Btrfs: fix permissions of empty files not affected by umask
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 74static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
75struct kmem_cache *btrfs_trans_handle_cachep;
76struct kmem_cache *btrfs_transaction_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
79
80#define S_SHIFT 12
81static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89};
90
a41ad394
JB
91static int btrfs_setsize(struct inode *inode, loff_t newsize);
92static int btrfs_truncate(struct inode *inode);
5fd02043 93static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
94static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
7b128766 98
f34f57a3 99static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
100 struct inode *inode, struct inode *dir,
101 const struct qstr *qstr)
0279b4cd
JO
102{
103 int err;
104
f34f57a3 105 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 106 if (!err)
2a7dba39 107 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
108 return err;
109}
110
c8b97818
CM
111/*
112 * this does all the hard work for inserting an inline extent into
113 * the btree. The caller should have done a btrfs_drop_extents so that
114 * no overlapping inline items exist in the btree
115 */
d397712b 116static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
117 struct btrfs_root *root, struct inode *inode,
118 u64 start, size_t size, size_t compressed_size,
fe3f566c 119 int compress_type,
c8b97818
CM
120 struct page **compressed_pages)
121{
122 struct btrfs_key key;
123 struct btrfs_path *path;
124 struct extent_buffer *leaf;
125 struct page *page = NULL;
126 char *kaddr;
127 unsigned long ptr;
128 struct btrfs_file_extent_item *ei;
129 int err = 0;
130 int ret;
131 size_t cur_size = size;
132 size_t datasize;
133 unsigned long offset;
c8b97818 134
fe3f566c 135 if (compressed_size && compressed_pages)
c8b97818 136 cur_size = compressed_size;
c8b97818 137
d397712b
CM
138 path = btrfs_alloc_path();
139 if (!path)
c8b97818
CM
140 return -ENOMEM;
141
b9473439 142 path->leave_spinning = 1;
c8b97818 143
33345d01 144 key.objectid = btrfs_ino(inode);
c8b97818
CM
145 key.offset = start;
146 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
147 datasize = btrfs_file_extent_calc_inline_size(cur_size);
148
149 inode_add_bytes(inode, size);
150 ret = btrfs_insert_empty_item(trans, root, path, &key,
151 datasize);
c8b97818
CM
152 if (ret) {
153 err = ret;
c8b97818
CM
154 goto fail;
155 }
156 leaf = path->nodes[0];
157 ei = btrfs_item_ptr(leaf, path->slots[0],
158 struct btrfs_file_extent_item);
159 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
160 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
161 btrfs_set_file_extent_encryption(leaf, ei, 0);
162 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
163 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
164 ptr = btrfs_file_extent_inline_start(ei);
165
261507a0 166 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
167 struct page *cpage;
168 int i = 0;
d397712b 169 while (compressed_size > 0) {
c8b97818 170 cpage = compressed_pages[i];
5b050f04 171 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
172 PAGE_CACHE_SIZE);
173
7ac687d9 174 kaddr = kmap_atomic(cpage);
c8b97818 175 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 176 kunmap_atomic(kaddr);
c8b97818
CM
177
178 i++;
179 ptr += cur_size;
180 compressed_size -= cur_size;
181 }
182 btrfs_set_file_extent_compression(leaf, ei,
261507a0 183 compress_type);
c8b97818
CM
184 } else {
185 page = find_get_page(inode->i_mapping,
186 start >> PAGE_CACHE_SHIFT);
187 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 188 kaddr = kmap_atomic(page);
c8b97818
CM
189 offset = start & (PAGE_CACHE_SIZE - 1);
190 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 191 kunmap_atomic(kaddr);
c8b97818
CM
192 page_cache_release(page);
193 }
194 btrfs_mark_buffer_dirty(leaf);
195 btrfs_free_path(path);
196
c2167754
YZ
197 /*
198 * we're an inline extent, so nobody can
199 * extend the file past i_size without locking
200 * a page we already have locked.
201 *
202 * We must do any isize and inode updates
203 * before we unlock the pages. Otherwise we
204 * could end up racing with unlink.
205 */
c8b97818 206 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 207 ret = btrfs_update_inode(trans, root, inode);
c2167754 208
79787eaa 209 return ret;
c8b97818
CM
210fail:
211 btrfs_free_path(path);
212 return err;
213}
214
215
216/*
217 * conditionally insert an inline extent into the file. This
218 * does the checks required to make sure the data is small enough
219 * to fit as an inline extent.
220 */
7f366cfe 221static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
222 struct btrfs_root *root,
223 struct inode *inode, u64 start, u64 end,
fe3f566c 224 size_t compressed_size, int compress_type,
c8b97818
CM
225 struct page **compressed_pages)
226{
227 u64 isize = i_size_read(inode);
228 u64 actual_end = min(end + 1, isize);
229 u64 inline_len = actual_end - start;
230 u64 aligned_end = (end + root->sectorsize - 1) &
231 ~((u64)root->sectorsize - 1);
c8b97818
CM
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
2671485d 248 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
249 if (ret)
250 return ret;
c8b97818
CM
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
2adcac1a 257 if (ret && ret != -ENOSPC) {
79787eaa
JM
258 btrfs_abort_transaction(trans, root, ret);
259 return ret;
2adcac1a
JB
260 } else if (ret == -ENOSPC) {
261 return 1;
79787eaa 262 }
2adcac1a 263
0ca1f7ce 264 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 265 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
266 return 0;
267}
268
771ed689
CM
269struct async_extent {
270 u64 start;
271 u64 ram_size;
272 u64 compressed_size;
273 struct page **pages;
274 unsigned long nr_pages;
261507a0 275 int compress_type;
771ed689
CM
276 struct list_head list;
277};
278
279struct async_cow {
280 struct inode *inode;
281 struct btrfs_root *root;
282 struct page *locked_page;
283 u64 start;
284 u64 end;
285 struct list_head extents;
286 struct btrfs_work work;
287};
288
289static noinline int add_async_extent(struct async_cow *cow,
290 u64 start, u64 ram_size,
291 u64 compressed_size,
292 struct page **pages,
261507a0
LZ
293 unsigned long nr_pages,
294 int compress_type)
771ed689
CM
295{
296 struct async_extent *async_extent;
297
298 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 299 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
300 async_extent->start = start;
301 async_extent->ram_size = ram_size;
302 async_extent->compressed_size = compressed_size;
303 async_extent->pages = pages;
304 async_extent->nr_pages = nr_pages;
261507a0 305 async_extent->compress_type = compress_type;
771ed689
CM
306 list_add_tail(&async_extent->list, &cow->extents);
307 return 0;
308}
309
d352ac68 310/*
771ed689
CM
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
c8b97818 314 *
771ed689
CM
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
c8b97818 320 *
771ed689
CM
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
324 * are written in the same order that the flusher thread sent them
325 * down.
d352ac68 326 */
771ed689
CM
327static noinline int compress_file_range(struct inode *inode,
328 struct page *locked_page,
329 u64 start, u64 end,
330 struct async_cow *async_cow,
331 int *num_added)
b888db2b
CM
332{
333 struct btrfs_root *root = BTRFS_I(inode)->root;
334 struct btrfs_trans_handle *trans;
db94535d 335 u64 num_bytes;
db94535d 336 u64 blocksize = root->sectorsize;
c8b97818 337 u64 actual_end;
42dc7bab 338 u64 isize = i_size_read(inode);
e6dcd2dc 339 int ret = 0;
c8b97818
CM
340 struct page **pages = NULL;
341 unsigned long nr_pages;
342 unsigned long nr_pages_ret = 0;
343 unsigned long total_compressed = 0;
344 unsigned long total_in = 0;
345 unsigned long max_compressed = 128 * 1024;
771ed689 346 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
347 int i;
348 int will_compress;
261507a0 349 int compress_type = root->fs_info->compress_type;
b888db2b 350
4cb13e5d
LB
351 /* if this is a small write inside eof, kick off a defrag */
352 if ((end - start + 1) < 16 * 1024 &&
353 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
354 btrfs_add_inode_defrag(NULL, inode);
355
42dc7bab 356 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
357again:
358 will_compress = 0;
359 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
360 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 361
f03d9301
CM
362 /*
363 * we don't want to send crud past the end of i_size through
364 * compression, that's just a waste of CPU time. So, if the
365 * end of the file is before the start of our current
366 * requested range of bytes, we bail out to the uncompressed
367 * cleanup code that can deal with all of this.
368 *
369 * It isn't really the fastest way to fix things, but this is a
370 * very uncommon corner.
371 */
372 if (actual_end <= start)
373 goto cleanup_and_bail_uncompressed;
374
c8b97818
CM
375 total_compressed = actual_end - start;
376
377 /* we want to make sure that amount of ram required to uncompress
378 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
379 * of a compressed extent to 128k. This is a crucial number
380 * because it also controls how easily we can spread reads across
381 * cpus for decompression.
382 *
383 * We also want to make sure the amount of IO required to do
384 * a random read is reasonably small, so we limit the size of
385 * a compressed extent to 128k.
c8b97818
CM
386 */
387 total_compressed = min(total_compressed, max_uncompressed);
db94535d 388 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 389 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
390 total_in = 0;
391 ret = 0;
db94535d 392
771ed689
CM
393 /*
394 * we do compression for mount -o compress and when the
395 * inode has not been flagged as nocompress. This flag can
396 * change at any time if we discover bad compression ratios.
c8b97818 397 */
6cbff00f 398 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 399 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
400 (BTRFS_I(inode)->force_compress) ||
401 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 402 WARN_ON(pages);
cfbc246e 403 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
404 if (!pages) {
405 /* just bail out to the uncompressed code */
406 goto cont;
407 }
c8b97818 408
261507a0
LZ
409 if (BTRFS_I(inode)->force_compress)
410 compress_type = BTRFS_I(inode)->force_compress;
411
412 ret = btrfs_compress_pages(compress_type,
413 inode->i_mapping, start,
414 total_compressed, pages,
415 nr_pages, &nr_pages_ret,
416 &total_in,
417 &total_compressed,
418 max_compressed);
c8b97818
CM
419
420 if (!ret) {
421 unsigned long offset = total_compressed &
422 (PAGE_CACHE_SIZE - 1);
423 struct page *page = pages[nr_pages_ret - 1];
424 char *kaddr;
425
426 /* zero the tail end of the last page, we might be
427 * sending it down to disk
428 */
429 if (offset) {
7ac687d9 430 kaddr = kmap_atomic(page);
c8b97818
CM
431 memset(kaddr + offset, 0,
432 PAGE_CACHE_SIZE - offset);
7ac687d9 433 kunmap_atomic(kaddr);
c8b97818
CM
434 }
435 will_compress = 1;
436 }
437 }
560f7d75 438cont:
c8b97818 439 if (start == 0) {
7a7eaa40 440 trans = btrfs_join_transaction(root);
79787eaa
JM
441 if (IS_ERR(trans)) {
442 ret = PTR_ERR(trans);
443 trans = NULL;
444 goto cleanup_and_out;
445 }
0ca1f7ce 446 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 447
c8b97818 448 /* lets try to make an inline extent */
771ed689 449 if (ret || total_in < (actual_end - start)) {
c8b97818 450 /* we didn't compress the entire range, try
771ed689 451 * to make an uncompressed inline extent.
c8b97818
CM
452 */
453 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 454 start, end, 0, 0, NULL);
c8b97818 455 } else {
771ed689 456 /* try making a compressed inline extent */
c8b97818
CM
457 ret = cow_file_range_inline(trans, root, inode,
458 start, end,
fe3f566c
LZ
459 total_compressed,
460 compress_type, pages);
c8b97818 461 }
79787eaa 462 if (ret <= 0) {
771ed689 463 /*
79787eaa
JM
464 * inline extent creation worked or returned error,
465 * we don't need to create any more async work items.
466 * Unlock and free up our temp pages.
771ed689 467 */
c8b97818 468 extent_clear_unlock_delalloc(inode,
a791e35e
CM
469 &BTRFS_I(inode)->io_tree,
470 start, end, NULL,
471 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 472 EXTENT_CLEAR_DELALLOC |
a791e35e 473 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
474
475 btrfs_end_transaction(trans, root);
c8b97818
CM
476 goto free_pages_out;
477 }
c2167754 478 btrfs_end_transaction(trans, root);
c8b97818
CM
479 }
480
481 if (will_compress) {
482 /*
483 * we aren't doing an inline extent round the compressed size
484 * up to a block size boundary so the allocator does sane
485 * things
486 */
487 total_compressed = (total_compressed + blocksize - 1) &
488 ~(blocksize - 1);
489
490 /*
491 * one last check to make sure the compression is really a
492 * win, compare the page count read with the blocks on disk
493 */
494 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
495 ~(PAGE_CACHE_SIZE - 1);
496 if (total_compressed >= total_in) {
497 will_compress = 0;
498 } else {
c8b97818
CM
499 num_bytes = total_in;
500 }
501 }
502 if (!will_compress && pages) {
503 /*
504 * the compression code ran but failed to make things smaller,
505 * free any pages it allocated and our page pointer array
506 */
507 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 508 WARN_ON(pages[i]->mapping);
c8b97818
CM
509 page_cache_release(pages[i]);
510 }
511 kfree(pages);
512 pages = NULL;
513 total_compressed = 0;
514 nr_pages_ret = 0;
515
516 /* flag the file so we don't compress in the future */
1e701a32
CM
517 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
518 !(BTRFS_I(inode)->force_compress)) {
a555f810 519 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 520 }
c8b97818 521 }
771ed689
CM
522 if (will_compress) {
523 *num_added += 1;
c8b97818 524
771ed689
CM
525 /* the async work queues will take care of doing actual
526 * allocation on disk for these compressed pages,
527 * and will submit them to the elevator.
528 */
529 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
530 total_compressed, pages, nr_pages_ret,
531 compress_type);
179e29e4 532
24ae6365 533 if (start + num_bytes < end) {
771ed689
CM
534 start += num_bytes;
535 pages = NULL;
536 cond_resched();
537 goto again;
538 }
539 } else {
f03d9301 540cleanup_and_bail_uncompressed:
771ed689
CM
541 /*
542 * No compression, but we still need to write the pages in
543 * the file we've been given so far. redirty the locked
544 * page if it corresponds to our extent and set things up
545 * for the async work queue to run cow_file_range to do
546 * the normal delalloc dance
547 */
548 if (page_offset(locked_page) >= start &&
549 page_offset(locked_page) <= end) {
550 __set_page_dirty_nobuffers(locked_page);
551 /* unlocked later on in the async handlers */
552 }
261507a0
LZ
553 add_async_extent(async_cow, start, end - start + 1,
554 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
555 *num_added += 1;
556 }
3b951516 557
771ed689 558out:
79787eaa 559 return ret;
771ed689
CM
560
561free_pages_out:
562 for (i = 0; i < nr_pages_ret; i++) {
563 WARN_ON(pages[i]->mapping);
564 page_cache_release(pages[i]);
565 }
d397712b 566 kfree(pages);
771ed689
CM
567
568 goto out;
79787eaa
JM
569
570cleanup_and_out:
571 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
572 start, end, NULL,
573 EXTENT_CLEAR_UNLOCK_PAGE |
574 EXTENT_CLEAR_DIRTY |
575 EXTENT_CLEAR_DELALLOC |
576 EXTENT_SET_WRITEBACK |
577 EXTENT_END_WRITEBACK);
578 if (!trans || IS_ERR(trans))
579 btrfs_error(root->fs_info, ret, "Failed to join transaction");
580 else
581 btrfs_abort_transaction(trans, root, ret);
582 goto free_pages_out;
771ed689
CM
583}
584
585/*
586 * phase two of compressed writeback. This is the ordered portion
587 * of the code, which only gets called in the order the work was
588 * queued. We walk all the async extents created by compress_file_range
589 * and send them down to the disk.
590 */
591static noinline int submit_compressed_extents(struct inode *inode,
592 struct async_cow *async_cow)
593{
594 struct async_extent *async_extent;
595 u64 alloc_hint = 0;
596 struct btrfs_trans_handle *trans;
597 struct btrfs_key ins;
598 struct extent_map *em;
599 struct btrfs_root *root = BTRFS_I(inode)->root;
600 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
601 struct extent_io_tree *io_tree;
f5a84ee3 602 int ret = 0;
771ed689
CM
603
604 if (list_empty(&async_cow->extents))
605 return 0;
606
771ed689 607
d397712b 608 while (!list_empty(&async_cow->extents)) {
771ed689
CM
609 async_extent = list_entry(async_cow->extents.next,
610 struct async_extent, list);
611 list_del(&async_extent->list);
c8b97818 612
771ed689
CM
613 io_tree = &BTRFS_I(inode)->io_tree;
614
f5a84ee3 615retry:
771ed689
CM
616 /* did the compression code fall back to uncompressed IO? */
617 if (!async_extent->pages) {
618 int page_started = 0;
619 unsigned long nr_written = 0;
620
621 lock_extent(io_tree, async_extent->start,
2ac55d41 622 async_extent->start +
d0082371 623 async_extent->ram_size - 1);
771ed689
CM
624
625 /* allocate blocks */
f5a84ee3
JB
626 ret = cow_file_range(inode, async_cow->locked_page,
627 async_extent->start,
628 async_extent->start +
629 async_extent->ram_size - 1,
630 &page_started, &nr_written, 0);
771ed689 631
79787eaa
JM
632 /* JDM XXX */
633
771ed689
CM
634 /*
635 * if page_started, cow_file_range inserted an
636 * inline extent and took care of all the unlocking
637 * and IO for us. Otherwise, we need to submit
638 * all those pages down to the drive.
639 */
f5a84ee3 640 if (!page_started && !ret)
771ed689
CM
641 extent_write_locked_range(io_tree,
642 inode, async_extent->start,
d397712b 643 async_extent->start +
771ed689
CM
644 async_extent->ram_size - 1,
645 btrfs_get_extent,
646 WB_SYNC_ALL);
647 kfree(async_extent);
648 cond_resched();
649 continue;
650 }
651
652 lock_extent(io_tree, async_extent->start,
d0082371 653 async_extent->start + async_extent->ram_size - 1);
771ed689 654
7a7eaa40 655 trans = btrfs_join_transaction(root);
79787eaa
JM
656 if (IS_ERR(trans)) {
657 ret = PTR_ERR(trans);
658 } else {
659 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
660 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
661 async_extent->compressed_size,
662 async_extent->compressed_size,
81c9ad23 663 0, alloc_hint, &ins, 1);
962197ba 664 if (ret && ret != -ENOSPC)
79787eaa
JM
665 btrfs_abort_transaction(trans, root, ret);
666 btrfs_end_transaction(trans, root);
667 }
c2167754 668
f5a84ee3
JB
669 if (ret) {
670 int i;
671 for (i = 0; i < async_extent->nr_pages; i++) {
672 WARN_ON(async_extent->pages[i]->mapping);
673 page_cache_release(async_extent->pages[i]);
674 }
675 kfree(async_extent->pages);
676 async_extent->nr_pages = 0;
677 async_extent->pages = NULL;
678 unlock_extent(io_tree, async_extent->start,
679 async_extent->start +
d0082371 680 async_extent->ram_size - 1);
79787eaa
JM
681 if (ret == -ENOSPC)
682 goto retry;
683 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
684 }
685
c2167754
YZ
686 /*
687 * here we're doing allocation and writeback of the
688 * compressed pages
689 */
690 btrfs_drop_extent_cache(inode, async_extent->start,
691 async_extent->start +
692 async_extent->ram_size - 1, 0);
693
172ddd60 694 em = alloc_extent_map();
79787eaa 695 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
696 em->start = async_extent->start;
697 em->len = async_extent->ram_size;
445a6944 698 em->orig_start = em->start;
c8b97818 699
771ed689
CM
700 em->block_start = ins.objectid;
701 em->block_len = ins.offset;
702 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 703 em->compress_type = async_extent->compress_type;
771ed689
CM
704 set_bit(EXTENT_FLAG_PINNED, &em->flags);
705 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
706
d397712b 707 while (1) {
890871be 708 write_lock(&em_tree->lock);
771ed689 709 ret = add_extent_mapping(em_tree, em);
890871be 710 write_unlock(&em_tree->lock);
771ed689
CM
711 if (ret != -EEXIST) {
712 free_extent_map(em);
713 break;
714 }
715 btrfs_drop_extent_cache(inode, async_extent->start,
716 async_extent->start +
717 async_extent->ram_size - 1, 0);
718 }
719
261507a0
LZ
720 ret = btrfs_add_ordered_extent_compress(inode,
721 async_extent->start,
722 ins.objectid,
723 async_extent->ram_size,
724 ins.offset,
725 BTRFS_ORDERED_COMPRESSED,
726 async_extent->compress_type);
79787eaa 727 BUG_ON(ret); /* -ENOMEM */
771ed689 728
771ed689
CM
729 /*
730 * clear dirty, set writeback and unlock the pages.
731 */
732 extent_clear_unlock_delalloc(inode,
a791e35e
CM
733 &BTRFS_I(inode)->io_tree,
734 async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1,
737 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
738 EXTENT_CLEAR_UNLOCK |
a3429ab7 739 EXTENT_CLEAR_DELALLOC |
a791e35e 740 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
741
742 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
743 async_extent->start,
744 async_extent->ram_size,
745 ins.objectid,
746 ins.offset, async_extent->pages,
747 async_extent->nr_pages);
771ed689 748
79787eaa 749 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
750 alloc_hint = ins.objectid + ins.offset;
751 kfree(async_extent);
752 cond_resched();
753 }
79787eaa
JM
754 ret = 0;
755out:
756 return ret;
757out_free:
758 kfree(async_extent);
759 goto out;
771ed689
CM
760}
761
4b46fce2
JB
762static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
763 u64 num_bytes)
764{
765 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
766 struct extent_map *em;
767 u64 alloc_hint = 0;
768
769 read_lock(&em_tree->lock);
770 em = search_extent_mapping(em_tree, start, num_bytes);
771 if (em) {
772 /*
773 * if block start isn't an actual block number then find the
774 * first block in this inode and use that as a hint. If that
775 * block is also bogus then just don't worry about it.
776 */
777 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
778 free_extent_map(em);
779 em = search_extent_mapping(em_tree, 0, 0);
780 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
781 alloc_hint = em->block_start;
782 if (em)
783 free_extent_map(em);
784 } else {
785 alloc_hint = em->block_start;
786 free_extent_map(em);
787 }
788 }
789 read_unlock(&em_tree->lock);
790
791 return alloc_hint;
792}
793
771ed689
CM
794/*
795 * when extent_io.c finds a delayed allocation range in the file,
796 * the call backs end up in this code. The basic idea is to
797 * allocate extents on disk for the range, and create ordered data structs
798 * in ram to track those extents.
799 *
800 * locked_page is the page that writepage had locked already. We use
801 * it to make sure we don't do extra locks or unlocks.
802 *
803 * *page_started is set to one if we unlock locked_page and do everything
804 * required to start IO on it. It may be clean and already done with
805 * IO when we return.
806 */
b7d5b0a8
MX
807static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
808 struct inode *inode,
809 struct btrfs_root *root,
810 struct page *locked_page,
811 u64 start, u64 end, int *page_started,
812 unsigned long *nr_written,
813 int unlock)
771ed689 814{
771ed689
CM
815 u64 alloc_hint = 0;
816 u64 num_bytes;
817 unsigned long ram_size;
818 u64 disk_num_bytes;
819 u64 cur_alloc_size;
820 u64 blocksize = root->sectorsize;
771ed689
CM
821 struct btrfs_key ins;
822 struct extent_map *em;
823 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
824 int ret = 0;
825
83eea1f1 826 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 827
771ed689
CM
828 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
829 num_bytes = max(blocksize, num_bytes);
830 disk_num_bytes = num_bytes;
771ed689 831
4cb5300b 832 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
833 if (num_bytes < 64 * 1024 &&
834 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
835 btrfs_add_inode_defrag(trans, inode);
836
771ed689
CM
837 if (start == 0) {
838 /* lets try to make an inline extent */
839 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 840 start, end, 0, 0, NULL);
771ed689
CM
841 if (ret == 0) {
842 extent_clear_unlock_delalloc(inode,
a791e35e
CM
843 &BTRFS_I(inode)->io_tree,
844 start, end, NULL,
845 EXTENT_CLEAR_UNLOCK_PAGE |
846 EXTENT_CLEAR_UNLOCK |
847 EXTENT_CLEAR_DELALLOC |
848 EXTENT_CLEAR_DIRTY |
849 EXTENT_SET_WRITEBACK |
850 EXTENT_END_WRITEBACK);
c2167754 851
771ed689
CM
852 *nr_written = *nr_written +
853 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
854 *page_started = 1;
771ed689 855 goto out;
79787eaa
JM
856 } else if (ret < 0) {
857 btrfs_abort_transaction(trans, root, ret);
858 goto out_unlock;
771ed689
CM
859 }
860 }
861
862 BUG_ON(disk_num_bytes >
6c41761f 863 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 864
4b46fce2 865 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
866 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
867
d397712b 868 while (disk_num_bytes > 0) {
a791e35e
CM
869 unsigned long op;
870
287a0ab9 871 cur_alloc_size = disk_num_bytes;
e6dcd2dc 872 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 873 root->sectorsize, 0, alloc_hint,
81c9ad23 874 &ins, 1);
79787eaa
JM
875 if (ret < 0) {
876 btrfs_abort_transaction(trans, root, ret);
877 goto out_unlock;
878 }
d397712b 879
172ddd60 880 em = alloc_extent_map();
79787eaa 881 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 882 em->start = start;
445a6944 883 em->orig_start = em->start;
771ed689
CM
884 ram_size = ins.offset;
885 em->len = ins.offset;
c8b97818 886
e6dcd2dc 887 em->block_start = ins.objectid;
c8b97818 888 em->block_len = ins.offset;
e6dcd2dc 889 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 890 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 891
d397712b 892 while (1) {
890871be 893 write_lock(&em_tree->lock);
e6dcd2dc 894 ret = add_extent_mapping(em_tree, em);
890871be 895 write_unlock(&em_tree->lock);
e6dcd2dc
CM
896 if (ret != -EEXIST) {
897 free_extent_map(em);
898 break;
899 }
900 btrfs_drop_extent_cache(inode, start,
c8b97818 901 start + ram_size - 1, 0);
e6dcd2dc
CM
902 }
903
98d20f67 904 cur_alloc_size = ins.offset;
e6dcd2dc 905 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 906 ram_size, cur_alloc_size, 0);
79787eaa 907 BUG_ON(ret); /* -ENOMEM */
c8b97818 908
17d217fe
YZ
909 if (root->root_key.objectid ==
910 BTRFS_DATA_RELOC_TREE_OBJECTID) {
911 ret = btrfs_reloc_clone_csums(inode, start,
912 cur_alloc_size);
79787eaa
JM
913 if (ret) {
914 btrfs_abort_transaction(trans, root, ret);
915 goto out_unlock;
916 }
17d217fe
YZ
917 }
918
d397712b 919 if (disk_num_bytes < cur_alloc_size)
3b951516 920 break;
d397712b 921
c8b97818
CM
922 /* we're not doing compressed IO, don't unlock the first
923 * page (which the caller expects to stay locked), don't
924 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
925 *
926 * Do set the Private2 bit so we know this page was properly
927 * setup for writepage
c8b97818 928 */
a791e35e
CM
929 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
930 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
931 EXTENT_SET_PRIVATE2;
932
c8b97818
CM
933 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
934 start, start + ram_size - 1,
a791e35e 935 locked_page, op);
c8b97818 936 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
937 num_bytes -= cur_alloc_size;
938 alloc_hint = ins.objectid + ins.offset;
939 start += cur_alloc_size;
b888db2b 940 }
79787eaa 941out:
be20aa9d 942 return ret;
b7d5b0a8 943
79787eaa
JM
944out_unlock:
945 extent_clear_unlock_delalloc(inode,
946 &BTRFS_I(inode)->io_tree,
beb42dd7 947 start, end, locked_page,
79787eaa
JM
948 EXTENT_CLEAR_UNLOCK_PAGE |
949 EXTENT_CLEAR_UNLOCK |
950 EXTENT_CLEAR_DELALLOC |
951 EXTENT_CLEAR_DIRTY |
952 EXTENT_SET_WRITEBACK |
953 EXTENT_END_WRITEBACK);
954
955 goto out;
771ed689 956}
c8b97818 957
b7d5b0a8
MX
958static noinline int cow_file_range(struct inode *inode,
959 struct page *locked_page,
960 u64 start, u64 end, int *page_started,
961 unsigned long *nr_written,
962 int unlock)
963{
964 struct btrfs_trans_handle *trans;
965 struct btrfs_root *root = BTRFS_I(inode)->root;
966 int ret;
967
968 trans = btrfs_join_transaction(root);
969 if (IS_ERR(trans)) {
970 extent_clear_unlock_delalloc(inode,
971 &BTRFS_I(inode)->io_tree,
972 start, end, locked_page,
973 EXTENT_CLEAR_UNLOCK_PAGE |
974 EXTENT_CLEAR_UNLOCK |
975 EXTENT_CLEAR_DELALLOC |
976 EXTENT_CLEAR_DIRTY |
977 EXTENT_SET_WRITEBACK |
978 EXTENT_END_WRITEBACK);
979 return PTR_ERR(trans);
980 }
981 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
982
983 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
984 page_started, nr_written, unlock);
985
986 btrfs_end_transaction(trans, root);
987
988 return ret;
989}
990
771ed689
CM
991/*
992 * work queue call back to started compression on a file and pages
993 */
994static noinline void async_cow_start(struct btrfs_work *work)
995{
996 struct async_cow *async_cow;
997 int num_added = 0;
998 async_cow = container_of(work, struct async_cow, work);
999
1000 compress_file_range(async_cow->inode, async_cow->locked_page,
1001 async_cow->start, async_cow->end, async_cow,
1002 &num_added);
8180ef88 1003 if (num_added == 0) {
cb77fcd8 1004 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1005 async_cow->inode = NULL;
8180ef88 1006 }
771ed689
CM
1007}
1008
1009/*
1010 * work queue call back to submit previously compressed pages
1011 */
1012static noinline void async_cow_submit(struct btrfs_work *work)
1013{
1014 struct async_cow *async_cow;
1015 struct btrfs_root *root;
1016 unsigned long nr_pages;
1017
1018 async_cow = container_of(work, struct async_cow, work);
1019
1020 root = async_cow->root;
1021 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1022 PAGE_CACHE_SHIFT;
1023
66657b31 1024 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1025 5 * 1024 * 1024 &&
771ed689
CM
1026 waitqueue_active(&root->fs_info->async_submit_wait))
1027 wake_up(&root->fs_info->async_submit_wait);
1028
d397712b 1029 if (async_cow->inode)
771ed689 1030 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1031}
c8b97818 1032
771ed689
CM
1033static noinline void async_cow_free(struct btrfs_work *work)
1034{
1035 struct async_cow *async_cow;
1036 async_cow = container_of(work, struct async_cow, work);
8180ef88 1037 if (async_cow->inode)
cb77fcd8 1038 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1039 kfree(async_cow);
1040}
1041
1042static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1043 u64 start, u64 end, int *page_started,
1044 unsigned long *nr_written)
1045{
1046 struct async_cow *async_cow;
1047 struct btrfs_root *root = BTRFS_I(inode)->root;
1048 unsigned long nr_pages;
1049 u64 cur_end;
287082b0 1050 int limit = 10 * 1024 * 1024;
771ed689 1051
a3429ab7
CM
1052 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1053 1, 0, NULL, GFP_NOFS);
d397712b 1054 while (start < end) {
771ed689 1055 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1056 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1057 async_cow->inode = igrab(inode);
771ed689
CM
1058 async_cow->root = root;
1059 async_cow->locked_page = locked_page;
1060 async_cow->start = start;
1061
6cbff00f 1062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1063 cur_end = end;
1064 else
1065 cur_end = min(end, start + 512 * 1024 - 1);
1066
1067 async_cow->end = cur_end;
1068 INIT_LIST_HEAD(&async_cow->extents);
1069
1070 async_cow->work.func = async_cow_start;
1071 async_cow->work.ordered_func = async_cow_submit;
1072 async_cow->work.ordered_free = async_cow_free;
1073 async_cow->work.flags = 0;
1074
771ed689
CM
1075 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1076 PAGE_CACHE_SHIFT;
1077 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1078
1079 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1080 &async_cow->work);
1081
1082 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1083 wait_event(root->fs_info->async_submit_wait,
1084 (atomic_read(&root->fs_info->async_delalloc_pages) <
1085 limit));
1086 }
1087
d397712b 1088 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1089 atomic_read(&root->fs_info->async_delalloc_pages)) {
1090 wait_event(root->fs_info->async_submit_wait,
1091 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1092 0));
1093 }
1094
1095 *nr_written += nr_pages;
1096 start = cur_end + 1;
1097 }
1098 *page_started = 1;
1099 return 0;
be20aa9d
CM
1100}
1101
d397712b 1102static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1103 u64 bytenr, u64 num_bytes)
1104{
1105 int ret;
1106 struct btrfs_ordered_sum *sums;
1107 LIST_HEAD(list);
1108
07d400a6 1109 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1110 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1111 if (ret == 0 && list_empty(&list))
1112 return 0;
1113
1114 while (!list_empty(&list)) {
1115 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1116 list_del(&sums->list);
1117 kfree(sums);
1118 }
1119 return 1;
1120}
1121
d352ac68
CM
1122/*
1123 * when nowcow writeback call back. This checks for snapshots or COW copies
1124 * of the extents that exist in the file, and COWs the file as required.
1125 *
1126 * If no cow copies or snapshots exist, we write directly to the existing
1127 * blocks on disk
1128 */
7f366cfe
CM
1129static noinline int run_delalloc_nocow(struct inode *inode,
1130 struct page *locked_page,
771ed689
CM
1131 u64 start, u64 end, int *page_started, int force,
1132 unsigned long *nr_written)
be20aa9d 1133{
be20aa9d 1134 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1135 struct btrfs_trans_handle *trans;
be20aa9d 1136 struct extent_buffer *leaf;
be20aa9d 1137 struct btrfs_path *path;
80ff3856 1138 struct btrfs_file_extent_item *fi;
be20aa9d 1139 struct btrfs_key found_key;
80ff3856
YZ
1140 u64 cow_start;
1141 u64 cur_offset;
1142 u64 extent_end;
5d4f98a2 1143 u64 extent_offset;
80ff3856
YZ
1144 u64 disk_bytenr;
1145 u64 num_bytes;
1146 int extent_type;
79787eaa 1147 int ret, err;
d899e052 1148 int type;
80ff3856
YZ
1149 int nocow;
1150 int check_prev = 1;
82d5902d 1151 bool nolock;
33345d01 1152 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1153
1154 path = btrfs_alloc_path();
17ca04af
JB
1155 if (!path) {
1156 extent_clear_unlock_delalloc(inode,
1157 &BTRFS_I(inode)->io_tree,
1158 start, end, locked_page,
1159 EXTENT_CLEAR_UNLOCK_PAGE |
1160 EXTENT_CLEAR_UNLOCK |
1161 EXTENT_CLEAR_DELALLOC |
1162 EXTENT_CLEAR_DIRTY |
1163 EXTENT_SET_WRITEBACK |
1164 EXTENT_END_WRITEBACK);
d8926bb3 1165 return -ENOMEM;
17ca04af 1166 }
82d5902d 1167
83eea1f1 1168 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1169
1170 if (nolock)
7a7eaa40 1171 trans = btrfs_join_transaction_nolock(root);
82d5902d 1172 else
7a7eaa40 1173 trans = btrfs_join_transaction(root);
ff5714cc 1174
79787eaa 1175 if (IS_ERR(trans)) {
17ca04af
JB
1176 extent_clear_unlock_delalloc(inode,
1177 &BTRFS_I(inode)->io_tree,
1178 start, end, locked_page,
1179 EXTENT_CLEAR_UNLOCK_PAGE |
1180 EXTENT_CLEAR_UNLOCK |
1181 EXTENT_CLEAR_DELALLOC |
1182 EXTENT_CLEAR_DIRTY |
1183 EXTENT_SET_WRITEBACK |
1184 EXTENT_END_WRITEBACK);
79787eaa
JM
1185 btrfs_free_path(path);
1186 return PTR_ERR(trans);
1187 }
1188
74b21075 1189 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1190
80ff3856
YZ
1191 cow_start = (u64)-1;
1192 cur_offset = start;
1193 while (1) {
33345d01 1194 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1195 cur_offset, 0);
79787eaa
JM
1196 if (ret < 0) {
1197 btrfs_abort_transaction(trans, root, ret);
1198 goto error;
1199 }
80ff3856
YZ
1200 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1201 leaf = path->nodes[0];
1202 btrfs_item_key_to_cpu(leaf, &found_key,
1203 path->slots[0] - 1);
33345d01 1204 if (found_key.objectid == ino &&
80ff3856
YZ
1205 found_key.type == BTRFS_EXTENT_DATA_KEY)
1206 path->slots[0]--;
1207 }
1208 check_prev = 0;
1209next_slot:
1210 leaf = path->nodes[0];
1211 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1212 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1213 if (ret < 0) {
1214 btrfs_abort_transaction(trans, root, ret);
1215 goto error;
1216 }
80ff3856
YZ
1217 if (ret > 0)
1218 break;
1219 leaf = path->nodes[0];
1220 }
be20aa9d 1221
80ff3856
YZ
1222 nocow = 0;
1223 disk_bytenr = 0;
17d217fe 1224 num_bytes = 0;
80ff3856
YZ
1225 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1226
33345d01 1227 if (found_key.objectid > ino ||
80ff3856
YZ
1228 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1229 found_key.offset > end)
1230 break;
1231
1232 if (found_key.offset > cur_offset) {
1233 extent_end = found_key.offset;
e9061e21 1234 extent_type = 0;
80ff3856
YZ
1235 goto out_check;
1236 }
1237
1238 fi = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_file_extent_item);
1240 extent_type = btrfs_file_extent_type(leaf, fi);
1241
d899e052
YZ
1242 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1243 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1244 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1245 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1246 extent_end = found_key.offset +
1247 btrfs_file_extent_num_bytes(leaf, fi);
1248 if (extent_end <= start) {
1249 path->slots[0]++;
1250 goto next_slot;
1251 }
17d217fe
YZ
1252 if (disk_bytenr == 0)
1253 goto out_check;
80ff3856
YZ
1254 if (btrfs_file_extent_compression(leaf, fi) ||
1255 btrfs_file_extent_encryption(leaf, fi) ||
1256 btrfs_file_extent_other_encoding(leaf, fi))
1257 goto out_check;
d899e052
YZ
1258 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1259 goto out_check;
d2fb3437 1260 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1261 goto out_check;
33345d01 1262 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1263 found_key.offset -
1264 extent_offset, disk_bytenr))
17d217fe 1265 goto out_check;
5d4f98a2 1266 disk_bytenr += extent_offset;
17d217fe
YZ
1267 disk_bytenr += cur_offset - found_key.offset;
1268 num_bytes = min(end + 1, extent_end) - cur_offset;
1269 /*
1270 * force cow if csum exists in the range.
1271 * this ensure that csum for a given extent are
1272 * either valid or do not exist.
1273 */
1274 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1275 goto out_check;
80ff3856
YZ
1276 nocow = 1;
1277 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1278 extent_end = found_key.offset +
1279 btrfs_file_extent_inline_len(leaf, fi);
1280 extent_end = ALIGN(extent_end, root->sectorsize);
1281 } else {
1282 BUG_ON(1);
1283 }
1284out_check:
1285 if (extent_end <= start) {
1286 path->slots[0]++;
1287 goto next_slot;
1288 }
1289 if (!nocow) {
1290 if (cow_start == (u64)-1)
1291 cow_start = cur_offset;
1292 cur_offset = extent_end;
1293 if (cur_offset > end)
1294 break;
1295 path->slots[0]++;
1296 goto next_slot;
7ea394f1
YZ
1297 }
1298
b3b4aa74 1299 btrfs_release_path(path);
80ff3856 1300 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1301 ret = __cow_file_range(trans, inode, root, locked_page,
1302 cow_start, found_key.offset - 1,
1303 page_started, nr_written, 1);
79787eaa
JM
1304 if (ret) {
1305 btrfs_abort_transaction(trans, root, ret);
1306 goto error;
1307 }
80ff3856 1308 cow_start = (u64)-1;
7ea394f1 1309 }
80ff3856 1310
d899e052
YZ
1311 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1312 struct extent_map *em;
1313 struct extent_map_tree *em_tree;
1314 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1315 em = alloc_extent_map();
79787eaa 1316 BUG_ON(!em); /* -ENOMEM */
d899e052 1317 em->start = cur_offset;
445a6944 1318 em->orig_start = em->start;
d899e052
YZ
1319 em->len = num_bytes;
1320 em->block_len = num_bytes;
1321 em->block_start = disk_bytenr;
1322 em->bdev = root->fs_info->fs_devices->latest_bdev;
1323 set_bit(EXTENT_FLAG_PINNED, &em->flags);
4e2f84e6 1324 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
d899e052 1325 while (1) {
890871be 1326 write_lock(&em_tree->lock);
d899e052 1327 ret = add_extent_mapping(em_tree, em);
890871be 1328 write_unlock(&em_tree->lock);
d899e052
YZ
1329 if (ret != -EEXIST) {
1330 free_extent_map(em);
1331 break;
1332 }
1333 btrfs_drop_extent_cache(inode, em->start,
1334 em->start + em->len - 1, 0);
1335 }
1336 type = BTRFS_ORDERED_PREALLOC;
1337 } else {
1338 type = BTRFS_ORDERED_NOCOW;
1339 }
80ff3856
YZ
1340
1341 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1342 num_bytes, num_bytes, type);
79787eaa 1343 BUG_ON(ret); /* -ENOMEM */
771ed689 1344
efa56464
YZ
1345 if (root->root_key.objectid ==
1346 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1347 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1348 num_bytes);
79787eaa
JM
1349 if (ret) {
1350 btrfs_abort_transaction(trans, root, ret);
1351 goto error;
1352 }
efa56464
YZ
1353 }
1354
d899e052 1355 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1356 cur_offset, cur_offset + num_bytes - 1,
1357 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1358 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1359 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1360 cur_offset = extent_end;
1361 if (cur_offset > end)
1362 break;
be20aa9d 1363 }
b3b4aa74 1364 btrfs_release_path(path);
80ff3856 1365
17ca04af 1366 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1367 cow_start = cur_offset;
17ca04af
JB
1368 cur_offset = end;
1369 }
1370
80ff3856 1371 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1372 ret = __cow_file_range(trans, inode, root, locked_page,
1373 cow_start, end,
1374 page_started, nr_written, 1);
79787eaa
JM
1375 if (ret) {
1376 btrfs_abort_transaction(trans, root, ret);
1377 goto error;
1378 }
80ff3856
YZ
1379 }
1380
79787eaa 1381error:
a698d075 1382 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1383 if (!ret)
1384 ret = err;
1385
17ca04af
JB
1386 if (ret && cur_offset < end)
1387 extent_clear_unlock_delalloc(inode,
1388 &BTRFS_I(inode)->io_tree,
1389 cur_offset, end, locked_page,
1390 EXTENT_CLEAR_UNLOCK_PAGE |
1391 EXTENT_CLEAR_UNLOCK |
1392 EXTENT_CLEAR_DELALLOC |
1393 EXTENT_CLEAR_DIRTY |
1394 EXTENT_SET_WRITEBACK |
1395 EXTENT_END_WRITEBACK);
1396
7ea394f1 1397 btrfs_free_path(path);
79787eaa 1398 return ret;
be20aa9d
CM
1399}
1400
d352ac68
CM
1401/*
1402 * extent_io.c call back to do delayed allocation processing
1403 */
c8b97818 1404static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1405 u64 start, u64 end, int *page_started,
1406 unsigned long *nr_written)
be20aa9d 1407{
be20aa9d 1408 int ret;
7f366cfe 1409 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1410
7ddf5a42 1411 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1412 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1413 page_started, 1, nr_written);
7ddf5a42 1414 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1415 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1416 page_started, 0, nr_written);
7ddf5a42
JB
1417 } else if (!btrfs_test_opt(root, COMPRESS) &&
1418 !(BTRFS_I(inode)->force_compress) &&
1419 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1420 ret = cow_file_range(inode, locked_page, start, end,
1421 page_started, nr_written, 1);
7ddf5a42
JB
1422 } else {
1423 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1424 &BTRFS_I(inode)->runtime_flags);
771ed689 1425 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1426 page_started, nr_written);
7ddf5a42 1427 }
b888db2b
CM
1428 return ret;
1429}
1430
1bf85046
JM
1431static void btrfs_split_extent_hook(struct inode *inode,
1432 struct extent_state *orig, u64 split)
9ed74f2d 1433{
0ca1f7ce 1434 /* not delalloc, ignore it */
9ed74f2d 1435 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1436 return;
9ed74f2d 1437
9e0baf60
JB
1438 spin_lock(&BTRFS_I(inode)->lock);
1439 BTRFS_I(inode)->outstanding_extents++;
1440 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1441}
1442
1443/*
1444 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1445 * extents so we can keep track of new extents that are just merged onto old
1446 * extents, such as when we are doing sequential writes, so we can properly
1447 * account for the metadata space we'll need.
1448 */
1bf85046
JM
1449static void btrfs_merge_extent_hook(struct inode *inode,
1450 struct extent_state *new,
1451 struct extent_state *other)
9ed74f2d 1452{
9ed74f2d
JB
1453 /* not delalloc, ignore it */
1454 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1455 return;
9ed74f2d 1456
9e0baf60
JB
1457 spin_lock(&BTRFS_I(inode)->lock);
1458 BTRFS_I(inode)->outstanding_extents--;
1459 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1460}
1461
d352ac68
CM
1462/*
1463 * extent_io.c set_bit_hook, used to track delayed allocation
1464 * bytes in this file, and to maintain the list of inodes that
1465 * have pending delalloc work to be done.
1466 */
1bf85046
JM
1467static void btrfs_set_bit_hook(struct inode *inode,
1468 struct extent_state *state, int *bits)
291d673e 1469{
9ed74f2d 1470
75eff68e
CM
1471 /*
1472 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1473 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1474 * bit, which is only set or cleared with irqs on
1475 */
0ca1f7ce 1476 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1477 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1478 u64 len = state->end + 1 - state->start;
83eea1f1 1479 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1480
9e0baf60 1481 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1482 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1483 } else {
1484 spin_lock(&BTRFS_I(inode)->lock);
1485 BTRFS_I(inode)->outstanding_extents++;
1486 spin_unlock(&BTRFS_I(inode)->lock);
1487 }
287a0ab9 1488
75eff68e 1489 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1490 BTRFS_I(inode)->delalloc_bytes += len;
1491 root->fs_info->delalloc_bytes += len;
0cb59c99 1492 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1493 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1494 &root->fs_info->delalloc_inodes);
1495 }
75eff68e 1496 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1497 }
291d673e
CM
1498}
1499
d352ac68
CM
1500/*
1501 * extent_io.c clear_bit_hook, see set_bit_hook for why
1502 */
1bf85046
JM
1503static void btrfs_clear_bit_hook(struct inode *inode,
1504 struct extent_state *state, int *bits)
291d673e 1505{
75eff68e
CM
1506 /*
1507 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1508 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1509 * bit, which is only set or cleared with irqs on
1510 */
0ca1f7ce 1511 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1512 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1513 u64 len = state->end + 1 - state->start;
83eea1f1 1514 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1515
9e0baf60 1516 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1517 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1518 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1519 spin_lock(&BTRFS_I(inode)->lock);
1520 BTRFS_I(inode)->outstanding_extents--;
1521 spin_unlock(&BTRFS_I(inode)->lock);
1522 }
0ca1f7ce
YZ
1523
1524 if (*bits & EXTENT_DO_ACCOUNTING)
1525 btrfs_delalloc_release_metadata(inode, len);
1526
0cb59c99
JB
1527 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1528 && do_list)
0ca1f7ce 1529 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1530
75eff68e 1531 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1532 root->fs_info->delalloc_bytes -= len;
1533 BTRFS_I(inode)->delalloc_bytes -= len;
1534
0cb59c99 1535 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1536 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1537 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1538 }
75eff68e 1539 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1540 }
291d673e
CM
1541}
1542
d352ac68
CM
1543/*
1544 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1545 * we don't create bios that span stripes or chunks
1546 */
239b14b3 1547int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1548 size_t size, struct bio *bio,
1549 unsigned long bio_flags)
239b14b3
CM
1550{
1551 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1552 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1553 u64 length = 0;
1554 u64 map_length;
239b14b3
CM
1555 int ret;
1556
771ed689
CM
1557 if (bio_flags & EXTENT_BIO_COMPRESSED)
1558 return 0;
1559
f2d8d74d 1560 length = bio->bi_size;
239b14b3 1561 map_length = length;
3ec706c8 1562 ret = btrfs_map_block(root->fs_info, READ, logical,
f188591e 1563 &map_length, NULL, 0);
3ec706c8 1564 /* Will always return 0 with map_multi == NULL */
3444a972 1565 BUG_ON(ret < 0);
d397712b 1566 if (map_length < length + size)
239b14b3 1567 return 1;
3444a972 1568 return 0;
239b14b3
CM
1569}
1570
d352ac68
CM
1571/*
1572 * in order to insert checksums into the metadata in large chunks,
1573 * we wait until bio submission time. All the pages in the bio are
1574 * checksummed and sums are attached onto the ordered extent record.
1575 *
1576 * At IO completion time the cums attached on the ordered extent record
1577 * are inserted into the btree
1578 */
d397712b
CM
1579static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1580 struct bio *bio, int mirror_num,
eaf25d93
CM
1581 unsigned long bio_flags,
1582 u64 bio_offset)
065631f6 1583{
065631f6 1584 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1585 int ret = 0;
e015640f 1586
d20f7043 1587 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1588 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1589 return 0;
1590}
e015640f 1591
4a69a410
CM
1592/*
1593 * in order to insert checksums into the metadata in large chunks,
1594 * we wait until bio submission time. All the pages in the bio are
1595 * checksummed and sums are attached onto the ordered extent record.
1596 *
1597 * At IO completion time the cums attached on the ordered extent record
1598 * are inserted into the btree
1599 */
b2950863 1600static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1601 int mirror_num, unsigned long bio_flags,
1602 u64 bio_offset)
4a69a410
CM
1603{
1604 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1605 int ret;
1606
1607 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1608 if (ret)
1609 bio_endio(bio, ret);
1610 return ret;
44b8bd7e
CM
1611}
1612
d352ac68 1613/*
cad321ad
CM
1614 * extent_io.c submission hook. This does the right thing for csum calculation
1615 * on write, or reading the csums from the tree before a read
d352ac68 1616 */
b2950863 1617static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1618 int mirror_num, unsigned long bio_flags,
1619 u64 bio_offset)
44b8bd7e
CM
1620{
1621 struct btrfs_root *root = BTRFS_I(inode)->root;
1622 int ret = 0;
19b9bdb0 1623 int skip_sum;
0417341e 1624 int metadata = 0;
44b8bd7e 1625
6cbff00f 1626 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1627
83eea1f1 1628 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1629 metadata = 2;
1630
7b6d91da 1631 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1632 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1633 if (ret)
61891923 1634 goto out;
5fd02043 1635
d20f7043 1636 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1637 ret = btrfs_submit_compressed_read(inode, bio,
1638 mirror_num,
1639 bio_flags);
1640 goto out;
c2db1073
TI
1641 } else if (!skip_sum) {
1642 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1643 if (ret)
61891923 1644 goto out;
c2db1073 1645 }
4d1b5fb4 1646 goto mapit;
19b9bdb0 1647 } else if (!skip_sum) {
17d217fe
YZ
1648 /* csum items have already been cloned */
1649 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1650 goto mapit;
19b9bdb0 1651 /* we're doing a write, do the async checksumming */
61891923 1652 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1653 inode, rw, bio, mirror_num,
eaf25d93
CM
1654 bio_flags, bio_offset,
1655 __btrfs_submit_bio_start,
4a69a410 1656 __btrfs_submit_bio_done);
61891923 1657 goto out;
19b9bdb0
CM
1658 }
1659
0b86a832 1660mapit:
61891923
SB
1661 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1662
1663out:
1664 if (ret < 0)
1665 bio_endio(bio, ret);
1666 return ret;
065631f6 1667}
6885f308 1668
d352ac68
CM
1669/*
1670 * given a list of ordered sums record them in the inode. This happens
1671 * at IO completion time based on sums calculated at bio submission time.
1672 */
ba1da2f4 1673static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1674 struct inode *inode, u64 file_offset,
1675 struct list_head *list)
1676{
e6dcd2dc
CM
1677 struct btrfs_ordered_sum *sum;
1678
c6e30871 1679 list_for_each_entry(sum, list, list) {
d20f7043
CM
1680 btrfs_csum_file_blocks(trans,
1681 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1682 }
1683 return 0;
1684}
1685
2ac55d41
JB
1686int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1687 struct extent_state **cached_state)
ea8c2819 1688{
6c1500f2 1689 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1690 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1691 cached_state, GFP_NOFS);
ea8c2819
CM
1692}
1693
d352ac68 1694/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1695struct btrfs_writepage_fixup {
1696 struct page *page;
1697 struct btrfs_work work;
1698};
1699
b2950863 1700static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1701{
1702 struct btrfs_writepage_fixup *fixup;
1703 struct btrfs_ordered_extent *ordered;
2ac55d41 1704 struct extent_state *cached_state = NULL;
247e743c
CM
1705 struct page *page;
1706 struct inode *inode;
1707 u64 page_start;
1708 u64 page_end;
87826df0 1709 int ret;
247e743c
CM
1710
1711 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1712 page = fixup->page;
4a096752 1713again:
247e743c
CM
1714 lock_page(page);
1715 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1716 ClearPageChecked(page);
1717 goto out_page;
1718 }
1719
1720 inode = page->mapping->host;
1721 page_start = page_offset(page);
1722 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1723
2ac55d41 1724 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1725 &cached_state);
4a096752
CM
1726
1727 /* already ordered? We're done */
8b62b72b 1728 if (PagePrivate2(page))
247e743c 1729 goto out;
4a096752
CM
1730
1731 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1732 if (ordered) {
2ac55d41
JB
1733 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1734 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1735 unlock_page(page);
1736 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1737 btrfs_put_ordered_extent(ordered);
4a096752
CM
1738 goto again;
1739 }
247e743c 1740
87826df0
JM
1741 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1742 if (ret) {
1743 mapping_set_error(page->mapping, ret);
1744 end_extent_writepage(page, ret, page_start, page_end);
1745 ClearPageChecked(page);
1746 goto out;
1747 }
1748
2ac55d41 1749 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1750 ClearPageChecked(page);
87826df0 1751 set_page_dirty(page);
247e743c 1752out:
2ac55d41
JB
1753 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1754 &cached_state, GFP_NOFS);
247e743c
CM
1755out_page:
1756 unlock_page(page);
1757 page_cache_release(page);
b897abec 1758 kfree(fixup);
247e743c
CM
1759}
1760
1761/*
1762 * There are a few paths in the higher layers of the kernel that directly
1763 * set the page dirty bit without asking the filesystem if it is a
1764 * good idea. This causes problems because we want to make sure COW
1765 * properly happens and the data=ordered rules are followed.
1766 *
c8b97818 1767 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1768 * hasn't been properly setup for IO. We kick off an async process
1769 * to fix it up. The async helper will wait for ordered extents, set
1770 * the delalloc bit and make it safe to write the page.
1771 */
b2950863 1772static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1773{
1774 struct inode *inode = page->mapping->host;
1775 struct btrfs_writepage_fixup *fixup;
1776 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1777
8b62b72b
CM
1778 /* this page is properly in the ordered list */
1779 if (TestClearPagePrivate2(page))
247e743c
CM
1780 return 0;
1781
1782 if (PageChecked(page))
1783 return -EAGAIN;
1784
1785 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1786 if (!fixup)
1787 return -EAGAIN;
f421950f 1788
247e743c
CM
1789 SetPageChecked(page);
1790 page_cache_get(page);
1791 fixup->work.func = btrfs_writepage_fixup_worker;
1792 fixup->page = page;
1793 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1794 return -EBUSY;
247e743c
CM
1795}
1796
d899e052
YZ
1797static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1798 struct inode *inode, u64 file_pos,
1799 u64 disk_bytenr, u64 disk_num_bytes,
1800 u64 num_bytes, u64 ram_bytes,
1801 u8 compression, u8 encryption,
1802 u16 other_encoding, int extent_type)
1803{
1804 struct btrfs_root *root = BTRFS_I(inode)->root;
1805 struct btrfs_file_extent_item *fi;
1806 struct btrfs_path *path;
1807 struct extent_buffer *leaf;
1808 struct btrfs_key ins;
d899e052
YZ
1809 int ret;
1810
1811 path = btrfs_alloc_path();
d8926bb3
MF
1812 if (!path)
1813 return -ENOMEM;
d899e052 1814
b9473439 1815 path->leave_spinning = 1;
a1ed835e
CM
1816
1817 /*
1818 * we may be replacing one extent in the tree with another.
1819 * The new extent is pinned in the extent map, and we don't want
1820 * to drop it from the cache until it is completely in the btree.
1821 *
1822 * So, tell btrfs_drop_extents to leave this extent in the cache.
1823 * the caller is expected to unpin it and allow it to be merged
1824 * with the others.
1825 */
5dc562c5 1826 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1827 file_pos + num_bytes, 0);
79787eaa
JM
1828 if (ret)
1829 goto out;
d899e052 1830
33345d01 1831 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1832 ins.offset = file_pos;
1833 ins.type = BTRFS_EXTENT_DATA_KEY;
1834 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1835 if (ret)
1836 goto out;
d899e052
YZ
1837 leaf = path->nodes[0];
1838 fi = btrfs_item_ptr(leaf, path->slots[0],
1839 struct btrfs_file_extent_item);
1840 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1841 btrfs_set_file_extent_type(leaf, fi, extent_type);
1842 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1843 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1844 btrfs_set_file_extent_offset(leaf, fi, 0);
1845 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1846 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1847 btrfs_set_file_extent_compression(leaf, fi, compression);
1848 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1849 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1850
d899e052 1851 btrfs_mark_buffer_dirty(leaf);
ce195332 1852 btrfs_release_path(path);
d899e052
YZ
1853
1854 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1855
1856 ins.objectid = disk_bytenr;
1857 ins.offset = disk_num_bytes;
1858 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1859 ret = btrfs_alloc_reserved_file_extent(trans, root,
1860 root->root_key.objectid,
33345d01 1861 btrfs_ino(inode), file_pos, &ins);
79787eaa 1862out:
d899e052 1863 btrfs_free_path(path);
b9473439 1864
79787eaa 1865 return ret;
d899e052
YZ
1866}
1867
5d13a98f
CM
1868/*
1869 * helper function for btrfs_finish_ordered_io, this
1870 * just reads in some of the csum leaves to prime them into ram
1871 * before we start the transaction. It limits the amount of btree
1872 * reads required while inside the transaction.
1873 */
d352ac68
CM
1874/* as ordered data IO finishes, this gets called so we can finish
1875 * an ordered extent if the range of bytes in the file it covers are
1876 * fully written.
1877 */
5fd02043 1878static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 1879{
5fd02043 1880 struct inode *inode = ordered_extent->inode;
e6dcd2dc 1881 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1882 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 1883 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1884 struct extent_state *cached_state = NULL;
261507a0 1885 int compress_type = 0;
e6dcd2dc 1886 int ret;
82d5902d 1887 bool nolock;
e6dcd2dc 1888
83eea1f1 1889 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 1890
5fd02043
JB
1891 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1892 ret = -EIO;
1893 goto out;
1894 }
1895
c2167754 1896 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1897 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
c2167754
YZ
1898 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1899 if (!ret) {
0cb59c99 1900 if (nolock)
7a7eaa40 1901 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1902 else
7a7eaa40 1903 trans = btrfs_join_transaction(root);
d280e5be
LB
1904 if (IS_ERR(trans)) {
1905 ret = PTR_ERR(trans);
1906 trans = NULL;
1907 goto out;
1908 }
0ca1f7ce 1909 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1910 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1911 if (ret) /* -ENOMEM or corruption */
1912 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1913 }
1914 goto out;
1915 }
e6dcd2dc 1916
2ac55d41
JB
1917 lock_extent_bits(io_tree, ordered_extent->file_offset,
1918 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1919 0, &cached_state);
e6dcd2dc 1920
0cb59c99 1921 if (nolock)
7a7eaa40 1922 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1923 else
7a7eaa40 1924 trans = btrfs_join_transaction(root);
79787eaa
JM
1925 if (IS_ERR(trans)) {
1926 ret = PTR_ERR(trans);
1927 trans = NULL;
1928 goto out_unlock;
1929 }
0ca1f7ce 1930 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1931
c8b97818 1932 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1933 compress_type = ordered_extent->compress_type;
d899e052 1934 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1935 BUG_ON(compress_type);
920bbbfb 1936 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1937 ordered_extent->file_offset,
1938 ordered_extent->file_offset +
1939 ordered_extent->len);
d899e052 1940 } else {
0af3d00b 1941 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1942 ret = insert_reserved_file_extent(trans, inode,
1943 ordered_extent->file_offset,
1944 ordered_extent->start,
1945 ordered_extent->disk_len,
1946 ordered_extent->len,
1947 ordered_extent->len,
261507a0 1948 compress_type, 0, 0,
d899e052 1949 BTRFS_FILE_EXTENT_REG);
d899e052 1950 }
5dc562c5
JB
1951 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1952 ordered_extent->file_offset, ordered_extent->len,
1953 trans->transid);
79787eaa
JM
1954 if (ret < 0) {
1955 btrfs_abort_transaction(trans, root, ret);
5fd02043 1956 goto out_unlock;
79787eaa 1957 }
2ac55d41 1958
e6dcd2dc
CM
1959 add_pending_csums(trans, inode, ordered_extent->file_offset,
1960 &ordered_extent->list);
1961
1ef30be1 1962 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1963 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1964 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1965 if (ret) { /* -ENOMEM or corruption */
1966 btrfs_abort_transaction(trans, root, ret);
5fd02043 1967 goto out_unlock;
79787eaa 1968 }
7c735313
JB
1969 } else {
1970 btrfs_set_inode_last_trans(trans, inode);
1ef30be1
JB
1971 }
1972 ret = 0;
5fd02043
JB
1973out_unlock:
1974 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1975 ordered_extent->file_offset +
1976 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 1977out:
5b0e95bf 1978 if (root != root->fs_info->tree_root)
0cb59c99 1979 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
1980 if (trans)
1981 btrfs_end_transaction(trans, root);
0cb59c99 1982
5fd02043
JB
1983 if (ret)
1984 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1985 ordered_extent->file_offset +
1986 ordered_extent->len - 1, NULL, GFP_NOFS);
1987
1988 /*
8bad3c02
LB
1989 * This needs to be done to make sure anybody waiting knows we are done
1990 * updating everything for this ordered extent.
5fd02043
JB
1991 */
1992 btrfs_remove_ordered_extent(inode, ordered_extent);
1993
e6dcd2dc
CM
1994 /* once for us */
1995 btrfs_put_ordered_extent(ordered_extent);
1996 /* once for the tree */
1997 btrfs_put_ordered_extent(ordered_extent);
1998
5fd02043
JB
1999 return ret;
2000}
2001
2002static void finish_ordered_fn(struct btrfs_work *work)
2003{
2004 struct btrfs_ordered_extent *ordered_extent;
2005 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2006 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2007}
2008
b2950863 2009static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2010 struct extent_state *state, int uptodate)
2011{
5fd02043
JB
2012 struct inode *inode = page->mapping->host;
2013 struct btrfs_root *root = BTRFS_I(inode)->root;
2014 struct btrfs_ordered_extent *ordered_extent = NULL;
2015 struct btrfs_workers *workers;
2016
1abe9b8a 2017 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2018
8b62b72b 2019 ClearPagePrivate2(page);
5fd02043
JB
2020 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2021 end - start + 1, uptodate))
2022 return 0;
2023
2024 ordered_extent->work.func = finish_ordered_fn;
2025 ordered_extent->work.flags = 0;
2026
83eea1f1 2027 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2028 workers = &root->fs_info->endio_freespace_worker;
2029 else
2030 workers = &root->fs_info->endio_write_workers;
2031 btrfs_queue_worker(workers, &ordered_extent->work);
2032
2033 return 0;
211f90e6
CM
2034}
2035
d352ac68
CM
2036/*
2037 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2038 * if there's a match, we allow the bio to finish. If not, the code in
2039 * extent_io.c will try to find good copies for us.
d352ac68 2040 */
b2950863 2041static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2042 struct extent_state *state, int mirror)
07157aac 2043{
35ebb934 2044 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 2045 struct inode *inode = page->mapping->host;
d1310b2e 2046 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2047 char *kaddr;
aadfeb6e 2048 u64 private = ~(u32)0;
07157aac 2049 int ret;
ff79f819
CM
2050 struct btrfs_root *root = BTRFS_I(inode)->root;
2051 u32 csum = ~(u32)0;
d1310b2e 2052
d20f7043
CM
2053 if (PageChecked(page)) {
2054 ClearPageChecked(page);
2055 goto good;
2056 }
6cbff00f
CH
2057
2058 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2059 goto good;
17d217fe
YZ
2060
2061 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2062 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2063 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2064 GFP_NOFS);
b6cda9bc 2065 return 0;
17d217fe 2066 }
d20f7043 2067
c2e639f0 2068 if (state && state->start == start) {
70dec807
CM
2069 private = state->private;
2070 ret = 0;
2071 } else {
2072 ret = get_state_private(io_tree, start, &private);
2073 }
7ac687d9 2074 kaddr = kmap_atomic(page);
d397712b 2075 if (ret)
07157aac 2076 goto zeroit;
d397712b 2077
ff79f819
CM
2078 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2079 btrfs_csum_final(csum, (char *)&csum);
d397712b 2080 if (csum != private)
07157aac 2081 goto zeroit;
d397712b 2082
7ac687d9 2083 kunmap_atomic(kaddr);
d20f7043 2084good:
07157aac
CM
2085 return 0;
2086
2087zeroit:
945d8962 2088 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2089 "private %llu\n",
2090 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2091 (unsigned long long)start, csum,
2092 (unsigned long long)private);
db94535d
CM
2093 memset(kaddr + offset, 1, end - start + 1);
2094 flush_dcache_page(page);
7ac687d9 2095 kunmap_atomic(kaddr);
3b951516
CM
2096 if (private == 0)
2097 return 0;
7e38326f 2098 return -EIO;
07157aac 2099}
b888db2b 2100
24bbcf04
YZ
2101struct delayed_iput {
2102 struct list_head list;
2103 struct inode *inode;
2104};
2105
79787eaa
JM
2106/* JDM: If this is fs-wide, why can't we add a pointer to
2107 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2108void btrfs_add_delayed_iput(struct inode *inode)
2109{
2110 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2111 struct delayed_iput *delayed;
2112
2113 if (atomic_add_unless(&inode->i_count, -1, 1))
2114 return;
2115
2116 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2117 delayed->inode = inode;
2118
2119 spin_lock(&fs_info->delayed_iput_lock);
2120 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2121 spin_unlock(&fs_info->delayed_iput_lock);
2122}
2123
2124void btrfs_run_delayed_iputs(struct btrfs_root *root)
2125{
2126 LIST_HEAD(list);
2127 struct btrfs_fs_info *fs_info = root->fs_info;
2128 struct delayed_iput *delayed;
2129 int empty;
2130
2131 spin_lock(&fs_info->delayed_iput_lock);
2132 empty = list_empty(&fs_info->delayed_iputs);
2133 spin_unlock(&fs_info->delayed_iput_lock);
2134 if (empty)
2135 return;
2136
24bbcf04
YZ
2137 spin_lock(&fs_info->delayed_iput_lock);
2138 list_splice_init(&fs_info->delayed_iputs, &list);
2139 spin_unlock(&fs_info->delayed_iput_lock);
2140
2141 while (!list_empty(&list)) {
2142 delayed = list_entry(list.next, struct delayed_iput, list);
2143 list_del(&delayed->list);
2144 iput(delayed->inode);
2145 kfree(delayed);
2146 }
24bbcf04
YZ
2147}
2148
d68fc57b
YZ
2149enum btrfs_orphan_cleanup_state {
2150 ORPHAN_CLEANUP_STARTED = 1,
2151 ORPHAN_CLEANUP_DONE = 2,
2152};
2153
2154/*
42b2aa86 2155 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2156 * files in the subvolume, it removes orphan item and frees block_rsv
2157 * structure.
2158 */
2159void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2160 struct btrfs_root *root)
2161{
90290e19 2162 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2163 int ret;
2164
8a35d95f 2165 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2166 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2167 return;
2168
90290e19 2169 spin_lock(&root->orphan_lock);
8a35d95f 2170 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2171 spin_unlock(&root->orphan_lock);
2172 return;
2173 }
2174
2175 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2176 spin_unlock(&root->orphan_lock);
2177 return;
2178 }
2179
2180 block_rsv = root->orphan_block_rsv;
2181 root->orphan_block_rsv = NULL;
2182 spin_unlock(&root->orphan_lock);
2183
d68fc57b
YZ
2184 if (root->orphan_item_inserted &&
2185 btrfs_root_refs(&root->root_item) > 0) {
2186 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2187 root->root_key.objectid);
2188 BUG_ON(ret);
2189 root->orphan_item_inserted = 0;
2190 }
2191
90290e19
JB
2192 if (block_rsv) {
2193 WARN_ON(block_rsv->size > 0);
2194 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2195 }
2196}
2197
7b128766
JB
2198/*
2199 * This creates an orphan entry for the given inode in case something goes
2200 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2201 *
2202 * NOTE: caller of this function should reserve 5 units of metadata for
2203 * this function.
7b128766
JB
2204 */
2205int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2206{
2207 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2208 struct btrfs_block_rsv *block_rsv = NULL;
2209 int reserve = 0;
2210 int insert = 0;
2211 int ret;
7b128766 2212
d68fc57b 2213 if (!root->orphan_block_rsv) {
66d8f3dd 2214 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2215 if (!block_rsv)
2216 return -ENOMEM;
d68fc57b 2217 }
7b128766 2218
d68fc57b
YZ
2219 spin_lock(&root->orphan_lock);
2220 if (!root->orphan_block_rsv) {
2221 root->orphan_block_rsv = block_rsv;
2222 } else if (block_rsv) {
2223 btrfs_free_block_rsv(root, block_rsv);
2224 block_rsv = NULL;
7b128766 2225 }
7b128766 2226
8a35d95f
JB
2227 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2228 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2229#if 0
2230 /*
2231 * For proper ENOSPC handling, we should do orphan
2232 * cleanup when mounting. But this introduces backward
2233 * compatibility issue.
2234 */
2235 if (!xchg(&root->orphan_item_inserted, 1))
2236 insert = 2;
2237 else
2238 insert = 1;
2239#endif
2240 insert = 1;
321f0e70 2241 atomic_inc(&root->orphan_inodes);
7b128766
JB
2242 }
2243
72ac3c0d
JB
2244 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2245 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2246 reserve = 1;
d68fc57b 2247 spin_unlock(&root->orphan_lock);
7b128766 2248
d68fc57b
YZ
2249 /* grab metadata reservation from transaction handle */
2250 if (reserve) {
2251 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2252 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2253 }
7b128766 2254
d68fc57b
YZ
2255 /* insert an orphan item to track this unlinked/truncated file */
2256 if (insert >= 1) {
33345d01 2257 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2258 if (ret && ret != -EEXIST) {
8a35d95f
JB
2259 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2260 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2261 btrfs_abort_transaction(trans, root, ret);
2262 return ret;
2263 }
2264 ret = 0;
d68fc57b
YZ
2265 }
2266
2267 /* insert an orphan item to track subvolume contains orphan files */
2268 if (insert >= 2) {
2269 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2270 root->root_key.objectid);
79787eaa
JM
2271 if (ret && ret != -EEXIST) {
2272 btrfs_abort_transaction(trans, root, ret);
2273 return ret;
2274 }
d68fc57b
YZ
2275 }
2276 return 0;
7b128766
JB
2277}
2278
2279/*
2280 * We have done the truncate/delete so we can go ahead and remove the orphan
2281 * item for this particular inode.
2282 */
2283int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2284{
2285 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2286 int delete_item = 0;
2287 int release_rsv = 0;
7b128766
JB
2288 int ret = 0;
2289
d68fc57b 2290 spin_lock(&root->orphan_lock);
8a35d95f
JB
2291 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2292 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2293 delete_item = 1;
7b128766 2294
72ac3c0d
JB
2295 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2296 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2297 release_rsv = 1;
d68fc57b 2298 spin_unlock(&root->orphan_lock);
7b128766 2299
d68fc57b 2300 if (trans && delete_item) {
33345d01 2301 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2302 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2303 }
7b128766 2304
8a35d95f 2305 if (release_rsv) {
d68fc57b 2306 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
2307 atomic_dec(&root->orphan_inodes);
2308 }
7b128766 2309
d68fc57b 2310 return 0;
7b128766
JB
2311}
2312
2313/*
2314 * this cleans up any orphans that may be left on the list from the last use
2315 * of this root.
2316 */
66b4ffd1 2317int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2318{
2319 struct btrfs_path *path;
2320 struct extent_buffer *leaf;
7b128766
JB
2321 struct btrfs_key key, found_key;
2322 struct btrfs_trans_handle *trans;
2323 struct inode *inode;
8f6d7f4f 2324 u64 last_objectid = 0;
7b128766
JB
2325 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2326
d68fc57b 2327 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2328 return 0;
c71bf099
YZ
2329
2330 path = btrfs_alloc_path();
66b4ffd1
JB
2331 if (!path) {
2332 ret = -ENOMEM;
2333 goto out;
2334 }
7b128766
JB
2335 path->reada = -1;
2336
2337 key.objectid = BTRFS_ORPHAN_OBJECTID;
2338 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2339 key.offset = (u64)-1;
2340
7b128766
JB
2341 while (1) {
2342 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2343 if (ret < 0)
2344 goto out;
7b128766
JB
2345
2346 /*
2347 * if ret == 0 means we found what we were searching for, which
25985edc 2348 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2349 * find the key and see if we have stuff that matches
2350 */
2351 if (ret > 0) {
66b4ffd1 2352 ret = 0;
7b128766
JB
2353 if (path->slots[0] == 0)
2354 break;
2355 path->slots[0]--;
2356 }
2357
2358 /* pull out the item */
2359 leaf = path->nodes[0];
7b128766
JB
2360 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2361
2362 /* make sure the item matches what we want */
2363 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2364 break;
2365 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2366 break;
2367
2368 /* release the path since we're done with it */
b3b4aa74 2369 btrfs_release_path(path);
7b128766
JB
2370
2371 /*
2372 * this is where we are basically btrfs_lookup, without the
2373 * crossing root thing. we store the inode number in the
2374 * offset of the orphan item.
2375 */
8f6d7f4f
JB
2376
2377 if (found_key.offset == last_objectid) {
2378 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2379 "stopping orphan cleanup\n");
2380 ret = -EINVAL;
2381 goto out;
2382 }
2383
2384 last_objectid = found_key.offset;
2385
5d4f98a2
YZ
2386 found_key.objectid = found_key.offset;
2387 found_key.type = BTRFS_INODE_ITEM_KEY;
2388 found_key.offset = 0;
73f73415 2389 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2390 ret = PTR_RET(inode);
2391 if (ret && ret != -ESTALE)
66b4ffd1 2392 goto out;
7b128766 2393
f8e9e0b0
AJ
2394 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2395 struct btrfs_root *dead_root;
2396 struct btrfs_fs_info *fs_info = root->fs_info;
2397 int is_dead_root = 0;
2398
2399 /*
2400 * this is an orphan in the tree root. Currently these
2401 * could come from 2 sources:
2402 * a) a snapshot deletion in progress
2403 * b) a free space cache inode
2404 * We need to distinguish those two, as the snapshot
2405 * orphan must not get deleted.
2406 * find_dead_roots already ran before us, so if this
2407 * is a snapshot deletion, we should find the root
2408 * in the dead_roots list
2409 */
2410 spin_lock(&fs_info->trans_lock);
2411 list_for_each_entry(dead_root, &fs_info->dead_roots,
2412 root_list) {
2413 if (dead_root->root_key.objectid ==
2414 found_key.objectid) {
2415 is_dead_root = 1;
2416 break;
2417 }
2418 }
2419 spin_unlock(&fs_info->trans_lock);
2420 if (is_dead_root) {
2421 /* prevent this orphan from being found again */
2422 key.offset = found_key.objectid - 1;
2423 continue;
2424 }
2425 }
7b128766 2426 /*
a8c9e576
JB
2427 * Inode is already gone but the orphan item is still there,
2428 * kill the orphan item.
7b128766 2429 */
a8c9e576
JB
2430 if (ret == -ESTALE) {
2431 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2432 if (IS_ERR(trans)) {
2433 ret = PTR_ERR(trans);
2434 goto out;
2435 }
8a35d95f
JB
2436 printk(KERN_ERR "auto deleting %Lu\n",
2437 found_key.objectid);
a8c9e576
JB
2438 ret = btrfs_del_orphan_item(trans, root,
2439 found_key.objectid);
79787eaa 2440 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2441 btrfs_end_transaction(trans, root);
7b128766
JB
2442 continue;
2443 }
2444
a8c9e576
JB
2445 /*
2446 * add this inode to the orphan list so btrfs_orphan_del does
2447 * the proper thing when we hit it
2448 */
8a35d95f
JB
2449 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2450 &BTRFS_I(inode)->runtime_flags);
a8c9e576 2451
7b128766
JB
2452 /* if we have links, this was a truncate, lets do that */
2453 if (inode->i_nlink) {
a41ad394
JB
2454 if (!S_ISREG(inode->i_mode)) {
2455 WARN_ON(1);
2456 iput(inode);
2457 continue;
2458 }
7b128766 2459 nr_truncate++;
66b4ffd1 2460 ret = btrfs_truncate(inode);
7b128766
JB
2461 } else {
2462 nr_unlink++;
2463 }
2464
2465 /* this will do delete_inode and everything for us */
2466 iput(inode);
66b4ffd1
JB
2467 if (ret)
2468 goto out;
7b128766 2469 }
3254c876
MX
2470 /* release the path since we're done with it */
2471 btrfs_release_path(path);
2472
d68fc57b
YZ
2473 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2474
2475 if (root->orphan_block_rsv)
2476 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2477 (u64)-1);
2478
2479 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2480 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2481 if (!IS_ERR(trans))
2482 btrfs_end_transaction(trans, root);
d68fc57b 2483 }
7b128766
JB
2484
2485 if (nr_unlink)
2486 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2487 if (nr_truncate)
2488 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2489
2490out:
2491 if (ret)
2492 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2493 btrfs_free_path(path);
2494 return ret;
7b128766
JB
2495}
2496
46a53cca
CM
2497/*
2498 * very simple check to peek ahead in the leaf looking for xattrs. If we
2499 * don't find any xattrs, we know there can't be any acls.
2500 *
2501 * slot is the slot the inode is in, objectid is the objectid of the inode
2502 */
2503static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2504 int slot, u64 objectid)
2505{
2506 u32 nritems = btrfs_header_nritems(leaf);
2507 struct btrfs_key found_key;
2508 int scanned = 0;
2509
2510 slot++;
2511 while (slot < nritems) {
2512 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2513
2514 /* we found a different objectid, there must not be acls */
2515 if (found_key.objectid != objectid)
2516 return 0;
2517
2518 /* we found an xattr, assume we've got an acl */
2519 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2520 return 1;
2521
2522 /*
2523 * we found a key greater than an xattr key, there can't
2524 * be any acls later on
2525 */
2526 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2527 return 0;
2528
2529 slot++;
2530 scanned++;
2531
2532 /*
2533 * it goes inode, inode backrefs, xattrs, extents,
2534 * so if there are a ton of hard links to an inode there can
2535 * be a lot of backrefs. Don't waste time searching too hard,
2536 * this is just an optimization
2537 */
2538 if (scanned >= 8)
2539 break;
2540 }
2541 /* we hit the end of the leaf before we found an xattr or
2542 * something larger than an xattr. We have to assume the inode
2543 * has acls
2544 */
2545 return 1;
2546}
2547
d352ac68
CM
2548/*
2549 * read an inode from the btree into the in-memory inode
2550 */
5d4f98a2 2551static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2552{
2553 struct btrfs_path *path;
5f39d397 2554 struct extent_buffer *leaf;
39279cc3 2555 struct btrfs_inode_item *inode_item;
0b86a832 2556 struct btrfs_timespec *tspec;
39279cc3
CM
2557 struct btrfs_root *root = BTRFS_I(inode)->root;
2558 struct btrfs_key location;
46a53cca 2559 int maybe_acls;
618e21d5 2560 u32 rdev;
39279cc3 2561 int ret;
2f7e33d4
MX
2562 bool filled = false;
2563
2564 ret = btrfs_fill_inode(inode, &rdev);
2565 if (!ret)
2566 filled = true;
39279cc3
CM
2567
2568 path = btrfs_alloc_path();
1748f843
MF
2569 if (!path)
2570 goto make_bad;
2571
d90c7321 2572 path->leave_spinning = 1;
39279cc3 2573 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2574
39279cc3 2575 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2576 if (ret)
39279cc3 2577 goto make_bad;
39279cc3 2578
5f39d397 2579 leaf = path->nodes[0];
2f7e33d4
MX
2580
2581 if (filled)
2582 goto cache_acl;
2583
5f39d397
CM
2584 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2585 struct btrfs_inode_item);
5f39d397 2586 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2587 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
2588 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2589 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 2590 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2591
2592 tspec = btrfs_inode_atime(inode_item);
2593 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2594 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2595
2596 tspec = btrfs_inode_mtime(inode_item);
2597 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2598 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2599
2600 tspec = btrfs_inode_ctime(inode_item);
2601 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2602 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2603
a76a3cd4 2604 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2605 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
2606 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2607
2608 /*
2609 * If we were modified in the current generation and evicted from memory
2610 * and then re-read we need to do a full sync since we don't have any
2611 * idea about which extents were modified before we were evicted from
2612 * cache.
2613 */
2614 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2615 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2616 &BTRFS_I(inode)->runtime_flags);
2617
0c4d2d95 2618 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2619 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2620 inode->i_rdev = 0;
5f39d397
CM
2621 rdev = btrfs_inode_rdev(leaf, inode_item);
2622
aec7477b 2623 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2624 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2625cache_acl:
46a53cca
CM
2626 /*
2627 * try to precache a NULL acl entry for files that don't have
2628 * any xattrs or acls
2629 */
33345d01
LZ
2630 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2631 btrfs_ino(inode));
72c04902
AV
2632 if (!maybe_acls)
2633 cache_no_acl(inode);
46a53cca 2634
39279cc3 2635 btrfs_free_path(path);
39279cc3 2636
39279cc3 2637 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2638 case S_IFREG:
2639 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2640 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2641 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2642 inode->i_fop = &btrfs_file_operations;
2643 inode->i_op = &btrfs_file_inode_operations;
2644 break;
2645 case S_IFDIR:
2646 inode->i_fop = &btrfs_dir_file_operations;
2647 if (root == root->fs_info->tree_root)
2648 inode->i_op = &btrfs_dir_ro_inode_operations;
2649 else
2650 inode->i_op = &btrfs_dir_inode_operations;
2651 break;
2652 case S_IFLNK:
2653 inode->i_op = &btrfs_symlink_inode_operations;
2654 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2655 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2656 break;
618e21d5 2657 default:
0279b4cd 2658 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2659 init_special_inode(inode, inode->i_mode, rdev);
2660 break;
39279cc3 2661 }
6cbff00f
CH
2662
2663 btrfs_update_iflags(inode);
39279cc3
CM
2664 return;
2665
2666make_bad:
39279cc3 2667 btrfs_free_path(path);
39279cc3
CM
2668 make_bad_inode(inode);
2669}
2670
d352ac68
CM
2671/*
2672 * given a leaf and an inode, copy the inode fields into the leaf
2673 */
e02119d5
CM
2674static void fill_inode_item(struct btrfs_trans_handle *trans,
2675 struct extent_buffer *leaf,
5f39d397 2676 struct btrfs_inode_item *item,
39279cc3
CM
2677 struct inode *inode)
2678{
2f2f43d3
EB
2679 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2680 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
dbe674a9 2681 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2682 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2683 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2684
2685 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2686 inode->i_atime.tv_sec);
2687 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2688 inode->i_atime.tv_nsec);
2689
2690 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2691 inode->i_mtime.tv_sec);
2692 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2693 inode->i_mtime.tv_nsec);
2694
2695 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2696 inode->i_ctime.tv_sec);
2697 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2698 inode->i_ctime.tv_nsec);
2699
a76a3cd4 2700 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2701 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
0c4d2d95 2702 btrfs_set_inode_sequence(leaf, item, inode->i_version);
e02119d5 2703 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2704 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2705 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2706 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2707}
2708
d352ac68
CM
2709/*
2710 * copy everything in the in-memory inode into the btree.
2711 */
2115133f 2712static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2713 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2714{
2715 struct btrfs_inode_item *inode_item;
2716 struct btrfs_path *path;
5f39d397 2717 struct extent_buffer *leaf;
39279cc3
CM
2718 int ret;
2719
2720 path = btrfs_alloc_path();
16cdcec7
MX
2721 if (!path)
2722 return -ENOMEM;
2723
b9473439 2724 path->leave_spinning = 1;
16cdcec7
MX
2725 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2726 1);
39279cc3
CM
2727 if (ret) {
2728 if (ret > 0)
2729 ret = -ENOENT;
2730 goto failed;
2731 }
2732
b4ce94de 2733 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2734 leaf = path->nodes[0];
2735 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2736 struct btrfs_inode_item);
39279cc3 2737
e02119d5 2738 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2739 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2740 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2741 ret = 0;
2742failed:
39279cc3
CM
2743 btrfs_free_path(path);
2744 return ret;
2745}
2746
2115133f
CM
2747/*
2748 * copy everything in the in-memory inode into the btree.
2749 */
2750noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2751 struct btrfs_root *root, struct inode *inode)
2752{
2753 int ret;
2754
2755 /*
2756 * If the inode is a free space inode, we can deadlock during commit
2757 * if we put it into the delayed code.
2758 *
2759 * The data relocation inode should also be directly updated
2760 * without delay
2761 */
83eea1f1 2762 if (!btrfs_is_free_space_inode(inode)
2115133f 2763 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
2764 btrfs_update_root_times(trans, root);
2765
2115133f
CM
2766 ret = btrfs_delayed_update_inode(trans, root, inode);
2767 if (!ret)
2768 btrfs_set_inode_last_trans(trans, inode);
2769 return ret;
2770 }
2771
2772 return btrfs_update_inode_item(trans, root, inode);
2773}
2774
be6aef60
JB
2775noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2776 struct btrfs_root *root,
2777 struct inode *inode)
2115133f
CM
2778{
2779 int ret;
2780
2781 ret = btrfs_update_inode(trans, root, inode);
2782 if (ret == -ENOSPC)
2783 return btrfs_update_inode_item(trans, root, inode);
2784 return ret;
2785}
2786
d352ac68
CM
2787/*
2788 * unlink helper that gets used here in inode.c and in the tree logging
2789 * recovery code. It remove a link in a directory with a given name, and
2790 * also drops the back refs in the inode to the directory
2791 */
92986796
AV
2792static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2793 struct btrfs_root *root,
2794 struct inode *dir, struct inode *inode,
2795 const char *name, int name_len)
39279cc3
CM
2796{
2797 struct btrfs_path *path;
39279cc3 2798 int ret = 0;
5f39d397 2799 struct extent_buffer *leaf;
39279cc3 2800 struct btrfs_dir_item *di;
5f39d397 2801 struct btrfs_key key;
aec7477b 2802 u64 index;
33345d01
LZ
2803 u64 ino = btrfs_ino(inode);
2804 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2805
2806 path = btrfs_alloc_path();
54aa1f4d
CM
2807 if (!path) {
2808 ret = -ENOMEM;
554233a6 2809 goto out;
54aa1f4d
CM
2810 }
2811
b9473439 2812 path->leave_spinning = 1;
33345d01 2813 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2814 name, name_len, -1);
2815 if (IS_ERR(di)) {
2816 ret = PTR_ERR(di);
2817 goto err;
2818 }
2819 if (!di) {
2820 ret = -ENOENT;
2821 goto err;
2822 }
5f39d397
CM
2823 leaf = path->nodes[0];
2824 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2825 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2826 if (ret)
2827 goto err;
b3b4aa74 2828 btrfs_release_path(path);
39279cc3 2829
33345d01
LZ
2830 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2831 dir_ino, &index);
aec7477b 2832 if (ret) {
d397712b 2833 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2834 "inode %llu parent %llu\n", name_len, name,
2835 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2836 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2837 goto err;
2838 }
2839
16cdcec7 2840 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2841 if (ret) {
2842 btrfs_abort_transaction(trans, root, ret);
39279cc3 2843 goto err;
79787eaa 2844 }
39279cc3 2845
e02119d5 2846 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2847 inode, dir_ino);
79787eaa
JM
2848 if (ret != 0 && ret != -ENOENT) {
2849 btrfs_abort_transaction(trans, root, ret);
2850 goto err;
2851 }
e02119d5
CM
2852
2853 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2854 dir, index);
6418c961
CM
2855 if (ret == -ENOENT)
2856 ret = 0;
39279cc3
CM
2857err:
2858 btrfs_free_path(path);
e02119d5
CM
2859 if (ret)
2860 goto out;
2861
2862 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2863 inode_inc_iversion(inode);
2864 inode_inc_iversion(dir);
e02119d5 2865 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 2866 ret = btrfs_update_inode(trans, root, dir);
e02119d5 2867out:
39279cc3
CM
2868 return ret;
2869}
2870
92986796
AV
2871int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2872 struct btrfs_root *root,
2873 struct inode *dir, struct inode *inode,
2874 const char *name, int name_len)
2875{
2876 int ret;
2877 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2878 if (!ret) {
2879 btrfs_drop_nlink(inode);
2880 ret = btrfs_update_inode(trans, root, inode);
2881 }
2882 return ret;
2883}
2884
2885
a22285a6
YZ
2886/* helper to check if there is any shared block in the path */
2887static int check_path_shared(struct btrfs_root *root,
2888 struct btrfs_path *path)
39279cc3 2889{
a22285a6
YZ
2890 struct extent_buffer *eb;
2891 int level;
0e4dcbef 2892 u64 refs = 1;
5df6a9f6 2893
a22285a6 2894 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2895 int ret;
2896
a22285a6
YZ
2897 if (!path->nodes[level])
2898 break;
2899 eb = path->nodes[level];
2900 if (!btrfs_block_can_be_shared(root, eb))
2901 continue;
2902 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2903 &refs, NULL);
2904 if (refs > 1)
2905 return 1;
5df6a9f6 2906 }
dedefd72 2907 return 0;
39279cc3
CM
2908}
2909
a22285a6
YZ
2910/*
2911 * helper to start transaction for unlink and rmdir.
2912 *
2913 * unlink and rmdir are special in btrfs, they do not always free space.
2914 * so in enospc case, we should make sure they will free space before
2915 * allowing them to use the global metadata reservation.
2916 */
2917static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2918 struct dentry *dentry)
4df27c4d 2919{
39279cc3 2920 struct btrfs_trans_handle *trans;
a22285a6 2921 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2922 struct btrfs_path *path;
4df27c4d 2923 struct btrfs_dir_item *di;
7b128766 2924 struct inode *inode = dentry->d_inode;
4df27c4d 2925 u64 index;
a22285a6
YZ
2926 int check_link = 1;
2927 int err = -ENOSPC;
4df27c4d 2928 int ret;
33345d01
LZ
2929 u64 ino = btrfs_ino(inode);
2930 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2931
e70bea5f
JB
2932 /*
2933 * 1 for the possible orphan item
2934 * 1 for the dir item
2935 * 1 for the dir index
2936 * 1 for the inode ref
2937 * 1 for the inode ref in the tree log
2938 * 2 for the dir entries in the log
2939 * 1 for the inode
2940 */
2941 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2942 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2943 return trans;
4df27c4d 2944
33345d01 2945 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2946 return ERR_PTR(-ENOSPC);
4df27c4d 2947
a22285a6
YZ
2948 /* check if there is someone else holds reference */
2949 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2950 return ERR_PTR(-ENOSPC);
4df27c4d 2951
a22285a6
YZ
2952 if (atomic_read(&inode->i_count) > 2)
2953 return ERR_PTR(-ENOSPC);
4df27c4d 2954
a22285a6
YZ
2955 if (xchg(&root->fs_info->enospc_unlink, 1))
2956 return ERR_PTR(-ENOSPC);
2957
2958 path = btrfs_alloc_path();
2959 if (!path) {
2960 root->fs_info->enospc_unlink = 0;
2961 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2962 }
2963
3880a1b4
JB
2964 /* 1 for the orphan item */
2965 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2966 if (IS_ERR(trans)) {
a22285a6
YZ
2967 btrfs_free_path(path);
2968 root->fs_info->enospc_unlink = 0;
2969 return trans;
2970 }
4df27c4d 2971
a22285a6
YZ
2972 path->skip_locking = 1;
2973 path->search_commit_root = 1;
4df27c4d 2974
a22285a6
YZ
2975 ret = btrfs_lookup_inode(trans, root, path,
2976 &BTRFS_I(dir)->location, 0);
2977 if (ret < 0) {
2978 err = ret;
2979 goto out;
2980 }
2981 if (ret == 0) {
2982 if (check_path_shared(root, path))
2983 goto out;
2984 } else {
2985 check_link = 0;
5df6a9f6 2986 }
b3b4aa74 2987 btrfs_release_path(path);
a22285a6
YZ
2988
2989 ret = btrfs_lookup_inode(trans, root, path,
2990 &BTRFS_I(inode)->location, 0);
2991 if (ret < 0) {
2992 err = ret;
2993 goto out;
2994 }
2995 if (ret == 0) {
2996 if (check_path_shared(root, path))
2997 goto out;
2998 } else {
2999 check_link = 0;
3000 }
b3b4aa74 3001 btrfs_release_path(path);
a22285a6
YZ
3002
3003 if (ret == 0 && S_ISREG(inode->i_mode)) {
3004 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 3005 ino, (u64)-1, 0);
a22285a6
YZ
3006 if (ret < 0) {
3007 err = ret;
3008 goto out;
3009 }
79787eaa 3010 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
3011 if (check_path_shared(root, path))
3012 goto out;
b3b4aa74 3013 btrfs_release_path(path);
a22285a6
YZ
3014 }
3015
3016 if (!check_link) {
3017 err = 0;
3018 goto out;
3019 }
3020
33345d01 3021 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3022 dentry->d_name.name, dentry->d_name.len, 0);
3023 if (IS_ERR(di)) {
3024 err = PTR_ERR(di);
3025 goto out;
3026 }
3027 if (di) {
3028 if (check_path_shared(root, path))
3029 goto out;
3030 } else {
3031 err = 0;
3032 goto out;
3033 }
b3b4aa74 3034 btrfs_release_path(path);
a22285a6 3035
f186373f
MF
3036 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3037 dentry->d_name.len, ino, dir_ino, 0,
3038 &index);
3039 if (ret) {
3040 err = ret;
a22285a6
YZ
3041 goto out;
3042 }
f186373f 3043
a22285a6
YZ
3044 if (check_path_shared(root, path))
3045 goto out;
f186373f 3046
b3b4aa74 3047 btrfs_release_path(path);
a22285a6 3048
16cdcec7
MX
3049 /*
3050 * This is a commit root search, if we can lookup inode item and other
3051 * relative items in the commit root, it means the transaction of
3052 * dir/file creation has been committed, and the dir index item that we
3053 * delay to insert has also been inserted into the commit root. So
3054 * we needn't worry about the delayed insertion of the dir index item
3055 * here.
3056 */
33345d01 3057 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3058 dentry->d_name.name, dentry->d_name.len, 0);
3059 if (IS_ERR(di)) {
3060 err = PTR_ERR(di);
3061 goto out;
3062 }
3063 BUG_ON(ret == -ENOENT);
3064 if (check_path_shared(root, path))
3065 goto out;
3066
3067 err = 0;
3068out:
3069 btrfs_free_path(path);
3880a1b4
JB
3070 /* Migrate the orphan reservation over */
3071 if (!err)
3072 err = btrfs_block_rsv_migrate(trans->block_rsv,
3073 &root->fs_info->global_block_rsv,
5a77d76c 3074 trans->bytes_reserved);
3880a1b4 3075
a22285a6
YZ
3076 if (err) {
3077 btrfs_end_transaction(trans, root);
3078 root->fs_info->enospc_unlink = 0;
3079 return ERR_PTR(err);
3080 }
3081
3082 trans->block_rsv = &root->fs_info->global_block_rsv;
3083 return trans;
3084}
3085
3086static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root)
3088{
66d8f3dd 3089 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
5a77d76c
JB
3090 btrfs_block_rsv_release(root, trans->block_rsv,
3091 trans->bytes_reserved);
3092 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3093 BUG_ON(!root->fs_info->enospc_unlink);
3094 root->fs_info->enospc_unlink = 0;
3095 }
7ad85bb7 3096 btrfs_end_transaction(trans, root);
a22285a6
YZ
3097}
3098
3099static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3100{
3101 struct btrfs_root *root = BTRFS_I(dir)->root;
3102 struct btrfs_trans_handle *trans;
3103 struct inode *inode = dentry->d_inode;
3104 int ret;
a22285a6
YZ
3105
3106 trans = __unlink_start_trans(dir, dentry);
3107 if (IS_ERR(trans))
3108 return PTR_ERR(trans);
5f39d397 3109
12fcfd22
CM
3110 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3111
e02119d5
CM
3112 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3113 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3114 if (ret)
3115 goto out;
7b128766 3116
a22285a6 3117 if (inode->i_nlink == 0) {
7b128766 3118 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3119 if (ret)
3120 goto out;
a22285a6 3121 }
7b128766 3122
b532402e 3123out:
a22285a6 3124 __unlink_end_trans(trans, root);
b53d3f5d 3125 btrfs_btree_balance_dirty(root);
39279cc3
CM
3126 return ret;
3127}
3128
4df27c4d
YZ
3129int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root,
3131 struct inode *dir, u64 objectid,
3132 const char *name, int name_len)
3133{
3134 struct btrfs_path *path;
3135 struct extent_buffer *leaf;
3136 struct btrfs_dir_item *di;
3137 struct btrfs_key key;
3138 u64 index;
3139 int ret;
33345d01 3140 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3141
3142 path = btrfs_alloc_path();
3143 if (!path)
3144 return -ENOMEM;
3145
33345d01 3146 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3147 name, name_len, -1);
79787eaa
JM
3148 if (IS_ERR_OR_NULL(di)) {
3149 if (!di)
3150 ret = -ENOENT;
3151 else
3152 ret = PTR_ERR(di);
3153 goto out;
3154 }
4df27c4d
YZ
3155
3156 leaf = path->nodes[0];
3157 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3158 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3159 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3160 if (ret) {
3161 btrfs_abort_transaction(trans, root, ret);
3162 goto out;
3163 }
b3b4aa74 3164 btrfs_release_path(path);
4df27c4d
YZ
3165
3166 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3167 objectid, root->root_key.objectid,
33345d01 3168 dir_ino, &index, name, name_len);
4df27c4d 3169 if (ret < 0) {
79787eaa
JM
3170 if (ret != -ENOENT) {
3171 btrfs_abort_transaction(trans, root, ret);
3172 goto out;
3173 }
33345d01 3174 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3175 name, name_len);
79787eaa
JM
3176 if (IS_ERR_OR_NULL(di)) {
3177 if (!di)
3178 ret = -ENOENT;
3179 else
3180 ret = PTR_ERR(di);
3181 btrfs_abort_transaction(trans, root, ret);
3182 goto out;
3183 }
4df27c4d
YZ
3184
3185 leaf = path->nodes[0];
3186 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3187 btrfs_release_path(path);
4df27c4d
YZ
3188 index = key.offset;
3189 }
945d8962 3190 btrfs_release_path(path);
4df27c4d 3191
16cdcec7 3192 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3193 if (ret) {
3194 btrfs_abort_transaction(trans, root, ret);
3195 goto out;
3196 }
4df27c4d
YZ
3197
3198 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3199 inode_inc_iversion(dir);
4df27c4d 3200 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3201 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3202 if (ret)
3203 btrfs_abort_transaction(trans, root, ret);
3204out:
71d7aed0 3205 btrfs_free_path(path);
79787eaa 3206 return ret;
4df27c4d
YZ
3207}
3208
39279cc3
CM
3209static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3210{
3211 struct inode *inode = dentry->d_inode;
1832a6d5 3212 int err = 0;
39279cc3 3213 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3214 struct btrfs_trans_handle *trans;
39279cc3 3215
b3ae244e 3216 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3217 return -ENOTEMPTY;
b3ae244e
DS
3218 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3219 return -EPERM;
134d4512 3220
a22285a6
YZ
3221 trans = __unlink_start_trans(dir, dentry);
3222 if (IS_ERR(trans))
5df6a9f6 3223 return PTR_ERR(trans);
5df6a9f6 3224
33345d01 3225 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3226 err = btrfs_unlink_subvol(trans, root, dir,
3227 BTRFS_I(inode)->location.objectid,
3228 dentry->d_name.name,
3229 dentry->d_name.len);
3230 goto out;
3231 }
3232
7b128766
JB
3233 err = btrfs_orphan_add(trans, inode);
3234 if (err)
4df27c4d 3235 goto out;
7b128766 3236
39279cc3 3237 /* now the directory is empty */
e02119d5
CM
3238 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3239 dentry->d_name.name, dentry->d_name.len);
d397712b 3240 if (!err)
dbe674a9 3241 btrfs_i_size_write(inode, 0);
4df27c4d 3242out:
a22285a6 3243 __unlink_end_trans(trans, root);
b53d3f5d 3244 btrfs_btree_balance_dirty(root);
3954401f 3245
39279cc3
CM
3246 return err;
3247}
3248
39279cc3
CM
3249/*
3250 * this can truncate away extent items, csum items and directory items.
3251 * It starts at a high offset and removes keys until it can't find
d352ac68 3252 * any higher than new_size
39279cc3
CM
3253 *
3254 * csum items that cross the new i_size are truncated to the new size
3255 * as well.
7b128766
JB
3256 *
3257 * min_type is the minimum key type to truncate down to. If set to 0, this
3258 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3259 */
8082510e
YZ
3260int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3261 struct btrfs_root *root,
3262 struct inode *inode,
3263 u64 new_size, u32 min_type)
39279cc3 3264{
39279cc3 3265 struct btrfs_path *path;
5f39d397 3266 struct extent_buffer *leaf;
39279cc3 3267 struct btrfs_file_extent_item *fi;
8082510e
YZ
3268 struct btrfs_key key;
3269 struct btrfs_key found_key;
39279cc3 3270 u64 extent_start = 0;
db94535d 3271 u64 extent_num_bytes = 0;
5d4f98a2 3272 u64 extent_offset = 0;
39279cc3 3273 u64 item_end = 0;
8082510e
YZ
3274 u64 mask = root->sectorsize - 1;
3275 u32 found_type = (u8)-1;
39279cc3
CM
3276 int found_extent;
3277 int del_item;
85e21bac
CM
3278 int pending_del_nr = 0;
3279 int pending_del_slot = 0;
179e29e4 3280 int extent_type = -1;
8082510e
YZ
3281 int ret;
3282 int err = 0;
33345d01 3283 u64 ino = btrfs_ino(inode);
8082510e
YZ
3284
3285 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3286
0eb0e19c
MF
3287 path = btrfs_alloc_path();
3288 if (!path)
3289 return -ENOMEM;
3290 path->reada = -1;
3291
5dc562c5
JB
3292 /*
3293 * We want to drop from the next block forward in case this new size is
3294 * not block aligned since we will be keeping the last block of the
3295 * extent just the way it is.
3296 */
0af3d00b 3297 if (root->ref_cows || root == root->fs_info->tree_root)
5dc562c5 3298 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
8082510e 3299
16cdcec7
MX
3300 /*
3301 * This function is also used to drop the items in the log tree before
3302 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3303 * it is used to drop the loged items. So we shouldn't kill the delayed
3304 * items.
3305 */
3306 if (min_type == 0 && root == BTRFS_I(inode)->root)
3307 btrfs_kill_delayed_inode_items(inode);
3308
33345d01 3309 key.objectid = ino;
39279cc3 3310 key.offset = (u64)-1;
5f39d397
CM
3311 key.type = (u8)-1;
3312
85e21bac 3313search_again:
b9473439 3314 path->leave_spinning = 1;
85e21bac 3315 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3316 if (ret < 0) {
3317 err = ret;
3318 goto out;
3319 }
d397712b 3320
85e21bac 3321 if (ret > 0) {
e02119d5
CM
3322 /* there are no items in the tree for us to truncate, we're
3323 * done
3324 */
8082510e
YZ
3325 if (path->slots[0] == 0)
3326 goto out;
85e21bac
CM
3327 path->slots[0]--;
3328 }
3329
d397712b 3330 while (1) {
39279cc3 3331 fi = NULL;
5f39d397
CM
3332 leaf = path->nodes[0];
3333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3334 found_type = btrfs_key_type(&found_key);
39279cc3 3335
33345d01 3336 if (found_key.objectid != ino)
39279cc3 3337 break;
5f39d397 3338
85e21bac 3339 if (found_type < min_type)
39279cc3
CM
3340 break;
3341
5f39d397 3342 item_end = found_key.offset;
39279cc3 3343 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3344 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3345 struct btrfs_file_extent_item);
179e29e4
CM
3346 extent_type = btrfs_file_extent_type(leaf, fi);
3347 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3348 item_end +=
db94535d 3349 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3350 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3351 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3352 fi);
39279cc3 3353 }
008630c1 3354 item_end--;
39279cc3 3355 }
8082510e
YZ
3356 if (found_type > min_type) {
3357 del_item = 1;
3358 } else {
3359 if (item_end < new_size)
b888db2b 3360 break;
8082510e
YZ
3361 if (found_key.offset >= new_size)
3362 del_item = 1;
3363 else
3364 del_item = 0;
39279cc3 3365 }
39279cc3 3366 found_extent = 0;
39279cc3 3367 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3368 if (found_type != BTRFS_EXTENT_DATA_KEY)
3369 goto delete;
3370
3371 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3372 u64 num_dec;
db94535d 3373 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3374 if (!del_item) {
db94535d
CM
3375 u64 orig_num_bytes =
3376 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3377 extent_num_bytes = new_size -
5f39d397 3378 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3379 extent_num_bytes = extent_num_bytes &
3380 ~((u64)root->sectorsize - 1);
db94535d
CM
3381 btrfs_set_file_extent_num_bytes(leaf, fi,
3382 extent_num_bytes);
3383 num_dec = (orig_num_bytes -
9069218d 3384 extent_num_bytes);
e02119d5 3385 if (root->ref_cows && extent_start != 0)
a76a3cd4 3386 inode_sub_bytes(inode, num_dec);
5f39d397 3387 btrfs_mark_buffer_dirty(leaf);
39279cc3 3388 } else {
db94535d
CM
3389 extent_num_bytes =
3390 btrfs_file_extent_disk_num_bytes(leaf,
3391 fi);
5d4f98a2
YZ
3392 extent_offset = found_key.offset -
3393 btrfs_file_extent_offset(leaf, fi);
3394
39279cc3 3395 /* FIXME blocksize != 4096 */
9069218d 3396 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3397 if (extent_start != 0) {
3398 found_extent = 1;
e02119d5 3399 if (root->ref_cows)
a76a3cd4 3400 inode_sub_bytes(inode, num_dec);
e02119d5 3401 }
39279cc3 3402 }
9069218d 3403 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3404 /*
3405 * we can't truncate inline items that have had
3406 * special encodings
3407 */
3408 if (!del_item &&
3409 btrfs_file_extent_compression(leaf, fi) == 0 &&
3410 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3411 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3412 u32 size = new_size - found_key.offset;
3413
3414 if (root->ref_cows) {
a76a3cd4
YZ
3415 inode_sub_bytes(inode, item_end + 1 -
3416 new_size);
e02119d5
CM
3417 }
3418 size =
3419 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3420 btrfs_truncate_item(trans, root, path,
3421 size, 1);
e02119d5 3422 } else if (root->ref_cows) {
a76a3cd4
YZ
3423 inode_sub_bytes(inode, item_end + 1 -
3424 found_key.offset);
9069218d 3425 }
39279cc3 3426 }
179e29e4 3427delete:
39279cc3 3428 if (del_item) {
85e21bac
CM
3429 if (!pending_del_nr) {
3430 /* no pending yet, add ourselves */
3431 pending_del_slot = path->slots[0];
3432 pending_del_nr = 1;
3433 } else if (pending_del_nr &&
3434 path->slots[0] + 1 == pending_del_slot) {
3435 /* hop on the pending chunk */
3436 pending_del_nr++;
3437 pending_del_slot = path->slots[0];
3438 } else {
d397712b 3439 BUG();
85e21bac 3440 }
39279cc3
CM
3441 } else {
3442 break;
3443 }
0af3d00b
JB
3444 if (found_extent && (root->ref_cows ||
3445 root == root->fs_info->tree_root)) {
b9473439 3446 btrfs_set_path_blocking(path);
39279cc3 3447 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3448 extent_num_bytes, 0,
3449 btrfs_header_owner(leaf),
66d7e7f0 3450 ino, extent_offset, 0);
39279cc3
CM
3451 BUG_ON(ret);
3452 }
85e21bac 3453
8082510e
YZ
3454 if (found_type == BTRFS_INODE_ITEM_KEY)
3455 break;
3456
3457 if (path->slots[0] == 0 ||
3458 path->slots[0] != pending_del_slot) {
8082510e
YZ
3459 if (pending_del_nr) {
3460 ret = btrfs_del_items(trans, root, path,
3461 pending_del_slot,
3462 pending_del_nr);
79787eaa
JM
3463 if (ret) {
3464 btrfs_abort_transaction(trans,
3465 root, ret);
3466 goto error;
3467 }
8082510e
YZ
3468 pending_del_nr = 0;
3469 }
b3b4aa74 3470 btrfs_release_path(path);
85e21bac 3471 goto search_again;
8082510e
YZ
3472 } else {
3473 path->slots[0]--;
85e21bac 3474 }
39279cc3 3475 }
8082510e 3476out:
85e21bac
CM
3477 if (pending_del_nr) {
3478 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3479 pending_del_nr);
79787eaa
JM
3480 if (ret)
3481 btrfs_abort_transaction(trans, root, ret);
85e21bac 3482 }
79787eaa 3483error:
39279cc3 3484 btrfs_free_path(path);
8082510e 3485 return err;
39279cc3
CM
3486}
3487
3488/*
2aaa6655
JB
3489 * btrfs_truncate_page - read, zero a chunk and write a page
3490 * @inode - inode that we're zeroing
3491 * @from - the offset to start zeroing
3492 * @len - the length to zero, 0 to zero the entire range respective to the
3493 * offset
3494 * @front - zero up to the offset instead of from the offset on
3495 *
3496 * This will find the page for the "from" offset and cow the page and zero the
3497 * part we want to zero. This is used with truncate and hole punching.
39279cc3 3498 */
2aaa6655
JB
3499int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3500 int front)
39279cc3 3501{
2aaa6655 3502 struct address_space *mapping = inode->i_mapping;
db94535d 3503 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3504 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3505 struct btrfs_ordered_extent *ordered;
2ac55d41 3506 struct extent_state *cached_state = NULL;
e6dcd2dc 3507 char *kaddr;
db94535d 3508 u32 blocksize = root->sectorsize;
39279cc3
CM
3509 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3510 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3511 struct page *page;
3b16a4e3 3512 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3513 int ret = 0;
a52d9a80 3514 u64 page_start;
e6dcd2dc 3515 u64 page_end;
39279cc3 3516
2aaa6655
JB
3517 if ((offset & (blocksize - 1)) == 0 &&
3518 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 3519 goto out;
0ca1f7ce 3520 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3521 if (ret)
3522 goto out;
39279cc3
CM
3523
3524 ret = -ENOMEM;
211c17f5 3525again:
3b16a4e3 3526 page = find_or_create_page(mapping, index, mask);
5d5e103a 3527 if (!page) {
0ca1f7ce 3528 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3529 goto out;
5d5e103a 3530 }
e6dcd2dc
CM
3531
3532 page_start = page_offset(page);
3533 page_end = page_start + PAGE_CACHE_SIZE - 1;
3534
39279cc3 3535 if (!PageUptodate(page)) {
9ebefb18 3536 ret = btrfs_readpage(NULL, page);
39279cc3 3537 lock_page(page);
211c17f5
CM
3538 if (page->mapping != mapping) {
3539 unlock_page(page);
3540 page_cache_release(page);
3541 goto again;
3542 }
39279cc3
CM
3543 if (!PageUptodate(page)) {
3544 ret = -EIO;
89642229 3545 goto out_unlock;
39279cc3
CM
3546 }
3547 }
211c17f5 3548 wait_on_page_writeback(page);
e6dcd2dc 3549
d0082371 3550 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3551 set_page_extent_mapped(page);
3552
3553 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3554 if (ordered) {
2ac55d41
JB
3555 unlock_extent_cached(io_tree, page_start, page_end,
3556 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3557 unlock_page(page);
3558 page_cache_release(page);
eb84ae03 3559 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3560 btrfs_put_ordered_extent(ordered);
3561 goto again;
3562 }
3563
2ac55d41 3564 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
3565 EXTENT_DIRTY | EXTENT_DELALLOC |
3566 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 3567 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3568
2ac55d41
JB
3569 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3570 &cached_state);
9ed74f2d 3571 if (ret) {
2ac55d41
JB
3572 unlock_extent_cached(io_tree, page_start, page_end,
3573 &cached_state, GFP_NOFS);
9ed74f2d
JB
3574 goto out_unlock;
3575 }
3576
e6dcd2dc
CM
3577 ret = 0;
3578 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
3579 if (!len)
3580 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 3581 kaddr = kmap(page);
2aaa6655
JB
3582 if (front)
3583 memset(kaddr, 0, offset);
3584 else
3585 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
3586 flush_dcache_page(page);
3587 kunmap(page);
3588 }
247e743c 3589 ClearPageChecked(page);
e6dcd2dc 3590 set_page_dirty(page);
2ac55d41
JB
3591 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3592 GFP_NOFS);
39279cc3 3593
89642229 3594out_unlock:
5d5e103a 3595 if (ret)
0ca1f7ce 3596 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3597 unlock_page(page);
3598 page_cache_release(page);
3599out:
3600 return ret;
3601}
3602
695a0d0d
JB
3603/*
3604 * This function puts in dummy file extents for the area we're creating a hole
3605 * for. So if we are truncating this file to a larger size we need to insert
3606 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3607 * the range between oldsize and size
3608 */
a41ad394 3609int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3610{
9036c102
YZ
3611 struct btrfs_trans_handle *trans;
3612 struct btrfs_root *root = BTRFS_I(inode)->root;
3613 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3614 struct extent_map *em = NULL;
2ac55d41 3615 struct extent_state *cached_state = NULL;
5dc562c5 3616 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9036c102 3617 u64 mask = root->sectorsize - 1;
a41ad394 3618 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3619 u64 block_end = (size + mask) & ~mask;
3620 u64 last_byte;
3621 u64 cur_offset;
3622 u64 hole_size;
9ed74f2d 3623 int err = 0;
39279cc3 3624
9036c102
YZ
3625 if (size <= hole_start)
3626 return 0;
3627
9036c102
YZ
3628 while (1) {
3629 struct btrfs_ordered_extent *ordered;
3630 btrfs_wait_ordered_range(inode, hole_start,
3631 block_end - hole_start);
2ac55d41 3632 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3633 &cached_state);
9036c102
YZ
3634 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3635 if (!ordered)
3636 break;
2ac55d41
JB
3637 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3638 &cached_state, GFP_NOFS);
9036c102
YZ
3639 btrfs_put_ordered_extent(ordered);
3640 }
39279cc3 3641
9036c102
YZ
3642 cur_offset = hole_start;
3643 while (1) {
3644 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3645 block_end - cur_offset, 0);
79787eaa
JM
3646 if (IS_ERR(em)) {
3647 err = PTR_ERR(em);
3648 break;
3649 }
9036c102
YZ
3650 last_byte = min(extent_map_end(em), block_end);
3651 last_byte = (last_byte + mask) & ~mask;
8082510e 3652 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 3653 struct extent_map *hole_em;
9036c102 3654 hole_size = last_byte - cur_offset;
9ed74f2d 3655
3642320e 3656 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3657 if (IS_ERR(trans)) {
3658 err = PTR_ERR(trans);
9ed74f2d 3659 break;
a22285a6 3660 }
8082510e 3661
5dc562c5
JB
3662 err = btrfs_drop_extents(trans, root, inode,
3663 cur_offset,
2671485d 3664 cur_offset + hole_size, 1);
5b397377 3665 if (err) {
79787eaa 3666 btrfs_abort_transaction(trans, root, err);
5b397377 3667 btrfs_end_transaction(trans, root);
3893e33b 3668 break;
5b397377 3669 }
8082510e 3670
9036c102 3671 err = btrfs_insert_file_extent(trans, root,
33345d01 3672 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3673 0, hole_size, 0, hole_size,
3674 0, 0, 0);
5b397377 3675 if (err) {
79787eaa 3676 btrfs_abort_transaction(trans, root, err);
5b397377 3677 btrfs_end_transaction(trans, root);
3893e33b 3678 break;
5b397377 3679 }
8082510e 3680
5dc562c5
JB
3681 btrfs_drop_extent_cache(inode, cur_offset,
3682 cur_offset + hole_size - 1, 0);
3683 hole_em = alloc_extent_map();
3684 if (!hole_em) {
3685 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3686 &BTRFS_I(inode)->runtime_flags);
3687 goto next;
3688 }
3689 hole_em->start = cur_offset;
3690 hole_em->len = hole_size;
3691 hole_em->orig_start = cur_offset;
8082510e 3692
5dc562c5
JB
3693 hole_em->block_start = EXTENT_MAP_HOLE;
3694 hole_em->block_len = 0;
3695 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3696 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3697 hole_em->generation = trans->transid;
8082510e 3698
5dc562c5
JB
3699 while (1) {
3700 write_lock(&em_tree->lock);
3701 err = add_extent_mapping(em_tree, hole_em);
3702 if (!err)
3703 list_move(&hole_em->list,
3704 &em_tree->modified_extents);
3705 write_unlock(&em_tree->lock);
3706 if (err != -EEXIST)
3707 break;
3708 btrfs_drop_extent_cache(inode, cur_offset,
3709 cur_offset +
3710 hole_size - 1, 0);
3711 }
3712 free_extent_map(hole_em);
3713next:
3642320e 3714 btrfs_update_inode(trans, root, inode);
8082510e 3715 btrfs_end_transaction(trans, root);
9036c102
YZ
3716 }
3717 free_extent_map(em);
a22285a6 3718 em = NULL;
9036c102 3719 cur_offset = last_byte;
8082510e 3720 if (cur_offset >= block_end)
9036c102
YZ
3721 break;
3722 }
1832a6d5 3723
a22285a6 3724 free_extent_map(em);
2ac55d41
JB
3725 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3726 GFP_NOFS);
9036c102
YZ
3727 return err;
3728}
39279cc3 3729
a41ad394 3730static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3731{
f4a2f4c5
MX
3732 struct btrfs_root *root = BTRFS_I(inode)->root;
3733 struct btrfs_trans_handle *trans;
a41ad394 3734 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3735 int ret;
3736
a41ad394 3737 if (newsize == oldsize)
8082510e
YZ
3738 return 0;
3739
a41ad394 3740 if (newsize > oldsize) {
a41ad394
JB
3741 truncate_pagecache(inode, oldsize, newsize);
3742 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3743 if (ret)
8082510e 3744 return ret;
8082510e 3745
f4a2f4c5
MX
3746 trans = btrfs_start_transaction(root, 1);
3747 if (IS_ERR(trans))
3748 return PTR_ERR(trans);
3749
3750 i_size_write(inode, newsize);
3751 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3752 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3753 btrfs_end_transaction(trans, root);
a41ad394 3754 } else {
8082510e 3755
a41ad394
JB
3756 /*
3757 * We're truncating a file that used to have good data down to
3758 * zero. Make sure it gets into the ordered flush list so that
3759 * any new writes get down to disk quickly.
3760 */
3761 if (newsize == 0)
72ac3c0d
JB
3762 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3763 &BTRFS_I(inode)->runtime_flags);
8082510e 3764
a41ad394
JB
3765 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3766 truncate_setsize(inode, newsize);
3767 ret = btrfs_truncate(inode);
8082510e
YZ
3768 }
3769
a41ad394 3770 return ret;
8082510e
YZ
3771}
3772
9036c102
YZ
3773static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3774{
3775 struct inode *inode = dentry->d_inode;
b83cc969 3776 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3777 int err;
39279cc3 3778
b83cc969
LZ
3779 if (btrfs_root_readonly(root))
3780 return -EROFS;
3781
9036c102
YZ
3782 err = inode_change_ok(inode, attr);
3783 if (err)
3784 return err;
2bf5a725 3785
5a3f23d5 3786 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3787 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3788 if (err)
3789 return err;
39279cc3 3790 }
9036c102 3791
1025774c
CH
3792 if (attr->ia_valid) {
3793 setattr_copy(inode, attr);
0c4d2d95 3794 inode_inc_iversion(inode);
22c44fe6 3795 err = btrfs_dirty_inode(inode);
1025774c 3796
22c44fe6 3797 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3798 err = btrfs_acl_chmod(inode);
3799 }
33268eaf 3800
39279cc3
CM
3801 return err;
3802}
61295eb8 3803
bd555975 3804void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3805{
3806 struct btrfs_trans_handle *trans;
3807 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3808 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3809 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
3810 int ret;
3811
1abe9b8a 3812 trace_btrfs_inode_evict(inode);
3813
39279cc3 3814 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3815 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 3816 btrfs_is_free_space_inode(inode)))
bd555975
AV
3817 goto no_delete;
3818
39279cc3 3819 if (is_bad_inode(inode)) {
7b128766 3820 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3821 goto no_delete;
3822 }
bd555975 3823 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3824 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3825
c71bf099 3826 if (root->fs_info->log_root_recovering) {
6bf02314 3827 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 3828 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
3829 goto no_delete;
3830 }
3831
76dda93c
YZ
3832 if (inode->i_nlink > 0) {
3833 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3834 goto no_delete;
3835 }
3836
66d8f3dd 3837 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
3838 if (!rsv) {
3839 btrfs_orphan_del(NULL, inode);
3840 goto no_delete;
3841 }
4a338542 3842 rsv->size = min_size;
ca7e70f5 3843 rsv->failfast = 1;
726c35fa 3844 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3845
dbe674a9 3846 btrfs_i_size_write(inode, 0);
5f39d397 3847
4289a667 3848 /*
8407aa46
MX
3849 * This is a bit simpler than btrfs_truncate since we've already
3850 * reserved our space for our orphan item in the unlink, so we just
3851 * need to reserve some slack space in case we add bytes and update
3852 * inode item when doing the truncate.
4289a667 3853 */
8082510e 3854 while (1) {
08e007d2
MX
3855 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3856 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
3857
3858 /*
3859 * Try and steal from the global reserve since we will
3860 * likely not use this space anyway, we want to try as
3861 * hard as possible to get this to work.
3862 */
3863 if (ret)
3864 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3865
d68fc57b 3866 if (ret) {
4289a667 3867 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3868 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3869 btrfs_orphan_del(NULL, inode);
3870 btrfs_free_block_rsv(root, rsv);
3871 goto no_delete;
d68fc57b 3872 }
7b128766 3873
08e007d2 3874 trans = btrfs_start_transaction_lflush(root, 1);
4289a667
JB
3875 if (IS_ERR(trans)) {
3876 btrfs_orphan_del(NULL, inode);
3877 btrfs_free_block_rsv(root, rsv);
3878 goto no_delete;
d68fc57b 3879 }
7b128766 3880
4289a667
JB
3881 trans->block_rsv = rsv;
3882
d68fc57b 3883 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 3884 if (ret != -ENOSPC)
8082510e 3885 break;
85e21bac 3886
8407aa46
MX
3887 trans->block_rsv = &root->fs_info->trans_block_rsv;
3888 ret = btrfs_update_inode(trans, root, inode);
3889 BUG_ON(ret);
3890
8082510e
YZ
3891 btrfs_end_transaction(trans, root);
3892 trans = NULL;
b53d3f5d 3893 btrfs_btree_balance_dirty(root);
8082510e 3894 }
5f39d397 3895
4289a667
JB
3896 btrfs_free_block_rsv(root, rsv);
3897
8082510e 3898 if (ret == 0) {
4289a667 3899 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3900 ret = btrfs_orphan_del(trans, inode);
3901 BUG_ON(ret);
3902 }
54aa1f4d 3903
4289a667 3904 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3905 if (!(root == root->fs_info->tree_root ||
3906 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3907 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3908
54aa1f4d 3909 btrfs_end_transaction(trans, root);
b53d3f5d 3910 btrfs_btree_balance_dirty(root);
39279cc3 3911no_delete:
dbd5768f 3912 clear_inode(inode);
8082510e 3913 return;
39279cc3
CM
3914}
3915
3916/*
3917 * this returns the key found in the dir entry in the location pointer.
3918 * If no dir entries were found, location->objectid is 0.
3919 */
3920static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3921 struct btrfs_key *location)
3922{
3923 const char *name = dentry->d_name.name;
3924 int namelen = dentry->d_name.len;
3925 struct btrfs_dir_item *di;
3926 struct btrfs_path *path;
3927 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3928 int ret = 0;
39279cc3
CM
3929
3930 path = btrfs_alloc_path();
d8926bb3
MF
3931 if (!path)
3932 return -ENOMEM;
3954401f 3933
33345d01 3934 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3935 namelen, 0);
0d9f7f3e
Y
3936 if (IS_ERR(di))
3937 ret = PTR_ERR(di);
d397712b 3938
c704005d 3939 if (IS_ERR_OR_NULL(di))
3954401f 3940 goto out_err;
d397712b 3941
5f39d397 3942 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3943out:
39279cc3
CM
3944 btrfs_free_path(path);
3945 return ret;
3954401f
CM
3946out_err:
3947 location->objectid = 0;
3948 goto out;
39279cc3
CM
3949}
3950
3951/*
3952 * when we hit a tree root in a directory, the btrfs part of the inode
3953 * needs to be changed to reflect the root directory of the tree root. This
3954 * is kind of like crossing a mount point.
3955 */
3956static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3957 struct inode *dir,
3958 struct dentry *dentry,
3959 struct btrfs_key *location,
3960 struct btrfs_root **sub_root)
39279cc3 3961{
4df27c4d
YZ
3962 struct btrfs_path *path;
3963 struct btrfs_root *new_root;
3964 struct btrfs_root_ref *ref;
3965 struct extent_buffer *leaf;
3966 int ret;
3967 int err = 0;
39279cc3 3968
4df27c4d
YZ
3969 path = btrfs_alloc_path();
3970 if (!path) {
3971 err = -ENOMEM;
3972 goto out;
3973 }
39279cc3 3974
4df27c4d
YZ
3975 err = -ENOENT;
3976 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3977 BTRFS_I(dir)->root->root_key.objectid,
3978 location->objectid);
3979 if (ret) {
3980 if (ret < 0)
3981 err = ret;
3982 goto out;
3983 }
39279cc3 3984
4df27c4d
YZ
3985 leaf = path->nodes[0];
3986 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3987 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3988 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3989 goto out;
39279cc3 3990
4df27c4d
YZ
3991 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3992 (unsigned long)(ref + 1),
3993 dentry->d_name.len);
3994 if (ret)
3995 goto out;
3996
b3b4aa74 3997 btrfs_release_path(path);
4df27c4d
YZ
3998
3999 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4000 if (IS_ERR(new_root)) {
4001 err = PTR_ERR(new_root);
4002 goto out;
4003 }
4004
4005 if (btrfs_root_refs(&new_root->root_item) == 0) {
4006 err = -ENOENT;
4007 goto out;
4008 }
4009
4010 *sub_root = new_root;
4011 location->objectid = btrfs_root_dirid(&new_root->root_item);
4012 location->type = BTRFS_INODE_ITEM_KEY;
4013 location->offset = 0;
4014 err = 0;
4015out:
4016 btrfs_free_path(path);
4017 return err;
39279cc3
CM
4018}
4019
5d4f98a2
YZ
4020static void inode_tree_add(struct inode *inode)
4021{
4022 struct btrfs_root *root = BTRFS_I(inode)->root;
4023 struct btrfs_inode *entry;
03e860bd
FNP
4024 struct rb_node **p;
4025 struct rb_node *parent;
33345d01 4026 u64 ino = btrfs_ino(inode);
03e860bd
FNP
4027again:
4028 p = &root->inode_tree.rb_node;
4029 parent = NULL;
5d4f98a2 4030
1d3382cb 4031 if (inode_unhashed(inode))
76dda93c
YZ
4032 return;
4033
5d4f98a2
YZ
4034 spin_lock(&root->inode_lock);
4035 while (*p) {
4036 parent = *p;
4037 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4038
33345d01 4039 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4040 p = &parent->rb_left;
33345d01 4041 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4042 p = &parent->rb_right;
5d4f98a2
YZ
4043 else {
4044 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4045 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4046 rb_erase(parent, &root->inode_tree);
4047 RB_CLEAR_NODE(parent);
4048 spin_unlock(&root->inode_lock);
4049 goto again;
5d4f98a2
YZ
4050 }
4051 }
4052 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4053 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4054 spin_unlock(&root->inode_lock);
4055}
4056
4057static void inode_tree_del(struct inode *inode)
4058{
4059 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4060 int empty = 0;
5d4f98a2 4061
03e860bd 4062 spin_lock(&root->inode_lock);
5d4f98a2 4063 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4064 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4065 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4066 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4067 }
03e860bd 4068 spin_unlock(&root->inode_lock);
76dda93c 4069
0af3d00b
JB
4070 /*
4071 * Free space cache has inodes in the tree root, but the tree root has a
4072 * root_refs of 0, so this could end up dropping the tree root as a
4073 * snapshot, so we need the extra !root->fs_info->tree_root check to
4074 * make sure we don't drop it.
4075 */
4076 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4077 root != root->fs_info->tree_root) {
76dda93c
YZ
4078 synchronize_srcu(&root->fs_info->subvol_srcu);
4079 spin_lock(&root->inode_lock);
4080 empty = RB_EMPTY_ROOT(&root->inode_tree);
4081 spin_unlock(&root->inode_lock);
4082 if (empty)
4083 btrfs_add_dead_root(root);
4084 }
4085}
4086
143bede5 4087void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4088{
4089 struct rb_node *node;
4090 struct rb_node *prev;
4091 struct btrfs_inode *entry;
4092 struct inode *inode;
4093 u64 objectid = 0;
4094
4095 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4096
4097 spin_lock(&root->inode_lock);
4098again:
4099 node = root->inode_tree.rb_node;
4100 prev = NULL;
4101 while (node) {
4102 prev = node;
4103 entry = rb_entry(node, struct btrfs_inode, rb_node);
4104
33345d01 4105 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4106 node = node->rb_left;
33345d01 4107 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4108 node = node->rb_right;
4109 else
4110 break;
4111 }
4112 if (!node) {
4113 while (prev) {
4114 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4115 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4116 node = prev;
4117 break;
4118 }
4119 prev = rb_next(prev);
4120 }
4121 }
4122 while (node) {
4123 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4124 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4125 inode = igrab(&entry->vfs_inode);
4126 if (inode) {
4127 spin_unlock(&root->inode_lock);
4128 if (atomic_read(&inode->i_count) > 1)
4129 d_prune_aliases(inode);
4130 /*
45321ac5 4131 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4132 * the inode cache when its usage count
4133 * hits zero.
4134 */
4135 iput(inode);
4136 cond_resched();
4137 spin_lock(&root->inode_lock);
4138 goto again;
4139 }
4140
4141 if (cond_resched_lock(&root->inode_lock))
4142 goto again;
4143
4144 node = rb_next(node);
4145 }
4146 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4147}
4148
e02119d5
CM
4149static int btrfs_init_locked_inode(struct inode *inode, void *p)
4150{
4151 struct btrfs_iget_args *args = p;
4152 inode->i_ino = args->ino;
e02119d5 4153 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4154 return 0;
4155}
4156
4157static int btrfs_find_actor(struct inode *inode, void *opaque)
4158{
4159 struct btrfs_iget_args *args = opaque;
33345d01 4160 return args->ino == btrfs_ino(inode) &&
d397712b 4161 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4162}
4163
5d4f98a2
YZ
4164static struct inode *btrfs_iget_locked(struct super_block *s,
4165 u64 objectid,
4166 struct btrfs_root *root)
39279cc3
CM
4167{
4168 struct inode *inode;
4169 struct btrfs_iget_args args;
4170 args.ino = objectid;
4171 args.root = root;
4172
4173 inode = iget5_locked(s, objectid, btrfs_find_actor,
4174 btrfs_init_locked_inode,
4175 (void *)&args);
4176 return inode;
4177}
4178
1a54ef8c
BR
4179/* Get an inode object given its location and corresponding root.
4180 * Returns in *is_new if the inode was read from disk
4181 */
4182struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4183 struct btrfs_root *root, int *new)
1a54ef8c
BR
4184{
4185 struct inode *inode;
4186
4187 inode = btrfs_iget_locked(s, location->objectid, root);
4188 if (!inode)
5d4f98a2 4189 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4190
4191 if (inode->i_state & I_NEW) {
4192 BTRFS_I(inode)->root = root;
4193 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4194 btrfs_read_locked_inode(inode);
1748f843
MF
4195 if (!is_bad_inode(inode)) {
4196 inode_tree_add(inode);
4197 unlock_new_inode(inode);
4198 if (new)
4199 *new = 1;
4200 } else {
e0b6d65b
ST
4201 unlock_new_inode(inode);
4202 iput(inode);
4203 inode = ERR_PTR(-ESTALE);
1748f843
MF
4204 }
4205 }
4206
1a54ef8c
BR
4207 return inode;
4208}
4209
4df27c4d
YZ
4210static struct inode *new_simple_dir(struct super_block *s,
4211 struct btrfs_key *key,
4212 struct btrfs_root *root)
4213{
4214 struct inode *inode = new_inode(s);
4215
4216 if (!inode)
4217 return ERR_PTR(-ENOMEM);
4218
4df27c4d
YZ
4219 BTRFS_I(inode)->root = root;
4220 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4221 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4222
4223 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4224 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4225 inode->i_fop = &simple_dir_operations;
4226 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4227 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4228
4229 return inode;
4230}
4231
3de4586c 4232struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4233{
d397712b 4234 struct inode *inode;
4df27c4d 4235 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4236 struct btrfs_root *sub_root = root;
4237 struct btrfs_key location;
76dda93c 4238 int index;
b4aff1f8 4239 int ret = 0;
39279cc3
CM
4240
4241 if (dentry->d_name.len > BTRFS_NAME_LEN)
4242 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4243
b4aff1f8
JB
4244 if (unlikely(d_need_lookup(dentry))) {
4245 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4246 kfree(dentry->d_fsdata);
4247 dentry->d_fsdata = NULL;
a66e7cc6
JB
4248 /* This thing is hashed, drop it for now */
4249 d_drop(dentry);
b4aff1f8
JB
4250 } else {
4251 ret = btrfs_inode_by_name(dir, dentry, &location);
4252 }
5f39d397 4253
39279cc3
CM
4254 if (ret < 0)
4255 return ERR_PTR(ret);
5f39d397 4256
4df27c4d
YZ
4257 if (location.objectid == 0)
4258 return NULL;
4259
4260 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4261 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4262 return inode;
4263 }
4264
4265 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4266
76dda93c 4267 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4268 ret = fixup_tree_root_location(root, dir, dentry,
4269 &location, &sub_root);
4270 if (ret < 0) {
4271 if (ret != -ENOENT)
4272 inode = ERR_PTR(ret);
4273 else
4274 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4275 } else {
73f73415 4276 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4277 }
76dda93c
YZ
4278 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4279
34d19bad 4280 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4281 down_read(&root->fs_info->cleanup_work_sem);
4282 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4283 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4284 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4285 if (ret)
4286 inode = ERR_PTR(ret);
c71bf099
YZ
4287 }
4288
3de4586c
CM
4289 return inode;
4290}
4291
fe15ce44 4292static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4293{
4294 struct btrfs_root *root;
848cce0d 4295 struct inode *inode = dentry->d_inode;
76dda93c 4296
848cce0d
LZ
4297 if (!inode && !IS_ROOT(dentry))
4298 inode = dentry->d_parent->d_inode;
76dda93c 4299
848cce0d
LZ
4300 if (inode) {
4301 root = BTRFS_I(inode)->root;
efefb143
YZ
4302 if (btrfs_root_refs(&root->root_item) == 0)
4303 return 1;
848cce0d
LZ
4304
4305 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4306 return 1;
efefb143 4307 }
76dda93c
YZ
4308 return 0;
4309}
4310
b4aff1f8
JB
4311static void btrfs_dentry_release(struct dentry *dentry)
4312{
4313 if (dentry->d_fsdata)
4314 kfree(dentry->d_fsdata);
4315}
4316
3de4586c 4317static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4318 unsigned int flags)
3de4586c 4319{
a66e7cc6
JB
4320 struct dentry *ret;
4321
4322 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4323 if (unlikely(d_need_lookup(dentry))) {
4324 spin_lock(&dentry->d_lock);
4325 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4326 spin_unlock(&dentry->d_lock);
4327 }
4328 return ret;
39279cc3
CM
4329}
4330
16cdcec7 4331unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4332 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4333};
4334
cbdf5a24
DW
4335static int btrfs_real_readdir(struct file *filp, void *dirent,
4336 filldir_t filldir)
39279cc3 4337{
6da6abae 4338 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4339 struct btrfs_root *root = BTRFS_I(inode)->root;
4340 struct btrfs_item *item;
4341 struct btrfs_dir_item *di;
4342 struct btrfs_key key;
5f39d397 4343 struct btrfs_key found_key;
39279cc3 4344 struct btrfs_path *path;
16cdcec7
MX
4345 struct list_head ins_list;
4346 struct list_head del_list;
39279cc3 4347 int ret;
5f39d397 4348 struct extent_buffer *leaf;
39279cc3 4349 int slot;
39279cc3
CM
4350 unsigned char d_type;
4351 int over = 0;
4352 u32 di_cur;
4353 u32 di_total;
4354 u32 di_len;
4355 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4356 char tmp_name[32];
4357 char *name_ptr;
4358 int name_len;
16cdcec7 4359 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4360
4361 /* FIXME, use a real flag for deciding about the key type */
4362 if (root->fs_info->tree_root == root)
4363 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4364
3954401f
CM
4365 /* special case for "." */
4366 if (filp->f_pos == 0) {
3765fefa
HS
4367 over = filldir(dirent, ".", 1,
4368 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4369 if (over)
4370 return 0;
4371 filp->f_pos = 1;
4372 }
3954401f
CM
4373 /* special case for .., just use the back ref */
4374 if (filp->f_pos == 1) {
5ecc7e5d 4375 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4376 over = filldir(dirent, "..", 2,
3765fefa 4377 filp->f_pos, pino, DT_DIR);
3954401f 4378 if (over)
49593bfa 4379 return 0;
3954401f
CM
4380 filp->f_pos = 2;
4381 }
49593bfa 4382 path = btrfs_alloc_path();
16cdcec7
MX
4383 if (!path)
4384 return -ENOMEM;
ff5714cc 4385
026fd317 4386 path->reada = 1;
49593bfa 4387
16cdcec7
MX
4388 if (key_type == BTRFS_DIR_INDEX_KEY) {
4389 INIT_LIST_HEAD(&ins_list);
4390 INIT_LIST_HEAD(&del_list);
4391 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4392 }
4393
39279cc3
CM
4394 btrfs_set_key_type(&key, key_type);
4395 key.offset = filp->f_pos;
33345d01 4396 key.objectid = btrfs_ino(inode);
5f39d397 4397
39279cc3
CM
4398 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4399 if (ret < 0)
4400 goto err;
49593bfa
DW
4401
4402 while (1) {
5f39d397 4403 leaf = path->nodes[0];
39279cc3 4404 slot = path->slots[0];
b9e03af0
LZ
4405 if (slot >= btrfs_header_nritems(leaf)) {
4406 ret = btrfs_next_leaf(root, path);
4407 if (ret < 0)
4408 goto err;
4409 else if (ret > 0)
4410 break;
4411 continue;
39279cc3 4412 }
3de4586c 4413
5f39d397
CM
4414 item = btrfs_item_nr(leaf, slot);
4415 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4416
4417 if (found_key.objectid != key.objectid)
39279cc3 4418 break;
5f39d397 4419 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4420 break;
5f39d397 4421 if (found_key.offset < filp->f_pos)
b9e03af0 4422 goto next;
16cdcec7
MX
4423 if (key_type == BTRFS_DIR_INDEX_KEY &&
4424 btrfs_should_delete_dir_index(&del_list,
4425 found_key.offset))
4426 goto next;
5f39d397
CM
4427
4428 filp->f_pos = found_key.offset;
16cdcec7 4429 is_curr = 1;
49593bfa 4430
39279cc3
CM
4431 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4432 di_cur = 0;
5f39d397 4433 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4434
4435 while (di_cur < di_total) {
5f39d397
CM
4436 struct btrfs_key location;
4437
22a94d44
JB
4438 if (verify_dir_item(root, leaf, di))
4439 break;
4440
5f39d397 4441 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4442 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4443 name_ptr = tmp_name;
4444 } else {
4445 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4446 if (!name_ptr) {
4447 ret = -ENOMEM;
4448 goto err;
4449 }
5f39d397
CM
4450 }
4451 read_extent_buffer(leaf, name_ptr,
4452 (unsigned long)(di + 1), name_len);
4453
4454 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4455 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4456
fede766f 4457
3de4586c 4458 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4459 * skip it.
4460 *
4461 * In contrast to old kernels, we insert the snapshot's
4462 * dir item and dir index after it has been created, so
4463 * we won't find a reference to our own snapshot. We
4464 * still keep the following code for backward
4465 * compatibility.
3de4586c
CM
4466 */
4467 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4468 location.objectid == root->root_key.objectid) {
4469 over = 0;
4470 goto skip;
4471 }
5f39d397 4472 over = filldir(dirent, name_ptr, name_len,
49593bfa 4473 found_key.offset, location.objectid,
39279cc3 4474 d_type);
5f39d397 4475
3de4586c 4476skip:
5f39d397
CM
4477 if (name_ptr != tmp_name)
4478 kfree(name_ptr);
4479
39279cc3
CM
4480 if (over)
4481 goto nopos;
5103e947 4482 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4483 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4484 di_cur += di_len;
4485 di = (struct btrfs_dir_item *)((char *)di + di_len);
4486 }
b9e03af0
LZ
4487next:
4488 path->slots[0]++;
39279cc3 4489 }
49593bfa 4490
16cdcec7
MX
4491 if (key_type == BTRFS_DIR_INDEX_KEY) {
4492 if (is_curr)
4493 filp->f_pos++;
4494 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4495 &ins_list);
4496 if (ret)
4497 goto nopos;
4498 }
4499
49593bfa 4500 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4501 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4502 /*
4503 * 32-bit glibc will use getdents64, but then strtol -
4504 * so the last number we can serve is this.
4505 */
4506 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4507 else
4508 filp->f_pos++;
39279cc3
CM
4509nopos:
4510 ret = 0;
4511err:
16cdcec7
MX
4512 if (key_type == BTRFS_DIR_INDEX_KEY)
4513 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4514 btrfs_free_path(path);
39279cc3
CM
4515 return ret;
4516}
4517
a9185b41 4518int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4519{
4520 struct btrfs_root *root = BTRFS_I(inode)->root;
4521 struct btrfs_trans_handle *trans;
4522 int ret = 0;
0af3d00b 4523 bool nolock = false;
39279cc3 4524
72ac3c0d 4525 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
4526 return 0;
4527
83eea1f1 4528 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 4529 nolock = true;
0af3d00b 4530
a9185b41 4531 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4532 if (nolock)
7a7eaa40 4533 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4534 else
7a7eaa40 4535 trans = btrfs_join_transaction(root);
3612b495
TI
4536 if (IS_ERR(trans))
4537 return PTR_ERR(trans);
a698d075 4538 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4539 }
4540 return ret;
4541}
4542
4543/*
54aa1f4d 4544 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4545 * inode changes. But, it is most likely to find the inode in cache.
4546 * FIXME, needs more benchmarking...there are no reasons other than performance
4547 * to keep or drop this code.
4548 */
22c44fe6 4549int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4550{
4551 struct btrfs_root *root = BTRFS_I(inode)->root;
4552 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4553 int ret;
4554
72ac3c0d 4555 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 4556 return 0;
39279cc3 4557
7a7eaa40 4558 trans = btrfs_join_transaction(root);
22c44fe6
JB
4559 if (IS_ERR(trans))
4560 return PTR_ERR(trans);
8929ecfa
YZ
4561
4562 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4563 if (ret && ret == -ENOSPC) {
4564 /* whoops, lets try again with the full transaction */
4565 btrfs_end_transaction(trans, root);
4566 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4567 if (IS_ERR(trans))
4568 return PTR_ERR(trans);
8929ecfa 4569
94b60442 4570 ret = btrfs_update_inode(trans, root, inode);
94b60442 4571 }
39279cc3 4572 btrfs_end_transaction(trans, root);
16cdcec7
MX
4573 if (BTRFS_I(inode)->delayed_node)
4574 btrfs_balance_delayed_items(root);
22c44fe6
JB
4575
4576 return ret;
4577}
4578
4579/*
4580 * This is a copy of file_update_time. We need this so we can return error on
4581 * ENOSPC for updating the inode in the case of file write and mmap writes.
4582 */
e41f941a
JB
4583static int btrfs_update_time(struct inode *inode, struct timespec *now,
4584 int flags)
22c44fe6 4585{
2bc55652
AB
4586 struct btrfs_root *root = BTRFS_I(inode)->root;
4587
4588 if (btrfs_root_readonly(root))
4589 return -EROFS;
4590
e41f941a 4591 if (flags & S_VERSION)
22c44fe6 4592 inode_inc_iversion(inode);
e41f941a
JB
4593 if (flags & S_CTIME)
4594 inode->i_ctime = *now;
4595 if (flags & S_MTIME)
4596 inode->i_mtime = *now;
4597 if (flags & S_ATIME)
4598 inode->i_atime = *now;
4599 return btrfs_dirty_inode(inode);
39279cc3
CM
4600}
4601
d352ac68
CM
4602/*
4603 * find the highest existing sequence number in a directory
4604 * and then set the in-memory index_cnt variable to reflect
4605 * free sequence numbers
4606 */
aec7477b
JB
4607static int btrfs_set_inode_index_count(struct inode *inode)
4608{
4609 struct btrfs_root *root = BTRFS_I(inode)->root;
4610 struct btrfs_key key, found_key;
4611 struct btrfs_path *path;
4612 struct extent_buffer *leaf;
4613 int ret;
4614
33345d01 4615 key.objectid = btrfs_ino(inode);
aec7477b
JB
4616 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4617 key.offset = (u64)-1;
4618
4619 path = btrfs_alloc_path();
4620 if (!path)
4621 return -ENOMEM;
4622
4623 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4624 if (ret < 0)
4625 goto out;
4626 /* FIXME: we should be able to handle this */
4627 if (ret == 0)
4628 goto out;
4629 ret = 0;
4630
4631 /*
4632 * MAGIC NUMBER EXPLANATION:
4633 * since we search a directory based on f_pos we have to start at 2
4634 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4635 * else has to start at 2
4636 */
4637 if (path->slots[0] == 0) {
4638 BTRFS_I(inode)->index_cnt = 2;
4639 goto out;
4640 }
4641
4642 path->slots[0]--;
4643
4644 leaf = path->nodes[0];
4645 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4646
33345d01 4647 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4648 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4649 BTRFS_I(inode)->index_cnt = 2;
4650 goto out;
4651 }
4652
4653 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4654out:
4655 btrfs_free_path(path);
4656 return ret;
4657}
4658
d352ac68
CM
4659/*
4660 * helper to find a free sequence number in a given directory. This current
4661 * code is very simple, later versions will do smarter things in the btree
4662 */
3de4586c 4663int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4664{
4665 int ret = 0;
4666
4667 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4668 ret = btrfs_inode_delayed_dir_index_count(dir);
4669 if (ret) {
4670 ret = btrfs_set_inode_index_count(dir);
4671 if (ret)
4672 return ret;
4673 }
aec7477b
JB
4674 }
4675
00e4e6b3 4676 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4677 BTRFS_I(dir)->index_cnt++;
4678
4679 return ret;
4680}
4681
39279cc3
CM
4682static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4683 struct btrfs_root *root,
aec7477b 4684 struct inode *dir,
9c58309d 4685 const char *name, int name_len,
175a4eb7
AV
4686 u64 ref_objectid, u64 objectid,
4687 umode_t mode, u64 *index)
39279cc3
CM
4688{
4689 struct inode *inode;
5f39d397 4690 struct btrfs_inode_item *inode_item;
39279cc3 4691 struct btrfs_key *location;
5f39d397 4692 struct btrfs_path *path;
9c58309d
CM
4693 struct btrfs_inode_ref *ref;
4694 struct btrfs_key key[2];
4695 u32 sizes[2];
4696 unsigned long ptr;
39279cc3
CM
4697 int ret;
4698 int owner;
4699
5f39d397 4700 path = btrfs_alloc_path();
d8926bb3
MF
4701 if (!path)
4702 return ERR_PTR(-ENOMEM);
5f39d397 4703
39279cc3 4704 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4705 if (!inode) {
4706 btrfs_free_path(path);
39279cc3 4707 return ERR_PTR(-ENOMEM);
8fb27640 4708 }
39279cc3 4709
581bb050
LZ
4710 /*
4711 * we have to initialize this early, so we can reclaim the inode
4712 * number if we fail afterwards in this function.
4713 */
4714 inode->i_ino = objectid;
4715
aec7477b 4716 if (dir) {
1abe9b8a 4717 trace_btrfs_inode_request(dir);
4718
3de4586c 4719 ret = btrfs_set_inode_index(dir, index);
09771430 4720 if (ret) {
8fb27640 4721 btrfs_free_path(path);
09771430 4722 iput(inode);
aec7477b 4723 return ERR_PTR(ret);
09771430 4724 }
aec7477b
JB
4725 }
4726 /*
4727 * index_cnt is ignored for everything but a dir,
4728 * btrfs_get_inode_index_count has an explanation for the magic
4729 * number
4730 */
4731 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4732 BTRFS_I(inode)->root = root;
e02119d5 4733 BTRFS_I(inode)->generation = trans->transid;
76195853 4734 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 4735
5dc562c5
JB
4736 /*
4737 * We could have gotten an inode number from somebody who was fsynced
4738 * and then removed in this same transaction, so let's just set full
4739 * sync since it will be a full sync anyway and this will blow away the
4740 * old info in the log.
4741 */
4742 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4743
569254b0 4744 if (S_ISDIR(mode))
39279cc3
CM
4745 owner = 0;
4746 else
4747 owner = 1;
9c58309d
CM
4748
4749 key[0].objectid = objectid;
4750 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4751 key[0].offset = 0;
4752
f186373f
MF
4753 /*
4754 * Start new inodes with an inode_ref. This is slightly more
4755 * efficient for small numbers of hard links since they will
4756 * be packed into one item. Extended refs will kick in if we
4757 * add more hard links than can fit in the ref item.
4758 */
9c58309d
CM
4759 key[1].objectid = objectid;
4760 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4761 key[1].offset = ref_objectid;
4762
4763 sizes[0] = sizeof(struct btrfs_inode_item);
4764 sizes[1] = name_len + sizeof(*ref);
4765
b9473439 4766 path->leave_spinning = 1;
9c58309d
CM
4767 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4768 if (ret != 0)
5f39d397
CM
4769 goto fail;
4770
ecc11fab 4771 inode_init_owner(inode, dir, mode);
a76a3cd4 4772 inode_set_bytes(inode, 0);
39279cc3 4773 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4774 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4775 struct btrfs_inode_item);
293f7e07
LZ
4776 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4777 sizeof(*inode_item));
e02119d5 4778 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4779
4780 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4781 struct btrfs_inode_ref);
4782 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4783 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4784 ptr = (unsigned long)(ref + 1);
4785 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4786
5f39d397
CM
4787 btrfs_mark_buffer_dirty(path->nodes[0]);
4788 btrfs_free_path(path);
4789
39279cc3
CM
4790 location = &BTRFS_I(inode)->location;
4791 location->objectid = objectid;
39279cc3
CM
4792 location->offset = 0;
4793 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4794
6cbff00f
CH
4795 btrfs_inherit_iflags(inode, dir);
4796
569254b0 4797 if (S_ISREG(mode)) {
94272164
CM
4798 if (btrfs_test_opt(root, NODATASUM))
4799 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4800 if (btrfs_test_opt(root, NODATACOW) ||
4801 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4802 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4803 }
4804
39279cc3 4805 insert_inode_hash(inode);
5d4f98a2 4806 inode_tree_add(inode);
1abe9b8a 4807
4808 trace_btrfs_inode_new(inode);
1973f0fa 4809 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4810
8ea05e3a
AB
4811 btrfs_update_root_times(trans, root);
4812
39279cc3 4813 return inode;
5f39d397 4814fail:
aec7477b
JB
4815 if (dir)
4816 BTRFS_I(dir)->index_cnt--;
5f39d397 4817 btrfs_free_path(path);
09771430 4818 iput(inode);
5f39d397 4819 return ERR_PTR(ret);
39279cc3
CM
4820}
4821
4822static inline u8 btrfs_inode_type(struct inode *inode)
4823{
4824 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4825}
4826
d352ac68
CM
4827/*
4828 * utility function to add 'inode' into 'parent_inode' with
4829 * a give name and a given sequence number.
4830 * if 'add_backref' is true, also insert a backref from the
4831 * inode to the parent directory.
4832 */
e02119d5
CM
4833int btrfs_add_link(struct btrfs_trans_handle *trans,
4834 struct inode *parent_inode, struct inode *inode,
4835 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4836{
4df27c4d 4837 int ret = 0;
39279cc3 4838 struct btrfs_key key;
e02119d5 4839 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4840 u64 ino = btrfs_ino(inode);
4841 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4842
33345d01 4843 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4844 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4845 } else {
33345d01 4846 key.objectid = ino;
4df27c4d
YZ
4847 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4848 key.offset = 0;
4849 }
4850
33345d01 4851 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4852 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4853 key.objectid, root->root_key.objectid,
33345d01 4854 parent_ino, index, name, name_len);
4df27c4d 4855 } else if (add_backref) {
33345d01
LZ
4856 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4857 parent_ino, index);
4df27c4d 4858 }
39279cc3 4859
79787eaa
JM
4860 /* Nothing to clean up yet */
4861 if (ret)
4862 return ret;
4df27c4d 4863
79787eaa
JM
4864 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4865 parent_inode, &key,
4866 btrfs_inode_type(inode), index);
4867 if (ret == -EEXIST)
4868 goto fail_dir_item;
4869 else if (ret) {
4870 btrfs_abort_transaction(trans, root, ret);
4871 return ret;
39279cc3 4872 }
79787eaa
JM
4873
4874 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4875 name_len * 2);
0c4d2d95 4876 inode_inc_iversion(parent_inode);
79787eaa
JM
4877 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4878 ret = btrfs_update_inode(trans, root, parent_inode);
4879 if (ret)
4880 btrfs_abort_transaction(trans, root, ret);
39279cc3 4881 return ret;
fe66a05a
CM
4882
4883fail_dir_item:
4884 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4885 u64 local_index;
4886 int err;
4887 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4888 key.objectid, root->root_key.objectid,
4889 parent_ino, &local_index, name, name_len);
4890
4891 } else if (add_backref) {
4892 u64 local_index;
4893 int err;
4894
4895 err = btrfs_del_inode_ref(trans, root, name, name_len,
4896 ino, parent_ino, &local_index);
4897 }
4898 return ret;
39279cc3
CM
4899}
4900
4901static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4902 struct inode *dir, struct dentry *dentry,
4903 struct inode *inode, int backref, u64 index)
39279cc3 4904{
a1b075d2
JB
4905 int err = btrfs_add_link(trans, dir, inode,
4906 dentry->d_name.name, dentry->d_name.len,
4907 backref, index);
39279cc3
CM
4908 if (err > 0)
4909 err = -EEXIST;
4910 return err;
4911}
4912
618e21d5 4913static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4914 umode_t mode, dev_t rdev)
618e21d5
JB
4915{
4916 struct btrfs_trans_handle *trans;
4917 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4918 struct inode *inode = NULL;
618e21d5
JB
4919 int err;
4920 int drop_inode = 0;
4921 u64 objectid;
00e4e6b3 4922 u64 index = 0;
618e21d5
JB
4923
4924 if (!new_valid_dev(rdev))
4925 return -EINVAL;
4926
9ed74f2d
JB
4927 /*
4928 * 2 for inode item and ref
4929 * 2 for dir items
4930 * 1 for xattr if selinux is on
4931 */
a22285a6
YZ
4932 trans = btrfs_start_transaction(root, 5);
4933 if (IS_ERR(trans))
4934 return PTR_ERR(trans);
1832a6d5 4935
581bb050
LZ
4936 err = btrfs_find_free_ino(root, &objectid);
4937 if (err)
4938 goto out_unlock;
4939
aec7477b 4940 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4941 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4942 mode, &index);
7cf96da3
TI
4943 if (IS_ERR(inode)) {
4944 err = PTR_ERR(inode);
618e21d5 4945 goto out_unlock;
7cf96da3 4946 }
618e21d5 4947
2a7dba39 4948 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4949 if (err) {
4950 drop_inode = 1;
4951 goto out_unlock;
4952 }
4953
2794ed01
FB
4954 err = btrfs_update_inode(trans, root, inode);
4955 if (err) {
4956 drop_inode = 1;
4957 goto out_unlock;
4958 }
4959
ad19db71
CS
4960 /*
4961 * If the active LSM wants to access the inode during
4962 * d_instantiate it needs these. Smack checks to see
4963 * if the filesystem supports xattrs by looking at the
4964 * ops vector.
4965 */
4966
4967 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4968 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4969 if (err)
4970 drop_inode = 1;
4971 else {
618e21d5 4972 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4973 btrfs_update_inode(trans, root, inode);
08c422c2 4974 d_instantiate(dentry, inode);
618e21d5 4975 }
618e21d5 4976out_unlock:
7ad85bb7 4977 btrfs_end_transaction(trans, root);
b53d3f5d 4978 btrfs_btree_balance_dirty(root);
618e21d5
JB
4979 if (drop_inode) {
4980 inode_dec_link_count(inode);
4981 iput(inode);
4982 }
618e21d5
JB
4983 return err;
4984}
4985
39279cc3 4986static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 4987 umode_t mode, bool excl)
39279cc3
CM
4988{
4989 struct btrfs_trans_handle *trans;
4990 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4991 struct inode *inode = NULL;
39279cc3 4992 int drop_inode = 0;
a22285a6 4993 int err;
39279cc3 4994 u64 objectid;
00e4e6b3 4995 u64 index = 0;
39279cc3 4996
9ed74f2d
JB
4997 /*
4998 * 2 for inode item and ref
4999 * 2 for dir items
5000 * 1 for xattr if selinux is on
5001 */
a22285a6
YZ
5002 trans = btrfs_start_transaction(root, 5);
5003 if (IS_ERR(trans))
5004 return PTR_ERR(trans);
9ed74f2d 5005
581bb050
LZ
5006 err = btrfs_find_free_ino(root, &objectid);
5007 if (err)
5008 goto out_unlock;
5009
aec7477b 5010 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5011 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5012 mode, &index);
7cf96da3
TI
5013 if (IS_ERR(inode)) {
5014 err = PTR_ERR(inode);
39279cc3 5015 goto out_unlock;
7cf96da3 5016 }
39279cc3 5017
2a7dba39 5018 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5019 if (err) {
5020 drop_inode = 1;
5021 goto out_unlock;
5022 }
5023
ad19db71
CS
5024 /*
5025 * If the active LSM wants to access the inode during
5026 * d_instantiate it needs these. Smack checks to see
5027 * if the filesystem supports xattrs by looking at the
5028 * ops vector.
5029 */
5030 inode->i_fop = &btrfs_file_operations;
5031 inode->i_op = &btrfs_file_inode_operations;
5032
a1b075d2 5033 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
5034 if (err)
5035 drop_inode = 1;
5036 else {
5037 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5038 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 5039 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
08c422c2 5040 d_instantiate(dentry, inode);
39279cc3 5041 }
39279cc3 5042out_unlock:
7ad85bb7 5043 btrfs_end_transaction(trans, root);
39279cc3
CM
5044 if (drop_inode) {
5045 inode_dec_link_count(inode);
5046 iput(inode);
5047 }
b53d3f5d 5048 btrfs_btree_balance_dirty(root);
39279cc3
CM
5049 return err;
5050}
5051
5052static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5053 struct dentry *dentry)
5054{
5055 struct btrfs_trans_handle *trans;
5056 struct btrfs_root *root = BTRFS_I(dir)->root;
5057 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5058 u64 index;
39279cc3
CM
5059 int err;
5060 int drop_inode = 0;
5061
4a8be425
TH
5062 /* do not allow sys_link's with other subvols of the same device */
5063 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5064 return -EXDEV;
4a8be425 5065
f186373f 5066 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5067 return -EMLINK;
4a8be425 5068
3de4586c 5069 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5070 if (err)
5071 goto fail;
5072
a22285a6 5073 /*
7e6b6465 5074 * 2 items for inode and inode ref
a22285a6 5075 * 2 items for dir items
7e6b6465 5076 * 1 item for parent inode
a22285a6 5077 */
7e6b6465 5078 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5079 if (IS_ERR(trans)) {
5080 err = PTR_ERR(trans);
5081 goto fail;
5082 }
5f39d397 5083
3153495d 5084 btrfs_inc_nlink(inode);
0c4d2d95 5085 inode_inc_iversion(inode);
3153495d 5086 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5087 ihold(inode);
aec7477b 5088
a1b075d2 5089 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5090
a5719521 5091 if (err) {
54aa1f4d 5092 drop_inode = 1;
a5719521 5093 } else {
10d9f309 5094 struct dentry *parent = dentry->d_parent;
a5719521 5095 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5096 if (err)
5097 goto fail;
08c422c2 5098 d_instantiate(dentry, inode);
6a912213 5099 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5100 }
39279cc3 5101
7ad85bb7 5102 btrfs_end_transaction(trans, root);
1832a6d5 5103fail:
39279cc3
CM
5104 if (drop_inode) {
5105 inode_dec_link_count(inode);
5106 iput(inode);
5107 }
b53d3f5d 5108 btrfs_btree_balance_dirty(root);
39279cc3
CM
5109 return err;
5110}
5111
18bb1db3 5112static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5113{
b9d86667 5114 struct inode *inode = NULL;
39279cc3
CM
5115 struct btrfs_trans_handle *trans;
5116 struct btrfs_root *root = BTRFS_I(dir)->root;
5117 int err = 0;
5118 int drop_on_err = 0;
b9d86667 5119 u64 objectid = 0;
00e4e6b3 5120 u64 index = 0;
39279cc3 5121
9ed74f2d
JB
5122 /*
5123 * 2 items for inode and ref
5124 * 2 items for dir items
5125 * 1 for xattr if selinux is on
5126 */
a22285a6
YZ
5127 trans = btrfs_start_transaction(root, 5);
5128 if (IS_ERR(trans))
5129 return PTR_ERR(trans);
39279cc3 5130
581bb050
LZ
5131 err = btrfs_find_free_ino(root, &objectid);
5132 if (err)
5133 goto out_fail;
5134
aec7477b 5135 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5136 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5137 S_IFDIR | mode, &index);
39279cc3
CM
5138 if (IS_ERR(inode)) {
5139 err = PTR_ERR(inode);
5140 goto out_fail;
5141 }
5f39d397 5142
39279cc3 5143 drop_on_err = 1;
33268eaf 5144
2a7dba39 5145 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5146 if (err)
5147 goto out_fail;
5148
39279cc3
CM
5149 inode->i_op = &btrfs_dir_inode_operations;
5150 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5151
dbe674a9 5152 btrfs_i_size_write(inode, 0);
39279cc3
CM
5153 err = btrfs_update_inode(trans, root, inode);
5154 if (err)
5155 goto out_fail;
5f39d397 5156
a1b075d2
JB
5157 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5158 dentry->d_name.len, 0, index);
39279cc3
CM
5159 if (err)
5160 goto out_fail;
5f39d397 5161
39279cc3
CM
5162 d_instantiate(dentry, inode);
5163 drop_on_err = 0;
39279cc3
CM
5164
5165out_fail:
7ad85bb7 5166 btrfs_end_transaction(trans, root);
39279cc3
CM
5167 if (drop_on_err)
5168 iput(inode);
b53d3f5d 5169 btrfs_btree_balance_dirty(root);
39279cc3
CM
5170 return err;
5171}
5172
d352ac68
CM
5173/* helper for btfs_get_extent. Given an existing extent in the tree,
5174 * and an extent that you want to insert, deal with overlap and insert
5175 * the new extent into the tree.
5176 */
3b951516
CM
5177static int merge_extent_mapping(struct extent_map_tree *em_tree,
5178 struct extent_map *existing,
e6dcd2dc
CM
5179 struct extent_map *em,
5180 u64 map_start, u64 map_len)
3b951516
CM
5181{
5182 u64 start_diff;
3b951516 5183
e6dcd2dc
CM
5184 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5185 start_diff = map_start - em->start;
5186 em->start = map_start;
5187 em->len = map_len;
c8b97818
CM
5188 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5189 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5190 em->block_start += start_diff;
c8b97818
CM
5191 em->block_len -= start_diff;
5192 }
e6dcd2dc 5193 return add_extent_mapping(em_tree, em);
3b951516
CM
5194}
5195
c8b97818
CM
5196static noinline int uncompress_inline(struct btrfs_path *path,
5197 struct inode *inode, struct page *page,
5198 size_t pg_offset, u64 extent_offset,
5199 struct btrfs_file_extent_item *item)
5200{
5201 int ret;
5202 struct extent_buffer *leaf = path->nodes[0];
5203 char *tmp;
5204 size_t max_size;
5205 unsigned long inline_size;
5206 unsigned long ptr;
261507a0 5207 int compress_type;
c8b97818
CM
5208
5209 WARN_ON(pg_offset != 0);
261507a0 5210 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5211 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5212 inline_size = btrfs_file_extent_inline_item_len(leaf,
5213 btrfs_item_nr(leaf, path->slots[0]));
5214 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5215 if (!tmp)
5216 return -ENOMEM;
c8b97818
CM
5217 ptr = btrfs_file_extent_inline_start(item);
5218
5219 read_extent_buffer(leaf, tmp, ptr, inline_size);
5220
5b050f04 5221 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5222 ret = btrfs_decompress(compress_type, tmp, page,
5223 extent_offset, inline_size, max_size);
c8b97818 5224 if (ret) {
7ac687d9 5225 char *kaddr = kmap_atomic(page);
c8b97818
CM
5226 unsigned long copy_size = min_t(u64,
5227 PAGE_CACHE_SIZE - pg_offset,
5228 max_size - extent_offset);
5229 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5230 kunmap_atomic(kaddr);
c8b97818
CM
5231 }
5232 kfree(tmp);
5233 return 0;
5234}
5235
d352ac68
CM
5236/*
5237 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5238 * the ugly parts come from merging extents from the disk with the in-ram
5239 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5240 * where the in-ram extents might be locked pending data=ordered completion.
5241 *
5242 * This also copies inline extents directly into the page.
5243 */
d397712b 5244
a52d9a80 5245struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5246 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5247 int create)
5248{
5249 int ret;
5250 int err = 0;
db94535d 5251 u64 bytenr;
a52d9a80
CM
5252 u64 extent_start = 0;
5253 u64 extent_end = 0;
33345d01 5254 u64 objectid = btrfs_ino(inode);
a52d9a80 5255 u32 found_type;
f421950f 5256 struct btrfs_path *path = NULL;
a52d9a80
CM
5257 struct btrfs_root *root = BTRFS_I(inode)->root;
5258 struct btrfs_file_extent_item *item;
5f39d397
CM
5259 struct extent_buffer *leaf;
5260 struct btrfs_key found_key;
a52d9a80
CM
5261 struct extent_map *em = NULL;
5262 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5263 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5264 struct btrfs_trans_handle *trans = NULL;
261507a0 5265 int compress_type;
a52d9a80 5266
a52d9a80 5267again:
890871be 5268 read_lock(&em_tree->lock);
d1310b2e 5269 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5270 if (em)
5271 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5272 read_unlock(&em_tree->lock);
d1310b2e 5273
a52d9a80 5274 if (em) {
e1c4b745
CM
5275 if (em->start > start || em->start + em->len <= start)
5276 free_extent_map(em);
5277 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5278 free_extent_map(em);
5279 else
5280 goto out;
a52d9a80 5281 }
172ddd60 5282 em = alloc_extent_map();
a52d9a80 5283 if (!em) {
d1310b2e
CM
5284 err = -ENOMEM;
5285 goto out;
a52d9a80 5286 }
e6dcd2dc 5287 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5288 em->start = EXTENT_MAP_HOLE;
445a6944 5289 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5290 em->len = (u64)-1;
c8b97818 5291 em->block_len = (u64)-1;
f421950f
CM
5292
5293 if (!path) {
5294 path = btrfs_alloc_path();
026fd317
JB
5295 if (!path) {
5296 err = -ENOMEM;
5297 goto out;
5298 }
5299 /*
5300 * Chances are we'll be called again, so go ahead and do
5301 * readahead
5302 */
5303 path->reada = 1;
f421950f
CM
5304 }
5305
179e29e4
CM
5306 ret = btrfs_lookup_file_extent(trans, root, path,
5307 objectid, start, trans != NULL);
a52d9a80
CM
5308 if (ret < 0) {
5309 err = ret;
5310 goto out;
5311 }
5312
5313 if (ret != 0) {
5314 if (path->slots[0] == 0)
5315 goto not_found;
5316 path->slots[0]--;
5317 }
5318
5f39d397
CM
5319 leaf = path->nodes[0];
5320 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5321 struct btrfs_file_extent_item);
a52d9a80 5322 /* are we inside the extent that was found? */
5f39d397
CM
5323 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5324 found_type = btrfs_key_type(&found_key);
5325 if (found_key.objectid != objectid ||
a52d9a80
CM
5326 found_type != BTRFS_EXTENT_DATA_KEY) {
5327 goto not_found;
5328 }
5329
5f39d397
CM
5330 found_type = btrfs_file_extent_type(leaf, item);
5331 extent_start = found_key.offset;
261507a0 5332 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5333 if (found_type == BTRFS_FILE_EXTENT_REG ||
5334 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5335 extent_end = extent_start +
db94535d 5336 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5337 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5338 size_t size;
5339 size = btrfs_file_extent_inline_len(leaf, item);
5340 extent_end = (extent_start + size + root->sectorsize - 1) &
5341 ~((u64)root->sectorsize - 1);
5342 }
5343
5344 if (start >= extent_end) {
5345 path->slots[0]++;
5346 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5347 ret = btrfs_next_leaf(root, path);
5348 if (ret < 0) {
5349 err = ret;
5350 goto out;
a52d9a80 5351 }
9036c102
YZ
5352 if (ret > 0)
5353 goto not_found;
5354 leaf = path->nodes[0];
a52d9a80 5355 }
9036c102
YZ
5356 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5357 if (found_key.objectid != objectid ||
5358 found_key.type != BTRFS_EXTENT_DATA_KEY)
5359 goto not_found;
5360 if (start + len <= found_key.offset)
5361 goto not_found;
5362 em->start = start;
5363 em->len = found_key.offset - start;
5364 goto not_found_em;
5365 }
5366
d899e052
YZ
5367 if (found_type == BTRFS_FILE_EXTENT_REG ||
5368 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5369 em->start = extent_start;
5370 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5371 em->orig_start = extent_start -
5372 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5373 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5374 if (bytenr == 0) {
5f39d397 5375 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5376 goto insert;
5377 }
261507a0 5378 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5379 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5380 em->compress_type = compress_type;
c8b97818
CM
5381 em->block_start = bytenr;
5382 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5383 item);
5384 } else {
5385 bytenr += btrfs_file_extent_offset(leaf, item);
5386 em->block_start = bytenr;
5387 em->block_len = em->len;
d899e052
YZ
5388 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5389 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5390 }
a52d9a80
CM
5391 goto insert;
5392 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5393 unsigned long ptr;
a52d9a80 5394 char *map;
3326d1b0
CM
5395 size_t size;
5396 size_t extent_offset;
5397 size_t copy_size;
a52d9a80 5398
689f9346 5399 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5400 if (!page || create) {
689f9346 5401 em->start = extent_start;
9036c102 5402 em->len = extent_end - extent_start;
689f9346
Y
5403 goto out;
5404 }
5f39d397 5405
9036c102
YZ
5406 size = btrfs_file_extent_inline_len(leaf, item);
5407 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5408 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5409 size - extent_offset);
3326d1b0 5410 em->start = extent_start + extent_offset;
70dec807
CM
5411 em->len = (copy_size + root->sectorsize - 1) &
5412 ~((u64)root->sectorsize - 1);
ff5b7ee3 5413 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5414 if (compress_type) {
c8b97818 5415 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5416 em->compress_type = compress_type;
5417 }
689f9346 5418 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5419 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5420 if (btrfs_file_extent_compression(leaf, item) !=
5421 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5422 ret = uncompress_inline(path, inode, page,
5423 pg_offset,
5424 extent_offset, item);
79787eaa 5425 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5426 } else {
5427 map = kmap(page);
5428 read_extent_buffer(leaf, map + pg_offset, ptr,
5429 copy_size);
93c82d57
CM
5430 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5431 memset(map + pg_offset + copy_size, 0,
5432 PAGE_CACHE_SIZE - pg_offset -
5433 copy_size);
5434 }
c8b97818
CM
5435 kunmap(page);
5436 }
179e29e4
CM
5437 flush_dcache_page(page);
5438 } else if (create && PageUptodate(page)) {
6bf7e080 5439 BUG();
179e29e4
CM
5440 if (!trans) {
5441 kunmap(page);
5442 free_extent_map(em);
5443 em = NULL;
ff5714cc 5444
b3b4aa74 5445 btrfs_release_path(path);
7a7eaa40 5446 trans = btrfs_join_transaction(root);
ff5714cc 5447
3612b495
TI
5448 if (IS_ERR(trans))
5449 return ERR_CAST(trans);
179e29e4
CM
5450 goto again;
5451 }
c8b97818 5452 map = kmap(page);
70dec807 5453 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5454 copy_size);
c8b97818 5455 kunmap(page);
179e29e4 5456 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5457 }
d1310b2e 5458 set_extent_uptodate(io_tree, em->start,
507903b8 5459 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5460 goto insert;
5461 } else {
31b1a2bd 5462 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5463 }
5464not_found:
5465 em->start = start;
d1310b2e 5466 em->len = len;
a52d9a80 5467not_found_em:
5f39d397 5468 em->block_start = EXTENT_MAP_HOLE;
9036c102 5469 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5470insert:
b3b4aa74 5471 btrfs_release_path(path);
d1310b2e 5472 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5473 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5474 "[%llu %llu]\n", (unsigned long long)em->start,
5475 (unsigned long long)em->len,
5476 (unsigned long long)start,
5477 (unsigned long long)len);
a52d9a80
CM
5478 err = -EIO;
5479 goto out;
5480 }
d1310b2e
CM
5481
5482 err = 0;
890871be 5483 write_lock(&em_tree->lock);
a52d9a80 5484 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5485 /* it is possible that someone inserted the extent into the tree
5486 * while we had the lock dropped. It is also possible that
5487 * an overlapping map exists in the tree
5488 */
a52d9a80 5489 if (ret == -EEXIST) {
3b951516 5490 struct extent_map *existing;
e6dcd2dc
CM
5491
5492 ret = 0;
5493
3b951516 5494 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5495 if (existing && (existing->start > start ||
5496 existing->start + existing->len <= start)) {
5497 free_extent_map(existing);
5498 existing = NULL;
5499 }
3b951516
CM
5500 if (!existing) {
5501 existing = lookup_extent_mapping(em_tree, em->start,
5502 em->len);
5503 if (existing) {
5504 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5505 em, start,
5506 root->sectorsize);
3b951516
CM
5507 free_extent_map(existing);
5508 if (err) {
5509 free_extent_map(em);
5510 em = NULL;
5511 }
5512 } else {
5513 err = -EIO;
3b951516
CM
5514 free_extent_map(em);
5515 em = NULL;
5516 }
5517 } else {
5518 free_extent_map(em);
5519 em = existing;
e6dcd2dc 5520 err = 0;
a52d9a80 5521 }
a52d9a80 5522 }
890871be 5523 write_unlock(&em_tree->lock);
a52d9a80 5524out:
1abe9b8a 5525
f0bd95ea
TI
5526 if (em)
5527 trace_btrfs_get_extent(root, em);
1abe9b8a 5528
f421950f
CM
5529 if (path)
5530 btrfs_free_path(path);
a52d9a80
CM
5531 if (trans) {
5532 ret = btrfs_end_transaction(trans, root);
d397712b 5533 if (!err)
a52d9a80
CM
5534 err = ret;
5535 }
a52d9a80
CM
5536 if (err) {
5537 free_extent_map(em);
a52d9a80
CM
5538 return ERR_PTR(err);
5539 }
79787eaa 5540 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5541 return em;
5542}
5543
ec29ed5b
CM
5544struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5545 size_t pg_offset, u64 start, u64 len,
5546 int create)
5547{
5548 struct extent_map *em;
5549 struct extent_map *hole_em = NULL;
5550 u64 range_start = start;
5551 u64 end;
5552 u64 found;
5553 u64 found_end;
5554 int err = 0;
5555
5556 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5557 if (IS_ERR(em))
5558 return em;
5559 if (em) {
5560 /*
5561 * if our em maps to a hole, there might
5562 * actually be delalloc bytes behind it
5563 */
5564 if (em->block_start != EXTENT_MAP_HOLE)
5565 return em;
5566 else
5567 hole_em = em;
5568 }
5569
5570 /* check to see if we've wrapped (len == -1 or similar) */
5571 end = start + len;
5572 if (end < start)
5573 end = (u64)-1;
5574 else
5575 end -= 1;
5576
5577 em = NULL;
5578
5579 /* ok, we didn't find anything, lets look for delalloc */
5580 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5581 end, len, EXTENT_DELALLOC, 1);
5582 found_end = range_start + found;
5583 if (found_end < range_start)
5584 found_end = (u64)-1;
5585
5586 /*
5587 * we didn't find anything useful, return
5588 * the original results from get_extent()
5589 */
5590 if (range_start > end || found_end <= start) {
5591 em = hole_em;
5592 hole_em = NULL;
5593 goto out;
5594 }
5595
5596 /* adjust the range_start to make sure it doesn't
5597 * go backwards from the start they passed in
5598 */
5599 range_start = max(start,range_start);
5600 found = found_end - range_start;
5601
5602 if (found > 0) {
5603 u64 hole_start = start;
5604 u64 hole_len = len;
5605
172ddd60 5606 em = alloc_extent_map();
ec29ed5b
CM
5607 if (!em) {
5608 err = -ENOMEM;
5609 goto out;
5610 }
5611 /*
5612 * when btrfs_get_extent can't find anything it
5613 * returns one huge hole
5614 *
5615 * make sure what it found really fits our range, and
5616 * adjust to make sure it is based on the start from
5617 * the caller
5618 */
5619 if (hole_em) {
5620 u64 calc_end = extent_map_end(hole_em);
5621
5622 if (calc_end <= start || (hole_em->start > end)) {
5623 free_extent_map(hole_em);
5624 hole_em = NULL;
5625 } else {
5626 hole_start = max(hole_em->start, start);
5627 hole_len = calc_end - hole_start;
5628 }
5629 }
5630 em->bdev = NULL;
5631 if (hole_em && range_start > hole_start) {
5632 /* our hole starts before our delalloc, so we
5633 * have to return just the parts of the hole
5634 * that go until the delalloc starts
5635 */
5636 em->len = min(hole_len,
5637 range_start - hole_start);
5638 em->start = hole_start;
5639 em->orig_start = hole_start;
5640 /*
5641 * don't adjust block start at all,
5642 * it is fixed at EXTENT_MAP_HOLE
5643 */
5644 em->block_start = hole_em->block_start;
5645 em->block_len = hole_len;
5646 } else {
5647 em->start = range_start;
5648 em->len = found;
5649 em->orig_start = range_start;
5650 em->block_start = EXTENT_MAP_DELALLOC;
5651 em->block_len = found;
5652 }
5653 } else if (hole_em) {
5654 return hole_em;
5655 }
5656out:
5657
5658 free_extent_map(hole_em);
5659 if (err) {
5660 free_extent_map(em);
5661 return ERR_PTR(err);
5662 }
5663 return em;
5664}
5665
4b46fce2 5666static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5667 struct extent_map *em,
4b46fce2
JB
5668 u64 start, u64 len)
5669{
5670 struct btrfs_root *root = BTRFS_I(inode)->root;
5671 struct btrfs_trans_handle *trans;
4b46fce2
JB
5672 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5673 struct btrfs_key ins;
5674 u64 alloc_hint;
5675 int ret;
16d299ac 5676 bool insert = false;
4b46fce2 5677
16d299ac
JB
5678 /*
5679 * Ok if the extent map we looked up is a hole and is for the exact
5680 * range we want, there is no reason to allocate a new one, however if
5681 * it is not right then we need to free this one and drop the cache for
5682 * our range.
5683 */
5684 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5685 em->len != len) {
5686 free_extent_map(em);
5687 em = NULL;
5688 insert = true;
5689 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5690 }
4b46fce2 5691
7a7eaa40 5692 trans = btrfs_join_transaction(root);
3612b495
TI
5693 if (IS_ERR(trans))
5694 return ERR_CAST(trans);
4b46fce2 5695
4cb5300b
CM
5696 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5697 btrfs_add_inode_defrag(trans, inode);
5698
4b46fce2
JB
5699 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5700
5701 alloc_hint = get_extent_allocation_hint(inode, start, len);
5702 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5703 alloc_hint, &ins, 1);
4b46fce2
JB
5704 if (ret) {
5705 em = ERR_PTR(ret);
5706 goto out;
5707 }
5708
4b46fce2 5709 if (!em) {
172ddd60 5710 em = alloc_extent_map();
16d299ac
JB
5711 if (!em) {
5712 em = ERR_PTR(-ENOMEM);
5713 goto out;
5714 }
4b46fce2
JB
5715 }
5716
5717 em->start = start;
5718 em->orig_start = em->start;
5719 em->len = ins.offset;
5720
5721 em->block_start = ins.objectid;
5722 em->block_len = ins.offset;
5723 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5724
5725 /*
5726 * We need to do this because if we're using the original em we searched
5727 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5728 */
5729 em->flags = 0;
4b46fce2
JB
5730 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5731
16d299ac 5732 while (insert) {
4b46fce2
JB
5733 write_lock(&em_tree->lock);
5734 ret = add_extent_mapping(em_tree, em);
5735 write_unlock(&em_tree->lock);
5736 if (ret != -EEXIST)
5737 break;
5738 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5739 }
5740
5741 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5742 ins.offset, ins.offset, 0);
5743 if (ret) {
5744 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5745 em = ERR_PTR(ret);
5746 }
5747out:
5748 btrfs_end_transaction(trans, root);
5749 return em;
5750}
5751
46bfbb5c
CM
5752/*
5753 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5754 * block must be cow'd
5755 */
5756static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5757 struct inode *inode, u64 offset, u64 len)
5758{
5759 struct btrfs_path *path;
5760 int ret;
5761 struct extent_buffer *leaf;
5762 struct btrfs_root *root = BTRFS_I(inode)->root;
5763 struct btrfs_file_extent_item *fi;
5764 struct btrfs_key key;
5765 u64 disk_bytenr;
5766 u64 backref_offset;
5767 u64 extent_end;
5768 u64 num_bytes;
5769 int slot;
5770 int found_type;
5771
5772 path = btrfs_alloc_path();
5773 if (!path)
5774 return -ENOMEM;
5775
33345d01 5776 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5777 offset, 0);
5778 if (ret < 0)
5779 goto out;
5780
5781 slot = path->slots[0];
5782 if (ret == 1) {
5783 if (slot == 0) {
5784 /* can't find the item, must cow */
5785 ret = 0;
5786 goto out;
5787 }
5788 slot--;
5789 }
5790 ret = 0;
5791 leaf = path->nodes[0];
5792 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5793 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5794 key.type != BTRFS_EXTENT_DATA_KEY) {
5795 /* not our file or wrong item type, must cow */
5796 goto out;
5797 }
5798
5799 if (key.offset > offset) {
5800 /* Wrong offset, must cow */
5801 goto out;
5802 }
5803
5804 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5805 found_type = btrfs_file_extent_type(leaf, fi);
5806 if (found_type != BTRFS_FILE_EXTENT_REG &&
5807 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5808 /* not a regular extent, must cow */
5809 goto out;
5810 }
5811 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5812 backref_offset = btrfs_file_extent_offset(leaf, fi);
5813
5814 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5815 if (extent_end < offset + len) {
5816 /* extent doesn't include our full range, must cow */
5817 goto out;
5818 }
5819
5820 if (btrfs_extent_readonly(root, disk_bytenr))
5821 goto out;
5822
5823 /*
5824 * look for other files referencing this extent, if we
5825 * find any we must cow
5826 */
33345d01 5827 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5828 key.offset - backref_offset, disk_bytenr))
5829 goto out;
5830
5831 /*
5832 * adjust disk_bytenr and num_bytes to cover just the bytes
5833 * in this extent we are about to write. If there
5834 * are any csums in that range we have to cow in order
5835 * to keep the csums correct
5836 */
5837 disk_bytenr += backref_offset;
5838 disk_bytenr += offset - key.offset;
5839 num_bytes = min(offset + len, extent_end) - offset;
5840 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5841 goto out;
5842 /*
5843 * all of the above have passed, it is safe to overwrite this extent
5844 * without cow
5845 */
5846 ret = 1;
5847out:
5848 btrfs_free_path(path);
5849 return ret;
5850}
5851
eb838e73
JB
5852static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5853 struct extent_state **cached_state, int writing)
5854{
5855 struct btrfs_ordered_extent *ordered;
5856 int ret = 0;
5857
5858 while (1) {
5859 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5860 0, cached_state);
5861 /*
5862 * We're concerned with the entire range that we're going to be
5863 * doing DIO to, so we need to make sure theres no ordered
5864 * extents in this range.
5865 */
5866 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5867 lockend - lockstart + 1);
5868
5869 /*
5870 * We need to make sure there are no buffered pages in this
5871 * range either, we could have raced between the invalidate in
5872 * generic_file_direct_write and locking the extent. The
5873 * invalidate needs to happen so that reads after a write do not
5874 * get stale data.
5875 */
5876 if (!ordered && (!writing ||
5877 !test_range_bit(&BTRFS_I(inode)->io_tree,
5878 lockstart, lockend, EXTENT_UPTODATE, 0,
5879 *cached_state)))
5880 break;
5881
5882 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5883 cached_state, GFP_NOFS);
5884
5885 if (ordered) {
5886 btrfs_start_ordered_extent(inode, ordered, 1);
5887 btrfs_put_ordered_extent(ordered);
5888 } else {
5889 /* Screw you mmap */
5890 ret = filemap_write_and_wait_range(inode->i_mapping,
5891 lockstart,
5892 lockend);
5893 if (ret)
5894 break;
5895
5896 /*
5897 * If we found a page that couldn't be invalidated just
5898 * fall back to buffered.
5899 */
5900 ret = invalidate_inode_pages2_range(inode->i_mapping,
5901 lockstart >> PAGE_CACHE_SHIFT,
5902 lockend >> PAGE_CACHE_SHIFT);
5903 if (ret)
5904 break;
5905 }
5906
5907 cond_resched();
5908 }
5909
5910 return ret;
5911}
5912
69ffb543
JB
5913static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5914 u64 len, u64 orig_start,
5915 u64 block_start, u64 block_len,
5916 int type)
5917{
5918 struct extent_map_tree *em_tree;
5919 struct extent_map *em;
5920 struct btrfs_root *root = BTRFS_I(inode)->root;
5921 int ret;
5922
5923 em_tree = &BTRFS_I(inode)->extent_tree;
5924 em = alloc_extent_map();
5925 if (!em)
5926 return ERR_PTR(-ENOMEM);
5927
5928 em->start = start;
5929 em->orig_start = orig_start;
5930 em->len = len;
5931 em->block_len = block_len;
5932 em->block_start = block_start;
5933 em->bdev = root->fs_info->fs_devices->latest_bdev;
5934 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5935 if (type == BTRFS_ORDERED_PREALLOC)
5936 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5937
5938 do {
5939 btrfs_drop_extent_cache(inode, em->start,
5940 em->start + em->len - 1, 0);
5941 write_lock(&em_tree->lock);
5942 ret = add_extent_mapping(em_tree, em);
5943 write_unlock(&em_tree->lock);
5944 } while (ret == -EEXIST);
5945
5946 if (ret) {
5947 free_extent_map(em);
5948 return ERR_PTR(ret);
5949 }
5950
5951 return em;
5952}
5953
5954
4b46fce2
JB
5955static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5956 struct buffer_head *bh_result, int create)
5957{
5958 struct extent_map *em;
5959 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 5960 struct extent_state *cached_state = NULL;
4b46fce2 5961 u64 start = iblock << inode->i_blkbits;
eb838e73 5962 u64 lockstart, lockend;
4b46fce2 5963 u64 len = bh_result->b_size;
46bfbb5c 5964 struct btrfs_trans_handle *trans;
eb838e73
JB
5965 int unlock_bits = EXTENT_LOCKED;
5966 int ret;
5967
eb838e73
JB
5968 if (create) {
5969 ret = btrfs_delalloc_reserve_space(inode, len);
5970 if (ret)
5971 return ret;
5972 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
c329861d
JB
5973 } else {
5974 len = min_t(u64, len, root->sectorsize);
eb838e73
JB
5975 }
5976
c329861d
JB
5977 lockstart = start;
5978 lockend = start + len - 1;
5979
eb838e73
JB
5980 /*
5981 * If this errors out it's because we couldn't invalidate pagecache for
5982 * this range and we need to fallback to buffered.
5983 */
5984 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5985 return -ENOTBLK;
5986
5987 if (create) {
5988 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5989 lockend, EXTENT_DELALLOC, NULL,
5990 &cached_state, GFP_NOFS);
5991 if (ret)
5992 goto unlock_err;
5993 }
4b46fce2
JB
5994
5995 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
5996 if (IS_ERR(em)) {
5997 ret = PTR_ERR(em);
5998 goto unlock_err;
5999 }
4b46fce2
JB
6000
6001 /*
6002 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6003 * io. INLINE is special, and we could probably kludge it in here, but
6004 * it's still buffered so for safety lets just fall back to the generic
6005 * buffered path.
6006 *
6007 * For COMPRESSED we _have_ to read the entire extent in so we can
6008 * decompress it, so there will be buffering required no matter what we
6009 * do, so go ahead and fallback to buffered.
6010 *
6011 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6012 * to buffered IO. Don't blame me, this is the price we pay for using
6013 * the generic code.
6014 */
6015 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6016 em->block_start == EXTENT_MAP_INLINE) {
6017 free_extent_map(em);
eb838e73
JB
6018 ret = -ENOTBLK;
6019 goto unlock_err;
4b46fce2
JB
6020 }
6021
6022 /* Just a good old fashioned hole, return */
6023 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6024 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6025 free_extent_map(em);
eb838e73
JB
6026 ret = 0;
6027 goto unlock_err;
4b46fce2
JB
6028 }
6029
6030 /*
6031 * We don't allocate a new extent in the following cases
6032 *
6033 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6034 * existing extent.
6035 * 2) The extent is marked as PREALLOC. We're good to go here and can
6036 * just use the extent.
6037 *
6038 */
46bfbb5c 6039 if (!create) {
eb838e73
JB
6040 len = min(len, em->len - (start - em->start));
6041 lockstart = start + len;
6042 goto unlock;
46bfbb5c 6043 }
4b46fce2
JB
6044
6045 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6046 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6047 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6048 int type;
6049 int ret;
46bfbb5c 6050 u64 block_start;
4b46fce2
JB
6051
6052 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6053 type = BTRFS_ORDERED_PREALLOC;
6054 else
6055 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6056 len = min(len, em->len - (start - em->start));
4b46fce2 6057 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6058
6059 /*
6060 * we're not going to log anything, but we do need
6061 * to make sure the current transaction stays open
6062 * while we look for nocow cross refs
6063 */
7a7eaa40 6064 trans = btrfs_join_transaction(root);
3612b495 6065 if (IS_ERR(trans))
46bfbb5c
CM
6066 goto must_cow;
6067
6068 if (can_nocow_odirect(trans, inode, start, len) == 1) {
69ffb543
JB
6069 u64 orig_start = em->start;
6070
6071 if (type == BTRFS_ORDERED_PREALLOC) {
6072 free_extent_map(em);
6073 em = create_pinned_em(inode, start, len,
6074 orig_start,
6075 block_start, len, type);
6076 if (IS_ERR(em)) {
6077 btrfs_end_transaction(trans, root);
6078 goto unlock_err;
6079 }
6080 }
6081
46bfbb5c
CM
6082 ret = btrfs_add_ordered_extent_dio(inode, start,
6083 block_start, len, len, type);
6084 btrfs_end_transaction(trans, root);
6085 if (ret) {
6086 free_extent_map(em);
eb838e73 6087 goto unlock_err;
46bfbb5c
CM
6088 }
6089 goto unlock;
4b46fce2 6090 }
46bfbb5c 6091 btrfs_end_transaction(trans, root);
4b46fce2 6092 }
46bfbb5c
CM
6093must_cow:
6094 /*
6095 * this will cow the extent, reset the len in case we changed
6096 * it above
6097 */
6098 len = bh_result->b_size;
16d299ac 6099 em = btrfs_new_extent_direct(inode, em, start, len);
eb838e73
JB
6100 if (IS_ERR(em)) {
6101 ret = PTR_ERR(em);
6102 goto unlock_err;
6103 }
46bfbb5c
CM
6104 len = min(len, em->len - (start - em->start));
6105unlock:
4b46fce2
JB
6106 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6107 inode->i_blkbits;
46bfbb5c 6108 bh_result->b_size = len;
4b46fce2
JB
6109 bh_result->b_bdev = em->bdev;
6110 set_buffer_mapped(bh_result);
c3473e83
JB
6111 if (create) {
6112 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6113 set_buffer_new(bh_result);
6114
6115 /*
6116 * Need to update the i_size under the extent lock so buffered
6117 * readers will get the updated i_size when we unlock.
6118 */
6119 if (start + len > i_size_read(inode))
6120 i_size_write(inode, start + len);
6121 }
4b46fce2 6122
eb838e73
JB
6123 /*
6124 * In the case of write we need to clear and unlock the entire range,
6125 * in the case of read we need to unlock only the end area that we
6126 * aren't using if there is any left over space.
6127 */
24c03fa5
LB
6128 if (lockstart < lockend) {
6129 if (create && len < lockend - lockstart) {
6130 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
9e8a4a8b
LB
6131 lockstart + len - 1,
6132 unlock_bits | EXTENT_DEFRAG, 1, 0,
24c03fa5
LB
6133 &cached_state, GFP_NOFS);
6134 /*
6135 * Beside unlock, we also need to cleanup reserved space
6136 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6137 */
6138 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6139 lockstart + len, lockend,
9e8a4a8b
LB
6140 unlock_bits | EXTENT_DO_ACCOUNTING |
6141 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
24c03fa5
LB
6142 } else {
6143 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6144 lockend, unlock_bits, 1, 0,
6145 &cached_state, GFP_NOFS);
6146 }
6147 } else {
eb838e73 6148 free_extent_state(cached_state);
24c03fa5 6149 }
eb838e73 6150
4b46fce2
JB
6151 free_extent_map(em);
6152
6153 return 0;
eb838e73
JB
6154
6155unlock_err:
6156 if (create)
6157 unlock_bits |= EXTENT_DO_ACCOUNTING;
6158
6159 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6160 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6161 return ret;
4b46fce2
JB
6162}
6163
6164struct btrfs_dio_private {
6165 struct inode *inode;
6166 u64 logical_offset;
6167 u64 disk_bytenr;
6168 u64 bytes;
4b46fce2 6169 void *private;
e65e1535
MX
6170
6171 /* number of bios pending for this dio */
6172 atomic_t pending_bios;
6173
6174 /* IO errors */
6175 int errors;
6176
6177 struct bio *orig_bio;
4b46fce2
JB
6178};
6179
6180static void btrfs_endio_direct_read(struct bio *bio, int err)
6181{
e65e1535 6182 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6183 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6184 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6185 struct inode *inode = dip->inode;
6186 struct btrfs_root *root = BTRFS_I(inode)->root;
6187 u64 start;
4b46fce2
JB
6188
6189 start = dip->logical_offset;
6190 do {
6191 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6192 struct page *page = bvec->bv_page;
6193 char *kaddr;
6194 u32 csum = ~(u32)0;
c329861d 6195 u64 private = ~(u32)0;
4b46fce2
JB
6196 unsigned long flags;
6197
c329861d
JB
6198 if (get_state_private(&BTRFS_I(inode)->io_tree,
6199 start, &private))
6200 goto failed;
4b46fce2 6201 local_irq_save(flags);
7ac687d9 6202 kaddr = kmap_atomic(page);
4b46fce2
JB
6203 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6204 csum, bvec->bv_len);
6205 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6206 kunmap_atomic(kaddr);
4b46fce2
JB
6207 local_irq_restore(flags);
6208
6209 flush_dcache_page(bvec->bv_page);
c329861d
JB
6210 if (csum != private) {
6211failed:
33345d01 6212 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 6213 " %llu csum %u private %u\n",
33345d01
LZ
6214 (unsigned long long)btrfs_ino(inode),
6215 (unsigned long long)start,
c329861d 6216 csum, (unsigned)private);
4b46fce2
JB
6217 err = -EIO;
6218 }
6219 }
6220
6221 start += bvec->bv_len;
4b46fce2
JB
6222 bvec++;
6223 } while (bvec <= bvec_end);
6224
6225 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6226 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
6227 bio->bi_private = dip->private;
6228
4b46fce2 6229 kfree(dip);
c0da7aa1
JB
6230
6231 /* If we had a csum failure make sure to clear the uptodate flag */
6232 if (err)
6233 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6234 dio_end_io(bio, err);
6235}
6236
6237static void btrfs_endio_direct_write(struct bio *bio, int err)
6238{
6239 struct btrfs_dio_private *dip = bio->bi_private;
6240 struct inode *inode = dip->inode;
6241 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6242 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6243 u64 ordered_offset = dip->logical_offset;
6244 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
6245 int ret;
6246
6247 if (err)
6248 goto out_done;
163cf09c
CM
6249again:
6250 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6251 &ordered_offset,
5fd02043 6252 ordered_bytes, !err);
4b46fce2 6253 if (!ret)
163cf09c 6254 goto out_test;
4b46fce2 6255
5fd02043
JB
6256 ordered->work.func = finish_ordered_fn;
6257 ordered->work.flags = 0;
6258 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6259 &ordered->work);
163cf09c
CM
6260out_test:
6261 /*
6262 * our bio might span multiple ordered extents. If we haven't
6263 * completed the accounting for the whole dio, go back and try again
6264 */
6265 if (ordered_offset < dip->logical_offset + dip->bytes) {
6266 ordered_bytes = dip->logical_offset + dip->bytes -
6267 ordered_offset;
5fd02043 6268 ordered = NULL;
163cf09c
CM
6269 goto again;
6270 }
4b46fce2
JB
6271out_done:
6272 bio->bi_private = dip->private;
6273
4b46fce2 6274 kfree(dip);
c0da7aa1
JB
6275
6276 /* If we had an error make sure to clear the uptodate flag */
6277 if (err)
6278 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6279 dio_end_io(bio, err);
6280}
6281
eaf25d93
CM
6282static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6283 struct bio *bio, int mirror_num,
6284 unsigned long bio_flags, u64 offset)
6285{
6286 int ret;
6287 struct btrfs_root *root = BTRFS_I(inode)->root;
6288 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6289 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6290 return 0;
6291}
6292
e65e1535
MX
6293static void btrfs_end_dio_bio(struct bio *bio, int err)
6294{
6295 struct btrfs_dio_private *dip = bio->bi_private;
6296
6297 if (err) {
33345d01 6298 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6299 "sector %#Lx len %u err no %d\n",
33345d01 6300 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6301 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6302 dip->errors = 1;
6303
6304 /*
6305 * before atomic variable goto zero, we must make sure
6306 * dip->errors is perceived to be set.
6307 */
6308 smp_mb__before_atomic_dec();
6309 }
6310
6311 /* if there are more bios still pending for this dio, just exit */
6312 if (!atomic_dec_and_test(&dip->pending_bios))
6313 goto out;
6314
6315 if (dip->errors)
6316 bio_io_error(dip->orig_bio);
6317 else {
6318 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6319 bio_endio(dip->orig_bio, 0);
6320 }
6321out:
6322 bio_put(bio);
6323}
6324
6325static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6326 u64 first_sector, gfp_t gfp_flags)
6327{
6328 int nr_vecs = bio_get_nr_vecs(bdev);
6329 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6330}
6331
6332static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6333 int rw, u64 file_offset, int skip_sum,
c329861d 6334 int async_submit)
e65e1535
MX
6335{
6336 int write = rw & REQ_WRITE;
6337 struct btrfs_root *root = BTRFS_I(inode)->root;
6338 int ret;
6339
6340 bio_get(bio);
5fd02043
JB
6341
6342 if (!write) {
6343 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6344 if (ret)
6345 goto err;
6346 }
e65e1535 6347
1ae39938
JB
6348 if (skip_sum)
6349 goto map;
6350
6351 if (write && async_submit) {
e65e1535
MX
6352 ret = btrfs_wq_submit_bio(root->fs_info,
6353 inode, rw, bio, 0, 0,
6354 file_offset,
6355 __btrfs_submit_bio_start_direct_io,
6356 __btrfs_submit_bio_done);
6357 goto err;
1ae39938
JB
6358 } else if (write) {
6359 /*
6360 * If we aren't doing async submit, calculate the csum of the
6361 * bio now.
6362 */
6363 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6364 if (ret)
6365 goto err;
c2db1073 6366 } else if (!skip_sum) {
c329861d 6367 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
6368 if (ret)
6369 goto err;
6370 }
e65e1535 6371
1ae39938
JB
6372map:
6373 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6374err:
6375 bio_put(bio);
6376 return ret;
6377}
6378
6379static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6380 int skip_sum)
6381{
6382 struct inode *inode = dip->inode;
6383 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6384 struct bio *bio;
6385 struct bio *orig_bio = dip->orig_bio;
6386 struct bio_vec *bvec = orig_bio->bi_io_vec;
6387 u64 start_sector = orig_bio->bi_sector;
6388 u64 file_offset = dip->logical_offset;
6389 u64 submit_len = 0;
6390 u64 map_length;
6391 int nr_pages = 0;
e65e1535 6392 int ret = 0;
1ae39938 6393 int async_submit = 0;
e65e1535 6394
e65e1535 6395 map_length = orig_bio->bi_size;
3ec706c8 6396 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
e65e1535
MX
6397 &map_length, NULL, 0);
6398 if (ret) {
64728bbb 6399 bio_put(orig_bio);
e65e1535
MX
6400 return -EIO;
6401 }
6402
02f57c7a
JB
6403 if (map_length >= orig_bio->bi_size) {
6404 bio = orig_bio;
6405 goto submit;
6406 }
6407
1ae39938 6408 async_submit = 1;
02f57c7a
JB
6409 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6410 if (!bio)
6411 return -ENOMEM;
6412 bio->bi_private = dip;
6413 bio->bi_end_io = btrfs_end_dio_bio;
6414 atomic_inc(&dip->pending_bios);
6415
e65e1535
MX
6416 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6417 if (unlikely(map_length < submit_len + bvec->bv_len ||
6418 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6419 bvec->bv_offset) < bvec->bv_len)) {
6420 /*
6421 * inc the count before we submit the bio so
6422 * we know the end IO handler won't happen before
6423 * we inc the count. Otherwise, the dip might get freed
6424 * before we're done setting it up
6425 */
6426 atomic_inc(&dip->pending_bios);
6427 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6428 file_offset, skip_sum,
c329861d 6429 async_submit);
e65e1535
MX
6430 if (ret) {
6431 bio_put(bio);
6432 atomic_dec(&dip->pending_bios);
6433 goto out_err;
6434 }
6435
e65e1535
MX
6436 start_sector += submit_len >> 9;
6437 file_offset += submit_len;
6438
6439 submit_len = 0;
6440 nr_pages = 0;
6441
6442 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6443 start_sector, GFP_NOFS);
6444 if (!bio)
6445 goto out_err;
6446 bio->bi_private = dip;
6447 bio->bi_end_io = btrfs_end_dio_bio;
6448
6449 map_length = orig_bio->bi_size;
3ec706c8
SB
6450 ret = btrfs_map_block(root->fs_info, READ,
6451 start_sector << 9,
e65e1535
MX
6452 &map_length, NULL, 0);
6453 if (ret) {
6454 bio_put(bio);
6455 goto out_err;
6456 }
6457 } else {
6458 submit_len += bvec->bv_len;
6459 nr_pages ++;
6460 bvec++;
6461 }
6462 }
6463
02f57c7a 6464submit:
e65e1535 6465 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 6466 async_submit);
e65e1535
MX
6467 if (!ret)
6468 return 0;
6469
6470 bio_put(bio);
6471out_err:
6472 dip->errors = 1;
6473 /*
6474 * before atomic variable goto zero, we must
6475 * make sure dip->errors is perceived to be set.
6476 */
6477 smp_mb__before_atomic_dec();
6478 if (atomic_dec_and_test(&dip->pending_bios))
6479 bio_io_error(dip->orig_bio);
6480
6481 /* bio_end_io() will handle error, so we needn't return it */
6482 return 0;
6483}
6484
4b46fce2
JB
6485static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6486 loff_t file_offset)
6487{
6488 struct btrfs_root *root = BTRFS_I(inode)->root;
6489 struct btrfs_dio_private *dip;
6490 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6491 int skip_sum;
7b6d91da 6492 int write = rw & REQ_WRITE;
4b46fce2
JB
6493 int ret = 0;
6494
6495 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6496
6497 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6498 if (!dip) {
6499 ret = -ENOMEM;
6500 goto free_ordered;
6501 }
4b46fce2
JB
6502
6503 dip->private = bio->bi_private;
6504 dip->inode = inode;
6505 dip->logical_offset = file_offset;
6506
4b46fce2
JB
6507 dip->bytes = 0;
6508 do {
6509 dip->bytes += bvec->bv_len;
6510 bvec++;
6511 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6512
46bfbb5c 6513 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6514 bio->bi_private = dip;
e65e1535
MX
6515 dip->errors = 0;
6516 dip->orig_bio = bio;
6517 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6518
6519 if (write)
6520 bio->bi_end_io = btrfs_endio_direct_write;
6521 else
6522 bio->bi_end_io = btrfs_endio_direct_read;
6523
e65e1535
MX
6524 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6525 if (!ret)
eaf25d93 6526 return;
4b46fce2
JB
6527free_ordered:
6528 /*
6529 * If this is a write, we need to clean up the reserved space and kill
6530 * the ordered extent.
6531 */
6532 if (write) {
6533 struct btrfs_ordered_extent *ordered;
955256f2 6534 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6535 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6536 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6537 btrfs_free_reserved_extent(root, ordered->start,
6538 ordered->disk_len);
6539 btrfs_put_ordered_extent(ordered);
6540 btrfs_put_ordered_extent(ordered);
6541 }
6542 bio_endio(bio, ret);
6543}
6544
5a5f79b5
CM
6545static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6546 const struct iovec *iov, loff_t offset,
6547 unsigned long nr_segs)
6548{
6549 int seg;
a1b75f7d 6550 int i;
5a5f79b5
CM
6551 size_t size;
6552 unsigned long addr;
6553 unsigned blocksize_mask = root->sectorsize - 1;
6554 ssize_t retval = -EINVAL;
6555 loff_t end = offset;
6556
6557 if (offset & blocksize_mask)
6558 goto out;
6559
6560 /* Check the memory alignment. Blocks cannot straddle pages */
6561 for (seg = 0; seg < nr_segs; seg++) {
6562 addr = (unsigned long)iov[seg].iov_base;
6563 size = iov[seg].iov_len;
6564 end += size;
a1b75f7d 6565 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6566 goto out;
a1b75f7d
JB
6567
6568 /* If this is a write we don't need to check anymore */
6569 if (rw & WRITE)
6570 continue;
6571
6572 /*
6573 * Check to make sure we don't have duplicate iov_base's in this
6574 * iovec, if so return EINVAL, otherwise we'll get csum errors
6575 * when reading back.
6576 */
6577 for (i = seg + 1; i < nr_segs; i++) {
6578 if (iov[seg].iov_base == iov[i].iov_base)
6579 goto out;
6580 }
5a5f79b5
CM
6581 }
6582 retval = 0;
6583out:
6584 return retval;
6585}
eb838e73 6586
16432985
CM
6587static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6588 const struct iovec *iov, loff_t offset,
6589 unsigned long nr_segs)
6590{
4b46fce2
JB
6591 struct file *file = iocb->ki_filp;
6592 struct inode *inode = file->f_mapping->host;
4b46fce2 6593
5a5f79b5 6594 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 6595 offset, nr_segs))
5a5f79b5 6596 return 0;
3f7c579c 6597
eb838e73 6598 return __blockdev_direct_IO(rw, iocb, inode,
5a5f79b5
CM
6599 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6600 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6601 btrfs_submit_direct, 0);
16432985
CM
6602}
6603
05dadc09
TI
6604#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6605
1506fcc8
YS
6606static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6607 __u64 start, __u64 len)
6608{
05dadc09
TI
6609 int ret;
6610
6611 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
6612 if (ret)
6613 return ret;
6614
ec29ed5b 6615 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6616}
6617
a52d9a80 6618int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6619{
d1310b2e
CM
6620 struct extent_io_tree *tree;
6621 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6622 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6623}
1832a6d5 6624
a52d9a80 6625static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6626{
d1310b2e 6627 struct extent_io_tree *tree;
b888db2b
CM
6628
6629
6630 if (current->flags & PF_MEMALLOC) {
6631 redirty_page_for_writepage(wbc, page);
6632 unlock_page(page);
6633 return 0;
6634 }
d1310b2e 6635 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6636 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6637}
6638
f421950f
CM
6639int btrfs_writepages(struct address_space *mapping,
6640 struct writeback_control *wbc)
b293f02e 6641{
d1310b2e 6642 struct extent_io_tree *tree;
771ed689 6643
d1310b2e 6644 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6645 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6646}
6647
3ab2fb5a
CM
6648static int
6649btrfs_readpages(struct file *file, struct address_space *mapping,
6650 struct list_head *pages, unsigned nr_pages)
6651{
d1310b2e
CM
6652 struct extent_io_tree *tree;
6653 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6654 return extent_readpages(tree, mapping, pages, nr_pages,
6655 btrfs_get_extent);
6656}
e6dcd2dc 6657static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6658{
d1310b2e
CM
6659 struct extent_io_tree *tree;
6660 struct extent_map_tree *map;
a52d9a80 6661 int ret;
8c2383c3 6662
d1310b2e
CM
6663 tree = &BTRFS_I(page->mapping->host)->io_tree;
6664 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6665 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6666 if (ret == 1) {
6667 ClearPagePrivate(page);
6668 set_page_private(page, 0);
6669 page_cache_release(page);
39279cc3 6670 }
a52d9a80 6671 return ret;
39279cc3
CM
6672}
6673
e6dcd2dc
CM
6674static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6675{
98509cfc
CM
6676 if (PageWriteback(page) || PageDirty(page))
6677 return 0;
b335b003 6678 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6679}
6680
a52d9a80 6681static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6682{
5fd02043 6683 struct inode *inode = page->mapping->host;
d1310b2e 6684 struct extent_io_tree *tree;
e6dcd2dc 6685 struct btrfs_ordered_extent *ordered;
2ac55d41 6686 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6687 u64 page_start = page_offset(page);
6688 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6689
8b62b72b
CM
6690 /*
6691 * we have the page locked, so new writeback can't start,
6692 * and the dirty bit won't be cleared while we are here.
6693 *
6694 * Wait for IO on this page so that we can safely clear
6695 * the PagePrivate2 bit and do ordered accounting
6696 */
e6dcd2dc 6697 wait_on_page_writeback(page);
8b62b72b 6698
5fd02043 6699 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
6700 if (offset) {
6701 btrfs_releasepage(page, GFP_NOFS);
6702 return;
6703 }
d0082371 6704 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
5fd02043 6705 ordered = btrfs_lookup_ordered_extent(inode,
e6dcd2dc
CM
6706 page_offset(page));
6707 if (ordered) {
eb84ae03
CM
6708 /*
6709 * IO on this page will never be started, so we need
6710 * to account for any ordered extents now
6711 */
e6dcd2dc
CM
6712 clear_extent_bit(tree, page_start, page_end,
6713 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6714 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6715 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
6716 /*
6717 * whoever cleared the private bit is responsible
6718 * for the finish_ordered_io
6719 */
5fd02043
JB
6720 if (TestClearPagePrivate2(page) &&
6721 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6722 PAGE_CACHE_SIZE, 1)) {
6723 btrfs_finish_ordered_io(ordered);
8b62b72b 6724 }
e6dcd2dc 6725 btrfs_put_ordered_extent(ordered);
2ac55d41 6726 cached_state = NULL;
d0082371 6727 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6728 }
6729 clear_extent_bit(tree, page_start, page_end,
32c00aff 6730 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
6731 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6732 &cached_state, GFP_NOFS);
e6dcd2dc
CM
6733 __btrfs_releasepage(page, GFP_NOFS);
6734
4a096752 6735 ClearPageChecked(page);
9ad6b7bc 6736 if (PagePrivate(page)) {
9ad6b7bc
CM
6737 ClearPagePrivate(page);
6738 set_page_private(page, 0);
6739 page_cache_release(page);
6740 }
39279cc3
CM
6741}
6742
9ebefb18
CM
6743/*
6744 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6745 * called from a page fault handler when a page is first dirtied. Hence we must
6746 * be careful to check for EOF conditions here. We set the page up correctly
6747 * for a written page which means we get ENOSPC checking when writing into
6748 * holes and correct delalloc and unwritten extent mapping on filesystems that
6749 * support these features.
6750 *
6751 * We are not allowed to take the i_mutex here so we have to play games to
6752 * protect against truncate races as the page could now be beyond EOF. Because
6753 * vmtruncate() writes the inode size before removing pages, once we have the
6754 * page lock we can determine safely if the page is beyond EOF. If it is not
6755 * beyond EOF, then the page is guaranteed safe against truncation until we
6756 * unlock the page.
6757 */
c2ec175c 6758int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6759{
c2ec175c 6760 struct page *page = vmf->page;
6da6abae 6761 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6762 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6763 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6764 struct btrfs_ordered_extent *ordered;
2ac55d41 6765 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6766 char *kaddr;
6767 unsigned long zero_start;
9ebefb18 6768 loff_t size;
1832a6d5 6769 int ret;
9998eb70 6770 int reserved = 0;
a52d9a80 6771 u64 page_start;
e6dcd2dc 6772 u64 page_end;
9ebefb18 6773
b2b5ef5c 6774 sb_start_pagefault(inode->i_sb);
0ca1f7ce 6775 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6776 if (!ret) {
e41f941a 6777 ret = file_update_time(vma->vm_file);
9998eb70
CM
6778 reserved = 1;
6779 }
56a76f82
NP
6780 if (ret) {
6781 if (ret == -ENOMEM)
6782 ret = VM_FAULT_OOM;
6783 else /* -ENOSPC, -EIO, etc */
6784 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6785 if (reserved)
6786 goto out;
6787 goto out_noreserve;
56a76f82 6788 }
1832a6d5 6789
56a76f82 6790 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6791again:
9ebefb18 6792 lock_page(page);
9ebefb18 6793 size = i_size_read(inode);
e6dcd2dc
CM
6794 page_start = page_offset(page);
6795 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6796
9ebefb18 6797 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6798 (page_start >= size)) {
9ebefb18
CM
6799 /* page got truncated out from underneath us */
6800 goto out_unlock;
6801 }
e6dcd2dc
CM
6802 wait_on_page_writeback(page);
6803
d0082371 6804 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6805 set_page_extent_mapped(page);
6806
eb84ae03
CM
6807 /*
6808 * we can't set the delalloc bits if there are pending ordered
6809 * extents. Drop our locks and wait for them to finish
6810 */
e6dcd2dc
CM
6811 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6812 if (ordered) {
2ac55d41
JB
6813 unlock_extent_cached(io_tree, page_start, page_end,
6814 &cached_state, GFP_NOFS);
e6dcd2dc 6815 unlock_page(page);
eb84ae03 6816 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6817 btrfs_put_ordered_extent(ordered);
6818 goto again;
6819 }
6820
fbf19087
JB
6821 /*
6822 * XXX - page_mkwrite gets called every time the page is dirtied, even
6823 * if it was already dirty, so for space accounting reasons we need to
6824 * clear any delalloc bits for the range we are fixing to save. There
6825 * is probably a better way to do this, but for now keep consistent with
6826 * prepare_pages in the normal write path.
6827 */
2ac55d41 6828 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
6829 EXTENT_DIRTY | EXTENT_DELALLOC |
6830 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 6831 0, 0, &cached_state, GFP_NOFS);
fbf19087 6832
2ac55d41
JB
6833 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6834 &cached_state);
9ed74f2d 6835 if (ret) {
2ac55d41
JB
6836 unlock_extent_cached(io_tree, page_start, page_end,
6837 &cached_state, GFP_NOFS);
9ed74f2d
JB
6838 ret = VM_FAULT_SIGBUS;
6839 goto out_unlock;
6840 }
e6dcd2dc 6841 ret = 0;
9ebefb18
CM
6842
6843 /* page is wholly or partially inside EOF */
a52d9a80 6844 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6845 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6846 else
e6dcd2dc 6847 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6848
e6dcd2dc
CM
6849 if (zero_start != PAGE_CACHE_SIZE) {
6850 kaddr = kmap(page);
6851 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6852 flush_dcache_page(page);
6853 kunmap(page);
6854 }
247e743c 6855 ClearPageChecked(page);
e6dcd2dc 6856 set_page_dirty(page);
50a9b214 6857 SetPageUptodate(page);
5a3f23d5 6858
257c62e1
CM
6859 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6860 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 6861 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 6862
2ac55d41 6863 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6864
6865out_unlock:
b2b5ef5c
JK
6866 if (!ret) {
6867 sb_end_pagefault(inode->i_sb);
50a9b214 6868 return VM_FAULT_LOCKED;
b2b5ef5c 6869 }
9ebefb18 6870 unlock_page(page);
1832a6d5 6871out:
ec39e180 6872 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6873out_noreserve:
b2b5ef5c 6874 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
6875 return ret;
6876}
6877
a41ad394 6878static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6879{
6880 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6881 struct btrfs_block_rsv *rsv;
39279cc3 6882 int ret;
3893e33b 6883 int err = 0;
39279cc3 6884 struct btrfs_trans_handle *trans;
dbe674a9 6885 u64 mask = root->sectorsize - 1;
07127184 6886 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6887
2aaa6655 6888 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
5d5e103a 6889 if (ret)
a41ad394 6890 return ret;
8082510e 6891
4a096752 6892 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6893 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6894
fcb80c2a
JB
6895 /*
6896 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6897 * 3 things going on here
6898 *
6899 * 1) We need to reserve space for our orphan item and the space to
6900 * delete our orphan item. Lord knows we don't want to have a dangling
6901 * orphan item because we didn't reserve space to remove it.
6902 *
6903 * 2) We need to reserve space to update our inode.
6904 *
6905 * 3) We need to have something to cache all the space that is going to
6906 * be free'd up by the truncate operation, but also have some slack
6907 * space reserved in case it uses space during the truncate (thank you
6908 * very much snapshotting).
6909 *
6910 * And we need these to all be seperate. The fact is we can use alot of
6911 * space doing the truncate, and we have no earthly idea how much space
6912 * we will use, so we need the truncate reservation to be seperate so it
6913 * doesn't end up using space reserved for updating the inode or
6914 * removing the orphan item. We also need to be able to stop the
6915 * transaction and start a new one, which means we need to be able to
6916 * update the inode several times, and we have no idea of knowing how
6917 * many times that will be, so we can't just reserve 1 item for the
6918 * entirety of the opration, so that has to be done seperately as well.
6919 * Then there is the orphan item, which does indeed need to be held on
6920 * to for the whole operation, and we need nobody to touch this reserved
6921 * space except the orphan code.
6922 *
6923 * So that leaves us with
6924 *
6925 * 1) root->orphan_block_rsv - for the orphan deletion.
6926 * 2) rsv - for the truncate reservation, which we will steal from the
6927 * transaction reservation.
6928 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6929 * updating the inode.
6930 */
66d8f3dd 6931 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
6932 if (!rsv)
6933 return -ENOMEM;
4a338542 6934 rsv->size = min_size;
ca7e70f5 6935 rsv->failfast = 1;
f0cd846e 6936
907cbceb 6937 /*
07127184 6938 * 1 for the truncate slack space
907cbceb
JB
6939 * 1 for the orphan item we're going to add
6940 * 1 for the orphan item deletion
6941 * 1 for updating the inode.
6942 */
fcb80c2a
JB
6943 trans = btrfs_start_transaction(root, 4);
6944 if (IS_ERR(trans)) {
6945 err = PTR_ERR(trans);
6946 goto out;
6947 }
f0cd846e 6948
907cbceb
JB
6949 /* Migrate the slack space for the truncate to our reserve */
6950 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6951 min_size);
fcb80c2a 6952 BUG_ON(ret);
f0cd846e
JB
6953
6954 ret = btrfs_orphan_add(trans, inode);
6955 if (ret) {
6956 btrfs_end_transaction(trans, root);
fcb80c2a 6957 goto out;
f0cd846e
JB
6958 }
6959
5a3f23d5
CM
6960 /*
6961 * setattr is responsible for setting the ordered_data_close flag,
6962 * but that is only tested during the last file release. That
6963 * could happen well after the next commit, leaving a great big
6964 * window where new writes may get lost if someone chooses to write
6965 * to this file after truncating to zero
6966 *
6967 * The inode doesn't have any dirty data here, and so if we commit
6968 * this is a noop. If someone immediately starts writing to the inode
6969 * it is very likely we'll catch some of their writes in this
6970 * transaction, and the commit will find this file on the ordered
6971 * data list with good things to send down.
6972 *
6973 * This is a best effort solution, there is still a window where
6974 * using truncate to replace the contents of the file will
6975 * end up with a zero length file after a crash.
6976 */
72ac3c0d
JB
6977 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6978 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
6979 btrfs_add_ordered_operation(trans, root, inode);
6980
5dc562c5
JB
6981 /*
6982 * So if we truncate and then write and fsync we normally would just
6983 * write the extents that changed, which is a problem if we need to
6984 * first truncate that entire inode. So set this flag so we write out
6985 * all of the extents in the inode to the sync log so we're completely
6986 * safe.
6987 */
6988 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 6989 trans->block_rsv = rsv;
907cbceb 6990
8082510e
YZ
6991 while (1) {
6992 ret = btrfs_truncate_inode_items(trans, root, inode,
6993 inode->i_size,
6994 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 6995 if (ret != -ENOSPC) {
3893e33b 6996 err = ret;
8082510e 6997 break;
3893e33b 6998 }
39279cc3 6999
fcb80c2a 7000 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7001 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7002 if (ret) {
7003 err = ret;
7004 break;
7005 }
ca7e70f5 7006
8082510e 7007 btrfs_end_transaction(trans, root);
b53d3f5d 7008 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7009
7010 trans = btrfs_start_transaction(root, 2);
7011 if (IS_ERR(trans)) {
7012 ret = err = PTR_ERR(trans);
7013 trans = NULL;
7014 break;
7015 }
7016
7017 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7018 rsv, min_size);
7019 BUG_ON(ret); /* shouldn't happen */
7020 trans->block_rsv = rsv;
8082510e
YZ
7021 }
7022
7023 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7024 trans->block_rsv = root->orphan_block_rsv;
8082510e 7025 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7026 if (ret)
7027 err = ret;
ded5db9d
JB
7028 } else if (ret && inode->i_nlink > 0) {
7029 /*
7030 * Failed to do the truncate, remove us from the in memory
7031 * orphan list.
7032 */
7033 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
7034 }
7035
917c16b2
CM
7036 if (trans) {
7037 trans->block_rsv = &root->fs_info->trans_block_rsv;
7038 ret = btrfs_update_inode(trans, root, inode);
7039 if (ret && !err)
7040 err = ret;
7b128766 7041
7ad85bb7 7042 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7043 btrfs_btree_balance_dirty(root);
917c16b2 7044 }
fcb80c2a
JB
7045
7046out:
7047 btrfs_free_block_rsv(root, rsv);
7048
3893e33b
JB
7049 if (ret && !err)
7050 err = ret;
a41ad394 7051
3893e33b 7052 return err;
39279cc3
CM
7053}
7054
d352ac68
CM
7055/*
7056 * create a new subvolume directory/inode (helper for the ioctl).
7057 */
d2fb3437 7058int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7059 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7060{
39279cc3 7061 struct inode *inode;
76dda93c 7062 int err;
00e4e6b3 7063 u64 index = 0;
39279cc3 7064
12fc9d09
FA
7065 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7066 new_dirid, new_dirid,
7067 S_IFDIR | (~current_umask() & S_IRWXUGO),
7068 &index);
54aa1f4d 7069 if (IS_ERR(inode))
f46b5a66 7070 return PTR_ERR(inode);
39279cc3
CM
7071 inode->i_op = &btrfs_dir_inode_operations;
7072 inode->i_fop = &btrfs_dir_file_operations;
7073
bfe86848 7074 set_nlink(inode, 1);
dbe674a9 7075 btrfs_i_size_write(inode, 0);
3b96362c 7076
76dda93c 7077 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7078
76dda93c 7079 iput(inode);
ce598979 7080 return err;
39279cc3
CM
7081}
7082
39279cc3
CM
7083struct inode *btrfs_alloc_inode(struct super_block *sb)
7084{
7085 struct btrfs_inode *ei;
2ead6ae7 7086 struct inode *inode;
39279cc3
CM
7087
7088 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7089 if (!ei)
7090 return NULL;
2ead6ae7
YZ
7091
7092 ei->root = NULL;
2ead6ae7 7093 ei->generation = 0;
15ee9bc7 7094 ei->last_trans = 0;
257c62e1 7095 ei->last_sub_trans = 0;
e02119d5 7096 ei->logged_trans = 0;
2ead6ae7 7097 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7098 ei->disk_i_size = 0;
7099 ei->flags = 0;
7709cde3 7100 ei->csum_bytes = 0;
2ead6ae7
YZ
7101 ei->index_cnt = (u64)-1;
7102 ei->last_unlink_trans = 0;
46d8bc34 7103 ei->last_log_commit = 0;
2ead6ae7 7104
9e0baf60
JB
7105 spin_lock_init(&ei->lock);
7106 ei->outstanding_extents = 0;
7107 ei->reserved_extents = 0;
2ead6ae7 7108
72ac3c0d 7109 ei->runtime_flags = 0;
261507a0 7110 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7111
16cdcec7
MX
7112 ei->delayed_node = NULL;
7113
2ead6ae7 7114 inode = &ei->vfs_inode;
a8067e02 7115 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7116 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7117 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7118 ei->io_tree.track_uptodate = 1;
7119 ei->io_failure_tree.track_uptodate = 1;
2ead6ae7 7120 mutex_init(&ei->log_mutex);
f248679e 7121 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7122 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7123 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7124 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7125 RB_CLEAR_NODE(&ei->rb_node);
7126
7127 return inode;
39279cc3
CM
7128}
7129
fa0d7e3d
NP
7130static void btrfs_i_callback(struct rcu_head *head)
7131{
7132 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7133 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7134}
7135
39279cc3
CM
7136void btrfs_destroy_inode(struct inode *inode)
7137{
e6dcd2dc 7138 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7139 struct btrfs_root *root = BTRFS_I(inode)->root;
7140
b3d9b7a3 7141 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7142 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7143 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7144 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7145 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7146 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7147
a6dbd429
JB
7148 /*
7149 * This can happen where we create an inode, but somebody else also
7150 * created the same inode and we need to destroy the one we already
7151 * created.
7152 */
7153 if (!root)
7154 goto free;
7155
5a3f23d5
CM
7156 /*
7157 * Make sure we're properly removed from the ordered operation
7158 * lists.
7159 */
7160 smp_mb();
7161 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7162 spin_lock(&root->fs_info->ordered_extent_lock);
7163 list_del_init(&BTRFS_I(inode)->ordered_operations);
7164 spin_unlock(&root->fs_info->ordered_extent_lock);
7165 }
7166
8a35d95f
JB
7167 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7168 &BTRFS_I(inode)->runtime_flags)) {
33345d01
LZ
7169 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7170 (unsigned long long)btrfs_ino(inode));
8a35d95f 7171 atomic_dec(&root->orphan_inodes);
7b128766 7172 }
7b128766 7173
d397712b 7174 while (1) {
e6dcd2dc
CM
7175 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7176 if (!ordered)
7177 break;
7178 else {
d397712b
CM
7179 printk(KERN_ERR "btrfs found ordered "
7180 "extent %llu %llu on inode cleanup\n",
7181 (unsigned long long)ordered->file_offset,
7182 (unsigned long long)ordered->len);
e6dcd2dc
CM
7183 btrfs_remove_ordered_extent(inode, ordered);
7184 btrfs_put_ordered_extent(ordered);
7185 btrfs_put_ordered_extent(ordered);
7186 }
7187 }
5d4f98a2 7188 inode_tree_del(inode);
5b21f2ed 7189 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7190free:
16cdcec7 7191 btrfs_remove_delayed_node(inode);
fa0d7e3d 7192 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7193}
7194
45321ac5 7195int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7196{
7197 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7198
0af3d00b 7199 if (btrfs_root_refs(&root->root_item) == 0 &&
83eea1f1 7200 !btrfs_is_free_space_inode(inode))
45321ac5 7201 return 1;
76dda93c 7202 else
45321ac5 7203 return generic_drop_inode(inode);
76dda93c
YZ
7204}
7205
0ee0fda0 7206static void init_once(void *foo)
39279cc3
CM
7207{
7208 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7209
7210 inode_init_once(&ei->vfs_inode);
7211}
7212
7213void btrfs_destroy_cachep(void)
7214{
8c0a8537
KS
7215 /*
7216 * Make sure all delayed rcu free inodes are flushed before we
7217 * destroy cache.
7218 */
7219 rcu_barrier();
39279cc3
CM
7220 if (btrfs_inode_cachep)
7221 kmem_cache_destroy(btrfs_inode_cachep);
7222 if (btrfs_trans_handle_cachep)
7223 kmem_cache_destroy(btrfs_trans_handle_cachep);
7224 if (btrfs_transaction_cachep)
7225 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7226 if (btrfs_path_cachep)
7227 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7228 if (btrfs_free_space_cachep)
7229 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7230 if (btrfs_delalloc_work_cachep)
7231 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7232}
7233
7234int btrfs_init_cachep(void)
7235{
837e1972 7236 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7237 sizeof(struct btrfs_inode), 0,
7238 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7239 if (!btrfs_inode_cachep)
7240 goto fail;
9601e3f6 7241
837e1972 7242 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7243 sizeof(struct btrfs_trans_handle), 0,
7244 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7245 if (!btrfs_trans_handle_cachep)
7246 goto fail;
9601e3f6 7247
837e1972 7248 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7249 sizeof(struct btrfs_transaction), 0,
7250 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7251 if (!btrfs_transaction_cachep)
7252 goto fail;
9601e3f6 7253
837e1972 7254 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7255 sizeof(struct btrfs_path), 0,
7256 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7257 if (!btrfs_path_cachep)
7258 goto fail;
9601e3f6 7259
837e1972 7260 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7261 sizeof(struct btrfs_free_space), 0,
7262 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7263 if (!btrfs_free_space_cachep)
7264 goto fail;
7265
8ccf6f19
MX
7266 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7267 sizeof(struct btrfs_delalloc_work), 0,
7268 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7269 NULL);
7270 if (!btrfs_delalloc_work_cachep)
7271 goto fail;
7272
39279cc3
CM
7273 return 0;
7274fail:
7275 btrfs_destroy_cachep();
7276 return -ENOMEM;
7277}
7278
7279static int btrfs_getattr(struct vfsmount *mnt,
7280 struct dentry *dentry, struct kstat *stat)
7281{
7282 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7283 u32 blocksize = inode->i_sb->s_blocksize;
7284
39279cc3 7285 generic_fillattr(inode, stat);
0ee5dc67 7286 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7287 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
7288 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7289 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7290 return 0;
7291}
7292
75e7cb7f
LB
7293/*
7294 * If a file is moved, it will inherit the cow and compression flags of the new
7295 * directory.
7296 */
7297static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7298{
7299 struct btrfs_inode *b_dir = BTRFS_I(dir);
7300 struct btrfs_inode *b_inode = BTRFS_I(inode);
7301
7302 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7303 b_inode->flags |= BTRFS_INODE_NODATACOW;
7304 else
7305 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7306
bc178237 7307 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
75e7cb7f 7308 b_inode->flags |= BTRFS_INODE_COMPRESS;
bc178237
LB
7309 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7310 } else {
7311 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7312 BTRFS_INODE_NOCOMPRESS);
7313 }
75e7cb7f
LB
7314}
7315
d397712b
CM
7316static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7317 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7318{
7319 struct btrfs_trans_handle *trans;
7320 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7321 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7322 struct inode *new_inode = new_dentry->d_inode;
7323 struct inode *old_inode = old_dentry->d_inode;
7324 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7325 u64 index = 0;
4df27c4d 7326 u64 root_objectid;
39279cc3 7327 int ret;
33345d01 7328 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7329
33345d01 7330 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7331 return -EPERM;
7332
4df27c4d 7333 /* we only allow rename subvolume link between subvolumes */
33345d01 7334 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7335 return -EXDEV;
7336
33345d01
LZ
7337 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7338 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7339 return -ENOTEMPTY;
5f39d397 7340
4df27c4d
YZ
7341 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7342 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7343 return -ENOTEMPTY;
5a3f23d5
CM
7344 /*
7345 * we're using rename to replace one file with another.
7346 * and the replacement file is large. Start IO on it now so
7347 * we don't add too much work to the end of the transaction
7348 */
4baf8c92 7349 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7350 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7351 filemap_flush(old_inode->i_mapping);
7352
76dda93c 7353 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7354 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7355 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7356 /*
7357 * We want to reserve the absolute worst case amount of items. So if
7358 * both inodes are subvols and we need to unlink them then that would
7359 * require 4 item modifications, but if they are both normal inodes it
7360 * would require 5 item modifications, so we'll assume their normal
7361 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7362 * should cover the worst case number of items we'll modify.
7363 */
7364 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7365 if (IS_ERR(trans)) {
7366 ret = PTR_ERR(trans);
7367 goto out_notrans;
7368 }
76dda93c 7369
4df27c4d
YZ
7370 if (dest != root)
7371 btrfs_record_root_in_trans(trans, dest);
5f39d397 7372
a5719521
YZ
7373 ret = btrfs_set_inode_index(new_dir, &index);
7374 if (ret)
7375 goto out_fail;
5a3f23d5 7376
33345d01 7377 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7378 /* force full log commit if subvolume involved. */
7379 root->fs_info->last_trans_log_full_commit = trans->transid;
7380 } else {
a5719521
YZ
7381 ret = btrfs_insert_inode_ref(trans, dest,
7382 new_dentry->d_name.name,
7383 new_dentry->d_name.len,
33345d01
LZ
7384 old_ino,
7385 btrfs_ino(new_dir), index);
a5719521
YZ
7386 if (ret)
7387 goto out_fail;
4df27c4d
YZ
7388 /*
7389 * this is an ugly little race, but the rename is required
7390 * to make sure that if we crash, the inode is either at the
7391 * old name or the new one. pinning the log transaction lets
7392 * us make sure we don't allow a log commit to come in after
7393 * we unlink the name but before we add the new name back in.
7394 */
7395 btrfs_pin_log_trans(root);
7396 }
5a3f23d5
CM
7397 /*
7398 * make sure the inode gets flushed if it is replacing
7399 * something.
7400 */
33345d01 7401 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7402 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7403
0c4d2d95
JB
7404 inode_inc_iversion(old_dir);
7405 inode_inc_iversion(new_dir);
7406 inode_inc_iversion(old_inode);
39279cc3
CM
7407 old_dir->i_ctime = old_dir->i_mtime = ctime;
7408 new_dir->i_ctime = new_dir->i_mtime = ctime;
7409 old_inode->i_ctime = ctime;
5f39d397 7410
12fcfd22
CM
7411 if (old_dentry->d_parent != new_dentry->d_parent)
7412 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7413
33345d01 7414 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7415 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7416 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7417 old_dentry->d_name.name,
7418 old_dentry->d_name.len);
7419 } else {
92986796
AV
7420 ret = __btrfs_unlink_inode(trans, root, old_dir,
7421 old_dentry->d_inode,
7422 old_dentry->d_name.name,
7423 old_dentry->d_name.len);
7424 if (!ret)
7425 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7426 }
79787eaa
JM
7427 if (ret) {
7428 btrfs_abort_transaction(trans, root, ret);
7429 goto out_fail;
7430 }
39279cc3
CM
7431
7432 if (new_inode) {
0c4d2d95 7433 inode_inc_iversion(new_inode);
39279cc3 7434 new_inode->i_ctime = CURRENT_TIME;
33345d01 7435 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7436 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7437 root_objectid = BTRFS_I(new_inode)->location.objectid;
7438 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7439 root_objectid,
7440 new_dentry->d_name.name,
7441 new_dentry->d_name.len);
7442 BUG_ON(new_inode->i_nlink == 0);
7443 } else {
7444 ret = btrfs_unlink_inode(trans, dest, new_dir,
7445 new_dentry->d_inode,
7446 new_dentry->d_name.name,
7447 new_dentry->d_name.len);
7448 }
79787eaa 7449 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7450 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7451 BUG_ON(ret);
7b128766 7452 }
79787eaa
JM
7453 if (ret) {
7454 btrfs_abort_transaction(trans, root, ret);
7455 goto out_fail;
7456 }
39279cc3 7457 }
aec7477b 7458
75e7cb7f
LB
7459 fixup_inode_flags(new_dir, old_inode);
7460
4df27c4d
YZ
7461 ret = btrfs_add_link(trans, new_dir, old_inode,
7462 new_dentry->d_name.name,
a5719521 7463 new_dentry->d_name.len, 0, index);
79787eaa
JM
7464 if (ret) {
7465 btrfs_abort_transaction(trans, root, ret);
7466 goto out_fail;
7467 }
39279cc3 7468
33345d01 7469 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7470 struct dentry *parent = new_dentry->d_parent;
6a912213 7471 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7472 btrfs_end_log_trans(root);
7473 }
39279cc3 7474out_fail:
7ad85bb7 7475 btrfs_end_transaction(trans, root);
b44c59a8 7476out_notrans:
33345d01 7477 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7478 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7479
39279cc3
CM
7480 return ret;
7481}
7482
8ccf6f19
MX
7483static void btrfs_run_delalloc_work(struct btrfs_work *work)
7484{
7485 struct btrfs_delalloc_work *delalloc_work;
7486
7487 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7488 work);
7489 if (delalloc_work->wait)
7490 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7491 else
7492 filemap_flush(delalloc_work->inode->i_mapping);
7493
7494 if (delalloc_work->delay_iput)
7495 btrfs_add_delayed_iput(delalloc_work->inode);
7496 else
7497 iput(delalloc_work->inode);
7498 complete(&delalloc_work->completion);
7499}
7500
7501struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7502 int wait, int delay_iput)
7503{
7504 struct btrfs_delalloc_work *work;
7505
7506 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7507 if (!work)
7508 return NULL;
7509
7510 init_completion(&work->completion);
7511 INIT_LIST_HEAD(&work->list);
7512 work->inode = inode;
7513 work->wait = wait;
7514 work->delay_iput = delay_iput;
7515 work->work.func = btrfs_run_delalloc_work;
7516
7517 return work;
7518}
7519
7520void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7521{
7522 wait_for_completion(&work->completion);
7523 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7524}
7525
d352ac68
CM
7526/*
7527 * some fairly slow code that needs optimization. This walks the list
7528 * of all the inodes with pending delalloc and forces them to disk.
7529 */
24bbcf04 7530int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7531{
7532 struct list_head *head = &root->fs_info->delalloc_inodes;
7533 struct btrfs_inode *binode;
5b21f2ed 7534 struct inode *inode;
8ccf6f19
MX
7535 struct btrfs_delalloc_work *work, *next;
7536 struct list_head works;
7537 int ret = 0;
ea8c2819 7538
c146afad
YZ
7539 if (root->fs_info->sb->s_flags & MS_RDONLY)
7540 return -EROFS;
7541
8ccf6f19
MX
7542 INIT_LIST_HEAD(&works);
7543
75eff68e 7544 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7545 while (!list_empty(head)) {
ea8c2819
CM
7546 binode = list_entry(head->next, struct btrfs_inode,
7547 delalloc_inodes);
5b21f2ed
ZY
7548 inode = igrab(&binode->vfs_inode);
7549 if (!inode)
7550 list_del_init(&binode->delalloc_inodes);
75eff68e 7551 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7552 if (inode) {
8ccf6f19
MX
7553 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7554 if (!work) {
7555 ret = -ENOMEM;
7556 goto out;
7557 }
7558 list_add_tail(&work->list, &works);
7559 btrfs_queue_worker(&root->fs_info->flush_workers,
7560 &work->work);
5b21f2ed
ZY
7561 }
7562 cond_resched();
75eff68e 7563 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7564 }
75eff68e 7565 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7566
7567 /* the filemap_flush will queue IO into the worker threads, but
7568 * we have to make sure the IO is actually started and that
7569 * ordered extents get created before we return
7570 */
7571 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7572 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7573 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7574 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7575 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7576 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7577 }
7578 atomic_dec(&root->fs_info->async_submit_draining);
8ccf6f19
MX
7579out:
7580 list_for_each_entry_safe(work, next, &works, list) {
7581 list_del_init(&work->list);
7582 btrfs_wait_and_free_delalloc_work(work);
7583 }
7584 return ret;
ea8c2819
CM
7585}
7586
39279cc3
CM
7587static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7588 const char *symname)
7589{
7590 struct btrfs_trans_handle *trans;
7591 struct btrfs_root *root = BTRFS_I(dir)->root;
7592 struct btrfs_path *path;
7593 struct btrfs_key key;
1832a6d5 7594 struct inode *inode = NULL;
39279cc3
CM
7595 int err;
7596 int drop_inode = 0;
7597 u64 objectid;
00e4e6b3 7598 u64 index = 0 ;
39279cc3
CM
7599 int name_len;
7600 int datasize;
5f39d397 7601 unsigned long ptr;
39279cc3 7602 struct btrfs_file_extent_item *ei;
5f39d397 7603 struct extent_buffer *leaf;
39279cc3
CM
7604
7605 name_len = strlen(symname) + 1;
7606 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7607 return -ENAMETOOLONG;
1832a6d5 7608
9ed74f2d
JB
7609 /*
7610 * 2 items for inode item and ref
7611 * 2 items for dir items
7612 * 1 item for xattr if selinux is on
7613 */
a22285a6
YZ
7614 trans = btrfs_start_transaction(root, 5);
7615 if (IS_ERR(trans))
7616 return PTR_ERR(trans);
1832a6d5 7617
581bb050
LZ
7618 err = btrfs_find_free_ino(root, &objectid);
7619 if (err)
7620 goto out_unlock;
7621
aec7477b 7622 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7623 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7624 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7625 if (IS_ERR(inode)) {
7626 err = PTR_ERR(inode);
39279cc3 7627 goto out_unlock;
7cf96da3 7628 }
39279cc3 7629
2a7dba39 7630 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7631 if (err) {
7632 drop_inode = 1;
7633 goto out_unlock;
7634 }
7635
ad19db71
CS
7636 /*
7637 * If the active LSM wants to access the inode during
7638 * d_instantiate it needs these. Smack checks to see
7639 * if the filesystem supports xattrs by looking at the
7640 * ops vector.
7641 */
7642 inode->i_fop = &btrfs_file_operations;
7643 inode->i_op = &btrfs_file_inode_operations;
7644
a1b075d2 7645 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7646 if (err)
7647 drop_inode = 1;
7648 else {
7649 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7650 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7651 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7652 }
39279cc3
CM
7653 if (drop_inode)
7654 goto out_unlock;
7655
7656 path = btrfs_alloc_path();
d8926bb3
MF
7657 if (!path) {
7658 err = -ENOMEM;
7659 drop_inode = 1;
7660 goto out_unlock;
7661 }
33345d01 7662 key.objectid = btrfs_ino(inode);
39279cc3 7663 key.offset = 0;
39279cc3
CM
7664 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7665 datasize = btrfs_file_extent_calc_inline_size(name_len);
7666 err = btrfs_insert_empty_item(trans, root, path, &key,
7667 datasize);
54aa1f4d
CM
7668 if (err) {
7669 drop_inode = 1;
b0839166 7670 btrfs_free_path(path);
54aa1f4d
CM
7671 goto out_unlock;
7672 }
5f39d397
CM
7673 leaf = path->nodes[0];
7674 ei = btrfs_item_ptr(leaf, path->slots[0],
7675 struct btrfs_file_extent_item);
7676 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7677 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7678 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7679 btrfs_set_file_extent_encryption(leaf, ei, 0);
7680 btrfs_set_file_extent_compression(leaf, ei, 0);
7681 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7682 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7683
39279cc3 7684 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7685 write_extent_buffer(leaf, symname, ptr, name_len);
7686 btrfs_mark_buffer_dirty(leaf);
39279cc3 7687 btrfs_free_path(path);
5f39d397 7688
39279cc3
CM
7689 inode->i_op = &btrfs_symlink_inode_operations;
7690 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7691 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7692 inode_set_bytes(inode, name_len);
dbe674a9 7693 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7694 err = btrfs_update_inode(trans, root, inode);
7695 if (err)
7696 drop_inode = 1;
39279cc3
CM
7697
7698out_unlock:
08c422c2
AV
7699 if (!err)
7700 d_instantiate(dentry, inode);
7ad85bb7 7701 btrfs_end_transaction(trans, root);
39279cc3
CM
7702 if (drop_inode) {
7703 inode_dec_link_count(inode);
7704 iput(inode);
7705 }
b53d3f5d 7706 btrfs_btree_balance_dirty(root);
39279cc3
CM
7707 return err;
7708}
16432985 7709
0af3d00b
JB
7710static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7711 u64 start, u64 num_bytes, u64 min_size,
7712 loff_t actual_len, u64 *alloc_hint,
7713 struct btrfs_trans_handle *trans)
d899e052 7714{
5dc562c5
JB
7715 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7716 struct extent_map *em;
d899e052
YZ
7717 struct btrfs_root *root = BTRFS_I(inode)->root;
7718 struct btrfs_key ins;
d899e052 7719 u64 cur_offset = start;
55a61d1d 7720 u64 i_size;
d899e052 7721 int ret = 0;
0af3d00b 7722 bool own_trans = true;
d899e052 7723
0af3d00b
JB
7724 if (trans)
7725 own_trans = false;
d899e052 7726 while (num_bytes > 0) {
0af3d00b
JB
7727 if (own_trans) {
7728 trans = btrfs_start_transaction(root, 3);
7729 if (IS_ERR(trans)) {
7730 ret = PTR_ERR(trans);
7731 break;
7732 }
5a303d5d
YZ
7733 }
7734
efa56464 7735 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7736 0, *alloc_hint, &ins, 1);
5a303d5d 7737 if (ret) {
0af3d00b
JB
7738 if (own_trans)
7739 btrfs_end_transaction(trans, root);
a22285a6 7740 break;
d899e052 7741 }
5a303d5d 7742
d899e052
YZ
7743 ret = insert_reserved_file_extent(trans, inode,
7744 cur_offset, ins.objectid,
7745 ins.offset, ins.offset,
920bbbfb 7746 ins.offset, 0, 0, 0,
d899e052 7747 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7748 if (ret) {
7749 btrfs_abort_transaction(trans, root, ret);
7750 if (own_trans)
7751 btrfs_end_transaction(trans, root);
7752 break;
7753 }
a1ed835e
CM
7754 btrfs_drop_extent_cache(inode, cur_offset,
7755 cur_offset + ins.offset -1, 0);
5a303d5d 7756
5dc562c5
JB
7757 em = alloc_extent_map();
7758 if (!em) {
7759 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7760 &BTRFS_I(inode)->runtime_flags);
7761 goto next;
7762 }
7763
7764 em->start = cur_offset;
7765 em->orig_start = cur_offset;
7766 em->len = ins.offset;
7767 em->block_start = ins.objectid;
7768 em->block_len = ins.offset;
7769 em->bdev = root->fs_info->fs_devices->latest_bdev;
7770 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7771 em->generation = trans->transid;
7772
7773 while (1) {
7774 write_lock(&em_tree->lock);
7775 ret = add_extent_mapping(em_tree, em);
7776 if (!ret)
7777 list_move(&em->list,
7778 &em_tree->modified_extents);
7779 write_unlock(&em_tree->lock);
7780 if (ret != -EEXIST)
7781 break;
7782 btrfs_drop_extent_cache(inode, cur_offset,
7783 cur_offset + ins.offset - 1,
7784 0);
7785 }
7786 free_extent_map(em);
7787next:
d899e052
YZ
7788 num_bytes -= ins.offset;
7789 cur_offset += ins.offset;
efa56464 7790 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7791
0c4d2d95 7792 inode_inc_iversion(inode);
d899e052 7793 inode->i_ctime = CURRENT_TIME;
6cbff00f 7794 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7795 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7796 (actual_len > inode->i_size) &&
7797 (cur_offset > inode->i_size)) {
d1ea6a61 7798 if (cur_offset > actual_len)
55a61d1d 7799 i_size = actual_len;
d1ea6a61 7800 else
55a61d1d
JB
7801 i_size = cur_offset;
7802 i_size_write(inode, i_size);
7803 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7804 }
7805
d899e052 7806 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7807
7808 if (ret) {
7809 btrfs_abort_transaction(trans, root, ret);
7810 if (own_trans)
7811 btrfs_end_transaction(trans, root);
7812 break;
7813 }
d899e052 7814
0af3d00b
JB
7815 if (own_trans)
7816 btrfs_end_transaction(trans, root);
5a303d5d 7817 }
d899e052
YZ
7818 return ret;
7819}
7820
0af3d00b
JB
7821int btrfs_prealloc_file_range(struct inode *inode, int mode,
7822 u64 start, u64 num_bytes, u64 min_size,
7823 loff_t actual_len, u64 *alloc_hint)
7824{
7825 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7826 min_size, actual_len, alloc_hint,
7827 NULL);
7828}
7829
7830int btrfs_prealloc_file_range_trans(struct inode *inode,
7831 struct btrfs_trans_handle *trans, int mode,
7832 u64 start, u64 num_bytes, u64 min_size,
7833 loff_t actual_len, u64 *alloc_hint)
7834{
7835 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7836 min_size, actual_len, alloc_hint, trans);
7837}
7838
e6dcd2dc
CM
7839static int btrfs_set_page_dirty(struct page *page)
7840{
e6dcd2dc
CM
7841 return __set_page_dirty_nobuffers(page);
7842}
7843
10556cb2 7844static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7845{
b83cc969 7846 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7847 umode_t mode = inode->i_mode;
b83cc969 7848
cb6db4e5
JM
7849 if (mask & MAY_WRITE &&
7850 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7851 if (btrfs_root_readonly(root))
7852 return -EROFS;
7853 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7854 return -EACCES;
7855 }
2830ba7f 7856 return generic_permission(inode, mask);
fdebe2bd 7857}
39279cc3 7858
6e1d5dcc 7859static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7860 .getattr = btrfs_getattr,
39279cc3
CM
7861 .lookup = btrfs_lookup,
7862 .create = btrfs_create,
7863 .unlink = btrfs_unlink,
7864 .link = btrfs_link,
7865 .mkdir = btrfs_mkdir,
7866 .rmdir = btrfs_rmdir,
7867 .rename = btrfs_rename,
7868 .symlink = btrfs_symlink,
7869 .setattr = btrfs_setattr,
618e21d5 7870 .mknod = btrfs_mknod,
95819c05
CH
7871 .setxattr = btrfs_setxattr,
7872 .getxattr = btrfs_getxattr,
5103e947 7873 .listxattr = btrfs_listxattr,
95819c05 7874 .removexattr = btrfs_removexattr,
fdebe2bd 7875 .permission = btrfs_permission,
4e34e719 7876 .get_acl = btrfs_get_acl,
39279cc3 7877};
6e1d5dcc 7878static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7879 .lookup = btrfs_lookup,
fdebe2bd 7880 .permission = btrfs_permission,
4e34e719 7881 .get_acl = btrfs_get_acl,
39279cc3 7882};
76dda93c 7883
828c0950 7884static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7885 .llseek = generic_file_llseek,
7886 .read = generic_read_dir,
cbdf5a24 7887 .readdir = btrfs_real_readdir,
34287aa3 7888 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7889#ifdef CONFIG_COMPAT
34287aa3 7890 .compat_ioctl = btrfs_ioctl,
39279cc3 7891#endif
6bf13c0c 7892 .release = btrfs_release_file,
e02119d5 7893 .fsync = btrfs_sync_file,
39279cc3
CM
7894};
7895
d1310b2e 7896static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7897 .fill_delalloc = run_delalloc_range,
065631f6 7898 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7899 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7900 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7901 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7902 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7903 .set_bit_hook = btrfs_set_bit_hook,
7904 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7905 .merge_extent_hook = btrfs_merge_extent_hook,
7906 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7907};
7908
35054394
CM
7909/*
7910 * btrfs doesn't support the bmap operation because swapfiles
7911 * use bmap to make a mapping of extents in the file. They assume
7912 * these extents won't change over the life of the file and they
7913 * use the bmap result to do IO directly to the drive.
7914 *
7915 * the btrfs bmap call would return logical addresses that aren't
7916 * suitable for IO and they also will change frequently as COW
7917 * operations happen. So, swapfile + btrfs == corruption.
7918 *
7919 * For now we're avoiding this by dropping bmap.
7920 */
7f09410b 7921static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7922 .readpage = btrfs_readpage,
7923 .writepage = btrfs_writepage,
b293f02e 7924 .writepages = btrfs_writepages,
3ab2fb5a 7925 .readpages = btrfs_readpages,
16432985 7926 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7927 .invalidatepage = btrfs_invalidatepage,
7928 .releasepage = btrfs_releasepage,
e6dcd2dc 7929 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7930 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7931};
7932
7f09410b 7933static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7934 .readpage = btrfs_readpage,
7935 .writepage = btrfs_writepage,
2bf5a725
CM
7936 .invalidatepage = btrfs_invalidatepage,
7937 .releasepage = btrfs_releasepage,
39279cc3
CM
7938};
7939
6e1d5dcc 7940static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7941 .getattr = btrfs_getattr,
7942 .setattr = btrfs_setattr,
95819c05
CH
7943 .setxattr = btrfs_setxattr,
7944 .getxattr = btrfs_getxattr,
5103e947 7945 .listxattr = btrfs_listxattr,
95819c05 7946 .removexattr = btrfs_removexattr,
fdebe2bd 7947 .permission = btrfs_permission,
1506fcc8 7948 .fiemap = btrfs_fiemap,
4e34e719 7949 .get_acl = btrfs_get_acl,
e41f941a 7950 .update_time = btrfs_update_time,
39279cc3 7951};
6e1d5dcc 7952static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7953 .getattr = btrfs_getattr,
7954 .setattr = btrfs_setattr,
fdebe2bd 7955 .permission = btrfs_permission,
95819c05
CH
7956 .setxattr = btrfs_setxattr,
7957 .getxattr = btrfs_getxattr,
33268eaf 7958 .listxattr = btrfs_listxattr,
95819c05 7959 .removexattr = btrfs_removexattr,
4e34e719 7960 .get_acl = btrfs_get_acl,
e41f941a 7961 .update_time = btrfs_update_time,
618e21d5 7962};
6e1d5dcc 7963static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7964 .readlink = generic_readlink,
7965 .follow_link = page_follow_link_light,
7966 .put_link = page_put_link,
f209561a 7967 .getattr = btrfs_getattr,
22c44fe6 7968 .setattr = btrfs_setattr,
fdebe2bd 7969 .permission = btrfs_permission,
0279b4cd
JO
7970 .setxattr = btrfs_setxattr,
7971 .getxattr = btrfs_getxattr,
7972 .listxattr = btrfs_listxattr,
7973 .removexattr = btrfs_removexattr,
4e34e719 7974 .get_acl = btrfs_get_acl,
e41f941a 7975 .update_time = btrfs_update_time,
39279cc3 7976};
76dda93c 7977
82d339d9 7978const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7979 .d_delete = btrfs_dentry_delete,
b4aff1f8 7980 .d_release = btrfs_dentry_release,
76dda93c 7981};