Btrfs: only reserve space in fallocate if we have to do a preallocate
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
4b4e25f2 41#include "compat.h"
39279cc3
CM
42#include "ctree.h"
43#include "disk-io.h"
44#include "transaction.h"
45#include "btrfs_inode.h"
46#include "ioctl.h"
47#include "print-tree.h"
0b86a832 48#include "volumes.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
c8b97818 52#include "compression.h"
b4ce94de 53#include "locking.h"
dc89e982 54#include "free-space-cache.h"
581bb050 55#include "inode-map.h"
39279cc3
CM
56
57struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
60};
61
6e1d5dcc
AD
62static const struct inode_operations btrfs_dir_inode_operations;
63static const struct inode_operations btrfs_symlink_inode_operations;
64static const struct inode_operations btrfs_dir_ro_inode_operations;
65static const struct inode_operations btrfs_special_inode_operations;
66static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
67static const struct address_space_operations btrfs_aops;
68static const struct address_space_operations btrfs_symlink_aops;
828c0950 69static const struct file_operations btrfs_dir_file_operations;
d1310b2e 70static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
71
72static struct kmem_cache *btrfs_inode_cachep;
73struct kmem_cache *btrfs_trans_handle_cachep;
74struct kmem_cache *btrfs_transaction_cachep;
39279cc3 75struct kmem_cache *btrfs_path_cachep;
dc89e982 76struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
77
78#define S_SHIFT 12
79static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87};
88
a41ad394
JB
89static int btrfs_setsize(struct inode *inode, loff_t newsize);
90static int btrfs_truncate(struct inode *inode);
c8b97818 91static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
92static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
7b128766 96
f34f57a3 97static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
0279b4cd
JO
100{
101 int err;
102
f34f57a3 103 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 104 if (!err)
2a7dba39 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
106 return err;
107}
108
c8b97818
CM
109/*
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
113 */
d397712b 114static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
fe3f566c 117 int compress_type,
c8b97818
CM
118 struct page **compressed_pages)
119{
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
c8b97818 132
fe3f566c 133 if (compressed_size && compressed_pages)
c8b97818 134 cur_size = compressed_size;
c8b97818 135
d397712b
CM
136 path = btrfs_alloc_path();
137 if (!path)
c8b97818
CM
138 return -ENOMEM;
139
b9473439 140 path->leave_spinning = 1;
c8b97818 141
33345d01 142 key.objectid = btrfs_ino(inode);
c8b97818
CM
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
fe3f566c 223 size_t compressed_size, int compress_type,
c8b97818
CM
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
c8b97818 257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 293 BUG_ON(!async_extent);
771ed689
CM
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
261507a0 299 async_extent->compress_type = compress_type;
771ed689
CM
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302}
303
d352ac68 304/*
771ed689
CM
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
c8b97818 308 *
771ed689
CM
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
c8b97818 314 *
771ed689
CM
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
d352ac68 319 */
771ed689
CM
320static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
b888db2b
CM
325{
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
db94535d 328 u64 num_bytes;
db94535d 329 u64 blocksize = root->sectorsize;
c8b97818 330 u64 actual_end;
42dc7bab 331 u64 isize = i_size_read(inode);
e6dcd2dc 332 int ret = 0;
c8b97818
CM
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
771ed689 339 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
340 int i;
341 int will_compress;
261507a0 342 int compress_type = root->fs_info->compress_type;
b888db2b 343
4cb5300b
CM
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
347
42dc7bab 348 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
349again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 353
f03d9301
CM
354 /*
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
360 *
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
363 */
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
366
c8b97818
CM
367 total_compressed = actual_end - start;
368
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
374 *
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
c8b97818
CM
378 */
379 total_compressed = min(total_compressed, max_uncompressed);
db94535d 380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 381 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
382 total_in = 0;
383 ret = 0;
db94535d 384
771ed689
CM
385 /*
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
c8b97818 389 */
6cbff00f 390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 391 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 394 WARN_ON(pages);
cfbc246e 395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 396 BUG_ON(!pages);
c8b97818 397
261507a0
LZ
398 if (BTRFS_I(inode)->force_compress)
399 compress_type = BTRFS_I(inode)->force_compress;
400
401 ret = btrfs_compress_pages(compress_type,
402 inode->i_mapping, start,
403 total_compressed, pages,
404 nr_pages, &nr_pages_ret,
405 &total_in,
406 &total_compressed,
407 max_compressed);
c8b97818
CM
408
409 if (!ret) {
410 unsigned long offset = total_compressed &
411 (PAGE_CACHE_SIZE - 1);
412 struct page *page = pages[nr_pages_ret - 1];
413 char *kaddr;
414
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
417 */
418 if (offset) {
419 kaddr = kmap_atomic(page, KM_USER0);
420 memset(kaddr + offset, 0,
421 PAGE_CACHE_SIZE - offset);
422 kunmap_atomic(kaddr, KM_USER0);
423 }
424 will_compress = 1;
425 }
426 }
427 if (start == 0) {
7a7eaa40 428 trans = btrfs_join_transaction(root);
3612b495 429 BUG_ON(IS_ERR(trans));
0ca1f7ce 430 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 431
c8b97818 432 /* lets try to make an inline extent */
771ed689 433 if (ret || total_in < (actual_end - start)) {
c8b97818 434 /* we didn't compress the entire range, try
771ed689 435 * to make an uncompressed inline extent.
c8b97818
CM
436 */
437 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 438 start, end, 0, 0, NULL);
c8b97818 439 } else {
771ed689 440 /* try making a compressed inline extent */
c8b97818
CM
441 ret = cow_file_range_inline(trans, root, inode,
442 start, end,
fe3f566c
LZ
443 total_compressed,
444 compress_type, pages);
c8b97818
CM
445 }
446 if (ret == 0) {
771ed689
CM
447 /*
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
451 */
c8b97818 452 extent_clear_unlock_delalloc(inode,
a791e35e
CM
453 &BTRFS_I(inode)->io_tree,
454 start, end, NULL,
455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 456 EXTENT_CLEAR_DELALLOC |
a791e35e 457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
458
459 btrfs_end_transaction(trans, root);
c8b97818
CM
460 goto free_pages_out;
461 }
c2167754 462 btrfs_end_transaction(trans, root);
c8b97818
CM
463 }
464
465 if (will_compress) {
466 /*
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
469 * things
470 */
471 total_compressed = (total_compressed + blocksize - 1) &
472 ~(blocksize - 1);
473
474 /*
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
477 */
478 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 ~(PAGE_CACHE_SIZE - 1);
480 if (total_compressed >= total_in) {
481 will_compress = 0;
482 } else {
c8b97818
CM
483 num_bytes = total_in;
484 }
485 }
486 if (!will_compress && pages) {
487 /*
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
490 */
491 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 492 WARN_ON(pages[i]->mapping);
c8b97818
CM
493 page_cache_release(pages[i]);
494 }
495 kfree(pages);
496 pages = NULL;
497 total_compressed = 0;
498 nr_pages_ret = 0;
499
500 /* flag the file so we don't compress in the future */
1e701a32
CM
501 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 !(BTRFS_I(inode)->force_compress)) {
a555f810 503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 504 }
c8b97818 505 }
771ed689
CM
506 if (will_compress) {
507 *num_added += 1;
c8b97818 508
771ed689
CM
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
512 */
513 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
514 total_compressed, pages, nr_pages_ret,
515 compress_type);
179e29e4 516
24ae6365 517 if (start + num_bytes < end) {
771ed689
CM
518 start += num_bytes;
519 pages = NULL;
520 cond_resched();
521 goto again;
522 }
523 } else {
f03d9301 524cleanup_and_bail_uncompressed:
771ed689
CM
525 /*
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
531 */
532 if (page_offset(locked_page) >= start &&
533 page_offset(locked_page) <= end) {
534 __set_page_dirty_nobuffers(locked_page);
535 /* unlocked later on in the async handlers */
536 }
261507a0
LZ
537 add_async_extent(async_cow, start, end - start + 1,
538 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
539 *num_added += 1;
540 }
3b951516 541
771ed689
CM
542out:
543 return 0;
544
545free_pages_out:
546 for (i = 0; i < nr_pages_ret; i++) {
547 WARN_ON(pages[i]->mapping);
548 page_cache_release(pages[i]);
549 }
d397712b 550 kfree(pages);
771ed689
CM
551
552 goto out;
553}
554
555/*
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
560 */
561static noinline int submit_compressed_extents(struct inode *inode,
562 struct async_cow *async_cow)
563{
564 struct async_extent *async_extent;
565 u64 alloc_hint = 0;
566 struct btrfs_trans_handle *trans;
567 struct btrfs_key ins;
568 struct extent_map *em;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 struct extent_io_tree *io_tree;
f5a84ee3 572 int ret = 0;
771ed689
CM
573
574 if (list_empty(&async_cow->extents))
575 return 0;
576
771ed689 577
d397712b 578 while (!list_empty(&async_cow->extents)) {
771ed689
CM
579 async_extent = list_entry(async_cow->extents.next,
580 struct async_extent, list);
581 list_del(&async_extent->list);
c8b97818 582
771ed689
CM
583 io_tree = &BTRFS_I(inode)->io_tree;
584
f5a84ee3 585retry:
771ed689
CM
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent->pages) {
588 int page_started = 0;
589 unsigned long nr_written = 0;
590
591 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
592 async_extent->start +
593 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
594
595 /* allocate blocks */
f5a84ee3
JB
596 ret = cow_file_range(inode, async_cow->locked_page,
597 async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1,
600 &page_started, &nr_written, 0);
771ed689
CM
601
602 /*
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
607 */
f5a84ee3 608 if (!page_started && !ret)
771ed689
CM
609 extent_write_locked_range(io_tree,
610 inode, async_extent->start,
d397712b 611 async_extent->start +
771ed689
CM
612 async_extent->ram_size - 1,
613 btrfs_get_extent,
614 WB_SYNC_ALL);
615 kfree(async_extent);
616 cond_resched();
617 continue;
618 }
619
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start + async_extent->ram_size - 1,
622 GFP_NOFS);
771ed689 623
7a7eaa40 624 trans = btrfs_join_transaction(root);
3612b495 625 BUG_ON(IS_ERR(trans));
74b21075 626 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
627 ret = btrfs_reserve_extent(trans, root,
628 async_extent->compressed_size,
629 async_extent->compressed_size,
630 0, alloc_hint,
631 (u64)-1, &ins, 1);
c2167754
YZ
632 btrfs_end_transaction(trans, root);
633
f5a84ee3
JB
634 if (ret) {
635 int i;
636 for (i = 0; i < async_extent->nr_pages; i++) {
637 WARN_ON(async_extent->pages[i]->mapping);
638 page_cache_release(async_extent->pages[i]);
639 }
640 kfree(async_extent->pages);
641 async_extent->nr_pages = 0;
642 async_extent->pages = NULL;
643 unlock_extent(io_tree, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1, GFP_NOFS);
646 goto retry;
647 }
648
c2167754
YZ
649 /*
650 * here we're doing allocation and writeback of the
651 * compressed pages
652 */
653 btrfs_drop_extent_cache(inode, async_extent->start,
654 async_extent->start +
655 async_extent->ram_size - 1, 0);
656
172ddd60 657 em = alloc_extent_map();
c26a9203 658 BUG_ON(!em);
771ed689
CM
659 em->start = async_extent->start;
660 em->len = async_extent->ram_size;
445a6944 661 em->orig_start = em->start;
c8b97818 662
771ed689
CM
663 em->block_start = ins.objectid;
664 em->block_len = ins.offset;
665 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 666 em->compress_type = async_extent->compress_type;
771ed689
CM
667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669
d397712b 670 while (1) {
890871be 671 write_lock(&em_tree->lock);
771ed689 672 ret = add_extent_mapping(em_tree, em);
890871be 673 write_unlock(&em_tree->lock);
771ed689
CM
674 if (ret != -EEXIST) {
675 free_extent_map(em);
676 break;
677 }
678 btrfs_drop_extent_cache(inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1, 0);
681 }
682
261507a0
LZ
683 ret = btrfs_add_ordered_extent_compress(inode,
684 async_extent->start,
685 ins.objectid,
686 async_extent->ram_size,
687 ins.offset,
688 BTRFS_ORDERED_COMPRESSED,
689 async_extent->compress_type);
771ed689
CM
690 BUG_ON(ret);
691
771ed689
CM
692 /*
693 * clear dirty, set writeback and unlock the pages.
694 */
695 extent_clear_unlock_delalloc(inode,
a791e35e
CM
696 &BTRFS_I(inode)->io_tree,
697 async_extent->start,
698 async_extent->start +
699 async_extent->ram_size - 1,
700 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 EXTENT_CLEAR_UNLOCK |
a3429ab7 702 EXTENT_CLEAR_DELALLOC |
a791e35e 703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
704
705 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
706 async_extent->start,
707 async_extent->ram_size,
708 ins.objectid,
709 ins.offset, async_extent->pages,
710 async_extent->nr_pages);
771ed689
CM
711
712 BUG_ON(ret);
771ed689
CM
713 alloc_hint = ins.objectid + ins.offset;
714 kfree(async_extent);
715 cond_resched();
716 }
717
771ed689
CM
718 return 0;
719}
720
4b46fce2
JB
721static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 u64 num_bytes)
723{
724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 struct extent_map *em;
726 u64 alloc_hint = 0;
727
728 read_lock(&em_tree->lock);
729 em = search_extent_mapping(em_tree, start, num_bytes);
730 if (em) {
731 /*
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
735 */
736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 free_extent_map(em);
738 em = search_extent_mapping(em_tree, 0, 0);
739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 alloc_hint = em->block_start;
741 if (em)
742 free_extent_map(em);
743 } else {
744 alloc_hint = em->block_start;
745 free_extent_map(em);
746 }
747 }
748 read_unlock(&em_tree->lock);
749
750 return alloc_hint;
751}
752
771ed689
CM
753/*
754 * when extent_io.c finds a delayed allocation range in the file,
755 * the call backs end up in this code. The basic idea is to
756 * allocate extents on disk for the range, and create ordered data structs
757 * in ram to track those extents.
758 *
759 * locked_page is the page that writepage had locked already. We use
760 * it to make sure we don't do extra locks or unlocks.
761 *
762 * *page_started is set to one if we unlock locked_page and do everything
763 * required to start IO on it. It may be clean and already done with
764 * IO when we return.
765 */
766static noinline int cow_file_range(struct inode *inode,
767 struct page *locked_page,
768 u64 start, u64 end, int *page_started,
769 unsigned long *nr_written,
770 int unlock)
771{
772 struct btrfs_root *root = BTRFS_I(inode)->root;
773 struct btrfs_trans_handle *trans;
774 u64 alloc_hint = 0;
775 u64 num_bytes;
776 unsigned long ram_size;
777 u64 disk_num_bytes;
778 u64 cur_alloc_size;
779 u64 blocksize = root->sectorsize;
771ed689
CM
780 struct btrfs_key ins;
781 struct extent_map *em;
782 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
783 int ret = 0;
784
2cf8572d 785 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 786 trans = btrfs_join_transaction(root);
3612b495 787 BUG_ON(IS_ERR(trans));
0ca1f7ce 788 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 789
771ed689
CM
790 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
791 num_bytes = max(blocksize, num_bytes);
792 disk_num_bytes = num_bytes;
793 ret = 0;
794
4cb5300b
CM
795 /* if this is a small write inside eof, kick off defrag */
796 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
797 btrfs_add_inode_defrag(trans, inode);
798
771ed689
CM
799 if (start == 0) {
800 /* lets try to make an inline extent */
801 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 802 start, end, 0, 0, NULL);
771ed689
CM
803 if (ret == 0) {
804 extent_clear_unlock_delalloc(inode,
a791e35e
CM
805 &BTRFS_I(inode)->io_tree,
806 start, end, NULL,
807 EXTENT_CLEAR_UNLOCK_PAGE |
808 EXTENT_CLEAR_UNLOCK |
809 EXTENT_CLEAR_DELALLOC |
810 EXTENT_CLEAR_DIRTY |
811 EXTENT_SET_WRITEBACK |
812 EXTENT_END_WRITEBACK);
c2167754 813
771ed689
CM
814 *nr_written = *nr_written +
815 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
816 *page_started = 1;
817 ret = 0;
818 goto out;
819 }
820 }
821
822 BUG_ON(disk_num_bytes >
823 btrfs_super_total_bytes(&root->fs_info->super_copy));
824
4b46fce2 825 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
826 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
827
d397712b 828 while (disk_num_bytes > 0) {
a791e35e
CM
829 unsigned long op;
830
287a0ab9 831 cur_alloc_size = disk_num_bytes;
e6dcd2dc 832 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 833 root->sectorsize, 0, alloc_hint,
e6dcd2dc 834 (u64)-1, &ins, 1);
d397712b
CM
835 BUG_ON(ret);
836
172ddd60 837 em = alloc_extent_map();
c26a9203 838 BUG_ON(!em);
e6dcd2dc 839 em->start = start;
445a6944 840 em->orig_start = em->start;
771ed689
CM
841 ram_size = ins.offset;
842 em->len = ins.offset;
c8b97818 843
e6dcd2dc 844 em->block_start = ins.objectid;
c8b97818 845 em->block_len = ins.offset;
e6dcd2dc 846 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 847 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 848
d397712b 849 while (1) {
890871be 850 write_lock(&em_tree->lock);
e6dcd2dc 851 ret = add_extent_mapping(em_tree, em);
890871be 852 write_unlock(&em_tree->lock);
e6dcd2dc
CM
853 if (ret != -EEXIST) {
854 free_extent_map(em);
855 break;
856 }
857 btrfs_drop_extent_cache(inode, start,
c8b97818 858 start + ram_size - 1, 0);
e6dcd2dc
CM
859 }
860
98d20f67 861 cur_alloc_size = ins.offset;
e6dcd2dc 862 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 863 ram_size, cur_alloc_size, 0);
e6dcd2dc 864 BUG_ON(ret);
c8b97818 865
17d217fe
YZ
866 if (root->root_key.objectid ==
867 BTRFS_DATA_RELOC_TREE_OBJECTID) {
868 ret = btrfs_reloc_clone_csums(inode, start,
869 cur_alloc_size);
870 BUG_ON(ret);
871 }
872
d397712b 873 if (disk_num_bytes < cur_alloc_size)
3b951516 874 break;
d397712b 875
c8b97818
CM
876 /* we're not doing compressed IO, don't unlock the first
877 * page (which the caller expects to stay locked), don't
878 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
879 *
880 * Do set the Private2 bit so we know this page was properly
881 * setup for writepage
c8b97818 882 */
a791e35e
CM
883 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
884 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
885 EXTENT_SET_PRIVATE2;
886
c8b97818
CM
887 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
888 start, start + ram_size - 1,
a791e35e 889 locked_page, op);
c8b97818 890 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
891 num_bytes -= cur_alloc_size;
892 alloc_hint = ins.objectid + ins.offset;
893 start += cur_alloc_size;
b888db2b 894 }
b888db2b 895out:
771ed689 896 ret = 0;
b888db2b 897 btrfs_end_transaction(trans, root);
c8b97818 898
be20aa9d 899 return ret;
771ed689 900}
c8b97818 901
771ed689
CM
902/*
903 * work queue call back to started compression on a file and pages
904 */
905static noinline void async_cow_start(struct btrfs_work *work)
906{
907 struct async_cow *async_cow;
908 int num_added = 0;
909 async_cow = container_of(work, struct async_cow, work);
910
911 compress_file_range(async_cow->inode, async_cow->locked_page,
912 async_cow->start, async_cow->end, async_cow,
913 &num_added);
914 if (num_added == 0)
915 async_cow->inode = NULL;
916}
917
918/*
919 * work queue call back to submit previously compressed pages
920 */
921static noinline void async_cow_submit(struct btrfs_work *work)
922{
923 struct async_cow *async_cow;
924 struct btrfs_root *root;
925 unsigned long nr_pages;
926
927 async_cow = container_of(work, struct async_cow, work);
928
929 root = async_cow->root;
930 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
931 PAGE_CACHE_SHIFT;
932
933 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
934
935 if (atomic_read(&root->fs_info->async_delalloc_pages) <
936 5 * 1042 * 1024 &&
937 waitqueue_active(&root->fs_info->async_submit_wait))
938 wake_up(&root->fs_info->async_submit_wait);
939
d397712b 940 if (async_cow->inode)
771ed689 941 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 942}
c8b97818 943
771ed689
CM
944static noinline void async_cow_free(struct btrfs_work *work)
945{
946 struct async_cow *async_cow;
947 async_cow = container_of(work, struct async_cow, work);
948 kfree(async_cow);
949}
950
951static int cow_file_range_async(struct inode *inode, struct page *locked_page,
952 u64 start, u64 end, int *page_started,
953 unsigned long *nr_written)
954{
955 struct async_cow *async_cow;
956 struct btrfs_root *root = BTRFS_I(inode)->root;
957 unsigned long nr_pages;
958 u64 cur_end;
959 int limit = 10 * 1024 * 1042;
960
a3429ab7
CM
961 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
962 1, 0, NULL, GFP_NOFS);
d397712b 963 while (start < end) {
771ed689 964 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 965 BUG_ON(!async_cow);
771ed689
CM
966 async_cow->inode = inode;
967 async_cow->root = root;
968 async_cow->locked_page = locked_page;
969 async_cow->start = start;
970
6cbff00f 971 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
972 cur_end = end;
973 else
974 cur_end = min(end, start + 512 * 1024 - 1);
975
976 async_cow->end = cur_end;
977 INIT_LIST_HEAD(&async_cow->extents);
978
979 async_cow->work.func = async_cow_start;
980 async_cow->work.ordered_func = async_cow_submit;
981 async_cow->work.ordered_free = async_cow_free;
982 async_cow->work.flags = 0;
983
771ed689
CM
984 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
985 PAGE_CACHE_SHIFT;
986 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
987
988 btrfs_queue_worker(&root->fs_info->delalloc_workers,
989 &async_cow->work);
990
991 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
992 wait_event(root->fs_info->async_submit_wait,
993 (atomic_read(&root->fs_info->async_delalloc_pages) <
994 limit));
995 }
996
d397712b 997 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
998 atomic_read(&root->fs_info->async_delalloc_pages)) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1001 0));
1002 }
1003
1004 *nr_written += nr_pages;
1005 start = cur_end + 1;
1006 }
1007 *page_started = 1;
1008 return 0;
be20aa9d
CM
1009}
1010
d397712b 1011static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1012 u64 bytenr, u64 num_bytes)
1013{
1014 int ret;
1015 struct btrfs_ordered_sum *sums;
1016 LIST_HEAD(list);
1017
07d400a6 1018 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1019 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1020 if (ret == 0 && list_empty(&list))
1021 return 0;
1022
1023 while (!list_empty(&list)) {
1024 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1025 list_del(&sums->list);
1026 kfree(sums);
1027 }
1028 return 1;
1029}
1030
d352ac68
CM
1031/*
1032 * when nowcow writeback call back. This checks for snapshots or COW copies
1033 * of the extents that exist in the file, and COWs the file as required.
1034 *
1035 * If no cow copies or snapshots exist, we write directly to the existing
1036 * blocks on disk
1037 */
7f366cfe
CM
1038static noinline int run_delalloc_nocow(struct inode *inode,
1039 struct page *locked_page,
771ed689
CM
1040 u64 start, u64 end, int *page_started, int force,
1041 unsigned long *nr_written)
be20aa9d 1042{
be20aa9d 1043 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1044 struct btrfs_trans_handle *trans;
be20aa9d 1045 struct extent_buffer *leaf;
be20aa9d 1046 struct btrfs_path *path;
80ff3856 1047 struct btrfs_file_extent_item *fi;
be20aa9d 1048 struct btrfs_key found_key;
80ff3856
YZ
1049 u64 cow_start;
1050 u64 cur_offset;
1051 u64 extent_end;
5d4f98a2 1052 u64 extent_offset;
80ff3856
YZ
1053 u64 disk_bytenr;
1054 u64 num_bytes;
1055 int extent_type;
1056 int ret;
d899e052 1057 int type;
80ff3856
YZ
1058 int nocow;
1059 int check_prev = 1;
82d5902d 1060 bool nolock;
33345d01 1061 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1062
1063 path = btrfs_alloc_path();
d8926bb3
MF
1064 if (!path)
1065 return -ENOMEM;
82d5902d 1066
2cf8572d 1067 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1068
1069 if (nolock)
7a7eaa40 1070 trans = btrfs_join_transaction_nolock(root);
82d5902d 1071 else
7a7eaa40 1072 trans = btrfs_join_transaction(root);
ff5714cc 1073
3612b495 1074 BUG_ON(IS_ERR(trans));
74b21075 1075 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1076
80ff3856
YZ
1077 cow_start = (u64)-1;
1078 cur_offset = start;
1079 while (1) {
33345d01 1080 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1081 cur_offset, 0);
1082 BUG_ON(ret < 0);
1083 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1084 leaf = path->nodes[0];
1085 btrfs_item_key_to_cpu(leaf, &found_key,
1086 path->slots[0] - 1);
33345d01 1087 if (found_key.objectid == ino &&
80ff3856
YZ
1088 found_key.type == BTRFS_EXTENT_DATA_KEY)
1089 path->slots[0]--;
1090 }
1091 check_prev = 0;
1092next_slot:
1093 leaf = path->nodes[0];
1094 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 ret = btrfs_next_leaf(root, path);
1096 if (ret < 0)
1097 BUG_ON(1);
1098 if (ret > 0)
1099 break;
1100 leaf = path->nodes[0];
1101 }
be20aa9d 1102
80ff3856
YZ
1103 nocow = 0;
1104 disk_bytenr = 0;
17d217fe 1105 num_bytes = 0;
80ff3856
YZ
1106 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1107
33345d01 1108 if (found_key.objectid > ino ||
80ff3856
YZ
1109 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1110 found_key.offset > end)
1111 break;
1112
1113 if (found_key.offset > cur_offset) {
1114 extent_end = found_key.offset;
e9061e21 1115 extent_type = 0;
80ff3856
YZ
1116 goto out_check;
1117 }
1118
1119 fi = btrfs_item_ptr(leaf, path->slots[0],
1120 struct btrfs_file_extent_item);
1121 extent_type = btrfs_file_extent_type(leaf, fi);
1122
d899e052
YZ
1123 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1124 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1125 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1126 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1127 extent_end = found_key.offset +
1128 btrfs_file_extent_num_bytes(leaf, fi);
1129 if (extent_end <= start) {
1130 path->slots[0]++;
1131 goto next_slot;
1132 }
17d217fe
YZ
1133 if (disk_bytenr == 0)
1134 goto out_check;
80ff3856
YZ
1135 if (btrfs_file_extent_compression(leaf, fi) ||
1136 btrfs_file_extent_encryption(leaf, fi) ||
1137 btrfs_file_extent_other_encoding(leaf, fi))
1138 goto out_check;
d899e052
YZ
1139 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1140 goto out_check;
d2fb3437 1141 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1142 goto out_check;
33345d01 1143 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1144 found_key.offset -
1145 extent_offset, disk_bytenr))
17d217fe 1146 goto out_check;
5d4f98a2 1147 disk_bytenr += extent_offset;
17d217fe
YZ
1148 disk_bytenr += cur_offset - found_key.offset;
1149 num_bytes = min(end + 1, extent_end) - cur_offset;
1150 /*
1151 * force cow if csum exists in the range.
1152 * this ensure that csum for a given extent are
1153 * either valid or do not exist.
1154 */
1155 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1156 goto out_check;
80ff3856
YZ
1157 nocow = 1;
1158 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1159 extent_end = found_key.offset +
1160 btrfs_file_extent_inline_len(leaf, fi);
1161 extent_end = ALIGN(extent_end, root->sectorsize);
1162 } else {
1163 BUG_ON(1);
1164 }
1165out_check:
1166 if (extent_end <= start) {
1167 path->slots[0]++;
1168 goto next_slot;
1169 }
1170 if (!nocow) {
1171 if (cow_start == (u64)-1)
1172 cow_start = cur_offset;
1173 cur_offset = extent_end;
1174 if (cur_offset > end)
1175 break;
1176 path->slots[0]++;
1177 goto next_slot;
7ea394f1
YZ
1178 }
1179
b3b4aa74 1180 btrfs_release_path(path);
80ff3856
YZ
1181 if (cow_start != (u64)-1) {
1182 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1183 found_key.offset - 1, page_started,
1184 nr_written, 1);
80ff3856
YZ
1185 BUG_ON(ret);
1186 cow_start = (u64)-1;
7ea394f1 1187 }
80ff3856 1188
d899e052
YZ
1189 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1190 struct extent_map *em;
1191 struct extent_map_tree *em_tree;
1192 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1193 em = alloc_extent_map();
c26a9203 1194 BUG_ON(!em);
d899e052 1195 em->start = cur_offset;
445a6944 1196 em->orig_start = em->start;
d899e052
YZ
1197 em->len = num_bytes;
1198 em->block_len = num_bytes;
1199 em->block_start = disk_bytenr;
1200 em->bdev = root->fs_info->fs_devices->latest_bdev;
1201 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1202 while (1) {
890871be 1203 write_lock(&em_tree->lock);
d899e052 1204 ret = add_extent_mapping(em_tree, em);
890871be 1205 write_unlock(&em_tree->lock);
d899e052
YZ
1206 if (ret != -EEXIST) {
1207 free_extent_map(em);
1208 break;
1209 }
1210 btrfs_drop_extent_cache(inode, em->start,
1211 em->start + em->len - 1, 0);
1212 }
1213 type = BTRFS_ORDERED_PREALLOC;
1214 } else {
1215 type = BTRFS_ORDERED_NOCOW;
1216 }
80ff3856
YZ
1217
1218 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1219 num_bytes, num_bytes, type);
1220 BUG_ON(ret);
771ed689 1221
efa56464
YZ
1222 if (root->root_key.objectid ==
1223 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1224 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1225 num_bytes);
1226 BUG_ON(ret);
1227 }
1228
d899e052 1229 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1230 cur_offset, cur_offset + num_bytes - 1,
1231 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1232 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1233 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1234 cur_offset = extent_end;
1235 if (cur_offset > end)
1236 break;
be20aa9d 1237 }
b3b4aa74 1238 btrfs_release_path(path);
80ff3856
YZ
1239
1240 if (cur_offset <= end && cow_start == (u64)-1)
1241 cow_start = cur_offset;
1242 if (cow_start != (u64)-1) {
1243 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1244 page_started, nr_written, 1);
80ff3856
YZ
1245 BUG_ON(ret);
1246 }
1247
0cb59c99
JB
1248 if (nolock) {
1249 ret = btrfs_end_transaction_nolock(trans, root);
1250 BUG_ON(ret);
1251 } else {
1252 ret = btrfs_end_transaction(trans, root);
1253 BUG_ON(ret);
1254 }
7ea394f1 1255 btrfs_free_path(path);
80ff3856 1256 return 0;
be20aa9d
CM
1257}
1258
d352ac68
CM
1259/*
1260 * extent_io.c call back to do delayed allocation processing
1261 */
c8b97818 1262static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1263 u64 start, u64 end, int *page_started,
1264 unsigned long *nr_written)
be20aa9d 1265{
be20aa9d 1266 int ret;
7f366cfe 1267 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1268
6cbff00f 1269 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1270 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1271 page_started, 1, nr_written);
6cbff00f 1272 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1273 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1274 page_started, 0, nr_written);
1e701a32 1275 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1276 !(BTRFS_I(inode)->force_compress) &&
1277 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1278 ret = cow_file_range(inode, locked_page, start, end,
1279 page_started, nr_written, 1);
be20aa9d 1280 else
771ed689 1281 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1282 page_started, nr_written);
b888db2b
CM
1283 return ret;
1284}
1285
1bf85046
JM
1286static void btrfs_split_extent_hook(struct inode *inode,
1287 struct extent_state *orig, u64 split)
9ed74f2d 1288{
0ca1f7ce 1289 /* not delalloc, ignore it */
9ed74f2d 1290 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1291 return;
9ed74f2d 1292
9e0baf60
JB
1293 spin_lock(&BTRFS_I(inode)->lock);
1294 BTRFS_I(inode)->outstanding_extents++;
1295 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1296}
1297
1298/*
1299 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1300 * extents so we can keep track of new extents that are just merged onto old
1301 * extents, such as when we are doing sequential writes, so we can properly
1302 * account for the metadata space we'll need.
1303 */
1bf85046
JM
1304static void btrfs_merge_extent_hook(struct inode *inode,
1305 struct extent_state *new,
1306 struct extent_state *other)
9ed74f2d 1307{
9ed74f2d
JB
1308 /* not delalloc, ignore it */
1309 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1310 return;
9ed74f2d 1311
9e0baf60
JB
1312 spin_lock(&BTRFS_I(inode)->lock);
1313 BTRFS_I(inode)->outstanding_extents--;
1314 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1315}
1316
d352ac68
CM
1317/*
1318 * extent_io.c set_bit_hook, used to track delayed allocation
1319 * bytes in this file, and to maintain the list of inodes that
1320 * have pending delalloc work to be done.
1321 */
1bf85046
JM
1322static void btrfs_set_bit_hook(struct inode *inode,
1323 struct extent_state *state, int *bits)
291d673e 1324{
9ed74f2d 1325
75eff68e
CM
1326 /*
1327 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1328 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1329 * bit, which is only set or cleared with irqs on
1330 */
0ca1f7ce 1331 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1332 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1333 u64 len = state->end + 1 - state->start;
2cf8572d 1334 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1335
9e0baf60 1336 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1337 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1338 } else {
1339 spin_lock(&BTRFS_I(inode)->lock);
1340 BTRFS_I(inode)->outstanding_extents++;
1341 spin_unlock(&BTRFS_I(inode)->lock);
1342 }
287a0ab9 1343
75eff68e 1344 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1345 BTRFS_I(inode)->delalloc_bytes += len;
1346 root->fs_info->delalloc_bytes += len;
0cb59c99 1347 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1348 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1349 &root->fs_info->delalloc_inodes);
1350 }
75eff68e 1351 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1352 }
291d673e
CM
1353}
1354
d352ac68
CM
1355/*
1356 * extent_io.c clear_bit_hook, see set_bit_hook for why
1357 */
1bf85046
JM
1358static void btrfs_clear_bit_hook(struct inode *inode,
1359 struct extent_state *state, int *bits)
291d673e 1360{
75eff68e
CM
1361 /*
1362 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1363 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1364 * bit, which is only set or cleared with irqs on
1365 */
0ca1f7ce 1366 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1367 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1368 u64 len = state->end + 1 - state->start;
2cf8572d 1369 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1370
9e0baf60 1371 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1372 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1373 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1374 spin_lock(&BTRFS_I(inode)->lock);
1375 BTRFS_I(inode)->outstanding_extents--;
1376 spin_unlock(&BTRFS_I(inode)->lock);
1377 }
0ca1f7ce
YZ
1378
1379 if (*bits & EXTENT_DO_ACCOUNTING)
1380 btrfs_delalloc_release_metadata(inode, len);
1381
0cb59c99
JB
1382 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1383 && do_list)
0ca1f7ce 1384 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1385
75eff68e 1386 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1387 root->fs_info->delalloc_bytes -= len;
1388 BTRFS_I(inode)->delalloc_bytes -= len;
1389
0cb59c99 1390 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1391 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1392 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1393 }
75eff68e 1394 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1395 }
291d673e
CM
1396}
1397
d352ac68
CM
1398/*
1399 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1400 * we don't create bios that span stripes or chunks
1401 */
239b14b3 1402int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1403 size_t size, struct bio *bio,
1404 unsigned long bio_flags)
239b14b3
CM
1405{
1406 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1407 struct btrfs_mapping_tree *map_tree;
a62b9401 1408 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1409 u64 length = 0;
1410 u64 map_length;
239b14b3
CM
1411 int ret;
1412
771ed689
CM
1413 if (bio_flags & EXTENT_BIO_COMPRESSED)
1414 return 0;
1415
f2d8d74d 1416 length = bio->bi_size;
239b14b3
CM
1417 map_tree = &root->fs_info->mapping_tree;
1418 map_length = length;
cea9e445 1419 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1420 &map_length, NULL, 0);
cea9e445 1421
d397712b 1422 if (map_length < length + size)
239b14b3 1423 return 1;
411fc6bc 1424 return ret;
239b14b3
CM
1425}
1426
d352ac68
CM
1427/*
1428 * in order to insert checksums into the metadata in large chunks,
1429 * we wait until bio submission time. All the pages in the bio are
1430 * checksummed and sums are attached onto the ordered extent record.
1431 *
1432 * At IO completion time the cums attached on the ordered extent record
1433 * are inserted into the btree
1434 */
d397712b
CM
1435static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1436 struct bio *bio, int mirror_num,
eaf25d93
CM
1437 unsigned long bio_flags,
1438 u64 bio_offset)
065631f6 1439{
065631f6 1440 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1441 int ret = 0;
e015640f 1442
d20f7043 1443 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1444 BUG_ON(ret);
4a69a410
CM
1445 return 0;
1446}
e015640f 1447
4a69a410
CM
1448/*
1449 * in order to insert checksums into the metadata in large chunks,
1450 * we wait until bio submission time. All the pages in the bio are
1451 * checksummed and sums are attached onto the ordered extent record.
1452 *
1453 * At IO completion time the cums attached on the ordered extent record
1454 * are inserted into the btree
1455 */
b2950863 1456static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1457 int mirror_num, unsigned long bio_flags,
1458 u64 bio_offset)
4a69a410
CM
1459{
1460 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1461 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1462}
1463
d352ac68 1464/*
cad321ad
CM
1465 * extent_io.c submission hook. This does the right thing for csum calculation
1466 * on write, or reading the csums from the tree before a read
d352ac68 1467 */
b2950863 1468static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1469 int mirror_num, unsigned long bio_flags,
1470 u64 bio_offset)
44b8bd7e
CM
1471{
1472 struct btrfs_root *root = BTRFS_I(inode)->root;
1473 int ret = 0;
19b9bdb0 1474 int skip_sum;
44b8bd7e 1475
6cbff00f 1476 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1477
2cf8572d 1478 if (btrfs_is_free_space_inode(root, inode))
0cb59c99
JB
1479 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1480 else
1481 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1482 BUG_ON(ret);
065631f6 1483
7b6d91da 1484 if (!(rw & REQ_WRITE)) {
d20f7043 1485 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1486 return btrfs_submit_compressed_read(inode, bio,
1487 mirror_num, bio_flags);
c2db1073
TI
1488 } else if (!skip_sum) {
1489 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1490 if (ret)
1491 return ret;
1492 }
4d1b5fb4 1493 goto mapit;
19b9bdb0 1494 } else if (!skip_sum) {
17d217fe
YZ
1495 /* csum items have already been cloned */
1496 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1497 goto mapit;
19b9bdb0
CM
1498 /* we're doing a write, do the async checksumming */
1499 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1500 inode, rw, bio, mirror_num,
eaf25d93
CM
1501 bio_flags, bio_offset,
1502 __btrfs_submit_bio_start,
4a69a410 1503 __btrfs_submit_bio_done);
19b9bdb0
CM
1504 }
1505
0b86a832 1506mapit:
8b712842 1507 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1508}
6885f308 1509
d352ac68
CM
1510/*
1511 * given a list of ordered sums record them in the inode. This happens
1512 * at IO completion time based on sums calculated at bio submission time.
1513 */
ba1da2f4 1514static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1515 struct inode *inode, u64 file_offset,
1516 struct list_head *list)
1517{
e6dcd2dc
CM
1518 struct btrfs_ordered_sum *sum;
1519
c6e30871 1520 list_for_each_entry(sum, list, list) {
d20f7043
CM
1521 btrfs_csum_file_blocks(trans,
1522 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1523 }
1524 return 0;
1525}
1526
2ac55d41
JB
1527int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1528 struct extent_state **cached_state)
ea8c2819 1529{
d397712b 1530 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1531 WARN_ON(1);
ea8c2819 1532 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1533 cached_state, GFP_NOFS);
ea8c2819
CM
1534}
1535
d352ac68 1536/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1537struct btrfs_writepage_fixup {
1538 struct page *page;
1539 struct btrfs_work work;
1540};
1541
b2950863 1542static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1543{
1544 struct btrfs_writepage_fixup *fixup;
1545 struct btrfs_ordered_extent *ordered;
2ac55d41 1546 struct extent_state *cached_state = NULL;
247e743c
CM
1547 struct page *page;
1548 struct inode *inode;
1549 u64 page_start;
1550 u64 page_end;
1551
1552 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1553 page = fixup->page;
4a096752 1554again:
247e743c
CM
1555 lock_page(page);
1556 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1557 ClearPageChecked(page);
1558 goto out_page;
1559 }
1560
1561 inode = page->mapping->host;
1562 page_start = page_offset(page);
1563 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1564
2ac55d41
JB
1565 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1566 &cached_state, GFP_NOFS);
4a096752
CM
1567
1568 /* already ordered? We're done */
8b62b72b 1569 if (PagePrivate2(page))
247e743c 1570 goto out;
4a096752
CM
1571
1572 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1573 if (ordered) {
2ac55d41
JB
1574 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1575 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1576 unlock_page(page);
1577 btrfs_start_ordered_extent(inode, ordered, 1);
1578 goto again;
1579 }
247e743c 1580
0ca1f7ce 1581 BUG();
2ac55d41 1582 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1583 ClearPageChecked(page);
1584out:
2ac55d41
JB
1585 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1586 &cached_state, GFP_NOFS);
247e743c
CM
1587out_page:
1588 unlock_page(page);
1589 page_cache_release(page);
b897abec 1590 kfree(fixup);
247e743c
CM
1591}
1592
1593/*
1594 * There are a few paths in the higher layers of the kernel that directly
1595 * set the page dirty bit without asking the filesystem if it is a
1596 * good idea. This causes problems because we want to make sure COW
1597 * properly happens and the data=ordered rules are followed.
1598 *
c8b97818 1599 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1600 * hasn't been properly setup for IO. We kick off an async process
1601 * to fix it up. The async helper will wait for ordered extents, set
1602 * the delalloc bit and make it safe to write the page.
1603 */
b2950863 1604static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1605{
1606 struct inode *inode = page->mapping->host;
1607 struct btrfs_writepage_fixup *fixup;
1608 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1609
8b62b72b
CM
1610 /* this page is properly in the ordered list */
1611 if (TestClearPagePrivate2(page))
247e743c
CM
1612 return 0;
1613
1614 if (PageChecked(page))
1615 return -EAGAIN;
1616
1617 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1618 if (!fixup)
1619 return -EAGAIN;
f421950f 1620
247e743c
CM
1621 SetPageChecked(page);
1622 page_cache_get(page);
1623 fixup->work.func = btrfs_writepage_fixup_worker;
1624 fixup->page = page;
1625 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1626 return -EAGAIN;
1627}
1628
d899e052
YZ
1629static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1630 struct inode *inode, u64 file_pos,
1631 u64 disk_bytenr, u64 disk_num_bytes,
1632 u64 num_bytes, u64 ram_bytes,
1633 u8 compression, u8 encryption,
1634 u16 other_encoding, int extent_type)
1635{
1636 struct btrfs_root *root = BTRFS_I(inode)->root;
1637 struct btrfs_file_extent_item *fi;
1638 struct btrfs_path *path;
1639 struct extent_buffer *leaf;
1640 struct btrfs_key ins;
1641 u64 hint;
1642 int ret;
1643
1644 path = btrfs_alloc_path();
d8926bb3
MF
1645 if (!path)
1646 return -ENOMEM;
d899e052 1647
b9473439 1648 path->leave_spinning = 1;
a1ed835e
CM
1649
1650 /*
1651 * we may be replacing one extent in the tree with another.
1652 * The new extent is pinned in the extent map, and we don't want
1653 * to drop it from the cache until it is completely in the btree.
1654 *
1655 * So, tell btrfs_drop_extents to leave this extent in the cache.
1656 * the caller is expected to unpin it and allow it to be merged
1657 * with the others.
1658 */
920bbbfb
YZ
1659 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1660 &hint, 0);
d899e052
YZ
1661 BUG_ON(ret);
1662
33345d01 1663 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1664 ins.offset = file_pos;
1665 ins.type = BTRFS_EXTENT_DATA_KEY;
1666 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1667 BUG_ON(ret);
1668 leaf = path->nodes[0];
1669 fi = btrfs_item_ptr(leaf, path->slots[0],
1670 struct btrfs_file_extent_item);
1671 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1672 btrfs_set_file_extent_type(leaf, fi, extent_type);
1673 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1674 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1675 btrfs_set_file_extent_offset(leaf, fi, 0);
1676 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1677 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1678 btrfs_set_file_extent_compression(leaf, fi, compression);
1679 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1680 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1681
1682 btrfs_unlock_up_safe(path, 1);
1683 btrfs_set_lock_blocking(leaf);
1684
d899e052
YZ
1685 btrfs_mark_buffer_dirty(leaf);
1686
1687 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1688
1689 ins.objectid = disk_bytenr;
1690 ins.offset = disk_num_bytes;
1691 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1692 ret = btrfs_alloc_reserved_file_extent(trans, root,
1693 root->root_key.objectid,
33345d01 1694 btrfs_ino(inode), file_pos, &ins);
d899e052 1695 BUG_ON(ret);
d899e052 1696 btrfs_free_path(path);
b9473439 1697
d899e052
YZ
1698 return 0;
1699}
1700
5d13a98f
CM
1701/*
1702 * helper function for btrfs_finish_ordered_io, this
1703 * just reads in some of the csum leaves to prime them into ram
1704 * before we start the transaction. It limits the amount of btree
1705 * reads required while inside the transaction.
1706 */
d352ac68
CM
1707/* as ordered data IO finishes, this gets called so we can finish
1708 * an ordered extent if the range of bytes in the file it covers are
1709 * fully written.
1710 */
211f90e6 1711static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1712{
e6dcd2dc 1713 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1714 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1715 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1716 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1717 struct extent_state *cached_state = NULL;
261507a0 1718 int compress_type = 0;
e6dcd2dc 1719 int ret;
82d5902d 1720 bool nolock;
e6dcd2dc 1721
5a1a3df1
JB
1722 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1723 end - start + 1);
ba1da2f4 1724 if (!ret)
e6dcd2dc 1725 return 0;
e6dcd2dc 1726 BUG_ON(!ordered_extent);
efd049fb 1727
2cf8572d 1728 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1729
c2167754
YZ
1730 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1731 BUG_ON(!list_empty(&ordered_extent->list));
1732 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1733 if (!ret) {
0cb59c99 1734 if (nolock)
7a7eaa40 1735 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1736 else
7a7eaa40 1737 trans = btrfs_join_transaction(root);
3612b495 1738 BUG_ON(IS_ERR(trans));
0ca1f7ce 1739 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1740 ret = btrfs_update_inode(trans, root, inode);
1741 BUG_ON(ret);
c2167754
YZ
1742 }
1743 goto out;
1744 }
e6dcd2dc 1745
2ac55d41
JB
1746 lock_extent_bits(io_tree, ordered_extent->file_offset,
1747 ordered_extent->file_offset + ordered_extent->len - 1,
1748 0, &cached_state, GFP_NOFS);
e6dcd2dc 1749
0cb59c99 1750 if (nolock)
7a7eaa40 1751 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1752 else
7a7eaa40 1753 trans = btrfs_join_transaction(root);
3612b495 1754 BUG_ON(IS_ERR(trans));
0ca1f7ce 1755 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1756
c8b97818 1757 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1758 compress_type = ordered_extent->compress_type;
d899e052 1759 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1760 BUG_ON(compress_type);
920bbbfb 1761 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1762 ordered_extent->file_offset,
1763 ordered_extent->file_offset +
1764 ordered_extent->len);
1765 BUG_ON(ret);
1766 } else {
0af3d00b 1767 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1768 ret = insert_reserved_file_extent(trans, inode,
1769 ordered_extent->file_offset,
1770 ordered_extent->start,
1771 ordered_extent->disk_len,
1772 ordered_extent->len,
1773 ordered_extent->len,
261507a0 1774 compress_type, 0, 0,
d899e052 1775 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1776 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1777 ordered_extent->file_offset,
1778 ordered_extent->len);
d899e052
YZ
1779 BUG_ON(ret);
1780 }
2ac55d41
JB
1781 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1782 ordered_extent->file_offset +
1783 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1784
e6dcd2dc
CM
1785 add_pending_csums(trans, inode, ordered_extent->file_offset,
1786 &ordered_extent->list);
1787
1ef30be1 1788 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1789 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1ef30be1
JB
1790 ret = btrfs_update_inode(trans, root, inode);
1791 BUG_ON(ret);
1792 }
1793 ret = 0;
c2167754 1794out:
0cb59c99
JB
1795 if (nolock) {
1796 if (trans)
1797 btrfs_end_transaction_nolock(trans, root);
1798 } else {
1799 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1800 if (trans)
1801 btrfs_end_transaction(trans, root);
1802 }
1803
e6dcd2dc
CM
1804 /* once for us */
1805 btrfs_put_ordered_extent(ordered_extent);
1806 /* once for the tree */
1807 btrfs_put_ordered_extent(ordered_extent);
1808
e6dcd2dc
CM
1809 return 0;
1810}
1811
b2950863 1812static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1813 struct extent_state *state, int uptodate)
1814{
1abe9b8a 1815 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1816
8b62b72b 1817 ClearPagePrivate2(page);
211f90e6
CM
1818 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1819}
1820
d352ac68
CM
1821/*
1822 * When IO fails, either with EIO or csum verification fails, we
1823 * try other mirrors that might have a good copy of the data. This
1824 * io_failure_record is used to record state as we go through all the
1825 * mirrors. If another mirror has good data, the page is set up to date
1826 * and things continue. If a good mirror can't be found, the original
1827 * bio end_io callback is called to indicate things have failed.
1828 */
7e38326f
CM
1829struct io_failure_record {
1830 struct page *page;
1831 u64 start;
1832 u64 len;
1833 u64 logical;
d20f7043 1834 unsigned long bio_flags;
7e38326f
CM
1835 int last_mirror;
1836};
1837
b2950863 1838static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1839 struct page *page, u64 start, u64 end,
1840 struct extent_state *state)
7e38326f
CM
1841{
1842 struct io_failure_record *failrec = NULL;
1843 u64 private;
1844 struct extent_map *em;
1845 struct inode *inode = page->mapping->host;
1846 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1847 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1848 struct bio *bio;
1849 int num_copies;
1850 int ret;
1259ab75 1851 int rw;
7e38326f
CM
1852 u64 logical;
1853
1854 ret = get_state_private(failure_tree, start, &private);
1855 if (ret) {
7e38326f
CM
1856 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1857 if (!failrec)
1858 return -ENOMEM;
1859 failrec->start = start;
1860 failrec->len = end - start + 1;
1861 failrec->last_mirror = 0;
d20f7043 1862 failrec->bio_flags = 0;
7e38326f 1863
890871be 1864 read_lock(&em_tree->lock);
3b951516
CM
1865 em = lookup_extent_mapping(em_tree, start, failrec->len);
1866 if (em->start > start || em->start + em->len < start) {
1867 free_extent_map(em);
1868 em = NULL;
1869 }
890871be 1870 read_unlock(&em_tree->lock);
7e38326f 1871
c704005d 1872 if (IS_ERR_OR_NULL(em)) {
7e38326f
CM
1873 kfree(failrec);
1874 return -EIO;
1875 }
1876 logical = start - em->start;
1877 logical = em->block_start + logical;
d20f7043
CM
1878 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1879 logical = em->block_start;
1880 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1881 extent_set_compress_type(&failrec->bio_flags,
1882 em->compress_type);
d20f7043 1883 }
7e38326f
CM
1884 failrec->logical = logical;
1885 free_extent_map(em);
1886 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1887 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1888 set_state_private(failure_tree, start,
1889 (u64)(unsigned long)failrec);
7e38326f 1890 } else {
587f7704 1891 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1892 }
1893 num_copies = btrfs_num_copies(
1894 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1895 failrec->logical, failrec->len);
1896 failrec->last_mirror++;
1897 if (!state) {
cad321ad 1898 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1899 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1900 failrec->start,
1901 EXTENT_LOCKED);
1902 if (state && state->start != failrec->start)
1903 state = NULL;
cad321ad 1904 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1905 }
1906 if (!state || failrec->last_mirror > num_copies) {
1907 set_state_private(failure_tree, failrec->start, 0);
1908 clear_extent_bits(failure_tree, failrec->start,
1909 failrec->start + failrec->len - 1,
1910 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1911 kfree(failrec);
1912 return -EIO;
1913 }
1914 bio = bio_alloc(GFP_NOFS, 1);
1915 bio->bi_private = state;
1916 bio->bi_end_io = failed_bio->bi_end_io;
1917 bio->bi_sector = failrec->logical >> 9;
1918 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1919 bio->bi_size = 0;
d20f7043 1920
7e38326f 1921 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1922 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1923 rw = WRITE;
1924 else
1925 rw = READ;
1926
c2db1073 1927 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1928 failrec->last_mirror,
eaf25d93 1929 failrec->bio_flags, 0);
c2db1073 1930 return ret;
1259ab75
CM
1931}
1932
d352ac68
CM
1933/*
1934 * each time an IO finishes, we do a fast check in the IO failure tree
1935 * to see if we need to process or clean up an io_failure_record
1936 */
b2950863 1937static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1938{
1939 u64 private;
1940 u64 private_failure;
1941 struct io_failure_record *failure;
1942 int ret;
1943
1944 private = 0;
1945 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1946 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1947 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1948 start, &private_failure);
1949 if (ret == 0) {
1950 failure = (struct io_failure_record *)(unsigned long)
1951 private_failure;
1952 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1953 failure->start, 0);
1954 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1955 failure->start,
1956 failure->start + failure->len - 1,
1957 EXTENT_DIRTY | EXTENT_LOCKED,
1958 GFP_NOFS);
1959 kfree(failure);
1960 }
1961 }
7e38326f
CM
1962 return 0;
1963}
1964
d352ac68
CM
1965/*
1966 * when reads are done, we need to check csums to verify the data is correct
1967 * if there's a match, we allow the bio to finish. If not, we go through
1968 * the io_failure_record routines to find good copies
1969 */
b2950863 1970static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1971 struct extent_state *state)
07157aac 1972{
35ebb934 1973 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1974 struct inode *inode = page->mapping->host;
d1310b2e 1975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1976 char *kaddr;
aadfeb6e 1977 u64 private = ~(u32)0;
07157aac 1978 int ret;
ff79f819
CM
1979 struct btrfs_root *root = BTRFS_I(inode)->root;
1980 u32 csum = ~(u32)0;
d1310b2e 1981
d20f7043
CM
1982 if (PageChecked(page)) {
1983 ClearPageChecked(page);
1984 goto good;
1985 }
6cbff00f
CH
1986
1987 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1988 goto good;
17d217fe
YZ
1989
1990 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1991 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1992 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1993 GFP_NOFS);
b6cda9bc 1994 return 0;
17d217fe 1995 }
d20f7043 1996
c2e639f0 1997 if (state && state->start == start) {
70dec807
CM
1998 private = state->private;
1999 ret = 0;
2000 } else {
2001 ret = get_state_private(io_tree, start, &private);
2002 }
9ab86c8e 2003 kaddr = kmap_atomic(page, KM_USER0);
d397712b 2004 if (ret)
07157aac 2005 goto zeroit;
d397712b 2006
ff79f819
CM
2007 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2008 btrfs_csum_final(csum, (char *)&csum);
d397712b 2009 if (csum != private)
07157aac 2010 goto zeroit;
d397712b 2011
9ab86c8e 2012 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2013good:
7e38326f
CM
2014 /* if the io failure tree for this inode is non-empty,
2015 * check to see if we've recovered from a failed IO
2016 */
1259ab75 2017 btrfs_clean_io_failures(inode, start);
07157aac
CM
2018 return 0;
2019
2020zeroit:
945d8962 2021 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2022 "private %llu\n",
2023 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2024 (unsigned long long)start, csum,
2025 (unsigned long long)private);
db94535d
CM
2026 memset(kaddr + offset, 1, end - start + 1);
2027 flush_dcache_page(page);
9ab86c8e 2028 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2029 if (private == 0)
2030 return 0;
7e38326f 2031 return -EIO;
07157aac 2032}
b888db2b 2033
24bbcf04
YZ
2034struct delayed_iput {
2035 struct list_head list;
2036 struct inode *inode;
2037};
2038
2039void btrfs_add_delayed_iput(struct inode *inode)
2040{
2041 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2042 struct delayed_iput *delayed;
2043
2044 if (atomic_add_unless(&inode->i_count, -1, 1))
2045 return;
2046
2047 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2048 delayed->inode = inode;
2049
2050 spin_lock(&fs_info->delayed_iput_lock);
2051 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2052 spin_unlock(&fs_info->delayed_iput_lock);
2053}
2054
2055void btrfs_run_delayed_iputs(struct btrfs_root *root)
2056{
2057 LIST_HEAD(list);
2058 struct btrfs_fs_info *fs_info = root->fs_info;
2059 struct delayed_iput *delayed;
2060 int empty;
2061
2062 spin_lock(&fs_info->delayed_iput_lock);
2063 empty = list_empty(&fs_info->delayed_iputs);
2064 spin_unlock(&fs_info->delayed_iput_lock);
2065 if (empty)
2066 return;
2067
2068 down_read(&root->fs_info->cleanup_work_sem);
2069 spin_lock(&fs_info->delayed_iput_lock);
2070 list_splice_init(&fs_info->delayed_iputs, &list);
2071 spin_unlock(&fs_info->delayed_iput_lock);
2072
2073 while (!list_empty(&list)) {
2074 delayed = list_entry(list.next, struct delayed_iput, list);
2075 list_del(&delayed->list);
2076 iput(delayed->inode);
2077 kfree(delayed);
2078 }
2079 up_read(&root->fs_info->cleanup_work_sem);
2080}
2081
d68fc57b
YZ
2082enum btrfs_orphan_cleanup_state {
2083 ORPHAN_CLEANUP_STARTED = 1,
2084 ORPHAN_CLEANUP_DONE = 2,
2085};
2086
2087/*
2088 * This is called in transaction commmit time. If there are no orphan
2089 * files in the subvolume, it removes orphan item and frees block_rsv
2090 * structure.
2091 */
2092void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2093 struct btrfs_root *root)
2094{
2095 int ret;
2096
2097 if (!list_empty(&root->orphan_list) ||
2098 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2099 return;
2100
2101 if (root->orphan_item_inserted &&
2102 btrfs_root_refs(&root->root_item) > 0) {
2103 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2104 root->root_key.objectid);
2105 BUG_ON(ret);
2106 root->orphan_item_inserted = 0;
2107 }
2108
2109 if (root->orphan_block_rsv) {
2110 WARN_ON(root->orphan_block_rsv->size > 0);
2111 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2112 root->orphan_block_rsv = NULL;
2113 }
2114}
2115
7b128766
JB
2116/*
2117 * This creates an orphan entry for the given inode in case something goes
2118 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2119 *
2120 * NOTE: caller of this function should reserve 5 units of metadata for
2121 * this function.
7b128766
JB
2122 */
2123int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2124{
2125 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2126 struct btrfs_block_rsv *block_rsv = NULL;
2127 int reserve = 0;
2128 int insert = 0;
2129 int ret;
7b128766 2130
d68fc57b
YZ
2131 if (!root->orphan_block_rsv) {
2132 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2133 if (!block_rsv)
2134 return -ENOMEM;
d68fc57b 2135 }
7b128766 2136
d68fc57b
YZ
2137 spin_lock(&root->orphan_lock);
2138 if (!root->orphan_block_rsv) {
2139 root->orphan_block_rsv = block_rsv;
2140 } else if (block_rsv) {
2141 btrfs_free_block_rsv(root, block_rsv);
2142 block_rsv = NULL;
7b128766 2143 }
7b128766 2144
d68fc57b
YZ
2145 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2146 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2147#if 0
2148 /*
2149 * For proper ENOSPC handling, we should do orphan
2150 * cleanup when mounting. But this introduces backward
2151 * compatibility issue.
2152 */
2153 if (!xchg(&root->orphan_item_inserted, 1))
2154 insert = 2;
2155 else
2156 insert = 1;
2157#endif
2158 insert = 1;
7b128766
JB
2159 }
2160
d68fc57b
YZ
2161 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2162 BTRFS_I(inode)->orphan_meta_reserved = 1;
2163 reserve = 1;
2164 }
2165 spin_unlock(&root->orphan_lock);
7b128766 2166
d68fc57b
YZ
2167 /* grab metadata reservation from transaction handle */
2168 if (reserve) {
2169 ret = btrfs_orphan_reserve_metadata(trans, inode);
2170 BUG_ON(ret);
2171 }
7b128766 2172
d68fc57b
YZ
2173 /* insert an orphan item to track this unlinked/truncated file */
2174 if (insert >= 1) {
33345d01 2175 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2176 BUG_ON(ret);
2177 }
2178
2179 /* insert an orphan item to track subvolume contains orphan files */
2180 if (insert >= 2) {
2181 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2182 root->root_key.objectid);
2183 BUG_ON(ret);
2184 }
2185 return 0;
7b128766
JB
2186}
2187
2188/*
2189 * We have done the truncate/delete so we can go ahead and remove the orphan
2190 * item for this particular inode.
2191 */
2192int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2193{
2194 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2195 int delete_item = 0;
2196 int release_rsv = 0;
7b128766
JB
2197 int ret = 0;
2198
d68fc57b
YZ
2199 spin_lock(&root->orphan_lock);
2200 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2201 list_del_init(&BTRFS_I(inode)->i_orphan);
2202 delete_item = 1;
7b128766
JB
2203 }
2204
d68fc57b
YZ
2205 if (BTRFS_I(inode)->orphan_meta_reserved) {
2206 BTRFS_I(inode)->orphan_meta_reserved = 0;
2207 release_rsv = 1;
7b128766 2208 }
d68fc57b 2209 spin_unlock(&root->orphan_lock);
7b128766 2210
d68fc57b 2211 if (trans && delete_item) {
33345d01 2212 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2213 BUG_ON(ret);
2214 }
7b128766 2215
d68fc57b
YZ
2216 if (release_rsv)
2217 btrfs_orphan_release_metadata(inode);
7b128766 2218
d68fc57b 2219 return 0;
7b128766
JB
2220}
2221
2222/*
2223 * this cleans up any orphans that may be left on the list from the last use
2224 * of this root.
2225 */
66b4ffd1 2226int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2227{
2228 struct btrfs_path *path;
2229 struct extent_buffer *leaf;
7b128766
JB
2230 struct btrfs_key key, found_key;
2231 struct btrfs_trans_handle *trans;
2232 struct inode *inode;
2233 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2234
d68fc57b 2235 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2236 return 0;
c71bf099
YZ
2237
2238 path = btrfs_alloc_path();
66b4ffd1
JB
2239 if (!path) {
2240 ret = -ENOMEM;
2241 goto out;
2242 }
7b128766
JB
2243 path->reada = -1;
2244
2245 key.objectid = BTRFS_ORPHAN_OBJECTID;
2246 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2247 key.offset = (u64)-1;
2248
7b128766
JB
2249 while (1) {
2250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2251 if (ret < 0)
2252 goto out;
7b128766
JB
2253
2254 /*
2255 * if ret == 0 means we found what we were searching for, which
25985edc 2256 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2257 * find the key and see if we have stuff that matches
2258 */
2259 if (ret > 0) {
66b4ffd1 2260 ret = 0;
7b128766
JB
2261 if (path->slots[0] == 0)
2262 break;
2263 path->slots[0]--;
2264 }
2265
2266 /* pull out the item */
2267 leaf = path->nodes[0];
7b128766
JB
2268 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2269
2270 /* make sure the item matches what we want */
2271 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2272 break;
2273 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2274 break;
2275
2276 /* release the path since we're done with it */
b3b4aa74 2277 btrfs_release_path(path);
7b128766
JB
2278
2279 /*
2280 * this is where we are basically btrfs_lookup, without the
2281 * crossing root thing. we store the inode number in the
2282 * offset of the orphan item.
2283 */
5d4f98a2
YZ
2284 found_key.objectid = found_key.offset;
2285 found_key.type = BTRFS_INODE_ITEM_KEY;
2286 found_key.offset = 0;
73f73415 2287 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2288 if (IS_ERR(inode)) {
2289 ret = PTR_ERR(inode);
2290 goto out;
2291 }
7b128766 2292
7b128766
JB
2293 /*
2294 * add this inode to the orphan list so btrfs_orphan_del does
2295 * the proper thing when we hit it
2296 */
d68fc57b 2297 spin_lock(&root->orphan_lock);
7b128766 2298 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2299 spin_unlock(&root->orphan_lock);
7b128766
JB
2300
2301 /*
2302 * if this is a bad inode, means we actually succeeded in
2303 * removing the inode, but not the orphan record, which means
2304 * we need to manually delete the orphan since iput will just
2305 * do a destroy_inode
2306 */
2307 if (is_bad_inode(inode)) {
a22285a6 2308 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2309 if (IS_ERR(trans)) {
2310 ret = PTR_ERR(trans);
2311 goto out;
2312 }
7b128766 2313 btrfs_orphan_del(trans, inode);
5b21f2ed 2314 btrfs_end_transaction(trans, root);
7b128766
JB
2315 iput(inode);
2316 continue;
2317 }
2318
2319 /* if we have links, this was a truncate, lets do that */
2320 if (inode->i_nlink) {
a41ad394
JB
2321 if (!S_ISREG(inode->i_mode)) {
2322 WARN_ON(1);
2323 iput(inode);
2324 continue;
2325 }
7b128766 2326 nr_truncate++;
66b4ffd1 2327 ret = btrfs_truncate(inode);
7b128766
JB
2328 } else {
2329 nr_unlink++;
2330 }
2331
2332 /* this will do delete_inode and everything for us */
2333 iput(inode);
66b4ffd1
JB
2334 if (ret)
2335 goto out;
7b128766 2336 }
d68fc57b
YZ
2337 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2338
2339 if (root->orphan_block_rsv)
2340 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2341 (u64)-1);
2342
2343 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2344 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2345 if (!IS_ERR(trans))
2346 btrfs_end_transaction(trans, root);
d68fc57b 2347 }
7b128766
JB
2348
2349 if (nr_unlink)
2350 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2351 if (nr_truncate)
2352 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2353
2354out:
2355 if (ret)
2356 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2357 btrfs_free_path(path);
2358 return ret;
7b128766
JB
2359}
2360
46a53cca
CM
2361/*
2362 * very simple check to peek ahead in the leaf looking for xattrs. If we
2363 * don't find any xattrs, we know there can't be any acls.
2364 *
2365 * slot is the slot the inode is in, objectid is the objectid of the inode
2366 */
2367static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2368 int slot, u64 objectid)
2369{
2370 u32 nritems = btrfs_header_nritems(leaf);
2371 struct btrfs_key found_key;
2372 int scanned = 0;
2373
2374 slot++;
2375 while (slot < nritems) {
2376 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2377
2378 /* we found a different objectid, there must not be acls */
2379 if (found_key.objectid != objectid)
2380 return 0;
2381
2382 /* we found an xattr, assume we've got an acl */
2383 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2384 return 1;
2385
2386 /*
2387 * we found a key greater than an xattr key, there can't
2388 * be any acls later on
2389 */
2390 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2391 return 0;
2392
2393 slot++;
2394 scanned++;
2395
2396 /*
2397 * it goes inode, inode backrefs, xattrs, extents,
2398 * so if there are a ton of hard links to an inode there can
2399 * be a lot of backrefs. Don't waste time searching too hard,
2400 * this is just an optimization
2401 */
2402 if (scanned >= 8)
2403 break;
2404 }
2405 /* we hit the end of the leaf before we found an xattr or
2406 * something larger than an xattr. We have to assume the inode
2407 * has acls
2408 */
2409 return 1;
2410}
2411
d352ac68
CM
2412/*
2413 * read an inode from the btree into the in-memory inode
2414 */
5d4f98a2 2415static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2416{
2417 struct btrfs_path *path;
5f39d397 2418 struct extent_buffer *leaf;
39279cc3 2419 struct btrfs_inode_item *inode_item;
0b86a832 2420 struct btrfs_timespec *tspec;
39279cc3
CM
2421 struct btrfs_root *root = BTRFS_I(inode)->root;
2422 struct btrfs_key location;
46a53cca 2423 int maybe_acls;
618e21d5 2424 u32 rdev;
39279cc3 2425 int ret;
2f7e33d4
MX
2426 bool filled = false;
2427
2428 ret = btrfs_fill_inode(inode, &rdev);
2429 if (!ret)
2430 filled = true;
39279cc3
CM
2431
2432 path = btrfs_alloc_path();
1748f843
MF
2433 if (!path)
2434 goto make_bad;
2435
d90c7321 2436 path->leave_spinning = 1;
39279cc3 2437 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2438
39279cc3 2439 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2440 if (ret)
39279cc3 2441 goto make_bad;
39279cc3 2442
5f39d397 2443 leaf = path->nodes[0];
2f7e33d4
MX
2444
2445 if (filled)
2446 goto cache_acl;
2447
5f39d397
CM
2448 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2449 struct btrfs_inode_item);
5f39d397
CM
2450 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2451 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2452 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2453 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2454 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2455
2456 tspec = btrfs_inode_atime(inode_item);
2457 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2458 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2459
2460 tspec = btrfs_inode_mtime(inode_item);
2461 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2462 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2463
2464 tspec = btrfs_inode_ctime(inode_item);
2465 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2466 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2467
a76a3cd4 2468 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2469 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2470 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2471 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2472 inode->i_rdev = 0;
5f39d397
CM
2473 rdev = btrfs_inode_rdev(leaf, inode_item);
2474
aec7477b 2475 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2476 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2477cache_acl:
46a53cca
CM
2478 /*
2479 * try to precache a NULL acl entry for files that don't have
2480 * any xattrs or acls
2481 */
33345d01
LZ
2482 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2483 btrfs_ino(inode));
72c04902
AV
2484 if (!maybe_acls)
2485 cache_no_acl(inode);
46a53cca 2486
39279cc3 2487 btrfs_free_path(path);
39279cc3 2488
39279cc3 2489 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2490 case S_IFREG:
2491 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2492 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2493 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2494 inode->i_fop = &btrfs_file_operations;
2495 inode->i_op = &btrfs_file_inode_operations;
2496 break;
2497 case S_IFDIR:
2498 inode->i_fop = &btrfs_dir_file_operations;
2499 if (root == root->fs_info->tree_root)
2500 inode->i_op = &btrfs_dir_ro_inode_operations;
2501 else
2502 inode->i_op = &btrfs_dir_inode_operations;
2503 break;
2504 case S_IFLNK:
2505 inode->i_op = &btrfs_symlink_inode_operations;
2506 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2507 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2508 break;
618e21d5 2509 default:
0279b4cd 2510 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2511 init_special_inode(inode, inode->i_mode, rdev);
2512 break;
39279cc3 2513 }
6cbff00f
CH
2514
2515 btrfs_update_iflags(inode);
39279cc3
CM
2516 return;
2517
2518make_bad:
39279cc3 2519 btrfs_free_path(path);
39279cc3
CM
2520 make_bad_inode(inode);
2521}
2522
d352ac68
CM
2523/*
2524 * given a leaf and an inode, copy the inode fields into the leaf
2525 */
e02119d5
CM
2526static void fill_inode_item(struct btrfs_trans_handle *trans,
2527 struct extent_buffer *leaf,
5f39d397 2528 struct btrfs_inode_item *item,
39279cc3
CM
2529 struct inode *inode)
2530{
5f39d397
CM
2531 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2532 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2533 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2534 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2535 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2536
2537 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2538 inode->i_atime.tv_sec);
2539 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2540 inode->i_atime.tv_nsec);
2541
2542 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2543 inode->i_mtime.tv_sec);
2544 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2545 inode->i_mtime.tv_nsec);
2546
2547 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2548 inode->i_ctime.tv_sec);
2549 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2550 inode->i_ctime.tv_nsec);
2551
a76a3cd4 2552 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2553 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2554 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2555 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2556 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2557 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2558 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2559}
2560
d352ac68
CM
2561/*
2562 * copy everything in the in-memory inode into the btree.
2563 */
d397712b
CM
2564noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2565 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2566{
2567 struct btrfs_inode_item *inode_item;
2568 struct btrfs_path *path;
5f39d397 2569 struct extent_buffer *leaf;
39279cc3
CM
2570 int ret;
2571
16cdcec7 2572 /*
149e2d76
MX
2573 * If the inode is a free space inode, we can deadlock during commit
2574 * if we put it into the delayed code.
2575 *
2576 * The data relocation inode should also be directly updated
2577 * without delay
16cdcec7 2578 */
2cf8572d 2579 if (!btrfs_is_free_space_inode(root, inode)
149e2d76 2580 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
16cdcec7
MX
2581 ret = btrfs_delayed_update_inode(trans, root, inode);
2582 if (!ret)
2583 btrfs_set_inode_last_trans(trans, inode);
2584 return ret;
2585 }
2586
39279cc3 2587 path = btrfs_alloc_path();
16cdcec7
MX
2588 if (!path)
2589 return -ENOMEM;
2590
b9473439 2591 path->leave_spinning = 1;
16cdcec7
MX
2592 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2593 1);
39279cc3
CM
2594 if (ret) {
2595 if (ret > 0)
2596 ret = -ENOENT;
2597 goto failed;
2598 }
2599
b4ce94de 2600 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2601 leaf = path->nodes[0];
2602 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2603 struct btrfs_inode_item);
39279cc3 2604
e02119d5 2605 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2606 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2607 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2608 ret = 0;
2609failed:
39279cc3
CM
2610 btrfs_free_path(path);
2611 return ret;
2612}
2613
d352ac68
CM
2614/*
2615 * unlink helper that gets used here in inode.c and in the tree logging
2616 * recovery code. It remove a link in a directory with a given name, and
2617 * also drops the back refs in the inode to the directory
2618 */
92986796
AV
2619static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2620 struct btrfs_root *root,
2621 struct inode *dir, struct inode *inode,
2622 const char *name, int name_len)
39279cc3
CM
2623{
2624 struct btrfs_path *path;
39279cc3 2625 int ret = 0;
5f39d397 2626 struct extent_buffer *leaf;
39279cc3 2627 struct btrfs_dir_item *di;
5f39d397 2628 struct btrfs_key key;
aec7477b 2629 u64 index;
33345d01
LZ
2630 u64 ino = btrfs_ino(inode);
2631 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2632
2633 path = btrfs_alloc_path();
54aa1f4d
CM
2634 if (!path) {
2635 ret = -ENOMEM;
554233a6 2636 goto out;
54aa1f4d
CM
2637 }
2638
b9473439 2639 path->leave_spinning = 1;
33345d01 2640 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2641 name, name_len, -1);
2642 if (IS_ERR(di)) {
2643 ret = PTR_ERR(di);
2644 goto err;
2645 }
2646 if (!di) {
2647 ret = -ENOENT;
2648 goto err;
2649 }
5f39d397
CM
2650 leaf = path->nodes[0];
2651 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2652 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2653 if (ret)
2654 goto err;
b3b4aa74 2655 btrfs_release_path(path);
39279cc3 2656
33345d01
LZ
2657 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2658 dir_ino, &index);
aec7477b 2659 if (ret) {
d397712b 2660 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2661 "inode %llu parent %llu\n", name_len, name,
2662 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2663 goto err;
2664 }
2665
16cdcec7
MX
2666 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2667 if (ret)
39279cc3 2668 goto err;
39279cc3 2669
e02119d5 2670 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2671 inode, dir_ino);
49eb7e46 2672 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2673
2674 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2675 dir, index);
6418c961
CM
2676 if (ret == -ENOENT)
2677 ret = 0;
39279cc3
CM
2678err:
2679 btrfs_free_path(path);
e02119d5
CM
2680 if (ret)
2681 goto out;
2682
2683 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2684 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2685 btrfs_update_inode(trans, root, dir);
e02119d5 2686out:
39279cc3
CM
2687 return ret;
2688}
2689
92986796
AV
2690int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root,
2692 struct inode *dir, struct inode *inode,
2693 const char *name, int name_len)
2694{
2695 int ret;
2696 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2697 if (!ret) {
2698 btrfs_drop_nlink(inode);
2699 ret = btrfs_update_inode(trans, root, inode);
2700 }
2701 return ret;
2702}
2703
2704
a22285a6
YZ
2705/* helper to check if there is any shared block in the path */
2706static int check_path_shared(struct btrfs_root *root,
2707 struct btrfs_path *path)
39279cc3 2708{
a22285a6
YZ
2709 struct extent_buffer *eb;
2710 int level;
0e4dcbef 2711 u64 refs = 1;
5df6a9f6 2712
a22285a6 2713 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2714 int ret;
2715
a22285a6
YZ
2716 if (!path->nodes[level])
2717 break;
2718 eb = path->nodes[level];
2719 if (!btrfs_block_can_be_shared(root, eb))
2720 continue;
2721 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2722 &refs, NULL);
2723 if (refs > 1)
2724 return 1;
5df6a9f6 2725 }
dedefd72 2726 return 0;
39279cc3
CM
2727}
2728
a22285a6
YZ
2729/*
2730 * helper to start transaction for unlink and rmdir.
2731 *
2732 * unlink and rmdir are special in btrfs, they do not always free space.
2733 * so in enospc case, we should make sure they will free space before
2734 * allowing them to use the global metadata reservation.
2735 */
2736static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2737 struct dentry *dentry)
4df27c4d 2738{
39279cc3 2739 struct btrfs_trans_handle *trans;
a22285a6 2740 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2741 struct btrfs_path *path;
a22285a6 2742 struct btrfs_inode_ref *ref;
4df27c4d 2743 struct btrfs_dir_item *di;
7b128766 2744 struct inode *inode = dentry->d_inode;
4df27c4d 2745 u64 index;
a22285a6
YZ
2746 int check_link = 1;
2747 int err = -ENOSPC;
4df27c4d 2748 int ret;
33345d01
LZ
2749 u64 ino = btrfs_ino(inode);
2750 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2751
a22285a6
YZ
2752 trans = btrfs_start_transaction(root, 10);
2753 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2754 return trans;
4df27c4d 2755
33345d01 2756 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2757 return ERR_PTR(-ENOSPC);
4df27c4d 2758
a22285a6
YZ
2759 /* check if there is someone else holds reference */
2760 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2761 return ERR_PTR(-ENOSPC);
4df27c4d 2762
a22285a6
YZ
2763 if (atomic_read(&inode->i_count) > 2)
2764 return ERR_PTR(-ENOSPC);
4df27c4d 2765
a22285a6
YZ
2766 if (xchg(&root->fs_info->enospc_unlink, 1))
2767 return ERR_PTR(-ENOSPC);
2768
2769 path = btrfs_alloc_path();
2770 if (!path) {
2771 root->fs_info->enospc_unlink = 0;
2772 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2773 }
2774
a22285a6 2775 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2776 if (IS_ERR(trans)) {
a22285a6
YZ
2777 btrfs_free_path(path);
2778 root->fs_info->enospc_unlink = 0;
2779 return trans;
2780 }
4df27c4d 2781
a22285a6
YZ
2782 path->skip_locking = 1;
2783 path->search_commit_root = 1;
4df27c4d 2784
a22285a6
YZ
2785 ret = btrfs_lookup_inode(trans, root, path,
2786 &BTRFS_I(dir)->location, 0);
2787 if (ret < 0) {
2788 err = ret;
2789 goto out;
2790 }
2791 if (ret == 0) {
2792 if (check_path_shared(root, path))
2793 goto out;
2794 } else {
2795 check_link = 0;
5df6a9f6 2796 }
b3b4aa74 2797 btrfs_release_path(path);
a22285a6
YZ
2798
2799 ret = btrfs_lookup_inode(trans, root, path,
2800 &BTRFS_I(inode)->location, 0);
2801 if (ret < 0) {
2802 err = ret;
2803 goto out;
2804 }
2805 if (ret == 0) {
2806 if (check_path_shared(root, path))
2807 goto out;
2808 } else {
2809 check_link = 0;
2810 }
b3b4aa74 2811 btrfs_release_path(path);
a22285a6
YZ
2812
2813 if (ret == 0 && S_ISREG(inode->i_mode)) {
2814 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2815 ino, (u64)-1, 0);
a22285a6
YZ
2816 if (ret < 0) {
2817 err = ret;
2818 goto out;
2819 }
2820 BUG_ON(ret == 0);
2821 if (check_path_shared(root, path))
2822 goto out;
b3b4aa74 2823 btrfs_release_path(path);
a22285a6
YZ
2824 }
2825
2826 if (!check_link) {
2827 err = 0;
2828 goto out;
2829 }
2830
33345d01 2831 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2832 dentry->d_name.name, dentry->d_name.len, 0);
2833 if (IS_ERR(di)) {
2834 err = PTR_ERR(di);
2835 goto out;
2836 }
2837 if (di) {
2838 if (check_path_shared(root, path))
2839 goto out;
2840 } else {
2841 err = 0;
2842 goto out;
2843 }
b3b4aa74 2844 btrfs_release_path(path);
a22285a6
YZ
2845
2846 ref = btrfs_lookup_inode_ref(trans, root, path,
2847 dentry->d_name.name, dentry->d_name.len,
33345d01 2848 ino, dir_ino, 0);
a22285a6
YZ
2849 if (IS_ERR(ref)) {
2850 err = PTR_ERR(ref);
2851 goto out;
2852 }
2853 BUG_ON(!ref);
2854 if (check_path_shared(root, path))
2855 goto out;
2856 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2857 btrfs_release_path(path);
a22285a6 2858
16cdcec7
MX
2859 /*
2860 * This is a commit root search, if we can lookup inode item and other
2861 * relative items in the commit root, it means the transaction of
2862 * dir/file creation has been committed, and the dir index item that we
2863 * delay to insert has also been inserted into the commit root. So
2864 * we needn't worry about the delayed insertion of the dir index item
2865 * here.
2866 */
33345d01 2867 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2868 dentry->d_name.name, dentry->d_name.len, 0);
2869 if (IS_ERR(di)) {
2870 err = PTR_ERR(di);
2871 goto out;
2872 }
2873 BUG_ON(ret == -ENOENT);
2874 if (check_path_shared(root, path))
2875 goto out;
2876
2877 err = 0;
2878out:
2879 btrfs_free_path(path);
2880 if (err) {
2881 btrfs_end_transaction(trans, root);
2882 root->fs_info->enospc_unlink = 0;
2883 return ERR_PTR(err);
2884 }
2885
2886 trans->block_rsv = &root->fs_info->global_block_rsv;
2887 return trans;
2888}
2889
2890static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2891 struct btrfs_root *root)
2892{
2893 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2894 BUG_ON(!root->fs_info->enospc_unlink);
2895 root->fs_info->enospc_unlink = 0;
2896 }
2897 btrfs_end_transaction_throttle(trans, root);
2898}
2899
2900static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2901{
2902 struct btrfs_root *root = BTRFS_I(dir)->root;
2903 struct btrfs_trans_handle *trans;
2904 struct inode *inode = dentry->d_inode;
2905 int ret;
2906 unsigned long nr = 0;
2907
2908 trans = __unlink_start_trans(dir, dentry);
2909 if (IS_ERR(trans))
2910 return PTR_ERR(trans);
5f39d397 2911
12fcfd22
CM
2912 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2913
e02119d5
CM
2914 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2915 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
2916 if (ret)
2917 goto out;
7b128766 2918
a22285a6 2919 if (inode->i_nlink == 0) {
7b128766 2920 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
2921 if (ret)
2922 goto out;
a22285a6 2923 }
7b128766 2924
b532402e 2925out:
d3c2fdcf 2926 nr = trans->blocks_used;
a22285a6 2927 __unlink_end_trans(trans, root);
d3c2fdcf 2928 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2929 return ret;
2930}
2931
4df27c4d
YZ
2932int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root,
2934 struct inode *dir, u64 objectid,
2935 const char *name, int name_len)
2936{
2937 struct btrfs_path *path;
2938 struct extent_buffer *leaf;
2939 struct btrfs_dir_item *di;
2940 struct btrfs_key key;
2941 u64 index;
2942 int ret;
33345d01 2943 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
2944
2945 path = btrfs_alloc_path();
2946 if (!path)
2947 return -ENOMEM;
2948
33345d01 2949 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 2950 name, name_len, -1);
c704005d 2951 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2952
2953 leaf = path->nodes[0];
2954 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2955 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2956 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2957 BUG_ON(ret);
b3b4aa74 2958 btrfs_release_path(path);
4df27c4d
YZ
2959
2960 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2961 objectid, root->root_key.objectid,
33345d01 2962 dir_ino, &index, name, name_len);
4df27c4d
YZ
2963 if (ret < 0) {
2964 BUG_ON(ret != -ENOENT);
33345d01 2965 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 2966 name, name_len);
c704005d 2967 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2968
2969 leaf = path->nodes[0];
2970 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2971 btrfs_release_path(path);
4df27c4d
YZ
2972 index = key.offset;
2973 }
945d8962 2974 btrfs_release_path(path);
4df27c4d 2975
16cdcec7 2976 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 2977 BUG_ON(ret);
4df27c4d
YZ
2978
2979 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2980 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2981 ret = btrfs_update_inode(trans, root, dir);
2982 BUG_ON(ret);
4df27c4d 2983
71d7aed0 2984 btrfs_free_path(path);
4df27c4d
YZ
2985 return 0;
2986}
2987
39279cc3
CM
2988static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2989{
2990 struct inode *inode = dentry->d_inode;
1832a6d5 2991 int err = 0;
39279cc3 2992 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2993 struct btrfs_trans_handle *trans;
1832a6d5 2994 unsigned long nr = 0;
39279cc3 2995
3394e160 2996 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 2997 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2998 return -ENOTEMPTY;
2999
a22285a6
YZ
3000 trans = __unlink_start_trans(dir, dentry);
3001 if (IS_ERR(trans))
5df6a9f6 3002 return PTR_ERR(trans);
5df6a9f6 3003
33345d01 3004 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3005 err = btrfs_unlink_subvol(trans, root, dir,
3006 BTRFS_I(inode)->location.objectid,
3007 dentry->d_name.name,
3008 dentry->d_name.len);
3009 goto out;
3010 }
3011
7b128766
JB
3012 err = btrfs_orphan_add(trans, inode);
3013 if (err)
4df27c4d 3014 goto out;
7b128766 3015
39279cc3 3016 /* now the directory is empty */
e02119d5
CM
3017 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3018 dentry->d_name.name, dentry->d_name.len);
d397712b 3019 if (!err)
dbe674a9 3020 btrfs_i_size_write(inode, 0);
4df27c4d 3021out:
d3c2fdcf 3022 nr = trans->blocks_used;
a22285a6 3023 __unlink_end_trans(trans, root);
d3c2fdcf 3024 btrfs_btree_balance_dirty(root, nr);
3954401f 3025
39279cc3
CM
3026 return err;
3027}
3028
39279cc3
CM
3029/*
3030 * this can truncate away extent items, csum items and directory items.
3031 * It starts at a high offset and removes keys until it can't find
d352ac68 3032 * any higher than new_size
39279cc3
CM
3033 *
3034 * csum items that cross the new i_size are truncated to the new size
3035 * as well.
7b128766
JB
3036 *
3037 * min_type is the minimum key type to truncate down to. If set to 0, this
3038 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3039 */
8082510e
YZ
3040int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3041 struct btrfs_root *root,
3042 struct inode *inode,
3043 u64 new_size, u32 min_type)
39279cc3 3044{
39279cc3 3045 struct btrfs_path *path;
5f39d397 3046 struct extent_buffer *leaf;
39279cc3 3047 struct btrfs_file_extent_item *fi;
8082510e
YZ
3048 struct btrfs_key key;
3049 struct btrfs_key found_key;
39279cc3 3050 u64 extent_start = 0;
db94535d 3051 u64 extent_num_bytes = 0;
5d4f98a2 3052 u64 extent_offset = 0;
39279cc3 3053 u64 item_end = 0;
8082510e
YZ
3054 u64 mask = root->sectorsize - 1;
3055 u32 found_type = (u8)-1;
39279cc3
CM
3056 int found_extent;
3057 int del_item;
85e21bac
CM
3058 int pending_del_nr = 0;
3059 int pending_del_slot = 0;
179e29e4 3060 int extent_type = -1;
771ed689 3061 int encoding;
8082510e
YZ
3062 int ret;
3063 int err = 0;
33345d01 3064 u64 ino = btrfs_ino(inode);
8082510e
YZ
3065
3066 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3067
0eb0e19c
MF
3068 path = btrfs_alloc_path();
3069 if (!path)
3070 return -ENOMEM;
3071 path->reada = -1;
3072
0af3d00b 3073 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3074 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3075
16cdcec7
MX
3076 /*
3077 * This function is also used to drop the items in the log tree before
3078 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3079 * it is used to drop the loged items. So we shouldn't kill the delayed
3080 * items.
3081 */
3082 if (min_type == 0 && root == BTRFS_I(inode)->root)
3083 btrfs_kill_delayed_inode_items(inode);
3084
33345d01 3085 key.objectid = ino;
39279cc3 3086 key.offset = (u64)-1;
5f39d397
CM
3087 key.type = (u8)-1;
3088
85e21bac 3089search_again:
b9473439 3090 path->leave_spinning = 1;
85e21bac 3091 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3092 if (ret < 0) {
3093 err = ret;
3094 goto out;
3095 }
d397712b 3096
85e21bac 3097 if (ret > 0) {
e02119d5
CM
3098 /* there are no items in the tree for us to truncate, we're
3099 * done
3100 */
8082510e
YZ
3101 if (path->slots[0] == 0)
3102 goto out;
85e21bac
CM
3103 path->slots[0]--;
3104 }
3105
d397712b 3106 while (1) {
39279cc3 3107 fi = NULL;
5f39d397
CM
3108 leaf = path->nodes[0];
3109 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3110 found_type = btrfs_key_type(&found_key);
771ed689 3111 encoding = 0;
39279cc3 3112
33345d01 3113 if (found_key.objectid != ino)
39279cc3 3114 break;
5f39d397 3115
85e21bac 3116 if (found_type < min_type)
39279cc3
CM
3117 break;
3118
5f39d397 3119 item_end = found_key.offset;
39279cc3 3120 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3121 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3122 struct btrfs_file_extent_item);
179e29e4 3123 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3124 encoding = btrfs_file_extent_compression(leaf, fi);
3125 encoding |= btrfs_file_extent_encryption(leaf, fi);
3126 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3127
179e29e4 3128 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3129 item_end +=
db94535d 3130 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3131 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3132 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3133 fi);
39279cc3 3134 }
008630c1 3135 item_end--;
39279cc3 3136 }
8082510e
YZ
3137 if (found_type > min_type) {
3138 del_item = 1;
3139 } else {
3140 if (item_end < new_size)
b888db2b 3141 break;
8082510e
YZ
3142 if (found_key.offset >= new_size)
3143 del_item = 1;
3144 else
3145 del_item = 0;
39279cc3 3146 }
39279cc3 3147 found_extent = 0;
39279cc3 3148 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3149 if (found_type != BTRFS_EXTENT_DATA_KEY)
3150 goto delete;
3151
3152 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3153 u64 num_dec;
db94535d 3154 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3155 if (!del_item && !encoding) {
db94535d
CM
3156 u64 orig_num_bytes =
3157 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3158 extent_num_bytes = new_size -
5f39d397 3159 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3160 extent_num_bytes = extent_num_bytes &
3161 ~((u64)root->sectorsize - 1);
db94535d
CM
3162 btrfs_set_file_extent_num_bytes(leaf, fi,
3163 extent_num_bytes);
3164 num_dec = (orig_num_bytes -
9069218d 3165 extent_num_bytes);
e02119d5 3166 if (root->ref_cows && extent_start != 0)
a76a3cd4 3167 inode_sub_bytes(inode, num_dec);
5f39d397 3168 btrfs_mark_buffer_dirty(leaf);
39279cc3 3169 } else {
db94535d
CM
3170 extent_num_bytes =
3171 btrfs_file_extent_disk_num_bytes(leaf,
3172 fi);
5d4f98a2
YZ
3173 extent_offset = found_key.offset -
3174 btrfs_file_extent_offset(leaf, fi);
3175
39279cc3 3176 /* FIXME blocksize != 4096 */
9069218d 3177 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3178 if (extent_start != 0) {
3179 found_extent = 1;
e02119d5 3180 if (root->ref_cows)
a76a3cd4 3181 inode_sub_bytes(inode, num_dec);
e02119d5 3182 }
39279cc3 3183 }
9069218d 3184 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3185 /*
3186 * we can't truncate inline items that have had
3187 * special encodings
3188 */
3189 if (!del_item &&
3190 btrfs_file_extent_compression(leaf, fi) == 0 &&
3191 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3192 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3193 u32 size = new_size - found_key.offset;
3194
3195 if (root->ref_cows) {
a76a3cd4
YZ
3196 inode_sub_bytes(inode, item_end + 1 -
3197 new_size);
e02119d5
CM
3198 }
3199 size =
3200 btrfs_file_extent_calc_inline_size(size);
9069218d 3201 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3202 size, 1);
e02119d5 3203 } else if (root->ref_cows) {
a76a3cd4
YZ
3204 inode_sub_bytes(inode, item_end + 1 -
3205 found_key.offset);
9069218d 3206 }
39279cc3 3207 }
179e29e4 3208delete:
39279cc3 3209 if (del_item) {
85e21bac
CM
3210 if (!pending_del_nr) {
3211 /* no pending yet, add ourselves */
3212 pending_del_slot = path->slots[0];
3213 pending_del_nr = 1;
3214 } else if (pending_del_nr &&
3215 path->slots[0] + 1 == pending_del_slot) {
3216 /* hop on the pending chunk */
3217 pending_del_nr++;
3218 pending_del_slot = path->slots[0];
3219 } else {
d397712b 3220 BUG();
85e21bac 3221 }
39279cc3
CM
3222 } else {
3223 break;
3224 }
0af3d00b
JB
3225 if (found_extent && (root->ref_cows ||
3226 root == root->fs_info->tree_root)) {
b9473439 3227 btrfs_set_path_blocking(path);
39279cc3 3228 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3229 extent_num_bytes, 0,
3230 btrfs_header_owner(leaf),
33345d01 3231 ino, extent_offset);
39279cc3
CM
3232 BUG_ON(ret);
3233 }
85e21bac 3234
8082510e
YZ
3235 if (found_type == BTRFS_INODE_ITEM_KEY)
3236 break;
3237
3238 if (path->slots[0] == 0 ||
3239 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3240 if (root->ref_cows &&
3241 BTRFS_I(inode)->location.objectid !=
3242 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3243 err = -EAGAIN;
3244 goto out;
3245 }
3246 if (pending_del_nr) {
3247 ret = btrfs_del_items(trans, root, path,
3248 pending_del_slot,
3249 pending_del_nr);
3250 BUG_ON(ret);
3251 pending_del_nr = 0;
3252 }
b3b4aa74 3253 btrfs_release_path(path);
85e21bac 3254 goto search_again;
8082510e
YZ
3255 } else {
3256 path->slots[0]--;
85e21bac 3257 }
39279cc3 3258 }
8082510e 3259out:
85e21bac
CM
3260 if (pending_del_nr) {
3261 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3262 pending_del_nr);
d68fc57b 3263 BUG_ON(ret);
85e21bac 3264 }
39279cc3 3265 btrfs_free_path(path);
8082510e 3266 return err;
39279cc3
CM
3267}
3268
3269/*
3270 * taken from block_truncate_page, but does cow as it zeros out
3271 * any bytes left in the last page in the file.
3272 */
3273static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3274{
3275 struct inode *inode = mapping->host;
db94535d 3276 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3277 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3278 struct btrfs_ordered_extent *ordered;
2ac55d41 3279 struct extent_state *cached_state = NULL;
e6dcd2dc 3280 char *kaddr;
db94535d 3281 u32 blocksize = root->sectorsize;
39279cc3
CM
3282 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3283 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3284 struct page *page;
39279cc3 3285 int ret = 0;
a52d9a80 3286 u64 page_start;
e6dcd2dc 3287 u64 page_end;
39279cc3
CM
3288
3289 if ((offset & (blocksize - 1)) == 0)
3290 goto out;
0ca1f7ce 3291 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3292 if (ret)
3293 goto out;
39279cc3
CM
3294
3295 ret = -ENOMEM;
211c17f5 3296again:
a94733d0 3297 page = find_or_create_page(mapping, index, GFP_NOFS);
5d5e103a 3298 if (!page) {
0ca1f7ce 3299 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3300 goto out;
5d5e103a 3301 }
e6dcd2dc
CM
3302
3303 page_start = page_offset(page);
3304 page_end = page_start + PAGE_CACHE_SIZE - 1;
3305
39279cc3 3306 if (!PageUptodate(page)) {
9ebefb18 3307 ret = btrfs_readpage(NULL, page);
39279cc3 3308 lock_page(page);
211c17f5
CM
3309 if (page->mapping != mapping) {
3310 unlock_page(page);
3311 page_cache_release(page);
3312 goto again;
3313 }
39279cc3
CM
3314 if (!PageUptodate(page)) {
3315 ret = -EIO;
89642229 3316 goto out_unlock;
39279cc3
CM
3317 }
3318 }
211c17f5 3319 wait_on_page_writeback(page);
e6dcd2dc 3320
2ac55d41
JB
3321 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3322 GFP_NOFS);
e6dcd2dc
CM
3323 set_page_extent_mapped(page);
3324
3325 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3326 if (ordered) {
2ac55d41
JB
3327 unlock_extent_cached(io_tree, page_start, page_end,
3328 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3329 unlock_page(page);
3330 page_cache_release(page);
eb84ae03 3331 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3332 btrfs_put_ordered_extent(ordered);
3333 goto again;
3334 }
3335
2ac55d41 3336 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3337 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3338 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3339
2ac55d41
JB
3340 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3341 &cached_state);
9ed74f2d 3342 if (ret) {
2ac55d41
JB
3343 unlock_extent_cached(io_tree, page_start, page_end,
3344 &cached_state, GFP_NOFS);
9ed74f2d
JB
3345 goto out_unlock;
3346 }
3347
e6dcd2dc
CM
3348 ret = 0;
3349 if (offset != PAGE_CACHE_SIZE) {
3350 kaddr = kmap(page);
3351 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3352 flush_dcache_page(page);
3353 kunmap(page);
3354 }
247e743c 3355 ClearPageChecked(page);
e6dcd2dc 3356 set_page_dirty(page);
2ac55d41
JB
3357 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3358 GFP_NOFS);
39279cc3 3359
89642229 3360out_unlock:
5d5e103a 3361 if (ret)
0ca1f7ce 3362 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3363 unlock_page(page);
3364 page_cache_release(page);
3365out:
3366 return ret;
3367}
3368
695a0d0d
JB
3369/*
3370 * This function puts in dummy file extents for the area we're creating a hole
3371 * for. So if we are truncating this file to a larger size we need to insert
3372 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3373 * the range between oldsize and size
3374 */
a41ad394 3375int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3376{
9036c102
YZ
3377 struct btrfs_trans_handle *trans;
3378 struct btrfs_root *root = BTRFS_I(inode)->root;
3379 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3380 struct extent_map *em = NULL;
2ac55d41 3381 struct extent_state *cached_state = NULL;
9036c102 3382 u64 mask = root->sectorsize - 1;
a41ad394 3383 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3384 u64 block_end = (size + mask) & ~mask;
3385 u64 last_byte;
3386 u64 cur_offset;
3387 u64 hole_size;
9ed74f2d 3388 int err = 0;
39279cc3 3389
9036c102
YZ
3390 if (size <= hole_start)
3391 return 0;
3392
9036c102
YZ
3393 while (1) {
3394 struct btrfs_ordered_extent *ordered;
3395 btrfs_wait_ordered_range(inode, hole_start,
3396 block_end - hole_start);
2ac55d41
JB
3397 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3398 &cached_state, GFP_NOFS);
9036c102
YZ
3399 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3400 if (!ordered)
3401 break;
2ac55d41
JB
3402 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3403 &cached_state, GFP_NOFS);
9036c102
YZ
3404 btrfs_put_ordered_extent(ordered);
3405 }
39279cc3 3406
9036c102
YZ
3407 cur_offset = hole_start;
3408 while (1) {
3409 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3410 block_end - cur_offset, 0);
c704005d 3411 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3412 last_byte = min(extent_map_end(em), block_end);
3413 last_byte = (last_byte + mask) & ~mask;
8082510e 3414 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3415 u64 hint_byte = 0;
9036c102 3416 hole_size = last_byte - cur_offset;
9ed74f2d 3417
a22285a6
YZ
3418 trans = btrfs_start_transaction(root, 2);
3419 if (IS_ERR(trans)) {
3420 err = PTR_ERR(trans);
9ed74f2d 3421 break;
a22285a6 3422 }
8082510e
YZ
3423
3424 err = btrfs_drop_extents(trans, inode, cur_offset,
3425 cur_offset + hole_size,
3426 &hint_byte, 1);
5b397377
MX
3427 if (err) {
3428 btrfs_end_transaction(trans, root);
3893e33b 3429 break;
5b397377 3430 }
8082510e 3431
9036c102 3432 err = btrfs_insert_file_extent(trans, root,
33345d01 3433 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3434 0, hole_size, 0, hole_size,
3435 0, 0, 0);
5b397377
MX
3436 if (err) {
3437 btrfs_end_transaction(trans, root);
3893e33b 3438 break;
5b397377 3439 }
8082510e 3440
9036c102
YZ
3441 btrfs_drop_extent_cache(inode, hole_start,
3442 last_byte - 1, 0);
8082510e
YZ
3443
3444 btrfs_end_transaction(trans, root);
9036c102
YZ
3445 }
3446 free_extent_map(em);
a22285a6 3447 em = NULL;
9036c102 3448 cur_offset = last_byte;
8082510e 3449 if (cur_offset >= block_end)
9036c102
YZ
3450 break;
3451 }
1832a6d5 3452
a22285a6 3453 free_extent_map(em);
2ac55d41
JB
3454 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3455 GFP_NOFS);
9036c102
YZ
3456 return err;
3457}
39279cc3 3458
a41ad394 3459static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3460{
a41ad394 3461 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3462 int ret;
3463
a41ad394 3464 if (newsize == oldsize)
8082510e
YZ
3465 return 0;
3466
a41ad394
JB
3467 if (newsize > oldsize) {
3468 i_size_write(inode, newsize);
3469 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3470 truncate_pagecache(inode, oldsize, newsize);
3471 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3472 if (ret) {
a41ad394 3473 btrfs_setsize(inode, oldsize);
8082510e
YZ
3474 return ret;
3475 }
3476
930f028a 3477 mark_inode_dirty(inode);
a41ad394 3478 } else {
8082510e 3479
a41ad394
JB
3480 /*
3481 * We're truncating a file that used to have good data down to
3482 * zero. Make sure it gets into the ordered flush list so that
3483 * any new writes get down to disk quickly.
3484 */
3485 if (newsize == 0)
3486 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3487
a41ad394
JB
3488 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3489 truncate_setsize(inode, newsize);
3490 ret = btrfs_truncate(inode);
8082510e
YZ
3491 }
3492
a41ad394 3493 return ret;
8082510e
YZ
3494}
3495
9036c102
YZ
3496static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3497{
3498 struct inode *inode = dentry->d_inode;
b83cc969 3499 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3500 int err;
39279cc3 3501
b83cc969
LZ
3502 if (btrfs_root_readonly(root))
3503 return -EROFS;
3504
9036c102
YZ
3505 err = inode_change_ok(inode, attr);
3506 if (err)
3507 return err;
2bf5a725 3508
5a3f23d5 3509 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3510 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3511 if (err)
3512 return err;
39279cc3 3513 }
9036c102 3514
1025774c
CH
3515 if (attr->ia_valid) {
3516 setattr_copy(inode, attr);
3517 mark_inode_dirty(inode);
3518
3519 if (attr->ia_valid & ATTR_MODE)
3520 err = btrfs_acl_chmod(inode);
3521 }
33268eaf 3522
39279cc3
CM
3523 return err;
3524}
61295eb8 3525
bd555975 3526void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3527{
3528 struct btrfs_trans_handle *trans;
3529 struct btrfs_root *root = BTRFS_I(inode)->root;
4289a667
JB
3530 struct btrfs_block_rsv *rsv;
3531 u64 min_size = btrfs_calc_trans_metadata_size(root, 2);
d3c2fdcf 3532 unsigned long nr;
39279cc3
CM
3533 int ret;
3534
1abe9b8a 3535 trace_btrfs_inode_evict(inode);
3536
39279cc3 3537 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3538 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3539 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3540 goto no_delete;
3541
39279cc3 3542 if (is_bad_inode(inode)) {
7b128766 3543 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3544 goto no_delete;
3545 }
bd555975 3546 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3547 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3548
c71bf099
YZ
3549 if (root->fs_info->log_root_recovering) {
3550 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3551 goto no_delete;
3552 }
3553
76dda93c
YZ
3554 if (inode->i_nlink > 0) {
3555 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3556 goto no_delete;
3557 }
3558
4289a667
JB
3559 rsv = btrfs_alloc_block_rsv(root);
3560 if (!rsv) {
3561 btrfs_orphan_del(NULL, inode);
3562 goto no_delete;
3563 }
3564
dbe674a9 3565 btrfs_i_size_write(inode, 0);
5f39d397 3566
4289a667
JB
3567 /*
3568 * This is a bit simpler than btrfs_truncate since
3569 *
3570 * 1) We've already reserved our space for our orphan item in the
3571 * unlink.
3572 * 2) We're going to delete the inode item, so we don't need to update
3573 * it at all.
3574 *
3575 * So we just need to reserve some slack space in case we add bytes when
3576 * doing the truncate.
3577 */
8082510e 3578 while (1) {
4289a667 3579 ret = btrfs_block_rsv_check(NULL, root, rsv, min_size, 0);
d68fc57b 3580 if (ret) {
4289a667
JB
3581 printk(KERN_WARNING "Could not get space for a "
3582 "delete, will truncate on mount\n");
3583 btrfs_orphan_del(NULL, inode);
3584 btrfs_free_block_rsv(root, rsv);
3585 goto no_delete;
3586 }
3587
3588 trans = btrfs_start_transaction(root, 0);
3589 if (IS_ERR(trans)) {
3590 btrfs_orphan_del(NULL, inode);
3591 btrfs_free_block_rsv(root, rsv);
3592 goto no_delete;
d68fc57b 3593 }
7b128766 3594
4289a667
JB
3595 trans->block_rsv = rsv;
3596
d68fc57b 3597 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3598 if (ret != -EAGAIN)
3599 break;
85e21bac 3600
8082510e
YZ
3601 nr = trans->blocks_used;
3602 btrfs_end_transaction(trans, root);
3603 trans = NULL;
3604 btrfs_btree_balance_dirty(root, nr);
3605 }
5f39d397 3606
4289a667
JB
3607 btrfs_free_block_rsv(root, rsv);
3608
8082510e 3609 if (ret == 0) {
4289a667 3610 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3611 ret = btrfs_orphan_del(trans, inode);
3612 BUG_ON(ret);
3613 }
54aa1f4d 3614
4289a667 3615 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3616 if (!(root == root->fs_info->tree_root ||
3617 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3618 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3619
d3c2fdcf 3620 nr = trans->blocks_used;
54aa1f4d 3621 btrfs_end_transaction(trans, root);
d3c2fdcf 3622 btrfs_btree_balance_dirty(root, nr);
39279cc3 3623no_delete:
bd555975 3624 end_writeback(inode);
8082510e 3625 return;
39279cc3
CM
3626}
3627
3628/*
3629 * this returns the key found in the dir entry in the location pointer.
3630 * If no dir entries were found, location->objectid is 0.
3631 */
3632static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3633 struct btrfs_key *location)
3634{
3635 const char *name = dentry->d_name.name;
3636 int namelen = dentry->d_name.len;
3637 struct btrfs_dir_item *di;
3638 struct btrfs_path *path;
3639 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3640 int ret = 0;
39279cc3
CM
3641
3642 path = btrfs_alloc_path();
d8926bb3
MF
3643 if (!path)
3644 return -ENOMEM;
3954401f 3645
33345d01 3646 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3647 namelen, 0);
0d9f7f3e
Y
3648 if (IS_ERR(di))
3649 ret = PTR_ERR(di);
d397712b 3650
c704005d 3651 if (IS_ERR_OR_NULL(di))
3954401f 3652 goto out_err;
d397712b 3653
5f39d397 3654 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3655out:
39279cc3
CM
3656 btrfs_free_path(path);
3657 return ret;
3954401f
CM
3658out_err:
3659 location->objectid = 0;
3660 goto out;
39279cc3
CM
3661}
3662
3663/*
3664 * when we hit a tree root in a directory, the btrfs part of the inode
3665 * needs to be changed to reflect the root directory of the tree root. This
3666 * is kind of like crossing a mount point.
3667 */
3668static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3669 struct inode *dir,
3670 struct dentry *dentry,
3671 struct btrfs_key *location,
3672 struct btrfs_root **sub_root)
39279cc3 3673{
4df27c4d
YZ
3674 struct btrfs_path *path;
3675 struct btrfs_root *new_root;
3676 struct btrfs_root_ref *ref;
3677 struct extent_buffer *leaf;
3678 int ret;
3679 int err = 0;
39279cc3 3680
4df27c4d
YZ
3681 path = btrfs_alloc_path();
3682 if (!path) {
3683 err = -ENOMEM;
3684 goto out;
3685 }
39279cc3 3686
4df27c4d
YZ
3687 err = -ENOENT;
3688 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3689 BTRFS_I(dir)->root->root_key.objectid,
3690 location->objectid);
3691 if (ret) {
3692 if (ret < 0)
3693 err = ret;
3694 goto out;
3695 }
39279cc3 3696
4df27c4d
YZ
3697 leaf = path->nodes[0];
3698 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3699 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3700 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3701 goto out;
39279cc3 3702
4df27c4d
YZ
3703 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3704 (unsigned long)(ref + 1),
3705 dentry->d_name.len);
3706 if (ret)
3707 goto out;
3708
b3b4aa74 3709 btrfs_release_path(path);
4df27c4d
YZ
3710
3711 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3712 if (IS_ERR(new_root)) {
3713 err = PTR_ERR(new_root);
3714 goto out;
3715 }
3716
3717 if (btrfs_root_refs(&new_root->root_item) == 0) {
3718 err = -ENOENT;
3719 goto out;
3720 }
3721
3722 *sub_root = new_root;
3723 location->objectid = btrfs_root_dirid(&new_root->root_item);
3724 location->type = BTRFS_INODE_ITEM_KEY;
3725 location->offset = 0;
3726 err = 0;
3727out:
3728 btrfs_free_path(path);
3729 return err;
39279cc3
CM
3730}
3731
5d4f98a2
YZ
3732static void inode_tree_add(struct inode *inode)
3733{
3734 struct btrfs_root *root = BTRFS_I(inode)->root;
3735 struct btrfs_inode *entry;
03e860bd
FNP
3736 struct rb_node **p;
3737 struct rb_node *parent;
33345d01 3738 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3739again:
3740 p = &root->inode_tree.rb_node;
3741 parent = NULL;
5d4f98a2 3742
1d3382cb 3743 if (inode_unhashed(inode))
76dda93c
YZ
3744 return;
3745
5d4f98a2
YZ
3746 spin_lock(&root->inode_lock);
3747 while (*p) {
3748 parent = *p;
3749 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3750
33345d01 3751 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3752 p = &parent->rb_left;
33345d01 3753 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3754 p = &parent->rb_right;
5d4f98a2
YZ
3755 else {
3756 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3757 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3758 rb_erase(parent, &root->inode_tree);
3759 RB_CLEAR_NODE(parent);
3760 spin_unlock(&root->inode_lock);
3761 goto again;
5d4f98a2
YZ
3762 }
3763 }
3764 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3765 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3766 spin_unlock(&root->inode_lock);
3767}
3768
3769static void inode_tree_del(struct inode *inode)
3770{
3771 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3772 int empty = 0;
5d4f98a2 3773
03e860bd 3774 spin_lock(&root->inode_lock);
5d4f98a2 3775 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3776 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3777 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3778 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3779 }
03e860bd 3780 spin_unlock(&root->inode_lock);
76dda93c 3781
0af3d00b
JB
3782 /*
3783 * Free space cache has inodes in the tree root, but the tree root has a
3784 * root_refs of 0, so this could end up dropping the tree root as a
3785 * snapshot, so we need the extra !root->fs_info->tree_root check to
3786 * make sure we don't drop it.
3787 */
3788 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3789 root != root->fs_info->tree_root) {
76dda93c
YZ
3790 synchronize_srcu(&root->fs_info->subvol_srcu);
3791 spin_lock(&root->inode_lock);
3792 empty = RB_EMPTY_ROOT(&root->inode_tree);
3793 spin_unlock(&root->inode_lock);
3794 if (empty)
3795 btrfs_add_dead_root(root);
3796 }
3797}
3798
3799int btrfs_invalidate_inodes(struct btrfs_root *root)
3800{
3801 struct rb_node *node;
3802 struct rb_node *prev;
3803 struct btrfs_inode *entry;
3804 struct inode *inode;
3805 u64 objectid = 0;
3806
3807 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3808
3809 spin_lock(&root->inode_lock);
3810again:
3811 node = root->inode_tree.rb_node;
3812 prev = NULL;
3813 while (node) {
3814 prev = node;
3815 entry = rb_entry(node, struct btrfs_inode, rb_node);
3816
33345d01 3817 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3818 node = node->rb_left;
33345d01 3819 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3820 node = node->rb_right;
3821 else
3822 break;
3823 }
3824 if (!node) {
3825 while (prev) {
3826 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3827 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3828 node = prev;
3829 break;
3830 }
3831 prev = rb_next(prev);
3832 }
3833 }
3834 while (node) {
3835 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3836 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3837 inode = igrab(&entry->vfs_inode);
3838 if (inode) {
3839 spin_unlock(&root->inode_lock);
3840 if (atomic_read(&inode->i_count) > 1)
3841 d_prune_aliases(inode);
3842 /*
45321ac5 3843 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3844 * the inode cache when its usage count
3845 * hits zero.
3846 */
3847 iput(inode);
3848 cond_resched();
3849 spin_lock(&root->inode_lock);
3850 goto again;
3851 }
3852
3853 if (cond_resched_lock(&root->inode_lock))
3854 goto again;
3855
3856 node = rb_next(node);
3857 }
3858 spin_unlock(&root->inode_lock);
3859 return 0;
5d4f98a2
YZ
3860}
3861
e02119d5
CM
3862static int btrfs_init_locked_inode(struct inode *inode, void *p)
3863{
3864 struct btrfs_iget_args *args = p;
3865 inode->i_ino = args->ino;
e02119d5 3866 BTRFS_I(inode)->root = args->root;
6a63209f 3867 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3868 return 0;
3869}
3870
3871static int btrfs_find_actor(struct inode *inode, void *opaque)
3872{
3873 struct btrfs_iget_args *args = opaque;
33345d01 3874 return args->ino == btrfs_ino(inode) &&
d397712b 3875 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3876}
3877
5d4f98a2
YZ
3878static struct inode *btrfs_iget_locked(struct super_block *s,
3879 u64 objectid,
3880 struct btrfs_root *root)
39279cc3
CM
3881{
3882 struct inode *inode;
3883 struct btrfs_iget_args args;
3884 args.ino = objectid;
3885 args.root = root;
3886
3887 inode = iget5_locked(s, objectid, btrfs_find_actor,
3888 btrfs_init_locked_inode,
3889 (void *)&args);
3890 return inode;
3891}
3892
1a54ef8c
BR
3893/* Get an inode object given its location and corresponding root.
3894 * Returns in *is_new if the inode was read from disk
3895 */
3896struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3897 struct btrfs_root *root, int *new)
1a54ef8c
BR
3898{
3899 struct inode *inode;
3900
3901 inode = btrfs_iget_locked(s, location->objectid, root);
3902 if (!inode)
5d4f98a2 3903 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3904
3905 if (inode->i_state & I_NEW) {
3906 BTRFS_I(inode)->root = root;
3907 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3908 btrfs_read_locked_inode(inode);
1748f843
MF
3909 if (!is_bad_inode(inode)) {
3910 inode_tree_add(inode);
3911 unlock_new_inode(inode);
3912 if (new)
3913 *new = 1;
3914 } else {
e0b6d65b
ST
3915 unlock_new_inode(inode);
3916 iput(inode);
3917 inode = ERR_PTR(-ESTALE);
1748f843
MF
3918 }
3919 }
3920
1a54ef8c
BR
3921 return inode;
3922}
3923
4df27c4d
YZ
3924static struct inode *new_simple_dir(struct super_block *s,
3925 struct btrfs_key *key,
3926 struct btrfs_root *root)
3927{
3928 struct inode *inode = new_inode(s);
3929
3930 if (!inode)
3931 return ERR_PTR(-ENOMEM);
3932
4df27c4d
YZ
3933 BTRFS_I(inode)->root = root;
3934 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3935 BTRFS_I(inode)->dummy_inode = 1;
3936
3937 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3938 inode->i_op = &simple_dir_inode_operations;
3939 inode->i_fop = &simple_dir_operations;
3940 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3941 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3942
3943 return inode;
3944}
3945
3de4586c 3946struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3947{
d397712b 3948 struct inode *inode;
4df27c4d 3949 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3950 struct btrfs_root *sub_root = root;
3951 struct btrfs_key location;
76dda93c 3952 int index;
b4aff1f8 3953 int ret = 0;
39279cc3
CM
3954
3955 if (dentry->d_name.len > BTRFS_NAME_LEN)
3956 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3957
b4aff1f8
JB
3958 if (unlikely(d_need_lookup(dentry))) {
3959 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3960 kfree(dentry->d_fsdata);
3961 dentry->d_fsdata = NULL;
a66e7cc6
JB
3962 /* This thing is hashed, drop it for now */
3963 d_drop(dentry);
b4aff1f8
JB
3964 } else {
3965 ret = btrfs_inode_by_name(dir, dentry, &location);
3966 }
5f39d397 3967
39279cc3
CM
3968 if (ret < 0)
3969 return ERR_PTR(ret);
5f39d397 3970
4df27c4d
YZ
3971 if (location.objectid == 0)
3972 return NULL;
3973
3974 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 3975 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
3976 return inode;
3977 }
3978
3979 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3980
76dda93c 3981 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3982 ret = fixup_tree_root_location(root, dir, dentry,
3983 &location, &sub_root);
3984 if (ret < 0) {
3985 if (ret != -ENOENT)
3986 inode = ERR_PTR(ret);
3987 else
3988 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3989 } else {
73f73415 3990 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 3991 }
76dda93c
YZ
3992 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3993
34d19bad 3994 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
3995 down_read(&root->fs_info->cleanup_work_sem);
3996 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 3997 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 3998 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
3999 if (ret)
4000 inode = ERR_PTR(ret);
c71bf099
YZ
4001 }
4002
3de4586c
CM
4003 return inode;
4004}
4005
fe15ce44 4006static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4007{
4008 struct btrfs_root *root;
4009
efefb143
YZ
4010 if (!dentry->d_inode && !IS_ROOT(dentry))
4011 dentry = dentry->d_parent;
76dda93c 4012
efefb143
YZ
4013 if (dentry->d_inode) {
4014 root = BTRFS_I(dentry->d_inode)->root;
4015 if (btrfs_root_refs(&root->root_item) == 0)
4016 return 1;
4017 }
76dda93c
YZ
4018 return 0;
4019}
4020
b4aff1f8
JB
4021static void btrfs_dentry_release(struct dentry *dentry)
4022{
4023 if (dentry->d_fsdata)
4024 kfree(dentry->d_fsdata);
4025}
4026
3de4586c
CM
4027static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4028 struct nameidata *nd)
4029{
a66e7cc6
JB
4030 struct dentry *ret;
4031
4032 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4033 if (unlikely(d_need_lookup(dentry))) {
4034 spin_lock(&dentry->d_lock);
4035 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4036 spin_unlock(&dentry->d_lock);
4037 }
4038 return ret;
39279cc3
CM
4039}
4040
16cdcec7 4041unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4042 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4043};
4044
cbdf5a24
DW
4045static int btrfs_real_readdir(struct file *filp, void *dirent,
4046 filldir_t filldir)
39279cc3 4047{
6da6abae 4048 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4049 struct btrfs_root *root = BTRFS_I(inode)->root;
4050 struct btrfs_item *item;
4051 struct btrfs_dir_item *di;
4052 struct btrfs_key key;
5f39d397 4053 struct btrfs_key found_key;
39279cc3 4054 struct btrfs_path *path;
16cdcec7
MX
4055 struct list_head ins_list;
4056 struct list_head del_list;
b4aff1f8 4057 struct qstr q;
39279cc3 4058 int ret;
5f39d397 4059 struct extent_buffer *leaf;
39279cc3 4060 int slot;
39279cc3
CM
4061 unsigned char d_type;
4062 int over = 0;
4063 u32 di_cur;
4064 u32 di_total;
4065 u32 di_len;
4066 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4067 char tmp_name[32];
4068 char *name_ptr;
4069 int name_len;
16cdcec7 4070 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4071
4072 /* FIXME, use a real flag for deciding about the key type */
4073 if (root->fs_info->tree_root == root)
4074 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4075
3954401f
CM
4076 /* special case for "." */
4077 if (filp->f_pos == 0) {
3765fefa
HS
4078 over = filldir(dirent, ".", 1,
4079 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4080 if (over)
4081 return 0;
4082 filp->f_pos = 1;
4083 }
3954401f
CM
4084 /* special case for .., just use the back ref */
4085 if (filp->f_pos == 1) {
5ecc7e5d 4086 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4087 over = filldir(dirent, "..", 2,
3765fefa 4088 filp->f_pos, pino, DT_DIR);
3954401f 4089 if (over)
49593bfa 4090 return 0;
3954401f
CM
4091 filp->f_pos = 2;
4092 }
49593bfa 4093 path = btrfs_alloc_path();
16cdcec7
MX
4094 if (!path)
4095 return -ENOMEM;
ff5714cc 4096
026fd317 4097 path->reada = 1;
49593bfa 4098
16cdcec7
MX
4099 if (key_type == BTRFS_DIR_INDEX_KEY) {
4100 INIT_LIST_HEAD(&ins_list);
4101 INIT_LIST_HEAD(&del_list);
4102 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4103 }
4104
39279cc3
CM
4105 btrfs_set_key_type(&key, key_type);
4106 key.offset = filp->f_pos;
33345d01 4107 key.objectid = btrfs_ino(inode);
5f39d397 4108
39279cc3
CM
4109 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4110 if (ret < 0)
4111 goto err;
49593bfa
DW
4112
4113 while (1) {
5f39d397 4114 leaf = path->nodes[0];
39279cc3 4115 slot = path->slots[0];
b9e03af0
LZ
4116 if (slot >= btrfs_header_nritems(leaf)) {
4117 ret = btrfs_next_leaf(root, path);
4118 if (ret < 0)
4119 goto err;
4120 else if (ret > 0)
4121 break;
4122 continue;
39279cc3 4123 }
3de4586c 4124
5f39d397
CM
4125 item = btrfs_item_nr(leaf, slot);
4126 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4127
4128 if (found_key.objectid != key.objectid)
39279cc3 4129 break;
5f39d397 4130 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4131 break;
5f39d397 4132 if (found_key.offset < filp->f_pos)
b9e03af0 4133 goto next;
16cdcec7
MX
4134 if (key_type == BTRFS_DIR_INDEX_KEY &&
4135 btrfs_should_delete_dir_index(&del_list,
4136 found_key.offset))
4137 goto next;
5f39d397
CM
4138
4139 filp->f_pos = found_key.offset;
16cdcec7 4140 is_curr = 1;
49593bfa 4141
39279cc3
CM
4142 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4143 di_cur = 0;
5f39d397 4144 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4145
4146 while (di_cur < di_total) {
5f39d397 4147 struct btrfs_key location;
b4aff1f8 4148 struct dentry *tmp;
5f39d397 4149
22a94d44
JB
4150 if (verify_dir_item(root, leaf, di))
4151 break;
4152
5f39d397 4153 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4154 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4155 name_ptr = tmp_name;
4156 } else {
4157 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4158 if (!name_ptr) {
4159 ret = -ENOMEM;
4160 goto err;
4161 }
5f39d397
CM
4162 }
4163 read_extent_buffer(leaf, name_ptr,
4164 (unsigned long)(di + 1), name_len);
4165
4166 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4167 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4168
b4aff1f8
JB
4169 q.name = name_ptr;
4170 q.len = name_len;
4171 q.hash = full_name_hash(q.name, q.len);
4172 tmp = d_lookup(filp->f_dentry, &q);
4173 if (!tmp) {
4174 struct btrfs_key *newkey;
4175
4176 newkey = kzalloc(sizeof(struct btrfs_key),
4177 GFP_NOFS);
4178 if (!newkey)
4179 goto no_dentry;
4180 tmp = d_alloc(filp->f_dentry, &q);
4181 if (!tmp) {
4182 kfree(newkey);
4183 dput(tmp);
4184 goto no_dentry;
4185 }
4186 memcpy(newkey, &location,
4187 sizeof(struct btrfs_key));
4188 tmp->d_fsdata = newkey;
4189 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4190 d_rehash(tmp);
4191 dput(tmp);
4192 } else {
4193 dput(tmp);
4194 }
4195no_dentry:
3de4586c
CM
4196 /* is this a reference to our own snapshot? If so
4197 * skip it
4198 */
4199 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4200 location.objectid == root->root_key.objectid) {
4201 over = 0;
4202 goto skip;
4203 }
5f39d397 4204 over = filldir(dirent, name_ptr, name_len,
49593bfa 4205 found_key.offset, location.objectid,
39279cc3 4206 d_type);
5f39d397 4207
3de4586c 4208skip:
5f39d397
CM
4209 if (name_ptr != tmp_name)
4210 kfree(name_ptr);
4211
39279cc3
CM
4212 if (over)
4213 goto nopos;
5103e947 4214 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4215 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4216 di_cur += di_len;
4217 di = (struct btrfs_dir_item *)((char *)di + di_len);
4218 }
b9e03af0
LZ
4219next:
4220 path->slots[0]++;
39279cc3 4221 }
49593bfa 4222
16cdcec7
MX
4223 if (key_type == BTRFS_DIR_INDEX_KEY) {
4224 if (is_curr)
4225 filp->f_pos++;
4226 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4227 &ins_list);
4228 if (ret)
4229 goto nopos;
4230 }
4231
49593bfa 4232 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4233 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4234 /*
4235 * 32-bit glibc will use getdents64, but then strtol -
4236 * so the last number we can serve is this.
4237 */
4238 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4239 else
4240 filp->f_pos++;
39279cc3
CM
4241nopos:
4242 ret = 0;
4243err:
16cdcec7
MX
4244 if (key_type == BTRFS_DIR_INDEX_KEY)
4245 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4246 btrfs_free_path(path);
39279cc3
CM
4247 return ret;
4248}
4249
a9185b41 4250int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4251{
4252 struct btrfs_root *root = BTRFS_I(inode)->root;
4253 struct btrfs_trans_handle *trans;
4254 int ret = 0;
0af3d00b 4255 bool nolock = false;
39279cc3 4256
8929ecfa 4257 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4258 return 0;
4259
2cf8572d 4260 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4261 nolock = true;
0af3d00b 4262
a9185b41 4263 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4264 if (nolock)
7a7eaa40 4265 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4266 else
7a7eaa40 4267 trans = btrfs_join_transaction(root);
3612b495
TI
4268 if (IS_ERR(trans))
4269 return PTR_ERR(trans);
0af3d00b
JB
4270 if (nolock)
4271 ret = btrfs_end_transaction_nolock(trans, root);
4272 else
4273 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4274 }
4275 return ret;
4276}
4277
4278/*
54aa1f4d 4279 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4280 * inode changes. But, it is most likely to find the inode in cache.
4281 * FIXME, needs more benchmarking...there are no reasons other than performance
4282 * to keep or drop this code.
4283 */
aa385729 4284void btrfs_dirty_inode(struct inode *inode, int flags)
39279cc3
CM
4285{
4286 struct btrfs_root *root = BTRFS_I(inode)->root;
4287 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4288 int ret;
4289
4290 if (BTRFS_I(inode)->dummy_inode)
4291 return;
39279cc3 4292
7a7eaa40 4293 trans = btrfs_join_transaction(root);
3612b495 4294 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
4295
4296 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4297 if (ret && ret == -ENOSPC) {
4298 /* whoops, lets try again with the full transaction */
4299 btrfs_end_transaction(trans, root);
4300 trans = btrfs_start_transaction(root, 1);
9aeead73 4301 if (IS_ERR(trans)) {
7a36ddec 4302 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4303 "dirty inode %llu error %ld\n",
4304 (unsigned long long)btrfs_ino(inode),
4305 PTR_ERR(trans));
9aeead73
CM
4306 return;
4307 }
8929ecfa 4308
94b60442
CM
4309 ret = btrfs_update_inode(trans, root, inode);
4310 if (ret) {
7a36ddec 4311 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4312 "dirty inode %llu error %d\n",
4313 (unsigned long long)btrfs_ino(inode),
4314 ret);
94b60442
CM
4315 }
4316 }
39279cc3 4317 btrfs_end_transaction(trans, root);
16cdcec7
MX
4318 if (BTRFS_I(inode)->delayed_node)
4319 btrfs_balance_delayed_items(root);
39279cc3
CM
4320}
4321
d352ac68
CM
4322/*
4323 * find the highest existing sequence number in a directory
4324 * and then set the in-memory index_cnt variable to reflect
4325 * free sequence numbers
4326 */
aec7477b
JB
4327static int btrfs_set_inode_index_count(struct inode *inode)
4328{
4329 struct btrfs_root *root = BTRFS_I(inode)->root;
4330 struct btrfs_key key, found_key;
4331 struct btrfs_path *path;
4332 struct extent_buffer *leaf;
4333 int ret;
4334
33345d01 4335 key.objectid = btrfs_ino(inode);
aec7477b
JB
4336 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4337 key.offset = (u64)-1;
4338
4339 path = btrfs_alloc_path();
4340 if (!path)
4341 return -ENOMEM;
4342
4343 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4344 if (ret < 0)
4345 goto out;
4346 /* FIXME: we should be able to handle this */
4347 if (ret == 0)
4348 goto out;
4349 ret = 0;
4350
4351 /*
4352 * MAGIC NUMBER EXPLANATION:
4353 * since we search a directory based on f_pos we have to start at 2
4354 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4355 * else has to start at 2
4356 */
4357 if (path->slots[0] == 0) {
4358 BTRFS_I(inode)->index_cnt = 2;
4359 goto out;
4360 }
4361
4362 path->slots[0]--;
4363
4364 leaf = path->nodes[0];
4365 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4366
33345d01 4367 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4368 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4369 BTRFS_I(inode)->index_cnt = 2;
4370 goto out;
4371 }
4372
4373 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4374out:
4375 btrfs_free_path(path);
4376 return ret;
4377}
4378
d352ac68
CM
4379/*
4380 * helper to find a free sequence number in a given directory. This current
4381 * code is very simple, later versions will do smarter things in the btree
4382 */
3de4586c 4383int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4384{
4385 int ret = 0;
4386
4387 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4388 ret = btrfs_inode_delayed_dir_index_count(dir);
4389 if (ret) {
4390 ret = btrfs_set_inode_index_count(dir);
4391 if (ret)
4392 return ret;
4393 }
aec7477b
JB
4394 }
4395
00e4e6b3 4396 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4397 BTRFS_I(dir)->index_cnt++;
4398
4399 return ret;
4400}
4401
39279cc3
CM
4402static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4403 struct btrfs_root *root,
aec7477b 4404 struct inode *dir,
9c58309d 4405 const char *name, int name_len,
d82a6f1d
JB
4406 u64 ref_objectid, u64 objectid, int mode,
4407 u64 *index)
39279cc3
CM
4408{
4409 struct inode *inode;
5f39d397 4410 struct btrfs_inode_item *inode_item;
39279cc3 4411 struct btrfs_key *location;
5f39d397 4412 struct btrfs_path *path;
9c58309d
CM
4413 struct btrfs_inode_ref *ref;
4414 struct btrfs_key key[2];
4415 u32 sizes[2];
4416 unsigned long ptr;
39279cc3
CM
4417 int ret;
4418 int owner;
4419
5f39d397 4420 path = btrfs_alloc_path();
d8926bb3
MF
4421 if (!path)
4422 return ERR_PTR(-ENOMEM);
5f39d397 4423
39279cc3 4424 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4425 if (!inode) {
4426 btrfs_free_path(path);
39279cc3 4427 return ERR_PTR(-ENOMEM);
8fb27640 4428 }
39279cc3 4429
581bb050
LZ
4430 /*
4431 * we have to initialize this early, so we can reclaim the inode
4432 * number if we fail afterwards in this function.
4433 */
4434 inode->i_ino = objectid;
4435
aec7477b 4436 if (dir) {
1abe9b8a 4437 trace_btrfs_inode_request(dir);
4438
3de4586c 4439 ret = btrfs_set_inode_index(dir, index);
09771430 4440 if (ret) {
8fb27640 4441 btrfs_free_path(path);
09771430 4442 iput(inode);
aec7477b 4443 return ERR_PTR(ret);
09771430 4444 }
aec7477b
JB
4445 }
4446 /*
4447 * index_cnt is ignored for everything but a dir,
4448 * btrfs_get_inode_index_count has an explanation for the magic
4449 * number
4450 */
4451 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4452 BTRFS_I(inode)->root = root;
e02119d5 4453 BTRFS_I(inode)->generation = trans->transid;
76195853 4454 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4455 btrfs_set_inode_space_info(root, inode);
b888db2b 4456
569254b0 4457 if (S_ISDIR(mode))
39279cc3
CM
4458 owner = 0;
4459 else
4460 owner = 1;
9c58309d
CM
4461
4462 key[0].objectid = objectid;
4463 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4464 key[0].offset = 0;
4465
4466 key[1].objectid = objectid;
4467 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4468 key[1].offset = ref_objectid;
4469
4470 sizes[0] = sizeof(struct btrfs_inode_item);
4471 sizes[1] = name_len + sizeof(*ref);
4472
b9473439 4473 path->leave_spinning = 1;
9c58309d
CM
4474 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4475 if (ret != 0)
5f39d397
CM
4476 goto fail;
4477
ecc11fab 4478 inode_init_owner(inode, dir, mode);
a76a3cd4 4479 inode_set_bytes(inode, 0);
39279cc3 4480 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4481 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4482 struct btrfs_inode_item);
e02119d5 4483 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4484
4485 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4486 struct btrfs_inode_ref);
4487 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4488 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4489 ptr = (unsigned long)(ref + 1);
4490 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4491
5f39d397
CM
4492 btrfs_mark_buffer_dirty(path->nodes[0]);
4493 btrfs_free_path(path);
4494
39279cc3
CM
4495 location = &BTRFS_I(inode)->location;
4496 location->objectid = objectid;
39279cc3
CM
4497 location->offset = 0;
4498 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4499
6cbff00f
CH
4500 btrfs_inherit_iflags(inode, dir);
4501
569254b0 4502 if (S_ISREG(mode)) {
94272164
CM
4503 if (btrfs_test_opt(root, NODATASUM))
4504 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4505 if (btrfs_test_opt(root, NODATACOW) ||
4506 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4507 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4508 }
4509
39279cc3 4510 insert_inode_hash(inode);
5d4f98a2 4511 inode_tree_add(inode);
1abe9b8a 4512
4513 trace_btrfs_inode_new(inode);
1973f0fa 4514 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4515
39279cc3 4516 return inode;
5f39d397 4517fail:
aec7477b
JB
4518 if (dir)
4519 BTRFS_I(dir)->index_cnt--;
5f39d397 4520 btrfs_free_path(path);
09771430 4521 iput(inode);
5f39d397 4522 return ERR_PTR(ret);
39279cc3
CM
4523}
4524
4525static inline u8 btrfs_inode_type(struct inode *inode)
4526{
4527 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4528}
4529
d352ac68
CM
4530/*
4531 * utility function to add 'inode' into 'parent_inode' with
4532 * a give name and a given sequence number.
4533 * if 'add_backref' is true, also insert a backref from the
4534 * inode to the parent directory.
4535 */
e02119d5
CM
4536int btrfs_add_link(struct btrfs_trans_handle *trans,
4537 struct inode *parent_inode, struct inode *inode,
4538 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4539{
4df27c4d 4540 int ret = 0;
39279cc3 4541 struct btrfs_key key;
e02119d5 4542 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4543 u64 ino = btrfs_ino(inode);
4544 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4545
33345d01 4546 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4547 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4548 } else {
33345d01 4549 key.objectid = ino;
4df27c4d
YZ
4550 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4551 key.offset = 0;
4552 }
4553
33345d01 4554 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4555 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4556 key.objectid, root->root_key.objectid,
33345d01 4557 parent_ino, index, name, name_len);
4df27c4d 4558 } else if (add_backref) {
33345d01
LZ
4559 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4560 parent_ino, index);
4df27c4d 4561 }
39279cc3 4562
39279cc3 4563 if (ret == 0) {
4df27c4d 4564 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4565 parent_inode, &key,
4df27c4d
YZ
4566 btrfs_inode_type(inode), index);
4567 BUG_ON(ret);
4568
dbe674a9 4569 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4570 name_len * 2);
79c44584 4571 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4572 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4573 }
4574 return ret;
4575}
4576
4577static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4578 struct inode *dir, struct dentry *dentry,
4579 struct inode *inode, int backref, u64 index)
39279cc3 4580{
a1b075d2
JB
4581 int err = btrfs_add_link(trans, dir, inode,
4582 dentry->d_name.name, dentry->d_name.len,
4583 backref, index);
39279cc3
CM
4584 if (!err) {
4585 d_instantiate(dentry, inode);
4586 return 0;
4587 }
4588 if (err > 0)
4589 err = -EEXIST;
4590 return err;
4591}
4592
618e21d5
JB
4593static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4594 int mode, dev_t rdev)
4595{
4596 struct btrfs_trans_handle *trans;
4597 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4598 struct inode *inode = NULL;
618e21d5
JB
4599 int err;
4600 int drop_inode = 0;
4601 u64 objectid;
1832a6d5 4602 unsigned long nr = 0;
00e4e6b3 4603 u64 index = 0;
618e21d5
JB
4604
4605 if (!new_valid_dev(rdev))
4606 return -EINVAL;
4607
9ed74f2d
JB
4608 /*
4609 * 2 for inode item and ref
4610 * 2 for dir items
4611 * 1 for xattr if selinux is on
4612 */
a22285a6
YZ
4613 trans = btrfs_start_transaction(root, 5);
4614 if (IS_ERR(trans))
4615 return PTR_ERR(trans);
1832a6d5 4616
581bb050
LZ
4617 err = btrfs_find_free_ino(root, &objectid);
4618 if (err)
4619 goto out_unlock;
4620
aec7477b 4621 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4622 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4623 mode, &index);
7cf96da3
TI
4624 if (IS_ERR(inode)) {
4625 err = PTR_ERR(inode);
618e21d5 4626 goto out_unlock;
7cf96da3 4627 }
618e21d5 4628
2a7dba39 4629 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4630 if (err) {
4631 drop_inode = 1;
4632 goto out_unlock;
4633 }
4634
a1b075d2 4635 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4636 if (err)
4637 drop_inode = 1;
4638 else {
4639 inode->i_op = &btrfs_special_inode_operations;
4640 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4641 btrfs_update_inode(trans, root, inode);
618e21d5 4642 }
618e21d5 4643out_unlock:
d3c2fdcf 4644 nr = trans->blocks_used;
89ce8a63 4645 btrfs_end_transaction_throttle(trans, root);
a22285a6 4646 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4647 if (drop_inode) {
4648 inode_dec_link_count(inode);
4649 iput(inode);
4650 }
618e21d5
JB
4651 return err;
4652}
4653
39279cc3
CM
4654static int btrfs_create(struct inode *dir, struct dentry *dentry,
4655 int mode, struct nameidata *nd)
4656{
4657 struct btrfs_trans_handle *trans;
4658 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4659 struct inode *inode = NULL;
39279cc3 4660 int drop_inode = 0;
a22285a6 4661 int err;
1832a6d5 4662 unsigned long nr = 0;
39279cc3 4663 u64 objectid;
00e4e6b3 4664 u64 index = 0;
39279cc3 4665
9ed74f2d
JB
4666 /*
4667 * 2 for inode item and ref
4668 * 2 for dir items
4669 * 1 for xattr if selinux is on
4670 */
a22285a6
YZ
4671 trans = btrfs_start_transaction(root, 5);
4672 if (IS_ERR(trans))
4673 return PTR_ERR(trans);
9ed74f2d 4674
581bb050
LZ
4675 err = btrfs_find_free_ino(root, &objectid);
4676 if (err)
4677 goto out_unlock;
4678
aec7477b 4679 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4680 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4681 mode, &index);
7cf96da3
TI
4682 if (IS_ERR(inode)) {
4683 err = PTR_ERR(inode);
39279cc3 4684 goto out_unlock;
7cf96da3 4685 }
39279cc3 4686
2a7dba39 4687 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4688 if (err) {
4689 drop_inode = 1;
4690 goto out_unlock;
4691 }
4692
a1b075d2 4693 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4694 if (err)
4695 drop_inode = 1;
4696 else {
4697 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4698 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4699 inode->i_fop = &btrfs_file_operations;
4700 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4701 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4702 }
39279cc3 4703out_unlock:
d3c2fdcf 4704 nr = trans->blocks_used;
ab78c84d 4705 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4706 if (drop_inode) {
4707 inode_dec_link_count(inode);
4708 iput(inode);
4709 }
d3c2fdcf 4710 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4711 return err;
4712}
4713
4714static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4715 struct dentry *dentry)
4716{
4717 struct btrfs_trans_handle *trans;
4718 struct btrfs_root *root = BTRFS_I(dir)->root;
4719 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4720 u64 index;
1832a6d5 4721 unsigned long nr = 0;
39279cc3
CM
4722 int err;
4723 int drop_inode = 0;
4724
4a8be425
TH
4725 /* do not allow sys_link's with other subvols of the same device */
4726 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4727 return -EXDEV;
4a8be425 4728
c055e99e
AV
4729 if (inode->i_nlink == ~0U)
4730 return -EMLINK;
4a8be425 4731
3de4586c 4732 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4733 if (err)
4734 goto fail;
4735
a22285a6 4736 /*
7e6b6465 4737 * 2 items for inode and inode ref
a22285a6 4738 * 2 items for dir items
7e6b6465 4739 * 1 item for parent inode
a22285a6 4740 */
7e6b6465 4741 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4742 if (IS_ERR(trans)) {
4743 err = PTR_ERR(trans);
4744 goto fail;
4745 }
5f39d397 4746
3153495d
MX
4747 btrfs_inc_nlink(inode);
4748 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4749 ihold(inode);
aec7477b 4750
a1b075d2 4751 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4752
a5719521 4753 if (err) {
54aa1f4d 4754 drop_inode = 1;
a5719521 4755 } else {
10d9f309 4756 struct dentry *parent = dentry->d_parent;
a5719521
YZ
4757 err = btrfs_update_inode(trans, root, inode);
4758 BUG_ON(err);
6a912213 4759 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 4760 }
39279cc3 4761
d3c2fdcf 4762 nr = trans->blocks_used;
ab78c84d 4763 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4764fail:
39279cc3
CM
4765 if (drop_inode) {
4766 inode_dec_link_count(inode);
4767 iput(inode);
4768 }
d3c2fdcf 4769 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4770 return err;
4771}
4772
39279cc3
CM
4773static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4774{
b9d86667 4775 struct inode *inode = NULL;
39279cc3
CM
4776 struct btrfs_trans_handle *trans;
4777 struct btrfs_root *root = BTRFS_I(dir)->root;
4778 int err = 0;
4779 int drop_on_err = 0;
b9d86667 4780 u64 objectid = 0;
00e4e6b3 4781 u64 index = 0;
d3c2fdcf 4782 unsigned long nr = 1;
39279cc3 4783
9ed74f2d
JB
4784 /*
4785 * 2 items for inode and ref
4786 * 2 items for dir items
4787 * 1 for xattr if selinux is on
4788 */
a22285a6
YZ
4789 trans = btrfs_start_transaction(root, 5);
4790 if (IS_ERR(trans))
4791 return PTR_ERR(trans);
39279cc3 4792
581bb050
LZ
4793 err = btrfs_find_free_ino(root, &objectid);
4794 if (err)
4795 goto out_fail;
4796
aec7477b 4797 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4798 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4799 S_IFDIR | mode, &index);
39279cc3
CM
4800 if (IS_ERR(inode)) {
4801 err = PTR_ERR(inode);
4802 goto out_fail;
4803 }
5f39d397 4804
39279cc3 4805 drop_on_err = 1;
33268eaf 4806
2a7dba39 4807 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4808 if (err)
4809 goto out_fail;
4810
39279cc3
CM
4811 inode->i_op = &btrfs_dir_inode_operations;
4812 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4813
dbe674a9 4814 btrfs_i_size_write(inode, 0);
39279cc3
CM
4815 err = btrfs_update_inode(trans, root, inode);
4816 if (err)
4817 goto out_fail;
5f39d397 4818
a1b075d2
JB
4819 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4820 dentry->d_name.len, 0, index);
39279cc3
CM
4821 if (err)
4822 goto out_fail;
5f39d397 4823
39279cc3
CM
4824 d_instantiate(dentry, inode);
4825 drop_on_err = 0;
39279cc3
CM
4826
4827out_fail:
d3c2fdcf 4828 nr = trans->blocks_used;
ab78c84d 4829 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4830 if (drop_on_err)
4831 iput(inode);
d3c2fdcf 4832 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4833 return err;
4834}
4835
d352ac68
CM
4836/* helper for btfs_get_extent. Given an existing extent in the tree,
4837 * and an extent that you want to insert, deal with overlap and insert
4838 * the new extent into the tree.
4839 */
3b951516
CM
4840static int merge_extent_mapping(struct extent_map_tree *em_tree,
4841 struct extent_map *existing,
e6dcd2dc
CM
4842 struct extent_map *em,
4843 u64 map_start, u64 map_len)
3b951516
CM
4844{
4845 u64 start_diff;
3b951516 4846
e6dcd2dc
CM
4847 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4848 start_diff = map_start - em->start;
4849 em->start = map_start;
4850 em->len = map_len;
c8b97818
CM
4851 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4852 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4853 em->block_start += start_diff;
c8b97818
CM
4854 em->block_len -= start_diff;
4855 }
e6dcd2dc 4856 return add_extent_mapping(em_tree, em);
3b951516
CM
4857}
4858
c8b97818
CM
4859static noinline int uncompress_inline(struct btrfs_path *path,
4860 struct inode *inode, struct page *page,
4861 size_t pg_offset, u64 extent_offset,
4862 struct btrfs_file_extent_item *item)
4863{
4864 int ret;
4865 struct extent_buffer *leaf = path->nodes[0];
4866 char *tmp;
4867 size_t max_size;
4868 unsigned long inline_size;
4869 unsigned long ptr;
261507a0 4870 int compress_type;
c8b97818
CM
4871
4872 WARN_ON(pg_offset != 0);
261507a0 4873 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4874 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4875 inline_size = btrfs_file_extent_inline_item_len(leaf,
4876 btrfs_item_nr(leaf, path->slots[0]));
4877 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4878 if (!tmp)
4879 return -ENOMEM;
c8b97818
CM
4880 ptr = btrfs_file_extent_inline_start(item);
4881
4882 read_extent_buffer(leaf, tmp, ptr, inline_size);
4883
5b050f04 4884 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4885 ret = btrfs_decompress(compress_type, tmp, page,
4886 extent_offset, inline_size, max_size);
c8b97818
CM
4887 if (ret) {
4888 char *kaddr = kmap_atomic(page, KM_USER0);
4889 unsigned long copy_size = min_t(u64,
4890 PAGE_CACHE_SIZE - pg_offset,
4891 max_size - extent_offset);
4892 memset(kaddr + pg_offset, 0, copy_size);
4893 kunmap_atomic(kaddr, KM_USER0);
4894 }
4895 kfree(tmp);
4896 return 0;
4897}
4898
d352ac68
CM
4899/*
4900 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4901 * the ugly parts come from merging extents from the disk with the in-ram
4902 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4903 * where the in-ram extents might be locked pending data=ordered completion.
4904 *
4905 * This also copies inline extents directly into the page.
4906 */
d397712b 4907
a52d9a80 4908struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4909 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4910 int create)
4911{
4912 int ret;
4913 int err = 0;
db94535d 4914 u64 bytenr;
a52d9a80
CM
4915 u64 extent_start = 0;
4916 u64 extent_end = 0;
33345d01 4917 u64 objectid = btrfs_ino(inode);
a52d9a80 4918 u32 found_type;
f421950f 4919 struct btrfs_path *path = NULL;
a52d9a80
CM
4920 struct btrfs_root *root = BTRFS_I(inode)->root;
4921 struct btrfs_file_extent_item *item;
5f39d397
CM
4922 struct extent_buffer *leaf;
4923 struct btrfs_key found_key;
a52d9a80
CM
4924 struct extent_map *em = NULL;
4925 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4926 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4927 struct btrfs_trans_handle *trans = NULL;
261507a0 4928 int compress_type;
a52d9a80 4929
a52d9a80 4930again:
890871be 4931 read_lock(&em_tree->lock);
d1310b2e 4932 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4933 if (em)
4934 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4935 read_unlock(&em_tree->lock);
d1310b2e 4936
a52d9a80 4937 if (em) {
e1c4b745
CM
4938 if (em->start > start || em->start + em->len <= start)
4939 free_extent_map(em);
4940 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4941 free_extent_map(em);
4942 else
4943 goto out;
a52d9a80 4944 }
172ddd60 4945 em = alloc_extent_map();
a52d9a80 4946 if (!em) {
d1310b2e
CM
4947 err = -ENOMEM;
4948 goto out;
a52d9a80 4949 }
e6dcd2dc 4950 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4951 em->start = EXTENT_MAP_HOLE;
445a6944 4952 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4953 em->len = (u64)-1;
c8b97818 4954 em->block_len = (u64)-1;
f421950f
CM
4955
4956 if (!path) {
4957 path = btrfs_alloc_path();
026fd317
JB
4958 if (!path) {
4959 err = -ENOMEM;
4960 goto out;
4961 }
4962 /*
4963 * Chances are we'll be called again, so go ahead and do
4964 * readahead
4965 */
4966 path->reada = 1;
f421950f
CM
4967 }
4968
179e29e4
CM
4969 ret = btrfs_lookup_file_extent(trans, root, path,
4970 objectid, start, trans != NULL);
a52d9a80
CM
4971 if (ret < 0) {
4972 err = ret;
4973 goto out;
4974 }
4975
4976 if (ret != 0) {
4977 if (path->slots[0] == 0)
4978 goto not_found;
4979 path->slots[0]--;
4980 }
4981
5f39d397
CM
4982 leaf = path->nodes[0];
4983 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4984 struct btrfs_file_extent_item);
a52d9a80 4985 /* are we inside the extent that was found? */
5f39d397
CM
4986 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4987 found_type = btrfs_key_type(&found_key);
4988 if (found_key.objectid != objectid ||
a52d9a80
CM
4989 found_type != BTRFS_EXTENT_DATA_KEY) {
4990 goto not_found;
4991 }
4992
5f39d397
CM
4993 found_type = btrfs_file_extent_type(leaf, item);
4994 extent_start = found_key.offset;
261507a0 4995 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4996 if (found_type == BTRFS_FILE_EXTENT_REG ||
4997 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4998 extent_end = extent_start +
db94535d 4999 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5000 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5001 size_t size;
5002 size = btrfs_file_extent_inline_len(leaf, item);
5003 extent_end = (extent_start + size + root->sectorsize - 1) &
5004 ~((u64)root->sectorsize - 1);
5005 }
5006
5007 if (start >= extent_end) {
5008 path->slots[0]++;
5009 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5010 ret = btrfs_next_leaf(root, path);
5011 if (ret < 0) {
5012 err = ret;
5013 goto out;
a52d9a80 5014 }
9036c102
YZ
5015 if (ret > 0)
5016 goto not_found;
5017 leaf = path->nodes[0];
a52d9a80 5018 }
9036c102
YZ
5019 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5020 if (found_key.objectid != objectid ||
5021 found_key.type != BTRFS_EXTENT_DATA_KEY)
5022 goto not_found;
5023 if (start + len <= found_key.offset)
5024 goto not_found;
5025 em->start = start;
5026 em->len = found_key.offset - start;
5027 goto not_found_em;
5028 }
5029
d899e052
YZ
5030 if (found_type == BTRFS_FILE_EXTENT_REG ||
5031 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5032 em->start = extent_start;
5033 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5034 em->orig_start = extent_start -
5035 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5036 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5037 if (bytenr == 0) {
5f39d397 5038 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5039 goto insert;
5040 }
261507a0 5041 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5042 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5043 em->compress_type = compress_type;
c8b97818
CM
5044 em->block_start = bytenr;
5045 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5046 item);
5047 } else {
5048 bytenr += btrfs_file_extent_offset(leaf, item);
5049 em->block_start = bytenr;
5050 em->block_len = em->len;
d899e052
YZ
5051 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5052 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5053 }
a52d9a80
CM
5054 goto insert;
5055 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5056 unsigned long ptr;
a52d9a80 5057 char *map;
3326d1b0
CM
5058 size_t size;
5059 size_t extent_offset;
5060 size_t copy_size;
a52d9a80 5061
689f9346 5062 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5063 if (!page || create) {
689f9346 5064 em->start = extent_start;
9036c102 5065 em->len = extent_end - extent_start;
689f9346
Y
5066 goto out;
5067 }
5f39d397 5068
9036c102
YZ
5069 size = btrfs_file_extent_inline_len(leaf, item);
5070 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5071 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5072 size - extent_offset);
3326d1b0 5073 em->start = extent_start + extent_offset;
70dec807
CM
5074 em->len = (copy_size + root->sectorsize - 1) &
5075 ~((u64)root->sectorsize - 1);
ff5b7ee3 5076 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5077 if (compress_type) {
c8b97818 5078 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5079 em->compress_type = compress_type;
5080 }
689f9346 5081 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5082 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5083 if (btrfs_file_extent_compression(leaf, item) !=
5084 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5085 ret = uncompress_inline(path, inode, page,
5086 pg_offset,
5087 extent_offset, item);
5088 BUG_ON(ret);
5089 } else {
5090 map = kmap(page);
5091 read_extent_buffer(leaf, map + pg_offset, ptr,
5092 copy_size);
93c82d57
CM
5093 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5094 memset(map + pg_offset + copy_size, 0,
5095 PAGE_CACHE_SIZE - pg_offset -
5096 copy_size);
5097 }
c8b97818
CM
5098 kunmap(page);
5099 }
179e29e4
CM
5100 flush_dcache_page(page);
5101 } else if (create && PageUptodate(page)) {
0ca1f7ce 5102 WARN_ON(1);
179e29e4
CM
5103 if (!trans) {
5104 kunmap(page);
5105 free_extent_map(em);
5106 em = NULL;
ff5714cc 5107
b3b4aa74 5108 btrfs_release_path(path);
7a7eaa40 5109 trans = btrfs_join_transaction(root);
ff5714cc 5110
3612b495
TI
5111 if (IS_ERR(trans))
5112 return ERR_CAST(trans);
179e29e4
CM
5113 goto again;
5114 }
c8b97818 5115 map = kmap(page);
70dec807 5116 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5117 copy_size);
c8b97818 5118 kunmap(page);
179e29e4 5119 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5120 }
d1310b2e 5121 set_extent_uptodate(io_tree, em->start,
507903b8 5122 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5123 goto insert;
5124 } else {
d397712b 5125 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5126 WARN_ON(1);
5127 }
5128not_found:
5129 em->start = start;
d1310b2e 5130 em->len = len;
a52d9a80 5131not_found_em:
5f39d397 5132 em->block_start = EXTENT_MAP_HOLE;
9036c102 5133 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5134insert:
b3b4aa74 5135 btrfs_release_path(path);
d1310b2e 5136 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5137 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5138 "[%llu %llu]\n", (unsigned long long)em->start,
5139 (unsigned long long)em->len,
5140 (unsigned long long)start,
5141 (unsigned long long)len);
a52d9a80
CM
5142 err = -EIO;
5143 goto out;
5144 }
d1310b2e
CM
5145
5146 err = 0;
890871be 5147 write_lock(&em_tree->lock);
a52d9a80 5148 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5149 /* it is possible that someone inserted the extent into the tree
5150 * while we had the lock dropped. It is also possible that
5151 * an overlapping map exists in the tree
5152 */
a52d9a80 5153 if (ret == -EEXIST) {
3b951516 5154 struct extent_map *existing;
e6dcd2dc
CM
5155
5156 ret = 0;
5157
3b951516 5158 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5159 if (existing && (existing->start > start ||
5160 existing->start + existing->len <= start)) {
5161 free_extent_map(existing);
5162 existing = NULL;
5163 }
3b951516
CM
5164 if (!existing) {
5165 existing = lookup_extent_mapping(em_tree, em->start,
5166 em->len);
5167 if (existing) {
5168 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5169 em, start,
5170 root->sectorsize);
3b951516
CM
5171 free_extent_map(existing);
5172 if (err) {
5173 free_extent_map(em);
5174 em = NULL;
5175 }
5176 } else {
5177 err = -EIO;
3b951516
CM
5178 free_extent_map(em);
5179 em = NULL;
5180 }
5181 } else {
5182 free_extent_map(em);
5183 em = existing;
e6dcd2dc 5184 err = 0;
a52d9a80 5185 }
a52d9a80 5186 }
890871be 5187 write_unlock(&em_tree->lock);
a52d9a80 5188out:
1abe9b8a 5189
5190 trace_btrfs_get_extent(root, em);
5191
f421950f
CM
5192 if (path)
5193 btrfs_free_path(path);
a52d9a80
CM
5194 if (trans) {
5195 ret = btrfs_end_transaction(trans, root);
d397712b 5196 if (!err)
a52d9a80
CM
5197 err = ret;
5198 }
a52d9a80
CM
5199 if (err) {
5200 free_extent_map(em);
a52d9a80
CM
5201 return ERR_PTR(err);
5202 }
5203 return em;
5204}
5205
ec29ed5b
CM
5206struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5207 size_t pg_offset, u64 start, u64 len,
5208 int create)
5209{
5210 struct extent_map *em;
5211 struct extent_map *hole_em = NULL;
5212 u64 range_start = start;
5213 u64 end;
5214 u64 found;
5215 u64 found_end;
5216 int err = 0;
5217
5218 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5219 if (IS_ERR(em))
5220 return em;
5221 if (em) {
5222 /*
5223 * if our em maps to a hole, there might
5224 * actually be delalloc bytes behind it
5225 */
5226 if (em->block_start != EXTENT_MAP_HOLE)
5227 return em;
5228 else
5229 hole_em = em;
5230 }
5231
5232 /* check to see if we've wrapped (len == -1 or similar) */
5233 end = start + len;
5234 if (end < start)
5235 end = (u64)-1;
5236 else
5237 end -= 1;
5238
5239 em = NULL;
5240
5241 /* ok, we didn't find anything, lets look for delalloc */
5242 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5243 end, len, EXTENT_DELALLOC, 1);
5244 found_end = range_start + found;
5245 if (found_end < range_start)
5246 found_end = (u64)-1;
5247
5248 /*
5249 * we didn't find anything useful, return
5250 * the original results from get_extent()
5251 */
5252 if (range_start > end || found_end <= start) {
5253 em = hole_em;
5254 hole_em = NULL;
5255 goto out;
5256 }
5257
5258 /* adjust the range_start to make sure it doesn't
5259 * go backwards from the start they passed in
5260 */
5261 range_start = max(start,range_start);
5262 found = found_end - range_start;
5263
5264 if (found > 0) {
5265 u64 hole_start = start;
5266 u64 hole_len = len;
5267
172ddd60 5268 em = alloc_extent_map();
ec29ed5b
CM
5269 if (!em) {
5270 err = -ENOMEM;
5271 goto out;
5272 }
5273 /*
5274 * when btrfs_get_extent can't find anything it
5275 * returns one huge hole
5276 *
5277 * make sure what it found really fits our range, and
5278 * adjust to make sure it is based on the start from
5279 * the caller
5280 */
5281 if (hole_em) {
5282 u64 calc_end = extent_map_end(hole_em);
5283
5284 if (calc_end <= start || (hole_em->start > end)) {
5285 free_extent_map(hole_em);
5286 hole_em = NULL;
5287 } else {
5288 hole_start = max(hole_em->start, start);
5289 hole_len = calc_end - hole_start;
5290 }
5291 }
5292 em->bdev = NULL;
5293 if (hole_em && range_start > hole_start) {
5294 /* our hole starts before our delalloc, so we
5295 * have to return just the parts of the hole
5296 * that go until the delalloc starts
5297 */
5298 em->len = min(hole_len,
5299 range_start - hole_start);
5300 em->start = hole_start;
5301 em->orig_start = hole_start;
5302 /*
5303 * don't adjust block start at all,
5304 * it is fixed at EXTENT_MAP_HOLE
5305 */
5306 em->block_start = hole_em->block_start;
5307 em->block_len = hole_len;
5308 } else {
5309 em->start = range_start;
5310 em->len = found;
5311 em->orig_start = range_start;
5312 em->block_start = EXTENT_MAP_DELALLOC;
5313 em->block_len = found;
5314 }
5315 } else if (hole_em) {
5316 return hole_em;
5317 }
5318out:
5319
5320 free_extent_map(hole_em);
5321 if (err) {
5322 free_extent_map(em);
5323 return ERR_PTR(err);
5324 }
5325 return em;
5326}
5327
4b46fce2 5328static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5329 struct extent_map *em,
4b46fce2
JB
5330 u64 start, u64 len)
5331{
5332 struct btrfs_root *root = BTRFS_I(inode)->root;
5333 struct btrfs_trans_handle *trans;
4b46fce2
JB
5334 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5335 struct btrfs_key ins;
5336 u64 alloc_hint;
5337 int ret;
16d299ac 5338 bool insert = false;
4b46fce2 5339
16d299ac
JB
5340 /*
5341 * Ok if the extent map we looked up is a hole and is for the exact
5342 * range we want, there is no reason to allocate a new one, however if
5343 * it is not right then we need to free this one and drop the cache for
5344 * our range.
5345 */
5346 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5347 em->len != len) {
5348 free_extent_map(em);
5349 em = NULL;
5350 insert = true;
5351 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5352 }
4b46fce2 5353
7a7eaa40 5354 trans = btrfs_join_transaction(root);
3612b495
TI
5355 if (IS_ERR(trans))
5356 return ERR_CAST(trans);
4b46fce2 5357
4cb5300b
CM
5358 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5359 btrfs_add_inode_defrag(trans, inode);
5360
4b46fce2
JB
5361 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5362
5363 alloc_hint = get_extent_allocation_hint(inode, start, len);
5364 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5365 alloc_hint, (u64)-1, &ins, 1);
5366 if (ret) {
5367 em = ERR_PTR(ret);
5368 goto out;
5369 }
5370
4b46fce2 5371 if (!em) {
172ddd60 5372 em = alloc_extent_map();
16d299ac
JB
5373 if (!em) {
5374 em = ERR_PTR(-ENOMEM);
5375 goto out;
5376 }
4b46fce2
JB
5377 }
5378
5379 em->start = start;
5380 em->orig_start = em->start;
5381 em->len = ins.offset;
5382
5383 em->block_start = ins.objectid;
5384 em->block_len = ins.offset;
5385 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5386
5387 /*
5388 * We need to do this because if we're using the original em we searched
5389 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5390 */
5391 em->flags = 0;
4b46fce2
JB
5392 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5393
16d299ac 5394 while (insert) {
4b46fce2
JB
5395 write_lock(&em_tree->lock);
5396 ret = add_extent_mapping(em_tree, em);
5397 write_unlock(&em_tree->lock);
5398 if (ret != -EEXIST)
5399 break;
5400 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5401 }
5402
5403 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5404 ins.offset, ins.offset, 0);
5405 if (ret) {
5406 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5407 em = ERR_PTR(ret);
5408 }
5409out:
5410 btrfs_end_transaction(trans, root);
5411 return em;
5412}
5413
46bfbb5c
CM
5414/*
5415 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5416 * block must be cow'd
5417 */
5418static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5419 struct inode *inode, u64 offset, u64 len)
5420{
5421 struct btrfs_path *path;
5422 int ret;
5423 struct extent_buffer *leaf;
5424 struct btrfs_root *root = BTRFS_I(inode)->root;
5425 struct btrfs_file_extent_item *fi;
5426 struct btrfs_key key;
5427 u64 disk_bytenr;
5428 u64 backref_offset;
5429 u64 extent_end;
5430 u64 num_bytes;
5431 int slot;
5432 int found_type;
5433
5434 path = btrfs_alloc_path();
5435 if (!path)
5436 return -ENOMEM;
5437
33345d01 5438 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5439 offset, 0);
5440 if (ret < 0)
5441 goto out;
5442
5443 slot = path->slots[0];
5444 if (ret == 1) {
5445 if (slot == 0) {
5446 /* can't find the item, must cow */
5447 ret = 0;
5448 goto out;
5449 }
5450 slot--;
5451 }
5452 ret = 0;
5453 leaf = path->nodes[0];
5454 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5455 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5456 key.type != BTRFS_EXTENT_DATA_KEY) {
5457 /* not our file or wrong item type, must cow */
5458 goto out;
5459 }
5460
5461 if (key.offset > offset) {
5462 /* Wrong offset, must cow */
5463 goto out;
5464 }
5465
5466 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5467 found_type = btrfs_file_extent_type(leaf, fi);
5468 if (found_type != BTRFS_FILE_EXTENT_REG &&
5469 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5470 /* not a regular extent, must cow */
5471 goto out;
5472 }
5473 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5474 backref_offset = btrfs_file_extent_offset(leaf, fi);
5475
5476 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5477 if (extent_end < offset + len) {
5478 /* extent doesn't include our full range, must cow */
5479 goto out;
5480 }
5481
5482 if (btrfs_extent_readonly(root, disk_bytenr))
5483 goto out;
5484
5485 /*
5486 * look for other files referencing this extent, if we
5487 * find any we must cow
5488 */
33345d01 5489 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5490 key.offset - backref_offset, disk_bytenr))
5491 goto out;
5492
5493 /*
5494 * adjust disk_bytenr and num_bytes to cover just the bytes
5495 * in this extent we are about to write. If there
5496 * are any csums in that range we have to cow in order
5497 * to keep the csums correct
5498 */
5499 disk_bytenr += backref_offset;
5500 disk_bytenr += offset - key.offset;
5501 num_bytes = min(offset + len, extent_end) - offset;
5502 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5503 goto out;
5504 /*
5505 * all of the above have passed, it is safe to overwrite this extent
5506 * without cow
5507 */
5508 ret = 1;
5509out:
5510 btrfs_free_path(path);
5511 return ret;
5512}
5513
4b46fce2
JB
5514static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5515 struct buffer_head *bh_result, int create)
5516{
5517 struct extent_map *em;
5518 struct btrfs_root *root = BTRFS_I(inode)->root;
5519 u64 start = iblock << inode->i_blkbits;
5520 u64 len = bh_result->b_size;
46bfbb5c 5521 struct btrfs_trans_handle *trans;
4b46fce2
JB
5522
5523 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5524 if (IS_ERR(em))
5525 return PTR_ERR(em);
5526
5527 /*
5528 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5529 * io. INLINE is special, and we could probably kludge it in here, but
5530 * it's still buffered so for safety lets just fall back to the generic
5531 * buffered path.
5532 *
5533 * For COMPRESSED we _have_ to read the entire extent in so we can
5534 * decompress it, so there will be buffering required no matter what we
5535 * do, so go ahead and fallback to buffered.
5536 *
5537 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5538 * to buffered IO. Don't blame me, this is the price we pay for using
5539 * the generic code.
5540 */
5541 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5542 em->block_start == EXTENT_MAP_INLINE) {
5543 free_extent_map(em);
5544 return -ENOTBLK;
5545 }
5546
5547 /* Just a good old fashioned hole, return */
5548 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5549 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5550 free_extent_map(em);
5551 /* DIO will do one hole at a time, so just unlock a sector */
5552 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5553 start + root->sectorsize - 1, GFP_NOFS);
5554 return 0;
5555 }
5556
5557 /*
5558 * We don't allocate a new extent in the following cases
5559 *
5560 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5561 * existing extent.
5562 * 2) The extent is marked as PREALLOC. We're good to go here and can
5563 * just use the extent.
5564 *
5565 */
46bfbb5c
CM
5566 if (!create) {
5567 len = em->len - (start - em->start);
4b46fce2 5568 goto map;
46bfbb5c 5569 }
4b46fce2
JB
5570
5571 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5572 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5573 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5574 int type;
5575 int ret;
46bfbb5c 5576 u64 block_start;
4b46fce2
JB
5577
5578 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5579 type = BTRFS_ORDERED_PREALLOC;
5580 else
5581 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5582 len = min(len, em->len - (start - em->start));
4b46fce2 5583 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5584
5585 /*
5586 * we're not going to log anything, but we do need
5587 * to make sure the current transaction stays open
5588 * while we look for nocow cross refs
5589 */
7a7eaa40 5590 trans = btrfs_join_transaction(root);
3612b495 5591 if (IS_ERR(trans))
46bfbb5c
CM
5592 goto must_cow;
5593
5594 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5595 ret = btrfs_add_ordered_extent_dio(inode, start,
5596 block_start, len, len, type);
5597 btrfs_end_transaction(trans, root);
5598 if (ret) {
5599 free_extent_map(em);
5600 return ret;
5601 }
5602 goto unlock;
4b46fce2 5603 }
46bfbb5c 5604 btrfs_end_transaction(trans, root);
4b46fce2 5605 }
46bfbb5c
CM
5606must_cow:
5607 /*
5608 * this will cow the extent, reset the len in case we changed
5609 * it above
5610 */
5611 len = bh_result->b_size;
16d299ac 5612 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5613 if (IS_ERR(em))
5614 return PTR_ERR(em);
5615 len = min(len, em->len - (start - em->start));
5616unlock:
4845e44f
CM
5617 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5618 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5619 0, NULL, GFP_NOFS);
4b46fce2
JB
5620map:
5621 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5622 inode->i_blkbits;
46bfbb5c 5623 bh_result->b_size = len;
4b46fce2
JB
5624 bh_result->b_bdev = em->bdev;
5625 set_buffer_mapped(bh_result);
5626 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5627 set_buffer_new(bh_result);
5628
5629 free_extent_map(em);
5630
5631 return 0;
5632}
5633
5634struct btrfs_dio_private {
5635 struct inode *inode;
5636 u64 logical_offset;
5637 u64 disk_bytenr;
5638 u64 bytes;
5639 u32 *csums;
5640 void *private;
e65e1535
MX
5641
5642 /* number of bios pending for this dio */
5643 atomic_t pending_bios;
5644
5645 /* IO errors */
5646 int errors;
5647
5648 struct bio *orig_bio;
4b46fce2
JB
5649};
5650
5651static void btrfs_endio_direct_read(struct bio *bio, int err)
5652{
e65e1535 5653 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5654 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5655 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5656 struct inode *inode = dip->inode;
5657 struct btrfs_root *root = BTRFS_I(inode)->root;
5658 u64 start;
5659 u32 *private = dip->csums;
5660
5661 start = dip->logical_offset;
5662 do {
5663 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5664 struct page *page = bvec->bv_page;
5665 char *kaddr;
5666 u32 csum = ~(u32)0;
5667 unsigned long flags;
5668
5669 local_irq_save(flags);
5670 kaddr = kmap_atomic(page, KM_IRQ0);
5671 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5672 csum, bvec->bv_len);
5673 btrfs_csum_final(csum, (char *)&csum);
5674 kunmap_atomic(kaddr, KM_IRQ0);
5675 local_irq_restore(flags);
5676
5677 flush_dcache_page(bvec->bv_page);
5678 if (csum != *private) {
33345d01 5679 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5680 " %llu csum %u private %u\n",
33345d01
LZ
5681 (unsigned long long)btrfs_ino(inode),
5682 (unsigned long long)start,
4b46fce2
JB
5683 csum, *private);
5684 err = -EIO;
5685 }
5686 }
5687
5688 start += bvec->bv_len;
5689 private++;
5690 bvec++;
5691 } while (bvec <= bvec_end);
5692
5693 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5694 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5695 bio->bi_private = dip->private;
5696
5697 kfree(dip->csums);
5698 kfree(dip);
c0da7aa1
JB
5699
5700 /* If we had a csum failure make sure to clear the uptodate flag */
5701 if (err)
5702 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5703 dio_end_io(bio, err);
5704}
5705
5706static void btrfs_endio_direct_write(struct bio *bio, int err)
5707{
5708 struct btrfs_dio_private *dip = bio->bi_private;
5709 struct inode *inode = dip->inode;
5710 struct btrfs_root *root = BTRFS_I(inode)->root;
5711 struct btrfs_trans_handle *trans;
5712 struct btrfs_ordered_extent *ordered = NULL;
5713 struct extent_state *cached_state = NULL;
163cf09c
CM
5714 u64 ordered_offset = dip->logical_offset;
5715 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5716 int ret;
5717
5718 if (err)
5719 goto out_done;
163cf09c
CM
5720again:
5721 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5722 &ordered_offset,
5723 ordered_bytes);
4b46fce2 5724 if (!ret)
163cf09c 5725 goto out_test;
4b46fce2
JB
5726
5727 BUG_ON(!ordered);
5728
7a7eaa40 5729 trans = btrfs_join_transaction(root);
3612b495 5730 if (IS_ERR(trans)) {
4b46fce2
JB
5731 err = -ENOMEM;
5732 goto out;
5733 }
5734 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5735
5736 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5737 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5738 if (!ret)
5739 ret = btrfs_update_inode(trans, root, inode);
5740 err = ret;
5741 goto out;
5742 }
5743
5744 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5745 ordered->file_offset + ordered->len - 1, 0,
5746 &cached_state, GFP_NOFS);
5747
5748 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5749 ret = btrfs_mark_extent_written(trans, inode,
5750 ordered->file_offset,
5751 ordered->file_offset +
5752 ordered->len);
5753 if (ret) {
5754 err = ret;
5755 goto out_unlock;
5756 }
5757 } else {
5758 ret = insert_reserved_file_extent(trans, inode,
5759 ordered->file_offset,
5760 ordered->start,
5761 ordered->disk_len,
5762 ordered->len,
5763 ordered->len,
5764 0, 0, 0,
5765 BTRFS_FILE_EXTENT_REG);
5766 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5767 ordered->file_offset, ordered->len);
5768 if (ret) {
5769 err = ret;
5770 WARN_ON(1);
5771 goto out_unlock;
5772 }
5773 }
5774
5775 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1 5776 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
a39f7521 5777 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1ef30be1
JB
5778 btrfs_update_inode(trans, root, inode);
5779 ret = 0;
4b46fce2
JB
5780out_unlock:
5781 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5782 ordered->file_offset + ordered->len - 1,
5783 &cached_state, GFP_NOFS);
5784out:
5785 btrfs_delalloc_release_metadata(inode, ordered->len);
5786 btrfs_end_transaction(trans, root);
163cf09c 5787 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5788 btrfs_put_ordered_extent(ordered);
5789 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5790
5791out_test:
5792 /*
5793 * our bio might span multiple ordered extents. If we haven't
5794 * completed the accounting for the whole dio, go back and try again
5795 */
5796 if (ordered_offset < dip->logical_offset + dip->bytes) {
5797 ordered_bytes = dip->logical_offset + dip->bytes -
5798 ordered_offset;
5799 goto again;
5800 }
4b46fce2
JB
5801out_done:
5802 bio->bi_private = dip->private;
5803
5804 kfree(dip->csums);
5805 kfree(dip);
c0da7aa1
JB
5806
5807 /* If we had an error make sure to clear the uptodate flag */
5808 if (err)
5809 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5810 dio_end_io(bio, err);
5811}
5812
eaf25d93
CM
5813static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5814 struct bio *bio, int mirror_num,
5815 unsigned long bio_flags, u64 offset)
5816{
5817 int ret;
5818 struct btrfs_root *root = BTRFS_I(inode)->root;
5819 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5820 BUG_ON(ret);
5821 return 0;
5822}
5823
e65e1535
MX
5824static void btrfs_end_dio_bio(struct bio *bio, int err)
5825{
5826 struct btrfs_dio_private *dip = bio->bi_private;
5827
5828 if (err) {
33345d01 5829 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5830 "sector %#Lx len %u err no %d\n",
33345d01 5831 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5832 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5833 dip->errors = 1;
5834
5835 /*
5836 * before atomic variable goto zero, we must make sure
5837 * dip->errors is perceived to be set.
5838 */
5839 smp_mb__before_atomic_dec();
5840 }
5841
5842 /* if there are more bios still pending for this dio, just exit */
5843 if (!atomic_dec_and_test(&dip->pending_bios))
5844 goto out;
5845
5846 if (dip->errors)
5847 bio_io_error(dip->orig_bio);
5848 else {
5849 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5850 bio_endio(dip->orig_bio, 0);
5851 }
5852out:
5853 bio_put(bio);
5854}
5855
5856static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5857 u64 first_sector, gfp_t gfp_flags)
5858{
5859 int nr_vecs = bio_get_nr_vecs(bdev);
5860 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5861}
5862
5863static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5864 int rw, u64 file_offset, int skip_sum,
1ae39938 5865 u32 *csums, int async_submit)
e65e1535
MX
5866{
5867 int write = rw & REQ_WRITE;
5868 struct btrfs_root *root = BTRFS_I(inode)->root;
5869 int ret;
5870
5871 bio_get(bio);
5872 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5873 if (ret)
5874 goto err;
5875
1ae39938
JB
5876 if (skip_sum)
5877 goto map;
5878
5879 if (write && async_submit) {
e65e1535
MX
5880 ret = btrfs_wq_submit_bio(root->fs_info,
5881 inode, rw, bio, 0, 0,
5882 file_offset,
5883 __btrfs_submit_bio_start_direct_io,
5884 __btrfs_submit_bio_done);
5885 goto err;
1ae39938
JB
5886 } else if (write) {
5887 /*
5888 * If we aren't doing async submit, calculate the csum of the
5889 * bio now.
5890 */
5891 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5892 if (ret)
5893 goto err;
c2db1073
TI
5894 } else if (!skip_sum) {
5895 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5896 file_offset, csums);
c2db1073
TI
5897 if (ret)
5898 goto err;
5899 }
e65e1535 5900
1ae39938
JB
5901map:
5902 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5903err:
5904 bio_put(bio);
5905 return ret;
5906}
5907
5908static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5909 int skip_sum)
5910{
5911 struct inode *inode = dip->inode;
5912 struct btrfs_root *root = BTRFS_I(inode)->root;
5913 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5914 struct bio *bio;
5915 struct bio *orig_bio = dip->orig_bio;
5916 struct bio_vec *bvec = orig_bio->bi_io_vec;
5917 u64 start_sector = orig_bio->bi_sector;
5918 u64 file_offset = dip->logical_offset;
5919 u64 submit_len = 0;
5920 u64 map_length;
5921 int nr_pages = 0;
5922 u32 *csums = dip->csums;
5923 int ret = 0;
1ae39938 5924 int async_submit = 0;
98bc3149 5925 int write = rw & REQ_WRITE;
e65e1535 5926
e65e1535
MX
5927 map_length = orig_bio->bi_size;
5928 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5929 &map_length, NULL, 0);
5930 if (ret) {
64728bbb 5931 bio_put(orig_bio);
e65e1535
MX
5932 return -EIO;
5933 }
5934
02f57c7a
JB
5935 if (map_length >= orig_bio->bi_size) {
5936 bio = orig_bio;
5937 goto submit;
5938 }
5939
1ae39938 5940 async_submit = 1;
02f57c7a
JB
5941 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5942 if (!bio)
5943 return -ENOMEM;
5944 bio->bi_private = dip;
5945 bio->bi_end_io = btrfs_end_dio_bio;
5946 atomic_inc(&dip->pending_bios);
5947
e65e1535
MX
5948 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5949 if (unlikely(map_length < submit_len + bvec->bv_len ||
5950 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5951 bvec->bv_offset) < bvec->bv_len)) {
5952 /*
5953 * inc the count before we submit the bio so
5954 * we know the end IO handler won't happen before
5955 * we inc the count. Otherwise, the dip might get freed
5956 * before we're done setting it up
5957 */
5958 atomic_inc(&dip->pending_bios);
5959 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5960 file_offset, skip_sum,
1ae39938 5961 csums, async_submit);
e65e1535
MX
5962 if (ret) {
5963 bio_put(bio);
5964 atomic_dec(&dip->pending_bios);
5965 goto out_err;
5966 }
5967
98bc3149
JB
5968 /* Write's use the ordered csums */
5969 if (!write && !skip_sum)
e65e1535
MX
5970 csums = csums + nr_pages;
5971 start_sector += submit_len >> 9;
5972 file_offset += submit_len;
5973
5974 submit_len = 0;
5975 nr_pages = 0;
5976
5977 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5978 start_sector, GFP_NOFS);
5979 if (!bio)
5980 goto out_err;
5981 bio->bi_private = dip;
5982 bio->bi_end_io = btrfs_end_dio_bio;
5983
5984 map_length = orig_bio->bi_size;
5985 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5986 &map_length, NULL, 0);
5987 if (ret) {
5988 bio_put(bio);
5989 goto out_err;
5990 }
5991 } else {
5992 submit_len += bvec->bv_len;
5993 nr_pages ++;
5994 bvec++;
5995 }
5996 }
5997
02f57c7a 5998submit:
e65e1535 5999 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6000 csums, async_submit);
e65e1535
MX
6001 if (!ret)
6002 return 0;
6003
6004 bio_put(bio);
6005out_err:
6006 dip->errors = 1;
6007 /*
6008 * before atomic variable goto zero, we must
6009 * make sure dip->errors is perceived to be set.
6010 */
6011 smp_mb__before_atomic_dec();
6012 if (atomic_dec_and_test(&dip->pending_bios))
6013 bio_io_error(dip->orig_bio);
6014
6015 /* bio_end_io() will handle error, so we needn't return it */
6016 return 0;
6017}
6018
4b46fce2
JB
6019static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6020 loff_t file_offset)
6021{
6022 struct btrfs_root *root = BTRFS_I(inode)->root;
6023 struct btrfs_dio_private *dip;
6024 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6025 int skip_sum;
7b6d91da 6026 int write = rw & REQ_WRITE;
4b46fce2
JB
6027 int ret = 0;
6028
6029 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6030
6031 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6032 if (!dip) {
6033 ret = -ENOMEM;
6034 goto free_ordered;
6035 }
6036 dip->csums = NULL;
6037
98bc3149
JB
6038 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6039 if (!write && !skip_sum) {
4b46fce2
JB
6040 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6041 if (!dip->csums) {
b4966b77 6042 kfree(dip);
4b46fce2
JB
6043 ret = -ENOMEM;
6044 goto free_ordered;
6045 }
6046 }
6047
6048 dip->private = bio->bi_private;
6049 dip->inode = inode;
6050 dip->logical_offset = file_offset;
6051
4b46fce2
JB
6052 dip->bytes = 0;
6053 do {
6054 dip->bytes += bvec->bv_len;
6055 bvec++;
6056 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6057
46bfbb5c 6058 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6059 bio->bi_private = dip;
e65e1535
MX
6060 dip->errors = 0;
6061 dip->orig_bio = bio;
6062 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6063
6064 if (write)
6065 bio->bi_end_io = btrfs_endio_direct_write;
6066 else
6067 bio->bi_end_io = btrfs_endio_direct_read;
6068
e65e1535
MX
6069 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6070 if (!ret)
eaf25d93 6071 return;
4b46fce2
JB
6072free_ordered:
6073 /*
6074 * If this is a write, we need to clean up the reserved space and kill
6075 * the ordered extent.
6076 */
6077 if (write) {
6078 struct btrfs_ordered_extent *ordered;
955256f2 6079 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6080 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6081 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6082 btrfs_free_reserved_extent(root, ordered->start,
6083 ordered->disk_len);
6084 btrfs_put_ordered_extent(ordered);
6085 btrfs_put_ordered_extent(ordered);
6086 }
6087 bio_endio(bio, ret);
6088}
6089
5a5f79b5
CM
6090static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6091 const struct iovec *iov, loff_t offset,
6092 unsigned long nr_segs)
6093{
6094 int seg;
a1b75f7d 6095 int i;
5a5f79b5
CM
6096 size_t size;
6097 unsigned long addr;
6098 unsigned blocksize_mask = root->sectorsize - 1;
6099 ssize_t retval = -EINVAL;
6100 loff_t end = offset;
6101
6102 if (offset & blocksize_mask)
6103 goto out;
6104
6105 /* Check the memory alignment. Blocks cannot straddle pages */
6106 for (seg = 0; seg < nr_segs; seg++) {
6107 addr = (unsigned long)iov[seg].iov_base;
6108 size = iov[seg].iov_len;
6109 end += size;
a1b75f7d 6110 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6111 goto out;
a1b75f7d
JB
6112
6113 /* If this is a write we don't need to check anymore */
6114 if (rw & WRITE)
6115 continue;
6116
6117 /*
6118 * Check to make sure we don't have duplicate iov_base's in this
6119 * iovec, if so return EINVAL, otherwise we'll get csum errors
6120 * when reading back.
6121 */
6122 for (i = seg + 1; i < nr_segs; i++) {
6123 if (iov[seg].iov_base == iov[i].iov_base)
6124 goto out;
6125 }
5a5f79b5
CM
6126 }
6127 retval = 0;
6128out:
6129 return retval;
6130}
16432985
CM
6131static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6132 const struct iovec *iov, loff_t offset,
6133 unsigned long nr_segs)
6134{
4b46fce2
JB
6135 struct file *file = iocb->ki_filp;
6136 struct inode *inode = file->f_mapping->host;
6137 struct btrfs_ordered_extent *ordered;
4845e44f 6138 struct extent_state *cached_state = NULL;
4b46fce2
JB
6139 u64 lockstart, lockend;
6140 ssize_t ret;
4845e44f
CM
6141 int writing = rw & WRITE;
6142 int write_bits = 0;
3f7c579c 6143 size_t count = iov_length(iov, nr_segs);
4b46fce2 6144
5a5f79b5
CM
6145 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6146 offset, nr_segs)) {
6147 return 0;
6148 }
6149
4b46fce2 6150 lockstart = offset;
3f7c579c
CM
6151 lockend = offset + count - 1;
6152
6153 if (writing) {
6154 ret = btrfs_delalloc_reserve_space(inode, count);
6155 if (ret)
6156 goto out;
6157 }
4845e44f 6158
4b46fce2 6159 while (1) {
4845e44f
CM
6160 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6161 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6162 /*
6163 * We're concerned with the entire range that we're going to be
6164 * doing DIO to, so we need to make sure theres no ordered
6165 * extents in this range.
6166 */
6167 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6168 lockend - lockstart + 1);
6169 if (!ordered)
6170 break;
4845e44f
CM
6171 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6172 &cached_state, GFP_NOFS);
4b46fce2
JB
6173 btrfs_start_ordered_extent(inode, ordered, 1);
6174 btrfs_put_ordered_extent(ordered);
6175 cond_resched();
6176 }
6177
4845e44f
CM
6178 /*
6179 * we don't use btrfs_set_extent_delalloc because we don't want
6180 * the dirty or uptodate bits
6181 */
6182 if (writing) {
6183 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6184 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6185 EXTENT_DELALLOC, 0, NULL, &cached_state,
6186 GFP_NOFS);
6187 if (ret) {
6188 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6189 lockend, EXTENT_LOCKED | write_bits,
6190 1, 0, &cached_state, GFP_NOFS);
6191 goto out;
6192 }
6193 }
6194
6195 free_extent_state(cached_state);
6196 cached_state = NULL;
6197
5a5f79b5
CM
6198 ret = __blockdev_direct_IO(rw, iocb, inode,
6199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6200 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6201 btrfs_submit_direct, 0);
4b46fce2
JB
6202
6203 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6204 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6205 offset + iov_length(iov, nr_segs) - 1,
6206 EXTENT_LOCKED | write_bits, 1, 0,
6207 &cached_state, GFP_NOFS);
4b46fce2
JB
6208 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6209 /*
6210 * We're falling back to buffered, unlock the section we didn't
6211 * do IO on.
6212 */
4845e44f
CM
6213 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6214 offset + iov_length(iov, nr_segs) - 1,
6215 EXTENT_LOCKED | write_bits, 1, 0,
6216 &cached_state, GFP_NOFS);
4b46fce2 6217 }
4845e44f
CM
6218out:
6219 free_extent_state(cached_state);
4b46fce2 6220 return ret;
16432985
CM
6221}
6222
1506fcc8
YS
6223static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6224 __u64 start, __u64 len)
6225{
ec29ed5b 6226 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6227}
6228
a52d9a80 6229int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6230{
d1310b2e
CM
6231 struct extent_io_tree *tree;
6232 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6233 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6234}
1832a6d5 6235
a52d9a80 6236static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6237{
d1310b2e 6238 struct extent_io_tree *tree;
b888db2b
CM
6239
6240
6241 if (current->flags & PF_MEMALLOC) {
6242 redirty_page_for_writepage(wbc, page);
6243 unlock_page(page);
6244 return 0;
6245 }
d1310b2e 6246 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6247 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6248}
6249
f421950f
CM
6250int btrfs_writepages(struct address_space *mapping,
6251 struct writeback_control *wbc)
b293f02e 6252{
d1310b2e 6253 struct extent_io_tree *tree;
771ed689 6254
d1310b2e 6255 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6256 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6257}
6258
3ab2fb5a
CM
6259static int
6260btrfs_readpages(struct file *file, struct address_space *mapping,
6261 struct list_head *pages, unsigned nr_pages)
6262{
d1310b2e
CM
6263 struct extent_io_tree *tree;
6264 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6265 return extent_readpages(tree, mapping, pages, nr_pages,
6266 btrfs_get_extent);
6267}
e6dcd2dc 6268static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6269{
d1310b2e
CM
6270 struct extent_io_tree *tree;
6271 struct extent_map_tree *map;
a52d9a80 6272 int ret;
8c2383c3 6273
d1310b2e
CM
6274 tree = &BTRFS_I(page->mapping->host)->io_tree;
6275 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6276 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6277 if (ret == 1) {
6278 ClearPagePrivate(page);
6279 set_page_private(page, 0);
6280 page_cache_release(page);
39279cc3 6281 }
a52d9a80 6282 return ret;
39279cc3
CM
6283}
6284
e6dcd2dc
CM
6285static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6286{
98509cfc
CM
6287 if (PageWriteback(page) || PageDirty(page))
6288 return 0;
b335b003 6289 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6290}
6291
a52d9a80 6292static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6293{
d1310b2e 6294 struct extent_io_tree *tree;
e6dcd2dc 6295 struct btrfs_ordered_extent *ordered;
2ac55d41 6296 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6297 u64 page_start = page_offset(page);
6298 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6299
8b62b72b
CM
6300
6301 /*
6302 * we have the page locked, so new writeback can't start,
6303 * and the dirty bit won't be cleared while we are here.
6304 *
6305 * Wait for IO on this page so that we can safely clear
6306 * the PagePrivate2 bit and do ordered accounting
6307 */
e6dcd2dc 6308 wait_on_page_writeback(page);
8b62b72b 6309
d1310b2e 6310 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6311 if (offset) {
6312 btrfs_releasepage(page, GFP_NOFS);
6313 return;
6314 }
2ac55d41
JB
6315 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6316 GFP_NOFS);
e6dcd2dc
CM
6317 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6318 page_offset(page));
6319 if (ordered) {
eb84ae03
CM
6320 /*
6321 * IO on this page will never be started, so we need
6322 * to account for any ordered extents now
6323 */
e6dcd2dc
CM
6324 clear_extent_bit(tree, page_start, page_end,
6325 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6326 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6327 &cached_state, GFP_NOFS);
8b62b72b
CM
6328 /*
6329 * whoever cleared the private bit is responsible
6330 * for the finish_ordered_io
6331 */
6332 if (TestClearPagePrivate2(page)) {
6333 btrfs_finish_ordered_io(page->mapping->host,
6334 page_start, page_end);
6335 }
e6dcd2dc 6336 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6337 cached_state = NULL;
6338 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6339 GFP_NOFS);
e6dcd2dc
CM
6340 }
6341 clear_extent_bit(tree, page_start, page_end,
32c00aff 6342 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6343 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6344 __btrfs_releasepage(page, GFP_NOFS);
6345
4a096752 6346 ClearPageChecked(page);
9ad6b7bc 6347 if (PagePrivate(page)) {
9ad6b7bc
CM
6348 ClearPagePrivate(page);
6349 set_page_private(page, 0);
6350 page_cache_release(page);
6351 }
39279cc3
CM
6352}
6353
9ebefb18
CM
6354/*
6355 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6356 * called from a page fault handler when a page is first dirtied. Hence we must
6357 * be careful to check for EOF conditions here. We set the page up correctly
6358 * for a written page which means we get ENOSPC checking when writing into
6359 * holes and correct delalloc and unwritten extent mapping on filesystems that
6360 * support these features.
6361 *
6362 * We are not allowed to take the i_mutex here so we have to play games to
6363 * protect against truncate races as the page could now be beyond EOF. Because
6364 * vmtruncate() writes the inode size before removing pages, once we have the
6365 * page lock we can determine safely if the page is beyond EOF. If it is not
6366 * beyond EOF, then the page is guaranteed safe against truncation until we
6367 * unlock the page.
6368 */
c2ec175c 6369int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6370{
c2ec175c 6371 struct page *page = vmf->page;
6da6abae 6372 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6373 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6374 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6375 struct btrfs_ordered_extent *ordered;
2ac55d41 6376 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6377 char *kaddr;
6378 unsigned long zero_start;
9ebefb18 6379 loff_t size;
1832a6d5 6380 int ret;
a52d9a80 6381 u64 page_start;
e6dcd2dc 6382 u64 page_end;
9ebefb18 6383
0ca1f7ce 6384 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6385 if (ret) {
6386 if (ret == -ENOMEM)
6387 ret = VM_FAULT_OOM;
6388 else /* -ENOSPC, -EIO, etc */
6389 ret = VM_FAULT_SIGBUS;
1832a6d5 6390 goto out;
56a76f82 6391 }
1832a6d5 6392
56a76f82 6393 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6394again:
9ebefb18 6395 lock_page(page);
9ebefb18 6396 size = i_size_read(inode);
e6dcd2dc
CM
6397 page_start = page_offset(page);
6398 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6399
9ebefb18 6400 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6401 (page_start >= size)) {
9ebefb18
CM
6402 /* page got truncated out from underneath us */
6403 goto out_unlock;
6404 }
e6dcd2dc
CM
6405 wait_on_page_writeback(page);
6406
2ac55d41
JB
6407 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6408 GFP_NOFS);
e6dcd2dc
CM
6409 set_page_extent_mapped(page);
6410
eb84ae03
CM
6411 /*
6412 * we can't set the delalloc bits if there are pending ordered
6413 * extents. Drop our locks and wait for them to finish
6414 */
e6dcd2dc
CM
6415 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6416 if (ordered) {
2ac55d41
JB
6417 unlock_extent_cached(io_tree, page_start, page_end,
6418 &cached_state, GFP_NOFS);
e6dcd2dc 6419 unlock_page(page);
eb84ae03 6420 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6421 btrfs_put_ordered_extent(ordered);
6422 goto again;
6423 }
6424
fbf19087
JB
6425 /*
6426 * XXX - page_mkwrite gets called every time the page is dirtied, even
6427 * if it was already dirty, so for space accounting reasons we need to
6428 * clear any delalloc bits for the range we are fixing to save. There
6429 * is probably a better way to do this, but for now keep consistent with
6430 * prepare_pages in the normal write path.
6431 */
2ac55d41 6432 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6433 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6434 0, 0, &cached_state, GFP_NOFS);
fbf19087 6435
2ac55d41
JB
6436 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6437 &cached_state);
9ed74f2d 6438 if (ret) {
2ac55d41
JB
6439 unlock_extent_cached(io_tree, page_start, page_end,
6440 &cached_state, GFP_NOFS);
9ed74f2d
JB
6441 ret = VM_FAULT_SIGBUS;
6442 goto out_unlock;
6443 }
e6dcd2dc 6444 ret = 0;
9ebefb18
CM
6445
6446 /* page is wholly or partially inside EOF */
a52d9a80 6447 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6448 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6449 else
e6dcd2dc 6450 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6451
e6dcd2dc
CM
6452 if (zero_start != PAGE_CACHE_SIZE) {
6453 kaddr = kmap(page);
6454 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6455 flush_dcache_page(page);
6456 kunmap(page);
6457 }
247e743c 6458 ClearPageChecked(page);
e6dcd2dc 6459 set_page_dirty(page);
50a9b214 6460 SetPageUptodate(page);
5a3f23d5 6461
257c62e1
CM
6462 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6463 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6464
2ac55d41 6465 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6466
6467out_unlock:
50a9b214
CM
6468 if (!ret)
6469 return VM_FAULT_LOCKED;
9ebefb18 6470 unlock_page(page);
0ca1f7ce 6471 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6472out:
9ebefb18
CM
6473 return ret;
6474}
6475
a41ad394 6476static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6477{
6478 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6479 struct btrfs_block_rsv *rsv;
39279cc3 6480 int ret;
3893e33b 6481 int err = 0;
39279cc3 6482 struct btrfs_trans_handle *trans;
d3c2fdcf 6483 unsigned long nr;
dbe674a9 6484 u64 mask = root->sectorsize - 1;
907cbceb 6485 u64 min_size = btrfs_calc_trans_metadata_size(root, 2);
39279cc3 6486
5d5e103a
JB
6487 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6488 if (ret)
a41ad394 6489 return ret;
8082510e 6490
4a096752 6491 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6492 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6493
fcb80c2a
JB
6494 /*
6495 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6496 * 3 things going on here
6497 *
6498 * 1) We need to reserve space for our orphan item and the space to
6499 * delete our orphan item. Lord knows we don't want to have a dangling
6500 * orphan item because we didn't reserve space to remove it.
6501 *
6502 * 2) We need to reserve space to update our inode.
6503 *
6504 * 3) We need to have something to cache all the space that is going to
6505 * be free'd up by the truncate operation, but also have some slack
6506 * space reserved in case it uses space during the truncate (thank you
6507 * very much snapshotting).
6508 *
6509 * And we need these to all be seperate. The fact is we can use alot of
6510 * space doing the truncate, and we have no earthly idea how much space
6511 * we will use, so we need the truncate reservation to be seperate so it
6512 * doesn't end up using space reserved for updating the inode or
6513 * removing the orphan item. We also need to be able to stop the
6514 * transaction and start a new one, which means we need to be able to
6515 * update the inode several times, and we have no idea of knowing how
6516 * many times that will be, so we can't just reserve 1 item for the
6517 * entirety of the opration, so that has to be done seperately as well.
6518 * Then there is the orphan item, which does indeed need to be held on
6519 * to for the whole operation, and we need nobody to touch this reserved
6520 * space except the orphan code.
6521 *
6522 * So that leaves us with
6523 *
6524 * 1) root->orphan_block_rsv - for the orphan deletion.
6525 * 2) rsv - for the truncate reservation, which we will steal from the
6526 * transaction reservation.
6527 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6528 * updating the inode.
6529 */
6530 rsv = btrfs_alloc_block_rsv(root);
6531 if (!rsv)
6532 return -ENOMEM;
f0cd846e 6533
907cbceb
JB
6534 /*
6535 * 2 for the truncate slack space
6536 * 1 for the orphan item we're going to add
6537 * 1 for the orphan item deletion
6538 * 1 for updating the inode.
6539 */
6540 trans = btrfs_start_transaction(root, 5);
fcb80c2a
JB
6541 if (IS_ERR(trans)) {
6542 err = PTR_ERR(trans);
6543 goto out;
6544 }
f0cd846e 6545
907cbceb
JB
6546 /* Migrate the slack space for the truncate to our reserve */
6547 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6548 min_size);
fcb80c2a 6549 BUG_ON(ret);
f0cd846e
JB
6550
6551 ret = btrfs_orphan_add(trans, inode);
6552 if (ret) {
6553 btrfs_end_transaction(trans, root);
fcb80c2a 6554 goto out;
f0cd846e
JB
6555 }
6556
5a3f23d5
CM
6557 /*
6558 * setattr is responsible for setting the ordered_data_close flag,
6559 * but that is only tested during the last file release. That
6560 * could happen well after the next commit, leaving a great big
6561 * window where new writes may get lost if someone chooses to write
6562 * to this file after truncating to zero
6563 *
6564 * The inode doesn't have any dirty data here, and so if we commit
6565 * this is a noop. If someone immediately starts writing to the inode
6566 * it is very likely we'll catch some of their writes in this
6567 * transaction, and the commit will find this file on the ordered
6568 * data list with good things to send down.
6569 *
6570 * This is a best effort solution, there is still a window where
6571 * using truncate to replace the contents of the file will
6572 * end up with a zero length file after a crash.
6573 */
6574 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6575 btrfs_add_ordered_operation(trans, root, inode);
6576
8082510e 6577 while (1) {
907cbceb
JB
6578 ret = btrfs_block_rsv_check(trans, root, rsv, min_size, 0);
6579 if (ret) {
6580 /*
6581 * This can only happen with the original transaction we
6582 * started above, every other time we shouldn't have a
6583 * transaction started yet.
6584 */
6585 if (ret == -EAGAIN)
6586 goto end_trans;
6587 err = ret;
6588 break;
6589 }
6590
d68fc57b 6591 if (!trans) {
907cbceb
JB
6592 /* Just need the 1 for updating the inode */
6593 trans = btrfs_start_transaction(root, 1);
fcb80c2a
JB
6594 if (IS_ERR(trans)) {
6595 err = PTR_ERR(trans);
6596 goto out;
6597 }
d68fc57b
YZ
6598 }
6599
907cbceb
JB
6600 trans->block_rsv = rsv;
6601
8082510e
YZ
6602 ret = btrfs_truncate_inode_items(trans, root, inode,
6603 inode->i_size,
6604 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6605 if (ret != -EAGAIN) {
6606 err = ret;
8082510e 6607 break;
3893e33b 6608 }
39279cc3 6609
fcb80c2a 6610 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6611 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6612 if (ret) {
6613 err = ret;
6614 break;
6615 }
907cbceb 6616end_trans:
8082510e
YZ
6617 nr = trans->blocks_used;
6618 btrfs_end_transaction(trans, root);
d68fc57b 6619 trans = NULL;
8082510e 6620 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6621 }
6622
6623 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6624 trans->block_rsv = root->orphan_block_rsv;
8082510e 6625 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6626 if (ret)
6627 err = ret;
ded5db9d
JB
6628 } else if (ret && inode->i_nlink > 0) {
6629 /*
6630 * Failed to do the truncate, remove us from the in memory
6631 * orphan list.
6632 */
6633 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6634 }
6635
fcb80c2a 6636 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6637 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6638 if (ret && !err)
6639 err = ret;
7b128766 6640
7b128766 6641 nr = trans->blocks_used;
89ce8a63 6642 ret = btrfs_end_transaction_throttle(trans, root);
fcb80c2a
JB
6643 btrfs_btree_balance_dirty(root, nr);
6644
6645out:
6646 btrfs_free_block_rsv(root, rsv);
6647
3893e33b
JB
6648 if (ret && !err)
6649 err = ret;
a41ad394 6650
3893e33b 6651 return err;
39279cc3
CM
6652}
6653
d352ac68
CM
6654/*
6655 * create a new subvolume directory/inode (helper for the ioctl).
6656 */
d2fb3437 6657int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6658 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6659{
39279cc3 6660 struct inode *inode;
76dda93c 6661 int err;
00e4e6b3 6662 u64 index = 0;
39279cc3 6663
aec7477b 6664 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d82a6f1d 6665 new_dirid, S_IFDIR | 0700, &index);
54aa1f4d 6666 if (IS_ERR(inode))
f46b5a66 6667 return PTR_ERR(inode);
39279cc3
CM
6668 inode->i_op = &btrfs_dir_inode_operations;
6669 inode->i_fop = &btrfs_dir_file_operations;
6670
39279cc3 6671 inode->i_nlink = 1;
dbe674a9 6672 btrfs_i_size_write(inode, 0);
3b96362c 6673
76dda93c
YZ
6674 err = btrfs_update_inode(trans, new_root, inode);
6675 BUG_ON(err);
cb8e7090 6676
76dda93c 6677 iput(inode);
cb8e7090 6678 return 0;
39279cc3
CM
6679}
6680
39279cc3
CM
6681struct inode *btrfs_alloc_inode(struct super_block *sb)
6682{
6683 struct btrfs_inode *ei;
2ead6ae7 6684 struct inode *inode;
39279cc3
CM
6685
6686 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6687 if (!ei)
6688 return NULL;
2ead6ae7
YZ
6689
6690 ei->root = NULL;
6691 ei->space_info = NULL;
6692 ei->generation = 0;
6693 ei->sequence = 0;
15ee9bc7 6694 ei->last_trans = 0;
257c62e1 6695 ei->last_sub_trans = 0;
e02119d5 6696 ei->logged_trans = 0;
2ead6ae7 6697 ei->delalloc_bytes = 0;
2ead6ae7
YZ
6698 ei->disk_i_size = 0;
6699 ei->flags = 0;
7709cde3 6700 ei->csum_bytes = 0;
2ead6ae7
YZ
6701 ei->index_cnt = (u64)-1;
6702 ei->last_unlink_trans = 0;
6703
9e0baf60
JB
6704 spin_lock_init(&ei->lock);
6705 ei->outstanding_extents = 0;
6706 ei->reserved_extents = 0;
2ead6ae7
YZ
6707
6708 ei->ordered_data_close = 0;
d68fc57b 6709 ei->orphan_meta_reserved = 0;
2ead6ae7 6710 ei->dummy_inode = 0;
4cb5300b 6711 ei->in_defrag = 0;
261507a0 6712 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6713
16cdcec7
MX
6714 ei->delayed_node = NULL;
6715
2ead6ae7 6716 inode = &ei->vfs_inode;
a8067e02 6717 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6718 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6719 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6720 mutex_init(&ei->log_mutex);
e6dcd2dc 6721 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6722 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6723 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6724 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6725 RB_CLEAR_NODE(&ei->rb_node);
6726
6727 return inode;
39279cc3
CM
6728}
6729
fa0d7e3d
NP
6730static void btrfs_i_callback(struct rcu_head *head)
6731{
6732 struct inode *inode = container_of(head, struct inode, i_rcu);
6733 INIT_LIST_HEAD(&inode->i_dentry);
6734 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6735}
6736
39279cc3
CM
6737void btrfs_destroy_inode(struct inode *inode)
6738{
e6dcd2dc 6739 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6740 struct btrfs_root *root = BTRFS_I(inode)->root;
6741
39279cc3
CM
6742 WARN_ON(!list_empty(&inode->i_dentry));
6743 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6744 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6745 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
6746 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6747 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 6748
a6dbd429
JB
6749 /*
6750 * This can happen where we create an inode, but somebody else also
6751 * created the same inode and we need to destroy the one we already
6752 * created.
6753 */
6754 if (!root)
6755 goto free;
6756
5a3f23d5
CM
6757 /*
6758 * Make sure we're properly removed from the ordered operation
6759 * lists.
6760 */
6761 smp_mb();
6762 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6763 spin_lock(&root->fs_info->ordered_extent_lock);
6764 list_del_init(&BTRFS_I(inode)->ordered_operations);
6765 spin_unlock(&root->fs_info->ordered_extent_lock);
6766 }
6767
d68fc57b 6768 spin_lock(&root->orphan_lock);
7b128766 6769 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6770 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6771 (unsigned long long)btrfs_ino(inode));
8082510e 6772 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6773 }
d68fc57b 6774 spin_unlock(&root->orphan_lock);
7b128766 6775
d397712b 6776 while (1) {
e6dcd2dc
CM
6777 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6778 if (!ordered)
6779 break;
6780 else {
d397712b
CM
6781 printk(KERN_ERR "btrfs found ordered "
6782 "extent %llu %llu on inode cleanup\n",
6783 (unsigned long long)ordered->file_offset,
6784 (unsigned long long)ordered->len);
e6dcd2dc
CM
6785 btrfs_remove_ordered_extent(inode, ordered);
6786 btrfs_put_ordered_extent(ordered);
6787 btrfs_put_ordered_extent(ordered);
6788 }
6789 }
5d4f98a2 6790 inode_tree_del(inode);
5b21f2ed 6791 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6792free:
16cdcec7 6793 btrfs_remove_delayed_node(inode);
fa0d7e3d 6794 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6795}
6796
45321ac5 6797int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6798{
6799 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6800
0af3d00b 6801 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 6802 !btrfs_is_free_space_inode(root, inode))
45321ac5 6803 return 1;
76dda93c 6804 else
45321ac5 6805 return generic_drop_inode(inode);
76dda93c
YZ
6806}
6807
0ee0fda0 6808static void init_once(void *foo)
39279cc3
CM
6809{
6810 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6811
6812 inode_init_once(&ei->vfs_inode);
6813}
6814
6815void btrfs_destroy_cachep(void)
6816{
6817 if (btrfs_inode_cachep)
6818 kmem_cache_destroy(btrfs_inode_cachep);
6819 if (btrfs_trans_handle_cachep)
6820 kmem_cache_destroy(btrfs_trans_handle_cachep);
6821 if (btrfs_transaction_cachep)
6822 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6823 if (btrfs_path_cachep)
6824 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6825 if (btrfs_free_space_cachep)
6826 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6827}
6828
6829int btrfs_init_cachep(void)
6830{
9601e3f6
CH
6831 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6832 sizeof(struct btrfs_inode), 0,
6833 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6834 if (!btrfs_inode_cachep)
6835 goto fail;
9601e3f6
CH
6836
6837 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6838 sizeof(struct btrfs_trans_handle), 0,
6839 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6840 if (!btrfs_trans_handle_cachep)
6841 goto fail;
9601e3f6
CH
6842
6843 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6844 sizeof(struct btrfs_transaction), 0,
6845 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6846 if (!btrfs_transaction_cachep)
6847 goto fail;
9601e3f6
CH
6848
6849 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6850 sizeof(struct btrfs_path), 0,
6851 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6852 if (!btrfs_path_cachep)
6853 goto fail;
9601e3f6 6854
dc89e982
JB
6855 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6856 sizeof(struct btrfs_free_space), 0,
6857 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6858 if (!btrfs_free_space_cachep)
6859 goto fail;
6860
39279cc3
CM
6861 return 0;
6862fail:
6863 btrfs_destroy_cachep();
6864 return -ENOMEM;
6865}
6866
6867static int btrfs_getattr(struct vfsmount *mnt,
6868 struct dentry *dentry, struct kstat *stat)
6869{
6870 struct inode *inode = dentry->d_inode;
6871 generic_fillattr(inode, stat);
0ee5dc67 6872 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 6873 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6874 stat->blocks = (inode_get_bytes(inode) +
6875 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6876 return 0;
6877}
6878
75e7cb7f
LB
6879/*
6880 * If a file is moved, it will inherit the cow and compression flags of the new
6881 * directory.
6882 */
6883static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6884{
6885 struct btrfs_inode *b_dir = BTRFS_I(dir);
6886 struct btrfs_inode *b_inode = BTRFS_I(inode);
6887
6888 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6889 b_inode->flags |= BTRFS_INODE_NODATACOW;
6890 else
6891 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6892
6893 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6894 b_inode->flags |= BTRFS_INODE_COMPRESS;
6895 else
6896 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6897}
6898
d397712b
CM
6899static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6900 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6901{
6902 struct btrfs_trans_handle *trans;
6903 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6904 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6905 struct inode *new_inode = new_dentry->d_inode;
6906 struct inode *old_inode = old_dentry->d_inode;
6907 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6908 u64 index = 0;
4df27c4d 6909 u64 root_objectid;
39279cc3 6910 int ret;
33345d01 6911 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6912
33345d01 6913 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6914 return -EPERM;
6915
4df27c4d 6916 /* we only allow rename subvolume link between subvolumes */
33345d01 6917 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6918 return -EXDEV;
6919
33345d01
LZ
6920 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6921 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6922 return -ENOTEMPTY;
5f39d397 6923
4df27c4d
YZ
6924 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6925 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6926 return -ENOTEMPTY;
5a3f23d5
CM
6927 /*
6928 * we're using rename to replace one file with another.
6929 * and the replacement file is large. Start IO on it now so
6930 * we don't add too much work to the end of the transaction
6931 */
4baf8c92 6932 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6933 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6934 filemap_flush(old_inode->i_mapping);
6935
76dda93c 6936 /* close the racy window with snapshot create/destroy ioctl */
33345d01 6937 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6938 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6939 /*
6940 * We want to reserve the absolute worst case amount of items. So if
6941 * both inodes are subvols and we need to unlink them then that would
6942 * require 4 item modifications, but if they are both normal inodes it
6943 * would require 5 item modifications, so we'll assume their normal
6944 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6945 * should cover the worst case number of items we'll modify.
6946 */
6947 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6948 if (IS_ERR(trans)) {
6949 ret = PTR_ERR(trans);
6950 goto out_notrans;
6951 }
76dda93c 6952
4df27c4d
YZ
6953 if (dest != root)
6954 btrfs_record_root_in_trans(trans, dest);
5f39d397 6955
a5719521
YZ
6956 ret = btrfs_set_inode_index(new_dir, &index);
6957 if (ret)
6958 goto out_fail;
5a3f23d5 6959
33345d01 6960 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6961 /* force full log commit if subvolume involved. */
6962 root->fs_info->last_trans_log_full_commit = trans->transid;
6963 } else {
a5719521
YZ
6964 ret = btrfs_insert_inode_ref(trans, dest,
6965 new_dentry->d_name.name,
6966 new_dentry->d_name.len,
33345d01
LZ
6967 old_ino,
6968 btrfs_ino(new_dir), index);
a5719521
YZ
6969 if (ret)
6970 goto out_fail;
4df27c4d
YZ
6971 /*
6972 * this is an ugly little race, but the rename is required
6973 * to make sure that if we crash, the inode is either at the
6974 * old name or the new one. pinning the log transaction lets
6975 * us make sure we don't allow a log commit to come in after
6976 * we unlink the name but before we add the new name back in.
6977 */
6978 btrfs_pin_log_trans(root);
6979 }
5a3f23d5
CM
6980 /*
6981 * make sure the inode gets flushed if it is replacing
6982 * something.
6983 */
33345d01 6984 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 6985 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 6986
39279cc3
CM
6987 old_dir->i_ctime = old_dir->i_mtime = ctime;
6988 new_dir->i_ctime = new_dir->i_mtime = ctime;
6989 old_inode->i_ctime = ctime;
5f39d397 6990
12fcfd22
CM
6991 if (old_dentry->d_parent != new_dentry->d_parent)
6992 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6993
33345d01 6994 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6995 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6996 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6997 old_dentry->d_name.name,
6998 old_dentry->d_name.len);
6999 } else {
92986796
AV
7000 ret = __btrfs_unlink_inode(trans, root, old_dir,
7001 old_dentry->d_inode,
7002 old_dentry->d_name.name,
7003 old_dentry->d_name.len);
7004 if (!ret)
7005 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7006 }
7007 BUG_ON(ret);
39279cc3
CM
7008
7009 if (new_inode) {
7010 new_inode->i_ctime = CURRENT_TIME;
33345d01 7011 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7012 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7013 root_objectid = BTRFS_I(new_inode)->location.objectid;
7014 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7015 root_objectid,
7016 new_dentry->d_name.name,
7017 new_dentry->d_name.len);
7018 BUG_ON(new_inode->i_nlink == 0);
7019 } else {
7020 ret = btrfs_unlink_inode(trans, dest, new_dir,
7021 new_dentry->d_inode,
7022 new_dentry->d_name.name,
7023 new_dentry->d_name.len);
7024 }
7025 BUG_ON(ret);
7b128766 7026 if (new_inode->i_nlink == 0) {
e02119d5 7027 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7028 BUG_ON(ret);
7b128766 7029 }
39279cc3 7030 }
aec7477b 7031
75e7cb7f
LB
7032 fixup_inode_flags(new_dir, old_inode);
7033
4df27c4d
YZ
7034 ret = btrfs_add_link(trans, new_dir, old_inode,
7035 new_dentry->d_name.name,
a5719521 7036 new_dentry->d_name.len, 0, index);
4df27c4d 7037 BUG_ON(ret);
39279cc3 7038
33345d01 7039 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7040 struct dentry *parent = new_dentry->d_parent;
6a912213 7041 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7042 btrfs_end_log_trans(root);
7043 }
39279cc3 7044out_fail:
ab78c84d 7045 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7046out_notrans:
33345d01 7047 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7048 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7049
39279cc3
CM
7050 return ret;
7051}
7052
d352ac68
CM
7053/*
7054 * some fairly slow code that needs optimization. This walks the list
7055 * of all the inodes with pending delalloc and forces them to disk.
7056 */
24bbcf04 7057int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7058{
7059 struct list_head *head = &root->fs_info->delalloc_inodes;
7060 struct btrfs_inode *binode;
5b21f2ed 7061 struct inode *inode;
ea8c2819 7062
c146afad
YZ
7063 if (root->fs_info->sb->s_flags & MS_RDONLY)
7064 return -EROFS;
7065
75eff68e 7066 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7067 while (!list_empty(head)) {
ea8c2819
CM
7068 binode = list_entry(head->next, struct btrfs_inode,
7069 delalloc_inodes);
5b21f2ed
ZY
7070 inode = igrab(&binode->vfs_inode);
7071 if (!inode)
7072 list_del_init(&binode->delalloc_inodes);
75eff68e 7073 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7074 if (inode) {
8c8bee1d 7075 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7076 if (delay_iput)
7077 btrfs_add_delayed_iput(inode);
7078 else
7079 iput(inode);
5b21f2ed
ZY
7080 }
7081 cond_resched();
75eff68e 7082 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7083 }
75eff68e 7084 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7085
7086 /* the filemap_flush will queue IO into the worker threads, but
7087 * we have to make sure the IO is actually started and that
7088 * ordered extents get created before we return
7089 */
7090 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7091 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7092 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7093 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7094 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7095 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7096 }
7097 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7098 return 0;
7099}
7100
39279cc3
CM
7101static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7102 const char *symname)
7103{
7104 struct btrfs_trans_handle *trans;
7105 struct btrfs_root *root = BTRFS_I(dir)->root;
7106 struct btrfs_path *path;
7107 struct btrfs_key key;
1832a6d5 7108 struct inode *inode = NULL;
39279cc3
CM
7109 int err;
7110 int drop_inode = 0;
7111 u64 objectid;
00e4e6b3 7112 u64 index = 0 ;
39279cc3
CM
7113 int name_len;
7114 int datasize;
5f39d397 7115 unsigned long ptr;
39279cc3 7116 struct btrfs_file_extent_item *ei;
5f39d397 7117 struct extent_buffer *leaf;
1832a6d5 7118 unsigned long nr = 0;
39279cc3
CM
7119
7120 name_len = strlen(symname) + 1;
7121 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7122 return -ENAMETOOLONG;
1832a6d5 7123
9ed74f2d
JB
7124 /*
7125 * 2 items for inode item and ref
7126 * 2 items for dir items
7127 * 1 item for xattr if selinux is on
7128 */
a22285a6
YZ
7129 trans = btrfs_start_transaction(root, 5);
7130 if (IS_ERR(trans))
7131 return PTR_ERR(trans);
1832a6d5 7132
581bb050
LZ
7133 err = btrfs_find_free_ino(root, &objectid);
7134 if (err)
7135 goto out_unlock;
7136
aec7477b 7137 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7138 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7139 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7140 if (IS_ERR(inode)) {
7141 err = PTR_ERR(inode);
39279cc3 7142 goto out_unlock;
7cf96da3 7143 }
39279cc3 7144
2a7dba39 7145 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7146 if (err) {
7147 drop_inode = 1;
7148 goto out_unlock;
7149 }
7150
a1b075d2 7151 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7152 if (err)
7153 drop_inode = 1;
7154 else {
7155 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7156 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7157 inode->i_fop = &btrfs_file_operations;
7158 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7160 }
39279cc3
CM
7161 if (drop_inode)
7162 goto out_unlock;
7163
7164 path = btrfs_alloc_path();
d8926bb3
MF
7165 if (!path) {
7166 err = -ENOMEM;
7167 drop_inode = 1;
7168 goto out_unlock;
7169 }
33345d01 7170 key.objectid = btrfs_ino(inode);
39279cc3 7171 key.offset = 0;
39279cc3
CM
7172 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7173 datasize = btrfs_file_extent_calc_inline_size(name_len);
7174 err = btrfs_insert_empty_item(trans, root, path, &key,
7175 datasize);
54aa1f4d
CM
7176 if (err) {
7177 drop_inode = 1;
b0839166 7178 btrfs_free_path(path);
54aa1f4d
CM
7179 goto out_unlock;
7180 }
5f39d397
CM
7181 leaf = path->nodes[0];
7182 ei = btrfs_item_ptr(leaf, path->slots[0],
7183 struct btrfs_file_extent_item);
7184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7185 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7186 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7187 btrfs_set_file_extent_encryption(leaf, ei, 0);
7188 btrfs_set_file_extent_compression(leaf, ei, 0);
7189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7190 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7191
39279cc3 7192 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7193 write_extent_buffer(leaf, symname, ptr, name_len);
7194 btrfs_mark_buffer_dirty(leaf);
39279cc3 7195 btrfs_free_path(path);
5f39d397 7196
39279cc3
CM
7197 inode->i_op = &btrfs_symlink_inode_operations;
7198 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7199 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7200 inode_set_bytes(inode, name_len);
dbe674a9 7201 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7202 err = btrfs_update_inode(trans, root, inode);
7203 if (err)
7204 drop_inode = 1;
39279cc3
CM
7205
7206out_unlock:
d3c2fdcf 7207 nr = trans->blocks_used;
ab78c84d 7208 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7209 if (drop_inode) {
7210 inode_dec_link_count(inode);
7211 iput(inode);
7212 }
d3c2fdcf 7213 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7214 return err;
7215}
16432985 7216
0af3d00b
JB
7217static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7218 u64 start, u64 num_bytes, u64 min_size,
7219 loff_t actual_len, u64 *alloc_hint,
7220 struct btrfs_trans_handle *trans)
d899e052 7221{
d899e052
YZ
7222 struct btrfs_root *root = BTRFS_I(inode)->root;
7223 struct btrfs_key ins;
d899e052 7224 u64 cur_offset = start;
55a61d1d 7225 u64 i_size;
d899e052 7226 int ret = 0;
0af3d00b 7227 bool own_trans = true;
d899e052 7228
0af3d00b
JB
7229 if (trans)
7230 own_trans = false;
d899e052 7231 while (num_bytes > 0) {
0af3d00b
JB
7232 if (own_trans) {
7233 trans = btrfs_start_transaction(root, 3);
7234 if (IS_ERR(trans)) {
7235 ret = PTR_ERR(trans);
7236 break;
7237 }
5a303d5d
YZ
7238 }
7239
efa56464
YZ
7240 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7241 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7242 if (ret) {
0af3d00b
JB
7243 if (own_trans)
7244 btrfs_end_transaction(trans, root);
a22285a6 7245 break;
d899e052 7246 }
5a303d5d 7247
d899e052
YZ
7248 ret = insert_reserved_file_extent(trans, inode,
7249 cur_offset, ins.objectid,
7250 ins.offset, ins.offset,
920bbbfb 7251 ins.offset, 0, 0, 0,
d899e052
YZ
7252 BTRFS_FILE_EXTENT_PREALLOC);
7253 BUG_ON(ret);
a1ed835e
CM
7254 btrfs_drop_extent_cache(inode, cur_offset,
7255 cur_offset + ins.offset -1, 0);
5a303d5d 7256
d899e052
YZ
7257 num_bytes -= ins.offset;
7258 cur_offset += ins.offset;
efa56464 7259 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7260
d899e052 7261 inode->i_ctime = CURRENT_TIME;
6cbff00f 7262 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7263 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7264 (actual_len > inode->i_size) &&
7265 (cur_offset > inode->i_size)) {
d1ea6a61 7266 if (cur_offset > actual_len)
55a61d1d 7267 i_size = actual_len;
d1ea6a61 7268 else
55a61d1d
JB
7269 i_size = cur_offset;
7270 i_size_write(inode, i_size);
7271 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7272 }
7273
d899e052
YZ
7274 ret = btrfs_update_inode(trans, root, inode);
7275 BUG_ON(ret);
d899e052 7276
0af3d00b
JB
7277 if (own_trans)
7278 btrfs_end_transaction(trans, root);
5a303d5d 7279 }
d899e052
YZ
7280 return ret;
7281}
7282
0af3d00b
JB
7283int btrfs_prealloc_file_range(struct inode *inode, int mode,
7284 u64 start, u64 num_bytes, u64 min_size,
7285 loff_t actual_len, u64 *alloc_hint)
7286{
7287 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7288 min_size, actual_len, alloc_hint,
7289 NULL);
7290}
7291
7292int btrfs_prealloc_file_range_trans(struct inode *inode,
7293 struct btrfs_trans_handle *trans, int mode,
7294 u64 start, u64 num_bytes, u64 min_size,
7295 loff_t actual_len, u64 *alloc_hint)
7296{
7297 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7298 min_size, actual_len, alloc_hint, trans);
7299}
7300
e6dcd2dc
CM
7301static int btrfs_set_page_dirty(struct page *page)
7302{
e6dcd2dc
CM
7303 return __set_page_dirty_nobuffers(page);
7304}
7305
10556cb2 7306static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7307{
b83cc969 7308 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7309 umode_t mode = inode->i_mode;
b83cc969 7310
cb6db4e5
JM
7311 if (mask & MAY_WRITE &&
7312 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7313 if (btrfs_root_readonly(root))
7314 return -EROFS;
7315 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7316 return -EACCES;
7317 }
2830ba7f 7318 return generic_permission(inode, mask);
fdebe2bd 7319}
39279cc3 7320
6e1d5dcc 7321static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7322 .getattr = btrfs_getattr,
39279cc3
CM
7323 .lookup = btrfs_lookup,
7324 .create = btrfs_create,
7325 .unlink = btrfs_unlink,
7326 .link = btrfs_link,
7327 .mkdir = btrfs_mkdir,
7328 .rmdir = btrfs_rmdir,
7329 .rename = btrfs_rename,
7330 .symlink = btrfs_symlink,
7331 .setattr = btrfs_setattr,
618e21d5 7332 .mknod = btrfs_mknod,
95819c05
CH
7333 .setxattr = btrfs_setxattr,
7334 .getxattr = btrfs_getxattr,
5103e947 7335 .listxattr = btrfs_listxattr,
95819c05 7336 .removexattr = btrfs_removexattr,
fdebe2bd 7337 .permission = btrfs_permission,
4e34e719 7338 .get_acl = btrfs_get_acl,
39279cc3 7339};
6e1d5dcc 7340static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7341 .lookup = btrfs_lookup,
fdebe2bd 7342 .permission = btrfs_permission,
4e34e719 7343 .get_acl = btrfs_get_acl,
39279cc3 7344};
76dda93c 7345
828c0950 7346static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7347 .llseek = generic_file_llseek,
7348 .read = generic_read_dir,
cbdf5a24 7349 .readdir = btrfs_real_readdir,
34287aa3 7350 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7351#ifdef CONFIG_COMPAT
34287aa3 7352 .compat_ioctl = btrfs_ioctl,
39279cc3 7353#endif
6bf13c0c 7354 .release = btrfs_release_file,
e02119d5 7355 .fsync = btrfs_sync_file,
39279cc3
CM
7356};
7357
d1310b2e 7358static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7359 .fill_delalloc = run_delalloc_range,
065631f6 7360 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7361 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7362 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7363 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7364 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7365 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7366 .set_bit_hook = btrfs_set_bit_hook,
7367 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7368 .merge_extent_hook = btrfs_merge_extent_hook,
7369 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7370};
7371
35054394
CM
7372/*
7373 * btrfs doesn't support the bmap operation because swapfiles
7374 * use bmap to make a mapping of extents in the file. They assume
7375 * these extents won't change over the life of the file and they
7376 * use the bmap result to do IO directly to the drive.
7377 *
7378 * the btrfs bmap call would return logical addresses that aren't
7379 * suitable for IO and they also will change frequently as COW
7380 * operations happen. So, swapfile + btrfs == corruption.
7381 *
7382 * For now we're avoiding this by dropping bmap.
7383 */
7f09410b 7384static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7385 .readpage = btrfs_readpage,
7386 .writepage = btrfs_writepage,
b293f02e 7387 .writepages = btrfs_writepages,
3ab2fb5a 7388 .readpages = btrfs_readpages,
16432985 7389 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7390 .invalidatepage = btrfs_invalidatepage,
7391 .releasepage = btrfs_releasepage,
e6dcd2dc 7392 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7393 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7394};
7395
7f09410b 7396static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7397 .readpage = btrfs_readpage,
7398 .writepage = btrfs_writepage,
2bf5a725
CM
7399 .invalidatepage = btrfs_invalidatepage,
7400 .releasepage = btrfs_releasepage,
39279cc3
CM
7401};
7402
6e1d5dcc 7403static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7404 .getattr = btrfs_getattr,
7405 .setattr = btrfs_setattr,
95819c05
CH
7406 .setxattr = btrfs_setxattr,
7407 .getxattr = btrfs_getxattr,
5103e947 7408 .listxattr = btrfs_listxattr,
95819c05 7409 .removexattr = btrfs_removexattr,
fdebe2bd 7410 .permission = btrfs_permission,
1506fcc8 7411 .fiemap = btrfs_fiemap,
4e34e719 7412 .get_acl = btrfs_get_acl,
39279cc3 7413};
6e1d5dcc 7414static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7415 .getattr = btrfs_getattr,
7416 .setattr = btrfs_setattr,
fdebe2bd 7417 .permission = btrfs_permission,
95819c05
CH
7418 .setxattr = btrfs_setxattr,
7419 .getxattr = btrfs_getxattr,
33268eaf 7420 .listxattr = btrfs_listxattr,
95819c05 7421 .removexattr = btrfs_removexattr,
4e34e719 7422 .get_acl = btrfs_get_acl,
618e21d5 7423};
6e1d5dcc 7424static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7425 .readlink = generic_readlink,
7426 .follow_link = page_follow_link_light,
7427 .put_link = page_put_link,
f209561a 7428 .getattr = btrfs_getattr,
fdebe2bd 7429 .permission = btrfs_permission,
0279b4cd
JO
7430 .setxattr = btrfs_setxattr,
7431 .getxattr = btrfs_getxattr,
7432 .listxattr = btrfs_listxattr,
7433 .removexattr = btrfs_removexattr,
4e34e719 7434 .get_acl = btrfs_get_acl,
39279cc3 7435};
76dda93c 7436
82d339d9 7437const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7438 .d_delete = btrfs_dentry_delete,
b4aff1f8 7439 .d_release = btrfs_dentry_release,
76dda93c 7440};