434
5435 em->block_start = ins.objectid;
5436 em->block_len = ins.offset;
5437 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5438
5439 /*
5440 * We need to do this because if we're using the original em we searched
5441 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5442 */
5443 em->flags = 0;
4b46fce2
JB
5444 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5445
16d299ac 5446 while (insert) {
4b46fce2
JB
5447 write_lock(&em_tree->lock);
5448 ret = add_extent_mapping(em_tree, em);
5449 write_unlock(&em_tree->lock);
5450 if (ret != -EEXIST)
5451 break;
5452 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5453 }
5454
5455 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5456 ins.offset, ins.offset, 0);
5457 if (ret) {
5458 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5459 em = ERR_PTR(ret);
5460 }
5461out:
5462 btrfs_end_transaction(trans, root);
5463 return em;
5464}
5465
46bfbb5c
CM
5466/*
5467 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5468 * block must be cow'd
5469 */
5470static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5471 struct inode *inode, u64 offset, u64 len)
5472{
5473 struct btrfs_path *path;
5474 int ret;
5475 struct extent_buffer *leaf;
5476 struct btrfs_root *root = BTRFS_I(inode)->root;
5477 struct btrfs_file_extent_item *fi;
5478 struct btrfs_key key;
5479 u64 disk_bytenr;
5480 u64 backref_offset;
5481 u64 extent_end;
5482 u64 num_bytes;
5483 int slot;
5484 int found_type;
5485
5486 path = btrfs_alloc_path();
5487 if (!path)
5488 return -ENOMEM;
5489
33345d01 5490 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5491 offset, 0);
5492 if (ret < 0)
5493 goto out;
5494
5495 slot = path->slots[0];
5496 if (ret == 1) {
5497 if (slot == 0) {
5498 /* can't find the item, must cow */
5499 ret = 0;
5500 goto out;
5501 }
5502 slot--;
5503 }
5504 ret = 0;
5505 leaf = path->nodes[0];
5506 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5507 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5508 key.type != BTRFS_EXTENT_DATA_KEY) {
5509 /* not our file or wrong item type, must cow */
5510 goto out;
5511 }
5512
5513 if (key.offset > offset) {
5514 /* Wrong offset, must cow */
5515 goto out;
5516 }
5517
5518 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5519 found_type = btrfs_file_extent_type(leaf, fi);
5520 if (found_type != BTRFS_FILE_EXTENT_REG &&
5521 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5522 /* not a regular extent, must cow */
5523 goto out;
5524 }
5525 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5526 backref_offset = btrfs_file_extent_offset(leaf, fi);
5527
5528 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5529 if (extent_end < offset + len) {
5530 /* extent doesn't include our full range, must cow */
5531 goto out;
5532 }
5533
5534 if (btrfs_extent_readonly(root, disk_bytenr))
5535 goto out;
5536
5537 /*
5538 * look for other files referencing this extent, if we
5539 * find any we must cow
5540 */
33345d01 5541 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5542 key.offset - backref_offset, disk_bytenr))
5543 goto out;
5544
5545 /*
5546 * adjust disk_bytenr and num_bytes to cover just the bytes
5547 * in this extent we are about to write. If there
5548 * are any csums in that range we have to cow in order
5549 * to keep the csums correct
5550 */
5551 disk_bytenr += backref_offset;
5552 disk_bytenr += offset - key.offset;
5553 num_bytes = min(offset + len, extent_end) - offset;
5554 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5555 goto out;
5556 /*
5557 * all of the above have passed, it is safe to overwrite this extent
5558 * without cow
5559 */
5560 ret = 1;
5561out:
5562 btrfs_free_path(path);
5563 return ret;
5564}
5565
4b46fce2
JB
5566static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5567 struct buffer_head *bh_result, int create)
5568{
5569 struct extent_map *em;
5570 struct btrfs_root *root = BTRFS_I(inode)->root;
5571 u64 start = iblock << inode->i_blkbits;
5572 u64 len = bh_result->b_size;
46bfbb5c 5573 struct btrfs_trans_handle *trans;
4b46fce2
JB
5574
5575 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5576 if (IS_ERR(em))
5577 return PTR_ERR(em);
5578
5579 /*
5580 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5581 * io. INLINE is special, and we could probably kludge it in here, but
5582 * it's still buffered so for safety lets just fall back to the generic
5583 * buffered path.
5584 *
5585 * For COMPRESSED we _have_ to read the entire extent in so we can
5586 * decompress it, so there will be buffering required no matter what we
5587 * do, so go ahead and fallback to buffered.
5588 *
5589 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5590 * to buffered IO. Don't blame me, this is the price we pay for using
5591 * the generic code.
5592 */
5593 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5594 em->block_start == EXTENT_MAP_INLINE) {
5595 free_extent_map(em);
5596 return -ENOTBLK;
5597 }
5598
5599 /* Just a good old fashioned hole, return */
5600 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5601 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5602 free_extent_map(em);
5603 /* DIO will do one hole at a time, so just unlock a sector */
5604 unlock_extent(&BTRFS_I(inode)->io_tree, start,
d0082371 5605 start + root->sectorsize - 1);
4b46fce2
JB
5606 return 0;
5607 }
5608
5609 /*
5610 * We don't allocate a new extent in the following cases
5611 *
5612 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5613 * existing extent.
5614 * 2) The extent is marked as PREALLOC. We're good to go here and can
5615 * just use the extent.
5616 *
5617 */
46bfbb5c
CM
5618 if (!create) {
5619 len = em->len - (start - em->start);
4b46fce2 5620 goto map;
46bfbb5c 5621 }
4b46fce2
JB
5622
5623 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5624 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5625 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5626 int type;
5627 int ret;
46bfbb5c 5628 u64 block_start;
4b46fce2
JB
5629
5630 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5631 type = BTRFS_ORDERED_PREALLOC;
5632 else
5633 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5634 len = min(len, em->len - (start - em->start));
4b46fce2 5635 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5636
5637 /*
5638 * we're not going to log anything, but we do need
5639 * to make sure the current transaction stays open
5640 * while we look for nocow cross refs
5641 */
7a7eaa40 5642 trans = btrfs_join_transaction(root);
3612b495 5643 if (IS_ERR(trans))
46bfbb5c
CM
5644 goto must_cow;
5645
5646 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5647 ret = btrfs_add_ordered_extent_dio(inode, start,
5648 block_start, len, len, type);
5649 btrfs_end_transaction(trans, root);
5650 if (ret) {
5651 free_extent_map(em);
5652 return ret;
5653 }
5654 goto unlock;
4b46fce2 5655 }
46bfbb5c 5656 btrfs_end_transaction(trans, root);
4b46fce2 5657 }
46bfbb5c
CM
5658must_cow:
5659 /*
5660 * this will cow the extent, reset the len in case we changed
5661 * it above
5662 */
5663 len = bh_result->b_size;
16d299ac 5664 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5665 if (IS_ERR(em))
5666 return PTR_ERR(em);
5667 len = min(len, em->len - (start - em->start));
5668unlock:
4845e44f
CM
5669 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5670 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5671 0, NULL, GFP_NOFS);
4b46fce2
JB
5672map:
5673 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5674 inode->i_blkbits;
46bfbb5c 5675 bh_result->b_size = len;
4b46fce2
JB
5676 bh_result->b_bdev = em->bdev;
5677 set_buffer_mapped(bh_result);
5678 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5679 set_buffer_new(bh_result);
5680
5681 free_extent_map(em);
5682
5683 return 0;
5684}
5685
5686struct btrfs_dio_private {
5687 struct inode *inode;
5688 u64 logical_offset;
5689 u64 disk_bytenr;
5690 u64 bytes;
5691 u32 *csums;
5692 void *private;
e65e1535
MX
5693
5694 /* number of bios pending for this dio */
5695 atomic_t pending_bios;
5696
5697 /* IO errors */
5698 int errors;
5699
5700 struct bio *orig_bio;
4b46fce2
JB
5701};
5702
5703static void btrfs_endio_direct_read(struct bio *bio, int err)
5704{
e65e1535 5705 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5706 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5707 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5708 struct inode *inode = dip->inode;
5709 struct btrfs_root *root = BTRFS_I(inode)->root;
5710 u64 start;
5711 u32 *private = dip->csums;
5712
5713 start = dip->logical_offset;
5714 do {
5715 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5716 struct page *page = bvec->bv_page;
5717 char *kaddr;
5718 u32 csum = ~(u32)0;
5719 unsigned long flags;
5720
5721 local_irq_save(flags);
5722 kaddr = kmap_atomic(page, KM_IRQ0);
5723 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5724 csum, bvec->bv_len);
5725 btrfs_csum_final(csum, (char *)&csum);
5726 kunmap_atomic(kaddr, KM_IRQ0);
5727 local_irq_restore(flags);
5728
5729 flush_dcache_page(bvec->bv_page);
5730 if (csum != *private) {
33345d01 5731 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5732 " %llu csum %u private %u\n",
33345d01
LZ
5733 (unsigned long long)btrfs_ino(inode),
5734 (unsigned long long)start,
4b46fce2
JB
5735 csum, *private);
5736 err = -EIO;
5737 }
5738 }
5739
5740 start += bvec->bv_len;
5741 private++;
5742 bvec++;
5743 } while (bvec <= bvec_end);
5744
5745 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 5746 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
5747 bio->bi_private = dip->private;
5748
5749 kfree(dip->csums);
5750 kfree(dip);
c0da7aa1
JB
5751
5752 /* If we had a csum failure make sure to clear the uptodate flag */
5753 if (err)
5754 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5755 dio_end_io(bio, err);
5756}
5757
5758static void btrfs_endio_direct_write(struct bio *bio, int err)
5759{
5760 struct btrfs_dio_private *dip = bio->bi_private;
5761 struct inode *inode = dip->inode;
5762 struct btrfs_root *root = BTRFS_I(inode)->root;
5763 struct btrfs_trans_handle *trans;
5764 struct btrfs_ordered_extent *ordered = NULL;
5765 struct extent_state *cached_state = NULL;
163cf09c
CM
5766 u64 ordered_offset = dip->logical_offset;
5767 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5768 int ret;
5769
5770 if (err)
5771 goto out_done;
163cf09c
CM
5772again:
5773 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5774 &ordered_offset,
5775 ordered_bytes);
4b46fce2 5776 if (!ret)
163cf09c 5777 goto out_test;
4b46fce2
JB
5778
5779 BUG_ON(!ordered);
5780
7a7eaa40 5781 trans = btrfs_join_transaction(root);
3612b495 5782 if (IS_ERR(trans)) {
4b46fce2
JB
5783 err = -ENOMEM;
5784 goto out;
5785 }
5786 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5787
5788 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5789 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5790 if (!ret)
2115133f 5791 err = btrfs_update_inode_fallback(trans, root, inode);
4b46fce2
JB
5792 goto out;
5793 }
5794
5795 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5796 ordered->file_offset + ordered->len - 1, 0,
d0082371 5797 &cached_state);
4b46fce2
JB
5798
5799 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5800 ret = btrfs_mark_extent_written(trans, inode,
5801 ordered->file_offset,
5802 ordered->file_offset +
5803 ordered->len);
5804 if (ret) {
5805 err = ret;
5806 goto out_unlock;
5807 }
5808 } else {
5809 ret = insert_reserved_file_extent(trans, inode,
5810 ordered->file_offset,
5811 ordered->start,
5812 ordered->disk_len,
5813 ordered->len,
5814 ordered->len,
5815 0, 0, 0,
5816 BTRFS_FILE_EXTENT_REG);
5817 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5818 ordered->file_offset, ordered->len);
5819 if (ret) {
5820 err = ret;
5821 WARN_ON(1);
5822 goto out_unlock;
5823 }
5824 }
5825
5826 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1 5827 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
a39f7521 5828 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
2115133f 5829 btrfs_update_inode_fallback(trans, root, inode);
1ef30be1 5830 ret = 0;
4b46fce2
JB
5831out_unlock:
5832 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5833 ordered->file_offset + ordered->len - 1,
5834 &cached_state, GFP_NOFS);
5835out:
5836 btrfs_delalloc_release_metadata(inode, ordered->len);
5837 btrfs_end_transaction(trans, root);
163cf09c 5838 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5839 btrfs_put_ordered_extent(ordered);
5840 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5841
5842out_test:
5843 /*
5844 * our bio might span multiple ordered extents. If we haven't
5845 * completed the accounting for the whole dio, go back and try again
5846 */
5847 if (ordered_offset < dip->logical_offset + dip->bytes) {
5848 ordered_bytes = dip->logical_offset + dip->bytes -
5849 ordered_offset;
5850 goto again;
5851 }
4b46fce2
JB
5852out_done:
5853 bio->bi_private = dip->private;
5854
5855 kfree(dip->csums);
5856 kfree(dip);
c0da7aa1
JB
5857
5858 /* If we had an error make sure to clear the uptodate flag */
5859 if (err)
5860 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5861 dio_end_io(bio, err);
5862}
5863
eaf25d93
CM
5864static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5865 struct bio *bio, int mirror_num,
5866 unsigned long bio_flags, u64 offset)
5867{
5868 int ret;
5869 struct btrfs_root *root = BTRFS_I(inode)->root;
5870 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5871 BUG_ON(ret);
5872 return 0;
5873}
5874
e65e1535
MX
5875static void btrfs_end_dio_bio(struct bio *bio, int err)
5876{
5877 struct btrfs_dio_private *dip = bio->bi_private;
5878
5879 if (err) {
33345d01 5880 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5881 "sector %#Lx len %u err no %d\n",
33345d01 5882 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5883 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5884 dip->errors = 1;
5885
5886 /*
5887 * before atomic variable goto zero, we must make sure
5888 * dip->errors is perceived to be set.
5889 */
5890 smp_mb__before_atomic_dec();
5891 }
5892
5893 /* if there are more bios still pending for this dio, just exit */
5894 if (!atomic_dec_and_test(&dip->pending_bios))
5895 goto out;
5896
5897 if (dip->errors)
5898 bio_io_error(dip->orig_bio);
5899 else {
5900 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5901 bio_endio(dip->orig_bio, 0);
5902 }
5903out:
5904 bio_put(bio);
5905}
5906
5907static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5908 u64 first_sector, gfp_t gfp_flags)
5909{
5910 int nr_vecs = bio_get_nr_vecs(bdev);
5911 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5912}
5913
5914static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5915 int rw, u64 file_offset, int skip_sum,
1ae39938 5916 u32 *csums, int async_submit)
e65e1535
MX
5917{
5918 int write = rw & REQ_WRITE;
5919 struct btrfs_root *root = BTRFS_I(inode)->root;
5920 int ret;
5921
5922 bio_get(bio);
5923 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5924 if (ret)
5925 goto err;
5926
1ae39938
JB
5927 if (skip_sum)
5928 goto map;
5929
5930 if (write && async_submit) {
e65e1535
MX
5931 ret = btrfs_wq_submit_bio(root->fs_info,
5932 inode, rw, bio, 0, 0,
5933 file_offset,
5934 __btrfs_submit_bio_start_direct_io,
5935 __btrfs_submit_bio_done);
5936 goto err;
1ae39938
JB
5937 } else if (write) {
5938 /*
5939 * If we aren't doing async submit, calculate the csum of the
5940 * bio now.
5941 */
5942 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5943 if (ret)
5944 goto err;
c2db1073
TI
5945 } else if (!skip_sum) {
5946 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5947 file_offset, csums);
c2db1073
TI
5948 if (ret)
5949 goto err;
5950 }
e65e1535 5951
1ae39938
JB
5952map:
5953 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5954err:
5955 bio_put(bio);
5956 return ret;
5957}
5958
5959static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5960 int skip_sum)
5961{
5962 struct inode *inode = dip->inode;
5963 struct btrfs_root *root = BTRFS_I(inode)->root;
5964 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5965 struct bio *bio;
5966 struct bio *orig_bio = dip->orig_bio;
5967 struct bio_vec *bvec = orig_bio->bi_io_vec;
5968 u64 start_sector = orig_bio->bi_sector;
5969 u64 file_offset = dip->logical_offset;
5970 u64 submit_len = 0;
5971 u64 map_length;
5972 int nr_pages = 0;
5973 u32 *csums = dip->csums;
5974 int ret = 0;
1ae39938 5975 int async_submit = 0;
98bc3149 5976 int write = rw & REQ_WRITE;
e65e1535 5977
e65e1535
MX
5978 map_length = orig_bio->bi_size;
5979 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5980 &map_length, NULL, 0);
5981 if (ret) {
64728bbb 5982 bio_put(orig_bio);
e65e1535
MX
5983 return -EIO;
5984 }
5985
02f57c7a
JB
5986 if (map_length >= orig_bio->bi_size) {
5987 bio = orig_bio;
5988 goto submit;
5989 }
5990
1ae39938 5991 async_submit = 1;
02f57c7a
JB
5992 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5993 if (!bio)
5994 return -ENOMEM;
5995 bio->bi_private = dip;
5996 bio->bi_end_io = btrfs_end_dio_bio;
5997 atomic_inc(&dip->pending_bios);
5998
e65e1535
MX
5999 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6000 if (unlikely(map_length < submit_len + bvec->bv_len ||
6001 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6002 bvec->bv_offset) < bvec->bv_len)) {
6003 /*
6004 * inc the count before we submit the bio so
6005 * we know the end IO handler won't happen before
6006 * we inc the count. Otherwise, the dip might get freed
6007 * before we're done setting it up
6008 */
6009 atomic_inc(&dip->pending_bios);
6010 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6011 file_offset, skip_sum,
1ae39938 6012 csums, async_submit);
e65e1535
MX
6013 if (ret) {
6014 bio_put(bio);
6015 atomic_dec(&dip->pending_bios);
6016 goto out_err;
6017 }
6018
98bc3149
JB
6019 /* Write's use the ordered csums */
6020 if (!write && !skip_sum)
e65e1535
MX
6021 csums = csums + nr_pages;
6022 start_sector += submit_len >> 9;
6023 file_offset += submit_len;
6024
6025 submit_len = 0;
6026 nr_pages = 0;
6027
6028 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6029 start_sector, GFP_NOFS);
6030 if (!bio)
6031 goto out_err;
6032 bio->bi_private = dip;
6033 bio->bi_end_io = btrfs_end_dio_bio;
6034
6035 map_length = orig_bio->bi_size;
6036 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6037 &map_length, NULL, 0);
6038 if (ret) {
6039 bio_put(bio);
6040 goto out_err;
6041 }
6042 } else {
6043 submit_len += bvec->bv_len;
6044 nr_pages ++;
6045 bvec++;
6046 }
6047 }
6048
02f57c7a 6049submit:
e65e1535 6050 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6051 csums, async_submit);
e65e1535
MX
6052 if (!ret)
6053 return 0;
6054
6055 bio_put(bio);
6056out_err:
6057 dip->errors = 1;
6058 /*
6059 * before atomic variable goto zero, we must
6060 * make sure dip->errors is perceived to be set.
6061 */
6062 smp_mb__before_atomic_dec();
6063 if (atomic_dec_and_test(&dip->pending_bios))
6064 bio_io_error(dip->orig_bio);
6065
6066 /* bio_end_io() will handle error, so we needn't return it */
6067 return 0;
6068}
6069
4b46fce2
JB
6070static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6071 loff_t file_offset)
6072{
6073 struct btrfs_root *root = BTRFS_I(inode)->root;
6074 struct btrfs_dio_private *dip;
6075 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6076 int skip_sum;
7b6d91da 6077 int write = rw & REQ_WRITE;
4b46fce2
JB
6078 int ret = 0;
6079
6080 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6081
6082 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6083 if (!dip) {
6084 ret = -ENOMEM;
6085 goto free_ordered;
6086 }
6087 dip->csums = NULL;
6088
98bc3149
JB
6089 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6090 if (!write && !skip_sum) {
4b46fce2
JB
6091 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6092 if (!dip->csums) {
b4966b77 6093 kfree(dip);
4b46fce2
JB
6094 ret = -ENOMEM;
6095 goto free_ordered;
6096 }
6097 }
6098
6099 dip->private = bio->bi_private;
6100 dip->inode = inode;
6101 dip->logical_offset = file_offset;
6102
4b46fce2
JB
6103 dip->bytes = 0;
6104 do {
6105 dip->bytes += bvec->bv_len;
6106 bvec++;
6107 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6108
46bfbb5c 6109 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6110 bio->bi_private = dip;
e65e1535
MX
6111 dip->errors = 0;
6112 dip->orig_bio = bio;
6113 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6114
6115 if (write)
6116 bio->bi_end_io = btrfs_endio_direct_write;
6117 else
6118 bio->bi_end_io = btrfs_endio_direct_read;
6119
e65e1535
MX
6120 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6121 if (!ret)
eaf25d93 6122 return;
4b46fce2
JB
6123free_ordered:
6124 /*
6125 * If this is a write, we need to clean up the reserved space and kill
6126 * the ordered extent.
6127 */
6128 if (write) {
6129 struct btrfs_ordered_extent *ordered;
955256f2 6130 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6131 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6132 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6133 btrfs_free_reserved_extent(root, ordered->start,
6134 ordered->disk_len);
6135 btrfs_put_ordered_extent(ordered);
6136 btrfs_put_ordered_extent(ordered);
6137 }
6138 bio_endio(bio, ret);
6139}
6140
5a5f79b5
CM
6141static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6142 const struct iovec *iov, loff_t offset,
6143 unsigned long nr_segs)
6144{
6145 int seg;
a1b75f7d 6146 int i;
5a5f79b5
CM
6147 size_t size;
6148 unsigned long addr;
6149 unsigned blocksize_mask = root->sectorsize - 1;
6150 ssize_t retval = -EINVAL;
6151 loff_t end = offset;
6152
6153 if (offset & blocksize_mask)
6154 goto out;
6155
6156 /* Check the memory alignment. Blocks cannot straddle pages */
6157 for (seg = 0; seg < nr_segs; seg++) {
6158 addr = (unsigned long)iov[seg].iov_base;
6159 size = iov[seg].iov_len;
6160 end += size;
a1b75f7d 6161 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6162 goto out;
a1b75f7d
JB
6163
6164 /* If this is a write we don't need to check anymore */
6165 if (rw & WRITE)
6166 continue;
6167
6168 /*
6169 * Check to make sure we don't have duplicate iov_base's in this
6170 * iovec, if so return EINVAL, otherwise we'll get csum errors
6171 * when reading back.
6172 */
6173 for (i = seg + 1; i < nr_segs; i++) {
6174 if (iov[seg].iov_base == iov[i].iov_base)
6175 goto out;
6176 }
5a5f79b5
CM
6177 }
6178 retval = 0;
6179out:
6180 return retval;
6181}
16432985
CM
6182static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6183 const struct iovec *iov, loff_t offset,
6184 unsigned long nr_segs)
6185{
4b46fce2
JB
6186 struct file *file = iocb->ki_filp;
6187 struct inode *inode = file->f_mapping->host;
6188 struct btrfs_ordered_extent *ordered;
4845e44f 6189 struct extent_state *cached_state = NULL;
4b46fce2
JB
6190 u64 lockstart, lockend;
6191 ssize_t ret;
4845e44f
CM
6192 int writing = rw & WRITE;
6193 int write_bits = 0;
3f7c579c 6194 size_t count = iov_length(iov, nr_segs);
4b46fce2 6195
5a5f79b5
CM
6196 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6197 offset, nr_segs)) {
6198 return 0;
6199 }
6200
4b46fce2 6201 lockstart = offset;
3f7c579c
CM
6202 lockend = offset + count - 1;
6203
6204 if (writing) {
6205 ret = btrfs_delalloc_reserve_space(inode, count);
6206 if (ret)
6207 goto out;
6208 }
4845e44f 6209
4b46fce2 6210 while (1) {
4845e44f 6211 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 6212 0, &cached_state);
4b46fce2
JB
6213 /*
6214 * We're concerned with the entire range that we're going to be
6215 * doing DIO to, so we need to make sure theres no ordered
6216 * extents in this range.
6217 */
6218 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6219 lockend - lockstart + 1);
6220 if (!ordered)
6221 break;
4845e44f
CM
6222 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6223 &cached_state, GFP_NOFS);
4b46fce2
JB
6224 btrfs_start_ordered_extent(inode, ordered, 1);
6225 btrfs_put_ordered_extent(ordered);
6226 cond_resched();
6227 }
6228
4845e44f
CM
6229 /*
6230 * we don't use btrfs_set_extent_delalloc because we don't want
6231 * the dirty or uptodate bits
6232 */
6233 if (writing) {
6234 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6235 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3fbe5c02 6236 EXTENT_DELALLOC, NULL, &cached_state,
4845e44f
CM
6237 GFP_NOFS);
6238 if (ret) {
6239 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6240 lockend, EXTENT_LOCKED | write_bits,
6241 1, 0, &cached_state, GFP_NOFS);
6242 goto out;
6243 }
6244 }
6245
6246 free_extent_state(cached_state);
6247 cached_state = NULL;
6248
5a5f79b5
CM
6249 ret = __blockdev_direct_IO(rw, iocb, inode,
6250 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6251 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6252 btrfs_submit_direct, 0);
4b46fce2
JB
6253
6254 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6255 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6256 offset + iov_length(iov, nr_segs) - 1,
6257 EXTENT_LOCKED | write_bits, 1, 0,
6258 &cached_state, GFP_NOFS);
4b46fce2
JB
6259 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6260 /*
6261 * We're falling back to buffered, unlock the section we didn't
6262 * do IO on.
6263 */
4845e44f
CM
6264 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6265 offset + iov_length(iov, nr_segs) - 1,
6266 EXTENT_LOCKED | write_bits, 1, 0,
6267 &cached_state, GFP_NOFS);
4b46fce2 6268 }
4845e44f
CM
6269out:
6270 free_extent_state(cached_state);
4b46fce2 6271 return ret;
16432985
CM
6272}
6273
1506fcc8
YS
6274static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6275 __u64 start, __u64 len)
6276{
ec29ed5b 6277 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6278}
6279
a52d9a80 6280int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6281{
d1310b2e
CM
6282 struct extent_io_tree *tree;
6283 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6284 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6285}
1832a6d5 6286
a52d9a80 6287static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6288{
d1310b2e 6289 struct extent_io_tree *tree;
b888db2b
CM
6290
6291
6292 if (current->flags & PF_MEMALLOC) {
6293 redirty_page_for_writepage(wbc, page);
6294 unlock_page(page);
6295 return 0;
6296 }
d1310b2e 6297 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6298 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6299}
6300
f421950f
CM
6301int btrfs_writepages(struct address_space *mapping,
6302 struct writeback_control *wbc)
b293f02e 6303{
d1310b2e 6304 struct extent_io_tree *tree;
771ed689 6305
d1310b2e 6306 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6307 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6308}
6309
3ab2fb5a
CM
6310static int
6311btrfs_readpages(struct file *file, struct address_space *mapping,
6312 struct list_head *pages, unsigned nr_pages)
6313{
d1310b2e
CM
6314 struct extent_io_tree *tree;
6315 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6316 return extent_readpages(tree, mapping, pages, nr_pages,
6317 btrfs_get_extent);
6318}
e6dcd2dc 6319static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6320{
d1310b2e
CM
6321 struct extent_io_tree *tree;
6322 struct extent_map_tree *map;
a52d9a80 6323 int ret;
8c2383c3 6324
d1310b2e
CM
6325 tree = &BTRFS_I(page->mapping->host)->io_tree;
6326 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6327 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6328 if (ret == 1) {
6329 ClearPagePrivate(page);
6330 set_page_private(page, 0);
6331 page_cache_release(page);
39279cc3 6332 }
a52d9a80 6333 return ret;
39279cc3
CM
6334}
6335
e6dcd2dc
CM
6336static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6337{
98509cfc
CM
6338 if (PageWriteback(page) || PageDirty(page))
6339 return 0;
b335b003 6340 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6341}
6342
a52d9a80 6343static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6344{
d1310b2e 6345 struct extent_io_tree *tree;
e6dcd2dc 6346 struct btrfs_ordered_extent *ordered;
2ac55d41 6347 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6348 u64 page_start = page_offset(page);
6349 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6350
8b62b72b
CM
6351
6352 /*
6353 * we have the page locked, so new writeback can't start,
6354 * and the dirty bit won't be cleared while we are here.
6355 *
6356 * Wait for IO on this page so that we can safely clear
6357 * the PagePrivate2 bit and do ordered accounting
6358 */
e6dcd2dc 6359 wait_on_page_writeback(page);
8b62b72b 6360
d1310b2e 6361 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6362 if (offset) {
6363 btrfs_releasepage(page, GFP_NOFS);
6364 return;
6365 }
d0082371 6366 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6367 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6368 page_offset(page));
6369 if (ordered) {
eb84ae03
CM
6370 /*
6371 * IO on this page will never be started, so we need
6372 * to account for any ordered extents now
6373 */
e6dcd2dc
CM
6374 clear_extent_bit(tree, page_start, page_end,
6375 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6376 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6377 &cached_state, GFP_NOFS);
8b62b72b
CM
6378 /*
6379 * whoever cleared the private bit is responsible
6380 * for the finish_ordered_io
6381 */
6382 if (TestClearPagePrivate2(page)) {
6383 btrfs_finish_ordered_io(page->mapping->host,
6384 page_start, page_end);
6385 }
e6dcd2dc 6386 btrfs_put_ordered_extent(ordered);
2ac55d41 6387 cached_state = NULL;
d0082371 6388 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6389 }
6390 clear_extent_bit(tree, page_start, page_end,
32c00aff 6391 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6392 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6393 __btrfs_releasepage(page, GFP_NOFS);
6394
4a096752 6395 ClearPageChecked(page);
9ad6b7bc 6396 if (PagePrivate(page)) {
9ad6b7bc
CM
6397 ClearPagePrivate(page);
6398 set_page_private(page, 0);
6399 page_cache_release(page);
6400 }
39279cc3
CM
6401}
6402
9ebefb18
CM
6403/*
6404 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6405 * called from a page fault handler when a page is first dirtied. Hence we must
6406 * be careful to check for EOF conditions here. We set the page up correctly
6407 * for a written page which means we get ENOSPC checking when writing into
6408 * holes and correct delalloc and unwritten extent mapping on filesystems that
6409 * support these features.
6410 *
6411 * We are not allowed to take the i_mutex here so we have to play games to
6412 * protect against truncate races as the page could now be beyond EOF. Because
6413 * vmtruncate() writes the inode size before removing pages, once we have the
6414 * page lock we can determine safely if the page is beyond EOF. If it is not
6415 * beyond EOF, then the page is guaranteed safe against truncation until we
6416 * unlock the page.
6417 */
c2ec175c 6418int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6419{
c2ec175c 6420 struct page *page = vmf->page;
6da6abae 6421 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6422 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6423 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6424 struct btrfs_ordered_extent *ordered;
2ac55d41 6425 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6426 char *kaddr;
6427 unsigned long zero_start;
9ebefb18 6428 loff_t size;
1832a6d5 6429 int ret;
9998eb70 6430 int reserved = 0;
a52d9a80 6431 u64 page_start;
e6dcd2dc 6432 u64 page_end;
9ebefb18 6433
0ca1f7ce 6434 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6435 if (!ret) {
22c44fe6 6436 ret = btrfs_update_time(vma->vm_file);
9998eb70
CM
6437 reserved = 1;
6438 }
56a76f82
NP
6439 if (ret) {
6440 if (ret == -ENOMEM)
6441 ret = VM_FAULT_OOM;
6442 else /* -ENOSPC, -EIO, etc */
6443 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6444 if (reserved)
6445 goto out;
6446 goto out_noreserve;
56a76f82 6447 }
1832a6d5 6448
56a76f82 6449 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6450again:
9ebefb18 6451 lock_page(page);
9ebefb18 6452 size = i_size_read(inode);
e6dcd2dc
CM
6453 page_start = page_offset(page);
6454 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6455
9ebefb18 6456 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6457 (page_start >= size)) {
9ebefb18
CM
6458 /* page got truncated out from underneath us */
6459 goto out_unlock;
6460 }
e6dcd2dc
CM
6461 wait_on_page_writeback(page);
6462
d0082371 6463 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6464 set_page_extent_mapped(page);
6465
eb84ae03
CM
6466 /*
6467 * we can't set the delalloc bits if there are pending ordered
6468 * extents. Drop our locks and wait for them to finish
6469 */
e6dcd2dc
CM
6470 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6471 if (ordered) {
2ac55d41
JB
6472 unlock_extent_cached(io_tree, page_start, page_end,
6473 &cached_state, GFP_NOFS);
e6dcd2dc 6474 unlock_page(page);
eb84ae03 6475 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6476 btrfs_put_ordered_extent(ordered);
6477 goto again;
6478 }
6479
fbf19087
JB
6480 /*
6481 * XXX - page_mkwrite gets called every time the page is dirtied, even
6482 * if it was already dirty, so for space accounting reasons we need to
6483 * clear any delalloc bits for the range we are fixing to save. There
6484 * is probably a better way to do this, but for now keep consistent with
6485 * prepare_pages in the normal write path.
6486 */
2ac55d41 6487 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6488 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6489 0, 0, &cached_state, GFP_NOFS);
fbf19087 6490
2ac55d41
JB
6491 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6492 &cached_state);
9ed74f2d 6493 if (ret) {
2ac55d41
JB
6494 unlock_extent_cached(io_tree, page_start, page_end,
6495 &cached_state, GFP_NOFS);
9ed74f2d
JB
6496 ret = VM_FAULT_SIGBUS;
6497 goto out_unlock;
6498 }
e6dcd2dc 6499 ret = 0;
9ebefb18
CM
6500
6501 /* page is wholly or partially inside EOF */
a52d9a80 6502 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6503 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6504 else
e6dcd2dc 6505 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6506
e6dcd2dc
CM
6507 if (zero_start != PAGE_CACHE_SIZE) {
6508 kaddr = kmap(page);
6509 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6510 flush_dcache_page(page);
6511 kunmap(page);
6512 }
247e743c 6513 ClearPageChecked(page);
e6dcd2dc 6514 set_page_dirty(page);
50a9b214 6515 SetPageUptodate(page);
5a3f23d5 6516
257c62e1
CM
6517 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6518 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6519
2ac55d41 6520 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6521
6522out_unlock:
50a9b214
CM
6523 if (!ret)
6524 return VM_FAULT_LOCKED;
9ebefb18 6525 unlock_page(page);
1832a6d5 6526out:
ec39e180 6527 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6528out_noreserve:
9ebefb18
CM
6529 return ret;
6530}
6531
a41ad394 6532static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6533{
6534 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6535 struct btrfs_block_rsv *rsv;
39279cc3 6536 int ret;
3893e33b 6537 int err = 0;
39279cc3 6538 struct btrfs_trans_handle *trans;
d3c2fdcf 6539 unsigned long nr;
dbe674a9 6540 u64 mask = root->sectorsize - 1;
07127184 6541 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6542
5d5e103a
JB
6543 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6544 if (ret)
a41ad394 6545 return ret;
8082510e 6546
4a096752 6547 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6548 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6549
fcb80c2a
JB
6550 /*
6551 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6552 * 3 things going on here
6553 *
6554 * 1) We need to reserve space for our orphan item and the space to
6555 * delete our orphan item. Lord knows we don't want to have a dangling
6556 * orphan item because we didn't reserve space to remove it.
6557 *
6558 * 2) We need to reserve space to update our inode.
6559 *
6560 * 3) We need to have something to cache all the space that is going to
6561 * be free'd up by the truncate operation, but also have some slack
6562 * space reserved in case it uses space during the truncate (thank you
6563 * very much snapshotting).
6564 *
6565 * And we need these to all be seperate. The fact is we can use alot of
6566 * space doing the truncate, and we have no earthly idea how much space
6567 * we will use, so we need the truncate reservation to be seperate so it
6568 * doesn't end up using space reserved for updating the inode or
6569 * removing the orphan item. We also need to be able to stop the
6570 * transaction and start a new one, which means we need to be able to
6571 * update the inode several times, and we have no idea of knowing how
6572 * many times that will be, so we can't just reserve 1 item for the
6573 * entirety of the opration, so that has to be done seperately as well.
6574 * Then there is the orphan item, which does indeed need to be held on
6575 * to for the whole operation, and we need nobody to touch this reserved
6576 * space except the orphan code.
6577 *
6578 * So that leaves us with
6579 *
6580 * 1) root->orphan_block_rsv - for the orphan deletion.
6581 * 2) rsv - for the truncate reservation, which we will steal from the
6582 * transaction reservation.
6583 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6584 * updating the inode.
6585 */
6586 rsv = btrfs_alloc_block_rsv(root);
6587 if (!rsv)
6588 return -ENOMEM;
4a338542 6589 rsv->size = min_size;
f0cd846e 6590
907cbceb 6591 /*
07127184 6592 * 1 for the truncate slack space
907cbceb
JB
6593 * 1 for the orphan item we're going to add
6594 * 1 for the orphan item deletion
6595 * 1 for updating the inode.
6596 */
fcb80c2a
JB
6597 trans = btrfs_start_transaction(root, 4);
6598 if (IS_ERR(trans)) {
6599 err = PTR_ERR(trans);
6600 goto out;
6601 }
f0cd846e 6602
907cbceb
JB
6603 /* Migrate the slack space for the truncate to our reserve */
6604 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6605 min_size);
fcb80c2a 6606 BUG_ON(ret);
f0cd846e
JB
6607
6608 ret = btrfs_orphan_add(trans, inode);
6609 if (ret) {
6610 btrfs_end_transaction(trans, root);
fcb80c2a 6611 goto out;
f0cd846e
JB
6612 }
6613
5a3f23d5
CM
6614 /*
6615 * setattr is responsible for setting the ordered_data_close flag,
6616 * but that is only tested during the last file release. That
6617 * could happen well after the next commit, leaving a great big
6618 * window where new writes may get lost if someone chooses to write
6619 * to this file after truncating to zero
6620 *
6621 * The inode doesn't have any dirty data here, and so if we commit
6622 * this is a noop. If someone immediately starts writing to the inode
6623 * it is very likely we'll catch some of their writes in this
6624 * transaction, and the commit will find this file on the ordered
6625 * data list with good things to send down.
6626 *
6627 * This is a best effort solution, there is still a window where
6628 * using truncate to replace the contents of the file will
6629 * end up with a zero length file after a crash.
6630 */
6631 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6632 btrfs_add_ordered_operation(trans, root, inode);
6633
8082510e 6634 while (1) {
36ba022a 6635 ret = btrfs_block_rsv_refill(root, rsv, min_size);
907cbceb
JB
6636 if (ret) {
6637 /*
6638 * This can only happen with the original transaction we
6639 * started above, every other time we shouldn't have a
6640 * transaction started yet.
6641 */
6642 if (ret == -EAGAIN)
6643 goto end_trans;
6644 err = ret;
6645 break;
6646 }
6647
d68fc57b 6648 if (!trans) {
907cbceb
JB
6649 /* Just need the 1 for updating the inode */
6650 trans = btrfs_start_transaction(root, 1);
fcb80c2a 6651 if (IS_ERR(trans)) {
7041ee97
JB
6652 ret = err = PTR_ERR(trans);
6653 trans = NULL;
6654 break;
fcb80c2a 6655 }
d68fc57b
YZ
6656 }
6657
907cbceb
JB
6658 trans->block_rsv = rsv;
6659
8082510e
YZ
6660 ret = btrfs_truncate_inode_items(trans, root, inode,
6661 inode->i_size,
6662 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6663 if (ret != -EAGAIN) {
6664 err = ret;
8082510e 6665 break;
3893e33b 6666 }
39279cc3 6667
fcb80c2a 6668 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6669 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6670 if (ret) {
6671 err = ret;
6672 break;
6673 }
907cbceb 6674end_trans:
8082510e
YZ
6675 nr = trans->blocks_used;
6676 btrfs_end_transaction(trans, root);
d68fc57b 6677 trans = NULL;
8082510e 6678 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6679 }
6680
6681 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6682 trans->block_rsv = root->orphan_block_rsv;
8082510e 6683 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6684 if (ret)
6685 err = ret;
ded5db9d
JB
6686 } else if (ret && inode->i_nlink > 0) {
6687 /*
6688 * Failed to do the truncate, remove us from the in memory
6689 * orphan list.
6690 */
6691 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6692 }
6693
917c16b2
CM
6694 if (trans) {
6695 trans->block_rsv = &root->fs_info->trans_block_rsv;
6696 ret = btrfs_update_inode(trans, root, inode);
6697 if (ret && !err)
6698 err = ret;
7b128766 6699
917c16b2 6700 nr = trans->blocks_used;
7ad85bb7 6701 ret = btrfs_end_transaction(trans, root);
917c16b2
CM
6702 btrfs_btree_balance_dirty(root, nr);
6703 }
fcb80c2a
JB
6704
6705out:
6706 btrfs_free_block_rsv(root, rsv);
6707
3893e33b
JB
6708 if (ret && !err)
6709 err = ret;
a41ad394 6710
3893e33b 6711 return err;
39279cc3
CM
6712}
6713
d352ac68
CM
6714/*
6715 * create a new subvolume directory/inode (helper for the ioctl).
6716 */
d2fb3437 6717int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6718 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6719{
39279cc3 6720 struct inode *inode;
76dda93c 6721 int err;
00e4e6b3 6722 u64 index = 0;
39279cc3 6723
12fc9d09
FA
6724 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6725 new_dirid, new_dirid,
6726 S_IFDIR | (~current_umask() & S_IRWXUGO),
6727 &index);
54aa1f4d 6728 if (IS_ERR(inode))
f46b5a66 6729 return PTR_ERR(inode);
39279cc3
CM
6730 inode->i_op = &btrfs_dir_inode_operations;
6731 inode->i_fop = &btrfs_dir_file_operations;
6732
bfe86848 6733 set_nlink(inode, 1);
dbe674a9 6734 btrfs_i_size_write(inode, 0);
3b96362c 6735
76dda93c
YZ
6736 err = btrfs_update_inode(trans, new_root, inode);
6737 BUG_ON(err);
cb8e7090 6738
76dda93c 6739 iput(inode);
cb8e7090 6740 return 0;
39279cc3
CM
6741}
6742
39279cc3
CM
6743struct inode *btrfs_alloc_inode(struct super_block *sb)
6744{
6745 struct btrfs_inode *ei;
2ead6ae7 6746 struct inode *inode;
39279cc3
CM
6747
6748 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6749 if (!ei)
6750 return NULL;
2ead6ae7
YZ
6751
6752 ei->root = NULL;
6753 ei->space_info = NULL;
6754 ei->generation = 0;
6755 ei->sequence = 0;
15ee9bc7 6756 ei->last_trans = 0;
257c62e1 6757 ei->last_sub_trans = 0;
e02119d5 6758 ei->logged_trans = 0;
2ead6ae7 6759 ei->delalloc_bytes = 0;
2ead6ae7
YZ
6760 ei->disk_i_size = 0;
6761 ei->flags = 0;
7709cde3 6762 ei->csum_bytes = 0;
2ead6ae7
YZ
6763 ei->index_cnt = (u64)-1;
6764 ei->last_unlink_trans = 0;
6765
9e0baf60
JB
6766 spin_lock_init(&ei->lock);
6767 ei->outstanding_extents = 0;
6768 ei->reserved_extents = 0;
2ead6ae7
YZ
6769
6770 ei->ordered_data_close = 0;
d68fc57b 6771 ei->orphan_meta_reserved = 0;
2ead6ae7 6772 ei->dummy_inode = 0;
4cb5300b 6773 ei->in_defrag = 0;
7fd2ae21 6774 ei->delalloc_meta_reserved = 0;
261507a0 6775 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6776
16cdcec7
MX
6777 ei->delayed_node = NULL;
6778
2ead6ae7 6779 inode = &ei->vfs_inode;
a8067e02 6780 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6781 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6782 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6783 mutex_init(&ei->log_mutex);
f248679e 6784 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 6785 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6786 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6787 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6788 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6789 RB_CLEAR_NODE(&ei->rb_node);
6790
6791 return inode;
39279cc3
CM
6792}
6793
fa0d7e3d
NP
6794static void btrfs_i_callback(struct rcu_head *head)
6795{
6796 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
6797 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6798}
6799
39279cc3
CM
6800void btrfs_destroy_inode(struct inode *inode)
6801{
e6dcd2dc 6802 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6803 struct btrfs_root *root = BTRFS_I(inode)->root;
6804
39279cc3
CM
6805 WARN_ON(!list_empty(&inode->i_dentry));
6806 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6807 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6808 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
6809 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6810 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 6811
a6dbd429
JB
6812 /*
6813 * This can happen where we create an inode, but somebody else also
6814 * created the same inode and we need to destroy the one we already
6815 * created.
6816 */
6817 if (!root)
6818 goto free;
6819
5a3f23d5
CM
6820 /*
6821 * Make sure we're properly removed from the ordered operation
6822 * lists.
6823 */
6824 smp_mb();
6825 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6826 spin_lock(&root->fs_info->ordered_extent_lock);
6827 list_del_init(&BTRFS_I(inode)->ordered_operations);
6828 spin_unlock(&root->fs_info->ordered_extent_lock);
6829 }
6830
d68fc57b 6831 spin_lock(&root->orphan_lock);
7b128766 6832 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6833 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6834 (unsigned long long)btrfs_ino(inode));
8082510e 6835 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6836 }
d68fc57b 6837 spin_unlock(&root->orphan_lock);
7b128766 6838
d397712b 6839 while (1) {
e6dcd2dc
CM
6840 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6841 if (!ordered)
6842 break;
6843 else {
d397712b
CM
6844 printk(KERN_ERR "btrfs found ordered "
6845 "extent %llu %llu on inode cleanup\n",
6846 (unsigned long long)ordered->file_offset,
6847 (unsigned long long)ordered->len);
e6dcd2dc
CM
6848 btrfs_remove_ordered_extent(inode, ordered);
6849 btrfs_put_ordered_extent(ordered);
6850 btrfs_put_ordered_extent(ordered);
6851 }
6852 }
5d4f98a2 6853 inode_tree_del(inode);
5b21f2ed 6854 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6855free:
16cdcec7 6856 btrfs_remove_delayed_node(inode);
fa0d7e3d 6857 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6858}
6859
45321ac5 6860int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6861{
6862 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6863
0af3d00b 6864 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 6865 !btrfs_is_free_space_inode(root, inode))
45321ac5 6866 return 1;
76dda93c 6867 else
45321ac5 6868 return generic_drop_inode(inode);
76dda93c
YZ
6869}
6870
0ee0fda0 6871static void init_once(void *foo)
39279cc3
CM
6872{
6873 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6874
6875 inode_init_once(&ei->vfs_inode);
6876}
6877
6878void btrfs_destroy_cachep(void)
6879{
6880 if (btrfs_inode_cachep)
6881 kmem_cache_destroy(btrfs_inode_cachep);
6882 if (btrfs_trans_handle_cachep)
6883 kmem_cache_destroy(btrfs_trans_handle_cachep);
6884 if (btrfs_transaction_cachep)
6885 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6886 if (btrfs_path_cachep)
6887 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6888 if (btrfs_free_space_cachep)
6889 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6890}
6891
6892int btrfs_init_cachep(void)
6893{
9601e3f6
CH
6894 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6895 sizeof(struct btrfs_inode), 0,
6896 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6897 if (!btrfs_inode_cachep)
6898 goto fail;
9601e3f6
CH
6899
6900 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6901 sizeof(struct btrfs_trans_handle), 0,
6902 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6903 if (!btrfs_trans_handle_cachep)
6904 goto fail;
9601e3f6
CH
6905
6906 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6907 sizeof(struct btrfs_transaction), 0,
6908 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6909 if (!btrfs_transaction_cachep)
6910 goto fail;
9601e3f6
CH
6911
6912 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6913 sizeof(struct btrfs_path), 0,
6914 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6915 if (!btrfs_path_cachep)
6916 goto fail;
9601e3f6 6917
dc89e982
JB
6918 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6919 sizeof(struct btrfs_free_space), 0,
6920 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6921 if (!btrfs_free_space_cachep)
6922 goto fail;
6923
39279cc3
CM
6924 return 0;
6925fail:
6926 btrfs_destroy_cachep();
6927 return -ENOMEM;
6928}
6929
6930static int btrfs_getattr(struct vfsmount *mnt,
6931 struct dentry *dentry, struct kstat *stat)
6932{
6933 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
6934 u32 blocksize = inode->i_sb->s_blocksize;
6935
39279cc3 6936 generic_fillattr(inode, stat);
0ee5dc67 6937 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 6938 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
6939 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
6940 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
6941 return 0;
6942}
6943
75e7cb7f
LB
6944/*
6945 * If a file is moved, it will inherit the cow and compression flags of the new
6946 * directory.
6947 */
6948static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6949{
6950 struct btrfs_inode *b_dir = BTRFS_I(dir);
6951 struct btrfs_inode *b_inode = BTRFS_I(inode);
6952
6953 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6954 b_inode->flags |= BTRFS_INODE_NODATACOW;
6955 else
6956 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6957
6958 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6959 b_inode->flags |= BTRFS_INODE_COMPRESS;
6960 else
6961 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6962}
6963
d397712b
CM
6964static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6965 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6966{
6967 struct btrfs_trans_handle *trans;
6968 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6969 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6970 struct inode *new_inode = new_dentry->d_inode;
6971 struct inode *old_inode = old_dentry->d_inode;
6972 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6973 u64 index = 0;
4df27c4d 6974 u64 root_objectid;
39279cc3 6975 int ret;
33345d01 6976 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6977
33345d01 6978 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6979 return -EPERM;
6980
4df27c4d 6981 /* we only allow rename subvolume link between subvolumes */
33345d01 6982 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6983 return -EXDEV;
6984
33345d01
LZ
6985 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6986 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6987 return -ENOTEMPTY;
5f39d397 6988
4df27c4d
YZ
6989 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6990 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6991 return -ENOTEMPTY;
5a3f23d5
CM
6992 /*
6993 * we're using rename to replace one file with another.
6994 * and the replacement file is large. Start IO on it now so
6995 * we don't add too much work to the end of the transaction
6996 */
4baf8c92 6997 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6998 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6999 filemap_flush(old_inode->i_mapping);
7000
76dda93c 7001 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7002 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7003 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7004 /*
7005 * We want to reserve the absolute worst case amount of items. So if
7006 * both inodes are subvols and we need to unlink them then that would
7007 * require 4 item modifications, but if they are both normal inodes it
7008 * would require 5 item modifications, so we'll assume their normal
7009 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7010 * should cover the worst case number of items we'll modify.
7011 */
7012 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7013 if (IS_ERR(trans)) {
7014 ret = PTR_ERR(trans);
7015 goto out_notrans;
7016 }
76dda93c 7017
4df27c4d
YZ
7018 if (dest != root)
7019 btrfs_record_root_in_trans(trans, dest);
5f39d397 7020
a5719521
YZ
7021 ret = btrfs_set_inode_index(new_dir, &index);
7022 if (ret)
7023 goto out_fail;
5a3f23d5 7024
33345d01 7025 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7026 /* force full log commit if subvolume involved. */
7027 root->fs_info->last_trans_log_full_commit = trans->transid;
7028 } else {
a5719521
YZ
7029 ret = btrfs_insert_inode_ref(trans, dest,
7030 new_dentry->d_name.name,
7031 new_dentry->d_name.len,
33345d01
LZ
7032 old_ino,
7033 btrfs_ino(new_dir), index);
a5719521
YZ
7034 if (ret)
7035 goto out_fail;
4df27c4d
YZ
7036 /*
7037 * this is an ugly little race, but the rename is required
7038 * to make sure that if we crash, the inode is either at the
7039 * old name or the new one. pinning the log transaction lets
7040 * us make sure we don't allow a log commit to come in after
7041 * we unlink the name but before we add the new name back in.
7042 */
7043 btrfs_pin_log_trans(root);
7044 }
5a3f23d5
CM
7045 /*
7046 * make sure the inode gets flushed if it is replacing
7047 * something.
7048 */
33345d01 7049 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7050 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7051
39279cc3
CM
7052 old_dir->i_ctime = old_dir->i_mtime = ctime;
7053 new_dir->i_ctime = new_dir->i_mtime = ctime;
7054 old_inode->i_ctime = ctime;
5f39d397 7055
12fcfd22
CM
7056 if (old_dentry->d_parent != new_dentry->d_parent)
7057 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7058
33345d01 7059 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7060 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7061 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7062 old_dentry->d_name.name,
7063 old_dentry->d_name.len);
7064 } else {
92986796
AV
7065 ret = __btrfs_unlink_inode(trans, root, old_dir,
7066 old_dentry->d_inode,
7067 old_dentry->d_name.name,
7068 old_dentry->d_name.len);
7069 if (!ret)
7070 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7071 }
7072 BUG_ON(ret);
39279cc3
CM
7073
7074 if (new_inode) {
7075 new_inode->i_ctime = CURRENT_TIME;
33345d01 7076 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7077 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7078 root_objectid = BTRFS_I(new_inode)->location.objectid;
7079 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7080 root_objectid,
7081 new_dentry->d_name.name,
7082 new_dentry->d_name.len);
7083 BUG_ON(new_inode->i_nlink == 0);
7084 } else {
7085 ret = btrfs_unlink_inode(trans, dest, new_dir,
7086 new_dentry->d_inode,
7087 new_dentry->d_name.name,
7088 new_dentry->d_name.len);
7089 }
7090 BUG_ON(ret);
7b128766 7091 if (new_inode->i_nlink == 0) {
e02119d5 7092 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7093 BUG_ON(ret);
7b128766 7094 }
39279cc3 7095 }
aec7477b 7096
75e7cb7f
LB
7097 fixup_inode_flags(new_dir, old_inode);
7098
4df27c4d
YZ
7099 ret = btrfs_add_link(trans, new_dir, old_inode,
7100 new_dentry->d_name.name,
a5719521 7101 new_dentry->d_name.len, 0, index);
4df27c4d 7102 BUG_ON(ret);
39279cc3 7103
33345d01 7104 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7105 struct dentry *parent = new_dentry->d_parent;
6a912213 7106 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7107 btrfs_end_log_trans(root);
7108 }
39279cc3 7109out_fail:
7ad85bb7 7110 btrfs_end_transaction(trans, root);
b44c59a8 7111out_notrans:
33345d01 7112 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7113 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7114
39279cc3
CM
7115 return ret;
7116}
7117
d352ac68
CM
7118/*
7119 * some fairly slow code that needs optimization. This walks the list
7120 * of all the inodes with pending delalloc and forces them to disk.
7121 */
24bbcf04 7122int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7123{
7124 struct list_head *head = &root->fs_info->delalloc_inodes;
7125 struct btrfs_inode *binode;
5b21f2ed 7126 struct inode *inode;
ea8c2819 7127
c146afad
YZ
7128 if (root->fs_info->sb->s_flags & MS_RDONLY)
7129 return -EROFS;
7130
75eff68e 7131 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7132 while (!list_empty(head)) {
ea8c2819
CM
7133 binode = list_entry(head->next, struct btrfs_inode,
7134 delalloc_inodes);
5b21f2ed
ZY
7135 inode = igrab(&binode->vfs_inode);
7136 if (!inode)
7137 list_del_init(&binode->delalloc_inodes);
75eff68e 7138 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7139 if (inode) {
8c8bee1d 7140 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7141 if (delay_iput)
7142 btrfs_add_delayed_iput(inode);
7143 else
7144 iput(inode);
5b21f2ed
ZY
7145 }
7146 cond_resched();
75eff68e 7147 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7148 }
75eff68e 7149 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7150
7151 /* the filemap_flush will queue IO into the worker threads, but
7152 * we have to make sure the IO is actually started and that
7153 * ordered extents get created before we return
7154 */
7155 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7156 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7157 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7158 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7159 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7160 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7161 }
7162 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7163 return 0;
7164}
7165
39279cc3
CM
7166static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7167 const char *symname)
7168{
7169 struct btrfs_trans_handle *trans;
7170 struct btrfs_root *root = BTRFS_I(dir)->root;
7171 struct btrfs_path *path;
7172 struct btrfs_key key;
1832a6d5 7173 struct inode *inode = NULL;
39279cc3
CM
7174 int err;
7175 int drop_inode = 0;
7176 u64 objectid;
00e4e6b3 7177 u64 index = 0 ;
39279cc3
CM
7178 int name_len;
7179 int datasize;
5f39d397 7180 unsigned long ptr;
39279cc3 7181 struct btrfs_file_extent_item *ei;
5f39d397 7182 struct extent_buffer *leaf;
1832a6d5 7183 unsigned long nr = 0;
39279cc3
CM
7184
7185 name_len = strlen(symname) + 1;
7186 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7187 return -ENAMETOOLONG;
1832a6d5 7188
9ed74f2d
JB
7189 /*
7190 * 2 items for inode item and ref
7191 * 2 items for dir items
7192 * 1 item for xattr if selinux is on
7193 */
a22285a6
YZ
7194 trans = btrfs_start_transaction(root, 5);
7195 if (IS_ERR(trans))
7196 return PTR_ERR(trans);
1832a6d5 7197
581bb050
LZ
7198 err = btrfs_find_free_ino(root, &objectid);
7199 if (err)
7200 goto out_unlock;
7201
aec7477b 7202 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7203 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7204 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7205 if (IS_ERR(inode)) {
7206 err = PTR_ERR(inode);
39279cc3 7207 goto out_unlock;
7cf96da3 7208 }
39279cc3 7209
2a7dba39 7210 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7211 if (err) {
7212 drop_inode = 1;
7213 goto out_unlock;
7214 }
7215
ad19db71
CS
7216 /*
7217 * If the active LSM wants to access the inode during
7218 * d_instantiate it needs these. Smack checks to see
7219 * if the filesystem supports xattrs by looking at the
7220 * ops vector.
7221 */
7222 inode->i_fop = &btrfs_file_operations;
7223 inode->i_op = &btrfs_file_inode_operations;
7224
a1b075d2 7225 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7226 if (err)
7227 drop_inode = 1;
7228 else {
7229 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7230 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7231 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7232 }
39279cc3
CM
7233 if (drop_inode)
7234 goto out_unlock;
7235
7236 path = btrfs_alloc_path();
d8926bb3
MF
7237 if (!path) {
7238 err = -ENOMEM;
7239 drop_inode = 1;
7240 goto out_unlock;
7241 }
33345d01 7242 key.objectid = btrfs_ino(inode);
39279cc3 7243 key.offset = 0;
39279cc3
CM
7244 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7245 datasize = btrfs_file_extent_calc_inline_size(name_len);
7246 err = btrfs_insert_empty_item(trans, root, path, &key,
7247 datasize);
54aa1f4d
CM
7248 if (err) {
7249 drop_inode = 1;
b0839166 7250 btrfs_free_path(path);
54aa1f4d
CM
7251 goto out_unlock;
7252 }
5f39d397
CM
7253 leaf = path->nodes[0];
7254 ei = btrfs_item_ptr(leaf, path->slots[0],
7255 struct btrfs_file_extent_item);
7256 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7257 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7258 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7259 btrfs_set_file_extent_encryption(leaf, ei, 0);
7260 btrfs_set_file_extent_compression(leaf, ei, 0);
7261 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7262 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7263
39279cc3 7264 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7265 write_extent_buffer(leaf, symname, ptr, name_len);
7266 btrfs_mark_buffer_dirty(leaf);
39279cc3 7267 btrfs_free_path(path);
5f39d397 7268
39279cc3
CM
7269 inode->i_op = &btrfs_symlink_inode_operations;
7270 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7271 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7272 inode_set_bytes(inode, name_len);
dbe674a9 7273 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7274 err = btrfs_update_inode(trans, root, inode);
7275 if (err)
7276 drop_inode = 1;
39279cc3
CM
7277
7278out_unlock:
08c422c2
AV
7279 if (!err)
7280 d_instantiate(dentry, inode);
d3c2fdcf 7281 nr = trans->blocks_used;
7ad85bb7 7282 btrfs_end_transaction(trans, root);
39279cc3
CM
7283 if (drop_inode) {
7284 inode_dec_link_count(inode);
7285 iput(inode);
7286 }
d3c2fdcf 7287 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7288 return err;
7289}
16432985 7290
0af3d00b
JB
7291static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7292 u64 start, u64 num_bytes, u64 min_size,
7293 loff_t actual_len, u64 *alloc_hint,
7294 struct btrfs_trans_handle *trans)
d899e052 7295{
d899e052
YZ
7296 struct btrfs_root *root = BTRFS_I(inode)->root;
7297 struct btrfs_key ins;
d899e052 7298 u64 cur_offset = start;
55a61d1d 7299 u64 i_size;
d899e052 7300 int ret = 0;
0af3d00b 7301 bool own_trans = true;
d899e052 7302
0af3d00b
JB
7303 if (trans)
7304 own_trans = false;
d899e052 7305 while (num_bytes > 0) {
0af3d00b
JB
7306 if (own_trans) {
7307 trans = btrfs_start_transaction(root, 3);
7308 if (IS_ERR(trans)) {
7309 ret = PTR_ERR(trans);
7310 break;
7311 }
5a303d5d
YZ
7312 }
7313
efa56464
YZ
7314 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7315 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7316 if (ret) {
0af3d00b
JB
7317 if (own_trans)
7318 btrfs_end_transaction(trans, root);
a22285a6 7319 break;
d899e052 7320 }
5a303d5d 7321
d899e052
YZ
7322 ret = insert_reserved_file_extent(trans, inode,
7323 cur_offset, ins.objectid,
7324 ins.offset, ins.offset,
920bbbfb 7325 ins.offset, 0, 0, 0,
d899e052
YZ
7326 BTRFS_FILE_EXTENT_PREALLOC);
7327 BUG_ON(ret);
a1ed835e
CM
7328 btrfs_drop_extent_cache(inode, cur_offset,
7329 cur_offset + ins.offset -1, 0);
5a303d5d 7330
d899e052
YZ
7331 num_bytes -= ins.offset;
7332 cur_offset += ins.offset;
efa56464 7333 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7334
d899e052 7335 inode->i_ctime = CURRENT_TIME;
6cbff00f 7336 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7337 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7338 (actual_len > inode->i_size) &&
7339 (cur_offset > inode->i_size)) {
d1ea6a61 7340 if (cur_offset > actual_len)
55a61d1d 7341 i_size = actual_len;
d1ea6a61 7342 else
55a61d1d
JB
7343 i_size = cur_offset;
7344 i_size_write(inode, i_size);
7345 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7346 }
7347
d899e052
YZ
7348 ret = btrfs_update_inode(trans, root, inode);
7349 BUG_ON(ret);
d899e052 7350
0af3d00b
JB
7351 if (own_trans)
7352 btrfs_end_transaction(trans, root);
5a303d5d 7353 }
d899e052
YZ
7354 return ret;
7355}
7356
0af3d00b
JB
7357int btrfs_prealloc_file_range(struct inode *inode, int mode,
7358 u64 start, u64 num_bytes, u64 min_size,
7359 loff_t actual_len, u64 *alloc_hint)
7360{
7361 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7362 min_size, actual_len, alloc_hint,
7363 NULL);
7364}
7365
7366int btrfs_prealloc_file_range_trans(struct inode *inode,
7367 struct btrfs_trans_handle *trans, int mode,
7368 u64 start, u64 num_bytes, u64 min_size,
7369 loff_t actual_len, u64 *alloc_hint)
7370{
7371 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7372 min_size, actual_len, alloc_hint, trans);
7373}
7374
e6dcd2dc
CM
7375static int btrfs_set_page_dirty(struct page *page)
7376{
e6dcd2dc
CM
7377 return __set_page_dirty_nobuffers(page);
7378}
7379
10556cb2 7380static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7381{
b83cc969 7382 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7383 umode_t mode = inode->i_mode;
b83cc969 7384
cb6db4e5
JM
7385 if (mask & MAY_WRITE &&
7386 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7387 if (btrfs_root_readonly(root))
7388 return -EROFS;
7389 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7390 return -EACCES;
7391 }
2830ba7f 7392 return generic_permission(inode, mask);
fdebe2bd 7393}
39279cc3 7394
6e1d5dcc 7395static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7396 .getattr = btrfs_getattr,
39279cc3
CM
7397 .lookup = btrfs_lookup,
7398 .create = btrfs_create,
7399 .unlink = btrfs_unlink,
7400 .link = btrfs_link,
7401 .mkdir = btrfs_mkdir,
7402 .rmdir = btrfs_rmdir,
7403 .rename = btrfs_rename,
7404 .symlink = btrfs_symlink,
7405 .setattr = btrfs_setattr,
618e21d5 7406 .mknod = btrfs_mknod,
95819c05
CH
7407 .setxattr = btrfs_setxattr,
7408 .getxattr = btrfs_getxattr,
5103e947 7409 .listxattr = btrfs_listxattr,
95819c05 7410 .removexattr = btrfs_removexattr,
fdebe2bd 7411 .permission = btrfs_permission,
4e34e719 7412 .get_acl = btrfs_get_acl,
39279cc3 7413};
6e1d5dcc 7414static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7415 .lookup = btrfs_lookup,
fdebe2bd 7416 .permission = btrfs_permission,
4e34e719 7417 .get_acl = btrfs_get_acl,
39279cc3 7418};
76dda93c 7419
828c0950 7420static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7421 .llseek = generic_file_llseek,
7422 .read = generic_read_dir,
cbdf5a24 7423 .readdir = btrfs_real_readdir,
34287aa3 7424 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7425#ifdef CONFIG_COMPAT
34287aa3 7426 .compat_ioctl = btrfs_ioctl,
39279cc3 7427#endif
6bf13c0c 7428 .release = btrfs_release_file,
e02119d5 7429 .fsync = btrfs_sync_file,
39279cc3
CM
7430};
7431
d1310b2e 7432static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7433 .fill_delalloc = run_delalloc_range,
065631f6 7434 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7435 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7436 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7437 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7438 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7439 .set_bit_hook = btrfs_set_bit_hook,
7440 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7441 .merge_extent_hook = btrfs_merge_extent_hook,
7442 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7443};
7444
35054394
CM
7445/*
7446 * btrfs doesn't support the bmap operation because swapfiles
7447 * use bmap to make a mapping of extents in the file. They assume
7448 * these extents won't change over the life of the file and they
7449 * use the bmap result to do IO directly to the drive.
7450 *
7451 * the btrfs bmap call would return logical addresses that aren't
7452 * suitable for IO and they also will change frequently as COW
7453 * operations happen. So, swapfile + btrfs == corruption.
7454 *
7455 * For now we're avoiding this by dropping bmap.
7456 */
7f09410b 7457static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7458 .readpage = btrfs_readpage,
7459 .writepage = btrfs_writepage,
b293f02e 7460 .writepages = btrfs_writepages,
3ab2fb5a 7461 .readpages = btrfs_readpages,
16432985 7462 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7463 .invalidatepage = btrfs_invalidatepage,
7464 .releasepage = btrfs_releasepage,
e6dcd2dc 7465 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7466 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7467};
7468
7f09410b 7469static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7470 .readpage = btrfs_readpage,
7471 .writepage = btrfs_writepage,
2bf5a725
CM
7472 .invalidatepage = btrfs_invalidatepage,
7473 .releasepage = btrfs_releasepage,
39279cc3
CM
7474};
7475
6e1d5dcc 7476static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7477 .getattr = btrfs_getattr,
7478 .setattr = btrfs_setattr,
95819c05
CH
7479 .setxattr = btrfs_setxattr,
7480 .getxattr = btrfs_getxattr,
5103e947 7481 .listxattr = btrfs_listxattr,
95819c05 7482 .removexattr = btrfs_removexattr,
fdebe2bd 7483 .permission = btrfs_permission,
1506fcc8 7484 .fiemap = btrfs_fiemap,
4e34e719 7485 .get_acl = btrfs_get_acl,
39279cc3 7486};
6e1d5dcc 7487static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7488 .getattr = btrfs_getattr,
7489 .setattr = btrfs_setattr,
fdebe2bd 7490 .permission = btrfs_permission,
95819c05
CH
7491 .setxattr = btrfs_setxattr,
7492 .getxattr = btrfs_getxattr,
33268eaf 7493 .listxattr = btrfs_listxattr,
95819c05 7494 .removexattr = btrfs_removexattr,
4e34e719 7495 .get_acl = btrfs_get_acl,
618e21d5 7496};
6e1d5dcc 7497static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7498 .readlink = generic_readlink,
7499 .follow_link = page_follow_link_light,
7500 .put_link = page_put_link,
f209561a 7501 .getattr = btrfs_getattr,
22c44fe6 7502 .setattr = btrfs_setattr,
fdebe2bd 7503 .permission = btrfs_permission,
0279b4cd
JO
7504 .setxattr = btrfs_setxattr,
7505 .getxattr = btrfs_getxattr,
7506 .listxattr = btrfs_listxattr,
7507 .removexattr = btrfs_removexattr,
4e34e719 7508 .get_acl = btrfs_get_acl,
39279cc3 7509};
76dda93c 7510
82d339d9 7511const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7512 .d_delete = btrfs_dentry_delete,
b4aff1f8 7513 .d_release = btrfs_dentry_release,
76dda93c 7514};