Btrfs: fix possible deadlock in btrfs_cleanup_transaction
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
39279cc3
CM
62
63struct btrfs_iget_args {
90d3e592 64 struct btrfs_key *location;
39279cc3
CM
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
d397712b 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 129 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
fe3f566c 132 int compress_type,
c8b97818
CM
133 struct page **compressed_pages)
134{
c8b97818
CM
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
c8b97818 143 unsigned long offset;
c8b97818 144
fe3f566c 145 if (compressed_size && compressed_pages)
c8b97818 146 cur_size = compressed_size;
c8b97818 147
1acae57b 148 inode_add_bytes(inode, size);
c8b97818 149
1acae57b
FDBM
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
c8b97818 153
1acae57b
FDBM
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818 157
1acae57b
FDBM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
c8b97818
CM
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
1acae57b 206 btrfs_release_path(path);
c8b97818 207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818 221fail:
c8b97818
CM
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
00361589
JB
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
c8b97818 236{
00361589 237 struct btrfs_trans_handle *trans;
c8b97818
CM
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
fda2832f 241 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
242 u64 data_len = inline_len;
243 int ret;
1acae57b
FDBM
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
c8b97818
CM
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
70b99e69 252 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
1acae57b
FDBM
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
00361589 265 trans = btrfs_join_transaction(root);
1acae57b
FDBM
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
00361589 268 return PTR_ERR(trans);
1acae57b 269 }
00361589
JB
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
1acae57b
FDBM
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
00361589
JB
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
c8b97818
CM
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
c8b97818 291 inline_len, compressed_size,
fe3f566c 292 compress_type, compressed_pages);
2adcac1a 293 if (ret && ret != -ENOSPC) {
79787eaa 294 btrfs_abort_transaction(trans, root, ret);
00361589 295 goto out;
2adcac1a 296 } else if (ret == -ENOSPC) {
00361589
JB
297 ret = 1;
298 goto out;
79787eaa 299 }
2adcac1a 300
bdc20e67 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 304out:
1acae57b 305 btrfs_free_path(path);
00361589
JB
306 btrfs_end_transaction(trans, root);
307 return ret;
c8b97818
CM
308}
309
771ed689
CM
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
261507a0 316 int compress_type;
771ed689
CM
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
261507a0
LZ
334 unsigned long nr_pages,
335 int compress_type)
771ed689
CM
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 340 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
261507a0 346 async_extent->compress_type = compress_type;
771ed689
CM
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
d352ac68 351/*
771ed689
CM
352 * we create compressed extents in two phases. The first
353 * phase compresses a range of pages that have already been
354 * locked (both pages and state bits are locked).
c8b97818 355 *
771ed689
CM
356 * This is done inside an ordered work queue, and the compression
357 * is spread across many cpus. The actual IO submission is step
358 * two, and the ordered work queue takes care of making sure that
359 * happens in the same order things were put onto the queue by
360 * writepages and friends.
c8b97818 361 *
771ed689
CM
362 * If this code finds it can't get good compression, it puts an
363 * entry onto the work queue to write the uncompressed bytes. This
364 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
365 * are written in the same order that the flusher thread sent them
366 * down.
d352ac68 367 */
771ed689
CM
368static noinline int compress_file_range(struct inode *inode,
369 struct page *locked_page,
370 u64 start, u64 end,
371 struct async_cow *async_cow,
372 int *num_added)
b888db2b
CM
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 375 u64 num_bytes;
db94535d 376 u64 blocksize = root->sectorsize;
c8b97818 377 u64 actual_end;
42dc7bab 378 u64 isize = i_size_read(inode);
e6dcd2dc 379 int ret = 0;
c8b97818
CM
380 struct page **pages = NULL;
381 unsigned long nr_pages;
382 unsigned long nr_pages_ret = 0;
383 unsigned long total_compressed = 0;
384 unsigned long total_in = 0;
385 unsigned long max_compressed = 128 * 1024;
771ed689 386 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
387 int i;
388 int will_compress;
261507a0 389 int compress_type = root->fs_info->compress_type;
4adaa611 390 int redirty = 0;
b888db2b 391
4cb13e5d
LB
392 /* if this is a small write inside eof, kick off a defrag */
393 if ((end - start + 1) < 16 * 1024 &&
394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
395 btrfs_add_inode_defrag(NULL, inode);
396
42dc7bab 397 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
398again:
399 will_compress = 0;
400 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
401 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 402
f03d9301
CM
403 /*
404 * we don't want to send crud past the end of i_size through
405 * compression, that's just a waste of CPU time. So, if the
406 * end of the file is before the start of our current
407 * requested range of bytes, we bail out to the uncompressed
408 * cleanup code that can deal with all of this.
409 *
410 * It isn't really the fastest way to fix things, but this is a
411 * very uncommon corner.
412 */
413 if (actual_end <= start)
414 goto cleanup_and_bail_uncompressed;
415
c8b97818
CM
416 total_compressed = actual_end - start;
417
418 /* we want to make sure that amount of ram required to uncompress
419 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
420 * of a compressed extent to 128k. This is a crucial number
421 * because it also controls how easily we can spread reads across
422 * cpus for decompression.
423 *
424 * We also want to make sure the amount of IO required to do
425 * a random read is reasonably small, so we limit the size of
426 * a compressed extent to 128k.
c8b97818
CM
427 */
428 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 429 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 430 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
431 total_in = 0;
432 ret = 0;
db94535d 433
771ed689
CM
434 /*
435 * we do compression for mount -o compress and when the
436 * inode has not been flagged as nocompress. This flag can
437 * change at any time if we discover bad compression ratios.
c8b97818 438 */
6cbff00f 439 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 440 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
441 (BTRFS_I(inode)->force_compress) ||
442 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 443 WARN_ON(pages);
cfbc246e 444 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
445 if (!pages) {
446 /* just bail out to the uncompressed code */
447 goto cont;
448 }
c8b97818 449
261507a0
LZ
450 if (BTRFS_I(inode)->force_compress)
451 compress_type = BTRFS_I(inode)->force_compress;
452
4adaa611
CM
453 /*
454 * we need to call clear_page_dirty_for_io on each
455 * page in the range. Otherwise applications with the file
456 * mmap'd can wander in and change the page contents while
457 * we are compressing them.
458 *
459 * If the compression fails for any reason, we set the pages
460 * dirty again later on.
461 */
462 extent_range_clear_dirty_for_io(inode, start, end);
463 redirty = 1;
261507a0
LZ
464 ret = btrfs_compress_pages(compress_type,
465 inode->i_mapping, start,
466 total_compressed, pages,
467 nr_pages, &nr_pages_ret,
468 &total_in,
469 &total_compressed,
470 max_compressed);
c8b97818
CM
471
472 if (!ret) {
473 unsigned long offset = total_compressed &
474 (PAGE_CACHE_SIZE - 1);
475 struct page *page = pages[nr_pages_ret - 1];
476 char *kaddr;
477
478 /* zero the tail end of the last page, we might be
479 * sending it down to disk
480 */
481 if (offset) {
7ac687d9 482 kaddr = kmap_atomic(page);
c8b97818
CM
483 memset(kaddr + offset, 0,
484 PAGE_CACHE_SIZE - offset);
7ac687d9 485 kunmap_atomic(kaddr);
c8b97818
CM
486 }
487 will_compress = 1;
488 }
489 }
560f7d75 490cont:
c8b97818
CM
491 if (start == 0) {
492 /* lets try to make an inline extent */
771ed689 493 if (ret || total_in < (actual_end - start)) {
c8b97818 494 /* we didn't compress the entire range, try
771ed689 495 * to make an uncompressed inline extent.
c8b97818 496 */
00361589
JB
497 ret = cow_file_range_inline(root, inode, start, end,
498 0, 0, NULL);
c8b97818 499 } else {
771ed689 500 /* try making a compressed inline extent */
00361589 501 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
502 total_compressed,
503 compress_type, pages);
c8b97818 504 }
79787eaa 505 if (ret <= 0) {
151a41bc
JB
506 unsigned long clear_flags = EXTENT_DELALLOC |
507 EXTENT_DEFRAG;
508 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
509
771ed689 510 /*
79787eaa
JM
511 * inline extent creation worked or returned error,
512 * we don't need to create any more async work items.
513 * Unlock and free up our temp pages.
771ed689 514 */
c2790a2e 515 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 516 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
517 PAGE_CLEAR_DIRTY |
518 PAGE_SET_WRITEBACK |
519 PAGE_END_WRITEBACK);
c8b97818
CM
520 goto free_pages_out;
521 }
522 }
523
524 if (will_compress) {
525 /*
526 * we aren't doing an inline extent round the compressed size
527 * up to a block size boundary so the allocator does sane
528 * things
529 */
fda2832f 530 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
531
532 /*
533 * one last check to make sure the compression is really a
534 * win, compare the page count read with the blocks on disk
535 */
fda2832f 536 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
537 if (total_compressed >= total_in) {
538 will_compress = 0;
539 } else {
c8b97818
CM
540 num_bytes = total_in;
541 }
542 }
543 if (!will_compress && pages) {
544 /*
545 * the compression code ran but failed to make things smaller,
546 * free any pages it allocated and our page pointer array
547 */
548 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 549 WARN_ON(pages[i]->mapping);
c8b97818
CM
550 page_cache_release(pages[i]);
551 }
552 kfree(pages);
553 pages = NULL;
554 total_compressed = 0;
555 nr_pages_ret = 0;
556
557 /* flag the file so we don't compress in the future */
1e701a32
CM
558 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
559 !(BTRFS_I(inode)->force_compress)) {
a555f810 560 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 561 }
c8b97818 562 }
771ed689
CM
563 if (will_compress) {
564 *num_added += 1;
c8b97818 565
771ed689
CM
566 /* the async work queues will take care of doing actual
567 * allocation on disk for these compressed pages,
568 * and will submit them to the elevator.
569 */
570 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
571 total_compressed, pages, nr_pages_ret,
572 compress_type);
179e29e4 573
24ae6365 574 if (start + num_bytes < end) {
771ed689
CM
575 start += num_bytes;
576 pages = NULL;
577 cond_resched();
578 goto again;
579 }
580 } else {
f03d9301 581cleanup_and_bail_uncompressed:
771ed689
CM
582 /*
583 * No compression, but we still need to write the pages in
584 * the file we've been given so far. redirty the locked
585 * page if it corresponds to our extent and set things up
586 * for the async work queue to run cow_file_range to do
587 * the normal delalloc dance
588 */
589 if (page_offset(locked_page) >= start &&
590 page_offset(locked_page) <= end) {
591 __set_page_dirty_nobuffers(locked_page);
592 /* unlocked later on in the async handlers */
593 }
4adaa611
CM
594 if (redirty)
595 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
596 add_async_extent(async_cow, start, end - start + 1,
597 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
598 *num_added += 1;
599 }
3b951516 600
771ed689 601out:
79787eaa 602 return ret;
771ed689
CM
603
604free_pages_out:
605 for (i = 0; i < nr_pages_ret; i++) {
606 WARN_ON(pages[i]->mapping);
607 page_cache_release(pages[i]);
608 }
d397712b 609 kfree(pages);
771ed689
CM
610
611 goto out;
612}
613
614/*
615 * phase two of compressed writeback. This is the ordered portion
616 * of the code, which only gets called in the order the work was
617 * queued. We walk all the async extents created by compress_file_range
618 * and send them down to the disk.
619 */
620static noinline int submit_compressed_extents(struct inode *inode,
621 struct async_cow *async_cow)
622{
623 struct async_extent *async_extent;
624 u64 alloc_hint = 0;
771ed689
CM
625 struct btrfs_key ins;
626 struct extent_map *em;
627 struct btrfs_root *root = BTRFS_I(inode)->root;
628 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
629 struct extent_io_tree *io_tree;
f5a84ee3 630 int ret = 0;
771ed689
CM
631
632 if (list_empty(&async_cow->extents))
633 return 0;
634
3e04e7f1 635again:
d397712b 636 while (!list_empty(&async_cow->extents)) {
771ed689
CM
637 async_extent = list_entry(async_cow->extents.next,
638 struct async_extent, list);
639 list_del(&async_extent->list);
c8b97818 640
771ed689
CM
641 io_tree = &BTRFS_I(inode)->io_tree;
642
f5a84ee3 643retry:
771ed689
CM
644 /* did the compression code fall back to uncompressed IO? */
645 if (!async_extent->pages) {
646 int page_started = 0;
647 unsigned long nr_written = 0;
648
649 lock_extent(io_tree, async_extent->start,
2ac55d41 650 async_extent->start +
d0082371 651 async_extent->ram_size - 1);
771ed689
CM
652
653 /* allocate blocks */
f5a84ee3
JB
654 ret = cow_file_range(inode, async_cow->locked_page,
655 async_extent->start,
656 async_extent->start +
657 async_extent->ram_size - 1,
658 &page_started, &nr_written, 0);
771ed689 659
79787eaa
JM
660 /* JDM XXX */
661
771ed689
CM
662 /*
663 * if page_started, cow_file_range inserted an
664 * inline extent and took care of all the unlocking
665 * and IO for us. Otherwise, we need to submit
666 * all those pages down to the drive.
667 */
f5a84ee3 668 if (!page_started && !ret)
771ed689
CM
669 extent_write_locked_range(io_tree,
670 inode, async_extent->start,
d397712b 671 async_extent->start +
771ed689
CM
672 async_extent->ram_size - 1,
673 btrfs_get_extent,
674 WB_SYNC_ALL);
3e04e7f1
JB
675 else if (ret)
676 unlock_page(async_cow->locked_page);
771ed689
CM
677 kfree(async_extent);
678 cond_resched();
679 continue;
680 }
681
682 lock_extent(io_tree, async_extent->start,
d0082371 683 async_extent->start + async_extent->ram_size - 1);
771ed689 684
00361589 685 ret = btrfs_reserve_extent(root,
771ed689
CM
686 async_extent->compressed_size,
687 async_extent->compressed_size,
81c9ad23 688 0, alloc_hint, &ins, 1);
f5a84ee3
JB
689 if (ret) {
690 int i;
3e04e7f1 691
f5a84ee3
JB
692 for (i = 0; i < async_extent->nr_pages; i++) {
693 WARN_ON(async_extent->pages[i]->mapping);
694 page_cache_release(async_extent->pages[i]);
695 }
696 kfree(async_extent->pages);
697 async_extent->nr_pages = 0;
698 async_extent->pages = NULL;
3e04e7f1 699
fdf8e2ea
JB
700 if (ret == -ENOSPC) {
701 unlock_extent(io_tree, async_extent->start,
702 async_extent->start +
703 async_extent->ram_size - 1);
79787eaa 704 goto retry;
fdf8e2ea 705 }
3e04e7f1 706 goto out_free;
f5a84ee3
JB
707 }
708
c2167754
YZ
709 /*
710 * here we're doing allocation and writeback of the
711 * compressed pages
712 */
713 btrfs_drop_extent_cache(inode, async_extent->start,
714 async_extent->start +
715 async_extent->ram_size - 1, 0);
716
172ddd60 717 em = alloc_extent_map();
b9aa55be
LB
718 if (!em) {
719 ret = -ENOMEM;
3e04e7f1 720 goto out_free_reserve;
b9aa55be 721 }
771ed689
CM
722 em->start = async_extent->start;
723 em->len = async_extent->ram_size;
445a6944 724 em->orig_start = em->start;
2ab28f32
JB
725 em->mod_start = em->start;
726 em->mod_len = em->len;
c8b97818 727
771ed689
CM
728 em->block_start = ins.objectid;
729 em->block_len = ins.offset;
b4939680 730 em->orig_block_len = ins.offset;
cc95bef6 731 em->ram_bytes = async_extent->ram_size;
771ed689 732 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 733 em->compress_type = async_extent->compress_type;
771ed689
CM
734 set_bit(EXTENT_FLAG_PINNED, &em->flags);
735 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 736 em->generation = -1;
771ed689 737
d397712b 738 while (1) {
890871be 739 write_lock(&em_tree->lock);
09a2a8f9 740 ret = add_extent_mapping(em_tree, em, 1);
890871be 741 write_unlock(&em_tree->lock);
771ed689
CM
742 if (ret != -EEXIST) {
743 free_extent_map(em);
744 break;
745 }
746 btrfs_drop_extent_cache(inode, async_extent->start,
747 async_extent->start +
748 async_extent->ram_size - 1, 0);
749 }
750
3e04e7f1
JB
751 if (ret)
752 goto out_free_reserve;
753
261507a0
LZ
754 ret = btrfs_add_ordered_extent_compress(inode,
755 async_extent->start,
756 ins.objectid,
757 async_extent->ram_size,
758 ins.offset,
759 BTRFS_ORDERED_COMPRESSED,
760 async_extent->compress_type);
3e04e7f1
JB
761 if (ret)
762 goto out_free_reserve;
771ed689 763
771ed689
CM
764 /*
765 * clear dirty, set writeback and unlock the pages.
766 */
c2790a2e 767 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
768 async_extent->start +
769 async_extent->ram_size - 1,
151a41bc
JB
770 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
771 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 772 PAGE_SET_WRITEBACK);
771ed689 773 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
774 async_extent->start,
775 async_extent->ram_size,
776 ins.objectid,
777 ins.offset, async_extent->pages,
778 async_extent->nr_pages);
771ed689
CM
779 alloc_hint = ins.objectid + ins.offset;
780 kfree(async_extent);
3e04e7f1
JB
781 if (ret)
782 goto out;
771ed689
CM
783 cond_resched();
784 }
79787eaa
JM
785 ret = 0;
786out:
787 return ret;
3e04e7f1
JB
788out_free_reserve:
789 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 790out_free:
c2790a2e 791 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
792 async_extent->start +
793 async_extent->ram_size - 1,
c2790a2e 794 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
795 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
796 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
797 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 798 kfree(async_extent);
3e04e7f1 799 goto again;
771ed689
CM
800}
801
4b46fce2
JB
802static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
803 u64 num_bytes)
804{
805 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
806 struct extent_map *em;
807 u64 alloc_hint = 0;
808
809 read_lock(&em_tree->lock);
810 em = search_extent_mapping(em_tree, start, num_bytes);
811 if (em) {
812 /*
813 * if block start isn't an actual block number then find the
814 * first block in this inode and use that as a hint. If that
815 * block is also bogus then just don't worry about it.
816 */
817 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
818 free_extent_map(em);
819 em = search_extent_mapping(em_tree, 0, 0);
820 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
821 alloc_hint = em->block_start;
822 if (em)
823 free_extent_map(em);
824 } else {
825 alloc_hint = em->block_start;
826 free_extent_map(em);
827 }
828 }
829 read_unlock(&em_tree->lock);
830
831 return alloc_hint;
832}
833
771ed689
CM
834/*
835 * when extent_io.c finds a delayed allocation range in the file,
836 * the call backs end up in this code. The basic idea is to
837 * allocate extents on disk for the range, and create ordered data structs
838 * in ram to track those extents.
839 *
840 * locked_page is the page that writepage had locked already. We use
841 * it to make sure we don't do extra locks or unlocks.
842 *
843 * *page_started is set to one if we unlock locked_page and do everything
844 * required to start IO on it. It may be clean and already done with
845 * IO when we return.
846 */
00361589
JB
847static noinline int cow_file_range(struct inode *inode,
848 struct page *locked_page,
849 u64 start, u64 end, int *page_started,
850 unsigned long *nr_written,
851 int unlock)
771ed689 852{
00361589 853 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
854 u64 alloc_hint = 0;
855 u64 num_bytes;
856 unsigned long ram_size;
857 u64 disk_num_bytes;
858 u64 cur_alloc_size;
859 u64 blocksize = root->sectorsize;
771ed689
CM
860 struct btrfs_key ins;
861 struct extent_map *em;
862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
863 int ret = 0;
864
02ecd2c2
JB
865 if (btrfs_is_free_space_inode(inode)) {
866 WARN_ON_ONCE(1);
29bce2f3
JB
867 ret = -EINVAL;
868 goto out_unlock;
02ecd2c2 869 }
771ed689 870
fda2832f 871 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
872 num_bytes = max(blocksize, num_bytes);
873 disk_num_bytes = num_bytes;
771ed689 874
4cb5300b 875 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
876 if (num_bytes < 64 * 1024 &&
877 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 878 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 879
771ed689
CM
880 if (start == 0) {
881 /* lets try to make an inline extent */
00361589
JB
882 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
883 NULL);
771ed689 884 if (ret == 0) {
c2790a2e
JB
885 extent_clear_unlock_delalloc(inode, start, end, NULL,
886 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 887 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
888 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
889 PAGE_END_WRITEBACK);
c2167754 890
771ed689
CM
891 *nr_written = *nr_written +
892 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
893 *page_started = 1;
771ed689 894 goto out;
79787eaa 895 } else if (ret < 0) {
79787eaa 896 goto out_unlock;
771ed689
CM
897 }
898 }
899
900 BUG_ON(disk_num_bytes >
6c41761f 901 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 902
4b46fce2 903 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
904 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
905
d397712b 906 while (disk_num_bytes > 0) {
a791e35e
CM
907 unsigned long op;
908
287a0ab9 909 cur_alloc_size = disk_num_bytes;
00361589 910 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 911 root->sectorsize, 0, alloc_hint,
81c9ad23 912 &ins, 1);
00361589 913 if (ret < 0)
79787eaa 914 goto out_unlock;
d397712b 915
172ddd60 916 em = alloc_extent_map();
b9aa55be
LB
917 if (!em) {
918 ret = -ENOMEM;
ace68bac 919 goto out_reserve;
b9aa55be 920 }
e6dcd2dc 921 em->start = start;
445a6944 922 em->orig_start = em->start;
771ed689
CM
923 ram_size = ins.offset;
924 em->len = ins.offset;
2ab28f32
JB
925 em->mod_start = em->start;
926 em->mod_len = em->len;
c8b97818 927
e6dcd2dc 928 em->block_start = ins.objectid;
c8b97818 929 em->block_len = ins.offset;
b4939680 930 em->orig_block_len = ins.offset;
cc95bef6 931 em->ram_bytes = ram_size;
e6dcd2dc 932 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 933 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 934 em->generation = -1;
c8b97818 935
d397712b 936 while (1) {
890871be 937 write_lock(&em_tree->lock);
09a2a8f9 938 ret = add_extent_mapping(em_tree, em, 1);
890871be 939 write_unlock(&em_tree->lock);
e6dcd2dc
CM
940 if (ret != -EEXIST) {
941 free_extent_map(em);
942 break;
943 }
944 btrfs_drop_extent_cache(inode, start,
c8b97818 945 start + ram_size - 1, 0);
e6dcd2dc 946 }
ace68bac
LB
947 if (ret)
948 goto out_reserve;
e6dcd2dc 949
98d20f67 950 cur_alloc_size = ins.offset;
e6dcd2dc 951 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 952 ram_size, cur_alloc_size, 0);
ace68bac
LB
953 if (ret)
954 goto out_reserve;
c8b97818 955
17d217fe
YZ
956 if (root->root_key.objectid ==
957 BTRFS_DATA_RELOC_TREE_OBJECTID) {
958 ret = btrfs_reloc_clone_csums(inode, start,
959 cur_alloc_size);
00361589 960 if (ret)
ace68bac 961 goto out_reserve;
17d217fe
YZ
962 }
963
d397712b 964 if (disk_num_bytes < cur_alloc_size)
3b951516 965 break;
d397712b 966
c8b97818
CM
967 /* we're not doing compressed IO, don't unlock the first
968 * page (which the caller expects to stay locked), don't
969 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
970 *
971 * Do set the Private2 bit so we know this page was properly
972 * setup for writepage
c8b97818 973 */
c2790a2e
JB
974 op = unlock ? PAGE_UNLOCK : 0;
975 op |= PAGE_SET_PRIVATE2;
a791e35e 976
c2790a2e
JB
977 extent_clear_unlock_delalloc(inode, start,
978 start + ram_size - 1, locked_page,
979 EXTENT_LOCKED | EXTENT_DELALLOC,
980 op);
c8b97818 981 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
982 num_bytes -= cur_alloc_size;
983 alloc_hint = ins.objectid + ins.offset;
984 start += cur_alloc_size;
b888db2b 985 }
79787eaa 986out:
be20aa9d 987 return ret;
b7d5b0a8 988
ace68bac
LB
989out_reserve:
990 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 991out_unlock:
c2790a2e 992 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
993 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
994 EXTENT_DELALLOC | EXTENT_DEFRAG,
995 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
996 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 997 goto out;
771ed689 998}
c8b97818 999
771ed689
CM
1000/*
1001 * work queue call back to started compression on a file and pages
1002 */
1003static noinline void async_cow_start(struct btrfs_work *work)
1004{
1005 struct async_cow *async_cow;
1006 int num_added = 0;
1007 async_cow = container_of(work, struct async_cow, work);
1008
1009 compress_file_range(async_cow->inode, async_cow->locked_page,
1010 async_cow->start, async_cow->end, async_cow,
1011 &num_added);
8180ef88 1012 if (num_added == 0) {
cb77fcd8 1013 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1014 async_cow->inode = NULL;
8180ef88 1015 }
771ed689
CM
1016}
1017
1018/*
1019 * work queue call back to submit previously compressed pages
1020 */
1021static noinline void async_cow_submit(struct btrfs_work *work)
1022{
1023 struct async_cow *async_cow;
1024 struct btrfs_root *root;
1025 unsigned long nr_pages;
1026
1027 async_cow = container_of(work, struct async_cow, work);
1028
1029 root = async_cow->root;
1030 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1031 PAGE_CACHE_SHIFT;
1032
66657b31 1033 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1034 5 * 1024 * 1024 &&
771ed689
CM
1035 waitqueue_active(&root->fs_info->async_submit_wait))
1036 wake_up(&root->fs_info->async_submit_wait);
1037
d397712b 1038 if (async_cow->inode)
771ed689 1039 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1040}
c8b97818 1041
771ed689
CM
1042static noinline void async_cow_free(struct btrfs_work *work)
1043{
1044 struct async_cow *async_cow;
1045 async_cow = container_of(work, struct async_cow, work);
8180ef88 1046 if (async_cow->inode)
cb77fcd8 1047 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1048 kfree(async_cow);
1049}
1050
1051static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1052 u64 start, u64 end, int *page_started,
1053 unsigned long *nr_written)
1054{
1055 struct async_cow *async_cow;
1056 struct btrfs_root *root = BTRFS_I(inode)->root;
1057 unsigned long nr_pages;
1058 u64 cur_end;
287082b0 1059 int limit = 10 * 1024 * 1024;
771ed689 1060
a3429ab7
CM
1061 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1062 1, 0, NULL, GFP_NOFS);
d397712b 1063 while (start < end) {
771ed689 1064 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1065 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1066 async_cow->inode = igrab(inode);
771ed689
CM
1067 async_cow->root = root;
1068 async_cow->locked_page = locked_page;
1069 async_cow->start = start;
1070
6cbff00f 1071 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1072 cur_end = end;
1073 else
1074 cur_end = min(end, start + 512 * 1024 - 1);
1075
1076 async_cow->end = cur_end;
1077 INIT_LIST_HEAD(&async_cow->extents);
1078
1079 async_cow->work.func = async_cow_start;
1080 async_cow->work.ordered_func = async_cow_submit;
1081 async_cow->work.ordered_free = async_cow_free;
1082 async_cow->work.flags = 0;
1083
771ed689
CM
1084 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1085 PAGE_CACHE_SHIFT;
1086 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1087
1088 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1089 &async_cow->work);
1090
1091 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1092 wait_event(root->fs_info->async_submit_wait,
1093 (atomic_read(&root->fs_info->async_delalloc_pages) <
1094 limit));
1095 }
1096
d397712b 1097 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1098 atomic_read(&root->fs_info->async_delalloc_pages)) {
1099 wait_event(root->fs_info->async_submit_wait,
1100 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1101 0));
1102 }
1103
1104 *nr_written += nr_pages;
1105 start = cur_end + 1;
1106 }
1107 *page_started = 1;
1108 return 0;
be20aa9d
CM
1109}
1110
d397712b 1111static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1112 u64 bytenr, u64 num_bytes)
1113{
1114 int ret;
1115 struct btrfs_ordered_sum *sums;
1116 LIST_HEAD(list);
1117
07d400a6 1118 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1119 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1120 if (ret == 0 && list_empty(&list))
1121 return 0;
1122
1123 while (!list_empty(&list)) {
1124 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1125 list_del(&sums->list);
1126 kfree(sums);
1127 }
1128 return 1;
1129}
1130
d352ac68
CM
1131/*
1132 * when nowcow writeback call back. This checks for snapshots or COW copies
1133 * of the extents that exist in the file, and COWs the file as required.
1134 *
1135 * If no cow copies or snapshots exist, we write directly to the existing
1136 * blocks on disk
1137 */
7f366cfe
CM
1138static noinline int run_delalloc_nocow(struct inode *inode,
1139 struct page *locked_page,
771ed689
CM
1140 u64 start, u64 end, int *page_started, int force,
1141 unsigned long *nr_written)
be20aa9d 1142{
be20aa9d 1143 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1144 struct btrfs_trans_handle *trans;
be20aa9d 1145 struct extent_buffer *leaf;
be20aa9d 1146 struct btrfs_path *path;
80ff3856 1147 struct btrfs_file_extent_item *fi;
be20aa9d 1148 struct btrfs_key found_key;
80ff3856
YZ
1149 u64 cow_start;
1150 u64 cur_offset;
1151 u64 extent_end;
5d4f98a2 1152 u64 extent_offset;
80ff3856
YZ
1153 u64 disk_bytenr;
1154 u64 num_bytes;
b4939680 1155 u64 disk_num_bytes;
cc95bef6 1156 u64 ram_bytes;
80ff3856 1157 int extent_type;
79787eaa 1158 int ret, err;
d899e052 1159 int type;
80ff3856
YZ
1160 int nocow;
1161 int check_prev = 1;
82d5902d 1162 bool nolock;
33345d01 1163 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1164
1165 path = btrfs_alloc_path();
17ca04af 1166 if (!path) {
c2790a2e
JB
1167 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1168 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1169 EXTENT_DO_ACCOUNTING |
1170 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1171 PAGE_CLEAR_DIRTY |
1172 PAGE_SET_WRITEBACK |
1173 PAGE_END_WRITEBACK);
d8926bb3 1174 return -ENOMEM;
17ca04af 1175 }
82d5902d 1176
83eea1f1 1177 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1178
1179 if (nolock)
7a7eaa40 1180 trans = btrfs_join_transaction_nolock(root);
82d5902d 1181 else
7a7eaa40 1182 trans = btrfs_join_transaction(root);
ff5714cc 1183
79787eaa 1184 if (IS_ERR(trans)) {
c2790a2e
JB
1185 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1186 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1187 EXTENT_DO_ACCOUNTING |
1188 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1189 PAGE_CLEAR_DIRTY |
1190 PAGE_SET_WRITEBACK |
1191 PAGE_END_WRITEBACK);
79787eaa
JM
1192 btrfs_free_path(path);
1193 return PTR_ERR(trans);
1194 }
1195
74b21075 1196 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1197
80ff3856
YZ
1198 cow_start = (u64)-1;
1199 cur_offset = start;
1200 while (1) {
33345d01 1201 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1202 cur_offset, 0);
d788a349 1203 if (ret < 0)
79787eaa 1204 goto error;
80ff3856
YZ
1205 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1206 leaf = path->nodes[0];
1207 btrfs_item_key_to_cpu(leaf, &found_key,
1208 path->slots[0] - 1);
33345d01 1209 if (found_key.objectid == ino &&
80ff3856
YZ
1210 found_key.type == BTRFS_EXTENT_DATA_KEY)
1211 path->slots[0]--;
1212 }
1213 check_prev = 0;
1214next_slot:
1215 leaf = path->nodes[0];
1216 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1217 ret = btrfs_next_leaf(root, path);
d788a349 1218 if (ret < 0)
79787eaa 1219 goto error;
80ff3856
YZ
1220 if (ret > 0)
1221 break;
1222 leaf = path->nodes[0];
1223 }
be20aa9d 1224
80ff3856
YZ
1225 nocow = 0;
1226 disk_bytenr = 0;
17d217fe 1227 num_bytes = 0;
80ff3856
YZ
1228 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1229
33345d01 1230 if (found_key.objectid > ino ||
80ff3856
YZ
1231 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1232 found_key.offset > end)
1233 break;
1234
1235 if (found_key.offset > cur_offset) {
1236 extent_end = found_key.offset;
e9061e21 1237 extent_type = 0;
80ff3856
YZ
1238 goto out_check;
1239 }
1240
1241 fi = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_file_extent_item);
1243 extent_type = btrfs_file_extent_type(leaf, fi);
1244
cc95bef6 1245 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1246 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1247 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1248 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1249 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1250 extent_end = found_key.offset +
1251 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1252 disk_num_bytes =
1253 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1254 if (extent_end <= start) {
1255 path->slots[0]++;
1256 goto next_slot;
1257 }
17d217fe
YZ
1258 if (disk_bytenr == 0)
1259 goto out_check;
80ff3856
YZ
1260 if (btrfs_file_extent_compression(leaf, fi) ||
1261 btrfs_file_extent_encryption(leaf, fi) ||
1262 btrfs_file_extent_other_encoding(leaf, fi))
1263 goto out_check;
d899e052
YZ
1264 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1265 goto out_check;
d2fb3437 1266 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1267 goto out_check;
33345d01 1268 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1269 found_key.offset -
1270 extent_offset, disk_bytenr))
17d217fe 1271 goto out_check;
5d4f98a2 1272 disk_bytenr += extent_offset;
17d217fe
YZ
1273 disk_bytenr += cur_offset - found_key.offset;
1274 num_bytes = min(end + 1, extent_end) - cur_offset;
1275 /*
1276 * force cow if csum exists in the range.
1277 * this ensure that csum for a given extent are
1278 * either valid or do not exist.
1279 */
1280 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1281 goto out_check;
80ff3856
YZ
1282 nocow = 1;
1283 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1284 extent_end = found_key.offset +
514ac8ad
CM
1285 btrfs_file_extent_inline_len(leaf,
1286 path->slots[0], fi);
80ff3856
YZ
1287 extent_end = ALIGN(extent_end, root->sectorsize);
1288 } else {
1289 BUG_ON(1);
1290 }
1291out_check:
1292 if (extent_end <= start) {
1293 path->slots[0]++;
1294 goto next_slot;
1295 }
1296 if (!nocow) {
1297 if (cow_start == (u64)-1)
1298 cow_start = cur_offset;
1299 cur_offset = extent_end;
1300 if (cur_offset > end)
1301 break;
1302 path->slots[0]++;
1303 goto next_slot;
7ea394f1
YZ
1304 }
1305
b3b4aa74 1306 btrfs_release_path(path);
80ff3856 1307 if (cow_start != (u64)-1) {
00361589
JB
1308 ret = cow_file_range(inode, locked_page,
1309 cow_start, found_key.offset - 1,
1310 page_started, nr_written, 1);
d788a349 1311 if (ret)
79787eaa 1312 goto error;
80ff3856 1313 cow_start = (u64)-1;
7ea394f1 1314 }
80ff3856 1315
d899e052
YZ
1316 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1317 struct extent_map *em;
1318 struct extent_map_tree *em_tree;
1319 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1320 em = alloc_extent_map();
79787eaa 1321 BUG_ON(!em); /* -ENOMEM */
d899e052 1322 em->start = cur_offset;
70c8a91c 1323 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1324 em->len = num_bytes;
1325 em->block_len = num_bytes;
1326 em->block_start = disk_bytenr;
b4939680 1327 em->orig_block_len = disk_num_bytes;
cc95bef6 1328 em->ram_bytes = ram_bytes;
d899e052 1329 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1330 em->mod_start = em->start;
1331 em->mod_len = em->len;
d899e052 1332 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1333 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1334 em->generation = -1;
d899e052 1335 while (1) {
890871be 1336 write_lock(&em_tree->lock);
09a2a8f9 1337 ret = add_extent_mapping(em_tree, em, 1);
890871be 1338 write_unlock(&em_tree->lock);
d899e052
YZ
1339 if (ret != -EEXIST) {
1340 free_extent_map(em);
1341 break;
1342 }
1343 btrfs_drop_extent_cache(inode, em->start,
1344 em->start + em->len - 1, 0);
1345 }
1346 type = BTRFS_ORDERED_PREALLOC;
1347 } else {
1348 type = BTRFS_ORDERED_NOCOW;
1349 }
80ff3856
YZ
1350
1351 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1352 num_bytes, num_bytes, type);
79787eaa 1353 BUG_ON(ret); /* -ENOMEM */
771ed689 1354
efa56464
YZ
1355 if (root->root_key.objectid ==
1356 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1357 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1358 num_bytes);
d788a349 1359 if (ret)
79787eaa 1360 goto error;
efa56464
YZ
1361 }
1362
c2790a2e
JB
1363 extent_clear_unlock_delalloc(inode, cur_offset,
1364 cur_offset + num_bytes - 1,
1365 locked_page, EXTENT_LOCKED |
1366 EXTENT_DELALLOC, PAGE_UNLOCK |
1367 PAGE_SET_PRIVATE2);
80ff3856
YZ
1368 cur_offset = extent_end;
1369 if (cur_offset > end)
1370 break;
be20aa9d 1371 }
b3b4aa74 1372 btrfs_release_path(path);
80ff3856 1373
17ca04af 1374 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1375 cow_start = cur_offset;
17ca04af
JB
1376 cur_offset = end;
1377 }
1378
80ff3856 1379 if (cow_start != (u64)-1) {
00361589
JB
1380 ret = cow_file_range(inode, locked_page, cow_start, end,
1381 page_started, nr_written, 1);
d788a349 1382 if (ret)
79787eaa 1383 goto error;
80ff3856
YZ
1384 }
1385
79787eaa 1386error:
a698d075 1387 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1388 if (!ret)
1389 ret = err;
1390
17ca04af 1391 if (ret && cur_offset < end)
c2790a2e
JB
1392 extent_clear_unlock_delalloc(inode, cur_offset, end,
1393 locked_page, EXTENT_LOCKED |
151a41bc
JB
1394 EXTENT_DELALLOC | EXTENT_DEFRAG |
1395 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1396 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1397 PAGE_SET_WRITEBACK |
1398 PAGE_END_WRITEBACK);
7ea394f1 1399 btrfs_free_path(path);
79787eaa 1400 return ret;
be20aa9d
CM
1401}
1402
d352ac68
CM
1403/*
1404 * extent_io.c call back to do delayed allocation processing
1405 */
c8b97818 1406static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1407 u64 start, u64 end, int *page_started,
1408 unsigned long *nr_written)
be20aa9d 1409{
be20aa9d 1410 int ret;
7f366cfe 1411 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1412
7ddf5a42 1413 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1414 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1415 page_started, 1, nr_written);
7ddf5a42 1416 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1417 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1418 page_started, 0, nr_written);
7ddf5a42
JB
1419 } else if (!btrfs_test_opt(root, COMPRESS) &&
1420 !(BTRFS_I(inode)->force_compress) &&
1421 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1422 ret = cow_file_range(inode, locked_page, start, end,
1423 page_started, nr_written, 1);
7ddf5a42
JB
1424 } else {
1425 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1426 &BTRFS_I(inode)->runtime_flags);
771ed689 1427 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1428 page_started, nr_written);
7ddf5a42 1429 }
b888db2b
CM
1430 return ret;
1431}
1432
1bf85046
JM
1433static void btrfs_split_extent_hook(struct inode *inode,
1434 struct extent_state *orig, u64 split)
9ed74f2d 1435{
0ca1f7ce 1436 /* not delalloc, ignore it */
9ed74f2d 1437 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1438 return;
9ed74f2d 1439
9e0baf60
JB
1440 spin_lock(&BTRFS_I(inode)->lock);
1441 BTRFS_I(inode)->outstanding_extents++;
1442 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1443}
1444
1445/*
1446 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1447 * extents so we can keep track of new extents that are just merged onto old
1448 * extents, such as when we are doing sequential writes, so we can properly
1449 * account for the metadata space we'll need.
1450 */
1bf85046
JM
1451static void btrfs_merge_extent_hook(struct inode *inode,
1452 struct extent_state *new,
1453 struct extent_state *other)
9ed74f2d 1454{
9ed74f2d
JB
1455 /* not delalloc, ignore it */
1456 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1457 return;
9ed74f2d 1458
9e0baf60
JB
1459 spin_lock(&BTRFS_I(inode)->lock);
1460 BTRFS_I(inode)->outstanding_extents--;
1461 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1462}
1463
eb73c1b7
MX
1464static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1465 struct inode *inode)
1466{
1467 spin_lock(&root->delalloc_lock);
1468 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1469 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1470 &root->delalloc_inodes);
1471 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1472 &BTRFS_I(inode)->runtime_flags);
1473 root->nr_delalloc_inodes++;
1474 if (root->nr_delalloc_inodes == 1) {
1475 spin_lock(&root->fs_info->delalloc_root_lock);
1476 BUG_ON(!list_empty(&root->delalloc_root));
1477 list_add_tail(&root->delalloc_root,
1478 &root->fs_info->delalloc_roots);
1479 spin_unlock(&root->fs_info->delalloc_root_lock);
1480 }
1481 }
1482 spin_unlock(&root->delalloc_lock);
1483}
1484
1485static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1486 struct inode *inode)
1487{
1488 spin_lock(&root->delalloc_lock);
1489 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1490 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1491 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1492 &BTRFS_I(inode)->runtime_flags);
1493 root->nr_delalloc_inodes--;
1494 if (!root->nr_delalloc_inodes) {
1495 spin_lock(&root->fs_info->delalloc_root_lock);
1496 BUG_ON(list_empty(&root->delalloc_root));
1497 list_del_init(&root->delalloc_root);
1498 spin_unlock(&root->fs_info->delalloc_root_lock);
1499 }
1500 }
1501 spin_unlock(&root->delalloc_lock);
1502}
1503
d352ac68
CM
1504/*
1505 * extent_io.c set_bit_hook, used to track delayed allocation
1506 * bytes in this file, and to maintain the list of inodes that
1507 * have pending delalloc work to be done.
1508 */
1bf85046 1509static void btrfs_set_bit_hook(struct inode *inode,
41074888 1510 struct extent_state *state, unsigned long *bits)
291d673e 1511{
9ed74f2d 1512
75eff68e
CM
1513 /*
1514 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1515 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1516 * bit, which is only set or cleared with irqs on
1517 */
0ca1f7ce 1518 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1519 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1520 u64 len = state->end + 1 - state->start;
83eea1f1 1521 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1522
9e0baf60 1523 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1524 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1525 } else {
1526 spin_lock(&BTRFS_I(inode)->lock);
1527 BTRFS_I(inode)->outstanding_extents++;
1528 spin_unlock(&BTRFS_I(inode)->lock);
1529 }
287a0ab9 1530
963d678b
MX
1531 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1532 root->fs_info->delalloc_batch);
df0af1a5 1533 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1534 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1535 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1536 &BTRFS_I(inode)->runtime_flags))
1537 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1538 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1539 }
291d673e
CM
1540}
1541
d352ac68
CM
1542/*
1543 * extent_io.c clear_bit_hook, see set_bit_hook for why
1544 */
1bf85046 1545static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1546 struct extent_state *state,
1547 unsigned long *bits)
291d673e 1548{
75eff68e
CM
1549 /*
1550 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1551 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1552 * bit, which is only set or cleared with irqs on
1553 */
0ca1f7ce 1554 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1555 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1556 u64 len = state->end + 1 - state->start;
83eea1f1 1557 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1558
9e0baf60 1559 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1560 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1561 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1562 spin_lock(&BTRFS_I(inode)->lock);
1563 BTRFS_I(inode)->outstanding_extents--;
1564 spin_unlock(&BTRFS_I(inode)->lock);
1565 }
0ca1f7ce 1566
b6d08f06
JB
1567 /*
1568 * We don't reserve metadata space for space cache inodes so we
1569 * don't need to call dellalloc_release_metadata if there is an
1570 * error.
1571 */
1572 if (*bits & EXTENT_DO_ACCOUNTING &&
1573 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1574 btrfs_delalloc_release_metadata(inode, len);
1575
0cb59c99 1576 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1577 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1578 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1579
963d678b
MX
1580 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1581 root->fs_info->delalloc_batch);
df0af1a5 1582 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1583 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1584 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1585 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1586 &BTRFS_I(inode)->runtime_flags))
1587 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1588 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1589 }
291d673e
CM
1590}
1591
d352ac68
CM
1592/*
1593 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1594 * we don't create bios that span stripes or chunks
1595 */
64a16701 1596int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1597 size_t size, struct bio *bio,
1598 unsigned long bio_flags)
239b14b3
CM
1599{
1600 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1601 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1602 u64 length = 0;
1603 u64 map_length;
239b14b3
CM
1604 int ret;
1605
771ed689
CM
1606 if (bio_flags & EXTENT_BIO_COMPRESSED)
1607 return 0;
1608
f2d8d74d 1609 length = bio->bi_size;
239b14b3 1610 map_length = length;
64a16701 1611 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1612 &map_length, NULL, 0);
3ec706c8 1613 /* Will always return 0 with map_multi == NULL */
3444a972 1614 BUG_ON(ret < 0);
d397712b 1615 if (map_length < length + size)
239b14b3 1616 return 1;
3444a972 1617 return 0;
239b14b3
CM
1618}
1619
d352ac68
CM
1620/*
1621 * in order to insert checksums into the metadata in large chunks,
1622 * we wait until bio submission time. All the pages in the bio are
1623 * checksummed and sums are attached onto the ordered extent record.
1624 *
1625 * At IO completion time the cums attached on the ordered extent record
1626 * are inserted into the btree
1627 */
d397712b
CM
1628static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1629 struct bio *bio, int mirror_num,
eaf25d93
CM
1630 unsigned long bio_flags,
1631 u64 bio_offset)
065631f6 1632{
065631f6 1633 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1634 int ret = 0;
e015640f 1635
d20f7043 1636 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1637 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1638 return 0;
1639}
e015640f 1640
4a69a410
CM
1641/*
1642 * in order to insert checksums into the metadata in large chunks,
1643 * we wait until bio submission time. All the pages in the bio are
1644 * checksummed and sums are attached onto the ordered extent record.
1645 *
1646 * At IO completion time the cums attached on the ordered extent record
1647 * are inserted into the btree
1648 */
b2950863 1649static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1650 int mirror_num, unsigned long bio_flags,
1651 u64 bio_offset)
4a69a410
CM
1652{
1653 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1654 int ret;
1655
1656 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1657 if (ret)
1658 bio_endio(bio, ret);
1659 return ret;
44b8bd7e
CM
1660}
1661
d352ac68 1662/*
cad321ad
CM
1663 * extent_io.c submission hook. This does the right thing for csum calculation
1664 * on write, or reading the csums from the tree before a read
d352ac68 1665 */
b2950863 1666static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1667 int mirror_num, unsigned long bio_flags,
1668 u64 bio_offset)
44b8bd7e
CM
1669{
1670 struct btrfs_root *root = BTRFS_I(inode)->root;
1671 int ret = 0;
19b9bdb0 1672 int skip_sum;
0417341e 1673 int metadata = 0;
b812ce28 1674 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1675
6cbff00f 1676 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1677
83eea1f1 1678 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1679 metadata = 2;
1680
7b6d91da 1681 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1682 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1683 if (ret)
61891923 1684 goto out;
5fd02043 1685
d20f7043 1686 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1687 ret = btrfs_submit_compressed_read(inode, bio,
1688 mirror_num,
1689 bio_flags);
1690 goto out;
c2db1073
TI
1691 } else if (!skip_sum) {
1692 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1693 if (ret)
61891923 1694 goto out;
c2db1073 1695 }
4d1b5fb4 1696 goto mapit;
b812ce28 1697 } else if (async && !skip_sum) {
17d217fe
YZ
1698 /* csum items have already been cloned */
1699 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1700 goto mapit;
19b9bdb0 1701 /* we're doing a write, do the async checksumming */
61891923 1702 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1703 inode, rw, bio, mirror_num,
eaf25d93
CM
1704 bio_flags, bio_offset,
1705 __btrfs_submit_bio_start,
4a69a410 1706 __btrfs_submit_bio_done);
61891923 1707 goto out;
b812ce28
JB
1708 } else if (!skip_sum) {
1709 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1710 if (ret)
1711 goto out;
19b9bdb0
CM
1712 }
1713
0b86a832 1714mapit:
61891923
SB
1715 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1716
1717out:
1718 if (ret < 0)
1719 bio_endio(bio, ret);
1720 return ret;
065631f6 1721}
6885f308 1722
d352ac68
CM
1723/*
1724 * given a list of ordered sums record them in the inode. This happens
1725 * at IO completion time based on sums calculated at bio submission time.
1726 */
ba1da2f4 1727static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1728 struct inode *inode, u64 file_offset,
1729 struct list_head *list)
1730{
e6dcd2dc
CM
1731 struct btrfs_ordered_sum *sum;
1732
c6e30871 1733 list_for_each_entry(sum, list, list) {
39847c4d 1734 trans->adding_csums = 1;
d20f7043
CM
1735 btrfs_csum_file_blocks(trans,
1736 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1737 trans->adding_csums = 0;
e6dcd2dc
CM
1738 }
1739 return 0;
1740}
1741
2ac55d41
JB
1742int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1743 struct extent_state **cached_state)
ea8c2819 1744{
6c1500f2 1745 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1746 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1747 cached_state, GFP_NOFS);
ea8c2819
CM
1748}
1749
d352ac68 1750/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1751struct btrfs_writepage_fixup {
1752 struct page *page;
1753 struct btrfs_work work;
1754};
1755
b2950863 1756static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1757{
1758 struct btrfs_writepage_fixup *fixup;
1759 struct btrfs_ordered_extent *ordered;
2ac55d41 1760 struct extent_state *cached_state = NULL;
247e743c
CM
1761 struct page *page;
1762 struct inode *inode;
1763 u64 page_start;
1764 u64 page_end;
87826df0 1765 int ret;
247e743c
CM
1766
1767 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1768 page = fixup->page;
4a096752 1769again:
247e743c
CM
1770 lock_page(page);
1771 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1772 ClearPageChecked(page);
1773 goto out_page;
1774 }
1775
1776 inode = page->mapping->host;
1777 page_start = page_offset(page);
1778 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1779
2ac55d41 1780 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1781 &cached_state);
4a096752
CM
1782
1783 /* already ordered? We're done */
8b62b72b 1784 if (PagePrivate2(page))
247e743c 1785 goto out;
4a096752
CM
1786
1787 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1788 if (ordered) {
2ac55d41
JB
1789 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1790 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1791 unlock_page(page);
1792 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1793 btrfs_put_ordered_extent(ordered);
4a096752
CM
1794 goto again;
1795 }
247e743c 1796
87826df0
JM
1797 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1798 if (ret) {
1799 mapping_set_error(page->mapping, ret);
1800 end_extent_writepage(page, ret, page_start, page_end);
1801 ClearPageChecked(page);
1802 goto out;
1803 }
1804
2ac55d41 1805 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1806 ClearPageChecked(page);
87826df0 1807 set_page_dirty(page);
247e743c 1808out:
2ac55d41
JB
1809 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1810 &cached_state, GFP_NOFS);
247e743c
CM
1811out_page:
1812 unlock_page(page);
1813 page_cache_release(page);
b897abec 1814 kfree(fixup);
247e743c
CM
1815}
1816
1817/*
1818 * There are a few paths in the higher layers of the kernel that directly
1819 * set the page dirty bit without asking the filesystem if it is a
1820 * good idea. This causes problems because we want to make sure COW
1821 * properly happens and the data=ordered rules are followed.
1822 *
c8b97818 1823 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1824 * hasn't been properly setup for IO. We kick off an async process
1825 * to fix it up. The async helper will wait for ordered extents, set
1826 * the delalloc bit and make it safe to write the page.
1827 */
b2950863 1828static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1829{
1830 struct inode *inode = page->mapping->host;
1831 struct btrfs_writepage_fixup *fixup;
1832 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1833
8b62b72b
CM
1834 /* this page is properly in the ordered list */
1835 if (TestClearPagePrivate2(page))
247e743c
CM
1836 return 0;
1837
1838 if (PageChecked(page))
1839 return -EAGAIN;
1840
1841 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1842 if (!fixup)
1843 return -EAGAIN;
f421950f 1844
247e743c
CM
1845 SetPageChecked(page);
1846 page_cache_get(page);
1847 fixup->work.func = btrfs_writepage_fixup_worker;
1848 fixup->page = page;
1849 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1850 return -EBUSY;
247e743c
CM
1851}
1852
d899e052
YZ
1853static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1854 struct inode *inode, u64 file_pos,
1855 u64 disk_bytenr, u64 disk_num_bytes,
1856 u64 num_bytes, u64 ram_bytes,
1857 u8 compression, u8 encryption,
1858 u16 other_encoding, int extent_type)
1859{
1860 struct btrfs_root *root = BTRFS_I(inode)->root;
1861 struct btrfs_file_extent_item *fi;
1862 struct btrfs_path *path;
1863 struct extent_buffer *leaf;
1864 struct btrfs_key ins;
1acae57b 1865 int extent_inserted = 0;
d899e052
YZ
1866 int ret;
1867
1868 path = btrfs_alloc_path();
d8926bb3
MF
1869 if (!path)
1870 return -ENOMEM;
d899e052 1871
a1ed835e
CM
1872 /*
1873 * we may be replacing one extent in the tree with another.
1874 * The new extent is pinned in the extent map, and we don't want
1875 * to drop it from the cache until it is completely in the btree.
1876 *
1877 * So, tell btrfs_drop_extents to leave this extent in the cache.
1878 * the caller is expected to unpin it and allow it to be merged
1879 * with the others.
1880 */
1acae57b
FDBM
1881 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1882 file_pos + num_bytes, NULL, 0,
1883 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
1884 if (ret)
1885 goto out;
d899e052 1886
1acae57b
FDBM
1887 if (!extent_inserted) {
1888 ins.objectid = btrfs_ino(inode);
1889 ins.offset = file_pos;
1890 ins.type = BTRFS_EXTENT_DATA_KEY;
1891
1892 path->leave_spinning = 1;
1893 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1894 sizeof(*fi));
1895 if (ret)
1896 goto out;
1897 }
d899e052
YZ
1898 leaf = path->nodes[0];
1899 fi = btrfs_item_ptr(leaf, path->slots[0],
1900 struct btrfs_file_extent_item);
1901 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1902 btrfs_set_file_extent_type(leaf, fi, extent_type);
1903 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1904 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1905 btrfs_set_file_extent_offset(leaf, fi, 0);
1906 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1907 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1908 btrfs_set_file_extent_compression(leaf, fi, compression);
1909 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1910 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1911
d899e052 1912 btrfs_mark_buffer_dirty(leaf);
ce195332 1913 btrfs_release_path(path);
d899e052
YZ
1914
1915 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1916
1917 ins.objectid = disk_bytenr;
1918 ins.offset = disk_num_bytes;
1919 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1920 ret = btrfs_alloc_reserved_file_extent(trans, root,
1921 root->root_key.objectid,
33345d01 1922 btrfs_ino(inode), file_pos, &ins);
79787eaa 1923out:
d899e052 1924 btrfs_free_path(path);
b9473439 1925
79787eaa 1926 return ret;
d899e052
YZ
1927}
1928
38c227d8
LB
1929/* snapshot-aware defrag */
1930struct sa_defrag_extent_backref {
1931 struct rb_node node;
1932 struct old_sa_defrag_extent *old;
1933 u64 root_id;
1934 u64 inum;
1935 u64 file_pos;
1936 u64 extent_offset;
1937 u64 num_bytes;
1938 u64 generation;
1939};
1940
1941struct old_sa_defrag_extent {
1942 struct list_head list;
1943 struct new_sa_defrag_extent *new;
1944
1945 u64 extent_offset;
1946 u64 bytenr;
1947 u64 offset;
1948 u64 len;
1949 int count;
1950};
1951
1952struct new_sa_defrag_extent {
1953 struct rb_root root;
1954 struct list_head head;
1955 struct btrfs_path *path;
1956 struct inode *inode;
1957 u64 file_pos;
1958 u64 len;
1959 u64 bytenr;
1960 u64 disk_len;
1961 u8 compress_type;
1962};
1963
1964static int backref_comp(struct sa_defrag_extent_backref *b1,
1965 struct sa_defrag_extent_backref *b2)
1966{
1967 if (b1->root_id < b2->root_id)
1968 return -1;
1969 else if (b1->root_id > b2->root_id)
1970 return 1;
1971
1972 if (b1->inum < b2->inum)
1973 return -1;
1974 else if (b1->inum > b2->inum)
1975 return 1;
1976
1977 if (b1->file_pos < b2->file_pos)
1978 return -1;
1979 else if (b1->file_pos > b2->file_pos)
1980 return 1;
1981
1982 /*
1983 * [------------------------------] ===> (a range of space)
1984 * |<--->| |<---->| =============> (fs/file tree A)
1985 * |<---------------------------->| ===> (fs/file tree B)
1986 *
1987 * A range of space can refer to two file extents in one tree while
1988 * refer to only one file extent in another tree.
1989 *
1990 * So we may process a disk offset more than one time(two extents in A)
1991 * and locate at the same extent(one extent in B), then insert two same
1992 * backrefs(both refer to the extent in B).
1993 */
1994 return 0;
1995}
1996
1997static void backref_insert(struct rb_root *root,
1998 struct sa_defrag_extent_backref *backref)
1999{
2000 struct rb_node **p = &root->rb_node;
2001 struct rb_node *parent = NULL;
2002 struct sa_defrag_extent_backref *entry;
2003 int ret;
2004
2005 while (*p) {
2006 parent = *p;
2007 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2008
2009 ret = backref_comp(backref, entry);
2010 if (ret < 0)
2011 p = &(*p)->rb_left;
2012 else
2013 p = &(*p)->rb_right;
2014 }
2015
2016 rb_link_node(&backref->node, parent, p);
2017 rb_insert_color(&backref->node, root);
2018}
2019
2020/*
2021 * Note the backref might has changed, and in this case we just return 0.
2022 */
2023static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2024 void *ctx)
2025{
2026 struct btrfs_file_extent_item *extent;
2027 struct btrfs_fs_info *fs_info;
2028 struct old_sa_defrag_extent *old = ctx;
2029 struct new_sa_defrag_extent *new = old->new;
2030 struct btrfs_path *path = new->path;
2031 struct btrfs_key key;
2032 struct btrfs_root *root;
2033 struct sa_defrag_extent_backref *backref;
2034 struct extent_buffer *leaf;
2035 struct inode *inode = new->inode;
2036 int slot;
2037 int ret;
2038 u64 extent_offset;
2039 u64 num_bytes;
2040
2041 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2042 inum == btrfs_ino(inode))
2043 return 0;
2044
2045 key.objectid = root_id;
2046 key.type = BTRFS_ROOT_ITEM_KEY;
2047 key.offset = (u64)-1;
2048
2049 fs_info = BTRFS_I(inode)->root->fs_info;
2050 root = btrfs_read_fs_root_no_name(fs_info, &key);
2051 if (IS_ERR(root)) {
2052 if (PTR_ERR(root) == -ENOENT)
2053 return 0;
2054 WARN_ON(1);
2055 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2056 inum, offset, root_id);
2057 return PTR_ERR(root);
2058 }
2059
2060 key.objectid = inum;
2061 key.type = BTRFS_EXTENT_DATA_KEY;
2062 if (offset > (u64)-1 << 32)
2063 key.offset = 0;
2064 else
2065 key.offset = offset;
2066
2067 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2068 if (WARN_ON(ret < 0))
38c227d8 2069 return ret;
50f1319c 2070 ret = 0;
38c227d8
LB
2071
2072 while (1) {
2073 cond_resched();
2074
2075 leaf = path->nodes[0];
2076 slot = path->slots[0];
2077
2078 if (slot >= btrfs_header_nritems(leaf)) {
2079 ret = btrfs_next_leaf(root, path);
2080 if (ret < 0) {
2081 goto out;
2082 } else if (ret > 0) {
2083 ret = 0;
2084 goto out;
2085 }
2086 continue;
2087 }
2088
2089 path->slots[0]++;
2090
2091 btrfs_item_key_to_cpu(leaf, &key, slot);
2092
2093 if (key.objectid > inum)
2094 goto out;
2095
2096 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2097 continue;
2098
2099 extent = btrfs_item_ptr(leaf, slot,
2100 struct btrfs_file_extent_item);
2101
2102 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2103 continue;
2104
e68afa49
LB
2105 /*
2106 * 'offset' refers to the exact key.offset,
2107 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2108 * (key.offset - extent_offset).
2109 */
2110 if (key.offset != offset)
38c227d8
LB
2111 continue;
2112
e68afa49 2113 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2114 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2115
38c227d8
LB
2116 if (extent_offset >= old->extent_offset + old->offset +
2117 old->len || extent_offset + num_bytes <=
2118 old->extent_offset + old->offset)
2119 continue;
38c227d8
LB
2120 break;
2121 }
2122
2123 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2124 if (!backref) {
2125 ret = -ENOENT;
2126 goto out;
2127 }
2128
2129 backref->root_id = root_id;
2130 backref->inum = inum;
e68afa49 2131 backref->file_pos = offset;
38c227d8
LB
2132 backref->num_bytes = num_bytes;
2133 backref->extent_offset = extent_offset;
2134 backref->generation = btrfs_file_extent_generation(leaf, extent);
2135 backref->old = old;
2136 backref_insert(&new->root, backref);
2137 old->count++;
2138out:
2139 btrfs_release_path(path);
2140 WARN_ON(ret);
2141 return ret;
2142}
2143
2144static noinline bool record_extent_backrefs(struct btrfs_path *path,
2145 struct new_sa_defrag_extent *new)
2146{
2147 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2148 struct old_sa_defrag_extent *old, *tmp;
2149 int ret;
2150
2151 new->path = path;
2152
2153 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2154 ret = iterate_inodes_from_logical(old->bytenr +
2155 old->extent_offset, fs_info,
38c227d8
LB
2156 path, record_one_backref,
2157 old);
4724b106
JB
2158 if (ret < 0 && ret != -ENOENT)
2159 return false;
38c227d8
LB
2160
2161 /* no backref to be processed for this extent */
2162 if (!old->count) {
2163 list_del(&old->list);
2164 kfree(old);
2165 }
2166 }
2167
2168 if (list_empty(&new->head))
2169 return false;
2170
2171 return true;
2172}
2173
2174static int relink_is_mergable(struct extent_buffer *leaf,
2175 struct btrfs_file_extent_item *fi,
116e0024 2176 struct new_sa_defrag_extent *new)
38c227d8 2177{
116e0024 2178 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2179 return 0;
2180
2181 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2182 return 0;
2183
116e0024
LB
2184 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2185 return 0;
2186
2187 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2188 btrfs_file_extent_other_encoding(leaf, fi))
2189 return 0;
2190
2191 return 1;
2192}
2193
2194/*
2195 * Note the backref might has changed, and in this case we just return 0.
2196 */
2197static noinline int relink_extent_backref(struct btrfs_path *path,
2198 struct sa_defrag_extent_backref *prev,
2199 struct sa_defrag_extent_backref *backref)
2200{
2201 struct btrfs_file_extent_item *extent;
2202 struct btrfs_file_extent_item *item;
2203 struct btrfs_ordered_extent *ordered;
2204 struct btrfs_trans_handle *trans;
2205 struct btrfs_fs_info *fs_info;
2206 struct btrfs_root *root;
2207 struct btrfs_key key;
2208 struct extent_buffer *leaf;
2209 struct old_sa_defrag_extent *old = backref->old;
2210 struct new_sa_defrag_extent *new = old->new;
2211 struct inode *src_inode = new->inode;
2212 struct inode *inode;
2213 struct extent_state *cached = NULL;
2214 int ret = 0;
2215 u64 start;
2216 u64 len;
2217 u64 lock_start;
2218 u64 lock_end;
2219 bool merge = false;
2220 int index;
2221
2222 if (prev && prev->root_id == backref->root_id &&
2223 prev->inum == backref->inum &&
2224 prev->file_pos + prev->num_bytes == backref->file_pos)
2225 merge = true;
2226
2227 /* step 1: get root */
2228 key.objectid = backref->root_id;
2229 key.type = BTRFS_ROOT_ITEM_KEY;
2230 key.offset = (u64)-1;
2231
2232 fs_info = BTRFS_I(src_inode)->root->fs_info;
2233 index = srcu_read_lock(&fs_info->subvol_srcu);
2234
2235 root = btrfs_read_fs_root_no_name(fs_info, &key);
2236 if (IS_ERR(root)) {
2237 srcu_read_unlock(&fs_info->subvol_srcu, index);
2238 if (PTR_ERR(root) == -ENOENT)
2239 return 0;
2240 return PTR_ERR(root);
2241 }
38c227d8 2242
bcbba5e6
WS
2243 if (btrfs_root_readonly(root)) {
2244 srcu_read_unlock(&fs_info->subvol_srcu, index);
2245 return 0;
2246 }
2247
38c227d8
LB
2248 /* step 2: get inode */
2249 key.objectid = backref->inum;
2250 key.type = BTRFS_INODE_ITEM_KEY;
2251 key.offset = 0;
2252
2253 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2254 if (IS_ERR(inode)) {
2255 srcu_read_unlock(&fs_info->subvol_srcu, index);
2256 return 0;
2257 }
2258
2259 srcu_read_unlock(&fs_info->subvol_srcu, index);
2260
2261 /* step 3: relink backref */
2262 lock_start = backref->file_pos;
2263 lock_end = backref->file_pos + backref->num_bytes - 1;
2264 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2265 0, &cached);
2266
2267 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2268 if (ordered) {
2269 btrfs_put_ordered_extent(ordered);
2270 goto out_unlock;
2271 }
2272
2273 trans = btrfs_join_transaction(root);
2274 if (IS_ERR(trans)) {
2275 ret = PTR_ERR(trans);
2276 goto out_unlock;
2277 }
2278
2279 key.objectid = backref->inum;
2280 key.type = BTRFS_EXTENT_DATA_KEY;
2281 key.offset = backref->file_pos;
2282
2283 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2284 if (ret < 0) {
2285 goto out_free_path;
2286 } else if (ret > 0) {
2287 ret = 0;
2288 goto out_free_path;
2289 }
2290
2291 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2292 struct btrfs_file_extent_item);
2293
2294 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2295 backref->generation)
2296 goto out_free_path;
2297
2298 btrfs_release_path(path);
2299
2300 start = backref->file_pos;
2301 if (backref->extent_offset < old->extent_offset + old->offset)
2302 start += old->extent_offset + old->offset -
2303 backref->extent_offset;
2304
2305 len = min(backref->extent_offset + backref->num_bytes,
2306 old->extent_offset + old->offset + old->len);
2307 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2308
2309 ret = btrfs_drop_extents(trans, root, inode, start,
2310 start + len, 1);
2311 if (ret)
2312 goto out_free_path;
2313again:
2314 key.objectid = btrfs_ino(inode);
2315 key.type = BTRFS_EXTENT_DATA_KEY;
2316 key.offset = start;
2317
a09a0a70 2318 path->leave_spinning = 1;
38c227d8
LB
2319 if (merge) {
2320 struct btrfs_file_extent_item *fi;
2321 u64 extent_len;
2322 struct btrfs_key found_key;
2323
3c9665df 2324 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2325 if (ret < 0)
2326 goto out_free_path;
2327
2328 path->slots[0]--;
2329 leaf = path->nodes[0];
2330 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2331
2332 fi = btrfs_item_ptr(leaf, path->slots[0],
2333 struct btrfs_file_extent_item);
2334 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2335
116e0024
LB
2336 if (extent_len + found_key.offset == start &&
2337 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2338 btrfs_set_file_extent_num_bytes(leaf, fi,
2339 extent_len + len);
2340 btrfs_mark_buffer_dirty(leaf);
2341 inode_add_bytes(inode, len);
2342
2343 ret = 1;
2344 goto out_free_path;
2345 } else {
2346 merge = false;
2347 btrfs_release_path(path);
2348 goto again;
2349 }
2350 }
2351
2352 ret = btrfs_insert_empty_item(trans, root, path, &key,
2353 sizeof(*extent));
2354 if (ret) {
2355 btrfs_abort_transaction(trans, root, ret);
2356 goto out_free_path;
2357 }
2358
2359 leaf = path->nodes[0];
2360 item = btrfs_item_ptr(leaf, path->slots[0],
2361 struct btrfs_file_extent_item);
2362 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2363 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2364 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2365 btrfs_set_file_extent_num_bytes(leaf, item, len);
2366 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2367 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2368 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2369 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2370 btrfs_set_file_extent_encryption(leaf, item, 0);
2371 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2372
2373 btrfs_mark_buffer_dirty(leaf);
2374 inode_add_bytes(inode, len);
a09a0a70 2375 btrfs_release_path(path);
38c227d8
LB
2376
2377 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2378 new->disk_len, 0,
2379 backref->root_id, backref->inum,
2380 new->file_pos, 0); /* start - extent_offset */
2381 if (ret) {
2382 btrfs_abort_transaction(trans, root, ret);
2383 goto out_free_path;
2384 }
2385
2386 ret = 1;
2387out_free_path:
2388 btrfs_release_path(path);
a09a0a70 2389 path->leave_spinning = 0;
38c227d8
LB
2390 btrfs_end_transaction(trans, root);
2391out_unlock:
2392 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2393 &cached, GFP_NOFS);
2394 iput(inode);
2395 return ret;
2396}
2397
6f519564
LB
2398static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2399{
2400 struct old_sa_defrag_extent *old, *tmp;
2401
2402 if (!new)
2403 return;
2404
2405 list_for_each_entry_safe(old, tmp, &new->head, list) {
2406 list_del(&old->list);
2407 kfree(old);
2408 }
2409 kfree(new);
2410}
2411
38c227d8
LB
2412static void relink_file_extents(struct new_sa_defrag_extent *new)
2413{
2414 struct btrfs_path *path;
38c227d8
LB
2415 struct sa_defrag_extent_backref *backref;
2416 struct sa_defrag_extent_backref *prev = NULL;
2417 struct inode *inode;
2418 struct btrfs_root *root;
2419 struct rb_node *node;
2420 int ret;
2421
2422 inode = new->inode;
2423 root = BTRFS_I(inode)->root;
2424
2425 path = btrfs_alloc_path();
2426 if (!path)
2427 return;
2428
2429 if (!record_extent_backrefs(path, new)) {
2430 btrfs_free_path(path);
2431 goto out;
2432 }
2433 btrfs_release_path(path);
2434
2435 while (1) {
2436 node = rb_first(&new->root);
2437 if (!node)
2438 break;
2439 rb_erase(node, &new->root);
2440
2441 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2442
2443 ret = relink_extent_backref(path, prev, backref);
2444 WARN_ON(ret < 0);
2445
2446 kfree(prev);
2447
2448 if (ret == 1)
2449 prev = backref;
2450 else
2451 prev = NULL;
2452 cond_resched();
2453 }
2454 kfree(prev);
2455
2456 btrfs_free_path(path);
38c227d8 2457out:
6f519564
LB
2458 free_sa_defrag_extent(new);
2459
38c227d8
LB
2460 atomic_dec(&root->fs_info->defrag_running);
2461 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2462}
2463
2464static struct new_sa_defrag_extent *
2465record_old_file_extents(struct inode *inode,
2466 struct btrfs_ordered_extent *ordered)
2467{
2468 struct btrfs_root *root = BTRFS_I(inode)->root;
2469 struct btrfs_path *path;
2470 struct btrfs_key key;
6f519564 2471 struct old_sa_defrag_extent *old;
38c227d8
LB
2472 struct new_sa_defrag_extent *new;
2473 int ret;
2474
2475 new = kmalloc(sizeof(*new), GFP_NOFS);
2476 if (!new)
2477 return NULL;
2478
2479 new->inode = inode;
2480 new->file_pos = ordered->file_offset;
2481 new->len = ordered->len;
2482 new->bytenr = ordered->start;
2483 new->disk_len = ordered->disk_len;
2484 new->compress_type = ordered->compress_type;
2485 new->root = RB_ROOT;
2486 INIT_LIST_HEAD(&new->head);
2487
2488 path = btrfs_alloc_path();
2489 if (!path)
2490 goto out_kfree;
2491
2492 key.objectid = btrfs_ino(inode);
2493 key.type = BTRFS_EXTENT_DATA_KEY;
2494 key.offset = new->file_pos;
2495
2496 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2497 if (ret < 0)
2498 goto out_free_path;
2499 if (ret > 0 && path->slots[0] > 0)
2500 path->slots[0]--;
2501
2502 /* find out all the old extents for the file range */
2503 while (1) {
2504 struct btrfs_file_extent_item *extent;
2505 struct extent_buffer *l;
2506 int slot;
2507 u64 num_bytes;
2508 u64 offset;
2509 u64 end;
2510 u64 disk_bytenr;
2511 u64 extent_offset;
2512
2513 l = path->nodes[0];
2514 slot = path->slots[0];
2515
2516 if (slot >= btrfs_header_nritems(l)) {
2517 ret = btrfs_next_leaf(root, path);
2518 if (ret < 0)
6f519564 2519 goto out_free_path;
38c227d8
LB
2520 else if (ret > 0)
2521 break;
2522 continue;
2523 }
2524
2525 btrfs_item_key_to_cpu(l, &key, slot);
2526
2527 if (key.objectid != btrfs_ino(inode))
2528 break;
2529 if (key.type != BTRFS_EXTENT_DATA_KEY)
2530 break;
2531 if (key.offset >= new->file_pos + new->len)
2532 break;
2533
2534 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2535
2536 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2537 if (key.offset + num_bytes < new->file_pos)
2538 goto next;
2539
2540 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2541 if (!disk_bytenr)
2542 goto next;
2543
2544 extent_offset = btrfs_file_extent_offset(l, extent);
2545
2546 old = kmalloc(sizeof(*old), GFP_NOFS);
2547 if (!old)
6f519564 2548 goto out_free_path;
38c227d8
LB
2549
2550 offset = max(new->file_pos, key.offset);
2551 end = min(new->file_pos + new->len, key.offset + num_bytes);
2552
2553 old->bytenr = disk_bytenr;
2554 old->extent_offset = extent_offset;
2555 old->offset = offset - key.offset;
2556 old->len = end - offset;
2557 old->new = new;
2558 old->count = 0;
2559 list_add_tail(&old->list, &new->head);
2560next:
2561 path->slots[0]++;
2562 cond_resched();
2563 }
2564
2565 btrfs_free_path(path);
2566 atomic_inc(&root->fs_info->defrag_running);
2567
2568 return new;
2569
38c227d8
LB
2570out_free_path:
2571 btrfs_free_path(path);
2572out_kfree:
6f519564 2573 free_sa_defrag_extent(new);
38c227d8
LB
2574 return NULL;
2575}
2576
d352ac68
CM
2577/* as ordered data IO finishes, this gets called so we can finish
2578 * an ordered extent if the range of bytes in the file it covers are
2579 * fully written.
2580 */
5fd02043 2581static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2582{
5fd02043 2583 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2584 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2585 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2586 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2587 struct extent_state *cached_state = NULL;
38c227d8 2588 struct new_sa_defrag_extent *new = NULL;
261507a0 2589 int compress_type = 0;
77cef2ec
JB
2590 int ret = 0;
2591 u64 logical_len = ordered_extent->len;
82d5902d 2592 bool nolock;
77cef2ec 2593 bool truncated = false;
e6dcd2dc 2594
83eea1f1 2595 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2596
5fd02043
JB
2597 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2598 ret = -EIO;
2599 goto out;
2600 }
2601
77cef2ec
JB
2602 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2603 truncated = true;
2604 logical_len = ordered_extent->truncated_len;
2605 /* Truncated the entire extent, don't bother adding */
2606 if (!logical_len)
2607 goto out;
2608 }
2609
c2167754 2610 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2611 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2612 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2613 if (nolock)
2614 trans = btrfs_join_transaction_nolock(root);
2615 else
2616 trans = btrfs_join_transaction(root);
2617 if (IS_ERR(trans)) {
2618 ret = PTR_ERR(trans);
2619 trans = NULL;
2620 goto out;
c2167754 2621 }
6c760c07
JB
2622 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2623 ret = btrfs_update_inode_fallback(trans, root, inode);
2624 if (ret) /* -ENOMEM or corruption */
2625 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2626 goto out;
2627 }
e6dcd2dc 2628
2ac55d41
JB
2629 lock_extent_bits(io_tree, ordered_extent->file_offset,
2630 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2631 0, &cached_state);
e6dcd2dc 2632
38c227d8
LB
2633 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2634 ordered_extent->file_offset + ordered_extent->len - 1,
2635 EXTENT_DEFRAG, 1, cached_state);
2636 if (ret) {
2637 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2638 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2639 /* the inode is shared */
2640 new = record_old_file_extents(inode, ordered_extent);
2641
2642 clear_extent_bit(io_tree, ordered_extent->file_offset,
2643 ordered_extent->file_offset + ordered_extent->len - 1,
2644 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2645 }
2646
0cb59c99 2647 if (nolock)
7a7eaa40 2648 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2649 else
7a7eaa40 2650 trans = btrfs_join_transaction(root);
79787eaa
JM
2651 if (IS_ERR(trans)) {
2652 ret = PTR_ERR(trans);
2653 trans = NULL;
2654 goto out_unlock;
2655 }
0ca1f7ce 2656 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2657
c8b97818 2658 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2659 compress_type = ordered_extent->compress_type;
d899e052 2660 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2661 BUG_ON(compress_type);
920bbbfb 2662 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2663 ordered_extent->file_offset,
2664 ordered_extent->file_offset +
77cef2ec 2665 logical_len);
d899e052 2666 } else {
0af3d00b 2667 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2668 ret = insert_reserved_file_extent(trans, inode,
2669 ordered_extent->file_offset,
2670 ordered_extent->start,
2671 ordered_extent->disk_len,
77cef2ec 2672 logical_len, logical_len,
261507a0 2673 compress_type, 0, 0,
d899e052 2674 BTRFS_FILE_EXTENT_REG);
d899e052 2675 }
5dc562c5
JB
2676 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2677 ordered_extent->file_offset, ordered_extent->len,
2678 trans->transid);
79787eaa
JM
2679 if (ret < 0) {
2680 btrfs_abort_transaction(trans, root, ret);
5fd02043 2681 goto out_unlock;
79787eaa 2682 }
2ac55d41 2683
e6dcd2dc
CM
2684 add_pending_csums(trans, inode, ordered_extent->file_offset,
2685 &ordered_extent->list);
2686
6c760c07
JB
2687 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2688 ret = btrfs_update_inode_fallback(trans, root, inode);
2689 if (ret) { /* -ENOMEM or corruption */
2690 btrfs_abort_transaction(trans, root, ret);
2691 goto out_unlock;
1ef30be1
JB
2692 }
2693 ret = 0;
5fd02043
JB
2694out_unlock:
2695 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2696 ordered_extent->file_offset +
2697 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2698out:
5b0e95bf 2699 if (root != root->fs_info->tree_root)
0cb59c99 2700 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2701 if (trans)
2702 btrfs_end_transaction(trans, root);
0cb59c99 2703
77cef2ec
JB
2704 if (ret || truncated) {
2705 u64 start, end;
2706
2707 if (truncated)
2708 start = ordered_extent->file_offset + logical_len;
2709 else
2710 start = ordered_extent->file_offset;
2711 end = ordered_extent->file_offset + ordered_extent->len - 1;
2712 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2713
2714 /* Drop the cache for the part of the extent we didn't write. */
2715 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2716
0bec9ef5
JB
2717 /*
2718 * If the ordered extent had an IOERR or something else went
2719 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2720 * back to the allocator. We only free the extent in the
2721 * truncated case if we didn't write out the extent at all.
0bec9ef5 2722 */
77cef2ec
JB
2723 if ((ret || !logical_len) &&
2724 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2725 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2726 btrfs_free_reserved_extent(root, ordered_extent->start,
2727 ordered_extent->disk_len);
2728 }
2729
2730
5fd02043 2731 /*
8bad3c02
LB
2732 * This needs to be done to make sure anybody waiting knows we are done
2733 * updating everything for this ordered extent.
5fd02043
JB
2734 */
2735 btrfs_remove_ordered_extent(inode, ordered_extent);
2736
38c227d8 2737 /* for snapshot-aware defrag */
6f519564
LB
2738 if (new) {
2739 if (ret) {
2740 free_sa_defrag_extent(new);
2741 atomic_dec(&root->fs_info->defrag_running);
2742 } else {
2743 relink_file_extents(new);
2744 }
2745 }
38c227d8 2746
e6dcd2dc
CM
2747 /* once for us */
2748 btrfs_put_ordered_extent(ordered_extent);
2749 /* once for the tree */
2750 btrfs_put_ordered_extent(ordered_extent);
2751
5fd02043
JB
2752 return ret;
2753}
2754
2755static void finish_ordered_fn(struct btrfs_work *work)
2756{
2757 struct btrfs_ordered_extent *ordered_extent;
2758 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2759 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2760}
2761
b2950863 2762static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2763 struct extent_state *state, int uptodate)
2764{
5fd02043
JB
2765 struct inode *inode = page->mapping->host;
2766 struct btrfs_root *root = BTRFS_I(inode)->root;
2767 struct btrfs_ordered_extent *ordered_extent = NULL;
2768 struct btrfs_workers *workers;
2769
1abe9b8a 2770 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2771
8b62b72b 2772 ClearPagePrivate2(page);
5fd02043
JB
2773 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2774 end - start + 1, uptodate))
2775 return 0;
2776
2777 ordered_extent->work.func = finish_ordered_fn;
2778 ordered_extent->work.flags = 0;
2779
83eea1f1 2780 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2781 workers = &root->fs_info->endio_freespace_worker;
2782 else
2783 workers = &root->fs_info->endio_write_workers;
2784 btrfs_queue_worker(workers, &ordered_extent->work);
2785
2786 return 0;
211f90e6
CM
2787}
2788
d352ac68
CM
2789/*
2790 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2791 * if there's a match, we allow the bio to finish. If not, the code in
2792 * extent_io.c will try to find good copies for us.
d352ac68 2793 */
facc8a22
MX
2794static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2795 u64 phy_offset, struct page *page,
2796 u64 start, u64 end, int mirror)
07157aac 2797{
4eee4fa4 2798 size_t offset = start - page_offset(page);
07157aac 2799 struct inode *inode = page->mapping->host;
d1310b2e 2800 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2801 char *kaddr;
ff79f819 2802 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2803 u32 csum_expected;
ff79f819 2804 u32 csum = ~(u32)0;
c2cf52eb
SK
2805 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2806 DEFAULT_RATELIMIT_BURST);
d1310b2e 2807
d20f7043
CM
2808 if (PageChecked(page)) {
2809 ClearPageChecked(page);
2810 goto good;
2811 }
6cbff00f
CH
2812
2813 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2814 goto good;
17d217fe
YZ
2815
2816 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2817 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2818 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2819 GFP_NOFS);
b6cda9bc 2820 return 0;
17d217fe 2821 }
d20f7043 2822
facc8a22
MX
2823 phy_offset >>= inode->i_sb->s_blocksize_bits;
2824 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2825
facc8a22 2826 kaddr = kmap_atomic(page);
b0496686 2827 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2828 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2829 if (csum != csum_expected)
07157aac 2830 goto zeroit;
d397712b 2831
7ac687d9 2832 kunmap_atomic(kaddr);
d20f7043 2833good:
07157aac
CM
2834 return 0;
2835
2836zeroit:
c2cf52eb 2837 if (__ratelimit(&_rs))
facc8a22 2838 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2839 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2840 memset(kaddr + offset, 1, end - start + 1);
2841 flush_dcache_page(page);
7ac687d9 2842 kunmap_atomic(kaddr);
facc8a22 2843 if (csum_expected == 0)
3b951516 2844 return 0;
7e38326f 2845 return -EIO;
07157aac 2846}
b888db2b 2847
24bbcf04
YZ
2848struct delayed_iput {
2849 struct list_head list;
2850 struct inode *inode;
2851};
2852
79787eaa
JM
2853/* JDM: If this is fs-wide, why can't we add a pointer to
2854 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2855void btrfs_add_delayed_iput(struct inode *inode)
2856{
2857 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2858 struct delayed_iput *delayed;
2859
2860 if (atomic_add_unless(&inode->i_count, -1, 1))
2861 return;
2862
2863 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2864 delayed->inode = inode;
2865
2866 spin_lock(&fs_info->delayed_iput_lock);
2867 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2868 spin_unlock(&fs_info->delayed_iput_lock);
2869}
2870
2871void btrfs_run_delayed_iputs(struct btrfs_root *root)
2872{
2873 LIST_HEAD(list);
2874 struct btrfs_fs_info *fs_info = root->fs_info;
2875 struct delayed_iput *delayed;
2876 int empty;
2877
2878 spin_lock(&fs_info->delayed_iput_lock);
2879 empty = list_empty(&fs_info->delayed_iputs);
2880 spin_unlock(&fs_info->delayed_iput_lock);
2881 if (empty)
2882 return;
2883
24bbcf04
YZ
2884 spin_lock(&fs_info->delayed_iput_lock);
2885 list_splice_init(&fs_info->delayed_iputs, &list);
2886 spin_unlock(&fs_info->delayed_iput_lock);
2887
2888 while (!list_empty(&list)) {
2889 delayed = list_entry(list.next, struct delayed_iput, list);
2890 list_del(&delayed->list);
2891 iput(delayed->inode);
2892 kfree(delayed);
2893 }
24bbcf04
YZ
2894}
2895
d68fc57b 2896/*
42b2aa86 2897 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2898 * files in the subvolume, it removes orphan item and frees block_rsv
2899 * structure.
2900 */
2901void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2902 struct btrfs_root *root)
2903{
90290e19 2904 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2905 int ret;
2906
8a35d95f 2907 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2908 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2909 return;
2910
90290e19 2911 spin_lock(&root->orphan_lock);
8a35d95f 2912 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2913 spin_unlock(&root->orphan_lock);
2914 return;
2915 }
2916
2917 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2918 spin_unlock(&root->orphan_lock);
2919 return;
2920 }
2921
2922 block_rsv = root->orphan_block_rsv;
2923 root->orphan_block_rsv = NULL;
2924 spin_unlock(&root->orphan_lock);
2925
d68fc57b
YZ
2926 if (root->orphan_item_inserted &&
2927 btrfs_root_refs(&root->root_item) > 0) {
2928 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2929 root->root_key.objectid);
4ef31a45
JB
2930 if (ret)
2931 btrfs_abort_transaction(trans, root, ret);
2932 else
2933 root->orphan_item_inserted = 0;
d68fc57b
YZ
2934 }
2935
90290e19
JB
2936 if (block_rsv) {
2937 WARN_ON(block_rsv->size > 0);
2938 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2939 }
2940}
2941
7b128766
JB
2942/*
2943 * This creates an orphan entry for the given inode in case something goes
2944 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2945 *
2946 * NOTE: caller of this function should reserve 5 units of metadata for
2947 * this function.
7b128766
JB
2948 */
2949int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2950{
2951 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2952 struct btrfs_block_rsv *block_rsv = NULL;
2953 int reserve = 0;
2954 int insert = 0;
2955 int ret;
7b128766 2956
d68fc57b 2957 if (!root->orphan_block_rsv) {
66d8f3dd 2958 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2959 if (!block_rsv)
2960 return -ENOMEM;
d68fc57b 2961 }
7b128766 2962
d68fc57b
YZ
2963 spin_lock(&root->orphan_lock);
2964 if (!root->orphan_block_rsv) {
2965 root->orphan_block_rsv = block_rsv;
2966 } else if (block_rsv) {
2967 btrfs_free_block_rsv(root, block_rsv);
2968 block_rsv = NULL;
7b128766 2969 }
7b128766 2970
8a35d95f
JB
2971 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2972 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2973#if 0
2974 /*
2975 * For proper ENOSPC handling, we should do orphan
2976 * cleanup when mounting. But this introduces backward
2977 * compatibility issue.
2978 */
2979 if (!xchg(&root->orphan_item_inserted, 1))
2980 insert = 2;
2981 else
2982 insert = 1;
2983#endif
2984 insert = 1;
321f0e70 2985 atomic_inc(&root->orphan_inodes);
7b128766
JB
2986 }
2987
72ac3c0d
JB
2988 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2989 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2990 reserve = 1;
d68fc57b 2991 spin_unlock(&root->orphan_lock);
7b128766 2992
d68fc57b
YZ
2993 /* grab metadata reservation from transaction handle */
2994 if (reserve) {
2995 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2996 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2997 }
7b128766 2998
d68fc57b
YZ
2999 /* insert an orphan item to track this unlinked/truncated file */
3000 if (insert >= 1) {
33345d01 3001 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3002 if (ret) {
703c88e0 3003 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3004 if (reserve) {
3005 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3006 &BTRFS_I(inode)->runtime_flags);
3007 btrfs_orphan_release_metadata(inode);
3008 }
3009 if (ret != -EEXIST) {
e8e7cff6
JB
3010 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3011 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3012 btrfs_abort_transaction(trans, root, ret);
3013 return ret;
3014 }
79787eaa
JM
3015 }
3016 ret = 0;
d68fc57b
YZ
3017 }
3018
3019 /* insert an orphan item to track subvolume contains orphan files */
3020 if (insert >= 2) {
3021 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3022 root->root_key.objectid);
79787eaa
JM
3023 if (ret && ret != -EEXIST) {
3024 btrfs_abort_transaction(trans, root, ret);
3025 return ret;
3026 }
d68fc57b
YZ
3027 }
3028 return 0;
7b128766
JB
3029}
3030
3031/*
3032 * We have done the truncate/delete so we can go ahead and remove the orphan
3033 * item for this particular inode.
3034 */
48a3b636
ES
3035static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3036 struct inode *inode)
7b128766
JB
3037{
3038 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3039 int delete_item = 0;
3040 int release_rsv = 0;
7b128766
JB
3041 int ret = 0;
3042
d68fc57b 3043 spin_lock(&root->orphan_lock);
8a35d95f
JB
3044 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3045 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3046 delete_item = 1;
7b128766 3047
72ac3c0d
JB
3048 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3049 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3050 release_rsv = 1;
d68fc57b 3051 spin_unlock(&root->orphan_lock);
7b128766 3052
703c88e0 3053 if (delete_item) {
8a35d95f 3054 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3055 if (trans)
3056 ret = btrfs_del_orphan_item(trans, root,
3057 btrfs_ino(inode));
8a35d95f 3058 }
7b128766 3059
703c88e0
FDBM
3060 if (release_rsv)
3061 btrfs_orphan_release_metadata(inode);
3062
4ef31a45 3063 return ret;
7b128766
JB
3064}
3065
3066/*
3067 * this cleans up any orphans that may be left on the list from the last use
3068 * of this root.
3069 */
66b4ffd1 3070int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3071{
3072 struct btrfs_path *path;
3073 struct extent_buffer *leaf;
7b128766
JB
3074 struct btrfs_key key, found_key;
3075 struct btrfs_trans_handle *trans;
3076 struct inode *inode;
8f6d7f4f 3077 u64 last_objectid = 0;
7b128766
JB
3078 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3079
d68fc57b 3080 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3081 return 0;
c71bf099
YZ
3082
3083 path = btrfs_alloc_path();
66b4ffd1
JB
3084 if (!path) {
3085 ret = -ENOMEM;
3086 goto out;
3087 }
7b128766
JB
3088 path->reada = -1;
3089
3090 key.objectid = BTRFS_ORPHAN_OBJECTID;
3091 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3092 key.offset = (u64)-1;
3093
7b128766
JB
3094 while (1) {
3095 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3096 if (ret < 0)
3097 goto out;
7b128766
JB
3098
3099 /*
3100 * if ret == 0 means we found what we were searching for, which
25985edc 3101 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3102 * find the key and see if we have stuff that matches
3103 */
3104 if (ret > 0) {
66b4ffd1 3105 ret = 0;
7b128766
JB
3106 if (path->slots[0] == 0)
3107 break;
3108 path->slots[0]--;
3109 }
3110
3111 /* pull out the item */
3112 leaf = path->nodes[0];
7b128766
JB
3113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3114
3115 /* make sure the item matches what we want */
3116 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3117 break;
3118 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3119 break;
3120
3121 /* release the path since we're done with it */
b3b4aa74 3122 btrfs_release_path(path);
7b128766
JB
3123
3124 /*
3125 * this is where we are basically btrfs_lookup, without the
3126 * crossing root thing. we store the inode number in the
3127 * offset of the orphan item.
3128 */
8f6d7f4f
JB
3129
3130 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3131 btrfs_err(root->fs_info,
3132 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3133 ret = -EINVAL;
3134 goto out;
3135 }
3136
3137 last_objectid = found_key.offset;
3138
5d4f98a2
YZ
3139 found_key.objectid = found_key.offset;
3140 found_key.type = BTRFS_INODE_ITEM_KEY;
3141 found_key.offset = 0;
73f73415 3142 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3143 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3144 if (ret && ret != -ESTALE)
66b4ffd1 3145 goto out;
7b128766 3146
f8e9e0b0
AJ
3147 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3148 struct btrfs_root *dead_root;
3149 struct btrfs_fs_info *fs_info = root->fs_info;
3150 int is_dead_root = 0;
3151
3152 /*
3153 * this is an orphan in the tree root. Currently these
3154 * could come from 2 sources:
3155 * a) a snapshot deletion in progress
3156 * b) a free space cache inode
3157 * We need to distinguish those two, as the snapshot
3158 * orphan must not get deleted.
3159 * find_dead_roots already ran before us, so if this
3160 * is a snapshot deletion, we should find the root
3161 * in the dead_roots list
3162 */
3163 spin_lock(&fs_info->trans_lock);
3164 list_for_each_entry(dead_root, &fs_info->dead_roots,
3165 root_list) {
3166 if (dead_root->root_key.objectid ==
3167 found_key.objectid) {
3168 is_dead_root = 1;
3169 break;
3170 }
3171 }
3172 spin_unlock(&fs_info->trans_lock);
3173 if (is_dead_root) {
3174 /* prevent this orphan from being found again */
3175 key.offset = found_key.objectid - 1;
3176 continue;
3177 }
3178 }
7b128766 3179 /*
a8c9e576
JB
3180 * Inode is already gone but the orphan item is still there,
3181 * kill the orphan item.
7b128766 3182 */
a8c9e576
JB
3183 if (ret == -ESTALE) {
3184 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3185 if (IS_ERR(trans)) {
3186 ret = PTR_ERR(trans);
3187 goto out;
3188 }
c2cf52eb
SK
3189 btrfs_debug(root->fs_info, "auto deleting %Lu",
3190 found_key.objectid);
a8c9e576
JB
3191 ret = btrfs_del_orphan_item(trans, root,
3192 found_key.objectid);
5b21f2ed 3193 btrfs_end_transaction(trans, root);
4ef31a45
JB
3194 if (ret)
3195 goto out;
7b128766
JB
3196 continue;
3197 }
3198
a8c9e576
JB
3199 /*
3200 * add this inode to the orphan list so btrfs_orphan_del does
3201 * the proper thing when we hit it
3202 */
8a35d95f
JB
3203 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3204 &BTRFS_I(inode)->runtime_flags);
925396ec 3205 atomic_inc(&root->orphan_inodes);
a8c9e576 3206
7b128766
JB
3207 /* if we have links, this was a truncate, lets do that */
3208 if (inode->i_nlink) {
fae7f21c 3209 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3210 iput(inode);
3211 continue;
3212 }
7b128766 3213 nr_truncate++;
f3fe820c
JB
3214
3215 /* 1 for the orphan item deletion. */
3216 trans = btrfs_start_transaction(root, 1);
3217 if (IS_ERR(trans)) {
c69b26b0 3218 iput(inode);
f3fe820c
JB
3219 ret = PTR_ERR(trans);
3220 goto out;
3221 }
3222 ret = btrfs_orphan_add(trans, inode);
3223 btrfs_end_transaction(trans, root);
c69b26b0
JB
3224 if (ret) {
3225 iput(inode);
f3fe820c 3226 goto out;
c69b26b0 3227 }
f3fe820c 3228
66b4ffd1 3229 ret = btrfs_truncate(inode);
4a7d0f68
JB
3230 if (ret)
3231 btrfs_orphan_del(NULL, inode);
7b128766
JB
3232 } else {
3233 nr_unlink++;
3234 }
3235
3236 /* this will do delete_inode and everything for us */
3237 iput(inode);
66b4ffd1
JB
3238 if (ret)
3239 goto out;
7b128766 3240 }
3254c876
MX
3241 /* release the path since we're done with it */
3242 btrfs_release_path(path);
3243
d68fc57b
YZ
3244 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3245
3246 if (root->orphan_block_rsv)
3247 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3248 (u64)-1);
3249
3250 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3251 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3252 if (!IS_ERR(trans))
3253 btrfs_end_transaction(trans, root);
d68fc57b 3254 }
7b128766
JB
3255
3256 if (nr_unlink)
4884b476 3257 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3258 if (nr_truncate)
4884b476 3259 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3260
3261out:
3262 if (ret)
c2cf52eb
SK
3263 btrfs_crit(root->fs_info,
3264 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3265 btrfs_free_path(path);
3266 return ret;
7b128766
JB
3267}
3268
46a53cca
CM
3269/*
3270 * very simple check to peek ahead in the leaf looking for xattrs. If we
3271 * don't find any xattrs, we know there can't be any acls.
3272 *
3273 * slot is the slot the inode is in, objectid is the objectid of the inode
3274 */
3275static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3276 int slot, u64 objectid,
3277 int *first_xattr_slot)
46a53cca
CM
3278{
3279 u32 nritems = btrfs_header_nritems(leaf);
3280 struct btrfs_key found_key;
f23b5a59
JB
3281 static u64 xattr_access = 0;
3282 static u64 xattr_default = 0;
46a53cca
CM
3283 int scanned = 0;
3284
f23b5a59
JB
3285 if (!xattr_access) {
3286 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3287 strlen(POSIX_ACL_XATTR_ACCESS));
3288 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3289 strlen(POSIX_ACL_XATTR_DEFAULT));
3290 }
3291
46a53cca 3292 slot++;
63541927 3293 *first_xattr_slot = -1;
46a53cca
CM
3294 while (slot < nritems) {
3295 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3296
3297 /* we found a different objectid, there must not be acls */
3298 if (found_key.objectid != objectid)
3299 return 0;
3300
3301 /* we found an xattr, assume we've got an acl */
f23b5a59 3302 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3303 if (*first_xattr_slot == -1)
3304 *first_xattr_slot = slot;
f23b5a59
JB
3305 if (found_key.offset == xattr_access ||
3306 found_key.offset == xattr_default)
3307 return 1;
3308 }
46a53cca
CM
3309
3310 /*
3311 * we found a key greater than an xattr key, there can't
3312 * be any acls later on
3313 */
3314 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3315 return 0;
3316
3317 slot++;
3318 scanned++;
3319
3320 /*
3321 * it goes inode, inode backrefs, xattrs, extents,
3322 * so if there are a ton of hard links to an inode there can
3323 * be a lot of backrefs. Don't waste time searching too hard,
3324 * this is just an optimization
3325 */
3326 if (scanned >= 8)
3327 break;
3328 }
3329 /* we hit the end of the leaf before we found an xattr or
3330 * something larger than an xattr. We have to assume the inode
3331 * has acls
3332 */
63541927
FDBM
3333 if (*first_xattr_slot == -1)
3334 *first_xattr_slot = slot;
46a53cca
CM
3335 return 1;
3336}
3337
d352ac68
CM
3338/*
3339 * read an inode from the btree into the in-memory inode
3340 */
5d4f98a2 3341static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3342{
3343 struct btrfs_path *path;
5f39d397 3344 struct extent_buffer *leaf;
39279cc3 3345 struct btrfs_inode_item *inode_item;
0b86a832 3346 struct btrfs_timespec *tspec;
39279cc3
CM
3347 struct btrfs_root *root = BTRFS_I(inode)->root;
3348 struct btrfs_key location;
67de1176 3349 unsigned long ptr;
46a53cca 3350 int maybe_acls;
618e21d5 3351 u32 rdev;
39279cc3 3352 int ret;
2f7e33d4 3353 bool filled = false;
63541927 3354 int first_xattr_slot;
2f7e33d4
MX
3355
3356 ret = btrfs_fill_inode(inode, &rdev);
3357 if (!ret)
3358 filled = true;
39279cc3
CM
3359
3360 path = btrfs_alloc_path();
1748f843
MF
3361 if (!path)
3362 goto make_bad;
3363
39279cc3 3364 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3365
39279cc3 3366 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3367 if (ret)
39279cc3 3368 goto make_bad;
39279cc3 3369
5f39d397 3370 leaf = path->nodes[0];
2f7e33d4
MX
3371
3372 if (filled)
67de1176 3373 goto cache_index;
2f7e33d4 3374
5f39d397
CM
3375 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3376 struct btrfs_inode_item);
5f39d397 3377 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3378 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3379 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3380 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3381 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3382
3383 tspec = btrfs_inode_atime(inode_item);
3384 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3385 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3386
3387 tspec = btrfs_inode_mtime(inode_item);
3388 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3389 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3390
3391 tspec = btrfs_inode_ctime(inode_item);
3392 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3393 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3394
a76a3cd4 3395 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3396 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3397 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3398
3399 /*
3400 * If we were modified in the current generation and evicted from memory
3401 * and then re-read we need to do a full sync since we don't have any
3402 * idea about which extents were modified before we were evicted from
3403 * cache.
3404 */
3405 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3406 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3407 &BTRFS_I(inode)->runtime_flags);
3408
0c4d2d95 3409 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3410 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3411 inode->i_rdev = 0;
5f39d397
CM
3412 rdev = btrfs_inode_rdev(leaf, inode_item);
3413
aec7477b 3414 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3415 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3416
3417cache_index:
3418 path->slots[0]++;
3419 if (inode->i_nlink != 1 ||
3420 path->slots[0] >= btrfs_header_nritems(leaf))
3421 goto cache_acl;
3422
3423 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3424 if (location.objectid != btrfs_ino(inode))
3425 goto cache_acl;
3426
3427 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3428 if (location.type == BTRFS_INODE_REF_KEY) {
3429 struct btrfs_inode_ref *ref;
3430
3431 ref = (struct btrfs_inode_ref *)ptr;
3432 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3433 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3434 struct btrfs_inode_extref *extref;
3435
3436 extref = (struct btrfs_inode_extref *)ptr;
3437 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3438 extref);
3439 }
2f7e33d4 3440cache_acl:
46a53cca
CM
3441 /*
3442 * try to precache a NULL acl entry for files that don't have
3443 * any xattrs or acls
3444 */
33345d01 3445 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3446 btrfs_ino(inode), &first_xattr_slot);
3447 if (first_xattr_slot != -1) {
3448 path->slots[0] = first_xattr_slot;
3449 ret = btrfs_load_inode_props(inode, path);
3450 if (ret)
3451 btrfs_err(root->fs_info,
3452 "error loading props for ino %llu (root %llu): %d\n",
3453 btrfs_ino(inode),
3454 root->root_key.objectid, ret);
3455 }
3456 btrfs_free_path(path);
3457
72c04902
AV
3458 if (!maybe_acls)
3459 cache_no_acl(inode);
46a53cca 3460
39279cc3 3461 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3462 case S_IFREG:
3463 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3464 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3465 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3466 inode->i_fop = &btrfs_file_operations;
3467 inode->i_op = &btrfs_file_inode_operations;
3468 break;
3469 case S_IFDIR:
3470 inode->i_fop = &btrfs_dir_file_operations;
3471 if (root == root->fs_info->tree_root)
3472 inode->i_op = &btrfs_dir_ro_inode_operations;
3473 else
3474 inode->i_op = &btrfs_dir_inode_operations;
3475 break;
3476 case S_IFLNK:
3477 inode->i_op = &btrfs_symlink_inode_operations;
3478 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3479 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3480 break;
618e21d5 3481 default:
0279b4cd 3482 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3483 init_special_inode(inode, inode->i_mode, rdev);
3484 break;
39279cc3 3485 }
6cbff00f
CH
3486
3487 btrfs_update_iflags(inode);
39279cc3
CM
3488 return;
3489
3490make_bad:
39279cc3 3491 btrfs_free_path(path);
39279cc3
CM
3492 make_bad_inode(inode);
3493}
3494
d352ac68
CM
3495/*
3496 * given a leaf and an inode, copy the inode fields into the leaf
3497 */
e02119d5
CM
3498static void fill_inode_item(struct btrfs_trans_handle *trans,
3499 struct extent_buffer *leaf,
5f39d397 3500 struct btrfs_inode_item *item,
39279cc3
CM
3501 struct inode *inode)
3502{
51fab693
LB
3503 struct btrfs_map_token token;
3504
3505 btrfs_init_map_token(&token);
5f39d397 3506
51fab693
LB
3507 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3508 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3509 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3510 &token);
3511 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3512 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3513
51fab693
LB
3514 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3515 inode->i_atime.tv_sec, &token);
3516 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3517 inode->i_atime.tv_nsec, &token);
5f39d397 3518
51fab693
LB
3519 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3520 inode->i_mtime.tv_sec, &token);
3521 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3522 inode->i_mtime.tv_nsec, &token);
5f39d397 3523
51fab693
LB
3524 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3525 inode->i_ctime.tv_sec, &token);
3526 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3527 inode->i_ctime.tv_nsec, &token);
5f39d397 3528
51fab693
LB
3529 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3530 &token);
3531 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3532 &token);
3533 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3534 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3535 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3536 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3537 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3538}
3539
d352ac68
CM
3540/*
3541 * copy everything in the in-memory inode into the btree.
3542 */
2115133f 3543static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3544 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3545{
3546 struct btrfs_inode_item *inode_item;
3547 struct btrfs_path *path;
5f39d397 3548 struct extent_buffer *leaf;
39279cc3
CM
3549 int ret;
3550
3551 path = btrfs_alloc_path();
16cdcec7
MX
3552 if (!path)
3553 return -ENOMEM;
3554
b9473439 3555 path->leave_spinning = 1;
16cdcec7
MX
3556 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3557 1);
39279cc3
CM
3558 if (ret) {
3559 if (ret > 0)
3560 ret = -ENOENT;
3561 goto failed;
3562 }
3563
5f39d397
CM
3564 leaf = path->nodes[0];
3565 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3566 struct btrfs_inode_item);
39279cc3 3567
e02119d5 3568 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3569 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3570 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3571 ret = 0;
3572failed:
39279cc3
CM
3573 btrfs_free_path(path);
3574 return ret;
3575}
3576
2115133f
CM
3577/*
3578 * copy everything in the in-memory inode into the btree.
3579 */
3580noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3581 struct btrfs_root *root, struct inode *inode)
3582{
3583 int ret;
3584
3585 /*
3586 * If the inode is a free space inode, we can deadlock during commit
3587 * if we put it into the delayed code.
3588 *
3589 * The data relocation inode should also be directly updated
3590 * without delay
3591 */
83eea1f1 3592 if (!btrfs_is_free_space_inode(inode)
2115133f 3593 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3594 btrfs_update_root_times(trans, root);
3595
2115133f
CM
3596 ret = btrfs_delayed_update_inode(trans, root, inode);
3597 if (!ret)
3598 btrfs_set_inode_last_trans(trans, inode);
3599 return ret;
3600 }
3601
3602 return btrfs_update_inode_item(trans, root, inode);
3603}
3604
be6aef60
JB
3605noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3606 struct btrfs_root *root,
3607 struct inode *inode)
2115133f
CM
3608{
3609 int ret;
3610
3611 ret = btrfs_update_inode(trans, root, inode);
3612 if (ret == -ENOSPC)
3613 return btrfs_update_inode_item(trans, root, inode);
3614 return ret;
3615}
3616
d352ac68
CM
3617/*
3618 * unlink helper that gets used here in inode.c and in the tree logging
3619 * recovery code. It remove a link in a directory with a given name, and
3620 * also drops the back refs in the inode to the directory
3621 */
92986796
AV
3622static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3623 struct btrfs_root *root,
3624 struct inode *dir, struct inode *inode,
3625 const char *name, int name_len)
39279cc3
CM
3626{
3627 struct btrfs_path *path;
39279cc3 3628 int ret = 0;
5f39d397 3629 struct extent_buffer *leaf;
39279cc3 3630 struct btrfs_dir_item *di;
5f39d397 3631 struct btrfs_key key;
aec7477b 3632 u64 index;
33345d01
LZ
3633 u64 ino = btrfs_ino(inode);
3634 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3635
3636 path = btrfs_alloc_path();
54aa1f4d
CM
3637 if (!path) {
3638 ret = -ENOMEM;
554233a6 3639 goto out;
54aa1f4d
CM
3640 }
3641
b9473439 3642 path->leave_spinning = 1;
33345d01 3643 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3644 name, name_len, -1);
3645 if (IS_ERR(di)) {
3646 ret = PTR_ERR(di);
3647 goto err;
3648 }
3649 if (!di) {
3650 ret = -ENOENT;
3651 goto err;
3652 }
5f39d397
CM
3653 leaf = path->nodes[0];
3654 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3655 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3656 if (ret)
3657 goto err;
b3b4aa74 3658 btrfs_release_path(path);
39279cc3 3659
67de1176
MX
3660 /*
3661 * If we don't have dir index, we have to get it by looking up
3662 * the inode ref, since we get the inode ref, remove it directly,
3663 * it is unnecessary to do delayed deletion.
3664 *
3665 * But if we have dir index, needn't search inode ref to get it.
3666 * Since the inode ref is close to the inode item, it is better
3667 * that we delay to delete it, and just do this deletion when
3668 * we update the inode item.
3669 */
3670 if (BTRFS_I(inode)->dir_index) {
3671 ret = btrfs_delayed_delete_inode_ref(inode);
3672 if (!ret) {
3673 index = BTRFS_I(inode)->dir_index;
3674 goto skip_backref;
3675 }
3676 }
3677
33345d01
LZ
3678 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3679 dir_ino, &index);
aec7477b 3680 if (ret) {
c2cf52eb
SK
3681 btrfs_info(root->fs_info,
3682 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3683 name_len, name, ino, dir_ino);
79787eaa 3684 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3685 goto err;
3686 }
67de1176 3687skip_backref:
16cdcec7 3688 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3689 if (ret) {
3690 btrfs_abort_transaction(trans, root, ret);
39279cc3 3691 goto err;
79787eaa 3692 }
39279cc3 3693
e02119d5 3694 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3695 inode, dir_ino);
79787eaa
JM
3696 if (ret != 0 && ret != -ENOENT) {
3697 btrfs_abort_transaction(trans, root, ret);
3698 goto err;
3699 }
e02119d5
CM
3700
3701 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3702 dir, index);
6418c961
CM
3703 if (ret == -ENOENT)
3704 ret = 0;
d4e3991b
ZB
3705 else if (ret)
3706 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3707err:
3708 btrfs_free_path(path);
e02119d5
CM
3709 if (ret)
3710 goto out;
3711
3712 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3713 inode_inc_iversion(inode);
3714 inode_inc_iversion(dir);
e02119d5 3715 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3716 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3717out:
39279cc3
CM
3718 return ret;
3719}
3720
92986796
AV
3721int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3722 struct btrfs_root *root,
3723 struct inode *dir, struct inode *inode,
3724 const char *name, int name_len)
3725{
3726 int ret;
3727 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3728 if (!ret) {
8b558c5f 3729 drop_nlink(inode);
92986796
AV
3730 ret = btrfs_update_inode(trans, root, inode);
3731 }
3732 return ret;
3733}
39279cc3 3734
a22285a6
YZ
3735/*
3736 * helper to start transaction for unlink and rmdir.
3737 *
d52be818
JB
3738 * unlink and rmdir are special in btrfs, they do not always free space, so
3739 * if we cannot make our reservations the normal way try and see if there is
3740 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3741 * allow the unlink to occur.
a22285a6 3742 */
d52be818 3743static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3744{
39279cc3 3745 struct btrfs_trans_handle *trans;
a22285a6 3746 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3747 int ret;
3748
e70bea5f
JB
3749 /*
3750 * 1 for the possible orphan item
3751 * 1 for the dir item
3752 * 1 for the dir index
3753 * 1 for the inode ref
e70bea5f
JB
3754 * 1 for the inode
3755 */
6e137ed3 3756 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3757 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3758 return trans;
4df27c4d 3759
d52be818
JB
3760 if (PTR_ERR(trans) == -ENOSPC) {
3761 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3762
d52be818
JB
3763 trans = btrfs_start_transaction(root, 0);
3764 if (IS_ERR(trans))
3765 return trans;
3766 ret = btrfs_cond_migrate_bytes(root->fs_info,
3767 &root->fs_info->trans_block_rsv,
3768 num_bytes, 5);
3769 if (ret) {
3770 btrfs_end_transaction(trans, root);
3771 return ERR_PTR(ret);
a22285a6 3772 }
5a77d76c 3773 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3774 trans->bytes_reserved = num_bytes;
a22285a6 3775 }
d52be818 3776 return trans;
a22285a6
YZ
3777}
3778
3779static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3780{
3781 struct btrfs_root *root = BTRFS_I(dir)->root;
3782 struct btrfs_trans_handle *trans;
3783 struct inode *inode = dentry->d_inode;
3784 int ret;
a22285a6 3785
d52be818 3786 trans = __unlink_start_trans(dir);
a22285a6
YZ
3787 if (IS_ERR(trans))
3788 return PTR_ERR(trans);
5f39d397 3789
12fcfd22
CM
3790 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3791
e02119d5
CM
3792 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3793 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3794 if (ret)
3795 goto out;
7b128766 3796
a22285a6 3797 if (inode->i_nlink == 0) {
7b128766 3798 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3799 if (ret)
3800 goto out;
a22285a6 3801 }
7b128766 3802
b532402e 3803out:
d52be818 3804 btrfs_end_transaction(trans, root);
b53d3f5d 3805 btrfs_btree_balance_dirty(root);
39279cc3
CM
3806 return ret;
3807}
3808
4df27c4d
YZ
3809int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3810 struct btrfs_root *root,
3811 struct inode *dir, u64 objectid,
3812 const char *name, int name_len)
3813{
3814 struct btrfs_path *path;
3815 struct extent_buffer *leaf;
3816 struct btrfs_dir_item *di;
3817 struct btrfs_key key;
3818 u64 index;
3819 int ret;
33345d01 3820 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3821
3822 path = btrfs_alloc_path();
3823 if (!path)
3824 return -ENOMEM;
3825
33345d01 3826 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3827 name, name_len, -1);
79787eaa
JM
3828 if (IS_ERR_OR_NULL(di)) {
3829 if (!di)
3830 ret = -ENOENT;
3831 else
3832 ret = PTR_ERR(di);
3833 goto out;
3834 }
4df27c4d
YZ
3835
3836 leaf = path->nodes[0];
3837 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3838 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3839 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3840 if (ret) {
3841 btrfs_abort_transaction(trans, root, ret);
3842 goto out;
3843 }
b3b4aa74 3844 btrfs_release_path(path);
4df27c4d
YZ
3845
3846 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3847 objectid, root->root_key.objectid,
33345d01 3848 dir_ino, &index, name, name_len);
4df27c4d 3849 if (ret < 0) {
79787eaa
JM
3850 if (ret != -ENOENT) {
3851 btrfs_abort_transaction(trans, root, ret);
3852 goto out;
3853 }
33345d01 3854 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3855 name, name_len);
79787eaa
JM
3856 if (IS_ERR_OR_NULL(di)) {
3857 if (!di)
3858 ret = -ENOENT;
3859 else
3860 ret = PTR_ERR(di);
3861 btrfs_abort_transaction(trans, root, ret);
3862 goto out;
3863 }
4df27c4d
YZ
3864
3865 leaf = path->nodes[0];
3866 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3867 btrfs_release_path(path);
4df27c4d
YZ
3868 index = key.offset;
3869 }
945d8962 3870 btrfs_release_path(path);
4df27c4d 3871
16cdcec7 3872 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3873 if (ret) {
3874 btrfs_abort_transaction(trans, root, ret);
3875 goto out;
3876 }
4df27c4d
YZ
3877
3878 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3879 inode_inc_iversion(dir);
4df27c4d 3880 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3881 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3882 if (ret)
3883 btrfs_abort_transaction(trans, root, ret);
3884out:
71d7aed0 3885 btrfs_free_path(path);
79787eaa 3886 return ret;
4df27c4d
YZ
3887}
3888
39279cc3
CM
3889static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3890{
3891 struct inode *inode = dentry->d_inode;
1832a6d5 3892 int err = 0;
39279cc3 3893 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3894 struct btrfs_trans_handle *trans;
39279cc3 3895
b3ae244e 3896 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3897 return -ENOTEMPTY;
b3ae244e
DS
3898 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3899 return -EPERM;
134d4512 3900
d52be818 3901 trans = __unlink_start_trans(dir);
a22285a6 3902 if (IS_ERR(trans))
5df6a9f6 3903 return PTR_ERR(trans);
5df6a9f6 3904
33345d01 3905 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3906 err = btrfs_unlink_subvol(trans, root, dir,
3907 BTRFS_I(inode)->location.objectid,
3908 dentry->d_name.name,
3909 dentry->d_name.len);
3910 goto out;
3911 }
3912
7b128766
JB
3913 err = btrfs_orphan_add(trans, inode);
3914 if (err)
4df27c4d 3915 goto out;
7b128766 3916
39279cc3 3917 /* now the directory is empty */
e02119d5
CM
3918 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3919 dentry->d_name.name, dentry->d_name.len);
d397712b 3920 if (!err)
dbe674a9 3921 btrfs_i_size_write(inode, 0);
4df27c4d 3922out:
d52be818 3923 btrfs_end_transaction(trans, root);
b53d3f5d 3924 btrfs_btree_balance_dirty(root);
3954401f 3925
39279cc3
CM
3926 return err;
3927}
3928
39279cc3
CM
3929/*
3930 * this can truncate away extent items, csum items and directory items.
3931 * It starts at a high offset and removes keys until it can't find
d352ac68 3932 * any higher than new_size
39279cc3
CM
3933 *
3934 * csum items that cross the new i_size are truncated to the new size
3935 * as well.
7b128766
JB
3936 *
3937 * min_type is the minimum key type to truncate down to. If set to 0, this
3938 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3939 */
8082510e
YZ
3940int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3941 struct btrfs_root *root,
3942 struct inode *inode,
3943 u64 new_size, u32 min_type)
39279cc3 3944{
39279cc3 3945 struct btrfs_path *path;
5f39d397 3946 struct extent_buffer *leaf;
39279cc3 3947 struct btrfs_file_extent_item *fi;
8082510e
YZ
3948 struct btrfs_key key;
3949 struct btrfs_key found_key;
39279cc3 3950 u64 extent_start = 0;
db94535d 3951 u64 extent_num_bytes = 0;
5d4f98a2 3952 u64 extent_offset = 0;
39279cc3 3953 u64 item_end = 0;
7f4f6e0a 3954 u64 last_size = (u64)-1;
8082510e 3955 u32 found_type = (u8)-1;
39279cc3
CM
3956 int found_extent;
3957 int del_item;
85e21bac
CM
3958 int pending_del_nr = 0;
3959 int pending_del_slot = 0;
179e29e4 3960 int extent_type = -1;
8082510e
YZ
3961 int ret;
3962 int err = 0;
33345d01 3963 u64 ino = btrfs_ino(inode);
8082510e
YZ
3964
3965 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3966
0eb0e19c
MF
3967 path = btrfs_alloc_path();
3968 if (!path)
3969 return -ENOMEM;
3970 path->reada = -1;
3971
5dc562c5
JB
3972 /*
3973 * We want to drop from the next block forward in case this new size is
3974 * not block aligned since we will be keeping the last block of the
3975 * extent just the way it is.
3976 */
0af3d00b 3977 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3978 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3979 root->sectorsize), (u64)-1, 0);
8082510e 3980
16cdcec7
MX
3981 /*
3982 * This function is also used to drop the items in the log tree before
3983 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3984 * it is used to drop the loged items. So we shouldn't kill the delayed
3985 * items.
3986 */
3987 if (min_type == 0 && root == BTRFS_I(inode)->root)
3988 btrfs_kill_delayed_inode_items(inode);
3989
33345d01 3990 key.objectid = ino;
39279cc3 3991 key.offset = (u64)-1;
5f39d397
CM
3992 key.type = (u8)-1;
3993
85e21bac 3994search_again:
b9473439 3995 path->leave_spinning = 1;
85e21bac 3996 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3997 if (ret < 0) {
3998 err = ret;
3999 goto out;
4000 }
d397712b 4001
85e21bac 4002 if (ret > 0) {
e02119d5
CM
4003 /* there are no items in the tree for us to truncate, we're
4004 * done
4005 */
8082510e
YZ
4006 if (path->slots[0] == 0)
4007 goto out;
85e21bac
CM
4008 path->slots[0]--;
4009 }
4010
d397712b 4011 while (1) {
39279cc3 4012 fi = NULL;
5f39d397
CM
4013 leaf = path->nodes[0];
4014 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4015 found_type = btrfs_key_type(&found_key);
39279cc3 4016
33345d01 4017 if (found_key.objectid != ino)
39279cc3 4018 break;
5f39d397 4019
85e21bac 4020 if (found_type < min_type)
39279cc3
CM
4021 break;
4022
5f39d397 4023 item_end = found_key.offset;
39279cc3 4024 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4025 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4026 struct btrfs_file_extent_item);
179e29e4
CM
4027 extent_type = btrfs_file_extent_type(leaf, fi);
4028 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4029 item_end +=
db94535d 4030 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4031 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4032 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4033 path->slots[0], fi);
39279cc3 4034 }
008630c1 4035 item_end--;
39279cc3 4036 }
8082510e
YZ
4037 if (found_type > min_type) {
4038 del_item = 1;
4039 } else {
4040 if (item_end < new_size)
b888db2b 4041 break;
8082510e
YZ
4042 if (found_key.offset >= new_size)
4043 del_item = 1;
4044 else
4045 del_item = 0;
39279cc3 4046 }
39279cc3 4047 found_extent = 0;
39279cc3 4048 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4049 if (found_type != BTRFS_EXTENT_DATA_KEY)
4050 goto delete;
4051
7f4f6e0a
JB
4052 if (del_item)
4053 last_size = found_key.offset;
4054 else
4055 last_size = new_size;
4056
179e29e4 4057 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4058 u64 num_dec;
db94535d 4059 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4060 if (!del_item) {
db94535d
CM
4061 u64 orig_num_bytes =
4062 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4063 extent_num_bytes = ALIGN(new_size -
4064 found_key.offset,
4065 root->sectorsize);
db94535d
CM
4066 btrfs_set_file_extent_num_bytes(leaf, fi,
4067 extent_num_bytes);
4068 num_dec = (orig_num_bytes -
9069218d 4069 extent_num_bytes);
e02119d5 4070 if (root->ref_cows && extent_start != 0)
a76a3cd4 4071 inode_sub_bytes(inode, num_dec);
5f39d397 4072 btrfs_mark_buffer_dirty(leaf);
39279cc3 4073 } else {
db94535d
CM
4074 extent_num_bytes =
4075 btrfs_file_extent_disk_num_bytes(leaf,
4076 fi);
5d4f98a2
YZ
4077 extent_offset = found_key.offset -
4078 btrfs_file_extent_offset(leaf, fi);
4079
39279cc3 4080 /* FIXME blocksize != 4096 */
9069218d 4081 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4082 if (extent_start != 0) {
4083 found_extent = 1;
e02119d5 4084 if (root->ref_cows)
a76a3cd4 4085 inode_sub_bytes(inode, num_dec);
e02119d5 4086 }
39279cc3 4087 }
9069218d 4088 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4089 /*
4090 * we can't truncate inline items that have had
4091 * special encodings
4092 */
4093 if (!del_item &&
4094 btrfs_file_extent_compression(leaf, fi) == 0 &&
4095 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4096 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4097 u32 size = new_size - found_key.offset;
4098
4099 if (root->ref_cows) {
a76a3cd4
YZ
4100 inode_sub_bytes(inode, item_end + 1 -
4101 new_size);
e02119d5 4102 }
514ac8ad
CM
4103
4104 /*
4105 * update the ram bytes to properly reflect
4106 * the new size of our item
4107 */
4108 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4109 size =
4110 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4111 btrfs_truncate_item(root, path, size, 1);
e02119d5 4112 } else if (root->ref_cows) {
a76a3cd4
YZ
4113 inode_sub_bytes(inode, item_end + 1 -
4114 found_key.offset);
9069218d 4115 }
39279cc3 4116 }
179e29e4 4117delete:
39279cc3 4118 if (del_item) {
85e21bac
CM
4119 if (!pending_del_nr) {
4120 /* no pending yet, add ourselves */
4121 pending_del_slot = path->slots[0];
4122 pending_del_nr = 1;
4123 } else if (pending_del_nr &&
4124 path->slots[0] + 1 == pending_del_slot) {
4125 /* hop on the pending chunk */
4126 pending_del_nr++;
4127 pending_del_slot = path->slots[0];
4128 } else {
d397712b 4129 BUG();
85e21bac 4130 }
39279cc3
CM
4131 } else {
4132 break;
4133 }
0af3d00b
JB
4134 if (found_extent && (root->ref_cows ||
4135 root == root->fs_info->tree_root)) {
b9473439 4136 btrfs_set_path_blocking(path);
39279cc3 4137 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4138 extent_num_bytes, 0,
4139 btrfs_header_owner(leaf),
66d7e7f0 4140 ino, extent_offset, 0);
39279cc3
CM
4141 BUG_ON(ret);
4142 }
85e21bac 4143
8082510e
YZ
4144 if (found_type == BTRFS_INODE_ITEM_KEY)
4145 break;
4146
4147 if (path->slots[0] == 0 ||
4148 path->slots[0] != pending_del_slot) {
8082510e
YZ
4149 if (pending_del_nr) {
4150 ret = btrfs_del_items(trans, root, path,
4151 pending_del_slot,
4152 pending_del_nr);
79787eaa
JM
4153 if (ret) {
4154 btrfs_abort_transaction(trans,
4155 root, ret);
4156 goto error;
4157 }
8082510e
YZ
4158 pending_del_nr = 0;
4159 }
b3b4aa74 4160 btrfs_release_path(path);
85e21bac 4161 goto search_again;
8082510e
YZ
4162 } else {
4163 path->slots[0]--;
85e21bac 4164 }
39279cc3 4165 }
8082510e 4166out:
85e21bac
CM
4167 if (pending_del_nr) {
4168 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4169 pending_del_nr);
79787eaa
JM
4170 if (ret)
4171 btrfs_abort_transaction(trans, root, ret);
85e21bac 4172 }
79787eaa 4173error:
7f4f6e0a
JB
4174 if (last_size != (u64)-1)
4175 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4176 btrfs_free_path(path);
8082510e 4177 return err;
39279cc3
CM
4178}
4179
4180/*
2aaa6655
JB
4181 * btrfs_truncate_page - read, zero a chunk and write a page
4182 * @inode - inode that we're zeroing
4183 * @from - the offset to start zeroing
4184 * @len - the length to zero, 0 to zero the entire range respective to the
4185 * offset
4186 * @front - zero up to the offset instead of from the offset on
4187 *
4188 * This will find the page for the "from" offset and cow the page and zero the
4189 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4190 */
2aaa6655
JB
4191int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4192 int front)
39279cc3 4193{
2aaa6655 4194 struct address_space *mapping = inode->i_mapping;
db94535d 4195 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4196 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4197 struct btrfs_ordered_extent *ordered;
2ac55d41 4198 struct extent_state *cached_state = NULL;
e6dcd2dc 4199 char *kaddr;
db94535d 4200 u32 blocksize = root->sectorsize;
39279cc3
CM
4201 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4202 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4203 struct page *page;
3b16a4e3 4204 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4205 int ret = 0;
a52d9a80 4206 u64 page_start;
e6dcd2dc 4207 u64 page_end;
39279cc3 4208
2aaa6655
JB
4209 if ((offset & (blocksize - 1)) == 0 &&
4210 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4211 goto out;
0ca1f7ce 4212 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4213 if (ret)
4214 goto out;
39279cc3 4215
211c17f5 4216again:
3b16a4e3 4217 page = find_or_create_page(mapping, index, mask);
5d5e103a 4218 if (!page) {
0ca1f7ce 4219 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4220 ret = -ENOMEM;
39279cc3 4221 goto out;
5d5e103a 4222 }
e6dcd2dc
CM
4223
4224 page_start = page_offset(page);
4225 page_end = page_start + PAGE_CACHE_SIZE - 1;
4226
39279cc3 4227 if (!PageUptodate(page)) {
9ebefb18 4228 ret = btrfs_readpage(NULL, page);
39279cc3 4229 lock_page(page);
211c17f5
CM
4230 if (page->mapping != mapping) {
4231 unlock_page(page);
4232 page_cache_release(page);
4233 goto again;
4234 }
39279cc3
CM
4235 if (!PageUptodate(page)) {
4236 ret = -EIO;
89642229 4237 goto out_unlock;
39279cc3
CM
4238 }
4239 }
211c17f5 4240 wait_on_page_writeback(page);
e6dcd2dc 4241
d0082371 4242 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4243 set_page_extent_mapped(page);
4244
4245 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4246 if (ordered) {
2ac55d41
JB
4247 unlock_extent_cached(io_tree, page_start, page_end,
4248 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4249 unlock_page(page);
4250 page_cache_release(page);
eb84ae03 4251 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4252 btrfs_put_ordered_extent(ordered);
4253 goto again;
4254 }
4255
2ac55d41 4256 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4257 EXTENT_DIRTY | EXTENT_DELALLOC |
4258 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4259 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4260
2ac55d41
JB
4261 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4262 &cached_state);
9ed74f2d 4263 if (ret) {
2ac55d41
JB
4264 unlock_extent_cached(io_tree, page_start, page_end,
4265 &cached_state, GFP_NOFS);
9ed74f2d
JB
4266 goto out_unlock;
4267 }
4268
e6dcd2dc 4269 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4270 if (!len)
4271 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4272 kaddr = kmap(page);
2aaa6655
JB
4273 if (front)
4274 memset(kaddr, 0, offset);
4275 else
4276 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4277 flush_dcache_page(page);
4278 kunmap(page);
4279 }
247e743c 4280 ClearPageChecked(page);
e6dcd2dc 4281 set_page_dirty(page);
2ac55d41
JB
4282 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4283 GFP_NOFS);
39279cc3 4284
89642229 4285out_unlock:
5d5e103a 4286 if (ret)
0ca1f7ce 4287 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4288 unlock_page(page);
4289 page_cache_release(page);
4290out:
4291 return ret;
4292}
4293
16e7549f
JB
4294static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4295 u64 offset, u64 len)
4296{
4297 struct btrfs_trans_handle *trans;
4298 int ret;
4299
4300 /*
4301 * Still need to make sure the inode looks like it's been updated so
4302 * that any holes get logged if we fsync.
4303 */
4304 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4305 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4306 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4307 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4308 return 0;
4309 }
4310
4311 /*
4312 * 1 - for the one we're dropping
4313 * 1 - for the one we're adding
4314 * 1 - for updating the inode.
4315 */
4316 trans = btrfs_start_transaction(root, 3);
4317 if (IS_ERR(trans))
4318 return PTR_ERR(trans);
4319
4320 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4321 if (ret) {
4322 btrfs_abort_transaction(trans, root, ret);
4323 btrfs_end_transaction(trans, root);
4324 return ret;
4325 }
4326
4327 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4328 0, 0, len, 0, len, 0, 0, 0);
4329 if (ret)
4330 btrfs_abort_transaction(trans, root, ret);
4331 else
4332 btrfs_update_inode(trans, root, inode);
4333 btrfs_end_transaction(trans, root);
4334 return ret;
4335}
4336
695a0d0d
JB
4337/*
4338 * This function puts in dummy file extents for the area we're creating a hole
4339 * for. So if we are truncating this file to a larger size we need to insert
4340 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4341 * the range between oldsize and size
4342 */
a41ad394 4343int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4344{
9036c102
YZ
4345 struct btrfs_root *root = BTRFS_I(inode)->root;
4346 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4347 struct extent_map *em = NULL;
2ac55d41 4348 struct extent_state *cached_state = NULL;
5dc562c5 4349 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4350 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4351 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4352 u64 last_byte;
4353 u64 cur_offset;
4354 u64 hole_size;
9ed74f2d 4355 int err = 0;
39279cc3 4356
a71754fc
JB
4357 /*
4358 * If our size started in the middle of a page we need to zero out the
4359 * rest of the page before we expand the i_size, otherwise we could
4360 * expose stale data.
4361 */
4362 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4363 if (err)
4364 return err;
4365
9036c102
YZ
4366 if (size <= hole_start)
4367 return 0;
4368
9036c102
YZ
4369 while (1) {
4370 struct btrfs_ordered_extent *ordered;
fa7c1494 4371
2ac55d41 4372 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4373 &cached_state);
fa7c1494
MX
4374 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4375 block_end - hole_start);
9036c102
YZ
4376 if (!ordered)
4377 break;
2ac55d41
JB
4378 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4379 &cached_state, GFP_NOFS);
fa7c1494 4380 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4381 btrfs_put_ordered_extent(ordered);
4382 }
39279cc3 4383
9036c102
YZ
4384 cur_offset = hole_start;
4385 while (1) {
4386 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4387 block_end - cur_offset, 0);
79787eaa
JM
4388 if (IS_ERR(em)) {
4389 err = PTR_ERR(em);
f2767956 4390 em = NULL;
79787eaa
JM
4391 break;
4392 }
9036c102 4393 last_byte = min(extent_map_end(em), block_end);
fda2832f 4394 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4395 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4396 struct extent_map *hole_em;
9036c102 4397 hole_size = last_byte - cur_offset;
9ed74f2d 4398
16e7549f
JB
4399 err = maybe_insert_hole(root, inode, cur_offset,
4400 hole_size);
4401 if (err)
3893e33b 4402 break;
5dc562c5
JB
4403 btrfs_drop_extent_cache(inode, cur_offset,
4404 cur_offset + hole_size - 1, 0);
4405 hole_em = alloc_extent_map();
4406 if (!hole_em) {
4407 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4408 &BTRFS_I(inode)->runtime_flags);
4409 goto next;
4410 }
4411 hole_em->start = cur_offset;
4412 hole_em->len = hole_size;
4413 hole_em->orig_start = cur_offset;
8082510e 4414
5dc562c5
JB
4415 hole_em->block_start = EXTENT_MAP_HOLE;
4416 hole_em->block_len = 0;
b4939680 4417 hole_em->orig_block_len = 0;
cc95bef6 4418 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4419 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4420 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4421 hole_em->generation = root->fs_info->generation;
8082510e 4422
5dc562c5
JB
4423 while (1) {
4424 write_lock(&em_tree->lock);
09a2a8f9 4425 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4426 write_unlock(&em_tree->lock);
4427 if (err != -EEXIST)
4428 break;
4429 btrfs_drop_extent_cache(inode, cur_offset,
4430 cur_offset +
4431 hole_size - 1, 0);
4432 }
4433 free_extent_map(hole_em);
9036c102 4434 }
16e7549f 4435next:
9036c102 4436 free_extent_map(em);
a22285a6 4437 em = NULL;
9036c102 4438 cur_offset = last_byte;
8082510e 4439 if (cur_offset >= block_end)
9036c102
YZ
4440 break;
4441 }
a22285a6 4442 free_extent_map(em);
2ac55d41
JB
4443 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4444 GFP_NOFS);
9036c102
YZ
4445 return err;
4446}
39279cc3 4447
3972f260 4448static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4449{
f4a2f4c5
MX
4450 struct btrfs_root *root = BTRFS_I(inode)->root;
4451 struct btrfs_trans_handle *trans;
a41ad394 4452 loff_t oldsize = i_size_read(inode);
3972f260
ES
4453 loff_t newsize = attr->ia_size;
4454 int mask = attr->ia_valid;
8082510e
YZ
4455 int ret;
4456
3972f260
ES
4457 /*
4458 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4459 * special case where we need to update the times despite not having
4460 * these flags set. For all other operations the VFS set these flags
4461 * explicitly if it wants a timestamp update.
4462 */
4463 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4464 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4465
a41ad394 4466 if (newsize > oldsize) {
7caef267 4467 truncate_pagecache(inode, newsize);
a41ad394 4468 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4469 if (ret)
8082510e 4470 return ret;
8082510e 4471
f4a2f4c5
MX
4472 trans = btrfs_start_transaction(root, 1);
4473 if (IS_ERR(trans))
4474 return PTR_ERR(trans);
4475
4476 i_size_write(inode, newsize);
4477 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4478 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4479 btrfs_end_transaction(trans, root);
a41ad394 4480 } else {
8082510e 4481
a41ad394
JB
4482 /*
4483 * We're truncating a file that used to have good data down to
4484 * zero. Make sure it gets into the ordered flush list so that
4485 * any new writes get down to disk quickly.
4486 */
4487 if (newsize == 0)
72ac3c0d
JB
4488 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4489 &BTRFS_I(inode)->runtime_flags);
8082510e 4490
f3fe820c
JB
4491 /*
4492 * 1 for the orphan item we're going to add
4493 * 1 for the orphan item deletion.
4494 */
4495 trans = btrfs_start_transaction(root, 2);
4496 if (IS_ERR(trans))
4497 return PTR_ERR(trans);
4498
4499 /*
4500 * We need to do this in case we fail at _any_ point during the
4501 * actual truncate. Once we do the truncate_setsize we could
4502 * invalidate pages which forces any outstanding ordered io to
4503 * be instantly completed which will give us extents that need
4504 * to be truncated. If we fail to get an orphan inode down we
4505 * could have left over extents that were never meant to live,
4506 * so we need to garuntee from this point on that everything
4507 * will be consistent.
4508 */
4509 ret = btrfs_orphan_add(trans, inode);
4510 btrfs_end_transaction(trans, root);
4511 if (ret)
4512 return ret;
4513
a41ad394
JB
4514 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4515 truncate_setsize(inode, newsize);
2e60a51e
MX
4516
4517 /* Disable nonlocked read DIO to avoid the end less truncate */
4518 btrfs_inode_block_unlocked_dio(inode);
4519 inode_dio_wait(inode);
4520 btrfs_inode_resume_unlocked_dio(inode);
4521
a41ad394 4522 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4523 if (ret && inode->i_nlink) {
4524 int err;
4525
4526 /*
4527 * failed to truncate, disk_i_size is only adjusted down
4528 * as we remove extents, so it should represent the true
4529 * size of the inode, so reset the in memory size and
4530 * delete our orphan entry.
4531 */
4532 trans = btrfs_join_transaction(root);
4533 if (IS_ERR(trans)) {
4534 btrfs_orphan_del(NULL, inode);
4535 return ret;
4536 }
4537 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4538 err = btrfs_orphan_del(trans, inode);
4539 if (err)
4540 btrfs_abort_transaction(trans, root, err);
4541 btrfs_end_transaction(trans, root);
4542 }
8082510e
YZ
4543 }
4544
a41ad394 4545 return ret;
8082510e
YZ
4546}
4547
9036c102
YZ
4548static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4549{
4550 struct inode *inode = dentry->d_inode;
b83cc969 4551 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4552 int err;
39279cc3 4553
b83cc969
LZ
4554 if (btrfs_root_readonly(root))
4555 return -EROFS;
4556
9036c102
YZ
4557 err = inode_change_ok(inode, attr);
4558 if (err)
4559 return err;
2bf5a725 4560
5a3f23d5 4561 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4562 err = btrfs_setsize(inode, attr);
8082510e
YZ
4563 if (err)
4564 return err;
39279cc3 4565 }
9036c102 4566
1025774c
CH
4567 if (attr->ia_valid) {
4568 setattr_copy(inode, attr);
0c4d2d95 4569 inode_inc_iversion(inode);
22c44fe6 4570 err = btrfs_dirty_inode(inode);
1025774c 4571
22c44fe6 4572 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4573 err = btrfs_acl_chmod(inode);
4574 }
33268eaf 4575
39279cc3
CM
4576 return err;
4577}
61295eb8 4578
131e404a
FDBM
4579/*
4580 * While truncating the inode pages during eviction, we get the VFS calling
4581 * btrfs_invalidatepage() against each page of the inode. This is slow because
4582 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4583 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4584 * extent_state structures over and over, wasting lots of time.
4585 *
4586 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4587 * those expensive operations on a per page basis and do only the ordered io
4588 * finishing, while we release here the extent_map and extent_state structures,
4589 * without the excessive merging and splitting.
4590 */
4591static void evict_inode_truncate_pages(struct inode *inode)
4592{
4593 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4594 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4595 struct rb_node *node;
4596
4597 ASSERT(inode->i_state & I_FREEING);
4598 truncate_inode_pages(&inode->i_data, 0);
4599
4600 write_lock(&map_tree->lock);
4601 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4602 struct extent_map *em;
4603
4604 node = rb_first(&map_tree->map);
4605 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4606 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4607 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4608 remove_extent_mapping(map_tree, em);
4609 free_extent_map(em);
4610 }
4611 write_unlock(&map_tree->lock);
4612
4613 spin_lock(&io_tree->lock);
4614 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4615 struct extent_state *state;
4616 struct extent_state *cached_state = NULL;
4617
4618 node = rb_first(&io_tree->state);
4619 state = rb_entry(node, struct extent_state, rb_node);
4620 atomic_inc(&state->refs);
4621 spin_unlock(&io_tree->lock);
4622
4623 lock_extent_bits(io_tree, state->start, state->end,
4624 0, &cached_state);
4625 clear_extent_bit(io_tree, state->start, state->end,
4626 EXTENT_LOCKED | EXTENT_DIRTY |
4627 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4628 EXTENT_DEFRAG, 1, 1,
4629 &cached_state, GFP_NOFS);
4630 free_extent_state(state);
4631
4632 spin_lock(&io_tree->lock);
4633 }
4634 spin_unlock(&io_tree->lock);
4635}
4636
bd555975 4637void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4638{
4639 struct btrfs_trans_handle *trans;
4640 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4641 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4642 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4643 int ret;
4644
1abe9b8a 4645 trace_btrfs_inode_evict(inode);
4646
131e404a
FDBM
4647 evict_inode_truncate_pages(inode);
4648
69e9c6c6
SB
4649 if (inode->i_nlink &&
4650 ((btrfs_root_refs(&root->root_item) != 0 &&
4651 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4652 btrfs_is_free_space_inode(inode)))
bd555975
AV
4653 goto no_delete;
4654
39279cc3 4655 if (is_bad_inode(inode)) {
7b128766 4656 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4657 goto no_delete;
4658 }
bd555975 4659 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4660 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4661
c71bf099 4662 if (root->fs_info->log_root_recovering) {
6bf02314 4663 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4664 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4665 goto no_delete;
4666 }
4667
76dda93c 4668 if (inode->i_nlink > 0) {
69e9c6c6
SB
4669 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4670 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4671 goto no_delete;
4672 }
4673
0e8c36a9
MX
4674 ret = btrfs_commit_inode_delayed_inode(inode);
4675 if (ret) {
4676 btrfs_orphan_del(NULL, inode);
4677 goto no_delete;
4678 }
4679
66d8f3dd 4680 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4681 if (!rsv) {
4682 btrfs_orphan_del(NULL, inode);
4683 goto no_delete;
4684 }
4a338542 4685 rsv->size = min_size;
ca7e70f5 4686 rsv->failfast = 1;
726c35fa 4687 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4688
dbe674a9 4689 btrfs_i_size_write(inode, 0);
5f39d397 4690
4289a667 4691 /*
8407aa46
MX
4692 * This is a bit simpler than btrfs_truncate since we've already
4693 * reserved our space for our orphan item in the unlink, so we just
4694 * need to reserve some slack space in case we add bytes and update
4695 * inode item when doing the truncate.
4289a667 4696 */
8082510e 4697 while (1) {
08e007d2
MX
4698 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4699 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4700
4701 /*
4702 * Try and steal from the global reserve since we will
4703 * likely not use this space anyway, we want to try as
4704 * hard as possible to get this to work.
4705 */
4706 if (ret)
4707 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4708
d68fc57b 4709 if (ret) {
c2cf52eb
SK
4710 btrfs_warn(root->fs_info,
4711 "Could not get space for a delete, will truncate on mount %d",
4712 ret);
4289a667
JB
4713 btrfs_orphan_del(NULL, inode);
4714 btrfs_free_block_rsv(root, rsv);
4715 goto no_delete;
d68fc57b 4716 }
7b128766 4717
0e8c36a9 4718 trans = btrfs_join_transaction(root);
4289a667
JB
4719 if (IS_ERR(trans)) {
4720 btrfs_orphan_del(NULL, inode);
4721 btrfs_free_block_rsv(root, rsv);
4722 goto no_delete;
d68fc57b 4723 }
7b128766 4724
4289a667
JB
4725 trans->block_rsv = rsv;
4726
d68fc57b 4727 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4728 if (ret != -ENOSPC)
8082510e 4729 break;
85e21bac 4730
8407aa46 4731 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4732 btrfs_end_transaction(trans, root);
4733 trans = NULL;
b53d3f5d 4734 btrfs_btree_balance_dirty(root);
8082510e 4735 }
5f39d397 4736
4289a667
JB
4737 btrfs_free_block_rsv(root, rsv);
4738
4ef31a45
JB
4739 /*
4740 * Errors here aren't a big deal, it just means we leave orphan items
4741 * in the tree. They will be cleaned up on the next mount.
4742 */
8082510e 4743 if (ret == 0) {
4289a667 4744 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4745 btrfs_orphan_del(trans, inode);
4746 } else {
4747 btrfs_orphan_del(NULL, inode);
8082510e 4748 }
54aa1f4d 4749
4289a667 4750 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4751 if (!(root == root->fs_info->tree_root ||
4752 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4753 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4754
54aa1f4d 4755 btrfs_end_transaction(trans, root);
b53d3f5d 4756 btrfs_btree_balance_dirty(root);
39279cc3 4757no_delete:
89042e5a 4758 btrfs_remove_delayed_node(inode);
dbd5768f 4759 clear_inode(inode);
8082510e 4760 return;
39279cc3
CM
4761}
4762
4763/*
4764 * this returns the key found in the dir entry in the location pointer.
4765 * If no dir entries were found, location->objectid is 0.
4766 */
4767static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4768 struct btrfs_key *location)
4769{
4770 const char *name = dentry->d_name.name;
4771 int namelen = dentry->d_name.len;
4772 struct btrfs_dir_item *di;
4773 struct btrfs_path *path;
4774 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4775 int ret = 0;
39279cc3
CM
4776
4777 path = btrfs_alloc_path();
d8926bb3
MF
4778 if (!path)
4779 return -ENOMEM;
3954401f 4780
33345d01 4781 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4782 namelen, 0);
0d9f7f3e
Y
4783 if (IS_ERR(di))
4784 ret = PTR_ERR(di);
d397712b 4785
c704005d 4786 if (IS_ERR_OR_NULL(di))
3954401f 4787 goto out_err;
d397712b 4788
5f39d397 4789 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4790out:
39279cc3
CM
4791 btrfs_free_path(path);
4792 return ret;
3954401f
CM
4793out_err:
4794 location->objectid = 0;
4795 goto out;
39279cc3
CM
4796}
4797
4798/*
4799 * when we hit a tree root in a directory, the btrfs part of the inode
4800 * needs to be changed to reflect the root directory of the tree root. This
4801 * is kind of like crossing a mount point.
4802 */
4803static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4804 struct inode *dir,
4805 struct dentry *dentry,
4806 struct btrfs_key *location,
4807 struct btrfs_root **sub_root)
39279cc3 4808{
4df27c4d
YZ
4809 struct btrfs_path *path;
4810 struct btrfs_root *new_root;
4811 struct btrfs_root_ref *ref;
4812 struct extent_buffer *leaf;
4813 int ret;
4814 int err = 0;
39279cc3 4815
4df27c4d
YZ
4816 path = btrfs_alloc_path();
4817 if (!path) {
4818 err = -ENOMEM;
4819 goto out;
4820 }
39279cc3 4821
4df27c4d 4822 err = -ENOENT;
75ac2dd9
KN
4823 ret = btrfs_find_item(root->fs_info->tree_root, path,
4824 BTRFS_I(dir)->root->root_key.objectid,
4825 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4df27c4d
YZ
4826 if (ret) {
4827 if (ret < 0)
4828 err = ret;
4829 goto out;
4830 }
39279cc3 4831
4df27c4d
YZ
4832 leaf = path->nodes[0];
4833 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4834 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4835 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4836 goto out;
39279cc3 4837
4df27c4d
YZ
4838 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4839 (unsigned long)(ref + 1),
4840 dentry->d_name.len);
4841 if (ret)
4842 goto out;
4843
b3b4aa74 4844 btrfs_release_path(path);
4df27c4d
YZ
4845
4846 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4847 if (IS_ERR(new_root)) {
4848 err = PTR_ERR(new_root);
4849 goto out;
4850 }
4851
4df27c4d
YZ
4852 *sub_root = new_root;
4853 location->objectid = btrfs_root_dirid(&new_root->root_item);
4854 location->type = BTRFS_INODE_ITEM_KEY;
4855 location->offset = 0;
4856 err = 0;
4857out:
4858 btrfs_free_path(path);
4859 return err;
39279cc3
CM
4860}
4861
5d4f98a2
YZ
4862static void inode_tree_add(struct inode *inode)
4863{
4864 struct btrfs_root *root = BTRFS_I(inode)->root;
4865 struct btrfs_inode *entry;
03e860bd
FNP
4866 struct rb_node **p;
4867 struct rb_node *parent;
cef21937 4868 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 4869 u64 ino = btrfs_ino(inode);
5d4f98a2 4870
1d3382cb 4871 if (inode_unhashed(inode))
76dda93c 4872 return;
e1409cef 4873 parent = NULL;
5d4f98a2 4874 spin_lock(&root->inode_lock);
e1409cef 4875 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4876 while (*p) {
4877 parent = *p;
4878 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4879
33345d01 4880 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4881 p = &parent->rb_left;
33345d01 4882 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4883 p = &parent->rb_right;
5d4f98a2
YZ
4884 else {
4885 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4886 (I_WILL_FREE | I_FREEING)));
cef21937 4887 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
4888 RB_CLEAR_NODE(parent);
4889 spin_unlock(&root->inode_lock);
cef21937 4890 return;
5d4f98a2
YZ
4891 }
4892 }
cef21937
FDBM
4893 rb_link_node(new, parent, p);
4894 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
4895 spin_unlock(&root->inode_lock);
4896}
4897
4898static void inode_tree_del(struct inode *inode)
4899{
4900 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4901 int empty = 0;
5d4f98a2 4902
03e860bd 4903 spin_lock(&root->inode_lock);
5d4f98a2 4904 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4905 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4906 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4907 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4908 }
03e860bd 4909 spin_unlock(&root->inode_lock);
76dda93c 4910
69e9c6c6 4911 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
4912 synchronize_srcu(&root->fs_info->subvol_srcu);
4913 spin_lock(&root->inode_lock);
4914 empty = RB_EMPTY_ROOT(&root->inode_tree);
4915 spin_unlock(&root->inode_lock);
4916 if (empty)
4917 btrfs_add_dead_root(root);
4918 }
4919}
4920
143bede5 4921void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4922{
4923 struct rb_node *node;
4924 struct rb_node *prev;
4925 struct btrfs_inode *entry;
4926 struct inode *inode;
4927 u64 objectid = 0;
4928
4929 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4930
4931 spin_lock(&root->inode_lock);
4932again:
4933 node = root->inode_tree.rb_node;
4934 prev = NULL;
4935 while (node) {
4936 prev = node;
4937 entry = rb_entry(node, struct btrfs_inode, rb_node);
4938
33345d01 4939 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4940 node = node->rb_left;
33345d01 4941 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4942 node = node->rb_right;
4943 else
4944 break;
4945 }
4946 if (!node) {
4947 while (prev) {
4948 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4949 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4950 node = prev;
4951 break;
4952 }
4953 prev = rb_next(prev);
4954 }
4955 }
4956 while (node) {
4957 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4958 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4959 inode = igrab(&entry->vfs_inode);
4960 if (inode) {
4961 spin_unlock(&root->inode_lock);
4962 if (atomic_read(&inode->i_count) > 1)
4963 d_prune_aliases(inode);
4964 /*
45321ac5 4965 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4966 * the inode cache when its usage count
4967 * hits zero.
4968 */
4969 iput(inode);
4970 cond_resched();
4971 spin_lock(&root->inode_lock);
4972 goto again;
4973 }
4974
4975 if (cond_resched_lock(&root->inode_lock))
4976 goto again;
4977
4978 node = rb_next(node);
4979 }
4980 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4981}
4982
e02119d5
CM
4983static int btrfs_init_locked_inode(struct inode *inode, void *p)
4984{
4985 struct btrfs_iget_args *args = p;
90d3e592
CM
4986 inode->i_ino = args->location->objectid;
4987 memcpy(&BTRFS_I(inode)->location, args->location,
4988 sizeof(*args->location));
e02119d5 4989 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4990 return 0;
4991}
4992
4993static int btrfs_find_actor(struct inode *inode, void *opaque)
4994{
4995 struct btrfs_iget_args *args = opaque;
90d3e592 4996 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 4997 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4998}
4999
5d4f98a2 5000static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5001 struct btrfs_key *location,
5d4f98a2 5002 struct btrfs_root *root)
39279cc3
CM
5003{
5004 struct inode *inode;
5005 struct btrfs_iget_args args;
90d3e592 5006 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5007
90d3e592 5008 args.location = location;
39279cc3
CM
5009 args.root = root;
5010
778ba82b 5011 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5012 btrfs_init_locked_inode,
5013 (void *)&args);
5014 return inode;
5015}
5016
1a54ef8c
BR
5017/* Get an inode object given its location and corresponding root.
5018 * Returns in *is_new if the inode was read from disk
5019 */
5020struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5021 struct btrfs_root *root, int *new)
1a54ef8c
BR
5022{
5023 struct inode *inode;
5024
90d3e592 5025 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5026 if (!inode)
5d4f98a2 5027 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5028
5029 if (inode->i_state & I_NEW) {
1a54ef8c 5030 btrfs_read_locked_inode(inode);
1748f843
MF
5031 if (!is_bad_inode(inode)) {
5032 inode_tree_add(inode);
5033 unlock_new_inode(inode);
5034 if (new)
5035 *new = 1;
5036 } else {
e0b6d65b
ST
5037 unlock_new_inode(inode);
5038 iput(inode);
5039 inode = ERR_PTR(-ESTALE);
1748f843
MF
5040 }
5041 }
5042
1a54ef8c
BR
5043 return inode;
5044}
5045
4df27c4d
YZ
5046static struct inode *new_simple_dir(struct super_block *s,
5047 struct btrfs_key *key,
5048 struct btrfs_root *root)
5049{
5050 struct inode *inode = new_inode(s);
5051
5052 if (!inode)
5053 return ERR_PTR(-ENOMEM);
5054
4df27c4d
YZ
5055 BTRFS_I(inode)->root = root;
5056 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5057 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5058
5059 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5060 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5061 inode->i_fop = &simple_dir_operations;
5062 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5063 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5064
5065 return inode;
5066}
5067
3de4586c 5068struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5069{
d397712b 5070 struct inode *inode;
4df27c4d 5071 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5072 struct btrfs_root *sub_root = root;
5073 struct btrfs_key location;
76dda93c 5074 int index;
b4aff1f8 5075 int ret = 0;
39279cc3
CM
5076
5077 if (dentry->d_name.len > BTRFS_NAME_LEN)
5078 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5079
39e3c955 5080 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5081 if (ret < 0)
5082 return ERR_PTR(ret);
5f39d397 5083
4df27c4d 5084 if (location.objectid == 0)
5662344b 5085 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5086
5087 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5088 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5089 return inode;
5090 }
5091
5092 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5093
76dda93c 5094 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5095 ret = fixup_tree_root_location(root, dir, dentry,
5096 &location, &sub_root);
5097 if (ret < 0) {
5098 if (ret != -ENOENT)
5099 inode = ERR_PTR(ret);
5100 else
5101 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5102 } else {
73f73415 5103 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5104 }
76dda93c
YZ
5105 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5106
34d19bad 5107 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5108 down_read(&root->fs_info->cleanup_work_sem);
5109 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5110 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5111 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5112 if (ret) {
5113 iput(inode);
66b4ffd1 5114 inode = ERR_PTR(ret);
01cd3367 5115 }
c71bf099
YZ
5116 }
5117
3de4586c
CM
5118 return inode;
5119}
5120
fe15ce44 5121static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5122{
5123 struct btrfs_root *root;
848cce0d 5124 struct inode *inode = dentry->d_inode;
76dda93c 5125
848cce0d
LZ
5126 if (!inode && !IS_ROOT(dentry))
5127 inode = dentry->d_parent->d_inode;
76dda93c 5128
848cce0d
LZ
5129 if (inode) {
5130 root = BTRFS_I(inode)->root;
efefb143
YZ
5131 if (btrfs_root_refs(&root->root_item) == 0)
5132 return 1;
848cce0d
LZ
5133
5134 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5135 return 1;
efefb143 5136 }
76dda93c
YZ
5137 return 0;
5138}
5139
b4aff1f8
JB
5140static void btrfs_dentry_release(struct dentry *dentry)
5141{
5142 if (dentry->d_fsdata)
5143 kfree(dentry->d_fsdata);
5144}
5145
3de4586c 5146static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5147 unsigned int flags)
3de4586c 5148{
5662344b 5149 struct inode *inode;
a66e7cc6 5150
5662344b
TI
5151 inode = btrfs_lookup_dentry(dir, dentry);
5152 if (IS_ERR(inode)) {
5153 if (PTR_ERR(inode) == -ENOENT)
5154 inode = NULL;
5155 else
5156 return ERR_CAST(inode);
5157 }
5158
3a0dfa6a 5159 return d_materialise_unique(dentry, inode);
39279cc3
CM
5160}
5161
16cdcec7 5162unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5163 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5164};
5165
9cdda8d3 5166static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5167{
9cdda8d3 5168 struct inode *inode = file_inode(file);
39279cc3
CM
5169 struct btrfs_root *root = BTRFS_I(inode)->root;
5170 struct btrfs_item *item;
5171 struct btrfs_dir_item *di;
5172 struct btrfs_key key;
5f39d397 5173 struct btrfs_key found_key;
39279cc3 5174 struct btrfs_path *path;
16cdcec7
MX
5175 struct list_head ins_list;
5176 struct list_head del_list;
39279cc3 5177 int ret;
5f39d397 5178 struct extent_buffer *leaf;
39279cc3 5179 int slot;
39279cc3
CM
5180 unsigned char d_type;
5181 int over = 0;
5182 u32 di_cur;
5183 u32 di_total;
5184 u32 di_len;
5185 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5186 char tmp_name[32];
5187 char *name_ptr;
5188 int name_len;
9cdda8d3 5189 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5190
5191 /* FIXME, use a real flag for deciding about the key type */
5192 if (root->fs_info->tree_root == root)
5193 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5194
9cdda8d3
AV
5195 if (!dir_emit_dots(file, ctx))
5196 return 0;
5197
49593bfa 5198 path = btrfs_alloc_path();
16cdcec7
MX
5199 if (!path)
5200 return -ENOMEM;
ff5714cc 5201
026fd317 5202 path->reada = 1;
49593bfa 5203
16cdcec7
MX
5204 if (key_type == BTRFS_DIR_INDEX_KEY) {
5205 INIT_LIST_HEAD(&ins_list);
5206 INIT_LIST_HEAD(&del_list);
5207 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5208 }
5209
39279cc3 5210 btrfs_set_key_type(&key, key_type);
9cdda8d3 5211 key.offset = ctx->pos;
33345d01 5212 key.objectid = btrfs_ino(inode);
5f39d397 5213
39279cc3
CM
5214 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5215 if (ret < 0)
5216 goto err;
49593bfa
DW
5217
5218 while (1) {
5f39d397 5219 leaf = path->nodes[0];
39279cc3 5220 slot = path->slots[0];
b9e03af0
LZ
5221 if (slot >= btrfs_header_nritems(leaf)) {
5222 ret = btrfs_next_leaf(root, path);
5223 if (ret < 0)
5224 goto err;
5225 else if (ret > 0)
5226 break;
5227 continue;
39279cc3 5228 }
3de4586c 5229
dd3cc16b 5230 item = btrfs_item_nr(slot);
5f39d397
CM
5231 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5232
5233 if (found_key.objectid != key.objectid)
39279cc3 5234 break;
5f39d397 5235 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5236 break;
9cdda8d3 5237 if (found_key.offset < ctx->pos)
b9e03af0 5238 goto next;
16cdcec7
MX
5239 if (key_type == BTRFS_DIR_INDEX_KEY &&
5240 btrfs_should_delete_dir_index(&del_list,
5241 found_key.offset))
5242 goto next;
5f39d397 5243
9cdda8d3 5244 ctx->pos = found_key.offset;
16cdcec7 5245 is_curr = 1;
49593bfa 5246
39279cc3
CM
5247 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5248 di_cur = 0;
5f39d397 5249 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5250
5251 while (di_cur < di_total) {
5f39d397
CM
5252 struct btrfs_key location;
5253
22a94d44
JB
5254 if (verify_dir_item(root, leaf, di))
5255 break;
5256
5f39d397 5257 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5258 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5259 name_ptr = tmp_name;
5260 } else {
5261 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5262 if (!name_ptr) {
5263 ret = -ENOMEM;
5264 goto err;
5265 }
5f39d397
CM
5266 }
5267 read_extent_buffer(leaf, name_ptr,
5268 (unsigned long)(di + 1), name_len);
5269
5270 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5271 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5272
fede766f 5273
3de4586c 5274 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5275 * skip it.
5276 *
5277 * In contrast to old kernels, we insert the snapshot's
5278 * dir item and dir index after it has been created, so
5279 * we won't find a reference to our own snapshot. We
5280 * still keep the following code for backward
5281 * compatibility.
3de4586c
CM
5282 */
5283 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5284 location.objectid == root->root_key.objectid) {
5285 over = 0;
5286 goto skip;
5287 }
9cdda8d3
AV
5288 over = !dir_emit(ctx, name_ptr, name_len,
5289 location.objectid, d_type);
5f39d397 5290
3de4586c 5291skip:
5f39d397
CM
5292 if (name_ptr != tmp_name)
5293 kfree(name_ptr);
5294
39279cc3
CM
5295 if (over)
5296 goto nopos;
5103e947 5297 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5298 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5299 di_cur += di_len;
5300 di = (struct btrfs_dir_item *)((char *)di + di_len);
5301 }
b9e03af0
LZ
5302next:
5303 path->slots[0]++;
39279cc3 5304 }
49593bfa 5305
16cdcec7
MX
5306 if (key_type == BTRFS_DIR_INDEX_KEY) {
5307 if (is_curr)
9cdda8d3
AV
5308 ctx->pos++;
5309 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5310 if (ret)
5311 goto nopos;
5312 }
5313
49593bfa 5314 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5315 ctx->pos++;
5316
5317 /*
5318 * Stop new entries from being returned after we return the last
5319 * entry.
5320 *
5321 * New directory entries are assigned a strictly increasing
5322 * offset. This means that new entries created during readdir
5323 * are *guaranteed* to be seen in the future by that readdir.
5324 * This has broken buggy programs which operate on names as
5325 * they're returned by readdir. Until we re-use freed offsets
5326 * we have this hack to stop new entries from being returned
5327 * under the assumption that they'll never reach this huge
5328 * offset.
5329 *
5330 * This is being careful not to overflow 32bit loff_t unless the
5331 * last entry requires it because doing so has broken 32bit apps
5332 * in the past.
5333 */
5334 if (key_type == BTRFS_DIR_INDEX_KEY) {
5335 if (ctx->pos >= INT_MAX)
5336 ctx->pos = LLONG_MAX;
5337 else
5338 ctx->pos = INT_MAX;
5339 }
39279cc3
CM
5340nopos:
5341 ret = 0;
5342err:
16cdcec7
MX
5343 if (key_type == BTRFS_DIR_INDEX_KEY)
5344 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5345 btrfs_free_path(path);
39279cc3
CM
5346 return ret;
5347}
5348
a9185b41 5349int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5350{
5351 struct btrfs_root *root = BTRFS_I(inode)->root;
5352 struct btrfs_trans_handle *trans;
5353 int ret = 0;
0af3d00b 5354 bool nolock = false;
39279cc3 5355
72ac3c0d 5356 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5357 return 0;
5358
83eea1f1 5359 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5360 nolock = true;
0af3d00b 5361
a9185b41 5362 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5363 if (nolock)
7a7eaa40 5364 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5365 else
7a7eaa40 5366 trans = btrfs_join_transaction(root);
3612b495
TI
5367 if (IS_ERR(trans))
5368 return PTR_ERR(trans);
a698d075 5369 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5370 }
5371 return ret;
5372}
5373
5374/*
54aa1f4d 5375 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5376 * inode changes. But, it is most likely to find the inode in cache.
5377 * FIXME, needs more benchmarking...there are no reasons other than performance
5378 * to keep or drop this code.
5379 */
48a3b636 5380static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5381{
5382 struct btrfs_root *root = BTRFS_I(inode)->root;
5383 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5384 int ret;
5385
72ac3c0d 5386 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5387 return 0;
39279cc3 5388
7a7eaa40 5389 trans = btrfs_join_transaction(root);
22c44fe6
JB
5390 if (IS_ERR(trans))
5391 return PTR_ERR(trans);
8929ecfa
YZ
5392
5393 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5394 if (ret && ret == -ENOSPC) {
5395 /* whoops, lets try again with the full transaction */
5396 btrfs_end_transaction(trans, root);
5397 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5398 if (IS_ERR(trans))
5399 return PTR_ERR(trans);
8929ecfa 5400
94b60442 5401 ret = btrfs_update_inode(trans, root, inode);
94b60442 5402 }
39279cc3 5403 btrfs_end_transaction(trans, root);
16cdcec7
MX
5404 if (BTRFS_I(inode)->delayed_node)
5405 btrfs_balance_delayed_items(root);
22c44fe6
JB
5406
5407 return ret;
5408}
5409
5410/*
5411 * This is a copy of file_update_time. We need this so we can return error on
5412 * ENOSPC for updating the inode in the case of file write and mmap writes.
5413 */
e41f941a
JB
5414static int btrfs_update_time(struct inode *inode, struct timespec *now,
5415 int flags)
22c44fe6 5416{
2bc55652
AB
5417 struct btrfs_root *root = BTRFS_I(inode)->root;
5418
5419 if (btrfs_root_readonly(root))
5420 return -EROFS;
5421
e41f941a 5422 if (flags & S_VERSION)
22c44fe6 5423 inode_inc_iversion(inode);
e41f941a
JB
5424 if (flags & S_CTIME)
5425 inode->i_ctime = *now;
5426 if (flags & S_MTIME)
5427 inode->i_mtime = *now;
5428 if (flags & S_ATIME)
5429 inode->i_atime = *now;
5430 return btrfs_dirty_inode(inode);
39279cc3
CM
5431}
5432
d352ac68
CM
5433/*
5434 * find the highest existing sequence number in a directory
5435 * and then set the in-memory index_cnt variable to reflect
5436 * free sequence numbers
5437 */
aec7477b
JB
5438static int btrfs_set_inode_index_count(struct inode *inode)
5439{
5440 struct btrfs_root *root = BTRFS_I(inode)->root;
5441 struct btrfs_key key, found_key;
5442 struct btrfs_path *path;
5443 struct extent_buffer *leaf;
5444 int ret;
5445
33345d01 5446 key.objectid = btrfs_ino(inode);
aec7477b
JB
5447 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5448 key.offset = (u64)-1;
5449
5450 path = btrfs_alloc_path();
5451 if (!path)
5452 return -ENOMEM;
5453
5454 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5455 if (ret < 0)
5456 goto out;
5457 /* FIXME: we should be able to handle this */
5458 if (ret == 0)
5459 goto out;
5460 ret = 0;
5461
5462 /*
5463 * MAGIC NUMBER EXPLANATION:
5464 * since we search a directory based on f_pos we have to start at 2
5465 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5466 * else has to start at 2
5467 */
5468 if (path->slots[0] == 0) {
5469 BTRFS_I(inode)->index_cnt = 2;
5470 goto out;
5471 }
5472
5473 path->slots[0]--;
5474
5475 leaf = path->nodes[0];
5476 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5477
33345d01 5478 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5479 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5480 BTRFS_I(inode)->index_cnt = 2;
5481 goto out;
5482 }
5483
5484 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5485out:
5486 btrfs_free_path(path);
5487 return ret;
5488}
5489
d352ac68
CM
5490/*
5491 * helper to find a free sequence number in a given directory. This current
5492 * code is very simple, later versions will do smarter things in the btree
5493 */
3de4586c 5494int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5495{
5496 int ret = 0;
5497
5498 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5499 ret = btrfs_inode_delayed_dir_index_count(dir);
5500 if (ret) {
5501 ret = btrfs_set_inode_index_count(dir);
5502 if (ret)
5503 return ret;
5504 }
aec7477b
JB
5505 }
5506
00e4e6b3 5507 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5508 BTRFS_I(dir)->index_cnt++;
5509
5510 return ret;
5511}
5512
39279cc3
CM
5513static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5514 struct btrfs_root *root,
aec7477b 5515 struct inode *dir,
9c58309d 5516 const char *name, int name_len,
175a4eb7
AV
5517 u64 ref_objectid, u64 objectid,
5518 umode_t mode, u64 *index)
39279cc3
CM
5519{
5520 struct inode *inode;
5f39d397 5521 struct btrfs_inode_item *inode_item;
39279cc3 5522 struct btrfs_key *location;
5f39d397 5523 struct btrfs_path *path;
9c58309d
CM
5524 struct btrfs_inode_ref *ref;
5525 struct btrfs_key key[2];
5526 u32 sizes[2];
5527 unsigned long ptr;
39279cc3 5528 int ret;
39279cc3 5529
5f39d397 5530 path = btrfs_alloc_path();
d8926bb3
MF
5531 if (!path)
5532 return ERR_PTR(-ENOMEM);
5f39d397 5533
39279cc3 5534 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5535 if (!inode) {
5536 btrfs_free_path(path);
39279cc3 5537 return ERR_PTR(-ENOMEM);
8fb27640 5538 }
39279cc3 5539
581bb050
LZ
5540 /*
5541 * we have to initialize this early, so we can reclaim the inode
5542 * number if we fail afterwards in this function.
5543 */
5544 inode->i_ino = objectid;
5545
aec7477b 5546 if (dir) {
1abe9b8a 5547 trace_btrfs_inode_request(dir);
5548
3de4586c 5549 ret = btrfs_set_inode_index(dir, index);
09771430 5550 if (ret) {
8fb27640 5551 btrfs_free_path(path);
09771430 5552 iput(inode);
aec7477b 5553 return ERR_PTR(ret);
09771430 5554 }
aec7477b
JB
5555 }
5556 /*
5557 * index_cnt is ignored for everything but a dir,
5558 * btrfs_get_inode_index_count has an explanation for the magic
5559 * number
5560 */
5561 BTRFS_I(inode)->index_cnt = 2;
67de1176 5562 BTRFS_I(inode)->dir_index = *index;
39279cc3 5563 BTRFS_I(inode)->root = root;
e02119d5 5564 BTRFS_I(inode)->generation = trans->transid;
76195853 5565 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5566
5dc562c5
JB
5567 /*
5568 * We could have gotten an inode number from somebody who was fsynced
5569 * and then removed in this same transaction, so let's just set full
5570 * sync since it will be a full sync anyway and this will blow away the
5571 * old info in the log.
5572 */
5573 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5574
9c58309d
CM
5575 key[0].objectid = objectid;
5576 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5577 key[0].offset = 0;
5578
f186373f
MF
5579 /*
5580 * Start new inodes with an inode_ref. This is slightly more
5581 * efficient for small numbers of hard links since they will
5582 * be packed into one item. Extended refs will kick in if we
5583 * add more hard links than can fit in the ref item.
5584 */
9c58309d
CM
5585 key[1].objectid = objectid;
5586 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5587 key[1].offset = ref_objectid;
5588
5589 sizes[0] = sizeof(struct btrfs_inode_item);
5590 sizes[1] = name_len + sizeof(*ref);
5591
b9473439 5592 path->leave_spinning = 1;
9c58309d
CM
5593 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5594 if (ret != 0)
5f39d397
CM
5595 goto fail;
5596
ecc11fab 5597 inode_init_owner(inode, dir, mode);
a76a3cd4 5598 inode_set_bytes(inode, 0);
39279cc3 5599 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5600 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5601 struct btrfs_inode_item);
293f7e07
LZ
5602 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5603 sizeof(*inode_item));
e02119d5 5604 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5605
5606 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5607 struct btrfs_inode_ref);
5608 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5609 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5610 ptr = (unsigned long)(ref + 1);
5611 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5612
5f39d397
CM
5613 btrfs_mark_buffer_dirty(path->nodes[0]);
5614 btrfs_free_path(path);
5615
39279cc3
CM
5616 location = &BTRFS_I(inode)->location;
5617 location->objectid = objectid;
39279cc3
CM
5618 location->offset = 0;
5619 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5620
6cbff00f
CH
5621 btrfs_inherit_iflags(inode, dir);
5622
569254b0 5623 if (S_ISREG(mode)) {
94272164
CM
5624 if (btrfs_test_opt(root, NODATASUM))
5625 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5626 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5627 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5628 BTRFS_INODE_NODATASUM;
94272164
CM
5629 }
5630
778ba82b 5631 btrfs_insert_inode_hash(inode);
5d4f98a2 5632 inode_tree_add(inode);
1abe9b8a 5633
5634 trace_btrfs_inode_new(inode);
1973f0fa 5635 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5636
8ea05e3a
AB
5637 btrfs_update_root_times(trans, root);
5638
63541927
FDBM
5639 ret = btrfs_inode_inherit_props(trans, inode, dir);
5640 if (ret)
5641 btrfs_err(root->fs_info,
5642 "error inheriting props for ino %llu (root %llu): %d",
5643 btrfs_ino(inode), root->root_key.objectid, ret);
5644
39279cc3 5645 return inode;
5f39d397 5646fail:
aec7477b
JB
5647 if (dir)
5648 BTRFS_I(dir)->index_cnt--;
5f39d397 5649 btrfs_free_path(path);
09771430 5650 iput(inode);
5f39d397 5651 return ERR_PTR(ret);
39279cc3
CM
5652}
5653
5654static inline u8 btrfs_inode_type(struct inode *inode)
5655{
5656 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5657}
5658
d352ac68
CM
5659/*
5660 * utility function to add 'inode' into 'parent_inode' with
5661 * a give name and a given sequence number.
5662 * if 'add_backref' is true, also insert a backref from the
5663 * inode to the parent directory.
5664 */
e02119d5
CM
5665int btrfs_add_link(struct btrfs_trans_handle *trans,
5666 struct inode *parent_inode, struct inode *inode,
5667 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5668{
4df27c4d 5669 int ret = 0;
39279cc3 5670 struct btrfs_key key;
e02119d5 5671 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5672 u64 ino = btrfs_ino(inode);
5673 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5674
33345d01 5675 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5676 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5677 } else {
33345d01 5678 key.objectid = ino;
4df27c4d
YZ
5679 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5680 key.offset = 0;
5681 }
5682
33345d01 5683 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5684 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5685 key.objectid, root->root_key.objectid,
33345d01 5686 parent_ino, index, name, name_len);
4df27c4d 5687 } else if (add_backref) {
33345d01
LZ
5688 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5689 parent_ino, index);
4df27c4d 5690 }
39279cc3 5691
79787eaa
JM
5692 /* Nothing to clean up yet */
5693 if (ret)
5694 return ret;
4df27c4d 5695
79787eaa
JM
5696 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5697 parent_inode, &key,
5698 btrfs_inode_type(inode), index);
9c52057c 5699 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5700 goto fail_dir_item;
5701 else if (ret) {
5702 btrfs_abort_transaction(trans, root, ret);
5703 return ret;
39279cc3 5704 }
79787eaa
JM
5705
5706 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5707 name_len * 2);
0c4d2d95 5708 inode_inc_iversion(parent_inode);
79787eaa
JM
5709 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5710 ret = btrfs_update_inode(trans, root, parent_inode);
5711 if (ret)
5712 btrfs_abort_transaction(trans, root, ret);
39279cc3 5713 return ret;
fe66a05a
CM
5714
5715fail_dir_item:
5716 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5717 u64 local_index;
5718 int err;
5719 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5720 key.objectid, root->root_key.objectid,
5721 parent_ino, &local_index, name, name_len);
5722
5723 } else if (add_backref) {
5724 u64 local_index;
5725 int err;
5726
5727 err = btrfs_del_inode_ref(trans, root, name, name_len,
5728 ino, parent_ino, &local_index);
5729 }
5730 return ret;
39279cc3
CM
5731}
5732
5733static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5734 struct inode *dir, struct dentry *dentry,
5735 struct inode *inode, int backref, u64 index)
39279cc3 5736{
a1b075d2
JB
5737 int err = btrfs_add_link(trans, dir, inode,
5738 dentry->d_name.name, dentry->d_name.len,
5739 backref, index);
39279cc3
CM
5740 if (err > 0)
5741 err = -EEXIST;
5742 return err;
5743}
5744
618e21d5 5745static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5746 umode_t mode, dev_t rdev)
618e21d5
JB
5747{
5748 struct btrfs_trans_handle *trans;
5749 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5750 struct inode *inode = NULL;
618e21d5
JB
5751 int err;
5752 int drop_inode = 0;
5753 u64 objectid;
00e4e6b3 5754 u64 index = 0;
618e21d5
JB
5755
5756 if (!new_valid_dev(rdev))
5757 return -EINVAL;
5758
9ed74f2d
JB
5759 /*
5760 * 2 for inode item and ref
5761 * 2 for dir items
5762 * 1 for xattr if selinux is on
5763 */
a22285a6
YZ
5764 trans = btrfs_start_transaction(root, 5);
5765 if (IS_ERR(trans))
5766 return PTR_ERR(trans);
1832a6d5 5767
581bb050
LZ
5768 err = btrfs_find_free_ino(root, &objectid);
5769 if (err)
5770 goto out_unlock;
5771
aec7477b 5772 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5773 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5774 mode, &index);
7cf96da3
TI
5775 if (IS_ERR(inode)) {
5776 err = PTR_ERR(inode);
618e21d5 5777 goto out_unlock;
7cf96da3 5778 }
618e21d5 5779
2a7dba39 5780 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5781 if (err) {
5782 drop_inode = 1;
5783 goto out_unlock;
5784 }
5785
ad19db71
CS
5786 /*
5787 * If the active LSM wants to access the inode during
5788 * d_instantiate it needs these. Smack checks to see
5789 * if the filesystem supports xattrs by looking at the
5790 * ops vector.
5791 */
5792
5793 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5794 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5795 if (err)
5796 drop_inode = 1;
5797 else {
618e21d5 5798 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5799 btrfs_update_inode(trans, root, inode);
08c422c2 5800 d_instantiate(dentry, inode);
618e21d5 5801 }
618e21d5 5802out_unlock:
7ad85bb7 5803 btrfs_end_transaction(trans, root);
c581afc8 5804 btrfs_balance_delayed_items(root);
b53d3f5d 5805 btrfs_btree_balance_dirty(root);
618e21d5
JB
5806 if (drop_inode) {
5807 inode_dec_link_count(inode);
5808 iput(inode);
5809 }
618e21d5
JB
5810 return err;
5811}
5812
39279cc3 5813static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5814 umode_t mode, bool excl)
39279cc3
CM
5815{
5816 struct btrfs_trans_handle *trans;
5817 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5818 struct inode *inode = NULL;
43baa579 5819 int drop_inode_on_err = 0;
a22285a6 5820 int err;
39279cc3 5821 u64 objectid;
00e4e6b3 5822 u64 index = 0;
39279cc3 5823
9ed74f2d
JB
5824 /*
5825 * 2 for inode item and ref
5826 * 2 for dir items
5827 * 1 for xattr if selinux is on
5828 */
a22285a6
YZ
5829 trans = btrfs_start_transaction(root, 5);
5830 if (IS_ERR(trans))
5831 return PTR_ERR(trans);
9ed74f2d 5832
581bb050
LZ
5833 err = btrfs_find_free_ino(root, &objectid);
5834 if (err)
5835 goto out_unlock;
5836
aec7477b 5837 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5838 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5839 mode, &index);
7cf96da3
TI
5840 if (IS_ERR(inode)) {
5841 err = PTR_ERR(inode);
39279cc3 5842 goto out_unlock;
7cf96da3 5843 }
43baa579 5844 drop_inode_on_err = 1;
39279cc3 5845
2a7dba39 5846 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5847 if (err)
33268eaf 5848 goto out_unlock;
33268eaf 5849
9185aa58
FB
5850 err = btrfs_update_inode(trans, root, inode);
5851 if (err)
5852 goto out_unlock;
5853
ad19db71
CS
5854 /*
5855 * If the active LSM wants to access the inode during
5856 * d_instantiate it needs these. Smack checks to see
5857 * if the filesystem supports xattrs by looking at the
5858 * ops vector.
5859 */
5860 inode->i_fop = &btrfs_file_operations;
5861 inode->i_op = &btrfs_file_inode_operations;
5862
a1b075d2 5863 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5864 if (err)
43baa579
FB
5865 goto out_unlock;
5866
5867 inode->i_mapping->a_ops = &btrfs_aops;
5868 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5869 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5870 d_instantiate(dentry, inode);
5871
39279cc3 5872out_unlock:
7ad85bb7 5873 btrfs_end_transaction(trans, root);
43baa579 5874 if (err && drop_inode_on_err) {
39279cc3
CM
5875 inode_dec_link_count(inode);
5876 iput(inode);
5877 }
c581afc8 5878 btrfs_balance_delayed_items(root);
b53d3f5d 5879 btrfs_btree_balance_dirty(root);
39279cc3
CM
5880 return err;
5881}
5882
5883static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5884 struct dentry *dentry)
5885{
5886 struct btrfs_trans_handle *trans;
5887 struct btrfs_root *root = BTRFS_I(dir)->root;
5888 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5889 u64 index;
39279cc3
CM
5890 int err;
5891 int drop_inode = 0;
5892
4a8be425
TH
5893 /* do not allow sys_link's with other subvols of the same device */
5894 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5895 return -EXDEV;
4a8be425 5896
f186373f 5897 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5898 return -EMLINK;
4a8be425 5899
3de4586c 5900 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5901 if (err)
5902 goto fail;
5903
a22285a6 5904 /*
7e6b6465 5905 * 2 items for inode and inode ref
a22285a6 5906 * 2 items for dir items
7e6b6465 5907 * 1 item for parent inode
a22285a6 5908 */
7e6b6465 5909 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5910 if (IS_ERR(trans)) {
5911 err = PTR_ERR(trans);
5912 goto fail;
5913 }
5f39d397 5914
67de1176
MX
5915 /* There are several dir indexes for this inode, clear the cache. */
5916 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 5917 inc_nlink(inode);
0c4d2d95 5918 inode_inc_iversion(inode);
3153495d 5919 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5920 ihold(inode);
e9976151 5921 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5922
a1b075d2 5923 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5924
a5719521 5925 if (err) {
54aa1f4d 5926 drop_inode = 1;
a5719521 5927 } else {
10d9f309 5928 struct dentry *parent = dentry->d_parent;
a5719521 5929 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5930 if (err)
5931 goto fail;
08c422c2 5932 d_instantiate(dentry, inode);
6a912213 5933 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5934 }
39279cc3 5935
7ad85bb7 5936 btrfs_end_transaction(trans, root);
c581afc8 5937 btrfs_balance_delayed_items(root);
1832a6d5 5938fail:
39279cc3
CM
5939 if (drop_inode) {
5940 inode_dec_link_count(inode);
5941 iput(inode);
5942 }
b53d3f5d 5943 btrfs_btree_balance_dirty(root);
39279cc3
CM
5944 return err;
5945}
5946
18bb1db3 5947static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5948{
b9d86667 5949 struct inode *inode = NULL;
39279cc3
CM
5950 struct btrfs_trans_handle *trans;
5951 struct btrfs_root *root = BTRFS_I(dir)->root;
5952 int err = 0;
5953 int drop_on_err = 0;
b9d86667 5954 u64 objectid = 0;
00e4e6b3 5955 u64 index = 0;
39279cc3 5956
9ed74f2d
JB
5957 /*
5958 * 2 items for inode and ref
5959 * 2 items for dir items
5960 * 1 for xattr if selinux is on
5961 */
a22285a6
YZ
5962 trans = btrfs_start_transaction(root, 5);
5963 if (IS_ERR(trans))
5964 return PTR_ERR(trans);
39279cc3 5965
581bb050
LZ
5966 err = btrfs_find_free_ino(root, &objectid);
5967 if (err)
5968 goto out_fail;
5969
aec7477b 5970 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5971 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5972 S_IFDIR | mode, &index);
39279cc3
CM
5973 if (IS_ERR(inode)) {
5974 err = PTR_ERR(inode);
5975 goto out_fail;
5976 }
5f39d397 5977
39279cc3 5978 drop_on_err = 1;
33268eaf 5979
2a7dba39 5980 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5981 if (err)
5982 goto out_fail;
5983
39279cc3
CM
5984 inode->i_op = &btrfs_dir_inode_operations;
5985 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5986
dbe674a9 5987 btrfs_i_size_write(inode, 0);
39279cc3
CM
5988 err = btrfs_update_inode(trans, root, inode);
5989 if (err)
5990 goto out_fail;
5f39d397 5991
a1b075d2
JB
5992 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5993 dentry->d_name.len, 0, index);
39279cc3
CM
5994 if (err)
5995 goto out_fail;
5f39d397 5996
39279cc3
CM
5997 d_instantiate(dentry, inode);
5998 drop_on_err = 0;
39279cc3
CM
5999
6000out_fail:
7ad85bb7 6001 btrfs_end_transaction(trans, root);
39279cc3
CM
6002 if (drop_on_err)
6003 iput(inode);
c581afc8 6004 btrfs_balance_delayed_items(root);
b53d3f5d 6005 btrfs_btree_balance_dirty(root);
39279cc3
CM
6006 return err;
6007}
6008
d352ac68
CM
6009/* helper for btfs_get_extent. Given an existing extent in the tree,
6010 * and an extent that you want to insert, deal with overlap and insert
6011 * the new extent into the tree.
6012 */
3b951516
CM
6013static int merge_extent_mapping(struct extent_map_tree *em_tree,
6014 struct extent_map *existing,
e6dcd2dc
CM
6015 struct extent_map *em,
6016 u64 map_start, u64 map_len)
3b951516
CM
6017{
6018 u64 start_diff;
3b951516 6019
e6dcd2dc
CM
6020 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6021 start_diff = map_start - em->start;
6022 em->start = map_start;
6023 em->len = map_len;
c8b97818
CM
6024 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6025 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6026 em->block_start += start_diff;
c8b97818
CM
6027 em->block_len -= start_diff;
6028 }
09a2a8f9 6029 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6030}
6031
c8b97818
CM
6032static noinline int uncompress_inline(struct btrfs_path *path,
6033 struct inode *inode, struct page *page,
6034 size_t pg_offset, u64 extent_offset,
6035 struct btrfs_file_extent_item *item)
6036{
6037 int ret;
6038 struct extent_buffer *leaf = path->nodes[0];
6039 char *tmp;
6040 size_t max_size;
6041 unsigned long inline_size;
6042 unsigned long ptr;
261507a0 6043 int compress_type;
c8b97818
CM
6044
6045 WARN_ON(pg_offset != 0);
261507a0 6046 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6047 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6048 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6049 btrfs_item_nr(path->slots[0]));
c8b97818 6050 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6051 if (!tmp)
6052 return -ENOMEM;
c8b97818
CM
6053 ptr = btrfs_file_extent_inline_start(item);
6054
6055 read_extent_buffer(leaf, tmp, ptr, inline_size);
6056
5b050f04 6057 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6058 ret = btrfs_decompress(compress_type, tmp, page,
6059 extent_offset, inline_size, max_size);
c8b97818 6060 if (ret) {
7ac687d9 6061 char *kaddr = kmap_atomic(page);
c8b97818
CM
6062 unsigned long copy_size = min_t(u64,
6063 PAGE_CACHE_SIZE - pg_offset,
6064 max_size - extent_offset);
6065 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 6066 kunmap_atomic(kaddr);
c8b97818
CM
6067 }
6068 kfree(tmp);
6069 return 0;
6070}
6071
d352ac68
CM
6072/*
6073 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6074 * the ugly parts come from merging extents from the disk with the in-ram
6075 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6076 * where the in-ram extents might be locked pending data=ordered completion.
6077 *
6078 * This also copies inline extents directly into the page.
6079 */
d397712b 6080
a52d9a80 6081struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6082 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6083 int create)
6084{
6085 int ret;
6086 int err = 0;
db94535d 6087 u64 bytenr;
a52d9a80
CM
6088 u64 extent_start = 0;
6089 u64 extent_end = 0;
33345d01 6090 u64 objectid = btrfs_ino(inode);
a52d9a80 6091 u32 found_type;
f421950f 6092 struct btrfs_path *path = NULL;
a52d9a80
CM
6093 struct btrfs_root *root = BTRFS_I(inode)->root;
6094 struct btrfs_file_extent_item *item;
5f39d397
CM
6095 struct extent_buffer *leaf;
6096 struct btrfs_key found_key;
a52d9a80
CM
6097 struct extent_map *em = NULL;
6098 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6099 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6100 struct btrfs_trans_handle *trans = NULL;
261507a0 6101 int compress_type;
a52d9a80 6102
a52d9a80 6103again:
890871be 6104 read_lock(&em_tree->lock);
d1310b2e 6105 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6106 if (em)
6107 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6108 read_unlock(&em_tree->lock);
d1310b2e 6109
a52d9a80 6110 if (em) {
e1c4b745
CM
6111 if (em->start > start || em->start + em->len <= start)
6112 free_extent_map(em);
6113 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6114 free_extent_map(em);
6115 else
6116 goto out;
a52d9a80 6117 }
172ddd60 6118 em = alloc_extent_map();
a52d9a80 6119 if (!em) {
d1310b2e
CM
6120 err = -ENOMEM;
6121 goto out;
a52d9a80 6122 }
e6dcd2dc 6123 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6124 em->start = EXTENT_MAP_HOLE;
445a6944 6125 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6126 em->len = (u64)-1;
c8b97818 6127 em->block_len = (u64)-1;
f421950f
CM
6128
6129 if (!path) {
6130 path = btrfs_alloc_path();
026fd317
JB
6131 if (!path) {
6132 err = -ENOMEM;
6133 goto out;
6134 }
6135 /*
6136 * Chances are we'll be called again, so go ahead and do
6137 * readahead
6138 */
6139 path->reada = 1;
f421950f
CM
6140 }
6141
179e29e4
CM
6142 ret = btrfs_lookup_file_extent(trans, root, path,
6143 objectid, start, trans != NULL);
a52d9a80
CM
6144 if (ret < 0) {
6145 err = ret;
6146 goto out;
6147 }
6148
6149 if (ret != 0) {
6150 if (path->slots[0] == 0)
6151 goto not_found;
6152 path->slots[0]--;
6153 }
6154
5f39d397
CM
6155 leaf = path->nodes[0];
6156 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6157 struct btrfs_file_extent_item);
a52d9a80 6158 /* are we inside the extent that was found? */
5f39d397
CM
6159 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6160 found_type = btrfs_key_type(&found_key);
6161 if (found_key.objectid != objectid ||
a52d9a80 6162 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6163 /*
6164 * If we backup past the first extent we want to move forward
6165 * and see if there is an extent in front of us, otherwise we'll
6166 * say there is a hole for our whole search range which can
6167 * cause problems.
6168 */
6169 extent_end = start;
6170 goto next;
a52d9a80
CM
6171 }
6172
5f39d397
CM
6173 found_type = btrfs_file_extent_type(leaf, item);
6174 extent_start = found_key.offset;
261507a0 6175 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
6176 if (found_type == BTRFS_FILE_EXTENT_REG ||
6177 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6178 extent_end = extent_start +
db94535d 6179 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6180 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6181 size_t size;
514ac8ad 6182 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6183 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6184 }
25a50341 6185next:
9036c102
YZ
6186 if (start >= extent_end) {
6187 path->slots[0]++;
6188 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6189 ret = btrfs_next_leaf(root, path);
6190 if (ret < 0) {
6191 err = ret;
6192 goto out;
a52d9a80 6193 }
9036c102
YZ
6194 if (ret > 0)
6195 goto not_found;
6196 leaf = path->nodes[0];
a52d9a80 6197 }
9036c102
YZ
6198 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6199 if (found_key.objectid != objectid ||
6200 found_key.type != BTRFS_EXTENT_DATA_KEY)
6201 goto not_found;
6202 if (start + len <= found_key.offset)
6203 goto not_found;
6204 em->start = start;
70c8a91c 6205 em->orig_start = start;
9036c102
YZ
6206 em->len = found_key.offset - start;
6207 goto not_found_em;
6208 }
6209
cc95bef6 6210 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6211 if (found_type == BTRFS_FILE_EXTENT_REG ||
6212 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6213 em->start = extent_start;
6214 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6215 em->orig_start = extent_start -
6216 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6217 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6218 item);
db94535d
CM
6219 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6220 if (bytenr == 0) {
5f39d397 6221 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6222 goto insert;
6223 }
261507a0 6224 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6225 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6226 em->compress_type = compress_type;
c8b97818 6227 em->block_start = bytenr;
b4939680 6228 em->block_len = em->orig_block_len;
c8b97818
CM
6229 } else {
6230 bytenr += btrfs_file_extent_offset(leaf, item);
6231 em->block_start = bytenr;
6232 em->block_len = em->len;
d899e052
YZ
6233 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6234 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6235 }
a52d9a80
CM
6236 goto insert;
6237 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6238 unsigned long ptr;
a52d9a80 6239 char *map;
3326d1b0
CM
6240 size_t size;
6241 size_t extent_offset;
6242 size_t copy_size;
a52d9a80 6243
689f9346 6244 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6245 if (!page || create) {
689f9346 6246 em->start = extent_start;
9036c102 6247 em->len = extent_end - extent_start;
689f9346
Y
6248 goto out;
6249 }
5f39d397 6250
514ac8ad 6251 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6252 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6253 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6254 size - extent_offset);
3326d1b0 6255 em->start = extent_start + extent_offset;
fda2832f 6256 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6257 em->orig_block_len = em->len;
70c8a91c 6258 em->orig_start = em->start;
261507a0 6259 if (compress_type) {
c8b97818 6260 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6261 em->compress_type = compress_type;
6262 }
689f9346 6263 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6264 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6265 if (btrfs_file_extent_compression(leaf, item) !=
6266 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6267 ret = uncompress_inline(path, inode, page,
6268 pg_offset,
6269 extent_offset, item);
79787eaa 6270 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6271 } else {
6272 map = kmap(page);
6273 read_extent_buffer(leaf, map + pg_offset, ptr,
6274 copy_size);
93c82d57
CM
6275 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6276 memset(map + pg_offset + copy_size, 0,
6277 PAGE_CACHE_SIZE - pg_offset -
6278 copy_size);
6279 }
c8b97818
CM
6280 kunmap(page);
6281 }
179e29e4
CM
6282 flush_dcache_page(page);
6283 } else if (create && PageUptodate(page)) {
6bf7e080 6284 BUG();
179e29e4
CM
6285 if (!trans) {
6286 kunmap(page);
6287 free_extent_map(em);
6288 em = NULL;
ff5714cc 6289
b3b4aa74 6290 btrfs_release_path(path);
7a7eaa40 6291 trans = btrfs_join_transaction(root);
ff5714cc 6292
3612b495
TI
6293 if (IS_ERR(trans))
6294 return ERR_CAST(trans);
179e29e4
CM
6295 goto again;
6296 }
c8b97818 6297 map = kmap(page);
70dec807 6298 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6299 copy_size);
c8b97818 6300 kunmap(page);
179e29e4 6301 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6302 }
d1310b2e 6303 set_extent_uptodate(io_tree, em->start,
507903b8 6304 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6305 goto insert;
6306 } else {
31b1a2bd 6307 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6308 }
6309not_found:
6310 em->start = start;
70c8a91c 6311 em->orig_start = start;
d1310b2e 6312 em->len = len;
a52d9a80 6313not_found_em:
5f39d397 6314 em->block_start = EXTENT_MAP_HOLE;
9036c102 6315 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6316insert:
b3b4aa74 6317 btrfs_release_path(path);
d1310b2e 6318 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6319 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6320 em->start, em->len, start, len);
a52d9a80
CM
6321 err = -EIO;
6322 goto out;
6323 }
d1310b2e
CM
6324
6325 err = 0;
890871be 6326 write_lock(&em_tree->lock);
09a2a8f9 6327 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6328 /* it is possible that someone inserted the extent into the tree
6329 * while we had the lock dropped. It is also possible that
6330 * an overlapping map exists in the tree
6331 */
a52d9a80 6332 if (ret == -EEXIST) {
3b951516 6333 struct extent_map *existing;
e6dcd2dc
CM
6334
6335 ret = 0;
6336
3b951516 6337 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6338 if (existing && (existing->start > start ||
6339 existing->start + existing->len <= start)) {
6340 free_extent_map(existing);
6341 existing = NULL;
6342 }
3b951516
CM
6343 if (!existing) {
6344 existing = lookup_extent_mapping(em_tree, em->start,
6345 em->len);
6346 if (existing) {
6347 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6348 em, start,
6349 root->sectorsize);
3b951516
CM
6350 free_extent_map(existing);
6351 if (err) {
6352 free_extent_map(em);
6353 em = NULL;
6354 }
6355 } else {
6356 err = -EIO;
3b951516
CM
6357 free_extent_map(em);
6358 em = NULL;
6359 }
6360 } else {
6361 free_extent_map(em);
6362 em = existing;
e6dcd2dc 6363 err = 0;
a52d9a80 6364 }
a52d9a80 6365 }
890871be 6366 write_unlock(&em_tree->lock);
a52d9a80 6367out:
1abe9b8a 6368
4cd8587c 6369 trace_btrfs_get_extent(root, em);
1abe9b8a 6370
f421950f
CM
6371 if (path)
6372 btrfs_free_path(path);
a52d9a80
CM
6373 if (trans) {
6374 ret = btrfs_end_transaction(trans, root);
d397712b 6375 if (!err)
a52d9a80
CM
6376 err = ret;
6377 }
a52d9a80
CM
6378 if (err) {
6379 free_extent_map(em);
a52d9a80
CM
6380 return ERR_PTR(err);
6381 }
79787eaa 6382 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6383 return em;
6384}
6385
ec29ed5b
CM
6386struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6387 size_t pg_offset, u64 start, u64 len,
6388 int create)
6389{
6390 struct extent_map *em;
6391 struct extent_map *hole_em = NULL;
6392 u64 range_start = start;
6393 u64 end;
6394 u64 found;
6395 u64 found_end;
6396 int err = 0;
6397
6398 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6399 if (IS_ERR(em))
6400 return em;
6401 if (em) {
6402 /*
f9e4fb53
LB
6403 * if our em maps to
6404 * - a hole or
6405 * - a pre-alloc extent,
6406 * there might actually be delalloc bytes behind it.
ec29ed5b 6407 */
f9e4fb53
LB
6408 if (em->block_start != EXTENT_MAP_HOLE &&
6409 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6410 return em;
6411 else
6412 hole_em = em;
6413 }
6414
6415 /* check to see if we've wrapped (len == -1 or similar) */
6416 end = start + len;
6417 if (end < start)
6418 end = (u64)-1;
6419 else
6420 end -= 1;
6421
6422 em = NULL;
6423
6424 /* ok, we didn't find anything, lets look for delalloc */
6425 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6426 end, len, EXTENT_DELALLOC, 1);
6427 found_end = range_start + found;
6428 if (found_end < range_start)
6429 found_end = (u64)-1;
6430
6431 /*
6432 * we didn't find anything useful, return
6433 * the original results from get_extent()
6434 */
6435 if (range_start > end || found_end <= start) {
6436 em = hole_em;
6437 hole_em = NULL;
6438 goto out;
6439 }
6440
6441 /* adjust the range_start to make sure it doesn't
6442 * go backwards from the start they passed in
6443 */
67871254 6444 range_start = max(start, range_start);
ec29ed5b
CM
6445 found = found_end - range_start;
6446
6447 if (found > 0) {
6448 u64 hole_start = start;
6449 u64 hole_len = len;
6450
172ddd60 6451 em = alloc_extent_map();
ec29ed5b
CM
6452 if (!em) {
6453 err = -ENOMEM;
6454 goto out;
6455 }
6456 /*
6457 * when btrfs_get_extent can't find anything it
6458 * returns one huge hole
6459 *
6460 * make sure what it found really fits our range, and
6461 * adjust to make sure it is based on the start from
6462 * the caller
6463 */
6464 if (hole_em) {
6465 u64 calc_end = extent_map_end(hole_em);
6466
6467 if (calc_end <= start || (hole_em->start > end)) {
6468 free_extent_map(hole_em);
6469 hole_em = NULL;
6470 } else {
6471 hole_start = max(hole_em->start, start);
6472 hole_len = calc_end - hole_start;
6473 }
6474 }
6475 em->bdev = NULL;
6476 if (hole_em && range_start > hole_start) {
6477 /* our hole starts before our delalloc, so we
6478 * have to return just the parts of the hole
6479 * that go until the delalloc starts
6480 */
6481 em->len = min(hole_len,
6482 range_start - hole_start);
6483 em->start = hole_start;
6484 em->orig_start = hole_start;
6485 /*
6486 * don't adjust block start at all,
6487 * it is fixed at EXTENT_MAP_HOLE
6488 */
6489 em->block_start = hole_em->block_start;
6490 em->block_len = hole_len;
f9e4fb53
LB
6491 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6492 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6493 } else {
6494 em->start = range_start;
6495 em->len = found;
6496 em->orig_start = range_start;
6497 em->block_start = EXTENT_MAP_DELALLOC;
6498 em->block_len = found;
6499 }
6500 } else if (hole_em) {
6501 return hole_em;
6502 }
6503out:
6504
6505 free_extent_map(hole_em);
6506 if (err) {
6507 free_extent_map(em);
6508 return ERR_PTR(err);
6509 }
6510 return em;
6511}
6512
4b46fce2
JB
6513static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6514 u64 start, u64 len)
6515{
6516 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6517 struct extent_map *em;
4b46fce2
JB
6518 struct btrfs_key ins;
6519 u64 alloc_hint;
6520 int ret;
4b46fce2 6521
4b46fce2 6522 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6523 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
81c9ad23 6524 alloc_hint, &ins, 1);
00361589
JB
6525 if (ret)
6526 return ERR_PTR(ret);
4b46fce2 6527
70c8a91c 6528 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6529 ins.offset, ins.offset, ins.offset, 0);
00361589
JB
6530 if (IS_ERR(em)) {
6531 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6532 return em;
6533 }
4b46fce2
JB
6534
6535 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6536 ins.offset, ins.offset, 0);
6537 if (ret) {
6538 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
00361589
JB
6539 free_extent_map(em);
6540 return ERR_PTR(ret);
4b46fce2 6541 }
00361589 6542
4b46fce2
JB
6543 return em;
6544}
6545
46bfbb5c
CM
6546/*
6547 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6548 * block must be cow'd
6549 */
00361589 6550noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6551 u64 *orig_start, u64 *orig_block_len,
6552 u64 *ram_bytes)
46bfbb5c 6553{
00361589 6554 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6555 struct btrfs_path *path;
6556 int ret;
6557 struct extent_buffer *leaf;
6558 struct btrfs_root *root = BTRFS_I(inode)->root;
6559 struct btrfs_file_extent_item *fi;
6560 struct btrfs_key key;
6561 u64 disk_bytenr;
6562 u64 backref_offset;
6563 u64 extent_end;
6564 u64 num_bytes;
6565 int slot;
6566 int found_type;
7ee9e440 6567 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6568
46bfbb5c
CM
6569 path = btrfs_alloc_path();
6570 if (!path)
6571 return -ENOMEM;
6572
00361589 6573 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6574 offset, 0);
6575 if (ret < 0)
6576 goto out;
6577
6578 slot = path->slots[0];
6579 if (ret == 1) {
6580 if (slot == 0) {
6581 /* can't find the item, must cow */
6582 ret = 0;
6583 goto out;
6584 }
6585 slot--;
6586 }
6587 ret = 0;
6588 leaf = path->nodes[0];
6589 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6590 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6591 key.type != BTRFS_EXTENT_DATA_KEY) {
6592 /* not our file or wrong item type, must cow */
6593 goto out;
6594 }
6595
6596 if (key.offset > offset) {
6597 /* Wrong offset, must cow */
6598 goto out;
6599 }
6600
6601 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6602 found_type = btrfs_file_extent_type(leaf, fi);
6603 if (found_type != BTRFS_FILE_EXTENT_REG &&
6604 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6605 /* not a regular extent, must cow */
6606 goto out;
6607 }
7ee9e440
JB
6608
6609 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6610 goto out;
6611
e77751aa
MX
6612 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6613 if (extent_end <= offset)
6614 goto out;
6615
46bfbb5c 6616 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6617 if (disk_bytenr == 0)
6618 goto out;
6619
6620 if (btrfs_file_extent_compression(leaf, fi) ||
6621 btrfs_file_extent_encryption(leaf, fi) ||
6622 btrfs_file_extent_other_encoding(leaf, fi))
6623 goto out;
6624
46bfbb5c
CM
6625 backref_offset = btrfs_file_extent_offset(leaf, fi);
6626
7ee9e440
JB
6627 if (orig_start) {
6628 *orig_start = key.offset - backref_offset;
6629 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6630 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6631 }
eb384b55 6632
46bfbb5c
CM
6633 if (btrfs_extent_readonly(root, disk_bytenr))
6634 goto out;
1bda19eb 6635 btrfs_release_path(path);
46bfbb5c
CM
6636
6637 /*
6638 * look for other files referencing this extent, if we
6639 * find any we must cow
6640 */
00361589
JB
6641 trans = btrfs_join_transaction(root);
6642 if (IS_ERR(trans)) {
6643 ret = 0;
46bfbb5c 6644 goto out;
00361589
JB
6645 }
6646
6647 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6648 key.offset - backref_offset, disk_bytenr);
6649 btrfs_end_transaction(trans, root);
6650 if (ret) {
6651 ret = 0;
6652 goto out;
6653 }
46bfbb5c
CM
6654
6655 /*
6656 * adjust disk_bytenr and num_bytes to cover just the bytes
6657 * in this extent we are about to write. If there
6658 * are any csums in that range we have to cow in order
6659 * to keep the csums correct
6660 */
6661 disk_bytenr += backref_offset;
6662 disk_bytenr += offset - key.offset;
eb384b55 6663 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6664 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6665 goto out;
6666 /*
6667 * all of the above have passed, it is safe to overwrite this extent
6668 * without cow
6669 */
eb384b55 6670 *len = num_bytes;
46bfbb5c
CM
6671 ret = 1;
6672out:
6673 btrfs_free_path(path);
6674 return ret;
6675}
6676
eb838e73
JB
6677static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6678 struct extent_state **cached_state, int writing)
6679{
6680 struct btrfs_ordered_extent *ordered;
6681 int ret = 0;
6682
6683 while (1) {
6684 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6685 0, cached_state);
6686 /*
6687 * We're concerned with the entire range that we're going to be
6688 * doing DIO to, so we need to make sure theres no ordered
6689 * extents in this range.
6690 */
6691 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6692 lockend - lockstart + 1);
6693
6694 /*
6695 * We need to make sure there are no buffered pages in this
6696 * range either, we could have raced between the invalidate in
6697 * generic_file_direct_write and locking the extent. The
6698 * invalidate needs to happen so that reads after a write do not
6699 * get stale data.
6700 */
6701 if (!ordered && (!writing ||
6702 !test_range_bit(&BTRFS_I(inode)->io_tree,
6703 lockstart, lockend, EXTENT_UPTODATE, 0,
6704 *cached_state)))
6705 break;
6706
6707 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6708 cached_state, GFP_NOFS);
6709
6710 if (ordered) {
6711 btrfs_start_ordered_extent(inode, ordered, 1);
6712 btrfs_put_ordered_extent(ordered);
6713 } else {
6714 /* Screw you mmap */
6715 ret = filemap_write_and_wait_range(inode->i_mapping,
6716 lockstart,
6717 lockend);
6718 if (ret)
6719 break;
6720
6721 /*
6722 * If we found a page that couldn't be invalidated just
6723 * fall back to buffered.
6724 */
6725 ret = invalidate_inode_pages2_range(inode->i_mapping,
6726 lockstart >> PAGE_CACHE_SHIFT,
6727 lockend >> PAGE_CACHE_SHIFT);
6728 if (ret)
6729 break;
6730 }
6731
6732 cond_resched();
6733 }
6734
6735 return ret;
6736}
6737
69ffb543
JB
6738static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6739 u64 len, u64 orig_start,
6740 u64 block_start, u64 block_len,
cc95bef6
JB
6741 u64 orig_block_len, u64 ram_bytes,
6742 int type)
69ffb543
JB
6743{
6744 struct extent_map_tree *em_tree;
6745 struct extent_map *em;
6746 struct btrfs_root *root = BTRFS_I(inode)->root;
6747 int ret;
6748
6749 em_tree = &BTRFS_I(inode)->extent_tree;
6750 em = alloc_extent_map();
6751 if (!em)
6752 return ERR_PTR(-ENOMEM);
6753
6754 em->start = start;
6755 em->orig_start = orig_start;
2ab28f32
JB
6756 em->mod_start = start;
6757 em->mod_len = len;
69ffb543
JB
6758 em->len = len;
6759 em->block_len = block_len;
6760 em->block_start = block_start;
6761 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6762 em->orig_block_len = orig_block_len;
cc95bef6 6763 em->ram_bytes = ram_bytes;
70c8a91c 6764 em->generation = -1;
69ffb543
JB
6765 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6766 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6767 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6768
6769 do {
6770 btrfs_drop_extent_cache(inode, em->start,
6771 em->start + em->len - 1, 0);
6772 write_lock(&em_tree->lock);
09a2a8f9 6773 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6774 write_unlock(&em_tree->lock);
6775 } while (ret == -EEXIST);
6776
6777 if (ret) {
6778 free_extent_map(em);
6779 return ERR_PTR(ret);
6780 }
6781
6782 return em;
6783}
6784
6785
4b46fce2
JB
6786static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6787 struct buffer_head *bh_result, int create)
6788{
6789 struct extent_map *em;
6790 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6791 struct extent_state *cached_state = NULL;
4b46fce2 6792 u64 start = iblock << inode->i_blkbits;
eb838e73 6793 u64 lockstart, lockend;
4b46fce2 6794 u64 len = bh_result->b_size;
eb838e73 6795 int unlock_bits = EXTENT_LOCKED;
0934856d 6796 int ret = 0;
eb838e73 6797
172a5049 6798 if (create)
eb838e73 6799 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6800 else
c329861d 6801 len = min_t(u64, len, root->sectorsize);
eb838e73 6802
c329861d
JB
6803 lockstart = start;
6804 lockend = start + len - 1;
6805
eb838e73
JB
6806 /*
6807 * If this errors out it's because we couldn't invalidate pagecache for
6808 * this range and we need to fallback to buffered.
6809 */
6810 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6811 return -ENOTBLK;
6812
4b46fce2 6813 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6814 if (IS_ERR(em)) {
6815 ret = PTR_ERR(em);
6816 goto unlock_err;
6817 }
4b46fce2
JB
6818
6819 /*
6820 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6821 * io. INLINE is special, and we could probably kludge it in here, but
6822 * it's still buffered so for safety lets just fall back to the generic
6823 * buffered path.
6824 *
6825 * For COMPRESSED we _have_ to read the entire extent in so we can
6826 * decompress it, so there will be buffering required no matter what we
6827 * do, so go ahead and fallback to buffered.
6828 *
6829 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6830 * to buffered IO. Don't blame me, this is the price we pay for using
6831 * the generic code.
6832 */
6833 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6834 em->block_start == EXTENT_MAP_INLINE) {
6835 free_extent_map(em);
eb838e73
JB
6836 ret = -ENOTBLK;
6837 goto unlock_err;
4b46fce2
JB
6838 }
6839
6840 /* Just a good old fashioned hole, return */
6841 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6842 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6843 free_extent_map(em);
eb838e73 6844 goto unlock_err;
4b46fce2
JB
6845 }
6846
6847 /*
6848 * We don't allocate a new extent in the following cases
6849 *
6850 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6851 * existing extent.
6852 * 2) The extent is marked as PREALLOC. We're good to go here and can
6853 * just use the extent.
6854 *
6855 */
46bfbb5c 6856 if (!create) {
eb838e73
JB
6857 len = min(len, em->len - (start - em->start));
6858 lockstart = start + len;
6859 goto unlock;
46bfbb5c 6860 }
4b46fce2
JB
6861
6862 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6863 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6864 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6865 int type;
6866 int ret;
eb384b55 6867 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6868
6869 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6870 type = BTRFS_ORDERED_PREALLOC;
6871 else
6872 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6873 len = min(len, em->len - (start - em->start));
4b46fce2 6874 block_start = em->block_start + (start - em->start);
46bfbb5c 6875
00361589 6876 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 6877 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6878 if (type == BTRFS_ORDERED_PREALLOC) {
6879 free_extent_map(em);
6880 em = create_pinned_em(inode, start, len,
6881 orig_start,
b4939680 6882 block_start, len,
cc95bef6
JB
6883 orig_block_len,
6884 ram_bytes, type);
00361589 6885 if (IS_ERR(em))
69ffb543 6886 goto unlock_err;
69ffb543
JB
6887 }
6888
46bfbb5c
CM
6889 ret = btrfs_add_ordered_extent_dio(inode, start,
6890 block_start, len, len, type);
46bfbb5c
CM
6891 if (ret) {
6892 free_extent_map(em);
eb838e73 6893 goto unlock_err;
46bfbb5c
CM
6894 }
6895 goto unlock;
4b46fce2 6896 }
4b46fce2 6897 }
00361589 6898
46bfbb5c
CM
6899 /*
6900 * this will cow the extent, reset the len in case we changed
6901 * it above
6902 */
6903 len = bh_result->b_size;
70c8a91c
JB
6904 free_extent_map(em);
6905 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6906 if (IS_ERR(em)) {
6907 ret = PTR_ERR(em);
6908 goto unlock_err;
6909 }
46bfbb5c
CM
6910 len = min(len, em->len - (start - em->start));
6911unlock:
4b46fce2
JB
6912 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6913 inode->i_blkbits;
46bfbb5c 6914 bh_result->b_size = len;
4b46fce2
JB
6915 bh_result->b_bdev = em->bdev;
6916 set_buffer_mapped(bh_result);
c3473e83
JB
6917 if (create) {
6918 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6919 set_buffer_new(bh_result);
6920
6921 /*
6922 * Need to update the i_size under the extent lock so buffered
6923 * readers will get the updated i_size when we unlock.
6924 */
6925 if (start + len > i_size_read(inode))
6926 i_size_write(inode, start + len);
0934856d 6927
172a5049
MX
6928 spin_lock(&BTRFS_I(inode)->lock);
6929 BTRFS_I(inode)->outstanding_extents++;
6930 spin_unlock(&BTRFS_I(inode)->lock);
6931
0934856d
MX
6932 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6933 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6934 &cached_state, GFP_NOFS);
6935 BUG_ON(ret);
c3473e83 6936 }
4b46fce2 6937
eb838e73
JB
6938 /*
6939 * In the case of write we need to clear and unlock the entire range,
6940 * in the case of read we need to unlock only the end area that we
6941 * aren't using if there is any left over space.
6942 */
24c03fa5 6943 if (lockstart < lockend) {
0934856d
MX
6944 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6945 lockend, unlock_bits, 1, 0,
6946 &cached_state, GFP_NOFS);
24c03fa5 6947 } else {
eb838e73 6948 free_extent_state(cached_state);
24c03fa5 6949 }
eb838e73 6950
4b46fce2
JB
6951 free_extent_map(em);
6952
6953 return 0;
eb838e73
JB
6954
6955unlock_err:
eb838e73
JB
6956 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6957 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6958 return ret;
4b46fce2
JB
6959}
6960
4b46fce2
JB
6961static void btrfs_endio_direct_read(struct bio *bio, int err)
6962{
e65e1535 6963 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6964 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6965 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6966 struct inode *inode = dip->inode;
6967 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6968 struct bio *dio_bio;
facc8a22
MX
6969 u32 *csums = (u32 *)dip->csum;
6970 int index = 0;
4b46fce2 6971 u64 start;
4b46fce2
JB
6972
6973 start = dip->logical_offset;
6974 do {
6975 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6976 struct page *page = bvec->bv_page;
6977 char *kaddr;
6978 u32 csum = ~(u32)0;
6979 unsigned long flags;
6980
6981 local_irq_save(flags);
7ac687d9 6982 kaddr = kmap_atomic(page);
b0496686 6983 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6984 csum, bvec->bv_len);
6985 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6986 kunmap_atomic(kaddr);
4b46fce2
JB
6987 local_irq_restore(flags);
6988
6989 flush_dcache_page(bvec->bv_page);
facc8a22
MX
6990 if (csum != csums[index]) {
6991 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c
GU
6992 btrfs_ino(inode), start, csum,
6993 csums[index]);
4b46fce2
JB
6994 err = -EIO;
6995 }
6996 }
6997
6998 start += bvec->bv_len;
4b46fce2 6999 bvec++;
facc8a22 7000 index++;
4b46fce2
JB
7001 } while (bvec <= bvec_end);
7002
7003 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7004 dip->logical_offset + dip->bytes - 1);
9be3395b 7005 dio_bio = dip->dio_bio;
4b46fce2 7006
4b46fce2 7007 kfree(dip);
c0da7aa1
JB
7008
7009 /* If we had a csum failure make sure to clear the uptodate flag */
7010 if (err)
9be3395b
CM
7011 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7012 dio_end_io(dio_bio, err);
7013 bio_put(bio);
4b46fce2
JB
7014}
7015
7016static void btrfs_endio_direct_write(struct bio *bio, int err)
7017{
7018 struct btrfs_dio_private *dip = bio->bi_private;
7019 struct inode *inode = dip->inode;
7020 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7021 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7022 u64 ordered_offset = dip->logical_offset;
7023 u64 ordered_bytes = dip->bytes;
9be3395b 7024 struct bio *dio_bio;
4b46fce2
JB
7025 int ret;
7026
7027 if (err)
7028 goto out_done;
163cf09c
CM
7029again:
7030 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7031 &ordered_offset,
5fd02043 7032 ordered_bytes, !err);
4b46fce2 7033 if (!ret)
163cf09c 7034 goto out_test;
4b46fce2 7035
5fd02043
JB
7036 ordered->work.func = finish_ordered_fn;
7037 ordered->work.flags = 0;
7038 btrfs_queue_worker(&root->fs_info->endio_write_workers,
7039 &ordered->work);
163cf09c
CM
7040out_test:
7041 /*
7042 * our bio might span multiple ordered extents. If we haven't
7043 * completed the accounting for the whole dio, go back and try again
7044 */
7045 if (ordered_offset < dip->logical_offset + dip->bytes) {
7046 ordered_bytes = dip->logical_offset + dip->bytes -
7047 ordered_offset;
5fd02043 7048 ordered = NULL;
163cf09c
CM
7049 goto again;
7050 }
4b46fce2 7051out_done:
9be3395b 7052 dio_bio = dip->dio_bio;
4b46fce2 7053
4b46fce2 7054 kfree(dip);
c0da7aa1
JB
7055
7056 /* If we had an error make sure to clear the uptodate flag */
7057 if (err)
9be3395b
CM
7058 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7059 dio_end_io(dio_bio, err);
7060 bio_put(bio);
4b46fce2
JB
7061}
7062
eaf25d93
CM
7063static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7064 struct bio *bio, int mirror_num,
7065 unsigned long bio_flags, u64 offset)
7066{
7067 int ret;
7068 struct btrfs_root *root = BTRFS_I(inode)->root;
7069 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7070 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7071 return 0;
7072}
7073
e65e1535
MX
7074static void btrfs_end_dio_bio(struct bio *bio, int err)
7075{
7076 struct btrfs_dio_private *dip = bio->bi_private;
7077
7078 if (err) {
efe120a0
FH
7079 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7080 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
c1c9ff7c 7081 btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 7082 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
7083 dip->errors = 1;
7084
7085 /*
7086 * before atomic variable goto zero, we must make sure
7087 * dip->errors is perceived to be set.
7088 */
7089 smp_mb__before_atomic_dec();
7090 }
7091
7092 /* if there are more bios still pending for this dio, just exit */
7093 if (!atomic_dec_and_test(&dip->pending_bios))
7094 goto out;
7095
9be3395b 7096 if (dip->errors) {
e65e1535 7097 bio_io_error(dip->orig_bio);
9be3395b
CM
7098 } else {
7099 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7100 bio_endio(dip->orig_bio, 0);
7101 }
7102out:
7103 bio_put(bio);
7104}
7105
7106static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7107 u64 first_sector, gfp_t gfp_flags)
7108{
7109 int nr_vecs = bio_get_nr_vecs(bdev);
7110 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7111}
7112
7113static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7114 int rw, u64 file_offset, int skip_sum,
c329861d 7115 int async_submit)
e65e1535 7116{
facc8a22 7117 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7118 int write = rw & REQ_WRITE;
7119 struct btrfs_root *root = BTRFS_I(inode)->root;
7120 int ret;
7121
b812ce28
JB
7122 if (async_submit)
7123 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7124
e65e1535 7125 bio_get(bio);
5fd02043
JB
7126
7127 if (!write) {
7128 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7129 if (ret)
7130 goto err;
7131 }
e65e1535 7132
1ae39938
JB
7133 if (skip_sum)
7134 goto map;
7135
7136 if (write && async_submit) {
e65e1535
MX
7137 ret = btrfs_wq_submit_bio(root->fs_info,
7138 inode, rw, bio, 0, 0,
7139 file_offset,
7140 __btrfs_submit_bio_start_direct_io,
7141 __btrfs_submit_bio_done);
7142 goto err;
1ae39938
JB
7143 } else if (write) {
7144 /*
7145 * If we aren't doing async submit, calculate the csum of the
7146 * bio now.
7147 */
7148 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7149 if (ret)
7150 goto err;
c2db1073 7151 } else if (!skip_sum) {
facc8a22
MX
7152 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7153 file_offset);
c2db1073
TI
7154 if (ret)
7155 goto err;
7156 }
e65e1535 7157
1ae39938
JB
7158map:
7159 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7160err:
7161 bio_put(bio);
7162 return ret;
7163}
7164
7165static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7166 int skip_sum)
7167{
7168 struct inode *inode = dip->inode;
7169 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7170 struct bio *bio;
7171 struct bio *orig_bio = dip->orig_bio;
7172 struct bio_vec *bvec = orig_bio->bi_io_vec;
7173 u64 start_sector = orig_bio->bi_sector;
7174 u64 file_offset = dip->logical_offset;
7175 u64 submit_len = 0;
7176 u64 map_length;
7177 int nr_pages = 0;
e65e1535 7178 int ret = 0;
1ae39938 7179 int async_submit = 0;
e65e1535 7180
e65e1535 7181 map_length = orig_bio->bi_size;
53b381b3 7182 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7183 &map_length, NULL, 0);
7184 if (ret) {
64728bbb 7185 bio_put(orig_bio);
e65e1535
MX
7186 return -EIO;
7187 }
facc8a22 7188
02f57c7a
JB
7189 if (map_length >= orig_bio->bi_size) {
7190 bio = orig_bio;
7191 goto submit;
7192 }
7193
53b381b3
DW
7194 /* async crcs make it difficult to collect full stripe writes. */
7195 if (btrfs_get_alloc_profile(root, 1) &
7196 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7197 async_submit = 0;
7198 else
7199 async_submit = 1;
7200
02f57c7a
JB
7201 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7202 if (!bio)
7203 return -ENOMEM;
7204 bio->bi_private = dip;
7205 bio->bi_end_io = btrfs_end_dio_bio;
7206 atomic_inc(&dip->pending_bios);
7207
e65e1535
MX
7208 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7209 if (unlikely(map_length < submit_len + bvec->bv_len ||
7210 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7211 bvec->bv_offset) < bvec->bv_len)) {
7212 /*
7213 * inc the count before we submit the bio so
7214 * we know the end IO handler won't happen before
7215 * we inc the count. Otherwise, the dip might get freed
7216 * before we're done setting it up
7217 */
7218 atomic_inc(&dip->pending_bios);
7219 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7220 file_offset, skip_sum,
c329861d 7221 async_submit);
e65e1535
MX
7222 if (ret) {
7223 bio_put(bio);
7224 atomic_dec(&dip->pending_bios);
7225 goto out_err;
7226 }
7227
e65e1535
MX
7228 start_sector += submit_len >> 9;
7229 file_offset += submit_len;
7230
7231 submit_len = 0;
7232 nr_pages = 0;
7233
7234 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7235 start_sector, GFP_NOFS);
7236 if (!bio)
7237 goto out_err;
7238 bio->bi_private = dip;
7239 bio->bi_end_io = btrfs_end_dio_bio;
7240
7241 map_length = orig_bio->bi_size;
53b381b3 7242 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7243 start_sector << 9,
e65e1535
MX
7244 &map_length, NULL, 0);
7245 if (ret) {
7246 bio_put(bio);
7247 goto out_err;
7248 }
7249 } else {
7250 submit_len += bvec->bv_len;
67871254 7251 nr_pages++;
e65e1535
MX
7252 bvec++;
7253 }
7254 }
7255
02f57c7a 7256submit:
e65e1535 7257 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7258 async_submit);
e65e1535
MX
7259 if (!ret)
7260 return 0;
7261
7262 bio_put(bio);
7263out_err:
7264 dip->errors = 1;
7265 /*
7266 * before atomic variable goto zero, we must
7267 * make sure dip->errors is perceived to be set.
7268 */
7269 smp_mb__before_atomic_dec();
7270 if (atomic_dec_and_test(&dip->pending_bios))
7271 bio_io_error(dip->orig_bio);
7272
7273 /* bio_end_io() will handle error, so we needn't return it */
7274 return 0;
7275}
7276
9be3395b
CM
7277static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7278 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7279{
7280 struct btrfs_root *root = BTRFS_I(inode)->root;
7281 struct btrfs_dio_private *dip;
9be3395b 7282 struct bio *io_bio;
4b46fce2 7283 int skip_sum;
facc8a22 7284 int sum_len;
7b6d91da 7285 int write = rw & REQ_WRITE;
4b46fce2 7286 int ret = 0;
facc8a22 7287 u16 csum_size;
4b46fce2
JB
7288
7289 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7290
9be3395b 7291 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7292 if (!io_bio) {
7293 ret = -ENOMEM;
7294 goto free_ordered;
7295 }
7296
facc8a22
MX
7297 if (!skip_sum && !write) {
7298 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7299 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7300 sum_len *= csum_size;
7301 } else {
7302 sum_len = 0;
7303 }
7304
7305 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7306 if (!dip) {
7307 ret = -ENOMEM;
9be3395b 7308 goto free_io_bio;
4b46fce2 7309 }
4b46fce2 7310
9be3395b 7311 dip->private = dio_bio->bi_private;
4b46fce2
JB
7312 dip->inode = inode;
7313 dip->logical_offset = file_offset;
e6da5d2e 7314 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7315 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7316 io_bio->bi_private = dip;
e65e1535 7317 dip->errors = 0;
9be3395b
CM
7318 dip->orig_bio = io_bio;
7319 dip->dio_bio = dio_bio;
e65e1535 7320 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7321
7322 if (write)
9be3395b 7323 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7324 else
9be3395b 7325 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7326
e65e1535
MX
7327 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7328 if (!ret)
eaf25d93 7329 return;
9be3395b
CM
7330
7331free_io_bio:
7332 bio_put(io_bio);
7333
4b46fce2
JB
7334free_ordered:
7335 /*
7336 * If this is a write, we need to clean up the reserved space and kill
7337 * the ordered extent.
7338 */
7339 if (write) {
7340 struct btrfs_ordered_extent *ordered;
955256f2 7341 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7342 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7343 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7344 btrfs_free_reserved_extent(root, ordered->start,
7345 ordered->disk_len);
7346 btrfs_put_ordered_extent(ordered);
7347 btrfs_put_ordered_extent(ordered);
7348 }
9be3395b 7349 bio_endio(dio_bio, ret);
4b46fce2
JB
7350}
7351
5a5f79b5
CM
7352static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7353 const struct iovec *iov, loff_t offset,
7354 unsigned long nr_segs)
7355{
7356 int seg;
a1b75f7d 7357 int i;
5a5f79b5
CM
7358 size_t size;
7359 unsigned long addr;
7360 unsigned blocksize_mask = root->sectorsize - 1;
7361 ssize_t retval = -EINVAL;
7362 loff_t end = offset;
7363
7364 if (offset & blocksize_mask)
7365 goto out;
7366
7367 /* Check the memory alignment. Blocks cannot straddle pages */
7368 for (seg = 0; seg < nr_segs; seg++) {
7369 addr = (unsigned long)iov[seg].iov_base;
7370 size = iov[seg].iov_len;
7371 end += size;
a1b75f7d 7372 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7373 goto out;
a1b75f7d
JB
7374
7375 /* If this is a write we don't need to check anymore */
7376 if (rw & WRITE)
7377 continue;
7378
7379 /*
7380 * Check to make sure we don't have duplicate iov_base's in this
7381 * iovec, if so return EINVAL, otherwise we'll get csum errors
7382 * when reading back.
7383 */
7384 for (i = seg + 1; i < nr_segs; i++) {
7385 if (iov[seg].iov_base == iov[i].iov_base)
7386 goto out;
7387 }
5a5f79b5
CM
7388 }
7389 retval = 0;
7390out:
7391 return retval;
7392}
eb838e73 7393
16432985
CM
7394static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7395 const struct iovec *iov, loff_t offset,
7396 unsigned long nr_segs)
7397{
4b46fce2
JB
7398 struct file *file = iocb->ki_filp;
7399 struct inode *inode = file->f_mapping->host;
0934856d 7400 size_t count = 0;
2e60a51e 7401 int flags = 0;
38851cc1
MX
7402 bool wakeup = true;
7403 bool relock = false;
0934856d 7404 ssize_t ret;
4b46fce2 7405
5a5f79b5 7406 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7407 offset, nr_segs))
5a5f79b5 7408 return 0;
3f7c579c 7409
38851cc1
MX
7410 atomic_inc(&inode->i_dio_count);
7411 smp_mb__after_atomic_inc();
7412
0e267c44
JB
7413 /*
7414 * The generic stuff only does filemap_write_and_wait_range, which isn't
7415 * enough if we've written compressed pages to this area, so we need to
7416 * call btrfs_wait_ordered_range to make absolutely sure that any
7417 * outstanding dirty pages are on disk.
7418 */
7419 count = iov_length(iov, nr_segs);
0ef8b726
JB
7420 ret = btrfs_wait_ordered_range(inode, offset, count);
7421 if (ret)
7422 return ret;
0e267c44 7423
0934856d 7424 if (rw & WRITE) {
38851cc1
MX
7425 /*
7426 * If the write DIO is beyond the EOF, we need update
7427 * the isize, but it is protected by i_mutex. So we can
7428 * not unlock the i_mutex at this case.
7429 */
7430 if (offset + count <= inode->i_size) {
7431 mutex_unlock(&inode->i_mutex);
7432 relock = true;
7433 }
0934856d
MX
7434 ret = btrfs_delalloc_reserve_space(inode, count);
7435 if (ret)
38851cc1
MX
7436 goto out;
7437 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7438 &BTRFS_I(inode)->runtime_flags))) {
7439 inode_dio_done(inode);
7440 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7441 wakeup = false;
0934856d
MX
7442 }
7443
7444 ret = __blockdev_direct_IO(rw, iocb, inode,
7445 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7446 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7447 btrfs_submit_direct, flags);
0934856d
MX
7448 if (rw & WRITE) {
7449 if (ret < 0 && ret != -EIOCBQUEUED)
7450 btrfs_delalloc_release_space(inode, count);
172a5049 7451 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7452 btrfs_delalloc_release_space(inode,
7453 count - (size_t)ret);
172a5049
MX
7454 else
7455 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7456 }
38851cc1 7457out:
2e60a51e
MX
7458 if (wakeup)
7459 inode_dio_done(inode);
38851cc1
MX
7460 if (relock)
7461 mutex_lock(&inode->i_mutex);
0934856d
MX
7462
7463 return ret;
16432985
CM
7464}
7465
05dadc09
TI
7466#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7467
1506fcc8
YS
7468static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7469 __u64 start, __u64 len)
7470{
05dadc09
TI
7471 int ret;
7472
7473 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7474 if (ret)
7475 return ret;
7476
ec29ed5b 7477 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7478}
7479
a52d9a80 7480int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7481{
d1310b2e
CM
7482 struct extent_io_tree *tree;
7483 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7484 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7485}
1832a6d5 7486
a52d9a80 7487static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7488{
d1310b2e 7489 struct extent_io_tree *tree;
b888db2b
CM
7490
7491
7492 if (current->flags & PF_MEMALLOC) {
7493 redirty_page_for_writepage(wbc, page);
7494 unlock_page(page);
7495 return 0;
7496 }
d1310b2e 7497 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7498 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7499}
7500
48a3b636
ES
7501static int btrfs_writepages(struct address_space *mapping,
7502 struct writeback_control *wbc)
b293f02e 7503{
d1310b2e 7504 struct extent_io_tree *tree;
771ed689 7505
d1310b2e 7506 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7507 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7508}
7509
3ab2fb5a
CM
7510static int
7511btrfs_readpages(struct file *file, struct address_space *mapping,
7512 struct list_head *pages, unsigned nr_pages)
7513{
d1310b2e
CM
7514 struct extent_io_tree *tree;
7515 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7516 return extent_readpages(tree, mapping, pages, nr_pages,
7517 btrfs_get_extent);
7518}
e6dcd2dc 7519static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7520{
d1310b2e
CM
7521 struct extent_io_tree *tree;
7522 struct extent_map_tree *map;
a52d9a80 7523 int ret;
8c2383c3 7524
d1310b2e
CM
7525 tree = &BTRFS_I(page->mapping->host)->io_tree;
7526 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7527 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7528 if (ret == 1) {
7529 ClearPagePrivate(page);
7530 set_page_private(page, 0);
7531 page_cache_release(page);
39279cc3 7532 }
a52d9a80 7533 return ret;
39279cc3
CM
7534}
7535
e6dcd2dc
CM
7536static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7537{
98509cfc
CM
7538 if (PageWriteback(page) || PageDirty(page))
7539 return 0;
b335b003 7540 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7541}
7542
d47992f8
LC
7543static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7544 unsigned int length)
39279cc3 7545{
5fd02043 7546 struct inode *inode = page->mapping->host;
d1310b2e 7547 struct extent_io_tree *tree;
e6dcd2dc 7548 struct btrfs_ordered_extent *ordered;
2ac55d41 7549 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7550 u64 page_start = page_offset(page);
7551 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 7552 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 7553
8b62b72b
CM
7554 /*
7555 * we have the page locked, so new writeback can't start,
7556 * and the dirty bit won't be cleared while we are here.
7557 *
7558 * Wait for IO on this page so that we can safely clear
7559 * the PagePrivate2 bit and do ordered accounting
7560 */
e6dcd2dc 7561 wait_on_page_writeback(page);
8b62b72b 7562
5fd02043 7563 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7564 if (offset) {
7565 btrfs_releasepage(page, GFP_NOFS);
7566 return;
7567 }
131e404a
FDBM
7568
7569 if (!inode_evicting)
7570 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7571 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 7572 if (ordered) {
eb84ae03
CM
7573 /*
7574 * IO on this page will never be started, so we need
7575 * to account for any ordered extents now
7576 */
131e404a
FDBM
7577 if (!inode_evicting)
7578 clear_extent_bit(tree, page_start, page_end,
7579 EXTENT_DIRTY | EXTENT_DELALLOC |
7580 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7581 EXTENT_DEFRAG, 1, 0, &cached_state,
7582 GFP_NOFS);
8b62b72b
CM
7583 /*
7584 * whoever cleared the private bit is responsible
7585 * for the finish_ordered_io
7586 */
77cef2ec
JB
7587 if (TestClearPagePrivate2(page)) {
7588 struct btrfs_ordered_inode_tree *tree;
7589 u64 new_len;
7590
7591 tree = &BTRFS_I(inode)->ordered_tree;
7592
7593 spin_lock_irq(&tree->lock);
7594 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7595 new_len = page_start - ordered->file_offset;
7596 if (new_len < ordered->truncated_len)
7597 ordered->truncated_len = new_len;
7598 spin_unlock_irq(&tree->lock);
7599
7600 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7601 page_start,
7602 PAGE_CACHE_SIZE, 1))
7603 btrfs_finish_ordered_io(ordered);
8b62b72b 7604 }
e6dcd2dc 7605 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
7606 if (!inode_evicting) {
7607 cached_state = NULL;
7608 lock_extent_bits(tree, page_start, page_end, 0,
7609 &cached_state);
7610 }
7611 }
7612
7613 if (!inode_evicting) {
7614 clear_extent_bit(tree, page_start, page_end,
7615 EXTENT_LOCKED | EXTENT_DIRTY |
7616 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7617 EXTENT_DEFRAG, 1, 1,
7618 &cached_state, GFP_NOFS);
7619
7620 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 7621 }
e6dcd2dc 7622
4a096752 7623 ClearPageChecked(page);
9ad6b7bc 7624 if (PagePrivate(page)) {
9ad6b7bc
CM
7625 ClearPagePrivate(page);
7626 set_page_private(page, 0);
7627 page_cache_release(page);
7628 }
39279cc3
CM
7629}
7630
9ebefb18
CM
7631/*
7632 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7633 * called from a page fault handler when a page is first dirtied. Hence we must
7634 * be careful to check for EOF conditions here. We set the page up correctly
7635 * for a written page which means we get ENOSPC checking when writing into
7636 * holes and correct delalloc and unwritten extent mapping on filesystems that
7637 * support these features.
7638 *
7639 * We are not allowed to take the i_mutex here so we have to play games to
7640 * protect against truncate races as the page could now be beyond EOF. Because
7641 * vmtruncate() writes the inode size before removing pages, once we have the
7642 * page lock we can determine safely if the page is beyond EOF. If it is not
7643 * beyond EOF, then the page is guaranteed safe against truncation until we
7644 * unlock the page.
7645 */
c2ec175c 7646int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7647{
c2ec175c 7648 struct page *page = vmf->page;
496ad9aa 7649 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7650 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7651 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7652 struct btrfs_ordered_extent *ordered;
2ac55d41 7653 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7654 char *kaddr;
7655 unsigned long zero_start;
9ebefb18 7656 loff_t size;
1832a6d5 7657 int ret;
9998eb70 7658 int reserved = 0;
a52d9a80 7659 u64 page_start;
e6dcd2dc 7660 u64 page_end;
9ebefb18 7661
b2b5ef5c 7662 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7663 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7664 if (!ret) {
e41f941a 7665 ret = file_update_time(vma->vm_file);
9998eb70
CM
7666 reserved = 1;
7667 }
56a76f82
NP
7668 if (ret) {
7669 if (ret == -ENOMEM)
7670 ret = VM_FAULT_OOM;
7671 else /* -ENOSPC, -EIO, etc */
7672 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7673 if (reserved)
7674 goto out;
7675 goto out_noreserve;
56a76f82 7676 }
1832a6d5 7677
56a76f82 7678 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7679again:
9ebefb18 7680 lock_page(page);
9ebefb18 7681 size = i_size_read(inode);
e6dcd2dc
CM
7682 page_start = page_offset(page);
7683 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7684
9ebefb18 7685 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7686 (page_start >= size)) {
9ebefb18
CM
7687 /* page got truncated out from underneath us */
7688 goto out_unlock;
7689 }
e6dcd2dc
CM
7690 wait_on_page_writeback(page);
7691
d0082371 7692 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7693 set_page_extent_mapped(page);
7694
eb84ae03
CM
7695 /*
7696 * we can't set the delalloc bits if there are pending ordered
7697 * extents. Drop our locks and wait for them to finish
7698 */
e6dcd2dc
CM
7699 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7700 if (ordered) {
2ac55d41
JB
7701 unlock_extent_cached(io_tree, page_start, page_end,
7702 &cached_state, GFP_NOFS);
e6dcd2dc 7703 unlock_page(page);
eb84ae03 7704 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7705 btrfs_put_ordered_extent(ordered);
7706 goto again;
7707 }
7708
fbf19087
JB
7709 /*
7710 * XXX - page_mkwrite gets called every time the page is dirtied, even
7711 * if it was already dirty, so for space accounting reasons we need to
7712 * clear any delalloc bits for the range we are fixing to save. There
7713 * is probably a better way to do this, but for now keep consistent with
7714 * prepare_pages in the normal write path.
7715 */
2ac55d41 7716 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7717 EXTENT_DIRTY | EXTENT_DELALLOC |
7718 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7719 0, 0, &cached_state, GFP_NOFS);
fbf19087 7720
2ac55d41
JB
7721 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7722 &cached_state);
9ed74f2d 7723 if (ret) {
2ac55d41
JB
7724 unlock_extent_cached(io_tree, page_start, page_end,
7725 &cached_state, GFP_NOFS);
9ed74f2d
JB
7726 ret = VM_FAULT_SIGBUS;
7727 goto out_unlock;
7728 }
e6dcd2dc 7729 ret = 0;
9ebefb18
CM
7730
7731 /* page is wholly or partially inside EOF */
a52d9a80 7732 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7733 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7734 else
e6dcd2dc 7735 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7736
e6dcd2dc
CM
7737 if (zero_start != PAGE_CACHE_SIZE) {
7738 kaddr = kmap(page);
7739 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7740 flush_dcache_page(page);
7741 kunmap(page);
7742 }
247e743c 7743 ClearPageChecked(page);
e6dcd2dc 7744 set_page_dirty(page);
50a9b214 7745 SetPageUptodate(page);
5a3f23d5 7746
257c62e1
CM
7747 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7748 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7749 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7750
2ac55d41 7751 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7752
7753out_unlock:
b2b5ef5c
JK
7754 if (!ret) {
7755 sb_end_pagefault(inode->i_sb);
50a9b214 7756 return VM_FAULT_LOCKED;
b2b5ef5c 7757 }
9ebefb18 7758 unlock_page(page);
1832a6d5 7759out:
ec39e180 7760 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7761out_noreserve:
b2b5ef5c 7762 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7763 return ret;
7764}
7765
a41ad394 7766static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7767{
7768 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7769 struct btrfs_block_rsv *rsv;
a71754fc 7770 int ret = 0;
3893e33b 7771 int err = 0;
39279cc3 7772 struct btrfs_trans_handle *trans;
dbe674a9 7773 u64 mask = root->sectorsize - 1;
07127184 7774 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7775
0ef8b726
JB
7776 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7777 (u64)-1);
7778 if (ret)
7779 return ret;
39279cc3 7780
fcb80c2a
JB
7781 /*
7782 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7783 * 3 things going on here
7784 *
7785 * 1) We need to reserve space for our orphan item and the space to
7786 * delete our orphan item. Lord knows we don't want to have a dangling
7787 * orphan item because we didn't reserve space to remove it.
7788 *
7789 * 2) We need to reserve space to update our inode.
7790 *
7791 * 3) We need to have something to cache all the space that is going to
7792 * be free'd up by the truncate operation, but also have some slack
7793 * space reserved in case it uses space during the truncate (thank you
7794 * very much snapshotting).
7795 *
7796 * And we need these to all be seperate. The fact is we can use alot of
7797 * space doing the truncate, and we have no earthly idea how much space
7798 * we will use, so we need the truncate reservation to be seperate so it
7799 * doesn't end up using space reserved for updating the inode or
7800 * removing the orphan item. We also need to be able to stop the
7801 * transaction and start a new one, which means we need to be able to
7802 * update the inode several times, and we have no idea of knowing how
7803 * many times that will be, so we can't just reserve 1 item for the
7804 * entirety of the opration, so that has to be done seperately as well.
7805 * Then there is the orphan item, which does indeed need to be held on
7806 * to for the whole operation, and we need nobody to touch this reserved
7807 * space except the orphan code.
7808 *
7809 * So that leaves us with
7810 *
7811 * 1) root->orphan_block_rsv - for the orphan deletion.
7812 * 2) rsv - for the truncate reservation, which we will steal from the
7813 * transaction reservation.
7814 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7815 * updating the inode.
7816 */
66d8f3dd 7817 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7818 if (!rsv)
7819 return -ENOMEM;
4a338542 7820 rsv->size = min_size;
ca7e70f5 7821 rsv->failfast = 1;
f0cd846e 7822
907cbceb 7823 /*
07127184 7824 * 1 for the truncate slack space
907cbceb
JB
7825 * 1 for updating the inode.
7826 */
f3fe820c 7827 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7828 if (IS_ERR(trans)) {
7829 err = PTR_ERR(trans);
7830 goto out;
7831 }
f0cd846e 7832
907cbceb
JB
7833 /* Migrate the slack space for the truncate to our reserve */
7834 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7835 min_size);
fcb80c2a 7836 BUG_ON(ret);
f0cd846e 7837
5a3f23d5
CM
7838 /*
7839 * setattr is responsible for setting the ordered_data_close flag,
7840 * but that is only tested during the last file release. That
7841 * could happen well after the next commit, leaving a great big
7842 * window where new writes may get lost if someone chooses to write
7843 * to this file after truncating to zero
7844 *
7845 * The inode doesn't have any dirty data here, and so if we commit
7846 * this is a noop. If someone immediately starts writing to the inode
7847 * it is very likely we'll catch some of their writes in this
7848 * transaction, and the commit will find this file on the ordered
7849 * data list with good things to send down.
7850 *
7851 * This is a best effort solution, there is still a window where
7852 * using truncate to replace the contents of the file will
7853 * end up with a zero length file after a crash.
7854 */
72ac3c0d
JB
7855 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7856 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7857 btrfs_add_ordered_operation(trans, root, inode);
7858
5dc562c5
JB
7859 /*
7860 * So if we truncate and then write and fsync we normally would just
7861 * write the extents that changed, which is a problem if we need to
7862 * first truncate that entire inode. So set this flag so we write out
7863 * all of the extents in the inode to the sync log so we're completely
7864 * safe.
7865 */
7866 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7867 trans->block_rsv = rsv;
907cbceb 7868
8082510e
YZ
7869 while (1) {
7870 ret = btrfs_truncate_inode_items(trans, root, inode,
7871 inode->i_size,
7872 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7873 if (ret != -ENOSPC) {
3893e33b 7874 err = ret;
8082510e 7875 break;
3893e33b 7876 }
39279cc3 7877
fcb80c2a 7878 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7879 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7880 if (ret) {
7881 err = ret;
7882 break;
7883 }
ca7e70f5 7884
8082510e 7885 btrfs_end_transaction(trans, root);
b53d3f5d 7886 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7887
7888 trans = btrfs_start_transaction(root, 2);
7889 if (IS_ERR(trans)) {
7890 ret = err = PTR_ERR(trans);
7891 trans = NULL;
7892 break;
7893 }
7894
7895 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7896 rsv, min_size);
7897 BUG_ON(ret); /* shouldn't happen */
7898 trans->block_rsv = rsv;
8082510e
YZ
7899 }
7900
7901 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7902 trans->block_rsv = root->orphan_block_rsv;
8082510e 7903 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7904 if (ret)
7905 err = ret;
8082510e
YZ
7906 }
7907
917c16b2
CM
7908 if (trans) {
7909 trans->block_rsv = &root->fs_info->trans_block_rsv;
7910 ret = btrfs_update_inode(trans, root, inode);
7911 if (ret && !err)
7912 err = ret;
7b128766 7913
7ad85bb7 7914 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7915 btrfs_btree_balance_dirty(root);
917c16b2 7916 }
fcb80c2a
JB
7917
7918out:
7919 btrfs_free_block_rsv(root, rsv);
7920
3893e33b
JB
7921 if (ret && !err)
7922 err = ret;
a41ad394 7923
3893e33b 7924 return err;
39279cc3
CM
7925}
7926
d352ac68
CM
7927/*
7928 * create a new subvolume directory/inode (helper for the ioctl).
7929 */
d2fb3437 7930int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
7931 struct btrfs_root *new_root,
7932 struct btrfs_root *parent_root,
7933 u64 new_dirid)
39279cc3 7934{
39279cc3 7935 struct inode *inode;
76dda93c 7936 int err;
00e4e6b3 7937 u64 index = 0;
39279cc3 7938
12fc9d09
FA
7939 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7940 new_dirid, new_dirid,
7941 S_IFDIR | (~current_umask() & S_IRWXUGO),
7942 &index);
54aa1f4d 7943 if (IS_ERR(inode))
f46b5a66 7944 return PTR_ERR(inode);
39279cc3
CM
7945 inode->i_op = &btrfs_dir_inode_operations;
7946 inode->i_fop = &btrfs_dir_file_operations;
7947
bfe86848 7948 set_nlink(inode, 1);
dbe674a9 7949 btrfs_i_size_write(inode, 0);
3b96362c 7950
63541927
FDBM
7951 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
7952 if (err)
7953 btrfs_err(new_root->fs_info,
7954 "error inheriting subvolume %llu properties: %d\n",
7955 new_root->root_key.objectid, err);
7956
76dda93c 7957 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7958
76dda93c 7959 iput(inode);
ce598979 7960 return err;
39279cc3
CM
7961}
7962
39279cc3
CM
7963struct inode *btrfs_alloc_inode(struct super_block *sb)
7964{
7965 struct btrfs_inode *ei;
2ead6ae7 7966 struct inode *inode;
39279cc3
CM
7967
7968 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7969 if (!ei)
7970 return NULL;
2ead6ae7
YZ
7971
7972 ei->root = NULL;
2ead6ae7 7973 ei->generation = 0;
15ee9bc7 7974 ei->last_trans = 0;
257c62e1 7975 ei->last_sub_trans = 0;
e02119d5 7976 ei->logged_trans = 0;
2ead6ae7 7977 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7978 ei->disk_i_size = 0;
7979 ei->flags = 0;
7709cde3 7980 ei->csum_bytes = 0;
2ead6ae7 7981 ei->index_cnt = (u64)-1;
67de1176 7982 ei->dir_index = 0;
2ead6ae7 7983 ei->last_unlink_trans = 0;
46d8bc34 7984 ei->last_log_commit = 0;
2ead6ae7 7985
9e0baf60
JB
7986 spin_lock_init(&ei->lock);
7987 ei->outstanding_extents = 0;
7988 ei->reserved_extents = 0;
2ead6ae7 7989
72ac3c0d 7990 ei->runtime_flags = 0;
261507a0 7991 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7992
16cdcec7
MX
7993 ei->delayed_node = NULL;
7994
2ead6ae7 7995 inode = &ei->vfs_inode;
a8067e02 7996 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7997 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7998 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7999 ei->io_tree.track_uptodate = 1;
8000 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8001 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8002 mutex_init(&ei->log_mutex);
f248679e 8003 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8004 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8005 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 8006 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
8007 RB_CLEAR_NODE(&ei->rb_node);
8008
8009 return inode;
39279cc3
CM
8010}
8011
aaedb55b
JB
8012#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8013void btrfs_test_destroy_inode(struct inode *inode)
8014{
8015 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8016 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8017}
8018#endif
8019
fa0d7e3d
NP
8020static void btrfs_i_callback(struct rcu_head *head)
8021{
8022 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8023 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8024}
8025
39279cc3
CM
8026void btrfs_destroy_inode(struct inode *inode)
8027{
e6dcd2dc 8028 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8029 struct btrfs_root *root = BTRFS_I(inode)->root;
8030
b3d9b7a3 8031 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8032 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8033 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8034 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8035 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8036 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 8037
a6dbd429
JB
8038 /*
8039 * This can happen where we create an inode, but somebody else also
8040 * created the same inode and we need to destroy the one we already
8041 * created.
8042 */
8043 if (!root)
8044 goto free;
8045
5a3f23d5
CM
8046 /*
8047 * Make sure we're properly removed from the ordered operation
8048 * lists.
8049 */
8050 smp_mb();
8051 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 8052 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 8053 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 8054 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
8055 }
8056
8a35d95f
JB
8057 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8058 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8059 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8060 btrfs_ino(inode));
8a35d95f 8061 atomic_dec(&root->orphan_inodes);
7b128766 8062 }
7b128766 8063
d397712b 8064 while (1) {
e6dcd2dc
CM
8065 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8066 if (!ordered)
8067 break;
8068 else {
c2cf52eb 8069 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8070 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8071 btrfs_remove_ordered_extent(inode, ordered);
8072 btrfs_put_ordered_extent(ordered);
8073 btrfs_put_ordered_extent(ordered);
8074 }
8075 }
5d4f98a2 8076 inode_tree_del(inode);
5b21f2ed 8077 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8078free:
fa0d7e3d 8079 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8080}
8081
45321ac5 8082int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8083{
8084 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8085
6379ef9f
NA
8086 if (root == NULL)
8087 return 1;
8088
fa6ac876 8089 /* the snap/subvol tree is on deleting */
69e9c6c6 8090 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8091 return 1;
76dda93c 8092 else
45321ac5 8093 return generic_drop_inode(inode);
76dda93c
YZ
8094}
8095
0ee0fda0 8096static void init_once(void *foo)
39279cc3
CM
8097{
8098 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8099
8100 inode_init_once(&ei->vfs_inode);
8101}
8102
8103void btrfs_destroy_cachep(void)
8104{
8c0a8537
KS
8105 /*
8106 * Make sure all delayed rcu free inodes are flushed before we
8107 * destroy cache.
8108 */
8109 rcu_barrier();
39279cc3
CM
8110 if (btrfs_inode_cachep)
8111 kmem_cache_destroy(btrfs_inode_cachep);
8112 if (btrfs_trans_handle_cachep)
8113 kmem_cache_destroy(btrfs_trans_handle_cachep);
8114 if (btrfs_transaction_cachep)
8115 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8116 if (btrfs_path_cachep)
8117 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8118 if (btrfs_free_space_cachep)
8119 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8120 if (btrfs_delalloc_work_cachep)
8121 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8122}
8123
8124int btrfs_init_cachep(void)
8125{
837e1972 8126 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8127 sizeof(struct btrfs_inode), 0,
8128 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8129 if (!btrfs_inode_cachep)
8130 goto fail;
9601e3f6 8131
837e1972 8132 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8133 sizeof(struct btrfs_trans_handle), 0,
8134 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8135 if (!btrfs_trans_handle_cachep)
8136 goto fail;
9601e3f6 8137
837e1972 8138 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8139 sizeof(struct btrfs_transaction), 0,
8140 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8141 if (!btrfs_transaction_cachep)
8142 goto fail;
9601e3f6 8143
837e1972 8144 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8145 sizeof(struct btrfs_path), 0,
8146 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8147 if (!btrfs_path_cachep)
8148 goto fail;
9601e3f6 8149
837e1972 8150 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8151 sizeof(struct btrfs_free_space), 0,
8152 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8153 if (!btrfs_free_space_cachep)
8154 goto fail;
8155
8ccf6f19
MX
8156 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8157 sizeof(struct btrfs_delalloc_work), 0,
8158 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8159 NULL);
8160 if (!btrfs_delalloc_work_cachep)
8161 goto fail;
8162
39279cc3
CM
8163 return 0;
8164fail:
8165 btrfs_destroy_cachep();
8166 return -ENOMEM;
8167}
8168
8169static int btrfs_getattr(struct vfsmount *mnt,
8170 struct dentry *dentry, struct kstat *stat)
8171{
df0af1a5 8172 u64 delalloc_bytes;
39279cc3 8173 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8174 u32 blocksize = inode->i_sb->s_blocksize;
8175
39279cc3 8176 generic_fillattr(inode, stat);
0ee5dc67 8177 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8178 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8179
8180 spin_lock(&BTRFS_I(inode)->lock);
8181 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8182 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8183 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8184 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8185 return 0;
8186}
8187
d397712b
CM
8188static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8189 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8190{
8191 struct btrfs_trans_handle *trans;
8192 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8193 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8194 struct inode *new_inode = new_dentry->d_inode;
8195 struct inode *old_inode = old_dentry->d_inode;
8196 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8197 u64 index = 0;
4df27c4d 8198 u64 root_objectid;
39279cc3 8199 int ret;
33345d01 8200 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8201
33345d01 8202 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8203 return -EPERM;
8204
4df27c4d 8205 /* we only allow rename subvolume link between subvolumes */
33345d01 8206 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8207 return -EXDEV;
8208
33345d01
LZ
8209 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8210 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8211 return -ENOTEMPTY;
5f39d397 8212
4df27c4d
YZ
8213 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8214 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8215 return -ENOTEMPTY;
9c52057c
CM
8216
8217
8218 /* check for collisions, even if the name isn't there */
4871c158 8219 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8220 new_dentry->d_name.name,
8221 new_dentry->d_name.len);
8222
8223 if (ret) {
8224 if (ret == -EEXIST) {
8225 /* we shouldn't get
8226 * eexist without a new_inode */
fae7f21c 8227 if (WARN_ON(!new_inode)) {
9c52057c
CM
8228 return ret;
8229 }
8230 } else {
8231 /* maybe -EOVERFLOW */
8232 return ret;
8233 }
8234 }
8235 ret = 0;
8236
5a3f23d5
CM
8237 /*
8238 * we're using rename to replace one file with another.
8239 * and the replacement file is large. Start IO on it now so
8240 * we don't add too much work to the end of the transaction
8241 */
4baf8c92 8242 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8243 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8244 filemap_flush(old_inode->i_mapping);
8245
76dda93c 8246 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8247 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8248 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8249 /*
8250 * We want to reserve the absolute worst case amount of items. So if
8251 * both inodes are subvols and we need to unlink them then that would
8252 * require 4 item modifications, but if they are both normal inodes it
8253 * would require 5 item modifications, so we'll assume their normal
8254 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8255 * should cover the worst case number of items we'll modify.
8256 */
6e137ed3 8257 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8258 if (IS_ERR(trans)) {
8259 ret = PTR_ERR(trans);
8260 goto out_notrans;
8261 }
76dda93c 8262
4df27c4d
YZ
8263 if (dest != root)
8264 btrfs_record_root_in_trans(trans, dest);
5f39d397 8265
a5719521
YZ
8266 ret = btrfs_set_inode_index(new_dir, &index);
8267 if (ret)
8268 goto out_fail;
5a3f23d5 8269
67de1176 8270 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8271 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8272 /* force full log commit if subvolume involved. */
8273 root->fs_info->last_trans_log_full_commit = trans->transid;
8274 } else {
a5719521
YZ
8275 ret = btrfs_insert_inode_ref(trans, dest,
8276 new_dentry->d_name.name,
8277 new_dentry->d_name.len,
33345d01
LZ
8278 old_ino,
8279 btrfs_ino(new_dir), index);
a5719521
YZ
8280 if (ret)
8281 goto out_fail;
4df27c4d
YZ
8282 /*
8283 * this is an ugly little race, but the rename is required
8284 * to make sure that if we crash, the inode is either at the
8285 * old name or the new one. pinning the log transaction lets
8286 * us make sure we don't allow a log commit to come in after
8287 * we unlink the name but before we add the new name back in.
8288 */
8289 btrfs_pin_log_trans(root);
8290 }
5a3f23d5
CM
8291 /*
8292 * make sure the inode gets flushed if it is replacing
8293 * something.
8294 */
33345d01 8295 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8296 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8297
0c4d2d95
JB
8298 inode_inc_iversion(old_dir);
8299 inode_inc_iversion(new_dir);
8300 inode_inc_iversion(old_inode);
39279cc3
CM
8301 old_dir->i_ctime = old_dir->i_mtime = ctime;
8302 new_dir->i_ctime = new_dir->i_mtime = ctime;
8303 old_inode->i_ctime = ctime;
5f39d397 8304
12fcfd22
CM
8305 if (old_dentry->d_parent != new_dentry->d_parent)
8306 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8307
33345d01 8308 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8309 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8310 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8311 old_dentry->d_name.name,
8312 old_dentry->d_name.len);
8313 } else {
92986796
AV
8314 ret = __btrfs_unlink_inode(trans, root, old_dir,
8315 old_dentry->d_inode,
8316 old_dentry->d_name.name,
8317 old_dentry->d_name.len);
8318 if (!ret)
8319 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8320 }
79787eaa
JM
8321 if (ret) {
8322 btrfs_abort_transaction(trans, root, ret);
8323 goto out_fail;
8324 }
39279cc3
CM
8325
8326 if (new_inode) {
0c4d2d95 8327 inode_inc_iversion(new_inode);
39279cc3 8328 new_inode->i_ctime = CURRENT_TIME;
33345d01 8329 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8330 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8331 root_objectid = BTRFS_I(new_inode)->location.objectid;
8332 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8333 root_objectid,
8334 new_dentry->d_name.name,
8335 new_dentry->d_name.len);
8336 BUG_ON(new_inode->i_nlink == 0);
8337 } else {
8338 ret = btrfs_unlink_inode(trans, dest, new_dir,
8339 new_dentry->d_inode,
8340 new_dentry->d_name.name,
8341 new_dentry->d_name.len);
8342 }
4ef31a45 8343 if (!ret && new_inode->i_nlink == 0)
e02119d5 8344 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8345 if (ret) {
8346 btrfs_abort_transaction(trans, root, ret);
8347 goto out_fail;
8348 }
39279cc3 8349 }
aec7477b 8350
4df27c4d
YZ
8351 ret = btrfs_add_link(trans, new_dir, old_inode,
8352 new_dentry->d_name.name,
a5719521 8353 new_dentry->d_name.len, 0, index);
79787eaa
JM
8354 if (ret) {
8355 btrfs_abort_transaction(trans, root, ret);
8356 goto out_fail;
8357 }
39279cc3 8358
67de1176
MX
8359 if (old_inode->i_nlink == 1)
8360 BTRFS_I(old_inode)->dir_index = index;
8361
33345d01 8362 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8363 struct dentry *parent = new_dentry->d_parent;
6a912213 8364 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8365 btrfs_end_log_trans(root);
8366 }
39279cc3 8367out_fail:
7ad85bb7 8368 btrfs_end_transaction(trans, root);
b44c59a8 8369out_notrans:
33345d01 8370 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8371 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8372
39279cc3
CM
8373 return ret;
8374}
8375
8ccf6f19
MX
8376static void btrfs_run_delalloc_work(struct btrfs_work *work)
8377{
8378 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8379 struct inode *inode;
8ccf6f19
MX
8380
8381 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8382 work);
9f23e289
JB
8383 inode = delalloc_work->inode;
8384 if (delalloc_work->wait) {
8385 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8386 } else {
8387 filemap_flush(inode->i_mapping);
8388 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8389 &BTRFS_I(inode)->runtime_flags))
8390 filemap_flush(inode->i_mapping);
8391 }
8ccf6f19
MX
8392
8393 if (delalloc_work->delay_iput)
9f23e289 8394 btrfs_add_delayed_iput(inode);
8ccf6f19 8395 else
9f23e289 8396 iput(inode);
8ccf6f19
MX
8397 complete(&delalloc_work->completion);
8398}
8399
8400struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8401 int wait, int delay_iput)
8402{
8403 struct btrfs_delalloc_work *work;
8404
8405 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8406 if (!work)
8407 return NULL;
8408
8409 init_completion(&work->completion);
8410 INIT_LIST_HEAD(&work->list);
8411 work->inode = inode;
8412 work->wait = wait;
8413 work->delay_iput = delay_iput;
8414 work->work.func = btrfs_run_delalloc_work;
8415
8416 return work;
8417}
8418
8419void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8420{
8421 wait_for_completion(&work->completion);
8422 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8423}
8424
d352ac68
CM
8425/*
8426 * some fairly slow code that needs optimization. This walks the list
8427 * of all the inodes with pending delalloc and forces them to disk.
8428 */
eb73c1b7 8429static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8430{
ea8c2819 8431 struct btrfs_inode *binode;
5b21f2ed 8432 struct inode *inode;
8ccf6f19
MX
8433 struct btrfs_delalloc_work *work, *next;
8434 struct list_head works;
1eafa6c7 8435 struct list_head splice;
8ccf6f19 8436 int ret = 0;
ea8c2819 8437
8ccf6f19 8438 INIT_LIST_HEAD(&works);
1eafa6c7 8439 INIT_LIST_HEAD(&splice);
63607cc8 8440
eb73c1b7
MX
8441 spin_lock(&root->delalloc_lock);
8442 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8443 while (!list_empty(&splice)) {
8444 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8445 delalloc_inodes);
1eafa6c7 8446
eb73c1b7
MX
8447 list_move_tail(&binode->delalloc_inodes,
8448 &root->delalloc_inodes);
5b21f2ed 8449 inode = igrab(&binode->vfs_inode);
df0af1a5 8450 if (!inode) {
eb73c1b7 8451 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8452 continue;
df0af1a5 8453 }
eb73c1b7 8454 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8455
8456 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8457 if (unlikely(!work)) {
f4ab9ea7
JB
8458 if (delay_iput)
8459 btrfs_add_delayed_iput(inode);
8460 else
8461 iput(inode);
1eafa6c7
MX
8462 ret = -ENOMEM;
8463 goto out;
5b21f2ed 8464 }
1eafa6c7
MX
8465 list_add_tail(&work->list, &works);
8466 btrfs_queue_worker(&root->fs_info->flush_workers,
8467 &work->work);
8468
5b21f2ed 8469 cond_resched();
eb73c1b7 8470 spin_lock(&root->delalloc_lock);
ea8c2819 8471 }
eb73c1b7 8472 spin_unlock(&root->delalloc_lock);
8c8bee1d 8473
1eafa6c7
MX
8474 list_for_each_entry_safe(work, next, &works, list) {
8475 list_del_init(&work->list);
8476 btrfs_wait_and_free_delalloc_work(work);
8477 }
eb73c1b7
MX
8478 return 0;
8479out:
8480 list_for_each_entry_safe(work, next, &works, list) {
8481 list_del_init(&work->list);
8482 btrfs_wait_and_free_delalloc_work(work);
8483 }
8484
8485 if (!list_empty_careful(&splice)) {
8486 spin_lock(&root->delalloc_lock);
8487 list_splice_tail(&splice, &root->delalloc_inodes);
8488 spin_unlock(&root->delalloc_lock);
8489 }
8490 return ret;
8491}
1eafa6c7 8492
eb73c1b7
MX
8493int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8494{
8495 int ret;
1eafa6c7 8496
2c21b4d7 8497 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
8498 return -EROFS;
8499
8500 ret = __start_delalloc_inodes(root, delay_iput);
8501 /*
8502 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8503 * we have to make sure the IO is actually started and that
8504 * ordered extents get created before we return
8505 */
8506 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8507 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8508 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8509 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8510 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8511 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8512 }
8513 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8514 return ret;
8515}
8516
91aef86f 8517int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput)
eb73c1b7
MX
8518{
8519 struct btrfs_root *root;
8520 struct list_head splice;
8521 int ret;
8522
2c21b4d7 8523 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
8524 return -EROFS;
8525
8526 INIT_LIST_HEAD(&splice);
8527
8528 spin_lock(&fs_info->delalloc_root_lock);
8529 list_splice_init(&fs_info->delalloc_roots, &splice);
8530 while (!list_empty(&splice)) {
8531 root = list_first_entry(&splice, struct btrfs_root,
8532 delalloc_root);
8533 root = btrfs_grab_fs_root(root);
8534 BUG_ON(!root);
8535 list_move_tail(&root->delalloc_root,
8536 &fs_info->delalloc_roots);
8537 spin_unlock(&fs_info->delalloc_root_lock);
8538
8539 ret = __start_delalloc_inodes(root, delay_iput);
8540 btrfs_put_fs_root(root);
8541 if (ret)
8542 goto out;
8543
8544 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8545 }
eb73c1b7 8546 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8547
eb73c1b7
MX
8548 atomic_inc(&fs_info->async_submit_draining);
8549 while (atomic_read(&fs_info->nr_async_submits) ||
8550 atomic_read(&fs_info->async_delalloc_pages)) {
8551 wait_event(fs_info->async_submit_wait,
8552 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8553 atomic_read(&fs_info->async_delalloc_pages) == 0));
8554 }
8555 atomic_dec(&fs_info->async_submit_draining);
8556 return 0;
8557out:
1eafa6c7 8558 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8559 spin_lock(&fs_info->delalloc_root_lock);
8560 list_splice_tail(&splice, &fs_info->delalloc_roots);
8561 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8562 }
8ccf6f19 8563 return ret;
ea8c2819
CM
8564}
8565
39279cc3
CM
8566static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8567 const char *symname)
8568{
8569 struct btrfs_trans_handle *trans;
8570 struct btrfs_root *root = BTRFS_I(dir)->root;
8571 struct btrfs_path *path;
8572 struct btrfs_key key;
1832a6d5 8573 struct inode *inode = NULL;
39279cc3
CM
8574 int err;
8575 int drop_inode = 0;
8576 u64 objectid;
67871254 8577 u64 index = 0;
39279cc3
CM
8578 int name_len;
8579 int datasize;
5f39d397 8580 unsigned long ptr;
39279cc3 8581 struct btrfs_file_extent_item *ei;
5f39d397 8582 struct extent_buffer *leaf;
39279cc3 8583
f06becc4 8584 name_len = strlen(symname);
39279cc3
CM
8585 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8586 return -ENAMETOOLONG;
1832a6d5 8587
9ed74f2d
JB
8588 /*
8589 * 2 items for inode item and ref
8590 * 2 items for dir items
8591 * 1 item for xattr if selinux is on
8592 */
a22285a6
YZ
8593 trans = btrfs_start_transaction(root, 5);
8594 if (IS_ERR(trans))
8595 return PTR_ERR(trans);
1832a6d5 8596
581bb050
LZ
8597 err = btrfs_find_free_ino(root, &objectid);
8598 if (err)
8599 goto out_unlock;
8600
aec7477b 8601 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8602 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8603 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8604 if (IS_ERR(inode)) {
8605 err = PTR_ERR(inode);
39279cc3 8606 goto out_unlock;
7cf96da3 8607 }
39279cc3 8608
2a7dba39 8609 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8610 if (err) {
8611 drop_inode = 1;
8612 goto out_unlock;
8613 }
8614
ad19db71
CS
8615 /*
8616 * If the active LSM wants to access the inode during
8617 * d_instantiate it needs these. Smack checks to see
8618 * if the filesystem supports xattrs by looking at the
8619 * ops vector.
8620 */
8621 inode->i_fop = &btrfs_file_operations;
8622 inode->i_op = &btrfs_file_inode_operations;
8623
a1b075d2 8624 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8625 if (err)
8626 drop_inode = 1;
8627 else {
8628 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8629 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8630 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8631 }
39279cc3
CM
8632 if (drop_inode)
8633 goto out_unlock;
8634
8635 path = btrfs_alloc_path();
d8926bb3
MF
8636 if (!path) {
8637 err = -ENOMEM;
8638 drop_inode = 1;
8639 goto out_unlock;
8640 }
33345d01 8641 key.objectid = btrfs_ino(inode);
39279cc3 8642 key.offset = 0;
39279cc3
CM
8643 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8644 datasize = btrfs_file_extent_calc_inline_size(name_len);
8645 err = btrfs_insert_empty_item(trans, root, path, &key,
8646 datasize);
54aa1f4d
CM
8647 if (err) {
8648 drop_inode = 1;
b0839166 8649 btrfs_free_path(path);
54aa1f4d
CM
8650 goto out_unlock;
8651 }
5f39d397
CM
8652 leaf = path->nodes[0];
8653 ei = btrfs_item_ptr(leaf, path->slots[0],
8654 struct btrfs_file_extent_item);
8655 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8656 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8657 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8658 btrfs_set_file_extent_encryption(leaf, ei, 0);
8659 btrfs_set_file_extent_compression(leaf, ei, 0);
8660 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8661 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8662
39279cc3 8663 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8664 write_extent_buffer(leaf, symname, ptr, name_len);
8665 btrfs_mark_buffer_dirty(leaf);
39279cc3 8666 btrfs_free_path(path);
5f39d397 8667
39279cc3
CM
8668 inode->i_op = &btrfs_symlink_inode_operations;
8669 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8670 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8671 inode_set_bytes(inode, name_len);
f06becc4 8672 btrfs_i_size_write(inode, name_len);
54aa1f4d
CM
8673 err = btrfs_update_inode(trans, root, inode);
8674 if (err)
8675 drop_inode = 1;
39279cc3
CM
8676
8677out_unlock:
08c422c2
AV
8678 if (!err)
8679 d_instantiate(dentry, inode);
7ad85bb7 8680 btrfs_end_transaction(trans, root);
39279cc3
CM
8681 if (drop_inode) {
8682 inode_dec_link_count(inode);
8683 iput(inode);
8684 }
b53d3f5d 8685 btrfs_btree_balance_dirty(root);
39279cc3
CM
8686 return err;
8687}
16432985 8688
0af3d00b
JB
8689static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8690 u64 start, u64 num_bytes, u64 min_size,
8691 loff_t actual_len, u64 *alloc_hint,
8692 struct btrfs_trans_handle *trans)
d899e052 8693{
5dc562c5
JB
8694 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8695 struct extent_map *em;
d899e052
YZ
8696 struct btrfs_root *root = BTRFS_I(inode)->root;
8697 struct btrfs_key ins;
d899e052 8698 u64 cur_offset = start;
55a61d1d 8699 u64 i_size;
154ea289 8700 u64 cur_bytes;
d899e052 8701 int ret = 0;
0af3d00b 8702 bool own_trans = true;
d899e052 8703
0af3d00b
JB
8704 if (trans)
8705 own_trans = false;
d899e052 8706 while (num_bytes > 0) {
0af3d00b
JB
8707 if (own_trans) {
8708 trans = btrfs_start_transaction(root, 3);
8709 if (IS_ERR(trans)) {
8710 ret = PTR_ERR(trans);
8711 break;
8712 }
5a303d5d
YZ
8713 }
8714
154ea289
CM
8715 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8716 cur_bytes = max(cur_bytes, min_size);
00361589
JB
8717 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8718 *alloc_hint, &ins, 1);
5a303d5d 8719 if (ret) {
0af3d00b
JB
8720 if (own_trans)
8721 btrfs_end_transaction(trans, root);
a22285a6 8722 break;
d899e052 8723 }
5a303d5d 8724
d899e052
YZ
8725 ret = insert_reserved_file_extent(trans, inode,
8726 cur_offset, ins.objectid,
8727 ins.offset, ins.offset,
920bbbfb 8728 ins.offset, 0, 0, 0,
d899e052 8729 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 8730 if (ret) {
857cc2fc
JB
8731 btrfs_free_reserved_extent(root, ins.objectid,
8732 ins.offset);
79787eaa
JM
8733 btrfs_abort_transaction(trans, root, ret);
8734 if (own_trans)
8735 btrfs_end_transaction(trans, root);
8736 break;
8737 }
a1ed835e
CM
8738 btrfs_drop_extent_cache(inode, cur_offset,
8739 cur_offset + ins.offset -1, 0);
5a303d5d 8740
5dc562c5
JB
8741 em = alloc_extent_map();
8742 if (!em) {
8743 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8744 &BTRFS_I(inode)->runtime_flags);
8745 goto next;
8746 }
8747
8748 em->start = cur_offset;
8749 em->orig_start = cur_offset;
8750 em->len = ins.offset;
8751 em->block_start = ins.objectid;
8752 em->block_len = ins.offset;
b4939680 8753 em->orig_block_len = ins.offset;
cc95bef6 8754 em->ram_bytes = ins.offset;
5dc562c5
JB
8755 em->bdev = root->fs_info->fs_devices->latest_bdev;
8756 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8757 em->generation = trans->transid;
8758
8759 while (1) {
8760 write_lock(&em_tree->lock);
09a2a8f9 8761 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8762 write_unlock(&em_tree->lock);
8763 if (ret != -EEXIST)
8764 break;
8765 btrfs_drop_extent_cache(inode, cur_offset,
8766 cur_offset + ins.offset - 1,
8767 0);
8768 }
8769 free_extent_map(em);
8770next:
d899e052
YZ
8771 num_bytes -= ins.offset;
8772 cur_offset += ins.offset;
efa56464 8773 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8774
0c4d2d95 8775 inode_inc_iversion(inode);
d899e052 8776 inode->i_ctime = CURRENT_TIME;
6cbff00f 8777 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8778 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8779 (actual_len > inode->i_size) &&
8780 (cur_offset > inode->i_size)) {
d1ea6a61 8781 if (cur_offset > actual_len)
55a61d1d 8782 i_size = actual_len;
d1ea6a61 8783 else
55a61d1d
JB
8784 i_size = cur_offset;
8785 i_size_write(inode, i_size);
8786 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8787 }
8788
d899e052 8789 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8790
8791 if (ret) {
8792 btrfs_abort_transaction(trans, root, ret);
8793 if (own_trans)
8794 btrfs_end_transaction(trans, root);
8795 break;
8796 }
d899e052 8797
0af3d00b
JB
8798 if (own_trans)
8799 btrfs_end_transaction(trans, root);
5a303d5d 8800 }
d899e052
YZ
8801 return ret;
8802}
8803
0af3d00b
JB
8804int btrfs_prealloc_file_range(struct inode *inode, int mode,
8805 u64 start, u64 num_bytes, u64 min_size,
8806 loff_t actual_len, u64 *alloc_hint)
8807{
8808 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8809 min_size, actual_len, alloc_hint,
8810 NULL);
8811}
8812
8813int btrfs_prealloc_file_range_trans(struct inode *inode,
8814 struct btrfs_trans_handle *trans, int mode,
8815 u64 start, u64 num_bytes, u64 min_size,
8816 loff_t actual_len, u64 *alloc_hint)
8817{
8818 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8819 min_size, actual_len, alloc_hint, trans);
8820}
8821
e6dcd2dc
CM
8822static int btrfs_set_page_dirty(struct page *page)
8823{
e6dcd2dc
CM
8824 return __set_page_dirty_nobuffers(page);
8825}
8826
10556cb2 8827static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8828{
b83cc969 8829 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8830 umode_t mode = inode->i_mode;
b83cc969 8831
cb6db4e5
JM
8832 if (mask & MAY_WRITE &&
8833 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8834 if (btrfs_root_readonly(root))
8835 return -EROFS;
8836 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8837 return -EACCES;
8838 }
2830ba7f 8839 return generic_permission(inode, mask);
fdebe2bd 8840}
39279cc3 8841
6e1d5dcc 8842static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8843 .getattr = btrfs_getattr,
39279cc3
CM
8844 .lookup = btrfs_lookup,
8845 .create = btrfs_create,
8846 .unlink = btrfs_unlink,
8847 .link = btrfs_link,
8848 .mkdir = btrfs_mkdir,
8849 .rmdir = btrfs_rmdir,
8850 .rename = btrfs_rename,
8851 .symlink = btrfs_symlink,
8852 .setattr = btrfs_setattr,
618e21d5 8853 .mknod = btrfs_mknod,
95819c05
CH
8854 .setxattr = btrfs_setxattr,
8855 .getxattr = btrfs_getxattr,
5103e947 8856 .listxattr = btrfs_listxattr,
95819c05 8857 .removexattr = btrfs_removexattr,
fdebe2bd 8858 .permission = btrfs_permission,
4e34e719 8859 .get_acl = btrfs_get_acl,
93fd63c2 8860 .update_time = btrfs_update_time,
39279cc3 8861};
6e1d5dcc 8862static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8863 .lookup = btrfs_lookup,
fdebe2bd 8864 .permission = btrfs_permission,
4e34e719 8865 .get_acl = btrfs_get_acl,
93fd63c2 8866 .update_time = btrfs_update_time,
39279cc3 8867};
76dda93c 8868
828c0950 8869static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8870 .llseek = generic_file_llseek,
8871 .read = generic_read_dir,
9cdda8d3 8872 .iterate = btrfs_real_readdir,
34287aa3 8873 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8874#ifdef CONFIG_COMPAT
34287aa3 8875 .compat_ioctl = btrfs_ioctl,
39279cc3 8876#endif
6bf13c0c 8877 .release = btrfs_release_file,
e02119d5 8878 .fsync = btrfs_sync_file,
39279cc3
CM
8879};
8880
d1310b2e 8881static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8882 .fill_delalloc = run_delalloc_range,
065631f6 8883 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8884 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8885 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8886 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8887 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8888 .set_bit_hook = btrfs_set_bit_hook,
8889 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8890 .merge_extent_hook = btrfs_merge_extent_hook,
8891 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8892};
8893
35054394
CM
8894/*
8895 * btrfs doesn't support the bmap operation because swapfiles
8896 * use bmap to make a mapping of extents in the file. They assume
8897 * these extents won't change over the life of the file and they
8898 * use the bmap result to do IO directly to the drive.
8899 *
8900 * the btrfs bmap call would return logical addresses that aren't
8901 * suitable for IO and they also will change frequently as COW
8902 * operations happen. So, swapfile + btrfs == corruption.
8903 *
8904 * For now we're avoiding this by dropping bmap.
8905 */
7f09410b 8906static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8907 .readpage = btrfs_readpage,
8908 .writepage = btrfs_writepage,
b293f02e 8909 .writepages = btrfs_writepages,
3ab2fb5a 8910 .readpages = btrfs_readpages,
16432985 8911 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8912 .invalidatepage = btrfs_invalidatepage,
8913 .releasepage = btrfs_releasepage,
e6dcd2dc 8914 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8915 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8916};
8917
7f09410b 8918static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8919 .readpage = btrfs_readpage,
8920 .writepage = btrfs_writepage,
2bf5a725
CM
8921 .invalidatepage = btrfs_invalidatepage,
8922 .releasepage = btrfs_releasepage,
39279cc3
CM
8923};
8924
6e1d5dcc 8925static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8926 .getattr = btrfs_getattr,
8927 .setattr = btrfs_setattr,
95819c05
CH
8928 .setxattr = btrfs_setxattr,
8929 .getxattr = btrfs_getxattr,
5103e947 8930 .listxattr = btrfs_listxattr,
95819c05 8931 .removexattr = btrfs_removexattr,
fdebe2bd 8932 .permission = btrfs_permission,
1506fcc8 8933 .fiemap = btrfs_fiemap,
4e34e719 8934 .get_acl = btrfs_get_acl,
e41f941a 8935 .update_time = btrfs_update_time,
39279cc3 8936};
6e1d5dcc 8937static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8938 .getattr = btrfs_getattr,
8939 .setattr = btrfs_setattr,
fdebe2bd 8940 .permission = btrfs_permission,
95819c05
CH
8941 .setxattr = btrfs_setxattr,
8942 .getxattr = btrfs_getxattr,
33268eaf 8943 .listxattr = btrfs_listxattr,
95819c05 8944 .removexattr = btrfs_removexattr,
4e34e719 8945 .get_acl = btrfs_get_acl,
e41f941a 8946 .update_time = btrfs_update_time,
618e21d5 8947};
6e1d5dcc 8948static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8949 .readlink = generic_readlink,
8950 .follow_link = page_follow_link_light,
8951 .put_link = page_put_link,
f209561a 8952 .getattr = btrfs_getattr,
22c44fe6 8953 .setattr = btrfs_setattr,
fdebe2bd 8954 .permission = btrfs_permission,
0279b4cd
JO
8955 .setxattr = btrfs_setxattr,
8956 .getxattr = btrfs_getxattr,
8957 .listxattr = btrfs_listxattr,
8958 .removexattr = btrfs_removexattr,
4e34e719 8959 .get_acl = btrfs_get_acl,
e41f941a 8960 .update_time = btrfs_update_time,
39279cc3 8961};
76dda93c 8962
82d339d9 8963const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8964 .d_delete = btrfs_dentry_delete,
b4aff1f8 8965 .d_release = btrfs_dentry_release,
76dda93c 8966};