Btrfs: try not to ENOSPC on log replay
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
39279cc3
CM
62
63struct btrfs_iget_args {
90d3e592 64 struct btrfs_key *location;
39279cc3
CM
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
40f76580 128static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 129 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
fe3f566c 132 int compress_type,
c8b97818
CM
133 struct page **compressed_pages)
134{
c8b97818
CM
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
c8b97818 143 unsigned long offset;
c8b97818 144
fe3f566c 145 if (compressed_size && compressed_pages)
c8b97818 146 cur_size = compressed_size;
c8b97818 147
1acae57b 148 inode_add_bytes(inode, size);
c8b97818 149
1acae57b
FDBM
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
c8b97818 153
1acae57b
FDBM
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
962a298f 156 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 157
1acae57b
FDBM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
c8b97818
CM
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
1acae57b 206 btrfs_release_path(path);
c8b97818 207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818 221fail:
c8b97818
CM
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
00361589
JB
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
c8b97818 236{
00361589 237 struct btrfs_trans_handle *trans;
c8b97818
CM
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
fda2832f 241 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
242 u64 data_len = inline_len;
243 int ret;
1acae57b
FDBM
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
c8b97818
CM
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
354877be
WS
252 actual_end > PAGE_CACHE_SIZE ||
253 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
1acae57b
FDBM
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
00361589 265 trans = btrfs_join_transaction(root);
1acae57b
FDBM
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
00361589 268 return PTR_ERR(trans);
1acae57b 269 }
00361589
JB
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
1acae57b
FDBM
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
00361589
JB
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
c8b97818
CM
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
c8b97818 291 inline_len, compressed_size,
fe3f566c 292 compress_type, compressed_pages);
2adcac1a 293 if (ret && ret != -ENOSPC) {
79787eaa 294 btrfs_abort_transaction(trans, root, ret);
00361589 295 goto out;
2adcac1a 296 } else if (ret == -ENOSPC) {
00361589
JB
297 ret = 1;
298 goto out;
79787eaa 299 }
2adcac1a 300
bdc20e67 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 304out:
1acae57b 305 btrfs_free_path(path);
00361589
JB
306 btrfs_end_transaction(trans, root);
307 return ret;
c8b97818
CM
308}
309
771ed689
CM
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
261507a0 316 int compress_type;
771ed689
CM
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
261507a0
LZ
334 unsigned long nr_pages,
335 int compress_type)
771ed689
CM
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 340 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
261507a0 346 async_extent->compress_type = compress_type;
771ed689
CM
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
f79707b0
WS
351static inline int inode_need_compress(struct inode *inode)
352{
353 struct btrfs_root *root = BTRFS_I(inode)->root;
354
355 /* force compress */
356 if (btrfs_test_opt(root, FORCE_COMPRESS))
357 return 1;
358 /* bad compression ratios */
359 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360 return 0;
361 if (btrfs_test_opt(root, COMPRESS) ||
362 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363 BTRFS_I(inode)->force_compress)
364 return 1;
365 return 0;
366}
367
d352ac68 368/*
771ed689
CM
369 * we create compressed extents in two phases. The first
370 * phase compresses a range of pages that have already been
371 * locked (both pages and state bits are locked).
c8b97818 372 *
771ed689
CM
373 * This is done inside an ordered work queue, and the compression
374 * is spread across many cpus. The actual IO submission is step
375 * two, and the ordered work queue takes care of making sure that
376 * happens in the same order things were put onto the queue by
377 * writepages and friends.
c8b97818 378 *
771ed689
CM
379 * If this code finds it can't get good compression, it puts an
380 * entry onto the work queue to write the uncompressed bytes. This
381 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
382 * are written in the same order that the flusher thread sent them
383 * down.
d352ac68 384 */
771ed689
CM
385static noinline int compress_file_range(struct inode *inode,
386 struct page *locked_page,
387 u64 start, u64 end,
388 struct async_cow *async_cow,
389 int *num_added)
b888db2b
CM
390{
391 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 392 u64 num_bytes;
db94535d 393 u64 blocksize = root->sectorsize;
c8b97818 394 u64 actual_end;
42dc7bab 395 u64 isize = i_size_read(inode);
e6dcd2dc 396 int ret = 0;
c8b97818
CM
397 struct page **pages = NULL;
398 unsigned long nr_pages;
399 unsigned long nr_pages_ret = 0;
400 unsigned long total_compressed = 0;
401 unsigned long total_in = 0;
402 unsigned long max_compressed = 128 * 1024;
771ed689 403 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
404 int i;
405 int will_compress;
261507a0 406 int compress_type = root->fs_info->compress_type;
4adaa611 407 int redirty = 0;
b888db2b 408
4cb13e5d
LB
409 /* if this is a small write inside eof, kick off a defrag */
410 if ((end - start + 1) < 16 * 1024 &&
411 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
412 btrfs_add_inode_defrag(NULL, inode);
413
68bb462d
WS
414 /*
415 * skip compression for a small file range(<=blocksize) that
416 * isn't an inline extent, since it dosen't save disk space at all.
417 */
418 if ((end - start + 1) <= blocksize &&
419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420 goto cleanup_and_bail_uncompressed;
421
42dc7bab 422 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
423again:
424 will_compress = 0;
425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 427
f03d9301
CM
428 /*
429 * we don't want to send crud past the end of i_size through
430 * compression, that's just a waste of CPU time. So, if the
431 * end of the file is before the start of our current
432 * requested range of bytes, we bail out to the uncompressed
433 * cleanup code that can deal with all of this.
434 *
435 * It isn't really the fastest way to fix things, but this is a
436 * very uncommon corner.
437 */
438 if (actual_end <= start)
439 goto cleanup_and_bail_uncompressed;
440
c8b97818
CM
441 total_compressed = actual_end - start;
442
443 /* we want to make sure that amount of ram required to uncompress
444 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
445 * of a compressed extent to 128k. This is a crucial number
446 * because it also controls how easily we can spread reads across
447 * cpus for decompression.
448 *
449 * We also want to make sure the amount of IO required to do
450 * a random read is reasonably small, so we limit the size of
451 * a compressed extent to 128k.
c8b97818
CM
452 */
453 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 454 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 455 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
456 total_in = 0;
457 ret = 0;
db94535d 458
771ed689
CM
459 /*
460 * we do compression for mount -o compress and when the
461 * inode has not been flagged as nocompress. This flag can
462 * change at any time if we discover bad compression ratios.
c8b97818 463 */
f79707b0 464 if (inode_need_compress(inode)) {
c8b97818 465 WARN_ON(pages);
cfbc246e 466 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
467 if (!pages) {
468 /* just bail out to the uncompressed code */
469 goto cont;
470 }
c8b97818 471
261507a0
LZ
472 if (BTRFS_I(inode)->force_compress)
473 compress_type = BTRFS_I(inode)->force_compress;
474
4adaa611
CM
475 /*
476 * we need to call clear_page_dirty_for_io on each
477 * page in the range. Otherwise applications with the file
478 * mmap'd can wander in and change the page contents while
479 * we are compressing them.
480 *
481 * If the compression fails for any reason, we set the pages
482 * dirty again later on.
483 */
484 extent_range_clear_dirty_for_io(inode, start, end);
485 redirty = 1;
261507a0
LZ
486 ret = btrfs_compress_pages(compress_type,
487 inode->i_mapping, start,
488 total_compressed, pages,
489 nr_pages, &nr_pages_ret,
490 &total_in,
491 &total_compressed,
492 max_compressed);
c8b97818
CM
493
494 if (!ret) {
495 unsigned long offset = total_compressed &
496 (PAGE_CACHE_SIZE - 1);
497 struct page *page = pages[nr_pages_ret - 1];
498 char *kaddr;
499
500 /* zero the tail end of the last page, we might be
501 * sending it down to disk
502 */
503 if (offset) {
7ac687d9 504 kaddr = kmap_atomic(page);
c8b97818
CM
505 memset(kaddr + offset, 0,
506 PAGE_CACHE_SIZE - offset);
7ac687d9 507 kunmap_atomic(kaddr);
c8b97818
CM
508 }
509 will_compress = 1;
510 }
511 }
560f7d75 512cont:
c8b97818
CM
513 if (start == 0) {
514 /* lets try to make an inline extent */
771ed689 515 if (ret || total_in < (actual_end - start)) {
c8b97818 516 /* we didn't compress the entire range, try
771ed689 517 * to make an uncompressed inline extent.
c8b97818 518 */
00361589
JB
519 ret = cow_file_range_inline(root, inode, start, end,
520 0, 0, NULL);
c8b97818 521 } else {
771ed689 522 /* try making a compressed inline extent */
00361589 523 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
524 total_compressed,
525 compress_type, pages);
c8b97818 526 }
79787eaa 527 if (ret <= 0) {
151a41bc
JB
528 unsigned long clear_flags = EXTENT_DELALLOC |
529 EXTENT_DEFRAG;
530 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
531
771ed689 532 /*
79787eaa
JM
533 * inline extent creation worked or returned error,
534 * we don't need to create any more async work items.
535 * Unlock and free up our temp pages.
771ed689 536 */
c2790a2e 537 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 538 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
539 PAGE_CLEAR_DIRTY |
540 PAGE_SET_WRITEBACK |
541 PAGE_END_WRITEBACK);
c8b97818
CM
542 goto free_pages_out;
543 }
544 }
545
546 if (will_compress) {
547 /*
548 * we aren't doing an inline extent round the compressed size
549 * up to a block size boundary so the allocator does sane
550 * things
551 */
fda2832f 552 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
553
554 /*
555 * one last check to make sure the compression is really a
556 * win, compare the page count read with the blocks on disk
557 */
fda2832f 558 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
559 if (total_compressed >= total_in) {
560 will_compress = 0;
561 } else {
c8b97818
CM
562 num_bytes = total_in;
563 }
564 }
565 if (!will_compress && pages) {
566 /*
567 * the compression code ran but failed to make things smaller,
568 * free any pages it allocated and our page pointer array
569 */
570 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 571 WARN_ON(pages[i]->mapping);
c8b97818
CM
572 page_cache_release(pages[i]);
573 }
574 kfree(pages);
575 pages = NULL;
576 total_compressed = 0;
577 nr_pages_ret = 0;
578
579 /* flag the file so we don't compress in the future */
1e701a32
CM
580 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
581 !(BTRFS_I(inode)->force_compress)) {
a555f810 582 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 583 }
c8b97818 584 }
771ed689
CM
585 if (will_compress) {
586 *num_added += 1;
c8b97818 587
771ed689
CM
588 /* the async work queues will take care of doing actual
589 * allocation on disk for these compressed pages,
590 * and will submit them to the elevator.
591 */
592 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
593 total_compressed, pages, nr_pages_ret,
594 compress_type);
179e29e4 595
24ae6365 596 if (start + num_bytes < end) {
771ed689
CM
597 start += num_bytes;
598 pages = NULL;
599 cond_resched();
600 goto again;
601 }
602 } else {
f03d9301 603cleanup_and_bail_uncompressed:
771ed689
CM
604 /*
605 * No compression, but we still need to write the pages in
606 * the file we've been given so far. redirty the locked
607 * page if it corresponds to our extent and set things up
608 * for the async work queue to run cow_file_range to do
609 * the normal delalloc dance
610 */
611 if (page_offset(locked_page) >= start &&
612 page_offset(locked_page) <= end) {
613 __set_page_dirty_nobuffers(locked_page);
614 /* unlocked later on in the async handlers */
615 }
4adaa611
CM
616 if (redirty)
617 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
618 add_async_extent(async_cow, start, end - start + 1,
619 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
620 *num_added += 1;
621 }
3b951516 622
771ed689 623out:
79787eaa 624 return ret;
771ed689
CM
625
626free_pages_out:
627 for (i = 0; i < nr_pages_ret; i++) {
628 WARN_ON(pages[i]->mapping);
629 page_cache_release(pages[i]);
630 }
d397712b 631 kfree(pages);
771ed689
CM
632
633 goto out;
634}
635
636/*
637 * phase two of compressed writeback. This is the ordered portion
638 * of the code, which only gets called in the order the work was
639 * queued. We walk all the async extents created by compress_file_range
640 * and send them down to the disk.
641 */
642static noinline int submit_compressed_extents(struct inode *inode,
643 struct async_cow *async_cow)
644{
645 struct async_extent *async_extent;
646 u64 alloc_hint = 0;
771ed689
CM
647 struct btrfs_key ins;
648 struct extent_map *em;
649 struct btrfs_root *root = BTRFS_I(inode)->root;
650 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
651 struct extent_io_tree *io_tree;
f5a84ee3 652 int ret = 0;
771ed689
CM
653
654 if (list_empty(&async_cow->extents))
655 return 0;
656
3e04e7f1 657again:
d397712b 658 while (!list_empty(&async_cow->extents)) {
771ed689
CM
659 async_extent = list_entry(async_cow->extents.next,
660 struct async_extent, list);
661 list_del(&async_extent->list);
c8b97818 662
771ed689
CM
663 io_tree = &BTRFS_I(inode)->io_tree;
664
f5a84ee3 665retry:
771ed689
CM
666 /* did the compression code fall back to uncompressed IO? */
667 if (!async_extent->pages) {
668 int page_started = 0;
669 unsigned long nr_written = 0;
670
671 lock_extent(io_tree, async_extent->start,
2ac55d41 672 async_extent->start +
d0082371 673 async_extent->ram_size - 1);
771ed689
CM
674
675 /* allocate blocks */
f5a84ee3
JB
676 ret = cow_file_range(inode, async_cow->locked_page,
677 async_extent->start,
678 async_extent->start +
679 async_extent->ram_size - 1,
680 &page_started, &nr_written, 0);
771ed689 681
79787eaa
JM
682 /* JDM XXX */
683
771ed689
CM
684 /*
685 * if page_started, cow_file_range inserted an
686 * inline extent and took care of all the unlocking
687 * and IO for us. Otherwise, we need to submit
688 * all those pages down to the drive.
689 */
f5a84ee3 690 if (!page_started && !ret)
771ed689
CM
691 extent_write_locked_range(io_tree,
692 inode, async_extent->start,
d397712b 693 async_extent->start +
771ed689
CM
694 async_extent->ram_size - 1,
695 btrfs_get_extent,
696 WB_SYNC_ALL);
3e04e7f1
JB
697 else if (ret)
698 unlock_page(async_cow->locked_page);
771ed689
CM
699 kfree(async_extent);
700 cond_resched();
701 continue;
702 }
703
704 lock_extent(io_tree, async_extent->start,
d0082371 705 async_extent->start + async_extent->ram_size - 1);
771ed689 706
00361589 707 ret = btrfs_reserve_extent(root,
771ed689
CM
708 async_extent->compressed_size,
709 async_extent->compressed_size,
e570fd27 710 0, alloc_hint, &ins, 1, 1);
f5a84ee3
JB
711 if (ret) {
712 int i;
3e04e7f1 713
f5a84ee3
JB
714 for (i = 0; i < async_extent->nr_pages; i++) {
715 WARN_ON(async_extent->pages[i]->mapping);
716 page_cache_release(async_extent->pages[i]);
717 }
718 kfree(async_extent->pages);
719 async_extent->nr_pages = 0;
720 async_extent->pages = NULL;
3e04e7f1 721
fdf8e2ea
JB
722 if (ret == -ENOSPC) {
723 unlock_extent(io_tree, async_extent->start,
724 async_extent->start +
725 async_extent->ram_size - 1);
ce62003f
LB
726
727 /*
728 * we need to redirty the pages if we decide to
729 * fallback to uncompressed IO, otherwise we
730 * will not submit these pages down to lower
731 * layers.
732 */
733 extent_range_redirty_for_io(inode,
734 async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1);
737
79787eaa 738 goto retry;
fdf8e2ea 739 }
3e04e7f1 740 goto out_free;
f5a84ee3
JB
741 }
742
c2167754
YZ
743 /*
744 * here we're doing allocation and writeback of the
745 * compressed pages
746 */
747 btrfs_drop_extent_cache(inode, async_extent->start,
748 async_extent->start +
749 async_extent->ram_size - 1, 0);
750
172ddd60 751 em = alloc_extent_map();
b9aa55be
LB
752 if (!em) {
753 ret = -ENOMEM;
3e04e7f1 754 goto out_free_reserve;
b9aa55be 755 }
771ed689
CM
756 em->start = async_extent->start;
757 em->len = async_extent->ram_size;
445a6944 758 em->orig_start = em->start;
2ab28f32
JB
759 em->mod_start = em->start;
760 em->mod_len = em->len;
c8b97818 761
771ed689
CM
762 em->block_start = ins.objectid;
763 em->block_len = ins.offset;
b4939680 764 em->orig_block_len = ins.offset;
cc95bef6 765 em->ram_bytes = async_extent->ram_size;
771ed689 766 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 767 em->compress_type = async_extent->compress_type;
771ed689
CM
768 set_bit(EXTENT_FLAG_PINNED, &em->flags);
769 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 770 em->generation = -1;
771ed689 771
d397712b 772 while (1) {
890871be 773 write_lock(&em_tree->lock);
09a2a8f9 774 ret = add_extent_mapping(em_tree, em, 1);
890871be 775 write_unlock(&em_tree->lock);
771ed689
CM
776 if (ret != -EEXIST) {
777 free_extent_map(em);
778 break;
779 }
780 btrfs_drop_extent_cache(inode, async_extent->start,
781 async_extent->start +
782 async_extent->ram_size - 1, 0);
783 }
784
3e04e7f1
JB
785 if (ret)
786 goto out_free_reserve;
787
261507a0
LZ
788 ret = btrfs_add_ordered_extent_compress(inode,
789 async_extent->start,
790 ins.objectid,
791 async_extent->ram_size,
792 ins.offset,
793 BTRFS_ORDERED_COMPRESSED,
794 async_extent->compress_type);
d9f85963
FM
795 if (ret) {
796 btrfs_drop_extent_cache(inode, async_extent->start,
797 async_extent->start +
798 async_extent->ram_size - 1, 0);
3e04e7f1 799 goto out_free_reserve;
d9f85963 800 }
771ed689 801
771ed689
CM
802 /*
803 * clear dirty, set writeback and unlock the pages.
804 */
c2790a2e 805 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
806 async_extent->start +
807 async_extent->ram_size - 1,
151a41bc
JB
808 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
809 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 810 PAGE_SET_WRITEBACK);
771ed689 811 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
812 async_extent->start,
813 async_extent->ram_size,
814 ins.objectid,
815 ins.offset, async_extent->pages,
816 async_extent->nr_pages);
771ed689
CM
817 alloc_hint = ins.objectid + ins.offset;
818 kfree(async_extent);
3e04e7f1
JB
819 if (ret)
820 goto out;
771ed689
CM
821 cond_resched();
822 }
79787eaa
JM
823 ret = 0;
824out:
825 return ret;
3e04e7f1 826out_free_reserve:
e570fd27 827 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 828out_free:
c2790a2e 829 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
830 async_extent->start +
831 async_extent->ram_size - 1,
c2790a2e 832 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
833 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
834 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
835 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 836 kfree(async_extent);
3e04e7f1 837 goto again;
771ed689
CM
838}
839
4b46fce2
JB
840static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
841 u64 num_bytes)
842{
843 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
844 struct extent_map *em;
845 u64 alloc_hint = 0;
846
847 read_lock(&em_tree->lock);
848 em = search_extent_mapping(em_tree, start, num_bytes);
849 if (em) {
850 /*
851 * if block start isn't an actual block number then find the
852 * first block in this inode and use that as a hint. If that
853 * block is also bogus then just don't worry about it.
854 */
855 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
856 free_extent_map(em);
857 em = search_extent_mapping(em_tree, 0, 0);
858 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
859 alloc_hint = em->block_start;
860 if (em)
861 free_extent_map(em);
862 } else {
863 alloc_hint = em->block_start;
864 free_extent_map(em);
865 }
866 }
867 read_unlock(&em_tree->lock);
868
869 return alloc_hint;
870}
871
771ed689
CM
872/*
873 * when extent_io.c finds a delayed allocation range in the file,
874 * the call backs end up in this code. The basic idea is to
875 * allocate extents on disk for the range, and create ordered data structs
876 * in ram to track those extents.
877 *
878 * locked_page is the page that writepage had locked already. We use
879 * it to make sure we don't do extra locks or unlocks.
880 *
881 * *page_started is set to one if we unlock locked_page and do everything
882 * required to start IO on it. It may be clean and already done with
883 * IO when we return.
884 */
00361589
JB
885static noinline int cow_file_range(struct inode *inode,
886 struct page *locked_page,
887 u64 start, u64 end, int *page_started,
888 unsigned long *nr_written,
889 int unlock)
771ed689 890{
00361589 891 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
892 u64 alloc_hint = 0;
893 u64 num_bytes;
894 unsigned long ram_size;
895 u64 disk_num_bytes;
896 u64 cur_alloc_size;
897 u64 blocksize = root->sectorsize;
771ed689
CM
898 struct btrfs_key ins;
899 struct extent_map *em;
900 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
901 int ret = 0;
902
02ecd2c2
JB
903 if (btrfs_is_free_space_inode(inode)) {
904 WARN_ON_ONCE(1);
29bce2f3
JB
905 ret = -EINVAL;
906 goto out_unlock;
02ecd2c2 907 }
771ed689 908
fda2832f 909 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
910 num_bytes = max(blocksize, num_bytes);
911 disk_num_bytes = num_bytes;
771ed689 912
4cb5300b 913 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
914 if (num_bytes < 64 * 1024 &&
915 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 916 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 917
771ed689
CM
918 if (start == 0) {
919 /* lets try to make an inline extent */
00361589
JB
920 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
921 NULL);
771ed689 922 if (ret == 0) {
c2790a2e
JB
923 extent_clear_unlock_delalloc(inode, start, end, NULL,
924 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 925 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
926 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
927 PAGE_END_WRITEBACK);
c2167754 928
771ed689
CM
929 *nr_written = *nr_written +
930 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
931 *page_started = 1;
771ed689 932 goto out;
79787eaa 933 } else if (ret < 0) {
79787eaa 934 goto out_unlock;
771ed689
CM
935 }
936 }
937
938 BUG_ON(disk_num_bytes >
6c41761f 939 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 940
4b46fce2 941 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
942 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
943
d397712b 944 while (disk_num_bytes > 0) {
a791e35e
CM
945 unsigned long op;
946
287a0ab9 947 cur_alloc_size = disk_num_bytes;
00361589 948 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 949 root->sectorsize, 0, alloc_hint,
e570fd27 950 &ins, 1, 1);
00361589 951 if (ret < 0)
79787eaa 952 goto out_unlock;
d397712b 953
172ddd60 954 em = alloc_extent_map();
b9aa55be
LB
955 if (!em) {
956 ret = -ENOMEM;
ace68bac 957 goto out_reserve;
b9aa55be 958 }
e6dcd2dc 959 em->start = start;
445a6944 960 em->orig_start = em->start;
771ed689
CM
961 ram_size = ins.offset;
962 em->len = ins.offset;
2ab28f32
JB
963 em->mod_start = em->start;
964 em->mod_len = em->len;
c8b97818 965
e6dcd2dc 966 em->block_start = ins.objectid;
c8b97818 967 em->block_len = ins.offset;
b4939680 968 em->orig_block_len = ins.offset;
cc95bef6 969 em->ram_bytes = ram_size;
e6dcd2dc 970 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 971 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 972 em->generation = -1;
c8b97818 973
d397712b 974 while (1) {
890871be 975 write_lock(&em_tree->lock);
09a2a8f9 976 ret = add_extent_mapping(em_tree, em, 1);
890871be 977 write_unlock(&em_tree->lock);
e6dcd2dc
CM
978 if (ret != -EEXIST) {
979 free_extent_map(em);
980 break;
981 }
982 btrfs_drop_extent_cache(inode, start,
c8b97818 983 start + ram_size - 1, 0);
e6dcd2dc 984 }
ace68bac
LB
985 if (ret)
986 goto out_reserve;
e6dcd2dc 987
98d20f67 988 cur_alloc_size = ins.offset;
e6dcd2dc 989 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 990 ram_size, cur_alloc_size, 0);
ace68bac 991 if (ret)
d9f85963 992 goto out_drop_extent_cache;
c8b97818 993
17d217fe
YZ
994 if (root->root_key.objectid ==
995 BTRFS_DATA_RELOC_TREE_OBJECTID) {
996 ret = btrfs_reloc_clone_csums(inode, start,
997 cur_alloc_size);
00361589 998 if (ret)
d9f85963 999 goto out_drop_extent_cache;
17d217fe
YZ
1000 }
1001
d397712b 1002 if (disk_num_bytes < cur_alloc_size)
3b951516 1003 break;
d397712b 1004
c8b97818
CM
1005 /* we're not doing compressed IO, don't unlock the first
1006 * page (which the caller expects to stay locked), don't
1007 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1008 *
1009 * Do set the Private2 bit so we know this page was properly
1010 * setup for writepage
c8b97818 1011 */
c2790a2e
JB
1012 op = unlock ? PAGE_UNLOCK : 0;
1013 op |= PAGE_SET_PRIVATE2;
a791e35e 1014
c2790a2e
JB
1015 extent_clear_unlock_delalloc(inode, start,
1016 start + ram_size - 1, locked_page,
1017 EXTENT_LOCKED | EXTENT_DELALLOC,
1018 op);
c8b97818 1019 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1020 num_bytes -= cur_alloc_size;
1021 alloc_hint = ins.objectid + ins.offset;
1022 start += cur_alloc_size;
b888db2b 1023 }
79787eaa 1024out:
be20aa9d 1025 return ret;
b7d5b0a8 1026
d9f85963
FM
1027out_drop_extent_cache:
1028 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1029out_reserve:
e570fd27 1030 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1031out_unlock:
c2790a2e 1032 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1033 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1034 EXTENT_DELALLOC | EXTENT_DEFRAG,
1035 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1036 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1037 goto out;
771ed689 1038}
c8b97818 1039
771ed689
CM
1040/*
1041 * work queue call back to started compression on a file and pages
1042 */
1043static noinline void async_cow_start(struct btrfs_work *work)
1044{
1045 struct async_cow *async_cow;
1046 int num_added = 0;
1047 async_cow = container_of(work, struct async_cow, work);
1048
1049 compress_file_range(async_cow->inode, async_cow->locked_page,
1050 async_cow->start, async_cow->end, async_cow,
1051 &num_added);
8180ef88 1052 if (num_added == 0) {
cb77fcd8 1053 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1054 async_cow->inode = NULL;
8180ef88 1055 }
771ed689
CM
1056}
1057
1058/*
1059 * work queue call back to submit previously compressed pages
1060 */
1061static noinline void async_cow_submit(struct btrfs_work *work)
1062{
1063 struct async_cow *async_cow;
1064 struct btrfs_root *root;
1065 unsigned long nr_pages;
1066
1067 async_cow = container_of(work, struct async_cow, work);
1068
1069 root = async_cow->root;
1070 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1071 PAGE_CACHE_SHIFT;
1072
66657b31 1073 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1074 5 * 1024 * 1024 &&
771ed689
CM
1075 waitqueue_active(&root->fs_info->async_submit_wait))
1076 wake_up(&root->fs_info->async_submit_wait);
1077
d397712b 1078 if (async_cow->inode)
771ed689 1079 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1080}
c8b97818 1081
771ed689
CM
1082static noinline void async_cow_free(struct btrfs_work *work)
1083{
1084 struct async_cow *async_cow;
1085 async_cow = container_of(work, struct async_cow, work);
8180ef88 1086 if (async_cow->inode)
cb77fcd8 1087 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1088 kfree(async_cow);
1089}
1090
1091static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1092 u64 start, u64 end, int *page_started,
1093 unsigned long *nr_written)
1094{
1095 struct async_cow *async_cow;
1096 struct btrfs_root *root = BTRFS_I(inode)->root;
1097 unsigned long nr_pages;
1098 u64 cur_end;
287082b0 1099 int limit = 10 * 1024 * 1024;
771ed689 1100
a3429ab7
CM
1101 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1102 1, 0, NULL, GFP_NOFS);
d397712b 1103 while (start < end) {
771ed689 1104 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1105 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1106 async_cow->inode = igrab(inode);
771ed689
CM
1107 async_cow->root = root;
1108 async_cow->locked_page = locked_page;
1109 async_cow->start = start;
1110
f79707b0
WS
1111 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1112 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1113 cur_end = end;
1114 else
1115 cur_end = min(end, start + 512 * 1024 - 1);
1116
1117 async_cow->end = cur_end;
1118 INIT_LIST_HEAD(&async_cow->extents);
1119
9e0af237
LB
1120 btrfs_init_work(&async_cow->work,
1121 btrfs_delalloc_helper,
1122 async_cow_start, async_cow_submit,
1123 async_cow_free);
771ed689 1124
771ed689
CM
1125 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1126 PAGE_CACHE_SHIFT;
1127 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1128
afe3d242
QW
1129 btrfs_queue_work(root->fs_info->delalloc_workers,
1130 &async_cow->work);
771ed689
CM
1131
1132 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1133 wait_event(root->fs_info->async_submit_wait,
1134 (atomic_read(&root->fs_info->async_delalloc_pages) <
1135 limit));
1136 }
1137
d397712b 1138 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1139 atomic_read(&root->fs_info->async_delalloc_pages)) {
1140 wait_event(root->fs_info->async_submit_wait,
1141 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1142 0));
1143 }
1144
1145 *nr_written += nr_pages;
1146 start = cur_end + 1;
1147 }
1148 *page_started = 1;
1149 return 0;
be20aa9d
CM
1150}
1151
d397712b 1152static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1153 u64 bytenr, u64 num_bytes)
1154{
1155 int ret;
1156 struct btrfs_ordered_sum *sums;
1157 LIST_HEAD(list);
1158
07d400a6 1159 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1160 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1161 if (ret == 0 && list_empty(&list))
1162 return 0;
1163
1164 while (!list_empty(&list)) {
1165 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1166 list_del(&sums->list);
1167 kfree(sums);
1168 }
1169 return 1;
1170}
1171
d352ac68
CM
1172/*
1173 * when nowcow writeback call back. This checks for snapshots or COW copies
1174 * of the extents that exist in the file, and COWs the file as required.
1175 *
1176 * If no cow copies or snapshots exist, we write directly to the existing
1177 * blocks on disk
1178 */
7f366cfe
CM
1179static noinline int run_delalloc_nocow(struct inode *inode,
1180 struct page *locked_page,
771ed689
CM
1181 u64 start, u64 end, int *page_started, int force,
1182 unsigned long *nr_written)
be20aa9d 1183{
be20aa9d 1184 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1185 struct btrfs_trans_handle *trans;
be20aa9d 1186 struct extent_buffer *leaf;
be20aa9d 1187 struct btrfs_path *path;
80ff3856 1188 struct btrfs_file_extent_item *fi;
be20aa9d 1189 struct btrfs_key found_key;
80ff3856
YZ
1190 u64 cow_start;
1191 u64 cur_offset;
1192 u64 extent_end;
5d4f98a2 1193 u64 extent_offset;
80ff3856
YZ
1194 u64 disk_bytenr;
1195 u64 num_bytes;
b4939680 1196 u64 disk_num_bytes;
cc95bef6 1197 u64 ram_bytes;
80ff3856 1198 int extent_type;
79787eaa 1199 int ret, err;
d899e052 1200 int type;
80ff3856
YZ
1201 int nocow;
1202 int check_prev = 1;
82d5902d 1203 bool nolock;
33345d01 1204 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1205
1206 path = btrfs_alloc_path();
17ca04af 1207 if (!path) {
c2790a2e
JB
1208 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1209 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1210 EXTENT_DO_ACCOUNTING |
1211 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1212 PAGE_CLEAR_DIRTY |
1213 PAGE_SET_WRITEBACK |
1214 PAGE_END_WRITEBACK);
d8926bb3 1215 return -ENOMEM;
17ca04af 1216 }
82d5902d 1217
83eea1f1 1218 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1219
1220 if (nolock)
7a7eaa40 1221 trans = btrfs_join_transaction_nolock(root);
82d5902d 1222 else
7a7eaa40 1223 trans = btrfs_join_transaction(root);
ff5714cc 1224
79787eaa 1225 if (IS_ERR(trans)) {
c2790a2e
JB
1226 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1227 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1228 EXTENT_DO_ACCOUNTING |
1229 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1230 PAGE_CLEAR_DIRTY |
1231 PAGE_SET_WRITEBACK |
1232 PAGE_END_WRITEBACK);
79787eaa
JM
1233 btrfs_free_path(path);
1234 return PTR_ERR(trans);
1235 }
1236
74b21075 1237 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1238
80ff3856
YZ
1239 cow_start = (u64)-1;
1240 cur_offset = start;
1241 while (1) {
33345d01 1242 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1243 cur_offset, 0);
d788a349 1244 if (ret < 0)
79787eaa 1245 goto error;
80ff3856
YZ
1246 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1247 leaf = path->nodes[0];
1248 btrfs_item_key_to_cpu(leaf, &found_key,
1249 path->slots[0] - 1);
33345d01 1250 if (found_key.objectid == ino &&
80ff3856
YZ
1251 found_key.type == BTRFS_EXTENT_DATA_KEY)
1252 path->slots[0]--;
1253 }
1254 check_prev = 0;
1255next_slot:
1256 leaf = path->nodes[0];
1257 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1258 ret = btrfs_next_leaf(root, path);
d788a349 1259 if (ret < 0)
79787eaa 1260 goto error;
80ff3856
YZ
1261 if (ret > 0)
1262 break;
1263 leaf = path->nodes[0];
1264 }
be20aa9d 1265
80ff3856
YZ
1266 nocow = 0;
1267 disk_bytenr = 0;
17d217fe 1268 num_bytes = 0;
80ff3856
YZ
1269 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1270
33345d01 1271 if (found_key.objectid > ino ||
80ff3856
YZ
1272 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1273 found_key.offset > end)
1274 break;
1275
1276 if (found_key.offset > cur_offset) {
1277 extent_end = found_key.offset;
e9061e21 1278 extent_type = 0;
80ff3856
YZ
1279 goto out_check;
1280 }
1281
1282 fi = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_file_extent_item);
1284 extent_type = btrfs_file_extent_type(leaf, fi);
1285
cc95bef6 1286 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1287 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1288 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1289 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1290 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1291 extent_end = found_key.offset +
1292 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1293 disk_num_bytes =
1294 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1295 if (extent_end <= start) {
1296 path->slots[0]++;
1297 goto next_slot;
1298 }
17d217fe
YZ
1299 if (disk_bytenr == 0)
1300 goto out_check;
80ff3856
YZ
1301 if (btrfs_file_extent_compression(leaf, fi) ||
1302 btrfs_file_extent_encryption(leaf, fi) ||
1303 btrfs_file_extent_other_encoding(leaf, fi))
1304 goto out_check;
d899e052
YZ
1305 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1306 goto out_check;
d2fb3437 1307 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1308 goto out_check;
33345d01 1309 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1310 found_key.offset -
1311 extent_offset, disk_bytenr))
17d217fe 1312 goto out_check;
5d4f98a2 1313 disk_bytenr += extent_offset;
17d217fe
YZ
1314 disk_bytenr += cur_offset - found_key.offset;
1315 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1316 /*
1317 * if there are pending snapshots for this root,
1318 * we fall into common COW way.
1319 */
1320 if (!nolock) {
1321 err = btrfs_start_nocow_write(root);
1322 if (!err)
1323 goto out_check;
1324 }
17d217fe
YZ
1325 /*
1326 * force cow if csum exists in the range.
1327 * this ensure that csum for a given extent are
1328 * either valid or do not exist.
1329 */
1330 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1331 goto out_check;
80ff3856
YZ
1332 nocow = 1;
1333 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1334 extent_end = found_key.offset +
514ac8ad
CM
1335 btrfs_file_extent_inline_len(leaf,
1336 path->slots[0], fi);
80ff3856
YZ
1337 extent_end = ALIGN(extent_end, root->sectorsize);
1338 } else {
1339 BUG_ON(1);
1340 }
1341out_check:
1342 if (extent_end <= start) {
1343 path->slots[0]++;
e9894fd3
WS
1344 if (!nolock && nocow)
1345 btrfs_end_nocow_write(root);
80ff3856
YZ
1346 goto next_slot;
1347 }
1348 if (!nocow) {
1349 if (cow_start == (u64)-1)
1350 cow_start = cur_offset;
1351 cur_offset = extent_end;
1352 if (cur_offset > end)
1353 break;
1354 path->slots[0]++;
1355 goto next_slot;
7ea394f1
YZ
1356 }
1357
b3b4aa74 1358 btrfs_release_path(path);
80ff3856 1359 if (cow_start != (u64)-1) {
00361589
JB
1360 ret = cow_file_range(inode, locked_page,
1361 cow_start, found_key.offset - 1,
1362 page_started, nr_written, 1);
e9894fd3
WS
1363 if (ret) {
1364 if (!nolock && nocow)
1365 btrfs_end_nocow_write(root);
79787eaa 1366 goto error;
e9894fd3 1367 }
80ff3856 1368 cow_start = (u64)-1;
7ea394f1 1369 }
80ff3856 1370
d899e052
YZ
1371 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1372 struct extent_map *em;
1373 struct extent_map_tree *em_tree;
1374 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1375 em = alloc_extent_map();
79787eaa 1376 BUG_ON(!em); /* -ENOMEM */
d899e052 1377 em->start = cur_offset;
70c8a91c 1378 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1379 em->len = num_bytes;
1380 em->block_len = num_bytes;
1381 em->block_start = disk_bytenr;
b4939680 1382 em->orig_block_len = disk_num_bytes;
cc95bef6 1383 em->ram_bytes = ram_bytes;
d899e052 1384 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1385 em->mod_start = em->start;
1386 em->mod_len = em->len;
d899e052 1387 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1388 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1389 em->generation = -1;
d899e052 1390 while (1) {
890871be 1391 write_lock(&em_tree->lock);
09a2a8f9 1392 ret = add_extent_mapping(em_tree, em, 1);
890871be 1393 write_unlock(&em_tree->lock);
d899e052
YZ
1394 if (ret != -EEXIST) {
1395 free_extent_map(em);
1396 break;
1397 }
1398 btrfs_drop_extent_cache(inode, em->start,
1399 em->start + em->len - 1, 0);
1400 }
1401 type = BTRFS_ORDERED_PREALLOC;
1402 } else {
1403 type = BTRFS_ORDERED_NOCOW;
1404 }
80ff3856
YZ
1405
1406 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1407 num_bytes, num_bytes, type);
79787eaa 1408 BUG_ON(ret); /* -ENOMEM */
771ed689 1409
efa56464
YZ
1410 if (root->root_key.objectid ==
1411 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1412 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1413 num_bytes);
e9894fd3
WS
1414 if (ret) {
1415 if (!nolock && nocow)
1416 btrfs_end_nocow_write(root);
79787eaa 1417 goto error;
e9894fd3 1418 }
efa56464
YZ
1419 }
1420
c2790a2e
JB
1421 extent_clear_unlock_delalloc(inode, cur_offset,
1422 cur_offset + num_bytes - 1,
1423 locked_page, EXTENT_LOCKED |
1424 EXTENT_DELALLOC, PAGE_UNLOCK |
1425 PAGE_SET_PRIVATE2);
e9894fd3
WS
1426 if (!nolock && nocow)
1427 btrfs_end_nocow_write(root);
80ff3856
YZ
1428 cur_offset = extent_end;
1429 if (cur_offset > end)
1430 break;
be20aa9d 1431 }
b3b4aa74 1432 btrfs_release_path(path);
80ff3856 1433
17ca04af 1434 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1435 cow_start = cur_offset;
17ca04af
JB
1436 cur_offset = end;
1437 }
1438
80ff3856 1439 if (cow_start != (u64)-1) {
00361589
JB
1440 ret = cow_file_range(inode, locked_page, cow_start, end,
1441 page_started, nr_written, 1);
d788a349 1442 if (ret)
79787eaa 1443 goto error;
80ff3856
YZ
1444 }
1445
79787eaa 1446error:
a698d075 1447 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1448 if (!ret)
1449 ret = err;
1450
17ca04af 1451 if (ret && cur_offset < end)
c2790a2e
JB
1452 extent_clear_unlock_delalloc(inode, cur_offset, end,
1453 locked_page, EXTENT_LOCKED |
151a41bc
JB
1454 EXTENT_DELALLOC | EXTENT_DEFRAG |
1455 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1456 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1457 PAGE_SET_WRITEBACK |
1458 PAGE_END_WRITEBACK);
7ea394f1 1459 btrfs_free_path(path);
79787eaa 1460 return ret;
be20aa9d
CM
1461}
1462
47059d93
WS
1463static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1464{
1465
1466 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1467 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1468 return 0;
1469
1470 /*
1471 * @defrag_bytes is a hint value, no spinlock held here,
1472 * if is not zero, it means the file is defragging.
1473 * Force cow if given extent needs to be defragged.
1474 */
1475 if (BTRFS_I(inode)->defrag_bytes &&
1476 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1477 EXTENT_DEFRAG, 0, NULL))
1478 return 1;
1479
1480 return 0;
1481}
1482
d352ac68
CM
1483/*
1484 * extent_io.c call back to do delayed allocation processing
1485 */
c8b97818 1486static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1487 u64 start, u64 end, int *page_started,
1488 unsigned long *nr_written)
be20aa9d 1489{
be20aa9d 1490 int ret;
47059d93 1491 int force_cow = need_force_cow(inode, start, end);
a2135011 1492
47059d93 1493 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1494 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1495 page_started, 1, nr_written);
47059d93 1496 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1497 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1498 page_started, 0, nr_written);
7816030e 1499 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1500 ret = cow_file_range(inode, locked_page, start, end,
1501 page_started, nr_written, 1);
7ddf5a42
JB
1502 } else {
1503 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1504 &BTRFS_I(inode)->runtime_flags);
771ed689 1505 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1506 page_started, nr_written);
7ddf5a42 1507 }
b888db2b
CM
1508 return ret;
1509}
1510
1bf85046
JM
1511static void btrfs_split_extent_hook(struct inode *inode,
1512 struct extent_state *orig, u64 split)
9ed74f2d 1513{
0ca1f7ce 1514 /* not delalloc, ignore it */
9ed74f2d 1515 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1516 return;
9ed74f2d 1517
9e0baf60
JB
1518 spin_lock(&BTRFS_I(inode)->lock);
1519 BTRFS_I(inode)->outstanding_extents++;
1520 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1521}
1522
1523/*
1524 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1525 * extents so we can keep track of new extents that are just merged onto old
1526 * extents, such as when we are doing sequential writes, so we can properly
1527 * account for the metadata space we'll need.
1528 */
1bf85046
JM
1529static void btrfs_merge_extent_hook(struct inode *inode,
1530 struct extent_state *new,
1531 struct extent_state *other)
9ed74f2d 1532{
9ed74f2d
JB
1533 /* not delalloc, ignore it */
1534 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1535 return;
9ed74f2d 1536
9e0baf60
JB
1537 spin_lock(&BTRFS_I(inode)->lock);
1538 BTRFS_I(inode)->outstanding_extents--;
1539 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1540}
1541
eb73c1b7
MX
1542static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1543 struct inode *inode)
1544{
1545 spin_lock(&root->delalloc_lock);
1546 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1547 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1548 &root->delalloc_inodes);
1549 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1550 &BTRFS_I(inode)->runtime_flags);
1551 root->nr_delalloc_inodes++;
1552 if (root->nr_delalloc_inodes == 1) {
1553 spin_lock(&root->fs_info->delalloc_root_lock);
1554 BUG_ON(!list_empty(&root->delalloc_root));
1555 list_add_tail(&root->delalloc_root,
1556 &root->fs_info->delalloc_roots);
1557 spin_unlock(&root->fs_info->delalloc_root_lock);
1558 }
1559 }
1560 spin_unlock(&root->delalloc_lock);
1561}
1562
1563static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1564 struct inode *inode)
1565{
1566 spin_lock(&root->delalloc_lock);
1567 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1568 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1569 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1570 &BTRFS_I(inode)->runtime_flags);
1571 root->nr_delalloc_inodes--;
1572 if (!root->nr_delalloc_inodes) {
1573 spin_lock(&root->fs_info->delalloc_root_lock);
1574 BUG_ON(list_empty(&root->delalloc_root));
1575 list_del_init(&root->delalloc_root);
1576 spin_unlock(&root->fs_info->delalloc_root_lock);
1577 }
1578 }
1579 spin_unlock(&root->delalloc_lock);
1580}
1581
d352ac68
CM
1582/*
1583 * extent_io.c set_bit_hook, used to track delayed allocation
1584 * bytes in this file, and to maintain the list of inodes that
1585 * have pending delalloc work to be done.
1586 */
1bf85046 1587static void btrfs_set_bit_hook(struct inode *inode,
41074888 1588 struct extent_state *state, unsigned long *bits)
291d673e 1589{
9ed74f2d 1590
47059d93
WS
1591 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1592 WARN_ON(1);
75eff68e
CM
1593 /*
1594 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1595 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1596 * bit, which is only set or cleared with irqs on
1597 */
0ca1f7ce 1598 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1599 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1600 u64 len = state->end + 1 - state->start;
83eea1f1 1601 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1602
9e0baf60 1603 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1604 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1605 } else {
1606 spin_lock(&BTRFS_I(inode)->lock);
1607 BTRFS_I(inode)->outstanding_extents++;
1608 spin_unlock(&BTRFS_I(inode)->lock);
1609 }
287a0ab9 1610
963d678b
MX
1611 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1612 root->fs_info->delalloc_batch);
df0af1a5 1613 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1614 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1615 if (*bits & EXTENT_DEFRAG)
1616 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1617 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1618 &BTRFS_I(inode)->runtime_flags))
1619 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1620 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1621 }
291d673e
CM
1622}
1623
d352ac68
CM
1624/*
1625 * extent_io.c clear_bit_hook, see set_bit_hook for why
1626 */
1bf85046 1627static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1628 struct extent_state *state,
1629 unsigned long *bits)
291d673e 1630{
47059d93
WS
1631 u64 len = state->end + 1 - state->start;
1632
1633 spin_lock(&BTRFS_I(inode)->lock);
1634 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1635 BTRFS_I(inode)->defrag_bytes -= len;
1636 spin_unlock(&BTRFS_I(inode)->lock);
1637
75eff68e
CM
1638 /*
1639 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1640 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1641 * bit, which is only set or cleared with irqs on
1642 */
0ca1f7ce 1643 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1644 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1645 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1646
9e0baf60 1647 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1648 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1649 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1650 spin_lock(&BTRFS_I(inode)->lock);
1651 BTRFS_I(inode)->outstanding_extents--;
1652 spin_unlock(&BTRFS_I(inode)->lock);
1653 }
0ca1f7ce 1654
b6d08f06
JB
1655 /*
1656 * We don't reserve metadata space for space cache inodes so we
1657 * don't need to call dellalloc_release_metadata if there is an
1658 * error.
1659 */
1660 if (*bits & EXTENT_DO_ACCOUNTING &&
1661 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1662 btrfs_delalloc_release_metadata(inode, len);
1663
0cb59c99 1664 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1665 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1666 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1667
963d678b
MX
1668 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1669 root->fs_info->delalloc_batch);
df0af1a5 1670 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1671 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1672 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1673 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1674 &BTRFS_I(inode)->runtime_flags))
1675 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1676 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1677 }
291d673e
CM
1678}
1679
d352ac68
CM
1680/*
1681 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1682 * we don't create bios that span stripes or chunks
1683 */
64a16701 1684int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1685 size_t size, struct bio *bio,
1686 unsigned long bio_flags)
239b14b3
CM
1687{
1688 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1689 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1690 u64 length = 0;
1691 u64 map_length;
239b14b3
CM
1692 int ret;
1693
771ed689
CM
1694 if (bio_flags & EXTENT_BIO_COMPRESSED)
1695 return 0;
1696
4f024f37 1697 length = bio->bi_iter.bi_size;
239b14b3 1698 map_length = length;
64a16701 1699 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1700 &map_length, NULL, 0);
3ec706c8 1701 /* Will always return 0 with map_multi == NULL */
3444a972 1702 BUG_ON(ret < 0);
d397712b 1703 if (map_length < length + size)
239b14b3 1704 return 1;
3444a972 1705 return 0;
239b14b3
CM
1706}
1707
d352ac68
CM
1708/*
1709 * in order to insert checksums into the metadata in large chunks,
1710 * we wait until bio submission time. All the pages in the bio are
1711 * checksummed and sums are attached onto the ordered extent record.
1712 *
1713 * At IO completion time the cums attached on the ordered extent record
1714 * are inserted into the btree
1715 */
d397712b
CM
1716static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1717 struct bio *bio, int mirror_num,
eaf25d93
CM
1718 unsigned long bio_flags,
1719 u64 bio_offset)
065631f6 1720{
065631f6 1721 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1722 int ret = 0;
e015640f 1723
d20f7043 1724 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1725 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1726 return 0;
1727}
e015640f 1728
4a69a410
CM
1729/*
1730 * in order to insert checksums into the metadata in large chunks,
1731 * we wait until bio submission time. All the pages in the bio are
1732 * checksummed and sums are attached onto the ordered extent record.
1733 *
1734 * At IO completion time the cums attached on the ordered extent record
1735 * are inserted into the btree
1736 */
b2950863 1737static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1738 int mirror_num, unsigned long bio_flags,
1739 u64 bio_offset)
4a69a410
CM
1740{
1741 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1742 int ret;
1743
1744 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1745 if (ret)
1746 bio_endio(bio, ret);
1747 return ret;
44b8bd7e
CM
1748}
1749
d352ac68 1750/*
cad321ad
CM
1751 * extent_io.c submission hook. This does the right thing for csum calculation
1752 * on write, or reading the csums from the tree before a read
d352ac68 1753 */
b2950863 1754static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1755 int mirror_num, unsigned long bio_flags,
1756 u64 bio_offset)
44b8bd7e
CM
1757{
1758 struct btrfs_root *root = BTRFS_I(inode)->root;
1759 int ret = 0;
19b9bdb0 1760 int skip_sum;
0417341e 1761 int metadata = 0;
b812ce28 1762 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1763
6cbff00f 1764 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1765
83eea1f1 1766 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1767 metadata = 2;
1768
7b6d91da 1769 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1770 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1771 if (ret)
61891923 1772 goto out;
5fd02043 1773
d20f7043 1774 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1775 ret = btrfs_submit_compressed_read(inode, bio,
1776 mirror_num,
1777 bio_flags);
1778 goto out;
c2db1073
TI
1779 } else if (!skip_sum) {
1780 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1781 if (ret)
61891923 1782 goto out;
c2db1073 1783 }
4d1b5fb4 1784 goto mapit;
b812ce28 1785 } else if (async && !skip_sum) {
17d217fe
YZ
1786 /* csum items have already been cloned */
1787 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1788 goto mapit;
19b9bdb0 1789 /* we're doing a write, do the async checksumming */
61891923 1790 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1791 inode, rw, bio, mirror_num,
eaf25d93
CM
1792 bio_flags, bio_offset,
1793 __btrfs_submit_bio_start,
4a69a410 1794 __btrfs_submit_bio_done);
61891923 1795 goto out;
b812ce28
JB
1796 } else if (!skip_sum) {
1797 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1798 if (ret)
1799 goto out;
19b9bdb0
CM
1800 }
1801
0b86a832 1802mapit:
61891923
SB
1803 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1804
1805out:
1806 if (ret < 0)
1807 bio_endio(bio, ret);
1808 return ret;
065631f6 1809}
6885f308 1810
d352ac68
CM
1811/*
1812 * given a list of ordered sums record them in the inode. This happens
1813 * at IO completion time based on sums calculated at bio submission time.
1814 */
ba1da2f4 1815static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1816 struct inode *inode, u64 file_offset,
1817 struct list_head *list)
1818{
e6dcd2dc
CM
1819 struct btrfs_ordered_sum *sum;
1820
c6e30871 1821 list_for_each_entry(sum, list, list) {
39847c4d 1822 trans->adding_csums = 1;
d20f7043
CM
1823 btrfs_csum_file_blocks(trans,
1824 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1825 trans->adding_csums = 0;
e6dcd2dc
CM
1826 }
1827 return 0;
1828}
1829
2ac55d41
JB
1830int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1831 struct extent_state **cached_state)
ea8c2819 1832{
6c1500f2 1833 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1834 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1835 cached_state, GFP_NOFS);
ea8c2819
CM
1836}
1837
d352ac68 1838/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1839struct btrfs_writepage_fixup {
1840 struct page *page;
1841 struct btrfs_work work;
1842};
1843
b2950863 1844static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1845{
1846 struct btrfs_writepage_fixup *fixup;
1847 struct btrfs_ordered_extent *ordered;
2ac55d41 1848 struct extent_state *cached_state = NULL;
247e743c
CM
1849 struct page *page;
1850 struct inode *inode;
1851 u64 page_start;
1852 u64 page_end;
87826df0 1853 int ret;
247e743c
CM
1854
1855 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1856 page = fixup->page;
4a096752 1857again:
247e743c
CM
1858 lock_page(page);
1859 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1860 ClearPageChecked(page);
1861 goto out_page;
1862 }
1863
1864 inode = page->mapping->host;
1865 page_start = page_offset(page);
1866 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1867
2ac55d41 1868 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1869 &cached_state);
4a096752
CM
1870
1871 /* already ordered? We're done */
8b62b72b 1872 if (PagePrivate2(page))
247e743c 1873 goto out;
4a096752
CM
1874
1875 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1876 if (ordered) {
2ac55d41
JB
1877 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1878 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1879 unlock_page(page);
1880 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1881 btrfs_put_ordered_extent(ordered);
4a096752
CM
1882 goto again;
1883 }
247e743c 1884
87826df0
JM
1885 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1886 if (ret) {
1887 mapping_set_error(page->mapping, ret);
1888 end_extent_writepage(page, ret, page_start, page_end);
1889 ClearPageChecked(page);
1890 goto out;
1891 }
1892
2ac55d41 1893 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1894 ClearPageChecked(page);
87826df0 1895 set_page_dirty(page);
247e743c 1896out:
2ac55d41
JB
1897 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1898 &cached_state, GFP_NOFS);
247e743c
CM
1899out_page:
1900 unlock_page(page);
1901 page_cache_release(page);
b897abec 1902 kfree(fixup);
247e743c
CM
1903}
1904
1905/*
1906 * There are a few paths in the higher layers of the kernel that directly
1907 * set the page dirty bit without asking the filesystem if it is a
1908 * good idea. This causes problems because we want to make sure COW
1909 * properly happens and the data=ordered rules are followed.
1910 *
c8b97818 1911 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1912 * hasn't been properly setup for IO. We kick off an async process
1913 * to fix it up. The async helper will wait for ordered extents, set
1914 * the delalloc bit and make it safe to write the page.
1915 */
b2950863 1916static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1917{
1918 struct inode *inode = page->mapping->host;
1919 struct btrfs_writepage_fixup *fixup;
1920 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1921
8b62b72b
CM
1922 /* this page is properly in the ordered list */
1923 if (TestClearPagePrivate2(page))
247e743c
CM
1924 return 0;
1925
1926 if (PageChecked(page))
1927 return -EAGAIN;
1928
1929 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1930 if (!fixup)
1931 return -EAGAIN;
f421950f 1932
247e743c
CM
1933 SetPageChecked(page);
1934 page_cache_get(page);
9e0af237
LB
1935 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1936 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 1937 fixup->page = page;
dc6e3209 1938 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 1939 return -EBUSY;
247e743c
CM
1940}
1941
d899e052
YZ
1942static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1943 struct inode *inode, u64 file_pos,
1944 u64 disk_bytenr, u64 disk_num_bytes,
1945 u64 num_bytes, u64 ram_bytes,
1946 u8 compression, u8 encryption,
1947 u16 other_encoding, int extent_type)
1948{
1949 struct btrfs_root *root = BTRFS_I(inode)->root;
1950 struct btrfs_file_extent_item *fi;
1951 struct btrfs_path *path;
1952 struct extent_buffer *leaf;
1953 struct btrfs_key ins;
1acae57b 1954 int extent_inserted = 0;
d899e052
YZ
1955 int ret;
1956
1957 path = btrfs_alloc_path();
d8926bb3
MF
1958 if (!path)
1959 return -ENOMEM;
d899e052 1960
a1ed835e
CM
1961 /*
1962 * we may be replacing one extent in the tree with another.
1963 * The new extent is pinned in the extent map, and we don't want
1964 * to drop it from the cache until it is completely in the btree.
1965 *
1966 * So, tell btrfs_drop_extents to leave this extent in the cache.
1967 * the caller is expected to unpin it and allow it to be merged
1968 * with the others.
1969 */
1acae57b
FDBM
1970 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1971 file_pos + num_bytes, NULL, 0,
1972 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
1973 if (ret)
1974 goto out;
d899e052 1975
1acae57b
FDBM
1976 if (!extent_inserted) {
1977 ins.objectid = btrfs_ino(inode);
1978 ins.offset = file_pos;
1979 ins.type = BTRFS_EXTENT_DATA_KEY;
1980
1981 path->leave_spinning = 1;
1982 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1983 sizeof(*fi));
1984 if (ret)
1985 goto out;
1986 }
d899e052
YZ
1987 leaf = path->nodes[0];
1988 fi = btrfs_item_ptr(leaf, path->slots[0],
1989 struct btrfs_file_extent_item);
1990 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1991 btrfs_set_file_extent_type(leaf, fi, extent_type);
1992 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1993 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1994 btrfs_set_file_extent_offset(leaf, fi, 0);
1995 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1996 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1997 btrfs_set_file_extent_compression(leaf, fi, compression);
1998 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1999 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2000
d899e052 2001 btrfs_mark_buffer_dirty(leaf);
ce195332 2002 btrfs_release_path(path);
d899e052
YZ
2003
2004 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2005
2006 ins.objectid = disk_bytenr;
2007 ins.offset = disk_num_bytes;
2008 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2009 ret = btrfs_alloc_reserved_file_extent(trans, root,
2010 root->root_key.objectid,
33345d01 2011 btrfs_ino(inode), file_pos, &ins);
79787eaa 2012out:
d899e052 2013 btrfs_free_path(path);
b9473439 2014
79787eaa 2015 return ret;
d899e052
YZ
2016}
2017
38c227d8
LB
2018/* snapshot-aware defrag */
2019struct sa_defrag_extent_backref {
2020 struct rb_node node;
2021 struct old_sa_defrag_extent *old;
2022 u64 root_id;
2023 u64 inum;
2024 u64 file_pos;
2025 u64 extent_offset;
2026 u64 num_bytes;
2027 u64 generation;
2028};
2029
2030struct old_sa_defrag_extent {
2031 struct list_head list;
2032 struct new_sa_defrag_extent *new;
2033
2034 u64 extent_offset;
2035 u64 bytenr;
2036 u64 offset;
2037 u64 len;
2038 int count;
2039};
2040
2041struct new_sa_defrag_extent {
2042 struct rb_root root;
2043 struct list_head head;
2044 struct btrfs_path *path;
2045 struct inode *inode;
2046 u64 file_pos;
2047 u64 len;
2048 u64 bytenr;
2049 u64 disk_len;
2050 u8 compress_type;
2051};
2052
2053static int backref_comp(struct sa_defrag_extent_backref *b1,
2054 struct sa_defrag_extent_backref *b2)
2055{
2056 if (b1->root_id < b2->root_id)
2057 return -1;
2058 else if (b1->root_id > b2->root_id)
2059 return 1;
2060
2061 if (b1->inum < b2->inum)
2062 return -1;
2063 else if (b1->inum > b2->inum)
2064 return 1;
2065
2066 if (b1->file_pos < b2->file_pos)
2067 return -1;
2068 else if (b1->file_pos > b2->file_pos)
2069 return 1;
2070
2071 /*
2072 * [------------------------------] ===> (a range of space)
2073 * |<--->| |<---->| =============> (fs/file tree A)
2074 * |<---------------------------->| ===> (fs/file tree B)
2075 *
2076 * A range of space can refer to two file extents in one tree while
2077 * refer to only one file extent in another tree.
2078 *
2079 * So we may process a disk offset more than one time(two extents in A)
2080 * and locate at the same extent(one extent in B), then insert two same
2081 * backrefs(both refer to the extent in B).
2082 */
2083 return 0;
2084}
2085
2086static void backref_insert(struct rb_root *root,
2087 struct sa_defrag_extent_backref *backref)
2088{
2089 struct rb_node **p = &root->rb_node;
2090 struct rb_node *parent = NULL;
2091 struct sa_defrag_extent_backref *entry;
2092 int ret;
2093
2094 while (*p) {
2095 parent = *p;
2096 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2097
2098 ret = backref_comp(backref, entry);
2099 if (ret < 0)
2100 p = &(*p)->rb_left;
2101 else
2102 p = &(*p)->rb_right;
2103 }
2104
2105 rb_link_node(&backref->node, parent, p);
2106 rb_insert_color(&backref->node, root);
2107}
2108
2109/*
2110 * Note the backref might has changed, and in this case we just return 0.
2111 */
2112static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2113 void *ctx)
2114{
2115 struct btrfs_file_extent_item *extent;
2116 struct btrfs_fs_info *fs_info;
2117 struct old_sa_defrag_extent *old = ctx;
2118 struct new_sa_defrag_extent *new = old->new;
2119 struct btrfs_path *path = new->path;
2120 struct btrfs_key key;
2121 struct btrfs_root *root;
2122 struct sa_defrag_extent_backref *backref;
2123 struct extent_buffer *leaf;
2124 struct inode *inode = new->inode;
2125 int slot;
2126 int ret;
2127 u64 extent_offset;
2128 u64 num_bytes;
2129
2130 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2131 inum == btrfs_ino(inode))
2132 return 0;
2133
2134 key.objectid = root_id;
2135 key.type = BTRFS_ROOT_ITEM_KEY;
2136 key.offset = (u64)-1;
2137
2138 fs_info = BTRFS_I(inode)->root->fs_info;
2139 root = btrfs_read_fs_root_no_name(fs_info, &key);
2140 if (IS_ERR(root)) {
2141 if (PTR_ERR(root) == -ENOENT)
2142 return 0;
2143 WARN_ON(1);
2144 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2145 inum, offset, root_id);
2146 return PTR_ERR(root);
2147 }
2148
2149 key.objectid = inum;
2150 key.type = BTRFS_EXTENT_DATA_KEY;
2151 if (offset > (u64)-1 << 32)
2152 key.offset = 0;
2153 else
2154 key.offset = offset;
2155
2156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2157 if (WARN_ON(ret < 0))
38c227d8 2158 return ret;
50f1319c 2159 ret = 0;
38c227d8
LB
2160
2161 while (1) {
2162 cond_resched();
2163
2164 leaf = path->nodes[0];
2165 slot = path->slots[0];
2166
2167 if (slot >= btrfs_header_nritems(leaf)) {
2168 ret = btrfs_next_leaf(root, path);
2169 if (ret < 0) {
2170 goto out;
2171 } else if (ret > 0) {
2172 ret = 0;
2173 goto out;
2174 }
2175 continue;
2176 }
2177
2178 path->slots[0]++;
2179
2180 btrfs_item_key_to_cpu(leaf, &key, slot);
2181
2182 if (key.objectid > inum)
2183 goto out;
2184
2185 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2186 continue;
2187
2188 extent = btrfs_item_ptr(leaf, slot,
2189 struct btrfs_file_extent_item);
2190
2191 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2192 continue;
2193
e68afa49
LB
2194 /*
2195 * 'offset' refers to the exact key.offset,
2196 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2197 * (key.offset - extent_offset).
2198 */
2199 if (key.offset != offset)
38c227d8
LB
2200 continue;
2201
e68afa49 2202 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2203 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2204
38c227d8
LB
2205 if (extent_offset >= old->extent_offset + old->offset +
2206 old->len || extent_offset + num_bytes <=
2207 old->extent_offset + old->offset)
2208 continue;
38c227d8
LB
2209 break;
2210 }
2211
2212 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2213 if (!backref) {
2214 ret = -ENOENT;
2215 goto out;
2216 }
2217
2218 backref->root_id = root_id;
2219 backref->inum = inum;
e68afa49 2220 backref->file_pos = offset;
38c227d8
LB
2221 backref->num_bytes = num_bytes;
2222 backref->extent_offset = extent_offset;
2223 backref->generation = btrfs_file_extent_generation(leaf, extent);
2224 backref->old = old;
2225 backref_insert(&new->root, backref);
2226 old->count++;
2227out:
2228 btrfs_release_path(path);
2229 WARN_ON(ret);
2230 return ret;
2231}
2232
2233static noinline bool record_extent_backrefs(struct btrfs_path *path,
2234 struct new_sa_defrag_extent *new)
2235{
2236 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2237 struct old_sa_defrag_extent *old, *tmp;
2238 int ret;
2239
2240 new->path = path;
2241
2242 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2243 ret = iterate_inodes_from_logical(old->bytenr +
2244 old->extent_offset, fs_info,
38c227d8
LB
2245 path, record_one_backref,
2246 old);
4724b106
JB
2247 if (ret < 0 && ret != -ENOENT)
2248 return false;
38c227d8
LB
2249
2250 /* no backref to be processed for this extent */
2251 if (!old->count) {
2252 list_del(&old->list);
2253 kfree(old);
2254 }
2255 }
2256
2257 if (list_empty(&new->head))
2258 return false;
2259
2260 return true;
2261}
2262
2263static int relink_is_mergable(struct extent_buffer *leaf,
2264 struct btrfs_file_extent_item *fi,
116e0024 2265 struct new_sa_defrag_extent *new)
38c227d8 2266{
116e0024 2267 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2268 return 0;
2269
2270 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2271 return 0;
2272
116e0024
LB
2273 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2274 return 0;
2275
2276 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2277 btrfs_file_extent_other_encoding(leaf, fi))
2278 return 0;
2279
2280 return 1;
2281}
2282
2283/*
2284 * Note the backref might has changed, and in this case we just return 0.
2285 */
2286static noinline int relink_extent_backref(struct btrfs_path *path,
2287 struct sa_defrag_extent_backref *prev,
2288 struct sa_defrag_extent_backref *backref)
2289{
2290 struct btrfs_file_extent_item *extent;
2291 struct btrfs_file_extent_item *item;
2292 struct btrfs_ordered_extent *ordered;
2293 struct btrfs_trans_handle *trans;
2294 struct btrfs_fs_info *fs_info;
2295 struct btrfs_root *root;
2296 struct btrfs_key key;
2297 struct extent_buffer *leaf;
2298 struct old_sa_defrag_extent *old = backref->old;
2299 struct new_sa_defrag_extent *new = old->new;
2300 struct inode *src_inode = new->inode;
2301 struct inode *inode;
2302 struct extent_state *cached = NULL;
2303 int ret = 0;
2304 u64 start;
2305 u64 len;
2306 u64 lock_start;
2307 u64 lock_end;
2308 bool merge = false;
2309 int index;
2310
2311 if (prev && prev->root_id == backref->root_id &&
2312 prev->inum == backref->inum &&
2313 prev->file_pos + prev->num_bytes == backref->file_pos)
2314 merge = true;
2315
2316 /* step 1: get root */
2317 key.objectid = backref->root_id;
2318 key.type = BTRFS_ROOT_ITEM_KEY;
2319 key.offset = (u64)-1;
2320
2321 fs_info = BTRFS_I(src_inode)->root->fs_info;
2322 index = srcu_read_lock(&fs_info->subvol_srcu);
2323
2324 root = btrfs_read_fs_root_no_name(fs_info, &key);
2325 if (IS_ERR(root)) {
2326 srcu_read_unlock(&fs_info->subvol_srcu, index);
2327 if (PTR_ERR(root) == -ENOENT)
2328 return 0;
2329 return PTR_ERR(root);
2330 }
38c227d8 2331
bcbba5e6
WS
2332 if (btrfs_root_readonly(root)) {
2333 srcu_read_unlock(&fs_info->subvol_srcu, index);
2334 return 0;
2335 }
2336
38c227d8
LB
2337 /* step 2: get inode */
2338 key.objectid = backref->inum;
2339 key.type = BTRFS_INODE_ITEM_KEY;
2340 key.offset = 0;
2341
2342 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2343 if (IS_ERR(inode)) {
2344 srcu_read_unlock(&fs_info->subvol_srcu, index);
2345 return 0;
2346 }
2347
2348 srcu_read_unlock(&fs_info->subvol_srcu, index);
2349
2350 /* step 3: relink backref */
2351 lock_start = backref->file_pos;
2352 lock_end = backref->file_pos + backref->num_bytes - 1;
2353 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2354 0, &cached);
2355
2356 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2357 if (ordered) {
2358 btrfs_put_ordered_extent(ordered);
2359 goto out_unlock;
2360 }
2361
2362 trans = btrfs_join_transaction(root);
2363 if (IS_ERR(trans)) {
2364 ret = PTR_ERR(trans);
2365 goto out_unlock;
2366 }
2367
2368 key.objectid = backref->inum;
2369 key.type = BTRFS_EXTENT_DATA_KEY;
2370 key.offset = backref->file_pos;
2371
2372 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2373 if (ret < 0) {
2374 goto out_free_path;
2375 } else if (ret > 0) {
2376 ret = 0;
2377 goto out_free_path;
2378 }
2379
2380 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2381 struct btrfs_file_extent_item);
2382
2383 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2384 backref->generation)
2385 goto out_free_path;
2386
2387 btrfs_release_path(path);
2388
2389 start = backref->file_pos;
2390 if (backref->extent_offset < old->extent_offset + old->offset)
2391 start += old->extent_offset + old->offset -
2392 backref->extent_offset;
2393
2394 len = min(backref->extent_offset + backref->num_bytes,
2395 old->extent_offset + old->offset + old->len);
2396 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2397
2398 ret = btrfs_drop_extents(trans, root, inode, start,
2399 start + len, 1);
2400 if (ret)
2401 goto out_free_path;
2402again:
2403 key.objectid = btrfs_ino(inode);
2404 key.type = BTRFS_EXTENT_DATA_KEY;
2405 key.offset = start;
2406
a09a0a70 2407 path->leave_spinning = 1;
38c227d8
LB
2408 if (merge) {
2409 struct btrfs_file_extent_item *fi;
2410 u64 extent_len;
2411 struct btrfs_key found_key;
2412
3c9665df 2413 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2414 if (ret < 0)
2415 goto out_free_path;
2416
2417 path->slots[0]--;
2418 leaf = path->nodes[0];
2419 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2420
2421 fi = btrfs_item_ptr(leaf, path->slots[0],
2422 struct btrfs_file_extent_item);
2423 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2424
116e0024
LB
2425 if (extent_len + found_key.offset == start &&
2426 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2427 btrfs_set_file_extent_num_bytes(leaf, fi,
2428 extent_len + len);
2429 btrfs_mark_buffer_dirty(leaf);
2430 inode_add_bytes(inode, len);
2431
2432 ret = 1;
2433 goto out_free_path;
2434 } else {
2435 merge = false;
2436 btrfs_release_path(path);
2437 goto again;
2438 }
2439 }
2440
2441 ret = btrfs_insert_empty_item(trans, root, path, &key,
2442 sizeof(*extent));
2443 if (ret) {
2444 btrfs_abort_transaction(trans, root, ret);
2445 goto out_free_path;
2446 }
2447
2448 leaf = path->nodes[0];
2449 item = btrfs_item_ptr(leaf, path->slots[0],
2450 struct btrfs_file_extent_item);
2451 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2452 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2453 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2454 btrfs_set_file_extent_num_bytes(leaf, item, len);
2455 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2456 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2457 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2458 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2459 btrfs_set_file_extent_encryption(leaf, item, 0);
2460 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2461
2462 btrfs_mark_buffer_dirty(leaf);
2463 inode_add_bytes(inode, len);
a09a0a70 2464 btrfs_release_path(path);
38c227d8
LB
2465
2466 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2467 new->disk_len, 0,
2468 backref->root_id, backref->inum,
2469 new->file_pos, 0); /* start - extent_offset */
2470 if (ret) {
2471 btrfs_abort_transaction(trans, root, ret);
2472 goto out_free_path;
2473 }
2474
2475 ret = 1;
2476out_free_path:
2477 btrfs_release_path(path);
a09a0a70 2478 path->leave_spinning = 0;
38c227d8
LB
2479 btrfs_end_transaction(trans, root);
2480out_unlock:
2481 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2482 &cached, GFP_NOFS);
2483 iput(inode);
2484 return ret;
2485}
2486
6f519564
LB
2487static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2488{
2489 struct old_sa_defrag_extent *old, *tmp;
2490
2491 if (!new)
2492 return;
2493
2494 list_for_each_entry_safe(old, tmp, &new->head, list) {
2495 list_del(&old->list);
2496 kfree(old);
2497 }
2498 kfree(new);
2499}
2500
38c227d8
LB
2501static void relink_file_extents(struct new_sa_defrag_extent *new)
2502{
2503 struct btrfs_path *path;
38c227d8
LB
2504 struct sa_defrag_extent_backref *backref;
2505 struct sa_defrag_extent_backref *prev = NULL;
2506 struct inode *inode;
2507 struct btrfs_root *root;
2508 struct rb_node *node;
2509 int ret;
2510
2511 inode = new->inode;
2512 root = BTRFS_I(inode)->root;
2513
2514 path = btrfs_alloc_path();
2515 if (!path)
2516 return;
2517
2518 if (!record_extent_backrefs(path, new)) {
2519 btrfs_free_path(path);
2520 goto out;
2521 }
2522 btrfs_release_path(path);
2523
2524 while (1) {
2525 node = rb_first(&new->root);
2526 if (!node)
2527 break;
2528 rb_erase(node, &new->root);
2529
2530 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2531
2532 ret = relink_extent_backref(path, prev, backref);
2533 WARN_ON(ret < 0);
2534
2535 kfree(prev);
2536
2537 if (ret == 1)
2538 prev = backref;
2539 else
2540 prev = NULL;
2541 cond_resched();
2542 }
2543 kfree(prev);
2544
2545 btrfs_free_path(path);
38c227d8 2546out:
6f519564
LB
2547 free_sa_defrag_extent(new);
2548
38c227d8
LB
2549 atomic_dec(&root->fs_info->defrag_running);
2550 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2551}
2552
2553static struct new_sa_defrag_extent *
2554record_old_file_extents(struct inode *inode,
2555 struct btrfs_ordered_extent *ordered)
2556{
2557 struct btrfs_root *root = BTRFS_I(inode)->root;
2558 struct btrfs_path *path;
2559 struct btrfs_key key;
6f519564 2560 struct old_sa_defrag_extent *old;
38c227d8
LB
2561 struct new_sa_defrag_extent *new;
2562 int ret;
2563
2564 new = kmalloc(sizeof(*new), GFP_NOFS);
2565 if (!new)
2566 return NULL;
2567
2568 new->inode = inode;
2569 new->file_pos = ordered->file_offset;
2570 new->len = ordered->len;
2571 new->bytenr = ordered->start;
2572 new->disk_len = ordered->disk_len;
2573 new->compress_type = ordered->compress_type;
2574 new->root = RB_ROOT;
2575 INIT_LIST_HEAD(&new->head);
2576
2577 path = btrfs_alloc_path();
2578 if (!path)
2579 goto out_kfree;
2580
2581 key.objectid = btrfs_ino(inode);
2582 key.type = BTRFS_EXTENT_DATA_KEY;
2583 key.offset = new->file_pos;
2584
2585 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2586 if (ret < 0)
2587 goto out_free_path;
2588 if (ret > 0 && path->slots[0] > 0)
2589 path->slots[0]--;
2590
2591 /* find out all the old extents for the file range */
2592 while (1) {
2593 struct btrfs_file_extent_item *extent;
2594 struct extent_buffer *l;
2595 int slot;
2596 u64 num_bytes;
2597 u64 offset;
2598 u64 end;
2599 u64 disk_bytenr;
2600 u64 extent_offset;
2601
2602 l = path->nodes[0];
2603 slot = path->slots[0];
2604
2605 if (slot >= btrfs_header_nritems(l)) {
2606 ret = btrfs_next_leaf(root, path);
2607 if (ret < 0)
6f519564 2608 goto out_free_path;
38c227d8
LB
2609 else if (ret > 0)
2610 break;
2611 continue;
2612 }
2613
2614 btrfs_item_key_to_cpu(l, &key, slot);
2615
2616 if (key.objectid != btrfs_ino(inode))
2617 break;
2618 if (key.type != BTRFS_EXTENT_DATA_KEY)
2619 break;
2620 if (key.offset >= new->file_pos + new->len)
2621 break;
2622
2623 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2624
2625 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2626 if (key.offset + num_bytes < new->file_pos)
2627 goto next;
2628
2629 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2630 if (!disk_bytenr)
2631 goto next;
2632
2633 extent_offset = btrfs_file_extent_offset(l, extent);
2634
2635 old = kmalloc(sizeof(*old), GFP_NOFS);
2636 if (!old)
6f519564 2637 goto out_free_path;
38c227d8
LB
2638
2639 offset = max(new->file_pos, key.offset);
2640 end = min(new->file_pos + new->len, key.offset + num_bytes);
2641
2642 old->bytenr = disk_bytenr;
2643 old->extent_offset = extent_offset;
2644 old->offset = offset - key.offset;
2645 old->len = end - offset;
2646 old->new = new;
2647 old->count = 0;
2648 list_add_tail(&old->list, &new->head);
2649next:
2650 path->slots[0]++;
2651 cond_resched();
2652 }
2653
2654 btrfs_free_path(path);
2655 atomic_inc(&root->fs_info->defrag_running);
2656
2657 return new;
2658
38c227d8
LB
2659out_free_path:
2660 btrfs_free_path(path);
2661out_kfree:
6f519564 2662 free_sa_defrag_extent(new);
38c227d8
LB
2663 return NULL;
2664}
2665
e570fd27
MX
2666static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2667 u64 start, u64 len)
2668{
2669 struct btrfs_block_group_cache *cache;
2670
2671 cache = btrfs_lookup_block_group(root->fs_info, start);
2672 ASSERT(cache);
2673
2674 spin_lock(&cache->lock);
2675 cache->delalloc_bytes -= len;
2676 spin_unlock(&cache->lock);
2677
2678 btrfs_put_block_group(cache);
2679}
2680
d352ac68
CM
2681/* as ordered data IO finishes, this gets called so we can finish
2682 * an ordered extent if the range of bytes in the file it covers are
2683 * fully written.
2684 */
5fd02043 2685static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2686{
5fd02043 2687 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2688 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2689 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2690 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2691 struct extent_state *cached_state = NULL;
38c227d8 2692 struct new_sa_defrag_extent *new = NULL;
261507a0 2693 int compress_type = 0;
77cef2ec
JB
2694 int ret = 0;
2695 u64 logical_len = ordered_extent->len;
82d5902d 2696 bool nolock;
77cef2ec 2697 bool truncated = false;
e6dcd2dc 2698
83eea1f1 2699 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2700
5fd02043
JB
2701 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2702 ret = -EIO;
2703 goto out;
2704 }
2705
f612496b
MX
2706 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2707 ordered_extent->file_offset +
2708 ordered_extent->len - 1);
2709
77cef2ec
JB
2710 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2711 truncated = true;
2712 logical_len = ordered_extent->truncated_len;
2713 /* Truncated the entire extent, don't bother adding */
2714 if (!logical_len)
2715 goto out;
2716 }
2717
c2167754 2718 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2719 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2720 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2721 if (nolock)
2722 trans = btrfs_join_transaction_nolock(root);
2723 else
2724 trans = btrfs_join_transaction(root);
2725 if (IS_ERR(trans)) {
2726 ret = PTR_ERR(trans);
2727 trans = NULL;
2728 goto out;
c2167754 2729 }
6c760c07
JB
2730 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2731 ret = btrfs_update_inode_fallback(trans, root, inode);
2732 if (ret) /* -ENOMEM or corruption */
2733 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2734 goto out;
2735 }
e6dcd2dc 2736
2ac55d41
JB
2737 lock_extent_bits(io_tree, ordered_extent->file_offset,
2738 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2739 0, &cached_state);
e6dcd2dc 2740
38c227d8
LB
2741 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2742 ordered_extent->file_offset + ordered_extent->len - 1,
2743 EXTENT_DEFRAG, 1, cached_state);
2744 if (ret) {
2745 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2746 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2747 /* the inode is shared */
2748 new = record_old_file_extents(inode, ordered_extent);
2749
2750 clear_extent_bit(io_tree, ordered_extent->file_offset,
2751 ordered_extent->file_offset + ordered_extent->len - 1,
2752 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2753 }
2754
0cb59c99 2755 if (nolock)
7a7eaa40 2756 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2757 else
7a7eaa40 2758 trans = btrfs_join_transaction(root);
79787eaa
JM
2759 if (IS_ERR(trans)) {
2760 ret = PTR_ERR(trans);
2761 trans = NULL;
2762 goto out_unlock;
2763 }
a79b7d4b 2764
0ca1f7ce 2765 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2766
c8b97818 2767 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2768 compress_type = ordered_extent->compress_type;
d899e052 2769 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2770 BUG_ON(compress_type);
920bbbfb 2771 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2772 ordered_extent->file_offset,
2773 ordered_extent->file_offset +
77cef2ec 2774 logical_len);
d899e052 2775 } else {
0af3d00b 2776 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2777 ret = insert_reserved_file_extent(trans, inode,
2778 ordered_extent->file_offset,
2779 ordered_extent->start,
2780 ordered_extent->disk_len,
77cef2ec 2781 logical_len, logical_len,
261507a0 2782 compress_type, 0, 0,
d899e052 2783 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2784 if (!ret)
2785 btrfs_release_delalloc_bytes(root,
2786 ordered_extent->start,
2787 ordered_extent->disk_len);
d899e052 2788 }
5dc562c5
JB
2789 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2790 ordered_extent->file_offset, ordered_extent->len,
2791 trans->transid);
79787eaa
JM
2792 if (ret < 0) {
2793 btrfs_abort_transaction(trans, root, ret);
5fd02043 2794 goto out_unlock;
79787eaa 2795 }
2ac55d41 2796
e6dcd2dc
CM
2797 add_pending_csums(trans, inode, ordered_extent->file_offset,
2798 &ordered_extent->list);
2799
6c760c07
JB
2800 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2801 ret = btrfs_update_inode_fallback(trans, root, inode);
2802 if (ret) { /* -ENOMEM or corruption */
2803 btrfs_abort_transaction(trans, root, ret);
2804 goto out_unlock;
1ef30be1
JB
2805 }
2806 ret = 0;
5fd02043
JB
2807out_unlock:
2808 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2809 ordered_extent->file_offset +
2810 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2811out:
5b0e95bf 2812 if (root != root->fs_info->tree_root)
0cb59c99 2813 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2814 if (trans)
2815 btrfs_end_transaction(trans, root);
0cb59c99 2816
77cef2ec
JB
2817 if (ret || truncated) {
2818 u64 start, end;
2819
2820 if (truncated)
2821 start = ordered_extent->file_offset + logical_len;
2822 else
2823 start = ordered_extent->file_offset;
2824 end = ordered_extent->file_offset + ordered_extent->len - 1;
2825 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2826
2827 /* Drop the cache for the part of the extent we didn't write. */
2828 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2829
0bec9ef5
JB
2830 /*
2831 * If the ordered extent had an IOERR or something else went
2832 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2833 * back to the allocator. We only free the extent in the
2834 * truncated case if we didn't write out the extent at all.
0bec9ef5 2835 */
77cef2ec
JB
2836 if ((ret || !logical_len) &&
2837 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2838 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2839 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2840 ordered_extent->disk_len, 1);
0bec9ef5
JB
2841 }
2842
2843
5fd02043 2844 /*
8bad3c02
LB
2845 * This needs to be done to make sure anybody waiting knows we are done
2846 * updating everything for this ordered extent.
5fd02043
JB
2847 */
2848 btrfs_remove_ordered_extent(inode, ordered_extent);
2849
38c227d8 2850 /* for snapshot-aware defrag */
6f519564
LB
2851 if (new) {
2852 if (ret) {
2853 free_sa_defrag_extent(new);
2854 atomic_dec(&root->fs_info->defrag_running);
2855 } else {
2856 relink_file_extents(new);
2857 }
2858 }
38c227d8 2859
e6dcd2dc
CM
2860 /* once for us */
2861 btrfs_put_ordered_extent(ordered_extent);
2862 /* once for the tree */
2863 btrfs_put_ordered_extent(ordered_extent);
2864
5fd02043
JB
2865 return ret;
2866}
2867
2868static void finish_ordered_fn(struct btrfs_work *work)
2869{
2870 struct btrfs_ordered_extent *ordered_extent;
2871 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2872 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2873}
2874
b2950863 2875static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2876 struct extent_state *state, int uptodate)
2877{
5fd02043
JB
2878 struct inode *inode = page->mapping->host;
2879 struct btrfs_root *root = BTRFS_I(inode)->root;
2880 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
2881 struct btrfs_workqueue *wq;
2882 btrfs_work_func_t func;
5fd02043 2883
1abe9b8a 2884 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2885
8b62b72b 2886 ClearPagePrivate2(page);
5fd02043
JB
2887 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2888 end - start + 1, uptodate))
2889 return 0;
2890
9e0af237
LB
2891 if (btrfs_is_free_space_inode(inode)) {
2892 wq = root->fs_info->endio_freespace_worker;
2893 func = btrfs_freespace_write_helper;
2894 } else {
2895 wq = root->fs_info->endio_write_workers;
2896 func = btrfs_endio_write_helper;
2897 }
5fd02043 2898
9e0af237
LB
2899 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2900 NULL);
2901 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
2902
2903 return 0;
211f90e6
CM
2904}
2905
dc380aea
MX
2906static int __readpage_endio_check(struct inode *inode,
2907 struct btrfs_io_bio *io_bio,
2908 int icsum, struct page *page,
2909 int pgoff, u64 start, size_t len)
2910{
2911 char *kaddr;
2912 u32 csum_expected;
2913 u32 csum = ~(u32)0;
2914 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2915 DEFAULT_RATELIMIT_BURST);
2916
2917 csum_expected = *(((u32 *)io_bio->csum) + icsum);
2918
2919 kaddr = kmap_atomic(page);
2920 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
2921 btrfs_csum_final(csum, (char *)&csum);
2922 if (csum != csum_expected)
2923 goto zeroit;
2924
2925 kunmap_atomic(kaddr);
2926 return 0;
2927zeroit:
2928 if (__ratelimit(&_rs))
2929 btrfs_info(BTRFS_I(inode)->root->fs_info,
2930 "csum failed ino %llu off %llu csum %u expected csum %u",
2931 btrfs_ino(inode), start, csum, csum_expected);
2932 memset(kaddr + pgoff, 1, len);
2933 flush_dcache_page(page);
2934 kunmap_atomic(kaddr);
2935 if (csum_expected == 0)
2936 return 0;
2937 return -EIO;
2938}
2939
d352ac68
CM
2940/*
2941 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2942 * if there's a match, we allow the bio to finish. If not, the code in
2943 * extent_io.c will try to find good copies for us.
d352ac68 2944 */
facc8a22
MX
2945static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2946 u64 phy_offset, struct page *page,
2947 u64 start, u64 end, int mirror)
07157aac 2948{
4eee4fa4 2949 size_t offset = start - page_offset(page);
07157aac 2950 struct inode *inode = page->mapping->host;
d1310b2e 2951 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2952 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2953
d20f7043
CM
2954 if (PageChecked(page)) {
2955 ClearPageChecked(page);
dc380aea 2956 return 0;
d20f7043 2957 }
6cbff00f
CH
2958
2959 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2960 return 0;
17d217fe
YZ
2961
2962 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2963 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2964 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2965 GFP_NOFS);
b6cda9bc 2966 return 0;
17d217fe 2967 }
d20f7043 2968
facc8a22 2969 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
2970 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
2971 start, (size_t)(end - start + 1));
07157aac 2972}
b888db2b 2973
24bbcf04
YZ
2974struct delayed_iput {
2975 struct list_head list;
2976 struct inode *inode;
2977};
2978
79787eaa
JM
2979/* JDM: If this is fs-wide, why can't we add a pointer to
2980 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2981void btrfs_add_delayed_iput(struct inode *inode)
2982{
2983 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2984 struct delayed_iput *delayed;
2985
2986 if (atomic_add_unless(&inode->i_count, -1, 1))
2987 return;
2988
2989 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2990 delayed->inode = inode;
2991
2992 spin_lock(&fs_info->delayed_iput_lock);
2993 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2994 spin_unlock(&fs_info->delayed_iput_lock);
2995}
2996
2997void btrfs_run_delayed_iputs(struct btrfs_root *root)
2998{
2999 LIST_HEAD(list);
3000 struct btrfs_fs_info *fs_info = root->fs_info;
3001 struct delayed_iput *delayed;
3002 int empty;
3003
3004 spin_lock(&fs_info->delayed_iput_lock);
3005 empty = list_empty(&fs_info->delayed_iputs);
3006 spin_unlock(&fs_info->delayed_iput_lock);
3007 if (empty)
3008 return;
3009
24bbcf04
YZ
3010 spin_lock(&fs_info->delayed_iput_lock);
3011 list_splice_init(&fs_info->delayed_iputs, &list);
3012 spin_unlock(&fs_info->delayed_iput_lock);
3013
3014 while (!list_empty(&list)) {
3015 delayed = list_entry(list.next, struct delayed_iput, list);
3016 list_del(&delayed->list);
3017 iput(delayed->inode);
3018 kfree(delayed);
3019 }
24bbcf04
YZ
3020}
3021
d68fc57b 3022/*
42b2aa86 3023 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3024 * files in the subvolume, it removes orphan item and frees block_rsv
3025 * structure.
3026 */
3027void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3028 struct btrfs_root *root)
3029{
90290e19 3030 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3031 int ret;
3032
8a35d95f 3033 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3034 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3035 return;
3036
90290e19 3037 spin_lock(&root->orphan_lock);
8a35d95f 3038 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3039 spin_unlock(&root->orphan_lock);
3040 return;
3041 }
3042
3043 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3044 spin_unlock(&root->orphan_lock);
3045 return;
3046 }
3047
3048 block_rsv = root->orphan_block_rsv;
3049 root->orphan_block_rsv = NULL;
3050 spin_unlock(&root->orphan_lock);
3051
27cdeb70 3052 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3053 btrfs_root_refs(&root->root_item) > 0) {
3054 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3055 root->root_key.objectid);
4ef31a45
JB
3056 if (ret)
3057 btrfs_abort_transaction(trans, root, ret);
3058 else
27cdeb70
MX
3059 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3060 &root->state);
d68fc57b
YZ
3061 }
3062
90290e19
JB
3063 if (block_rsv) {
3064 WARN_ON(block_rsv->size > 0);
3065 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3066 }
3067}
3068
7b128766
JB
3069/*
3070 * This creates an orphan entry for the given inode in case something goes
3071 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3072 *
3073 * NOTE: caller of this function should reserve 5 units of metadata for
3074 * this function.
7b128766
JB
3075 */
3076int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3077{
3078 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3079 struct btrfs_block_rsv *block_rsv = NULL;
3080 int reserve = 0;
3081 int insert = 0;
3082 int ret;
7b128766 3083
d68fc57b 3084 if (!root->orphan_block_rsv) {
66d8f3dd 3085 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3086 if (!block_rsv)
3087 return -ENOMEM;
d68fc57b 3088 }
7b128766 3089
d68fc57b
YZ
3090 spin_lock(&root->orphan_lock);
3091 if (!root->orphan_block_rsv) {
3092 root->orphan_block_rsv = block_rsv;
3093 } else if (block_rsv) {
3094 btrfs_free_block_rsv(root, block_rsv);
3095 block_rsv = NULL;
7b128766 3096 }
7b128766 3097
8a35d95f
JB
3098 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3099 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3100#if 0
3101 /*
3102 * For proper ENOSPC handling, we should do orphan
3103 * cleanup when mounting. But this introduces backward
3104 * compatibility issue.
3105 */
3106 if (!xchg(&root->orphan_item_inserted, 1))
3107 insert = 2;
3108 else
3109 insert = 1;
3110#endif
3111 insert = 1;
321f0e70 3112 atomic_inc(&root->orphan_inodes);
7b128766
JB
3113 }
3114
72ac3c0d
JB
3115 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3116 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3117 reserve = 1;
d68fc57b 3118 spin_unlock(&root->orphan_lock);
7b128766 3119
d68fc57b
YZ
3120 /* grab metadata reservation from transaction handle */
3121 if (reserve) {
3122 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3123 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3124 }
7b128766 3125
d68fc57b
YZ
3126 /* insert an orphan item to track this unlinked/truncated file */
3127 if (insert >= 1) {
33345d01 3128 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3129 if (ret) {
703c88e0 3130 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3131 if (reserve) {
3132 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3133 &BTRFS_I(inode)->runtime_flags);
3134 btrfs_orphan_release_metadata(inode);
3135 }
3136 if (ret != -EEXIST) {
e8e7cff6
JB
3137 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3138 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3139 btrfs_abort_transaction(trans, root, ret);
3140 return ret;
3141 }
79787eaa
JM
3142 }
3143 ret = 0;
d68fc57b
YZ
3144 }
3145
3146 /* insert an orphan item to track subvolume contains orphan files */
3147 if (insert >= 2) {
3148 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3149 root->root_key.objectid);
79787eaa
JM
3150 if (ret && ret != -EEXIST) {
3151 btrfs_abort_transaction(trans, root, ret);
3152 return ret;
3153 }
d68fc57b
YZ
3154 }
3155 return 0;
7b128766
JB
3156}
3157
3158/*
3159 * We have done the truncate/delete so we can go ahead and remove the orphan
3160 * item for this particular inode.
3161 */
48a3b636
ES
3162static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3163 struct inode *inode)
7b128766
JB
3164{
3165 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3166 int delete_item = 0;
3167 int release_rsv = 0;
7b128766
JB
3168 int ret = 0;
3169
d68fc57b 3170 spin_lock(&root->orphan_lock);
8a35d95f
JB
3171 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3172 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3173 delete_item = 1;
7b128766 3174
72ac3c0d
JB
3175 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3176 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3177 release_rsv = 1;
d68fc57b 3178 spin_unlock(&root->orphan_lock);
7b128766 3179
703c88e0 3180 if (delete_item) {
8a35d95f 3181 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3182 if (trans)
3183 ret = btrfs_del_orphan_item(trans, root,
3184 btrfs_ino(inode));
8a35d95f 3185 }
7b128766 3186
703c88e0
FDBM
3187 if (release_rsv)
3188 btrfs_orphan_release_metadata(inode);
3189
4ef31a45 3190 return ret;
7b128766
JB
3191}
3192
3193/*
3194 * this cleans up any orphans that may be left on the list from the last use
3195 * of this root.
3196 */
66b4ffd1 3197int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3198{
3199 struct btrfs_path *path;
3200 struct extent_buffer *leaf;
7b128766
JB
3201 struct btrfs_key key, found_key;
3202 struct btrfs_trans_handle *trans;
3203 struct inode *inode;
8f6d7f4f 3204 u64 last_objectid = 0;
7b128766
JB
3205 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3206
d68fc57b 3207 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3208 return 0;
c71bf099
YZ
3209
3210 path = btrfs_alloc_path();
66b4ffd1
JB
3211 if (!path) {
3212 ret = -ENOMEM;
3213 goto out;
3214 }
7b128766
JB
3215 path->reada = -1;
3216
3217 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3218 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3219 key.offset = (u64)-1;
3220
7b128766
JB
3221 while (1) {
3222 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3223 if (ret < 0)
3224 goto out;
7b128766
JB
3225
3226 /*
3227 * if ret == 0 means we found what we were searching for, which
25985edc 3228 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3229 * find the key and see if we have stuff that matches
3230 */
3231 if (ret > 0) {
66b4ffd1 3232 ret = 0;
7b128766
JB
3233 if (path->slots[0] == 0)
3234 break;
3235 path->slots[0]--;
3236 }
3237
3238 /* pull out the item */
3239 leaf = path->nodes[0];
7b128766
JB
3240 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3241
3242 /* make sure the item matches what we want */
3243 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3244 break;
962a298f 3245 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3246 break;
3247
3248 /* release the path since we're done with it */
b3b4aa74 3249 btrfs_release_path(path);
7b128766
JB
3250
3251 /*
3252 * this is where we are basically btrfs_lookup, without the
3253 * crossing root thing. we store the inode number in the
3254 * offset of the orphan item.
3255 */
8f6d7f4f
JB
3256
3257 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3258 btrfs_err(root->fs_info,
3259 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3260 ret = -EINVAL;
3261 goto out;
3262 }
3263
3264 last_objectid = found_key.offset;
3265
5d4f98a2
YZ
3266 found_key.objectid = found_key.offset;
3267 found_key.type = BTRFS_INODE_ITEM_KEY;
3268 found_key.offset = 0;
73f73415 3269 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3270 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3271 if (ret && ret != -ESTALE)
66b4ffd1 3272 goto out;
7b128766 3273
f8e9e0b0
AJ
3274 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3275 struct btrfs_root *dead_root;
3276 struct btrfs_fs_info *fs_info = root->fs_info;
3277 int is_dead_root = 0;
3278
3279 /*
3280 * this is an orphan in the tree root. Currently these
3281 * could come from 2 sources:
3282 * a) a snapshot deletion in progress
3283 * b) a free space cache inode
3284 * We need to distinguish those two, as the snapshot
3285 * orphan must not get deleted.
3286 * find_dead_roots already ran before us, so if this
3287 * is a snapshot deletion, we should find the root
3288 * in the dead_roots list
3289 */
3290 spin_lock(&fs_info->trans_lock);
3291 list_for_each_entry(dead_root, &fs_info->dead_roots,
3292 root_list) {
3293 if (dead_root->root_key.objectid ==
3294 found_key.objectid) {
3295 is_dead_root = 1;
3296 break;
3297 }
3298 }
3299 spin_unlock(&fs_info->trans_lock);
3300 if (is_dead_root) {
3301 /* prevent this orphan from being found again */
3302 key.offset = found_key.objectid - 1;
3303 continue;
3304 }
3305 }
7b128766 3306 /*
a8c9e576
JB
3307 * Inode is already gone but the orphan item is still there,
3308 * kill the orphan item.
7b128766 3309 */
a8c9e576
JB
3310 if (ret == -ESTALE) {
3311 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3312 if (IS_ERR(trans)) {
3313 ret = PTR_ERR(trans);
3314 goto out;
3315 }
c2cf52eb
SK
3316 btrfs_debug(root->fs_info, "auto deleting %Lu",
3317 found_key.objectid);
a8c9e576
JB
3318 ret = btrfs_del_orphan_item(trans, root,
3319 found_key.objectid);
5b21f2ed 3320 btrfs_end_transaction(trans, root);
4ef31a45
JB
3321 if (ret)
3322 goto out;
7b128766
JB
3323 continue;
3324 }
3325
a8c9e576
JB
3326 /*
3327 * add this inode to the orphan list so btrfs_orphan_del does
3328 * the proper thing when we hit it
3329 */
8a35d95f
JB
3330 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3331 &BTRFS_I(inode)->runtime_flags);
925396ec 3332 atomic_inc(&root->orphan_inodes);
a8c9e576 3333
7b128766
JB
3334 /* if we have links, this was a truncate, lets do that */
3335 if (inode->i_nlink) {
fae7f21c 3336 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3337 iput(inode);
3338 continue;
3339 }
7b128766 3340 nr_truncate++;
f3fe820c
JB
3341
3342 /* 1 for the orphan item deletion. */
3343 trans = btrfs_start_transaction(root, 1);
3344 if (IS_ERR(trans)) {
c69b26b0 3345 iput(inode);
f3fe820c
JB
3346 ret = PTR_ERR(trans);
3347 goto out;
3348 }
3349 ret = btrfs_orphan_add(trans, inode);
3350 btrfs_end_transaction(trans, root);
c69b26b0
JB
3351 if (ret) {
3352 iput(inode);
f3fe820c 3353 goto out;
c69b26b0 3354 }
f3fe820c 3355
66b4ffd1 3356 ret = btrfs_truncate(inode);
4a7d0f68
JB
3357 if (ret)
3358 btrfs_orphan_del(NULL, inode);
7b128766
JB
3359 } else {
3360 nr_unlink++;
3361 }
3362
3363 /* this will do delete_inode and everything for us */
3364 iput(inode);
66b4ffd1
JB
3365 if (ret)
3366 goto out;
7b128766 3367 }
3254c876
MX
3368 /* release the path since we're done with it */
3369 btrfs_release_path(path);
3370
d68fc57b
YZ
3371 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3372
3373 if (root->orphan_block_rsv)
3374 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3375 (u64)-1);
3376
27cdeb70
MX
3377 if (root->orphan_block_rsv ||
3378 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3379 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3380 if (!IS_ERR(trans))
3381 btrfs_end_transaction(trans, root);
d68fc57b 3382 }
7b128766
JB
3383
3384 if (nr_unlink)
4884b476 3385 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3386 if (nr_truncate)
4884b476 3387 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3388
3389out:
3390 if (ret)
c2cf52eb
SK
3391 btrfs_crit(root->fs_info,
3392 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3393 btrfs_free_path(path);
3394 return ret;
7b128766
JB
3395}
3396
46a53cca
CM
3397/*
3398 * very simple check to peek ahead in the leaf looking for xattrs. If we
3399 * don't find any xattrs, we know there can't be any acls.
3400 *
3401 * slot is the slot the inode is in, objectid is the objectid of the inode
3402 */
3403static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3404 int slot, u64 objectid,
3405 int *first_xattr_slot)
46a53cca
CM
3406{
3407 u32 nritems = btrfs_header_nritems(leaf);
3408 struct btrfs_key found_key;
f23b5a59
JB
3409 static u64 xattr_access = 0;
3410 static u64 xattr_default = 0;
46a53cca
CM
3411 int scanned = 0;
3412
f23b5a59
JB
3413 if (!xattr_access) {
3414 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3415 strlen(POSIX_ACL_XATTR_ACCESS));
3416 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3417 strlen(POSIX_ACL_XATTR_DEFAULT));
3418 }
3419
46a53cca 3420 slot++;
63541927 3421 *first_xattr_slot = -1;
46a53cca
CM
3422 while (slot < nritems) {
3423 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3424
3425 /* we found a different objectid, there must not be acls */
3426 if (found_key.objectid != objectid)
3427 return 0;
3428
3429 /* we found an xattr, assume we've got an acl */
f23b5a59 3430 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3431 if (*first_xattr_slot == -1)
3432 *first_xattr_slot = slot;
f23b5a59
JB
3433 if (found_key.offset == xattr_access ||
3434 found_key.offset == xattr_default)
3435 return 1;
3436 }
46a53cca
CM
3437
3438 /*
3439 * we found a key greater than an xattr key, there can't
3440 * be any acls later on
3441 */
3442 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3443 return 0;
3444
3445 slot++;
3446 scanned++;
3447
3448 /*
3449 * it goes inode, inode backrefs, xattrs, extents,
3450 * so if there are a ton of hard links to an inode there can
3451 * be a lot of backrefs. Don't waste time searching too hard,
3452 * this is just an optimization
3453 */
3454 if (scanned >= 8)
3455 break;
3456 }
3457 /* we hit the end of the leaf before we found an xattr or
3458 * something larger than an xattr. We have to assume the inode
3459 * has acls
3460 */
63541927
FDBM
3461 if (*first_xattr_slot == -1)
3462 *first_xattr_slot = slot;
46a53cca
CM
3463 return 1;
3464}
3465
d352ac68
CM
3466/*
3467 * read an inode from the btree into the in-memory inode
3468 */
5d4f98a2 3469static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3470{
3471 struct btrfs_path *path;
5f39d397 3472 struct extent_buffer *leaf;
39279cc3 3473 struct btrfs_inode_item *inode_item;
0b86a832 3474 struct btrfs_timespec *tspec;
39279cc3
CM
3475 struct btrfs_root *root = BTRFS_I(inode)->root;
3476 struct btrfs_key location;
67de1176 3477 unsigned long ptr;
46a53cca 3478 int maybe_acls;
618e21d5 3479 u32 rdev;
39279cc3 3480 int ret;
2f7e33d4 3481 bool filled = false;
63541927 3482 int first_xattr_slot;
2f7e33d4
MX
3483
3484 ret = btrfs_fill_inode(inode, &rdev);
3485 if (!ret)
3486 filled = true;
39279cc3
CM
3487
3488 path = btrfs_alloc_path();
1748f843
MF
3489 if (!path)
3490 goto make_bad;
3491
39279cc3 3492 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3493
39279cc3 3494 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3495 if (ret)
39279cc3 3496 goto make_bad;
39279cc3 3497
5f39d397 3498 leaf = path->nodes[0];
2f7e33d4
MX
3499
3500 if (filled)
67de1176 3501 goto cache_index;
2f7e33d4 3502
5f39d397
CM
3503 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3504 struct btrfs_inode_item);
5f39d397 3505 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3506 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3507 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3508 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3509 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3510
3511 tspec = btrfs_inode_atime(inode_item);
3512 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3513 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3514
3515 tspec = btrfs_inode_mtime(inode_item);
3516 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3517 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3518
3519 tspec = btrfs_inode_ctime(inode_item);
3520 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3521 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3522
a76a3cd4 3523 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3524 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3525 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3526
3527 /*
3528 * If we were modified in the current generation and evicted from memory
3529 * and then re-read we need to do a full sync since we don't have any
3530 * idea about which extents were modified before we were evicted from
3531 * cache.
3532 */
3533 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3534 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3535 &BTRFS_I(inode)->runtime_flags);
3536
0c4d2d95 3537 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3538 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3539 inode->i_rdev = 0;
5f39d397
CM
3540 rdev = btrfs_inode_rdev(leaf, inode_item);
3541
aec7477b 3542 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3543 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3544
3545cache_index:
3546 path->slots[0]++;
3547 if (inode->i_nlink != 1 ||
3548 path->slots[0] >= btrfs_header_nritems(leaf))
3549 goto cache_acl;
3550
3551 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3552 if (location.objectid != btrfs_ino(inode))
3553 goto cache_acl;
3554
3555 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3556 if (location.type == BTRFS_INODE_REF_KEY) {
3557 struct btrfs_inode_ref *ref;
3558
3559 ref = (struct btrfs_inode_ref *)ptr;
3560 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3561 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3562 struct btrfs_inode_extref *extref;
3563
3564 extref = (struct btrfs_inode_extref *)ptr;
3565 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3566 extref);
3567 }
2f7e33d4 3568cache_acl:
46a53cca
CM
3569 /*
3570 * try to precache a NULL acl entry for files that don't have
3571 * any xattrs or acls
3572 */
33345d01 3573 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3574 btrfs_ino(inode), &first_xattr_slot);
3575 if (first_xattr_slot != -1) {
3576 path->slots[0] = first_xattr_slot;
3577 ret = btrfs_load_inode_props(inode, path);
3578 if (ret)
3579 btrfs_err(root->fs_info,
351fd353 3580 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3581 btrfs_ino(inode),
3582 root->root_key.objectid, ret);
3583 }
3584 btrfs_free_path(path);
3585
72c04902
AV
3586 if (!maybe_acls)
3587 cache_no_acl(inode);
46a53cca 3588
39279cc3 3589 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3590 case S_IFREG:
3591 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3592 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3593 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3594 inode->i_fop = &btrfs_file_operations;
3595 inode->i_op = &btrfs_file_inode_operations;
3596 break;
3597 case S_IFDIR:
3598 inode->i_fop = &btrfs_dir_file_operations;
3599 if (root == root->fs_info->tree_root)
3600 inode->i_op = &btrfs_dir_ro_inode_operations;
3601 else
3602 inode->i_op = &btrfs_dir_inode_operations;
3603 break;
3604 case S_IFLNK:
3605 inode->i_op = &btrfs_symlink_inode_operations;
3606 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3607 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3608 break;
618e21d5 3609 default:
0279b4cd 3610 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3611 init_special_inode(inode, inode->i_mode, rdev);
3612 break;
39279cc3 3613 }
6cbff00f
CH
3614
3615 btrfs_update_iflags(inode);
39279cc3
CM
3616 return;
3617
3618make_bad:
39279cc3 3619 btrfs_free_path(path);
39279cc3
CM
3620 make_bad_inode(inode);
3621}
3622
d352ac68
CM
3623/*
3624 * given a leaf and an inode, copy the inode fields into the leaf
3625 */
e02119d5
CM
3626static void fill_inode_item(struct btrfs_trans_handle *trans,
3627 struct extent_buffer *leaf,
5f39d397 3628 struct btrfs_inode_item *item,
39279cc3
CM
3629 struct inode *inode)
3630{
51fab693
LB
3631 struct btrfs_map_token token;
3632
3633 btrfs_init_map_token(&token);
5f39d397 3634
51fab693
LB
3635 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3636 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3637 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3638 &token);
3639 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3640 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3641
51fab693
LB
3642 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3643 inode->i_atime.tv_sec, &token);
3644 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3645 inode->i_atime.tv_nsec, &token);
5f39d397 3646
51fab693
LB
3647 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3648 inode->i_mtime.tv_sec, &token);
3649 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3650 inode->i_mtime.tv_nsec, &token);
5f39d397 3651
51fab693
LB
3652 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3653 inode->i_ctime.tv_sec, &token);
3654 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3655 inode->i_ctime.tv_nsec, &token);
5f39d397 3656
51fab693
LB
3657 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3658 &token);
3659 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3660 &token);
3661 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3662 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3663 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3664 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3665 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3666}
3667
d352ac68
CM
3668/*
3669 * copy everything in the in-memory inode into the btree.
3670 */
2115133f 3671static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3672 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3673{
3674 struct btrfs_inode_item *inode_item;
3675 struct btrfs_path *path;
5f39d397 3676 struct extent_buffer *leaf;
39279cc3
CM
3677 int ret;
3678
3679 path = btrfs_alloc_path();
16cdcec7
MX
3680 if (!path)
3681 return -ENOMEM;
3682
b9473439 3683 path->leave_spinning = 1;
16cdcec7
MX
3684 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3685 1);
39279cc3
CM
3686 if (ret) {
3687 if (ret > 0)
3688 ret = -ENOENT;
3689 goto failed;
3690 }
3691
5f39d397
CM
3692 leaf = path->nodes[0];
3693 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3694 struct btrfs_inode_item);
39279cc3 3695
e02119d5 3696 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3697 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3698 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3699 ret = 0;
3700failed:
39279cc3
CM
3701 btrfs_free_path(path);
3702 return ret;
3703}
3704
2115133f
CM
3705/*
3706 * copy everything in the in-memory inode into the btree.
3707 */
3708noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3709 struct btrfs_root *root, struct inode *inode)
3710{
3711 int ret;
3712
3713 /*
3714 * If the inode is a free space inode, we can deadlock during commit
3715 * if we put it into the delayed code.
3716 *
3717 * The data relocation inode should also be directly updated
3718 * without delay
3719 */
83eea1f1 3720 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3721 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3722 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3723 btrfs_update_root_times(trans, root);
3724
2115133f
CM
3725 ret = btrfs_delayed_update_inode(trans, root, inode);
3726 if (!ret)
3727 btrfs_set_inode_last_trans(trans, inode);
3728 return ret;
3729 }
3730
3731 return btrfs_update_inode_item(trans, root, inode);
3732}
3733
be6aef60
JB
3734noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3735 struct btrfs_root *root,
3736 struct inode *inode)
2115133f
CM
3737{
3738 int ret;
3739
3740 ret = btrfs_update_inode(trans, root, inode);
3741 if (ret == -ENOSPC)
3742 return btrfs_update_inode_item(trans, root, inode);
3743 return ret;
3744}
3745
d352ac68
CM
3746/*
3747 * unlink helper that gets used here in inode.c and in the tree logging
3748 * recovery code. It remove a link in a directory with a given name, and
3749 * also drops the back refs in the inode to the directory
3750 */
92986796
AV
3751static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3752 struct btrfs_root *root,
3753 struct inode *dir, struct inode *inode,
3754 const char *name, int name_len)
39279cc3
CM
3755{
3756 struct btrfs_path *path;
39279cc3 3757 int ret = 0;
5f39d397 3758 struct extent_buffer *leaf;
39279cc3 3759 struct btrfs_dir_item *di;
5f39d397 3760 struct btrfs_key key;
aec7477b 3761 u64 index;
33345d01
LZ
3762 u64 ino = btrfs_ino(inode);
3763 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3764
3765 path = btrfs_alloc_path();
54aa1f4d
CM
3766 if (!path) {
3767 ret = -ENOMEM;
554233a6 3768 goto out;
54aa1f4d
CM
3769 }
3770
b9473439 3771 path->leave_spinning = 1;
33345d01 3772 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3773 name, name_len, -1);
3774 if (IS_ERR(di)) {
3775 ret = PTR_ERR(di);
3776 goto err;
3777 }
3778 if (!di) {
3779 ret = -ENOENT;
3780 goto err;
3781 }
5f39d397
CM
3782 leaf = path->nodes[0];
3783 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3784 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3785 if (ret)
3786 goto err;
b3b4aa74 3787 btrfs_release_path(path);
39279cc3 3788
67de1176
MX
3789 /*
3790 * If we don't have dir index, we have to get it by looking up
3791 * the inode ref, since we get the inode ref, remove it directly,
3792 * it is unnecessary to do delayed deletion.
3793 *
3794 * But if we have dir index, needn't search inode ref to get it.
3795 * Since the inode ref is close to the inode item, it is better
3796 * that we delay to delete it, and just do this deletion when
3797 * we update the inode item.
3798 */
3799 if (BTRFS_I(inode)->dir_index) {
3800 ret = btrfs_delayed_delete_inode_ref(inode);
3801 if (!ret) {
3802 index = BTRFS_I(inode)->dir_index;
3803 goto skip_backref;
3804 }
3805 }
3806
33345d01
LZ
3807 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3808 dir_ino, &index);
aec7477b 3809 if (ret) {
c2cf52eb
SK
3810 btrfs_info(root->fs_info,
3811 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3812 name_len, name, ino, dir_ino);
79787eaa 3813 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3814 goto err;
3815 }
67de1176 3816skip_backref:
16cdcec7 3817 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3818 if (ret) {
3819 btrfs_abort_transaction(trans, root, ret);
39279cc3 3820 goto err;
79787eaa 3821 }
39279cc3 3822
e02119d5 3823 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3824 inode, dir_ino);
79787eaa
JM
3825 if (ret != 0 && ret != -ENOENT) {
3826 btrfs_abort_transaction(trans, root, ret);
3827 goto err;
3828 }
e02119d5
CM
3829
3830 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3831 dir, index);
6418c961
CM
3832 if (ret == -ENOENT)
3833 ret = 0;
d4e3991b
ZB
3834 else if (ret)
3835 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3836err:
3837 btrfs_free_path(path);
e02119d5
CM
3838 if (ret)
3839 goto out;
3840
3841 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3842 inode_inc_iversion(inode);
3843 inode_inc_iversion(dir);
e02119d5 3844 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3845 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3846out:
39279cc3
CM
3847 return ret;
3848}
3849
92986796
AV
3850int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3851 struct btrfs_root *root,
3852 struct inode *dir, struct inode *inode,
3853 const char *name, int name_len)
3854{
3855 int ret;
3856 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3857 if (!ret) {
8b558c5f 3858 drop_nlink(inode);
92986796
AV
3859 ret = btrfs_update_inode(trans, root, inode);
3860 }
3861 return ret;
3862}
39279cc3 3863
a22285a6
YZ
3864/*
3865 * helper to start transaction for unlink and rmdir.
3866 *
d52be818
JB
3867 * unlink and rmdir are special in btrfs, they do not always free space, so
3868 * if we cannot make our reservations the normal way try and see if there is
3869 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3870 * allow the unlink to occur.
a22285a6 3871 */
d52be818 3872static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3873{
39279cc3 3874 struct btrfs_trans_handle *trans;
a22285a6 3875 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3876 int ret;
3877
e70bea5f
JB
3878 /*
3879 * 1 for the possible orphan item
3880 * 1 for the dir item
3881 * 1 for the dir index
3882 * 1 for the inode ref
e70bea5f
JB
3883 * 1 for the inode
3884 */
6e137ed3 3885 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3886 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3887 return trans;
4df27c4d 3888
d52be818
JB
3889 if (PTR_ERR(trans) == -ENOSPC) {
3890 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3891
d52be818
JB
3892 trans = btrfs_start_transaction(root, 0);
3893 if (IS_ERR(trans))
3894 return trans;
3895 ret = btrfs_cond_migrate_bytes(root->fs_info,
3896 &root->fs_info->trans_block_rsv,
3897 num_bytes, 5);
3898 if (ret) {
3899 btrfs_end_transaction(trans, root);
3900 return ERR_PTR(ret);
a22285a6 3901 }
5a77d76c 3902 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3903 trans->bytes_reserved = num_bytes;
a22285a6 3904 }
d52be818 3905 return trans;
a22285a6
YZ
3906}
3907
3908static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3909{
3910 struct btrfs_root *root = BTRFS_I(dir)->root;
3911 struct btrfs_trans_handle *trans;
3912 struct inode *inode = dentry->d_inode;
3913 int ret;
a22285a6 3914
d52be818 3915 trans = __unlink_start_trans(dir);
a22285a6
YZ
3916 if (IS_ERR(trans))
3917 return PTR_ERR(trans);
5f39d397 3918
12fcfd22
CM
3919 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3920
e02119d5
CM
3921 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3922 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3923 if (ret)
3924 goto out;
7b128766 3925
a22285a6 3926 if (inode->i_nlink == 0) {
7b128766 3927 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3928 if (ret)
3929 goto out;
a22285a6 3930 }
7b128766 3931
b532402e 3932out:
d52be818 3933 btrfs_end_transaction(trans, root);
b53d3f5d 3934 btrfs_btree_balance_dirty(root);
39279cc3
CM
3935 return ret;
3936}
3937
4df27c4d
YZ
3938int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3939 struct btrfs_root *root,
3940 struct inode *dir, u64 objectid,
3941 const char *name, int name_len)
3942{
3943 struct btrfs_path *path;
3944 struct extent_buffer *leaf;
3945 struct btrfs_dir_item *di;
3946 struct btrfs_key key;
3947 u64 index;
3948 int ret;
33345d01 3949 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3950
3951 path = btrfs_alloc_path();
3952 if (!path)
3953 return -ENOMEM;
3954
33345d01 3955 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3956 name, name_len, -1);
79787eaa
JM
3957 if (IS_ERR_OR_NULL(di)) {
3958 if (!di)
3959 ret = -ENOENT;
3960 else
3961 ret = PTR_ERR(di);
3962 goto out;
3963 }
4df27c4d
YZ
3964
3965 leaf = path->nodes[0];
3966 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3967 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3968 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3969 if (ret) {
3970 btrfs_abort_transaction(trans, root, ret);
3971 goto out;
3972 }
b3b4aa74 3973 btrfs_release_path(path);
4df27c4d
YZ
3974
3975 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3976 objectid, root->root_key.objectid,
33345d01 3977 dir_ino, &index, name, name_len);
4df27c4d 3978 if (ret < 0) {
79787eaa
JM
3979 if (ret != -ENOENT) {
3980 btrfs_abort_transaction(trans, root, ret);
3981 goto out;
3982 }
33345d01 3983 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3984 name, name_len);
79787eaa
JM
3985 if (IS_ERR_OR_NULL(di)) {
3986 if (!di)
3987 ret = -ENOENT;
3988 else
3989 ret = PTR_ERR(di);
3990 btrfs_abort_transaction(trans, root, ret);
3991 goto out;
3992 }
4df27c4d
YZ
3993
3994 leaf = path->nodes[0];
3995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3996 btrfs_release_path(path);
4df27c4d
YZ
3997 index = key.offset;
3998 }
945d8962 3999 btrfs_release_path(path);
4df27c4d 4000
16cdcec7 4001 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4002 if (ret) {
4003 btrfs_abort_transaction(trans, root, ret);
4004 goto out;
4005 }
4df27c4d
YZ
4006
4007 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4008 inode_inc_iversion(dir);
4df27c4d 4009 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4010 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4011 if (ret)
4012 btrfs_abort_transaction(trans, root, ret);
4013out:
71d7aed0 4014 btrfs_free_path(path);
79787eaa 4015 return ret;
4df27c4d
YZ
4016}
4017
39279cc3
CM
4018static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4019{
4020 struct inode *inode = dentry->d_inode;
1832a6d5 4021 int err = 0;
39279cc3 4022 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4023 struct btrfs_trans_handle *trans;
39279cc3 4024
b3ae244e 4025 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4026 return -ENOTEMPTY;
b3ae244e
DS
4027 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4028 return -EPERM;
134d4512 4029
d52be818 4030 trans = __unlink_start_trans(dir);
a22285a6 4031 if (IS_ERR(trans))
5df6a9f6 4032 return PTR_ERR(trans);
5df6a9f6 4033
33345d01 4034 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4035 err = btrfs_unlink_subvol(trans, root, dir,
4036 BTRFS_I(inode)->location.objectid,
4037 dentry->d_name.name,
4038 dentry->d_name.len);
4039 goto out;
4040 }
4041
7b128766
JB
4042 err = btrfs_orphan_add(trans, inode);
4043 if (err)
4df27c4d 4044 goto out;
7b128766 4045
39279cc3 4046 /* now the directory is empty */
e02119d5
CM
4047 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4048 dentry->d_name.name, dentry->d_name.len);
d397712b 4049 if (!err)
dbe674a9 4050 btrfs_i_size_write(inode, 0);
4df27c4d 4051out:
d52be818 4052 btrfs_end_transaction(trans, root);
b53d3f5d 4053 btrfs_btree_balance_dirty(root);
3954401f 4054
39279cc3
CM
4055 return err;
4056}
4057
39279cc3
CM
4058/*
4059 * this can truncate away extent items, csum items and directory items.
4060 * It starts at a high offset and removes keys until it can't find
d352ac68 4061 * any higher than new_size
39279cc3
CM
4062 *
4063 * csum items that cross the new i_size are truncated to the new size
4064 * as well.
7b128766
JB
4065 *
4066 * min_type is the minimum key type to truncate down to. If set to 0, this
4067 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4068 */
8082510e
YZ
4069int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4070 struct btrfs_root *root,
4071 struct inode *inode,
4072 u64 new_size, u32 min_type)
39279cc3 4073{
39279cc3 4074 struct btrfs_path *path;
5f39d397 4075 struct extent_buffer *leaf;
39279cc3 4076 struct btrfs_file_extent_item *fi;
8082510e
YZ
4077 struct btrfs_key key;
4078 struct btrfs_key found_key;
39279cc3 4079 u64 extent_start = 0;
db94535d 4080 u64 extent_num_bytes = 0;
5d4f98a2 4081 u64 extent_offset = 0;
39279cc3 4082 u64 item_end = 0;
7f4f6e0a 4083 u64 last_size = (u64)-1;
8082510e 4084 u32 found_type = (u8)-1;
39279cc3
CM
4085 int found_extent;
4086 int del_item;
85e21bac
CM
4087 int pending_del_nr = 0;
4088 int pending_del_slot = 0;
179e29e4 4089 int extent_type = -1;
8082510e
YZ
4090 int ret;
4091 int err = 0;
33345d01 4092 u64 ino = btrfs_ino(inode);
8082510e
YZ
4093
4094 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4095
0eb0e19c
MF
4096 path = btrfs_alloc_path();
4097 if (!path)
4098 return -ENOMEM;
4099 path->reada = -1;
4100
5dc562c5
JB
4101 /*
4102 * We want to drop from the next block forward in case this new size is
4103 * not block aligned since we will be keeping the last block of the
4104 * extent just the way it is.
4105 */
27cdeb70
MX
4106 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4107 root == root->fs_info->tree_root)
fda2832f
QW
4108 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4109 root->sectorsize), (u64)-1, 0);
8082510e 4110
16cdcec7
MX
4111 /*
4112 * This function is also used to drop the items in the log tree before
4113 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4114 * it is used to drop the loged items. So we shouldn't kill the delayed
4115 * items.
4116 */
4117 if (min_type == 0 && root == BTRFS_I(inode)->root)
4118 btrfs_kill_delayed_inode_items(inode);
4119
33345d01 4120 key.objectid = ino;
39279cc3 4121 key.offset = (u64)-1;
5f39d397
CM
4122 key.type = (u8)-1;
4123
85e21bac 4124search_again:
b9473439 4125 path->leave_spinning = 1;
85e21bac 4126 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4127 if (ret < 0) {
4128 err = ret;
4129 goto out;
4130 }
d397712b 4131
85e21bac 4132 if (ret > 0) {
e02119d5
CM
4133 /* there are no items in the tree for us to truncate, we're
4134 * done
4135 */
8082510e
YZ
4136 if (path->slots[0] == 0)
4137 goto out;
85e21bac
CM
4138 path->slots[0]--;
4139 }
4140
d397712b 4141 while (1) {
39279cc3 4142 fi = NULL;
5f39d397
CM
4143 leaf = path->nodes[0];
4144 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4145 found_type = found_key.type;
39279cc3 4146
33345d01 4147 if (found_key.objectid != ino)
39279cc3 4148 break;
5f39d397 4149
85e21bac 4150 if (found_type < min_type)
39279cc3
CM
4151 break;
4152
5f39d397 4153 item_end = found_key.offset;
39279cc3 4154 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4155 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4156 struct btrfs_file_extent_item);
179e29e4
CM
4157 extent_type = btrfs_file_extent_type(leaf, fi);
4158 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4159 item_end +=
db94535d 4160 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4161 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4162 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4163 path->slots[0], fi);
39279cc3 4164 }
008630c1 4165 item_end--;
39279cc3 4166 }
8082510e
YZ
4167 if (found_type > min_type) {
4168 del_item = 1;
4169 } else {
4170 if (item_end < new_size)
b888db2b 4171 break;
8082510e
YZ
4172 if (found_key.offset >= new_size)
4173 del_item = 1;
4174 else
4175 del_item = 0;
39279cc3 4176 }
39279cc3 4177 found_extent = 0;
39279cc3 4178 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4179 if (found_type != BTRFS_EXTENT_DATA_KEY)
4180 goto delete;
4181
7f4f6e0a
JB
4182 if (del_item)
4183 last_size = found_key.offset;
4184 else
4185 last_size = new_size;
4186
179e29e4 4187 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4188 u64 num_dec;
db94535d 4189 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4190 if (!del_item) {
db94535d
CM
4191 u64 orig_num_bytes =
4192 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4193 extent_num_bytes = ALIGN(new_size -
4194 found_key.offset,
4195 root->sectorsize);
db94535d
CM
4196 btrfs_set_file_extent_num_bytes(leaf, fi,
4197 extent_num_bytes);
4198 num_dec = (orig_num_bytes -
9069218d 4199 extent_num_bytes);
27cdeb70
MX
4200 if (test_bit(BTRFS_ROOT_REF_COWS,
4201 &root->state) &&
4202 extent_start != 0)
a76a3cd4 4203 inode_sub_bytes(inode, num_dec);
5f39d397 4204 btrfs_mark_buffer_dirty(leaf);
39279cc3 4205 } else {
db94535d
CM
4206 extent_num_bytes =
4207 btrfs_file_extent_disk_num_bytes(leaf,
4208 fi);
5d4f98a2
YZ
4209 extent_offset = found_key.offset -
4210 btrfs_file_extent_offset(leaf, fi);
4211
39279cc3 4212 /* FIXME blocksize != 4096 */
9069218d 4213 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4214 if (extent_start != 0) {
4215 found_extent = 1;
27cdeb70
MX
4216 if (test_bit(BTRFS_ROOT_REF_COWS,
4217 &root->state))
a76a3cd4 4218 inode_sub_bytes(inode, num_dec);
e02119d5 4219 }
39279cc3 4220 }
9069218d 4221 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4222 /*
4223 * we can't truncate inline items that have had
4224 * special encodings
4225 */
4226 if (!del_item &&
4227 btrfs_file_extent_compression(leaf, fi) == 0 &&
4228 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4229 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4230 u32 size = new_size - found_key.offset;
4231
27cdeb70 4232 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
a76a3cd4
YZ
4233 inode_sub_bytes(inode, item_end + 1 -
4234 new_size);
514ac8ad
CM
4235
4236 /*
4237 * update the ram bytes to properly reflect
4238 * the new size of our item
4239 */
4240 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4241 size =
4242 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4243 btrfs_truncate_item(root, path, size, 1);
27cdeb70
MX
4244 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4245 &root->state)) {
a76a3cd4
YZ
4246 inode_sub_bytes(inode, item_end + 1 -
4247 found_key.offset);
9069218d 4248 }
39279cc3 4249 }
179e29e4 4250delete:
39279cc3 4251 if (del_item) {
85e21bac
CM
4252 if (!pending_del_nr) {
4253 /* no pending yet, add ourselves */
4254 pending_del_slot = path->slots[0];
4255 pending_del_nr = 1;
4256 } else if (pending_del_nr &&
4257 path->slots[0] + 1 == pending_del_slot) {
4258 /* hop on the pending chunk */
4259 pending_del_nr++;
4260 pending_del_slot = path->slots[0];
4261 } else {
d397712b 4262 BUG();
85e21bac 4263 }
39279cc3
CM
4264 } else {
4265 break;
4266 }
27cdeb70
MX
4267 if (found_extent &&
4268 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4269 root == root->fs_info->tree_root)) {
b9473439 4270 btrfs_set_path_blocking(path);
39279cc3 4271 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4272 extent_num_bytes, 0,
4273 btrfs_header_owner(leaf),
66d7e7f0 4274 ino, extent_offset, 0);
39279cc3
CM
4275 BUG_ON(ret);
4276 }
85e21bac 4277
8082510e
YZ
4278 if (found_type == BTRFS_INODE_ITEM_KEY)
4279 break;
4280
4281 if (path->slots[0] == 0 ||
4282 path->slots[0] != pending_del_slot) {
8082510e
YZ
4283 if (pending_del_nr) {
4284 ret = btrfs_del_items(trans, root, path,
4285 pending_del_slot,
4286 pending_del_nr);
79787eaa
JM
4287 if (ret) {
4288 btrfs_abort_transaction(trans,
4289 root, ret);
4290 goto error;
4291 }
8082510e
YZ
4292 pending_del_nr = 0;
4293 }
b3b4aa74 4294 btrfs_release_path(path);
85e21bac 4295 goto search_again;
8082510e
YZ
4296 } else {
4297 path->slots[0]--;
85e21bac 4298 }
39279cc3 4299 }
8082510e 4300out:
85e21bac
CM
4301 if (pending_del_nr) {
4302 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4303 pending_del_nr);
79787eaa
JM
4304 if (ret)
4305 btrfs_abort_transaction(trans, root, ret);
85e21bac 4306 }
79787eaa 4307error:
dac5705c
FM
4308 if (last_size != (u64)-1 &&
4309 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4310 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4311 btrfs_free_path(path);
8082510e 4312 return err;
39279cc3
CM
4313}
4314
4315/*
2aaa6655
JB
4316 * btrfs_truncate_page - read, zero a chunk and write a page
4317 * @inode - inode that we're zeroing
4318 * @from - the offset to start zeroing
4319 * @len - the length to zero, 0 to zero the entire range respective to the
4320 * offset
4321 * @front - zero up to the offset instead of from the offset on
4322 *
4323 * This will find the page for the "from" offset and cow the page and zero the
4324 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4325 */
2aaa6655
JB
4326int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4327 int front)
39279cc3 4328{
2aaa6655 4329 struct address_space *mapping = inode->i_mapping;
db94535d 4330 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4331 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4332 struct btrfs_ordered_extent *ordered;
2ac55d41 4333 struct extent_state *cached_state = NULL;
e6dcd2dc 4334 char *kaddr;
db94535d 4335 u32 blocksize = root->sectorsize;
39279cc3
CM
4336 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4337 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4338 struct page *page;
3b16a4e3 4339 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4340 int ret = 0;
a52d9a80 4341 u64 page_start;
e6dcd2dc 4342 u64 page_end;
39279cc3 4343
2aaa6655
JB
4344 if ((offset & (blocksize - 1)) == 0 &&
4345 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4346 goto out;
0ca1f7ce 4347 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4348 if (ret)
4349 goto out;
39279cc3 4350
211c17f5 4351again:
3b16a4e3 4352 page = find_or_create_page(mapping, index, mask);
5d5e103a 4353 if (!page) {
0ca1f7ce 4354 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4355 ret = -ENOMEM;
39279cc3 4356 goto out;
5d5e103a 4357 }
e6dcd2dc
CM
4358
4359 page_start = page_offset(page);
4360 page_end = page_start + PAGE_CACHE_SIZE - 1;
4361
39279cc3 4362 if (!PageUptodate(page)) {
9ebefb18 4363 ret = btrfs_readpage(NULL, page);
39279cc3 4364 lock_page(page);
211c17f5
CM
4365 if (page->mapping != mapping) {
4366 unlock_page(page);
4367 page_cache_release(page);
4368 goto again;
4369 }
39279cc3
CM
4370 if (!PageUptodate(page)) {
4371 ret = -EIO;
89642229 4372 goto out_unlock;
39279cc3
CM
4373 }
4374 }
211c17f5 4375 wait_on_page_writeback(page);
e6dcd2dc 4376
d0082371 4377 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4378 set_page_extent_mapped(page);
4379
4380 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4381 if (ordered) {
2ac55d41
JB
4382 unlock_extent_cached(io_tree, page_start, page_end,
4383 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4384 unlock_page(page);
4385 page_cache_release(page);
eb84ae03 4386 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4387 btrfs_put_ordered_extent(ordered);
4388 goto again;
4389 }
4390
2ac55d41 4391 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4392 EXTENT_DIRTY | EXTENT_DELALLOC |
4393 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4394 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4395
2ac55d41
JB
4396 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4397 &cached_state);
9ed74f2d 4398 if (ret) {
2ac55d41
JB
4399 unlock_extent_cached(io_tree, page_start, page_end,
4400 &cached_state, GFP_NOFS);
9ed74f2d
JB
4401 goto out_unlock;
4402 }
4403
e6dcd2dc 4404 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4405 if (!len)
4406 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4407 kaddr = kmap(page);
2aaa6655
JB
4408 if (front)
4409 memset(kaddr, 0, offset);
4410 else
4411 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4412 flush_dcache_page(page);
4413 kunmap(page);
4414 }
247e743c 4415 ClearPageChecked(page);
e6dcd2dc 4416 set_page_dirty(page);
2ac55d41
JB
4417 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4418 GFP_NOFS);
39279cc3 4419
89642229 4420out_unlock:
5d5e103a 4421 if (ret)
0ca1f7ce 4422 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4423 unlock_page(page);
4424 page_cache_release(page);
4425out:
4426 return ret;
4427}
4428
16e7549f
JB
4429static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4430 u64 offset, u64 len)
4431{
4432 struct btrfs_trans_handle *trans;
4433 int ret;
4434
4435 /*
4436 * Still need to make sure the inode looks like it's been updated so
4437 * that any holes get logged if we fsync.
4438 */
4439 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4440 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4441 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4442 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4443 return 0;
4444 }
4445
4446 /*
4447 * 1 - for the one we're dropping
4448 * 1 - for the one we're adding
4449 * 1 - for updating the inode.
4450 */
4451 trans = btrfs_start_transaction(root, 3);
4452 if (IS_ERR(trans))
4453 return PTR_ERR(trans);
4454
4455 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4456 if (ret) {
4457 btrfs_abort_transaction(trans, root, ret);
4458 btrfs_end_transaction(trans, root);
4459 return ret;
4460 }
4461
4462 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4463 0, 0, len, 0, len, 0, 0, 0);
4464 if (ret)
4465 btrfs_abort_transaction(trans, root, ret);
4466 else
4467 btrfs_update_inode(trans, root, inode);
4468 btrfs_end_transaction(trans, root);
4469 return ret;
4470}
4471
695a0d0d
JB
4472/*
4473 * This function puts in dummy file extents for the area we're creating a hole
4474 * for. So if we are truncating this file to a larger size we need to insert
4475 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4476 * the range between oldsize and size
4477 */
a41ad394 4478int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4479{
9036c102
YZ
4480 struct btrfs_root *root = BTRFS_I(inode)->root;
4481 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4482 struct extent_map *em = NULL;
2ac55d41 4483 struct extent_state *cached_state = NULL;
5dc562c5 4484 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4485 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4486 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4487 u64 last_byte;
4488 u64 cur_offset;
4489 u64 hole_size;
9ed74f2d 4490 int err = 0;
39279cc3 4491
a71754fc
JB
4492 /*
4493 * If our size started in the middle of a page we need to zero out the
4494 * rest of the page before we expand the i_size, otherwise we could
4495 * expose stale data.
4496 */
4497 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4498 if (err)
4499 return err;
4500
9036c102
YZ
4501 if (size <= hole_start)
4502 return 0;
4503
9036c102
YZ
4504 while (1) {
4505 struct btrfs_ordered_extent *ordered;
fa7c1494 4506
2ac55d41 4507 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4508 &cached_state);
fa7c1494
MX
4509 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4510 block_end - hole_start);
9036c102
YZ
4511 if (!ordered)
4512 break;
2ac55d41
JB
4513 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4514 &cached_state, GFP_NOFS);
fa7c1494 4515 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4516 btrfs_put_ordered_extent(ordered);
4517 }
39279cc3 4518
9036c102
YZ
4519 cur_offset = hole_start;
4520 while (1) {
4521 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4522 block_end - cur_offset, 0);
79787eaa
JM
4523 if (IS_ERR(em)) {
4524 err = PTR_ERR(em);
f2767956 4525 em = NULL;
79787eaa
JM
4526 break;
4527 }
9036c102 4528 last_byte = min(extent_map_end(em), block_end);
fda2832f 4529 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4530 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4531 struct extent_map *hole_em;
9036c102 4532 hole_size = last_byte - cur_offset;
9ed74f2d 4533
16e7549f
JB
4534 err = maybe_insert_hole(root, inode, cur_offset,
4535 hole_size);
4536 if (err)
3893e33b 4537 break;
5dc562c5
JB
4538 btrfs_drop_extent_cache(inode, cur_offset,
4539 cur_offset + hole_size - 1, 0);
4540 hole_em = alloc_extent_map();
4541 if (!hole_em) {
4542 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4543 &BTRFS_I(inode)->runtime_flags);
4544 goto next;
4545 }
4546 hole_em->start = cur_offset;
4547 hole_em->len = hole_size;
4548 hole_em->orig_start = cur_offset;
8082510e 4549
5dc562c5
JB
4550 hole_em->block_start = EXTENT_MAP_HOLE;
4551 hole_em->block_len = 0;
b4939680 4552 hole_em->orig_block_len = 0;
cc95bef6 4553 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4554 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4555 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4556 hole_em->generation = root->fs_info->generation;
8082510e 4557
5dc562c5
JB
4558 while (1) {
4559 write_lock(&em_tree->lock);
09a2a8f9 4560 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4561 write_unlock(&em_tree->lock);
4562 if (err != -EEXIST)
4563 break;
4564 btrfs_drop_extent_cache(inode, cur_offset,
4565 cur_offset +
4566 hole_size - 1, 0);
4567 }
4568 free_extent_map(hole_em);
9036c102 4569 }
16e7549f 4570next:
9036c102 4571 free_extent_map(em);
a22285a6 4572 em = NULL;
9036c102 4573 cur_offset = last_byte;
8082510e 4574 if (cur_offset >= block_end)
9036c102
YZ
4575 break;
4576 }
a22285a6 4577 free_extent_map(em);
2ac55d41
JB
4578 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4579 GFP_NOFS);
9036c102
YZ
4580 return err;
4581}
39279cc3 4582
3972f260 4583static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4584{
f4a2f4c5
MX
4585 struct btrfs_root *root = BTRFS_I(inode)->root;
4586 struct btrfs_trans_handle *trans;
a41ad394 4587 loff_t oldsize = i_size_read(inode);
3972f260
ES
4588 loff_t newsize = attr->ia_size;
4589 int mask = attr->ia_valid;
8082510e
YZ
4590 int ret;
4591
3972f260
ES
4592 /*
4593 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4594 * special case where we need to update the times despite not having
4595 * these flags set. For all other operations the VFS set these flags
4596 * explicitly if it wants a timestamp update.
4597 */
dff6efc3
CH
4598 if (newsize != oldsize) {
4599 inode_inc_iversion(inode);
4600 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4601 inode->i_ctime = inode->i_mtime =
4602 current_fs_time(inode->i_sb);
4603 }
3972f260 4604
a41ad394 4605 if (newsize > oldsize) {
7caef267 4606 truncate_pagecache(inode, newsize);
a41ad394 4607 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4608 if (ret)
8082510e 4609 return ret;
8082510e 4610
f4a2f4c5
MX
4611 trans = btrfs_start_transaction(root, 1);
4612 if (IS_ERR(trans))
4613 return PTR_ERR(trans);
4614
4615 i_size_write(inode, newsize);
4616 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4617 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4618 btrfs_end_transaction(trans, root);
a41ad394 4619 } else {
8082510e 4620
a41ad394
JB
4621 /*
4622 * We're truncating a file that used to have good data down to
4623 * zero. Make sure it gets into the ordered flush list so that
4624 * any new writes get down to disk quickly.
4625 */
4626 if (newsize == 0)
72ac3c0d
JB
4627 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4628 &BTRFS_I(inode)->runtime_flags);
8082510e 4629
f3fe820c
JB
4630 /*
4631 * 1 for the orphan item we're going to add
4632 * 1 for the orphan item deletion.
4633 */
4634 trans = btrfs_start_transaction(root, 2);
4635 if (IS_ERR(trans))
4636 return PTR_ERR(trans);
4637
4638 /*
4639 * We need to do this in case we fail at _any_ point during the
4640 * actual truncate. Once we do the truncate_setsize we could
4641 * invalidate pages which forces any outstanding ordered io to
4642 * be instantly completed which will give us extents that need
4643 * to be truncated. If we fail to get an orphan inode down we
4644 * could have left over extents that were never meant to live,
4645 * so we need to garuntee from this point on that everything
4646 * will be consistent.
4647 */
4648 ret = btrfs_orphan_add(trans, inode);
4649 btrfs_end_transaction(trans, root);
4650 if (ret)
4651 return ret;
4652
a41ad394
JB
4653 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4654 truncate_setsize(inode, newsize);
2e60a51e
MX
4655
4656 /* Disable nonlocked read DIO to avoid the end less truncate */
4657 btrfs_inode_block_unlocked_dio(inode);
4658 inode_dio_wait(inode);
4659 btrfs_inode_resume_unlocked_dio(inode);
4660
a41ad394 4661 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4662 if (ret && inode->i_nlink) {
4663 int err;
4664
4665 /*
4666 * failed to truncate, disk_i_size is only adjusted down
4667 * as we remove extents, so it should represent the true
4668 * size of the inode, so reset the in memory size and
4669 * delete our orphan entry.
4670 */
4671 trans = btrfs_join_transaction(root);
4672 if (IS_ERR(trans)) {
4673 btrfs_orphan_del(NULL, inode);
4674 return ret;
4675 }
4676 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4677 err = btrfs_orphan_del(trans, inode);
4678 if (err)
4679 btrfs_abort_transaction(trans, root, err);
4680 btrfs_end_transaction(trans, root);
4681 }
8082510e
YZ
4682 }
4683
a41ad394 4684 return ret;
8082510e
YZ
4685}
4686
9036c102
YZ
4687static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4688{
4689 struct inode *inode = dentry->d_inode;
b83cc969 4690 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4691 int err;
39279cc3 4692
b83cc969
LZ
4693 if (btrfs_root_readonly(root))
4694 return -EROFS;
4695
9036c102
YZ
4696 err = inode_change_ok(inode, attr);
4697 if (err)
4698 return err;
2bf5a725 4699
5a3f23d5 4700 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4701 err = btrfs_setsize(inode, attr);
8082510e
YZ
4702 if (err)
4703 return err;
39279cc3 4704 }
9036c102 4705
1025774c
CH
4706 if (attr->ia_valid) {
4707 setattr_copy(inode, attr);
0c4d2d95 4708 inode_inc_iversion(inode);
22c44fe6 4709 err = btrfs_dirty_inode(inode);
1025774c 4710
22c44fe6 4711 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4712 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4713 }
33268eaf 4714
39279cc3
CM
4715 return err;
4716}
61295eb8 4717
131e404a
FDBM
4718/*
4719 * While truncating the inode pages during eviction, we get the VFS calling
4720 * btrfs_invalidatepage() against each page of the inode. This is slow because
4721 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4722 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4723 * extent_state structures over and over, wasting lots of time.
4724 *
4725 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4726 * those expensive operations on a per page basis and do only the ordered io
4727 * finishing, while we release here the extent_map and extent_state structures,
4728 * without the excessive merging and splitting.
4729 */
4730static void evict_inode_truncate_pages(struct inode *inode)
4731{
4732 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4733 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4734 struct rb_node *node;
4735
4736 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4737 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4738
4739 write_lock(&map_tree->lock);
4740 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4741 struct extent_map *em;
4742
4743 node = rb_first(&map_tree->map);
4744 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4745 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4746 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4747 remove_extent_mapping(map_tree, em);
4748 free_extent_map(em);
7064dd5c
FM
4749 if (need_resched()) {
4750 write_unlock(&map_tree->lock);
4751 cond_resched();
4752 write_lock(&map_tree->lock);
4753 }
131e404a
FDBM
4754 }
4755 write_unlock(&map_tree->lock);
4756
4757 spin_lock(&io_tree->lock);
4758 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4759 struct extent_state *state;
4760 struct extent_state *cached_state = NULL;
4761
4762 node = rb_first(&io_tree->state);
4763 state = rb_entry(node, struct extent_state, rb_node);
4764 atomic_inc(&state->refs);
4765 spin_unlock(&io_tree->lock);
4766
4767 lock_extent_bits(io_tree, state->start, state->end,
4768 0, &cached_state);
4769 clear_extent_bit(io_tree, state->start, state->end,
4770 EXTENT_LOCKED | EXTENT_DIRTY |
4771 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4772 EXTENT_DEFRAG, 1, 1,
4773 &cached_state, GFP_NOFS);
4774 free_extent_state(state);
4775
7064dd5c 4776 cond_resched();
131e404a
FDBM
4777 spin_lock(&io_tree->lock);
4778 }
4779 spin_unlock(&io_tree->lock);
4780}
4781
bd555975 4782void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4783{
4784 struct btrfs_trans_handle *trans;
4785 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4786 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4787 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4788 int ret;
4789
1abe9b8a 4790 trace_btrfs_inode_evict(inode);
4791
131e404a
FDBM
4792 evict_inode_truncate_pages(inode);
4793
69e9c6c6
SB
4794 if (inode->i_nlink &&
4795 ((btrfs_root_refs(&root->root_item) != 0 &&
4796 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4797 btrfs_is_free_space_inode(inode)))
bd555975
AV
4798 goto no_delete;
4799
39279cc3 4800 if (is_bad_inode(inode)) {
7b128766 4801 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4802 goto no_delete;
4803 }
bd555975 4804 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4805 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4806
f612496b
MX
4807 btrfs_free_io_failure_record(inode, 0, (u64)-1);
4808
c71bf099 4809 if (root->fs_info->log_root_recovering) {
6bf02314 4810 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4811 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4812 goto no_delete;
4813 }
4814
76dda93c 4815 if (inode->i_nlink > 0) {
69e9c6c6
SB
4816 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4817 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4818 goto no_delete;
4819 }
4820
0e8c36a9
MX
4821 ret = btrfs_commit_inode_delayed_inode(inode);
4822 if (ret) {
4823 btrfs_orphan_del(NULL, inode);
4824 goto no_delete;
4825 }
4826
66d8f3dd 4827 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4828 if (!rsv) {
4829 btrfs_orphan_del(NULL, inode);
4830 goto no_delete;
4831 }
4a338542 4832 rsv->size = min_size;
ca7e70f5 4833 rsv->failfast = 1;
726c35fa 4834 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4835
dbe674a9 4836 btrfs_i_size_write(inode, 0);
5f39d397 4837
4289a667 4838 /*
8407aa46
MX
4839 * This is a bit simpler than btrfs_truncate since we've already
4840 * reserved our space for our orphan item in the unlink, so we just
4841 * need to reserve some slack space in case we add bytes and update
4842 * inode item when doing the truncate.
4289a667 4843 */
8082510e 4844 while (1) {
08e007d2
MX
4845 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4846 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4847
4848 /*
4849 * Try and steal from the global reserve since we will
4850 * likely not use this space anyway, we want to try as
4851 * hard as possible to get this to work.
4852 */
4853 if (ret)
4854 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4855
d68fc57b 4856 if (ret) {
c2cf52eb
SK
4857 btrfs_warn(root->fs_info,
4858 "Could not get space for a delete, will truncate on mount %d",
4859 ret);
4289a667
JB
4860 btrfs_orphan_del(NULL, inode);
4861 btrfs_free_block_rsv(root, rsv);
4862 goto no_delete;
d68fc57b 4863 }
7b128766 4864
0e8c36a9 4865 trans = btrfs_join_transaction(root);
4289a667
JB
4866 if (IS_ERR(trans)) {
4867 btrfs_orphan_del(NULL, inode);
4868 btrfs_free_block_rsv(root, rsv);
4869 goto no_delete;
d68fc57b 4870 }
7b128766 4871
4289a667
JB
4872 trans->block_rsv = rsv;
4873
d68fc57b 4874 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4875 if (ret != -ENOSPC)
8082510e 4876 break;
85e21bac 4877
8407aa46 4878 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4879 btrfs_end_transaction(trans, root);
4880 trans = NULL;
b53d3f5d 4881 btrfs_btree_balance_dirty(root);
8082510e 4882 }
5f39d397 4883
4289a667
JB
4884 btrfs_free_block_rsv(root, rsv);
4885
4ef31a45
JB
4886 /*
4887 * Errors here aren't a big deal, it just means we leave orphan items
4888 * in the tree. They will be cleaned up on the next mount.
4889 */
8082510e 4890 if (ret == 0) {
4289a667 4891 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4892 btrfs_orphan_del(trans, inode);
4893 } else {
4894 btrfs_orphan_del(NULL, inode);
8082510e 4895 }
54aa1f4d 4896
4289a667 4897 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4898 if (!(root == root->fs_info->tree_root ||
4899 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4900 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4901
54aa1f4d 4902 btrfs_end_transaction(trans, root);
b53d3f5d 4903 btrfs_btree_balance_dirty(root);
39279cc3 4904no_delete:
89042e5a 4905 btrfs_remove_delayed_node(inode);
dbd5768f 4906 clear_inode(inode);
8082510e 4907 return;
39279cc3
CM
4908}
4909
4910/*
4911 * this returns the key found in the dir entry in the location pointer.
4912 * If no dir entries were found, location->objectid is 0.
4913 */
4914static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4915 struct btrfs_key *location)
4916{
4917 const char *name = dentry->d_name.name;
4918 int namelen = dentry->d_name.len;
4919 struct btrfs_dir_item *di;
4920 struct btrfs_path *path;
4921 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4922 int ret = 0;
39279cc3
CM
4923
4924 path = btrfs_alloc_path();
d8926bb3
MF
4925 if (!path)
4926 return -ENOMEM;
3954401f 4927
33345d01 4928 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4929 namelen, 0);
0d9f7f3e
Y
4930 if (IS_ERR(di))
4931 ret = PTR_ERR(di);
d397712b 4932
c704005d 4933 if (IS_ERR_OR_NULL(di))
3954401f 4934 goto out_err;
d397712b 4935
5f39d397 4936 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4937out:
39279cc3
CM
4938 btrfs_free_path(path);
4939 return ret;
3954401f
CM
4940out_err:
4941 location->objectid = 0;
4942 goto out;
39279cc3
CM
4943}
4944
4945/*
4946 * when we hit a tree root in a directory, the btrfs part of the inode
4947 * needs to be changed to reflect the root directory of the tree root. This
4948 * is kind of like crossing a mount point.
4949 */
4950static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4951 struct inode *dir,
4952 struct dentry *dentry,
4953 struct btrfs_key *location,
4954 struct btrfs_root **sub_root)
39279cc3 4955{
4df27c4d
YZ
4956 struct btrfs_path *path;
4957 struct btrfs_root *new_root;
4958 struct btrfs_root_ref *ref;
4959 struct extent_buffer *leaf;
4960 int ret;
4961 int err = 0;
39279cc3 4962
4df27c4d
YZ
4963 path = btrfs_alloc_path();
4964 if (!path) {
4965 err = -ENOMEM;
4966 goto out;
4967 }
39279cc3 4968
4df27c4d 4969 err = -ENOENT;
75ac2dd9
KN
4970 ret = btrfs_find_item(root->fs_info->tree_root, path,
4971 BTRFS_I(dir)->root->root_key.objectid,
4972 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4df27c4d
YZ
4973 if (ret) {
4974 if (ret < 0)
4975 err = ret;
4976 goto out;
4977 }
39279cc3 4978
4df27c4d
YZ
4979 leaf = path->nodes[0];
4980 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4981 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4982 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4983 goto out;
39279cc3 4984
4df27c4d
YZ
4985 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4986 (unsigned long)(ref + 1),
4987 dentry->d_name.len);
4988 if (ret)
4989 goto out;
4990
b3b4aa74 4991 btrfs_release_path(path);
4df27c4d
YZ
4992
4993 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4994 if (IS_ERR(new_root)) {
4995 err = PTR_ERR(new_root);
4996 goto out;
4997 }
4998
4df27c4d
YZ
4999 *sub_root = new_root;
5000 location->objectid = btrfs_root_dirid(&new_root->root_item);
5001 location->type = BTRFS_INODE_ITEM_KEY;
5002 location->offset = 0;
5003 err = 0;
5004out:
5005 btrfs_free_path(path);
5006 return err;
39279cc3
CM
5007}
5008
5d4f98a2
YZ
5009static void inode_tree_add(struct inode *inode)
5010{
5011 struct btrfs_root *root = BTRFS_I(inode)->root;
5012 struct btrfs_inode *entry;
03e860bd
FNP
5013 struct rb_node **p;
5014 struct rb_node *parent;
cef21937 5015 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5016 u64 ino = btrfs_ino(inode);
5d4f98a2 5017
1d3382cb 5018 if (inode_unhashed(inode))
76dda93c 5019 return;
e1409cef 5020 parent = NULL;
5d4f98a2 5021 spin_lock(&root->inode_lock);
e1409cef 5022 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5023 while (*p) {
5024 parent = *p;
5025 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5026
33345d01 5027 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5028 p = &parent->rb_left;
33345d01 5029 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5030 p = &parent->rb_right;
5d4f98a2
YZ
5031 else {
5032 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5033 (I_WILL_FREE | I_FREEING)));
cef21937 5034 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5035 RB_CLEAR_NODE(parent);
5036 spin_unlock(&root->inode_lock);
cef21937 5037 return;
5d4f98a2
YZ
5038 }
5039 }
cef21937
FDBM
5040 rb_link_node(new, parent, p);
5041 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5042 spin_unlock(&root->inode_lock);
5043}
5044
5045static void inode_tree_del(struct inode *inode)
5046{
5047 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5048 int empty = 0;
5d4f98a2 5049
03e860bd 5050 spin_lock(&root->inode_lock);
5d4f98a2 5051 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5052 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5053 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5054 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5055 }
03e860bd 5056 spin_unlock(&root->inode_lock);
76dda93c 5057
69e9c6c6 5058 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5059 synchronize_srcu(&root->fs_info->subvol_srcu);
5060 spin_lock(&root->inode_lock);
5061 empty = RB_EMPTY_ROOT(&root->inode_tree);
5062 spin_unlock(&root->inode_lock);
5063 if (empty)
5064 btrfs_add_dead_root(root);
5065 }
5066}
5067
143bede5 5068void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5069{
5070 struct rb_node *node;
5071 struct rb_node *prev;
5072 struct btrfs_inode *entry;
5073 struct inode *inode;
5074 u64 objectid = 0;
5075
7813b3db
LB
5076 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5077 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5078
5079 spin_lock(&root->inode_lock);
5080again:
5081 node = root->inode_tree.rb_node;
5082 prev = NULL;
5083 while (node) {
5084 prev = node;
5085 entry = rb_entry(node, struct btrfs_inode, rb_node);
5086
33345d01 5087 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5088 node = node->rb_left;
33345d01 5089 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5090 node = node->rb_right;
5091 else
5092 break;
5093 }
5094 if (!node) {
5095 while (prev) {
5096 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5097 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5098 node = prev;
5099 break;
5100 }
5101 prev = rb_next(prev);
5102 }
5103 }
5104 while (node) {
5105 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5106 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5107 inode = igrab(&entry->vfs_inode);
5108 if (inode) {
5109 spin_unlock(&root->inode_lock);
5110 if (atomic_read(&inode->i_count) > 1)
5111 d_prune_aliases(inode);
5112 /*
45321ac5 5113 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5114 * the inode cache when its usage count
5115 * hits zero.
5116 */
5117 iput(inode);
5118 cond_resched();
5119 spin_lock(&root->inode_lock);
5120 goto again;
5121 }
5122
5123 if (cond_resched_lock(&root->inode_lock))
5124 goto again;
5125
5126 node = rb_next(node);
5127 }
5128 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5129}
5130
e02119d5
CM
5131static int btrfs_init_locked_inode(struct inode *inode, void *p)
5132{
5133 struct btrfs_iget_args *args = p;
90d3e592
CM
5134 inode->i_ino = args->location->objectid;
5135 memcpy(&BTRFS_I(inode)->location, args->location,
5136 sizeof(*args->location));
e02119d5 5137 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5138 return 0;
5139}
5140
5141static int btrfs_find_actor(struct inode *inode, void *opaque)
5142{
5143 struct btrfs_iget_args *args = opaque;
90d3e592 5144 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5145 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5146}
5147
5d4f98a2 5148static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5149 struct btrfs_key *location,
5d4f98a2 5150 struct btrfs_root *root)
39279cc3
CM
5151{
5152 struct inode *inode;
5153 struct btrfs_iget_args args;
90d3e592 5154 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5155
90d3e592 5156 args.location = location;
39279cc3
CM
5157 args.root = root;
5158
778ba82b 5159 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5160 btrfs_init_locked_inode,
5161 (void *)&args);
5162 return inode;
5163}
5164
1a54ef8c
BR
5165/* Get an inode object given its location and corresponding root.
5166 * Returns in *is_new if the inode was read from disk
5167 */
5168struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5169 struct btrfs_root *root, int *new)
1a54ef8c
BR
5170{
5171 struct inode *inode;
5172
90d3e592 5173 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5174 if (!inode)
5d4f98a2 5175 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5176
5177 if (inode->i_state & I_NEW) {
1a54ef8c 5178 btrfs_read_locked_inode(inode);
1748f843
MF
5179 if (!is_bad_inode(inode)) {
5180 inode_tree_add(inode);
5181 unlock_new_inode(inode);
5182 if (new)
5183 *new = 1;
5184 } else {
e0b6d65b
ST
5185 unlock_new_inode(inode);
5186 iput(inode);
5187 inode = ERR_PTR(-ESTALE);
1748f843
MF
5188 }
5189 }
5190
1a54ef8c
BR
5191 return inode;
5192}
5193
4df27c4d
YZ
5194static struct inode *new_simple_dir(struct super_block *s,
5195 struct btrfs_key *key,
5196 struct btrfs_root *root)
5197{
5198 struct inode *inode = new_inode(s);
5199
5200 if (!inode)
5201 return ERR_PTR(-ENOMEM);
5202
4df27c4d
YZ
5203 BTRFS_I(inode)->root = root;
5204 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5205 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5206
5207 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5208 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5209 inode->i_fop = &simple_dir_operations;
5210 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5211 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5212
5213 return inode;
5214}
5215
3de4586c 5216struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5217{
d397712b 5218 struct inode *inode;
4df27c4d 5219 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5220 struct btrfs_root *sub_root = root;
5221 struct btrfs_key location;
76dda93c 5222 int index;
b4aff1f8 5223 int ret = 0;
39279cc3
CM
5224
5225 if (dentry->d_name.len > BTRFS_NAME_LEN)
5226 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5227
39e3c955 5228 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5229 if (ret < 0)
5230 return ERR_PTR(ret);
5f39d397 5231
4df27c4d 5232 if (location.objectid == 0)
5662344b 5233 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5234
5235 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5236 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5237 return inode;
5238 }
5239
5240 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5241
76dda93c 5242 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5243 ret = fixup_tree_root_location(root, dir, dentry,
5244 &location, &sub_root);
5245 if (ret < 0) {
5246 if (ret != -ENOENT)
5247 inode = ERR_PTR(ret);
5248 else
5249 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5250 } else {
73f73415 5251 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5252 }
76dda93c
YZ
5253 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5254
34d19bad 5255 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5256 down_read(&root->fs_info->cleanup_work_sem);
5257 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5258 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5259 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5260 if (ret) {
5261 iput(inode);
66b4ffd1 5262 inode = ERR_PTR(ret);
01cd3367 5263 }
9c3b306e
FM
5264 /*
5265 * If orphan cleanup did remove any orphans, it means the tree
5266 * was modified and therefore the commit root is not the same as
5267 * the current root anymore. This is a problem, because send
5268 * uses the commit root and therefore can see inode items that
5269 * don't exist in the current root anymore, and for example make
5270 * calls to btrfs_iget, which will do tree lookups based on the
5271 * current root and not on the commit root. Those lookups will
5272 * fail, returning a -ESTALE error, and making send fail with
5273 * that error. So make sure a send does not see any orphans we
5274 * have just removed, and that it will see the same inodes
5275 * regardless of whether a transaction commit happened before
5276 * it started (meaning that the commit root will be the same as
5277 * the current root) or not.
5278 */
5279 if (sub_root->node != sub_root->commit_root) {
5280 u64 sub_flags = btrfs_root_flags(&sub_root->root_item);
5281
5282 if (sub_flags & BTRFS_ROOT_SUBVOL_RDONLY) {
5283 struct extent_buffer *eb;
5284
5285 /*
5286 * Assert we can't have races between dentry
5287 * lookup called through the snapshot creation
5288 * ioctl and the VFS.
5289 */
5290 ASSERT(mutex_is_locked(&dir->i_mutex));
5291
5292 down_write(&root->fs_info->commit_root_sem);
5293 eb = sub_root->commit_root;
5294 sub_root->commit_root =
5295 btrfs_root_node(sub_root);
5296 up_write(&root->fs_info->commit_root_sem);
5297 free_extent_buffer(eb);
5298 }
5299 }
c71bf099
YZ
5300 }
5301
3de4586c
CM
5302 return inode;
5303}
5304
fe15ce44 5305static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5306{
5307 struct btrfs_root *root;
848cce0d 5308 struct inode *inode = dentry->d_inode;
76dda93c 5309
848cce0d
LZ
5310 if (!inode && !IS_ROOT(dentry))
5311 inode = dentry->d_parent->d_inode;
76dda93c 5312
848cce0d
LZ
5313 if (inode) {
5314 root = BTRFS_I(inode)->root;
efefb143
YZ
5315 if (btrfs_root_refs(&root->root_item) == 0)
5316 return 1;
848cce0d
LZ
5317
5318 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5319 return 1;
efefb143 5320 }
76dda93c
YZ
5321 return 0;
5322}
5323
b4aff1f8
JB
5324static void btrfs_dentry_release(struct dentry *dentry)
5325{
944a4515 5326 kfree(dentry->d_fsdata);
b4aff1f8
JB
5327}
5328
3de4586c 5329static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5330 unsigned int flags)
3de4586c 5331{
5662344b 5332 struct inode *inode;
a66e7cc6 5333
5662344b
TI
5334 inode = btrfs_lookup_dentry(dir, dentry);
5335 if (IS_ERR(inode)) {
5336 if (PTR_ERR(inode) == -ENOENT)
5337 inode = NULL;
5338 else
5339 return ERR_CAST(inode);
5340 }
5341
3a0dfa6a 5342 return d_materialise_unique(dentry, inode);
39279cc3
CM
5343}
5344
16cdcec7 5345unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5346 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5347};
5348
9cdda8d3 5349static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5350{
9cdda8d3 5351 struct inode *inode = file_inode(file);
39279cc3
CM
5352 struct btrfs_root *root = BTRFS_I(inode)->root;
5353 struct btrfs_item *item;
5354 struct btrfs_dir_item *di;
5355 struct btrfs_key key;
5f39d397 5356 struct btrfs_key found_key;
39279cc3 5357 struct btrfs_path *path;
16cdcec7
MX
5358 struct list_head ins_list;
5359 struct list_head del_list;
39279cc3 5360 int ret;
5f39d397 5361 struct extent_buffer *leaf;
39279cc3 5362 int slot;
39279cc3
CM
5363 unsigned char d_type;
5364 int over = 0;
5365 u32 di_cur;
5366 u32 di_total;
5367 u32 di_len;
5368 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5369 char tmp_name[32];
5370 char *name_ptr;
5371 int name_len;
9cdda8d3 5372 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5373
5374 /* FIXME, use a real flag for deciding about the key type */
5375 if (root->fs_info->tree_root == root)
5376 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5377
9cdda8d3
AV
5378 if (!dir_emit_dots(file, ctx))
5379 return 0;
5380
49593bfa 5381 path = btrfs_alloc_path();
16cdcec7
MX
5382 if (!path)
5383 return -ENOMEM;
ff5714cc 5384
026fd317 5385 path->reada = 1;
49593bfa 5386
16cdcec7
MX
5387 if (key_type == BTRFS_DIR_INDEX_KEY) {
5388 INIT_LIST_HEAD(&ins_list);
5389 INIT_LIST_HEAD(&del_list);
5390 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5391 }
5392
962a298f 5393 key.type = key_type;
9cdda8d3 5394 key.offset = ctx->pos;
33345d01 5395 key.objectid = btrfs_ino(inode);
5f39d397 5396
39279cc3
CM
5397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5398 if (ret < 0)
5399 goto err;
49593bfa
DW
5400
5401 while (1) {
5f39d397 5402 leaf = path->nodes[0];
39279cc3 5403 slot = path->slots[0];
b9e03af0
LZ
5404 if (slot >= btrfs_header_nritems(leaf)) {
5405 ret = btrfs_next_leaf(root, path);
5406 if (ret < 0)
5407 goto err;
5408 else if (ret > 0)
5409 break;
5410 continue;
39279cc3 5411 }
3de4586c 5412
dd3cc16b 5413 item = btrfs_item_nr(slot);
5f39d397
CM
5414 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5415
5416 if (found_key.objectid != key.objectid)
39279cc3 5417 break;
962a298f 5418 if (found_key.type != key_type)
39279cc3 5419 break;
9cdda8d3 5420 if (found_key.offset < ctx->pos)
b9e03af0 5421 goto next;
16cdcec7
MX
5422 if (key_type == BTRFS_DIR_INDEX_KEY &&
5423 btrfs_should_delete_dir_index(&del_list,
5424 found_key.offset))
5425 goto next;
5f39d397 5426
9cdda8d3 5427 ctx->pos = found_key.offset;
16cdcec7 5428 is_curr = 1;
49593bfa 5429
39279cc3
CM
5430 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5431 di_cur = 0;
5f39d397 5432 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5433
5434 while (di_cur < di_total) {
5f39d397
CM
5435 struct btrfs_key location;
5436
22a94d44
JB
5437 if (verify_dir_item(root, leaf, di))
5438 break;
5439
5f39d397 5440 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5441 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5442 name_ptr = tmp_name;
5443 } else {
5444 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5445 if (!name_ptr) {
5446 ret = -ENOMEM;
5447 goto err;
5448 }
5f39d397
CM
5449 }
5450 read_extent_buffer(leaf, name_ptr,
5451 (unsigned long)(di + 1), name_len);
5452
5453 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5454 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5455
fede766f 5456
3de4586c 5457 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5458 * skip it.
5459 *
5460 * In contrast to old kernels, we insert the snapshot's
5461 * dir item and dir index after it has been created, so
5462 * we won't find a reference to our own snapshot. We
5463 * still keep the following code for backward
5464 * compatibility.
3de4586c
CM
5465 */
5466 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5467 location.objectid == root->root_key.objectid) {
5468 over = 0;
5469 goto skip;
5470 }
9cdda8d3
AV
5471 over = !dir_emit(ctx, name_ptr, name_len,
5472 location.objectid, d_type);
5f39d397 5473
3de4586c 5474skip:
5f39d397
CM
5475 if (name_ptr != tmp_name)
5476 kfree(name_ptr);
5477
39279cc3
CM
5478 if (over)
5479 goto nopos;
5103e947 5480 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5481 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5482 di_cur += di_len;
5483 di = (struct btrfs_dir_item *)((char *)di + di_len);
5484 }
b9e03af0
LZ
5485next:
5486 path->slots[0]++;
39279cc3 5487 }
49593bfa 5488
16cdcec7
MX
5489 if (key_type == BTRFS_DIR_INDEX_KEY) {
5490 if (is_curr)
9cdda8d3
AV
5491 ctx->pos++;
5492 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5493 if (ret)
5494 goto nopos;
5495 }
5496
49593bfa 5497 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5498 ctx->pos++;
5499
5500 /*
5501 * Stop new entries from being returned after we return the last
5502 * entry.
5503 *
5504 * New directory entries are assigned a strictly increasing
5505 * offset. This means that new entries created during readdir
5506 * are *guaranteed* to be seen in the future by that readdir.
5507 * This has broken buggy programs which operate on names as
5508 * they're returned by readdir. Until we re-use freed offsets
5509 * we have this hack to stop new entries from being returned
5510 * under the assumption that they'll never reach this huge
5511 * offset.
5512 *
5513 * This is being careful not to overflow 32bit loff_t unless the
5514 * last entry requires it because doing so has broken 32bit apps
5515 * in the past.
5516 */
5517 if (key_type == BTRFS_DIR_INDEX_KEY) {
5518 if (ctx->pos >= INT_MAX)
5519 ctx->pos = LLONG_MAX;
5520 else
5521 ctx->pos = INT_MAX;
5522 }
39279cc3
CM
5523nopos:
5524 ret = 0;
5525err:
16cdcec7
MX
5526 if (key_type == BTRFS_DIR_INDEX_KEY)
5527 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5528 btrfs_free_path(path);
39279cc3
CM
5529 return ret;
5530}
5531
a9185b41 5532int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5533{
5534 struct btrfs_root *root = BTRFS_I(inode)->root;
5535 struct btrfs_trans_handle *trans;
5536 int ret = 0;
0af3d00b 5537 bool nolock = false;
39279cc3 5538
72ac3c0d 5539 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5540 return 0;
5541
83eea1f1 5542 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5543 nolock = true;
0af3d00b 5544
a9185b41 5545 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5546 if (nolock)
7a7eaa40 5547 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5548 else
7a7eaa40 5549 trans = btrfs_join_transaction(root);
3612b495
TI
5550 if (IS_ERR(trans))
5551 return PTR_ERR(trans);
a698d075 5552 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5553 }
5554 return ret;
5555}
5556
5557/*
54aa1f4d 5558 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5559 * inode changes. But, it is most likely to find the inode in cache.
5560 * FIXME, needs more benchmarking...there are no reasons other than performance
5561 * to keep or drop this code.
5562 */
48a3b636 5563static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5564{
5565 struct btrfs_root *root = BTRFS_I(inode)->root;
5566 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5567 int ret;
5568
72ac3c0d 5569 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5570 return 0;
39279cc3 5571
7a7eaa40 5572 trans = btrfs_join_transaction(root);
22c44fe6
JB
5573 if (IS_ERR(trans))
5574 return PTR_ERR(trans);
8929ecfa
YZ
5575
5576 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5577 if (ret && ret == -ENOSPC) {
5578 /* whoops, lets try again with the full transaction */
5579 btrfs_end_transaction(trans, root);
5580 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5581 if (IS_ERR(trans))
5582 return PTR_ERR(trans);
8929ecfa 5583
94b60442 5584 ret = btrfs_update_inode(trans, root, inode);
94b60442 5585 }
39279cc3 5586 btrfs_end_transaction(trans, root);
16cdcec7
MX
5587 if (BTRFS_I(inode)->delayed_node)
5588 btrfs_balance_delayed_items(root);
22c44fe6
JB
5589
5590 return ret;
5591}
5592
5593/*
5594 * This is a copy of file_update_time. We need this so we can return error on
5595 * ENOSPC for updating the inode in the case of file write and mmap writes.
5596 */
e41f941a
JB
5597static int btrfs_update_time(struct inode *inode, struct timespec *now,
5598 int flags)
22c44fe6 5599{
2bc55652
AB
5600 struct btrfs_root *root = BTRFS_I(inode)->root;
5601
5602 if (btrfs_root_readonly(root))
5603 return -EROFS;
5604
e41f941a 5605 if (flags & S_VERSION)
22c44fe6 5606 inode_inc_iversion(inode);
e41f941a
JB
5607 if (flags & S_CTIME)
5608 inode->i_ctime = *now;
5609 if (flags & S_MTIME)
5610 inode->i_mtime = *now;
5611 if (flags & S_ATIME)
5612 inode->i_atime = *now;
5613 return btrfs_dirty_inode(inode);
39279cc3
CM
5614}
5615
d352ac68
CM
5616/*
5617 * find the highest existing sequence number in a directory
5618 * and then set the in-memory index_cnt variable to reflect
5619 * free sequence numbers
5620 */
aec7477b
JB
5621static int btrfs_set_inode_index_count(struct inode *inode)
5622{
5623 struct btrfs_root *root = BTRFS_I(inode)->root;
5624 struct btrfs_key key, found_key;
5625 struct btrfs_path *path;
5626 struct extent_buffer *leaf;
5627 int ret;
5628
33345d01 5629 key.objectid = btrfs_ino(inode);
962a298f 5630 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5631 key.offset = (u64)-1;
5632
5633 path = btrfs_alloc_path();
5634 if (!path)
5635 return -ENOMEM;
5636
5637 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5638 if (ret < 0)
5639 goto out;
5640 /* FIXME: we should be able to handle this */
5641 if (ret == 0)
5642 goto out;
5643 ret = 0;
5644
5645 /*
5646 * MAGIC NUMBER EXPLANATION:
5647 * since we search a directory based on f_pos we have to start at 2
5648 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5649 * else has to start at 2
5650 */
5651 if (path->slots[0] == 0) {
5652 BTRFS_I(inode)->index_cnt = 2;
5653 goto out;
5654 }
5655
5656 path->slots[0]--;
5657
5658 leaf = path->nodes[0];
5659 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5660
33345d01 5661 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5662 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
5663 BTRFS_I(inode)->index_cnt = 2;
5664 goto out;
5665 }
5666
5667 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5668out:
5669 btrfs_free_path(path);
5670 return ret;
5671}
5672
d352ac68
CM
5673/*
5674 * helper to find a free sequence number in a given directory. This current
5675 * code is very simple, later versions will do smarter things in the btree
5676 */
3de4586c 5677int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5678{
5679 int ret = 0;
5680
5681 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5682 ret = btrfs_inode_delayed_dir_index_count(dir);
5683 if (ret) {
5684 ret = btrfs_set_inode_index_count(dir);
5685 if (ret)
5686 return ret;
5687 }
aec7477b
JB
5688 }
5689
00e4e6b3 5690 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5691 BTRFS_I(dir)->index_cnt++;
5692
5693 return ret;
5694}
5695
b0d5d10f
CM
5696static int btrfs_insert_inode_locked(struct inode *inode)
5697{
5698 struct btrfs_iget_args args;
5699 args.location = &BTRFS_I(inode)->location;
5700 args.root = BTRFS_I(inode)->root;
5701
5702 return insert_inode_locked4(inode,
5703 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5704 btrfs_find_actor, &args);
5705}
5706
39279cc3
CM
5707static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5708 struct btrfs_root *root,
aec7477b 5709 struct inode *dir,
9c58309d 5710 const char *name, int name_len,
175a4eb7
AV
5711 u64 ref_objectid, u64 objectid,
5712 umode_t mode, u64 *index)
39279cc3
CM
5713{
5714 struct inode *inode;
5f39d397 5715 struct btrfs_inode_item *inode_item;
39279cc3 5716 struct btrfs_key *location;
5f39d397 5717 struct btrfs_path *path;
9c58309d
CM
5718 struct btrfs_inode_ref *ref;
5719 struct btrfs_key key[2];
5720 u32 sizes[2];
ef3b9af5 5721 int nitems = name ? 2 : 1;
9c58309d 5722 unsigned long ptr;
39279cc3 5723 int ret;
39279cc3 5724
5f39d397 5725 path = btrfs_alloc_path();
d8926bb3
MF
5726 if (!path)
5727 return ERR_PTR(-ENOMEM);
5f39d397 5728
39279cc3 5729 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5730 if (!inode) {
5731 btrfs_free_path(path);
39279cc3 5732 return ERR_PTR(-ENOMEM);
8fb27640 5733 }
39279cc3 5734
5762b5c9
FM
5735 /*
5736 * O_TMPFILE, set link count to 0, so that after this point,
5737 * we fill in an inode item with the correct link count.
5738 */
5739 if (!name)
5740 set_nlink(inode, 0);
5741
581bb050
LZ
5742 /*
5743 * we have to initialize this early, so we can reclaim the inode
5744 * number if we fail afterwards in this function.
5745 */
5746 inode->i_ino = objectid;
5747
ef3b9af5 5748 if (dir && name) {
1abe9b8a 5749 trace_btrfs_inode_request(dir);
5750
3de4586c 5751 ret = btrfs_set_inode_index(dir, index);
09771430 5752 if (ret) {
8fb27640 5753 btrfs_free_path(path);
09771430 5754 iput(inode);
aec7477b 5755 return ERR_PTR(ret);
09771430 5756 }
ef3b9af5
FM
5757 } else if (dir) {
5758 *index = 0;
aec7477b
JB
5759 }
5760 /*
5761 * index_cnt is ignored for everything but a dir,
5762 * btrfs_get_inode_index_count has an explanation for the magic
5763 * number
5764 */
5765 BTRFS_I(inode)->index_cnt = 2;
67de1176 5766 BTRFS_I(inode)->dir_index = *index;
39279cc3 5767 BTRFS_I(inode)->root = root;
e02119d5 5768 BTRFS_I(inode)->generation = trans->transid;
76195853 5769 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5770
5dc562c5
JB
5771 /*
5772 * We could have gotten an inode number from somebody who was fsynced
5773 * and then removed in this same transaction, so let's just set full
5774 * sync since it will be a full sync anyway and this will blow away the
5775 * old info in the log.
5776 */
5777 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5778
9c58309d 5779 key[0].objectid = objectid;
962a298f 5780 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
5781 key[0].offset = 0;
5782
9c58309d 5783 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5784
5785 if (name) {
5786 /*
5787 * Start new inodes with an inode_ref. This is slightly more
5788 * efficient for small numbers of hard links since they will
5789 * be packed into one item. Extended refs will kick in if we
5790 * add more hard links than can fit in the ref item.
5791 */
5792 key[1].objectid = objectid;
962a298f 5793 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
5794 key[1].offset = ref_objectid;
5795
5796 sizes[1] = name_len + sizeof(*ref);
5797 }
9c58309d 5798
b0d5d10f
CM
5799 location = &BTRFS_I(inode)->location;
5800 location->objectid = objectid;
5801 location->offset = 0;
962a298f 5802 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
5803
5804 ret = btrfs_insert_inode_locked(inode);
5805 if (ret < 0)
5806 goto fail;
5807
b9473439 5808 path->leave_spinning = 1;
ef3b9af5 5809 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 5810 if (ret != 0)
b0d5d10f 5811 goto fail_unlock;
5f39d397 5812
ecc11fab 5813 inode_init_owner(inode, dir, mode);
a76a3cd4 5814 inode_set_bytes(inode, 0);
39279cc3 5815 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5816 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5817 struct btrfs_inode_item);
293f7e07
LZ
5818 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5819 sizeof(*inode_item));
e02119d5 5820 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 5821
ef3b9af5
FM
5822 if (name) {
5823 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5824 struct btrfs_inode_ref);
5825 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5826 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5827 ptr = (unsigned long)(ref + 1);
5828 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5829 }
9c58309d 5830
5f39d397
CM
5831 btrfs_mark_buffer_dirty(path->nodes[0]);
5832 btrfs_free_path(path);
5833
6cbff00f
CH
5834 btrfs_inherit_iflags(inode, dir);
5835
569254b0 5836 if (S_ISREG(mode)) {
94272164
CM
5837 if (btrfs_test_opt(root, NODATASUM))
5838 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5839 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5840 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5841 BTRFS_INODE_NODATASUM;
94272164
CM
5842 }
5843
5d4f98a2 5844 inode_tree_add(inode);
1abe9b8a 5845
5846 trace_btrfs_inode_new(inode);
1973f0fa 5847 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5848
8ea05e3a
AB
5849 btrfs_update_root_times(trans, root);
5850
63541927
FDBM
5851 ret = btrfs_inode_inherit_props(trans, inode, dir);
5852 if (ret)
5853 btrfs_err(root->fs_info,
5854 "error inheriting props for ino %llu (root %llu): %d",
5855 btrfs_ino(inode), root->root_key.objectid, ret);
5856
39279cc3 5857 return inode;
b0d5d10f
CM
5858
5859fail_unlock:
5860 unlock_new_inode(inode);
5f39d397 5861fail:
ef3b9af5 5862 if (dir && name)
aec7477b 5863 BTRFS_I(dir)->index_cnt--;
5f39d397 5864 btrfs_free_path(path);
09771430 5865 iput(inode);
5f39d397 5866 return ERR_PTR(ret);
39279cc3
CM
5867}
5868
5869static inline u8 btrfs_inode_type(struct inode *inode)
5870{
5871 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5872}
5873
d352ac68
CM
5874/*
5875 * utility function to add 'inode' into 'parent_inode' with
5876 * a give name and a given sequence number.
5877 * if 'add_backref' is true, also insert a backref from the
5878 * inode to the parent directory.
5879 */
e02119d5
CM
5880int btrfs_add_link(struct btrfs_trans_handle *trans,
5881 struct inode *parent_inode, struct inode *inode,
5882 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5883{
4df27c4d 5884 int ret = 0;
39279cc3 5885 struct btrfs_key key;
e02119d5 5886 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5887 u64 ino = btrfs_ino(inode);
5888 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5889
33345d01 5890 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5891 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5892 } else {
33345d01 5893 key.objectid = ino;
962a298f 5894 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
5895 key.offset = 0;
5896 }
5897
33345d01 5898 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5899 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5900 key.objectid, root->root_key.objectid,
33345d01 5901 parent_ino, index, name, name_len);
4df27c4d 5902 } else if (add_backref) {
33345d01
LZ
5903 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5904 parent_ino, index);
4df27c4d 5905 }
39279cc3 5906
79787eaa
JM
5907 /* Nothing to clean up yet */
5908 if (ret)
5909 return ret;
4df27c4d 5910
79787eaa
JM
5911 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5912 parent_inode, &key,
5913 btrfs_inode_type(inode), index);
9c52057c 5914 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5915 goto fail_dir_item;
5916 else if (ret) {
5917 btrfs_abort_transaction(trans, root, ret);
5918 return ret;
39279cc3 5919 }
79787eaa
JM
5920
5921 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5922 name_len * 2);
0c4d2d95 5923 inode_inc_iversion(parent_inode);
79787eaa
JM
5924 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5925 ret = btrfs_update_inode(trans, root, parent_inode);
5926 if (ret)
5927 btrfs_abort_transaction(trans, root, ret);
39279cc3 5928 return ret;
fe66a05a
CM
5929
5930fail_dir_item:
5931 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5932 u64 local_index;
5933 int err;
5934 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5935 key.objectid, root->root_key.objectid,
5936 parent_ino, &local_index, name, name_len);
5937
5938 } else if (add_backref) {
5939 u64 local_index;
5940 int err;
5941
5942 err = btrfs_del_inode_ref(trans, root, name, name_len,
5943 ino, parent_ino, &local_index);
5944 }
5945 return ret;
39279cc3
CM
5946}
5947
5948static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5949 struct inode *dir, struct dentry *dentry,
5950 struct inode *inode, int backref, u64 index)
39279cc3 5951{
a1b075d2
JB
5952 int err = btrfs_add_link(trans, dir, inode,
5953 dentry->d_name.name, dentry->d_name.len,
5954 backref, index);
39279cc3
CM
5955 if (err > 0)
5956 err = -EEXIST;
5957 return err;
5958}
5959
618e21d5 5960static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5961 umode_t mode, dev_t rdev)
618e21d5
JB
5962{
5963 struct btrfs_trans_handle *trans;
5964 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5965 struct inode *inode = NULL;
618e21d5
JB
5966 int err;
5967 int drop_inode = 0;
5968 u64 objectid;
00e4e6b3 5969 u64 index = 0;
618e21d5
JB
5970
5971 if (!new_valid_dev(rdev))
5972 return -EINVAL;
5973
9ed74f2d
JB
5974 /*
5975 * 2 for inode item and ref
5976 * 2 for dir items
5977 * 1 for xattr if selinux is on
5978 */
a22285a6
YZ
5979 trans = btrfs_start_transaction(root, 5);
5980 if (IS_ERR(trans))
5981 return PTR_ERR(trans);
1832a6d5 5982
581bb050
LZ
5983 err = btrfs_find_free_ino(root, &objectid);
5984 if (err)
5985 goto out_unlock;
5986
aec7477b 5987 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5988 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5989 mode, &index);
7cf96da3
TI
5990 if (IS_ERR(inode)) {
5991 err = PTR_ERR(inode);
618e21d5 5992 goto out_unlock;
7cf96da3 5993 }
618e21d5 5994
ad19db71
CS
5995 /*
5996 * If the active LSM wants to access the inode during
5997 * d_instantiate it needs these. Smack checks to see
5998 * if the filesystem supports xattrs by looking at the
5999 * ops vector.
6000 */
ad19db71 6001 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6002 init_special_inode(inode, inode->i_mode, rdev);
6003
6004 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6005 if (err)
b0d5d10f
CM
6006 goto out_unlock_inode;
6007
6008 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6009 if (err) {
6010 goto out_unlock_inode;
6011 } else {
1b4ab1bb 6012 btrfs_update_inode(trans, root, inode);
b0d5d10f 6013 unlock_new_inode(inode);
08c422c2 6014 d_instantiate(dentry, inode);
618e21d5 6015 }
b0d5d10f 6016
618e21d5 6017out_unlock:
7ad85bb7 6018 btrfs_end_transaction(trans, root);
c581afc8 6019 btrfs_balance_delayed_items(root);
b53d3f5d 6020 btrfs_btree_balance_dirty(root);
618e21d5
JB
6021 if (drop_inode) {
6022 inode_dec_link_count(inode);
6023 iput(inode);
6024 }
618e21d5 6025 return err;
b0d5d10f
CM
6026
6027out_unlock_inode:
6028 drop_inode = 1;
6029 unlock_new_inode(inode);
6030 goto out_unlock;
6031
618e21d5
JB
6032}
6033
39279cc3 6034static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6035 umode_t mode, bool excl)
39279cc3
CM
6036{
6037 struct btrfs_trans_handle *trans;
6038 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6039 struct inode *inode = NULL;
43baa579 6040 int drop_inode_on_err = 0;
a22285a6 6041 int err;
39279cc3 6042 u64 objectid;
00e4e6b3 6043 u64 index = 0;
39279cc3 6044
9ed74f2d
JB
6045 /*
6046 * 2 for inode item and ref
6047 * 2 for dir items
6048 * 1 for xattr if selinux is on
6049 */
a22285a6
YZ
6050 trans = btrfs_start_transaction(root, 5);
6051 if (IS_ERR(trans))
6052 return PTR_ERR(trans);
9ed74f2d 6053
581bb050
LZ
6054 err = btrfs_find_free_ino(root, &objectid);
6055 if (err)
6056 goto out_unlock;
6057
aec7477b 6058 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6059 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6060 mode, &index);
7cf96da3
TI
6061 if (IS_ERR(inode)) {
6062 err = PTR_ERR(inode);
39279cc3 6063 goto out_unlock;
7cf96da3 6064 }
43baa579 6065 drop_inode_on_err = 1;
ad19db71
CS
6066 /*
6067 * If the active LSM wants to access the inode during
6068 * d_instantiate it needs these. Smack checks to see
6069 * if the filesystem supports xattrs by looking at the
6070 * ops vector.
6071 */
6072 inode->i_fop = &btrfs_file_operations;
6073 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
6074 inode->i_mapping->a_ops = &btrfs_aops;
6075 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6076
6077 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6078 if (err)
6079 goto out_unlock_inode;
6080
6081 err = btrfs_update_inode(trans, root, inode);
6082 if (err)
6083 goto out_unlock_inode;
ad19db71 6084
a1b075d2 6085 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6086 if (err)
b0d5d10f 6087 goto out_unlock_inode;
43baa579 6088
43baa579 6089 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6090 unlock_new_inode(inode);
43baa579
FB
6091 d_instantiate(dentry, inode);
6092
39279cc3 6093out_unlock:
7ad85bb7 6094 btrfs_end_transaction(trans, root);
43baa579 6095 if (err && drop_inode_on_err) {
39279cc3
CM
6096 inode_dec_link_count(inode);
6097 iput(inode);
6098 }
c581afc8 6099 btrfs_balance_delayed_items(root);
b53d3f5d 6100 btrfs_btree_balance_dirty(root);
39279cc3 6101 return err;
b0d5d10f
CM
6102
6103out_unlock_inode:
6104 unlock_new_inode(inode);
6105 goto out_unlock;
6106
39279cc3
CM
6107}
6108
6109static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6110 struct dentry *dentry)
6111{
6112 struct btrfs_trans_handle *trans;
6113 struct btrfs_root *root = BTRFS_I(dir)->root;
6114 struct inode *inode = old_dentry->d_inode;
00e4e6b3 6115 u64 index;
39279cc3
CM
6116 int err;
6117 int drop_inode = 0;
6118
4a8be425
TH
6119 /* do not allow sys_link's with other subvols of the same device */
6120 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6121 return -EXDEV;
4a8be425 6122
f186373f 6123 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6124 return -EMLINK;
4a8be425 6125
3de4586c 6126 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6127 if (err)
6128 goto fail;
6129
a22285a6 6130 /*
7e6b6465 6131 * 2 items for inode and inode ref
a22285a6 6132 * 2 items for dir items
7e6b6465 6133 * 1 item for parent inode
a22285a6 6134 */
7e6b6465 6135 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6136 if (IS_ERR(trans)) {
6137 err = PTR_ERR(trans);
6138 goto fail;
6139 }
5f39d397 6140
67de1176
MX
6141 /* There are several dir indexes for this inode, clear the cache. */
6142 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6143 inc_nlink(inode);
0c4d2d95 6144 inode_inc_iversion(inode);
3153495d 6145 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6146 ihold(inode);
e9976151 6147 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6148
a1b075d2 6149 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6150
a5719521 6151 if (err) {
54aa1f4d 6152 drop_inode = 1;
a5719521 6153 } else {
10d9f309 6154 struct dentry *parent = dentry->d_parent;
a5719521 6155 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6156 if (err)
6157 goto fail;
ef3b9af5
FM
6158 if (inode->i_nlink == 1) {
6159 /*
6160 * If new hard link count is 1, it's a file created
6161 * with open(2) O_TMPFILE flag.
6162 */
6163 err = btrfs_orphan_del(trans, inode);
6164 if (err)
6165 goto fail;
6166 }
08c422c2 6167 d_instantiate(dentry, inode);
6a912213 6168 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6169 }
39279cc3 6170
7ad85bb7 6171 btrfs_end_transaction(trans, root);
c581afc8 6172 btrfs_balance_delayed_items(root);
1832a6d5 6173fail:
39279cc3
CM
6174 if (drop_inode) {
6175 inode_dec_link_count(inode);
6176 iput(inode);
6177 }
b53d3f5d 6178 btrfs_btree_balance_dirty(root);
39279cc3
CM
6179 return err;
6180}
6181
18bb1db3 6182static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6183{
b9d86667 6184 struct inode *inode = NULL;
39279cc3
CM
6185 struct btrfs_trans_handle *trans;
6186 struct btrfs_root *root = BTRFS_I(dir)->root;
6187 int err = 0;
6188 int drop_on_err = 0;
b9d86667 6189 u64 objectid = 0;
00e4e6b3 6190 u64 index = 0;
39279cc3 6191
9ed74f2d
JB
6192 /*
6193 * 2 items for inode and ref
6194 * 2 items for dir items
6195 * 1 for xattr if selinux is on
6196 */
a22285a6
YZ
6197 trans = btrfs_start_transaction(root, 5);
6198 if (IS_ERR(trans))
6199 return PTR_ERR(trans);
39279cc3 6200
581bb050
LZ
6201 err = btrfs_find_free_ino(root, &objectid);
6202 if (err)
6203 goto out_fail;
6204
aec7477b 6205 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6206 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6207 S_IFDIR | mode, &index);
39279cc3
CM
6208 if (IS_ERR(inode)) {
6209 err = PTR_ERR(inode);
6210 goto out_fail;
6211 }
5f39d397 6212
39279cc3 6213 drop_on_err = 1;
b0d5d10f
CM
6214 /* these must be set before we unlock the inode */
6215 inode->i_op = &btrfs_dir_inode_operations;
6216 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6217
2a7dba39 6218 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6219 if (err)
b0d5d10f 6220 goto out_fail_inode;
39279cc3 6221
dbe674a9 6222 btrfs_i_size_write(inode, 0);
39279cc3
CM
6223 err = btrfs_update_inode(trans, root, inode);
6224 if (err)
b0d5d10f 6225 goto out_fail_inode;
5f39d397 6226
a1b075d2
JB
6227 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6228 dentry->d_name.len, 0, index);
39279cc3 6229 if (err)
b0d5d10f 6230 goto out_fail_inode;
5f39d397 6231
39279cc3 6232 d_instantiate(dentry, inode);
b0d5d10f
CM
6233 /*
6234 * mkdir is special. We're unlocking after we call d_instantiate
6235 * to avoid a race with nfsd calling d_instantiate.
6236 */
6237 unlock_new_inode(inode);
39279cc3 6238 drop_on_err = 0;
39279cc3
CM
6239
6240out_fail:
7ad85bb7 6241 btrfs_end_transaction(trans, root);
39279cc3
CM
6242 if (drop_on_err)
6243 iput(inode);
c581afc8 6244 btrfs_balance_delayed_items(root);
b53d3f5d 6245 btrfs_btree_balance_dirty(root);
39279cc3 6246 return err;
b0d5d10f
CM
6247
6248out_fail_inode:
6249 unlock_new_inode(inode);
6250 goto out_fail;
39279cc3
CM
6251}
6252
e6c4efd8
QW
6253/* Find next extent map of a given extent map, caller needs to ensure locks */
6254static struct extent_map *next_extent_map(struct extent_map *em)
6255{
6256 struct rb_node *next;
6257
6258 next = rb_next(&em->rb_node);
6259 if (!next)
6260 return NULL;
6261 return container_of(next, struct extent_map, rb_node);
6262}
6263
6264static struct extent_map *prev_extent_map(struct extent_map *em)
6265{
6266 struct rb_node *prev;
6267
6268 prev = rb_prev(&em->rb_node);
6269 if (!prev)
6270 return NULL;
6271 return container_of(prev, struct extent_map, rb_node);
6272}
6273
d352ac68 6274/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6275 * the existing extent is the nearest extent to map_start,
d352ac68 6276 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6277 * the best fitted new extent into the tree.
d352ac68 6278 */
3b951516
CM
6279static int merge_extent_mapping(struct extent_map_tree *em_tree,
6280 struct extent_map *existing,
e6dcd2dc 6281 struct extent_map *em,
51f395ad 6282 u64 map_start)
3b951516 6283{
e6c4efd8
QW
6284 struct extent_map *prev;
6285 struct extent_map *next;
6286 u64 start;
6287 u64 end;
3b951516 6288 u64 start_diff;
3b951516 6289
e6dcd2dc 6290 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6291
6292 if (existing->start > map_start) {
6293 next = existing;
6294 prev = prev_extent_map(next);
6295 } else {
6296 prev = existing;
6297 next = next_extent_map(prev);
6298 }
6299
6300 start = prev ? extent_map_end(prev) : em->start;
6301 start = max_t(u64, start, em->start);
6302 end = next ? next->start : extent_map_end(em);
6303 end = min_t(u64, end, extent_map_end(em));
6304 start_diff = start - em->start;
6305 em->start = start;
6306 em->len = end - start;
c8b97818
CM
6307 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6308 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6309 em->block_start += start_diff;
c8b97818
CM
6310 em->block_len -= start_diff;
6311 }
09a2a8f9 6312 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6313}
6314
c8b97818
CM
6315static noinline int uncompress_inline(struct btrfs_path *path,
6316 struct inode *inode, struct page *page,
6317 size_t pg_offset, u64 extent_offset,
6318 struct btrfs_file_extent_item *item)
6319{
6320 int ret;
6321 struct extent_buffer *leaf = path->nodes[0];
6322 char *tmp;
6323 size_t max_size;
6324 unsigned long inline_size;
6325 unsigned long ptr;
261507a0 6326 int compress_type;
c8b97818
CM
6327
6328 WARN_ON(pg_offset != 0);
261507a0 6329 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6330 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6331 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6332 btrfs_item_nr(path->slots[0]));
c8b97818 6333 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6334 if (!tmp)
6335 return -ENOMEM;
c8b97818
CM
6336 ptr = btrfs_file_extent_inline_start(item);
6337
6338 read_extent_buffer(leaf, tmp, ptr, inline_size);
6339
5b050f04 6340 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6341 ret = btrfs_decompress(compress_type, tmp, page,
6342 extent_offset, inline_size, max_size);
c8b97818 6343 kfree(tmp);
166ae5a4 6344 return ret;
c8b97818
CM
6345}
6346
d352ac68
CM
6347/*
6348 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6349 * the ugly parts come from merging extents from the disk with the in-ram
6350 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6351 * where the in-ram extents might be locked pending data=ordered completion.
6352 *
6353 * This also copies inline extents directly into the page.
6354 */
d397712b 6355
a52d9a80 6356struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6357 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6358 int create)
6359{
6360 int ret;
6361 int err = 0;
a52d9a80
CM
6362 u64 extent_start = 0;
6363 u64 extent_end = 0;
33345d01 6364 u64 objectid = btrfs_ino(inode);
a52d9a80 6365 u32 found_type;
f421950f 6366 struct btrfs_path *path = NULL;
a52d9a80
CM
6367 struct btrfs_root *root = BTRFS_I(inode)->root;
6368 struct btrfs_file_extent_item *item;
5f39d397
CM
6369 struct extent_buffer *leaf;
6370 struct btrfs_key found_key;
a52d9a80
CM
6371 struct extent_map *em = NULL;
6372 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6373 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6374 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6375 const bool new_inline = !page || create;
a52d9a80 6376
a52d9a80 6377again:
890871be 6378 read_lock(&em_tree->lock);
d1310b2e 6379 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6380 if (em)
6381 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6382 read_unlock(&em_tree->lock);
d1310b2e 6383
a52d9a80 6384 if (em) {
e1c4b745
CM
6385 if (em->start > start || em->start + em->len <= start)
6386 free_extent_map(em);
6387 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6388 free_extent_map(em);
6389 else
6390 goto out;
a52d9a80 6391 }
172ddd60 6392 em = alloc_extent_map();
a52d9a80 6393 if (!em) {
d1310b2e
CM
6394 err = -ENOMEM;
6395 goto out;
a52d9a80 6396 }
e6dcd2dc 6397 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6398 em->start = EXTENT_MAP_HOLE;
445a6944 6399 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6400 em->len = (u64)-1;
c8b97818 6401 em->block_len = (u64)-1;
f421950f
CM
6402
6403 if (!path) {
6404 path = btrfs_alloc_path();
026fd317
JB
6405 if (!path) {
6406 err = -ENOMEM;
6407 goto out;
6408 }
6409 /*
6410 * Chances are we'll be called again, so go ahead and do
6411 * readahead
6412 */
6413 path->reada = 1;
f421950f
CM
6414 }
6415
179e29e4
CM
6416 ret = btrfs_lookup_file_extent(trans, root, path,
6417 objectid, start, trans != NULL);
a52d9a80
CM
6418 if (ret < 0) {
6419 err = ret;
6420 goto out;
6421 }
6422
6423 if (ret != 0) {
6424 if (path->slots[0] == 0)
6425 goto not_found;
6426 path->slots[0]--;
6427 }
6428
5f39d397
CM
6429 leaf = path->nodes[0];
6430 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6431 struct btrfs_file_extent_item);
a52d9a80 6432 /* are we inside the extent that was found? */
5f39d397 6433 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6434 found_type = found_key.type;
5f39d397 6435 if (found_key.objectid != objectid ||
a52d9a80 6436 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6437 /*
6438 * If we backup past the first extent we want to move forward
6439 * and see if there is an extent in front of us, otherwise we'll
6440 * say there is a hole for our whole search range which can
6441 * cause problems.
6442 */
6443 extent_end = start;
6444 goto next;
a52d9a80
CM
6445 }
6446
5f39d397
CM
6447 found_type = btrfs_file_extent_type(leaf, item);
6448 extent_start = found_key.offset;
d899e052
YZ
6449 if (found_type == BTRFS_FILE_EXTENT_REG ||
6450 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6451 extent_end = extent_start +
db94535d 6452 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6453 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6454 size_t size;
514ac8ad 6455 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6456 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6457 }
25a50341 6458next:
9036c102
YZ
6459 if (start >= extent_end) {
6460 path->slots[0]++;
6461 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6462 ret = btrfs_next_leaf(root, path);
6463 if (ret < 0) {
6464 err = ret;
6465 goto out;
a52d9a80 6466 }
9036c102
YZ
6467 if (ret > 0)
6468 goto not_found;
6469 leaf = path->nodes[0];
a52d9a80 6470 }
9036c102
YZ
6471 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6472 if (found_key.objectid != objectid ||
6473 found_key.type != BTRFS_EXTENT_DATA_KEY)
6474 goto not_found;
6475 if (start + len <= found_key.offset)
6476 goto not_found;
e2eca69d
WS
6477 if (start > found_key.offset)
6478 goto next;
9036c102 6479 em->start = start;
70c8a91c 6480 em->orig_start = start;
9036c102
YZ
6481 em->len = found_key.offset - start;
6482 goto not_found_em;
6483 }
6484
7ffbb598
FM
6485 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6486
d899e052
YZ
6487 if (found_type == BTRFS_FILE_EXTENT_REG ||
6488 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6489 goto insert;
6490 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6491 unsigned long ptr;
a52d9a80 6492 char *map;
3326d1b0
CM
6493 size_t size;
6494 size_t extent_offset;
6495 size_t copy_size;
a52d9a80 6496
7ffbb598 6497 if (new_inline)
689f9346 6498 goto out;
5f39d397 6499
514ac8ad 6500 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6501 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6502 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6503 size - extent_offset);
3326d1b0 6504 em->start = extent_start + extent_offset;
fda2832f 6505 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6506 em->orig_block_len = em->len;
70c8a91c 6507 em->orig_start = em->start;
689f9346 6508 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6509 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6510 if (btrfs_file_extent_compression(leaf, item) !=
6511 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6512 ret = uncompress_inline(path, inode, page,
6513 pg_offset,
6514 extent_offset, item);
166ae5a4
ZB
6515 if (ret) {
6516 err = ret;
6517 goto out;
6518 }
c8b97818
CM
6519 } else {
6520 map = kmap(page);
6521 read_extent_buffer(leaf, map + pg_offset, ptr,
6522 copy_size);
93c82d57
CM
6523 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6524 memset(map + pg_offset + copy_size, 0,
6525 PAGE_CACHE_SIZE - pg_offset -
6526 copy_size);
6527 }
c8b97818
CM
6528 kunmap(page);
6529 }
179e29e4
CM
6530 flush_dcache_page(page);
6531 } else if (create && PageUptodate(page)) {
6bf7e080 6532 BUG();
179e29e4
CM
6533 if (!trans) {
6534 kunmap(page);
6535 free_extent_map(em);
6536 em = NULL;
ff5714cc 6537
b3b4aa74 6538 btrfs_release_path(path);
7a7eaa40 6539 trans = btrfs_join_transaction(root);
ff5714cc 6540
3612b495
TI
6541 if (IS_ERR(trans))
6542 return ERR_CAST(trans);
179e29e4
CM
6543 goto again;
6544 }
c8b97818 6545 map = kmap(page);
70dec807 6546 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6547 copy_size);
c8b97818 6548 kunmap(page);
179e29e4 6549 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6550 }
d1310b2e 6551 set_extent_uptodate(io_tree, em->start,
507903b8 6552 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6553 goto insert;
a52d9a80
CM
6554 }
6555not_found:
6556 em->start = start;
70c8a91c 6557 em->orig_start = start;
d1310b2e 6558 em->len = len;
a52d9a80 6559not_found_em:
5f39d397 6560 em->block_start = EXTENT_MAP_HOLE;
9036c102 6561 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6562insert:
b3b4aa74 6563 btrfs_release_path(path);
d1310b2e 6564 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6565 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6566 em->start, em->len, start, len);
a52d9a80
CM
6567 err = -EIO;
6568 goto out;
6569 }
d1310b2e
CM
6570
6571 err = 0;
890871be 6572 write_lock(&em_tree->lock);
09a2a8f9 6573 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6574 /* it is possible that someone inserted the extent into the tree
6575 * while we had the lock dropped. It is also possible that
6576 * an overlapping map exists in the tree
6577 */
a52d9a80 6578 if (ret == -EEXIST) {
3b951516 6579 struct extent_map *existing;
e6dcd2dc
CM
6580
6581 ret = 0;
6582
e6c4efd8
QW
6583 existing = search_extent_mapping(em_tree, start, len);
6584 /*
6585 * existing will always be non-NULL, since there must be
6586 * extent causing the -EEXIST.
6587 */
6588 if (start >= extent_map_end(existing) ||
6589 start + len <= existing->start) {
6590 /*
6591 * The existing extent map is the one nearest to
6592 * the [start, start + len) range which overlaps
6593 */
6594 err = merge_extent_mapping(em_tree, existing,
6595 em, start);
e1c4b745 6596 free_extent_map(existing);
e6c4efd8 6597 if (err) {
3b951516
CM
6598 free_extent_map(em);
6599 em = NULL;
6600 }
6601 } else {
6602 free_extent_map(em);
6603 em = existing;
e6dcd2dc 6604 err = 0;
a52d9a80 6605 }
a52d9a80 6606 }
890871be 6607 write_unlock(&em_tree->lock);
a52d9a80 6608out:
1abe9b8a 6609
4cd8587c 6610 trace_btrfs_get_extent(root, em);
1abe9b8a 6611
f421950f
CM
6612 if (path)
6613 btrfs_free_path(path);
a52d9a80
CM
6614 if (trans) {
6615 ret = btrfs_end_transaction(trans, root);
d397712b 6616 if (!err)
a52d9a80
CM
6617 err = ret;
6618 }
a52d9a80
CM
6619 if (err) {
6620 free_extent_map(em);
a52d9a80
CM
6621 return ERR_PTR(err);
6622 }
79787eaa 6623 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6624 return em;
6625}
6626
ec29ed5b
CM
6627struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6628 size_t pg_offset, u64 start, u64 len,
6629 int create)
6630{
6631 struct extent_map *em;
6632 struct extent_map *hole_em = NULL;
6633 u64 range_start = start;
6634 u64 end;
6635 u64 found;
6636 u64 found_end;
6637 int err = 0;
6638
6639 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6640 if (IS_ERR(em))
6641 return em;
6642 if (em) {
6643 /*
f9e4fb53
LB
6644 * if our em maps to
6645 * - a hole or
6646 * - a pre-alloc extent,
6647 * there might actually be delalloc bytes behind it.
ec29ed5b 6648 */
f9e4fb53
LB
6649 if (em->block_start != EXTENT_MAP_HOLE &&
6650 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6651 return em;
6652 else
6653 hole_em = em;
6654 }
6655
6656 /* check to see if we've wrapped (len == -1 or similar) */
6657 end = start + len;
6658 if (end < start)
6659 end = (u64)-1;
6660 else
6661 end -= 1;
6662
6663 em = NULL;
6664
6665 /* ok, we didn't find anything, lets look for delalloc */
6666 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6667 end, len, EXTENT_DELALLOC, 1);
6668 found_end = range_start + found;
6669 if (found_end < range_start)
6670 found_end = (u64)-1;
6671
6672 /*
6673 * we didn't find anything useful, return
6674 * the original results from get_extent()
6675 */
6676 if (range_start > end || found_end <= start) {
6677 em = hole_em;
6678 hole_em = NULL;
6679 goto out;
6680 }
6681
6682 /* adjust the range_start to make sure it doesn't
6683 * go backwards from the start they passed in
6684 */
67871254 6685 range_start = max(start, range_start);
ec29ed5b
CM
6686 found = found_end - range_start;
6687
6688 if (found > 0) {
6689 u64 hole_start = start;
6690 u64 hole_len = len;
6691
172ddd60 6692 em = alloc_extent_map();
ec29ed5b
CM
6693 if (!em) {
6694 err = -ENOMEM;
6695 goto out;
6696 }
6697 /*
6698 * when btrfs_get_extent can't find anything it
6699 * returns one huge hole
6700 *
6701 * make sure what it found really fits our range, and
6702 * adjust to make sure it is based on the start from
6703 * the caller
6704 */
6705 if (hole_em) {
6706 u64 calc_end = extent_map_end(hole_em);
6707
6708 if (calc_end <= start || (hole_em->start > end)) {
6709 free_extent_map(hole_em);
6710 hole_em = NULL;
6711 } else {
6712 hole_start = max(hole_em->start, start);
6713 hole_len = calc_end - hole_start;
6714 }
6715 }
6716 em->bdev = NULL;
6717 if (hole_em && range_start > hole_start) {
6718 /* our hole starts before our delalloc, so we
6719 * have to return just the parts of the hole
6720 * that go until the delalloc starts
6721 */
6722 em->len = min(hole_len,
6723 range_start - hole_start);
6724 em->start = hole_start;
6725 em->orig_start = hole_start;
6726 /*
6727 * don't adjust block start at all,
6728 * it is fixed at EXTENT_MAP_HOLE
6729 */
6730 em->block_start = hole_em->block_start;
6731 em->block_len = hole_len;
f9e4fb53
LB
6732 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6733 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6734 } else {
6735 em->start = range_start;
6736 em->len = found;
6737 em->orig_start = range_start;
6738 em->block_start = EXTENT_MAP_DELALLOC;
6739 em->block_len = found;
6740 }
6741 } else if (hole_em) {
6742 return hole_em;
6743 }
6744out:
6745
6746 free_extent_map(hole_em);
6747 if (err) {
6748 free_extent_map(em);
6749 return ERR_PTR(err);
6750 }
6751 return em;
6752}
6753
4b46fce2
JB
6754static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6755 u64 start, u64 len)
6756{
6757 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6758 struct extent_map *em;
4b46fce2
JB
6759 struct btrfs_key ins;
6760 u64 alloc_hint;
6761 int ret;
4b46fce2 6762
4b46fce2 6763 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6764 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 6765 alloc_hint, &ins, 1, 1);
00361589
JB
6766 if (ret)
6767 return ERR_PTR(ret);
4b46fce2 6768
70c8a91c 6769 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6770 ins.offset, ins.offset, ins.offset, 0);
00361589 6771 if (IS_ERR(em)) {
e570fd27 6772 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6773 return em;
6774 }
4b46fce2
JB
6775
6776 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6777 ins.offset, ins.offset, 0);
6778 if (ret) {
e570fd27 6779 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6780 free_extent_map(em);
6781 return ERR_PTR(ret);
4b46fce2 6782 }
00361589 6783
4b46fce2
JB
6784 return em;
6785}
6786
46bfbb5c
CM
6787/*
6788 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6789 * block must be cow'd
6790 */
00361589 6791noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6792 u64 *orig_start, u64 *orig_block_len,
6793 u64 *ram_bytes)
46bfbb5c 6794{
00361589 6795 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6796 struct btrfs_path *path;
6797 int ret;
6798 struct extent_buffer *leaf;
6799 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6800 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6801 struct btrfs_file_extent_item *fi;
6802 struct btrfs_key key;
6803 u64 disk_bytenr;
6804 u64 backref_offset;
6805 u64 extent_end;
6806 u64 num_bytes;
6807 int slot;
6808 int found_type;
7ee9e440 6809 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6810
46bfbb5c
CM
6811 path = btrfs_alloc_path();
6812 if (!path)
6813 return -ENOMEM;
6814
00361589 6815 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6816 offset, 0);
6817 if (ret < 0)
6818 goto out;
6819
6820 slot = path->slots[0];
6821 if (ret == 1) {
6822 if (slot == 0) {
6823 /* can't find the item, must cow */
6824 ret = 0;
6825 goto out;
6826 }
6827 slot--;
6828 }
6829 ret = 0;
6830 leaf = path->nodes[0];
6831 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6832 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6833 key.type != BTRFS_EXTENT_DATA_KEY) {
6834 /* not our file or wrong item type, must cow */
6835 goto out;
6836 }
6837
6838 if (key.offset > offset) {
6839 /* Wrong offset, must cow */
6840 goto out;
6841 }
6842
6843 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6844 found_type = btrfs_file_extent_type(leaf, fi);
6845 if (found_type != BTRFS_FILE_EXTENT_REG &&
6846 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6847 /* not a regular extent, must cow */
6848 goto out;
6849 }
7ee9e440
JB
6850
6851 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6852 goto out;
6853
e77751aa
MX
6854 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6855 if (extent_end <= offset)
6856 goto out;
6857
46bfbb5c 6858 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6859 if (disk_bytenr == 0)
6860 goto out;
6861
6862 if (btrfs_file_extent_compression(leaf, fi) ||
6863 btrfs_file_extent_encryption(leaf, fi) ||
6864 btrfs_file_extent_other_encoding(leaf, fi))
6865 goto out;
6866
46bfbb5c
CM
6867 backref_offset = btrfs_file_extent_offset(leaf, fi);
6868
7ee9e440
JB
6869 if (orig_start) {
6870 *orig_start = key.offset - backref_offset;
6871 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6872 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6873 }
eb384b55 6874
46bfbb5c
CM
6875 if (btrfs_extent_readonly(root, disk_bytenr))
6876 goto out;
7b2b7085
MX
6877
6878 num_bytes = min(offset + *len, extent_end) - offset;
6879 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6880 u64 range_end;
6881
6882 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6883 ret = test_range_bit(io_tree, offset, range_end,
6884 EXTENT_DELALLOC, 0, NULL);
6885 if (ret) {
6886 ret = -EAGAIN;
6887 goto out;
6888 }
6889 }
6890
1bda19eb 6891 btrfs_release_path(path);
46bfbb5c
CM
6892
6893 /*
6894 * look for other files referencing this extent, if we
6895 * find any we must cow
6896 */
00361589
JB
6897 trans = btrfs_join_transaction(root);
6898 if (IS_ERR(trans)) {
6899 ret = 0;
46bfbb5c 6900 goto out;
00361589
JB
6901 }
6902
6903 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6904 key.offset - backref_offset, disk_bytenr);
6905 btrfs_end_transaction(trans, root);
6906 if (ret) {
6907 ret = 0;
6908 goto out;
6909 }
46bfbb5c
CM
6910
6911 /*
6912 * adjust disk_bytenr and num_bytes to cover just the bytes
6913 * in this extent we are about to write. If there
6914 * are any csums in that range we have to cow in order
6915 * to keep the csums correct
6916 */
6917 disk_bytenr += backref_offset;
6918 disk_bytenr += offset - key.offset;
46bfbb5c
CM
6919 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6920 goto out;
6921 /*
6922 * all of the above have passed, it is safe to overwrite this extent
6923 * without cow
6924 */
eb384b55 6925 *len = num_bytes;
46bfbb5c
CM
6926 ret = 1;
6927out:
6928 btrfs_free_path(path);
6929 return ret;
6930}
6931
fc4adbff
AG
6932bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6933{
6934 struct radix_tree_root *root = &inode->i_mapping->page_tree;
6935 int found = false;
6936 void **pagep = NULL;
6937 struct page *page = NULL;
6938 int start_idx;
6939 int end_idx;
6940
6941 start_idx = start >> PAGE_CACHE_SHIFT;
6942
6943 /*
6944 * end is the last byte in the last page. end == start is legal
6945 */
6946 end_idx = end >> PAGE_CACHE_SHIFT;
6947
6948 rcu_read_lock();
6949
6950 /* Most of the code in this while loop is lifted from
6951 * find_get_page. It's been modified to begin searching from a
6952 * page and return just the first page found in that range. If the
6953 * found idx is less than or equal to the end idx then we know that
6954 * a page exists. If no pages are found or if those pages are
6955 * outside of the range then we're fine (yay!) */
6956 while (page == NULL &&
6957 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6958 page = radix_tree_deref_slot(pagep);
6959 if (unlikely(!page))
6960 break;
6961
6962 if (radix_tree_exception(page)) {
809f9016
FM
6963 if (radix_tree_deref_retry(page)) {
6964 page = NULL;
fc4adbff 6965 continue;
809f9016 6966 }
fc4adbff
AG
6967 /*
6968 * Otherwise, shmem/tmpfs must be storing a swap entry
6969 * here as an exceptional entry: so return it without
6970 * attempting to raise page count.
6971 */
6fdef6d4 6972 page = NULL;
fc4adbff
AG
6973 break; /* TODO: Is this relevant for this use case? */
6974 }
6975
91405151
FM
6976 if (!page_cache_get_speculative(page)) {
6977 page = NULL;
fc4adbff 6978 continue;
91405151 6979 }
fc4adbff
AG
6980
6981 /*
6982 * Has the page moved?
6983 * This is part of the lockless pagecache protocol. See
6984 * include/linux/pagemap.h for details.
6985 */
6986 if (unlikely(page != *pagep)) {
6987 page_cache_release(page);
6988 page = NULL;
6989 }
6990 }
6991
6992 if (page) {
6993 if (page->index <= end_idx)
6994 found = true;
6995 page_cache_release(page);
6996 }
6997
6998 rcu_read_unlock();
6999 return found;
7000}
7001
eb838e73
JB
7002static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7003 struct extent_state **cached_state, int writing)
7004{
7005 struct btrfs_ordered_extent *ordered;
7006 int ret = 0;
7007
7008 while (1) {
7009 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7010 0, cached_state);
7011 /*
7012 * We're concerned with the entire range that we're going to be
7013 * doing DIO to, so we need to make sure theres no ordered
7014 * extents in this range.
7015 */
7016 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7017 lockend - lockstart + 1);
7018
7019 /*
7020 * We need to make sure there are no buffered pages in this
7021 * range either, we could have raced between the invalidate in
7022 * generic_file_direct_write and locking the extent. The
7023 * invalidate needs to happen so that reads after a write do not
7024 * get stale data.
7025 */
fc4adbff
AG
7026 if (!ordered &&
7027 (!writing ||
7028 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7029 break;
7030
7031 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7032 cached_state, GFP_NOFS);
7033
7034 if (ordered) {
7035 btrfs_start_ordered_extent(inode, ordered, 1);
7036 btrfs_put_ordered_extent(ordered);
7037 } else {
7038 /* Screw you mmap */
7039 ret = filemap_write_and_wait_range(inode->i_mapping,
7040 lockstart,
7041 lockend);
7042 if (ret)
7043 break;
7044
7045 /*
7046 * If we found a page that couldn't be invalidated just
7047 * fall back to buffered.
7048 */
7049 ret = invalidate_inode_pages2_range(inode->i_mapping,
7050 lockstart >> PAGE_CACHE_SHIFT,
7051 lockend >> PAGE_CACHE_SHIFT);
7052 if (ret)
7053 break;
7054 }
7055
7056 cond_resched();
7057 }
7058
7059 return ret;
7060}
7061
69ffb543
JB
7062static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7063 u64 len, u64 orig_start,
7064 u64 block_start, u64 block_len,
cc95bef6
JB
7065 u64 orig_block_len, u64 ram_bytes,
7066 int type)
69ffb543
JB
7067{
7068 struct extent_map_tree *em_tree;
7069 struct extent_map *em;
7070 struct btrfs_root *root = BTRFS_I(inode)->root;
7071 int ret;
7072
7073 em_tree = &BTRFS_I(inode)->extent_tree;
7074 em = alloc_extent_map();
7075 if (!em)
7076 return ERR_PTR(-ENOMEM);
7077
7078 em->start = start;
7079 em->orig_start = orig_start;
2ab28f32
JB
7080 em->mod_start = start;
7081 em->mod_len = len;
69ffb543
JB
7082 em->len = len;
7083 em->block_len = block_len;
7084 em->block_start = block_start;
7085 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7086 em->orig_block_len = orig_block_len;
cc95bef6 7087 em->ram_bytes = ram_bytes;
70c8a91c 7088 em->generation = -1;
69ffb543
JB
7089 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7090 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7091 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7092
7093 do {
7094 btrfs_drop_extent_cache(inode, em->start,
7095 em->start + em->len - 1, 0);
7096 write_lock(&em_tree->lock);
09a2a8f9 7097 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7098 write_unlock(&em_tree->lock);
7099 } while (ret == -EEXIST);
7100
7101 if (ret) {
7102 free_extent_map(em);
7103 return ERR_PTR(ret);
7104 }
7105
7106 return em;
7107}
7108
7109
4b46fce2
JB
7110static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7111 struct buffer_head *bh_result, int create)
7112{
7113 struct extent_map *em;
7114 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7115 struct extent_state *cached_state = NULL;
4b46fce2 7116 u64 start = iblock << inode->i_blkbits;
eb838e73 7117 u64 lockstart, lockend;
4b46fce2 7118 u64 len = bh_result->b_size;
eb838e73 7119 int unlock_bits = EXTENT_LOCKED;
0934856d 7120 int ret = 0;
eb838e73 7121
172a5049 7122 if (create)
eb838e73 7123 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 7124 else
c329861d 7125 len = min_t(u64, len, root->sectorsize);
eb838e73 7126
c329861d
JB
7127 lockstart = start;
7128 lockend = start + len - 1;
7129
eb838e73
JB
7130 /*
7131 * If this errors out it's because we couldn't invalidate pagecache for
7132 * this range and we need to fallback to buffered.
7133 */
7134 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7135 return -ENOTBLK;
7136
4b46fce2 7137 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7138 if (IS_ERR(em)) {
7139 ret = PTR_ERR(em);
7140 goto unlock_err;
7141 }
4b46fce2
JB
7142
7143 /*
7144 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7145 * io. INLINE is special, and we could probably kludge it in here, but
7146 * it's still buffered so for safety lets just fall back to the generic
7147 * buffered path.
7148 *
7149 * For COMPRESSED we _have_ to read the entire extent in so we can
7150 * decompress it, so there will be buffering required no matter what we
7151 * do, so go ahead and fallback to buffered.
7152 *
7153 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7154 * to buffered IO. Don't blame me, this is the price we pay for using
7155 * the generic code.
7156 */
7157 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7158 em->block_start == EXTENT_MAP_INLINE) {
7159 free_extent_map(em);
eb838e73
JB
7160 ret = -ENOTBLK;
7161 goto unlock_err;
4b46fce2
JB
7162 }
7163
7164 /* Just a good old fashioned hole, return */
7165 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7166 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7167 free_extent_map(em);
eb838e73 7168 goto unlock_err;
4b46fce2
JB
7169 }
7170
7171 /*
7172 * We don't allocate a new extent in the following cases
7173 *
7174 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7175 * existing extent.
7176 * 2) The extent is marked as PREALLOC. We're good to go here and can
7177 * just use the extent.
7178 *
7179 */
46bfbb5c 7180 if (!create) {
eb838e73
JB
7181 len = min(len, em->len - (start - em->start));
7182 lockstart = start + len;
7183 goto unlock;
46bfbb5c 7184 }
4b46fce2
JB
7185
7186 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7187 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7188 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
7189 int type;
7190 int ret;
eb384b55 7191 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7192
7193 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7194 type = BTRFS_ORDERED_PREALLOC;
7195 else
7196 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7197 len = min(len, em->len - (start - em->start));
4b46fce2 7198 block_start = em->block_start + (start - em->start);
46bfbb5c 7199
00361589 7200 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7201 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7202 if (type == BTRFS_ORDERED_PREALLOC) {
7203 free_extent_map(em);
7204 em = create_pinned_em(inode, start, len,
7205 orig_start,
b4939680 7206 block_start, len,
cc95bef6
JB
7207 orig_block_len,
7208 ram_bytes, type);
555e1286
FM
7209 if (IS_ERR(em)) {
7210 ret = PTR_ERR(em);
69ffb543 7211 goto unlock_err;
555e1286 7212 }
69ffb543
JB
7213 }
7214
46bfbb5c
CM
7215 ret = btrfs_add_ordered_extent_dio(inode, start,
7216 block_start, len, len, type);
46bfbb5c
CM
7217 if (ret) {
7218 free_extent_map(em);
eb838e73 7219 goto unlock_err;
46bfbb5c
CM
7220 }
7221 goto unlock;
4b46fce2 7222 }
4b46fce2 7223 }
00361589 7224
46bfbb5c
CM
7225 /*
7226 * this will cow the extent, reset the len in case we changed
7227 * it above
7228 */
7229 len = bh_result->b_size;
70c8a91c
JB
7230 free_extent_map(em);
7231 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7232 if (IS_ERR(em)) {
7233 ret = PTR_ERR(em);
7234 goto unlock_err;
7235 }
46bfbb5c
CM
7236 len = min(len, em->len - (start - em->start));
7237unlock:
4b46fce2
JB
7238 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7239 inode->i_blkbits;
46bfbb5c 7240 bh_result->b_size = len;
4b46fce2
JB
7241 bh_result->b_bdev = em->bdev;
7242 set_buffer_mapped(bh_result);
c3473e83
JB
7243 if (create) {
7244 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7245 set_buffer_new(bh_result);
7246
7247 /*
7248 * Need to update the i_size under the extent lock so buffered
7249 * readers will get the updated i_size when we unlock.
7250 */
7251 if (start + len > i_size_read(inode))
7252 i_size_write(inode, start + len);
0934856d 7253
172a5049
MX
7254 spin_lock(&BTRFS_I(inode)->lock);
7255 BTRFS_I(inode)->outstanding_extents++;
7256 spin_unlock(&BTRFS_I(inode)->lock);
7257
0934856d
MX
7258 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7259 lockstart + len - 1, EXTENT_DELALLOC, NULL,
7260 &cached_state, GFP_NOFS);
7261 BUG_ON(ret);
c3473e83 7262 }
4b46fce2 7263
eb838e73
JB
7264 /*
7265 * In the case of write we need to clear and unlock the entire range,
7266 * in the case of read we need to unlock only the end area that we
7267 * aren't using if there is any left over space.
7268 */
24c03fa5 7269 if (lockstart < lockend) {
0934856d
MX
7270 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7271 lockend, unlock_bits, 1, 0,
7272 &cached_state, GFP_NOFS);
24c03fa5 7273 } else {
eb838e73 7274 free_extent_state(cached_state);
24c03fa5 7275 }
eb838e73 7276
4b46fce2
JB
7277 free_extent_map(em);
7278
7279 return 0;
eb838e73
JB
7280
7281unlock_err:
eb838e73
JB
7282 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7283 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7284 return ret;
4b46fce2
JB
7285}
7286
8b110e39
MX
7287static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7288 int rw, int mirror_num)
7289{
7290 struct btrfs_root *root = BTRFS_I(inode)->root;
7291 int ret;
7292
7293 BUG_ON(rw & REQ_WRITE);
7294
7295 bio_get(bio);
7296
7297 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7298 BTRFS_WQ_ENDIO_DIO_REPAIR);
7299 if (ret)
7300 goto err;
7301
7302 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7303err:
7304 bio_put(bio);
7305 return ret;
7306}
7307
7308static int btrfs_check_dio_repairable(struct inode *inode,
7309 struct bio *failed_bio,
7310 struct io_failure_record *failrec,
7311 int failed_mirror)
7312{
7313 int num_copies;
7314
7315 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7316 failrec->logical, failrec->len);
7317 if (num_copies == 1) {
7318 /*
7319 * we only have a single copy of the data, so don't bother with
7320 * all the retry and error correction code that follows. no
7321 * matter what the error is, it is very likely to persist.
7322 */
7323 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7324 num_copies, failrec->this_mirror, failed_mirror);
7325 return 0;
7326 }
7327
7328 failrec->failed_mirror = failed_mirror;
7329 failrec->this_mirror++;
7330 if (failrec->this_mirror == failed_mirror)
7331 failrec->this_mirror++;
7332
7333 if (failrec->this_mirror > num_copies) {
7334 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7335 num_copies, failrec->this_mirror, failed_mirror);
7336 return 0;
7337 }
7338
7339 return 1;
7340}
7341
7342static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7343 struct page *page, u64 start, u64 end,
7344 int failed_mirror, bio_end_io_t *repair_endio,
7345 void *repair_arg)
7346{
7347 struct io_failure_record *failrec;
7348 struct bio *bio;
7349 int isector;
7350 int read_mode;
7351 int ret;
7352
7353 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7354
7355 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7356 if (ret)
7357 return ret;
7358
7359 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7360 failed_mirror);
7361 if (!ret) {
7362 free_io_failure(inode, failrec);
7363 return -EIO;
7364 }
7365
7366 if (failed_bio->bi_vcnt > 1)
7367 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7368 else
7369 read_mode = READ_SYNC;
7370
7371 isector = start - btrfs_io_bio(failed_bio)->logical;
7372 isector >>= inode->i_sb->s_blocksize_bits;
7373 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7374 0, isector, repair_endio, repair_arg);
7375 if (!bio) {
7376 free_io_failure(inode, failrec);
7377 return -EIO;
7378 }
7379
7380 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7381 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7382 read_mode, failrec->this_mirror, failrec->in_validation);
7383
7384 ret = submit_dio_repair_bio(inode, bio, read_mode,
7385 failrec->this_mirror);
7386 if (ret) {
7387 free_io_failure(inode, failrec);
7388 bio_put(bio);
7389 }
7390
7391 return ret;
7392}
7393
7394struct btrfs_retry_complete {
7395 struct completion done;
7396 struct inode *inode;
7397 u64 start;
7398 int uptodate;
7399};
7400
7401static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7402{
7403 struct btrfs_retry_complete *done = bio->bi_private;
7404 struct bio_vec *bvec;
7405 int i;
7406
7407 if (err)
7408 goto end;
7409
7410 done->uptodate = 1;
7411 bio_for_each_segment_all(bvec, bio, i)
7412 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7413end:
7414 complete(&done->done);
7415 bio_put(bio);
7416}
7417
7418static int __btrfs_correct_data_nocsum(struct inode *inode,
7419 struct btrfs_io_bio *io_bio)
4b46fce2 7420{
2c30c71b 7421 struct bio_vec *bvec;
8b110e39 7422 struct btrfs_retry_complete done;
4b46fce2 7423 u64 start;
2c30c71b 7424 int i;
c1dc0896 7425 int ret;
4b46fce2 7426
8b110e39
MX
7427 start = io_bio->logical;
7428 done.inode = inode;
7429
7430 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7431try_again:
7432 done.uptodate = 0;
7433 done.start = start;
7434 init_completion(&done.done);
7435
7436 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7437 start + bvec->bv_len - 1,
7438 io_bio->mirror_num,
7439 btrfs_retry_endio_nocsum, &done);
7440 if (ret)
7441 return ret;
7442
7443 wait_for_completion(&done.done);
7444
7445 if (!done.uptodate) {
7446 /* We might have another mirror, so try again */
7447 goto try_again;
7448 }
7449
7450 start += bvec->bv_len;
7451 }
7452
7453 return 0;
7454}
7455
7456static void btrfs_retry_endio(struct bio *bio, int err)
7457{
7458 struct btrfs_retry_complete *done = bio->bi_private;
7459 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7460 struct bio_vec *bvec;
7461 int uptodate;
7462 int ret;
7463 int i;
7464
7465 if (err)
7466 goto end;
7467
7468 uptodate = 1;
7469 bio_for_each_segment_all(bvec, bio, i) {
7470 ret = __readpage_endio_check(done->inode, io_bio, i,
7471 bvec->bv_page, 0,
7472 done->start, bvec->bv_len);
7473 if (!ret)
7474 clean_io_failure(done->inode, done->start,
7475 bvec->bv_page, 0);
7476 else
7477 uptodate = 0;
7478 }
7479
7480 done->uptodate = uptodate;
7481end:
7482 complete(&done->done);
7483 bio_put(bio);
7484}
7485
7486static int __btrfs_subio_endio_read(struct inode *inode,
7487 struct btrfs_io_bio *io_bio, int err)
7488{
7489 struct bio_vec *bvec;
7490 struct btrfs_retry_complete done;
7491 u64 start;
7492 u64 offset = 0;
7493 int i;
7494 int ret;
dc380aea 7495
8b110e39 7496 err = 0;
c1dc0896 7497 start = io_bio->logical;
8b110e39
MX
7498 done.inode = inode;
7499
c1dc0896 7500 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7501 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7502 0, start, bvec->bv_len);
8b110e39
MX
7503 if (likely(!ret))
7504 goto next;
7505try_again:
7506 done.uptodate = 0;
7507 done.start = start;
7508 init_completion(&done.done);
7509
7510 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7511 start + bvec->bv_len - 1,
7512 io_bio->mirror_num,
7513 btrfs_retry_endio, &done);
7514 if (ret) {
7515 err = ret;
7516 goto next;
7517 }
7518
7519 wait_for_completion(&done.done);
7520
7521 if (!done.uptodate) {
7522 /* We might have another mirror, so try again */
7523 goto try_again;
7524 }
7525next:
7526 offset += bvec->bv_len;
4b46fce2 7527 start += bvec->bv_len;
2c30c71b 7528 }
c1dc0896
MX
7529
7530 return err;
7531}
7532
8b110e39
MX
7533static int btrfs_subio_endio_read(struct inode *inode,
7534 struct btrfs_io_bio *io_bio, int err)
7535{
7536 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7537
7538 if (skip_csum) {
7539 if (unlikely(err))
7540 return __btrfs_correct_data_nocsum(inode, io_bio);
7541 else
7542 return 0;
7543 } else {
7544 return __btrfs_subio_endio_read(inode, io_bio, err);
7545 }
7546}
7547
c1dc0896
MX
7548static void btrfs_endio_direct_read(struct bio *bio, int err)
7549{
7550 struct btrfs_dio_private *dip = bio->bi_private;
7551 struct inode *inode = dip->inode;
7552 struct bio *dio_bio;
7553 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7554
8b110e39
MX
7555 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7556 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 7557
4b46fce2 7558 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7559 dip->logical_offset + dip->bytes - 1);
9be3395b 7560 dio_bio = dip->dio_bio;
4b46fce2 7561
4b46fce2 7562 kfree(dip);
c0da7aa1
JB
7563
7564 /* If we had a csum failure make sure to clear the uptodate flag */
7565 if (err)
9be3395b
CM
7566 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7567 dio_end_io(dio_bio, err);
23ea8e5a
MX
7568
7569 if (io_bio->end_io)
7570 io_bio->end_io(io_bio, err);
9be3395b 7571 bio_put(bio);
4b46fce2
JB
7572}
7573
7574static void btrfs_endio_direct_write(struct bio *bio, int err)
7575{
7576 struct btrfs_dio_private *dip = bio->bi_private;
7577 struct inode *inode = dip->inode;
7578 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7579 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7580 u64 ordered_offset = dip->logical_offset;
7581 u64 ordered_bytes = dip->bytes;
9be3395b 7582 struct bio *dio_bio;
4b46fce2
JB
7583 int ret;
7584
7585 if (err)
7586 goto out_done;
163cf09c
CM
7587again:
7588 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7589 &ordered_offset,
5fd02043 7590 ordered_bytes, !err);
4b46fce2 7591 if (!ret)
163cf09c 7592 goto out_test;
4b46fce2 7593
9e0af237
LB
7594 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7595 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
7596 btrfs_queue_work(root->fs_info->endio_write_workers,
7597 &ordered->work);
163cf09c
CM
7598out_test:
7599 /*
7600 * our bio might span multiple ordered extents. If we haven't
7601 * completed the accounting for the whole dio, go back and try again
7602 */
7603 if (ordered_offset < dip->logical_offset + dip->bytes) {
7604 ordered_bytes = dip->logical_offset + dip->bytes -
7605 ordered_offset;
5fd02043 7606 ordered = NULL;
163cf09c
CM
7607 goto again;
7608 }
4b46fce2 7609out_done:
9be3395b 7610 dio_bio = dip->dio_bio;
4b46fce2 7611
4b46fce2 7612 kfree(dip);
c0da7aa1
JB
7613
7614 /* If we had an error make sure to clear the uptodate flag */
7615 if (err)
9be3395b
CM
7616 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7617 dio_end_io(dio_bio, err);
7618 bio_put(bio);
4b46fce2
JB
7619}
7620
eaf25d93
CM
7621static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7622 struct bio *bio, int mirror_num,
7623 unsigned long bio_flags, u64 offset)
7624{
7625 int ret;
7626 struct btrfs_root *root = BTRFS_I(inode)->root;
7627 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7628 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7629 return 0;
7630}
7631
e65e1535
MX
7632static void btrfs_end_dio_bio(struct bio *bio, int err)
7633{
7634 struct btrfs_dio_private *dip = bio->bi_private;
7635
8b110e39
MX
7636 if (err)
7637 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7638 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7639 btrfs_ino(dip->inode), bio->bi_rw,
7640 (unsigned long long)bio->bi_iter.bi_sector,
7641 bio->bi_iter.bi_size, err);
7642
7643 if (dip->subio_endio)
7644 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
7645
7646 if (err) {
e65e1535
MX
7647 dip->errors = 1;
7648
7649 /*
7650 * before atomic variable goto zero, we must make sure
7651 * dip->errors is perceived to be set.
7652 */
4e857c58 7653 smp_mb__before_atomic();
e65e1535
MX
7654 }
7655
7656 /* if there are more bios still pending for this dio, just exit */
7657 if (!atomic_dec_and_test(&dip->pending_bios))
7658 goto out;
7659
9be3395b 7660 if (dip->errors) {
e65e1535 7661 bio_io_error(dip->orig_bio);
9be3395b
CM
7662 } else {
7663 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7664 bio_endio(dip->orig_bio, 0);
7665 }
7666out:
7667 bio_put(bio);
7668}
7669
7670static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7671 u64 first_sector, gfp_t gfp_flags)
7672{
7673 int nr_vecs = bio_get_nr_vecs(bdev);
7674 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7675}
7676
c1dc0896
MX
7677static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7678 struct inode *inode,
7679 struct btrfs_dio_private *dip,
7680 struct bio *bio,
7681 u64 file_offset)
7682{
7683 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7684 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7685 int ret;
7686
7687 /*
7688 * We load all the csum data we need when we submit
7689 * the first bio to reduce the csum tree search and
7690 * contention.
7691 */
7692 if (dip->logical_offset == file_offset) {
7693 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7694 file_offset);
7695 if (ret)
7696 return ret;
7697 }
7698
7699 if (bio == dip->orig_bio)
7700 return 0;
7701
7702 file_offset -= dip->logical_offset;
7703 file_offset >>= inode->i_sb->s_blocksize_bits;
7704 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7705
7706 return 0;
7707}
7708
e65e1535
MX
7709static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7710 int rw, u64 file_offset, int skip_sum,
c329861d 7711 int async_submit)
e65e1535 7712{
facc8a22 7713 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7714 int write = rw & REQ_WRITE;
7715 struct btrfs_root *root = BTRFS_I(inode)->root;
7716 int ret;
7717
b812ce28
JB
7718 if (async_submit)
7719 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7720
e65e1535 7721 bio_get(bio);
5fd02043
JB
7722
7723 if (!write) {
7724 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7725 if (ret)
7726 goto err;
7727 }
e65e1535 7728
1ae39938
JB
7729 if (skip_sum)
7730 goto map;
7731
7732 if (write && async_submit) {
e65e1535
MX
7733 ret = btrfs_wq_submit_bio(root->fs_info,
7734 inode, rw, bio, 0, 0,
7735 file_offset,
7736 __btrfs_submit_bio_start_direct_io,
7737 __btrfs_submit_bio_done);
7738 goto err;
1ae39938
JB
7739 } else if (write) {
7740 /*
7741 * If we aren't doing async submit, calculate the csum of the
7742 * bio now.
7743 */
7744 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7745 if (ret)
7746 goto err;
23ea8e5a 7747 } else {
c1dc0896
MX
7748 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7749 file_offset);
c2db1073
TI
7750 if (ret)
7751 goto err;
7752 }
1ae39938
JB
7753map:
7754 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7755err:
7756 bio_put(bio);
7757 return ret;
7758}
7759
7760static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7761 int skip_sum)
7762{
7763 struct inode *inode = dip->inode;
7764 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7765 struct bio *bio;
7766 struct bio *orig_bio = dip->orig_bio;
7767 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 7768 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
7769 u64 file_offset = dip->logical_offset;
7770 u64 submit_len = 0;
7771 u64 map_length;
7772 int nr_pages = 0;
23ea8e5a 7773 int ret;
1ae39938 7774 int async_submit = 0;
e65e1535 7775
4f024f37 7776 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7777 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 7778 &map_length, NULL, 0);
7a5c3c9b 7779 if (ret)
e65e1535 7780 return -EIO;
facc8a22 7781
4f024f37 7782 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 7783 bio = orig_bio;
c1dc0896 7784 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
7785 goto submit;
7786 }
7787
53b381b3
DW
7788 /* async crcs make it difficult to collect full stripe writes. */
7789 if (btrfs_get_alloc_profile(root, 1) &
7790 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7791 async_submit = 0;
7792 else
7793 async_submit = 1;
7794
02f57c7a
JB
7795 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7796 if (!bio)
7797 return -ENOMEM;
7a5c3c9b 7798
02f57c7a
JB
7799 bio->bi_private = dip;
7800 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 7801 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
7802 atomic_inc(&dip->pending_bios);
7803
e65e1535
MX
7804 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7805 if (unlikely(map_length < submit_len + bvec->bv_len ||
7806 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7807 bvec->bv_offset) < bvec->bv_len)) {
7808 /*
7809 * inc the count before we submit the bio so
7810 * we know the end IO handler won't happen before
7811 * we inc the count. Otherwise, the dip might get freed
7812 * before we're done setting it up
7813 */
7814 atomic_inc(&dip->pending_bios);
7815 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7816 file_offset, skip_sum,
c329861d 7817 async_submit);
e65e1535
MX
7818 if (ret) {
7819 bio_put(bio);
7820 atomic_dec(&dip->pending_bios);
7821 goto out_err;
7822 }
7823
e65e1535
MX
7824 start_sector += submit_len >> 9;
7825 file_offset += submit_len;
7826
7827 submit_len = 0;
7828 nr_pages = 0;
7829
7830 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7831 start_sector, GFP_NOFS);
7832 if (!bio)
7833 goto out_err;
7834 bio->bi_private = dip;
7835 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 7836 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 7837
4f024f37 7838 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7839 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7840 start_sector << 9,
e65e1535
MX
7841 &map_length, NULL, 0);
7842 if (ret) {
7843 bio_put(bio);
7844 goto out_err;
7845 }
7846 } else {
7847 submit_len += bvec->bv_len;
67871254 7848 nr_pages++;
e65e1535
MX
7849 bvec++;
7850 }
7851 }
7852
02f57c7a 7853submit:
e65e1535 7854 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7855 async_submit);
e65e1535
MX
7856 if (!ret)
7857 return 0;
7858
7859 bio_put(bio);
7860out_err:
7861 dip->errors = 1;
7862 /*
7863 * before atomic variable goto zero, we must
7864 * make sure dip->errors is perceived to be set.
7865 */
4e857c58 7866 smp_mb__before_atomic();
e65e1535
MX
7867 if (atomic_dec_and_test(&dip->pending_bios))
7868 bio_io_error(dip->orig_bio);
7869
7870 /* bio_end_io() will handle error, so we needn't return it */
7871 return 0;
7872}
7873
9be3395b
CM
7874static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7875 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7876{
7877 struct btrfs_root *root = BTRFS_I(inode)->root;
7878 struct btrfs_dio_private *dip;
9be3395b 7879 struct bio *io_bio;
23ea8e5a 7880 struct btrfs_io_bio *btrfs_bio;
4b46fce2 7881 int skip_sum;
7b6d91da 7882 int write = rw & REQ_WRITE;
4b46fce2
JB
7883 int ret = 0;
7884
7885 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7886
9be3395b 7887 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7888 if (!io_bio) {
7889 ret = -ENOMEM;
7890 goto free_ordered;
7891 }
7892
c1dc0896 7893 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
7894 if (!dip) {
7895 ret = -ENOMEM;
9be3395b 7896 goto free_io_bio;
4b46fce2 7897 }
4b46fce2 7898
9be3395b 7899 dip->private = dio_bio->bi_private;
4b46fce2
JB
7900 dip->inode = inode;
7901 dip->logical_offset = file_offset;
4f024f37
KO
7902 dip->bytes = dio_bio->bi_iter.bi_size;
7903 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 7904 io_bio->bi_private = dip;
9be3395b
CM
7905 dip->orig_bio = io_bio;
7906 dip->dio_bio = dio_bio;
e65e1535 7907 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
7908 btrfs_bio = btrfs_io_bio(io_bio);
7909 btrfs_bio->logical = file_offset;
4b46fce2 7910
c1dc0896 7911 if (write) {
9be3395b 7912 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 7913 } else {
9be3395b 7914 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
7915 dip->subio_endio = btrfs_subio_endio_read;
7916 }
4b46fce2 7917
e65e1535
MX
7918 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7919 if (!ret)
eaf25d93 7920 return;
9be3395b 7921
23ea8e5a
MX
7922 if (btrfs_bio->end_io)
7923 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b
CM
7924free_io_bio:
7925 bio_put(io_bio);
7926
4b46fce2
JB
7927free_ordered:
7928 /*
7929 * If this is a write, we need to clean up the reserved space and kill
7930 * the ordered extent.
7931 */
7932 if (write) {
7933 struct btrfs_ordered_extent *ordered;
955256f2 7934 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7935 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7936 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7937 btrfs_free_reserved_extent(root, ordered->start,
e570fd27 7938 ordered->disk_len, 1);
4b46fce2
JB
7939 btrfs_put_ordered_extent(ordered);
7940 btrfs_put_ordered_extent(ordered);
7941 }
9be3395b 7942 bio_endio(dio_bio, ret);
4b46fce2
JB
7943}
7944
5a5f79b5 7945static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
28060d5d 7946 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
7947{
7948 int seg;
a1b75f7d 7949 int i;
5a5f79b5
CM
7950 unsigned blocksize_mask = root->sectorsize - 1;
7951 ssize_t retval = -EINVAL;
5a5f79b5
CM
7952
7953 if (offset & blocksize_mask)
7954 goto out;
7955
28060d5d
AV
7956 if (iov_iter_alignment(iter) & blocksize_mask)
7957 goto out;
a1b75f7d 7958
28060d5d
AV
7959 /* If this is a write we don't need to check anymore */
7960 if (rw & WRITE)
7961 return 0;
7962 /*
7963 * Check to make sure we don't have duplicate iov_base's in this
7964 * iovec, if so return EINVAL, otherwise we'll get csum errors
7965 * when reading back.
7966 */
7967 for (seg = 0; seg < iter->nr_segs; seg++) {
7968 for (i = seg + 1; i < iter->nr_segs; i++) {
7969 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
7970 goto out;
7971 }
5a5f79b5
CM
7972 }
7973 retval = 0;
7974out:
7975 return retval;
7976}
eb838e73 7977
16432985 7978static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 7979 struct iov_iter *iter, loff_t offset)
16432985 7980{
4b46fce2
JB
7981 struct file *file = iocb->ki_filp;
7982 struct inode *inode = file->f_mapping->host;
0934856d 7983 size_t count = 0;
2e60a51e 7984 int flags = 0;
38851cc1
MX
7985 bool wakeup = true;
7986 bool relock = false;
0934856d 7987 ssize_t ret;
4b46fce2 7988
28060d5d 7989 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
5a5f79b5 7990 return 0;
3f7c579c 7991
38851cc1 7992 atomic_inc(&inode->i_dio_count);
4e857c58 7993 smp_mb__after_atomic();
38851cc1 7994
0e267c44 7995 /*
41bd9ca4
MX
7996 * The generic stuff only does filemap_write_and_wait_range, which
7997 * isn't enough if we've written compressed pages to this area, so
7998 * we need to flush the dirty pages again to make absolutely sure
7999 * that any outstanding dirty pages are on disk.
0e267c44 8000 */
a6cbcd4a 8001 count = iov_iter_count(iter);
41bd9ca4
MX
8002 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8003 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8004 filemap_fdatawrite_range(inode->i_mapping, offset,
8005 offset + count - 1);
0e267c44 8006
0934856d 8007 if (rw & WRITE) {
38851cc1
MX
8008 /*
8009 * If the write DIO is beyond the EOF, we need update
8010 * the isize, but it is protected by i_mutex. So we can
8011 * not unlock the i_mutex at this case.
8012 */
8013 if (offset + count <= inode->i_size) {
8014 mutex_unlock(&inode->i_mutex);
8015 relock = true;
8016 }
0934856d
MX
8017 ret = btrfs_delalloc_reserve_space(inode, count);
8018 if (ret)
38851cc1
MX
8019 goto out;
8020 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8021 &BTRFS_I(inode)->runtime_flags))) {
8022 inode_dio_done(inode);
8023 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8024 wakeup = false;
0934856d
MX
8025 }
8026
8027 ret = __blockdev_direct_IO(rw, iocb, inode,
8028 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
31b14039 8029 iter, offset, btrfs_get_blocks_direct, NULL,
2e60a51e 8030 btrfs_submit_direct, flags);
0934856d
MX
8031 if (rw & WRITE) {
8032 if (ret < 0 && ret != -EIOCBQUEUED)
8033 btrfs_delalloc_release_space(inode, count);
172a5049 8034 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
8035 btrfs_delalloc_release_space(inode,
8036 count - (size_t)ret);
172a5049
MX
8037 else
8038 btrfs_delalloc_release_metadata(inode, 0);
0934856d 8039 }
38851cc1 8040out:
2e60a51e
MX
8041 if (wakeup)
8042 inode_dio_done(inode);
38851cc1
MX
8043 if (relock)
8044 mutex_lock(&inode->i_mutex);
0934856d
MX
8045
8046 return ret;
16432985
CM
8047}
8048
05dadc09
TI
8049#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8050
1506fcc8
YS
8051static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8052 __u64 start, __u64 len)
8053{
05dadc09
TI
8054 int ret;
8055
8056 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8057 if (ret)
8058 return ret;
8059
ec29ed5b 8060 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8061}
8062
a52d9a80 8063int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8064{
d1310b2e
CM
8065 struct extent_io_tree *tree;
8066 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8067 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8068}
1832a6d5 8069
a52d9a80 8070static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8071{
d1310b2e 8072 struct extent_io_tree *tree;
b888db2b
CM
8073
8074
8075 if (current->flags & PF_MEMALLOC) {
8076 redirty_page_for_writepage(wbc, page);
8077 unlock_page(page);
8078 return 0;
8079 }
d1310b2e 8080 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8081 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8082}
8083
48a3b636
ES
8084static int btrfs_writepages(struct address_space *mapping,
8085 struct writeback_control *wbc)
b293f02e 8086{
d1310b2e 8087 struct extent_io_tree *tree;
771ed689 8088
d1310b2e 8089 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8090 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8091}
8092
3ab2fb5a
CM
8093static int
8094btrfs_readpages(struct file *file, struct address_space *mapping,
8095 struct list_head *pages, unsigned nr_pages)
8096{
d1310b2e
CM
8097 struct extent_io_tree *tree;
8098 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8099 return extent_readpages(tree, mapping, pages, nr_pages,
8100 btrfs_get_extent);
8101}
e6dcd2dc 8102static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8103{
d1310b2e
CM
8104 struct extent_io_tree *tree;
8105 struct extent_map_tree *map;
a52d9a80 8106 int ret;
8c2383c3 8107
d1310b2e
CM
8108 tree = &BTRFS_I(page->mapping->host)->io_tree;
8109 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8110 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8111 if (ret == 1) {
8112 ClearPagePrivate(page);
8113 set_page_private(page, 0);
8114 page_cache_release(page);
39279cc3 8115 }
a52d9a80 8116 return ret;
39279cc3
CM
8117}
8118
e6dcd2dc
CM
8119static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8120{
98509cfc
CM
8121 if (PageWriteback(page) || PageDirty(page))
8122 return 0;
b335b003 8123 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8124}
8125
d47992f8
LC
8126static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8127 unsigned int length)
39279cc3 8128{
5fd02043 8129 struct inode *inode = page->mapping->host;
d1310b2e 8130 struct extent_io_tree *tree;
e6dcd2dc 8131 struct btrfs_ordered_extent *ordered;
2ac55d41 8132 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8133 u64 page_start = page_offset(page);
8134 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8135 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8136
8b62b72b
CM
8137 /*
8138 * we have the page locked, so new writeback can't start,
8139 * and the dirty bit won't be cleared while we are here.
8140 *
8141 * Wait for IO on this page so that we can safely clear
8142 * the PagePrivate2 bit and do ordered accounting
8143 */
e6dcd2dc 8144 wait_on_page_writeback(page);
8b62b72b 8145
5fd02043 8146 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8147 if (offset) {
8148 btrfs_releasepage(page, GFP_NOFS);
8149 return;
8150 }
131e404a
FDBM
8151
8152 if (!inode_evicting)
8153 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8154 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8155 if (ordered) {
eb84ae03
CM
8156 /*
8157 * IO on this page will never be started, so we need
8158 * to account for any ordered extents now
8159 */
131e404a
FDBM
8160 if (!inode_evicting)
8161 clear_extent_bit(tree, page_start, page_end,
8162 EXTENT_DIRTY | EXTENT_DELALLOC |
8163 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8164 EXTENT_DEFRAG, 1, 0, &cached_state,
8165 GFP_NOFS);
8b62b72b
CM
8166 /*
8167 * whoever cleared the private bit is responsible
8168 * for the finish_ordered_io
8169 */
77cef2ec
JB
8170 if (TestClearPagePrivate2(page)) {
8171 struct btrfs_ordered_inode_tree *tree;
8172 u64 new_len;
8173
8174 tree = &BTRFS_I(inode)->ordered_tree;
8175
8176 spin_lock_irq(&tree->lock);
8177 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8178 new_len = page_start - ordered->file_offset;
8179 if (new_len < ordered->truncated_len)
8180 ordered->truncated_len = new_len;
8181 spin_unlock_irq(&tree->lock);
8182
8183 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8184 page_start,
8185 PAGE_CACHE_SIZE, 1))
8186 btrfs_finish_ordered_io(ordered);
8b62b72b 8187 }
e6dcd2dc 8188 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8189 if (!inode_evicting) {
8190 cached_state = NULL;
8191 lock_extent_bits(tree, page_start, page_end, 0,
8192 &cached_state);
8193 }
8194 }
8195
8196 if (!inode_evicting) {
8197 clear_extent_bit(tree, page_start, page_end,
8198 EXTENT_LOCKED | EXTENT_DIRTY |
8199 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8200 EXTENT_DEFRAG, 1, 1,
8201 &cached_state, GFP_NOFS);
8202
8203 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8204 }
e6dcd2dc 8205
4a096752 8206 ClearPageChecked(page);
9ad6b7bc 8207 if (PagePrivate(page)) {
9ad6b7bc
CM
8208 ClearPagePrivate(page);
8209 set_page_private(page, 0);
8210 page_cache_release(page);
8211 }
39279cc3
CM
8212}
8213
9ebefb18
CM
8214/*
8215 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8216 * called from a page fault handler when a page is first dirtied. Hence we must
8217 * be careful to check for EOF conditions here. We set the page up correctly
8218 * for a written page which means we get ENOSPC checking when writing into
8219 * holes and correct delalloc and unwritten extent mapping on filesystems that
8220 * support these features.
8221 *
8222 * We are not allowed to take the i_mutex here so we have to play games to
8223 * protect against truncate races as the page could now be beyond EOF. Because
8224 * vmtruncate() writes the inode size before removing pages, once we have the
8225 * page lock we can determine safely if the page is beyond EOF. If it is not
8226 * beyond EOF, then the page is guaranteed safe against truncation until we
8227 * unlock the page.
8228 */
c2ec175c 8229int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8230{
c2ec175c 8231 struct page *page = vmf->page;
496ad9aa 8232 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8233 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8234 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8235 struct btrfs_ordered_extent *ordered;
2ac55d41 8236 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8237 char *kaddr;
8238 unsigned long zero_start;
9ebefb18 8239 loff_t size;
1832a6d5 8240 int ret;
9998eb70 8241 int reserved = 0;
a52d9a80 8242 u64 page_start;
e6dcd2dc 8243 u64 page_end;
9ebefb18 8244
b2b5ef5c 8245 sb_start_pagefault(inode->i_sb);
0ca1f7ce 8246 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 8247 if (!ret) {
e41f941a 8248 ret = file_update_time(vma->vm_file);
9998eb70
CM
8249 reserved = 1;
8250 }
56a76f82
NP
8251 if (ret) {
8252 if (ret == -ENOMEM)
8253 ret = VM_FAULT_OOM;
8254 else /* -ENOSPC, -EIO, etc */
8255 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8256 if (reserved)
8257 goto out;
8258 goto out_noreserve;
56a76f82 8259 }
1832a6d5 8260
56a76f82 8261 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8262again:
9ebefb18 8263 lock_page(page);
9ebefb18 8264 size = i_size_read(inode);
e6dcd2dc
CM
8265 page_start = page_offset(page);
8266 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 8267
9ebefb18 8268 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8269 (page_start >= size)) {
9ebefb18
CM
8270 /* page got truncated out from underneath us */
8271 goto out_unlock;
8272 }
e6dcd2dc
CM
8273 wait_on_page_writeback(page);
8274
d0082371 8275 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8276 set_page_extent_mapped(page);
8277
eb84ae03
CM
8278 /*
8279 * we can't set the delalloc bits if there are pending ordered
8280 * extents. Drop our locks and wait for them to finish
8281 */
e6dcd2dc
CM
8282 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8283 if (ordered) {
2ac55d41
JB
8284 unlock_extent_cached(io_tree, page_start, page_end,
8285 &cached_state, GFP_NOFS);
e6dcd2dc 8286 unlock_page(page);
eb84ae03 8287 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8288 btrfs_put_ordered_extent(ordered);
8289 goto again;
8290 }
8291
fbf19087
JB
8292 /*
8293 * XXX - page_mkwrite gets called every time the page is dirtied, even
8294 * if it was already dirty, so for space accounting reasons we need to
8295 * clear any delalloc bits for the range we are fixing to save. There
8296 * is probably a better way to do this, but for now keep consistent with
8297 * prepare_pages in the normal write path.
8298 */
2ac55d41 8299 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8300 EXTENT_DIRTY | EXTENT_DELALLOC |
8301 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8302 0, 0, &cached_state, GFP_NOFS);
fbf19087 8303
2ac55d41
JB
8304 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8305 &cached_state);
9ed74f2d 8306 if (ret) {
2ac55d41
JB
8307 unlock_extent_cached(io_tree, page_start, page_end,
8308 &cached_state, GFP_NOFS);
9ed74f2d
JB
8309 ret = VM_FAULT_SIGBUS;
8310 goto out_unlock;
8311 }
e6dcd2dc 8312 ret = 0;
9ebefb18
CM
8313
8314 /* page is wholly or partially inside EOF */
a52d9a80 8315 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8316 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8317 else
e6dcd2dc 8318 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8319
e6dcd2dc
CM
8320 if (zero_start != PAGE_CACHE_SIZE) {
8321 kaddr = kmap(page);
8322 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8323 flush_dcache_page(page);
8324 kunmap(page);
8325 }
247e743c 8326 ClearPageChecked(page);
e6dcd2dc 8327 set_page_dirty(page);
50a9b214 8328 SetPageUptodate(page);
5a3f23d5 8329
257c62e1
CM
8330 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8331 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8332 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8333
2ac55d41 8334 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8335
8336out_unlock:
b2b5ef5c
JK
8337 if (!ret) {
8338 sb_end_pagefault(inode->i_sb);
50a9b214 8339 return VM_FAULT_LOCKED;
b2b5ef5c 8340 }
9ebefb18 8341 unlock_page(page);
1832a6d5 8342out:
ec39e180 8343 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 8344out_noreserve:
b2b5ef5c 8345 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8346 return ret;
8347}
8348
a41ad394 8349static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8350{
8351 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8352 struct btrfs_block_rsv *rsv;
a71754fc 8353 int ret = 0;
3893e33b 8354 int err = 0;
39279cc3 8355 struct btrfs_trans_handle *trans;
dbe674a9 8356 u64 mask = root->sectorsize - 1;
07127184 8357 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8358
0ef8b726
JB
8359 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8360 (u64)-1);
8361 if (ret)
8362 return ret;
39279cc3 8363
fcb80c2a
JB
8364 /*
8365 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8366 * 3 things going on here
8367 *
8368 * 1) We need to reserve space for our orphan item and the space to
8369 * delete our orphan item. Lord knows we don't want to have a dangling
8370 * orphan item because we didn't reserve space to remove it.
8371 *
8372 * 2) We need to reserve space to update our inode.
8373 *
8374 * 3) We need to have something to cache all the space that is going to
8375 * be free'd up by the truncate operation, but also have some slack
8376 * space reserved in case it uses space during the truncate (thank you
8377 * very much snapshotting).
8378 *
8379 * And we need these to all be seperate. The fact is we can use alot of
8380 * space doing the truncate, and we have no earthly idea how much space
8381 * we will use, so we need the truncate reservation to be seperate so it
8382 * doesn't end up using space reserved for updating the inode or
8383 * removing the orphan item. We also need to be able to stop the
8384 * transaction and start a new one, which means we need to be able to
8385 * update the inode several times, and we have no idea of knowing how
8386 * many times that will be, so we can't just reserve 1 item for the
8387 * entirety of the opration, so that has to be done seperately as well.
8388 * Then there is the orphan item, which does indeed need to be held on
8389 * to for the whole operation, and we need nobody to touch this reserved
8390 * space except the orphan code.
8391 *
8392 * So that leaves us with
8393 *
8394 * 1) root->orphan_block_rsv - for the orphan deletion.
8395 * 2) rsv - for the truncate reservation, which we will steal from the
8396 * transaction reservation.
8397 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8398 * updating the inode.
8399 */
66d8f3dd 8400 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8401 if (!rsv)
8402 return -ENOMEM;
4a338542 8403 rsv->size = min_size;
ca7e70f5 8404 rsv->failfast = 1;
f0cd846e 8405
907cbceb 8406 /*
07127184 8407 * 1 for the truncate slack space
907cbceb
JB
8408 * 1 for updating the inode.
8409 */
f3fe820c 8410 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8411 if (IS_ERR(trans)) {
8412 err = PTR_ERR(trans);
8413 goto out;
8414 }
f0cd846e 8415
907cbceb
JB
8416 /* Migrate the slack space for the truncate to our reserve */
8417 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8418 min_size);
fcb80c2a 8419 BUG_ON(ret);
f0cd846e 8420
5dc562c5
JB
8421 /*
8422 * So if we truncate and then write and fsync we normally would just
8423 * write the extents that changed, which is a problem if we need to
8424 * first truncate that entire inode. So set this flag so we write out
8425 * all of the extents in the inode to the sync log so we're completely
8426 * safe.
8427 */
8428 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8429 trans->block_rsv = rsv;
907cbceb 8430
8082510e
YZ
8431 while (1) {
8432 ret = btrfs_truncate_inode_items(trans, root, inode,
8433 inode->i_size,
8434 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 8435 if (ret != -ENOSPC) {
3893e33b 8436 err = ret;
8082510e 8437 break;
3893e33b 8438 }
39279cc3 8439
fcb80c2a 8440 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8441 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8442 if (ret) {
8443 err = ret;
8444 break;
8445 }
ca7e70f5 8446
8082510e 8447 btrfs_end_transaction(trans, root);
b53d3f5d 8448 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8449
8450 trans = btrfs_start_transaction(root, 2);
8451 if (IS_ERR(trans)) {
8452 ret = err = PTR_ERR(trans);
8453 trans = NULL;
8454 break;
8455 }
8456
8457 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8458 rsv, min_size);
8459 BUG_ON(ret); /* shouldn't happen */
8460 trans->block_rsv = rsv;
8082510e
YZ
8461 }
8462
8463 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8464 trans->block_rsv = root->orphan_block_rsv;
8082510e 8465 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8466 if (ret)
8467 err = ret;
8082510e
YZ
8468 }
8469
917c16b2
CM
8470 if (trans) {
8471 trans->block_rsv = &root->fs_info->trans_block_rsv;
8472 ret = btrfs_update_inode(trans, root, inode);
8473 if (ret && !err)
8474 err = ret;
7b128766 8475
7ad85bb7 8476 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8477 btrfs_btree_balance_dirty(root);
917c16b2 8478 }
fcb80c2a
JB
8479
8480out:
8481 btrfs_free_block_rsv(root, rsv);
8482
3893e33b
JB
8483 if (ret && !err)
8484 err = ret;
a41ad394 8485
3893e33b 8486 return err;
39279cc3
CM
8487}
8488
d352ac68
CM
8489/*
8490 * create a new subvolume directory/inode (helper for the ioctl).
8491 */
d2fb3437 8492int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8493 struct btrfs_root *new_root,
8494 struct btrfs_root *parent_root,
8495 u64 new_dirid)
39279cc3 8496{
39279cc3 8497 struct inode *inode;
76dda93c 8498 int err;
00e4e6b3 8499 u64 index = 0;
39279cc3 8500
12fc9d09
FA
8501 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8502 new_dirid, new_dirid,
8503 S_IFDIR | (~current_umask() & S_IRWXUGO),
8504 &index);
54aa1f4d 8505 if (IS_ERR(inode))
f46b5a66 8506 return PTR_ERR(inode);
39279cc3
CM
8507 inode->i_op = &btrfs_dir_inode_operations;
8508 inode->i_fop = &btrfs_dir_file_operations;
8509
bfe86848 8510 set_nlink(inode, 1);
dbe674a9 8511 btrfs_i_size_write(inode, 0);
b0d5d10f 8512 unlock_new_inode(inode);
3b96362c 8513
63541927
FDBM
8514 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8515 if (err)
8516 btrfs_err(new_root->fs_info,
351fd353 8517 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8518 new_root->root_key.objectid, err);
8519
76dda93c 8520 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8521
76dda93c 8522 iput(inode);
ce598979 8523 return err;
39279cc3
CM
8524}
8525
39279cc3
CM
8526struct inode *btrfs_alloc_inode(struct super_block *sb)
8527{
8528 struct btrfs_inode *ei;
2ead6ae7 8529 struct inode *inode;
39279cc3
CM
8530
8531 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8532 if (!ei)
8533 return NULL;
2ead6ae7
YZ
8534
8535 ei->root = NULL;
2ead6ae7 8536 ei->generation = 0;
15ee9bc7 8537 ei->last_trans = 0;
257c62e1 8538 ei->last_sub_trans = 0;
e02119d5 8539 ei->logged_trans = 0;
2ead6ae7 8540 ei->delalloc_bytes = 0;
47059d93 8541 ei->defrag_bytes = 0;
2ead6ae7
YZ
8542 ei->disk_i_size = 0;
8543 ei->flags = 0;
7709cde3 8544 ei->csum_bytes = 0;
2ead6ae7 8545 ei->index_cnt = (u64)-1;
67de1176 8546 ei->dir_index = 0;
2ead6ae7 8547 ei->last_unlink_trans = 0;
46d8bc34 8548 ei->last_log_commit = 0;
2ead6ae7 8549
9e0baf60
JB
8550 spin_lock_init(&ei->lock);
8551 ei->outstanding_extents = 0;
8552 ei->reserved_extents = 0;
2ead6ae7 8553
72ac3c0d 8554 ei->runtime_flags = 0;
261507a0 8555 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8556
16cdcec7
MX
8557 ei->delayed_node = NULL;
8558
2ead6ae7 8559 inode = &ei->vfs_inode;
a8067e02 8560 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8561 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8562 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8563 ei->io_tree.track_uptodate = 1;
8564 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8565 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8566 mutex_init(&ei->log_mutex);
f248679e 8567 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8568 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8569 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
8570 RB_CLEAR_NODE(&ei->rb_node);
8571
8572 return inode;
39279cc3
CM
8573}
8574
aaedb55b
JB
8575#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8576void btrfs_test_destroy_inode(struct inode *inode)
8577{
8578 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8579 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8580}
8581#endif
8582
fa0d7e3d
NP
8583static void btrfs_i_callback(struct rcu_head *head)
8584{
8585 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8586 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8587}
8588
39279cc3
CM
8589void btrfs_destroy_inode(struct inode *inode)
8590{
e6dcd2dc 8591 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8592 struct btrfs_root *root = BTRFS_I(inode)->root;
8593
b3d9b7a3 8594 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8595 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8596 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8597 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8598 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8599 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8600 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8601
a6dbd429
JB
8602 /*
8603 * This can happen where we create an inode, but somebody else also
8604 * created the same inode and we need to destroy the one we already
8605 * created.
8606 */
8607 if (!root)
8608 goto free;
8609
8a35d95f
JB
8610 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8611 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8612 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8613 btrfs_ino(inode));
8a35d95f 8614 atomic_dec(&root->orphan_inodes);
7b128766 8615 }
7b128766 8616
d397712b 8617 while (1) {
e6dcd2dc
CM
8618 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8619 if (!ordered)
8620 break;
8621 else {
c2cf52eb 8622 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8623 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8624 btrfs_remove_ordered_extent(inode, ordered);
8625 btrfs_put_ordered_extent(ordered);
8626 btrfs_put_ordered_extent(ordered);
8627 }
8628 }
5d4f98a2 8629 inode_tree_del(inode);
5b21f2ed 8630 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8631free:
fa0d7e3d 8632 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8633}
8634
45321ac5 8635int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8636{
8637 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8638
6379ef9f
NA
8639 if (root == NULL)
8640 return 1;
8641
fa6ac876 8642 /* the snap/subvol tree is on deleting */
69e9c6c6 8643 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8644 return 1;
76dda93c 8645 else
45321ac5 8646 return generic_drop_inode(inode);
76dda93c
YZ
8647}
8648
0ee0fda0 8649static void init_once(void *foo)
39279cc3
CM
8650{
8651 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8652
8653 inode_init_once(&ei->vfs_inode);
8654}
8655
8656void btrfs_destroy_cachep(void)
8657{
8c0a8537
KS
8658 /*
8659 * Make sure all delayed rcu free inodes are flushed before we
8660 * destroy cache.
8661 */
8662 rcu_barrier();
39279cc3
CM
8663 if (btrfs_inode_cachep)
8664 kmem_cache_destroy(btrfs_inode_cachep);
8665 if (btrfs_trans_handle_cachep)
8666 kmem_cache_destroy(btrfs_trans_handle_cachep);
8667 if (btrfs_transaction_cachep)
8668 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8669 if (btrfs_path_cachep)
8670 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8671 if (btrfs_free_space_cachep)
8672 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8673 if (btrfs_delalloc_work_cachep)
8674 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8675}
8676
8677int btrfs_init_cachep(void)
8678{
837e1972 8679 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8680 sizeof(struct btrfs_inode), 0,
8681 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8682 if (!btrfs_inode_cachep)
8683 goto fail;
9601e3f6 8684
837e1972 8685 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8686 sizeof(struct btrfs_trans_handle), 0,
8687 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8688 if (!btrfs_trans_handle_cachep)
8689 goto fail;
9601e3f6 8690
837e1972 8691 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8692 sizeof(struct btrfs_transaction), 0,
8693 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8694 if (!btrfs_transaction_cachep)
8695 goto fail;
9601e3f6 8696
837e1972 8697 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8698 sizeof(struct btrfs_path), 0,
8699 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8700 if (!btrfs_path_cachep)
8701 goto fail;
9601e3f6 8702
837e1972 8703 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8704 sizeof(struct btrfs_free_space), 0,
8705 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8706 if (!btrfs_free_space_cachep)
8707 goto fail;
8708
8ccf6f19
MX
8709 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8710 sizeof(struct btrfs_delalloc_work), 0,
8711 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8712 NULL);
8713 if (!btrfs_delalloc_work_cachep)
8714 goto fail;
8715
39279cc3
CM
8716 return 0;
8717fail:
8718 btrfs_destroy_cachep();
8719 return -ENOMEM;
8720}
8721
8722static int btrfs_getattr(struct vfsmount *mnt,
8723 struct dentry *dentry, struct kstat *stat)
8724{
df0af1a5 8725 u64 delalloc_bytes;
39279cc3 8726 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8727 u32 blocksize = inode->i_sb->s_blocksize;
8728
39279cc3 8729 generic_fillattr(inode, stat);
0ee5dc67 8730 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8731 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8732
8733 spin_lock(&BTRFS_I(inode)->lock);
8734 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8735 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8736 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8737 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8738 return 0;
8739}
8740
d397712b
CM
8741static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8742 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8743{
8744 struct btrfs_trans_handle *trans;
8745 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8746 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8747 struct inode *new_inode = new_dentry->d_inode;
8748 struct inode *old_inode = old_dentry->d_inode;
8749 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8750 u64 index = 0;
4df27c4d 8751 u64 root_objectid;
39279cc3 8752 int ret;
33345d01 8753 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8754
33345d01 8755 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8756 return -EPERM;
8757
4df27c4d 8758 /* we only allow rename subvolume link between subvolumes */
33345d01 8759 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8760 return -EXDEV;
8761
33345d01
LZ
8762 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8763 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8764 return -ENOTEMPTY;
5f39d397 8765
4df27c4d
YZ
8766 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8767 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8768 return -ENOTEMPTY;
9c52057c
CM
8769
8770
8771 /* check for collisions, even if the name isn't there */
4871c158 8772 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8773 new_dentry->d_name.name,
8774 new_dentry->d_name.len);
8775
8776 if (ret) {
8777 if (ret == -EEXIST) {
8778 /* we shouldn't get
8779 * eexist without a new_inode */
fae7f21c 8780 if (WARN_ON(!new_inode)) {
9c52057c
CM
8781 return ret;
8782 }
8783 } else {
8784 /* maybe -EOVERFLOW */
8785 return ret;
8786 }
8787 }
8788 ret = 0;
8789
5a3f23d5 8790 /*
8d875f95
CM
8791 * we're using rename to replace one file with another. Start IO on it
8792 * now so we don't add too much work to the end of the transaction
5a3f23d5 8793 */
8d875f95 8794 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
8795 filemap_flush(old_inode->i_mapping);
8796
76dda93c 8797 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8798 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8799 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8800 /*
8801 * We want to reserve the absolute worst case amount of items. So if
8802 * both inodes are subvols and we need to unlink them then that would
8803 * require 4 item modifications, but if they are both normal inodes it
8804 * would require 5 item modifications, so we'll assume their normal
8805 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8806 * should cover the worst case number of items we'll modify.
8807 */
6e137ed3 8808 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8809 if (IS_ERR(trans)) {
8810 ret = PTR_ERR(trans);
8811 goto out_notrans;
8812 }
76dda93c 8813
4df27c4d
YZ
8814 if (dest != root)
8815 btrfs_record_root_in_trans(trans, dest);
5f39d397 8816
a5719521
YZ
8817 ret = btrfs_set_inode_index(new_dir, &index);
8818 if (ret)
8819 goto out_fail;
5a3f23d5 8820
67de1176 8821 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8822 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 8823 /* force full log commit if subvolume involved. */
995946dd 8824 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 8825 } else {
a5719521
YZ
8826 ret = btrfs_insert_inode_ref(trans, dest,
8827 new_dentry->d_name.name,
8828 new_dentry->d_name.len,
33345d01
LZ
8829 old_ino,
8830 btrfs_ino(new_dir), index);
a5719521
YZ
8831 if (ret)
8832 goto out_fail;
4df27c4d
YZ
8833 /*
8834 * this is an ugly little race, but the rename is required
8835 * to make sure that if we crash, the inode is either at the
8836 * old name or the new one. pinning the log transaction lets
8837 * us make sure we don't allow a log commit to come in after
8838 * we unlink the name but before we add the new name back in.
8839 */
8840 btrfs_pin_log_trans(root);
8841 }
5a3f23d5 8842
0c4d2d95
JB
8843 inode_inc_iversion(old_dir);
8844 inode_inc_iversion(new_dir);
8845 inode_inc_iversion(old_inode);
39279cc3
CM
8846 old_dir->i_ctime = old_dir->i_mtime = ctime;
8847 new_dir->i_ctime = new_dir->i_mtime = ctime;
8848 old_inode->i_ctime = ctime;
5f39d397 8849
12fcfd22
CM
8850 if (old_dentry->d_parent != new_dentry->d_parent)
8851 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8852
33345d01 8853 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8854 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8855 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8856 old_dentry->d_name.name,
8857 old_dentry->d_name.len);
8858 } else {
92986796
AV
8859 ret = __btrfs_unlink_inode(trans, root, old_dir,
8860 old_dentry->d_inode,
8861 old_dentry->d_name.name,
8862 old_dentry->d_name.len);
8863 if (!ret)
8864 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8865 }
79787eaa
JM
8866 if (ret) {
8867 btrfs_abort_transaction(trans, root, ret);
8868 goto out_fail;
8869 }
39279cc3
CM
8870
8871 if (new_inode) {
0c4d2d95 8872 inode_inc_iversion(new_inode);
39279cc3 8873 new_inode->i_ctime = CURRENT_TIME;
33345d01 8874 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8875 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8876 root_objectid = BTRFS_I(new_inode)->location.objectid;
8877 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8878 root_objectid,
8879 new_dentry->d_name.name,
8880 new_dentry->d_name.len);
8881 BUG_ON(new_inode->i_nlink == 0);
8882 } else {
8883 ret = btrfs_unlink_inode(trans, dest, new_dir,
8884 new_dentry->d_inode,
8885 new_dentry->d_name.name,
8886 new_dentry->d_name.len);
8887 }
4ef31a45 8888 if (!ret && new_inode->i_nlink == 0)
e02119d5 8889 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8890 if (ret) {
8891 btrfs_abort_transaction(trans, root, ret);
8892 goto out_fail;
8893 }
39279cc3 8894 }
aec7477b 8895
4df27c4d
YZ
8896 ret = btrfs_add_link(trans, new_dir, old_inode,
8897 new_dentry->d_name.name,
a5719521 8898 new_dentry->d_name.len, 0, index);
79787eaa
JM
8899 if (ret) {
8900 btrfs_abort_transaction(trans, root, ret);
8901 goto out_fail;
8902 }
39279cc3 8903
67de1176
MX
8904 if (old_inode->i_nlink == 1)
8905 BTRFS_I(old_inode)->dir_index = index;
8906
33345d01 8907 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8908 struct dentry *parent = new_dentry->d_parent;
6a912213 8909 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8910 btrfs_end_log_trans(root);
8911 }
39279cc3 8912out_fail:
7ad85bb7 8913 btrfs_end_transaction(trans, root);
b44c59a8 8914out_notrans:
33345d01 8915 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8916 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8917
39279cc3
CM
8918 return ret;
8919}
8920
80ace85c
MS
8921static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8922 struct inode *new_dir, struct dentry *new_dentry,
8923 unsigned int flags)
8924{
8925 if (flags & ~RENAME_NOREPLACE)
8926 return -EINVAL;
8927
8928 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8929}
8930
8ccf6f19
MX
8931static void btrfs_run_delalloc_work(struct btrfs_work *work)
8932{
8933 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8934 struct inode *inode;
8ccf6f19
MX
8935
8936 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8937 work);
9f23e289
JB
8938 inode = delalloc_work->inode;
8939 if (delalloc_work->wait) {
8940 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8941 } else {
8942 filemap_flush(inode->i_mapping);
8943 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8944 &BTRFS_I(inode)->runtime_flags))
8945 filemap_flush(inode->i_mapping);
8946 }
8ccf6f19
MX
8947
8948 if (delalloc_work->delay_iput)
9f23e289 8949 btrfs_add_delayed_iput(inode);
8ccf6f19 8950 else
9f23e289 8951 iput(inode);
8ccf6f19
MX
8952 complete(&delalloc_work->completion);
8953}
8954
8955struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8956 int wait, int delay_iput)
8957{
8958 struct btrfs_delalloc_work *work;
8959
8960 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8961 if (!work)
8962 return NULL;
8963
8964 init_completion(&work->completion);
8965 INIT_LIST_HEAD(&work->list);
8966 work->inode = inode;
8967 work->wait = wait;
8968 work->delay_iput = delay_iput;
9e0af237
LB
8969 WARN_ON_ONCE(!inode);
8970 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8971 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
8972
8973 return work;
8974}
8975
8976void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8977{
8978 wait_for_completion(&work->completion);
8979 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8980}
8981
d352ac68
CM
8982/*
8983 * some fairly slow code that needs optimization. This walks the list
8984 * of all the inodes with pending delalloc and forces them to disk.
8985 */
6c255e67
MX
8986static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8987 int nr)
ea8c2819 8988{
ea8c2819 8989 struct btrfs_inode *binode;
5b21f2ed 8990 struct inode *inode;
8ccf6f19
MX
8991 struct btrfs_delalloc_work *work, *next;
8992 struct list_head works;
1eafa6c7 8993 struct list_head splice;
8ccf6f19 8994 int ret = 0;
ea8c2819 8995
8ccf6f19 8996 INIT_LIST_HEAD(&works);
1eafa6c7 8997 INIT_LIST_HEAD(&splice);
63607cc8 8998
573bfb72 8999 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9000 spin_lock(&root->delalloc_lock);
9001 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9002 while (!list_empty(&splice)) {
9003 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9004 delalloc_inodes);
1eafa6c7 9005
eb73c1b7
MX
9006 list_move_tail(&binode->delalloc_inodes,
9007 &root->delalloc_inodes);
5b21f2ed 9008 inode = igrab(&binode->vfs_inode);
df0af1a5 9009 if (!inode) {
eb73c1b7 9010 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9011 continue;
df0af1a5 9012 }
eb73c1b7 9013 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
9014
9015 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9016 if (unlikely(!work)) {
f4ab9ea7
JB
9017 if (delay_iput)
9018 btrfs_add_delayed_iput(inode);
9019 else
9020 iput(inode);
1eafa6c7 9021 ret = -ENOMEM;
a1ecaabb 9022 goto out;
5b21f2ed 9023 }
1eafa6c7 9024 list_add_tail(&work->list, &works);
a44903ab
QW
9025 btrfs_queue_work(root->fs_info->flush_workers,
9026 &work->work);
6c255e67
MX
9027 ret++;
9028 if (nr != -1 && ret >= nr)
a1ecaabb 9029 goto out;
5b21f2ed 9030 cond_resched();
eb73c1b7 9031 spin_lock(&root->delalloc_lock);
ea8c2819 9032 }
eb73c1b7 9033 spin_unlock(&root->delalloc_lock);
8c8bee1d 9034
a1ecaabb 9035out:
eb73c1b7
MX
9036 list_for_each_entry_safe(work, next, &works, list) {
9037 list_del_init(&work->list);
9038 btrfs_wait_and_free_delalloc_work(work);
9039 }
9040
9041 if (!list_empty_careful(&splice)) {
9042 spin_lock(&root->delalloc_lock);
9043 list_splice_tail(&splice, &root->delalloc_inodes);
9044 spin_unlock(&root->delalloc_lock);
9045 }
573bfb72 9046 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9047 return ret;
9048}
1eafa6c7 9049
eb73c1b7
MX
9050int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9051{
9052 int ret;
1eafa6c7 9053
2c21b4d7 9054 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9055 return -EROFS;
9056
6c255e67
MX
9057 ret = __start_delalloc_inodes(root, delay_iput, -1);
9058 if (ret > 0)
9059 ret = 0;
eb73c1b7
MX
9060 /*
9061 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9062 * we have to make sure the IO is actually started and that
9063 * ordered extents get created before we return
9064 */
9065 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9066 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9067 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9068 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9069 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9070 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9071 }
9072 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9073 return ret;
9074}
9075
6c255e67
MX
9076int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9077 int nr)
eb73c1b7
MX
9078{
9079 struct btrfs_root *root;
9080 struct list_head splice;
9081 int ret;
9082
2c21b4d7 9083 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9084 return -EROFS;
9085
9086 INIT_LIST_HEAD(&splice);
9087
573bfb72 9088 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9089 spin_lock(&fs_info->delalloc_root_lock);
9090 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9091 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9092 root = list_first_entry(&splice, struct btrfs_root,
9093 delalloc_root);
9094 root = btrfs_grab_fs_root(root);
9095 BUG_ON(!root);
9096 list_move_tail(&root->delalloc_root,
9097 &fs_info->delalloc_roots);
9098 spin_unlock(&fs_info->delalloc_root_lock);
9099
6c255e67 9100 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9101 btrfs_put_fs_root(root);
6c255e67 9102 if (ret < 0)
eb73c1b7
MX
9103 goto out;
9104
6c255e67
MX
9105 if (nr != -1) {
9106 nr -= ret;
9107 WARN_ON(nr < 0);
9108 }
eb73c1b7 9109 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9110 }
eb73c1b7 9111 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9112
6c255e67 9113 ret = 0;
eb73c1b7
MX
9114 atomic_inc(&fs_info->async_submit_draining);
9115 while (atomic_read(&fs_info->nr_async_submits) ||
9116 atomic_read(&fs_info->async_delalloc_pages)) {
9117 wait_event(fs_info->async_submit_wait,
9118 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9119 atomic_read(&fs_info->async_delalloc_pages) == 0));
9120 }
9121 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9122out:
1eafa6c7 9123 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9124 spin_lock(&fs_info->delalloc_root_lock);
9125 list_splice_tail(&splice, &fs_info->delalloc_roots);
9126 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9127 }
573bfb72 9128 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9129 return ret;
ea8c2819
CM
9130}
9131
39279cc3
CM
9132static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9133 const char *symname)
9134{
9135 struct btrfs_trans_handle *trans;
9136 struct btrfs_root *root = BTRFS_I(dir)->root;
9137 struct btrfs_path *path;
9138 struct btrfs_key key;
1832a6d5 9139 struct inode *inode = NULL;
39279cc3
CM
9140 int err;
9141 int drop_inode = 0;
9142 u64 objectid;
67871254 9143 u64 index = 0;
39279cc3
CM
9144 int name_len;
9145 int datasize;
5f39d397 9146 unsigned long ptr;
39279cc3 9147 struct btrfs_file_extent_item *ei;
5f39d397 9148 struct extent_buffer *leaf;
39279cc3 9149
f06becc4 9150 name_len = strlen(symname);
39279cc3
CM
9151 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9152 return -ENAMETOOLONG;
1832a6d5 9153
9ed74f2d
JB
9154 /*
9155 * 2 items for inode item and ref
9156 * 2 items for dir items
9157 * 1 item for xattr if selinux is on
9158 */
a22285a6
YZ
9159 trans = btrfs_start_transaction(root, 5);
9160 if (IS_ERR(trans))
9161 return PTR_ERR(trans);
1832a6d5 9162
581bb050
LZ
9163 err = btrfs_find_free_ino(root, &objectid);
9164 if (err)
9165 goto out_unlock;
9166
aec7477b 9167 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9168 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9169 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9170 if (IS_ERR(inode)) {
9171 err = PTR_ERR(inode);
39279cc3 9172 goto out_unlock;
7cf96da3 9173 }
39279cc3 9174
ad19db71
CS
9175 /*
9176 * If the active LSM wants to access the inode during
9177 * d_instantiate it needs these. Smack checks to see
9178 * if the filesystem supports xattrs by looking at the
9179 * ops vector.
9180 */
9181 inode->i_fop = &btrfs_file_operations;
9182 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
9183 inode->i_mapping->a_ops = &btrfs_aops;
9184 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9185 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9186
9187 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9188 if (err)
9189 goto out_unlock_inode;
ad19db71 9190
a1b075d2 9191 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9192 if (err)
b0d5d10f 9193 goto out_unlock_inode;
39279cc3
CM
9194
9195 path = btrfs_alloc_path();
d8926bb3
MF
9196 if (!path) {
9197 err = -ENOMEM;
b0d5d10f 9198 goto out_unlock_inode;
d8926bb3 9199 }
33345d01 9200 key.objectid = btrfs_ino(inode);
39279cc3 9201 key.offset = 0;
962a298f 9202 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9203 datasize = btrfs_file_extent_calc_inline_size(name_len);
9204 err = btrfs_insert_empty_item(trans, root, path, &key,
9205 datasize);
54aa1f4d 9206 if (err) {
b0839166 9207 btrfs_free_path(path);
b0d5d10f 9208 goto out_unlock_inode;
54aa1f4d 9209 }
5f39d397
CM
9210 leaf = path->nodes[0];
9211 ei = btrfs_item_ptr(leaf, path->slots[0],
9212 struct btrfs_file_extent_item);
9213 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9214 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9215 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9216 btrfs_set_file_extent_encryption(leaf, ei, 0);
9217 btrfs_set_file_extent_compression(leaf, ei, 0);
9218 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9219 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9220
39279cc3 9221 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9222 write_extent_buffer(leaf, symname, ptr, name_len);
9223 btrfs_mark_buffer_dirty(leaf);
39279cc3 9224 btrfs_free_path(path);
5f39d397 9225
39279cc3
CM
9226 inode->i_op = &btrfs_symlink_inode_operations;
9227 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 9228 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 9229 inode_set_bytes(inode, name_len);
f06becc4 9230 btrfs_i_size_write(inode, name_len);
54aa1f4d 9231 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9232 if (err) {
54aa1f4d 9233 drop_inode = 1;
b0d5d10f
CM
9234 goto out_unlock_inode;
9235 }
9236
9237 unlock_new_inode(inode);
9238 d_instantiate(dentry, inode);
39279cc3
CM
9239
9240out_unlock:
7ad85bb7 9241 btrfs_end_transaction(trans, root);
39279cc3
CM
9242 if (drop_inode) {
9243 inode_dec_link_count(inode);
9244 iput(inode);
9245 }
b53d3f5d 9246 btrfs_btree_balance_dirty(root);
39279cc3 9247 return err;
b0d5d10f
CM
9248
9249out_unlock_inode:
9250 drop_inode = 1;
9251 unlock_new_inode(inode);
9252 goto out_unlock;
39279cc3 9253}
16432985 9254
0af3d00b
JB
9255static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9256 u64 start, u64 num_bytes, u64 min_size,
9257 loff_t actual_len, u64 *alloc_hint,
9258 struct btrfs_trans_handle *trans)
d899e052 9259{
5dc562c5
JB
9260 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9261 struct extent_map *em;
d899e052
YZ
9262 struct btrfs_root *root = BTRFS_I(inode)->root;
9263 struct btrfs_key ins;
d899e052 9264 u64 cur_offset = start;
55a61d1d 9265 u64 i_size;
154ea289 9266 u64 cur_bytes;
d899e052 9267 int ret = 0;
0af3d00b 9268 bool own_trans = true;
d899e052 9269
0af3d00b
JB
9270 if (trans)
9271 own_trans = false;
d899e052 9272 while (num_bytes > 0) {
0af3d00b
JB
9273 if (own_trans) {
9274 trans = btrfs_start_transaction(root, 3);
9275 if (IS_ERR(trans)) {
9276 ret = PTR_ERR(trans);
9277 break;
9278 }
5a303d5d
YZ
9279 }
9280
154ea289
CM
9281 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9282 cur_bytes = max(cur_bytes, min_size);
00361589 9283 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9284 *alloc_hint, &ins, 1, 0);
5a303d5d 9285 if (ret) {
0af3d00b
JB
9286 if (own_trans)
9287 btrfs_end_transaction(trans, root);
a22285a6 9288 break;
d899e052 9289 }
5a303d5d 9290
d899e052
YZ
9291 ret = insert_reserved_file_extent(trans, inode,
9292 cur_offset, ins.objectid,
9293 ins.offset, ins.offset,
920bbbfb 9294 ins.offset, 0, 0, 0,
d899e052 9295 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9296 if (ret) {
857cc2fc 9297 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9298 ins.offset, 0);
79787eaa
JM
9299 btrfs_abort_transaction(trans, root, ret);
9300 if (own_trans)
9301 btrfs_end_transaction(trans, root);
9302 break;
9303 }
a1ed835e
CM
9304 btrfs_drop_extent_cache(inode, cur_offset,
9305 cur_offset + ins.offset -1, 0);
5a303d5d 9306
5dc562c5
JB
9307 em = alloc_extent_map();
9308 if (!em) {
9309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9310 &BTRFS_I(inode)->runtime_flags);
9311 goto next;
9312 }
9313
9314 em->start = cur_offset;
9315 em->orig_start = cur_offset;
9316 em->len = ins.offset;
9317 em->block_start = ins.objectid;
9318 em->block_len = ins.offset;
b4939680 9319 em->orig_block_len = ins.offset;
cc95bef6 9320 em->ram_bytes = ins.offset;
5dc562c5
JB
9321 em->bdev = root->fs_info->fs_devices->latest_bdev;
9322 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9323 em->generation = trans->transid;
9324
9325 while (1) {
9326 write_lock(&em_tree->lock);
09a2a8f9 9327 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9328 write_unlock(&em_tree->lock);
9329 if (ret != -EEXIST)
9330 break;
9331 btrfs_drop_extent_cache(inode, cur_offset,
9332 cur_offset + ins.offset - 1,
9333 0);
9334 }
9335 free_extent_map(em);
9336next:
d899e052
YZ
9337 num_bytes -= ins.offset;
9338 cur_offset += ins.offset;
efa56464 9339 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9340
0c4d2d95 9341 inode_inc_iversion(inode);
d899e052 9342 inode->i_ctime = CURRENT_TIME;
6cbff00f 9343 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9344 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9345 (actual_len > inode->i_size) &&
9346 (cur_offset > inode->i_size)) {
d1ea6a61 9347 if (cur_offset > actual_len)
55a61d1d 9348 i_size = actual_len;
d1ea6a61 9349 else
55a61d1d
JB
9350 i_size = cur_offset;
9351 i_size_write(inode, i_size);
9352 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9353 }
9354
d899e052 9355 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9356
9357 if (ret) {
9358 btrfs_abort_transaction(trans, root, ret);
9359 if (own_trans)
9360 btrfs_end_transaction(trans, root);
9361 break;
9362 }
d899e052 9363
0af3d00b
JB
9364 if (own_trans)
9365 btrfs_end_transaction(trans, root);
5a303d5d 9366 }
d899e052
YZ
9367 return ret;
9368}
9369
0af3d00b
JB
9370int btrfs_prealloc_file_range(struct inode *inode, int mode,
9371 u64 start, u64 num_bytes, u64 min_size,
9372 loff_t actual_len, u64 *alloc_hint)
9373{
9374 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9375 min_size, actual_len, alloc_hint,
9376 NULL);
9377}
9378
9379int btrfs_prealloc_file_range_trans(struct inode *inode,
9380 struct btrfs_trans_handle *trans, int mode,
9381 u64 start, u64 num_bytes, u64 min_size,
9382 loff_t actual_len, u64 *alloc_hint)
9383{
9384 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9385 min_size, actual_len, alloc_hint, trans);
9386}
9387
e6dcd2dc
CM
9388static int btrfs_set_page_dirty(struct page *page)
9389{
e6dcd2dc
CM
9390 return __set_page_dirty_nobuffers(page);
9391}
9392
10556cb2 9393static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9394{
b83cc969 9395 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9396 umode_t mode = inode->i_mode;
b83cc969 9397
cb6db4e5
JM
9398 if (mask & MAY_WRITE &&
9399 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9400 if (btrfs_root_readonly(root))
9401 return -EROFS;
9402 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9403 return -EACCES;
9404 }
2830ba7f 9405 return generic_permission(inode, mask);
fdebe2bd 9406}
39279cc3 9407
ef3b9af5
FM
9408static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9409{
9410 struct btrfs_trans_handle *trans;
9411 struct btrfs_root *root = BTRFS_I(dir)->root;
9412 struct inode *inode = NULL;
9413 u64 objectid;
9414 u64 index;
9415 int ret = 0;
9416
9417 /*
9418 * 5 units required for adding orphan entry
9419 */
9420 trans = btrfs_start_transaction(root, 5);
9421 if (IS_ERR(trans))
9422 return PTR_ERR(trans);
9423
9424 ret = btrfs_find_free_ino(root, &objectid);
9425 if (ret)
9426 goto out;
9427
9428 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9429 btrfs_ino(dir), objectid, mode, &index);
9430 if (IS_ERR(inode)) {
9431 ret = PTR_ERR(inode);
9432 inode = NULL;
9433 goto out;
9434 }
9435
ef3b9af5
FM
9436 inode->i_fop = &btrfs_file_operations;
9437 inode->i_op = &btrfs_file_inode_operations;
9438
9439 inode->i_mapping->a_ops = &btrfs_aops;
9440 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9441 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9442
b0d5d10f
CM
9443 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9444 if (ret)
9445 goto out_inode;
9446
9447 ret = btrfs_update_inode(trans, root, inode);
9448 if (ret)
9449 goto out_inode;
ef3b9af5
FM
9450 ret = btrfs_orphan_add(trans, inode);
9451 if (ret)
b0d5d10f 9452 goto out_inode;
ef3b9af5 9453
5762b5c9
FM
9454 /*
9455 * We set number of links to 0 in btrfs_new_inode(), and here we set
9456 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9457 * through:
9458 *
9459 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9460 */
9461 set_nlink(inode, 1);
b0d5d10f 9462 unlock_new_inode(inode);
ef3b9af5
FM
9463 d_tmpfile(dentry, inode);
9464 mark_inode_dirty(inode);
9465
9466out:
9467 btrfs_end_transaction(trans, root);
9468 if (ret)
9469 iput(inode);
9470 btrfs_balance_delayed_items(root);
9471 btrfs_btree_balance_dirty(root);
ef3b9af5 9472 return ret;
b0d5d10f
CM
9473
9474out_inode:
9475 unlock_new_inode(inode);
9476 goto out;
9477
ef3b9af5
FM
9478}
9479
6e1d5dcc 9480static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9481 .getattr = btrfs_getattr,
39279cc3
CM
9482 .lookup = btrfs_lookup,
9483 .create = btrfs_create,
9484 .unlink = btrfs_unlink,
9485 .link = btrfs_link,
9486 .mkdir = btrfs_mkdir,
9487 .rmdir = btrfs_rmdir,
80ace85c 9488 .rename2 = btrfs_rename2,
39279cc3
CM
9489 .symlink = btrfs_symlink,
9490 .setattr = btrfs_setattr,
618e21d5 9491 .mknod = btrfs_mknod,
95819c05
CH
9492 .setxattr = btrfs_setxattr,
9493 .getxattr = btrfs_getxattr,
5103e947 9494 .listxattr = btrfs_listxattr,
95819c05 9495 .removexattr = btrfs_removexattr,
fdebe2bd 9496 .permission = btrfs_permission,
4e34e719 9497 .get_acl = btrfs_get_acl,
996a710d 9498 .set_acl = btrfs_set_acl,
93fd63c2 9499 .update_time = btrfs_update_time,
ef3b9af5 9500 .tmpfile = btrfs_tmpfile,
39279cc3 9501};
6e1d5dcc 9502static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 9503 .lookup = btrfs_lookup,
fdebe2bd 9504 .permission = btrfs_permission,
4e34e719 9505 .get_acl = btrfs_get_acl,
996a710d 9506 .set_acl = btrfs_set_acl,
93fd63c2 9507 .update_time = btrfs_update_time,
39279cc3 9508};
76dda93c 9509
828c0950 9510static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
9511 .llseek = generic_file_llseek,
9512 .read = generic_read_dir,
9cdda8d3 9513 .iterate = btrfs_real_readdir,
34287aa3 9514 .unlocked_ioctl = btrfs_ioctl,
39279cc3 9515#ifdef CONFIG_COMPAT
34287aa3 9516 .compat_ioctl = btrfs_ioctl,
39279cc3 9517#endif
6bf13c0c 9518 .release = btrfs_release_file,
e02119d5 9519 .fsync = btrfs_sync_file,
39279cc3
CM
9520};
9521
d1310b2e 9522static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 9523 .fill_delalloc = run_delalloc_range,
065631f6 9524 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 9525 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 9526 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 9527 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 9528 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
9529 .set_bit_hook = btrfs_set_bit_hook,
9530 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
9531 .merge_extent_hook = btrfs_merge_extent_hook,
9532 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
9533};
9534
35054394
CM
9535/*
9536 * btrfs doesn't support the bmap operation because swapfiles
9537 * use bmap to make a mapping of extents in the file. They assume
9538 * these extents won't change over the life of the file and they
9539 * use the bmap result to do IO directly to the drive.
9540 *
9541 * the btrfs bmap call would return logical addresses that aren't
9542 * suitable for IO and they also will change frequently as COW
9543 * operations happen. So, swapfile + btrfs == corruption.
9544 *
9545 * For now we're avoiding this by dropping bmap.
9546 */
7f09410b 9547static const struct address_space_operations btrfs_aops = {
39279cc3
CM
9548 .readpage = btrfs_readpage,
9549 .writepage = btrfs_writepage,
b293f02e 9550 .writepages = btrfs_writepages,
3ab2fb5a 9551 .readpages = btrfs_readpages,
16432985 9552 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
9553 .invalidatepage = btrfs_invalidatepage,
9554 .releasepage = btrfs_releasepage,
e6dcd2dc 9555 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 9556 .error_remove_page = generic_error_remove_page,
39279cc3
CM
9557};
9558
7f09410b 9559static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
9560 .readpage = btrfs_readpage,
9561 .writepage = btrfs_writepage,
2bf5a725
CM
9562 .invalidatepage = btrfs_invalidatepage,
9563 .releasepage = btrfs_releasepage,
39279cc3
CM
9564};
9565
6e1d5dcc 9566static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
9567 .getattr = btrfs_getattr,
9568 .setattr = btrfs_setattr,
95819c05
CH
9569 .setxattr = btrfs_setxattr,
9570 .getxattr = btrfs_getxattr,
5103e947 9571 .listxattr = btrfs_listxattr,
95819c05 9572 .removexattr = btrfs_removexattr,
fdebe2bd 9573 .permission = btrfs_permission,
1506fcc8 9574 .fiemap = btrfs_fiemap,
4e34e719 9575 .get_acl = btrfs_get_acl,
996a710d 9576 .set_acl = btrfs_set_acl,
e41f941a 9577 .update_time = btrfs_update_time,
39279cc3 9578};
6e1d5dcc 9579static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
9580 .getattr = btrfs_getattr,
9581 .setattr = btrfs_setattr,
fdebe2bd 9582 .permission = btrfs_permission,
95819c05
CH
9583 .setxattr = btrfs_setxattr,
9584 .getxattr = btrfs_getxattr,
33268eaf 9585 .listxattr = btrfs_listxattr,
95819c05 9586 .removexattr = btrfs_removexattr,
4e34e719 9587 .get_acl = btrfs_get_acl,
996a710d 9588 .set_acl = btrfs_set_acl,
e41f941a 9589 .update_time = btrfs_update_time,
618e21d5 9590};
6e1d5dcc 9591static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
9592 .readlink = generic_readlink,
9593 .follow_link = page_follow_link_light,
9594 .put_link = page_put_link,
f209561a 9595 .getattr = btrfs_getattr,
22c44fe6 9596 .setattr = btrfs_setattr,
fdebe2bd 9597 .permission = btrfs_permission,
0279b4cd
JO
9598 .setxattr = btrfs_setxattr,
9599 .getxattr = btrfs_getxattr,
9600 .listxattr = btrfs_listxattr,
9601 .removexattr = btrfs_removexattr,
e41f941a 9602 .update_time = btrfs_update_time,
39279cc3 9603};
76dda93c 9604
82d339d9 9605const struct dentry_operations btrfs_dentry_operations = {
76dda93c 9606 .d_delete = btrfs_dentry_delete,
b4aff1f8 9607 .d_release = btrfs_dentry_release,
76dda93c 9608};