Btrfs: fix BUG_ON() casued by the reserved space migration
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
4b4e25f2 46#include "compat.h"
39279cc3
CM
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
39279cc3 51#include "print-tree.h"
e6dcd2dc 52#include "ordered-data.h"
95819c05 53#include "xattr.h"
e02119d5 54#include "tree-log.h"
4a54c8c1 55#include "volumes.h"
c8b97818 56#include "compression.h"
b4ce94de 57#include "locking.h"
dc89e982 58#include "free-space-cache.h"
581bb050 59#include "inode-map.h"
38c227d8 60#include "backref.h"
f23b5a59 61#include "hash.h"
39279cc3
CM
62
63struct btrfs_iget_args {
64 u64 ino;
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
d397712b 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
fe3f566c 131 int compress_type,
c8b97818
CM
132 struct page **compressed_pages)
133{
134 struct btrfs_key key;
135 struct btrfs_path *path;
136 struct extent_buffer *leaf;
137 struct page *page = NULL;
138 char *kaddr;
139 unsigned long ptr;
140 struct btrfs_file_extent_item *ei;
141 int err = 0;
142 int ret;
143 size_t cur_size = size;
144 size_t datasize;
145 unsigned long offset;
c8b97818 146
fe3f566c 147 if (compressed_size && compressed_pages)
c8b97818 148 cur_size = compressed_size;
c8b97818 149
d397712b
CM
150 path = btrfs_alloc_path();
151 if (!path)
c8b97818
CM
152 return -ENOMEM;
153
b9473439 154 path->leave_spinning = 1;
c8b97818 155
33345d01 156 key.objectid = btrfs_ino(inode);
c8b97818
CM
157 key.offset = start;
158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
159 datasize = btrfs_file_extent_calc_inline_size(cur_size);
160
161 inode_add_bytes(inode, size);
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 datasize);
c8b97818
CM
164 if (ret) {
165 err = ret;
c8b97818
CM
166 goto fail;
167 }
168 leaf = path->nodes[0];
169 ei = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_file_extent_item);
171 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173 btrfs_set_file_extent_encryption(leaf, ei, 0);
174 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176 ptr = btrfs_file_extent_inline_start(ei);
177
261507a0 178 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
179 struct page *cpage;
180 int i = 0;
d397712b 181 while (compressed_size > 0) {
c8b97818 182 cpage = compressed_pages[i];
5b050f04 183 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
184 PAGE_CACHE_SIZE);
185
7ac687d9 186 kaddr = kmap_atomic(cpage);
c8b97818 187 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 188 kunmap_atomic(kaddr);
c8b97818
CM
189
190 i++;
191 ptr += cur_size;
192 compressed_size -= cur_size;
193 }
194 btrfs_set_file_extent_compression(leaf, ei,
261507a0 195 compress_type);
c8b97818
CM
196 } else {
197 page = find_get_page(inode->i_mapping,
198 start >> PAGE_CACHE_SHIFT);
199 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 200 kaddr = kmap_atomic(page);
c8b97818
CM
201 offset = start & (PAGE_CACHE_SIZE - 1);
202 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204 page_cache_release(page);
205 }
206 btrfs_mark_buffer_dirty(leaf);
207 btrfs_free_path(path);
208
c2167754
YZ
209 /*
210 * we're an inline extent, so nobody can
211 * extend the file past i_size without locking
212 * a page we already have locked.
213 *
214 * We must do any isize and inode updates
215 * before we unlock the pages. Otherwise we
216 * could end up racing with unlink.
217 */
c8b97818 218 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 219 ret = btrfs_update_inode(trans, root, inode);
c2167754 220
79787eaa 221 return ret;
c8b97818
CM
222fail:
223 btrfs_free_path(path);
224 return err;
225}
226
227
228/*
229 * conditionally insert an inline extent into the file. This
230 * does the checks required to make sure the data is small enough
231 * to fit as an inline extent.
232 */
00361589
JB
233static noinline int cow_file_range_inline(struct btrfs_root *root,
234 struct inode *inode, u64 start,
235 u64 end, size_t compressed_size,
236 int compress_type,
237 struct page **compressed_pages)
c8b97818 238{
00361589 239 struct btrfs_trans_handle *trans;
c8b97818
CM
240 u64 isize = i_size_read(inode);
241 u64 actual_end = min(end + 1, isize);
242 u64 inline_len = actual_end - start;
fda2832f 243 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
244 u64 data_len = inline_len;
245 int ret;
246
247 if (compressed_size)
248 data_len = compressed_size;
249
250 if (start > 0 ||
70b99e69 251 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
252 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
253 (!compressed_size &&
254 (actual_end & (root->sectorsize - 1)) == 0) ||
255 end + 1 < isize ||
256 data_len > root->fs_info->max_inline) {
257 return 1;
258 }
259
00361589
JB
260 trans = btrfs_join_transaction(root);
261 if (IS_ERR(trans))
262 return PTR_ERR(trans);
263 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
264
2671485d 265 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
00361589
JB
266 if (ret) {
267 btrfs_abort_transaction(trans, root, ret);
268 goto out;
269 }
c8b97818
CM
270
271 if (isize > actual_end)
272 inline_len = min_t(u64, isize, actual_end);
273 ret = insert_inline_extent(trans, root, inode, start,
274 inline_len, compressed_size,
fe3f566c 275 compress_type, compressed_pages);
2adcac1a 276 if (ret && ret != -ENOSPC) {
79787eaa 277 btrfs_abort_transaction(trans, root, ret);
00361589 278 goto out;
2adcac1a 279 } else if (ret == -ENOSPC) {
00361589
JB
280 ret = 1;
281 goto out;
79787eaa 282 }
2adcac1a 283
bdc20e67 284 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 285 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 286 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589
JB
287out:
288 btrfs_end_transaction(trans, root);
289 return ret;
c8b97818
CM
290}
291
771ed689
CM
292struct async_extent {
293 u64 start;
294 u64 ram_size;
295 u64 compressed_size;
296 struct page **pages;
297 unsigned long nr_pages;
261507a0 298 int compress_type;
771ed689
CM
299 struct list_head list;
300};
301
302struct async_cow {
303 struct inode *inode;
304 struct btrfs_root *root;
305 struct page *locked_page;
306 u64 start;
307 u64 end;
308 struct list_head extents;
309 struct btrfs_work work;
310};
311
312static noinline int add_async_extent(struct async_cow *cow,
313 u64 start, u64 ram_size,
314 u64 compressed_size,
315 struct page **pages,
261507a0
LZ
316 unsigned long nr_pages,
317 int compress_type)
771ed689
CM
318{
319 struct async_extent *async_extent;
320
321 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 322 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
323 async_extent->start = start;
324 async_extent->ram_size = ram_size;
325 async_extent->compressed_size = compressed_size;
326 async_extent->pages = pages;
327 async_extent->nr_pages = nr_pages;
261507a0 328 async_extent->compress_type = compress_type;
771ed689
CM
329 list_add_tail(&async_extent->list, &cow->extents);
330 return 0;
331}
332
d352ac68 333/*
771ed689
CM
334 * we create compressed extents in two phases. The first
335 * phase compresses a range of pages that have already been
336 * locked (both pages and state bits are locked).
c8b97818 337 *
771ed689
CM
338 * This is done inside an ordered work queue, and the compression
339 * is spread across many cpus. The actual IO submission is step
340 * two, and the ordered work queue takes care of making sure that
341 * happens in the same order things were put onto the queue by
342 * writepages and friends.
c8b97818 343 *
771ed689
CM
344 * If this code finds it can't get good compression, it puts an
345 * entry onto the work queue to write the uncompressed bytes. This
346 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
347 * are written in the same order that the flusher thread sent them
348 * down.
d352ac68 349 */
771ed689
CM
350static noinline int compress_file_range(struct inode *inode,
351 struct page *locked_page,
352 u64 start, u64 end,
353 struct async_cow *async_cow,
354 int *num_added)
b888db2b
CM
355{
356 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 357 u64 num_bytes;
db94535d 358 u64 blocksize = root->sectorsize;
c8b97818 359 u64 actual_end;
42dc7bab 360 u64 isize = i_size_read(inode);
e6dcd2dc 361 int ret = 0;
c8b97818
CM
362 struct page **pages = NULL;
363 unsigned long nr_pages;
364 unsigned long nr_pages_ret = 0;
365 unsigned long total_compressed = 0;
366 unsigned long total_in = 0;
367 unsigned long max_compressed = 128 * 1024;
771ed689 368 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
369 int i;
370 int will_compress;
261507a0 371 int compress_type = root->fs_info->compress_type;
4adaa611 372 int redirty = 0;
b888db2b 373
4cb13e5d
LB
374 /* if this is a small write inside eof, kick off a defrag */
375 if ((end - start + 1) < 16 * 1024 &&
376 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
377 btrfs_add_inode_defrag(NULL, inode);
378
42dc7bab 379 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
380again:
381 will_compress = 0;
382 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
383 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 384
f03d9301
CM
385 /*
386 * we don't want to send crud past the end of i_size through
387 * compression, that's just a waste of CPU time. So, if the
388 * end of the file is before the start of our current
389 * requested range of bytes, we bail out to the uncompressed
390 * cleanup code that can deal with all of this.
391 *
392 * It isn't really the fastest way to fix things, but this is a
393 * very uncommon corner.
394 */
395 if (actual_end <= start)
396 goto cleanup_and_bail_uncompressed;
397
c8b97818
CM
398 total_compressed = actual_end - start;
399
400 /* we want to make sure that amount of ram required to uncompress
401 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
402 * of a compressed extent to 128k. This is a crucial number
403 * because it also controls how easily we can spread reads across
404 * cpus for decompression.
405 *
406 * We also want to make sure the amount of IO required to do
407 * a random read is reasonably small, so we limit the size of
408 * a compressed extent to 128k.
c8b97818
CM
409 */
410 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 411 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 412 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
413 total_in = 0;
414 ret = 0;
db94535d 415
771ed689
CM
416 /*
417 * we do compression for mount -o compress and when the
418 * inode has not been flagged as nocompress. This flag can
419 * change at any time if we discover bad compression ratios.
c8b97818 420 */
6cbff00f 421 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 422 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
423 (BTRFS_I(inode)->force_compress) ||
424 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 425 WARN_ON(pages);
cfbc246e 426 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
427 if (!pages) {
428 /* just bail out to the uncompressed code */
429 goto cont;
430 }
c8b97818 431
261507a0
LZ
432 if (BTRFS_I(inode)->force_compress)
433 compress_type = BTRFS_I(inode)->force_compress;
434
4adaa611
CM
435 /*
436 * we need to call clear_page_dirty_for_io on each
437 * page in the range. Otherwise applications with the file
438 * mmap'd can wander in and change the page contents while
439 * we are compressing them.
440 *
441 * If the compression fails for any reason, we set the pages
442 * dirty again later on.
443 */
444 extent_range_clear_dirty_for_io(inode, start, end);
445 redirty = 1;
261507a0
LZ
446 ret = btrfs_compress_pages(compress_type,
447 inode->i_mapping, start,
448 total_compressed, pages,
449 nr_pages, &nr_pages_ret,
450 &total_in,
451 &total_compressed,
452 max_compressed);
c8b97818
CM
453
454 if (!ret) {
455 unsigned long offset = total_compressed &
456 (PAGE_CACHE_SIZE - 1);
457 struct page *page = pages[nr_pages_ret - 1];
458 char *kaddr;
459
460 /* zero the tail end of the last page, we might be
461 * sending it down to disk
462 */
463 if (offset) {
7ac687d9 464 kaddr = kmap_atomic(page);
c8b97818
CM
465 memset(kaddr + offset, 0,
466 PAGE_CACHE_SIZE - offset);
7ac687d9 467 kunmap_atomic(kaddr);
c8b97818
CM
468 }
469 will_compress = 1;
470 }
471 }
560f7d75 472cont:
c8b97818
CM
473 if (start == 0) {
474 /* lets try to make an inline extent */
771ed689 475 if (ret || total_in < (actual_end - start)) {
c8b97818 476 /* we didn't compress the entire range, try
771ed689 477 * to make an uncompressed inline extent.
c8b97818 478 */
00361589
JB
479 ret = cow_file_range_inline(root, inode, start, end,
480 0, 0, NULL);
c8b97818 481 } else {
771ed689 482 /* try making a compressed inline extent */
00361589 483 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
484 total_compressed,
485 compress_type, pages);
c8b97818 486 }
79787eaa 487 if (ret <= 0) {
151a41bc
JB
488 unsigned long clear_flags = EXTENT_DELALLOC |
489 EXTENT_DEFRAG;
490 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
491
771ed689 492 /*
79787eaa
JM
493 * inline extent creation worked or returned error,
494 * we don't need to create any more async work items.
495 * Unlock and free up our temp pages.
771ed689 496 */
c2790a2e 497 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 498 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
499 PAGE_CLEAR_DIRTY |
500 PAGE_SET_WRITEBACK |
501 PAGE_END_WRITEBACK);
c8b97818
CM
502 goto free_pages_out;
503 }
504 }
505
506 if (will_compress) {
507 /*
508 * we aren't doing an inline extent round the compressed size
509 * up to a block size boundary so the allocator does sane
510 * things
511 */
fda2832f 512 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
513
514 /*
515 * one last check to make sure the compression is really a
516 * win, compare the page count read with the blocks on disk
517 */
fda2832f 518 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
519 if (total_compressed >= total_in) {
520 will_compress = 0;
521 } else {
c8b97818
CM
522 num_bytes = total_in;
523 }
524 }
525 if (!will_compress && pages) {
526 /*
527 * the compression code ran but failed to make things smaller,
528 * free any pages it allocated and our page pointer array
529 */
530 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 531 WARN_ON(pages[i]->mapping);
c8b97818
CM
532 page_cache_release(pages[i]);
533 }
534 kfree(pages);
535 pages = NULL;
536 total_compressed = 0;
537 nr_pages_ret = 0;
538
539 /* flag the file so we don't compress in the future */
1e701a32
CM
540 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
541 !(BTRFS_I(inode)->force_compress)) {
a555f810 542 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 543 }
c8b97818 544 }
771ed689
CM
545 if (will_compress) {
546 *num_added += 1;
c8b97818 547
771ed689
CM
548 /* the async work queues will take care of doing actual
549 * allocation on disk for these compressed pages,
550 * and will submit them to the elevator.
551 */
552 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
553 total_compressed, pages, nr_pages_ret,
554 compress_type);
179e29e4 555
24ae6365 556 if (start + num_bytes < end) {
771ed689
CM
557 start += num_bytes;
558 pages = NULL;
559 cond_resched();
560 goto again;
561 }
562 } else {
f03d9301 563cleanup_and_bail_uncompressed:
771ed689
CM
564 /*
565 * No compression, but we still need to write the pages in
566 * the file we've been given so far. redirty the locked
567 * page if it corresponds to our extent and set things up
568 * for the async work queue to run cow_file_range to do
569 * the normal delalloc dance
570 */
571 if (page_offset(locked_page) >= start &&
572 page_offset(locked_page) <= end) {
573 __set_page_dirty_nobuffers(locked_page);
574 /* unlocked later on in the async handlers */
575 }
4adaa611
CM
576 if (redirty)
577 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
578 add_async_extent(async_cow, start, end - start + 1,
579 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
580 *num_added += 1;
581 }
3b951516 582
771ed689 583out:
79787eaa 584 return ret;
771ed689
CM
585
586free_pages_out:
587 for (i = 0; i < nr_pages_ret; i++) {
588 WARN_ON(pages[i]->mapping);
589 page_cache_release(pages[i]);
590 }
d397712b 591 kfree(pages);
771ed689
CM
592
593 goto out;
594}
595
596/*
597 * phase two of compressed writeback. This is the ordered portion
598 * of the code, which only gets called in the order the work was
599 * queued. We walk all the async extents created by compress_file_range
600 * and send them down to the disk.
601 */
602static noinline int submit_compressed_extents(struct inode *inode,
603 struct async_cow *async_cow)
604{
605 struct async_extent *async_extent;
606 u64 alloc_hint = 0;
771ed689
CM
607 struct btrfs_key ins;
608 struct extent_map *em;
609 struct btrfs_root *root = BTRFS_I(inode)->root;
610 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
611 struct extent_io_tree *io_tree;
f5a84ee3 612 int ret = 0;
771ed689
CM
613
614 if (list_empty(&async_cow->extents))
615 return 0;
616
3e04e7f1 617again:
d397712b 618 while (!list_empty(&async_cow->extents)) {
771ed689
CM
619 async_extent = list_entry(async_cow->extents.next,
620 struct async_extent, list);
621 list_del(&async_extent->list);
c8b97818 622
771ed689
CM
623 io_tree = &BTRFS_I(inode)->io_tree;
624
f5a84ee3 625retry:
771ed689
CM
626 /* did the compression code fall back to uncompressed IO? */
627 if (!async_extent->pages) {
628 int page_started = 0;
629 unsigned long nr_written = 0;
630
631 lock_extent(io_tree, async_extent->start,
2ac55d41 632 async_extent->start +
d0082371 633 async_extent->ram_size - 1);
771ed689
CM
634
635 /* allocate blocks */
f5a84ee3
JB
636 ret = cow_file_range(inode, async_cow->locked_page,
637 async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1,
640 &page_started, &nr_written, 0);
771ed689 641
79787eaa
JM
642 /* JDM XXX */
643
771ed689
CM
644 /*
645 * if page_started, cow_file_range inserted an
646 * inline extent and took care of all the unlocking
647 * and IO for us. Otherwise, we need to submit
648 * all those pages down to the drive.
649 */
f5a84ee3 650 if (!page_started && !ret)
771ed689
CM
651 extent_write_locked_range(io_tree,
652 inode, async_extent->start,
d397712b 653 async_extent->start +
771ed689
CM
654 async_extent->ram_size - 1,
655 btrfs_get_extent,
656 WB_SYNC_ALL);
3e04e7f1
JB
657 else if (ret)
658 unlock_page(async_cow->locked_page);
771ed689
CM
659 kfree(async_extent);
660 cond_resched();
661 continue;
662 }
663
664 lock_extent(io_tree, async_extent->start,
d0082371 665 async_extent->start + async_extent->ram_size - 1);
771ed689 666
00361589 667 ret = btrfs_reserve_extent(root,
771ed689
CM
668 async_extent->compressed_size,
669 async_extent->compressed_size,
81c9ad23 670 0, alloc_hint, &ins, 1);
f5a84ee3
JB
671 if (ret) {
672 int i;
3e04e7f1 673
f5a84ee3
JB
674 for (i = 0; i < async_extent->nr_pages; i++) {
675 WARN_ON(async_extent->pages[i]->mapping);
676 page_cache_release(async_extent->pages[i]);
677 }
678 kfree(async_extent->pages);
679 async_extent->nr_pages = 0;
680 async_extent->pages = NULL;
3e04e7f1 681
fdf8e2ea
JB
682 if (ret == -ENOSPC) {
683 unlock_extent(io_tree, async_extent->start,
684 async_extent->start +
685 async_extent->ram_size - 1);
79787eaa 686 goto retry;
fdf8e2ea 687 }
3e04e7f1 688 goto out_free;
f5a84ee3
JB
689 }
690
c2167754
YZ
691 /*
692 * here we're doing allocation and writeback of the
693 * compressed pages
694 */
695 btrfs_drop_extent_cache(inode, async_extent->start,
696 async_extent->start +
697 async_extent->ram_size - 1, 0);
698
172ddd60 699 em = alloc_extent_map();
b9aa55be
LB
700 if (!em) {
701 ret = -ENOMEM;
3e04e7f1 702 goto out_free_reserve;
b9aa55be 703 }
771ed689
CM
704 em->start = async_extent->start;
705 em->len = async_extent->ram_size;
445a6944 706 em->orig_start = em->start;
2ab28f32
JB
707 em->mod_start = em->start;
708 em->mod_len = em->len;
c8b97818 709
771ed689
CM
710 em->block_start = ins.objectid;
711 em->block_len = ins.offset;
b4939680 712 em->orig_block_len = ins.offset;
cc95bef6 713 em->ram_bytes = async_extent->ram_size;
771ed689 714 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 715 em->compress_type = async_extent->compress_type;
771ed689
CM
716 set_bit(EXTENT_FLAG_PINNED, &em->flags);
717 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 718 em->generation = -1;
771ed689 719
d397712b 720 while (1) {
890871be 721 write_lock(&em_tree->lock);
09a2a8f9 722 ret = add_extent_mapping(em_tree, em, 1);
890871be 723 write_unlock(&em_tree->lock);
771ed689
CM
724 if (ret != -EEXIST) {
725 free_extent_map(em);
726 break;
727 }
728 btrfs_drop_extent_cache(inode, async_extent->start,
729 async_extent->start +
730 async_extent->ram_size - 1, 0);
731 }
732
3e04e7f1
JB
733 if (ret)
734 goto out_free_reserve;
735
261507a0
LZ
736 ret = btrfs_add_ordered_extent_compress(inode,
737 async_extent->start,
738 ins.objectid,
739 async_extent->ram_size,
740 ins.offset,
741 BTRFS_ORDERED_COMPRESSED,
742 async_extent->compress_type);
3e04e7f1
JB
743 if (ret)
744 goto out_free_reserve;
771ed689 745
771ed689
CM
746 /*
747 * clear dirty, set writeback and unlock the pages.
748 */
c2790a2e 749 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
750 async_extent->start +
751 async_extent->ram_size - 1,
151a41bc
JB
752 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
753 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 754 PAGE_SET_WRITEBACK);
771ed689 755 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
756 async_extent->start,
757 async_extent->ram_size,
758 ins.objectid,
759 ins.offset, async_extent->pages,
760 async_extent->nr_pages);
771ed689
CM
761 alloc_hint = ins.objectid + ins.offset;
762 kfree(async_extent);
3e04e7f1
JB
763 if (ret)
764 goto out;
771ed689
CM
765 cond_resched();
766 }
79787eaa
JM
767 ret = 0;
768out:
769 return ret;
3e04e7f1
JB
770out_free_reserve:
771 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 772out_free:
c2790a2e 773 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
774 async_extent->start +
775 async_extent->ram_size - 1,
c2790a2e 776 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
777 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
778 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
779 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 780 kfree(async_extent);
3e04e7f1 781 goto again;
771ed689
CM
782}
783
4b46fce2
JB
784static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
785 u64 num_bytes)
786{
787 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
788 struct extent_map *em;
789 u64 alloc_hint = 0;
790
791 read_lock(&em_tree->lock);
792 em = search_extent_mapping(em_tree, start, num_bytes);
793 if (em) {
794 /*
795 * if block start isn't an actual block number then find the
796 * first block in this inode and use that as a hint. If that
797 * block is also bogus then just don't worry about it.
798 */
799 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
800 free_extent_map(em);
801 em = search_extent_mapping(em_tree, 0, 0);
802 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
803 alloc_hint = em->block_start;
804 if (em)
805 free_extent_map(em);
806 } else {
807 alloc_hint = em->block_start;
808 free_extent_map(em);
809 }
810 }
811 read_unlock(&em_tree->lock);
812
813 return alloc_hint;
814}
815
771ed689
CM
816/*
817 * when extent_io.c finds a delayed allocation range in the file,
818 * the call backs end up in this code. The basic idea is to
819 * allocate extents on disk for the range, and create ordered data structs
820 * in ram to track those extents.
821 *
822 * locked_page is the page that writepage had locked already. We use
823 * it to make sure we don't do extra locks or unlocks.
824 *
825 * *page_started is set to one if we unlock locked_page and do everything
826 * required to start IO on it. It may be clean and already done with
827 * IO when we return.
828 */
00361589
JB
829static noinline int cow_file_range(struct inode *inode,
830 struct page *locked_page,
831 u64 start, u64 end, int *page_started,
832 unsigned long *nr_written,
833 int unlock)
771ed689 834{
00361589 835 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
836 u64 alloc_hint = 0;
837 u64 num_bytes;
838 unsigned long ram_size;
839 u64 disk_num_bytes;
840 u64 cur_alloc_size;
841 u64 blocksize = root->sectorsize;
771ed689
CM
842 struct btrfs_key ins;
843 struct extent_map *em;
844 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
845 int ret = 0;
846
83eea1f1 847 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 848
fda2832f 849 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
850 num_bytes = max(blocksize, num_bytes);
851 disk_num_bytes = num_bytes;
771ed689 852
4cb5300b 853 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
854 if (num_bytes < 64 * 1024 &&
855 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 856 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 857
771ed689
CM
858 if (start == 0) {
859 /* lets try to make an inline extent */
00361589
JB
860 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
861 NULL);
771ed689 862 if (ret == 0) {
c2790a2e
JB
863 extent_clear_unlock_delalloc(inode, start, end, NULL,
864 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 865 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
866 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
867 PAGE_END_WRITEBACK);
c2167754 868
771ed689
CM
869 *nr_written = *nr_written +
870 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
871 *page_started = 1;
771ed689 872 goto out;
79787eaa 873 } else if (ret < 0) {
79787eaa 874 goto out_unlock;
771ed689
CM
875 }
876 }
877
878 BUG_ON(disk_num_bytes >
6c41761f 879 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 880
4b46fce2 881 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
882 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
883
d397712b 884 while (disk_num_bytes > 0) {
a791e35e
CM
885 unsigned long op;
886
287a0ab9 887 cur_alloc_size = disk_num_bytes;
00361589 888 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 889 root->sectorsize, 0, alloc_hint,
81c9ad23 890 &ins, 1);
00361589 891 if (ret < 0)
79787eaa 892 goto out_unlock;
d397712b 893
172ddd60 894 em = alloc_extent_map();
b9aa55be
LB
895 if (!em) {
896 ret = -ENOMEM;
ace68bac 897 goto out_reserve;
b9aa55be 898 }
e6dcd2dc 899 em->start = start;
445a6944 900 em->orig_start = em->start;
771ed689
CM
901 ram_size = ins.offset;
902 em->len = ins.offset;
2ab28f32
JB
903 em->mod_start = em->start;
904 em->mod_len = em->len;
c8b97818 905
e6dcd2dc 906 em->block_start = ins.objectid;
c8b97818 907 em->block_len = ins.offset;
b4939680 908 em->orig_block_len = ins.offset;
cc95bef6 909 em->ram_bytes = ram_size;
e6dcd2dc 910 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 911 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 912 em->generation = -1;
c8b97818 913
d397712b 914 while (1) {
890871be 915 write_lock(&em_tree->lock);
09a2a8f9 916 ret = add_extent_mapping(em_tree, em, 1);
890871be 917 write_unlock(&em_tree->lock);
e6dcd2dc
CM
918 if (ret != -EEXIST) {
919 free_extent_map(em);
920 break;
921 }
922 btrfs_drop_extent_cache(inode, start,
c8b97818 923 start + ram_size - 1, 0);
e6dcd2dc 924 }
ace68bac
LB
925 if (ret)
926 goto out_reserve;
e6dcd2dc 927
98d20f67 928 cur_alloc_size = ins.offset;
e6dcd2dc 929 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 930 ram_size, cur_alloc_size, 0);
ace68bac
LB
931 if (ret)
932 goto out_reserve;
c8b97818 933
17d217fe
YZ
934 if (root->root_key.objectid ==
935 BTRFS_DATA_RELOC_TREE_OBJECTID) {
936 ret = btrfs_reloc_clone_csums(inode, start,
937 cur_alloc_size);
00361589 938 if (ret)
ace68bac 939 goto out_reserve;
17d217fe
YZ
940 }
941
d397712b 942 if (disk_num_bytes < cur_alloc_size)
3b951516 943 break;
d397712b 944
c8b97818
CM
945 /* we're not doing compressed IO, don't unlock the first
946 * page (which the caller expects to stay locked), don't
947 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
948 *
949 * Do set the Private2 bit so we know this page was properly
950 * setup for writepage
c8b97818 951 */
c2790a2e
JB
952 op = unlock ? PAGE_UNLOCK : 0;
953 op |= PAGE_SET_PRIVATE2;
a791e35e 954
c2790a2e
JB
955 extent_clear_unlock_delalloc(inode, start,
956 start + ram_size - 1, locked_page,
957 EXTENT_LOCKED | EXTENT_DELALLOC,
958 op);
c8b97818 959 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
960 num_bytes -= cur_alloc_size;
961 alloc_hint = ins.objectid + ins.offset;
962 start += cur_alloc_size;
b888db2b 963 }
79787eaa 964out:
be20aa9d 965 return ret;
b7d5b0a8 966
ace68bac
LB
967out_reserve:
968 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 969out_unlock:
c2790a2e 970 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
971 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
972 EXTENT_DELALLOC | EXTENT_DEFRAG,
973 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
974 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 975 goto out;
771ed689 976}
c8b97818 977
771ed689
CM
978/*
979 * work queue call back to started compression on a file and pages
980 */
981static noinline void async_cow_start(struct btrfs_work *work)
982{
983 struct async_cow *async_cow;
984 int num_added = 0;
985 async_cow = container_of(work, struct async_cow, work);
986
987 compress_file_range(async_cow->inode, async_cow->locked_page,
988 async_cow->start, async_cow->end, async_cow,
989 &num_added);
8180ef88 990 if (num_added == 0) {
cb77fcd8 991 btrfs_add_delayed_iput(async_cow->inode);
771ed689 992 async_cow->inode = NULL;
8180ef88 993 }
771ed689
CM
994}
995
996/*
997 * work queue call back to submit previously compressed pages
998 */
999static noinline void async_cow_submit(struct btrfs_work *work)
1000{
1001 struct async_cow *async_cow;
1002 struct btrfs_root *root;
1003 unsigned long nr_pages;
1004
1005 async_cow = container_of(work, struct async_cow, work);
1006
1007 root = async_cow->root;
1008 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1009 PAGE_CACHE_SHIFT;
1010
66657b31 1011 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1012 5 * 1024 * 1024 &&
771ed689
CM
1013 waitqueue_active(&root->fs_info->async_submit_wait))
1014 wake_up(&root->fs_info->async_submit_wait);
1015
d397712b 1016 if (async_cow->inode)
771ed689 1017 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1018}
c8b97818 1019
771ed689
CM
1020static noinline void async_cow_free(struct btrfs_work *work)
1021{
1022 struct async_cow *async_cow;
1023 async_cow = container_of(work, struct async_cow, work);
8180ef88 1024 if (async_cow->inode)
cb77fcd8 1025 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1026 kfree(async_cow);
1027}
1028
1029static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1030 u64 start, u64 end, int *page_started,
1031 unsigned long *nr_written)
1032{
1033 struct async_cow *async_cow;
1034 struct btrfs_root *root = BTRFS_I(inode)->root;
1035 unsigned long nr_pages;
1036 u64 cur_end;
287082b0 1037 int limit = 10 * 1024 * 1024;
771ed689 1038
a3429ab7
CM
1039 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1040 1, 0, NULL, GFP_NOFS);
d397712b 1041 while (start < end) {
771ed689 1042 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1043 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1044 async_cow->inode = igrab(inode);
771ed689
CM
1045 async_cow->root = root;
1046 async_cow->locked_page = locked_page;
1047 async_cow->start = start;
1048
6cbff00f 1049 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1050 cur_end = end;
1051 else
1052 cur_end = min(end, start + 512 * 1024 - 1);
1053
1054 async_cow->end = cur_end;
1055 INIT_LIST_HEAD(&async_cow->extents);
1056
1057 async_cow->work.func = async_cow_start;
1058 async_cow->work.ordered_func = async_cow_submit;
1059 async_cow->work.ordered_free = async_cow_free;
1060 async_cow->work.flags = 0;
1061
771ed689
CM
1062 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1063 PAGE_CACHE_SHIFT;
1064 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1065
1066 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1067 &async_cow->work);
1068
1069 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1070 wait_event(root->fs_info->async_submit_wait,
1071 (atomic_read(&root->fs_info->async_delalloc_pages) <
1072 limit));
1073 }
1074
d397712b 1075 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1076 atomic_read(&root->fs_info->async_delalloc_pages)) {
1077 wait_event(root->fs_info->async_submit_wait,
1078 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1079 0));
1080 }
1081
1082 *nr_written += nr_pages;
1083 start = cur_end + 1;
1084 }
1085 *page_started = 1;
1086 return 0;
be20aa9d
CM
1087}
1088
d397712b 1089static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1090 u64 bytenr, u64 num_bytes)
1091{
1092 int ret;
1093 struct btrfs_ordered_sum *sums;
1094 LIST_HEAD(list);
1095
07d400a6 1096 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1097 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1098 if (ret == 0 && list_empty(&list))
1099 return 0;
1100
1101 while (!list_empty(&list)) {
1102 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1103 list_del(&sums->list);
1104 kfree(sums);
1105 }
1106 return 1;
1107}
1108
d352ac68
CM
1109/*
1110 * when nowcow writeback call back. This checks for snapshots or COW copies
1111 * of the extents that exist in the file, and COWs the file as required.
1112 *
1113 * If no cow copies or snapshots exist, we write directly to the existing
1114 * blocks on disk
1115 */
7f366cfe
CM
1116static noinline int run_delalloc_nocow(struct inode *inode,
1117 struct page *locked_page,
771ed689
CM
1118 u64 start, u64 end, int *page_started, int force,
1119 unsigned long *nr_written)
be20aa9d 1120{
be20aa9d 1121 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1122 struct btrfs_trans_handle *trans;
be20aa9d 1123 struct extent_buffer *leaf;
be20aa9d 1124 struct btrfs_path *path;
80ff3856 1125 struct btrfs_file_extent_item *fi;
be20aa9d 1126 struct btrfs_key found_key;
80ff3856
YZ
1127 u64 cow_start;
1128 u64 cur_offset;
1129 u64 extent_end;
5d4f98a2 1130 u64 extent_offset;
80ff3856
YZ
1131 u64 disk_bytenr;
1132 u64 num_bytes;
b4939680 1133 u64 disk_num_bytes;
cc95bef6 1134 u64 ram_bytes;
80ff3856 1135 int extent_type;
79787eaa 1136 int ret, err;
d899e052 1137 int type;
80ff3856
YZ
1138 int nocow;
1139 int check_prev = 1;
82d5902d 1140 bool nolock;
33345d01 1141 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1142
1143 path = btrfs_alloc_path();
17ca04af 1144 if (!path) {
c2790a2e
JB
1145 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1146 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1147 EXTENT_DO_ACCOUNTING |
1148 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1149 PAGE_CLEAR_DIRTY |
1150 PAGE_SET_WRITEBACK |
1151 PAGE_END_WRITEBACK);
d8926bb3 1152 return -ENOMEM;
17ca04af 1153 }
82d5902d 1154
83eea1f1 1155 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1156
1157 if (nolock)
7a7eaa40 1158 trans = btrfs_join_transaction_nolock(root);
82d5902d 1159 else
7a7eaa40 1160 trans = btrfs_join_transaction(root);
ff5714cc 1161
79787eaa 1162 if (IS_ERR(trans)) {
c2790a2e
JB
1163 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1164 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1165 EXTENT_DO_ACCOUNTING |
1166 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1167 PAGE_CLEAR_DIRTY |
1168 PAGE_SET_WRITEBACK |
1169 PAGE_END_WRITEBACK);
79787eaa
JM
1170 btrfs_free_path(path);
1171 return PTR_ERR(trans);
1172 }
1173
74b21075 1174 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1175
80ff3856
YZ
1176 cow_start = (u64)-1;
1177 cur_offset = start;
1178 while (1) {
33345d01 1179 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1180 cur_offset, 0);
79787eaa
JM
1181 if (ret < 0) {
1182 btrfs_abort_transaction(trans, root, ret);
1183 goto error;
1184 }
80ff3856
YZ
1185 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186 leaf = path->nodes[0];
1187 btrfs_item_key_to_cpu(leaf, &found_key,
1188 path->slots[0] - 1);
33345d01 1189 if (found_key.objectid == ino &&
80ff3856
YZ
1190 found_key.type == BTRFS_EXTENT_DATA_KEY)
1191 path->slots[0]--;
1192 }
1193 check_prev = 0;
1194next_slot:
1195 leaf = path->nodes[0];
1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1198 if (ret < 0) {
1199 btrfs_abort_transaction(trans, root, ret);
1200 goto error;
1201 }
80ff3856
YZ
1202 if (ret > 0)
1203 break;
1204 leaf = path->nodes[0];
1205 }
be20aa9d 1206
80ff3856
YZ
1207 nocow = 0;
1208 disk_bytenr = 0;
17d217fe 1209 num_bytes = 0;
80ff3856
YZ
1210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1211
33345d01 1212 if (found_key.objectid > ino ||
80ff3856
YZ
1213 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1214 found_key.offset > end)
1215 break;
1216
1217 if (found_key.offset > cur_offset) {
1218 extent_end = found_key.offset;
e9061e21 1219 extent_type = 0;
80ff3856
YZ
1220 goto out_check;
1221 }
1222
1223 fi = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_file_extent_item);
1225 extent_type = btrfs_file_extent_type(leaf, fi);
1226
cc95bef6 1227 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1228 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1229 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1230 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1231 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1232 extent_end = found_key.offset +
1233 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1234 disk_num_bytes =
1235 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1236 if (extent_end <= start) {
1237 path->slots[0]++;
1238 goto next_slot;
1239 }
17d217fe
YZ
1240 if (disk_bytenr == 0)
1241 goto out_check;
80ff3856
YZ
1242 if (btrfs_file_extent_compression(leaf, fi) ||
1243 btrfs_file_extent_encryption(leaf, fi) ||
1244 btrfs_file_extent_other_encoding(leaf, fi))
1245 goto out_check;
d899e052
YZ
1246 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1247 goto out_check;
d2fb3437 1248 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1249 goto out_check;
33345d01 1250 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1251 found_key.offset -
1252 extent_offset, disk_bytenr))
17d217fe 1253 goto out_check;
5d4f98a2 1254 disk_bytenr += extent_offset;
17d217fe
YZ
1255 disk_bytenr += cur_offset - found_key.offset;
1256 num_bytes = min(end + 1, extent_end) - cur_offset;
1257 /*
1258 * force cow if csum exists in the range.
1259 * this ensure that csum for a given extent are
1260 * either valid or do not exist.
1261 */
1262 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1263 goto out_check;
80ff3856
YZ
1264 nocow = 1;
1265 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1266 extent_end = found_key.offset +
1267 btrfs_file_extent_inline_len(leaf, fi);
1268 extent_end = ALIGN(extent_end, root->sectorsize);
1269 } else {
1270 BUG_ON(1);
1271 }
1272out_check:
1273 if (extent_end <= start) {
1274 path->slots[0]++;
1275 goto next_slot;
1276 }
1277 if (!nocow) {
1278 if (cow_start == (u64)-1)
1279 cow_start = cur_offset;
1280 cur_offset = extent_end;
1281 if (cur_offset > end)
1282 break;
1283 path->slots[0]++;
1284 goto next_slot;
7ea394f1
YZ
1285 }
1286
b3b4aa74 1287 btrfs_release_path(path);
80ff3856 1288 if (cow_start != (u64)-1) {
00361589
JB
1289 ret = cow_file_range(inode, locked_page,
1290 cow_start, found_key.offset - 1,
1291 page_started, nr_written, 1);
79787eaa
JM
1292 if (ret) {
1293 btrfs_abort_transaction(trans, root, ret);
1294 goto error;
1295 }
80ff3856 1296 cow_start = (u64)-1;
7ea394f1 1297 }
80ff3856 1298
d899e052
YZ
1299 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1300 struct extent_map *em;
1301 struct extent_map_tree *em_tree;
1302 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1303 em = alloc_extent_map();
79787eaa 1304 BUG_ON(!em); /* -ENOMEM */
d899e052 1305 em->start = cur_offset;
70c8a91c 1306 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1307 em->len = num_bytes;
1308 em->block_len = num_bytes;
1309 em->block_start = disk_bytenr;
b4939680 1310 em->orig_block_len = disk_num_bytes;
cc95bef6 1311 em->ram_bytes = ram_bytes;
d899e052 1312 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1313 em->mod_start = em->start;
1314 em->mod_len = em->len;
d899e052 1315 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1316 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1317 em->generation = -1;
d899e052 1318 while (1) {
890871be 1319 write_lock(&em_tree->lock);
09a2a8f9 1320 ret = add_extent_mapping(em_tree, em, 1);
890871be 1321 write_unlock(&em_tree->lock);
d899e052
YZ
1322 if (ret != -EEXIST) {
1323 free_extent_map(em);
1324 break;
1325 }
1326 btrfs_drop_extent_cache(inode, em->start,
1327 em->start + em->len - 1, 0);
1328 }
1329 type = BTRFS_ORDERED_PREALLOC;
1330 } else {
1331 type = BTRFS_ORDERED_NOCOW;
1332 }
80ff3856
YZ
1333
1334 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1335 num_bytes, num_bytes, type);
79787eaa 1336 BUG_ON(ret); /* -ENOMEM */
771ed689 1337
efa56464
YZ
1338 if (root->root_key.objectid ==
1339 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1340 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1341 num_bytes);
79787eaa
JM
1342 if (ret) {
1343 btrfs_abort_transaction(trans, root, ret);
1344 goto error;
1345 }
efa56464
YZ
1346 }
1347
c2790a2e
JB
1348 extent_clear_unlock_delalloc(inode, cur_offset,
1349 cur_offset + num_bytes - 1,
1350 locked_page, EXTENT_LOCKED |
1351 EXTENT_DELALLOC, PAGE_UNLOCK |
1352 PAGE_SET_PRIVATE2);
80ff3856
YZ
1353 cur_offset = extent_end;
1354 if (cur_offset > end)
1355 break;
be20aa9d 1356 }
b3b4aa74 1357 btrfs_release_path(path);
80ff3856 1358
17ca04af 1359 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1360 cow_start = cur_offset;
17ca04af
JB
1361 cur_offset = end;
1362 }
1363
80ff3856 1364 if (cow_start != (u64)-1) {
00361589
JB
1365 ret = cow_file_range(inode, locked_page, cow_start, end,
1366 page_started, nr_written, 1);
79787eaa
JM
1367 if (ret) {
1368 btrfs_abort_transaction(trans, root, ret);
1369 goto error;
1370 }
80ff3856
YZ
1371 }
1372
79787eaa 1373error:
a698d075 1374 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1375 if (!ret)
1376 ret = err;
1377
17ca04af 1378 if (ret && cur_offset < end)
c2790a2e
JB
1379 extent_clear_unlock_delalloc(inode, cur_offset, end,
1380 locked_page, EXTENT_LOCKED |
151a41bc
JB
1381 EXTENT_DELALLOC | EXTENT_DEFRAG |
1382 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1383 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1384 PAGE_SET_WRITEBACK |
1385 PAGE_END_WRITEBACK);
7ea394f1 1386 btrfs_free_path(path);
79787eaa 1387 return ret;
be20aa9d
CM
1388}
1389
d352ac68
CM
1390/*
1391 * extent_io.c call back to do delayed allocation processing
1392 */
c8b97818 1393static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1394 u64 start, u64 end, int *page_started,
1395 unsigned long *nr_written)
be20aa9d 1396{
be20aa9d 1397 int ret;
7f366cfe 1398 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1399
7ddf5a42 1400 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1401 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1402 page_started, 1, nr_written);
7ddf5a42 1403 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1404 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1405 page_started, 0, nr_written);
7ddf5a42
JB
1406 } else if (!btrfs_test_opt(root, COMPRESS) &&
1407 !(BTRFS_I(inode)->force_compress) &&
1408 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1409 ret = cow_file_range(inode, locked_page, start, end,
1410 page_started, nr_written, 1);
7ddf5a42
JB
1411 } else {
1412 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1413 &BTRFS_I(inode)->runtime_flags);
771ed689 1414 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1415 page_started, nr_written);
7ddf5a42 1416 }
b888db2b
CM
1417 return ret;
1418}
1419
1bf85046
JM
1420static void btrfs_split_extent_hook(struct inode *inode,
1421 struct extent_state *orig, u64 split)
9ed74f2d 1422{
0ca1f7ce 1423 /* not delalloc, ignore it */
9ed74f2d 1424 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1425 return;
9ed74f2d 1426
9e0baf60
JB
1427 spin_lock(&BTRFS_I(inode)->lock);
1428 BTRFS_I(inode)->outstanding_extents++;
1429 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1430}
1431
1432/*
1433 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1434 * extents so we can keep track of new extents that are just merged onto old
1435 * extents, such as when we are doing sequential writes, so we can properly
1436 * account for the metadata space we'll need.
1437 */
1bf85046
JM
1438static void btrfs_merge_extent_hook(struct inode *inode,
1439 struct extent_state *new,
1440 struct extent_state *other)
9ed74f2d 1441{
9ed74f2d
JB
1442 /* not delalloc, ignore it */
1443 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1444 return;
9ed74f2d 1445
9e0baf60
JB
1446 spin_lock(&BTRFS_I(inode)->lock);
1447 BTRFS_I(inode)->outstanding_extents--;
1448 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1449}
1450
eb73c1b7
MX
1451static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1452 struct inode *inode)
1453{
1454 spin_lock(&root->delalloc_lock);
1455 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1456 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1457 &root->delalloc_inodes);
1458 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1459 &BTRFS_I(inode)->runtime_flags);
1460 root->nr_delalloc_inodes++;
1461 if (root->nr_delalloc_inodes == 1) {
1462 spin_lock(&root->fs_info->delalloc_root_lock);
1463 BUG_ON(!list_empty(&root->delalloc_root));
1464 list_add_tail(&root->delalloc_root,
1465 &root->fs_info->delalloc_roots);
1466 spin_unlock(&root->fs_info->delalloc_root_lock);
1467 }
1468 }
1469 spin_unlock(&root->delalloc_lock);
1470}
1471
1472static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1473 struct inode *inode)
1474{
1475 spin_lock(&root->delalloc_lock);
1476 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1477 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1478 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1479 &BTRFS_I(inode)->runtime_flags);
1480 root->nr_delalloc_inodes--;
1481 if (!root->nr_delalloc_inodes) {
1482 spin_lock(&root->fs_info->delalloc_root_lock);
1483 BUG_ON(list_empty(&root->delalloc_root));
1484 list_del_init(&root->delalloc_root);
1485 spin_unlock(&root->fs_info->delalloc_root_lock);
1486 }
1487 }
1488 spin_unlock(&root->delalloc_lock);
1489}
1490
d352ac68
CM
1491/*
1492 * extent_io.c set_bit_hook, used to track delayed allocation
1493 * bytes in this file, and to maintain the list of inodes that
1494 * have pending delalloc work to be done.
1495 */
1bf85046 1496static void btrfs_set_bit_hook(struct inode *inode,
41074888 1497 struct extent_state *state, unsigned long *bits)
291d673e 1498{
9ed74f2d 1499
75eff68e
CM
1500 /*
1501 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1502 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1503 * bit, which is only set or cleared with irqs on
1504 */
0ca1f7ce 1505 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1506 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1507 u64 len = state->end + 1 - state->start;
83eea1f1 1508 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1509
9e0baf60 1510 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1511 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1512 } else {
1513 spin_lock(&BTRFS_I(inode)->lock);
1514 BTRFS_I(inode)->outstanding_extents++;
1515 spin_unlock(&BTRFS_I(inode)->lock);
1516 }
287a0ab9 1517
963d678b
MX
1518 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1519 root->fs_info->delalloc_batch);
df0af1a5 1520 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1521 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1522 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1523 &BTRFS_I(inode)->runtime_flags))
1524 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1525 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1526 }
291d673e
CM
1527}
1528
d352ac68
CM
1529/*
1530 * extent_io.c clear_bit_hook, see set_bit_hook for why
1531 */
1bf85046 1532static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1533 struct extent_state *state,
1534 unsigned long *bits)
291d673e 1535{
75eff68e
CM
1536 /*
1537 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1538 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1539 * bit, which is only set or cleared with irqs on
1540 */
0ca1f7ce 1541 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1542 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1543 u64 len = state->end + 1 - state->start;
83eea1f1 1544 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1545
9e0baf60 1546 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1547 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1548 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1549 spin_lock(&BTRFS_I(inode)->lock);
1550 BTRFS_I(inode)->outstanding_extents--;
1551 spin_unlock(&BTRFS_I(inode)->lock);
1552 }
0ca1f7ce 1553
b6d08f06
JB
1554 /*
1555 * We don't reserve metadata space for space cache inodes so we
1556 * don't need to call dellalloc_release_metadata if there is an
1557 * error.
1558 */
1559 if (*bits & EXTENT_DO_ACCOUNTING &&
1560 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1561 btrfs_delalloc_release_metadata(inode, len);
1562
0cb59c99 1563 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1564 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1565 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1566
963d678b
MX
1567 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1568 root->fs_info->delalloc_batch);
df0af1a5 1569 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1570 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1571 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1572 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1573 &BTRFS_I(inode)->runtime_flags))
1574 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1575 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1576 }
291d673e
CM
1577}
1578
d352ac68
CM
1579/*
1580 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1581 * we don't create bios that span stripes or chunks
1582 */
64a16701 1583int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1584 size_t size, struct bio *bio,
1585 unsigned long bio_flags)
239b14b3
CM
1586{
1587 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1588 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1589 u64 length = 0;
1590 u64 map_length;
239b14b3
CM
1591 int ret;
1592
771ed689
CM
1593 if (bio_flags & EXTENT_BIO_COMPRESSED)
1594 return 0;
1595
f2d8d74d 1596 length = bio->bi_size;
239b14b3 1597 map_length = length;
64a16701 1598 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1599 &map_length, NULL, 0);
3ec706c8 1600 /* Will always return 0 with map_multi == NULL */
3444a972 1601 BUG_ON(ret < 0);
d397712b 1602 if (map_length < length + size)
239b14b3 1603 return 1;
3444a972 1604 return 0;
239b14b3
CM
1605}
1606
d352ac68
CM
1607/*
1608 * in order to insert checksums into the metadata in large chunks,
1609 * we wait until bio submission time. All the pages in the bio are
1610 * checksummed and sums are attached onto the ordered extent record.
1611 *
1612 * At IO completion time the cums attached on the ordered extent record
1613 * are inserted into the btree
1614 */
d397712b
CM
1615static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1616 struct bio *bio, int mirror_num,
eaf25d93
CM
1617 unsigned long bio_flags,
1618 u64 bio_offset)
065631f6 1619{
065631f6 1620 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1621 int ret = 0;
e015640f 1622
d20f7043 1623 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1624 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1625 return 0;
1626}
e015640f 1627
4a69a410
CM
1628/*
1629 * in order to insert checksums into the metadata in large chunks,
1630 * we wait until bio submission time. All the pages in the bio are
1631 * checksummed and sums are attached onto the ordered extent record.
1632 *
1633 * At IO completion time the cums attached on the ordered extent record
1634 * are inserted into the btree
1635 */
b2950863 1636static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1637 int mirror_num, unsigned long bio_flags,
1638 u64 bio_offset)
4a69a410
CM
1639{
1640 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1641 int ret;
1642
1643 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1644 if (ret)
1645 bio_endio(bio, ret);
1646 return ret;
44b8bd7e
CM
1647}
1648
d352ac68 1649/*
cad321ad
CM
1650 * extent_io.c submission hook. This does the right thing for csum calculation
1651 * on write, or reading the csums from the tree before a read
d352ac68 1652 */
b2950863 1653static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1654 int mirror_num, unsigned long bio_flags,
1655 u64 bio_offset)
44b8bd7e
CM
1656{
1657 struct btrfs_root *root = BTRFS_I(inode)->root;
1658 int ret = 0;
19b9bdb0 1659 int skip_sum;
0417341e 1660 int metadata = 0;
b812ce28 1661 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1662
6cbff00f 1663 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1664
83eea1f1 1665 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1666 metadata = 2;
1667
7b6d91da 1668 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1669 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1670 if (ret)
61891923 1671 goto out;
5fd02043 1672
d20f7043 1673 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1674 ret = btrfs_submit_compressed_read(inode, bio,
1675 mirror_num,
1676 bio_flags);
1677 goto out;
c2db1073
TI
1678 } else if (!skip_sum) {
1679 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1680 if (ret)
61891923 1681 goto out;
c2db1073 1682 }
4d1b5fb4 1683 goto mapit;
b812ce28 1684 } else if (async && !skip_sum) {
17d217fe
YZ
1685 /* csum items have already been cloned */
1686 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1687 goto mapit;
19b9bdb0 1688 /* we're doing a write, do the async checksumming */
61891923 1689 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1690 inode, rw, bio, mirror_num,
eaf25d93
CM
1691 bio_flags, bio_offset,
1692 __btrfs_submit_bio_start,
4a69a410 1693 __btrfs_submit_bio_done);
61891923 1694 goto out;
b812ce28
JB
1695 } else if (!skip_sum) {
1696 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1697 if (ret)
1698 goto out;
19b9bdb0
CM
1699 }
1700
0b86a832 1701mapit:
61891923
SB
1702 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1703
1704out:
1705 if (ret < 0)
1706 bio_endio(bio, ret);
1707 return ret;
065631f6 1708}
6885f308 1709
d352ac68
CM
1710/*
1711 * given a list of ordered sums record them in the inode. This happens
1712 * at IO completion time based on sums calculated at bio submission time.
1713 */
ba1da2f4 1714static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1715 struct inode *inode, u64 file_offset,
1716 struct list_head *list)
1717{
e6dcd2dc
CM
1718 struct btrfs_ordered_sum *sum;
1719
c6e30871 1720 list_for_each_entry(sum, list, list) {
39847c4d 1721 trans->adding_csums = 1;
d20f7043
CM
1722 btrfs_csum_file_blocks(trans,
1723 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1724 trans->adding_csums = 0;
e6dcd2dc
CM
1725 }
1726 return 0;
1727}
1728
2ac55d41
JB
1729int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1730 struct extent_state **cached_state)
ea8c2819 1731{
6c1500f2 1732 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1733 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1734 cached_state, GFP_NOFS);
ea8c2819
CM
1735}
1736
d352ac68 1737/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1738struct btrfs_writepage_fixup {
1739 struct page *page;
1740 struct btrfs_work work;
1741};
1742
b2950863 1743static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1744{
1745 struct btrfs_writepage_fixup *fixup;
1746 struct btrfs_ordered_extent *ordered;
2ac55d41 1747 struct extent_state *cached_state = NULL;
247e743c
CM
1748 struct page *page;
1749 struct inode *inode;
1750 u64 page_start;
1751 u64 page_end;
87826df0 1752 int ret;
247e743c
CM
1753
1754 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1755 page = fixup->page;
4a096752 1756again:
247e743c
CM
1757 lock_page(page);
1758 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1759 ClearPageChecked(page);
1760 goto out_page;
1761 }
1762
1763 inode = page->mapping->host;
1764 page_start = page_offset(page);
1765 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1766
2ac55d41 1767 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1768 &cached_state);
4a096752
CM
1769
1770 /* already ordered? We're done */
8b62b72b 1771 if (PagePrivate2(page))
247e743c 1772 goto out;
4a096752
CM
1773
1774 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1775 if (ordered) {
2ac55d41
JB
1776 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1777 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1778 unlock_page(page);
1779 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1780 btrfs_put_ordered_extent(ordered);
4a096752
CM
1781 goto again;
1782 }
247e743c 1783
87826df0
JM
1784 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1785 if (ret) {
1786 mapping_set_error(page->mapping, ret);
1787 end_extent_writepage(page, ret, page_start, page_end);
1788 ClearPageChecked(page);
1789 goto out;
1790 }
1791
2ac55d41 1792 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1793 ClearPageChecked(page);
87826df0 1794 set_page_dirty(page);
247e743c 1795out:
2ac55d41
JB
1796 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1797 &cached_state, GFP_NOFS);
247e743c
CM
1798out_page:
1799 unlock_page(page);
1800 page_cache_release(page);
b897abec 1801 kfree(fixup);
247e743c
CM
1802}
1803
1804/*
1805 * There are a few paths in the higher layers of the kernel that directly
1806 * set the page dirty bit without asking the filesystem if it is a
1807 * good idea. This causes problems because we want to make sure COW
1808 * properly happens and the data=ordered rules are followed.
1809 *
c8b97818 1810 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1811 * hasn't been properly setup for IO. We kick off an async process
1812 * to fix it up. The async helper will wait for ordered extents, set
1813 * the delalloc bit and make it safe to write the page.
1814 */
b2950863 1815static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1816{
1817 struct inode *inode = page->mapping->host;
1818 struct btrfs_writepage_fixup *fixup;
1819 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1820
8b62b72b
CM
1821 /* this page is properly in the ordered list */
1822 if (TestClearPagePrivate2(page))
247e743c
CM
1823 return 0;
1824
1825 if (PageChecked(page))
1826 return -EAGAIN;
1827
1828 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1829 if (!fixup)
1830 return -EAGAIN;
f421950f 1831
247e743c
CM
1832 SetPageChecked(page);
1833 page_cache_get(page);
1834 fixup->work.func = btrfs_writepage_fixup_worker;
1835 fixup->page = page;
1836 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1837 return -EBUSY;
247e743c
CM
1838}
1839
d899e052
YZ
1840static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1841 struct inode *inode, u64 file_pos,
1842 u64 disk_bytenr, u64 disk_num_bytes,
1843 u64 num_bytes, u64 ram_bytes,
1844 u8 compression, u8 encryption,
1845 u16 other_encoding, int extent_type)
1846{
1847 struct btrfs_root *root = BTRFS_I(inode)->root;
1848 struct btrfs_file_extent_item *fi;
1849 struct btrfs_path *path;
1850 struct extent_buffer *leaf;
1851 struct btrfs_key ins;
d899e052
YZ
1852 int ret;
1853
1854 path = btrfs_alloc_path();
d8926bb3
MF
1855 if (!path)
1856 return -ENOMEM;
d899e052 1857
b9473439 1858 path->leave_spinning = 1;
a1ed835e
CM
1859
1860 /*
1861 * we may be replacing one extent in the tree with another.
1862 * The new extent is pinned in the extent map, and we don't want
1863 * to drop it from the cache until it is completely in the btree.
1864 *
1865 * So, tell btrfs_drop_extents to leave this extent in the cache.
1866 * the caller is expected to unpin it and allow it to be merged
1867 * with the others.
1868 */
5dc562c5 1869 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1870 file_pos + num_bytes, 0);
79787eaa
JM
1871 if (ret)
1872 goto out;
d899e052 1873
33345d01 1874 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1875 ins.offset = file_pos;
1876 ins.type = BTRFS_EXTENT_DATA_KEY;
1877 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1878 if (ret)
1879 goto out;
d899e052
YZ
1880 leaf = path->nodes[0];
1881 fi = btrfs_item_ptr(leaf, path->slots[0],
1882 struct btrfs_file_extent_item);
1883 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1884 btrfs_set_file_extent_type(leaf, fi, extent_type);
1885 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1886 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1887 btrfs_set_file_extent_offset(leaf, fi, 0);
1888 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1889 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1890 btrfs_set_file_extent_compression(leaf, fi, compression);
1891 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1892 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1893
d899e052 1894 btrfs_mark_buffer_dirty(leaf);
ce195332 1895 btrfs_release_path(path);
d899e052
YZ
1896
1897 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1898
1899 ins.objectid = disk_bytenr;
1900 ins.offset = disk_num_bytes;
1901 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1902 ret = btrfs_alloc_reserved_file_extent(trans, root,
1903 root->root_key.objectid,
33345d01 1904 btrfs_ino(inode), file_pos, &ins);
79787eaa 1905out:
d899e052 1906 btrfs_free_path(path);
b9473439 1907
79787eaa 1908 return ret;
d899e052
YZ
1909}
1910
38c227d8
LB
1911/* snapshot-aware defrag */
1912struct sa_defrag_extent_backref {
1913 struct rb_node node;
1914 struct old_sa_defrag_extent *old;
1915 u64 root_id;
1916 u64 inum;
1917 u64 file_pos;
1918 u64 extent_offset;
1919 u64 num_bytes;
1920 u64 generation;
1921};
1922
1923struct old_sa_defrag_extent {
1924 struct list_head list;
1925 struct new_sa_defrag_extent *new;
1926
1927 u64 extent_offset;
1928 u64 bytenr;
1929 u64 offset;
1930 u64 len;
1931 int count;
1932};
1933
1934struct new_sa_defrag_extent {
1935 struct rb_root root;
1936 struct list_head head;
1937 struct btrfs_path *path;
1938 struct inode *inode;
1939 u64 file_pos;
1940 u64 len;
1941 u64 bytenr;
1942 u64 disk_len;
1943 u8 compress_type;
1944};
1945
1946static int backref_comp(struct sa_defrag_extent_backref *b1,
1947 struct sa_defrag_extent_backref *b2)
1948{
1949 if (b1->root_id < b2->root_id)
1950 return -1;
1951 else if (b1->root_id > b2->root_id)
1952 return 1;
1953
1954 if (b1->inum < b2->inum)
1955 return -1;
1956 else if (b1->inum > b2->inum)
1957 return 1;
1958
1959 if (b1->file_pos < b2->file_pos)
1960 return -1;
1961 else if (b1->file_pos > b2->file_pos)
1962 return 1;
1963
1964 /*
1965 * [------------------------------] ===> (a range of space)
1966 * |<--->| |<---->| =============> (fs/file tree A)
1967 * |<---------------------------->| ===> (fs/file tree B)
1968 *
1969 * A range of space can refer to two file extents in one tree while
1970 * refer to only one file extent in another tree.
1971 *
1972 * So we may process a disk offset more than one time(two extents in A)
1973 * and locate at the same extent(one extent in B), then insert two same
1974 * backrefs(both refer to the extent in B).
1975 */
1976 return 0;
1977}
1978
1979static void backref_insert(struct rb_root *root,
1980 struct sa_defrag_extent_backref *backref)
1981{
1982 struct rb_node **p = &root->rb_node;
1983 struct rb_node *parent = NULL;
1984 struct sa_defrag_extent_backref *entry;
1985 int ret;
1986
1987 while (*p) {
1988 parent = *p;
1989 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1990
1991 ret = backref_comp(backref, entry);
1992 if (ret < 0)
1993 p = &(*p)->rb_left;
1994 else
1995 p = &(*p)->rb_right;
1996 }
1997
1998 rb_link_node(&backref->node, parent, p);
1999 rb_insert_color(&backref->node, root);
2000}
2001
2002/*
2003 * Note the backref might has changed, and in this case we just return 0.
2004 */
2005static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2006 void *ctx)
2007{
2008 struct btrfs_file_extent_item *extent;
2009 struct btrfs_fs_info *fs_info;
2010 struct old_sa_defrag_extent *old = ctx;
2011 struct new_sa_defrag_extent *new = old->new;
2012 struct btrfs_path *path = new->path;
2013 struct btrfs_key key;
2014 struct btrfs_root *root;
2015 struct sa_defrag_extent_backref *backref;
2016 struct extent_buffer *leaf;
2017 struct inode *inode = new->inode;
2018 int slot;
2019 int ret;
2020 u64 extent_offset;
2021 u64 num_bytes;
2022
2023 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2024 inum == btrfs_ino(inode))
2025 return 0;
2026
2027 key.objectid = root_id;
2028 key.type = BTRFS_ROOT_ITEM_KEY;
2029 key.offset = (u64)-1;
2030
2031 fs_info = BTRFS_I(inode)->root->fs_info;
2032 root = btrfs_read_fs_root_no_name(fs_info, &key);
2033 if (IS_ERR(root)) {
2034 if (PTR_ERR(root) == -ENOENT)
2035 return 0;
2036 WARN_ON(1);
2037 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2038 inum, offset, root_id);
2039 return PTR_ERR(root);
2040 }
2041
2042 key.objectid = inum;
2043 key.type = BTRFS_EXTENT_DATA_KEY;
2044 if (offset > (u64)-1 << 32)
2045 key.offset = 0;
2046 else
2047 key.offset = offset;
2048
2049 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2050 if (ret < 0) {
2051 WARN_ON(1);
2052 return ret;
2053 }
50f1319c 2054 ret = 0;
38c227d8
LB
2055
2056 while (1) {
2057 cond_resched();
2058
2059 leaf = path->nodes[0];
2060 slot = path->slots[0];
2061
2062 if (slot >= btrfs_header_nritems(leaf)) {
2063 ret = btrfs_next_leaf(root, path);
2064 if (ret < 0) {
2065 goto out;
2066 } else if (ret > 0) {
2067 ret = 0;
2068 goto out;
2069 }
2070 continue;
2071 }
2072
2073 path->slots[0]++;
2074
2075 btrfs_item_key_to_cpu(leaf, &key, slot);
2076
2077 if (key.objectid > inum)
2078 goto out;
2079
2080 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2081 continue;
2082
2083 extent = btrfs_item_ptr(leaf, slot,
2084 struct btrfs_file_extent_item);
2085
2086 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2087 continue;
2088
e68afa49
LB
2089 /*
2090 * 'offset' refers to the exact key.offset,
2091 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2092 * (key.offset - extent_offset).
2093 */
2094 if (key.offset != offset)
38c227d8
LB
2095 continue;
2096
e68afa49 2097 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2098 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2099
38c227d8
LB
2100 if (extent_offset >= old->extent_offset + old->offset +
2101 old->len || extent_offset + num_bytes <=
2102 old->extent_offset + old->offset)
2103 continue;
38c227d8
LB
2104 break;
2105 }
2106
2107 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2108 if (!backref) {
2109 ret = -ENOENT;
2110 goto out;
2111 }
2112
2113 backref->root_id = root_id;
2114 backref->inum = inum;
e68afa49 2115 backref->file_pos = offset;
38c227d8
LB
2116 backref->num_bytes = num_bytes;
2117 backref->extent_offset = extent_offset;
2118 backref->generation = btrfs_file_extent_generation(leaf, extent);
2119 backref->old = old;
2120 backref_insert(&new->root, backref);
2121 old->count++;
2122out:
2123 btrfs_release_path(path);
2124 WARN_ON(ret);
2125 return ret;
2126}
2127
2128static noinline bool record_extent_backrefs(struct btrfs_path *path,
2129 struct new_sa_defrag_extent *new)
2130{
2131 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2132 struct old_sa_defrag_extent *old, *tmp;
2133 int ret;
2134
2135 new->path = path;
2136
2137 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2138 ret = iterate_inodes_from_logical(old->bytenr +
2139 old->extent_offset, fs_info,
38c227d8
LB
2140 path, record_one_backref,
2141 old);
2142 BUG_ON(ret < 0 && ret != -ENOENT);
2143
2144 /* no backref to be processed for this extent */
2145 if (!old->count) {
2146 list_del(&old->list);
2147 kfree(old);
2148 }
2149 }
2150
2151 if (list_empty(&new->head))
2152 return false;
2153
2154 return true;
2155}
2156
2157static int relink_is_mergable(struct extent_buffer *leaf,
2158 struct btrfs_file_extent_item *fi,
116e0024 2159 struct new_sa_defrag_extent *new)
38c227d8 2160{
116e0024 2161 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2162 return 0;
2163
2164 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2165 return 0;
2166
116e0024
LB
2167 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2168 return 0;
2169
2170 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2171 btrfs_file_extent_other_encoding(leaf, fi))
2172 return 0;
2173
2174 return 1;
2175}
2176
2177/*
2178 * Note the backref might has changed, and in this case we just return 0.
2179 */
2180static noinline int relink_extent_backref(struct btrfs_path *path,
2181 struct sa_defrag_extent_backref *prev,
2182 struct sa_defrag_extent_backref *backref)
2183{
2184 struct btrfs_file_extent_item *extent;
2185 struct btrfs_file_extent_item *item;
2186 struct btrfs_ordered_extent *ordered;
2187 struct btrfs_trans_handle *trans;
2188 struct btrfs_fs_info *fs_info;
2189 struct btrfs_root *root;
2190 struct btrfs_key key;
2191 struct extent_buffer *leaf;
2192 struct old_sa_defrag_extent *old = backref->old;
2193 struct new_sa_defrag_extent *new = old->new;
2194 struct inode *src_inode = new->inode;
2195 struct inode *inode;
2196 struct extent_state *cached = NULL;
2197 int ret = 0;
2198 u64 start;
2199 u64 len;
2200 u64 lock_start;
2201 u64 lock_end;
2202 bool merge = false;
2203 int index;
2204
2205 if (prev && prev->root_id == backref->root_id &&
2206 prev->inum == backref->inum &&
2207 prev->file_pos + prev->num_bytes == backref->file_pos)
2208 merge = true;
2209
2210 /* step 1: get root */
2211 key.objectid = backref->root_id;
2212 key.type = BTRFS_ROOT_ITEM_KEY;
2213 key.offset = (u64)-1;
2214
2215 fs_info = BTRFS_I(src_inode)->root->fs_info;
2216 index = srcu_read_lock(&fs_info->subvol_srcu);
2217
2218 root = btrfs_read_fs_root_no_name(fs_info, &key);
2219 if (IS_ERR(root)) {
2220 srcu_read_unlock(&fs_info->subvol_srcu, index);
2221 if (PTR_ERR(root) == -ENOENT)
2222 return 0;
2223 return PTR_ERR(root);
2224 }
38c227d8
LB
2225
2226 /* step 2: get inode */
2227 key.objectid = backref->inum;
2228 key.type = BTRFS_INODE_ITEM_KEY;
2229 key.offset = 0;
2230
2231 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2232 if (IS_ERR(inode)) {
2233 srcu_read_unlock(&fs_info->subvol_srcu, index);
2234 return 0;
2235 }
2236
2237 srcu_read_unlock(&fs_info->subvol_srcu, index);
2238
2239 /* step 3: relink backref */
2240 lock_start = backref->file_pos;
2241 lock_end = backref->file_pos + backref->num_bytes - 1;
2242 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2243 0, &cached);
2244
2245 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2246 if (ordered) {
2247 btrfs_put_ordered_extent(ordered);
2248 goto out_unlock;
2249 }
2250
2251 trans = btrfs_join_transaction(root);
2252 if (IS_ERR(trans)) {
2253 ret = PTR_ERR(trans);
2254 goto out_unlock;
2255 }
2256
2257 key.objectid = backref->inum;
2258 key.type = BTRFS_EXTENT_DATA_KEY;
2259 key.offset = backref->file_pos;
2260
2261 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2262 if (ret < 0) {
2263 goto out_free_path;
2264 } else if (ret > 0) {
2265 ret = 0;
2266 goto out_free_path;
2267 }
2268
2269 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2270 struct btrfs_file_extent_item);
2271
2272 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2273 backref->generation)
2274 goto out_free_path;
2275
2276 btrfs_release_path(path);
2277
2278 start = backref->file_pos;
2279 if (backref->extent_offset < old->extent_offset + old->offset)
2280 start += old->extent_offset + old->offset -
2281 backref->extent_offset;
2282
2283 len = min(backref->extent_offset + backref->num_bytes,
2284 old->extent_offset + old->offset + old->len);
2285 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2286
2287 ret = btrfs_drop_extents(trans, root, inode, start,
2288 start + len, 1);
2289 if (ret)
2290 goto out_free_path;
2291again:
2292 key.objectid = btrfs_ino(inode);
2293 key.type = BTRFS_EXTENT_DATA_KEY;
2294 key.offset = start;
2295
a09a0a70 2296 path->leave_spinning = 1;
38c227d8
LB
2297 if (merge) {
2298 struct btrfs_file_extent_item *fi;
2299 u64 extent_len;
2300 struct btrfs_key found_key;
2301
2302 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2303 if (ret < 0)
2304 goto out_free_path;
2305
2306 path->slots[0]--;
2307 leaf = path->nodes[0];
2308 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2309
2310 fi = btrfs_item_ptr(leaf, path->slots[0],
2311 struct btrfs_file_extent_item);
2312 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2313
116e0024
LB
2314 if (extent_len + found_key.offset == start &&
2315 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2316 btrfs_set_file_extent_num_bytes(leaf, fi,
2317 extent_len + len);
2318 btrfs_mark_buffer_dirty(leaf);
2319 inode_add_bytes(inode, len);
2320
2321 ret = 1;
2322 goto out_free_path;
2323 } else {
2324 merge = false;
2325 btrfs_release_path(path);
2326 goto again;
2327 }
2328 }
2329
2330 ret = btrfs_insert_empty_item(trans, root, path, &key,
2331 sizeof(*extent));
2332 if (ret) {
2333 btrfs_abort_transaction(trans, root, ret);
2334 goto out_free_path;
2335 }
2336
2337 leaf = path->nodes[0];
2338 item = btrfs_item_ptr(leaf, path->slots[0],
2339 struct btrfs_file_extent_item);
2340 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2341 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2342 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2343 btrfs_set_file_extent_num_bytes(leaf, item, len);
2344 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2345 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2346 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2347 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2348 btrfs_set_file_extent_encryption(leaf, item, 0);
2349 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2350
2351 btrfs_mark_buffer_dirty(leaf);
2352 inode_add_bytes(inode, len);
a09a0a70 2353 btrfs_release_path(path);
38c227d8
LB
2354
2355 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2356 new->disk_len, 0,
2357 backref->root_id, backref->inum,
2358 new->file_pos, 0); /* start - extent_offset */
2359 if (ret) {
2360 btrfs_abort_transaction(trans, root, ret);
2361 goto out_free_path;
2362 }
2363
2364 ret = 1;
2365out_free_path:
2366 btrfs_release_path(path);
a09a0a70 2367 path->leave_spinning = 0;
38c227d8
LB
2368 btrfs_end_transaction(trans, root);
2369out_unlock:
2370 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2371 &cached, GFP_NOFS);
2372 iput(inode);
2373 return ret;
2374}
2375
2376static void relink_file_extents(struct new_sa_defrag_extent *new)
2377{
2378 struct btrfs_path *path;
2379 struct old_sa_defrag_extent *old, *tmp;
2380 struct sa_defrag_extent_backref *backref;
2381 struct sa_defrag_extent_backref *prev = NULL;
2382 struct inode *inode;
2383 struct btrfs_root *root;
2384 struct rb_node *node;
2385 int ret;
2386
2387 inode = new->inode;
2388 root = BTRFS_I(inode)->root;
2389
2390 path = btrfs_alloc_path();
2391 if (!path)
2392 return;
2393
2394 if (!record_extent_backrefs(path, new)) {
2395 btrfs_free_path(path);
2396 goto out;
2397 }
2398 btrfs_release_path(path);
2399
2400 while (1) {
2401 node = rb_first(&new->root);
2402 if (!node)
2403 break;
2404 rb_erase(node, &new->root);
2405
2406 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2407
2408 ret = relink_extent_backref(path, prev, backref);
2409 WARN_ON(ret < 0);
2410
2411 kfree(prev);
2412
2413 if (ret == 1)
2414 prev = backref;
2415 else
2416 prev = NULL;
2417 cond_resched();
2418 }
2419 kfree(prev);
2420
2421 btrfs_free_path(path);
2422
2423 list_for_each_entry_safe(old, tmp, &new->head, list) {
2424 list_del(&old->list);
2425 kfree(old);
2426 }
2427out:
2428 atomic_dec(&root->fs_info->defrag_running);
2429 wake_up(&root->fs_info->transaction_wait);
2430
2431 kfree(new);
2432}
2433
2434static struct new_sa_defrag_extent *
2435record_old_file_extents(struct inode *inode,
2436 struct btrfs_ordered_extent *ordered)
2437{
2438 struct btrfs_root *root = BTRFS_I(inode)->root;
2439 struct btrfs_path *path;
2440 struct btrfs_key key;
2441 struct old_sa_defrag_extent *old, *tmp;
2442 struct new_sa_defrag_extent *new;
2443 int ret;
2444
2445 new = kmalloc(sizeof(*new), GFP_NOFS);
2446 if (!new)
2447 return NULL;
2448
2449 new->inode = inode;
2450 new->file_pos = ordered->file_offset;
2451 new->len = ordered->len;
2452 new->bytenr = ordered->start;
2453 new->disk_len = ordered->disk_len;
2454 new->compress_type = ordered->compress_type;
2455 new->root = RB_ROOT;
2456 INIT_LIST_HEAD(&new->head);
2457
2458 path = btrfs_alloc_path();
2459 if (!path)
2460 goto out_kfree;
2461
2462 key.objectid = btrfs_ino(inode);
2463 key.type = BTRFS_EXTENT_DATA_KEY;
2464 key.offset = new->file_pos;
2465
2466 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2467 if (ret < 0)
2468 goto out_free_path;
2469 if (ret > 0 && path->slots[0] > 0)
2470 path->slots[0]--;
2471
2472 /* find out all the old extents for the file range */
2473 while (1) {
2474 struct btrfs_file_extent_item *extent;
2475 struct extent_buffer *l;
2476 int slot;
2477 u64 num_bytes;
2478 u64 offset;
2479 u64 end;
2480 u64 disk_bytenr;
2481 u64 extent_offset;
2482
2483 l = path->nodes[0];
2484 slot = path->slots[0];
2485
2486 if (slot >= btrfs_header_nritems(l)) {
2487 ret = btrfs_next_leaf(root, path);
2488 if (ret < 0)
2489 goto out_free_list;
2490 else if (ret > 0)
2491 break;
2492 continue;
2493 }
2494
2495 btrfs_item_key_to_cpu(l, &key, slot);
2496
2497 if (key.objectid != btrfs_ino(inode))
2498 break;
2499 if (key.type != BTRFS_EXTENT_DATA_KEY)
2500 break;
2501 if (key.offset >= new->file_pos + new->len)
2502 break;
2503
2504 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2505
2506 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2507 if (key.offset + num_bytes < new->file_pos)
2508 goto next;
2509
2510 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2511 if (!disk_bytenr)
2512 goto next;
2513
2514 extent_offset = btrfs_file_extent_offset(l, extent);
2515
2516 old = kmalloc(sizeof(*old), GFP_NOFS);
2517 if (!old)
2518 goto out_free_list;
2519
2520 offset = max(new->file_pos, key.offset);
2521 end = min(new->file_pos + new->len, key.offset + num_bytes);
2522
2523 old->bytenr = disk_bytenr;
2524 old->extent_offset = extent_offset;
2525 old->offset = offset - key.offset;
2526 old->len = end - offset;
2527 old->new = new;
2528 old->count = 0;
2529 list_add_tail(&old->list, &new->head);
2530next:
2531 path->slots[0]++;
2532 cond_resched();
2533 }
2534
2535 btrfs_free_path(path);
2536 atomic_inc(&root->fs_info->defrag_running);
2537
2538 return new;
2539
2540out_free_list:
2541 list_for_each_entry_safe(old, tmp, &new->head, list) {
2542 list_del(&old->list);
2543 kfree(old);
2544 }
2545out_free_path:
2546 btrfs_free_path(path);
2547out_kfree:
2548 kfree(new);
2549 return NULL;
2550}
2551
5d13a98f
CM
2552/*
2553 * helper function for btrfs_finish_ordered_io, this
2554 * just reads in some of the csum leaves to prime them into ram
2555 * before we start the transaction. It limits the amount of btree
2556 * reads required while inside the transaction.
2557 */
d352ac68
CM
2558/* as ordered data IO finishes, this gets called so we can finish
2559 * an ordered extent if the range of bytes in the file it covers are
2560 * fully written.
2561 */
5fd02043 2562static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2563{
5fd02043 2564 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2565 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2566 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2567 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2568 struct extent_state *cached_state = NULL;
38c227d8 2569 struct new_sa_defrag_extent *new = NULL;
261507a0 2570 int compress_type = 0;
77cef2ec
JB
2571 int ret = 0;
2572 u64 logical_len = ordered_extent->len;
82d5902d 2573 bool nolock;
77cef2ec 2574 bool truncated = false;
e6dcd2dc 2575
83eea1f1 2576 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2577
5fd02043
JB
2578 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2579 ret = -EIO;
2580 goto out;
2581 }
2582
77cef2ec
JB
2583 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2584 truncated = true;
2585 logical_len = ordered_extent->truncated_len;
2586 /* Truncated the entire extent, don't bother adding */
2587 if (!logical_len)
2588 goto out;
2589 }
2590
c2167754 2591 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2592 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2593 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2594 if (nolock)
2595 trans = btrfs_join_transaction_nolock(root);
2596 else
2597 trans = btrfs_join_transaction(root);
2598 if (IS_ERR(trans)) {
2599 ret = PTR_ERR(trans);
2600 trans = NULL;
2601 goto out;
c2167754 2602 }
6c760c07
JB
2603 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2604 ret = btrfs_update_inode_fallback(trans, root, inode);
2605 if (ret) /* -ENOMEM or corruption */
2606 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2607 goto out;
2608 }
e6dcd2dc 2609
2ac55d41
JB
2610 lock_extent_bits(io_tree, ordered_extent->file_offset,
2611 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2612 0, &cached_state);
e6dcd2dc 2613
38c227d8
LB
2614 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2615 ordered_extent->file_offset + ordered_extent->len - 1,
2616 EXTENT_DEFRAG, 1, cached_state);
2617 if (ret) {
2618 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2619 if (last_snapshot >= BTRFS_I(inode)->generation)
2620 /* the inode is shared */
2621 new = record_old_file_extents(inode, ordered_extent);
2622
2623 clear_extent_bit(io_tree, ordered_extent->file_offset,
2624 ordered_extent->file_offset + ordered_extent->len - 1,
2625 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2626 }
2627
0cb59c99 2628 if (nolock)
7a7eaa40 2629 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2630 else
7a7eaa40 2631 trans = btrfs_join_transaction(root);
79787eaa
JM
2632 if (IS_ERR(trans)) {
2633 ret = PTR_ERR(trans);
2634 trans = NULL;
2635 goto out_unlock;
2636 }
0ca1f7ce 2637 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2638
c8b97818 2639 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2640 compress_type = ordered_extent->compress_type;
d899e052 2641 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2642 BUG_ON(compress_type);
920bbbfb 2643 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2644 ordered_extent->file_offset,
2645 ordered_extent->file_offset +
77cef2ec 2646 logical_len);
d899e052 2647 } else {
0af3d00b 2648 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2649 ret = insert_reserved_file_extent(trans, inode,
2650 ordered_extent->file_offset,
2651 ordered_extent->start,
2652 ordered_extent->disk_len,
77cef2ec 2653 logical_len, logical_len,
261507a0 2654 compress_type, 0, 0,
d899e052 2655 BTRFS_FILE_EXTENT_REG);
d899e052 2656 }
5dc562c5
JB
2657 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2658 ordered_extent->file_offset, ordered_extent->len,
2659 trans->transid);
79787eaa
JM
2660 if (ret < 0) {
2661 btrfs_abort_transaction(trans, root, ret);
5fd02043 2662 goto out_unlock;
79787eaa 2663 }
2ac55d41 2664
e6dcd2dc
CM
2665 add_pending_csums(trans, inode, ordered_extent->file_offset,
2666 &ordered_extent->list);
2667
6c760c07
JB
2668 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2669 ret = btrfs_update_inode_fallback(trans, root, inode);
2670 if (ret) { /* -ENOMEM or corruption */
2671 btrfs_abort_transaction(trans, root, ret);
2672 goto out_unlock;
1ef30be1
JB
2673 }
2674 ret = 0;
5fd02043
JB
2675out_unlock:
2676 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2677 ordered_extent->file_offset +
2678 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2679out:
5b0e95bf 2680 if (root != root->fs_info->tree_root)
0cb59c99 2681 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2682 if (trans)
2683 btrfs_end_transaction(trans, root);
0cb59c99 2684
77cef2ec
JB
2685 if (ret || truncated) {
2686 u64 start, end;
2687
2688 if (truncated)
2689 start = ordered_extent->file_offset + logical_len;
2690 else
2691 start = ordered_extent->file_offset;
2692 end = ordered_extent->file_offset + ordered_extent->len - 1;
2693 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2694
2695 /* Drop the cache for the part of the extent we didn't write. */
2696 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2697
0bec9ef5
JB
2698 /*
2699 * If the ordered extent had an IOERR or something else went
2700 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2701 * back to the allocator. We only free the extent in the
2702 * truncated case if we didn't write out the extent at all.
0bec9ef5 2703 */
77cef2ec
JB
2704 if ((ret || !logical_len) &&
2705 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2706 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2707 btrfs_free_reserved_extent(root, ordered_extent->start,
2708 ordered_extent->disk_len);
2709 }
2710
2711
5fd02043 2712 /*
8bad3c02
LB
2713 * This needs to be done to make sure anybody waiting knows we are done
2714 * updating everything for this ordered extent.
5fd02043
JB
2715 */
2716 btrfs_remove_ordered_extent(inode, ordered_extent);
2717
38c227d8
LB
2718 /* for snapshot-aware defrag */
2719 if (new)
2720 relink_file_extents(new);
2721
e6dcd2dc
CM
2722 /* once for us */
2723 btrfs_put_ordered_extent(ordered_extent);
2724 /* once for the tree */
2725 btrfs_put_ordered_extent(ordered_extent);
2726
5fd02043
JB
2727 return ret;
2728}
2729
2730static void finish_ordered_fn(struct btrfs_work *work)
2731{
2732 struct btrfs_ordered_extent *ordered_extent;
2733 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2734 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2735}
2736
b2950863 2737static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2738 struct extent_state *state, int uptodate)
2739{
5fd02043
JB
2740 struct inode *inode = page->mapping->host;
2741 struct btrfs_root *root = BTRFS_I(inode)->root;
2742 struct btrfs_ordered_extent *ordered_extent = NULL;
2743 struct btrfs_workers *workers;
2744
1abe9b8a 2745 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2746
8b62b72b 2747 ClearPagePrivate2(page);
5fd02043
JB
2748 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2749 end - start + 1, uptodate))
2750 return 0;
2751
2752 ordered_extent->work.func = finish_ordered_fn;
2753 ordered_extent->work.flags = 0;
2754
83eea1f1 2755 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2756 workers = &root->fs_info->endio_freespace_worker;
2757 else
2758 workers = &root->fs_info->endio_write_workers;
2759 btrfs_queue_worker(workers, &ordered_extent->work);
2760
2761 return 0;
211f90e6
CM
2762}
2763
d352ac68
CM
2764/*
2765 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2766 * if there's a match, we allow the bio to finish. If not, the code in
2767 * extent_io.c will try to find good copies for us.
d352ac68 2768 */
facc8a22
MX
2769static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2770 u64 phy_offset, struct page *page,
2771 u64 start, u64 end, int mirror)
07157aac 2772{
4eee4fa4 2773 size_t offset = start - page_offset(page);
07157aac 2774 struct inode *inode = page->mapping->host;
d1310b2e 2775 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2776 char *kaddr;
ff79f819 2777 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2778 u32 csum_expected;
ff79f819 2779 u32 csum = ~(u32)0;
c2cf52eb
SK
2780 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2781 DEFAULT_RATELIMIT_BURST);
d1310b2e 2782
d20f7043
CM
2783 if (PageChecked(page)) {
2784 ClearPageChecked(page);
2785 goto good;
2786 }
6cbff00f
CH
2787
2788 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2789 goto good;
17d217fe
YZ
2790
2791 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2792 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2793 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2794 GFP_NOFS);
b6cda9bc 2795 return 0;
17d217fe 2796 }
d20f7043 2797
facc8a22
MX
2798 phy_offset >>= inode->i_sb->s_blocksize_bits;
2799 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2800
facc8a22 2801 kaddr = kmap_atomic(page);
b0496686 2802 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2803 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2804 if (csum != csum_expected)
07157aac 2805 goto zeroit;
d397712b 2806
7ac687d9 2807 kunmap_atomic(kaddr);
d20f7043 2808good:
07157aac
CM
2809 return 0;
2810
2811zeroit:
c2cf52eb 2812 if (__ratelimit(&_rs))
facc8a22 2813 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2814 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2815 memset(kaddr + offset, 1, end - start + 1);
2816 flush_dcache_page(page);
7ac687d9 2817 kunmap_atomic(kaddr);
facc8a22 2818 if (csum_expected == 0)
3b951516 2819 return 0;
7e38326f 2820 return -EIO;
07157aac 2821}
b888db2b 2822
24bbcf04
YZ
2823struct delayed_iput {
2824 struct list_head list;
2825 struct inode *inode;
2826};
2827
79787eaa
JM
2828/* JDM: If this is fs-wide, why can't we add a pointer to
2829 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2830void btrfs_add_delayed_iput(struct inode *inode)
2831{
2832 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2833 struct delayed_iput *delayed;
2834
2835 if (atomic_add_unless(&inode->i_count, -1, 1))
2836 return;
2837
2838 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2839 delayed->inode = inode;
2840
2841 spin_lock(&fs_info->delayed_iput_lock);
2842 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2843 spin_unlock(&fs_info->delayed_iput_lock);
2844}
2845
2846void btrfs_run_delayed_iputs(struct btrfs_root *root)
2847{
2848 LIST_HEAD(list);
2849 struct btrfs_fs_info *fs_info = root->fs_info;
2850 struct delayed_iput *delayed;
2851 int empty;
2852
2853 spin_lock(&fs_info->delayed_iput_lock);
2854 empty = list_empty(&fs_info->delayed_iputs);
2855 spin_unlock(&fs_info->delayed_iput_lock);
2856 if (empty)
2857 return;
2858
24bbcf04
YZ
2859 spin_lock(&fs_info->delayed_iput_lock);
2860 list_splice_init(&fs_info->delayed_iputs, &list);
2861 spin_unlock(&fs_info->delayed_iput_lock);
2862
2863 while (!list_empty(&list)) {
2864 delayed = list_entry(list.next, struct delayed_iput, list);
2865 list_del(&delayed->list);
2866 iput(delayed->inode);
2867 kfree(delayed);
2868 }
24bbcf04
YZ
2869}
2870
d68fc57b 2871/*
42b2aa86 2872 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2873 * files in the subvolume, it removes orphan item and frees block_rsv
2874 * structure.
2875 */
2876void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2877 struct btrfs_root *root)
2878{
90290e19 2879 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2880 int ret;
2881
8a35d95f 2882 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2883 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2884 return;
2885
90290e19 2886 spin_lock(&root->orphan_lock);
8a35d95f 2887 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2888 spin_unlock(&root->orphan_lock);
2889 return;
2890 }
2891
2892 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2893 spin_unlock(&root->orphan_lock);
2894 return;
2895 }
2896
2897 block_rsv = root->orphan_block_rsv;
2898 root->orphan_block_rsv = NULL;
2899 spin_unlock(&root->orphan_lock);
2900
d68fc57b
YZ
2901 if (root->orphan_item_inserted &&
2902 btrfs_root_refs(&root->root_item) > 0) {
2903 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2904 root->root_key.objectid);
4ef31a45
JB
2905 if (ret)
2906 btrfs_abort_transaction(trans, root, ret);
2907 else
2908 root->orphan_item_inserted = 0;
d68fc57b
YZ
2909 }
2910
90290e19
JB
2911 if (block_rsv) {
2912 WARN_ON(block_rsv->size > 0);
2913 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2914 }
2915}
2916
7b128766
JB
2917/*
2918 * This creates an orphan entry for the given inode in case something goes
2919 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2920 *
2921 * NOTE: caller of this function should reserve 5 units of metadata for
2922 * this function.
7b128766
JB
2923 */
2924int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2925{
2926 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2927 struct btrfs_block_rsv *block_rsv = NULL;
2928 int reserve = 0;
2929 int insert = 0;
2930 int ret;
7b128766 2931
d68fc57b 2932 if (!root->orphan_block_rsv) {
66d8f3dd 2933 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2934 if (!block_rsv)
2935 return -ENOMEM;
d68fc57b 2936 }
7b128766 2937
d68fc57b
YZ
2938 spin_lock(&root->orphan_lock);
2939 if (!root->orphan_block_rsv) {
2940 root->orphan_block_rsv = block_rsv;
2941 } else if (block_rsv) {
2942 btrfs_free_block_rsv(root, block_rsv);
2943 block_rsv = NULL;
7b128766 2944 }
7b128766 2945
8a35d95f
JB
2946 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2947 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2948#if 0
2949 /*
2950 * For proper ENOSPC handling, we should do orphan
2951 * cleanup when mounting. But this introduces backward
2952 * compatibility issue.
2953 */
2954 if (!xchg(&root->orphan_item_inserted, 1))
2955 insert = 2;
2956 else
2957 insert = 1;
2958#endif
2959 insert = 1;
321f0e70 2960 atomic_inc(&root->orphan_inodes);
7b128766
JB
2961 }
2962
72ac3c0d
JB
2963 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2964 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2965 reserve = 1;
d68fc57b 2966 spin_unlock(&root->orphan_lock);
7b128766 2967
d68fc57b
YZ
2968 /* grab metadata reservation from transaction handle */
2969 if (reserve) {
2970 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2971 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2972 }
7b128766 2973
d68fc57b
YZ
2974 /* insert an orphan item to track this unlinked/truncated file */
2975 if (insert >= 1) {
33345d01 2976 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 2977 if (ret) {
703c88e0 2978 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
2979 if (reserve) {
2980 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2981 &BTRFS_I(inode)->runtime_flags);
2982 btrfs_orphan_release_metadata(inode);
2983 }
2984 if (ret != -EEXIST) {
e8e7cff6
JB
2985 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2986 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
2987 btrfs_abort_transaction(trans, root, ret);
2988 return ret;
2989 }
79787eaa
JM
2990 }
2991 ret = 0;
d68fc57b
YZ
2992 }
2993
2994 /* insert an orphan item to track subvolume contains orphan files */
2995 if (insert >= 2) {
2996 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2997 root->root_key.objectid);
79787eaa
JM
2998 if (ret && ret != -EEXIST) {
2999 btrfs_abort_transaction(trans, root, ret);
3000 return ret;
3001 }
d68fc57b
YZ
3002 }
3003 return 0;
7b128766
JB
3004}
3005
3006/*
3007 * We have done the truncate/delete so we can go ahead and remove the orphan
3008 * item for this particular inode.
3009 */
48a3b636
ES
3010static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3011 struct inode *inode)
7b128766
JB
3012{
3013 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3014 int delete_item = 0;
3015 int release_rsv = 0;
7b128766
JB
3016 int ret = 0;
3017
d68fc57b 3018 spin_lock(&root->orphan_lock);
8a35d95f
JB
3019 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3020 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3021 delete_item = 1;
7b128766 3022
72ac3c0d
JB
3023 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3024 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3025 release_rsv = 1;
d68fc57b 3026 spin_unlock(&root->orphan_lock);
7b128766 3027
703c88e0 3028 if (delete_item) {
8a35d95f 3029 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3030 if (trans)
3031 ret = btrfs_del_orphan_item(trans, root,
3032 btrfs_ino(inode));
8a35d95f 3033 }
7b128766 3034
703c88e0
FDBM
3035 if (release_rsv)
3036 btrfs_orphan_release_metadata(inode);
3037
4ef31a45 3038 return ret;
7b128766
JB
3039}
3040
3041/*
3042 * this cleans up any orphans that may be left on the list from the last use
3043 * of this root.
3044 */
66b4ffd1 3045int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3046{
3047 struct btrfs_path *path;
3048 struct extent_buffer *leaf;
7b128766
JB
3049 struct btrfs_key key, found_key;
3050 struct btrfs_trans_handle *trans;
3051 struct inode *inode;
8f6d7f4f 3052 u64 last_objectid = 0;
7b128766
JB
3053 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3054
d68fc57b 3055 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3056 return 0;
c71bf099
YZ
3057
3058 path = btrfs_alloc_path();
66b4ffd1
JB
3059 if (!path) {
3060 ret = -ENOMEM;
3061 goto out;
3062 }
7b128766
JB
3063 path->reada = -1;
3064
3065 key.objectid = BTRFS_ORPHAN_OBJECTID;
3066 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3067 key.offset = (u64)-1;
3068
7b128766
JB
3069 while (1) {
3070 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3071 if (ret < 0)
3072 goto out;
7b128766
JB
3073
3074 /*
3075 * if ret == 0 means we found what we were searching for, which
25985edc 3076 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3077 * find the key and see if we have stuff that matches
3078 */
3079 if (ret > 0) {
66b4ffd1 3080 ret = 0;
7b128766
JB
3081 if (path->slots[0] == 0)
3082 break;
3083 path->slots[0]--;
3084 }
3085
3086 /* pull out the item */
3087 leaf = path->nodes[0];
7b128766
JB
3088 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3089
3090 /* make sure the item matches what we want */
3091 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3092 break;
3093 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3094 break;
3095
3096 /* release the path since we're done with it */
b3b4aa74 3097 btrfs_release_path(path);
7b128766
JB
3098
3099 /*
3100 * this is where we are basically btrfs_lookup, without the
3101 * crossing root thing. we store the inode number in the
3102 * offset of the orphan item.
3103 */
8f6d7f4f
JB
3104
3105 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3106 btrfs_err(root->fs_info,
3107 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3108 ret = -EINVAL;
3109 goto out;
3110 }
3111
3112 last_objectid = found_key.offset;
3113
5d4f98a2
YZ
3114 found_key.objectid = found_key.offset;
3115 found_key.type = BTRFS_INODE_ITEM_KEY;
3116 found_key.offset = 0;
73f73415 3117 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3118 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3119 if (ret && ret != -ESTALE)
66b4ffd1 3120 goto out;
7b128766 3121
f8e9e0b0
AJ
3122 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3123 struct btrfs_root *dead_root;
3124 struct btrfs_fs_info *fs_info = root->fs_info;
3125 int is_dead_root = 0;
3126
3127 /*
3128 * this is an orphan in the tree root. Currently these
3129 * could come from 2 sources:
3130 * a) a snapshot deletion in progress
3131 * b) a free space cache inode
3132 * We need to distinguish those two, as the snapshot
3133 * orphan must not get deleted.
3134 * find_dead_roots already ran before us, so if this
3135 * is a snapshot deletion, we should find the root
3136 * in the dead_roots list
3137 */
3138 spin_lock(&fs_info->trans_lock);
3139 list_for_each_entry(dead_root, &fs_info->dead_roots,
3140 root_list) {
3141 if (dead_root->root_key.objectid ==
3142 found_key.objectid) {
3143 is_dead_root = 1;
3144 break;
3145 }
3146 }
3147 spin_unlock(&fs_info->trans_lock);
3148 if (is_dead_root) {
3149 /* prevent this orphan from being found again */
3150 key.offset = found_key.objectid - 1;
3151 continue;
3152 }
3153 }
7b128766 3154 /*
a8c9e576
JB
3155 * Inode is already gone but the orphan item is still there,
3156 * kill the orphan item.
7b128766 3157 */
a8c9e576
JB
3158 if (ret == -ESTALE) {
3159 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3160 if (IS_ERR(trans)) {
3161 ret = PTR_ERR(trans);
3162 goto out;
3163 }
c2cf52eb
SK
3164 btrfs_debug(root->fs_info, "auto deleting %Lu",
3165 found_key.objectid);
a8c9e576
JB
3166 ret = btrfs_del_orphan_item(trans, root,
3167 found_key.objectid);
5b21f2ed 3168 btrfs_end_transaction(trans, root);
4ef31a45
JB
3169 if (ret)
3170 goto out;
7b128766
JB
3171 continue;
3172 }
3173
a8c9e576
JB
3174 /*
3175 * add this inode to the orphan list so btrfs_orphan_del does
3176 * the proper thing when we hit it
3177 */
8a35d95f
JB
3178 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3179 &BTRFS_I(inode)->runtime_flags);
925396ec 3180 atomic_inc(&root->orphan_inodes);
a8c9e576 3181
7b128766
JB
3182 /* if we have links, this was a truncate, lets do that */
3183 if (inode->i_nlink) {
a41ad394
JB
3184 if (!S_ISREG(inode->i_mode)) {
3185 WARN_ON(1);
3186 iput(inode);
3187 continue;
3188 }
7b128766 3189 nr_truncate++;
f3fe820c
JB
3190
3191 /* 1 for the orphan item deletion. */
3192 trans = btrfs_start_transaction(root, 1);
3193 if (IS_ERR(trans)) {
c69b26b0 3194 iput(inode);
f3fe820c
JB
3195 ret = PTR_ERR(trans);
3196 goto out;
3197 }
3198 ret = btrfs_orphan_add(trans, inode);
3199 btrfs_end_transaction(trans, root);
c69b26b0
JB
3200 if (ret) {
3201 iput(inode);
f3fe820c 3202 goto out;
c69b26b0 3203 }
f3fe820c 3204
66b4ffd1 3205 ret = btrfs_truncate(inode);
4a7d0f68
JB
3206 if (ret)
3207 btrfs_orphan_del(NULL, inode);
7b128766
JB
3208 } else {
3209 nr_unlink++;
3210 }
3211
3212 /* this will do delete_inode and everything for us */
3213 iput(inode);
66b4ffd1
JB
3214 if (ret)
3215 goto out;
7b128766 3216 }
3254c876
MX
3217 /* release the path since we're done with it */
3218 btrfs_release_path(path);
3219
d68fc57b
YZ
3220 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3221
3222 if (root->orphan_block_rsv)
3223 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3224 (u64)-1);
3225
3226 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3227 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3228 if (!IS_ERR(trans))
3229 btrfs_end_transaction(trans, root);
d68fc57b 3230 }
7b128766
JB
3231
3232 if (nr_unlink)
4884b476 3233 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3234 if (nr_truncate)
4884b476 3235 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3236
3237out:
3238 if (ret)
c2cf52eb
SK
3239 btrfs_crit(root->fs_info,
3240 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3241 btrfs_free_path(path);
3242 return ret;
7b128766
JB
3243}
3244
46a53cca
CM
3245/*
3246 * very simple check to peek ahead in the leaf looking for xattrs. If we
3247 * don't find any xattrs, we know there can't be any acls.
3248 *
3249 * slot is the slot the inode is in, objectid is the objectid of the inode
3250 */
3251static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3252 int slot, u64 objectid)
3253{
3254 u32 nritems = btrfs_header_nritems(leaf);
3255 struct btrfs_key found_key;
f23b5a59
JB
3256 static u64 xattr_access = 0;
3257 static u64 xattr_default = 0;
46a53cca
CM
3258 int scanned = 0;
3259
f23b5a59
JB
3260 if (!xattr_access) {
3261 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3262 strlen(POSIX_ACL_XATTR_ACCESS));
3263 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3264 strlen(POSIX_ACL_XATTR_DEFAULT));
3265 }
3266
46a53cca
CM
3267 slot++;
3268 while (slot < nritems) {
3269 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3270
3271 /* we found a different objectid, there must not be acls */
3272 if (found_key.objectid != objectid)
3273 return 0;
3274
3275 /* we found an xattr, assume we've got an acl */
f23b5a59
JB
3276 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3277 if (found_key.offset == xattr_access ||
3278 found_key.offset == xattr_default)
3279 return 1;
3280 }
46a53cca
CM
3281
3282 /*
3283 * we found a key greater than an xattr key, there can't
3284 * be any acls later on
3285 */
3286 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3287 return 0;
3288
3289 slot++;
3290 scanned++;
3291
3292 /*
3293 * it goes inode, inode backrefs, xattrs, extents,
3294 * so if there are a ton of hard links to an inode there can
3295 * be a lot of backrefs. Don't waste time searching too hard,
3296 * this is just an optimization
3297 */
3298 if (scanned >= 8)
3299 break;
3300 }
3301 /* we hit the end of the leaf before we found an xattr or
3302 * something larger than an xattr. We have to assume the inode
3303 * has acls
3304 */
3305 return 1;
3306}
3307
d352ac68
CM
3308/*
3309 * read an inode from the btree into the in-memory inode
3310 */
5d4f98a2 3311static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3312{
3313 struct btrfs_path *path;
5f39d397 3314 struct extent_buffer *leaf;
39279cc3 3315 struct btrfs_inode_item *inode_item;
0b86a832 3316 struct btrfs_timespec *tspec;
39279cc3
CM
3317 struct btrfs_root *root = BTRFS_I(inode)->root;
3318 struct btrfs_key location;
46a53cca 3319 int maybe_acls;
618e21d5 3320 u32 rdev;
39279cc3 3321 int ret;
2f7e33d4
MX
3322 bool filled = false;
3323
3324 ret = btrfs_fill_inode(inode, &rdev);
3325 if (!ret)
3326 filled = true;
39279cc3
CM
3327
3328 path = btrfs_alloc_path();
1748f843
MF
3329 if (!path)
3330 goto make_bad;
3331
d90c7321 3332 path->leave_spinning = 1;
39279cc3 3333 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3334
39279cc3 3335 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3336 if (ret)
39279cc3 3337 goto make_bad;
39279cc3 3338
5f39d397 3339 leaf = path->nodes[0];
2f7e33d4
MX
3340
3341 if (filled)
3342 goto cache_acl;
3343
5f39d397
CM
3344 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3345 struct btrfs_inode_item);
5f39d397 3346 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3347 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3348 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3349 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3350 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3351
3352 tspec = btrfs_inode_atime(inode_item);
3353 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3354 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3355
3356 tspec = btrfs_inode_mtime(inode_item);
3357 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3358 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3359
3360 tspec = btrfs_inode_ctime(inode_item);
3361 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3362 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3363
a76a3cd4 3364 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3365 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3366 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3367
3368 /*
3369 * If we were modified in the current generation and evicted from memory
3370 * and then re-read we need to do a full sync since we don't have any
3371 * idea about which extents were modified before we were evicted from
3372 * cache.
3373 */
3374 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3375 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3376 &BTRFS_I(inode)->runtime_flags);
3377
0c4d2d95 3378 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3379 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3380 inode->i_rdev = 0;
5f39d397
CM
3381 rdev = btrfs_inode_rdev(leaf, inode_item);
3382
aec7477b 3383 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3384 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3385cache_acl:
46a53cca
CM
3386 /*
3387 * try to precache a NULL acl entry for files that don't have
3388 * any xattrs or acls
3389 */
33345d01
LZ
3390 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3391 btrfs_ino(inode));
72c04902
AV
3392 if (!maybe_acls)
3393 cache_no_acl(inode);
46a53cca 3394
39279cc3 3395 btrfs_free_path(path);
39279cc3 3396
39279cc3 3397 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3398 case S_IFREG:
3399 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3400 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3401 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3402 inode->i_fop = &btrfs_file_operations;
3403 inode->i_op = &btrfs_file_inode_operations;
3404 break;
3405 case S_IFDIR:
3406 inode->i_fop = &btrfs_dir_file_operations;
3407 if (root == root->fs_info->tree_root)
3408 inode->i_op = &btrfs_dir_ro_inode_operations;
3409 else
3410 inode->i_op = &btrfs_dir_inode_operations;
3411 break;
3412 case S_IFLNK:
3413 inode->i_op = &btrfs_symlink_inode_operations;
3414 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3415 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3416 break;
618e21d5 3417 default:
0279b4cd 3418 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3419 init_special_inode(inode, inode->i_mode, rdev);
3420 break;
39279cc3 3421 }
6cbff00f
CH
3422
3423 btrfs_update_iflags(inode);
39279cc3
CM
3424 return;
3425
3426make_bad:
39279cc3 3427 btrfs_free_path(path);
39279cc3
CM
3428 make_bad_inode(inode);
3429}
3430
d352ac68
CM
3431/*
3432 * given a leaf and an inode, copy the inode fields into the leaf
3433 */
e02119d5
CM
3434static void fill_inode_item(struct btrfs_trans_handle *trans,
3435 struct extent_buffer *leaf,
5f39d397 3436 struct btrfs_inode_item *item,
39279cc3
CM
3437 struct inode *inode)
3438{
51fab693
LB
3439 struct btrfs_map_token token;
3440
3441 btrfs_init_map_token(&token);
5f39d397 3442
51fab693
LB
3443 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3444 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3445 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3446 &token);
3447 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3448 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3449
51fab693
LB
3450 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3451 inode->i_atime.tv_sec, &token);
3452 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3453 inode->i_atime.tv_nsec, &token);
5f39d397 3454
51fab693
LB
3455 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3456 inode->i_mtime.tv_sec, &token);
3457 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3458 inode->i_mtime.tv_nsec, &token);
5f39d397 3459
51fab693
LB
3460 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3461 inode->i_ctime.tv_sec, &token);
3462 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3463 inode->i_ctime.tv_nsec, &token);
5f39d397 3464
51fab693
LB
3465 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3466 &token);
3467 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3468 &token);
3469 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3470 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3471 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3472 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3473 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3474}
3475
d352ac68
CM
3476/*
3477 * copy everything in the in-memory inode into the btree.
3478 */
2115133f 3479static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3480 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3481{
3482 struct btrfs_inode_item *inode_item;
3483 struct btrfs_path *path;
5f39d397 3484 struct extent_buffer *leaf;
39279cc3
CM
3485 int ret;
3486
3487 path = btrfs_alloc_path();
16cdcec7
MX
3488 if (!path)
3489 return -ENOMEM;
3490
b9473439 3491 path->leave_spinning = 1;
16cdcec7
MX
3492 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3493 1);
39279cc3
CM
3494 if (ret) {
3495 if (ret > 0)
3496 ret = -ENOENT;
3497 goto failed;
3498 }
3499
b4ce94de 3500 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3501 leaf = path->nodes[0];
3502 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3503 struct btrfs_inode_item);
39279cc3 3504
e02119d5 3505 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3506 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3507 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3508 ret = 0;
3509failed:
39279cc3
CM
3510 btrfs_free_path(path);
3511 return ret;
3512}
3513
2115133f
CM
3514/*
3515 * copy everything in the in-memory inode into the btree.
3516 */
3517noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3518 struct btrfs_root *root, struct inode *inode)
3519{
3520 int ret;
3521
3522 /*
3523 * If the inode is a free space inode, we can deadlock during commit
3524 * if we put it into the delayed code.
3525 *
3526 * The data relocation inode should also be directly updated
3527 * without delay
3528 */
83eea1f1 3529 if (!btrfs_is_free_space_inode(inode)
2115133f 3530 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3531 btrfs_update_root_times(trans, root);
3532
2115133f
CM
3533 ret = btrfs_delayed_update_inode(trans, root, inode);
3534 if (!ret)
3535 btrfs_set_inode_last_trans(trans, inode);
3536 return ret;
3537 }
3538
3539 return btrfs_update_inode_item(trans, root, inode);
3540}
3541
be6aef60
JB
3542noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3543 struct btrfs_root *root,
3544 struct inode *inode)
2115133f
CM
3545{
3546 int ret;
3547
3548 ret = btrfs_update_inode(trans, root, inode);
3549 if (ret == -ENOSPC)
3550 return btrfs_update_inode_item(trans, root, inode);
3551 return ret;
3552}
3553
d352ac68
CM
3554/*
3555 * unlink helper that gets used here in inode.c and in the tree logging
3556 * recovery code. It remove a link in a directory with a given name, and
3557 * also drops the back refs in the inode to the directory
3558 */
92986796
AV
3559static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3560 struct btrfs_root *root,
3561 struct inode *dir, struct inode *inode,
3562 const char *name, int name_len)
39279cc3
CM
3563{
3564 struct btrfs_path *path;
39279cc3 3565 int ret = 0;
5f39d397 3566 struct extent_buffer *leaf;
39279cc3 3567 struct btrfs_dir_item *di;
5f39d397 3568 struct btrfs_key key;
aec7477b 3569 u64 index;
33345d01
LZ
3570 u64 ino = btrfs_ino(inode);
3571 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3572
3573 path = btrfs_alloc_path();
54aa1f4d
CM
3574 if (!path) {
3575 ret = -ENOMEM;
554233a6 3576 goto out;
54aa1f4d
CM
3577 }
3578
b9473439 3579 path->leave_spinning = 1;
33345d01 3580 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3581 name, name_len, -1);
3582 if (IS_ERR(di)) {
3583 ret = PTR_ERR(di);
3584 goto err;
3585 }
3586 if (!di) {
3587 ret = -ENOENT;
3588 goto err;
3589 }
5f39d397
CM
3590 leaf = path->nodes[0];
3591 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3592 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3593 if (ret)
3594 goto err;
b3b4aa74 3595 btrfs_release_path(path);
39279cc3 3596
33345d01
LZ
3597 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3598 dir_ino, &index);
aec7477b 3599 if (ret) {
c2cf52eb
SK
3600 btrfs_info(root->fs_info,
3601 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3602 name_len, name, ino, dir_ino);
79787eaa 3603 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3604 goto err;
3605 }
3606
16cdcec7 3607 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3608 if (ret) {
3609 btrfs_abort_transaction(trans, root, ret);
39279cc3 3610 goto err;
79787eaa 3611 }
39279cc3 3612
e02119d5 3613 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3614 inode, dir_ino);
79787eaa
JM
3615 if (ret != 0 && ret != -ENOENT) {
3616 btrfs_abort_transaction(trans, root, ret);
3617 goto err;
3618 }
e02119d5
CM
3619
3620 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3621 dir, index);
6418c961
CM
3622 if (ret == -ENOENT)
3623 ret = 0;
d4e3991b
ZB
3624 else if (ret)
3625 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3626err:
3627 btrfs_free_path(path);
e02119d5
CM
3628 if (ret)
3629 goto out;
3630
3631 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3632 inode_inc_iversion(inode);
3633 inode_inc_iversion(dir);
e02119d5 3634 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3635 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3636out:
39279cc3
CM
3637 return ret;
3638}
3639
92986796
AV
3640int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3641 struct btrfs_root *root,
3642 struct inode *dir, struct inode *inode,
3643 const char *name, int name_len)
3644{
3645 int ret;
3646 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3647 if (!ret) {
3648 btrfs_drop_nlink(inode);
3649 ret = btrfs_update_inode(trans, root, inode);
3650 }
3651 return ret;
3652}
39279cc3 3653
a22285a6
YZ
3654/*
3655 * helper to start transaction for unlink and rmdir.
3656 *
d52be818
JB
3657 * unlink and rmdir are special in btrfs, they do not always free space, so
3658 * if we cannot make our reservations the normal way try and see if there is
3659 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3660 * allow the unlink to occur.
a22285a6 3661 */
d52be818 3662static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3663{
39279cc3 3664 struct btrfs_trans_handle *trans;
a22285a6 3665 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3666 int ret;
3667
e70bea5f
JB
3668 /*
3669 * 1 for the possible orphan item
3670 * 1 for the dir item
3671 * 1 for the dir index
3672 * 1 for the inode ref
e70bea5f
JB
3673 * 1 for the inode
3674 */
6e137ed3 3675 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3676 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3677 return trans;
4df27c4d 3678
d52be818
JB
3679 if (PTR_ERR(trans) == -ENOSPC) {
3680 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3681
d52be818
JB
3682 trans = btrfs_start_transaction(root, 0);
3683 if (IS_ERR(trans))
3684 return trans;
3685 ret = btrfs_cond_migrate_bytes(root->fs_info,
3686 &root->fs_info->trans_block_rsv,
3687 num_bytes, 5);
3688 if (ret) {
3689 btrfs_end_transaction(trans, root);
3690 return ERR_PTR(ret);
a22285a6 3691 }
5a77d76c 3692 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3693 trans->bytes_reserved = num_bytes;
a22285a6 3694 }
d52be818 3695 return trans;
a22285a6
YZ
3696}
3697
3698static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3699{
3700 struct btrfs_root *root = BTRFS_I(dir)->root;
3701 struct btrfs_trans_handle *trans;
3702 struct inode *inode = dentry->d_inode;
3703 int ret;
a22285a6 3704
d52be818 3705 trans = __unlink_start_trans(dir);
a22285a6
YZ
3706 if (IS_ERR(trans))
3707 return PTR_ERR(trans);
5f39d397 3708
12fcfd22
CM
3709 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3710
e02119d5
CM
3711 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3712 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3713 if (ret)
3714 goto out;
7b128766 3715
a22285a6 3716 if (inode->i_nlink == 0) {
7b128766 3717 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3718 if (ret)
3719 goto out;
a22285a6 3720 }
7b128766 3721
b532402e 3722out:
d52be818 3723 btrfs_end_transaction(trans, root);
b53d3f5d 3724 btrfs_btree_balance_dirty(root);
39279cc3
CM
3725 return ret;
3726}
3727
4df27c4d
YZ
3728int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3729 struct btrfs_root *root,
3730 struct inode *dir, u64 objectid,
3731 const char *name, int name_len)
3732{
3733 struct btrfs_path *path;
3734 struct extent_buffer *leaf;
3735 struct btrfs_dir_item *di;
3736 struct btrfs_key key;
3737 u64 index;
3738 int ret;
33345d01 3739 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3740
3741 path = btrfs_alloc_path();
3742 if (!path)
3743 return -ENOMEM;
3744
33345d01 3745 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3746 name, name_len, -1);
79787eaa
JM
3747 if (IS_ERR_OR_NULL(di)) {
3748 if (!di)
3749 ret = -ENOENT;
3750 else
3751 ret = PTR_ERR(di);
3752 goto out;
3753 }
4df27c4d
YZ
3754
3755 leaf = path->nodes[0];
3756 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3757 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3758 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3759 if (ret) {
3760 btrfs_abort_transaction(trans, root, ret);
3761 goto out;
3762 }
b3b4aa74 3763 btrfs_release_path(path);
4df27c4d
YZ
3764
3765 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3766 objectid, root->root_key.objectid,
33345d01 3767 dir_ino, &index, name, name_len);
4df27c4d 3768 if (ret < 0) {
79787eaa
JM
3769 if (ret != -ENOENT) {
3770 btrfs_abort_transaction(trans, root, ret);
3771 goto out;
3772 }
33345d01 3773 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3774 name, name_len);
79787eaa
JM
3775 if (IS_ERR_OR_NULL(di)) {
3776 if (!di)
3777 ret = -ENOENT;
3778 else
3779 ret = PTR_ERR(di);
3780 btrfs_abort_transaction(trans, root, ret);
3781 goto out;
3782 }
4df27c4d
YZ
3783
3784 leaf = path->nodes[0];
3785 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3786 btrfs_release_path(path);
4df27c4d
YZ
3787 index = key.offset;
3788 }
945d8962 3789 btrfs_release_path(path);
4df27c4d 3790
16cdcec7 3791 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3792 if (ret) {
3793 btrfs_abort_transaction(trans, root, ret);
3794 goto out;
3795 }
4df27c4d
YZ
3796
3797 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3798 inode_inc_iversion(dir);
4df27c4d 3799 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3800 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3801 if (ret)
3802 btrfs_abort_transaction(trans, root, ret);
3803out:
71d7aed0 3804 btrfs_free_path(path);
79787eaa 3805 return ret;
4df27c4d
YZ
3806}
3807
39279cc3
CM
3808static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3809{
3810 struct inode *inode = dentry->d_inode;
1832a6d5 3811 int err = 0;
39279cc3 3812 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3813 struct btrfs_trans_handle *trans;
39279cc3 3814
b3ae244e 3815 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3816 return -ENOTEMPTY;
b3ae244e
DS
3817 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3818 return -EPERM;
134d4512 3819
d52be818 3820 trans = __unlink_start_trans(dir);
a22285a6 3821 if (IS_ERR(trans))
5df6a9f6 3822 return PTR_ERR(trans);
5df6a9f6 3823
33345d01 3824 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3825 err = btrfs_unlink_subvol(trans, root, dir,
3826 BTRFS_I(inode)->location.objectid,
3827 dentry->d_name.name,
3828 dentry->d_name.len);
3829 goto out;
3830 }
3831
7b128766
JB
3832 err = btrfs_orphan_add(trans, inode);
3833 if (err)
4df27c4d 3834 goto out;
7b128766 3835
39279cc3 3836 /* now the directory is empty */
e02119d5
CM
3837 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3838 dentry->d_name.name, dentry->d_name.len);
d397712b 3839 if (!err)
dbe674a9 3840 btrfs_i_size_write(inode, 0);
4df27c4d 3841out:
d52be818 3842 btrfs_end_transaction(trans, root);
b53d3f5d 3843 btrfs_btree_balance_dirty(root);
3954401f 3844
39279cc3
CM
3845 return err;
3846}
3847
39279cc3
CM
3848/*
3849 * this can truncate away extent items, csum items and directory items.
3850 * It starts at a high offset and removes keys until it can't find
d352ac68 3851 * any higher than new_size
39279cc3
CM
3852 *
3853 * csum items that cross the new i_size are truncated to the new size
3854 * as well.
7b128766
JB
3855 *
3856 * min_type is the minimum key type to truncate down to. If set to 0, this
3857 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3858 */
8082510e
YZ
3859int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3860 struct btrfs_root *root,
3861 struct inode *inode,
3862 u64 new_size, u32 min_type)
39279cc3 3863{
39279cc3 3864 struct btrfs_path *path;
5f39d397 3865 struct extent_buffer *leaf;
39279cc3 3866 struct btrfs_file_extent_item *fi;
8082510e
YZ
3867 struct btrfs_key key;
3868 struct btrfs_key found_key;
39279cc3 3869 u64 extent_start = 0;
db94535d 3870 u64 extent_num_bytes = 0;
5d4f98a2 3871 u64 extent_offset = 0;
39279cc3 3872 u64 item_end = 0;
7f4f6e0a 3873 u64 last_size = (u64)-1;
8082510e 3874 u32 found_type = (u8)-1;
39279cc3
CM
3875 int found_extent;
3876 int del_item;
85e21bac
CM
3877 int pending_del_nr = 0;
3878 int pending_del_slot = 0;
179e29e4 3879 int extent_type = -1;
8082510e
YZ
3880 int ret;
3881 int err = 0;
33345d01 3882 u64 ino = btrfs_ino(inode);
8082510e
YZ
3883
3884 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3885
0eb0e19c
MF
3886 path = btrfs_alloc_path();
3887 if (!path)
3888 return -ENOMEM;
3889 path->reada = -1;
3890
5dc562c5
JB
3891 /*
3892 * We want to drop from the next block forward in case this new size is
3893 * not block aligned since we will be keeping the last block of the
3894 * extent just the way it is.
3895 */
0af3d00b 3896 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3897 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3898 root->sectorsize), (u64)-1, 0);
8082510e 3899
16cdcec7
MX
3900 /*
3901 * This function is also used to drop the items in the log tree before
3902 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3903 * it is used to drop the loged items. So we shouldn't kill the delayed
3904 * items.
3905 */
3906 if (min_type == 0 && root == BTRFS_I(inode)->root)
3907 btrfs_kill_delayed_inode_items(inode);
3908
33345d01 3909 key.objectid = ino;
39279cc3 3910 key.offset = (u64)-1;
5f39d397
CM
3911 key.type = (u8)-1;
3912
85e21bac 3913search_again:
b9473439 3914 path->leave_spinning = 1;
85e21bac 3915 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3916 if (ret < 0) {
3917 err = ret;
3918 goto out;
3919 }
d397712b 3920
85e21bac 3921 if (ret > 0) {
e02119d5
CM
3922 /* there are no items in the tree for us to truncate, we're
3923 * done
3924 */
8082510e
YZ
3925 if (path->slots[0] == 0)
3926 goto out;
85e21bac
CM
3927 path->slots[0]--;
3928 }
3929
d397712b 3930 while (1) {
39279cc3 3931 fi = NULL;
5f39d397
CM
3932 leaf = path->nodes[0];
3933 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3934 found_type = btrfs_key_type(&found_key);
39279cc3 3935
33345d01 3936 if (found_key.objectid != ino)
39279cc3 3937 break;
5f39d397 3938
85e21bac 3939 if (found_type < min_type)
39279cc3
CM
3940 break;
3941
5f39d397 3942 item_end = found_key.offset;
39279cc3 3943 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3944 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3945 struct btrfs_file_extent_item);
179e29e4
CM
3946 extent_type = btrfs_file_extent_type(leaf, fi);
3947 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3948 item_end +=
db94535d 3949 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3950 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3951 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3952 fi);
39279cc3 3953 }
008630c1 3954 item_end--;
39279cc3 3955 }
8082510e
YZ
3956 if (found_type > min_type) {
3957 del_item = 1;
3958 } else {
3959 if (item_end < new_size)
b888db2b 3960 break;
8082510e
YZ
3961 if (found_key.offset >= new_size)
3962 del_item = 1;
3963 else
3964 del_item = 0;
39279cc3 3965 }
39279cc3 3966 found_extent = 0;
39279cc3 3967 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3968 if (found_type != BTRFS_EXTENT_DATA_KEY)
3969 goto delete;
3970
7f4f6e0a
JB
3971 if (del_item)
3972 last_size = found_key.offset;
3973 else
3974 last_size = new_size;
3975
179e29e4 3976 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3977 u64 num_dec;
db94535d 3978 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3979 if (!del_item) {
db94535d
CM
3980 u64 orig_num_bytes =
3981 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
3982 extent_num_bytes = ALIGN(new_size -
3983 found_key.offset,
3984 root->sectorsize);
db94535d
CM
3985 btrfs_set_file_extent_num_bytes(leaf, fi,
3986 extent_num_bytes);
3987 num_dec = (orig_num_bytes -
9069218d 3988 extent_num_bytes);
e02119d5 3989 if (root->ref_cows && extent_start != 0)
a76a3cd4 3990 inode_sub_bytes(inode, num_dec);
5f39d397 3991 btrfs_mark_buffer_dirty(leaf);
39279cc3 3992 } else {
db94535d
CM
3993 extent_num_bytes =
3994 btrfs_file_extent_disk_num_bytes(leaf,
3995 fi);
5d4f98a2
YZ
3996 extent_offset = found_key.offset -
3997 btrfs_file_extent_offset(leaf, fi);
3998
39279cc3 3999 /* FIXME blocksize != 4096 */
9069218d 4000 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4001 if (extent_start != 0) {
4002 found_extent = 1;
e02119d5 4003 if (root->ref_cows)
a76a3cd4 4004 inode_sub_bytes(inode, num_dec);
e02119d5 4005 }
39279cc3 4006 }
9069218d 4007 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4008 /*
4009 * we can't truncate inline items that have had
4010 * special encodings
4011 */
4012 if (!del_item &&
4013 btrfs_file_extent_compression(leaf, fi) == 0 &&
4014 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4015 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4016 u32 size = new_size - found_key.offset;
4017
4018 if (root->ref_cows) {
a76a3cd4
YZ
4019 inode_sub_bytes(inode, item_end + 1 -
4020 new_size);
e02119d5
CM
4021 }
4022 size =
4023 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4024 btrfs_truncate_item(root, path, size, 1);
e02119d5 4025 } else if (root->ref_cows) {
a76a3cd4
YZ
4026 inode_sub_bytes(inode, item_end + 1 -
4027 found_key.offset);
9069218d 4028 }
39279cc3 4029 }
179e29e4 4030delete:
39279cc3 4031 if (del_item) {
85e21bac
CM
4032 if (!pending_del_nr) {
4033 /* no pending yet, add ourselves */
4034 pending_del_slot = path->slots[0];
4035 pending_del_nr = 1;
4036 } else if (pending_del_nr &&
4037 path->slots[0] + 1 == pending_del_slot) {
4038 /* hop on the pending chunk */
4039 pending_del_nr++;
4040 pending_del_slot = path->slots[0];
4041 } else {
d397712b 4042 BUG();
85e21bac 4043 }
39279cc3
CM
4044 } else {
4045 break;
4046 }
0af3d00b
JB
4047 if (found_extent && (root->ref_cows ||
4048 root == root->fs_info->tree_root)) {
b9473439 4049 btrfs_set_path_blocking(path);
39279cc3 4050 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4051 extent_num_bytes, 0,
4052 btrfs_header_owner(leaf),
66d7e7f0 4053 ino, extent_offset, 0);
39279cc3
CM
4054 BUG_ON(ret);
4055 }
85e21bac 4056
8082510e
YZ
4057 if (found_type == BTRFS_INODE_ITEM_KEY)
4058 break;
4059
4060 if (path->slots[0] == 0 ||
4061 path->slots[0] != pending_del_slot) {
8082510e
YZ
4062 if (pending_del_nr) {
4063 ret = btrfs_del_items(trans, root, path,
4064 pending_del_slot,
4065 pending_del_nr);
79787eaa
JM
4066 if (ret) {
4067 btrfs_abort_transaction(trans,
4068 root, ret);
4069 goto error;
4070 }
8082510e
YZ
4071 pending_del_nr = 0;
4072 }
b3b4aa74 4073 btrfs_release_path(path);
85e21bac 4074 goto search_again;
8082510e
YZ
4075 } else {
4076 path->slots[0]--;
85e21bac 4077 }
39279cc3 4078 }
8082510e 4079out:
85e21bac
CM
4080 if (pending_del_nr) {
4081 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4082 pending_del_nr);
79787eaa
JM
4083 if (ret)
4084 btrfs_abort_transaction(trans, root, ret);
85e21bac 4085 }
79787eaa 4086error:
7f4f6e0a
JB
4087 if (last_size != (u64)-1)
4088 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4089 btrfs_free_path(path);
8082510e 4090 return err;
39279cc3
CM
4091}
4092
4093/*
2aaa6655
JB
4094 * btrfs_truncate_page - read, zero a chunk and write a page
4095 * @inode - inode that we're zeroing
4096 * @from - the offset to start zeroing
4097 * @len - the length to zero, 0 to zero the entire range respective to the
4098 * offset
4099 * @front - zero up to the offset instead of from the offset on
4100 *
4101 * This will find the page for the "from" offset and cow the page and zero the
4102 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4103 */
2aaa6655
JB
4104int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4105 int front)
39279cc3 4106{
2aaa6655 4107 struct address_space *mapping = inode->i_mapping;
db94535d 4108 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4109 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4110 struct btrfs_ordered_extent *ordered;
2ac55d41 4111 struct extent_state *cached_state = NULL;
e6dcd2dc 4112 char *kaddr;
db94535d 4113 u32 blocksize = root->sectorsize;
39279cc3
CM
4114 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4115 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4116 struct page *page;
3b16a4e3 4117 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4118 int ret = 0;
a52d9a80 4119 u64 page_start;
e6dcd2dc 4120 u64 page_end;
39279cc3 4121
2aaa6655
JB
4122 if ((offset & (blocksize - 1)) == 0 &&
4123 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4124 goto out;
0ca1f7ce 4125 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4126 if (ret)
4127 goto out;
39279cc3 4128
211c17f5 4129again:
3b16a4e3 4130 page = find_or_create_page(mapping, index, mask);
5d5e103a 4131 if (!page) {
0ca1f7ce 4132 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4133 ret = -ENOMEM;
39279cc3 4134 goto out;
5d5e103a 4135 }
e6dcd2dc
CM
4136
4137 page_start = page_offset(page);
4138 page_end = page_start + PAGE_CACHE_SIZE - 1;
4139
39279cc3 4140 if (!PageUptodate(page)) {
9ebefb18 4141 ret = btrfs_readpage(NULL, page);
39279cc3 4142 lock_page(page);
211c17f5
CM
4143 if (page->mapping != mapping) {
4144 unlock_page(page);
4145 page_cache_release(page);
4146 goto again;
4147 }
39279cc3
CM
4148 if (!PageUptodate(page)) {
4149 ret = -EIO;
89642229 4150 goto out_unlock;
39279cc3
CM
4151 }
4152 }
211c17f5 4153 wait_on_page_writeback(page);
e6dcd2dc 4154
d0082371 4155 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4156 set_page_extent_mapped(page);
4157
4158 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4159 if (ordered) {
2ac55d41
JB
4160 unlock_extent_cached(io_tree, page_start, page_end,
4161 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4162 unlock_page(page);
4163 page_cache_release(page);
eb84ae03 4164 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4165 btrfs_put_ordered_extent(ordered);
4166 goto again;
4167 }
4168
2ac55d41 4169 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4170 EXTENT_DIRTY | EXTENT_DELALLOC |
4171 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4172 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4173
2ac55d41
JB
4174 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4175 &cached_state);
9ed74f2d 4176 if (ret) {
2ac55d41
JB
4177 unlock_extent_cached(io_tree, page_start, page_end,
4178 &cached_state, GFP_NOFS);
9ed74f2d
JB
4179 goto out_unlock;
4180 }
4181
e6dcd2dc 4182 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4183 if (!len)
4184 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4185 kaddr = kmap(page);
2aaa6655
JB
4186 if (front)
4187 memset(kaddr, 0, offset);
4188 else
4189 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4190 flush_dcache_page(page);
4191 kunmap(page);
4192 }
247e743c 4193 ClearPageChecked(page);
e6dcd2dc 4194 set_page_dirty(page);
2ac55d41
JB
4195 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4196 GFP_NOFS);
39279cc3 4197
89642229 4198out_unlock:
5d5e103a 4199 if (ret)
0ca1f7ce 4200 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4201 unlock_page(page);
4202 page_cache_release(page);
4203out:
4204 return ret;
4205}
4206
695a0d0d
JB
4207/*
4208 * This function puts in dummy file extents for the area we're creating a hole
4209 * for. So if we are truncating this file to a larger size we need to insert
4210 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4211 * the range between oldsize and size
4212 */
a41ad394 4213int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4214{
9036c102
YZ
4215 struct btrfs_trans_handle *trans;
4216 struct btrfs_root *root = BTRFS_I(inode)->root;
4217 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4218 struct extent_map *em = NULL;
2ac55d41 4219 struct extent_state *cached_state = NULL;
5dc562c5 4220 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4221 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4222 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4223 u64 last_byte;
4224 u64 cur_offset;
4225 u64 hole_size;
9ed74f2d 4226 int err = 0;
39279cc3 4227
a71754fc
JB
4228 /*
4229 * If our size started in the middle of a page we need to zero out the
4230 * rest of the page before we expand the i_size, otherwise we could
4231 * expose stale data.
4232 */
4233 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4234 if (err)
4235 return err;
4236
9036c102
YZ
4237 if (size <= hole_start)
4238 return 0;
4239
9036c102
YZ
4240 while (1) {
4241 struct btrfs_ordered_extent *ordered;
4242 btrfs_wait_ordered_range(inode, hole_start,
4243 block_end - hole_start);
2ac55d41 4244 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4245 &cached_state);
9036c102
YZ
4246 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4247 if (!ordered)
4248 break;
2ac55d41
JB
4249 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4250 &cached_state, GFP_NOFS);
9036c102
YZ
4251 btrfs_put_ordered_extent(ordered);
4252 }
39279cc3 4253
9036c102
YZ
4254 cur_offset = hole_start;
4255 while (1) {
4256 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4257 block_end - cur_offset, 0);
79787eaa
JM
4258 if (IS_ERR(em)) {
4259 err = PTR_ERR(em);
f2767956 4260 em = NULL;
79787eaa
JM
4261 break;
4262 }
9036c102 4263 last_byte = min(extent_map_end(em), block_end);
fda2832f 4264 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4265 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4266 struct extent_map *hole_em;
9036c102 4267 hole_size = last_byte - cur_offset;
9ed74f2d 4268
3642320e 4269 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
4270 if (IS_ERR(trans)) {
4271 err = PTR_ERR(trans);
9ed74f2d 4272 break;
a22285a6 4273 }
8082510e 4274
5dc562c5
JB
4275 err = btrfs_drop_extents(trans, root, inode,
4276 cur_offset,
2671485d 4277 cur_offset + hole_size, 1);
5b397377 4278 if (err) {
79787eaa 4279 btrfs_abort_transaction(trans, root, err);
5b397377 4280 btrfs_end_transaction(trans, root);
3893e33b 4281 break;
5b397377 4282 }
8082510e 4283
9036c102 4284 err = btrfs_insert_file_extent(trans, root,
33345d01 4285 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
4286 0, hole_size, 0, hole_size,
4287 0, 0, 0);
5b397377 4288 if (err) {
79787eaa 4289 btrfs_abort_transaction(trans, root, err);
5b397377 4290 btrfs_end_transaction(trans, root);
3893e33b 4291 break;
5b397377 4292 }
8082510e 4293
5dc562c5
JB
4294 btrfs_drop_extent_cache(inode, cur_offset,
4295 cur_offset + hole_size - 1, 0);
4296 hole_em = alloc_extent_map();
4297 if (!hole_em) {
4298 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4299 &BTRFS_I(inode)->runtime_flags);
4300 goto next;
4301 }
4302 hole_em->start = cur_offset;
4303 hole_em->len = hole_size;
4304 hole_em->orig_start = cur_offset;
8082510e 4305
5dc562c5
JB
4306 hole_em->block_start = EXTENT_MAP_HOLE;
4307 hole_em->block_len = 0;
b4939680 4308 hole_em->orig_block_len = 0;
cc95bef6 4309 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4310 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4311 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4312 hole_em->generation = trans->transid;
8082510e 4313
5dc562c5
JB
4314 while (1) {
4315 write_lock(&em_tree->lock);
09a2a8f9 4316 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4317 write_unlock(&em_tree->lock);
4318 if (err != -EEXIST)
4319 break;
4320 btrfs_drop_extent_cache(inode, cur_offset,
4321 cur_offset +
4322 hole_size - 1, 0);
4323 }
4324 free_extent_map(hole_em);
4325next:
3642320e 4326 btrfs_update_inode(trans, root, inode);
8082510e 4327 btrfs_end_transaction(trans, root);
9036c102
YZ
4328 }
4329 free_extent_map(em);
a22285a6 4330 em = NULL;
9036c102 4331 cur_offset = last_byte;
8082510e 4332 if (cur_offset >= block_end)
9036c102
YZ
4333 break;
4334 }
1832a6d5 4335
a22285a6 4336 free_extent_map(em);
2ac55d41
JB
4337 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4338 GFP_NOFS);
9036c102
YZ
4339 return err;
4340}
39279cc3 4341
3972f260 4342static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4343{
f4a2f4c5
MX
4344 struct btrfs_root *root = BTRFS_I(inode)->root;
4345 struct btrfs_trans_handle *trans;
a41ad394 4346 loff_t oldsize = i_size_read(inode);
3972f260
ES
4347 loff_t newsize = attr->ia_size;
4348 int mask = attr->ia_valid;
8082510e
YZ
4349 int ret;
4350
3972f260
ES
4351 /*
4352 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4353 * special case where we need to update the times despite not having
4354 * these flags set. For all other operations the VFS set these flags
4355 * explicitly if it wants a timestamp update.
4356 */
4357 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4358 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4359
a41ad394 4360 if (newsize > oldsize) {
7caef267 4361 truncate_pagecache(inode, newsize);
a41ad394 4362 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4363 if (ret)
8082510e 4364 return ret;
8082510e 4365
f4a2f4c5
MX
4366 trans = btrfs_start_transaction(root, 1);
4367 if (IS_ERR(trans))
4368 return PTR_ERR(trans);
4369
4370 i_size_write(inode, newsize);
4371 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4372 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4373 btrfs_end_transaction(trans, root);
a41ad394 4374 } else {
8082510e 4375
a41ad394
JB
4376 /*
4377 * We're truncating a file that used to have good data down to
4378 * zero. Make sure it gets into the ordered flush list so that
4379 * any new writes get down to disk quickly.
4380 */
4381 if (newsize == 0)
72ac3c0d
JB
4382 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4383 &BTRFS_I(inode)->runtime_flags);
8082510e 4384
f3fe820c
JB
4385 /*
4386 * 1 for the orphan item we're going to add
4387 * 1 for the orphan item deletion.
4388 */
4389 trans = btrfs_start_transaction(root, 2);
4390 if (IS_ERR(trans))
4391 return PTR_ERR(trans);
4392
4393 /*
4394 * We need to do this in case we fail at _any_ point during the
4395 * actual truncate. Once we do the truncate_setsize we could
4396 * invalidate pages which forces any outstanding ordered io to
4397 * be instantly completed which will give us extents that need
4398 * to be truncated. If we fail to get an orphan inode down we
4399 * could have left over extents that were never meant to live,
4400 * so we need to garuntee from this point on that everything
4401 * will be consistent.
4402 */
4403 ret = btrfs_orphan_add(trans, inode);
4404 btrfs_end_transaction(trans, root);
4405 if (ret)
4406 return ret;
4407
a41ad394
JB
4408 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4409 truncate_setsize(inode, newsize);
2e60a51e
MX
4410
4411 /* Disable nonlocked read DIO to avoid the end less truncate */
4412 btrfs_inode_block_unlocked_dio(inode);
4413 inode_dio_wait(inode);
4414 btrfs_inode_resume_unlocked_dio(inode);
4415
a41ad394 4416 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4417 if (ret && inode->i_nlink) {
4418 int err;
4419
4420 /*
4421 * failed to truncate, disk_i_size is only adjusted down
4422 * as we remove extents, so it should represent the true
4423 * size of the inode, so reset the in memory size and
4424 * delete our orphan entry.
4425 */
4426 trans = btrfs_join_transaction(root);
4427 if (IS_ERR(trans)) {
4428 btrfs_orphan_del(NULL, inode);
4429 return ret;
4430 }
4431 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4432 err = btrfs_orphan_del(trans, inode);
4433 if (err)
4434 btrfs_abort_transaction(trans, root, err);
4435 btrfs_end_transaction(trans, root);
4436 }
8082510e
YZ
4437 }
4438
a41ad394 4439 return ret;
8082510e
YZ
4440}
4441
9036c102
YZ
4442static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4443{
4444 struct inode *inode = dentry->d_inode;
b83cc969 4445 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4446 int err;
39279cc3 4447
b83cc969
LZ
4448 if (btrfs_root_readonly(root))
4449 return -EROFS;
4450
9036c102
YZ
4451 err = inode_change_ok(inode, attr);
4452 if (err)
4453 return err;
2bf5a725 4454
5a3f23d5 4455 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4456 err = btrfs_setsize(inode, attr);
8082510e
YZ
4457 if (err)
4458 return err;
39279cc3 4459 }
9036c102 4460
1025774c
CH
4461 if (attr->ia_valid) {
4462 setattr_copy(inode, attr);
0c4d2d95 4463 inode_inc_iversion(inode);
22c44fe6 4464 err = btrfs_dirty_inode(inode);
1025774c 4465
22c44fe6 4466 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4467 err = btrfs_acl_chmod(inode);
4468 }
33268eaf 4469
39279cc3
CM
4470 return err;
4471}
61295eb8 4472
bd555975 4473void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4474{
4475 struct btrfs_trans_handle *trans;
4476 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4477 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4478 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4479 int ret;
4480
1abe9b8a 4481 trace_btrfs_inode_evict(inode);
4482
39279cc3 4483 truncate_inode_pages(&inode->i_data, 0);
69e9c6c6
SB
4484 if (inode->i_nlink &&
4485 ((btrfs_root_refs(&root->root_item) != 0 &&
4486 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4487 btrfs_is_free_space_inode(inode)))
bd555975
AV
4488 goto no_delete;
4489
39279cc3 4490 if (is_bad_inode(inode)) {
7b128766 4491 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4492 goto no_delete;
4493 }
bd555975 4494 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4495 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4496
c71bf099 4497 if (root->fs_info->log_root_recovering) {
6bf02314 4498 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4499 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4500 goto no_delete;
4501 }
4502
76dda93c 4503 if (inode->i_nlink > 0) {
69e9c6c6
SB
4504 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4505 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4506 goto no_delete;
4507 }
4508
0e8c36a9
MX
4509 ret = btrfs_commit_inode_delayed_inode(inode);
4510 if (ret) {
4511 btrfs_orphan_del(NULL, inode);
4512 goto no_delete;
4513 }
4514
66d8f3dd 4515 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4516 if (!rsv) {
4517 btrfs_orphan_del(NULL, inode);
4518 goto no_delete;
4519 }
4a338542 4520 rsv->size = min_size;
ca7e70f5 4521 rsv->failfast = 1;
726c35fa 4522 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4523
dbe674a9 4524 btrfs_i_size_write(inode, 0);
5f39d397 4525
4289a667 4526 /*
8407aa46
MX
4527 * This is a bit simpler than btrfs_truncate since we've already
4528 * reserved our space for our orphan item in the unlink, so we just
4529 * need to reserve some slack space in case we add bytes and update
4530 * inode item when doing the truncate.
4289a667 4531 */
8082510e 4532 while (1) {
08e007d2
MX
4533 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4534 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4535
4536 /*
4537 * Try and steal from the global reserve since we will
4538 * likely not use this space anyway, we want to try as
4539 * hard as possible to get this to work.
4540 */
4541 if (ret)
4542 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4543
d68fc57b 4544 if (ret) {
c2cf52eb
SK
4545 btrfs_warn(root->fs_info,
4546 "Could not get space for a delete, will truncate on mount %d",
4547 ret);
4289a667
JB
4548 btrfs_orphan_del(NULL, inode);
4549 btrfs_free_block_rsv(root, rsv);
4550 goto no_delete;
d68fc57b 4551 }
7b128766 4552
0e8c36a9 4553 trans = btrfs_join_transaction(root);
4289a667
JB
4554 if (IS_ERR(trans)) {
4555 btrfs_orphan_del(NULL, inode);
4556 btrfs_free_block_rsv(root, rsv);
4557 goto no_delete;
d68fc57b 4558 }
7b128766 4559
4289a667
JB
4560 trans->block_rsv = rsv;
4561
d68fc57b 4562 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4563 if (ret != -ENOSPC)
8082510e 4564 break;
85e21bac 4565
8407aa46 4566 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4567 btrfs_end_transaction(trans, root);
4568 trans = NULL;
b53d3f5d 4569 btrfs_btree_balance_dirty(root);
8082510e 4570 }
5f39d397 4571
4289a667
JB
4572 btrfs_free_block_rsv(root, rsv);
4573
4ef31a45
JB
4574 /*
4575 * Errors here aren't a big deal, it just means we leave orphan items
4576 * in the tree. They will be cleaned up on the next mount.
4577 */
8082510e 4578 if (ret == 0) {
4289a667 4579 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4580 btrfs_orphan_del(trans, inode);
4581 } else {
4582 btrfs_orphan_del(NULL, inode);
8082510e 4583 }
54aa1f4d 4584
4289a667 4585 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4586 if (!(root == root->fs_info->tree_root ||
4587 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4588 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4589
54aa1f4d 4590 btrfs_end_transaction(trans, root);
b53d3f5d 4591 btrfs_btree_balance_dirty(root);
39279cc3 4592no_delete:
89042e5a 4593 btrfs_remove_delayed_node(inode);
dbd5768f 4594 clear_inode(inode);
8082510e 4595 return;
39279cc3
CM
4596}
4597
4598/*
4599 * this returns the key found in the dir entry in the location pointer.
4600 * If no dir entries were found, location->objectid is 0.
4601 */
4602static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4603 struct btrfs_key *location)
4604{
4605 const char *name = dentry->d_name.name;
4606 int namelen = dentry->d_name.len;
4607 struct btrfs_dir_item *di;
4608 struct btrfs_path *path;
4609 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4610 int ret = 0;
39279cc3
CM
4611
4612 path = btrfs_alloc_path();
d8926bb3
MF
4613 if (!path)
4614 return -ENOMEM;
3954401f 4615
33345d01 4616 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4617 namelen, 0);
0d9f7f3e
Y
4618 if (IS_ERR(di))
4619 ret = PTR_ERR(di);
d397712b 4620
c704005d 4621 if (IS_ERR_OR_NULL(di))
3954401f 4622 goto out_err;
d397712b 4623
5f39d397 4624 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4625out:
39279cc3
CM
4626 btrfs_free_path(path);
4627 return ret;
3954401f
CM
4628out_err:
4629 location->objectid = 0;
4630 goto out;
39279cc3
CM
4631}
4632
4633/*
4634 * when we hit a tree root in a directory, the btrfs part of the inode
4635 * needs to be changed to reflect the root directory of the tree root. This
4636 * is kind of like crossing a mount point.
4637 */
4638static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4639 struct inode *dir,
4640 struct dentry *dentry,
4641 struct btrfs_key *location,
4642 struct btrfs_root **sub_root)
39279cc3 4643{
4df27c4d
YZ
4644 struct btrfs_path *path;
4645 struct btrfs_root *new_root;
4646 struct btrfs_root_ref *ref;
4647 struct extent_buffer *leaf;
4648 int ret;
4649 int err = 0;
39279cc3 4650
4df27c4d
YZ
4651 path = btrfs_alloc_path();
4652 if (!path) {
4653 err = -ENOMEM;
4654 goto out;
4655 }
39279cc3 4656
4df27c4d
YZ
4657 err = -ENOENT;
4658 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4659 BTRFS_I(dir)->root->root_key.objectid,
4660 location->objectid);
4661 if (ret) {
4662 if (ret < 0)
4663 err = ret;
4664 goto out;
4665 }
39279cc3 4666
4df27c4d
YZ
4667 leaf = path->nodes[0];
4668 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4669 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4670 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4671 goto out;
39279cc3 4672
4df27c4d
YZ
4673 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4674 (unsigned long)(ref + 1),
4675 dentry->d_name.len);
4676 if (ret)
4677 goto out;
4678
b3b4aa74 4679 btrfs_release_path(path);
4df27c4d
YZ
4680
4681 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4682 if (IS_ERR(new_root)) {
4683 err = PTR_ERR(new_root);
4684 goto out;
4685 }
4686
4df27c4d
YZ
4687 *sub_root = new_root;
4688 location->objectid = btrfs_root_dirid(&new_root->root_item);
4689 location->type = BTRFS_INODE_ITEM_KEY;
4690 location->offset = 0;
4691 err = 0;
4692out:
4693 btrfs_free_path(path);
4694 return err;
39279cc3
CM
4695}
4696
5d4f98a2
YZ
4697static void inode_tree_add(struct inode *inode)
4698{
4699 struct btrfs_root *root = BTRFS_I(inode)->root;
4700 struct btrfs_inode *entry;
03e860bd
FNP
4701 struct rb_node **p;
4702 struct rb_node *parent;
cef21937 4703 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 4704 u64 ino = btrfs_ino(inode);
5d4f98a2 4705
1d3382cb 4706 if (inode_unhashed(inode))
76dda93c 4707 return;
e1409cef 4708 parent = NULL;
5d4f98a2 4709 spin_lock(&root->inode_lock);
e1409cef 4710 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4711 while (*p) {
4712 parent = *p;
4713 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4714
33345d01 4715 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4716 p = &parent->rb_left;
33345d01 4717 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4718 p = &parent->rb_right;
5d4f98a2
YZ
4719 else {
4720 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4721 (I_WILL_FREE | I_FREEING)));
cef21937 4722 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
4723 RB_CLEAR_NODE(parent);
4724 spin_unlock(&root->inode_lock);
cef21937 4725 return;
5d4f98a2
YZ
4726 }
4727 }
cef21937
FDBM
4728 rb_link_node(new, parent, p);
4729 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
4730 spin_unlock(&root->inode_lock);
4731}
4732
4733static void inode_tree_del(struct inode *inode)
4734{
4735 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4736 int empty = 0;
5d4f98a2 4737
03e860bd 4738 spin_lock(&root->inode_lock);
5d4f98a2 4739 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4740 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4741 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4742 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4743 }
03e860bd 4744 spin_unlock(&root->inode_lock);
76dda93c 4745
69e9c6c6 4746 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
4747 synchronize_srcu(&root->fs_info->subvol_srcu);
4748 spin_lock(&root->inode_lock);
4749 empty = RB_EMPTY_ROOT(&root->inode_tree);
4750 spin_unlock(&root->inode_lock);
4751 if (empty)
4752 btrfs_add_dead_root(root);
4753 }
4754}
4755
143bede5 4756void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4757{
4758 struct rb_node *node;
4759 struct rb_node *prev;
4760 struct btrfs_inode *entry;
4761 struct inode *inode;
4762 u64 objectid = 0;
4763
4764 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4765
4766 spin_lock(&root->inode_lock);
4767again:
4768 node = root->inode_tree.rb_node;
4769 prev = NULL;
4770 while (node) {
4771 prev = node;
4772 entry = rb_entry(node, struct btrfs_inode, rb_node);
4773
33345d01 4774 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4775 node = node->rb_left;
33345d01 4776 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4777 node = node->rb_right;
4778 else
4779 break;
4780 }
4781 if (!node) {
4782 while (prev) {
4783 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4784 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4785 node = prev;
4786 break;
4787 }
4788 prev = rb_next(prev);
4789 }
4790 }
4791 while (node) {
4792 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4793 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4794 inode = igrab(&entry->vfs_inode);
4795 if (inode) {
4796 spin_unlock(&root->inode_lock);
4797 if (atomic_read(&inode->i_count) > 1)
4798 d_prune_aliases(inode);
4799 /*
45321ac5 4800 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4801 * the inode cache when its usage count
4802 * hits zero.
4803 */
4804 iput(inode);
4805 cond_resched();
4806 spin_lock(&root->inode_lock);
4807 goto again;
4808 }
4809
4810 if (cond_resched_lock(&root->inode_lock))
4811 goto again;
4812
4813 node = rb_next(node);
4814 }
4815 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4816}
4817
e02119d5
CM
4818static int btrfs_init_locked_inode(struct inode *inode, void *p)
4819{
4820 struct btrfs_iget_args *args = p;
4821 inode->i_ino = args->ino;
e02119d5 4822 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4823 return 0;
4824}
4825
4826static int btrfs_find_actor(struct inode *inode, void *opaque)
4827{
4828 struct btrfs_iget_args *args = opaque;
33345d01 4829 return args->ino == btrfs_ino(inode) &&
d397712b 4830 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4831}
4832
5d4f98a2
YZ
4833static struct inode *btrfs_iget_locked(struct super_block *s,
4834 u64 objectid,
4835 struct btrfs_root *root)
39279cc3
CM
4836{
4837 struct inode *inode;
4838 struct btrfs_iget_args args;
4839 args.ino = objectid;
4840 args.root = root;
4841
4842 inode = iget5_locked(s, objectid, btrfs_find_actor,
4843 btrfs_init_locked_inode,
4844 (void *)&args);
4845 return inode;
4846}
4847
1a54ef8c
BR
4848/* Get an inode object given its location and corresponding root.
4849 * Returns in *is_new if the inode was read from disk
4850 */
4851struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4852 struct btrfs_root *root, int *new)
1a54ef8c
BR
4853{
4854 struct inode *inode;
4855
4856 inode = btrfs_iget_locked(s, location->objectid, root);
4857 if (!inode)
5d4f98a2 4858 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4859
4860 if (inode->i_state & I_NEW) {
4861 BTRFS_I(inode)->root = root;
4862 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4863 btrfs_read_locked_inode(inode);
1748f843
MF
4864 if (!is_bad_inode(inode)) {
4865 inode_tree_add(inode);
4866 unlock_new_inode(inode);
4867 if (new)
4868 *new = 1;
4869 } else {
e0b6d65b
ST
4870 unlock_new_inode(inode);
4871 iput(inode);
4872 inode = ERR_PTR(-ESTALE);
1748f843
MF
4873 }
4874 }
4875
1a54ef8c
BR
4876 return inode;
4877}
4878
4df27c4d
YZ
4879static struct inode *new_simple_dir(struct super_block *s,
4880 struct btrfs_key *key,
4881 struct btrfs_root *root)
4882{
4883 struct inode *inode = new_inode(s);
4884
4885 if (!inode)
4886 return ERR_PTR(-ENOMEM);
4887
4df27c4d
YZ
4888 BTRFS_I(inode)->root = root;
4889 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4890 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4891
4892 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4893 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4894 inode->i_fop = &simple_dir_operations;
4895 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4896 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4897
4898 return inode;
4899}
4900
3de4586c 4901struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4902{
d397712b 4903 struct inode *inode;
4df27c4d 4904 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4905 struct btrfs_root *sub_root = root;
4906 struct btrfs_key location;
76dda93c 4907 int index;
b4aff1f8 4908 int ret = 0;
39279cc3
CM
4909
4910 if (dentry->d_name.len > BTRFS_NAME_LEN)
4911 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4912
39e3c955 4913 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
4914 if (ret < 0)
4915 return ERR_PTR(ret);
5f39d397 4916
4df27c4d
YZ
4917 if (location.objectid == 0)
4918 return NULL;
4919
4920 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4921 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4922 return inode;
4923 }
4924
4925 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4926
76dda93c 4927 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4928 ret = fixup_tree_root_location(root, dir, dentry,
4929 &location, &sub_root);
4930 if (ret < 0) {
4931 if (ret != -ENOENT)
4932 inode = ERR_PTR(ret);
4933 else
4934 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4935 } else {
73f73415 4936 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4937 }
76dda93c
YZ
4938 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4939
34d19bad 4940 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4941 down_read(&root->fs_info->cleanup_work_sem);
4942 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4943 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4944 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
4945 if (ret) {
4946 iput(inode);
66b4ffd1 4947 inode = ERR_PTR(ret);
01cd3367 4948 }
c71bf099
YZ
4949 }
4950
3de4586c
CM
4951 return inode;
4952}
4953
fe15ce44 4954static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4955{
4956 struct btrfs_root *root;
848cce0d 4957 struct inode *inode = dentry->d_inode;
76dda93c 4958
848cce0d
LZ
4959 if (!inode && !IS_ROOT(dentry))
4960 inode = dentry->d_parent->d_inode;
76dda93c 4961
848cce0d
LZ
4962 if (inode) {
4963 root = BTRFS_I(inode)->root;
efefb143
YZ
4964 if (btrfs_root_refs(&root->root_item) == 0)
4965 return 1;
848cce0d
LZ
4966
4967 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4968 return 1;
efefb143 4969 }
76dda93c
YZ
4970 return 0;
4971}
4972
b4aff1f8
JB
4973static void btrfs_dentry_release(struct dentry *dentry)
4974{
4975 if (dentry->d_fsdata)
4976 kfree(dentry->d_fsdata);
4977}
4978
3de4586c 4979static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4980 unsigned int flags)
3de4586c 4981{
a66e7cc6
JB
4982 struct dentry *ret;
4983
4984 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
a66e7cc6 4985 return ret;
39279cc3
CM
4986}
4987
16cdcec7 4988unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4989 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4990};
4991
9cdda8d3 4992static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 4993{
9cdda8d3 4994 struct inode *inode = file_inode(file);
39279cc3
CM
4995 struct btrfs_root *root = BTRFS_I(inode)->root;
4996 struct btrfs_item *item;
4997 struct btrfs_dir_item *di;
4998 struct btrfs_key key;
5f39d397 4999 struct btrfs_key found_key;
39279cc3 5000 struct btrfs_path *path;
16cdcec7
MX
5001 struct list_head ins_list;
5002 struct list_head del_list;
39279cc3 5003 int ret;
5f39d397 5004 struct extent_buffer *leaf;
39279cc3 5005 int slot;
39279cc3
CM
5006 unsigned char d_type;
5007 int over = 0;
5008 u32 di_cur;
5009 u32 di_total;
5010 u32 di_len;
5011 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5012 char tmp_name[32];
5013 char *name_ptr;
5014 int name_len;
9cdda8d3 5015 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5016
5017 /* FIXME, use a real flag for deciding about the key type */
5018 if (root->fs_info->tree_root == root)
5019 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5020
9cdda8d3
AV
5021 if (!dir_emit_dots(file, ctx))
5022 return 0;
5023
49593bfa 5024 path = btrfs_alloc_path();
16cdcec7
MX
5025 if (!path)
5026 return -ENOMEM;
ff5714cc 5027
026fd317 5028 path->reada = 1;
49593bfa 5029
16cdcec7
MX
5030 if (key_type == BTRFS_DIR_INDEX_KEY) {
5031 INIT_LIST_HEAD(&ins_list);
5032 INIT_LIST_HEAD(&del_list);
5033 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5034 }
5035
39279cc3 5036 btrfs_set_key_type(&key, key_type);
9cdda8d3 5037 key.offset = ctx->pos;
33345d01 5038 key.objectid = btrfs_ino(inode);
5f39d397 5039
39279cc3
CM
5040 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5041 if (ret < 0)
5042 goto err;
49593bfa
DW
5043
5044 while (1) {
5f39d397 5045 leaf = path->nodes[0];
39279cc3 5046 slot = path->slots[0];
b9e03af0
LZ
5047 if (slot >= btrfs_header_nritems(leaf)) {
5048 ret = btrfs_next_leaf(root, path);
5049 if (ret < 0)
5050 goto err;
5051 else if (ret > 0)
5052 break;
5053 continue;
39279cc3 5054 }
3de4586c 5055
dd3cc16b 5056 item = btrfs_item_nr(slot);
5f39d397
CM
5057 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5058
5059 if (found_key.objectid != key.objectid)
39279cc3 5060 break;
5f39d397 5061 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5062 break;
9cdda8d3 5063 if (found_key.offset < ctx->pos)
b9e03af0 5064 goto next;
16cdcec7
MX
5065 if (key_type == BTRFS_DIR_INDEX_KEY &&
5066 btrfs_should_delete_dir_index(&del_list,
5067 found_key.offset))
5068 goto next;
5f39d397 5069
9cdda8d3 5070 ctx->pos = found_key.offset;
16cdcec7 5071 is_curr = 1;
49593bfa 5072
39279cc3
CM
5073 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5074 di_cur = 0;
5f39d397 5075 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5076
5077 while (di_cur < di_total) {
5f39d397
CM
5078 struct btrfs_key location;
5079
22a94d44
JB
5080 if (verify_dir_item(root, leaf, di))
5081 break;
5082
5f39d397 5083 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5084 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5085 name_ptr = tmp_name;
5086 } else {
5087 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5088 if (!name_ptr) {
5089 ret = -ENOMEM;
5090 goto err;
5091 }
5f39d397
CM
5092 }
5093 read_extent_buffer(leaf, name_ptr,
5094 (unsigned long)(di + 1), name_len);
5095
5096 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5097 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5098
fede766f 5099
3de4586c 5100 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5101 * skip it.
5102 *
5103 * In contrast to old kernels, we insert the snapshot's
5104 * dir item and dir index after it has been created, so
5105 * we won't find a reference to our own snapshot. We
5106 * still keep the following code for backward
5107 * compatibility.
3de4586c
CM
5108 */
5109 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5110 location.objectid == root->root_key.objectid) {
5111 over = 0;
5112 goto skip;
5113 }
9cdda8d3
AV
5114 over = !dir_emit(ctx, name_ptr, name_len,
5115 location.objectid, d_type);
5f39d397 5116
3de4586c 5117skip:
5f39d397
CM
5118 if (name_ptr != tmp_name)
5119 kfree(name_ptr);
5120
39279cc3
CM
5121 if (over)
5122 goto nopos;
5103e947 5123 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5124 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5125 di_cur += di_len;
5126 di = (struct btrfs_dir_item *)((char *)di + di_len);
5127 }
b9e03af0
LZ
5128next:
5129 path->slots[0]++;
39279cc3 5130 }
49593bfa 5131
16cdcec7
MX
5132 if (key_type == BTRFS_DIR_INDEX_KEY) {
5133 if (is_curr)
9cdda8d3
AV
5134 ctx->pos++;
5135 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5136 if (ret)
5137 goto nopos;
5138 }
5139
49593bfa 5140 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5141 ctx->pos++;
5142
5143 /*
5144 * Stop new entries from being returned after we return the last
5145 * entry.
5146 *
5147 * New directory entries are assigned a strictly increasing
5148 * offset. This means that new entries created during readdir
5149 * are *guaranteed* to be seen in the future by that readdir.
5150 * This has broken buggy programs which operate on names as
5151 * they're returned by readdir. Until we re-use freed offsets
5152 * we have this hack to stop new entries from being returned
5153 * under the assumption that they'll never reach this huge
5154 * offset.
5155 *
5156 * This is being careful not to overflow 32bit loff_t unless the
5157 * last entry requires it because doing so has broken 32bit apps
5158 * in the past.
5159 */
5160 if (key_type == BTRFS_DIR_INDEX_KEY) {
5161 if (ctx->pos >= INT_MAX)
5162 ctx->pos = LLONG_MAX;
5163 else
5164 ctx->pos = INT_MAX;
5165 }
39279cc3
CM
5166nopos:
5167 ret = 0;
5168err:
16cdcec7
MX
5169 if (key_type == BTRFS_DIR_INDEX_KEY)
5170 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5171 btrfs_free_path(path);
39279cc3
CM
5172 return ret;
5173}
5174
a9185b41 5175int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5176{
5177 struct btrfs_root *root = BTRFS_I(inode)->root;
5178 struct btrfs_trans_handle *trans;
5179 int ret = 0;
0af3d00b 5180 bool nolock = false;
39279cc3 5181
72ac3c0d 5182 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5183 return 0;
5184
83eea1f1 5185 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5186 nolock = true;
0af3d00b 5187
a9185b41 5188 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5189 if (nolock)
7a7eaa40 5190 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5191 else
7a7eaa40 5192 trans = btrfs_join_transaction(root);
3612b495
TI
5193 if (IS_ERR(trans))
5194 return PTR_ERR(trans);
a698d075 5195 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5196 }
5197 return ret;
5198}
5199
5200/*
54aa1f4d 5201 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5202 * inode changes. But, it is most likely to find the inode in cache.
5203 * FIXME, needs more benchmarking...there are no reasons other than performance
5204 * to keep or drop this code.
5205 */
48a3b636 5206static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5207{
5208 struct btrfs_root *root = BTRFS_I(inode)->root;
5209 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5210 int ret;
5211
72ac3c0d 5212 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5213 return 0;
39279cc3 5214
7a7eaa40 5215 trans = btrfs_join_transaction(root);
22c44fe6
JB
5216 if (IS_ERR(trans))
5217 return PTR_ERR(trans);
8929ecfa
YZ
5218
5219 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5220 if (ret && ret == -ENOSPC) {
5221 /* whoops, lets try again with the full transaction */
5222 btrfs_end_transaction(trans, root);
5223 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5224 if (IS_ERR(trans))
5225 return PTR_ERR(trans);
8929ecfa 5226
94b60442 5227 ret = btrfs_update_inode(trans, root, inode);
94b60442 5228 }
39279cc3 5229 btrfs_end_transaction(trans, root);
16cdcec7
MX
5230 if (BTRFS_I(inode)->delayed_node)
5231 btrfs_balance_delayed_items(root);
22c44fe6
JB
5232
5233 return ret;
5234}
5235
5236/*
5237 * This is a copy of file_update_time. We need this so we can return error on
5238 * ENOSPC for updating the inode in the case of file write and mmap writes.
5239 */
e41f941a
JB
5240static int btrfs_update_time(struct inode *inode, struct timespec *now,
5241 int flags)
22c44fe6 5242{
2bc55652
AB
5243 struct btrfs_root *root = BTRFS_I(inode)->root;
5244
5245 if (btrfs_root_readonly(root))
5246 return -EROFS;
5247
e41f941a 5248 if (flags & S_VERSION)
22c44fe6 5249 inode_inc_iversion(inode);
e41f941a
JB
5250 if (flags & S_CTIME)
5251 inode->i_ctime = *now;
5252 if (flags & S_MTIME)
5253 inode->i_mtime = *now;
5254 if (flags & S_ATIME)
5255 inode->i_atime = *now;
5256 return btrfs_dirty_inode(inode);
39279cc3
CM
5257}
5258
d352ac68
CM
5259/*
5260 * find the highest existing sequence number in a directory
5261 * and then set the in-memory index_cnt variable to reflect
5262 * free sequence numbers
5263 */
aec7477b
JB
5264static int btrfs_set_inode_index_count(struct inode *inode)
5265{
5266 struct btrfs_root *root = BTRFS_I(inode)->root;
5267 struct btrfs_key key, found_key;
5268 struct btrfs_path *path;
5269 struct extent_buffer *leaf;
5270 int ret;
5271
33345d01 5272 key.objectid = btrfs_ino(inode);
aec7477b
JB
5273 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5274 key.offset = (u64)-1;
5275
5276 path = btrfs_alloc_path();
5277 if (!path)
5278 return -ENOMEM;
5279
5280 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5281 if (ret < 0)
5282 goto out;
5283 /* FIXME: we should be able to handle this */
5284 if (ret == 0)
5285 goto out;
5286 ret = 0;
5287
5288 /*
5289 * MAGIC NUMBER EXPLANATION:
5290 * since we search a directory based on f_pos we have to start at 2
5291 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5292 * else has to start at 2
5293 */
5294 if (path->slots[0] == 0) {
5295 BTRFS_I(inode)->index_cnt = 2;
5296 goto out;
5297 }
5298
5299 path->slots[0]--;
5300
5301 leaf = path->nodes[0];
5302 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5303
33345d01 5304 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5305 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5306 BTRFS_I(inode)->index_cnt = 2;
5307 goto out;
5308 }
5309
5310 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5311out:
5312 btrfs_free_path(path);
5313 return ret;
5314}
5315
d352ac68
CM
5316/*
5317 * helper to find a free sequence number in a given directory. This current
5318 * code is very simple, later versions will do smarter things in the btree
5319 */
3de4586c 5320int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5321{
5322 int ret = 0;
5323
5324 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5325 ret = btrfs_inode_delayed_dir_index_count(dir);
5326 if (ret) {
5327 ret = btrfs_set_inode_index_count(dir);
5328 if (ret)
5329 return ret;
5330 }
aec7477b
JB
5331 }
5332
00e4e6b3 5333 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5334 BTRFS_I(dir)->index_cnt++;
5335
5336 return ret;
5337}
5338
39279cc3
CM
5339static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5340 struct btrfs_root *root,
aec7477b 5341 struct inode *dir,
9c58309d 5342 const char *name, int name_len,
175a4eb7
AV
5343 u64 ref_objectid, u64 objectid,
5344 umode_t mode, u64 *index)
39279cc3
CM
5345{
5346 struct inode *inode;
5f39d397 5347 struct btrfs_inode_item *inode_item;
39279cc3 5348 struct btrfs_key *location;
5f39d397 5349 struct btrfs_path *path;
9c58309d
CM
5350 struct btrfs_inode_ref *ref;
5351 struct btrfs_key key[2];
5352 u32 sizes[2];
5353 unsigned long ptr;
39279cc3
CM
5354 int ret;
5355 int owner;
5356
5f39d397 5357 path = btrfs_alloc_path();
d8926bb3
MF
5358 if (!path)
5359 return ERR_PTR(-ENOMEM);
5f39d397 5360
39279cc3 5361 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5362 if (!inode) {
5363 btrfs_free_path(path);
39279cc3 5364 return ERR_PTR(-ENOMEM);
8fb27640 5365 }
39279cc3 5366
581bb050
LZ
5367 /*
5368 * we have to initialize this early, so we can reclaim the inode
5369 * number if we fail afterwards in this function.
5370 */
5371 inode->i_ino = objectid;
5372
aec7477b 5373 if (dir) {
1abe9b8a 5374 trace_btrfs_inode_request(dir);
5375
3de4586c 5376 ret = btrfs_set_inode_index(dir, index);
09771430 5377 if (ret) {
8fb27640 5378 btrfs_free_path(path);
09771430 5379 iput(inode);
aec7477b 5380 return ERR_PTR(ret);
09771430 5381 }
aec7477b
JB
5382 }
5383 /*
5384 * index_cnt is ignored for everything but a dir,
5385 * btrfs_get_inode_index_count has an explanation for the magic
5386 * number
5387 */
5388 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5389 BTRFS_I(inode)->root = root;
e02119d5 5390 BTRFS_I(inode)->generation = trans->transid;
76195853 5391 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5392
5dc562c5
JB
5393 /*
5394 * We could have gotten an inode number from somebody who was fsynced
5395 * and then removed in this same transaction, so let's just set full
5396 * sync since it will be a full sync anyway and this will blow away the
5397 * old info in the log.
5398 */
5399 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5400
569254b0 5401 if (S_ISDIR(mode))
39279cc3
CM
5402 owner = 0;
5403 else
5404 owner = 1;
9c58309d
CM
5405
5406 key[0].objectid = objectid;
5407 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5408 key[0].offset = 0;
5409
f186373f
MF
5410 /*
5411 * Start new inodes with an inode_ref. This is slightly more
5412 * efficient for small numbers of hard links since they will
5413 * be packed into one item. Extended refs will kick in if we
5414 * add more hard links than can fit in the ref item.
5415 */
9c58309d
CM
5416 key[1].objectid = objectid;
5417 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5418 key[1].offset = ref_objectid;
5419
5420 sizes[0] = sizeof(struct btrfs_inode_item);
5421 sizes[1] = name_len + sizeof(*ref);
5422
b9473439 5423 path->leave_spinning = 1;
9c58309d
CM
5424 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5425 if (ret != 0)
5f39d397
CM
5426 goto fail;
5427
ecc11fab 5428 inode_init_owner(inode, dir, mode);
a76a3cd4 5429 inode_set_bytes(inode, 0);
39279cc3 5430 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5431 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5432 struct btrfs_inode_item);
293f7e07
LZ
5433 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5434 sizeof(*inode_item));
e02119d5 5435 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5436
5437 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5438 struct btrfs_inode_ref);
5439 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5440 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5441 ptr = (unsigned long)(ref + 1);
5442 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5443
5f39d397
CM
5444 btrfs_mark_buffer_dirty(path->nodes[0]);
5445 btrfs_free_path(path);
5446
39279cc3
CM
5447 location = &BTRFS_I(inode)->location;
5448 location->objectid = objectid;
39279cc3
CM
5449 location->offset = 0;
5450 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5451
6cbff00f
CH
5452 btrfs_inherit_iflags(inode, dir);
5453
569254b0 5454 if (S_ISREG(mode)) {
94272164
CM
5455 if (btrfs_test_opt(root, NODATASUM))
5456 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5457 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5458 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5459 BTRFS_INODE_NODATASUM;
94272164
CM
5460 }
5461
39279cc3 5462 insert_inode_hash(inode);
5d4f98a2 5463 inode_tree_add(inode);
1abe9b8a 5464
5465 trace_btrfs_inode_new(inode);
1973f0fa 5466 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5467
8ea05e3a
AB
5468 btrfs_update_root_times(trans, root);
5469
39279cc3 5470 return inode;
5f39d397 5471fail:
aec7477b
JB
5472 if (dir)
5473 BTRFS_I(dir)->index_cnt--;
5f39d397 5474 btrfs_free_path(path);
09771430 5475 iput(inode);
5f39d397 5476 return ERR_PTR(ret);
39279cc3
CM
5477}
5478
5479static inline u8 btrfs_inode_type(struct inode *inode)
5480{
5481 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5482}
5483
d352ac68
CM
5484/*
5485 * utility function to add 'inode' into 'parent_inode' with
5486 * a give name and a given sequence number.
5487 * if 'add_backref' is true, also insert a backref from the
5488 * inode to the parent directory.
5489 */
e02119d5
CM
5490int btrfs_add_link(struct btrfs_trans_handle *trans,
5491 struct inode *parent_inode, struct inode *inode,
5492 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5493{
4df27c4d 5494 int ret = 0;
39279cc3 5495 struct btrfs_key key;
e02119d5 5496 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5497 u64 ino = btrfs_ino(inode);
5498 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5499
33345d01 5500 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5501 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5502 } else {
33345d01 5503 key.objectid = ino;
4df27c4d
YZ
5504 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5505 key.offset = 0;
5506 }
5507
33345d01 5508 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5509 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5510 key.objectid, root->root_key.objectid,
33345d01 5511 parent_ino, index, name, name_len);
4df27c4d 5512 } else if (add_backref) {
33345d01
LZ
5513 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5514 parent_ino, index);
4df27c4d 5515 }
39279cc3 5516
79787eaa
JM
5517 /* Nothing to clean up yet */
5518 if (ret)
5519 return ret;
4df27c4d 5520
79787eaa
JM
5521 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5522 parent_inode, &key,
5523 btrfs_inode_type(inode), index);
9c52057c 5524 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5525 goto fail_dir_item;
5526 else if (ret) {
5527 btrfs_abort_transaction(trans, root, ret);
5528 return ret;
39279cc3 5529 }
79787eaa
JM
5530
5531 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5532 name_len * 2);
0c4d2d95 5533 inode_inc_iversion(parent_inode);
79787eaa
JM
5534 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5535 ret = btrfs_update_inode(trans, root, parent_inode);
5536 if (ret)
5537 btrfs_abort_transaction(trans, root, ret);
39279cc3 5538 return ret;
fe66a05a
CM
5539
5540fail_dir_item:
5541 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5542 u64 local_index;
5543 int err;
5544 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5545 key.objectid, root->root_key.objectid,
5546 parent_ino, &local_index, name, name_len);
5547
5548 } else if (add_backref) {
5549 u64 local_index;
5550 int err;
5551
5552 err = btrfs_del_inode_ref(trans, root, name, name_len,
5553 ino, parent_ino, &local_index);
5554 }
5555 return ret;
39279cc3
CM
5556}
5557
5558static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5559 struct inode *dir, struct dentry *dentry,
5560 struct inode *inode, int backref, u64 index)
39279cc3 5561{
a1b075d2
JB
5562 int err = btrfs_add_link(trans, dir, inode,
5563 dentry->d_name.name, dentry->d_name.len,
5564 backref, index);
39279cc3
CM
5565 if (err > 0)
5566 err = -EEXIST;
5567 return err;
5568}
5569
618e21d5 5570static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5571 umode_t mode, dev_t rdev)
618e21d5
JB
5572{
5573 struct btrfs_trans_handle *trans;
5574 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5575 struct inode *inode = NULL;
618e21d5
JB
5576 int err;
5577 int drop_inode = 0;
5578 u64 objectid;
00e4e6b3 5579 u64 index = 0;
618e21d5
JB
5580
5581 if (!new_valid_dev(rdev))
5582 return -EINVAL;
5583
9ed74f2d
JB
5584 /*
5585 * 2 for inode item and ref
5586 * 2 for dir items
5587 * 1 for xattr if selinux is on
5588 */
a22285a6
YZ
5589 trans = btrfs_start_transaction(root, 5);
5590 if (IS_ERR(trans))
5591 return PTR_ERR(trans);
1832a6d5 5592
581bb050
LZ
5593 err = btrfs_find_free_ino(root, &objectid);
5594 if (err)
5595 goto out_unlock;
5596
aec7477b 5597 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5598 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5599 mode, &index);
7cf96da3
TI
5600 if (IS_ERR(inode)) {
5601 err = PTR_ERR(inode);
618e21d5 5602 goto out_unlock;
7cf96da3 5603 }
618e21d5 5604
2a7dba39 5605 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5606 if (err) {
5607 drop_inode = 1;
5608 goto out_unlock;
5609 }
5610
ad19db71
CS
5611 /*
5612 * If the active LSM wants to access the inode during
5613 * d_instantiate it needs these. Smack checks to see
5614 * if the filesystem supports xattrs by looking at the
5615 * ops vector.
5616 */
5617
5618 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5619 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5620 if (err)
5621 drop_inode = 1;
5622 else {
618e21d5 5623 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5624 btrfs_update_inode(trans, root, inode);
08c422c2 5625 d_instantiate(dentry, inode);
618e21d5 5626 }
618e21d5 5627out_unlock:
7ad85bb7 5628 btrfs_end_transaction(trans, root);
b53d3f5d 5629 btrfs_btree_balance_dirty(root);
618e21d5
JB
5630 if (drop_inode) {
5631 inode_dec_link_count(inode);
5632 iput(inode);
5633 }
618e21d5
JB
5634 return err;
5635}
5636
39279cc3 5637static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5638 umode_t mode, bool excl)
39279cc3
CM
5639{
5640 struct btrfs_trans_handle *trans;
5641 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5642 struct inode *inode = NULL;
43baa579 5643 int drop_inode_on_err = 0;
a22285a6 5644 int err;
39279cc3 5645 u64 objectid;
00e4e6b3 5646 u64 index = 0;
39279cc3 5647
9ed74f2d
JB
5648 /*
5649 * 2 for inode item and ref
5650 * 2 for dir items
5651 * 1 for xattr if selinux is on
5652 */
a22285a6
YZ
5653 trans = btrfs_start_transaction(root, 5);
5654 if (IS_ERR(trans))
5655 return PTR_ERR(trans);
9ed74f2d 5656
581bb050
LZ
5657 err = btrfs_find_free_ino(root, &objectid);
5658 if (err)
5659 goto out_unlock;
5660
aec7477b 5661 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5662 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5663 mode, &index);
7cf96da3
TI
5664 if (IS_ERR(inode)) {
5665 err = PTR_ERR(inode);
39279cc3 5666 goto out_unlock;
7cf96da3 5667 }
43baa579 5668 drop_inode_on_err = 1;
39279cc3 5669
2a7dba39 5670 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5671 if (err)
33268eaf 5672 goto out_unlock;
33268eaf 5673
9185aa58
FB
5674 err = btrfs_update_inode(trans, root, inode);
5675 if (err)
5676 goto out_unlock;
5677
ad19db71
CS
5678 /*
5679 * If the active LSM wants to access the inode during
5680 * d_instantiate it needs these. Smack checks to see
5681 * if the filesystem supports xattrs by looking at the
5682 * ops vector.
5683 */
5684 inode->i_fop = &btrfs_file_operations;
5685 inode->i_op = &btrfs_file_inode_operations;
5686
a1b075d2 5687 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5688 if (err)
43baa579
FB
5689 goto out_unlock;
5690
5691 inode->i_mapping->a_ops = &btrfs_aops;
5692 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5693 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5694 d_instantiate(dentry, inode);
5695
39279cc3 5696out_unlock:
7ad85bb7 5697 btrfs_end_transaction(trans, root);
43baa579 5698 if (err && drop_inode_on_err) {
39279cc3
CM
5699 inode_dec_link_count(inode);
5700 iput(inode);
5701 }
b53d3f5d 5702 btrfs_btree_balance_dirty(root);
39279cc3
CM
5703 return err;
5704}
5705
5706static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5707 struct dentry *dentry)
5708{
5709 struct btrfs_trans_handle *trans;
5710 struct btrfs_root *root = BTRFS_I(dir)->root;
5711 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5712 u64 index;
39279cc3
CM
5713 int err;
5714 int drop_inode = 0;
5715
4a8be425
TH
5716 /* do not allow sys_link's with other subvols of the same device */
5717 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5718 return -EXDEV;
4a8be425 5719
f186373f 5720 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5721 return -EMLINK;
4a8be425 5722
3de4586c 5723 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5724 if (err)
5725 goto fail;
5726
a22285a6 5727 /*
7e6b6465 5728 * 2 items for inode and inode ref
a22285a6 5729 * 2 items for dir items
7e6b6465 5730 * 1 item for parent inode
a22285a6 5731 */
7e6b6465 5732 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5733 if (IS_ERR(trans)) {
5734 err = PTR_ERR(trans);
5735 goto fail;
5736 }
5f39d397 5737
3153495d 5738 btrfs_inc_nlink(inode);
0c4d2d95 5739 inode_inc_iversion(inode);
3153495d 5740 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5741 ihold(inode);
e9976151 5742 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5743
a1b075d2 5744 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5745
a5719521 5746 if (err) {
54aa1f4d 5747 drop_inode = 1;
a5719521 5748 } else {
10d9f309 5749 struct dentry *parent = dentry->d_parent;
a5719521 5750 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5751 if (err)
5752 goto fail;
08c422c2 5753 d_instantiate(dentry, inode);
6a912213 5754 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5755 }
39279cc3 5756
7ad85bb7 5757 btrfs_end_transaction(trans, root);
1832a6d5 5758fail:
39279cc3
CM
5759 if (drop_inode) {
5760 inode_dec_link_count(inode);
5761 iput(inode);
5762 }
b53d3f5d 5763 btrfs_btree_balance_dirty(root);
39279cc3
CM
5764 return err;
5765}
5766
18bb1db3 5767static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5768{
b9d86667 5769 struct inode *inode = NULL;
39279cc3
CM
5770 struct btrfs_trans_handle *trans;
5771 struct btrfs_root *root = BTRFS_I(dir)->root;
5772 int err = 0;
5773 int drop_on_err = 0;
b9d86667 5774 u64 objectid = 0;
00e4e6b3 5775 u64 index = 0;
39279cc3 5776
9ed74f2d
JB
5777 /*
5778 * 2 items for inode and ref
5779 * 2 items for dir items
5780 * 1 for xattr if selinux is on
5781 */
a22285a6
YZ
5782 trans = btrfs_start_transaction(root, 5);
5783 if (IS_ERR(trans))
5784 return PTR_ERR(trans);
39279cc3 5785
581bb050
LZ
5786 err = btrfs_find_free_ino(root, &objectid);
5787 if (err)
5788 goto out_fail;
5789
aec7477b 5790 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5791 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5792 S_IFDIR | mode, &index);
39279cc3
CM
5793 if (IS_ERR(inode)) {
5794 err = PTR_ERR(inode);
5795 goto out_fail;
5796 }
5f39d397 5797
39279cc3 5798 drop_on_err = 1;
33268eaf 5799
2a7dba39 5800 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5801 if (err)
5802 goto out_fail;
5803
39279cc3
CM
5804 inode->i_op = &btrfs_dir_inode_operations;
5805 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5806
dbe674a9 5807 btrfs_i_size_write(inode, 0);
39279cc3
CM
5808 err = btrfs_update_inode(trans, root, inode);
5809 if (err)
5810 goto out_fail;
5f39d397 5811
a1b075d2
JB
5812 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5813 dentry->d_name.len, 0, index);
39279cc3
CM
5814 if (err)
5815 goto out_fail;
5f39d397 5816
39279cc3
CM
5817 d_instantiate(dentry, inode);
5818 drop_on_err = 0;
39279cc3
CM
5819
5820out_fail:
7ad85bb7 5821 btrfs_end_transaction(trans, root);
39279cc3
CM
5822 if (drop_on_err)
5823 iput(inode);
b53d3f5d 5824 btrfs_btree_balance_dirty(root);
39279cc3
CM
5825 return err;
5826}
5827
d352ac68
CM
5828/* helper for btfs_get_extent. Given an existing extent in the tree,
5829 * and an extent that you want to insert, deal with overlap and insert
5830 * the new extent into the tree.
5831 */
3b951516
CM
5832static int merge_extent_mapping(struct extent_map_tree *em_tree,
5833 struct extent_map *existing,
e6dcd2dc
CM
5834 struct extent_map *em,
5835 u64 map_start, u64 map_len)
3b951516
CM
5836{
5837 u64 start_diff;
3b951516 5838
e6dcd2dc
CM
5839 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5840 start_diff = map_start - em->start;
5841 em->start = map_start;
5842 em->len = map_len;
c8b97818
CM
5843 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5844 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5845 em->block_start += start_diff;
c8b97818
CM
5846 em->block_len -= start_diff;
5847 }
09a2a8f9 5848 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5849}
5850
c8b97818
CM
5851static noinline int uncompress_inline(struct btrfs_path *path,
5852 struct inode *inode, struct page *page,
5853 size_t pg_offset, u64 extent_offset,
5854 struct btrfs_file_extent_item *item)
5855{
5856 int ret;
5857 struct extent_buffer *leaf = path->nodes[0];
5858 char *tmp;
5859 size_t max_size;
5860 unsigned long inline_size;
5861 unsigned long ptr;
261507a0 5862 int compress_type;
c8b97818
CM
5863
5864 WARN_ON(pg_offset != 0);
261507a0 5865 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5866 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5867 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 5868 btrfs_item_nr(path->slots[0]));
c8b97818 5869 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5870 if (!tmp)
5871 return -ENOMEM;
c8b97818
CM
5872 ptr = btrfs_file_extent_inline_start(item);
5873
5874 read_extent_buffer(leaf, tmp, ptr, inline_size);
5875
5b050f04 5876 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5877 ret = btrfs_decompress(compress_type, tmp, page,
5878 extent_offset, inline_size, max_size);
c8b97818 5879 if (ret) {
7ac687d9 5880 char *kaddr = kmap_atomic(page);
c8b97818
CM
5881 unsigned long copy_size = min_t(u64,
5882 PAGE_CACHE_SIZE - pg_offset,
5883 max_size - extent_offset);
5884 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5885 kunmap_atomic(kaddr);
c8b97818
CM
5886 }
5887 kfree(tmp);
5888 return 0;
5889}
5890
d352ac68
CM
5891/*
5892 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5893 * the ugly parts come from merging extents from the disk with the in-ram
5894 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5895 * where the in-ram extents might be locked pending data=ordered completion.
5896 *
5897 * This also copies inline extents directly into the page.
5898 */
d397712b 5899
a52d9a80 5900struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5901 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5902 int create)
5903{
5904 int ret;
5905 int err = 0;
db94535d 5906 u64 bytenr;
a52d9a80
CM
5907 u64 extent_start = 0;
5908 u64 extent_end = 0;
33345d01 5909 u64 objectid = btrfs_ino(inode);
a52d9a80 5910 u32 found_type;
f421950f 5911 struct btrfs_path *path = NULL;
a52d9a80
CM
5912 struct btrfs_root *root = BTRFS_I(inode)->root;
5913 struct btrfs_file_extent_item *item;
5f39d397
CM
5914 struct extent_buffer *leaf;
5915 struct btrfs_key found_key;
a52d9a80
CM
5916 struct extent_map *em = NULL;
5917 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5918 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5919 struct btrfs_trans_handle *trans = NULL;
261507a0 5920 int compress_type;
a52d9a80 5921
a52d9a80 5922again:
890871be 5923 read_lock(&em_tree->lock);
d1310b2e 5924 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5925 if (em)
5926 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5927 read_unlock(&em_tree->lock);
d1310b2e 5928
a52d9a80 5929 if (em) {
e1c4b745
CM
5930 if (em->start > start || em->start + em->len <= start)
5931 free_extent_map(em);
5932 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5933 free_extent_map(em);
5934 else
5935 goto out;
a52d9a80 5936 }
172ddd60 5937 em = alloc_extent_map();
a52d9a80 5938 if (!em) {
d1310b2e
CM
5939 err = -ENOMEM;
5940 goto out;
a52d9a80 5941 }
e6dcd2dc 5942 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5943 em->start = EXTENT_MAP_HOLE;
445a6944 5944 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5945 em->len = (u64)-1;
c8b97818 5946 em->block_len = (u64)-1;
f421950f
CM
5947
5948 if (!path) {
5949 path = btrfs_alloc_path();
026fd317
JB
5950 if (!path) {
5951 err = -ENOMEM;
5952 goto out;
5953 }
5954 /*
5955 * Chances are we'll be called again, so go ahead and do
5956 * readahead
5957 */
5958 path->reada = 1;
f421950f
CM
5959 }
5960
179e29e4
CM
5961 ret = btrfs_lookup_file_extent(trans, root, path,
5962 objectid, start, trans != NULL);
a52d9a80
CM
5963 if (ret < 0) {
5964 err = ret;
5965 goto out;
5966 }
5967
5968 if (ret != 0) {
5969 if (path->slots[0] == 0)
5970 goto not_found;
5971 path->slots[0]--;
5972 }
5973
5f39d397
CM
5974 leaf = path->nodes[0];
5975 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5976 struct btrfs_file_extent_item);
a52d9a80 5977 /* are we inside the extent that was found? */
5f39d397
CM
5978 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5979 found_type = btrfs_key_type(&found_key);
5980 if (found_key.objectid != objectid ||
a52d9a80
CM
5981 found_type != BTRFS_EXTENT_DATA_KEY) {
5982 goto not_found;
5983 }
5984
5f39d397
CM
5985 found_type = btrfs_file_extent_type(leaf, item);
5986 extent_start = found_key.offset;
261507a0 5987 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5988 if (found_type == BTRFS_FILE_EXTENT_REG ||
5989 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5990 extent_end = extent_start +
db94535d 5991 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5992 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5993 size_t size;
5994 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 5995 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102
YZ
5996 }
5997
5998 if (start >= extent_end) {
5999 path->slots[0]++;
6000 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6001 ret = btrfs_next_leaf(root, path);
6002 if (ret < 0) {
6003 err = ret;
6004 goto out;
a52d9a80 6005 }
9036c102
YZ
6006 if (ret > 0)
6007 goto not_found;
6008 leaf = path->nodes[0];
a52d9a80 6009 }
9036c102
YZ
6010 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6011 if (found_key.objectid != objectid ||
6012 found_key.type != BTRFS_EXTENT_DATA_KEY)
6013 goto not_found;
6014 if (start + len <= found_key.offset)
6015 goto not_found;
6016 em->start = start;
70c8a91c 6017 em->orig_start = start;
9036c102
YZ
6018 em->len = found_key.offset - start;
6019 goto not_found_em;
6020 }
6021
cc95bef6 6022 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6023 if (found_type == BTRFS_FILE_EXTENT_REG ||
6024 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6025 em->start = extent_start;
6026 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6027 em->orig_start = extent_start -
6028 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6029 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6030 item);
db94535d
CM
6031 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6032 if (bytenr == 0) {
5f39d397 6033 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6034 goto insert;
6035 }
261507a0 6036 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6037 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6038 em->compress_type = compress_type;
c8b97818 6039 em->block_start = bytenr;
b4939680 6040 em->block_len = em->orig_block_len;
c8b97818
CM
6041 } else {
6042 bytenr += btrfs_file_extent_offset(leaf, item);
6043 em->block_start = bytenr;
6044 em->block_len = em->len;
d899e052
YZ
6045 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6046 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6047 }
a52d9a80
CM
6048 goto insert;
6049 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6050 unsigned long ptr;
a52d9a80 6051 char *map;
3326d1b0
CM
6052 size_t size;
6053 size_t extent_offset;
6054 size_t copy_size;
a52d9a80 6055
689f9346 6056 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6057 if (!page || create) {
689f9346 6058 em->start = extent_start;
9036c102 6059 em->len = extent_end - extent_start;
689f9346
Y
6060 goto out;
6061 }
5f39d397 6062
9036c102
YZ
6063 size = btrfs_file_extent_inline_len(leaf, item);
6064 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6065 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6066 size - extent_offset);
3326d1b0 6067 em->start = extent_start + extent_offset;
fda2832f 6068 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6069 em->orig_block_len = em->len;
70c8a91c 6070 em->orig_start = em->start;
261507a0 6071 if (compress_type) {
c8b97818 6072 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6073 em->compress_type = compress_type;
6074 }
689f9346 6075 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6076 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6077 if (btrfs_file_extent_compression(leaf, item) !=
6078 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6079 ret = uncompress_inline(path, inode, page,
6080 pg_offset,
6081 extent_offset, item);
79787eaa 6082 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6083 } else {
6084 map = kmap(page);
6085 read_extent_buffer(leaf, map + pg_offset, ptr,
6086 copy_size);
93c82d57
CM
6087 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6088 memset(map + pg_offset + copy_size, 0,
6089 PAGE_CACHE_SIZE - pg_offset -
6090 copy_size);
6091 }
c8b97818
CM
6092 kunmap(page);
6093 }
179e29e4
CM
6094 flush_dcache_page(page);
6095 } else if (create && PageUptodate(page)) {
6bf7e080 6096 BUG();
179e29e4
CM
6097 if (!trans) {
6098 kunmap(page);
6099 free_extent_map(em);
6100 em = NULL;
ff5714cc 6101
b3b4aa74 6102 btrfs_release_path(path);
7a7eaa40 6103 trans = btrfs_join_transaction(root);
ff5714cc 6104
3612b495
TI
6105 if (IS_ERR(trans))
6106 return ERR_CAST(trans);
179e29e4
CM
6107 goto again;
6108 }
c8b97818 6109 map = kmap(page);
70dec807 6110 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6111 copy_size);
c8b97818 6112 kunmap(page);
179e29e4 6113 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6114 }
d1310b2e 6115 set_extent_uptodate(io_tree, em->start,
507903b8 6116 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6117 goto insert;
6118 } else {
31b1a2bd 6119 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6120 }
6121not_found:
6122 em->start = start;
70c8a91c 6123 em->orig_start = start;
d1310b2e 6124 em->len = len;
a52d9a80 6125not_found_em:
5f39d397 6126 em->block_start = EXTENT_MAP_HOLE;
9036c102 6127 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6128insert:
b3b4aa74 6129 btrfs_release_path(path);
d1310b2e 6130 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6131 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6132 em->start, em->len, start, len);
a52d9a80
CM
6133 err = -EIO;
6134 goto out;
6135 }
d1310b2e
CM
6136
6137 err = 0;
890871be 6138 write_lock(&em_tree->lock);
09a2a8f9 6139 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6140 /* it is possible that someone inserted the extent into the tree
6141 * while we had the lock dropped. It is also possible that
6142 * an overlapping map exists in the tree
6143 */
a52d9a80 6144 if (ret == -EEXIST) {
3b951516 6145 struct extent_map *existing;
e6dcd2dc
CM
6146
6147 ret = 0;
6148
3b951516 6149 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6150 if (existing && (existing->start > start ||
6151 existing->start + existing->len <= start)) {
6152 free_extent_map(existing);
6153 existing = NULL;
6154 }
3b951516
CM
6155 if (!existing) {
6156 existing = lookup_extent_mapping(em_tree, em->start,
6157 em->len);
6158 if (existing) {
6159 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6160 em, start,
6161 root->sectorsize);
3b951516
CM
6162 free_extent_map(existing);
6163 if (err) {
6164 free_extent_map(em);
6165 em = NULL;
6166 }
6167 } else {
6168 err = -EIO;
3b951516
CM
6169 free_extent_map(em);
6170 em = NULL;
6171 }
6172 } else {
6173 free_extent_map(em);
6174 em = existing;
e6dcd2dc 6175 err = 0;
a52d9a80 6176 }
a52d9a80 6177 }
890871be 6178 write_unlock(&em_tree->lock);
a52d9a80 6179out:
1abe9b8a 6180
f0bd95ea
TI
6181 if (em)
6182 trace_btrfs_get_extent(root, em);
1abe9b8a 6183
f421950f
CM
6184 if (path)
6185 btrfs_free_path(path);
a52d9a80
CM
6186 if (trans) {
6187 ret = btrfs_end_transaction(trans, root);
d397712b 6188 if (!err)
a52d9a80
CM
6189 err = ret;
6190 }
a52d9a80
CM
6191 if (err) {
6192 free_extent_map(em);
a52d9a80
CM
6193 return ERR_PTR(err);
6194 }
79787eaa 6195 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6196 return em;
6197}
6198
ec29ed5b
CM
6199struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6200 size_t pg_offset, u64 start, u64 len,
6201 int create)
6202{
6203 struct extent_map *em;
6204 struct extent_map *hole_em = NULL;
6205 u64 range_start = start;
6206 u64 end;
6207 u64 found;
6208 u64 found_end;
6209 int err = 0;
6210
6211 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6212 if (IS_ERR(em))
6213 return em;
6214 if (em) {
6215 /*
f9e4fb53
LB
6216 * if our em maps to
6217 * - a hole or
6218 * - a pre-alloc extent,
6219 * there might actually be delalloc bytes behind it.
ec29ed5b 6220 */
f9e4fb53
LB
6221 if (em->block_start != EXTENT_MAP_HOLE &&
6222 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6223 return em;
6224 else
6225 hole_em = em;
6226 }
6227
6228 /* check to see if we've wrapped (len == -1 or similar) */
6229 end = start + len;
6230 if (end < start)
6231 end = (u64)-1;
6232 else
6233 end -= 1;
6234
6235 em = NULL;
6236
6237 /* ok, we didn't find anything, lets look for delalloc */
6238 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6239 end, len, EXTENT_DELALLOC, 1);
6240 found_end = range_start + found;
6241 if (found_end < range_start)
6242 found_end = (u64)-1;
6243
6244 /*
6245 * we didn't find anything useful, return
6246 * the original results from get_extent()
6247 */
6248 if (range_start > end || found_end <= start) {
6249 em = hole_em;
6250 hole_em = NULL;
6251 goto out;
6252 }
6253
6254 /* adjust the range_start to make sure it doesn't
6255 * go backwards from the start they passed in
6256 */
6257 range_start = max(start,range_start);
6258 found = found_end - range_start;
6259
6260 if (found > 0) {
6261 u64 hole_start = start;
6262 u64 hole_len = len;
6263
172ddd60 6264 em = alloc_extent_map();
ec29ed5b
CM
6265 if (!em) {
6266 err = -ENOMEM;
6267 goto out;
6268 }
6269 /*
6270 * when btrfs_get_extent can't find anything it
6271 * returns one huge hole
6272 *
6273 * make sure what it found really fits our range, and
6274 * adjust to make sure it is based on the start from
6275 * the caller
6276 */
6277 if (hole_em) {
6278 u64 calc_end = extent_map_end(hole_em);
6279
6280 if (calc_end <= start || (hole_em->start > end)) {
6281 free_extent_map(hole_em);
6282 hole_em = NULL;
6283 } else {
6284 hole_start = max(hole_em->start, start);
6285 hole_len = calc_end - hole_start;
6286 }
6287 }
6288 em->bdev = NULL;
6289 if (hole_em && range_start > hole_start) {
6290 /* our hole starts before our delalloc, so we
6291 * have to return just the parts of the hole
6292 * that go until the delalloc starts
6293 */
6294 em->len = min(hole_len,
6295 range_start - hole_start);
6296 em->start = hole_start;
6297 em->orig_start = hole_start;
6298 /*
6299 * don't adjust block start at all,
6300 * it is fixed at EXTENT_MAP_HOLE
6301 */
6302 em->block_start = hole_em->block_start;
6303 em->block_len = hole_len;
f9e4fb53
LB
6304 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6305 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6306 } else {
6307 em->start = range_start;
6308 em->len = found;
6309 em->orig_start = range_start;
6310 em->block_start = EXTENT_MAP_DELALLOC;
6311 em->block_len = found;
6312 }
6313 } else if (hole_em) {
6314 return hole_em;
6315 }
6316out:
6317
6318 free_extent_map(hole_em);
6319 if (err) {
6320 free_extent_map(em);
6321 return ERR_PTR(err);
6322 }
6323 return em;
6324}
6325
4b46fce2
JB
6326static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6327 u64 start, u64 len)
6328{
6329 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6330 struct extent_map *em;
4b46fce2
JB
6331 struct btrfs_key ins;
6332 u64 alloc_hint;
6333 int ret;
4b46fce2 6334
4b46fce2 6335 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6336 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
81c9ad23 6337 alloc_hint, &ins, 1);
00361589
JB
6338 if (ret)
6339 return ERR_PTR(ret);
4b46fce2 6340
70c8a91c 6341 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6342 ins.offset, ins.offset, ins.offset, 0);
00361589
JB
6343 if (IS_ERR(em)) {
6344 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6345 return em;
6346 }
4b46fce2
JB
6347
6348 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6349 ins.offset, ins.offset, 0);
6350 if (ret) {
6351 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
00361589
JB
6352 free_extent_map(em);
6353 return ERR_PTR(ret);
4b46fce2 6354 }
00361589 6355
4b46fce2
JB
6356 return em;
6357}
6358
46bfbb5c
CM
6359/*
6360 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6361 * block must be cow'd
6362 */
00361589 6363noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6364 u64 *orig_start, u64 *orig_block_len,
6365 u64 *ram_bytes)
46bfbb5c 6366{
00361589 6367 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6368 struct btrfs_path *path;
6369 int ret;
6370 struct extent_buffer *leaf;
6371 struct btrfs_root *root = BTRFS_I(inode)->root;
6372 struct btrfs_file_extent_item *fi;
6373 struct btrfs_key key;
6374 u64 disk_bytenr;
6375 u64 backref_offset;
6376 u64 extent_end;
6377 u64 num_bytes;
6378 int slot;
6379 int found_type;
7ee9e440 6380 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
46bfbb5c
CM
6381 path = btrfs_alloc_path();
6382 if (!path)
6383 return -ENOMEM;
6384
00361589 6385 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6386 offset, 0);
6387 if (ret < 0)
6388 goto out;
6389
6390 slot = path->slots[0];
6391 if (ret == 1) {
6392 if (slot == 0) {
6393 /* can't find the item, must cow */
6394 ret = 0;
6395 goto out;
6396 }
6397 slot--;
6398 }
6399 ret = 0;
6400 leaf = path->nodes[0];
6401 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6402 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6403 key.type != BTRFS_EXTENT_DATA_KEY) {
6404 /* not our file or wrong item type, must cow */
6405 goto out;
6406 }
6407
6408 if (key.offset > offset) {
6409 /* Wrong offset, must cow */
6410 goto out;
6411 }
6412
6413 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6414 found_type = btrfs_file_extent_type(leaf, fi);
6415 if (found_type != BTRFS_FILE_EXTENT_REG &&
6416 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6417 /* not a regular extent, must cow */
6418 goto out;
6419 }
7ee9e440
JB
6420
6421 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6422 goto out;
6423
46bfbb5c 6424 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6425 if (disk_bytenr == 0)
6426 goto out;
6427
6428 if (btrfs_file_extent_compression(leaf, fi) ||
6429 btrfs_file_extent_encryption(leaf, fi) ||
6430 btrfs_file_extent_other_encoding(leaf, fi))
6431 goto out;
6432
46bfbb5c
CM
6433 backref_offset = btrfs_file_extent_offset(leaf, fi);
6434
7ee9e440
JB
6435 if (orig_start) {
6436 *orig_start = key.offset - backref_offset;
6437 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6438 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6439 }
eb384b55 6440
46bfbb5c 6441 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
46bfbb5c
CM
6442
6443 if (btrfs_extent_readonly(root, disk_bytenr))
6444 goto out;
1bda19eb 6445 btrfs_release_path(path);
46bfbb5c
CM
6446
6447 /*
6448 * look for other files referencing this extent, if we
6449 * find any we must cow
6450 */
00361589
JB
6451 trans = btrfs_join_transaction(root);
6452 if (IS_ERR(trans)) {
6453 ret = 0;
46bfbb5c 6454 goto out;
00361589
JB
6455 }
6456
6457 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6458 key.offset - backref_offset, disk_bytenr);
6459 btrfs_end_transaction(trans, root);
6460 if (ret) {
6461 ret = 0;
6462 goto out;
6463 }
46bfbb5c
CM
6464
6465 /*
6466 * adjust disk_bytenr and num_bytes to cover just the bytes
6467 * in this extent we are about to write. If there
6468 * are any csums in that range we have to cow in order
6469 * to keep the csums correct
6470 */
6471 disk_bytenr += backref_offset;
6472 disk_bytenr += offset - key.offset;
eb384b55 6473 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6474 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6475 goto out;
6476 /*
6477 * all of the above have passed, it is safe to overwrite this extent
6478 * without cow
6479 */
eb384b55 6480 *len = num_bytes;
46bfbb5c
CM
6481 ret = 1;
6482out:
6483 btrfs_free_path(path);
6484 return ret;
6485}
6486
eb838e73
JB
6487static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6488 struct extent_state **cached_state, int writing)
6489{
6490 struct btrfs_ordered_extent *ordered;
6491 int ret = 0;
6492
6493 while (1) {
6494 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6495 0, cached_state);
6496 /*
6497 * We're concerned with the entire range that we're going to be
6498 * doing DIO to, so we need to make sure theres no ordered
6499 * extents in this range.
6500 */
6501 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6502 lockend - lockstart + 1);
6503
6504 /*
6505 * We need to make sure there are no buffered pages in this
6506 * range either, we could have raced between the invalidate in
6507 * generic_file_direct_write and locking the extent. The
6508 * invalidate needs to happen so that reads after a write do not
6509 * get stale data.
6510 */
6511 if (!ordered && (!writing ||
6512 !test_range_bit(&BTRFS_I(inode)->io_tree,
6513 lockstart, lockend, EXTENT_UPTODATE, 0,
6514 *cached_state)))
6515 break;
6516
6517 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6518 cached_state, GFP_NOFS);
6519
6520 if (ordered) {
6521 btrfs_start_ordered_extent(inode, ordered, 1);
6522 btrfs_put_ordered_extent(ordered);
6523 } else {
6524 /* Screw you mmap */
6525 ret = filemap_write_and_wait_range(inode->i_mapping,
6526 lockstart,
6527 lockend);
6528 if (ret)
6529 break;
6530
6531 /*
6532 * If we found a page that couldn't be invalidated just
6533 * fall back to buffered.
6534 */
6535 ret = invalidate_inode_pages2_range(inode->i_mapping,
6536 lockstart >> PAGE_CACHE_SHIFT,
6537 lockend >> PAGE_CACHE_SHIFT);
6538 if (ret)
6539 break;
6540 }
6541
6542 cond_resched();
6543 }
6544
6545 return ret;
6546}
6547
69ffb543
JB
6548static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6549 u64 len, u64 orig_start,
6550 u64 block_start, u64 block_len,
cc95bef6
JB
6551 u64 orig_block_len, u64 ram_bytes,
6552 int type)
69ffb543
JB
6553{
6554 struct extent_map_tree *em_tree;
6555 struct extent_map *em;
6556 struct btrfs_root *root = BTRFS_I(inode)->root;
6557 int ret;
6558
6559 em_tree = &BTRFS_I(inode)->extent_tree;
6560 em = alloc_extent_map();
6561 if (!em)
6562 return ERR_PTR(-ENOMEM);
6563
6564 em->start = start;
6565 em->orig_start = orig_start;
2ab28f32
JB
6566 em->mod_start = start;
6567 em->mod_len = len;
69ffb543
JB
6568 em->len = len;
6569 em->block_len = block_len;
6570 em->block_start = block_start;
6571 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6572 em->orig_block_len = orig_block_len;
cc95bef6 6573 em->ram_bytes = ram_bytes;
70c8a91c 6574 em->generation = -1;
69ffb543
JB
6575 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6576 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6577 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6578
6579 do {
6580 btrfs_drop_extent_cache(inode, em->start,
6581 em->start + em->len - 1, 0);
6582 write_lock(&em_tree->lock);
09a2a8f9 6583 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6584 write_unlock(&em_tree->lock);
6585 } while (ret == -EEXIST);
6586
6587 if (ret) {
6588 free_extent_map(em);
6589 return ERR_PTR(ret);
6590 }
6591
6592 return em;
6593}
6594
6595
4b46fce2
JB
6596static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6597 struct buffer_head *bh_result, int create)
6598{
6599 struct extent_map *em;
6600 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6601 struct extent_state *cached_state = NULL;
4b46fce2 6602 u64 start = iblock << inode->i_blkbits;
eb838e73 6603 u64 lockstart, lockend;
4b46fce2 6604 u64 len = bh_result->b_size;
eb838e73 6605 int unlock_bits = EXTENT_LOCKED;
0934856d 6606 int ret = 0;
eb838e73 6607
172a5049 6608 if (create)
eb838e73 6609 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6610 else
c329861d 6611 len = min_t(u64, len, root->sectorsize);
eb838e73 6612
c329861d
JB
6613 lockstart = start;
6614 lockend = start + len - 1;
6615
eb838e73
JB
6616 /*
6617 * If this errors out it's because we couldn't invalidate pagecache for
6618 * this range and we need to fallback to buffered.
6619 */
6620 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6621 return -ENOTBLK;
6622
4b46fce2 6623 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6624 if (IS_ERR(em)) {
6625 ret = PTR_ERR(em);
6626 goto unlock_err;
6627 }
4b46fce2
JB
6628
6629 /*
6630 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6631 * io. INLINE is special, and we could probably kludge it in here, but
6632 * it's still buffered so for safety lets just fall back to the generic
6633 * buffered path.
6634 *
6635 * For COMPRESSED we _have_ to read the entire extent in so we can
6636 * decompress it, so there will be buffering required no matter what we
6637 * do, so go ahead and fallback to buffered.
6638 *
6639 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6640 * to buffered IO. Don't blame me, this is the price we pay for using
6641 * the generic code.
6642 */
6643 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6644 em->block_start == EXTENT_MAP_INLINE) {
6645 free_extent_map(em);
eb838e73
JB
6646 ret = -ENOTBLK;
6647 goto unlock_err;
4b46fce2
JB
6648 }
6649
6650 /* Just a good old fashioned hole, return */
6651 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6652 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6653 free_extent_map(em);
eb838e73 6654 goto unlock_err;
4b46fce2
JB
6655 }
6656
6657 /*
6658 * We don't allocate a new extent in the following cases
6659 *
6660 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6661 * existing extent.
6662 * 2) The extent is marked as PREALLOC. We're good to go here and can
6663 * just use the extent.
6664 *
6665 */
46bfbb5c 6666 if (!create) {
eb838e73
JB
6667 len = min(len, em->len - (start - em->start));
6668 lockstart = start + len;
6669 goto unlock;
46bfbb5c 6670 }
4b46fce2
JB
6671
6672 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6673 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6674 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6675 int type;
6676 int ret;
eb384b55 6677 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6678
6679 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6680 type = BTRFS_ORDERED_PREALLOC;
6681 else
6682 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6683 len = min(len, em->len - (start - em->start));
4b46fce2 6684 block_start = em->block_start + (start - em->start);
46bfbb5c 6685
00361589 6686 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 6687 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6688 if (type == BTRFS_ORDERED_PREALLOC) {
6689 free_extent_map(em);
6690 em = create_pinned_em(inode, start, len,
6691 orig_start,
b4939680 6692 block_start, len,
cc95bef6
JB
6693 orig_block_len,
6694 ram_bytes, type);
00361589 6695 if (IS_ERR(em))
69ffb543 6696 goto unlock_err;
69ffb543
JB
6697 }
6698
46bfbb5c
CM
6699 ret = btrfs_add_ordered_extent_dio(inode, start,
6700 block_start, len, len, type);
46bfbb5c
CM
6701 if (ret) {
6702 free_extent_map(em);
eb838e73 6703 goto unlock_err;
46bfbb5c
CM
6704 }
6705 goto unlock;
4b46fce2 6706 }
4b46fce2 6707 }
00361589 6708
46bfbb5c
CM
6709 /*
6710 * this will cow the extent, reset the len in case we changed
6711 * it above
6712 */
6713 len = bh_result->b_size;
70c8a91c
JB
6714 free_extent_map(em);
6715 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6716 if (IS_ERR(em)) {
6717 ret = PTR_ERR(em);
6718 goto unlock_err;
6719 }
46bfbb5c
CM
6720 len = min(len, em->len - (start - em->start));
6721unlock:
4b46fce2
JB
6722 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6723 inode->i_blkbits;
46bfbb5c 6724 bh_result->b_size = len;
4b46fce2
JB
6725 bh_result->b_bdev = em->bdev;
6726 set_buffer_mapped(bh_result);
c3473e83
JB
6727 if (create) {
6728 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6729 set_buffer_new(bh_result);
6730
6731 /*
6732 * Need to update the i_size under the extent lock so buffered
6733 * readers will get the updated i_size when we unlock.
6734 */
6735 if (start + len > i_size_read(inode))
6736 i_size_write(inode, start + len);
0934856d 6737
172a5049
MX
6738 spin_lock(&BTRFS_I(inode)->lock);
6739 BTRFS_I(inode)->outstanding_extents++;
6740 spin_unlock(&BTRFS_I(inode)->lock);
6741
0934856d
MX
6742 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6743 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6744 &cached_state, GFP_NOFS);
6745 BUG_ON(ret);
c3473e83 6746 }
4b46fce2 6747
eb838e73
JB
6748 /*
6749 * In the case of write we need to clear and unlock the entire range,
6750 * in the case of read we need to unlock only the end area that we
6751 * aren't using if there is any left over space.
6752 */
24c03fa5 6753 if (lockstart < lockend) {
0934856d
MX
6754 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6755 lockend, unlock_bits, 1, 0,
6756 &cached_state, GFP_NOFS);
24c03fa5 6757 } else {
eb838e73 6758 free_extent_state(cached_state);
24c03fa5 6759 }
eb838e73 6760
4b46fce2
JB
6761 free_extent_map(em);
6762
6763 return 0;
eb838e73
JB
6764
6765unlock_err:
eb838e73
JB
6766 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6767 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6768 return ret;
4b46fce2
JB
6769}
6770
4b46fce2
JB
6771static void btrfs_endio_direct_read(struct bio *bio, int err)
6772{
e65e1535 6773 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6774 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6775 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6776 struct inode *inode = dip->inode;
6777 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6778 struct bio *dio_bio;
facc8a22
MX
6779 u32 *csums = (u32 *)dip->csum;
6780 int index = 0;
4b46fce2 6781 u64 start;
4b46fce2
JB
6782
6783 start = dip->logical_offset;
6784 do {
6785 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6786 struct page *page = bvec->bv_page;
6787 char *kaddr;
6788 u32 csum = ~(u32)0;
6789 unsigned long flags;
6790
6791 local_irq_save(flags);
7ac687d9 6792 kaddr = kmap_atomic(page);
b0496686 6793 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6794 csum, bvec->bv_len);
6795 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6796 kunmap_atomic(kaddr);
4b46fce2
JB
6797 local_irq_restore(flags);
6798
6799 flush_dcache_page(bvec->bv_page);
facc8a22
MX
6800 if (csum != csums[index]) {
6801 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c
GU
6802 btrfs_ino(inode), start, csum,
6803 csums[index]);
4b46fce2
JB
6804 err = -EIO;
6805 }
6806 }
6807
6808 start += bvec->bv_len;
4b46fce2 6809 bvec++;
facc8a22 6810 index++;
4b46fce2
JB
6811 } while (bvec <= bvec_end);
6812
6813 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6814 dip->logical_offset + dip->bytes - 1);
9be3395b 6815 dio_bio = dip->dio_bio;
4b46fce2 6816
4b46fce2 6817 kfree(dip);
c0da7aa1
JB
6818
6819 /* If we had a csum failure make sure to clear the uptodate flag */
6820 if (err)
9be3395b
CM
6821 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6822 dio_end_io(dio_bio, err);
6823 bio_put(bio);
4b46fce2
JB
6824}
6825
6826static void btrfs_endio_direct_write(struct bio *bio, int err)
6827{
6828 struct btrfs_dio_private *dip = bio->bi_private;
6829 struct inode *inode = dip->inode;
6830 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6831 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6832 u64 ordered_offset = dip->logical_offset;
6833 u64 ordered_bytes = dip->bytes;
9be3395b 6834 struct bio *dio_bio;
4b46fce2
JB
6835 int ret;
6836
6837 if (err)
6838 goto out_done;
163cf09c
CM
6839again:
6840 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6841 &ordered_offset,
5fd02043 6842 ordered_bytes, !err);
4b46fce2 6843 if (!ret)
163cf09c 6844 goto out_test;
4b46fce2 6845
5fd02043
JB
6846 ordered->work.func = finish_ordered_fn;
6847 ordered->work.flags = 0;
6848 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6849 &ordered->work);
163cf09c
CM
6850out_test:
6851 /*
6852 * our bio might span multiple ordered extents. If we haven't
6853 * completed the accounting for the whole dio, go back and try again
6854 */
6855 if (ordered_offset < dip->logical_offset + dip->bytes) {
6856 ordered_bytes = dip->logical_offset + dip->bytes -
6857 ordered_offset;
5fd02043 6858 ordered = NULL;
163cf09c
CM
6859 goto again;
6860 }
4b46fce2 6861out_done:
9be3395b 6862 dio_bio = dip->dio_bio;
4b46fce2 6863
4b46fce2 6864 kfree(dip);
c0da7aa1
JB
6865
6866 /* If we had an error make sure to clear the uptodate flag */
6867 if (err)
9be3395b
CM
6868 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6869 dio_end_io(dio_bio, err);
6870 bio_put(bio);
4b46fce2
JB
6871}
6872
eaf25d93
CM
6873static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6874 struct bio *bio, int mirror_num,
6875 unsigned long bio_flags, u64 offset)
6876{
6877 int ret;
6878 struct btrfs_root *root = BTRFS_I(inode)->root;
6879 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6880 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6881 return 0;
6882}
6883
e65e1535
MX
6884static void btrfs_end_dio_bio(struct bio *bio, int err)
6885{
6886 struct btrfs_dio_private *dip = bio->bi_private;
6887
6888 if (err) {
33345d01 6889 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6890 "sector %#Lx len %u err no %d\n",
c1c9ff7c 6891 btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6892 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6893 dip->errors = 1;
6894
6895 /*
6896 * before atomic variable goto zero, we must make sure
6897 * dip->errors is perceived to be set.
6898 */
6899 smp_mb__before_atomic_dec();
6900 }
6901
6902 /* if there are more bios still pending for this dio, just exit */
6903 if (!atomic_dec_and_test(&dip->pending_bios))
6904 goto out;
6905
9be3395b 6906 if (dip->errors) {
e65e1535 6907 bio_io_error(dip->orig_bio);
9be3395b
CM
6908 } else {
6909 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
6910 bio_endio(dip->orig_bio, 0);
6911 }
6912out:
6913 bio_put(bio);
6914}
6915
6916static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6917 u64 first_sector, gfp_t gfp_flags)
6918{
6919 int nr_vecs = bio_get_nr_vecs(bdev);
6920 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6921}
6922
6923static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6924 int rw, u64 file_offset, int skip_sum,
c329861d 6925 int async_submit)
e65e1535 6926{
facc8a22 6927 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
6928 int write = rw & REQ_WRITE;
6929 struct btrfs_root *root = BTRFS_I(inode)->root;
6930 int ret;
6931
b812ce28
JB
6932 if (async_submit)
6933 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6934
e65e1535 6935 bio_get(bio);
5fd02043
JB
6936
6937 if (!write) {
6938 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6939 if (ret)
6940 goto err;
6941 }
e65e1535 6942
1ae39938
JB
6943 if (skip_sum)
6944 goto map;
6945
6946 if (write && async_submit) {
e65e1535
MX
6947 ret = btrfs_wq_submit_bio(root->fs_info,
6948 inode, rw, bio, 0, 0,
6949 file_offset,
6950 __btrfs_submit_bio_start_direct_io,
6951 __btrfs_submit_bio_done);
6952 goto err;
1ae39938
JB
6953 } else if (write) {
6954 /*
6955 * If we aren't doing async submit, calculate the csum of the
6956 * bio now.
6957 */
6958 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6959 if (ret)
6960 goto err;
c2db1073 6961 } else if (!skip_sum) {
facc8a22
MX
6962 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
6963 file_offset);
c2db1073
TI
6964 if (ret)
6965 goto err;
6966 }
e65e1535 6967
1ae39938
JB
6968map:
6969 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6970err:
6971 bio_put(bio);
6972 return ret;
6973}
6974
6975static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6976 int skip_sum)
6977{
6978 struct inode *inode = dip->inode;
6979 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6980 struct bio *bio;
6981 struct bio *orig_bio = dip->orig_bio;
6982 struct bio_vec *bvec = orig_bio->bi_io_vec;
6983 u64 start_sector = orig_bio->bi_sector;
6984 u64 file_offset = dip->logical_offset;
6985 u64 submit_len = 0;
6986 u64 map_length;
6987 int nr_pages = 0;
e65e1535 6988 int ret = 0;
1ae39938 6989 int async_submit = 0;
e65e1535 6990
e65e1535 6991 map_length = orig_bio->bi_size;
53b381b3 6992 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
6993 &map_length, NULL, 0);
6994 if (ret) {
64728bbb 6995 bio_put(orig_bio);
e65e1535
MX
6996 return -EIO;
6997 }
facc8a22 6998
02f57c7a
JB
6999 if (map_length >= orig_bio->bi_size) {
7000 bio = orig_bio;
7001 goto submit;
7002 }
7003
53b381b3
DW
7004 /* async crcs make it difficult to collect full stripe writes. */
7005 if (btrfs_get_alloc_profile(root, 1) &
7006 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7007 async_submit = 0;
7008 else
7009 async_submit = 1;
7010
02f57c7a
JB
7011 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7012 if (!bio)
7013 return -ENOMEM;
7014 bio->bi_private = dip;
7015 bio->bi_end_io = btrfs_end_dio_bio;
7016 atomic_inc(&dip->pending_bios);
7017
e65e1535
MX
7018 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7019 if (unlikely(map_length < submit_len + bvec->bv_len ||
7020 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7021 bvec->bv_offset) < bvec->bv_len)) {
7022 /*
7023 * inc the count before we submit the bio so
7024 * we know the end IO handler won't happen before
7025 * we inc the count. Otherwise, the dip might get freed
7026 * before we're done setting it up
7027 */
7028 atomic_inc(&dip->pending_bios);
7029 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7030 file_offset, skip_sum,
c329861d 7031 async_submit);
e65e1535
MX
7032 if (ret) {
7033 bio_put(bio);
7034 atomic_dec(&dip->pending_bios);
7035 goto out_err;
7036 }
7037
e65e1535
MX
7038 start_sector += submit_len >> 9;
7039 file_offset += submit_len;
7040
7041 submit_len = 0;
7042 nr_pages = 0;
7043
7044 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7045 start_sector, GFP_NOFS);
7046 if (!bio)
7047 goto out_err;
7048 bio->bi_private = dip;
7049 bio->bi_end_io = btrfs_end_dio_bio;
7050
7051 map_length = orig_bio->bi_size;
53b381b3 7052 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7053 start_sector << 9,
e65e1535
MX
7054 &map_length, NULL, 0);
7055 if (ret) {
7056 bio_put(bio);
7057 goto out_err;
7058 }
7059 } else {
7060 submit_len += bvec->bv_len;
7061 nr_pages ++;
7062 bvec++;
7063 }
7064 }
7065
02f57c7a 7066submit:
e65e1535 7067 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7068 async_submit);
e65e1535
MX
7069 if (!ret)
7070 return 0;
7071
7072 bio_put(bio);
7073out_err:
7074 dip->errors = 1;
7075 /*
7076 * before atomic variable goto zero, we must
7077 * make sure dip->errors is perceived to be set.
7078 */
7079 smp_mb__before_atomic_dec();
7080 if (atomic_dec_and_test(&dip->pending_bios))
7081 bio_io_error(dip->orig_bio);
7082
7083 /* bio_end_io() will handle error, so we needn't return it */
7084 return 0;
7085}
7086
9be3395b
CM
7087static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7088 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7089{
7090 struct btrfs_root *root = BTRFS_I(inode)->root;
7091 struct btrfs_dio_private *dip;
9be3395b 7092 struct bio *io_bio;
4b46fce2 7093 int skip_sum;
facc8a22 7094 int sum_len;
7b6d91da 7095 int write = rw & REQ_WRITE;
4b46fce2 7096 int ret = 0;
facc8a22 7097 u16 csum_size;
4b46fce2
JB
7098
7099 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7100
9be3395b 7101 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7102 if (!io_bio) {
7103 ret = -ENOMEM;
7104 goto free_ordered;
7105 }
7106
facc8a22
MX
7107 if (!skip_sum && !write) {
7108 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7109 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7110 sum_len *= csum_size;
7111 } else {
7112 sum_len = 0;
7113 }
7114
7115 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7116 if (!dip) {
7117 ret = -ENOMEM;
9be3395b 7118 goto free_io_bio;
4b46fce2 7119 }
4b46fce2 7120
9be3395b 7121 dip->private = dio_bio->bi_private;
4b46fce2
JB
7122 dip->inode = inode;
7123 dip->logical_offset = file_offset;
e6da5d2e 7124 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7125 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7126 io_bio->bi_private = dip;
e65e1535 7127 dip->errors = 0;
9be3395b
CM
7128 dip->orig_bio = io_bio;
7129 dip->dio_bio = dio_bio;
e65e1535 7130 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7131
7132 if (write)
9be3395b 7133 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7134 else
9be3395b 7135 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7136
e65e1535
MX
7137 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7138 if (!ret)
eaf25d93 7139 return;
9be3395b
CM
7140
7141free_io_bio:
7142 bio_put(io_bio);
7143
4b46fce2
JB
7144free_ordered:
7145 /*
7146 * If this is a write, we need to clean up the reserved space and kill
7147 * the ordered extent.
7148 */
7149 if (write) {
7150 struct btrfs_ordered_extent *ordered;
955256f2 7151 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7152 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7153 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7154 btrfs_free_reserved_extent(root, ordered->start,
7155 ordered->disk_len);
7156 btrfs_put_ordered_extent(ordered);
7157 btrfs_put_ordered_extent(ordered);
7158 }
9be3395b 7159 bio_endio(dio_bio, ret);
4b46fce2
JB
7160}
7161
5a5f79b5
CM
7162static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7163 const struct iovec *iov, loff_t offset,
7164 unsigned long nr_segs)
7165{
7166 int seg;
a1b75f7d 7167 int i;
5a5f79b5
CM
7168 size_t size;
7169 unsigned long addr;
7170 unsigned blocksize_mask = root->sectorsize - 1;
7171 ssize_t retval = -EINVAL;
7172 loff_t end = offset;
7173
7174 if (offset & blocksize_mask)
7175 goto out;
7176
7177 /* Check the memory alignment. Blocks cannot straddle pages */
7178 for (seg = 0; seg < nr_segs; seg++) {
7179 addr = (unsigned long)iov[seg].iov_base;
7180 size = iov[seg].iov_len;
7181 end += size;
a1b75f7d 7182 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7183 goto out;
a1b75f7d
JB
7184
7185 /* If this is a write we don't need to check anymore */
7186 if (rw & WRITE)
7187 continue;
7188
7189 /*
7190 * Check to make sure we don't have duplicate iov_base's in this
7191 * iovec, if so return EINVAL, otherwise we'll get csum errors
7192 * when reading back.
7193 */
7194 for (i = seg + 1; i < nr_segs; i++) {
7195 if (iov[seg].iov_base == iov[i].iov_base)
7196 goto out;
7197 }
5a5f79b5
CM
7198 }
7199 retval = 0;
7200out:
7201 return retval;
7202}
eb838e73 7203
16432985
CM
7204static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7205 const struct iovec *iov, loff_t offset,
7206 unsigned long nr_segs)
7207{
4b46fce2
JB
7208 struct file *file = iocb->ki_filp;
7209 struct inode *inode = file->f_mapping->host;
0934856d 7210 size_t count = 0;
2e60a51e 7211 int flags = 0;
38851cc1
MX
7212 bool wakeup = true;
7213 bool relock = false;
0934856d 7214 ssize_t ret;
4b46fce2 7215
5a5f79b5 7216 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7217 offset, nr_segs))
5a5f79b5 7218 return 0;
3f7c579c 7219
38851cc1
MX
7220 atomic_inc(&inode->i_dio_count);
7221 smp_mb__after_atomic_inc();
7222
0e267c44
JB
7223 /*
7224 * The generic stuff only does filemap_write_and_wait_range, which isn't
7225 * enough if we've written compressed pages to this area, so we need to
7226 * call btrfs_wait_ordered_range to make absolutely sure that any
7227 * outstanding dirty pages are on disk.
7228 */
7229 count = iov_length(iov, nr_segs);
7230 btrfs_wait_ordered_range(inode, offset, count);
7231
0934856d 7232 if (rw & WRITE) {
38851cc1
MX
7233 /*
7234 * If the write DIO is beyond the EOF, we need update
7235 * the isize, but it is protected by i_mutex. So we can
7236 * not unlock the i_mutex at this case.
7237 */
7238 if (offset + count <= inode->i_size) {
7239 mutex_unlock(&inode->i_mutex);
7240 relock = true;
7241 }
0934856d
MX
7242 ret = btrfs_delalloc_reserve_space(inode, count);
7243 if (ret)
38851cc1
MX
7244 goto out;
7245 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7246 &BTRFS_I(inode)->runtime_flags))) {
7247 inode_dio_done(inode);
7248 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7249 wakeup = false;
0934856d
MX
7250 }
7251
7252 ret = __blockdev_direct_IO(rw, iocb, inode,
7253 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7254 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7255 btrfs_submit_direct, flags);
0934856d
MX
7256 if (rw & WRITE) {
7257 if (ret < 0 && ret != -EIOCBQUEUED)
7258 btrfs_delalloc_release_space(inode, count);
172a5049 7259 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7260 btrfs_delalloc_release_space(inode,
7261 count - (size_t)ret);
172a5049
MX
7262 else
7263 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7264 }
38851cc1 7265out:
2e60a51e
MX
7266 if (wakeup)
7267 inode_dio_done(inode);
38851cc1
MX
7268 if (relock)
7269 mutex_lock(&inode->i_mutex);
0934856d
MX
7270
7271 return ret;
16432985
CM
7272}
7273
05dadc09
TI
7274#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7275
1506fcc8
YS
7276static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7277 __u64 start, __u64 len)
7278{
05dadc09
TI
7279 int ret;
7280
7281 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7282 if (ret)
7283 return ret;
7284
ec29ed5b 7285 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7286}
7287
a52d9a80 7288int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7289{
d1310b2e
CM
7290 struct extent_io_tree *tree;
7291 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7292 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7293}
1832a6d5 7294
a52d9a80 7295static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7296{
d1310b2e 7297 struct extent_io_tree *tree;
b888db2b
CM
7298
7299
7300 if (current->flags & PF_MEMALLOC) {
7301 redirty_page_for_writepage(wbc, page);
7302 unlock_page(page);
7303 return 0;
7304 }
d1310b2e 7305 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7306 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7307}
7308
48a3b636
ES
7309static int btrfs_writepages(struct address_space *mapping,
7310 struct writeback_control *wbc)
b293f02e 7311{
d1310b2e 7312 struct extent_io_tree *tree;
771ed689 7313
d1310b2e 7314 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7315 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7316}
7317
3ab2fb5a
CM
7318static int
7319btrfs_readpages(struct file *file, struct address_space *mapping,
7320 struct list_head *pages, unsigned nr_pages)
7321{
d1310b2e
CM
7322 struct extent_io_tree *tree;
7323 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7324 return extent_readpages(tree, mapping, pages, nr_pages,
7325 btrfs_get_extent);
7326}
e6dcd2dc 7327static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7328{
d1310b2e
CM
7329 struct extent_io_tree *tree;
7330 struct extent_map_tree *map;
a52d9a80 7331 int ret;
8c2383c3 7332
d1310b2e
CM
7333 tree = &BTRFS_I(page->mapping->host)->io_tree;
7334 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7335 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7336 if (ret == 1) {
7337 ClearPagePrivate(page);
7338 set_page_private(page, 0);
7339 page_cache_release(page);
39279cc3 7340 }
a52d9a80 7341 return ret;
39279cc3
CM
7342}
7343
e6dcd2dc
CM
7344static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7345{
98509cfc
CM
7346 if (PageWriteback(page) || PageDirty(page))
7347 return 0;
b335b003 7348 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7349}
7350
d47992f8
LC
7351static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7352 unsigned int length)
39279cc3 7353{
5fd02043 7354 struct inode *inode = page->mapping->host;
d1310b2e 7355 struct extent_io_tree *tree;
e6dcd2dc 7356 struct btrfs_ordered_extent *ordered;
2ac55d41 7357 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7358 u64 page_start = page_offset(page);
7359 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 7360
8b62b72b
CM
7361 /*
7362 * we have the page locked, so new writeback can't start,
7363 * and the dirty bit won't be cleared while we are here.
7364 *
7365 * Wait for IO on this page so that we can safely clear
7366 * the PagePrivate2 bit and do ordered accounting
7367 */
e6dcd2dc 7368 wait_on_page_writeback(page);
8b62b72b 7369
5fd02043 7370 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7371 if (offset) {
7372 btrfs_releasepage(page, GFP_NOFS);
7373 return;
7374 }
d0082371 7375 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 7376 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 7377 if (ordered) {
eb84ae03
CM
7378 /*
7379 * IO on this page will never be started, so we need
7380 * to account for any ordered extents now
7381 */
e6dcd2dc
CM
7382 clear_extent_bit(tree, page_start, page_end,
7383 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7384 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7385 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
7386 /*
7387 * whoever cleared the private bit is responsible
7388 * for the finish_ordered_io
7389 */
77cef2ec
JB
7390 if (TestClearPagePrivate2(page)) {
7391 struct btrfs_ordered_inode_tree *tree;
7392 u64 new_len;
7393
7394 tree = &BTRFS_I(inode)->ordered_tree;
7395
7396 spin_lock_irq(&tree->lock);
7397 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7398 new_len = page_start - ordered->file_offset;
7399 if (new_len < ordered->truncated_len)
7400 ordered->truncated_len = new_len;
7401 spin_unlock_irq(&tree->lock);
7402
7403 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7404 page_start,
7405 PAGE_CACHE_SIZE, 1))
7406 btrfs_finish_ordered_io(ordered);
8b62b72b 7407 }
e6dcd2dc 7408 btrfs_put_ordered_extent(ordered);
2ac55d41 7409 cached_state = NULL;
d0082371 7410 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7411 }
7412 clear_extent_bit(tree, page_start, page_end,
32c00aff 7413 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7414 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7415 &cached_state, GFP_NOFS);
e6dcd2dc
CM
7416 __btrfs_releasepage(page, GFP_NOFS);
7417
4a096752 7418 ClearPageChecked(page);
9ad6b7bc 7419 if (PagePrivate(page)) {
9ad6b7bc
CM
7420 ClearPagePrivate(page);
7421 set_page_private(page, 0);
7422 page_cache_release(page);
7423 }
39279cc3
CM
7424}
7425
9ebefb18
CM
7426/*
7427 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7428 * called from a page fault handler when a page is first dirtied. Hence we must
7429 * be careful to check for EOF conditions here. We set the page up correctly
7430 * for a written page which means we get ENOSPC checking when writing into
7431 * holes and correct delalloc and unwritten extent mapping on filesystems that
7432 * support these features.
7433 *
7434 * We are not allowed to take the i_mutex here so we have to play games to
7435 * protect against truncate races as the page could now be beyond EOF. Because
7436 * vmtruncate() writes the inode size before removing pages, once we have the
7437 * page lock we can determine safely if the page is beyond EOF. If it is not
7438 * beyond EOF, then the page is guaranteed safe against truncation until we
7439 * unlock the page.
7440 */
c2ec175c 7441int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7442{
c2ec175c 7443 struct page *page = vmf->page;
496ad9aa 7444 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7445 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7446 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7447 struct btrfs_ordered_extent *ordered;
2ac55d41 7448 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7449 char *kaddr;
7450 unsigned long zero_start;
9ebefb18 7451 loff_t size;
1832a6d5 7452 int ret;
9998eb70 7453 int reserved = 0;
a52d9a80 7454 u64 page_start;
e6dcd2dc 7455 u64 page_end;
9ebefb18 7456
b2b5ef5c 7457 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7458 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7459 if (!ret) {
e41f941a 7460 ret = file_update_time(vma->vm_file);
9998eb70
CM
7461 reserved = 1;
7462 }
56a76f82
NP
7463 if (ret) {
7464 if (ret == -ENOMEM)
7465 ret = VM_FAULT_OOM;
7466 else /* -ENOSPC, -EIO, etc */
7467 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7468 if (reserved)
7469 goto out;
7470 goto out_noreserve;
56a76f82 7471 }
1832a6d5 7472
56a76f82 7473 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7474again:
9ebefb18 7475 lock_page(page);
9ebefb18 7476 size = i_size_read(inode);
e6dcd2dc
CM
7477 page_start = page_offset(page);
7478 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7479
9ebefb18 7480 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7481 (page_start >= size)) {
9ebefb18
CM
7482 /* page got truncated out from underneath us */
7483 goto out_unlock;
7484 }
e6dcd2dc
CM
7485 wait_on_page_writeback(page);
7486
d0082371 7487 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7488 set_page_extent_mapped(page);
7489
eb84ae03
CM
7490 /*
7491 * we can't set the delalloc bits if there are pending ordered
7492 * extents. Drop our locks and wait for them to finish
7493 */
e6dcd2dc
CM
7494 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7495 if (ordered) {
2ac55d41
JB
7496 unlock_extent_cached(io_tree, page_start, page_end,
7497 &cached_state, GFP_NOFS);
e6dcd2dc 7498 unlock_page(page);
eb84ae03 7499 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7500 btrfs_put_ordered_extent(ordered);
7501 goto again;
7502 }
7503
fbf19087
JB
7504 /*
7505 * XXX - page_mkwrite gets called every time the page is dirtied, even
7506 * if it was already dirty, so for space accounting reasons we need to
7507 * clear any delalloc bits for the range we are fixing to save. There
7508 * is probably a better way to do this, but for now keep consistent with
7509 * prepare_pages in the normal write path.
7510 */
2ac55d41 7511 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7512 EXTENT_DIRTY | EXTENT_DELALLOC |
7513 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7514 0, 0, &cached_state, GFP_NOFS);
fbf19087 7515
2ac55d41
JB
7516 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7517 &cached_state);
9ed74f2d 7518 if (ret) {
2ac55d41
JB
7519 unlock_extent_cached(io_tree, page_start, page_end,
7520 &cached_state, GFP_NOFS);
9ed74f2d
JB
7521 ret = VM_FAULT_SIGBUS;
7522 goto out_unlock;
7523 }
e6dcd2dc 7524 ret = 0;
9ebefb18
CM
7525
7526 /* page is wholly or partially inside EOF */
a52d9a80 7527 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7528 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7529 else
e6dcd2dc 7530 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7531
e6dcd2dc
CM
7532 if (zero_start != PAGE_CACHE_SIZE) {
7533 kaddr = kmap(page);
7534 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7535 flush_dcache_page(page);
7536 kunmap(page);
7537 }
247e743c 7538 ClearPageChecked(page);
e6dcd2dc 7539 set_page_dirty(page);
50a9b214 7540 SetPageUptodate(page);
5a3f23d5 7541
257c62e1
CM
7542 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7543 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7544 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7545
2ac55d41 7546 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7547
7548out_unlock:
b2b5ef5c
JK
7549 if (!ret) {
7550 sb_end_pagefault(inode->i_sb);
50a9b214 7551 return VM_FAULT_LOCKED;
b2b5ef5c 7552 }
9ebefb18 7553 unlock_page(page);
1832a6d5 7554out:
ec39e180 7555 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7556out_noreserve:
b2b5ef5c 7557 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7558 return ret;
7559}
7560
a41ad394 7561static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7562{
7563 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7564 struct btrfs_block_rsv *rsv;
a71754fc 7565 int ret = 0;
3893e33b 7566 int err = 0;
39279cc3 7567 struct btrfs_trans_handle *trans;
dbe674a9 7568 u64 mask = root->sectorsize - 1;
07127184 7569 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7570
4a096752 7571 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 7572
fcb80c2a
JB
7573 /*
7574 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7575 * 3 things going on here
7576 *
7577 * 1) We need to reserve space for our orphan item and the space to
7578 * delete our orphan item. Lord knows we don't want to have a dangling
7579 * orphan item because we didn't reserve space to remove it.
7580 *
7581 * 2) We need to reserve space to update our inode.
7582 *
7583 * 3) We need to have something to cache all the space that is going to
7584 * be free'd up by the truncate operation, but also have some slack
7585 * space reserved in case it uses space during the truncate (thank you
7586 * very much snapshotting).
7587 *
7588 * And we need these to all be seperate. The fact is we can use alot of
7589 * space doing the truncate, and we have no earthly idea how much space
7590 * we will use, so we need the truncate reservation to be seperate so it
7591 * doesn't end up using space reserved for updating the inode or
7592 * removing the orphan item. We also need to be able to stop the
7593 * transaction and start a new one, which means we need to be able to
7594 * update the inode several times, and we have no idea of knowing how
7595 * many times that will be, so we can't just reserve 1 item for the
7596 * entirety of the opration, so that has to be done seperately as well.
7597 * Then there is the orphan item, which does indeed need to be held on
7598 * to for the whole operation, and we need nobody to touch this reserved
7599 * space except the orphan code.
7600 *
7601 * So that leaves us with
7602 *
7603 * 1) root->orphan_block_rsv - for the orphan deletion.
7604 * 2) rsv - for the truncate reservation, which we will steal from the
7605 * transaction reservation.
7606 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7607 * updating the inode.
7608 */
66d8f3dd 7609 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7610 if (!rsv)
7611 return -ENOMEM;
4a338542 7612 rsv->size = min_size;
ca7e70f5 7613 rsv->failfast = 1;
f0cd846e 7614
907cbceb 7615 /*
07127184 7616 * 1 for the truncate slack space
907cbceb
JB
7617 * 1 for updating the inode.
7618 */
f3fe820c 7619 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7620 if (IS_ERR(trans)) {
7621 err = PTR_ERR(trans);
7622 goto out;
7623 }
f0cd846e 7624
907cbceb
JB
7625 /* Migrate the slack space for the truncate to our reserve */
7626 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7627 min_size);
fcb80c2a 7628 BUG_ON(ret);
f0cd846e 7629
5a3f23d5
CM
7630 /*
7631 * setattr is responsible for setting the ordered_data_close flag,
7632 * but that is only tested during the last file release. That
7633 * could happen well after the next commit, leaving a great big
7634 * window where new writes may get lost if someone chooses to write
7635 * to this file after truncating to zero
7636 *
7637 * The inode doesn't have any dirty data here, and so if we commit
7638 * this is a noop. If someone immediately starts writing to the inode
7639 * it is very likely we'll catch some of their writes in this
7640 * transaction, and the commit will find this file on the ordered
7641 * data list with good things to send down.
7642 *
7643 * This is a best effort solution, there is still a window where
7644 * using truncate to replace the contents of the file will
7645 * end up with a zero length file after a crash.
7646 */
72ac3c0d
JB
7647 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7648 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7649 btrfs_add_ordered_operation(trans, root, inode);
7650
5dc562c5
JB
7651 /*
7652 * So if we truncate and then write and fsync we normally would just
7653 * write the extents that changed, which is a problem if we need to
7654 * first truncate that entire inode. So set this flag so we write out
7655 * all of the extents in the inode to the sync log so we're completely
7656 * safe.
7657 */
7658 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7659 trans->block_rsv = rsv;
907cbceb 7660
8082510e
YZ
7661 while (1) {
7662 ret = btrfs_truncate_inode_items(trans, root, inode,
7663 inode->i_size,
7664 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7665 if (ret != -ENOSPC) {
3893e33b 7666 err = ret;
8082510e 7667 break;
3893e33b 7668 }
39279cc3 7669
fcb80c2a 7670 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7671 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7672 if (ret) {
7673 err = ret;
7674 break;
7675 }
ca7e70f5 7676
8082510e 7677 btrfs_end_transaction(trans, root);
b53d3f5d 7678 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7679
7680 trans = btrfs_start_transaction(root, 2);
7681 if (IS_ERR(trans)) {
7682 ret = err = PTR_ERR(trans);
7683 trans = NULL;
7684 break;
7685 }
7686
7687 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7688 rsv, min_size);
7689 BUG_ON(ret); /* shouldn't happen */
7690 trans->block_rsv = rsv;
8082510e
YZ
7691 }
7692
7693 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7694 trans->block_rsv = root->orphan_block_rsv;
8082510e 7695 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7696 if (ret)
7697 err = ret;
8082510e
YZ
7698 }
7699
917c16b2
CM
7700 if (trans) {
7701 trans->block_rsv = &root->fs_info->trans_block_rsv;
7702 ret = btrfs_update_inode(trans, root, inode);
7703 if (ret && !err)
7704 err = ret;
7b128766 7705
7ad85bb7 7706 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7707 btrfs_btree_balance_dirty(root);
917c16b2 7708 }
fcb80c2a
JB
7709
7710out:
7711 btrfs_free_block_rsv(root, rsv);
7712
3893e33b
JB
7713 if (ret && !err)
7714 err = ret;
a41ad394 7715
3893e33b 7716 return err;
39279cc3
CM
7717}
7718
d352ac68
CM
7719/*
7720 * create a new subvolume directory/inode (helper for the ioctl).
7721 */
d2fb3437 7722int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7723 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7724{
39279cc3 7725 struct inode *inode;
76dda93c 7726 int err;
00e4e6b3 7727 u64 index = 0;
39279cc3 7728
12fc9d09
FA
7729 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7730 new_dirid, new_dirid,
7731 S_IFDIR | (~current_umask() & S_IRWXUGO),
7732 &index);
54aa1f4d 7733 if (IS_ERR(inode))
f46b5a66 7734 return PTR_ERR(inode);
39279cc3
CM
7735 inode->i_op = &btrfs_dir_inode_operations;
7736 inode->i_fop = &btrfs_dir_file_operations;
7737
bfe86848 7738 set_nlink(inode, 1);
dbe674a9 7739 btrfs_i_size_write(inode, 0);
3b96362c 7740
76dda93c 7741 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7742
76dda93c 7743 iput(inode);
ce598979 7744 return err;
39279cc3
CM
7745}
7746
39279cc3
CM
7747struct inode *btrfs_alloc_inode(struct super_block *sb)
7748{
7749 struct btrfs_inode *ei;
2ead6ae7 7750 struct inode *inode;
39279cc3
CM
7751
7752 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7753 if (!ei)
7754 return NULL;
2ead6ae7
YZ
7755
7756 ei->root = NULL;
2ead6ae7 7757 ei->generation = 0;
15ee9bc7 7758 ei->last_trans = 0;
257c62e1 7759 ei->last_sub_trans = 0;
e02119d5 7760 ei->logged_trans = 0;
2ead6ae7 7761 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7762 ei->disk_i_size = 0;
7763 ei->flags = 0;
7709cde3 7764 ei->csum_bytes = 0;
2ead6ae7
YZ
7765 ei->index_cnt = (u64)-1;
7766 ei->last_unlink_trans = 0;
46d8bc34 7767 ei->last_log_commit = 0;
2ead6ae7 7768
9e0baf60
JB
7769 spin_lock_init(&ei->lock);
7770 ei->outstanding_extents = 0;
7771 ei->reserved_extents = 0;
2ead6ae7 7772
72ac3c0d 7773 ei->runtime_flags = 0;
261507a0 7774 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7775
16cdcec7
MX
7776 ei->delayed_node = NULL;
7777
2ead6ae7 7778 inode = &ei->vfs_inode;
a8067e02 7779 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7780 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7781 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7782 ei->io_tree.track_uptodate = 1;
7783 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7784 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7785 mutex_init(&ei->log_mutex);
f248679e 7786 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7787 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7788 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7789 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7790 RB_CLEAR_NODE(&ei->rb_node);
7791
7792 return inode;
39279cc3
CM
7793}
7794
fa0d7e3d
NP
7795static void btrfs_i_callback(struct rcu_head *head)
7796{
7797 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7798 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7799}
7800
39279cc3
CM
7801void btrfs_destroy_inode(struct inode *inode)
7802{
e6dcd2dc 7803 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7804 struct btrfs_root *root = BTRFS_I(inode)->root;
7805
b3d9b7a3 7806 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7807 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7808 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7809 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7810 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7811 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7812
a6dbd429
JB
7813 /*
7814 * This can happen where we create an inode, but somebody else also
7815 * created the same inode and we need to destroy the one we already
7816 * created.
7817 */
7818 if (!root)
7819 goto free;
7820
5a3f23d5
CM
7821 /*
7822 * Make sure we're properly removed from the ordered operation
7823 * lists.
7824 */
7825 smp_mb();
7826 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 7827 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 7828 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 7829 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
7830 }
7831
8a35d95f
JB
7832 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7833 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 7834 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 7835 btrfs_ino(inode));
8a35d95f 7836 atomic_dec(&root->orphan_inodes);
7b128766 7837 }
7b128766 7838
d397712b 7839 while (1) {
e6dcd2dc
CM
7840 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7841 if (!ordered)
7842 break;
7843 else {
c2cf52eb 7844 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 7845 ordered->file_offset, ordered->len);
e6dcd2dc
CM
7846 btrfs_remove_ordered_extent(inode, ordered);
7847 btrfs_put_ordered_extent(ordered);
7848 btrfs_put_ordered_extent(ordered);
7849 }
7850 }
5d4f98a2 7851 inode_tree_del(inode);
5b21f2ed 7852 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7853free:
fa0d7e3d 7854 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7855}
7856
45321ac5 7857int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7858{
7859 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7860
6379ef9f
NA
7861 if (root == NULL)
7862 return 1;
7863
fa6ac876 7864 /* the snap/subvol tree is on deleting */
69e9c6c6 7865 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 7866 return 1;
76dda93c 7867 else
45321ac5 7868 return generic_drop_inode(inode);
76dda93c
YZ
7869}
7870
0ee0fda0 7871static void init_once(void *foo)
39279cc3
CM
7872{
7873 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7874
7875 inode_init_once(&ei->vfs_inode);
7876}
7877
7878void btrfs_destroy_cachep(void)
7879{
8c0a8537
KS
7880 /*
7881 * Make sure all delayed rcu free inodes are flushed before we
7882 * destroy cache.
7883 */
7884 rcu_barrier();
39279cc3
CM
7885 if (btrfs_inode_cachep)
7886 kmem_cache_destroy(btrfs_inode_cachep);
7887 if (btrfs_trans_handle_cachep)
7888 kmem_cache_destroy(btrfs_trans_handle_cachep);
7889 if (btrfs_transaction_cachep)
7890 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7891 if (btrfs_path_cachep)
7892 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7893 if (btrfs_free_space_cachep)
7894 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7895 if (btrfs_delalloc_work_cachep)
7896 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7897}
7898
7899int btrfs_init_cachep(void)
7900{
837e1972 7901 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7902 sizeof(struct btrfs_inode), 0,
7903 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7904 if (!btrfs_inode_cachep)
7905 goto fail;
9601e3f6 7906
837e1972 7907 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7908 sizeof(struct btrfs_trans_handle), 0,
7909 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7910 if (!btrfs_trans_handle_cachep)
7911 goto fail;
9601e3f6 7912
837e1972 7913 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7914 sizeof(struct btrfs_transaction), 0,
7915 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7916 if (!btrfs_transaction_cachep)
7917 goto fail;
9601e3f6 7918
837e1972 7919 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7920 sizeof(struct btrfs_path), 0,
7921 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7922 if (!btrfs_path_cachep)
7923 goto fail;
9601e3f6 7924
837e1972 7925 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7926 sizeof(struct btrfs_free_space), 0,
7927 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7928 if (!btrfs_free_space_cachep)
7929 goto fail;
7930
8ccf6f19
MX
7931 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7932 sizeof(struct btrfs_delalloc_work), 0,
7933 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7934 NULL);
7935 if (!btrfs_delalloc_work_cachep)
7936 goto fail;
7937
39279cc3
CM
7938 return 0;
7939fail:
7940 btrfs_destroy_cachep();
7941 return -ENOMEM;
7942}
7943
7944static int btrfs_getattr(struct vfsmount *mnt,
7945 struct dentry *dentry, struct kstat *stat)
7946{
df0af1a5 7947 u64 delalloc_bytes;
39279cc3 7948 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7949 u32 blocksize = inode->i_sb->s_blocksize;
7950
39279cc3 7951 generic_fillattr(inode, stat);
0ee5dc67 7952 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7953 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
7954
7955 spin_lock(&BTRFS_I(inode)->lock);
7956 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7957 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 7958 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 7959 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7960 return 0;
7961}
7962
d397712b
CM
7963static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7964 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7965{
7966 struct btrfs_trans_handle *trans;
7967 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7968 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7969 struct inode *new_inode = new_dentry->d_inode;
7970 struct inode *old_inode = old_dentry->d_inode;
7971 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7972 u64 index = 0;
4df27c4d 7973 u64 root_objectid;
39279cc3 7974 int ret;
33345d01 7975 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7976
33345d01 7977 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7978 return -EPERM;
7979
4df27c4d 7980 /* we only allow rename subvolume link between subvolumes */
33345d01 7981 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7982 return -EXDEV;
7983
33345d01
LZ
7984 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7985 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7986 return -ENOTEMPTY;
5f39d397 7987
4df27c4d
YZ
7988 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7989 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7990 return -ENOTEMPTY;
9c52057c
CM
7991
7992
7993 /* check for collisions, even if the name isn't there */
4871c158 7994 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
7995 new_dentry->d_name.name,
7996 new_dentry->d_name.len);
7997
7998 if (ret) {
7999 if (ret == -EEXIST) {
8000 /* we shouldn't get
8001 * eexist without a new_inode */
8002 if (!new_inode) {
8003 WARN_ON(1);
8004 return ret;
8005 }
8006 } else {
8007 /* maybe -EOVERFLOW */
8008 return ret;
8009 }
8010 }
8011 ret = 0;
8012
5a3f23d5
CM
8013 /*
8014 * we're using rename to replace one file with another.
8015 * and the replacement file is large. Start IO on it now so
8016 * we don't add too much work to the end of the transaction
8017 */
4baf8c92 8018 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8019 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8020 filemap_flush(old_inode->i_mapping);
8021
76dda93c 8022 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8023 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8024 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8025 /*
8026 * We want to reserve the absolute worst case amount of items. So if
8027 * both inodes are subvols and we need to unlink them then that would
8028 * require 4 item modifications, but if they are both normal inodes it
8029 * would require 5 item modifications, so we'll assume their normal
8030 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8031 * should cover the worst case number of items we'll modify.
8032 */
6e137ed3 8033 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8034 if (IS_ERR(trans)) {
8035 ret = PTR_ERR(trans);
8036 goto out_notrans;
8037 }
76dda93c 8038
4df27c4d
YZ
8039 if (dest != root)
8040 btrfs_record_root_in_trans(trans, dest);
5f39d397 8041
a5719521
YZ
8042 ret = btrfs_set_inode_index(new_dir, &index);
8043 if (ret)
8044 goto out_fail;
5a3f23d5 8045
33345d01 8046 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8047 /* force full log commit if subvolume involved. */
8048 root->fs_info->last_trans_log_full_commit = trans->transid;
8049 } else {
a5719521
YZ
8050 ret = btrfs_insert_inode_ref(trans, dest,
8051 new_dentry->d_name.name,
8052 new_dentry->d_name.len,
33345d01
LZ
8053 old_ino,
8054 btrfs_ino(new_dir), index);
a5719521
YZ
8055 if (ret)
8056 goto out_fail;
4df27c4d
YZ
8057 /*
8058 * this is an ugly little race, but the rename is required
8059 * to make sure that if we crash, the inode is either at the
8060 * old name or the new one. pinning the log transaction lets
8061 * us make sure we don't allow a log commit to come in after
8062 * we unlink the name but before we add the new name back in.
8063 */
8064 btrfs_pin_log_trans(root);
8065 }
5a3f23d5
CM
8066 /*
8067 * make sure the inode gets flushed if it is replacing
8068 * something.
8069 */
33345d01 8070 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8071 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8072
0c4d2d95
JB
8073 inode_inc_iversion(old_dir);
8074 inode_inc_iversion(new_dir);
8075 inode_inc_iversion(old_inode);
39279cc3
CM
8076 old_dir->i_ctime = old_dir->i_mtime = ctime;
8077 new_dir->i_ctime = new_dir->i_mtime = ctime;
8078 old_inode->i_ctime = ctime;
5f39d397 8079
12fcfd22
CM
8080 if (old_dentry->d_parent != new_dentry->d_parent)
8081 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8082
33345d01 8083 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8084 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8085 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8086 old_dentry->d_name.name,
8087 old_dentry->d_name.len);
8088 } else {
92986796
AV
8089 ret = __btrfs_unlink_inode(trans, root, old_dir,
8090 old_dentry->d_inode,
8091 old_dentry->d_name.name,
8092 old_dentry->d_name.len);
8093 if (!ret)
8094 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8095 }
79787eaa
JM
8096 if (ret) {
8097 btrfs_abort_transaction(trans, root, ret);
8098 goto out_fail;
8099 }
39279cc3
CM
8100
8101 if (new_inode) {
0c4d2d95 8102 inode_inc_iversion(new_inode);
39279cc3 8103 new_inode->i_ctime = CURRENT_TIME;
33345d01 8104 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8105 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8106 root_objectid = BTRFS_I(new_inode)->location.objectid;
8107 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8108 root_objectid,
8109 new_dentry->d_name.name,
8110 new_dentry->d_name.len);
8111 BUG_ON(new_inode->i_nlink == 0);
8112 } else {
8113 ret = btrfs_unlink_inode(trans, dest, new_dir,
8114 new_dentry->d_inode,
8115 new_dentry->d_name.name,
8116 new_dentry->d_name.len);
8117 }
4ef31a45 8118 if (!ret && new_inode->i_nlink == 0)
e02119d5 8119 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8120 if (ret) {
8121 btrfs_abort_transaction(trans, root, ret);
8122 goto out_fail;
8123 }
39279cc3 8124 }
aec7477b 8125
4df27c4d
YZ
8126 ret = btrfs_add_link(trans, new_dir, old_inode,
8127 new_dentry->d_name.name,
a5719521 8128 new_dentry->d_name.len, 0, index);
79787eaa
JM
8129 if (ret) {
8130 btrfs_abort_transaction(trans, root, ret);
8131 goto out_fail;
8132 }
39279cc3 8133
33345d01 8134 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8135 struct dentry *parent = new_dentry->d_parent;
6a912213 8136 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8137 btrfs_end_log_trans(root);
8138 }
39279cc3 8139out_fail:
7ad85bb7 8140 btrfs_end_transaction(trans, root);
b44c59a8 8141out_notrans:
33345d01 8142 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8143 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8144
39279cc3
CM
8145 return ret;
8146}
8147
8ccf6f19
MX
8148static void btrfs_run_delalloc_work(struct btrfs_work *work)
8149{
8150 struct btrfs_delalloc_work *delalloc_work;
8151
8152 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8153 work);
8154 if (delalloc_work->wait)
8155 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8156 else
8157 filemap_flush(delalloc_work->inode->i_mapping);
8158
8159 if (delalloc_work->delay_iput)
8160 btrfs_add_delayed_iput(delalloc_work->inode);
8161 else
8162 iput(delalloc_work->inode);
8163 complete(&delalloc_work->completion);
8164}
8165
8166struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8167 int wait, int delay_iput)
8168{
8169 struct btrfs_delalloc_work *work;
8170
8171 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8172 if (!work)
8173 return NULL;
8174
8175 init_completion(&work->completion);
8176 INIT_LIST_HEAD(&work->list);
8177 work->inode = inode;
8178 work->wait = wait;
8179 work->delay_iput = delay_iput;
8180 work->work.func = btrfs_run_delalloc_work;
8181
8182 return work;
8183}
8184
8185void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8186{
8187 wait_for_completion(&work->completion);
8188 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8189}
8190
d352ac68
CM
8191/*
8192 * some fairly slow code that needs optimization. This walks the list
8193 * of all the inodes with pending delalloc and forces them to disk.
8194 */
eb73c1b7 8195static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8196{
ea8c2819 8197 struct btrfs_inode *binode;
5b21f2ed 8198 struct inode *inode;
8ccf6f19
MX
8199 struct btrfs_delalloc_work *work, *next;
8200 struct list_head works;
1eafa6c7 8201 struct list_head splice;
8ccf6f19 8202 int ret = 0;
ea8c2819 8203
8ccf6f19 8204 INIT_LIST_HEAD(&works);
1eafa6c7 8205 INIT_LIST_HEAD(&splice);
63607cc8 8206
eb73c1b7
MX
8207 spin_lock(&root->delalloc_lock);
8208 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8209 while (!list_empty(&splice)) {
8210 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8211 delalloc_inodes);
1eafa6c7 8212
eb73c1b7
MX
8213 list_move_tail(&binode->delalloc_inodes,
8214 &root->delalloc_inodes);
5b21f2ed 8215 inode = igrab(&binode->vfs_inode);
df0af1a5 8216 if (!inode) {
eb73c1b7 8217 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8218 continue;
df0af1a5 8219 }
eb73c1b7 8220 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8221
8222 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8223 if (unlikely(!work)) {
f4ab9ea7
JB
8224 if (delay_iput)
8225 btrfs_add_delayed_iput(inode);
8226 else
8227 iput(inode);
1eafa6c7
MX
8228 ret = -ENOMEM;
8229 goto out;
5b21f2ed 8230 }
1eafa6c7
MX
8231 list_add_tail(&work->list, &works);
8232 btrfs_queue_worker(&root->fs_info->flush_workers,
8233 &work->work);
8234
5b21f2ed 8235 cond_resched();
eb73c1b7 8236 spin_lock(&root->delalloc_lock);
ea8c2819 8237 }
eb73c1b7 8238 spin_unlock(&root->delalloc_lock);
8c8bee1d 8239
1eafa6c7
MX
8240 list_for_each_entry_safe(work, next, &works, list) {
8241 list_del_init(&work->list);
8242 btrfs_wait_and_free_delalloc_work(work);
8243 }
eb73c1b7
MX
8244 return 0;
8245out:
8246 list_for_each_entry_safe(work, next, &works, list) {
8247 list_del_init(&work->list);
8248 btrfs_wait_and_free_delalloc_work(work);
8249 }
8250
8251 if (!list_empty_careful(&splice)) {
8252 spin_lock(&root->delalloc_lock);
8253 list_splice_tail(&splice, &root->delalloc_inodes);
8254 spin_unlock(&root->delalloc_lock);
8255 }
8256 return ret;
8257}
1eafa6c7 8258
eb73c1b7
MX
8259int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8260{
8261 int ret;
1eafa6c7 8262
eb73c1b7
MX
8263 if (root->fs_info->sb->s_flags & MS_RDONLY)
8264 return -EROFS;
8265
8266 ret = __start_delalloc_inodes(root, delay_iput);
8267 /*
8268 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8269 * we have to make sure the IO is actually started and that
8270 * ordered extents get created before we return
8271 */
8272 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8273 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8274 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8275 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8276 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8277 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8278 }
8279 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8280 return ret;
8281}
8282
8283int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8284 int delay_iput)
8285{
8286 struct btrfs_root *root;
8287 struct list_head splice;
8288 int ret;
8289
8290 if (fs_info->sb->s_flags & MS_RDONLY)
8291 return -EROFS;
8292
8293 INIT_LIST_HEAD(&splice);
8294
8295 spin_lock(&fs_info->delalloc_root_lock);
8296 list_splice_init(&fs_info->delalloc_roots, &splice);
8297 while (!list_empty(&splice)) {
8298 root = list_first_entry(&splice, struct btrfs_root,
8299 delalloc_root);
8300 root = btrfs_grab_fs_root(root);
8301 BUG_ON(!root);
8302 list_move_tail(&root->delalloc_root,
8303 &fs_info->delalloc_roots);
8304 spin_unlock(&fs_info->delalloc_root_lock);
8305
8306 ret = __start_delalloc_inodes(root, delay_iput);
8307 btrfs_put_fs_root(root);
8308 if (ret)
8309 goto out;
8310
8311 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8312 }
eb73c1b7 8313 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8314
eb73c1b7
MX
8315 atomic_inc(&fs_info->async_submit_draining);
8316 while (atomic_read(&fs_info->nr_async_submits) ||
8317 atomic_read(&fs_info->async_delalloc_pages)) {
8318 wait_event(fs_info->async_submit_wait,
8319 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8320 atomic_read(&fs_info->async_delalloc_pages) == 0));
8321 }
8322 atomic_dec(&fs_info->async_submit_draining);
8323 return 0;
8324out:
1eafa6c7 8325 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8326 spin_lock(&fs_info->delalloc_root_lock);
8327 list_splice_tail(&splice, &fs_info->delalloc_roots);
8328 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8329 }
8ccf6f19 8330 return ret;
ea8c2819
CM
8331}
8332
39279cc3
CM
8333static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8334 const char *symname)
8335{
8336 struct btrfs_trans_handle *trans;
8337 struct btrfs_root *root = BTRFS_I(dir)->root;
8338 struct btrfs_path *path;
8339 struct btrfs_key key;
1832a6d5 8340 struct inode *inode = NULL;
39279cc3
CM
8341 int err;
8342 int drop_inode = 0;
8343 u64 objectid;
00e4e6b3 8344 u64 index = 0 ;
39279cc3
CM
8345 int name_len;
8346 int datasize;
5f39d397 8347 unsigned long ptr;
39279cc3 8348 struct btrfs_file_extent_item *ei;
5f39d397 8349 struct extent_buffer *leaf;
39279cc3 8350
f06becc4 8351 name_len = strlen(symname);
39279cc3
CM
8352 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8353 return -ENAMETOOLONG;
1832a6d5 8354
9ed74f2d
JB
8355 /*
8356 * 2 items for inode item and ref
8357 * 2 items for dir items
8358 * 1 item for xattr if selinux is on
8359 */
a22285a6
YZ
8360 trans = btrfs_start_transaction(root, 5);
8361 if (IS_ERR(trans))
8362 return PTR_ERR(trans);
1832a6d5 8363
581bb050
LZ
8364 err = btrfs_find_free_ino(root, &objectid);
8365 if (err)
8366 goto out_unlock;
8367
aec7477b 8368 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8369 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8370 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8371 if (IS_ERR(inode)) {
8372 err = PTR_ERR(inode);
39279cc3 8373 goto out_unlock;
7cf96da3 8374 }
39279cc3 8375
2a7dba39 8376 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8377 if (err) {
8378 drop_inode = 1;
8379 goto out_unlock;
8380 }
8381
ad19db71
CS
8382 /*
8383 * If the active LSM wants to access the inode during
8384 * d_instantiate it needs these. Smack checks to see
8385 * if the filesystem supports xattrs by looking at the
8386 * ops vector.
8387 */
8388 inode->i_fop = &btrfs_file_operations;
8389 inode->i_op = &btrfs_file_inode_operations;
8390
a1b075d2 8391 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8392 if (err)
8393 drop_inode = 1;
8394 else {
8395 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8396 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8397 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8398 }
39279cc3
CM
8399 if (drop_inode)
8400 goto out_unlock;
8401
8402 path = btrfs_alloc_path();
d8926bb3
MF
8403 if (!path) {
8404 err = -ENOMEM;
8405 drop_inode = 1;
8406 goto out_unlock;
8407 }
33345d01 8408 key.objectid = btrfs_ino(inode);
39279cc3 8409 key.offset = 0;
39279cc3
CM
8410 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8411 datasize = btrfs_file_extent_calc_inline_size(name_len);
8412 err = btrfs_insert_empty_item(trans, root, path, &key,
8413 datasize);
54aa1f4d
CM
8414 if (err) {
8415 drop_inode = 1;
b0839166 8416 btrfs_free_path(path);
54aa1f4d
CM
8417 goto out_unlock;
8418 }
5f39d397
CM
8419 leaf = path->nodes[0];
8420 ei = btrfs_item_ptr(leaf, path->slots[0],
8421 struct btrfs_file_extent_item);
8422 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8423 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8424 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8425 btrfs_set_file_extent_encryption(leaf, ei, 0);
8426 btrfs_set_file_extent_compression(leaf, ei, 0);
8427 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8428 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8429
39279cc3 8430 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8431 write_extent_buffer(leaf, symname, ptr, name_len);
8432 btrfs_mark_buffer_dirty(leaf);
39279cc3 8433 btrfs_free_path(path);
5f39d397 8434
39279cc3
CM
8435 inode->i_op = &btrfs_symlink_inode_operations;
8436 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8437 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8438 inode_set_bytes(inode, name_len);
f06becc4 8439 btrfs_i_size_write(inode, name_len);
54aa1f4d
CM
8440 err = btrfs_update_inode(trans, root, inode);
8441 if (err)
8442 drop_inode = 1;
39279cc3
CM
8443
8444out_unlock:
08c422c2
AV
8445 if (!err)
8446 d_instantiate(dentry, inode);
7ad85bb7 8447 btrfs_end_transaction(trans, root);
39279cc3
CM
8448 if (drop_inode) {
8449 inode_dec_link_count(inode);
8450 iput(inode);
8451 }
b53d3f5d 8452 btrfs_btree_balance_dirty(root);
39279cc3
CM
8453 return err;
8454}
16432985 8455
0af3d00b
JB
8456static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8457 u64 start, u64 num_bytes, u64 min_size,
8458 loff_t actual_len, u64 *alloc_hint,
8459 struct btrfs_trans_handle *trans)
d899e052 8460{
5dc562c5
JB
8461 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8462 struct extent_map *em;
d899e052
YZ
8463 struct btrfs_root *root = BTRFS_I(inode)->root;
8464 struct btrfs_key ins;
d899e052 8465 u64 cur_offset = start;
55a61d1d 8466 u64 i_size;
154ea289 8467 u64 cur_bytes;
d899e052 8468 int ret = 0;
0af3d00b 8469 bool own_trans = true;
d899e052 8470
0af3d00b
JB
8471 if (trans)
8472 own_trans = false;
d899e052 8473 while (num_bytes > 0) {
0af3d00b
JB
8474 if (own_trans) {
8475 trans = btrfs_start_transaction(root, 3);
8476 if (IS_ERR(trans)) {
8477 ret = PTR_ERR(trans);
8478 break;
8479 }
5a303d5d
YZ
8480 }
8481
154ea289
CM
8482 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8483 cur_bytes = max(cur_bytes, min_size);
00361589
JB
8484 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8485 *alloc_hint, &ins, 1);
5a303d5d 8486 if (ret) {
0af3d00b
JB
8487 if (own_trans)
8488 btrfs_end_transaction(trans, root);
a22285a6 8489 break;
d899e052 8490 }
5a303d5d 8491
d899e052
YZ
8492 ret = insert_reserved_file_extent(trans, inode,
8493 cur_offset, ins.objectid,
8494 ins.offset, ins.offset,
920bbbfb 8495 ins.offset, 0, 0, 0,
d899e052 8496 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
8497 if (ret) {
8498 btrfs_abort_transaction(trans, root, ret);
8499 if (own_trans)
8500 btrfs_end_transaction(trans, root);
8501 break;
8502 }
a1ed835e
CM
8503 btrfs_drop_extent_cache(inode, cur_offset,
8504 cur_offset + ins.offset -1, 0);
5a303d5d 8505
5dc562c5
JB
8506 em = alloc_extent_map();
8507 if (!em) {
8508 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8509 &BTRFS_I(inode)->runtime_flags);
8510 goto next;
8511 }
8512
8513 em->start = cur_offset;
8514 em->orig_start = cur_offset;
8515 em->len = ins.offset;
8516 em->block_start = ins.objectid;
8517 em->block_len = ins.offset;
b4939680 8518 em->orig_block_len = ins.offset;
cc95bef6 8519 em->ram_bytes = ins.offset;
5dc562c5
JB
8520 em->bdev = root->fs_info->fs_devices->latest_bdev;
8521 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8522 em->generation = trans->transid;
8523
8524 while (1) {
8525 write_lock(&em_tree->lock);
09a2a8f9 8526 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8527 write_unlock(&em_tree->lock);
8528 if (ret != -EEXIST)
8529 break;
8530 btrfs_drop_extent_cache(inode, cur_offset,
8531 cur_offset + ins.offset - 1,
8532 0);
8533 }
8534 free_extent_map(em);
8535next:
d899e052
YZ
8536 num_bytes -= ins.offset;
8537 cur_offset += ins.offset;
efa56464 8538 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8539
0c4d2d95 8540 inode_inc_iversion(inode);
d899e052 8541 inode->i_ctime = CURRENT_TIME;
6cbff00f 8542 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8543 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8544 (actual_len > inode->i_size) &&
8545 (cur_offset > inode->i_size)) {
d1ea6a61 8546 if (cur_offset > actual_len)
55a61d1d 8547 i_size = actual_len;
d1ea6a61 8548 else
55a61d1d
JB
8549 i_size = cur_offset;
8550 i_size_write(inode, i_size);
8551 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8552 }
8553
d899e052 8554 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8555
8556 if (ret) {
8557 btrfs_abort_transaction(trans, root, ret);
8558 if (own_trans)
8559 btrfs_end_transaction(trans, root);
8560 break;
8561 }
d899e052 8562
0af3d00b
JB
8563 if (own_trans)
8564 btrfs_end_transaction(trans, root);
5a303d5d 8565 }
d899e052
YZ
8566 return ret;
8567}
8568
0af3d00b
JB
8569int btrfs_prealloc_file_range(struct inode *inode, int mode,
8570 u64 start, u64 num_bytes, u64 min_size,
8571 loff_t actual_len, u64 *alloc_hint)
8572{
8573 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8574 min_size, actual_len, alloc_hint,
8575 NULL);
8576}
8577
8578int btrfs_prealloc_file_range_trans(struct inode *inode,
8579 struct btrfs_trans_handle *trans, int mode,
8580 u64 start, u64 num_bytes, u64 min_size,
8581 loff_t actual_len, u64 *alloc_hint)
8582{
8583 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8584 min_size, actual_len, alloc_hint, trans);
8585}
8586
e6dcd2dc
CM
8587static int btrfs_set_page_dirty(struct page *page)
8588{
e6dcd2dc
CM
8589 return __set_page_dirty_nobuffers(page);
8590}
8591
10556cb2 8592static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8593{
b83cc969 8594 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8595 umode_t mode = inode->i_mode;
b83cc969 8596
cb6db4e5
JM
8597 if (mask & MAY_WRITE &&
8598 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8599 if (btrfs_root_readonly(root))
8600 return -EROFS;
8601 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8602 return -EACCES;
8603 }
2830ba7f 8604 return generic_permission(inode, mask);
fdebe2bd 8605}
39279cc3 8606
6e1d5dcc 8607static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8608 .getattr = btrfs_getattr,
39279cc3
CM
8609 .lookup = btrfs_lookup,
8610 .create = btrfs_create,
8611 .unlink = btrfs_unlink,
8612 .link = btrfs_link,
8613 .mkdir = btrfs_mkdir,
8614 .rmdir = btrfs_rmdir,
8615 .rename = btrfs_rename,
8616 .symlink = btrfs_symlink,
8617 .setattr = btrfs_setattr,
618e21d5 8618 .mknod = btrfs_mknod,
95819c05
CH
8619 .setxattr = btrfs_setxattr,
8620 .getxattr = btrfs_getxattr,
5103e947 8621 .listxattr = btrfs_listxattr,
95819c05 8622 .removexattr = btrfs_removexattr,
fdebe2bd 8623 .permission = btrfs_permission,
4e34e719 8624 .get_acl = btrfs_get_acl,
93fd63c2 8625 .update_time = btrfs_update_time,
39279cc3 8626};
6e1d5dcc 8627static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8628 .lookup = btrfs_lookup,
fdebe2bd 8629 .permission = btrfs_permission,
4e34e719 8630 .get_acl = btrfs_get_acl,
93fd63c2 8631 .update_time = btrfs_update_time,
39279cc3 8632};
76dda93c 8633
828c0950 8634static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8635 .llseek = generic_file_llseek,
8636 .read = generic_read_dir,
9cdda8d3 8637 .iterate = btrfs_real_readdir,
34287aa3 8638 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8639#ifdef CONFIG_COMPAT
34287aa3 8640 .compat_ioctl = btrfs_ioctl,
39279cc3 8641#endif
6bf13c0c 8642 .release = btrfs_release_file,
e02119d5 8643 .fsync = btrfs_sync_file,
39279cc3
CM
8644};
8645
d1310b2e 8646static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8647 .fill_delalloc = run_delalloc_range,
065631f6 8648 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8649 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8650 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8651 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8652 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8653 .set_bit_hook = btrfs_set_bit_hook,
8654 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8655 .merge_extent_hook = btrfs_merge_extent_hook,
8656 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8657};
8658
35054394
CM
8659/*
8660 * btrfs doesn't support the bmap operation because swapfiles
8661 * use bmap to make a mapping of extents in the file. They assume
8662 * these extents won't change over the life of the file and they
8663 * use the bmap result to do IO directly to the drive.
8664 *
8665 * the btrfs bmap call would return logical addresses that aren't
8666 * suitable for IO and they also will change frequently as COW
8667 * operations happen. So, swapfile + btrfs == corruption.
8668 *
8669 * For now we're avoiding this by dropping bmap.
8670 */
7f09410b 8671static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8672 .readpage = btrfs_readpage,
8673 .writepage = btrfs_writepage,
b293f02e 8674 .writepages = btrfs_writepages,
3ab2fb5a 8675 .readpages = btrfs_readpages,
16432985 8676 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8677 .invalidatepage = btrfs_invalidatepage,
8678 .releasepage = btrfs_releasepage,
e6dcd2dc 8679 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8680 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8681};
8682
7f09410b 8683static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8684 .readpage = btrfs_readpage,
8685 .writepage = btrfs_writepage,
2bf5a725
CM
8686 .invalidatepage = btrfs_invalidatepage,
8687 .releasepage = btrfs_releasepage,
39279cc3
CM
8688};
8689
6e1d5dcc 8690static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8691 .getattr = btrfs_getattr,
8692 .setattr = btrfs_setattr,
95819c05
CH
8693 .setxattr = btrfs_setxattr,
8694 .getxattr = btrfs_getxattr,
5103e947 8695 .listxattr = btrfs_listxattr,
95819c05 8696 .removexattr = btrfs_removexattr,
fdebe2bd 8697 .permission = btrfs_permission,
1506fcc8 8698 .fiemap = btrfs_fiemap,
4e34e719 8699 .get_acl = btrfs_get_acl,
e41f941a 8700 .update_time = btrfs_update_time,
39279cc3 8701};
6e1d5dcc 8702static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8703 .getattr = btrfs_getattr,
8704 .setattr = btrfs_setattr,
fdebe2bd 8705 .permission = btrfs_permission,
95819c05
CH
8706 .setxattr = btrfs_setxattr,
8707 .getxattr = btrfs_getxattr,
33268eaf 8708 .listxattr = btrfs_listxattr,
95819c05 8709 .removexattr = btrfs_removexattr,
4e34e719 8710 .get_acl = btrfs_get_acl,
e41f941a 8711 .update_time = btrfs_update_time,
618e21d5 8712};
6e1d5dcc 8713static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8714 .readlink = generic_readlink,
8715 .follow_link = page_follow_link_light,
8716 .put_link = page_put_link,
f209561a 8717 .getattr = btrfs_getattr,
22c44fe6 8718 .setattr = btrfs_setattr,
fdebe2bd 8719 .permission = btrfs_permission,
0279b4cd
JO
8720 .setxattr = btrfs_setxattr,
8721 .getxattr = btrfs_getxattr,
8722 .listxattr = btrfs_listxattr,
8723 .removexattr = btrfs_removexattr,
4e34e719 8724 .get_acl = btrfs_get_acl,
e41f941a 8725 .update_time = btrfs_update_time,
39279cc3 8726};
76dda93c 8727
82d339d9 8728const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8729 .d_delete = btrfs_dentry_delete,
b4aff1f8 8730 .d_release = btrfs_dentry_release,
76dda93c 8731};