Btrfs: log recovery, don't unlink inode always on error
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
39279cc3
CM
61
62struct btrfs_iget_args {
63 u64 ino;
64 struct btrfs_root *root;
65};
66
6e1d5dcc
AD
67static const struct inode_operations btrfs_dir_inode_operations;
68static const struct inode_operations btrfs_symlink_inode_operations;
69static const struct inode_operations btrfs_dir_ro_inode_operations;
70static const struct inode_operations btrfs_special_inode_operations;
71static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
72static const struct address_space_operations btrfs_aops;
73static const struct address_space_operations btrfs_symlink_aops;
828c0950 74static const struct file_operations btrfs_dir_file_operations;
d1310b2e 75static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
76
77static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 78static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
79struct kmem_cache *btrfs_trans_handle_cachep;
80struct kmem_cache *btrfs_transaction_cachep;
39279cc3 81struct kmem_cache *btrfs_path_cachep;
dc89e982 82struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
83
84#define S_SHIFT 12
85static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
86 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
87 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
88 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
89 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
90 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
91 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
92 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
93};
94
3972f260 95static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 96static int btrfs_truncate(struct inode *inode);
5fd02043 97static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
98static noinline int cow_file_range(struct inode *inode,
99 struct page *locked_page,
100 u64 start, u64 end, int *page_started,
101 unsigned long *nr_written, int unlock);
70c8a91c
JB
102static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
103 u64 len, u64 orig_start,
104 u64 block_start, u64 block_len,
cc95bef6
JB
105 u64 orig_block_len, u64 ram_bytes,
106 int type);
7b128766 107
48a3b636 108static int btrfs_dirty_inode(struct inode *inode);
7b128766 109
f34f57a3 110static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
111 struct inode *inode, struct inode *dir,
112 const struct qstr *qstr)
0279b4cd
JO
113{
114 int err;
115
f34f57a3 116 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 117 if (!err)
2a7dba39 118 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
119 return err;
120}
121
c8b97818
CM
122/*
123 * this does all the hard work for inserting an inline extent into
124 * the btree. The caller should have done a btrfs_drop_extents so that
125 * no overlapping inline items exist in the btree
126 */
d397712b 127static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
128 struct btrfs_root *root, struct inode *inode,
129 u64 start, size_t size, size_t compressed_size,
fe3f566c 130 int compress_type,
c8b97818
CM
131 struct page **compressed_pages)
132{
133 struct btrfs_key key;
134 struct btrfs_path *path;
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
143 size_t datasize;
144 unsigned long offset;
c8b97818 145
fe3f566c 146 if (compressed_size && compressed_pages)
c8b97818 147 cur_size = compressed_size;
c8b97818 148
d397712b
CM
149 path = btrfs_alloc_path();
150 if (!path)
c8b97818
CM
151 return -ENOMEM;
152
b9473439 153 path->leave_spinning = 1;
c8b97818 154
33345d01 155 key.objectid = btrfs_ino(inode);
c8b97818
CM
156 key.offset = start;
157 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159
160 inode_add_bytes(inode, size);
161 ret = btrfs_insert_empty_item(trans, root, path, &key,
162 datasize);
c8b97818
CM
163 if (ret) {
164 err = ret;
c8b97818
CM
165 goto fail;
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
206 btrfs_free_path(path);
207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818
CM
221fail:
222 btrfs_free_path(path);
223 return err;
224}
225
226
227/*
228 * conditionally insert an inline extent into the file. This
229 * does the checks required to make sure the data is small enough
230 * to fit as an inline extent.
231 */
00361589
JB
232static noinline int cow_file_range_inline(struct btrfs_root *root,
233 struct inode *inode, u64 start,
234 u64 end, size_t compressed_size,
235 int compress_type,
236 struct page **compressed_pages)
c8b97818 237{
00361589 238 struct btrfs_trans_handle *trans;
c8b97818
CM
239 u64 isize = i_size_read(inode);
240 u64 actual_end = min(end + 1, isize);
241 u64 inline_len = actual_end - start;
fda2832f 242 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
243 u64 data_len = inline_len;
244 int ret;
245
246 if (compressed_size)
247 data_len = compressed_size;
248
249 if (start > 0 ||
70b99e69 250 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
251 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
252 (!compressed_size &&
253 (actual_end & (root->sectorsize - 1)) == 0) ||
254 end + 1 < isize ||
255 data_len > root->fs_info->max_inline) {
256 return 1;
257 }
258
00361589
JB
259 trans = btrfs_join_transaction(root);
260 if (IS_ERR(trans))
261 return PTR_ERR(trans);
262 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
263
2671485d 264 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
00361589
JB
265 if (ret) {
266 btrfs_abort_transaction(trans, root, ret);
267 goto out;
268 }
c8b97818
CM
269
270 if (isize > actual_end)
271 inline_len = min_t(u64, isize, actual_end);
272 ret = insert_inline_extent(trans, root, inode, start,
273 inline_len, compressed_size,
fe3f566c 274 compress_type, compressed_pages);
2adcac1a 275 if (ret && ret != -ENOSPC) {
79787eaa 276 btrfs_abort_transaction(trans, root, ret);
00361589 277 goto out;
2adcac1a 278 } else if (ret == -ENOSPC) {
00361589
JB
279 ret = 1;
280 goto out;
79787eaa 281 }
2adcac1a 282
bdc20e67 283 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 284 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 285 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589
JB
286out:
287 btrfs_end_transaction(trans, root);
288 return ret;
c8b97818
CM
289}
290
771ed689
CM
291struct async_extent {
292 u64 start;
293 u64 ram_size;
294 u64 compressed_size;
295 struct page **pages;
296 unsigned long nr_pages;
261507a0 297 int compress_type;
771ed689
CM
298 struct list_head list;
299};
300
301struct async_cow {
302 struct inode *inode;
303 struct btrfs_root *root;
304 struct page *locked_page;
305 u64 start;
306 u64 end;
307 struct list_head extents;
308 struct btrfs_work work;
309};
310
311static noinline int add_async_extent(struct async_cow *cow,
312 u64 start, u64 ram_size,
313 u64 compressed_size,
314 struct page **pages,
261507a0
LZ
315 unsigned long nr_pages,
316 int compress_type)
771ed689
CM
317{
318 struct async_extent *async_extent;
319
320 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 321 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
322 async_extent->start = start;
323 async_extent->ram_size = ram_size;
324 async_extent->compressed_size = compressed_size;
325 async_extent->pages = pages;
326 async_extent->nr_pages = nr_pages;
261507a0 327 async_extent->compress_type = compress_type;
771ed689
CM
328 list_add_tail(&async_extent->list, &cow->extents);
329 return 0;
330}
331
d352ac68 332/*
771ed689
CM
333 * we create compressed extents in two phases. The first
334 * phase compresses a range of pages that have already been
335 * locked (both pages and state bits are locked).
c8b97818 336 *
771ed689
CM
337 * This is done inside an ordered work queue, and the compression
338 * is spread across many cpus. The actual IO submission is step
339 * two, and the ordered work queue takes care of making sure that
340 * happens in the same order things were put onto the queue by
341 * writepages and friends.
c8b97818 342 *
771ed689
CM
343 * If this code finds it can't get good compression, it puts an
344 * entry onto the work queue to write the uncompressed bytes. This
345 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
346 * are written in the same order that the flusher thread sent them
347 * down.
d352ac68 348 */
771ed689
CM
349static noinline int compress_file_range(struct inode *inode,
350 struct page *locked_page,
351 u64 start, u64 end,
352 struct async_cow *async_cow,
353 int *num_added)
b888db2b
CM
354{
355 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 356 u64 num_bytes;
db94535d 357 u64 blocksize = root->sectorsize;
c8b97818 358 u64 actual_end;
42dc7bab 359 u64 isize = i_size_read(inode);
e6dcd2dc 360 int ret = 0;
c8b97818
CM
361 struct page **pages = NULL;
362 unsigned long nr_pages;
363 unsigned long nr_pages_ret = 0;
364 unsigned long total_compressed = 0;
365 unsigned long total_in = 0;
366 unsigned long max_compressed = 128 * 1024;
771ed689 367 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
368 int i;
369 int will_compress;
261507a0 370 int compress_type = root->fs_info->compress_type;
4adaa611 371 int redirty = 0;
b888db2b 372
4cb13e5d
LB
373 /* if this is a small write inside eof, kick off a defrag */
374 if ((end - start + 1) < 16 * 1024 &&
375 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
376 btrfs_add_inode_defrag(NULL, inode);
377
42dc7bab 378 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
379again:
380 will_compress = 0;
381 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
382 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 383
f03d9301
CM
384 /*
385 * we don't want to send crud past the end of i_size through
386 * compression, that's just a waste of CPU time. So, if the
387 * end of the file is before the start of our current
388 * requested range of bytes, we bail out to the uncompressed
389 * cleanup code that can deal with all of this.
390 *
391 * It isn't really the fastest way to fix things, but this is a
392 * very uncommon corner.
393 */
394 if (actual_end <= start)
395 goto cleanup_and_bail_uncompressed;
396
c8b97818
CM
397 total_compressed = actual_end - start;
398
399 /* we want to make sure that amount of ram required to uncompress
400 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
401 * of a compressed extent to 128k. This is a crucial number
402 * because it also controls how easily we can spread reads across
403 * cpus for decompression.
404 *
405 * We also want to make sure the amount of IO required to do
406 * a random read is reasonably small, so we limit the size of
407 * a compressed extent to 128k.
c8b97818
CM
408 */
409 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 410 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 411 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
412 total_in = 0;
413 ret = 0;
db94535d 414
771ed689
CM
415 /*
416 * we do compression for mount -o compress and when the
417 * inode has not been flagged as nocompress. This flag can
418 * change at any time if we discover bad compression ratios.
c8b97818 419 */
6cbff00f 420 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 421 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
422 (BTRFS_I(inode)->force_compress) ||
423 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 424 WARN_ON(pages);
cfbc246e 425 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
426 if (!pages) {
427 /* just bail out to the uncompressed code */
428 goto cont;
429 }
c8b97818 430
261507a0
LZ
431 if (BTRFS_I(inode)->force_compress)
432 compress_type = BTRFS_I(inode)->force_compress;
433
4adaa611
CM
434 /*
435 * we need to call clear_page_dirty_for_io on each
436 * page in the range. Otherwise applications with the file
437 * mmap'd can wander in and change the page contents while
438 * we are compressing them.
439 *
440 * If the compression fails for any reason, we set the pages
441 * dirty again later on.
442 */
443 extent_range_clear_dirty_for_io(inode, start, end);
444 redirty = 1;
261507a0
LZ
445 ret = btrfs_compress_pages(compress_type,
446 inode->i_mapping, start,
447 total_compressed, pages,
448 nr_pages, &nr_pages_ret,
449 &total_in,
450 &total_compressed,
451 max_compressed);
c8b97818
CM
452
453 if (!ret) {
454 unsigned long offset = total_compressed &
455 (PAGE_CACHE_SIZE - 1);
456 struct page *page = pages[nr_pages_ret - 1];
457 char *kaddr;
458
459 /* zero the tail end of the last page, we might be
460 * sending it down to disk
461 */
462 if (offset) {
7ac687d9 463 kaddr = kmap_atomic(page);
c8b97818
CM
464 memset(kaddr + offset, 0,
465 PAGE_CACHE_SIZE - offset);
7ac687d9 466 kunmap_atomic(kaddr);
c8b97818
CM
467 }
468 will_compress = 1;
469 }
470 }
560f7d75 471cont:
c8b97818
CM
472 if (start == 0) {
473 /* lets try to make an inline extent */
771ed689 474 if (ret || total_in < (actual_end - start)) {
c8b97818 475 /* we didn't compress the entire range, try
771ed689 476 * to make an uncompressed inline extent.
c8b97818 477 */
00361589
JB
478 ret = cow_file_range_inline(root, inode, start, end,
479 0, 0, NULL);
c8b97818 480 } else {
771ed689 481 /* try making a compressed inline extent */
00361589 482 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
483 total_compressed,
484 compress_type, pages);
c8b97818 485 }
79787eaa 486 if (ret <= 0) {
151a41bc
JB
487 unsigned long clear_flags = EXTENT_DELALLOC |
488 EXTENT_DEFRAG;
489 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
490
771ed689 491 /*
79787eaa
JM
492 * inline extent creation worked or returned error,
493 * we don't need to create any more async work items.
494 * Unlock and free up our temp pages.
771ed689 495 */
c2790a2e 496 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 497 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
498 PAGE_CLEAR_DIRTY |
499 PAGE_SET_WRITEBACK |
500 PAGE_END_WRITEBACK);
c8b97818
CM
501 goto free_pages_out;
502 }
503 }
504
505 if (will_compress) {
506 /*
507 * we aren't doing an inline extent round the compressed size
508 * up to a block size boundary so the allocator does sane
509 * things
510 */
fda2832f 511 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
512
513 /*
514 * one last check to make sure the compression is really a
515 * win, compare the page count read with the blocks on disk
516 */
fda2832f 517 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
518 if (total_compressed >= total_in) {
519 will_compress = 0;
520 } else {
c8b97818
CM
521 num_bytes = total_in;
522 }
523 }
524 if (!will_compress && pages) {
525 /*
526 * the compression code ran but failed to make things smaller,
527 * free any pages it allocated and our page pointer array
528 */
529 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 530 WARN_ON(pages[i]->mapping);
c8b97818
CM
531 page_cache_release(pages[i]);
532 }
533 kfree(pages);
534 pages = NULL;
535 total_compressed = 0;
536 nr_pages_ret = 0;
537
538 /* flag the file so we don't compress in the future */
1e701a32
CM
539 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
540 !(BTRFS_I(inode)->force_compress)) {
a555f810 541 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 542 }
c8b97818 543 }
771ed689
CM
544 if (will_compress) {
545 *num_added += 1;
c8b97818 546
771ed689
CM
547 /* the async work queues will take care of doing actual
548 * allocation on disk for these compressed pages,
549 * and will submit them to the elevator.
550 */
551 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
552 total_compressed, pages, nr_pages_ret,
553 compress_type);
179e29e4 554
24ae6365 555 if (start + num_bytes < end) {
771ed689
CM
556 start += num_bytes;
557 pages = NULL;
558 cond_resched();
559 goto again;
560 }
561 } else {
f03d9301 562cleanup_and_bail_uncompressed:
771ed689
CM
563 /*
564 * No compression, but we still need to write the pages in
565 * the file we've been given so far. redirty the locked
566 * page if it corresponds to our extent and set things up
567 * for the async work queue to run cow_file_range to do
568 * the normal delalloc dance
569 */
570 if (page_offset(locked_page) >= start &&
571 page_offset(locked_page) <= end) {
572 __set_page_dirty_nobuffers(locked_page);
573 /* unlocked later on in the async handlers */
574 }
4adaa611
CM
575 if (redirty)
576 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
577 add_async_extent(async_cow, start, end - start + 1,
578 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
579 *num_added += 1;
580 }
3b951516 581
771ed689 582out:
79787eaa 583 return ret;
771ed689
CM
584
585free_pages_out:
586 for (i = 0; i < nr_pages_ret; i++) {
587 WARN_ON(pages[i]->mapping);
588 page_cache_release(pages[i]);
589 }
d397712b 590 kfree(pages);
771ed689
CM
591
592 goto out;
593}
594
595/*
596 * phase two of compressed writeback. This is the ordered portion
597 * of the code, which only gets called in the order the work was
598 * queued. We walk all the async extents created by compress_file_range
599 * and send them down to the disk.
600 */
601static noinline int submit_compressed_extents(struct inode *inode,
602 struct async_cow *async_cow)
603{
604 struct async_extent *async_extent;
605 u64 alloc_hint = 0;
771ed689
CM
606 struct btrfs_key ins;
607 struct extent_map *em;
608 struct btrfs_root *root = BTRFS_I(inode)->root;
609 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
610 struct extent_io_tree *io_tree;
f5a84ee3 611 int ret = 0;
771ed689
CM
612
613 if (list_empty(&async_cow->extents))
614 return 0;
615
3e04e7f1 616again:
d397712b 617 while (!list_empty(&async_cow->extents)) {
771ed689
CM
618 async_extent = list_entry(async_cow->extents.next,
619 struct async_extent, list);
620 list_del(&async_extent->list);
c8b97818 621
771ed689
CM
622 io_tree = &BTRFS_I(inode)->io_tree;
623
f5a84ee3 624retry:
771ed689
CM
625 /* did the compression code fall back to uncompressed IO? */
626 if (!async_extent->pages) {
627 int page_started = 0;
628 unsigned long nr_written = 0;
629
630 lock_extent(io_tree, async_extent->start,
2ac55d41 631 async_extent->start +
d0082371 632 async_extent->ram_size - 1);
771ed689
CM
633
634 /* allocate blocks */
f5a84ee3
JB
635 ret = cow_file_range(inode, async_cow->locked_page,
636 async_extent->start,
637 async_extent->start +
638 async_extent->ram_size - 1,
639 &page_started, &nr_written, 0);
771ed689 640
79787eaa
JM
641 /* JDM XXX */
642
771ed689
CM
643 /*
644 * if page_started, cow_file_range inserted an
645 * inline extent and took care of all the unlocking
646 * and IO for us. Otherwise, we need to submit
647 * all those pages down to the drive.
648 */
f5a84ee3 649 if (!page_started && !ret)
771ed689
CM
650 extent_write_locked_range(io_tree,
651 inode, async_extent->start,
d397712b 652 async_extent->start +
771ed689
CM
653 async_extent->ram_size - 1,
654 btrfs_get_extent,
655 WB_SYNC_ALL);
3e04e7f1
JB
656 else if (ret)
657 unlock_page(async_cow->locked_page);
771ed689
CM
658 kfree(async_extent);
659 cond_resched();
660 continue;
661 }
662
663 lock_extent(io_tree, async_extent->start,
d0082371 664 async_extent->start + async_extent->ram_size - 1);
771ed689 665
00361589 666 ret = btrfs_reserve_extent(root,
771ed689
CM
667 async_extent->compressed_size,
668 async_extent->compressed_size,
81c9ad23 669 0, alloc_hint, &ins, 1);
f5a84ee3
JB
670 if (ret) {
671 int i;
3e04e7f1 672
f5a84ee3
JB
673 for (i = 0; i < async_extent->nr_pages; i++) {
674 WARN_ON(async_extent->pages[i]->mapping);
675 page_cache_release(async_extent->pages[i]);
676 }
677 kfree(async_extent->pages);
678 async_extent->nr_pages = 0;
679 async_extent->pages = NULL;
3e04e7f1 680
fdf8e2ea
JB
681 if (ret == -ENOSPC) {
682 unlock_extent(io_tree, async_extent->start,
683 async_extent->start +
684 async_extent->ram_size - 1);
79787eaa 685 goto retry;
fdf8e2ea 686 }
3e04e7f1 687 goto out_free;
f5a84ee3
JB
688 }
689
c2167754
YZ
690 /*
691 * here we're doing allocation and writeback of the
692 * compressed pages
693 */
694 btrfs_drop_extent_cache(inode, async_extent->start,
695 async_extent->start +
696 async_extent->ram_size - 1, 0);
697
172ddd60 698 em = alloc_extent_map();
b9aa55be
LB
699 if (!em) {
700 ret = -ENOMEM;
3e04e7f1 701 goto out_free_reserve;
b9aa55be 702 }
771ed689
CM
703 em->start = async_extent->start;
704 em->len = async_extent->ram_size;
445a6944 705 em->orig_start = em->start;
2ab28f32
JB
706 em->mod_start = em->start;
707 em->mod_len = em->len;
c8b97818 708
771ed689
CM
709 em->block_start = ins.objectid;
710 em->block_len = ins.offset;
b4939680 711 em->orig_block_len = ins.offset;
cc95bef6 712 em->ram_bytes = async_extent->ram_size;
771ed689 713 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 714 em->compress_type = async_extent->compress_type;
771ed689
CM
715 set_bit(EXTENT_FLAG_PINNED, &em->flags);
716 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 717 em->generation = -1;
771ed689 718
d397712b 719 while (1) {
890871be 720 write_lock(&em_tree->lock);
09a2a8f9 721 ret = add_extent_mapping(em_tree, em, 1);
890871be 722 write_unlock(&em_tree->lock);
771ed689
CM
723 if (ret != -EEXIST) {
724 free_extent_map(em);
725 break;
726 }
727 btrfs_drop_extent_cache(inode, async_extent->start,
728 async_extent->start +
729 async_extent->ram_size - 1, 0);
730 }
731
3e04e7f1
JB
732 if (ret)
733 goto out_free_reserve;
734
261507a0
LZ
735 ret = btrfs_add_ordered_extent_compress(inode,
736 async_extent->start,
737 ins.objectid,
738 async_extent->ram_size,
739 ins.offset,
740 BTRFS_ORDERED_COMPRESSED,
741 async_extent->compress_type);
3e04e7f1
JB
742 if (ret)
743 goto out_free_reserve;
771ed689 744
771ed689
CM
745 /*
746 * clear dirty, set writeback and unlock the pages.
747 */
c2790a2e 748 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
749 async_extent->start +
750 async_extent->ram_size - 1,
151a41bc
JB
751 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
752 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 753 PAGE_SET_WRITEBACK);
771ed689 754 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
755 async_extent->start,
756 async_extent->ram_size,
757 ins.objectid,
758 ins.offset, async_extent->pages,
759 async_extent->nr_pages);
771ed689
CM
760 alloc_hint = ins.objectid + ins.offset;
761 kfree(async_extent);
3e04e7f1
JB
762 if (ret)
763 goto out;
771ed689
CM
764 cond_resched();
765 }
79787eaa
JM
766 ret = 0;
767out:
768 return ret;
3e04e7f1
JB
769out_free_reserve:
770 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 771out_free:
c2790a2e 772 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
773 async_extent->start +
774 async_extent->ram_size - 1,
c2790a2e 775 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
776 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
777 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
778 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 779 kfree(async_extent);
3e04e7f1 780 goto again;
771ed689
CM
781}
782
4b46fce2
JB
783static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
784 u64 num_bytes)
785{
786 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
787 struct extent_map *em;
788 u64 alloc_hint = 0;
789
790 read_lock(&em_tree->lock);
791 em = search_extent_mapping(em_tree, start, num_bytes);
792 if (em) {
793 /*
794 * if block start isn't an actual block number then find the
795 * first block in this inode and use that as a hint. If that
796 * block is also bogus then just don't worry about it.
797 */
798 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
799 free_extent_map(em);
800 em = search_extent_mapping(em_tree, 0, 0);
801 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
802 alloc_hint = em->block_start;
803 if (em)
804 free_extent_map(em);
805 } else {
806 alloc_hint = em->block_start;
807 free_extent_map(em);
808 }
809 }
810 read_unlock(&em_tree->lock);
811
812 return alloc_hint;
813}
814
771ed689
CM
815/*
816 * when extent_io.c finds a delayed allocation range in the file,
817 * the call backs end up in this code. The basic idea is to
818 * allocate extents on disk for the range, and create ordered data structs
819 * in ram to track those extents.
820 *
821 * locked_page is the page that writepage had locked already. We use
822 * it to make sure we don't do extra locks or unlocks.
823 *
824 * *page_started is set to one if we unlock locked_page and do everything
825 * required to start IO on it. It may be clean and already done with
826 * IO when we return.
827 */
00361589
JB
828static noinline int cow_file_range(struct inode *inode,
829 struct page *locked_page,
830 u64 start, u64 end, int *page_started,
831 unsigned long *nr_written,
832 int unlock)
771ed689 833{
00361589 834 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
835 u64 alloc_hint = 0;
836 u64 num_bytes;
837 unsigned long ram_size;
838 u64 disk_num_bytes;
839 u64 cur_alloc_size;
840 u64 blocksize = root->sectorsize;
771ed689
CM
841 struct btrfs_key ins;
842 struct extent_map *em;
843 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
844 int ret = 0;
845
02ecd2c2
JB
846 if (btrfs_is_free_space_inode(inode)) {
847 WARN_ON_ONCE(1);
848 return -EINVAL;
849 }
771ed689 850
fda2832f 851 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
852 num_bytes = max(blocksize, num_bytes);
853 disk_num_bytes = num_bytes;
771ed689 854
4cb5300b 855 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
856 if (num_bytes < 64 * 1024 &&
857 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 858 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 859
771ed689
CM
860 if (start == 0) {
861 /* lets try to make an inline extent */
00361589
JB
862 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
863 NULL);
771ed689 864 if (ret == 0) {
c2790a2e
JB
865 extent_clear_unlock_delalloc(inode, start, end, NULL,
866 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 867 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
868 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
869 PAGE_END_WRITEBACK);
c2167754 870
771ed689
CM
871 *nr_written = *nr_written +
872 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
873 *page_started = 1;
771ed689 874 goto out;
79787eaa 875 } else if (ret < 0) {
79787eaa 876 goto out_unlock;
771ed689
CM
877 }
878 }
879
880 BUG_ON(disk_num_bytes >
6c41761f 881 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 882
4b46fce2 883 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
884 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
885
d397712b 886 while (disk_num_bytes > 0) {
a791e35e
CM
887 unsigned long op;
888
287a0ab9 889 cur_alloc_size = disk_num_bytes;
00361589 890 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 891 root->sectorsize, 0, alloc_hint,
81c9ad23 892 &ins, 1);
00361589 893 if (ret < 0)
79787eaa 894 goto out_unlock;
d397712b 895
172ddd60 896 em = alloc_extent_map();
b9aa55be
LB
897 if (!em) {
898 ret = -ENOMEM;
ace68bac 899 goto out_reserve;
b9aa55be 900 }
e6dcd2dc 901 em->start = start;
445a6944 902 em->orig_start = em->start;
771ed689
CM
903 ram_size = ins.offset;
904 em->len = ins.offset;
2ab28f32
JB
905 em->mod_start = em->start;
906 em->mod_len = em->len;
c8b97818 907
e6dcd2dc 908 em->block_start = ins.objectid;
c8b97818 909 em->block_len = ins.offset;
b4939680 910 em->orig_block_len = ins.offset;
cc95bef6 911 em->ram_bytes = ram_size;
e6dcd2dc 912 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 913 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 914 em->generation = -1;
c8b97818 915
d397712b 916 while (1) {
890871be 917 write_lock(&em_tree->lock);
09a2a8f9 918 ret = add_extent_mapping(em_tree, em, 1);
890871be 919 write_unlock(&em_tree->lock);
e6dcd2dc
CM
920 if (ret != -EEXIST) {
921 free_extent_map(em);
922 break;
923 }
924 btrfs_drop_extent_cache(inode, start,
c8b97818 925 start + ram_size - 1, 0);
e6dcd2dc 926 }
ace68bac
LB
927 if (ret)
928 goto out_reserve;
e6dcd2dc 929
98d20f67 930 cur_alloc_size = ins.offset;
e6dcd2dc 931 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 932 ram_size, cur_alloc_size, 0);
ace68bac
LB
933 if (ret)
934 goto out_reserve;
c8b97818 935
17d217fe
YZ
936 if (root->root_key.objectid ==
937 BTRFS_DATA_RELOC_TREE_OBJECTID) {
938 ret = btrfs_reloc_clone_csums(inode, start,
939 cur_alloc_size);
00361589 940 if (ret)
ace68bac 941 goto out_reserve;
17d217fe
YZ
942 }
943
d397712b 944 if (disk_num_bytes < cur_alloc_size)
3b951516 945 break;
d397712b 946
c8b97818
CM
947 /* we're not doing compressed IO, don't unlock the first
948 * page (which the caller expects to stay locked), don't
949 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
950 *
951 * Do set the Private2 bit so we know this page was properly
952 * setup for writepage
c8b97818 953 */
c2790a2e
JB
954 op = unlock ? PAGE_UNLOCK : 0;
955 op |= PAGE_SET_PRIVATE2;
a791e35e 956
c2790a2e
JB
957 extent_clear_unlock_delalloc(inode, start,
958 start + ram_size - 1, locked_page,
959 EXTENT_LOCKED | EXTENT_DELALLOC,
960 op);
c8b97818 961 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
962 num_bytes -= cur_alloc_size;
963 alloc_hint = ins.objectid + ins.offset;
964 start += cur_alloc_size;
b888db2b 965 }
79787eaa 966out:
be20aa9d 967 return ret;
b7d5b0a8 968
ace68bac
LB
969out_reserve:
970 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 971out_unlock:
c2790a2e 972 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
973 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
974 EXTENT_DELALLOC | EXTENT_DEFRAG,
975 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
976 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 977 goto out;
771ed689 978}
c8b97818 979
771ed689
CM
980/*
981 * work queue call back to started compression on a file and pages
982 */
983static noinline void async_cow_start(struct btrfs_work *work)
984{
985 struct async_cow *async_cow;
986 int num_added = 0;
987 async_cow = container_of(work, struct async_cow, work);
988
989 compress_file_range(async_cow->inode, async_cow->locked_page,
990 async_cow->start, async_cow->end, async_cow,
991 &num_added);
8180ef88 992 if (num_added == 0) {
cb77fcd8 993 btrfs_add_delayed_iput(async_cow->inode);
771ed689 994 async_cow->inode = NULL;
8180ef88 995 }
771ed689
CM
996}
997
998/*
999 * work queue call back to submit previously compressed pages
1000 */
1001static noinline void async_cow_submit(struct btrfs_work *work)
1002{
1003 struct async_cow *async_cow;
1004 struct btrfs_root *root;
1005 unsigned long nr_pages;
1006
1007 async_cow = container_of(work, struct async_cow, work);
1008
1009 root = async_cow->root;
1010 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1011 PAGE_CACHE_SHIFT;
1012
66657b31 1013 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1014 5 * 1024 * 1024 &&
771ed689
CM
1015 waitqueue_active(&root->fs_info->async_submit_wait))
1016 wake_up(&root->fs_info->async_submit_wait);
1017
d397712b 1018 if (async_cow->inode)
771ed689 1019 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1020}
c8b97818 1021
771ed689
CM
1022static noinline void async_cow_free(struct btrfs_work *work)
1023{
1024 struct async_cow *async_cow;
1025 async_cow = container_of(work, struct async_cow, work);
8180ef88 1026 if (async_cow->inode)
cb77fcd8 1027 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1028 kfree(async_cow);
1029}
1030
1031static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1032 u64 start, u64 end, int *page_started,
1033 unsigned long *nr_written)
1034{
1035 struct async_cow *async_cow;
1036 struct btrfs_root *root = BTRFS_I(inode)->root;
1037 unsigned long nr_pages;
1038 u64 cur_end;
287082b0 1039 int limit = 10 * 1024 * 1024;
771ed689 1040
a3429ab7
CM
1041 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1042 1, 0, NULL, GFP_NOFS);
d397712b 1043 while (start < end) {
771ed689 1044 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1045 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1046 async_cow->inode = igrab(inode);
771ed689
CM
1047 async_cow->root = root;
1048 async_cow->locked_page = locked_page;
1049 async_cow->start = start;
1050
6cbff00f 1051 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1052 cur_end = end;
1053 else
1054 cur_end = min(end, start + 512 * 1024 - 1);
1055
1056 async_cow->end = cur_end;
1057 INIT_LIST_HEAD(&async_cow->extents);
1058
1059 async_cow->work.func = async_cow_start;
1060 async_cow->work.ordered_func = async_cow_submit;
1061 async_cow->work.ordered_free = async_cow_free;
1062 async_cow->work.flags = 0;
1063
771ed689
CM
1064 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1065 PAGE_CACHE_SHIFT;
1066 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1067
1068 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1069 &async_cow->work);
1070
1071 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1072 wait_event(root->fs_info->async_submit_wait,
1073 (atomic_read(&root->fs_info->async_delalloc_pages) <
1074 limit));
1075 }
1076
d397712b 1077 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1078 atomic_read(&root->fs_info->async_delalloc_pages)) {
1079 wait_event(root->fs_info->async_submit_wait,
1080 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1081 0));
1082 }
1083
1084 *nr_written += nr_pages;
1085 start = cur_end + 1;
1086 }
1087 *page_started = 1;
1088 return 0;
be20aa9d
CM
1089}
1090
d397712b 1091static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1092 u64 bytenr, u64 num_bytes)
1093{
1094 int ret;
1095 struct btrfs_ordered_sum *sums;
1096 LIST_HEAD(list);
1097
07d400a6 1098 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1099 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1100 if (ret == 0 && list_empty(&list))
1101 return 0;
1102
1103 while (!list_empty(&list)) {
1104 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1105 list_del(&sums->list);
1106 kfree(sums);
1107 }
1108 return 1;
1109}
1110
d352ac68
CM
1111/*
1112 * when nowcow writeback call back. This checks for snapshots or COW copies
1113 * of the extents that exist in the file, and COWs the file as required.
1114 *
1115 * If no cow copies or snapshots exist, we write directly to the existing
1116 * blocks on disk
1117 */
7f366cfe
CM
1118static noinline int run_delalloc_nocow(struct inode *inode,
1119 struct page *locked_page,
771ed689
CM
1120 u64 start, u64 end, int *page_started, int force,
1121 unsigned long *nr_written)
be20aa9d 1122{
be20aa9d 1123 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1124 struct btrfs_trans_handle *trans;
be20aa9d 1125 struct extent_buffer *leaf;
be20aa9d 1126 struct btrfs_path *path;
80ff3856 1127 struct btrfs_file_extent_item *fi;
be20aa9d 1128 struct btrfs_key found_key;
80ff3856
YZ
1129 u64 cow_start;
1130 u64 cur_offset;
1131 u64 extent_end;
5d4f98a2 1132 u64 extent_offset;
80ff3856
YZ
1133 u64 disk_bytenr;
1134 u64 num_bytes;
b4939680 1135 u64 disk_num_bytes;
cc95bef6 1136 u64 ram_bytes;
80ff3856 1137 int extent_type;
79787eaa 1138 int ret, err;
d899e052 1139 int type;
80ff3856
YZ
1140 int nocow;
1141 int check_prev = 1;
82d5902d 1142 bool nolock;
33345d01 1143 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1144
1145 path = btrfs_alloc_path();
17ca04af 1146 if (!path) {
c2790a2e
JB
1147 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1148 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1149 EXTENT_DO_ACCOUNTING |
1150 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1151 PAGE_CLEAR_DIRTY |
1152 PAGE_SET_WRITEBACK |
1153 PAGE_END_WRITEBACK);
d8926bb3 1154 return -ENOMEM;
17ca04af 1155 }
82d5902d 1156
83eea1f1 1157 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1158
1159 if (nolock)
7a7eaa40 1160 trans = btrfs_join_transaction_nolock(root);
82d5902d 1161 else
7a7eaa40 1162 trans = btrfs_join_transaction(root);
ff5714cc 1163
79787eaa 1164 if (IS_ERR(trans)) {
c2790a2e
JB
1165 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1166 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1167 EXTENT_DO_ACCOUNTING |
1168 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1169 PAGE_CLEAR_DIRTY |
1170 PAGE_SET_WRITEBACK |
1171 PAGE_END_WRITEBACK);
79787eaa
JM
1172 btrfs_free_path(path);
1173 return PTR_ERR(trans);
1174 }
1175
74b21075 1176 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1177
80ff3856
YZ
1178 cow_start = (u64)-1;
1179 cur_offset = start;
1180 while (1) {
33345d01 1181 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1182 cur_offset, 0);
d788a349 1183 if (ret < 0)
79787eaa 1184 goto error;
80ff3856
YZ
1185 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186 leaf = path->nodes[0];
1187 btrfs_item_key_to_cpu(leaf, &found_key,
1188 path->slots[0] - 1);
33345d01 1189 if (found_key.objectid == ino &&
80ff3856
YZ
1190 found_key.type == BTRFS_EXTENT_DATA_KEY)
1191 path->slots[0]--;
1192 }
1193 check_prev = 0;
1194next_slot:
1195 leaf = path->nodes[0];
1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197 ret = btrfs_next_leaf(root, path);
d788a349 1198 if (ret < 0)
79787eaa 1199 goto error;
80ff3856
YZ
1200 if (ret > 0)
1201 break;
1202 leaf = path->nodes[0];
1203 }
be20aa9d 1204
80ff3856
YZ
1205 nocow = 0;
1206 disk_bytenr = 0;
17d217fe 1207 num_bytes = 0;
80ff3856
YZ
1208 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1209
33345d01 1210 if (found_key.objectid > ino ||
80ff3856
YZ
1211 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1212 found_key.offset > end)
1213 break;
1214
1215 if (found_key.offset > cur_offset) {
1216 extent_end = found_key.offset;
e9061e21 1217 extent_type = 0;
80ff3856
YZ
1218 goto out_check;
1219 }
1220
1221 fi = btrfs_item_ptr(leaf, path->slots[0],
1222 struct btrfs_file_extent_item);
1223 extent_type = btrfs_file_extent_type(leaf, fi);
1224
cc95bef6 1225 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1226 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1227 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1228 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1229 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1230 extent_end = found_key.offset +
1231 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1232 disk_num_bytes =
1233 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1234 if (extent_end <= start) {
1235 path->slots[0]++;
1236 goto next_slot;
1237 }
17d217fe
YZ
1238 if (disk_bytenr == 0)
1239 goto out_check;
80ff3856
YZ
1240 if (btrfs_file_extent_compression(leaf, fi) ||
1241 btrfs_file_extent_encryption(leaf, fi) ||
1242 btrfs_file_extent_other_encoding(leaf, fi))
1243 goto out_check;
d899e052
YZ
1244 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1245 goto out_check;
d2fb3437 1246 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1247 goto out_check;
33345d01 1248 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1249 found_key.offset -
1250 extent_offset, disk_bytenr))
17d217fe 1251 goto out_check;
5d4f98a2 1252 disk_bytenr += extent_offset;
17d217fe
YZ
1253 disk_bytenr += cur_offset - found_key.offset;
1254 num_bytes = min(end + 1, extent_end) - cur_offset;
1255 /*
1256 * force cow if csum exists in the range.
1257 * this ensure that csum for a given extent are
1258 * either valid or do not exist.
1259 */
1260 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1261 goto out_check;
80ff3856
YZ
1262 nocow = 1;
1263 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1264 extent_end = found_key.offset +
1265 btrfs_file_extent_inline_len(leaf, fi);
1266 extent_end = ALIGN(extent_end, root->sectorsize);
1267 } else {
1268 BUG_ON(1);
1269 }
1270out_check:
1271 if (extent_end <= start) {
1272 path->slots[0]++;
1273 goto next_slot;
1274 }
1275 if (!nocow) {
1276 if (cow_start == (u64)-1)
1277 cow_start = cur_offset;
1278 cur_offset = extent_end;
1279 if (cur_offset > end)
1280 break;
1281 path->slots[0]++;
1282 goto next_slot;
7ea394f1
YZ
1283 }
1284
b3b4aa74 1285 btrfs_release_path(path);
80ff3856 1286 if (cow_start != (u64)-1) {
00361589
JB
1287 ret = cow_file_range(inode, locked_page,
1288 cow_start, found_key.offset - 1,
1289 page_started, nr_written, 1);
d788a349 1290 if (ret)
79787eaa 1291 goto error;
80ff3856 1292 cow_start = (u64)-1;
7ea394f1 1293 }
80ff3856 1294
d899e052
YZ
1295 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1296 struct extent_map *em;
1297 struct extent_map_tree *em_tree;
1298 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1299 em = alloc_extent_map();
79787eaa 1300 BUG_ON(!em); /* -ENOMEM */
d899e052 1301 em->start = cur_offset;
70c8a91c 1302 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1303 em->len = num_bytes;
1304 em->block_len = num_bytes;
1305 em->block_start = disk_bytenr;
b4939680 1306 em->orig_block_len = disk_num_bytes;
cc95bef6 1307 em->ram_bytes = ram_bytes;
d899e052 1308 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1309 em->mod_start = em->start;
1310 em->mod_len = em->len;
d899e052 1311 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1312 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1313 em->generation = -1;
d899e052 1314 while (1) {
890871be 1315 write_lock(&em_tree->lock);
09a2a8f9 1316 ret = add_extent_mapping(em_tree, em, 1);
890871be 1317 write_unlock(&em_tree->lock);
d899e052
YZ
1318 if (ret != -EEXIST) {
1319 free_extent_map(em);
1320 break;
1321 }
1322 btrfs_drop_extent_cache(inode, em->start,
1323 em->start + em->len - 1, 0);
1324 }
1325 type = BTRFS_ORDERED_PREALLOC;
1326 } else {
1327 type = BTRFS_ORDERED_NOCOW;
1328 }
80ff3856
YZ
1329
1330 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1331 num_bytes, num_bytes, type);
79787eaa 1332 BUG_ON(ret); /* -ENOMEM */
771ed689 1333
efa56464
YZ
1334 if (root->root_key.objectid ==
1335 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1336 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1337 num_bytes);
d788a349 1338 if (ret)
79787eaa 1339 goto error;
efa56464
YZ
1340 }
1341
c2790a2e
JB
1342 extent_clear_unlock_delalloc(inode, cur_offset,
1343 cur_offset + num_bytes - 1,
1344 locked_page, EXTENT_LOCKED |
1345 EXTENT_DELALLOC, PAGE_UNLOCK |
1346 PAGE_SET_PRIVATE2);
80ff3856
YZ
1347 cur_offset = extent_end;
1348 if (cur_offset > end)
1349 break;
be20aa9d 1350 }
b3b4aa74 1351 btrfs_release_path(path);
80ff3856 1352
17ca04af 1353 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1354 cow_start = cur_offset;
17ca04af
JB
1355 cur_offset = end;
1356 }
1357
80ff3856 1358 if (cow_start != (u64)-1) {
00361589
JB
1359 ret = cow_file_range(inode, locked_page, cow_start, end,
1360 page_started, nr_written, 1);
d788a349 1361 if (ret)
79787eaa 1362 goto error;
80ff3856
YZ
1363 }
1364
79787eaa 1365error:
a698d075 1366 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1367 if (!ret)
1368 ret = err;
1369
17ca04af 1370 if (ret && cur_offset < end)
c2790a2e
JB
1371 extent_clear_unlock_delalloc(inode, cur_offset, end,
1372 locked_page, EXTENT_LOCKED |
151a41bc
JB
1373 EXTENT_DELALLOC | EXTENT_DEFRAG |
1374 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1375 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1376 PAGE_SET_WRITEBACK |
1377 PAGE_END_WRITEBACK);
7ea394f1 1378 btrfs_free_path(path);
79787eaa 1379 return ret;
be20aa9d
CM
1380}
1381
d352ac68
CM
1382/*
1383 * extent_io.c call back to do delayed allocation processing
1384 */
c8b97818 1385static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1386 u64 start, u64 end, int *page_started,
1387 unsigned long *nr_written)
be20aa9d 1388{
be20aa9d 1389 int ret;
7f366cfe 1390 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1391
7ddf5a42 1392 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1393 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1394 page_started, 1, nr_written);
7ddf5a42 1395 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1396 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1397 page_started, 0, nr_written);
7ddf5a42
JB
1398 } else if (!btrfs_test_opt(root, COMPRESS) &&
1399 !(BTRFS_I(inode)->force_compress) &&
1400 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1401 ret = cow_file_range(inode, locked_page, start, end,
1402 page_started, nr_written, 1);
7ddf5a42
JB
1403 } else {
1404 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1405 &BTRFS_I(inode)->runtime_flags);
771ed689 1406 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1407 page_started, nr_written);
7ddf5a42 1408 }
b888db2b
CM
1409 return ret;
1410}
1411
1bf85046
JM
1412static void btrfs_split_extent_hook(struct inode *inode,
1413 struct extent_state *orig, u64 split)
9ed74f2d 1414{
0ca1f7ce 1415 /* not delalloc, ignore it */
9ed74f2d 1416 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1417 return;
9ed74f2d 1418
9e0baf60
JB
1419 spin_lock(&BTRFS_I(inode)->lock);
1420 BTRFS_I(inode)->outstanding_extents++;
1421 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1422}
1423
1424/*
1425 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1426 * extents so we can keep track of new extents that are just merged onto old
1427 * extents, such as when we are doing sequential writes, so we can properly
1428 * account for the metadata space we'll need.
1429 */
1bf85046
JM
1430static void btrfs_merge_extent_hook(struct inode *inode,
1431 struct extent_state *new,
1432 struct extent_state *other)
9ed74f2d 1433{
9ed74f2d
JB
1434 /* not delalloc, ignore it */
1435 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1436 return;
9ed74f2d 1437
9e0baf60
JB
1438 spin_lock(&BTRFS_I(inode)->lock);
1439 BTRFS_I(inode)->outstanding_extents--;
1440 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1441}
1442
eb73c1b7
MX
1443static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1444 struct inode *inode)
1445{
1446 spin_lock(&root->delalloc_lock);
1447 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1448 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1449 &root->delalloc_inodes);
1450 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1451 &BTRFS_I(inode)->runtime_flags);
1452 root->nr_delalloc_inodes++;
1453 if (root->nr_delalloc_inodes == 1) {
1454 spin_lock(&root->fs_info->delalloc_root_lock);
1455 BUG_ON(!list_empty(&root->delalloc_root));
1456 list_add_tail(&root->delalloc_root,
1457 &root->fs_info->delalloc_roots);
1458 spin_unlock(&root->fs_info->delalloc_root_lock);
1459 }
1460 }
1461 spin_unlock(&root->delalloc_lock);
1462}
1463
1464static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1465 struct inode *inode)
1466{
1467 spin_lock(&root->delalloc_lock);
1468 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1469 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1470 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1471 &BTRFS_I(inode)->runtime_flags);
1472 root->nr_delalloc_inodes--;
1473 if (!root->nr_delalloc_inodes) {
1474 spin_lock(&root->fs_info->delalloc_root_lock);
1475 BUG_ON(list_empty(&root->delalloc_root));
1476 list_del_init(&root->delalloc_root);
1477 spin_unlock(&root->fs_info->delalloc_root_lock);
1478 }
1479 }
1480 spin_unlock(&root->delalloc_lock);
1481}
1482
d352ac68
CM
1483/*
1484 * extent_io.c set_bit_hook, used to track delayed allocation
1485 * bytes in this file, and to maintain the list of inodes that
1486 * have pending delalloc work to be done.
1487 */
1bf85046 1488static void btrfs_set_bit_hook(struct inode *inode,
41074888 1489 struct extent_state *state, unsigned long *bits)
291d673e 1490{
9ed74f2d 1491
75eff68e
CM
1492 /*
1493 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1494 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1495 * bit, which is only set or cleared with irqs on
1496 */
0ca1f7ce 1497 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1498 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1499 u64 len = state->end + 1 - state->start;
83eea1f1 1500 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1501
9e0baf60 1502 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1503 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1504 } else {
1505 spin_lock(&BTRFS_I(inode)->lock);
1506 BTRFS_I(inode)->outstanding_extents++;
1507 spin_unlock(&BTRFS_I(inode)->lock);
1508 }
287a0ab9 1509
963d678b
MX
1510 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1511 root->fs_info->delalloc_batch);
df0af1a5 1512 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1513 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1514 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1515 &BTRFS_I(inode)->runtime_flags))
1516 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1517 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1518 }
291d673e
CM
1519}
1520
d352ac68
CM
1521/*
1522 * extent_io.c clear_bit_hook, see set_bit_hook for why
1523 */
1bf85046 1524static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1525 struct extent_state *state,
1526 unsigned long *bits)
291d673e 1527{
75eff68e
CM
1528 /*
1529 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1530 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1531 * bit, which is only set or cleared with irqs on
1532 */
0ca1f7ce 1533 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1534 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1535 u64 len = state->end + 1 - state->start;
83eea1f1 1536 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1537
9e0baf60 1538 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1539 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1540 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1541 spin_lock(&BTRFS_I(inode)->lock);
1542 BTRFS_I(inode)->outstanding_extents--;
1543 spin_unlock(&BTRFS_I(inode)->lock);
1544 }
0ca1f7ce 1545
b6d08f06
JB
1546 /*
1547 * We don't reserve metadata space for space cache inodes so we
1548 * don't need to call dellalloc_release_metadata if there is an
1549 * error.
1550 */
1551 if (*bits & EXTENT_DO_ACCOUNTING &&
1552 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1553 btrfs_delalloc_release_metadata(inode, len);
1554
0cb59c99 1555 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1556 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1557 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1558
963d678b
MX
1559 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1560 root->fs_info->delalloc_batch);
df0af1a5 1561 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1562 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1563 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1564 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1565 &BTRFS_I(inode)->runtime_flags))
1566 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1567 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1568 }
291d673e
CM
1569}
1570
d352ac68
CM
1571/*
1572 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1573 * we don't create bios that span stripes or chunks
1574 */
64a16701 1575int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1576 size_t size, struct bio *bio,
1577 unsigned long bio_flags)
239b14b3
CM
1578{
1579 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1580 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1581 u64 length = 0;
1582 u64 map_length;
239b14b3
CM
1583 int ret;
1584
771ed689
CM
1585 if (bio_flags & EXTENT_BIO_COMPRESSED)
1586 return 0;
1587
f2d8d74d 1588 length = bio->bi_size;
239b14b3 1589 map_length = length;
64a16701 1590 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1591 &map_length, NULL, 0);
3ec706c8 1592 /* Will always return 0 with map_multi == NULL */
3444a972 1593 BUG_ON(ret < 0);
d397712b 1594 if (map_length < length + size)
239b14b3 1595 return 1;
3444a972 1596 return 0;
239b14b3
CM
1597}
1598
d352ac68
CM
1599/*
1600 * in order to insert checksums into the metadata in large chunks,
1601 * we wait until bio submission time. All the pages in the bio are
1602 * checksummed and sums are attached onto the ordered extent record.
1603 *
1604 * At IO completion time the cums attached on the ordered extent record
1605 * are inserted into the btree
1606 */
d397712b
CM
1607static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1608 struct bio *bio, int mirror_num,
eaf25d93
CM
1609 unsigned long bio_flags,
1610 u64 bio_offset)
065631f6 1611{
065631f6 1612 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1613 int ret = 0;
e015640f 1614
d20f7043 1615 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1616 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1617 return 0;
1618}
e015640f 1619
4a69a410
CM
1620/*
1621 * in order to insert checksums into the metadata in large chunks,
1622 * we wait until bio submission time. All the pages in the bio are
1623 * checksummed and sums are attached onto the ordered extent record.
1624 *
1625 * At IO completion time the cums attached on the ordered extent record
1626 * are inserted into the btree
1627 */
b2950863 1628static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1629 int mirror_num, unsigned long bio_flags,
1630 u64 bio_offset)
4a69a410
CM
1631{
1632 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1633 int ret;
1634
1635 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1636 if (ret)
1637 bio_endio(bio, ret);
1638 return ret;
44b8bd7e
CM
1639}
1640
d352ac68 1641/*
cad321ad
CM
1642 * extent_io.c submission hook. This does the right thing for csum calculation
1643 * on write, or reading the csums from the tree before a read
d352ac68 1644 */
b2950863 1645static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1646 int mirror_num, unsigned long bio_flags,
1647 u64 bio_offset)
44b8bd7e
CM
1648{
1649 struct btrfs_root *root = BTRFS_I(inode)->root;
1650 int ret = 0;
19b9bdb0 1651 int skip_sum;
0417341e 1652 int metadata = 0;
b812ce28 1653 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1654
6cbff00f 1655 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1656
83eea1f1 1657 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1658 metadata = 2;
1659
7b6d91da 1660 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1661 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1662 if (ret)
61891923 1663 goto out;
5fd02043 1664
d20f7043 1665 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1666 ret = btrfs_submit_compressed_read(inode, bio,
1667 mirror_num,
1668 bio_flags);
1669 goto out;
c2db1073
TI
1670 } else if (!skip_sum) {
1671 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1672 if (ret)
61891923 1673 goto out;
c2db1073 1674 }
4d1b5fb4 1675 goto mapit;
b812ce28 1676 } else if (async && !skip_sum) {
17d217fe
YZ
1677 /* csum items have already been cloned */
1678 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1679 goto mapit;
19b9bdb0 1680 /* we're doing a write, do the async checksumming */
61891923 1681 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1682 inode, rw, bio, mirror_num,
eaf25d93
CM
1683 bio_flags, bio_offset,
1684 __btrfs_submit_bio_start,
4a69a410 1685 __btrfs_submit_bio_done);
61891923 1686 goto out;
b812ce28
JB
1687 } else if (!skip_sum) {
1688 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1689 if (ret)
1690 goto out;
19b9bdb0
CM
1691 }
1692
0b86a832 1693mapit:
61891923
SB
1694 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1695
1696out:
1697 if (ret < 0)
1698 bio_endio(bio, ret);
1699 return ret;
065631f6 1700}
6885f308 1701
d352ac68
CM
1702/*
1703 * given a list of ordered sums record them in the inode. This happens
1704 * at IO completion time based on sums calculated at bio submission time.
1705 */
ba1da2f4 1706static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1707 struct inode *inode, u64 file_offset,
1708 struct list_head *list)
1709{
e6dcd2dc
CM
1710 struct btrfs_ordered_sum *sum;
1711
c6e30871 1712 list_for_each_entry(sum, list, list) {
39847c4d 1713 trans->adding_csums = 1;
d20f7043
CM
1714 btrfs_csum_file_blocks(trans,
1715 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1716 trans->adding_csums = 0;
e6dcd2dc
CM
1717 }
1718 return 0;
1719}
1720
2ac55d41
JB
1721int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1722 struct extent_state **cached_state)
ea8c2819 1723{
6c1500f2 1724 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1725 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1726 cached_state, GFP_NOFS);
ea8c2819
CM
1727}
1728
d352ac68 1729/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1730struct btrfs_writepage_fixup {
1731 struct page *page;
1732 struct btrfs_work work;
1733};
1734
b2950863 1735static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1736{
1737 struct btrfs_writepage_fixup *fixup;
1738 struct btrfs_ordered_extent *ordered;
2ac55d41 1739 struct extent_state *cached_state = NULL;
247e743c
CM
1740 struct page *page;
1741 struct inode *inode;
1742 u64 page_start;
1743 u64 page_end;
87826df0 1744 int ret;
247e743c
CM
1745
1746 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1747 page = fixup->page;
4a096752 1748again:
247e743c
CM
1749 lock_page(page);
1750 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1751 ClearPageChecked(page);
1752 goto out_page;
1753 }
1754
1755 inode = page->mapping->host;
1756 page_start = page_offset(page);
1757 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1758
2ac55d41 1759 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1760 &cached_state);
4a096752
CM
1761
1762 /* already ordered? We're done */
8b62b72b 1763 if (PagePrivate2(page))
247e743c 1764 goto out;
4a096752
CM
1765
1766 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1767 if (ordered) {
2ac55d41
JB
1768 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1769 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1770 unlock_page(page);
1771 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1772 btrfs_put_ordered_extent(ordered);
4a096752
CM
1773 goto again;
1774 }
247e743c 1775
87826df0
JM
1776 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1777 if (ret) {
1778 mapping_set_error(page->mapping, ret);
1779 end_extent_writepage(page, ret, page_start, page_end);
1780 ClearPageChecked(page);
1781 goto out;
1782 }
1783
2ac55d41 1784 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1785 ClearPageChecked(page);
87826df0 1786 set_page_dirty(page);
247e743c 1787out:
2ac55d41
JB
1788 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1789 &cached_state, GFP_NOFS);
247e743c
CM
1790out_page:
1791 unlock_page(page);
1792 page_cache_release(page);
b897abec 1793 kfree(fixup);
247e743c
CM
1794}
1795
1796/*
1797 * There are a few paths in the higher layers of the kernel that directly
1798 * set the page dirty bit without asking the filesystem if it is a
1799 * good idea. This causes problems because we want to make sure COW
1800 * properly happens and the data=ordered rules are followed.
1801 *
c8b97818 1802 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1803 * hasn't been properly setup for IO. We kick off an async process
1804 * to fix it up. The async helper will wait for ordered extents, set
1805 * the delalloc bit and make it safe to write the page.
1806 */
b2950863 1807static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1808{
1809 struct inode *inode = page->mapping->host;
1810 struct btrfs_writepage_fixup *fixup;
1811 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1812
8b62b72b
CM
1813 /* this page is properly in the ordered list */
1814 if (TestClearPagePrivate2(page))
247e743c
CM
1815 return 0;
1816
1817 if (PageChecked(page))
1818 return -EAGAIN;
1819
1820 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1821 if (!fixup)
1822 return -EAGAIN;
f421950f 1823
247e743c
CM
1824 SetPageChecked(page);
1825 page_cache_get(page);
1826 fixup->work.func = btrfs_writepage_fixup_worker;
1827 fixup->page = page;
1828 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1829 return -EBUSY;
247e743c
CM
1830}
1831
d899e052
YZ
1832static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1833 struct inode *inode, u64 file_pos,
1834 u64 disk_bytenr, u64 disk_num_bytes,
1835 u64 num_bytes, u64 ram_bytes,
1836 u8 compression, u8 encryption,
1837 u16 other_encoding, int extent_type)
1838{
1839 struct btrfs_root *root = BTRFS_I(inode)->root;
1840 struct btrfs_file_extent_item *fi;
1841 struct btrfs_path *path;
1842 struct extent_buffer *leaf;
1843 struct btrfs_key ins;
d899e052
YZ
1844 int ret;
1845
1846 path = btrfs_alloc_path();
d8926bb3
MF
1847 if (!path)
1848 return -ENOMEM;
d899e052 1849
b9473439 1850 path->leave_spinning = 1;
a1ed835e
CM
1851
1852 /*
1853 * we may be replacing one extent in the tree with another.
1854 * The new extent is pinned in the extent map, and we don't want
1855 * to drop it from the cache until it is completely in the btree.
1856 *
1857 * So, tell btrfs_drop_extents to leave this extent in the cache.
1858 * the caller is expected to unpin it and allow it to be merged
1859 * with the others.
1860 */
5dc562c5 1861 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1862 file_pos + num_bytes, 0);
79787eaa
JM
1863 if (ret)
1864 goto out;
d899e052 1865
33345d01 1866 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1867 ins.offset = file_pos;
1868 ins.type = BTRFS_EXTENT_DATA_KEY;
1869 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1870 if (ret)
1871 goto out;
d899e052
YZ
1872 leaf = path->nodes[0];
1873 fi = btrfs_item_ptr(leaf, path->slots[0],
1874 struct btrfs_file_extent_item);
1875 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1876 btrfs_set_file_extent_type(leaf, fi, extent_type);
1877 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1878 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1879 btrfs_set_file_extent_offset(leaf, fi, 0);
1880 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1881 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1882 btrfs_set_file_extent_compression(leaf, fi, compression);
1883 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1884 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1885
d899e052 1886 btrfs_mark_buffer_dirty(leaf);
ce195332 1887 btrfs_release_path(path);
d899e052
YZ
1888
1889 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1890
1891 ins.objectid = disk_bytenr;
1892 ins.offset = disk_num_bytes;
1893 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1894 ret = btrfs_alloc_reserved_file_extent(trans, root,
1895 root->root_key.objectid,
33345d01 1896 btrfs_ino(inode), file_pos, &ins);
79787eaa 1897out:
d899e052 1898 btrfs_free_path(path);
b9473439 1899
79787eaa 1900 return ret;
d899e052
YZ
1901}
1902
38c227d8
LB
1903/* snapshot-aware defrag */
1904struct sa_defrag_extent_backref {
1905 struct rb_node node;
1906 struct old_sa_defrag_extent *old;
1907 u64 root_id;
1908 u64 inum;
1909 u64 file_pos;
1910 u64 extent_offset;
1911 u64 num_bytes;
1912 u64 generation;
1913};
1914
1915struct old_sa_defrag_extent {
1916 struct list_head list;
1917 struct new_sa_defrag_extent *new;
1918
1919 u64 extent_offset;
1920 u64 bytenr;
1921 u64 offset;
1922 u64 len;
1923 int count;
1924};
1925
1926struct new_sa_defrag_extent {
1927 struct rb_root root;
1928 struct list_head head;
1929 struct btrfs_path *path;
1930 struct inode *inode;
1931 u64 file_pos;
1932 u64 len;
1933 u64 bytenr;
1934 u64 disk_len;
1935 u8 compress_type;
1936};
1937
1938static int backref_comp(struct sa_defrag_extent_backref *b1,
1939 struct sa_defrag_extent_backref *b2)
1940{
1941 if (b1->root_id < b2->root_id)
1942 return -1;
1943 else if (b1->root_id > b2->root_id)
1944 return 1;
1945
1946 if (b1->inum < b2->inum)
1947 return -1;
1948 else if (b1->inum > b2->inum)
1949 return 1;
1950
1951 if (b1->file_pos < b2->file_pos)
1952 return -1;
1953 else if (b1->file_pos > b2->file_pos)
1954 return 1;
1955
1956 /*
1957 * [------------------------------] ===> (a range of space)
1958 * |<--->| |<---->| =============> (fs/file tree A)
1959 * |<---------------------------->| ===> (fs/file tree B)
1960 *
1961 * A range of space can refer to two file extents in one tree while
1962 * refer to only one file extent in another tree.
1963 *
1964 * So we may process a disk offset more than one time(two extents in A)
1965 * and locate at the same extent(one extent in B), then insert two same
1966 * backrefs(both refer to the extent in B).
1967 */
1968 return 0;
1969}
1970
1971static void backref_insert(struct rb_root *root,
1972 struct sa_defrag_extent_backref *backref)
1973{
1974 struct rb_node **p = &root->rb_node;
1975 struct rb_node *parent = NULL;
1976 struct sa_defrag_extent_backref *entry;
1977 int ret;
1978
1979 while (*p) {
1980 parent = *p;
1981 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1982
1983 ret = backref_comp(backref, entry);
1984 if (ret < 0)
1985 p = &(*p)->rb_left;
1986 else
1987 p = &(*p)->rb_right;
1988 }
1989
1990 rb_link_node(&backref->node, parent, p);
1991 rb_insert_color(&backref->node, root);
1992}
1993
1994/*
1995 * Note the backref might has changed, and in this case we just return 0.
1996 */
1997static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
1998 void *ctx)
1999{
2000 struct btrfs_file_extent_item *extent;
2001 struct btrfs_fs_info *fs_info;
2002 struct old_sa_defrag_extent *old = ctx;
2003 struct new_sa_defrag_extent *new = old->new;
2004 struct btrfs_path *path = new->path;
2005 struct btrfs_key key;
2006 struct btrfs_root *root;
2007 struct sa_defrag_extent_backref *backref;
2008 struct extent_buffer *leaf;
2009 struct inode *inode = new->inode;
2010 int slot;
2011 int ret;
2012 u64 extent_offset;
2013 u64 num_bytes;
2014
2015 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2016 inum == btrfs_ino(inode))
2017 return 0;
2018
2019 key.objectid = root_id;
2020 key.type = BTRFS_ROOT_ITEM_KEY;
2021 key.offset = (u64)-1;
2022
2023 fs_info = BTRFS_I(inode)->root->fs_info;
2024 root = btrfs_read_fs_root_no_name(fs_info, &key);
2025 if (IS_ERR(root)) {
2026 if (PTR_ERR(root) == -ENOENT)
2027 return 0;
2028 WARN_ON(1);
2029 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2030 inum, offset, root_id);
2031 return PTR_ERR(root);
2032 }
2033
2034 key.objectid = inum;
2035 key.type = BTRFS_EXTENT_DATA_KEY;
2036 if (offset > (u64)-1 << 32)
2037 key.offset = 0;
2038 else
2039 key.offset = offset;
2040
2041 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2042 if (ret < 0) {
2043 WARN_ON(1);
2044 return ret;
2045 }
50f1319c 2046 ret = 0;
38c227d8
LB
2047
2048 while (1) {
2049 cond_resched();
2050
2051 leaf = path->nodes[0];
2052 slot = path->slots[0];
2053
2054 if (slot >= btrfs_header_nritems(leaf)) {
2055 ret = btrfs_next_leaf(root, path);
2056 if (ret < 0) {
2057 goto out;
2058 } else if (ret > 0) {
2059 ret = 0;
2060 goto out;
2061 }
2062 continue;
2063 }
2064
2065 path->slots[0]++;
2066
2067 btrfs_item_key_to_cpu(leaf, &key, slot);
2068
2069 if (key.objectid > inum)
2070 goto out;
2071
2072 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2073 continue;
2074
2075 extent = btrfs_item_ptr(leaf, slot,
2076 struct btrfs_file_extent_item);
2077
2078 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2079 continue;
2080
e68afa49
LB
2081 /*
2082 * 'offset' refers to the exact key.offset,
2083 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2084 * (key.offset - extent_offset).
2085 */
2086 if (key.offset != offset)
38c227d8
LB
2087 continue;
2088
e68afa49 2089 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2090 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2091
38c227d8
LB
2092 if (extent_offset >= old->extent_offset + old->offset +
2093 old->len || extent_offset + num_bytes <=
2094 old->extent_offset + old->offset)
2095 continue;
38c227d8
LB
2096 break;
2097 }
2098
2099 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2100 if (!backref) {
2101 ret = -ENOENT;
2102 goto out;
2103 }
2104
2105 backref->root_id = root_id;
2106 backref->inum = inum;
e68afa49 2107 backref->file_pos = offset;
38c227d8
LB
2108 backref->num_bytes = num_bytes;
2109 backref->extent_offset = extent_offset;
2110 backref->generation = btrfs_file_extent_generation(leaf, extent);
2111 backref->old = old;
2112 backref_insert(&new->root, backref);
2113 old->count++;
2114out:
2115 btrfs_release_path(path);
2116 WARN_ON(ret);
2117 return ret;
2118}
2119
2120static noinline bool record_extent_backrefs(struct btrfs_path *path,
2121 struct new_sa_defrag_extent *new)
2122{
2123 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2124 struct old_sa_defrag_extent *old, *tmp;
2125 int ret;
2126
2127 new->path = path;
2128
2129 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2130 ret = iterate_inodes_from_logical(old->bytenr +
2131 old->extent_offset, fs_info,
38c227d8
LB
2132 path, record_one_backref,
2133 old);
2134 BUG_ON(ret < 0 && ret != -ENOENT);
2135
2136 /* no backref to be processed for this extent */
2137 if (!old->count) {
2138 list_del(&old->list);
2139 kfree(old);
2140 }
2141 }
2142
2143 if (list_empty(&new->head))
2144 return false;
2145
2146 return true;
2147}
2148
2149static int relink_is_mergable(struct extent_buffer *leaf,
2150 struct btrfs_file_extent_item *fi,
116e0024 2151 struct new_sa_defrag_extent *new)
38c227d8 2152{
116e0024 2153 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2154 return 0;
2155
2156 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2157 return 0;
2158
116e0024
LB
2159 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2160 return 0;
2161
2162 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2163 btrfs_file_extent_other_encoding(leaf, fi))
2164 return 0;
2165
2166 return 1;
2167}
2168
2169/*
2170 * Note the backref might has changed, and in this case we just return 0.
2171 */
2172static noinline int relink_extent_backref(struct btrfs_path *path,
2173 struct sa_defrag_extent_backref *prev,
2174 struct sa_defrag_extent_backref *backref)
2175{
2176 struct btrfs_file_extent_item *extent;
2177 struct btrfs_file_extent_item *item;
2178 struct btrfs_ordered_extent *ordered;
2179 struct btrfs_trans_handle *trans;
2180 struct btrfs_fs_info *fs_info;
2181 struct btrfs_root *root;
2182 struct btrfs_key key;
2183 struct extent_buffer *leaf;
2184 struct old_sa_defrag_extent *old = backref->old;
2185 struct new_sa_defrag_extent *new = old->new;
2186 struct inode *src_inode = new->inode;
2187 struct inode *inode;
2188 struct extent_state *cached = NULL;
2189 int ret = 0;
2190 u64 start;
2191 u64 len;
2192 u64 lock_start;
2193 u64 lock_end;
2194 bool merge = false;
2195 int index;
2196
2197 if (prev && prev->root_id == backref->root_id &&
2198 prev->inum == backref->inum &&
2199 prev->file_pos + prev->num_bytes == backref->file_pos)
2200 merge = true;
2201
2202 /* step 1: get root */
2203 key.objectid = backref->root_id;
2204 key.type = BTRFS_ROOT_ITEM_KEY;
2205 key.offset = (u64)-1;
2206
2207 fs_info = BTRFS_I(src_inode)->root->fs_info;
2208 index = srcu_read_lock(&fs_info->subvol_srcu);
2209
2210 root = btrfs_read_fs_root_no_name(fs_info, &key);
2211 if (IS_ERR(root)) {
2212 srcu_read_unlock(&fs_info->subvol_srcu, index);
2213 if (PTR_ERR(root) == -ENOENT)
2214 return 0;
2215 return PTR_ERR(root);
2216 }
38c227d8
LB
2217
2218 /* step 2: get inode */
2219 key.objectid = backref->inum;
2220 key.type = BTRFS_INODE_ITEM_KEY;
2221 key.offset = 0;
2222
2223 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2224 if (IS_ERR(inode)) {
2225 srcu_read_unlock(&fs_info->subvol_srcu, index);
2226 return 0;
2227 }
2228
2229 srcu_read_unlock(&fs_info->subvol_srcu, index);
2230
2231 /* step 3: relink backref */
2232 lock_start = backref->file_pos;
2233 lock_end = backref->file_pos + backref->num_bytes - 1;
2234 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2235 0, &cached);
2236
2237 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2238 if (ordered) {
2239 btrfs_put_ordered_extent(ordered);
2240 goto out_unlock;
2241 }
2242
2243 trans = btrfs_join_transaction(root);
2244 if (IS_ERR(trans)) {
2245 ret = PTR_ERR(trans);
2246 goto out_unlock;
2247 }
2248
2249 key.objectid = backref->inum;
2250 key.type = BTRFS_EXTENT_DATA_KEY;
2251 key.offset = backref->file_pos;
2252
2253 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2254 if (ret < 0) {
2255 goto out_free_path;
2256 } else if (ret > 0) {
2257 ret = 0;
2258 goto out_free_path;
2259 }
2260
2261 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2262 struct btrfs_file_extent_item);
2263
2264 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2265 backref->generation)
2266 goto out_free_path;
2267
2268 btrfs_release_path(path);
2269
2270 start = backref->file_pos;
2271 if (backref->extent_offset < old->extent_offset + old->offset)
2272 start += old->extent_offset + old->offset -
2273 backref->extent_offset;
2274
2275 len = min(backref->extent_offset + backref->num_bytes,
2276 old->extent_offset + old->offset + old->len);
2277 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2278
2279 ret = btrfs_drop_extents(trans, root, inode, start,
2280 start + len, 1);
2281 if (ret)
2282 goto out_free_path;
2283again:
2284 key.objectid = btrfs_ino(inode);
2285 key.type = BTRFS_EXTENT_DATA_KEY;
2286 key.offset = start;
2287
a09a0a70 2288 path->leave_spinning = 1;
38c227d8
LB
2289 if (merge) {
2290 struct btrfs_file_extent_item *fi;
2291 u64 extent_len;
2292 struct btrfs_key found_key;
2293
2294 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2295 if (ret < 0)
2296 goto out_free_path;
2297
2298 path->slots[0]--;
2299 leaf = path->nodes[0];
2300 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2301
2302 fi = btrfs_item_ptr(leaf, path->slots[0],
2303 struct btrfs_file_extent_item);
2304 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2305
116e0024
LB
2306 if (extent_len + found_key.offset == start &&
2307 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2308 btrfs_set_file_extent_num_bytes(leaf, fi,
2309 extent_len + len);
2310 btrfs_mark_buffer_dirty(leaf);
2311 inode_add_bytes(inode, len);
2312
2313 ret = 1;
2314 goto out_free_path;
2315 } else {
2316 merge = false;
2317 btrfs_release_path(path);
2318 goto again;
2319 }
2320 }
2321
2322 ret = btrfs_insert_empty_item(trans, root, path, &key,
2323 sizeof(*extent));
2324 if (ret) {
2325 btrfs_abort_transaction(trans, root, ret);
2326 goto out_free_path;
2327 }
2328
2329 leaf = path->nodes[0];
2330 item = btrfs_item_ptr(leaf, path->slots[0],
2331 struct btrfs_file_extent_item);
2332 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2333 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2334 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2335 btrfs_set_file_extent_num_bytes(leaf, item, len);
2336 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2337 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2338 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2339 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2340 btrfs_set_file_extent_encryption(leaf, item, 0);
2341 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2342
2343 btrfs_mark_buffer_dirty(leaf);
2344 inode_add_bytes(inode, len);
a09a0a70 2345 btrfs_release_path(path);
38c227d8
LB
2346
2347 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2348 new->disk_len, 0,
2349 backref->root_id, backref->inum,
2350 new->file_pos, 0); /* start - extent_offset */
2351 if (ret) {
2352 btrfs_abort_transaction(trans, root, ret);
2353 goto out_free_path;
2354 }
2355
2356 ret = 1;
2357out_free_path:
2358 btrfs_release_path(path);
a09a0a70 2359 path->leave_spinning = 0;
38c227d8
LB
2360 btrfs_end_transaction(trans, root);
2361out_unlock:
2362 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2363 &cached, GFP_NOFS);
2364 iput(inode);
2365 return ret;
2366}
2367
2368static void relink_file_extents(struct new_sa_defrag_extent *new)
2369{
2370 struct btrfs_path *path;
2371 struct old_sa_defrag_extent *old, *tmp;
2372 struct sa_defrag_extent_backref *backref;
2373 struct sa_defrag_extent_backref *prev = NULL;
2374 struct inode *inode;
2375 struct btrfs_root *root;
2376 struct rb_node *node;
2377 int ret;
2378
2379 inode = new->inode;
2380 root = BTRFS_I(inode)->root;
2381
2382 path = btrfs_alloc_path();
2383 if (!path)
2384 return;
2385
2386 if (!record_extent_backrefs(path, new)) {
2387 btrfs_free_path(path);
2388 goto out;
2389 }
2390 btrfs_release_path(path);
2391
2392 while (1) {
2393 node = rb_first(&new->root);
2394 if (!node)
2395 break;
2396 rb_erase(node, &new->root);
2397
2398 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2399
2400 ret = relink_extent_backref(path, prev, backref);
2401 WARN_ON(ret < 0);
2402
2403 kfree(prev);
2404
2405 if (ret == 1)
2406 prev = backref;
2407 else
2408 prev = NULL;
2409 cond_resched();
2410 }
2411 kfree(prev);
2412
2413 btrfs_free_path(path);
2414
2415 list_for_each_entry_safe(old, tmp, &new->head, list) {
2416 list_del(&old->list);
2417 kfree(old);
2418 }
2419out:
2420 atomic_dec(&root->fs_info->defrag_running);
2421 wake_up(&root->fs_info->transaction_wait);
2422
2423 kfree(new);
2424}
2425
2426static struct new_sa_defrag_extent *
2427record_old_file_extents(struct inode *inode,
2428 struct btrfs_ordered_extent *ordered)
2429{
2430 struct btrfs_root *root = BTRFS_I(inode)->root;
2431 struct btrfs_path *path;
2432 struct btrfs_key key;
2433 struct old_sa_defrag_extent *old, *tmp;
2434 struct new_sa_defrag_extent *new;
2435 int ret;
2436
2437 new = kmalloc(sizeof(*new), GFP_NOFS);
2438 if (!new)
2439 return NULL;
2440
2441 new->inode = inode;
2442 new->file_pos = ordered->file_offset;
2443 new->len = ordered->len;
2444 new->bytenr = ordered->start;
2445 new->disk_len = ordered->disk_len;
2446 new->compress_type = ordered->compress_type;
2447 new->root = RB_ROOT;
2448 INIT_LIST_HEAD(&new->head);
2449
2450 path = btrfs_alloc_path();
2451 if (!path)
2452 goto out_kfree;
2453
2454 key.objectid = btrfs_ino(inode);
2455 key.type = BTRFS_EXTENT_DATA_KEY;
2456 key.offset = new->file_pos;
2457
2458 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2459 if (ret < 0)
2460 goto out_free_path;
2461 if (ret > 0 && path->slots[0] > 0)
2462 path->slots[0]--;
2463
2464 /* find out all the old extents for the file range */
2465 while (1) {
2466 struct btrfs_file_extent_item *extent;
2467 struct extent_buffer *l;
2468 int slot;
2469 u64 num_bytes;
2470 u64 offset;
2471 u64 end;
2472 u64 disk_bytenr;
2473 u64 extent_offset;
2474
2475 l = path->nodes[0];
2476 slot = path->slots[0];
2477
2478 if (slot >= btrfs_header_nritems(l)) {
2479 ret = btrfs_next_leaf(root, path);
2480 if (ret < 0)
2481 goto out_free_list;
2482 else if (ret > 0)
2483 break;
2484 continue;
2485 }
2486
2487 btrfs_item_key_to_cpu(l, &key, slot);
2488
2489 if (key.objectid != btrfs_ino(inode))
2490 break;
2491 if (key.type != BTRFS_EXTENT_DATA_KEY)
2492 break;
2493 if (key.offset >= new->file_pos + new->len)
2494 break;
2495
2496 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2497
2498 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2499 if (key.offset + num_bytes < new->file_pos)
2500 goto next;
2501
2502 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2503 if (!disk_bytenr)
2504 goto next;
2505
2506 extent_offset = btrfs_file_extent_offset(l, extent);
2507
2508 old = kmalloc(sizeof(*old), GFP_NOFS);
2509 if (!old)
2510 goto out_free_list;
2511
2512 offset = max(new->file_pos, key.offset);
2513 end = min(new->file_pos + new->len, key.offset + num_bytes);
2514
2515 old->bytenr = disk_bytenr;
2516 old->extent_offset = extent_offset;
2517 old->offset = offset - key.offset;
2518 old->len = end - offset;
2519 old->new = new;
2520 old->count = 0;
2521 list_add_tail(&old->list, &new->head);
2522next:
2523 path->slots[0]++;
2524 cond_resched();
2525 }
2526
2527 btrfs_free_path(path);
2528 atomic_inc(&root->fs_info->defrag_running);
2529
2530 return new;
2531
2532out_free_list:
2533 list_for_each_entry_safe(old, tmp, &new->head, list) {
2534 list_del(&old->list);
2535 kfree(old);
2536 }
2537out_free_path:
2538 btrfs_free_path(path);
2539out_kfree:
2540 kfree(new);
2541 return NULL;
2542}
2543
5d13a98f
CM
2544/*
2545 * helper function for btrfs_finish_ordered_io, this
2546 * just reads in some of the csum leaves to prime them into ram
2547 * before we start the transaction. It limits the amount of btree
2548 * reads required while inside the transaction.
2549 */
d352ac68
CM
2550/* as ordered data IO finishes, this gets called so we can finish
2551 * an ordered extent if the range of bytes in the file it covers are
2552 * fully written.
2553 */
5fd02043 2554static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2555{
5fd02043 2556 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2557 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2558 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2559 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2560 struct extent_state *cached_state = NULL;
38c227d8 2561 struct new_sa_defrag_extent *new = NULL;
261507a0 2562 int compress_type = 0;
77cef2ec
JB
2563 int ret = 0;
2564 u64 logical_len = ordered_extent->len;
82d5902d 2565 bool nolock;
77cef2ec 2566 bool truncated = false;
e6dcd2dc 2567
83eea1f1 2568 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2569
5fd02043
JB
2570 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2571 ret = -EIO;
2572 goto out;
2573 }
2574
77cef2ec
JB
2575 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2576 truncated = true;
2577 logical_len = ordered_extent->truncated_len;
2578 /* Truncated the entire extent, don't bother adding */
2579 if (!logical_len)
2580 goto out;
2581 }
2582
c2167754 2583 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2584 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2585 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2586 if (nolock)
2587 trans = btrfs_join_transaction_nolock(root);
2588 else
2589 trans = btrfs_join_transaction(root);
2590 if (IS_ERR(trans)) {
2591 ret = PTR_ERR(trans);
2592 trans = NULL;
2593 goto out;
c2167754 2594 }
6c760c07
JB
2595 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2596 ret = btrfs_update_inode_fallback(trans, root, inode);
2597 if (ret) /* -ENOMEM or corruption */
2598 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2599 goto out;
2600 }
e6dcd2dc 2601
2ac55d41
JB
2602 lock_extent_bits(io_tree, ordered_extent->file_offset,
2603 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2604 0, &cached_state);
e6dcd2dc 2605
38c227d8
LB
2606 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2607 ordered_extent->file_offset + ordered_extent->len - 1,
2608 EXTENT_DEFRAG, 1, cached_state);
2609 if (ret) {
2610 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2611 if (last_snapshot >= BTRFS_I(inode)->generation)
2612 /* the inode is shared */
2613 new = record_old_file_extents(inode, ordered_extent);
2614
2615 clear_extent_bit(io_tree, ordered_extent->file_offset,
2616 ordered_extent->file_offset + ordered_extent->len - 1,
2617 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2618 }
2619
0cb59c99 2620 if (nolock)
7a7eaa40 2621 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2622 else
7a7eaa40 2623 trans = btrfs_join_transaction(root);
79787eaa
JM
2624 if (IS_ERR(trans)) {
2625 ret = PTR_ERR(trans);
2626 trans = NULL;
2627 goto out_unlock;
2628 }
0ca1f7ce 2629 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2630
c8b97818 2631 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2632 compress_type = ordered_extent->compress_type;
d899e052 2633 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2634 BUG_ON(compress_type);
920bbbfb 2635 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2636 ordered_extent->file_offset,
2637 ordered_extent->file_offset +
77cef2ec 2638 logical_len);
d899e052 2639 } else {
0af3d00b 2640 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2641 ret = insert_reserved_file_extent(trans, inode,
2642 ordered_extent->file_offset,
2643 ordered_extent->start,
2644 ordered_extent->disk_len,
77cef2ec 2645 logical_len, logical_len,
261507a0 2646 compress_type, 0, 0,
d899e052 2647 BTRFS_FILE_EXTENT_REG);
d899e052 2648 }
5dc562c5
JB
2649 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2650 ordered_extent->file_offset, ordered_extent->len,
2651 trans->transid);
79787eaa
JM
2652 if (ret < 0) {
2653 btrfs_abort_transaction(trans, root, ret);
5fd02043 2654 goto out_unlock;
79787eaa 2655 }
2ac55d41 2656
e6dcd2dc
CM
2657 add_pending_csums(trans, inode, ordered_extent->file_offset,
2658 &ordered_extent->list);
2659
6c760c07
JB
2660 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2661 ret = btrfs_update_inode_fallback(trans, root, inode);
2662 if (ret) { /* -ENOMEM or corruption */
2663 btrfs_abort_transaction(trans, root, ret);
2664 goto out_unlock;
1ef30be1
JB
2665 }
2666 ret = 0;
5fd02043
JB
2667out_unlock:
2668 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2669 ordered_extent->file_offset +
2670 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2671out:
5b0e95bf 2672 if (root != root->fs_info->tree_root)
0cb59c99 2673 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2674 if (trans)
2675 btrfs_end_transaction(trans, root);
0cb59c99 2676
77cef2ec
JB
2677 if (ret || truncated) {
2678 u64 start, end;
2679
2680 if (truncated)
2681 start = ordered_extent->file_offset + logical_len;
2682 else
2683 start = ordered_extent->file_offset;
2684 end = ordered_extent->file_offset + ordered_extent->len - 1;
2685 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2686
2687 /* Drop the cache for the part of the extent we didn't write. */
2688 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2689
0bec9ef5
JB
2690 /*
2691 * If the ordered extent had an IOERR or something else went
2692 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2693 * back to the allocator. We only free the extent in the
2694 * truncated case if we didn't write out the extent at all.
0bec9ef5 2695 */
77cef2ec
JB
2696 if ((ret || !logical_len) &&
2697 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2698 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2699 btrfs_free_reserved_extent(root, ordered_extent->start,
2700 ordered_extent->disk_len);
2701 }
2702
2703
5fd02043 2704 /*
8bad3c02
LB
2705 * This needs to be done to make sure anybody waiting knows we are done
2706 * updating everything for this ordered extent.
5fd02043
JB
2707 */
2708 btrfs_remove_ordered_extent(inode, ordered_extent);
2709
38c227d8
LB
2710 /* for snapshot-aware defrag */
2711 if (new)
2712 relink_file_extents(new);
2713
e6dcd2dc
CM
2714 /* once for us */
2715 btrfs_put_ordered_extent(ordered_extent);
2716 /* once for the tree */
2717 btrfs_put_ordered_extent(ordered_extent);
2718
5fd02043
JB
2719 return ret;
2720}
2721
2722static void finish_ordered_fn(struct btrfs_work *work)
2723{
2724 struct btrfs_ordered_extent *ordered_extent;
2725 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2726 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2727}
2728
b2950863 2729static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2730 struct extent_state *state, int uptodate)
2731{
5fd02043
JB
2732 struct inode *inode = page->mapping->host;
2733 struct btrfs_root *root = BTRFS_I(inode)->root;
2734 struct btrfs_ordered_extent *ordered_extent = NULL;
2735 struct btrfs_workers *workers;
2736
1abe9b8a 2737 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2738
8b62b72b 2739 ClearPagePrivate2(page);
5fd02043
JB
2740 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2741 end - start + 1, uptodate))
2742 return 0;
2743
2744 ordered_extent->work.func = finish_ordered_fn;
2745 ordered_extent->work.flags = 0;
2746
83eea1f1 2747 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2748 workers = &root->fs_info->endio_freespace_worker;
2749 else
2750 workers = &root->fs_info->endio_write_workers;
2751 btrfs_queue_worker(workers, &ordered_extent->work);
2752
2753 return 0;
211f90e6
CM
2754}
2755
d352ac68
CM
2756/*
2757 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2758 * if there's a match, we allow the bio to finish. If not, the code in
2759 * extent_io.c will try to find good copies for us.
d352ac68 2760 */
facc8a22
MX
2761static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2762 u64 phy_offset, struct page *page,
2763 u64 start, u64 end, int mirror)
07157aac 2764{
4eee4fa4 2765 size_t offset = start - page_offset(page);
07157aac 2766 struct inode *inode = page->mapping->host;
d1310b2e 2767 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2768 char *kaddr;
ff79f819 2769 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2770 u32 csum_expected;
ff79f819 2771 u32 csum = ~(u32)0;
c2cf52eb
SK
2772 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2773 DEFAULT_RATELIMIT_BURST);
d1310b2e 2774
d20f7043
CM
2775 if (PageChecked(page)) {
2776 ClearPageChecked(page);
2777 goto good;
2778 }
6cbff00f
CH
2779
2780 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2781 goto good;
17d217fe
YZ
2782
2783 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2784 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2785 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2786 GFP_NOFS);
b6cda9bc 2787 return 0;
17d217fe 2788 }
d20f7043 2789
facc8a22
MX
2790 phy_offset >>= inode->i_sb->s_blocksize_bits;
2791 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2792
facc8a22 2793 kaddr = kmap_atomic(page);
b0496686 2794 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2795 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2796 if (csum != csum_expected)
07157aac 2797 goto zeroit;
d397712b 2798
7ac687d9 2799 kunmap_atomic(kaddr);
d20f7043 2800good:
07157aac
CM
2801 return 0;
2802
2803zeroit:
c2cf52eb 2804 if (__ratelimit(&_rs))
facc8a22 2805 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2806 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2807 memset(kaddr + offset, 1, end - start + 1);
2808 flush_dcache_page(page);
7ac687d9 2809 kunmap_atomic(kaddr);
facc8a22 2810 if (csum_expected == 0)
3b951516 2811 return 0;
7e38326f 2812 return -EIO;
07157aac 2813}
b888db2b 2814
24bbcf04
YZ
2815struct delayed_iput {
2816 struct list_head list;
2817 struct inode *inode;
2818};
2819
79787eaa
JM
2820/* JDM: If this is fs-wide, why can't we add a pointer to
2821 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2822void btrfs_add_delayed_iput(struct inode *inode)
2823{
2824 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2825 struct delayed_iput *delayed;
2826
2827 if (atomic_add_unless(&inode->i_count, -1, 1))
2828 return;
2829
2830 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2831 delayed->inode = inode;
2832
2833 spin_lock(&fs_info->delayed_iput_lock);
2834 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2835 spin_unlock(&fs_info->delayed_iput_lock);
2836}
2837
2838void btrfs_run_delayed_iputs(struct btrfs_root *root)
2839{
2840 LIST_HEAD(list);
2841 struct btrfs_fs_info *fs_info = root->fs_info;
2842 struct delayed_iput *delayed;
2843 int empty;
2844
2845 spin_lock(&fs_info->delayed_iput_lock);
2846 empty = list_empty(&fs_info->delayed_iputs);
2847 spin_unlock(&fs_info->delayed_iput_lock);
2848 if (empty)
2849 return;
2850
24bbcf04
YZ
2851 spin_lock(&fs_info->delayed_iput_lock);
2852 list_splice_init(&fs_info->delayed_iputs, &list);
2853 spin_unlock(&fs_info->delayed_iput_lock);
2854
2855 while (!list_empty(&list)) {
2856 delayed = list_entry(list.next, struct delayed_iput, list);
2857 list_del(&delayed->list);
2858 iput(delayed->inode);
2859 kfree(delayed);
2860 }
24bbcf04
YZ
2861}
2862
d68fc57b 2863/*
42b2aa86 2864 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2865 * files in the subvolume, it removes orphan item and frees block_rsv
2866 * structure.
2867 */
2868void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2869 struct btrfs_root *root)
2870{
90290e19 2871 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2872 int ret;
2873
8a35d95f 2874 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2875 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2876 return;
2877
90290e19 2878 spin_lock(&root->orphan_lock);
8a35d95f 2879 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2880 spin_unlock(&root->orphan_lock);
2881 return;
2882 }
2883
2884 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2885 spin_unlock(&root->orphan_lock);
2886 return;
2887 }
2888
2889 block_rsv = root->orphan_block_rsv;
2890 root->orphan_block_rsv = NULL;
2891 spin_unlock(&root->orphan_lock);
2892
d68fc57b
YZ
2893 if (root->orphan_item_inserted &&
2894 btrfs_root_refs(&root->root_item) > 0) {
2895 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2896 root->root_key.objectid);
4ef31a45
JB
2897 if (ret)
2898 btrfs_abort_transaction(trans, root, ret);
2899 else
2900 root->orphan_item_inserted = 0;
d68fc57b
YZ
2901 }
2902
90290e19
JB
2903 if (block_rsv) {
2904 WARN_ON(block_rsv->size > 0);
2905 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2906 }
2907}
2908
7b128766
JB
2909/*
2910 * This creates an orphan entry for the given inode in case something goes
2911 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2912 *
2913 * NOTE: caller of this function should reserve 5 units of metadata for
2914 * this function.
7b128766
JB
2915 */
2916int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2917{
2918 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2919 struct btrfs_block_rsv *block_rsv = NULL;
2920 int reserve = 0;
2921 int insert = 0;
2922 int ret;
7b128766 2923
d68fc57b 2924 if (!root->orphan_block_rsv) {
66d8f3dd 2925 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2926 if (!block_rsv)
2927 return -ENOMEM;
d68fc57b 2928 }
7b128766 2929
d68fc57b
YZ
2930 spin_lock(&root->orphan_lock);
2931 if (!root->orphan_block_rsv) {
2932 root->orphan_block_rsv = block_rsv;
2933 } else if (block_rsv) {
2934 btrfs_free_block_rsv(root, block_rsv);
2935 block_rsv = NULL;
7b128766 2936 }
7b128766 2937
8a35d95f
JB
2938 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2939 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2940#if 0
2941 /*
2942 * For proper ENOSPC handling, we should do orphan
2943 * cleanup when mounting. But this introduces backward
2944 * compatibility issue.
2945 */
2946 if (!xchg(&root->orphan_item_inserted, 1))
2947 insert = 2;
2948 else
2949 insert = 1;
2950#endif
2951 insert = 1;
321f0e70 2952 atomic_inc(&root->orphan_inodes);
7b128766
JB
2953 }
2954
72ac3c0d
JB
2955 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2956 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2957 reserve = 1;
d68fc57b 2958 spin_unlock(&root->orphan_lock);
7b128766 2959
d68fc57b
YZ
2960 /* grab metadata reservation from transaction handle */
2961 if (reserve) {
2962 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2963 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2964 }
7b128766 2965
d68fc57b
YZ
2966 /* insert an orphan item to track this unlinked/truncated file */
2967 if (insert >= 1) {
33345d01 2968 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 2969 if (ret) {
703c88e0 2970 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
2971 if (reserve) {
2972 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2973 &BTRFS_I(inode)->runtime_flags);
2974 btrfs_orphan_release_metadata(inode);
2975 }
2976 if (ret != -EEXIST) {
e8e7cff6
JB
2977 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2978 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
2979 btrfs_abort_transaction(trans, root, ret);
2980 return ret;
2981 }
79787eaa
JM
2982 }
2983 ret = 0;
d68fc57b
YZ
2984 }
2985
2986 /* insert an orphan item to track subvolume contains orphan files */
2987 if (insert >= 2) {
2988 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2989 root->root_key.objectid);
79787eaa
JM
2990 if (ret && ret != -EEXIST) {
2991 btrfs_abort_transaction(trans, root, ret);
2992 return ret;
2993 }
d68fc57b
YZ
2994 }
2995 return 0;
7b128766
JB
2996}
2997
2998/*
2999 * We have done the truncate/delete so we can go ahead and remove the orphan
3000 * item for this particular inode.
3001 */
48a3b636
ES
3002static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3003 struct inode *inode)
7b128766
JB
3004{
3005 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3006 int delete_item = 0;
3007 int release_rsv = 0;
7b128766
JB
3008 int ret = 0;
3009
d68fc57b 3010 spin_lock(&root->orphan_lock);
8a35d95f
JB
3011 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3012 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3013 delete_item = 1;
7b128766 3014
72ac3c0d
JB
3015 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3016 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3017 release_rsv = 1;
d68fc57b 3018 spin_unlock(&root->orphan_lock);
7b128766 3019
703c88e0 3020 if (delete_item) {
8a35d95f 3021 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3022 if (trans)
3023 ret = btrfs_del_orphan_item(trans, root,
3024 btrfs_ino(inode));
8a35d95f 3025 }
7b128766 3026
703c88e0
FDBM
3027 if (release_rsv)
3028 btrfs_orphan_release_metadata(inode);
3029
4ef31a45 3030 return ret;
7b128766
JB
3031}
3032
3033/*
3034 * this cleans up any orphans that may be left on the list from the last use
3035 * of this root.
3036 */
66b4ffd1 3037int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3038{
3039 struct btrfs_path *path;
3040 struct extent_buffer *leaf;
7b128766
JB
3041 struct btrfs_key key, found_key;
3042 struct btrfs_trans_handle *trans;
3043 struct inode *inode;
8f6d7f4f 3044 u64 last_objectid = 0;
7b128766
JB
3045 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3046
d68fc57b 3047 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3048 return 0;
c71bf099
YZ
3049
3050 path = btrfs_alloc_path();
66b4ffd1
JB
3051 if (!path) {
3052 ret = -ENOMEM;
3053 goto out;
3054 }
7b128766
JB
3055 path->reada = -1;
3056
3057 key.objectid = BTRFS_ORPHAN_OBJECTID;
3058 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3059 key.offset = (u64)-1;
3060
7b128766
JB
3061 while (1) {
3062 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3063 if (ret < 0)
3064 goto out;
7b128766
JB
3065
3066 /*
3067 * if ret == 0 means we found what we were searching for, which
25985edc 3068 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3069 * find the key and see if we have stuff that matches
3070 */
3071 if (ret > 0) {
66b4ffd1 3072 ret = 0;
7b128766
JB
3073 if (path->slots[0] == 0)
3074 break;
3075 path->slots[0]--;
3076 }
3077
3078 /* pull out the item */
3079 leaf = path->nodes[0];
7b128766
JB
3080 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3081
3082 /* make sure the item matches what we want */
3083 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3084 break;
3085 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3086 break;
3087
3088 /* release the path since we're done with it */
b3b4aa74 3089 btrfs_release_path(path);
7b128766
JB
3090
3091 /*
3092 * this is where we are basically btrfs_lookup, without the
3093 * crossing root thing. we store the inode number in the
3094 * offset of the orphan item.
3095 */
8f6d7f4f
JB
3096
3097 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3098 btrfs_err(root->fs_info,
3099 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3100 ret = -EINVAL;
3101 goto out;
3102 }
3103
3104 last_objectid = found_key.offset;
3105
5d4f98a2
YZ
3106 found_key.objectid = found_key.offset;
3107 found_key.type = BTRFS_INODE_ITEM_KEY;
3108 found_key.offset = 0;
73f73415 3109 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3110 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3111 if (ret && ret != -ESTALE)
66b4ffd1 3112 goto out;
7b128766 3113
f8e9e0b0
AJ
3114 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3115 struct btrfs_root *dead_root;
3116 struct btrfs_fs_info *fs_info = root->fs_info;
3117 int is_dead_root = 0;
3118
3119 /*
3120 * this is an orphan in the tree root. Currently these
3121 * could come from 2 sources:
3122 * a) a snapshot deletion in progress
3123 * b) a free space cache inode
3124 * We need to distinguish those two, as the snapshot
3125 * orphan must not get deleted.
3126 * find_dead_roots already ran before us, so if this
3127 * is a snapshot deletion, we should find the root
3128 * in the dead_roots list
3129 */
3130 spin_lock(&fs_info->trans_lock);
3131 list_for_each_entry(dead_root, &fs_info->dead_roots,
3132 root_list) {
3133 if (dead_root->root_key.objectid ==
3134 found_key.objectid) {
3135 is_dead_root = 1;
3136 break;
3137 }
3138 }
3139 spin_unlock(&fs_info->trans_lock);
3140 if (is_dead_root) {
3141 /* prevent this orphan from being found again */
3142 key.offset = found_key.objectid - 1;
3143 continue;
3144 }
3145 }
7b128766 3146 /*
a8c9e576
JB
3147 * Inode is already gone but the orphan item is still there,
3148 * kill the orphan item.
7b128766 3149 */
a8c9e576
JB
3150 if (ret == -ESTALE) {
3151 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3152 if (IS_ERR(trans)) {
3153 ret = PTR_ERR(trans);
3154 goto out;
3155 }
c2cf52eb
SK
3156 btrfs_debug(root->fs_info, "auto deleting %Lu",
3157 found_key.objectid);
a8c9e576
JB
3158 ret = btrfs_del_orphan_item(trans, root,
3159 found_key.objectid);
5b21f2ed 3160 btrfs_end_transaction(trans, root);
4ef31a45
JB
3161 if (ret)
3162 goto out;
7b128766
JB
3163 continue;
3164 }
3165
a8c9e576
JB
3166 /*
3167 * add this inode to the orphan list so btrfs_orphan_del does
3168 * the proper thing when we hit it
3169 */
8a35d95f
JB
3170 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3171 &BTRFS_I(inode)->runtime_flags);
925396ec 3172 atomic_inc(&root->orphan_inodes);
a8c9e576 3173
7b128766
JB
3174 /* if we have links, this was a truncate, lets do that */
3175 if (inode->i_nlink) {
a41ad394
JB
3176 if (!S_ISREG(inode->i_mode)) {
3177 WARN_ON(1);
3178 iput(inode);
3179 continue;
3180 }
7b128766 3181 nr_truncate++;
f3fe820c
JB
3182
3183 /* 1 for the orphan item deletion. */
3184 trans = btrfs_start_transaction(root, 1);
3185 if (IS_ERR(trans)) {
c69b26b0 3186 iput(inode);
f3fe820c
JB
3187 ret = PTR_ERR(trans);
3188 goto out;
3189 }
3190 ret = btrfs_orphan_add(trans, inode);
3191 btrfs_end_transaction(trans, root);
c69b26b0
JB
3192 if (ret) {
3193 iput(inode);
f3fe820c 3194 goto out;
c69b26b0 3195 }
f3fe820c 3196
66b4ffd1 3197 ret = btrfs_truncate(inode);
4a7d0f68
JB
3198 if (ret)
3199 btrfs_orphan_del(NULL, inode);
7b128766
JB
3200 } else {
3201 nr_unlink++;
3202 }
3203
3204 /* this will do delete_inode and everything for us */
3205 iput(inode);
66b4ffd1
JB
3206 if (ret)
3207 goto out;
7b128766 3208 }
3254c876
MX
3209 /* release the path since we're done with it */
3210 btrfs_release_path(path);
3211
d68fc57b
YZ
3212 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3213
3214 if (root->orphan_block_rsv)
3215 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3216 (u64)-1);
3217
3218 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3219 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3220 if (!IS_ERR(trans))
3221 btrfs_end_transaction(trans, root);
d68fc57b 3222 }
7b128766
JB
3223
3224 if (nr_unlink)
4884b476 3225 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3226 if (nr_truncate)
4884b476 3227 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3228
3229out:
3230 if (ret)
c2cf52eb
SK
3231 btrfs_crit(root->fs_info,
3232 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3233 btrfs_free_path(path);
3234 return ret;
7b128766
JB
3235}
3236
46a53cca
CM
3237/*
3238 * very simple check to peek ahead in the leaf looking for xattrs. If we
3239 * don't find any xattrs, we know there can't be any acls.
3240 *
3241 * slot is the slot the inode is in, objectid is the objectid of the inode
3242 */
3243static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3244 int slot, u64 objectid)
3245{
3246 u32 nritems = btrfs_header_nritems(leaf);
3247 struct btrfs_key found_key;
f23b5a59
JB
3248 static u64 xattr_access = 0;
3249 static u64 xattr_default = 0;
46a53cca
CM
3250 int scanned = 0;
3251
f23b5a59
JB
3252 if (!xattr_access) {
3253 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3254 strlen(POSIX_ACL_XATTR_ACCESS));
3255 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3256 strlen(POSIX_ACL_XATTR_DEFAULT));
3257 }
3258
46a53cca
CM
3259 slot++;
3260 while (slot < nritems) {
3261 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3262
3263 /* we found a different objectid, there must not be acls */
3264 if (found_key.objectid != objectid)
3265 return 0;
3266
3267 /* we found an xattr, assume we've got an acl */
f23b5a59
JB
3268 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3269 if (found_key.offset == xattr_access ||
3270 found_key.offset == xattr_default)
3271 return 1;
3272 }
46a53cca
CM
3273
3274 /*
3275 * we found a key greater than an xattr key, there can't
3276 * be any acls later on
3277 */
3278 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3279 return 0;
3280
3281 slot++;
3282 scanned++;
3283
3284 /*
3285 * it goes inode, inode backrefs, xattrs, extents,
3286 * so if there are a ton of hard links to an inode there can
3287 * be a lot of backrefs. Don't waste time searching too hard,
3288 * this is just an optimization
3289 */
3290 if (scanned >= 8)
3291 break;
3292 }
3293 /* we hit the end of the leaf before we found an xattr or
3294 * something larger than an xattr. We have to assume the inode
3295 * has acls
3296 */
3297 return 1;
3298}
3299
d352ac68
CM
3300/*
3301 * read an inode from the btree into the in-memory inode
3302 */
5d4f98a2 3303static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3304{
3305 struct btrfs_path *path;
5f39d397 3306 struct extent_buffer *leaf;
39279cc3 3307 struct btrfs_inode_item *inode_item;
0b86a832 3308 struct btrfs_timespec *tspec;
39279cc3
CM
3309 struct btrfs_root *root = BTRFS_I(inode)->root;
3310 struct btrfs_key location;
46a53cca 3311 int maybe_acls;
618e21d5 3312 u32 rdev;
39279cc3 3313 int ret;
2f7e33d4
MX
3314 bool filled = false;
3315
3316 ret = btrfs_fill_inode(inode, &rdev);
3317 if (!ret)
3318 filled = true;
39279cc3
CM
3319
3320 path = btrfs_alloc_path();
1748f843
MF
3321 if (!path)
3322 goto make_bad;
3323
d90c7321 3324 path->leave_spinning = 1;
39279cc3 3325 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3326
39279cc3 3327 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3328 if (ret)
39279cc3 3329 goto make_bad;
39279cc3 3330
5f39d397 3331 leaf = path->nodes[0];
2f7e33d4
MX
3332
3333 if (filled)
3334 goto cache_acl;
3335
5f39d397
CM
3336 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3337 struct btrfs_inode_item);
5f39d397 3338 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3339 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3340 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3341 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3342 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3343
3344 tspec = btrfs_inode_atime(inode_item);
3345 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3346 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3347
3348 tspec = btrfs_inode_mtime(inode_item);
3349 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3350 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3351
3352 tspec = btrfs_inode_ctime(inode_item);
3353 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3354 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3355
a76a3cd4 3356 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3357 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3358 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3359
3360 /*
3361 * If we were modified in the current generation and evicted from memory
3362 * and then re-read we need to do a full sync since we don't have any
3363 * idea about which extents were modified before we were evicted from
3364 * cache.
3365 */
3366 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3367 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3368 &BTRFS_I(inode)->runtime_flags);
3369
0c4d2d95 3370 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3371 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3372 inode->i_rdev = 0;
5f39d397
CM
3373 rdev = btrfs_inode_rdev(leaf, inode_item);
3374
aec7477b 3375 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3376 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3377cache_acl:
46a53cca
CM
3378 /*
3379 * try to precache a NULL acl entry for files that don't have
3380 * any xattrs or acls
3381 */
33345d01
LZ
3382 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3383 btrfs_ino(inode));
72c04902
AV
3384 if (!maybe_acls)
3385 cache_no_acl(inode);
46a53cca 3386
39279cc3 3387 btrfs_free_path(path);
39279cc3 3388
39279cc3 3389 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3390 case S_IFREG:
3391 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3392 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3393 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3394 inode->i_fop = &btrfs_file_operations;
3395 inode->i_op = &btrfs_file_inode_operations;
3396 break;
3397 case S_IFDIR:
3398 inode->i_fop = &btrfs_dir_file_operations;
3399 if (root == root->fs_info->tree_root)
3400 inode->i_op = &btrfs_dir_ro_inode_operations;
3401 else
3402 inode->i_op = &btrfs_dir_inode_operations;
3403 break;
3404 case S_IFLNK:
3405 inode->i_op = &btrfs_symlink_inode_operations;
3406 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3407 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3408 break;
618e21d5 3409 default:
0279b4cd 3410 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3411 init_special_inode(inode, inode->i_mode, rdev);
3412 break;
39279cc3 3413 }
6cbff00f
CH
3414
3415 btrfs_update_iflags(inode);
39279cc3
CM
3416 return;
3417
3418make_bad:
39279cc3 3419 btrfs_free_path(path);
39279cc3
CM
3420 make_bad_inode(inode);
3421}
3422
d352ac68
CM
3423/*
3424 * given a leaf and an inode, copy the inode fields into the leaf
3425 */
e02119d5
CM
3426static void fill_inode_item(struct btrfs_trans_handle *trans,
3427 struct extent_buffer *leaf,
5f39d397 3428 struct btrfs_inode_item *item,
39279cc3
CM
3429 struct inode *inode)
3430{
51fab693
LB
3431 struct btrfs_map_token token;
3432
3433 btrfs_init_map_token(&token);
5f39d397 3434
51fab693
LB
3435 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3436 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3437 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3438 &token);
3439 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3440 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3441
51fab693
LB
3442 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3443 inode->i_atime.tv_sec, &token);
3444 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3445 inode->i_atime.tv_nsec, &token);
5f39d397 3446
51fab693
LB
3447 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3448 inode->i_mtime.tv_sec, &token);
3449 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3450 inode->i_mtime.tv_nsec, &token);
5f39d397 3451
51fab693
LB
3452 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3453 inode->i_ctime.tv_sec, &token);
3454 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3455 inode->i_ctime.tv_nsec, &token);
5f39d397 3456
51fab693
LB
3457 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3458 &token);
3459 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3460 &token);
3461 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3462 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3463 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3464 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3465 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3466}
3467
d352ac68
CM
3468/*
3469 * copy everything in the in-memory inode into the btree.
3470 */
2115133f 3471static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3472 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3473{
3474 struct btrfs_inode_item *inode_item;
3475 struct btrfs_path *path;
5f39d397 3476 struct extent_buffer *leaf;
39279cc3
CM
3477 int ret;
3478
3479 path = btrfs_alloc_path();
16cdcec7
MX
3480 if (!path)
3481 return -ENOMEM;
3482
b9473439 3483 path->leave_spinning = 1;
16cdcec7
MX
3484 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3485 1);
39279cc3
CM
3486 if (ret) {
3487 if (ret > 0)
3488 ret = -ENOENT;
3489 goto failed;
3490 }
3491
b4ce94de 3492 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3493 leaf = path->nodes[0];
3494 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3495 struct btrfs_inode_item);
39279cc3 3496
e02119d5 3497 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3498 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3499 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3500 ret = 0;
3501failed:
39279cc3
CM
3502 btrfs_free_path(path);
3503 return ret;
3504}
3505
2115133f
CM
3506/*
3507 * copy everything in the in-memory inode into the btree.
3508 */
3509noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root, struct inode *inode)
3511{
3512 int ret;
3513
3514 /*
3515 * If the inode is a free space inode, we can deadlock during commit
3516 * if we put it into the delayed code.
3517 *
3518 * The data relocation inode should also be directly updated
3519 * without delay
3520 */
83eea1f1 3521 if (!btrfs_is_free_space_inode(inode)
2115133f 3522 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3523 btrfs_update_root_times(trans, root);
3524
2115133f
CM
3525 ret = btrfs_delayed_update_inode(trans, root, inode);
3526 if (!ret)
3527 btrfs_set_inode_last_trans(trans, inode);
3528 return ret;
3529 }
3530
3531 return btrfs_update_inode_item(trans, root, inode);
3532}
3533
be6aef60
JB
3534noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3535 struct btrfs_root *root,
3536 struct inode *inode)
2115133f
CM
3537{
3538 int ret;
3539
3540 ret = btrfs_update_inode(trans, root, inode);
3541 if (ret == -ENOSPC)
3542 return btrfs_update_inode_item(trans, root, inode);
3543 return ret;
3544}
3545
d352ac68
CM
3546/*
3547 * unlink helper that gets used here in inode.c and in the tree logging
3548 * recovery code. It remove a link in a directory with a given name, and
3549 * also drops the back refs in the inode to the directory
3550 */
92986796
AV
3551static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3552 struct btrfs_root *root,
3553 struct inode *dir, struct inode *inode,
3554 const char *name, int name_len)
39279cc3
CM
3555{
3556 struct btrfs_path *path;
39279cc3 3557 int ret = 0;
5f39d397 3558 struct extent_buffer *leaf;
39279cc3 3559 struct btrfs_dir_item *di;
5f39d397 3560 struct btrfs_key key;
aec7477b 3561 u64 index;
33345d01
LZ
3562 u64 ino = btrfs_ino(inode);
3563 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3564
3565 path = btrfs_alloc_path();
54aa1f4d
CM
3566 if (!path) {
3567 ret = -ENOMEM;
554233a6 3568 goto out;
54aa1f4d
CM
3569 }
3570
b9473439 3571 path->leave_spinning = 1;
33345d01 3572 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3573 name, name_len, -1);
3574 if (IS_ERR(di)) {
3575 ret = PTR_ERR(di);
3576 goto err;
3577 }
3578 if (!di) {
3579 ret = -ENOENT;
3580 goto err;
3581 }
5f39d397
CM
3582 leaf = path->nodes[0];
3583 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3584 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3585 if (ret)
3586 goto err;
b3b4aa74 3587 btrfs_release_path(path);
39279cc3 3588
33345d01
LZ
3589 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3590 dir_ino, &index);
aec7477b 3591 if (ret) {
c2cf52eb
SK
3592 btrfs_info(root->fs_info,
3593 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3594 name_len, name, ino, dir_ino);
79787eaa 3595 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3596 goto err;
3597 }
3598
16cdcec7 3599 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3600 if (ret) {
3601 btrfs_abort_transaction(trans, root, ret);
39279cc3 3602 goto err;
79787eaa 3603 }
39279cc3 3604
e02119d5 3605 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3606 inode, dir_ino);
79787eaa
JM
3607 if (ret != 0 && ret != -ENOENT) {
3608 btrfs_abort_transaction(trans, root, ret);
3609 goto err;
3610 }
e02119d5
CM
3611
3612 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3613 dir, index);
6418c961
CM
3614 if (ret == -ENOENT)
3615 ret = 0;
d4e3991b
ZB
3616 else if (ret)
3617 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3618err:
3619 btrfs_free_path(path);
e02119d5
CM
3620 if (ret)
3621 goto out;
3622
3623 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3624 inode_inc_iversion(inode);
3625 inode_inc_iversion(dir);
e02119d5 3626 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3627 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3628out:
39279cc3
CM
3629 return ret;
3630}
3631
92986796
AV
3632int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3633 struct btrfs_root *root,
3634 struct inode *dir, struct inode *inode,
3635 const char *name, int name_len)
3636{
3637 int ret;
3638 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3639 if (!ret) {
8b558c5f 3640 drop_nlink(inode);
92986796
AV
3641 ret = btrfs_update_inode(trans, root, inode);
3642 }
3643 return ret;
3644}
39279cc3 3645
a22285a6
YZ
3646/*
3647 * helper to start transaction for unlink and rmdir.
3648 *
d52be818
JB
3649 * unlink and rmdir are special in btrfs, they do not always free space, so
3650 * if we cannot make our reservations the normal way try and see if there is
3651 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3652 * allow the unlink to occur.
a22285a6 3653 */
d52be818 3654static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3655{
39279cc3 3656 struct btrfs_trans_handle *trans;
a22285a6 3657 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3658 int ret;
3659
e70bea5f
JB
3660 /*
3661 * 1 for the possible orphan item
3662 * 1 for the dir item
3663 * 1 for the dir index
3664 * 1 for the inode ref
e70bea5f
JB
3665 * 1 for the inode
3666 */
6e137ed3 3667 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3668 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3669 return trans;
4df27c4d 3670
d52be818
JB
3671 if (PTR_ERR(trans) == -ENOSPC) {
3672 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3673
d52be818
JB
3674 trans = btrfs_start_transaction(root, 0);
3675 if (IS_ERR(trans))
3676 return trans;
3677 ret = btrfs_cond_migrate_bytes(root->fs_info,
3678 &root->fs_info->trans_block_rsv,
3679 num_bytes, 5);
3680 if (ret) {
3681 btrfs_end_transaction(trans, root);
3682 return ERR_PTR(ret);
a22285a6 3683 }
5a77d76c 3684 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3685 trans->bytes_reserved = num_bytes;
a22285a6 3686 }
d52be818 3687 return trans;
a22285a6
YZ
3688}
3689
3690static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3691{
3692 struct btrfs_root *root = BTRFS_I(dir)->root;
3693 struct btrfs_trans_handle *trans;
3694 struct inode *inode = dentry->d_inode;
3695 int ret;
a22285a6 3696
d52be818 3697 trans = __unlink_start_trans(dir);
a22285a6
YZ
3698 if (IS_ERR(trans))
3699 return PTR_ERR(trans);
5f39d397 3700
12fcfd22
CM
3701 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3702
e02119d5
CM
3703 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3704 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3705 if (ret)
3706 goto out;
7b128766 3707
a22285a6 3708 if (inode->i_nlink == 0) {
7b128766 3709 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3710 if (ret)
3711 goto out;
a22285a6 3712 }
7b128766 3713
b532402e 3714out:
d52be818 3715 btrfs_end_transaction(trans, root);
b53d3f5d 3716 btrfs_btree_balance_dirty(root);
39279cc3
CM
3717 return ret;
3718}
3719
4df27c4d
YZ
3720int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3721 struct btrfs_root *root,
3722 struct inode *dir, u64 objectid,
3723 const char *name, int name_len)
3724{
3725 struct btrfs_path *path;
3726 struct extent_buffer *leaf;
3727 struct btrfs_dir_item *di;
3728 struct btrfs_key key;
3729 u64 index;
3730 int ret;
33345d01 3731 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3732
3733 path = btrfs_alloc_path();
3734 if (!path)
3735 return -ENOMEM;
3736
33345d01 3737 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3738 name, name_len, -1);
79787eaa
JM
3739 if (IS_ERR_OR_NULL(di)) {
3740 if (!di)
3741 ret = -ENOENT;
3742 else
3743 ret = PTR_ERR(di);
3744 goto out;
3745 }
4df27c4d
YZ
3746
3747 leaf = path->nodes[0];
3748 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3749 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3750 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3751 if (ret) {
3752 btrfs_abort_transaction(trans, root, ret);
3753 goto out;
3754 }
b3b4aa74 3755 btrfs_release_path(path);
4df27c4d
YZ
3756
3757 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3758 objectid, root->root_key.objectid,
33345d01 3759 dir_ino, &index, name, name_len);
4df27c4d 3760 if (ret < 0) {
79787eaa
JM
3761 if (ret != -ENOENT) {
3762 btrfs_abort_transaction(trans, root, ret);
3763 goto out;
3764 }
33345d01 3765 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3766 name, name_len);
79787eaa
JM
3767 if (IS_ERR_OR_NULL(di)) {
3768 if (!di)
3769 ret = -ENOENT;
3770 else
3771 ret = PTR_ERR(di);
3772 btrfs_abort_transaction(trans, root, ret);
3773 goto out;
3774 }
4df27c4d
YZ
3775
3776 leaf = path->nodes[0];
3777 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3778 btrfs_release_path(path);
4df27c4d
YZ
3779 index = key.offset;
3780 }
945d8962 3781 btrfs_release_path(path);
4df27c4d 3782
16cdcec7 3783 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3784 if (ret) {
3785 btrfs_abort_transaction(trans, root, ret);
3786 goto out;
3787 }
4df27c4d
YZ
3788
3789 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3790 inode_inc_iversion(dir);
4df27c4d 3791 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3792 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3793 if (ret)
3794 btrfs_abort_transaction(trans, root, ret);
3795out:
71d7aed0 3796 btrfs_free_path(path);
79787eaa 3797 return ret;
4df27c4d
YZ
3798}
3799
39279cc3
CM
3800static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3801{
3802 struct inode *inode = dentry->d_inode;
1832a6d5 3803 int err = 0;
39279cc3 3804 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3805 struct btrfs_trans_handle *trans;
39279cc3 3806
b3ae244e 3807 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3808 return -ENOTEMPTY;
b3ae244e
DS
3809 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3810 return -EPERM;
134d4512 3811
d52be818 3812 trans = __unlink_start_trans(dir);
a22285a6 3813 if (IS_ERR(trans))
5df6a9f6 3814 return PTR_ERR(trans);
5df6a9f6 3815
33345d01 3816 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3817 err = btrfs_unlink_subvol(trans, root, dir,
3818 BTRFS_I(inode)->location.objectid,
3819 dentry->d_name.name,
3820 dentry->d_name.len);
3821 goto out;
3822 }
3823
7b128766
JB
3824 err = btrfs_orphan_add(trans, inode);
3825 if (err)
4df27c4d 3826 goto out;
7b128766 3827
39279cc3 3828 /* now the directory is empty */
e02119d5
CM
3829 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3830 dentry->d_name.name, dentry->d_name.len);
d397712b 3831 if (!err)
dbe674a9 3832 btrfs_i_size_write(inode, 0);
4df27c4d 3833out:
d52be818 3834 btrfs_end_transaction(trans, root);
b53d3f5d 3835 btrfs_btree_balance_dirty(root);
3954401f 3836
39279cc3
CM
3837 return err;
3838}
3839
39279cc3
CM
3840/*
3841 * this can truncate away extent items, csum items and directory items.
3842 * It starts at a high offset and removes keys until it can't find
d352ac68 3843 * any higher than new_size
39279cc3
CM
3844 *
3845 * csum items that cross the new i_size are truncated to the new size
3846 * as well.
7b128766
JB
3847 *
3848 * min_type is the minimum key type to truncate down to. If set to 0, this
3849 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3850 */
8082510e
YZ
3851int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3852 struct btrfs_root *root,
3853 struct inode *inode,
3854 u64 new_size, u32 min_type)
39279cc3 3855{
39279cc3 3856 struct btrfs_path *path;
5f39d397 3857 struct extent_buffer *leaf;
39279cc3 3858 struct btrfs_file_extent_item *fi;
8082510e
YZ
3859 struct btrfs_key key;
3860 struct btrfs_key found_key;
39279cc3 3861 u64 extent_start = 0;
db94535d 3862 u64 extent_num_bytes = 0;
5d4f98a2 3863 u64 extent_offset = 0;
39279cc3 3864 u64 item_end = 0;
7f4f6e0a 3865 u64 last_size = (u64)-1;
8082510e 3866 u32 found_type = (u8)-1;
39279cc3
CM
3867 int found_extent;
3868 int del_item;
85e21bac
CM
3869 int pending_del_nr = 0;
3870 int pending_del_slot = 0;
179e29e4 3871 int extent_type = -1;
8082510e
YZ
3872 int ret;
3873 int err = 0;
33345d01 3874 u64 ino = btrfs_ino(inode);
8082510e
YZ
3875
3876 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3877
0eb0e19c
MF
3878 path = btrfs_alloc_path();
3879 if (!path)
3880 return -ENOMEM;
3881 path->reada = -1;
3882
5dc562c5
JB
3883 /*
3884 * We want to drop from the next block forward in case this new size is
3885 * not block aligned since we will be keeping the last block of the
3886 * extent just the way it is.
3887 */
0af3d00b 3888 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3889 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3890 root->sectorsize), (u64)-1, 0);
8082510e 3891
16cdcec7
MX
3892 /*
3893 * This function is also used to drop the items in the log tree before
3894 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3895 * it is used to drop the loged items. So we shouldn't kill the delayed
3896 * items.
3897 */
3898 if (min_type == 0 && root == BTRFS_I(inode)->root)
3899 btrfs_kill_delayed_inode_items(inode);
3900
33345d01 3901 key.objectid = ino;
39279cc3 3902 key.offset = (u64)-1;
5f39d397
CM
3903 key.type = (u8)-1;
3904
85e21bac 3905search_again:
b9473439 3906 path->leave_spinning = 1;
85e21bac 3907 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3908 if (ret < 0) {
3909 err = ret;
3910 goto out;
3911 }
d397712b 3912
85e21bac 3913 if (ret > 0) {
e02119d5
CM
3914 /* there are no items in the tree for us to truncate, we're
3915 * done
3916 */
8082510e
YZ
3917 if (path->slots[0] == 0)
3918 goto out;
85e21bac
CM
3919 path->slots[0]--;
3920 }
3921
d397712b 3922 while (1) {
39279cc3 3923 fi = NULL;
5f39d397
CM
3924 leaf = path->nodes[0];
3925 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3926 found_type = btrfs_key_type(&found_key);
39279cc3 3927
33345d01 3928 if (found_key.objectid != ino)
39279cc3 3929 break;
5f39d397 3930
85e21bac 3931 if (found_type < min_type)
39279cc3
CM
3932 break;
3933
5f39d397 3934 item_end = found_key.offset;
39279cc3 3935 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3936 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3937 struct btrfs_file_extent_item);
179e29e4
CM
3938 extent_type = btrfs_file_extent_type(leaf, fi);
3939 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3940 item_end +=
db94535d 3941 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3942 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3943 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3944 fi);
39279cc3 3945 }
008630c1 3946 item_end--;
39279cc3 3947 }
8082510e
YZ
3948 if (found_type > min_type) {
3949 del_item = 1;
3950 } else {
3951 if (item_end < new_size)
b888db2b 3952 break;
8082510e
YZ
3953 if (found_key.offset >= new_size)
3954 del_item = 1;
3955 else
3956 del_item = 0;
39279cc3 3957 }
39279cc3 3958 found_extent = 0;
39279cc3 3959 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3960 if (found_type != BTRFS_EXTENT_DATA_KEY)
3961 goto delete;
3962
7f4f6e0a
JB
3963 if (del_item)
3964 last_size = found_key.offset;
3965 else
3966 last_size = new_size;
3967
179e29e4 3968 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3969 u64 num_dec;
db94535d 3970 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3971 if (!del_item) {
db94535d
CM
3972 u64 orig_num_bytes =
3973 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
3974 extent_num_bytes = ALIGN(new_size -
3975 found_key.offset,
3976 root->sectorsize);
db94535d
CM
3977 btrfs_set_file_extent_num_bytes(leaf, fi,
3978 extent_num_bytes);
3979 num_dec = (orig_num_bytes -
9069218d 3980 extent_num_bytes);
e02119d5 3981 if (root->ref_cows && extent_start != 0)
a76a3cd4 3982 inode_sub_bytes(inode, num_dec);
5f39d397 3983 btrfs_mark_buffer_dirty(leaf);
39279cc3 3984 } else {
db94535d
CM
3985 extent_num_bytes =
3986 btrfs_file_extent_disk_num_bytes(leaf,
3987 fi);
5d4f98a2
YZ
3988 extent_offset = found_key.offset -
3989 btrfs_file_extent_offset(leaf, fi);
3990
39279cc3 3991 /* FIXME blocksize != 4096 */
9069218d 3992 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3993 if (extent_start != 0) {
3994 found_extent = 1;
e02119d5 3995 if (root->ref_cows)
a76a3cd4 3996 inode_sub_bytes(inode, num_dec);
e02119d5 3997 }
39279cc3 3998 }
9069218d 3999 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4000 /*
4001 * we can't truncate inline items that have had
4002 * special encodings
4003 */
4004 if (!del_item &&
4005 btrfs_file_extent_compression(leaf, fi) == 0 &&
4006 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4007 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4008 u32 size = new_size - found_key.offset;
4009
4010 if (root->ref_cows) {
a76a3cd4
YZ
4011 inode_sub_bytes(inode, item_end + 1 -
4012 new_size);
e02119d5
CM
4013 }
4014 size =
4015 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4016 btrfs_truncate_item(root, path, size, 1);
e02119d5 4017 } else if (root->ref_cows) {
a76a3cd4
YZ
4018 inode_sub_bytes(inode, item_end + 1 -
4019 found_key.offset);
9069218d 4020 }
39279cc3 4021 }
179e29e4 4022delete:
39279cc3 4023 if (del_item) {
85e21bac
CM
4024 if (!pending_del_nr) {
4025 /* no pending yet, add ourselves */
4026 pending_del_slot = path->slots[0];
4027 pending_del_nr = 1;
4028 } else if (pending_del_nr &&
4029 path->slots[0] + 1 == pending_del_slot) {
4030 /* hop on the pending chunk */
4031 pending_del_nr++;
4032 pending_del_slot = path->slots[0];
4033 } else {
d397712b 4034 BUG();
85e21bac 4035 }
39279cc3
CM
4036 } else {
4037 break;
4038 }
0af3d00b
JB
4039 if (found_extent && (root->ref_cows ||
4040 root == root->fs_info->tree_root)) {
b9473439 4041 btrfs_set_path_blocking(path);
39279cc3 4042 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4043 extent_num_bytes, 0,
4044 btrfs_header_owner(leaf),
66d7e7f0 4045 ino, extent_offset, 0);
39279cc3
CM
4046 BUG_ON(ret);
4047 }
85e21bac 4048
8082510e
YZ
4049 if (found_type == BTRFS_INODE_ITEM_KEY)
4050 break;
4051
4052 if (path->slots[0] == 0 ||
4053 path->slots[0] != pending_del_slot) {
8082510e
YZ
4054 if (pending_del_nr) {
4055 ret = btrfs_del_items(trans, root, path,
4056 pending_del_slot,
4057 pending_del_nr);
79787eaa
JM
4058 if (ret) {
4059 btrfs_abort_transaction(trans,
4060 root, ret);
4061 goto error;
4062 }
8082510e
YZ
4063 pending_del_nr = 0;
4064 }
b3b4aa74 4065 btrfs_release_path(path);
85e21bac 4066 goto search_again;
8082510e
YZ
4067 } else {
4068 path->slots[0]--;
85e21bac 4069 }
39279cc3 4070 }
8082510e 4071out:
85e21bac
CM
4072 if (pending_del_nr) {
4073 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4074 pending_del_nr);
79787eaa
JM
4075 if (ret)
4076 btrfs_abort_transaction(trans, root, ret);
85e21bac 4077 }
79787eaa 4078error:
7f4f6e0a
JB
4079 if (last_size != (u64)-1)
4080 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4081 btrfs_free_path(path);
8082510e 4082 return err;
39279cc3
CM
4083}
4084
4085/*
2aaa6655
JB
4086 * btrfs_truncate_page - read, zero a chunk and write a page
4087 * @inode - inode that we're zeroing
4088 * @from - the offset to start zeroing
4089 * @len - the length to zero, 0 to zero the entire range respective to the
4090 * offset
4091 * @front - zero up to the offset instead of from the offset on
4092 *
4093 * This will find the page for the "from" offset and cow the page and zero the
4094 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4095 */
2aaa6655
JB
4096int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4097 int front)
39279cc3 4098{
2aaa6655 4099 struct address_space *mapping = inode->i_mapping;
db94535d 4100 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4101 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4102 struct btrfs_ordered_extent *ordered;
2ac55d41 4103 struct extent_state *cached_state = NULL;
e6dcd2dc 4104 char *kaddr;
db94535d 4105 u32 blocksize = root->sectorsize;
39279cc3
CM
4106 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4107 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4108 struct page *page;
3b16a4e3 4109 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4110 int ret = 0;
a52d9a80 4111 u64 page_start;
e6dcd2dc 4112 u64 page_end;
39279cc3 4113
2aaa6655
JB
4114 if ((offset & (blocksize - 1)) == 0 &&
4115 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4116 goto out;
0ca1f7ce 4117 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4118 if (ret)
4119 goto out;
39279cc3 4120
211c17f5 4121again:
3b16a4e3 4122 page = find_or_create_page(mapping, index, mask);
5d5e103a 4123 if (!page) {
0ca1f7ce 4124 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4125 ret = -ENOMEM;
39279cc3 4126 goto out;
5d5e103a 4127 }
e6dcd2dc
CM
4128
4129 page_start = page_offset(page);
4130 page_end = page_start + PAGE_CACHE_SIZE - 1;
4131
39279cc3 4132 if (!PageUptodate(page)) {
9ebefb18 4133 ret = btrfs_readpage(NULL, page);
39279cc3 4134 lock_page(page);
211c17f5
CM
4135 if (page->mapping != mapping) {
4136 unlock_page(page);
4137 page_cache_release(page);
4138 goto again;
4139 }
39279cc3
CM
4140 if (!PageUptodate(page)) {
4141 ret = -EIO;
89642229 4142 goto out_unlock;
39279cc3
CM
4143 }
4144 }
211c17f5 4145 wait_on_page_writeback(page);
e6dcd2dc 4146
d0082371 4147 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4148 set_page_extent_mapped(page);
4149
4150 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4151 if (ordered) {
2ac55d41
JB
4152 unlock_extent_cached(io_tree, page_start, page_end,
4153 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4154 unlock_page(page);
4155 page_cache_release(page);
eb84ae03 4156 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4157 btrfs_put_ordered_extent(ordered);
4158 goto again;
4159 }
4160
2ac55d41 4161 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4162 EXTENT_DIRTY | EXTENT_DELALLOC |
4163 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4164 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4165
2ac55d41
JB
4166 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4167 &cached_state);
9ed74f2d 4168 if (ret) {
2ac55d41
JB
4169 unlock_extent_cached(io_tree, page_start, page_end,
4170 &cached_state, GFP_NOFS);
9ed74f2d
JB
4171 goto out_unlock;
4172 }
4173
e6dcd2dc 4174 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4175 if (!len)
4176 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4177 kaddr = kmap(page);
2aaa6655
JB
4178 if (front)
4179 memset(kaddr, 0, offset);
4180 else
4181 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4182 flush_dcache_page(page);
4183 kunmap(page);
4184 }
247e743c 4185 ClearPageChecked(page);
e6dcd2dc 4186 set_page_dirty(page);
2ac55d41
JB
4187 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4188 GFP_NOFS);
39279cc3 4189
89642229 4190out_unlock:
5d5e103a 4191 if (ret)
0ca1f7ce 4192 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4193 unlock_page(page);
4194 page_cache_release(page);
4195out:
4196 return ret;
4197}
4198
695a0d0d
JB
4199/*
4200 * This function puts in dummy file extents for the area we're creating a hole
4201 * for. So if we are truncating this file to a larger size we need to insert
4202 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4203 * the range between oldsize and size
4204 */
a41ad394 4205int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4206{
9036c102
YZ
4207 struct btrfs_trans_handle *trans;
4208 struct btrfs_root *root = BTRFS_I(inode)->root;
4209 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4210 struct extent_map *em = NULL;
2ac55d41 4211 struct extent_state *cached_state = NULL;
5dc562c5 4212 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4213 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4214 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4215 u64 last_byte;
4216 u64 cur_offset;
4217 u64 hole_size;
9ed74f2d 4218 int err = 0;
39279cc3 4219
a71754fc
JB
4220 /*
4221 * If our size started in the middle of a page we need to zero out the
4222 * rest of the page before we expand the i_size, otherwise we could
4223 * expose stale data.
4224 */
4225 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4226 if (err)
4227 return err;
4228
9036c102
YZ
4229 if (size <= hole_start)
4230 return 0;
4231
9036c102
YZ
4232 while (1) {
4233 struct btrfs_ordered_extent *ordered;
fa7c1494 4234
2ac55d41 4235 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4236 &cached_state);
fa7c1494
MX
4237 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4238 block_end - hole_start);
9036c102
YZ
4239 if (!ordered)
4240 break;
2ac55d41
JB
4241 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4242 &cached_state, GFP_NOFS);
fa7c1494 4243 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4244 btrfs_put_ordered_extent(ordered);
4245 }
39279cc3 4246
9036c102
YZ
4247 cur_offset = hole_start;
4248 while (1) {
4249 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4250 block_end - cur_offset, 0);
79787eaa
JM
4251 if (IS_ERR(em)) {
4252 err = PTR_ERR(em);
f2767956 4253 em = NULL;
79787eaa
JM
4254 break;
4255 }
9036c102 4256 last_byte = min(extent_map_end(em), block_end);
fda2832f 4257 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4258 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4259 struct extent_map *hole_em;
9036c102 4260 hole_size = last_byte - cur_offset;
9ed74f2d 4261
3642320e 4262 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
4263 if (IS_ERR(trans)) {
4264 err = PTR_ERR(trans);
9ed74f2d 4265 break;
a22285a6 4266 }
8082510e 4267
5dc562c5
JB
4268 err = btrfs_drop_extents(trans, root, inode,
4269 cur_offset,
2671485d 4270 cur_offset + hole_size, 1);
5b397377 4271 if (err) {
79787eaa 4272 btrfs_abort_transaction(trans, root, err);
5b397377 4273 btrfs_end_transaction(trans, root);
3893e33b 4274 break;
5b397377 4275 }
8082510e 4276
9036c102 4277 err = btrfs_insert_file_extent(trans, root,
33345d01 4278 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
4279 0, hole_size, 0, hole_size,
4280 0, 0, 0);
5b397377 4281 if (err) {
79787eaa 4282 btrfs_abort_transaction(trans, root, err);
5b397377 4283 btrfs_end_transaction(trans, root);
3893e33b 4284 break;
5b397377 4285 }
8082510e 4286
5dc562c5
JB
4287 btrfs_drop_extent_cache(inode, cur_offset,
4288 cur_offset + hole_size - 1, 0);
4289 hole_em = alloc_extent_map();
4290 if (!hole_em) {
4291 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4292 &BTRFS_I(inode)->runtime_flags);
4293 goto next;
4294 }
4295 hole_em->start = cur_offset;
4296 hole_em->len = hole_size;
4297 hole_em->orig_start = cur_offset;
8082510e 4298
5dc562c5
JB
4299 hole_em->block_start = EXTENT_MAP_HOLE;
4300 hole_em->block_len = 0;
b4939680 4301 hole_em->orig_block_len = 0;
cc95bef6 4302 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4303 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4304 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4305 hole_em->generation = trans->transid;
8082510e 4306
5dc562c5
JB
4307 while (1) {
4308 write_lock(&em_tree->lock);
09a2a8f9 4309 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4310 write_unlock(&em_tree->lock);
4311 if (err != -EEXIST)
4312 break;
4313 btrfs_drop_extent_cache(inode, cur_offset,
4314 cur_offset +
4315 hole_size - 1, 0);
4316 }
4317 free_extent_map(hole_em);
4318next:
3642320e 4319 btrfs_update_inode(trans, root, inode);
8082510e 4320 btrfs_end_transaction(trans, root);
9036c102
YZ
4321 }
4322 free_extent_map(em);
a22285a6 4323 em = NULL;
9036c102 4324 cur_offset = last_byte;
8082510e 4325 if (cur_offset >= block_end)
9036c102
YZ
4326 break;
4327 }
1832a6d5 4328
a22285a6 4329 free_extent_map(em);
2ac55d41
JB
4330 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4331 GFP_NOFS);
9036c102
YZ
4332 return err;
4333}
39279cc3 4334
3972f260 4335static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4336{
f4a2f4c5
MX
4337 struct btrfs_root *root = BTRFS_I(inode)->root;
4338 struct btrfs_trans_handle *trans;
a41ad394 4339 loff_t oldsize = i_size_read(inode);
3972f260
ES
4340 loff_t newsize = attr->ia_size;
4341 int mask = attr->ia_valid;
8082510e
YZ
4342 int ret;
4343
3972f260
ES
4344 /*
4345 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4346 * special case where we need to update the times despite not having
4347 * these flags set. For all other operations the VFS set these flags
4348 * explicitly if it wants a timestamp update.
4349 */
4350 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4351 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4352
a41ad394 4353 if (newsize > oldsize) {
7caef267 4354 truncate_pagecache(inode, newsize);
a41ad394 4355 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4356 if (ret)
8082510e 4357 return ret;
8082510e 4358
f4a2f4c5
MX
4359 trans = btrfs_start_transaction(root, 1);
4360 if (IS_ERR(trans))
4361 return PTR_ERR(trans);
4362
4363 i_size_write(inode, newsize);
4364 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4365 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4366 btrfs_end_transaction(trans, root);
a41ad394 4367 } else {
8082510e 4368
a41ad394
JB
4369 /*
4370 * We're truncating a file that used to have good data down to
4371 * zero. Make sure it gets into the ordered flush list so that
4372 * any new writes get down to disk quickly.
4373 */
4374 if (newsize == 0)
72ac3c0d
JB
4375 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4376 &BTRFS_I(inode)->runtime_flags);
8082510e 4377
f3fe820c
JB
4378 /*
4379 * 1 for the orphan item we're going to add
4380 * 1 for the orphan item deletion.
4381 */
4382 trans = btrfs_start_transaction(root, 2);
4383 if (IS_ERR(trans))
4384 return PTR_ERR(trans);
4385
4386 /*
4387 * We need to do this in case we fail at _any_ point during the
4388 * actual truncate. Once we do the truncate_setsize we could
4389 * invalidate pages which forces any outstanding ordered io to
4390 * be instantly completed which will give us extents that need
4391 * to be truncated. If we fail to get an orphan inode down we
4392 * could have left over extents that were never meant to live,
4393 * so we need to garuntee from this point on that everything
4394 * will be consistent.
4395 */
4396 ret = btrfs_orphan_add(trans, inode);
4397 btrfs_end_transaction(trans, root);
4398 if (ret)
4399 return ret;
4400
a41ad394
JB
4401 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4402 truncate_setsize(inode, newsize);
2e60a51e
MX
4403
4404 /* Disable nonlocked read DIO to avoid the end less truncate */
4405 btrfs_inode_block_unlocked_dio(inode);
4406 inode_dio_wait(inode);
4407 btrfs_inode_resume_unlocked_dio(inode);
4408
a41ad394 4409 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4410 if (ret && inode->i_nlink) {
4411 int err;
4412
4413 /*
4414 * failed to truncate, disk_i_size is only adjusted down
4415 * as we remove extents, so it should represent the true
4416 * size of the inode, so reset the in memory size and
4417 * delete our orphan entry.
4418 */
4419 trans = btrfs_join_transaction(root);
4420 if (IS_ERR(trans)) {
4421 btrfs_orphan_del(NULL, inode);
4422 return ret;
4423 }
4424 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4425 err = btrfs_orphan_del(trans, inode);
4426 if (err)
4427 btrfs_abort_transaction(trans, root, err);
4428 btrfs_end_transaction(trans, root);
4429 }
8082510e
YZ
4430 }
4431
a41ad394 4432 return ret;
8082510e
YZ
4433}
4434
9036c102
YZ
4435static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4436{
4437 struct inode *inode = dentry->d_inode;
b83cc969 4438 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4439 int err;
39279cc3 4440
b83cc969
LZ
4441 if (btrfs_root_readonly(root))
4442 return -EROFS;
4443
9036c102
YZ
4444 err = inode_change_ok(inode, attr);
4445 if (err)
4446 return err;
2bf5a725 4447
5a3f23d5 4448 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4449 err = btrfs_setsize(inode, attr);
8082510e
YZ
4450 if (err)
4451 return err;
39279cc3 4452 }
9036c102 4453
1025774c
CH
4454 if (attr->ia_valid) {
4455 setattr_copy(inode, attr);
0c4d2d95 4456 inode_inc_iversion(inode);
22c44fe6 4457 err = btrfs_dirty_inode(inode);
1025774c 4458
22c44fe6 4459 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4460 err = btrfs_acl_chmod(inode);
4461 }
33268eaf 4462
39279cc3
CM
4463 return err;
4464}
61295eb8 4465
bd555975 4466void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4467{
4468 struct btrfs_trans_handle *trans;
4469 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4470 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4471 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4472 int ret;
4473
1abe9b8a 4474 trace_btrfs_inode_evict(inode);
4475
39279cc3 4476 truncate_inode_pages(&inode->i_data, 0);
69e9c6c6
SB
4477 if (inode->i_nlink &&
4478 ((btrfs_root_refs(&root->root_item) != 0 &&
4479 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4480 btrfs_is_free_space_inode(inode)))
bd555975
AV
4481 goto no_delete;
4482
39279cc3 4483 if (is_bad_inode(inode)) {
7b128766 4484 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4485 goto no_delete;
4486 }
bd555975 4487 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4488 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4489
c71bf099 4490 if (root->fs_info->log_root_recovering) {
6bf02314 4491 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4492 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4493 goto no_delete;
4494 }
4495
76dda93c 4496 if (inode->i_nlink > 0) {
69e9c6c6
SB
4497 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4498 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4499 goto no_delete;
4500 }
4501
0e8c36a9
MX
4502 ret = btrfs_commit_inode_delayed_inode(inode);
4503 if (ret) {
4504 btrfs_orphan_del(NULL, inode);
4505 goto no_delete;
4506 }
4507
66d8f3dd 4508 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4509 if (!rsv) {
4510 btrfs_orphan_del(NULL, inode);
4511 goto no_delete;
4512 }
4a338542 4513 rsv->size = min_size;
ca7e70f5 4514 rsv->failfast = 1;
726c35fa 4515 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4516
dbe674a9 4517 btrfs_i_size_write(inode, 0);
5f39d397 4518
4289a667 4519 /*
8407aa46
MX
4520 * This is a bit simpler than btrfs_truncate since we've already
4521 * reserved our space for our orphan item in the unlink, so we just
4522 * need to reserve some slack space in case we add bytes and update
4523 * inode item when doing the truncate.
4289a667 4524 */
8082510e 4525 while (1) {
08e007d2
MX
4526 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4527 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4528
4529 /*
4530 * Try and steal from the global reserve since we will
4531 * likely not use this space anyway, we want to try as
4532 * hard as possible to get this to work.
4533 */
4534 if (ret)
4535 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4536
d68fc57b 4537 if (ret) {
c2cf52eb
SK
4538 btrfs_warn(root->fs_info,
4539 "Could not get space for a delete, will truncate on mount %d",
4540 ret);
4289a667
JB
4541 btrfs_orphan_del(NULL, inode);
4542 btrfs_free_block_rsv(root, rsv);
4543 goto no_delete;
d68fc57b 4544 }
7b128766 4545
0e8c36a9 4546 trans = btrfs_join_transaction(root);
4289a667
JB
4547 if (IS_ERR(trans)) {
4548 btrfs_orphan_del(NULL, inode);
4549 btrfs_free_block_rsv(root, rsv);
4550 goto no_delete;
d68fc57b 4551 }
7b128766 4552
4289a667
JB
4553 trans->block_rsv = rsv;
4554
d68fc57b 4555 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4556 if (ret != -ENOSPC)
8082510e 4557 break;
85e21bac 4558
8407aa46 4559 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4560 btrfs_end_transaction(trans, root);
4561 trans = NULL;
b53d3f5d 4562 btrfs_btree_balance_dirty(root);
8082510e 4563 }
5f39d397 4564
4289a667
JB
4565 btrfs_free_block_rsv(root, rsv);
4566
4ef31a45
JB
4567 /*
4568 * Errors here aren't a big deal, it just means we leave orphan items
4569 * in the tree. They will be cleaned up on the next mount.
4570 */
8082510e 4571 if (ret == 0) {
4289a667 4572 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4573 btrfs_orphan_del(trans, inode);
4574 } else {
4575 btrfs_orphan_del(NULL, inode);
8082510e 4576 }
54aa1f4d 4577
4289a667 4578 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4579 if (!(root == root->fs_info->tree_root ||
4580 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4581 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4582
54aa1f4d 4583 btrfs_end_transaction(trans, root);
b53d3f5d 4584 btrfs_btree_balance_dirty(root);
39279cc3 4585no_delete:
89042e5a 4586 btrfs_remove_delayed_node(inode);
dbd5768f 4587 clear_inode(inode);
8082510e 4588 return;
39279cc3
CM
4589}
4590
4591/*
4592 * this returns the key found in the dir entry in the location pointer.
4593 * If no dir entries were found, location->objectid is 0.
4594 */
4595static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4596 struct btrfs_key *location)
4597{
4598 const char *name = dentry->d_name.name;
4599 int namelen = dentry->d_name.len;
4600 struct btrfs_dir_item *di;
4601 struct btrfs_path *path;
4602 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4603 int ret = 0;
39279cc3
CM
4604
4605 path = btrfs_alloc_path();
d8926bb3
MF
4606 if (!path)
4607 return -ENOMEM;
3954401f 4608
33345d01 4609 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4610 namelen, 0);
0d9f7f3e
Y
4611 if (IS_ERR(di))
4612 ret = PTR_ERR(di);
d397712b 4613
c704005d 4614 if (IS_ERR_OR_NULL(di))
3954401f 4615 goto out_err;
d397712b 4616
5f39d397 4617 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4618out:
39279cc3
CM
4619 btrfs_free_path(path);
4620 return ret;
3954401f
CM
4621out_err:
4622 location->objectid = 0;
4623 goto out;
39279cc3
CM
4624}
4625
4626/*
4627 * when we hit a tree root in a directory, the btrfs part of the inode
4628 * needs to be changed to reflect the root directory of the tree root. This
4629 * is kind of like crossing a mount point.
4630 */
4631static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4632 struct inode *dir,
4633 struct dentry *dentry,
4634 struct btrfs_key *location,
4635 struct btrfs_root **sub_root)
39279cc3 4636{
4df27c4d
YZ
4637 struct btrfs_path *path;
4638 struct btrfs_root *new_root;
4639 struct btrfs_root_ref *ref;
4640 struct extent_buffer *leaf;
4641 int ret;
4642 int err = 0;
39279cc3 4643
4df27c4d
YZ
4644 path = btrfs_alloc_path();
4645 if (!path) {
4646 err = -ENOMEM;
4647 goto out;
4648 }
39279cc3 4649
4df27c4d
YZ
4650 err = -ENOENT;
4651 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4652 BTRFS_I(dir)->root->root_key.objectid,
4653 location->objectid);
4654 if (ret) {
4655 if (ret < 0)
4656 err = ret;
4657 goto out;
4658 }
39279cc3 4659
4df27c4d
YZ
4660 leaf = path->nodes[0];
4661 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4662 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4663 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4664 goto out;
39279cc3 4665
4df27c4d
YZ
4666 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4667 (unsigned long)(ref + 1),
4668 dentry->d_name.len);
4669 if (ret)
4670 goto out;
4671
b3b4aa74 4672 btrfs_release_path(path);
4df27c4d
YZ
4673
4674 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4675 if (IS_ERR(new_root)) {
4676 err = PTR_ERR(new_root);
4677 goto out;
4678 }
4679
4df27c4d
YZ
4680 *sub_root = new_root;
4681 location->objectid = btrfs_root_dirid(&new_root->root_item);
4682 location->type = BTRFS_INODE_ITEM_KEY;
4683 location->offset = 0;
4684 err = 0;
4685out:
4686 btrfs_free_path(path);
4687 return err;
39279cc3
CM
4688}
4689
5d4f98a2
YZ
4690static void inode_tree_add(struct inode *inode)
4691{
4692 struct btrfs_root *root = BTRFS_I(inode)->root;
4693 struct btrfs_inode *entry;
03e860bd
FNP
4694 struct rb_node **p;
4695 struct rb_node *parent;
cef21937 4696 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 4697 u64 ino = btrfs_ino(inode);
5d4f98a2 4698
1d3382cb 4699 if (inode_unhashed(inode))
76dda93c 4700 return;
e1409cef 4701 parent = NULL;
5d4f98a2 4702 spin_lock(&root->inode_lock);
e1409cef 4703 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4704 while (*p) {
4705 parent = *p;
4706 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4707
33345d01 4708 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4709 p = &parent->rb_left;
33345d01 4710 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4711 p = &parent->rb_right;
5d4f98a2
YZ
4712 else {
4713 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4714 (I_WILL_FREE | I_FREEING)));
cef21937 4715 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
4716 RB_CLEAR_NODE(parent);
4717 spin_unlock(&root->inode_lock);
cef21937 4718 return;
5d4f98a2
YZ
4719 }
4720 }
cef21937
FDBM
4721 rb_link_node(new, parent, p);
4722 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
4723 spin_unlock(&root->inode_lock);
4724}
4725
4726static void inode_tree_del(struct inode *inode)
4727{
4728 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4729 int empty = 0;
5d4f98a2 4730
03e860bd 4731 spin_lock(&root->inode_lock);
5d4f98a2 4732 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4733 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4734 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4735 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4736 }
03e860bd 4737 spin_unlock(&root->inode_lock);
76dda93c 4738
69e9c6c6 4739 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
4740 synchronize_srcu(&root->fs_info->subvol_srcu);
4741 spin_lock(&root->inode_lock);
4742 empty = RB_EMPTY_ROOT(&root->inode_tree);
4743 spin_unlock(&root->inode_lock);
4744 if (empty)
4745 btrfs_add_dead_root(root);
4746 }
4747}
4748
143bede5 4749void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4750{
4751 struct rb_node *node;
4752 struct rb_node *prev;
4753 struct btrfs_inode *entry;
4754 struct inode *inode;
4755 u64 objectid = 0;
4756
4757 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4758
4759 spin_lock(&root->inode_lock);
4760again:
4761 node = root->inode_tree.rb_node;
4762 prev = NULL;
4763 while (node) {
4764 prev = node;
4765 entry = rb_entry(node, struct btrfs_inode, rb_node);
4766
33345d01 4767 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4768 node = node->rb_left;
33345d01 4769 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4770 node = node->rb_right;
4771 else
4772 break;
4773 }
4774 if (!node) {
4775 while (prev) {
4776 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4777 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4778 node = prev;
4779 break;
4780 }
4781 prev = rb_next(prev);
4782 }
4783 }
4784 while (node) {
4785 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4786 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4787 inode = igrab(&entry->vfs_inode);
4788 if (inode) {
4789 spin_unlock(&root->inode_lock);
4790 if (atomic_read(&inode->i_count) > 1)
4791 d_prune_aliases(inode);
4792 /*
45321ac5 4793 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4794 * the inode cache when its usage count
4795 * hits zero.
4796 */
4797 iput(inode);
4798 cond_resched();
4799 spin_lock(&root->inode_lock);
4800 goto again;
4801 }
4802
4803 if (cond_resched_lock(&root->inode_lock))
4804 goto again;
4805
4806 node = rb_next(node);
4807 }
4808 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4809}
4810
e02119d5
CM
4811static int btrfs_init_locked_inode(struct inode *inode, void *p)
4812{
4813 struct btrfs_iget_args *args = p;
4814 inode->i_ino = args->ino;
e02119d5 4815 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4816 return 0;
4817}
4818
4819static int btrfs_find_actor(struct inode *inode, void *opaque)
4820{
4821 struct btrfs_iget_args *args = opaque;
33345d01 4822 return args->ino == btrfs_ino(inode) &&
d397712b 4823 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4824}
4825
5d4f98a2
YZ
4826static struct inode *btrfs_iget_locked(struct super_block *s,
4827 u64 objectid,
4828 struct btrfs_root *root)
39279cc3
CM
4829{
4830 struct inode *inode;
4831 struct btrfs_iget_args args;
778ba82b
FDBM
4832 unsigned long hashval = btrfs_inode_hash(objectid, root);
4833
39279cc3
CM
4834 args.ino = objectid;
4835 args.root = root;
4836
778ba82b 4837 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
4838 btrfs_init_locked_inode,
4839 (void *)&args);
4840 return inode;
4841}
4842
1a54ef8c
BR
4843/* Get an inode object given its location and corresponding root.
4844 * Returns in *is_new if the inode was read from disk
4845 */
4846struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4847 struct btrfs_root *root, int *new)
1a54ef8c
BR
4848{
4849 struct inode *inode;
4850
4851 inode = btrfs_iget_locked(s, location->objectid, root);
4852 if (!inode)
5d4f98a2 4853 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4854
4855 if (inode->i_state & I_NEW) {
4856 BTRFS_I(inode)->root = root;
4857 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4858 btrfs_read_locked_inode(inode);
1748f843
MF
4859 if (!is_bad_inode(inode)) {
4860 inode_tree_add(inode);
4861 unlock_new_inode(inode);
4862 if (new)
4863 *new = 1;
4864 } else {
e0b6d65b
ST
4865 unlock_new_inode(inode);
4866 iput(inode);
4867 inode = ERR_PTR(-ESTALE);
1748f843
MF
4868 }
4869 }
4870
1a54ef8c
BR
4871 return inode;
4872}
4873
4df27c4d
YZ
4874static struct inode *new_simple_dir(struct super_block *s,
4875 struct btrfs_key *key,
4876 struct btrfs_root *root)
4877{
4878 struct inode *inode = new_inode(s);
4879
4880 if (!inode)
4881 return ERR_PTR(-ENOMEM);
4882
4df27c4d
YZ
4883 BTRFS_I(inode)->root = root;
4884 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4885 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4886
4887 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4888 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4889 inode->i_fop = &simple_dir_operations;
4890 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4891 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4892
4893 return inode;
4894}
4895
3de4586c 4896struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4897{
d397712b 4898 struct inode *inode;
4df27c4d 4899 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4900 struct btrfs_root *sub_root = root;
4901 struct btrfs_key location;
76dda93c 4902 int index;
b4aff1f8 4903 int ret = 0;
39279cc3
CM
4904
4905 if (dentry->d_name.len > BTRFS_NAME_LEN)
4906 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4907
39e3c955 4908 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
4909 if (ret < 0)
4910 return ERR_PTR(ret);
5f39d397 4911
4df27c4d
YZ
4912 if (location.objectid == 0)
4913 return NULL;
4914
4915 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4916 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4917 return inode;
4918 }
4919
4920 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4921
76dda93c 4922 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4923 ret = fixup_tree_root_location(root, dir, dentry,
4924 &location, &sub_root);
4925 if (ret < 0) {
4926 if (ret != -ENOENT)
4927 inode = ERR_PTR(ret);
4928 else
4929 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4930 } else {
73f73415 4931 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4932 }
76dda93c
YZ
4933 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4934
34d19bad 4935 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4936 down_read(&root->fs_info->cleanup_work_sem);
4937 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4938 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4939 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
4940 if (ret) {
4941 iput(inode);
66b4ffd1 4942 inode = ERR_PTR(ret);
01cd3367 4943 }
c71bf099
YZ
4944 }
4945
3de4586c
CM
4946 return inode;
4947}
4948
fe15ce44 4949static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4950{
4951 struct btrfs_root *root;
848cce0d 4952 struct inode *inode = dentry->d_inode;
76dda93c 4953
848cce0d
LZ
4954 if (!inode && !IS_ROOT(dentry))
4955 inode = dentry->d_parent->d_inode;
76dda93c 4956
848cce0d
LZ
4957 if (inode) {
4958 root = BTRFS_I(inode)->root;
efefb143
YZ
4959 if (btrfs_root_refs(&root->root_item) == 0)
4960 return 1;
848cce0d
LZ
4961
4962 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4963 return 1;
efefb143 4964 }
76dda93c
YZ
4965 return 0;
4966}
4967
b4aff1f8
JB
4968static void btrfs_dentry_release(struct dentry *dentry)
4969{
4970 if (dentry->d_fsdata)
4971 kfree(dentry->d_fsdata);
4972}
4973
3de4586c 4974static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4975 unsigned int flags)
3de4586c 4976{
a66e7cc6
JB
4977 struct dentry *ret;
4978
4979 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
a66e7cc6 4980 return ret;
39279cc3
CM
4981}
4982
16cdcec7 4983unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4984 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4985};
4986
9cdda8d3 4987static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 4988{
9cdda8d3 4989 struct inode *inode = file_inode(file);
39279cc3
CM
4990 struct btrfs_root *root = BTRFS_I(inode)->root;
4991 struct btrfs_item *item;
4992 struct btrfs_dir_item *di;
4993 struct btrfs_key key;
5f39d397 4994 struct btrfs_key found_key;
39279cc3 4995 struct btrfs_path *path;
16cdcec7
MX
4996 struct list_head ins_list;
4997 struct list_head del_list;
39279cc3 4998 int ret;
5f39d397 4999 struct extent_buffer *leaf;
39279cc3 5000 int slot;
39279cc3
CM
5001 unsigned char d_type;
5002 int over = 0;
5003 u32 di_cur;
5004 u32 di_total;
5005 u32 di_len;
5006 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5007 char tmp_name[32];
5008 char *name_ptr;
5009 int name_len;
9cdda8d3 5010 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5011
5012 /* FIXME, use a real flag for deciding about the key type */
5013 if (root->fs_info->tree_root == root)
5014 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5015
9cdda8d3
AV
5016 if (!dir_emit_dots(file, ctx))
5017 return 0;
5018
49593bfa 5019 path = btrfs_alloc_path();
16cdcec7
MX
5020 if (!path)
5021 return -ENOMEM;
ff5714cc 5022
026fd317 5023 path->reada = 1;
49593bfa 5024
16cdcec7
MX
5025 if (key_type == BTRFS_DIR_INDEX_KEY) {
5026 INIT_LIST_HEAD(&ins_list);
5027 INIT_LIST_HEAD(&del_list);
5028 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5029 }
5030
39279cc3 5031 btrfs_set_key_type(&key, key_type);
9cdda8d3 5032 key.offset = ctx->pos;
33345d01 5033 key.objectid = btrfs_ino(inode);
5f39d397 5034
39279cc3
CM
5035 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5036 if (ret < 0)
5037 goto err;
49593bfa
DW
5038
5039 while (1) {
5f39d397 5040 leaf = path->nodes[0];
39279cc3 5041 slot = path->slots[0];
b9e03af0
LZ
5042 if (slot >= btrfs_header_nritems(leaf)) {
5043 ret = btrfs_next_leaf(root, path);
5044 if (ret < 0)
5045 goto err;
5046 else if (ret > 0)
5047 break;
5048 continue;
39279cc3 5049 }
3de4586c 5050
dd3cc16b 5051 item = btrfs_item_nr(slot);
5f39d397
CM
5052 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5053
5054 if (found_key.objectid != key.objectid)
39279cc3 5055 break;
5f39d397 5056 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5057 break;
9cdda8d3 5058 if (found_key.offset < ctx->pos)
b9e03af0 5059 goto next;
16cdcec7
MX
5060 if (key_type == BTRFS_DIR_INDEX_KEY &&
5061 btrfs_should_delete_dir_index(&del_list,
5062 found_key.offset))
5063 goto next;
5f39d397 5064
9cdda8d3 5065 ctx->pos = found_key.offset;
16cdcec7 5066 is_curr = 1;
49593bfa 5067
39279cc3
CM
5068 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5069 di_cur = 0;
5f39d397 5070 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5071
5072 while (di_cur < di_total) {
5f39d397
CM
5073 struct btrfs_key location;
5074
22a94d44
JB
5075 if (verify_dir_item(root, leaf, di))
5076 break;
5077
5f39d397 5078 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5079 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5080 name_ptr = tmp_name;
5081 } else {
5082 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5083 if (!name_ptr) {
5084 ret = -ENOMEM;
5085 goto err;
5086 }
5f39d397
CM
5087 }
5088 read_extent_buffer(leaf, name_ptr,
5089 (unsigned long)(di + 1), name_len);
5090
5091 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5092 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5093
fede766f 5094
3de4586c 5095 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5096 * skip it.
5097 *
5098 * In contrast to old kernels, we insert the snapshot's
5099 * dir item and dir index after it has been created, so
5100 * we won't find a reference to our own snapshot. We
5101 * still keep the following code for backward
5102 * compatibility.
3de4586c
CM
5103 */
5104 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5105 location.objectid == root->root_key.objectid) {
5106 over = 0;
5107 goto skip;
5108 }
9cdda8d3
AV
5109 over = !dir_emit(ctx, name_ptr, name_len,
5110 location.objectid, d_type);
5f39d397 5111
3de4586c 5112skip:
5f39d397
CM
5113 if (name_ptr != tmp_name)
5114 kfree(name_ptr);
5115
39279cc3
CM
5116 if (over)
5117 goto nopos;
5103e947 5118 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5119 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5120 di_cur += di_len;
5121 di = (struct btrfs_dir_item *)((char *)di + di_len);
5122 }
b9e03af0
LZ
5123next:
5124 path->slots[0]++;
39279cc3 5125 }
49593bfa 5126
16cdcec7
MX
5127 if (key_type == BTRFS_DIR_INDEX_KEY) {
5128 if (is_curr)
9cdda8d3
AV
5129 ctx->pos++;
5130 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5131 if (ret)
5132 goto nopos;
5133 }
5134
49593bfa 5135 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5136 ctx->pos++;
5137
5138 /*
5139 * Stop new entries from being returned after we return the last
5140 * entry.
5141 *
5142 * New directory entries are assigned a strictly increasing
5143 * offset. This means that new entries created during readdir
5144 * are *guaranteed* to be seen in the future by that readdir.
5145 * This has broken buggy programs which operate on names as
5146 * they're returned by readdir. Until we re-use freed offsets
5147 * we have this hack to stop new entries from being returned
5148 * under the assumption that they'll never reach this huge
5149 * offset.
5150 *
5151 * This is being careful not to overflow 32bit loff_t unless the
5152 * last entry requires it because doing so has broken 32bit apps
5153 * in the past.
5154 */
5155 if (key_type == BTRFS_DIR_INDEX_KEY) {
5156 if (ctx->pos >= INT_MAX)
5157 ctx->pos = LLONG_MAX;
5158 else
5159 ctx->pos = INT_MAX;
5160 }
39279cc3
CM
5161nopos:
5162 ret = 0;
5163err:
16cdcec7
MX
5164 if (key_type == BTRFS_DIR_INDEX_KEY)
5165 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5166 btrfs_free_path(path);
39279cc3
CM
5167 return ret;
5168}
5169
a9185b41 5170int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5171{
5172 struct btrfs_root *root = BTRFS_I(inode)->root;
5173 struct btrfs_trans_handle *trans;
5174 int ret = 0;
0af3d00b 5175 bool nolock = false;
39279cc3 5176
72ac3c0d 5177 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5178 return 0;
5179
83eea1f1 5180 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5181 nolock = true;
0af3d00b 5182
a9185b41 5183 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5184 if (nolock)
7a7eaa40 5185 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5186 else
7a7eaa40 5187 trans = btrfs_join_transaction(root);
3612b495
TI
5188 if (IS_ERR(trans))
5189 return PTR_ERR(trans);
a698d075 5190 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5191 }
5192 return ret;
5193}
5194
5195/*
54aa1f4d 5196 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5197 * inode changes. But, it is most likely to find the inode in cache.
5198 * FIXME, needs more benchmarking...there are no reasons other than performance
5199 * to keep or drop this code.
5200 */
48a3b636 5201static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5202{
5203 struct btrfs_root *root = BTRFS_I(inode)->root;
5204 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5205 int ret;
5206
72ac3c0d 5207 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5208 return 0;
39279cc3 5209
7a7eaa40 5210 trans = btrfs_join_transaction(root);
22c44fe6
JB
5211 if (IS_ERR(trans))
5212 return PTR_ERR(trans);
8929ecfa
YZ
5213
5214 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5215 if (ret && ret == -ENOSPC) {
5216 /* whoops, lets try again with the full transaction */
5217 btrfs_end_transaction(trans, root);
5218 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5219 if (IS_ERR(trans))
5220 return PTR_ERR(trans);
8929ecfa 5221
94b60442 5222 ret = btrfs_update_inode(trans, root, inode);
94b60442 5223 }
39279cc3 5224 btrfs_end_transaction(trans, root);
16cdcec7
MX
5225 if (BTRFS_I(inode)->delayed_node)
5226 btrfs_balance_delayed_items(root);
22c44fe6
JB
5227
5228 return ret;
5229}
5230
5231/*
5232 * This is a copy of file_update_time. We need this so we can return error on
5233 * ENOSPC for updating the inode in the case of file write and mmap writes.
5234 */
e41f941a
JB
5235static int btrfs_update_time(struct inode *inode, struct timespec *now,
5236 int flags)
22c44fe6 5237{
2bc55652
AB
5238 struct btrfs_root *root = BTRFS_I(inode)->root;
5239
5240 if (btrfs_root_readonly(root))
5241 return -EROFS;
5242
e41f941a 5243 if (flags & S_VERSION)
22c44fe6 5244 inode_inc_iversion(inode);
e41f941a
JB
5245 if (flags & S_CTIME)
5246 inode->i_ctime = *now;
5247 if (flags & S_MTIME)
5248 inode->i_mtime = *now;
5249 if (flags & S_ATIME)
5250 inode->i_atime = *now;
5251 return btrfs_dirty_inode(inode);
39279cc3
CM
5252}
5253
d352ac68
CM
5254/*
5255 * find the highest existing sequence number in a directory
5256 * and then set the in-memory index_cnt variable to reflect
5257 * free sequence numbers
5258 */
aec7477b
JB
5259static int btrfs_set_inode_index_count(struct inode *inode)
5260{
5261 struct btrfs_root *root = BTRFS_I(inode)->root;
5262 struct btrfs_key key, found_key;
5263 struct btrfs_path *path;
5264 struct extent_buffer *leaf;
5265 int ret;
5266
33345d01 5267 key.objectid = btrfs_ino(inode);
aec7477b
JB
5268 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5269 key.offset = (u64)-1;
5270
5271 path = btrfs_alloc_path();
5272 if (!path)
5273 return -ENOMEM;
5274
5275 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5276 if (ret < 0)
5277 goto out;
5278 /* FIXME: we should be able to handle this */
5279 if (ret == 0)
5280 goto out;
5281 ret = 0;
5282
5283 /*
5284 * MAGIC NUMBER EXPLANATION:
5285 * since we search a directory based on f_pos we have to start at 2
5286 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5287 * else has to start at 2
5288 */
5289 if (path->slots[0] == 0) {
5290 BTRFS_I(inode)->index_cnt = 2;
5291 goto out;
5292 }
5293
5294 path->slots[0]--;
5295
5296 leaf = path->nodes[0];
5297 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5298
33345d01 5299 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5300 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5301 BTRFS_I(inode)->index_cnt = 2;
5302 goto out;
5303 }
5304
5305 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5306out:
5307 btrfs_free_path(path);
5308 return ret;
5309}
5310
d352ac68
CM
5311/*
5312 * helper to find a free sequence number in a given directory. This current
5313 * code is very simple, later versions will do smarter things in the btree
5314 */
3de4586c 5315int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5316{
5317 int ret = 0;
5318
5319 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5320 ret = btrfs_inode_delayed_dir_index_count(dir);
5321 if (ret) {
5322 ret = btrfs_set_inode_index_count(dir);
5323 if (ret)
5324 return ret;
5325 }
aec7477b
JB
5326 }
5327
00e4e6b3 5328 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5329 BTRFS_I(dir)->index_cnt++;
5330
5331 return ret;
5332}
5333
39279cc3
CM
5334static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5335 struct btrfs_root *root,
aec7477b 5336 struct inode *dir,
9c58309d 5337 const char *name, int name_len,
175a4eb7
AV
5338 u64 ref_objectid, u64 objectid,
5339 umode_t mode, u64 *index)
39279cc3
CM
5340{
5341 struct inode *inode;
5f39d397 5342 struct btrfs_inode_item *inode_item;
39279cc3 5343 struct btrfs_key *location;
5f39d397 5344 struct btrfs_path *path;
9c58309d
CM
5345 struct btrfs_inode_ref *ref;
5346 struct btrfs_key key[2];
5347 u32 sizes[2];
5348 unsigned long ptr;
39279cc3
CM
5349 int ret;
5350 int owner;
5351
5f39d397 5352 path = btrfs_alloc_path();
d8926bb3
MF
5353 if (!path)
5354 return ERR_PTR(-ENOMEM);
5f39d397 5355
39279cc3 5356 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5357 if (!inode) {
5358 btrfs_free_path(path);
39279cc3 5359 return ERR_PTR(-ENOMEM);
8fb27640 5360 }
39279cc3 5361
581bb050
LZ
5362 /*
5363 * we have to initialize this early, so we can reclaim the inode
5364 * number if we fail afterwards in this function.
5365 */
5366 inode->i_ino = objectid;
5367
aec7477b 5368 if (dir) {
1abe9b8a 5369 trace_btrfs_inode_request(dir);
5370
3de4586c 5371 ret = btrfs_set_inode_index(dir, index);
09771430 5372 if (ret) {
8fb27640 5373 btrfs_free_path(path);
09771430 5374 iput(inode);
aec7477b 5375 return ERR_PTR(ret);
09771430 5376 }
aec7477b
JB
5377 }
5378 /*
5379 * index_cnt is ignored for everything but a dir,
5380 * btrfs_get_inode_index_count has an explanation for the magic
5381 * number
5382 */
5383 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5384 BTRFS_I(inode)->root = root;
e02119d5 5385 BTRFS_I(inode)->generation = trans->transid;
76195853 5386 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5387
5dc562c5
JB
5388 /*
5389 * We could have gotten an inode number from somebody who was fsynced
5390 * and then removed in this same transaction, so let's just set full
5391 * sync since it will be a full sync anyway and this will blow away the
5392 * old info in the log.
5393 */
5394 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5395
569254b0 5396 if (S_ISDIR(mode))
39279cc3
CM
5397 owner = 0;
5398 else
5399 owner = 1;
9c58309d
CM
5400
5401 key[0].objectid = objectid;
5402 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5403 key[0].offset = 0;
5404
f186373f
MF
5405 /*
5406 * Start new inodes with an inode_ref. This is slightly more
5407 * efficient for small numbers of hard links since they will
5408 * be packed into one item. Extended refs will kick in if we
5409 * add more hard links than can fit in the ref item.
5410 */
9c58309d
CM
5411 key[1].objectid = objectid;
5412 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5413 key[1].offset = ref_objectid;
5414
5415 sizes[0] = sizeof(struct btrfs_inode_item);
5416 sizes[1] = name_len + sizeof(*ref);
5417
b9473439 5418 path->leave_spinning = 1;
9c58309d
CM
5419 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5420 if (ret != 0)
5f39d397
CM
5421 goto fail;
5422
ecc11fab 5423 inode_init_owner(inode, dir, mode);
a76a3cd4 5424 inode_set_bytes(inode, 0);
39279cc3 5425 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5426 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5427 struct btrfs_inode_item);
293f7e07
LZ
5428 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5429 sizeof(*inode_item));
e02119d5 5430 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5431
5432 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5433 struct btrfs_inode_ref);
5434 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5435 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5436 ptr = (unsigned long)(ref + 1);
5437 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5438
5f39d397
CM
5439 btrfs_mark_buffer_dirty(path->nodes[0]);
5440 btrfs_free_path(path);
5441
39279cc3
CM
5442 location = &BTRFS_I(inode)->location;
5443 location->objectid = objectid;
39279cc3
CM
5444 location->offset = 0;
5445 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5446
6cbff00f
CH
5447 btrfs_inherit_iflags(inode, dir);
5448
569254b0 5449 if (S_ISREG(mode)) {
94272164
CM
5450 if (btrfs_test_opt(root, NODATASUM))
5451 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5452 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5453 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5454 BTRFS_INODE_NODATASUM;
94272164
CM
5455 }
5456
778ba82b 5457 btrfs_insert_inode_hash(inode);
5d4f98a2 5458 inode_tree_add(inode);
1abe9b8a 5459
5460 trace_btrfs_inode_new(inode);
1973f0fa 5461 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5462
8ea05e3a
AB
5463 btrfs_update_root_times(trans, root);
5464
39279cc3 5465 return inode;
5f39d397 5466fail:
aec7477b
JB
5467 if (dir)
5468 BTRFS_I(dir)->index_cnt--;
5f39d397 5469 btrfs_free_path(path);
09771430 5470 iput(inode);
5f39d397 5471 return ERR_PTR(ret);
39279cc3
CM
5472}
5473
5474static inline u8 btrfs_inode_type(struct inode *inode)
5475{
5476 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5477}
5478
d352ac68
CM
5479/*
5480 * utility function to add 'inode' into 'parent_inode' with
5481 * a give name and a given sequence number.
5482 * if 'add_backref' is true, also insert a backref from the
5483 * inode to the parent directory.
5484 */
e02119d5
CM
5485int btrfs_add_link(struct btrfs_trans_handle *trans,
5486 struct inode *parent_inode, struct inode *inode,
5487 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5488{
4df27c4d 5489 int ret = 0;
39279cc3 5490 struct btrfs_key key;
e02119d5 5491 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5492 u64 ino = btrfs_ino(inode);
5493 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5494
33345d01 5495 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5496 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5497 } else {
33345d01 5498 key.objectid = ino;
4df27c4d
YZ
5499 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5500 key.offset = 0;
5501 }
5502
33345d01 5503 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5504 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5505 key.objectid, root->root_key.objectid,
33345d01 5506 parent_ino, index, name, name_len);
4df27c4d 5507 } else if (add_backref) {
33345d01
LZ
5508 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5509 parent_ino, index);
4df27c4d 5510 }
39279cc3 5511
79787eaa
JM
5512 /* Nothing to clean up yet */
5513 if (ret)
5514 return ret;
4df27c4d 5515
79787eaa
JM
5516 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5517 parent_inode, &key,
5518 btrfs_inode_type(inode), index);
9c52057c 5519 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5520 goto fail_dir_item;
5521 else if (ret) {
5522 btrfs_abort_transaction(trans, root, ret);
5523 return ret;
39279cc3 5524 }
79787eaa
JM
5525
5526 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5527 name_len * 2);
0c4d2d95 5528 inode_inc_iversion(parent_inode);
79787eaa
JM
5529 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5530 ret = btrfs_update_inode(trans, root, parent_inode);
5531 if (ret)
5532 btrfs_abort_transaction(trans, root, ret);
39279cc3 5533 return ret;
fe66a05a
CM
5534
5535fail_dir_item:
5536 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5537 u64 local_index;
5538 int err;
5539 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5540 key.objectid, root->root_key.objectid,
5541 parent_ino, &local_index, name, name_len);
5542
5543 } else if (add_backref) {
5544 u64 local_index;
5545 int err;
5546
5547 err = btrfs_del_inode_ref(trans, root, name, name_len,
5548 ino, parent_ino, &local_index);
5549 }
5550 return ret;
39279cc3
CM
5551}
5552
5553static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5554 struct inode *dir, struct dentry *dentry,
5555 struct inode *inode, int backref, u64 index)
39279cc3 5556{
a1b075d2
JB
5557 int err = btrfs_add_link(trans, dir, inode,
5558 dentry->d_name.name, dentry->d_name.len,
5559 backref, index);
39279cc3
CM
5560 if (err > 0)
5561 err = -EEXIST;
5562 return err;
5563}
5564
618e21d5 5565static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5566 umode_t mode, dev_t rdev)
618e21d5
JB
5567{
5568 struct btrfs_trans_handle *trans;
5569 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5570 struct inode *inode = NULL;
618e21d5
JB
5571 int err;
5572 int drop_inode = 0;
5573 u64 objectid;
00e4e6b3 5574 u64 index = 0;
618e21d5
JB
5575
5576 if (!new_valid_dev(rdev))
5577 return -EINVAL;
5578
9ed74f2d
JB
5579 /*
5580 * 2 for inode item and ref
5581 * 2 for dir items
5582 * 1 for xattr if selinux is on
5583 */
a22285a6
YZ
5584 trans = btrfs_start_transaction(root, 5);
5585 if (IS_ERR(trans))
5586 return PTR_ERR(trans);
1832a6d5 5587
581bb050
LZ
5588 err = btrfs_find_free_ino(root, &objectid);
5589 if (err)
5590 goto out_unlock;
5591
aec7477b 5592 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5593 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5594 mode, &index);
7cf96da3
TI
5595 if (IS_ERR(inode)) {
5596 err = PTR_ERR(inode);
618e21d5 5597 goto out_unlock;
7cf96da3 5598 }
618e21d5 5599
2a7dba39 5600 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5601 if (err) {
5602 drop_inode = 1;
5603 goto out_unlock;
5604 }
5605
ad19db71
CS
5606 /*
5607 * If the active LSM wants to access the inode during
5608 * d_instantiate it needs these. Smack checks to see
5609 * if the filesystem supports xattrs by looking at the
5610 * ops vector.
5611 */
5612
5613 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5614 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5615 if (err)
5616 drop_inode = 1;
5617 else {
618e21d5 5618 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5619 btrfs_update_inode(trans, root, inode);
08c422c2 5620 d_instantiate(dentry, inode);
618e21d5 5621 }
618e21d5 5622out_unlock:
7ad85bb7 5623 btrfs_end_transaction(trans, root);
b53d3f5d 5624 btrfs_btree_balance_dirty(root);
618e21d5
JB
5625 if (drop_inode) {
5626 inode_dec_link_count(inode);
5627 iput(inode);
5628 }
618e21d5
JB
5629 return err;
5630}
5631
39279cc3 5632static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5633 umode_t mode, bool excl)
39279cc3
CM
5634{
5635 struct btrfs_trans_handle *trans;
5636 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5637 struct inode *inode = NULL;
43baa579 5638 int drop_inode_on_err = 0;
a22285a6 5639 int err;
39279cc3 5640 u64 objectid;
00e4e6b3 5641 u64 index = 0;
39279cc3 5642
9ed74f2d
JB
5643 /*
5644 * 2 for inode item and ref
5645 * 2 for dir items
5646 * 1 for xattr if selinux is on
5647 */
a22285a6
YZ
5648 trans = btrfs_start_transaction(root, 5);
5649 if (IS_ERR(trans))
5650 return PTR_ERR(trans);
9ed74f2d 5651
581bb050
LZ
5652 err = btrfs_find_free_ino(root, &objectid);
5653 if (err)
5654 goto out_unlock;
5655
aec7477b 5656 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5657 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5658 mode, &index);
7cf96da3
TI
5659 if (IS_ERR(inode)) {
5660 err = PTR_ERR(inode);
39279cc3 5661 goto out_unlock;
7cf96da3 5662 }
43baa579 5663 drop_inode_on_err = 1;
39279cc3 5664
2a7dba39 5665 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5666 if (err)
33268eaf 5667 goto out_unlock;
33268eaf 5668
9185aa58
FB
5669 err = btrfs_update_inode(trans, root, inode);
5670 if (err)
5671 goto out_unlock;
5672
ad19db71
CS
5673 /*
5674 * If the active LSM wants to access the inode during
5675 * d_instantiate it needs these. Smack checks to see
5676 * if the filesystem supports xattrs by looking at the
5677 * ops vector.
5678 */
5679 inode->i_fop = &btrfs_file_operations;
5680 inode->i_op = &btrfs_file_inode_operations;
5681
a1b075d2 5682 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5683 if (err)
43baa579
FB
5684 goto out_unlock;
5685
5686 inode->i_mapping->a_ops = &btrfs_aops;
5687 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5688 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5689 d_instantiate(dentry, inode);
5690
39279cc3 5691out_unlock:
7ad85bb7 5692 btrfs_end_transaction(trans, root);
43baa579 5693 if (err && drop_inode_on_err) {
39279cc3
CM
5694 inode_dec_link_count(inode);
5695 iput(inode);
5696 }
b53d3f5d 5697 btrfs_btree_balance_dirty(root);
39279cc3
CM
5698 return err;
5699}
5700
5701static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5702 struct dentry *dentry)
5703{
5704 struct btrfs_trans_handle *trans;
5705 struct btrfs_root *root = BTRFS_I(dir)->root;
5706 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5707 u64 index;
39279cc3
CM
5708 int err;
5709 int drop_inode = 0;
5710
4a8be425
TH
5711 /* do not allow sys_link's with other subvols of the same device */
5712 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5713 return -EXDEV;
4a8be425 5714
f186373f 5715 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5716 return -EMLINK;
4a8be425 5717
3de4586c 5718 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5719 if (err)
5720 goto fail;
5721
a22285a6 5722 /*
7e6b6465 5723 * 2 items for inode and inode ref
a22285a6 5724 * 2 items for dir items
7e6b6465 5725 * 1 item for parent inode
a22285a6 5726 */
7e6b6465 5727 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5728 if (IS_ERR(trans)) {
5729 err = PTR_ERR(trans);
5730 goto fail;
5731 }
5f39d397 5732
8b558c5f 5733 inc_nlink(inode);
0c4d2d95 5734 inode_inc_iversion(inode);
3153495d 5735 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5736 ihold(inode);
e9976151 5737 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5738
a1b075d2 5739 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5740
a5719521 5741 if (err) {
54aa1f4d 5742 drop_inode = 1;
a5719521 5743 } else {
10d9f309 5744 struct dentry *parent = dentry->d_parent;
a5719521 5745 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5746 if (err)
5747 goto fail;
08c422c2 5748 d_instantiate(dentry, inode);
6a912213 5749 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5750 }
39279cc3 5751
7ad85bb7 5752 btrfs_end_transaction(trans, root);
1832a6d5 5753fail:
39279cc3
CM
5754 if (drop_inode) {
5755 inode_dec_link_count(inode);
5756 iput(inode);
5757 }
b53d3f5d 5758 btrfs_btree_balance_dirty(root);
39279cc3
CM
5759 return err;
5760}
5761
18bb1db3 5762static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5763{
b9d86667 5764 struct inode *inode = NULL;
39279cc3
CM
5765 struct btrfs_trans_handle *trans;
5766 struct btrfs_root *root = BTRFS_I(dir)->root;
5767 int err = 0;
5768 int drop_on_err = 0;
b9d86667 5769 u64 objectid = 0;
00e4e6b3 5770 u64 index = 0;
39279cc3 5771
9ed74f2d
JB
5772 /*
5773 * 2 items for inode and ref
5774 * 2 items for dir items
5775 * 1 for xattr if selinux is on
5776 */
a22285a6
YZ
5777 trans = btrfs_start_transaction(root, 5);
5778 if (IS_ERR(trans))
5779 return PTR_ERR(trans);
39279cc3 5780
581bb050
LZ
5781 err = btrfs_find_free_ino(root, &objectid);
5782 if (err)
5783 goto out_fail;
5784
aec7477b 5785 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5786 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5787 S_IFDIR | mode, &index);
39279cc3
CM
5788 if (IS_ERR(inode)) {
5789 err = PTR_ERR(inode);
5790 goto out_fail;
5791 }
5f39d397 5792
39279cc3 5793 drop_on_err = 1;
33268eaf 5794
2a7dba39 5795 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5796 if (err)
5797 goto out_fail;
5798
39279cc3
CM
5799 inode->i_op = &btrfs_dir_inode_operations;
5800 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5801
dbe674a9 5802 btrfs_i_size_write(inode, 0);
39279cc3
CM
5803 err = btrfs_update_inode(trans, root, inode);
5804 if (err)
5805 goto out_fail;
5f39d397 5806
a1b075d2
JB
5807 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5808 dentry->d_name.len, 0, index);
39279cc3
CM
5809 if (err)
5810 goto out_fail;
5f39d397 5811
39279cc3
CM
5812 d_instantiate(dentry, inode);
5813 drop_on_err = 0;
39279cc3
CM
5814
5815out_fail:
7ad85bb7 5816 btrfs_end_transaction(trans, root);
39279cc3
CM
5817 if (drop_on_err)
5818 iput(inode);
b53d3f5d 5819 btrfs_btree_balance_dirty(root);
39279cc3
CM
5820 return err;
5821}
5822
d352ac68
CM
5823/* helper for btfs_get_extent. Given an existing extent in the tree,
5824 * and an extent that you want to insert, deal with overlap and insert
5825 * the new extent into the tree.
5826 */
3b951516
CM
5827static int merge_extent_mapping(struct extent_map_tree *em_tree,
5828 struct extent_map *existing,
e6dcd2dc
CM
5829 struct extent_map *em,
5830 u64 map_start, u64 map_len)
3b951516
CM
5831{
5832 u64 start_diff;
3b951516 5833
e6dcd2dc
CM
5834 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5835 start_diff = map_start - em->start;
5836 em->start = map_start;
5837 em->len = map_len;
c8b97818
CM
5838 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5839 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5840 em->block_start += start_diff;
c8b97818
CM
5841 em->block_len -= start_diff;
5842 }
09a2a8f9 5843 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5844}
5845
c8b97818
CM
5846static noinline int uncompress_inline(struct btrfs_path *path,
5847 struct inode *inode, struct page *page,
5848 size_t pg_offset, u64 extent_offset,
5849 struct btrfs_file_extent_item *item)
5850{
5851 int ret;
5852 struct extent_buffer *leaf = path->nodes[0];
5853 char *tmp;
5854 size_t max_size;
5855 unsigned long inline_size;
5856 unsigned long ptr;
261507a0 5857 int compress_type;
c8b97818
CM
5858
5859 WARN_ON(pg_offset != 0);
261507a0 5860 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5861 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5862 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 5863 btrfs_item_nr(path->slots[0]));
c8b97818 5864 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5865 if (!tmp)
5866 return -ENOMEM;
c8b97818
CM
5867 ptr = btrfs_file_extent_inline_start(item);
5868
5869 read_extent_buffer(leaf, tmp, ptr, inline_size);
5870
5b050f04 5871 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5872 ret = btrfs_decompress(compress_type, tmp, page,
5873 extent_offset, inline_size, max_size);
c8b97818 5874 if (ret) {
7ac687d9 5875 char *kaddr = kmap_atomic(page);
c8b97818
CM
5876 unsigned long copy_size = min_t(u64,
5877 PAGE_CACHE_SIZE - pg_offset,
5878 max_size - extent_offset);
5879 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5880 kunmap_atomic(kaddr);
c8b97818
CM
5881 }
5882 kfree(tmp);
5883 return 0;
5884}
5885
d352ac68
CM
5886/*
5887 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5888 * the ugly parts come from merging extents from the disk with the in-ram
5889 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5890 * where the in-ram extents might be locked pending data=ordered completion.
5891 *
5892 * This also copies inline extents directly into the page.
5893 */
d397712b 5894
a52d9a80 5895struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5896 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5897 int create)
5898{
5899 int ret;
5900 int err = 0;
db94535d 5901 u64 bytenr;
a52d9a80
CM
5902 u64 extent_start = 0;
5903 u64 extent_end = 0;
33345d01 5904 u64 objectid = btrfs_ino(inode);
a52d9a80 5905 u32 found_type;
f421950f 5906 struct btrfs_path *path = NULL;
a52d9a80
CM
5907 struct btrfs_root *root = BTRFS_I(inode)->root;
5908 struct btrfs_file_extent_item *item;
5f39d397
CM
5909 struct extent_buffer *leaf;
5910 struct btrfs_key found_key;
a52d9a80
CM
5911 struct extent_map *em = NULL;
5912 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5913 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5914 struct btrfs_trans_handle *trans = NULL;
261507a0 5915 int compress_type;
a52d9a80 5916
a52d9a80 5917again:
890871be 5918 read_lock(&em_tree->lock);
d1310b2e 5919 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5920 if (em)
5921 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5922 read_unlock(&em_tree->lock);
d1310b2e 5923
a52d9a80 5924 if (em) {
e1c4b745
CM
5925 if (em->start > start || em->start + em->len <= start)
5926 free_extent_map(em);
5927 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5928 free_extent_map(em);
5929 else
5930 goto out;
a52d9a80 5931 }
172ddd60 5932 em = alloc_extent_map();
a52d9a80 5933 if (!em) {
d1310b2e
CM
5934 err = -ENOMEM;
5935 goto out;
a52d9a80 5936 }
e6dcd2dc 5937 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5938 em->start = EXTENT_MAP_HOLE;
445a6944 5939 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5940 em->len = (u64)-1;
c8b97818 5941 em->block_len = (u64)-1;
f421950f
CM
5942
5943 if (!path) {
5944 path = btrfs_alloc_path();
026fd317
JB
5945 if (!path) {
5946 err = -ENOMEM;
5947 goto out;
5948 }
5949 /*
5950 * Chances are we'll be called again, so go ahead and do
5951 * readahead
5952 */
5953 path->reada = 1;
f421950f
CM
5954 }
5955
179e29e4
CM
5956 ret = btrfs_lookup_file_extent(trans, root, path,
5957 objectid, start, trans != NULL);
a52d9a80
CM
5958 if (ret < 0) {
5959 err = ret;
5960 goto out;
5961 }
5962
5963 if (ret != 0) {
5964 if (path->slots[0] == 0)
5965 goto not_found;
5966 path->slots[0]--;
5967 }
5968
5f39d397
CM
5969 leaf = path->nodes[0];
5970 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5971 struct btrfs_file_extent_item);
a52d9a80 5972 /* are we inside the extent that was found? */
5f39d397
CM
5973 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5974 found_type = btrfs_key_type(&found_key);
5975 if (found_key.objectid != objectid ||
a52d9a80 5976 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
5977 /*
5978 * If we backup past the first extent we want to move forward
5979 * and see if there is an extent in front of us, otherwise we'll
5980 * say there is a hole for our whole search range which can
5981 * cause problems.
5982 */
5983 extent_end = start;
5984 goto next;
a52d9a80
CM
5985 }
5986
5f39d397
CM
5987 found_type = btrfs_file_extent_type(leaf, item);
5988 extent_start = found_key.offset;
261507a0 5989 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5990 if (found_type == BTRFS_FILE_EXTENT_REG ||
5991 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5992 extent_end = extent_start +
db94535d 5993 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5994 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5995 size_t size;
5996 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 5997 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 5998 }
25a50341 5999next:
9036c102
YZ
6000 if (start >= extent_end) {
6001 path->slots[0]++;
6002 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6003 ret = btrfs_next_leaf(root, path);
6004 if (ret < 0) {
6005 err = ret;
6006 goto out;
a52d9a80 6007 }
9036c102
YZ
6008 if (ret > 0)
6009 goto not_found;
6010 leaf = path->nodes[0];
a52d9a80 6011 }
9036c102
YZ
6012 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6013 if (found_key.objectid != objectid ||
6014 found_key.type != BTRFS_EXTENT_DATA_KEY)
6015 goto not_found;
6016 if (start + len <= found_key.offset)
6017 goto not_found;
6018 em->start = start;
70c8a91c 6019 em->orig_start = start;
9036c102
YZ
6020 em->len = found_key.offset - start;
6021 goto not_found_em;
6022 }
6023
cc95bef6 6024 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6025 if (found_type == BTRFS_FILE_EXTENT_REG ||
6026 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6027 em->start = extent_start;
6028 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6029 em->orig_start = extent_start -
6030 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6031 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6032 item);
db94535d
CM
6033 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6034 if (bytenr == 0) {
5f39d397 6035 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6036 goto insert;
6037 }
261507a0 6038 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6039 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6040 em->compress_type = compress_type;
c8b97818 6041 em->block_start = bytenr;
b4939680 6042 em->block_len = em->orig_block_len;
c8b97818
CM
6043 } else {
6044 bytenr += btrfs_file_extent_offset(leaf, item);
6045 em->block_start = bytenr;
6046 em->block_len = em->len;
d899e052
YZ
6047 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6048 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6049 }
a52d9a80
CM
6050 goto insert;
6051 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6052 unsigned long ptr;
a52d9a80 6053 char *map;
3326d1b0
CM
6054 size_t size;
6055 size_t extent_offset;
6056 size_t copy_size;
a52d9a80 6057
689f9346 6058 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6059 if (!page || create) {
689f9346 6060 em->start = extent_start;
9036c102 6061 em->len = extent_end - extent_start;
689f9346
Y
6062 goto out;
6063 }
5f39d397 6064
9036c102
YZ
6065 size = btrfs_file_extent_inline_len(leaf, item);
6066 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6067 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6068 size - extent_offset);
3326d1b0 6069 em->start = extent_start + extent_offset;
fda2832f 6070 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6071 em->orig_block_len = em->len;
70c8a91c 6072 em->orig_start = em->start;
261507a0 6073 if (compress_type) {
c8b97818 6074 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6075 em->compress_type = compress_type;
6076 }
689f9346 6077 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6078 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6079 if (btrfs_file_extent_compression(leaf, item) !=
6080 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6081 ret = uncompress_inline(path, inode, page,
6082 pg_offset,
6083 extent_offset, item);
79787eaa 6084 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6085 } else {
6086 map = kmap(page);
6087 read_extent_buffer(leaf, map + pg_offset, ptr,
6088 copy_size);
93c82d57
CM
6089 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6090 memset(map + pg_offset + copy_size, 0,
6091 PAGE_CACHE_SIZE - pg_offset -
6092 copy_size);
6093 }
c8b97818
CM
6094 kunmap(page);
6095 }
179e29e4
CM
6096 flush_dcache_page(page);
6097 } else if (create && PageUptodate(page)) {
6bf7e080 6098 BUG();
179e29e4
CM
6099 if (!trans) {
6100 kunmap(page);
6101 free_extent_map(em);
6102 em = NULL;
ff5714cc 6103
b3b4aa74 6104 btrfs_release_path(path);
7a7eaa40 6105 trans = btrfs_join_transaction(root);
ff5714cc 6106
3612b495
TI
6107 if (IS_ERR(trans))
6108 return ERR_CAST(trans);
179e29e4
CM
6109 goto again;
6110 }
c8b97818 6111 map = kmap(page);
70dec807 6112 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6113 copy_size);
c8b97818 6114 kunmap(page);
179e29e4 6115 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6116 }
d1310b2e 6117 set_extent_uptodate(io_tree, em->start,
507903b8 6118 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6119 goto insert;
6120 } else {
31b1a2bd 6121 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6122 }
6123not_found:
6124 em->start = start;
70c8a91c 6125 em->orig_start = start;
d1310b2e 6126 em->len = len;
a52d9a80 6127not_found_em:
5f39d397 6128 em->block_start = EXTENT_MAP_HOLE;
9036c102 6129 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6130insert:
b3b4aa74 6131 btrfs_release_path(path);
d1310b2e 6132 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6133 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6134 em->start, em->len, start, len);
a52d9a80
CM
6135 err = -EIO;
6136 goto out;
6137 }
d1310b2e
CM
6138
6139 err = 0;
890871be 6140 write_lock(&em_tree->lock);
09a2a8f9 6141 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6142 /* it is possible that someone inserted the extent into the tree
6143 * while we had the lock dropped. It is also possible that
6144 * an overlapping map exists in the tree
6145 */
a52d9a80 6146 if (ret == -EEXIST) {
3b951516 6147 struct extent_map *existing;
e6dcd2dc
CM
6148
6149 ret = 0;
6150
3b951516 6151 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6152 if (existing && (existing->start > start ||
6153 existing->start + existing->len <= start)) {
6154 free_extent_map(existing);
6155 existing = NULL;
6156 }
3b951516
CM
6157 if (!existing) {
6158 existing = lookup_extent_mapping(em_tree, em->start,
6159 em->len);
6160 if (existing) {
6161 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6162 em, start,
6163 root->sectorsize);
3b951516
CM
6164 free_extent_map(existing);
6165 if (err) {
6166 free_extent_map(em);
6167 em = NULL;
6168 }
6169 } else {
6170 err = -EIO;
3b951516
CM
6171 free_extent_map(em);
6172 em = NULL;
6173 }
6174 } else {
6175 free_extent_map(em);
6176 em = existing;
e6dcd2dc 6177 err = 0;
a52d9a80 6178 }
a52d9a80 6179 }
890871be 6180 write_unlock(&em_tree->lock);
a52d9a80 6181out:
1abe9b8a 6182
f0bd95ea
TI
6183 if (em)
6184 trace_btrfs_get_extent(root, em);
1abe9b8a 6185
f421950f
CM
6186 if (path)
6187 btrfs_free_path(path);
a52d9a80
CM
6188 if (trans) {
6189 ret = btrfs_end_transaction(trans, root);
d397712b 6190 if (!err)
a52d9a80
CM
6191 err = ret;
6192 }
a52d9a80
CM
6193 if (err) {
6194 free_extent_map(em);
a52d9a80
CM
6195 return ERR_PTR(err);
6196 }
79787eaa 6197 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6198 return em;
6199}
6200
ec29ed5b
CM
6201struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6202 size_t pg_offset, u64 start, u64 len,
6203 int create)
6204{
6205 struct extent_map *em;
6206 struct extent_map *hole_em = NULL;
6207 u64 range_start = start;
6208 u64 end;
6209 u64 found;
6210 u64 found_end;
6211 int err = 0;
6212
6213 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6214 if (IS_ERR(em))
6215 return em;
6216 if (em) {
6217 /*
f9e4fb53
LB
6218 * if our em maps to
6219 * - a hole or
6220 * - a pre-alloc extent,
6221 * there might actually be delalloc bytes behind it.
ec29ed5b 6222 */
f9e4fb53
LB
6223 if (em->block_start != EXTENT_MAP_HOLE &&
6224 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6225 return em;
6226 else
6227 hole_em = em;
6228 }
6229
6230 /* check to see if we've wrapped (len == -1 or similar) */
6231 end = start + len;
6232 if (end < start)
6233 end = (u64)-1;
6234 else
6235 end -= 1;
6236
6237 em = NULL;
6238
6239 /* ok, we didn't find anything, lets look for delalloc */
6240 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6241 end, len, EXTENT_DELALLOC, 1);
6242 found_end = range_start + found;
6243 if (found_end < range_start)
6244 found_end = (u64)-1;
6245
6246 /*
6247 * we didn't find anything useful, return
6248 * the original results from get_extent()
6249 */
6250 if (range_start > end || found_end <= start) {
6251 em = hole_em;
6252 hole_em = NULL;
6253 goto out;
6254 }
6255
6256 /* adjust the range_start to make sure it doesn't
6257 * go backwards from the start they passed in
6258 */
6259 range_start = max(start,range_start);
6260 found = found_end - range_start;
6261
6262 if (found > 0) {
6263 u64 hole_start = start;
6264 u64 hole_len = len;
6265
172ddd60 6266 em = alloc_extent_map();
ec29ed5b
CM
6267 if (!em) {
6268 err = -ENOMEM;
6269 goto out;
6270 }
6271 /*
6272 * when btrfs_get_extent can't find anything it
6273 * returns one huge hole
6274 *
6275 * make sure what it found really fits our range, and
6276 * adjust to make sure it is based on the start from
6277 * the caller
6278 */
6279 if (hole_em) {
6280 u64 calc_end = extent_map_end(hole_em);
6281
6282 if (calc_end <= start || (hole_em->start > end)) {
6283 free_extent_map(hole_em);
6284 hole_em = NULL;
6285 } else {
6286 hole_start = max(hole_em->start, start);
6287 hole_len = calc_end - hole_start;
6288 }
6289 }
6290 em->bdev = NULL;
6291 if (hole_em && range_start > hole_start) {
6292 /* our hole starts before our delalloc, so we
6293 * have to return just the parts of the hole
6294 * that go until the delalloc starts
6295 */
6296 em->len = min(hole_len,
6297 range_start - hole_start);
6298 em->start = hole_start;
6299 em->orig_start = hole_start;
6300 /*
6301 * don't adjust block start at all,
6302 * it is fixed at EXTENT_MAP_HOLE
6303 */
6304 em->block_start = hole_em->block_start;
6305 em->block_len = hole_len;
f9e4fb53
LB
6306 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6307 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6308 } else {
6309 em->start = range_start;
6310 em->len = found;
6311 em->orig_start = range_start;
6312 em->block_start = EXTENT_MAP_DELALLOC;
6313 em->block_len = found;
6314 }
6315 } else if (hole_em) {
6316 return hole_em;
6317 }
6318out:
6319
6320 free_extent_map(hole_em);
6321 if (err) {
6322 free_extent_map(em);
6323 return ERR_PTR(err);
6324 }
6325 return em;
6326}
6327
4b46fce2
JB
6328static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6329 u64 start, u64 len)
6330{
6331 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6332 struct extent_map *em;
4b46fce2
JB
6333 struct btrfs_key ins;
6334 u64 alloc_hint;
6335 int ret;
4b46fce2 6336
4b46fce2 6337 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6338 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
81c9ad23 6339 alloc_hint, &ins, 1);
00361589
JB
6340 if (ret)
6341 return ERR_PTR(ret);
4b46fce2 6342
70c8a91c 6343 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6344 ins.offset, ins.offset, ins.offset, 0);
00361589
JB
6345 if (IS_ERR(em)) {
6346 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6347 return em;
6348 }
4b46fce2
JB
6349
6350 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6351 ins.offset, ins.offset, 0);
6352 if (ret) {
6353 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
00361589
JB
6354 free_extent_map(em);
6355 return ERR_PTR(ret);
4b46fce2 6356 }
00361589 6357
4b46fce2
JB
6358 return em;
6359}
6360
46bfbb5c
CM
6361/*
6362 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6363 * block must be cow'd
6364 */
00361589 6365noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6366 u64 *orig_start, u64 *orig_block_len,
6367 u64 *ram_bytes)
46bfbb5c 6368{
00361589 6369 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6370 struct btrfs_path *path;
6371 int ret;
6372 struct extent_buffer *leaf;
6373 struct btrfs_root *root = BTRFS_I(inode)->root;
6374 struct btrfs_file_extent_item *fi;
6375 struct btrfs_key key;
6376 u64 disk_bytenr;
6377 u64 backref_offset;
6378 u64 extent_end;
6379 u64 num_bytes;
6380 int slot;
6381 int found_type;
7ee9e440 6382 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
46bfbb5c
CM
6383 path = btrfs_alloc_path();
6384 if (!path)
6385 return -ENOMEM;
6386
00361589 6387 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6388 offset, 0);
6389 if (ret < 0)
6390 goto out;
6391
6392 slot = path->slots[0];
6393 if (ret == 1) {
6394 if (slot == 0) {
6395 /* can't find the item, must cow */
6396 ret = 0;
6397 goto out;
6398 }
6399 slot--;
6400 }
6401 ret = 0;
6402 leaf = path->nodes[0];
6403 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6404 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6405 key.type != BTRFS_EXTENT_DATA_KEY) {
6406 /* not our file or wrong item type, must cow */
6407 goto out;
6408 }
6409
6410 if (key.offset > offset) {
6411 /* Wrong offset, must cow */
6412 goto out;
6413 }
6414
6415 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6416 found_type = btrfs_file_extent_type(leaf, fi);
6417 if (found_type != BTRFS_FILE_EXTENT_REG &&
6418 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6419 /* not a regular extent, must cow */
6420 goto out;
6421 }
7ee9e440
JB
6422
6423 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6424 goto out;
6425
46bfbb5c 6426 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6427 if (disk_bytenr == 0)
6428 goto out;
6429
6430 if (btrfs_file_extent_compression(leaf, fi) ||
6431 btrfs_file_extent_encryption(leaf, fi) ||
6432 btrfs_file_extent_other_encoding(leaf, fi))
6433 goto out;
6434
46bfbb5c
CM
6435 backref_offset = btrfs_file_extent_offset(leaf, fi);
6436
7ee9e440
JB
6437 if (orig_start) {
6438 *orig_start = key.offset - backref_offset;
6439 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6440 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6441 }
eb384b55 6442
46bfbb5c 6443 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
46bfbb5c
CM
6444
6445 if (btrfs_extent_readonly(root, disk_bytenr))
6446 goto out;
1bda19eb 6447 btrfs_release_path(path);
46bfbb5c
CM
6448
6449 /*
6450 * look for other files referencing this extent, if we
6451 * find any we must cow
6452 */
00361589
JB
6453 trans = btrfs_join_transaction(root);
6454 if (IS_ERR(trans)) {
6455 ret = 0;
46bfbb5c 6456 goto out;
00361589
JB
6457 }
6458
6459 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6460 key.offset - backref_offset, disk_bytenr);
6461 btrfs_end_transaction(trans, root);
6462 if (ret) {
6463 ret = 0;
6464 goto out;
6465 }
46bfbb5c
CM
6466
6467 /*
6468 * adjust disk_bytenr and num_bytes to cover just the bytes
6469 * in this extent we are about to write. If there
6470 * are any csums in that range we have to cow in order
6471 * to keep the csums correct
6472 */
6473 disk_bytenr += backref_offset;
6474 disk_bytenr += offset - key.offset;
eb384b55 6475 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6476 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6477 goto out;
6478 /*
6479 * all of the above have passed, it is safe to overwrite this extent
6480 * without cow
6481 */
eb384b55 6482 *len = num_bytes;
46bfbb5c
CM
6483 ret = 1;
6484out:
6485 btrfs_free_path(path);
6486 return ret;
6487}
6488
eb838e73
JB
6489static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6490 struct extent_state **cached_state, int writing)
6491{
6492 struct btrfs_ordered_extent *ordered;
6493 int ret = 0;
6494
6495 while (1) {
6496 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6497 0, cached_state);
6498 /*
6499 * We're concerned with the entire range that we're going to be
6500 * doing DIO to, so we need to make sure theres no ordered
6501 * extents in this range.
6502 */
6503 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6504 lockend - lockstart + 1);
6505
6506 /*
6507 * We need to make sure there are no buffered pages in this
6508 * range either, we could have raced between the invalidate in
6509 * generic_file_direct_write and locking the extent. The
6510 * invalidate needs to happen so that reads after a write do not
6511 * get stale data.
6512 */
6513 if (!ordered && (!writing ||
6514 !test_range_bit(&BTRFS_I(inode)->io_tree,
6515 lockstart, lockend, EXTENT_UPTODATE, 0,
6516 *cached_state)))
6517 break;
6518
6519 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6520 cached_state, GFP_NOFS);
6521
6522 if (ordered) {
6523 btrfs_start_ordered_extent(inode, ordered, 1);
6524 btrfs_put_ordered_extent(ordered);
6525 } else {
6526 /* Screw you mmap */
6527 ret = filemap_write_and_wait_range(inode->i_mapping,
6528 lockstart,
6529 lockend);
6530 if (ret)
6531 break;
6532
6533 /*
6534 * If we found a page that couldn't be invalidated just
6535 * fall back to buffered.
6536 */
6537 ret = invalidate_inode_pages2_range(inode->i_mapping,
6538 lockstart >> PAGE_CACHE_SHIFT,
6539 lockend >> PAGE_CACHE_SHIFT);
6540 if (ret)
6541 break;
6542 }
6543
6544 cond_resched();
6545 }
6546
6547 return ret;
6548}
6549
69ffb543
JB
6550static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6551 u64 len, u64 orig_start,
6552 u64 block_start, u64 block_len,
cc95bef6
JB
6553 u64 orig_block_len, u64 ram_bytes,
6554 int type)
69ffb543
JB
6555{
6556 struct extent_map_tree *em_tree;
6557 struct extent_map *em;
6558 struct btrfs_root *root = BTRFS_I(inode)->root;
6559 int ret;
6560
6561 em_tree = &BTRFS_I(inode)->extent_tree;
6562 em = alloc_extent_map();
6563 if (!em)
6564 return ERR_PTR(-ENOMEM);
6565
6566 em->start = start;
6567 em->orig_start = orig_start;
2ab28f32
JB
6568 em->mod_start = start;
6569 em->mod_len = len;
69ffb543
JB
6570 em->len = len;
6571 em->block_len = block_len;
6572 em->block_start = block_start;
6573 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6574 em->orig_block_len = orig_block_len;
cc95bef6 6575 em->ram_bytes = ram_bytes;
70c8a91c 6576 em->generation = -1;
69ffb543
JB
6577 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6578 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6579 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6580
6581 do {
6582 btrfs_drop_extent_cache(inode, em->start,
6583 em->start + em->len - 1, 0);
6584 write_lock(&em_tree->lock);
09a2a8f9 6585 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6586 write_unlock(&em_tree->lock);
6587 } while (ret == -EEXIST);
6588
6589 if (ret) {
6590 free_extent_map(em);
6591 return ERR_PTR(ret);
6592 }
6593
6594 return em;
6595}
6596
6597
4b46fce2
JB
6598static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6599 struct buffer_head *bh_result, int create)
6600{
6601 struct extent_map *em;
6602 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6603 struct extent_state *cached_state = NULL;
4b46fce2 6604 u64 start = iblock << inode->i_blkbits;
eb838e73 6605 u64 lockstart, lockend;
4b46fce2 6606 u64 len = bh_result->b_size;
eb838e73 6607 int unlock_bits = EXTENT_LOCKED;
0934856d 6608 int ret = 0;
eb838e73 6609
172a5049 6610 if (create)
eb838e73 6611 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6612 else
c329861d 6613 len = min_t(u64, len, root->sectorsize);
eb838e73 6614
c329861d
JB
6615 lockstart = start;
6616 lockend = start + len - 1;
6617
eb838e73
JB
6618 /*
6619 * If this errors out it's because we couldn't invalidate pagecache for
6620 * this range and we need to fallback to buffered.
6621 */
6622 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6623 return -ENOTBLK;
6624
4b46fce2 6625 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6626 if (IS_ERR(em)) {
6627 ret = PTR_ERR(em);
6628 goto unlock_err;
6629 }
4b46fce2
JB
6630
6631 /*
6632 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6633 * io. INLINE is special, and we could probably kludge it in here, but
6634 * it's still buffered so for safety lets just fall back to the generic
6635 * buffered path.
6636 *
6637 * For COMPRESSED we _have_ to read the entire extent in so we can
6638 * decompress it, so there will be buffering required no matter what we
6639 * do, so go ahead and fallback to buffered.
6640 *
6641 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6642 * to buffered IO. Don't blame me, this is the price we pay for using
6643 * the generic code.
6644 */
6645 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6646 em->block_start == EXTENT_MAP_INLINE) {
6647 free_extent_map(em);
eb838e73
JB
6648 ret = -ENOTBLK;
6649 goto unlock_err;
4b46fce2
JB
6650 }
6651
6652 /* Just a good old fashioned hole, return */
6653 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6654 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6655 free_extent_map(em);
eb838e73 6656 goto unlock_err;
4b46fce2
JB
6657 }
6658
6659 /*
6660 * We don't allocate a new extent in the following cases
6661 *
6662 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6663 * existing extent.
6664 * 2) The extent is marked as PREALLOC. We're good to go here and can
6665 * just use the extent.
6666 *
6667 */
46bfbb5c 6668 if (!create) {
eb838e73
JB
6669 len = min(len, em->len - (start - em->start));
6670 lockstart = start + len;
6671 goto unlock;
46bfbb5c 6672 }
4b46fce2
JB
6673
6674 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6675 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6676 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6677 int type;
6678 int ret;
eb384b55 6679 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6680
6681 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6682 type = BTRFS_ORDERED_PREALLOC;
6683 else
6684 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6685 len = min(len, em->len - (start - em->start));
4b46fce2 6686 block_start = em->block_start + (start - em->start);
46bfbb5c 6687
00361589 6688 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 6689 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6690 if (type == BTRFS_ORDERED_PREALLOC) {
6691 free_extent_map(em);
6692 em = create_pinned_em(inode, start, len,
6693 orig_start,
b4939680 6694 block_start, len,
cc95bef6
JB
6695 orig_block_len,
6696 ram_bytes, type);
00361589 6697 if (IS_ERR(em))
69ffb543 6698 goto unlock_err;
69ffb543
JB
6699 }
6700
46bfbb5c
CM
6701 ret = btrfs_add_ordered_extent_dio(inode, start,
6702 block_start, len, len, type);
46bfbb5c
CM
6703 if (ret) {
6704 free_extent_map(em);
eb838e73 6705 goto unlock_err;
46bfbb5c
CM
6706 }
6707 goto unlock;
4b46fce2 6708 }
4b46fce2 6709 }
00361589 6710
46bfbb5c
CM
6711 /*
6712 * this will cow the extent, reset the len in case we changed
6713 * it above
6714 */
6715 len = bh_result->b_size;
70c8a91c
JB
6716 free_extent_map(em);
6717 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6718 if (IS_ERR(em)) {
6719 ret = PTR_ERR(em);
6720 goto unlock_err;
6721 }
46bfbb5c
CM
6722 len = min(len, em->len - (start - em->start));
6723unlock:
4b46fce2
JB
6724 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6725 inode->i_blkbits;
46bfbb5c 6726 bh_result->b_size = len;
4b46fce2
JB
6727 bh_result->b_bdev = em->bdev;
6728 set_buffer_mapped(bh_result);
c3473e83
JB
6729 if (create) {
6730 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6731 set_buffer_new(bh_result);
6732
6733 /*
6734 * Need to update the i_size under the extent lock so buffered
6735 * readers will get the updated i_size when we unlock.
6736 */
6737 if (start + len > i_size_read(inode))
6738 i_size_write(inode, start + len);
0934856d 6739
172a5049
MX
6740 spin_lock(&BTRFS_I(inode)->lock);
6741 BTRFS_I(inode)->outstanding_extents++;
6742 spin_unlock(&BTRFS_I(inode)->lock);
6743
0934856d
MX
6744 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6745 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6746 &cached_state, GFP_NOFS);
6747 BUG_ON(ret);
c3473e83 6748 }
4b46fce2 6749
eb838e73
JB
6750 /*
6751 * In the case of write we need to clear and unlock the entire range,
6752 * in the case of read we need to unlock only the end area that we
6753 * aren't using if there is any left over space.
6754 */
24c03fa5 6755 if (lockstart < lockend) {
0934856d
MX
6756 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6757 lockend, unlock_bits, 1, 0,
6758 &cached_state, GFP_NOFS);
24c03fa5 6759 } else {
eb838e73 6760 free_extent_state(cached_state);
24c03fa5 6761 }
eb838e73 6762
4b46fce2
JB
6763 free_extent_map(em);
6764
6765 return 0;
eb838e73
JB
6766
6767unlock_err:
eb838e73
JB
6768 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6769 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6770 return ret;
4b46fce2
JB
6771}
6772
4b46fce2
JB
6773static void btrfs_endio_direct_read(struct bio *bio, int err)
6774{
e65e1535 6775 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6776 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6777 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6778 struct inode *inode = dip->inode;
6779 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6780 struct bio *dio_bio;
facc8a22
MX
6781 u32 *csums = (u32 *)dip->csum;
6782 int index = 0;
4b46fce2 6783 u64 start;
4b46fce2
JB
6784
6785 start = dip->logical_offset;
6786 do {
6787 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6788 struct page *page = bvec->bv_page;
6789 char *kaddr;
6790 u32 csum = ~(u32)0;
6791 unsigned long flags;
6792
6793 local_irq_save(flags);
7ac687d9 6794 kaddr = kmap_atomic(page);
b0496686 6795 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6796 csum, bvec->bv_len);
6797 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6798 kunmap_atomic(kaddr);
4b46fce2
JB
6799 local_irq_restore(flags);
6800
6801 flush_dcache_page(bvec->bv_page);
facc8a22
MX
6802 if (csum != csums[index]) {
6803 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c
GU
6804 btrfs_ino(inode), start, csum,
6805 csums[index]);
4b46fce2
JB
6806 err = -EIO;
6807 }
6808 }
6809
6810 start += bvec->bv_len;
4b46fce2 6811 bvec++;
facc8a22 6812 index++;
4b46fce2
JB
6813 } while (bvec <= bvec_end);
6814
6815 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6816 dip->logical_offset + dip->bytes - 1);
9be3395b 6817 dio_bio = dip->dio_bio;
4b46fce2 6818
4b46fce2 6819 kfree(dip);
c0da7aa1
JB
6820
6821 /* If we had a csum failure make sure to clear the uptodate flag */
6822 if (err)
9be3395b
CM
6823 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6824 dio_end_io(dio_bio, err);
6825 bio_put(bio);
4b46fce2
JB
6826}
6827
6828static void btrfs_endio_direct_write(struct bio *bio, int err)
6829{
6830 struct btrfs_dio_private *dip = bio->bi_private;
6831 struct inode *inode = dip->inode;
6832 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6833 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6834 u64 ordered_offset = dip->logical_offset;
6835 u64 ordered_bytes = dip->bytes;
9be3395b 6836 struct bio *dio_bio;
4b46fce2
JB
6837 int ret;
6838
6839 if (err)
6840 goto out_done;
163cf09c
CM
6841again:
6842 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6843 &ordered_offset,
5fd02043 6844 ordered_bytes, !err);
4b46fce2 6845 if (!ret)
163cf09c 6846 goto out_test;
4b46fce2 6847
5fd02043
JB
6848 ordered->work.func = finish_ordered_fn;
6849 ordered->work.flags = 0;
6850 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6851 &ordered->work);
163cf09c
CM
6852out_test:
6853 /*
6854 * our bio might span multiple ordered extents. If we haven't
6855 * completed the accounting for the whole dio, go back and try again
6856 */
6857 if (ordered_offset < dip->logical_offset + dip->bytes) {
6858 ordered_bytes = dip->logical_offset + dip->bytes -
6859 ordered_offset;
5fd02043 6860 ordered = NULL;
163cf09c
CM
6861 goto again;
6862 }
4b46fce2 6863out_done:
9be3395b 6864 dio_bio = dip->dio_bio;
4b46fce2 6865
4b46fce2 6866 kfree(dip);
c0da7aa1
JB
6867
6868 /* If we had an error make sure to clear the uptodate flag */
6869 if (err)
9be3395b
CM
6870 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6871 dio_end_io(dio_bio, err);
6872 bio_put(bio);
4b46fce2
JB
6873}
6874
eaf25d93
CM
6875static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6876 struct bio *bio, int mirror_num,
6877 unsigned long bio_flags, u64 offset)
6878{
6879 int ret;
6880 struct btrfs_root *root = BTRFS_I(inode)->root;
6881 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6882 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6883 return 0;
6884}
6885
e65e1535
MX
6886static void btrfs_end_dio_bio(struct bio *bio, int err)
6887{
6888 struct btrfs_dio_private *dip = bio->bi_private;
6889
6890 if (err) {
33345d01 6891 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6892 "sector %#Lx len %u err no %d\n",
c1c9ff7c 6893 btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6894 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6895 dip->errors = 1;
6896
6897 /*
6898 * before atomic variable goto zero, we must make sure
6899 * dip->errors is perceived to be set.
6900 */
6901 smp_mb__before_atomic_dec();
6902 }
6903
6904 /* if there are more bios still pending for this dio, just exit */
6905 if (!atomic_dec_and_test(&dip->pending_bios))
6906 goto out;
6907
9be3395b 6908 if (dip->errors) {
e65e1535 6909 bio_io_error(dip->orig_bio);
9be3395b
CM
6910 } else {
6911 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
6912 bio_endio(dip->orig_bio, 0);
6913 }
6914out:
6915 bio_put(bio);
6916}
6917
6918static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6919 u64 first_sector, gfp_t gfp_flags)
6920{
6921 int nr_vecs = bio_get_nr_vecs(bdev);
6922 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6923}
6924
6925static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6926 int rw, u64 file_offset, int skip_sum,
c329861d 6927 int async_submit)
e65e1535 6928{
facc8a22 6929 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
6930 int write = rw & REQ_WRITE;
6931 struct btrfs_root *root = BTRFS_I(inode)->root;
6932 int ret;
6933
b812ce28
JB
6934 if (async_submit)
6935 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6936
e65e1535 6937 bio_get(bio);
5fd02043
JB
6938
6939 if (!write) {
6940 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6941 if (ret)
6942 goto err;
6943 }
e65e1535 6944
1ae39938
JB
6945 if (skip_sum)
6946 goto map;
6947
6948 if (write && async_submit) {
e65e1535
MX
6949 ret = btrfs_wq_submit_bio(root->fs_info,
6950 inode, rw, bio, 0, 0,
6951 file_offset,
6952 __btrfs_submit_bio_start_direct_io,
6953 __btrfs_submit_bio_done);
6954 goto err;
1ae39938
JB
6955 } else if (write) {
6956 /*
6957 * If we aren't doing async submit, calculate the csum of the
6958 * bio now.
6959 */
6960 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6961 if (ret)
6962 goto err;
c2db1073 6963 } else if (!skip_sum) {
facc8a22
MX
6964 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
6965 file_offset);
c2db1073
TI
6966 if (ret)
6967 goto err;
6968 }
e65e1535 6969
1ae39938
JB
6970map:
6971 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6972err:
6973 bio_put(bio);
6974 return ret;
6975}
6976
6977static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6978 int skip_sum)
6979{
6980 struct inode *inode = dip->inode;
6981 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6982 struct bio *bio;
6983 struct bio *orig_bio = dip->orig_bio;
6984 struct bio_vec *bvec = orig_bio->bi_io_vec;
6985 u64 start_sector = orig_bio->bi_sector;
6986 u64 file_offset = dip->logical_offset;
6987 u64 submit_len = 0;
6988 u64 map_length;
6989 int nr_pages = 0;
e65e1535 6990 int ret = 0;
1ae39938 6991 int async_submit = 0;
e65e1535 6992
e65e1535 6993 map_length = orig_bio->bi_size;
53b381b3 6994 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
6995 &map_length, NULL, 0);
6996 if (ret) {
64728bbb 6997 bio_put(orig_bio);
e65e1535
MX
6998 return -EIO;
6999 }
facc8a22 7000
02f57c7a
JB
7001 if (map_length >= orig_bio->bi_size) {
7002 bio = orig_bio;
7003 goto submit;
7004 }
7005
53b381b3
DW
7006 /* async crcs make it difficult to collect full stripe writes. */
7007 if (btrfs_get_alloc_profile(root, 1) &
7008 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7009 async_submit = 0;
7010 else
7011 async_submit = 1;
7012
02f57c7a
JB
7013 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7014 if (!bio)
7015 return -ENOMEM;
7016 bio->bi_private = dip;
7017 bio->bi_end_io = btrfs_end_dio_bio;
7018 atomic_inc(&dip->pending_bios);
7019
e65e1535
MX
7020 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7021 if (unlikely(map_length < submit_len + bvec->bv_len ||
7022 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7023 bvec->bv_offset) < bvec->bv_len)) {
7024 /*
7025 * inc the count before we submit the bio so
7026 * we know the end IO handler won't happen before
7027 * we inc the count. Otherwise, the dip might get freed
7028 * before we're done setting it up
7029 */
7030 atomic_inc(&dip->pending_bios);
7031 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7032 file_offset, skip_sum,
c329861d 7033 async_submit);
e65e1535
MX
7034 if (ret) {
7035 bio_put(bio);
7036 atomic_dec(&dip->pending_bios);
7037 goto out_err;
7038 }
7039
e65e1535
MX
7040 start_sector += submit_len >> 9;
7041 file_offset += submit_len;
7042
7043 submit_len = 0;
7044 nr_pages = 0;
7045
7046 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7047 start_sector, GFP_NOFS);
7048 if (!bio)
7049 goto out_err;
7050 bio->bi_private = dip;
7051 bio->bi_end_io = btrfs_end_dio_bio;
7052
7053 map_length = orig_bio->bi_size;
53b381b3 7054 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7055 start_sector << 9,
e65e1535
MX
7056 &map_length, NULL, 0);
7057 if (ret) {
7058 bio_put(bio);
7059 goto out_err;
7060 }
7061 } else {
7062 submit_len += bvec->bv_len;
7063 nr_pages ++;
7064 bvec++;
7065 }
7066 }
7067
02f57c7a 7068submit:
e65e1535 7069 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7070 async_submit);
e65e1535
MX
7071 if (!ret)
7072 return 0;
7073
7074 bio_put(bio);
7075out_err:
7076 dip->errors = 1;
7077 /*
7078 * before atomic variable goto zero, we must
7079 * make sure dip->errors is perceived to be set.
7080 */
7081 smp_mb__before_atomic_dec();
7082 if (atomic_dec_and_test(&dip->pending_bios))
7083 bio_io_error(dip->orig_bio);
7084
7085 /* bio_end_io() will handle error, so we needn't return it */
7086 return 0;
7087}
7088
9be3395b
CM
7089static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7090 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7091{
7092 struct btrfs_root *root = BTRFS_I(inode)->root;
7093 struct btrfs_dio_private *dip;
9be3395b 7094 struct bio *io_bio;
4b46fce2 7095 int skip_sum;
facc8a22 7096 int sum_len;
7b6d91da 7097 int write = rw & REQ_WRITE;
4b46fce2 7098 int ret = 0;
facc8a22 7099 u16 csum_size;
4b46fce2
JB
7100
7101 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7102
9be3395b 7103 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7104 if (!io_bio) {
7105 ret = -ENOMEM;
7106 goto free_ordered;
7107 }
7108
facc8a22
MX
7109 if (!skip_sum && !write) {
7110 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7111 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7112 sum_len *= csum_size;
7113 } else {
7114 sum_len = 0;
7115 }
7116
7117 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7118 if (!dip) {
7119 ret = -ENOMEM;
9be3395b 7120 goto free_io_bio;
4b46fce2 7121 }
4b46fce2 7122
9be3395b 7123 dip->private = dio_bio->bi_private;
4b46fce2
JB
7124 dip->inode = inode;
7125 dip->logical_offset = file_offset;
e6da5d2e 7126 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7127 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7128 io_bio->bi_private = dip;
e65e1535 7129 dip->errors = 0;
9be3395b
CM
7130 dip->orig_bio = io_bio;
7131 dip->dio_bio = dio_bio;
e65e1535 7132 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7133
7134 if (write)
9be3395b 7135 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7136 else
9be3395b 7137 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7138
e65e1535
MX
7139 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7140 if (!ret)
eaf25d93 7141 return;
9be3395b
CM
7142
7143free_io_bio:
7144 bio_put(io_bio);
7145
4b46fce2
JB
7146free_ordered:
7147 /*
7148 * If this is a write, we need to clean up the reserved space and kill
7149 * the ordered extent.
7150 */
7151 if (write) {
7152 struct btrfs_ordered_extent *ordered;
955256f2 7153 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7154 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7155 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7156 btrfs_free_reserved_extent(root, ordered->start,
7157 ordered->disk_len);
7158 btrfs_put_ordered_extent(ordered);
7159 btrfs_put_ordered_extent(ordered);
7160 }
9be3395b 7161 bio_endio(dio_bio, ret);
4b46fce2
JB
7162}
7163
5a5f79b5
CM
7164static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7165 const struct iovec *iov, loff_t offset,
7166 unsigned long nr_segs)
7167{
7168 int seg;
a1b75f7d 7169 int i;
5a5f79b5
CM
7170 size_t size;
7171 unsigned long addr;
7172 unsigned blocksize_mask = root->sectorsize - 1;
7173 ssize_t retval = -EINVAL;
7174 loff_t end = offset;
7175
7176 if (offset & blocksize_mask)
7177 goto out;
7178
7179 /* Check the memory alignment. Blocks cannot straddle pages */
7180 for (seg = 0; seg < nr_segs; seg++) {
7181 addr = (unsigned long)iov[seg].iov_base;
7182 size = iov[seg].iov_len;
7183 end += size;
a1b75f7d 7184 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7185 goto out;
a1b75f7d
JB
7186
7187 /* If this is a write we don't need to check anymore */
7188 if (rw & WRITE)
7189 continue;
7190
7191 /*
7192 * Check to make sure we don't have duplicate iov_base's in this
7193 * iovec, if so return EINVAL, otherwise we'll get csum errors
7194 * when reading back.
7195 */
7196 for (i = seg + 1; i < nr_segs; i++) {
7197 if (iov[seg].iov_base == iov[i].iov_base)
7198 goto out;
7199 }
5a5f79b5
CM
7200 }
7201 retval = 0;
7202out:
7203 return retval;
7204}
eb838e73 7205
16432985
CM
7206static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7207 const struct iovec *iov, loff_t offset,
7208 unsigned long nr_segs)
7209{
4b46fce2
JB
7210 struct file *file = iocb->ki_filp;
7211 struct inode *inode = file->f_mapping->host;
0934856d 7212 size_t count = 0;
2e60a51e 7213 int flags = 0;
38851cc1
MX
7214 bool wakeup = true;
7215 bool relock = false;
0934856d 7216 ssize_t ret;
4b46fce2 7217
5a5f79b5 7218 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7219 offset, nr_segs))
5a5f79b5 7220 return 0;
3f7c579c 7221
38851cc1
MX
7222 atomic_inc(&inode->i_dio_count);
7223 smp_mb__after_atomic_inc();
7224
0e267c44
JB
7225 /*
7226 * The generic stuff only does filemap_write_and_wait_range, which isn't
7227 * enough if we've written compressed pages to this area, so we need to
7228 * call btrfs_wait_ordered_range to make absolutely sure that any
7229 * outstanding dirty pages are on disk.
7230 */
7231 count = iov_length(iov, nr_segs);
0ef8b726
JB
7232 ret = btrfs_wait_ordered_range(inode, offset, count);
7233 if (ret)
7234 return ret;
0e267c44 7235
0934856d 7236 if (rw & WRITE) {
38851cc1
MX
7237 /*
7238 * If the write DIO is beyond the EOF, we need update
7239 * the isize, but it is protected by i_mutex. So we can
7240 * not unlock the i_mutex at this case.
7241 */
7242 if (offset + count <= inode->i_size) {
7243 mutex_unlock(&inode->i_mutex);
7244 relock = true;
7245 }
0934856d
MX
7246 ret = btrfs_delalloc_reserve_space(inode, count);
7247 if (ret)
38851cc1
MX
7248 goto out;
7249 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7250 &BTRFS_I(inode)->runtime_flags))) {
7251 inode_dio_done(inode);
7252 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7253 wakeup = false;
0934856d
MX
7254 }
7255
7256 ret = __blockdev_direct_IO(rw, iocb, inode,
7257 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7258 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7259 btrfs_submit_direct, flags);
0934856d
MX
7260 if (rw & WRITE) {
7261 if (ret < 0 && ret != -EIOCBQUEUED)
7262 btrfs_delalloc_release_space(inode, count);
172a5049 7263 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7264 btrfs_delalloc_release_space(inode,
7265 count - (size_t)ret);
172a5049
MX
7266 else
7267 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7268 }
38851cc1 7269out:
2e60a51e
MX
7270 if (wakeup)
7271 inode_dio_done(inode);
38851cc1
MX
7272 if (relock)
7273 mutex_lock(&inode->i_mutex);
0934856d
MX
7274
7275 return ret;
16432985
CM
7276}
7277
05dadc09
TI
7278#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7279
1506fcc8
YS
7280static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7281 __u64 start, __u64 len)
7282{
05dadc09
TI
7283 int ret;
7284
7285 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7286 if (ret)
7287 return ret;
7288
ec29ed5b 7289 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7290}
7291
a52d9a80 7292int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7293{
d1310b2e
CM
7294 struct extent_io_tree *tree;
7295 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7296 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7297}
1832a6d5 7298
a52d9a80 7299static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7300{
d1310b2e 7301 struct extent_io_tree *tree;
b888db2b
CM
7302
7303
7304 if (current->flags & PF_MEMALLOC) {
7305 redirty_page_for_writepage(wbc, page);
7306 unlock_page(page);
7307 return 0;
7308 }
d1310b2e 7309 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7310 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7311}
7312
48a3b636
ES
7313static int btrfs_writepages(struct address_space *mapping,
7314 struct writeback_control *wbc)
b293f02e 7315{
d1310b2e 7316 struct extent_io_tree *tree;
771ed689 7317
d1310b2e 7318 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7319 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7320}
7321
3ab2fb5a
CM
7322static int
7323btrfs_readpages(struct file *file, struct address_space *mapping,
7324 struct list_head *pages, unsigned nr_pages)
7325{
d1310b2e
CM
7326 struct extent_io_tree *tree;
7327 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7328 return extent_readpages(tree, mapping, pages, nr_pages,
7329 btrfs_get_extent);
7330}
e6dcd2dc 7331static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7332{
d1310b2e
CM
7333 struct extent_io_tree *tree;
7334 struct extent_map_tree *map;
a52d9a80 7335 int ret;
8c2383c3 7336
d1310b2e
CM
7337 tree = &BTRFS_I(page->mapping->host)->io_tree;
7338 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7339 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7340 if (ret == 1) {
7341 ClearPagePrivate(page);
7342 set_page_private(page, 0);
7343 page_cache_release(page);
39279cc3 7344 }
a52d9a80 7345 return ret;
39279cc3
CM
7346}
7347
e6dcd2dc
CM
7348static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7349{
98509cfc
CM
7350 if (PageWriteback(page) || PageDirty(page))
7351 return 0;
b335b003 7352 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7353}
7354
d47992f8
LC
7355static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7356 unsigned int length)
39279cc3 7357{
5fd02043 7358 struct inode *inode = page->mapping->host;
d1310b2e 7359 struct extent_io_tree *tree;
e6dcd2dc 7360 struct btrfs_ordered_extent *ordered;
2ac55d41 7361 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7362 u64 page_start = page_offset(page);
7363 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 7364
8b62b72b
CM
7365 /*
7366 * we have the page locked, so new writeback can't start,
7367 * and the dirty bit won't be cleared while we are here.
7368 *
7369 * Wait for IO on this page so that we can safely clear
7370 * the PagePrivate2 bit and do ordered accounting
7371 */
e6dcd2dc 7372 wait_on_page_writeback(page);
8b62b72b 7373
5fd02043 7374 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7375 if (offset) {
7376 btrfs_releasepage(page, GFP_NOFS);
7377 return;
7378 }
d0082371 7379 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 7380 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 7381 if (ordered) {
eb84ae03
CM
7382 /*
7383 * IO on this page will never be started, so we need
7384 * to account for any ordered extents now
7385 */
e6dcd2dc
CM
7386 clear_extent_bit(tree, page_start, page_end,
7387 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7388 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7389 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
7390 /*
7391 * whoever cleared the private bit is responsible
7392 * for the finish_ordered_io
7393 */
77cef2ec
JB
7394 if (TestClearPagePrivate2(page)) {
7395 struct btrfs_ordered_inode_tree *tree;
7396 u64 new_len;
7397
7398 tree = &BTRFS_I(inode)->ordered_tree;
7399
7400 spin_lock_irq(&tree->lock);
7401 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7402 new_len = page_start - ordered->file_offset;
7403 if (new_len < ordered->truncated_len)
7404 ordered->truncated_len = new_len;
7405 spin_unlock_irq(&tree->lock);
7406
7407 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7408 page_start,
7409 PAGE_CACHE_SIZE, 1))
7410 btrfs_finish_ordered_io(ordered);
8b62b72b 7411 }
e6dcd2dc 7412 btrfs_put_ordered_extent(ordered);
2ac55d41 7413 cached_state = NULL;
d0082371 7414 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7415 }
7416 clear_extent_bit(tree, page_start, page_end,
32c00aff 7417 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7418 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7419 &cached_state, GFP_NOFS);
e6dcd2dc
CM
7420 __btrfs_releasepage(page, GFP_NOFS);
7421
4a096752 7422 ClearPageChecked(page);
9ad6b7bc 7423 if (PagePrivate(page)) {
9ad6b7bc
CM
7424 ClearPagePrivate(page);
7425 set_page_private(page, 0);
7426 page_cache_release(page);
7427 }
39279cc3
CM
7428}
7429
9ebefb18
CM
7430/*
7431 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7432 * called from a page fault handler when a page is first dirtied. Hence we must
7433 * be careful to check for EOF conditions here. We set the page up correctly
7434 * for a written page which means we get ENOSPC checking when writing into
7435 * holes and correct delalloc and unwritten extent mapping on filesystems that
7436 * support these features.
7437 *
7438 * We are not allowed to take the i_mutex here so we have to play games to
7439 * protect against truncate races as the page could now be beyond EOF. Because
7440 * vmtruncate() writes the inode size before removing pages, once we have the
7441 * page lock we can determine safely if the page is beyond EOF. If it is not
7442 * beyond EOF, then the page is guaranteed safe against truncation until we
7443 * unlock the page.
7444 */
c2ec175c 7445int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7446{
c2ec175c 7447 struct page *page = vmf->page;
496ad9aa 7448 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7449 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7450 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7451 struct btrfs_ordered_extent *ordered;
2ac55d41 7452 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7453 char *kaddr;
7454 unsigned long zero_start;
9ebefb18 7455 loff_t size;
1832a6d5 7456 int ret;
9998eb70 7457 int reserved = 0;
a52d9a80 7458 u64 page_start;
e6dcd2dc 7459 u64 page_end;
9ebefb18 7460
b2b5ef5c 7461 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7462 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7463 if (!ret) {
e41f941a 7464 ret = file_update_time(vma->vm_file);
9998eb70
CM
7465 reserved = 1;
7466 }
56a76f82
NP
7467 if (ret) {
7468 if (ret == -ENOMEM)
7469 ret = VM_FAULT_OOM;
7470 else /* -ENOSPC, -EIO, etc */
7471 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7472 if (reserved)
7473 goto out;
7474 goto out_noreserve;
56a76f82 7475 }
1832a6d5 7476
56a76f82 7477 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7478again:
9ebefb18 7479 lock_page(page);
9ebefb18 7480 size = i_size_read(inode);
e6dcd2dc
CM
7481 page_start = page_offset(page);
7482 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7483
9ebefb18 7484 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7485 (page_start >= size)) {
9ebefb18
CM
7486 /* page got truncated out from underneath us */
7487 goto out_unlock;
7488 }
e6dcd2dc
CM
7489 wait_on_page_writeback(page);
7490
d0082371 7491 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7492 set_page_extent_mapped(page);
7493
eb84ae03
CM
7494 /*
7495 * we can't set the delalloc bits if there are pending ordered
7496 * extents. Drop our locks and wait for them to finish
7497 */
e6dcd2dc
CM
7498 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7499 if (ordered) {
2ac55d41
JB
7500 unlock_extent_cached(io_tree, page_start, page_end,
7501 &cached_state, GFP_NOFS);
e6dcd2dc 7502 unlock_page(page);
eb84ae03 7503 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7504 btrfs_put_ordered_extent(ordered);
7505 goto again;
7506 }
7507
fbf19087
JB
7508 /*
7509 * XXX - page_mkwrite gets called every time the page is dirtied, even
7510 * if it was already dirty, so for space accounting reasons we need to
7511 * clear any delalloc bits for the range we are fixing to save. There
7512 * is probably a better way to do this, but for now keep consistent with
7513 * prepare_pages in the normal write path.
7514 */
2ac55d41 7515 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7516 EXTENT_DIRTY | EXTENT_DELALLOC |
7517 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7518 0, 0, &cached_state, GFP_NOFS);
fbf19087 7519
2ac55d41
JB
7520 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7521 &cached_state);
9ed74f2d 7522 if (ret) {
2ac55d41
JB
7523 unlock_extent_cached(io_tree, page_start, page_end,
7524 &cached_state, GFP_NOFS);
9ed74f2d
JB
7525 ret = VM_FAULT_SIGBUS;
7526 goto out_unlock;
7527 }
e6dcd2dc 7528 ret = 0;
9ebefb18
CM
7529
7530 /* page is wholly or partially inside EOF */
a52d9a80 7531 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7532 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7533 else
e6dcd2dc 7534 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7535
e6dcd2dc
CM
7536 if (zero_start != PAGE_CACHE_SIZE) {
7537 kaddr = kmap(page);
7538 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7539 flush_dcache_page(page);
7540 kunmap(page);
7541 }
247e743c 7542 ClearPageChecked(page);
e6dcd2dc 7543 set_page_dirty(page);
50a9b214 7544 SetPageUptodate(page);
5a3f23d5 7545
257c62e1
CM
7546 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7547 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7548 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7549
2ac55d41 7550 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7551
7552out_unlock:
b2b5ef5c
JK
7553 if (!ret) {
7554 sb_end_pagefault(inode->i_sb);
50a9b214 7555 return VM_FAULT_LOCKED;
b2b5ef5c 7556 }
9ebefb18 7557 unlock_page(page);
1832a6d5 7558out:
ec39e180 7559 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7560out_noreserve:
b2b5ef5c 7561 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7562 return ret;
7563}
7564
a41ad394 7565static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7566{
7567 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7568 struct btrfs_block_rsv *rsv;
a71754fc 7569 int ret = 0;
3893e33b 7570 int err = 0;
39279cc3 7571 struct btrfs_trans_handle *trans;
dbe674a9 7572 u64 mask = root->sectorsize - 1;
07127184 7573 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7574
0ef8b726
JB
7575 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7576 (u64)-1);
7577 if (ret)
7578 return ret;
39279cc3 7579
fcb80c2a
JB
7580 /*
7581 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7582 * 3 things going on here
7583 *
7584 * 1) We need to reserve space for our orphan item and the space to
7585 * delete our orphan item. Lord knows we don't want to have a dangling
7586 * orphan item because we didn't reserve space to remove it.
7587 *
7588 * 2) We need to reserve space to update our inode.
7589 *
7590 * 3) We need to have something to cache all the space that is going to
7591 * be free'd up by the truncate operation, but also have some slack
7592 * space reserved in case it uses space during the truncate (thank you
7593 * very much snapshotting).
7594 *
7595 * And we need these to all be seperate. The fact is we can use alot of
7596 * space doing the truncate, and we have no earthly idea how much space
7597 * we will use, so we need the truncate reservation to be seperate so it
7598 * doesn't end up using space reserved for updating the inode or
7599 * removing the orphan item. We also need to be able to stop the
7600 * transaction and start a new one, which means we need to be able to
7601 * update the inode several times, and we have no idea of knowing how
7602 * many times that will be, so we can't just reserve 1 item for the
7603 * entirety of the opration, so that has to be done seperately as well.
7604 * Then there is the orphan item, which does indeed need to be held on
7605 * to for the whole operation, and we need nobody to touch this reserved
7606 * space except the orphan code.
7607 *
7608 * So that leaves us with
7609 *
7610 * 1) root->orphan_block_rsv - for the orphan deletion.
7611 * 2) rsv - for the truncate reservation, which we will steal from the
7612 * transaction reservation.
7613 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7614 * updating the inode.
7615 */
66d8f3dd 7616 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7617 if (!rsv)
7618 return -ENOMEM;
4a338542 7619 rsv->size = min_size;
ca7e70f5 7620 rsv->failfast = 1;
f0cd846e 7621
907cbceb 7622 /*
07127184 7623 * 1 for the truncate slack space
907cbceb
JB
7624 * 1 for updating the inode.
7625 */
f3fe820c 7626 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7627 if (IS_ERR(trans)) {
7628 err = PTR_ERR(trans);
7629 goto out;
7630 }
f0cd846e 7631
907cbceb
JB
7632 /* Migrate the slack space for the truncate to our reserve */
7633 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7634 min_size);
fcb80c2a 7635 BUG_ON(ret);
f0cd846e 7636
5a3f23d5
CM
7637 /*
7638 * setattr is responsible for setting the ordered_data_close flag,
7639 * but that is only tested during the last file release. That
7640 * could happen well after the next commit, leaving a great big
7641 * window where new writes may get lost if someone chooses to write
7642 * to this file after truncating to zero
7643 *
7644 * The inode doesn't have any dirty data here, and so if we commit
7645 * this is a noop. If someone immediately starts writing to the inode
7646 * it is very likely we'll catch some of their writes in this
7647 * transaction, and the commit will find this file on the ordered
7648 * data list with good things to send down.
7649 *
7650 * This is a best effort solution, there is still a window where
7651 * using truncate to replace the contents of the file will
7652 * end up with a zero length file after a crash.
7653 */
72ac3c0d
JB
7654 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7655 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7656 btrfs_add_ordered_operation(trans, root, inode);
7657
5dc562c5
JB
7658 /*
7659 * So if we truncate and then write and fsync we normally would just
7660 * write the extents that changed, which is a problem if we need to
7661 * first truncate that entire inode. So set this flag so we write out
7662 * all of the extents in the inode to the sync log so we're completely
7663 * safe.
7664 */
7665 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7666 trans->block_rsv = rsv;
907cbceb 7667
8082510e
YZ
7668 while (1) {
7669 ret = btrfs_truncate_inode_items(trans, root, inode,
7670 inode->i_size,
7671 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7672 if (ret != -ENOSPC) {
3893e33b 7673 err = ret;
8082510e 7674 break;
3893e33b 7675 }
39279cc3 7676
fcb80c2a 7677 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7678 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7679 if (ret) {
7680 err = ret;
7681 break;
7682 }
ca7e70f5 7683
8082510e 7684 btrfs_end_transaction(trans, root);
b53d3f5d 7685 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7686
7687 trans = btrfs_start_transaction(root, 2);
7688 if (IS_ERR(trans)) {
7689 ret = err = PTR_ERR(trans);
7690 trans = NULL;
7691 break;
7692 }
7693
7694 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7695 rsv, min_size);
7696 BUG_ON(ret); /* shouldn't happen */
7697 trans->block_rsv = rsv;
8082510e
YZ
7698 }
7699
7700 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7701 trans->block_rsv = root->orphan_block_rsv;
8082510e 7702 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7703 if (ret)
7704 err = ret;
8082510e
YZ
7705 }
7706
917c16b2
CM
7707 if (trans) {
7708 trans->block_rsv = &root->fs_info->trans_block_rsv;
7709 ret = btrfs_update_inode(trans, root, inode);
7710 if (ret && !err)
7711 err = ret;
7b128766 7712
7ad85bb7 7713 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7714 btrfs_btree_balance_dirty(root);
917c16b2 7715 }
fcb80c2a
JB
7716
7717out:
7718 btrfs_free_block_rsv(root, rsv);
7719
3893e33b
JB
7720 if (ret && !err)
7721 err = ret;
a41ad394 7722
3893e33b 7723 return err;
39279cc3
CM
7724}
7725
d352ac68
CM
7726/*
7727 * create a new subvolume directory/inode (helper for the ioctl).
7728 */
d2fb3437 7729int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7730 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7731{
39279cc3 7732 struct inode *inode;
76dda93c 7733 int err;
00e4e6b3 7734 u64 index = 0;
39279cc3 7735
12fc9d09
FA
7736 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7737 new_dirid, new_dirid,
7738 S_IFDIR | (~current_umask() & S_IRWXUGO),
7739 &index);
54aa1f4d 7740 if (IS_ERR(inode))
f46b5a66 7741 return PTR_ERR(inode);
39279cc3
CM
7742 inode->i_op = &btrfs_dir_inode_operations;
7743 inode->i_fop = &btrfs_dir_file_operations;
7744
bfe86848 7745 set_nlink(inode, 1);
dbe674a9 7746 btrfs_i_size_write(inode, 0);
3b96362c 7747
76dda93c 7748 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7749
76dda93c 7750 iput(inode);
ce598979 7751 return err;
39279cc3
CM
7752}
7753
39279cc3
CM
7754struct inode *btrfs_alloc_inode(struct super_block *sb)
7755{
7756 struct btrfs_inode *ei;
2ead6ae7 7757 struct inode *inode;
39279cc3
CM
7758
7759 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7760 if (!ei)
7761 return NULL;
2ead6ae7
YZ
7762
7763 ei->root = NULL;
2ead6ae7 7764 ei->generation = 0;
15ee9bc7 7765 ei->last_trans = 0;
257c62e1 7766 ei->last_sub_trans = 0;
e02119d5 7767 ei->logged_trans = 0;
2ead6ae7 7768 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7769 ei->disk_i_size = 0;
7770 ei->flags = 0;
7709cde3 7771 ei->csum_bytes = 0;
2ead6ae7
YZ
7772 ei->index_cnt = (u64)-1;
7773 ei->last_unlink_trans = 0;
46d8bc34 7774 ei->last_log_commit = 0;
2ead6ae7 7775
9e0baf60
JB
7776 spin_lock_init(&ei->lock);
7777 ei->outstanding_extents = 0;
7778 ei->reserved_extents = 0;
2ead6ae7 7779
72ac3c0d 7780 ei->runtime_flags = 0;
261507a0 7781 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7782
16cdcec7
MX
7783 ei->delayed_node = NULL;
7784
2ead6ae7 7785 inode = &ei->vfs_inode;
a8067e02 7786 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7787 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7788 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7789 ei->io_tree.track_uptodate = 1;
7790 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7791 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7792 mutex_init(&ei->log_mutex);
f248679e 7793 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7794 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7795 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7796 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7797 RB_CLEAR_NODE(&ei->rb_node);
7798
7799 return inode;
39279cc3
CM
7800}
7801
aaedb55b
JB
7802#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7803void btrfs_test_destroy_inode(struct inode *inode)
7804{
7805 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7806 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7807}
7808#endif
7809
fa0d7e3d
NP
7810static void btrfs_i_callback(struct rcu_head *head)
7811{
7812 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7813 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7814}
7815
39279cc3
CM
7816void btrfs_destroy_inode(struct inode *inode)
7817{
e6dcd2dc 7818 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7819 struct btrfs_root *root = BTRFS_I(inode)->root;
7820
b3d9b7a3 7821 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7822 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7823 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7824 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7825 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7826 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7827
a6dbd429
JB
7828 /*
7829 * This can happen where we create an inode, but somebody else also
7830 * created the same inode and we need to destroy the one we already
7831 * created.
7832 */
7833 if (!root)
7834 goto free;
7835
5a3f23d5
CM
7836 /*
7837 * Make sure we're properly removed from the ordered operation
7838 * lists.
7839 */
7840 smp_mb();
7841 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 7842 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 7843 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 7844 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
7845 }
7846
8a35d95f
JB
7847 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7848 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 7849 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 7850 btrfs_ino(inode));
8a35d95f 7851 atomic_dec(&root->orphan_inodes);
7b128766 7852 }
7b128766 7853
d397712b 7854 while (1) {
e6dcd2dc
CM
7855 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7856 if (!ordered)
7857 break;
7858 else {
c2cf52eb 7859 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 7860 ordered->file_offset, ordered->len);
e6dcd2dc
CM
7861 btrfs_remove_ordered_extent(inode, ordered);
7862 btrfs_put_ordered_extent(ordered);
7863 btrfs_put_ordered_extent(ordered);
7864 }
7865 }
5d4f98a2 7866 inode_tree_del(inode);
5b21f2ed 7867 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7868free:
fa0d7e3d 7869 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7870}
7871
45321ac5 7872int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7873{
7874 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7875
6379ef9f
NA
7876 if (root == NULL)
7877 return 1;
7878
fa6ac876 7879 /* the snap/subvol tree is on deleting */
69e9c6c6 7880 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 7881 return 1;
76dda93c 7882 else
45321ac5 7883 return generic_drop_inode(inode);
76dda93c
YZ
7884}
7885
0ee0fda0 7886static void init_once(void *foo)
39279cc3
CM
7887{
7888 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7889
7890 inode_init_once(&ei->vfs_inode);
7891}
7892
7893void btrfs_destroy_cachep(void)
7894{
8c0a8537
KS
7895 /*
7896 * Make sure all delayed rcu free inodes are flushed before we
7897 * destroy cache.
7898 */
7899 rcu_barrier();
39279cc3
CM
7900 if (btrfs_inode_cachep)
7901 kmem_cache_destroy(btrfs_inode_cachep);
7902 if (btrfs_trans_handle_cachep)
7903 kmem_cache_destroy(btrfs_trans_handle_cachep);
7904 if (btrfs_transaction_cachep)
7905 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7906 if (btrfs_path_cachep)
7907 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7908 if (btrfs_free_space_cachep)
7909 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7910 if (btrfs_delalloc_work_cachep)
7911 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7912}
7913
7914int btrfs_init_cachep(void)
7915{
837e1972 7916 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7917 sizeof(struct btrfs_inode), 0,
7918 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7919 if (!btrfs_inode_cachep)
7920 goto fail;
9601e3f6 7921
837e1972 7922 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7923 sizeof(struct btrfs_trans_handle), 0,
7924 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7925 if (!btrfs_trans_handle_cachep)
7926 goto fail;
9601e3f6 7927
837e1972 7928 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7929 sizeof(struct btrfs_transaction), 0,
7930 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7931 if (!btrfs_transaction_cachep)
7932 goto fail;
9601e3f6 7933
837e1972 7934 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7935 sizeof(struct btrfs_path), 0,
7936 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7937 if (!btrfs_path_cachep)
7938 goto fail;
9601e3f6 7939
837e1972 7940 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7941 sizeof(struct btrfs_free_space), 0,
7942 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7943 if (!btrfs_free_space_cachep)
7944 goto fail;
7945
8ccf6f19
MX
7946 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7947 sizeof(struct btrfs_delalloc_work), 0,
7948 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7949 NULL);
7950 if (!btrfs_delalloc_work_cachep)
7951 goto fail;
7952
39279cc3
CM
7953 return 0;
7954fail:
7955 btrfs_destroy_cachep();
7956 return -ENOMEM;
7957}
7958
7959static int btrfs_getattr(struct vfsmount *mnt,
7960 struct dentry *dentry, struct kstat *stat)
7961{
df0af1a5 7962 u64 delalloc_bytes;
39279cc3 7963 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7964 u32 blocksize = inode->i_sb->s_blocksize;
7965
39279cc3 7966 generic_fillattr(inode, stat);
0ee5dc67 7967 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7968 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
7969
7970 spin_lock(&BTRFS_I(inode)->lock);
7971 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7972 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 7973 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 7974 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7975 return 0;
7976}
7977
d397712b
CM
7978static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7979 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7980{
7981 struct btrfs_trans_handle *trans;
7982 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7983 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7984 struct inode *new_inode = new_dentry->d_inode;
7985 struct inode *old_inode = old_dentry->d_inode;
7986 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7987 u64 index = 0;
4df27c4d 7988 u64 root_objectid;
39279cc3 7989 int ret;
33345d01 7990 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7991
33345d01 7992 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7993 return -EPERM;
7994
4df27c4d 7995 /* we only allow rename subvolume link between subvolumes */
33345d01 7996 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7997 return -EXDEV;
7998
33345d01
LZ
7999 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8000 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8001 return -ENOTEMPTY;
5f39d397 8002
4df27c4d
YZ
8003 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8004 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8005 return -ENOTEMPTY;
9c52057c
CM
8006
8007
8008 /* check for collisions, even if the name isn't there */
4871c158 8009 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8010 new_dentry->d_name.name,
8011 new_dentry->d_name.len);
8012
8013 if (ret) {
8014 if (ret == -EEXIST) {
8015 /* we shouldn't get
8016 * eexist without a new_inode */
8017 if (!new_inode) {
8018 WARN_ON(1);
8019 return ret;
8020 }
8021 } else {
8022 /* maybe -EOVERFLOW */
8023 return ret;
8024 }
8025 }
8026 ret = 0;
8027
5a3f23d5
CM
8028 /*
8029 * we're using rename to replace one file with another.
8030 * and the replacement file is large. Start IO on it now so
8031 * we don't add too much work to the end of the transaction
8032 */
4baf8c92 8033 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8034 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8035 filemap_flush(old_inode->i_mapping);
8036
76dda93c 8037 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8038 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8039 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8040 /*
8041 * We want to reserve the absolute worst case amount of items. So if
8042 * both inodes are subvols and we need to unlink them then that would
8043 * require 4 item modifications, but if they are both normal inodes it
8044 * would require 5 item modifications, so we'll assume their normal
8045 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8046 * should cover the worst case number of items we'll modify.
8047 */
6e137ed3 8048 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8049 if (IS_ERR(trans)) {
8050 ret = PTR_ERR(trans);
8051 goto out_notrans;
8052 }
76dda93c 8053
4df27c4d
YZ
8054 if (dest != root)
8055 btrfs_record_root_in_trans(trans, dest);
5f39d397 8056
a5719521
YZ
8057 ret = btrfs_set_inode_index(new_dir, &index);
8058 if (ret)
8059 goto out_fail;
5a3f23d5 8060
33345d01 8061 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8062 /* force full log commit if subvolume involved. */
8063 root->fs_info->last_trans_log_full_commit = trans->transid;
8064 } else {
a5719521
YZ
8065 ret = btrfs_insert_inode_ref(trans, dest,
8066 new_dentry->d_name.name,
8067 new_dentry->d_name.len,
33345d01
LZ
8068 old_ino,
8069 btrfs_ino(new_dir), index);
a5719521
YZ
8070 if (ret)
8071 goto out_fail;
4df27c4d
YZ
8072 /*
8073 * this is an ugly little race, but the rename is required
8074 * to make sure that if we crash, the inode is either at the
8075 * old name or the new one. pinning the log transaction lets
8076 * us make sure we don't allow a log commit to come in after
8077 * we unlink the name but before we add the new name back in.
8078 */
8079 btrfs_pin_log_trans(root);
8080 }
5a3f23d5
CM
8081 /*
8082 * make sure the inode gets flushed if it is replacing
8083 * something.
8084 */
33345d01 8085 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8086 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8087
0c4d2d95
JB
8088 inode_inc_iversion(old_dir);
8089 inode_inc_iversion(new_dir);
8090 inode_inc_iversion(old_inode);
39279cc3
CM
8091 old_dir->i_ctime = old_dir->i_mtime = ctime;
8092 new_dir->i_ctime = new_dir->i_mtime = ctime;
8093 old_inode->i_ctime = ctime;
5f39d397 8094
12fcfd22
CM
8095 if (old_dentry->d_parent != new_dentry->d_parent)
8096 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8097
33345d01 8098 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8099 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8100 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8101 old_dentry->d_name.name,
8102 old_dentry->d_name.len);
8103 } else {
92986796
AV
8104 ret = __btrfs_unlink_inode(trans, root, old_dir,
8105 old_dentry->d_inode,
8106 old_dentry->d_name.name,
8107 old_dentry->d_name.len);
8108 if (!ret)
8109 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8110 }
79787eaa
JM
8111 if (ret) {
8112 btrfs_abort_transaction(trans, root, ret);
8113 goto out_fail;
8114 }
39279cc3
CM
8115
8116 if (new_inode) {
0c4d2d95 8117 inode_inc_iversion(new_inode);
39279cc3 8118 new_inode->i_ctime = CURRENT_TIME;
33345d01 8119 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8120 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8121 root_objectid = BTRFS_I(new_inode)->location.objectid;
8122 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8123 root_objectid,
8124 new_dentry->d_name.name,
8125 new_dentry->d_name.len);
8126 BUG_ON(new_inode->i_nlink == 0);
8127 } else {
8128 ret = btrfs_unlink_inode(trans, dest, new_dir,
8129 new_dentry->d_inode,
8130 new_dentry->d_name.name,
8131 new_dentry->d_name.len);
8132 }
4ef31a45 8133 if (!ret && new_inode->i_nlink == 0)
e02119d5 8134 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8135 if (ret) {
8136 btrfs_abort_transaction(trans, root, ret);
8137 goto out_fail;
8138 }
39279cc3 8139 }
aec7477b 8140
4df27c4d
YZ
8141 ret = btrfs_add_link(trans, new_dir, old_inode,
8142 new_dentry->d_name.name,
a5719521 8143 new_dentry->d_name.len, 0, index);
79787eaa
JM
8144 if (ret) {
8145 btrfs_abort_transaction(trans, root, ret);
8146 goto out_fail;
8147 }
39279cc3 8148
33345d01 8149 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8150 struct dentry *parent = new_dentry->d_parent;
6a912213 8151 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8152 btrfs_end_log_trans(root);
8153 }
39279cc3 8154out_fail:
7ad85bb7 8155 btrfs_end_transaction(trans, root);
b44c59a8 8156out_notrans:
33345d01 8157 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8158 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8159
39279cc3
CM
8160 return ret;
8161}
8162
8ccf6f19
MX
8163static void btrfs_run_delalloc_work(struct btrfs_work *work)
8164{
8165 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8166 struct inode *inode;
8ccf6f19
MX
8167
8168 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8169 work);
9f23e289
JB
8170 inode = delalloc_work->inode;
8171 if (delalloc_work->wait) {
8172 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8173 } else {
8174 filemap_flush(inode->i_mapping);
8175 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8176 &BTRFS_I(inode)->runtime_flags))
8177 filemap_flush(inode->i_mapping);
8178 }
8ccf6f19
MX
8179
8180 if (delalloc_work->delay_iput)
9f23e289 8181 btrfs_add_delayed_iput(inode);
8ccf6f19 8182 else
9f23e289 8183 iput(inode);
8ccf6f19
MX
8184 complete(&delalloc_work->completion);
8185}
8186
8187struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8188 int wait, int delay_iput)
8189{
8190 struct btrfs_delalloc_work *work;
8191
8192 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8193 if (!work)
8194 return NULL;
8195
8196 init_completion(&work->completion);
8197 INIT_LIST_HEAD(&work->list);
8198 work->inode = inode;
8199 work->wait = wait;
8200 work->delay_iput = delay_iput;
8201 work->work.func = btrfs_run_delalloc_work;
8202
8203 return work;
8204}
8205
8206void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8207{
8208 wait_for_completion(&work->completion);
8209 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8210}
8211
d352ac68
CM
8212/*
8213 * some fairly slow code that needs optimization. This walks the list
8214 * of all the inodes with pending delalloc and forces them to disk.
8215 */
eb73c1b7 8216static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8217{
ea8c2819 8218 struct btrfs_inode *binode;
5b21f2ed 8219 struct inode *inode;
8ccf6f19
MX
8220 struct btrfs_delalloc_work *work, *next;
8221 struct list_head works;
1eafa6c7 8222 struct list_head splice;
8ccf6f19 8223 int ret = 0;
ea8c2819 8224
8ccf6f19 8225 INIT_LIST_HEAD(&works);
1eafa6c7 8226 INIT_LIST_HEAD(&splice);
63607cc8 8227
eb73c1b7
MX
8228 spin_lock(&root->delalloc_lock);
8229 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8230 while (!list_empty(&splice)) {
8231 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8232 delalloc_inodes);
1eafa6c7 8233
eb73c1b7
MX
8234 list_move_tail(&binode->delalloc_inodes,
8235 &root->delalloc_inodes);
5b21f2ed 8236 inode = igrab(&binode->vfs_inode);
df0af1a5 8237 if (!inode) {
eb73c1b7 8238 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8239 continue;
df0af1a5 8240 }
eb73c1b7 8241 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8242
8243 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8244 if (unlikely(!work)) {
f4ab9ea7
JB
8245 if (delay_iput)
8246 btrfs_add_delayed_iput(inode);
8247 else
8248 iput(inode);
1eafa6c7
MX
8249 ret = -ENOMEM;
8250 goto out;
5b21f2ed 8251 }
1eafa6c7
MX
8252 list_add_tail(&work->list, &works);
8253 btrfs_queue_worker(&root->fs_info->flush_workers,
8254 &work->work);
8255
5b21f2ed 8256 cond_resched();
eb73c1b7 8257 spin_lock(&root->delalloc_lock);
ea8c2819 8258 }
eb73c1b7 8259 spin_unlock(&root->delalloc_lock);
8c8bee1d 8260
1eafa6c7
MX
8261 list_for_each_entry_safe(work, next, &works, list) {
8262 list_del_init(&work->list);
8263 btrfs_wait_and_free_delalloc_work(work);
8264 }
eb73c1b7
MX
8265 return 0;
8266out:
8267 list_for_each_entry_safe(work, next, &works, list) {
8268 list_del_init(&work->list);
8269 btrfs_wait_and_free_delalloc_work(work);
8270 }
8271
8272 if (!list_empty_careful(&splice)) {
8273 spin_lock(&root->delalloc_lock);
8274 list_splice_tail(&splice, &root->delalloc_inodes);
8275 spin_unlock(&root->delalloc_lock);
8276 }
8277 return ret;
8278}
1eafa6c7 8279
eb73c1b7
MX
8280int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8281{
8282 int ret;
1eafa6c7 8283
eb73c1b7
MX
8284 if (root->fs_info->sb->s_flags & MS_RDONLY)
8285 return -EROFS;
8286
8287 ret = __start_delalloc_inodes(root, delay_iput);
8288 /*
8289 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8290 * we have to make sure the IO is actually started and that
8291 * ordered extents get created before we return
8292 */
8293 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8294 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8295 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8296 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8297 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8298 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8299 }
8300 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8301 return ret;
8302}
8303
8304int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8305 int delay_iput)
8306{
8307 struct btrfs_root *root;
8308 struct list_head splice;
8309 int ret;
8310
8311 if (fs_info->sb->s_flags & MS_RDONLY)
8312 return -EROFS;
8313
8314 INIT_LIST_HEAD(&splice);
8315
8316 spin_lock(&fs_info->delalloc_root_lock);
8317 list_splice_init(&fs_info->delalloc_roots, &splice);
8318 while (!list_empty(&splice)) {
8319 root = list_first_entry(&splice, struct btrfs_root,
8320 delalloc_root);
8321 root = btrfs_grab_fs_root(root);
8322 BUG_ON(!root);
8323 list_move_tail(&root->delalloc_root,
8324 &fs_info->delalloc_roots);
8325 spin_unlock(&fs_info->delalloc_root_lock);
8326
8327 ret = __start_delalloc_inodes(root, delay_iput);
8328 btrfs_put_fs_root(root);
8329 if (ret)
8330 goto out;
8331
8332 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8333 }
eb73c1b7 8334 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8335
eb73c1b7
MX
8336 atomic_inc(&fs_info->async_submit_draining);
8337 while (atomic_read(&fs_info->nr_async_submits) ||
8338 atomic_read(&fs_info->async_delalloc_pages)) {
8339 wait_event(fs_info->async_submit_wait,
8340 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8341 atomic_read(&fs_info->async_delalloc_pages) == 0));
8342 }
8343 atomic_dec(&fs_info->async_submit_draining);
8344 return 0;
8345out:
1eafa6c7 8346 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8347 spin_lock(&fs_info->delalloc_root_lock);
8348 list_splice_tail(&splice, &fs_info->delalloc_roots);
8349 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8350 }
8ccf6f19 8351 return ret;
ea8c2819
CM
8352}
8353
39279cc3
CM
8354static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8355 const char *symname)
8356{
8357 struct btrfs_trans_handle *trans;
8358 struct btrfs_root *root = BTRFS_I(dir)->root;
8359 struct btrfs_path *path;
8360 struct btrfs_key key;
1832a6d5 8361 struct inode *inode = NULL;
39279cc3
CM
8362 int err;
8363 int drop_inode = 0;
8364 u64 objectid;
00e4e6b3 8365 u64 index = 0 ;
39279cc3
CM
8366 int name_len;
8367 int datasize;
5f39d397 8368 unsigned long ptr;
39279cc3 8369 struct btrfs_file_extent_item *ei;
5f39d397 8370 struct extent_buffer *leaf;
39279cc3 8371
f06becc4 8372 name_len = strlen(symname);
39279cc3
CM
8373 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8374 return -ENAMETOOLONG;
1832a6d5 8375
9ed74f2d
JB
8376 /*
8377 * 2 items for inode item and ref
8378 * 2 items for dir items
8379 * 1 item for xattr if selinux is on
8380 */
a22285a6
YZ
8381 trans = btrfs_start_transaction(root, 5);
8382 if (IS_ERR(trans))
8383 return PTR_ERR(trans);
1832a6d5 8384
581bb050
LZ
8385 err = btrfs_find_free_ino(root, &objectid);
8386 if (err)
8387 goto out_unlock;
8388
aec7477b 8389 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8390 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8391 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8392 if (IS_ERR(inode)) {
8393 err = PTR_ERR(inode);
39279cc3 8394 goto out_unlock;
7cf96da3 8395 }
39279cc3 8396
2a7dba39 8397 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8398 if (err) {
8399 drop_inode = 1;
8400 goto out_unlock;
8401 }
8402
ad19db71
CS
8403 /*
8404 * If the active LSM wants to access the inode during
8405 * d_instantiate it needs these. Smack checks to see
8406 * if the filesystem supports xattrs by looking at the
8407 * ops vector.
8408 */
8409 inode->i_fop = &btrfs_file_operations;
8410 inode->i_op = &btrfs_file_inode_operations;
8411
a1b075d2 8412 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8413 if (err)
8414 drop_inode = 1;
8415 else {
8416 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8417 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8418 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8419 }
39279cc3
CM
8420 if (drop_inode)
8421 goto out_unlock;
8422
8423 path = btrfs_alloc_path();
d8926bb3
MF
8424 if (!path) {
8425 err = -ENOMEM;
8426 drop_inode = 1;
8427 goto out_unlock;
8428 }
33345d01 8429 key.objectid = btrfs_ino(inode);
39279cc3 8430 key.offset = 0;
39279cc3
CM
8431 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8432 datasize = btrfs_file_extent_calc_inline_size(name_len);
8433 err = btrfs_insert_empty_item(trans, root, path, &key,
8434 datasize);
54aa1f4d
CM
8435 if (err) {
8436 drop_inode = 1;
b0839166 8437 btrfs_free_path(path);
54aa1f4d
CM
8438 goto out_unlock;
8439 }
5f39d397
CM
8440 leaf = path->nodes[0];
8441 ei = btrfs_item_ptr(leaf, path->slots[0],
8442 struct btrfs_file_extent_item);
8443 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8444 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8445 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8446 btrfs_set_file_extent_encryption(leaf, ei, 0);
8447 btrfs_set_file_extent_compression(leaf, ei, 0);
8448 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8449 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8450
39279cc3 8451 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8452 write_extent_buffer(leaf, symname, ptr, name_len);
8453 btrfs_mark_buffer_dirty(leaf);
39279cc3 8454 btrfs_free_path(path);
5f39d397 8455
39279cc3
CM
8456 inode->i_op = &btrfs_symlink_inode_operations;
8457 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8458 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8459 inode_set_bytes(inode, name_len);
f06becc4 8460 btrfs_i_size_write(inode, name_len);
54aa1f4d
CM
8461 err = btrfs_update_inode(trans, root, inode);
8462 if (err)
8463 drop_inode = 1;
39279cc3
CM
8464
8465out_unlock:
08c422c2
AV
8466 if (!err)
8467 d_instantiate(dentry, inode);
7ad85bb7 8468 btrfs_end_transaction(trans, root);
39279cc3
CM
8469 if (drop_inode) {
8470 inode_dec_link_count(inode);
8471 iput(inode);
8472 }
b53d3f5d 8473 btrfs_btree_balance_dirty(root);
39279cc3
CM
8474 return err;
8475}
16432985 8476
0af3d00b
JB
8477static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8478 u64 start, u64 num_bytes, u64 min_size,
8479 loff_t actual_len, u64 *alloc_hint,
8480 struct btrfs_trans_handle *trans)
d899e052 8481{
5dc562c5
JB
8482 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8483 struct extent_map *em;
d899e052
YZ
8484 struct btrfs_root *root = BTRFS_I(inode)->root;
8485 struct btrfs_key ins;
d899e052 8486 u64 cur_offset = start;
55a61d1d 8487 u64 i_size;
154ea289 8488 u64 cur_bytes;
d899e052 8489 int ret = 0;
0af3d00b 8490 bool own_trans = true;
d899e052 8491
0af3d00b
JB
8492 if (trans)
8493 own_trans = false;
d899e052 8494 while (num_bytes > 0) {
0af3d00b
JB
8495 if (own_trans) {
8496 trans = btrfs_start_transaction(root, 3);
8497 if (IS_ERR(trans)) {
8498 ret = PTR_ERR(trans);
8499 break;
8500 }
5a303d5d
YZ
8501 }
8502
154ea289
CM
8503 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8504 cur_bytes = max(cur_bytes, min_size);
00361589
JB
8505 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8506 *alloc_hint, &ins, 1);
5a303d5d 8507 if (ret) {
0af3d00b
JB
8508 if (own_trans)
8509 btrfs_end_transaction(trans, root);
a22285a6 8510 break;
d899e052 8511 }
5a303d5d 8512
d899e052
YZ
8513 ret = insert_reserved_file_extent(trans, inode,
8514 cur_offset, ins.objectid,
8515 ins.offset, ins.offset,
920bbbfb 8516 ins.offset, 0, 0, 0,
d899e052 8517 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 8518 if (ret) {
857cc2fc
JB
8519 btrfs_free_reserved_extent(root, ins.objectid,
8520 ins.offset);
79787eaa
JM
8521 btrfs_abort_transaction(trans, root, ret);
8522 if (own_trans)
8523 btrfs_end_transaction(trans, root);
8524 break;
8525 }
a1ed835e
CM
8526 btrfs_drop_extent_cache(inode, cur_offset,
8527 cur_offset + ins.offset -1, 0);
5a303d5d 8528
5dc562c5
JB
8529 em = alloc_extent_map();
8530 if (!em) {
8531 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8532 &BTRFS_I(inode)->runtime_flags);
8533 goto next;
8534 }
8535
8536 em->start = cur_offset;
8537 em->orig_start = cur_offset;
8538 em->len = ins.offset;
8539 em->block_start = ins.objectid;
8540 em->block_len = ins.offset;
b4939680 8541 em->orig_block_len = ins.offset;
cc95bef6 8542 em->ram_bytes = ins.offset;
5dc562c5
JB
8543 em->bdev = root->fs_info->fs_devices->latest_bdev;
8544 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8545 em->generation = trans->transid;
8546
8547 while (1) {
8548 write_lock(&em_tree->lock);
09a2a8f9 8549 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8550 write_unlock(&em_tree->lock);
8551 if (ret != -EEXIST)
8552 break;
8553 btrfs_drop_extent_cache(inode, cur_offset,
8554 cur_offset + ins.offset - 1,
8555 0);
8556 }
8557 free_extent_map(em);
8558next:
d899e052
YZ
8559 num_bytes -= ins.offset;
8560 cur_offset += ins.offset;
efa56464 8561 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8562
0c4d2d95 8563 inode_inc_iversion(inode);
d899e052 8564 inode->i_ctime = CURRENT_TIME;
6cbff00f 8565 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8566 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8567 (actual_len > inode->i_size) &&
8568 (cur_offset > inode->i_size)) {
d1ea6a61 8569 if (cur_offset > actual_len)
55a61d1d 8570 i_size = actual_len;
d1ea6a61 8571 else
55a61d1d
JB
8572 i_size = cur_offset;
8573 i_size_write(inode, i_size);
8574 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8575 }
8576
d899e052 8577 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8578
8579 if (ret) {
8580 btrfs_abort_transaction(trans, root, ret);
8581 if (own_trans)
8582 btrfs_end_transaction(trans, root);
8583 break;
8584 }
d899e052 8585
0af3d00b
JB
8586 if (own_trans)
8587 btrfs_end_transaction(trans, root);
5a303d5d 8588 }
d899e052
YZ
8589 return ret;
8590}
8591
0af3d00b
JB
8592int btrfs_prealloc_file_range(struct inode *inode, int mode,
8593 u64 start, u64 num_bytes, u64 min_size,
8594 loff_t actual_len, u64 *alloc_hint)
8595{
8596 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8597 min_size, actual_len, alloc_hint,
8598 NULL);
8599}
8600
8601int btrfs_prealloc_file_range_trans(struct inode *inode,
8602 struct btrfs_trans_handle *trans, int mode,
8603 u64 start, u64 num_bytes, u64 min_size,
8604 loff_t actual_len, u64 *alloc_hint)
8605{
8606 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8607 min_size, actual_len, alloc_hint, trans);
8608}
8609
e6dcd2dc
CM
8610static int btrfs_set_page_dirty(struct page *page)
8611{
e6dcd2dc
CM
8612 return __set_page_dirty_nobuffers(page);
8613}
8614
10556cb2 8615static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8616{
b83cc969 8617 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8618 umode_t mode = inode->i_mode;
b83cc969 8619
cb6db4e5
JM
8620 if (mask & MAY_WRITE &&
8621 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8622 if (btrfs_root_readonly(root))
8623 return -EROFS;
8624 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8625 return -EACCES;
8626 }
2830ba7f 8627 return generic_permission(inode, mask);
fdebe2bd 8628}
39279cc3 8629
6e1d5dcc 8630static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8631 .getattr = btrfs_getattr,
39279cc3
CM
8632 .lookup = btrfs_lookup,
8633 .create = btrfs_create,
8634 .unlink = btrfs_unlink,
8635 .link = btrfs_link,
8636 .mkdir = btrfs_mkdir,
8637 .rmdir = btrfs_rmdir,
8638 .rename = btrfs_rename,
8639 .symlink = btrfs_symlink,
8640 .setattr = btrfs_setattr,
618e21d5 8641 .mknod = btrfs_mknod,
95819c05
CH
8642 .setxattr = btrfs_setxattr,
8643 .getxattr = btrfs_getxattr,
5103e947 8644 .listxattr = btrfs_listxattr,
95819c05 8645 .removexattr = btrfs_removexattr,
fdebe2bd 8646 .permission = btrfs_permission,
4e34e719 8647 .get_acl = btrfs_get_acl,
93fd63c2 8648 .update_time = btrfs_update_time,
39279cc3 8649};
6e1d5dcc 8650static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8651 .lookup = btrfs_lookup,
fdebe2bd 8652 .permission = btrfs_permission,
4e34e719 8653 .get_acl = btrfs_get_acl,
93fd63c2 8654 .update_time = btrfs_update_time,
39279cc3 8655};
76dda93c 8656
828c0950 8657static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8658 .llseek = generic_file_llseek,
8659 .read = generic_read_dir,
9cdda8d3 8660 .iterate = btrfs_real_readdir,
34287aa3 8661 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8662#ifdef CONFIG_COMPAT
34287aa3 8663 .compat_ioctl = btrfs_ioctl,
39279cc3 8664#endif
6bf13c0c 8665 .release = btrfs_release_file,
e02119d5 8666 .fsync = btrfs_sync_file,
39279cc3
CM
8667};
8668
d1310b2e 8669static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8670 .fill_delalloc = run_delalloc_range,
065631f6 8671 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8672 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8673 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8674 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8675 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8676 .set_bit_hook = btrfs_set_bit_hook,
8677 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8678 .merge_extent_hook = btrfs_merge_extent_hook,
8679 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8680};
8681
35054394
CM
8682/*
8683 * btrfs doesn't support the bmap operation because swapfiles
8684 * use bmap to make a mapping of extents in the file. They assume
8685 * these extents won't change over the life of the file and they
8686 * use the bmap result to do IO directly to the drive.
8687 *
8688 * the btrfs bmap call would return logical addresses that aren't
8689 * suitable for IO and they also will change frequently as COW
8690 * operations happen. So, swapfile + btrfs == corruption.
8691 *
8692 * For now we're avoiding this by dropping bmap.
8693 */
7f09410b 8694static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8695 .readpage = btrfs_readpage,
8696 .writepage = btrfs_writepage,
b293f02e 8697 .writepages = btrfs_writepages,
3ab2fb5a 8698 .readpages = btrfs_readpages,
16432985 8699 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8700 .invalidatepage = btrfs_invalidatepage,
8701 .releasepage = btrfs_releasepage,
e6dcd2dc 8702 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8703 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8704};
8705
7f09410b 8706static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8707 .readpage = btrfs_readpage,
8708 .writepage = btrfs_writepage,
2bf5a725
CM
8709 .invalidatepage = btrfs_invalidatepage,
8710 .releasepage = btrfs_releasepage,
39279cc3
CM
8711};
8712
6e1d5dcc 8713static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8714 .getattr = btrfs_getattr,
8715 .setattr = btrfs_setattr,
95819c05
CH
8716 .setxattr = btrfs_setxattr,
8717 .getxattr = btrfs_getxattr,
5103e947 8718 .listxattr = btrfs_listxattr,
95819c05 8719 .removexattr = btrfs_removexattr,
fdebe2bd 8720 .permission = btrfs_permission,
1506fcc8 8721 .fiemap = btrfs_fiemap,
4e34e719 8722 .get_acl = btrfs_get_acl,
e41f941a 8723 .update_time = btrfs_update_time,
39279cc3 8724};
6e1d5dcc 8725static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8726 .getattr = btrfs_getattr,
8727 .setattr = btrfs_setattr,
fdebe2bd 8728 .permission = btrfs_permission,
95819c05
CH
8729 .setxattr = btrfs_setxattr,
8730 .getxattr = btrfs_getxattr,
33268eaf 8731 .listxattr = btrfs_listxattr,
95819c05 8732 .removexattr = btrfs_removexattr,
4e34e719 8733 .get_acl = btrfs_get_acl,
e41f941a 8734 .update_time = btrfs_update_time,
618e21d5 8735};
6e1d5dcc 8736static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8737 .readlink = generic_readlink,
8738 .follow_link = page_follow_link_light,
8739 .put_link = page_put_link,
f209561a 8740 .getattr = btrfs_getattr,
22c44fe6 8741 .setattr = btrfs_setattr,
fdebe2bd 8742 .permission = btrfs_permission,
0279b4cd
JO
8743 .setxattr = btrfs_setxattr,
8744 .getxattr = btrfs_getxattr,
8745 .listxattr = btrfs_listxattr,
8746 .removexattr = btrfs_removexattr,
4e34e719 8747 .get_acl = btrfs_get_acl,
e41f941a 8748 .update_time = btrfs_update_time,
39279cc3 8749};
76dda93c 8750
82d339d9 8751const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8752 .d_delete = btrfs_dentry_delete,
b4aff1f8 8753 .d_release = btrfs_dentry_release,
76dda93c 8754};