Btrfs: fix error handling in __add_reloc_root()
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
74struct kmem_cache *btrfs_trans_handle_cachep;
75struct kmem_cache *btrfs_transaction_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
78
79#define S_SHIFT 12
80static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88};
89
a41ad394
JB
90static int btrfs_setsize(struct inode *inode, loff_t newsize);
91static int btrfs_truncate(struct inode *inode);
5fd02043 92static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
93static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
2115133f
CM
97static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
7b128766 99
f34f57a3 100static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
0279b4cd
JO
103{
104 int err;
105
f34f57a3 106 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 107 if (!err)
2a7dba39 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
109 return err;
110}
111
c8b97818
CM
112/*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
d397712b 117static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
fe3f566c 120 int compress_type,
c8b97818
CM
121 struct page **compressed_pages)
122{
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
c8b97818 135
fe3f566c 136 if (compressed_size && compressed_pages)
c8b97818 137 cur_size = compressed_size;
c8b97818 138
d397712b
CM
139 path = btrfs_alloc_path();
140 if (!path)
c8b97818
CM
141 return -ENOMEM;
142
b9473439 143 path->leave_spinning = 1;
c8b97818 144
33345d01 145 key.objectid = btrfs_ino(inode);
c8b97818
CM
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
c8b97818
CM
153 if (ret) {
154 err = ret;
c8b97818
CM
155 goto fail;
156 }
157 leaf = path->nodes[0];
158 ei = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 btrfs_set_file_extent_encryption(leaf, ei, 0);
163 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 ptr = btrfs_file_extent_inline_start(ei);
166
261507a0 167 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
168 struct page *cpage;
169 int i = 0;
d397712b 170 while (compressed_size > 0) {
c8b97818 171 cpage = compressed_pages[i];
5b050f04 172 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
173 PAGE_CACHE_SIZE);
174
7ac687d9 175 kaddr = kmap_atomic(cpage);
c8b97818 176 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 177 kunmap_atomic(kaddr);
c8b97818
CM
178
179 i++;
180 ptr += cur_size;
181 compressed_size -= cur_size;
182 }
183 btrfs_set_file_extent_compression(leaf, ei,
261507a0 184 compress_type);
c8b97818
CM
185 } else {
186 page = find_get_page(inode->i_mapping,
187 start >> PAGE_CACHE_SHIFT);
188 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 189 kaddr = kmap_atomic(page);
c8b97818
CM
190 offset = start & (PAGE_CACHE_SIZE - 1);
191 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 192 kunmap_atomic(kaddr);
c8b97818
CM
193 page_cache_release(page);
194 }
195 btrfs_mark_buffer_dirty(leaf);
196 btrfs_free_path(path);
197
c2167754
YZ
198 /*
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
202 *
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
206 */
c8b97818 207 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 208 ret = btrfs_update_inode(trans, root, inode);
c2167754 209
79787eaa 210 return ret;
c8b97818
CM
211fail:
212 btrfs_free_path(path);
213 return err;
214}
215
216
217/*
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
221 */
7f366cfe 222static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
fe3f566c 225 size_t compressed_size, int compress_type,
c8b97818
CM
226 struct page **compressed_pages)
227{
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
233 u64 hint_byte;
234 u64 data_len = inline_len;
235 int ret;
236
237 if (compressed_size)
238 data_len = compressed_size;
239
240 if (start > 0 ||
70b99e69 241 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
242 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243 (!compressed_size &&
244 (actual_end & (root->sectorsize - 1)) == 0) ||
245 end + 1 < isize ||
246 data_len > root->fs_info->max_inline) {
247 return 1;
248 }
249
920bbbfb 250 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 251 &hint_byte, 1);
79787eaa
JM
252 if (ret)
253 return ret;
c8b97818
CM
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
fe3f566c 259 compress_type, compressed_pages);
2adcac1a 260 if (ret && ret != -ENOSPC) {
79787eaa
JM
261 btrfs_abort_transaction(trans, root, ret);
262 return ret;
2adcac1a
JB
263 } else if (ret == -ENOSPC) {
264 return 1;
79787eaa 265 }
2adcac1a 266
0ca1f7ce 267 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 268 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
269 return 0;
270}
271
771ed689
CM
272struct async_extent {
273 u64 start;
274 u64 ram_size;
275 u64 compressed_size;
276 struct page **pages;
277 unsigned long nr_pages;
261507a0 278 int compress_type;
771ed689
CM
279 struct list_head list;
280};
281
282struct async_cow {
283 struct inode *inode;
284 struct btrfs_root *root;
285 struct page *locked_page;
286 u64 start;
287 u64 end;
288 struct list_head extents;
289 struct btrfs_work work;
290};
291
292static noinline int add_async_extent(struct async_cow *cow,
293 u64 start, u64 ram_size,
294 u64 compressed_size,
295 struct page **pages,
261507a0
LZ
296 unsigned long nr_pages,
297 int compress_type)
771ed689
CM
298{
299 struct async_extent *async_extent;
300
301 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 302 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
303 async_extent->start = start;
304 async_extent->ram_size = ram_size;
305 async_extent->compressed_size = compressed_size;
306 async_extent->pages = pages;
307 async_extent->nr_pages = nr_pages;
261507a0 308 async_extent->compress_type = compress_type;
771ed689
CM
309 list_add_tail(&async_extent->list, &cow->extents);
310 return 0;
311}
312
d352ac68 313/*
771ed689
CM
314 * we create compressed extents in two phases. The first
315 * phase compresses a range of pages that have already been
316 * locked (both pages and state bits are locked).
c8b97818 317 *
771ed689
CM
318 * This is done inside an ordered work queue, and the compression
319 * is spread across many cpus. The actual IO submission is step
320 * two, and the ordered work queue takes care of making sure that
321 * happens in the same order things were put onto the queue by
322 * writepages and friends.
c8b97818 323 *
771ed689
CM
324 * If this code finds it can't get good compression, it puts an
325 * entry onto the work queue to write the uncompressed bytes. This
326 * makes sure that both compressed inodes and uncompressed inodes
327 * are written in the same order that pdflush sent them down.
d352ac68 328 */
771ed689
CM
329static noinline int compress_file_range(struct inode *inode,
330 struct page *locked_page,
331 u64 start, u64 end,
332 struct async_cow *async_cow,
333 int *num_added)
b888db2b
CM
334{
335 struct btrfs_root *root = BTRFS_I(inode)->root;
336 struct btrfs_trans_handle *trans;
db94535d 337 u64 num_bytes;
db94535d 338 u64 blocksize = root->sectorsize;
c8b97818 339 u64 actual_end;
42dc7bab 340 u64 isize = i_size_read(inode);
e6dcd2dc 341 int ret = 0;
c8b97818
CM
342 struct page **pages = NULL;
343 unsigned long nr_pages;
344 unsigned long nr_pages_ret = 0;
345 unsigned long total_compressed = 0;
346 unsigned long total_in = 0;
347 unsigned long max_compressed = 128 * 1024;
771ed689 348 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
349 int i;
350 int will_compress;
261507a0 351 int compress_type = root->fs_info->compress_type;
b888db2b 352
4cb13e5d
LB
353 /* if this is a small write inside eof, kick off a defrag */
354 if ((end - start + 1) < 16 * 1024 &&
355 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
356 btrfs_add_inode_defrag(NULL, inode);
357
42dc7bab 358 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
359again:
360 will_compress = 0;
361 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
362 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 363
f03d9301
CM
364 /*
365 * we don't want to send crud past the end of i_size through
366 * compression, that's just a waste of CPU time. So, if the
367 * end of the file is before the start of our current
368 * requested range of bytes, we bail out to the uncompressed
369 * cleanup code that can deal with all of this.
370 *
371 * It isn't really the fastest way to fix things, but this is a
372 * very uncommon corner.
373 */
374 if (actual_end <= start)
375 goto cleanup_and_bail_uncompressed;
376
c8b97818
CM
377 total_compressed = actual_end - start;
378
379 /* we want to make sure that amount of ram required to uncompress
380 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
381 * of a compressed extent to 128k. This is a crucial number
382 * because it also controls how easily we can spread reads across
383 * cpus for decompression.
384 *
385 * We also want to make sure the amount of IO required to do
386 * a random read is reasonably small, so we limit the size of
387 * a compressed extent to 128k.
c8b97818
CM
388 */
389 total_compressed = min(total_compressed, max_uncompressed);
db94535d 390 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 391 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
392 total_in = 0;
393 ret = 0;
db94535d 394
771ed689
CM
395 /*
396 * we do compression for mount -o compress and when the
397 * inode has not been flagged as nocompress. This flag can
398 * change at any time if we discover bad compression ratios.
c8b97818 399 */
6cbff00f 400 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 401 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
402 (BTRFS_I(inode)->force_compress) ||
403 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 404 WARN_ON(pages);
cfbc246e 405 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
406 if (!pages) {
407 /* just bail out to the uncompressed code */
408 goto cont;
409 }
c8b97818 410
261507a0
LZ
411 if (BTRFS_I(inode)->force_compress)
412 compress_type = BTRFS_I(inode)->force_compress;
413
414 ret = btrfs_compress_pages(compress_type,
415 inode->i_mapping, start,
416 total_compressed, pages,
417 nr_pages, &nr_pages_ret,
418 &total_in,
419 &total_compressed,
420 max_compressed);
c8b97818
CM
421
422 if (!ret) {
423 unsigned long offset = total_compressed &
424 (PAGE_CACHE_SIZE - 1);
425 struct page *page = pages[nr_pages_ret - 1];
426 char *kaddr;
427
428 /* zero the tail end of the last page, we might be
429 * sending it down to disk
430 */
431 if (offset) {
7ac687d9 432 kaddr = kmap_atomic(page);
c8b97818
CM
433 memset(kaddr + offset, 0,
434 PAGE_CACHE_SIZE - offset);
7ac687d9 435 kunmap_atomic(kaddr);
c8b97818
CM
436 }
437 will_compress = 1;
438 }
439 }
560f7d75 440cont:
c8b97818 441 if (start == 0) {
7a7eaa40 442 trans = btrfs_join_transaction(root);
79787eaa
JM
443 if (IS_ERR(trans)) {
444 ret = PTR_ERR(trans);
445 trans = NULL;
446 goto cleanup_and_out;
447 }
0ca1f7ce 448 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 449
c8b97818 450 /* lets try to make an inline extent */
771ed689 451 if (ret || total_in < (actual_end - start)) {
c8b97818 452 /* we didn't compress the entire range, try
771ed689 453 * to make an uncompressed inline extent.
c8b97818
CM
454 */
455 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 456 start, end, 0, 0, NULL);
c8b97818 457 } else {
771ed689 458 /* try making a compressed inline extent */
c8b97818
CM
459 ret = cow_file_range_inline(trans, root, inode,
460 start, end,
fe3f566c
LZ
461 total_compressed,
462 compress_type, pages);
c8b97818 463 }
79787eaa 464 if (ret <= 0) {
771ed689 465 /*
79787eaa
JM
466 * inline extent creation worked or returned error,
467 * we don't need to create any more async work items.
468 * Unlock and free up our temp pages.
771ed689 469 */
c8b97818 470 extent_clear_unlock_delalloc(inode,
a791e35e
CM
471 &BTRFS_I(inode)->io_tree,
472 start, end, NULL,
473 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 474 EXTENT_CLEAR_DELALLOC |
a791e35e 475 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
476
477 btrfs_end_transaction(trans, root);
c8b97818
CM
478 goto free_pages_out;
479 }
c2167754 480 btrfs_end_transaction(trans, root);
c8b97818
CM
481 }
482
483 if (will_compress) {
484 /*
485 * we aren't doing an inline extent round the compressed size
486 * up to a block size boundary so the allocator does sane
487 * things
488 */
489 total_compressed = (total_compressed + blocksize - 1) &
490 ~(blocksize - 1);
491
492 /*
493 * one last check to make sure the compression is really a
494 * win, compare the page count read with the blocks on disk
495 */
496 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
497 ~(PAGE_CACHE_SIZE - 1);
498 if (total_compressed >= total_in) {
499 will_compress = 0;
500 } else {
c8b97818
CM
501 num_bytes = total_in;
502 }
503 }
504 if (!will_compress && pages) {
505 /*
506 * the compression code ran but failed to make things smaller,
507 * free any pages it allocated and our page pointer array
508 */
509 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 510 WARN_ON(pages[i]->mapping);
c8b97818
CM
511 page_cache_release(pages[i]);
512 }
513 kfree(pages);
514 pages = NULL;
515 total_compressed = 0;
516 nr_pages_ret = 0;
517
518 /* flag the file so we don't compress in the future */
1e701a32
CM
519 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
520 !(BTRFS_I(inode)->force_compress)) {
a555f810 521 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 522 }
c8b97818 523 }
771ed689
CM
524 if (will_compress) {
525 *num_added += 1;
c8b97818 526
771ed689
CM
527 /* the async work queues will take care of doing actual
528 * allocation on disk for these compressed pages,
529 * and will submit them to the elevator.
530 */
531 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
532 total_compressed, pages, nr_pages_ret,
533 compress_type);
179e29e4 534
24ae6365 535 if (start + num_bytes < end) {
771ed689
CM
536 start += num_bytes;
537 pages = NULL;
538 cond_resched();
539 goto again;
540 }
541 } else {
f03d9301 542cleanup_and_bail_uncompressed:
771ed689
CM
543 /*
544 * No compression, but we still need to write the pages in
545 * the file we've been given so far. redirty the locked
546 * page if it corresponds to our extent and set things up
547 * for the async work queue to run cow_file_range to do
548 * the normal delalloc dance
549 */
550 if (page_offset(locked_page) >= start &&
551 page_offset(locked_page) <= end) {
552 __set_page_dirty_nobuffers(locked_page);
553 /* unlocked later on in the async handlers */
554 }
261507a0
LZ
555 add_async_extent(async_cow, start, end - start + 1,
556 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
557 *num_added += 1;
558 }
3b951516 559
771ed689 560out:
79787eaa 561 return ret;
771ed689
CM
562
563free_pages_out:
564 for (i = 0; i < nr_pages_ret; i++) {
565 WARN_ON(pages[i]->mapping);
566 page_cache_release(pages[i]);
567 }
d397712b 568 kfree(pages);
771ed689
CM
569
570 goto out;
79787eaa
JM
571
572cleanup_and_out:
573 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
574 start, end, NULL,
575 EXTENT_CLEAR_UNLOCK_PAGE |
576 EXTENT_CLEAR_DIRTY |
577 EXTENT_CLEAR_DELALLOC |
578 EXTENT_SET_WRITEBACK |
579 EXTENT_END_WRITEBACK);
580 if (!trans || IS_ERR(trans))
581 btrfs_error(root->fs_info, ret, "Failed to join transaction");
582 else
583 btrfs_abort_transaction(trans, root, ret);
584 goto free_pages_out;
771ed689
CM
585}
586
587/*
588 * phase two of compressed writeback. This is the ordered portion
589 * of the code, which only gets called in the order the work was
590 * queued. We walk all the async extents created by compress_file_range
591 * and send them down to the disk.
592 */
593static noinline int submit_compressed_extents(struct inode *inode,
594 struct async_cow *async_cow)
595{
596 struct async_extent *async_extent;
597 u64 alloc_hint = 0;
598 struct btrfs_trans_handle *trans;
599 struct btrfs_key ins;
600 struct extent_map *em;
601 struct btrfs_root *root = BTRFS_I(inode)->root;
602 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
603 struct extent_io_tree *io_tree;
f5a84ee3 604 int ret = 0;
771ed689
CM
605
606 if (list_empty(&async_cow->extents))
607 return 0;
608
771ed689 609
d397712b 610 while (!list_empty(&async_cow->extents)) {
771ed689
CM
611 async_extent = list_entry(async_cow->extents.next,
612 struct async_extent, list);
613 list_del(&async_extent->list);
c8b97818 614
771ed689
CM
615 io_tree = &BTRFS_I(inode)->io_tree;
616
f5a84ee3 617retry:
771ed689
CM
618 /* did the compression code fall back to uncompressed IO? */
619 if (!async_extent->pages) {
620 int page_started = 0;
621 unsigned long nr_written = 0;
622
623 lock_extent(io_tree, async_extent->start,
2ac55d41 624 async_extent->start +
d0082371 625 async_extent->ram_size - 1);
771ed689
CM
626
627 /* allocate blocks */
f5a84ee3
JB
628 ret = cow_file_range(inode, async_cow->locked_page,
629 async_extent->start,
630 async_extent->start +
631 async_extent->ram_size - 1,
632 &page_started, &nr_written, 0);
771ed689 633
79787eaa
JM
634 /* JDM XXX */
635
771ed689
CM
636 /*
637 * if page_started, cow_file_range inserted an
638 * inline extent and took care of all the unlocking
639 * and IO for us. Otherwise, we need to submit
640 * all those pages down to the drive.
641 */
f5a84ee3 642 if (!page_started && !ret)
771ed689
CM
643 extent_write_locked_range(io_tree,
644 inode, async_extent->start,
d397712b 645 async_extent->start +
771ed689
CM
646 async_extent->ram_size - 1,
647 btrfs_get_extent,
648 WB_SYNC_ALL);
649 kfree(async_extent);
650 cond_resched();
651 continue;
652 }
653
654 lock_extent(io_tree, async_extent->start,
d0082371 655 async_extent->start + async_extent->ram_size - 1);
771ed689 656
7a7eaa40 657 trans = btrfs_join_transaction(root);
79787eaa
JM
658 if (IS_ERR(trans)) {
659 ret = PTR_ERR(trans);
660 } else {
661 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
662 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
663 async_extent->compressed_size,
664 async_extent->compressed_size,
81c9ad23 665 0, alloc_hint, &ins, 1);
79787eaa
JM
666 if (ret)
667 btrfs_abort_transaction(trans, root, ret);
668 btrfs_end_transaction(trans, root);
669 }
c2167754 670
f5a84ee3
JB
671 if (ret) {
672 int i;
673 for (i = 0; i < async_extent->nr_pages; i++) {
674 WARN_ON(async_extent->pages[i]->mapping);
675 page_cache_release(async_extent->pages[i]);
676 }
677 kfree(async_extent->pages);
678 async_extent->nr_pages = 0;
679 async_extent->pages = NULL;
680 unlock_extent(io_tree, async_extent->start,
681 async_extent->start +
d0082371 682 async_extent->ram_size - 1);
79787eaa
JM
683 if (ret == -ENOSPC)
684 goto retry;
685 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
686 }
687
c2167754
YZ
688 /*
689 * here we're doing allocation and writeback of the
690 * compressed pages
691 */
692 btrfs_drop_extent_cache(inode, async_extent->start,
693 async_extent->start +
694 async_extent->ram_size - 1, 0);
695
172ddd60 696 em = alloc_extent_map();
79787eaa 697 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
698 em->start = async_extent->start;
699 em->len = async_extent->ram_size;
445a6944 700 em->orig_start = em->start;
c8b97818 701
771ed689
CM
702 em->block_start = ins.objectid;
703 em->block_len = ins.offset;
704 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 705 em->compress_type = async_extent->compress_type;
771ed689
CM
706 set_bit(EXTENT_FLAG_PINNED, &em->flags);
707 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
708
d397712b 709 while (1) {
890871be 710 write_lock(&em_tree->lock);
771ed689 711 ret = add_extent_mapping(em_tree, em);
890871be 712 write_unlock(&em_tree->lock);
771ed689
CM
713 if (ret != -EEXIST) {
714 free_extent_map(em);
715 break;
716 }
717 btrfs_drop_extent_cache(inode, async_extent->start,
718 async_extent->start +
719 async_extent->ram_size - 1, 0);
720 }
721
261507a0
LZ
722 ret = btrfs_add_ordered_extent_compress(inode,
723 async_extent->start,
724 ins.objectid,
725 async_extent->ram_size,
726 ins.offset,
727 BTRFS_ORDERED_COMPRESSED,
728 async_extent->compress_type);
79787eaa 729 BUG_ON(ret); /* -ENOMEM */
771ed689 730
771ed689
CM
731 /*
732 * clear dirty, set writeback and unlock the pages.
733 */
734 extent_clear_unlock_delalloc(inode,
a791e35e
CM
735 &BTRFS_I(inode)->io_tree,
736 async_extent->start,
737 async_extent->start +
738 async_extent->ram_size - 1,
739 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
740 EXTENT_CLEAR_UNLOCK |
a3429ab7 741 EXTENT_CLEAR_DELALLOC |
a791e35e 742 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
743
744 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
745 async_extent->start,
746 async_extent->ram_size,
747 ins.objectid,
748 ins.offset, async_extent->pages,
749 async_extent->nr_pages);
771ed689 750
79787eaa 751 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
752 alloc_hint = ins.objectid + ins.offset;
753 kfree(async_extent);
754 cond_resched();
755 }
79787eaa
JM
756 ret = 0;
757out:
758 return ret;
759out_free:
760 kfree(async_extent);
761 goto out;
771ed689
CM
762}
763
4b46fce2
JB
764static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
765 u64 num_bytes)
766{
767 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
768 struct extent_map *em;
769 u64 alloc_hint = 0;
770
771 read_lock(&em_tree->lock);
772 em = search_extent_mapping(em_tree, start, num_bytes);
773 if (em) {
774 /*
775 * if block start isn't an actual block number then find the
776 * first block in this inode and use that as a hint. If that
777 * block is also bogus then just don't worry about it.
778 */
779 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
780 free_extent_map(em);
781 em = search_extent_mapping(em_tree, 0, 0);
782 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
783 alloc_hint = em->block_start;
784 if (em)
785 free_extent_map(em);
786 } else {
787 alloc_hint = em->block_start;
788 free_extent_map(em);
789 }
790 }
791 read_unlock(&em_tree->lock);
792
793 return alloc_hint;
794}
795
771ed689
CM
796/*
797 * when extent_io.c finds a delayed allocation range in the file,
798 * the call backs end up in this code. The basic idea is to
799 * allocate extents on disk for the range, and create ordered data structs
800 * in ram to track those extents.
801 *
802 * locked_page is the page that writepage had locked already. We use
803 * it to make sure we don't do extra locks or unlocks.
804 *
805 * *page_started is set to one if we unlock locked_page and do everything
806 * required to start IO on it. It may be clean and already done with
807 * IO when we return.
808 */
809static noinline int cow_file_range(struct inode *inode,
810 struct page *locked_page,
811 u64 start, u64 end, int *page_started,
812 unsigned long *nr_written,
813 int unlock)
814{
815 struct btrfs_root *root = BTRFS_I(inode)->root;
816 struct btrfs_trans_handle *trans;
817 u64 alloc_hint = 0;
818 u64 num_bytes;
819 unsigned long ram_size;
820 u64 disk_num_bytes;
821 u64 cur_alloc_size;
822 u64 blocksize = root->sectorsize;
771ed689
CM
823 struct btrfs_key ins;
824 struct extent_map *em;
825 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
826 int ret = 0;
827
2cf8572d 828 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 829 trans = btrfs_join_transaction(root);
79787eaa
JM
830 if (IS_ERR(trans)) {
831 extent_clear_unlock_delalloc(inode,
832 &BTRFS_I(inode)->io_tree,
beb42dd7 833 start, end, locked_page,
79787eaa
JM
834 EXTENT_CLEAR_UNLOCK_PAGE |
835 EXTENT_CLEAR_UNLOCK |
836 EXTENT_CLEAR_DELALLOC |
837 EXTENT_CLEAR_DIRTY |
838 EXTENT_SET_WRITEBACK |
839 EXTENT_END_WRITEBACK);
840 return PTR_ERR(trans);
841 }
0ca1f7ce 842 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 843
771ed689
CM
844 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
845 num_bytes = max(blocksize, num_bytes);
846 disk_num_bytes = num_bytes;
847 ret = 0;
848
4cb5300b 849 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
850 if (num_bytes < 64 * 1024 &&
851 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
852 btrfs_add_inode_defrag(trans, inode);
853
771ed689
CM
854 if (start == 0) {
855 /* lets try to make an inline extent */
856 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 857 start, end, 0, 0, NULL);
771ed689
CM
858 if (ret == 0) {
859 extent_clear_unlock_delalloc(inode,
a791e35e
CM
860 &BTRFS_I(inode)->io_tree,
861 start, end, NULL,
862 EXTENT_CLEAR_UNLOCK_PAGE |
863 EXTENT_CLEAR_UNLOCK |
864 EXTENT_CLEAR_DELALLOC |
865 EXTENT_CLEAR_DIRTY |
866 EXTENT_SET_WRITEBACK |
867 EXTENT_END_WRITEBACK);
c2167754 868
771ed689
CM
869 *nr_written = *nr_written +
870 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
871 *page_started = 1;
771ed689 872 goto out;
79787eaa
JM
873 } else if (ret < 0) {
874 btrfs_abort_transaction(trans, root, ret);
875 goto out_unlock;
771ed689
CM
876 }
877 }
878
879 BUG_ON(disk_num_bytes >
6c41761f 880 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 881
4b46fce2 882 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
883 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
884
d397712b 885 while (disk_num_bytes > 0) {
a791e35e
CM
886 unsigned long op;
887
287a0ab9 888 cur_alloc_size = disk_num_bytes;
e6dcd2dc 889 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 890 root->sectorsize, 0, alloc_hint,
81c9ad23 891 &ins, 1);
79787eaa
JM
892 if (ret < 0) {
893 btrfs_abort_transaction(trans, root, ret);
894 goto out_unlock;
895 }
d397712b 896
172ddd60 897 em = alloc_extent_map();
79787eaa 898 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 899 em->start = start;
445a6944 900 em->orig_start = em->start;
771ed689
CM
901 ram_size = ins.offset;
902 em->len = ins.offset;
c8b97818 903
e6dcd2dc 904 em->block_start = ins.objectid;
c8b97818 905 em->block_len = ins.offset;
e6dcd2dc 906 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 907 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 908
d397712b 909 while (1) {
890871be 910 write_lock(&em_tree->lock);
e6dcd2dc 911 ret = add_extent_mapping(em_tree, em);
890871be 912 write_unlock(&em_tree->lock);
e6dcd2dc
CM
913 if (ret != -EEXIST) {
914 free_extent_map(em);
915 break;
916 }
917 btrfs_drop_extent_cache(inode, start,
c8b97818 918 start + ram_size - 1, 0);
e6dcd2dc
CM
919 }
920
98d20f67 921 cur_alloc_size = ins.offset;
e6dcd2dc 922 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 923 ram_size, cur_alloc_size, 0);
79787eaa 924 BUG_ON(ret); /* -ENOMEM */
c8b97818 925
17d217fe
YZ
926 if (root->root_key.objectid ==
927 BTRFS_DATA_RELOC_TREE_OBJECTID) {
928 ret = btrfs_reloc_clone_csums(inode, start,
929 cur_alloc_size);
79787eaa
JM
930 if (ret) {
931 btrfs_abort_transaction(trans, root, ret);
932 goto out_unlock;
933 }
17d217fe
YZ
934 }
935
d397712b 936 if (disk_num_bytes < cur_alloc_size)
3b951516 937 break;
d397712b 938
c8b97818
CM
939 /* we're not doing compressed IO, don't unlock the first
940 * page (which the caller expects to stay locked), don't
941 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
942 *
943 * Do set the Private2 bit so we know this page was properly
944 * setup for writepage
c8b97818 945 */
a791e35e
CM
946 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
947 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
948 EXTENT_SET_PRIVATE2;
949
c8b97818
CM
950 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
951 start, start + ram_size - 1,
a791e35e 952 locked_page, op);
c8b97818 953 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
954 num_bytes -= cur_alloc_size;
955 alloc_hint = ins.objectid + ins.offset;
956 start += cur_alloc_size;
b888db2b 957 }
771ed689 958 ret = 0;
79787eaa 959out:
b888db2b 960 btrfs_end_transaction(trans, root);
c8b97818 961
be20aa9d 962 return ret;
79787eaa
JM
963out_unlock:
964 extent_clear_unlock_delalloc(inode,
965 &BTRFS_I(inode)->io_tree,
beb42dd7 966 start, end, locked_page,
79787eaa
JM
967 EXTENT_CLEAR_UNLOCK_PAGE |
968 EXTENT_CLEAR_UNLOCK |
969 EXTENT_CLEAR_DELALLOC |
970 EXTENT_CLEAR_DIRTY |
971 EXTENT_SET_WRITEBACK |
972 EXTENT_END_WRITEBACK);
973
974 goto out;
771ed689 975}
c8b97818 976
771ed689
CM
977/*
978 * work queue call back to started compression on a file and pages
979 */
980static noinline void async_cow_start(struct btrfs_work *work)
981{
982 struct async_cow *async_cow;
983 int num_added = 0;
984 async_cow = container_of(work, struct async_cow, work);
985
986 compress_file_range(async_cow->inode, async_cow->locked_page,
987 async_cow->start, async_cow->end, async_cow,
988 &num_added);
8180ef88 989 if (num_added == 0) {
cb77fcd8 990 btrfs_add_delayed_iput(async_cow->inode);
771ed689 991 async_cow->inode = NULL;
8180ef88 992 }
771ed689
CM
993}
994
995/*
996 * work queue call back to submit previously compressed pages
997 */
998static noinline void async_cow_submit(struct btrfs_work *work)
999{
1000 struct async_cow *async_cow;
1001 struct btrfs_root *root;
1002 unsigned long nr_pages;
1003
1004 async_cow = container_of(work, struct async_cow, work);
1005
1006 root = async_cow->root;
1007 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1008 PAGE_CACHE_SHIFT;
1009
1010 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
1011
1012 if (atomic_read(&root->fs_info->async_delalloc_pages) <
1013 5 * 1042 * 1024 &&
1014 waitqueue_active(&root->fs_info->async_submit_wait))
1015 wake_up(&root->fs_info->async_submit_wait);
1016
d397712b 1017 if (async_cow->inode)
771ed689 1018 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1019}
c8b97818 1020
771ed689
CM
1021static noinline void async_cow_free(struct btrfs_work *work)
1022{
1023 struct async_cow *async_cow;
1024 async_cow = container_of(work, struct async_cow, work);
8180ef88 1025 if (async_cow->inode)
cb77fcd8 1026 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1027 kfree(async_cow);
1028}
1029
1030static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1031 u64 start, u64 end, int *page_started,
1032 unsigned long *nr_written)
1033{
1034 struct async_cow *async_cow;
1035 struct btrfs_root *root = BTRFS_I(inode)->root;
1036 unsigned long nr_pages;
1037 u64 cur_end;
1038 int limit = 10 * 1024 * 1042;
1039
a3429ab7
CM
1040 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1041 1, 0, NULL, GFP_NOFS);
d397712b 1042 while (start < end) {
771ed689 1043 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1044 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1045 async_cow->inode = igrab(inode);
771ed689
CM
1046 async_cow->root = root;
1047 async_cow->locked_page = locked_page;
1048 async_cow->start = start;
1049
6cbff00f 1050 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1051 cur_end = end;
1052 else
1053 cur_end = min(end, start + 512 * 1024 - 1);
1054
1055 async_cow->end = cur_end;
1056 INIT_LIST_HEAD(&async_cow->extents);
1057
1058 async_cow->work.func = async_cow_start;
1059 async_cow->work.ordered_func = async_cow_submit;
1060 async_cow->work.ordered_free = async_cow_free;
1061 async_cow->work.flags = 0;
1062
771ed689
CM
1063 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1064 PAGE_CACHE_SHIFT;
1065 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1066
1067 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1068 &async_cow->work);
1069
1070 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1071 wait_event(root->fs_info->async_submit_wait,
1072 (atomic_read(&root->fs_info->async_delalloc_pages) <
1073 limit));
1074 }
1075
d397712b 1076 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1077 atomic_read(&root->fs_info->async_delalloc_pages)) {
1078 wait_event(root->fs_info->async_submit_wait,
1079 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1080 0));
1081 }
1082
1083 *nr_written += nr_pages;
1084 start = cur_end + 1;
1085 }
1086 *page_started = 1;
1087 return 0;
be20aa9d
CM
1088}
1089
d397712b 1090static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1091 u64 bytenr, u64 num_bytes)
1092{
1093 int ret;
1094 struct btrfs_ordered_sum *sums;
1095 LIST_HEAD(list);
1096
07d400a6 1097 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1098 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1099 if (ret == 0 && list_empty(&list))
1100 return 0;
1101
1102 while (!list_empty(&list)) {
1103 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1104 list_del(&sums->list);
1105 kfree(sums);
1106 }
1107 return 1;
1108}
1109
d352ac68
CM
1110/*
1111 * when nowcow writeback call back. This checks for snapshots or COW copies
1112 * of the extents that exist in the file, and COWs the file as required.
1113 *
1114 * If no cow copies or snapshots exist, we write directly to the existing
1115 * blocks on disk
1116 */
7f366cfe
CM
1117static noinline int run_delalloc_nocow(struct inode *inode,
1118 struct page *locked_page,
771ed689
CM
1119 u64 start, u64 end, int *page_started, int force,
1120 unsigned long *nr_written)
be20aa9d 1121{
be20aa9d 1122 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1123 struct btrfs_trans_handle *trans;
be20aa9d 1124 struct extent_buffer *leaf;
be20aa9d 1125 struct btrfs_path *path;
80ff3856 1126 struct btrfs_file_extent_item *fi;
be20aa9d 1127 struct btrfs_key found_key;
80ff3856
YZ
1128 u64 cow_start;
1129 u64 cur_offset;
1130 u64 extent_end;
5d4f98a2 1131 u64 extent_offset;
80ff3856
YZ
1132 u64 disk_bytenr;
1133 u64 num_bytes;
1134 int extent_type;
79787eaa 1135 int ret, err;
d899e052 1136 int type;
80ff3856
YZ
1137 int nocow;
1138 int check_prev = 1;
82d5902d 1139 bool nolock;
33345d01 1140 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1141
1142 path = btrfs_alloc_path();
17ca04af
JB
1143 if (!path) {
1144 extent_clear_unlock_delalloc(inode,
1145 &BTRFS_I(inode)->io_tree,
1146 start, end, locked_page,
1147 EXTENT_CLEAR_UNLOCK_PAGE |
1148 EXTENT_CLEAR_UNLOCK |
1149 EXTENT_CLEAR_DELALLOC |
1150 EXTENT_CLEAR_DIRTY |
1151 EXTENT_SET_WRITEBACK |
1152 EXTENT_END_WRITEBACK);
d8926bb3 1153 return -ENOMEM;
17ca04af 1154 }
82d5902d 1155
2cf8572d 1156 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1157
1158 if (nolock)
7a7eaa40 1159 trans = btrfs_join_transaction_nolock(root);
82d5902d 1160 else
7a7eaa40 1161 trans = btrfs_join_transaction(root);
ff5714cc 1162
79787eaa 1163 if (IS_ERR(trans)) {
17ca04af
JB
1164 extent_clear_unlock_delalloc(inode,
1165 &BTRFS_I(inode)->io_tree,
1166 start, end, locked_page,
1167 EXTENT_CLEAR_UNLOCK_PAGE |
1168 EXTENT_CLEAR_UNLOCK |
1169 EXTENT_CLEAR_DELALLOC |
1170 EXTENT_CLEAR_DIRTY |
1171 EXTENT_SET_WRITEBACK |
1172 EXTENT_END_WRITEBACK);
79787eaa
JM
1173 btrfs_free_path(path);
1174 return PTR_ERR(trans);
1175 }
1176
74b21075 1177 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1178
80ff3856
YZ
1179 cow_start = (u64)-1;
1180 cur_offset = start;
1181 while (1) {
33345d01 1182 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1183 cur_offset, 0);
79787eaa
JM
1184 if (ret < 0) {
1185 btrfs_abort_transaction(trans, root, ret);
1186 goto error;
1187 }
80ff3856
YZ
1188 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1189 leaf = path->nodes[0];
1190 btrfs_item_key_to_cpu(leaf, &found_key,
1191 path->slots[0] - 1);
33345d01 1192 if (found_key.objectid == ino &&
80ff3856
YZ
1193 found_key.type == BTRFS_EXTENT_DATA_KEY)
1194 path->slots[0]--;
1195 }
1196 check_prev = 0;
1197next_slot:
1198 leaf = path->nodes[0];
1199 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1200 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1201 if (ret < 0) {
1202 btrfs_abort_transaction(trans, root, ret);
1203 goto error;
1204 }
80ff3856
YZ
1205 if (ret > 0)
1206 break;
1207 leaf = path->nodes[0];
1208 }
be20aa9d 1209
80ff3856
YZ
1210 nocow = 0;
1211 disk_bytenr = 0;
17d217fe 1212 num_bytes = 0;
80ff3856
YZ
1213 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1214
33345d01 1215 if (found_key.objectid > ino ||
80ff3856
YZ
1216 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1217 found_key.offset > end)
1218 break;
1219
1220 if (found_key.offset > cur_offset) {
1221 extent_end = found_key.offset;
e9061e21 1222 extent_type = 0;
80ff3856
YZ
1223 goto out_check;
1224 }
1225
1226 fi = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_file_extent_item);
1228 extent_type = btrfs_file_extent_type(leaf, fi);
1229
d899e052
YZ
1230 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1231 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1232 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1233 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1234 extent_end = found_key.offset +
1235 btrfs_file_extent_num_bytes(leaf, fi);
1236 if (extent_end <= start) {
1237 path->slots[0]++;
1238 goto next_slot;
1239 }
17d217fe
YZ
1240 if (disk_bytenr == 0)
1241 goto out_check;
80ff3856
YZ
1242 if (btrfs_file_extent_compression(leaf, fi) ||
1243 btrfs_file_extent_encryption(leaf, fi) ||
1244 btrfs_file_extent_other_encoding(leaf, fi))
1245 goto out_check;
d899e052
YZ
1246 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1247 goto out_check;
d2fb3437 1248 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1249 goto out_check;
33345d01 1250 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1251 found_key.offset -
1252 extent_offset, disk_bytenr))
17d217fe 1253 goto out_check;
5d4f98a2 1254 disk_bytenr += extent_offset;
17d217fe
YZ
1255 disk_bytenr += cur_offset - found_key.offset;
1256 num_bytes = min(end + 1, extent_end) - cur_offset;
1257 /*
1258 * force cow if csum exists in the range.
1259 * this ensure that csum for a given extent are
1260 * either valid or do not exist.
1261 */
1262 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1263 goto out_check;
80ff3856
YZ
1264 nocow = 1;
1265 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1266 extent_end = found_key.offset +
1267 btrfs_file_extent_inline_len(leaf, fi);
1268 extent_end = ALIGN(extent_end, root->sectorsize);
1269 } else {
1270 BUG_ON(1);
1271 }
1272out_check:
1273 if (extent_end <= start) {
1274 path->slots[0]++;
1275 goto next_slot;
1276 }
1277 if (!nocow) {
1278 if (cow_start == (u64)-1)
1279 cow_start = cur_offset;
1280 cur_offset = extent_end;
1281 if (cur_offset > end)
1282 break;
1283 path->slots[0]++;
1284 goto next_slot;
7ea394f1
YZ
1285 }
1286
b3b4aa74 1287 btrfs_release_path(path);
80ff3856
YZ
1288 if (cow_start != (u64)-1) {
1289 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1290 found_key.offset - 1, page_started,
1291 nr_written, 1);
79787eaa
JM
1292 if (ret) {
1293 btrfs_abort_transaction(trans, root, ret);
1294 goto error;
1295 }
80ff3856 1296 cow_start = (u64)-1;
7ea394f1 1297 }
80ff3856 1298
d899e052
YZ
1299 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1300 struct extent_map *em;
1301 struct extent_map_tree *em_tree;
1302 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1303 em = alloc_extent_map();
79787eaa 1304 BUG_ON(!em); /* -ENOMEM */
d899e052 1305 em->start = cur_offset;
445a6944 1306 em->orig_start = em->start;
d899e052
YZ
1307 em->len = num_bytes;
1308 em->block_len = num_bytes;
1309 em->block_start = disk_bytenr;
1310 em->bdev = root->fs_info->fs_devices->latest_bdev;
1311 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1312 while (1) {
890871be 1313 write_lock(&em_tree->lock);
d899e052 1314 ret = add_extent_mapping(em_tree, em);
890871be 1315 write_unlock(&em_tree->lock);
d899e052
YZ
1316 if (ret != -EEXIST) {
1317 free_extent_map(em);
1318 break;
1319 }
1320 btrfs_drop_extent_cache(inode, em->start,
1321 em->start + em->len - 1, 0);
1322 }
1323 type = BTRFS_ORDERED_PREALLOC;
1324 } else {
1325 type = BTRFS_ORDERED_NOCOW;
1326 }
80ff3856
YZ
1327
1328 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1329 num_bytes, num_bytes, type);
79787eaa 1330 BUG_ON(ret); /* -ENOMEM */
771ed689 1331
efa56464
YZ
1332 if (root->root_key.objectid ==
1333 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1334 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1335 num_bytes);
79787eaa
JM
1336 if (ret) {
1337 btrfs_abort_transaction(trans, root, ret);
1338 goto error;
1339 }
efa56464
YZ
1340 }
1341
d899e052 1342 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1343 cur_offset, cur_offset + num_bytes - 1,
1344 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1345 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1346 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1347 cur_offset = extent_end;
1348 if (cur_offset > end)
1349 break;
be20aa9d 1350 }
b3b4aa74 1351 btrfs_release_path(path);
80ff3856 1352
17ca04af 1353 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1354 cow_start = cur_offset;
17ca04af
JB
1355 cur_offset = end;
1356 }
1357
80ff3856
YZ
1358 if (cow_start != (u64)-1) {
1359 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1360 page_started, nr_written, 1);
79787eaa
JM
1361 if (ret) {
1362 btrfs_abort_transaction(trans, root, ret);
1363 goto error;
1364 }
80ff3856
YZ
1365 }
1366
79787eaa 1367error:
0cb59c99 1368 if (nolock) {
79787eaa 1369 err = btrfs_end_transaction_nolock(trans, root);
0cb59c99 1370 } else {
79787eaa 1371 err = btrfs_end_transaction(trans, root);
0cb59c99 1372 }
79787eaa
JM
1373 if (!ret)
1374 ret = err;
1375
17ca04af
JB
1376 if (ret && cur_offset < end)
1377 extent_clear_unlock_delalloc(inode,
1378 &BTRFS_I(inode)->io_tree,
1379 cur_offset, end, locked_page,
1380 EXTENT_CLEAR_UNLOCK_PAGE |
1381 EXTENT_CLEAR_UNLOCK |
1382 EXTENT_CLEAR_DELALLOC |
1383 EXTENT_CLEAR_DIRTY |
1384 EXTENT_SET_WRITEBACK |
1385 EXTENT_END_WRITEBACK);
1386
7ea394f1 1387 btrfs_free_path(path);
79787eaa 1388 return ret;
be20aa9d
CM
1389}
1390
d352ac68
CM
1391/*
1392 * extent_io.c call back to do delayed allocation processing
1393 */
c8b97818 1394static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1395 u64 start, u64 end, int *page_started,
1396 unsigned long *nr_written)
be20aa9d 1397{
be20aa9d 1398 int ret;
7f366cfe 1399 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1400
7ddf5a42 1401 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1402 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1403 page_started, 1, nr_written);
7ddf5a42 1404 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1405 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1406 page_started, 0, nr_written);
7ddf5a42
JB
1407 } else if (!btrfs_test_opt(root, COMPRESS) &&
1408 !(BTRFS_I(inode)->force_compress) &&
1409 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1410 ret = cow_file_range(inode, locked_page, start, end,
1411 page_started, nr_written, 1);
7ddf5a42
JB
1412 } else {
1413 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1414 &BTRFS_I(inode)->runtime_flags);
771ed689 1415 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1416 page_started, nr_written);
7ddf5a42 1417 }
b888db2b
CM
1418 return ret;
1419}
1420
1bf85046
JM
1421static void btrfs_split_extent_hook(struct inode *inode,
1422 struct extent_state *orig, u64 split)
9ed74f2d 1423{
0ca1f7ce 1424 /* not delalloc, ignore it */
9ed74f2d 1425 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1426 return;
9ed74f2d 1427
9e0baf60
JB
1428 spin_lock(&BTRFS_I(inode)->lock);
1429 BTRFS_I(inode)->outstanding_extents++;
1430 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1431}
1432
1433/*
1434 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1435 * extents so we can keep track of new extents that are just merged onto old
1436 * extents, such as when we are doing sequential writes, so we can properly
1437 * account for the metadata space we'll need.
1438 */
1bf85046
JM
1439static void btrfs_merge_extent_hook(struct inode *inode,
1440 struct extent_state *new,
1441 struct extent_state *other)
9ed74f2d 1442{
9ed74f2d
JB
1443 /* not delalloc, ignore it */
1444 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1445 return;
9ed74f2d 1446
9e0baf60
JB
1447 spin_lock(&BTRFS_I(inode)->lock);
1448 BTRFS_I(inode)->outstanding_extents--;
1449 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1450}
1451
d352ac68
CM
1452/*
1453 * extent_io.c set_bit_hook, used to track delayed allocation
1454 * bytes in this file, and to maintain the list of inodes that
1455 * have pending delalloc work to be done.
1456 */
1bf85046
JM
1457static void btrfs_set_bit_hook(struct inode *inode,
1458 struct extent_state *state, int *bits)
291d673e 1459{
9ed74f2d 1460
75eff68e
CM
1461 /*
1462 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1463 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1464 * bit, which is only set or cleared with irqs on
1465 */
0ca1f7ce 1466 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1467 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1468 u64 len = state->end + 1 - state->start;
2cf8572d 1469 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1470
9e0baf60 1471 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1472 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1473 } else {
1474 spin_lock(&BTRFS_I(inode)->lock);
1475 BTRFS_I(inode)->outstanding_extents++;
1476 spin_unlock(&BTRFS_I(inode)->lock);
1477 }
287a0ab9 1478
75eff68e 1479 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1480 BTRFS_I(inode)->delalloc_bytes += len;
1481 root->fs_info->delalloc_bytes += len;
0cb59c99 1482 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1483 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1484 &root->fs_info->delalloc_inodes);
1485 }
75eff68e 1486 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1487 }
291d673e
CM
1488}
1489
d352ac68
CM
1490/*
1491 * extent_io.c clear_bit_hook, see set_bit_hook for why
1492 */
1bf85046
JM
1493static void btrfs_clear_bit_hook(struct inode *inode,
1494 struct extent_state *state, int *bits)
291d673e 1495{
75eff68e
CM
1496 /*
1497 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1498 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1499 * bit, which is only set or cleared with irqs on
1500 */
0ca1f7ce 1501 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1502 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1503 u64 len = state->end + 1 - state->start;
2cf8572d 1504 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1505
9e0baf60 1506 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1507 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1508 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1509 spin_lock(&BTRFS_I(inode)->lock);
1510 BTRFS_I(inode)->outstanding_extents--;
1511 spin_unlock(&BTRFS_I(inode)->lock);
1512 }
0ca1f7ce
YZ
1513
1514 if (*bits & EXTENT_DO_ACCOUNTING)
1515 btrfs_delalloc_release_metadata(inode, len);
1516
0cb59c99
JB
1517 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1518 && do_list)
0ca1f7ce 1519 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1520
75eff68e 1521 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1522 root->fs_info->delalloc_bytes -= len;
1523 BTRFS_I(inode)->delalloc_bytes -= len;
1524
0cb59c99 1525 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1526 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1527 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1528 }
75eff68e 1529 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1530 }
291d673e
CM
1531}
1532
d352ac68
CM
1533/*
1534 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1535 * we don't create bios that span stripes or chunks
1536 */
239b14b3 1537int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1538 size_t size, struct bio *bio,
1539 unsigned long bio_flags)
239b14b3
CM
1540{
1541 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1542 struct btrfs_mapping_tree *map_tree;
a62b9401 1543 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1544 u64 length = 0;
1545 u64 map_length;
239b14b3
CM
1546 int ret;
1547
771ed689
CM
1548 if (bio_flags & EXTENT_BIO_COMPRESSED)
1549 return 0;
1550
f2d8d74d 1551 length = bio->bi_size;
239b14b3
CM
1552 map_tree = &root->fs_info->mapping_tree;
1553 map_length = length;
cea9e445 1554 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1555 &map_length, NULL, 0);
3444a972
JM
1556 /* Will always return 0 or 1 with map_multi == NULL */
1557 BUG_ON(ret < 0);
d397712b 1558 if (map_length < length + size)
239b14b3 1559 return 1;
3444a972 1560 return 0;
239b14b3
CM
1561}
1562
d352ac68
CM
1563/*
1564 * in order to insert checksums into the metadata in large chunks,
1565 * we wait until bio submission time. All the pages in the bio are
1566 * checksummed and sums are attached onto the ordered extent record.
1567 *
1568 * At IO completion time the cums attached on the ordered extent record
1569 * are inserted into the btree
1570 */
d397712b
CM
1571static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1572 struct bio *bio, int mirror_num,
eaf25d93
CM
1573 unsigned long bio_flags,
1574 u64 bio_offset)
065631f6 1575{
065631f6 1576 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1577 int ret = 0;
e015640f 1578
d20f7043 1579 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1580 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1581 return 0;
1582}
e015640f 1583
4a69a410
CM
1584/*
1585 * in order to insert checksums into the metadata in large chunks,
1586 * we wait until bio submission time. All the pages in the bio are
1587 * checksummed and sums are attached onto the ordered extent record.
1588 *
1589 * At IO completion time the cums attached on the ordered extent record
1590 * are inserted into the btree
1591 */
b2950863 1592static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1593 int mirror_num, unsigned long bio_flags,
1594 u64 bio_offset)
4a69a410
CM
1595{
1596 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1597 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1598}
1599
d352ac68 1600/*
cad321ad
CM
1601 * extent_io.c submission hook. This does the right thing for csum calculation
1602 * on write, or reading the csums from the tree before a read
d352ac68 1603 */
b2950863 1604static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1605 int mirror_num, unsigned long bio_flags,
1606 u64 bio_offset)
44b8bd7e
CM
1607{
1608 struct btrfs_root *root = BTRFS_I(inode)->root;
1609 int ret = 0;
19b9bdb0 1610 int skip_sum;
0417341e 1611 int metadata = 0;
44b8bd7e 1612
6cbff00f 1613 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1614
2cf8572d 1615 if (btrfs_is_free_space_inode(root, inode))
0417341e
JM
1616 metadata = 2;
1617
7b6d91da 1618 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1619 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1620 if (ret)
1621 return ret;
1622
d20f7043 1623 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1624 return btrfs_submit_compressed_read(inode, bio,
1625 mirror_num, bio_flags);
c2db1073
TI
1626 } else if (!skip_sum) {
1627 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1628 if (ret)
1629 return ret;
1630 }
4d1b5fb4 1631 goto mapit;
19b9bdb0 1632 } else if (!skip_sum) {
17d217fe
YZ
1633 /* csum items have already been cloned */
1634 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1635 goto mapit;
19b9bdb0
CM
1636 /* we're doing a write, do the async checksumming */
1637 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1638 inode, rw, bio, mirror_num,
eaf25d93
CM
1639 bio_flags, bio_offset,
1640 __btrfs_submit_bio_start,
4a69a410 1641 __btrfs_submit_bio_done);
19b9bdb0
CM
1642 }
1643
0b86a832 1644mapit:
8b712842 1645 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1646}
6885f308 1647
d352ac68
CM
1648/*
1649 * given a list of ordered sums record them in the inode. This happens
1650 * at IO completion time based on sums calculated at bio submission time.
1651 */
ba1da2f4 1652static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1653 struct inode *inode, u64 file_offset,
1654 struct list_head *list)
1655{
e6dcd2dc
CM
1656 struct btrfs_ordered_sum *sum;
1657
c6e30871 1658 list_for_each_entry(sum, list, list) {
d20f7043
CM
1659 btrfs_csum_file_blocks(trans,
1660 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1661 }
1662 return 0;
1663}
1664
2ac55d41
JB
1665int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1666 struct extent_state **cached_state)
ea8c2819 1667{
d397712b 1668 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1669 WARN_ON(1);
ea8c2819 1670 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1671 cached_state, GFP_NOFS);
ea8c2819
CM
1672}
1673
d352ac68 1674/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1675struct btrfs_writepage_fixup {
1676 struct page *page;
1677 struct btrfs_work work;
1678};
1679
b2950863 1680static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1681{
1682 struct btrfs_writepage_fixup *fixup;
1683 struct btrfs_ordered_extent *ordered;
2ac55d41 1684 struct extent_state *cached_state = NULL;
247e743c
CM
1685 struct page *page;
1686 struct inode *inode;
1687 u64 page_start;
1688 u64 page_end;
87826df0 1689 int ret;
247e743c
CM
1690
1691 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1692 page = fixup->page;
4a096752 1693again:
247e743c
CM
1694 lock_page(page);
1695 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1696 ClearPageChecked(page);
1697 goto out_page;
1698 }
1699
1700 inode = page->mapping->host;
1701 page_start = page_offset(page);
1702 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1703
2ac55d41 1704 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1705 &cached_state);
4a096752
CM
1706
1707 /* already ordered? We're done */
8b62b72b 1708 if (PagePrivate2(page))
247e743c 1709 goto out;
4a096752
CM
1710
1711 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1712 if (ordered) {
2ac55d41
JB
1713 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1714 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1715 unlock_page(page);
1716 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1717 btrfs_put_ordered_extent(ordered);
4a096752
CM
1718 goto again;
1719 }
247e743c 1720
87826df0
JM
1721 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1722 if (ret) {
1723 mapping_set_error(page->mapping, ret);
1724 end_extent_writepage(page, ret, page_start, page_end);
1725 ClearPageChecked(page);
1726 goto out;
1727 }
1728
2ac55d41 1729 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1730 ClearPageChecked(page);
87826df0 1731 set_page_dirty(page);
247e743c 1732out:
2ac55d41
JB
1733 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1734 &cached_state, GFP_NOFS);
247e743c
CM
1735out_page:
1736 unlock_page(page);
1737 page_cache_release(page);
b897abec 1738 kfree(fixup);
247e743c
CM
1739}
1740
1741/*
1742 * There are a few paths in the higher layers of the kernel that directly
1743 * set the page dirty bit without asking the filesystem if it is a
1744 * good idea. This causes problems because we want to make sure COW
1745 * properly happens and the data=ordered rules are followed.
1746 *
c8b97818 1747 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1748 * hasn't been properly setup for IO. We kick off an async process
1749 * to fix it up. The async helper will wait for ordered extents, set
1750 * the delalloc bit and make it safe to write the page.
1751 */
b2950863 1752static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1753{
1754 struct inode *inode = page->mapping->host;
1755 struct btrfs_writepage_fixup *fixup;
1756 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1757
8b62b72b
CM
1758 /* this page is properly in the ordered list */
1759 if (TestClearPagePrivate2(page))
247e743c
CM
1760 return 0;
1761
1762 if (PageChecked(page))
1763 return -EAGAIN;
1764
1765 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1766 if (!fixup)
1767 return -EAGAIN;
f421950f 1768
247e743c
CM
1769 SetPageChecked(page);
1770 page_cache_get(page);
1771 fixup->work.func = btrfs_writepage_fixup_worker;
1772 fixup->page = page;
1773 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1774 return -EBUSY;
247e743c
CM
1775}
1776
d899e052
YZ
1777static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1778 struct inode *inode, u64 file_pos,
1779 u64 disk_bytenr, u64 disk_num_bytes,
1780 u64 num_bytes, u64 ram_bytes,
1781 u8 compression, u8 encryption,
1782 u16 other_encoding, int extent_type)
1783{
1784 struct btrfs_root *root = BTRFS_I(inode)->root;
1785 struct btrfs_file_extent_item *fi;
1786 struct btrfs_path *path;
1787 struct extent_buffer *leaf;
1788 struct btrfs_key ins;
1789 u64 hint;
1790 int ret;
1791
1792 path = btrfs_alloc_path();
d8926bb3
MF
1793 if (!path)
1794 return -ENOMEM;
d899e052 1795
b9473439 1796 path->leave_spinning = 1;
a1ed835e
CM
1797
1798 /*
1799 * we may be replacing one extent in the tree with another.
1800 * The new extent is pinned in the extent map, and we don't want
1801 * to drop it from the cache until it is completely in the btree.
1802 *
1803 * So, tell btrfs_drop_extents to leave this extent in the cache.
1804 * the caller is expected to unpin it and allow it to be merged
1805 * with the others.
1806 */
920bbbfb
YZ
1807 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1808 &hint, 0);
79787eaa
JM
1809 if (ret)
1810 goto out;
d899e052 1811
33345d01 1812 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1813 ins.offset = file_pos;
1814 ins.type = BTRFS_EXTENT_DATA_KEY;
1815 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1816 if (ret)
1817 goto out;
d899e052
YZ
1818 leaf = path->nodes[0];
1819 fi = btrfs_item_ptr(leaf, path->slots[0],
1820 struct btrfs_file_extent_item);
1821 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1822 btrfs_set_file_extent_type(leaf, fi, extent_type);
1823 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1824 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1825 btrfs_set_file_extent_offset(leaf, fi, 0);
1826 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1827 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1828 btrfs_set_file_extent_compression(leaf, fi, compression);
1829 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1830 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1831
1832 btrfs_unlock_up_safe(path, 1);
1833 btrfs_set_lock_blocking(leaf);
1834
d899e052
YZ
1835 btrfs_mark_buffer_dirty(leaf);
1836
1837 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1838
1839 ins.objectid = disk_bytenr;
1840 ins.offset = disk_num_bytes;
1841 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1842 ret = btrfs_alloc_reserved_file_extent(trans, root,
1843 root->root_key.objectid,
33345d01 1844 btrfs_ino(inode), file_pos, &ins);
79787eaa 1845out:
d899e052 1846 btrfs_free_path(path);
b9473439 1847
79787eaa 1848 return ret;
d899e052
YZ
1849}
1850
5d13a98f
CM
1851/*
1852 * helper function for btrfs_finish_ordered_io, this
1853 * just reads in some of the csum leaves to prime them into ram
1854 * before we start the transaction. It limits the amount of btree
1855 * reads required while inside the transaction.
1856 */
d352ac68
CM
1857/* as ordered data IO finishes, this gets called so we can finish
1858 * an ordered extent if the range of bytes in the file it covers are
1859 * fully written.
1860 */
5fd02043 1861static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 1862{
5fd02043 1863 struct inode *inode = ordered_extent->inode;
e6dcd2dc 1864 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1865 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 1866 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1867 struct extent_state *cached_state = NULL;
261507a0 1868 int compress_type = 0;
e6dcd2dc 1869 int ret;
82d5902d 1870 bool nolock;
e6dcd2dc 1871
2cf8572d 1872 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1873
5fd02043
JB
1874 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1875 ret = -EIO;
1876 goto out;
1877 }
1878
c2167754 1879 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1880 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
c2167754
YZ
1881 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1882 if (!ret) {
0cb59c99 1883 if (nolock)
7a7eaa40 1884 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1885 else
7a7eaa40 1886 trans = btrfs_join_transaction(root);
79787eaa
JM
1887 if (IS_ERR(trans))
1888 return PTR_ERR(trans);
0ca1f7ce 1889 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1890 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1891 if (ret) /* -ENOMEM or corruption */
1892 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1893 }
1894 goto out;
1895 }
e6dcd2dc 1896
2ac55d41
JB
1897 lock_extent_bits(io_tree, ordered_extent->file_offset,
1898 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1899 0, &cached_state);
e6dcd2dc 1900
0cb59c99 1901 if (nolock)
7a7eaa40 1902 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1903 else
7a7eaa40 1904 trans = btrfs_join_transaction(root);
79787eaa
JM
1905 if (IS_ERR(trans)) {
1906 ret = PTR_ERR(trans);
1907 trans = NULL;
1908 goto out_unlock;
1909 }
0ca1f7ce 1910 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1911
c8b97818 1912 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1913 compress_type = ordered_extent->compress_type;
d899e052 1914 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1915 BUG_ON(compress_type);
920bbbfb 1916 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1917 ordered_extent->file_offset,
1918 ordered_extent->file_offset +
1919 ordered_extent->len);
d899e052 1920 } else {
0af3d00b 1921 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1922 ret = insert_reserved_file_extent(trans, inode,
1923 ordered_extent->file_offset,
1924 ordered_extent->start,
1925 ordered_extent->disk_len,
1926 ordered_extent->len,
1927 ordered_extent->len,
261507a0 1928 compress_type, 0, 0,
d899e052 1929 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1930 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1931 ordered_extent->file_offset,
1932 ordered_extent->len);
d899e052 1933 }
5fd02043 1934
79787eaa
JM
1935 if (ret < 0) {
1936 btrfs_abort_transaction(trans, root, ret);
5fd02043 1937 goto out_unlock;
79787eaa 1938 }
2ac55d41 1939
e6dcd2dc
CM
1940 add_pending_csums(trans, inode, ordered_extent->file_offset,
1941 &ordered_extent->list);
1942
1ef30be1 1943 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1944 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1945 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1946 if (ret) { /* -ENOMEM or corruption */
1947 btrfs_abort_transaction(trans, root, ret);
5fd02043 1948 goto out_unlock;
79787eaa 1949 }
1ef30be1
JB
1950 }
1951 ret = 0;
5fd02043
JB
1952out_unlock:
1953 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1954 ordered_extent->file_offset +
1955 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 1956out:
5b0e95bf 1957 if (root != root->fs_info->tree_root)
0cb59c99 1958 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
5b0e95bf
JB
1959 if (trans) {
1960 if (nolock)
0cb59c99 1961 btrfs_end_transaction_nolock(trans, root);
5b0e95bf 1962 else
0cb59c99
JB
1963 btrfs_end_transaction(trans, root);
1964 }
1965
5fd02043
JB
1966 if (ret)
1967 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1968 ordered_extent->file_offset +
1969 ordered_extent->len - 1, NULL, GFP_NOFS);
1970
1971 /*
1972 * This needs to be dont to make sure anybody waiting knows we are done
1973 * upating everything for this ordered extent.
1974 */
1975 btrfs_remove_ordered_extent(inode, ordered_extent);
1976
e6dcd2dc
CM
1977 /* once for us */
1978 btrfs_put_ordered_extent(ordered_extent);
1979 /* once for the tree */
1980 btrfs_put_ordered_extent(ordered_extent);
1981
5fd02043
JB
1982 return ret;
1983}
1984
1985static void finish_ordered_fn(struct btrfs_work *work)
1986{
1987 struct btrfs_ordered_extent *ordered_extent;
1988 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1989 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
1990}
1991
b2950863 1992static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1993 struct extent_state *state, int uptodate)
1994{
5fd02043
JB
1995 struct inode *inode = page->mapping->host;
1996 struct btrfs_root *root = BTRFS_I(inode)->root;
1997 struct btrfs_ordered_extent *ordered_extent = NULL;
1998 struct btrfs_workers *workers;
1999
1abe9b8a 2000 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2001
8b62b72b 2002 ClearPagePrivate2(page);
5fd02043
JB
2003 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2004 end - start + 1, uptodate))
2005 return 0;
2006
2007 ordered_extent->work.func = finish_ordered_fn;
2008 ordered_extent->work.flags = 0;
2009
2010 if (btrfs_is_free_space_inode(root, inode))
2011 workers = &root->fs_info->endio_freespace_worker;
2012 else
2013 workers = &root->fs_info->endio_write_workers;
2014 btrfs_queue_worker(workers, &ordered_extent->work);
2015
2016 return 0;
211f90e6
CM
2017}
2018
d352ac68
CM
2019/*
2020 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2021 * if there's a match, we allow the bio to finish. If not, the code in
2022 * extent_io.c will try to find good copies for us.
d352ac68 2023 */
b2950863 2024static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 2025 struct extent_state *state, int mirror)
07157aac 2026{
35ebb934 2027 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 2028 struct inode *inode = page->mapping->host;
d1310b2e 2029 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2030 char *kaddr;
aadfeb6e 2031 u64 private = ~(u32)0;
07157aac 2032 int ret;
ff79f819
CM
2033 struct btrfs_root *root = BTRFS_I(inode)->root;
2034 u32 csum = ~(u32)0;
d1310b2e 2035
d20f7043
CM
2036 if (PageChecked(page)) {
2037 ClearPageChecked(page);
2038 goto good;
2039 }
6cbff00f
CH
2040
2041 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2042 goto good;
17d217fe
YZ
2043
2044 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2045 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2046 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2047 GFP_NOFS);
b6cda9bc 2048 return 0;
17d217fe 2049 }
d20f7043 2050
c2e639f0 2051 if (state && state->start == start) {
70dec807
CM
2052 private = state->private;
2053 ret = 0;
2054 } else {
2055 ret = get_state_private(io_tree, start, &private);
2056 }
7ac687d9 2057 kaddr = kmap_atomic(page);
d397712b 2058 if (ret)
07157aac 2059 goto zeroit;
d397712b 2060
ff79f819
CM
2061 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2062 btrfs_csum_final(csum, (char *)&csum);
d397712b 2063 if (csum != private)
07157aac 2064 goto zeroit;
d397712b 2065
7ac687d9 2066 kunmap_atomic(kaddr);
d20f7043 2067good:
07157aac
CM
2068 return 0;
2069
2070zeroit:
945d8962 2071 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2072 "private %llu\n",
2073 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2074 (unsigned long long)start, csum,
2075 (unsigned long long)private);
db94535d
CM
2076 memset(kaddr + offset, 1, end - start + 1);
2077 flush_dcache_page(page);
7ac687d9 2078 kunmap_atomic(kaddr);
3b951516
CM
2079 if (private == 0)
2080 return 0;
7e38326f 2081 return -EIO;
07157aac 2082}
b888db2b 2083
24bbcf04
YZ
2084struct delayed_iput {
2085 struct list_head list;
2086 struct inode *inode;
2087};
2088
79787eaa
JM
2089/* JDM: If this is fs-wide, why can't we add a pointer to
2090 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2091void btrfs_add_delayed_iput(struct inode *inode)
2092{
2093 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2094 struct delayed_iput *delayed;
2095
2096 if (atomic_add_unless(&inode->i_count, -1, 1))
2097 return;
2098
2099 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2100 delayed->inode = inode;
2101
2102 spin_lock(&fs_info->delayed_iput_lock);
2103 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2104 spin_unlock(&fs_info->delayed_iput_lock);
2105}
2106
2107void btrfs_run_delayed_iputs(struct btrfs_root *root)
2108{
2109 LIST_HEAD(list);
2110 struct btrfs_fs_info *fs_info = root->fs_info;
2111 struct delayed_iput *delayed;
2112 int empty;
2113
2114 spin_lock(&fs_info->delayed_iput_lock);
2115 empty = list_empty(&fs_info->delayed_iputs);
2116 spin_unlock(&fs_info->delayed_iput_lock);
2117 if (empty)
2118 return;
2119
2120 down_read(&root->fs_info->cleanup_work_sem);
2121 spin_lock(&fs_info->delayed_iput_lock);
2122 list_splice_init(&fs_info->delayed_iputs, &list);
2123 spin_unlock(&fs_info->delayed_iput_lock);
2124
2125 while (!list_empty(&list)) {
2126 delayed = list_entry(list.next, struct delayed_iput, list);
2127 list_del(&delayed->list);
2128 iput(delayed->inode);
2129 kfree(delayed);
2130 }
2131 up_read(&root->fs_info->cleanup_work_sem);
2132}
2133
d68fc57b
YZ
2134enum btrfs_orphan_cleanup_state {
2135 ORPHAN_CLEANUP_STARTED = 1,
2136 ORPHAN_CLEANUP_DONE = 2,
2137};
2138
2139/*
42b2aa86 2140 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2141 * files in the subvolume, it removes orphan item and frees block_rsv
2142 * structure.
2143 */
2144void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2145 struct btrfs_root *root)
2146{
90290e19 2147 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2148 int ret;
2149
8a35d95f 2150 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2151 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2152 return;
2153
90290e19 2154 spin_lock(&root->orphan_lock);
8a35d95f 2155 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2156 spin_unlock(&root->orphan_lock);
2157 return;
2158 }
2159
2160 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2161 spin_unlock(&root->orphan_lock);
2162 return;
2163 }
2164
2165 block_rsv = root->orphan_block_rsv;
2166 root->orphan_block_rsv = NULL;
2167 spin_unlock(&root->orphan_lock);
2168
d68fc57b
YZ
2169 if (root->orphan_item_inserted &&
2170 btrfs_root_refs(&root->root_item) > 0) {
2171 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2172 root->root_key.objectid);
2173 BUG_ON(ret);
2174 root->orphan_item_inserted = 0;
2175 }
2176
90290e19
JB
2177 if (block_rsv) {
2178 WARN_ON(block_rsv->size > 0);
2179 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2180 }
2181}
2182
7b128766
JB
2183/*
2184 * This creates an orphan entry for the given inode in case something goes
2185 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2186 *
2187 * NOTE: caller of this function should reserve 5 units of metadata for
2188 * this function.
7b128766
JB
2189 */
2190int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2191{
2192 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2193 struct btrfs_block_rsv *block_rsv = NULL;
2194 int reserve = 0;
2195 int insert = 0;
2196 int ret;
7b128766 2197
d68fc57b
YZ
2198 if (!root->orphan_block_rsv) {
2199 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2200 if (!block_rsv)
2201 return -ENOMEM;
d68fc57b 2202 }
7b128766 2203
d68fc57b
YZ
2204 spin_lock(&root->orphan_lock);
2205 if (!root->orphan_block_rsv) {
2206 root->orphan_block_rsv = block_rsv;
2207 } else if (block_rsv) {
2208 btrfs_free_block_rsv(root, block_rsv);
2209 block_rsv = NULL;
7b128766 2210 }
7b128766 2211
8a35d95f
JB
2212 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2213 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2214#if 0
2215 /*
2216 * For proper ENOSPC handling, we should do orphan
2217 * cleanup when mounting. But this introduces backward
2218 * compatibility issue.
2219 */
2220 if (!xchg(&root->orphan_item_inserted, 1))
2221 insert = 2;
2222 else
2223 insert = 1;
2224#endif
2225 insert = 1;
8a35d95f 2226 atomic_dec(&root->orphan_inodes);
7b128766
JB
2227 }
2228
72ac3c0d
JB
2229 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2230 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2231 reserve = 1;
d68fc57b 2232 spin_unlock(&root->orphan_lock);
7b128766 2233
d68fc57b
YZ
2234 /* grab metadata reservation from transaction handle */
2235 if (reserve) {
2236 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2237 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2238 }
7b128766 2239
d68fc57b
YZ
2240 /* insert an orphan item to track this unlinked/truncated file */
2241 if (insert >= 1) {
33345d01 2242 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2243 if (ret && ret != -EEXIST) {
8a35d95f
JB
2244 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2245 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
2246 btrfs_abort_transaction(trans, root, ret);
2247 return ret;
2248 }
2249 ret = 0;
d68fc57b
YZ
2250 }
2251
2252 /* insert an orphan item to track subvolume contains orphan files */
2253 if (insert >= 2) {
2254 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2255 root->root_key.objectid);
79787eaa
JM
2256 if (ret && ret != -EEXIST) {
2257 btrfs_abort_transaction(trans, root, ret);
2258 return ret;
2259 }
d68fc57b
YZ
2260 }
2261 return 0;
7b128766
JB
2262}
2263
2264/*
2265 * We have done the truncate/delete so we can go ahead and remove the orphan
2266 * item for this particular inode.
2267 */
2268int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2269{
2270 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2271 int delete_item = 0;
2272 int release_rsv = 0;
7b128766
JB
2273 int ret = 0;
2274
d68fc57b 2275 spin_lock(&root->orphan_lock);
8a35d95f
JB
2276 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2277 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2278 delete_item = 1;
7b128766 2279
72ac3c0d
JB
2280 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2281 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2282 release_rsv = 1;
d68fc57b 2283 spin_unlock(&root->orphan_lock);
7b128766 2284
d68fc57b 2285 if (trans && delete_item) {
33345d01 2286 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2287 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2288 }
7b128766 2289
8a35d95f 2290 if (release_rsv) {
d68fc57b 2291 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
2292 atomic_dec(&root->orphan_inodes);
2293 }
7b128766 2294
d68fc57b 2295 return 0;
7b128766
JB
2296}
2297
2298/*
2299 * this cleans up any orphans that may be left on the list from the last use
2300 * of this root.
2301 */
66b4ffd1 2302int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2303{
2304 struct btrfs_path *path;
2305 struct extent_buffer *leaf;
7b128766
JB
2306 struct btrfs_key key, found_key;
2307 struct btrfs_trans_handle *trans;
2308 struct inode *inode;
8f6d7f4f 2309 u64 last_objectid = 0;
7b128766
JB
2310 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2311
d68fc57b 2312 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2313 return 0;
c71bf099
YZ
2314
2315 path = btrfs_alloc_path();
66b4ffd1
JB
2316 if (!path) {
2317 ret = -ENOMEM;
2318 goto out;
2319 }
7b128766
JB
2320 path->reada = -1;
2321
2322 key.objectid = BTRFS_ORPHAN_OBJECTID;
2323 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2324 key.offset = (u64)-1;
2325
7b128766
JB
2326 while (1) {
2327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2328 if (ret < 0)
2329 goto out;
7b128766
JB
2330
2331 /*
2332 * if ret == 0 means we found what we were searching for, which
25985edc 2333 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2334 * find the key and see if we have stuff that matches
2335 */
2336 if (ret > 0) {
66b4ffd1 2337 ret = 0;
7b128766
JB
2338 if (path->slots[0] == 0)
2339 break;
2340 path->slots[0]--;
2341 }
2342
2343 /* pull out the item */
2344 leaf = path->nodes[0];
7b128766
JB
2345 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2346
2347 /* make sure the item matches what we want */
2348 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2349 break;
2350 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2351 break;
2352
2353 /* release the path since we're done with it */
b3b4aa74 2354 btrfs_release_path(path);
7b128766
JB
2355
2356 /*
2357 * this is where we are basically btrfs_lookup, without the
2358 * crossing root thing. we store the inode number in the
2359 * offset of the orphan item.
2360 */
8f6d7f4f
JB
2361
2362 if (found_key.offset == last_objectid) {
2363 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2364 "stopping orphan cleanup\n");
2365 ret = -EINVAL;
2366 goto out;
2367 }
2368
2369 last_objectid = found_key.offset;
2370
5d4f98a2
YZ
2371 found_key.objectid = found_key.offset;
2372 found_key.type = BTRFS_INODE_ITEM_KEY;
2373 found_key.offset = 0;
73f73415 2374 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2375 ret = PTR_RET(inode);
2376 if (ret && ret != -ESTALE)
66b4ffd1 2377 goto out;
7b128766 2378
f8e9e0b0
AJ
2379 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2380 struct btrfs_root *dead_root;
2381 struct btrfs_fs_info *fs_info = root->fs_info;
2382 int is_dead_root = 0;
2383
2384 /*
2385 * this is an orphan in the tree root. Currently these
2386 * could come from 2 sources:
2387 * a) a snapshot deletion in progress
2388 * b) a free space cache inode
2389 * We need to distinguish those two, as the snapshot
2390 * orphan must not get deleted.
2391 * find_dead_roots already ran before us, so if this
2392 * is a snapshot deletion, we should find the root
2393 * in the dead_roots list
2394 */
2395 spin_lock(&fs_info->trans_lock);
2396 list_for_each_entry(dead_root, &fs_info->dead_roots,
2397 root_list) {
2398 if (dead_root->root_key.objectid ==
2399 found_key.objectid) {
2400 is_dead_root = 1;
2401 break;
2402 }
2403 }
2404 spin_unlock(&fs_info->trans_lock);
2405 if (is_dead_root) {
2406 /* prevent this orphan from being found again */
2407 key.offset = found_key.objectid - 1;
2408 continue;
2409 }
2410 }
7b128766 2411 /*
a8c9e576
JB
2412 * Inode is already gone but the orphan item is still there,
2413 * kill the orphan item.
7b128766 2414 */
a8c9e576
JB
2415 if (ret == -ESTALE) {
2416 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2417 if (IS_ERR(trans)) {
2418 ret = PTR_ERR(trans);
2419 goto out;
2420 }
8a35d95f
JB
2421 printk(KERN_ERR "auto deleting %Lu\n",
2422 found_key.objectid);
a8c9e576
JB
2423 ret = btrfs_del_orphan_item(trans, root,
2424 found_key.objectid);
79787eaa 2425 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2426 btrfs_end_transaction(trans, root);
7b128766
JB
2427 continue;
2428 }
2429
a8c9e576
JB
2430 /*
2431 * add this inode to the orphan list so btrfs_orphan_del does
2432 * the proper thing when we hit it
2433 */
8a35d95f
JB
2434 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2435 &BTRFS_I(inode)->runtime_flags);
a8c9e576 2436
7b128766
JB
2437 /* if we have links, this was a truncate, lets do that */
2438 if (inode->i_nlink) {
a41ad394
JB
2439 if (!S_ISREG(inode->i_mode)) {
2440 WARN_ON(1);
2441 iput(inode);
2442 continue;
2443 }
7b128766 2444 nr_truncate++;
66b4ffd1 2445 ret = btrfs_truncate(inode);
7b128766
JB
2446 } else {
2447 nr_unlink++;
2448 }
2449
2450 /* this will do delete_inode and everything for us */
2451 iput(inode);
66b4ffd1
JB
2452 if (ret)
2453 goto out;
7b128766 2454 }
3254c876
MX
2455 /* release the path since we're done with it */
2456 btrfs_release_path(path);
2457
d68fc57b
YZ
2458 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2459
2460 if (root->orphan_block_rsv)
2461 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2462 (u64)-1);
2463
2464 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2465 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2466 if (!IS_ERR(trans))
2467 btrfs_end_transaction(trans, root);
d68fc57b 2468 }
7b128766
JB
2469
2470 if (nr_unlink)
2471 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2472 if (nr_truncate)
2473 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2474
2475out:
2476 if (ret)
2477 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2478 btrfs_free_path(path);
2479 return ret;
7b128766
JB
2480}
2481
46a53cca
CM
2482/*
2483 * very simple check to peek ahead in the leaf looking for xattrs. If we
2484 * don't find any xattrs, we know there can't be any acls.
2485 *
2486 * slot is the slot the inode is in, objectid is the objectid of the inode
2487 */
2488static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2489 int slot, u64 objectid)
2490{
2491 u32 nritems = btrfs_header_nritems(leaf);
2492 struct btrfs_key found_key;
2493 int scanned = 0;
2494
2495 slot++;
2496 while (slot < nritems) {
2497 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2498
2499 /* we found a different objectid, there must not be acls */
2500 if (found_key.objectid != objectid)
2501 return 0;
2502
2503 /* we found an xattr, assume we've got an acl */
2504 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2505 return 1;
2506
2507 /*
2508 * we found a key greater than an xattr key, there can't
2509 * be any acls later on
2510 */
2511 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2512 return 0;
2513
2514 slot++;
2515 scanned++;
2516
2517 /*
2518 * it goes inode, inode backrefs, xattrs, extents,
2519 * so if there are a ton of hard links to an inode there can
2520 * be a lot of backrefs. Don't waste time searching too hard,
2521 * this is just an optimization
2522 */
2523 if (scanned >= 8)
2524 break;
2525 }
2526 /* we hit the end of the leaf before we found an xattr or
2527 * something larger than an xattr. We have to assume the inode
2528 * has acls
2529 */
2530 return 1;
2531}
2532
d352ac68
CM
2533/*
2534 * read an inode from the btree into the in-memory inode
2535 */
5d4f98a2 2536static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2537{
2538 struct btrfs_path *path;
5f39d397 2539 struct extent_buffer *leaf;
39279cc3 2540 struct btrfs_inode_item *inode_item;
0b86a832 2541 struct btrfs_timespec *tspec;
39279cc3
CM
2542 struct btrfs_root *root = BTRFS_I(inode)->root;
2543 struct btrfs_key location;
46a53cca 2544 int maybe_acls;
618e21d5 2545 u32 rdev;
39279cc3 2546 int ret;
2f7e33d4
MX
2547 bool filled = false;
2548
2549 ret = btrfs_fill_inode(inode, &rdev);
2550 if (!ret)
2551 filled = true;
39279cc3
CM
2552
2553 path = btrfs_alloc_path();
1748f843
MF
2554 if (!path)
2555 goto make_bad;
2556
d90c7321 2557 path->leave_spinning = 1;
39279cc3 2558 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2559
39279cc3 2560 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2561 if (ret)
39279cc3 2562 goto make_bad;
39279cc3 2563
5f39d397 2564 leaf = path->nodes[0];
2f7e33d4
MX
2565
2566 if (filled)
2567 goto cache_acl;
2568
5f39d397
CM
2569 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2570 struct btrfs_inode_item);
5f39d397 2571 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2572 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
5f39d397
CM
2573 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2574 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2575 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2576
2577 tspec = btrfs_inode_atime(inode_item);
2578 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2579 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2580
2581 tspec = btrfs_inode_mtime(inode_item);
2582 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2583 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2584
2585 tspec = btrfs_inode_ctime(inode_item);
2586 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2587 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2588
a76a3cd4 2589 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2590 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
0c4d2d95 2591 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2592 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2593 inode->i_rdev = 0;
5f39d397
CM
2594 rdev = btrfs_inode_rdev(leaf, inode_item);
2595
aec7477b 2596 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2597 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2598cache_acl:
46a53cca
CM
2599 /*
2600 * try to precache a NULL acl entry for files that don't have
2601 * any xattrs or acls
2602 */
33345d01
LZ
2603 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2604 btrfs_ino(inode));
72c04902
AV
2605 if (!maybe_acls)
2606 cache_no_acl(inode);
46a53cca 2607
39279cc3 2608 btrfs_free_path(path);
39279cc3 2609
39279cc3 2610 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2611 case S_IFREG:
2612 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2613 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2614 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2615 inode->i_fop = &btrfs_file_operations;
2616 inode->i_op = &btrfs_file_inode_operations;
2617 break;
2618 case S_IFDIR:
2619 inode->i_fop = &btrfs_dir_file_operations;
2620 if (root == root->fs_info->tree_root)
2621 inode->i_op = &btrfs_dir_ro_inode_operations;
2622 else
2623 inode->i_op = &btrfs_dir_inode_operations;
2624 break;
2625 case S_IFLNK:
2626 inode->i_op = &btrfs_symlink_inode_operations;
2627 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2628 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2629 break;
618e21d5 2630 default:
0279b4cd 2631 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2632 init_special_inode(inode, inode->i_mode, rdev);
2633 break;
39279cc3 2634 }
6cbff00f
CH
2635
2636 btrfs_update_iflags(inode);
39279cc3
CM
2637 return;
2638
2639make_bad:
39279cc3 2640 btrfs_free_path(path);
39279cc3
CM
2641 make_bad_inode(inode);
2642}
2643
d352ac68
CM
2644/*
2645 * given a leaf and an inode, copy the inode fields into the leaf
2646 */
e02119d5
CM
2647static void fill_inode_item(struct btrfs_trans_handle *trans,
2648 struct extent_buffer *leaf,
5f39d397 2649 struct btrfs_inode_item *item,
39279cc3
CM
2650 struct inode *inode)
2651{
5f39d397
CM
2652 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2653 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2654 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2655 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2656 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2657
2658 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2659 inode->i_atime.tv_sec);
2660 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2661 inode->i_atime.tv_nsec);
2662
2663 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2664 inode->i_mtime.tv_sec);
2665 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2666 inode->i_mtime.tv_nsec);
2667
2668 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2669 inode->i_ctime.tv_sec);
2670 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2671 inode->i_ctime.tv_nsec);
2672
a76a3cd4 2673 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2674 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
0c4d2d95 2675 btrfs_set_inode_sequence(leaf, item, inode->i_version);
e02119d5 2676 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2677 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2678 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2679 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2680}
2681
d352ac68
CM
2682/*
2683 * copy everything in the in-memory inode into the btree.
2684 */
2115133f 2685static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2686 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2687{
2688 struct btrfs_inode_item *inode_item;
2689 struct btrfs_path *path;
5f39d397 2690 struct extent_buffer *leaf;
39279cc3
CM
2691 int ret;
2692
2693 path = btrfs_alloc_path();
16cdcec7
MX
2694 if (!path)
2695 return -ENOMEM;
2696
b9473439 2697 path->leave_spinning = 1;
16cdcec7
MX
2698 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2699 1);
39279cc3
CM
2700 if (ret) {
2701 if (ret > 0)
2702 ret = -ENOENT;
2703 goto failed;
2704 }
2705
b4ce94de 2706 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2707 leaf = path->nodes[0];
2708 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2709 struct btrfs_inode_item);
39279cc3 2710
e02119d5 2711 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2712 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2713 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2714 ret = 0;
2715failed:
39279cc3
CM
2716 btrfs_free_path(path);
2717 return ret;
2718}
2719
2115133f
CM
2720/*
2721 * copy everything in the in-memory inode into the btree.
2722 */
2723noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2724 struct btrfs_root *root, struct inode *inode)
2725{
2726 int ret;
2727
2728 /*
2729 * If the inode is a free space inode, we can deadlock during commit
2730 * if we put it into the delayed code.
2731 *
2732 * The data relocation inode should also be directly updated
2733 * without delay
2734 */
2735 if (!btrfs_is_free_space_inode(root, inode)
2736 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2737 ret = btrfs_delayed_update_inode(trans, root, inode);
2738 if (!ret)
2739 btrfs_set_inode_last_trans(trans, inode);
2740 return ret;
2741 }
2742
2743 return btrfs_update_inode_item(trans, root, inode);
2744}
2745
2746static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2747 struct btrfs_root *root, struct inode *inode)
2748{
2749 int ret;
2750
2751 ret = btrfs_update_inode(trans, root, inode);
2752 if (ret == -ENOSPC)
2753 return btrfs_update_inode_item(trans, root, inode);
2754 return ret;
2755}
2756
d352ac68
CM
2757/*
2758 * unlink helper that gets used here in inode.c and in the tree logging
2759 * recovery code. It remove a link in a directory with a given name, and
2760 * also drops the back refs in the inode to the directory
2761 */
92986796
AV
2762static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2763 struct btrfs_root *root,
2764 struct inode *dir, struct inode *inode,
2765 const char *name, int name_len)
39279cc3
CM
2766{
2767 struct btrfs_path *path;
39279cc3 2768 int ret = 0;
5f39d397 2769 struct extent_buffer *leaf;
39279cc3 2770 struct btrfs_dir_item *di;
5f39d397 2771 struct btrfs_key key;
aec7477b 2772 u64 index;
33345d01
LZ
2773 u64 ino = btrfs_ino(inode);
2774 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2775
2776 path = btrfs_alloc_path();
54aa1f4d
CM
2777 if (!path) {
2778 ret = -ENOMEM;
554233a6 2779 goto out;
54aa1f4d
CM
2780 }
2781
b9473439 2782 path->leave_spinning = 1;
33345d01 2783 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2784 name, name_len, -1);
2785 if (IS_ERR(di)) {
2786 ret = PTR_ERR(di);
2787 goto err;
2788 }
2789 if (!di) {
2790 ret = -ENOENT;
2791 goto err;
2792 }
5f39d397
CM
2793 leaf = path->nodes[0];
2794 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2795 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2796 if (ret)
2797 goto err;
b3b4aa74 2798 btrfs_release_path(path);
39279cc3 2799
33345d01
LZ
2800 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2801 dir_ino, &index);
aec7477b 2802 if (ret) {
d397712b 2803 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2804 "inode %llu parent %llu\n", name_len, name,
2805 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2806 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2807 goto err;
2808 }
2809
16cdcec7 2810 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2811 if (ret) {
2812 btrfs_abort_transaction(trans, root, ret);
39279cc3 2813 goto err;
79787eaa 2814 }
39279cc3 2815
e02119d5 2816 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2817 inode, dir_ino);
79787eaa
JM
2818 if (ret != 0 && ret != -ENOENT) {
2819 btrfs_abort_transaction(trans, root, ret);
2820 goto err;
2821 }
e02119d5
CM
2822
2823 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2824 dir, index);
6418c961
CM
2825 if (ret == -ENOENT)
2826 ret = 0;
39279cc3
CM
2827err:
2828 btrfs_free_path(path);
e02119d5
CM
2829 if (ret)
2830 goto out;
2831
2832 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2833 inode_inc_iversion(inode);
2834 inode_inc_iversion(dir);
e02119d5
CM
2835 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2836 btrfs_update_inode(trans, root, dir);
e02119d5 2837out:
39279cc3
CM
2838 return ret;
2839}
2840
92986796
AV
2841int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2842 struct btrfs_root *root,
2843 struct inode *dir, struct inode *inode,
2844 const char *name, int name_len)
2845{
2846 int ret;
2847 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2848 if (!ret) {
2849 btrfs_drop_nlink(inode);
2850 ret = btrfs_update_inode(trans, root, inode);
2851 }
2852 return ret;
2853}
2854
2855
a22285a6
YZ
2856/* helper to check if there is any shared block in the path */
2857static int check_path_shared(struct btrfs_root *root,
2858 struct btrfs_path *path)
39279cc3 2859{
a22285a6
YZ
2860 struct extent_buffer *eb;
2861 int level;
0e4dcbef 2862 u64 refs = 1;
5df6a9f6 2863
a22285a6 2864 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2865 int ret;
2866
a22285a6
YZ
2867 if (!path->nodes[level])
2868 break;
2869 eb = path->nodes[level];
2870 if (!btrfs_block_can_be_shared(root, eb))
2871 continue;
2872 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2873 &refs, NULL);
2874 if (refs > 1)
2875 return 1;
5df6a9f6 2876 }
dedefd72 2877 return 0;
39279cc3
CM
2878}
2879
a22285a6
YZ
2880/*
2881 * helper to start transaction for unlink and rmdir.
2882 *
2883 * unlink and rmdir are special in btrfs, they do not always free space.
2884 * so in enospc case, we should make sure they will free space before
2885 * allowing them to use the global metadata reservation.
2886 */
2887static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2888 struct dentry *dentry)
4df27c4d 2889{
39279cc3 2890 struct btrfs_trans_handle *trans;
a22285a6 2891 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2892 struct btrfs_path *path;
a22285a6 2893 struct btrfs_inode_ref *ref;
4df27c4d 2894 struct btrfs_dir_item *di;
7b128766 2895 struct inode *inode = dentry->d_inode;
4df27c4d 2896 u64 index;
a22285a6
YZ
2897 int check_link = 1;
2898 int err = -ENOSPC;
4df27c4d 2899 int ret;
33345d01
LZ
2900 u64 ino = btrfs_ino(inode);
2901 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2902
e70bea5f
JB
2903 /*
2904 * 1 for the possible orphan item
2905 * 1 for the dir item
2906 * 1 for the dir index
2907 * 1 for the inode ref
2908 * 1 for the inode ref in the tree log
2909 * 2 for the dir entries in the log
2910 * 1 for the inode
2911 */
2912 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2913 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2914 return trans;
4df27c4d 2915
33345d01 2916 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2917 return ERR_PTR(-ENOSPC);
4df27c4d 2918
a22285a6
YZ
2919 /* check if there is someone else holds reference */
2920 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2921 return ERR_PTR(-ENOSPC);
4df27c4d 2922
a22285a6
YZ
2923 if (atomic_read(&inode->i_count) > 2)
2924 return ERR_PTR(-ENOSPC);
4df27c4d 2925
a22285a6
YZ
2926 if (xchg(&root->fs_info->enospc_unlink, 1))
2927 return ERR_PTR(-ENOSPC);
2928
2929 path = btrfs_alloc_path();
2930 if (!path) {
2931 root->fs_info->enospc_unlink = 0;
2932 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2933 }
2934
3880a1b4
JB
2935 /* 1 for the orphan item */
2936 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2937 if (IS_ERR(trans)) {
a22285a6
YZ
2938 btrfs_free_path(path);
2939 root->fs_info->enospc_unlink = 0;
2940 return trans;
2941 }
4df27c4d 2942
a22285a6
YZ
2943 path->skip_locking = 1;
2944 path->search_commit_root = 1;
4df27c4d 2945
a22285a6
YZ
2946 ret = btrfs_lookup_inode(trans, root, path,
2947 &BTRFS_I(dir)->location, 0);
2948 if (ret < 0) {
2949 err = ret;
2950 goto out;
2951 }
2952 if (ret == 0) {
2953 if (check_path_shared(root, path))
2954 goto out;
2955 } else {
2956 check_link = 0;
5df6a9f6 2957 }
b3b4aa74 2958 btrfs_release_path(path);
a22285a6
YZ
2959
2960 ret = btrfs_lookup_inode(trans, root, path,
2961 &BTRFS_I(inode)->location, 0);
2962 if (ret < 0) {
2963 err = ret;
2964 goto out;
2965 }
2966 if (ret == 0) {
2967 if (check_path_shared(root, path))
2968 goto out;
2969 } else {
2970 check_link = 0;
2971 }
b3b4aa74 2972 btrfs_release_path(path);
a22285a6
YZ
2973
2974 if (ret == 0 && S_ISREG(inode->i_mode)) {
2975 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2976 ino, (u64)-1, 0);
a22285a6
YZ
2977 if (ret < 0) {
2978 err = ret;
2979 goto out;
2980 }
79787eaa 2981 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
2982 if (check_path_shared(root, path))
2983 goto out;
b3b4aa74 2984 btrfs_release_path(path);
a22285a6
YZ
2985 }
2986
2987 if (!check_link) {
2988 err = 0;
2989 goto out;
2990 }
2991
33345d01 2992 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2993 dentry->d_name.name, dentry->d_name.len, 0);
2994 if (IS_ERR(di)) {
2995 err = PTR_ERR(di);
2996 goto out;
2997 }
2998 if (di) {
2999 if (check_path_shared(root, path))
3000 goto out;
3001 } else {
3002 err = 0;
3003 goto out;
3004 }
b3b4aa74 3005 btrfs_release_path(path);
a22285a6
YZ
3006
3007 ref = btrfs_lookup_inode_ref(trans, root, path,
3008 dentry->d_name.name, dentry->d_name.len,
33345d01 3009 ino, dir_ino, 0);
a22285a6
YZ
3010 if (IS_ERR(ref)) {
3011 err = PTR_ERR(ref);
3012 goto out;
3013 }
79787eaa 3014 BUG_ON(!ref); /* Logic error */
a22285a6
YZ
3015 if (check_path_shared(root, path))
3016 goto out;
3017 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 3018 btrfs_release_path(path);
a22285a6 3019
16cdcec7
MX
3020 /*
3021 * This is a commit root search, if we can lookup inode item and other
3022 * relative items in the commit root, it means the transaction of
3023 * dir/file creation has been committed, and the dir index item that we
3024 * delay to insert has also been inserted into the commit root. So
3025 * we needn't worry about the delayed insertion of the dir index item
3026 * here.
3027 */
33345d01 3028 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
3029 dentry->d_name.name, dentry->d_name.len, 0);
3030 if (IS_ERR(di)) {
3031 err = PTR_ERR(di);
3032 goto out;
3033 }
3034 BUG_ON(ret == -ENOENT);
3035 if (check_path_shared(root, path))
3036 goto out;
3037
3038 err = 0;
3039out:
3040 btrfs_free_path(path);
3880a1b4
JB
3041 /* Migrate the orphan reservation over */
3042 if (!err)
3043 err = btrfs_block_rsv_migrate(trans->block_rsv,
3044 &root->fs_info->global_block_rsv,
5a77d76c 3045 trans->bytes_reserved);
3880a1b4 3046
a22285a6
YZ
3047 if (err) {
3048 btrfs_end_transaction(trans, root);
3049 root->fs_info->enospc_unlink = 0;
3050 return ERR_PTR(err);
3051 }
3052
3053 trans->block_rsv = &root->fs_info->global_block_rsv;
3054 return trans;
3055}
3056
3057static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3058 struct btrfs_root *root)
3059{
3060 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
5a77d76c
JB
3061 btrfs_block_rsv_release(root, trans->block_rsv,
3062 trans->bytes_reserved);
3063 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
3064 BUG_ON(!root->fs_info->enospc_unlink);
3065 root->fs_info->enospc_unlink = 0;
3066 }
7ad85bb7 3067 btrfs_end_transaction(trans, root);
a22285a6
YZ
3068}
3069
3070static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3071{
3072 struct btrfs_root *root = BTRFS_I(dir)->root;
3073 struct btrfs_trans_handle *trans;
3074 struct inode *inode = dentry->d_inode;
3075 int ret;
3076 unsigned long nr = 0;
3077
3078 trans = __unlink_start_trans(dir, dentry);
3079 if (IS_ERR(trans))
3080 return PTR_ERR(trans);
5f39d397 3081
12fcfd22
CM
3082 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3083
e02119d5
CM
3084 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3085 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3086 if (ret)
3087 goto out;
7b128766 3088
a22285a6 3089 if (inode->i_nlink == 0) {
7b128766 3090 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3091 if (ret)
3092 goto out;
a22285a6 3093 }
7b128766 3094
b532402e 3095out:
d3c2fdcf 3096 nr = trans->blocks_used;
a22285a6 3097 __unlink_end_trans(trans, root);
d3c2fdcf 3098 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3099 return ret;
3100}
3101
4df27c4d
YZ
3102int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3103 struct btrfs_root *root,
3104 struct inode *dir, u64 objectid,
3105 const char *name, int name_len)
3106{
3107 struct btrfs_path *path;
3108 struct extent_buffer *leaf;
3109 struct btrfs_dir_item *di;
3110 struct btrfs_key key;
3111 u64 index;
3112 int ret;
33345d01 3113 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3114
3115 path = btrfs_alloc_path();
3116 if (!path)
3117 return -ENOMEM;
3118
33345d01 3119 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3120 name, name_len, -1);
79787eaa
JM
3121 if (IS_ERR_OR_NULL(di)) {
3122 if (!di)
3123 ret = -ENOENT;
3124 else
3125 ret = PTR_ERR(di);
3126 goto out;
3127 }
4df27c4d
YZ
3128
3129 leaf = path->nodes[0];
3130 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3131 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3132 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3133 if (ret) {
3134 btrfs_abort_transaction(trans, root, ret);
3135 goto out;
3136 }
b3b4aa74 3137 btrfs_release_path(path);
4df27c4d
YZ
3138
3139 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3140 objectid, root->root_key.objectid,
33345d01 3141 dir_ino, &index, name, name_len);
4df27c4d 3142 if (ret < 0) {
79787eaa
JM
3143 if (ret != -ENOENT) {
3144 btrfs_abort_transaction(trans, root, ret);
3145 goto out;
3146 }
33345d01 3147 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3148 name, name_len);
79787eaa
JM
3149 if (IS_ERR_OR_NULL(di)) {
3150 if (!di)
3151 ret = -ENOENT;
3152 else
3153 ret = PTR_ERR(di);
3154 btrfs_abort_transaction(trans, root, ret);
3155 goto out;
3156 }
4df27c4d
YZ
3157
3158 leaf = path->nodes[0];
3159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3160 btrfs_release_path(path);
4df27c4d
YZ
3161 index = key.offset;
3162 }
945d8962 3163 btrfs_release_path(path);
4df27c4d 3164
16cdcec7 3165 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3166 if (ret) {
3167 btrfs_abort_transaction(trans, root, ret);
3168 goto out;
3169 }
4df27c4d
YZ
3170
3171 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3172 inode_inc_iversion(dir);
4df27c4d
YZ
3173 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3174 ret = btrfs_update_inode(trans, root, dir);
79787eaa
JM
3175 if (ret)
3176 btrfs_abort_transaction(trans, root, ret);
3177out:
71d7aed0 3178 btrfs_free_path(path);
79787eaa 3179 return ret;
4df27c4d
YZ
3180}
3181
39279cc3
CM
3182static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3183{
3184 struct inode *inode = dentry->d_inode;
1832a6d5 3185 int err = 0;
39279cc3 3186 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3187 struct btrfs_trans_handle *trans;
1832a6d5 3188 unsigned long nr = 0;
39279cc3 3189
3394e160 3190 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3191 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3192 return -ENOTEMPTY;
3193
a22285a6
YZ
3194 trans = __unlink_start_trans(dir, dentry);
3195 if (IS_ERR(trans))
5df6a9f6 3196 return PTR_ERR(trans);
5df6a9f6 3197
33345d01 3198 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3199 err = btrfs_unlink_subvol(trans, root, dir,
3200 BTRFS_I(inode)->location.objectid,
3201 dentry->d_name.name,
3202 dentry->d_name.len);
3203 goto out;
3204 }
3205
7b128766
JB
3206 err = btrfs_orphan_add(trans, inode);
3207 if (err)
4df27c4d 3208 goto out;
7b128766 3209
39279cc3 3210 /* now the directory is empty */
e02119d5
CM
3211 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3212 dentry->d_name.name, dentry->d_name.len);
d397712b 3213 if (!err)
dbe674a9 3214 btrfs_i_size_write(inode, 0);
4df27c4d 3215out:
d3c2fdcf 3216 nr = trans->blocks_used;
a22285a6 3217 __unlink_end_trans(trans, root);
d3c2fdcf 3218 btrfs_btree_balance_dirty(root, nr);
3954401f 3219
39279cc3
CM
3220 return err;
3221}
3222
39279cc3
CM
3223/*
3224 * this can truncate away extent items, csum items and directory items.
3225 * It starts at a high offset and removes keys until it can't find
d352ac68 3226 * any higher than new_size
39279cc3
CM
3227 *
3228 * csum items that cross the new i_size are truncated to the new size
3229 * as well.
7b128766
JB
3230 *
3231 * min_type is the minimum key type to truncate down to. If set to 0, this
3232 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3233 */
8082510e
YZ
3234int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3235 struct btrfs_root *root,
3236 struct inode *inode,
3237 u64 new_size, u32 min_type)
39279cc3 3238{
39279cc3 3239 struct btrfs_path *path;
5f39d397 3240 struct extent_buffer *leaf;
39279cc3 3241 struct btrfs_file_extent_item *fi;
8082510e
YZ
3242 struct btrfs_key key;
3243 struct btrfs_key found_key;
39279cc3 3244 u64 extent_start = 0;
db94535d 3245 u64 extent_num_bytes = 0;
5d4f98a2 3246 u64 extent_offset = 0;
39279cc3 3247 u64 item_end = 0;
8082510e
YZ
3248 u64 mask = root->sectorsize - 1;
3249 u32 found_type = (u8)-1;
39279cc3
CM
3250 int found_extent;
3251 int del_item;
85e21bac
CM
3252 int pending_del_nr = 0;
3253 int pending_del_slot = 0;
179e29e4 3254 int extent_type = -1;
8082510e
YZ
3255 int ret;
3256 int err = 0;
33345d01 3257 u64 ino = btrfs_ino(inode);
8082510e
YZ
3258
3259 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3260
0eb0e19c
MF
3261 path = btrfs_alloc_path();
3262 if (!path)
3263 return -ENOMEM;
3264 path->reada = -1;
3265
0af3d00b 3266 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3267 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3268
16cdcec7
MX
3269 /*
3270 * This function is also used to drop the items in the log tree before
3271 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3272 * it is used to drop the loged items. So we shouldn't kill the delayed
3273 * items.
3274 */
3275 if (min_type == 0 && root == BTRFS_I(inode)->root)
3276 btrfs_kill_delayed_inode_items(inode);
3277
33345d01 3278 key.objectid = ino;
39279cc3 3279 key.offset = (u64)-1;
5f39d397
CM
3280 key.type = (u8)-1;
3281
85e21bac 3282search_again:
b9473439 3283 path->leave_spinning = 1;
85e21bac 3284 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3285 if (ret < 0) {
3286 err = ret;
3287 goto out;
3288 }
d397712b 3289
85e21bac 3290 if (ret > 0) {
e02119d5
CM
3291 /* there are no items in the tree for us to truncate, we're
3292 * done
3293 */
8082510e
YZ
3294 if (path->slots[0] == 0)
3295 goto out;
85e21bac
CM
3296 path->slots[0]--;
3297 }
3298
d397712b 3299 while (1) {
39279cc3 3300 fi = NULL;
5f39d397
CM
3301 leaf = path->nodes[0];
3302 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3303 found_type = btrfs_key_type(&found_key);
39279cc3 3304
33345d01 3305 if (found_key.objectid != ino)
39279cc3 3306 break;
5f39d397 3307
85e21bac 3308 if (found_type < min_type)
39279cc3
CM
3309 break;
3310
5f39d397 3311 item_end = found_key.offset;
39279cc3 3312 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3313 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3314 struct btrfs_file_extent_item);
179e29e4
CM
3315 extent_type = btrfs_file_extent_type(leaf, fi);
3316 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3317 item_end +=
db94535d 3318 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3319 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3320 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3321 fi);
39279cc3 3322 }
008630c1 3323 item_end--;
39279cc3 3324 }
8082510e
YZ
3325 if (found_type > min_type) {
3326 del_item = 1;
3327 } else {
3328 if (item_end < new_size)
b888db2b 3329 break;
8082510e
YZ
3330 if (found_key.offset >= new_size)
3331 del_item = 1;
3332 else
3333 del_item = 0;
39279cc3 3334 }
39279cc3 3335 found_extent = 0;
39279cc3 3336 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3337 if (found_type != BTRFS_EXTENT_DATA_KEY)
3338 goto delete;
3339
3340 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3341 u64 num_dec;
db94535d 3342 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3343 if (!del_item) {
db94535d
CM
3344 u64 orig_num_bytes =
3345 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3346 extent_num_bytes = new_size -
5f39d397 3347 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3348 extent_num_bytes = extent_num_bytes &
3349 ~((u64)root->sectorsize - 1);
db94535d
CM
3350 btrfs_set_file_extent_num_bytes(leaf, fi,
3351 extent_num_bytes);
3352 num_dec = (orig_num_bytes -
9069218d 3353 extent_num_bytes);
e02119d5 3354 if (root->ref_cows && extent_start != 0)
a76a3cd4 3355 inode_sub_bytes(inode, num_dec);
5f39d397 3356 btrfs_mark_buffer_dirty(leaf);
39279cc3 3357 } else {
db94535d
CM
3358 extent_num_bytes =
3359 btrfs_file_extent_disk_num_bytes(leaf,
3360 fi);
5d4f98a2
YZ
3361 extent_offset = found_key.offset -
3362 btrfs_file_extent_offset(leaf, fi);
3363
39279cc3 3364 /* FIXME blocksize != 4096 */
9069218d 3365 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3366 if (extent_start != 0) {
3367 found_extent = 1;
e02119d5 3368 if (root->ref_cows)
a76a3cd4 3369 inode_sub_bytes(inode, num_dec);
e02119d5 3370 }
39279cc3 3371 }
9069218d 3372 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3373 /*
3374 * we can't truncate inline items that have had
3375 * special encodings
3376 */
3377 if (!del_item &&
3378 btrfs_file_extent_compression(leaf, fi) == 0 &&
3379 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3380 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3381 u32 size = new_size - found_key.offset;
3382
3383 if (root->ref_cows) {
a76a3cd4
YZ
3384 inode_sub_bytes(inode, item_end + 1 -
3385 new_size);
e02119d5
CM
3386 }
3387 size =
3388 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3389 btrfs_truncate_item(trans, root, path,
3390 size, 1);
e02119d5 3391 } else if (root->ref_cows) {
a76a3cd4
YZ
3392 inode_sub_bytes(inode, item_end + 1 -
3393 found_key.offset);
9069218d 3394 }
39279cc3 3395 }
179e29e4 3396delete:
39279cc3 3397 if (del_item) {
85e21bac
CM
3398 if (!pending_del_nr) {
3399 /* no pending yet, add ourselves */
3400 pending_del_slot = path->slots[0];
3401 pending_del_nr = 1;
3402 } else if (pending_del_nr &&
3403 path->slots[0] + 1 == pending_del_slot) {
3404 /* hop on the pending chunk */
3405 pending_del_nr++;
3406 pending_del_slot = path->slots[0];
3407 } else {
d397712b 3408 BUG();
85e21bac 3409 }
39279cc3
CM
3410 } else {
3411 break;
3412 }
0af3d00b
JB
3413 if (found_extent && (root->ref_cows ||
3414 root == root->fs_info->tree_root)) {
b9473439 3415 btrfs_set_path_blocking(path);
39279cc3 3416 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3417 extent_num_bytes, 0,
3418 btrfs_header_owner(leaf),
66d7e7f0 3419 ino, extent_offset, 0);
39279cc3
CM
3420 BUG_ON(ret);
3421 }
85e21bac 3422
8082510e
YZ
3423 if (found_type == BTRFS_INODE_ITEM_KEY)
3424 break;
3425
3426 if (path->slots[0] == 0 ||
3427 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3428 if (root->ref_cows &&
3429 BTRFS_I(inode)->location.objectid !=
3430 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3431 err = -EAGAIN;
3432 goto out;
3433 }
3434 if (pending_del_nr) {
3435 ret = btrfs_del_items(trans, root, path,
3436 pending_del_slot,
3437 pending_del_nr);
79787eaa
JM
3438 if (ret) {
3439 btrfs_abort_transaction(trans,
3440 root, ret);
3441 goto error;
3442 }
8082510e
YZ
3443 pending_del_nr = 0;
3444 }
b3b4aa74 3445 btrfs_release_path(path);
85e21bac 3446 goto search_again;
8082510e
YZ
3447 } else {
3448 path->slots[0]--;
85e21bac 3449 }
39279cc3 3450 }
8082510e 3451out:
85e21bac
CM
3452 if (pending_del_nr) {
3453 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3454 pending_del_nr);
79787eaa
JM
3455 if (ret)
3456 btrfs_abort_transaction(trans, root, ret);
85e21bac 3457 }
79787eaa 3458error:
39279cc3 3459 btrfs_free_path(path);
8082510e 3460 return err;
39279cc3
CM
3461}
3462
3463/*
3464 * taken from block_truncate_page, but does cow as it zeros out
3465 * any bytes left in the last page in the file.
3466 */
3467static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3468{
3469 struct inode *inode = mapping->host;
db94535d 3470 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3471 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3472 struct btrfs_ordered_extent *ordered;
2ac55d41 3473 struct extent_state *cached_state = NULL;
e6dcd2dc 3474 char *kaddr;
db94535d 3475 u32 blocksize = root->sectorsize;
39279cc3
CM
3476 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3477 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3478 struct page *page;
3b16a4e3 3479 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3480 int ret = 0;
a52d9a80 3481 u64 page_start;
e6dcd2dc 3482 u64 page_end;
39279cc3
CM
3483
3484 if ((offset & (blocksize - 1)) == 0)
3485 goto out;
0ca1f7ce 3486 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3487 if (ret)
3488 goto out;
39279cc3
CM
3489
3490 ret = -ENOMEM;
211c17f5 3491again:
3b16a4e3 3492 page = find_or_create_page(mapping, index, mask);
5d5e103a 3493 if (!page) {
0ca1f7ce 3494 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3495 goto out;
5d5e103a 3496 }
e6dcd2dc
CM
3497
3498 page_start = page_offset(page);
3499 page_end = page_start + PAGE_CACHE_SIZE - 1;
3500
39279cc3 3501 if (!PageUptodate(page)) {
9ebefb18 3502 ret = btrfs_readpage(NULL, page);
39279cc3 3503 lock_page(page);
211c17f5
CM
3504 if (page->mapping != mapping) {
3505 unlock_page(page);
3506 page_cache_release(page);
3507 goto again;
3508 }
39279cc3
CM
3509 if (!PageUptodate(page)) {
3510 ret = -EIO;
89642229 3511 goto out_unlock;
39279cc3
CM
3512 }
3513 }
211c17f5 3514 wait_on_page_writeback(page);
e6dcd2dc 3515
d0082371 3516 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3517 set_page_extent_mapped(page);
3518
3519 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3520 if (ordered) {
2ac55d41
JB
3521 unlock_extent_cached(io_tree, page_start, page_end,
3522 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3523 unlock_page(page);
3524 page_cache_release(page);
eb84ae03 3525 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3526 btrfs_put_ordered_extent(ordered);
3527 goto again;
3528 }
3529
2ac55d41 3530 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3531 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3532 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3533
2ac55d41
JB
3534 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3535 &cached_state);
9ed74f2d 3536 if (ret) {
2ac55d41
JB
3537 unlock_extent_cached(io_tree, page_start, page_end,
3538 &cached_state, GFP_NOFS);
9ed74f2d
JB
3539 goto out_unlock;
3540 }
3541
e6dcd2dc
CM
3542 ret = 0;
3543 if (offset != PAGE_CACHE_SIZE) {
3544 kaddr = kmap(page);
3545 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3546 flush_dcache_page(page);
3547 kunmap(page);
3548 }
247e743c 3549 ClearPageChecked(page);
e6dcd2dc 3550 set_page_dirty(page);
2ac55d41
JB
3551 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3552 GFP_NOFS);
39279cc3 3553
89642229 3554out_unlock:
5d5e103a 3555 if (ret)
0ca1f7ce 3556 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3557 unlock_page(page);
3558 page_cache_release(page);
3559out:
3560 return ret;
3561}
3562
695a0d0d
JB
3563/*
3564 * This function puts in dummy file extents for the area we're creating a hole
3565 * for. So if we are truncating this file to a larger size we need to insert
3566 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3567 * the range between oldsize and size
3568 */
a41ad394 3569int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3570{
9036c102
YZ
3571 struct btrfs_trans_handle *trans;
3572 struct btrfs_root *root = BTRFS_I(inode)->root;
3573 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3574 struct extent_map *em = NULL;
2ac55d41 3575 struct extent_state *cached_state = NULL;
9036c102 3576 u64 mask = root->sectorsize - 1;
a41ad394 3577 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3578 u64 block_end = (size + mask) & ~mask;
3579 u64 last_byte;
3580 u64 cur_offset;
3581 u64 hole_size;
9ed74f2d 3582 int err = 0;
39279cc3 3583
9036c102
YZ
3584 if (size <= hole_start)
3585 return 0;
3586
9036c102
YZ
3587 while (1) {
3588 struct btrfs_ordered_extent *ordered;
3589 btrfs_wait_ordered_range(inode, hole_start,
3590 block_end - hole_start);
2ac55d41 3591 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3592 &cached_state);
9036c102
YZ
3593 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3594 if (!ordered)
3595 break;
2ac55d41
JB
3596 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3597 &cached_state, GFP_NOFS);
9036c102
YZ
3598 btrfs_put_ordered_extent(ordered);
3599 }
39279cc3 3600
9036c102
YZ
3601 cur_offset = hole_start;
3602 while (1) {
3603 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3604 block_end - cur_offset, 0);
79787eaa
JM
3605 if (IS_ERR(em)) {
3606 err = PTR_ERR(em);
3607 break;
3608 }
9036c102
YZ
3609 last_byte = min(extent_map_end(em), block_end);
3610 last_byte = (last_byte + mask) & ~mask;
8082510e 3611 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3612 u64 hint_byte = 0;
9036c102 3613 hole_size = last_byte - cur_offset;
9ed74f2d 3614
3642320e 3615 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3616 if (IS_ERR(trans)) {
3617 err = PTR_ERR(trans);
9ed74f2d 3618 break;
a22285a6 3619 }
8082510e
YZ
3620
3621 err = btrfs_drop_extents(trans, inode, cur_offset,
3622 cur_offset + hole_size,
3623 &hint_byte, 1);
5b397377 3624 if (err) {
79787eaa 3625 btrfs_abort_transaction(trans, root, err);
5b397377 3626 btrfs_end_transaction(trans, root);
3893e33b 3627 break;
5b397377 3628 }
8082510e 3629
9036c102 3630 err = btrfs_insert_file_extent(trans, root,
33345d01 3631 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3632 0, hole_size, 0, hole_size,
3633 0, 0, 0);
5b397377 3634 if (err) {
79787eaa 3635 btrfs_abort_transaction(trans, root, err);
5b397377 3636 btrfs_end_transaction(trans, root);
3893e33b 3637 break;
5b397377 3638 }
8082510e 3639
9036c102
YZ
3640 btrfs_drop_extent_cache(inode, hole_start,
3641 last_byte - 1, 0);
8082510e 3642
3642320e 3643 btrfs_update_inode(trans, root, inode);
8082510e 3644 btrfs_end_transaction(trans, root);
9036c102
YZ
3645 }
3646 free_extent_map(em);
a22285a6 3647 em = NULL;
9036c102 3648 cur_offset = last_byte;
8082510e 3649 if (cur_offset >= block_end)
9036c102
YZ
3650 break;
3651 }
1832a6d5 3652
a22285a6 3653 free_extent_map(em);
2ac55d41
JB
3654 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3655 GFP_NOFS);
9036c102
YZ
3656 return err;
3657}
39279cc3 3658
a41ad394 3659static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3660{
f4a2f4c5
MX
3661 struct btrfs_root *root = BTRFS_I(inode)->root;
3662 struct btrfs_trans_handle *trans;
a41ad394 3663 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3664 int ret;
3665
a41ad394 3666 if (newsize == oldsize)
8082510e
YZ
3667 return 0;
3668
a41ad394 3669 if (newsize > oldsize) {
a41ad394
JB
3670 truncate_pagecache(inode, oldsize, newsize);
3671 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3672 if (ret)
8082510e 3673 return ret;
8082510e 3674
f4a2f4c5
MX
3675 trans = btrfs_start_transaction(root, 1);
3676 if (IS_ERR(trans))
3677 return PTR_ERR(trans);
3678
3679 i_size_write(inode, newsize);
3680 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3681 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3682 btrfs_end_transaction(trans, root);
a41ad394 3683 } else {
8082510e 3684
a41ad394
JB
3685 /*
3686 * We're truncating a file that used to have good data down to
3687 * zero. Make sure it gets into the ordered flush list so that
3688 * any new writes get down to disk quickly.
3689 */
3690 if (newsize == 0)
72ac3c0d
JB
3691 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3692 &BTRFS_I(inode)->runtime_flags);
8082510e 3693
a41ad394
JB
3694 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3695 truncate_setsize(inode, newsize);
3696 ret = btrfs_truncate(inode);
8082510e
YZ
3697 }
3698
a41ad394 3699 return ret;
8082510e
YZ
3700}
3701
9036c102
YZ
3702static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3703{
3704 struct inode *inode = dentry->d_inode;
b83cc969 3705 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3706 int err;
39279cc3 3707
b83cc969
LZ
3708 if (btrfs_root_readonly(root))
3709 return -EROFS;
3710
9036c102
YZ
3711 err = inode_change_ok(inode, attr);
3712 if (err)
3713 return err;
2bf5a725 3714
5a3f23d5 3715 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3716 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3717 if (err)
3718 return err;
39279cc3 3719 }
9036c102 3720
1025774c
CH
3721 if (attr->ia_valid) {
3722 setattr_copy(inode, attr);
0c4d2d95 3723 inode_inc_iversion(inode);
22c44fe6 3724 err = btrfs_dirty_inode(inode);
1025774c 3725
22c44fe6 3726 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3727 err = btrfs_acl_chmod(inode);
3728 }
33268eaf 3729
39279cc3
CM
3730 return err;
3731}
61295eb8 3732
bd555975 3733void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3734{
3735 struct btrfs_trans_handle *trans;
3736 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3737 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3738 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3739 unsigned long nr;
39279cc3
CM
3740 int ret;
3741
1abe9b8a 3742 trace_btrfs_inode_evict(inode);
3743
39279cc3 3744 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3745 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3746 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3747 goto no_delete;
3748
39279cc3 3749 if (is_bad_inode(inode)) {
7b128766 3750 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3751 goto no_delete;
3752 }
bd555975 3753 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3754 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3755
c71bf099 3756 if (root->fs_info->log_root_recovering) {
6bf02314 3757 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 3758 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
3759 goto no_delete;
3760 }
3761
76dda93c
YZ
3762 if (inode->i_nlink > 0) {
3763 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3764 goto no_delete;
3765 }
3766
4289a667
JB
3767 rsv = btrfs_alloc_block_rsv(root);
3768 if (!rsv) {
3769 btrfs_orphan_del(NULL, inode);
3770 goto no_delete;
3771 }
4a338542 3772 rsv->size = min_size;
726c35fa 3773 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3774
dbe674a9 3775 btrfs_i_size_write(inode, 0);
5f39d397 3776
4289a667
JB
3777 /*
3778 * This is a bit simpler than btrfs_truncate since
3779 *
3780 * 1) We've already reserved our space for our orphan item in the
3781 * unlink.
3782 * 2) We're going to delete the inode item, so we don't need to update
3783 * it at all.
3784 *
3785 * So we just need to reserve some slack space in case we add bytes when
3786 * doing the truncate.
3787 */
8082510e 3788 while (1) {
aa38a711 3789 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
726c35fa
JB
3790
3791 /*
3792 * Try and steal from the global reserve since we will
3793 * likely not use this space anyway, we want to try as
3794 * hard as possible to get this to work.
3795 */
3796 if (ret)
3797 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3798
d68fc57b 3799 if (ret) {
4289a667 3800 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3801 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3802 btrfs_orphan_del(NULL, inode);
3803 btrfs_free_block_rsv(root, rsv);
3804 goto no_delete;
d68fc57b 3805 }
7b128766 3806
4289a667
JB
3807 trans = btrfs_start_transaction(root, 0);
3808 if (IS_ERR(trans)) {
3809 btrfs_orphan_del(NULL, inode);
3810 btrfs_free_block_rsv(root, rsv);
3811 goto no_delete;
d68fc57b 3812 }
7b128766 3813
4289a667
JB
3814 trans->block_rsv = rsv;
3815
d68fc57b 3816 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3817 if (ret != -EAGAIN)
3818 break;
85e21bac 3819
8082510e
YZ
3820 nr = trans->blocks_used;
3821 btrfs_end_transaction(trans, root);
3822 trans = NULL;
3823 btrfs_btree_balance_dirty(root, nr);
3824 }
5f39d397 3825
4289a667
JB
3826 btrfs_free_block_rsv(root, rsv);
3827
8082510e 3828 if (ret == 0) {
4289a667 3829 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3830 ret = btrfs_orphan_del(trans, inode);
3831 BUG_ON(ret);
3832 }
54aa1f4d 3833
4289a667 3834 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3835 if (!(root == root->fs_info->tree_root ||
3836 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3837 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3838
d3c2fdcf 3839 nr = trans->blocks_used;
54aa1f4d 3840 btrfs_end_transaction(trans, root);
d3c2fdcf 3841 btrfs_btree_balance_dirty(root, nr);
39279cc3 3842no_delete:
dbd5768f 3843 clear_inode(inode);
8082510e 3844 return;
39279cc3
CM
3845}
3846
3847/*
3848 * this returns the key found in the dir entry in the location pointer.
3849 * If no dir entries were found, location->objectid is 0.
3850 */
3851static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3852 struct btrfs_key *location)
3853{
3854 const char *name = dentry->d_name.name;
3855 int namelen = dentry->d_name.len;
3856 struct btrfs_dir_item *di;
3857 struct btrfs_path *path;
3858 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3859 int ret = 0;
39279cc3
CM
3860
3861 path = btrfs_alloc_path();
d8926bb3
MF
3862 if (!path)
3863 return -ENOMEM;
3954401f 3864
33345d01 3865 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3866 namelen, 0);
0d9f7f3e
Y
3867 if (IS_ERR(di))
3868 ret = PTR_ERR(di);
d397712b 3869
c704005d 3870 if (IS_ERR_OR_NULL(di))
3954401f 3871 goto out_err;
d397712b 3872
5f39d397 3873 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3874out:
39279cc3
CM
3875 btrfs_free_path(path);
3876 return ret;
3954401f
CM
3877out_err:
3878 location->objectid = 0;
3879 goto out;
39279cc3
CM
3880}
3881
3882/*
3883 * when we hit a tree root in a directory, the btrfs part of the inode
3884 * needs to be changed to reflect the root directory of the tree root. This
3885 * is kind of like crossing a mount point.
3886 */
3887static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3888 struct inode *dir,
3889 struct dentry *dentry,
3890 struct btrfs_key *location,
3891 struct btrfs_root **sub_root)
39279cc3 3892{
4df27c4d
YZ
3893 struct btrfs_path *path;
3894 struct btrfs_root *new_root;
3895 struct btrfs_root_ref *ref;
3896 struct extent_buffer *leaf;
3897 int ret;
3898 int err = 0;
39279cc3 3899
4df27c4d
YZ
3900 path = btrfs_alloc_path();
3901 if (!path) {
3902 err = -ENOMEM;
3903 goto out;
3904 }
39279cc3 3905
4df27c4d
YZ
3906 err = -ENOENT;
3907 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3908 BTRFS_I(dir)->root->root_key.objectid,
3909 location->objectid);
3910 if (ret) {
3911 if (ret < 0)
3912 err = ret;
3913 goto out;
3914 }
39279cc3 3915
4df27c4d
YZ
3916 leaf = path->nodes[0];
3917 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3918 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3919 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3920 goto out;
39279cc3 3921
4df27c4d
YZ
3922 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3923 (unsigned long)(ref + 1),
3924 dentry->d_name.len);
3925 if (ret)
3926 goto out;
3927
b3b4aa74 3928 btrfs_release_path(path);
4df27c4d
YZ
3929
3930 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3931 if (IS_ERR(new_root)) {
3932 err = PTR_ERR(new_root);
3933 goto out;
3934 }
3935
3936 if (btrfs_root_refs(&new_root->root_item) == 0) {
3937 err = -ENOENT;
3938 goto out;
3939 }
3940
3941 *sub_root = new_root;
3942 location->objectid = btrfs_root_dirid(&new_root->root_item);
3943 location->type = BTRFS_INODE_ITEM_KEY;
3944 location->offset = 0;
3945 err = 0;
3946out:
3947 btrfs_free_path(path);
3948 return err;
39279cc3
CM
3949}
3950
5d4f98a2
YZ
3951static void inode_tree_add(struct inode *inode)
3952{
3953 struct btrfs_root *root = BTRFS_I(inode)->root;
3954 struct btrfs_inode *entry;
03e860bd
FNP
3955 struct rb_node **p;
3956 struct rb_node *parent;
33345d01 3957 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3958again:
3959 p = &root->inode_tree.rb_node;
3960 parent = NULL;
5d4f98a2 3961
1d3382cb 3962 if (inode_unhashed(inode))
76dda93c
YZ
3963 return;
3964
5d4f98a2
YZ
3965 spin_lock(&root->inode_lock);
3966 while (*p) {
3967 parent = *p;
3968 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3969
33345d01 3970 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3971 p = &parent->rb_left;
33345d01 3972 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3973 p = &parent->rb_right;
5d4f98a2
YZ
3974 else {
3975 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3976 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3977 rb_erase(parent, &root->inode_tree);
3978 RB_CLEAR_NODE(parent);
3979 spin_unlock(&root->inode_lock);
3980 goto again;
5d4f98a2
YZ
3981 }
3982 }
3983 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3984 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3985 spin_unlock(&root->inode_lock);
3986}
3987
3988static void inode_tree_del(struct inode *inode)
3989{
3990 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3991 int empty = 0;
5d4f98a2 3992
03e860bd 3993 spin_lock(&root->inode_lock);
5d4f98a2 3994 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3995 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3996 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3997 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3998 }
03e860bd 3999 spin_unlock(&root->inode_lock);
76dda93c 4000
0af3d00b
JB
4001 /*
4002 * Free space cache has inodes in the tree root, but the tree root has a
4003 * root_refs of 0, so this could end up dropping the tree root as a
4004 * snapshot, so we need the extra !root->fs_info->tree_root check to
4005 * make sure we don't drop it.
4006 */
4007 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4008 root != root->fs_info->tree_root) {
76dda93c
YZ
4009 synchronize_srcu(&root->fs_info->subvol_srcu);
4010 spin_lock(&root->inode_lock);
4011 empty = RB_EMPTY_ROOT(&root->inode_tree);
4012 spin_unlock(&root->inode_lock);
4013 if (empty)
4014 btrfs_add_dead_root(root);
4015 }
4016}
4017
143bede5 4018void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4019{
4020 struct rb_node *node;
4021 struct rb_node *prev;
4022 struct btrfs_inode *entry;
4023 struct inode *inode;
4024 u64 objectid = 0;
4025
4026 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4027
4028 spin_lock(&root->inode_lock);
4029again:
4030 node = root->inode_tree.rb_node;
4031 prev = NULL;
4032 while (node) {
4033 prev = node;
4034 entry = rb_entry(node, struct btrfs_inode, rb_node);
4035
33345d01 4036 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4037 node = node->rb_left;
33345d01 4038 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4039 node = node->rb_right;
4040 else
4041 break;
4042 }
4043 if (!node) {
4044 while (prev) {
4045 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4046 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4047 node = prev;
4048 break;
4049 }
4050 prev = rb_next(prev);
4051 }
4052 }
4053 while (node) {
4054 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4055 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4056 inode = igrab(&entry->vfs_inode);
4057 if (inode) {
4058 spin_unlock(&root->inode_lock);
4059 if (atomic_read(&inode->i_count) > 1)
4060 d_prune_aliases(inode);
4061 /*
45321ac5 4062 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4063 * the inode cache when its usage count
4064 * hits zero.
4065 */
4066 iput(inode);
4067 cond_resched();
4068 spin_lock(&root->inode_lock);
4069 goto again;
4070 }
4071
4072 if (cond_resched_lock(&root->inode_lock))
4073 goto again;
4074
4075 node = rb_next(node);
4076 }
4077 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4078}
4079
e02119d5
CM
4080static int btrfs_init_locked_inode(struct inode *inode, void *p)
4081{
4082 struct btrfs_iget_args *args = p;
4083 inode->i_ino = args->ino;
e02119d5 4084 BTRFS_I(inode)->root = args->root;
6a63209f 4085 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4086 return 0;
4087}
4088
4089static int btrfs_find_actor(struct inode *inode, void *opaque)
4090{
4091 struct btrfs_iget_args *args = opaque;
33345d01 4092 return args->ino == btrfs_ino(inode) &&
d397712b 4093 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4094}
4095
5d4f98a2
YZ
4096static struct inode *btrfs_iget_locked(struct super_block *s,
4097 u64 objectid,
4098 struct btrfs_root *root)
39279cc3
CM
4099{
4100 struct inode *inode;
4101 struct btrfs_iget_args args;
4102 args.ino = objectid;
4103 args.root = root;
4104
4105 inode = iget5_locked(s, objectid, btrfs_find_actor,
4106 btrfs_init_locked_inode,
4107 (void *)&args);
4108 return inode;
4109}
4110
1a54ef8c
BR
4111/* Get an inode object given its location and corresponding root.
4112 * Returns in *is_new if the inode was read from disk
4113 */
4114struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4115 struct btrfs_root *root, int *new)
1a54ef8c
BR
4116{
4117 struct inode *inode;
4118
4119 inode = btrfs_iget_locked(s, location->objectid, root);
4120 if (!inode)
5d4f98a2 4121 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4122
4123 if (inode->i_state & I_NEW) {
4124 BTRFS_I(inode)->root = root;
4125 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4126 btrfs_read_locked_inode(inode);
1748f843
MF
4127 if (!is_bad_inode(inode)) {
4128 inode_tree_add(inode);
4129 unlock_new_inode(inode);
4130 if (new)
4131 *new = 1;
4132 } else {
e0b6d65b
ST
4133 unlock_new_inode(inode);
4134 iput(inode);
4135 inode = ERR_PTR(-ESTALE);
1748f843
MF
4136 }
4137 }
4138
1a54ef8c
BR
4139 return inode;
4140}
4141
4df27c4d
YZ
4142static struct inode *new_simple_dir(struct super_block *s,
4143 struct btrfs_key *key,
4144 struct btrfs_root *root)
4145{
4146 struct inode *inode = new_inode(s);
4147
4148 if (!inode)
4149 return ERR_PTR(-ENOMEM);
4150
4df27c4d
YZ
4151 BTRFS_I(inode)->root = root;
4152 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4153 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4154
4155 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4156 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4157 inode->i_fop = &simple_dir_operations;
4158 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4159 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4160
4161 return inode;
4162}
4163
3de4586c 4164struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4165{
d397712b 4166 struct inode *inode;
4df27c4d 4167 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4168 struct btrfs_root *sub_root = root;
4169 struct btrfs_key location;
76dda93c 4170 int index;
b4aff1f8 4171 int ret = 0;
39279cc3
CM
4172
4173 if (dentry->d_name.len > BTRFS_NAME_LEN)
4174 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4175
b4aff1f8
JB
4176 if (unlikely(d_need_lookup(dentry))) {
4177 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4178 kfree(dentry->d_fsdata);
4179 dentry->d_fsdata = NULL;
a66e7cc6
JB
4180 /* This thing is hashed, drop it for now */
4181 d_drop(dentry);
b4aff1f8
JB
4182 } else {
4183 ret = btrfs_inode_by_name(dir, dentry, &location);
4184 }
5f39d397 4185
39279cc3
CM
4186 if (ret < 0)
4187 return ERR_PTR(ret);
5f39d397 4188
4df27c4d
YZ
4189 if (location.objectid == 0)
4190 return NULL;
4191
4192 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4193 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4194 return inode;
4195 }
4196
4197 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4198
76dda93c 4199 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4200 ret = fixup_tree_root_location(root, dir, dentry,
4201 &location, &sub_root);
4202 if (ret < 0) {
4203 if (ret != -ENOENT)
4204 inode = ERR_PTR(ret);
4205 else
4206 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4207 } else {
73f73415 4208 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4209 }
76dda93c
YZ
4210 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4211
34d19bad 4212 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4213 down_read(&root->fs_info->cleanup_work_sem);
4214 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4215 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4216 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4217 if (ret)
4218 inode = ERR_PTR(ret);
c71bf099
YZ
4219 }
4220
3de4586c
CM
4221 return inode;
4222}
4223
fe15ce44 4224static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4225{
4226 struct btrfs_root *root;
848cce0d 4227 struct inode *inode = dentry->d_inode;
76dda93c 4228
848cce0d
LZ
4229 if (!inode && !IS_ROOT(dentry))
4230 inode = dentry->d_parent->d_inode;
76dda93c 4231
848cce0d
LZ
4232 if (inode) {
4233 root = BTRFS_I(inode)->root;
efefb143
YZ
4234 if (btrfs_root_refs(&root->root_item) == 0)
4235 return 1;
848cce0d
LZ
4236
4237 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4238 return 1;
efefb143 4239 }
76dda93c
YZ
4240 return 0;
4241}
4242
b4aff1f8
JB
4243static void btrfs_dentry_release(struct dentry *dentry)
4244{
4245 if (dentry->d_fsdata)
4246 kfree(dentry->d_fsdata);
4247}
4248
3de4586c
CM
4249static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4250 struct nameidata *nd)
4251{
a66e7cc6
JB
4252 struct dentry *ret;
4253
4254 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4255 if (unlikely(d_need_lookup(dentry))) {
4256 spin_lock(&dentry->d_lock);
4257 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4258 spin_unlock(&dentry->d_lock);
4259 }
4260 return ret;
39279cc3
CM
4261}
4262
16cdcec7 4263unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4264 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4265};
4266
cbdf5a24
DW
4267static int btrfs_real_readdir(struct file *filp, void *dirent,
4268 filldir_t filldir)
39279cc3 4269{
6da6abae 4270 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4271 struct btrfs_root *root = BTRFS_I(inode)->root;
4272 struct btrfs_item *item;
4273 struct btrfs_dir_item *di;
4274 struct btrfs_key key;
5f39d397 4275 struct btrfs_key found_key;
39279cc3 4276 struct btrfs_path *path;
16cdcec7
MX
4277 struct list_head ins_list;
4278 struct list_head del_list;
39279cc3 4279 int ret;
5f39d397 4280 struct extent_buffer *leaf;
39279cc3 4281 int slot;
39279cc3
CM
4282 unsigned char d_type;
4283 int over = 0;
4284 u32 di_cur;
4285 u32 di_total;
4286 u32 di_len;
4287 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4288 char tmp_name[32];
4289 char *name_ptr;
4290 int name_len;
16cdcec7 4291 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4292
4293 /* FIXME, use a real flag for deciding about the key type */
4294 if (root->fs_info->tree_root == root)
4295 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4296
3954401f
CM
4297 /* special case for "." */
4298 if (filp->f_pos == 0) {
3765fefa
HS
4299 over = filldir(dirent, ".", 1,
4300 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4301 if (over)
4302 return 0;
4303 filp->f_pos = 1;
4304 }
3954401f
CM
4305 /* special case for .., just use the back ref */
4306 if (filp->f_pos == 1) {
5ecc7e5d 4307 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4308 over = filldir(dirent, "..", 2,
3765fefa 4309 filp->f_pos, pino, DT_DIR);
3954401f 4310 if (over)
49593bfa 4311 return 0;
3954401f
CM
4312 filp->f_pos = 2;
4313 }
49593bfa 4314 path = btrfs_alloc_path();
16cdcec7
MX
4315 if (!path)
4316 return -ENOMEM;
ff5714cc 4317
026fd317 4318 path->reada = 1;
49593bfa 4319
16cdcec7
MX
4320 if (key_type == BTRFS_DIR_INDEX_KEY) {
4321 INIT_LIST_HEAD(&ins_list);
4322 INIT_LIST_HEAD(&del_list);
4323 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4324 }
4325
39279cc3
CM
4326 btrfs_set_key_type(&key, key_type);
4327 key.offset = filp->f_pos;
33345d01 4328 key.objectid = btrfs_ino(inode);
5f39d397 4329
39279cc3
CM
4330 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4331 if (ret < 0)
4332 goto err;
49593bfa
DW
4333
4334 while (1) {
5f39d397 4335 leaf = path->nodes[0];
39279cc3 4336 slot = path->slots[0];
b9e03af0
LZ
4337 if (slot >= btrfs_header_nritems(leaf)) {
4338 ret = btrfs_next_leaf(root, path);
4339 if (ret < 0)
4340 goto err;
4341 else if (ret > 0)
4342 break;
4343 continue;
39279cc3 4344 }
3de4586c 4345
5f39d397
CM
4346 item = btrfs_item_nr(leaf, slot);
4347 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4348
4349 if (found_key.objectid != key.objectid)
39279cc3 4350 break;
5f39d397 4351 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4352 break;
5f39d397 4353 if (found_key.offset < filp->f_pos)
b9e03af0 4354 goto next;
16cdcec7
MX
4355 if (key_type == BTRFS_DIR_INDEX_KEY &&
4356 btrfs_should_delete_dir_index(&del_list,
4357 found_key.offset))
4358 goto next;
5f39d397
CM
4359
4360 filp->f_pos = found_key.offset;
16cdcec7 4361 is_curr = 1;
49593bfa 4362
39279cc3
CM
4363 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4364 di_cur = 0;
5f39d397 4365 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4366
4367 while (di_cur < di_total) {
5f39d397
CM
4368 struct btrfs_key location;
4369
22a94d44
JB
4370 if (verify_dir_item(root, leaf, di))
4371 break;
4372
5f39d397 4373 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4374 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4375 name_ptr = tmp_name;
4376 } else {
4377 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4378 if (!name_ptr) {
4379 ret = -ENOMEM;
4380 goto err;
4381 }
5f39d397
CM
4382 }
4383 read_extent_buffer(leaf, name_ptr,
4384 (unsigned long)(di + 1), name_len);
4385
4386 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4387 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4388
fede766f 4389
3de4586c 4390 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4391 * skip it.
4392 *
4393 * In contrast to old kernels, we insert the snapshot's
4394 * dir item and dir index after it has been created, so
4395 * we won't find a reference to our own snapshot. We
4396 * still keep the following code for backward
4397 * compatibility.
3de4586c
CM
4398 */
4399 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4400 location.objectid == root->root_key.objectid) {
4401 over = 0;
4402 goto skip;
4403 }
5f39d397 4404 over = filldir(dirent, name_ptr, name_len,
49593bfa 4405 found_key.offset, location.objectid,
39279cc3 4406 d_type);
5f39d397 4407
3de4586c 4408skip:
5f39d397
CM
4409 if (name_ptr != tmp_name)
4410 kfree(name_ptr);
4411
39279cc3
CM
4412 if (over)
4413 goto nopos;
5103e947 4414 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4415 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4416 di_cur += di_len;
4417 di = (struct btrfs_dir_item *)((char *)di + di_len);
4418 }
b9e03af0
LZ
4419next:
4420 path->slots[0]++;
39279cc3 4421 }
49593bfa 4422
16cdcec7
MX
4423 if (key_type == BTRFS_DIR_INDEX_KEY) {
4424 if (is_curr)
4425 filp->f_pos++;
4426 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4427 &ins_list);
4428 if (ret)
4429 goto nopos;
4430 }
4431
49593bfa 4432 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4433 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4434 /*
4435 * 32-bit glibc will use getdents64, but then strtol -
4436 * so the last number we can serve is this.
4437 */
4438 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4439 else
4440 filp->f_pos++;
39279cc3
CM
4441nopos:
4442 ret = 0;
4443err:
16cdcec7
MX
4444 if (key_type == BTRFS_DIR_INDEX_KEY)
4445 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4446 btrfs_free_path(path);
39279cc3
CM
4447 return ret;
4448}
4449
a9185b41 4450int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4451{
4452 struct btrfs_root *root = BTRFS_I(inode)->root;
4453 struct btrfs_trans_handle *trans;
4454 int ret = 0;
0af3d00b 4455 bool nolock = false;
39279cc3 4456
72ac3c0d 4457 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
4458 return 0;
4459
2cf8572d 4460 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4461 nolock = true;
0af3d00b 4462
a9185b41 4463 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4464 if (nolock)
7a7eaa40 4465 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4466 else
7a7eaa40 4467 trans = btrfs_join_transaction(root);
3612b495
TI
4468 if (IS_ERR(trans))
4469 return PTR_ERR(trans);
0af3d00b
JB
4470 if (nolock)
4471 ret = btrfs_end_transaction_nolock(trans, root);
4472 else
4473 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4474 }
4475 return ret;
4476}
4477
4478/*
54aa1f4d 4479 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4480 * inode changes. But, it is most likely to find the inode in cache.
4481 * FIXME, needs more benchmarking...there are no reasons other than performance
4482 * to keep or drop this code.
4483 */
22c44fe6 4484int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4485{
4486 struct btrfs_root *root = BTRFS_I(inode)->root;
4487 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4488 int ret;
4489
72ac3c0d 4490 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 4491 return 0;
39279cc3 4492
7a7eaa40 4493 trans = btrfs_join_transaction(root);
22c44fe6
JB
4494 if (IS_ERR(trans))
4495 return PTR_ERR(trans);
8929ecfa
YZ
4496
4497 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4498 if (ret && ret == -ENOSPC) {
4499 /* whoops, lets try again with the full transaction */
4500 btrfs_end_transaction(trans, root);
4501 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4502 if (IS_ERR(trans))
4503 return PTR_ERR(trans);
8929ecfa 4504
94b60442 4505 ret = btrfs_update_inode(trans, root, inode);
94b60442 4506 }
39279cc3 4507 btrfs_end_transaction(trans, root);
16cdcec7
MX
4508 if (BTRFS_I(inode)->delayed_node)
4509 btrfs_balance_delayed_items(root);
22c44fe6
JB
4510
4511 return ret;
4512}
4513
4514/*
4515 * This is a copy of file_update_time. We need this so we can return error on
4516 * ENOSPC for updating the inode in the case of file write and mmap writes.
4517 */
e41f941a
JB
4518static int btrfs_update_time(struct inode *inode, struct timespec *now,
4519 int flags)
22c44fe6 4520{
2bc55652
AB
4521 struct btrfs_root *root = BTRFS_I(inode)->root;
4522
4523 if (btrfs_root_readonly(root))
4524 return -EROFS;
4525
e41f941a 4526 if (flags & S_VERSION)
22c44fe6 4527 inode_inc_iversion(inode);
e41f941a
JB
4528 if (flags & S_CTIME)
4529 inode->i_ctime = *now;
4530 if (flags & S_MTIME)
4531 inode->i_mtime = *now;
4532 if (flags & S_ATIME)
4533 inode->i_atime = *now;
4534 return btrfs_dirty_inode(inode);
39279cc3
CM
4535}
4536
d352ac68
CM
4537/*
4538 * find the highest existing sequence number in a directory
4539 * and then set the in-memory index_cnt variable to reflect
4540 * free sequence numbers
4541 */
aec7477b
JB
4542static int btrfs_set_inode_index_count(struct inode *inode)
4543{
4544 struct btrfs_root *root = BTRFS_I(inode)->root;
4545 struct btrfs_key key, found_key;
4546 struct btrfs_path *path;
4547 struct extent_buffer *leaf;
4548 int ret;
4549
33345d01 4550 key.objectid = btrfs_ino(inode);
aec7477b
JB
4551 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4552 key.offset = (u64)-1;
4553
4554 path = btrfs_alloc_path();
4555 if (!path)
4556 return -ENOMEM;
4557
4558 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4559 if (ret < 0)
4560 goto out;
4561 /* FIXME: we should be able to handle this */
4562 if (ret == 0)
4563 goto out;
4564 ret = 0;
4565
4566 /*
4567 * MAGIC NUMBER EXPLANATION:
4568 * since we search a directory based on f_pos we have to start at 2
4569 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4570 * else has to start at 2
4571 */
4572 if (path->slots[0] == 0) {
4573 BTRFS_I(inode)->index_cnt = 2;
4574 goto out;
4575 }
4576
4577 path->slots[0]--;
4578
4579 leaf = path->nodes[0];
4580 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4581
33345d01 4582 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4583 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4584 BTRFS_I(inode)->index_cnt = 2;
4585 goto out;
4586 }
4587
4588 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4589out:
4590 btrfs_free_path(path);
4591 return ret;
4592}
4593
d352ac68
CM
4594/*
4595 * helper to find a free sequence number in a given directory. This current
4596 * code is very simple, later versions will do smarter things in the btree
4597 */
3de4586c 4598int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4599{
4600 int ret = 0;
4601
4602 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4603 ret = btrfs_inode_delayed_dir_index_count(dir);
4604 if (ret) {
4605 ret = btrfs_set_inode_index_count(dir);
4606 if (ret)
4607 return ret;
4608 }
aec7477b
JB
4609 }
4610
00e4e6b3 4611 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4612 BTRFS_I(dir)->index_cnt++;
4613
4614 return ret;
4615}
4616
39279cc3
CM
4617static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4618 struct btrfs_root *root,
aec7477b 4619 struct inode *dir,
9c58309d 4620 const char *name, int name_len,
175a4eb7
AV
4621 u64 ref_objectid, u64 objectid,
4622 umode_t mode, u64 *index)
39279cc3
CM
4623{
4624 struct inode *inode;
5f39d397 4625 struct btrfs_inode_item *inode_item;
39279cc3 4626 struct btrfs_key *location;
5f39d397 4627 struct btrfs_path *path;
9c58309d
CM
4628 struct btrfs_inode_ref *ref;
4629 struct btrfs_key key[2];
4630 u32 sizes[2];
4631 unsigned long ptr;
39279cc3
CM
4632 int ret;
4633 int owner;
4634
5f39d397 4635 path = btrfs_alloc_path();
d8926bb3
MF
4636 if (!path)
4637 return ERR_PTR(-ENOMEM);
5f39d397 4638
39279cc3 4639 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4640 if (!inode) {
4641 btrfs_free_path(path);
39279cc3 4642 return ERR_PTR(-ENOMEM);
8fb27640 4643 }
39279cc3 4644
581bb050
LZ
4645 /*
4646 * we have to initialize this early, so we can reclaim the inode
4647 * number if we fail afterwards in this function.
4648 */
4649 inode->i_ino = objectid;
4650
aec7477b 4651 if (dir) {
1abe9b8a 4652 trace_btrfs_inode_request(dir);
4653
3de4586c 4654 ret = btrfs_set_inode_index(dir, index);
09771430 4655 if (ret) {
8fb27640 4656 btrfs_free_path(path);
09771430 4657 iput(inode);
aec7477b 4658 return ERR_PTR(ret);
09771430 4659 }
aec7477b
JB
4660 }
4661 /*
4662 * index_cnt is ignored for everything but a dir,
4663 * btrfs_get_inode_index_count has an explanation for the magic
4664 * number
4665 */
4666 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4667 BTRFS_I(inode)->root = root;
e02119d5 4668 BTRFS_I(inode)->generation = trans->transid;
76195853 4669 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4670 btrfs_set_inode_space_info(root, inode);
b888db2b 4671
569254b0 4672 if (S_ISDIR(mode))
39279cc3
CM
4673 owner = 0;
4674 else
4675 owner = 1;
9c58309d
CM
4676
4677 key[0].objectid = objectid;
4678 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4679 key[0].offset = 0;
4680
4681 key[1].objectid = objectid;
4682 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4683 key[1].offset = ref_objectid;
4684
4685 sizes[0] = sizeof(struct btrfs_inode_item);
4686 sizes[1] = name_len + sizeof(*ref);
4687
b9473439 4688 path->leave_spinning = 1;
9c58309d
CM
4689 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4690 if (ret != 0)
5f39d397
CM
4691 goto fail;
4692
ecc11fab 4693 inode_init_owner(inode, dir, mode);
a76a3cd4 4694 inode_set_bytes(inode, 0);
39279cc3 4695 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4696 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4697 struct btrfs_inode_item);
e02119d5 4698 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4699
4700 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4701 struct btrfs_inode_ref);
4702 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4703 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4704 ptr = (unsigned long)(ref + 1);
4705 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4706
5f39d397
CM
4707 btrfs_mark_buffer_dirty(path->nodes[0]);
4708 btrfs_free_path(path);
4709
39279cc3
CM
4710 location = &BTRFS_I(inode)->location;
4711 location->objectid = objectid;
39279cc3
CM
4712 location->offset = 0;
4713 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4714
6cbff00f
CH
4715 btrfs_inherit_iflags(inode, dir);
4716
569254b0 4717 if (S_ISREG(mode)) {
94272164
CM
4718 if (btrfs_test_opt(root, NODATASUM))
4719 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4720 if (btrfs_test_opt(root, NODATACOW) ||
4721 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4722 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4723 }
4724
39279cc3 4725 insert_inode_hash(inode);
5d4f98a2 4726 inode_tree_add(inode);
1abe9b8a 4727
4728 trace_btrfs_inode_new(inode);
1973f0fa 4729 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4730
39279cc3 4731 return inode;
5f39d397 4732fail:
aec7477b
JB
4733 if (dir)
4734 BTRFS_I(dir)->index_cnt--;
5f39d397 4735 btrfs_free_path(path);
09771430 4736 iput(inode);
5f39d397 4737 return ERR_PTR(ret);
39279cc3
CM
4738}
4739
4740static inline u8 btrfs_inode_type(struct inode *inode)
4741{
4742 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4743}
4744
d352ac68
CM
4745/*
4746 * utility function to add 'inode' into 'parent_inode' with
4747 * a give name and a given sequence number.
4748 * if 'add_backref' is true, also insert a backref from the
4749 * inode to the parent directory.
4750 */
e02119d5
CM
4751int btrfs_add_link(struct btrfs_trans_handle *trans,
4752 struct inode *parent_inode, struct inode *inode,
4753 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4754{
4df27c4d 4755 int ret = 0;
39279cc3 4756 struct btrfs_key key;
e02119d5 4757 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4758 u64 ino = btrfs_ino(inode);
4759 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4760
33345d01 4761 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4762 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4763 } else {
33345d01 4764 key.objectid = ino;
4df27c4d
YZ
4765 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4766 key.offset = 0;
4767 }
4768
33345d01 4769 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4770 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4771 key.objectid, root->root_key.objectid,
33345d01 4772 parent_ino, index, name, name_len);
4df27c4d 4773 } else if (add_backref) {
33345d01
LZ
4774 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4775 parent_ino, index);
4df27c4d 4776 }
39279cc3 4777
79787eaa
JM
4778 /* Nothing to clean up yet */
4779 if (ret)
4780 return ret;
4df27c4d 4781
79787eaa
JM
4782 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4783 parent_inode, &key,
4784 btrfs_inode_type(inode), index);
4785 if (ret == -EEXIST)
4786 goto fail_dir_item;
4787 else if (ret) {
4788 btrfs_abort_transaction(trans, root, ret);
4789 return ret;
39279cc3 4790 }
79787eaa
JM
4791
4792 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4793 name_len * 2);
0c4d2d95 4794 inode_inc_iversion(parent_inode);
79787eaa
JM
4795 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4796 ret = btrfs_update_inode(trans, root, parent_inode);
4797 if (ret)
4798 btrfs_abort_transaction(trans, root, ret);
39279cc3 4799 return ret;
fe66a05a
CM
4800
4801fail_dir_item:
4802 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4803 u64 local_index;
4804 int err;
4805 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4806 key.objectid, root->root_key.objectid,
4807 parent_ino, &local_index, name, name_len);
4808
4809 } else if (add_backref) {
4810 u64 local_index;
4811 int err;
4812
4813 err = btrfs_del_inode_ref(trans, root, name, name_len,
4814 ino, parent_ino, &local_index);
4815 }
4816 return ret;
39279cc3
CM
4817}
4818
4819static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4820 struct inode *dir, struct dentry *dentry,
4821 struct inode *inode, int backref, u64 index)
39279cc3 4822{
a1b075d2
JB
4823 int err = btrfs_add_link(trans, dir, inode,
4824 dentry->d_name.name, dentry->d_name.len,
4825 backref, index);
39279cc3
CM
4826 if (err > 0)
4827 err = -EEXIST;
4828 return err;
4829}
4830
618e21d5 4831static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4832 umode_t mode, dev_t rdev)
618e21d5
JB
4833{
4834 struct btrfs_trans_handle *trans;
4835 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4836 struct inode *inode = NULL;
618e21d5
JB
4837 int err;
4838 int drop_inode = 0;
4839 u64 objectid;
1832a6d5 4840 unsigned long nr = 0;
00e4e6b3 4841 u64 index = 0;
618e21d5
JB
4842
4843 if (!new_valid_dev(rdev))
4844 return -EINVAL;
4845
9ed74f2d
JB
4846 /*
4847 * 2 for inode item and ref
4848 * 2 for dir items
4849 * 1 for xattr if selinux is on
4850 */
a22285a6
YZ
4851 trans = btrfs_start_transaction(root, 5);
4852 if (IS_ERR(trans))
4853 return PTR_ERR(trans);
1832a6d5 4854
581bb050
LZ
4855 err = btrfs_find_free_ino(root, &objectid);
4856 if (err)
4857 goto out_unlock;
4858
aec7477b 4859 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4860 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4861 mode, &index);
7cf96da3
TI
4862 if (IS_ERR(inode)) {
4863 err = PTR_ERR(inode);
618e21d5 4864 goto out_unlock;
7cf96da3 4865 }
618e21d5 4866
2a7dba39 4867 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4868 if (err) {
4869 drop_inode = 1;
4870 goto out_unlock;
4871 }
4872
ad19db71
CS
4873 /*
4874 * If the active LSM wants to access the inode during
4875 * d_instantiate it needs these. Smack checks to see
4876 * if the filesystem supports xattrs by looking at the
4877 * ops vector.
4878 */
4879
4880 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4881 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4882 if (err)
4883 drop_inode = 1;
4884 else {
618e21d5 4885 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4886 btrfs_update_inode(trans, root, inode);
08c422c2 4887 d_instantiate(dentry, inode);
618e21d5 4888 }
618e21d5 4889out_unlock:
d3c2fdcf 4890 nr = trans->blocks_used;
7ad85bb7 4891 btrfs_end_transaction(trans, root);
a22285a6 4892 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4893 if (drop_inode) {
4894 inode_dec_link_count(inode);
4895 iput(inode);
4896 }
618e21d5
JB
4897 return err;
4898}
4899
39279cc3 4900static int btrfs_create(struct inode *dir, struct dentry *dentry,
4acdaf27 4901 umode_t mode, struct nameidata *nd)
39279cc3
CM
4902{
4903 struct btrfs_trans_handle *trans;
4904 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4905 struct inode *inode = NULL;
39279cc3 4906 int drop_inode = 0;
a22285a6 4907 int err;
1832a6d5 4908 unsigned long nr = 0;
39279cc3 4909 u64 objectid;
00e4e6b3 4910 u64 index = 0;
39279cc3 4911
9ed74f2d
JB
4912 /*
4913 * 2 for inode item and ref
4914 * 2 for dir items
4915 * 1 for xattr if selinux is on
4916 */
a22285a6
YZ
4917 trans = btrfs_start_transaction(root, 5);
4918 if (IS_ERR(trans))
4919 return PTR_ERR(trans);
9ed74f2d 4920
581bb050
LZ
4921 err = btrfs_find_free_ino(root, &objectid);
4922 if (err)
4923 goto out_unlock;
4924
aec7477b 4925 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4926 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4927 mode, &index);
7cf96da3
TI
4928 if (IS_ERR(inode)) {
4929 err = PTR_ERR(inode);
39279cc3 4930 goto out_unlock;
7cf96da3 4931 }
39279cc3 4932
2a7dba39 4933 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4934 if (err) {
4935 drop_inode = 1;
4936 goto out_unlock;
4937 }
4938
ad19db71
CS
4939 /*
4940 * If the active LSM wants to access the inode during
4941 * d_instantiate it needs these. Smack checks to see
4942 * if the filesystem supports xattrs by looking at the
4943 * ops vector.
4944 */
4945 inode->i_fop = &btrfs_file_operations;
4946 inode->i_op = &btrfs_file_inode_operations;
4947
a1b075d2 4948 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4949 if (err)
4950 drop_inode = 1;
4951 else {
4952 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4953 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 4954 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
08c422c2 4955 d_instantiate(dentry, inode);
39279cc3 4956 }
39279cc3 4957out_unlock:
d3c2fdcf 4958 nr = trans->blocks_used;
7ad85bb7 4959 btrfs_end_transaction(trans, root);
39279cc3
CM
4960 if (drop_inode) {
4961 inode_dec_link_count(inode);
4962 iput(inode);
4963 }
d3c2fdcf 4964 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4965 return err;
4966}
4967
4968static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4969 struct dentry *dentry)
4970{
4971 struct btrfs_trans_handle *trans;
4972 struct btrfs_root *root = BTRFS_I(dir)->root;
4973 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4974 u64 index;
1832a6d5 4975 unsigned long nr = 0;
39279cc3
CM
4976 int err;
4977 int drop_inode = 0;
4978
4a8be425
TH
4979 /* do not allow sys_link's with other subvols of the same device */
4980 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4981 return -EXDEV;
4a8be425 4982
c055e99e
AV
4983 if (inode->i_nlink == ~0U)
4984 return -EMLINK;
4a8be425 4985
3de4586c 4986 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4987 if (err)
4988 goto fail;
4989
a22285a6 4990 /*
7e6b6465 4991 * 2 items for inode and inode ref
a22285a6 4992 * 2 items for dir items
7e6b6465 4993 * 1 item for parent inode
a22285a6 4994 */
7e6b6465 4995 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4996 if (IS_ERR(trans)) {
4997 err = PTR_ERR(trans);
4998 goto fail;
4999 }
5f39d397 5000
3153495d 5001 btrfs_inc_nlink(inode);
0c4d2d95 5002 inode_inc_iversion(inode);
3153495d 5003 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5004 ihold(inode);
aec7477b 5005
a1b075d2 5006 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5007
a5719521 5008 if (err) {
54aa1f4d 5009 drop_inode = 1;
a5719521 5010 } else {
10d9f309 5011 struct dentry *parent = dentry->d_parent;
a5719521 5012 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5013 if (err)
5014 goto fail;
08c422c2 5015 d_instantiate(dentry, inode);
6a912213 5016 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5017 }
39279cc3 5018
d3c2fdcf 5019 nr = trans->blocks_used;
7ad85bb7 5020 btrfs_end_transaction(trans, root);
1832a6d5 5021fail:
39279cc3
CM
5022 if (drop_inode) {
5023 inode_dec_link_count(inode);
5024 iput(inode);
5025 }
d3c2fdcf 5026 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5027 return err;
5028}
5029
18bb1db3 5030static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5031{
b9d86667 5032 struct inode *inode = NULL;
39279cc3
CM
5033 struct btrfs_trans_handle *trans;
5034 struct btrfs_root *root = BTRFS_I(dir)->root;
5035 int err = 0;
5036 int drop_on_err = 0;
b9d86667 5037 u64 objectid = 0;
00e4e6b3 5038 u64 index = 0;
d3c2fdcf 5039 unsigned long nr = 1;
39279cc3 5040
9ed74f2d
JB
5041 /*
5042 * 2 items for inode and ref
5043 * 2 items for dir items
5044 * 1 for xattr if selinux is on
5045 */
a22285a6
YZ
5046 trans = btrfs_start_transaction(root, 5);
5047 if (IS_ERR(trans))
5048 return PTR_ERR(trans);
39279cc3 5049
581bb050
LZ
5050 err = btrfs_find_free_ino(root, &objectid);
5051 if (err)
5052 goto out_fail;
5053
aec7477b 5054 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5055 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5056 S_IFDIR | mode, &index);
39279cc3
CM
5057 if (IS_ERR(inode)) {
5058 err = PTR_ERR(inode);
5059 goto out_fail;
5060 }
5f39d397 5061
39279cc3 5062 drop_on_err = 1;
33268eaf 5063
2a7dba39 5064 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5065 if (err)
5066 goto out_fail;
5067
39279cc3
CM
5068 inode->i_op = &btrfs_dir_inode_operations;
5069 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5070
dbe674a9 5071 btrfs_i_size_write(inode, 0);
39279cc3
CM
5072 err = btrfs_update_inode(trans, root, inode);
5073 if (err)
5074 goto out_fail;
5f39d397 5075
a1b075d2
JB
5076 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5077 dentry->d_name.len, 0, index);
39279cc3
CM
5078 if (err)
5079 goto out_fail;
5f39d397 5080
39279cc3
CM
5081 d_instantiate(dentry, inode);
5082 drop_on_err = 0;
39279cc3
CM
5083
5084out_fail:
d3c2fdcf 5085 nr = trans->blocks_used;
7ad85bb7 5086 btrfs_end_transaction(trans, root);
39279cc3
CM
5087 if (drop_on_err)
5088 iput(inode);
d3c2fdcf 5089 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5090 return err;
5091}
5092
d352ac68
CM
5093/* helper for btfs_get_extent. Given an existing extent in the tree,
5094 * and an extent that you want to insert, deal with overlap and insert
5095 * the new extent into the tree.
5096 */
3b951516
CM
5097static int merge_extent_mapping(struct extent_map_tree *em_tree,
5098 struct extent_map *existing,
e6dcd2dc
CM
5099 struct extent_map *em,
5100 u64 map_start, u64 map_len)
3b951516
CM
5101{
5102 u64 start_diff;
3b951516 5103
e6dcd2dc
CM
5104 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5105 start_diff = map_start - em->start;
5106 em->start = map_start;
5107 em->len = map_len;
c8b97818
CM
5108 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5109 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5110 em->block_start += start_diff;
c8b97818
CM
5111 em->block_len -= start_diff;
5112 }
e6dcd2dc 5113 return add_extent_mapping(em_tree, em);
3b951516
CM
5114}
5115
c8b97818
CM
5116static noinline int uncompress_inline(struct btrfs_path *path,
5117 struct inode *inode, struct page *page,
5118 size_t pg_offset, u64 extent_offset,
5119 struct btrfs_file_extent_item *item)
5120{
5121 int ret;
5122 struct extent_buffer *leaf = path->nodes[0];
5123 char *tmp;
5124 size_t max_size;
5125 unsigned long inline_size;
5126 unsigned long ptr;
261507a0 5127 int compress_type;
c8b97818
CM
5128
5129 WARN_ON(pg_offset != 0);
261507a0 5130 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5131 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5132 inline_size = btrfs_file_extent_inline_item_len(leaf,
5133 btrfs_item_nr(leaf, path->slots[0]));
5134 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5135 if (!tmp)
5136 return -ENOMEM;
c8b97818
CM
5137 ptr = btrfs_file_extent_inline_start(item);
5138
5139 read_extent_buffer(leaf, tmp, ptr, inline_size);
5140
5b050f04 5141 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5142 ret = btrfs_decompress(compress_type, tmp, page,
5143 extent_offset, inline_size, max_size);
c8b97818 5144 if (ret) {
7ac687d9 5145 char *kaddr = kmap_atomic(page);
c8b97818
CM
5146 unsigned long copy_size = min_t(u64,
5147 PAGE_CACHE_SIZE - pg_offset,
5148 max_size - extent_offset);
5149 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5150 kunmap_atomic(kaddr);
c8b97818
CM
5151 }
5152 kfree(tmp);
5153 return 0;
5154}
5155
d352ac68
CM
5156/*
5157 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5158 * the ugly parts come from merging extents from the disk with the in-ram
5159 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5160 * where the in-ram extents might be locked pending data=ordered completion.
5161 *
5162 * This also copies inline extents directly into the page.
5163 */
d397712b 5164
a52d9a80 5165struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5166 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5167 int create)
5168{
5169 int ret;
5170 int err = 0;
db94535d 5171 u64 bytenr;
a52d9a80
CM
5172 u64 extent_start = 0;
5173 u64 extent_end = 0;
33345d01 5174 u64 objectid = btrfs_ino(inode);
a52d9a80 5175 u32 found_type;
f421950f 5176 struct btrfs_path *path = NULL;
a52d9a80
CM
5177 struct btrfs_root *root = BTRFS_I(inode)->root;
5178 struct btrfs_file_extent_item *item;
5f39d397
CM
5179 struct extent_buffer *leaf;
5180 struct btrfs_key found_key;
a52d9a80
CM
5181 struct extent_map *em = NULL;
5182 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5183 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5184 struct btrfs_trans_handle *trans = NULL;
261507a0 5185 int compress_type;
a52d9a80 5186
a52d9a80 5187again:
890871be 5188 read_lock(&em_tree->lock);
d1310b2e 5189 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5190 if (em)
5191 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5192 read_unlock(&em_tree->lock);
d1310b2e 5193
a52d9a80 5194 if (em) {
e1c4b745
CM
5195 if (em->start > start || em->start + em->len <= start)
5196 free_extent_map(em);
5197 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5198 free_extent_map(em);
5199 else
5200 goto out;
a52d9a80 5201 }
172ddd60 5202 em = alloc_extent_map();
a52d9a80 5203 if (!em) {
d1310b2e
CM
5204 err = -ENOMEM;
5205 goto out;
a52d9a80 5206 }
e6dcd2dc 5207 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5208 em->start = EXTENT_MAP_HOLE;
445a6944 5209 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5210 em->len = (u64)-1;
c8b97818 5211 em->block_len = (u64)-1;
f421950f
CM
5212
5213 if (!path) {
5214 path = btrfs_alloc_path();
026fd317
JB
5215 if (!path) {
5216 err = -ENOMEM;
5217 goto out;
5218 }
5219 /*
5220 * Chances are we'll be called again, so go ahead and do
5221 * readahead
5222 */
5223 path->reada = 1;
f421950f
CM
5224 }
5225
179e29e4
CM
5226 ret = btrfs_lookup_file_extent(trans, root, path,
5227 objectid, start, trans != NULL);
a52d9a80
CM
5228 if (ret < 0) {
5229 err = ret;
5230 goto out;
5231 }
5232
5233 if (ret != 0) {
5234 if (path->slots[0] == 0)
5235 goto not_found;
5236 path->slots[0]--;
5237 }
5238
5f39d397
CM
5239 leaf = path->nodes[0];
5240 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5241 struct btrfs_file_extent_item);
a52d9a80 5242 /* are we inside the extent that was found? */
5f39d397
CM
5243 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5244 found_type = btrfs_key_type(&found_key);
5245 if (found_key.objectid != objectid ||
a52d9a80
CM
5246 found_type != BTRFS_EXTENT_DATA_KEY) {
5247 goto not_found;
5248 }
5249
5f39d397
CM
5250 found_type = btrfs_file_extent_type(leaf, item);
5251 extent_start = found_key.offset;
261507a0 5252 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5253 if (found_type == BTRFS_FILE_EXTENT_REG ||
5254 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5255 extent_end = extent_start +
db94535d 5256 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5257 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5258 size_t size;
5259 size = btrfs_file_extent_inline_len(leaf, item);
5260 extent_end = (extent_start + size + root->sectorsize - 1) &
5261 ~((u64)root->sectorsize - 1);
5262 }
5263
5264 if (start >= extent_end) {
5265 path->slots[0]++;
5266 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5267 ret = btrfs_next_leaf(root, path);
5268 if (ret < 0) {
5269 err = ret;
5270 goto out;
a52d9a80 5271 }
9036c102
YZ
5272 if (ret > 0)
5273 goto not_found;
5274 leaf = path->nodes[0];
a52d9a80 5275 }
9036c102
YZ
5276 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5277 if (found_key.objectid != objectid ||
5278 found_key.type != BTRFS_EXTENT_DATA_KEY)
5279 goto not_found;
5280 if (start + len <= found_key.offset)
5281 goto not_found;
5282 em->start = start;
5283 em->len = found_key.offset - start;
5284 goto not_found_em;
5285 }
5286
d899e052
YZ
5287 if (found_type == BTRFS_FILE_EXTENT_REG ||
5288 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5289 em->start = extent_start;
5290 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5291 em->orig_start = extent_start -
5292 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5293 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5294 if (bytenr == 0) {
5f39d397 5295 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5296 goto insert;
5297 }
261507a0 5298 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5299 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5300 em->compress_type = compress_type;
c8b97818
CM
5301 em->block_start = bytenr;
5302 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5303 item);
5304 } else {
5305 bytenr += btrfs_file_extent_offset(leaf, item);
5306 em->block_start = bytenr;
5307 em->block_len = em->len;
d899e052
YZ
5308 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5309 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5310 }
a52d9a80
CM
5311 goto insert;
5312 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5313 unsigned long ptr;
a52d9a80 5314 char *map;
3326d1b0
CM
5315 size_t size;
5316 size_t extent_offset;
5317 size_t copy_size;
a52d9a80 5318
689f9346 5319 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5320 if (!page || create) {
689f9346 5321 em->start = extent_start;
9036c102 5322 em->len = extent_end - extent_start;
689f9346
Y
5323 goto out;
5324 }
5f39d397 5325
9036c102
YZ
5326 size = btrfs_file_extent_inline_len(leaf, item);
5327 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5328 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5329 size - extent_offset);
3326d1b0 5330 em->start = extent_start + extent_offset;
70dec807
CM
5331 em->len = (copy_size + root->sectorsize - 1) &
5332 ~((u64)root->sectorsize - 1);
ff5b7ee3 5333 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5334 if (compress_type) {
c8b97818 5335 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5336 em->compress_type = compress_type;
5337 }
689f9346 5338 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5339 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5340 if (btrfs_file_extent_compression(leaf, item) !=
5341 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5342 ret = uncompress_inline(path, inode, page,
5343 pg_offset,
5344 extent_offset, item);
79787eaa 5345 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5346 } else {
5347 map = kmap(page);
5348 read_extent_buffer(leaf, map + pg_offset, ptr,
5349 copy_size);
93c82d57
CM
5350 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5351 memset(map + pg_offset + copy_size, 0,
5352 PAGE_CACHE_SIZE - pg_offset -
5353 copy_size);
5354 }
c8b97818
CM
5355 kunmap(page);
5356 }
179e29e4
CM
5357 flush_dcache_page(page);
5358 } else if (create && PageUptodate(page)) {
6bf7e080 5359 BUG();
179e29e4
CM
5360 if (!trans) {
5361 kunmap(page);
5362 free_extent_map(em);
5363 em = NULL;
ff5714cc 5364
b3b4aa74 5365 btrfs_release_path(path);
7a7eaa40 5366 trans = btrfs_join_transaction(root);
ff5714cc 5367
3612b495
TI
5368 if (IS_ERR(trans))
5369 return ERR_CAST(trans);
179e29e4
CM
5370 goto again;
5371 }
c8b97818 5372 map = kmap(page);
70dec807 5373 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5374 copy_size);
c8b97818 5375 kunmap(page);
179e29e4 5376 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5377 }
d1310b2e 5378 set_extent_uptodate(io_tree, em->start,
507903b8 5379 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5380 goto insert;
5381 } else {
d397712b 5382 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5383 WARN_ON(1);
5384 }
5385not_found:
5386 em->start = start;
d1310b2e 5387 em->len = len;
a52d9a80 5388not_found_em:
5f39d397 5389 em->block_start = EXTENT_MAP_HOLE;
9036c102 5390 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5391insert:
b3b4aa74 5392 btrfs_release_path(path);
d1310b2e 5393 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5394 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5395 "[%llu %llu]\n", (unsigned long long)em->start,
5396 (unsigned long long)em->len,
5397 (unsigned long long)start,
5398 (unsigned long long)len);
a52d9a80
CM
5399 err = -EIO;
5400 goto out;
5401 }
d1310b2e
CM
5402
5403 err = 0;
890871be 5404 write_lock(&em_tree->lock);
a52d9a80 5405 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5406 /* it is possible that someone inserted the extent into the tree
5407 * while we had the lock dropped. It is also possible that
5408 * an overlapping map exists in the tree
5409 */
a52d9a80 5410 if (ret == -EEXIST) {
3b951516 5411 struct extent_map *existing;
e6dcd2dc
CM
5412
5413 ret = 0;
5414
3b951516 5415 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5416 if (existing && (existing->start > start ||
5417 existing->start + existing->len <= start)) {
5418 free_extent_map(existing);
5419 existing = NULL;
5420 }
3b951516
CM
5421 if (!existing) {
5422 existing = lookup_extent_mapping(em_tree, em->start,
5423 em->len);
5424 if (existing) {
5425 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5426 em, start,
5427 root->sectorsize);
3b951516
CM
5428 free_extent_map(existing);
5429 if (err) {
5430 free_extent_map(em);
5431 em = NULL;
5432 }
5433 } else {
5434 err = -EIO;
3b951516
CM
5435 free_extent_map(em);
5436 em = NULL;
5437 }
5438 } else {
5439 free_extent_map(em);
5440 em = existing;
e6dcd2dc 5441 err = 0;
a52d9a80 5442 }
a52d9a80 5443 }
890871be 5444 write_unlock(&em_tree->lock);
a52d9a80 5445out:
1abe9b8a 5446
5447 trace_btrfs_get_extent(root, em);
5448
f421950f
CM
5449 if (path)
5450 btrfs_free_path(path);
a52d9a80
CM
5451 if (trans) {
5452 ret = btrfs_end_transaction(trans, root);
d397712b 5453 if (!err)
a52d9a80
CM
5454 err = ret;
5455 }
a52d9a80
CM
5456 if (err) {
5457 free_extent_map(em);
a52d9a80
CM
5458 return ERR_PTR(err);
5459 }
79787eaa 5460 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5461 return em;
5462}
5463
ec29ed5b
CM
5464struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5465 size_t pg_offset, u64 start, u64 len,
5466 int create)
5467{
5468 struct extent_map *em;
5469 struct extent_map *hole_em = NULL;
5470 u64 range_start = start;
5471 u64 end;
5472 u64 found;
5473 u64 found_end;
5474 int err = 0;
5475
5476 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5477 if (IS_ERR(em))
5478 return em;
5479 if (em) {
5480 /*
5481 * if our em maps to a hole, there might
5482 * actually be delalloc bytes behind it
5483 */
5484 if (em->block_start != EXTENT_MAP_HOLE)
5485 return em;
5486 else
5487 hole_em = em;
5488 }
5489
5490 /* check to see if we've wrapped (len == -1 or similar) */
5491 end = start + len;
5492 if (end < start)
5493 end = (u64)-1;
5494 else
5495 end -= 1;
5496
5497 em = NULL;
5498
5499 /* ok, we didn't find anything, lets look for delalloc */
5500 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5501 end, len, EXTENT_DELALLOC, 1);
5502 found_end = range_start + found;
5503 if (found_end < range_start)
5504 found_end = (u64)-1;
5505
5506 /*
5507 * we didn't find anything useful, return
5508 * the original results from get_extent()
5509 */
5510 if (range_start > end || found_end <= start) {
5511 em = hole_em;
5512 hole_em = NULL;
5513 goto out;
5514 }
5515
5516 /* adjust the range_start to make sure it doesn't
5517 * go backwards from the start they passed in
5518 */
5519 range_start = max(start,range_start);
5520 found = found_end - range_start;
5521
5522 if (found > 0) {
5523 u64 hole_start = start;
5524 u64 hole_len = len;
5525
172ddd60 5526 em = alloc_extent_map();
ec29ed5b
CM
5527 if (!em) {
5528 err = -ENOMEM;
5529 goto out;
5530 }
5531 /*
5532 * when btrfs_get_extent can't find anything it
5533 * returns one huge hole
5534 *
5535 * make sure what it found really fits our range, and
5536 * adjust to make sure it is based on the start from
5537 * the caller
5538 */
5539 if (hole_em) {
5540 u64 calc_end = extent_map_end(hole_em);
5541
5542 if (calc_end <= start || (hole_em->start > end)) {
5543 free_extent_map(hole_em);
5544 hole_em = NULL;
5545 } else {
5546 hole_start = max(hole_em->start, start);
5547 hole_len = calc_end - hole_start;
5548 }
5549 }
5550 em->bdev = NULL;
5551 if (hole_em && range_start > hole_start) {
5552 /* our hole starts before our delalloc, so we
5553 * have to return just the parts of the hole
5554 * that go until the delalloc starts
5555 */
5556 em->len = min(hole_len,
5557 range_start - hole_start);
5558 em->start = hole_start;
5559 em->orig_start = hole_start;
5560 /*
5561 * don't adjust block start at all,
5562 * it is fixed at EXTENT_MAP_HOLE
5563 */
5564 em->block_start = hole_em->block_start;
5565 em->block_len = hole_len;
5566 } else {
5567 em->start = range_start;
5568 em->len = found;
5569 em->orig_start = range_start;
5570 em->block_start = EXTENT_MAP_DELALLOC;
5571 em->block_len = found;
5572 }
5573 } else if (hole_em) {
5574 return hole_em;
5575 }
5576out:
5577
5578 free_extent_map(hole_em);
5579 if (err) {
5580 free_extent_map(em);
5581 return ERR_PTR(err);
5582 }
5583 return em;
5584}
5585
4b46fce2 5586static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5587 struct extent_map *em,
4b46fce2
JB
5588 u64 start, u64 len)
5589{
5590 struct btrfs_root *root = BTRFS_I(inode)->root;
5591 struct btrfs_trans_handle *trans;
4b46fce2
JB
5592 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5593 struct btrfs_key ins;
5594 u64 alloc_hint;
5595 int ret;
16d299ac 5596 bool insert = false;
4b46fce2 5597
16d299ac
JB
5598 /*
5599 * Ok if the extent map we looked up is a hole and is for the exact
5600 * range we want, there is no reason to allocate a new one, however if
5601 * it is not right then we need to free this one and drop the cache for
5602 * our range.
5603 */
5604 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5605 em->len != len) {
5606 free_extent_map(em);
5607 em = NULL;
5608 insert = true;
5609 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5610 }
4b46fce2 5611
7a7eaa40 5612 trans = btrfs_join_transaction(root);
3612b495
TI
5613 if (IS_ERR(trans))
5614 return ERR_CAST(trans);
4b46fce2 5615
4cb5300b
CM
5616 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5617 btrfs_add_inode_defrag(trans, inode);
5618
4b46fce2
JB
5619 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5620
5621 alloc_hint = get_extent_allocation_hint(inode, start, len);
5622 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5623 alloc_hint, &ins, 1);
4b46fce2
JB
5624 if (ret) {
5625 em = ERR_PTR(ret);
5626 goto out;
5627 }
5628
4b46fce2 5629 if (!em) {
172ddd60 5630 em = alloc_extent_map();
16d299ac
JB
5631 if (!em) {
5632 em = ERR_PTR(-ENOMEM);
5633 goto out;
5634 }
4b46fce2
JB
5635 }
5636
5637 em->start = start;
5638 em->orig_start = em->start;
5639 em->len = ins.offset;
5640
5641 em->block_start = ins.objectid;
5642 em->block_len = ins.offset;
5643 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5644
5645 /*
5646 * We need to do this because if we're using the original em we searched
5647 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5648 */
5649 em->flags = 0;
4b46fce2
JB
5650 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5651
16d299ac 5652 while (insert) {
4b46fce2
JB
5653 write_lock(&em_tree->lock);
5654 ret = add_extent_mapping(em_tree, em);
5655 write_unlock(&em_tree->lock);
5656 if (ret != -EEXIST)
5657 break;
5658 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5659 }
5660
5661 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5662 ins.offset, ins.offset, 0);
5663 if (ret) {
5664 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5665 em = ERR_PTR(ret);
5666 }
5667out:
5668 btrfs_end_transaction(trans, root);
5669 return em;
5670}
5671
46bfbb5c
CM
5672/*
5673 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5674 * block must be cow'd
5675 */
5676static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5677 struct inode *inode, u64 offset, u64 len)
5678{
5679 struct btrfs_path *path;
5680 int ret;
5681 struct extent_buffer *leaf;
5682 struct btrfs_root *root = BTRFS_I(inode)->root;
5683 struct btrfs_file_extent_item *fi;
5684 struct btrfs_key key;
5685 u64 disk_bytenr;
5686 u64 backref_offset;
5687 u64 extent_end;
5688 u64 num_bytes;
5689 int slot;
5690 int found_type;
5691
5692 path = btrfs_alloc_path();
5693 if (!path)
5694 return -ENOMEM;
5695
33345d01 5696 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5697 offset, 0);
5698 if (ret < 0)
5699 goto out;
5700
5701 slot = path->slots[0];
5702 if (ret == 1) {
5703 if (slot == 0) {
5704 /* can't find the item, must cow */
5705 ret = 0;
5706 goto out;
5707 }
5708 slot--;
5709 }
5710 ret = 0;
5711 leaf = path->nodes[0];
5712 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5713 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5714 key.type != BTRFS_EXTENT_DATA_KEY) {
5715 /* not our file or wrong item type, must cow */
5716 goto out;
5717 }
5718
5719 if (key.offset > offset) {
5720 /* Wrong offset, must cow */
5721 goto out;
5722 }
5723
5724 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5725 found_type = btrfs_file_extent_type(leaf, fi);
5726 if (found_type != BTRFS_FILE_EXTENT_REG &&
5727 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5728 /* not a regular extent, must cow */
5729 goto out;
5730 }
5731 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5732 backref_offset = btrfs_file_extent_offset(leaf, fi);
5733
5734 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5735 if (extent_end < offset + len) {
5736 /* extent doesn't include our full range, must cow */
5737 goto out;
5738 }
5739
5740 if (btrfs_extent_readonly(root, disk_bytenr))
5741 goto out;
5742
5743 /*
5744 * look for other files referencing this extent, if we
5745 * find any we must cow
5746 */
33345d01 5747 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5748 key.offset - backref_offset, disk_bytenr))
5749 goto out;
5750
5751 /*
5752 * adjust disk_bytenr and num_bytes to cover just the bytes
5753 * in this extent we are about to write. If there
5754 * are any csums in that range we have to cow in order
5755 * to keep the csums correct
5756 */
5757 disk_bytenr += backref_offset;
5758 disk_bytenr += offset - key.offset;
5759 num_bytes = min(offset + len, extent_end) - offset;
5760 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5761 goto out;
5762 /*
5763 * all of the above have passed, it is safe to overwrite this extent
5764 * without cow
5765 */
5766 ret = 1;
5767out:
5768 btrfs_free_path(path);
5769 return ret;
5770}
5771
4b46fce2
JB
5772static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5773 struct buffer_head *bh_result, int create)
5774{
5775 struct extent_map *em;
5776 struct btrfs_root *root = BTRFS_I(inode)->root;
5777 u64 start = iblock << inode->i_blkbits;
5778 u64 len = bh_result->b_size;
46bfbb5c 5779 struct btrfs_trans_handle *trans;
4b46fce2
JB
5780
5781 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5782 if (IS_ERR(em))
5783 return PTR_ERR(em);
5784
5785 /*
5786 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5787 * io. INLINE is special, and we could probably kludge it in here, but
5788 * it's still buffered so for safety lets just fall back to the generic
5789 * buffered path.
5790 *
5791 * For COMPRESSED we _have_ to read the entire extent in so we can
5792 * decompress it, so there will be buffering required no matter what we
5793 * do, so go ahead and fallback to buffered.
5794 *
5795 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5796 * to buffered IO. Don't blame me, this is the price we pay for using
5797 * the generic code.
5798 */
5799 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5800 em->block_start == EXTENT_MAP_INLINE) {
5801 free_extent_map(em);
5802 return -ENOTBLK;
5803 }
5804
5805 /* Just a good old fashioned hole, return */
5806 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5807 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5808 free_extent_map(em);
5809 /* DIO will do one hole at a time, so just unlock a sector */
5810 unlock_extent(&BTRFS_I(inode)->io_tree, start,
d0082371 5811 start + root->sectorsize - 1);
4b46fce2
JB
5812 return 0;
5813 }
5814
5815 /*
5816 * We don't allocate a new extent in the following cases
5817 *
5818 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5819 * existing extent.
5820 * 2) The extent is marked as PREALLOC. We're good to go here and can
5821 * just use the extent.
5822 *
5823 */
46bfbb5c
CM
5824 if (!create) {
5825 len = em->len - (start - em->start);
4b46fce2 5826 goto map;
46bfbb5c 5827 }
4b46fce2
JB
5828
5829 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5830 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5831 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5832 int type;
5833 int ret;
46bfbb5c 5834 u64 block_start;
4b46fce2
JB
5835
5836 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5837 type = BTRFS_ORDERED_PREALLOC;
5838 else
5839 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5840 len = min(len, em->len - (start - em->start));
4b46fce2 5841 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5842
5843 /*
5844 * we're not going to log anything, but we do need
5845 * to make sure the current transaction stays open
5846 * while we look for nocow cross refs
5847 */
7a7eaa40 5848 trans = btrfs_join_transaction(root);
3612b495 5849 if (IS_ERR(trans))
46bfbb5c
CM
5850 goto must_cow;
5851
5852 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5853 ret = btrfs_add_ordered_extent_dio(inode, start,
5854 block_start, len, len, type);
5855 btrfs_end_transaction(trans, root);
5856 if (ret) {
5857 free_extent_map(em);
5858 return ret;
5859 }
5860 goto unlock;
4b46fce2 5861 }
46bfbb5c 5862 btrfs_end_transaction(trans, root);
4b46fce2 5863 }
46bfbb5c
CM
5864must_cow:
5865 /*
5866 * this will cow the extent, reset the len in case we changed
5867 * it above
5868 */
5869 len = bh_result->b_size;
16d299ac 5870 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5871 if (IS_ERR(em))
5872 return PTR_ERR(em);
5873 len = min(len, em->len - (start - em->start));
5874unlock:
4845e44f
CM
5875 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5876 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5877 0, NULL, GFP_NOFS);
4b46fce2
JB
5878map:
5879 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5880 inode->i_blkbits;
46bfbb5c 5881 bh_result->b_size = len;
4b46fce2
JB
5882 bh_result->b_bdev = em->bdev;
5883 set_buffer_mapped(bh_result);
c3473e83
JB
5884 if (create) {
5885 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5886 set_buffer_new(bh_result);
5887
5888 /*
5889 * Need to update the i_size under the extent lock so buffered
5890 * readers will get the updated i_size when we unlock.
5891 */
5892 if (start + len > i_size_read(inode))
5893 i_size_write(inode, start + len);
5894 }
4b46fce2
JB
5895
5896 free_extent_map(em);
5897
5898 return 0;
5899}
5900
5901struct btrfs_dio_private {
5902 struct inode *inode;
5903 u64 logical_offset;
5904 u64 disk_bytenr;
5905 u64 bytes;
5906 u32 *csums;
5907 void *private;
e65e1535
MX
5908
5909 /* number of bios pending for this dio */
5910 atomic_t pending_bios;
5911
5912 /* IO errors */
5913 int errors;
5914
5915 struct bio *orig_bio;
4b46fce2
JB
5916};
5917
5918static void btrfs_endio_direct_read(struct bio *bio, int err)
5919{
e65e1535 5920 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5921 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5922 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5923 struct inode *inode = dip->inode;
5924 struct btrfs_root *root = BTRFS_I(inode)->root;
5925 u64 start;
5926 u32 *private = dip->csums;
5927
5928 start = dip->logical_offset;
5929 do {
5930 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5931 struct page *page = bvec->bv_page;
5932 char *kaddr;
5933 u32 csum = ~(u32)0;
5934 unsigned long flags;
5935
5936 local_irq_save(flags);
7ac687d9 5937 kaddr = kmap_atomic(page);
4b46fce2
JB
5938 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5939 csum, bvec->bv_len);
5940 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 5941 kunmap_atomic(kaddr);
4b46fce2
JB
5942 local_irq_restore(flags);
5943
5944 flush_dcache_page(bvec->bv_page);
5945 if (csum != *private) {
33345d01 5946 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5947 " %llu csum %u private %u\n",
33345d01
LZ
5948 (unsigned long long)btrfs_ino(inode),
5949 (unsigned long long)start,
4b46fce2
JB
5950 csum, *private);
5951 err = -EIO;
5952 }
5953 }
5954
5955 start += bvec->bv_len;
5956 private++;
5957 bvec++;
5958 } while (bvec <= bvec_end);
5959
5960 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 5961 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
5962 bio->bi_private = dip->private;
5963
5964 kfree(dip->csums);
5965 kfree(dip);
c0da7aa1
JB
5966
5967 /* If we had a csum failure make sure to clear the uptodate flag */
5968 if (err)
5969 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5970 dio_end_io(bio, err);
5971}
5972
5973static void btrfs_endio_direct_write(struct bio *bio, int err)
5974{
5975 struct btrfs_dio_private *dip = bio->bi_private;
5976 struct inode *inode = dip->inode;
5977 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 5978 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
5979 u64 ordered_offset = dip->logical_offset;
5980 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5981 int ret;
5982
5983 if (err)
5984 goto out_done;
163cf09c
CM
5985again:
5986 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5987 &ordered_offset,
5fd02043 5988 ordered_bytes, !err);
4b46fce2 5989 if (!ret)
163cf09c 5990 goto out_test;
4b46fce2 5991
5fd02043
JB
5992 ordered->work.func = finish_ordered_fn;
5993 ordered->work.flags = 0;
5994 btrfs_queue_worker(&root->fs_info->endio_write_workers,
5995 &ordered->work);
163cf09c
CM
5996out_test:
5997 /*
5998 * our bio might span multiple ordered extents. If we haven't
5999 * completed the accounting for the whole dio, go back and try again
6000 */
6001 if (ordered_offset < dip->logical_offset + dip->bytes) {
6002 ordered_bytes = dip->logical_offset + dip->bytes -
6003 ordered_offset;
5fd02043 6004 ordered = NULL;
163cf09c
CM
6005 goto again;
6006 }
4b46fce2
JB
6007out_done:
6008 bio->bi_private = dip->private;
6009
4b46fce2 6010 kfree(dip);
c0da7aa1
JB
6011
6012 /* If we had an error make sure to clear the uptodate flag */
6013 if (err)
6014 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6015 dio_end_io(bio, err);
6016}
6017
eaf25d93
CM
6018static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6019 struct bio *bio, int mirror_num,
6020 unsigned long bio_flags, u64 offset)
6021{
6022 int ret;
6023 struct btrfs_root *root = BTRFS_I(inode)->root;
6024 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6025 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6026 return 0;
6027}
6028
e65e1535
MX
6029static void btrfs_end_dio_bio(struct bio *bio, int err)
6030{
6031 struct btrfs_dio_private *dip = bio->bi_private;
6032
6033 if (err) {
33345d01 6034 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6035 "sector %#Lx len %u err no %d\n",
33345d01 6036 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6037 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6038 dip->errors = 1;
6039
6040 /*
6041 * before atomic variable goto zero, we must make sure
6042 * dip->errors is perceived to be set.
6043 */
6044 smp_mb__before_atomic_dec();
6045 }
6046
6047 /* if there are more bios still pending for this dio, just exit */
6048 if (!atomic_dec_and_test(&dip->pending_bios))
6049 goto out;
6050
6051 if (dip->errors)
6052 bio_io_error(dip->orig_bio);
6053 else {
6054 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6055 bio_endio(dip->orig_bio, 0);
6056 }
6057out:
6058 bio_put(bio);
6059}
6060
6061static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6062 u64 first_sector, gfp_t gfp_flags)
6063{
6064 int nr_vecs = bio_get_nr_vecs(bdev);
6065 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6066}
6067
6068static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6069 int rw, u64 file_offset, int skip_sum,
1ae39938 6070 u32 *csums, int async_submit)
e65e1535
MX
6071{
6072 int write = rw & REQ_WRITE;
6073 struct btrfs_root *root = BTRFS_I(inode)->root;
6074 int ret;
6075
6076 bio_get(bio);
5fd02043
JB
6077
6078 if (!write) {
6079 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6080 if (ret)
6081 goto err;
6082 }
e65e1535 6083
1ae39938
JB
6084 if (skip_sum)
6085 goto map;
6086
6087 if (write && async_submit) {
e65e1535
MX
6088 ret = btrfs_wq_submit_bio(root->fs_info,
6089 inode, rw, bio, 0, 0,
6090 file_offset,
6091 __btrfs_submit_bio_start_direct_io,
6092 __btrfs_submit_bio_done);
6093 goto err;
1ae39938
JB
6094 } else if (write) {
6095 /*
6096 * If we aren't doing async submit, calculate the csum of the
6097 * bio now.
6098 */
6099 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6100 if (ret)
6101 goto err;
c2db1073
TI
6102 } else if (!skip_sum) {
6103 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 6104 file_offset, csums);
c2db1073
TI
6105 if (ret)
6106 goto err;
6107 }
e65e1535 6108
1ae39938
JB
6109map:
6110 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6111err:
6112 bio_put(bio);
6113 return ret;
6114}
6115
6116static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6117 int skip_sum)
6118{
6119 struct inode *inode = dip->inode;
6120 struct btrfs_root *root = BTRFS_I(inode)->root;
6121 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6122 struct bio *bio;
6123 struct bio *orig_bio = dip->orig_bio;
6124 struct bio_vec *bvec = orig_bio->bi_io_vec;
6125 u64 start_sector = orig_bio->bi_sector;
6126 u64 file_offset = dip->logical_offset;
6127 u64 submit_len = 0;
6128 u64 map_length;
6129 int nr_pages = 0;
6130 u32 *csums = dip->csums;
6131 int ret = 0;
1ae39938 6132 int async_submit = 0;
98bc3149 6133 int write = rw & REQ_WRITE;
e65e1535 6134
e65e1535
MX
6135 map_length = orig_bio->bi_size;
6136 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6137 &map_length, NULL, 0);
6138 if (ret) {
64728bbb 6139 bio_put(orig_bio);
e65e1535
MX
6140 return -EIO;
6141 }
6142
02f57c7a
JB
6143 if (map_length >= orig_bio->bi_size) {
6144 bio = orig_bio;
6145 goto submit;
6146 }
6147
1ae39938 6148 async_submit = 1;
02f57c7a
JB
6149 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6150 if (!bio)
6151 return -ENOMEM;
6152 bio->bi_private = dip;
6153 bio->bi_end_io = btrfs_end_dio_bio;
6154 atomic_inc(&dip->pending_bios);
6155
e65e1535
MX
6156 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6157 if (unlikely(map_length < submit_len + bvec->bv_len ||
6158 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6159 bvec->bv_offset) < bvec->bv_len)) {
6160 /*
6161 * inc the count before we submit the bio so
6162 * we know the end IO handler won't happen before
6163 * we inc the count. Otherwise, the dip might get freed
6164 * before we're done setting it up
6165 */
6166 atomic_inc(&dip->pending_bios);
6167 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6168 file_offset, skip_sum,
1ae39938 6169 csums, async_submit);
e65e1535
MX
6170 if (ret) {
6171 bio_put(bio);
6172 atomic_dec(&dip->pending_bios);
6173 goto out_err;
6174 }
6175
98bc3149
JB
6176 /* Write's use the ordered csums */
6177 if (!write && !skip_sum)
e65e1535
MX
6178 csums = csums + nr_pages;
6179 start_sector += submit_len >> 9;
6180 file_offset += submit_len;
6181
6182 submit_len = 0;
6183 nr_pages = 0;
6184
6185 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6186 start_sector, GFP_NOFS);
6187 if (!bio)
6188 goto out_err;
6189 bio->bi_private = dip;
6190 bio->bi_end_io = btrfs_end_dio_bio;
6191
6192 map_length = orig_bio->bi_size;
6193 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6194 &map_length, NULL, 0);
6195 if (ret) {
6196 bio_put(bio);
6197 goto out_err;
6198 }
6199 } else {
6200 submit_len += bvec->bv_len;
6201 nr_pages ++;
6202 bvec++;
6203 }
6204 }
6205
02f57c7a 6206submit:
e65e1535 6207 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6208 csums, async_submit);
e65e1535
MX
6209 if (!ret)
6210 return 0;
6211
6212 bio_put(bio);
6213out_err:
6214 dip->errors = 1;
6215 /*
6216 * before atomic variable goto zero, we must
6217 * make sure dip->errors is perceived to be set.
6218 */
6219 smp_mb__before_atomic_dec();
6220 if (atomic_dec_and_test(&dip->pending_bios))
6221 bio_io_error(dip->orig_bio);
6222
6223 /* bio_end_io() will handle error, so we needn't return it */
6224 return 0;
6225}
6226
4b46fce2
JB
6227static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6228 loff_t file_offset)
6229{
6230 struct btrfs_root *root = BTRFS_I(inode)->root;
6231 struct btrfs_dio_private *dip;
6232 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6233 int skip_sum;
7b6d91da 6234 int write = rw & REQ_WRITE;
4b46fce2
JB
6235 int ret = 0;
6236
6237 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6238
6239 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6240 if (!dip) {
6241 ret = -ENOMEM;
6242 goto free_ordered;
6243 }
6244 dip->csums = NULL;
6245
98bc3149
JB
6246 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6247 if (!write && !skip_sum) {
4b46fce2
JB
6248 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6249 if (!dip->csums) {
b4966b77 6250 kfree(dip);
4b46fce2
JB
6251 ret = -ENOMEM;
6252 goto free_ordered;
6253 }
6254 }
6255
6256 dip->private = bio->bi_private;
6257 dip->inode = inode;
6258 dip->logical_offset = file_offset;
6259
4b46fce2
JB
6260 dip->bytes = 0;
6261 do {
6262 dip->bytes += bvec->bv_len;
6263 bvec++;
6264 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6265
46bfbb5c 6266 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6267 bio->bi_private = dip;
e65e1535
MX
6268 dip->errors = 0;
6269 dip->orig_bio = bio;
6270 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6271
6272 if (write)
6273 bio->bi_end_io = btrfs_endio_direct_write;
6274 else
6275 bio->bi_end_io = btrfs_endio_direct_read;
6276
e65e1535
MX
6277 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6278 if (!ret)
eaf25d93 6279 return;
4b46fce2
JB
6280free_ordered:
6281 /*
6282 * If this is a write, we need to clean up the reserved space and kill
6283 * the ordered extent.
6284 */
6285 if (write) {
6286 struct btrfs_ordered_extent *ordered;
955256f2 6287 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6288 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6289 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6290 btrfs_free_reserved_extent(root, ordered->start,
6291 ordered->disk_len);
6292 btrfs_put_ordered_extent(ordered);
6293 btrfs_put_ordered_extent(ordered);
6294 }
6295 bio_endio(bio, ret);
6296}
6297
5a5f79b5
CM
6298static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6299 const struct iovec *iov, loff_t offset,
6300 unsigned long nr_segs)
6301{
6302 int seg;
a1b75f7d 6303 int i;
5a5f79b5
CM
6304 size_t size;
6305 unsigned long addr;
6306 unsigned blocksize_mask = root->sectorsize - 1;
6307 ssize_t retval = -EINVAL;
6308 loff_t end = offset;
6309
6310 if (offset & blocksize_mask)
6311 goto out;
6312
6313 /* Check the memory alignment. Blocks cannot straddle pages */
6314 for (seg = 0; seg < nr_segs; seg++) {
6315 addr = (unsigned long)iov[seg].iov_base;
6316 size = iov[seg].iov_len;
6317 end += size;
a1b75f7d 6318 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6319 goto out;
a1b75f7d
JB
6320
6321 /* If this is a write we don't need to check anymore */
6322 if (rw & WRITE)
6323 continue;
6324
6325 /*
6326 * Check to make sure we don't have duplicate iov_base's in this
6327 * iovec, if so return EINVAL, otherwise we'll get csum errors
6328 * when reading back.
6329 */
6330 for (i = seg + 1; i < nr_segs; i++) {
6331 if (iov[seg].iov_base == iov[i].iov_base)
6332 goto out;
6333 }
5a5f79b5
CM
6334 }
6335 retval = 0;
6336out:
6337 return retval;
6338}
16432985
CM
6339static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6340 const struct iovec *iov, loff_t offset,
6341 unsigned long nr_segs)
6342{
4b46fce2
JB
6343 struct file *file = iocb->ki_filp;
6344 struct inode *inode = file->f_mapping->host;
6345 struct btrfs_ordered_extent *ordered;
4845e44f 6346 struct extent_state *cached_state = NULL;
4b46fce2
JB
6347 u64 lockstart, lockend;
6348 ssize_t ret;
4845e44f
CM
6349 int writing = rw & WRITE;
6350 int write_bits = 0;
3f7c579c 6351 size_t count = iov_length(iov, nr_segs);
4b46fce2 6352
5a5f79b5
CM
6353 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6354 offset, nr_segs)) {
6355 return 0;
6356 }
6357
4b46fce2 6358 lockstart = offset;
3f7c579c
CM
6359 lockend = offset + count - 1;
6360
6361 if (writing) {
6362 ret = btrfs_delalloc_reserve_space(inode, count);
6363 if (ret)
6364 goto out;
6365 }
4845e44f 6366
4b46fce2 6367 while (1) {
4845e44f 6368 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 6369 0, &cached_state);
4b46fce2
JB
6370 /*
6371 * We're concerned with the entire range that we're going to be
6372 * doing DIO to, so we need to make sure theres no ordered
6373 * extents in this range.
6374 */
6375 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6376 lockend - lockstart + 1);
c3473e83
JB
6377
6378 /*
6379 * We need to make sure there are no buffered pages in this
6380 * range either, we could have raced between the invalidate in
6381 * generic_file_direct_write and locking the extent. The
6382 * invalidate needs to happen so that reads after a write do not
6383 * get stale data.
6384 */
6385 if (!ordered && (!writing ||
6386 !test_range_bit(&BTRFS_I(inode)->io_tree,
6387 lockstart, lockend, EXTENT_UPTODATE, 0,
6388 cached_state)))
4b46fce2 6389 break;
c3473e83 6390
4845e44f
CM
6391 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6392 &cached_state, GFP_NOFS);
c3473e83
JB
6393
6394 if (ordered) {
6395 btrfs_start_ordered_extent(inode, ordered, 1);
6396 btrfs_put_ordered_extent(ordered);
6397 } else {
6398 /* Screw you mmap */
6399 ret = filemap_write_and_wait_range(file->f_mapping,
6400 lockstart,
6401 lockend);
6402 if (ret)
6403 goto out;
6404
6405 /*
6406 * If we found a page that couldn't be invalidated just
6407 * fall back to buffered.
6408 */
6409 ret = invalidate_inode_pages2_range(file->f_mapping,
6410 lockstart >> PAGE_CACHE_SHIFT,
6411 lockend >> PAGE_CACHE_SHIFT);
6412 if (ret) {
6413 if (ret == -EBUSY)
6414 ret = 0;
6415 goto out;
6416 }
6417 }
6418
4b46fce2
JB
6419 cond_resched();
6420 }
6421
4845e44f
CM
6422 /*
6423 * we don't use btrfs_set_extent_delalloc because we don't want
6424 * the dirty or uptodate bits
6425 */
6426 if (writing) {
6427 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6428 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3fbe5c02 6429 EXTENT_DELALLOC, NULL, &cached_state,
4845e44f
CM
6430 GFP_NOFS);
6431 if (ret) {
6432 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6433 lockend, EXTENT_LOCKED | write_bits,
6434 1, 0, &cached_state, GFP_NOFS);
6435 goto out;
6436 }
6437 }
6438
6439 free_extent_state(cached_state);
6440 cached_state = NULL;
6441
5a5f79b5
CM
6442 ret = __blockdev_direct_IO(rw, iocb, inode,
6443 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6444 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6445 btrfs_submit_direct, 0);
4b46fce2
JB
6446
6447 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6448 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6449 offset + iov_length(iov, nr_segs) - 1,
6450 EXTENT_LOCKED | write_bits, 1, 0,
6451 &cached_state, GFP_NOFS);
4b46fce2
JB
6452 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6453 /*
6454 * We're falling back to buffered, unlock the section we didn't
6455 * do IO on.
6456 */
4845e44f
CM
6457 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6458 offset + iov_length(iov, nr_segs) - 1,
6459 EXTENT_LOCKED | write_bits, 1, 0,
6460 &cached_state, GFP_NOFS);
4b46fce2 6461 }
4845e44f
CM
6462out:
6463 free_extent_state(cached_state);
4b46fce2 6464 return ret;
16432985
CM
6465}
6466
1506fcc8
YS
6467static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6468 __u64 start, __u64 len)
6469{
ec29ed5b 6470 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6471}
6472
a52d9a80 6473int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6474{
d1310b2e
CM
6475 struct extent_io_tree *tree;
6476 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6477 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6478}
1832a6d5 6479
a52d9a80 6480static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6481{
d1310b2e 6482 struct extent_io_tree *tree;
b888db2b
CM
6483
6484
6485 if (current->flags & PF_MEMALLOC) {
6486 redirty_page_for_writepage(wbc, page);
6487 unlock_page(page);
6488 return 0;
6489 }
d1310b2e 6490 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6491 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6492}
6493
f421950f
CM
6494int btrfs_writepages(struct address_space *mapping,
6495 struct writeback_control *wbc)
b293f02e 6496{
d1310b2e 6497 struct extent_io_tree *tree;
771ed689 6498
d1310b2e 6499 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6500 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6501}
6502
3ab2fb5a
CM
6503static int
6504btrfs_readpages(struct file *file, struct address_space *mapping,
6505 struct list_head *pages, unsigned nr_pages)
6506{
d1310b2e
CM
6507 struct extent_io_tree *tree;
6508 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6509 return extent_readpages(tree, mapping, pages, nr_pages,
6510 btrfs_get_extent);
6511}
e6dcd2dc 6512static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6513{
d1310b2e
CM
6514 struct extent_io_tree *tree;
6515 struct extent_map_tree *map;
a52d9a80 6516 int ret;
8c2383c3 6517
d1310b2e
CM
6518 tree = &BTRFS_I(page->mapping->host)->io_tree;
6519 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6520 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6521 if (ret == 1) {
6522 ClearPagePrivate(page);
6523 set_page_private(page, 0);
6524 page_cache_release(page);
39279cc3 6525 }
a52d9a80 6526 return ret;
39279cc3
CM
6527}
6528
e6dcd2dc
CM
6529static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6530{
98509cfc
CM
6531 if (PageWriteback(page) || PageDirty(page))
6532 return 0;
b335b003 6533 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6534}
6535
a52d9a80 6536static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6537{
5fd02043 6538 struct inode *inode = page->mapping->host;
d1310b2e 6539 struct extent_io_tree *tree;
e6dcd2dc 6540 struct btrfs_ordered_extent *ordered;
2ac55d41 6541 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6542 u64 page_start = page_offset(page);
6543 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6544
8b62b72b
CM
6545 /*
6546 * we have the page locked, so new writeback can't start,
6547 * and the dirty bit won't be cleared while we are here.
6548 *
6549 * Wait for IO on this page so that we can safely clear
6550 * the PagePrivate2 bit and do ordered accounting
6551 */
e6dcd2dc 6552 wait_on_page_writeback(page);
8b62b72b 6553
5fd02043 6554 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
6555 if (offset) {
6556 btrfs_releasepage(page, GFP_NOFS);
6557 return;
6558 }
d0082371 6559 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
5fd02043 6560 ordered = btrfs_lookup_ordered_extent(inode,
e6dcd2dc
CM
6561 page_offset(page));
6562 if (ordered) {
eb84ae03
CM
6563 /*
6564 * IO on this page will never be started, so we need
6565 * to account for any ordered extents now
6566 */
e6dcd2dc
CM
6567 clear_extent_bit(tree, page_start, page_end,
6568 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6569 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6570 &cached_state, GFP_NOFS);
8b62b72b
CM
6571 /*
6572 * whoever cleared the private bit is responsible
6573 * for the finish_ordered_io
6574 */
5fd02043
JB
6575 if (TestClearPagePrivate2(page) &&
6576 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6577 PAGE_CACHE_SIZE, 1)) {
6578 btrfs_finish_ordered_io(ordered);
8b62b72b 6579 }
e6dcd2dc 6580 btrfs_put_ordered_extent(ordered);
2ac55d41 6581 cached_state = NULL;
d0082371 6582 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6583 }
6584 clear_extent_bit(tree, page_start, page_end,
32c00aff 6585 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6586 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6587 __btrfs_releasepage(page, GFP_NOFS);
6588
4a096752 6589 ClearPageChecked(page);
9ad6b7bc 6590 if (PagePrivate(page)) {
9ad6b7bc
CM
6591 ClearPagePrivate(page);
6592 set_page_private(page, 0);
6593 page_cache_release(page);
6594 }
39279cc3
CM
6595}
6596
9ebefb18
CM
6597/*
6598 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6599 * called from a page fault handler when a page is first dirtied. Hence we must
6600 * be careful to check for EOF conditions here. We set the page up correctly
6601 * for a written page which means we get ENOSPC checking when writing into
6602 * holes and correct delalloc and unwritten extent mapping on filesystems that
6603 * support these features.
6604 *
6605 * We are not allowed to take the i_mutex here so we have to play games to
6606 * protect against truncate races as the page could now be beyond EOF. Because
6607 * vmtruncate() writes the inode size before removing pages, once we have the
6608 * page lock we can determine safely if the page is beyond EOF. If it is not
6609 * beyond EOF, then the page is guaranteed safe against truncation until we
6610 * unlock the page.
6611 */
c2ec175c 6612int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6613{
c2ec175c 6614 struct page *page = vmf->page;
6da6abae 6615 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6616 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6617 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6618 struct btrfs_ordered_extent *ordered;
2ac55d41 6619 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6620 char *kaddr;
6621 unsigned long zero_start;
9ebefb18 6622 loff_t size;
1832a6d5 6623 int ret;
9998eb70 6624 int reserved = 0;
a52d9a80 6625 u64 page_start;
e6dcd2dc 6626 u64 page_end;
9ebefb18 6627
0ca1f7ce 6628 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6629 if (!ret) {
e41f941a 6630 ret = file_update_time(vma->vm_file);
9998eb70
CM
6631 reserved = 1;
6632 }
56a76f82
NP
6633 if (ret) {
6634 if (ret == -ENOMEM)
6635 ret = VM_FAULT_OOM;
6636 else /* -ENOSPC, -EIO, etc */
6637 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6638 if (reserved)
6639 goto out;
6640 goto out_noreserve;
56a76f82 6641 }
1832a6d5 6642
56a76f82 6643 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6644again:
9ebefb18 6645 lock_page(page);
9ebefb18 6646 size = i_size_read(inode);
e6dcd2dc
CM
6647 page_start = page_offset(page);
6648 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6649
9ebefb18 6650 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6651 (page_start >= size)) {
9ebefb18
CM
6652 /* page got truncated out from underneath us */
6653 goto out_unlock;
6654 }
e6dcd2dc
CM
6655 wait_on_page_writeback(page);
6656
d0082371 6657 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6658 set_page_extent_mapped(page);
6659
eb84ae03
CM
6660 /*
6661 * we can't set the delalloc bits if there are pending ordered
6662 * extents. Drop our locks and wait for them to finish
6663 */
e6dcd2dc
CM
6664 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6665 if (ordered) {
2ac55d41
JB
6666 unlock_extent_cached(io_tree, page_start, page_end,
6667 &cached_state, GFP_NOFS);
e6dcd2dc 6668 unlock_page(page);
eb84ae03 6669 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6670 btrfs_put_ordered_extent(ordered);
6671 goto again;
6672 }
6673
fbf19087
JB
6674 /*
6675 * XXX - page_mkwrite gets called every time the page is dirtied, even
6676 * if it was already dirty, so for space accounting reasons we need to
6677 * clear any delalloc bits for the range we are fixing to save. There
6678 * is probably a better way to do this, but for now keep consistent with
6679 * prepare_pages in the normal write path.
6680 */
2ac55d41 6681 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6682 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6683 0, 0, &cached_state, GFP_NOFS);
fbf19087 6684
2ac55d41
JB
6685 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6686 &cached_state);
9ed74f2d 6687 if (ret) {
2ac55d41
JB
6688 unlock_extent_cached(io_tree, page_start, page_end,
6689 &cached_state, GFP_NOFS);
9ed74f2d
JB
6690 ret = VM_FAULT_SIGBUS;
6691 goto out_unlock;
6692 }
e6dcd2dc 6693 ret = 0;
9ebefb18
CM
6694
6695 /* page is wholly or partially inside EOF */
a52d9a80 6696 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6697 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6698 else
e6dcd2dc 6699 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6700
e6dcd2dc
CM
6701 if (zero_start != PAGE_CACHE_SIZE) {
6702 kaddr = kmap(page);
6703 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6704 flush_dcache_page(page);
6705 kunmap(page);
6706 }
247e743c 6707 ClearPageChecked(page);
e6dcd2dc 6708 set_page_dirty(page);
50a9b214 6709 SetPageUptodate(page);
5a3f23d5 6710
257c62e1
CM
6711 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6712 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6713
2ac55d41 6714 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6715
6716out_unlock:
50a9b214
CM
6717 if (!ret)
6718 return VM_FAULT_LOCKED;
9ebefb18 6719 unlock_page(page);
1832a6d5 6720out:
ec39e180 6721 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6722out_noreserve:
9ebefb18
CM
6723 return ret;
6724}
6725
a41ad394 6726static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6727{
6728 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6729 struct btrfs_block_rsv *rsv;
39279cc3 6730 int ret;
3893e33b 6731 int err = 0;
39279cc3 6732 struct btrfs_trans_handle *trans;
d3c2fdcf 6733 unsigned long nr;
dbe674a9 6734 u64 mask = root->sectorsize - 1;
07127184 6735 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6736
5d5e103a
JB
6737 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6738 if (ret)
a41ad394 6739 return ret;
8082510e 6740
4a096752 6741 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6742 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6743
fcb80c2a
JB
6744 /*
6745 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6746 * 3 things going on here
6747 *
6748 * 1) We need to reserve space for our orphan item and the space to
6749 * delete our orphan item. Lord knows we don't want to have a dangling
6750 * orphan item because we didn't reserve space to remove it.
6751 *
6752 * 2) We need to reserve space to update our inode.
6753 *
6754 * 3) We need to have something to cache all the space that is going to
6755 * be free'd up by the truncate operation, but also have some slack
6756 * space reserved in case it uses space during the truncate (thank you
6757 * very much snapshotting).
6758 *
6759 * And we need these to all be seperate. The fact is we can use alot of
6760 * space doing the truncate, and we have no earthly idea how much space
6761 * we will use, so we need the truncate reservation to be seperate so it
6762 * doesn't end up using space reserved for updating the inode or
6763 * removing the orphan item. We also need to be able to stop the
6764 * transaction and start a new one, which means we need to be able to
6765 * update the inode several times, and we have no idea of knowing how
6766 * many times that will be, so we can't just reserve 1 item for the
6767 * entirety of the opration, so that has to be done seperately as well.
6768 * Then there is the orphan item, which does indeed need to be held on
6769 * to for the whole operation, and we need nobody to touch this reserved
6770 * space except the orphan code.
6771 *
6772 * So that leaves us with
6773 *
6774 * 1) root->orphan_block_rsv - for the orphan deletion.
6775 * 2) rsv - for the truncate reservation, which we will steal from the
6776 * transaction reservation.
6777 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6778 * updating the inode.
6779 */
6780 rsv = btrfs_alloc_block_rsv(root);
6781 if (!rsv)
6782 return -ENOMEM;
4a338542 6783 rsv->size = min_size;
f0cd846e 6784
907cbceb 6785 /*
07127184 6786 * 1 for the truncate slack space
907cbceb
JB
6787 * 1 for the orphan item we're going to add
6788 * 1 for the orphan item deletion
6789 * 1 for updating the inode.
6790 */
fcb80c2a
JB
6791 trans = btrfs_start_transaction(root, 4);
6792 if (IS_ERR(trans)) {
6793 err = PTR_ERR(trans);
6794 goto out;
6795 }
f0cd846e 6796
907cbceb
JB
6797 /* Migrate the slack space for the truncate to our reserve */
6798 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6799 min_size);
fcb80c2a 6800 BUG_ON(ret);
f0cd846e
JB
6801
6802 ret = btrfs_orphan_add(trans, inode);
6803 if (ret) {
6804 btrfs_end_transaction(trans, root);
fcb80c2a 6805 goto out;
f0cd846e
JB
6806 }
6807
5a3f23d5
CM
6808 /*
6809 * setattr is responsible for setting the ordered_data_close flag,
6810 * but that is only tested during the last file release. That
6811 * could happen well after the next commit, leaving a great big
6812 * window where new writes may get lost if someone chooses to write
6813 * to this file after truncating to zero
6814 *
6815 * The inode doesn't have any dirty data here, and so if we commit
6816 * this is a noop. If someone immediately starts writing to the inode
6817 * it is very likely we'll catch some of their writes in this
6818 * transaction, and the commit will find this file on the ordered
6819 * data list with good things to send down.
6820 *
6821 * This is a best effort solution, there is still a window where
6822 * using truncate to replace the contents of the file will
6823 * end up with a zero length file after a crash.
6824 */
72ac3c0d
JB
6825 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6826 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
6827 btrfs_add_ordered_operation(trans, root, inode);
6828
8082510e 6829 while (1) {
36ba022a 6830 ret = btrfs_block_rsv_refill(root, rsv, min_size);
907cbceb
JB
6831 if (ret) {
6832 /*
6833 * This can only happen with the original transaction we
6834 * started above, every other time we shouldn't have a
6835 * transaction started yet.
6836 */
6837 if (ret == -EAGAIN)
6838 goto end_trans;
6839 err = ret;
6840 break;
6841 }
6842
d68fc57b 6843 if (!trans) {
907cbceb
JB
6844 /* Just need the 1 for updating the inode */
6845 trans = btrfs_start_transaction(root, 1);
fcb80c2a 6846 if (IS_ERR(trans)) {
7041ee97
JB
6847 ret = err = PTR_ERR(trans);
6848 trans = NULL;
6849 break;
fcb80c2a 6850 }
d68fc57b
YZ
6851 }
6852
907cbceb
JB
6853 trans->block_rsv = rsv;
6854
8082510e
YZ
6855 ret = btrfs_truncate_inode_items(trans, root, inode,
6856 inode->i_size,
6857 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6858 if (ret != -EAGAIN) {
6859 err = ret;
8082510e 6860 break;
3893e33b 6861 }
39279cc3 6862
fcb80c2a 6863 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6864 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6865 if (ret) {
6866 err = ret;
6867 break;
6868 }
907cbceb 6869end_trans:
8082510e
YZ
6870 nr = trans->blocks_used;
6871 btrfs_end_transaction(trans, root);
d68fc57b 6872 trans = NULL;
8082510e 6873 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6874 }
6875
6876 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6877 trans->block_rsv = root->orphan_block_rsv;
8082510e 6878 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6879 if (ret)
6880 err = ret;
ded5db9d
JB
6881 } else if (ret && inode->i_nlink > 0) {
6882 /*
6883 * Failed to do the truncate, remove us from the in memory
6884 * orphan list.
6885 */
6886 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6887 }
6888
917c16b2
CM
6889 if (trans) {
6890 trans->block_rsv = &root->fs_info->trans_block_rsv;
6891 ret = btrfs_update_inode(trans, root, inode);
6892 if (ret && !err)
6893 err = ret;
7b128766 6894
917c16b2 6895 nr = trans->blocks_used;
7ad85bb7 6896 ret = btrfs_end_transaction(trans, root);
917c16b2
CM
6897 btrfs_btree_balance_dirty(root, nr);
6898 }
fcb80c2a
JB
6899
6900out:
6901 btrfs_free_block_rsv(root, rsv);
6902
3893e33b
JB
6903 if (ret && !err)
6904 err = ret;
a41ad394 6905
3893e33b 6906 return err;
39279cc3
CM
6907}
6908
d352ac68
CM
6909/*
6910 * create a new subvolume directory/inode (helper for the ioctl).
6911 */
d2fb3437 6912int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6913 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6914{
39279cc3 6915 struct inode *inode;
76dda93c 6916 int err;
00e4e6b3 6917 u64 index = 0;
39279cc3 6918
12fc9d09
FA
6919 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6920 new_dirid, new_dirid,
6921 S_IFDIR | (~current_umask() & S_IRWXUGO),
6922 &index);
54aa1f4d 6923 if (IS_ERR(inode))
f46b5a66 6924 return PTR_ERR(inode);
39279cc3
CM
6925 inode->i_op = &btrfs_dir_inode_operations;
6926 inode->i_fop = &btrfs_dir_file_operations;
6927
bfe86848 6928 set_nlink(inode, 1);
dbe674a9 6929 btrfs_i_size_write(inode, 0);
3b96362c 6930
76dda93c 6931 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 6932
76dda93c 6933 iput(inode);
ce598979 6934 return err;
39279cc3
CM
6935}
6936
39279cc3
CM
6937struct inode *btrfs_alloc_inode(struct super_block *sb)
6938{
6939 struct btrfs_inode *ei;
2ead6ae7 6940 struct inode *inode;
39279cc3
CM
6941
6942 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6943 if (!ei)
6944 return NULL;
2ead6ae7
YZ
6945
6946 ei->root = NULL;
6947 ei->space_info = NULL;
6948 ei->generation = 0;
15ee9bc7 6949 ei->last_trans = 0;
257c62e1 6950 ei->last_sub_trans = 0;
e02119d5 6951 ei->logged_trans = 0;
2ead6ae7 6952 ei->delalloc_bytes = 0;
2ead6ae7
YZ
6953 ei->disk_i_size = 0;
6954 ei->flags = 0;
7709cde3 6955 ei->csum_bytes = 0;
2ead6ae7
YZ
6956 ei->index_cnt = (u64)-1;
6957 ei->last_unlink_trans = 0;
6958
9e0baf60
JB
6959 spin_lock_init(&ei->lock);
6960 ei->outstanding_extents = 0;
6961 ei->reserved_extents = 0;
2ead6ae7 6962
72ac3c0d 6963 ei->runtime_flags = 0;
261507a0 6964 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6965
16cdcec7
MX
6966 ei->delayed_node = NULL;
6967
2ead6ae7 6968 inode = &ei->vfs_inode;
a8067e02 6969 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6970 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6971 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
6972 ei->io_tree.track_uptodate = 1;
6973 ei->io_failure_tree.track_uptodate = 1;
2ead6ae7 6974 mutex_init(&ei->log_mutex);
f248679e 6975 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 6976 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 6977 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6978 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6979 RB_CLEAR_NODE(&ei->rb_node);
6980
6981 return inode;
39279cc3
CM
6982}
6983
fa0d7e3d
NP
6984static void btrfs_i_callback(struct rcu_head *head)
6985{
6986 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
6987 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6988}
6989
39279cc3
CM
6990void btrfs_destroy_inode(struct inode *inode)
6991{
e6dcd2dc 6992 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6993 struct btrfs_root *root = BTRFS_I(inode)->root;
6994
39279cc3
CM
6995 WARN_ON(!list_empty(&inode->i_dentry));
6996 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6997 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6998 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
6999 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7000 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7001
a6dbd429
JB
7002 /*
7003 * This can happen where we create an inode, but somebody else also
7004 * created the same inode and we need to destroy the one we already
7005 * created.
7006 */
7007 if (!root)
7008 goto free;
7009
5a3f23d5
CM
7010 /*
7011 * Make sure we're properly removed from the ordered operation
7012 * lists.
7013 */
7014 smp_mb();
7015 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7016 spin_lock(&root->fs_info->ordered_extent_lock);
7017 list_del_init(&BTRFS_I(inode)->ordered_operations);
7018 spin_unlock(&root->fs_info->ordered_extent_lock);
7019 }
7020
8a35d95f
JB
7021 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7022 &BTRFS_I(inode)->runtime_flags)) {
33345d01
LZ
7023 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7024 (unsigned long long)btrfs_ino(inode));
8a35d95f 7025 atomic_dec(&root->orphan_inodes);
7b128766 7026 }
7b128766 7027
d397712b 7028 while (1) {
e6dcd2dc
CM
7029 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7030 if (!ordered)
7031 break;
7032 else {
d397712b
CM
7033 printk(KERN_ERR "btrfs found ordered "
7034 "extent %llu %llu on inode cleanup\n",
7035 (unsigned long long)ordered->file_offset,
7036 (unsigned long long)ordered->len);
e6dcd2dc
CM
7037 btrfs_remove_ordered_extent(inode, ordered);
7038 btrfs_put_ordered_extent(ordered);
7039 btrfs_put_ordered_extent(ordered);
7040 }
7041 }
5d4f98a2 7042 inode_tree_del(inode);
5b21f2ed 7043 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7044free:
16cdcec7 7045 btrfs_remove_delayed_node(inode);
fa0d7e3d 7046 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7047}
7048
45321ac5 7049int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7050{
7051 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7052
0af3d00b 7053 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 7054 !btrfs_is_free_space_inode(root, inode))
45321ac5 7055 return 1;
76dda93c 7056 else
45321ac5 7057 return generic_drop_inode(inode);
76dda93c
YZ
7058}
7059
0ee0fda0 7060static void init_once(void *foo)
39279cc3
CM
7061{
7062 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7063
7064 inode_init_once(&ei->vfs_inode);
7065}
7066
7067void btrfs_destroy_cachep(void)
7068{
7069 if (btrfs_inode_cachep)
7070 kmem_cache_destroy(btrfs_inode_cachep);
7071 if (btrfs_trans_handle_cachep)
7072 kmem_cache_destroy(btrfs_trans_handle_cachep);
7073 if (btrfs_transaction_cachep)
7074 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7075 if (btrfs_path_cachep)
7076 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7077 if (btrfs_free_space_cachep)
7078 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
7079}
7080
7081int btrfs_init_cachep(void)
7082{
9601e3f6
CH
7083 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7084 sizeof(struct btrfs_inode), 0,
7085 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7086 if (!btrfs_inode_cachep)
7087 goto fail;
9601e3f6
CH
7088
7089 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7090 sizeof(struct btrfs_trans_handle), 0,
7091 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7092 if (!btrfs_trans_handle_cachep)
7093 goto fail;
9601e3f6
CH
7094
7095 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7096 sizeof(struct btrfs_transaction), 0,
7097 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7098 if (!btrfs_transaction_cachep)
7099 goto fail;
9601e3f6
CH
7100
7101 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7102 sizeof(struct btrfs_path), 0,
7103 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7104 if (!btrfs_path_cachep)
7105 goto fail;
9601e3f6 7106
dc89e982
JB
7107 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7108 sizeof(struct btrfs_free_space), 0,
7109 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7110 if (!btrfs_free_space_cachep)
7111 goto fail;
7112
39279cc3
CM
7113 return 0;
7114fail:
7115 btrfs_destroy_cachep();
7116 return -ENOMEM;
7117}
7118
7119static int btrfs_getattr(struct vfsmount *mnt,
7120 struct dentry *dentry, struct kstat *stat)
7121{
7122 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7123 u32 blocksize = inode->i_sb->s_blocksize;
7124
39279cc3 7125 generic_fillattr(inode, stat);
0ee5dc67 7126 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7127 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
7128 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7129 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7130 return 0;
7131}
7132
75e7cb7f
LB
7133/*
7134 * If a file is moved, it will inherit the cow and compression flags of the new
7135 * directory.
7136 */
7137static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7138{
7139 struct btrfs_inode *b_dir = BTRFS_I(dir);
7140 struct btrfs_inode *b_inode = BTRFS_I(inode);
7141
7142 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7143 b_inode->flags |= BTRFS_INODE_NODATACOW;
7144 else
7145 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7146
bc178237 7147 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
75e7cb7f 7148 b_inode->flags |= BTRFS_INODE_COMPRESS;
bc178237
LB
7149 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7150 } else {
7151 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7152 BTRFS_INODE_NOCOMPRESS);
7153 }
75e7cb7f
LB
7154}
7155
d397712b
CM
7156static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7157 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7158{
7159 struct btrfs_trans_handle *trans;
7160 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7161 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7162 struct inode *new_inode = new_dentry->d_inode;
7163 struct inode *old_inode = old_dentry->d_inode;
7164 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7165 u64 index = 0;
4df27c4d 7166 u64 root_objectid;
39279cc3 7167 int ret;
33345d01 7168 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7169
33345d01 7170 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7171 return -EPERM;
7172
4df27c4d 7173 /* we only allow rename subvolume link between subvolumes */
33345d01 7174 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7175 return -EXDEV;
7176
33345d01
LZ
7177 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7178 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7179 return -ENOTEMPTY;
5f39d397 7180
4df27c4d
YZ
7181 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7182 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7183 return -ENOTEMPTY;
5a3f23d5
CM
7184 /*
7185 * we're using rename to replace one file with another.
7186 * and the replacement file is large. Start IO on it now so
7187 * we don't add too much work to the end of the transaction
7188 */
4baf8c92 7189 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7190 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7191 filemap_flush(old_inode->i_mapping);
7192
76dda93c 7193 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7194 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7195 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7196 /*
7197 * We want to reserve the absolute worst case amount of items. So if
7198 * both inodes are subvols and we need to unlink them then that would
7199 * require 4 item modifications, but if they are both normal inodes it
7200 * would require 5 item modifications, so we'll assume their normal
7201 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7202 * should cover the worst case number of items we'll modify.
7203 */
7204 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7205 if (IS_ERR(trans)) {
7206 ret = PTR_ERR(trans);
7207 goto out_notrans;
7208 }
76dda93c 7209
4df27c4d
YZ
7210 if (dest != root)
7211 btrfs_record_root_in_trans(trans, dest);
5f39d397 7212
a5719521
YZ
7213 ret = btrfs_set_inode_index(new_dir, &index);
7214 if (ret)
7215 goto out_fail;
5a3f23d5 7216
33345d01 7217 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7218 /* force full log commit if subvolume involved. */
7219 root->fs_info->last_trans_log_full_commit = trans->transid;
7220 } else {
a5719521
YZ
7221 ret = btrfs_insert_inode_ref(trans, dest,
7222 new_dentry->d_name.name,
7223 new_dentry->d_name.len,
33345d01
LZ
7224 old_ino,
7225 btrfs_ino(new_dir), index);
a5719521
YZ
7226 if (ret)
7227 goto out_fail;
4df27c4d
YZ
7228 /*
7229 * this is an ugly little race, but the rename is required
7230 * to make sure that if we crash, the inode is either at the
7231 * old name or the new one. pinning the log transaction lets
7232 * us make sure we don't allow a log commit to come in after
7233 * we unlink the name but before we add the new name back in.
7234 */
7235 btrfs_pin_log_trans(root);
7236 }
5a3f23d5
CM
7237 /*
7238 * make sure the inode gets flushed if it is replacing
7239 * something.
7240 */
33345d01 7241 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7242 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7243
0c4d2d95
JB
7244 inode_inc_iversion(old_dir);
7245 inode_inc_iversion(new_dir);
7246 inode_inc_iversion(old_inode);
39279cc3
CM
7247 old_dir->i_ctime = old_dir->i_mtime = ctime;
7248 new_dir->i_ctime = new_dir->i_mtime = ctime;
7249 old_inode->i_ctime = ctime;
5f39d397 7250
12fcfd22
CM
7251 if (old_dentry->d_parent != new_dentry->d_parent)
7252 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7253
33345d01 7254 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7255 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7256 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7257 old_dentry->d_name.name,
7258 old_dentry->d_name.len);
7259 } else {
92986796
AV
7260 ret = __btrfs_unlink_inode(trans, root, old_dir,
7261 old_dentry->d_inode,
7262 old_dentry->d_name.name,
7263 old_dentry->d_name.len);
7264 if (!ret)
7265 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7266 }
79787eaa
JM
7267 if (ret) {
7268 btrfs_abort_transaction(trans, root, ret);
7269 goto out_fail;
7270 }
39279cc3
CM
7271
7272 if (new_inode) {
0c4d2d95 7273 inode_inc_iversion(new_inode);
39279cc3 7274 new_inode->i_ctime = CURRENT_TIME;
33345d01 7275 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7276 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7277 root_objectid = BTRFS_I(new_inode)->location.objectid;
7278 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7279 root_objectid,
7280 new_dentry->d_name.name,
7281 new_dentry->d_name.len);
7282 BUG_ON(new_inode->i_nlink == 0);
7283 } else {
7284 ret = btrfs_unlink_inode(trans, dest, new_dir,
7285 new_dentry->d_inode,
7286 new_dentry->d_name.name,
7287 new_dentry->d_name.len);
7288 }
79787eaa 7289 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7290 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7291 BUG_ON(ret);
7b128766 7292 }
79787eaa
JM
7293 if (ret) {
7294 btrfs_abort_transaction(trans, root, ret);
7295 goto out_fail;
7296 }
39279cc3 7297 }
aec7477b 7298
75e7cb7f
LB
7299 fixup_inode_flags(new_dir, old_inode);
7300
4df27c4d
YZ
7301 ret = btrfs_add_link(trans, new_dir, old_inode,
7302 new_dentry->d_name.name,
a5719521 7303 new_dentry->d_name.len, 0, index);
79787eaa
JM
7304 if (ret) {
7305 btrfs_abort_transaction(trans, root, ret);
7306 goto out_fail;
7307 }
39279cc3 7308
33345d01 7309 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7310 struct dentry *parent = new_dentry->d_parent;
6a912213 7311 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7312 btrfs_end_log_trans(root);
7313 }
39279cc3 7314out_fail:
7ad85bb7 7315 btrfs_end_transaction(trans, root);
b44c59a8 7316out_notrans:
33345d01 7317 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7318 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7319
39279cc3
CM
7320 return ret;
7321}
7322
d352ac68
CM
7323/*
7324 * some fairly slow code that needs optimization. This walks the list
7325 * of all the inodes with pending delalloc and forces them to disk.
7326 */
24bbcf04 7327int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7328{
7329 struct list_head *head = &root->fs_info->delalloc_inodes;
7330 struct btrfs_inode *binode;
5b21f2ed 7331 struct inode *inode;
ea8c2819 7332
c146afad
YZ
7333 if (root->fs_info->sb->s_flags & MS_RDONLY)
7334 return -EROFS;
7335
75eff68e 7336 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7337 while (!list_empty(head)) {
ea8c2819
CM
7338 binode = list_entry(head->next, struct btrfs_inode,
7339 delalloc_inodes);
5b21f2ed
ZY
7340 inode = igrab(&binode->vfs_inode);
7341 if (!inode)
7342 list_del_init(&binode->delalloc_inodes);
75eff68e 7343 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7344 if (inode) {
8c8bee1d 7345 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7346 if (delay_iput)
7347 btrfs_add_delayed_iput(inode);
7348 else
7349 iput(inode);
5b21f2ed
ZY
7350 }
7351 cond_resched();
75eff68e 7352 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7353 }
75eff68e 7354 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7355
7356 /* the filemap_flush will queue IO into the worker threads, but
7357 * we have to make sure the IO is actually started and that
7358 * ordered extents get created before we return
7359 */
7360 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7361 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7362 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7363 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7364 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7365 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7366 }
7367 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7368 return 0;
7369}
7370
39279cc3
CM
7371static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7372 const char *symname)
7373{
7374 struct btrfs_trans_handle *trans;
7375 struct btrfs_root *root = BTRFS_I(dir)->root;
7376 struct btrfs_path *path;
7377 struct btrfs_key key;
1832a6d5 7378 struct inode *inode = NULL;
39279cc3
CM
7379 int err;
7380 int drop_inode = 0;
7381 u64 objectid;
00e4e6b3 7382 u64 index = 0 ;
39279cc3
CM
7383 int name_len;
7384 int datasize;
5f39d397 7385 unsigned long ptr;
39279cc3 7386 struct btrfs_file_extent_item *ei;
5f39d397 7387 struct extent_buffer *leaf;
1832a6d5 7388 unsigned long nr = 0;
39279cc3
CM
7389
7390 name_len = strlen(symname) + 1;
7391 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7392 return -ENAMETOOLONG;
1832a6d5 7393
9ed74f2d
JB
7394 /*
7395 * 2 items for inode item and ref
7396 * 2 items for dir items
7397 * 1 item for xattr if selinux is on
7398 */
a22285a6
YZ
7399 trans = btrfs_start_transaction(root, 5);
7400 if (IS_ERR(trans))
7401 return PTR_ERR(trans);
1832a6d5 7402
581bb050
LZ
7403 err = btrfs_find_free_ino(root, &objectid);
7404 if (err)
7405 goto out_unlock;
7406
aec7477b 7407 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7408 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7409 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7410 if (IS_ERR(inode)) {
7411 err = PTR_ERR(inode);
39279cc3 7412 goto out_unlock;
7cf96da3 7413 }
39279cc3 7414
2a7dba39 7415 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7416 if (err) {
7417 drop_inode = 1;
7418 goto out_unlock;
7419 }
7420
ad19db71
CS
7421 /*
7422 * If the active LSM wants to access the inode during
7423 * d_instantiate it needs these. Smack checks to see
7424 * if the filesystem supports xattrs by looking at the
7425 * ops vector.
7426 */
7427 inode->i_fop = &btrfs_file_operations;
7428 inode->i_op = &btrfs_file_inode_operations;
7429
a1b075d2 7430 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7431 if (err)
7432 drop_inode = 1;
7433 else {
7434 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7435 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7436 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7437 }
39279cc3
CM
7438 if (drop_inode)
7439 goto out_unlock;
7440
7441 path = btrfs_alloc_path();
d8926bb3
MF
7442 if (!path) {
7443 err = -ENOMEM;
7444 drop_inode = 1;
7445 goto out_unlock;
7446 }
33345d01 7447 key.objectid = btrfs_ino(inode);
39279cc3 7448 key.offset = 0;
39279cc3
CM
7449 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7450 datasize = btrfs_file_extent_calc_inline_size(name_len);
7451 err = btrfs_insert_empty_item(trans, root, path, &key,
7452 datasize);
54aa1f4d
CM
7453 if (err) {
7454 drop_inode = 1;
b0839166 7455 btrfs_free_path(path);
54aa1f4d
CM
7456 goto out_unlock;
7457 }
5f39d397
CM
7458 leaf = path->nodes[0];
7459 ei = btrfs_item_ptr(leaf, path->slots[0],
7460 struct btrfs_file_extent_item);
7461 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7462 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7463 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7464 btrfs_set_file_extent_encryption(leaf, ei, 0);
7465 btrfs_set_file_extent_compression(leaf, ei, 0);
7466 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7467 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7468
39279cc3 7469 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7470 write_extent_buffer(leaf, symname, ptr, name_len);
7471 btrfs_mark_buffer_dirty(leaf);
39279cc3 7472 btrfs_free_path(path);
5f39d397 7473
39279cc3
CM
7474 inode->i_op = &btrfs_symlink_inode_operations;
7475 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7476 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7477 inode_set_bytes(inode, name_len);
dbe674a9 7478 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7479 err = btrfs_update_inode(trans, root, inode);
7480 if (err)
7481 drop_inode = 1;
39279cc3
CM
7482
7483out_unlock:
08c422c2
AV
7484 if (!err)
7485 d_instantiate(dentry, inode);
d3c2fdcf 7486 nr = trans->blocks_used;
7ad85bb7 7487 btrfs_end_transaction(trans, root);
39279cc3
CM
7488 if (drop_inode) {
7489 inode_dec_link_count(inode);
7490 iput(inode);
7491 }
d3c2fdcf 7492 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7493 return err;
7494}
16432985 7495
0af3d00b
JB
7496static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7497 u64 start, u64 num_bytes, u64 min_size,
7498 loff_t actual_len, u64 *alloc_hint,
7499 struct btrfs_trans_handle *trans)
d899e052 7500{
d899e052
YZ
7501 struct btrfs_root *root = BTRFS_I(inode)->root;
7502 struct btrfs_key ins;
d899e052 7503 u64 cur_offset = start;
55a61d1d 7504 u64 i_size;
d899e052 7505 int ret = 0;
0af3d00b 7506 bool own_trans = true;
d899e052 7507
0af3d00b
JB
7508 if (trans)
7509 own_trans = false;
d899e052 7510 while (num_bytes > 0) {
0af3d00b
JB
7511 if (own_trans) {
7512 trans = btrfs_start_transaction(root, 3);
7513 if (IS_ERR(trans)) {
7514 ret = PTR_ERR(trans);
7515 break;
7516 }
5a303d5d
YZ
7517 }
7518
efa56464 7519 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7520 0, *alloc_hint, &ins, 1);
5a303d5d 7521 if (ret) {
0af3d00b
JB
7522 if (own_trans)
7523 btrfs_end_transaction(trans, root);
a22285a6 7524 break;
d899e052 7525 }
5a303d5d 7526
d899e052
YZ
7527 ret = insert_reserved_file_extent(trans, inode,
7528 cur_offset, ins.objectid,
7529 ins.offset, ins.offset,
920bbbfb 7530 ins.offset, 0, 0, 0,
d899e052 7531 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7532 if (ret) {
7533 btrfs_abort_transaction(trans, root, ret);
7534 if (own_trans)
7535 btrfs_end_transaction(trans, root);
7536 break;
7537 }
a1ed835e
CM
7538 btrfs_drop_extent_cache(inode, cur_offset,
7539 cur_offset + ins.offset -1, 0);
5a303d5d 7540
d899e052
YZ
7541 num_bytes -= ins.offset;
7542 cur_offset += ins.offset;
efa56464 7543 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7544
0c4d2d95 7545 inode_inc_iversion(inode);
d899e052 7546 inode->i_ctime = CURRENT_TIME;
6cbff00f 7547 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7548 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7549 (actual_len > inode->i_size) &&
7550 (cur_offset > inode->i_size)) {
d1ea6a61 7551 if (cur_offset > actual_len)
55a61d1d 7552 i_size = actual_len;
d1ea6a61 7553 else
55a61d1d
JB
7554 i_size = cur_offset;
7555 i_size_write(inode, i_size);
7556 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7557 }
7558
d899e052 7559 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7560
7561 if (ret) {
7562 btrfs_abort_transaction(trans, root, ret);
7563 if (own_trans)
7564 btrfs_end_transaction(trans, root);
7565 break;
7566 }
d899e052 7567
0af3d00b
JB
7568 if (own_trans)
7569 btrfs_end_transaction(trans, root);
5a303d5d 7570 }
d899e052
YZ
7571 return ret;
7572}
7573
0af3d00b
JB
7574int btrfs_prealloc_file_range(struct inode *inode, int mode,
7575 u64 start, u64 num_bytes, u64 min_size,
7576 loff_t actual_len, u64 *alloc_hint)
7577{
7578 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7579 min_size, actual_len, alloc_hint,
7580 NULL);
7581}
7582
7583int btrfs_prealloc_file_range_trans(struct inode *inode,
7584 struct btrfs_trans_handle *trans, int mode,
7585 u64 start, u64 num_bytes, u64 min_size,
7586 loff_t actual_len, u64 *alloc_hint)
7587{
7588 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7589 min_size, actual_len, alloc_hint, trans);
7590}
7591
e6dcd2dc
CM
7592static int btrfs_set_page_dirty(struct page *page)
7593{
e6dcd2dc
CM
7594 return __set_page_dirty_nobuffers(page);
7595}
7596
10556cb2 7597static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7598{
b83cc969 7599 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7600 umode_t mode = inode->i_mode;
b83cc969 7601
cb6db4e5
JM
7602 if (mask & MAY_WRITE &&
7603 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7604 if (btrfs_root_readonly(root))
7605 return -EROFS;
7606 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7607 return -EACCES;
7608 }
2830ba7f 7609 return generic_permission(inode, mask);
fdebe2bd 7610}
39279cc3 7611
6e1d5dcc 7612static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7613 .getattr = btrfs_getattr,
39279cc3
CM
7614 .lookup = btrfs_lookup,
7615 .create = btrfs_create,
7616 .unlink = btrfs_unlink,
7617 .link = btrfs_link,
7618 .mkdir = btrfs_mkdir,
7619 .rmdir = btrfs_rmdir,
7620 .rename = btrfs_rename,
7621 .symlink = btrfs_symlink,
7622 .setattr = btrfs_setattr,
618e21d5 7623 .mknod = btrfs_mknod,
95819c05
CH
7624 .setxattr = btrfs_setxattr,
7625 .getxattr = btrfs_getxattr,
5103e947 7626 .listxattr = btrfs_listxattr,
95819c05 7627 .removexattr = btrfs_removexattr,
fdebe2bd 7628 .permission = btrfs_permission,
4e34e719 7629 .get_acl = btrfs_get_acl,
39279cc3 7630};
6e1d5dcc 7631static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7632 .lookup = btrfs_lookup,
fdebe2bd 7633 .permission = btrfs_permission,
4e34e719 7634 .get_acl = btrfs_get_acl,
39279cc3 7635};
76dda93c 7636
828c0950 7637static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7638 .llseek = generic_file_llseek,
7639 .read = generic_read_dir,
cbdf5a24 7640 .readdir = btrfs_real_readdir,
34287aa3 7641 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7642#ifdef CONFIG_COMPAT
34287aa3 7643 .compat_ioctl = btrfs_ioctl,
39279cc3 7644#endif
6bf13c0c 7645 .release = btrfs_release_file,
e02119d5 7646 .fsync = btrfs_sync_file,
39279cc3
CM
7647};
7648
d1310b2e 7649static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7650 .fill_delalloc = run_delalloc_range,
065631f6 7651 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7652 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7653 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7654 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7655 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7656 .set_bit_hook = btrfs_set_bit_hook,
7657 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7658 .merge_extent_hook = btrfs_merge_extent_hook,
7659 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7660};
7661
35054394
CM
7662/*
7663 * btrfs doesn't support the bmap operation because swapfiles
7664 * use bmap to make a mapping of extents in the file. They assume
7665 * these extents won't change over the life of the file and they
7666 * use the bmap result to do IO directly to the drive.
7667 *
7668 * the btrfs bmap call would return logical addresses that aren't
7669 * suitable for IO and they also will change frequently as COW
7670 * operations happen. So, swapfile + btrfs == corruption.
7671 *
7672 * For now we're avoiding this by dropping bmap.
7673 */
7f09410b 7674static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7675 .readpage = btrfs_readpage,
7676 .writepage = btrfs_writepage,
b293f02e 7677 .writepages = btrfs_writepages,
3ab2fb5a 7678 .readpages = btrfs_readpages,
16432985 7679 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7680 .invalidatepage = btrfs_invalidatepage,
7681 .releasepage = btrfs_releasepage,
e6dcd2dc 7682 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7683 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7684};
7685
7f09410b 7686static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7687 .readpage = btrfs_readpage,
7688 .writepage = btrfs_writepage,
2bf5a725
CM
7689 .invalidatepage = btrfs_invalidatepage,
7690 .releasepage = btrfs_releasepage,
39279cc3
CM
7691};
7692
6e1d5dcc 7693static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7694 .getattr = btrfs_getattr,
7695 .setattr = btrfs_setattr,
95819c05
CH
7696 .setxattr = btrfs_setxattr,
7697 .getxattr = btrfs_getxattr,
5103e947 7698 .listxattr = btrfs_listxattr,
95819c05 7699 .removexattr = btrfs_removexattr,
fdebe2bd 7700 .permission = btrfs_permission,
1506fcc8 7701 .fiemap = btrfs_fiemap,
4e34e719 7702 .get_acl = btrfs_get_acl,
e41f941a 7703 .update_time = btrfs_update_time,
39279cc3 7704};
6e1d5dcc 7705static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7706 .getattr = btrfs_getattr,
7707 .setattr = btrfs_setattr,
fdebe2bd 7708 .permission = btrfs_permission,
95819c05
CH
7709 .setxattr = btrfs_setxattr,
7710 .getxattr = btrfs_getxattr,
33268eaf 7711 .listxattr = btrfs_listxattr,
95819c05 7712 .removexattr = btrfs_removexattr,
4e34e719 7713 .get_acl = btrfs_get_acl,
e41f941a 7714 .update_time = btrfs_update_time,
618e21d5 7715};
6e1d5dcc 7716static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7717 .readlink = generic_readlink,
7718 .follow_link = page_follow_link_light,
7719 .put_link = page_put_link,
f209561a 7720 .getattr = btrfs_getattr,
22c44fe6 7721 .setattr = btrfs_setattr,
fdebe2bd 7722 .permission = btrfs_permission,
0279b4cd
JO
7723 .setxattr = btrfs_setxattr,
7724 .getxattr = btrfs_getxattr,
7725 .listxattr = btrfs_listxattr,
7726 .removexattr = btrfs_removexattr,
4e34e719 7727 .get_acl = btrfs_get_acl,
e41f941a 7728 .update_time = btrfs_update_time,
39279cc3 7729};
76dda93c 7730
82d339d9 7731const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7732 .d_delete = btrfs_dentry_delete,
b4aff1f8 7733 .d_release = btrfs_dentry_release,
76dda93c 7734};