Btrfs: remove unused hint byte argument for btrfs_drop_extents
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
74struct kmem_cache *btrfs_trans_handle_cachep;
75struct kmem_cache *btrfs_transaction_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
78
79#define S_SHIFT 12
80static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88};
89
a41ad394
JB
90static int btrfs_setsize(struct inode *inode, loff_t newsize);
91static int btrfs_truncate(struct inode *inode);
5fd02043 92static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
93static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
2115133f
CM
97static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
7b128766 99
f34f57a3 100static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
0279b4cd
JO
103{
104 int err;
105
f34f57a3 106 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 107 if (!err)
2a7dba39 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
109 return err;
110}
111
c8b97818
CM
112/*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
d397712b 117static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
fe3f566c 120 int compress_type,
c8b97818
CM
121 struct page **compressed_pages)
122{
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
c8b97818 135
fe3f566c 136 if (compressed_size && compressed_pages)
c8b97818 137 cur_size = compressed_size;
c8b97818 138
d397712b
CM
139 path = btrfs_alloc_path();
140 if (!path)
c8b97818
CM
141 return -ENOMEM;
142
b9473439 143 path->leave_spinning = 1;
c8b97818 144
33345d01 145 key.objectid = btrfs_ino(inode);
c8b97818
CM
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
c8b97818
CM
153 if (ret) {
154 err = ret;
c8b97818
CM
155 goto fail;
156 }
157 leaf = path->nodes[0];
158 ei = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 btrfs_set_file_extent_encryption(leaf, ei, 0);
163 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 ptr = btrfs_file_extent_inline_start(ei);
166
261507a0 167 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
168 struct page *cpage;
169 int i = 0;
d397712b 170 while (compressed_size > 0) {
c8b97818 171 cpage = compressed_pages[i];
5b050f04 172 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
173 PAGE_CACHE_SIZE);
174
7ac687d9 175 kaddr = kmap_atomic(cpage);
c8b97818 176 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 177 kunmap_atomic(kaddr);
c8b97818
CM
178
179 i++;
180 ptr += cur_size;
181 compressed_size -= cur_size;
182 }
183 btrfs_set_file_extent_compression(leaf, ei,
261507a0 184 compress_type);
c8b97818
CM
185 } else {
186 page = find_get_page(inode->i_mapping,
187 start >> PAGE_CACHE_SHIFT);
188 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 189 kaddr = kmap_atomic(page);
c8b97818
CM
190 offset = start & (PAGE_CACHE_SIZE - 1);
191 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 192 kunmap_atomic(kaddr);
c8b97818
CM
193 page_cache_release(page);
194 }
195 btrfs_mark_buffer_dirty(leaf);
196 btrfs_free_path(path);
197
c2167754
YZ
198 /*
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
202 *
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
206 */
c8b97818 207 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 208 ret = btrfs_update_inode(trans, root, inode);
c2167754 209
79787eaa 210 return ret;
c8b97818
CM
211fail:
212 btrfs_free_path(path);
213 return err;
214}
215
216
217/*
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
221 */
7f366cfe 222static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
fe3f566c 225 size_t compressed_size, int compress_type,
c8b97818
CM
226 struct page **compressed_pages)
227{
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
c8b97818
CM
233 u64 data_len = inline_len;
234 int ret;
235
236 if (compressed_size)
237 data_len = compressed_size;
238
239 if (start > 0 ||
70b99e69 240 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
241 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
242 (!compressed_size &&
243 (actual_end & (root->sectorsize - 1)) == 0) ||
244 end + 1 < isize ||
245 data_len > root->fs_info->max_inline) {
246 return 1;
247 }
248
2671485d 249 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
250 if (ret)
251 return ret;
c8b97818
CM
252
253 if (isize > actual_end)
254 inline_len = min_t(u64, isize, actual_end);
255 ret = insert_inline_extent(trans, root, inode, start,
256 inline_len, compressed_size,
fe3f566c 257 compress_type, compressed_pages);
2adcac1a 258 if (ret && ret != -ENOSPC) {
79787eaa
JM
259 btrfs_abort_transaction(trans, root, ret);
260 return ret;
2adcac1a
JB
261 } else if (ret == -ENOSPC) {
262 return 1;
79787eaa 263 }
2adcac1a 264
0ca1f7ce 265 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 266 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
267 return 0;
268}
269
771ed689
CM
270struct async_extent {
271 u64 start;
272 u64 ram_size;
273 u64 compressed_size;
274 struct page **pages;
275 unsigned long nr_pages;
261507a0 276 int compress_type;
771ed689
CM
277 struct list_head list;
278};
279
280struct async_cow {
281 struct inode *inode;
282 struct btrfs_root *root;
283 struct page *locked_page;
284 u64 start;
285 u64 end;
286 struct list_head extents;
287 struct btrfs_work work;
288};
289
290static noinline int add_async_extent(struct async_cow *cow,
291 u64 start, u64 ram_size,
292 u64 compressed_size,
293 struct page **pages,
261507a0
LZ
294 unsigned long nr_pages,
295 int compress_type)
771ed689
CM
296{
297 struct async_extent *async_extent;
298
299 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 300 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
301 async_extent->start = start;
302 async_extent->ram_size = ram_size;
303 async_extent->compressed_size = compressed_size;
304 async_extent->pages = pages;
305 async_extent->nr_pages = nr_pages;
261507a0 306 async_extent->compress_type = compress_type;
771ed689
CM
307 list_add_tail(&async_extent->list, &cow->extents);
308 return 0;
309}
310
d352ac68 311/*
771ed689
CM
312 * we create compressed extents in two phases. The first
313 * phase compresses a range of pages that have already been
314 * locked (both pages and state bits are locked).
c8b97818 315 *
771ed689
CM
316 * This is done inside an ordered work queue, and the compression
317 * is spread across many cpus. The actual IO submission is step
318 * two, and the ordered work queue takes care of making sure that
319 * happens in the same order things were put onto the queue by
320 * writepages and friends.
c8b97818 321 *
771ed689
CM
322 * If this code finds it can't get good compression, it puts an
323 * entry onto the work queue to write the uncompressed bytes. This
324 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
325 * are written in the same order that the flusher thread sent them
326 * down.
d352ac68 327 */
771ed689
CM
328static noinline int compress_file_range(struct inode *inode,
329 struct page *locked_page,
330 u64 start, u64 end,
331 struct async_cow *async_cow,
332 int *num_added)
b888db2b
CM
333{
334 struct btrfs_root *root = BTRFS_I(inode)->root;
335 struct btrfs_trans_handle *trans;
db94535d 336 u64 num_bytes;
db94535d 337 u64 blocksize = root->sectorsize;
c8b97818 338 u64 actual_end;
42dc7bab 339 u64 isize = i_size_read(inode);
e6dcd2dc 340 int ret = 0;
c8b97818
CM
341 struct page **pages = NULL;
342 unsigned long nr_pages;
343 unsigned long nr_pages_ret = 0;
344 unsigned long total_compressed = 0;
345 unsigned long total_in = 0;
346 unsigned long max_compressed = 128 * 1024;
771ed689 347 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
348 int i;
349 int will_compress;
261507a0 350 int compress_type = root->fs_info->compress_type;
b888db2b 351
4cb13e5d
LB
352 /* if this is a small write inside eof, kick off a defrag */
353 if ((end - start + 1) < 16 * 1024 &&
354 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
355 btrfs_add_inode_defrag(NULL, inode);
356
42dc7bab 357 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
358again:
359 will_compress = 0;
360 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
361 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 362
f03d9301
CM
363 /*
364 * we don't want to send crud past the end of i_size through
365 * compression, that's just a waste of CPU time. So, if the
366 * end of the file is before the start of our current
367 * requested range of bytes, we bail out to the uncompressed
368 * cleanup code that can deal with all of this.
369 *
370 * It isn't really the fastest way to fix things, but this is a
371 * very uncommon corner.
372 */
373 if (actual_end <= start)
374 goto cleanup_and_bail_uncompressed;
375
c8b97818
CM
376 total_compressed = actual_end - start;
377
378 /* we want to make sure that amount of ram required to uncompress
379 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
380 * of a compressed extent to 128k. This is a crucial number
381 * because it also controls how easily we can spread reads across
382 * cpus for decompression.
383 *
384 * We also want to make sure the amount of IO required to do
385 * a random read is reasonably small, so we limit the size of
386 * a compressed extent to 128k.
c8b97818
CM
387 */
388 total_compressed = min(total_compressed, max_uncompressed);
db94535d 389 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 390 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
391 total_in = 0;
392 ret = 0;
db94535d 393
771ed689
CM
394 /*
395 * we do compression for mount -o compress and when the
396 * inode has not been flagged as nocompress. This flag can
397 * change at any time if we discover bad compression ratios.
c8b97818 398 */
6cbff00f 399 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 400 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
401 (BTRFS_I(inode)->force_compress) ||
402 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 403 WARN_ON(pages);
cfbc246e 404 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
405 if (!pages) {
406 /* just bail out to the uncompressed code */
407 goto cont;
408 }
c8b97818 409
261507a0
LZ
410 if (BTRFS_I(inode)->force_compress)
411 compress_type = BTRFS_I(inode)->force_compress;
412
413 ret = btrfs_compress_pages(compress_type,
414 inode->i_mapping, start,
415 total_compressed, pages,
416 nr_pages, &nr_pages_ret,
417 &total_in,
418 &total_compressed,
419 max_compressed);
c8b97818
CM
420
421 if (!ret) {
422 unsigned long offset = total_compressed &
423 (PAGE_CACHE_SIZE - 1);
424 struct page *page = pages[nr_pages_ret - 1];
425 char *kaddr;
426
427 /* zero the tail end of the last page, we might be
428 * sending it down to disk
429 */
430 if (offset) {
7ac687d9 431 kaddr = kmap_atomic(page);
c8b97818
CM
432 memset(kaddr + offset, 0,
433 PAGE_CACHE_SIZE - offset);
7ac687d9 434 kunmap_atomic(kaddr);
c8b97818
CM
435 }
436 will_compress = 1;
437 }
438 }
560f7d75 439cont:
c8b97818 440 if (start == 0) {
7a7eaa40 441 trans = btrfs_join_transaction(root);
79787eaa
JM
442 if (IS_ERR(trans)) {
443 ret = PTR_ERR(trans);
444 trans = NULL;
445 goto cleanup_and_out;
446 }
0ca1f7ce 447 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 448
c8b97818 449 /* lets try to make an inline extent */
771ed689 450 if (ret || total_in < (actual_end - start)) {
c8b97818 451 /* we didn't compress the entire range, try
771ed689 452 * to make an uncompressed inline extent.
c8b97818
CM
453 */
454 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 455 start, end, 0, 0, NULL);
c8b97818 456 } else {
771ed689 457 /* try making a compressed inline extent */
c8b97818
CM
458 ret = cow_file_range_inline(trans, root, inode,
459 start, end,
fe3f566c
LZ
460 total_compressed,
461 compress_type, pages);
c8b97818 462 }
79787eaa 463 if (ret <= 0) {
771ed689 464 /*
79787eaa
JM
465 * inline extent creation worked or returned error,
466 * we don't need to create any more async work items.
467 * Unlock and free up our temp pages.
771ed689 468 */
c8b97818 469 extent_clear_unlock_delalloc(inode,
a791e35e
CM
470 &BTRFS_I(inode)->io_tree,
471 start, end, NULL,
472 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 473 EXTENT_CLEAR_DELALLOC |
a791e35e 474 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
475
476 btrfs_end_transaction(trans, root);
c8b97818
CM
477 goto free_pages_out;
478 }
c2167754 479 btrfs_end_transaction(trans, root);
c8b97818
CM
480 }
481
482 if (will_compress) {
483 /*
484 * we aren't doing an inline extent round the compressed size
485 * up to a block size boundary so the allocator does sane
486 * things
487 */
488 total_compressed = (total_compressed + blocksize - 1) &
489 ~(blocksize - 1);
490
491 /*
492 * one last check to make sure the compression is really a
493 * win, compare the page count read with the blocks on disk
494 */
495 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
496 ~(PAGE_CACHE_SIZE - 1);
497 if (total_compressed >= total_in) {
498 will_compress = 0;
499 } else {
c8b97818
CM
500 num_bytes = total_in;
501 }
502 }
503 if (!will_compress && pages) {
504 /*
505 * the compression code ran but failed to make things smaller,
506 * free any pages it allocated and our page pointer array
507 */
508 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 509 WARN_ON(pages[i]->mapping);
c8b97818
CM
510 page_cache_release(pages[i]);
511 }
512 kfree(pages);
513 pages = NULL;
514 total_compressed = 0;
515 nr_pages_ret = 0;
516
517 /* flag the file so we don't compress in the future */
1e701a32
CM
518 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
519 !(BTRFS_I(inode)->force_compress)) {
a555f810 520 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 521 }
c8b97818 522 }
771ed689
CM
523 if (will_compress) {
524 *num_added += 1;
c8b97818 525
771ed689
CM
526 /* the async work queues will take care of doing actual
527 * allocation on disk for these compressed pages,
528 * and will submit them to the elevator.
529 */
530 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
531 total_compressed, pages, nr_pages_ret,
532 compress_type);
179e29e4 533
24ae6365 534 if (start + num_bytes < end) {
771ed689
CM
535 start += num_bytes;
536 pages = NULL;
537 cond_resched();
538 goto again;
539 }
540 } else {
f03d9301 541cleanup_and_bail_uncompressed:
771ed689
CM
542 /*
543 * No compression, but we still need to write the pages in
544 * the file we've been given so far. redirty the locked
545 * page if it corresponds to our extent and set things up
546 * for the async work queue to run cow_file_range to do
547 * the normal delalloc dance
548 */
549 if (page_offset(locked_page) >= start &&
550 page_offset(locked_page) <= end) {
551 __set_page_dirty_nobuffers(locked_page);
552 /* unlocked later on in the async handlers */
553 }
261507a0
LZ
554 add_async_extent(async_cow, start, end - start + 1,
555 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
556 *num_added += 1;
557 }
3b951516 558
771ed689 559out:
79787eaa 560 return ret;
771ed689
CM
561
562free_pages_out:
563 for (i = 0; i < nr_pages_ret; i++) {
564 WARN_ON(pages[i]->mapping);
565 page_cache_release(pages[i]);
566 }
d397712b 567 kfree(pages);
771ed689
CM
568
569 goto out;
79787eaa
JM
570
571cleanup_and_out:
572 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
573 start, end, NULL,
574 EXTENT_CLEAR_UNLOCK_PAGE |
575 EXTENT_CLEAR_DIRTY |
576 EXTENT_CLEAR_DELALLOC |
577 EXTENT_SET_WRITEBACK |
578 EXTENT_END_WRITEBACK);
579 if (!trans || IS_ERR(trans))
580 btrfs_error(root->fs_info, ret, "Failed to join transaction");
581 else
582 btrfs_abort_transaction(trans, root, ret);
583 goto free_pages_out;
771ed689
CM
584}
585
586/*
587 * phase two of compressed writeback. This is the ordered portion
588 * of the code, which only gets called in the order the work was
589 * queued. We walk all the async extents created by compress_file_range
590 * and send them down to the disk.
591 */
592static noinline int submit_compressed_extents(struct inode *inode,
593 struct async_cow *async_cow)
594{
595 struct async_extent *async_extent;
596 u64 alloc_hint = 0;
597 struct btrfs_trans_handle *trans;
598 struct btrfs_key ins;
599 struct extent_map *em;
600 struct btrfs_root *root = BTRFS_I(inode)->root;
601 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
602 struct extent_io_tree *io_tree;
f5a84ee3 603 int ret = 0;
771ed689
CM
604
605 if (list_empty(&async_cow->extents))
606 return 0;
607
771ed689 608
d397712b 609 while (!list_empty(&async_cow->extents)) {
771ed689
CM
610 async_extent = list_entry(async_cow->extents.next,
611 struct async_extent, list);
612 list_del(&async_extent->list);
c8b97818 613
771ed689
CM
614 io_tree = &BTRFS_I(inode)->io_tree;
615
f5a84ee3 616retry:
771ed689
CM
617 /* did the compression code fall back to uncompressed IO? */
618 if (!async_extent->pages) {
619 int page_started = 0;
620 unsigned long nr_written = 0;
621
622 lock_extent(io_tree, async_extent->start,
2ac55d41 623 async_extent->start +
d0082371 624 async_extent->ram_size - 1);
771ed689
CM
625
626 /* allocate blocks */
f5a84ee3
JB
627 ret = cow_file_range(inode, async_cow->locked_page,
628 async_extent->start,
629 async_extent->start +
630 async_extent->ram_size - 1,
631 &page_started, &nr_written, 0);
771ed689 632
79787eaa
JM
633 /* JDM XXX */
634
771ed689
CM
635 /*
636 * if page_started, cow_file_range inserted an
637 * inline extent and took care of all the unlocking
638 * and IO for us. Otherwise, we need to submit
639 * all those pages down to the drive.
640 */
f5a84ee3 641 if (!page_started && !ret)
771ed689
CM
642 extent_write_locked_range(io_tree,
643 inode, async_extent->start,
d397712b 644 async_extent->start +
771ed689
CM
645 async_extent->ram_size - 1,
646 btrfs_get_extent,
647 WB_SYNC_ALL);
648 kfree(async_extent);
649 cond_resched();
650 continue;
651 }
652
653 lock_extent(io_tree, async_extent->start,
d0082371 654 async_extent->start + async_extent->ram_size - 1);
771ed689 655
7a7eaa40 656 trans = btrfs_join_transaction(root);
79787eaa
JM
657 if (IS_ERR(trans)) {
658 ret = PTR_ERR(trans);
659 } else {
660 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
661 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
662 async_extent->compressed_size,
663 async_extent->compressed_size,
81c9ad23 664 0, alloc_hint, &ins, 1);
79787eaa
JM
665 if (ret)
666 btrfs_abort_transaction(trans, root, ret);
667 btrfs_end_transaction(trans, root);
668 }
c2167754 669
f5a84ee3
JB
670 if (ret) {
671 int i;
672 for (i = 0; i < async_extent->nr_pages; i++) {
673 WARN_ON(async_extent->pages[i]->mapping);
674 page_cache_release(async_extent->pages[i]);
675 }
676 kfree(async_extent->pages);
677 async_extent->nr_pages = 0;
678 async_extent->pages = NULL;
679 unlock_extent(io_tree, async_extent->start,
680 async_extent->start +
d0082371 681 async_extent->ram_size - 1);
79787eaa
JM
682 if (ret == -ENOSPC)
683 goto retry;
684 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
685 }
686
c2167754
YZ
687 /*
688 * here we're doing allocation and writeback of the
689 * compressed pages
690 */
691 btrfs_drop_extent_cache(inode, async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1, 0);
694
172ddd60 695 em = alloc_extent_map();
79787eaa 696 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
697 em->start = async_extent->start;
698 em->len = async_extent->ram_size;
445a6944 699 em->orig_start = em->start;
c8b97818 700
771ed689
CM
701 em->block_start = ins.objectid;
702 em->block_len = ins.offset;
703 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 704 em->compress_type = async_extent->compress_type;
771ed689
CM
705 set_bit(EXTENT_FLAG_PINNED, &em->flags);
706 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
707
d397712b 708 while (1) {
890871be 709 write_lock(&em_tree->lock);
771ed689 710 ret = add_extent_mapping(em_tree, em);
890871be 711 write_unlock(&em_tree->lock);
771ed689
CM
712 if (ret != -EEXIST) {
713 free_extent_map(em);
714 break;
715 }
716 btrfs_drop_extent_cache(inode, async_extent->start,
717 async_extent->start +
718 async_extent->ram_size - 1, 0);
719 }
720
261507a0
LZ
721 ret = btrfs_add_ordered_extent_compress(inode,
722 async_extent->start,
723 ins.objectid,
724 async_extent->ram_size,
725 ins.offset,
726 BTRFS_ORDERED_COMPRESSED,
727 async_extent->compress_type);
79787eaa 728 BUG_ON(ret); /* -ENOMEM */
771ed689 729
771ed689
CM
730 /*
731 * clear dirty, set writeback and unlock the pages.
732 */
733 extent_clear_unlock_delalloc(inode,
a791e35e
CM
734 &BTRFS_I(inode)->io_tree,
735 async_extent->start,
736 async_extent->start +
737 async_extent->ram_size - 1,
738 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
739 EXTENT_CLEAR_UNLOCK |
a3429ab7 740 EXTENT_CLEAR_DELALLOC |
a791e35e 741 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
742
743 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
744 async_extent->start,
745 async_extent->ram_size,
746 ins.objectid,
747 ins.offset, async_extent->pages,
748 async_extent->nr_pages);
771ed689 749
79787eaa 750 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
751 alloc_hint = ins.objectid + ins.offset;
752 kfree(async_extent);
753 cond_resched();
754 }
79787eaa
JM
755 ret = 0;
756out:
757 return ret;
758out_free:
759 kfree(async_extent);
760 goto out;
771ed689
CM
761}
762
4b46fce2
JB
763static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
764 u64 num_bytes)
765{
766 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
767 struct extent_map *em;
768 u64 alloc_hint = 0;
769
770 read_lock(&em_tree->lock);
771 em = search_extent_mapping(em_tree, start, num_bytes);
772 if (em) {
773 /*
774 * if block start isn't an actual block number then find the
775 * first block in this inode and use that as a hint. If that
776 * block is also bogus then just don't worry about it.
777 */
778 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
779 free_extent_map(em);
780 em = search_extent_mapping(em_tree, 0, 0);
781 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
782 alloc_hint = em->block_start;
783 if (em)
784 free_extent_map(em);
785 } else {
786 alloc_hint = em->block_start;
787 free_extent_map(em);
788 }
789 }
790 read_unlock(&em_tree->lock);
791
792 return alloc_hint;
793}
794
771ed689
CM
795/*
796 * when extent_io.c finds a delayed allocation range in the file,
797 * the call backs end up in this code. The basic idea is to
798 * allocate extents on disk for the range, and create ordered data structs
799 * in ram to track those extents.
800 *
801 * locked_page is the page that writepage had locked already. We use
802 * it to make sure we don't do extra locks or unlocks.
803 *
804 * *page_started is set to one if we unlock locked_page and do everything
805 * required to start IO on it. It may be clean and already done with
806 * IO when we return.
807 */
808static noinline int cow_file_range(struct inode *inode,
809 struct page *locked_page,
810 u64 start, u64 end, int *page_started,
811 unsigned long *nr_written,
812 int unlock)
813{
814 struct btrfs_root *root = BTRFS_I(inode)->root;
815 struct btrfs_trans_handle *trans;
816 u64 alloc_hint = 0;
817 u64 num_bytes;
818 unsigned long ram_size;
819 u64 disk_num_bytes;
820 u64 cur_alloc_size;
821 u64 blocksize = root->sectorsize;
771ed689
CM
822 struct btrfs_key ins;
823 struct extent_map *em;
824 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
825 int ret = 0;
826
83eea1f1 827 BUG_ON(btrfs_is_free_space_inode(inode));
7a7eaa40 828 trans = btrfs_join_transaction(root);
79787eaa
JM
829 if (IS_ERR(trans)) {
830 extent_clear_unlock_delalloc(inode,
831 &BTRFS_I(inode)->io_tree,
beb42dd7 832 start, end, locked_page,
79787eaa
JM
833 EXTENT_CLEAR_UNLOCK_PAGE |
834 EXTENT_CLEAR_UNLOCK |
835 EXTENT_CLEAR_DELALLOC |
836 EXTENT_CLEAR_DIRTY |
837 EXTENT_SET_WRITEBACK |
838 EXTENT_END_WRITEBACK);
839 return PTR_ERR(trans);
840 }
0ca1f7ce 841 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 842
771ed689
CM
843 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
844 num_bytes = max(blocksize, num_bytes);
845 disk_num_bytes = num_bytes;
846 ret = 0;
847
4cb5300b 848 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
849 if (num_bytes < 64 * 1024 &&
850 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
851 btrfs_add_inode_defrag(trans, inode);
852
771ed689
CM
853 if (start == 0) {
854 /* lets try to make an inline extent */
855 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 856 start, end, 0, 0, NULL);
771ed689
CM
857 if (ret == 0) {
858 extent_clear_unlock_delalloc(inode,
a791e35e
CM
859 &BTRFS_I(inode)->io_tree,
860 start, end, NULL,
861 EXTENT_CLEAR_UNLOCK_PAGE |
862 EXTENT_CLEAR_UNLOCK |
863 EXTENT_CLEAR_DELALLOC |
864 EXTENT_CLEAR_DIRTY |
865 EXTENT_SET_WRITEBACK |
866 EXTENT_END_WRITEBACK);
c2167754 867
771ed689
CM
868 *nr_written = *nr_written +
869 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
870 *page_started = 1;
771ed689 871 goto out;
79787eaa
JM
872 } else if (ret < 0) {
873 btrfs_abort_transaction(trans, root, ret);
874 goto out_unlock;
771ed689
CM
875 }
876 }
877
878 BUG_ON(disk_num_bytes >
6c41761f 879 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 880
4b46fce2 881 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
882 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
883
d397712b 884 while (disk_num_bytes > 0) {
a791e35e
CM
885 unsigned long op;
886
287a0ab9 887 cur_alloc_size = disk_num_bytes;
e6dcd2dc 888 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 889 root->sectorsize, 0, alloc_hint,
81c9ad23 890 &ins, 1);
79787eaa
JM
891 if (ret < 0) {
892 btrfs_abort_transaction(trans, root, ret);
893 goto out_unlock;
894 }
d397712b 895
172ddd60 896 em = alloc_extent_map();
79787eaa 897 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 898 em->start = start;
445a6944 899 em->orig_start = em->start;
771ed689
CM
900 ram_size = ins.offset;
901 em->len = ins.offset;
c8b97818 902
e6dcd2dc 903 em->block_start = ins.objectid;
c8b97818 904 em->block_len = ins.offset;
e6dcd2dc 905 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 906 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 907
d397712b 908 while (1) {
890871be 909 write_lock(&em_tree->lock);
e6dcd2dc 910 ret = add_extent_mapping(em_tree, em);
890871be 911 write_unlock(&em_tree->lock);
e6dcd2dc
CM
912 if (ret != -EEXIST) {
913 free_extent_map(em);
914 break;
915 }
916 btrfs_drop_extent_cache(inode, start,
c8b97818 917 start + ram_size - 1, 0);
e6dcd2dc
CM
918 }
919
98d20f67 920 cur_alloc_size = ins.offset;
e6dcd2dc 921 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 922 ram_size, cur_alloc_size, 0);
79787eaa 923 BUG_ON(ret); /* -ENOMEM */
c8b97818 924
17d217fe
YZ
925 if (root->root_key.objectid ==
926 BTRFS_DATA_RELOC_TREE_OBJECTID) {
927 ret = btrfs_reloc_clone_csums(inode, start,
928 cur_alloc_size);
79787eaa
JM
929 if (ret) {
930 btrfs_abort_transaction(trans, root, ret);
931 goto out_unlock;
932 }
17d217fe
YZ
933 }
934
d397712b 935 if (disk_num_bytes < cur_alloc_size)
3b951516 936 break;
d397712b 937
c8b97818
CM
938 /* we're not doing compressed IO, don't unlock the first
939 * page (which the caller expects to stay locked), don't
940 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
941 *
942 * Do set the Private2 bit so we know this page was properly
943 * setup for writepage
c8b97818 944 */
a791e35e
CM
945 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
946 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
947 EXTENT_SET_PRIVATE2;
948
c8b97818
CM
949 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
950 start, start + ram_size - 1,
a791e35e 951 locked_page, op);
c8b97818 952 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
953 num_bytes -= cur_alloc_size;
954 alloc_hint = ins.objectid + ins.offset;
955 start += cur_alloc_size;
b888db2b 956 }
771ed689 957 ret = 0;
79787eaa 958out:
b888db2b 959 btrfs_end_transaction(trans, root);
c8b97818 960
be20aa9d 961 return ret;
79787eaa
JM
962out_unlock:
963 extent_clear_unlock_delalloc(inode,
964 &BTRFS_I(inode)->io_tree,
beb42dd7 965 start, end, locked_page,
79787eaa
JM
966 EXTENT_CLEAR_UNLOCK_PAGE |
967 EXTENT_CLEAR_UNLOCK |
968 EXTENT_CLEAR_DELALLOC |
969 EXTENT_CLEAR_DIRTY |
970 EXTENT_SET_WRITEBACK |
971 EXTENT_END_WRITEBACK);
972
973 goto out;
771ed689 974}
c8b97818 975
771ed689
CM
976/*
977 * work queue call back to started compression on a file and pages
978 */
979static noinline void async_cow_start(struct btrfs_work *work)
980{
981 struct async_cow *async_cow;
982 int num_added = 0;
983 async_cow = container_of(work, struct async_cow, work);
984
985 compress_file_range(async_cow->inode, async_cow->locked_page,
986 async_cow->start, async_cow->end, async_cow,
987 &num_added);
8180ef88 988 if (num_added == 0) {
cb77fcd8 989 btrfs_add_delayed_iput(async_cow->inode);
771ed689 990 async_cow->inode = NULL;
8180ef88 991 }
771ed689
CM
992}
993
994/*
995 * work queue call back to submit previously compressed pages
996 */
997static noinline void async_cow_submit(struct btrfs_work *work)
998{
999 struct async_cow *async_cow;
1000 struct btrfs_root *root;
1001 unsigned long nr_pages;
1002
1003 async_cow = container_of(work, struct async_cow, work);
1004
1005 root = async_cow->root;
1006 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1007 PAGE_CACHE_SHIFT;
1008
66657b31 1009 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1010 5 * 1024 * 1024 &&
771ed689
CM
1011 waitqueue_active(&root->fs_info->async_submit_wait))
1012 wake_up(&root->fs_info->async_submit_wait);
1013
d397712b 1014 if (async_cow->inode)
771ed689 1015 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1016}
c8b97818 1017
771ed689
CM
1018static noinline void async_cow_free(struct btrfs_work *work)
1019{
1020 struct async_cow *async_cow;
1021 async_cow = container_of(work, struct async_cow, work);
8180ef88 1022 if (async_cow->inode)
cb77fcd8 1023 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1024 kfree(async_cow);
1025}
1026
1027static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1028 u64 start, u64 end, int *page_started,
1029 unsigned long *nr_written)
1030{
1031 struct async_cow *async_cow;
1032 struct btrfs_root *root = BTRFS_I(inode)->root;
1033 unsigned long nr_pages;
1034 u64 cur_end;
287082b0 1035 int limit = 10 * 1024 * 1024;
771ed689 1036
a3429ab7
CM
1037 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1038 1, 0, NULL, GFP_NOFS);
d397712b 1039 while (start < end) {
771ed689 1040 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1041 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1042 async_cow->inode = igrab(inode);
771ed689
CM
1043 async_cow->root = root;
1044 async_cow->locked_page = locked_page;
1045 async_cow->start = start;
1046
6cbff00f 1047 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1048 cur_end = end;
1049 else
1050 cur_end = min(end, start + 512 * 1024 - 1);
1051
1052 async_cow->end = cur_end;
1053 INIT_LIST_HEAD(&async_cow->extents);
1054
1055 async_cow->work.func = async_cow_start;
1056 async_cow->work.ordered_func = async_cow_submit;
1057 async_cow->work.ordered_free = async_cow_free;
1058 async_cow->work.flags = 0;
1059
771ed689
CM
1060 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1061 PAGE_CACHE_SHIFT;
1062 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1063
1064 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1065 &async_cow->work);
1066
1067 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1068 wait_event(root->fs_info->async_submit_wait,
1069 (atomic_read(&root->fs_info->async_delalloc_pages) <
1070 limit));
1071 }
1072
d397712b 1073 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1074 atomic_read(&root->fs_info->async_delalloc_pages)) {
1075 wait_event(root->fs_info->async_submit_wait,
1076 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1077 0));
1078 }
1079
1080 *nr_written += nr_pages;
1081 start = cur_end + 1;
1082 }
1083 *page_started = 1;
1084 return 0;
be20aa9d
CM
1085}
1086
d397712b 1087static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1088 u64 bytenr, u64 num_bytes)
1089{
1090 int ret;
1091 struct btrfs_ordered_sum *sums;
1092 LIST_HEAD(list);
1093
07d400a6 1094 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1095 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1096 if (ret == 0 && list_empty(&list))
1097 return 0;
1098
1099 while (!list_empty(&list)) {
1100 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1101 list_del(&sums->list);
1102 kfree(sums);
1103 }
1104 return 1;
1105}
1106
d352ac68
CM
1107/*
1108 * when nowcow writeback call back. This checks for snapshots or COW copies
1109 * of the extents that exist in the file, and COWs the file as required.
1110 *
1111 * If no cow copies or snapshots exist, we write directly to the existing
1112 * blocks on disk
1113 */
7f366cfe
CM
1114static noinline int run_delalloc_nocow(struct inode *inode,
1115 struct page *locked_page,
771ed689
CM
1116 u64 start, u64 end, int *page_started, int force,
1117 unsigned long *nr_written)
be20aa9d 1118{
be20aa9d 1119 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1120 struct btrfs_trans_handle *trans;
be20aa9d 1121 struct extent_buffer *leaf;
be20aa9d 1122 struct btrfs_path *path;
80ff3856 1123 struct btrfs_file_extent_item *fi;
be20aa9d 1124 struct btrfs_key found_key;
80ff3856
YZ
1125 u64 cow_start;
1126 u64 cur_offset;
1127 u64 extent_end;
5d4f98a2 1128 u64 extent_offset;
80ff3856
YZ
1129 u64 disk_bytenr;
1130 u64 num_bytes;
1131 int extent_type;
79787eaa 1132 int ret, err;
d899e052 1133 int type;
80ff3856
YZ
1134 int nocow;
1135 int check_prev = 1;
82d5902d 1136 bool nolock;
33345d01 1137 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1138
1139 path = btrfs_alloc_path();
17ca04af
JB
1140 if (!path) {
1141 extent_clear_unlock_delalloc(inode,
1142 &BTRFS_I(inode)->io_tree,
1143 start, end, locked_page,
1144 EXTENT_CLEAR_UNLOCK_PAGE |
1145 EXTENT_CLEAR_UNLOCK |
1146 EXTENT_CLEAR_DELALLOC |
1147 EXTENT_CLEAR_DIRTY |
1148 EXTENT_SET_WRITEBACK |
1149 EXTENT_END_WRITEBACK);
d8926bb3 1150 return -ENOMEM;
17ca04af 1151 }
82d5902d 1152
83eea1f1 1153 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1154
1155 if (nolock)
7a7eaa40 1156 trans = btrfs_join_transaction_nolock(root);
82d5902d 1157 else
7a7eaa40 1158 trans = btrfs_join_transaction(root);
ff5714cc 1159
79787eaa 1160 if (IS_ERR(trans)) {
17ca04af
JB
1161 extent_clear_unlock_delalloc(inode,
1162 &BTRFS_I(inode)->io_tree,
1163 start, end, locked_page,
1164 EXTENT_CLEAR_UNLOCK_PAGE |
1165 EXTENT_CLEAR_UNLOCK |
1166 EXTENT_CLEAR_DELALLOC |
1167 EXTENT_CLEAR_DIRTY |
1168 EXTENT_SET_WRITEBACK |
1169 EXTENT_END_WRITEBACK);
79787eaa
JM
1170 btrfs_free_path(path);
1171 return PTR_ERR(trans);
1172 }
1173
74b21075 1174 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1175
80ff3856
YZ
1176 cow_start = (u64)-1;
1177 cur_offset = start;
1178 while (1) {
33345d01 1179 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1180 cur_offset, 0);
79787eaa
JM
1181 if (ret < 0) {
1182 btrfs_abort_transaction(trans, root, ret);
1183 goto error;
1184 }
80ff3856
YZ
1185 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186 leaf = path->nodes[0];
1187 btrfs_item_key_to_cpu(leaf, &found_key,
1188 path->slots[0] - 1);
33345d01 1189 if (found_key.objectid == ino &&
80ff3856
YZ
1190 found_key.type == BTRFS_EXTENT_DATA_KEY)
1191 path->slots[0]--;
1192 }
1193 check_prev = 0;
1194next_slot:
1195 leaf = path->nodes[0];
1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1198 if (ret < 0) {
1199 btrfs_abort_transaction(trans, root, ret);
1200 goto error;
1201 }
80ff3856
YZ
1202 if (ret > 0)
1203 break;
1204 leaf = path->nodes[0];
1205 }
be20aa9d 1206
80ff3856
YZ
1207 nocow = 0;
1208 disk_bytenr = 0;
17d217fe 1209 num_bytes = 0;
80ff3856
YZ
1210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1211
33345d01 1212 if (found_key.objectid > ino ||
80ff3856
YZ
1213 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1214 found_key.offset > end)
1215 break;
1216
1217 if (found_key.offset > cur_offset) {
1218 extent_end = found_key.offset;
e9061e21 1219 extent_type = 0;
80ff3856
YZ
1220 goto out_check;
1221 }
1222
1223 fi = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_file_extent_item);
1225 extent_type = btrfs_file_extent_type(leaf, fi);
1226
d899e052
YZ
1227 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1228 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1229 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1230 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1231 extent_end = found_key.offset +
1232 btrfs_file_extent_num_bytes(leaf, fi);
1233 if (extent_end <= start) {
1234 path->slots[0]++;
1235 goto next_slot;
1236 }
17d217fe
YZ
1237 if (disk_bytenr == 0)
1238 goto out_check;
80ff3856
YZ
1239 if (btrfs_file_extent_compression(leaf, fi) ||
1240 btrfs_file_extent_encryption(leaf, fi) ||
1241 btrfs_file_extent_other_encoding(leaf, fi))
1242 goto out_check;
d899e052
YZ
1243 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1244 goto out_check;
d2fb3437 1245 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1246 goto out_check;
33345d01 1247 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1248 found_key.offset -
1249 extent_offset, disk_bytenr))
17d217fe 1250 goto out_check;
5d4f98a2 1251 disk_bytenr += extent_offset;
17d217fe
YZ
1252 disk_bytenr += cur_offset - found_key.offset;
1253 num_bytes = min(end + 1, extent_end) - cur_offset;
1254 /*
1255 * force cow if csum exists in the range.
1256 * this ensure that csum for a given extent are
1257 * either valid or do not exist.
1258 */
1259 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1260 goto out_check;
80ff3856
YZ
1261 nocow = 1;
1262 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1263 extent_end = found_key.offset +
1264 btrfs_file_extent_inline_len(leaf, fi);
1265 extent_end = ALIGN(extent_end, root->sectorsize);
1266 } else {
1267 BUG_ON(1);
1268 }
1269out_check:
1270 if (extent_end <= start) {
1271 path->slots[0]++;
1272 goto next_slot;
1273 }
1274 if (!nocow) {
1275 if (cow_start == (u64)-1)
1276 cow_start = cur_offset;
1277 cur_offset = extent_end;
1278 if (cur_offset > end)
1279 break;
1280 path->slots[0]++;
1281 goto next_slot;
7ea394f1
YZ
1282 }
1283
b3b4aa74 1284 btrfs_release_path(path);
80ff3856
YZ
1285 if (cow_start != (u64)-1) {
1286 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1287 found_key.offset - 1, page_started,
1288 nr_written, 1);
79787eaa
JM
1289 if (ret) {
1290 btrfs_abort_transaction(trans, root, ret);
1291 goto error;
1292 }
80ff3856 1293 cow_start = (u64)-1;
7ea394f1 1294 }
80ff3856 1295
d899e052
YZ
1296 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1297 struct extent_map *em;
1298 struct extent_map_tree *em_tree;
1299 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1300 em = alloc_extent_map();
79787eaa 1301 BUG_ON(!em); /* -ENOMEM */
d899e052 1302 em->start = cur_offset;
445a6944 1303 em->orig_start = em->start;
d899e052
YZ
1304 em->len = num_bytes;
1305 em->block_len = num_bytes;
1306 em->block_start = disk_bytenr;
1307 em->bdev = root->fs_info->fs_devices->latest_bdev;
1308 set_bit(EXTENT_FLAG_PINNED, &em->flags);
4e2f84e6 1309 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
d899e052 1310 while (1) {
890871be 1311 write_lock(&em_tree->lock);
d899e052 1312 ret = add_extent_mapping(em_tree, em);
890871be 1313 write_unlock(&em_tree->lock);
d899e052
YZ
1314 if (ret != -EEXIST) {
1315 free_extent_map(em);
1316 break;
1317 }
1318 btrfs_drop_extent_cache(inode, em->start,
1319 em->start + em->len - 1, 0);
1320 }
1321 type = BTRFS_ORDERED_PREALLOC;
1322 } else {
1323 type = BTRFS_ORDERED_NOCOW;
1324 }
80ff3856
YZ
1325
1326 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1327 num_bytes, num_bytes, type);
79787eaa 1328 BUG_ON(ret); /* -ENOMEM */
771ed689 1329
efa56464
YZ
1330 if (root->root_key.objectid ==
1331 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1332 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1333 num_bytes);
79787eaa
JM
1334 if (ret) {
1335 btrfs_abort_transaction(trans, root, ret);
1336 goto error;
1337 }
efa56464
YZ
1338 }
1339
d899e052 1340 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1341 cur_offset, cur_offset + num_bytes - 1,
1342 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1343 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1344 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1345 cur_offset = extent_end;
1346 if (cur_offset > end)
1347 break;
be20aa9d 1348 }
b3b4aa74 1349 btrfs_release_path(path);
80ff3856 1350
17ca04af 1351 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1352 cow_start = cur_offset;
17ca04af
JB
1353 cur_offset = end;
1354 }
1355
80ff3856
YZ
1356 if (cow_start != (u64)-1) {
1357 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1358 page_started, nr_written, 1);
79787eaa
JM
1359 if (ret) {
1360 btrfs_abort_transaction(trans, root, ret);
1361 goto error;
1362 }
80ff3856
YZ
1363 }
1364
79787eaa 1365error:
0cb59c99 1366 if (nolock) {
79787eaa 1367 err = btrfs_end_transaction_nolock(trans, root);
0cb59c99 1368 } else {
79787eaa 1369 err = btrfs_end_transaction(trans, root);
0cb59c99 1370 }
79787eaa
JM
1371 if (!ret)
1372 ret = err;
1373
17ca04af
JB
1374 if (ret && cur_offset < end)
1375 extent_clear_unlock_delalloc(inode,
1376 &BTRFS_I(inode)->io_tree,
1377 cur_offset, end, locked_page,
1378 EXTENT_CLEAR_UNLOCK_PAGE |
1379 EXTENT_CLEAR_UNLOCK |
1380 EXTENT_CLEAR_DELALLOC |
1381 EXTENT_CLEAR_DIRTY |
1382 EXTENT_SET_WRITEBACK |
1383 EXTENT_END_WRITEBACK);
1384
7ea394f1 1385 btrfs_free_path(path);
79787eaa 1386 return ret;
be20aa9d
CM
1387}
1388
d352ac68
CM
1389/*
1390 * extent_io.c call back to do delayed allocation processing
1391 */
c8b97818 1392static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1393 u64 start, u64 end, int *page_started,
1394 unsigned long *nr_written)
be20aa9d 1395{
be20aa9d 1396 int ret;
7f366cfe 1397 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1398
7ddf5a42 1399 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1400 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1401 page_started, 1, nr_written);
7ddf5a42 1402 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1403 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1404 page_started, 0, nr_written);
7ddf5a42
JB
1405 } else if (!btrfs_test_opt(root, COMPRESS) &&
1406 !(BTRFS_I(inode)->force_compress) &&
1407 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1408 ret = cow_file_range(inode, locked_page, start, end,
1409 page_started, nr_written, 1);
7ddf5a42
JB
1410 } else {
1411 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1412 &BTRFS_I(inode)->runtime_flags);
771ed689 1413 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1414 page_started, nr_written);
7ddf5a42 1415 }
b888db2b
CM
1416 return ret;
1417}
1418
1bf85046
JM
1419static void btrfs_split_extent_hook(struct inode *inode,
1420 struct extent_state *orig, u64 split)
9ed74f2d 1421{
0ca1f7ce 1422 /* not delalloc, ignore it */
9ed74f2d 1423 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1424 return;
9ed74f2d 1425
9e0baf60
JB
1426 spin_lock(&BTRFS_I(inode)->lock);
1427 BTRFS_I(inode)->outstanding_extents++;
1428 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1429}
1430
1431/*
1432 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1433 * extents so we can keep track of new extents that are just merged onto old
1434 * extents, such as when we are doing sequential writes, so we can properly
1435 * account for the metadata space we'll need.
1436 */
1bf85046
JM
1437static void btrfs_merge_extent_hook(struct inode *inode,
1438 struct extent_state *new,
1439 struct extent_state *other)
9ed74f2d 1440{
9ed74f2d
JB
1441 /* not delalloc, ignore it */
1442 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1443 return;
9ed74f2d 1444
9e0baf60
JB
1445 spin_lock(&BTRFS_I(inode)->lock);
1446 BTRFS_I(inode)->outstanding_extents--;
1447 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1448}
1449
d352ac68
CM
1450/*
1451 * extent_io.c set_bit_hook, used to track delayed allocation
1452 * bytes in this file, and to maintain the list of inodes that
1453 * have pending delalloc work to be done.
1454 */
1bf85046
JM
1455static void btrfs_set_bit_hook(struct inode *inode,
1456 struct extent_state *state, int *bits)
291d673e 1457{
9ed74f2d 1458
75eff68e
CM
1459 /*
1460 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1461 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1462 * bit, which is only set or cleared with irqs on
1463 */
0ca1f7ce 1464 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1465 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1466 u64 len = state->end + 1 - state->start;
83eea1f1 1467 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1468
9e0baf60 1469 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1470 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1471 } else {
1472 spin_lock(&BTRFS_I(inode)->lock);
1473 BTRFS_I(inode)->outstanding_extents++;
1474 spin_unlock(&BTRFS_I(inode)->lock);
1475 }
287a0ab9 1476
75eff68e 1477 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1478 BTRFS_I(inode)->delalloc_bytes += len;
1479 root->fs_info->delalloc_bytes += len;
0cb59c99 1480 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1481 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1482 &root->fs_info->delalloc_inodes);
1483 }
75eff68e 1484 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1485 }
291d673e
CM
1486}
1487
d352ac68
CM
1488/*
1489 * extent_io.c clear_bit_hook, see set_bit_hook for why
1490 */
1bf85046
JM
1491static void btrfs_clear_bit_hook(struct inode *inode,
1492 struct extent_state *state, int *bits)
291d673e 1493{
75eff68e
CM
1494 /*
1495 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1496 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1497 * bit, which is only set or cleared with irqs on
1498 */
0ca1f7ce 1499 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1500 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1501 u64 len = state->end + 1 - state->start;
83eea1f1 1502 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1503
9e0baf60 1504 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1505 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1506 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1507 spin_lock(&BTRFS_I(inode)->lock);
1508 BTRFS_I(inode)->outstanding_extents--;
1509 spin_unlock(&BTRFS_I(inode)->lock);
1510 }
0ca1f7ce
YZ
1511
1512 if (*bits & EXTENT_DO_ACCOUNTING)
1513 btrfs_delalloc_release_metadata(inode, len);
1514
0cb59c99
JB
1515 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1516 && do_list)
0ca1f7ce 1517 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1518
75eff68e 1519 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1520 root->fs_info->delalloc_bytes -= len;
1521 BTRFS_I(inode)->delalloc_bytes -= len;
1522
0cb59c99 1523 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1524 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1525 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1526 }
75eff68e 1527 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1528 }
291d673e
CM
1529}
1530
d352ac68
CM
1531/*
1532 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1533 * we don't create bios that span stripes or chunks
1534 */
239b14b3 1535int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1536 size_t size, struct bio *bio,
1537 unsigned long bio_flags)
239b14b3
CM
1538{
1539 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1540 struct btrfs_mapping_tree *map_tree;
a62b9401 1541 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1542 u64 length = 0;
1543 u64 map_length;
239b14b3
CM
1544 int ret;
1545
771ed689
CM
1546 if (bio_flags & EXTENT_BIO_COMPRESSED)
1547 return 0;
1548
f2d8d74d 1549 length = bio->bi_size;
239b14b3
CM
1550 map_tree = &root->fs_info->mapping_tree;
1551 map_length = length;
cea9e445 1552 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1553 &map_length, NULL, 0);
3444a972
JM
1554 /* Will always return 0 or 1 with map_multi == NULL */
1555 BUG_ON(ret < 0);
d397712b 1556 if (map_length < length + size)
239b14b3 1557 return 1;
3444a972 1558 return 0;
239b14b3
CM
1559}
1560
d352ac68
CM
1561/*
1562 * in order to insert checksums into the metadata in large chunks,
1563 * we wait until bio submission time. All the pages in the bio are
1564 * checksummed and sums are attached onto the ordered extent record.
1565 *
1566 * At IO completion time the cums attached on the ordered extent record
1567 * are inserted into the btree
1568 */
d397712b
CM
1569static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1570 struct bio *bio, int mirror_num,
eaf25d93
CM
1571 unsigned long bio_flags,
1572 u64 bio_offset)
065631f6 1573{
065631f6 1574 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1575 int ret = 0;
e015640f 1576
d20f7043 1577 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1578 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1579 return 0;
1580}
e015640f 1581
4a69a410
CM
1582/*
1583 * in order to insert checksums into the metadata in large chunks,
1584 * we wait until bio submission time. All the pages in the bio are
1585 * checksummed and sums are attached onto the ordered extent record.
1586 *
1587 * At IO completion time the cums attached on the ordered extent record
1588 * are inserted into the btree
1589 */
b2950863 1590static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1591 int mirror_num, unsigned long bio_flags,
1592 u64 bio_offset)
4a69a410
CM
1593{
1594 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1595 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1596}
1597
d352ac68 1598/*
cad321ad
CM
1599 * extent_io.c submission hook. This does the right thing for csum calculation
1600 * on write, or reading the csums from the tree before a read
d352ac68 1601 */
b2950863 1602static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1603 int mirror_num, unsigned long bio_flags,
1604 u64 bio_offset)
44b8bd7e
CM
1605{
1606 struct btrfs_root *root = BTRFS_I(inode)->root;
1607 int ret = 0;
19b9bdb0 1608 int skip_sum;
0417341e 1609 int metadata = 0;
44b8bd7e 1610
6cbff00f 1611 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1612
83eea1f1 1613 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1614 metadata = 2;
1615
7b6d91da 1616 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1617 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1618 if (ret)
1619 return ret;
1620
d20f7043 1621 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1622 return btrfs_submit_compressed_read(inode, bio,
1623 mirror_num, bio_flags);
c2db1073
TI
1624 } else if (!skip_sum) {
1625 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1626 if (ret)
1627 return ret;
1628 }
4d1b5fb4 1629 goto mapit;
19b9bdb0 1630 } else if (!skip_sum) {
17d217fe
YZ
1631 /* csum items have already been cloned */
1632 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1633 goto mapit;
19b9bdb0
CM
1634 /* we're doing a write, do the async checksumming */
1635 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1636 inode, rw, bio, mirror_num,
eaf25d93
CM
1637 bio_flags, bio_offset,
1638 __btrfs_submit_bio_start,
4a69a410 1639 __btrfs_submit_bio_done);
19b9bdb0
CM
1640 }
1641
0b86a832 1642mapit:
8b712842 1643 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1644}
6885f308 1645
d352ac68
CM
1646/*
1647 * given a list of ordered sums record them in the inode. This happens
1648 * at IO completion time based on sums calculated at bio submission time.
1649 */
ba1da2f4 1650static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1651 struct inode *inode, u64 file_offset,
1652 struct list_head *list)
1653{
e6dcd2dc
CM
1654 struct btrfs_ordered_sum *sum;
1655
c6e30871 1656 list_for_each_entry(sum, list, list) {
d20f7043
CM
1657 btrfs_csum_file_blocks(trans,
1658 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1659 }
1660 return 0;
1661}
1662
2ac55d41
JB
1663int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1664 struct extent_state **cached_state)
ea8c2819 1665{
d397712b 1666 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1667 WARN_ON(1);
ea8c2819 1668 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1669 cached_state, GFP_NOFS);
ea8c2819
CM
1670}
1671
d352ac68 1672/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1673struct btrfs_writepage_fixup {
1674 struct page *page;
1675 struct btrfs_work work;
1676};
1677
b2950863 1678static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1679{
1680 struct btrfs_writepage_fixup *fixup;
1681 struct btrfs_ordered_extent *ordered;
2ac55d41 1682 struct extent_state *cached_state = NULL;
247e743c
CM
1683 struct page *page;
1684 struct inode *inode;
1685 u64 page_start;
1686 u64 page_end;
87826df0 1687 int ret;
247e743c
CM
1688
1689 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1690 page = fixup->page;
4a096752 1691again:
247e743c
CM
1692 lock_page(page);
1693 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1694 ClearPageChecked(page);
1695 goto out_page;
1696 }
1697
1698 inode = page->mapping->host;
1699 page_start = page_offset(page);
1700 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1701
2ac55d41 1702 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1703 &cached_state);
4a096752
CM
1704
1705 /* already ordered? We're done */
8b62b72b 1706 if (PagePrivate2(page))
247e743c 1707 goto out;
4a096752
CM
1708
1709 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1710 if (ordered) {
2ac55d41
JB
1711 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1712 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1713 unlock_page(page);
1714 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1715 btrfs_put_ordered_extent(ordered);
4a096752
CM
1716 goto again;
1717 }
247e743c 1718
87826df0
JM
1719 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1720 if (ret) {
1721 mapping_set_error(page->mapping, ret);
1722 end_extent_writepage(page, ret, page_start, page_end);
1723 ClearPageChecked(page);
1724 goto out;
1725 }
1726
2ac55d41 1727 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1728 ClearPageChecked(page);
87826df0 1729 set_page_dirty(page);
247e743c 1730out:
2ac55d41
JB
1731 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1732 &cached_state, GFP_NOFS);
247e743c
CM
1733out_page:
1734 unlock_page(page);
1735 page_cache_release(page);
b897abec 1736 kfree(fixup);
247e743c
CM
1737}
1738
1739/*
1740 * There are a few paths in the higher layers of the kernel that directly
1741 * set the page dirty bit without asking the filesystem if it is a
1742 * good idea. This causes problems because we want to make sure COW
1743 * properly happens and the data=ordered rules are followed.
1744 *
c8b97818 1745 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1746 * hasn't been properly setup for IO. We kick off an async process
1747 * to fix it up. The async helper will wait for ordered extents, set
1748 * the delalloc bit and make it safe to write the page.
1749 */
b2950863 1750static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1751{
1752 struct inode *inode = page->mapping->host;
1753 struct btrfs_writepage_fixup *fixup;
1754 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1755
8b62b72b
CM
1756 /* this page is properly in the ordered list */
1757 if (TestClearPagePrivate2(page))
247e743c
CM
1758 return 0;
1759
1760 if (PageChecked(page))
1761 return -EAGAIN;
1762
1763 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1764 if (!fixup)
1765 return -EAGAIN;
f421950f 1766
247e743c
CM
1767 SetPageChecked(page);
1768 page_cache_get(page);
1769 fixup->work.func = btrfs_writepage_fixup_worker;
1770 fixup->page = page;
1771 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1772 return -EBUSY;
247e743c
CM
1773}
1774
d899e052
YZ
1775static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1776 struct inode *inode, u64 file_pos,
1777 u64 disk_bytenr, u64 disk_num_bytes,
1778 u64 num_bytes, u64 ram_bytes,
1779 u8 compression, u8 encryption,
1780 u16 other_encoding, int extent_type)
1781{
1782 struct btrfs_root *root = BTRFS_I(inode)->root;
1783 struct btrfs_file_extent_item *fi;
1784 struct btrfs_path *path;
1785 struct extent_buffer *leaf;
1786 struct btrfs_key ins;
d899e052
YZ
1787 int ret;
1788
1789 path = btrfs_alloc_path();
d8926bb3
MF
1790 if (!path)
1791 return -ENOMEM;
d899e052 1792
b9473439 1793 path->leave_spinning = 1;
a1ed835e
CM
1794
1795 /*
1796 * we may be replacing one extent in the tree with another.
1797 * The new extent is pinned in the extent map, and we don't want
1798 * to drop it from the cache until it is completely in the btree.
1799 *
1800 * So, tell btrfs_drop_extents to leave this extent in the cache.
1801 * the caller is expected to unpin it and allow it to be merged
1802 * with the others.
1803 */
5dc562c5 1804 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1805 file_pos + num_bytes, 0);
79787eaa
JM
1806 if (ret)
1807 goto out;
d899e052 1808
33345d01 1809 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1810 ins.offset = file_pos;
1811 ins.type = BTRFS_EXTENT_DATA_KEY;
1812 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1813 if (ret)
1814 goto out;
d899e052
YZ
1815 leaf = path->nodes[0];
1816 fi = btrfs_item_ptr(leaf, path->slots[0],
1817 struct btrfs_file_extent_item);
1818 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1819 btrfs_set_file_extent_type(leaf, fi, extent_type);
1820 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1821 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1822 btrfs_set_file_extent_offset(leaf, fi, 0);
1823 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1824 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1825 btrfs_set_file_extent_compression(leaf, fi, compression);
1826 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1827 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1828
1829 btrfs_unlock_up_safe(path, 1);
1830 btrfs_set_lock_blocking(leaf);
1831
d899e052
YZ
1832 btrfs_mark_buffer_dirty(leaf);
1833
1834 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1835
1836 ins.objectid = disk_bytenr;
1837 ins.offset = disk_num_bytes;
1838 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1839 ret = btrfs_alloc_reserved_file_extent(trans, root,
1840 root->root_key.objectid,
33345d01 1841 btrfs_ino(inode), file_pos, &ins);
79787eaa 1842out:
d899e052 1843 btrfs_free_path(path);
b9473439 1844
79787eaa 1845 return ret;
d899e052
YZ
1846}
1847
5d13a98f
CM
1848/*
1849 * helper function for btrfs_finish_ordered_io, this
1850 * just reads in some of the csum leaves to prime them into ram
1851 * before we start the transaction. It limits the amount of btree
1852 * reads required while inside the transaction.
1853 */
d352ac68
CM
1854/* as ordered data IO finishes, this gets called so we can finish
1855 * an ordered extent if the range of bytes in the file it covers are
1856 * fully written.
1857 */
5fd02043 1858static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 1859{
5fd02043 1860 struct inode *inode = ordered_extent->inode;
e6dcd2dc 1861 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1862 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 1863 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1864 struct extent_state *cached_state = NULL;
261507a0 1865 int compress_type = 0;
e6dcd2dc 1866 int ret;
82d5902d 1867 bool nolock;
e6dcd2dc 1868
83eea1f1 1869 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 1870
5fd02043
JB
1871 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1872 ret = -EIO;
1873 goto out;
1874 }
1875
c2167754 1876 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1877 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
c2167754
YZ
1878 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1879 if (!ret) {
0cb59c99 1880 if (nolock)
7a7eaa40 1881 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1882 else
7a7eaa40 1883 trans = btrfs_join_transaction(root);
d280e5be
LB
1884 if (IS_ERR(trans)) {
1885 ret = PTR_ERR(trans);
1886 trans = NULL;
1887 goto out;
1888 }
0ca1f7ce 1889 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1890 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1891 if (ret) /* -ENOMEM or corruption */
1892 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1893 }
1894 goto out;
1895 }
e6dcd2dc 1896
2ac55d41
JB
1897 lock_extent_bits(io_tree, ordered_extent->file_offset,
1898 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1899 0, &cached_state);
e6dcd2dc 1900
0cb59c99 1901 if (nolock)
7a7eaa40 1902 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1903 else
7a7eaa40 1904 trans = btrfs_join_transaction(root);
79787eaa
JM
1905 if (IS_ERR(trans)) {
1906 ret = PTR_ERR(trans);
1907 trans = NULL;
1908 goto out_unlock;
1909 }
0ca1f7ce 1910 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1911
c8b97818 1912 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1913 compress_type = ordered_extent->compress_type;
d899e052 1914 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1915 BUG_ON(compress_type);
920bbbfb 1916 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1917 ordered_extent->file_offset,
1918 ordered_extent->file_offset +
1919 ordered_extent->len);
d899e052 1920 } else {
0af3d00b 1921 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1922 ret = insert_reserved_file_extent(trans, inode,
1923 ordered_extent->file_offset,
1924 ordered_extent->start,
1925 ordered_extent->disk_len,
1926 ordered_extent->len,
1927 ordered_extent->len,
261507a0 1928 compress_type, 0, 0,
d899e052 1929 BTRFS_FILE_EXTENT_REG);
d899e052 1930 }
5dc562c5
JB
1931 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1932 ordered_extent->file_offset, ordered_extent->len,
1933 trans->transid);
79787eaa
JM
1934 if (ret < 0) {
1935 btrfs_abort_transaction(trans, root, ret);
5fd02043 1936 goto out_unlock;
79787eaa 1937 }
2ac55d41 1938
e6dcd2dc
CM
1939 add_pending_csums(trans, inode, ordered_extent->file_offset,
1940 &ordered_extent->list);
1941
1ef30be1 1942 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1943 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1944 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1945 if (ret) { /* -ENOMEM or corruption */
1946 btrfs_abort_transaction(trans, root, ret);
5fd02043 1947 goto out_unlock;
79787eaa 1948 }
7c735313
JB
1949 } else {
1950 btrfs_set_inode_last_trans(trans, inode);
1ef30be1
JB
1951 }
1952 ret = 0;
5fd02043
JB
1953out_unlock:
1954 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1955 ordered_extent->file_offset +
1956 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 1957out:
5b0e95bf 1958 if (root != root->fs_info->tree_root)
0cb59c99 1959 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
5b0e95bf
JB
1960 if (trans) {
1961 if (nolock)
0cb59c99 1962 btrfs_end_transaction_nolock(trans, root);
5b0e95bf 1963 else
0cb59c99
JB
1964 btrfs_end_transaction(trans, root);
1965 }
1966
5fd02043
JB
1967 if (ret)
1968 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1969 ordered_extent->file_offset +
1970 ordered_extent->len - 1, NULL, GFP_NOFS);
1971
1972 /*
1973 * This needs to be dont to make sure anybody waiting knows we are done
1974 * upating everything for this ordered extent.
1975 */
1976 btrfs_remove_ordered_extent(inode, ordered_extent);
1977
e6dcd2dc
CM
1978 /* once for us */
1979 btrfs_put_ordered_extent(ordered_extent);
1980 /* once for the tree */
1981 btrfs_put_ordered_extent(ordered_extent);
1982
5fd02043
JB
1983 return ret;
1984}
1985
1986static void finish_ordered_fn(struct btrfs_work *work)
1987{
1988 struct btrfs_ordered_extent *ordered_extent;
1989 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1990 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
1991}
1992
b2950863 1993static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1994 struct extent_state *state, int uptodate)
1995{
5fd02043
JB
1996 struct inode *inode = page->mapping->host;
1997 struct btrfs_root *root = BTRFS_I(inode)->root;
1998 struct btrfs_ordered_extent *ordered_extent = NULL;
1999 struct btrfs_workers *workers;
2000
1abe9b8a 2001 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2002
8b62b72b 2003 ClearPagePrivate2(page);
5fd02043
JB
2004 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2005 end - start + 1, uptodate))
2006 return 0;
2007
2008 ordered_extent->work.func = finish_ordered_fn;
2009 ordered_extent->work.flags = 0;
2010
83eea1f1 2011 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2012 workers = &root->fs_info->endio_freespace_worker;
2013 else
2014 workers = &root->fs_info->endio_write_workers;
2015 btrfs_queue_worker(workers, &ordered_extent->work);
2016
2017 return 0;
211f90e6
CM
2018}
2019
d352ac68
CM
2020/*
2021 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2022 * if there's a match, we allow the bio to finish. If not, the code in
2023 * extent_io.c will try to find good copies for us.
d352ac68 2024 */
b2950863 2025static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2026 struct extent_state *state, int mirror)
07157aac 2027{
35ebb934 2028 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 2029 struct inode *inode = page->mapping->host;
d1310b2e 2030 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2031 char *kaddr;
aadfeb6e 2032 u64 private = ~(u32)0;
07157aac 2033 int ret;
ff79f819
CM
2034 struct btrfs_root *root = BTRFS_I(inode)->root;
2035 u32 csum = ~(u32)0;
d1310b2e 2036
d20f7043
CM
2037 if (PageChecked(page)) {
2038 ClearPageChecked(page);
2039 goto good;
2040 }
6cbff00f
CH
2041
2042 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2043 goto good;
17d217fe
YZ
2044
2045 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2046 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2047 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2048 GFP_NOFS);
b6cda9bc 2049 return 0;
17d217fe 2050 }
d20f7043 2051
c2e639f0 2052 if (state && state->start == start) {
70dec807
CM
2053 private = state->private;
2054 ret = 0;
2055 } else {
2056 ret = get_state_private(io_tree, start, &private);
2057 }
7ac687d9 2058 kaddr = kmap_atomic(page);
d397712b 2059 if (ret)
07157aac 2060 goto zeroit;
d397712b 2061
ff79f819
CM
2062 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2063 btrfs_csum_final(csum, (char *)&csum);
d397712b 2064 if (csum != private)
07157aac 2065 goto zeroit;
d397712b 2066
7ac687d9 2067 kunmap_atomic(kaddr);
d20f7043 2068good:
07157aac
CM
2069 return 0;
2070
2071zeroit:
945d8962 2072 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2073 "private %llu\n",
2074 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2075 (unsigned long long)start, csum,
2076 (unsigned long long)private);
db94535d
CM
2077 memset(kaddr + offset, 1, end - start + 1);
2078 flush_dcache_page(page);
7ac687d9 2079 kunmap_atomic(kaddr);
3b951516
CM
2080 if (private == 0)
2081 return 0;
7e38326f 2082 return -EIO;
07157aac 2083}
b888db2b 2084
24bbcf04
YZ
2085struct delayed_iput {
2086 struct list_head list;
2087 struct inode *inode;
2088};
2089
79787eaa
JM
2090/* JDM: If this is fs-wide, why can't we add a pointer to
2091 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2092void btrfs_add_delayed_iput(struct inode *inode)
2093{
2094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2095 struct delayed_iput *delayed;
2096
2097 if (atomic_add_unless(&inode->i_count, -1, 1))
2098 return;
2099
2100 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2101 delayed->inode = inode;
2102
2103 spin_lock(&fs_info->delayed_iput_lock);
2104 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2105 spin_unlock(&fs_info->delayed_iput_lock);
2106}
2107
2108void btrfs_run_delayed_iputs(struct btrfs_root *root)
2109{
2110 LIST_HEAD(list);
2111 struct btrfs_fs_info *fs_info = root->fs_info;
2112 struct delayed_iput *delayed;
2113 int empty;
2114
2115 spin_lock(&fs_info->delayed_iput_lock);
2116 empty = list_empty(&fs_info->delayed_iputs);
2117 spin_unlock(&fs_info->delayed_iput_lock);
2118 if (empty)
2119 return;
2120
2121 down_read(&root->fs_info->cleanup_work_sem);
2122 spin_lock(&fs_info->delayed_iput_lock);
2123 list_splice_init(&fs_info->delayed_iputs, &list);
2124 spin_unlock(&fs_info->delayed_iput_lock);
2125
2126 while (!list_empty(&list)) {
2127 delayed = list_entry(list.next, struct delayed_iput, list);
2128 list_del(&delayed->list);
2129 iput(delayed->inode);
2130 kfree(delayed);
2131 }
2132 up_read(&root->fs_info->cleanup_work_sem);
2133}
2134
d68fc57b
YZ
2135enum btrfs_orphan_cleanup_state {
2136 ORPHAN_CLEANUP_STARTED = 1,
2137 ORPHAN_CLEANUP_DONE = 2,
2138};
2139
2140/*
42b2aa86 2141 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2142 * files in the subvolume, it removes orphan item and frees block_rsv
2143 * structure.
2144 */
2145void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2146 struct btrfs_root *root)
2147{
90290e19 2148 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2149 int ret;
2150
8a35d95f 2151 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2152 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2153 return;
2154
90290e19 2155 spin_lock(&root->orphan_lock);
8a35d95f 2156 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2157 spin_unlock(&root->orphan_lock);
2158 return;
2159 }
2160
2161 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2162 spin_unlock(&root->orphan_lock);
2163 return;
2164 }
2165
2166 block_rsv = root->orphan_block_rsv;
2167 root->orphan_block_rsv = NULL;
2168 spin_unlock(&root->orphan_lock);
2169
d68fc57b
YZ
2170 if (root->orphan_item_inserted &&
2171 btrfs_root_refs(&root->root_item) > 0) {
2172 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2173 root->root_key.objectid);
2174 BUG_ON(ret);
2175 root->orphan_item_inserted = 0;
2176 }
2177
90290e19
JB
2178 if (block_rsv) {
2179 WARN_ON(block_rsv->size > 0);
2180 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2181 }
2182}
2183
7b128766
JB
2184/*
2185 * This creates an orphan entry for the given inode in case something goes
2186 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2187 *
2188 * NOTE: caller of this function should reserve 5 units of metadata for
2189 * this function.
7b128766
JB
2190 */
2191int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2192{
2193 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2194 struct btrfs_block_rsv *block_rsv = NULL;
2195 int reserve = 0;
2196 int insert = 0;
2197 int ret;
7b128766 2198
d68fc57b
YZ
2199 if (!root->orphan_block_rsv) {
2200 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2201 if (!block_rsv)
2202 return -ENOMEM;
d68fc57b 2203 }
7b128766 2204
d68fc57b
YZ
2205 spin_lock(&root->orphan_lock);
2206 if (!root->orphan_block_rsv) {
2207 root->orphan_block_rsv = block_rsv;
2208 } else if (block_rsv) {
2209 btrfs_free_block_rsv(root, block_rsv);
2210 block_rsv = NULL;
7b128766 2211 }
7b128766 2212
8a35d95f
JB
2213 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2214 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2215#if 0
2216 /*
2217 * For proper ENOSPC handling, we should do orphan
2218 * cleanup when mounting. But this introduces backward
2219 * compatibility issue.
2220 */
2221 if (!xchg(&root->orphan_item_inserted, 1))
2222 insert = 2;
2223 else
2224 insert = 1;
2225#endif
2226 insert = 1;
321f0e70 2227 atomic_inc(&root->orphan_inodes);
7b128766
JB
2228 }
2229
72ac3c0d
JB
2230 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2231 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2232 reserve = 1;
d68fc57b 2233 spin_unlock(&root->orphan_lock);
7b128766 2234
d68fc57b
YZ
2235 /* grab metadata reservation from transaction handle */
2236 if (reserve) {
2237 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2238 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2239 }
7b128766 2240
d68fc57b
YZ
2241 /* insert an orphan item to track this unlinked/truncated file */
2242 if (insert >= 1) {
33345d01 2243 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2244 if (ret && ret != -EEXIST) {
8a35d95f
JB
2245 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2246 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2247 btrfs_abort_transaction(trans, root, ret);
2248 return ret;
2249 }
2250 ret = 0;
d68fc57b
YZ
2251 }
2252
2253 /* insert an orphan item to track subvolume contains orphan files */
2254 if (insert >= 2) {
2255 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2256 root->root_key.objectid);
79787eaa
JM
2257 if (ret && ret != -EEXIST) {
2258 btrfs_abort_transaction(trans, root, ret);
2259 return ret;
2260 }
d68fc57b
YZ
2261 }
2262 return 0;
7b128766
JB
2263}
2264
2265/*
2266 * We have done the truncate/delete so we can go ahead and remove the orphan
2267 * item for this particular inode.
2268 */
2269int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2270{
2271 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2272 int delete_item = 0;
2273 int release_rsv = 0;
7b128766
JB
2274 int ret = 0;
2275
d68fc57b 2276 spin_lock(&root->orphan_lock);
8a35d95f
JB
2277 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2278 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2279 delete_item = 1;
7b128766 2280
72ac3c0d
JB
2281 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2282 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2283 release_rsv = 1;
d68fc57b 2284 spin_unlock(&root->orphan_lock);
7b128766 2285
d68fc57b 2286 if (trans && delete_item) {
33345d01 2287 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2288 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2289 }
7b128766 2290
8a35d95f 2291 if (release_rsv) {
d68fc57b 2292 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
2293 atomic_dec(&root->orphan_inodes);
2294 }
7b128766 2295
d68fc57b 2296 return 0;
7b128766
JB
2297}
2298
2299/*
2300 * this cleans up any orphans that may be left on the list from the last use
2301 * of this root.
2302 */
66b4ffd1 2303int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2304{
2305 struct btrfs_path *path;
2306 struct extent_buffer *leaf;
7b128766
JB
2307 struct btrfs_key key, found_key;
2308 struct btrfs_trans_handle *trans;
2309 struct inode *inode;
8f6d7f4f 2310 u64 last_objectid = 0;
7b128766
JB
2311 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2312
d68fc57b 2313 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2314 return 0;
c71bf099
YZ
2315
2316 path = btrfs_alloc_path();
66b4ffd1
JB
2317 if (!path) {
2318 ret = -ENOMEM;
2319 goto out;
2320 }
7b128766
JB
2321 path->reada = -1;
2322
2323 key.objectid = BTRFS_ORPHAN_OBJECTID;
2324 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2325 key.offset = (u64)-1;
2326
7b128766
JB
2327 while (1) {
2328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2329 if (ret < 0)
2330 goto out;
7b128766
JB
2331
2332 /*
2333 * if ret == 0 means we found what we were searching for, which
25985edc 2334 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2335 * find the key and see if we have stuff that matches
2336 */
2337 if (ret > 0) {
66b4ffd1 2338 ret = 0;
7b128766
JB
2339 if (path->slots[0] == 0)
2340 break;
2341 path->slots[0]--;
2342 }
2343
2344 /* pull out the item */
2345 leaf = path->nodes[0];
7b128766
JB
2346 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2347
2348 /* make sure the item matches what we want */
2349 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2350 break;
2351 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2352 break;
2353
2354 /* release the path since we're done with it */
b3b4aa74 2355 btrfs_release_path(path);
7b128766
JB
2356
2357 /*
2358 * this is where we are basically btrfs_lookup, without the
2359 * crossing root thing. we store the inode number in the
2360 * offset of the orphan item.
2361 */
8f6d7f4f
JB
2362
2363 if (found_key.offset == last_objectid) {
2364 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2365 "stopping orphan cleanup\n");
2366 ret = -EINVAL;
2367 goto out;
2368 }
2369
2370 last_objectid = found_key.offset;
2371
5d4f98a2
YZ
2372 found_key.objectid = found_key.offset;
2373 found_key.type = BTRFS_INODE_ITEM_KEY;
2374 found_key.offset = 0;
73f73415 2375 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2376 ret = PTR_RET(inode);
2377 if (ret && ret != -ESTALE)
66b4ffd1 2378 goto out;
7b128766 2379
f8e9e0b0
AJ
2380 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2381 struct btrfs_root *dead_root;
2382 struct btrfs_fs_info *fs_info = root->fs_info;
2383 int is_dead_root = 0;
2384
2385 /*
2386 * this is an orphan in the tree root. Currently these
2387 * could come from 2 sources:
2388 * a) a snapshot deletion in progress
2389 * b) a free space cache inode
2390 * We need to distinguish those two, as the snapshot
2391 * orphan must not get deleted.
2392 * find_dead_roots already ran before us, so if this
2393 * is a snapshot deletion, we should find the root
2394 * in the dead_roots list
2395 */
2396 spin_lock(&fs_info->trans_lock);
2397 list_for_each_entry(dead_root, &fs_info->dead_roots,
2398 root_list) {
2399 if (dead_root->root_key.objectid ==
2400 found_key.objectid) {
2401 is_dead_root = 1;
2402 break;
2403 }
2404 }
2405 spin_unlock(&fs_info->trans_lock);
2406 if (is_dead_root) {
2407 /* prevent this orphan from being found again */
2408 key.offset = found_key.objectid - 1;
2409 continue;
2410 }
2411 }
7b128766 2412 /*
a8c9e576
JB
2413 * Inode is already gone but the orphan item is still there,
2414 * kill the orphan item.
7b128766 2415 */
a8c9e576
JB
2416 if (ret == -ESTALE) {
2417 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2418 if (IS_ERR(trans)) {
2419 ret = PTR_ERR(trans);
2420 goto out;
2421 }
8a35d95f
JB
2422 printk(KERN_ERR "auto deleting %Lu\n",
2423 found_key.objectid);
a8c9e576
JB
2424 ret = btrfs_del_orphan_item(trans, root,
2425 found_key.objectid);
79787eaa 2426 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2427 btrfs_end_transaction(trans, root);
7b128766
JB
2428 continue;
2429 }
2430
a8c9e576
JB
2431 /*
2432 * add this inode to the orphan list so btrfs_orphan_del does
2433 * the proper thing when we hit it
2434 */
8a35d95f
JB
2435 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2436 &BTRFS_I(inode)->runtime_flags);
a8c9e576 2437
7b128766
JB
2438 /* if we have links, this was a truncate, lets do that */
2439 if (inode->i_nlink) {
a41ad394
JB
2440 if (!S_ISREG(inode->i_mode)) {
2441 WARN_ON(1);
2442 iput(inode);
2443 continue;
2444 }
7b128766 2445 nr_truncate++;
66b4ffd1 2446 ret = btrfs_truncate(inode);
7b128766
JB
2447 } else {
2448 nr_unlink++;
2449 }
2450
2451 /* this will do delete_inode and everything for us */
2452 iput(inode);
66b4ffd1
JB
2453 if (ret)
2454 goto out;
7b128766 2455 }
3254c876
MX
2456 /* release the path since we're done with it */
2457 btrfs_release_path(path);
2458
d68fc57b
YZ
2459 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2460
2461 if (root->orphan_block_rsv)
2462 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2463 (u64)-1);
2464
2465 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2466 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2467 if (!IS_ERR(trans))
2468 btrfs_end_transaction(trans, root);
d68fc57b 2469 }
7b128766
JB
2470
2471 if (nr_unlink)
2472 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2473 if (nr_truncate)
2474 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2475
2476out:
2477 if (ret)
2478 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2479 btrfs_free_path(path);
2480 return ret;
7b128766
JB
2481}
2482
46a53cca
CM
2483/*
2484 * very simple check to peek ahead in the leaf looking for xattrs. If we
2485 * don't find any xattrs, we know there can't be any acls.
2486 *
2487 * slot is the slot the inode is in, objectid is the objectid of the inode
2488 */
2489static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2490 int slot, u64 objectid)
2491{
2492 u32 nritems = btrfs_header_nritems(leaf);
2493 struct btrfs_key found_key;
2494 int scanned = 0;
2495
2496 slot++;
2497 while (slot < nritems) {
2498 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2499
2500 /* we found a different objectid, there must not be acls */
2501 if (found_key.objectid != objectid)
2502 return 0;
2503
2504 /* we found an xattr, assume we've got an acl */
2505 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2506 return 1;
2507
2508 /*
2509 * we found a key greater than an xattr key, there can't
2510 * be any acls later on
2511 */
2512 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2513 return 0;
2514
2515 slot++;
2516 scanned++;
2517
2518 /*
2519 * it goes inode, inode backrefs, xattrs, extents,
2520 * so if there are a ton of hard links to an inode there can
2521 * be a lot of backrefs. Don't waste time searching too hard,
2522 * this is just an optimization
2523 */
2524 if (scanned >= 8)
2525 break;
2526 }
2527 /* we hit the end of the leaf before we found an xattr or
2528 * something larger than an xattr. We have to assume the inode
2529 * has acls
2530 */
2531 return 1;
2532}
2533
d352ac68
CM
2534/*
2535 * read an inode from the btree into the in-memory inode
2536 */
5d4f98a2 2537static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2538{
2539 struct btrfs_path *path;
5f39d397 2540 struct extent_buffer *leaf;
39279cc3 2541 struct btrfs_inode_item *inode_item;
0b86a832 2542 struct btrfs_timespec *tspec;
39279cc3
CM
2543 struct btrfs_root *root = BTRFS_I(inode)->root;
2544 struct btrfs_key location;
46a53cca 2545 int maybe_acls;
618e21d5 2546 u32 rdev;
39279cc3 2547 int ret;
2f7e33d4
MX
2548 bool filled = false;
2549
2550 ret = btrfs_fill_inode(inode, &rdev);
2551 if (!ret)
2552 filled = true;
39279cc3
CM
2553
2554 path = btrfs_alloc_path();
1748f843
MF
2555 if (!path)
2556 goto make_bad;
2557
d90c7321 2558 path->leave_spinning = 1;
39279cc3 2559 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2560
39279cc3 2561 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2562 if (ret)
39279cc3 2563 goto make_bad;
39279cc3 2564
5f39d397 2565 leaf = path->nodes[0];
2f7e33d4
MX
2566
2567 if (filled)
2568 goto cache_acl;
2569
5f39d397
CM
2570 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2571 struct btrfs_inode_item);
5f39d397 2572 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2573 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
5f39d397
CM
2574 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2575 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2576 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2577
2578 tspec = btrfs_inode_atime(inode_item);
2579 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2580 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2581
2582 tspec = btrfs_inode_mtime(inode_item);
2583 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2584 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2585
2586 tspec = btrfs_inode_ctime(inode_item);
2587 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2588 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2589
a76a3cd4 2590 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2591 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
2592 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2593
2594 /*
2595 * If we were modified in the current generation and evicted from memory
2596 * and then re-read we need to do a full sync since we don't have any
2597 * idea about which extents were modified before we were evicted from
2598 * cache.
2599 */
2600 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2601 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2602 &BTRFS_I(inode)->runtime_flags);
2603
0c4d2d95 2604 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2605 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2606 inode->i_rdev = 0;
5f39d397
CM
2607 rdev = btrfs_inode_rdev(leaf, inode_item);
2608
aec7477b 2609 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2610 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2611cache_acl:
46a53cca
CM
2612 /*
2613 * try to precache a NULL acl entry for files that don't have
2614 * any xattrs or acls
2615 */
33345d01
LZ
2616 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2617 btrfs_ino(inode));
72c04902
AV
2618 if (!maybe_acls)
2619 cache_no_acl(inode);
46a53cca 2620
39279cc3 2621 btrfs_free_path(path);
39279cc3 2622
39279cc3 2623 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2624 case S_IFREG:
2625 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2626 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2627 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2628 inode->i_fop = &btrfs_file_operations;
2629 inode->i_op = &btrfs_file_inode_operations;
2630 break;
2631 case S_IFDIR:
2632 inode->i_fop = &btrfs_dir_file_operations;
2633 if (root == root->fs_info->tree_root)
2634 inode->i_op = &btrfs_dir_ro_inode_operations;
2635 else
2636 inode->i_op = &btrfs_dir_inode_operations;
2637 break;
2638 case S_IFLNK:
2639 inode->i_op = &btrfs_symlink_inode_operations;
2640 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2641 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2642 break;
618e21d5 2643 default:
0279b4cd 2644 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2645 init_special_inode(inode, inode->i_mode, rdev);
2646 break;
39279cc3 2647 }
6cbff00f
CH
2648
2649 btrfs_update_iflags(inode);
39279cc3
CM
2650 return;
2651
2652make_bad:
39279cc3 2653 btrfs_free_path(path);
39279cc3
CM
2654 make_bad_inode(inode);
2655}
2656
d352ac68
CM
2657/*
2658 * given a leaf and an inode, copy the inode fields into the leaf
2659 */
e02119d5
CM
2660static void fill_inode_item(struct btrfs_trans_handle *trans,
2661 struct extent_buffer *leaf,
5f39d397 2662 struct btrfs_inode_item *item,
39279cc3
CM
2663 struct inode *inode)
2664{
5f39d397
CM
2665 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2666 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2667 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2668 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2669 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2670
2671 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2672 inode->i_atime.tv_sec);
2673 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2674 inode->i_atime.tv_nsec);
2675
2676 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2677 inode->i_mtime.tv_sec);
2678 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2679 inode->i_mtime.tv_nsec);
2680
2681 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2682 inode->i_ctime.tv_sec);
2683 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2684 inode->i_ctime.tv_nsec);
2685
a76a3cd4 2686 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2687 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
0c4d2d95 2688 btrfs_set_inode_sequence(leaf, item, inode->i_version);
e02119d5 2689 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2690 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2691 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2692 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2693}
2694
d352ac68
CM
2695/*
2696 * copy everything in the in-memory inode into the btree.
2697 */
2115133f 2698static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2699 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2700{
2701 struct btrfs_inode_item *inode_item;
2702 struct btrfs_path *path;
5f39d397 2703 struct extent_buffer *leaf;
39279cc3
CM
2704 int ret;
2705
2706 path = btrfs_alloc_path();
16cdcec7
MX
2707 if (!path)
2708 return -ENOMEM;
2709
b9473439 2710 path->leave_spinning = 1;
16cdcec7
MX
2711 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2712 1);
39279cc3
CM
2713 if (ret) {
2714 if (ret > 0)
2715 ret = -ENOENT;
2716 goto failed;
2717 }
2718
b4ce94de 2719 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2720 leaf = path->nodes[0];
2721 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2722 struct btrfs_inode_item);
39279cc3 2723
e02119d5 2724 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2725 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2726 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2727 ret = 0;
2728failed:
39279cc3
CM
2729 btrfs_free_path(path);
2730 return ret;
2731}
2732
2115133f
CM
2733/*
2734 * copy everything in the in-memory inode into the btree.
2735 */
2736noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2737 struct btrfs_root *root, struct inode *inode)
2738{
2739 int ret;
2740
2741 /*
2742 * If the inode is a free space inode, we can deadlock during commit
2743 * if we put it into the delayed code.
2744 *
2745 * The data relocation inode should also be directly updated
2746 * without delay
2747 */
83eea1f1 2748 if (!btrfs_is_free_space_inode(inode)
2115133f 2749 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
2750 btrfs_update_root_times(trans, root);
2751
2115133f
CM
2752 ret = btrfs_delayed_update_inode(trans, root, inode);
2753 if (!ret)
2754 btrfs_set_inode_last_trans(trans, inode);
2755 return ret;
2756 }
2757
2758 return btrfs_update_inode_item(trans, root, inode);
2759}
2760
2761static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2762 struct btrfs_root *root, struct inode *inode)
2763{
2764 int ret;
2765
2766 ret = btrfs_update_inode(trans, root, inode);
2767 if (ret == -ENOSPC)
2768 return btrfs_update_inode_item(trans, root, inode);
2769 return ret;
2770}
2771
d352ac68
CM
2772/*
2773 * unlink helper that gets used here in inode.c and in the tree logging
2774 * recovery code. It remove a link in a directory with a given name, and
2775 * also drops the back refs in the inode to the directory
2776 */
92986796
AV
2777static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2778 struct btrfs_root *root,
2779 struct inode *dir, struct inode *inode,
2780 const char *name, int name_len)
39279cc3
CM
2781{
2782 struct btrfs_path *path;
39279cc3 2783 int ret = 0;
5f39d397 2784 struct extent_buffer *leaf;
39279cc3 2785 struct btrfs_dir_item *di;
5f39d397 2786 struct btrfs_key key;
aec7477b 2787 u64 index;
33345d01
LZ
2788 u64 ino = btrfs_ino(inode);
2789 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2790
2791 path = btrfs_alloc_path();
54aa1f4d
CM
2792 if (!path) {
2793 ret = -ENOMEM;
554233a6 2794 goto out;
54aa1f4d
CM
2795 }
2796
b9473439 2797 path->leave_spinning = 1;
33345d01 2798 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2799 name, name_len, -1);
2800 if (IS_ERR(di)) {
2801 ret = PTR_ERR(di);
2802 goto err;
2803 }
2804 if (!di) {
2805 ret = -ENOENT;
2806 goto err;
2807 }
5f39d397
CM
2808 leaf = path->nodes[0];
2809 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2810 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2811 if (ret)
2812 goto err;
b3b4aa74 2813 btrfs_release_path(path);
39279cc3 2814
33345d01
LZ
2815 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2816 dir_ino, &index);
aec7477b 2817 if (ret) {
d397712b 2818 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2819 "inode %llu parent %llu\n", name_len, name,
2820 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2821 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2822 goto err;
2823 }
2824
16cdcec7 2825 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2826 if (ret) {
2827 btrfs_abort_transaction(trans, root, ret);
39279cc3 2828 goto err;
79787eaa 2829 }
39279cc3 2830
e02119d5 2831 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2832 inode, dir_ino);
79787eaa
JM
2833 if (ret != 0 && ret != -ENOENT) {
2834 btrfs_abort_transaction(trans, root, ret);
2835 goto err;
2836 }
e02119d5
CM
2837
2838 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2839 dir, index);
6418c961
CM
2840 if (ret == -ENOENT)
2841 ret = 0;
39279cc3
CM
2842err:
2843 btrfs_free_path(path);
e02119d5
CM
2844 if (ret)
2845 goto out;
2846
2847 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2848 inode_inc_iversion(inode);
2849 inode_inc_iversion(dir);
e02119d5 2850 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 2851 ret = btrfs_update_inode(trans, root, dir);
e02119d5 2852out:
39279cc3
CM
2853 return ret;
2854}
2855
92986796
AV
2856int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2857 struct btrfs_root *root,
2858 struct inode *dir, struct inode *inode,
2859 const char *name, int name_len)
2860{
2861 int ret;
2862 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2863 if (!ret) {
2864 btrfs_drop_nlink(inode);
2865 ret = btrfs_update_inode(trans, root, inode);
2866 }
2867 return ret;
2868}
2869
2870
a22285a6
YZ
2871/* helper to check if there is any shared block in the path */
2872static int check_path_shared(struct btrfs_root *root,
2873 struct btrfs_path *path)
39279cc3 2874{
a22285a6
YZ
2875 struct extent_buffer *eb;
2876 int level;
0e4dcbef 2877 u64 refs = 1;
5df6a9f6 2878
a22285a6 2879 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2880 int ret;
2881
a22285a6
YZ
2882 if (!path->nodes[level])
2883 break;
2884 eb = path->nodes[level];
2885 if (!btrfs_block_can_be_shared(root, eb))
2886 continue;
2887 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2888 &refs, NULL);
2889 if (refs > 1)
2890 return 1;
5df6a9f6 2891 }
dedefd72 2892 return 0;
39279cc3
CM
2893}
2894
a22285a6
YZ
2895/*
2896 * helper to start transaction for unlink and rmdir.
2897 *
2898 * unlink and rmdir are special in btrfs, they do not always free space.
2899 * so in enospc case, we should make sure they will free space before
2900 * allowing them to use the global metadata reservation.
2901 */
2902static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2903 struct dentry *dentry)
4df27c4d 2904{
39279cc3 2905 struct btrfs_trans_handle *trans;
a22285a6 2906 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2907 struct btrfs_path *path;
a22285a6 2908 struct btrfs_inode_ref *ref;
4df27c4d 2909 struct btrfs_dir_item *di;
7b128766 2910 struct inode *inode = dentry->d_inode;
4df27c4d 2911 u64 index;
a22285a6
YZ
2912 int check_link = 1;
2913 int err = -ENOSPC;
4df27c4d 2914 int ret;
33345d01
LZ
2915 u64 ino = btrfs_ino(inode);
2916 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2917
e70bea5f
JB
2918 /*
2919 * 1 for the possible orphan item
2920 * 1 for the dir item
2921 * 1 for the dir index
2922 * 1 for the inode ref
2923 * 1 for the inode ref in the tree log
2924 * 2 for the dir entries in the log
2925 * 1 for the inode
2926 */
2927 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2928 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2929 return trans;
4df27c4d 2930
33345d01 2931 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2932 return ERR_PTR(-ENOSPC);
4df27c4d 2933
a22285a6
YZ
2934 /* check if there is someone else holds reference */
2935 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2936 return ERR_PTR(-ENOSPC);
4df27c4d 2937
a22285a6
YZ
2938 if (atomic_read(&inode->i_count) > 2)
2939 return ERR_PTR(-ENOSPC);
4df27c4d 2940
a22285a6
YZ
2941 if (xchg(&root->fs_info->enospc_unlink, 1))
2942 return ERR_PTR(-ENOSPC);
2943
2944 path = btrfs_alloc_path();
2945 if (!path) {
2946 root->fs_info->enospc_unlink = 0;
2947 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2948 }
2949
3880a1b4
JB
2950 /* 1 for the orphan item */
2951 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2952 if (IS_ERR(trans)) {
a22285a6
YZ
2953 btrfs_free_path(path);
2954 root->fs_info->enospc_unlink = 0;
2955 return trans;
2956 }
4df27c4d 2957
a22285a6
YZ
2958 path->skip_locking = 1;
2959 path->search_commit_root = 1;
4df27c4d 2960
a22285a6
YZ
2961 ret = btrfs_lookup_inode(trans, root, path,
2962 &BTRFS_I(dir)->location, 0);
2963 if (ret < 0) {
2964 err = ret;
2965 goto out;
2966 }
2967 if (ret == 0) {
2968 if (check_path_shared(root, path))
2969 goto out;
2970 } else {
2971 check_link = 0;
5df6a9f6 2972 }
b3b4aa74 2973 btrfs_release_path(path);
a22285a6
YZ
2974
2975 ret = btrfs_lookup_inode(trans, root, path,
2976 &BTRFS_I(inode)->location, 0);
2977 if (ret < 0) {
2978 err = ret;
2979 goto out;
2980 }
2981 if (ret == 0) {
2982 if (check_path_shared(root, path))
2983 goto out;
2984 } else {
2985 check_link = 0;
2986 }
b3b4aa74 2987 btrfs_release_path(path);
a22285a6
YZ
2988
2989 if (ret == 0 && S_ISREG(inode->i_mode)) {
2990 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2991 ino, (u64)-1, 0);
a22285a6
YZ
2992 if (ret < 0) {
2993 err = ret;
2994 goto out;
2995 }
79787eaa 2996 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
2997 if (check_path_shared(root, path))
2998 goto out;
b3b4aa74 2999 btrfs_release_path(path);
a22285a6
YZ
3000 }
3001
3002 if (!check_link) {
3003 err = 0;
3004 goto out;
3005 }
3006
33345d01 3007 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
3008 dentry->d_name.name, dentry->d_name.len, 0);
3009 if (IS_ERR(di)) {
3010 err = PTR_ERR(di);
3011 goto out;
3012 }
3013 if (di) {
3014 if (check_path_shared(root, path))
3015 goto out;
3016 } else {
3017 err = 0;
3018 goto out;
3019 }
b3b4aa74 3020 btrfs_release_path(path);
a22285a6
YZ
3021
3022 ref = btrfs_lookup_inode_ref(trans, root, path,
3023 dentry->d_name.name, dentry->d_name.len,
33345d01 3024 ino, dir_ino, 0);
a22285a6
YZ
3025 if (IS_ERR(ref)) {
3026 err = PTR_ERR(ref);
3027 goto out;
3028 }
79787eaa 3029 BUG_ON(!ref); /* Logic error */
a22285a6
YZ
3030 if (check_path_shared(root, path))
3031 goto out;
3032 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 3033 btrfs_release_path(path);
a22285a6 3034
16cdcec7
MX
3035 /*
3036 * This is a commit root search, if we can lookup inode item and other
3037 * relative items in the commit root, it means the transaction of
3038 * dir/file creation has been committed, and the dir index item that we
3039 * delay to insert has also been inserted into the commit root. So
3040 * we needn't worry about the delayed insertion of the dir index item
3041 * here.
3042 */
33345d01 3043 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3044 dentry->d_name.name, dentry->d_name.len, 0);
3045 if (IS_ERR(di)) {
3046 err = PTR_ERR(di);
3047 goto out;
3048 }
3049 BUG_ON(ret == -ENOENT);
3050 if (check_path_shared(root, path))
3051 goto out;
3052
3053 err = 0;
3054out:
3055 btrfs_free_path(path);
3880a1b4
JB
3056 /* Migrate the orphan reservation over */
3057 if (!err)
3058 err = btrfs_block_rsv_migrate(trans->block_rsv,
3059 &root->fs_info->global_block_rsv,
5a77d76c 3060 trans->bytes_reserved);
3880a1b4 3061
a22285a6
YZ
3062 if (err) {
3063 btrfs_end_transaction(trans, root);
3064 root->fs_info->enospc_unlink = 0;
3065 return ERR_PTR(err);
3066 }
3067
3068 trans->block_rsv = &root->fs_info->global_block_rsv;
3069 return trans;
3070}
3071
3072static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3073 struct btrfs_root *root)
3074{
3075 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
5a77d76c
JB
3076 btrfs_block_rsv_release(root, trans->block_rsv,
3077 trans->bytes_reserved);
3078 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3079 BUG_ON(!root->fs_info->enospc_unlink);
3080 root->fs_info->enospc_unlink = 0;
3081 }
7ad85bb7 3082 btrfs_end_transaction(trans, root);
a22285a6
YZ
3083}
3084
3085static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3086{
3087 struct btrfs_root *root = BTRFS_I(dir)->root;
3088 struct btrfs_trans_handle *trans;
3089 struct inode *inode = dentry->d_inode;
3090 int ret;
3091 unsigned long nr = 0;
3092
3093 trans = __unlink_start_trans(dir, dentry);
3094 if (IS_ERR(trans))
3095 return PTR_ERR(trans);
5f39d397 3096
12fcfd22
CM
3097 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3098
e02119d5
CM
3099 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3100 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3101 if (ret)
3102 goto out;
7b128766 3103
a22285a6 3104 if (inode->i_nlink == 0) {
7b128766 3105 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3106 if (ret)
3107 goto out;
a22285a6 3108 }
7b128766 3109
b532402e 3110out:
d3c2fdcf 3111 nr = trans->blocks_used;
a22285a6 3112 __unlink_end_trans(trans, root);
d3c2fdcf 3113 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3114 return ret;
3115}
3116
4df27c4d
YZ
3117int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3118 struct btrfs_root *root,
3119 struct inode *dir, u64 objectid,
3120 const char *name, int name_len)
3121{
3122 struct btrfs_path *path;
3123 struct extent_buffer *leaf;
3124 struct btrfs_dir_item *di;
3125 struct btrfs_key key;
3126 u64 index;
3127 int ret;
33345d01 3128 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3129
3130 path = btrfs_alloc_path();
3131 if (!path)
3132 return -ENOMEM;
3133
33345d01 3134 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3135 name, name_len, -1);
79787eaa
JM
3136 if (IS_ERR_OR_NULL(di)) {
3137 if (!di)
3138 ret = -ENOENT;
3139 else
3140 ret = PTR_ERR(di);
3141 goto out;
3142 }
4df27c4d
YZ
3143
3144 leaf = path->nodes[0];
3145 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3146 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3147 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3148 if (ret) {
3149 btrfs_abort_transaction(trans, root, ret);
3150 goto out;
3151 }
b3b4aa74 3152 btrfs_release_path(path);
4df27c4d
YZ
3153
3154 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3155 objectid, root->root_key.objectid,
33345d01 3156 dir_ino, &index, name, name_len);
4df27c4d 3157 if (ret < 0) {
79787eaa
JM
3158 if (ret != -ENOENT) {
3159 btrfs_abort_transaction(trans, root, ret);
3160 goto out;
3161 }
33345d01 3162 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3163 name, name_len);
79787eaa
JM
3164 if (IS_ERR_OR_NULL(di)) {
3165 if (!di)
3166 ret = -ENOENT;
3167 else
3168 ret = PTR_ERR(di);
3169 btrfs_abort_transaction(trans, root, ret);
3170 goto out;
3171 }
4df27c4d
YZ
3172
3173 leaf = path->nodes[0];
3174 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3175 btrfs_release_path(path);
4df27c4d
YZ
3176 index = key.offset;
3177 }
945d8962 3178 btrfs_release_path(path);
4df27c4d 3179
16cdcec7 3180 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3181 if (ret) {
3182 btrfs_abort_transaction(trans, root, ret);
3183 goto out;
3184 }
4df27c4d
YZ
3185
3186 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3187 inode_inc_iversion(dir);
4df27c4d 3188 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3189 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3190 if (ret)
3191 btrfs_abort_transaction(trans, root, ret);
3192out:
71d7aed0 3193 btrfs_free_path(path);
79787eaa 3194 return ret;
4df27c4d
YZ
3195}
3196
39279cc3
CM
3197static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3198{
3199 struct inode *inode = dentry->d_inode;
1832a6d5 3200 int err = 0;
39279cc3 3201 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3202 struct btrfs_trans_handle *trans;
1832a6d5 3203 unsigned long nr = 0;
39279cc3 3204
3394e160 3205 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3206 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3207 return -ENOTEMPTY;
3208
a22285a6
YZ
3209 trans = __unlink_start_trans(dir, dentry);
3210 if (IS_ERR(trans))
5df6a9f6 3211 return PTR_ERR(trans);
5df6a9f6 3212
33345d01 3213 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3214 err = btrfs_unlink_subvol(trans, root, dir,
3215 BTRFS_I(inode)->location.objectid,
3216 dentry->d_name.name,
3217 dentry->d_name.len);
3218 goto out;
3219 }
3220
7b128766
JB
3221 err = btrfs_orphan_add(trans, inode);
3222 if (err)
4df27c4d 3223 goto out;
7b128766 3224
39279cc3 3225 /* now the directory is empty */
e02119d5
CM
3226 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3227 dentry->d_name.name, dentry->d_name.len);
d397712b 3228 if (!err)
dbe674a9 3229 btrfs_i_size_write(inode, 0);
4df27c4d 3230out:
d3c2fdcf 3231 nr = trans->blocks_used;
a22285a6 3232 __unlink_end_trans(trans, root);
d3c2fdcf 3233 btrfs_btree_balance_dirty(root, nr);
3954401f 3234
39279cc3
CM
3235 return err;
3236}
3237
39279cc3
CM
3238/*
3239 * this can truncate away extent items, csum items and directory items.
3240 * It starts at a high offset and removes keys until it can't find
d352ac68 3241 * any higher than new_size
39279cc3
CM
3242 *
3243 * csum items that cross the new i_size are truncated to the new size
3244 * as well.
7b128766
JB
3245 *
3246 * min_type is the minimum key type to truncate down to. If set to 0, this
3247 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3248 */
8082510e
YZ
3249int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3250 struct btrfs_root *root,
3251 struct inode *inode,
3252 u64 new_size, u32 min_type)
39279cc3 3253{
39279cc3 3254 struct btrfs_path *path;
5f39d397 3255 struct extent_buffer *leaf;
39279cc3 3256 struct btrfs_file_extent_item *fi;
8082510e
YZ
3257 struct btrfs_key key;
3258 struct btrfs_key found_key;
39279cc3 3259 u64 extent_start = 0;
db94535d 3260 u64 extent_num_bytes = 0;
5d4f98a2 3261 u64 extent_offset = 0;
39279cc3 3262 u64 item_end = 0;
8082510e
YZ
3263 u64 mask = root->sectorsize - 1;
3264 u32 found_type = (u8)-1;
39279cc3
CM
3265 int found_extent;
3266 int del_item;
85e21bac
CM
3267 int pending_del_nr = 0;
3268 int pending_del_slot = 0;
179e29e4 3269 int extent_type = -1;
8082510e
YZ
3270 int ret;
3271 int err = 0;
33345d01 3272 u64 ino = btrfs_ino(inode);
8082510e
YZ
3273
3274 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3275
0eb0e19c
MF
3276 path = btrfs_alloc_path();
3277 if (!path)
3278 return -ENOMEM;
3279 path->reada = -1;
3280
5dc562c5
JB
3281 /*
3282 * We want to drop from the next block forward in case this new size is
3283 * not block aligned since we will be keeping the last block of the
3284 * extent just the way it is.
3285 */
0af3d00b 3286 if (root->ref_cows || root == root->fs_info->tree_root)
5dc562c5 3287 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
8082510e 3288
16cdcec7
MX
3289 /*
3290 * This function is also used to drop the items in the log tree before
3291 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3292 * it is used to drop the loged items. So we shouldn't kill the delayed
3293 * items.
3294 */
3295 if (min_type == 0 && root == BTRFS_I(inode)->root)
3296 btrfs_kill_delayed_inode_items(inode);
3297
33345d01 3298 key.objectid = ino;
39279cc3 3299 key.offset = (u64)-1;
5f39d397
CM
3300 key.type = (u8)-1;
3301
85e21bac 3302search_again:
b9473439 3303 path->leave_spinning = 1;
85e21bac 3304 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3305 if (ret < 0) {
3306 err = ret;
3307 goto out;
3308 }
d397712b 3309
85e21bac 3310 if (ret > 0) {
e02119d5
CM
3311 /* there are no items in the tree for us to truncate, we're
3312 * done
3313 */
8082510e
YZ
3314 if (path->slots[0] == 0)
3315 goto out;
85e21bac
CM
3316 path->slots[0]--;
3317 }
3318
d397712b 3319 while (1) {
39279cc3 3320 fi = NULL;
5f39d397
CM
3321 leaf = path->nodes[0];
3322 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3323 found_type = btrfs_key_type(&found_key);
39279cc3 3324
33345d01 3325 if (found_key.objectid != ino)
39279cc3 3326 break;
5f39d397 3327
85e21bac 3328 if (found_type < min_type)
39279cc3
CM
3329 break;
3330
5f39d397 3331 item_end = found_key.offset;
39279cc3 3332 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3333 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3334 struct btrfs_file_extent_item);
179e29e4
CM
3335 extent_type = btrfs_file_extent_type(leaf, fi);
3336 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3337 item_end +=
db94535d 3338 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3339 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3340 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3341 fi);
39279cc3 3342 }
008630c1 3343 item_end--;
39279cc3 3344 }
8082510e
YZ
3345 if (found_type > min_type) {
3346 del_item = 1;
3347 } else {
3348 if (item_end < new_size)
b888db2b 3349 break;
8082510e
YZ
3350 if (found_key.offset >= new_size)
3351 del_item = 1;
3352 else
3353 del_item = 0;
39279cc3 3354 }
39279cc3 3355 found_extent = 0;
39279cc3 3356 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3357 if (found_type != BTRFS_EXTENT_DATA_KEY)
3358 goto delete;
3359
3360 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3361 u64 num_dec;
db94535d 3362 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3363 if (!del_item) {
db94535d
CM
3364 u64 orig_num_bytes =
3365 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3366 extent_num_bytes = new_size -
5f39d397 3367 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3368 extent_num_bytes = extent_num_bytes &
3369 ~((u64)root->sectorsize - 1);
db94535d
CM
3370 btrfs_set_file_extent_num_bytes(leaf, fi,
3371 extent_num_bytes);
3372 num_dec = (orig_num_bytes -
9069218d 3373 extent_num_bytes);
e02119d5 3374 if (root->ref_cows && extent_start != 0)
a76a3cd4 3375 inode_sub_bytes(inode, num_dec);
5f39d397 3376 btrfs_mark_buffer_dirty(leaf);
39279cc3 3377 } else {
db94535d
CM
3378 extent_num_bytes =
3379 btrfs_file_extent_disk_num_bytes(leaf,
3380 fi);
5d4f98a2
YZ
3381 extent_offset = found_key.offset -
3382 btrfs_file_extent_offset(leaf, fi);
3383
39279cc3 3384 /* FIXME blocksize != 4096 */
9069218d 3385 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3386 if (extent_start != 0) {
3387 found_extent = 1;
e02119d5 3388 if (root->ref_cows)
a76a3cd4 3389 inode_sub_bytes(inode, num_dec);
e02119d5 3390 }
39279cc3 3391 }
9069218d 3392 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3393 /*
3394 * we can't truncate inline items that have had
3395 * special encodings
3396 */
3397 if (!del_item &&
3398 btrfs_file_extent_compression(leaf, fi) == 0 &&
3399 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3400 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3401 u32 size = new_size - found_key.offset;
3402
3403 if (root->ref_cows) {
a76a3cd4
YZ
3404 inode_sub_bytes(inode, item_end + 1 -
3405 new_size);
e02119d5
CM
3406 }
3407 size =
3408 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3409 btrfs_truncate_item(trans, root, path,
3410 size, 1);
e02119d5 3411 } else if (root->ref_cows) {
a76a3cd4
YZ
3412 inode_sub_bytes(inode, item_end + 1 -
3413 found_key.offset);
9069218d 3414 }
39279cc3 3415 }
179e29e4 3416delete:
39279cc3 3417 if (del_item) {
85e21bac
CM
3418 if (!pending_del_nr) {
3419 /* no pending yet, add ourselves */
3420 pending_del_slot = path->slots[0];
3421 pending_del_nr = 1;
3422 } else if (pending_del_nr &&
3423 path->slots[0] + 1 == pending_del_slot) {
3424 /* hop on the pending chunk */
3425 pending_del_nr++;
3426 pending_del_slot = path->slots[0];
3427 } else {
d397712b 3428 BUG();
85e21bac 3429 }
39279cc3
CM
3430 } else {
3431 break;
3432 }
0af3d00b
JB
3433 if (found_extent && (root->ref_cows ||
3434 root == root->fs_info->tree_root)) {
b9473439 3435 btrfs_set_path_blocking(path);
39279cc3 3436 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3437 extent_num_bytes, 0,
3438 btrfs_header_owner(leaf),
66d7e7f0 3439 ino, extent_offset, 0);
39279cc3
CM
3440 BUG_ON(ret);
3441 }
85e21bac 3442
8082510e
YZ
3443 if (found_type == BTRFS_INODE_ITEM_KEY)
3444 break;
3445
3446 if (path->slots[0] == 0 ||
3447 path->slots[0] != pending_del_slot) {
8082510e
YZ
3448 if (pending_del_nr) {
3449 ret = btrfs_del_items(trans, root, path,
3450 pending_del_slot,
3451 pending_del_nr);
79787eaa
JM
3452 if (ret) {
3453 btrfs_abort_transaction(trans,
3454 root, ret);
3455 goto error;
3456 }
8082510e
YZ
3457 pending_del_nr = 0;
3458 }
b3b4aa74 3459 btrfs_release_path(path);
85e21bac 3460 goto search_again;
8082510e
YZ
3461 } else {
3462 path->slots[0]--;
85e21bac 3463 }
39279cc3 3464 }
8082510e 3465out:
85e21bac
CM
3466 if (pending_del_nr) {
3467 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3468 pending_del_nr);
79787eaa
JM
3469 if (ret)
3470 btrfs_abort_transaction(trans, root, ret);
85e21bac 3471 }
79787eaa 3472error:
39279cc3 3473 btrfs_free_path(path);
8082510e 3474 return err;
39279cc3
CM
3475}
3476
3477/*
3478 * taken from block_truncate_page, but does cow as it zeros out
3479 * any bytes left in the last page in the file.
3480 */
3481static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3482{
3483 struct inode *inode = mapping->host;
db94535d 3484 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3485 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3486 struct btrfs_ordered_extent *ordered;
2ac55d41 3487 struct extent_state *cached_state = NULL;
e6dcd2dc 3488 char *kaddr;
db94535d 3489 u32 blocksize = root->sectorsize;
39279cc3
CM
3490 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3491 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3492 struct page *page;
3b16a4e3 3493 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3494 int ret = 0;
a52d9a80 3495 u64 page_start;
e6dcd2dc 3496 u64 page_end;
39279cc3
CM
3497
3498 if ((offset & (blocksize - 1)) == 0)
3499 goto out;
0ca1f7ce 3500 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3501 if (ret)
3502 goto out;
39279cc3
CM
3503
3504 ret = -ENOMEM;
211c17f5 3505again:
3b16a4e3 3506 page = find_or_create_page(mapping, index, mask);
5d5e103a 3507 if (!page) {
0ca1f7ce 3508 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3509 goto out;
5d5e103a 3510 }
e6dcd2dc
CM
3511
3512 page_start = page_offset(page);
3513 page_end = page_start + PAGE_CACHE_SIZE - 1;
3514
39279cc3 3515 if (!PageUptodate(page)) {
9ebefb18 3516 ret = btrfs_readpage(NULL, page);
39279cc3 3517 lock_page(page);
211c17f5
CM
3518 if (page->mapping != mapping) {
3519 unlock_page(page);
3520 page_cache_release(page);
3521 goto again;
3522 }
39279cc3
CM
3523 if (!PageUptodate(page)) {
3524 ret = -EIO;
89642229 3525 goto out_unlock;
39279cc3
CM
3526 }
3527 }
211c17f5 3528 wait_on_page_writeback(page);
e6dcd2dc 3529
d0082371 3530 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3531 set_page_extent_mapped(page);
3532
3533 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3534 if (ordered) {
2ac55d41
JB
3535 unlock_extent_cached(io_tree, page_start, page_end,
3536 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3537 unlock_page(page);
3538 page_cache_release(page);
eb84ae03 3539 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3540 btrfs_put_ordered_extent(ordered);
3541 goto again;
3542 }
3543
2ac55d41 3544 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3545 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3546 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3547
2ac55d41
JB
3548 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3549 &cached_state);
9ed74f2d 3550 if (ret) {
2ac55d41
JB
3551 unlock_extent_cached(io_tree, page_start, page_end,
3552 &cached_state, GFP_NOFS);
9ed74f2d
JB
3553 goto out_unlock;
3554 }
3555
e6dcd2dc
CM
3556 ret = 0;
3557 if (offset != PAGE_CACHE_SIZE) {
3558 kaddr = kmap(page);
3559 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3560 flush_dcache_page(page);
3561 kunmap(page);
3562 }
247e743c 3563 ClearPageChecked(page);
e6dcd2dc 3564 set_page_dirty(page);
2ac55d41
JB
3565 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3566 GFP_NOFS);
39279cc3 3567
89642229 3568out_unlock:
5d5e103a 3569 if (ret)
0ca1f7ce 3570 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3571 unlock_page(page);
3572 page_cache_release(page);
3573out:
3574 return ret;
3575}
3576
695a0d0d
JB
3577/*
3578 * This function puts in dummy file extents for the area we're creating a hole
3579 * for. So if we are truncating this file to a larger size we need to insert
3580 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3581 * the range between oldsize and size
3582 */
a41ad394 3583int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3584{
9036c102
YZ
3585 struct btrfs_trans_handle *trans;
3586 struct btrfs_root *root = BTRFS_I(inode)->root;
3587 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3588 struct extent_map *em = NULL;
2ac55d41 3589 struct extent_state *cached_state = NULL;
5dc562c5 3590 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9036c102 3591 u64 mask = root->sectorsize - 1;
a41ad394 3592 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3593 u64 block_end = (size + mask) & ~mask;
3594 u64 last_byte;
3595 u64 cur_offset;
3596 u64 hole_size;
9ed74f2d 3597 int err = 0;
39279cc3 3598
9036c102
YZ
3599 if (size <= hole_start)
3600 return 0;
3601
9036c102
YZ
3602 while (1) {
3603 struct btrfs_ordered_extent *ordered;
3604 btrfs_wait_ordered_range(inode, hole_start,
3605 block_end - hole_start);
2ac55d41 3606 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3607 &cached_state);
9036c102
YZ
3608 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3609 if (!ordered)
3610 break;
2ac55d41
JB
3611 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3612 &cached_state, GFP_NOFS);
9036c102
YZ
3613 btrfs_put_ordered_extent(ordered);
3614 }
39279cc3 3615
9036c102
YZ
3616 cur_offset = hole_start;
3617 while (1) {
3618 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3619 block_end - cur_offset, 0);
79787eaa
JM
3620 if (IS_ERR(em)) {
3621 err = PTR_ERR(em);
3622 break;
3623 }
9036c102
YZ
3624 last_byte = min(extent_map_end(em), block_end);
3625 last_byte = (last_byte + mask) & ~mask;
8082510e 3626 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 3627 struct extent_map *hole_em;
9036c102 3628 hole_size = last_byte - cur_offset;
9ed74f2d 3629
3642320e 3630 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3631 if (IS_ERR(trans)) {
3632 err = PTR_ERR(trans);
9ed74f2d 3633 break;
a22285a6 3634 }
8082510e 3635
5dc562c5
JB
3636 err = btrfs_drop_extents(trans, root, inode,
3637 cur_offset,
2671485d 3638 cur_offset + hole_size, 1);
5b397377 3639 if (err) {
79787eaa 3640 btrfs_abort_transaction(trans, root, err);
5b397377 3641 btrfs_end_transaction(trans, root);
3893e33b 3642 break;
5b397377 3643 }
8082510e 3644
9036c102 3645 err = btrfs_insert_file_extent(trans, root,
33345d01 3646 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3647 0, hole_size, 0, hole_size,
3648 0, 0, 0);
5b397377 3649 if (err) {
79787eaa 3650 btrfs_abort_transaction(trans, root, err);
5b397377 3651 btrfs_end_transaction(trans, root);
3893e33b 3652 break;
5b397377 3653 }
8082510e 3654
5dc562c5
JB
3655 btrfs_drop_extent_cache(inode, cur_offset,
3656 cur_offset + hole_size - 1, 0);
3657 hole_em = alloc_extent_map();
3658 if (!hole_em) {
3659 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3660 &BTRFS_I(inode)->runtime_flags);
3661 goto next;
3662 }
3663 hole_em->start = cur_offset;
3664 hole_em->len = hole_size;
3665 hole_em->orig_start = cur_offset;
3666
3667 hole_em->block_start = EXTENT_MAP_HOLE;
3668 hole_em->block_len = 0;
3669 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3670 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3671 hole_em->generation = trans->transid;
8082510e 3672
5dc562c5
JB
3673 while (1) {
3674 write_lock(&em_tree->lock);
3675 err = add_extent_mapping(em_tree, hole_em);
3676 if (!err)
3677 list_move(&hole_em->list,
3678 &em_tree->modified_extents);
3679 write_unlock(&em_tree->lock);
3680 if (err != -EEXIST)
3681 break;
3682 btrfs_drop_extent_cache(inode, cur_offset,
3683 cur_offset +
3684 hole_size - 1, 0);
3685 }
3686 free_extent_map(hole_em);
3687next:
3642320e 3688 btrfs_update_inode(trans, root, inode);
8082510e 3689 btrfs_end_transaction(trans, root);
9036c102
YZ
3690 }
3691 free_extent_map(em);
a22285a6 3692 em = NULL;
9036c102 3693 cur_offset = last_byte;
8082510e 3694 if (cur_offset >= block_end)
9036c102
YZ
3695 break;
3696 }
1832a6d5 3697
a22285a6 3698 free_extent_map(em);
2ac55d41
JB
3699 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3700 GFP_NOFS);
9036c102
YZ
3701 return err;
3702}
39279cc3 3703
a41ad394 3704static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3705{
f4a2f4c5
MX
3706 struct btrfs_root *root = BTRFS_I(inode)->root;
3707 struct btrfs_trans_handle *trans;
a41ad394 3708 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3709 int ret;
3710
a41ad394 3711 if (newsize == oldsize)
8082510e
YZ
3712 return 0;
3713
a41ad394 3714 if (newsize > oldsize) {
a41ad394
JB
3715 truncate_pagecache(inode, oldsize, newsize);
3716 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3717 if (ret)
8082510e 3718 return ret;
8082510e 3719
f4a2f4c5
MX
3720 trans = btrfs_start_transaction(root, 1);
3721 if (IS_ERR(trans))
3722 return PTR_ERR(trans);
3723
3724 i_size_write(inode, newsize);
3725 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3726 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3727 btrfs_end_transaction(trans, root);
a41ad394 3728 } else {
8082510e 3729
a41ad394
JB
3730 /*
3731 * We're truncating a file that used to have good data down to
3732 * zero. Make sure it gets into the ordered flush list so that
3733 * any new writes get down to disk quickly.
3734 */
3735 if (newsize == 0)
72ac3c0d
JB
3736 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3737 &BTRFS_I(inode)->runtime_flags);
8082510e 3738
a41ad394
JB
3739 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3740 truncate_setsize(inode, newsize);
3741 ret = btrfs_truncate(inode);
8082510e
YZ
3742 }
3743
a41ad394 3744 return ret;
8082510e
YZ
3745}
3746
9036c102
YZ
3747static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3748{
3749 struct inode *inode = dentry->d_inode;
b83cc969 3750 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3751 int err;
39279cc3 3752
b83cc969
LZ
3753 if (btrfs_root_readonly(root))
3754 return -EROFS;
3755
9036c102
YZ
3756 err = inode_change_ok(inode, attr);
3757 if (err)
3758 return err;
2bf5a725 3759
5a3f23d5 3760 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3761 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3762 if (err)
3763 return err;
39279cc3 3764 }
9036c102 3765
1025774c
CH
3766 if (attr->ia_valid) {
3767 setattr_copy(inode, attr);
0c4d2d95 3768 inode_inc_iversion(inode);
22c44fe6 3769 err = btrfs_dirty_inode(inode);
1025774c 3770
22c44fe6 3771 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3772 err = btrfs_acl_chmod(inode);
3773 }
33268eaf 3774
39279cc3
CM
3775 return err;
3776}
61295eb8 3777
bd555975 3778void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3779{
3780 struct btrfs_trans_handle *trans;
3781 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3782 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3783 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3784 unsigned long nr;
39279cc3
CM
3785 int ret;
3786
1abe9b8a 3787 trace_btrfs_inode_evict(inode);
3788
39279cc3 3789 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3790 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 3791 btrfs_is_free_space_inode(inode)))
bd555975
AV
3792 goto no_delete;
3793
39279cc3 3794 if (is_bad_inode(inode)) {
7b128766 3795 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3796 goto no_delete;
3797 }
bd555975 3798 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3799 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3800
c71bf099 3801 if (root->fs_info->log_root_recovering) {
6bf02314 3802 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 3803 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
3804 goto no_delete;
3805 }
3806
76dda93c
YZ
3807 if (inode->i_nlink > 0) {
3808 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3809 goto no_delete;
3810 }
3811
4289a667
JB
3812 rsv = btrfs_alloc_block_rsv(root);
3813 if (!rsv) {
3814 btrfs_orphan_del(NULL, inode);
3815 goto no_delete;
3816 }
4a338542 3817 rsv->size = min_size;
ca7e70f5 3818 rsv->failfast = 1;
726c35fa 3819 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3820
dbe674a9 3821 btrfs_i_size_write(inode, 0);
5f39d397 3822
4289a667
JB
3823 /*
3824 * This is a bit simpler than btrfs_truncate since
3825 *
3826 * 1) We've already reserved our space for our orphan item in the
3827 * unlink.
3828 * 2) We're going to delete the inode item, so we don't need to update
3829 * it at all.
3830 *
3831 * So we just need to reserve some slack space in case we add bytes when
3832 * doing the truncate.
3833 */
8082510e 3834 while (1) {
aa38a711 3835 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
726c35fa
JB
3836
3837 /*
3838 * Try and steal from the global reserve since we will
3839 * likely not use this space anyway, we want to try as
3840 * hard as possible to get this to work.
3841 */
3842 if (ret)
3843 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3844
d68fc57b 3845 if (ret) {
4289a667 3846 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3847 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3848 btrfs_orphan_del(NULL, inode);
3849 btrfs_free_block_rsv(root, rsv);
3850 goto no_delete;
d68fc57b 3851 }
7b128766 3852
4289a667
JB
3853 trans = btrfs_start_transaction(root, 0);
3854 if (IS_ERR(trans)) {
3855 btrfs_orphan_del(NULL, inode);
3856 btrfs_free_block_rsv(root, rsv);
3857 goto no_delete;
d68fc57b 3858 }
7b128766 3859
4289a667
JB
3860 trans->block_rsv = rsv;
3861
d68fc57b 3862 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 3863 if (ret != -ENOSPC)
8082510e 3864 break;
85e21bac 3865
8082510e
YZ
3866 nr = trans->blocks_used;
3867 btrfs_end_transaction(trans, root);
3868 trans = NULL;
3869 btrfs_btree_balance_dirty(root, nr);
3870 }
5f39d397 3871
4289a667
JB
3872 btrfs_free_block_rsv(root, rsv);
3873
8082510e 3874 if (ret == 0) {
4289a667 3875 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3876 ret = btrfs_orphan_del(trans, inode);
3877 BUG_ON(ret);
3878 }
54aa1f4d 3879
4289a667 3880 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3881 if (!(root == root->fs_info->tree_root ||
3882 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3883 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3884
d3c2fdcf 3885 nr = trans->blocks_used;
54aa1f4d 3886 btrfs_end_transaction(trans, root);
d3c2fdcf 3887 btrfs_btree_balance_dirty(root, nr);
39279cc3 3888no_delete:
dbd5768f 3889 clear_inode(inode);
8082510e 3890 return;
39279cc3
CM
3891}
3892
3893/*
3894 * this returns the key found in the dir entry in the location pointer.
3895 * If no dir entries were found, location->objectid is 0.
3896 */
3897static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3898 struct btrfs_key *location)
3899{
3900 const char *name = dentry->d_name.name;
3901 int namelen = dentry->d_name.len;
3902 struct btrfs_dir_item *di;
3903 struct btrfs_path *path;
3904 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3905 int ret = 0;
39279cc3
CM
3906
3907 path = btrfs_alloc_path();
d8926bb3
MF
3908 if (!path)
3909 return -ENOMEM;
3954401f 3910
33345d01 3911 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3912 namelen, 0);
0d9f7f3e
Y
3913 if (IS_ERR(di))
3914 ret = PTR_ERR(di);
d397712b 3915
c704005d 3916 if (IS_ERR_OR_NULL(di))
3954401f 3917 goto out_err;
d397712b 3918
5f39d397 3919 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3920out:
39279cc3
CM
3921 btrfs_free_path(path);
3922 return ret;
3954401f
CM
3923out_err:
3924 location->objectid = 0;
3925 goto out;
39279cc3
CM
3926}
3927
3928/*
3929 * when we hit a tree root in a directory, the btrfs part of the inode
3930 * needs to be changed to reflect the root directory of the tree root. This
3931 * is kind of like crossing a mount point.
3932 */
3933static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3934 struct inode *dir,
3935 struct dentry *dentry,
3936 struct btrfs_key *location,
3937 struct btrfs_root **sub_root)
39279cc3 3938{
4df27c4d
YZ
3939 struct btrfs_path *path;
3940 struct btrfs_root *new_root;
3941 struct btrfs_root_ref *ref;
3942 struct extent_buffer *leaf;
3943 int ret;
3944 int err = 0;
39279cc3 3945
4df27c4d
YZ
3946 path = btrfs_alloc_path();
3947 if (!path) {
3948 err = -ENOMEM;
3949 goto out;
3950 }
39279cc3 3951
4df27c4d
YZ
3952 err = -ENOENT;
3953 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3954 BTRFS_I(dir)->root->root_key.objectid,
3955 location->objectid);
3956 if (ret) {
3957 if (ret < 0)
3958 err = ret;
3959 goto out;
3960 }
39279cc3 3961
4df27c4d
YZ
3962 leaf = path->nodes[0];
3963 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3964 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3965 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3966 goto out;
39279cc3 3967
4df27c4d
YZ
3968 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3969 (unsigned long)(ref + 1),
3970 dentry->d_name.len);
3971 if (ret)
3972 goto out;
3973
b3b4aa74 3974 btrfs_release_path(path);
4df27c4d
YZ
3975
3976 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3977 if (IS_ERR(new_root)) {
3978 err = PTR_ERR(new_root);
3979 goto out;
3980 }
3981
3982 if (btrfs_root_refs(&new_root->root_item) == 0) {
3983 err = -ENOENT;
3984 goto out;
3985 }
3986
3987 *sub_root = new_root;
3988 location->objectid = btrfs_root_dirid(&new_root->root_item);
3989 location->type = BTRFS_INODE_ITEM_KEY;
3990 location->offset = 0;
3991 err = 0;
3992out:
3993 btrfs_free_path(path);
3994 return err;
39279cc3
CM
3995}
3996
5d4f98a2
YZ
3997static void inode_tree_add(struct inode *inode)
3998{
3999 struct btrfs_root *root = BTRFS_I(inode)->root;
4000 struct btrfs_inode *entry;
03e860bd
FNP
4001 struct rb_node **p;
4002 struct rb_node *parent;
33345d01 4003 u64 ino = btrfs_ino(inode);
03e860bd
FNP
4004again:
4005 p = &root->inode_tree.rb_node;
4006 parent = NULL;
5d4f98a2 4007
1d3382cb 4008 if (inode_unhashed(inode))
76dda93c
YZ
4009 return;
4010
5d4f98a2
YZ
4011 spin_lock(&root->inode_lock);
4012 while (*p) {
4013 parent = *p;
4014 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4015
33345d01 4016 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4017 p = &parent->rb_left;
33345d01 4018 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4019 p = &parent->rb_right;
5d4f98a2
YZ
4020 else {
4021 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4022 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4023 rb_erase(parent, &root->inode_tree);
4024 RB_CLEAR_NODE(parent);
4025 spin_unlock(&root->inode_lock);
4026 goto again;
5d4f98a2
YZ
4027 }
4028 }
4029 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4030 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4031 spin_unlock(&root->inode_lock);
4032}
4033
4034static void inode_tree_del(struct inode *inode)
4035{
4036 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4037 int empty = 0;
5d4f98a2 4038
03e860bd 4039 spin_lock(&root->inode_lock);
5d4f98a2 4040 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4041 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4042 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4043 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4044 }
03e860bd 4045 spin_unlock(&root->inode_lock);
76dda93c 4046
0af3d00b
JB
4047 /*
4048 * Free space cache has inodes in the tree root, but the tree root has a
4049 * root_refs of 0, so this could end up dropping the tree root as a
4050 * snapshot, so we need the extra !root->fs_info->tree_root check to
4051 * make sure we don't drop it.
4052 */
4053 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4054 root != root->fs_info->tree_root) {
76dda93c
YZ
4055 synchronize_srcu(&root->fs_info->subvol_srcu);
4056 spin_lock(&root->inode_lock);
4057 empty = RB_EMPTY_ROOT(&root->inode_tree);
4058 spin_unlock(&root->inode_lock);
4059 if (empty)
4060 btrfs_add_dead_root(root);
4061 }
4062}
4063
143bede5 4064void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4065{
4066 struct rb_node *node;
4067 struct rb_node *prev;
4068 struct btrfs_inode *entry;
4069 struct inode *inode;
4070 u64 objectid = 0;
4071
4072 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4073
4074 spin_lock(&root->inode_lock);
4075again:
4076 node = root->inode_tree.rb_node;
4077 prev = NULL;
4078 while (node) {
4079 prev = node;
4080 entry = rb_entry(node, struct btrfs_inode, rb_node);
4081
33345d01 4082 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4083 node = node->rb_left;
33345d01 4084 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4085 node = node->rb_right;
4086 else
4087 break;
4088 }
4089 if (!node) {
4090 while (prev) {
4091 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4092 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4093 node = prev;
4094 break;
4095 }
4096 prev = rb_next(prev);
4097 }
4098 }
4099 while (node) {
4100 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4101 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4102 inode = igrab(&entry->vfs_inode);
4103 if (inode) {
4104 spin_unlock(&root->inode_lock);
4105 if (atomic_read(&inode->i_count) > 1)
4106 d_prune_aliases(inode);
4107 /*
45321ac5 4108 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4109 * the inode cache when its usage count
4110 * hits zero.
4111 */
4112 iput(inode);
4113 cond_resched();
4114 spin_lock(&root->inode_lock);
4115 goto again;
4116 }
4117
4118 if (cond_resched_lock(&root->inode_lock))
4119 goto again;
4120
4121 node = rb_next(node);
4122 }
4123 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4124}
4125
e02119d5
CM
4126static int btrfs_init_locked_inode(struct inode *inode, void *p)
4127{
4128 struct btrfs_iget_args *args = p;
4129 inode->i_ino = args->ino;
e02119d5 4130 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4131 return 0;
4132}
4133
4134static int btrfs_find_actor(struct inode *inode, void *opaque)
4135{
4136 struct btrfs_iget_args *args = opaque;
33345d01 4137 return args->ino == btrfs_ino(inode) &&
d397712b 4138 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4139}
4140
5d4f98a2
YZ
4141static struct inode *btrfs_iget_locked(struct super_block *s,
4142 u64 objectid,
4143 struct btrfs_root *root)
39279cc3
CM
4144{
4145 struct inode *inode;
4146 struct btrfs_iget_args args;
4147 args.ino = objectid;
4148 args.root = root;
4149
4150 inode = iget5_locked(s, objectid, btrfs_find_actor,
4151 btrfs_init_locked_inode,
4152 (void *)&args);
4153 return inode;
4154}
4155
1a54ef8c
BR
4156/* Get an inode object given its location and corresponding root.
4157 * Returns in *is_new if the inode was read from disk
4158 */
4159struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4160 struct btrfs_root *root, int *new)
1a54ef8c
BR
4161{
4162 struct inode *inode;
4163
4164 inode = btrfs_iget_locked(s, location->objectid, root);
4165 if (!inode)
5d4f98a2 4166 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4167
4168 if (inode->i_state & I_NEW) {
4169 BTRFS_I(inode)->root = root;
4170 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4171 btrfs_read_locked_inode(inode);
1748f843
MF
4172 if (!is_bad_inode(inode)) {
4173 inode_tree_add(inode);
4174 unlock_new_inode(inode);
4175 if (new)
4176 *new = 1;
4177 } else {
e0b6d65b
ST
4178 unlock_new_inode(inode);
4179 iput(inode);
4180 inode = ERR_PTR(-ESTALE);
1748f843
MF
4181 }
4182 }
4183
1a54ef8c
BR
4184 return inode;
4185}
4186
4df27c4d
YZ
4187static struct inode *new_simple_dir(struct super_block *s,
4188 struct btrfs_key *key,
4189 struct btrfs_root *root)
4190{
4191 struct inode *inode = new_inode(s);
4192
4193 if (!inode)
4194 return ERR_PTR(-ENOMEM);
4195
4df27c4d
YZ
4196 BTRFS_I(inode)->root = root;
4197 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4198 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4199
4200 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4201 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4202 inode->i_fop = &simple_dir_operations;
4203 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4204 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4205
4206 return inode;
4207}
4208
3de4586c 4209struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4210{
d397712b 4211 struct inode *inode;
4df27c4d 4212 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4213 struct btrfs_root *sub_root = root;
4214 struct btrfs_key location;
76dda93c 4215 int index;
b4aff1f8 4216 int ret = 0;
39279cc3
CM
4217
4218 if (dentry->d_name.len > BTRFS_NAME_LEN)
4219 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4220
b4aff1f8
JB
4221 if (unlikely(d_need_lookup(dentry))) {
4222 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4223 kfree(dentry->d_fsdata);
4224 dentry->d_fsdata = NULL;
a66e7cc6
JB
4225 /* This thing is hashed, drop it for now */
4226 d_drop(dentry);
b4aff1f8
JB
4227 } else {
4228 ret = btrfs_inode_by_name(dir, dentry, &location);
4229 }
5f39d397 4230
39279cc3
CM
4231 if (ret < 0)
4232 return ERR_PTR(ret);
5f39d397 4233
4df27c4d
YZ
4234 if (location.objectid == 0)
4235 return NULL;
4236
4237 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4238 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4239 return inode;
4240 }
4241
4242 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4243
76dda93c 4244 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4245 ret = fixup_tree_root_location(root, dir, dentry,
4246 &location, &sub_root);
4247 if (ret < 0) {
4248 if (ret != -ENOENT)
4249 inode = ERR_PTR(ret);
4250 else
4251 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4252 } else {
73f73415 4253 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4254 }
76dda93c
YZ
4255 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4256
34d19bad 4257 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4258 down_read(&root->fs_info->cleanup_work_sem);
4259 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4260 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4261 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4262 if (ret)
4263 inode = ERR_PTR(ret);
c71bf099
YZ
4264 }
4265
3de4586c
CM
4266 return inode;
4267}
4268
fe15ce44 4269static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4270{
4271 struct btrfs_root *root;
848cce0d 4272 struct inode *inode = dentry->d_inode;
76dda93c 4273
848cce0d
LZ
4274 if (!inode && !IS_ROOT(dentry))
4275 inode = dentry->d_parent->d_inode;
76dda93c 4276
848cce0d
LZ
4277 if (inode) {
4278 root = BTRFS_I(inode)->root;
efefb143
YZ
4279 if (btrfs_root_refs(&root->root_item) == 0)
4280 return 1;
848cce0d
LZ
4281
4282 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4283 return 1;
efefb143 4284 }
76dda93c
YZ
4285 return 0;
4286}
4287
b4aff1f8
JB
4288static void btrfs_dentry_release(struct dentry *dentry)
4289{
4290 if (dentry->d_fsdata)
4291 kfree(dentry->d_fsdata);
4292}
4293
3de4586c 4294static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4295 unsigned int flags)
3de4586c 4296{
a66e7cc6
JB
4297 struct dentry *ret;
4298
4299 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4300 if (unlikely(d_need_lookup(dentry))) {
4301 spin_lock(&dentry->d_lock);
4302 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4303 spin_unlock(&dentry->d_lock);
4304 }
4305 return ret;
39279cc3
CM
4306}
4307
16cdcec7 4308unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4309 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4310};
4311
cbdf5a24
DW
4312static int btrfs_real_readdir(struct file *filp, void *dirent,
4313 filldir_t filldir)
39279cc3 4314{
6da6abae 4315 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4316 struct btrfs_root *root = BTRFS_I(inode)->root;
4317 struct btrfs_item *item;
4318 struct btrfs_dir_item *di;
4319 struct btrfs_key key;
5f39d397 4320 struct btrfs_key found_key;
39279cc3 4321 struct btrfs_path *path;
16cdcec7
MX
4322 struct list_head ins_list;
4323 struct list_head del_list;
39279cc3 4324 int ret;
5f39d397 4325 struct extent_buffer *leaf;
39279cc3 4326 int slot;
39279cc3
CM
4327 unsigned char d_type;
4328 int over = 0;
4329 u32 di_cur;
4330 u32 di_total;
4331 u32 di_len;
4332 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4333 char tmp_name[32];
4334 char *name_ptr;
4335 int name_len;
16cdcec7 4336 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4337
4338 /* FIXME, use a real flag for deciding about the key type */
4339 if (root->fs_info->tree_root == root)
4340 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4341
3954401f
CM
4342 /* special case for "." */
4343 if (filp->f_pos == 0) {
3765fefa
HS
4344 over = filldir(dirent, ".", 1,
4345 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4346 if (over)
4347 return 0;
4348 filp->f_pos = 1;
4349 }
3954401f
CM
4350 /* special case for .., just use the back ref */
4351 if (filp->f_pos == 1) {
5ecc7e5d 4352 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4353 over = filldir(dirent, "..", 2,
3765fefa 4354 filp->f_pos, pino, DT_DIR);
3954401f 4355 if (over)
49593bfa 4356 return 0;
3954401f
CM
4357 filp->f_pos = 2;
4358 }
49593bfa 4359 path = btrfs_alloc_path();
16cdcec7
MX
4360 if (!path)
4361 return -ENOMEM;
ff5714cc 4362
026fd317 4363 path->reada = 1;
49593bfa 4364
16cdcec7
MX
4365 if (key_type == BTRFS_DIR_INDEX_KEY) {
4366 INIT_LIST_HEAD(&ins_list);
4367 INIT_LIST_HEAD(&del_list);
4368 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4369 }
4370
39279cc3
CM
4371 btrfs_set_key_type(&key, key_type);
4372 key.offset = filp->f_pos;
33345d01 4373 key.objectid = btrfs_ino(inode);
5f39d397 4374
39279cc3
CM
4375 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4376 if (ret < 0)
4377 goto err;
49593bfa
DW
4378
4379 while (1) {
5f39d397 4380 leaf = path->nodes[0];
39279cc3 4381 slot = path->slots[0];
b9e03af0
LZ
4382 if (slot >= btrfs_header_nritems(leaf)) {
4383 ret = btrfs_next_leaf(root, path);
4384 if (ret < 0)
4385 goto err;
4386 else if (ret > 0)
4387 break;
4388 continue;
39279cc3 4389 }
3de4586c 4390
5f39d397
CM
4391 item = btrfs_item_nr(leaf, slot);
4392 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4393
4394 if (found_key.objectid != key.objectid)
39279cc3 4395 break;
5f39d397 4396 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4397 break;
5f39d397 4398 if (found_key.offset < filp->f_pos)
b9e03af0 4399 goto next;
16cdcec7
MX
4400 if (key_type == BTRFS_DIR_INDEX_KEY &&
4401 btrfs_should_delete_dir_index(&del_list,
4402 found_key.offset))
4403 goto next;
5f39d397
CM
4404
4405 filp->f_pos = found_key.offset;
16cdcec7 4406 is_curr = 1;
49593bfa 4407
39279cc3
CM
4408 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4409 di_cur = 0;
5f39d397 4410 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4411
4412 while (di_cur < di_total) {
5f39d397
CM
4413 struct btrfs_key location;
4414
22a94d44
JB
4415 if (verify_dir_item(root, leaf, di))
4416 break;
4417
5f39d397 4418 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4419 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4420 name_ptr = tmp_name;
4421 } else {
4422 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4423 if (!name_ptr) {
4424 ret = -ENOMEM;
4425 goto err;
4426 }
5f39d397
CM
4427 }
4428 read_extent_buffer(leaf, name_ptr,
4429 (unsigned long)(di + 1), name_len);
4430
4431 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4432 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4433
fede766f 4434
3de4586c 4435 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4436 * skip it.
4437 *
4438 * In contrast to old kernels, we insert the snapshot's
4439 * dir item and dir index after it has been created, so
4440 * we won't find a reference to our own snapshot. We
4441 * still keep the following code for backward
4442 * compatibility.
3de4586c
CM
4443 */
4444 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4445 location.objectid == root->root_key.objectid) {
4446 over = 0;
4447 goto skip;
4448 }
5f39d397 4449 over = filldir(dirent, name_ptr, name_len,
49593bfa 4450 found_key.offset, location.objectid,
39279cc3 4451 d_type);
5f39d397 4452
3de4586c 4453skip:
5f39d397
CM
4454 if (name_ptr != tmp_name)
4455 kfree(name_ptr);
4456
39279cc3
CM
4457 if (over)
4458 goto nopos;
5103e947 4459 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4460 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4461 di_cur += di_len;
4462 di = (struct btrfs_dir_item *)((char *)di + di_len);
4463 }
b9e03af0
LZ
4464next:
4465 path->slots[0]++;
39279cc3 4466 }
49593bfa 4467
16cdcec7
MX
4468 if (key_type == BTRFS_DIR_INDEX_KEY) {
4469 if (is_curr)
4470 filp->f_pos++;
4471 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4472 &ins_list);
4473 if (ret)
4474 goto nopos;
4475 }
4476
49593bfa 4477 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4478 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4479 /*
4480 * 32-bit glibc will use getdents64, but then strtol -
4481 * so the last number we can serve is this.
4482 */
4483 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4484 else
4485 filp->f_pos++;
39279cc3
CM
4486nopos:
4487 ret = 0;
4488err:
16cdcec7
MX
4489 if (key_type == BTRFS_DIR_INDEX_KEY)
4490 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4491 btrfs_free_path(path);
39279cc3
CM
4492 return ret;
4493}
4494
a9185b41 4495int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4496{
4497 struct btrfs_root *root = BTRFS_I(inode)->root;
4498 struct btrfs_trans_handle *trans;
4499 int ret = 0;
0af3d00b 4500 bool nolock = false;
39279cc3 4501
72ac3c0d 4502 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
4503 return 0;
4504
83eea1f1 4505 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 4506 nolock = true;
0af3d00b 4507
a9185b41 4508 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4509 if (nolock)
7a7eaa40 4510 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4511 else
7a7eaa40 4512 trans = btrfs_join_transaction(root);
3612b495
TI
4513 if (IS_ERR(trans))
4514 return PTR_ERR(trans);
0af3d00b
JB
4515 if (nolock)
4516 ret = btrfs_end_transaction_nolock(trans, root);
4517 else
4518 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4519 }
4520 return ret;
4521}
4522
4523/*
54aa1f4d 4524 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4525 * inode changes. But, it is most likely to find the inode in cache.
4526 * FIXME, needs more benchmarking...there are no reasons other than performance
4527 * to keep or drop this code.
4528 */
22c44fe6 4529int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4530{
4531 struct btrfs_root *root = BTRFS_I(inode)->root;
4532 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4533 int ret;
4534
72ac3c0d 4535 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 4536 return 0;
39279cc3 4537
7a7eaa40 4538 trans = btrfs_join_transaction(root);
22c44fe6
JB
4539 if (IS_ERR(trans))
4540 return PTR_ERR(trans);
8929ecfa
YZ
4541
4542 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4543 if (ret && ret == -ENOSPC) {
4544 /* whoops, lets try again with the full transaction */
4545 btrfs_end_transaction(trans, root);
4546 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4547 if (IS_ERR(trans))
4548 return PTR_ERR(trans);
8929ecfa 4549
94b60442 4550 ret = btrfs_update_inode(trans, root, inode);
94b60442 4551 }
39279cc3 4552 btrfs_end_transaction(trans, root);
16cdcec7
MX
4553 if (BTRFS_I(inode)->delayed_node)
4554 btrfs_balance_delayed_items(root);
22c44fe6
JB
4555
4556 return ret;
4557}
4558
4559/*
4560 * This is a copy of file_update_time. We need this so we can return error on
4561 * ENOSPC for updating the inode in the case of file write and mmap writes.
4562 */
e41f941a
JB
4563static int btrfs_update_time(struct inode *inode, struct timespec *now,
4564 int flags)
22c44fe6 4565{
2bc55652
AB
4566 struct btrfs_root *root = BTRFS_I(inode)->root;
4567
4568 if (btrfs_root_readonly(root))
4569 return -EROFS;
4570
e41f941a 4571 if (flags & S_VERSION)
22c44fe6 4572 inode_inc_iversion(inode);
e41f941a
JB
4573 if (flags & S_CTIME)
4574 inode->i_ctime = *now;
4575 if (flags & S_MTIME)
4576 inode->i_mtime = *now;
4577 if (flags & S_ATIME)
4578 inode->i_atime = *now;
4579 return btrfs_dirty_inode(inode);
39279cc3
CM
4580}
4581
d352ac68
CM
4582/*
4583 * find the highest existing sequence number in a directory
4584 * and then set the in-memory index_cnt variable to reflect
4585 * free sequence numbers
4586 */
aec7477b
JB
4587static int btrfs_set_inode_index_count(struct inode *inode)
4588{
4589 struct btrfs_root *root = BTRFS_I(inode)->root;
4590 struct btrfs_key key, found_key;
4591 struct btrfs_path *path;
4592 struct extent_buffer *leaf;
4593 int ret;
4594
33345d01 4595 key.objectid = btrfs_ino(inode);
aec7477b
JB
4596 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4597 key.offset = (u64)-1;
4598
4599 path = btrfs_alloc_path();
4600 if (!path)
4601 return -ENOMEM;
4602
4603 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4604 if (ret < 0)
4605 goto out;
4606 /* FIXME: we should be able to handle this */
4607 if (ret == 0)
4608 goto out;
4609 ret = 0;
4610
4611 /*
4612 * MAGIC NUMBER EXPLANATION:
4613 * since we search a directory based on f_pos we have to start at 2
4614 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4615 * else has to start at 2
4616 */
4617 if (path->slots[0] == 0) {
4618 BTRFS_I(inode)->index_cnt = 2;
4619 goto out;
4620 }
4621
4622 path->slots[0]--;
4623
4624 leaf = path->nodes[0];
4625 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4626
33345d01 4627 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4628 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4629 BTRFS_I(inode)->index_cnt = 2;
4630 goto out;
4631 }
4632
4633 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4634out:
4635 btrfs_free_path(path);
4636 return ret;
4637}
4638
d352ac68
CM
4639/*
4640 * helper to find a free sequence number in a given directory. This current
4641 * code is very simple, later versions will do smarter things in the btree
4642 */
3de4586c 4643int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4644{
4645 int ret = 0;
4646
4647 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4648 ret = btrfs_inode_delayed_dir_index_count(dir);
4649 if (ret) {
4650 ret = btrfs_set_inode_index_count(dir);
4651 if (ret)
4652 return ret;
4653 }
aec7477b
JB
4654 }
4655
00e4e6b3 4656 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4657 BTRFS_I(dir)->index_cnt++;
4658
4659 return ret;
4660}
4661
39279cc3
CM
4662static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4663 struct btrfs_root *root,
aec7477b 4664 struct inode *dir,
9c58309d 4665 const char *name, int name_len,
175a4eb7
AV
4666 u64 ref_objectid, u64 objectid,
4667 umode_t mode, u64 *index)
39279cc3
CM
4668{
4669 struct inode *inode;
5f39d397 4670 struct btrfs_inode_item *inode_item;
39279cc3 4671 struct btrfs_key *location;
5f39d397 4672 struct btrfs_path *path;
9c58309d
CM
4673 struct btrfs_inode_ref *ref;
4674 struct btrfs_key key[2];
4675 u32 sizes[2];
4676 unsigned long ptr;
39279cc3
CM
4677 int ret;
4678 int owner;
4679
5f39d397 4680 path = btrfs_alloc_path();
d8926bb3
MF
4681 if (!path)
4682 return ERR_PTR(-ENOMEM);
5f39d397 4683
39279cc3 4684 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4685 if (!inode) {
4686 btrfs_free_path(path);
39279cc3 4687 return ERR_PTR(-ENOMEM);
8fb27640 4688 }
39279cc3 4689
581bb050
LZ
4690 /*
4691 * we have to initialize this early, so we can reclaim the inode
4692 * number if we fail afterwards in this function.
4693 */
4694 inode->i_ino = objectid;
4695
aec7477b 4696 if (dir) {
1abe9b8a 4697 trace_btrfs_inode_request(dir);
4698
3de4586c 4699 ret = btrfs_set_inode_index(dir, index);
09771430 4700 if (ret) {
8fb27640 4701 btrfs_free_path(path);
09771430 4702 iput(inode);
aec7477b 4703 return ERR_PTR(ret);
09771430 4704 }
aec7477b
JB
4705 }
4706 /*
4707 * index_cnt is ignored for everything but a dir,
4708 * btrfs_get_inode_index_count has an explanation for the magic
4709 * number
4710 */
4711 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4712 BTRFS_I(inode)->root = root;
e02119d5 4713 BTRFS_I(inode)->generation = trans->transid;
76195853 4714 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 4715
5dc562c5
JB
4716 /*
4717 * We could have gotten an inode number from somebody who was fsynced
4718 * and then removed in this same transaction, so let's just set full
4719 * sync since it will be a full sync anyway and this will blow away the
4720 * old info in the log.
4721 */
4722 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4723
569254b0 4724 if (S_ISDIR(mode))
39279cc3
CM
4725 owner = 0;
4726 else
4727 owner = 1;
9c58309d
CM
4728
4729 key[0].objectid = objectid;
4730 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4731 key[0].offset = 0;
4732
4733 key[1].objectid = objectid;
4734 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4735 key[1].offset = ref_objectid;
4736
4737 sizes[0] = sizeof(struct btrfs_inode_item);
4738 sizes[1] = name_len + sizeof(*ref);
4739
b9473439 4740 path->leave_spinning = 1;
9c58309d
CM
4741 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4742 if (ret != 0)
5f39d397
CM
4743 goto fail;
4744
ecc11fab 4745 inode_init_owner(inode, dir, mode);
a76a3cd4 4746 inode_set_bytes(inode, 0);
39279cc3 4747 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4748 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4749 struct btrfs_inode_item);
293f7e07
LZ
4750 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4751 sizeof(*inode_item));
e02119d5 4752 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4753
4754 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4755 struct btrfs_inode_ref);
4756 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4757 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4758 ptr = (unsigned long)(ref + 1);
4759 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4760
5f39d397
CM
4761 btrfs_mark_buffer_dirty(path->nodes[0]);
4762 btrfs_free_path(path);
4763
39279cc3
CM
4764 location = &BTRFS_I(inode)->location;
4765 location->objectid = objectid;
39279cc3
CM
4766 location->offset = 0;
4767 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4768
6cbff00f
CH
4769 btrfs_inherit_iflags(inode, dir);
4770
569254b0 4771 if (S_ISREG(mode)) {
94272164
CM
4772 if (btrfs_test_opt(root, NODATASUM))
4773 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4774 if (btrfs_test_opt(root, NODATACOW) ||
4775 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4776 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4777 }
4778
39279cc3 4779 insert_inode_hash(inode);
5d4f98a2 4780 inode_tree_add(inode);
1abe9b8a 4781
4782 trace_btrfs_inode_new(inode);
1973f0fa 4783 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4784
8ea05e3a
AB
4785 btrfs_update_root_times(trans, root);
4786
39279cc3 4787 return inode;
5f39d397 4788fail:
aec7477b
JB
4789 if (dir)
4790 BTRFS_I(dir)->index_cnt--;
5f39d397 4791 btrfs_free_path(path);
09771430 4792 iput(inode);
5f39d397 4793 return ERR_PTR(ret);
39279cc3
CM
4794}
4795
4796static inline u8 btrfs_inode_type(struct inode *inode)
4797{
4798 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4799}
4800
d352ac68
CM
4801/*
4802 * utility function to add 'inode' into 'parent_inode' with
4803 * a give name and a given sequence number.
4804 * if 'add_backref' is true, also insert a backref from the
4805 * inode to the parent directory.
4806 */
e02119d5
CM
4807int btrfs_add_link(struct btrfs_trans_handle *trans,
4808 struct inode *parent_inode, struct inode *inode,
4809 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4810{
4df27c4d 4811 int ret = 0;
39279cc3 4812 struct btrfs_key key;
e02119d5 4813 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4814 u64 ino = btrfs_ino(inode);
4815 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4816
33345d01 4817 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4818 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4819 } else {
33345d01 4820 key.objectid = ino;
4df27c4d
YZ
4821 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4822 key.offset = 0;
4823 }
4824
33345d01 4825 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4826 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4827 key.objectid, root->root_key.objectid,
33345d01 4828 parent_ino, index, name, name_len);
4df27c4d 4829 } else if (add_backref) {
33345d01
LZ
4830 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4831 parent_ino, index);
4df27c4d 4832 }
39279cc3 4833
79787eaa
JM
4834 /* Nothing to clean up yet */
4835 if (ret)
4836 return ret;
4df27c4d 4837
79787eaa
JM
4838 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4839 parent_inode, &key,
4840 btrfs_inode_type(inode), index);
4841 if (ret == -EEXIST)
4842 goto fail_dir_item;
4843 else if (ret) {
4844 btrfs_abort_transaction(trans, root, ret);
4845 return ret;
39279cc3 4846 }
79787eaa
JM
4847
4848 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4849 name_len * 2);
0c4d2d95 4850 inode_inc_iversion(parent_inode);
79787eaa
JM
4851 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4852 ret = btrfs_update_inode(trans, root, parent_inode);
4853 if (ret)
4854 btrfs_abort_transaction(trans, root, ret);
39279cc3 4855 return ret;
fe66a05a
CM
4856
4857fail_dir_item:
4858 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4859 u64 local_index;
4860 int err;
4861 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4862 key.objectid, root->root_key.objectid,
4863 parent_ino, &local_index, name, name_len);
4864
4865 } else if (add_backref) {
4866 u64 local_index;
4867 int err;
4868
4869 err = btrfs_del_inode_ref(trans, root, name, name_len,
4870 ino, parent_ino, &local_index);
4871 }
4872 return ret;
39279cc3
CM
4873}
4874
4875static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4876 struct inode *dir, struct dentry *dentry,
4877 struct inode *inode, int backref, u64 index)
39279cc3 4878{
a1b075d2
JB
4879 int err = btrfs_add_link(trans, dir, inode,
4880 dentry->d_name.name, dentry->d_name.len,
4881 backref, index);
39279cc3
CM
4882 if (err > 0)
4883 err = -EEXIST;
4884 return err;
4885}
4886
618e21d5 4887static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4888 umode_t mode, dev_t rdev)
618e21d5
JB
4889{
4890 struct btrfs_trans_handle *trans;
4891 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4892 struct inode *inode = NULL;
618e21d5
JB
4893 int err;
4894 int drop_inode = 0;
4895 u64 objectid;
1832a6d5 4896 unsigned long nr = 0;
00e4e6b3 4897 u64 index = 0;
618e21d5
JB
4898
4899 if (!new_valid_dev(rdev))
4900 return -EINVAL;
4901
9ed74f2d
JB
4902 /*
4903 * 2 for inode item and ref
4904 * 2 for dir items
4905 * 1 for xattr if selinux is on
4906 */
a22285a6
YZ
4907 trans = btrfs_start_transaction(root, 5);
4908 if (IS_ERR(trans))
4909 return PTR_ERR(trans);
1832a6d5 4910
581bb050
LZ
4911 err = btrfs_find_free_ino(root, &objectid);
4912 if (err)
4913 goto out_unlock;
4914
aec7477b 4915 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4916 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4917 mode, &index);
7cf96da3
TI
4918 if (IS_ERR(inode)) {
4919 err = PTR_ERR(inode);
618e21d5 4920 goto out_unlock;
7cf96da3 4921 }
618e21d5 4922
2a7dba39 4923 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4924 if (err) {
4925 drop_inode = 1;
4926 goto out_unlock;
4927 }
4928
ad19db71
CS
4929 /*
4930 * If the active LSM wants to access the inode during
4931 * d_instantiate it needs these. Smack checks to see
4932 * if the filesystem supports xattrs by looking at the
4933 * ops vector.
4934 */
4935
4936 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4937 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4938 if (err)
4939 drop_inode = 1;
4940 else {
618e21d5 4941 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4942 btrfs_update_inode(trans, root, inode);
08c422c2 4943 d_instantiate(dentry, inode);
618e21d5 4944 }
618e21d5 4945out_unlock:
d3c2fdcf 4946 nr = trans->blocks_used;
7ad85bb7 4947 btrfs_end_transaction(trans, root);
a22285a6 4948 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4949 if (drop_inode) {
4950 inode_dec_link_count(inode);
4951 iput(inode);
4952 }
618e21d5
JB
4953 return err;
4954}
4955
39279cc3 4956static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 4957 umode_t mode, bool excl)
39279cc3
CM
4958{
4959 struct btrfs_trans_handle *trans;
4960 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4961 struct inode *inode = NULL;
39279cc3 4962 int drop_inode = 0;
a22285a6 4963 int err;
1832a6d5 4964 unsigned long nr = 0;
39279cc3 4965 u64 objectid;
00e4e6b3 4966 u64 index = 0;
39279cc3 4967
9ed74f2d
JB
4968 /*
4969 * 2 for inode item and ref
4970 * 2 for dir items
4971 * 1 for xattr if selinux is on
4972 */
a22285a6
YZ
4973 trans = btrfs_start_transaction(root, 5);
4974 if (IS_ERR(trans))
4975 return PTR_ERR(trans);
9ed74f2d 4976
581bb050
LZ
4977 err = btrfs_find_free_ino(root, &objectid);
4978 if (err)
4979 goto out_unlock;
4980
aec7477b 4981 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4982 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4983 mode, &index);
7cf96da3
TI
4984 if (IS_ERR(inode)) {
4985 err = PTR_ERR(inode);
39279cc3 4986 goto out_unlock;
7cf96da3 4987 }
39279cc3 4988
2a7dba39 4989 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4990 if (err) {
4991 drop_inode = 1;
4992 goto out_unlock;
4993 }
4994
ad19db71
CS
4995 /*
4996 * If the active LSM wants to access the inode during
4997 * d_instantiate it needs these. Smack checks to see
4998 * if the filesystem supports xattrs by looking at the
4999 * ops vector.
5000 */
5001 inode->i_fop = &btrfs_file_operations;
5002 inode->i_op = &btrfs_file_inode_operations;
5003
a1b075d2 5004 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
5005 if (err)
5006 drop_inode = 1;
5007 else {
5008 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5009 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 5010 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
08c422c2 5011 d_instantiate(dentry, inode);
39279cc3 5012 }
39279cc3 5013out_unlock:
d3c2fdcf 5014 nr = trans->blocks_used;
7ad85bb7 5015 btrfs_end_transaction(trans, root);
39279cc3
CM
5016 if (drop_inode) {
5017 inode_dec_link_count(inode);
5018 iput(inode);
5019 }
d3c2fdcf 5020 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5021 return err;
5022}
5023
5024static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5025 struct dentry *dentry)
5026{
5027 struct btrfs_trans_handle *trans;
5028 struct btrfs_root *root = BTRFS_I(dir)->root;
5029 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5030 u64 index;
1832a6d5 5031 unsigned long nr = 0;
39279cc3
CM
5032 int err;
5033 int drop_inode = 0;
5034
4a8be425
TH
5035 /* do not allow sys_link's with other subvols of the same device */
5036 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5037 return -EXDEV;
4a8be425 5038
c055e99e
AV
5039 if (inode->i_nlink == ~0U)
5040 return -EMLINK;
4a8be425 5041
3de4586c 5042 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5043 if (err)
5044 goto fail;
5045
a22285a6 5046 /*
7e6b6465 5047 * 2 items for inode and inode ref
a22285a6 5048 * 2 items for dir items
7e6b6465 5049 * 1 item for parent inode
a22285a6 5050 */
7e6b6465 5051 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5052 if (IS_ERR(trans)) {
5053 err = PTR_ERR(trans);
5054 goto fail;
5055 }
5f39d397 5056
3153495d 5057 btrfs_inc_nlink(inode);
0c4d2d95 5058 inode_inc_iversion(inode);
3153495d 5059 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5060 ihold(inode);
aec7477b 5061
a1b075d2 5062 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5063
a5719521 5064 if (err) {
54aa1f4d 5065 drop_inode = 1;
a5719521 5066 } else {
10d9f309 5067 struct dentry *parent = dentry->d_parent;
a5719521 5068 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5069 if (err)
5070 goto fail;
08c422c2 5071 d_instantiate(dentry, inode);
6a912213 5072 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5073 }
39279cc3 5074
d3c2fdcf 5075 nr = trans->blocks_used;
7ad85bb7 5076 btrfs_end_transaction(trans, root);
1832a6d5 5077fail:
39279cc3
CM
5078 if (drop_inode) {
5079 inode_dec_link_count(inode);
5080 iput(inode);
5081 }
d3c2fdcf 5082 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5083 return err;
5084}
5085
18bb1db3 5086static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5087{
b9d86667 5088 struct inode *inode = NULL;
39279cc3
CM
5089 struct btrfs_trans_handle *trans;
5090 struct btrfs_root *root = BTRFS_I(dir)->root;
5091 int err = 0;
5092 int drop_on_err = 0;
b9d86667 5093 u64 objectid = 0;
00e4e6b3 5094 u64 index = 0;
d3c2fdcf 5095 unsigned long nr = 1;
39279cc3 5096
9ed74f2d
JB
5097 /*
5098 * 2 items for inode and ref
5099 * 2 items for dir items
5100 * 1 for xattr if selinux is on
5101 */
a22285a6
YZ
5102 trans = btrfs_start_transaction(root, 5);
5103 if (IS_ERR(trans))
5104 return PTR_ERR(trans);
39279cc3 5105
581bb050
LZ
5106 err = btrfs_find_free_ino(root, &objectid);
5107 if (err)
5108 goto out_fail;
5109
aec7477b 5110 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5111 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5112 S_IFDIR | mode, &index);
39279cc3
CM
5113 if (IS_ERR(inode)) {
5114 err = PTR_ERR(inode);
5115 goto out_fail;
5116 }
5f39d397 5117
39279cc3 5118 drop_on_err = 1;
33268eaf 5119
2a7dba39 5120 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5121 if (err)
5122 goto out_fail;
5123
39279cc3
CM
5124 inode->i_op = &btrfs_dir_inode_operations;
5125 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5126
dbe674a9 5127 btrfs_i_size_write(inode, 0);
39279cc3
CM
5128 err = btrfs_update_inode(trans, root, inode);
5129 if (err)
5130 goto out_fail;
5f39d397 5131
a1b075d2
JB
5132 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5133 dentry->d_name.len, 0, index);
39279cc3
CM
5134 if (err)
5135 goto out_fail;
5f39d397 5136
39279cc3
CM
5137 d_instantiate(dentry, inode);
5138 drop_on_err = 0;
39279cc3
CM
5139
5140out_fail:
d3c2fdcf 5141 nr = trans->blocks_used;
7ad85bb7 5142 btrfs_end_transaction(trans, root);
39279cc3
CM
5143 if (drop_on_err)
5144 iput(inode);
d3c2fdcf 5145 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5146 return err;
5147}
5148
d352ac68
CM
5149/* helper for btfs_get_extent. Given an existing extent in the tree,
5150 * and an extent that you want to insert, deal with overlap and insert
5151 * the new extent into the tree.
5152 */
3b951516
CM
5153static int merge_extent_mapping(struct extent_map_tree *em_tree,
5154 struct extent_map *existing,
e6dcd2dc
CM
5155 struct extent_map *em,
5156 u64 map_start, u64 map_len)
3b951516
CM
5157{
5158 u64 start_diff;
3b951516 5159
e6dcd2dc
CM
5160 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5161 start_diff = map_start - em->start;
5162 em->start = map_start;
5163 em->len = map_len;
c8b97818
CM
5164 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5165 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5166 em->block_start += start_diff;
c8b97818
CM
5167 em->block_len -= start_diff;
5168 }
e6dcd2dc 5169 return add_extent_mapping(em_tree, em);
3b951516
CM
5170}
5171
c8b97818
CM
5172static noinline int uncompress_inline(struct btrfs_path *path,
5173 struct inode *inode, struct page *page,
5174 size_t pg_offset, u64 extent_offset,
5175 struct btrfs_file_extent_item *item)
5176{
5177 int ret;
5178 struct extent_buffer *leaf = path->nodes[0];
5179 char *tmp;
5180 size_t max_size;
5181 unsigned long inline_size;
5182 unsigned long ptr;
261507a0 5183 int compress_type;
c8b97818
CM
5184
5185 WARN_ON(pg_offset != 0);
261507a0 5186 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5187 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5188 inline_size = btrfs_file_extent_inline_item_len(leaf,
5189 btrfs_item_nr(leaf, path->slots[0]));
5190 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5191 if (!tmp)
5192 return -ENOMEM;
c8b97818
CM
5193 ptr = btrfs_file_extent_inline_start(item);
5194
5195 read_extent_buffer(leaf, tmp, ptr, inline_size);
5196
5b050f04 5197 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5198 ret = btrfs_decompress(compress_type, tmp, page,
5199 extent_offset, inline_size, max_size);
c8b97818 5200 if (ret) {
7ac687d9 5201 char *kaddr = kmap_atomic(page);
c8b97818
CM
5202 unsigned long copy_size = min_t(u64,
5203 PAGE_CACHE_SIZE - pg_offset,
5204 max_size - extent_offset);
5205 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5206 kunmap_atomic(kaddr);
c8b97818
CM
5207 }
5208 kfree(tmp);
5209 return 0;
5210}
5211
d352ac68
CM
5212/*
5213 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5214 * the ugly parts come from merging extents from the disk with the in-ram
5215 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5216 * where the in-ram extents might be locked pending data=ordered completion.
5217 *
5218 * This also copies inline extents directly into the page.
5219 */
d397712b 5220
a52d9a80 5221struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5222 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5223 int create)
5224{
5225 int ret;
5226 int err = 0;
db94535d 5227 u64 bytenr;
a52d9a80
CM
5228 u64 extent_start = 0;
5229 u64 extent_end = 0;
33345d01 5230 u64 objectid = btrfs_ino(inode);
a52d9a80 5231 u32 found_type;
f421950f 5232 struct btrfs_path *path = NULL;
a52d9a80
CM
5233 struct btrfs_root *root = BTRFS_I(inode)->root;
5234 struct btrfs_file_extent_item *item;
5f39d397
CM
5235 struct extent_buffer *leaf;
5236 struct btrfs_key found_key;
a52d9a80
CM
5237 struct extent_map *em = NULL;
5238 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5239 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5240 struct btrfs_trans_handle *trans = NULL;
261507a0 5241 int compress_type;
a52d9a80 5242
a52d9a80 5243again:
890871be 5244 read_lock(&em_tree->lock);
d1310b2e 5245 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5246 if (em)
5247 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5248 read_unlock(&em_tree->lock);
d1310b2e 5249
a52d9a80 5250 if (em) {
e1c4b745
CM
5251 if (em->start > start || em->start + em->len <= start)
5252 free_extent_map(em);
5253 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5254 free_extent_map(em);
5255 else
5256 goto out;
a52d9a80 5257 }
172ddd60 5258 em = alloc_extent_map();
a52d9a80 5259 if (!em) {
d1310b2e
CM
5260 err = -ENOMEM;
5261 goto out;
a52d9a80 5262 }
e6dcd2dc 5263 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5264 em->start = EXTENT_MAP_HOLE;
445a6944 5265 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5266 em->len = (u64)-1;
c8b97818 5267 em->block_len = (u64)-1;
f421950f
CM
5268
5269 if (!path) {
5270 path = btrfs_alloc_path();
026fd317
JB
5271 if (!path) {
5272 err = -ENOMEM;
5273 goto out;
5274 }
5275 /*
5276 * Chances are we'll be called again, so go ahead and do
5277 * readahead
5278 */
5279 path->reada = 1;
f421950f
CM
5280 }
5281
179e29e4
CM
5282 ret = btrfs_lookup_file_extent(trans, root, path,
5283 objectid, start, trans != NULL);
a52d9a80
CM
5284 if (ret < 0) {
5285 err = ret;
5286 goto out;
5287 }
5288
5289 if (ret != 0) {
5290 if (path->slots[0] == 0)
5291 goto not_found;
5292 path->slots[0]--;
5293 }
5294
5f39d397
CM
5295 leaf = path->nodes[0];
5296 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5297 struct btrfs_file_extent_item);
a52d9a80 5298 /* are we inside the extent that was found? */
5f39d397
CM
5299 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5300 found_type = btrfs_key_type(&found_key);
5301 if (found_key.objectid != objectid ||
a52d9a80
CM
5302 found_type != BTRFS_EXTENT_DATA_KEY) {
5303 goto not_found;
5304 }
5305
5f39d397
CM
5306 found_type = btrfs_file_extent_type(leaf, item);
5307 extent_start = found_key.offset;
261507a0 5308 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5309 if (found_type == BTRFS_FILE_EXTENT_REG ||
5310 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5311 extent_end = extent_start +
db94535d 5312 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5313 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5314 size_t size;
5315 size = btrfs_file_extent_inline_len(leaf, item);
5316 extent_end = (extent_start + size + root->sectorsize - 1) &
5317 ~((u64)root->sectorsize - 1);
5318 }
5319
5320 if (start >= extent_end) {
5321 path->slots[0]++;
5322 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5323 ret = btrfs_next_leaf(root, path);
5324 if (ret < 0) {
5325 err = ret;
5326 goto out;
a52d9a80 5327 }
9036c102
YZ
5328 if (ret > 0)
5329 goto not_found;
5330 leaf = path->nodes[0];
a52d9a80 5331 }
9036c102
YZ
5332 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5333 if (found_key.objectid != objectid ||
5334 found_key.type != BTRFS_EXTENT_DATA_KEY)
5335 goto not_found;
5336 if (start + len <= found_key.offset)
5337 goto not_found;
5338 em->start = start;
5339 em->len = found_key.offset - start;
5340 goto not_found_em;
5341 }
5342
d899e052
YZ
5343 if (found_type == BTRFS_FILE_EXTENT_REG ||
5344 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5345 em->start = extent_start;
5346 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5347 em->orig_start = extent_start -
5348 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5349 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5350 if (bytenr == 0) {
5f39d397 5351 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5352 goto insert;
5353 }
261507a0 5354 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5355 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5356 em->compress_type = compress_type;
c8b97818
CM
5357 em->block_start = bytenr;
5358 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5359 item);
5360 } else {
5361 bytenr += btrfs_file_extent_offset(leaf, item);
5362 em->block_start = bytenr;
5363 em->block_len = em->len;
d899e052
YZ
5364 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5365 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5366 }
a52d9a80
CM
5367 goto insert;
5368 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5369 unsigned long ptr;
a52d9a80 5370 char *map;
3326d1b0
CM
5371 size_t size;
5372 size_t extent_offset;
5373 size_t copy_size;
a52d9a80 5374
689f9346 5375 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5376 if (!page || create) {
689f9346 5377 em->start = extent_start;
9036c102 5378 em->len = extent_end - extent_start;
689f9346
Y
5379 goto out;
5380 }
5f39d397 5381
9036c102
YZ
5382 size = btrfs_file_extent_inline_len(leaf, item);
5383 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5384 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5385 size - extent_offset);
3326d1b0 5386 em->start = extent_start + extent_offset;
70dec807
CM
5387 em->len = (copy_size + root->sectorsize - 1) &
5388 ~((u64)root->sectorsize - 1);
ff5b7ee3 5389 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5390 if (compress_type) {
c8b97818 5391 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5392 em->compress_type = compress_type;
5393 }
689f9346 5394 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5395 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5396 if (btrfs_file_extent_compression(leaf, item) !=
5397 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5398 ret = uncompress_inline(path, inode, page,
5399 pg_offset,
5400 extent_offset, item);
79787eaa 5401 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5402 } else {
5403 map = kmap(page);
5404 read_extent_buffer(leaf, map + pg_offset, ptr,
5405 copy_size);
93c82d57
CM
5406 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5407 memset(map + pg_offset + copy_size, 0,
5408 PAGE_CACHE_SIZE - pg_offset -
5409 copy_size);
5410 }
c8b97818
CM
5411 kunmap(page);
5412 }
179e29e4
CM
5413 flush_dcache_page(page);
5414 } else if (create && PageUptodate(page)) {
6bf7e080 5415 BUG();
179e29e4
CM
5416 if (!trans) {
5417 kunmap(page);
5418 free_extent_map(em);
5419 em = NULL;
ff5714cc 5420
b3b4aa74 5421 btrfs_release_path(path);
7a7eaa40 5422 trans = btrfs_join_transaction(root);
ff5714cc 5423
3612b495
TI
5424 if (IS_ERR(trans))
5425 return ERR_CAST(trans);
179e29e4
CM
5426 goto again;
5427 }
c8b97818 5428 map = kmap(page);
70dec807 5429 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5430 copy_size);
c8b97818 5431 kunmap(page);
179e29e4 5432 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5433 }
d1310b2e 5434 set_extent_uptodate(io_tree, em->start,
507903b8 5435 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5436 goto insert;
5437 } else {
d397712b 5438 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5439 WARN_ON(1);
5440 }
5441not_found:
5442 em->start = start;
d1310b2e 5443 em->len = len;
a52d9a80 5444not_found_em:
5f39d397 5445 em->block_start = EXTENT_MAP_HOLE;
9036c102 5446 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5447insert:
b3b4aa74 5448 btrfs_release_path(path);
d1310b2e 5449 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5450 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5451 "[%llu %llu]\n", (unsigned long long)em->start,
5452 (unsigned long long)em->len,
5453 (unsigned long long)start,
5454 (unsigned long long)len);
a52d9a80
CM
5455 err = -EIO;
5456 goto out;
5457 }
d1310b2e
CM
5458
5459 err = 0;
890871be 5460 write_lock(&em_tree->lock);
a52d9a80 5461 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5462 /* it is possible that someone inserted the extent into the tree
5463 * while we had the lock dropped. It is also possible that
5464 * an overlapping map exists in the tree
5465 */
a52d9a80 5466 if (ret == -EEXIST) {
3b951516 5467 struct extent_map *existing;
e6dcd2dc
CM
5468
5469 ret = 0;
5470
3b951516 5471 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5472 if (existing && (existing->start > start ||
5473 existing->start + existing->len <= start)) {
5474 free_extent_map(existing);
5475 existing = NULL;
5476 }
3b951516
CM
5477 if (!existing) {
5478 existing = lookup_extent_mapping(em_tree, em->start,
5479 em->len);
5480 if (existing) {
5481 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5482 em, start,
5483 root->sectorsize);
3b951516
CM
5484 free_extent_map(existing);
5485 if (err) {
5486 free_extent_map(em);
5487 em = NULL;
5488 }
5489 } else {
5490 err = -EIO;
3b951516
CM
5491 free_extent_map(em);
5492 em = NULL;
5493 }
5494 } else {
5495 free_extent_map(em);
5496 em = existing;
e6dcd2dc 5497 err = 0;
a52d9a80 5498 }
a52d9a80 5499 }
890871be 5500 write_unlock(&em_tree->lock);
a52d9a80 5501out:
1abe9b8a 5502
5503 trace_btrfs_get_extent(root, em);
5504
f421950f
CM
5505 if (path)
5506 btrfs_free_path(path);
a52d9a80
CM
5507 if (trans) {
5508 ret = btrfs_end_transaction(trans, root);
d397712b 5509 if (!err)
a52d9a80
CM
5510 err = ret;
5511 }
a52d9a80
CM
5512 if (err) {
5513 free_extent_map(em);
a52d9a80
CM
5514 return ERR_PTR(err);
5515 }
79787eaa 5516 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5517 return em;
5518}
5519
ec29ed5b
CM
5520struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5521 size_t pg_offset, u64 start, u64 len,
5522 int create)
5523{
5524 struct extent_map *em;
5525 struct extent_map *hole_em = NULL;
5526 u64 range_start = start;
5527 u64 end;
5528 u64 found;
5529 u64 found_end;
5530 int err = 0;
5531
5532 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5533 if (IS_ERR(em))
5534 return em;
5535 if (em) {
5536 /*
5537 * if our em maps to a hole, there might
5538 * actually be delalloc bytes behind it
5539 */
5540 if (em->block_start != EXTENT_MAP_HOLE)
5541 return em;
5542 else
5543 hole_em = em;
5544 }
5545
5546 /* check to see if we've wrapped (len == -1 or similar) */
5547 end = start + len;
5548 if (end < start)
5549 end = (u64)-1;
5550 else
5551 end -= 1;
5552
5553 em = NULL;
5554
5555 /* ok, we didn't find anything, lets look for delalloc */
5556 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5557 end, len, EXTENT_DELALLOC, 1);
5558 found_end = range_start + found;
5559 if (found_end < range_start)
5560 found_end = (u64)-1;
5561
5562 /*
5563 * we didn't find anything useful, return
5564 * the original results from get_extent()
5565 */
5566 if (range_start > end || found_end <= start) {
5567 em = hole_em;
5568 hole_em = NULL;
5569 goto out;
5570 }
5571
5572 /* adjust the range_start to make sure it doesn't
5573 * go backwards from the start they passed in
5574 */
5575 range_start = max(start,range_start);
5576 found = found_end - range_start;
5577
5578 if (found > 0) {
5579 u64 hole_start = start;
5580 u64 hole_len = len;
5581
172ddd60 5582 em = alloc_extent_map();
ec29ed5b
CM
5583 if (!em) {
5584 err = -ENOMEM;
5585 goto out;
5586 }
5587 /*
5588 * when btrfs_get_extent can't find anything it
5589 * returns one huge hole
5590 *
5591 * make sure what it found really fits our range, and
5592 * adjust to make sure it is based on the start from
5593 * the caller
5594 */
5595 if (hole_em) {
5596 u64 calc_end = extent_map_end(hole_em);
5597
5598 if (calc_end <= start || (hole_em->start > end)) {
5599 free_extent_map(hole_em);
5600 hole_em = NULL;
5601 } else {
5602 hole_start = max(hole_em->start, start);
5603 hole_len = calc_end - hole_start;
5604 }
5605 }
5606 em->bdev = NULL;
5607 if (hole_em && range_start > hole_start) {
5608 /* our hole starts before our delalloc, so we
5609 * have to return just the parts of the hole
5610 * that go until the delalloc starts
5611 */
5612 em->len = min(hole_len,
5613 range_start - hole_start);
5614 em->start = hole_start;
5615 em->orig_start = hole_start;
5616 /*
5617 * don't adjust block start at all,
5618 * it is fixed at EXTENT_MAP_HOLE
5619 */
5620 em->block_start = hole_em->block_start;
5621 em->block_len = hole_len;
5622 } else {
5623 em->start = range_start;
5624 em->len = found;
5625 em->orig_start = range_start;
5626 em->block_start = EXTENT_MAP_DELALLOC;
5627 em->block_len = found;
5628 }
5629 } else if (hole_em) {
5630 return hole_em;
5631 }
5632out:
5633
5634 free_extent_map(hole_em);
5635 if (err) {
5636 free_extent_map(em);
5637 return ERR_PTR(err);
5638 }
5639 return em;
5640}
5641
4b46fce2 5642static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5643 struct extent_map *em,
4b46fce2
JB
5644 u64 start, u64 len)
5645{
5646 struct btrfs_root *root = BTRFS_I(inode)->root;
5647 struct btrfs_trans_handle *trans;
4b46fce2
JB
5648 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5649 struct btrfs_key ins;
5650 u64 alloc_hint;
5651 int ret;
16d299ac 5652 bool insert = false;
4b46fce2 5653
16d299ac
JB
5654 /*
5655 * Ok if the extent map we looked up is a hole and is for the exact
5656 * range we want, there is no reason to allocate a new one, however if
5657 * it is not right then we need to free this one and drop the cache for
5658 * our range.
5659 */
5660 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5661 em->len != len) {
5662 free_extent_map(em);
5663 em = NULL;
5664 insert = true;
5665 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5666 }
4b46fce2 5667
7a7eaa40 5668 trans = btrfs_join_transaction(root);
3612b495
TI
5669 if (IS_ERR(trans))
5670 return ERR_CAST(trans);
4b46fce2 5671
4cb5300b
CM
5672 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5673 btrfs_add_inode_defrag(trans, inode);
5674
4b46fce2
JB
5675 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5676
5677 alloc_hint = get_extent_allocation_hint(inode, start, len);
5678 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5679 alloc_hint, &ins, 1);
4b46fce2
JB
5680 if (ret) {
5681 em = ERR_PTR(ret);
5682 goto out;
5683 }
5684
4b46fce2 5685 if (!em) {
172ddd60 5686 em = alloc_extent_map();
16d299ac
JB
5687 if (!em) {
5688 em = ERR_PTR(-ENOMEM);
5689 goto out;
5690 }
4b46fce2
JB
5691 }
5692
5693 em->start = start;
5694 em->orig_start = em->start;
5695 em->len = ins.offset;
5696
5697 em->block_start = ins.objectid;
5698 em->block_len = ins.offset;
5699 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5700
5701 /*
5702 * We need to do this because if we're using the original em we searched
5703 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5704 */
5705 em->flags = 0;
4b46fce2
JB
5706 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5707
16d299ac 5708 while (insert) {
4b46fce2
JB
5709 write_lock(&em_tree->lock);
5710 ret = add_extent_mapping(em_tree, em);
5711 write_unlock(&em_tree->lock);
5712 if (ret != -EEXIST)
5713 break;
5714 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5715 }
5716
5717 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5718 ins.offset, ins.offset, 0);
5719 if (ret) {
5720 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5721 em = ERR_PTR(ret);
5722 }
5723out:
5724 btrfs_end_transaction(trans, root);
5725 return em;
5726}
5727
46bfbb5c
CM
5728/*
5729 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5730 * block must be cow'd
5731 */
5732static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5733 struct inode *inode, u64 offset, u64 len)
5734{
5735 struct btrfs_path *path;
5736 int ret;
5737 struct extent_buffer *leaf;
5738 struct btrfs_root *root = BTRFS_I(inode)->root;
5739 struct btrfs_file_extent_item *fi;
5740 struct btrfs_key key;
5741 u64 disk_bytenr;
5742 u64 backref_offset;
5743 u64 extent_end;
5744 u64 num_bytes;
5745 int slot;
5746 int found_type;
5747
5748 path = btrfs_alloc_path();
5749 if (!path)
5750 return -ENOMEM;
5751
33345d01 5752 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5753 offset, 0);
5754 if (ret < 0)
5755 goto out;
5756
5757 slot = path->slots[0];
5758 if (ret == 1) {
5759 if (slot == 0) {
5760 /* can't find the item, must cow */
5761 ret = 0;
5762 goto out;
5763 }
5764 slot--;
5765 }
5766 ret = 0;
5767 leaf = path->nodes[0];
5768 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5769 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5770 key.type != BTRFS_EXTENT_DATA_KEY) {
5771 /* not our file or wrong item type, must cow */
5772 goto out;
5773 }
5774
5775 if (key.offset > offset) {
5776 /* Wrong offset, must cow */
5777 goto out;
5778 }
5779
5780 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5781 found_type = btrfs_file_extent_type(leaf, fi);
5782 if (found_type != BTRFS_FILE_EXTENT_REG &&
5783 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5784 /* not a regular extent, must cow */
5785 goto out;
5786 }
5787 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5788 backref_offset = btrfs_file_extent_offset(leaf, fi);
5789
5790 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5791 if (extent_end < offset + len) {
5792 /* extent doesn't include our full range, must cow */
5793 goto out;
5794 }
5795
5796 if (btrfs_extent_readonly(root, disk_bytenr))
5797 goto out;
5798
5799 /*
5800 * look for other files referencing this extent, if we
5801 * find any we must cow
5802 */
33345d01 5803 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5804 key.offset - backref_offset, disk_bytenr))
5805 goto out;
5806
5807 /*
5808 * adjust disk_bytenr and num_bytes to cover just the bytes
5809 * in this extent we are about to write. If there
5810 * are any csums in that range we have to cow in order
5811 * to keep the csums correct
5812 */
5813 disk_bytenr += backref_offset;
5814 disk_bytenr += offset - key.offset;
5815 num_bytes = min(offset + len, extent_end) - offset;
5816 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5817 goto out;
5818 /*
5819 * all of the above have passed, it is safe to overwrite this extent
5820 * without cow
5821 */
5822 ret = 1;
5823out:
5824 btrfs_free_path(path);
5825 return ret;
5826}
5827
eb838e73
JB
5828static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5829 struct extent_state **cached_state, int writing)
5830{
5831 struct btrfs_ordered_extent *ordered;
5832 int ret = 0;
5833
5834 while (1) {
5835 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5836 0, cached_state);
5837 /*
5838 * We're concerned with the entire range that we're going to be
5839 * doing DIO to, so we need to make sure theres no ordered
5840 * extents in this range.
5841 */
5842 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5843 lockend - lockstart + 1);
5844
5845 /*
5846 * We need to make sure there are no buffered pages in this
5847 * range either, we could have raced between the invalidate in
5848 * generic_file_direct_write and locking the extent. The
5849 * invalidate needs to happen so that reads after a write do not
5850 * get stale data.
5851 */
5852 if (!ordered && (!writing ||
5853 !test_range_bit(&BTRFS_I(inode)->io_tree,
5854 lockstart, lockend, EXTENT_UPTODATE, 0,
5855 *cached_state)))
5856 break;
5857
5858 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5859 cached_state, GFP_NOFS);
5860
5861 if (ordered) {
5862 btrfs_start_ordered_extent(inode, ordered, 1);
5863 btrfs_put_ordered_extent(ordered);
5864 } else {
5865 /* Screw you mmap */
5866 ret = filemap_write_and_wait_range(inode->i_mapping,
5867 lockstart,
5868 lockend);
5869 if (ret)
5870 break;
5871
5872 /*
5873 * If we found a page that couldn't be invalidated just
5874 * fall back to buffered.
5875 */
5876 ret = invalidate_inode_pages2_range(inode->i_mapping,
5877 lockstart >> PAGE_CACHE_SHIFT,
5878 lockend >> PAGE_CACHE_SHIFT);
5879 if (ret)
5880 break;
5881 }
5882
5883 cond_resched();
5884 }
5885
5886 return ret;
5887}
5888
4b46fce2
JB
5889static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5890 struct buffer_head *bh_result, int create)
5891{
5892 struct extent_map *em;
5893 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 5894 struct extent_state *cached_state = NULL;
4b46fce2 5895 u64 start = iblock << inode->i_blkbits;
eb838e73 5896 u64 lockstart, lockend;
4b46fce2 5897 u64 len = bh_result->b_size;
46bfbb5c 5898 struct btrfs_trans_handle *trans;
eb838e73
JB
5899 int unlock_bits = EXTENT_LOCKED;
5900 int ret;
5901
eb838e73
JB
5902 if (create) {
5903 ret = btrfs_delalloc_reserve_space(inode, len);
5904 if (ret)
5905 return ret;
5906 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
c329861d
JB
5907 } else {
5908 len = min_t(u64, len, root->sectorsize);
eb838e73
JB
5909 }
5910
c329861d
JB
5911 lockstart = start;
5912 lockend = start + len - 1;
5913
eb838e73
JB
5914 /*
5915 * If this errors out it's because we couldn't invalidate pagecache for
5916 * this range and we need to fallback to buffered.
5917 */
5918 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5919 return -ENOTBLK;
5920
5921 if (create) {
5922 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5923 lockend, EXTENT_DELALLOC, NULL,
5924 &cached_state, GFP_NOFS);
5925 if (ret)
5926 goto unlock_err;
5927 }
4b46fce2
JB
5928
5929 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
5930 if (IS_ERR(em)) {
5931 ret = PTR_ERR(em);
5932 goto unlock_err;
5933 }
4b46fce2
JB
5934
5935 /*
5936 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5937 * io. INLINE is special, and we could probably kludge it in here, but
5938 * it's still buffered so for safety lets just fall back to the generic
5939 * buffered path.
5940 *
5941 * For COMPRESSED we _have_ to read the entire extent in so we can
5942 * decompress it, so there will be buffering required no matter what we
5943 * do, so go ahead and fallback to buffered.
5944 *
5945 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5946 * to buffered IO. Don't blame me, this is the price we pay for using
5947 * the generic code.
5948 */
5949 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5950 em->block_start == EXTENT_MAP_INLINE) {
5951 free_extent_map(em);
eb838e73
JB
5952 ret = -ENOTBLK;
5953 goto unlock_err;
4b46fce2
JB
5954 }
5955
5956 /* Just a good old fashioned hole, return */
5957 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5958 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5959 free_extent_map(em);
eb838e73
JB
5960 ret = 0;
5961 goto unlock_err;
4b46fce2
JB
5962 }
5963
5964 /*
5965 * We don't allocate a new extent in the following cases
5966 *
5967 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5968 * existing extent.
5969 * 2) The extent is marked as PREALLOC. We're good to go here and can
5970 * just use the extent.
5971 *
5972 */
46bfbb5c 5973 if (!create) {
eb838e73
JB
5974 len = min(len, em->len - (start - em->start));
5975 lockstart = start + len;
5976 goto unlock;
46bfbb5c 5977 }
4b46fce2
JB
5978
5979 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5980 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5981 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5982 int type;
5983 int ret;
46bfbb5c 5984 u64 block_start;
4b46fce2
JB
5985
5986 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5987 type = BTRFS_ORDERED_PREALLOC;
5988 else
5989 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5990 len = min(len, em->len - (start - em->start));
4b46fce2 5991 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5992
5993 /*
5994 * we're not going to log anything, but we do need
5995 * to make sure the current transaction stays open
5996 * while we look for nocow cross refs
5997 */
7a7eaa40 5998 trans = btrfs_join_transaction(root);
3612b495 5999 if (IS_ERR(trans))
46bfbb5c
CM
6000 goto must_cow;
6001
6002 if (can_nocow_odirect(trans, inode, start, len) == 1) {
6003 ret = btrfs_add_ordered_extent_dio(inode, start,
6004 block_start, len, len, type);
6005 btrfs_end_transaction(trans, root);
6006 if (ret) {
6007 free_extent_map(em);
eb838e73 6008 goto unlock_err;
46bfbb5c
CM
6009 }
6010 goto unlock;
4b46fce2 6011 }
46bfbb5c 6012 btrfs_end_transaction(trans, root);
4b46fce2 6013 }
46bfbb5c
CM
6014must_cow:
6015 /*
6016 * this will cow the extent, reset the len in case we changed
6017 * it above
6018 */
6019 len = bh_result->b_size;
16d299ac 6020 em = btrfs_new_extent_direct(inode, em, start, len);
eb838e73
JB
6021 if (IS_ERR(em)) {
6022 ret = PTR_ERR(em);
6023 goto unlock_err;
6024 }
46bfbb5c
CM
6025 len = min(len, em->len - (start - em->start));
6026unlock:
4b46fce2
JB
6027 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6028 inode->i_blkbits;
46bfbb5c 6029 bh_result->b_size = len;
4b46fce2
JB
6030 bh_result->b_bdev = em->bdev;
6031 set_buffer_mapped(bh_result);
c3473e83
JB
6032 if (create) {
6033 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6034 set_buffer_new(bh_result);
6035
6036 /*
6037 * Need to update the i_size under the extent lock so buffered
6038 * readers will get the updated i_size when we unlock.
6039 */
6040 if (start + len > i_size_read(inode))
6041 i_size_write(inode, start + len);
6042 }
4b46fce2 6043
eb838e73
JB
6044 /*
6045 * In the case of write we need to clear and unlock the entire range,
6046 * in the case of read we need to unlock only the end area that we
6047 * aren't using if there is any left over space.
6048 */
24c03fa5
LB
6049 if (lockstart < lockend) {
6050 if (create && len < lockend - lockstart) {
6051 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6052 lockstart + len - 1, unlock_bits, 1, 0,
6053 &cached_state, GFP_NOFS);
6054 /*
6055 * Beside unlock, we also need to cleanup reserved space
6056 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6057 */
6058 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6059 lockstart + len, lockend,
6060 unlock_bits | EXTENT_DO_ACCOUNTING,
6061 1, 0, NULL, GFP_NOFS);
6062 } else {
6063 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6064 lockend, unlock_bits, 1, 0,
6065 &cached_state, GFP_NOFS);
6066 }
6067 } else {
eb838e73 6068 free_extent_state(cached_state);
24c03fa5 6069 }
eb838e73 6070
4b46fce2
JB
6071 free_extent_map(em);
6072
6073 return 0;
eb838e73
JB
6074
6075unlock_err:
6076 if (create)
6077 unlock_bits |= EXTENT_DO_ACCOUNTING;
6078
6079 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6080 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6081 return ret;
4b46fce2
JB
6082}
6083
6084struct btrfs_dio_private {
6085 struct inode *inode;
6086 u64 logical_offset;
6087 u64 disk_bytenr;
6088 u64 bytes;
4b46fce2 6089 void *private;
e65e1535
MX
6090
6091 /* number of bios pending for this dio */
6092 atomic_t pending_bios;
6093
6094 /* IO errors */
6095 int errors;
6096
6097 struct bio *orig_bio;
4b46fce2
JB
6098};
6099
6100static void btrfs_endio_direct_read(struct bio *bio, int err)
6101{
e65e1535 6102 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6103 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6104 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6105 struct inode *inode = dip->inode;
6106 struct btrfs_root *root = BTRFS_I(inode)->root;
6107 u64 start;
4b46fce2
JB
6108
6109 start = dip->logical_offset;
6110 do {
6111 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6112 struct page *page = bvec->bv_page;
6113 char *kaddr;
6114 u32 csum = ~(u32)0;
c329861d 6115 u64 private = ~(u32)0;
4b46fce2
JB
6116 unsigned long flags;
6117
c329861d
JB
6118 if (get_state_private(&BTRFS_I(inode)->io_tree,
6119 start, &private))
6120 goto failed;
4b46fce2 6121 local_irq_save(flags);
7ac687d9 6122 kaddr = kmap_atomic(page);
4b46fce2
JB
6123 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6124 csum, bvec->bv_len);
6125 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6126 kunmap_atomic(kaddr);
4b46fce2
JB
6127 local_irq_restore(flags);
6128
6129 flush_dcache_page(bvec->bv_page);
c329861d
JB
6130 if (csum != private) {
6131failed:
33345d01 6132 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 6133 " %llu csum %u private %u\n",
33345d01
LZ
6134 (unsigned long long)btrfs_ino(inode),
6135 (unsigned long long)start,
c329861d 6136 csum, (unsigned)private);
4b46fce2
JB
6137 err = -EIO;
6138 }
6139 }
6140
6141 start += bvec->bv_len;
4b46fce2
JB
6142 bvec++;
6143 } while (bvec <= bvec_end);
6144
6145 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6146 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
6147 bio->bi_private = dip->private;
6148
4b46fce2 6149 kfree(dip);
c0da7aa1
JB
6150
6151 /* If we had a csum failure make sure to clear the uptodate flag */
6152 if (err)
6153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6154 dio_end_io(bio, err);
6155}
6156
6157static void btrfs_endio_direct_write(struct bio *bio, int err)
6158{
6159 struct btrfs_dio_private *dip = bio->bi_private;
6160 struct inode *inode = dip->inode;
6161 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6162 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6163 u64 ordered_offset = dip->logical_offset;
6164 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
6165 int ret;
6166
6167 if (err)
6168 goto out_done;
163cf09c
CM
6169again:
6170 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6171 &ordered_offset,
5fd02043 6172 ordered_bytes, !err);
4b46fce2 6173 if (!ret)
163cf09c 6174 goto out_test;
4b46fce2 6175
5fd02043
JB
6176 ordered->work.func = finish_ordered_fn;
6177 ordered->work.flags = 0;
6178 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6179 &ordered->work);
163cf09c
CM
6180out_test:
6181 /*
6182 * our bio might span multiple ordered extents. If we haven't
6183 * completed the accounting for the whole dio, go back and try again
6184 */
6185 if (ordered_offset < dip->logical_offset + dip->bytes) {
6186 ordered_bytes = dip->logical_offset + dip->bytes -
6187 ordered_offset;
5fd02043 6188 ordered = NULL;
163cf09c
CM
6189 goto again;
6190 }
4b46fce2
JB
6191out_done:
6192 bio->bi_private = dip->private;
6193
4b46fce2 6194 kfree(dip);
c0da7aa1
JB
6195
6196 /* If we had an error make sure to clear the uptodate flag */
6197 if (err)
6198 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6199 dio_end_io(bio, err);
6200}
6201
eaf25d93
CM
6202static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6203 struct bio *bio, int mirror_num,
6204 unsigned long bio_flags, u64 offset)
6205{
6206 int ret;
6207 struct btrfs_root *root = BTRFS_I(inode)->root;
6208 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6209 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6210 return 0;
6211}
6212
e65e1535
MX
6213static void btrfs_end_dio_bio(struct bio *bio, int err)
6214{
6215 struct btrfs_dio_private *dip = bio->bi_private;
6216
6217 if (err) {
33345d01 6218 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6219 "sector %#Lx len %u err no %d\n",
33345d01 6220 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6221 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6222 dip->errors = 1;
6223
6224 /*
6225 * before atomic variable goto zero, we must make sure
6226 * dip->errors is perceived to be set.
6227 */
6228 smp_mb__before_atomic_dec();
6229 }
6230
6231 /* if there are more bios still pending for this dio, just exit */
6232 if (!atomic_dec_and_test(&dip->pending_bios))
6233 goto out;
6234
6235 if (dip->errors)
6236 bio_io_error(dip->orig_bio);
6237 else {
6238 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6239 bio_endio(dip->orig_bio, 0);
6240 }
6241out:
6242 bio_put(bio);
6243}
6244
6245static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6246 u64 first_sector, gfp_t gfp_flags)
6247{
6248 int nr_vecs = bio_get_nr_vecs(bdev);
6249 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6250}
6251
6252static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6253 int rw, u64 file_offset, int skip_sum,
c329861d 6254 int async_submit)
e65e1535
MX
6255{
6256 int write = rw & REQ_WRITE;
6257 struct btrfs_root *root = BTRFS_I(inode)->root;
6258 int ret;
6259
6260 bio_get(bio);
5fd02043
JB
6261
6262 if (!write) {
6263 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6264 if (ret)
6265 goto err;
6266 }
e65e1535 6267
1ae39938
JB
6268 if (skip_sum)
6269 goto map;
6270
6271 if (write && async_submit) {
e65e1535
MX
6272 ret = btrfs_wq_submit_bio(root->fs_info,
6273 inode, rw, bio, 0, 0,
6274 file_offset,
6275 __btrfs_submit_bio_start_direct_io,
6276 __btrfs_submit_bio_done);
6277 goto err;
1ae39938
JB
6278 } else if (write) {
6279 /*
6280 * If we aren't doing async submit, calculate the csum of the
6281 * bio now.
6282 */
6283 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6284 if (ret)
6285 goto err;
c2db1073 6286 } else if (!skip_sum) {
c329861d 6287 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
c2db1073
TI
6288 if (ret)
6289 goto err;
6290 }
e65e1535 6291
1ae39938
JB
6292map:
6293 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6294err:
6295 bio_put(bio);
6296 return ret;
6297}
6298
6299static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6300 int skip_sum)
6301{
6302 struct inode *inode = dip->inode;
6303 struct btrfs_root *root = BTRFS_I(inode)->root;
6304 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6305 struct bio *bio;
6306 struct bio *orig_bio = dip->orig_bio;
6307 struct bio_vec *bvec = orig_bio->bi_io_vec;
6308 u64 start_sector = orig_bio->bi_sector;
6309 u64 file_offset = dip->logical_offset;
6310 u64 submit_len = 0;
6311 u64 map_length;
6312 int nr_pages = 0;
e65e1535 6313 int ret = 0;
1ae39938 6314 int async_submit = 0;
e65e1535 6315
e65e1535
MX
6316 map_length = orig_bio->bi_size;
6317 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6318 &map_length, NULL, 0);
6319 if (ret) {
64728bbb 6320 bio_put(orig_bio);
e65e1535
MX
6321 return -EIO;
6322 }
6323
02f57c7a
JB
6324 if (map_length >= orig_bio->bi_size) {
6325 bio = orig_bio;
6326 goto submit;
6327 }
6328
1ae39938 6329 async_submit = 1;
02f57c7a
JB
6330 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6331 if (!bio)
6332 return -ENOMEM;
6333 bio->bi_private = dip;
6334 bio->bi_end_io = btrfs_end_dio_bio;
6335 atomic_inc(&dip->pending_bios);
6336
e65e1535
MX
6337 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6338 if (unlikely(map_length < submit_len + bvec->bv_len ||
6339 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6340 bvec->bv_offset) < bvec->bv_len)) {
6341 /*
6342 * inc the count before we submit the bio so
6343 * we know the end IO handler won't happen before
6344 * we inc the count. Otherwise, the dip might get freed
6345 * before we're done setting it up
6346 */
6347 atomic_inc(&dip->pending_bios);
6348 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6349 file_offset, skip_sum,
c329861d 6350 async_submit);
e65e1535
MX
6351 if (ret) {
6352 bio_put(bio);
6353 atomic_dec(&dip->pending_bios);
6354 goto out_err;
6355 }
6356
e65e1535
MX
6357 start_sector += submit_len >> 9;
6358 file_offset += submit_len;
6359
6360 submit_len = 0;
6361 nr_pages = 0;
6362
6363 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6364 start_sector, GFP_NOFS);
6365 if (!bio)
6366 goto out_err;
6367 bio->bi_private = dip;
6368 bio->bi_end_io = btrfs_end_dio_bio;
6369
6370 map_length = orig_bio->bi_size;
6371 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6372 &map_length, NULL, 0);
6373 if (ret) {
6374 bio_put(bio);
6375 goto out_err;
6376 }
6377 } else {
6378 submit_len += bvec->bv_len;
6379 nr_pages ++;
6380 bvec++;
6381 }
6382 }
6383
02f57c7a 6384submit:
e65e1535 6385 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 6386 async_submit);
e65e1535
MX
6387 if (!ret)
6388 return 0;
6389
6390 bio_put(bio);
6391out_err:
6392 dip->errors = 1;
6393 /*
6394 * before atomic variable goto zero, we must
6395 * make sure dip->errors is perceived to be set.
6396 */
6397 smp_mb__before_atomic_dec();
6398 if (atomic_dec_and_test(&dip->pending_bios))
6399 bio_io_error(dip->orig_bio);
6400
6401 /* bio_end_io() will handle error, so we needn't return it */
6402 return 0;
6403}
6404
4b46fce2
JB
6405static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6406 loff_t file_offset)
6407{
6408 struct btrfs_root *root = BTRFS_I(inode)->root;
6409 struct btrfs_dio_private *dip;
6410 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6411 int skip_sum;
7b6d91da 6412 int write = rw & REQ_WRITE;
4b46fce2
JB
6413 int ret = 0;
6414
6415 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6416
6417 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6418 if (!dip) {
6419 ret = -ENOMEM;
6420 goto free_ordered;
6421 }
4b46fce2
JB
6422
6423 dip->private = bio->bi_private;
6424 dip->inode = inode;
6425 dip->logical_offset = file_offset;
6426
4b46fce2
JB
6427 dip->bytes = 0;
6428 do {
6429 dip->bytes += bvec->bv_len;
6430 bvec++;
6431 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6432
46bfbb5c 6433 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6434 bio->bi_private = dip;
e65e1535
MX
6435 dip->errors = 0;
6436 dip->orig_bio = bio;
6437 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6438
6439 if (write)
6440 bio->bi_end_io = btrfs_endio_direct_write;
6441 else
6442 bio->bi_end_io = btrfs_endio_direct_read;
6443
e65e1535
MX
6444 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6445 if (!ret)
eaf25d93 6446 return;
4b46fce2
JB
6447free_ordered:
6448 /*
6449 * If this is a write, we need to clean up the reserved space and kill
6450 * the ordered extent.
6451 */
6452 if (write) {
6453 struct btrfs_ordered_extent *ordered;
955256f2 6454 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6455 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6456 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6457 btrfs_free_reserved_extent(root, ordered->start,
6458 ordered->disk_len);
6459 btrfs_put_ordered_extent(ordered);
6460 btrfs_put_ordered_extent(ordered);
6461 }
6462 bio_endio(bio, ret);
6463}
6464
5a5f79b5
CM
6465static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6466 const struct iovec *iov, loff_t offset,
6467 unsigned long nr_segs)
6468{
6469 int seg;
a1b75f7d 6470 int i;
5a5f79b5
CM
6471 size_t size;
6472 unsigned long addr;
6473 unsigned blocksize_mask = root->sectorsize - 1;
6474 ssize_t retval = -EINVAL;
6475 loff_t end = offset;
6476
6477 if (offset & blocksize_mask)
6478 goto out;
6479
6480 /* Check the memory alignment. Blocks cannot straddle pages */
6481 for (seg = 0; seg < nr_segs; seg++) {
6482 addr = (unsigned long)iov[seg].iov_base;
6483 size = iov[seg].iov_len;
6484 end += size;
a1b75f7d 6485 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6486 goto out;
a1b75f7d
JB
6487
6488 /* If this is a write we don't need to check anymore */
6489 if (rw & WRITE)
6490 continue;
6491
6492 /*
6493 * Check to make sure we don't have duplicate iov_base's in this
6494 * iovec, if so return EINVAL, otherwise we'll get csum errors
6495 * when reading back.
6496 */
6497 for (i = seg + 1; i < nr_segs; i++) {
6498 if (iov[seg].iov_base == iov[i].iov_base)
6499 goto out;
6500 }
5a5f79b5
CM
6501 }
6502 retval = 0;
6503out:
6504 return retval;
6505}
eb838e73 6506
16432985
CM
6507static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6508 const struct iovec *iov, loff_t offset,
6509 unsigned long nr_segs)
6510{
4b46fce2
JB
6511 struct file *file = iocb->ki_filp;
6512 struct inode *inode = file->f_mapping->host;
4b46fce2 6513
5a5f79b5 6514 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 6515 offset, nr_segs))
5a5f79b5 6516 return 0;
3f7c579c 6517
eb838e73 6518 return __blockdev_direct_IO(rw, iocb, inode,
5a5f79b5
CM
6519 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6520 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6521 btrfs_submit_direct, 0);
16432985
CM
6522}
6523
1506fcc8
YS
6524static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6525 __u64 start, __u64 len)
6526{
ec29ed5b 6527 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6528}
6529
a52d9a80 6530int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6531{
d1310b2e
CM
6532 struct extent_io_tree *tree;
6533 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6534 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6535}
1832a6d5 6536
a52d9a80 6537static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6538{
d1310b2e 6539 struct extent_io_tree *tree;
b888db2b
CM
6540
6541
6542 if (current->flags & PF_MEMALLOC) {
6543 redirty_page_for_writepage(wbc, page);
6544 unlock_page(page);
6545 return 0;
6546 }
d1310b2e 6547 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6548 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6549}
6550
f421950f
CM
6551int btrfs_writepages(struct address_space *mapping,
6552 struct writeback_control *wbc)
b293f02e 6553{
d1310b2e 6554 struct extent_io_tree *tree;
771ed689 6555
d1310b2e 6556 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6557 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6558}
6559
3ab2fb5a
CM
6560static int
6561btrfs_readpages(struct file *file, struct address_space *mapping,
6562 struct list_head *pages, unsigned nr_pages)
6563{
d1310b2e
CM
6564 struct extent_io_tree *tree;
6565 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6566 return extent_readpages(tree, mapping, pages, nr_pages,
6567 btrfs_get_extent);
6568}
e6dcd2dc 6569static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6570{
d1310b2e
CM
6571 struct extent_io_tree *tree;
6572 struct extent_map_tree *map;
a52d9a80 6573 int ret;
8c2383c3 6574
d1310b2e
CM
6575 tree = &BTRFS_I(page->mapping->host)->io_tree;
6576 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6577 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6578 if (ret == 1) {
6579 ClearPagePrivate(page);
6580 set_page_private(page, 0);
6581 page_cache_release(page);
39279cc3 6582 }
a52d9a80 6583 return ret;
39279cc3
CM
6584}
6585
e6dcd2dc
CM
6586static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6587{
98509cfc
CM
6588 if (PageWriteback(page) || PageDirty(page))
6589 return 0;
b335b003 6590 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6591}
6592
a52d9a80 6593static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6594{
5fd02043 6595 struct inode *inode = page->mapping->host;
d1310b2e 6596 struct extent_io_tree *tree;
e6dcd2dc 6597 struct btrfs_ordered_extent *ordered;
2ac55d41 6598 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6599 u64 page_start = page_offset(page);
6600 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6601
8b62b72b
CM
6602 /*
6603 * we have the page locked, so new writeback can't start,
6604 * and the dirty bit won't be cleared while we are here.
6605 *
6606 * Wait for IO on this page so that we can safely clear
6607 * the PagePrivate2 bit and do ordered accounting
6608 */
e6dcd2dc 6609 wait_on_page_writeback(page);
8b62b72b 6610
5fd02043 6611 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
6612 if (offset) {
6613 btrfs_releasepage(page, GFP_NOFS);
6614 return;
6615 }
d0082371 6616 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
5fd02043 6617 ordered = btrfs_lookup_ordered_extent(inode,
e6dcd2dc
CM
6618 page_offset(page));
6619 if (ordered) {
eb84ae03
CM
6620 /*
6621 * IO on this page will never be started, so we need
6622 * to account for any ordered extents now
6623 */
e6dcd2dc
CM
6624 clear_extent_bit(tree, page_start, page_end,
6625 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6626 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6627 &cached_state, GFP_NOFS);
8b62b72b
CM
6628 /*
6629 * whoever cleared the private bit is responsible
6630 * for the finish_ordered_io
6631 */
5fd02043
JB
6632 if (TestClearPagePrivate2(page) &&
6633 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6634 PAGE_CACHE_SIZE, 1)) {
6635 btrfs_finish_ordered_io(ordered);
8b62b72b 6636 }
e6dcd2dc 6637 btrfs_put_ordered_extent(ordered);
2ac55d41 6638 cached_state = NULL;
d0082371 6639 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6640 }
6641 clear_extent_bit(tree, page_start, page_end,
32c00aff 6642 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6643 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6644 __btrfs_releasepage(page, GFP_NOFS);
6645
4a096752 6646 ClearPageChecked(page);
9ad6b7bc 6647 if (PagePrivate(page)) {
9ad6b7bc
CM
6648 ClearPagePrivate(page);
6649 set_page_private(page, 0);
6650 page_cache_release(page);
6651 }
39279cc3
CM
6652}
6653
9ebefb18
CM
6654/*
6655 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6656 * called from a page fault handler when a page is first dirtied. Hence we must
6657 * be careful to check for EOF conditions here. We set the page up correctly
6658 * for a written page which means we get ENOSPC checking when writing into
6659 * holes and correct delalloc and unwritten extent mapping on filesystems that
6660 * support these features.
6661 *
6662 * We are not allowed to take the i_mutex here so we have to play games to
6663 * protect against truncate races as the page could now be beyond EOF. Because
6664 * vmtruncate() writes the inode size before removing pages, once we have the
6665 * page lock we can determine safely if the page is beyond EOF. If it is not
6666 * beyond EOF, then the page is guaranteed safe against truncation until we
6667 * unlock the page.
6668 */
c2ec175c 6669int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6670{
c2ec175c 6671 struct page *page = vmf->page;
6da6abae 6672 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6673 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6674 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6675 struct btrfs_ordered_extent *ordered;
2ac55d41 6676 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6677 char *kaddr;
6678 unsigned long zero_start;
9ebefb18 6679 loff_t size;
1832a6d5 6680 int ret;
9998eb70 6681 int reserved = 0;
a52d9a80 6682 u64 page_start;
e6dcd2dc 6683 u64 page_end;
9ebefb18 6684
b2b5ef5c 6685 sb_start_pagefault(inode->i_sb);
0ca1f7ce 6686 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6687 if (!ret) {
e41f941a 6688 ret = file_update_time(vma->vm_file);
9998eb70
CM
6689 reserved = 1;
6690 }
56a76f82
NP
6691 if (ret) {
6692 if (ret == -ENOMEM)
6693 ret = VM_FAULT_OOM;
6694 else /* -ENOSPC, -EIO, etc */
6695 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6696 if (reserved)
6697 goto out;
6698 goto out_noreserve;
56a76f82 6699 }
1832a6d5 6700
56a76f82 6701 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6702again:
9ebefb18 6703 lock_page(page);
9ebefb18 6704 size = i_size_read(inode);
e6dcd2dc
CM
6705 page_start = page_offset(page);
6706 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6707
9ebefb18 6708 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6709 (page_start >= size)) {
9ebefb18
CM
6710 /* page got truncated out from underneath us */
6711 goto out_unlock;
6712 }
e6dcd2dc
CM
6713 wait_on_page_writeback(page);
6714
d0082371 6715 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6716 set_page_extent_mapped(page);
6717
eb84ae03
CM
6718 /*
6719 * we can't set the delalloc bits if there are pending ordered
6720 * extents. Drop our locks and wait for them to finish
6721 */
e6dcd2dc
CM
6722 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6723 if (ordered) {
2ac55d41
JB
6724 unlock_extent_cached(io_tree, page_start, page_end,
6725 &cached_state, GFP_NOFS);
e6dcd2dc 6726 unlock_page(page);
eb84ae03 6727 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6728 btrfs_put_ordered_extent(ordered);
6729 goto again;
6730 }
6731
fbf19087
JB
6732 /*
6733 * XXX - page_mkwrite gets called every time the page is dirtied, even
6734 * if it was already dirty, so for space accounting reasons we need to
6735 * clear any delalloc bits for the range we are fixing to save. There
6736 * is probably a better way to do this, but for now keep consistent with
6737 * prepare_pages in the normal write path.
6738 */
2ac55d41 6739 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6740 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6741 0, 0, &cached_state, GFP_NOFS);
fbf19087 6742
2ac55d41
JB
6743 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6744 &cached_state);
9ed74f2d 6745 if (ret) {
2ac55d41
JB
6746 unlock_extent_cached(io_tree, page_start, page_end,
6747 &cached_state, GFP_NOFS);
9ed74f2d
JB
6748 ret = VM_FAULT_SIGBUS;
6749 goto out_unlock;
6750 }
e6dcd2dc 6751 ret = 0;
9ebefb18
CM
6752
6753 /* page is wholly or partially inside EOF */
a52d9a80 6754 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6755 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6756 else
e6dcd2dc 6757 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6758
e6dcd2dc
CM
6759 if (zero_start != PAGE_CACHE_SIZE) {
6760 kaddr = kmap(page);
6761 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6762 flush_dcache_page(page);
6763 kunmap(page);
6764 }
247e743c 6765 ClearPageChecked(page);
e6dcd2dc 6766 set_page_dirty(page);
50a9b214 6767 SetPageUptodate(page);
5a3f23d5 6768
257c62e1
CM
6769 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6770 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 6771 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 6772
2ac55d41 6773 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6774
6775out_unlock:
b2b5ef5c
JK
6776 if (!ret) {
6777 sb_end_pagefault(inode->i_sb);
50a9b214 6778 return VM_FAULT_LOCKED;
b2b5ef5c 6779 }
9ebefb18 6780 unlock_page(page);
1832a6d5 6781out:
ec39e180 6782 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6783out_noreserve:
b2b5ef5c 6784 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
6785 return ret;
6786}
6787
a41ad394 6788static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6789{
6790 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6791 struct btrfs_block_rsv *rsv;
39279cc3 6792 int ret;
3893e33b 6793 int err = 0;
39279cc3 6794 struct btrfs_trans_handle *trans;
d3c2fdcf 6795 unsigned long nr;
dbe674a9 6796 u64 mask = root->sectorsize - 1;
07127184 6797 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6798
5d5e103a
JB
6799 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6800 if (ret)
a41ad394 6801 return ret;
8082510e 6802
4a096752 6803 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6804 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6805
fcb80c2a
JB
6806 /*
6807 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6808 * 3 things going on here
6809 *
6810 * 1) We need to reserve space for our orphan item and the space to
6811 * delete our orphan item. Lord knows we don't want to have a dangling
6812 * orphan item because we didn't reserve space to remove it.
6813 *
6814 * 2) We need to reserve space to update our inode.
6815 *
6816 * 3) We need to have something to cache all the space that is going to
6817 * be free'd up by the truncate operation, but also have some slack
6818 * space reserved in case it uses space during the truncate (thank you
6819 * very much snapshotting).
6820 *
6821 * And we need these to all be seperate. The fact is we can use alot of
6822 * space doing the truncate, and we have no earthly idea how much space
6823 * we will use, so we need the truncate reservation to be seperate so it
6824 * doesn't end up using space reserved for updating the inode or
6825 * removing the orphan item. We also need to be able to stop the
6826 * transaction and start a new one, which means we need to be able to
6827 * update the inode several times, and we have no idea of knowing how
6828 * many times that will be, so we can't just reserve 1 item for the
6829 * entirety of the opration, so that has to be done seperately as well.
6830 * Then there is the orphan item, which does indeed need to be held on
6831 * to for the whole operation, and we need nobody to touch this reserved
6832 * space except the orphan code.
6833 *
6834 * So that leaves us with
6835 *
6836 * 1) root->orphan_block_rsv - for the orphan deletion.
6837 * 2) rsv - for the truncate reservation, which we will steal from the
6838 * transaction reservation.
6839 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6840 * updating the inode.
6841 */
6842 rsv = btrfs_alloc_block_rsv(root);
6843 if (!rsv)
6844 return -ENOMEM;
4a338542 6845 rsv->size = min_size;
ca7e70f5 6846 rsv->failfast = 1;
f0cd846e 6847
907cbceb 6848 /*
07127184 6849 * 1 for the truncate slack space
907cbceb
JB
6850 * 1 for the orphan item we're going to add
6851 * 1 for the orphan item deletion
6852 * 1 for updating the inode.
6853 */
fcb80c2a
JB
6854 trans = btrfs_start_transaction(root, 4);
6855 if (IS_ERR(trans)) {
6856 err = PTR_ERR(trans);
6857 goto out;
6858 }
f0cd846e 6859
907cbceb
JB
6860 /* Migrate the slack space for the truncate to our reserve */
6861 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6862 min_size);
fcb80c2a 6863 BUG_ON(ret);
f0cd846e
JB
6864
6865 ret = btrfs_orphan_add(trans, inode);
6866 if (ret) {
6867 btrfs_end_transaction(trans, root);
fcb80c2a 6868 goto out;
f0cd846e
JB
6869 }
6870
5a3f23d5
CM
6871 /*
6872 * setattr is responsible for setting the ordered_data_close flag,
6873 * but that is only tested during the last file release. That
6874 * could happen well after the next commit, leaving a great big
6875 * window where new writes may get lost if someone chooses to write
6876 * to this file after truncating to zero
6877 *
6878 * The inode doesn't have any dirty data here, and so if we commit
6879 * this is a noop. If someone immediately starts writing to the inode
6880 * it is very likely we'll catch some of their writes in this
6881 * transaction, and the commit will find this file on the ordered
6882 * data list with good things to send down.
6883 *
6884 * This is a best effort solution, there is still a window where
6885 * using truncate to replace the contents of the file will
6886 * end up with a zero length file after a crash.
6887 */
72ac3c0d
JB
6888 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6889 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
6890 btrfs_add_ordered_operation(trans, root, inode);
6891
5dc562c5
JB
6892 /*
6893 * So if we truncate and then write and fsync we normally would just
6894 * write the extents that changed, which is a problem if we need to
6895 * first truncate that entire inode. So set this flag so we write out
6896 * all of the extents in the inode to the sync log so we're completely
6897 * safe.
6898 */
6899 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 6900 trans->block_rsv = rsv;
5dc562c5 6901
8082510e
YZ
6902 while (1) {
6903 ret = btrfs_truncate_inode_items(trans, root, inode,
6904 inode->i_size,
6905 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 6906 if (ret != -ENOSPC) {
3893e33b 6907 err = ret;
8082510e 6908 break;
3893e33b 6909 }
39279cc3 6910
fcb80c2a 6911 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6912 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6913 if (ret) {
6914 err = ret;
6915 break;
6916 }
ca7e70f5 6917
8082510e
YZ
6918 nr = trans->blocks_used;
6919 btrfs_end_transaction(trans, root);
6920 btrfs_btree_balance_dirty(root, nr);
ca7e70f5
JB
6921
6922 trans = btrfs_start_transaction(root, 2);
6923 if (IS_ERR(trans)) {
6924 ret = err = PTR_ERR(trans);
6925 trans = NULL;
6926 break;
6927 }
6928
6929 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
6930 rsv, min_size);
6931 BUG_ON(ret); /* shouldn't happen */
6932 trans->block_rsv = rsv;
8082510e
YZ
6933 }
6934
6935 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6936 trans->block_rsv = root->orphan_block_rsv;
8082510e 6937 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6938 if (ret)
6939 err = ret;
ded5db9d
JB
6940 } else if (ret && inode->i_nlink > 0) {
6941 /*
6942 * Failed to do the truncate, remove us from the in memory
6943 * orphan list.
6944 */
6945 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6946 }
6947
917c16b2
CM
6948 if (trans) {
6949 trans->block_rsv = &root->fs_info->trans_block_rsv;
6950 ret = btrfs_update_inode(trans, root, inode);
6951 if (ret && !err)
6952 err = ret;
7b128766 6953
917c16b2 6954 nr = trans->blocks_used;
7ad85bb7 6955 ret = btrfs_end_transaction(trans, root);
917c16b2
CM
6956 btrfs_btree_balance_dirty(root, nr);
6957 }
fcb80c2a
JB
6958
6959out:
6960 btrfs_free_block_rsv(root, rsv);
6961
3893e33b
JB
6962 if (ret && !err)
6963 err = ret;
a41ad394 6964
3893e33b 6965 return err;
39279cc3
CM
6966}
6967
d352ac68
CM
6968/*
6969 * create a new subvolume directory/inode (helper for the ioctl).
6970 */
d2fb3437 6971int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6972 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6973{
39279cc3 6974 struct inode *inode;
76dda93c 6975 int err;
00e4e6b3 6976 u64 index = 0;
39279cc3 6977
12fc9d09
FA
6978 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6979 new_dirid, new_dirid,
6980 S_IFDIR | (~current_umask() & S_IRWXUGO),
6981 &index);
54aa1f4d 6982 if (IS_ERR(inode))
f46b5a66 6983 return PTR_ERR(inode);
39279cc3
CM
6984 inode->i_op = &btrfs_dir_inode_operations;
6985 inode->i_fop = &btrfs_dir_file_operations;
6986
bfe86848 6987 set_nlink(inode, 1);
dbe674a9 6988 btrfs_i_size_write(inode, 0);
3b96362c 6989
76dda93c 6990 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 6991
76dda93c 6992 iput(inode);
ce598979 6993 return err;
39279cc3
CM
6994}
6995
39279cc3
CM
6996struct inode *btrfs_alloc_inode(struct super_block *sb)
6997{
6998 struct btrfs_inode *ei;
2ead6ae7 6999 struct inode *inode;
39279cc3
CM
7000
7001 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7002 if (!ei)
7003 return NULL;
2ead6ae7
YZ
7004
7005 ei->root = NULL;
2ead6ae7 7006 ei->generation = 0;
15ee9bc7 7007 ei->last_trans = 0;
257c62e1 7008 ei->last_sub_trans = 0;
e02119d5 7009 ei->logged_trans = 0;
2ead6ae7 7010 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7011 ei->disk_i_size = 0;
7012 ei->flags = 0;
7709cde3 7013 ei->csum_bytes = 0;
2ead6ae7
YZ
7014 ei->index_cnt = (u64)-1;
7015 ei->last_unlink_trans = 0;
46d8bc34 7016 ei->last_log_commit = 0;
2ead6ae7 7017
9e0baf60
JB
7018 spin_lock_init(&ei->lock);
7019 ei->outstanding_extents = 0;
7020 ei->reserved_extents = 0;
2ead6ae7 7021
72ac3c0d 7022 ei->runtime_flags = 0;
261507a0 7023 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7024
16cdcec7
MX
7025 ei->delayed_node = NULL;
7026
2ead6ae7 7027 inode = &ei->vfs_inode;
a8067e02 7028 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7029 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7030 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7031 ei->io_tree.track_uptodate = 1;
7032 ei->io_failure_tree.track_uptodate = 1;
2ead6ae7 7033 mutex_init(&ei->log_mutex);
f248679e 7034 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7035 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7036 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7037 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7038 RB_CLEAR_NODE(&ei->rb_node);
7039
7040 return inode;
39279cc3
CM
7041}
7042
fa0d7e3d
NP
7043static void btrfs_i_callback(struct rcu_head *head)
7044{
7045 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7046 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7047}
7048
39279cc3
CM
7049void btrfs_destroy_inode(struct inode *inode)
7050{
e6dcd2dc 7051 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7052 struct btrfs_root *root = BTRFS_I(inode)->root;
7053
b3d9b7a3 7054 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7055 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7056 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7057 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7058 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7059 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7060
a6dbd429
JB
7061 /*
7062 * This can happen where we create an inode, but somebody else also
7063 * created the same inode and we need to destroy the one we already
7064 * created.
7065 */
7066 if (!root)
7067 goto free;
7068
5a3f23d5
CM
7069 /*
7070 * Make sure we're properly removed from the ordered operation
7071 * lists.
7072 */
7073 smp_mb();
7074 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7075 spin_lock(&root->fs_info->ordered_extent_lock);
7076 list_del_init(&BTRFS_I(inode)->ordered_operations);
7077 spin_unlock(&root->fs_info->ordered_extent_lock);
7078 }
7079
8a35d95f
JB
7080 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7081 &BTRFS_I(inode)->runtime_flags)) {
33345d01
LZ
7082 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7083 (unsigned long long)btrfs_ino(inode));
8a35d95f 7084 atomic_dec(&root->orphan_inodes);
7b128766 7085 }
7b128766 7086
d397712b 7087 while (1) {
e6dcd2dc
CM
7088 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7089 if (!ordered)
7090 break;
7091 else {
d397712b
CM
7092 printk(KERN_ERR "btrfs found ordered "
7093 "extent %llu %llu on inode cleanup\n",
7094 (unsigned long long)ordered->file_offset,
7095 (unsigned long long)ordered->len);
e6dcd2dc
CM
7096 btrfs_remove_ordered_extent(inode, ordered);
7097 btrfs_put_ordered_extent(ordered);
7098 btrfs_put_ordered_extent(ordered);
7099 }
7100 }
5d4f98a2 7101 inode_tree_del(inode);
5b21f2ed 7102 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7103free:
16cdcec7 7104 btrfs_remove_delayed_node(inode);
fa0d7e3d 7105 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7106}
7107
45321ac5 7108int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7109{
7110 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7111
0af3d00b 7112 if (btrfs_root_refs(&root->root_item) == 0 &&
83eea1f1 7113 !btrfs_is_free_space_inode(inode))
45321ac5 7114 return 1;
76dda93c 7115 else
45321ac5 7116 return generic_drop_inode(inode);
76dda93c
YZ
7117}
7118
0ee0fda0 7119static void init_once(void *foo)
39279cc3
CM
7120{
7121 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7122
7123 inode_init_once(&ei->vfs_inode);
7124}
7125
7126void btrfs_destroy_cachep(void)
7127{
7128 if (btrfs_inode_cachep)
7129 kmem_cache_destroy(btrfs_inode_cachep);
7130 if (btrfs_trans_handle_cachep)
7131 kmem_cache_destroy(btrfs_trans_handle_cachep);
7132 if (btrfs_transaction_cachep)
7133 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7134 if (btrfs_path_cachep)
7135 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7136 if (btrfs_free_space_cachep)
7137 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
7138}
7139
7140int btrfs_init_cachep(void)
7141{
9601e3f6
CH
7142 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7143 sizeof(struct btrfs_inode), 0,
7144 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7145 if (!btrfs_inode_cachep)
7146 goto fail;
9601e3f6
CH
7147
7148 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7149 sizeof(struct btrfs_trans_handle), 0,
7150 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7151 if (!btrfs_trans_handle_cachep)
7152 goto fail;
9601e3f6
CH
7153
7154 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7155 sizeof(struct btrfs_transaction), 0,
7156 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7157 if (!btrfs_transaction_cachep)
7158 goto fail;
9601e3f6
CH
7159
7160 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7161 sizeof(struct btrfs_path), 0,
7162 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7163 if (!btrfs_path_cachep)
7164 goto fail;
9601e3f6 7165
dc89e982
JB
7166 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7167 sizeof(struct btrfs_free_space), 0,
7168 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7169 if (!btrfs_free_space_cachep)
7170 goto fail;
7171
39279cc3
CM
7172 return 0;
7173fail:
7174 btrfs_destroy_cachep();
7175 return -ENOMEM;
7176}
7177
7178static int btrfs_getattr(struct vfsmount *mnt,
7179 struct dentry *dentry, struct kstat *stat)
7180{
7181 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7182 u32 blocksize = inode->i_sb->s_blocksize;
7183
39279cc3 7184 generic_fillattr(inode, stat);
0ee5dc67 7185 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7186 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
7187 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7188 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7189 return 0;
7190}
7191
75e7cb7f
LB
7192/*
7193 * If a file is moved, it will inherit the cow and compression flags of the new
7194 * directory.
7195 */
7196static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7197{
7198 struct btrfs_inode *b_dir = BTRFS_I(dir);
7199 struct btrfs_inode *b_inode = BTRFS_I(inode);
7200
7201 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7202 b_inode->flags |= BTRFS_INODE_NODATACOW;
7203 else
7204 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7205
bc178237 7206 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
75e7cb7f 7207 b_inode->flags |= BTRFS_INODE_COMPRESS;
bc178237
LB
7208 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7209 } else {
7210 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7211 BTRFS_INODE_NOCOMPRESS);
7212 }
75e7cb7f
LB
7213}
7214
d397712b
CM
7215static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7216 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7217{
7218 struct btrfs_trans_handle *trans;
7219 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7220 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7221 struct inode *new_inode = new_dentry->d_inode;
7222 struct inode *old_inode = old_dentry->d_inode;
7223 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7224 u64 index = 0;
4df27c4d 7225 u64 root_objectid;
39279cc3 7226 int ret;
33345d01 7227 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7228
33345d01 7229 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7230 return -EPERM;
7231
4df27c4d 7232 /* we only allow rename subvolume link between subvolumes */
33345d01 7233 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7234 return -EXDEV;
7235
33345d01
LZ
7236 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7237 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7238 return -ENOTEMPTY;
5f39d397 7239
4df27c4d
YZ
7240 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7241 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7242 return -ENOTEMPTY;
5a3f23d5
CM
7243 /*
7244 * we're using rename to replace one file with another.
7245 * and the replacement file is large. Start IO on it now so
7246 * we don't add too much work to the end of the transaction
7247 */
4baf8c92 7248 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7249 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7250 filemap_flush(old_inode->i_mapping);
7251
76dda93c 7252 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7253 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7254 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7255 /*
7256 * We want to reserve the absolute worst case amount of items. So if
7257 * both inodes are subvols and we need to unlink them then that would
7258 * require 4 item modifications, but if they are both normal inodes it
7259 * would require 5 item modifications, so we'll assume their normal
7260 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7261 * should cover the worst case number of items we'll modify.
7262 */
7263 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7264 if (IS_ERR(trans)) {
7265 ret = PTR_ERR(trans);
7266 goto out_notrans;
7267 }
76dda93c 7268
4df27c4d
YZ
7269 if (dest != root)
7270 btrfs_record_root_in_trans(trans, dest);
5f39d397 7271
a5719521
YZ
7272 ret = btrfs_set_inode_index(new_dir, &index);
7273 if (ret)
7274 goto out_fail;
5a3f23d5 7275
33345d01 7276 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7277 /* force full log commit if subvolume involved. */
7278 root->fs_info->last_trans_log_full_commit = trans->transid;
7279 } else {
a5719521
YZ
7280 ret = btrfs_insert_inode_ref(trans, dest,
7281 new_dentry->d_name.name,
7282 new_dentry->d_name.len,
33345d01
LZ
7283 old_ino,
7284 btrfs_ino(new_dir), index);
a5719521
YZ
7285 if (ret)
7286 goto out_fail;
4df27c4d
YZ
7287 /*
7288 * this is an ugly little race, but the rename is required
7289 * to make sure that if we crash, the inode is either at the
7290 * old name or the new one. pinning the log transaction lets
7291 * us make sure we don't allow a log commit to come in after
7292 * we unlink the name but before we add the new name back in.
7293 */
7294 btrfs_pin_log_trans(root);
7295 }
5a3f23d5
CM
7296 /*
7297 * make sure the inode gets flushed if it is replacing
7298 * something.
7299 */
33345d01 7300 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7301 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7302
0c4d2d95
JB
7303 inode_inc_iversion(old_dir);
7304 inode_inc_iversion(new_dir);
7305 inode_inc_iversion(old_inode);
39279cc3
CM
7306 old_dir->i_ctime = old_dir->i_mtime = ctime;
7307 new_dir->i_ctime = new_dir->i_mtime = ctime;
7308 old_inode->i_ctime = ctime;
5f39d397 7309
12fcfd22
CM
7310 if (old_dentry->d_parent != new_dentry->d_parent)
7311 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7312
33345d01 7313 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7314 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7315 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7316 old_dentry->d_name.name,
7317 old_dentry->d_name.len);
7318 } else {
92986796
AV
7319 ret = __btrfs_unlink_inode(trans, root, old_dir,
7320 old_dentry->d_inode,
7321 old_dentry->d_name.name,
7322 old_dentry->d_name.len);
7323 if (!ret)
7324 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7325 }
79787eaa
JM
7326 if (ret) {
7327 btrfs_abort_transaction(trans, root, ret);
7328 goto out_fail;
7329 }
39279cc3
CM
7330
7331 if (new_inode) {
0c4d2d95 7332 inode_inc_iversion(new_inode);
39279cc3 7333 new_inode->i_ctime = CURRENT_TIME;
33345d01 7334 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7335 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7336 root_objectid = BTRFS_I(new_inode)->location.objectid;
7337 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7338 root_objectid,
7339 new_dentry->d_name.name,
7340 new_dentry->d_name.len);
7341 BUG_ON(new_inode->i_nlink == 0);
7342 } else {
7343 ret = btrfs_unlink_inode(trans, dest, new_dir,
7344 new_dentry->d_inode,
7345 new_dentry->d_name.name,
7346 new_dentry->d_name.len);
7347 }
79787eaa 7348 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7349 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7350 BUG_ON(ret);
7b128766 7351 }
79787eaa
JM
7352 if (ret) {
7353 btrfs_abort_transaction(trans, root, ret);
7354 goto out_fail;
7355 }
39279cc3 7356 }
aec7477b 7357
75e7cb7f
LB
7358 fixup_inode_flags(new_dir, old_inode);
7359
4df27c4d
YZ
7360 ret = btrfs_add_link(trans, new_dir, old_inode,
7361 new_dentry->d_name.name,
a5719521 7362 new_dentry->d_name.len, 0, index);
79787eaa
JM
7363 if (ret) {
7364 btrfs_abort_transaction(trans, root, ret);
7365 goto out_fail;
7366 }
39279cc3 7367
33345d01 7368 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7369 struct dentry *parent = new_dentry->d_parent;
6a912213 7370 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7371 btrfs_end_log_trans(root);
7372 }
39279cc3 7373out_fail:
7ad85bb7 7374 btrfs_end_transaction(trans, root);
b44c59a8 7375out_notrans:
33345d01 7376 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7377 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7378
39279cc3
CM
7379 return ret;
7380}
7381
d352ac68
CM
7382/*
7383 * some fairly slow code that needs optimization. This walks the list
7384 * of all the inodes with pending delalloc and forces them to disk.
7385 */
24bbcf04 7386int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7387{
7388 struct list_head *head = &root->fs_info->delalloc_inodes;
7389 struct btrfs_inode *binode;
5b21f2ed 7390 struct inode *inode;
ea8c2819 7391
c146afad
YZ
7392 if (root->fs_info->sb->s_flags & MS_RDONLY)
7393 return -EROFS;
7394
75eff68e 7395 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7396 while (!list_empty(head)) {
ea8c2819
CM
7397 binode = list_entry(head->next, struct btrfs_inode,
7398 delalloc_inodes);
5b21f2ed
ZY
7399 inode = igrab(&binode->vfs_inode);
7400 if (!inode)
7401 list_del_init(&binode->delalloc_inodes);
75eff68e 7402 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7403 if (inode) {
8c8bee1d 7404 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7405 if (delay_iput)
7406 btrfs_add_delayed_iput(inode);
7407 else
7408 iput(inode);
5b21f2ed
ZY
7409 }
7410 cond_resched();
75eff68e 7411 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7412 }
75eff68e 7413 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7414
7415 /* the filemap_flush will queue IO into the worker threads, but
7416 * we have to make sure the IO is actually started and that
7417 * ordered extents get created before we return
7418 */
7419 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7420 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7421 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7422 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7423 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7424 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7425 }
7426 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7427 return 0;
7428}
7429
39279cc3
CM
7430static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7431 const char *symname)
7432{
7433 struct btrfs_trans_handle *trans;
7434 struct btrfs_root *root = BTRFS_I(dir)->root;
7435 struct btrfs_path *path;
7436 struct btrfs_key key;
1832a6d5 7437 struct inode *inode = NULL;
39279cc3
CM
7438 int err;
7439 int drop_inode = 0;
7440 u64 objectid;
00e4e6b3 7441 u64 index = 0 ;
39279cc3
CM
7442 int name_len;
7443 int datasize;
5f39d397 7444 unsigned long ptr;
39279cc3 7445 struct btrfs_file_extent_item *ei;
5f39d397 7446 struct extent_buffer *leaf;
1832a6d5 7447 unsigned long nr = 0;
39279cc3
CM
7448
7449 name_len = strlen(symname) + 1;
7450 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7451 return -ENAMETOOLONG;
1832a6d5 7452
9ed74f2d
JB
7453 /*
7454 * 2 items for inode item and ref
7455 * 2 items for dir items
7456 * 1 item for xattr if selinux is on
7457 */
a22285a6
YZ
7458 trans = btrfs_start_transaction(root, 5);
7459 if (IS_ERR(trans))
7460 return PTR_ERR(trans);
1832a6d5 7461
581bb050
LZ
7462 err = btrfs_find_free_ino(root, &objectid);
7463 if (err)
7464 goto out_unlock;
7465
aec7477b 7466 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7467 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7468 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7469 if (IS_ERR(inode)) {
7470 err = PTR_ERR(inode);
39279cc3 7471 goto out_unlock;
7cf96da3 7472 }
39279cc3 7473
2a7dba39 7474 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7475 if (err) {
7476 drop_inode = 1;
7477 goto out_unlock;
7478 }
7479
ad19db71
CS
7480 /*
7481 * If the active LSM wants to access the inode during
7482 * d_instantiate it needs these. Smack checks to see
7483 * if the filesystem supports xattrs by looking at the
7484 * ops vector.
7485 */
7486 inode->i_fop = &btrfs_file_operations;
7487 inode->i_op = &btrfs_file_inode_operations;
7488
a1b075d2 7489 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7490 if (err)
7491 drop_inode = 1;
7492 else {
7493 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7494 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7495 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7496 }
39279cc3
CM
7497 if (drop_inode)
7498 goto out_unlock;
7499
7500 path = btrfs_alloc_path();
d8926bb3
MF
7501 if (!path) {
7502 err = -ENOMEM;
7503 drop_inode = 1;
7504 goto out_unlock;
7505 }
33345d01 7506 key.objectid = btrfs_ino(inode);
39279cc3 7507 key.offset = 0;
39279cc3
CM
7508 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7509 datasize = btrfs_file_extent_calc_inline_size(name_len);
7510 err = btrfs_insert_empty_item(trans, root, path, &key,
7511 datasize);
54aa1f4d
CM
7512 if (err) {
7513 drop_inode = 1;
b0839166 7514 btrfs_free_path(path);
54aa1f4d
CM
7515 goto out_unlock;
7516 }
5f39d397
CM
7517 leaf = path->nodes[0];
7518 ei = btrfs_item_ptr(leaf, path->slots[0],
7519 struct btrfs_file_extent_item);
7520 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7521 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7522 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7523 btrfs_set_file_extent_encryption(leaf, ei, 0);
7524 btrfs_set_file_extent_compression(leaf, ei, 0);
7525 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7526 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7527
39279cc3 7528 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7529 write_extent_buffer(leaf, symname, ptr, name_len);
7530 btrfs_mark_buffer_dirty(leaf);
39279cc3 7531 btrfs_free_path(path);
5f39d397 7532
39279cc3
CM
7533 inode->i_op = &btrfs_symlink_inode_operations;
7534 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7535 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7536 inode_set_bytes(inode, name_len);
dbe674a9 7537 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7538 err = btrfs_update_inode(trans, root, inode);
7539 if (err)
7540 drop_inode = 1;
39279cc3
CM
7541
7542out_unlock:
08c422c2
AV
7543 if (!err)
7544 d_instantiate(dentry, inode);
d3c2fdcf 7545 nr = trans->blocks_used;
7ad85bb7 7546 btrfs_end_transaction(trans, root);
39279cc3
CM
7547 if (drop_inode) {
7548 inode_dec_link_count(inode);
7549 iput(inode);
7550 }
d3c2fdcf 7551 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7552 return err;
7553}
16432985 7554
0af3d00b
JB
7555static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7556 u64 start, u64 num_bytes, u64 min_size,
7557 loff_t actual_len, u64 *alloc_hint,
7558 struct btrfs_trans_handle *trans)
d899e052 7559{
5dc562c5
JB
7560 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7561 struct extent_map *em;
d899e052
YZ
7562 struct btrfs_root *root = BTRFS_I(inode)->root;
7563 struct btrfs_key ins;
d899e052 7564 u64 cur_offset = start;
55a61d1d 7565 u64 i_size;
d899e052 7566 int ret = 0;
0af3d00b 7567 bool own_trans = true;
d899e052 7568
0af3d00b
JB
7569 if (trans)
7570 own_trans = false;
d899e052 7571 while (num_bytes > 0) {
0af3d00b
JB
7572 if (own_trans) {
7573 trans = btrfs_start_transaction(root, 3);
7574 if (IS_ERR(trans)) {
7575 ret = PTR_ERR(trans);
7576 break;
7577 }
5a303d5d
YZ
7578 }
7579
efa56464 7580 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7581 0, *alloc_hint, &ins, 1);
5a303d5d 7582 if (ret) {
0af3d00b
JB
7583 if (own_trans)
7584 btrfs_end_transaction(trans, root);
a22285a6 7585 break;
d899e052 7586 }
5a303d5d 7587
d899e052
YZ
7588 ret = insert_reserved_file_extent(trans, inode,
7589 cur_offset, ins.objectid,
7590 ins.offset, ins.offset,
920bbbfb 7591 ins.offset, 0, 0, 0,
d899e052 7592 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7593 if (ret) {
7594 btrfs_abort_transaction(trans, root, ret);
7595 if (own_trans)
7596 btrfs_end_transaction(trans, root);
7597 break;
7598 }
a1ed835e
CM
7599 btrfs_drop_extent_cache(inode, cur_offset,
7600 cur_offset + ins.offset -1, 0);
5a303d5d 7601
5dc562c5
JB
7602 em = alloc_extent_map();
7603 if (!em) {
7604 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7605 &BTRFS_I(inode)->runtime_flags);
7606 goto next;
7607 }
7608
7609 em->start = cur_offset;
7610 em->orig_start = cur_offset;
7611 em->len = ins.offset;
7612 em->block_start = ins.objectid;
7613 em->block_len = ins.offset;
7614 em->bdev = root->fs_info->fs_devices->latest_bdev;
7615 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7616 em->generation = trans->transid;
7617
7618 while (1) {
7619 write_lock(&em_tree->lock);
7620 ret = add_extent_mapping(em_tree, em);
7621 if (!ret)
7622 list_move(&em->list,
7623 &em_tree->modified_extents);
7624 write_unlock(&em_tree->lock);
7625 if (ret != -EEXIST)
7626 break;
7627 btrfs_drop_extent_cache(inode, cur_offset,
7628 cur_offset + ins.offset - 1,
7629 0);
7630 }
7631 free_extent_map(em);
7632next:
d899e052
YZ
7633 num_bytes -= ins.offset;
7634 cur_offset += ins.offset;
efa56464 7635 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7636
0c4d2d95 7637 inode_inc_iversion(inode);
d899e052 7638 inode->i_ctime = CURRENT_TIME;
6cbff00f 7639 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7640 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7641 (actual_len > inode->i_size) &&
7642 (cur_offset > inode->i_size)) {
d1ea6a61 7643 if (cur_offset > actual_len)
55a61d1d 7644 i_size = actual_len;
d1ea6a61 7645 else
55a61d1d
JB
7646 i_size = cur_offset;
7647 i_size_write(inode, i_size);
7648 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7649 }
7650
d899e052 7651 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7652
7653 if (ret) {
7654 btrfs_abort_transaction(trans, root, ret);
7655 if (own_trans)
7656 btrfs_end_transaction(trans, root);
7657 break;
7658 }
d899e052 7659
0af3d00b
JB
7660 if (own_trans)
7661 btrfs_end_transaction(trans, root);
5a303d5d 7662 }
d899e052
YZ
7663 return ret;
7664}
7665
0af3d00b
JB
7666int btrfs_prealloc_file_range(struct inode *inode, int mode,
7667 u64 start, u64 num_bytes, u64 min_size,
7668 loff_t actual_len, u64 *alloc_hint)
7669{
7670 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7671 min_size, actual_len, alloc_hint,
7672 NULL);
7673}
7674
7675int btrfs_prealloc_file_range_trans(struct inode *inode,
7676 struct btrfs_trans_handle *trans, int mode,
7677 u64 start, u64 num_bytes, u64 min_size,
7678 loff_t actual_len, u64 *alloc_hint)
7679{
7680 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7681 min_size, actual_len, alloc_hint, trans);
7682}
7683
e6dcd2dc
CM
7684static int btrfs_set_page_dirty(struct page *page)
7685{
e6dcd2dc
CM
7686 return __set_page_dirty_nobuffers(page);
7687}
7688
10556cb2 7689static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7690{
b83cc969 7691 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7692 umode_t mode = inode->i_mode;
b83cc969 7693
cb6db4e5
JM
7694 if (mask & MAY_WRITE &&
7695 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7696 if (btrfs_root_readonly(root))
7697 return -EROFS;
7698 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7699 return -EACCES;
7700 }
2830ba7f 7701 return generic_permission(inode, mask);
fdebe2bd 7702}
39279cc3 7703
6e1d5dcc 7704static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7705 .getattr = btrfs_getattr,
39279cc3
CM
7706 .lookup = btrfs_lookup,
7707 .create = btrfs_create,
7708 .unlink = btrfs_unlink,
7709 .link = btrfs_link,
7710 .mkdir = btrfs_mkdir,
7711 .rmdir = btrfs_rmdir,
7712 .rename = btrfs_rename,
7713 .symlink = btrfs_symlink,
7714 .setattr = btrfs_setattr,
618e21d5 7715 .mknod = btrfs_mknod,
95819c05
CH
7716 .setxattr = btrfs_setxattr,
7717 .getxattr = btrfs_getxattr,
5103e947 7718 .listxattr = btrfs_listxattr,
95819c05 7719 .removexattr = btrfs_removexattr,
fdebe2bd 7720 .permission = btrfs_permission,
4e34e719 7721 .get_acl = btrfs_get_acl,
39279cc3 7722};
6e1d5dcc 7723static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7724 .lookup = btrfs_lookup,
fdebe2bd 7725 .permission = btrfs_permission,
4e34e719 7726 .get_acl = btrfs_get_acl,
39279cc3 7727};
76dda93c 7728
828c0950 7729static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7730 .llseek = generic_file_llseek,
7731 .read = generic_read_dir,
cbdf5a24 7732 .readdir = btrfs_real_readdir,
34287aa3 7733 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7734#ifdef CONFIG_COMPAT
34287aa3 7735 .compat_ioctl = btrfs_ioctl,
39279cc3 7736#endif
6bf13c0c 7737 .release = btrfs_release_file,
e02119d5 7738 .fsync = btrfs_sync_file,
39279cc3
CM
7739};
7740
d1310b2e 7741static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7742 .fill_delalloc = run_delalloc_range,
065631f6 7743 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7744 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7745 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7746 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7747 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7748 .set_bit_hook = btrfs_set_bit_hook,
7749 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7750 .merge_extent_hook = btrfs_merge_extent_hook,
7751 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7752};
7753
35054394
CM
7754/*
7755 * btrfs doesn't support the bmap operation because swapfiles
7756 * use bmap to make a mapping of extents in the file. They assume
7757 * these extents won't change over the life of the file and they
7758 * use the bmap result to do IO directly to the drive.
7759 *
7760 * the btrfs bmap call would return logical addresses that aren't
7761 * suitable for IO and they also will change frequently as COW
7762 * operations happen. So, swapfile + btrfs == corruption.
7763 *
7764 * For now we're avoiding this by dropping bmap.
7765 */
7f09410b 7766static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7767 .readpage = btrfs_readpage,
7768 .writepage = btrfs_writepage,
b293f02e 7769 .writepages = btrfs_writepages,
3ab2fb5a 7770 .readpages = btrfs_readpages,
16432985 7771 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7772 .invalidatepage = btrfs_invalidatepage,
7773 .releasepage = btrfs_releasepage,
e6dcd2dc 7774 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7775 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7776};
7777
7f09410b 7778static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7779 .readpage = btrfs_readpage,
7780 .writepage = btrfs_writepage,
2bf5a725
CM
7781 .invalidatepage = btrfs_invalidatepage,
7782 .releasepage = btrfs_releasepage,
39279cc3
CM
7783};
7784
6e1d5dcc 7785static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7786 .getattr = btrfs_getattr,
7787 .setattr = btrfs_setattr,
95819c05
CH
7788 .setxattr = btrfs_setxattr,
7789 .getxattr = btrfs_getxattr,
5103e947 7790 .listxattr = btrfs_listxattr,
95819c05 7791 .removexattr = btrfs_removexattr,
fdebe2bd 7792 .permission = btrfs_permission,
1506fcc8 7793 .fiemap = btrfs_fiemap,
4e34e719 7794 .get_acl = btrfs_get_acl,
e41f941a 7795 .update_time = btrfs_update_time,
39279cc3 7796};
6e1d5dcc 7797static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7798 .getattr = btrfs_getattr,
7799 .setattr = btrfs_setattr,
fdebe2bd 7800 .permission = btrfs_permission,
95819c05
CH
7801 .setxattr = btrfs_setxattr,
7802 .getxattr = btrfs_getxattr,
33268eaf 7803 .listxattr = btrfs_listxattr,
95819c05 7804 .removexattr = btrfs_removexattr,
4e34e719 7805 .get_acl = btrfs_get_acl,
e41f941a 7806 .update_time = btrfs_update_time,
618e21d5 7807};
6e1d5dcc 7808static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7809 .readlink = generic_readlink,
7810 .follow_link = page_follow_link_light,
7811 .put_link = page_put_link,
f209561a 7812 .getattr = btrfs_getattr,
22c44fe6 7813 .setattr = btrfs_setattr,
fdebe2bd 7814 .permission = btrfs_permission,
0279b4cd
JO
7815 .setxattr = btrfs_setxattr,
7816 .getxattr = btrfs_getxattr,
7817 .listxattr = btrfs_listxattr,
7818 .removexattr = btrfs_removexattr,
4e34e719 7819 .get_acl = btrfs_get_acl,
e41f941a 7820 .update_time = btrfs_update_time,
39279cc3 7821};
76dda93c 7822
82d339d9 7823const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7824 .d_delete = btrfs_dentry_delete,
b4aff1f8 7825 .d_release = btrfs_dentry_release,
76dda93c 7826};